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Abstract 

Understanding turbulent flow structure in open channel flows is an important issue 

for Civil Engineers who study the transport of water, sediments and contaminants in 

rivers. In the present study, turbulent flows over rough impermeable and porous beds 

are studied numerically using the Smoothed Particle Hydrodynamics (SPH) method.  

A comprehensive review is carried out on the methods of turbulence modelling and 

treatment of bed boundary in open channel flows in order to identify the limitations 

of the existing particle models developed in this area. 2D macroscopic SPH models are 

developed for simulating turbulent free surface flows over rough impermeable and 

porous beds under various flow conditions. For the case of impermeable beds, a drag 

force model is proposed to take the effect of bed roughness into account, while for 

the case of porous beds, macroscopic governing equations are developed based on 

the SPH formulation, incorporating the effects of drag and porosity.  

To simulate the effect of turbulence on the average flow field, a Macroscopic SPH‐

mixing‐length (MSPH‐ML) model is proposed based on the Large Eddy Simulation 

(LES) concept where the mixing‐length approach is applied to estimate the eddy‐

viscosity rather than employing the standard Smagorinsky model. The difficulty in 

reproducing steady uniform free surface flow is tackled by introducing novel 

inflow/outflow techniques for the situations in which the flow quantities are unknown 

at the inflow and outflow boundaries.  

The performance of these models is tested by simulating different engineering 

problems with an insight developed into turbulence modelling and bed/interface 

boundary treatment. The accuracy of the models is tested by comparing the predicted 

quantities such as flow velocity, water surface elevation, and turbulent shear stress 

with existing experimental data.  



The limitations of the models are mainly attributed to the macroscopic representation 

of the roughness layer and porous bed, difficulty in the determination of the values 

of the empirical coefficients in the closure terms, and limitations with the use of fine 

computational resolution. On the other hand, the main strength of the model is 

describing the complicated processes occuring at the bed using simple and practical 

computational treatments so that the momentum transfer is estimated accurately. It 

is shown that if the closure terms in the momentum equation which represent the 

effect of bed drag and flow turbulence are determined carefully based on the physical 

conditions of bed and flow, the model is capable of being employed for different civil 

engineering applications.   
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Nomenclature 

Units are written based on 2D formulations.  

 

aA  Drag‐induced shear term in the momentum equation at the 

position of particle a  

m/s2 

dA  Cross‐sectional area (in the calculation of drag force) m 

A  Planar area parallel to the bed (in the calculation of drag force) m2 

A      interfaces m 

A  Surface of the averaging volume   m 

0c  Speed of sound  m/s 

1c  Empirical coefficient in Ergun’s equation (viscous drag)  ‐ 

2c  Empirical coefficient in Ergun’s equation (form drag) ‐ 

dC  Drag coefficient ‐ 

FC  Dimensionless form‐drag coefficient ‐ 

rC  Inertia coefficient ‐ 

sC  Smagorinsky constant ‐ 

sd  Mean diameter of solid particles m 

F  Forchheimer tensor ‐ 

dF  Drag force N 



oF  Outflow boundary relaxing factor ‐ 

vdF  van Driest damping function ‐ 

g  Gravitational acceleration vector  m/s2 

G  Weighting function associated with the averaging volume   1/m2 

H  Water depth m 

0H  Initial (still) water depth m 

wH  Wave height  m 

in
tH  Height of porous inflow region m 

owH  Height of outlet imaginary wall m 

h  Smoothing length associated with the kernel function W  m 

h  Smoothing length associated with the weighting function G  m 

I  Unit tensor ‐ 

K  Intrinsic permeability tensor  m2 

sk  Nikuradse roughness size  m 

sk   Equivalent roughness size ‐ 

tk  SGS (or SPS) turbulent kinetic energy  m2/s2 

L  Length of numerical channel m 

L  Microscopic characteristic length (pore scale) of an arbitrary 
quantity   

m 

L 
 Macroscopic characteristic length scale of an arbitrary quantity 

  
m 

0l  Initial particle spacing in free flow (clear water) region m 

cl  Background mesh spacing m 



dL  A characteristic length of the solid matrix (in a porous medium) m 

,d iL  A characteristic length of the solid matrix at an interfacial 

boundary (in a porous medium) 

m 

ml  Mixing‐length m 

mbl  Constant mixing‐length value inside a porous bed m 

mcl  Value of the mixing‐length at the roughness crest  m 

m  Particle mass  kg 

N  Number of dimensions (= 2 in the present study) ‐ 

n  Unit normal vector associated with A  ‐ 

n  Unit normal vector pointing from  ‐phase to  ‐phase  ‐ 

aO  Outflow extra pressure gradient term at the position of particle 

a  

m/s2 

P  Pressure  kg/s2 

0
inq  Inflow discharge per unit width of the channel m2/s 

armourQ  Armouring discharge m3/s 

r  Position vector of the centroid of an averaging volume m 

r  Position vector of other points than the centroid of an averaging 

volume 

m 

r  Support of the kernel function W  (radius of the averaging 

volume  )  

m 

r  Support of the weighting function G  (radius of the averaging 

volume  )  

m 

dR  Thickness of the roughness layer (effective roughness height) in 

the numerical model 

m 



ReERG  Ergun Reynolds Number ‐ 

Re p  Pore‐based Reynolds Number  ‐ 

Re  Friction Reynolds Number ‐ 

S  Strain tensor  1/s 

S  Local strain rate  1/s 

0S  Channel bed slope ‐ 

GS  Total stroke of a piston wavemaker m 

t  Time  s 

pT  Duration of a piston wavemaker motion s 

u  Velocity vector m/s 

u  Component of velocity vector u  m/s 

u  Component of time‐averaged velocity  m/s 

u   Fluctuation associated with component of time‐averaged velocity 

u  

m/s 

u  Component of spatial‐averaged velocity  m/s 

u  Spatial deviation associated with component of spatial‐averaged 

velocity u  

m/s 

Du  Seepage (discharge) velocity vector m/s 

iu  Intrinsic (measured) velocity vector m/s 

su  Superficial velocity vector (  discharge velocity vector Du ) m/s 

u  Shear velocity m/s 

0U  Initial streamwise velocity  m/s 



u  Velocity vector at    interfaces m/s 

inVol  Volume flows inside the computational domain at the inlet 

boundary 

m2 

outVol  Volume flows out of the computational domain at the outlet 

boundary 

m2 

W  SPH kernel function associated with the averaging volume   1/ m2 

dW  Shape function (in the calculation of drag force) ‐ 

x  Horizontal (streamwise) coordinate m 

1
trX  Beginning (left side) of the porous inflow transition zone m 

2
trX  End (right side) of the porous inflow transition zone m 

1
sX  Beginning (left side) of the numerical measuring zone  m 

2
sX  Middle section of the numerical measuring zone  m 

3
sX  End (right side) of the numerical measuring zone  m 

pX  Displacement of a piston wavemaker m 

z  Vertical (depth‐wise) coordinate m 

0z  Reference level of the mixing‐length profile m 

bz  Bottom wall level  m 

cz  Top level (crest) of the roughness layer m 

tz  Low level (trough) of the roughness layer m 

mz  t mz   ( m = volume of melted roughness materials per unit 

bottom area) 

m 

wsz  Water surface level  m 

wz  Vertical distance from the bottom wall m 



  Volumetric (spatial) average of an arbitrary quantity   over an 

averaging volume 

units of   

 
 Volumetric average of an arbitrary quantity   over the  

averaging volume   

units of   

  Intrinsic average of an arbitrary quantity   with respect to  

phase   within an averaging volume 

units of   

  Spatial Deviation from a volumetric average quantity  ,  
 units of   

  Porous media distribution function ‐ 

c  Value of the distribution function at the grid point c  ‐ 

ij  Kronecker delta function with respect to ( ,i j ) coordinates ‐ 

w  Shear boundary layer thickness m 

  Dirac distribution associated with the    interfaces ‐ 

  Dirac distribution associated with A   ‐ 

  Eddy length scale (filter width) m 

t  Time increment size s 

s  Thickness of the roughness layer in the physical model m 

V  Volume of particle  m2 

cV  Volume of the mesh element associated with the grid point c   m2 

  A small number (here, 0.1h ) used to prevent singularity m 

w  Water surface elevation m 

  von‐Karman constant  ‐ 

  Dynamic viscosity coefficient kg/(m.s) 

eff  Effective viscosity in Brinkman’s equation kg/(m.s) 



0  Kinematic viscosity coefficient m2/s 

t  Turbulent eddy‐viscosity m2/s 

Π  Coles parameter ‐ 

  Density kg/m2 

0  Reference density kg/m2 

app
a  Apparent density of particle a  kg/m2 

dτ  Form drag‐induced shear stress N/m2 

0  Magnitude of turbulent shear stress at the bed (= 0gHS ) kg/s2 

exp  Reynolds Stress derived from experimental velocity data kg/s2 

eτ  Unresolved part of turbulent shear stress  kg/s2 

rτ  Part of turbulent shear stress resolved by computational 

discretisation (particle motion) 

kg/s2 

tτ  Total turbulent shear stress kg/s2 

SGSτ  SGS stress tensor  kg/s2 

SPSτ  SPS stress tensor  kg/s2 

lτ  MSPH‐ML stress tensor kg/s2 

  An averaging volume (associated with the kernel function W ) ‐ 

  Porosity  ‐ 

a  Porosity at the position of particle a  ‐ 

0  Mean value of porosity of a porous medium ‐ 

0
in  Porosity of porous inflow region ‐ 

  An averaging volume (associated with the weighting function G ) ‐ 





 

Chapter 1 Aim and Objectives 

1.1 Aim of the research 

Natural river flows are turbulent and river beds are mostly permeable composed 

of particles with a wide range of sizes, shapes and configurations. Water penetrates 

into the bed so that a part of flow occurs beneath the bed surface, although it is 

significantly weaker than the main flow above the bed. The transfer of momentum at 

the bed can strongly affect the condition of the overlying flow as well as entrainment 

and deposition of fine sediments at the bed. Hence, understanding flow mechanisms 

and momentum exchange at the bed is vital for engineers who study transport of 

water, sediment and contaminants in rivers. Numerical modelling is a complement to 

experimental studies of such processes in rivers. When the experimental set‐up is 

difficult and expensive, a numerical model with an acceptable accuracy can be used 

to simulate the transport phenomena and estimate transport properties especially 

those which are not easily measured in the laboratory.  

The present study aims to investigate turbulent flows over rough impermeable and 

permeable beds using the most advanced particle based numerical modelling 

approaches with a focus on turbulence modelling and treatment of the bed boundary. 

The ultimate goal is providing a simple and appropriate mathematical representation 

of the complicated processes occur at the bed so that the momentum transfer will be 

estimated accurately. 
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1.2 Background 

In most of the recent particle models developed for open channel flows, the effect 

of turbulence has been disregarded, or incorporated in the models without detailed 

investigation of their accuracy (e.g. in Shakibaeinia and Jin 2011; Federico et al. 2012; 

Fu and Jin 2013). The treatment of rough impermeable bed boundaries has been 

mainly based on numerical adjustments (e.g. in Lopez et al. 2010; Fu and Jin 2013) 

where the momentum reduction at the bed was not related to the physical properties 

of the bed.  

Recently, the Smooth Particle Hydrodynamic (SPH) method has been also used in 

macroscopic simulation of flow in domains composed of free flow and porous regions 

(e.g. Akbari and Namin, 2013, Gui et al., 2015, and Ren et al., 2016). Although the 

desirable approach is solving the equations at the microscopic (pore) level, it requires 

a three‐dimensional (3D) representation of the domain with an extremely fine 

resolution (Direct Numerical Simulation, DNS) which is almost impossible in the 

present capacity of particle methods and computational power of most computers.  

Some characteristics of the SPH method which make it useful for simulating fluid flow 

are that the water surface is tracked without using additional techniques and the error 

associated with numerical diffusion is less than grid‐based methods due to its 

Lagrangian nature. Moreover, in the simulation of fluid flow thorough porous media, 

discrete elements (particles) carry mass and momentum while they move through 

different regions, though changes in the volume and momentum of particles when 

they move from a region to another should be carefully addressed.  

Although some efforts have been devoted to the treatment of the interfacial 

boundary between porous media and free flows in particle models (Akbari and Namin 

2013, Gui et al. 2015, and Ren et al. 2016), rather less attention has been paid to a 

deep investigation of these issues. Often, numerical adjustments and calibrations 

have been proposed for the averaging process at the interface rather than rigorous 

mathematical justifications, and the accuracy of the models in predicting turbulent 
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quantities have not been carefully assessed. Furthermore, the application of SPH in 

turbulent open channel flows over porous beds with high velocity gradients and 

turbulent shear stresses at the interface has not been investigated yet. 

1.3 Objectives 

In the present study, turbulent free surface flows over rough impermeable and 

permeable beds are studied at a macroscopic scale with a focus on the treatment of 

interfacial boundary between free flow and the bed. The weakly Compressible SPH 

(WCSPH) method is employed to develop models in two‐dimensional (2D), while the 

frictional effect of solid bed skeleton and the effect of turbulence on the average flow 

field are incorporated by appropriate drag and turbulence closure terms in the 

momentum equations. The objectives for the study are to 

 Develop a model based on the SPH method for depth‐limited turbulent open 

channel flows over impermeable rough boundaries with focusing on turbulence 

modelling and rough boundary treatment. Propose an inflow/outflow boundary 

technique which produces steady uniform flow conditions. Simulate several cases 

with different flow conditions, and to validate the developed model using existing 

experimental data. 

 Extend the model for turbulent flows over porous beds with an insight into the 

interfacial boundary layer between free flow and porous media. Test the model 

by solving several cases of flow interaction with porous media and to validate the 

accuracy of the model using existing experimental data.  

 Apply the new model for flow over natural porous sediment beds with high 

velocity gradients at the interfacial boundary and to validate it with existing 

experimental data. 
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1.4 Potential future use of the results  

If the model is validated for different flow conditions and scales, it could be used to 

simulate a known range of engineering applications of turbulent flow over 

impermeable beds, and over/within porous beds. The model will provide a 

macroscopic description of flow field with simplification of the complicated 

turbulence mechanism at the bed in order to provide a solution to the practical cases 

with satisfactory results. Where the model estimates the shear stresses accurately 

especially at the interface, it could be integrated with a sediment transport model in 

order to estimate entrainment and deposition of fine particles, thereby predicting 

sediment transport in turbulent river flows over impermeable/permeable beds.



 

Chapter 2 Background and Literature Review 

Natural river beds are mostly porous consisting of solid particles with a wide range of 

sizes of a few tenths of a millimetre (fine sand) to several tens of millimetres (gravel). 

Water penetrates into the bed where flow properties depend on the porous structure 

of the solid particle matrix. In the last few decades, a great amount of research has 

been dedicated to numerical modelling of such phenomena, whilst the complicated 

processes that occur at the channel bed have been treated differently. The two 

important issues which should be dealt with carefully are the modelling of flow 

turbulence and the treatment of the bed boundary. In this chapter, focusing on these 

two issues, the background of turbulent channel flows over impermeable and 

permeable beds is discussed and then a review is completed on the particle models 

developed in this area.  

In Sections 2.1 and 2.2, turbulence modelling and treatment of the bed in channel 

flows will be discussed. In Section 2.3, the SPH method will be introduced and the 

particle models developed for simulation of turbulent channel flow over rough beds 

as well as the SPH models developed for flow interaction with porous media will be 

reviewed. Finally in Section 2.4, a summary will be provided with highlighting the 

required improvements for the present problem. 
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2.1 Turbulence modelling in open channel flow 

It is believed that the Navier‐Stokes (N‐S) equations describe all motions of fluid flow 

including turbulent ones. Equation (2.1) shows the N‐S equations in the Eulerian form. 

If one solves these equations at a microscopic scale for an extremely fine 

computational mesh, i.e. if the size of averaging is too small as all scales of flow is 

resolved by the mesh, then there will be no need to incorporate any additional 

closures for turbulence effects. This is known as DNS. 

     2P
t


  


     


u

uu g u  (2.1) 

where  , u  and P  are the microscopic density, velocity vector and pressure, 

respectively. g  is the gravitational acceleration vector and   is the dynamic viscosity 

coefficient.  

Although DNS has the advantage of identifying all turbulent vortices through the use 

of the high resolution of the computational discretisation, there are disadvantages 

with this method such as its huge computational cost which limits the applicability of 

the method for practical engineering problems. Hence, the N‐S equations are usually 

solved at a coarse (spatial or temporal) discretisation while the effect of turbulence is 

incorporated into the equations by extra stress terms. Depending on how these 

equations are averaged over time or space, there are two different frameworks for 

dealing with turbulence: Reynolds‐Averaged Navier‐Stokes (RANS) models, and Large 

Eddy Simulation (LES) models. 

2.1.1 RANS models 

Decomposing the instantaneous velocity component u as 

 u u u    (2.2) 
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where u  is the time‐averaged (Reynolds‐averaged) velocity and u   is the associated 

fluctuation, and applying it into Equation (2.1), leads to the following RANS equation 

which is presented for an incompressible flow in tensor notation. 
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

 (2.3) 

where i  and j  denotes the coordinates of orthogonal directions. This equation is 

now represented in terms of (time‐) averaged values as well as an additional term 

 i j ju u x     in which i ju u    is known as the Reynolds Stress representing the 

effect of turbulence on the time‐averaged flow field.  

There are three types of approaches to estimate the Reynolds Stress term thereby 

providing a treatment of the turbulence in RANS modelling, namely, linear eddy‐

viscosity models, non‐linear eddy‐viscosity models, and Reynolds Stress transport 

models. Linear eddy‐viscosity models (hereafter, eddy‐viscosity models) which are of 

interest in the present study, are the most common models applied in approximating 

Reynolds Stress term. These models work based on the Boussinesq relationship which 

relates the stress term to average flow quantities as follows. 

 ji
t

j
i j

i

uu

x x
u u 

 
   

 


   (2.4) 

where t  is the turbulent eddy‐viscosity. These eddy‐viscosity models are classified in 

terms of the number of Partial Differential Equations (PDEs) solved in addition to the 

RANS equations, as zero‐, one‐, and two‐equation models.  

The mixing‐length model is the most well‐known zero‐equation model in which the 

turbulent eddy‐viscosity t  is defined as a function of mean strain rate based on 

Prandtl’s theory using a turbulent characteristic length called mixing‐length ml . The 
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following equation shows the relationship for ml  in a 2D open channel case where u  

is the component of the time average velocity in the streamwise direction and z  

denotes the depth‐wise coordinate. 

 2
t m

u
l

z
 




 (2.5) 

According to the Prandtl’s assumption, the mixing‐length ml  was defined as 

 
m wl z  (2.6) 

where   is von‐Karman constant and wz  is vertical distance from the wall, based on 

the fact that the eddy size is restricted by the wall so that it decreases linearly to zero 

at the wall level. 

Later, following laboratory measurements, some modifications have been made to 

Prandtl’s assumption (Equation 2.6). For instance, van Driest (1956) modified 

Prandtl’s equation and proposed the following formula for the mixing‐length. 
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 (2.7) 

where w  is the boundary layer thickness; 0 0.09  ; 26A   ; and w wz z u    in 

which u  is the shear velocity.  1 /vd wF exp z A       is a damping function added 

by van Driest to reduce the contribution of turbulent shear stress near the wall. 

Another mixing‐length formula was proposed by Michel et al. (1969) as 

 0.085

0.085
w w

m
w

u z
l tanh


 

  
  

 
 (2.8) 
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which was later used by some researchers e.g. Krogstad (1989) in combination with 

van Driest damping function to develop mixing‐length models for turbulent boundary 

layer over rough surfaces. 

The above‐mentioned formulas were basically proposed for mixing‐length 

distribution within shear boundary layer above the bed. Nezu and Rodi (1986), and 

Nezu and Nakagawa (1993) proposed Equation (2.9) for the distribution of mixing‐

length through the channel depth according to their measurements in turbulent open 

channel flows. According to this equation, the mixing‐length declines to zero at the 

water surface. Nezu and Rodi (1986) stated that the decrease is because of the 

restriction of the turbulent eddies size by the water surface, though their data do not 

show such a decline consistently. In fact, there is uncertainty in defining the behaviour 

of mixing‐length near the water surface due to the lack of reliable velocity data close 

to the free surface. 

    
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1
1  Π m

vd

l
sin F
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    




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 (2.9) 

In this equation, H  is water depth,   is equal to /wz H ,  vdF   is van Driest’s 

damping function in the near‐wall region, and Π  is Coles parameter. Coles (1956) 

introduced the addition of an empirical wake function to the velocity log law in order 

to describe the deviation of velocity from the log law in the outer region. Coleman 

(1981) also confirmed that this deviation should not be dealt with by adjusting the 

integration constant ( rB  in Equation 3.20) and/or the von‐Karman constant  , but 

rather by including a wake function to the log law.  

The main advantage of the mixing‐length method is that it is simple to be 

implemented while good predictions are achieved for strongly 2D turbulent free 

surface flows where the mixing‐length distribution is available. However, this model 

lacks universality and does not include flow history effects on turbulence. Other types 

of eddy‐viscosity models are one‐equation and two‐equation models such as Spalart‐

Almaras and k  , respectively. In the former, a simple PDE equation is solved for 
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turbulent eddy‐viscosity containing production and dissipation of t . In the latter, two 

extra equations are solved, one for turbulent kinetic energy and one for turbulent 

dissipation. The wider range of flow conditions which can be modelled by the k   

model, compared to the mixing‐length and Spalart‐Almaras models, has made the 

k   model more common in RANS turbulence modelling.  

In the k   model, wall functions are often used for the determination of the 

turbulent boundary layer by assuming a logarithmic distribution of time‐averaged 

flow velocity near the wall surface. In this approach, the near‐wall viscous sub‐layer is 

neglected since it is assumed to not have the major effect on the flow structure in 

turbulent conditions, thus the first computational grid point from the wall is located 

in the logarithmic layer. Utilizing wall functions is practical and has produced accurate 

results in modelling open channel flow over smooth and small‐scale rough beds 

(Nicholas and Smith 1999, Hsu et al. 1998, Zeng and Li 2012). However, this approach 

becomes invalid when the velocity distribution does not follow a logarithmic 

relationship near the wall, for instance, in case of existence of large‐scale roughness 

elements such as in the natural shallow river flows over rough gravel beds. According 

to Nikora et al. (2001), the near‐bed layer in flow over a hydraulically rough bed can 

be divided into the form‐induced sub‐layer, where the flow is influenced by the 

individual roughness elements, and the interfacial sub‐layer, which occupies the flow 

region between the roughness crest and trough. Nikora et al. (2004) further suggested 

that flow velocity distribution in the interfacial sub‐layer can be either constant, 

exponential or linear based on roughness geometry, flow conditions, and relative 

submergence. Another major inadequacy of using wall functions was also addressed 

by Nicholas (2001), in that the shear stress could not be reproduced accurately by a 

wall functions because of the difficulty with mesh resolution near the bed boundary. 
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2.1.2 LES models 

In LES, usually a decomposition similar to Reynolds decomposition (Equation 2.2), but 

in space, is employed and the equations are averaged spatially. The spatial 

decomposition is written as 

 u u u    (2.10) 

where u  is the spatial average of the velocity component u , and u  is its spatial 

deviation from the point velocity u . The spatial‐averaged N‐S equation of an 

incompressible flow is represented in the tensor notation as follows. 
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where 
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is the ij  component of the LES Sub‐Grid‐Scale (SGS) stress tensor. ij  is composed of 

three parts: 
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 (2.13) 

where ijL  and ijC  are called the Leonard Stress and cross stress, respectively, and 

the third term ijR is known as Reynolds Stress since it is analogous to the Reynolds 

Stress tensor i ju u    in RANS equations.  
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In LES, turbulent length scales larger than the discretisation size are resolved by the 

computational grid, while the smaller ones need to be modelled. Therefore, 

appropriate closure models need to be applied to estimate the extra stress term, i.e. 

the SGS stress tensor. The most well‐known sub‐grid‐scale models for LES are the 

standard Smagorinsky model, dynamic models, and mixed models.  

The standard Smagorinsky model, which was proposed by Smagorinsky (1963) and 

Deardorff (1970), is based on the Boussinesq hypothesis in estimating the SGS stress 

as follows 

 2
2

3
ij

t ij t ijS k


 

    (2.14) 

where i  and j  are coordinate components, ij  is the component of the SGS stress 

tensor SGSτ , t  is the turbulent eddy‐viscosity, ijS  is the component of the strain 

tensor S  calculated by Equation (2.15), tk  is the SGS turbulent kinetic energy 

(Equation 2.16) and ij  is the Kronecker delta function. 
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In these equations, x  is the component of the position vector and u  is the 

component of the average velocity vector u . To estimate the eddy‐viscosity t , the 

Smagorinsky model (1963) is often employed in SPH simulations, as follows 

  2

t sC   S  (2.17) 

Where sC  is the Smagorinsky constant,   is the eddy length scale (filter width), and 

S  is the local strain rate which is equal to : TS S S . It is noted that sC  is usually 
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taken to be between 0.1 and 0.15, and   is assumed to be equal to the computational 

spacing size.  

The standard Smagorinsky model is the oldest and simplest LES‐SGS model, which has 

been widely used due to its simplicity and effectiveness. Although it is a valuable tool 

for engineering applications (Rogallo and Moin 1984), the model produces spurious 

dissipation which damps the growth of small perturbations and thus restrains the 

transition to turbulence (Piomelli and Zang 1991).  

In the dynamic model which was initially proposed by Germano et al. (1991), a 

modification has been introduced to the standard Smagorinsky model, so that the 

Smagorinsky constant is determined as a function of both space and time by applying 

a second filtering operation into the equations. In the mixed models, a combination 

of a dissipative eddy‐viscosity model such as the standard Smagorinsky model, and a 

scale similarity model, usually by applying a second filtering operation, is used to 

estimate the extra shear stress tensor. Details of such combinations of models are 

given in Sagaut (2001). 

2.2 Treatment of bed boundary in open channel flow 

In treating the natural bed boundary in open channel flow simulations, an important 

issue is that whether it is possible to introduce the bed interface as a fixed boundary 

condition in the model, or is it essential to simulate the flow in the porous bed deposit 

too. When the bed is impermeable or flow inside the bed is negligible, the modellers 

treat the bed boundary as a zero‐velocity boundary condition. However, the effect of 

bed friction and turbulence on the mean velocity field, as well as the level at which 

the velocity becomes zero should be adequately addressed, particularly when the bed 

is rough. In the case that flow inside the bed is significant and the momentum 

exchange at the interface boundary is not negligible, the flow inside the porous bed 

also needs to be simulated. In the following Sections 2.2.1 and 2.2.2, a comprehensive 

review is carried out on the treatment of bed boundary in both cases, i.e. i) turbulent 
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channel flow over impermeable rough beds, and ii) turbulent channel flow over 

porous beds, respectively. 

2.2.1 Rough and impermeable bed 

According to classic hydraulics studies such as Nikuradse (1933), Clauser (1954), Rotta 

(1962) and Perry et al. (1969), the slope of the time‐averaged streamwise velocity 

profile in a semi‐logarithmic scale has the same value for both smooth and rough walls 

(von‐Karman constant,  ), but with a vertical shift in the case of a hydraulically rough 

boundary. A great amount of research has been carried out in the last decades to 

relate the shift in the velocity profile to the size of physical boundary roughness; and 

also to find the location at which the time‐averaged velocity becomes zero near the 

wall. Nikuradse (1933) carried out experiments on uniform sand grains and showed 

that the shift ( U  ) is a function of equivalent roughness height s sk k u    only (

u   is the shear velocity and sk  is the height of sand grain). In these experiments, the 

vertical coordinate was measured from some distance below the top of sand grains. 

Later, Clauser (1954) showed that the shift is also related to the roughness type. 

Generally speaking, there has been no agreement on the zero position of the vertical 

coordinate and the level of zero‐velocity plane.  

Due to the importance of the subject, after Nikuradse (1933), many researchers have 

carried out numerous experimental and numerical studies to understand the complex 

interaction of turbulent flows with the bed and also to parameterize the effects of 

bed roughness on the mean flow field. In the numerical studies, the effect of wall 

roughness on the flow is modelled usually by modifying the turbulence model near 

the wall boundary or by applying extra models to take the effect of roughness into 

account. In the following paragraphs, a review is carried out on some of those studies.  

Van Driest modified his mixing‐length formula (Equation 2.7) which was originally 

derived for smooth walls. According to this modification, the damping function vdF  

was reduced based on the assumption that the effect of turbulent mixing is higher 
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near a rough wall than a smooth wall. Sivykh (1984) pointed out that the maximum of 

the modified van Driest damping function is one, while it could be even higher for the 

cases where the roughness effect is high. Accordingly, he modified van Driest formula 

for such cases. Rotta (1962) introduced a different modification to the formula of van 

Driest by introducing a shift in the wall coordinate, considering that the shear stress 

increases near the wall so that the velocity decreases. Some other studies have also 

been carried out on turbulent boundary layer near rough walls based on the mixing‐

length model for sand grain roughness (Granville 1985, Granville 1988, Krogstad 

1991). In these studies, either a damping function was applied into the mixing‐length 

formula or a shift was introduced in the velocity profile, in order to account for the 

effect of roughness.  

Although eddy‐viscosity models, such as mixing‐length and k  , have been applied 

for a wide range of flow conditions, sometimes they are insufficient to adequately 

address the shear boundary layer near the walls composed of discrete elements with 

large‐scale roughness. Hence, the drag force concept has been applied as an 

alternative approach for such cases. 

Generally, in drag‐based models, a drag term is added to the N‐S equations. However, 

different formulations and empirical factors have been used in different models. 

Christoph and Pletcher (1983) and Taylor et al. (1985) added a form‐drag term to the 

momentum equation to account for the bed roughness effect. The former modified 

the mixing‐length model to include the effect of roughness while the latter applied 

the standard smooth‐wall mixing‐length formula of van Driest (Equation 2.7). Taylor 

et al. (1985) argued that since the effect of bed roughness is explicitly accounted for 

by adding the drag term into the momentum equation, the eddy‐viscosity (mixing‐

length) model does not need to be modified for the effect of bed roughness. 

According to Patel (1998), the advantage of these drag force models was that they 

could reflect the effect of rough walls based on the shape and geometry of the 

roughness elements, rather than only a single representative length scale such as sk 

. Wiberg and Smith (1991) carried out a theoretical study for the velocity distributions 
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in steep streams over coarse gravel beds by partitioning the total shear stress into two 

components: a purely fluid component which is the stress generated between fluid 

parcels, and a form‐induced stress part of which is the result of drag force acting on 

the bed grains. Accordingly, an eddy‐viscosity model was used for the fluid stress 

component, and an additional drag‐induced stress term was added to the momentum 

equation, as presented in the following equation, to represent the effect of roughness 

elements. 

 d
d

F

A

   (2.18) 

where  

 21

2d d dF C A u  (2.19) 

dF  is the drag force in the streamwise direction and u  is the streamwise velocity. 

Besides, A  is the planar area parallel to the bed, affected by one roughness element 

perpendicular to the bed plane, dA  is the cross‐sectional area of the element, and dC  

is the drag coefficient. 

Follow‐on applications of the drag force models include Miyake et al. (1999), who 

developed a DNS model for simulating turbulent flow in a rough wall channel and used 

a drag‐based formulation to consider the effect of sand grains on the flow. Cui et al. 

(2003) developed a computationally efficient LES model, where the bed roughness 

was decomposed into the resolved and subgrid‐scale components. The geometric 

features of the resolved roughness were determined through LES without using any 

empirical treatment, but the subgrid‐scale roughness was modelled by a random drag 

force distribution. Moreover, Nicholas (2005) developed a drag force model to 

parameterize the roughness of gravel‐bed rivers by using a stochastic model for fluvial 

process. Carney et al. (2006) treated the bed roughness layer as a porous region and 

constructed their model on FLUENT with a k   turbulence closure, in which a sink 

term was added to the momentum equation to account for the influence of bed 
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roughness defined by a drag force equation with a constant drag coefficient. On the 

other hand, Rameshwaran et al. (2011) used the drag force concept to model the 

influence of bed roughness but they solved double‐averaged (in time and space) N‐S 

equations which included the drag term, form‐induced momentum flux and blockage 

(porosity) effect resulting from the spatial averaging procedure. Zeng and Li (2012) 

also solved the double‐averaged N‐S equations for depth‐limited flows over gravel‐

bed channels for cases of small‐scale and large‐scale roughness elements. They used 

the wall function approach for the small‐scale roughness and applied a drag based 

model to the large‐scale roughness since the wall function did not perform well in the 

latter case. Finally, in Busse and Sandham (2012), the drag force term was added to 

the N‐S equations to account for the additional pressure drag‐induced by the 

roughness elements and it contained two parameters, i.e. roughness height and 

roughness factor that the latter was related to the roughness density and a shape 

function. 

2.2.2 Porous bed 

In Section 2.2.1, the models developed for treating impermeable rough bed 

boundaries in turbulent free surface flows were reviewed. However, in most river 

engineering cases, the channel bed is porous composed of sands and gravels so that 

flow can penetrate and move also inside the bed. In such conditions, the momentum 

transfer at the interfacial boundary between porous media and the adjacent turbulent 

flow plays an important role in the formation of the flow structure and has a 

significant effect on the possible transport, entrainment and deposition of solid 

particles by the flow such as fine sediments. Hence, many research studies have been 

devoted to the understanding of fluid flow through porous media and the complex 

processes that occur at the interfacial boundary.  

There are two general approaches in the mathematical modelling of flow through 

porous media, i.e. the microscopic and macroscopic approaches. In the microscopic 

representation of the media, the fluid‐solid interfaces are modelled as rigid 
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boundaries, while in the macroscopic approach, the media is represented as a single‐

phase continuum and the frictional effects of the solid matrix on the macroscopic field 

are incorporated as drag terms in the governing equations. In the microscopic 

modelling, all geometrical characteristics of the media as well as all scales of flow are 

resolved (DNS). Hence, it is ideal, but often impractical due to the limitations with the 

computational power and cost. Therefore, macroscopic approach has been more 

attractive to the researchers for decades for studying fluid flow through porous 

media.   

In 1856, Henry Darcy performed experiments on unidirectional flow in a uniform sand 

column and proposed Darcy’s law as the following relationship. 

 
D P


  u

K
 (2.20) 

where Du  is the seepage (discharge) velocity, K  is the intrinsic permeability tensor 

and P  is the intrinsic (measured) pressure gradient in the sand column. It is notable 

that Du  is equivalent to the superficial (volume average) velocity which is equal to 

iu  where iu  is the intrinsic (measured) velocity and   is the porosity of the media. 

Later, Forchheimer (1901) observed that when the flow velocity increases, the inertial 

effects become dominant. Then he included an inertial term, representing the kinetic 

energy, to the Dracy’s equation and proposed the following relationship for flow 

through porous media.  
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where FC  is a dimensionless form‐drag coefficient. In fact, the linear (Darcy) term 

represents the viscous effects while the nonlinear Forchheimer term represents the 

form‐drag effects. Ergun (1952) also proposed an empirical equation for drag effects 

with a form similar to Equation (2.21). Although it was derived specifically for flow 

through packed beds of spheres, it has been widely used in many engineering 

applications.  
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In the case of existence of a free flow adjacent to the porous media, Darcy’s equation 

(2.20) does not match with the N‐S equations of free flow (Equation 2.1) at the 

interface boundary due to the second derivative term of viscosity in the N‐S equation. 

Binkman (1947) added another term to Darcy’s equation as the following which 

resolved this issue. 

 2
D eff DP
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K

u  (2.22) 

where eff  in the Brinkman’s term is known as the effective viscosity which is 

approximately equal to the fluid viscosity.  

Later, a combination of Equations (2.20), (2.21) and (2.22) was considered as Darcy‐

Brinkman‐Forchheimer flow model which was also obtained by local volume 

averaging of the N‐S equations in some studies. For example, Vafai and Tien (1981) 

obtained the following equation for the macroscopic equation of momentum 

considering a 2D steady, isotropic, incompressible, homogeneous flow through a 

porous medium. 
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It is notable that the local volume averaging method for deriving the macroscopic 

governing equations of fluid flow through porous media was previously proposed by 

Slattery (1967), Whitaker (1969) and Gray and Lee (1977). Later, Whitaker (1996) 

applied the method of volume averaging to the N‐S equations and obtained the 

Darcy's law with the Forchheimer correction for homogeneous porous media. They 

provided the Volume‐Averaged N‐S (VANS) equations in which the following term was 

added to the momentum equation as the drag effects of the solid matrix. 

   s
s


  A I F u

K
 (2.24) 

sA  is equivalent to the last two terms on the right‐hand side of Equation (2.23); and 

su  is the superficial velocity which is equivalent to the discharge velocity Du  in that 
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Equation. Besides, K , I  and F are the permeability, unit, and Forchheimer tensors, 

respectively.  

VANS equations have been used in a large number of studies to macroscopically 

simulate flow through porous media in various engineering applications. However, in 

the presence of an adjacent turbulent flow, treatment of the interfacial boundary 

between porous media and free flow has always been a challenging task. There have 

been two different types of treatments in the literature for this purpose. I) in many 

studies, flow inside porous media is disregarded; or simulated separately while 

matching conditions of velocity and shear stress are applied at the interfacial 

boundary. The matching conditions apply either continuous flow quantities or a 

discrete step change in the streamwise flow quantities at the interface boundary. II) 

A set of governing equations is solved in a unified domain including both porous and 

free flow (clear water) regions while the difference between the two regions is 

characterised by porosity, permeability and drag stress terms in the equations.  

Beavers and Joseph (1967) was one of the first studies where a discrete step change 

in the boundary condition was proposed for treating the interface. They studied a 

Poiseuille flow over a naturally permeable block and assumed that the velocity 

changes rapidly from a slip velocity at the interface to the Darcy velocity within the 

block. Accordingly, they related the tangential shear stress at the interface to the 

difference between the interface slip velocity and the Darcy velocity using an 

empirical coefficient which depends on the parameters of the porous surface. Ochoa‐

Tapia and Whitaker (1995a) also proposed a stress jump condition at the interface in 

which an excess stress appears in the formulation of the boundary conditions with an 

adjustable coefficient. Hahn et al. (2002) used an extended version of Beavers and 

Joseph (1967) boundary condition in their DNS of turbulent channel flow bounded by 

permeable walls. At the interface, they imposed a slip velocity condition at 

streamwise and spanwise directions and a zero‐velocity condition at the wall‐normal 

direction. Huang et al. (2003) separately solved unsteady 2D N‐S equations for free 

flow and N‐S type equations including drag terms for flow through porous media to 
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simulate the interaction between a solitary wave and a submerged porous 

breakwater. At the interface boundary, following Deresiewicz and Skalak (1963), they 

applied the matching conditions which represent the continuity of the velocities as 

well as the continuity of the normal and the tangential stresses.  

From the physical point of view, the interface should be addressed as a boundary layer 

over which the flow quantities transfer smoothly (i.e. defining free flow and porous 

media in a unified domain) rather than by matching up the equations at a single 

interface line. Hence, the latter has been more attractive among researchers in recent 

years. Breugem and Boersma (2005) carried out two DNS simulations for turbulent 

flow over and within a Cartesian grid of cubes by solving the N‐S equations in a unified 

computational domain. In one, an immersed boundary method was employed to 

impose the no‐slip and no‐penetration conditions on the surface of cubes (i.e. the 

cube surfaces were simulated as rigid boundaries), while in the other one, the porous 

media (grid of cubes) was simulated as a continuum based on the VANS equations of 

Whitaker (1996). They stated that the continuum approach requires less 

computational power although it needs closures for drag force and turbulent stresses. 

In the continuum DNS, the same equations were solved for both porous and free flow 

regions with a continuous variable‐porosity formulation at the interface. Breugem 

and Boersma (2005) concluded that the direct simulation is not always possible with 

present‐day computer facilities, while the continuum approach can provide reliable 

result if the drag closure model is carefully selected.  

All of the studies reviewed have been developed based on grid‐based methods, such 

as Finite Difference or Finite Volume Methods, where a fixed grid system is used in 

the Eulerian framework. Recently, Lagrangian particle methods such as SPH have 

shown promising capacities in simulating turbulent free surface flows. Some of the 

applications in this area (which are of interest in the present study) will be reviewed 

in the following section. 
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2.3 Particle based methods for simulating turbulent channel 

flow 

SPH is a Lagrangian particle method that was initially proposed by Lucy (1977) and 

Gingold and Monaghan (1977) to solve astrophysical problems. Since then due to its 

capacity in simulating fluid flows, it has been widely used in this area. In SPH, the 

following integral representation is used for approximating a quantity like A  at the 

position r . 

      ,A A W h d


   r r r r r  (2.25) 

where  denotes the averaging volume, r  is the position vector of other points than 

the centroid r ,  ,W hr r  is the weighting (kernel) function, and h  is its 

associated smoothing length (see Figure 2‐1). Besides, the derivative of A  is 

approximated as the following 
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Figure 2-1  Averaging volume  and weighting function . 

 

Equations (2.25) and (2.26) are written in the following form, respectively, after 

discretising the computational domain. 

 W
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where indices a  and b  denote the particle at the centroid where the quantities are 

calculated for and its neighbouring particles, respectively. V  is the volume of 

particles which is defined as  m   in which m  and   denote particle mass and 

volumetric density, respectively. 

Particle methods like SPH have several advantages for simulating free surface flows, 

although just a small number of studies have been carried out in this area. Due to its 

Lagrangian nature, SPH is capable of dealing with large deformations of free surface 

boundaries, simulating complex solid boundaries appropriately, and simulating fluid 

flow with no numerical diffusion. Specifically, for the present applications of turbulent 

flow over porous beds, it has the advantage of treating the interface between porous 

media and free flow as a continuous boundary as the computational domain including 

both porous and free flow regions is discretised by moving particles which carry mass 

and momentum while moving from one region to another. This capacity makes the 

simulation of complex interfacial boundaries easy and effective. However, this area of 

research is still new and there have been no comprehensive SPH model developed for 

simulating turbulent flow over porous beds.  

In the following Sections 2.3.1 and 2.3.2, respectively, the turbulence modelling and 

impermeable boundary treatment in existing particle‐based models will be reviewed. 

Then, since there has been no particle model developed specifically for turbulent 

open channel flows over porous beds, the SPH models developed for free surface flow 

interaction with porous media (which are mostly in the area of coastal engineering) 

will be reviewed in Section 2.3.3. 
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2.3.1 Turbulence modelling in particle models 

Although some attempts have been made in recent years to model turbulence in 

particle methods, this issue is still challenging since all well‐known turbulence models 

have been originally developed and tested for the grid‐based methods. One of the 

earliest attempts to model turbulence in particle methods was made by Gotoh et al. 

(2001) where a Sub‐Particle‐Scale (SPS) model was introduced and applied with 

Moving Particle Semi‐implicit (MPS) method to simulate a turbulent jet. SPS is the 

particle version of the LES‐SGS model of Smagorinsky (1963) which was discussed in 

Section 2.1.2. Later, two other approaches were proposed and tested by Violeau et 

al. (2002) for modelling flow turbulence in SPH based on the eddy‐viscosity 

assumption and the Generalized Langevin Model (GLM). These models were used to 

simulate a turbulent Poiseuille flow in a pipe. Violeau and Issa (2007) also investigated 

the application of some turbulence models with the SPH method for simulation of 

some complex free surface flows. In their study, a k   model, an Explicit Algebraic 

Reynolds Stress Model (EARSM), and a 3D LES model were developed to simulate the 

collapse of a column of water. According to their study, the LES‐SPS model requires 

more computational costs compared the traditional RANS turbulence closures. Lopez 

et al. (2010) simulated hydraulic jumps with different Froude numbers (Fr) using the 

SPH method and achieved good agreement between numerical and experimental 

results for the cases with low Fr number by using the standard SPH formulations 

without any turbulence treatment, while they had to employ a variable artificial 

viscosity formulation in order to achieve desirable accuracy for flows with Fr > 5. The 

standard SPS model was also used by some researchers for turbulence modelling in 

particle methods, including but not limited to Sahebari et al. (2011), Fu and Jin (2013), 

and Chern and Syamsuri (2013), in which the Smagorinsky constant was set to 0.12 to 

0.15. But, De Padova et al. (2013) used a mixing‐length approach with SPH for 

simulating 3D hydraulic jumps in a large channel. Firstly, they solved a 2D uniform 

open channel flow over a wall boundary with roughness 0.02sk H  ( H  = water 

depth) to validate the turbulence model. Then hydraulic jumps were simulated by the 
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model and the computed water surface profiles were compared with those obtained 

from a k   model. 

Recently, some detailed investigations of turbulence modelling of wall‐bounded flows 

using SPH were made by Mayrhofer et al. (2013, 2015). Mayrhofer et al. (2013) 

treated the noises coming from the SPH discretization by introducing an additional 

volume diffusion term into the equation of continuity. This term was estimated using 

an eddy‐viscosity model with the mixing‐length approach. More recently, Mayrhofer 

et al. (2015) developed DNS as well as LES of 3D wall‐bounded turbulent channel flows 

based on the SPH method and revealed interesting findings. They firstly performed a 

3D quasi‐DNS where good match was achieved with the reference data except for 

some near‐wall oscillations. Then a LES of a free surface channel flow with friction Re 

Number (Reτ) of 1000 was carried out with the unified semi‐analytical wall boundary 

condition and an eddy‐viscosity model with the Smagorinsky constant sC = 0.065. In 

contrast to the DNS, the LES result was poor with regard to the streamwise velocity 

and fluctuations. They attributed the failure to the SPH collocated discretization effect 

on the velocity‐pressure interactions and concluded that LES of free surface channel 

flows with SPH is still impossible due the problems inherent in the standard SPH 

discretisation. It is notable that to reproduce the shear boundary layer near the wall 

in their LES, Mayrhofer et al. (2015) employed a wall function based on Reichardt’s 

law. However, no information was provided regarding the characteristics of the wall 

boundary such as the surface roughness. 

Another SPH turbulence model that should be mentioned here is the model proposed 

by Monaghan (2011) which was based on a Lagrangian scheme similar to that used 

for the Lagrangian averaged N–S (LANS) turbulence model, but with a different 

smoothed velocity. This model was later used to simulate 2D turbulence driven by a 

moving cylinder by Monaghan (2017). 
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2.3.2 Treatment of rough bed boundary in particle models 

In simulating turbulent open channel flows, an adequate treatment of the bed 

boundary is as important as the inclusion of an appropriate turbulence model. 

However, the effect of bed roughness has not been taken into consideration in most 

of the developed particle models. In the studies of Sahebari et al. (2011), Shakibaeinia 

and Jin (2011), Federico et al. (2012) and De Padova et al. (2013), the treatment of the 

channel bed has not been explicitly included in their models. On the other hand, in 

some other MPS and SPH studies, this issue has just been tentatively addressed. 

Violeau et al. (2002) and Violeau and Issa (2007) impose logarithmic velocity 

distributions near the wall by applying wall functions. Lopez et al. (2010) employed 

Lennard‐Jones repulsive forces to prevent the fluid particles from penetrating into the 

wall and this produced a numerical resistance representing the roughness effect. 

Chern and Syamsuri (2013) defined smooth, triangular, trapezoidal and sinusoidal bed 

boundaries by lines of particles to simulate the effect of corrugated bed on the 

characteristics of hydraulic jumps. They used a repulsive force similar to Lopez et al. 

(2010) in that the wall particles exert a force on the fluid particles to represent the 

resistance of the rough bed. In the study of Fu and Jin (2013), several layers of ghost 

particles were set beyond the boundary line and artificial velocities were assigned to 

those particles in the opposite direction of the flow to account for the bed roughness 

in their MPS model. The model presented a simple method to reflect the roughness 

effect by imposing a numerical adjustment of velocity at the bed, but this was not 

based on sound physical understanding. 

2.3.3 Flow interaction with porous media by SPH 

A small number of studies have been devoted to the application of SPH in simulating 

flow interaction with porous media. Here, some of them which are mostly developed 

in the area of coastal engineering are reviewed.  



2.3 Particle based methods for simulating turbulent channel flow 27

 

Shao (2010) developed an Incompressible SPH (ISPH) model following the 

macroscopic equations presented in Huang et al. (2003) for wave interactions with 

porous media. He separated the computational domain into porous and free flow 

regions and imposed the matching conditions (proposed by Huang et al. 2003) of 

velocity and normal and tangential stresses at the interface boundary line. This 

method is difficult to use (Gui et al. 2015) and not physically sound. Furthermore, the 

turbulence effect as well as the effect of the volume occupied by the solid particles 

was disregarded in the governing equations. In other words, only two extra resistance 

terms were added to the N‐S equation where the laminar and turbulent resistance 

coefficients were in the same form as that proposed by Sollit and Cross (1972) and to 

determine the permeability and nonlinear resistance coefficient, empirical formulas 

were used following Huang et al. (2008). 

In their ISPH model for simulating fluid flow through porous media, Akbari and Namin 

(2013) used the local VANS equations proposed by Vafai and Tien (1981) with 

considering inertia coefficient rC  as presented by Sakakiyama and Kajima (1992) and 

van Gent (1995). In contrast to Shao (2010), they solved a unified set of governing 

equations at a single computational domain by introducing a transitional layer at the 

interface where a gradual porosity was imposed. This process was applied using a 

background mesh where the porosity at the position of SPH particles was calculated 

by averaging the reference porosity of the neighbouring mesh points over an 

interpolating area using the SPH interpolation method. The interpolation was 

performed by using a smoothing length h  in the range of the mean porous grain 

diameter. Therefore, the thickness of the transitional layer over which porosity is 

variable was 4 times the solid particle diameter. The model was tested by solving 3 

cases of wave interaction with porous structures where the results of water surface 

elevation were compared to the experimental data. The effect of turbulence was 

ignored; no presentation/validation was performed with regard to the velocity 

distribution; and no investigation was carried out on the behaviour of flow quantities 

at the interface.  
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Gui et al. (2015) applied the transitional layer approach of Akbari and Namin (2013) 

in order to improve the model of Shao (2010). However, their model still had the same 

limitations as in Shao (2010). Neither Akbari and Namin (2013) nor Gui et al. (2015) 

incorporated turbulence closures in their models. Akbari (2014) modified the model 

of Akbari and Namin (2013) by applying the standard SPS turbulence model (with 

0.1sC  ) into their ISPH model for simulating wave interaction with multi‐layered 

porous structures. The estimated water surface profiles were presented in 

comparison with the experimental data, while no validation was considered for the 

velocity and turbulent quantities.   

To simulate wave interaction with porous structures, Ren et al. (2014) employed the 

spatially averaged N‐S equations as in Liu et al. (1999) except that the porous 

resistance terms were of the form proposed by Sollitt and Cross (1972). They applied 

a transitional layer at the interfacial boundary between free flow and porous media 

which was divided into two equal parts by a boundary line, i.e. the fluid part and the 

porous part. Then at each time step, in each part of the transitional layer, the velocity 

was calculated using only neighbouring particles of the same type, ignoring the 

particles of the other type. Finally, the calculated velocity was interpolated over a 

kernel area for each particle using all its neighbouring particles. The SPS model with 

0.1sC   was applied for turbulence only in the free flow region, while the effect of 

turbulence in the porous region was ignored. In spite of the enforcement of continuity 

of the velocity across the transitional layer by the velocity interpolation treatment, a 

large discontinuity was observed in the turbulent quantities at the interface. Besides, 

the thickness of the transitional layer was set to one smoothing length, i.e. it was 

related only to the computational resolution rather than the conditions of flow or 

porous media skeleton near the interface. Two test cases of interaction of water 

waves with porous structures were simulated and water surface profiles were 

validated by experimental data. Some preliminary results of pressure distribution, 

velocity vectors and flow vorticity were presented with no further validation.    
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Afterwards, Ren et al. (2016) used the Volume‐Averaged and Favre‐Averaged N‐S 

(VAFANS) equations along with the SPS turbulence closure model (with 0.1sC  ) to 

describe the flow both inside and outside the porous media. The empirical coefficients 

for the drag terms were determined through Du Plessis (1994) equation. Regarding 

the interfacial boundary treatment, they applied a transitional interface layer similar 

to Akbari and Namin (2013) with the difference that the thickness of the layer was set 

to the mean diameter of the porous solid particles. Two test cases of wave interaction 

with porous media were simulated and the water surface elevation was compared to 

the experimental data. Some preliminary results of velocity vectors and turbulent 

eddy‐viscosity were presented with no experimental validation. The change of flow 

quantities at the interface was not investigated too.  

In their recent studies, Pahar and Dhar (2016, 2017a and 2017b) developed ISPH and 

MPS models to simulate interaction of flow with porous media. Porous media 

interface conditions were implicitly implemented by using discharge (Darcy) velocity 

in the governing equations and introducing porosity into Pressure Poisson Equation. 

They successfully simulated sevral hydraulic cases and validated their model with 

regards to free surface profiles of dame break flow through a porous dam. No 

validation on velocity and turbulence fields was presented and some artificial 

treatments were introduced e.g. no turbulence effect was computed inside the 

porous media and therefore the viscosity of the pure fluid region and effective 

viscosity of porous media was simply averaged to diminish the discontinuity of 

viscosity at the interfacial boundary (Pahar and Dhar 2016); and non‐constant 

smoothing length (which represents the spatial averaging support size) was used due 

to the change of porosity (Pahar and Dhar 2017b). 

2.4 Summary 

In this chapter, a review was completed on the numerical modelling of turbulent open 

channel flows with focus on the turbulence modelling and the treatment of rough 
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impermeable and porous bed boundaries. In Section 2.1, the background of 

turbulence in open channel flows was briefly discussed and then in Sections 2.1.1 and 

2.1.2, two types of turbulence models (RANS and LES, respectively) were investigated 

following a review on some grid‐based numerical models in each section. Bed 

boundary treatments in open channel flows was discussed in Section 2.2, where 

background on flow over rough impermeable and porous beds was presented 

respectively in Sections 2.2.1 and 2.2.2 following review of some grid‐based models. 

Finally, in Section 2.3, the SPH method was introduced and a review was carried out 

in Sections 2.3.1, 2.3.2, and 2.3.3, respectively, on the turbulence modelling, 

treatment of rough impermeable boundaries, and flow interaction with porous media 

using particles methods. 

2.4.1 Required improvements for the turbulence modelling 

In some of the existing SPH models developed for open channel flows, the effect of 

turbulence was disregarded and in some of them it was incorporated into the 

momentum equation by the SPS model with the standard Smagorinsky coefficient. 

Unfortunately, in most of the studies, no detailed results of turbulent quantities were 

presented. Only, in the study of Mayrhofer et al. (2015), the application of SPS for LES 

of turbulent channel flows was investigated in detail with some results of velocity 

fluctuations being provided. They discussed that a reduced momentum transfer was 

simulated due to the incorrect reproduction of velocity‐pressure interactions inherent 

in the standard SPH discretization. This issue should be more serious when the bed is 

rough. In such a case, either the roughness layer is modelled using wall functions or 

as a macroscopic boundary layer using drag models, the near‐boundary dispersion 

which is a result of flow blockage by solid elements, is disregarded. In order to provide 

an accurate representation of the complex processes occur near a rough/porous bed, 

a microscopic representation of flow (with DNS) is ideal in order to resolve all scales 

of flow. However, due to the limitation regarding the computational costs, LES is 

usually used with a macroscopic representation of rough/porous layer. In this case, it 
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is essential to improve the existing turbulence modelling approach to accurately 

reproduce the balance in the flow momentum with regard to the turbulent effects, 

especially in the present highly‐sheared flow problems.  

Although the standard SPS‐Smagorinsky model has been widely applied with the SPH 

method in simulating various engineering problems such as those in coastal 

engineering or hydraulics, in the present work it will be shown that this model 

provides poor results in 2D macroscopic LES of fully‐turbulent channel flows over 

rough beds. Accordingly, it will be modified as to correctly estimate the transfer of 

momentum throughout the flow depth (Chapter 3).   

2.4.2 Required improvements for the treatment of the rough 

impermeable bed 

As reviewed in Section 2.3.2, in most of mesh‐free particle models developed for open 

channel flows, the effect of bed roughness has not been explicitly taken into account 

or has been modelled based on numerical adjustments. Bed boundary is usually the 

main source of turbulence production in open channel flows. The roughness reduces 

velocity near the bed; velocity gradient increases accordingly; and the turbulent shear 

stress transfer this effect to the upper flow layers. According to the review in Section 

2.2.1, the drag force method coupled with a suitable turbulence model has been 

shown to be an appropriate way of modelling the roughness effect in grid‐based 

methods for impermeable rough boundaries (Wiberg and Smith 1991, Nicholas 2005, 

Zeng and Li 2012). Therefore, a similar technique will be applied in Chapter 3 with SPH 

in macroscopic modelling of roughness effect in turbulent open channel flows over 

impermeable rough beds.  

2.4.3 Required improvements for the treatment of the porous bed 

SPH has shown promising capacity in macroscopically dealing with flow interaction 

with porous media. However, the SPH models developed in this area have had some 
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limitations. According to the review in Section 2.3.3, these limitations can be 

considered as follows: i) In most of those studies, the interface boundary layer has 

been simulated based on numerical calibrations rather than rigorous mathematical 

justifications (e.g. Ren et al. 2014, and Pahar and Dhar 2016); and no investigation has 

been performed on the behaviour of flow quantities at this layer (e.g. Akbari and 

Namin 2013, and Ren et al. 2016); ii) The turbulence effect is disregarded, or included 

by the SPS model with no further validation (e.g. Shao 2010, Akbari and Namin 2013, 

and Gui et al. 2015); and iii) Most of the existing SPH studies are in the area of coastal 

engineering (wave interaction with porous structures), mostly providing the results of 

water surface elevation, while there have been no application in turbulent open 

channel flows over/within porous beds, especially for the situation of high velocity 

gradients at the interface. Being motivated by these points, in the present work, firstly 

the macroscopic governing equations for flow interaction with porous media will be 

developed based on the principles of the SPH method in order to find the limitations 

and constraints, illuminate the range of applicability of the equations, and provide 

effective solutions for practical situations (Chapter 4). Then, the developed model will 

be tested by different applications with regard to the estimated water surface profiles 

and velocity distributions (Chapter 5), and more importantly, it will be applied for 

simulation of highly‐sheared free surface channel flows over and within natural 

porous beds and validated by experimental data (Chapter 6).  



 

Chapter 3 Modelling Turbulent Open Channel 

Flow over Rough Impermeable Beds  

In many cases of turbulent river flows, the channel bed could be considered as an 

impermeable boundary. Examples of this situation are when the bed is naturally 

impermeable, or the flow inside the bed is weak and there is no (or a very small) flow 

penetration into the bed (highly consolidated sediment and a rock bed channel). In 

these cases, an appropriate boundary condition could represent the complicated 

processes occur at the bed. However, the frictional effect of the bed as well as the 

turbulence behaviour should be addressed adequately, particularly when the bed is 

rough.  

In this chapter, a 2D SPH model will be developed for simulating turbulent open 

channel flow over rough beds. The model will be tested based on a set of experimental 

data of turbulent flow over a sloping bed consisting of a thin layer of spherical 

particles placed on an impermeable channel bed. In Sections 3.1, 3.2 and 3.3, 

respectively, the mathematical development, applications, and some concluding 

remarks will be provided.  

3.1 Numerical modelling scheme 

The physical problem under consideration is turbulent open channel flow over rough 

bed boundaries. Steady uniform flow is considered, and the bed roughness elements 

are assumed to be uniformly distributed. Conservation equations of mass and 
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momentum are considered as the governing equations. The numerical solution 

scheme is based on LES for taking the effect of turbulence into account; and is 

developed at the macroscopic scale in dealing with the bed roughness effect. The 

WCSPH method is used to discretise and solve the equations in 2D. In the following 

sections, governing equations, discretisation of the equations by WCSPH method, 

time implementation scheme, and boundary conditions of the problem are 

presented. 

3.1.1 Governing equations 

The governing equations for the present problem are the spatially averaged equations 

of continuity and momentum in 2D in their Lagrangian form. Two closure terms are 

added to the momentum equation representing the effects of turbulence and form‐

drag induced stresses on the average flow field. 
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where  u  is average flow velocity;   is fluid density; P  is average pressure; g  is the 

gravitational acceleration; 0  is the kinematic viscosity coefficient; t  is time; eτ  is the 

unresolved part of turbulent shear stress that should be modelled; and dτ  is form 

drag‐induced shear stress which is imposed only on the particles in the roughness 

layer near the bed. The last two terms are approximated by the following closure 

models. 

3.1.1.1 Drag closure 

The ideal way of simulating flow over a rough surface is to use DNS with very high 

computational resolution in order to both resolve all turbulent eddies as well as the 

geometry of the rough bed as solid boundaries. However, DNS is not practical due to 
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its high cost of computation. Therefore, the LES is used for turbulence together with 

a macroscopic representation of flow in the roughness layer near the bed. For this 

purpose, the form drag‐induced shear stress term d τ  is added to the momentum 

Equation (3.2) for the fluid particles locating in the roughness layer. The 

determination of the roughness layer will be discussed in Section 3.1.4.2. dτ  is 

calculated by 

 d
d A


F

τ  (3.3) 

where  

 1

2d d d dC W A F u u  (3.4) 

is the drag force exerted on a fluid particle from the rough bed and A  is the bed‐

parallel, planar area affected by the fluid particle. In Equation (3.4), dA  is the cross‐

sectional area, dC  is the drag coefficient and dW  is a shape function representing the 

effect of geometry of the bed roughness which is a non‐dimensional quantity holding 

values between 0 and 1. In fact, it brings the effect of solid material density into the 

equation. The quantifications of these parameters will be presented in Section 3.1.4.2. 

3.1.1.2 Turbulence closure 

As mentioned above, LES is considered in this study for dealing with the effect of 

turbulence on the average flow field. In LES, the eddies larger than the computational 

discretisation size are resolved while the effect of the smaller ones is modelled. In 

other words, a part of turbulence is resolved by the numerical discretisation while the 

missing part is estimated by an appropriate closure model and incorporated to the 

momentum equation. Hence, the total turbulent shear stress ( tτ ) can be defined as 

the sum of the resolved ( rτ ) and unresolved ( eτ ) parts, as the following. 

 
t r e τ τ τ  (3.5) 
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The SPS model proposed by Gotoh et al. (2001) is usually used with SPH for estimating 

eτ . It is the particle version of the LES‐SGS‐Smagorinsky model introduced in Section 

2.1.2. Equation (2.14) is applied to calculate eτ  from the average flow field where ij  

is the component of the modelled shear stress tensor, and t  is estimated by Equation 

(2.17). In the present simulations, the SPS model of Gotoh et al. (2001) is employed 

but with a modification in the estimation of the eddy‐viscosity t . 

Although, Equation (2.17) has been widely used with SPH in coastal engineering 

applications for estimating the turbulent eddy‐viscosity, its applicability in open 

channel flows with SPH has not been investigated comprehensively, except in the 

study of Mayrhofer et al. (2015) where a semi‐DNS as well as a LES of turbulent open 

channel flow were investigated. The LES was based on the SPS‐Smagorinsky model 

with 0.065sC   which failed to reproduce the correct turbulent statistics. They 

attributed the failure to the velocity‐pressure interactions of vortices which is 

inherent in the standard SPH discretization; and concluded that ‘should the pressure 

gradient not be calculated sufficiently accurately, then a reduced momentum transfer 

takes place’.  

This issue could be even more serious in the present study where the flow dispersion 

at the bed is ignored due to the macroscopic modelling of the roughness layer. In 

other words, the Standard Smagorinnsky model may not perform well for ‘highly 

rough surfaces’ as it has not been designed for such condition. It is assumed that due 

to the macroscopic modelling of the roughness layer near the bed, no particle‐scale 

vortices (or very weak ones) will be produced in the ‘average flow field’ as the bed 

elements (spheres here) do not exist in the model. Observations show that in the 

absence of the geometry of the roughness elements as solid boundaries, fluid 

particles move in nearly strainght lines. Therefore, it is assumed that the part of flow 

turbulence resolved by the particle motion ( rτ ) is negligible compared to the 

unresolved part, i.e. r eτ τ . It means, 
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t e l τ τ τ  (3.6) 

where lτ  is the turbulent shear stress that should be modelled/estimated. This 

assumption will be tested in Section 3.2.6.  

According to Equation (3.6), the total effect of flow turbulence should be modelled, 

similar to the RANS modelling. Therefore, instead of using the standard Smagorinsky 

model with a sC  being around 0.15, the application of a standard mixing‐length 

model is explored here to estimate the turbulent eddy‐viscosity in the present SPH 

scheme. Accordingly, the eddy‐viscosity is written as the following. 

 2 St ml   (3.7) 

To estimate the mixing‐length, Nezu and Rodi (1986) formula (Equation 2.9) is 

employed with the values of 0.41, zero, and 1.0 for  ,   and F  respectively, so that 

this equation is simplified to the following equation for estimating the mixing‐length. 

This relationship was also used by Violeau and Issa (2007) in simulating turbulent open 

channel flows using the SPH method. 

 1m w wl z z H   (3.8) 

It is notable that turbulence is 3D in nature. However, in the present study, uniform 

flows are simulated where the flow is dominated mainly by the streamwise shear 

stress and vertical momentum exchange. In other words, the influence of flow in the 

lateral direction is much smaller than the streamwise flow so that it is reasonable for 

it to be neglected in the present simulations. Generally speaking, in 2D uniform open 

channel flows where the macroscopic flow is dominant only in the streamwise 

direction, the local strain rate S  is approximately equivalent to u z   as other 

velocity gradients such as u x  , w x   and w z   are significantly smaller. x  and 

z  denote the streamwise and vertical coordinates respectively; and u  and w  are the 

streamwise and vertical velocity components, respectively. In such a case, Equation 

(3.7) would be equivalent to Equation (2.5) (Prandtl’s theory). 
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3.1.2 Discretization of the equations by SPH 

The WCSPH method is applied to discretise the governing equations. Making use of 

Equations (2.27) and (2.28), the governing equations (3.1) and (3.2) are discretized as 

follows. 
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where ab a b u u u ; ab a b r r r ; a abW  is the gradient of the kernel function 

between particles a  and b  with respect to the position of particle a ; and   is a small 

number (here, 0.1h ) used to prevent singularity. Meanwhile, lτ  and dτ  are the 

MSPH‐ML and form‐drag induced shear stresses estimated by the approaches 

introduced in Sections 3.1.1.1 and 3.1.1.2, respectively. In the WCSPH method, the 

following equation of state is employed to explicitly calculate particle pressure from 

the change in its density. 

  2
0 0P c   

 (3.11) 

where 0c  is the speed of sound and 0  is the reference density. The assumption is 

that the flow is compressible in order to be able to use the equation of state for 

pressure, but the compressibility is restricted to 1%. For this purpose, 0c  is usually set 

to about 10 times of the velocity of the bulk flow. Meanwhile, a Shepherd density 

filter is applied at every 30 computational time steps to minimise numerical noise in 

the pressure field.  
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3.1.3 Time implementation 

To solve the equations in time, the predictor‐corrector scheme (Monaghan, 1989) is 

applied. In this method, firstly density, velocity and position of particles are predicted 

at a mid‐time step ( 2t t ) using the values at time ( t ) as the following. 
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where t  is the time increment size;  t ,  tu  and  tr  are density and components 

of velocity and position vectors, respectively, at time t;  2t t  ,  2t tu   and  2t tr   

are those quantities at mid‐time step; and ( )t
massD  and ( )t

momentD  are the right‐hand side 

of continuity and momentum equations (Equations 3.9 and 3.10, respectively). Then, 

particle pressure at the mid‐time is calculated based on  2t t   using Equation (3.11). 

In the correction step, the quantities are updated as follows. 
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where  2t t
massD   and  2t t

momentD   denote the right‐hand side of the equations of mass and 

momentum, respectively, at the mid‐time 2t t . Finally, the quantities at time 

t t  are calculated as the following. 
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Besides, pressure at time t t  is calculated by the equation of state (3.11). 

The size of computational time step is selected according to the Courant–Friedrichs–

Lewy (CFL) condition corresponding to a CFL number of 0.15 as the following. 

 
0

0.15
h

t
c
   (3.15) 

Furthermore, a Link List technique is applied for efficient searching over particles in 

order to optimize the numerical scheme in terms of CPU time. 

3.1.4 Computational domain and boundary conditions 

The 2D computational domain with the boundaries of free surface, rough bed and 

inflow/outflow is shown in Figure 3‐1 and the discretised computational domain is 

depicted in Figure 3‐2. In WCSPH method, the free surface boundary is tracked with 

no special treatment. The treatment of the two other boundary conditions are 

presented in the following Sections 3.1.4.1 and 3.1.4.2, while more details on the 

computational domain and its discretisation are presented in Section 3.2.1. 

 

Figure 3-1  2D computational domain and boundaries. 
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Figure 3-2  Discretised computational domain and boundary conditions. 

3.1.4.1 Inflow and outflow boundaries 

Some recent works on the modelling of inflow/outflow boundary conditions in SPH 

include Federico et al. (2012), Aristodemo et al. (2015), and Tan et al. (2015), where 

various open channel flow cases were simulated over smooth beds. In the present 

work, a similar approach has been introduced with modifications on the 

determination of flow quantities at these boundaries. In contrast to the former 

studies where a prescribed fixed velocity distribution (such as an analytical profile) 

were used at the inlet, in the present simulations velocity of inflow/outflow particles 

are determined based on the velocity of fluid particles inside the domain so that the 

flow is evolved naturally and the desired uniform steady condition is obtained without 

any prescription at the boundaries. The proposed technique is suitable for problems 

in which velocity distributions at the inlet and outlet are unknown and/or applying a 

certain velocity at the inlet to reproduce a certain discharge needs a long distance to 

get uniform. In other words, uniform condition can be achieved in a quite short 

distance. 

The following equation mathematically represents the conditions which should be 

satisfied at the inflow/outflow boundaries, i.e. the gradients of velocity and pressure 

in the streamwise direction x  should be zero at the boundary line in order to achieve 

the uniform flow condition within the domain. 
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Firstly, as seen in Figure 3‐2, several layers of particles (green) are located beyond the 

inflow/outflow boundary lines to cover the truncated kernel area of the inner‐fluid 

particles (blue) near the boundary. The governing equations (3.9) and (3.10) are not 

solved at these particles, but their properties (e.g. velocity and density) are 

determined through an averaging process as follows. An averaging node is defined for 

each inflow particle at the same elevation z but inside the fluid domain, with a 

distance of 00.5l  from the boundary line as shown in Figure 3‐3 (a), where 0l  is the 

SPH initial particle spacing. Then velocity and density of the fluid particles are 

averaged at that node using a kernel function over an averaging area (Figure 3‐3 b) 

and set as the velocity and density of the corresponding inflow particle. Therefore, 

the gradient of velocity and density at the boundary line becomes zero so that the 

zero‐pressure gradient is also satisfied according to Equation (3.11). When an inflow 

particle passes the boundary line and enters the inner‐fluid area, it switches into a 

fluid particle (blue particle) and the governing equations are solved at it in the next 

time step. At the same time, an inflow particle is generated with the same quantities 

at the inlet threshold at the same elevation (Figure 3‐3 a). Through this process, the 

inflow region bounded by the inlet threshold and inflow boundary line (Figure 3‐3 a) 

acts as a particle generator with uniform flow condition. In the present simulations, 

the same kernel function and smoothing length of the fluid particles are used for the 

averaging process at the nodes. The novelty of the proposed inflow boundary 

treatment is that the uniform flow is evolved based on the flow condition inside the 

domain where the equations are solved, i.e. based on the conditions of the channel 

(such as slope and frictional effects of the bed), so the model can be applied to a wider 

range of hydraulic applications in which the inflow information is unknown. 
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Figure 3-3  Inflow boundary treatment. 

Uniform conditions should also be preserved at the outflow boundary in order to keep 

the uniformity of the flow in the channel. Hence, the same technique applied at the 

inflow could also be used for the outflow region. However, a slightly different 

treatment is employed at the outflow to decrease the computational time. When the 

fluid particle passes the outflow boundary line it changes into an outflow particle and 

the governing equations are not solved on the particle anymore, but its properties are 

kept unchanged while it moves through the outflow region. This treatment is similar 

to the technique proposed by Federico et al. (2012), in which the properties of outflow 

particles are ‘frozen’. Finally, the outflow particles which pass the outlet threshold are 

removed from the computational domain (See Figure 3‐2). 

3.1.4.2 Treatment of rough bed boundary 

The effect of bed roughness on the flow is modelled macroscopically by defining a 

layer near the bed over which a drag force is applied on fluid particles. The extent of 

this layer as well as the drag force should be determined. In the present simulations, 

the upper extent of the macroscopic roughness layer is taken to be the crest of 

roughness elements and the lower bound is defined at zero‐velocity plane which is at 

a certain distance below the roughness crest (see Figure 3‐1). A solid wall (also called 

numerical bed level in Figure 3‐2) is set at the zero‐velocity plane and the drag‐

induced stress term d τ  is computed only for the fluid particles located between 



44 Modelling Turbulent Open Channel Flow over Rough Impermeable Beds

 

the numerical bed level and the roughness crest, i.e. within the macroscopic 

roughness layer (Figure 3‐2). The distance between these two levels is named 

thickness of roughness layer or effective roughness height ( dR ). It is assumed that 

dR  is variable for different flow conditions based on the assumption that the effect 

of bed roughness on the flow field differs for different flow conditions. 

At the numerical bed level, several layers of dummy particles (red particles in Figure 

3‐2) are placed in order to address the truncated kernel of the fluid particles near the 

boundary. The velocity of the dummy particles are not determined through the 

solution of the momentum equation, i.e. they are fixed in space, but they hold enough 

pressure to avoid fluid particles penetrating into the boundary. Note that the 

numerical bed level corresponds to the upper layer of dummy particles as depicted in 

Figure 3‐2. The pressures of dummy particles are determined by equation of state 

(3.11) after their density variations are computed through the solution of the 

continuity equation (3.9). Hence, adequate pressure is applied on the dummy 

particles to prevent the fluid particles penetrating the wall boundary. 

Determination of drag force at the bed is depicted in Figure 3‐4 where a section 

normal to the streamwise direction is considered. As seen, the roughness layer is from 

the crest of spheres to the numerical bed level. It is assumed that when a fluid particle 

a  is located within the macroscopic roughness layer, it experiences a drag‐induced 

shear stress from the roughness element. In fact, the drag force is exerted on a fluid 

fragment with width sd  and height 0l  (ABCD in Figure 3‐4), where sd  is the diameter 

of the sphere and 0l  is the SPH particle spacing. Therefore, the cross‐sectional area 

dA  and the bed‐parallel planar area A  are assumed to be equal to the particle size 

0l  and 0sd l , respectively. Besides, dW  is a function (called shape function here) 

defined by the following equation as the area of that part of the water fragment 

located within the sphere (A’B’C’D’ in Figure 3‐4) divided by the total area of the 

fragment (ABCD = 0sd l ). This function accounts for the shape (density) of the 

roughness elements which are spheres in the present study. 
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Figure 3-4  Bed drag model. 
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For the drag coefficient dC  in Equation (3.4), the value of 1.0 is taken. This value is 

chosen following the original work of Gotoh and Sakai (1999) where values between 

1.0 and 1.5 were introduced for particle modelling of porous flows using the MPS 

method. Schmeeckle et al. (2007) found the value of 0.76 for the drag coefficient in 

the experiments of turbulent open channel flow over fixed spheres. They also 

measured the drag force in turbulent flows over cubes and natural particles and found 

that the drag coefficient was significantly higher than that used to model the bed load 

motion. Considering the product of d dC W  as the total drag coefficient in the proposed 

drag force model (Equation 3.4), and assuming half of the bed grain to be the 

thickness of the roughness layer (i.e. 0.5d sR d ) and dC  = 1.0, the average value of 

d dC W  for the particles inside the roughness layer would be equal to 0.785, which is 

close to the value found by Schmeeckle et al. (2007) for spherical particles. It is noted 

that the roughness effect is modelled at a macroscopic scale, i.e. the surface of 

spheres shown in Figure 3‐4 are not modelled as rigid boundaries in the numerical 

simulations. Fluid particles can penetrate inside the roughness layer but feel its 

influence. 
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3.2 Model applications and results analysis 

3.2.1 Model setup and calibration 

Uniform turbulent open channel flows over a sloping rough bed are simulated by a 2D 

WCSPH model and accuracy of the model is validated by an existing set of 

experimental data measured by Particle Image Velocimetry (PIV) in a laboratory flume 

(Nichols, 2013). The flume bed consists of uniform sized spheres packed in a 

hexagonal pattern with a diameter sd  of 24 mm. 

The computational domain is a rectangular with a length of 4L H , where H  is the 

water depth. To address the effect of bed roughness and to assess the accuracy of the 

drag force model, 12 test cases with 3 different bed slopes (0.002, 0.003 and 0.004) 

and various water depths ranging from 40 to 100 mm are simulated. The choice of 

different water depths and bed slopes for simulations is based on the fact that the 

effect of bottom roughness on the flow depends not only on the absolute roughness 

size but also on the flow conditions. Details of the test cases are summarised in Table 

3‐1. According to the table, Fr Number is below 1.0 for all the 12 test cases. It means 

all of them are in the sub‐critical flow condition. Besides, the particle spacing is set to 

0l = 2 mm to ensure that there are at least 20 layers of particles in the depth‐wise 

direction for the shallowest test case (i.e. H = 40 mm). The smoothing length h  is 

set to 1.2 0l  since this value has been widely employed in many SPH simulations. 

Besides, the cubic spline kernel function (Monaghan and Lattanzio, 1985) is chosen 

for the simulations (see Equation 5.4). Three layers of fixed dummy particles are used 

for the bottom wall and three layers of moving particles are used for the inflow as 

well as outflow regions to satisfy the full kernel area of the inner‐fluid particles near 

the boundary lines (Figure 3‐2). The number of layers of particles at the boundaries 

depends on the support of the kernel function 2h  (Figure 2‐1). Since in the present 
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study h  is set to 1.2 0l , support of the kernel function is equal to 2.4 0l . Accordingly, 

three layers of particles are used at the inflow, outflow, and bottom wall boundaries. 

Table 3-1  The test cases and associated computational parameters (the first four letters in the test 

ID denote the bed slope and the last three letters denote the water depth). 

Test 
No. Test ID 0S  

H
(m) 

u 

(m/s) 
Fr Re Calibration / 

Validation 

1 S004H40 0.004 40 0.0396 0.433 10843 ‘C’ 

2 S004H50 0.004 50 0.0443 0.430 15067 ‘V’ 

3 S004H70 0.004 70 0.0524 0.564 32703 ‘V’ 

4 S004H90 0.004 90 0.0594 0.559 47301 ‘V’ 

5 S004H100 0.004 100 0.0626 0.603 59698 ‘C’ 

6 S003H50 0.003 50 0.0384 0.332 11615 ‘C’ 

7 S003H60 0.003 60 0.0420 0.424 19516 ‘V’ 

8 S003H70 0.003 70 0.0454 0.481 27926 ‘C’ 

9 S003H80 0.003 80 0.0485 0.453 32089 ‘V’ 

10 S002H60 0.002 60 0.0343 0.261 12022 ‘C’ 

11 S002H70 0.002 70 0.0371 0.339 19671 ‘V’ 

12 S002H80 0.002 80 0.0396 0.435 30794 ‘C’ 

 

To restrict the compressibility of flow, the speed of sound 0c  is usually chosen to be 

at least 10 times the maximum flow velocity (Monaghan 2005). In the present 

simulations, 0c  is set equal to 16 m/s for all test cases. The highest velocity in the 

present experiments is about 0.7 m/s (the maximum velocity in test case S004H100). 

Therefore, the local density fluctuation (compressibility) will be less than about 0.2% 

in all simulations according to Equation (10.2) of Monaghan (2005). Besides, 0  is 

taken as 1000 kg/m2 which is the density of water. 

As mentioned in the previous section, the thickness of the roughness layer ( dR ) is 

assumed to be variable. This parameter varies depending on the flow conditions thus 
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needs calibration. Hence, six of the test cases (S004H40, S004H100, S003H50, 

S003H70, S002H60 and S002H80) are used for model calibration in terms of dR  and 

the other six cases (i.e. S004H50, S004H70, S004H90, S003H60, S003H80 and 

S002H70) are employed for model validation. The calibration tests are selected to 

cover at least 2 cases of each bed slope and most of the depths range from 40 to 100 

mm. Calibration and validation tests are indicated by letters ‘C’ and ‘V’ respectively, 

in Table 3‐1. 

The calibration process is as follows. Firstly, for each calibration test case, several dR  

values are applied and the Mean Absolute Error (MAE) between the experimental and 

numerical velocity distributions are computed by Equation (3.18), where A  and B  

denote the experimental and numerical velocities, n  is the number of points on the 

velocity profile in the depth‐wise direction at which the velocity is computed, and k  

is the numerator of the points. Then, that value of dR  which corresponds to the 

minimum MAE is selected as the roughness layer thickness for that test case. After 

finding the best dR  with the smallest MAE for all the calibration test cases, the 

relative roughness height dR H  is plotted versus flow depth H  (Figure 3‐5) and a 

power function is used to fit a curve to the points as illustrated in Figure 3‐5.  

For validating tests, similar procedure is adopted as different values of dR  are used 

in the simulations and the one with the minimum MAE is selected and plotted on the 

same graph to check if it follows the fitted curve. Figure 3‐5 shows that the dR H  

values of the validation test cases have nearly the same relation with the flow depth. 

Further evidence of the model validation will be demonstrated in the next section 

where the estimated and measured velocity and shear stress profiles are compared. 
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Figure 3-5  Calibration and validation of the model in terms of the thickness of the roughness layer 

vs. the water depth. 

3.2.2 Flow uniformity and steadiness 

The uniformity and steadiness of flow is investigated by presenting the results of 

streamwise velocity and pressure for test case S004H50. The instantaneous 

streamwise velocity at t = 70 s, instantaneous pressure at t = 70 s, time‐averaged 

velocity, and time‐averaged pressure contours are presented in Figure 3‐6 (a) to (d), 

respectively. For time‐averaging, the SPH‐estimated quantities are averaged over a 

regular fixed mesh with spacing of 0l over a period of 20 seconds from t = 70 s to 90 

s. The figure shows the capability of the adopted inflow/outflow technique in 

producing the desirable uniform flow condition. To further investigate this issue, the 

time‐averaged streamwise velocity of three different sections at x = 0.25L, 0.50L, and 

0.75L are plotted in Figure 3‐7 (a). It is found that maximum difference between the 

depth‐averaged values of these profiles is about 0.5%. Besides, the space‐averaged 

streamwise velocity is plotted for three different times (t = 35, 50 and 65 s) in Figure 

3‐7 (b). The depth‐averaged value of these profiles has a maximum of 1.96%. The 

small change in the streamwise velocity profile over time also demonstrates the flow 

steadiness. 



50 Modelling Turbulent Open Channel Flow over Rough Impermeable Beds

 

 

Figure 3-6  Uniformity of the flow for test case S004H50; (a) instantaneous velopcity; (b) 

instantaneous pressure; (c) time-averaged velocity; and (d) time-averaged pressure. 

 

Figure 3-7  (a) time-averaged velocity in three different sections; and (b) space-averaged velocity in 

three different times, for test case S004H50. 

In the present simulations, the time when the steady state is achieved is different for 

different test cases. However, to determine a threshold, it is confirmed that it takes 

around 20‐30 seconds to reach the steady condition for all the 12 test cases. In fact, 

the initial velocity of particles (including inner‐fluid and inflow/outflow particles) is set 

to a constant value larger than zero in order to reach the steady state quicker. The 

criterion used to define if the flow reaches the steady state is that if the differences 

of the depth‐averaged value of the space‐averaged velocities at the mid‐section of 
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the channel (x = 0.5L) at different times become less than 2.0%, then the flow is 

regarded as being steady.  

A part of the flow momentum is removed by the shear stress term at the bed and the 

turbulence model helps in transferring this effect to the upper layers of the flow. As a 

result, the unbalanced momentum transfer occurs during the first 20‐30 seconds and 

then the flow gradually reaches the steady state condition while the time‐averaged 

quantities such as velocity and shear stress remain unchanged.  

Using the proposed inflow/outflow technique, the flow quantities at the inlet 

boundary are considered to be unknown rather than being prescribed. In fact, the 

flow is naturally generated based on the hydraulic conditions of the channel such as 

the roughness and slope of the bed. 

The satisfaction of volume conservation at the inlet and outlet boundaries is checked 

by calculating the volume flows inside the computational domain at the inlet 

boundary ( inVol ) as well as the volume flows out at the outlet boundary ( outVol ) at 

every second of simulation from the initial time to t = 90 s. The maximum difference 

between inVol  and outVol  has been found to be less than 0.5% at every one second in 

all simulations. This demonstrates that the volume conservation at the inflow and 

outflow boundaries is satisfied in all the present simulations. Here, this comparison is 

shown for one test case (S004H50) from t = 60 s to t = 66 s. The volume of fluid enters 

the domain at the inlet ( inVol ) and the volume leave the domain at the outlet ( outVol

) every second are calculated by summing up the volume of each particle passes the 

inlet and outlet boundaries, respectively, by the following equations. 

 ;i o
in out

i oi o

m m
Vol Vol

 
    (3.19) 

where i  and o  denote the inlet and outlet boundaries, respectively, between time 

intervals t and t + 1 s. The calculated values of inVol  and outVol  are presented in Figure 
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3‐8 which shows the maximum relative difference between inVol  and outVol  (

out in inVol Vol Vol ) is less than 0.5 % for every second. 

 

Figure 3-8  Volume entering and leaving the domain at the inlet and outlet boundaries at every 

second between t = 60 s and t = 66 s for the test case S004H50. 

As mentioned above, a constant initial streamwise velocity larger than zero is usually 

used to help the simulation reach a steady state quicker. Here, inVol  and outVol  for 

the case S004H50 with using different values of the initial velocity ( 0U = 0.05, 0.20, 

0.40, and 0.70 m/s) over 90 seconds is calculated and presented in Figure 3‐9. As can 

be seen, the difference between inVol  and outVol is very small (less than 0.5 %) for any 

initial velocity 0U . The figure also shows the achievement of the steady state 

condition as the Volume per second (m2) becomes constant after about 20‐30 seconds 

depending on the initial velocity 0U . When larger 0U  is used, the steady state is 

achieved quicker. The experimental flow discharge for this case (S004H50) is expQ = 

0.00825 m3/s and the flume width is 0.459 m. Dividing expQ  with the flume width gives 

the value of expq = 0.0018 m2/s which is correctly estimated by the model (the 

constant value of the volume per second in the steady state condition in Figure 3‐9). 
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Figure 3-9  Volume entering and leaving the domain at the inlet and outlet boundaries at every 

second between t = 0 s and t = 90 s for the test case S004H50 with using different values for the 

initial streamwise velocity. 

3.2.3 Analysis of velocity profiles 

Figure 3‐10 compares the estimated time‐averaged streamwise velocity profiles of all 

the 12 test cases with the experimental data as well as the analytical profiles obtained 

by the following equation.  
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Where sk  is Nikuradse roughness size, wz  is the vertical distance from bed, and rB  

is a constant which is equal to 8.5 for the case of rough bed. It is notable that the log 

law may not be valid in the present cases due to the shallow depth and rough bed. 

However, the analytical distributions are just used for comparison with the numerical 

profiles to investigate that if the model is capable of predicting the logarithmic 

distribution above the roughness layer. Table 3‐2 summarises the values of dR  

employed to achieve the results presented here as well as MAE of velocity 

distributions.  

In order to assess the performance of the model in the estimation of velocity 

distribution over the flow depth, the MAE is computed at three different parts, i.e. 

lower 20%, middle 60% and upper 20% of the depth. The purpose of this is to 
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investigate the hypothesis that the bottom layer (bottom 20%) is considered as the 

logarithmic layer while the upper layers could be split up differently (Nichols, 2013). 

Figure 3‐11 represents the result of velocity MAE for all test cases.  

Figure 3‐12 shows the distribution of velocity gradient ( u z  ) for all the 12 test 

cases, as this quantity is also of interest in the present study. Besides, the MAE of 

these profiles are computed and represented Table 3‐2; and their distributions in the 

lower 20%, middle 60% and upper 20% of the depth are illustrated in Figure 3‐13. 

Table 3-2  Relative roughness height and MAE of velocity and its gradient for all the test cases. 

Test 
No. Test ID dR

H
 MAE of 

u  (m/s) 
MAE of 

u z   (1/s) 

1 S004H40 0.285 0.0052 0.77 

2 S004H50 0.206 0.0060 1.17 

3 S004H70 0.144 0.0100 1.27 

4 S004H90 0.104 0.0100 0.77 

5 S004H100 0.094 0.0179 1.25 

6 S003H50 0.202 0.0047 1.40 

7 S003H60 0.156 0.0063 1.39 

8 S003H70 0.135 0.0078 0.67 

9 S003H80 0.116 0.0080 1.11 

10 S002H60 0.172 0.0052 1.05 

11 S002H70 0.137 0.0061 0.81 

12 S002H80 0.113 0.0061 0.82 
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Figure 3-10  Distribution of the time-averaged streamwise velocity over depth. Dash-dotted and 

dashed lines show the level of the numerical bed and the crest of the roughness layer, respectively. 
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Figure 3-11  MAE of the streamwise velocity in the lower 20%, middle 60% and upper 20% of the 

depth 
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Figure 3-12  Distribution of the gradient of the time-averaged streamwise velocity over depth. 

Dash-dotted and dashed lines show the level of the numerical bed and the crest of the roughness 

layer, respectively.  
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Figure 3-13  MAE of the streamwise velocity gradient in the lower 20%, middle 60% and upper 20% 

of the depth. 

Figure 3‐11 demonstrates that as the depth increases, the upper 20% MAE of the 

velocity profile increases in most cases, and as the bed slope decreases, the MAE of 

the near‐bed velocity generally increases. In most cases, the middle part of the depth 

has the lowest MAE for velocity and its gradient. Figure 3‐13 shows that in the lower 

20 % of the depth, the velocity gradient MAE is usually larger, except in some cases 

such as S004H70 and S003H60, where large errors are seen in the upper part of the 

depth. In some cases, the slope of experimental velocity profile declines to zero or 

even negative values just below the surface, while in the numerical results, a non‐

zero, but small positive value is seen in the velocity gradient profiles (Figure 3‐12). 

This difference could be due to the fact that the experimental flow contains secondary 
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circulations which cause non‐zero shear stress at the water surface while such 

behaviour is disregarded in the present 2D model. On the other hand, in the mixing‐

length distribution calculated by Nezu and Rodi (1986) formula, the mixing‐length 

declines to zero at the water surface based on the assumption that the size of 

turbulent eddies is significantly restricted by the free surface. Such a decrease in the 

mixing‐length may result in a non‐zero velocity gradient near the surface.  

Comparing the near‐bed velocity gradient distribution in the numerical, experimental 

and analytical profiles reveals that the difference between the numerical and 

experimental profiles are less than those between the analytical and experimental 

ones. This is attributed to the use of the proposed drag force model, i.e. relating the 

near‐bed velocity to the shear from the roughness elements rather than assuming a 

logarithmic distribution in the shear boundary. 

3.2.4 Analysis of roughness height 

In Section 3.2.1 it was shown that the ratio of dR  (corresponding to the minimum 

MAE) to the water depth, has a relationship with the depth based on the power 

function presented in Figure 3‐5. This figure illustrates the relative roughness height (

dR H ) should be smaller for higher depths. It is noted that in the present study, the 

size of roughness elements (spheres) is fixed for all tests. Therefore, the magnitude of 

the parameter dR H  decreases with a reduction in the ratio of roughness size to 

water depth ( sd H ). The reason of selecting test cases with constant bed roughness 

configuration, is to investigate the roughness effect under different flow conditions.  

The relationship between the relative roughness height ( dR H ) and the shear 

velocity u   is also explored here, based on the fact that the flow condition is 

determined not only by the water depth but also by the slope of the channel. The 

result is presented in Figure 3‐14 (a) where different curves are fitted to different bed 

slope values. The curves are nearly equally‐spaced with a vertical shift downwards as 
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the bed slope decreases. This figure demonstrates that for higher shear velocity, the 

numerical relative roughness height is milder for all bed slopes.  

In Figure 3‐14 (b), 0dR S H  of all test cases are plotted versus u  , just in order to 

provide a single relationship between the relative roughness height and the flow 

condition. It is notable that the same type of fitting function, i.e. power function, is 

used. This figure also illustrates that as flow becomes more sheared (larger u  ), 

smaller relative roughness heights are required to simulate the experimental 

condition. In other words, as the ratio of bed roughness to water depth ( sd H ) 

becomes smaller, i.e. when the flow is deeper, a lower effect is reproduced at the bed 

by the proposed drag force model. However, the magnitude of the drag‐induced shear 

stress could be larger for the cases with higher u   since the near‐bed flow velocity is 

higher for thoses cases (see Figure 3‐15). 

 

Figure 3-14  Relative roughness height versus flow shear velocity: (a) relationship between dR H  

and u   for different bed slopes, (b) relationship between 0dR S H  and u   for all tests.  

3.2.5 Analysis of form-drag and turbulent shear stress 

Figure 3‐15 represents the streamwise drag‐induced shear term ( d τ ) distribution 

in the roughness layer for all the test cases. As expected, when Re Number or u  are 

higher, the average d τ  is larger. In other words, where the bed slope is steeper 
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and/or the flow depth is deeper, the drag‐induced shear stress term is larger because 

of higher velocities. In most test cases, d τ  increases with vertical coordinate to 

some distance above the numerical bed level (bottom wall) and then declines to the 

roughness crest in spite of velocity increase. This decrease can be attributed to the 

shape function dW  which decreases sharply below the roughness crest (see Equation 

3.17 and Figure 3‐4).  

In the present simulations, the streamwise velocity is dominant while the macroscopic 

(average) vertical velocity contribution to the drag‐induced shear stress is 

insignificant. It has been found that in the numerical tests, the scale of the time‐

averaged vertical velocity in the roughness layer is less than 0.5% of the time‐

averaged streamwise velocity, while it is about 1.0% to 2.0% in the experiments. The 

underestimation of the vertical velocity could be attributed to the fact that in the 

present 2D macroscopic simulations, the physical dispersion in the vertical direction 

which is the result of flow obstruction by the solid particles at the bed has been 

disregarded due to the macroscopic discretisation of the computational domain and 

governing equations.  

In order to show the effect of roughness on the velocity under different flow depths, 

the SPH velocity distributions are plotted separately for different bed slopes in Figure 

3‐16. As can be seen for each bed slope, as the flow is deeper, the velocity is higher. 

This effect is simulated by the use of variable dR  in the model. 
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Figure 3-15  Drag-induced shear term distribution in the roughness layer (solid line). Dash-dotted 

and dotted lines show the level of numerical bed and the crest of the roughness layer, respectively. 

 

Figure 3-16  Time-averaged streamwise velocity distribution of the test cases with channel slopes 

(a) 0.004, (b) 0.003, and (c) 0.002. The dashed lines show the level of the roughness crest and the 

solid half-circles schematically depict the roughness element. 
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Using a variable roughness height dR  in the model not only affects the computed 

drag‐induced shear stress, but also has an influence on the magnitude and distribution 

of the near‐bed turbulent shear stress. In the present simulations, the numerical bed 

level is considered to be the zero‐reference datum for the mixing‐length distribution. 

This issue is illustrated in Figure 3‐17 where the mixing‐length ml  distribution is 

represented for two cases with different thicknesses of the roughness layer, i.e. ,1dR  

and ,2dR , while ,2 ,1d dR R . When dR  is larger, the estimated eddy‐viscosity is higher, 

and accordingly the shear stress will be higher too. This causes the drag at the bed 

produces a more significant impact on the upper layers of the flow. Generally 

speaking, any changes of dR  may have an effect on both the drag‐induced and the 

turbulence shear stress computed by the model. It is also noted that as the velocity 

gradient is at a maximum near the crest of the roughness layer, a small change in the 

mixing‐length magnitude at this level may have a considerable effect on the estimated 

eddy‐viscosity. 

 

Figure 3-17  Mixing-length profile for 2 cases with the same depth (H = 50 mm) and different 

thicknesses of the roughness layer (Rd,2 > Rd,1). The zero reference of the mixing-length is on the 

numerical bed level and the dotted line shows the crest of the roughness layer. 
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Figure 3-18  Distributions of the normalized turbulent shear stress with depth. 

Figure 3‐18 represents the time‐averaged shear stress profiles of 6 test cases (shown 

in Table 3‐1) estimated by the MSPH‐ML model in comparison with the measured 

data, as well as the analytical distributions calculated by the following equation.  

 
0 1

z

H
     

 
 (3.21) 

where 0  is the magnitude of the turbulent shear stress at the bed which is estimated 

as 0gHS . In this figure, the horizontal and vertical axes are normalized by 0  and H

, respectively. As seen, the experimental profiles exceed the analytical shear stresses 

by about 20 ‐ 30%. On the other hand, the underestimation of the measured shear 

stress by the numerical model could be attributed to the underestimation of the 

mixing‐length ml  distribution. As mentioned earlier, in the present model, mixing‐

length zero reference datum is defined at the numerical bed level (Figure 3‐17) since 

the bottom wall locates at this level and there are no fluid particles below it. For 

example, for test case S004H50, dR  is set equal to 0.43 sd , i.e. the numerical bed 

level is at 0.43 sd  below the roughness crest. According to the present mixing‐length 
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definition (Figure 3‐17), ml  becomes zero at this level. However, in the experimental 

test, the mixing‐length might be non‐zero at 0.43 sd  below the roughness crest. For 

example, it might have some small value below that level to the bottom of the bed 

spheres. As there is no velocity data available below the roughness crest in the 

present experiments, no investigation is possible on the distribution of the mixing‐

length within the roughness layer. Therefore, Nezu and Rodi (1986) formula has been 

applied with a datum at the numerical bed level since the impermeable wall is set at 

this level in the present numerical simulations. It should also be noted that the 

dimensional differences between the numerical and experimental studies could also 

have some small effects, since in the present 2D model the effect of flow in the lateral 

direction is neglected though it is very small. Nonetheless, the dimensional 

differences as well as the probable difference between the numerical and 

experimental mixing‐length profiles should not be too high as the shear stress 

underestimation does not exceed 20% for all the tests.  

3.2.6 Validity of the turbulence model 

In the development of the turbulence model is Section 3.1.1.2, it was assumed that 

the part of turbulence resolved by the computational discretisation is much smaller 

than the expected total turbulence effect due to the macroscopic modelling of the 

roughness layer near the bed. Therefore, it was assumed that the total turbulent 

shear stress should be modelled (Equation 3.6). The MSPH‐ML model was proposed 

for the present problem in order to estimate the turbulent shear stress.  

Here, the simulations of two test cases (S004H50 and S003H70) are repeated by 

applying the SPS‐Smagorinsky model with sC = 0.15 in order to compare its results 

with the MSPH‐ML model. Moreover, the part of shear stress which is resolved by the 

computational resolution (particle motion) itself is also computed for both cases of 

using the SPS‐Smagorinsky and the present MSPH‐ML models and compared to the 

shear stresses estimated by these models.  
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In order to compute the resolved shear stress ( rτ ), firstly, the velocity estimated by 

the model iu  is spatially averaged using cubic Spline kernel function (Equation 5.4) 

with a smoothing length of 1.2 0l  and accordingly, the velocity deviation iu  is 

calculated as the following. 

 
i i i

u u u   (3.22) 

where i  denotes the i th coordinate component;  denotes the spatial averaging 

operator (cubic Spline), 
i

u  is the spatially averaged velocity; and iu  is the deviation 

of the SPH‐estimated velocity iu  from 
i

u . Then, the ij  component of the resolved 

shear stress ( rτ ) is computed as the following,  

 ,r ij
i ju u




    (3.23) 

Now, using this equation, the xz  component of the resolved shear stress is calculated 

and compared to the shear stresses estimated by the SPS‐Smagorinsky model as well 

as the proposed MSPH‐ML model for two test cases S004H50 and S003H70. The 

results of the MSPH‐ML model are presented in Figure 3‐19 (a) and Figure 3‐20 (a), 

and the results of the SPS‐Smagorinsky model are presented in Figure 3‐19 (b) and 

Figure 3‐20 (b), respectively, for those test cases.  

Subplots (a‐1) and (b‐1) represent the turbulent stress rτ  resolved by the 

computational discretisation / particle motion; (a‐2) and (b‐2) show the estimated 

(modelled) shear stresses by the models ( lτ  and SPSτ , respectively); (a‐3) and (b‐3) 

presents resolved, modelled, and total stresses together for comparison; and (a‐4) 

and (b‐4) represent the computed velocity distributions in the logarithmic scale in 

comparison with the experimental data. These figures reveal two important points. 

Firstly, according to subplots (a‐1), (a‐2) and (a‐3), the part of turbulent stress resolved 

by the particle motion rτ  is negligible compared to the estimated part by the MSPH‐

ML model ( lτ ). In other words, t lτ τ . Therefore, the assumption made in Section 
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3.1.1.2 that the total effect of flow turbulence should be modelled (Equation 3.6) is 

valid in the present macroscopic simulations. Secondly, according to subplot (b‐2), the 

Smagorinsky model with sC = 0.15 is unable to estimate the required amount of 

turbulent shear stress. Therefore, the balance in the momentum is not reproduced 

correctly and the velocity is highly overestimated (subplot b‐4). It is noted that the 

resolved shear stress rτ  in the case of using the SPS‐Smagorinsky model (subplot b‐

1) is higher than that in the MSPH‐ML model. It is because the velocity gradient is 

higher in this case since the velocity is significantly overestimated by this model. In 

fact, as the momentum balance is not adequately produced, the flow discharge is 

highly overestimated due to the velocity averaging process at the inflow boundary 

condition for inflow particles (Section 3.1.4.1). In Chapter 6, where a different inflow 

boundary technique is applied, it will be shown that when the discharge is fixed, the 

shear stress rτ  resolved by both models are in the same order. In the case of fixed 

discharges, SPSτ  is also expected to be lower than here due to the same reason.  

 

Figure 3-19  Application of (a) the present MSPH-ML model and (b) the SPS-Smagorinsky model 

with  = 0.15, for the test case S004H50. 

 

sC
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Figure 3-20  Application of (a) the present MSPH-ML model and (b) the SPS-Smagorinsky model 

with  = 0.15, for the test case S003H70. 

3.3 Summary 

In this chapter, the 2D equations of mass and momentum were discretised using the 

WCSPH method while two extra stress terms were added to the momentum equation 

to account for the effects of bed roughness and turbulence. It was shown that, the 

standard SPS‐Smagorinsky model with a fixed sC  around 0.15 is unable to reproduce 

the correct mechanisms of momentum transfer in uniform open channel flows over 

rough boundaries. It was also concluded that the part of shear stress resolved by the 

computational discretisation is very small. Therefore, the MSPH‐ML model was 

proposed for calculation of the turbulent eddy‐viscosity. To estimate the extra drag‐

induced shear term, a drag force model was introduced where a shape function was 

used to simulate the geometry effect of the roughness elements into the equation. 

Meanwhile, a new inflow/outflow boundary technique was proposed and 

demonstrated to generate steady and uniform flow condition within the 

computational channel without the need of using prescribed velocities at the inlet.  

sC
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Twelve test cases of different bed slopes and water depths were simulated to 

investigate the effect of bed roughness under various flow conditions. A roughness 

layer was defined near the bed boundary where a form‐induced drag shear stress is 

applied on the fluid particles. The thickness of this layer ( dR ) was assumed to be 

variable flow‐dependent, such as being related to the flow depth H and the shear 

velocity on bed u  . Good agreement was observed between the velocity and shear 

stress results of the model and the experimental and analytical profiles. This shows 

that the drag force model was successful in addressing the effect of bed roughness, 

and that the proposed MSPH‐ML turbulence model correctly translated this effect to 

the flow upper layers.  

According to the macroscopic representation of the computational domain and the 

governing equations in the roughness layer, the physical dispersion in the vertical 

direction is disregarded. Thus, in the simulations, the momentum removal at the bed 

is dominated mainly by average shear driven in the streamwise direction. However, 

the effect of this momentum reduction is transferred vertically by the turbulence 

model. The estimated streamwise velocity and shear stress profiles suggested that 

this assumption has not caused substantial errors for the 12 flow test cases and the 

macro flow behaviours have been well reproduced. This is due to the fact that the 

proposed modification to the turbulence model resulted in reproducing a correct 

transfer of shear from the roughness layer to the upper flow. To the author’s best 

knowledge, the work presented in this chapter is the most comprehensive SPH work 

carried out in the simulation of turbulent free surface channel flows over rough beds 

combined with detailed experimental validation.  

Whether the non‐accuracy of the SPH‐LES in turbulent channel flows over rough beds 

is related to inaccurate estimation of velocity‐pressure interactions (as addressed by 

Mayrhofer et al., 2015) or to the macroscopic modelling of the roughness layer, the 

proposed MSPH‐ML approach showed to be able to resolve this difficulty when the 

eddy‐viscosity being realistically parameterised. This issue will be investigated in more 
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detail in Chapter 6. It is also noted that, the distribution of the mixing‐length needs to 

be available to be able to estimate the eddy‐viscosity using the present MSPH‐ML 

model. This restricts the applicability of the MSPH–ML model to problems where 

there is no knowledge of the mixing‐length distribution.   

The bed in river flows cannot be always treated as a single impermeable boundary 

condition, particularly when the thickness of the porous bed is comparable to the 

water depth and/or the turbulent flow has a considerable penetration into the bed. 

In such a case, the flow within the porous bed also needs to be simulated. In the 

present model, although the frictional effect of roughness elements was included in 

the momentum equation, the effect of volume occupied by solid particles was 

disregarded so that the continuity of mass was not exactly preserved within the 

roughness layer. In other words, the effect of porosity was ignored in this layer. 

However, since the thickness of the roughness layer in the present cases was small 

compared to the water depth, this effect should not have produced considerable 

errors.  

The aim of the next three chapters is to extend the model to be capable of dealing 

with both flow above and beneath porous beds and finally apply it to a turbulent 

channel flow over and within natural porous beds with high velocity gradients at the 

interface.  



 

Chapter 4 Modelling Flow Interaction with 

Porous Media at a Macroscopic Scale: I) 

Mathematical Development 

In Chapter 3, turbulent channel flow over rough impermeable beds was studied by 

developing a macroscopic 2D SPH model. As the ultimate goal of the present study is 

to develop a model for flow over porous beds, in this chapter, the required governing 

equations for SPH to investigate flow behaviour at the interfacial boundary between 

free flow and porous media will be developed. In the existing SPH models for flow 

interaction with porous media which were reviewed in Chapter 2, the governing 

equations and closure models are often borrowed from grid‐based studies, so that 

usually some simple averaging numerical treatments have been applied with no 

rigorous justification. Therefore, the aim of the present chapter is to investigate, in 

depth, the mathematical derivation of the macroscopic equations of flow interaction 

with porous media with an insight into the treatment of the interfacial boundary. The 

developed equations then will be applied to solve some problems in Chapter 5 and 

finally to simulate turbulent open channel flows over natural porous beds in Chapter 

6.  

The structure of the present chapter is as follows. In Section 4.1, microscopic 

governing equations will be presented, and the spatial averaging method will be 

introduced. Then in Section 4.2, the averaging method will be used to derive the 
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macroscopic governing equations in terms of intrinsic averages of fluid properties. 

The derivation will be carried out by constructing the convolution product of 

microscopic equations using a weighting function G . It will be based on the procedure 

adopted by Quintard and Whitaker (1994), but with addition of the inertial forces and 

the effects of the turbulence. Besides, the equations will be presented in the 

Lagrangian form. The detailed mathematical derivation is presented in Appendix B in 

order to identify the assumptions and constraints required to arrive at the final form 

of the macroscopic equations. In Section 4.3, the derived equations will be discretised 

based on the SPH particle approximation scheme in a symmetric form. In this section, 

firstly the equations are averaged once again using the convolution product of the 

macroscopic equations, but with a different weighting function W . This will lead to a 

distinction between the determination of porosity from the microscopic field and the 

solution of the averaged equations for the macroscopic flow field. The determination 

of porosity and the treatment of interfacial boundaries in practical situations will be 

discussed in Section 4.4 and a summary will be provided in Section 4.5. 

4.1 Spatial averaging method 

The physical process under consideration is a single‐phase flow in a rigid porous media 

at a macroscopic scale. A system is considered comprising of a fluid phase   and a 

rigid solid phase   as depicted in Figure 4‐1. In order to derive the macroscopic 

governing equations, an appropriate spatial averaging method should be applied to 

the microscopic equations at a local averaging volume. The goal of the present section 

is introducing the particle spatial averaging theorem based on the SPH method which 

will be used in Section 4.2 to derive the macroscopic governing equations for fluid 

flow through porous media. 
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Figure 4-1  Averaging volume Ω comprised of α- and β- phases. 

The full form of the compressible version of microscopic conservation equations of 

mass and momentum is considered as the governing equations at the pore level while 

the Lagrangian form of the macroscopic equations for the case of an incompressible 

flow will be derived as the macroscopic governing equations in the present study. The 

WCSPH method will be then employed in Section 4.3 to discretise the equations. The 

equations of conservation of mass and momentum at the pore level are written in the 

Eulerian form as the following, 

   0
t

  
  


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(4.1) 
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
u

uu g u   (4.2) 

where  , u  and P  are density, velocity and pressure, respectively, at the pore level. 

g  is gravitational acceleration,   is dynamic viscosity coefficient, and   is a 

distribution function associated with the  ‐phase (which averaged equations will be 

developed for). Following Grey and Lee (1977), the distribution function is set to one 

for the  ‐phase, and zero for any other phases (here  ‐phase) as given in Equation 

(4.3). This means any property like   and its temporal and spatial derivatives are 

respectively,  , t   and   in the α‐phase, and are zero in the  ‐phase. In 
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other words,   is multiplied to both sides of the microscopic equations in order to 

emphasize the fact that the equations are considered only at the α‐phase. 

 
1, in the phase

0, in the phase







  
 (4.3) 

An averaging volume   is defined as to be representative of the whole system at time 

t. It may contain both fluid and solid materials which are denoted by   and   

respectively in Figure 4‐1. It is assumed that the solid phase is fixed in time and space.  

The SPH local volumetric average of a quantity   over the averaging volume   is 

given in Equation (4.4). The averaging is associated with the centroid of the volume 

while integration over   is performed by using a weighting function  ,G hr r , in 

terms of the relative position vector r r  and a smoothing length h . As shown in 

Figure 4‐1, r  is the position vector of the centroid of the volume, and r  is the 

position vector of the points other than the centroid.  

 Local volumetric average:        , *G h d G   




      r r r r r  (4.4) 

This equation represents the macroscopic description of   as the integration is 

implemented at all points in the averaging volume   over which the value is   when 

r  points in the  ‐phase and is zero when r  points in the  ‐phase.   is the 

volumetric averaging operator and  *G   denotes the convolution product of   

using the weighting function G . It is common to use cellular average operator for the 

local volumetric average in the derivation of the macroscopic equations. However, 

the aim of the present section is to derive those equations based on the weighted 

average form presented in Equation (4.4) which is consistent with the SPH 

formulation. Quintard and Whitaker (1994) used the weighted average form to derive 

the Stokes equations and stated that the weighting function should satisfy the 

following conditions. 
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  ,G h C 
 r r  (4.5) 

  , 0 2G h for h     r r r r  (4.6) 

  , 1G h d


   r r r  (4.7) 

Additionally, in this study, the weighting function has the following symmetry 

conditions. 
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The conditions (4.6) and (4.7) are known as compact and normalisation conditions. It 

is noted that any weighting function that satisfies the conditions presented in 

Equations (4.5) to (4.8) can be used. However, in this study, efforts are concentrated 

on using standard SPH kernel functions.  

Whitaker (1969) introduced two important length constraints for the size of averaging 

volume which are presented here as the constraints of the support of the weighting 

function as follows.  

 
r L   (4.9) 

 r L    (4.10) 

where L  is some microscopic characteristic length (pore scale) over which significant 

variations in the quantity   take place; L 
 is the characteristic length scale over 

which significant variations in the average of the quantity   take place; and r  is the 

support of the weighting function (radius of the averaging volume   which is equal 

to 2 h  if one uses a standard SPH kernel function). It is noted that the constraint in 

Equation (4.10) is defined in terms of the intrinsic average  . Whitaker (1969) 

defined these two constraints ‘intuitively’ to ensure that the averaging volume is 

‘large enough’ to contain all the essential geometrical characteristics of the porous 
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medium under consideration; and ‘small enough’ so that the size of the averaging 

volume is negligible compared to the macroscopic region.  

Here, through imposing the constraint in Equation (4.10), it will be possible to find the 

relationship between the volumetric and intrinsic averages. Decomposing the 

quantity   as (Grey, 1975) 

        (4.11) 

where   and   are the intrinsic average of   and its spatial deviation, 

respectively, and substituting it in Equation (4.4) yields  

        , ,G h d G h d
     

  
 

          rr
r r r r r r r r  (4.12) 

Making use of Taylor series expansion it is possible to show that  
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Substituting this into Equation (4.12) and noting that   and its derivatives are 

constant with respect to the integration process if they are evaluated at the centroid 

r , gives 
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The terms containing derivatives will be evaluated as the following. 
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Therefore  
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Now by imposing the restriction in Equation (4.10), all those terms will be negligible, 

and Equation (4.14) reduces to 
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        , ,G h d G h d
     

 
 

         r r r r r r r r  (4.18) 

It is also assumed that the second term on the right‐hand side of the equation which 

represents the volumetric average of spatial deviations from the intrinsic average at 

the centroid of the averaging volume is negligible compared to the first term 

(assumption #1), i.e. 

    , 0G h d 


    r r r r  (4.19) 

Therefore, Equation (4.18) comes into the following form  

    ,G h d
  




    r r r r  (4.20) 

which represents the key relationship between the volumetric and intrinsic averages. 

This equation can be written in the following convolution product form. 

    * *G G
    (4.21) 

 If one defines the porosity corresponding to the averaging volume   as  

    , *G h d G  


     r r r r  (4.22) 

then Equation (4.20) represents the classic relationship between the superficial and 

intrinsic averages (which was based on ‘cellular averaging’) as follows. 

      (4.23) 

In order to derive the macroscopic equations, there is a need to relate the average of 

derivatives of a quantity to the average of that quantity. Slattery (1967) and later 

Whitaker (1969) introduced the spatial averaging theorem by which a relationship 

was established between the volumetric average of the derivatives and the 

derivatives of the volumetric average. This derivation was based on the ‘cellular 

average’. Later, Marle (1982) and Quintard and Whitaker (1993, 1994) developed a 
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weighted function version of the spatial averaging theorem. Here, the SPH averaging 

method is applied to obtain those theorems from the definition presented in Equation 

(4.4). The details are presented in Appendix A where the volumetric averages of 

spatial and temporal derivatives are presented in Equations (A.6) and (A.13), 

respectively.  

4.2 Macroscopic governing equations 

To derive the macroscopic governing equations, the spatial averaging method 

presented in Section 4.1 is applied into the microscopic equations (4.1) and (4.2). For 

details of the mathematical derivation see Appendix B, where the Lagrangian form of 

the macroscopic equations of mass and momentum are presented in terms of intrinsic 

averages in Equations (B.12) and (B.43), respectively. These equations are rewritten 

as the following by representing G   by   according to Equation (4.22),  
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 (4.25) 

where the last two terms on the right‐hand side of the momentum equation 

represent, respectively, the effect of turbulence and frictional effect of the solid 

skeleton on the intrinsic average flow field. The estimation of these terms will be 

investigated in Sections 4.2.1 and 4.2.2.  

The key assumptions that have been made to arrive at the current form of the 

macroscopic governing equations are summarised as below.  

Assumption #1: Volumetric average of the spatial deviation of a fluid quantity from its 

intrinsic average is negligible, i.e.   0G    (Equation 4.19).  
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Assumption #2: no‐slip boundary condition is applied at the    interfaces A , i.e. 

0  u n .  

Assumption #3: the characteristic length scales of density and its intrinsic average, L  

and L 
 respectively, are infinite. This assumption leads to the density being 

considered as a spatially constant value over the averaging volume.  

Furthermore, the constraints by which the validity of the macroscopic equations is 

satisfied are summarised as follows.  

Constraint #1: The support of the weighting function G  is much larger than the 

microscopic characteristic length scale of a quantity  , i.e. r L   (Equation 4.9). 

This constraint ensures that the averaging volume is ‘large enough’ to contain all of 

the essential geometrical characteristics of the porous medium under consideration.  

Constraint #2: The support of the weighting function G is much smaller than the 

macroscopic characteristic length scale, i.e. r L    (Equation 4.10). This length 

constraint ensures that the size of averaging volume is negligible compared to the 

macroscopic flow field and led to a key relationship between the volumetric 

(superficial) and intrinsic averages of   as presented in Equation (4.21). Using this 

constraint, specifically for velocity and pressure as represented in Equations (B.28) 

and (B.35), led to removal of higher order derivative terms in Equations (B.33) and 

(B.34) and finally obtaining Equations (B.36) and (B.37) for the surface integrals in the 

momentum equation (Quintard and Whitaker 1994).  

Constraint #3: The averaging volume   (and the weighting function G ) should not 

change with local time. In other words, they should remain unchanged relative to the 

centroid of the volume over the total (material) time. If this constraint is satisfied, the 

local time derivative of porosity (G  ) will be zero.  
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It is now possible to determine the turbulent stress and the drag terms (the last two 

terms in Equation 4.25). The closure developed by Whitaker (1996) will be employed 

for the surface integral, and an eddy‐viscosity model for the turbulent stress.  

4.2.1 Drag closure 

Different closure models have been introduced in the literature for estimating the 

effect of solid skeleton on the macroscopic flow field. In the present study, the 

approximation of Whitaker (1996) is used to estimate the surface integral term (the 

last term on the right‐hand side of Equation 4.25) as follows.  

    1 1
0 0

1
G P 

     
 

          I u n K u K F u   (4.26) 

where 
u  is the superficial velocity vector (equal to  u  according to Equation 

4.23); and K , I  and F  are the permeability, unit, and Forchheimer tensors, 

respectively. The first term on the right‐hand side of the equation is known as the 

Darcy’s term which shows the viscous effect and the second one is known as the 

Forchheimer term which represents the form‐drag effect.  

A well‐known relationship to estimate the drag effects is Ergun’s equation which was 

developed based on laboratory measurements of flow through packed beds (Ergun, 

1952). Estimating the permeability and Forchheimer tensors in Whitaker (1996) 

closure model, respectively, as  
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will lead to Ergun’s equation as 
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where sd  is the mean size of solid particles of the porous media; 0  is the kinematic 

viscosity coefficient; and 1c  and 2c  are empirical constants. Ergun (1952) obtained 

values of 150 and 1.75 for 1c  and 2c , respectively, from his experiments although 

different values were also later introduced by others (e.g. in Macdonald et al., 1979 

and van Gent, 1995).  

4.2.2 Turbulence closure 

In SPH, the turbulent stress can be estimated by the SPS model which is based on the 

eddy‐viscosity assumption (Gotoh et al., 2001). It means, Equation (B.32) is 

approximated by Equation (2.14) as 

 
2

2
3

ij
t ij t ijS k


 


    (4.30) 

where i  and j  denote coordinate components, ij  is component of the intrinsic 

shear stress tensor  , ijS  is component of the strain tensor 
S  calculated by 

Equation (2.15), t  is the turbulence eddy‐viscosity, tk  is the turbulence kinetic 

energy calculated by Equation (2.16) and ij  is the Kronecker delta function. In 

Equations (2.15) and (2.16), x  is component of the position vector and u  is 

component of the intrinsic average of velocity 
u .  

To estimate the eddy‐viscosity t , the Smagorinsky model (Equation 2.17) is usually 

applied. In Chapter 3 (Section 3.2.6), it was shown that the Smagorinsky model with 

standard sC  value (about 0.15) does not reproduce the required momentum balance 



4.3 Particle approximation of the macroscopic equations 83

 

in the LES of highly‐sheared channel flow cases where the roughness (solid phase) 

effect is modelled macroscopically. Therefore, the model for estimating t  should be 

chosen carefully based on the specific application.  

4.3 Particle approximation of the macroscopic equations 

The aim of the present section is to approximate the macroscopic governing 

equations developed in Section 4.2 (Equations 4.24 and 4.25) based on the SPH 

particle approximation scheme. The spatial derivative of a fluid quantity in those 

equations needs to be formulated in terms of the product of that quantity and the 

derivative of a weighting (kernel) function. This is the basic characteristic of the SPH 

method in discretising the equations. To bring the macroscopic governing equations 

(4.24) and (4.25) in the SPH discretised form, firstly, another convolution product is 

needed to be applied to those equations but using a different weighting function from 

that used in deriving the macroscopic equations. The convolution products will be 

later turned into summations using the standard SPH formulations. Although the 

same function G can be used, a different notation will be used here for the weighting 

(kernel) function in order to distinguish the solution process on the macroscopic field 

(Equations 4.24 and 4.25) from the determination of porosity G   on the 

microscopic field (see Figure 4‐4).  

4.3.1 SPH-Averaged Macroscopic (SPHAM) governing equations  

Volumetric average of an intrinsic average quantity of the macroscopic field like   

is carried out in a similar way to Equation (4.4), but with a distribution function equal 

to one. This is because there are no fluid‐solid interfaces ( 0  ) in the macroscopic 

field which contains only one phase over the whole domain. This is shown in Figure 

4‐2. Considering an averaging volume   on the macroscopic field (as shown in the 
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figure), the volumetric average of   using a kernel function W  with a support of 

r  ( 2h ) on the averaging volume will be written as follows 

  * ,W W h d
  




   r
r r r  (4.31) 

where h  is the smoothing length of the kernel W . The convolution product of the 

spatial derivative of   can be estimated by following the procedure adopted in 

Appendix A for deriving the averaging theorem of the spatial derivative. However, 

simply replacing   in Equation (A.6) with   and noting that the distribution 

function   is one as mentioned above and the second term on the right‐hand side of 

the equation is zero due to the same reason ( 0  ), it will be possible to show that: 

  W W
        (4.32) 

where  

  ,W W h d
  




      r
r r r  (4.33) 

In fact, Equation (A.6) is the general form of this equation which represents the 

standard SPH approximation of a spatial derivative.  

  

Figure 4-2  Averaging volume  on the macroscopic field. 

 


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It should be noted that the kernel function W  should satisfy the following Delta 

function property condition as well as the compact, normalisation and symmetry 

conditions stated in Equations (4.6), (4.7) and (4.8), respectively (Liu and Liu, 2003). 

    
0

lim ,
h

W h 



   r r r r  (4.34) 

Besides, length scale constraints similar to constraints #2 and #3 are also required 

here for approximating the macroscopic field using the kernel function W  over the 

averaging volume  , i.e. 

Constraint #4: The support of the kernel function W  (i.e. r ) should be much smaller 

than the characteristic length scale of the average flow field, i.e. r L   .  

Constraint #5: The averaging volume   (and the weighting function W ) should not 

change by the local time. It means they should remain unchanged relative to the 

centroid of the volume over the total time. This constraint restricts the particles from 

changing their volumes when they move from one point to another. In other words, 

since particles are movable, their initial volume (relating to r  or h ) should be set 

equally over space and should remain unchanged over time. This is the reason that in 

the standard SPH formulation, using non‐isotropic particle spacing, non‐uniform 

computational discretisation, and particle refinement is not possible. This constraint 

(together with constraint #4) are required to satisfy that the convolution product of 

the material derivative of the macroscopic quantities like   and 
u  are equal to 

the material derivative of those quantities (see Equation 4.37).  

It is noted that a constraint similar to constraint #1 is not required to be imposed in 

the averaging process over the macroscopic field since the porous media domain is 

considered as a single‐phase continuum.  

In the following, the macroscopic field is averaged by constructing the convolution 

products of the macroscopic equations of mass and momentum (4.24) and (4.25) 

using the kernel function W  as follows, respectively, 
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 (4.36) 

If the material derivatives of density and velocity are re‐written in terms of the local 

time derivatives using Equation (B.11), then applying assumption #3 and constraints 

#4 and #5, it will be readily shown that 

 
and

D D D D
W W

Dt Dt Dt Dt

       
     
   
   

u u
 (4.37) 

The second term on the left‐hand side of the macroscopic mass Equation (4.35) is 

approximated using Equation (4.32) as follows 
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 (4.38) 

It is noted that   is taken out of the convolution product since it is calculated as G   

thereby not being a function of the limits of the integration with W . In addition,   

can also be taken out of the convolution product due to assumption #3. Similarly, the 

first, third, fourth and fifth terms on the right‐hand side of Equation (4.36), are 

approximated as the following 
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The second and the last terms on the right‐hand side of the momentum equation are 

estimated as follows since g  is constant and the surface integral is independent of 

the limits of the integration with W  because it is evaluated over   using the 

weighting function G . 

  1W W   g g g  (4.43) 
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 (4.44) 

It is noted that  1 1W    if one replaces   with 1 in Equation (4.31) and considers 

the normalization condition of the kernel function W .   

Substituting Equations (4.37) to (4.44) into Equations (4.35) and (4.36) gives the 

following equations for the SPH‐Averaged Macroscopic (SPHAM) equations of mass 

and momentum, respectively.  
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where *G  . Besides,   and the surface integral in the last term on the right‐

hand side of the momentum equation are estimated by the closure models presented 

in Sections 4.2.2 and 4.2.1, respectively.  

To solve the developed SPHAM equations by the programming codes, it is required to 

bring those equations in the discretised form, i.e. expressing the convolution products 

(averages) in terms of summations over a discretised computational domain.  

4.3.2 Discretised form of the SPHAM equations 

By expressing Equations (4.31) and (4.33) in the following discretised form, the SPH 

convolution product of an intrinsic quantity   and its spatial derivative at the 

position of a generic particle a  are formulated in terms of the values of the intrinsic 

quantity at the position of neighbouring particles b. 

     * ,a b bba b

W W h V
     r r  (4.47) 

    * ,a b bba b

W W h V
       r r  (4.48) 

where bV  denotes the volume of neighbouring particle b. The particle volume of a 

generic particle like a  is computed as 



4.3 Particle approximation of the macroscopic equations 89

 

 a
a app

a

m
V


   (4.49) 

Where am  and app
a  are the particle’s mass and apparent density, respectively. 

Apparent density is the volume occupied by the particle, not the density of the fluid. 

Therefore, it is equivalent to the particle volumetric density which is approximated 

according to Equation (4.23) as  

 app
a aa a

      (4.50) 

in which a  is the porosity at the position of the particle. Therefore  

 a
a

a a

m
V  

   (4.51) 

According to this definition and knowing that the intrinsic average of density remains 

nearly unchanged due to incompressibility of flow (assumption #3), when a fluid 

particle moves into an area with lower porosity, its volume increases (and vice versa) 

to satisfy the conservation of fluid mass. This process is depicted in Figure 4‐3. 

 

Figure 4-3  Particle volume change due to change of porosity. ϕ, V and m are porosity, particle 

volume, and fluid mass confined in the volume, respectively. 

If Equation (4.51) is used for estimating the volume of neighbouring particles bV  in 

Equations (4.47) and (4.48), those convolution products will be then represented as 

follows. 

ϕ1 , V1 , m1 ϕ2 < ϕ1 

V 2 > V 1 

m2 = m1 

ϕ2 , V2 , m2 
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 
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These equations acknowledge that the solution of the governing equations at a 

particle’s location is performed by averaging over those neighbouring particles which 

are located in a distance less than r ( 2h ) from the central particle using the kernel 

function W  (see Figure 4‐4 b). The support of the kernel function ( r ) should be 

chosen to be small enough to satisfy constraint #4 and should not change during time 

to satisfy constraint #5. 

To estimate the porosity at the position of particles, as seen from Equation (4.22), the 

weighting function G  is used to spatially average the distribution function   (which 

has prescribed values) over the microscopic field. Since the solid phase (porous 

skeleton) is fixed, the porosity distribution can be described on an Eulerian domain. 

Hence, a background mesh consisting of fixed grid points is defined where the 

information of the microscopic field (i.e. the location of fluid and solid phases) is held 

(see Figure 4‐4 a). The distribution function is determined at each grid point using 

Equation (4.3) and then the porosity at particle a  is approximated by the following 

equation which is the discretised form of Equation (4.22).  

    ,a a c c ca
c

G G h V       r r  (4.54) 

This equation shows that the porosity at the position of a SPH particle is computed by 

averaging the values of the distribution function of grid points located in a distance 

less than r  ( 2h ) from the particle using the weighting function G  (Figure 4‐4 a). In 

this equation, c  denotes the value of the distribution function at the grid point c  

which is equal to one or zero, if the grid point locates in the fluid or solid phases, 
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respectively (Equation 4.3, Figure 4‐4 a). cV  is the volume of the mesh element 

associates with the grid point c  which is equal to 2
cl  and 3

cl  in 2D and 3D respectively, 

if one considers a regular mesh of grid points with spacing cl  (see Figure 4‐4 a). The 

grid spacing should be chosen to be small enough so as to resolve the fluid‐solid 

interfaces in the porous media adequately; and the smoothing length h  of the 

weighting function G  should be chosen to be large enough to satisfy constraint #1.  

 

Figure 4-4  A schematic 2D representation of the microscopic and macroscopic fields, a) Computing 

porosity at the position of a particle over the microscopic field using the weighting function G. b) 

Solution of the governing equations at the position of a particle using the kernel function W over 

the macroscopic field. 

For approximating the time derivative of an intrinsic quantity, the following finite 

difference scheme is used.  

 
   t t t

a aa
D

Dt t

   






 (4.55) 

where t  and t  denote computational time and its increment. 

Now using Equations (4.52) to (4.55), it is possible to discretise the SPHAM equations 

(4.45) and (4.46) so that they can be solved at the position of a set of discrete moving 

elements (particles). The detailed procedure is presented in Appendix C where the 
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discretised version of the SPHAM equations of mass and momentum are written in 

Equations (C.5) and (C.15), respectively. After manipulation, these equations are 

written as the following, 
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where  
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and aA  represents the surface integral terms in Equation (4.46). It incorporates the 

effect of porous solid skeleton on the fluid particle and can be approximated by the 

closure model introduced in Section 4.2.1. Moreover, the porosity at the position of 

particles is calculated by Equation (4.54) over the background mesh.  
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All derivative terms in the discretised SPHAM equations of mass and momentum are 

presented in a symmetric form. The divergence in the mass equation vanishes for a 

uniform macroscopic velocity distribution and the derivatives in the momentum 

equation conserve the linear momentum so that in the absence of external forces, the 

total linear momentum of the continuum is exactly preserved. However, the 

momentum equation may not conserve the angular momentum. According to 

Khayyer et al. (2008), the angular moment between a pair of particles will vanish only 

if the internal stress tensor is isotropic. Therefore, the pressure gradient term 

preserves the angular momentum while the viscosity and turbulent stress terms do 

not. To resolve this issue, the correction of Khayyer et al. (2008) can be applied into 

the kernel gradients thereby enforcing preservation of angular momentum for viscous 

internal forces. Khayyer et al. (2008) stated that in SPH simulation, preservation of 

angular momentum is necessary for the cases with violent free surface deformations 

such as breaking of water waves. Although those large surface deformations are not 

usually observed in water flows in porous media, correcting kernel gradients as 

carried out by Khayyer et al. (2008) can enhance the computational efficiency.   

In the WCSPH method, the equation of state (3.11) is employed to compute the 

pressure of a particle explicitly from the change in its density, where 0  is the 

reference intrinsic density of the particle, and 0c  is the speed of sound.  

Figure 4‐5 illustrates a time advancement algorithm for the model if one adopts a two‐

step predictor‐corrector scheme for time implementation (see Section 3.1.3). In this 

flow chart,  t ,  tu  and  tr  denote density, component of intrinsic velocity vector, 

and component of particle position, respectively, at time t ;  2t t  ,  2t tu   and 

 2t tr   denote those quantities at mid‐time 2t t ; and  t t  ,  t tu   and  t tr   

show them at time t t . Besides,  t
massD  and  2t t

massD   denote the right‐hand side of 

mass equation (4.56) at times t  and 2t t  , while  t
momentD  and  2t t

momentD   show the 

right‐hand side of momentum equation (4.57) at those time intervals, respectively. 
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Figure 4-5  Time advancement algorithm. 
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4.4 Determination of porosity and treating interfacial 

boundaries in practical situations 

The system governed by Equations (4.56) and (4.57) is defined as a unified framework, 

i.e. the equations are solved at a single computational domain including the porous 

and free flow regions. The change in the system from one region to another is 

addressed by the change in the porosity. A fixed background mesh is used which 

contains the information of the distribution function at each grid point (Figure 4‐4 a). 

The mesh resolution should be high enough to resolve the fluid‐solid interfaces 

adequately. To determine the porosity at the position of a particle, the distribution 

function is averaged over the background mesh using the weighting function G  by 

Equation (4.54). This function holds the constraints #1, #2 and #3. In view of that the 

averaging at the microscopic field should provide constant values for *G   (i.e. the 

averaging volume should contain all the essential geometrical characteristics) in the 

porous region, constraint #1 may be expressed in the form of  dr L   where dL  is 

a characteristic length of the solid matrix. In fact, it is assumed that L  is in the order 

of dL  (Figure 4‐6, left). Quintard and Whitaker (1993) pointed out that this constraint 

can be considered as dr L   for an ordered porous media, i.e. a media ‘composed of 

spherical, micro porous particles’.  

Quintard and Whitaker (1994) noted that their analysis to derive the Stokes equation 

is of questionable validity since the constraints they used, similar to constraints #1 

and #2, may not be satisfied in the region near an impermeable solid. This issue could 

be even more important at the interfacial boundary with a water flow over which the 

average field may have large variations in properties, i.e. when the interfacial 

boundary layer is highly sheared. In such a condition, L 
 is not too much larger than 

dL  at the interface so that satisfying constraints #1 and #2, i.e. dL r L   , 
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seems to be not straightforward. Figure 4‐6 shows an example of a highly sheared 

interfacial boundary between a porous medium (region 1) and a free (clear water) 

flow (region 3) where an average flow quantity   changes sharply over a relatively 

thin layer (region 2).  

In practical applications, there is often no definitive information about the fluid‐solid 

interfaces so that the determination a priori of the distribution function for Equation 

(4.3) is not always feasible. Moreover, applying Equation (4.54) for computing 

porosity needs a 3D representation of the distribution function  . In the following 

text, two situations are discussed when it is needed to modify some definitions in 

order to be able to apply the model to practical applications containing highly sheared 

turbulent flows over a porous boundary in 2D.  

 

Figure 4-6  A schematic view of distribution of an arbitrary average flow quantity. (1), (2), and (3) 

denote porous media, interface layer, and free flow regions respectively. 

 



4.4 Determination of porosity and treating interfacial boundaries in practical 

situations 

97

 

4.4.1 Situation #1 

In practical cases, the geometrical arrangement of the solid material is often 

unknown. Instead, a single value is usually introduced for porosity which is in fact 

representative of the mean porosity of the whole media. This value is obtained in the 

laboratory as the volume of fluid a medium contains divided by the total volume of 

the medium. Hence, to be able to apply the present model in 2D simulation of 

practical cases where the exact value of the distribution function   is not available, 

the definition of this function needs to be modified. Here, Equation (4.3) is redefined 

as the following, 

 
0

1.0 in the free flow (clear water) region

in the porous region





 


 (4.59) 

where 0  is the mean value of porosity for the media. By this modification, it has been 

assumed that the media is homogeneous and continuous. In this case, constraint #1 

is satisfied instinctively since using any size of r  will provide constant values for *G   

within the porous region. Nonetheless, at the interfacial boundary, r  needs to be 

specified so as to reproduce the physical transition of the average flow field from the 

porous region to the sheared flow. Therefore, in the present situation, both 

constraints #1 and #2 can be represented as ,d ir L   where ,d iL  is a characteristic 

length of the solid matrix at the interfacial boundary (region 2 in Figure 4‐6), such as 

the mean size of solid particles near the boundary. Hence, the constraints associated 

with the weighting function G  (for averaging over the background mesh) as well as 

the constraints associate with W  (constraints #5 and #6 of r ) may be summarised as 

the following if one considers the present situation. 
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(a) ,d ir L  , 

(b) r  and G should not change with time, 

(c) r L   u
, 

(d) r  and W  should be set equally over space and 
should remain unchanged over time. 

 

(4.60) 

It is noted that for point (d) of this constraint, r  and W  should not only remain 

unchanged over time, but also be set equally over space, while according to point (b), 

r  and G  only need to be unchanged with time. This is because r  associates with 

fluid particles which are movable, while r  associates with the background mesh 

which is fixed. It is also noted that point (c) (constraint #4) is written only in terms of 

average velocity field, because this constraint is instinctively satisfied for other flow 

quantities such as density and pressure due to the incompressibility of flow. In other 

words, in the case of interaction of an incompressible sheared flow with a porous 

medium, velocity is the only flow quantity which may have large variations over the 

interfacial boundary and need careful considerations with regard to constraint #4. 

Since in SPH, the support of weighting function has a certain relation with the particle 

spacing (smoothing length is usually taken as 1.2 times the particle spacing), a 

sufficient computational resolution will therefore satisfy the requirement r L   u
. 

If one employs the present treatment, a boundary which separates the free flow (clear 

water) and porous regions should be defined so that Equation (4.59) can be used for 

determination of  . This is not easy particularly when the surface of the porous media 

is rough, namely when the size of solid particles on the surface is relatively large 

compared to the characteristic dimension of the free flow (for example flow depth). 

Figure 4‐7 illustrates the determination of the interface of an arbitrary porous 

medium with a free flow. The two regions are separated by a line (namely a separating 

line in 2D or a separating surface in 3D). The question is that how to determine the 
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location of the separating line/surface in a numerical simulation. One may consider 

the crest of solid particles at the interface as the separating line/surface. It seems a 

fair approximation when the surface is smooth, i.e. the roughness at the surface is 

relatively small compared to the flow characteristic length. However, one may 

consider the so called ‘zero‐plane displacement’ level for the interfacial separating 

line, when the surface is rough. Zero‐plane displacement is discussed in detail by 

Nikora et al. (2002). Figure 4‐7 (c) shows the distribution of   based on the separating 

line, while Figure 4‐7 (d) presents the distribution of the porosity obtained by 

Equation (4.54) which guarantees a smooth change of porosity at the interfacial 

boundary from the porous media to the free flow. The curvature of the porosity 

profile at the interface depends on the type of the weighting function G  as well as its 

support size r  which is determined based on Equation (4.60). 

 

Figure 4-7  Determination of distribution function and porosity by the separating line/surface. 

4.4.2 Situation #2 

Sometimes a spatial distribution of porosity is available so that it can be used directly 

in the model without the need of averaging   on a background mesh. For instance, 

the porosity can be measured in a laboratory flume at different vertical strips as the 

proportion of the volume of fluid contained in the strip to the total volume of the 

strip. In this case, a smooth transitional interface layer may be observed from the 
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porous media to the free flow, particularly when the surface roughness is quite large. 

In the cases in which the measured values of porosity at the interface are not 

available, it may still be possible to define a certain profile for interfacial porosity 

based on the size, shape and geometry of the solid particles. In other words, when 

the knowledge about the condition of solid material at the interface is available, the 

porosity could be approximated directly without the need of using a background mesh 

and solving Equation (4.54). An example is illustrated in Figure 4‐8 where the porosity 

has the values of 0  and 1 in the porous and free flow regions, respectively, as well as 

a transition between those values at the interface boundary which is related to the 

physical properties of the solid particles. In this situation, the only constraints to be 

satisfied are  

 

(a) r L   u
, 

(b) r  and W  should be set equally over space and 
should remain unchanged over time. 

 

(4.61) 

 

Figure 4-8  Determination of porosity at a transitional interface layer. 

4.5 Summary 

In this chapter, firstly, a spatial averaging method was introduced following Quintard 

and Whitaker (1993, 1994), then it was applied to the microscopic equations of mass 
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and momentum using relevant convolution products to derive the macroscopic 

governing equations of fluid flow through fixed porous media in terms of intrinsic 

averages of flow quantities. The assumptions made to arrive at the present form of 

the equations as well as the constraints required for validity of the equations were 

highlighted. The drag effect of the porous solid skeleton and the effect of turbulence 

on the average flow field were incorporated into the momentum equation as two 

stress terms. Then, another convolution product was applied to the developed 

macroscopic equations but using a different weighting function in order to distinguish 

between the determination of porosity at the microscopic field and the calculation of 

flow quantities at the macroscopic field. The equations were then discretised in a 

symmetric form using the standard SPH formulation, where the effect of fluid particle 

volume change (due to porosity change) was incorporated. Finally, two practical 

situations of 2D flow interaction with porous media were introduced and then, the 

determination of porosity as well as modification of the length constraint was 

investigated.  

Now, the desirable macroscopic equations for SPH, the closure models, and the 

relevant numerical treatments are available; and the limitations and constraints are 

clear. In the next chapter, a model will be constructed based on the present 

mathematical developments in order to simulate several engineering applications.  

 





 

Chapter 5 Modelling Flow Interaction with 

Porous Media at a Macroscopic Scale: II) 

Applications 

The aim of the present chapter is to test the model developed in the previous chapter 

by simulating some general applications of flow interaction with porous media. A 2D 

model will be developed based on the SPHAM equations of mass (4.45) and 

momentum (4.46) which are presented in the discretised form in Equations (4.56) and 

(4.57), respectively. The algorithm presented in Figure 4‐5 will be applied for time 

implementation. Three test cases will be simulated, and the results will be compared 

to the experimental data in order to verify the accuracy of the developed model. The 

test cases are i) dam break wave through porous dams; ii) solitary wave interaction 

with a porous structure; and ii) solitary wave run‐up on smooth, rough, and porous 

breakwaters. These case studies are selected to test the capacity of the model in 

dealing with flow and wave interactions with porous structures of different types. 

Existing experimental data is available for these three cases in the literature. The first 

case is considered as a bench‐mark test which has been employed in many studies to 

test the numerical models. In contrast to the first one, in the experimental study of 

the second case, there is available data of velocity distributions around a porous 

structure which provides the opportunity to test the model capacity in estimating the 

velocity field. The third case study provides data of water surface elevation for wave 
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interaction with three different breakwater slopes, i.e. smooth, rough, and porous 

beds. Therefore, the capacity of the model in identifying the effect of different bed 

conditions can be examined. In addition, this data set has not been employed yet in 

similar numerical studies so that there is no existing knowledge on the choice of 

numerical parameters. 

Firstly, the computational specifications of the present 2D model including boundary 

conditions, initial set‐up of particles and background mesh will be presented in 

Section 5.1, and then the model applications will be carried out in Sections 5.2, 5.3 

and 5.4. In Section 5.5, the effect of computational resolution on the result and the 

satisfaction of required length constraints will be investigated. Finally, a summery will 

be provided in Section 5.6.  

5.1 Computational specifications 

Two types of boundary conditions to be considered in the present study are free 

surface and wall boundaries. In the WCSPH method, free surface is tracked with no 

special treatment. For the wall boundaries, several layers of dummy particles are 

placed beyond the boundary line to fill the truncated kernel area in the vicinity of the 

boundary. These dummy particles are fixed through the simulation and their velocity 

is set to zero. The momentum equations are not solved at these particles, while their 

density changes are computed through the conservation of mass (Equation 4.56) and 

then their pressure is computed by Equation (3.11) so that enough pressure gradient 

force is reproduced to prevent the fluid particles from penetrating the wall 

boundaries. 

The particle volume is defined by Equation (4.51) in which    denotes the 

particle’s apparent density. Since particle’s mass and intrinsic density are nearly 

constant, the volume of a particle may change depending on its porosity as its position 
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changes (Figure 4‐3). If the particle volume at a position with porosity 1  is 1V , its 

volume at a position with porosity 2  will be 1 1 2V  . Therefore, if the initial 

particle spacing at the free flow region (with porosity 1.0) is set to 0l , then the initial 

spacing of a generic particle with porosity a  should be set according to the following 

relationship. 

 
0

a
N

a

l
l


  (5.1) 

where N  is the number of dimensions which is 2 in the present model.  

In the present applications, at the initial time, particle intrinsic velocity is set to zero; 

particle intrinsic pressure has a hydrostatic distribution with a zero value at water 

surfaces; and initial intrinsic density is computed by Equation (3.11) based on the 

initial intrinsic pressure.  

The situation #1 presented in Section 4.4.1 is adopted here since the model is 2D and 

the exact location of the fluid‐solid interfaces is not available. Therefore Equation 

(4.59) is employed to determine the distribution function   of the grid points. 

According to the treatment adopted here, porosity at the position of particles in the 

pure fluid and pure porous regions (fully white and fully grey areas respectively, in 

Figure 5‐1 a) is set to constant values of 1.0 and 0 , and a background mesh with 

regular square elements is defined as to cover only the required area at the interface 

where the porosity changes, instead of using a mesh for the whole computational 

domain. Therefore, Equation (4.54) is not used to calculate the porosity of particles 

which are located in the pure fluid and pure porous regions. Only the porosity of those 

particles which are in the transition zone (hatched area in Figure 5‐1 a) is calculated 

by averaging   at the background mesh which is extended to 2r  far from the 

separating line in both directions, as depicted in Figure 5‐1 (a).  

In the present simulations, the separating line is considered to be 0.5 sd  far from the 

crest of the first row of solid particles at the interface towards the media ( sd  is the 
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mean diameter of the particles). As an example, Figure 5‐1 (b) depicts an arbitrary 

porous medium with spherical particles where the separating line is set at the middle 

of the first row of particles. Following the length constraint (4.60) (a), the diameter of 

the averaging volume   is set equal to sd , i.e. 0.5 sr d   and 0.25 sh d  . In fact, it 

is assumed that the thickness of the layer at the interface over which the porosity 

changes from 0  to 1 is equal to the mean diameter of solid particles (see Figure 5‐1 

a, the hatched area). The mesh spacing cl  is taken as /1.2h  so that enough grid 

points lie in the averaging volume   for porosity calculation.  

 

Figure 5-1  Computation of porosity in the present simulations: (a) The porous, free flow and 

transition zones marked by fully grey, fully white and hatched areas, respectively, with the bounds 

of the background mesh (dash-dotted lines); (b) separating line with a distance of 0.5ds from the 

crest of solid particles. 

Other computational specifications in the present simulations of all three test cases 

are as the following. Three layers of fixed dummy particles are placed at the wall 

boundaries. The number of layers depends on the support of the kernel function r  (

2h ). Since in the present study h  is set to 1.2 0l , r  is equal to 2.4 0l . Therefore, 

three layers of dummy particles are used at impermeable wall boundaries. The 
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reference intrinsic density 0  is 1000 kg/m3 (water density) and the speed of sound 

0c  is set according to the following equation in order to restrict the compressibility to 

be less than 1%. 

 0 010 9.81c H  (5.2) 

where 0H  is the initial water depth. The dynamic and kinematic viscosity coefficients, 

  and 0  are 10‐3 kg/(m.s) and 10‐6 m2/s, respectively. The computational time step 

t  is chosen according to the CFL condition (Equation 3.15). A Shepard density filter 

is applied at every 30 computational time steps in order to minimize the pressure 

noise. The cubic Spline kernel function of Monaghan and Lattanzio (1985) is for both 

G  and W  as 
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where q h  r r  and q h  r r . Besides,   and   are equal to 

215 7 h   and 215 7 h   in 2D. The function in the above equations satisfies the 

required conditions mentioned in Equations (4.5), (4.6), (4.7), (4.8) and (4.34). 

Regarding the effect of turbulence, the SPS model (Section 4.2.2, Equation 4.30) is 

applied to estimate the turbulent shear stress. In order to estimate the eddy‐viscosity 

t , the Smagorinsky model with sC =0.15 is applied. In Chapter 3, Section 3.2.6, it was 

shown that the Smagorinsky model with sC =0.15 is unable to reproduce the correct 

amount of shear stress for highly‐sheared free surface channel flows over rough bed 

boundaries and therefore a mixing‐length model was proposed to estimate the eddy‐

viscosity. In the present simulations, the wall surfaces are considerably less rough 
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than those simulated in Chapter 3, and there are also no established relationships 

similar to Nezu and Rodi (1986) formula nor existing knowledge on the distribution of 

the mixing‐length to estimate the eddy‐viscosity. Therefore, the Standard 

Smagorinsky model will be applied here although some errors are expected in the 

results.  

The flow conditions in the present case studies are different from the flow condition 

studied in Chapter 3. Firstly, they are unsteady and non‐uniform, so that the velocity 

gradients in both streamwise and depthwise directions are comparable. The wall 

surfaces are smooth except at the interface boundaries between free flow and porous 

regions. In contrast to the case study in Chapter 3, the size of roughness elements 

compared to the water characteristic length scale (such as the water depth) is much 

lower. Moreover, it is expected that the potential error in the turbulent shear stress 

will only have minor effects on the water surface elevation particularly in the first test 

case, i.e. dam break wave through porous dams. However, some errors are expected 

in the simulation of the second test case where a solitary wave passes a porous 

structure with streamwise velocity of about 0.1 to 0.5 m/s above the structure. 

Unfortunately, the data of fluid shear stress is not available for this case, particularly 

at the interfacial boundaries, to check the accuracy of the turbulence model. 

However, this issue will be investigated deeply in Chapter 6 where the developed 

model will be applied for a highly‐sheared turbulent free surface channel flow over 

porous armour layers where detailed experimental data of velocities and shear 

stresses is available.  

Regarding the drag effect of porous media on the flow, Ergun’s equation is employed, 

i.e. aA  in Equation (4.57) is approximated by Equation (4.29) as the following.  

    2
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where a  and au  are, respectively, porosity and intrinsic velocity at the position of 

particle a , and 1c  and 2c  are the empirical coefficients which were originally 

proposed to be 150 and 1.75, respectively, by Ergun (1952). Slightly different values 

have also been proposed for these two coefficients based on different experimental 

studies (e.g. in Macdonald et al., 1979) Nonetheless, it is still difficult to determine 

these coefficients in the numerical simulations since the characteristics of the porous 

media under consideration is usually unknown and the knowledge about these 

coefficients is poor. Hence, usually different values have been used in different 

simulations often through numerical calibrations. But, in the present study, these 

values are considered to be predefined rather than being adjusted. For this purpose, 

Ergun’s constants (i.e. 1c =150 and 2c =1.75) will be used for all the present 

applications based on the fact that these values have been obtained from 

measurements of various flow conditions (a wide range of flow Reynolds Numbers) 

through packed beds with various particle sizes (Allen et al., 2013). The idea behind 

the choice of these constants for all the present simulations is that it is reasonable to 

tolerate the expected error, if it is within an acceptable range, rather than 

constructing the model based on arbitrary numerical adjustments.   

5.2 Test case I: dam break wave through porous dams 

The developed model is employed to simulate 2D dam break flow through porous 

dams. The numerical results of free surface profiles are compared to the experimental 

data from Liu et al. (1999) where two different porous dams were studied, one 

constructed with crushed rocks and another with glass beads. The description of the 

experimental model is as the following. The water tank was 89.2 cm long, 44 cm wide, 

and 58 cm high. The porous dam was 29 cm long, 44 cm wide, and 37 cm high. It was 

located at the centre of the tank and was built once by crushed rocks with mean 

diameter of 1.59 cm (mean porosity 0 0.49  ) and in the next test with glass beads 
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of a diameter of 0.3 cm (mean porosity 0 0.39  ), and a gate was placed 2 cm away 

from the front side of the dam. At the beginning of each experiment, the gate was 

opened manually within 0.1 s. Figure 5‐2 illustrates a schematic 2D view of the 

physical model which is considered as the computational domain in the present 

simulations. In their experiments, Liu et al. (1999) used 3 different initial water depths 

0H , about 35, 25 and 15 cm, for each material. They presented water surface profiles 

for the case of crushed rocks with 0H = 25 cm, and for the case of glass beads with 

0H = 15 cm. These two cases are simulated here using the developed SPH model. 

 

Figure 5-2  A schematic 2D view of Liu et al. (1999) physical model (dam break wave through porous 

dams) with the separating line in the model shown by the dashed line. 

In the clear water region, initial particle spacing ( 0l ) is set to 3 mm, while in the porous 

structure, it is initially set according to Equation (5.1). The smoothing length h  for all 

particles is set to 01.2l . The situation #1 (Section 4.4.1) is considered while the clear 

water and porous regions are separated by the separating line shown in Figure 5‐2 

(dashed line). The drag coefficients 1c   and 2c  are set to 150 and 1.75, respectively. 

Figure 5‐3 presents the model result for the case of crushed rocks in comparison with 

the experimental water surface profiles from Liu et al. (1999) at different times. Table 

5‐1 presents the Root Mean Square Error (RMSE) at those times which represent the 
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deviation of the numerical water surface profiles from the experimental ones 

calculated as the following 

   2

1

1
RMSE

n

k k
k

A B
n 

   (5.6) 

where A  and B  denote the experimental and numerical quantities (water surface 

elevation here), n  is the number of points at which the numerical and experimental 

quantities are compared and k  is the numerator of the points. A reasonable match is 

observed between the numerical and experimental profiles except at t = 0.2 s.  

Figure 5‐4 shows the snapshot associated with time 1.0 s where the difference 

between particle spacing in clear water and porous regions is more clearly observed. 

This change in the particle spacing takes place due to the conservation of fluid mass 

which was determined by Equation (4.51) and represented in Figure 4‐3.  
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Figure 5-3  Snapshots of dam break flow through crushed rocks at different times. Blue, green, and 

yellow particles show the wall, free flow, and porous regions respectively, while black circles 

present the experimental water surface profiles of Liu et al. (1999). 

Table 5-1  RMSE of the estimated water surface elevation with respect to the experimental data in 

dam break flow through crushed rocks. 

t (s) 0.2 0.4 0.6 0.8 1 1.2 

RMSE (m) 0.0157 0.0085 0.0066 0.0064 0.0063 0.0066 

       t (s) 1.4 1.6 1.8 2 2.2 

RMSE (m) 0.0062 0.0051 0.0043 0.0061 0.0068 
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Figure 5-4  Particle configuration/spacing at t = 1.0 s for the case of crushed rocks. 

In order to examine the conservation of volume at the porous dam interface, the 

particle volume is calculated as the particle mass (which is initially‐specified and fixed) 

divided by the computed fluid density at two fixed positions on the interface line (as 

shown in Figure 5‐5). Figure 5‐6 presents the time histories of the computed particle 

volume at those points for the case of crushed rock porous material. The strange 

distribution at the beginning of the simulation is probably due to two issues: 1) the 

kernel area around the points are initially empty and after the collapse of the water 

column, they start to become fully occupied by particles; and 2) the strong collapse of 

the water column at the beginning produces a wave by which particles move fast into 

the porous region, their porosity decreases (and therefore their calculated volume 

increases), but it takes some time for the particle spacing between them to be 

adjusted. This causes a strong fluctuation in the calculated volume at the first 0.1 ‐ 0.2 

s. After that, the particle volume becomes constant and it is also nearly equal at both 

p1 and p2 locations. This denotes the conservation of volume at the interface 

boundary from the free flow to the porous region. It is noted that the small noise in 

the time histories is due to the fact that the WCSPH formulation inherently develops 

noise in density.  
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Figure 5-5  The points (p1 and p2) at which time histories of fluid density is calculated. Horizontal 

position of p1 and p2 is at x = 0.3 m and their vertical positions are at z = 0.1 m and 0.15 m, 

respectively. The green line shows the boundary of the porous dam. 

 

Figure 5-6  Time histories of fluid density calculated at two fixed points p1 (upper) and p2 (lower) for 

the case of crushed rocks. The location of points is shown in the previous figure. 

To check the smoothness of the computed pressure around the porous structure, the 

pressure distribution at different times is presented in Figures 5‐7 and 5‐8. As can be 

seen, computed pressure is almost continuous over the interface as well as inside the 

porous structure. However, due to the unavailability of experimental pressure data, 

it is not possible to validate the compted pressure field. 
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Figure 5-7  Pressure distribution at times t = 0 to 1 s for the case of crushed rocks. 

 

Figure 5-8  Pressure distribution at times t = 1.2 to 2.2 s for the case of crushed rocks. 
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Dam break flow through the porous dam with glass beads is also simulated with the 

same parameters defined for the case of crushed rocks. Figure 5‐9 shows the result in 

comparison with the experimental free surface profiles of Liu et al. (1999) and Table 

5‐2 presents the RMSE values for those profiles. In this case, the initial water depth 

H0 is about 15 cm and the mean porosity of the dam 0  is 0.39. The same drag 

constants ( 1 150c  , 2 1.75c  ) are used for this case. Bearing in mind that the water 

surface elevation in the present case is lower than the case of crushed rocks, the RMSE 

values in Table 5‐2 show that the agreement between numerical and experimental 

profiles in the present case is not as good as that in the case of crushed rocks.  

 

Figure 5-9  Snapshots of dam break flow through glass beads at different times. Blue, green, and 

yellow particles show the wall, free flow, and porous regions respectively, while black circles 

present the experimental water surface profiles of Liu et al. (1999). 
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Table 5-2  RMSE of the estimated water surface elevation with respect to the experimental data in 

dam break flow through glass beads. 

t (s) 0.4 0.8 1.2 1.6 4 

RMSE (m) 0.0115 0.0116 0.0085 0.008 0.004 

 

In addition to their physical model, Liu et al (1999) also solved an Eulerian form of the 

spatially averaged N‐S equations to simulate the water wave through the porous dams 

of crushed rocks and glass beads. They applied the Ergun’s equation similar to the 

present drag terms in their model, but with different values for the constants 1c  and 

2c . Following van Gent (1995), they used 1 1000c   and 2 1.1c   and obtained good 

agreement with the experimental data for the case of crushed rocks but a poor result 

for the test with glass beads. Then they decreased 1c  to 200 and achieved a better 

agreement for the water surface profiles. They argued the reason for using a smaller 

value for 1c  was that the size of glass beads was outside of the test range of van Gent 

(1995) where the viscous effect had been negligible due to high flow Re number. They 

also noted that in the case of glass beads, the Re Number was low, thus the water 

surface in the porous dam was retained on the flume wall in some regions due to 

surface tension and capillary effects. This led to an overestimation of water surface 

profile in some areas inside the porous dam.  

Akbari and Namin (2013) investigated the sensitivity of the estimated water surface 

profile to the linear and non‐linear drag constants ( 1c  and 2c , respectively), in their 

simulations of the present cases of dam break flows through porous dams. According 

to their study, the case of crushed rocks is sensitive to the form‐drag (non‐linear) term 

due to high Re Number of flow, while the case of glass beads is sensitive to the viscous 

(linear) term as flow Re Number is low in this case. They achieved fair agreement 

between numerical and experimental water surface profiles by employing the same 

values for 1c  and 2c  as Liu et al. (1999) had used. Later, Akbari (2014) modified the 

ISPH model and employed the analytical equations of Du Plessis (1994) to predict the 
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drag coefficients. Those equations give values of 212 and 1.83 for the case of crushed 

rocks and values of 203 and 1.93 for the case of glass beads, which are nearly close to 

the values originally proposed by Ergun (150 and 1.75, respectively). Ren et al. (2016) 

also used Du Plessis’s equations to determine the drag constants in their WCSPH 

model.  

Figure 5‐10 provides a comparison between the present model result of water surface 

profile at time t = 1.2 s for the case of crushed rocks with the above‐mentioned SPH 

studies and the experiment of Liu et al. (1999). As can be seen, the present model as 

well as the model of Ren et al. (2016) provide better estimations compared to the 

studies of Akbari and Namin (2013) and Akbari (2014). This improvement is probably 

related to the treatment of the interfacial boundaries. In Akbari and Namin (2013) and 

Akbari (2014), the thickness of the interfacial transitional layer over which the 

porosity is variable was set to 4 sd  (where sd  is the solid grain diameter), while in the 

present model as well as Ren et al. (2016), porosity changes over a layer with the 

thickness of sd . The choice of the size of averaging volume   for calculation of 

porosity in the present simulations was based on constraint (a) in Equation (4.60). 

Moreover, the comparison of Ren et al. (2016) and present model in Figure 5‐10 

reveals that in spite of using different values for the drag coefficients, the estimated 

water surface profiles lie closely to each other. This can be also seen by comparing 

Akbari and Namin (2013) and Akbari (2014) results. In fact, a slight change in the drag 

coefficient does not considerably affect the result of water surface elevations, while 

the treatment of the interfacial boundary has a greater effect.  
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Figure 5-10  Comparison of the present model result of water surface profile at t = 1.2 s with other 

SPH studies and the experiment of Liu et al. (1999). Dashed lines show the sides of the porous dam. 

Del Jesus et al. (2012) defined pore‐based Reynolds Number as 
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where su  is component of volumetric velocity; and reported the values of Re 325p   

and Re 9.6p   for the cases of crushed rocks and glass beads, respectively. Besides, 

Allen et al. (2013) defined Ergun Reynolds Number, ReERG  as 
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Allen et al. (2013) stated that Ergun (1952) did not explicitly declare the range of Re 

Number over which his equation is valid, but ReERG  of the data from which the 

Ergun’s constants were originally measured or the data with which the equation was 

compared to, is in the range of 1< ReERG <2400. Considering the values of Re p  

reported by Del Jesus et al. (2012) for the crushed rocks and glass beads experiments, 

ReERG of these cases are about 312 and 6.15, respectively, which are within the range.  

The mismatch in the result of glass beads case could also be due to the probable 

overestimation of the free surface profiles in the experiments (as also noted by Liu et 
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al. 1999). To check this issue, a calculation of water volume conservation has been 

carried out here. The initial water surface profile at t = 0.0 s (which is equal for both 

experiments and simulations) is plotted in Figure 5‐11 (a) and the experimental and 

numerical profiles at t = 0.8 s are plotted in Figure 5‐11 (b). The domain is divided into 

three regions: (1) left free flow, (2) middle porous, and (3) right free flow regions. 

Then, at each region, the area under each profile is calculated and multiplied by the 

width of the channel to find the volumes under the profiles associated with each 

region ( 1Vol , 2Vol  and 3Vol ). In the free flow regions, 1Vol  and 3Vol  denote the water 

volume in those regions while in the porous region, 2Vol  multiplied by 0  represents 

the water volume in that region. Therefore, the summation of 1Vol , 2 0V ol   and 

3Vol  associated with each profile represents the water volume under that profile. 

Through this computation, the water volumes under the initial water surface profile 

(Figure 5‐11 a) and under the numerical and experimental profiles at t = 0.8 s (Figure 

5‐11 b) are obtained as 0.0212, 0.0214 and 0.0227 m3, respectively. According to 

these values, the water volume is nearly conserved in the numerical model, while a 

considerable increase is observed in the experimental water volume from t = 0.0 s to 

t = 0.8 s, which is not physical. Although the computed values are not exact, they 

roughly imply the overestimation of water surface profiles in the measurements.  

 

Figure 5-11  Comparison of water volumes under water surface profiles at t = 0.0 and 0.8 s. 
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5.3 Test case II: wave interaction with a porous structure 

The model was tested with the experimental data of Liu et al. (1999) for the case of 

dam break wave through porous dams. However, the data provides only water 

surface profiles. A set of data which provides detailed velocity profiles is needed to 

further investigate the accuracy of the developed model. Wu and Hsiao (2013) studied 

propagation of solitary waves over a submerged porous structure experimentally and 

numerically. They measured horizontal and vertical velocity profiles around the 

structure at different times which makes the data useful for the present study. Hence, 

this case is simulated here, and the data is used for comparison. This data was also 

used by Gui et al. (2015) to test the result of their SPH model.  

The experiments were carried out in a 25 m long, 0.5 m wide and 0.6 m deep wave 

tank with glass wall and glass bottom. Figure 5‐12 (a) depicts a schematic view of the 

Wu and Hsiao (2013) flume set‐up. A digital servo‐controlled piston‐type wavemaker 

is placed at one end of the flume to generate solitary waves based on Goring (1978) 

method, while a slope was located at the other end of the flume to absorb the waves. 

The wave tank was filled with water at a constant depth H0 = 10.6 cm and Solitary 

waves with three different heights were generated in the experiments. But only the 

result for the wave height of 00.45wH H  was presented. A porous structure 

composed of spherical glass beads with diameter sd  = 1.5 cm and porosity 
0  = 0.52 

was placed at the middle of the flume. The length and height of the structure are 13 

and 6.5 cm respectively. The origin of the coordinate system ( x = 0, z = 0) considered 

at the intersection of the front side of the structure and the flume bottom as shown 

in Figure 5‐12 (a). The time history of the water surface profiles was measured at x  = 

‐1.8 m and x  = 1.8 m by two capacitance‐type wave gauges. Reference time t = 0.0 s 

was considered when the crest of the wave arrives at the wave gauge 1 ( x  = ‐1.8 m). 

Horizontal and vertical velocity profiles were measured around the structure at 

different horizontal locations x = ‐0.04, 0.0, 0.04, 0.08, 0.12, 0.16 and 0.20 m at 

different times t = 1.45, 1.65, 1.85, 2.05 and 2.25 s using a PIV system. Since the porous 
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structure covers the whole width of the flume, this case can be simulated in 2D in a 

macroscopic scale. 

 

Figure 5-12  Experimental and numerical set-up for solitary wave interaction with a porous 

structure: (a) experimental flume of Wu and Hsiao 2013, (b) 2D computational domain of the 

present model, and (c) porous structure with the separating line and the velocity profiles locations. 

In the present model, a computational domain is chosen with the following 

characteristics. Initial particle spacing in the free flow region ( 0l ) is set to 3 mm, while 

in the porous dam it is initially set according to Equation (5.1). The smoothing length 

h  is set to 01.2l . Following Gui et al. (2015), a numerical wave tank is constructed 

with 8 m length instead of simulating the 25 m long experimental wave tank due to 

(c) 

(a) 

(b) 
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computational cost restriction. The front side of the porous structure is assumed to 

be in the middle of the channel at x  = 0.0 m that is 4 m far from the left and right‐

side walls where a moving wall representing a piston‐type wavemaker and a fixed wall 

are placed, respectively (see Figure 5‐12 b). According to the data, the still water 

depth is set to 0H  = 10.6 cm. Using this set‐up for the computational domain, Gui et 

al. (2015) found out a solitary wave with height 4.77 cm should be generated at the 

wavemaker location ( x  = ‐4 m) to have a numerical wave height matched with the 

measured one at the location of the reference wave gauge WG1 ( x  = ‐1.8 m). Three 

layers of dummy particles are placed at the bottom, left and right walls to represent 

solid wall boundaries as described in Section 5.1. The dummy particles at the bottom 

and right walls are fixed, while the particles representing a piston‐type wavemaker at 

the left wall move as to produce a solitary wave with height 4.77 cm. The 

displacements of these particles are determined based on Goring (1978) wavemaker 

theory. The simplified version of this theory which expresses the motion of piston 

wavemaker is used as the following. 

   1
tanh 7.6 0.5

2p G
p

t
X t S

T

  
       

 (5.9) 

where pX  denotes the displacement of the piston, t  is time, pT  is the duration of 

piston motion, and GS  is the total stroke of the piston which is calculated as follows 

(Goring, 1978). 
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3
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G

H H
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Gui et al. (2015) applied a damping zone at the right wall in order to absorb the effect 

of wave reflection. However, in the present study no numerical wave absorber is used 

since the flow in the vicinity of the porous structure is studied at times t = 1.45 to 2.25 

s when the wave crest is within a short distance from the structure. No reflection 

effect was observed from the right wall to the wave during this time due to long 

distance between the wave and the wall. Figure 5‐12 (c) shows the porous structure 
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as well as the locations where the numerical velocity profiles are considered to be 

compared to the experimental data. Besides, situation #1 introduced in Section 4.4.1 

is applied by separating the free flow and porous regions using the separating line 

shown in Figure 5‐12 (b) and Figure 5‐12 (c) by dashed lines. The values of 150 and 

1.75 are taken for the drag coefficients 1c  and 2c , respectively.  

Figures 5‐13 and 5‐14 present contours of horizontal and vertical velocity around the 

structure at different times from t = 1.45 to 2.25 s. Note that t = 0.0 s is when the crest 

of the wave arrives at wave gauge 1 (WG1). According to these figures, when the wave 

arrives at the front side of the structure, the flow feels the impediment caused by the 

structure and separates at the frontal edge of the structure. Consequently, the flow 

in the lower part of the channel weakens and the particle velocity direction changes 

towards the area above the structure. A major part of the particles passes from that 

area until the wave reaches the lee side of the structure. Then particle velocity 

direction changes downward so that a vortex is created at the trailing edge of the 

structure. The vortex becomes stronger while the wave is travelling over the lee side 

until it loses strength after some time. These processes during the transition of flow 

from the weather side to the lee side can also be seen in Figure 5‐15 where the model 

results of velocity vectors around the structure at different times from t = 1.45 to 2.25 

s are compared to the experimental data. This figure reveals the accuracy of the 

model in predicting the direction and magnitude of velocity when the wave is passing 

the structure, though some discrepancies are seen at the vortex behind the structure. 

It is noted that in the presented results, the SPH velocities are averaged over a grid 

with spacing of 1 mm for contour plots and 5 mm for vector plots using the kernel 

function presented in Equation (5.3). To identify the water surface profile at this grid, 

divergence of particle position is calculated at each grid point as the following. 

      ,b
m b m bm

b b b

m
W h 

      r r r r r  (5.11) 
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where m  and b  denote the averaging grid point and neighbouring particles, 

respectively. The calculated value will be 2, 1 and 0 when the averaging (kernel) area 

of the grid point is full, half‐full and empty of particles, respectively. Therefore, it is 

assumed that the grid points with  m
r  higher than 1.0 are located below the water 

surface so that they are considered as fluid points and are presented in the contours.   

 

Figure 5-13  Horizontal velocity contours at different times around the structure. Dashed line shows 

the boundary of the structure (separating line). 

 

Figure 5-14  Vertical velocity contours at different times around the structure. Dashed line shows 

the boundary of the structure (separating line). 
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 Figure 5-15  Comparison of velocity vectors between the present model (right) and experimental 

data of Wu and Hsiao (2013) (left) at different times around the structure: a) t = 1.45 s, b) t = 1.65 s, 

c) t = 1.85 s, d) t = 2.05 s, e) t = 2.25 s 

To further investigate the model results, horizontal and vertical velocity profiles at 

several sections around the structure ( x = ‐0.04, 0.0, 0.04, 0.08, ‐0.12 and 0.016 m) 



5.3 Test case II: wave interaction with a porous structure 127

 

are presented in comparison with the experimental profiles. Figures 5‐16 to 5‐25 

present the horizontal and vertical velocity profiles at those sections at times 1.45, 

1.65, 1.85, 2.05 and 2.25 s. Note that x = 0.0 m is at the front side of the structure and 

t = 0.0 s is when the wave crest is at the wave gauge 1 ( x = ‐1.8 m). Tables 5‐3 and 5‐4 

present RMSE values of, respectively, horizontal and vertical velocity profiles with 

respect to the experimental data. The RMSE values are calculated using Equation 

(5.6). As observed, fair agreement is seen between numerical and experimental 

profiles of both horizontal and vertical velocities at all times and all sections except at 

x = 0.16 m which is associated with the vortex behind the structure.  

Wu and Hsiao (2013) and Gui et al. (2015) also simulated the present case using 

numerical methods based on RANS equations and the ISPH method, respectively, and 

observed discrepancies in the results of velocity at the vortex area, although they used 

different closure models and coefficients for the drag effects. It is believed that the 

mismatch in the numerical profiles and the experimental data at the vortex area could 

be due to dimensional and geometrical differences. It may also be related to the fact 

that those models as well as the present model solve the averaged equations at a 

macroscopic domain, while in the experiments the flow takes place at a microscopic 

scale through the porous structure. The structure is composed of regularly‐spaced 

spheres with uniform size as depicted in Figure 5‐12 (c). Therefore, the flow at sphere 

faces is inconsiderable and water can exit the structure at the lee side only from the 

horizontal gaps between layers of spheres, while in the present model (as well as the 

models of Wu and Hsiao, 2013 and Gui et al., 2015), water flow through the whole 

section of the structure mostly uniformly. This can be seen in Figure 5‐15 especially 

parts (a) and (b) where the experimental velocity at the lee side of the structure is 

higher at some points and smaller at other points, while the numerical velocity vectors 

at the same location are uniformly distributed. This can be more clearly seen in Figure 

5‐26 where the experimental and numerical velocity profiles are presented at t = 1.45 

s and x= 0.14 m which is just 1 cm far from the lee side of the structure.  
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Figure 5-16  Numerical results of horizontal velocity profiles in comparison with the experimental 

profiles at time t = 1.45 s at x = -0.04, 0.0, 0.04, 0.08, 0.12 and 0.16 m (squares and lines denote 

numerical result and bold squares denote experimental data).  

 

Figure 5-17  Numerical results of vertical velocity profiles in comparison with the experimental 

profiles at time t = 1.45 s at x = -0.04, 0.0, 0.04, 0.08, 0.12 and 0.16 m (squares and lines denote 

numerical result and bold squares denote experimental data). 
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Figure 5-18  Numerical results of horizontal velocity profiles in comparison with the experimental 

profiles at time t = 1.65 s at x = -0.04, 0.0, 0.04, 0.08, 0.12 and 0.16 m (squares and lines denote 

numerical result and bold squares denote experimental data). 

 

Figure 5-19  Numerical results of vertical velocity profiles in comparison with the experimental 

profiles at time t = 1.65 s at x = -0.04, 0.0, 0.04, 0.08, 0.12 and 0.16 m (squares and lines denote 

numerical result and bold squares denote experimental data). 
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Figure 5-20  Numerical results of horizontal velocity profiles in comparison with the experimental 

profiles at time t = 1.85 s at x = -0.04, 0.0, 0.04, 0.08, 0.12 and 0.16 m (squares and lines denote 

numerical result and bold squares denote experimental data). 

 

Figure 5-21  Numerical results of vertical velocity profiles in comparison with the experimental 

profiles at time t = 1.85 s at x = -0.04, 0.0, 0.04, 0.08, 0.12 and 0.16 m (squares and lines denote 

numerical result and bold squares denote experimental data). 
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Figure 5-22  Numerical results of horizontal velocity profiles in comparison with the experimental 

profiles at time t = 2.05 s at x = -0.04, 0.0, 0.04, 0.08, 0.12 and 0.16 m (squares and lines denote 

numerical result and bold squares denote experimental data). 

 

Figure 5-23  Numerical results of vertical velocity profiles in comparison with the experimental 

profiles at time t = 2.05 s at x = -0.04, 0.0, 0.04, 0.08, 0.12 and 0.16 m (squares and lines denote 

numerical result and bold squares denote experimental data). 
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Figure 5-24  Numerical results of horizontal velocity profiles in comparison with the experimental 

profiles at time t = 2.25 s at x = -0.04, 0.0, 0.04, 0.08, 0.12 and 0.16 m (squares and lines denote 

numerical result and bold squares denote experimental data). 

 

Figure 5-25  Numerical results of vertical velocity profiles in comparison with the experimental 

profiles at time t = 2.25 s at x = -0.04, 0.0, 0.04, 0.08, 0.12 and 0.16 m (squares and lines denote 

numerical result and bold squares denote experimental data). 
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Table 5-3  RMSE (m/s) of the estimated horizontal velocity u (m/s) profiles with respect to the data. 

 x =  
‐0.04 m 

x =  
0.0 m 

x =  
0.04 m 

x =  
0.08 m 

x =  
0.12 m 

x =  
0.16 m 

t = 1.45 s 0.0382 0.0921 0.087 0.0536 0.088 0.0208 

t = 1.65 s 0.0353 0.0515 0.0579 0.0918 0.105 0.1035 

t = 1.85 s 0.0305 0.0299 0.0434 0.0631 0.0549 0.1578 

t = 2.05 s 0.036 0.0291 0.0308 0.0268 0.0209 0.1802 

t = 2.25 s 0.0182 0.0247 0.02 0.044 0.027 0.1737 
 

Table 5-4  RMSE (m/s) of the estimated vertical velocity w (m/s) profiles with respect to the data.  

 x =  
‐0.04 m 

x =  
0.0 m 

x =  
0.04 m 

x =  
0.08 m 

x =  
0.12 m 

x =  
0.16 m 

t = 1.45 s 0.0504 0.0663 0.0639 0.0356 0.0155 0.0319 

t = 1.65 s 0.0207 0.043 0.0221 0.0402 0.029 0.0812 

t = 1.85 s 0.0116 0.018 0.0168 0.0262 0.0324 0.1289 

t = 2.05 s 0.0105 0.0158 0.0231 0.0201 0.0207 0.0437 

t = 2.25 s 0.0106 0.0228 0.0074 0.0115 0.0503 0.0669 

 

 

Figure 5-26  Numerical results of horizontal (left) and vertical (right) velocity profiles in comparison 

with the experimental profiles at time t = 1.45 s and x = 0.14 m. (squares and lines denote 

numerical result and bold squares denote experimental data). 
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Wu and Hsiao (2013) noted that the flow in the present case is considered as a fully‐

turbulent flow since the pore‐based Re Number calculated by Equation (5.7) is larger 

than 1000. Therefore, the effect of viscous drag which is addressed by coefficient 1c  

is negligible while 2c  plays an important role in the representation of solid matrix 

effect on the flow. Wu and Hsiao used Ergun’s Equation (4.29) for the drag closure in 

the momentum equation but with different coefficients 1c and 2c  from the present 

study. They tested their model using three sets of coefficients 1 200c   and 2 1.1c  , 

1 1000c   and 2 1.1c  , and 1 724.57c   and 2 8.15c  , referring to Liu et al. (1999), 

van Gent (1995), and Lara et al. (2011), respectively. The first two sets of coefficients 

provided similar results of velocity and water surface elevation while the third one led 

to a slightly different results. This was because the first two sets of coefficients are 

different only in 1c which is not important in the present problem due to high pore‐

based Re Number of flow while in the third set of coefficients a higher 2c  has been 

chosen which has significant influence due to the same reason. Finally, they suggested 

2 1.1c   (van Gent, 1995 and Liu et al., 1999) as the optimal value.  

In their ISPH simulations of the present case, Gui et al. (2015) used completely 

different relationships for the permeability and Forchheimer tensors in the drag 

closure model presented in Equation (4.26). Figure 5‐27 compares the streamwise 

velocity profiles estimated by the present model in comparison with the results of Gui 

et al. (2015) and the experiments of Wu and Hsiao (2013) at different times and 

sections. Three upper subplots show the profiles associated with time t = 1.45 s, when 

the wave is travelling above sections x = ‐0.04, 0.0 and 0.04 m. Three middle subplots 

presents the results associated with time t = 1.65 s when the wave is above sections 

x = 0.08, 0.12, and 0.16 m. Finally, three lower subplots associate with section x = 0.16 

m (vortex region) at times t = 1.85, 2.05, and 2.25 s when the wave has already passed 

the structure. The figure shows that the present model provides better estimation of 
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velocity distribution above the structure while the wave is travelling over the 

structure. However, after the wave has passed the structure (when the vortex is 

generated at the lee side), both models perform similarly, particularly after t = 2.05 s. 

Although the vortex is generated in the same location as in the experiments, both 

models are unable to reproduce the correct magnitude of velocity in the vortex zone. 

Inside the porous structure, both models provide similar velocity profiles, although 

different drag closure models have been used. However, at the interface boundary 

between the porous structure and free flow region above it, the slope of velocity 

profiles is estimated closer to the experimental data by the present model. This effect 

also produces better velocity distribution above the structure by the present model. 

Gui et al. (2015) used a transitional layer at the interface with a thickness of 4 times 

particle spacing and averaged the SPH‐estimated pressure over this layer to smooth 

out flow quantities at the interface. But, in the present model, the thickness of the 

interface layer over which porosity changes from 0  to 1.0, is chosen based on the 

characteristic length of the solid skeleton at the interface (to satisfy constraint 4.60 a) 

rather than being related to the computational resolution. It is also notable that Gui 

et al. (2015) ignored the effect of particle volume change (Equation 4.51 and Figure 

4‐3) in the continuity equation.  
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Figure 5-27  Streamwise velocity profiles estimated by the present model in comparison with the 

results of Gui et al. (2015) and experiments of Wu and Hsiao (2013) at different sections and 

different times.  

5.4 Test case III: wave run-up on smooth, rough, and porous 

breakwaters 

In Sections 5.2 and 5.3, two cases of dam break wave through porous dam and solitary 

wave interaction with a porous structure were solved using the developed SPH model. 

It was shown that Ergun’s constants 1 150c   and 2 1.75c   yields satisfactory results 
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in both simulations. Here the model will be applied with the same drag coefficients 

into another case which is a solitary wave run‐up and run‐down on a breakwater slope 

based on the experiments of Jensen et al. (2015). There are two issues about this case 

which motivated to simulate it by the proposed model. One is that it has not been 

simulated by similar numerical models so that no knowledge is available on the choice 

of computational parameters, particularly the drag coefficients. It will be find out 

whether the application of Ergun’s constants (150 and 1.75) could lead to satisfactory 

results. The other issue is that the experimental data is available for three different 

breakwater slopes: smooth (rigid), rough, and porous. This will be helpful in observing 

the effect of porosity on the flow field and investigating the model capacity with 

regard to this issue. In the following, some details of the experiments of Jensen et al. 

(2015) as well as the numerical model set‐up are presented. 

The experiments were carried out in a 25 m long, 0.6 m wide and 0.8 m deep flume. 

Still water depth ( 0H ) was fixed to 0.4 m and a solitary wave with height of wH = 0.14 

m was generated at all experiments. A piston‐type wavemaker was placed at one end 

of the flume and a breakwater with front and rear slopes of 1:1.5 was constructed 

with its toe being located 13.55 m from the wavemaker. See Figure 5‐28 (a) for a 

schematic view of the experimental set‐up. For the case of smooth (rigid) surface, the 

breakwater slope was made out of a plastic PVC plate with a width of 0.6 m 

corresponded to the flume width. For the case of rough surface, the plate was covered 

by an armour layer of plastic spherical particles with diameter sd = 38 mm. For the 

case of a porous breakwater, the same type and size of spheres were used to 

construct the breakwater core and the plastic PVC plate was replaced by a 2 mm thick 

perforated plate. Values of 0.40 and 0.41 were reported for porosity of the core 

material and void‐to‐plate ratio (porosity) of the perforated plate, respectively. To 

measure water surface elevation, two wave gauges were set up, one at offshore and 

another at the toe of the breakwater which the latter was considered as the reference 

gauge (WGo and WGt, respectively, in Figure 5‐28 a). For velocity measurements, a 

LDA system was employed. The velocity was measured at two sections above the 
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breakwater slope at several points. The measurement sections and their distances to 

the toe are shown in Figure 5‐28 (c). The results of water surface elevation at WG1 

and velocity profiles at section I (at 2 and 19 mm above the slope for the smooth case, 

and at 2 and 57 mm above the bed for the rough and porous cases) are reported in 

Jensen et al. (2015).  

 

Figure 5-28  Experimental and numerical set-up for solitary wave run-up on a breakwater with 

smooth, rough and porous slope: (a) experimental flume of Jensen et al., 2015, (b) configuration of 

breakwater boundaries for smooth, rough and porous cases (hatched areas show the solid wall 

boundaries), and (c) measurement sections in the experimental and numerical models.  

The 2D SPH model developed in the present study is employed to simulate all three 

cases of solitary wave run‐up on smooth, rough and porous breakwater slopes and 

(c) 

(a) 

(b) 
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the data provided by Jensen et al. (2015) is used for result comparison. The drag 

coefficients 1c  and 2c  are set to the same values as in the two previous test cases. 

Initial particle spacing in the free flow region 0l  is 10 mm and smoothing length h  is 

set to 01.2l . Three layers of fixed dummy particles are placed at the wall boundaries 

which are depicted by hatched areas in Figure 5‐28 (b). At the wavemaker location, a 

moving wall with three layers of particles is placed while their displacement is 

determined by Equation (5.9). For the case of smooth slope, as there is no porous 

region in the domain, the porosity of fluid particles are set to one and no background 

mesh was employed. For the case of rough surface, as seen in Figure 5‐28 (b), the 

armour layer is simulated as a porous layer with porosity of 0.4 and a thickness equal 

to the plastic spheres diameter (38 mm). For the porous case, the armour layer as well 

as the breakwater core are considered as a porous region with porosity of 0.4 (Figure 

5‐28 b). In the simulations of rough and porous cases, the situation #1 introduced in 

Section 4.4.1 is applied so that a background mesh is employed for calculation of 

porosity.  

Figures 5‐29, 5‐30 and 5‐31 represent water surface elevation at the breakwater toe 

and slope parallel velocity at 19 mm above the slope for the smooth case and 57 mm 

above the slope for rough and porous cases, respectively, in comparison with the 

experiments. t = 0 is considered when the wave crest arrives at the reference gauge 

(breakwater toe). Table 5‐5 presents RMSE values calculated by Equation (5.6) for the 

water surface elevation as well as velocity profiles with respect to the experimental 

data. As seen from the figures and the table, the model results are more accurate for 

smooth, porous, and rough beds, respectively.  

The velocities plotted in the figures are obtained by averaging SPH‐estimated 

velocities at each time between t = ‐2 and 4 s at 57 mm (19 mm for the smooth case) 

above the slope using the cubic Spline function (5.3). Besides, to obtain the water 

surface elevation at each time, a line of fixed points is placed vertically at the toe 

location (dash‐dotted line in Figure 5‐28 c) with a spacing of 00.1l  and divergence of 
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SPH particle position is calculated at each point using Equation (5.11). Then the point 

with closest value to 1 is considered as the free surface point and its elevation is 

considered as the water surface elevation at that time. It is noted that value of the 

divergence of particle position calculated by Equation (5.11) is 2 when the kernel area 

of the averaging point is full of neighbouring particles and it is zero when the kernel 

area is empty. Only slope‐parallel velocities at 57 mm (19 mm for the smooth case) 

above the slope are presented here, although the velocity at 2 mm from the slope is 

also provided by Jensen et al. (2015). The reason is that the particle spacing 0l  is set 

to 10 mm in the present simulations so that the resolution is not enough to capture 

velocity at 2 mm above the slope. By using 0l = 10 mm, about 57000 particles are used 

to simulate the case, while using 0l = 2 mm would need about 1.5 million particles 

which is not feasible in the framework of the present study.  

According to Figures 5‐29, 5‐30 and 5‐31, the velocity is predicted well during the run‐

up and run‐down processes. However, after the run‐down (during the second run‐up) 

some discrepancies are observed in the results of water surface elevation and 

velocity. It seems the velocity variations are restricted during the secondary run‐up. A 

reason could be that the computational resolution is not enough to capture those 

post‐run‐up fluctuations. Besides, the agreement between the predicted and 

measured velocity profiles in the case of rough surface is poorer than the smooth and 

porous cases (Table 5‐5). It reveals that considering a single roughness layer (spheres) 

as a porous layer in the model may lead to a mismatch when the computational 

resolution is not sufficient. This issue needs more investigation and is considered as a 

future study.  
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Figure 5-29  Wave run-up and run-down on the smooth slope: (a) water surface elevation at the 

toe, and (b) slope parallel velocity at 19 mm above the surface, between t = -2 and 4 s. 

 

Figure 5-30  Wave run-up and run-down on the rough slope: (a) water surface elevation at the toe, 

and (b) slope parallel velocity at 57 mm above the surface, between t = -2 and 4 s.  
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Figure 5-31  Wave run-up and run-down on the porous breakwater: (a) water surface elevation at 

the toe, and (b) slope parallel velocity at 57 mm above the surface, between t = -2 and 4 s. 

Table 5-5  RMSE of the estimated water surface elevation ηw and horizontal velocity u profiles with 

respect to the experimental data.  

 Smooth 
surface 

Rough 
surface 

Porous 
surface 

RMSE of ηw (m) 0.0142 0.0161 0.0145 

RMSE of u (m/s) 0.063 0.1059 0.0889 

 

To investigate the effect of porosity on the run‐up and run‐down, the numerical 

results of water surface elevation and velocity profiles for three cases of smooth, 

rough and porous breakwater are represented together in Figure 5‐32. According to 

this figure, water surface elevation in the rough and porous cases is only a few 

millimetres less than the smooth case when the wave is running up on the slope, while 

this difference gets significantly higher during run‐down and secondary run‐up. 

Besides, the figure shows that the variation of parallel‐slope velocity is higher on the 

smooth slope while it decreases when the slope is rough. The variation becomes even 
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less in the case of porous breakwater as the secondary run‐up cannot be observed 

clearly over the porous slope. It is due to the penetration of water into the structure 

so that a significant part of the momentum in the slope‐parallel direction is removed.  

Looking at Figures 5‐29, 5‐30 and 5‐31, one may notice that in the case of smooth 

slope the experimental velocity was little influenced by fluctuations except at a short 

time during the run‐down process (the bottom of the profile in Figure 5‐29 b), while 

in the cases of rough and porous slopes, velocity fluctuations are clearly seen during 

the run‐down and secondary run‐up processes. Jensen et al. (2015) noted that these 

fluctuations are mainly due to the presence of solid particles. However, such 

fluctuations are not seen in the model results of velocity. A reason is insufficient 

computational resolution. But the more important one is that in the present model 

the flow is simulated at a macroscopic scale, i.e. the porous material is not simulated 

as solid boundaries. Therefore, the dispersion of flow due to the existence of solid 

spheres is not taken into account.  

 
Figure 5-32  Comparison between numerical result of (a) water surface elevation at the toe, and (b) 

slope parallel velocity at 57 mm (19 mm for the smooth case) above the surface, for all three 

smooth, rough and porous cases. The lines show the spline fitting to the data symbols.  
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5.5 Computational resolution effect on the interface layer  

In Section 4.2, the required constraints for G  and r ; and in Section 4.3, the 

constraints associated with W  and r  were discussed. Later in Section 4.4.1, it was 

noted that in the practical situation #1 (which was the case in all application tests in 

the present chapter), the constraint #1 will be instinctively satisfied within the porous 

region and the required constraints will be those represented in Equation (4.60). In 

the present simulations, following Equation (4.60), r  was set equal to the mean 

diameter of solid particles at the interface and was kept unchanged over time. 

Besides, r  was set equally over space for all particles and kept unchanged over time. 

However, the satisfaction of constraint #4 (or point c of Equation 4.60, r L   u
) 

might be uncertain in some simulations. According to this constraint, the kernel 

support size r  should be much smaller than the characteristic length scale of the 

average flow field. Since in SPH, r  is related to the particle spacing ( 01.2h l   as a 

common practice), 0l  should be chosen as to satisfy constraint #4. To investigate this 

issue, the simulations of test cases I and II are repeated with using different particle 

spacing.  

Figure 5‐33 presents a comparison between water surface profiles of test case I (dam 

break wave through crushed rocks) at time t = 1.2 s with using different particle 

spacing. No considerable difference is seen between the profiles. This is because of 

the following issues: i) flow Re Number is relatively low; and ii) interfacial boundary 

between porous and free flow regions is not ‘sharp’, i.e. a significant change does not 

take place in average flow quantities when transferring from free flow to porous 

structure and vice versa. Therefore, constraint #4 is already nearly satisfied with using 

the applied computational resolutions.  
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Figure 5-33  Water surface profiles of test case I (dam break flow through crushed-rocks porous 

dam) at time t = 1.2 s, with using different computational resolution (particle spacing 0l ).  

However, the situation for the test case II may be different. Looking at the 

experimental data of Wu and Hsiao (2013) which were presented in Figures 5‐16 to 

5‐25, and assuming that velocity in the porous region is much smaller than above the 

structure, the horizontal velocity shows a significant change over a thin layer at the 

interface. This can be seen more clearly at times t = 1.45 s and 1.65 s when the wave 

is travelling above the structure. For instance, at t = 1.45 s and x = 0.0 m, the 

measured horizontal velocity increases from about 0.04 to 0.5 over about 10 mm at 

the interface. Another example can be given at t = 1.65 s and x = 0.12 m, where the 

experimental horizontal velocity has a value of 0.61 m/s only about 2.5 mm above the 

structure boundary (spheres crest). To resolve such a thin boundary and thereby 

satisfying constraint #4, the kernel support size should be chosen much smaller than 

the interface layer thickness. In other words, the particle spacing should be chosen as 

to satisfy constraint #4, particularly for velocity, i.e. r L   u
 (Equation 4.60 c).  

To investigate this issue, the simulation of test case II is repeated by using different 

initial particle spacing 0l  of 3, 4, 5 and 6 mm. Figures 5‐34 and 5‐35 show the result 

in comparison with the experimental data. In Figure 5‐34, the horizontal and vertical 

velocity profiles at two different sections x = 0.0 and 0.04 m at t = 1.45 s when the 

wave is travelling above those two sections are presented. Similarly, Figure 5‐35 

represents the velocity profiles at two sections x = 0.08 and 0.12 m at t = 1.65 s when 
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the wave is passing the end of the structure. As can be seen, both horizontal and 

vertical velocity profiles inside the porous region as well as above it are similar for 

different computational resolutions. However, at the interface, a small difference can 

be observed in the slope of the profiles. This can be seen more clearly from Figure 

5‐36 where the horizontal velocity profiles at t = 1.65 s and x = 0.12 m and vertical 

velocity profiles at t = 1.45 s and x = 0.0 m are plotted at a different scale. As particle 

spacing is set to a smaller value (the resolution gets higher), the slope of velocity 

profile gets closer to the experimental one, though it is still far from a perfect match. 

This is because by using smaller particle spacing the satisfaction of constraint #4 at 

the interface is approached. Although this constraint may not be fully satisfied at such 

cases with ‘sharp’ interfacial boundaries, the error is not significant, which means the 

model can reproduce satisfactory results for the applications simulated here.  

 

Figure 5-34  Numerical horizontal (two top figures) and vertical (two bottom figures) velocity 

profiles with different particle spacing 0l  in comparison with the experimental data at t = 1.45 s at 

two sections x = 0.0 and 0.04 m. 
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Figure 5-35  Numerical horizontal (two top figures) and vertical (two bottom figures) velocity 

profiles with different particle spacing 0l  in comparison with the experimental data at t = 1.65 s at 

two sections x = 0.08 and 0.12 m. 

 

Figure 5-36  Numerical horizontal velocity at t = 1.65 s and x = 0.12 m (left) and vertical velocity at t 

= 1.45 s and x = 0.0 m (right) with using different particle spacing 0l  in comparison with the 

experimental data. 
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5.6 Summary 

Three test cases of flow interaction with porous structures were simulated by the 

developed model. The treatment of interfacial boundary was carried out carefully in 

order to address the mathematical requirements introduced in Chapter 4. The first 

case is a benchmark test which has been applied in many numerical studies in order 

to validate the models in predicting water surface elevation; the second case was 

selected to test the accuracy of the model in predicting velocity field; and case III was 

employed as a new test case which has not been simulated in other numerical studies. 

In all the cases, the situation #1 introduced in Section 4.4.1 was employed for 

numerical treatments. Besides, Ergun’s constants ( 1c = 150 and 2c = 1.75) were 

employed for drag coefficients. Although the characteristics of different porous 

structures are not the same, it was shown that using these constants provides 

satisfactory results of water surface elevation in the first and third applications as well 

as acceptable velocity distributions around the porous structures in the second and 

third cases. This is attributed to the fact that all the present cases are in the range of 

the data Ergun used to derive his equation. In fact, the aim of using same constants 

was to avoid test‐specific numerical adjustments. The comparison between the 

present model with the existing SPH models in estimating water surface elevation for 

the case of dam break wave through crushed rocks revealed how the interfacial 

boundary is treated has a greater effect on the results than a slight change in the drag 

coefficient.  

The effect of computational resolution was investigated in order to check the validity 

of the equations at the interfacial boundaries with regard to the length constraints 

introduced in Chapter 4. Using different particle spacing did not affect the results of 

water surface elevation in the first test case, while it had a considerable effect in the 

streamwise velocity distributions in the second case. The latter is attributed to the 

length constraint #4 for velocity, i.e. the size of averaging volume (computational 
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discretisation) should be small enough to capture the variations in the average 

velocity field at the interface boundary.  

The SPS model was applied with the Smagorinsky approach to estimate the eddy‐

viscosity. As shown in Chapter 3, this model was not sufficient in predicting turbulent 

shear stress in open channel flows over rough surfaces. Here also the results are 

expected to be affected by this issue, probably near the porous interfaces where the 

roughness may be considerable, particularly for the test case II where velocity changes 

rapidly over the interface boundary. However, due to the unavailability of detailed 

turbulence data, it was not possible to investigate the accuracy of the turbulence 

closure model in the present applications. The investigation of this issue will be carried 

out deeply in the next chapter as highly‐sheared turbulent free surface channel flow 

over natural porous beds will be studied where detailed experimental data of velocity 

and turbulent shear stress are available.  

 





 

Chapter 6 Modelling Turbulent Open Channel 

Flow Over and Within Natural Porous Beds with 

High Gradient Interfacial Boundaries 

Turbulent free surface channel flows over porous gravel beds are simulated in this 

chapter using the model developed in Chapter 4. Appropriate modifications are 

introduced into the drag and turbulence modelling. For turbulence, a three‐layer 

mixing‐length model is proposed based on the experimental data and the Nezu and 

Rodi (1986) formula. Besides, the challenge in reproducing a steady and uniform flow 

condition within a reasonable distance is tackled by introducing a new porous inflow 

boundary technique and an outflow imaginary wall. The model is constructed to 

simulate an existing set of experimental data of turbulent open channel flows over 

porous gravel bed armour layers. Twelve test cases with 2 different gravel bed 

configurations and various flow conditions are simulated by the model and results are 

compared to the experimental data. The effects of computational resolution on the 

results of velocity and shear stress as well as the validity of the proposed turbulence 

model are all investigated. 

6.1 The case study 

The case study is the simulation of turbulent free surface channel flows over and 

within porous beds with high gradient interfacial boundaries. A set of existing 
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experimental data (from Technical University of Braunschweig) of different flow 

discharges over an armour layer with 2 different surface roughness is employed to 

validate the model results of velocity and shear stress. A brief description of the 

experimental study is presented in the following. For more details see Aberle (2006), 

Aberle (2007), and Aberle et al. (2008).  

The experiments were carried out in the laboratory of the Leichtweiss‐Institute for 

Hydraulic Engineering, Technical University of Braunschweig, in a tilting flume with a 

constant slope of about 0.0027. The length, width and height of the flume were 20 m, 

0.90 m and 0.60 m, respectively. A mixture of coarse gravel sediments (0.63 to 0.64 

mm) was placed in the bottom of the flume. The test section was located 9 m 

downstream of the flume inlet where the width of the channel was decreased in order 

to reduce the effects side walls. A flow with discharge armourQ = 120 l/s was firstly run 

into the flume, mobilising the sediment and then maintained flow until the bed 

surface reached stable condition, i.e. the sediments became stable. For this bed, then, 

several measuring discharges less than the armouring discharge ( armourQ = 120 l/s) 

were run into the flume and flow velocity was measured using a 3D Laser Doppler 

Anemometer (LDA) system at 24 vertical profiles distributed randomly in the test 

section. In all experiments conducted with measuring discharges less than the 

reference armouring discharge, the bed material was immobile, and the flow was 

steady and uniform. Figure 6‐1 depicts a schematic side view of the flume including 

porous armour layer, free flow (clear water), and interface (roughness) layer. 
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Figure 6-1  Schematic 2D view of the experimental condition of the bed. zb is the level of bottom 

wall of the flume; zt and zc show trough and crest of the roughness layer; zm is zt  plus the 

equivalent height of roughness (i.e., the volume of melted roughness materials per unit bottom 

area) and zws is the water surface level.  

The experiment was repeated for a discharge higher than the first armouring 

discharge, i.e. for armourQ = 180 l/s, so that the armour layer was destroyed and then a 

new one developed. Accordingly, tz , mz  and cz  levels changed, although the change 

in the bed material below tz  was supposed to be very small. For the new bed, also 

several measuring discharges less than 180 l/s were run into the flume and 3D 

velocities were measured at the same 24 locations for each discharge. The 

experiments were repeated for another 2 armouring discharges ( armourQ = 220 and 250 

l/s) so that 2 other beds were developed. For each one, several measuring discharges 

less than the forming armouring discharge were examined, and measurements were 

accordingly carried out. All measuring flows were in the steady and uniform condition. 

Table 6‐1 presents a list of experiments. As seen in the table, the experiments with 

armouring discharge armourQ = 250 l/s were repeated since the armour layer was 

accidently destroyed in the upstream in one of the experiments.  
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Table 6-1  Armouring experiments. 

Qarmour 
(l/s) 

Bed 
slope 

d50 
(mm) 

120 0.0027 11.1 

180 0.0026 13.6 

220 0.0026 18.4 

250a 0.0028 19.5 

250b 0.0028 19.6 

 

The location of the 24 velocity profiles are shown with white circles in Figure 6‐2 

where the scan of bed topography (obtained by a laser displacement meter) is 

depicted for three different armouring discharges of 120, 220 and 250 l/s. Besides, 

Figure 6‐3 shows the procedure of velocity measurements with the LDA system for 

the cases with shallower and deeper depths, where respectively, a tank set‐up (left) 

and an aerodynamic housing system (right) were employed. The applied system 

allowed measurement of the velocity within the roughness layer (the layer between 

tz  and cz  in Figure 6‐1). For each experiment, the double‐averaged velocity and 

Reynolds Stress profiles were provided by spatial averaging of time‐averaged profiles 

on planes parallel to the average bed level over the 24 measuring locations. Within 

the roughness layer, all 24 measuring points were not available at some planes due to 

the existence of solid material. Therefore, the averaging was carried out from the 

levels with at least 5 available points. Some preliminary results of the hydraulic 

measurements can be found in Aberle and Koll (2004), Aberle (2006) and Nikora et al. 

(2007).  
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Figure 6-2  Armour layer topography after armouring discharges of 120, 220, and 250 l/s (from left 

to right). Lines indicate the test section and points indicate the location of velocity profiles in the 

xy-plane. (Aberle, 2006) 

 

 

Figure 6-3  Tank setup for LDA-measurements (left) and measurement situation using submerged 

probes with aerodynamic housing (right). (Aberle, 2006) 
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Table 6-2  The twelve test cases. 

Bed ID 
(armouring 
discharge) 

zt 
(mm) 

zc 
(mm) 

s 
(mm) 

Measuring 
discharges 

(l/s) 

zws 
(mm) 

Hc 
(mm) Test case ID 

B1  
(Qarmour = 
180 l/s) 

36.6 87.6 51 

60 184 96 B1‐Q60 
90 217 129 B1‐Q90 

120 248 160 B1‐Q120 
150 271 184 B1‐Q150 
180 296 208 B1‐Q180 

B2  
(Qarmour = 
250 l/s) 

‐5.5 71.5 77 

60 166 95 B2‐Q60 
90 200 128 B2‐Q90 

120 230 159 B2‐Q120 
150 256 185 B2‐Q150 

180 279 207 B2‐Q180 

220 306 235 B2‐Q220 

250 330 258 B2‐Q250 
 

In the present study, the experiments of armouring discharges armourQ = 180 l/s and 

250b l/s (shown in Table 6‐1) are selected to be simulated. In these two sets of 

experiments, respectively, 5 and 7 measuring discharges are tested. Therefore, there 

are two different porous beds, each tested with several flow conditions, to be 

simulated in the present study. Table 6‐2 represents some details of the bed and flow 

conditions at these test cases. It is noted that the values of vertical levels ( tz , cz , and 

wsz ) are measured from an arbitrary reference. 

6.2 Numerical modelling scheme 

The SPHAM equations of mass and momentum (Equations 4.45 and 4.46) are 

considered as the governing equations for the present simulations. The discretised 

form of these equations is presented in Equations (4.56) and (4.57), where the last 

two terms in the momentum equation represent the effects of turbulence and bed 

drag. Determination of these two terms will be discussed in Sections 6.2.2 and 6.2.3. 
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The equation of state (Equation 3.11) is used to link the equations of mass and 

momentum for calculation of pressure from the temporal change in the fluid density. 

However, this change is restricted to be less than 1% by choosing an appropriate value 

for the speed of sound (WCSPH scheme). The predictor‐corrector method presented 

in Section 4.3.2 and Figure 4‐5 is employed for time implementation. Besides, a 

Shepard density filter is applied at every 30 time steps to reduce the pressure error 

due to the density variations, and a link‐list method is used for particle searching in 

order to enhance the efficiency of the model in terms of computational time. 

6.2.1 Determination of porosity 

For determination of porosity and the interfacial boundary layer, the situation #2 

(Section 4.4.2) is considered here, i.e. the distribution of porosity   is assumed to be 

known rather than being calculated by Equation (4.54). In other words, no background 

mesh is employed. The reason is that in addition to that the model is 2D, the porous 

bed in the experimental study is highly heterogeneous with no information on the 

geometry and characteristics of the solid matrix. Besides, the porosity distribution is 

not known for all cases. Therefore, a method is required to determine the distribution 

of porosity over the total depth to be applied into the model. 

In the experiments, the porosity has been measured only for the bed under armourQ = 

220 l/s by filling water stepwise into the laboratory flume. It has been observed that 

the solid matrix at the interface had significant changes under different armouring 

discharges while it remained unchanged below the roughness trough. Therefore, it is 

assumed that the mean porosity below the roughness trough zt in the case of armourQ

= 220 l/s (i.e. 0 = 0.22) is applicable for other cases too. Accordingly, in the present 

study, a constant distribution of porosity with the value of 0 = 0.22 is considered for 

below tz  while the distribution of porosity over the roughness layer (from tz  to cz ) 

needs to be defined for each bed condition (B1 and B2 in Table 6‐2). The simplest 

definition could be a linear profile over the roughness layer from roughness trough tz  
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with the value of 0  to the roughness crest cz  with a value of 1.0 as clear water 

porosity. However, it is noted that tz  and cz  are absolute lower and higher levels of 

the roughness layer where the density of solid material may have a lower change near 

these levels compared to its variation within the centre of the roughness layer. 

Therefore, it is assumed that variation of porosity occurs in a layer (namely porosity 

interface layer) with a thickness less than s  as depicted in Figure 6‐4. As the 

knowledge on the distribution of solid phase density in the roughness layer is not 

available, the thickness of porosity interface layer is assumed to be half of s  with a 

centre at mz . Porosity variation over this layer is assumed to be linear. According to 

this definition, distribution of porosity over the total depth is presented as the red 

solid line in Figure 6‐4. In order to have a smooth change of porosity from the linear 

profile to the constant values at the lower and upper bounds of the porosity interface 

layer (red dash‐dotted lines), cubic Spline function (Equation 5.4) with supports of, 

respectively, tr  and cr  is employed to smooth out the profile.  

 

Figure 6-4  Distribution of porosity over the total depth including porous bed, roughness layer and 

free flow regions. The layer bounded by dash-dotted lines is the porosity interface layer over which 

the porosity changes linearly from  to 1.0. 

 

0
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6.2.2 Determination of drag effect 

The last term added to the momentum Equation (4.57), aA , is the discrete (modelled) 

form of the surface integral term in the SPHAM equation of momentum (4.46). This 

term represents the viscous and form‐drag effects of solid skeleton on the 

macroscopic flow field and has been estimated using various drag closure models in 

the literature. In the simulation of test cases in Chapter 5, comparison of the results 

of water surface and velocity profiles with the experimental data showed that the 

application of Ergun’s closure equation with its original coefficients, i.e. 1 150c   and 

2 1.75c   provides good accuracy for flow through porous media in different 

engineering applications. Ergun’s equation has been obtained from measuring various 

flow conditions in packed beds. In the present study, the armour layer below the 

roughness trough level tz  is assumed to be packed so that the Ergun’s equation 

(presented in Equation 4.29) is applied for estimating the viscous and form‐drag 

effects within the bed from bz  to tz  as follows. 

    2

0
1 22 2

1 1 1
:a a

a a a a t
a s a s

c c z z
d d

 
 
 

   A u u u  (6.1) 

Where aA  is the drag effect on a generic particle a ; a  is fluid porosity at particle 

position, 0  is kinematic viscosity coefficient, 1c  and 2c  are viscous and form‐drag 

coefficients, and sd  is bed mean particle size which is assumed to be equivalent to 

50d  in the present study.  

Observing the experimental data such as bed topography scans shown in Figures 6‐2 

and 6‐5, one may notice that the bed is not packed within the roughness layer, but 

with considerable spacing between solid particles. In fact, within this layer, the drag 

force from solid material to the flow is rather from the interaction between flow and 

single (or few) particles so that the application of Ergun’s equation may be inaccurate. 

For this reason, the drag force model introduced in Section 3.1.1.1 (Equations 3.3 and 
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3.4) is applied here with some modifications for the estimation of drag‐induced shear 

stress term ( aA ) within the roughness layer.  

 

Figure 6-5  Two measurement locations (white points) and surrounding topography in one of the 

experiments.  

As discussed in 3.1.4.2, the cross‐sectional area dA  in Equation (3.4) and the bed‐

parallel planar area A  in Equation (3.3) are equivalent to the fluid particle size 0l  

and the product of 0sd l , respectively. Moreover, the shape function dW  can be 

replaced by  1   which represents density distribution of solid phase within the 

roughness layer. By applying these replacements into Equations (3.3) and (3.4), the 

form‐induced shear stress term aA  within the roughness layer is formulated as 

   1
1 :a d a a a t c

s

C z z z
d

    A u u  (6.2) 

where dC  is the drag coefficient which is taken to be around 0.9 according to the 

study of Schmeeckle et al. (2007). In that study, dC  was found to be 0.76, 1.36, and 

0.91 for spheres, cubes, and natural particles, respectively.  

By using Equation (6.2), the effect of viscous drag is neglected within the roughness 

layer. Based on the fact that ‘viscous effect is dominant when flow Re Number is low 

while form‐induced drag is dominant when flow Re Number is high’, this equation is 
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valid in the present simulations. By comparing Equations (6.1) and (6.2), Equation (6.2) 

is equivalent to (6.1) if one replaces 1c  and 1c  with zero and d aC  , respectively. 

Therefore, the drag‐induced shear term is formulated as the following to be applied 

over the whole domain including armour layer, roughness layer, and clear water 

regions.  
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where a  is estimated using the procedure introduced in Section 6.2.1. Obviously, aA  

is zero in the clear water where porosity is equal to 1.0. The calculated drag term will 

have a smooth distribution near the bounds of the roughness layer ( tz  and cz ) as it 

is related to the porosity and velocity which have smooth transition over the interface. 

6.2.3 Determination of the effect of turbulence 

A major source of turbulence in free surface flows is from interaction with the bed 

boundary. The geometry of the bed surface causes a disturbance in the flow near the 

boundary which transfers through the depth in the form of turbulence. Therefore, in 

order to resolve turbulence in a numerical model, one needs to simulate the bed 

microscopically. In this case, a part of turbulence is resolved by the computational 

discretisation while the unresolved part is modelled by an appropriate model such as 

SPS. This issue was presented in Chapter 3 (Equation 3.5) as the basic idea of LES.  

As also discussed in Chapter 3 (Sections 3.1.1.2 and 3.2.6), due to the macroscopic 

modelling of the roughness layer/porous bed in the present study, physical dispersion 

which is a result of flow obstruction by solid particles is disregarded. Therefore, the 

part of turbulent stress resolved by particle motion is only from deviations in the 

average macroscopic field rather than the microscopic flow. Besides, the modelled 

shear stress estimated by the SPS model with the Smagorinsky constant (about 0.15) 



162 Modelling Turbulent Open Channel Flow Over and Within Natural Porous Beds 

with High Gradient Interfacial Boundaries

 

was shown to be significantly underestimated due to the same reason and/or the 

inaccurate estimation of velocity‐pressure interactions (as addressed by Mayrhofer et 

al., 2015). Based on this fact, it was assumed that the total shear stress should be 

modelled in the case of macroscopic simulation of a rough bed (Equation 3.6) and 

therefore the mixing‐length model was proposed to be used for the estimation of 

eddy‐viscosity in the SPS model rather than using the standard Smagorinsky 

formulation. This procedure is adopted in the present simulations too, since the flow 

condition is similar to the case studied in Chapter 3, i.e. flow is uniform, and bed is 

rough which is represented macroscopically.   

The main advantage of the mixing‐length model is that it is computationally simple, 

while the main drawback of this approach is that the spatial distribution of mixing‐

length should be known. For open channel flows, usually established formulas such 

as Nezu and Rodi (1986) are available to estimate the mixing‐length. But those 

formulas are basically derived from measurements of turbulent flow over flat beds. In 

the present test cases, the bed is porous and the surface is rough with a relatively 

thick roughness layer so that the slope of the mixing‐length profile could be different 

from 0.41  . 

Thanks to the availability of the detailed velocity and Reynolds Stress data to some 

distance below and above the roughness crest cz  in the present experiments, it is 

feasible to check whether Nezu and Rodi (1986) formula is valid for the present cases. 

According to Equations (2.4) and (2.5), if Reynolds Stress and slope of streamwise 

velocity profile are available, then assuming that u z   is significantly higher than 

the velocity gradients in other directions, the mixing‐length can be estimated simply 

using the following equation. 
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where exp u w     is the Reynolds Stress derived from the experimental velocity data 

where u   and w   are the fluctuations of the horizontal ( x ) and vertical ( z ) 

components of the experimental velocity and the overbar denotes the temporal 

averaging operator. The coordinate components x  and z  are shown in Figure 6‐1.  

Here, firstly, a cubic Spline interpolation is used to fit smooth profiles to the 

experimental velocity and Reynolds Stress profiles and then the velocity gradient 

u z   is calculated from the continuous velocity profile. Then, using the continuous 

Reynolds Stress and velocity gradient profiles, the mixing‐length distribution is 

estimated by Equation (6.4). The result is shown in Figures 6‐6 to 6‐9 for all the 12 test 

cases. Note that the measurements have been carried out only to some distance 

above the roughness layer since velocity data near water surface has not been 

collected.   

 
Figure 6-6  Profiles of experimental streamwise velocity, Reynolds Stress, and mixing-length for the 

test cases B1-Q60, B1-Q90 and B1-Q120. Black squares: experimental profiles; red solid lines: Spline 

fittings; red circles: calculated mixing-length; dashed line: roughness crest. 
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Figure 6-7  Profiles of experimental streamwise velocity, Reynolds Stress, and mixing-length for the 

test cases B1-Q150, B1-Q180 and B2-Q60. Black squares: Experimental profiles; Red solid lines: 

Spline fittings; Red circles: calculated mixing-length; dashed line: roughness crest. 
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Figure 6-8  Profiles of experimental streamwise velocity, Reynolds Stress, and mixing-length for the 

test cases B2-Q90, B2-Q120 and B2-Q150. Black squares: Experimental profiles; Red solid lines: 

Spline fittings; Red circles: calculated mixing-length; dashed line: roughness crest. 
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Figure 6-9  Profiles of experimental streamwise velocity, Reynolds Stress, and mixing-length for the 

test cases B2-Q180, B2-Q220 and B2-Q250. Black squares: Experimental profiles; Red solid lines: 

Spline fittings; Red circles: calculated mixing-length; dashed line: roughness crest. 

 

Now it is possible to compare the obtained mixing‐length profiles with Nezu and Rodi 

(1986) formula. It can be seen from Figures 6‐6 to 6‐9 that in most cases, the mixing‐

length distribution within and above the roughness layer seems linear but with 

different slopes below and above cz . Since Nezu and Rodi (1986) have derived their 

formula by measurements above flat beds, it is assumed that the upper part of the 

profiles above cz  could be comparable to that formula. In order to define a general 

relationship for the present mixing‐length distribution to be applied in the present 

simulations, the following procedure is adopted.   
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Considering the crest of roughness layer (dashed line in the figures) as the reference 

level of Nezu and Rodi (1986) formula, Equation (3.8) is rewritten as follows 

      
1 c

m mc f c
c

z z
l l z z

H



     (6.5) 

where mcl  is the value of the mixing‐length at the roughness crest and cH  is the 

distance from cz  to wsz  as depicted in Figure 6‐1. This relationship is applied to fit a 

profile to the experimental mixing‐length profiles (Figures 6‐6 to 6‐9, right) by fixing  

mcl  to the experimental value at cz  and adjusting f  which determines the slope of 

the profile at cz . The value of  0.22f   is found to provide good agreement between 

experimental profiles and Equation (6.5) for all the 12 test cases (see Figure 6‐10).  

Determination of mixing‐length distribution within the roughness layer and below the 

roughness trough zt is not straightforward since the data is available only to some 

distance below the roughness crest, but not within the bed. Although the velocity and 

Reynolds Stress data within the roughness layer have large perturbations in some 

cases (Figures 6‐6 to 6‐9), it is fair to assume that mixing‐length is linear at the upper 

part of this layer. The data is not available in the lower part, but it is assumed that ml  

has a linear distribution over the whole layer between tz  and cz . Hence, the following 

relationship is used to fit profiles to the experimental ml  distributions within the 

roughness layer for all the 12 cases.  

    m mc r cl l z z    (6.6) 

where r  is the slope of the profile. The values of r   0.27 and 0.15 provide good 

match between the experimental profiles and Equation (6.6) for beds B1 ( armourQ = 180 

l/s) and B2 ( armourQ = 250 l/s), respectively (see Figure 6‐10). Using these values, the 

linear profiles become zero at some levels about 10 mm above tz  and about 0 to 20 

mm below tz  for the test cases associated with the beds B1 and B2, respectively.  
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It is noted that the mixing‐length is not physically zero within the bed, although flow 

turbulence may be negligible in that region. The fact that Equation (6.6) goes to zero 

at some level above the bed B1 (for example see Figure 6‐11) demonstrates that the 

distribution of mixing‐length cannot be linear in the lower part of the roughness layer. 

It has probably a nonlinear distribution with a smooth connection to a small value 

within the bed. However, by applying Equation (6.6), the distribution of the mixing‐

length is assumed to be linear over the whole roughness layer. In fact, the assumption 

is that the mixing‐length profile is fixed with a small value ( mbl ) at a certain level close 

to the roughness trough ( 0tz z  ) below which it has a constant distribution with 

mbl . Hence, the following equation is applied to estimate the mixing‐length 

distribution in the depth‐wise direction from bz  to wsz  in the present simulations 

(see Figure 6‐11).  
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 (6.7) 

where 0 0tz z z  . To apply this equation in the numerical model, 0z , mbl , r  

and f  need to be determined. Considering a constant value of mbl = 2 mm within the 

bed, 0z  will be about 18 to 23 mm and ‐10 to 10 mm for beds B1 and B2, 

respectively. Besides, according to the data, r  is taken to be 0.27 and 0.15 for beds 

B1 and B2, respectively, while f is equal to 0.22 for all cases. Table 6‐3 summarises 

the values applied in the present simulations. 

 

 



6.2 Numerical modelling scheme 169

 

Table 6-3  Mixing-length parameters (Equation 6.7) adopted in the present simulations.  

Bed Test cases mbl  0z  r  f  

B1 B1‐Q60, B1‐Q90, B1‐Q120, 
B1‐Q150, B1‐Q180 

2 mm 20 mm 0.27 0.22 

B2 
B2‐Q60, B2‐Q90, B2‐Q120, 

B2‐Q150, B2‐Q180, B2‐
Q220, B2‐Q250 

2 mm 0.0 0.15 0.22 

 

  
Figure 6-10  Mixing-length profiles for all the 12 test cases. Red circles: experimental profiles; Solid 

lines: numerical profiles; and dashed lines: bounds of the roughness layer (zt and zc). 
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Figure 6-11  Typical mixing-length distribution adopted in the present study. 

6.2.4 Computational domain and boundary conditions 

The computational domain is set up based on the physical model introduced in 

Section 6.1. Those flow conditions can be simulated in 2D since the flow change in the 

lateral direction (normal to the flume sidewalls) is negligible compared to the 

streamwise and depthwise changes. Although flow near the bed surface is 3D, since 

the average flow field is studied in a macroscopic framework, the 2D simulation is 

considered to be reasonable.  

The same setup of the physical model with the same flume length (20 m) is not 

possible to be applied here due to limited computational time and costs, thus a 

shorter domain is considered, and appropriate boundary conditions are defined. A 

rectangular is defined as the computational domain including porous armour layer, 

roughness layer and free flow regions as depicted in Figure 6‐1, but macroscopically. 

The governing equations (4.56) and (4.57) are solved in a unified framework while the 

difference between the regions is characterised by the change in the porosity as well 

as the drag coefficients as defined in Equation (6.3). Three boundary conditions for 

inlet, outlet, and bottom rigid wall need to be defined while the free surface boundary 

is tracked without any special treatment. 
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6.2.4.1 Bottom rigid wall boundary 

At level bz  (Figure 6‐1) a rigid wall is defined by placing several layers of fixed dummy 

particles as the topmost layer lies at bz . These particles are used in order to fill the 

truncated kernel area of the fluid particles located in the vicinity of the boundary. 

Thus the number of layers depends on the kernel support size. Their velocity is set to 

zero, while their density and pressure are updated in every time step according to the 

continuity equation (4.56) and equation of state (3.11), respectively. These dummy 

particles prevent fluid particles from penetrating into the wall as they contribute in 

the computation of pressure gradient term (first term on the right‐hand side of 

Equation 4.57) of the fluid particles located in the vicinity of the wall. 

6.2.4.2 Inflow boundary 

The approach adopted here for modelling inflow boundary is similar to the one 

introduced in Chapter 3 for flow over impermeable boundaries in terms of that the 

distribution of velocity is unknown at the inlet. Similar to Section 3.1.4.1, several 

layers of dummy particles are set in the inflow region (see Figures 3‐2 and 3‐3 a) in 

order to address the truncated support area of fluid particles. The governing 

equations are not solved at these particles but their properties such as pressure and 

velocity are determined based on desirable hydraulic conditions. The inflow particles 

move according to their velocity and become fluid particles when passing the inflow 

boundary line, while a new inflow particle with the same properties is generated at 

the same elevation but in the beginning of the inflow region, i.e. at the inlet threshold 

(see Figure 3‐3 a).  

In the simulation of test cases in Chapter 3, an averaging method was introduced to 

determine the velocity of inflow particles. According to that method, the velocity of 

fluid particles was averaged in the vicinity of inflow boundary line using a SPH kernel 

function and set accordingly as the velocity of inflow particles (see Figure 3‐3 b). This 

method is not applicable for the present simulations due to the existence of 



172 Modelling Turbulent Open Channel Flow Over and Within Natural Porous Beds 

with High Gradient Interfacial Boundaries

 

permeable bed. The reason is that the flow condition within the porous layer which 

has a considerable depth is very different from the high Re Number flow above the 

bed. Moreover, the averaging process would disturb flow transfer at the bed interface 

where the change in the velocity is significant. Generally speaking, the application of 

the inflow averaging technique introduced in Chapter 3 for the present case has 

shown to produce unstable solutions due the existence of a permeable boundary.  

In the present work, instead, an inflow boundary with a constant velocity distribution 

is defined at the inlet which provides the desirable (experimental) discharge into the 

computational domain. Since the porosity distribution is not constant over depth 

(Figure 6‐4), it is expected that velocity and particle spacing are also variable. 

Therefore, a transition zone is required from the inflow boundary to an area with the 

desirable porosity profile shown in Figure 6‐4. In order to shorten the length of the 

transition zone, a porous inflow region with certain depth ( in
tH ) and porosity ( 0

in ) is 

introduced rather than using a clear water inflow with 1.0  . The constant inflow 

velocity is determined according to the desired flow discharge (measuring discharge 

for each test case in Table 6‐2) by the following equation.  

   0
0

0

in
in

in in
t

q
U

H
  (6.8) 

where in
tH  is equal to in

ws bz z  as depicted in Figure 6‐12 and 0
inq  is the discharge per 

unit width which is equal to wQ B where Q  is the measuring volume discharge 

presented in Table 6‐2 and wB  is the flume width at the measuring section. Besides, 

the pressure of inflow particles is considered to be hydrostatic. In this way, the inflow 

region acts as a porous medium where water flows into the domain with a constant 

rate. It is noted that Equation (6.8) defines 0
inU  as the inflow intrinsic velocity since 

the governing equations have been developed in terms of intrinsic quantities.  
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Figure 6-12  Inflow boundary setup.  

Figure 6‐12 presents inflow setup at the initial time step and the change of porosity 

from inflow boundary to the specific fluid domain with required porosity profile 

(Figure 6‐4). As can be seen, porosity within the inflow region and to some distance 

away from the inflow boundary is set to a constant value between 0  and 1. After 

that, it starts decreasing gradually (linearly here) from 1
trX  to 2

trX  and reaches to the 

required value beyond 2
trX  (which is equal to 0 , 1.0, and some value between these 

two, respectively in the porous bed, free flow region and roughness layer). Usually a 

porosity between 0  and 1.0 is chosen for the porous inflow region 0
in  and therefore 

a depth higher than the desirable one (experimental depth) is set at the inlet in order 

to have a stable solution, i.e. in
ws wsz z . 

Since the porosity changes in both x  and z  directions due to the porous inflow 

boundary, the drag term aA  is rewritten as the following. 
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It is expected that flow depth decreases gradually over the transition zone to a certain 

depth beyond 2
trX . The final depth depends on various factors such as bed roughness, 

bed slope, and turbulence effects. If all these factors are modelled correctly, the flow 

momentum should be balanced after some distance. However, since the 

computational length is limited (8 in
tH  in the present simulations), an open outflow 

boundary could not satisfy the required uniform flow condition within the domain. 

Hence, the following section is devoted to defining an appropriate outflow boundary 

technique for the present application. 

6.2.4.3 Outflow boundary 

Since the domain is truncated at the outlet boundary, the balance in the momentum 

equation is disturbed so that the water column collapses (i.e. open boundary) if no 

special treatment is used. Due to the reason mentioned in the previous section, the 

outflow boundary technique developed in Chapter 3 for flow over impermeable 

boundary is not applicable here.  

If momentum balance at the outlet is disturbed, uniform flow condition cannot be 

satisfied within a short distance from the outlet boundary. On the other hand, if one 

uses several layers of dummy particles beyond the outlet boundary to recover the 

truncated kernel area, there is still problem in defining flow quantities at those 

particles due to the lack of knowledge on the distribution of those quantities. Hence, 

a simple outflow boundary technique is proposed here by introducing a pressure force 

in the opposite direction of flow thereby reproducing a constant depth which leads to 

uniform flow condition within the domain. For this purpose, an imaginary wall is 

placed at the outlet which provides only pressure gradient on fluid particles as 

described in the following.  

Several layers of fixed imaginary particles are set beyond the outlet line ( oX  in Figure 

6‐13 b) in order to create an imaginary wall with a certain height ( owH ) and a certain 
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distribution of pressure. The wall extends from bz  to b owz H  and a hydrostatic 

pressure distribution is considered at the imaginary particles in the present 

simulations. These particles contribute only in the calculation of pressure gradient at 

fluid particles. Therefore, the following term is added to the momentum equation 

(4.57) of a certain fluid particle a  when it is located within a distance shorter than 

2h  ( h   smoothing length) from the outlet boundary line (see Figure 6‐13 b). 

    1
a o a ao a o

o a

V W P P


 
     

 
O  (6.10) 

where a  and o  denote fluid and neighbouring imaginary particles, respectively; and 

oV  is the volume of imaginary particle. In this way, the imaginary wall reproduces a 

pressure force on the fluid particles located in the vicinity of the outlet boundary. 

However, since the imaginary particles are fixed while fluid particles are moving, they 

will not allow fluid particles to move through the outlet boundary so that continuity 

is not preserved. To resolve this, in the calculation of extra pressure gradient term aO  

of a certain fluid particle, the volume of its neighbouring imaginary particles oV  

starts to decrease from when the fluid particle locates at 2oX h  until it reaches the 

outlet boundary line oX  where oV  becomes zero. Then, fluid particle is removed at 

the same time, i.e. when it arrives at 0X . Decrease in oV  is performed using a 

relaxing factor which is considered to be linear in the present simulations, so that 

Equation (6.10) is rewritten in the following form. This process allows fluid particles 

to move smoothly through the imaginary wall so that mass conservation is preserved.  

    1
a o o a ao a o

o a

F V W P P


 
     

 
O  (6.11) 

oF  is the relaxing factor defined as the following linear form in the present study. 

   
2
o a

o

X x
F

h


  (6.12) 

in which ax  is the horizontal position of the approaching fluid particle.  
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Figure 6-13  Outflow boundary treatment. (a) Initial set-up of the outflow boundary with an 

imaginary wall; (b) interaction between fluid and imaginary particles.  

By using the proposed imaginary wall technique, only the pressure gradient force is 

applied on the fluid particles near the outlet boundary, while the effects of other 

terms such as viscosity and turbulent terms are disregarded. The reason for using only 

the pressure effect is that its distribution in a uniform flow condition is known if one 

assumes that it is nearly hydrostatic, while the distribution of velocity is unknown 

particularly in the case of existence of a permeable boundary with a rough surface.  

Considering a hydrostatic pressure distribution, neglecting the effect of other terms 

such as viscosity, and using a linear relaxing factor for mass elimination at the outlet 

boundary, means the outflow boundary treatment is unable to guarantee an 

adequate balance in the flow momentum at the outlet. Therefore, the height of 

imaginary wall owH  is considered to be adjustable in order to be able to get the depth 

constant within the domain thereby providing the required balance in the 

momentum. In other words, for each test case, different values of How are applied 

until the water surface (computed by the procedure introduced in Section 5.3 and 

Equation 5.11) becomes parallel to the bed line. In addition, the depth‐averaged 

streamwise velocity is compared at several sections with certain distances from the 

outlet boundary; and if the difference is less than a threshold, flow is considered as 
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uniform. Otherwise, owH  is increased/decreased and simulation is repeated until 

achieving the constant depth and depth‐averaged velocity.  

6.3 Results and discussion 

The 12 test cases introduced in Table 6‐2 are simulated following the numerical 

treatments introduced in Sections 6.2.1 to 6.2.4. Firstly, some computational 

specifications applied in the present simulations are mentioned briefly and then the 

results are presented and compared to the experimental data. 

A rectangular computational domain is adopted with initial height and length of in
tH  

and 8 in
tH . The domain is discretised using particles with clear water particle spacing 

0l  of 5 mm, i.e. the particle spacing associated with porosity of 1.0 is set to 5 mm. 

Besides, some simulations will be repeated with different particle sizes to check the 

effect of resolution on the results. Initial particle spacing is set using Equation (5.1) 

based on 0 = 0.22 within the armour and roughness layers ( cz z  and 2
trx X ) and 

0 0
in   elsewhere. It is expected that spacing between particles will be corrected 

based on porosity defined in Figure 6‐12 after few time steps. The vertical levels tz , 

mz , cz  and wsz  are set from Table 6‐2 for each test case. The cubic Spline function 

presented in Equation (5.4) is employed and the smoothing length is chosen to be 1.2

0l . The speed of sound 0c  is set to 10 times the maximum velocity in each simulation 

according to the discussion presented in Section 3.2.1 on the choice of 0c . To 

determine the time step size, the CFL condition (3.15) is adopted with the coefficient 

of 0.125. Furthermore, the Shepherd density filter is applied at every 30 time steps.  

At the inflow boundary, in  is set to 0.75 and in
tH  is set to  1.5p ws tH z z   (see 

Figure 6‐1 for pH , wsz  and tz ). Accordingly, the inflow velocity is set to the value 

estimated by Equation (6.8) and the inflow pressure distribution is assumed to be 

hydrostatic. The number of layers of the inflow dummy particles is set to 3. 1
trX  and 
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2
trX  are set to in cX H  and 4in cX H , respectively. At the outflow boundary, 3 

layers of imaginary particles are placed beyond the outlet boundary line ( ox X ) to 

construct the imaginary wall. The spacing between those particles is set to the clear 

water particle spacing 0l  so that oV  is equal to 2
0l  and their porosity is 1.0. As 

discussed in Section 6.2.4.3, the simulation of each test case is repeated with different 

values of owH , until achieving constant flow depth. Besides, the porosity of bottom 

wall dummy particles is set to 1.0 so that their spacing is set to 0l . 

6.3.1 Flow steadiness and uniformity 

Figures 6‐14 and 6‐16 show snapshots of instantaneous particle position and 

streamwise velocity at different times from initial time step to t = 30 s for the test 

cases B1‐Q60 and B1‐Q90, respectively, and Figures 6‐15 and 6‐17 present the 

distribution of porosity for these two test cases. As expected, during first 8.0 seconds, 

flow depth decreases gradually from the inflow boundary ( 0
inX ) to the end of the 

transition zone ( 2
trX ) after which the porosity becomes constant in the bed and clear 

water regions. Then flow develops in the constant depth region until about t = 20 s 

when flow becomes steady. For each case, to achieve constant depth from 2
trX   to 

oX , different values of the outlet imaginary wall height owH are applied and the 

uniformity of the flow is checked. The optimum owH for all test cases were found to 

be in the range of 90 to 100 % of the experimental total depth ( ws bz z ).  

A measuring zone is chosen from 1 0 4.5s in in
tX X H   to 3 0 6.5s in in

tX X H   with a 

mid‐section of 2 0 5.5s in in
tX X H   (Figure 6‐18). As the length of the domain L  is 

8 in
tH , the distance between the end of the measuring section 3

sX  to the outlet 

boundary line oX  is about 1.5 in
tH . To post‐process the simulation results, a fixed grid 
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is defined over the measuring zone with grid spacing equal to 5 mm where particle 

quantities are averaged at grid points using the cubic Spline kernel function (5.4).  

To check steadiness of flow, water surface elevation and streamwise velocity profile 

at 2
sx X  are compared at different time steps. When the changes in the water depth 

and depth‐averaged streamwise velocity become less than 1%, flow is considered to 

be steady. To calculate water surface elevation, the divergence of particle position is 

calculated at grid points using Equation (5.11) and the level at which the divergence 

value is about 1.0 is considered to be the numerical water surface level. Figure 6‐19 

presents the velocity profiles of two test cases B1‐Q60 and B1‐Q90 at section 2
sx X  

at different times. As can be seen, the differences between the velocity profiles are 

small. After about t = 20 s, the difference falls below 1% for all the test cases.  

In order to check uniformity of the flow, streamwise velocity profiles at sections 1
sX , 

2
sX  and 3

sX  are averaged over time and the time‐averaged profiles are compared as 

when the difference between the depth‐averaged value is less than 2%, flow is 

considered to be uniform over the measuring zone. The time averaging is performed 

over a period of 10 s during the steady state, i.e. from t = 35 s to 45 s. Figure 6‐20 

shows the time‐averaged streamwise velocity contours for test cases B1‐Q60 and B1‐

Q90 and Figure 6‐21 presents the time‐averaged velocity profiles at sections 1
sX , 2

sX  

and 3
sX  for those test cases. The difference between these profiles is less than 1% for 

case B1‐Q60 and about 1.5% for case B1‐Q90. For most the test cases, the difference 

is below 2%, while in few of them it exceeds 2% slightly. The main part of the 

difference attributes to the top of velocity profiles (near the water surface) where 

velocity seems not fully uniform in some cases. The reason is probably related to the 

outflow boundary where the balance in the momentum is disrupted and only pressure 

gradient force is used to get a constant flow depth.  
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Figure 6-14  Development of flow in test case B1-Q60. Snapshots of particle position and velocity at 

different times from t = 0 to 30 s (continued on the following page). 
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Figure 6-14  (continued from the previous page) Development of flow in test case B1-Q60. 

Snapshots of particle position and velocity at different times from t = 0 to 30 s. 

 

Figure 6-15  Porosity distribution in test case B1-Q60 (t = 30 s).   

 



182 Modelling Turbulent Open Channel Flow Over and Within Natural Porous Beds 

with High Gradient Interfacial Boundaries

 

 

Figure 6-16  Development of flow in test case B1-Q90. Snapshots of particle position and velocity at 

different times from t = 0 to 30 s (continued on the following page). 
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Figure 6-16  (continued from the previous page) Development of flow in test case B1-Q90. 

Snapshots of particle position and velocity at different times from t = 0 to 30 s. 

 

Figure 6-17  Porosity distribution in test case B1-Q90 (t = 30 s).  
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Figure 6-18  Inflow, outflow and measuring zones. 0
inX  is the inflow boundary line; 1

trX  and 2
trX  

are the bounds of the transition zone; 1
sX  to 3

sX  represents the measuring zone while 2
sX  is the 

mid-section of this zone; and oX  is the outlet boundary line. 

 

Figure 6-19  Flow steadiness for test cases (a) B1-Q60 and (b) B1-Q90. Profiles present streamwise 

velocity distribution at section  at different times. Dashed lines represent the bounds of the 

roughness layer (i.e. zt and zc). 
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Figure 6-20  Streamwise velocity contours for test cases (a) B1-Q60 and (b) B1-Q90 over the 

measuring zone (  to ) averaged over a time period of 10 s (t = 35 s to 45 s). 

 

Figure 6-21  Flow uniformity for test cases (a) B1-Q60 and (b) B1-Q90. Profiles present streamwise 

velocity distribution at sections ,  and  averaged over a time period of 10 s. Dashed 

lines represent the bounds of the roughness layer (i.e. zt and zc). 
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6.3.2 Velocity and shear stress results 

In this section, the results of streamwise velocity and turbulent shear stress are 

presented for all the 12 test cases. SPH‐estimated velocity, its gradient, and shear 

stress are averaged over a time period of 10 s from t = 35 s to 45 s at the mid‐section 

2
sX  of the measuring zone and compared to the experimental profiles in Figures 6‐20 

to 6‐33. The presented results are from simulations with 0l = 5 mm.  

In all cases, streamwise velocity is underestimated by the model. In the test cases of 

bed B1 ( armourQ = 180 l/s), the underestimation appears as a vertical shift in the average 

velocity profiles compared to the experimental ones. This could be because the 

roughness effect at the bed is overestimated by the model due to the use of relatively 

large particle spacing 0l  (low computational resolution). In other words, the length 

constraint (4.61) (a), i.e. r L   u
, is probably not satisfied near the interface layer 

using 0l = 5 mm.  

Due to the shift in the velocity profile, its gradient u z  is overestimated over the 

depth. As a result, the MSPH‐ML shear stress profiles are also overestimated, 

especially above the roughness layer in the test cases of bed B1. According to Equation 

(6.4), shear stress is related to the squares of velocity gradient and mixing‐length. 

Therefore, a small overestimation in the velocity gradient may cause significant 

overestimation in the turbulent shear stress particularly above the roughness crest 

where the mixing‐length has a larger magnitude according to Nezu and Rodi (1986) 

formula (Figure 6‐11). Furthermore, for each bed condition (B1 and B2), the reference 

level 0z  of the mixing‐length formula (Equation 6.7) is assumed to be fixed under 

various flow conditions, while it has a small range for different test cases. Generally 

speaking, the mixing‐length distribution estimated by Equation (6.7) does not match 

perfectly with the experimental mixing‐length profiles. As a result, some errors might 

be produced in the estimation of turbulent shear stress.  
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In the test cases of bed B2 ( armourQ = 250 l/s), the underestimation of velocity is not 

constant through the depth, but it is higher around the roughness layer and lower 

near the water surface. Velocity underestimation in these cases also may be related 

to the fact that constraint (4.61) (a) is not fully satisfied due to the use insufficient 

computational resolution near the bed.  

In order to check the effect of computational resolution, simulation of test cases B1‐

Q60, B1‐Q90, B2‐Q60 and B2‐Q90 is repeated using different values of initial particle 

spacing 0l . The result is presented in Figure 6‐34 where velocity, its gradient and 

shear stress profiles are plotted with using 0l = 3, 5 and 7 mm in comparison with the 

experimental data. According to the figure, as smaller particle spacing (higher 

resolution) is applied, the numerical profiles get closer to the experimental data. In 

other words, using higher resolution in the numerical model leads to a more accurate 

estimation of velocity gradient since constraint (4.61) (a) is closer to satisfaction 

particularly near the interfacial boundary. Although using 0l = 3 mm provides 

significant improvement in the result of the test cases associated with bed B1, the 

result of the test cases of bed B2 do not show such an improvement with 0l = 3 mm 

(Figure 6‐34). According to Figures 6‐27 to 6‐33, within the roughness layer, velocity 

and its gradient profiles of the test cases of bed B2 are a poorer match with the 

experimental data compared to the test cases of bed B1 (Figures 6‐22 to 6‐26). It could 

be due to the fact that the solid skeleton below the roughness layer of bed B2 might 

be different from that in bed B1, while in the present simulations it was assumed that 

both beds have similar condition below tz  with a constant porosity of 0.22. As the 

armouring discharge for bed B2 ( armourQ = 250 l/s) was considerably higher than that 

for bed B1 ( armourQ = 180 l/s) in the experiments, it is expected that flow affects a 

deeper area below tz  under armourQ = 250 l/s so that the porosity below zt of bed B2 

could be slightly higher. It is evidenced by higher 50d  of bed B2 (Table 6‐1) which 

means smaller grains were probably washed out under armourQ = 250 l/s so that 
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porosity might have increased below tz . If this assumption is true, applying a higher 

porosity below tz  in the model will decrease the amount of drag shear stress terms 

in the momentum equation so that a more appropriate velocity distribution would be 

achieved near the bed. However, since the knowledge about the solid skeleton is 

poor, no further investigation is performed on this issue in the present study. 

 

Figure 6-22  Numerical results (solid lines) of streamwise velocity (left), its gradient (middle), and 

turbulent shear stress (right) in comparison with the experimental data (dark symbols) for test case 

B1-Q60. Dashed lines show the bounds of the roughness layer (zt and zc). 

 

Figure 6-23  Numerical results (solid lines) of streamwise velocity (left), its gradient (middle), and 

turbulent shear stress (right) in comparison with the experimental data (dark symbols) for test case 

B1-Q90. Dashed lines show the bounds of the roughness layer (zt and zc). 
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Figure 6-24  Numerical results (solid lines) of streamwise velocity (left), its gradient (middle), and 

turbulent shear stress (right) in comparison with the experimental data (dark symbols) for test case 

B1-Q120. Dashed lines show the bounds of the roughness layer (zt and zc). 

 

Figure 6-25  Numerical results (solid lines) of streamwise velocity (left), its gradient (middle), and 

turbulent shear stress (right) in comparison with the experimental data (dark symbols) for test case 

B1-Q150. Dashed lines show the bounds of the roughness layer (zt and zc). 
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Figure 6-26  Numerical results (solid lines) of streamwise velocity (left), its gradient (middle), and 

turbulent shear stress (right) in comparison with the experimental data (dark symbols) for test case 

B1-Q180. Dashed lines show the bounds of the roughness layer (zt and zc). 

 

Figure 6-27  Numerical results (solid lines) of streamwise velocity (left), its gradient (middle), and 

turbulent shear stress (right) in comparison with the experimental data (dark symbols) for test case 

B2-Q60. Dashed lines show the bounds of the roughness layer (zt and zc). 
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Figure 6-28  Numerical results (solid lines) of streamwise velocity (left), its gradient (middle), and 

turbulent shear stress (right) in comparison with the experimental data (dark symbols) for test case 

B2-Q90. Dashed lines show the bounds of the roughness layer (zt and zc). 

 

Figure 6-29  Numerical results (solid lines) of streamwise velocity (left), its gradient (middle), and 

turbulent shear stress (right) in comparison with the experimental data (dark symbols) for test case 

B2-Q120. Dashed lines show the bounds of the roughness layer (zt and zc). 
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Figure 6-30  Numerical results (solid lines) of streamwise velocity (left), its gradient (middle), and 

turbulent shear stress (right) in comparison with the experimental data (dark symbols) for test case 

B2-Q150. Dashed lines show the bounds of the roughness layer (zt and zc). 

 

Figure 6-31  Numerical results (solid lines) of streamwise velocity (left), its gradient (middle), and 

turbulent shear stress (right) in comparison with the experimental data (dark symbols) for test case 

B2-Q180. Dashed lines show the bounds of the roughness layer (zt and zc). 
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Figure 6-32  Numerical results (solid lines) of streamwise velocity (left), its gradient (middle), and 

turbulent shear stress (right) in comparison with the experimental data (dark symbols) for test case 

B2-Q220. Dashed lines show the bounds of the roughness layer (zt and zc). 

 

Figure 6-33  Numerical results (solid lines) of streamwise velocity (left), its gradient (middle), and 

turbulent shear stress (right) in comparison with the experimental data (dark symbols) for test case 

B2-Q250. Dashed lines show the bounds of the roughness layer (zt and zc). 
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Figure 6-34  Using different particle spacing for test cases (a) B1-Q60, (b) B1-Q90, (c) B2-Q60, and 

(d) B2-Q90. Dashed lines show the bounds of the roughness layer (zt and zc). 
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6.3.3 Validity of the turbulence model 

The turbulent shear stress profiles presented in Section 6.3.2 were in fact the 

modelled shear stress ( lτ ) estimated by the proposed MSPH‐ML model. As discussed 

in Section 6.2.3, the effect of flow disturbance near the bed (which is a result of 

dispersion due to the existence of solid boundaries) on the average flow field is 

disregarded because of macroscopic modelling of the bed. Therefore, the turbulent 

stresses resolved by particle motion (computational discretisation) as well as the part 

modelled by the SPS‐Smagorinsky model were expected to be small. Hence, the 

MSPH‐ML model proposed in Chapter 3 was applied for the present simulations.  

In this section, the simulations of test cases B1‐Q60 and B1‐Q90 are repeated by using 

the SPS‐Smagorinsky model with sC  = 0.15 in order to be compared with the results 

of the present MSPH‐ML model. The part of turbulent stress resolved by particle 

motion ( rτ ) is also presented for comparison. Figures 6‐35 and 6‐37 present resolved 

and modelled shear stress, together with the estimated velocity, by using the SPS‐

Smagorinsky model for test cases B1‐Q60 and B1‐Q90, respectively. Besides, Figures 

6‐36 and 6‐38 present those quantities for these two test cases respectively, when 

the MSPH‐ML model is employed. For both cases of using MSPH‐ML and SPS‐

Smagorinsky models, rτ  which is resolved by the computational discretisation is quite 

small compared to the experimental data. In the case of using SPS‐Smagorinsky model 

(Figures 6‐35 and 6‐37), the modelled part ( SPSτ ) is also significantly lower than the 

experimental value, so that the total shear stress ( tτ ) which is the summation of rτ  

and SPSτ  (red solid lines) is highly underestimated. As a result, the estimated velocity 

profile does not match with the experimental profile since the exchange of 

momentum over the depth has not been adequately reproduced. In contrast, the 

application of the MSPH‐ML model provides a much better match between numerical 

and experimental profiles (Figures 6‐36 and 6‐38). The figures show that the resolved 

part of turbulent stress ( rτ ) is too small so that the total shear stress ( tτ ) is almost 
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equal to the modelled part ( lτ ). It confirms the approximation made in the present 

study (Equation 3.6) that the total turbulent stress should be modelled in the case of 

macroscopic modelling of the bed. 

 

Figure 6-35  Results of the SPS-Smagorinsky model with Cs = 0.15 in estimating shear stress and 

velocity for test case B1-Q60. (a) Resolved shear stress; (b) modelled shear stress; (c) resolved, 

modelled and total shear stress; and (d) predicted velocity profile. Dashed lines show the bounds of 

the roughness layer (zt and zc). 

 

Figure 6-36  Results of the MSPH-ML model in estimating shear stress and velocity for test case B1-

Q60. (a) Resolved shear stress; (b) modelled shear stress; (c) resolved, modelled and total shear 

stress; and (d) predicted velocity profile. Dashed lines show the bounds of the roughness layer (zt 

and zc). 
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Figure 6-37  Results of the SPS-Smagorinsky model with Cs = 0.15 in estimating shear stress and 

velocity for test case B1-Q90. (a) Resolved shear stress; (b) modelled shear stress; (c) resolved, 

modelled and total shear stress; and (d) predicted velocity profile. Dashed lines show the bounds of 

the roughness layer (zt and zc). 

 

Figure 6-38  Results of the MSPH-ML model in estimating shear stress and velocity for test case B1-

Q90. (a) Resolved shear stress; (b) modelled shear stress; (c) resolved, modelled and total shear 

stress; and (d) predicted velocity profile. Dashed lines show the bounds of the roughness layer (zt 

and zc). 

This issue was also investigated in Chapter 3, Section 3.2.6, where turbulent flows 

over rough impermeable boundaries were studied. The result presented in that 

section as well as the current result show that the present MSPH‐ML model is capable 

of recovering the effect of missing part of turbulent stress which comes from 

neglecting flow dispersion and/or the deficiency of the SPH method in estimating 

velocity‐pressure interactions (as addressed by Mayrhofer et al., 2015). In other 

words, the effect of turbulence on the average macroscopic flow field is addressed 

adequately by the present MSPH‐ML model.  
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Although the proposed MSPH‐ML model is effective in reproducing the required 

balance in the flow momentum, it has some limitations such as that the distribution 

of mixing‐length should be known. For some cases, such as steady uniform open 

channel flows, there are established formulas or at least some useful knowledge 

about the behaviour of flow velocity gradients so that defining the mixing‐length 

should not be too difficult. However, in some more complex cases such as unsteady 

and/or non‐uniform flows, determination of eddy‐viscosity based on the mixing‐

length model is not easy, so that this limits the applicability of the model for such 

cases. 

6.4 Summary 

The 2D macroscopic model developed in Chapter 4 for flow interaction with porous 

media was shown to be applicable to turbulent open channel flows over and within 

natural porous beds if appropriate modifications are introduced into the drag and 

turbulence closure models. Twelve test cases of turbulent flow with different 

discharges over 2 different porous armour layers were simulated and the results of 

velocity and shear stress profiles were compared to the experimental data. Ergun’s 

equation with its original drag coefficients were employed for the effect of solid 

skeleton within the armour layer while the drag effects within the roughness layer 

were incorporated by a modified version of the drag force model developed in 

Chapter 3 for flow over impermeable rough boundaries. Turbulence was modelled by 

the MSPH‐ML model proposed in Chapter 3 with a three‐layer mixing‐length profile 

which was formulated by fitting Nezu and Rodi (1986) formula to the present 

experimental data. Besides, a porous inflow boundary as well as an imaginary outlet 

wall were introduced to obtain uniform flow conditions within the computational 

domain.  
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Using different particle spacing 0l = 3, 5 and 7 mm in the simulation of 4 test cases 

revealed that as higher resolution is applied, the numerical results get closer to the 

experimental data. This issue was attributed to the satisfaction of the length 

constraint (4.61) (a) when a higher resolution is used. However, using 0l = 3 mm did 

not provide significant improvements for the test cases associated with bed B2. It was 

probably because the drag and turbulence effects just below the roughness layer has 

not been represented correctly in the model due to the lack of knowledge on the 

spatial characteristics of the armour layer below zt.  

In spite of limitations of the applied drag and turbulence models with regard to 

definition of drag coefficients and mixing‐length distribution, the present model has 

shown appreciable potential for simulating different cases ranging from coastal 

applications (in Chapter 5) to the turbulent channel flows over natural gravel beds in 

the present chapter. 

 





 

Chapter 7 Key Findings and Conclusions 

Free surface turbulent flow was studied due to its importance for water engineers. 

The aim of the thesis was investigating turbulent free surface flows over/within rough 

impermeable and permeable beds using the SPH method with a focus on the 

turbulence modelling and the treatment of the bed boundary. The ultimate goal was 

providing a simple and appropriate mathematical representation of the complicated 

processes occur at the bed so that flow quantities in this region can be estimated 

accurately. The objectives were developing SPH models for turbulent flows over rough 

impermeable and porous beds in a macroscopic scale, simulating relevant 2D 

problems, and validating the models by using existing sets of experimental data.  

In Chapter 2, a detailed review was carried out on the background of the problem and 

the existing particle models for open channel flows and flow interaction with porous 

structures. Then, the required improvements were highlighted. In Chapter 3, the 

WCSPH method was used to develop a 2D model for simulating 12 test cases of steady 

uniform turbulent open channel flows over a layer of fixed spherical particles with a 

relatively high roughness. In Chapter 4, the average macroscopic governing equations 

were developed based on the SPH formulation and the required computational 

treatments were investigated focusing on the treatment of the interfacial boundary 

between porous media and an adjacent free flow (clear water). In Chapter 5, the 

model was applied to simulate 3 test cases of flow/wave interactions with porous 

structures and the results were compared to the existing experimental data as well as 

some other SPH studies. Finally, in Chapter 6, the model was applied to simulate 12 
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test cases of steady uniform turbulent open channel flows over natural sediment 

porous armour layers with 2 different bed configurations, and the model results were 

compared to a set of experimental data.  

The conclusions and some key findings are as the following.  

 In most of the existing SPH models developed for open channel flows, the effect 

of bed boundary has been taken into account usually based on numerical 

adjustments and neglecting the characteristics of the bed. Through the literature 

review on the treatment of rough boundaries, it was found that the drag force 

model is capable of representing the effect of rough bed if it is applied together 

with an adequate turbulence model to transfer this effect to the water column. 

Therefore, a drag force model was adopted in Chapter 3 for simulating turbulent 

open channel flows over sloping rough boundaries with using a macroscopic 

roughness layer near the bed with a variable thickness which depends on the flow 

condition. Through calibrating the thickness of the roughness layer, the model 

provided good results of velocity and shear stress for all the 12 test cases.  

 It was found that, both momentum reduction at the bed as well as transferring its 

effect to the upper layers of flow are necessary to be adequately estimated in 

order to obtain well simulated velocity profiles. In other words, the treatment of 

both the rough bed boundary and the effect of the turbulence play an important 

role in producing the desirable balance in the flow momentum. In Chapter 3, it 

was found that the SPS‐Smagorinsky model which is often used with SPH for 

turbulence modelling is not capable of reproducing this balance, when a sC  of 

about 0.15 is used. The reason was attributed to the macroscopic modelling of the 

roughness layer as well as the deficiency of the SPH method in estimation of 

velocity‐pressure interactions (as addressed by Mayrhofer et al., 2015). Besides, 

the resolved part of turbulent shear stress was also found to be highly 

underestimated due to the same reasons. Therefore, it was assumed that the total 

turbulent shear stress should be modelled for the problems such as those studied 
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in Chapter 3. Hence, the mixing‐length model which is usually used in RANS 

modelling was employed to estimate the eddy‐viscosity in the proposed MSPH‐

ML model. The results of shear stress and velocity profiles showed the accuracy of 

the proposed turbulence model; and the comparison between the results of the 

MSPH‐ML model (with Nezu and Nakagawa 1986 formula) and the SPS‐

Smagorinsky model (with sC = 0.15) confirmed the validity of the assumption that 

the total shear stress should be modelled in the cases studied in Chapter 3. 

 The macroscopic bed boundary treatment proposed in Chapter 3 had some 

limitations such as that the effect of solid/fluid volume (porosity) within the 

roughness layer was neglected in the conservation of mass. It was assumed that 

this effect should be small since the height of the roughness layer (porous area) 

was small compared to the depth of flow. However, it is necessary to take the 

effect of porosity into account in the governing equations when the thickness of 

the (porous) bed is significant.  

 In addition to the above‐mentioned limitation of the model, the following points 

motivated the author to investigate the governing equations of flow through 

porous media in detail, particularly with focusing on the treatment of the 

interfacial boundary between porous media and an adjacent free (clear water) 

flow: i) in most of the existing SPH models developed for flow interaction with 

porous media, the interface boundary layer has been simulated often based on 

numerical calibrations rather than rigorous mathematical justifications; and no 

investigation has been performed on the behaviour of flow quantities at the 

interfacial boundary; ii) The turbulence effect has been disregarded, or included 

by the SPS model with no further validation; and iii) Most of the existing SPH 

studies are in the area of coastal engineering (wave interaction with porous 

structures), mostly providing the results of water surface elevation, while there 

have been no applications in turbulent open channel flows over/within porous 

beds, especially for the situation of high velocity gradients at the interface, which 
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is of interest in the present study. Therefore, Chapter 4 was devoted to the 

development of the SPH form of the macroscopic governing equations with an 

insight into the validity and accuracy of them when dealing with an interfacial 

boundary in practical civil engineering applications. The most important 

constraints were found to be that: i) the support of the weighting function applied 

for porosity calculation should be chosen based on the characteristic length of 

solid material at the interface; ii) the computational resolution should be fine 

enough near the interface boundaries to adequately capture the variations in the 

macroscopic velocity; and iii) the size of the averaging volume (smoothing length) 

applied for the solution of the governing equations should be set equally over 

space and should remain unchanged over time.  

 The model developed in Chapter 4 was completed in Chapter 5 and applied to 

simulate 3 test cases of flow interactions with porous structures with different 

characteristics in 2D. The results revealed that: i) using Ergun’s equation with its 

original coefficients for estimation of drag effects of solid skeleton on the average 

flow field provides satisfactory results for different engineering applications as 

long as the flow and porous media conditions are in the range of those employed 

by Ergun to derive his equation; ii) the accuracy of the model predictions depends 

on the accuracy of the interface boundary treatment. In the simulation of dam 

break flow through porous dams (test case I), it was observed that the way that 

the interfacial boundary is treated is more important than introducing a slight 

change in the drag coefficient; iii) the satisfaction of the required length constraint 

r L   u
 is more important when flow Re Number is higher and/or the 

interfacial boundary is sharper. In Section 5.5, it was shown that employing higher 

resolution does not have a considerable effect on the results of water surface 

elevation in the case of dam break flow through porous dams, while it significantly 

affects the results of velocity distribution near a porous structure when a wave is 

travelling over it (test case III).  
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 In Chapter 6, the model developed in Chapter 4 was applied for simulating 

turbulent flows over and within natural porous armour layers with 2 bed 

configurations and different flow conditions. It was concluded that if the drag 

effects and porosity distribution are accurately defined, the model is capable of 

providing good results for such a practical case with high velocity gradients at the 

interface boundary. The following points were observed from the simulations: i) 

again, the proposed MSPH‐ML model showed higher efficiency in reproducing the 

momentum balance compared to the SPS‐Smagorinsky model with sC  = 0.15  in 

simulating the present cases; ii) a limitation with the MSPH‐ML model is that the 

distribution of the mixing‐length should be known while the model results of 

turbulent shear stress is very sensitive to it; iii) the lack of knowledge on the 

distribution of porosity in a natural bed (particularly near the interface) would 

result in non‐accurate predictions of flow velocity; and iv) satisfaction of length 

constraint (4.61) (a), i.e. r L   u
, through the application of higher 

computational resolution improves the results especially the slope of velocity 

profiles near the interfacial boundary.  

 Defining inflow/outflow boundaries in open channel cases to get uniform 

conditions is difficult. In the simulation of the test cases in both Chapter 3 and 

Chapter 6, it was required to reproduce steady uniform flow conditions. Several 

layers of dummy particles were set at the inflow and outflow regions to recover 

the truncated area of the kernel function of those fluid particles near the 

boundary lines, while their properties were set based on the desirable hydraulic 

conditions. In Chapter 3 an averaging technique was introduced to determine the 

velocity of inflow particles based on the velocity of inner‐fluid particles. This 

method was not applicable in the simulation of turbulent flow over permeable 

boundaries, so that a porous inflow and an outflow imaginary wall were 

introduced accordingly to generate steady uniform flow conditions. Both 

techniques were constructed based on the fact that the distribution of flow 
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quantities at the inlet and outlet boundaries is unknown, with the difference that 

in the method proposed in Chapter 6, flow discharge was fixed to the 

experimental discharge. These techniques provided the required flow conditions 

within the computational domains with good accuracies.  

In conclusion, the models developed in the present study demonstrated the capability 

of the SPH method in dealing with turbulent channel flows over rough impermeable 

and permeable boundaries. If the extra terms in the momentum equation which 

represent the effects of bed drag and flow turbulence are adequately determined, 

and the SPH averaging process near the bed boundary is performed consistent with 

the physical properties of the bed, the model has the potential to provide accurate 

distribution of flow quantities over the whole water column. The accuracy in the 

results depend on the accuracy of the parameters in the closure terms such as the 

drag coefficients and the mixing‐length. The mixing‐length model is limited when the 

distribution of the mixing‐length is not available. However, it performs more efficient 

than the SPS‐Smagorinsky model for those cases studied here. On the other hand, 

unlike some other RANS models, it has only one empirical coefficient which makes it 

easier to be applied. 

Nevertheless, the application of other turbulence closures with SPH should be tested 

to check their capability in tackling the turbulence problem in the macroscopic 

simulation of turbulent open channel flows over rough and porous beds. The ideal 

way is to deeply investigate the problem of the SPH and SPS methods in dealing with 

highly‐sheared channel cases and providing a model which can incorporate the effect 

of the missing part of turbulence more rigorously. These issues are considered as 

future study.   
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Appendix A The spatial averaging theorem in 

porous media 

In this appendix, two important theorems associated with the convolution product of 

spatial and temporal derivatives are introduced. These theorems provide the key 

relationships to derive the macroscopic governing equations of flow through porous 

media. 

A.1 Spatial derivative 

The basic idea in formulating the spatial derivative of a quantity in SPH is that the 

derivative is described in terms of the product of the quantity and the derivative of 

the weighting function, i.e. the derivative operator transfers from the quantity to the 

weighting function. The spatial derivative of   is formulated by substituting    with 

  in Equation (4.4) as follows 

      ,G h d  




       r r r r r  (A.1) 

The integrand can be expressed as 
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 (A.2) 

Since the differentiation is carried out with respect to r , the derivative of the kernel 

function in the last term on the right‐hand side of the equation is multiplied by ‐1 
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according to the symmetry condition (Equation 4.8). Substituting Equation (A.2) into 

(A.1) gives the following relationship. 

      

           

,

, ,

G h d

G h d G h d

  

   






 
 

        

            



 

r r r r r

r r r r r r r r r r
 (A.3) 

Grey and Lee (1977) showed that 

     n  (A.4) 

Where n  is the unit normal vector pointing from the  ‐phase to the  ‐phase 

(Figure 4‐1) and   is the Dirac distribution associated with the  ‐  interfaces. By 

substituting Equation (A.4) into Equation (A.3), and applying the divergence theorem 

to the first term on the right‐hand side of Equation (A.3),  
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 (A.5) 

where the first integral associates with the surface of the averaging volume A , and 

the last one associates with the  ‐   interfaces A  (Figure 4‐1). n  and   are the 

unit normal vector and the Dirac distribution associated with A  (Figure 4‐1). 

According to the compact condition (Equation 4.6), the value of the weighting 

function on the A  surface is zero. Therefore, the first term on the right‐hand side of 

Equation (A.5) is zero so that this equation is obtained in the following form (shown 

by the convolution product) which is the spatial averaging theorem associated with 

the spatial derivative. 

      G G G             n  (A.6) 
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If the weighting function is differentiable and its derivative is integrable, it is possible 

to show that 

    G G         (A.7) 

which can be substituted into (A.6) to obtain the following relationship.  

      G G G               n  (A.8) 

This equation represents the weighted function version of the classical (Slattery’s) 

spatial averaging theorem which was also presented by Marle (1982) and Quintard 

and Whitaker (1993, 1994). 

A.2 Temporal derivative 

The volumetric average of the temporal derivative is obtained by substituting t   

into Equation (4.4) as follows. 
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Applying a similar definition used in Equation (A.2) leads to 
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 (A.10) 

If the local time derivative is not a function of the limits of the integration, the second 

term on the right‐hand side of the equation will be zero. The requirement is that the 

averaging volume   as well as the weighting function G  do not change with the 

local time. In other words, they should remain unchanged relative to the centroid of 

the volume over the total time (constraint #3). Imposing this constraint, the second 

term on the right‐hand side of the equation will be omitted. For the third term, the 
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following relationship (Grey and Lee 1977) for the temporal derivative of the 

distribution function is applied 

 
t 
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  


u  (A.11) 

in which u  is the velocity at the    interface and   is defined by Equation 

(A.4). Therefore,  
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It is noted that the time derivative operator can be separated from the integrand and 

instead multiplied by the integral since it is not a function of the limits of the 

integration (constraint #3).  

Using the convolution product, the above equations is represented as 

 
   G G G

t t   
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u n  (A.13) 

where in the present study, the surface integral (the last term on the right‐hand side) 

is zero according to the no‐slip boundary condition at the    interface 

(assumption #2). Therefore, the particle volumetric average of the temporal 

derivative reads as follows. 
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t t
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 (A.14) 

The relationships presented in Equations (A.6) and (A.13) are the two key theorems 

for deriving the macroscopic equations. 

 



 

Appendix B Spatially averaged (macroscopic) 

equations of mass and momentum for flow 

through porous media 

Making use of the convolution product with the weighting function G , the Lagrangian 

spatially averaged equations of mass and momentum will be derived in terms of 

intrinsic averages of flow properties based on the theorems developed in Appendix A.  

B.1 Conservation of mass 

The convolution products of the microscopic conservation equation of mass (4.1) is 

represented as follows 

 
 * 0G G

t
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u  (B.1) 

 

Applying Equation (A.14) into the first term on the left‐hand side of the equation (I ), 

and then making use of Equation (4.21) for density yields 
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 (B.2) 

It is possible to show that the second term on the right‐hand side of the above 

equation which represents the time derivative of the porosity is zero. According to 

constraint #3, the time derivative operator can move into the integrand, hence  

I II 
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in which the first term on the right‐hand side is zero since the local time derivative of 

the weighting function is zero due to constraint #3. Using Equations (A.11) and (A.4); 

and applying the no‐slip boundary condition at the    interfaces, i.e. 0  u n  

(assumption #2), the second term on the right‐hand side will be zero too. Hence 

  
0

G

t
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


 (B.4) 

Therefore, Equation (B.2) comes into 
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For the second term II  of the mass Equation (B.1), the theorem presented in 

Equation (A.8) is employed as  

    II G G           u u n  (B.6) 

Applying the no‐slip condition at the    boundary, the second term on the right‐

hand side becomes zero, so that 

  II G    u  (B.7) 

If one applies the decomposition presented in Equation (4.11) for density, and applies 

the Taylor series expansion (Equation 4.13) for the intrinsic average of density at r , 

then by assuming that the characteristic length scale of density and its intrinsic 

average, L  and L 
 respectively, are infinite (assumption #3) due to the 

incompressibility of flow, it will be readily shown that 

    G G
      u u  (B.8) 
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Substituting this into Equation (B.7) and using Equation (4.21) to express  G  u , 

and making some rearrangements leads to 

    II G G
             u u  (B.9) 

Now, substituting Equations (B.5) and (B.9) into Equation (B.1) gives the averaged 

equation of mass as the following. 
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Considers the relationship between the local time and material derivatives, ( t  and 

D Dt  respectively), as  

 D

Dt t
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  


u  (B.11) 

and substitute it into (B.10), the Lagrangian form of the macroscopic equation of mass 

will be obtained as the following. 

 
    0

D
G G

Dt


 

        u  (B.12) 

This equation is in the local transport form since it is written in terms of intrinsic 

averages of flow quantities.   

B.2 Conservation of momentum 

The convolution products of the microscopic conservation equation of momentum 

(4.2) is represented as follows. 

          2G G G P G G
t


     
 

                  

u
uu g u  (B.13) 
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In the following, each term on both left‐hand side (LHS) and right‐hand side (RHS) of 

the equation will be derived in terms of convolution product of intrinsic averages.  

Using Equation (A.14) as well as the expression in Equation (B.8), the first term on the 

LHS ( IL ) is approximated as 

   IL G
t

 
   

u  (B.14) 

Now applying Equation (4.21) for  G  u  and considering Equation (B.4), one may 

obtain the following relationship for term IL . 

 
   IL G G

t t

 
 

  
 

   
 

u
u  (B.15) 

The nonlinear convective term ( IIL in Equation B.13) is expressed as follows by 

applying Equation (A.8) and the no‐slip condition at the    interface (assumption 

#2). 

  IIL G     uu  (B.16) 

Separating the velocity components and expressing this nonlinear term in terms of 

product of velocity averages will lead to the closure problem of turbulence which will 

be described in Section B.3.   

To form the RHS of the momentum equation (B.13), the convolution products of 

pressure gradient, gravity force and viscosity, i.e. IR , IIR  and IIIR , respectively, need 

to be evaluated. By applying Equation (A.8), and using Equation (4.21) for pressure, 

IR  will be presented as follows. 

    IR G P G P


         n  (B.17) 

Noting that the gravitational acceleration g is constant, and considering Equation 

(4.21) for density, IIR  is presented as 
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  IIR G
   g  (B.18) 

According to equation (A.8), IIIR  is written as the following. 

    IIIR G G             u u n  (B.19) 

Again applying Equation (A.8) to  G  u , considering the no‐slip condition at the 

   interface, noting that   is constant, and using Equation (4.21) for velocity, 

gives  

    G G
        u u  (B.20) 

which leads to the following relationship for IIIR . 

    2
IIIR G G


            u u n  (B.21) 

Substituting Equations (B.15), (B.16), (B.17), (B.18) and (B.21) into Equation (B.13) 

leads to the following representation for the averaged equation of momentum.  
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 (B.22) 

This equation is written in a non‐local transport form since some of the convolution 

products contain point values of fluid properties u  and P  (the third term on the left‐

hand side and the last two terms on the right‐hand side). Hence, a method needs to 

be adopted to replace the point values with the averages in order to close the 

equations.  
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B.3 Closure of the momentum equation 

In this section, the convolution products in Equation (B.22) will be written in terms of 

intrinsic averages of fluid properties to provide local transport form of the momentum 

equation which can be approximated later by the SPH approximation scheme (Section 

4.3). By expressing the convolution products in terms of average values, the turbulent 

stress and drag terms will appear as result of the nonlinear convective term (B.16) and 

the surface integral terms in (B.17) and (B.21), respectively. One should note that the 

term G   (which represents the porosity associated with the averaging volume  ) 

does not make the equation non‐local although   is appoint value. This is because 

the distribution function   is not an unknown in the solution procedure as it is not a 

fluid property but is an input to the equations.  

To deal with the nonlinear convective term on the left‐hand side of the momentum 

equation (B.22), firstly the following expression is employed for the product of 

velocities  

      uu uu u u u u  (B.23) 

This is the basic idea which leads to the LES of flow. Substituting the above equation 

into the convective term yields  

      G G G
                    

uu u u  (B.24) 

where  

     uu u u  (B.25) 

The term  G   represents the effect of deviations in the average velocity field. It 

is noted that the intrinsic averages of velocity in the convolution product inside the 

first derivative term on the right‐hand side of Equation (B.24) are evaluated at 
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position r . If the Taylor series expansion is written for one of the intrinsic velocity 

components and note that    


 
r r

 (assumption #3), then 
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 (B.26) 

Since the averages associated with the centroid of the volume r  can be taken out of 

the integral,  
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 (B.27) 

If the constraint #2 (4.10) is valid for velocity, i.e. if 

 r L   u
 (B.28) 

then it will be possible to show that 
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 (B.29) 

The above equation demonstrates that second and higher terms in Equation (B.27) 

are negligible compared to the first term. Therefore, that equation can be 

represented as 

    G G
         

 
u u u u  (B.30) 

Substituting this into Equation (B.24), applying Equation (4.21) for  G
 u  as well 

as  G  , and making some manipulation yields 
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where following Equation (B.25), and assumption #3, it is possible to show that  

 
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




 uu u u  (B.32) 
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  is the SPS stress tensor which arises due to the spatial filtering of the nonlinear 

convective term and represents the effect of turbulence on the average flow field. It 

is equivalent to the classical SGS stress tensor in grid‐based methods. The phrase SPS 

is often used as the particle version of the SGS in particle methods (e.g. MPS and SPH). 

This term should be modelled by an appropriate closure model since it contains point 

values of velocity. The SPS stress tensor is expressed with the sign of intrinsic average 

  as it will be formulated in terms of intrinsic flow quantities in the present study 

(Section 4.2.2). 

The surface integrals (the last two terms in Equation B.22) also need to be represented 

in terms of intrinsic averages of velocity and pressure. Quintard and Whitaker (1994) 

employed Taylor series expansions (Equation 4.13) for velocity and pressure, 

developed some useful geometrical theorems, and showed that 

    
  

  

 

221

2

G P P G

P G

P G

G P


 






 

 







    

     

      


 

n

r r

r r

n





 (B.33) 

and  
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 (B.34) 

In addition to the constraint #2 for velocity (i.e. Equation B.28), they applied that 

constraint to the pressure too as  
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P

r L    (B.35) 

and concluded that the pressure derivatives of order one and higher in Equation 

(B.33) and the pressure derivatives of order two and higher in Equation (B.34) are 

negligible so that 

      G P P G G P
 

           n n   (B.36) 

and 
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Now by substituting Equations (B.31), (B.36) and (B.37) into Equation (B.22), after 

manipulation, the following relationships are obtained, respectively, for the left‐ and 

right‐hand sides of the averaged equation of momentum. 
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where I  represents the unit tensor. Equation (B.38) can be rewritten in the following 

form 
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where the expression inside the parentheses in the first term is equivalent to the 

material derivative of 
u  according to Equation (B.11), and the expression inside the 

braces in the second term is zero according to continuity equation (B.10). Therefore, 
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Besides, Equation (B.39) can be expressed as follows after combining the first and 

fourth terms. 
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Finally, according to the two above equations, the Lagrangian form of the averaged 

(macroscopic) equation of momentum is written in terms of intrinsic averages as the 

following  
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Appendix C Discretisation of the SPHAM 

equations for flow through porous media 

The aim of this appendix is to discretise the SPHAM governing equations developed 

in Section 4.3.1 (Equations 4.45 and 4.46) based on the SPH formulation (Equations 

4.52 to 4.55). The SPHAM equations are approximated at the position of a generic 

particle a  with neighbouring particles b using the kernel function W . 

C.1 Conservation of mass 

The time derivative on the left‐hand side and the spatial derivative on the right‐hand 

side of the SPHAM equation of mass (4.45), are discretised using Equations (4.55) and 

(4.53), respectively, as follows. 
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In the present form of Equation (C.2), the divergence does not vanish for a uniform 

distribution of macroscopic velocity  u . Providing a symmetric form for this term 

will resolve the problem (Bonet and Lok 1999). Replacing   with 1.0 in equation 

(4.53) yields 
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which is equal to zero according to the symmetry condition of the kernel function or 

the fact that derivative of a scalar is zero. This term can be multiplied by 
a a

  u  

and then added to the right‐hand side of Equation (C.2) to obtain the following 

symmetric form  

 
   1 b a

a ab b aa b a
a ba a b b

m
W W


   




   

   
        
  u u u  (C.4) 

where a abW  denotes  ,a bW h r r . This equation vanishes identically for a 

constant macroscopic velocity (according to Bonet and Lok 1999).  

Substituting Equations (C.1) and (C.4) into Equation (4.45), and assuming that 

a b

    due to assumption #3, the discretised version of the SPHAM equation of 

mass is presented as follows. 

    

 
 

 
 

 
 




   
  u u

t t t

a a b
a ab b ab a

b a b

m
W

t
 (C.5) 

C.2 Conservation of momentum 

Similar to Equation (C.1), the temporal derivative in the momentum equation (4.46) 

is approximated as the following. 

    t t t

a aa
D

Dt t

 







u uu
 (C.6) 

Using Equation (4.53), the first term on the right‐hand side of Equation (4.46) is 

written as 



C.2 Conservation of momentum C‐3

 

  1 1 b
a ab ba b ba a b

m
W P W P

 
     

       (C.7) 

This form does not preserve the linear momentum since the resultant of the internal 

pressure forces on a certain particle is not zero. For the condition of preservation of 

linear momentum in a particle simulation see Bonet and Lok (1999) and Khayyer et al. 

(2008). To have the linear momentum being preserved, it is required to bring the 

above equation in a pairwise symmetric form. Therefore, the summation in Equation 

(C.3) is multiplied by 
a a

P
   and added to Equation (C.7) to arrive at the 

following form for the pressure gradient term which preserves the linear momentum. 
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
      b a b

a ab
a b ba a b

P Pm
W P W  (C.8) 

Similarly, the third term on the right‐hand side of momentum equation (4.46) is 

approximated as follows. 

 

      
b a b

a ab
a b a ba a a b

m
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 
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A finite difference approximation is employed here for the velocity gradient terms as  
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 (C.10) 

One should easily find that    
a b

    u u . Thus, the following equation is 

obtained for the viscosity term. 
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m W
W  (C.11) 



C‐4 Discretisation of the SPHAM equations for flow through porous media

 

where ab a b r r r  and   is a small number (usually taken as 0.1h ) used to prevent 

singularity.  

Equation (4.53) is applied to discretise the fourth term on the right‐hand side of 

momentum equation (4.46). The result is then added to the product of Equation (C.3)  

and        u aa a a
 to arrive at the following relationship.   

        
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m
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Then if a finite difference approximation similar to Equation (C.10) is employed for 

the gradient of porosity  a
 , the following form will be obtained. 
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The fifth term (turbulent shear stress term) is simply discretised similar to Equation 

(C.8), by replacing 
P  with    as follows. 

 
 1 a bb a b
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m
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 
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in which the shear stress tensor   is estimated using the eddy‐viscosity model 

introduced in Section 4.2.2. Finally, the last term on the right‐hand side of momentum 

equation (4.46), i.e. the surface integral is added to the equation as an external force 

aA  on the particle. aA  is estimated by the drag closure model introduced in Section 

4.2.1.  

Now the discretised version of the SPHAM momentum equation can be written as the 

following, by substituting Equations (C.6), (C.8), (C.11), (C.13), (C.14) into Equation 

(4.46) and replacing the surface integral term with aA . 



C.2 Conservation of momentum C‐5
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 (C.15) 

 





 

 

 


