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Abstract  

Loss of glycosaminoglycans (GAGs) in osteoarthritic (OA) cartilage contributes to a decrease 

in mechanical properties and function in vitro, and is considered to be a major contributor to 

disease progression. The aims of this investigation were to test the hypothesis that a 

combination of self-assembling peptides (SAPs) and chondroitin sulfate (glycosaminoglycan; 

GAG) would restore the biomechanical properties of GAG depleted porcine condylar 

cartilage, ideally to a level intrinsic to native porcine condylar cartilage. 

The SAPs investigated were members of the P11 series which have been designed to 

spontaneously self-assemble into three-dimensional fibrilar hydrogels, in response to 

physiological conditions. Initial studies were carried out to determine which of three 

peptides (P11-4, P11-8 and P11-12) demonstrated high β-sheet percentage, long-woven fibrilar 

networks and high stiffness; when mixed with chondroitin sulfate at two different GAG molar 

ratios (1:16 and 1:64) in physiological conditions, using FTIR analysis, transmission electron 

microscopy and rheology. The β-sheet percentage, dimensions of fibrils and stiffness were 

dependent upon the peptide, GAG molar ratio and Na2+ salt concentration. P11-4 and P11-8: 

GAG mixtures had high β-sheet percentage ranging from 50.6-91 % and 81.7-92 %, 

respectively. Fibril lengths of the P11-4 and P11-8: GAG mixtures were in the range 498- 3518 

nm and the elastic shear modulus (G’) ranged from 4,479-10,720 Pa and 7,722-26,854 Pa, 

respectively. P11-4 and P11-8: GAG mixtures were selected for further investigation. 

In order to produce a GAG depleted cartilage model, porcine femoral condylar cartilage was 

subjected to three different methods of GAG depletion (1) coating the surface with 

chondroitinase ABC (2) injecting chondroitinase ABC into the cartilage (3) washing the 

condyles in sodium dodecyl sulfate (SDS). GAG depletion was successfully achieved following 

two 24 hour washes in 0.1 % (w/v) SDS and buffer washes. Histological analysis of safranin O 

stained sections revealed an absence of GAGs. Quantification of GAGs using the 

dimethylemethylene blue assay revealed that 75 % of GAGs had been removed. 

In order to assess the effects of peptide: GAG mixtures on the biomechanical properties of 

the GAG depleted porcine condylar cartilage a biomechanical test method was developed. A 

series of indentation tests using different loads, followed by finite element analysis of the 

data were performed on native and GAG depleted porcine condylar cartilage ; to identify a 

suitable load for detection of a significant difference in the deformation, equilibrium elastic 

modulus and permeability between the native and GAG depleted porcine condylar cartilages. 

A load of 0.31 N was identified as the most appropriate.   
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GAG depleted porcine condylar cartilage was injected with P11-4 and P11-8 alone, P11-4 and 

P11-8 : GAG mixtures at a molar ratio of 1:64 and chondroitin sulfate alone. The average 

percentage deformation of the medial condylar cartilage samples injected with P11-4 alone 

and P11-4: GAG mixture was 15.5 % and 8.7 % and for P11-8 alone and P11-8: GAG mixture was 

11.4 % and 9.1 % respectively; compared to 6.3 % for the native cartilage and 12.6 % for the 

GAG depleted cartilage. The average equilibrium elastic modulus of the medial cartilage 

samples injected with P11-4 alone and P11-4: GAG mixture was 0.16 MPa and 0.43 MPa and 

for P11-8 alone and P11-8: GAG, 0.23 MPa and 0.35 MPa, respectively; compared to 0.49 MPa 

for the native cartilage and 0.21 MPa for the GAG depleted cartilage. Statistical analysis 

(ANOVA) showed that a mixture of P11-4: GAG, but not P11-8: GAG restored both the 

percentage deformation and equilibrium elastic modulus of the GAG depleted cartilage to 

levels that were not significantly different to the native cartilage.   

This study has shown that the use of P11-4 in combination with chondroitin sulfate has future 

potential for development as a minimally invasive treatment for early stage osteoarthritis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
vi 

Table of Contents  

Acknowledgements...................................................................................................... iii 

Abstract ........................................................................................................................iv 

Table of Contents ..........................................................................................................vi 

List of Figures................................................................................................................xi 

List of Tables ............................................................................................................... xvi 

List of Abbreviations ................................................................................................. xviii 

Chapter 1 Literature Review and Research Goals ............................................................1 

1.1 Introduction .................................................................................................1 

1.2 The Anatomy of Hyaline Articular Cartilage ....................................................2 

1.2.1 Composition and Structure of Cartilage.................................................2 

1.2.2 Microstructure of Cartilage ..................................................................2 

1.2.3 Macrostructure of Cartilage .................................................................7 

1.2.4 Function of Cartilage............................................................................8 

1.2.5 Lubrication Mechanisms of Cartilage .................................................. 11 

1.2.6 Wear of articular cartilage.................................................................. 14 

1.3 Osteoarthritis ............................................................................................. 16 

1.3.1 Introduction ...................................................................................... 16 

1.3.2 Pathophysiology of Osteoarthritis....................................................... 16 

1.3.3 Relevance of OA Models .................................................................... 18 

1.3.4 Structural and histological signs of OA ................................................ 21 

1.3.5 Biochemical and biomechanical changes of OA cartilage ...................... 23 

1.4 Cartilage Treatments and Research ............................................................. 30 

1.4.1 Early Intervention for Cartilage Defects............................................... 30 

1.4.2 Surgical Procedures for Cartilage Repair.............................................. 31 

1.4.3 In Vitro Tissue Engineering of Cartilage ............................................... 39 

1.5 Introduction to Peptides ............................................................................. 50 

1.6 Introduction into self-assembling peptides (SAPs) ........................................ 51 

1.6.1 Self-assembly mechanism .................................................................. 51 

1.6.2 Uses of self-assembling peptides in tissue engineering......................... 53 

1.7 Rationale.................................................................................................... 56 

1.8 Aim and Objectives ..................................................................................... 57 

1.8.1 Objectives ......................................................................................... 57 

Chapter 2 Materials and Methods ................................................................................ 58 

2.1 Materials.................................................................................................... 58 



 
vii 

2.1.1 Equipment ........................................................................................ 58 

2.1.2 Chemicals.......................................................................................... 59 

2.1.3 Peptides............................................................................................ 60 

2.1.4 Glycosaminoglycan (GAG; chondroitin sulfate) .................................... 61 

2.1.5 Software ........................................................................................... 61 

2.2 Methods .................................................................................................... 61 

2.2.1 General Methods............................................................................... 61 

2.2.2 Cartilage Tissue acquisition ................................................................ 63 

2.2.3 Histological techniques ...................................................................... 67 

2.2.4 Histological staining methods ............................................................. 69 

2.2.5 Biochemical Methods ........................................................................ 70 

2.2.6 Biomechanical Methods..................................................................... 71 

2.2.7 Statistical analysis.............................................................................. 79 

Chapter 3 The effect of GAG molar ratio and Na+ ion concentration in two different 

salt solutions on the biochemical, morphological and biomechanical properties 

of peptides: P11-4, P11-8 and P11-12....................................................................... 80 

3.1 Introduction ............................................................................................... 80 

3.2 Aims and objectives .................................................................................... 82 

3.3 Methods .................................................................................................... 82 

3.3.1 Dissolution of peptides, peptide: GAG mixtures and Na+ salt 

solutions. .......................................................................................... 82 

3.3.2 Measurement and adjustment of pH .................................................. 84 

3.3.3 Fourier Transform Infra-Red Spectroscopy (FTIR)................................. 84 

3.3.4 Transmission Electron Microscopy (TEM) ............................................ 88 

3.3.5 Rheology ........................................................................................... 90 

3.3.6 Statistical analysis.............................................................................. 95 

3.4 Results ....................................................................................................... 96 

3.4.1 Self-assembly of peptides and peptide-GAG mixtures at varying 
molar ratios in the presence of two different physiological Na+ salt 

solutions with varying Na+ ion concentrations. .................................... 96 

3.4.2 Morphology of peptides and peptide-GAG mixtures at varying molar 
ratios in the presence of two different physiological Na+ salt 

solutions with varying Na+ ion concentrations. .................................... 98 

3.4.3 Determination of elastic and viscous shear moduli of peptides and 
peptide-GAG mixtures at varying molar ratios in the presence of two 

different physiological Na+ salt solutions with varying Na+ ion 

concentrations using Rheology ......................................................... 107 



 
viii 

3.4.4 Summary of the effect of GAG molar ratio and Na+ salt solution on 
the elastic shear modulus (G’) of the peptide and PEP: GAG 

mixtures.......................................................................................... 117 

3.5 Discussion ................................................................................................ 117 

Chapter 4 Development of GAG depleted cartilage models ......................................... 126 

4.1 Introduction ............................................................................................. 126 

4.2 Aims and objectives .................................................................................. 126 

4.2.1 Objectives ....................................................................................... 126 

4.3 Experimental Methods.............................................................................. 127 

4.3.1 Acquisition of porcine femoral condyles............................................ 127 

4.3.2 Treatment of porcine femoral cartilage with chondroitinase ABC. ...... 127 

4.3.3 SDS and PBS washes of porcine condylar cartilage – Model 3 ............. 130 

4.3.4 Histological Characterisation ............................................................ 131 

4.3.5 GAG Quantification.......................................................................... 132 

4.3.6 SDS Quantification in GAG depleted cartilage (Model 3) .................... 132 

4.4 Results ..................................................................................................... 133 

4.4.1 Evaluation of native and GAG depleted porcine femoral condyles ...... 133 

4.4.2 GAG quantification of native and GAG depleted porcine femoral 

cartilage .......................................................................................... 144 

4.5 Discussion ................................................................................................ 146 

4.6 Conclusion ............................................................................................... 148 

Chapter 5 Development of methods for the determination of the biomechanical 

properties of native and GAG depleted cartilage. ............................................... 149 

5.1 Introduction ............................................................................................. 149 

5.2 Aims and objectives .................................................................................. 151 

5.2.1 Objectives ....................................................................................... 151 

5.3 Experimental methods .............................................................................. 151 

5.3.1 Acquisition of porcine femoral condyles............................................ 151 

5.3.2 GAG depletion of porcine femoral condylar cartilage ......................... 151 

5.3.3 Biomechanical characterisation of porcine femoral cartilage .............. 151 

5.4 Results ..................................................................................................... 153 

5.4.1 Cartilage thickness measurements.................................................... 153 

5.4.2 Percentage deformation .................................................................. 154 

5.4.3 Equilibrium elastic modulus and permeability ................................... 158 

5.5 Discussion ................................................................................................ 161 

5.6 Conclusion ............................................................................................... 165 



 
ix 

Chapter 6 Investigation of the effects of injection of peptide-GAG mixtures to GAG 

depleted cartilage. ............................................................................................ 167 

6.1 Introduction ............................................................................................. 167 

6.2 Aims and objectives .................................................................................. 168 

6.2.1 Objectives ....................................................................................... 168 

6.3 Experimental Design ................................................................................. 168 

6.4 Experimental Methods.............................................................................. 169 

6.4.1 Acquisition of porcine femoral condyles............................................ 169 

6.4.2 GAG depletion of porcine femoral condylar cartilage ......................... 169 

6.4.3 Preparation of peptides, peptide: GAG mixtures and chondroitin 

sulfate GAG control. ........................................................................ 169 

6.4.4 Injection of peptides, PEP: GAG mixtures and chondroitin sulfate 

(GAG) into GAG depleted porcine condylar cartilage. ......................... 171 

6.4.5 Biomechanical characterisation of porcine femoral condylar 

cartilage .......................................................................................... 172 

6.4.6 Determination of self-assembly of peptides and PEP: GAG mixtures 

in situ in GAG depleted porcine condylar cartilage. ............................ 173 

6.5 Results ..................................................................................................... 175 

6.5.1 Preliminary study to determine the effects of injecting water and 
just a needle (without water) on the deformation properties of 

native condylar cartilage. ................................................................. 175 

6.5.2 The effects of injecting P11-4 and P11-8 alone and in combination 
with GAG, at a molar ratio of 1:64 on the deformation properties of 

GAG depleted porcine condylar cartilage. ......................................... 181 

6.5.3 Equilibrium elastic modulus and permeability ................................... 189 

6.5.4 Summary of the effects of injecting GAG-depleted porcine medial 

condylar cartilage with peptides and PEP: GAG mixtures on the 

percentage deformation, elastic modulus and permeability values 

for all groups tested......................................................................... 192 

6.5.5 Fluorescence recovery after photobleaching (FRAP) analysis to 

determine self-assembly of injected fluorescein-doped P11-4 and 
P11-8 and fluorescein-doped PEP: GAG mixtures in GAG depleted 

condylar cartilage. ........................................................................... 192 

6.6 Discussion ................................................................................................ 201 

6.7 Conclusion ............................................................................................... 207 

Chapter 7 Conclusions and Future Studies................................................................... 208 

7.1 Major conclusions..................................................................................... 208 

7.2 Future studies .......................................................................................... 211 

7.2.1 Histological and GAG quantification of PEP: GAG treated cartilage. .... 211 



 
x 

7.2.2 Testing of mild and moderate GAG depleted porcine cartilage 

models. ........................................................................................... 211 

7.2.3 Testing of higher GAG molar ratio of PEP: GAG mixtures – 1:16 .......... 211 

7.2.4 Development of friction test to study the bio-tribological properties 

of the PEP: GAG mixtures. ................................................................ 212 

7.2.5 Use of natural whole joint GAG depleted models in knee simulator 

to investigate the effects of PEP: GAG mixtures on function. .............. 212 

7.2.6 Leakage study to the asses the stability of the PEP: GAG gel over a 

prolonged time period. .................................................................... 213 

7.3 Potential for Clinical Translation ................................................................ 213 

7.3.1 Arthroscopic delivery system............................................................ 214 

7.3.2 Pre-clinical studies in animal models of osteoarthritis. ....................... 214 

7.4 Significance of the study ........................................................................... 214 

References................................................................................................................. 215 

 

 

 

 



 
xi 

List of Figures 
Figure 1: Collagen triple helix with arrangement of amino acids within each 

procollagen alpha chain ........................................................................................3 
Figure 2: The intracellular and extracellular events in the formation of a collagen 

fibril......................................................................................................................4 
Figure 3: (Left) Schematic of ECM of articular cartilage (Barnes Baili, 2011), (Right) 

Proteoglycan aggrecan monomer molecule. Adapted from: ...................................5 
Figure 4: Stratified structure of cartilage demonstrating zonal arrangement. Adapted 

from: ....................................................................................................................8 
Figure 5: Stress-strain curve for articular cartilage under uniaxial constant strain rate 

loading .................................................................................................................9 
Figure 6: Friction coefficient plotted as a function of fluid viscosity and shear velocity 

divided by the load (Stribeck Curve) with the correspodning film thickness for 
boundary, mixed and hydrodynamic lubrication mechanisms .............................. 12 

Figure 7: Histological images of healthy and osteoarthritic cartilage. ............................. 21 
Figure 8: Severe OA, Safranin O/fast green staining. (A) Human, (B) and (C) rabbit. ....... 22 
Figure 9: Involvement of synovium in OA pathophysiology............................................ 23 
Figure 10: The role of mechanical loading in osteoarthritis. ........................................... 28 
Figure 11: Autologous chondrocyte implantation procedure using tibial periostuem 

for cartilage repair .............................................................................................. 34 
Figure 12: Diagrammatic representation of the collagen I/III membrane showing 

rough and smooth side........................................................................................ 36 
Figure 13: Chondrocyte-Seeded Type I/III collagen membrane for autologous 

chondrocyte transplantation. .............................................................................. 37 
Figure 14: Complications after ACI (diagnosed by clinical exam, MRI, and 

arthroscopy). Adapted from: ............................................................................... 38 
Figure 15: Hyalograft-C scaffold displayed as a commercialised product (left), MTT 

assay showing the encapsulated chondrocytes in an Injectable chitosan-based 
hydrogel for cartilage tissue engineering ............................................................. 43 

Figure 16: The three-dimensional poly(lactic-glycolic acid) (3D-PLGA) scaffold. .............. 47 
Figure 17: Hierarchical self-assembly of chiral rod like units. ......................................... 53 
Figure 18: Schematic of self-assembly curve for both nucleated self-assembly & non-

nucleated self-assembly of peptides. ................................................................... 53 
Figure 19: One subunit of Chondroitin-6-sulfate............................................................ 62 
Figure 20: Dissection equipment................................................................................... 64 
Figure 21: Dissection of porcine knee joints. ................................................................. 65 
Figure 22: Extraction of osteochondral pins. ................................................................. 66 
Figure 23: Extraction of Medial and Lateral condyles. .................................................... 67 
Figure 24: Orientation of cartilage tissue for histology. ................................................. 68 
Figure 25: Indentation apparatus.................................................................................. 72 
Figure 26: Cross-sectional view of the cup holder, showing how the condyle was 

orientated inside the cup holder and outlining rough distances and heights of 
relative components. .......................................................................................... 72 

Figure 27: Medial Porcine condylar cartilage cemented in PMMA.................................. 74 
Figure 28: LVDT calibration. .......................................................................................... 74 
Figure 29: Load cell calibration. .................................................................................... 75 
Figure 30: Picture of Instron testing equipment. ........................................................... 75 
Figure 31: Needle indentation graph interpretation. ..................................................... 76 
Figure 32: Finite element model of cartilage. ................................................................ 77 
Figure 33: Experimental and modelled cartilage displacement curves. ........................... 78 



 
xii 

Figure 34: Equilibrium elastic modulus and permeability of healthy native medial 
condylar cartilage under a load of 0.31 N (Blue – Healthy condylar cartilage 
with the ‘no fluid flow’ boundary condition; Red – Healthy condylar cartilage 
with the ‘fluid flow’ boundary condition)............................................................. 78 

Figure 35: TEM images of P11-8 fibrils, illustrating how the fibril lengths, widths (long 
and short) and twist pitch was calculated. ........................................................... 89 

Figure 36: Schematic of a rotational rheometer. ........................................................... 90 
Figure 37: Example of phase angle and its relationship to viscous and elastic 

materials. ........................................................................................................... 91 
Figure 38: Loss, complex and elastic modulus................................................................ 91 
Figure 39: Graph demonstrating the Linear Viscoelastic Region. .................................... 92 
Figure 40: General material behaviour in terms of storage and viscous modulus and 

phase angle. ....................................................................................................... 92 
Figure 41: Example amplitude sweep run at 1Hz and 20Hz showing both the elastic 

and viscous shear modulus.................................................................................. 95 
Figure 42: Fitted IR amide I’ band of P11-4, P11-8 and P11-12 at 10 mg.ml-1 in the 

presence of 130 mM (A, C and E) and 230 mM (B, D and F) Na+ salt solution 
with and without varying chondroitin sulfate molar ratios of 1:16 and 1:64. ......... 97 

Figure 43: Morphology of the P11-4 peptide in the presence of two Na+ salt solutions 
at varying chondroitin sulfate molar ratios (1:16 and 1:64) by TEM.  ..................... 98 

Figure 44: Morphology of the P11-8 peptide in the presence of two Na+ salt solutions 
at varying chondroitin sulfate molar ratios (1:16 and 1:64) by TEM.  ..................... 99 

Figure 45: Morphology of the P11-12 peptide in the presence of two Na+ salt solutions 
at varying chondroitin sulfate molar ratios (1:16 and 1:64) by TEM. ..................... 99 

Figure 46: Images of (a) P11-4. P11-8 and P11-12 in the 130 mM Na+ salt solution at pH 
7.4 (b) P11-4. P11-8 and P11-12 in the 230 mM Na+ salt solution at pH 7.4. ............. 100 

Figure 47: Widths of fibrils of all peptides in two different Na+ salt solutions at pH 7.4 
at varying molar ratios of GAG. ......................................................................... 106 

Figure 48: Lengths of fibrils of all peptides in two different Na+ salt solutions at pH 
7.4 at varying molar ratios of GAG. .................................................................... 106 

Figure 49: P11-4, P11-8 and P11-12 self-supporting gels at 10 mg.ml-1 in 130 mM and 
230 mM Na+ salt solutions. ................................................................................ 107 

Figure 50: The amplitude sweeps (elastic and viscous modulus vs. shear strain) of P11- 
4, P11- 8 and P11- 12 at 10 mg.ml-1 in 130 mM and 230 mM Na+ salt solutions. ..... 108 

Figure 51: The effect of varying the Na+ ion concentration (130 mM or 230 mM) on 
the mechanical stiffness of the P11-4, P11-8 and P11-12 gels, Strain 0.1 % and 
temperature 37oC ............................................................................................. 109 

Figure 52: P11-4, P11-8 and P11-12 self-supporting gels at 10 mg.ml-1 at two different 
GAG molar ratios (1:64 & 1:16) in 130 mM and 230 mM Na+ salt solutions. ......... 111 

Figure 53: The amplitude sweeps (elastic and viscous modulus vs. shear strain) of P11- 
4, P11- 8 and P11- 12: GAG mixtures at 10 mg.ml-1 in 130 mM and 230 mM Na+ 
salt solutions. ................................................................................................... 113 

Figure 54: The effect of varying the Na+ ion concentration (130 mM or 230 mM) and 
GAG molar ratio (1:16 and 1:64) on the mechanical stiffness of the P11-4, P11-8 
and P11-12: GAG mixtures. ................................................................................. 114 

Figure 55: Varying concentrations of chondroitin sulfate (4.85 mg.ml -1 and 22.1 
mg.ml-1) in 130 mM & 230 mM Na+ salt solutions. .............................................. 115 

Figure 56: Amplitude sweep: Elastic and viscous modulus vs. shear strain of 
chondroitin sulfate in both the 130 mM and 230 mM Na+ salt solutions at 
concentrations of 4.85 and 22.1 mg.ml-1. ........................................................... 116 

file:///H:/Corrections%20Andres%20Thesis/Final%20document%20Andres%20(after%20stats%20change).docx%23_Toc504951760
file:///H:/Corrections%20Andres%20Thesis/Final%20document%20Andres%20(after%20stats%20change).docx%23_Toc504951760


 
xiii 

Figure 57: Frequency sweep: Elastic and viscous modulus vs. frequency of 
chondroitin sulfate in both the 130 mM and 230 mM Na+ salt solutions at a 
concentration of 4.85 and 22.1 mg.ml-1.............................................................. 116 

Figure 58: Self-assembly behaviour of P11-4, P11-8 and P11-12 in 130 mM Na+ salt 
solution with no other salts. .............................................................................. 119 

Figure 59: Amino acid residues: a) Glutamine residue b) Serine residue. ...................... 120 
Figure 60: Sterile condyles showing the area of interest marked out in permanent 

marker, Case ABC gel was applied to this area to allow the depletion of GAGs.... 129 
Figure 61: Porcine femoral condyle showing the area of interest marked out in 

permanent marker. ........................................................................................... 130 
Figure 62: Safranin O stained sections of GAG depleted porcine condylar cartilage 

treated with an agarose gel containing CaseABC and antibiotic/aprotinin 
solution (model 1) and a porcine condylar cartilage treated with an agarose gel 
containing only antibiotic/aprotinin solution (control). ...................................... 135 

Figure 63: GAG content of cartilage from GAG depleted porcine condylar cartilage in 
model 1 compared to the control sample and untreated native porcine 
condylar cartilage. ............................................................................................ 136 

Figure 64: Safranin O stained sections of GAG depleted porcine condylar cartilage 
treated with injections of CaseABC containing antibiotic/aprotinin solution 
(model 2) and porcine condylar cartilage treated with injections of antibiotic/ 
aprotinin solution alone (control). ..................................................................... 138 

Figure 65: GAG content of cartilage from GAG depleted porcine condylar cartilage in 
models 2 compared to the control sample and untreated native porcine 
condylar cartilage. ............................................................................................ 139 

Figure 66: Safranin O stained sections of GAG depleted porcine condylar cartilage 
and untreated native porcine condylar cartilage control from model 3. .............. 141 

Figure 67: Safranin O stained sections of GAG depleted porcine condylar cartilage 
and untreated native porcine condylar cartilage control from model 3. .............. 142 

Figure 68: GAG content of cartilage from GAG depleted porcine cartilage in model 3.
......................................................................................................................... 143 

Figure 69: SDS concentration (ug.ml-1) after given SDS and PBS washes in model 3, 
method 4. ......................................................................................................... 143 

Figure 70: GAG content of cartilage from GAG depleted porcine cartilage in Models 
1 - 3 vs. native porcine cartilage. ....................................................................... 145 

Figure 71: Low Load (0.11 N) - Cartilage thickness measurement for native and GAG 
depleted cartilage (n=5). ................................................................................... 153 

Figure 72: Medium Load (0.31 N) - Cartilage thickness measurement for native and 
GAG depleted cartilage (n=6)............................................................................. 153 

Figure 73: High Load (0.51 N) - Cartilage thickness measurement for native and GAG 
depleted cartilage (n=3). ................................................................................... 153 

Figure 74: Percentage deformation of native and GAG depleted cartilage over the 
duration of 1 hour with a load of 0.11 N: (A) Medial condyle (B) Lateral condyle.
......................................................................................................................... 154 

Figure 75: Final percentage deformation of native and GAG depleted cartilage at 1 
hour with a load of 0.11 N. ................................................................................ 154 

Figure 76: Percentage deformation of native and GAG depleted cartilage over the 
duration of 1 hour with a load of 0.31 N: (A) Medial condyle (B) Lateral condyle.
......................................................................................................................... 155 

Figure 77: Final percentage deformation of native and GAG depleted cartilage at 1 
hour with a load of 0.31 N. ................................................................................ 156 

file:///H:/Corrections%20Andres%20Thesis/Final%20document%20Andres%20(after%20stats%20change).docx%23_Toc504951787
file:///H:/Corrections%20Andres%20Thesis/Final%20document%20Andres%20(after%20stats%20change).docx%23_Toc504951787
file:///H:/Corrections%20Andres%20Thesis/Final%20document%20Andres%20(after%20stats%20change).docx%23_Toc504951787
file:///H:/Corrections%20Andres%20Thesis/Final%20document%20Andres%20(after%20stats%20change).docx%23_Toc504951787
file:///H:/Corrections%20Andres%20Thesis/Final%20document%20Andres%20(after%20stats%20change).docx%23_Toc504951789
file:///H:/Corrections%20Andres%20Thesis/Final%20document%20Andres%20(after%20stats%20change).docx%23_Toc504951789
file:///H:/Corrections%20Andres%20Thesis/Final%20document%20Andres%20(after%20stats%20change).docx%23_Toc504951789
file:///H:/Corrections%20Andres%20Thesis/Final%20document%20Andres%20(after%20stats%20change).docx%23_Toc504951789
file:///H:/Corrections%20Andres%20Thesis/Final%20document%20Andres%20(after%20stats%20change).docx%23_Toc504951791
file:///H:/Corrections%20Andres%20Thesis/Final%20document%20Andres%20(after%20stats%20change).docx%23_Toc504951791
file:///H:/Corrections%20Andres%20Thesis/Final%20document%20Andres%20(after%20stats%20change).docx%23_Toc504951792
file:///H:/Corrections%20Andres%20Thesis/Final%20document%20Andres%20(after%20stats%20change).docx%23_Toc504951792


 
xiv 

Figure 78: Percentage deformation of native and GAG depleted cartilage over the 
duration of 1 hour with a load of 0.51 N: (A) Medial condyle (B) Lateral condyle.
......................................................................................................................... 157 

Figure 79: Final percentage deformation of native and GAG depleted cartilage at 1 
hour with a load of 0.51 N. ................................................................................ 157 

Figure 80: Representative graphs of indentation characteristics obtained 
experimentally and through FEA model curve fitting of a medial porcine 
condyle under a load of 0.31 N. ......................................................................... 159 

Figure 81: Equilibrium elastic modulus and permeability of native and GAG depleted 
medial condylar cartilage under a load of 0.11 N. ............................................... 159 

Figure 82: Equilibrium elastic modulus and permeability of native and GAG depleted 
medial condylar cartilage under a load of 0.31 N. ............................................... 160 

Figure 83: Equilibrium elastic modulus and permeability of native and GAG depleted 
medial condylar cartilage under a load of 0.51 N. ............................................... 160 

Figure 84: Hydrated monomeric peptide being drawn up into a 1 ml syringe, ready 
for injection into the GAG depleted porcine condylar cartilage........................... 171 

Figure 85: Schematic showing (A) the identification of the flattest region of interest 
(ROI) of the GAG depleted porcine condylar cartilage. ....................................... 172 

Figure 86:  Diffusion profiles for the intensity of fluorescein over a period of time ....... 174 
Figure 87: Cartilage thickness measurement of the medial condyles for the: native, 

native water injected and native injected only groups (n=3 for all groups). ......... 175 
Figure 88: Cartilage thickness measurement of the lateral condyles for the: native, 

native water injected and native injected only groups (n=3 for all groups). ......... 176 
Figure 89: Percentage deformation of medial condyles from: native, native water 

injected and native injected only groups, over the duration of 1 hour with a 
load of 0.31 N. .................................................................................................. 177 

Figure 90: Percentage deformation of lateral condyles from: native, native water 
injected and native injected only groups, over the duration of 1 hour with a 
load of 0.31 N. .................................................................................................. 178 

Figure 91: Final percentage deformation at 1 hour of: native, native water injected 
and native injected only groups, for the medial and lateral condyles, with a 
load of 0.31 N. .................................................................................................. 179 

Figure 92: Cartilage thickness measurement of the medial condyles for the: native, 
GAG depleted chondroitin sulfate (CS) injected only, GAG depleted, P11-4: GAG 
injected, P11-4 only injected, P11-8: GAG injected and P11-8 only injected groups 
(n=3 for all groups). ........................................................................................... 181 

Figure 93: Cartilage thickness measurement of the lateral condyles for the: native, 
GAG depleted chondroitin sulfate (CS) injected only, GAG depleted, P11-4: GAG 
injected, P11-4 only injected, P11-8: GAG injected and P11-8 only injected groups 
(n=3 for all groups). ........................................................................................... 182 

Figure 94: Percentage deformation of medial condyles from: native, GAG depleted 
chondroitin sulfate (CS) injected only, GAG depleted, P11-4: GAG injected, P11-
4 only injected, P11-8: GAG injected, P11-8 only injected groups, over the 
duration of 1 hour with a load of 0.31 N.  ........................................................... 183 

Figure 95: Percentage deformation of lateral condyles from: native, GAG depleted 
chondroitin sulfate (CS) injected only, GAG depleted, P11-4: GAG injected, P11-
4 only injected, P11-8: GAG injected, P11-8 only injected groups, over the 
duration of 1 hour with a load of 0.31 N.  ........................................................... 184 

Figure 96: Final percentage deformation at 1 hour of all groups: native, GAG depleted 
chondroitin sulfate (CS) injected only, GAG depleted, P11-4: GAG injected, P11-
4 only injected, P11-8: GAG injected, P11-8 only injected, for the medial and 
lateral condyles, with a load of 0.31 N.  .............................................................. 185 



 
xv 

Figure 97: Final percentage deformation at 1 hour of medial condyles from: native, 
GAG depleted, GAG depleted chondroitin sulfate (CS) injected only, P11-4: GAG 
injected, P11-4 only injected, P11-8: GAG injected, P11-8 only injected, with a 
load of 0.31 N. .................................................................................................. 186 

Figure 98: Final percentage deformation at 1 hour of lateral condyles from: native, 
GAG depleted, GAG depleted chondroitin sulfate (CS) injected only, P11-4: GAG 
injected, P11-4 only injected, P11-8: GAG injected, P11-8 only injected, with a 
load of 0.31 N. .................................................................................................. 187 

Figure 99: Representative graphs of indentation characteristics obtained 
experimentally and through FEA model curve fitting of a medial porcine 
condyle under a load of 0.31 N. ......................................................................... 190 

Figure 100: Elastic modulus and permeability of GAG depleted porcine medial 
condylar cartilage injected with P11-4: GAG, P11-4 only, P11-8: GAG, P11-8 only 
and their corresponding native and GAG depleted condylar cartilage controls, 
under a load of 0.31 N. ...................................................................................... 191 

Figure 101: Representative FRAP images of GAG depleted porcine condylar cartilage 
injected with fluorescein-tagged peptide-doped P11-4: GAG. .............................. 194 

Figure 102: Representative FRAP images of porcine GAG depleted condylar cartilage 
injected with fluorescein-tagged peptide-doped P11-4 alone............................... 195 

Figure 103: Representative FRAP images of porcine GAG depleted condylar cartilage 
injected with fluorescein-tagged peptide-doped P11-8: GAG. .............................. 197 

Figure 104: Representative FRAP images of porcine GAG depleted condylar cartilage 
injected with fluorescein-tagged peptide-doped P11-8 only. ............................... 198 

Figure 105: Representative FRAP images of porcine GAG depleted condylar cartilage 
injected with fluorescein-tagged chondroitin sulfate (CS). .................................. 199 

Figure 106: Representative images of native porcine condylar cartilage viewed under 
a fluorescein filter and transmitted light. ........................................................... 200 

Figure 107: Representative images of porcine GAG depleted condylar cartilage 
viewed under a fluorescein filter and transmitted light. ..................................... 201 

 

 

 

 



 
xvi 

List of Tables 

Table 1: Different descriptions of the Kellgren and Lawrence (K&L) criteria of knee 
osteoarthritis (OA) adapted from Schiphof et al (Schiphof et al., 2008) and 
Arden et al (Arden and Nevitt, 2006). .................................................................. 20 

Table 2: Clinical, histological and molecular signs of synovitis in OA. ............................. 25 
Table 3: The different cell sources that have been investigated for use in tissue 

engineering cartilage, along with the respective reasons for selecting them and 
their limitations for use. ...................................................................................... 40 

Table 4: Current clinical products on the market with their associated clinical trials 
that have been completed or are in the process of completion. Adapted from: 
(Huang et al., 2016). ............................................................................................ 44 

Table 5: Equipment used throughout the study............................................................. 58 
Table 6: Chemicals and reagents used throughout the study. ........................................ 59 
Table 7: Peptide primary structures, and their net charges at pH 7.4. Positively 

charged residues are coloured blue, negatively charged residues are red. All 
peptides were amidated and acetylated. ............................................................. 60 

Table 8: Masses (mg) of peptide and chondroitin sulfate (GAG) weighed out for the 
different molar ratios. Samples were made up to a total volume of 1 ml in two 
aqueous Na+ salt solutions, unless otherwise stated. ............................................ 63 

Table 9: Dissection equipment used throughout the study. ........................................... 64 
Table 10: Concentrations of different salts present in the two physiological salt 

solutions. ............................................................................................................ 83 
Table 11: Characteristic infrared bands of the peptide (Susi, 1972). ............................... 84 
Table 12: Secondary structural assignments of amide I’ infrared bands.......................... 86 
Table 13: Amino acid side chain absorptions in the amide I’ region for the P11 

peptides studied by FTIR spectroscopy. ............................................................... 87 
Table 14: Masses of peptide and CS weighed out for the different molar ratios. 

Samples were made up to a total volume of 4ml in two aqueous Na+ salt 
solutions. ............................................................................................................ 93 

Table 15: Average widths and twist pitch of the P11-4 fibrils in different Na+ salt 
solutions and GAG molar ratios. ........................................................................ 101 

Table 16: Average lengths of the P11-4 fibrils in different Na+ salt solutions and GAG 
molar ratios. ..................................................................................................... 101 

Table 17: Average widths and twist pitch of the P11-8 fibrils in different Na+ salt 
solutions and GAG molar ratios. ........................................................................ 102 

Table 18: Average lengths of the P11-8 fibrils in different Na+ salt solutions and GAG 
molar ratios. ..................................................................................................... 102 

Table 19: Average widths and twist pitch of the P11-12 fibrils in different Na+ salt 
solutions and GAG molar ratios. ........................................................................ 103 

Table 20: Average lengths of the P11-12 fibrils in different Na+ salt solutions and GAG 
molar ratios. ..................................................................................................... 103 

Table 21: Two-way analysis of variance to determine the effect of GAG molar ratio 
and Na+ ion concentration had on the length of the P11- 4 fibrils. ........................ 104 

Table 22: Two-way analysis of variance to determine the effect of GAG molar ratio 
and Na+ ion concentration had on the length of the P11- 8 fibrils. ........................ 104 

Table 23: Two-way analysis of variance to determine the effect of GAG molar ratio 
and Na+ ion concentration had on the length of the P11- 12 fibrils. ...................... 104 

Table 24: Two-way analysis of variance to determine the effect of GAG molar ratio 
and Na+ ion concentration had on the width of the P11- 4 fibrils.......................... 105 



 
xvii 

Table 25: Two-way analysis of variance to determine the effect of GAG molar ratio 
and Na+ ion concentration had on the width of the P11- 8 fibrils.......................... 105 

Table 26: Two-way analysis of variance to determine the effect of GAG molar ratio 
and Na+ ion concentration had on the width of the P11- 12 fibrils. ....................... 105 

Table 27: Summary table of the elastic shear modulus (G’) of the peptides alone and 
the PEP: GAG mixtures at 1 Hz. .......................................................................... 117 

Table 28: Masses of peptide and chondroitin sulfate (GAG) weighed out for the 
different injection experiments. ........................................................................ 170 

Table 29: Summary table of the percentage deformation, elastic modulus and 
permeability and the difference between the GAG depleted medial porcine 
condylar cartilage sample injected with P11-4: GAG, P11-4 only, P11-8: GAG and 
P11-8 only and the native and GAG depleted medial porcine condylar cartilage.
......................................................................................................................... 192 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
xviii 

List of Abbreviations 

AC Articular cartilage 
ACI Autologous chondrocyte implantation 

ADAMTS A disintegrin and metalloprotease with thrombospondin motifs 
AFM Atomic force microscopy 

ANOVA Analysis of variances 
BMPs Bone morphogenetic proteins 

BSA Bovine serum albumin 
CACI Collagen autologous chondrocyte implantation 
CaCl2 Calcium Chloride 
CaF2 Calcium flouride 

CaseABC Chondroitinase ABC 
CL Confidence level 
CS Chondroitin sulfate 

D2O Deuterium oxide 
DCELL Decullularisation 

DCl Deuterium chloride 
DMB 1,9-dimethylemethylene blue 
ECM Extracellular matrix 

EDTA Ethylenediaminetetraacetic acid 
ER Endoplasmic reticulum 

FEA Finite element analysis 
FRAP Fluorescence recovery after photobleaching 
FTIR Fourier transform infrared spectrometer 

g Grams 
GAG Glycosaminoglycan 

GF Growth factors 
GLY Glycine 
HA Hyaluronic Acid 

HBSS Hank’s balanced salt solution 
HCl Hydrochloric acid 

HYP Hydroxyproline 
ICRS International cartilage repair system 
IGF Insulin growth factor 

IKDC International knee documentation committee 
IL Interleukin 
IR Infrared  

KCL Potassium chloride 
KOOS Knee injury and osteoarthritis outcome score 

KS Keratan sulfate 
LVDT Linear variable differential transformer 
MACI Matrix associated chondrocyte implantation 

Mag Magnification 
ml Millilitre 

mm Millimetres 
mM Millimolar 

MMPs Matrix metalloproteases 
MOCART Magnetic resonance observation of cartilage repair tissue 

MPa Megapascals 
MR Molar ratio 



 
xix 

MRI Magnetic resonance imaging  
MSCs Mesenchymal stem cells 

N Newtons 
NaCl Sodium Chloride 

NaHCO3 Sodium hydrocarbonate 
NaOD Sodium deuteroxide 
NaOH Sodium Hydroxide 

Nm Nanometres 
NS Not significant difference 

NSAIDs Non-steroidal anti-inflammatory drugs 
OA Osteoarthritis 
Pa Pascals 

PACI Periosteum autologous chondrocyte implantation 
PBS Phosphate Buffered Saline 
PBT Poly butyleneterephtalate 
PCL Poly-caprolactone 

PCM Pericellular matrix 
PEG Polyethylene glycol 

PEOT Poly ethylene oxide-terephtalate 
PEP: GAG Peptide-glycosaminoglycan 

PG Proteoglcan 
PGA Poly-glycolic acid 
PGS Poly glycerol-co-sebacate 
PLA Poly-lactic acid 

PLGA Poly lactic-glycolic acid 
PMMA Polymethylmethacrylate 

POC Poly octanedoil-co-citrate 
PRO Proline 

RA Rheumatoid arthritis 
ROI Region of interest 

ROM Range of motion 
SA Self-assembly 

SAL Surface amorphous layer 
SAPL Surface active phospholipids 
SAPs Self-assembling peptides 

SDS Sodium dodecyl sulfate 
SS Salt solution 
ST Stromelysin 

SZP Superficial zonal proteins 
TEM Transmission electron microscopy 
TFA Trifluoroacetic acid 
TGF Transforming growth factor 
TJR Total joint replacement 

TNF Tumour necrosis factor 
UV Ultra violet  

µl Microlitre 
µM Micromiliter 

VAS Visual analogue scale 
VEGF Vascular endothelial growth factor 

WOMAC Western ontario and McMaster universities osteoarthritis index 



 
1 

Chapter 1 Literature Review and Research Goals 

1.1 Introduction 

Healthy articular cartilage in the knee has unique properties, allowing it to withstand high 

compressive, shear and tensile forces that the human body exerts upon it during normal gait 

or other activities such as running or climbing stairs (Mouw et al., 2005). Articular cartilage 

is a special type of hyaline cartilage that provides a low friction and wear resistant tissue at 

the articulating surfaces of bone. This is facilitated by distributing the applied load over a 

greater surface area which leads to a smooth interaction between the two opposing surfaces 

(Buckwalter et al., 2005). Unfortunately, articular cartilage is frequently injured in incidences 

which usually involve sport or trauma from motorized accidents; however it may also 

degenerate with increasing age (Groh and Herrera, 2009). Due to its avascular nature, the 

damaged cartilage has a poor propensity to self-repair (Farquhar et al., 1996; Buckwalter et 

al., 2005).  

Cartilage damage and degeneration significantly affects an individual’s quality of life. Pain 

and dysfunction of normal movements are symptoms of cartilage damage, frequently seen 

in the aging population, which can be attributed to arthritis. Arthritis, defined simply means 

joint inflammation, however there are two main types of arthritis that affect individuals; 

osteoarthritis (OA) and rheumatoid arthritis (RA) (Jackson et al., 2001). Osteoarthritis is a 

degenerative joint disease caused by the degradation of articular cartilage in the joints and 

rheumatoid arthritis is a chronic inflammatory autoimmune disease with a genetic 

predisposition. Articular cartilage loss causes proximal bones to rub, leading to pain, 

discomfort, swelling and limitation in movement. It is estimated that 8.75 million people in 

the UK suffer from OA (Arthritis Research UK, 2013). Currently there are many ways in which 

these problems can be overcome and/or managed, however there are limitations to all 

approaches.  

Research is currently focused on development of more advanced methods of cartilage repair, 

such as autologous chondrocyte implantation (ACI)  or the use of biomaterials for tissue 

engineering of articular cartilage using scaffolds and/or hydrogels. A fundamental knowledge 

of healthy and degenerated cartilage tissue anatomy, physiology, biomechanical and 

tribological function is of upmost importance to comprehend cartilage disease and develop 

novel therapies, for the early intervention in OA. 
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1.2 The Anatomy of Hyaline Articular Cartilage 

Hyaline articular cartilage is the most important structure in synovial joints (e.g. knee and hip 

joints). It protects the two articulating surfaces from abrasion by allowing smooth movement 

of the surfaces against each other whilst distributing load evenly (Buckwalter et al., 2005). 

Articular cartilage is a flexible and tough tissue consisting of chondrocytes (cartilage cells), 

which are distributed amongst an interlaced network of collagen fibrils and proteoglycans 

within the extracellular matrix (ECM) (Buckwalter et al., 2005). The work within this thesis is 

concerned with articular cartilage, therefore the words ‘cartilage’, ‘cartilage tissue’ etc. 

refers to articular cartilage (AC), unless otherwise stated. 

1.2.1 Composition and Structure of Cartilage 

The main component of cartilage is the ECM which accounts for 95% of the total cartilage 

dry weight; the remaining 5% is constituted by the cellular component of cartilage. The 

cellular component consists of chondrocytes, which are the functional element of the ECM 

(Anderson et al., 1964). The ECM of hyaline cartilage is 70% fluid (water), the remainder is 

made up of organic collagen molecules (15%), mainly type II collagen, 10% proteoglycans 

(aggrecan) and 5% glycoproteins (Poole et al., 1982).  

The structure of AC can be divided into two hierarchical levels; the micro-scale and the 

macro-scale. These two scales of viewing the structure of cartilage are of great importance 

in determining the biomechanical properties of the tissue.                                                                

1.2.2 Microstructure of Cartilage 

1.2.2.1 Collagen 

1.2.2.1.1 Structure of Collagen  

Collagen is the major ECM protein. It makes up ~15% of the cartilage ECM.  In the body there 

are 19 types of collagen, however AC is predominantly composed of type II collagen; with 

smaller amounts of types V, VI, IX, X and XI (Athanasiou et al., 2009; Mow and Ateshian, 

1997). All collagens are composed of 3 procollagen alpha chains, coiled around each other to 

form a triple helix configuration. These polypeptide chains contain approximately ~1000 

amino acid residues. The constituent procollagen chains are numbered using Arabic 

numerals followed by the collagen type with roman numerals in parentheses. For example: 

Type I procollagen is made up of two pro-α-1 (I) and one pro-α-2 (I), therefore it is a 

heterotrimer (Cremer et al., 1998). Whereas type II procollagen is assembled of three pro-α-

1 (II) chains and is therefore a homotrimer. The individual procollagen alpha chains are each 
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shaped into a left-handed helix and then all three of the chains coil together to form a right-

handed triple helix (Steplewski et al., 2007). The amino acids in the collagen peptide chains 

are primarily glycine, proline, hydroxyproline, lysine and hydroxylysine. These amino acids 

are arranged in the following tripeptide sequence: Gly-X-Y, where glycine is repeated every 

third residue, X is most commonly a proline residue and Y is frequently a hydroxyproline or 

hydroxylysine residue. This repeat region is encompassed by short unorganised telometric 

regions (the globular amino terminal and carboxyl terminal), which are prone to proteolytic 

attack by procollagen peptidase/ procollagen aminoproteinase/ procollagen 

carboxyproteinase. The cleavage of these terminal peptides allows the spontaneous 

formation of collagen fibrils (Steplewski et al., 2007). 

  

Figure 1: Collagen triple helix with arrangement of amino acids within each procollagen 
alpha chain. Adapted from: (The collagen molecule: Collagen structure, 2014).  

1.2.2.1.2 Synthesis of Collagen 

In cartilage, collagen synthesis occurs within chondrocytes. The individual helices gather in 

the lumen of the endoplasmic reticulum (ER) to form procollagen (Figure 2, (1)). Various 

proline and lysine amino acids are hydroxylated here and the addition of  glucose and 

galactose to the hydroxylysine residues also occurs (Figure 2, (2,3)). The middle portion of 

the procollagen chain associates with other molecules to form the triple helix and the 

propeptide extensions prevent premature assembly of collagen within the ER (Figure 2, 

(4,5)). Exocytosis of procollagen from the plasma membrane via a secretory vesicle is 

followed by the cleavage of the globular amino (N-terminal) and carboxyl terminals (C-

terminal) via selective proteolysis (Figure 2, (6,7)). The tropocollagen molecule formed then 

undergoes spontaneous assembly to form collagen fibrils and in turn fibres, which are 

stabilised by covalent cross-links (Figure 2, (8,9))  (Alberts et al., 2002). 

Collagen Fibres 

Amino acid 
chains 

-chains 
Collagen Molecules 

(triple helix) 

Collagen Fibrils 
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Figure 2: The intracellular and extracellular events in the formation of a collagen fibril. (A) 
Collagen fibrils assemble in the extracellular space contained within a folding of the plasma 
membrane. They further assemble to larger collagen fibres which a stabilised by covalent 

crosslinks. Adapted from: (Alberts et al., 1994). 

1.2.2.1.3 Roles of different types of collagen 

The most dominant form of collagen in the cartilage ECM is type II collagen (a homotrimer) 

which constitutes ~80-85% of the total collagen content. Collagen XI and IX (both 

heterotrimeric) are the second most common forms of collagen, consisting of ~3-10% each. 

Collagen IX is known to have a slight kink mid-chain where chondroitin sulfate 

glycosaminoglycans (GAGs) branches off (Steplewski et al., 2007). Collagen type XI is similar 

to type II, in that it is a straight chain molecule; however, it contains an α-chain at the amino 

terminal which projects out and forms a covalent cross link to the collagen type II molecule 

in the fibre backbone at the hydroxylysine residue. Collagen X is also a straight chain specific 

homotrimer. Although collagen X forms shorter chains than type II and XI, it forms multimeric 

collagen fibrils.  

The specific roles of all the types of collagen are not fully understood, however it is thought 

that these minor collagens play a role in adjusting the structure of collagen type II (Guilak et 

al., 2000). Collagen type II makes up the backbone of heteropolymeric cartilaginous fibres of 

which type IX is thought to play a role in facilitating the interaction of fibrils with 

proteoglycans. Collagen type VI forms independent microfibrils in the ECM and it plays a role 

in chondrocyte attachment to the ECM (Cremer et al., 1998; Poole, 1997). Type X is thought 

to play a role in the organisation and distribution of the matrix components and is present in 

areas where hypertrophic chondrocytes are found (Cremer et al., 1998; Shen, 2005). 
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1.2.2.2 Proteoglycans & Glycosaminoglycans  

The ECM contains three main types of glycosaminoglycans (GAGs): hyaluronan, chondroitin 

sulfate and keratan sulfate. A proteoglycan (PG) monomer consists of a core protein 

(aggrecan), to which numerous GAGs are attached. This proteoglycan monomer has 

associated chondroitin sulfate and keratan sulfate molecules through simple sugar bonds 

(Figure 3) (Hardingham and Muir, 1974). In AC, the most important proteoglycan monomer 

is aggrecan. Aggrecan consists of a protein core onto which GAG chains, made up of 

chondroitin sulfate and keratan sulfate, are covalently attached (Figure 3) (Mow and 

Ateshian, 1997). These aggrecan monomers bind, via a link protein to a hyaluronan molecule, 

forming a proteoglycan aggregate (Figure 3). This macromolecular complex interacts with 

the surrounding collagen fibrils to from a fibre-reinforced, porous-permeable composite 

solid matrix (Poole, 1997), which is known as the solid phase (Figure 3).  The most abundant 

GAG in AC is chondroitin sulfate, however there are other GAGs present in smaller quantities 

such as; heparin, heparan sulfate, dermatan sulfate and keratan sulfate. The functional 

properties of PGs are given to them by the individual GAG chains  (Mow and Ateshian, 1997). 

 

Figure 3: (Left) Schematic of ECM of articular cartilage (Barnes Baili, 2011), (Right) 
Proteoglycan aggrecan monomer molecule. Adapted from: (Brinker and Miller, 1999).  

1.2.2.2.1 Roles of collagen and proteoglycan in articular cartilage 

Both the collagen and PGs bind water in different ways, which is essential to the function of 

healthy cartilage (Mankin et al., 1999).  In the solid phase, proteoglycan monomers (Figure 

3) with GAGs rich in sulfate and carboxylate groups, are highly negatively charged in contact 

with water. A swelling pressure, resisted by the surrounding collagen network is created as 

a result of the repulsion force induced by the negatively charged molecules (Jaffe et al., 

1974,). The balance of these two forces determines the degree of cartilage hydration and 

any disruption of this balance will cause an increase in tissue hydration (Mankin, 1982).  

Protein core 
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The fluid phase of cartilage contributes to the healthy function of cartilage. It is this phase 

that influences the mechanical behaviour of cartilage when it is loaded. As the cartilage is 

loaded under compressive force, water is able to flow through the porous structure, which 

creates a frictional drag force on the matrix. The applied load causes the fluid to be extruded 

and this reduces the pore size and hence permeability of the ECM. Hence as the permeability 

of the ECM decreases, the drag force increases further (Maroudas et al., 1968). This 

mechanical mechanism provides cartilage with a protective feedback feature which enables 

the cartilage to stiffen by reducing the rate fluid flow through its matrix, when it experiences 

high and increasing loads (Mow et al., 1980). The combination of fluid and solid matrix 

properties provides AC with the viscoelastic, biomechanical and low friction properties for 

efficient load distribution.  

However, in degenerative cartilage these properties become compromised. The increased 

water content (tissue hydration) attributed to degenerative cartilage seems surprising as 

there is also a loss of glycosaminoglycans, which are themselves highly hydrophilic. 

Maroudas et al., explained this paradox as a degeneration of the collagen network, which 

allows the fibrillated tissue to swell even more, in spite of the relatively low osmotic pressure 

created by the decreased GAG content. Therefore, the swelling seen in degenerate cartilage 

is not due to any changes in the state of water but to a breakdown in the collagen network. 

The main disaccharide unit of GAGs in AC is chondroitin sulfate. It is formed by the linkage of 

D-glucuronic acid to N-acetylgalactosamine. These galactosamine residues can be sulfated 

either in positions 4 (C4S) or 6 (C6S); the sulfate groups alongside the carboxyl groups of 

glucuronic acid, are ionised, therefore giving rise to a global negative charge. In normal 

healthy cartilage, the concentration of C4S and C6S present in the synovial fluid has been 

shown to vary between 13.4- 23.4 nmol.ml-1 and 64.3-141.9 nmol.ml-1 respectively and the 

ratio of C6S:C4S has been shown to fluctuate between 4.3 to 6.9 (Nakayama et al., 2000; 

Nakayama et al., 2002). However, this ratio has been reported to decrease with increasing 

age and severity of the disease, most commonly OA, which is why this ratio has been 

suggested as a clinical marker for damage in articular cartilage in early OA (Sharif et al., 1996; 

Bayliss et al., 1999). Within the layers of cartilage, the proteoglycan composition changes 

with depth. The proteoglycans in the upper layers contain a lower amount of keratan sulfate 

and a higher amount of chondroitin sulfate (Zanetti et al., 1985). Recent studies using various 

biochemical characterisation techniques have confirmed that there is a topographical 

variation in the zonal distribution of chondroitin sulfate, and it is more predominantly found 

in the topmost layers of AC (Crockett et al., 2007; Bayliss et al., 1999). 
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1.2.3 Macrostructure of Cartilage  

Cartilage can be subdivided into four main zones. This zonal structure varies from the surface 

of AC down to the subchondral bone; through which the cellular (chondrocytes) and 

structural components (collagen fibre orientation) of the ECM undergo some changes  ( 

Figure 4). 

1.2.3.1 The Superficial Zone (tangential zone) 

This is the articulating surface that provides low friction movement between the two 

opposing surfaces and resists shear. It consists of two layers; a sheet of very fine fibrils with 

few polysaccharides and no cells, which forms a clear film often referred to as the lamina 

splendens, also known as the surface amorphous layer (SAL). Underneath this are flattened 

ellipsoid-shaped chondrocytes, packed parallel to the articulating surface with collagen fibres 

also aligned parallel to the surface. They synthesise an ECM with high collagen content and 

a low proteoglycan concentration, relative to other zones (Buckwalter et al., 2005). 

Fibronectin and water concentration are also highest in this zone.   

1.2.3.2 The Middle Zone (transitional zone) 

This zone makes up for around 40-60% of the AC volume. It has a higher Young’s modulus 

than the superficial zone, perpendicular to the AC surface. Chondrocytes in this zone are 

more rounded than in the superficial layer (Mow and Hung, 1989). They synthesise a matrix 

that has larger collagen fibrils (arranged loosely and horizontal to the articulating surface), 

higher proteoglycan content but a lower collagen and water content than seen in the 

superficial zone matrix (Buckwalter et al., 2005).  

1.2.3.3 The Deep Zone (radial Zone) 

This zone makes up 30% of the cartilage. Chondrocytes here are spheroidal in shape and 

arrange themselves parallel to the collagen fibrils and perpendicular to the joint line (Mow 

and Hung, 1989). This zone contains collagen fibrils with the largest diameter, the highest 

proteoglycan concentration and the lowest concentration of water (Buckwalter et al., 2005).  

1.2.3.4 Calcified Cartilage Layer 

The tide mark divides the deep zone from the underlying calcified cartilage, which rests 

directly on the subchondral bone (Mow and Hung, 1989). This transition reduces the stiffness 

gradient between the inflexible bone and the more flexible cartilage. The subchondral bone 

ultimately provides the anchorage for the cartilage tissue as a whole (Radin and Rose, 1986).   
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Figure 4: Stratified structure of cartilage demonstrating zonal arrangement. Adapted 
from: (Brinker and Miller, 1999).  

1.2.4 Function of Cartilage 

The function of cartilage is best understood when it is viewed as a biphasic structure. This 

specialist tissue is composed of a solid phase consisting of mostly type II collagen and 

proteoglycans and the fluid phase, which consists of water and ions. The solid phase has low 

permeability because of the high resistance to fluid flow, creating high interstitial fluid 

pressurization in the fluid phase. It is this pressure force that accounts for 90% of the ‘load 

transmission’ function of cartilage (Ateshian and Wang, 1997). The low permeability of the 

solid phase and the high pressurization of the fluid phase both work to establish the stiffness 

and viscoelastic properties that allow AC to perform its function (Felson et al., 2000). 

1.2.4.1 Mechanical properties of articular cartilage 

One of the roles of cartilage is to facilitate the load support and load transfer whilst allowing 

the rotation and translation between bones. The knee experiences a load of approximately 

3.5 times body weight and considering the average person weighs about 70 kg, the force 

experienced in the knee is exceptionally high (Mow et al., 2000). Therefore, the mechanical 

as well as the biochemical characteristics of AC are proportional to how it performs within 

the joint. Changes in these characteristics could ultimately affect the loading pattern that the 

bone experiences and hence, lead to degradation and eventually the total loss of tissue. The 

ability of cartilage to deform under load plays a crucial role in its mechanical function (Hayes 

and Mockros, 1971; Mow et al., 1984). The mechanical properties of AC can be described as 

anisotropic (dependant on orientation), nonlinear (dependant on magnitude of strain) and 

inhomogeneous (variable within tissue); all of which are due to the changes in macroscopic 

and microscopic structure throughout its depth (Guilak et al., 2000). AC can best be described 
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as a viscoelastic material with a solid and fluid phase, in which the interaction of 

proteoglycans and the collagen network play a crucial role in displaying this behaviour.  

When cartilage is put under uniaxial tension, the tissue exhibits non-linear stress-strain 

characteristics. In vivo, this tension is experienced when the cartilage is compressed and the 

surrounding regions are pulled towards the point of loading. As the cartilage is loaded in 

tension, the coiled collagen fibrils of the solid matrix begin to uncrimp, which contributes to 

the initial slope increase in the toe region (Figure 5). Following this initial straightening of the 

fibres, there is a constant increase in slope as the collagen fibres start to resist the applied 

tension which eventually leads to the failure of these fibres, as they are stretched to rupture. 

A study performed by Mow et al., showed that collagen in cartilage exhibits anisotropic 

behaviour as the tensile modulus was considerably higher in samples that were aligned 

parallel to the collagen fibres compared to those that were perpendicular to the collagen 

fibres (Mow and Ateshian, 1997).  

 

Figure 5: Stress-strain curve for articular cartilage under uniaxial constant strain rate 
loading.  

The tensile Young’s modulus of cartilage can be referred to as a measure of the strength of 

the solid collagenous matrix, which varies depending on the orientation and the depth of the 

cartilage tissue (Roth and Mow, 1980). Other parameters which also affect this parameter 

are type of joint, sample location, age, fibre density and diameter, strength of ionic bonds 

and amount of cross-linking within the cartilage tissue (Schmidt et al., 1990). In healthy 

human AC, the tensile modulus has been shown to vary between 5 to 25 MPa, depending 

mostly on the latter conditions (Kempson et al., 1968; Akizuki et al., 1986). The viscoelastic 

behaviour of AC is also dependant on the interactions of the solid collagenous matrix and its 

proteoglycans network. Schmidt et al. reported that the removal of GAGs from AC affects 

the collagen fibre orientation, which consequently alters the rate of deformation (creep) of 

the cartilage samples (Schmidt et al., 1990). Although, this study suggested that the collagen-

proteoglycan interactions affect the rate of deformation in AC, it is the inherent stiffness of 
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the solid collagenous matrix that mainly contributes to the stress-strain behaviour of 

cartilage in tension (Guilak et al., 2000). 

Wong et al., proposed that the loss of tensile integrity in degenerative cartilage and in 

osteoarthritic cartilage was directly proportional to the amount of collagen degradation as 

well as the network remodelling (Temple-Wong et al., 2009). Studies by Silver et al., 

suggested that the elastic modulus (calculated from stress-strain curves) for human AC was 

influenced by the collagen fibril length and its structure. It was found to be higher in healthy 

cartilage compared to OA cartilage. They suggested that this increase was due to the 

presence of PGs within the collagen. However, from the results it was not clear whether the 

decrease in the elastic modulus in OA cartilage is as a result of the degradation of the collagen 

network; the loss of PG content; synthesis of catabolic enzymes or a combination of the latter 

(Silver et al., 2001a; Silver et al., 2004). Nevertheless, the 3D organisation of collagen fibres 

is known to vary throughout the depth of AC and the orientation of these fibre aids in giving 

cartilage its unique mechanical properties.  

Articular cartilage also exhibits compressive properties that are mainly dependant on the 

water content and its interaction with the proteoglycan network. The compressive modulus 

of cartilage ranges from 0.08 to 2 MPa and like the tensile modulus, the compressive modulus 

can vary depending on location on the joint, age, type of joint and pathology (Schinagl et al., 

1997; Athanasiou et al., 1994). Compression of cartilage is governed by the highly charged 

sulfate and carboxyl groups on the proteoglycans, causing repulsion between them and 

owing to the expansion in the proteoglycan network. However, this swelling is restricted by 

the electrostatic forces between the collagen and proteoglycan network. These charged 

groups have a high affinity for water molecules which restrict the free movement of 

interstitial fluid through the interconnected pore structure of the solid matrix, setting up a 

frictional drag coefficient. As a result of these interactions, a Donnan osmotic pressure is 

created within the cartilage tissue network, which is the major contributor to the 

compressive stiffness of AC (Ateshian et al., 2003). Interstitial fluid pressures are significantly 

higher under compression, hence their importance in the load support in the joint. The 

frictional drag created by the flow of interstitial water through the porous permeable matrix 

acts as dissipative mechanism for AC. As this fluid is dispersed through the tissue, the fluid 

pressure decreases over time and more of the load is supported by the solid matrix, giving 

rise to the creep and stress-relaxation behaviours in cartilage (Mow et al., 1984; Park et al., 

2003; Lai et al., 1981; Mow et al., 1980). In conclusion, the creep and stress-relaxation 
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behaviour of AC is mainly explained by this biphasic behaviour, as the stresses are dispersed 

between the solid and fluid phases of cartilage. 

1.2.5 Lubrication Mechanisms of Cartilage 

Synovial fluid contributes to the low friction articulation within the human joints. Water is 

the main fluid constituent in AC, as well as the synovial fluid. The synovial fluid contains many 

inorganic salts, such as calcium, chloride, potassium and sodium as well as other components 

such as hyaluronic acid and proteins. This interstitial fluid also plays an important role in the 

transport of nutrients for the chondrocytes and the removal of waste from the tissue. The 

following section will cover the various lubrication regimes/theories stated for the synovial 

joints. It is important to note that none of these regimes alone can account for the behaviour 

of the joints under physiological loading. Therefore, it is suggested that a combination of 

more than one of the following regimes will be active under any physiological condition that 

the joint experiences.  

1.2.5.1 Fluid Film Lubrication 

When two articulating surfaces of AC are separated by a thin fluid layer, there are low levels 

of friction, and fluid film lubrication exists. The pressure created by this thin layer of fluid 

between the two bearing surfaces supports the load. The thickness of the film has to be three 

times greater than the combined roughness of the bearing surfaces, for the fluid film 

lubrication to subsist and function. Within this type of lubrication theory there are various 

regimes that can be used to describe the joint lubrication (McNary et al., 2012). 

Hydrostatic lubrication, is where the two opposing surfaces are separated and supported by 

an externally pressured fluid film from the recesses of the cartilage surface. Whereas, 

hydrodynamic lubrication occurs when two surfaces move at relatively high speed and fluid 

is drawn between them. The film thickness is a function of many different variables such as; 

geometry, roughness and fluid viscosity (Bassani and Piccigallo, 1992; Neu et al., 2008). In 

elastohydrodynamic lubrication, the asperities of the cartilage surface become of the same 

order of thickness as the fluid film. Therefore, the pressures generated by the fluid result in 

the elastic deformation of the bearing surfaces (Dowson, 1995). Squeeze film lubrication, is 

exhibited when the lubricant fluid between the two-bearing surface is viscous in nature and 

cannot be exuded out of the contact zone, when under load. This resultant pressure keeps 

the surfaces apart and dissipates the load (Mow and Ateshian, 1997). Lastly, boosted 

lubrication occurs when the joint is under load, this causes the solvent within the synovial 

fluid to be forced back in to the cartilage ECM, therefore leaving behind highly viscous and 
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concentrated hyaluronic acid and proteins on the cartilage surface, which have load bearing 

capabilities (Walker et al., 1968; Longfield et al., 1969).  

1.2.5.2 Boundary Lubrication 

Boundary lubrication comes into play when the combined asperity height of the two 

opposing surfaces becomes greater than the fluid film thickness. The articulating surfaces 

become separated by a mono/multi-layer of boundary lubricant, which prevents direct 

contact between the two surfaces. In the absence of this continuous and self-replenishing 

layer, the continuous asperity contact would lead to the degeneration of the cartilage surface 

by mechanical wear (Mow and Ateshian, 1997; Gleghorn and Bonassar, 2008; Chan et al., 

2010). Fluid film lubrication is dependent on the changes in viscosity of the fluid and the fluid 

forces generated from the joint motion (Figure 6). Nevertheless, the literature states that the 

lubrication of AC is not completely reliant on the viscosity of the synovial fluid; therefore, this 

led to further investigation into the lubricating constituents present in the synovial fluid. 

Research has mainly focused around the study of three proposed boundary lubricant 

molecules: surface active phospholipids (SAPLs), superficial zonal proteins (SZP) and 

hyaluronic acid (Chan et al., 2010; Jay and Cha, 1999) and their roles in different lubrication 

regimes. However, a full discussion of the research into these proposed boundary lubricants 

is beyond the scope of this thesis.  

 

Figure 6: Friction coefficient plotted as a function of fluid viscosity and shear velocity 
divided by the load (Stribeck Curve) with the correspodning film thickness for boundary, 

mixed and hydrodynamic lubrication mechanisms (Coles et al., 2010).  

1.2.5.3 Mixed Lubrication 

This type of lubrication regime comes into play when the interstitial fluid seeps out of the 

porous cartilage as the load increases. The ability of the cartilage to support the 

elastohydrodynamic lubrication via the secretion of interstitial fluid is reduced and ‘mixed 

lubrication’ comes into play. This is a combination of fluid film lubrication and boundary 

lubrication processes. Throughout the gait cycle, the bearing surfaces of AC undergo a variety 

of loading conditions (i.e. contact stresses and sliding speeds), diminishing the fluid film layer. 

As this occurs, the bearing surfaces start to come into contact; this is where boundary 
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lubrication operates to reduce the friction between the opposing surfaces. Thus, it is likely 

that under normal physiological conditions, the synovial joint operates under mixed 

lubrication and may revert to another regime depending on the activity of the individual 

(Gleghorn and Bonassar, 2008; Neu et al., 2008; Chan et al., 2010).  

1.2.5.4 Biphasic Lubrication 

Variations of fluid film, boundary and mixed lubrication regimes have been found to operate 

at the synovial joint. These regimes are attributed to the composition of the articulating 

surface and the materials present within them. Biphasic lubrication plays an intrinsic role in 

the tribological function of the cartilage tissue and hence the synovial joints.  

McCutchen was the first to propose that the interstitial fluid within the joint cavity was able 

to carry the load when a force was applied to it. The theory also stated that this fluid exudates 

from within the cartilage, providing a fluid film to the area that is loaded, keeping the surfaces 

from coming into contact (McCutchen, 1959). Over the years, many different lubrication 

mechanisms had been attributed to AC and it had become increasingly clear that the 

tribological performance of AC was not confined to one single lubrication regime alone. It is 

considered to have a manifold of lubrication regimes, which can be characteristic of two 

distinct incompressible and immiscible phases (Greene et al., 2011). These phases are 

comprised of the solid phase (mainly collagen and proteoglycans) and the fluid phase 

(interstitial water) (Mow and Lai, 1980). The interaction between these two phases is what 

controls the deformation of AC, which is the flow of the interstitial fluid through the complex 

interwoven solid phase. The significance of biphasic deformation in AC on its lubrication was 

highlighted in the late 1950s by McCutchen et al. However, it was not until the 1990s that 

further studies were carried out; experimentally by Forster et al. (1996), and theoretically by 

Ateshian et al. (1997), to confirm the biphasic mechanism (Forster and Fisher, 1996; 

Ateshian, 1997). The unique structure of AC is crucial to its biphasic and load bearing 

characteristics. Cartilage is highly porous; this is due to the interwoven nature of the collagen 

matrix, with pore size varying between 2 - 6.5 nm. The presence of charged groups on the 

proteoglycan network and these small pores in the matrix contribute to the low permeability 

value, which varies between 10-15 to 10-16 m4Ns-1 (Mow and Ateshian, 1997). As the interstitial 

fluid (fluid phase) is under load, it generates what is known as pressure gradients (drag 

forces). The pressurization of this fluid phase is able to support the majority of the load 

applied. However, as time progresses the fluid is exuded into the joint space or into other 

unloaded areas. Gradually the load is transferred from the fluid phase to the solid phase and 

as a result the friction is increased.  
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Forster & Fisher (1996) demonstrated that the friction observed between the two 

articulating surfaces was mainly due to the solid phases interactions. However, they also 

suggested that the COF between the articulating surfaces could be kept low as long as the 

fluid phase load support was very high. This was confirmed by their test measuring the COF 

in an in vitro cartilage specimen against metal and cartilage against cartilage set up for 

different loading times (Forster and Fisher, 1996).  

1.2.5.5 Triphasic Lubrication 

Mow et al., established the triphasic material properties of AC as a progression from the 

original biphasic theory. The proteoglycan aggregates were modelled to be restrained within 

the collagen matrix, just as in the biphasic theory. These molecules contain a large number 

of fixed negatively charged groups (SO3
- and COO-) along the GAG chains (Mow et al., 1990). 

Due to these negatively charged molecules, in a water-like environment such as the 

interstitial fluid, univalent counter ions (e.g. Na+) are needed to maintain the electro-

neutrality. These univalent ions which are present within the interstitial fluid were modelled 

as an addition to the fluid phase in the biphasic theory (Lai et al., 1991). Although the use of 

this theory has improved the accuracy in determining the equilibrium response to the 

deformation of cartilage under load, this ionic phase plays a very small role when compared 

to the solid and fluid phases of AC (Lai et al., 1991), however it is a factor that should be kept 

in mind experimentally.  

1.2.6 Wear of articular cartilage  

The wear of articular cartilage can be classified into two categories, mechanical wear and 

biochemical degradation, both of which can eventually lead to the destruction and 

degeneration of AC. In engineering terms, wear is classed as the removal and deformation of 

a material surface as the result of a mechanical stress applied by an opposing surface or 

object. Cartilage can last a life time with very minor wear however, this can be hindered by 

several environmental factors such as, but not limited to; abnormal biomechanical loading, 

trauma, changes in the structure of the ECM and pathologically induced alterations in the 

lubrication mechanism. All of the factors can either work in isolation or in concert to increase 

the cartilage wear past its normal limits. Cartilage tissue is biological in nature and therefore 

it can suffer from collateral biochemical degradation; this can either be alteration to the 

collagen network, increased loss of proteoglycans or ionic disturbances in the synovial fluid. 

It is very hard to determine which of the two types of wear damage, biomechanical or 

biochemical, follow on from each other. The difficulty of understanding the underlying 

process of these two types of cartilage wear has focused past and present research, to 
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determine the frictional and deformation properties of AC, whilst still being aware of any 

tribological properties.  

1.2.6.1 Types of wear  

1.2.6.1.1 Mechanical wear 

This type of wear can be further subdivided into two groups: fatigue wear and interfacial 

wear. The latter occurs mostly during boundary and mixed lubrication where there is slight 

solid-solid contact between the two opposing surfaces. There are two forms of interfacial 

wear; adhesive wear, which occurs when there is unwanted displacement and attachment 

of wear debris, from one surface to the other. The other is abrasive wear, in which the 

material of the softer of the two bearing surfaces is removed from its surface due to rubbing 

against the harder bearing surface. The harder material can either be the particles between 

the surfaces, which can be considered as third-body wear or the bearing surface itself (Mow 

and Ateshian, 1997). However, due to the many lubricating mechanisms within the joint, the 

contact between the articulating surfaces is hampered, meaning that interfacial wear does 

not tend to happen frequently. Nevertheless, any disruption to these lubricating mechanisms 

due to any sort of AC degradation may lead to interfacial wear and accelerate the tissue loss 

because of the altered biomechanics of the joint and increased contact.  

1.2.6.1.2 Fatigue wear 

Unlike mechanical wear, fatigue wear is independent of the lubrication phenomenon 

occurring between the two surfaces of the AC. This type of wear is produced as a result of 

cyclic loading causing increased stress and strain on the joint by which the material becomes 

weakened. This produces wear debris that becomes dislodged due to the propagated crack 

growth at the cartilage surface or in the underlying bulk material. In cartilage, it is manifested 

in the form of collagen network buckling or loosening (Mow and Ateshian, 1997), by which 

the collagen fibres become separated from their bundles into individual fibres or even 

smaller subunits. This results in a dramatic decrease in the mechanical properties and an 

increase in the tissue permeability, similar to the process seen in OA cartilage. 

1.2.6.1.3 Biochemical degeneration  

Cartilage loss due to the degeneration of its structural and functional components can be as 

a result of various pathological causes such as, but not limited to, metabolic disorders, over 

production of cytokines and matrix metalloproteases (MMPs) and joint haemophilia. This is 

termed as biochemical degeneration. There is a vast amount of literature that uncovers the 

underlying mechanisms of these factors and the role they have in cartilage degeneration as 

well as the onset and progression of OA (Alcaraz et al., 2010; Kapoor et al., 2011; Pitsillides 
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and Beier, 2011; Ashkavand et al., 2013; Lee et al., 2013). Biochemical degradation can also 

affect the natural aging of chondrocytes and stimulate chondrocyte hypertrophy as a result 

of increased metabolic activity. These changes in chondrocyte behaviour alter the 

composition of the ECM as a result of an increase in the ratio of CS-6 to CS-4, which is similar 

to the ratio seen in undeveloped foetal cartilage (Sandy et al., 1987; Hickery et al., 2003; 

Clarkin et al., 2011). Following these events, the biomechanical properties of AC become 

adversely affected and hence make it susceptible to further mechanical and/or biochemical 

degeneration, aggravating the OA condition. Therefore, OA is a combination of biological, 

chemical and mechanical processes.  

1.3 Osteoarthritis 

1.3.1 Introduction 

Osteoarthritis (OA) is one the most common joint diseases worldwide. This disease is 

characterised by the progressive loss of articular cartilage and formation of osteophytes 

which leads to chronic pain and discomfort. The vast literature all points to the same factors 

that are responsible for the development of OA (Lorenz and Richter, 2006). These mainly 

include traumatic events either from sporting activities or traffic accidents; however, there 

are also other factors such as congenital abnormalities, ageing and malnutrition which can 

all lead to changes in the AC structure (Swoboda, 2001). Unfortunately, cartilage has a poor 

propensity for self-renewal due to its avascular nature. The repair tissue that it does form as 

a result of cartilage loss mainly consists of fibrous tissue, which has mechanical properties 

that are considerably reduced compared to that of healthy AC. Early therapeutic intervention 

is needed to repair initial cartilage damage and prevent or delay the progression to OA (Arden 

and Nevitt, 2006). Unfortunately, OA is not normally diagnosed in early stages and 

predominantly manifest at an advanced stage, when alterations to the joint are pronounced 

and can be visualised radiographically. The therapeutic options for advanced OA are difficult 

and limited. There is a real need to understand the underlying molecular mechanisms of 

cartilage degeneration, in order to develop early intervention therapeutic approaches and 

diagnostic techniques (Lorenz and Richter, 2006).  

1.3.2 Pathophysiology of Osteoarthritis 

As noted above, a major problem with understanding of the pathophysiology of OA is that 

early stage OA cartilage is not easily diagnosed. The morphological and histological features 

of established OA are well known, however the underlying molecular mechanisms that lead 

to the development of the disease are still not completely understood. This section aims to 
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review current literature available on the biochemical and molecular process at different 

stages of OA that lead to histological and macroscopically visible alterations in AC.  

Damage to cartilage, mainly through trauma, involves damage to chondrocytes, which 

compromises their ability to repair. This leads to loss of proteoglycan content (Lohmander et 

al., 1989), increased hydration and altered collagen organization (Mankin, 1982). The 

progressive loss of structure and functionality of AC is driven by an imbalance of anabolic and 

catabolic processes within the tissue (Sandell and Aigner, 2001). The disturbance of the 

cartilage organisation results in a decrease in the tensile stiffness and strength that is usually 

provided by the healthy 3D architecture of the collagen network (Wang et al., 2003).  

Similarly, the OA process is linked to a loss of proteoglycans, by which proteoglycan 

monomers are no longer bound to the hyaluronan backbone. This is due to proteolytic 

enzymes which shorten the chain length of the aggrecan molecule and hence inhibit the 

formation of the normal macromolecular complex seen in Figure 3 (Mankin et al., 1999; 

Poole, 1997). It is thought that metalloproteases (MMPs) such as collagenase-1 (MMP-1) and 

collagenase-3 (MMP-3) are responsible for the degradation of type II collagen (Reboul et al., 

1996), whereas stromelysin-1 (ST3) and aggrecanase-1 (ADAMTS-4) are responsible for the 

degradation of aggrecan (Lark et al., 1997; Tortorella et al., 2000). The breakdown of these 

complexes leads to a more permeable solid matrix. Even though there is increased water 

content, the increase in permeability of the matrix results in a decrease in the hydraulic 

pressure and therefore a reduction in the compressive stiffness (softening) of the cartilage 

(Akizuki et al., 1987; Lai et al., 1991). Inflammatory cytokines may augment the process of 

cartilage softening and degradation. Pro-inflammatory cytokines such as tumour necrosis 

factor-  𝛼  (TNF- 𝛼 ), interleukin 1-  𝛽  (IL-1𝛽 ) and IL-6 stimulate chondrocytes to secrete 

catabolic enzymes such as MMPs and aggrecanase, which degrade the cartilage matrix 

(Martel-Pelletier, 2004). The loss of structure to the ECM and decrease in the mechanical 

properties leads to the load applied at the surface of the AC to be transferred to the 

underlying subchondral bone and consequently making it stiffer. Consequently, this causes 

the impact loads to be transmitted to the weaker damaged cartilage (Mankin, 1982). Small 

lesions occur which eventually increase in size, revealing naked bone and ultimately the 

whole layer of the articular cartilage is destroyed (Howell, 1986; Felson, 1993). In summary, 

the pathophysiological process of OA that causes the morphological and histol ogical change 

can simply be divided into three stages. Firstly, the ECM breaks down on a molecular level, 

water content increases and matrix molecules are reduced in size. This compromises the 

structure of collagen leading to a reduced stiffness. Secondly, chondrocytes try to repair the 

damage through enhanced proliferation and metabolic activity. Chondrocytes aggregate 
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around newly formed matrix molecules. Finally, the cells are not able to sustain their 

reparative activity and as a consequence the regeneration of cartilage is superseded by its 

degeneration (Lorenz and Richter, 2006).  

1.3.3 Relevance of OA Models  

One approach to understand the disease progression of OA is via the use of animal models. 

Animal models have been able to provide radiographical, histological and molecular changes, 

which can be directly correlated to certain stages of degeneration of human AC (Lorenz and 

Richter, 2006). Animal models allow direct comparison of diseased and healthy AC in the 

same animal. Animal models include spontaneous (Huebner et al., 1998), mechanically 

induced (Pond and Nuki, 1973; Marijnissen et al., 2002), and chemically induced (Dumond et 

al., 2004) approaches. The relevance of these models to the human situation is, however 

questionable, not least because animals are quadrupeds and have different loading patterns 

in joints compared to humans. Nevertheless, most of the current understanding of the 

pathophysiology of early OA and its progression over time is derived from animal models 

(Lorenz and Richter, 2006). The type of joint usually studied in animals is the stifle (knee) 

joint. Nonetheless, other joints include the temporomandibular joint in STR/ort mice  

(Kumagai et al., 2015), the metacarpophalangeal and middle carpel joints in horses, which 

have been shown to have great similarities to the human knee joint (McCoy, 2015; 

McIlwraith et al., 2010). Both small (mouse, rat, rabbit, guinea pig) and large animal (dog, 

sheep and horse) have been used to develop OA model. However, the choice of an imal 

usually depends on, but is not limited to, the type of experiment, length of study, husbandry 

costs, ease of handling and outcome measurements. All of which have been associated with 

the disadvantages of using animal models (Kuyinu et al., 2016). In addition, the length of time 

needed for each animal to reach skeletal maturity and, as a consequence develop OA is also 

another limiting factor. Small animal models are usually used to study the pathogenesis and 

pathophysiology of the OA disease process as well as screening models for therapeutic 

interventions. Although they are quick, cheap and easy models to implement the efficacy of 

treatments may not be translatable to humans, which is mainly down to the difference in 

anatomy, histology and physiology between these animals and humans (McCoy, 2015; 

Pelletier et al., 2010). Larger animal models are usually used to study the disease process and 

treatment, as their anatomy is much more like those of humans, which is why studies of 

cartilage degeneration and osteochondral defects are much more useful in larger animals. 

They can be used to confirm the efficacy of drugs or treatments before they are taken to 

clinical trials (McCoy, 2015; Pelletier et al., 2010). The biggest problem however when using 

animal models is, because there are so many approaches to induce OA, such as but not 
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limited to: surgical, chemical, non-invasive, mechanical, genetically modified; there is lack of 

standardisation of these OA models and their outcome measures, making it difficult to 

compare results between studies. Furthermore, the upscaling of studies from small to large 

animal model, which are essential for translation of potential therapies to human medicine, 

still present a great challenge.  

1.3.3.1 Kellgren-Lawrence grading system  

In humans, the Kellgren-Lawrence grading system (Table 1) is an example of how different 

stages of OA can be identified. This system of grading based on radiographic features is used 

by clinicians to classify the extent of joint space narrowing, osteophyte formation, 

subchondral sclerosis, cyst formation and abnormalities of bone contours. It assigns five 

grades (0-4) to OA, at different joint sites by comparison with a radiographic atlas (Kellgren 

and Lawrence, 1957). Over the years many radiologists have added to the atlas databases, 

and this has helped to provide a more consistent approach to the grading of the individual 

features mentioned above and allowed better extrapolation between the results of different 

studies (Altman et al., 1995; Burnett et al., 1994; Schiphof et al., 2008).  
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Table 1: Different descriptions of the Kellgren and Lawrence (K&L) criteria of knee osteoarthritis (OA) adapted from Schiphof et al (Schiphof et al., 2008) 
and Arden et al (Arden and Nevitt, 2006). 

Radiological features on which grades are based 

- Formation of osteophytes on the joint margins or, in 
the case of the knee joint, on the tibial spines. 

- Narrowing of joint cartilage associated with sclerosis 
of subchondral bone. 

- Small pseudocystic areas with sclerotic walls situated 
usually in the subchondral bone. 

- Altered shape of the bone ends, in particular in 
proximal end of the tibia and distal end of the femur.     

Radiographic Grade 0 I II III IV 

Classification None Doubtful Mild/minimal Moderate Severe 

Description 

(Kellgren and Lawrence, 1957; 

Kellgren et al., 1963; Scott et 

al., 1993) 

No 

features 

of OA 

Doubtful narrowing of joint space 

and possible osteophytic lipping. 

Definite osteophytes and 

possible narrowing of joint space. 

Moderate multiple osteophytes, 

definite narrowing of joint space 

and some sclerosis and possible 

deformity of bone ends. 

Large osteophytes, marked 

narrowing of joint space, severe 

sclerosis and definite deformity of 

bone ends . 

Alternative A  

(Jordan et al., 2003; Cooper et 

al., 1996; Hart et al., 1991) 

No 

features 

of OA 

Minute osteophyte, doubtful 

significance. 

Definite osteophyte, unimpaired 

joint space. 

Moderate diminution of joint space 

(with osteophytes). 

Joint space greatly impaired with 

sclerosis of subchondral bone 

Alternative B  

(Zhang et al., 2001) 

No 

features 

of OA 
Possible osteophytes only. 

Definite osteophytes and 

possible joint space narrowing. 

Moderate osteophytes and/or 

definite narrowing. 

Large osteophytes, severe joint 

space narrowing and/or bony 

sclerosis. 

Alternative C  

(Wilder et al., 2002; Williams 

et al., 2005) 

No 

features 

of OA 
Possible osteophyte lipping. 

Definite osteophyte and possible 

joint space narrowing. 

Moderate multiple osteophytes, 

definite joint space narrowing, 

some sclerosis, and possible bone 

contour deformity (bony attrition). 

Large osteophytes marked joint 

space narrowing, severe sclerosis, 

and definite bone contour 

deformity (bony attrition). 

Alternative D 

(Williams et al., 2004) 

No 

features 

of OA 
Doubtful pathology. 

Minimal osteophytes, possible 

narrowing, cysts, and sclerosis. 

Moderate, as in definite 

osteophytes with moderate joint 

space narrowing. 

Severe, with large osteophytes and 

definite joint space narrowing. 
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1.3.4 Structural and histological signs of OA 

1.3.4.1 Early OA 

The initial degeneration process of OA is characterised by changes in the cartilage surface, 

which are no longer smooth (McDevitt et al., 1977). The GAGs remain unchanged compared 

to normal healthy cartilage, however as the disease progresses, there is a loss of 

proteoglycans indicated by a reduction in Safranin O staining (Figure 7) and the cells in the 

superficial layer become round (as opposed to flat), hypertrophic and eventually disappear 

(Fernandes et al., 2002).  

 
Figure 7: Histological images of healthy and osteoarthritic cartilage. [Top Pictures] Normal 

knee articular cartilage, Safranin O/fast green stained sections. (A) Human, (B) Rabbit. (1) 
Smooth surface, (2) cells in the tangential zone are small and flat, (3) cells in the 

intermediate and radial zone are arranged in columns, (4) the complete cartilage matrix 
stains with Safranin O, and (5) the tidemark is intact. [Bottom Pictures] Mild  OA, (C) Human, 

(D) and (E) rabbit. (1) Surface irregularities, (2) Hypertrophic cells in tangential zone, (3) 
staining of Safranin O is reduced and (4) pannus (Lorenz and Richter, 2006).  

In the transitional and radial zones the tissue shows mild to moderate hypercellularity. 

Necrotic chondrocytes have been reported within the tangential zone of experimental OA 

models (Bluteau et al., 2001). Pelletier et al., as well as many others, have noted that there 

is a change in the synovial membrane in OA models in dogs and rabbits (Pelletier et al., 1985). 

Hyperplasia of the synovial lining cells, thickening of the synovial membrane, presence of 

inflammatory cells and fibrosis have all been reported (Brandt et al., 1991; Sakakibara et al., 

1994). The progression of the disease is dependent on the species of animal as well as the 

D E C 
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location of the joint as proposed in reviews by; Le Graverand et al. (Le Graverand et al., 2002), 

Lorenz et al. (Lorenz et al., 2005), and Young et al. (Young et al., 2005).   

1.3.4.2 Advanced OA 

At a more advanced stage of OA, there are visible signs of complete bre akdown of the 

cartilage (Figure 8). The AC surface demonstrates a rough and uneven surface, with some 

signs of fissures and cracks, which penetrate down to the calcified bone (Veje et al., 2003). 

The cells in this very severe OA cartilage, either disappear completely or cluster around the 

fissures, as the tissue degenerates further. The organisation of cartilage is completely lost 

and is replaced by fibrous tissue (Miosge et al., 2004). In very extreme cases, the bone is 

denuded of cartilage creating full-thickness defects (Pfander et al., 1999). A considerable loss 

of proteoglycan content, visualised by lack of Safranin O in histological sections in all layers 

of the cartilage is seen, eventually reaching the deep zone (Figure 8). The tidemark between 

calcified and uncalcified cartilage is obscured (Hayami et al., 2003). Histological studies of 

human cartilage exhibiting signs of OA, show the presence of fibrocartilage (Goldwasser et 

al., 1982), as well as the presence of fibrillated tissue with areas of cartilage loss (Squires et 

al., 2003).  

Bock et al. were able to distinguish between three types of chondrocytes within OA cartilage 

via a series of light and electron microscopical analyses. Type I cells exhibited the normal 

healthy phenotype, in a continuous matrix and small amounts of endoplasmic reticulum. 

Type II cells, were elongated and more irregular in shape, situated in a fibrillated matrix with 

an enlarged endoplasmic reticulum. In severe cases of OA, Type III cells were found. These 

cells contained pyknotic nuclei and partly dissolved cytoplasm within a severely fibrillated 

matrix (Bock et al., 2001). 

 

Figure 8: Severe OA, Safranin O/fast green staining. (A) Human, (B) and (C) rabbit. (1-3) 
The tissue shows deep clefts in the surface from which cells have disappeared from the 
tangential zone. (4) Lack of cells in the intermediate and radial zone, (5) reduced to no 

staining of the matrix with Safranin O, and (6) denuded bone (Lorenz and Richter, 2006). 
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1.3.5 Biochemical and biomechanical changes of OA cartilage 

Within the vast literature there is much discussion regarding the biomechanical and 

biochemical mechanisms involved in the onset and progression of OA. Clinically, OA has been 

linked to symptoms such as joint swelling, synovitis and inflammatory pain. The synovial 

membrane contains highly metabolic synoviocytes, which are important in regulating the 

physiological conditions within the joint capsule and nourishing the chondrocyte s via the 

synovial fluid. They also remove any products of degeneration (Sellam and Berenbaum, 

2010). Synovitis has been linked with the structural degradation of the OA disease because 

of the action of several soluble mediators involved in the pathophysiology. However how this 

occurs, is open to debate. Sallam & Berenbaum (2010) and later Berenbaum (2013) both 

proposed the same hypothesis (Sellam and Berenbaum, 2010; Berenbaum, 2013); that as AC 

degrades due to several factors (some listed in Table 2); cartilage debris becomes dislodged 

in the joint space. Synovial cells, recognise these fragments as foreign material and mount 

an inflammatory response leading to the release of inflammatory mediators as depicted in  

Figure 9. 

 Figure 9: Involvement of synovium in OA pathophysiology. The activated synovial cells 
produce catabolic and pro-inflammatory mediators, which leads to the excess production 
of proteolytic enzymes responsible for cartilage and matrix breakdown, creating a positive 

feedback loop. The inflammatory response is amplified by synovial T & B cells and 
macrophages. In addition to these inflammatory and degenerative effects, the inflamed 

synovium also contributes to the formation of osteophytes via the release of bone 
morphogenetic proteins. Abbreviations - IL: interleukin; TNF: tumor necrosis factor; MMPs: 

matrix metalloproteinases; ADAMTS: a disintegrin and metalloprotease with 
thrombospondin motifs and VEGF: vascular endothelial growth factor. Adapted from: 

(Kuyinu et al., 2016).  
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Histological changes in OA synovium, reported by Myers et al., show signs of hypertrophy 

and hyperplasia with an increased number of lymphocytes and macrophages. The 

permeation of these cells into the synovium and thickness of the synovial lining seem to be 

closely related (Myers et al., 1990). Inflammatory mediators, detected in the synovial fluid 

have been suggested to originate from three tissues that have undergone histological 

modification; cartilage, subchondral bone and synovium. The two most common cytokines 

involved in the synovial inflammation and hence the pathogenesis of OA are; IL-1β and TNF-

α. Interestingly, a study performed on patients with knee pain both at the early stage and 

late stage OA suggested that within the synovial fluid, the levels of IL-1β and TNF-α were 

higher in patients with early OA than patients with late OA (Benito et al., 2005). The 

production of these cytokines can have a secondary effect, via the stimulation of 

chondrocytes and synoviocytes to produce other cytokines ( IL-6 & IL-8). These synovial 

cytokines act on the cartilage matrix and chondrocytes (Sellam and Berenbaum, 2010; 

Berenbaum, 2013), either independently or in concert with other cytokines to initiate and 

propagate the inflammation process (Kapoor et al., 2011). In several cell culture studies, IL-

1β and TNF-α have been shown to suppress the synthesis of proteoglycans (Gouze et al., 

2001; Saklatvala, 1986), link proteins and type II collagen (Séguin and Bernier, 2003) within 

AC (Nietfeld et al., 1990; Chadjichristos et al., 2003). Therefore low grade synovitis, 

generated via pro-inflammatory cytokines as discussed above, as well as other soluble 

mediators, contributes to the accelerated up-regulation of catabolic factors and down-

regulation of anabolic factors, thus leading to the degeneration of AC and progression of OA 

(Sellam and Berenbaum, 2010; Fernandes et al., 2003; Berenbaum, 2013; Sutton et al., 2009) . 

As a result of these cytokines, synovial cells as well as OA chondrocytes both produce large 

quantities of metalloproteinase (MMPs), these include MMP-1, MMP-3, MMP-9 and MMP-

13 (Sellam and Berenbaum, 2010). MMP-3 is mainly synthesised at the boundary between 

hyaline cartilage and synovial fluid, which suggests that this proteinase is produced by the 

synovium to directly break down cartilage (Blom et al., 2007). Other authors have added to 

this, indicating that MMPs are able to degrade all components of the ECM (Little et al., 2009). 

It is clear that these inflammatory mediators play an important role in many physiological 

processes, their over expression and activation by different cell types contributes to many 

pathologies, including joint destruction in OA (Sellam and Berenbaum, 2010; Berenbaum, 

2013; Little et al., 2009). 
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Table 2: Clinical, histological and molecular signs of synovitis in OA. (Adapted from Sellam 
et al (Sellam and Berenbaum, 2010)).  

Level of 

Evidence 

Evidence of Synovitis in OA 

Observation References 

Clinical 

Effus ion, joint swelling, or palpable synovitis 

Loca l  signs of inflammation 

Sudden increase in pain 

Night pain and morning s tiffness 

(Krasnokutsky et al., 2008)  

Histological 

Synovial hypertrophy and hyperplasia 

Infi ltration of mononuclear cells 

(monocytes/macrophages, activated B cells and T cells) 

Adaptative immune T-cell and B-cell responses to 

fragments of extracellular matrix 

Increased angiogenesis 

Synovitis in the vicinity of degenerative cartilage 

(Ayral et al., 2005), (Myers 

et al., 1990), (Walsh et al., 

2007), (Nakamura et al., 

1999) and (Alsalameh et al., 

1990). 

Molecular 

Production and/or release of proinflammatory 

cytokines 

(TNF, IL-1β, IL-6, IL-8, IL-15, IL-17, IL-21) 

Increased production of PGE2 and nitric oxide in the 

synovium 

Increased activity of MMPs (MMP-1, MMP-3, MMP-9, 

MMP-13) and ADAMTS 

Involvement of macrophages in osteophytes formation 

via  BMPs  

Insufficient release of anti‑inflammatory cytokines (IL-

4, IL-10,IL‑13, IL‑1Ra) 

(Benito et al., 2005), (Smith 

et al., 1997), (Farahat et 

al., 1993), 

(Furuzawa-Carballeda and 

Alcocer-varela, 1999), and 

(Scanzello et al., 2009). 

Alongside these events, the breakdown of aggrecan in the early stages of OA is also a 

contributing factor to the pathogenesis of OA. The production of aggrecanase ADAMTS (A 

disintegrin and metalloproteinase with thrombospondin motifs), in particular (ADAMTS)-4 

(aggrecanase-1) and ADAMTS-5 (aggrecanase-2) are responsible for the aggrecan 

degradation (Alcaraz et al., 2010). The production of these proteolytic enzymes is mainly 

driven by TNF-α but also by IL-1β and therefore indirectly mediated by synovial 

macrophages. However, studies using chondrocytes taken from porcine and bovine cartilage 

explants revealed that the up-regulation ADAMTS-4 but not ADAMTS-5, was dependant on 

TNF-α and IL-1β (Tortorella et al., 2001). This finding is in agreement with a similar study 

performed on human OA synovium (Bondeson et al., 2006).  

Several studies have shown that synovial macrophages are responsible for the inflammatory 

responses in OA (Blom et al., 2007). The depletion of these cells within the synovium 
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demonstrated a reduction in the formation of osteophytes. Therefore, suggesting the role 

that TNF-α has on osteophyte formation, perhaps through the stimulation of bone 

morphogenetic proteins (BMPs) such as BMP-2 and BMP-4 (Blom et al., 2004; Van Lent et al., 

2004).  

On the whole, the long-established view of OA as a cartilage only disease is no longer valid. 

This inflammatory disease should be considered as a whole joint pathology that 

encompasses the synovial tissue, the different layers of cartilage and the  subchondral bone, 

all of which communicate via cell-to-cell interactions, via the release of soluble mediators 

and mechanical signals. From the literature is it clear that synovial inflammation (synovitis) 

is not a prerequisite for the development of OA, however it is somewhat involved in the 

degeneration of cartilage and thus the progression of OA. 

During the progressive stages of OA, there is a visible change in the molecular composition 

and organization of the ECM, which has been linked to the deterioration in the mechanical 

properties of AC. Some of the current research has focused on the role of chondrocytes in 

the pathogenesis of these alterations. Chondrocytes are able to respond to sudden structural 

and mechanical changes in their surrounding matrix, as well as responding to cytokines and 

various inflammatory mediators (Goldring and Marcu, 2009). The architecture and structural 

properties of the peri-articular cortical and trabecular bone become compromised, via the 

cell mediated processes of re-modelling. During the initial stages of remodelling, osteoclasts 

drive bone resorption, which is then followed by a phase of bone formation, driven by 

osteoblasts. In normal physiological conditions, the amount of bone lost during the 

resorption phase is balanced by the bone gained in the formation phases of bone 

remodelling. Thus, there is no change in the bone mass. However, the architecture and shape 

of the bone may change (Goldring and Goldring, 2010). The changes to periarticular bone in 

OA can be subdivided into varying patterns which include; changes in the subchondral plate 

thickness, changes in the structure of the underlying subchondral bone, formation of 

osteophytes and the development of subchondral bone cysts. These defined skeletal changes 

have been linked to changes in the contours of adjacent articulating surfaces, hence altering 

the homogenous structure of the joint, which further contributes to altered biomechanical 

properties (Bullough, 2004; Burr, 2004; Radin and Rose, 1986). Radin and co-workers were 

the first to propose that an increase in the subchondral bone thickness will cause an increase 

in its stiffness. They speculated that these changes in the bone, adversely affected the 

biomechanical environment of the cartilage and hence lead to the structural changes. 

Furthermore, they also made a link between the ability of the adjacent AC to adapt to 

mechanical load, as a result of the changes in contour and shape to the subchondral plate 
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(Radin and Rose, 1986), which was later validated by advances in radiography (Buckland-

Wright, 2004).  

Of the cases of OA reported in the literature, the most common area of OA is the medial 

compartment of the knee (Andriacchi, 1994; Wise et al., 2012). This is due to the fact that it 

is subject to greater loads than the lateral compartment. During the development stages of 

the knee, cartilage thickens in areas that undergo greater loading conditions through the 

whole joint. This therefore, has an effect on the tibiofemoral mechanics and hence plays a 

role in the development of OA. Alteration to normal gait mechanics, can change the normal 

gait patterns under weight-bearing activities; from areas of cartilage which are not adapted 

to receiving these kinds of loads (Andriacchi et al., 2009; Carter et al., 2004). The aberrant 

loading of these areas causes the cartilage to become damaged, adversely affecting its 

mechanical properties.   

Injury to AC or other tissue structures within the joint (anterior cruciate ligament)  (Chaudhari 

et al., 2008) as well as the aging process associated with cartilage, all increase the joint laxity. 

This allows for aberrant motion between the opposing surfaces. At the micro molecular level, 

this causes fibrillation to the collagen network, loss of proteoglycans, increased surface 

friction and shear stress, as well as an up-regulation of catabolic factors. This cascade of 

events, further exacerbates the progression of OA secondary to the damage caused to the 

AC or the other soft tissues (Vincent et al., 2012; Guilak, 2011).  

By and large, chondrocytes are able to modulate their activity in responses to loading and 

various other factors. However, their ability to modify and repair the surrounding ECM is 

limited, when compared to the skeletal cells in bone. Therefore, the divergence in adaptation 

of these two tissue cells disrupts the physiological association between cartilage and bone, 

which is primordial for the safeguarding of normal joint structure and function and could 

further contribute to the progression of OA. 

Other than pro-inflammatory cytokines and mediators, biomechanical factors also play a 

crucial role in the events that lead to the commencement and evolution of OA. Under normal 

physiological conditions; the ECM is able to remain in a constant state of ‘slow-turnover’, 

exhibited by a homeostatic balance between anabolic and catabolic events of chondrocytes. 

This steady state is regulated through the processing of environmental and soluble mediators 

(cytokines and growth factors), matrix composition and bio-physical factors; including 

mechanical or interstitial pressure (Guilak, 2011). However, a shift in the direction of 

degeneration of AC, is indicative that the balance of normal metabolic activity of 

chondrocytes has been severely compromised. Current research has shown growing 



28 

evidence that the interaction between pro-inflammatory cytokines and mediators with 

mechanical stress, are responsible for the destructive events that occur in OA (Hunter, 2011; 

Guilak, 2011).  

Increasing abnormal stresses applied to any joint, in particular the knee, can lead to 

alteration in the composition, structure and metabolism of AC. Abnormal loading of the joint 

may be caused by a variety of factors such as weight gain, trauma, joint instability and 

malalignment. Obesity has been highlighted as one of the major risk factors for OA incidence, 

progression and disability (Messier et al., 2000). Although this condition has been associated 

with increased joint stresses and altered gait, secondary to increase in weight (Messier, 

1994); there is also evidence to show the presence of joint inflammation due to obesity (Das, 

2001; Visser et al., 1999). This in concert with biomechanical factors promotes the 

degeneration of AC (Figure 10) (Issa and Griffin, 2012). In addition, a study performed by 

Felson et al. demonstrated that a reduction in weight of only 5 kg could reduce the risk of 

OA by over 50% (Felson et al., 1992).  

 

Figure 10: The role of mechanical loading in osteoarthritis. These are some of the 
biomechanical factors involved in the pathogenesis of OA, which are either due to 

abnormal loading acting on normal physiology, or normal loading acting in the presence of 
abnormal physiology. Adapted from: (Moskowitz et al., 2007).  

Impact loads have also been associated with the damage incurred to AC. Hyper-physiological 

stress can increase cellular activity, induce remodelling of the subchondral bone and splitting 

of the ECM, which are all characteristic signs in early stage OA; indicating that increased loads 

may be an important factor in the pathogenesis of the disease. The relationship between 

biomechanical factors and inflammatory cytokines is not fully understood but it is believed 

that these factors play an important role in these altered loading models of OA. Currently, 

there is significant evidence from several animal studies, that IL-1 (Visser et al., 1999), leptin 

and TNF-α are involved in these processes (Van den Berg, 1997; Bastard et al., 2008). Much 

of the research carried out today is focused on the understanding of which biophysical signals 
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are converted into biochemical signals by chondrocytes; in an attempt to better understand 

cartilage physiology and hence the pathogenesis of OA. Several in vitro studies have used a 

range of different loading configurations of explanted cartilage to show that static 

compression inhibits matrix biosynthesis; and cyclic and intermittent compression stimulates 

chondrocyte metabolism (Guilak et al., 1994; Torzilli and Grigiene, 1998; Bonassar et al., 

2000). Later studies elaborated that excessive loading, consisting of high loads for an 

extended period of time had a deleterious effect; resulting in cell death, swelling and tissue 

disruption (Torzilli et al., 1999; Milentijevic et al., 2003). The reasoning behind these 

destructive events has been described by many to be due to: the interpretation of these 

physical signals by chondrocytes through the integrated action of various ion channels; 

integrin-mediated connections to the ECM and membrane deformations (Kock et al., 2009; 

Ramage et al., 2009; Mobasheri et al., 2010). The peri-celluar matrix (PCM), which is a shell 

of collagen fibres encapsulating the chondrocytes, acts like a transducer of the mechanical 

and physiochemical signals in the cell environment. The PCM together with its enclosed cell 

form the functional unit known as the chondron. The  signals detected by the PCM can 

influence chondrocyte metabolism, cartilage homeostasis and overall joint health (Halloran 

et al., 2012). Some studies have commented on the ability of the PCM along with the ECM to 

regulate the conversion of mechanical loading to physicochemical changes that can be 

sensed by the chondrocyte (Lai et al., 1991; Mow et al., 1999). These signals can lead to the 

over production of inflammatory mediators such as cytokines (Chauffier et al., 2012),  

chemokines and prostaglandins (Gosset et al., 2006). These cytokines are also expressed in 

the chondrocytes and cells of the subchondral bone when a certain threshold is reached 

(Sanchez et al., 2012).  

Taking into consideration all the points above, it is evident that the inflammatory cytokine 

network contributes to the pathogenesis of OA. Increased amounts of these pro-

inflammatory cytokines in cartilage, subchondral bone and synovium are all believed to be 

pivotal to the development and progression of the structural and functional changes in the 

OA joint.  Synovitis, has been shown to be one of the major contributors to the symptom 

severity of OA, the rate of cartilage degeneration, as well as the progression of OA from early 

to late stage. The aging process and a population increasing in weight, are also factors that 

can affect joint morphology, cell metabolic activity and mechanical properties of dif ferent 

underlying tissues, associated with the onset and progression of OA. The view of OA is one 

that has changed vastly over the years. It is now seen as a complex, multi-etiological disease, 

in which the underlying molecular and biochemical changes are still poorly understood. 

Focus has to be made in our understanding of the individual roles, mechanism and functions 
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of the several cytokines (IL-1β & TNF-α) and MMPs (MMP-3, MMP-9 & MMP-13). This 

fundamental knowledge will be key to uncovering the underlying disease mechanisms, which 

will in turn give better solutions for the treatment of OA at both early and late stages. 

1.4 Cartilage Treatments and Research 

1.4.1 Early Intervention for Cartilage Defects 

Early intervention to repair cartilage defects is desirable in order to prevent or delay disease 

progression to OA. In any patient with cartilage defects, the aim is to provide them with a 

means by which they will no longer experience pain or discomfort in their joint, and are able 

to regain normal activities. There are many different therapeutic approaches to achieve this: 

viscosuplementation, steroid injections, surgical procedures and more recently tissue 

engineering approaches. The following section will discuss these treatments and their 

efficacy as well as highlighting current research relevant to this thesis.  

1.4.1.1 Pharmacological Treatment  

Non-steroidal anti-inflammatory drugs (NSAIDs) and are a form of palliative treatment for 

the early signs of OA. They aim to reduce/manage pain in symptomatic patients by reducing 

inflammation and restoring mobility. The drugs include painkillers or specific drugs that aim 

to control/inhibit the production of inflammatory mediators (e.g. MMPs, aggrecanase’s, IL-

1β, COX-2 and cathepsins) (Hunter and Matthews, 2011). Examples of oral NSAIDs and 

topical NSAIDs are discussed by Strand et al (Strand et al., 2011) and Roth et al (Roth and 

Fuller, 2011) respectively.  

1.4.1.2 Viscosupplementation  

As OA progresses further, the analgesic properties of NSAIDS prove insufficient and therapy 

can be supplemented via intra-articular injections of hyaluronic acid and/or corticosteroids. 

Glucosamine, CS and hyaluronic acid (HA) have all been tested as successful 

viscosupplements, with hyaluronic acid being used most frequently (Vangsness et al., 2009; 

Miller and Clegg, 2011; Sherman et al., 2012; Migliore and Procopio, 2015; Vasiliadis and 

Tsikopoulos, 2017). HA is a naturally occurring polymer found in the synovial fluid, which 

becomes sparse in OA synovial fluid.  

HA has been vastly researched for its efficacy in controlling pain, reducing inflammation in 

OA joints and improving joint motion (Chang et al., 2013; 2011; Leighton et al., 2014). Most 

of the HA therapies available require multiple injections (3 to 5); in order to attain the desired 

results, due to the rapid degeneration of HA within the joints (Altman et al., 2004). The 

stabilisation and hence consequent durability of HA within the joint, may reduce the number 
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of injections required to attain a longer-term result in the treatment of OA (Chevalier et al., 

2010). Therefore, a single injection of HA therapy was introduced as an alternative in terms 

of logistics, cost and tolerability. This not only ensured comfort, but also safety to the 

patients by removing the risk associated with frequent injections. Altman et al demonstrated 

the efficacy and safety of a single intra-articular injection of non-animal stabilized hyaluronic 

acid (NASHA), in patients with knee OA. This 26 week randomized, double blind, multicentre 

study showed that there was no statistical difference between patients injected with NASHA 

and those given the placebo (saline solution) (Altman et al., 2004). The nature in which this 

study was carried out however, via the inclusion of patients with OA at other sites may have 

skewed the overall results; as there were significant benefits seen over the placebo when 

the patients selected had OA confined to the knee. Therefore, future studies that scrutinize 

a local therapy should consider stratifying the population to those that have OA in a single 

joint. A similar study by Borras-Verdera et al., also investigated the efficacy and safety, 

alongside the long-term effects, of a single intra-articular injection of 2% HA + 0.5% mannitol 

in knee OA patients (Borrás-Verdera et al., 2013). This study was the first to show that a 

single intra-articular injection of HA was an effective treatment for knee OA as it significantly 

reduced pain, increased joint functionality and had relatively low incidences of adverse 

effects. 

While clinical studies seem to provide evidence for the therapeutic value of HA injections; in 

vitro studies on the boundary lubrication capabilities of HA are still a matter of debate, as 

discussed in Section 1.2.5.2. Nevertheless, any form of viscosuplementation is only really 

considered as an early stage intervention and in most cases to prolong the  time before 

surgical intervention. Currently, there is little evidence supporting the effectiveness of 

viscosuplementation in severe cases of surface and underlying tissue damage in AC.  

1.4.2 Surgical Procedures for Cartilage Repair 

There are several therapeutic approaches to treat individuals with cartilage lesions that if left 

untreated could lead to OA. These include different types of arthroscopy procedures such as 

lavage, debridement and micro-fracture.  

1.4.2.1 Surgical Interventions without cells  

1.4.2.1.1 Lavage  

Lavage has been reported to be beneficial to patients with cartilage lesions and painful knee 

joints. This arthroscopic procedure involves a simple thorough rinse of the joint, to remove 

any tissue debris within the joint space (Livesley et al., 1991). However, this procedure has 

only proven successful in a handful of patients and in some studies success, has been shown 
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to be attributed to the ‘placebo effect of surgery’. There are currently no convincing scientific 

or biological explanations which can be related to the benef icial effects of this technique. 

However, some reports indicate that the effects last up to 1 year or more. It has been 

speculated that the extensive rinsing, may remove some of the intra-articular active pain 

signalling molecules. Hunziker et al. added that the removal of proteoglycans and aggrecan 

molecules from the cartilage surface, could promote adhesion of repair cells, which could 

promote an anti-inflammatory response (Hunziker and Kapfinger, 1998). Nonetheless, 

evidence is lacking in the literature to support the use of this surgical technique, and most 

studies comment that there is no substantial relief of pain in patients who have undergone 

lavage treatment (Gibson et al., 1992; Ontario, 2005).  

1.4.2.1.2 Debridement 

Debridement involves the removal of free bodies from the joint space as well as excision of 

osteophytes (Gibson et al., 1992). There is no substantial evidence from in vivo studies of 

beneficial biological effects of this procedure. In addition to this, both experimentally 

(Messner et al., 2001) and clinically (Neyret et al., 1994), this procedure has been shown to 

aggravate the OA condition. Several clinical studies  (Sprague, 1981; McGinley et al., 1999; 

Kruger et al., 2000) , have reported variable findings, ranging from good pain relief in about 

65% of patients, through to moderate pain relief in 50% of patients to very  poor pain relief; 

nevertheless even when results have been reported to be good, it is stressed in the literature 

that pain relief is only temporary. 

1.4.2.1.3 Microfracture  

This is a type of reparative treatment is for chondral lesions usually less than 2-3 cm in 

diameter, for patients who have moderate demands due to their lifestyles (Detterline et al., 

2005). This treatment involves the drilling of holes (0.5-1 mm in diameter (Knutsen et al., 

2004) and 3 mm in depth (Mithoefer et al., 2005)) through the bone and into the bone 

marrow cavity. This procedure allows for direct access to the bone marrow, exposing the 

underlying mesenchymal stem cells (MSCs). These stem cells are believed to initiate the 

healing process and lead to the formation of fibrocartilage. Microfracture has been widely 

used; however, it has been reported to only have a short-term improvement in the joint 

function. The majority of reviews of medium to long term studies, have reported that the 

tissue formed is not hyaline-like. This is mainly due to the initial hyaline-like tissue formed 

becoming fibrous in nature and deteriorating as a result of the sub-optimal biomechanical 

properties of the repair tissue (Matsiko et al., 2013). Unfortunately, this repair tissue 

eventually fails. Therefore, this type of treatment option only serves to delay the eventual 

requirement for other reparative methods, or joint replacement in more severe cases. This 
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said, microfracture can often be combined with other treatment methods to give more 

promising results in the long term (Nukavarapu, S. P.; Dorcemus, D. L., 2013; Matsiko et al., 

2013).  

All these operative approaches only result in the short term, temporary removal of pain and 

do not really have any effect in the long term. In some extreme cases, there have been 

incidences where these techniques have led to osteonecrosis (Rozbruch et al., 1996); 

reactive synovitis, chondrolysis and an acceleration of articular degeneration (Tabib et al., 

1999). The more common problem is however, that these procedures aim to repair the 

damaged areas of the cartilage surface, by stimulation of growth of new cartilage tissue. 

However, these techniques form tissue that is variable in composition, structure and 

durability. In most cases, they form what is known as fibrocartilage, which is significantly 

inferior mechanically, to healthy hyaline AC. Inevitably this fibrous repair tissue is prone to 

failure and therefore the patient’s symptoms return. Hence, there is hope for more advanced 

techniques such as those with viable cells, biomaterials and tissue engineered solutions, that 

they may have more favourable success rates. These advanced approaches are speculated 

to reproduce better the composition, structure and durability of the original healthy 

cartilage. Conversely, as they have not all yet been tested in animals and/or patients, the 

potential success of more advanced treatments is unknown. 

1.4.2.2 Surgical Interventions with cells  

Autologous chondrocyte implantation (ACI) is a procedure that is used to treat knee cartilage 

defects. The aim of this treatment is to regenerate hyaline or hyaline-like cartilage, thereby 

restoring normal joint function. In the literature, there are three generations of ACI. They 

have small differences between them, contributing to their success or failure in patients. This 

section will systematically review each of the generations of ACI from earliest to present 

literature.   

1.4.2.2.1 Autologous Chondrocyte Implantation ACI- 1st Generation 

The first generation ACI, originally reported by Brittberg et al. in 1994 (Brittberg et al., 1994), 

was defined as a two-stage procedure. The first stage involved arthroscopic biopsy, where 

200 to 300 mg of articular cartilage is removed, from a non-weight bearing area of the joint, 

usually the femoral condyle or inter-condular notch (The Center for Orthopaedics & Sports 

Medicine, 2003; Brittberg et al., 1994). Chondrocytes are isolated and cultured for about 4 

to 5 weeks to expand the cell population by a factor of about 50 (The Center for Orthopaedics 

& Sports Medicine, 2003; Brittberg et al., 1994). The second stage involves an open surgical 

procedure (arthrotomy) where the defected area undergoes removal of the dead/damaged 
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cartilage and smoothing the surrounding living cartilage (The Center for Orthopaedics & 

Sports Medicine, 2003; Brittberg et al., 1994). Periosteum taken from the patient’s tibia 

(Figure 11) is then sutured over the defect area and the circumference secured with fibrin 

glue (2nd Generation ACI).  This creates a watertight patch in to which the autologous cultured 

chondrocytes are injected, where they grow and mature over time (Brittberg et al., 1994).  

It is clear from the literature that there has been some controversy between the use of 1st 

generation periosteum-ACI cover (PACI) and the collagen-ACI cover (CACI). The CACI is made 

up of a type I/III bilayer collagen membrane derived from porcine peritoneum and skin, 

which is able to resorb within the body in a matter of months. Bently et al., reported that the 

PACI, acts as a watertight seal and that using a CACI, brought about the same if not better 

results in patients (Bentley et al., 2003). The study showed promising results, with 51/58 

(88%) patients (46 underwent CACI and 12 underwent PACI); showing excellent results 

favouring this hypothesis. Gooding et al. carried out a more recent study, consisting of a two-

year follow-up of both of the ACI techniques, showing very similar results (Gooding et al., 

2006). Furthermore, Gooding et al. (Gooding et al., 2006); reported that 26/35 (74%) of 

patients, treated by CACI had good-excellent results compared to 22/33 (67%) of patients, 

treated by PACI. They concluded that the PACI technique is not essential for the development 

and maturation of hyaline cartilage repair and that the CACI technique is better than PACI. 

This was attributed to its decreased invasive procedure and lower resorption rate compared 

to the high incidence of graft hypertrophy, delamination and failure  rate of the PACI; 

reported in many recent studies (Minas, 2001; Minas and Bryant, 2005; Zaslav et al., 2009; 

Harris et al., 2011).  

 

Figure 11: Autologous chondrocyte implantation procedure using tibial periostuem for 
cartilage repair (Smith, 2005).  

1.4.2.2.2 ACI - 2nd Generation 

Second generation ACI, also defined as a two-stage procedure, involves an initial 

arthroscopic biopsy and either an open arthrotomy; or a favoured arthroscopic implantation 
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of the cultured chondrocytes through cell-seeded, 3-dimensional, bio-absorbable scaffolds 

(Kon et al., 2008). This technique is somewhat similar to first generation ACI. The difference 

is that due to advanced methods, prior chondrocyte seeding and the ability for secure graft 

fixation without sutures means that there is no need for an open arthrotomy, allowing for 

an all arthroscopic procedure (Marcacci et al., 2002). Several studies using one of the most 

common 2nd generation ACI (Hyalograft C), show that this technique provides good structural 

support, allowing for cell to cell contact, cluster formation and ECM production leading to 

excellent clinical results (Grigolo et al., 2002; Kon et al., 2009; Knutsen et al., 2010). However, 

despite these favourable clinical results, most of the reported clinical studies are only short 

to medium term follow ups. Additionally, as reported earlier with the 1st generation 

techniques, many different approaches may seem favourable in the short term, but the 

quality of the repair tissue might be influenced in long term results. More recent studies by 

Gobbi et al. (Gobbi et al., 2009) and Nehrer et al. (Nehrer et al., 2009), have aimed at 

reviewing the outcomes of 2nd generation ACI after 5 and 7 year follow-ups, respectively. 

These studies have reported this specific technique to have good clinical outcomes compared 

to the 1st generation ACI techniques. However, as a result of the increased complexity of this 

type of procedure and its method of implantation, there were several drawbacks highlighted 

by Nehrer et al. They reporterd that the procedure was only successful with young patients 

sustaining single cartilage defects and implant hypertrophy was high. Although not many 

cases were reviewed in that particular study, it agrees with the later findings of Gobbi et al. 

(Gobbi et al., 2009) and Marcacci et al. (Marcacci et al., 2005). They added that although this 

method can be very patient specific, it is advantageous in terms of easy handling and 

application of graft material through minimally invasive techniques. Hence, shortening 

surgical time and post-operative care of patients (Gobbi et al., 2009; Harris et al., 2011). 

Nonetheless, further long-term studies (10 years plus) are required to assess the durability 

of the tissue repair produced using this 2nd generation technique, which will help in further 

identifying this approach is patient specific or whether it can be used for all types of patients. 

1.4.2.2.3 ACI - 3rd Generation 

Third generation ACI can be either defined as a one or a two-stage process. It can either 

consist of an arthroscopic or open surgery, with the implantation of a 3-dimensional matrix 

containing in vitro treated autologous chondrocytes. This particular type of approach uses a 

matrix associated chondrocyte implantation technique (MACI), which consists of either a 

protein based polymer, such as collagen or fibrin, or carbohydrate based matrix such as a 

hyaluronic acid sponge.   
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Trattnig et al., demonstrated the use of a collagen type I/III MACI and a hyaluronic acid 

sponge, in 20 human patients to test cartilage regeneration over 52 weeks using high 

resolution non-invasive magnetic resonance imaging (MRI) (Trattnig et al., 2005). They 

concluded that both MACI techniques were able to completely fill the defect in terms of 

thickness, length and homogenous structure, producing regenerated cartilage similar to that 

of native hyaline cartilage (Trattnig et al., 2005). The reason behind the increasing success of 

these third-generation ACI techniques is the fact that they do not have to be sutured onto 

the defect like the PACI & CACI; instead fibrin glue is used, which not only reduces operating 

times if multiple grafts are needed, but allows for a minimally invasive approach. In addition, 

the seeding of autologous chondrocytes onto a larger, rougher, less tightly woven collagen 

type I/III membrane structure (Figure 12), allows for better attachment and even distribution 

of cells over the implant (Cherubino et al., 2003). 

 

Figure 12: Diagrammatic representation of the collagen I/III membrane showing rough 
and smooth side (Gibson et al., 2006).  

There have been an increasing number of studies comparing the effectiveness of MACI (3rd 

generation) over the CACI (2nd generation) approaches (Gibson et al., 2006).  A 7-year study 

by Rogers et al. reported improved clinical outcome scores for both approaches, with better 

improvements seen in patients implanted with MACI (Rogers et al., 2010). However, a similar 

12-month study showed an increase in knee scores for both approaches, with no significant 

difference in patient satisfaction between the two approaches (Bartlett et al., 2005). This 

could be associated with the fact that the MACI operation was performed as an open 

procedure (arthrotomy) as opposed to an arthroscopic surgery. MACI tends to lend itself for 

arthroscopic implantation techniques and has shown better long-term results in terms of 

increased range of motion, decreased pain and decreased post-operative recovery (Laffargue 

et al., 1999). Although there have been reports of technical difficulties with this arthroscopic 

procedure, this MACI technique is still in its infancy with the potential to do well (Erggelet et 

al., 2003; Marcacci et al., 2002). 
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Figure 13: Chondrocyte-Seeded Type I/III collagen membrane for autologous chondrocyte 
transplantation. Defect Cartilage (A), After debridement of defect (B), Foil template of the 

size of the cartilage defect (C), Chondrocytes are applied to the rough side of the MACI 
graft, adherence occurs after a few minutes (D & E), the cell -matrix construct is attached to 

the defect area (rough side down towards the subchondral bone) (F), bio-resorbable 
sutures are put in place to fix the cell-matrix graft into place before fibrin glue is applied for 

additional fixation and sealing (G) (Niemeyer et al., 2010).  

It can be concluded that MACI is a reliable 3rd generation ACI technique, with several 

successful outcomes over the last 5-8 years, for the treatment of defects in the knee. It offers 

several advantages over the previous generation techniques, in terms of reducing graft 

hypertrophy, implant morbidity and operating time. The literature shows good mid-term 

results, suggesting that this technique will be as successful as its predecessor PACI. 

Nonetheless, longer term follow-ups are needed to fully assess the durability of this ACI 

technique.  

Having reviewed all generations of ACI, it is clear that the failure rate in all generations is 

relatively low. Failures are higher in 1st generation PACI and considerably lower in 1st 

generation CACI and 2nd generation techniques. Delamination and hypertrophy is most 

common in PACI, especially in open arthrotomy procedures. The use of collagen based 

membranes and second generation techniques has encouraged the use of all arthroscopic 

implantation, which has greatly improved the complication, failure and re -operation rate of 

ACI. Third generation techniques are stil l in their infancy and therefore require long term 

follow-ups to see their durability in patients. However, up until now they have shown results 

with minimal complications and revision rates, which is supported by the extensive review 

performed by Harris et al (Figure 14) (Harris et al., 2011). 
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Complication 
% of 1st 
generation 
PACI subjects 

% of 1st 
generation 
CACI subjects 

% of 2nd 
generation 
ACI subjects 

% of 3rd 
generation 
ACI subjects 

Hypertrophy of graft 18 3 1 0 

Delamination 5 2 2 25 
Arthrofibrosis 3 2 2 0 

Superficial infection <1 1 <1 0 
Septic knee joint <1 0 <1 0 

Deep vein thrombosis <1 <1 0 0 

Pulmonary embolus <1 0 0 0 

Deaths 0 0 0 0 

Figure 14: Complications after ACI (diagnosed by clinical exam, MRI, and arthroscopy). 
Adapted from: (Harris et al., 2011).  

1.4.2.3 Osteochondral grafts 

The use of osteochondral grafts is generally reserved for larger articular lesions (>2cm3 

diameter) that sometimes cannot be repaired via ACI. These techniques can also be used 

when lavage and debridement have failed in patients, usually because their lifestyles exert a 

high demand on their joint, such elite athletes. There are two types of osteochondral graft 

that can be used. An autograft, taken from a non-load bearing area of the joint from the 

same donor and an allograft which is taken from a genetically non-identical donor. Autografts 

are preferred for small to medium defects (<3 cm in diameter) in high demand patients of an 

older age but larger defects (>3 cm in diameter) tend to use allografts. Both of these 

osteochondral graft types can be applied to the technique of mosaicplaslty, whereby a 

number of cartilage plugs, extracted from a non-weight bearing region of the joint are 

implanted back into the defected area (Detterline et al., 2005; Bentley et al., 2012). Both of 

these techniques have their advantages and disadvantages for their specific uses. Both types 

of graft take plugs from different location and encompass the same problem. The varying 

topography of the donor site does not always match that of the recipient’s site and hence 

causes changes in the biomechanics and loading of the joint. Solheim et al., published a long-

term follow-up study showing promising results for the autograft, 9 years after surgery  

(Solheim et al., 2010). However, Haene et al. disputed this, arguing that due to the multiple 

surgeries that are required for autografts, there is damage to surrounding tissue and more 

risk of chondral tissue damage, they also attributed donor site morbidity to this specific 

technique (Haene et al., 2012). Furthermore, a randomised control trial carried out by 

Bentley et al showed that mosaicplasty using autograft tissue was significantly inferior to the 

preferred ACI (Bentley et al., 2003).  

Allografts also have disadvantages, which makes them less favourable than autografts. These 

include the onset of immune reactions due to the detection of allogenic tissue, which may 
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carry a risk of disease transmission, reported in a few cases (Haene et al., 2012). Conversely, 

Gortz et al. promoted the use of these grafts, their results showed good to excellent 

outcomes in up to 80% of cases and most importantly that the larger defects were 

successfully filled. A very recent study focusing on the outcomes of allograft transplantation 

in the knee showed favourable outcomes and high satisfaction rates in patients who had an 

intermediate follow up. They noted that patients with certain etiologies tended to have more 

favourable results as did younger patients, but there were too few in this study for it to be 

conclusive (Chahal et al., 2013).  

Many of the studies mentioned, particularly the latter, have failed to produce prospective 

cohort studies in which several comparative cohorts are included. This would further help 

evaluate the efficacy of osteochondral grafts as a reparative treatment for cartilage defects. 

Nonetheless it is clear from the literature that autografts are preferred over allografts simply 

because of no immune rejection and better integration with surrounding tissue (Chahal et 

al., 2013; Versier and Dubrana, 2011). 

1.4.2.4 Joint Replacement 

When cartilage degeneration is severe beyond repair, the only option left is to replace the 

joint with a prosthetic device. These prosthetic devices are known as total joint replacement 

(TJR). TJR consists of replacing the damaged bone and AC surface with hard smooth bearing 

components. In the knee, the most common choice of material is metal-on-polyethylene, 

however ceramics are also being introduced to replace the metal femoral component (Voss 

et al., 2016; Bergschmidt et al., 2016; Nakamura et al., 2017). This TJR will not only relieve 

the patient from pain, but it will also improve their quality of life. While the expected lifetime 

of these conventional TJR is harder to determine, it is not unlimited (Atkinson, 2017). 

Nevertheless, patients today can look forward to potentially benefitting from new advances 

that could increase the lifetime of these TJR (Kunčická et al., 2017). 

1.4.3 In Vitro Tissue Engineering of Cartilage 

The failure of the aforementioned regenerative techniques is mainly due to the insufficient 

filling of the defect area and the fact that the tissue regenerated is fibrous in nature  (Huang 

et al., 2016). These various surgical/therapeutic approaches have resulted in the formation 

of fibrocartilage, which is weak in its biomechanical properties compared to the desirable 

hyaline cartilage found at healthy joints (Cancedda et al., 2003). The ideal treatment would 

be one in which early cartilage defects are repaired by promoting the formation of hyaline 

cartilage in vivo. Other ways of treating cartilage defects, in the short term, could be to 
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reduce the further degeneration of cartilage by being able to restore the biochemical and 

biophysical properties of the damaged cartilage as a result of OA. 

Tissue engineering of cartilage is a method by which this might be achieved. In situ tissue 

engineering approaches, such as ACI have undergone a great deal of change and 

development in the past few years as discussed above. Moving on from this approach are in 

vitro tissue engineering approaches that focus on developing cartilage constructs for 

implantation. It involves isolating and expanding cells in vitro; seeding them onto biomaterial 

scaffolds; culturing the cell/scaffold complex to create cartilage equivalents and then finally 

implanting them back into the body to repair the tissue defect. Choice of cell source is an 

important factor to be considered as some cells are harder to obtain than others, with many 

of them not differentiating before they are implanted into the patient (Chung and Burdick, 

2008). This following section will systematically review the success of some of the cells 

sources; as well as some of the material types used in tissue engineering of cartilage, 

highlighting the reasons for their use and limitations.  

1.4.3.1 Cell Source  

To this day the optimal choice of cell  source has not been identified. However, there is some 

evidence that the preferred choice of cells is chondrocytes (Chung and Burdick, 2008). 

Chondrocytes are the naturally occurring cells in cartilage, therefore they do not need to be 

pre-differentiated in vitro. But, the difficulty comes when these cells have to be expanded, 

as they have a tendency to dedifferentiate. Nevertheless, the use of growth factors and 

chondro-inducive biomaterials upon which the chondrocytes are seeded, may overcome this 

problem. A list of the cell sources used to date, where they are taken from, and their 

limitations is given in Table 3.  

Table 3: The different cell sources that have been investigated for use in tissue 
engineering cartilage, along with the respective reasons for selecting them and their 

limitations for use. 

Chondrocytes 

Chondrocyte cells can be obtained from articular (Mesa et al., 2006; Li et al., 2004; Bhattacharjee 
et al., 2015) , auricular (Van Osch et al., 2004; Panossian et al., 2001; Lohan et al., 2014;  El Sayed 

et al., 2010; El Sayed et al., 2013; Ishibashi et al., 2017) costal (Tay et al., 2004; Johnson et al., 
2004; El Sayed et al., 2010) or nasoseptal (El Sayed et al., 2010; El Sayed et al., 2013) cartilage. 

Reason for 
Choice 

 (Huang et al., 
2016) 

- Found in native cartilage  
- Natural choice of cell source.  
- Have been extensively studied in their role of producing, maintaining 

and remodelling the ECM (Chung and Burdick, 2008; Li et al., 2004). 
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Limitations 
(Vinatier and 

Guicheux, 2016; 
Correa and 

Lietman, 2017) 

- Limited number of them found within native cartilage, therefore need 
for expansion (Huang et al., 2016).  

- Expansion in a monolayer causes dedifferentiation of the chondrocytes  

(Tay et al., 2004; Li et al., 2004; Albrecht et al., 2011), resulting in 
decreased production of proteoglycan and collagen type II and hence 
increased production of collagen type I (Chung and Burdick, 2008; Van 
Osch et al., 2004).  

- To minimize this problem, authors have suggested decreasing the 
passage number or optimise the expansion medium components (e.g. 
specific growth factors, serums and antibiotics) (Huang et al., 2016; 
Correa and Lietman, 2017; Bhattacharjee et al., 2015).  

- Use of other heterotopic chondrocytes such as ‘nasospetal’ or ‘auricular’ 
chondrocytes are better as alternatives as they are easier to harvest, 
have lower donor site morbidity and possess higher proliferation rates 
than articular chondrocytes (El Sayed et al., 2010; El Sayed et al., 2013). 

Fibroblasts 

Reason for 
Choice 

(French et al., 
2004; Lee et al., 

2001) 

-  Available in greater abundance compared to chondrocytes  
- Can be directed to express a chondrogenic phenotype (Chung and 

Burdick, 2008; French et al., 2004; Zhao et al., 2009; Chee et al., 2016). 

Limitations 

- Require differentiation in vitro prior to implantation into patients 
(Chung and Burdick, 2008) which has proved to be difficult. 

- However, the use of certain scaffolds and gene expression factors this 
can be overcome (Zhao et al., 2009).  

Stem Cells 

Stem cells can be Bone-marrow derived (Li et al., 2005; Chen et al., 2005; Huang et al., 2016; 
Beane and Darling, 2012), Adipose derived (Huang et al., 2004; Erickson et al., 2002) or 

Embryonic (Hwang et al., 2006; Kramer et al., 2000; Beane and Darling, 2012) 

Reason for 
Choice 

(Vinatier and 
Guicheux, 2016) 

- Have “multi lineage potential” (Chung and Burdick, 2008).  
- Can be extracted from a variety of different tissues, making them an 

attractive choice for cartilage regeneration (Vinatier and Guicheux, 
2016).  

- Does not express molecules of the Class II major histocompatibility 
complex, which are responsible for immune rejection, therefore it has 
been hinted that this cell type could be immunologically privileged (Noel 
et al., 2007; Du et al., 2016).   

Limitations 

- Bone-marrow derived stem cells produce a mechanically weaker matrix 
than the one produced by native chondrocytes. 

- Adipose-derived stem cells produce a low concentration of cartilage 
specific matrix proteins as well expressing collagen type I.  

- Embryonic stem cells have the problems of purification as well as the 
difficulty in differentiating them into chondrocytes as well as well-
known ethical issues (Chung and Burdick, 2008; Fontan et al., 2017). 

From the literature reviewed in Table 3, the majority of the cells sourced in these studies 

were all taken from one animal species and implanted into another animal of the same 

species; to see whether they would express a chondrocytic phenotype and hence produce a 
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new cartilaginous matrix in vivo (Mesa et al., 2006; Van Osch et al., 2004; Panossian et al., 

2001; Johnson et al., 2004). One study in particular demonstrated that the use of articular 

chondrocytes from old animals could produce neocartilage in vivo, as well as articular 

chondrocytes from young donors (Mesa et al., 2006). Therefore, the authors suggested that 

middle-aged and elderly patients could benefit from using their own “aged” articular 

cartilage as a source of reparative chondrocytes for cartilage defects owing to the fact that 

it was also immunologically beneficial. 

There has been growing interest in the use of human autologous chondrocytes in synthetic 

scaffold for cartilage regeneration purposes. Human auricular chondrocytes expanded in 

vitro using several growth factors; demonstrated their potential to produce cartilage grafts 

of high quality compared to costal chondrocytes. Similarly, bone marrow-derived 

mesenchymal stem cells (MSCs) on a poly-caprolactone (PCL) scaffold in the presence of 

certain chondrogenic growth factors, differentiated to a chondrocytic phenotype. The use of 

these autografts seems a practical and effective way to treat cartilage defects in humans, 

however the limitations in this technique lies in the multiple operations required before 

these scaffolds can be implanted. Nevertheless, the use of animal models is an acceptable 

means to investigate the feasibility of different cell sources, for the use in cartilage tissue 

engineering. 

1.4.3.2 Scaffold Biomaterials  

1.4.3.2.1 Natural Biomaterials  

Attention has been directed onto natural and synthetic materials for their use as the scaffold 

material in cartilage repair. Natural scaffold such as hyaluronic acid, collagen, chitosan, 

gelatin and chondroitin sulfate, have been explored as biocompatible and biodegradable 

scaffolds for the tissue engineering of cartilage. Despite this, they are prone to variable 

enzymatic degradation in the body, indicating they are not sufficiently mechanically stable 

for cells to survive in vivo (Chung and Burdick, 2008). Nevertheless, Campoccia et al. 

demonstrated through careful chemical modification, that the esterification of a hyaluronic 

acid gel, significantly improved its mechanical properties (Campoccia et al., 1998). Moreover, 

Grigolo et al. (Grigolo et al., 2001) showed how the development of HYAFF 11 scaffold, an 

esterified derivative of hyaluronic acid was able to support in vitro growth of viable 

chondrocytes and maintain their chondrogenic phenotype. Furthermore, a study by Facchini 

et al. (Facchini et al., 2006) showed that the same three-dimensional scaffolds seeded with 

autologous chondrocytes improved the regeneration of cartilage in vivo. This 3D Scaffold is 

now a commercially available product called Hyalograft-C and has been successfully 

implanted into human patients with knee cartilage defects, as a tissue engineered 



43 

regeneration approach to cartilage repair. A 5-year clinical trial showed promising results 

post-operatively (Marcacci et al., 2002; Chung et al., 2006; Facchini et al., 2006). Despite 

supportive evidence of its clinical ability, a review in the Europeans Medicines Agency report 

(Withdrawal Assessment Report: Hyalograft C Autograft., 2013), raised issues regarding 

quality control and lack of randomisation in Phase III studies. Commercialisation was ceased 

in 2013. 

Another widely used natural polymer is chitosan, derived from chitin commonly found in the 

exoskeleton of crustaceans. Its high cationic charges mean it can be ionically cross-linked 

with a variety of polymers, such as chondroitin sulfate, forming a hydrogel. It forms a semi 

crystalline biodegradable polymer matrix that can support both chondrogenesis and the 

expression of cartilage extracellular matrix proteins (Suh and Matthew, 2001; Lahiji et al., 

2000). An in vivo study by Lu et al. showed that a chitosan injection effectively repaired 

defects of rat knee cartilage (Lu et al., 1999). Like hyaluronic acid, chitosan also has poor 

mechanical strength and elasticity. However, these can be improved by the addition of a 

cross linker. Mwale et al. showed that the use of chitosan cross-linked with genipin, provided 

a hydrogel for cartilage tissue engineering (Mwale et al., 2008). Similarly, Yan et al. and 

Hrabhack et al. found that this combination was successful in the treatment of osteochondral 

knee defects in rabbits. The crosslinked material was biocompatible and non-immunogenic, 

which is a common trait of some natural polymers (Yan et al., 2010; Hrabchak et al., 2010; 

Jeong and Hollister, 2010).  

   

Figure 15: Hyalograft-C scaffold displayed as a commercialised product (left), MTT assay 
showing the encapsulated chondrocytes in an Injectable chitosan-based hydrogel for 

cartilage tissue engineering (Anika Therapeutics).  

The chemical functionalization of hydrogels has been pursued further by Soppimath et al., to 

develop a ‘native-like’ environment for cells. These so called “smart” biomaterials have the 

ability to reversibly gel in response to temperature, ultraviolet light and pH whilst still 

maintaining the cell viability  (Soppimath et al., 2002). This advantageous characteristic 

means they could be minimally invasively injected into the recipients and form in situ at the 

http://www.sciencedirect.com/science/article/pii/S0142961209000246#gr8
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defect site, reducing postoperative recovery. Moreover, these biomaterials could play a 

useful role as carriers, to deliver growth factors that could be released in a controlled 

manner. Subsequently, stimulating chondrogenic differentiation and in vivo proliferation. 

Wu et al., demonstrated the significance of slow release growth factors, such as transforming 

growth factor (TGF- β1) in the promotion of chondrocyte proliferation and matrix synthesis 

(Wu et al., 2011). Similarly, Kim et al. (Kim et al., 2003) and Lee et al. (Lee et al., 2004) showed 

that a combination of TGF-β1 and the insulin growth factor (IGF-1) in microspheres of 

chitosan; increased the cartilage ECM synthesis and enhanced the proliferation of 

chondrocytes in the defected area.  

Unfortunately, most of the aforementioned studies utilising hyaluronic acid and chitosan 

have been short term, very few with FDA approval. The majority  of the studies were 

conducted in animal models, such as nude mice. These promising techniques need to be 

moved forward into larger animal models, or even clinical trials to test their long term 

regenerative capacity.  

Nevertheless, advances have been made in the production of natural scaffolds for cartilage 

repair that have undergone extensive animal studies or/and some that have gone through 

phases I-III clinical trials. These clinical products are summarised in Table 4. The efficacy and 

success of these clinical products was measured through several common outcome 

measures. To list a few: International knee documentation committee (IKDC) score; knee 

injury and osteoarthritis outcome score (KOOS); western ontario and McMaster universities 

osteoarthritis index (WOMAC); visual analogue scale (VAS) for pain; international cartilage 

repair system (ICRS) score and the magnetic resonance observation of cartilage repair tissue 

(MOCART) score. The majority of these are forms/questionnaires; in which treated patients 

fill in questions about how they feel with their new implant. Other methods include medical 

evaluations of MRI images and evaluating range of motion (ROM) that patients are able to 

achieve. Although these questionnaires can be subjective; they have been used for many 

years and are said to be a reliable way of assessing post-operative success. 

Table 4: Current clinical products on the market with their associated clinical trials that 
have been completed or are in the process of completion. Adapted from: (Huang et al., 

2016). 

Product 
Clinical studies 

(completed) 
Clinical studies 

(ongoing) 
Clinical scores and 

outcomes. 

Biocart™II  
fibrinogen/hyaluronic 
acid scaffold seeded 

with expanded 
autologous 

- Preliminary study 

(n=8) [2008] 

- Phase II study (n=40) 

[2012] 

N/A 

Showed feasibil ity to 

treat cartilage lesion of 1-

8 cm2. IKDC scores 
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chondrocytes 
(26,27,29). 

improved at 6 & 12 
months. 

Cartipatch® 

- Agarose-alginate 
hydrogel seeded with 
expanded autologous 

chondrocytes. 

- Multi-centre study 

(n= 17) [2008] 

- Phase III study 

comparing Cartipatch® 
to mosaicplasty  
(n=58) [2013] 

- Phase III study 

comparing Cartipatch® 

to microfacture was 
terminated.  

Largely used to treat 

osteochondritis dissecans 
(OCD).  Defects ranged 

from 1.0 to 5.1 cm2. IKDC 
scores improved at 2 
years over baseline. 

Chondrospheres® 

- Smal l spheroids of 
neo-cartilage 

composed of 
expanded autologous 

chondrocytes and 

their associated 
matrix. 

- Over 7200 patients 

treated since 2004. 

- Multi-centre study 

(n=42) [2009] 

- Investigator-initiated 

trial  (n=37) [2012] 

- Phase II study to 

finish Nov. 2017 (2-
year outcome). 

- Phase III study to 

finish Dec. 2020 (5-year 
outcome). 

Improved range of 

motion (ROM), pain 
levels where reported at 
2 year follow up, 

however IKDC and 
WOMAC scores remained 
unchanged.  

NeoCart® 

- Honeycomb bovine 
type I  col lagen 

scaffold seeded with 
expanded autologous 

chondrocytes. 

- Phase I study (n=8) 

[2009] 

 

- Phase II study 

comparing to micro-
fracture (n=30) [2012] 

- Phase III study 

(n=245) to finish Jul. 
2017 (1-year outcome 

measures) 

- Ph I - Pain scores and 

ROM were improved over 
bassline values at 2 years.  

- Ph 2 – IKDC, KOOS and 

VAS scores were all  

significantly improved vs 
microfracture. 

NOVOCART® 3D 

- Biphasic type I  

col lagen scaffold 
seeded with 

autologous 
chondrocytes. 

- Over 6000 patients 

treated since 2003. 

- Prospective study 

(n=23) [2014] 

- Other prospective 

studies (n=30-41) 

[2009,2014,2012] 

- Study on treatment 

of OCD [2011] 

- Phase III study 

(n=233) comparing 
NOVOCART® 3D to 

microfracture finish Jul. 
2018 (2-year outcome) 

- Non-interventional 

study (n=80) to finish 

Sept. 2019 (3-year 

outcome) 

- Phase III study 

(n=261) comparing 
NOVOCART® 3D plus to 
microfracture finish 

Jun. 2019 (5-year 
outcome). 

- Showed feasibil ity to 

treat cartilage lesion of 2-
6 cm2. 

- Prospective clinical 

studies have all  shown 
improvments in the IKDC, 
VAS and MOCART scores 

at 1 and 2 year follow 
ups. 

RevaFlex™ 

- Scaffold-free 
neocartilage disc 

composed of 
a l logeneic juvenile 

chondrocytes and 
their associated 

matrix. 

- Phase I/II study 

(n=12) [2013] 

- Phase III study 

(n=225) comparing 
RevaFlex™ to 
microfracture finish Jul. 

2019 (5-year outcome). 

- Showed feasibil ity to 

treat cartilage lesion <5 
cm2. 

- Immunological and 

histological analysis 
showed no adverse 
immune response, 

indicating that allogeneic 
chondrocytes may be 
immune-privileged. 

CaReS® 

- Type I collagen 

hydrogel embedded 

- Multi-center study 

(n=116) [2011] 
N/A 

IKDC scores were 

improved from baseline 

in multi-centre study and 
in the retrospective 
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with primary 
autologous 

chondrocytes. 

- Retrospective study 

comparing to 

microfracture (n=20) 

[2013] 

comparative study 
showed no significant 
difference in 2 methods. 

From the literature reviewed in Table 4, it was highlighted that although many of these 

natural scaffolds are able to promote hyaline cartilage formation, future/current clinical 

trials have been halted or stopped. The authors did not comment on the reasons for this. 

Nevertheless, if these long term clinical studies were to be successful, eventually gaining FDA 

approval; the clinical application would still need to be thoroughly considered and thought-

out for future use in humans. Having said this, there were some clinical products 

(Chondrospheres®, NeoCart®, NOVOCART® 3D and RevaFlex™), which successfully made it 

through to Phase III clinical trials and are yet to reveal their long-term success in patients. 

1.4.3.2.2 Synthetic Biomaterials  

Aside from natural polymers, there are also synthetic polymer scaffolds. Their chemical and 

physical properties can be modified to alter their degradation rate and mechanical 

characteristics, which is harder to do in natural polymers. Common synthetic polymers used 

in cartilage tissue engineering are the family of poly α-hydroxy esters, such as poly-glycolic 

acid (PGA), poly-lactic acid (PLA) and PCL. The growing research interest of these synthetic 

polymers is due to their biocompatibility, and FDA approval for clinical use for more than 20 

years (Mouw et al., 2005). The physical properties of these scaffolds, such as pore size, 

polymer crystallinity and fibre size are key features that regulate their degradation rates. 

Highly porous PGA has been extensively used in cartilage regeneration as it is able to degrade 

in about 6-8 weeks. These PGA scaffolds have exhibited high rates of initial cell growth, 

maintenance of chondrocyte function and secretion of ECM similar to that of healthy hyaline 

cartilage (Mouw et al., 2005; Hooper et al., 1998). Highly crystalline PLA has also been studied 

for cartilage repair and can take about 6-18 weeks to degrade. This synthetic material has 

shown good chondrocyte proliferation and GAG production in vitro. However, cell growth 

and matrix production is much lower than that of PGA (Hooper et al., 1998; Lee and Shin, 

2007). The pioneers behind the in vitro study of the family of poly (𝛼-hydroxy esters) were 

Vacanti et al.; whose team reported the ability to regenerate cartilage in animal models 

(Vacanti et al., 1991). This led to further fabrication of various structured synthetic polymers 

scaffolds to culture chondrocytes or mesenchymal stem cell s (MSCs) for regeneration of 

cartilage in vitro. Unlike natural biopolymers that are often prepared in a hydrogel form, 

synthetic polymers can be fabricated into various pre-formed structures, such as fibres, 

foams and sponges. 
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Figure 16: The three-dimensional poly(lactic-glycolic acid) (3D-PLGA) scaffold. The 
micropore side (cell seeding side) (a) and a cross section (b) of the scaffold. Schematic 

illustration of cell seeding (left) and scanning electron photomicrograph of cross section of 
cells seeded in the 3D-PLGA scaffold (right) (c). The cells lie in a uniform array at the 

palisades, similar to hyaline cartilage. Gross appearance of a cartilage defect in the patella 
groove of a rabbit implanted with a complex between adherent bone marrow cells and 3D-

PLGA scaffold (d). The arrows indicate cell/PLGA scaffold (Jin et al., 2009).  

Holland et al. highlighted that the manufacturing process of certain synthetic biodegradable 

polymers has a significant effect on cell migration of chondrocytes and differentiation of 

MSCs (Holland and Mikos, 2006); which is why the development of nanostructural materials 

has been an emerging trend in cartilage tissue engineering. Nanostructured scaffolds can be 

fabricated via a technique called electrospinning. Two detailed studies performed by Li et al. 

showed that chondrocytes cultured in PCL nanofibrous scaffolds maintained their 

chondrocytic phenotype (Li et al., 2003), similarly MSCs were successfully induced into 

chondrocytes (Li et al., 2005). Li et al. pursued a further in vivo study showing that 

chondrocyte-MSC laden nanofibrous scaffolds, grown in a bioreactor, were able to repair full 

thickness defects in pig femoral condyles (Li et al., 2009). Despite this, current studies have 

shown interest in new synthetic biomaterials such as poly glycerol-co-sebacate (PGS) and 

poly octanedoil-co-citrate (POC) as they have been found to have similar mechanical stiffness 

to articular cartilage, potentially making them feasible for cartilage tissue engineering, 

however their regenerative potential is still unknown (Wang et al., 2003; Kang et al., 2006; 

Jeong and Hollister, 2010). Claire et al. proposed a method in which PCL, PGS and POC were 

fabricated into the same fixed 3D architecture. This enabled the study of solely the material 

to determine its effects on cartilage regeneration in vitro (Jeong and Hollister, 2010). The 

study reported that POC provided optimal support for cartilage rege neration in terms of 

maintaining cell phenotype, ECM production and differentiation of chondrocytes. 

Conversely, PGS and PCL were found to be less favourable as they caused de -differentiation 

of some chondrocytes and high matrix degradation. 



48 

Other synthetic scaffolds used in cartilage regeneration which have both undergone clinical 

trials are; a commercial product named Bioseed®-C (biodegradable polymer scaffold) and 

INSTRUCT (poly (ethylene oxide-terephtalate)/poly(butyleneterephtalate) (PEOT/PBT) 

scaffold seeded with primary autologous chondrocytes and bone marrow cells). Studies using 

Bioseed®-C in human clinical trials, have reported great clinical success. At 2 years, significant 

improvements in the KOOS score were reported when compared to baseline val ues and 

histological images showed good integration and formation of cartilaginous repair tissue 

(Ossendorf et al., 2007). At 4 years significant improvements in the ICRS, IKDC and KOOS 

scores were reported when compared to baseline and MRI examinations showed complete 

filling in 72.7 %, moderate filling in 25 % and less than 50 % filling in 0.3 % of patients (Kreuz 

et al., 2009; Kreuz et al., 2011). Over 300 patients have been treated with the Bioseed®-C 

scaffold since 2003 (BioTissue - BIOSEED®-C). A recently a long-term follow up study (12 

years), highlighted that morphological evaluation by MRI showed moderate to complete 

filling in 10 of 14 patients. From which qualitative evaluation of the cartilage ultrastructure 

showed hyaline-like repair tissue in repair site, 12 years after implantation (BioTissue - 

BIOSEED®-C). This scaffold is currently being widely used in Europe with hopes to move into 

the American market (Huang et al., 2016). 

The INSTRUCT scaffold utilises a modern approach of a bio-plotter device to create the 

desired porous lattice structure (approx. 170 mm diameter fibres, 200 mm pore size, and 

56% porosity) (Hendriks et al., 2013). An initial study in nude mice, reported that the softer 

PEOT polymer of the scaffold functions to support the chondrogenic phenotype, whilst the 

PBT part, increases the material stiffness (Moroni et al., 2007). Several authors commented 

on the ability to easily fine tune the mechanical properties of this scaffold by altering the 

ratio of PEOT to PBT, which also gave rise to varying pore sizes for better cell aggregation, 

alongside differing rates of degradation (Jansen et al., 2008; Deschamps et al., 2001; Emans 

et al., 2012). This bio-resorbable scaffold (12 months) has a unique way of being input into 

patients via a single surgical intervention, whereby the patient’s cells and bone marrow 

aspirate are inserted into a semi-automated machine (INSTRUCT cell processor). The 

machine isolated the chondrocytes, mixes them with marrow cells, adds fibronectin and 

seeds them onto a scaffold, all of which can be done in under 1 hour (Moroni et al., 2007; 

Mechanically Functional Scaffold Technology, 2015; The INSTRUCT Products, 2015) . A Phase 

II trial completed in 2014, with a 2-year outcome, showed improvements in the IKDC and 

KOOS scores, with 72 % of patient exhibiting hyaline cartilage and 97 % with either 

fibrocartilage or hyaline cartilage (Hendriks et al., 2013; Slynarski et al., 2015).  
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From the literature, it is clear that scaffold material, cell source and signalling factors make 

up the basis of a good tissue engineered construct. Examples of some novel biomaterials 

used have been reviewed, showing their continuous development as biocompatible 

scaffold/hydrogels. Not only have these scaffolds been able to meet the mechanical 

requirements to maintain cell phenotype but they have been able to provide a stable 

environment in which cells are able to synthesise an ECM, something that was not as well 

characterised in earlier therapeutic techniques. Furthermore, the incorporation of certain 

bioactive molecules has shown enhancement in the cartilage regeneration properties as well 

as cell proliferation. Both natural and synthetic biomaterials have their drawbacks, some of 

which have viable solutions to them. Aside from this, the prime concern of some of these 

scaffold materials is that the majority of them are yet to be tested in humans to assess their 

feasibility.  

The current approaches to cartilage repair reviewed in the previous sections have all been 

shown to have different effects on the regeneration of cartilage. The therapeutic techniques 

without any active cells have been shown to have only temporary effects on patients, in some 

cases worsening the condition. Severities of the disease or lesion, age and bone quality have 

all been reported to have an effect on the surgical outcomes of these therapeutic 

approaches.  

Despite the large number of preclinical and clinical studies reviewed here for cartilage tissue 

engineering, none of the scaffolds or clinical products discussed were injectable 

percutaneously. Recent interest has been directed toward the development of self-

hardening and injectable materials, that can be used in the percutaneous injection of 

biomaterials, capable of cartilaginous tissue repair without causing any extra damage to the 

surrounding tissue. The properties and structures of hydrogels make them ideal candidates 

for implantation by minimally invasive surgery (Liu et al., 2017; Lum and Elisseeff, 2003; 

Radhakrishnan et al., 2017). Hydrogels are composed of chains of synthetic or natural 

macromolecules capable of forming hydrogels after physical, ionic stimuli or covalent 

crosslinking (Dury and Mooney, 2003; Liu et al., 2017). They are known to exhibit a high level 

of hydration close to that of the articular cartilage, allowing them to mimic the 3D 

environment of chondrocytes (Teixeira et al., 2014).  

In conclusion, surgeons have a variety of tools that can be used to treat OA cartilage. Age, 

aetiology, extent of cartilage damage and the lifestyle of the patient, should all be factors 

that should define the choice of treatment of the patient. The use of minimal invasive surgery 

should be put into practise where possible in order to avoid open intrusive surgery and put 



50 

off joint replacement for as long as possible. One of the most important factors in avoiding 

the extensive end stage deterioration of cartilage, is to improve the current methods and 

approaches to diagnose the changes in biochemical and biomechanical propert ies of 

cartilage at a much earlier stage of the disease. Equal effort should also be made to develop 

new methods and biomaterials that can oppose the changes that occur in the ECM of 

cartilage in early OA, in order to prevent the further progression of the disease. The following 

section will introduce a novel type of material – self-assembling peptides (SAPs) – that have 

shown potential as injectable biomaterials for intervention in early cartilage defect and early 

stage OA. They offer flexibility in function and design, as well as lending themselves to be 

developed into viable alternatives to joint lubricants that may also have the ability to repair 

ECM damage.  

1.5 Introduction to Peptides  

Peptides are short chains of amino acid monomers that through condensation reactions  (H2O 

produced), form peptide bonds. This covalent bond is as a result of the carboxyl group of one 

amino acid reacting with the amino group of another (Voet and Voet, 1995; University of 

Arizona , 2001).  

There are 20 main natural amino acids involved in the synthesis of peptides and proteins 

present in biology. These amino acids are organised according to the polarity of their side 

chains. All these amino acids have the same basic structure, varying only in their ‘R groups’  

(Ulijn and Smith, 2008). The peptides made from these amino acids are completely ionised 

at all pH ranges, and therefore can act either as an acid or a base. Cation and anion 

concentrations in solution can have an effect on the behaviour of these peptides; as these 

ions can act electrostatically to shield the side chain charges from one another, disturbing 

any intra and intra molecular interactions (Voet and Voet, 1995).  

Proteins that naturally occur in nature are considered to have four levels of hierarchical 

structure, making them more complex than peptides, which only generally have two levels 

(Berg et al., 2002). For peptides, the primary structure is the formation of polypeptides. They 

are made up by a sequence of amino acid residues, determining the specific conformation 

that is adopted by the peptide. The secondary structure refers to the orientation of the 

peptide backbone, due to the formation of hydrogen bonding. The main secondary 

structures are known as α-helix and β-sheet (Berg et al., 2002).  
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1.6 Introduction into self-assembling peptides (SAPs)  

Self-assembling peptides can be thermodynamically driven to self-assemble into well-

defined aggregates through weak non-covalent forces. In order of strength, these forces 

consist of: hydrogen bonding, electrostatic interaction, hydrophobic interactions and Van de 

Waals (Semino, 2008). The idea behind molecular self-assembly (SA) has become one of the 

main driving force for the development of these biomaterials.  The bottom up approach to 

the design and synthesise of these functional biomaterials starts with the careful design of 

the small building blocks that can self-assemble without any external forces and hence lend 

themselves for the use in nanoscience (Tu and Tirrell, 2004).  The structural ordering of the 

SA process is similar to the one seen in biological proteins, in that there are primary SA, 

secondary and tertiary SA and finally quaternary folding (Aggeli et al., 2001). 

In peptides, one dimensional SA is the formation of singular polypeptide chains. Secondary 

SA consists in the formation of α-helices and/or β-sheets. Tertiary SA is when either the α-

helices and/or β-sheets assemble into 3D structures via side chain interactions of the 

individual amino acids. The different level of SA are based on protein folding; whilst the last 

level (quaternary assembly), is when several peptide chains assemble into tape like or 

globular structures. The SA process can further continue, depending on the physical 

conditions (pH or ionic strength of solution) into ribbons, fibril or fibres (Aggeli et al., 2001; 

Aggeli et al., 2003). 

1.6.1 Self-assembly mechanism   

Self-assembling peptides are able to assemble in one of two ways; nucleated or non-

nucleated (classical).  

Non-nucleated self-assembly is the free energy change associated with the formation of one 

dimer unit or higher order aggregates. This stepwise addition of individual units will occur 

with identical rate constants for each of the associating reactions. Equation 1 gives the free 

energy change per molecule where; α= is the association energy, KB= Boltzmann constant 

and T=temperature.  

∆𝜇∗ = −𝛼𝐾𝐵𝑇   -  [Equation 1] 

Nucleated self-assembly is a more complex self-assembly mechanism. This mechanism 

involves a critical concentration for the formation of aggregates (nucleation). Below this 

nucleation point, the majority of molecules in the system will exist as isolated monomers 

where their 𝜑 & 𝜓 angles have any value (Branden and Tooze, 1999). Essentially, the growth 

or aggregation is inhibited until a particular concentration is reached at which point it will 
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spontaneously take off. This concentration is known as the critical concentration more 

commonly known as C* (Israelachvil, 1992). This mechanism involves two parameters, 

nucleation energy (𝛼𝑛𝐾𝐵𝑇) and growth energy(𝛼𝑔𝐾𝐵𝑇). The latter is associated with the 

corresponding energy of 𝛼𝐾𝐵 𝑇, as seen in the non-nucleated SA (Eq 1), however in classical 

non-nucleated SA the nucleation energy is absent (Israelachvil, 1992). 

For peptides to self-assemble in 1D, they must undergo a conformational transition, 

associated with an entropy loss. This entropy loss is characteristic of the straightening out of 

a peptide chain from its random coil to its β-strand conformation. This process is described 

by the energetic parameter, 𝜀𝑡𝑟𝑎𝑛𝑠𝐾𝐵𝑇. Once this β-strand conformation is reached, further 

SA can occur once the tape scission energy is increased;  𝜀𝑡𝑎𝑝𝑒𝐾𝐵𝑇 (energy required to break 

tape in 2 pieces) (Aggelli, 2000). This energy is enthalpic in nature, which stems from the 

intermolecular peptide backbone complementary hydrogen bonds and the side chain 

interactions. Indeed, SA can only occur when the loss in entropy (𝜀𝑡𝑟𝑎𝑛𝑠𝐾𝐵𝑇)  is 

counterbalanced by the gain in enthalpy  (𝜀𝑡𝑎𝑝𝑒𝐾𝐵𝑇).  The SA mechanism can further 

continue, where two tapes can associate to form a ribbon structure, stabilised by 

𝜀𝑟𝑖𝑏𝑏𝑜𝑛𝐾𝐵𝑇. The magnitude of 𝜀𝑟𝑖𝑏𝑏𝑜𝑛 is due to the intermolecular interaction between the 

side chains. Opposing the stacking of these tapes is what is called the elastic energy 

𝜀𝑒𝑙𝑎𝑠𝑡𝑟𝑖𝑏𝑏𝑜𝑛, which originates from the helical nature of tapes. In order for two tapes to stack 

together, they must both decrease their helical twist to facilitate the presence of each other. 

Therefore, the ribbon formed has more of a saddle curvature rather than a helical twist. 

Therefore, if 𝜀𝑟𝑖𝑏𝑏𝑜𝑛 can overcome 𝜀𝑒𝑙𝑎𝑠𝑡𝑟𝑖𝑏𝑏𝑜𝑛, the formation of a ribbon will occur (Aggeli 

et al., 2001; Fishwick et al., 2003). 

Similarly, the stacking of several ribbons one top of one another will form fibrils. This is 

stabilised by 𝜀𝑓𝑖𝑏𝑟𝑖𝑙𝐾𝐵𝑇, which is the free energy per stacked peptides in the fibril. This 

system has an opposing force restricting the formation of fibrils, known as 𝜀𝑒𝑙𝑎𝑠𝑡𝑓𝑖𝑏𝑟𝑖𝑙, which 

is the energy associated with the untwisting of the ribbons upon stacking. The number of 

tapes within a fibril is determined by a balance between the gain in attraction (𝜀𝑓𝑖𝑏𝑟𝑖𝑙), 

associated with ribbon stacking, and the elastic cost associated with packing of the ribbons 

in the fibril. Therefore if 𝜀𝑓𝑖𝑏𝑟𝑖𝑙 overcomes 𝜀𝑒𝑙𝑎𝑠𝑡𝑓𝑖𝑏𝑟𝑖𝑙, the SA of the fibril will occur. Finally, 

once a stable fibril is formed, pairs of fibrils are able to entwine edge on edge resulting in the 

formation of a fibre.  
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Figure 17: Hierarchical self-assembly of chiral rod like units. 

The arrangement of the amino acids within the peptide, along with the changes in energetics, 

is therefore important to attain the desired SA and functional properties of the SAPs.  

In summary, the SA of peptides can be broken down into three distinct phases. The 1st phase 

is nucleation, during which there are stable monomers and some unstable tapes. The 

monomers and tapes are assembling and disassembling due to there not being enough 

enthalpic energy to counteract the entropic energy loss. The 2nd phase is the formation of a 

stable nucleus. Here the enthalpic gain balances the entropic loss and so the first aggregates 

form (Aggelli, 2000). The concentration at which this occurs is known as C*. The final stage is 

the growth stage, where aggregates grow in size until they precipitate out of solution. These 

three-phases can be seen in what is called a self-assembly curve, which is the fraction of 

aggregate against the total peptide concentration, a schematic is given in Figure 18.  

 

Figure 18: Schematic of self-assembly curve for both nucleated self-assembly & non-
nucleated self-assembly of peptides. 

1.6.2 Uses of self-assembling peptides in tissue engineering. 

Depending on their chemical composition, some β-sheet self-assembling peptides have been 

shown to be biocompatible with no cytotoxic effects. An example of such peptides is given 

in a study carried out by Kirkham et al., in which these peptides led to the commercialisation 
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of a product for dental repair (Kirkham et al., 2007). The use of these peptides was to 

treat/prevent caries lesion via the insertion of these peptides as a monomeric solution. It 

was hypothesised that they would polymerise in situ via changes in pH or ionic strength; in 

order to provide a biomimetric scaffold upon which hydroxyapatite nucleation could occur 

and promote repair. The matrix like structures formed by these peptides not only mimic the 

biological macromolecules found in the natural ECM of the mammalian skeleton, but are also 

able to induce the deposition of hydroxyapatite. The reasoning behind this increased mineral 

deposition of the peptide used (P11-4), was due to the structure of the fibrils formed, which 

is reminiscent of collagen fibres. The presence of these collagen-like fibres promotes 

nucleation of hydroxyapatite more readily than normal (Kirkham et al., 2007). The successes 

of this study led to the commercialisation of a product named, CURODONT™, which is now 

used to treat caries lesion.  

Further uses of SAPs, as biomaterials for the application in tissue engineering, are  their use 

as joint lubricants. Bell et al., was among the first to study the frictional properties of these 

peptides, which had been designed based on the functional moti f of hyaluronic acid, which 

is a commonly used as a viscosupplement and is a very important GAG within the ECM of 

cartilage (Bell et al., 2006). In static and dynamic friction tests carried out in healthy cartilage 

pin on plate experiments, it was found that one of the peptides, P11-9, had favourable 

frictional characteristics, similar if not better than hyaluronic acid. However, this was not the 

case in damaged cartilage samples (Bell et al., 2006). Nevertheless, the study was able to 

provide preliminary evidence that these self-assembling peptides are promising candidates 

in developing effective joint lubricant and could also be used to regulate the AC degeneration 

in its early stage. 

SAPs have also been used for other tissue engineering application such as the formation of 

hydrogel scaffolds. Kisiday et al showed that chondrocytes are able to grow and multiply on 

a hydrogel scaffold-like material produced by a SAP called KLD-12. The bovine chondrocytes 

used were not only able to maintain their chondrocytic phenotype and produce cartilage-like 

ECM, rich in collagen type-II but also showed increased mechanical properties, after 4-weeks 

of culture in vitro (Kisiday et al., 2002).   

The examples outlined here are only some of the uses that make these SAPs so promising as 

scaffolds for tissue engineering and show tremendous promise  in the field of regenerative 

medicine. In depth studies and reviews by several authors cover a vast number of 

applications for all the different types of SAPs in tissue engineering (Maude et al., 2013; 

Hosseinkhani et al., 2013; Johnstone et al., 2013; Stephanopoulos et al., 2013; Varaprasad et 
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al., 2017; Calo and Khutoryanskiy, 2016). A few significant application that SAPs have been 

used for reduction of blood loss in haemorrhagic sites, which could be used to treat non-

compressible torso haemorrhage in battlefield patients (Morgan et al., 2016), wound healing 

(Schneider et al., 2008; Meng et al., 2009; Loo et al., 2014; Xie et al., 2015) , bone repair 

(Fellah et al., 2006; Ozeki et al., 2011; Short et al., 2015; Xavier et al., 2015; Radhakrishnan 

et al., 2017), scaffold for regenerating dental pulp (Galler et al., 2012), nucleus pulposus 

(Collin et al., 2011; Tao et al., 2015; Xu et al., 2015; Miles et al., 2016; Thorpe et al., 2016; 

Wan et al., 2016; Gullbrand et al., 2017; Wachs et al., 2017) and cartilage (Balakrishnan et 

al., 2014; He et al., 2014; Kim et al., 2015; Ren et al., 2015; Tatman et al., 2015). Most of the 

above studies using SAP hydrogels for cartilage regeneration purposes are mixed with cells 

in complicated multi-step procedures. Some of which use more than one biomaterial to 

improve the mechanical stiffness’s of the gels formed, which can increase the cost of the 

potential minimally invasive procedure. Nevertheless, these  SAP hydrogels have 

demonstrated good biocompatibility with the host environment and have shown good 

feasibility to be used as minimally invasive injectable materials for the use in early stages of 

OA. However, in this study cells will not be used. A much simpler and cheaper approach of 

mixing the SAPs with a naturally occurring biopolymer in cartilage (chondroitin sulfate), in a 

one-step procedure, will be investigated to see whether it is able to restore the 

biomechanical properties of OA cartilage.  

In general terms SAP molecules have been labelled as ‘Lego bricks’ , with the ability to 

spontaneously self-assemble when exposed to an external stimulus to form nanofibrous 

structures. Their success is thanks to their highly defined structure and the molecular 

interaction which enable them form fibrilar intricate nanostructures that are very similar in 

size, shape and porosity to that of natural fibrilar proteins in the ECM. Additionally, their self-

assembling properties allow them to form porous network structures. These provide a tissue-

like microenvironment and can display cell-binding sites that can be made to specially 

interact with cells and influence their biological function. From the literature reviewed, their 

most important characteristic, which makes them favourable for tissue engineering and 

regenerative medicine is their self-assembling properties and how this can be triggered. The 

self-assembly of the SAPs used in regenerative medicine was reported to be triggered by 

shifts in pH or temperature or by the presence of monovalent or divalent electrolyte ions. 

The combination of all these characteristics makes SAPs very favourable biomaterials for 

percutaneous injections, specifically in minimally invasive surgery techniques for cartilage 

regeneration. Therefore, the ideal design requirements for a SAP gel, that could be used in 

the regeneration of osteoarthritic cartilage should be able to form self -supporting gels in a 
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physiological environment, show characteristic morphology similar to that of proteoglycan 

structures found in native cartilage and be strong enough to remain in the area to which it is 

applied. 

1.7 Rationale  

Osteoarthritis is considered the most common joint disorder worldwide (Arden and Nevitt, 

2006; Lorenz and Richter, 2006). The number of people that will be affected by OA is on the 

rise because of the aging population in most Western countries and the recent obesity 

epidemic (Arden and Nevitt, 2006; Zhang and Jordan, 2010). This degenerative joint disease 

is characterised by the progressive loss of articular cartilage and formation of osteophytes, 

which leads to pain, loss of function and mobility problems (Berenbaum, 2013; Pitsillides and 

Beier, 2011; Bach and Hunter, 2014). Cartilage is a unique tissue, demonstrating both 

viscoelastic and compressive properties provided by its extracellular matrix (ECM). 

Unfortunately, chondrocytes have a very limited ability to fully repair damaged cartilage 

(Berenbaum, 2013). Therapeutic interventions are needed. Current treatments are limited 

in respect to their ability to regenerate/restore hyaline cartilage and alleviate pain. OA is 

characterised by a loss of GAGs from the cartilage ECM which are essential for it 

biomechanical function. Restoration of GAGs in articular cartilage during early stages of OA 

may delay or prevent disease progression. Treatment with chondroitin sulfate (Katta et al., 

2008) has been shown to be ineffective in restoration of mechanical properties to GAG 

depleted cartilage. It is hypothesised that a combination of chondroitin sulfate and SAPs, 

with the SAPs retaining the GAG in situ will be effective. The use of SAPs  (Shaha et al., 2010; 

Kyle et al., 2010), which can transform from injectable liquids into hydrogel bioactive 

structures in vivo; is an attractive approach that could be transferred to the clinic.  

The SAPs chosen were a family of peptides from the P11 series that have been de novo 

designed at the University of Leeds. These SAPs are able to form β-sheet tapes, which self-

assemble in one dimension into a hierarchy of well -defined structures. They are 

advantageous because they are entirely based on natural amino acids and their self-assembly 

can be triggered by external factors such as pH, ionic strength and temperature (Aggeli et al., 

2003; Carrick et al., 2007; Maude et al., 2011). The peptides P11-4, P11-8 and P11-12 were 

chosen as they systematically vary in charge (net charge of +2 or -2) and hydrogen bonding 

capacity (glutamine (Q) or Serine (S) based peptides).  They were then combined with 

chondroitin sulfate, which has a -2 charge and a large number of hydrogen bond donors (4) 

and acceptors (15) groups per repeat monomer unit that will potentially facilitate 

interactions between the peptides and these GAGs through a combination of electrostatic 
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and/or hydrogen bonding interactions. Miles et al., carried out a similar study in which these 

peptides were combined with GAGs at varying molar ratios to investigate if they could 

restore the in vitro biomechanical properties of degenerative intervertebral discs. To date 

this is the only other study which has combined the use of the P 11 peptides and GAG. 

However, the authors carried out their experiments at room temperature and in only one 

physiological conditions (130 mM NaCl in Deuterated water (D2O)), which was relevant to 

their area of study. Hence this study aims to investigate a range of physiological conditions 

found within the cartilage tissue.  

Therefore, this project will investigate the feasibility of using novel self-assembling peptides 

combined with chondroitin sulfate (a key component of the ECM), for the restoration of 

biomechanical properties of GAG depleted cartilage in vitro. 

1.8 Aim and Objectives 

The aim of this project is to use multidisciplinary approaches, to determine whether a 

combination SAPs and chondroitin sulfate is able to restore the biomechanical properties of 

GAG depleted porcine condylar cartilage, ideally to a level intrinsic to natural porcine 

condylar cartilage. 

1.8.1 Objectives  

1) To determine the effects of combining the SAPs (P11-4, P11-8 and P11-12) and 

chondroitin sulfate (GAG) at two molar ratios (1:64 and 1:16) in two physiological 

conditions (130 mM and 230 mM Na+ salt solutions), on the β-sheet percentage, fibril 

morphology and biomechanical properties of the SAPs and SAP: GAG mixtures. 

2) To create a GAG depleted porcine condylar cartilage model and characterise the 

model biochemically and histologically.   

3) To develop an indentation testing procedure that gives a significant difference in the 

deformation, equilibrium elastic modulus and permeability between native and GAG 

depleted porcine condylar cartilages.  

4) To determine the GAG content and biomechanical properties of native and GAG 

depleted porcine condylar cartilage 

5) To investigate whether the SAPs or SAPs/GAG mixtures are able to restore the 

biomechanical properties of GAG depleted porcine condylar cartilage.  

 

 



58 

Chapter 2 Materials and Methods  

2.1 Materials  

2.1.1 Equipment 

A list of the laboratory equipment used throughout the study is shown in Table 5. 

Table 5: Equipment used throughout the study. 

Equipment Model/Size Supplier 

Automatic pipettes Gilson P20-P5000 Anachem Ltd. 
Balance Mettler AE240 Balance Inte Equipment Trading Ltd. 

Bijous 5 ml Scientific Laboratory Supplies Ltd 
Disposable plastic syringes 1 ml, 2 ml, 10 ml, 20 ml Scientific Laboratory Supplies Ltd 

Fourier transform infrared 
spectrometer (FTIR) 

Nicolet 6700 Thermo Scientific. 

Freeze drier Modulyod-230 Thermo Savant 

Freezer (-20 °C) Electrolux 3000 Jencons PLC 

Fridge Electrolux ER8817C Jencons PLC 
Hexagonal mesh copper grids 400 mesh grids Agar Scientific Ltd. 

Histology cassettes CMB-160-030R Thermo Fisher Scientific Ltd 
Histology moulds - Thermo Fisher Scientific Ltd 

Histology water bath MH8515 Barnstead 
Hot plate E18.1 hotplate Raymond A Lamb 

Hot wax dispenser E66 was dispenser Raymond A Lamb 

Incubator Heraeus Jencons PLC 
Instron material testing 
machine 

3365 Instron 

Linear variable differential 
transformer (LVDT) 

RDP DS-200H Electrosence 

Magnetic stirrer Stuart SB161 Scientific Laboratory Systems Ltd 

Mica carbon sheets - Agar Scientific Ltd. 
Micro-plate spectrophotometer Multiscan Spectrum 1500 Thermo Scientific 

Microscope (upright) Zeiss AX10 Zeiss 
Microscope Zeiss with FRAP module  

Microtome RM2125 RTR Leica Microsystems 
Microtome Blades SD3050835 Fisher Scientific 

Orbital Shaker IKA KS130 basic Jencons PLC 

Parafilm M - Sigma Aldrich Ltd. 
pH Meter Sartorius Docu-pH-meter Fisher Scientific 

Pipette tips 10 μl, 200 μl, 1000 μl Star Labs 
Plate Shaker IKA KS130 basic Jencons PLC 

Rheometer Malvern Kinexus Pro Malvern 
Sample vials (7ml) 4013610 Scientific Industries Inc. 

Slide holder E102 Raymond A Lamb 

Sonicator Sonorex RK52H Bandelin Sonorex Ltd. 
Superfrost Plus microscope slide MIC3022 Scientific Laboratory Supplies Ltd 

Syringe needles 32G Thermo Fisher Schientific Ltd 
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Tissue Processor TP11020 Leica Microsystems 
Transmission electron 
microscope 

Jeol 1400 Jeol Ltd. 

Universals 25 ml Scientific Laboratory Supplies Ltd 
Vortexer Vortex Genie-2 Scientific Industries Inc. 

Water Bath Grant Jencons PLC 
Well plates, Nunc® (flat 
bottomed) 

96-well plates Nunc International Corporation 

Wax oven Windsor E18/31 Scientific Laboratory Supplies 

2.1.2 Chemicals 

Sources of chemicals used throughout the study are shown in Table 6.  

Table 6: Chemicals and reagents used throughout the study.  

Chemical/reagent Supplier 

1,9 dimethylene blue Sigma-Aldrich Ltd. 
Acetic Acid (glacial) Thermo Fisher Scientific Ltd 

Amphotericin B VWR International 

Aprotinin (10,000 KUI) Mayfair house 
Bovine Serum Albumin Sigma Aldrich Ltd. 

Calcium acetate Thermo Fisher Scientific Ltd 
Calcium chloride (CaCl2) Thermo Fisher Scientific Ltd 

Chondroitin sulfate B Sigma Aldrich Ltd. 
Deuterium chloride (DCl) Sigma Aldrich Ltd. 

Deuterium oxide (D2O) Sigma Aldrich Ltd. 

DPX mountant  Thermo Fisher Scientific Ltd 
di-sodium hydrogen orthophosphate VWR International 

Ethanol Thermo Fisher Scientific Ltd 
Ethylenediaminetetraacetic acid (EDTA) VWR International 

Fast green Sigma Aldrich Ltd. 
Formic acid Sigma Aldrich Ltd. 

Formamide Sigma Aldrich Ltd. 

Gentamycin Biochrom A 
Hank’s balanced salt solution (HBSS) Sigma Aldrich Ltd. 

Haematoxylin (Weigert’s) Atom Scientific 
Hydrochloric acid VWR International 

Isopropanol  Thermo Fisher Scientific Ltd 
L-cystine hydrochloride Sigma Aldrich Ltd. 

Methyl methacrylate (liquid) WhW Plastics 

Nystatin Sigma Aldrich Ltd. 
OCT embedding media Leica Biosystems 

Papain Sigma Aldrich Ltd. 
Paraffin wax Thermo Fisher Scientific Ltd 

Phosphate Buffered Saline (PBS) without 
Ca2/Mg2+ 

Lonza 

Penicillin Lonza 

Potassium chloride (KCl) Sigma Aldrich Ltd. 
Polymixin B Calbiochem  

Polymethylmethacrylate (PMMA) powder WhW Plastics 

Primixin I.V. (Imipenem Cilastatin) Medreg 



60 

2.1.3 Peptides  

P11-4, P11-8 and P11-12 were purchased from CS Bio Co. These peptides were analysed in 

house to check their composition and purity using elemental analysis and UV spectroscopy.  

Table 7: Peptide primary structures, and their net charges at pH 7.4. Positively charged 
residues are coloured blue, negatively charged residues are red. All peptides were 

amidated and acetylated. 

Peptide Amino Acid Sequence Net charge at pH 7.4 
P11-4 QQRFEWEFEQQ -2 
P11-8 QQRFOWOFEQQ +2 
P11-12 SSRFOWOFESS +2 

Manufacturer values of peptide percentage purity were checked using UV spectroscopy.  The 

three peptides studied here (Table 7) all contain tryptophan. Therefore, the UV absorption 

spectra can be used to calculate the molar concentration. The wavelength of 279 nm 

corresponds to the excitation peak of the indol side chain of the tryptophan residue. 

Therefore, when the spectra are collected in a 1 mm path length cell, the molar ratio can be 

calculated using equation 2:  

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2      −         [𝑝𝑒𝑝𝑡𝑖𝑑𝑒]𝑀 =  
𝐴𝑏𝑠279 

5600 (𝑀−1𝑐𝑚−1)
 

Where 5600 M-1cm-1 is the molar extinction coefficient of the tryptophan residue at 279 nm. 

Solutions were prepared at 1 mg.ml -1 in water. The pH of these solutions was adjusted (pH > 

8 for P11-4 and a pH < 6 for P11-8 and P11-12), to obtain a fully monomerised solution. Peptide 

solutions were added to the Hellma UV quartz cuvettes with a 1 mm path length. Prior to 

commencing, spectrometer was auto-zeroed using Hellman UV quartz cuvettes filled with 

blank solvent (water). Solution absorbance was recorded using a PerkinElmer UV/VIS/NIR 

Safranin O Acros 
Sodium acetate Thermo Fisher Scientific Ltd 

Sodium chloride (NaCl) Thermo Fisher Scientific Ltd 
Sodium deuteroxide (NaOD) Sigma Aldrich Ltd. 

Sodium di-hydrogen orthophosphate VWR International 
Sodium dodecyl sulfate (SDS) Sigma Aldrich Ltd. 

Sodium formate VWR International 

Sodium hydrocarbonate (NaHCO3) Thermo Fisher Scientific Ltd 
Sodium Hydroxide VWR International 

Stains-all solution  VWR International 
Standard pH buffers (pH 4, 7 and 10) Sigma Aldrich Ltd. 

Trizma base Sigma Aldrich Ltd. 
Uranyl  acetate Sigma Aldrich Ltd. 

Vancomycin Sigma Aldrich Ltd. 

Xylene Genta Medical 
Zinc acetate Thermo Fisher Scientific Ltd 

Zinc chloride Thermo Fisher Scientific Ltd 
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Lambda 900 Spectrometer, controlled by UV WinLab software. Ten measurements of 

absorbance were recorded, with a ten second pause in-between the successive readings.  An 

average of the absorbance measurements was taken. The in-house peptide content value 

from UV spectroscopy was calculated using Equation 3:              

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3      −       𝑃𝑒𝑝𝑡𝑖𝑑𝑒 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 =
𝑀𝑜𝑙𝑎𝑟𝑖𝑡𝑦 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑏𝑦 𝑈𝑉

𝑀𝑜𝑙𝑎𝑟𝑖𝑡𝑦 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑏𝑦 𝑚𝑎𝑠𝑠/𝑣𝑜𝑙𝑢𝑚𝑒 𝑟𝑎𝑡𝑖𝑜
 

Peptides were stored in a freezer and prior to use left to thaw at room temperature.  

2.1.4 Glycosaminoglycan (GAG; chondroitin sulfate)  

Chondroitin sulfate sodium salt from shark cartilage was purchased from Sigma-Aldrich Ltd, 

Dorset, UK. This particular GAG is the most abundant in healthy articular cartilage, therefore 

is the most likely candidate to provide mechanical and biological behaviour similar to that 

found in the natural tissue  (Mow and Ateshian, 1997).  

2.1.5 Software 

OMNIC software by Thermo Fisher Scientific (Version 7.3, SP1)  was used to interpret the 

peptide spectra data produced by the Fourier transform infrared spectroscopy (FTIR) 

machine. This program allowed the production of peak fitted graphs, to determine the  

secondary structure of the peptides, which were saved as CSV files to be further manipulated 

in Origin Pro 8.6 (OriginLab, SR1). rSpace Kinexus by Malvern Instruments (Version 6.7) was 

used to control the rheometer and export raw data. Origin Pro 8.6 was used to process, 

manipulate and present the graphs throughout this thesis. 

2.2 Methods  

2.2.1 General Methods  

2.2.1.1 Weighing of peptides 

A Mettler AE240 balance was used to measure masses greater than ≈ 1 mg, while masses 

less than ≈1 mg, were weighed on a Sartorius SC2 balance. The accuracy of the balances were 

0.01 mg and 0.1 µg, respectively. The percentage purities of the three peptides, P11-4, P11-8 

and P11-12 were 95 %, 79.05 % and 79.7 % respectively. Throughout this study, it was decided 

to use 10 mg of peptide per 1 ml of Na+ salt solution. However, as the peptide purities were 

not 100%, the amount of peptide to weigh out in order to obtain 10 mg. ml-1 was calculated. 
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The percentage purities (above) were divided by 100 and then subtracted from 1 to give the 

number of milligrams (mg) of counter ions in each sample, the remaining weight was the 

weight of peptide as detailed below: 

- For each mg of P11-4, 0.05 mg was counter ions. The remaining weight 0.95 mg, was of 

actual P11-4. 

- For each mg of P11-8, 0.21 mg was counter ions. The remaining weight 0.79 mg, was of 

actual P11-8. 

- For each mg of P11-12, 0.20 mg was counter ions. The remaining weight 0.80 mg, was of 

actual P11-12. 

Therefore for 10 mg.ml-1 to be achieved, 10 mg was divided by the weight of peptide (above) 

which accounted for the counter ions to give the weight of peptide  that was weighed out.  

For P11-4 = 10.53 mg.ml-1 of Na+ salt solution – (1) 

For P11-8 = 12.65 mg.ml-1 of Na+ salt solution – (2) 

For P11-12 = 12.50 mg.ml-1 of Na+ salt solution – (3) 

The concentration of the peptides used in this study was always 10 mg.ml-1.  

2.2.1.2 Weighing of chondroitin sulfate (CS) powder – (GAG)   

Chondroitin sulfate sodium salt was used as the GAG for all the experiments (unless 

otherwise stated). Different molar ratios of GAG: peptide were used throughout this study, 

these were 1:64 and 1:16. Throughout this work the terminology 1:64 & 1:16, refers to one 

part GAG to one part peptide.  

 

Figure 19: One subunit of Chondroitin-6-sulfate. 

To determine the amount of GAG powder to be weighed to make up these molar ratios the 

following calculations were carried out.  

The peptide weight, 10 mg, was divided by the molecular weights of the corresponding 

peptide to determine the number of moles of peptide. 

The number of moles of peptide was then divided by the ratio required, so either 64 for the 

1:64 ratio or 16 for the 1:16 ratio. This gave the moles of GAG required, from this using 
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equation 4 below and rearranging it to calculate the mass, the masses of the GAG for the two 

molar ratios were calculated. All the masses of the powders for all peptides and molar ratios 

of GAG are shown in Table 8.    

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛  4      −  𝑁𝑜. 𝑜𝑓 𝑚𝑜𝑙𝑒𝑠 = 
𝑚𝑎𝑠𝑠 (𝑔)

𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔. 𝑚𝑜𝑙−1)
 

Molecular weights of peptides and chondroitin sulfate: 

• For P11-4 = 1596 gmol -1 • For P11-12 = 1401 gmol -1 • For P11-8 = 1567 gmol -1 • For CS powder = 

54,000 gmol -1 

Table 8: Masses (mg) of peptide and chondroitin sulfate (GAG) weighed out for the 
different molar ratios. Samples were made up to a total volume of 1 ml in two aqueous 

Na+ salt solutions, unless otherwise stated.  

 1 part GAG : 64 part peptide  1 part GAG : 16 part peptide 

P11-4 5.3 mg 10.5 mg 21.1 mg 10.5 mg 
P11-8 5.4 mg 12.7 mg 21.5 mg 12.7 mg 
P11-12 6.0 mg 12.5 mg 24.0 mg 12.5 mg 

2.2.1.3 Sterilisation  

Solutions, materials and equipment were sterilised using one of three procedures:  

• Dry heat sterilisation – items were placed in a hot air oven for 4 h at 180 oC. 

• Moist heat sterilisation – items which were not suitable for dry heat sterilisation 

were sterilised in an autoclave for 20 mins at 121 oC at a pressure of 103 kPA. 

• Filter Sterilisation – items were drawn up through a sterile syringe and passed 

through a Millex®GP filter unit (0.22µm – pore size).   

2.2.2 Cartilage Tissue acquisition 

Cartilage tissue underwent several modifications to create different models of OA, explained 

in Chapter 4. Cartilage models and cartilage treated with the SAP: GAG mixtures were subject 

to several histological, biochemical and biomechanical tests to determine the effects of the 

SAP-GAG mixtures, which are outlined in Chapter 4, Chapter 5 and Chapter 6. 

2.2.2.1 Dissection equipment  

The dissection equipment and supplier information used for dissection and extraction of 

porcine cartilage are listed in Table 9 and shown in Figure 20. 
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Table 9: Dissection equipment used throughout the study.   

Equipment Size/Model Supplier 

Bench top clamp - - 

Bunsen Burner  - Fisher Scientific Ltd 

Corer  
(serrated drill attachment) 

9 mm diameter Mechanical Engineering Workshop 

Corer (serrated) 9 mm diameter Mechanical Engineering Workshop 

Corer (smooth) 9 mm diameter Mechanical Engineering Workshop 
E-cut precision blade - Fien Industry power tools UK Ltd 

Hand drill - Bosch 
Oscillating saw - Fien Industry power tools UK Ltd 

Rat toothed forceps 125 mm length Fisher Scientific Ltd 
Scalpel handle Size 4 & 3 Swann Morton Ltd 

Sterile stainless and carbon 
steel surgical blades 

Size 22 & 10 Swann Morton Ltd 

Straight pincer forceps  Long and short Fisher Scientific Ltd 

 

Figure 20: Dissection equipment. A- Hand held oscillating saw. B - Piezo electronic gas 
igniter. C – E-cut precision blade for multi master drill. D – Sterile stainless steel surgical 

blade. E – Scalpel handle (size 3). F - Sterile carbon steel surgical blade. G - Scalpel handle 
(size 4). H – Smooth corer. I – Serrated corer. J – Serrated corer drill attachment. K – Pincer 
forceps (long). L – Pincer forceps (short). M – Bunsen burner. N – Hand held power drill. O - 

Bench top vice for holding porcine knee condyles in place.  

2.2.2.2 Dissection  

Right hand-side porcine legs were supplied by local abattoirs 24 h after slaughter. Pigs were 

aged ~ 6 months.  The knee condyles, both medial and lateral were extracted in a sterile 

environment using a Bunsen burner and sterile equipment. Condyles were used either 

directly following extraction or if necessary for use the next day, the condyles were stored in 

a moist environment at 4 oC overnight.  

Porcine knees were dissected as shown in Figure 21. Excess tissue was removed from the 

femur and surrounding skeletal structures to allow easier access. The knee joint was exposed 

by severing all surrounding ligaments and excising the joint capsule. First the patella ligament 
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was cut allowing extraction of the patella to expose the knee joint. Medial and lateral 

collateral ligaments were cut allowing full flexion of the knee and exposure of the posterior 

and anterior cruciate ligaments, which were then cut. The knee condyles were fully exposed; 

cartilage was kept hydrated whilst extracting individual condyles or pins, by covering in 

phosphate buffered saline (PBS) soaked tissue paper.  

 

Figure 21: Dissection of porcine knee joints. (A) - Whole porcine leg. (B) – Incision made 
laterally to the knee. (C) – Enlargement of the incision site, parallel to the femur. (D) – 

Removal of the lateral muscles/tissue. (E) – Removal of the medial lateral muscles/tissue. 
(F) – Excision of the patella tendon. (G) – Removal of the patella and exposure to the joint 
cavity. (H) – Collateral ligaments severed. (I) – Cruciate ligaments severed. (J) – Excision of 

the meniscus ligaments to separate the femur from the tibia. (K) – Removal of excess 
tissue. (L) – All knee surface exposed.  

2.2.2.3 Extraction of condyles and osteochondral pins  

Osteochondral pins 9 mm in diameter were extracted from the cartilage surface of the 

medial and lateral condyles. Usually two pins were taken from each condyle (medial and 

lateral) for analysis, unless otherwise stated. Pins were initially marked out then a hand held 
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power drill with a specialist corer drill bit was used to cut into the subchondral bone. A hand 

held corer was used to loosen the pin and extract it from the joint. The cartilage was carefully 

removed from the bone, using a scalpel blade, leaving behind just the cartilage. Images of 

this procedure are shown in Figure 22. 

 

Figure 22: Extraction of osteochondral pins. (A) - Power drill with a specialist corer drill to 
cut subchondral bone. (B) - The power drill was drilled into the cartilage until the third line 

last line of the specialist corer drill. (C and D) - A hand held corer was pushed into the 
cartilage to loosen the pin, forced was used to snap the pin and extract it from the joint. (E) 
– A specialised metal rod with a polyethylene tip was used to remove the pin from the hand 
held corer. (F) – A piece of PBS soaked blue roll was pushed down the central canal of the 
hand held corer with the help of the specialised metal rod. (G) Force was applied to the 

specialised metal rod and the pin was removed from the hand held corer orifice. (H) - 
Representative image of porcine cartilage pin. (I) – Rat toothed forceps were used to secure 
the porcine cartilage pin and scalpel with a surgical blade was used to carefully remove the 

cartilage from the bone. (J) – Cartilage removed from the bone.  

Condyles were obtained using a hand held oscillating saw. An incision point to remove both 

condyles was chosen at the distal end of the patella groove where it meets the anterior area 

of the condyles. This narrowing ensured that the cut area exposed was small. The saw was 
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held in the transverse plane towards the posterior area of the condyle. A second incision site 

was made in-between the two condyles in the sagittal plane.  Individual condyles were then 

placed in sterile 250 ml pots with sterile filter paper soaked in sterile PBS.  Images of this 

procedure are shown in Figure 23. 

 

Figure 23: Extraction of Medial and Lateral condyles. A – Cut made at the distal end of the 
femoral patella groove to reduce cut area of cartilage. B-D – Anterior-posterior cut made to 

remove the condyles from the femur. E – Lateral cut made to separate the medial and 
lateral condyles. F – Removal of individual condyles.  

2.2.2.4 Storage of tissues  

Cartilage tissue removed from osteochondral pins was labelled and placed in histology 

cassettes (Histocette®). Condyles and the histology cassettes containing the cartilage tissue 

were placed in sterile 250 ml pots with sterile filter paper soaked in sterile PBS and stored at 

4 oC overnight. 

2.2.3 Histological techniques 

2.2.3.1 Zinc Fixation 

Reagents:  

Zinc fixative 

Tris solution (0.1 M) was made by dissolving 12.1 g of Trizma base in 1000 ml of distilled 

water using a magnetic stirrer. Calcium acetate (0.5 g) was added and dissolved and the pH 

adjusted to 7.0-7.4 via the addition of 6 M hydrochloric acid (HCL) or 6 M sodium hydroxide 

(NaOH) dropwise whilst being stirred using a magnetic stirrer. Zinc acetate (5 g) was dissolved 

into the solution followed by 5 g of zinc chloride using a magnetic stirrer.  

(A) (B) (C) 

(D) (E) (F) 
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Method:   

Cartilage tissue that had been placed in histological cassettes, was fixed using the zinc fixative 

solution. Fixation took place in a sealed 250 ml pot immersed with 200 ml of the zinc fixative 

solution for 16 hours to achieve complete fixation of samples. 

 

Figure 24: Orientation of cartilage tissue for histology. Pins were bisected to remove the 
cartilage from the bone and then cut in half before being placed in histology cassettes. 

Either the cut or cartilage surface was placed face down such that when moulded in wax, 
sections could be cut to observe the cartilage architecture from different angles.   

2.2.3.2 Paraffin wax embedding 

Once fixed, samples were placed in a Leica TP 1020 automated tissue processor and 

processed using program 9 excluding the first step (formalin fixation). The samples were 

immersed in 70 % (w/v) ethanol for 1 h followed by 1 h in 90 % (w/v) ethanol. Samples were 

then immersed in absolute ethanol for 2 h 20 min, 3 h 20 min, and then 4 h and 20 min. 

Immersion of xylene followed in cycles of 1 h, 1 h 30 min, and 2 h. Overall the process took 

22 h. Samples were removed from the processor and oriented accordingly into the moulds, 

as illustrated in Figure 24. Samples were covered in molten wax and left to set overnight at 

room temperature, after which, excess wax was scraped away using a blunt blade.  

2.2.3.3 Sectioning and slide preparation  

A microtome (Leica RM2125 RTR) was used to section the wax embedded cartilage to a 

thickness of 6 μm.  Using forceps and a brush, thin sections were transferred to a water bath 

at 50 oC. The sections were transferred onto Superfrost Plus slides and placed directly onto 

a hotplate at 45 oC to bake on for 1 h and then transferred to slide rack and allowed to air 

dry at room temperature.  

2.2.3.4 Dewaxing and rehydration  

Xylene solutions were used to dewax the sections. They were immersed twice in xylene for 

10 min sections were then rehydrated in 3 successive immersions in 100% (w/v) ethanol for 
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3 min, 2 min and then 2 min, followed by immersion in 70% (w/v) ethanol for 2 min. To finish 

slides were placed in running tap water for 3 min to rehydrate the sections before staining.  

2.2.3.5 Dehydration and mounting 

Stained sections were dehydrated by immersion in 70% (w/v) ethanol for 5 sec, followed by 

successive washes in 100% ethanol for 1 min 2 min and 3 min. Sections where then immersed 

twice in xylene for 10 min. Cover slips were carefully mounted to the slides using 3 drops of 

DPX mountant, avoiding any bubbles. If any bubbles were present, plastic tongs were used 

to press and disperse them out of field of view of the section. Slides were left to dry in a fume 

hood overnight before visualising by microscopy.  

2.2.3.6 Microscopy 

Bright-field microscopy was carried out using a Zeiss AX10 microscope. Where needed, the 

tilling function was used to stich images together to enable visualisation of the full 

architecture of the sample. Images were captured using the attached Zeiss digital camera 

controlled through the Zen Zeiss software (image capture and digitalisation).  

2.2.4 Histological staining methods  

2.2.4.1 Safranin O/ fast green staining  

Reagents:   

• 0.1% (w/v) Safranin O, 500 mg of safranin O dye was dissolved in 500 ml of distilled 

water.  

• 0.02 % (w/v) Fast green, 100 mg of fast green dye was dissolved in 500 ml of distilled 

water. 

• 1 % (v/v) acetic acid, 5 ml of glacial acetic acid was mixed with 495 ml of distilled 

water. 

• 1 % acid alcohol, 5ml of concentrated hydrochloric acid was added to 495 ml of 70% 

(w/v) ethanol. 

• Weigerts haematoxylin, equal volumes of solution A and solution B (as supplied by 

the manufacturer). 

Safranin O stains proteoglycans whilst fast green stains collagen. Cell nuclei are stained with 

Weigert’s haematoxylin. Following the dewaxing and rehydration (Section 2.2.3.4), slides 

were placed in Weigert’s haematoxylin for 3 min and then run under cold tap water for 3 

min. Sections were then immersed in fast green dye for 5 min before being rinsed in acetic 

acid for 10 to 15 seconds and dabbed dry to remove excess liquid and placed straight into 
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safranin O for 4 min. Following this, sections were dehydrated and mounted, as described in 

Section 2.2.3.5.  

2.2.5 Biochemical Methods 

2.2.5.1 Sample preparation  

2.2.5.1.1 Lyophilisation  

Cartilage tissue removed from the bone was macerated and placed in a bijous. Samples were 

weighed three times and a mean wet weight was calculated. Samples were placed in a freeze 

dryer (Thermo, Savant ModulyoD) at -50 oC, 0.15-0.2 mbar, and the weight measured every 

24 h until constant (~72 hours). 

2.2.5.1.2 Papain digestion  

For quantification of sulfated proteoglycans, macerated, freeze-dried cartilage samples were 

digested in papain.  

Reagents: 

• Digestion buffer, 0.788 g of L-cystine hydrochloride and 1.8612 g of disodium 

ethylenediaminetetraacetic acid (EDTA) were dissolved in 1 litre of PBS. 6 M HCL or 

6 M NaOH were added dropwise whilst using a magnetic stirrer, to achieve pH 6.0.  

• Papain digestion solution, 96,012 kU of papain (Sigma A3824, Lot no#2B005436, 31.5 

kU/mg) was dissolved in 60 ml of digestion buffer. 

Method: 

Papain digestion solution (5 ml) was added to each bijou containing the lyophilised cartilage 

(~10-20 mg, dry weight) and incubated in a water bath at 60 oC for 36-48 h until fully digested.  

2.2.5.2 Water content 

The percentage water content was measured by weighing the cartilage before and after 

lyophilisation (Section 2.2.5.1.1.). The water weight was then calculated by subtracting the 

dry weight from the wet weight and is presented as a percentage of the tissue wet weight. 

2.2.5.3 Quantification of sulfated sugars (GAG) 

Quantification of GAGs in tissues was achieved via colorimetric analysis. The method used 

was pioneered by Farndale et al., such that under acidic conditions the metachromatic 

change in the 1,9-dimethylemethylene blue (DMB) cationic dye, as it binds to carboxyl or 

sulfated groups of GAG chains, is detected. This change can be measured 

spectrophotometrically (Farndale et al., 1982). 
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Reagents:  

• 0.1 M sodium di-hydrogen orthophosphate; 3.45 g of sodium di-hydrogen 

orthophosphate was dissolved in 250 ml of dH2O. 

• 0.1 M di-sodium hydrogen orthophosphate; 3.55 g of di-sodium hydrogen 

orthophosphate was dissolved in 250 ml of dH2O. 

• Assay buffer; 137 ml of 0.1 M sodium di-hydrogen orthophosphate was mixed with 

63 ml of 0.1 M di-sodium hydrogen orthophosphate. The pH was adjusted to 6.8, 

using droplets of 6M HCL or 6M NaOH. 

• DMB dye; 16 mg of DMB was dissolved into 5 ml of ethanol and 2 ml of formic acid. 

2 g of sodium formate was added and the solution was made up to 1 L with dH2O. 

pH was adjusted to 3, using formic acid. 

2.2.5.3.1 Method of quantification 

Standard calibration solutions of chondroitin sulfate B were made up in assay buffer at 0, 3.1, 

6.3, 12.5, 25, 50, 100, 150 and 200 μg.ml -1. Test samples that has been lyophilised and papain 

digested (Section 2.2.5.1.1 & 2.2.5.1.2) were diluted 1:100 in assay buffer. Each of the 

standards and diluted test samples (40 μl) were added to the wells of a clear 96 well flat-

bottomed plate in triplicates. 250 μl of DMB dye were then added to each of the wells and 

the plates were gently agitated for 2 mins on a plate shaker. Plates were then placed in a 

micro plate spectrophotometer and their optical densities were read at 525 nm.  A standard 

curve was plotted in Microsoft excel of the mean absorbance of chondroitin sulfate B vs 

concentration and a linear regression analysis (Section 2.2.7.3) was performed to interpolate 

the unknown GAG concentrations of the test samples based on their absorbance. Dilution 

factors were taken into consideration and the GAG concentration was determined per tissue 

dry weight.  

2.2.6 Biomechanical Methods 

2.2.6.1 Sample preparation 

To assess the time dependant biomechanical behaviour of articular cartilage, porcine 

condyles were subject to creep indentation. All the equipment used is shown in Figure 25. 

The porcine condyles were mounted in polymethylmethacrylate cement (PMMA). Once 

porcine condyles had been dissected and extracted as described in Section 2.2.2.2 & 2.2.2.3, 

the condyles` height (~18-26 mm) was measured and recorded to determine the height of 

PMMA needed to allow the condyles to sit below the top end of the cup and a few millimetres 

(~1 mm) below the indenter tip (illustrated in Figure 26). The distance the indenter tip went 
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into the cup holder was measured (~6 mm); this was marked out on the inside of the cup in 

several spots around the circumference of the cylindrical cup with a ruler and permanent 

pen. From this distance, the height of the condyle was measured down into the cup and 

another marking was made along the circumference of the cup holder.  

 

Figure 25: Indentation apparatus. The equipment used to perform creep indentation 
testing to determine deformation of porcine condylar cartilage. (A) - Indentation rig and 

components. (B) – Sample holder, stage adjuster and indenter.  

 

Figure 26: Cross-sectional view of the cup holder, showing how the condyle was 
orientated inside the cup holder and outlining rough distances and heights of relative 

components. 
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PMMA powered was weighed and whilst stirring simultaneously, the methyl-methacrylate 

liquid was added to the powder until a thick silky paste was achieved. The thick paste was 

poured into the cup holder up to the lower line previously marked out and left to set. Another 

batch of PMMA paste was made up of a much thinner consistency (added more methyl 

methacrylate liquid) and left to one side. Once the PMMA had set hard, the condyle was 

placed in the centre of the cup holder, with a piece of moistened PBS paper covering the 

condyle surface. The second batch of PMMA paste was poured into the cup holder carefully, 

making sure not to pour it directly over the condyle. The PMMA paste surrounded and 

covered the bottom half (~2 mm) of the condyle. This was left to set and fresh moistened 

PBS paper towels were placed over the condyle to stop it from drying out.  Once the PMMA 

had set hard and cooled down the sample was ready to test.  

2.2.6.2 Method 

Generally, PBS was added to the cup holder to completely submerge the condyle whilst 

testing. Variation from this method is detailed in the relevant Sections. An impermeable, 

stainless steel flat indenter (2.5 mm diameter) was used to indent the cartilage with a set 

load over 1 h. The extra load added to the top part of the shaft (Figure 26), is detailed in the 

relevant Sections. The cup holder was placed on the adjustable platform and the cup holder 

was raised so that the indenter was positioned about ~1 mm above the cartilage surface. The 

adjustable platform was then secured with a locking nut at the bottom to avoid shaking and 

vibration once the cup holder was set to the required height. The lowering of the indenter 

shaft was controlled via a silicone filled dashpot to reduce the speed of impact, the full load 

was applied within 0.2 sec. The displacement of the indenter was measured using a linear 

variable differential transducer (LVDT, RDP D5-200H, 2 mv/V/0.001 sensitivity, Electrosence, 

PA, USA) and the resistance force measured using a piezo-electric force transformer (Part 

No. 060-1896-02, Electrosence, PA, USA). The data from the LVDT and force sensors were 

passed through analogue-to-digital converters and acquired at a 10 Hz sampling frequency 

and stored on a computer using Labview 8 software (National Instruments). Once the 

condyle had been immersed in PBS for 10 minutes and located in the correct place, the lock 

holding the indenter tip was released to start the experiment. After one hour of testing, the 

condyle was removed and the area that had been indented was marked out using a non-

permanent pen (Figure 27) and the condyles were stored in plastic Tupperware on moist PBS 

soaked tissue at 4 0C, to allow the tissue to recover before measuring cartilage thickness.  
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Figure 27: Medial Porcine condylar cartilage cemented in PMMA. The area of interest was 
marked out using a permanent marker.  

2.2.6.3 Calibration1 

Calibration was undertaken to convert the voltage outputs of the LVDT and force transducer 

into millimetres and Newtons, respectively. The LVDT displacement transducer was 

calibrated using standard steel slip gauges. The voltage was recorded for each height 

increase following the addition of the slip gauges (0, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 

1.5, 2.0 mm – sizes of slip gauges used). The linear regression fit for the voltage against the 

displacement of the indenter tip was plotted and the linear tre nd line calculated. The 

equation of the line was subsequently used as a calibration factor (Figure 28).  

 

Figure 28: LVDT calibration. Calibration of LVDT from the indentation apparatus using 
standard height slip gauges to determine factor to convert output voltage to displacement.  

The force transducer was calibrated by adding known masses to the top of the shaft 

incrementally (typically in step of 10.1 grams), while observing the changes in the voltage 

readings from the force sensor. The shaft to which the weights were being added was fixed, 

by allowing it to rest on a flat stainless-steel rod. This again, was plotted a linear regression 
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graph (voltage against load) and the equation of the trend line was used to convert voltage 

to Newtons (Figure 29).  

 

Figure 29: Load cell calibration. Calibration of load cell from the indentation apparatus 
using standard known masses to determine the factor to convert output voltage into 

Newton’s.  

2.2.6.4 Cartilage thickness measurements 

Cartilage thickness was measured to normalise the deformation data for each cartilage 

condyle, so that the percentage deformation could be presented and material properties 

could be derived. The thickness was measured using an Instron material testing machine 

(Instron 3365B, INSTRON, University of Leeds - Figure 30A) with a needle attached to a force 

transducer. Condyles that had previously been cemented in PMMA cement (Section 2.2.6.1) 

and allowed to recover in a sealed Tupperware box moistened with PBS tissue at 40C 

overnight, were fixed to the base of the material testing machine using 4 screws (Figure 30B). 

This allowed the area of indentation to be located directly underneath the needle indenter. 

The needle attached to the Instron arm was manually positioned ~1 mm above the cartilage 

surface (Figure 30C). During testing the arm was controlled via a PC graphic user interface 

(Bluehill Software V) and lowered at a rate of 4.5 mm.min-1. The resistance to motion was 

measured using a 500 N load cell.  

 
Figure 30: Picture of Instron testing equipment. (A) - Picture of Instron 3365B used for 

cartilage thickness measurements. (B) - Instron base for attachment of cemented porcine 
condyle (C) – Starting position of needle (circa 1 mm from cartilage surface) before 

cartilage thickness indentation method commenced.  
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The cartilage thickness was defined as the distance between the increase in  resistance 

(measured in Newtons) from the initial needle contact with the cartilage surface and the 

steep increase in resistance from the needle coming into contact with the stiffer bone (Figure 

31). Each condyle was indented 6 times on the periphery of the area that had been previously 

indented, taking care not to indent inside that area. An average of the thickness was 

calculated.  

 

Figure 31: Needle indentation graph interpretation. This diagram shows how the cartilage 
thickness was determined from the needle indentation.  

2.2.6.5 Finite element method for derivation of material properties 

Cartilage deformation curves generated in Section 2.2.6.2 along with cartilage thicknesses 

measured in Section 2.2.6.4 were used to derive the permeability and equilibrium elastic 

modulus of the cartilage. An axisymmetric poroelastic biphasic finite element model 

(ABAQUS, version 6.9-1 Dassault Systemes, Suresnes Cedex, France) developed by Pawaskar 

et al. was used to simulate the indentation tests and derive the biphasic material parameters 

- permeability (k) and elastic modulus (E) of the cartilage samples (Figure 32) (Pawaskar et 

al., 2010; Pawaskar et al., 2011).  

The cartilage was modelled as a poroelastic material and meshed with 900 four-node bilinear 

displacement and pore pressure elements CAX4P, whereas the subchondral bone was 

modelled with 225 four-node bilinear elastic elements CAX4. The choice of elements for 

these regions in the cartilage meant that there was no fluid flow between cartilage and 

subchondral bone, making it an impermeable boundary, shown in Figure 32. The cartilage 

model was assigned a water content of 80% and a Poisson’s ratio of zero, in order to 
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maximise the biphasic effect or compressibility (Pawaskar et al., 2010; Jin et al., 2000). The 

metal indenter was modelled as rigid, since its elastic modulus was at least 5 orders of 

magnitude greater than that of cartilage. 

 

Figure 32: Finite element model of cartilage. This schematic shows the axis of symmetry 
and the imposed fluid flow restrictions in the model.   

The FE model aims to mimic the method that was outlined in Section 2.2.6.2. The load was 

increased from 0 to a max load (specified in each Section), over 2 seconds through the 

indenter and applied for 1 hour in total. A graph showing the deformation/time was 

produced by the FE model based on the material properties (permeability and equilibrium 

elastic modulus) set, these starting material properties varied depending on the study being 

done. The closeness of fit between the final 30 % of the FE model data and the experimental 

data was assessed using MATLAB (version 7.4, MathWorks Inc, Boston, MA, USA; Figure 33). 

The input initial material properties were adjusted to minimise the squared error. An R2 value 

greater than 0.75 (75%) was accepted as significant for biological tissue. Equilibrium elastic 

modulus’s and permeability values of each cartilage sample were chosen from the initial 

material properties that gave the highest R2 value. 
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Figure 33: Experimental and modelled cartilage displacement curves. The FE model curve 
was fitted to the deformation curve produced by the experimental data to reach the 

highest possible agreement by altering the input material properties.  

2.2.6.5.1 Sensitivity Analysis  

A sensitivity analysis was carried out to determine if changing the end boundary condition 

(BC) on the left-hand side of the cartilage pin (red line - Figure 32), from ‘free-flowing fluid’ 

to ‘no fluid flow’ made a significant difference to the elastic modulus and permeability of the 

samples being tested. The experimental deformation data from 6 healthy pig condyles was 

input into the FE model. The same set of data was run twice. (BC-1) the first time the data 

was run with the left-hand side boundary condition with a ‘free fluid flow’ and (BC-2) the 

second time it was run with ‘no fluid flow’. The data is shown in Figure 34. 

Figure 34: Equilibrium elastic modulus and permeability of healthy native medial condylar 
cartilage under a load of 0.31 N (Blue – Healthy condylar cartilage with the ‘no fluid flow’ 

boundary condition; Red – Healthy condylar cartilage with the ‘fluid flow’ boundary 
condition). Data is expressed as the mean (n=6) ± 95 % confidence limits. The R2 values 

define how close the FE model curve fitting was to the last 70% of the experimental 
deformation curve, the closer the R2 value is to 1, the better the fit. The data was analysed 

by Student`s t-test; *p<0.05. This revealed that changing the left-hand side boundary 
condition from ‘no fluid flow’ to ‘fluid flow’ did not significantly affect the elastic modulus 

nor the permeability of the healthy native cartilage. 
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The elastic modulus and permeability values of the healthy native cartilage samples with BC-

1 were compared to the healthy native cartilage samples with BC-2, to determine if there 

were any difference. The data was analysed by Student’s t-test to determine differences 

between group means. This showed that the elastic modulus and permeability values of the 

healthy native cartilage samples run with BC-1 were not significantly different to those of 

healthy native cartilage samples run with BC-2. Therefore, it was decided to run future FE 

models with the ‘free fluid flow’ boundary condition (BC-1) given the results of this sensitivity 

analysis. 

2.2.7 Statistical analysis 

2.2.7.1 Confidence limits  

Microsoft Excel (version 2013, Microsoft) was used to analyse numerical data produced in 

this thesis. 95% confidence limits (CL) were chosen over standard error and standard 

deviation because 95 % CL are the most accurate and honest way of presenting the data of 

small samples sizes (n=3). 95 % CL take into account the sample size, whereas for the 

standard error, one has to provide the readership with the sample size so that the region in 

which the true mean lies, can be calculated.  In this study the numerical data has been 

presented as the mean (n≥3) ± 95 % CL. The ± 95 % confidence intervals (α = 0.05) were 

calculated using the descriptive statistics option of the data analysis package in Microsoft 

Excel. 

2.2.7.2 ANOVA 

An analysis of variance was used when comparing the means of more than two groups. 

Individual differences between the data sets were identified by performing a Tukey Kramer 

post-hoc analysis to identify significant differences between group means.  

2.2.7.3 Linear regression analysis 

When interpolation of results was required, a linear regression analysis was performed on 

standard curves. 

𝑈𝑛𝑘𝑛𝑜𝑤𝑛 𝑥 =
𝑀𝑒𝑎𝑛 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

𝑦 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑙𝑖𝑛𝑒𝑎𝑟 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑙𝑖𝑛𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛
 

2.2.7.4 Arcsin transformation  

When data is presented as a percentage or proportion, data values were transformed to 

arcsin to allow accurate calculation of the 95 % CL and statistical analysis. After analysis, 

values were transformed back for presentation. 
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Chapter 3 The effect of GAG molar ratio and Na+ ion concentration in 

two different salt solutions on the biochemical, morphological and 

biomechanical properties of peptides: P11-4, P11-8 and P11-12 

3.1 Introduction  

The overall aim of this research is to investigate the utility of a multi-component system 

whereby GAGs are delivered into GAG depleted cartilage using a carrier self-assembling 

peptide (SAP) which is initially delivered as a non-viscous fluid. Subsequently, once in place, 

the SAPS are triggered by the physiological environment to self-assemble into a gel 

incorporating the GAGs.   

Osteoarthritic cartilage has reduced biomechanical properties and this is primarily due to the 

gradual loss of GAGs.  There is a great deal of interest in the research and development of 

early intervention treatments to repair or replace damaged cartilage in an attempt to delay 

the progression of OA and the need for joint replacement. One approach to repair early 

cartilage degradation is to restore GAG levels with the aim of maintaining functional cartilage 

material properties (Katta et al., 2008).  

Peptides have been shown to readily self-assemble into higher order structures that create 

very stable hydrogels under physiological conditions and have been used to develop novel 

materials for regenerative medicine applications (Zhang et al., 2005; Bell et al., 2006; Firth et 

al., 2006; Kirkham et al., 2007; Galler et al., 2008; Schneider et al., 2008; Kyle et al., 2009; 

Kyle et al., 2010). The P11-X family of self-assembling peptides (SAPs), are rationally designed 

11 residue long peptides, with strategically placed hydrophobic and hydrophilic amino acids, 

which have been studied extensively (Kyle et al., 2010; Aggeli et al., 2001; Maude et al., 

2011). The SAPs in this study, have the ability to form hydrogels f rom an initial non-

Newtonian fluid state upon application of a trigger, they have been shown to be 

biocompatible and studies have indicated that they have potential as a visco-

supplementation treatment for early stage OA (Bell et al., 2006). The combination of these 

self-recovering peptides with GAGs, which may provide increased bio-functionality, along 

with their ability to be delivered in a minimally invasive manner, makes them ideal candidates 

as injectable materials for use as a potential intervention therapy for early stage OA.  

A key challenge is the control over the mechanical properties of these hydrogels which can 

be affected by the concentration of the peptide, the net charge of the peptide and also the 

environmental conditions such as pH and ionic strength (Aggeli et al., 2001; Miles, 2012). For 
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potential application in the treatment of early stage OA; SAP-GAG mixtures with three 

favourable properties would be desirable: high β-sheet percentage, long-woven fibrilar 

networks which are densely packed and have a high stiffness, all of which must occur in 

specific physiological conditions. Cartilage contains varying counter ions and the amounts 

and species depend on the region of the cartilage. These counter ions are important for the 

biomechanical function of cartilage (Urban, 1994). Urban (1994) summarised the range of 

ion concentrations in two discreet areas of articular cartilage, at the surface ([Na+] 210-230 

mM, [K+] 7mM [Ca2+] 4-6 mM, [Cl-] 100-110mM) and in deep cartilage ([Na+] 260-320 mM, 

[K+] 9-11 mM, [Ca2+] 8-15 mM, [Cl-] 70-90 mM). The primary interest is in replacing depleted 

GAGs near the surface of cartilage and therefore it was important to investigate the 

behaviour of P11-X peptides and P11-X-GAG mixtures in the physiological conditions 

representative of this region. 

Fourier transform infra-red spectroscopy (FTIR), has been used to analyse the secondary 

structure of peptides, in particular the amide I region. The peptides used in this study have 

been designed to self-assemble into β-sheet character. Therefore, interest lies in analysing 

the β–sheet percentage of these peptides and peptide: GAG mixtures. Transmission electron 

microscopy (TEM), allows for high resolution images of the macro and micro-structures of 

the peptides in a self-assembled state. At the micro-level, the fibril/fibre formation can be 

analysed morphologically. Thicknesses and of the peptide fibril/fibres can also be calculated. 

Rheology has previously been used to explore the biomechanical properties of various 

peptide hydrogels, and also to study their gelation mechanisms during and after flow (Aggeli 

et al., 1997). Rheology may be used to mimic the mechanical process that these hydrogels 

would undergo if used in vivo in cartilage, such as shear under load. Walking frequency (stride 

length) is ca. 1Hz (60 strides per minute) (Danion et al., 2003; Mason et al., 2005). Therefore, 

the rheological behaviour of the assembled peptides and assembled peptide/GAG mixtures 

were compared at 1Hz. The GAG chosen in this study, was chondroitin sulfate. Chondroitin 

sulfate, is the most abundant GAG in the proteoglycans present in native cartilage. Molar 

ratios of 1:16 and 1:64 were chosen based on findings presented by Aggeli et al. (2001) and 

Ng et al. (2003). Aggeli et al. described a model in which the length and width of peptide 

fibrils could be calculated through theoretical principles and assumptions paramount to 

concentration dependent self-assembly, which are based upon the monomeric peptide 

concentration. Furthermore, Ng et al. calculated the average individual core-protein end to 

end length, GAG chain length (average number of disaccharides per chain) and GAG to GAG 

spacing of two types of aggrecan from foetal and mature cartilage from atomic force 

microscopy (AFM) images and measurements (Ng et al., 2003). In this study, the peptide 
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mimicked the role of the core protein in the aggrecan. Therefore, combining information 

from both these studies, it was possible to determine the amount of GAGs that would be 

needed to be give the correct ratio of GAGs to peptide. 

3.2 Aims and objectives  

The aims of this part of the study were to determine the effects of combining the SAPs with 

chondroitin sulfate (GAG) at two molar ratios of 1:16 and 1:64 in 130 mM and 230 mM Na+ 

salt solutions, representative of normal physiological conditions and the physiological 

environment within the surface of articular cartilage. The specific objectives were:  

1) To determine the β-sheet percentage of the peptides and peptide/GAG mixtures in 

physiological conditions.  

2) To assess the fibril morphology of the peptides and peptide/GAG mixtures in physiological 

conditions.  

3) To determine the biomechanical properties (stiffness) of the peptides and peptide/GAG 

mixtures in physiological conditions.  

3.3 Methods  

This section summarises the procedures generally used to prepare peptide solutions for FTIR 

and transmission electron microscopy (TEM). Any exceptions to these procedures are 

detailed in the appropriate sections.  

Peptides and GAG were weighed as detailed in Chapter 2; Sections 2.2.1.1 and 2.2.1.2, 

respectively. With the exception that in this study for the TEM and FTIR, the concentration 

(w/v) of peptide used was 5 mg.ml-1. 

3.3.1 Dissolution of peptides, peptide: GAG mixtures and Na+ salt 

solutions. 

3.3.1.1 Dissolution of peptides for studies of peptide alone.  

The appropriate Na+ salt solution (300 µl; described below) was added to the weighed 

peptides. Peptides were then taken to a monomeric state (unless otherwise stated), which 

was determined by achieving the required pH or [pD] and observing the fluidity of the gels; 

monomeric peptides were clear and exhibited water like properties (above pH 12 [pD 11.6] 

for P11-4 and below pH 3 [pD 2.6] for P11-8 and P11-12). Between 50-100 µl of 0.1–3 M HCl or 

NaOH [DCl or NaOD] aliquots were added during this process before the monomeric 

solutions were carefully taken to pH7.4 [pD 7] using 50-100 µl of 0.1–3 M HCl and NaOH [DCl 



83 

and NaOD]. The containers were sealed with Parafilm, vortexed for ≈40 seconds and 

sonicated in a water bath at 35 kHz at 37oC for two hours before storage at 4oC overnight to 

allow the peptides to equilibrate and prevent any contamination. The pH [pD] was re-

measured and re-adjusted to pH 7.4 [pD 7] the following day and the final volumes were 

adjusted to 0.5 ml. 

3.3.1.2 Dissolution of peptides and chondroitin sulfate for studies of peptide: GAG 

mixtures. 

The peptides were treated as described in Section 3.3.1.1, except that chondroitin sulfate 

was added before bringing the pH back to 7.4. Chondroitin sulfate powder was weighed 

(Chapter 2; Section 2.2.1.2) and 50-100 µl of the appropriate Na+ salt solution was added. 

The chondroitin sulfate solution was vortexed for ≈40 seconds and sonicated in a water bath 

at 35 kHz for a further ≈ 5 minutes at 37oC. The chondroitin sulfate solution was added to the 

monomerised peptide and vortexed for a further 40 seconds. After bringing the PEP-GAG 

mixture to pH 7.4 [pD 7] and adding the Na+ salt solution to make the final volume to 0.5 ml, 

the mixture was vortexed for ≈40 seconds and sonicated in a water bath at 35 kHz at 37oC 

for two hours. Samples were refrigerated overnight (4°C) to allow them to equilibrate and 

the pH was re-measured and re-adjusted to pH 7.4 [pD 7] the following day. The final volumes 

of the mixtures were adjusted to 0.5 ml. 

3.3.1.3 Dissolution of physiological salts to make up two concentrations of Na+ salt 

solutions. 

The peptides and PEP-GAG mixtures were studied in two aqueous salt solutions containing 

varying Na+ ion concentrations (130 mM & 230 mM), unless otherwise stated. These two salt 

solutions contained all the ions present in cartilage (Urban, 1994). The salts present within 

these two salt solutions and their concentrations are listed in Table 10.  The only species that 

varied between the two salt solutions was the concentration of Na+ ions. Throughout this 

thesis an increase in the salt concentration is described as an increase in the Na+ ion 

concentration. The solvent used to dissolve the ions, peptides and chondroitin sulfate in this 

study was distilled water (H2O), unless otherwise stated (Section 3.3.1).  

Table 10: Concentrations of different salts present in the two physiological salt solutions. 

Salt 
Salt solution 1 (130mM of NaCl) 

(mg.ml-1) 
Salt solution 2 (230mM of NaCl) 

(mg.ml-1) 

KCl 0.522 0.522 

CaCl2 0.555 0.555 

NaCl 5.143 5.143 

NaHCO3 3.528 11.929 
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3.3.2 Measurement and adjustment of pH 

All samples were adjusted to pH or pD (pH in deuterated solutions) of 7.4 ± 0.3, unless 

otherwise specified. Measured pD values quoted here were those following the a 0.4 

correction value subtracted from the pH meter reading (Glasoe and Long, 1960).  Sample pH 

was determined using a Sartorius Docu-pH meter and a pH electrode probe. The probe was 

filled with and stored in a 3 M KCl solution. 

Prior to use, the Sartorius Docu-pH meter was calibrated using three different pH standard 

buffers at pH 4, 7 and 10 (each within ± 0.01 pH units at 25oC). Following this procedure, the 

value of the pH 7 buffer was rechecked to ensure correct calibration.  

The pH of the solutions was adjusted using micro-litre aliquots of 0.05, 0.1, 0.25, 0.5 and 1 M 

HCl and NaOH [DCl and NaOD for the FTIR study]. After each addition of acid or base, the 

solution was vortexed (≈ 10 seconds), and its pH or pD rechecked.  

3.3.3 Fourier Transform Infra-Red Spectroscopy (FTIR) 

3.3.3.1 Background to FTIR analysis of peptides 

The application of FTIR spectroscopy to peptides allows their secondary structure to be 

analysed.  When a molecule absorbs IR light, the oscillating dipole moment interacts with the 

oscillating electric vector of the IR beam (Williams and Fleming, 1995). A bond within a 

molecule can experience different types of oscillation depending on the energy between its 

ground state and excited state. The amount of energy absorbed is dependent on changes in 

the dipole moment. Bonds that are non-polar show weak absorption and those that are 

polar, such as C=O, show strong absorption. Complex molecules will have a variety of 

vibrational modes, these will consist of vibrations from individual bonds but there will also 

be vibrations from functional groups. The main amide vibrational modes are termed A and B 

and I-VII, which enable the study of peptide secondary structure. Of these modes, amides I 

to III are of most interest for proteins (Table 11) (Seshadri et al., 1999). 

Table 11: Characteristic infrared bands of the peptide (Susi, 1972). 

Amide Band Wavenumber (cm-1) Origin 

A ~3300 NH Stretching 

B ~3100 NH stretching 
I 1600-1690 C=O Stretching 

II 1480-1575 CN Stretching, NH Bending 
III 12229-1301 CN Stretching, NH Bending 

IV 625-767 OCN bending mixed with other nodes 
V 640-800 Out of plane NH Bending 

VI 537-606 Out of plane C=O Bending 

VII ~200 Skeletal Torsion 



85 

Amide I is the most useful for the secondary structure determination (Susi and Byler, 1986). 

Arrondo et al. reported that more than 90% of protein studies used solely amide I band for 

analysis (Arrondo et al., 1993). The reasons why amide I is preferred over amide II and III 

were initially explained by Jackson and Mantsch (1995) and Cai and Singh (2004):  

• Amide I, arises from just one functional group – C=O stretching, which simplifies the 

assignment (Jackson and Mantsch, 1995).  

• Amide II has a strong vibration but is insensitive to secondary structure and may also 

be obscured by side chain vibrations (Cai and Singh, 2004).  

• Amide III, despite it being sensitive to the secondary structure, has a weak vibration 

(5-10 times less than amide I) and it can be affected by other vibrations (Cai and 

Singh, 2004). 

Amide I stretch is affected by many different intermolecular hydrogen bonding patterns in 

the peptide backbone, therefore it manifests itself as a featureless peak that occurs at 1600-

1690 cm-1. In the same way that the functional groups are located by looking at the 

absorption ranges, it is also possible to compare the amide band peaks and determine the 

secondary structure of the sample (Table 12). Different peptide and protein secondary 

structures have unique hydrogen bonding patterns (C=O or NH groups), which gives rise to 

exact vibrational frequencies in the amide I band. The assignment of these amide regions to 

the presence of various secondary structure motifs has been taken from previous studies on 

proteins with dominant secondary structures, homo-polypeptides and calculated values 

(Barth, 2007; Pelton and McLean, 2000). 

Peptides and proteins are usually studied in aqueous conditions as these are the conditions 

in which they adopt native structure. However, water (H2O) has several IR absorption peaks 

with one present at 1650 cm-1, which is in the middle of the amide I region (Siebert and 

Hildebrandt, 2007). For this reason, deuterium oxide (D2O) was used in all FTIR studies rather 

than H2O. The D2O bending absorption has a lower wavenumber, as deuterium has a greater 

mass than hydrogen. If the samples in the spectra have been made up using D2O, the amide 

bands have a prime symbol attached to them e.g. amide I’.  

3.3.3.2 Analysis of FTIR data 

3.3.3.2.1 Peak fitting and assignment 

When peptide samples are subject to FTIR, a spectrum is produced which is then peak fitted. 

The peak fitting procedure is an iterative process in which chosen peak functions are adjusted 

and matched to the experimental spectrum as closely as possible. Using more component 
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peaks may improve the difference between the experimental and fitted spectra; however 

adding too many peaks may cause the spectra to lose meaning. The recommendation from 

Thermo-Fisher was to use a minimal number of peak functions to fit the amide I’ region, with 

additional peaks being added if necessary after convergence.  

Once the FTIR spectra has had the amide I’ region fitted to the component bands, the 

assignment of the bands to the different secondary structure motifs is the final stage of 

analysis. Secondary structures can exhibit peak positions over a range of values, depending 

on the peptide and the conditions under which it is studied. Differences can arise from 

variation in hydrogen bonding, which introduces ambiguity in assignment. Therefore values 

which different authors assign to different secondary structure components may overlap, 

and hence distinguishing each is not easy (Jackson and Mantsch, 1995).  

The P11 peptides used in this study were designed to self-assemble into β-sheet character; 

which can be identified in the amide I region using FTIR (Arrondo et al., 1993; Barth, 2007; 

Kong and Yu, 2007). Therefore, interest lay in analysing the β–sheet peaks. The peak positions 

corresponding to the various secondary structures are presented in Table 12 and the peaks 

for some of the amino acid side chains are listed in Table 13. 

Table 12: Secondary structural assignments of amide I’ infrared bands. 

Amide I’ Band Secondary structure assignment 

1613-1630 β-sheet 

1642-1649 Unordered 

1649-1655 α-helix 

1658-1672 β-turn 

1673 `TFA 

1672-1690 β-sheet 

1694-1697 β-turn 

Adapted from: (Susi and Byler, 1986; Jackson and Mantsch, 1995; Pelton and McLean, 
2000; Harris and Chapman, 1995; Kong and Yu, 2007). 

3.3.3.2.2 Side chains and trifluoroacetic acid (TFA) in the amide I region 

Amino acid side chains exhibit characteristic absorption frequencies in the amide I region and 

therefore must be considered during the assignment of secondary structures. Chirgadze et 

al. (1975) reported the side chain absorptions in the presence of D2O. Fortunately, shown in 

Table 13, the small number of amino acids present in the P11 peptides simplifies this 

consideration. Furthermore, the IR molar absorption coefficient for most side chains is a lot 

weaker compared to that of the peptide bond itself. Therefore, only arginine, glutamine and 

glutamic acid may be detectable in the amide I region of the P11 peptides.  
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Table 13: Amino acid side chain absorptions in the amide I’ region for the P11 peptides 
studied by FTIR spectroscopy. 

Amino Acid Wavenumber (cm-1) Molar absorption coefficient/notes 

Arginine 
1586 ε = 500 M-1 cm-1 

1608 ε = 460 M-1 cm-1 
Glutamine 1635-1654 ε = 550 M-1 cm-1 

Glutamic Acid 
1567 ε = 830 M-1 cm-1 

1706-1775 ε = 280 M-1 cm-1 

Ornithine - 
No data found, note lysine does not 

absorb in the amide I’ region. 

Phenylalanine - No absorption 
Tryptophan 1618 Little to no absorption. 

Adapted from: (Chirgadze et al., 1975; Barth, 2000). 

Trifluoroacetic acid (TFA) is frequently used during the purification of peptides, which means 

it could be present in the peptides as a counter ion bound to the positively charged residues  

(Cornish et al., 1999). The amount of TFA present in the peptide is dependent on the amount 

of positively charged residues in the peptide i.e. peptides containing greater numbers of 

arginine and ornithine will contain more TFA. The TFA band is located at 1673cm -1. Care had 

to be taken when assigning the secondary structures of the peptides, as the TFA falls in a β-

sheet region and could be incorrectly assigned to it. 

3.3.3.3 Method 

3.3.3.3.1 Sample preparation 

Two sets of solutions of P11-4, P11-8 and P11-12 were prepared in D2O. One set of peptides 

was prepared in 130 mM Na+ salt solution and the other set was prepared in a 230 mM Na+ 

salt solution as detailed in Section 3.3.1.  

3.3.3.3.2 Equipment and data acquisition 

Samples were placed in a Thermo HT-32 demountable cell with CaF2 windows and a copper 

spacer in-between the windows with a thickness of 0.25 mm.  A Thermo Nicolet 6700 FTIR 

spectrometer, controlled with OMNIC 7.3 SP1 software, was used to record the FTIR spectra. 

Each spectrum was an average of 32 scans taken at a resolution of 4 cm -1 at room 

temperature, one replicate per sample was analysed. Experiments involved pipetting about 

~40 µl of the gel/liquid sample into the cell. A background air spectrum, consisting of an 

empty sample compartment (no cell), was always taken before commencing any sample 

measurement.  

3.3.3.3.3 Processing of spectra 

As well as collecting spectra for the background and the sample, spectra of the two Na+ salt 

solutions in D2O were also recorded using the same path length spacer and then they were 
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subtracted from the sample spectrum, using the subtract function in OMNIC. Whilst in this 

function, the region of 1800 to 2100 cm-1 was observed while varying the subtraction factor; 

the appropriate subtraction factor was chosen when a flat baseline was achieved in this 

region. Subtracted spectra were then baseline corrected with a manually selected baseline, 

whose points were fixed to the spectral values and interpolated using a spline function. 

In order to fit the amide I’ band, baseline corrected spectra were processed with the OMNIC 

peak analysis tool (Bradley, 2007). This tool fitted a series of defined functions which 

summed to ideally match the experimental spectra as well as possible. In order to achieve 

this, the second derivative of the amide I’ region had to be observed (spectra were analysed 

in the 1720-1580 cm-1 range) to locate large negative peaks. Negative peaks in the second 

derivative corresponded to actual absorption peaks (Stuart, 2004). Once located, Gaussian-

Lorentzian peak functions with constant baseline and a noise of 10 were  centrally aligned at 

wavenumbers corresponding to these negative peaks. Initially, a minimum number of peaks 

were selected. Peak parameters were optimised by a Fletcher-Powell-McCormick algorithm 

which minimised the root mean square noise ratio of the residual of the fitted peak sum to 

the actual spectrum. Once converged, if necessary, new peak functions were manually added 

in the same manner, where the residual was large and the optimisation was repeated. This 

process was repeated until it was no longer possible to further improve the residual.  

Once the fitted peaks in the amide I’ region had been assigned to a secondary structure the 

proportion of peptide adopting a particular secondary structure was determined from the 

relative areas using equation 5 (Stuart and George, 1996). The relative areas were calculated 

for each peak parameter, during the peak fitting, using the peak analysis tool in OMNIC. In 

this study the percentage of β-sheet was of particular interest. 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5       % 𝑆𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 = 100 ×  
𝑀𝑜𝑡𝑖𝑓 𝑡𝑜𝑡𝑎𝑙 𝑝𝑒𝑎𝑘 𝑎𝑟𝑒𝑎

𝑇𝑜𝑡𝑎𝑙 𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑝𝑒𝑎𝑘 𝑎𝑟𝑒𝑎
 

3.3.4 Transmission Electron Microscopy (TEM) 

3.3.4.1 Method 

3.3.4.1.1 Sample preparation  

Two sets of solutions of P11-4, P11-8 and P11-12 were prepared in H2O. One set of peptides 

was prepared in 130 mM Na+ salt solution and the other set was prepared in a 230 mM Na+ 

salt solution as detailed in Section 3.3.1.  

Carbon-coated copper grids (400 mesh grids, Agar scientific) were placed coated side down 

on the surface of a 10 µl droplet of the sample to be analysed for 1 min and then blotted on 
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filter paper to remove excess. Grids were then placed on a 10 µl droplet of 2% (20 mg.ml -1) 

uranyl acetate for 30 secs for negative staining and then blotted against double folded 

Whatman 50 filter paper and left to dry. Prepared grids were stored in plastic grid storage 

boxes. Grids were examined with a JEM-1400 JEOL microscope.  

3.3.4.1.2 Image capturing and processing  

Digital images where captured using an AMT ERB bottom mounted digital CCD camera on 

the TEM microscope. AMT image capture engine (Version 602) was used as an interface 

between the camera and the computer in order to save the pictures as tiff images for further 

processing. Only one replicate per sample was analysed. Fibril lengths and widths and twist 

pitch were measured with ImageJ software (Version 1.47), as described in Figure 35. Before 

any measurement was made the appropriate distance per pixel was set using the software’s 

set scale function. The measurements were then made by tracing over the image with a 

straight or segmented line tool and then using the software inbuilt measure function to 

measure the cumulative distances. 

  

 Figure 35: TEM images of P11-8 fibrils, illustrating how the fibril lengths, widths (long and 
short) and twist pitch was calculated. (A) 20 random fibrils where chosen and the length 
measured, (B) 20 random fibrils where chosen and the width measured, (C) if the fibrils 
were twisted the long width (red line) and short width (yellow line) were measured 20 

times, (D) the twist pitch was calculated by measuring the first narrowest point to the third, 
indicative of a full twist. This was repeated all the way down the fibril length and then an 

average of these values was recorded. 

A B 

D 

C 
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3.3.5 Rheology  

3.3.5.1 Background to Rheology 

Solids deform when stressed, whereas liquids flow. The rheological properties of a material 

can be studied by stressing the sample and measuring how much it deforms. To measure the 

resistance to deformation of a material (elasticity) the shear modulus is measured. The shear 

modulus is the resistance to movement, the stiffer a sample is the more resistance to 

movement it has. The modulus is a measure of shear stress divided by the shear strain. A 

rotational rheometer (Figure 36) measures the shear modulus of a sample by oscillating 

backwards and forwards, non-destructively, so that it can show the properties under 

deformation, before it flows. This can be carried out in one of two ways:  

- Controlled stress – oscillates top plate with a set force and measures its displacement.  

- Controlled strain – oscillates top plate using a set displacement and measures the 

force.  

 

Figure 36: Schematic of a rotational rheometer. 

The microstructure of liquids in their natural rest condition represents a minimum energy 

state. However, when they are deformed, thermodynamic forces immediately act to restore 

the rest state, just like a spring. Like a spring movement from the rest state represents a 

storage energy, which expresses itself as an elastic force trying to restore the static status 

qou. At first these restoring forces increase linearly with the distance that any deformation 

takes the material away from the state of rest, but eventually non-linearity’s will occur. The 

rate at which the force increases with deformation diminishes, until at very large 

deformations a steady state condition arises and the elastic force becomes constant (Barnes, 

2000). Alongside these elastic forces are also viscous forces due to the dissipation and rate 

of deformation. In conjunction, these two forces produce viscoelastic effects. One way to 

 

MOTOR 

Base of rheometer 

Sample 
Top plate/Cone 

Motor providing the torque for rotation 

Bottom plate 



91 

measure the viscoelastic profile of a material is to use oscillatory testing. This involves 

applying an oscillating stress or strain as an input to the sample and resolving the re sulting 

oscillatory strain or stress output to study the microstructure and therefore predict the 

materials` behaviour. 

There are two types of responses; a solid-like response and a liquid-like response. A solid-like 

response is where the input stress or strain is in phase with the output stress or strain and 

therefore the phase angle would be zero. Whereas for a liquid-like response, the output 

stress or strain would be π/2 out of phase (Phase angle = 900) with the input (Figure 37).  

 

 

 

 

 

Figure 37: Example of phase angle and its relationship to viscous and elastic materials. 
Adapted from (Duffy, 2016).  

The solid component at any particular frequency is characterised by the storage modulus 

(𝐺′ = 𝐺 × 𝑐𝑜𝑠𝛿) and the liquid like component is described as the loss modulus ( 𝐺′′ =

𝐺 × 𝑠𝑖𝑛𝛿), where G is the elastic modulus (
𝜎

𝛾
) and 𝛿 is the phase angle. The combination of 

both these parameter yields the complex modulus (G*), which is the measure  of the overall 

stiffness of a material and is calculated by how much a sample moves (shear strain (𝛾)) for a 

given force (shear stress (σ)). If G’ > G’’, then the phase angle will be less than 45o and exhibit 

solid-like behaviour. If G’’ > G’, then the phase angle will be greater than  45o and exhibit 

liquid-like behaviour (Duffy, 2016).  

 

Figure 38: Loss, complex and elastic modulus. 

Oscillatory rheometers have two components of the oscillation setup that can be controlled: 

1. The oscillation amplitude (strain or stress) – An amplitude sweep can be run to 

determine the linear viscoelastic region (LVER). This gives an idea of the stability of 
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the sample and this can also be quantified to indicate how much energy is required 

to break up the suspension. The larger the force is, the more stable the sample. In 

the LVER, the storage modulus does not change, therefore this means that it is non-

destructive to the material and any subsequent tests (frequency sweeps) can be kept 

within the LVER (e.g. Figure 39). 

 

Figure 39: Graph demonstrating the Linear Viscoelastic Region. Adapted from (Duffy, 
2015).  

2. The frequency (oscillation time-scale) – A frequency sweep is run to determine the 

response at different timescales and this is carried out within the LVER region.  

Generally, there are three types of material behaviour that can be determined from 

rheological data:   

1) Viscoelastic liquid; where the phase angle at rest tends towards 90o. 

2) Viscoelastic solid; where the phase angle at rest tends towards 0o. 

3) Gel; where the phase angle is independent of frequency. 

 

Figure 40: General material behaviour in terms of storage and viscous modulus and phase 
angle. Adapted from (Duffy, 2016).  

Rheology has previously been used to not only look at bulk mechanical properties of various 

peptide hydrogels, but also to study their gelation mechanisms during and after flow (Aggeli 

et al., 1997). Self-recovering peptide hydrogels could be ideal candidates for injectable 

materials and rheometry can be used to mimic the mechanical process of such procedures; 

such as the shearing effect of an injection or the shear of cartilage under load. The rheology 

that will be undertaken in this chapter will not only give an insight into the gelation kinetics 

and gel stiffness, both of which directly affect the final use of these materials, but it will also 
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be used to determine whether the SAP:GAG systems are reproducible and whether individual 

samples are repeatable. Hence this will determine whether the preparation method is 

suitable for future use.    

3.3.5.2 Sample preparation 

Three replicate samples were measured in triplicate for each peptide alone, chondroitin 

sulfate alone and PEP: GAG mixture in the two Na+ salt solutions. Each sample had a total 

volume of 4 ml. For each replicate 1 ml was applied to the rheometer.  

3.3.5.2.1 Peptide control: P11-4, P11-8, P11-12. 

Approximately 40 mg of peptide was weighed into a sample vial, to which 3.5 ml of the 

appropriate Na+ salt solution was added (i.e. 130 mM or 230 mM Na+ salt solution). Samples 

were then sonicated for 10 minutes. The peptide controls were then prepared as described 

in Section 3.3.1.1. 

Once a pH as close to 7.4 had been achieved, peptide samples were placed in a water bath 

at 37oC for two hours. Samples were stored at 4oC overnight to allow them to equilibrate and 

the pH was re-measured and re-adjusted to pH 7.4 the following day. This was carried out 

using minimal microliter volumes of HCL and NaOH aliquots, vortexing for ≈40 seconds after 

each addition. The final volumes of each solution were adjusted to 4 ml. 

3.3.5.2.2 Peptide: GAG samples: P11-4, P11-8, P11-12: GAG (1:16 and 1:64). 

It was hypothesised that the introduction of varying molar ratios of chondroitin-6-sulfate 

(CS), would not only interact electrostatically with the charged peptide but also with the 

charged Na+ salt solutions. Therefore, in order to establish whether these interactions were 

possible, a mixing study was carried out, whereby a gel would be made by combining the 

peptide and GAG to produce a peptide-GAG gel. The concentration of peptide was kept the 

same for each sample (10 mg.ml -1) and the molar ratios of GAG used was 1:16 and 1:64. In 

order to carry out several repeats (n=3), the volume of the peptide: GAG mixtures were 

increased from 1 ml to 4 ml, with the concentration remaining at 10 mg.ml -1, as shown in 

Table 14. The GAG was also found to have some impurities in terms of Na+, which was 

determined using atomic absorption spectrophotometry. There was 0.08312 mg of Na+ per 

mg of CS, therefore this was accounted for in the ratio weights of the GAG.  

Table 14: Masses of peptide and CS weighed out for the different molar ratios. Samples 
were made up to a total volume of 4ml in two aqueous Na+ salt solutions.  

 1 part GAG : 64 part peptide  1 part GAG : 16 part peptide 

P11-4 19.4mg 42.1 mg 77.6 mg 42.1 mg 

P11-8 19.7 mg 51.5 mg 79.0 mg 51.5 mg 

P11-12 22.1 mg 50.2 mg 88.4 mg 50.2 mg 



94 

Approximately 40 mg of peptide was weighed into a sample vial, to which 3 ml of the 

corresponding Na+ salt solution was added (i.e. 130 mM or 230 mM Na+ salt solution). 

Samples were sonicated for 10 minutes at 37oC. The peptides were monomerised as 

described in Section 3.3.1.1. For each peptide, the appropriate pre measured amount of GAG 

(Table 14) was hydrated in 950 µl of the corresponding Na+ salt solution. This GAG suspension 

was vortexed for ≈40 seconds and then sonicated for 5 minutes at 37oC. The GAG suspension 

was added to the monomerised peptide and vortexed for a further ≈ 40 seconds on a low 

setting. The pH was adjusted to pH 7.4 or as close to it as possible and then placed in a water 

bath at 37oC for two hours. Samples were stored at 4oC overnight to allow them to equilibrate 

and the pH was re-measured and re-adjusted to pH 7.4 the following day. This was carried 

out using the remaining 50 µl volume of HCl and NaOH aliquots to make the total volume up 

to 4 ml. 

3.3.5.2.3 GAG control: chondroitin sulfate alone. 

The highest and the lowest weights of chondroitin sulfate mixed with the peptides (19.4 mg 

and 88.4 mg; Table 14), were selected as controls. The pre-weighed chondroitin sulfate was 

hydrated in 3.95 ml of the corresponding Na+ salt solution. Samples were vortexed for ≈ 40 

seconds and then sonicated for a further 10 minutes at 37oC. The pH was adjusted to 7.4 

using the remaining 50 µl volume of HCl and NaOH aliquots to make the total volume up to 

4 ml. 

3.3.5.3 Method  

All rheological measurements were carried out on the Malvern Kinexus Rheometer. rSpace 

Kinexus by Malvern Instruments was used to control the rheometer and export raw data. A 

coned-plate geometry (50 mm diameter, gap of 0.0330 mm) was used with a cone angle of 

1o. All tests were run at 37oC, using a solvent trap (SU0005 PLC) so that the atmosphere was 

kept saturated to ensure minimal evaporation of the peptide: GAG samples.  

Samples were firstly subjected to an amplitude sweep, which determined the linear 

viscoelastic region (LVER) of the sample. Therefore, two amplitude sweeps were performed 

in a shear strain controlled mode from 0.01-100%. One at 1 Hz and another at 20 Hz with a 

10-minute pause in-between the two amplitude sweeps to allow the peptides to equilibrate. 

Both components of the shear modulus (elastic and viscous) at both 1Hz and 20 Hz were 

overlaid in Origin Pro. A strain value that lay within the LVER (preferably in the middle), in 

which the elastic shear modulus (G’)  and the viscous shear modulus (G’’) were independent 

of the strain amplitude was chosen (i.e. Figure 41). 
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Figure 41: Example amplitude sweep run at 1Hz and 20Hz showing both the elastic and 
viscous shear modulus. Strain value that lay in the middle of the LVER was chosen.  

Frequency sweeps were then run to determine the dynamic modulus of the  hydrogel 

samples. The sweeps were run between 1 and 20 Hz at the pre-determined strain that was 

established from the amplitude sweep. Peptide hydrogels were allowed to equilibrate for 15 

minutes once loaded, prior to the start of testing. Visual observations were recorded in the 

form of images of the gels after 48 hours, prior to testing.  

3.3.6 Statistical analysis 

3.3.6.1 Analysis of variance (ANOVA) 

Throughout this part of the study various ANOVA’s were used to determine the source of 

variation within the data.  For determination of the length and width of peptide fibres/fibrils 

using TEM, the null hypothesis was that neither the GAG molar ratio nor concentration of 

Na+ ions would have any effect on the lengths and widths of a given peptide (P 11-4, P11-8 or 

P11-12).  Therefore, the data for each peptide lengths and peptide widths was analysed by 

two-way ANOVA using SPSS. The analysis enabled understanding of whether the 

independent factors (GAG molar ratio, Na+ salt concentration or their combined effects) had 

a significant effect on the lengths and/or widths of each peptide fibres/fibrils.  

 

 

 

 

 

 

Shear strain value chosen 

LVER 
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3.4 Results  

3.4.1 Self-assembly of peptides and peptide-GAG mixtures at varying 

molar ratios in the presence of two different physiological Na+ salt solutions 

with varying Na+ ion concentrations. 

FTIR analysis was used to study the secondary structure of peptides P 11-4, P11-8 and P11-12 in 

the presence and absence of chondroitin sulfate at molar ratios of 1:16 and 1:64 (peptide: 

GAG) in two concentrations of Na+ salt solution.  

The FTIR data showed that the self-assembled peptide conformation was rich in β-sheet for 

P11-4, P11-8 and P11-12 alone in 130 mM and 230 mM Na+ salt solutions and in the majority of 

the peptide-chondroitin sulfate mixtures in both Na+ salt solutions, as shown in Figure 42. Of 

particular interest, was the relative β-sheet percentage formed by the SAPs alone, which was 

indicative of a self-assembled hydrogel state. Increasing the Na+ ion concentration had 

different effects which were dependent upon the peptide 

The addition of chondroitin sulfate at molar ratios of 1:16 and 1:64 in conjunction with the 

two Na+ salt solutions had a very different effect on the percentage of β-sheet formed. The 

addition of the GAG to P11-4 at the lower molar ratio (1:64), resulted in a decrease in the 

peaks observed in the region of 1672-1690 cm-1 (anti-parallel β-sheet conformation), which 

was indicative of a decreased percentage of β-sheet formed when compared to the peptide 

alone (Figure 42A & B). The addition of the GAG to P11-4 at the higher molar ratio (1:16), 

however resulted in an increase in the overall percentage β-sheet, regardless of the 

concentration of Na+ ions in the salt solution.  

On the other hand, the addition of the lower molar ratio of GAG to P11-8 and P11-12 in the 

130 mM Na+ salt solution caused the percentage of β-sheet formed to initially increase but 

when the molar ratio of the GAG was increased, the percentage of β-sheet formed 

decreased. The effect was greater for P11-12 than P11-8 (Figure 42). It was notable that the 

addition of the GAG to P11-12 had a detrimental effect on the percentage of β-sheet formed, 

especially at the higher GAG molar ratio (Figure 42E & F). 
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Figure 42: Fitted IR amide I’ band of P11-4, P11-8 and P11-12 at 10 mg.ml-1 in the presence 
of 130 mM (A, C and E) and 230 mM (B, D and F) Na+ salt solution with and without 

varying chondroitin sulfate molar ratios of 1:16 and 1:64. The β-sheet percentage was 
calculated by adding the total area of the peaks showing β-sheet and then dividing them by 
the areas of all the individual peaks combined for each graph and multiplying by 100. The β-

sheet regions are defined by the peaks in the wavelength region of 1630-1613 cm-1 and 
1690-1672 cm-1.  
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3.4.2 Morphology of peptides and peptide-GAG mixtures at varying molar 

ratios in the presence of two different physiological Na+ salt solutions with 

varying Na+ ion concentrations. 

Physical differences between the fibre morphology of the peptides P11-4, P11-8 and P11-12 in 

the presence and absence of chondroitin sulfate at molar ratios of 1:16 and 1:64 in two 

concentrations of Na+ salt solution were observed by TEM. Representative images are shown 

in Figure 43 - Figure 45. Varying networks of entangled fibres or bundles were observed, 

which are essential for gel formation. 

 The TEM images for peptides alone at both Na+ ion concentrations (Figure 43 – Figure 45: A 

& D) showed that the gels were composed of fibrils and fibres, as was the case with the 

peptide: GAG mixtures (Figure 43 – Figure 45; B & E; C & F).  

 

Figure 43: Morphology of the P11-4 peptide in the presence of two Na+ salt solutions at 
varying chondroitin sulfate molar ratios (1:16 and 1:64) by TEM. (A) P11-4 in a 230 mM Na+ 

salt solution, (B) P11-4 at 1:64 GAG molar ratio in a 230 mM Na+ salt solution, (C) P11-4 at 
1:16 GAG molar ratio in a 230mM Na+ salt solution, (D) P11-4 in a 130mM Na+ salt solution, 
(E) P11-4 at 1:64 GAG molar ratio in a 130mM Na+ salt solution, (F) P11-4 at 1:16 GAG molar 

ratio in a 130mM Na+ salt solution. Magnification of 500. Individual scale bars (10 m) are 
shown for each image.  
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Figure 44: Morphology of the P11-8 peptide in the presence of two Na+ salt solutions at 
varying chondroitin sulfate molar ratios (1:16 and 1:64) by TEM. (A) P11-8 in a 230mM Na+ 

salt solution, (B) P11-8 at 1:64 GAG molar ratio in a 230mM Na+ salt solution, (C) P11-8 at 
1:16 GAG molar ratio in a 230mM Na+ salt solution, (D) P11-8 in a 130mM Na+ salt solution, 
(E) P11-8 at 1:64 GAG molar ratio in a 130mM Na+ salt solution, (F) P11-8 at 1:16 GAG molar 

ratio in a 130mM Na+ salt solution.  Magnification of 500. Individual scale bars (10 m) are 
shown for each image.  

 
Figure 45: Morphology of the P11-12 peptide in the presence of two Na+ salt solutions at 
varying chondroitin sulfate molar ratios (1:16 and 1:64) by TEM. (A) P11-12 in a 230mM 

Na+ salt solution, (B) P11-12 at 1:64 GAG molar ratio in a 230mM Na+ salt solution, (C) P11-12 
at 1:16 GAG molar ratio in a 230mM Na+ salt solution, (D) P11-12 in a 130mM Na+ salt 

solution, (E) P11-12 at 1:64 GAG molar ratio in a 130mM Na+ salt solution, (F) P11-12 at 1:16 
GAG molar ratio in a 130mM Na+ salt solution.  Magnification of 500. Individual scale bars 

(10 m) are shown for each image.  
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The physical properties of P11-4, P11-8 and P11-12 alone in 130 mM and 230 mM Na+ salt 

solution are shown in Figure 46. The P11-4 and P11-8 peptide samples had a cloudy gel 

appearance when compared to the clear gel produced by the P11-12 peptide sample. All three 

peptides exhibited shear softening (i.e. if sheared they would flow but after some time, they 

would return to their original gel state). This characteristic was exaggerated in the lower Na+ 

salt concentration. The peptide underwent a range of different physical states, ranging from 

isotropic fluid to nematic liquid crystalline/gel, however once equilibrium was reached at pH 

7.4, the sample exhibited nematic gel characteristics. The liquid crystalline properties were 

established using a high resolution digital camera, with the sample placed in-between 

crossed polarized film/lenses (Figure 46C – E).  

 

Figure 46: Images of (a) P11-4. P11-8 and P11-12 in the 130 mM Na+ salt solution at pH 7.4 
(b) P11-4. P11-8 and P11-12 in the 230 mM Na+ salt solution at pH 7.4. Images show their 

physical properties 3 days after the gels were made (from left to right: P 11-12, P11-8 and P11-
4) (c-e) Photographs of bulk samples exhibiting the birefringent gels of P11-4. P11-8 and P11-

12, respectively.  

Overlapping of the fibrils and fibres made it difficult to definitively assess the morphology, 

hence regions in which individual fibrils could clearly be observed were chosen to measure 

fibre lengths and widths. The peptides in different salt solutions exhibited a twist pitch, 

meaning two widths were recorded; a wide width and a narrow width (where the twist 

occurred), values of twist pitch are presented in Figure 47, along with their corresponding 

widths. Average lengths ranging from ca. 410 to 990 nm for the peptides alone and ca. 498 

to 3518 nm for the peptide-GAG mixtures were recorded (Figure 48).  

The average widths and lengths of the P11-4: GAG mixtures are summarised in Table 15 and 

Table 16 and represented in Figure 47 and Figure 48, respectively. From the TEM images for 

P11-4, it was observed that in the 230 mM Na+ salt solution the fibrils were thicker and longer 

than those formed in the 130 mM Na+ salt solution.  The average fibril width for P11-4 in the 

130 mM and 230 mM Na+ salt solutions was 9.96 ± 0.48 nm (± SEM) and 12.42 ± 0.22 nm, 

respectively at their widest point (Table 15). The average fibril length in the 130 mM and 230 

mM Na+ salt solution were 468.68 ± 66.34 nm and 532.13 ± 54.24 nm, respectively (Table 

16). However, in the 230 mM Na+ salt solution, P11-4 exhibited a twist pitch of 236.26 nm 
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(Figure 47 – Image *1), and at its narrowest point (where the twist occurred) it had an 

average width of 8.58 ± 0.12 nm. 

As the Na+ ion concentration and GAG molar ratio were increased the average lengths of the 

P11-4: GAG fibrils were also increased, compared to P11-4 alone. However, this was not the 

case for the average widths of the P11-4: GAG mixtures, as these were affected independently 

by the two variables (Na+ ion concentration and GAG molar ratio). As the Na+ ion 

concentration was increased, the average width of the P11-4: GAG fibril at the GAG molar 

ratio of 1:64 decreased, however at the 1:16 GAG molar ratio the average widths of the fibrils 

were increased. On the other hand, as the GAG molar ratio for the P11-4: GAG mixtures in the 

230 mM Na+ salt solution was increased, the average width of the fibrils was also increased, 

however for the P11-4-GAG mixtures in the 130 mM Na+ salt solution, the average width of 

the fibrils was decreased.  

Table 15: Average widths and twist pitch of the P11-4 fibrils in different Na+ salt solutions 
and GAG molar ratios. 

Widths (nm) 
P11-4 130mM 

9.96 ± 0.48  
P11-4 130mM 1:64 

18.17 ± 1.60 

P11-4 130mM 1:16 
12.63 ± 0.41 

P11-4 230mM 
[12.42 ± 0.22]*w [8.58 ± 0.12]*s 

Twist pitch = 236.26 nm 

P11-4 230mM 1:64 
14.15 ± 0.92 

 

P11-4 230mM 1:16 
[21.44 ± 0.27]*w  [13.02 ± 0.41]*s 

Twist pitch = 330.78 nm 

The widths were determined from TEM images at a magnification of 30,000 using the 
software imageJ. 20 fibrils were measured for each sample. The data is presented as the 

mean (n=20) ± SEM. The twist pitch was calculated using the measure tool in imageJ. It was 
measured for an individual fibre from its first narrowest point to the third, indicative of a 

full twist (*W = Wide width and *S = Short width). 

Table 16: Average lengths of the P11-4 fibrils in different Na+ salt solutions and GAG molar 
ratios. 

Lengths (nm) 
P11-4 130mM  

468.68 ± 66.34 
P11-4 130mM 1:64 

498.08 ± 41.24 
P11-4 130mM 1:16 

674.17 ± 76.38 

P11-4 230mM 
532.13 ± 54.24 

P11-4 230mM 1:64 
973.66 ± 79.75 

P11-4 230mM 1:16 
1075.85 ± 125.09 

The lengths were determined from TEM images at a magnification of 12,000 using the 
software imageJ. 20 fibrils were measured for each sample. The data is presented as the 

mean (n=20) ± SEM. 

The average widths and lengths of the P11-8 fibrils at different GAG molar ratios and Na+ ion 

concentrations are summarised in Table 17 and Table 18 and represented in Figure 47 and 

Figure 48, respectively. For the measured P11-8 fibrils, they were thicker and longer in the 

130 mM Na+salt solution, when compared to the P11-8 fibrils in the 230 mM Na+ salt solution. 

The average fibril width for P11-8 in the 130 mM and 230 mM Na+ salt solutions were 20.42 ± 
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0.25 nm and 19.16 ± 0.31, at their widest point and 10.66 ± 0.15 nm and 14.45 ± 0.25 nm, at 

their narrowest point, respectively (Table 17). In both of these conditions the fibrils exhibited 

a twist pitch of 379.24 nm and 345.23 nm, respectively (Figure 47 – Image*3 & 4). The 

average fibril length in the 130 mM and 230 mM Na+ salt solutions was 445.27 ± 40.74 nm 

and 410.68 ± 32.81, respectively (Table 18).   

As the Na+ ion concentration increased, the length of the P11-8 fibrils/fibres decreased 

regardless of the GAG molar ratio. However, as the GAG molar ratio increased the length of 

the fibrils/fibres increased regardless of the Na+ ion concentration. Interestingly in the P11-8: 

GAG mixtures there were multiple types of structure observed, fibrils were by far the most 

common type but there were instances of nanotube formation. The P11-8: GAG fibrils were 

longer in the 130 mM Na+ salt solution, when compared to the P11-8: GAG fibrils in the 230 

mM Na+ salt solution. The widths of the fibres of the P11-8: GAG mixtures were increased with 

an increased Na+ ion concentration and GAG molar ratio. Similarly, the P11-8: GAG fibrils were 

thicker in the 130 mM Na+ salt solution, when compared to the P11-8: GAG fibrils in the 230 

mM Na+ salt solution. 

Table 17: Average widths and twist pitch of the P11-8 fibrils in different Na+ salt solutions 
and GAG molar ratios.  

Widths (nm) 
P11-8 130mM 

[20.42 ± 0.25]*w [10.66 ± 0.15]*s 
Twist pitch = 379.24 nm 

P11-8 130mM 1:64 
[16.40 ± 0.32]*w  
[8.96 ± 0.37]*s 

Twist pitch = 196.41 nm 

P11-8 130mM 1:16 
16.81 ± 1.21 

P11-8 230mM 
[19.16 ± 0.31]*w  [12.03 ± 0.31]*s 

Twist pitch = 345.23 nm 

P11-8 230mM 1:64 
17.22 ± 1.13 

 

P11-8 230mM 1:16 
[19.90 ± 0.49]*w  [10.98 ± 0.33]*s 

Twist pitch = 229.97 nm 

The widths ere determined from TEM images at a magnification of 30,000 using the 
software imageJ. 20 fibrils were measured for each sample. The data is presented as the 

mean (n=20) ±SEM. The twist pitch was calculated using the measure tool in imageJ it was 
measured for an individual fibre from its first narrowest point to the third, indicative of a 

full twist (*W = Wide width & *S = Short width). 

Table 18: Average lengths of the P11-8 fibrils in different Na+ salt solutions and GAG molar 
ratios. 

Lengths (nm) 
P11-8 130mM  

445.27 ± 40.74 
P11-8 130mM 1:64 
2682.16 ± 545.21 

P11-8 130mM 1:16 
3518.32 ± 432.47 

P11-8 230mM  
410.68 ± 32.81 

P11-8 230mM 1:64 
799.13 ± 57.47 

P11-8 230mM 1:16 
827.87 ± 50.37 

These were determined from TEM images at a magnification of 12,000 using the software 
imageJ. 20 fibrils were measured for each sample. The data is presented as the mean 

(n=20) ±SEM. 

From the TEM images for P11-12, it was observed that increasing the Na+ ion concentration 

in the salt solution increased the widths of the fibrils, however the fibril length was 
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decreased, as shown in Table 19 and Table 20 and represented in Figure 47 and Figure 48. 

The average width of P11-12 in the 130 mM and 230 mM Na+ salt solutions was 4.95 ± 0.15 

nm and 22.72 ± 0.32 nm respectively at the widest point. The fibrils in the 230 mM Na+ salt 

solution exhibited a twist pitch of 397.81 nm, at the narrowest point the average width of 

the P11-12 fibrils was 15.11 ± 0.36 nm. In the 130 mM Na+ salt solution at a magnification of 

x500, P11–12 showed a less dense network of fibrils and fibres compared to the image seen 

in the 230 mM Na+ salt solution at the same magnification. 

The average widths and lengths of the fibrils in the P11-12: GAG mixtures varied depending 

on the amount of Na+ ions in the salt solution or GAG molar ratio (Table 19 and Table 20; 

Figure 47 and Figure 48). An increase in the Na+ ion concentration resulted in increased 

widths and lengths of the fibrils, regardless of the GAG molar ratio. However, as the GAG 

molar ratio increased the length of the fibrils was increased regardless of the Na+ ion 

concentration; as well as the width of only the P11-12: GAG fibrils in the 230 mM Na+ salt 

solution. Overall the lengths and widths of the P11-12: GAG fibrils were greatest in the higher 

Na+ ion concentration and GAG molar ratio (Figure 47 and Figure 48). The longest fibrils 

formed by the P11-12 peptide were seen in the GAG molar ratio of 1:16 in both 130 mM and 

230 mM Na+ salt solutions.  

Table 19: Average widths and twist pitch of the P11-12 fibrils in different Na+ salt solutions 
and GAG molar ratios.  

Widths (nm) 
P11-12 130mM 

4.95 ± 0.15 
P11-12 130mM 1:64 

31.84 ± 1.96 

P11-12 130mM 1:16 
14.24 ± 0.96 

P11-12 230mM 
[22.72 ± 0.32]*w [15.11 ± 0.36]*s 

Twist pitch = 397.81 nm 

P11-12 230mM 1:64 
34.24 ± 2.12 

P11-12 230mM 1:16 
83.89 ± 4.94 

The widths were determined from TEM images at a magnification of 30,000 using the 
software imageJ. 20 fibrils were measured for each sample. The data is presented as the 

mean (n=20) ±SEM.  

Table 20: Average lengths of the P11-12 fibrils in different Na+ salt solutions and GAG 
molar ratios.  

Lengths (nm) 
P11-12 130mM 
990.96 ± 75.79 

P11-12 130mM 1:64 
588.55 ± 59.02 

P11-12 130mM 1:16 
1802.74 ± 334.82 

P11-12 230mM 
893.60 ± 100.13 

P11-12 230mM 1:64 
1374.98 ± 114.16 

P11-12 230mM 1:16 
1880.11 ± 137.65 

These were determined from TEM images at a magnification of 12,000 using the software 
imageJ. 20 fibrils were measured for each sample. The data is presented as the mean 

(n=20) ±SEM. 
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3.4.2.1 Analysis of the effects of Na+ ion concentration and GAG molar ratio on the 

lengths and widths of fibrils of P11-4, P11-8 and P11-12. 

The effect that the Na+ ion concentration in the salt solution and the GAG molar ratios had 

on (a) the lengths (Table 21 to Table 23) and (b) the widths (Table 24 to Table 26) of the fibrils 

formed; was determined by 2-way ANOVA for each peptide and was found to vary from 

peptide to peptide. The null hypothesis was that neither of the independent variables (GAG 

molar ratio and concentration of Na+ ions) would have any effect on the lengths and widths 

of the peptide fibrils.  

The results of the analyses revealed that both Na+ ion concentration in the salt solution, GAG 

molar ratio and their combinations, all had a significant effect (p<0.05) on the length and 

widths of the fibrils; in all the peptide hydrogels except in P 11-12, where the Na+ ion 

concentration in the salt solution did not have a significant effect on the length of the fibrils 

formed (p = 0.084) (Table 23). 

Table 21: Two-way analysis of variance to determine the effect of GAG molar ratio and 
Na+ ion concentration had on the length of the P11- 4 fibrils.  

Source df Mean Square F Sig. 

Salt Solution (SS) 1 2.95E+06 23.991 .000 
GAG Molar Ratio (MR) 2 1.43E+06 11.665 .000 

MR * SS 2 4.83E+05 3.927 .022 
Error 114 1.23E+05   

Statistical significance was determined at p<0.05. Independent variables: GAG molar ratio 
(MR) and Salt Solution (SS). Dependant variable: Length.  

Table 22: Two-way analysis of variance to determine the effect of GAG molar ratio and 
Na+ ion concentration had on the length of the P11- 8 fibrils.  

Source df Mean Square F Sig. 

Salt Solution (SS) 1 7.08E+07 43.084 .000 

GAG Molar Ratio (MR) 2 3.30E+07 20.109 .000 
MR * SS 2 1.85E+07 11.283 .000 

Error 114 1.64E+06   

Statistical significance was determined at p<0.05. Independent variables: GAG molar ratio 
(MR) and Salt Solution (SS). Dependant variable: Length. 

Table 23: Two-way analysis of variance to determine the effect of GAG molar ratio and 
Na+ ion concentration had on the length of the P11- 12 fibrils.  

Source df Mean Square F Sig. 

Salt Solution (SS) 1 1.76E+06 3.037 .084 
GAG Molar Ratio (MR) 2 9.92E+06 17.093 .000 

MR * SS 2 1.81E+06 3.113 .049 

Error 114 5.80E+05   

Statistical significance was determined at p<0.05. Independent variables: GAG molar ratio 
(MR) and Salt Solution (SS). Dependant variable: Length.  
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Table 24: Two-way analysis of variance to determine the effect of GAG molar ratio and 
Na+ ion concentration had on the width of the P11- 4 fibrils.  

Source df Mean Square F Sig. 

Salt Solution (SS) 1 174.947 13.379 .000 

GAG Molar Ratio (MR) 2 397.873 30.428 .000 

MR * SS 2 411.463 31.467 .000 

Error 114 13.076   

Statistical significance was determined at p<0.05. Independent variables: GAG molar ratio 
(MR) and Salt Solution (SS). Dependant variable: Width. 

Table 25: Two-way analysis of variance to determine the effect of GAG molar ratio and 
Na+ ion concentration had on the width of the P11- 8 fibrils.  

Source df Mean Square F Sig. 

Salt Solution (SS) 1 360.995 31.244 .000 
GAG Molar Ratio (MR) 2 518.656 44.890 .000 

MR * SS 2 81.586 7.061 .001 
Error 114 11.554   

Statistical significance was determined at p<0.05. Independent variables: GAG molar ratio 
(MR) and Salt Solution (SS). Dependant variable: Width.  

Table 26: Two-way analysis of variance to determine the effect of GAG molar ratio and 
Na+ ion concentration had on the width of the P11- 12 fibrils.  

Source df Mean Square F Sig. 

Salt Solution (SS) 1 2.69E+04 238.950 .000 

GAG Molar Ratio (MR) 2 1.24E+04 110.568 .000 
MR * SS 2 1.24E+04 110.333 .000 

Error 114 1.13E+02   

Statistical significance was determined at p<0.05. Independent variables: GAG molar ratio 
(MR) and Salt Solution (SS). Dependant variable: Width.  

Perusal of the data indicated that in the 230 mM Na+ salt solution, the P11-4 fibrils were longer 

than those in the 130 mM Na+ salt solution. However, for the P11-8 fibrils, the opposite effect 

was observed, where the P11-8 fibrils were longer in the 130 mM Na+ salt solution when 

compared to the P11-8 fibrils in the 230 mM Na+ salt solution (Figure 47 and Figure 48). For 

P11-12, the 2-way ANOVA revealed that only the GAG molar ratio had a significant effect 

(p<0.05) on the length of the P11-12 fibrils. The analysis also revealed that, Na+ ion 

concentration in the salt solution, GAG molar ratio and the combination of the latter all had 

a significant effect (p<0.05) on the widths of the P11-12 fibrils. 
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Figure 47: Widths of fibrils of all peptides in two different Na+ salt solutions at pH 7.4 at 
varying molar ratios of GAG. Widths of the fibrils were determined from TEM images at a 

magnification of 30,000 using the software imageJ. 20 fibrils were measured for each 
sample. The data is presented as the mean (n=20) ± 95% confidence intervals. Data was 
analysed using 2-way analysis of variance. This showed that the Na+ ion concentration in 

the salt solution, GAG molar ratio and their combined effects had a significant effect on the 
overall widths of the fibrils formed by all three peptides (p<0.05).  

 
Figure 48: Lengths of fibrils of all peptides in two different Na+ salt solutions at pH 7.4 at 
varying molar ratios of GAG. Lengths of the fibrils were determined from TEM images at a 

magnification of 12,000 using the software imageJ. 20 fibrils were measured for each 
sample. The data is presented as the mean (n=20) ± 95% confidence intervals. Data was 
analysed using 2-way ANOVA and statistical significance was determined at p<0.05. This 
showed that for P11-4 and P11-8 the Na+ ion concentration in the salt solution, GAG molar 

ratio and their combined effects all had a significant effect on the lengths of the fibres 
formed (p<0.05). For P11-12, the Na+ ion concentration had no significant effect on the 
lengths of the fibrils formed by P11-12 (p=0.084). However, the GAG molar ratio had a 

significant effect on the length of the fibrils formed by P11-12 (p<0.05). The combined effect 
of GAG molar ratio and Na+ ion concentration in the salt solution had a significant effect on 

the length of the fibrils formed by P11-12 (p=0.049).  

*1 

*2 *4 

*7 

*3 *5 

*6 
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3.4.3 Determination of elastic and viscous shear moduli of peptides and 

peptide-GAG mixtures at varying molar ratios in the presence of two 

different physiological Na+ salt solutions with varying Na+ ion 

concentrations using Rheology 

All of the samples tested exhibited a higher G’ than G’’ value, which confirmed that all 

hydrogels exhibited viscous solid-like behaviour. 

3.4.3.1 Shear modulus of peptides alone  

Samples were prepared as described in Section 3.3.5.2.1. P11-4 and P11-8 in both Na+ salt 

solutions formed cloudy self-supporting gels, however P11-12 formed a clear gel in the 

130mM Na+ salt solution but in the 230mM Na+ salt solution it formed a cloudy gel, as shown 

in Figure 49. 

Peptide 130 mM Na+ Salt Solution 230 mM Na+ Salt Solution 

P11-4 

  

P11-8 

  

P11-12 

  

Figure 49: P11-4, P11-8 and P11-12 self-supporting gels at 10 mg.ml-1 in 130 mM and 230 
mM Na+ salt solutions. Images captured 2 days after they were made before testing on the 

rheometer (n=3).  

As shown in Figure 50, the LVER of the two amplitude sweeps run at 1 Hz and 20 Hz for each 

peptide, were used to calculate the shear strain value to run the frequency sweep. P11-4 in 

the 130 mM and 230 mM Na+ salt solutions had a shear strain value of 0.1 % and 0.15 %, 

respectively. P11-8 in the 130 mM and 230 mM Na+ salt solutions had a shear strain value of 

0.3 %. P11-12 in the 130 mM and 230 mM Na+ salt solutions had a shear strain value of 0.3 % 
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and 0.1 %, respectively. During the amplitude sweep tests, it was observed that the shear 

moduli of the P11-12 gels were considerably lower than for the P11-4 and P11-8 gels in both 

Na+ salt solutions, which was concurrent with the weakness of the P 11-12 gel when it was 

handled and placed on the rheometer for testing. A slight tap of the vial caused shearing in 

the gel which did not recover as quickly as the P11-4 and P11-8 gels. 

 

Figure 50: The amplitude sweeps (elastic and viscous modulus vs. shear strain) of P11- 4, 
P11- 8 and P11- 12 at 10 mg.ml-1 in 130 mM and 230 mM Na+ salt solutions. Shear strain 

started at 0.01 % and ramped up to 100% at a temperature 370C. Shear strain chosen 
within the LVER was: (A=0.1 %, B=0.15 %, C, D and E=0.3 % and F=0.1 %).  

For the peptides alone, the shear moduli of P11-4 and P11-8 were higher than those of P11-12 

by two orders of magnitude, which indicated that there was variation between the glutamine 

based peptide gels and the serine based peptide gels in both Na+ salt solutions across the 
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frequency range studied (Figure 51A & B). Increasing the Na+ salt concentration increased 

the moduli of P11-12, indicating that the positively charged serine based peptide was 

interacting positively with the increased concentration of Na+ ions in the higher ionic strength 

solution, hence increasing its mechanical stiffness three-fold (Figure 51C), which was 

concurrent with the FTIR analysis, as the β-sheet component also increased.  A very slight 

increase in the shear moduli was noticed more so at the 130mM Na+ salt solution in the P11-

4 and P11-8 samples, whereas this effect was not as apparent in the P11-12 samples in either 

of the Na+ salt solutions, suggesting that as the frequency increased the P11-4 and P11-8 

samples became stiffer (Figure 51A & B). Nevertheless, the frequency sweeps shown in 

Figure 51A & B were relatively flat indicating that the experiments were run near equilibrium 

state.  

 

 

 
 
 
 
 
 
 
 
 
 

Figure 51: The effect of varying the Na+ ion concentration (130 mM or 230 mM) on the 
mechanical stiffness of the P11-4, P11-8 and P11-12 gels, Strain 0.1 % and temperature 37oC: 

(A) Frequency sweep test between 1Hz and 20Hz for the P11- 4, P11- 8 and P11- 12 gels in 
the 130 mM Na+ salt solution, (B) Frequency sweep test between 1Hz and 20Hz for the 

P11- 4, P11- 8 and P11- 12 gels in the 230 mM Na+ salt solution, (C) Shear modulus extracted 
at 1Hz  for the P11- 4, P11- 8 and P11- 12 gels in both 130 mM and 230 mM Na+ salt 

solutions. Data is presented as the mean (n=3) ± 95% confidence intervals. Individual 
samples were subject to an amplitude sweep before commencing the test, in order to 
identify the linear viscoelastic region (LVER). A strain value was then chosen withi n the 

middle region of the LVER and the shear moduli (elastic and viscous) were all calculated by 
running a frequency sweep test between 1Hz and 20Hz.
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3.4.3.2 Shear modulus of peptide: GAG mixtures  

In this study, the mixing of GAGs with the peptides in different ionic strength salt solutions 

and the effect on the rheological properties were investigated. It was hypothesised that the 

charged GAG chains would not only interact electrostatically with the charged peptides but 

also with the two ionic salt solutions.  

Samples were prepared as described in Section 3.3.5.2.2. The P11-4 and P11-8: GAG mixtures 

in both Na+ salt solutions formed cloudy self-supporting gels, however P11-12 in the 130 mM 

Na+ salt solution at both GAG molar ratios, even after vortexing, sonicating and heating, did 

not gel or form a viscous liquid as with other peptide-GAG mixtures. After allowing 48 hours 

for the P11-12: GAG mixtures to reach equilibrium, a slight change in appearance of the gels 

was observed for the mixture at the higher molar ratio (1:16) of GAG. Some self -assembly 

was observed on the walls of the tube as well as some solid clumps within the runny liquid, 

however the mixture was still liquid in nature. The mixtures at the lower molar ratio (1:64) 

of GAG also had solid-clumps within the runny liquid but with no self-assembly on the walls 

of the tube. These observations were not obvious initially but became more apparent when 

loading samples onto the rheometer. The appearance of the gels is shown in Table 26. The 

addition of the GAG to P11-12 in the 230mM Na+ salt solution had a similar effect. Upon 

mixing, the P11-12: GAG mixture at the lower GAG molar ratio (1:64), showed self-assembly 

on the walls. After vortexing, sonicating and heating small clumps of solid aggregates were 

present in the viscous liquid suspension, which remained after the 48 hours prior to testing 

(Table 26). Similarly, the P11-12: GAG mixture at the higher GAG molar ratio (1:16), exhibited 

the same phenomenon however it formed a very weak gel after 48 hours just prior to testing. 

This gel sheared easily upon inverting and loading onto the rheometer, as shown in Table 26, 

in particular the 3rd sample. The addition of the GAG to P11-8 led to much faster gelation, with 

self-supporting gels forming almost instantly on the addition of the GAG (Table 26); even 

before they had been sonicated, vortexed or heated. This behaviour had not been observed 

previously with any other of the peptides alone. Gels were very hard to shear once they had 

been made which made the measurement of pH after 24 hours very difficult.  
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Peptide 

GAG 

Molar 
Ratio 

130 mM Na+ Salt Solution 230 mM Na+ Salt Solution 

P11-4 

1:64 

  

1:16 

  

P11-8 

1:64 

  

1:16 

  

P11-12 

1:64 

  

1:16 

  
Figure 52: P11-4, P11-8 and P11-12 self-supporting gels at 10 mg.ml-1 at two different GAG 
molar ratios (1:64 & 1:16) in 130 mM and 230 mM Na+ salt solutions. Images captured 2 

days after they were made before testing on the rheometer (n=3).   

The LVER of the two amplitude sweeps run at 1 Hz and 20 Hz for each peptide: GAG mixture, 

which were used to calculate the shear strain value that the frequency sweep would be run 

at are shown in Figure 53. P11-4 at both GAG molar ratios and in both the 130 mM and 230 
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mM Na+ salt solutions had a shear strain value of 0.15 %. P11-8 at GAG molar ratio 1:64 in the 

130 mM and 230 mM Na+ salt solution had a shear strain value of 0.17 % and 0.15 %, 

respectively. P11-8 at GAG molar ratio 1:16 in the 130 mM and 230 mM Na+ salt solutions had 

a shear strain value of 0.1 % and 0.3 %, respectively. P11-12 at both GAG molar ratios and in 

both the 130 mM and 230 mM Na+ salt solutions had a shear strain value of 0.15 %. The 

amplitude sweep test again showed that the shear moduli of the P 11-12 gels were 

considerably lower than the P11-4 and P11-8 gels in both Na+ salt solutions, which was 

concurrent with the weakness of the P11-12 gel when it was handled and placed on the 

rheometer for testing.  

The frequency sweeps shown in Figure 54A-F, showed that the elastic moduli for all the 

peptide: GAG mixtures were higher than the viscous modulus, indicating that the samples 

exhibited a solid-like behaviour. Their overall flatness of the data lines was indicative that 

the test runs were near the equilibrium state of the hydrogels. For P11-4, the 

addition/presence of more of GAG (1:16) in both the 130 mM and 230 mM Na+ salt solutions, 

led to a slight decrease in the shear moduli of P11-4. P11-4: GAG mixtures in the 230 mM Na+ 

salt solution were the stiffest hydrogels when compared to those in the 130 mM Na+ salt 

solution regardless of the GAG molar ratio. P11-8 in the presence of GAG molar ratios 1:16 

and 1:64, were also investigated. The observations of the gelation properties of these gels 

were reflected in the rheological properties of P11-8, where the highest shear moduli of all 

the peptide: GAG mixtures investigated were seen in P11-8 at GAG molar ratio of 1:64 in both 

of the Na+ salt solutions. However similarly to P11-4 the addition of more GAG (1:16) to P11-8 

led to a reduced stiffness compared to P11-8 at the 1:64 GAG molar ratio. Despite their liquid 

like appearance, P11-12 samples tested demonstrated solid-like behaviour as the samples 

tested were biphasic (i.e. fluid and flocculated peptide). The P11-12 gels in the 130mM Na+ 

salt solution were stiffer at the higher GAG molar ratio (1:16) when compared to those at the 

lower GAG molar ratio. 

 

 



113 

0.01 0.1 1

10

100

1,000

10,000

P
11

- 4 at GAG molar ratio 1:64 in the 130 mM Na
+
 Salt Solution

S
he

ar
 M

od
ul

us
 (

P
a)

 
Complex Shear Strain (%)

 Shear modulus (elastic component)(Pa) - 1Hz

 Shear modulus (viscous component)(Pa) - 1Hz

 Shear modulus (elastic component)(Pa) - 20Hz

 Shear modulus (viscous component)(Pa) - 20Hz

      
0.01 0.1 1

10

100

1,000

10,000

P
11

- 4 at GAG molar ratio 1:64 in the 130 mM Na
+
 Salt Solution

S
he

ar
 M

od
ul

us
 (

P
a)

 

Complex Shear Strain (%)

 Shear modulus (elastic component)(Pa) - 1Hz

 Shear modulus (viscous component)(Pa) - 1Hz

 Shear modulus (elastic component)(Pa) - 20Hz

 Shear modulus (viscous component)(Pa) - 20Hz

 

0.01 0.1 1

10

100

1,000

10,000

100,000
P

11
- 4 at GAG molar ratio 1:64 in the 230 mM Na

+
 Salt Solution

S
he

ar
 M

od
ul

us
 (

P
a)

 

Complex Shear Strain (%)

 Shear modulus (elastic component)(Pa) - 1Hz

 Shear modulus (viscous component)(Pa) - 1Hz

 Shear modulus (elastic component)(Pa) - 20Hz

 Shear modulus (viscous component)(Pa) - 20Hz

      
0.01 0.1 1

10

100

1,000

10,000

100,000
P

11
- 4 at GAG molar ratio 1:16 in the 230 mM Na

+
 Salt Solution

S
he

ar
 M

od
ul

us
 (

P
a)

 

Complex Shear Strain (%)

 Shear modulus (elastic component)(Pa) - 1Hz

 Shear modulus (viscous component)(Pa) - 1Hz

 Shear modulus (elastic component)(Pa) - 20Hz

 Shear modulus (viscous component)(Pa) - 20Hz

 

0.01 0.1 1

10

100

1,000

10,000

100,000
P

11
- 8 at GAG molar ratio 1:64 in the 130 mM Na

+
 Salt Solution

S
he

ar
 M

od
ul

us
 (

P
a)

 

Complex Shear Strain (%)

 Shear modulus (elastic component)(Pa) - 1Hz

 Shear modulus (viscous component)(Pa) - 1Hz

 Shear modulus (elastic component)(Pa) - 20Hz

 Shear modulus (viscous component)(Pa) - 20Hz

     
0.01 0.1 1

10

100

1,000

10,000
P

11
- 8 at GAG molar ratio 1:16 in the 130 mM Na

+
 Salt Solution

S
he

ar
 M

od
ul

us
 (

P
a)

 

Complex Shear Strain (%)

 Shear modulus (elastic component)(Pa) - 1Hz

 Shear modulus (viscous component)(Pa) - 1Hz

 Shear modulus (elastic component)(Pa) - 20Hz

 Shear modulus (viscous component)(Pa) - 20Hz

0.01 0.1 1

10

100

1,000

10,000

100,000
P

11
- 8 at GAG molar ratio 1:64 in the 230 mM Na

+
 Salt Solution

S
he

ar
 M

od
ul

us
 (

P
a)

 

Complex Shear Strain (%)

 Shear modulus (elastic component)(Pa) - 1Hz

 Shear modulus (viscous component)(Pa) - 1Hz

 Shear modulus (elastic component)(Pa) - 20Hz

 Shear modulus (viscous component)(Pa) - 20Hz

      
0.01 0.1 1

10

100

1,000

10,000

100,000
P

11
- 8 at GAG molar ratio 1:16 in the 230 mM Na

+
 Salt Solution

S
he

ar
 M

od
ul

us
 (

P
a)

 

Complex Shear Strain (%)

 Shear modulus (elastic component)(Pa) - 1Hz

 Shear modulus (viscous component)(Pa) - 1Hz

 Shear modulus (elastic component)(Pa) - 20Hz

 Shear modulus (viscous component)(Pa) - 20Hz

       

0.01 0.1 1

0.1

1

10

100
P

11
- 12 at GAG molar ratio 1:64 in the 130 mM Na

+
 Salt Solution

S
he

ar
 M

od
ul

us
 (

P
a)

 

Complex Shear Strain (%)

 Shear modulus (elastic component)(Pa) - 1Hz

 Shear modulus (viscous component)(Pa) - 1Hz

 Shear modulus (elastic component)(Pa) - 20Hz

 Shear modulus (viscous component)(Pa) - 20Hz

        
0.01 0.1 1

10

100

1,000

10,000

100,000
P

11
- 12 at GAG molar ratio 1:16 in the 130 mM Na

+
 Salt Solution

S
he

ar
 M

od
ul

us
 (

P
a)

 

Complex Shear Strain (%)

 Shear modulus (elastic component)(Pa) - 1Hz

 Shear modulus (viscous component)(Pa) - 1Hz

 Shear modulus (elastic component)(Pa) - 20Hz

 Shear modulus (viscous component)(Pa) - 20Hz

0.01 0.1 1

0.1

1

10

100

1,000
P

11
- 12 at GAG molar ratio 1:64 in the 230 mM Na

+
 Salt Solution

S
he

ar
 M

od
ul

us
 (P

a)
 

Complex shear strain(%)

 Shear modulus (elastic component)(Pa) - 1Hz

 Shear modulus (viscous component)(Pa) - 1Hz

 Shear modulus (elastic component)(Pa) - 20Hz

 Shear modulus (viscous component)(Pa) - 20Hz

       
0.01 0.1 1

0.1

1

10

100

1,000
P

11
- 12 at GAG molar ratio 1:16 in the 230 mM Na

+
 Salt Solution

S
he

ar
 M

od
ul

us
 (P

a)
 

Complex Shear Strain (%)

 Shear modulus (elastic component)(Pa) - 1Hz

 Shear modulus (viscous component)(Pa) - 1Hz

 Shear modulus (elastic component)(Pa) - 20Hz

 Shear modulus (viscous component)(Pa) - 20Hz

 

Figure 53: The amplitude sweeps (elastic and viscous modulus vs. shear strain) of P11- 4, 
P11- 8 and P11- 12: GAG mixtures at 10 mg.ml-1 in 130 mM and 230 mM Na+ salt solutions. 
Shear strain started at 0.01 % and ramped up to 100% at a temperature 370C. Shear strain 
chosen within the LVER was: (A, B, C & D=0.15 %, E=0.17 %, F=0.1 %, G=0.15 %, H=0.3 %, I, 

J, K & L=0.15 %).   
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Figure 54: The effect of varying the Na+ ion concentration (130 mM or 230 mM) and GAG 
molar ratio (1:16 and 1:64) on the mechanical stiffness of the P11-4, P11-8 and P11-12: GAG 
mixtures. Temperature 37oC. Frequency sweep tests between 1Hz and 20Hz for the P11-4, 

P11-8 and P11-12 at GAG molar ratio of 1:16 and 1:64 in the: (A, C & E) 130 mM Na+ salt 
solution & (B, D & F) in the 230 mM Na+ salt solution, (G) Shear modulus extracted 1Hz 
for the P11-4, P11-8 and P11-12 at GAG molar ratio of 1:16 and 1:64 in both 130 mM and 

230 mM Na+ salt solution. Data is presented as the mean (n=3) ± 95% confidence intervals. 
Individual samples were subject to an amplitude sweep before commencing the test, in 

order to identify the linear viscoelastic region (LVER). A strain value was then chosen within 
the middle region of the LVER and the shear moduli (elastic and viscous) were all calculated 

by running a frequency sweep test between 1Hz & 20Hz. 
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3.4.3.3 Shear modulus of chondroitin sulfate alone 

In order to understand the effect of the GAG, rheological studies of chondroitin sulfate alone 

in both 130mM and 230mM Na+ salt solutions were carried out. The lowest (4.85 mg.ml-1) 

and highest (22.1 mg.ml-1) concentrations of chondroitin sulfate were used (see Table 14). 

These concentrations were deemed as a good starting point to determine whether the GAGs 

alone had any mechanical properties. All samples were made up as described in Section 

3.3.5.2.3. All the GAG solutions regardless of their concentration or the Na+ salt solution they 

were in, formed clear runny liquids as shown in Figure 55. 

Peptide 
Weight 

of GAG 
(mg.ml-1) 

130 mM Na+ Salt Solution 230 mM Na+ Salt Solution 

GAG 

4.85 

  

22.1 

  

Figure 55: Varying concentrations of chondroitin sulfate (4.85 mg.ml-1 and 22.1 mg.ml-1) in 
130 mM & 230 mM Na+ salt solutions. Images captured 2 days after the solutions were 

prepared before testing on the rheometer (n=3).  

The amplitude sweep in both the 130 mM and 230 mM Na+ salt solutions (Figure 56A - D), 

showed that chondroitin sulfate at both the highest (22.1 mg.ml -1) and lowest (4.85 mg.ml-1) 

concentration had a very large LVER. This indicated that the gels could undergo higher strains 

before there was a breakdown in the molecular structure. However, the shear moduli values 

were among the lowest in this study, hence the stiffness of these liquids was very low.  A 

strain value of 10% was chosen to carry out the frequency sweeps for all samples ( Figure 57A 

& B). The shear moduli in the frequency sweep spectrum varied drastically across the 

frequency range (1Hz to 20Hz). This behaviour was observed across both chondroitin sulfate 

concentrations in both Na+ salt solutions, in which the viscous moduli and the elastic moduli 

crossed over at various points, eventually converged or in most cases the viscous moduli 

were higher than the elastic moduli, indicating that the suspensions formed had a more liquid 

nature than solid. This agreed with the physical properties (Figure 55) of the suspensions 

made, which were all liquid. 
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Figure 56: Amplitude sweep: Elastic and viscous modulus vs. shear strain of chondroitin 
sulfate in both the 130 mM and 230 mM Na+ salt solutions at concentrations of 4.85 and 

22.1 mg.ml-1. Starting shear strain: 0.01%, end shear strain: 100%, Temperature 370C. Shear 
strain chosen within the LVER for frequency sweep was 10% for all samples. Data presented 

as the mean (n=3) ± 95% confidence intervals.  

 

 

Figure 57: Frequency sweep: Elastic and viscous modulus vs. frequency of chondroitin 
sulfate in both the 130 mM and 230 mM Na+ salt solutions at a concentration of 4.85 and 

22.1 mg.ml-1. Starting frequency: 1Hz, end frequency: 20Hz, Shear strain: 10%, 
Temperature 370C. Data presented as the mean (n=3) ± 95% confidence intervals.  
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3.4.4 Summary of the effect of GAG molar ratio and Na+ salt solution on 

the elastic shear modulus (G’) of the peptide and PEP: GAG mixtures.  

A summary of the effects of two GAG molar ratios (1:16 and 1:64) and two Na+ salt solutions 

(130 mM and 230 mM) on the elastic shear modulus of the peptides alone and the peptide: 

GAG mixtures at 1 Hz, is presented in Table 27. The data clearly showed that P11-4, P11-8 and 

their PEP: GAG mixtures had the stiffest gels. 

Table 27: Summary table of the elastic shear modulus (G’) of the peptides alone and the 
PEP: GAG mixtures at 1 Hz.  

 Elastic shear modulus (G’) (Pa) 

Peptide alone 1:16 GAG 1:64 GAG 

130 mM 230 mM 130 mM 230 mM 130 mM 230 mM 

P11-4 10,282 ± 

2,047 
9,951 ± 

880 
4,480 ± 

377 
10,190 ± 

2,385 
7,930 ± 

1,774 
10,720 ± 

3,032 
P11-8 24,604 ± 

8,943 
53,173 ± 

2,398 
7,722 ± 

1,087 
8,468 ± 

404 
26,854 ± 

2,737 
23,515 ± 

4,891 
P11-12 24 ±  

4 
5,608 ± 

867 
1,813 ± 

124 
502 ±  

186 
47 ± 

 5 
130 ± 

82 

The data is presented as the mean (n=3) ± 95% confidence intervals. 

3.5 Discussion  

A peptide-hydrogel biomaterial for use in the regeneration of osteoarthritic cartilage should 

be able to form self-supporting gels in a physiological environment, show characteristic 

morphology similar to that of proteoglycan structures found in native cartilage and be strong 

enough to remain in the area to which it is applied. In this study, it was hypothesised that 

GAG chains at different molar ratios would not only interact electrostatically with the 

charged self-assembling peptides but also with the two ionic salt solutions. To gain a better 

understanding of whether such interactions were possible, the rheological data from this 

study was considered alongside the data from the studies of the self-assembly of the peptide-

GAG mixtures using FTIR, and the morphological assessment of the peptide-GAG mixtures 

using TEM. 

Initial experiments of the peptides alone in two different Na+
 salt solutions (130 mM Na+ salt 

solution and 230 mM Na+ salt solution); gave an insight of how the three peptides would 

behave under normal physiological conditions and also within the environment of the 

surface layer of articular cartilage. Despite the difference in the percentages of β–sheet 

formation between the peptides, they all exhibited characteristic networks of entangled 

fibrils, which were indicative of self-sustaining gels as supported by the TEM images. 

Increasing the ionic strength of the Na+ salt solution had different effects on the three 

peptides. Decreases in the percentage of β-sheet formed in P11-4, at increased ionic strength 
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could have been due to the monovalent cation interaction in the unassembled (monomeric) 

state. The monovalent cations could have interacted with the negatively charged peptide, 

forming an electric layer around the negatively charged monomer; which in turn would have 

increased the translational ( trans) energy barrier, preventing self-assembly. Similarly, 

increases in the β-sheet formed for P11-8 and P11-12 at higher ionic strength, could be 

attributed to the net positive charge of these monomeric peptides; which could have caused 

local repulsion of the monovalent cations, thus, not incurring an increase in the translation 

energy barrier. This study highlighted the potential effects of the surrounding ionic 

environment on the biochemical properties of the peptides.  

A similar study carried out by Carrick et al., showed the effect that ionic strength had on the 

self-assembly, morphology and gelation of pH responsive 𝛽-sheet tape-forming peptides 

(Carrick et al., 2007). This study emphasised the effect that the physiological-like conditions 

(130mM NaCl in D2O – no other salts added), had on the transition from fluid solutions with 

monomeric random coil, to gels with an anti-parallel 𝛽-sheet structure. The shifts in the 

transitions experienced by P11-4, P11-8, & P11-12 (Figure 58), as a result of an increase in the 

ionic strength, were attributed to the screening of electrostatic repulsions between the 

positive and negative side chains of the individual peptides; rather than a change of the 

deprotonation behaviour of the amino acid side chains or the net peptide charge. 

This can be quantified by the DLVO theory, which predicts that the addition of salts will 

screen charged groups from each other and therefore decrease the Debye length of the 

solvent (Caplan et al., 2000; Caplan et al., 2002). The behaviour of this P11-X series of peptides 

is consistent with this theory, however, the effects of different concentrations of salts or 

different types of counter ions was not studied by Carrick et al. (2007). They did comment 

that the use of ions with a greater charge (usually divalent ions), which have a larger Debye 

radius (divalent ion vs univalent ions), allow the divalent ions to screen the electrostatic 

interactions over a larger range. Possibly affecting the overall self-assembly mechanism, 

which could explain the results presented here. 
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Figure 58: Self-assembly behaviour of P11-4, P11-8 and P11-12 in 130 mM Na+ salt solution 
with no other salts. (a) Percentage of β-sheet of the peptides determined by FTIR (●) and 

NMR (▲) as a function of pD in D2O. (b) Percentage of β-sheet of the peptides determined 
by FTIR (○) and NMR (Δ) as a function of pD in 130mM NaCl in D2O, adapted from (Carrick 

et al., 2007).  

Although initial studies showed promising results, in terms of peptide ability to form self-

supporting gels in two different Na+ salt solutions; the aim was to mix the peptides with 

chondroitin sulfate (GAGs) with the goal of restoring the biomechanical properties of OA 

cartilage. These highly negatively charged molecules could potentially interfere with peptide 

self-assembly and therefore this required investigation.  

The FTIR data showed that a small addition of GAG, could either increase or decrease the 𝛽-

sheet percentage and also, in some instances disrupt the ability of the peptides to self-

assemble. In the case of P11-4 in 130 mM Na+ salt solution, the decrease in 𝛽-sheet, after a 

small addition of GAG (1:64), could be explained by the interaction of the highly negatively 

charged GAG molecules with the negatively charged peptide, increasing the translation 

energy required, hence limiting the self-assembly. However, in the 230 mM Na+ salt solution 

a similar effect was observed, which could be explained by the screening of electrostatic 

repulsion between the positive and negative side chains of P 11-4 with the increasing 

Peptides In D2O 130mM NaCl in D2O Key 
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concentration of Na+ ions. Nevertheless, the addition of increased amounts of GAG seemed 

to drive the assembly further. 

Similarly, in the case of P11-8, the addition of the higher GAG molar ratio (1:16) not only 

increased 𝛽-sheet formation but also formed self-sustaining hydrogels, which was not the 

case with P11-12. This behaviour could be explained by the inherent design of the peptide 

amino acid sequence. P11-4 and P11-8 each contain four glutamine residues, which means 

they contain four hydrogen acceptor sites and four hydrogen donor sites each ( Figure 59). 

Therefore, they can form eight intermolecular hydrogen bonds which have favourable 

enthalpy. This is termed the polar zipper effect. P11-12 has four serine residues, which only 

have two hydrogen acceptor sites and two hydrogen donor sites (Figure 59), therefore, P11-

12 can only form four intermolecular bonds, which has less favourable enthalpy. In addition, 

the hydroxyl functional group of serine, also has a high affinity to hydrogen bond with 

deuterium oxide (another form of water). This results in deuterium oxide competing for 

hydrogen bond interactions with the peptides containing serine residues, in turn causing self-

assembly to be less favourable. The latter could explain why the P11-12: GAG mixture, had 

such low 𝛽-sheet formation, lacked fibrillary morphology and did not form self -sustaining 

hydrogels.  

 

Figure 59: Amino acid residues: a) Glutamine residue b) Serine residue. 

A study by Miles et al., also looked at the percentage of β-sheet content within P11-4, P11-8 

and P11-12 in the presence of GAGs. The commented that the addition of larger amounts of 

GAG did not inhibit the P11 peptides self-assembly, which is somewhat contrary to what was 

found in this study. However, is it very important to note that Miles et al., tested the peptides 

in only a 130 mM NaCl in D2O, whereas in our study we investigated two salt solutions 

containing varying amounts of physiological salts as well as two GAG molar ratios. Therefore, 

difference seen between the two studies are attributed to the difference in physiological 

solutions used to reconstitute the peptides.   

As with all techniques, FTIR has its limitations especially when use d to analyse peptide 

hydrogels (Kubelka and Keiderling, 2001) as these biomaterials are very sensitive to the way 

O 

NH2 
O 

H 

a) b) 
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they are treated. The biphasic solutions/gels analysed in the FTIR can dissociate upon the 

application of mechanical force between the CaF2 discs, resulting in sheer thinning, therefore 

leading to a disproportionate amount of gel and fluid between the IR discs, which could lead 

to inaccurate determination of β-sheet content. However, every effort was made to reduce 

this with the use of a known path length of 0.25mm. Nevertheless, due to the concentration 

regime and aqueous salt conditions used, FTIR was the only available means to assess the 

conformation of the system studied. Despite the possible limitations of the technique , FTIR 

analysis clearly highlighted that two of the three SAPs (P11-4 and P11-8) demonstrated a 

greater percentage of β-sheet in the presence of the GAG at 130mM and 230mM Na+ salt 

concentrations, when compared to P11-12. This higher percentage of β-sheet, demonstrated 

that self-assembly had taken place under physiological conditions, making P11-4 and P11-8, 

good candidates to take forward into biological studies, depending on their fibril morphology 

and biomechanical properties. The formation of peptide gels is subject to a difference in the 

kinetics of self-assembly which can be influenced by the surrounding conditions and the 

molar ratio of GAG. Therefore, the values of β-sheet percentage presented in this study may 

not be indicative of values that the peptide and peptide-GAG mixtures may have achieved, if 

they had been left to reach a full equilibrium state.  

When considering the overall morphology of the SAPs and SAP-GAG mixtures, it was 

observed that generally those peptides and peptide-GAG mixtures that exhibited higher β-

sheet formation tended to exhibit denser networks of fibrils and fibres, with a greater 

proportion of junction points. The presence of these nanofibrilar networks with interwoven 

morphology indicated the formation of self-supporting hydrogels. However, this was not the 

case for P11-12 at both GAG molar ratios and in both Na+ salt solutions. This peptide 

precipitated out of solution and formed solid white flocculates, some of which were 

observed in the TEM images for P11-12.  These clumps appeared to interact with each other 

to form bundles and small networks as was the case in the other gels. The low percentage of 

β-sheet formation exhibited in the FTIR analysis could be linked to the irregular fibril 

morphology and this may have been due to the unexpected formation of nanotubes, 

although these were not widely observed.  

The changes seen in β-sheet percentage and morphology; as a result of increasing the Na+ 

ion concentration could have been due to the increased amount of positively charged sodium 

ions present in the salt solutions. This could have been as a result of the interactions with 

the differently charged peptide residues, which in theory could have inhibited or promoted 

the formation of β-sheet secondary structure as well as fibril formation. Moreover, the 

presence of other cations and anions, present within these Na+ salt solutions could also have 
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played a role in the interaction with the differently charged peptide residues and also have 

had positive or negative impacts on the peptide self-assembly and fibril morphology.  

It is important to consider that the variations and trends observed in the widths and lengths 

of the SAPs and SAP-GAG mixtures, may not have been directly related to the concentration 

of GAGs and Na+ ions present in the salt solutions; due to the nature by which the peptides 

were processed for imaging. Peptide and peptide-GAG samples were left to dry before TEM 

analysis and therefore it is possible that the drying process could have had an effect on the 

fibril/fibre formation and/or association and hence affected the fibril widths and lengths. 

Nevertheless, the TEM images showed that P11-4 and P11-8 alone and with GAG, 

demonstrated a characteristic network of entangled fibres/fibrils; an indicator that the SAPs 

had undergone hierarchical self-assembly to form these structures. Despite having some of 

the longest and thickest fibrils, P11-12, did not demonstrate this characteristic network and 

hence would not be considered a good candidate for future studies as when coupled with 

the FTIR analysis, it would appear that the GAGs affected the self-assembly and morphology 

of P11-12, which was not desirable for the intended application. 

Previous studies with the same peptides have shown that the addition of GAG molecules, 

also enhanced the thermodynamic stability of the aggregates, increased β-sheet content and 

also acted as a trigger for peptide gelation, especially with the positively charged peptides 

(P11-8 and P11-12) (Miles et al., 2016). Miles et al. commented that electrostatic interactions 

could not be the sole reason to explain why there were favourable peptide-GAG interactions. 

The authors discussed the potential of other interactions, such as hydrogen bonding 

between the GAGs and peptides, which helped explain how the GAGs also enabled the self-

assembly of like-charged anionic peptides (P11-4). The authors were able to support their 

theory through the testing of polyethylene glycol (PEG) polymers with different molar ratios 

of GAG. There were no comparable improvements in the gelation kinetics when compared 

to the P11-X, peptides, therefore it was concluded that the GAG must also be interacting 

directly with the peptide via physical bonds to enhance the gelation kinetics, which could 

explain the trends observed in the study presented here.  

The P11-x peptides were studied in two different GAG molar ratios (1:64 and 1:16) and Na+ 

salt solutions (130mM and 230mM Na+ salt solution). Each solution contained a different 

concentration of Na+ ions, as well as other salts found in cartilage tissue (Urban, 1994), as 

these particular conditions had not been studied previously. The FTIR and TEM analyses 

showed the combined effects that the ionic Na+ salt solutions and the negatively charged 

GAG had on the self-assembly and morphology (fibril formation) of the P11-x peptides. It was 
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hypothesised that these changes in microscopic structures, would lead to changes in the bulk 

mechanical properties of these peptide hydrogels and hence a rheological study was able to 

determine these differences in mechanical properties. Peptide only and GAG only controls 

were also tested in order to determine the effect that the addition of GAG and different Na+ 

salt solution had on the shear moduli. 

The rheological studies were not only able identify the molar ratio of SAP-GAG that gave 

favourable biomechanical properties, but also showed the effect that the presence of GAG 

chains had on the mechanical stiffness of the SAP hydrogels as a function of GAG 

concentration. Perusal of the data revealed the combined effect of the three variables 

(peptide, GAG molar ratio and Na+ salt concentration) had an effect on the overall shear 

modulus at 1Hz. It is also important to comment on the data for the GAG controls where it 

was confirmed that, regardless of the concentration of GAG added to the 130 mM and 230 

mM Na+ salt solutions, the samples exhibited no mechanical strength. Therefore, the GAG 

on its own had negligible stiffness, when compared to the peptide on its own and the 

peptide-GAG mixtures. This supported previous hypotheses that the mechanical properties 

observed for the peptide-GAG mixtures were due to interactions between the negatively 

charged GAG and the positively/negatively charged peptides as well as their interaction with 

the surrounding ionic Na+ salt solution. Given the two physiological environments that these 

peptides were tested under, it was clear that the addition of the GAG allow ed for the 

mechanical properties of the peptide hydrogels to be tuned over a range of up to four orders 

of magnitude (Table 27). In all peptide samples tested, the elastic component was found to 

be greater than the viscous component, demonstrating solid-like behaviour of these 

hydrogels and in some cases, even exhibiting shear thinning characteristics that may be 

advantageous for their future uses in cartilage regeneration. Of the three SAP-GAG mixtures, 

it was clear that two of the peptide hydrogels were more favourable, P114 and P11-8, of which 

P11-8 was the stiffest. Overall when comparing the behaviour of P11-8 in both cases (Case 1: 

In both 130 mM and 230 mM Na+ salt solutions, with Case 2: In both 130 mM and 230 mM 

Na+ salt solutions with the addition of two GAG molar ratios); the addition of the GAG had a 

very different effect depending on the ionic strength of Na+ salt solution that the peptide was 

in. In the 130 mM Na+ salt solution, P11-8 at the lower molar ratio of GAG (1:64) had a positive 

effect on the moduli. Whereas, at the higher molar ratio of the GAG (1:16), it seemed to have 

a detrimental effect on the moduli. The latter was also true for both molar ratios of GAG in 

the 230 mM Na+ salt solution. Nevertheless, P11-8 in both the 130 mM and 230 mM Na+ salt 

solutions at the lowest GAG molar ratio exhibited an elastic modulus of around +23,000 Pa; 

which was relatively high for a gel made of soft matter. The bundles of aggregates captured 
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in the TEM images of P11-8 in both Na+ salt solutions (130 mM and 230 mM) at a GAG molar 

ratio of 1:64, showed areas of denser bundles of fibrilar networks, indicating that there that 

there were higher number of junction points. This observation supported the results of the 

rheological study.  

The mechanical properties of the SAP-GAG mixtures were influenced by the ionic interactions 

between the negatively charged GAGs and the positively/negatively charged peptides as well 

as their interaction with the surrounding ionic Na+ salt solution. This study showed that the 

addition of another charged bio-polymer and the change in the ionic strength of the 

surrounding solution had a large effect on the stiffness of the individual peptide hydrogels 

by either promoting a greater number of entanglements in particular peptides or by 

inhibiting the peptides ability to form entanglements and junction points. The addition of the 

GAG not only provided the high charge found in native tissue, which contributes to the 

hydration and function of cartilage, but at certain molar ratios, it improved the rheological 

properties of some of the resulting gels. Increasing the Na+ ion concentration (as found in 

the surface of cartilage), allowed for the investigation of how the peptides would behave in 

in vivo conditions and also the effect that this had on the rheological properties of the 

resulting gels. Overall in this study, higher concentrations of GAG (1:16) decreased the gel 

stiffness of the glutamine-based peptides (P11-4 and P11-8). However, at lower GAG 

concentrations (1:64) the stiffness of the P11-4 gels was slightly improved, but more so in P11-

8 gels. Nevertheless, the corresponding peptides alone were generally mechanically stiffer. 

By contrast, for the serine-based peptide (P11-12) gel stiffness was increased at high GAG 

concentrations, but the stiffness values were still much lower than the glutamine based 

peptides. 

A similar study carried by Miles et al. at the University of Leeds, also showed that the GAG 

can have a great effect on the shear modulus of the peptides (Miles et al., 2016). Although 

the solution used was made up in differently to the one in this study, the authors also 

commented that at higher GAG concentrations the shear modulus of the peptides decreased, 

when compared to the peptides with lower GAG concentrations. The authors also 

commented on how the presence of the GAGs not only affects the peptide interaction but 

also has an effect on their microscopic structure. Specifically concluding that the shear 

modulus of the peptide gels was related to the thickness of the fibrils and/or the number of 

junction points between the interacting fibrils, which in turn is dependent on the density of 

the chains, their width and length and cross-linking affinity at the junction points. A 

conclusion which strongly agreed with the findings in this study.  
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The equilibrium shear modulus of cartilage has been quoted to be in the range of 0.05 to 

0.25 MPa (Athanasiou et al., 2009). Our strongest peptide and peptide: GAG gel was P11-8 

(1:64 GAG molar ratio), with an elastic shear modulus of approximately 0.027 MPa, which 

doesn’t put it far off the shear modulus of healthy cartilage. Bearing in mind that the gels are 

made of soft matter and have only been tested in an environment that is meant to mimic the 

internal environment of the knee, these peptide: GAG gels have a potential to improve the 

biomechanical properties of GAG depleted condylar cartilage.  

New SAP-GAG hybrid materials have been developed with adjustable mechanical properties. 

Their ability to self-assemble and the incorporation of chondroitin sulfate, at the correct 

molar ratio makes them feasible candidates for a minimally invasive therapy to aid in the 

restoration of mechanical properties to early stage osteoarthritic cartilage. FTIR and TEM 

studies have highlighted the SAP-GAG combinations that were able to form characteristic 

self-supporting gels able to produce characteristic entangled fibrillary networks similar to 

those found in native cartilage. Alongside this, the rheological studies at (1Hz) determined 

that P11-4 and P11-8 peptide-GAG combinations, were among the stiffest.   

The combination of these studies has identified that two of the three SAPs demonstrate all 

of the three favourable properties: high β-sheet percentage, characteristic entangled fibrilar 

networks and a high stiffness coefficient. 

In conclusion, the data presented in this study indicates that P11-4 and P11-8-chondroitin 

sulfate mixtures have properties which make them suitable candidates for further 

investigation for their capacity to restore the biomechanical properties of GAG depleted 

tissues, such as early stage OA cartilage.  
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Chapter 4 Development of GAG depleted cartilage models   

4.1 Introduction  

In order to be able to test the ability of the peptide and peptide-GAG mixtures to restore the 

mechanical properties of GAG depleted cartilage, it was necessary to deve lop an 

osteoarthritic-like cartilage model. Several studies have used GAG-depleting enzymes, such 

as chondroitinase ABC (CaseABC) to selectively degrade specific proteoglycans of articular 

cartilage to study their role in the biomechanical responses of the tissue and also to create 

osteoarthritic-like cartilage models, to test novel cartilage regeneration therapies (Schmidt 

et al., 1990; Chen et al., 1997; Pickard et al., 1998; Basalo et al., 2004; Basalo et al., 2005; 

Sasada et al., 2005; Katta et al., 2008). Chondroitinase ABC (Case ABC) at pH 8 has been 

shown to degrade chondroitin sulfate A, B and C at greater rates than chondroitin and 

hyaluronic acid. It does not breakdown other GAGs such as heparin, keratan sulfate or 

heparan sulfate (Yamagata et al., 1968). Other studies have shown that the use of SDS within 

decellularisation processes can also severely deplete the levels of GAGs wi thin porcine 

cartilage tissues (Stapleton et al., 2008; Kheir et al., 2011). The number of sodium dodecyl 

sulfate (SDS) washes and the concentration of SDS determine the levels of GAGs removed, 

however the use of high concentrations of SDS (1.0-2.0% w/v) can also lead to disruption of 

matrix proteins and collagen fibres (Samouillan et al., 2000; Elder et al., 2010; Kheir et al., 

2011). These damaging effects can be minimised by using low concentration SDS (0.1 % w/v; 

Stapleton et al., 2008; Kheir et al., 2011). Therefore, the use of chondroitinase ABC and low 

concentration SDS were investigated for the development of GAG depleted cartilage models 

in this study. 

4.2 Aims and objectives  

The aim of the research described in this chapter was to create a GAG depleted cartilage 

model and characterise the model biochemically and histologically.  

4.2.1 Objectives  

1) To develop a procedure that would consistently remove GAGs from native porcine 

femoral condylar cartilage to create femoral condyles with GAG depleted cartilage.  

2) To determine the GAG content of native porcine femoral cartilage and GAG depleted 

porcine femoral cartilage. 
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3) To characterise the GAG depleted porcine femoral cartilage using histology and to 

compare the histological features to those of native porcine femoral cartilage.  

4.3 Experimental Methods 

4.3.1 Acquisition of porcine femoral condyles  

Porcine femoral condyles were acquired, dissected and stored as described in Chapter 2; 

Section 2.2.2.2 to 2.2.2.4.  

4.3.2 Treatment of porcine femoral cartilage with chondroitinase ABC. 

The enzyme chondroitinase ABC was used throughout this thesis for the depletion of GAGs 

from porcine femoral cartilage, unless otherwise stated.  

As recommended by the supplier, chondroitinase ABC (Case ABC from Proteus vulgaris, 

Sigma) was made at the required concentration with an aseptically prepared buffer solution 

at pH 8, with the addition of antibiotic solution to inhibit microbial growth and a proteinase 

inhibitor, aprotinin, to prevent autolysis of the ECM proteins. The effect of the CaseABC 

treatment on the GAG content of the femoral condylar cartilage was determined using the 

dimethylmethylene blue assay (DMB assay), outlined in Chapter 2; Section 2.2.5.3.1. 

4.3.2.1 GAG depletion of cartilage tissue 

Reagents:  

• Bovine serum albumin (BSA) 2% (w/v) solution. BSA (10 mg) was dissolved in 0.5 ml 

of distilled water (dH2O). 

• BSA solution 0.01% (w/v). BSA (10 mg) was dissolved in 100 ml of dH2O. 

• Buffer solution (pH 8) Trizma base (0.61 g; Sigma) and 0.49 g of sodium acetate 

(Thermo Fisher) were dissolved in 50 ml of dH2O. The pH was adjusted to 8 by 

adding 6M HCL or 6M NaOH drop-wise. 

• Antibiotic solution: (Working concentration: nystatin [250 U.ml-1], gentamicin [20 

U.ml-1], Polymixin B [200 µg.ml-1], vancomycin [50 µg.ml-1], Primixin I.V [200 µg.ml-1], 

amphotericin B [25 µg.ml-1], aprotonin [10 KIU.ml-1]). Gentamicin (1 mg), 10 mg 

Polymixin B, 2.5 mg of vancomycin and 10 mg of Primixin I.V were dissolved in 1250 

µl of nystatin, 10 µl of aprotonin, 5 ml of amphotericin B and 0.5 ml of 2% (w/v) BSA 

solution. The final solution was aliquoted into 0.7 ml volumes into sterile Eppendorf 

tubes. 
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• Hank’s balanced salt solution (HBSS) with 1 mM Zn2+ and penicillin/streptomycin 100 

µg.ml-1. ZnCl2 (78.3 g) was dissolved in 28 ml of sterile HBSS. This solution (25 ml) was 

filter sterilised and 10 ml of penicillin/streptomycin (neat as supplied by the 

manufacturer) was added. This was carried out aseptically in a class II cabinet.  

The Case ABC (10 U) was reconstituted by adding 0.5 ml of 0.01% (w/v) BSA solution. The 

reconstituted solution was transferred into a universal container and the volume was made 

up to 5 ml using the 0.01% (w/v) BSA solution. The CaseABC (0.1 U.ml -1) solution was 

aliquoted in volumes of 0.25 ml into Eppendorf tubes. Aliquots were stored at -20 0C until 

needed (max storage: 6 months). 

4.3.2.2 Enzymatic painting of CaseABC agarose gel onto porcine femoral cartilage 

– Model 1 

The CaseABC (0.1 U.ml -1) was mixed with an agarose gel to allow the painting of the Case ABC 

solution onto the surface of the porcine condyle. A control containing just the antibiotic 

solution in the agarose gel was also used. Three porcine femoral condyles (both medial and 

lateral condyles) were used for the application of the CaseABC solution and another 3 for the 

application of the control solution.  

Agarose (15 mg) was dissolved in 4 ml of Case ABC buffer to make a 0.3 % (w/v) solution. The 

solution was placed in the microwave for approximately 30-45 seconds to dissolve the 

agarose. The solution was allowed to cool to 37oC before adding 1 aliquot (0.68 ml) of the 

antibiotic solution followed by 1 aliquot (0.25 ml) of the CaseABC solution. The mixture was 

then vortexed gently to ensure thorough mixing of contents and eventual gelling (viscous 

liquid). The sol-gel was kept at 37oC until time of application. The control gel was prepared 

in the same way except the Case ABC solution was replaced with 0.25 ml of 0.01 % (w/v) BSA 

solution.  

Porcine femoral condyles were transferred to a sterile class II cabinet and placed into a sterile 

pot. An area of interest was marked out by a permanent marker and, using a paint brush, the 

CaseABC gel (or control gel) was generously applied to this area (Figure 60). Condyles were 

returned to their sterile containers and incubated at 37oC for 2 hours. 
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Figure 60: Sterile condyles showing the area of interest marked out in permanent marker, 
Case ABC gel was applied to this area to allow the depletion of GAGs.   

After the 2 hours, another CaseABC agarose gel (or control gel) was prepared as described 

above and re-applied to the femoral condyles in the area of interest and incubated at 37oC 

for a further 2 hours. The process was repeated again and after the 3rd application of the 

CaseABC agarose gel (or control gel), the condyles were incubated at 37oC overnight. 

CaseABC enzyme is inhibited by Zn2+ ions, therefore the following day, the condyles were 

transferred into sterile 250 ml pots and washed twice for 30 min in 200 ml of HBSS Zn 2+ 

solution on an orbital shaker at room temperature with agitation of 240 rpm.  

Cartilage condyles were then transferred to a sterile dissection table. Condyles were clamped 

and two plugs were aseptically removed from each condyle as described in Chapter 2; Section 

2.2.2.3. Cartilage was removed from the bone in both plugs. One plug was used for 

histological analysis (Safranin O staining) and the other for GAG analysis.  

4.3.2.3 Injection of CaseABC solution into porcine femoral cartilage – Model 2 

This method of GAG depletion used the same reagents described in Section 4.3.2. For Model 

2 the enzyme was administered using a 30G needle and syringe to a pre -determined area 

(Figure 61). A control containing just the enzyme buffer solution and antibiotic solution was 

also used. Three porcine femoral condyles (both medial and lateral condyles) were used for 

the injection of the CaseABC solution and another three for the injection of the control 

solution. 

Firstly, 8.1 ml of enzyme buffer was dispensed into a glass universal container and placed in 

a water bath at 37oC. Whilst warming, 2 aliquots (1.4 ml) of antibiotic solution were added, 

followed by 2 aliquots (0.5 ml) of CaseABC solution. The solution was vortexed gently to 

ensure thorough mixing of the contents and kept at 37oC until use. For the control solution, 

CaseABC solution was replaced with 0.5 ml of 0.01 % (w/v) BSA solution. 
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Condyles were transferred to a class II cabinet and placed onto a sterile surface. An area of 

interest was marked out by a permanent marker (Figure 61). Using a 30G needle-syringe the 

femoral cartilage was injected with the CaseABC mixture (or control solution) at 20 locations 

in the pattern shown in Figure 61. Approximately 0.1 ml of the solution was injected at each 

site, holding the syringe perpendicular to the cartilage surface. Injection of the CaseABC 

mixture (or control solution) was carried out slowly into the cartilage, applying a small 

amount of force to the syringe plunger and occasionally pulling in and out simultaneously to 

ensure deposition of the enzyme.   

Treated condyles were then returned to their 250 ml sterile containers and incubated at 37oC 

overnight. The following day condyles were washed twice for 30 min in 200 ml of HBSS Zn2+ 

solution on an orbital shaker at room temperature with agitation of 240 rpm.  

Two plugs were removed from each condyle as described in Chapter 2; Section 2.2.2.3. 

Cartilage was removed from the bone in both plugs. One plug was used for histological 

analysis (Safranin O staining) and the other for GAG analysis (Figure 61).  

                  

Figure 61: Porcine femoral condyle showing the area of interest marked out in permanent 
marker. Schematic to the right shows the pattern in which the CaseABC solution (or 
control solution) was injected to this area to allow the depletion of GAGs. Twenty 

injections were made in each site. 9 mm plugs were taken from each site for histological 
analysis. One plug was used for Safranin O and the other plug was used to GAG 

quantification.  

4.3.3 SDS and PBS washes of porcine condylar cartilage – Model 3 

A series of SDS and PBS washes were carried out in order to deplete femoral condylar 

cartilage of its GAGs. Four methods were developed in model 3. The duration in which the 

femoral condylar cartilage remained in either SDS or PBS changed in each method. Three 

porcine femoral condyles (both medial and lateral condyles) were used for each method in 

this study. Three untreated native porcine femoral condyles (both medial and lateral 

condyles) were used as the control in this study.  
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Reagents: 

• Sodium dodecyl sulfate (SDS) solution (0.1% w/v). SDS (2 g; Sigma) was dissolved in 

2 L of dH2O and 2 ml of aprotinin (Nordic pharma, 10 KIU.ml-1) was then added. 

• Phosphate buffered saline (PBS): PBS tablets (20; Sigma) were added to 2 L of dH2O. 

The pH was adjusted to between 7.2-7.4, by adding 6M HCL or 6M NaOH dropwise. 

The solution was then autoclaved and 2 ml of aprotinin (10 KIU.ml-1) was added. 

• Salt solution (130 mM Na+; as outlined in Chapter 3; Section 3.3.1.3). KCl, (1.04 g), 

1.11 g of CaCl2, 10.29 g of NaCl, 7.06 g of NaHCO3 were dissolved in 2 L of dH2O. 

The method was carried out over four days as described below:  

Day 1: porcine femoral condyles (medial and lateral) were placed into 250 ml plastic sterile 

containers and 200 ml of 0.1% (w/v) SDS was added. Containers were then secured onto an 

orbital shaker using tape. The shaker was placed in an incubator at 37oC and agitated at 240 

rpm. The condyles were incubated overnight.  

Day 2: the SDS solution was replaced with 200 ml of fresh sterile 0.1% (w/v) SDS and the 

samples were returned to the 37oC incubator and agitated at 240 rpm overnight.  

Day 3: the 0.1% (w/v) SDS solution was replaced with 200 ml of fresh PBS containing 

aprotinin. The samples were returned to the incubator at 37oC and agitated at 240 rpm for 

three hours. This step was repeated, followed by a final 24 hour incubation in fresh PBS.  

Day 4: the PBS was replaced with the 130 mM Na+ salt solution and left to soak overnight at 

4 oC with no agitation.  

Two plugs were removed from each condyle as described in Chapter 2; Section 2.2.2.3. 

Cartilage was removed from the bone in both plugs. One plug was used for his tological 

analysis (Safranin O staining) and the other for GAG analysis.  

4.3.4 Histological Characterisation  

In order to allow visualisation of any GAG removal from the cartilage as a result of the 

methods applied in models (1) to (3), histological analysis was performed. This analysis was 

also carried out using native cartilage to observe any differences in GAG distribution. Femoral 

condylar cartilage plugs were extracted from the GAG depleted condyles and native cartilage 

as outlined above. Cartilage tissues were fixed in zinc fixative, processed and sectioned as 

described in Chapter 2; Sections 2.2.3.1 to 2.2.3.3. Sections were placed on slides and were 

stained with Safranin O and fast green.  
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4.3.5 GAG Quantification 

The GAG content remaining in the GAG depleted tissue from models (1) to (3) was measured 

using a DMB assay, to quantify the amount of sulfated sugars remaining within the tissue, as 

described in Chapter 2; Section 2.2.5.3.1. The GAG content of native cartilage samples was 

also determined for a comparison to be made. There were 3 porcine femoral condyles (both 

medial and lateral condyles) for each GAG depleted model and 3 native cartilage samples. 

One plug from each condyle (medial and lateral condyle; GAG depleted and native cartilage) 

was used for the GAG analysis. Samples were weighed 3 times before lyophilisation (wet 

weight) and 3 times after (dry weight) and an average was recorded for the calculation of 

percentage GAG per tissue wet and dry weight, as described in Chapter 2; Section 2.2.5.2. 

4.3.6 SDS Quantification in GAG depleted cartilage (Model 3) 

The SDS concentration within the GAG depleted porcine femoral condylar cartilage was 

measured at four different stages of the process for GAG depletion used in model 3. This was 

carried out to determine the amount of SDS remaining at the end of each process within the 

GAG depleted femoral condylar cartilage. This was important because it was thought that 

residual SDS in the cartilage might affect the self-assembly of the peptides and peptide-GAG 

mixtures. The analysis was performed on solutions that the femoral condylar cartilage was 

immersed in. In addition to reagents listed in Section 4.3.3, the following reagents were used. 

Reagents: 

• Stains-all stock solution (1.8 mM, Sigma E9379, Lot no#BCBM9845V). Stains-all (10 

mg) was dissolved in 10 ml of 50 % (v/v) isopropanol in dH2O. This was then wrapped 

in foil and stored at 40C. 

• Stains-all working solution (90 µm) was made by mixing 1 ml of the stains-all stock 

solution, 1 ml of formamide and 18 ml of dH2O. This was wrapped in foil and stored 

at 40C. 

SDS was dissolved in three different solvents (SDS 0.1% w/v, PBS and 130 mM Na + salt 

solution) at 2 mg.ml -1. These solutions were then serially diluted in the appropriate solvent 

to produce a range of standards from 2 to 2000 µg.ml-1 and a standard curve was produced.  

A clear flat-bottomed 96-well plate was used for the assay, 200 µl of stains-all working 

solution was added to each well and 10 µl of each standard was added in triplicates. The 

following samples were analysed: (1) the last SDS wash; (2) the two three hour PBS washes; 

(3) the one 24 hour PBS wash and 4) the 130 mM soak. One microliter was taken from each 
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solution and added into the 96-well plate in triplicates. The plate was shaken for 2 min and 

the absorbance of each well was measured using a microplate spectrophotometer at 447 

nm.  A graph of SDS concentration against absorbance at 447 nm was plotted using the 

standard solutions. A linear regression analysis was performed and used to interpolate the 

concentration of SDS in the test samples. 

4.4 Results  

4.4.1 Evaluation of native and GAG depleted porcine femoral condyles   

Three different methods for producing GAG depleted cartilage were investigated. Images of 

sections of native porcine condylar cartilage and porcine condylar cartilage that had been 

subject to the three different GAG depletion techniques stained with Safranin O are 

presented in Figure 62, Figure 64, Figure 66 and Figure 67. The GAG content in native porcine 

condylar cartilage and porcine condylar cartilage that had been subject to the three different 

GAG depletion techniques is presented in Figure 63, Figure 65 and Figure 68; with the 

statistical analysis of the data shown in Figure 70.   

4.4.1.1 Model 1  

Images of sections of porcine condylar cartilage that had been painted with Case ABC agarose 

gel and a control agarose-gel without CaseABC; stained with Safranin O are presented in 

Figure 62A & B, respectively. The control cartilage tissue showed characteristi c cartilage 

architecture and cell organisation, throughout the depth of the cartilage tissue, when 

compared with native porcine cartilage tissue. Porcine cartilage that had been treated with 

the CaseABC showed similar histo-architecture compared to the control cartilage tissue and 

native porcine cartilage. It was, however clear from the Safranin O stain distribution that the 

CaseABC treatment had removed some of the GAGs from the surface of the cartilage.  

Measurement of the depth of GAG depletion in all samples (n=3 for porcine condylar 

cartilage painted with CaseABC and n=3 for the control cartilage, painted without CaseABC), 

across 6 different points along the top surface of the cartilage, showed that the average 

depth of GAG depletion was approximately 163 µm from the surface of the cartilage in the 

CaseABC treated cartilage; compared to 8 µm in the control porcine condylar cartilage, which 

had not been treated with CaseABC. The latter was attributed to the lower levels of GAGs in 

the superficial layer of cartilage compared to the mid-zone. The data (depth of the GAG 

depleted surface layer) was analysed using Student`s t-test to test the null hypothesis that 

applying the agarose CaseABC gel did not affect the depth of GAG depletion of porcine 
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condylar cartilage when compared to the cartilage control tissue, treated with only an 

antibiotic agarose-gel. This showed that the depth of GAG depletion was significantly greater 

in the CaseABC treated samples than in the control samples (p=5.3 x 10 -6).  

The GAG concentration per cartilage dry weight of the porcine condylar cartilage painted 

with a CaseABC agarose gel, the control (without CaseABC) and the untreated native porcine 

condylar cartilage, are shown in Figure 63.  The native porcine cartilage had the highest 

average GAG content at 225 ug.mg-1. The average GAG content of the porcine condylar 

cartilage that had been painted with CaseABC (model 1 - 137 ug.mg-1), was lower than the 

GAG content seen in the porcine condylar cartilage that had not been painted with CaseABC, 

(control - 218 ug.mg-1).   
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Figure 62: Safranin O stained sections of GAG depleted porcine condylar cartilage treated with an agarose gel containing CaseABC and antibiotic/aprotinin solution 
(model 1) and a porcine condylar cartilage treated with an agarose gel containing only antibiotic/aprotinin solution (control ). (A) GAG depleted cartilage, (B) Control 

sample. Images to the left were medial condyles sectioned perpendicular to the cartilage surface and images to the right were  lateral condyles sectioned perpendicular to 
the cartilage surface. The middle picture is representative images of perpendicular cross-sections of porcine cartilage plugs, that have been GAG depleted and one that has 

not: (A) GAG depleted, lateral porcine cartilage plug. (B) Control, medial porcine cartilage plug. Scale bars are drawn on individual images so that the depth of GAG 
depletion could be quantified.  

MEDIAL  LATERAL  

(A) 

(B) 

(A) (B) 

(A) (B) 

(A) (B) 

(A) (B) 

(A) (B) 

(A) (B) 

500 µm  500 µm  

500 µm  500 µm  

500 µm  500 µm  

500 µm  

500 µm  

500 µm  500 µm  

500 µm  500 µm  

500 µm  500 µm  



 

 

136 

The data showed that the method used in model 1 of painting agarose gel containing 

antibiotic solution and CaseABC, onto the porcine condylar cartilage surface, reduced the 

average GAG content when compared to the control (without CaseABC) and native porcine 

condylar cartilage, by circa 40 %.  

 

 
Figure 63: GAG content of cartilage from GAG depleted porcine condylar cartilage in 

model 1 compared to the control sample and untreated native porcine condylar cartilage. 
Model 1 consists of porcine condylar cartilage painted with CaseABC enzyme containing 
antibiotic/aprotinin in an agarose gel. The control porcine condylar cartilage was painted 
with buffer containing antibiotic/aprotinin in an agarose gel (without CaseABC).  Data is 

expressed as the mean (n=6) ± 95 % confidence limits and is the average of the medial and 
lateral condyles.  
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4.4.1.2 Model 2  

Images of sections of porcine cartilage tissue subjected to injection of CaseABC containing 

antibiotic/ aprotinin solution and porcine cartilage tissue subjected to injection of antibiotic/ 

aprotinin solution (control), stained with Safranin O are presented in Figure 64A & B, 

respectively. Porcine cartilage tissue treated with both injection techniques showed that 

there was removal of GAG in both groups. It was observed that the sections of the cartilage 

that had been injected with the CaseABC enzyme tended to have a brighter Fast Green stain 

(blue stain) than the sections of the cartilage injected with just the antibiotic/ aprotinin 

solution. The GAG content was measured using the DMB assay.  

The GAG concentration per cartilage dry weight of the porcine condylar cartilage injected 

with CaseABC containing antibiotic/aprotinin solution, antibiotic/ aprotinin solution injected 

only and untreated native porcine condylar cartilage, are shown in Figure 65. The native 

porcine cartilage had the highest average GAG content at 225 ug.mg -1. The average GAG 

content of the porcine condylar cartilage that had been injected with CaseABC (model 2 - 

174 ug.mg-1), was lower than the GAG content seen in the porcine condylar cartilage that 

had not been injected with CaseABC, (control - 201 ug.mg-1). The data showed that the 

method used in model 2 of injecting an antibiotic solution containing CaseABC into porcine 

condylar cartilage, reduced the average GAG content when compared to the control (without 

CaseABC) and native porcine condylar cartilage, by circa 14 % and 23 %, respectively.  
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Figure 64: Safranin O stained sections of GAG depleted porcine condylar cartilage treated with injections of CaseABC containing antibiotic/aprotinin solution (model 
2) and porcine condylar cartilage treated with injections of antibiotic/ aprotinin solution alone (control). (A) GAG depleted cartilage with CaseABC, (B) Control samples. 
Images to the left were lateral condyles sectioned parallel to the cartilage surface and images to the right were lateral condyles sectioned perpendicular to the cartilage 
surface. The middle picture is representative images of perpendicular cross-sections of porcine cartilage plugs that have been injected with CaseABC and the other with 

an antibiotic/aprotinin solution: (A) GAG depleted, medial porcine cartilage plug. (B) Control, medial porcine cartilage plug.  
Scale bars are drawn on individual images so that the depth of GAG depletion could be quantified.  
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Figure 65: GAG content of cartilage from GAG depleted porcine condylar cartilage in models 2 compared to the control sample and untreated native porcine 
condylar cartilage. Model 2 consists of porcine condylar cartilage injected with CaseABC enzyme containing antibiotic/aprotinin solution. The control porcine 

condylar cartilage was injected with buffer containing antibiotic/aprotinin solution (without CaseABC).  Data is expressed as the mean (n=6) ± 95 % confidence limits 
and is the average of the medial and lateral condyles.
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4.4.1.3 Model 3  

Method Development 

This model underwent some development during which the porcine femoral condyles were 

subject to various cycles of SDS and PBS washes, until the required removal of GAG was 

obtained.  The methods applied during the development of the process are shown below:  

Method 1): One 24 hour wash in SDS and two 24 hour washes in PBS containing aprotinin. 

Method 2): Two 24 hour washes in SDS and two 24 hour washes in PBS containing 

aprotinin. 

Method 3): Two 24 hour SDS washes and three 24 hour washes in PBS containing 

aprotinin. 

Method 4) Two 24 hour SDS washes followed by two three hour washes in PBS containing 

aprotinin and ending with one 24 hour wash in PBS containing aprotinin. 

Images of sections of porcine condylar cartilage, stained with Safranin O that has been 

subjected to method 1 and method 4 are presented in Figure 66 and Figure 67, respectively. 

Untreated, native porcine condylar cartilage was used as the control. Images of porcine 

condylar cartilage treated with method 1 showed that there was partial removal of GAGs, 

mostly in the top layer of cartilage. However, method 1 showed inconsistency in the amount 

of GAG that was removed. On the other hand, images of porcine condylar cartilage that had 

been treated with method 4 showed to have removed the majority of the GAGs throughout 

the depth of the cartilage and seemed to be consistent within the replicates. It was observed 

that the sections of the cartilage that had been subjected to the treatment in method 4, 

tended to have a brighter Fast Green stain (blue stain) than the sections of the cartilage that 

has been subjected to the treatment in method 1. The images of the native porcine condylar 

cartilage showed a consistent red stain throughout the depth of the cartilage, indicating that 

there had been no removal of GAGs.  

The GAG content was measured using the DMB assay. The GAG concentration per cartilage 

dry weight of the porcine condylar cartilage subjected to treatment in methods 1-4 and 

untreated native porcine condylar cartilage, are shown in Figure 68. The average GAG 

content of the porcine condylar cartilage subjected to treatments in methods 1-4 was 58.6, 

58.2, 57.4 and 56.1 ug.mg-1, respectively. This was lower than the average GAG content seen 

in the untreated native porcine cartilage control, 225.1 ug.mg-1. The data showed that the 

treatments used in methods 1 -4 reduced the GAG content of porcine condylar cartilage by 

circa 74 % on average, when compared to the untreated native porcine condylar cartilage 

(control).  
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Figure 66: Safranin O stained sections of GAG depleted porcine condylar cartilage and untreated native porcine condylar cartilage control from model 3. (A) GAG 

depleted porcine condylar cartilage; model 3 – treatment method 1: treated with one 24 hour wash of 0.1 % SDS and two 24 hour washes of PBS + aprotinin, (B) 
Untreated native porcine condylar cartilage (control). Images to the left were medial condyles sectioned perpendicular to the cartilage surface and images to the 

right were lateral condyles sectioned perpendicular to the cartilage surface. The middle picture is representative images of perpendicular cross-sections of porcine 
cartilage plugs, that have been GAG depleted and one that has not: (A) GAG depleted, lateral porcine cartilage plug. (B) Control, lateral porcine cartilage plug. Scale 

bars are drawn on individual images so that the depth of GAG depletion could be quantified.  
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Figure 67: Safranin O stained sections of GAG depleted porcine condylar cartilage and untreated native porcine condylar cartilage control from model 3. (A) GAG 
depleted porcine condylar cartilage; model 3 – treatment method 4: treated with two 24 hour washes of 0.1 % SDS, followed by two three hour washes in PBS + 

aprotinin and ending with one 24 hour wash in PBS + aprotinin, (B) Untreated native porcine condylar cartilage (control). Images to the left were medial condyles 
sectioned perpendicular to the cartilage surface and images to the right were lateral condyles sectioned perpendicular to the  cartilage surface. The middle picture is 

representative images of perpendicular cross-sections of porcine cartilage plugs, that have been GAG depleted and one that has not: (A) GAG depleted, lateral porcine 
cartilage plug. (B) Control, lateral porcine cartilage plug. Scale bars are drawn on individual images so that the depth of GAG depletion could be quantified.  
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Figure 68: GAG content of cartilage from GAG depleted porcine cartilage in model 3. 
Samples tested consisted of porcine condylar cartilage washed using method 1, 2, 3 and 4, 
and untreated native porcine condylar cartilage as a control. Data is expressed as the mean 

(n=6) ± 95 % confidence limits and is the average of the medial and lateral condyles.  

It was hypothesised that residual SDS might affect the self -assembly of the peptides and 

peptide-GAG mixtures; and so its removal would be beneficial to the development of model 

3. Therefore, a study was carried out to investigate SDS concentrations in the solution after 

each wash, in the four methods developed as described in section 4.3.6 and the results are 

presented in Figure 69. 

 

Figure 69: SDS concentration (ug.ml-1) after given SDS and PBS washes in model 3, 
method 4. Readings were taken from the solutions at the end of: 1) the last SDS wash, 2) 

two three-hour PBS washes, 3) one 24 hour PBS wash and 4) 130 mM soak.  Data is 
expressed as the mean (n=3) ± 95 % confidence limits.  

The data showed that the SDS concentration lowered each time a new solution was 

introduced into the wash cycles. After the last two 24-hour SDS washes, also applicable to 
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methods 2-4, the SDS concentration remaining within the solution was reduced by circa 80 

%. After the last two 24-hour PBS washes, also applicable to method 3, the SDS concentration 

remaining within the solution had been further reduced by circa 99.3 %. After the final 130 

mM Na+ salt solution soak the concentration of SDS remaining in the solution had been 

reduced to 99.8 %. The repetitive wash cycles in SDS and PBS used in this study, were an 

effective way of reducing the amount of residual SDS found within the cartilage tissue.  

4.4.2 GAG quantification of native and GAG depleted porcine femoral 

cartilage  

The GAG concentration (g.mg-1 dry weight) of the untreated native cartilage samples was 

compared to the GAG concentration in the GAG depleted cartilage (model 1, model 2 and 

model 3 (method 4)) to determine which of the three models had significantly reduced GAG 

concentrations.  The data is shown in Figure 70. The data was analysed by one-way ANOVA 

followed by post-hoc analysis (Tukey Kramer; p< 0.05) to determine differences between 

group means. This showed that the GAG concentrations in GAG depleted cartilage produced 

in models 1, 2 and 3 had significantly lower GAG concentration when compared to the 

untreated native cartilage control. The GAG depleted cartilage produced using model 3 had 

significantly reduced GAG concentration compared to the GAG depleted cartilage produced 

using model 1 and model 2 but there was no significant difference between the GAG 

concentrations in GAG depleted cartilage produced using models 1 and 2.  
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Figure 70: GAG content of cartilage from GAG depleted porcine cartilage in Models 1 - 3 
vs. native porcine cartilage. Model 1 consisted of porcine condylar cartilage painted with 

CaseABC containing antibiotic in an agarose gel. Model 2 consisted of porcine condylar 
cartilage injected with CaseABC containing antibiotic solution and model 3 consisted of 
porcine condylar cartilage treated with two 24 hour washes of SDS containing aprotinin, 
two 3 hour PBS washes containing aprotinin, one 24 hour PBS wash containing aprotinin 

and a 24-hour soak in 130 mM Na+ salt solution. Data is expressed as the mean (n=6) ± 95 % 
confidence limits. Data was analysed by one-way analysis of variance followed by a Tukey 

Kramer post-hoc analysis to determine differences between group means. *indicates 
p<0.05.  
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4.5 Discussion 

The aims of the studies described in this chapter were to investigate methods for depleting 

the GAG content of porcine femoral condylar cartilage; in order to create a model for the 

testing of SAP: GAG mixtures. The studies investigated the biological and biochemical 

properties of three GAG depleted cartilage models compared to native porcine cartilage. It 

was clear that after treatment model 3 - method 4 produced a severe GAG depleted cartilage 

model, model 2 produced a moderate GAG depleted cartilage model and model 1 produced 

a mild GAG depleted cartilage model.  

To assess the amount of GAG removed, the GAG content of each cartilage model was 

assessed qualitatively with Safranin O staining of tissue sections and quantitatively using a 

colorimetric assay with DMB dye. Qualitatively, all models showed characteristic zonal 

distribution of proteoglycans. However, in model 1, the technique of painting the CaseABC 

enzyme onto the cartilage surface, to deplete the GAGs, only removed the GAGs in the top 

superficial tangential zone (~163 µm). It is thought that the CaseABC enzyme acted through 

diffusion removing only the GAGs in the surface layer. A study by Leddy and Guilak (2003) 

showed that zonal differences in diffusion coefficients of articular cartilage are due to the 

molecular interaction with the ECM molecules, which act as barriers to diffusion. Although, 

the study by Leddy and Guilak (2003), stated that proteoglycans do slow the diffusion of 

larger molecules (> 40 kDa), the cartilage’s relatively low diffusion coefficient in the surface 

zone suggested that other matrix macro molecules such as collagen, may also hinder a 

molecules motion into deeper zones of cartilage (Leddy and Guilak, 2003). Our findings 

corroborate with the latter study as CaseABC has a known molecular weight of 120 kDa, 

which explains why only the top layer (surface zone) of cartilage was affected by the enzyme. 

This theory could also be applied to the effects seen in model 2 whereby the injected enzyme 

appeared to have only diffused locally around the areas into which it had been injected. It is 

likely that diffusion of the CaseABC, was hindered by the molecular interactions with the 

surrounding proteoglycan and collagen network.  

Initially the aim was to create models with varying levels of GAG depletion, so that the SAPs 

and SAP: GAG mixtures could be tested at "various stages of OA". After optimisation, model 

1 achieved a partial/mild depletion of GAGs in the surface layer of cartilage; which was 

somewhat inconsistent. Nevertheless, this approach provided a model that could be 

comparable to cartilage at the very early stages of OA and hence could be a good model to 

test the SAPs and SAP: GAG mixtures in future studies.  Model 2, although it did not create 

cartilage with a significantly lower GAG content than model 1, it was attributed a moderate 
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model of GAG depletion; since the GAGs were clearly depleted in areas of the mid-zone of 

the cartilage, as indicated by the histological analysis.  The levels of GAG depletion in model 

3 (circa 90 % loss of GAGs) throughout the whole depth of the cartilage were severe. 

Therefore, the methodology used for model 3 was considered the appropriate approach for 

creating a reproducible cartilage depleted model, for the future testing of the SAP: GAG 

mixtures. It was hypothesised that if the majority of the GAGs were removed, the 

biomechanical properties of the cartilage would be significantly affected and therefore when 

the SAPs or SAP: GAG mixtures were injected into this model, changes to the biomechanical 

properties would be measurable.   

Removal of residual SDS after treatment in model 3, was a very important factor in the 

development of the model; as it was thought that any residual SDS could hinder the self-

assembly of the SAP: GAG mixtures in future testing. Hence, it was important to optimise the 

washing process following SDS treatment in model 3. An SDS assay was performed on the 

solutions used to wash the cartilage samples. The majority of the previous studies using 

stains-all to measure SDS, reported measured absorbance of SDS at 510 nm (Campbell et al., 

1983; Arand et al., 1992; Rusconi et al., 2001). However, Wilshaw (2006) found that 

measuring the absorbance at 447 nm gave better correlation between the absorbance and 

the concentration of SDS, when producing the standard curve. After the last SDS wash, the 

concentration of SDS in solution was reduced by ~ 80 % (193.8 ug.ml-1). This would have been 

applicable to methods 2-4. In method 4, after the two 3 hour PBS washes and a 24-hour PBS 

wash (which would have been comparable to the three PBS washes in method 3); the amount 

(ug.ml-1) of SDS in the wash solution was reduced by ~99 %. A further 24 hour 130 mM Na+ 

salt solution soak, reduced the amount (ug.ml-1) of SDS in solution by 99.8 %, indicating that 

by the end of all the washes there was only 0.2 % (2.1 ug.ml-1) of SDS remaining in the tissue. 

The additional 130 mM Na+ salt solution soak in method 4 was to ensure that any essential 

ions, that may have been lost over the continuous washes in SDS and PBS, were replenished. 

Therefore, the GAG depleted cartilage would have a more physiologically relevant 

environment, as changes in the ionic composition of the cartilage could lead to changes in 

the self-assembly of the SAP and SAP: GAG mixtures in future studies.  

The use of pig legs sourced from the local abattoirs meant that all tissue used in this whole 

study came from food chain sources. The all parts of the porcine legs were used, from 

ligaments to tiny blood vessels, as well as whole joints such as the knee and ankle. This 

approach to our research tried to encompass the 3R’s approach. Each experiment was 

carefully thought out and all the tissue was used so that none of it went to waste. An example 
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of this was the cartilage plugs taken for histology, whereby from each plug two histological 

evaluations could be carried out reducing the amount of tissue required, which compares 

the three aspects of the 3R principles (replacement, reduction and refinement). 

4.6 Conclusion 

Model 1 (painting of the cartilage surface with CaseABC), showed a mean reduction in GAGs 

of 39 %, when compared to native porcine cartilage; however, the GAGs were only removed 

from the cartilage surface. Nevertheless, a significant reduction in the GAG concentration 

was observed between the test and control cartilage. Model 2 (injection of CaseABC into the 

cartilage), showed a mean reduction in GAGs of 23 % compared to native porcine cartilage; 

however, GAGs were only depleted from the areas in which the CaseABC had been injected. 

Again, there was a significant reduction in GAG concentration between the test and control 

group. Model 3 (washing in SDS and PBS), showed a 75% reduction in GAG concentration 

compared to native porcine cartilage, without any histological evidence of damage to the 

cartilage.  

Based on the findings in this study, model 3 was identified as the most suitable model to take 

forwards for testing whether the SAPs and SAP: GAG mixtures could restore the 

biomechanical properties of GAG depleted porcine condylar cartilage. The next stage of the 

study, was to develop an appropriate methodology for measuring the biomechanical 

properties of the native and GAG depleted porcine condylar cartilage.  
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Chapter 5 Development of methods for the determination of the 

biomechanical properties of native and GAG depleted cartilage. 

5.1 Introduction  

In Chapter 4, different methods were investigated for producing GAG depleted models of 

porcine femoral cartilage. It was found that treatment with SDS was the most appropriate 

method for producing porcine femoral cartilage which was severely (circa 75%) de pleted of 

GAGs. The next stage in the investigations was to determine the effects of GAG removal using 

SDS on the biomechanical properties of the cartilage.  

In order to do this, it was necessary to develop a suitable method for the indentation testing 

of the cartilage which would enable differences in the mechanical properties between the 

native and GAG depleted cartilage to be determined. Indentation tests have been used as an 

analysis tool to determine the displacement of a material such as cartilage to investigate its 

biomechanical properties, specifically creep behaviour under a given load. Indentation tests 

are straight forward to perform experimentally with minimal sample preparation. This has 

made indentation testing a popular technique for the determination of the biomechanical 

properties of cartilage (Kempson et al., 1971; Mak et al., 1987; Mow et al., 1989; Swann and 

Seedhom, 1989; Forster and Fisher, 1996; Pickard et al., 1998; Jin et al., 2000; Rieppo et al., 

2003; Boschetti et al., 2004; Lu et al., 2004) (Stolz et al., 2004; Kleemann et al., 2005; Katta 

et al., 2008; Hall et al., 2009; Abdelgaied et al., 2015). A constant compressive load applied 

to the cartilage surface via an indenter, results in an initial elastic deformation followed by a 

creep deformation, due to the exudation of the interstitial fluid. Initially this exudation occurs 

rapidly, which leads to high rates of deformation, but this decreases gradually as the flow of 

interstitial fluid ceases. Once equilibrium is reached there is no more fluid flow, and the 

applied load is borne mostly by the solid collagen-proteoglycan matrix, with some being 

taken by the interstitial fluid (Mow et al., 1980). As the rate of creep is governed by fluid 

exudation, permeability of the cartilage tissue can be determined. The modulus of the solid 

matrix of cartilage at equilibrium, can also be measured when there is no longer any fluid 

flow, which occurs at the final equilibrium deformation. This type of displacement analysis 

was therefore chosen for this study because GAGs are known to increase the stiffness of 

cartilage and hence resistance to deformation when under load. It was hypothesised that 

removal of the GAGs from porcine condylar cartilage would reduce the compressive stiffness 

of the cartilage tissue, resulting in increased displacement, which could be evaluated using 

indentation testing. 
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Linear biphasic poroelastic finite element models have been developed to simulate creep 

indentation tests. These models have been used to determine the biphasic properties of 

cartilage by sequentially tuning these properties until the model outputs match those of the 

experimental outputs, for example the model used by Addelgaied et al. (Abdelgaied et al., 

2015). This finite element model was derived from supplementary mathematical models 

(Mak et al., 1987; Mow et al., 1989), which were developed so that the permeability and 

equilibrium elastic modulus of cartilage tissues could be calculated. Therefore, this finite 

element model was implemented in this study to determine the equilibrium elastic modulus 

and permeability of native and GAG depleted porcine condylar cartilages.  

Previous studies have used a range of contact stresses ranging from as low as 0.01 MPa to as 

high as 0.28 MPa (Katta et al., 2007; Abdelgaied et al., 2015) as nominal values to study the 

effect of load on the biomechanical properties of cartilage. In this study, it was decided to 

adopt a systematic approach of testing different loads to determine the load that, when 

applied during indentation testing, would result in a significant difference between the 

deformation of the native and GAG depleted cartilages and also reveal differences between 

the equilibrium elastic modulus and permeability. This was important because it was the 

intention to treat the GAG depleted cartilage with SAP: GAGs and investigate the capacity of 

the SAP: GAGs to restore the biomechanical properties to values that were similar to native 

cartilage. The limitations of the experimental indentation test equipment used in this study, 

meant that the highest load that could be applied to the rig was 0.51 N. This load generated 

a contact stress of 0.1 MPa, using a 2.5 mm diameter stainless steel pin; which was only half 

of that used in previous studies. This was primarily due to the space available to insert the 

weights and the weights which were available, which would fit onto the top of the indenter. 

With the weights available, contact stresses of 0.02, 0.06, 0.1 MPa were achieved in this 

study; corresponding to the three loads (0.11, 0.31, & 0.51 N). Therefore, based on the 

previous studies carried out in the Institute of Medical and Biological Engineering at the 

University of Leeds and the limitations to the experimental set-up and equipment; a contact 

stress of 0.1 MPa was chosen initially as a starting point, to investigate the effect of load 

variation on native and GAG depleted porcine condylar cartilage. Although, the contact stress 

levels were at the lower end of the in vivo joint loading spectrum (Brown and Shaw, 1983; 

Mow and Ateshian, 1997; Mow and Hayes, 1997; Rolfe et al., 2006), the low stress levels 

ensured that the tissue deformation remained small with equilibrium strain magnitudes <15 

%. Deformation should be kept to minimum as the model uses a linear biphasic model, which 

assumes permeability is constant with deformation, but this assumption is only valid for 
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small deformation. Furthermore, the computational simulation cannot converge for high 

levels of deformation as some elements will end up with zero volume due to the high 

deformation, therefore giving us an error message in the simulation model. 

5.2 Aims and objectives  

The aim of this chapter was to investigate the effect of load variation during indentation 

testing of native porcine condylar cartilage and porcine condylar cartilage in which the GAGs 

had been depleted using SDS; in order to identify a suitable load for detection of a significant 

difference in the deformation, equilibrium elastic modulus and permeability between the 

native and GAG depleted porcine condylar cartilages.   

5.2.1 Objectives  

1) To systematically test three different loads: low (0.11 N), medium (0.31 N) and high (0.51 

N) during creep indentation testing of native and GAG depleted porcine condylar cartilage 

to evaluate the deformation of the cartilages under the specified loads ove r 60 min.  

2) To determine the thickness of the native and GAG depleted porcine condylar cartilage 

using a needle indentation method. 

3) To use finite element analysis to derive the equilibrium elastic modulus and permeability 

of the native and GAG depleted porcine condylar cartilages from the deformation under 

load and cartilage thickness measurement data under three different loads.  

5.3 Experimental methods 

5.3.1 Acquisition of porcine femoral condyles 

Porcine femoral condyles were dissected and stored as described in Chapter 2; Section 

2.2.2.2 to 2.2.2.4. 

5.3.2 GAG depletion of porcine femoral condylar cartilage  

GAG depleted porcine condylar cartilages were produced using treatment with SDS (method 

4) following the procedure outlined in Chapter 4; Section 4.3.3.   

5.3.3 Biomechanical characterisation of porcine femoral cartilage 

5.3.3.1  Indentation testing - sample and equipment preparation 

Native and GAG depleted samples of porcine femoral condyles were first fixed in PMMA as 

outlined in Chapter 2; Section 2.2.6.1. The deformation over time of the native and GAG 

depleted cartilages were determined using indentation test methods as described in Chapter 
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2; Section 2.2.6.2.  Three porcine condyles (medial and lateral) were used for each test group.  

Indentation testing was carried out under three different loads as described below.  

5.3.3.1.1 Low load - 0.11 N 

The samples were mounted onto the indentation rig as outlined in Chapter 2; Section 2.2.6.1. 

The weight of the shaft (11.69 g) was the only load (0.11 N) acting on the specimens. The 

samples were allowed to equilibrate in PBS for 10 min and the indentation tip (2.5 mm flat 

indenter) was located on the flattest surface of the femoral condyle. The lock holding the 

indenter tip was released and the cartilage was indented with a load of 0.11 N over 1 h as 

described in Chapter 2; Section 2.2.6.2. 

5.3.3.1.2 Medium load - 0.31 N 

An extra weight of 20.2 g (two small discs of 10.1 g) was added to the top of the indenter 

shaft giving a total weight of 31.89 g. The total load applied to the porcine femoral condyle 

specimens equated to 0.31 N. Tests were carried out as described in Chapter 2; Section 

2.2.6.2. 

5.3.3.1.3 High load - 0.51 N 

An extra weight of 40.4 g (two small discs of 10.1 g and one 20.2 g disc) was added to the top 

of the indenter shaft, giving a total weight of 52.09 g. The total load applied to the porcine 

femoral condyle specimens equated to 0.51 N. Tests were carried out as described in Chapter 

2; Section 2.2.6.2. 

5.3.3.2 Cartilage thickness measurements 

Cartilage thickness of the native and GAG depleted cartilage samples was measured using an 

Instron material testing machine and measurements were always taken after indentation, as 

outlined in Chapter 2; Section 2.2.6.4. Samples were allowed to recover in a sealed 

Tupperware box moistened with PBS tissue, which was kept at 40C overnight. 

5.3.3.3 Finite element method for derivation of biomaterial properties of porcine 

condylar cartilage.  

The deformation data obtained from the indentation testing of the GAG depleted and native 

porcine condylar cartilage over time with varying loads, together with the cartilage thickness 

data, were used to derive the equilibrium elastic modulus and permeability of the cartilages, 

as described in Chapter 2; Section 2.2.6.5.   
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5.4 Results  

5.4.1 Cartilage thickness measurements 

For each cartilage group (GAG depleted and native) indented with different loads, the 

cartilage thickness was measured for both medial and lateral condyles. Cartilage thickness 

data for low, medium and high load experiments are presented in Figure 71, Figure 72 and 

Figure 73, respectively. On the whole, no differences were observed in the thickness of the 

cartilage from the medial condyles of the native and GAG depleted samples within each load 

experiment. Similar trends were observed for the thickness of the cartilage from the lateral 

condyles.    

 

Figure 71: Low Load (0.11 N) - Cartilage thickness measurement for native and GAG 
depleted cartilage (n=5). Samples were measured six times in the area of interest after 

indentation. Data is expressed as the mean (n=5) ± 95 % confidence limits.  

 

Figure 72: Medium Load (0.31 N) - Cartilage thickness measurement for native and GAG 
depleted cartilage (n=6). Samples were measured six times in the area of interest after 

indentation. Data is expressed as the mean (n=6) ± 95 % confidence limits.  

 
Figure 73: High Load (0.51 N) - Cartilage thickness measurement for native and GAG 

depleted cartilage (n=3). Samples were measured six times in the area of interest after 
indentation. Data is expressed as the mean (n=3) ± 95 % confidence limits.  
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5.4.2 Percentage deformation 

5.4.2.1 Low load – 0.11 N 

Deformation properties of the GAG depleted and native cartilages (medial and lateral 

porcine condyles) under a load of 0.11 N are shown in Figure 74 and Figure 75. Deformation 

under load over a period of 1 hour is shown in Figure 74 and the final percentage deformation 

at 1 hour is shown in Figure 75, for both medial and lateral condyles.  

  

Figure 74: Percentage deformation of native and GAG depleted cartilage over the 
duration of 1 hour with a load of 0.11 N: (A) Medial condyle (B) Lateral condyle. Data was 

subject to arcsine transformation prior to calculation of the mean and 95 % confidence 
limits. Data is expressed as the back transformed mean (n=5) ± 95 % confidence limits.  

 

 
Figure 75: Final percentage deformation of native and GAG depleted cartilage at 1 hour 

with a load of 0.11 N. Data was subject to arcsine transformation prior to calculation of the 
mean and 95 % confidence limits. Data is expressed as the back transformed mean (n=5) ± 

95 % confidence limits. 

The deformation curves over the duration of 1 hour showed that the GAG depleted medial 

and lateral condylar cartilage deformed more than the native condylar cartilage. The rate of 

initial deformation (0-600 seconds) for the native medial and lateral condylar cartilage was 

slow and steady and reached equilibrium after approximately 1200 seconds. However, the 

rate of initial deformation (0-600 seconds) for the GAG depleted medial and lateral condylar 
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cartilage was slightly quicker and reached equilibrium after approximately 1800 seconds. The 

equilibrium deformation at 1 hour for the native and GAG depleted medial condylar cartilage 

was 2.9 % and 5.7 %, respectively and for the native and GAG depleted lateral condylar 

cartilage it was 3.7 % and 6.5 %, respectively. None of the cartilages tested exceeded 15 % 

deformation. 

In order to compare the percentage deformation of the native and GAG depleted cartilage 

at one hour, the data for the medial and lateral condyles tested at a load of 0.11 N was arc 

sin transformed. The trend seen in the data indicated that the percentage deformation of 

the GAG depleted cartilage was greater than the percentage deformation of the native 

cartilage for both the medial and lateral condyles.  

5.4.2.2 Medium load – 0.31 N 

Deformation properties of the native and GAG depleted cartilages under a load of 0.31 N; 

from both medial and lateral porcine condyles are shown in Figure 76 and Figure 77. 

Deformation under load over a period of 1 hour is shown in Figure 76 and final percentage 

deformation is shown in Figure 77, for both medial and lateral condyles.  

 

Figure 76: Percentage deformation of native and GAG depleted cartilage over the 
duration of 1 hour with a load of 0.31 N: (A) Medial condyle (B) Lateral condyle. Data was 

subject to arcsine transformation prior to calculation of the mean and 95 % confidence 
limits. Data is expressed as the back transformed mean (n=6) ± 95 % confidence limits.   
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Figure 77: Final percentage deformation of native and GAG depleted cartilage at 1 hour 
with a load of 0.31 N. Data was subject to arcsine transformation prior to calculation of the 
mean and 95 % confidence limits. Data is expressed as the back transformed mean (n=6) ± 

95 % confidence limits.  

When tested using a load of 0.31 N, the deformation curves over the duration of 1 hour 

showed that the GAG depleted condylar cartilage deformed more than the native condylar 

cartilage in both medial and lateral condyles. The rate of initial deformation (0-600 seconds) 

for the native medial condylar cartilage was steady and reached equilibrium after 

approximately 1800 seconds. However, the rate of initial deformation (0-600 seconds) for 

the native lateral condylar cartilage was slightly quicker and reached equilibrium after 

approximately 2400 seconds. The rate of initial deformation (0-600 seconds) for the GAG 

depleted medial and lateral condylar cartilage was quicker than in the native condylar 

cartilage. The equilibrium deformation at 1 hour for the native and GAG depleted medial 

condylar cartilage was 6 % and 14.2 %, respectively and for the native and GAG depleted 

lateral condylar cartilage it was 9.8 % and 15.3 %, respectively.  

In order to compare the percentage deformation of the native and GAG depleted cartilage 

at one hour, the data for the medial and lateral condyles tested at a load of 0.31 N was arc 

sin transformed. The trend seen in the data indicated that the percentage deformation of 

the GAG depleted cartilage was greater than the percentage deformation of the native 

cartilage for both the medial and lateral condyles.  

5.4.2.3 High load – 0.51 N 

Deformation properties of the native and GAG depleted cartilages under a load of 0.51 N; 

from both medial and lateral porcine condyles are shown in Figure 78 and Figure 79. 

Deformation under load over a period of 1 hour is shown in Figure 78 and final percentage 

deformation is shown in Figure 79, for both medial and lateral condyles.  
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The deformation curves over the duration of 1 hour showed that the GAG depleted lateral 

condylar cartilage deformed more than the native lateral condylar cartilage, but this was not 

the case for the medial condyles. The rate of initial deformation (0-600 seconds) for the 

native and GAG depleted medial condylar cartilages was very similar and reached equilibrium 

after approximately 2400 seconds. However, the rate of initial deformation (0-600 seconds) 

for the native lateral condylar cartilage was slightly quicker than its medial counterpart. 

However, the rate of initial deformation (0-600 seconds) for the GAG depleted lateral 

condylar cartilage was the quickest. The equilibrium deformation at 1 hour for the native and 

GAG depleted medial condylar cartilage was 13.4 % and 13.5 %, respectively and for the 

native and GAG depleted lateral condylar cartilage it was 16.8 % and 21.1 %, respectively.  

 

Figure 78: Percentage deformation of native and GAG depleted cartilage over the 
duration of 1 hour with a load of 0.51 N: (A) Medial condyle (B) Lateral condyle. Data was 

subject to arcsine transformation prior to calculation of the mean and 95 % confidence 
limits. Data is expressed as the back transformed mean (n=3) ± 95 % confidence limits.  

 
Figure 79: Final percentage deformation of native and GAG depleted cartilage at 1 hour 

with a load of 0.51 N. Data was subject to arcsine transformation prior to calculation of the 
mean and 95 % confidence limits. Data is expressed as the back transformed mean (n=3) ± 

95 % confidence limits.  
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As above, for the 0.11 N and 0.31 N loads the final percentage deformation data at 1 hour 

for the native and GAG depleted cartilage at a load of 0.51 N, was arc sin transformed. The 

trend seen was that there was no difference between the percentage deformation mean 

values between the native samples when compared to that of the GAG depleted samples in 

both medial and lateral condyles.  

Overall, GAG depletion using SDS rendered the cartilage tissue soft, indicating a loss of 

compressive stiffness. This was evident, because unlike the native cartilage samples, after 

indentation prominent indentation marks were observed on the cartilage surface of the GAG 

depleted cartilage samples where the stainless steel indentation pin had been in contact with 

the femoral condylar cartilage tissue. These indentation marks became more prominent at 

higher loads.  

5.4.3 Equilibrium elastic modulus and permeability 

The FEA model was used to calculate the equilibrium elastic modulus and permeability using 

the data from only the medial condyles since the deformation curves at higher loads showed 

that the lateral condyles gave high creep deformation (creep deformation > 15% of the 

porcine condylar cartilage thickness). Hence the lateral condyle deformation data was 

excluded from being input into the FEA model, as high levels of deformation (from the lateral 

condyles) would lead to inaccurate predictions of the equilibrium elastic modulus and 

permeability. 

Representative images of the deformation curve fitting for the native and GAG depleted 

medial condylar cartilage with a load of 0.31 N are shown in Figure 80. These curve fittings 

were used in the FEA model to calculate the equilibrium elastic modulus and permeability of 

the samples. Under the load of 0.31 N, perusal of the data showed that the GAG depleted 

samples showed greater deformation than the native cartilage samples and this was also the 

case across all loads applied to these two groups. However, the greatest difference in the 

deformation was observed between the native and GAG depleted cartilages under a load of 

0.31 N (medium load).  
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Figure 80: Representative graphs of indentation characteristics obtained experimentally 
and through FEA model curve fitting of a medial porcine condyle under a load of 0.31 N. 
(A): Curve fitting the deformation profile of a porcine medial condyle – Native (B): Curve 

fitting the deformation profile of a porcine medial condyle – GAG depleted.  

The equilibrium elastic modulus and permeability for the native and GAG depleted medial 

condyles under loads of 0.11 N, 0.31 N and 0.51 N are shown in Figure 81, Figure 82 and 

Figure 83, respectively. The R2 values presented in Figure 81, Figure 82 and Figure 83, 

represent how close the FE model curve fitting was to the last 70% of the experimental 

deformation curve. Only samples with an R2 value greater than 75% were accepted as 

relevant and accurate enough for this study. 

 

Figure 81: Equilibrium elastic modulus and permeability of native and GAG depleted 
medial condylar cartilage under a load of 0.11 N. Data is expressed as the mean (n=5) ± 95 

% confidence limits. The R2 values define how close the FE model curve fitting was to the 
last 70% of the experimental deformation curve, the closer the R2 value is to 1, the better 

the fit.  
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Figure 82: Equilibrium elastic modulus and permeability of native and GAG depleted 
medial condylar cartilage under a load of 0.31 N. Data is expressed as the mean (n=6) ± 95 

% confidence limits. The R2 values define how close the FE model curve fitting was to the 
last 70% of the experimental deformation curve, the closer the R2 value is to 1, the better 

the fit.  

 

Figure 83: Equilibrium elastic modulus and permeability of native and GAG depleted 
medial condylar cartilage under a load of 0.51 N. Data is expressed as the mean (n=3) ± 95 

% confidence limits. The R2 values define how close the FE model curve fitting was to the 
last 70% of the experimental deformation curve, the closer the R2 value is to 1, the better 

the fit.  
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Overall, the native porcine medial condylar cartilage exhibited a higher equilibrium elastic 

modulus compared to the GAG depleted porcine medial condylar cartilage when tested 

under the three different loads. The data for the native and GAG depleted groups under each 

load were compared using the Student`s t-test. This revealed that the equilibrium elastic 

modulus of the native porcine medial cartilage was significantly greater than the GAG 

depleted porcine medial condylar cartilage when tested under the low (0.11N; p = 4.65 x 10-

5) and medium (0.31N; p = 2.35 x 10-5) loads. However, this trend was not the case when  

tested under the high (0.51N; p = 0.4) load, further studies (i.e higher n value) are needed to 

verify the significance.  

With regard to the average permeability values, there was a trend for these to be greater in 

the GAG depleted cartilage samples compared to the native cartilage samples when tested 

under the 0.11N and 0.31 N loads but not when tested under the 0.51 N load. Again, the data 

for the permeability of the native and GAG depleted medial porcine condylar cartilage under 

each load was compared using the Student`s t-test which revealed no significant differences 

between the groups when tested under the three different loads. (0.11 N,  p = 0.5; 0.31 N, p 

= 0.2 and 0.51 N, p = 0.9).  

5.5 Discussion 

The aim of this study was to investigate the effect that load variation had on the deformation, 

equilibrium elastic modulus and permeability of native and GAG depleted cartilages. The 

ideal load for future testing was the load that gave rise to a significant difference in 

percentage deformation, equilibrium elastic modulus and permeability between the native 

and GAG depleted cartilages. Therefore, from investigation of three different loads during 

indentation testing of porcine femoral condyle cartilage described here, it was clear, after 

indentation and FEA analysis, that the medium load (0.31 N, 31.89 g) was the test load that 

best showed a clear difference in the biomechanical properties between the native and GAG 

depleted porcine cartilages.  

It was observed that there was no significant difference in the thickness of the cartilage in 

the native and GAG depleted medial condyles within each load experiment. Similarly, 

comparison of the thickness of the cartilage in the native and GAG depleted lateral condyles 

specimens was not significantly different within the experiments conducted at 0.11 N and 

0.51 N; however, the thickness of the GAG depleted cartilage was significantly greater than 

the native cartilage in the lateral condyles in the experiments conducted at 0.31 N. The 

reason for this are unclear; however, it is possible that this was due to natural biological 
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variation in the cartilage of these particular samples. A radiographic and image analysis 

method developed by Wayne et al. (1998) for the measurement of articular cartilage showed 

that the thickness of the cartilage in porcine lateral condyles was between 1.1 mm – 1.9 mm. 

Similarly, another study measured porcine cartilage thickness from digital histological images 

and showed thicknesses of 1.2 – 2.4 mm and 1.2 – 1.6 mm for the medial and lateral condyles, 

respectively. Measured porcine femoral cartilage thicknesses in the current study (medial: 

2.2 - 2.4 mm; lateral: 1.5 – 1.8 mm), showed good agreement with the ranges reported by 

Wayne et al. (1998) and Fermor (2013).  

GAGs are attached to the protein core of proteoglycans, of which chondroitin sulfate is the 

most abundant and important. The highly electro-negatively charged groups on these GAGs 

(sulfate and carboxyl groups) control the osmotic swelling pressure that gives cartilage tissue 

its compressive mechanical properties. They are able to do this by trapping/restricting water 

and other small molecules in-between their chains. Therefore, water flow through the 

cartilage ECM is restricted by these GAGs, because of their hydrophilic nature and they 

therefore play an important role in the biomechanical properties and biphasic properties of 

cartilage (Mow et al., 1980; Ateshian et al., 1994; Forster and Fisher, 1996; Mow and 

Ateshian, 1997). When cartilage is initially loaded, the interstitial ‘water phase’ of cartilage 

bears most of the load and over time it is transferred to the solid matri x of the tissue (i.e. 

collagen); in order to reduce the load on the solid matrix. This interaction between GAGs, 

interstitial water and the collagen network of articular cartilage is considered to be vital for 

normal biomechanical function. Osteoarthritic cartilage is associated with a reduced number 

of proteoglycans as it is subject to matrix degeneration, which leads to changes in the 

biomechanical function of the tissue, rendering it to lose compressive stiffness.  

Here, a GAG depleted model of cartilage, developed in Chapter 4, using SDS washes was used 

to represent osteoarthritic cartilage.   

The effect of load variation on native and GAG depleted porcine condylar cartilage samples 

was carried out using a series of indentation tests, from which the deformation properties, 

equilibrium elastic modulus and permeability were calculated. Deformation curves for all 

loads studied showed that the GAG depleted porcine condylar cartilage exhibited higher 

deformation across a 1 hour time period, when compared to the native porcine condylar 

cartilage. This can be explained, as the low levels of GAGs in the GAG depleted cartilage were 

not able to aid in resisting the compression of the cartilage. Significant differences between 

the native and GAG depleted porcine condylar cartilage’s in terms of percentage deformation 

(after it has been normalised for the thickness and arcsine transformed) were found when 
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the medial condyles were tested at low and medium loads, and in the lateral condyle when 

tested at low load. Similar trends were observed when the percentage deformation had 

reached equilibrium after 1 hour. The average deformation of the medial condyles at 

equilibrium (after 1 hour) for the native and GAG depleted cartilages, in the low load 

experiment was 2.9 % and 5.7 %, respectively and for the lateral condyles, 3.7 % and 6.5 %, 

respectively. In the medium load experiment the medial condyles average equilibrium 

deformation was 6 % and 14.2 %, respectively.  

When observing the data of the high load experiment, percentage deformation appeared to 

be higher in the GAG depleted cartilage in both the medial or lateral condyles, when 

compared to the native cartilage. Proteoglycans are responsible for the restriction of fluid 

flow through the ECM of cartilage; however, increased fluid flow as a result of 

reduction/removal of proteoglycans leads to a reduced load supported by the fluid phase, 

hence tissue should show greater deformation. Therefore, GAG depleted cartilage samples 

were expected to have a much higher deformation than the native cartilage sample s, as 

these samples had had 75% of their GAGs removed prior to indentation.  However, in the 

indentation tests conducted at high load (0.51 N), this was not the case, especially in the 

medial condylar cartilage samples. It is thought that this could be because the load applied 

to both the native and GAG depleted samples was too high, for a difference in the 

deformation to be demonstrated between the two groups. This was further clarified when 

the deformation data was back transformed and plotted as a percentage deformation of the 

cartilage thickness. 

The native and GAG depleted cartilage of the lateral condyles in the high load experiment 

and the GAG depleted cartilage of the lateral condyles in the medium load experiment; 

showed to have a percentage deformation greater than 15%, which meant that the derived 

data for the equilibrium elastic modulus and permeability would not be accurate; as 

deformation should be kept to a minimum (<15 %) to abide by the l inear biphasic model used 

in this study, which assumes permeability is constant with deformation. However, this is only 

valid for small deformations up to 15% (Mow et al., 1989; Proctor et al., 1989; Athanasiou et 

al., 1991). The higher percentage deformation seen in the lateral condylar cartilage 

compared to the medial condylar cartilage, was thought to be because the cartilage in the 

lateral condyles was thinner than their medial counterpart. The thinner the cartilage, the 

fewer macro and micro structures there are to resist the compressive loads as well as less 

fluid to resist the compressive loads applied. This becomes exacerbated in the samples that 

have had the GAGs removed, hence explaining why the GAG depleted cartilage in the lateral 
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condyles generally had a slightly higher deformation. Therefore, it was decided to only 

analyse the deformation data from the indentation testing of native and GAG depleted 

medial condylar cartilage in the FE model, for calculation of the equilibrium elastic modulus 

and permeability.  

An axisymmetric poroeleastic FE model used by Abdelgaied et al. (2015) was used to curve 

fit the experimental deformation to determine the effect that load variation had on the 

equilibrium elastic modulus and permeability of native and GAG depleted porcine cartilages.  

As the load was increased, the equilibrium elastic modulus decreased for both native and 

GAG depleted cartilages. The cartilages` ability to resist compression diminishes the greater 

the load, hence its elastic modulus will decrease naturally. It is important to note that when 

cartilage is subject to indentation tests, the rate of deformation is typically controlled by the 

permeability of the sample, whereas the equilibrium deformation (deformation at the end, 

usually the last 70% of the experiment, were the deformation stays constant) is the outcome 

of the elastic modulus of the sample (Mak et al., 1987; Mow et al., 1989).  

The equilibrium elastic modulus was greater in the native cartilage samples when compared 

to the GAG depleted samples, regardless of the load being added. This can be explained 

because the GAG depleted cartilage exhibited a reduced compressive stiffness due to the 

loss of GAGs and hence a lower elastic modulus; and was less able to resist compression 

when compared to the native cartilage. Comparable changes in the softness of cartilage, 

equilibrium percentage deformation, and decrease in equilibrium elastic modulus (due to 

removal of GAGs); have been reported in the literature with similar indentation tests of 

articular cartilage by Bonassar et al. (1995), Reippo et al. (2003), Han et al. (2007) and Katta 

et al. (2007).  

It was hypothesised that the mean permeability of the GAG depleted cartilage would be 

higher than native cartilage; as the removal of water binding GAGs would allow the 

interstitial fluid to move more freely within the remaining collagen network, as the matrix 

would be more porous. However, this was not the case across all load experiments. No 

significantly differences were observed between the GAG depleted and native cartilage 

samples.  

However, at the high (0.51N) load, the permeability of the native cartilage was slightly higher 

than the GAG depleted cartilage. It is also worth noting that at this higher load, the mean 

elastic modulus, tended to be higher in the native cartilage more so than the GAG depleted 

cartilage and this same trend was also observed in the deformation data of the native and 
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GAG depleted cartilage under the high load. However, one cannot comment on the 

significance of these trends as the sample size was too small (n=3). Nevertheless, the reason 

for the trend seen in the percentage deformation between the native and GAG depleted 

cartilage in the high load, could be explained by the fact that the larger loads may have a 

governing effect on the ability of the tissue to control the deformation, regardless of the 

amount of GAGs present in both native and GAG depleted cartilages. It was for this reason 

that the higher load (0.51 N) was not chosen for future studies.  

A limitation of the experimental indentation testing methodology, was the low contact 

stresses that were inherent in the setup of the equipment used in this study. A way around 

this could have been to use a smaller stainless-steel pin to increase the contact stress, but 

such a set up becomes physiologically irrelevant as in the natural joint, loads are dispersed 

over large contact areas. Conversely, changing the stainless-steel pin to a standard 9 mm 

cartilage pin would have been more beneficial but it was not possible to attach such a pin in 

the rig used in this study. Furthermore, if this were possible, the load could not have been 

increased further to compensate for the now even lower contact stress that would have been 

possible with a 9 mm cartilage pin. 

Therefore, the experimental set up used in this study, was acceptable to achieve the aims of 

this study, which were to: investigate the effect of load variation on native and GAG depleted 

porcine condylar cartilage and to identify which load would give rise to a significant 

difference in the deformation, elastic modulus and permeability between the native and GAG 

depleted porcine condylar cartilages.  

5.6 Conclusion 

The current study, while evaluating the effect of load variation on the deformation, 

equilibrium elastic modulus and permeability of native and GAG depleted porcine condylar 

cartilage, also addressed the importance of GAGs in the biomechanical properties of articular 

cartilage. The loss of compressive stiffness in the GAG depleted porcine condylar cartilage 

physically manifested in the form of noticeable deformation marks visible to the naked eye 

in the contact zones at the end of indentation tests. Whereas, deformation marks were not 

evident in native porcine condylar carti lage samples. This phenomenon can be simply 

explained in terms of load supported by the fluid and solid phase. GAG depleted porcine 

condylar cartilage had decreased fluid phase load support. This depletion of GAGs which are 

intrinsic to the mechanical properties of cartilage caused a relatively higher proportion of the 

load to be transferred to the solid phase of articular cartilage, which lead to higher 
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deformation when compared to native porcine condylar cartilage samples, that were able to 

support most of the load in the fluid phase before transferring it solid phase, at a much 

slower rate.  

The medium and low loads both showed significant difference in the deformation as well as 

in the equilibrium elastic modulus (p<0.05) between the native and GAG depleted medial 

porcine condylar cartilage samples; which was not so apparent in the high load experiment. 

However, the medium load measured the biggest significant differences in the deformation 

between native and GAG depleted porcine cartilage models. Therefore, this load was 

adopted in the following chapter to evaluate the deformation and mechanical properties of 

GAG depleted porcine condylar cartilage treated with peptide and PEP: GAG mixtures, which 

have been designed to treat GAG depleted articular cartilage tissue and improve its 

biomechanical properties.  
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Chapter 6 Investigation of the effects of injection of peptide-GAG 

mixtures to GAG depleted cartilage.   

6.1 Introduction  

The biomechanical properties of articular cartilage are compromised by the loss of GAGs, 

which is due to the onset and natural progression of osteoarthritis and other joint diseases 

(Lohmander et al., 1989; Arden and Nevitt, 2006; Lorenz and Richter, 2006; Pitsillides and 

Beier, 2011; Clarkin et al., 2011; Ashkavand et al., 2013; Lee et al., 2013). The loss of GAGs 

reduces the cartilages ability to withstand compressive forces (Mankin and Lippiell, 1971; 

Dudhia, 2005; Otsuki et al., 2008; Katta et al., 2008). It has been suggested that restoring 

GAGs, in particular chondroitin sulfate (CS), to GAG depleted cartilage may be beneficial to 

the biomechanical and frictional properties of  articular cartilage (Katta, 2007). The 

hypothesis that SAPs in combination with GAGs can be an effective treatment to improve the 

biomechanical properties of osteoarthritic cartilage was therefore tested in vitro.  

Previous chapters have highlighted the favourable properties of P11-4 and P11-8 in 

combination with GAGs. Therefore, the next stage of the study was to determine the effect 

of the peptides and PEP: GAG mixtures of P11-4 and P11-8, on the deformation and 

biomechanical properties of GAG depleted porcine condylar cartilage, when compared to 

native porcine condylar cartilage using indentation testing. The in vitro GAG depleted porcine 

condylar cartilage model developed in Chapter 4 – (model 3: method 4) and the load for 

indentation testing determined in Chapter 5 – (medium load 0.31 N), were used to evaluate 

the utility of P11-4 and P11-8 and their PEP: GAG mixtures, as a minimally invasive treatment 

for GAG depleted porcine condylar cartilage. The FE model applied in Chapter 5 was used to 

determine whether the peptides and PEP: GAG mixtures improved the biomechanical 

properties of GAG depleted porcine condylar cartilage. All PEP: GAG mixtures tested were at 

the lower GAG molar ratio of 1:64, as it was hypothesised that any effect on the deformation 

and biomechanical properties of the GAG depleted cartilage at the lower GAG molar ratio, 

would be magnified at a higher GAG molar ratio. Only medial porcine condyles were used in 

FE analysis, as previous studies showed that lateral porcine condyles demonstrated high 

creep deformation (creep deformation > 15% of the porcine condylar cartilage thickness), 

which would lead to inaccurate predictions of the equilibrium elastic modulus and 

permeability. 



 

 

168 

Fluorescence recovery after photobleaching (FRAP) is a quantitative technique that takes 

advantage of particular properties of fluorophores, in which fluorophores are excited at a 

certain wavelength and omit a fluorescent light. Originally, it was developed in 1970s by 

Axelrod et al. as a technique to study the dynamics of molecular mobility in tissues or cells, 

by measuring the rate of florescent recovery of organic dyes, such as fluorescein, in a 

previously bleached area (Axelrod et al., 1976; Koppel et al., 1976). FRAP was used in this 

study to determine whether the peptides and PEP: GAG mixtures that had been fluorescently 

tagged with fluorescein; were able to remain in a self-assembled state after injection into 

GAG depleted condylar cartilage and indentation testing. It was hypothesised that the 

samples that were completely self-assembled would show little or no fluorescence recovery 

after photobleaching. The gel like structure of the peptide or PEP: GAG mixtures would 

prevent the fluorescein molecules in the non-bleached areas from diffusing to the area that 

had been bleached 

6.2 Aims and objectives  

The aim of this chapter was to investigate whether P11-4 and P11-8 and their PEP: GAG 

mixtures were able restore the biomechanical properties of GAG depleted porcine condylar 

cartilage.  

6.2.1 Objectives  

1) To evaluate the deformation and biomechanical properties of native and GAG depleted 

porcine condylar cartilage and GAG depleted porcine condylar cartilage injected with 

peptides (P11-4 and P11-8) and PEP: GAG mixtures (P11-4 and P11-8 at a GAG molar ratio of 

1:64), using indentation testing and FEA. 

2) To determine the thickness of the native, GAG depleted and injected (peptide / PEP: GAG 

mixtures) porcine condylar cartilage, using a needle indentation method. 

3) To determine whether, after indentation testing, the peptides (P11-4 and P11-8) and PEP: 

GAG mixtures (P11-4 and P11-8 at a GAG molar ratio of 1:64) injected into GAG depleted 

porcine condylar cartilage remained in a self-assembled state within the cartilage, using 

fluorescence recovery after photobleaching (FRAP) analysis. 

6.3 Experimental Design 

The experimental design in this study was to determine the effects of injecting GAG depleted 

condylar cartilage with: peptide alone (P11-4 only, P11-8 only), PEP: GAG mixtures (P11-4: GAG 

injection, P11-8: GAG injection) and chondroitin sulfate alone (CS injection only) on 

deformation properties when compared to GAG depleted condylar cartilage (negative 



 

 

169 

control) and native condylar cartilage (positive control). The three test groups determined 

the individual effects that either the peptide, chondroitin sulfate or the combination of the 

two, had on the deformation properties of GAG depleted condylar cartilage.  

Since testing the effects of the peptides and PEP: GAG mixtures involved physically injecting 

the solutions into the cartilage, it was also important to determine the effects of injection of 

a pressurized fluid as well as any physical damage caused to the cartilage through the  needle 

injection. Therefore, initial studies were carried out to compare the deformation properties 

of native condylar cartilage; native condylar cartilage injected with distilled water (native 

water injection) and native condylar cartilage injected with a needle only with no fluid (native 

injection only). These two control experiments were carried out, because the effect of 

injecting fluid or piercing the cartilage surface on the deformation properties, would be 

better demonstrated in native cartilage, that had not had the GAGs removed, hence isolating 

any effects. These test groups determined the effects that: a) the injection of pressurised 

water and b) the piercing of the cartilage surface had on the deformation properties of native 

condylar cartilage.  

6.4 Experimental Methods 

6.4.1 Acquisition of porcine femoral condyles 

Porcine femoral condyles were acquired, dissected and stored as described in Chapter 2; 

Section 2.2.2.2 to 2.2.2.4. Native porcine condyles were mounted in PMMA as outlined in 

Chapter 2; Section 2.2.6.1. 

6.4.2 GAG depletion of porcine femoral condylar cartilage   

Three (medial and lateral) GAG depleted porcine condyles were produced using the 

procedure outlined in Chapter 4; Section 4.3.3.  The GAG depleted porcine condyles were 

mounted in PMMA as outlined in Chapter 2; Section 2.2.6.1. 

6.4.3 Preparation of peptides, peptide: GAG mixtures and chondroitin 

sulfate GAG control. 

The concentration of peptides was the same for all experiments (10 mg.ml -1, ~6 mM) and the 

molar ratio of chondroitin sulfate (GAG) used in the PEP: GAG mixtures was 1:64. In this 

study, the peptides used (P11-4 and P11-8) were doped with fluorescien tagged-P11-4 and P11-

8 purchased from commercial suppliers (PolyPeptide Group, Sweden) . The molar ratio of 

fluorescien tagged-P11-4 and P11-8 to non-tagged P11-4 and P11-8 was 1:150. The chondroitin 
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sulfate GAG control was doped with a fluorescein stock solution (7.8 mM), in order to 

visualise the mobility of the fluorescein and fluorescein-tagged peptides in subsequent FRAP 

experiments. 

The peptide, PEP: GAG mixture and chondroitin sulfate GAG control were weighed as 

outlined in Table 28.  

Table 28: Masses of peptide and chondroitin sulfate (GAG) weighed out for the different 
injection experiments.  

 Peptide alone 
PEP: GAG mixture 

CS alone 
GAG Peptide 

P11-4 10.53 mg 4.85 mg 10.53 mg 
4.94 mg 

P11-8 12.65 mg 4.94 mg 12.65 mg 

Concentration of the peptide was 10 mg.ml -1. GAG molar ratio for the PEP: GAG mixture 
was 1:64. All samples were made up to a total volume of 1 ml.  

6.4.3.1 Preparation of peptides for studies of injection of peptide alone.  

Corresponding weights of peptide (Table 28) were weighed into a glass vial. Buffer 

(developed by James Warren PhD student; School of Mechanical Engineering) was added (1 

ml) into each vial containing the peptide to maintain the peptide in a monomeric state. 

Sodium acetate buffer (1 M) at pH 4 was used for P11-8 samples and sodium phosphate buffer 

(1 M) at pH 10 was used for P11-4 samples. Samples were vortexed for 30 seconds and 

sonicated for 5 mins. Monomerised peptide samples were frozen in liquid nitrogen ( -196 0C) 

and then lyophilised. Once fully lyophilised, samples were stored at 4 0C in the dark until used 

for injection into the porcine condylar cartilage.  

6.4.3.2 Preparation of peptides and chondroitin sulfate for studies of peptide: 

GAG mixture injections. 

Corresponding weights of peptide and GAG (Table 28) were weighed into individual glass 

vials. The P11-4 sample was monomerised with 500 µl of 1 M sodium phosphate buffer at pH 

10 and the P11-8 sample was monomerised with 1 M sodium acetate buffer at pH 4. The 

corresponding monomersing buffer (500 µl) was added to the corresponding vials containing 

the GAG. The reconstituted GAG solution was then added to its corresponding peptide 

solution. Samples were vortexed for 30 seconds and then sonicated for 5 mins. The 

monomerised PEP: GAG mixtures were frozen in liquid nitrogen (-196 0C) and then 

lyophilised. Once fully lyophilised, samples were stored at 4 0C in the dark until required.  

6.4.3.3 Preparation of chondroitin sulfate for studies of GAG only injections. 

The highest weight of GAG (Table 28), was selected as a control and weighed into a glass vial. 

Fluorescein stock solution 7.8 mM was diluted (5 µl stock + 995 µl buffer) to a concentration 
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of 38 µM using a physiological buffer (130mM Na+ salt solution at ~pH 7.4 – Chapter 3; 

Section 3.3.1.3). The weighed-out GAG was added to this diluted fluorescein solution and 

then lyophilised. The lyophilised powder was stored at 4 0C in the dark until required for 

testing.  

6.4.4 Injection of peptides, PEP: GAG mixtures and chondroitin sulfate 

(GAG) into GAG depleted porcine condylar cartilage.  

After the GAG depleted porcine femoral condyles had been mounted in PMMA; lyophilised 

peptide, PEP: GAG and GAG were reconstituted in 1 ml of distilled water. A needle and 1 ml 

syringe, were used to draw up 1 ml of the corresponding monomeric peptide, PEP: GAG 

mixture or chondroitin sulfate solution into the syringe, ready for injection into the GAG 

depleted porcine condylar cartilage (Figure 84). Three porcine femoral condyles (both medial 

and lateral condyles) were used for all groups in this study.  

6.4.4.1 Injection of native porcine condylar cartilage with and without water.  

A preliminary study was carried out to determine the effects of injecting native condylar 

cartilage with water and just a needle. Control injections of distilled water (1 ml), and a 

control of just the injection were performed on native porcine condylar cartilage.  Three 

porcine femoral condyles (both medial and lateral condyles) were used for all control groups 

in this study.  

 

Figure 84: Hydrated monomeric peptide being drawn up into a 1 ml syringe, ready for 
injection into the GAG depleted porcine condylar cartilage.  

The flattest region of interest (ROI) of the condyle was chosen by eye, as the injection site. 

The injection technique used to inject the porcine condylar cartilage is illustrated in Figure 

85. The highlighted area was injected 20 times around the circumference of the prescribed 

ROI. In total 1ml of the peptide, PEP: GAG mixture, water or chondroitin sulfate solution was 

deposited across these 20 injection sites, approximately 50 µl at each injection site. The 

needle was tilted at circa 45o, so that the peptide, PEP: GAG mixture, water or GAG solution 

could be deposited under the ROI, as demonstrated in Figure 85.  
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Figure 85: Schematic showing (A) the identification of the flattest region of interest (ROI) 
of the GAG depleted porcine condylar cartilage. (B) The injection of the peptide, PEP: 

GAG mixture, water or chondroitin sulfate solution to the ROI and (C) the orientation of 
how the needle was inserted into the femoral condylar cartilage.  

The needle was retracted very slowly in stages, depositing approximately 50 µl of the solution 

into the cavity created in the GAG depleted porcine condylar cartilage until the needle tip 

reached the surface of the cartilage. The GAG depleted porcine condylar cartilage samples 

injected with peptide and PEP: GAG mixtures were left to equilibrate for one day, in a moist 

environment at 4 0C in the dark, before indentation testing. All controls (native porcine 

condylar cartilage, native porcine condylar cartilage injected with water, native porcine 

condylar cartilage injected only and GAG depleted porcine condylar cartilage samples 

injected with chondroitin sulfate doped with fluorescein) were also stored in a moist 

environment at 4 0C in the dark for one day, before indentation testing. 

6.4.5 Biomechanical characterisation of porcine femoral condylar cartilage 

6.4.5.1 Indentation testing - sample and equipment preparation 

After the samples had been injected with the peptide, PEP: GAG mixture, water or 

chondroitin sulfate and left to equilibrate (Section 6.4.4), the percentage deformation of the 

treated GAG depleted and native cartilages was determined using the indentation method 

described in Chapter 2; Section 2.2.6.2.  The medium load (0.31 N) established as the 

appropriate load in the previous chapter, was applied. PBS was added into the cup holder, 

containing the PMMA fixed cartilage condyle, as described in Chapter 2; Section 2.2.6.2. 

Flattest area of the porcine 
condylar cartilage. 

(A) 
(B) 

(C) 
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However, in this study the whole condyle was not completely submerged, instead PBS was 

filled to just before the area where the porcine cartilage had been injected.  

6.4.5.2 Cartilage thickness measurements 

The thickness of the cartilage in all of the experimental and control groups was measured 

using an Instron material testing machine and the measurements were always taken after 

indentation testing, as outlined in Chapter 2; Section 2.2.6.4. Injected samples were allowed 

to recover in a sealed Tupperware box moistened with PBS tissue, kept in the dark at 40C 

overnight prior to thickness measurement. 

6.4.5.3 Finite element method for derivation of material properties of porcine 

condylar cartilage  

Deformation data of the treated GAG depleted and native porcine condylar cartilage, along 

with its cartilage thickness data were input into the FE model, which was used to derive the 

equilibrium elastic modulus and permeability, as described in Chapter 2; Section 2.2.6.5.  

6.4.6 Determination of self-assembly of peptides and PEP: GAG mixtures 

in situ in GAG depleted porcine condylar cartilage. 

6.4.6.1 Cryo-embedding 

After the thickness of the cartilage in the treated samples had been measured, 9 mm plugs 

were removed from the porcine femoral condyles within the prescribed ROI, as described in 

Chapter 2; Section 2.2.2.3. Cartilage was removed from the bone and placed in cryo-plastic 

moulds.  The cartilage was covered in OCT embedding medium and then placed flat into a 

freezer at -20 0C until set and required for sectioning.  

Frozen cartilage tissue blocks embedded in OCT medium were removed from the freezer and 

placed into the cryostat, which had been set to -25 0C. Additional OCT embedding medium 

was applied to the back of the frozen cartilage block and pressed firmly onto a cryostat chuck. 

The chuck was then placed onto the super cooling stage inside the cryostat for 5 mins and a 

weight was applied to the top of the block until the frozen cartilage block had adhered evenly 

to the chuck. The chuck with the embedded frozen cartilage tissue was mounted into the 

chuck holder in the required orientation and the sample was fastened. The angle of the 

cutting blade was set to 40 and then moved towards the embedded samples. The section 

thickness was set to 100 µm. Cut sections were placed on Superfrost Plus+ slides by placing 

the slide just above the freshly cut cartilage tissue and allowing the section to self -adhere to 
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the slide. Twelve sections of each cartilage sample were cut (4 per slide; 3 slides for each 

sample).  

Slides were then placed in 70 % alcohol (w/v) for one minute to remove the excess OCT 

medium and then left to air dry. Samples containing fluorescein were covered in tin foil and 

kept in the dark.  

6.4.6.2 Fluorescence recovery after photobleaching (FRAP)  

Slides containing sections of the GAG depleted porcine condylar cartilage injected with 

fluorescently tagged peptide, PEP: GAG mixtures or GAG, were placed into a Zeiss confocal 

microscope (LSM 800 Inverted). Injection sites were first located, before a region of interest 

(ROI) was marked out next to the injection site, using the FRAP module tools on the  Zeiss 

confocal microscope. A second ROI was also marked out, as a control, away from the 

injection site but in an area in which the fluorescently labelled peptide was visible. The ROI 

near the injection site was bleached for 10 seconds with a focused high-powered laser bean 

at a wavelength of 525 nm. The second ROI was not bleached, and was used as a control 

reference. Subsequently, the diffusion of the surrounding ‘non -bleached’ fluorescent 

molecules into the bleached area was recorded every 500 ms for 1 minute, until equilibrium 

was reached. Recovery of the fluorescent intensity of the bleached ROI was plotted against 

time to produce a recovery curve, which gave information on the mobility of the fluorescein 

within the: GAG and peptide only samples as well as the PEP: GAG gel samples. The FRAP 

analysis module on the Zeiss confocal microscope, was used to analyse the recovery curve to 

determine the diffusion constant of the fluorescein. Examples of different recovery profiles 

are shown in Figure 86 and were used to identify the self-assembly state of the peptides and 

PEP: GAG mixtures by classifying the mobility of the fluorescein that had been tagged to the 

peptide in the peptide samples and peptide in the PEP: GAG mix tures. Live screen shot 

images of the bleaching process were also recorded. 

 

Figure 86:  Diffusion profiles for the intensity of fluorescein over a period of time: (A) 
highly mobile (not self-assembled) (B) intermediately mobile and (C) immobile (self-

assembled).  
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6.5 Results  

In this study, there were several groups of native and GAG depleted porcine condylar 

cartilages into which different solutions were injected. The effects of injecting fluorescein-

tagged peptide doped P11-4 and P11-8 alone and in combination with GAG, at a molar ratio of 

1:64 on the deformation properties of GAG depleted porcine condylar cartilage were 

investigated. As a control, GAG depleted porcine condylar cartilage was injected with 

chondroitin sulfate doped with fluorescein. In addition, the effects of injecting native porcine 

condylar cartilage with water or just an injection with no solution were investigated.  There 

were three porcine femoral condyles (medial - n=3; lateral - n=3) used in all groups.   

6.5.1 Preliminary study to determine the effects of injecting water and just 

a needle (without water) on the deformation properties of native condylar 

cartilage.  

6.5.1.1 Cartilage thickness measurements 

For each cartilage group (native, native water injection and native injection only) indented 

with the medium load of 0.31 N; the cartilage thickness was measured for both medial (n=3) 

and lateral (n=3) condyles. Cartilage thickness data for the medial and lateral condyles of all 

groups is presented in Figure 87 and Figure 88, respectively. The data was analysed by one-

way analysis of variance which revealed no significant variation in the thickness of the 

cartilage of the medial condyles of all the groups. However, in the lateral condyles the 

thickness of the cartilage in the native cartilage group was significantly greater (p< 0.05) than 

the thickness of the cartilage in the native injected only group.  

 

Figure 87: Cartilage thickness measurement of the medial condyles for the: native, native 
water injected and native injected only groups (n=3 for all groups). Samples were 

measured six times in the area of interest after indentation. Data is expressed as the mean 
(n=3) ± 95 % confidence limits.  
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Figure 88: Cartilage thickness measurement of the lateral condyles for the: native, native 
water injected and native injected only groups (n=3 for all groups). Samples were 

measured six times in the area of interest after indentation.  Data is expressed as the mean 
(n=3) ± 95 % confidence limits.  

6.5.1.2 Percentage deformation  

Deformation properties of all three groups under a load of 0.31 N; for both medial and lateral 

porcine condyles are shown in Figure 89 to Figure 91. The percentage deformation of both 

the medial and lateral condyles under a load of 0.31 N, over a period of 1 hour, is shown in 

Figure 89 and Figure 90, respectively. The final percentage deformation (at 1 hour) of all the 

groups, for both medial and lateral condyles is shown in Figure 91.  

The effect of injecting water and just an injection without water, on the percentage 

deformation of native condylar cartilage was determined by comparing the percentage 

deformation at 1 hour with that of the native porcine condylar cartilage for (a) the medial 

and (b) the lateral condyles. The data is presented in Figure 91.  

The deformation curves of both medial and lateral condyles, over the duration of 1 hour 

showed that the native condylar cartilage deformed the least. The data also showed that the 

percentage deformation of the medial condylar cartilage samples of all groups had lower 

deformation properties when compared to the lateral condylar cartilage samples. It was 

observed that the native medial condylar cartilage injected with water reached equilibrium 

faster (t = 1200 secs), when compared to native medial condylar cartilage injected without 

water and the native medial condylar cartilage control.  
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Figure 89: Percentage deformation of medial condyles from: native, native water injected and native injected only groups, over the duration of 1 hour with a load 
of 0.31 N. Data was subject to arcsine transformation prior to calculation of the mean and 95 % confidence limits. Data is expressed as the back transformed mean 

(n=3) ± 95 % confidence limits.  
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Figure 90: Percentage deformation of lateral condyles from: native, native water injected and native injected only groups, over the duration of 1 hour with a load 
of 0.31 N. Data was subject to arcsine transformation prior to calculation of the mean and 95 % confidence limits. Data is expressed as the back transformed mean 

(n=3) ± 95 % confidence limits.  
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Figure 91: Final percentage deformation at 1 hour of: native, native water injected and native injected only groups, for the medial and lateral condyles, with a load 
of 0.31 N. Data was subject to arcsine transformation prior to calculation of the mean (n=3) and 95 % confidence limits. Data is expressed as the back transformed 

mean (n=3) ± 95 % confidence limits. 
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The mean percentage deformation at 1 hour for the medial condyles of the native, native 

water injected and native injection only condylar cartilage were 6.5 %, 8 % and 7.9 %, 

respectively. For the lateral condyles, the mean percentage deformation was 5.9 %, 9.2 % 

and 10.1 % for the native, native water injected and native injection only condylar cartilage.  

To determine if the injection of water or just injections without water, had an effect on the 

deformation properties of native porcine condylar cartilage, the percentage deformation 

data at 1 hour was compared (Figure 91). Due to the small sample size (n=3) the data was 

not subject to statistical analysis.  

In the medial condyles the data showed that native medial condylar cartilage injected with 

water or just injection without water appeared to have a minimal effect to increase the 

deformation, only increasing the deformation by circa 1.5 % in both cases. For the lateral 

condyles, there appeared to be a greater effect with the mean deformation increasing from 

circa 6  % to 10 %, following the injection alone. 
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6.5.2 The effects of injecting P11-4 and P11-8 alone and in combination with 

GAG, at a molar ratio of 1:64 on the deformation properties of GAG 

depleted porcine condylar cartilage. 

6.5.2.1 Cartilage thickness measurements 

For each cartilage group (native, GAG depleted, GAG depleted chondroitin sulfate (CS) 

injected only, P11-4: GAG injected, P11-4 only injected, P11-8: GAG injected and P11-8 only 

injected) indented with the medium load of 0.31 N; the cartilage thickness was measured for 

both medial (n=3) and lateral (n=3) condyles. Cartilage thickness data for the medial and 

lateral condyles of all groups is presented in Figure 92 and Figure 93, respectively. Due to 

small sample size (n=3) the cartilage thickness data for the medial and lateral condyles was 

not subjected to statistical analysis. Nevertheless, the data for the medial condyles showed 

that there was minimal variation in the cartilage thickness across all groups. In the lateral 

condyles, there appeared to be one group (native, 1.9 mm) that had a slightly higher cartilage 

thickness when compared to the rest of the groups which had an average thickness of around 

1.7 mm.  

  

Figure 92: Cartilage thickness measurement of the medial condyles for the: native, GAG 
depleted chondroitin sulfate (CS) injected only, GAG depleted, P11-4: GAG injected, P11-4 

only injected, P11-8: GAG injected and P11-8 only injected groups (n=3 for all groups). 
Samples were measured six times in the area of interest after indentation. Data is 

expressed as the mean (n=3) ± 95 % confidence limits.  

0

0.5

1

1.5

2

2.5

3

Native GAG
depleted CS
injected only

 GAG
depleted

P11-4: GAG
injected

P11-4 only
injected

P11-8: GAG
injected

P11-8 only
injected

Ca
rt

ila
ge

 T
h

ic
kn

es
s 

(m
m

)



 

 

182 

 

Figure 93: Cartilage thickness measurement of the lateral condyles for the: native, GAG 
depleted chondroitin sulfate (CS) injected only, GAG depleted, P11-4: GAG injected, P11-4 

only injected, P11-8: GAG injected and P11-8 only injected groups (n=3 for all groups). 
Samples were measured six times in the area of interest after indentation.  Data is 

expressed as the mean (n=3) ± 95 % confidence limits.  

6.5.2.2 Percentage deformation  

Deformation properties of all groups under a load of 0.31 N; for both medial and lateral 

porcine condyles are shown in Figure 94 - Figure 98. The percentage deformation of the 

medial and lateral condyles under a load of 0.31 N, over a period of 1 hour, is shown in Figure 

94 and Figure 95, respectively. The final percentage deformation (at 1 hour) of all the groups 

and the corresponding controls, for both medial and lateral condyles is shown in Figure 96.  

The effect of injecting the peptides P11-4 and P11-8, and the PEP: GAG mixtures, on the 

percentage deformation of GAG depleted condylar cartilage was determined by comparing 

the percentage deformation at 1 hour with the GAG depleted and native porcine condylar 

cartilage. The data is presented in Figure 97 and Figure 98, for the medial and lateral condyles 

respectively. 

The deformation curves of both medial and lateral condyles, over the duration of 1 hour 

showed that the native condylar cartilage deformed the least and that the GAG depleted CS 

injected condylar cartilage deformed the most. The data also showed that medial condylar 

cartilage samples injected with P11-4: GAG and P11-8: GAG mixtures had lower deformation 

properties compared to the GAG depleted condylar cartilage and in the lateral condylar 

cartilage samples; injections of P11-4: GAG, P11-8: GAG and P11-8 also reduced the 

deformation compared to the GAG depleted condylar cartilage samples.  
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Figure 94: Percentage deformation of medial condyles from: native, GAG depleted chondroitin sulfate (CS) injected only, GAG depleted, P11-4: GAG injected, P11-4 
only injected, P11-8: GAG injected, P11-8 only injected groups, over the duration of 1 hour with a load of 0.31 N. Data was subject to arcsine transformation prior to 

calculation of the mean and 95 % confidence limits. Data is expressed as the back transformed mean (n=3) ± 95 % confidence limits.  
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Figure 95: Percentage deformation of lateral condyles from: native, GAG depleted chondroitin sulfate (CS) injected only, GAG depleted, P11-4: GAG injected, P11-4 
only injected, P11-8: GAG injected, P11-8 only injected groups, over the duration of 1 hour with a load of 0.31 N. Data was subject to arcsine transformation prior to 

calculation of the mean and 95 % confidence limits. Data is expressed as the back transformed mean (n=3) ± 95 % confidence limits.  
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Figure 96: Final percentage deformation at 1 hour of all groups: native, GAG depleted chondroitin sulfate (CS) injected only, GAG depleted, P11-4: GAG injected, 
P11-4 only injected, P11-8: GAG injected, P11-8 only injected, for the medial and lateral condyles, with a load of 0.31 N. Data was subject to arcsine transformation 

prior to calculation of the mean (n=3) and 95 % confidence limits. Data is expressed as the back transformed mean (n=3) ± 95 % confidence limits.   
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Figure 97: Final percentage deformation at 1 hour of medial condyles from: native, GAG depleted, GAG depleted chondroitin sulfate (CS) injected only, P11-4: GAG 
injected, P11-4 only injected, P11-8: GAG injected, P11-8 only injected, with a load of 0.31 N. Data was subject to arcsine transformation prior to calculation of the 

mean and 95 % confidence limits and statistical analysis. Data is expressed as the back transformed mean (n=3) ± 95 % confide nce limits.  
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Figure 98: Final percentage deformation at 1 hour of lateral condyles from: native, GAG depleted, GAG depleted chondroitin sulfate (CS) injected only, P11-4: GAG 
injected, P11-4 only injected, P11-8: GAG injected, P11-8 only injected, with a load of 0.31 N. Data was subject to arcsine transformation prior to calculation of the 

mean and 95 % confidence limits and statistical analysis. Data is expressed as the back transformed mean (n=3) ± 95 % confidence limits. 
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The injection of chondroitin sulfate into the GAG depleted porcine condylar cartilage had a 

negative effect on the percentage deformation of the porcine condylar cartilage. An increase 

in the percentage deformation of 43.6 % in the medial and 51 % in the lateral condyles was  

observed when compared to the GAG depleted porcine condylar cartilage control. To 

determine if the peptides P11-4 or P11-8, or PEP: GAG mixtures improved the deformation 

properties of GAG depleted porcine condylar cartilage, the percentage deformation data at 

1 hour between the PEP: GAG injected samples and the GAG depleted condylar cartilage,  

was compared. Due to the small sample size (n=3) the data was not subject to statistical 

analysis.   

In the medial condyles, the data showed that injection of the GAG depleted condylar 

cartilage with P11-4: GAG and P11-8: GAG, reduced the percentage deformation by 30.7 % and 

27.8 % respectively, when compared to the GAG depleted condylar cartilage control. 

However, when comparing the percentage deformation of GAG depleted porcine condylar 

cartilage injected with P11-4: GAG and P11-8: GAG, minimal differences were seen between 

the two, suggesting that neither of these two PEP: GAG mixtures were better than the other 

at reducing the percentage deformation of the GAG depleted condylar cartilage. GAG 

depleted condylar cartilage injected with P11-4 and chondroitin sulfate only both appeared 

to increase the percentage deformation of GAG depleted condylar cartilage.  

In the lateral condyles, the data showed that injection of the GAG depleted condylar cartilage 

with P11-4: GAG, P11-8: GAG and P11-8 only, reduced the percentage deformation by 33.7 %, 

30 % and 31.5 % respectively, when comparted to the GAG depleted condylar cartilage 

control. However, when comparing the percentage deformation of the GAG depleted 

condylar cartilage injected with P11-4: GAG, P11-8: GAG and P11-8 only, minimal differences 

were seen, which again indicated that neither of the two PEP: GAG mixtures nor the peptide 

only injection were significantly better than the others at reducing the percentage 

deformation of the GAG depleted condylar cartilage. Nevertheless, the PEP: GAG mixtures 

appeared to improve the deformation properties of GAG depleted lateral condylar cartilage, 

which was not the case for the GAG depleted condylar cartilage samples injected with P11-4 

and chondroitin sulfate only.  

The percentage deformation data for the medial condyles showed that the GAG depleted 

condylar cartilage injected with P11-4 only, P11-8 only, P11-8: GAG and chondroitin sulfate only 

all appeared to have a higher percentage deformation (15.5, 11.5 and 9.1 %, respectively) 

compared to the native condylar cartilage control  (6.3 %). Although the GAG depleted 

condylar cartilage injected with P11-4: GAG had a higher percentage deformation (8.7 %) than 
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the native condylar cartilage control, the difference between the two was less when 

compared to the latter groups. This indicated that the P11-4: GAG mixture may be able to 

restore the deformation properties of GAG depleted porcine medial condylar cartilage to 

those of the native porcine medial condylar catilage. However, the percentage deformation 

data of the lateral condyles for all the groups showed that the mean percentage 

deformations were higher than the native lateral condylar cartilage control. 

6.5.3 Equilibrium elastic modulus and permeability 

An FE model was used to calculate the equilibrium elastic modulus and permeability using 

the data from only the medial condyles, since the deformation curves in the lateral condyles 

gave high creep deformation (creep deformation > 15 % of the porcine condylar cartilage 

thickness). Hence the lateral condyle deformation data was excluded from being input into 

the FE model, as high levels of deformation would lead to inaccurate predictions of the 

equilibrium elastic modulus and permeability. The GAG depleted condylar cartilage samples 

injected with chondroitin sulfate only, were also excluded from the FE model for the same 

reasons.  

Representative images of the deformation curve fittings for the GAG depleted porcine medial 

condylar cartilage injected with P11-4: GAG, P11-4 only, P11-8: GAG and P11-8 only are shown 

in Figure 99A-D. These curve fittings were used to calculate the equilibrium elastic modulus 

and permeability of the samples.  

Perusal of the data showed that the GAG depleted condylar cartilage injected with the PEP: 

GAG (both P11-4 and P11-8) had lower deformation than the GAG depleted condylar cartilage 

injected with the peptides alone. The curve fittings shown in Figure 99A-D, show how close 

the FE model curve fitting was to the last 70% of the experimental deformation curve and 

this was confirmed by the R2 values for the above graphs, which were: P11-4: GAG = 0.953; 

P11-4 only = 0.954; P11-8: GAG = 0.951; P11-8 only = 0.954. The higher the value of R2 the closer 

the fit between the experimental and FE model curves. Only samples with an R2 value greater 

than 75% were accepted as relevant and accurate enough for this study.  
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Figure 99: Representative graphs of indentation characteristics obtained experimentally 
and through FEA model curve fitting of a medial porcine condyle under a load of 0.31 N. 

(A): Curve fitting the deformation profile of a GAG depleted porcine medial condyle 
injected with P11-4: GAG (B): Curve fitting the deformation profile of a GAG depleted 

porcine medial condyle injected with P11-4 only (C): Curve fitting the deformation profile of 
a GAG depleted porcine medial condyle injected with P11-8: GAG (D): Curve fitting the 

deformation profile of a GAG depleted porcine medial condyle injected with P11-8 only.  

The equilibrium elastic modulus and permeability values for the medial condyles of the GAG 

depleted cartilage injected with P11-4: GAG, P11-8: GAG, P11-4 only, P11-8 only and their 

corresponding native and GAG depleted condylar cartilage are shown in Figure 100. The data 

was compared to determine differences between group means. This showed that the native 

condylar cartilage exhibited a higher average equilibrium elastic modulus when compared to 

the GAG depleted condylar cartilage injected with P11-8: GAG, P11-4 only, P11-8 only as well 

as the GAG depleted condylar cartilage control. However, the data showed that the injection 

of P11-4: GAG to the GAG depleted condylar cartilage had minimal effect on the mean elastic 

modulus (0.43 MPa) when compared to the native condylar cartilage control (0.5 MPa). It 

was also observed that the addition of the GAG to the P11-4 peptide, appeared to 

substantially increase the equilibrium elastic modulus, hence stiffness, of the GAG depleted 

condylar cartilage, which was not the case in the samples injected with the P11-8 peptide. 

Nevertheless, both the PEP: GAG mixtures (P11-4: GAG and P11-8: GAG) appeared to be stiffer 

than GAG depleted condylar cartilage control.  
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Figure 100: Elastic modulus and permeability of GAG depleted porcine medial condylar cartilage injected with P11-4: GAG, P11-4 only, P11-8: GAG, P11-8 only and 
their corresponding native and GAG depleted condylar cartilage controls, under a load of 0.31 N. Data is expressed as the mean (n=3) ± 95 % confidence limits. The 

R2 values define how close the FE model curve fitting was to the last 70% of the experimental deformation curve , the closer the R2 value is to 1, the better the fit.   
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6.5.4 Summary of the effects of injecting GAG-depleted porcine medial 

condylar cartilage with peptides and PEP: GAG mixtures on the percentage 

deformation, elastic modulus and permeability values for all groups tested.  

A summary of the effects of injecting GAG depleted medial porcine condylar cartilage with 

P11-4: GAG, P11-4 only, P11-8: GAG and P11-8 only when compared to native and GAG depleted 

medial porcine condylar cartilage is presented in Table 29. The study suggests that the 

injection of the P11-4: GAG mixture may be able to restore the biomechanical properties of 

the GAG-depleted porcine medial condylar cartilage to levels that were not too different to 

native porcine medial condylar cartilage.  

Table 29: Summary table of the percentage deformation, elastic modulus and 
permeability and the difference between the GAG depleted medial porcine condylar 

cartilage sample injected with P11-4: GAG, P11-4 only, P11-8: GAG and P11-8 only and the 
native and GAG depleted medial porcine condylar cartilage. 

  P11-4 alone P11-4:GAG P11-8 alone P11-8:GAG 

Percentage 

deformation 

Vs GAG depleted ND ↓ ND ↓ 

Vs Native ↑ ND ↑ ↑ 

Permeability 
Vs GAG depleted ND ND ND ND 

Vs Native ND ND ND ND 

Elastic 

modulus 

Vs GAG depleted ND ↑ ND ↑ 

Vs Native ↓ ND ↓ ↓ 

Key: (↑) = higher; (↓) = lower; (ND) = no difference. 

6.5.5 Fluorescence recovery after photobleaching (FRAP) analysis to 

determine self-assembly of injected fluorescein-doped P11-4 and P11-8 and 

fluorescein-doped PEP: GAG mixtures in GAG depleted condylar cartilage.  

Representative images of GAG depleted porcine medial condylar cartilage injected with 

fluorescein-tagged peptide doped P11-4: GAG and P11-4 only, and fluorescein-tagged peptide-

doped P11-8: GAG and P11-8 only, are presented in Figure 101, Figure 102, Figure 103 and 

Figure 104, respectively. Images of GAG depleted cartilage injected with chondroitin sulfate 

only, native and GAG depleted cartilage controls are presented in Figure 105, Figure 106 and 

Figure 107, respectively. All images were captured after indentation testing had been 

performed. Sections of the cartilage presented in these images were taken parallel to the 

cartilage surface. Images of the injected cartilage samples were captured using both 
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transmitted light and with the fluorescein filter. For each cartilage sample that had been 

injected with the fluorescein-tagged peptide, PEP: GAG mixture or fluorescein doped 

chondroitin sulfate; images were taken before photobleaching (t=1 sec), immediately after 

bleaching (t=6 secs) and after 1 min of recovery. A recovery curve was also recorded, which 

showed the fluorescence intensity of the ROI that had been photobleached (red line/circle) 

and the fluorescence intensity of the control ROI (green line/circle), over a period of 1 min.  

6.5.5.1 GAG depleted porcine medial condylar cartilage injected with 

fluorescein-tagged peptide-doped P114: GAG and fluorescein-tagged peptide-

doped P11-4 alone.  

Images of GAG depleted condylar cartilage injected with fluorescein-tagged peptide-doped 

P11-4: GAG, are presented in Figure 101. The injection sites of GAG depleted cartilage that 

were injected with fluorescein-tagged peptide doped P11-4: GAG are shown in Figure 101 (A) 

to (D). The green fluorescence present around the injection sites and surrounding areas was 

due to the diffusion of the fluorescein-tagged P11-4: GAG throughout the thickness of the 

cartilage. The bleached ROI outlined by the red circle in Figure 101 (B) was much darker, 

when compared to the same ROI in Figure 101 (A), in which the GAG depleted cartilage 

sample had not been bleached. GAG depleted cartilage samples injected with fluorescein-

tagged peptide-doped P11-4: GAG demonstrated no fluorescence recovery, which was 

confirmed by the recovery curve shown in Figure 101 (F). The initial fluorescence intensity of 

the bleached ROI and the control ROI was 100 and 106, respectively. After bleaching (t=6 s), 

the fluorescence intensity of the bleached ROI was reduced to 79, and it recovered by 2% to 

81 and remained at this intensity for the duration of the test (1 minute). However, the 

fluorescence intensity of the control ROI steadily decreased over the duration of the 

experiment, which was due to the inherent photo-bleaching of imaging the sample, over a 

period of time. Nevertheless, the fluorescence intensity of the control ROI remained 

relatively constant.  
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Figure 101: Representative FRAP images of GAG depleted porcine condylar cartilage injected with fluorescein-tagged peptide-doped P11-4: GAG. Red lines/circles 
highlight the ROIs that were bleached in each sample and the green lines/circles highlight the ROIs that were used as control areas in each sample.(A) Image of a 
GAG depleted condylar cartilage sample injected with fluorescein-tagged peptide-doped P11-4: GAG prior to bleaching (t=1 s), (B) Image of a GAG depleted condylar 

cartilage sample injected with fluorescein-tagged peptide-doped P11-4: GAG immediately after bleaching (t=6 s), (C) Image of a GAG depleted condylar cartilage 
sample injected with fluorescein-tagged peptide-doped P11-4: GAG after recovery (t=60 s). (D) GAG depleted condylar cartilage injected with fluorescein-tagged 
peptide-doped P11-4: GAG, imaged with a fluorescein filter compared to (E) the same sample imaged in transmitted light. (F) Recovery curve for a GAG depleted 
medial condylar cartilage sample injected with fluorescein-tagged peptide-doped P11-4: GAG, which revealed no recovery in the bleached area.  All images were 

captured from sections of medial condyles. 
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Images of GAG depleted condylar cartilage injected with fluorescein-tagged peptide-doped 

P11-4 on its own, are presented in Figure 102. The injection sites of GAG depleted cartilage 

that were injected with fluorescein-tagged peptide-doped P11-4 alone are shown in Figure 102 

(A) to (D). The green fluorescence present around the injection sites and surrounding areas 

was due to the diffusion of the fluorescein-tagged P11-4 throughout the thickness of the 

cartilage. The bleached ROI outlined by the red circle in Figure 102 (B) was much darker, when 

compared to the same ROI in Figure 102 (A), in which the GAG depleted cartilage sample had 

not been photobleached. GAG depleted cartilage samples injected with fluorescein-tagged 

peptide-doped P11-4 alone, demonstrated no fluorescence recovery, which was confirmed by 

the recovery curve in shown in Figure 102 (F). The initial fluorescence intensity for both 

bleached ROI and the control ROI was 120. After bleaching (t=6 s), the fluorescent intensity of 

the bleached ROI reduced to ~ 92, where it recovered by 0.7 % to ~ 93 and remained at this 

intensity for the duration of the test (1 minute). The fluorescence intensity of the control ROI 

remained constant throughout the test.    

 

Figure 102: Representative FRAP images of porcine GAG depleted condylar cartilage 
injected with fluorescein-tagged peptide-doped P11-4 alone. Red lines/circles highlight the 
ROIs that were bleached in each sample and the green lines/circles highlight the ROIs that 
were used as control areas in each sample.(A) Image of a GAG depleted condylar cartilage 

sample injected with fluorescein-tagged peptide-doped P11-4 alone prior to bleaching (t=1 s), 
(B) Image of a GAG depleted condylar cartilage sample injected with fluorescein-tagged 
peptide-doped P11-4 alone immediately after photobleaching (t=6 s), (C) Image of a GAG 
depleted condylar cartilage sample injected with fluorescein-tagged peptide-doped P11-4 

alone after recovery (t=60 s). (D) GAG depleted condylar cartilage injected with fluorescein-
tagged peptide-doped P11-4 alone, imaged with a fluorescent filter compared to (E) the same 
sample imaged in transmitted light. (F) Recovery curve for a GAG depleted condylar cartilage 

sample injected with fluorescein-tagged peptide-doped P11-4 alone, which revealed no 
recovery in the bleached area. All images were captured from sections of medial condyles.
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6.5.5.2 GAG depleted condylar cartilage injected with fluorescein-tagged peptide-

doped P11-8: GAG and fluorescein-tagged peptide-doped P11-8 alone.  

Images of GAG depleted condylar cartilage injected with fluorescein-tagged peptide-doped 

P11-8: GAG are presented in Figure 103. Figure 103 (A) to (D) show the injection sites of GAG 

depleted cartilage that was injected with fluorescein-tagged peptide-doped P11-8: GAG. The 

green fluorescence seen around the injection sites and surrounding areas was due to the 

diffusion of the fluorescein-tagged peptide-doped P11-8: GAG throughout the thickness of 

the cartilage. The bleached ROI outlined by the red circle in Figure 103 (B) was much darker 

due to the bleaching, when compared to the same ROI in Figure 103 (A), where the GAG 

depleted cartilage sample had not been bleached. GAG depleted cartilage samples injected 

with fluorescein-tagged peptide-doped P11-8: GAG demonstrated no fluorescence recovery, 

which was confirmed by the recovery curve in Figure 103 (F). The initial fluorescence intensity 

of both the bleached ROI and the control ROI was 108. After bleaching (t=6 s), the 

fluorescence intensity of the bleached ROI reduced to ~ 89, where it recovered by 0.3 % to ~ 

90 and remained at this intensity for the duration of the test (1 minute). The fluorescence 

intensity of control ROI stayed constant over the duration of the experiment. 
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Figure 103: Representative FRAP images of porcine GAG depleted condylar cartilage 
injected with fluorescein-tagged peptide-doped P11-8: GAG. Red lines/circles highlight the 

ROIs that were bleached in each sample and the green lines/circles highlight the ROIs 
that were used as control areas in each sample.  (A) Image of a GAG depleted condylar 

cartilage sample injected with fluorescein-tagged peptide-doped P11-8: GAG prior to 
bleaching (t=1 s), (B) Image of a GAG depleted condylar cartilage sample injected with 

fluorescein-tagged peptide-doped P11-8: GAG straight after bleaching (t=6 s), (C) Image of a 
GAG depleted condylar cartilage sample injected with fluorescein-tagged peptide-doped 

P11-8: GAG after recovery (t=60 s). (D) GAG depleted condylar cartilage injected with 
fluorescein-tagged peptide-doped P11-8: GAG, imaged with a fluorescein filter compared to 

(E) the same sample imaged in transmitted light. (F) Recovery curve for a GAG depleted 
condylar cartilage sample injected with fluorescein-tagged peptide-doped P11-8: GAG, 

which revealed no recovery in the bleached area. All images were captured from sections 
of medial condyles.  

Images of GAG depleted condylar cartilage injected with fluorescein-tagged peptide-doped 

P11-8 on its own, are presented in Figure 104. Figure 104 (A) to (D) show the injection sites of 

GAG depleted cartilage that was injected with fluorescein-tagged peptide-doped P11-8. The 

bleached ROI outlined by the red circle in Figure 104 (B) was much darker, when compared 

to the same ROI in Figure 104 (A), where the GAG depleted cartilage sample had not been 

bleached. GAG depleted cartilage samples injected with fluorescein-tagged peptide-doped 

P11-8 on its own, demonstrated no fluorescence recovery, which was confirmed by the 

recovery curve in Figure 104 (F). The starting fluorescent intensity for the bleached ROI and 

the control ROI was ~ 80 and ~ 82, respectively. After bleaching (t=6 s), the fluorescent 

intensity of the bleached ROI as reduced to ~ 58, subsequently no fluorescence recovery was 
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observed for the remainder of the test (1 minute). The fluorescent intensity of the control 

ROI stayed constant throughout the test.    

 

Figure 104: Representative FRAP images of porcine GAG depleted condylar cartilage 
injected with fluorescein-tagged peptide-doped P11-8 only. Red lines/circles highlight ROI 

that were bleached in each sample and the green lines/circles highlight ROI that were 
used as control areas in each sample. (A) Image of a GAG depleted condylar cartilage 

sample injected with fluorescein-tagged peptide-doped P11-8 only prior to bleaching (t=1 s), 
(B) Image of a GAG depleted condylar cartilage sample injected with fluorescein-tagged 

peptide-doped immediately after bleaching (t=6 s), (C) Image of a GAG depleted condylar 
cartilage sample injected with fluorescein-tagged peptide-doped P11-8 only after recovery 

(t=60 s). (D) GAG depleted condylar cartilage injected with fluorescein-tagged peptide-
doped P11-8 only, imaged with a fluorescent filter compared to (E) the same sample imaged 

in transmitted light. (F) Recovery curve for a GAG depleted condylar cartilage sample 
injected with fluorescein-tagged peptide-doped d P11-8 only, which revealed no recovery in 

the bleached area. All images were taken from sections of medial condyles.   

6.5.5.3 GAG depleted condylar cartilage injected with fluorescein-tagged CS alone.  

Images of GAG depleted condylar cartilage injected with fluorescein-tagged chondroitin 

sulfate, are presented in Figure 105. Figure 105 (A) to (D) show the injection sites of GAG 

depleted cartilage that was injected with fluorescein-tagged chondroitin sulfate. The green 

fluorescence surrounding the injection site was slightly more intense in these particular 

samples, which could have been due to the increased mobility of the fluorescein-tagged 

chondroitin sulfate without the peptide that allowed it to move more freely throughout the 

thickness of the GAG depleted cartilage. The bleached ROI outlined by the red circle in Figure 

105 (B) was darker, when compared to the same ROI in Figure 105 (A), in which the GAG 
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depleted cartilage sample had not been bleached. GAG depleted cartilage samples injected 

with fluorescein-tagged chondroitin sulfate, demonstrated fluorescence recovery. The initial 

fluorescence intensity for the bleached ROI and the control ROI was ~ 137 and ~ 139, 

respectively. After bleaching (t=6 s), the fluorescence intensity of the bleached ROI reduced 

to ~ 91. However, after 1 minute the sample had recovered by 88 % and after 2 minutes it 

had fully recovered to its original fluorescence intensity. This was confirmed by Figure 105 

(C), in which the bleached ROI (red circle) was no longer darkened and had returned to its 

original shade of green. The fluorescence intensity of the control ROI stayed constant 

throughout the test.  

 

Figure 105: Representative FRAP images of porcine GAG depleted condylar cartilage 
injected with fluorescein-tagged chondroitin sulfate (CS). Red lines/circles highlight the 
ROIs that were bleached in each sample and the green lines/circles highlight the ROIs 
that were used as control areas in each sample. (A) Image of a GAG depleted condylar 

cartilage sample injected with fluorescein-tagged CS prior to bleaching (t=1 s), (B) Image of 
a GAG depleted condylar cartilage sample injected with fluorescein-tagged CS straight after 

bleaching (t=6 s), (C) Image of a GAG depleted condylar cartilage sample injected with 
fluorescein-tagged CS after recovery (t=60 s). (D) GAG depleted condylar cartilage injected 

with fluorescein-tagged CS, imaged with a fluorescent filter compared to (E) the same 
sample imaged in transmitted light. (F) Recovery curve for a GAG depleted condylar 
cartilage sample injected with fluorescein-tagged CS, which revealed recovery in the 

bleached area. All images were taken from sections of medial condyles.  
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6.5.5.4 Native condylar cartilage.  

Images of untreated native condylar cartilage after indentation testing, are presented in 

Figure 106. Tiled images of native cartilage sections cut perpendicular to the surface of 

cartilage, viewed under transmitted light and a fluorescein filter are shown in Figure 106 (A) 

and Figure 106 (B), respectively. No fluorescence was observed, in Figure 106 (B), as the 

native condylar cartilage had not been exposed or injected with any florescent fluorophore, 

prior to viewing it. Figure 106 (C) and (D) are zoomed in images (Mag x 25) of Figure 106 (A) 

and (B) which also showed no fluorescence. 

 

Figure 106: Representative images of native porcine condylar cartilage viewed under a 
fluorescein filter and transmitted light. (A) Tiled image of a native condylar cartilage 
sample viewed under transmitted light and (B) a fluorescein filter, which showed no 

fluorescence. (C) Magnified image (x 25) of a native condylar cartilage sample viewed under 
transmitted light and (D) a fluorescein filter, which showed no fluorescence. All images 

were taken from sections of medial condyles.  

6.5.5.5 GAG depleted condylar cartilage.  

Images of untreated GAG depleted condylar cartilage after indentation testing, are 

presented in Figure 107. Tiled images of a GAG depleted cartilage section cut perpendicular 

to the surface of cartilage, viewed under transmitted light and a fluorescein filter are shown 

in Figure 107 (A) and Figure 107 (B), respectively. No fluorescence was observed, in Figure 

107 (B), as the GAG depleted condylar cartilage had not been exposed or injected with any 

florescent fluorophore, prior to viewing it. Figure 107 (C) and (D) are zoomed in images (Mag 

x 25) of Figure 107 (A) and (B) which also showed no fluorescence. 
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Figure 107: Representative images of porcine GAG depleted condylar cartilage viewed 
under a fluorescein filter and transmitted light. (A) Tiled image of a GAG depleted condylar 
cartilage sample viewed under transmitted light and (B) a fluorescein filter, which showed 
no fluorescence. (C) Magnified image (x 25) of a GAG depleted condylar cartilage sample 

viewed under transmitted light and (D) a fluorescein filter, which showed no fluorescence. 
All images were taken from sections of medial condyles.  

6.6 Discussion 

The aim of this study was to investigate the effect of injecting PEP: GAG mixtures and peptide 

alone (P11-4 and P11-8) on the deformation, elastic modulus and permeability of GAG 

depleted porcine condylar cartilage. The ideal PEP: GAG mixture or peptide alone would give 

rise to a significant decrease in the percentage deformation, a significant increase in the 

equilibrium elastic modulus and a significant decrease in permeability between the treated 

GAG depleted porcine condylar cartilage and the GAG depleted porcine condylar cartilage 

control. Furthermore, the treated GAG depleted porcine condylar cartilage mixture would 

have a percentage deformation, equilibrium elastic modulus and permeability that was not 

significantly different to the native condylar cartilage. From the studies carried out in this 

chapter, there was clear evidence that injection of the P11-4: GAG mixture restored the 

deformation and equilibrium elastic modulus of GAG depleted porcine medial condylar 
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cartilage to levels that were not significantly different to those of native porcine medial 

condylar cartilage, whilst remaining self-assembled in situ. Injection of the P11-8: GAG 

mixture; however, restored the deformation properties of GAG depleted porcine medial 

condylar cartilage but not the equilibrium elastic modulus. The P11-8: GAG mixture also 

remained self-assembled in situ. Conclusions regarding the difference in the permeability 

values could not be drawn, as the permeability values between the native and GAG depleted 

porcine condylar cartilage controls were not significantly different.  

It was observed that there was no significant difference in the cartilage thicknesses between 

any of the medial condylar cartilage tested samples. No significant differences in the 

thicknesses of the lateral condylar cartilage was observed in the majority of the groups. 

However, the thickness of the native lateral condylar cartilage was significantly greater than 

the GAG depleted lateral condylar cartilage injected with: CS only, P 11-8 and the native 

condylar cartilage injected with no fluid. The reasons for this are unclear, however it is 

possible that this was due to natural biological variation in the cartilage of these particular 

porcine cartilage samples. Nonetheless, the porcine condylar cartilage thicknesses measured 

in this study (medial: 2.2 - 2.4 mm; lateral: 1.6 – 1.9 mm) showed good agreement with the 

ranges reported by Wayne et al. (1998), Fermor (2013) and the previous study carried out in 

Chapter 5.  

The effect of injecting P11-4: GAG and P11-8: GAG on the biomechanical properties of GAG 

depleted condylar cartilage was investigated using indentation testing with a load of 0.31 N, 

followed by FE analysis, from which the deformation, equilibrium elastic modulus and 

permeability were calculated. Deformation curves for both medial and lateral condyles 

showed that the native condylar cartilage exhibited the lowest deformation over a 1 hour 

time period, when compared to all other groups. The GAG depleted condylar cartilage 

injected with chondroitin sulfate only exhibited the highest deformation. The deformation 

behaviour of the native porcine cartilage in this study remained the lowest of all groups and 

was similar to the behaviour of native condylar cartilage reported in the literature (Katta et 

al., 2008; Katta et al., 2009; Abdelgaied et al., 2015; Fermor et al., 2015), which may have 

been due to the presence of GAGs within the tissue. However, the deformation behaviour of 

GAG depleted condylar cartilage injected with chondroitin sulfate alone, was somewhat 

strange, and it was not easily explained why injection of chondroitin sulfate alone caused the 

percentage deformation of the GAG depleted cartilage to increase by such an extent (43.6 % 

in the medial and 51 % in the lateral condyles), when compared to the GAG depleted cartilage 

control. A possible explanation was the GAG depleted condylar cartilage may have had some 
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GAGs present/remaining (circa 50 g. mg-1; Chapter 4); which were likely not bound in large 

aggregated molecules to hyaluronic acid chains as a result of the SDS treatment. The injection 

of the highly negatively charged chondroitin sulfate; may have caused repulsion with the 

remaining GAG molecules and/or negative cations, which could have contributed to the 

increase in percentage deformation observed in both the medial and lateral condylar 

cartilage. Similar to the previous study in Chapter 5, the deformation curve for the GAG 

depleted porcine condylar cartilage exhibited higher deformation across the 1 hour time 

period when compared to the native porcine condylar cartilage for both the medial and 

lateral condyles. This was due to the reduced levels of aggregated GAGs in the GAG depleted 

cartilage. Only GAGs attached to aggrecan which are linked to hyaluronic acid via a link 

protein, contribute to the compressive resistance of cartilage (Muir, 1978; Han et al., 2011). 

However, the treatment with SDS to produce the GAG depleted condylar cartilage model, 

would have disrupted the link protein interaction with the hyaluronic acid, making any 

remaining GAGs much more mobile and hence ineffective, which was why the GAG depleted 

condylar cartilage exhibited higher deformation.  

The effect of injecting native condylar cartilage with water and the effect of injecting without 

any fluid were also investigated. It was found that these treatments did not affect the final 

percentage deformation of native condylar cartilage, as no significant difference in the 

percentage deformation were observed. Therefore, any effects observed from the GAG 

depleted condylar cartilage samples injected with peptide, PEP: GAG or just GAG; were 

considered to be due to the treatment with the substances themselves and not due to the 

injection process.  

Significant differences in the percentage deformation (after it had reached equilibrium, at 1 

hour) were found between the GAG depleted porcine medial condylar cartilage and the GAG 

depleted porcine medial condylar cartilage injected with P11-4: GAG and P11-8: GAG. Injection 

of both PEP: GAG mixtures into medial and lateral GAG depleted condylar cartilage samples 

significantly reduced the percentage deformation compared to the GAG depleted condylar 

cartilage control. Furthermore, no significant difference in the percentage deformation was 

found between the native porcine medial condylar cartilage and the GAG depleted porcine 

medial condylar cartilage injected with P11-4: GAG, which was not the case for the GAG 

depleted porcine condylar cartilage injected with P11-8: GAG. Therefore, injection of P11-4: 

GAG restored the deformation properties of GAG depleted porcine condylar cartilage to a 

level that was similar to and not significantly different to native porcine condylar cartilage.  
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The percentage deformation (after 1 hour) of GAG depleted porcine condylar cartilage 

injected with P11-4 alone, in the lateral condyles, was significantly higher when compared to 

the GAG depleted porcine lateral condylar cartilage control. Whereas, injection of P 11-8 on 

its own into GAG depleted porcine condylar cartilage, significantly reduced the percentage 

deformation (after 1 hour) of the lateral condyle when compared to the GAG depleted 

porcine lateral condylar cartilage control. However, this was not the case in the medial 

condyles where no significant effect of treatment with P11-4 or P11-8 alone was observed.  

GAG depleted porcine condylar cartilage injected with P11-4: GAG had significantly lower 

percentage deformation (after 1 hour) when compared to the GAG depleted porcine 

condylar cartilage injected with P11-4 on its own, in both the medial and lateral condyles. 

Conversely, no significant difference in the percentage deformation was observed between 

the GAG depleted porcine condylar cartilage samples injected with P11-8: GAG and P11-8 on 

its own, in either the medial and lateral condyles.  

Analysis of the percentage deformation data for both medial and lateral condyles, showed 

that injection of the PEP: GAG mixtures into GAG depleted porcine condylar cartilage, was 

better at restoring the deformation properties of GAG depleted porcine condylar cartilage 

when compared to the peptides on their own. The majority of lateral condyles groups tested, 

were shown to have a percentage deformation greater than 15 %, which meant that any 

derived data for the equilibrium elastic modulus and permeability would not be accurate and 

therefore were excluded from the FE analysis. The higher percentage deformation seen in 

the lateral condyles compared to the medial condyles was assumed to be due to differences 

in thicknesses between the medial and lateral condyles. 

An axisymmetric poroelastic FE model (described in Chapter 5), was used to curve fit the 

experimental deformation data to determine the effect that injecting P11-4: GAG, P11-4 only; 

P11-8: GAG and P11-8 only, had on the equilibrium elastic modulus and permeability of GAG 

depleted porcine condylar cartilage.  

The equilibrium elastic modulus was significantly greater in the native cartilage samples 

when compared to all the other groups, with the exception of the GAG depleted porcine 

condylar cartilage samples injected with P11-4: GAG. The finding that injection of P11-4: GAG 

was able to restore the equilibrium elastic modulus of GAG depleted medial condylar 

cartilage to a level similar to that of native cartilage, indicated that this PEP: GAG mixture 

had the desired effect of restoring the biomechanical properties of GAG depleted porcine 

medial condylar cartilage. On the other hand, injection of GAG depleted condylar cartilage 

with P11-4 peptide on its own, significantly lowered the equilibrium elastic modulus when 
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compared to the GAG depleted porcine condylar cartilage control. It was therefore 

concluded that the GAGs in the P11-4: GAG mixture contributed to improving the compressive 

stiffness of the GAG depleted medial condylar cartilage, possibly by improving the gelation 

properties of the peptide but also by providing increased osmotic swelling pressure.  

Injection of the GAG depleted porcine medial condylar cartilage with P 11-8: GAG also 

significantly increased the elastic modulus of the GAG depleted porcine condylar cartilage. 

However, P11-8: GAG was not able to restore the compressive stiffness of the GAG depleted 

porcine condylar cartilage to the same or similar level as the native porcine condylar 

cartilage.   The average equilibrium elastic modulus of the P11-4: GAG injected GAG depleted 

condylar cartilage had a trend towards higher compressive stiffness than the samples 

injected with P11-8: GAG, although this was not significantly different. This trend could have 

been due to the net charge difference of these two peptides. P11-4 is negatively charged and 

P11-8 is positively charged. The combination of these peptides with a highly negatively 

charged GAG, chondroitin sulfate, could explain the difference seen in the compressive 

stiffness of GAG depleted condylar cartilage. The combination of two negatively charged 

substances (P11-4 and CS) could have caused high repulsive forces between the two 

substances, hence contributing to the increase in compressive stiffness of the GAG depleted 

condylar cartilage. This highly negatively charged PEP: GAG hydrogel could also have 

interacted electrostatically with the naturally occurring ions present within the GAG depleted 

condylar cartilage model.  These ions were replaced in the GAG depleted model, at the end 

of its GAG depletion process (Chapter 4; Section 4.3.3)); where they had been left to soak in 

a 130 mM Na+ salt solution, containing all essential salts present in native cartilage, as 

described by Urban (1994)). This interaction with the surrounding cations and anions, may 

have provided the GAG depleted condylar cartilage injected with P11-4: GAG with resistance 

to compression, by increasing the fluid phase load support that would be very low in cartilage 

with GAGs depleted.  It may be hypothesised that the P11-4: GAG hydrogel acted as a better 

damper, during the fluid phase load support of the GAG depleted condylar cartilage by 

retaining excess water within the cartilage tissue matrix; which is why its average equilibrium 

elastic modulus, hence compressive stiffness was higher.  

It was hypothesised that, due to the removal of GAGs from the GAG depleted condylar 

cartilage, the permeability of the GAG depleted porcine condylar cartilage control would be 

significantly higher than native cartilage. Similarly, as explained in Chapter 5, this was not 

supported by the data obtained and no significant differences in the permeability between 

any of the groups tested in this study was observed.  
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The relationship between the equilibrium elastic modulus and permeability values in this 

study was that the higher the equilibrium elastic modulus, the lower the permeability value. 

This can be explained by the cartilages ability to resist compressive forces. In native condylar 

cartilage, which has all of its matrix components, the flow of intestinal fluid flow through the 

matrix is restricted and controlled, hence it is less permeable to fluid and better able to 

withstand compressive loads. However, cartilage in which the micro and macro structure has 

been altered/removed, no longer has the ability to restrict or control the flow of interstitial 

fluid, hence is more permeable and less able to resist compressive forces (Maroudas et al., 

1968; Maroudas et al., 1973; Maroudas and Venn, 1977; Muir, 1978; Buckwalter et al., 2005; 

Franke et al., 2007; Wilson et al., 2007 ; Han et al., 2011).  

It was important to determine whether the peptides and peptide GAG mixtures injected into 

the GAG depleted condylar cartilage samples were self-assembled. In order to explore this, 

FRAP analysis was used.  The FRAP images captured over the duration of 1 minute and the 

recovery curves, showed that the peptide and PEP: GAG mixtures remained self-assembled 

in-situ, even after the cartilage samples had been indented with a load of 0.31 N. All the GAG 

depleted condylar cartilage samples injected with peptide alone (P11-4 and P11-8) and PEP: 

GAG mixtures (P11-4: GAG and P11-8: GAG) that had been bleached; demonstrated no 

significant fluorescence recovery in the bleached ROI. The final images captured in the FRAP 

experiments (t = 60 s) for samples injected with peptide and PEP: GAG mixtures, showed that 

the bleached ROI remained darker than the image pre-bleach (t=0 s). Hence, the fluorophore 

was not able to diffuse back from the non-bleached areas into the bleached areas, as the 

fluorophore had been trapped within the self-assembled peptide or PEP: GAG gels. These 

experiments confirmed that the fluorescently tagged peptides and PEP: GAG mixtures were 

able to remain self-assembled within the cartilage tissue.  

Bleached fluorophore molecules, that are not restricted and are able to move freely, are 

replaced by non-bleached fluorophore molecules over time, resulting in a recovery in 

fluorescent intensity of the bleached ROI, visualised in the recovery curve (Swift and Trinkle-

Mulcahy, 2004). The GAG depleted porcine condylar cartilage injected with the CS doped 

fluorescein, demonstrated such behaviour. When the ROI in this sample was bleached at t=6 

seconds, the fluorophore’s fluorescence intensity became much lower (darker) than the pre-

bleached ROI (t=0 seconds). However, the fluorescence intensity of the bleached ROI fully 

recovered after t=60 seconds, which highlighted the high mobility of the fluorescein-tagged 

CS within the cartilage sample. The fast recovery of the fluorescence intensity seen in 
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samples injected with fluorescein-tagged CS, supported the conclusions that the samples 

injected with fluorescently tagged peptide and PEP: GAG, remained self-assembled in-situ.   

Native and GAG depleted porcine condylar cartilage controls were also imaged under the 

same fluorescein filter as well as transmitted light. This was carried out to demonstrate that 

the fluorescence seen in the GAG depleted condylar cartilage injected with fluorescein-

tagged peptides P11-4: GAG, P11-4 only, P11-8: GAG and P11-8 only; could be solely attributed 

to the fluorescence from the fluorescein used to tag the peptide and PEP: GAG mixtures and 

not any auto-fluorescence that may have been present in the cartilage samples. The images 

of the native and GAG depleted condylar cartilage controls, showed no fluorescence under 

the fluorescein filter, confirming the validity of the data.   

6.7 Conclusion 

The successful delivery of P11-4 and P11-8 peptides and PEP: GAG mixtures into GAG depleted 

condylar cartilage was demonstrated in this study. It was also shown that the minimally 

invasive injection of a PEP: GAG mixture comprising P11-4 was able to restore the 

biomechanical properties of GAG depleted porcine condylar cartilage. All peptide and PEP: 

GAG mixtures injected remained self-assembled within the GAG depleted condylar cartilage, 

even after a load of 0.31 N was applied; which was indicative of the strength of the gels but 

also, the possible favourable interactions between the gels and surrounding cartilage matrix 

that allowed the peptide hydrogels to remain self-assembled. It was further demonstrated 

that the chondroitin sulfate GAG had an important role to play in the restoration of the 

biomechanical properties of the GAG depleted condylar cartilage. This was attributed to its 

highly negative charge and ability to regulate the osmotic pressure within the cartilage 

matrix. It is hypothesised that the restoration of GAGs, being held in place by the self-

assembled P11-4 peptide: GAG hydrogel within the GAG depleted condylar cartilage, was key 

to the improved compressive stiffness. It is important to note that the molar ratio of GAG 

chosen in this study was low (1:64). Therefore, it is hypothesised that these improvements 

could be amplified through the delivery of a higher GAG molar ratio (e.g. 1:16). Nevertheless, 

the data obtained in this study indicated that the P11-4: GAG mixture, could be a suitable 

candidate for the future treatment of early stage osteoarthritic cartilage.   
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Chapter 7 Conclusions and Future Studies  

The net depletion of glycosaminoglycan in osteoarthritic cartilage has been linked with a loss 

of biomechanical properties and function in vitro (Mankin and Lippiell, 1971; Otsuki et al., 

2008) and is considered to be a major contributor to the progression of OA (Bell et al., 2006). 

Katta et al., proposed an approach to repair early cartilage degeneration by restoring GAG 

levels in order to maintain the functional cartilage material properties. Chondroitin sulfate 

alone was, however not able to restore the biomechanical properties of GAG deficient 

articular cartilage (Katta, 2007). The aim of this study was to explore the use of a mixture of 

chondroitin sulfate and self-assembling peptides for the restoration of the biomechanical 

properties of GAG depleted cartilage; ideally to a level intrinsic to natural cartilage. It was 

hypothesised, that the combination of SAPs and GAGs, would improve the biomechanical 

properties of GAG depleted cartilage via the successful delivery and retention of the GAG 

molecules by the self-assembled peptide to the tissue.  

The study followed a systematic approach in which the self-assembly, fibril morphology and 

biomechcanical properties of different peptides and PEP: GAG mixtures were explored 

(Chapter 3), to select suitable candidates for further biological studies. A suitable in vitro GAG 

depleted porcine cartilage model for testing the selected peptides and PEP: GAG mixtures 

was then developed (Chapter 4), followed by the development of a method for 

biomechanical evaluation of this model (Chapter 5). Lastly, the injection of the peptides and 

PEP: GAG mixtures into GAG depleted porcine condylar cartilage was evaluated, through 

mechanical indentation testing and FEA analysis, in an attempt to restore the biomechanical 

properties (Chapter 6).    

7.1 Major conclusions  

In Chapter 3, three peptides (P11-4, P11-8 and P11-12) were studied at two different GAG molar 

ratios (1:16 and 1:64) as well as in two ionic salt solutions (130mM and 230mM Na+ salt 

solution). The salt solutions each contained a different concentration of Na+ ions, as well as 

other salts found in cartilage tissue (Aggeli et al., 1997), which had not been previously 

studied with these peptides. This novel experimental design, gave insight regarding how the 

peptides and peptide: GAG mixutres would behave not only under normal physiological 

conditions, but also within the environment of the surface layer of articular cartilage.  The 

FTIR and TEM studies identified that P11-4 and P11-8 peptides: along with their peptide: GAG 

mixtures; exhibited a high percentage of β-sheet formation. It was also shown that they were 
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able to form characteristic self-supporting gels, able to produce characteristic entangled 

fibrilar network morphology, similar to that of proteoglycan structures found in native 

cartilage (Hardingham and Muir, 1974; Poole, 1997; Mow and Ateshian, 1997). In addition, 

rheological studies revealed that the addition of chondroitin sulfate to the SAPS; as well as 

alteration in the ionic strength of the surrounding solution, allowed for the mechanical 

properties of the peptide-hydrogels to be tuned over a range of up to four orders of 

magnitude. Addition of chondroitin sulfate to the peptides promoted a greater number of 

fibrilar entanglements and junction points, rendering the P11-4 and P11-8 peptide-GAG 

mixtures the stiffest of the three peptides. The study identified that the P11-4 and P11-8 

peptide-GAG mixtures, demonstrated all the favourable characteristics of hydrogels with 

potential ability to restore the biomechanical properties of GAG depleted cartilage.  

A GAG depleted model of porcine femoral condylar cartilage was successfully developed in 

Chapter 4. Histological analysis and GAG quantification highlighted that the use of the 

chondroitinase ABC enzyme, painted onto the surface of porcine condylar cartilage produced 

a mild GAG depleted cartilage model (model 1). Injection of chondroitinase ABC into porcine 

condylar cartilage produced a moderate GAG depleted cartilage model (model 2).  Washes in 

low concentrations of SDS (0.1 % (w/v)) alongside PBS washes, was shown to produce a 

severe GAG depleted cartilage model (model 3), in which a 75% reduction in GAG content of 

the cartilage was observed, when compared to native cartilage. The development of these 

models was novel and the models could be used to represent different stages of cartilage 

degeneration in future studies. Model 3 was chosen as the most suitable model to take 

forward for assessment of the effects of PEP: GAG mixtures, based on its low GAG content.  

In Chapter 5, the focus was to develop an appropriate methodology for the indentation 

testing of cartilage, to study differences in the biomechanical properties between native and 

GAG depleted porcine condylar cartilage. The aim was to achieve a test method that gave 

significant differences in the percentage deformation, equilibrium elastic modulus and 

permeability between native and GAG depleted porcine condylar cartilages. The latter was 

important because the intention was to inject SAPs and SAP: GAG mixtures into the GAG 

depleted cartilage, to investigate the capacity of these injectable hydrogels to restore the 

biomechanical properties of the GAG depleted cartilage, to values that were similar to native 

porcine condylar cartilage. This study was unique, since previous indentation tests had only 

been performed on porcine condylar cartilage pins (Katta et al., 2007; Katta et al., 2008; 

Abdelgaied et al., 2015). The present study was undertaken on whole porcine femoral 

condyles, both medial and lateral, to avoid any cut surfaces to the cartilage into which the 
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SAP: GAGs were to be injected. Injection of the peptides and peptide: GAG mixtures into 

cartilage in which the collagen had been damaged by cutting; would likely have resulted in 

leakage from the cut surfaces prior to self-assembly. Of the three loads tested, significant 

differences in the deformation and equilibrium elastic modulus between the native and GAG 

depleted porcine condylar cartilage were achieved using 0.11N and 0.31N loads. However, 

the use of a 0.31 N load resulted in the greatest significant difference in the deformation 

between native and GAG depleted porcine cartilage models. Consequently, this load was 

used for future studies of the SAP: GAG mixtures, to assess their potential in restoring the 

biomechanical properties of GAG depleted condylar cartilage.  

In Chapter 6, the aim was to evaluate whether the peptides P11-4 and P11-8 and their PEP: 

GAG mixtures at a molar ratio of 1:64, were able to restore the biomechanical properties of 

GAG depleted condylar cartilage. The peptides and peptide: GAG mixtures were successfully 

delivered into GAG depleted porcine condylar cartilage as visualised and confirmed by FRAP 

analysis. No fluorescence recovery after bleaching was observed in either the peptide or PEP: 

GAG injected samples, confirming the successful self -assembly of the SAPs. Histological 

analysis and GAG quantification techniques were not performed to assess whether the GAG 

had been successfully retained within the cartilage due to time constraints. However, the 

biomechanical test data indirectly indicated that the GAG delivered together with the 

peptides was retained. FRAP analysis of fluorescein-tagged chondroitin sulfate (GAG) 

injected samples, showed that the GAG alone was not retained at the injection sites within 

the cartilage and that it also reduced the deformation properties of GAG depleted porcine 

condylar cartilage.  

Interestingly, a recent study by Miles et al., demonstrated that injection of P11-12: GAG 

hydrogels restored the biomechanical properties of denucleated bovine intervertebral discs 

(Miles et al., 2016). The authors commented on the ability of the GAGs to enhance the 

biomechanical properties of the hybrid gels by accelerating gelation kinetics and providing 

favourable thermodynamic conditions for self-assembly, which supported the findings of the 

present study. The indentation tests performed in this study, showed that injections of P11-

4: GAG restored the deformation properties and equilibrium elastic modulus of GAG 

depleted porcine condylar cartilage, to levels that were not significantly different to those of 

native porcine condylar cartilage. 
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7.2 Future studies   

Although the aims of the studies performed in this thesis were largely met, further work is 

required to gain a greater understanding of these novel peptide: GAG hydrogels, as a 

potential minimally invasive therapy for the repair of osteoarthritic cartilage. Further testing 

of higher GAG molar ratio combinations and additional models for testing the peptide: GAG 

hydrogels are desirable.  

7.2.1 Histological and GAG quantification of PEP: GAG treated cartilage.  

Histological analysis and GAG quantification techniques were not performed to assess 

whether the GAG had been successfully retained within the cartilage, due to time 

constraints. Therefore, additional histological imaging and GAG quantification of: GAG 

depleted condylar cartilage injected with PEP: GAG mixtures; GAG depleted condylar 

cartilage (negative control); native condylar cartilage (positive control) and GAG depleted 

condylar cartilage injected with chondroitin sulfate alone would be beneficial. These studies 

would determine whether: (a) the GAG had been successfully retained within the cartilage 

and where it was localised; and (b) if the net GAG content of the GAG depleted condylar 

cartilage injected with PEP: GAG mixtures and/or chondroitin sulfate alone, had increased. 

The data could then be compared to the native and GAG depleted condylar cartilage controls. 

7.2.2 Testing of mild and moderate GAG depleted porcine cartilage 

models.  

In Chapter 4, three different GAG depleted porcine condylar cartilage models were 

developed which showed varying levels of GAG content. These models provide potential 

models of earlier stages of osteoarthritis, that could be used to test future cartilage repair 

methods. However, due to time constraints it was not possible to determine the effects of 

the SAP: GAG mixtures on the biomechanical properties of the mild and moderate GAG 

depleted porcine condylar cartilage (models 1 and 2). It would be useful to determine the 

efficacy of the PEP: GAG mixtures in restoring the biomechanical properties of  these mild 

and moderate GAG depleted models, representative of different stages of osteoarthritic 

cartilage degeneration.  

7.2.3 Testing of higher GAG molar ratio of PEP: GAG mixtures – 1:16 

The lower molar ratio of GAG (1:64) was used in the PEP: GAG mixtures studied in Chapter 6 

to evaluate the initial hypothesis. It was the intention to carry out further studies of PEP: 

GAG mixtures with a higher molar ratio of chondroitin sulfate, however, this was not possible 
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due to time constraints. Given the improvements in the biomechanical properties of GAG 

depleted porcine condylar cartilage observed with the lower GAG molar ratio; it might be 

hypothesised that because of the role of the GAGs in the improved gelation kinetics and 

biomechanical properties of the SAP: GAG hydrogels; these improvements could be 

amplified through the delivery of a higher GAG molar ratio (e.g. 1:16). This could be tested 

in further studies using the methods developed in this thesis.  

7.2.4 Development of friction test to study the bio-tribological properties 

of the PEP: GAG mixtures.  

Regrettably, the development of an appropriate methodology for studying the 

biotribological properties of native and GAG depleted condylar cartilage was not undertaken. 

It has been reported in the literature that the coefficient of friction of cartilage increases with 

GAG depletion (Katta et al., 2008), which is likely due to reduced biphasic and boundary 

lubrication (Forster and Fisher, 1996; Mow and Ateshian, 1997). A study at the University of 

Leeds, carried out frictional tests using a pendulum friction simulator. The study showed 

elevated friction and wear of the medial compartmental bovine knee without a meniscus, 

when compared to the intact joint (McCann et al., 2009). Therefore, additional frictional test 

like the latter, which identify any difference in the frictional properties between GAG 

depleted and native condylar cartilages would have been beneficial. This  in turn would, 

evaluate whether or not the SAP: GAG mixtures contributed to improvement in the biphasic 

and boundary lubrication regimes in GAG depleted condylar cartilage.  

7.2.5 Use of natural whole joint GAG depleted models in knee simulator to 

investigate the effects of PEP: GAG mixtures on function.  

Recent work at the University of Leeds, has led to the development and validation of a 

natural whole joint knee simulator. The tribological function and biomechanical properties 

of the natural porcine knee joint has been successfully evaluated using this simulator; which 

is currently being adapted for evaluation of natural human knee joints (Liu et al., 2015). The 

significance of this study is that this natural knee joint simulation model could be used as a 

tool to assess the future novel early stage cartilage and meniscus repair interventions.  

Therefore, future studies should aim to evaluate the tribological and biomechanical function 

of native, GAG depleted and GAG depleted porcine femoral cartilage treated with the PEP: 

GAG mixtures. Moreover, once adapted for use with human knee joints, the whole knee joint 

simulation model could be used to determine the efficacy of the PEP: GAG mixtures in 

restoring the biomechanical properties of human osteoarthritic cartilage.  
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7.2.6 Leakage study to the asses the stability of the PEP: GAG gel over a 

prolonged time period.  

The reversible properties of the P11-X family of SAPs, is due to changes in the equilibrium 

environment, which has been reported in the literature (Aggeli et al., 2003; Carrick et al., 

2007). These properties could cause the breakdown of the self-assembled hydrogels into 

monomeric components, thus, leading to the leakage of GAGs into the surrounding tissue. 

Hence, following injection of PEP: GAG mixtures into GAG depleted cartilage the 

biomechanical properties of the SAP: GAG treated GAG depleted cartilage may decrease over 

time. Therefore, it would be important to undertake a study to determine whether the GAG 

was lost from the PEP: GAG treated cartilage over time. This could be carried out in whole 

joint models, preferably under cyclic loading. The study should investigate GAG leakage into 

the surrounding lubricant, at different time points during and after friction and 

biomechanical tests. The study will show the ability of the SAP: GAG mixtures to retain the 

GAG within the GAG depleted cartilage under physiological conditions. Similarly, 

fluorescently labelled SAPs could be used to calculate the concentration of SAP leakage 

during these studies. 

7.3 Potential for Clinical Translation 

Self-assembling peptides have been widely used in tissue engine ering and biomedical 

applications, as discussed in Chapter (1). Clinical translation of these materials, has been 

achieved. The peptide group at the University of Leeds demonstrated the utility of P 11-4 in 

enamel remineralisation of human teeth (Kirkham et al., 2007) and then tested the clinical 

safety of P11-4 in patients with caries lesions (Brunton et al., 2013). The study showed no 

biocompatibility issues nor cytotoxic effects, which was confirmed in other studies (Wilshaw 

et al., 2008; Kyle et al., 2010; Maude et al., 2011). The studies of Kirkham et al. (2007) and 

Brunton et al. (2013) led to the successful commercialisation of P11-4 for caries treatment by 

Credentis in Zurich, Switzerland. Hence, there is good evidence that biomedical applications 

of the P11-X series of peptides can be translated for patient benefit. The present study has 

highlighted the potential of P11-4: GAG mixtures as a potential minimally invasive injection 

for the treatment of early stages of osteoarthritic cartilage. However, substantial barriers 

remain that must be overcome to enable successful commercial/clinical translation.  
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7.3.1 Arthroscopic delivery system 

Although in this study SAP: GAG mixtures were successfully delivered into GAG depleted 

condylar cartilage, efforts should be made to optimise the delivery of this therapeutic 

mixture to: (1) attain further diffusion of the SAP: GAG mixture within the cartilage and (2) 

cause less damage to the cartilage articular surface. This could be achieved through re -design 

of the needle tip used to inject these SAP: GAG mixtures, whereby the needle could have 

more than one orifice along the length of the needle. This would improve the area in which 

the SAP: GAG mixture was able to diffuse into, following injection. Another solution might be 

to investigate different injection entry points into the cartilage to reach the desired 

treatment location. Entry from non-loading bearing areas could be a starting point, with 

variation in the injection angle to determine the effects on the biomechanical properties of 

the treated area, after injection. 

7.3.2 Pre-clinical studies in animal models of osteoarthritis. 

Following successful pre-clinical laboratory studies in natural whole joint models (Section 

7.2.5) it would be necessary to carry out pre-clinical studies in an appropriate large animal 

model, such as sheep, to predict the clinical performance of SAP: GAG treatment. Induced 

OA models in animals, either through surgical techniques or injection methods; which act to 

stimulate intra-articular inflammation, direct matrix damage, or chondrocyte toxicity are 

documented in the literature (Teeple et al., 2013; Kuyinu et al., 2016). Injection of the SAP: 

GAG mixtures into these large animal induced OA joint models will provide more accurate 

representation of the ability of this novel therapy to improve the biomechanical properties 

of OA cartilage. This could be evaluated through biotribological and biomechanical tests in 

whole joint simulators, following sacrifice of the animals. Subject to acceptable performance 

in these studies, the SAP: GAG mixture therapy could be taken forward to pre-market medical 

device clinical trials to assess their clinical safety and utility in humans.  

7.4 Significance of the study  

In conclusion, this study has produced relevant GAG depleted condylar cartilage models 

which can be used to evaluate the restorative potential future cartilage repair methods; 

whilst highlighting the efficacy of SAP: GAG mixtures in restoration of the biomechanical 

properties of GAG depleted cartilage.  This study has shown that the use of P11-4 in 

combination with chondroitin sulfate has future potential for development as a minimally 

invasive treatment for early stage osteoarthritis.  
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