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Abstract 

 

C4 photosynthesis is a complex trait that involves the efficient movement of carbon 

between mesophyll and bundle sheath cells, but gaps remain in our understanding on 

how protein phosphorylation regulates the relative flux through malate or aspartate in 

NADP-malic enzyme subtypes. Using mass spectrometry, 20 phosphosites in NADP-

malic enzyme (ME), 9 phosphosites in aspartate aminotransferase (AAT) and 12 

phosphosites in alanine aminotransferase were identified in the C4 plant model Setaria 

viridis. In silico analysis shows that NADP-ME phosphorylation at Ser-343 may regulate 

NADP+ binding. 

NADP-ME from illuminated leaves of Zea mays exhibited a higher affinity for L-malate 

at pH 8.4. High in vitro activity at pH 7.4 in illuminated leaves of Sorghum bicolor, and 

no change in affinity for L-malate at pH 7.4 or pH 8.4 reveals dependence on enzyme 

activity immediately after the onset of light. It is speculated that the same protein may be 

differently regulated in each grass species. The activation of AAT by C4-acids also 

differed among the NADP-ME subtypes. Light activation in the presence of L-alanine 

and L-malate was only evident in Zea mays, whereas L-malate and L-alanine inhibited the 

activity in Sorghum bicolor and L-malate inhibited activity in Setaria viridis. In vitro 

activity assays also demonstrated that the affinity for L-aspartate was higher in darkened 

conditions and this activity may not be associated with C4 photosynthesis.  

The work presented in this study shows that there are distinct interspecies differences in 

the properties of NADP-ME and AAT. These observations are discussed in terms of a 

regulatory mechanism that controls the relative flux through malate and aspartate in a 

dual-decarboxylation system of Zea mays, but not in Sorghum bicolor. Together, these 

findings add to our understanding of the regulation of C4 photosynthesis, thereby 

advancing the wider objective of engineering the C4 trait into existing C3 crops. 
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Chapter 1 
 

1.1 Food for thought  

 

1.1.1 Agricultural sustainability, energy harvesting and photosynthesis 

 

Agricultural sustainability refers to the agricultural capacity of producing enough food 

to sustain the population at any given time, while reducing environmental impacts 

(Hansen, 1996; Mitchell and Sheehy, 2006; Pretty, 2008; Godfray et al., 2010). The 

concept has received international attention in recent years due to a growing food crisis. 

As the global population rises, crop production must increase by at least 50% in the next 

15 years to meet the minimum requirements to feed the population (Hibberd et al., 2008; 

Peterhänsel and Offermann, 2012). Today, crop production faces extreme weather 

patterns brought on by climate change, such as high temperatures and increased rainfall 

variability (Rosenzweig et al., 2001; McMichael et al., 2006; Gornall et al., 2010). It is 

evident that increased yields must be achieved using less land, which is declining due to 

urbanisation (Ramakrishnan, 2001; Zhu et al., 2010) and less water, due to an increase 

in water demand from cities (Pimentel et al., 1997; Postel, 2000; Pimentel et al., 2004).  

The global population has nearly doubled in the last 40 years (Tilman, 1998). During the 

Green Revolution (1960–2000), crop productivity was increased using improved 

breeding strategies (rather than genetic manipulation), modernised farming techniques 

and application of more fertilisers and improved pesticides (Mitchell and Sheehy, 2006), 

which also resulted in reduced global food prices (Tilman et al., 2002; Evenson and 

Gollin, 2003). By the beginning of the 21st century, crop productivity rose 208% for 

wheat (Triticum aestivum), 109% for rice (Oryza sativa) and 157% for maize (Zea mays) 

(Pingali, 2012). However, at the rate that the current population is growing, projected 

yields are not enough to sustain developing countries. Furthermore, acquisition of 

farmland for bioenergy crop production (i.e. biofuels) will reduce the accessibility of 

land for agricultural use (Tokgoz et al., 2012; Popp et al., 2014; Vasile et al., 2016). The 

future of agriculture relies on the improvement of farmland management, enhanced use 

of technology as well as genetically enhanced crops (Tilman et al., 2002).  
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A consensus in the scientific community has called for a second Green Revolution, with 

hopes to create genetically enhanced crop plants. These should withstand the adverse 

effects of climate change, grow with fewer additives such as nitrogenous fertilisers and 

efficiently use photosynthetically active radiation (PAR) to assimilate CO2 into 

carbohydrates during photosynthesis (Zhu et al., 2010; Covshoff and Hibberd, 2012; 

Leegood, 2013).  

 

Fig. 1.1. Overview of photosynthesis in higher plants. In higher plants photosynthesis 

takes place inside chloroplasts. Captured energy is used to form ATP and NADPH. In 

the stroma of the chloroplast, ATP and NADPH are utilised by enzymes in the 

photosynthetic carbon reduction (PCR) cycle to fix CO2 into carbohydrates (CH2O). 

Increasing the efficiency of photosynthesis in major food crops is the most feasible long-

term solution that could mitigate the food crisis (Mitchell and Sheehy, 2006; Zhu et al., 

2010; Covshoff and Hibberd, 2012). Photosynthesis has two phases: the light harvesting 

and the photosynthetic carbon reduction (PCR) cycle (Figure 1.1). During the day, solar 

energy is intercepted by chlorophyll-containing, light-harvesting complexes embedded 

in chloroplast thylakoid membranes, resulting in the splitting of water and release of O2 

(Candau et al., 1976; Kühlbrandt and Wang, 1991; McEvoy et al., 2005). Harvested 

energy is then used for the formation of ATP and reducing equivalents, which are used 

in the PCR cycle for the formation of carbohydrates.  
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1.2 The inefficiency of C3 photosynthesis 

 

1.2.1 The problem with Rubisco and photorespiration 

 

All photosynthetic species use ribulose-1,5-bisphosphate carboxylase/oxygenase 

(Rubisco) for carbon fixation. In C3 plants, carbon fixation is limited by the inefficiency 

of Rubisco, which has a low turnover rate and competing specificity for CO2 and O2 

binding (Portis and Parry, 2007; Raines, 2011). During photosynthesis, Rubisco fixes 

atmospheric CO2 through the carboxylation of ribulose-1,5-bisphosphate (RuBP) 

forming two molecules of 3-phosphoglycerate (3-PGA) (Sage, 1999). Rubisco also 

catalyses the oxygenation of RuBP, in an unfavourable and unavoidable side reaction 

with O2, forming 3-PGA and 2-phosphoglycollate, the latter which cannot be utilised in 

the PCR cycle (Figure 1.2) and may be toxic in high concentrations (Ogren, 1984; 

Andrews and Lorimer, 1987; Maurino and Peterhänsel, 2010). To prevent the 

accumulation of 2-phosphoglycollate, the compound is removed from the chloroplast and 

metabolised into organic compounds, using energy and 25% of assimilated carbon 

(Björkman et al., 1969; Ehleringer and Björkman, 1977; Bauwe et al., 2010), in the 

process of photorespiration (Figure 1.3). Most importantly, the carbon present on 2-

phosphoglycollate must be recycled back to the PCR cycle as efficiently as possible.  

Although Rubisco has a higher affinity for CO2 (KM 9.7 µM), than O2 (KM 244 µM) 

(Cousins et al., 2010), the CO2 concentration inside the chloroplast is about 1000-fold 

lower than that of O2 (Ehleringer et al., 1991). Furthermore, in warm climates, the 

oxygenase activity of Rubisco increases relative to the carboxylase activity, both because 

the relative solubility of dissolved O2 is greater than that of dissolved CO2, thus lowering 

the ratio of dissolved CO2 to O2 in the chloroplast and because the kinetic properties of 

Rubisco alter in response to increasing temperature, thereby increasing its affinity for O2 

(Ku and Edwards, 1977; Chen and Spreitzer, 1992; Tcherkez et al., 2006; Leegood, 2013; 

Buchanan et al., 2015). In addition, the diffusion of CO2 to the site of Rubisco is reduced 

when stomata close to prevent the loss of water through transpiration in high 

temperatures (Sage, 2004; Schulze et al., 2013). The loss of CO2 near the site of Rubisco 

can reduce photosynthetic efficiency from 20–40% and increases in unfavourable 
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conditions such as warm temperatures (above 30 °C) and arid climates (Jordan and 

Ogren, 1984; Sharkey, 1988; Ehleringer et al., 1991; Gowik and Westhoff, 2011).   

 

Fig. 1.2. Photosynthetic carbon reduction cycle in all photosynthetic organisms. 

Enzymes: 1, Rubisco; 2, phosphoglycerate kinase; 3, glyceraldehyde 3-phosphate (G3P) 

dehydrogenase, 4, triose phosphate isomerase; 5, phosphoribulokinase; 6, fructose 

bisphosphatase; 7, transketolase; 8, fructose bisphosphate aldolase; 9, sedoheptulose-1,7-

bisphosphatase. Metabolites: RuBP, ribulose 1, 5-P; Ru5P, ribulose 5-P; R5P, ribose 5-

P; 1,3-BPG, glycerate 1,3 bisphosphate; *3PGA, glycerate 3-P; *G3P, glyceraldehyde 3-

P; *DHAP, dihydroxyacetone-P (triose-P); Xyl, Xylulose; Ery, erythrose; Sed, 

sedoheptulose. *Diffuses from stroma to cytosol. 

Photorespiration is a complex detoxification and recycling process that takes place in the 

chloroplasts, peroxisomes, mitochondria and cytosol of higher plants (Figure 1.3) 

(Bauwe et al., 2010). Although it poses a problem for plants that solely rely on Rubisco 

for carbon fixation, photorespiration was not an issue when Rubisco first evolved around 

3.5 billion years ago, due to an O2-free atmosphere (Leegood, 2013), but as 

photosynthetic species populated the globe, O2 became more readily available 

(Blankenship, 2010). This, however, was not a strong selective pressure to promote the 
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acquisition of a new carboxylase for carbon assimilation (Gowik and Westhoff, 2011). 

In fact, the bispecific nature of Rubisco evolved first and was subsequently maintained 

in all photosynthetic organisms, albeit preconditioned to operate in a high CO2 

atmosphere (Rachmilevitch et al., 2004; Andersson, 2008). Consequently, it is likely that 

photorespiration co-evolved with oxygenic photosynthesis in cyanobacteria to recycle 

carbon and to prevent the accumulation of glycollate from the unavoidable oxygenase 

activity of Rubisco, protect against photoinhibition by supplying reducing equivalents to 

other metabolic pathways or produce essential amino acids, such as serine and glycine 

(Kozaki and Takeba, 1996; Rachmilevitch et al., 2004; Bauwe et al., 2010; Maurino and 

Peterhänsel, 2010; Peterhänsel et al., 2012; Hagemann and Bauwe, 2016).  

The reversible oxidation of glycine via the glycine decarboxylase complex (GDC), 

formed of glycine decarboxylase and serine hydroxymethyltransferase (SHMT) in the 

mitochondria (Figure 1.3, reaction 5), is an essential step in photorespiration (Walker and 

Oliver, 1986; Bauwe et al., 2010). Firstly, glycine decarboxylation generates ammonia, 

which is necessarily and efficiently refixed through the interconversion of glutamate and 

glutamine during nitrate assimilation (Linka and Weber, 2005). Secondly, 3-PGA can be 

regenerated from serine via pyruvate and glycerate, but the phosphorylation of glycerate 

to form 3-PGA is ATP-dependent (Figure 1.3, reaction 8) (Weber and von Caemmerer, 

2010). Finally, despite that CO2 is eventually produced through the carboxylation of 

glycine in the mitochondria, the uptake efficiency of CO2 back into the chloroplasts and 

its subsequent use in the carboxylation reaction is not significant to recover from the 

losses of photorespiration (Schulze et al., 2013). Although loss of CO2 through the 

photorespiratory pathway can have detrimental effects on C3 plants by reducing nitrogen-

use and water-use efficiency and limiting the regeneration of phosphate and RuBP, 

especially in warm and dry climates, photorespiration is important in all photosynthetic 

organisms (Rachmilevitch et al., 2004; Sage and Kubien, 2007; Bloom et al., 2010; 

Maurino and Peterhänsel, 2010; Bauwe et al., 2012). In cyanobacteria, glycollate is 

metabolised using a plant-like mechanism (Bauwe et al., 2010) or using a bacterial 

glycerate pathway, whereby glycollate is converted into glyoxylate, generating CO2, but 

not ammonia, which does not need to be refixed through the ATP-dependent conversion 

of glutamate to glutamine (Figure 1.3, reaction 9) (Eisenhut et al., 2008; Hagemann and 

Bauwe, 2016).
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Cyanobacteria mutants with the partial suppression of glycollate metabolism were found 

to have growth defects, while mutants completely lacking glycollate metabolism 

exhibited a lethal phenotype, suggesting that the removal of glycollate via 

photorespiration is essential (Eisenhut et al., 2008). Moreover, Zea mays (C4) mutants, 

grown in ambient CO2, lacking glycollate oxidase activity did not exhibit a viable 

phenotype, despite that the rate of photorespiration is substantially lower than in C3 plants 

(Zelitch, 1968; Zelitch et al., 2009). Photorespiration is interwoven with other plant 

metabolic pathways of both C3 and C4 plants, and regardless of the amount of glycollate 

produced, and any disruption can have serious effects on the phenotype of photosynthetic 

species. The photorespiratory pathway may also play an intrinsic role in regulating the 

spatial availability of CO2 and ammonia and mitigate the inhibition of photosynthesis by 

an excess of O2 or phosphoglycollate (Chollet and Ogren, 1972; Ku and Edwards, 1977; 

Linka and Weber, 2005; Maurino and Peterhänsel, 2010; Weber and von Caemmerer, 

2010).   

 

1.2.2 C3 photosynthesis will be limited by future climatic events 

 

Since the evolution of oxygenic photosynthesis and increase in the atmospheric O2, the 

rate at which Rubisco interacts with O2 has increased, promoting photorespiration, which 

lowers photosynthetic efficiency and reduces carbon gain by at least 25% (Björkman et 

al., 1969; Ehleringer et al., 1991). Despite the competing carboxylase and oxygenase 

reactions, the reaction mechanism of Rubisco, with regards to structural differences and 

stabilisation during transition states, is optimised to differentiate between CO2 and O2 

binding and maximise the rate of turnover (Lorimer et al., 1993; Tcherkez et al., 2006). 

However, Galmés et al. (2014) argues that the kinetic properties of Rubisco could still 

be improved such that its activity is optimised under future CO2 concentrations. The 

efficiency of C3 photosynthesis is not solely limited by the capacities of Rubisco. 

Transgenic plants with suppressed expression of Rubisco exhibited lower carbon fixation 

efficiencies when exposed to high light and temperature (Stitt and Schulze, 1994), but 

not if grown in high CO2 (Masle et al., 1993). These studies also show that factors such 

as increasing temperature and CO2, which are within the context of climate change, may 

influence how C3 plants will respond in future climates.    
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At the current atmospheric concentration of CO2 and O2, both carboxylation and 

oxygenation reactions occur at high rates (Leegood, 2013). In the next 50 years, the 

concentration of CO2 is projected to double (from 360 to 600–1000 µmol mol–1) , which 

may increase the carboxylase activity of Rubisco by at least 70% (Rachmilevitch et al., 

2004; Buchanan et al., 2015). However, increasing CO2 availability in the atmosphere 

does not imply that the efficiency of photosynthesis will increase in C3 plants. Several 

studies have shown that plants grown in elevated CO2 supress photorespiration and 

photosynthetic capacity increases by approximately 30% in the first instance (Björkman 

et al., 1969; Woodward, 2002). However, photosynthesis is eventually limited because 

of the capacity of the PCR cycle to regenerate enough RuBP to maintain high carboxylase 

activity (Griffin and Seemann, 1996; Sage and Kubien, 2007). Moreover, plants 

acclimate to elevated CO2 after prolonged exposure, due to the accumulation of 

carbohydrates, which desensitise CO2 utilisation by Rubisco or other enzymes of the 

PCR cycle (Moore et al., 1999; Rachmilevitch et al., 2004; Buchanan et al., 2015). In 

addition, prolonged exposure to high CO2 can result in reduction of nitrogen-use 

efficiency, which could impair biomass production and photosynthesis (Smart et al., 

1998; Bloom et al., 2002; Searles and Bloom, 2003).  

Photosynthesis in plants can also be affected by temperature and it is one of many factors 

that can influence photosynthetic enzymes, plant development and leaf physiology 

(Berry and Bjorkman, 1980; Jordan and Ogren, 1984; Chen and Spreitzer, 1992; Leegood 

and Edwards, 1996; Bernacchi et al., 2002; Sage and Kubien, 2007). Moreover, the life-

cycle of plants grown for grain production rely on seasonal changes in weather and 

temperature (Hatfield et al., 2011; Hatfield and Prueger, 2015). One of the suggestions 

to increase crop productivity is to extend the growing season, however, it is impractical 

because each crop species will have its optimum germination, maturation and harvest 

period, which is dependent on seasonal weather patterns (Covshoff and Hibberd, 2012). 

Certain crops, such as spinach (Spinacia oleracea), prefer cooler, winter temperatures 

(Hatfield and Prueger, 2015). Extreme weather patterns or fluctuation in minimum and 

maximum daily temperatures were found to perturb developmental timings of annual 

crops, like tomato (Solanum lycopersicum), and affected biomass production and seed 

viability (Ghosh et al., 2000; Sato et al., 2000; Pressman et al., 2002; Sato, 2006). Some 

fruits, such as apple (Malus domestica) and grapes (Vitis vinifera) are perennial plants, 

which require a certain number of hours of exposure to cooler temperatures. If 
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temperatures continue to increase, pollen production of perennial crops will be impaired, 

thus disrupting fruit production (Hatfield and Prueger, 2015). Fujii and Kennedy (1985) 

showed that the rate of photosynthesis in apple trees was dependent on seasonal changes, 

particularly during fruit development, while the rates of dark respiration and 

photorespiration were unaffected. An increase in temperature may lower the 

photosynthetic capacity of these plants during specific seasons, as the combined rate of 

photorespiration and dark respiration may surpass the rate of net carbon assimilation. 

Some C3 vegetative crops like the soybean plant (Glycine max) are sensitive to 

illumination and leaf temperature (Hatfield and Prueger, 2015). Studies have shown that 

leaf shading increases the rate of photosynthesis and promotes gas exchange by 

decreasing stomatal resistance, but the rate of photorespiration increases proportionally 

(Mondal et al., 1978; Peet and Kramer, 1980). These effects could be more severe at 

higher temperatures and atmospheric CO2 concentrations, and production yields may 

significantly suffer (Hatfield and Prueger, 2015). It is predicted that an increase in global 

temperatures will cause lower crop yields somewhere between 2.5% and 10% (Hatfield 

et al., 2011; Lobell et al., 2011) and these scenarios will be more prevalent if CO2 

emissions remain high (Schlenker and Roberts, 2009).              

Increasing air temperature can also affect the rate of transpiration and energy balance of 

a leaf (Figure 1.4). High temperatures cause the exponential increase of atmospheric 

water vapour demand, which increases the rate at which water is transpired by the leaf 

until the rate of transpiration becomes limited by the rate of water absorption into the 

plant from the soil (Hatfield and Prueger, 2015). Increasing temperature can also limit 

photosynthesis, even when other conditions are at their optimum, by causing the 

premature closure of stomata in the daytime, thus increasing leaf temperature by at least 

1 °C and decreasing the rate of gas exchange between the outside and inside of the leaf 

(Kimball et al., 1993; Bernacchi et al., 2002; Hatfield et al., 2011; Schulze et al., 2013; 

Hatfield and Prueger, 2015). Furthermore, the rate of evapotranspiration will drastically 

increase in extreme high temperatures, thus reducing the amount of water that the plant 

needs to absorb from the soil in order to meet the atmospheric evaporative demands 

(Hatfield and Prueger, 2011). In addition, altering the hydraulic conductance in plants 

may induce changes to the mechanisms that regulate the diurnal opening and closing of 

stomata, therefore limiting the rate of photosynthesis (Mathur et al., 2014; Bellasio et al., 

2017). 
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Fig. 1.4. Theoretical energy balance of a C3 leaf in high atmospheric CO2 and 

increase in air temperature. Black arrows indicate the direction of stress response in 

the leaf. Red arrows (pointing up) indicate an increase and blue arrows (pointing down) 

indicate a decrease. Dashed arrows show predicted events. Adapted from Hatfield and 

Prueger (2011). 

The thermal optimum of C3 plants is between 10–25 °C, depending on plant species 

(Hatfield and Prueger, 2011). In low atmospheric CO2 and at higher temperatures, 

photosynthesis becomes limited as the activation state of Rubisco declines with 

increasing temperature (Crafts-Brandner and Salvucci, 2000; Sage et al., 2002). Also, C3 

photosynthesis is limited by temperature only when atmospheric CO2 concentration is 

high, because of a decline in the capacity to regenerate phosphate (Sage and Kubien, 

2007). The thermal optima of C3 plants can alter in response to increasing CO2 

concentration, thus increasing growth of certain plants in higher temperatures (Mawson 

and Cummins, 1989; Long, 1991; Ziska and Bunce, 1997; Atkin et al., 2006). However, 

even if elevated CO2 may increase the growth in certain C3 crops, it may not be a 

substantial amount to increase the grain production (Amthor, 2001). C3 crop plant 

interactions with CO2, temperature and water availability can have serious implications 

for crop production. It is also evident that increasing CO2 concentration does not improve 

C3 photosynthesis efficiency, and even though photorespiration may be supressed by 

lowering the ratio of oxygenase to carboxylase activity. In summary, the inefficiency of 

C3 photosynthesis poses a serious threat to C3 crops grown for grain production if global 

temperatures and atmospheric CO2 concentrations continue to increase. These effects 

will be more severe in drought-stricken regions. 
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1.2.3 Increasing crop productivity 

 

Approximately 95% of land plants, including staple crops such as rice and wheat, use C3 

photosynthesis for carbon fixation (Sage, 2004). In these plants, CO2 enters mesophyll 

cells and is directly fixed by Rubisco. However, maize is one of 4,500 grass species that 

use the alternative, and more efficient C4 pathway (Sage, 1999). In the C4-dicarboxylate 

cycle of C4 photosynthesis, CO2 is initially fixed by phosphoenolpyruvate carboxylase 

(PEPC) in mesophyll cells, forming a C4-acid that diffuses to and is decarboxylated in 

bundle sheath cells, concentrating CO2 near Rubisco (Figure 1.5). C4 crops are 

anatomically and biochemically superior to C3 crops, and are capable of maintaining high 

rates of photosynthesis even in hot and dry climates (Berry and Bjorkman, 1980; Pearcy 

and Ehleringer, 1984; Sage, 1999; Lara and Andreo, 2011). 

 

Fig. 1.5. Overview of the differences in the mechanism for carbon fixation in C3 and 

C4 plants. In C3 plants (left), CO2 is fixed by Rubisco in mesophyll cells. C4 plants (right) 

operate a carbon concentrating mechanism between mesophyll and bundle sheath cells. 

PEPC, phosphoenolpyruvate carboxylase. 

With a global food crisis potentially developing by the end of this century, a great deal 

of attention has been given to the improvement of crop plants by converting to C4 

photosynthesis. Efforts to increase the photosynthetic potential of C3 plants began after 

the realisation that plants operating the carbon concentrating mechanism of C4 

photosynthesis had a higher radiation use efficiency (RUE) than C3 plants (Long et al., 

2006; Reynolds et al., 2010; Zhu et al., 2010; Covshoff and Hibberd, 2012).  
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Fig. 1.6. Transduction of PAR in C3 and C4 plants in atmospheric CO2 (400 ppm). 

Arrows show the cellular process where energy is being spent. The size of the arrow 

shows the relative difference in the amount of energy lost. Shading from orange to yellow 

shows the direction of energy transduction from harvested sunlight to plant biomass 

(given as a percentage of the theoretical maximal energy conversion efficiency). The 

higher the percentage, the more energy the plant has invested in biomass production. 

Figure adapted from Zhu et al. (2010). 

Theoretical models predict that C4-augemted crop plants could potentially perform 50% 

more efficiently than non-C4 plants, which translates to increased crop production 

efficiency (Covshoff and Hibberd, 2012). Efficient crop production is defined as the ratio 

of energy output for carbohydrate biosynthesis to solar energy input (Monteith and Moss, 

1977). Approximately 70% of solar energy is lost to the environment before it is 

intercepted by plants; the remainder is used for carbohydrate biosynthesis and 

respiration, or dissipated as heat (Zhu et al., 2010). These models have also shown that 

C4 plants, which have suppressed rates of photorespiration, can invest more energy into 

biomass production than C3 plants (Figure 1.6). Therefore, converting C3 crops to C4 can 

potentially reduce the total amount of energy lost through photorespiration and increase 

photosynthetic efficiency by 30% (Zhu et al., 2010). However, until this can be 

implemented, the factors that promote photosynthetic efficiency in C4 plants must be 

understood. This Chapter will review past and ongoing C4 photosynthesis research, 

outline important evolutionary adaptations and identify the key traits and characteristics 

of the C4 phenotype. 
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1.3 The origins of C4 photosynthesis 

 

1.3.1 Natural bypass of photorespiration 

 

Since Rubisco is the only enzyme involved in CO2 fixation in the vast majority of 

photosynthetic organisms, major chemical alternations might not have been selected for 

during evolution (Sage, 2004; Gowik and Westhoff, 2011). The interaction with O2 is an 

inevitable and unavoidable consequence in the reaction mechanism that occurs when the 

2,3-enediol intermediate form of RuBP reacts with O2 rather than CO2, because of a 

higher free energy activation with O2 (Chen and Spreitzer, 1992; Tcherkez et al., 2006). 

Despite that different forms of Rubisco have evolved to respond better in low CO2 to O2 

environments and increase the relative specificity for CO2, some plants have found an 

alternative strategy for supressing the oxygenase reaction by compartmentalising 

Rubisco with physical barriers, thus creating a subcellular environment where the ratio 

of CO2 to O2 is higher (Badger and Andrews, 1987; Sage, 1999). Additionally, some C3 

plants can restrict GDC activity to the bundle sheath, by the selective loss of GDC in the 

mesophyll, allowing photorespired CO2 to be recycled more efficiently (Monson, 1999). 

Anatomical variation and spatial availability of CO2 in C3 plants can also increase 

photosynthetic capacity. In several photosynthetic species, including cyanobacteria, 

aquatic and land plants, this can be achieved using compartments that concentrate CO2 

at the site of Rubisco (Leegood, 2013). In microalgae, such as Chlamydomonas 

reinhardtii, CO2 is concentrated in specialised compartments (pyrenoids) that maintain 

the intracellular CO2 concentration high to reach maximal carboxylase activity (Badger 

et al., 1998; Mackinder et al., 2017). This is similar to the strategy adopted by 

cyanobacteria, which operate a carbon concentrating mechanism in carboxysomes 

(Badger et al., 2002). Changes to chloroplast positions can also affect the diffusion of 

CO2 through the mesophyll of terrestrial C3 plants (Tholen et al., 2008). Recently, Busch 

et al. (2013) showed that rice and wheat can restrict the efflux of photorespired CO2 in 

photosynthesising cells using air spaces as physical barriers for diffusion. Although 

Busch et al. (2013) argue that this adaptation could have contributed to reducing the 

wastage of CO2 produced during photorespiration, the delivery of atmospheric CO2 into 

the site of Rubisco can be restricted by such structural barriers, which cause the CO2 

partial pressure in the stroma to be several-fold lower than that of the atmosphere  (Evans 
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et al., 2009; Tosens et al., 2012). In rice, the entry of CO2 may already be maximised as 

chloroplasts cover about 95% of the periphery of mesophyll cells, which increases the 

diffusion of CO2 during high rates of photosynthesis (von Caemmerer and Evans, 1991; 

Tholen et al., 2008; Evans et al., 2009; Sage and Sage, 2009; Busch et al., 2013). Rice 

has also considerably high variation in the number of chloroplasts in bundle sheath cells, 

some of which are deficient of chloroplasts (Leegood, 2008; Sheehy et al., 2008). 

Theoretical models have also demonstrated that the diffusion efficiency and assimilation 

of CO2 in tomato leaves correlates to the organisation and structure of mesophyll cells 

(Berghuijs et al., 2015). However, anatomical variations, such as the difference in 

photosynthetically competent mesophyll and bundle sheath cells in C3 plants, make it 

difficult to assess the factors that contribute to the transport and utilisation CO2 within 

C3 plant cells (Berghuijs et al., 2016). 

Before the elucidation of the C4 photosynthetic pathway, Heinricher (1884) and 

Haberlandt (1904) noted that certain plant species of tropical origin had 

photosynthetically active chloroplasts in bundle sheath cells. In addition, chloroplasts 

found in bundle sheath cells of Zea mays were larger than those typically found in 

mesophyll cells of C3 plants (Kiesselbach, 1916). Haberlandt (1904) originally suggested 

that the green parenchyma sheath cells in plants with wreath-like arrangement of 

mesophyll and bundle sheath cells (Kranz anatomy) might have specialised function. The 

accumulation of starch in bundle sheath cells (Rhoades and Carvalho, 1944), together 

with evidence that showed normal grana stacking in mesophyll chloroplasts but not 

bundle sheath chloroplasts in Zea mays (Hodge et al., 1955), further substantiated the 

biochemical specialisation of the bundle sheath. In light of these findings, Kortschak et 

al. (1965) demonstrated that radioactively labelled carbon in sugarcane was initially 

incorporated into malate and aspartate, but not 3-PGA, whereas 3-PGA in soybean plants 

accounted for 80% of the radioactively labelled carbon. These observations were 

consistent with those demonstrated by Karpilov (1960), which showed that radioactively 

labelled carbon was incorporated into malate and aspartate in Zea mays. Furbank (2016) 

argues that because of limitations of these labelling experiments at the time (Bassham, 

2005), the published results may have been met with some degree of scepticism and 

delayed international recognition. However, upon further investigation Hatch and Slack 

(1966) demonstrated that 93% of radioactively labelled carbon was rapidly incorporated 

into malate and aspartate and that these were initial intermediates produced during 
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photosynthesis, with 3-PGA produced much later. Based on these observations, Hatch 

and Slack (1966) elucidated the C4 dicarboxylic acid pathway of photosynthesis, termed 

C4 photosynthesis.  

 

1.3.2 The recurrent emergence of C4 photosynthesis 

 

The C4 pathway is the most effective trait that evolved in certain plants to overcome 

photorespiration (Sage, 1999). It has evolved independently over 60 times in the last 35 

million years, through gradual anatomical and biochemical adaptations that allow CO2 

to be concentrated at the site of Rubisco (Sage, 2004). This is usually achieved using 

concentric tubes of vascular tissue tightly packaged by specialised bundle sheath and 

mesophyll cells in Kranz anatomy (Figure 1.7D). In C4 plants, CO2 is initially fixed into 

a four-carbon organic compound, usually malate or aspartate (Hatch, 1987), in mesophyll 

cells by PEPC, transported to and decarboxylated in bundle sheath cells forming CO2 

and a three-carbon acid that is subsequently transported back to mesophyll cells 

completing the cycle (Figure 1.7C). Unlike C3 leaves, Rubisco is localised in the bundle 

sheath, where CO2 is concentrated (Kanai and Edwards, 1999). As a result, the ratio of 

CO2 to O2 in the bundle sheath increases, allowing the carboxylase reaction of Rubisco 

to operate at near CO2 saturation (Hatch, 1987; Sage, 1999; von Caemmerer and Furbank, 

1999). Although the dual-cell configuration of Kranz anatomy is an important 

characteristic for the assembly of C4 photosynthesis and compartmentalisation of 

Rubisco, it is not a requirement for all C4 organisms (Badger et al., 1998; Edwards et al., 

2004; Leegood, 2013; Berry et al., 2016). For instance, in a few single-cell chenopods 

such as Bienertia sinuspersici, C4 photosynthesis operates by compartmentalising 

Rubisco within a specialised region in the cell, concentrating CO2 in equal proportions 

as plants with fully established Kranz anatomy (Sage, 2004; Rosnow et al., 2014). 
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Fig. 1.7. Comparison between C3 (A, B) and C4 (C, D) anatomy in higher plants. 

Leave cross-sections show the arrangement of mesophyll and bundle sheath cells in C3 

rice (B) and C4 Sorghum (D) plants. ATP is needed to regenerate PEP via PPDK (C). 

Transverse leaf sections acquired from RT Furbank and RF Sage.   

C4 photosynthesis evolved from the gradual specialisation of ancestral C3 plant 

characteristics, which were predisposed to C4 photosynthesis (Hibberd and Quick, 2002; 

Sage, 2004; Christin and Osborne, 2013). Furthermore, all C4-related enzymes derived 

from C3 isoforms, which are abundant in photosynthetic cells (Hibberd and Quick, 2002), 

albeit serve different cellular functions and are differently regulated (Sage, 2004). The 

acquisition of C4-related traits has been extensively studied in several plant taxa (Figure 

1.8), mainly to understand how the various biochemical variants of the C4 pathway were 

assembled multiple times from separate origins. While it is generally accepted that the 
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evolution of C4 photosynthesis was triggered, or at least favoured, by climatic events (i.e. 

decrease in atmospheric CO2), Monson (2003) argues that its recurrent emergence was 

dependent on the genetic variability of C3 lineages, mainly through genomic 

preconditioning such as gene duplications and neofunctionalisation. 

 

 

Fig. 1.8. The phylogenetic distribution of 47 angiosperm clades with C4 

photosynthesis. Red lines show C4 lineages and grey lines show C3 lineages. The 

number of independent origins are indicated to the right of genus names. Obtained from 

Sage et al. (2011). 

From there, the C4 pathway was assembled as an extension of the classical C3 pathway, 

through two main phases (Figure 1.9): anatomical and biochemical specialisations 

(Monson et al., 1986; Sage, 1999; Sage, 2004; Sage et al., 2011). Comparative analyses 

in Alloteropsis semialata populations show that the convergent evolution of C4 

photosynthesis involved the optimisation of intermediary C4 characteristics from C4-like 

common ancestors, while others obtained C4 features independently (Christin et al., 

2012; Dunning et al., 2017). Furthermore, Gowik and Westhoff (2011) and Williams et 
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al. (2013) suggest that every transition into a C4-like condition conferred certain 

advantages, and in some cases, certain species would not have necessarily continued to 

evolve C4 photosynthesis, while others may still be evolving the C4 pathway (Ludwig, 

2012). Genomic and phylogenetic analyses predict that there are 4500 species in the grass 

family (Poaceae) that perform C4 photosynthesis (equivalent to 60% of C4 species), 

followed by 1500 species of sedges (Cyperaceae) and 1200 species of dicots, producing 

about a fourth of global O2 (Sage, 2004; Edwards et al., 2010; Sage et al., 2012). 

 

Fig. 1.9. The path to C4 photosynthesis. Summary of the evolution of C4 photosynthesis 

(in the direction of arrows). Example of C3–C4 intermediate species are shown to the 

right of each transition point. Figure adapted from Monson (1999), Monson and 

Rawsthorne (2000) and Gowik and Westhoff (2011). 
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1.3.3 Specialisation of mesophyll and bundle sheath cells 

 

Trapping CO2 at the site of Rubisco was accomplished by the development of a wreath-

like arrangement of bundle sheath cells, spaced closely apart from neighbouring 

mesophyll cells and vasculature tissue. As a result, the intracellular CO2 concentration in 

bundle sheath cells is about 10-fold higher than in mesophyll cells (Figure 1.10) (von 

Caemmerer and Furbank, 1999). Vein spacing in C4 plants also facilitates the rapid 

diffusion of metabolites during photosynthesis (Osmond, 1971; Hatch and Osmond, 

1976; Sage, 2004). Furthermore, C4 plants typically have two mesophyll cells between 

veins, whereas C3 plants can have more than five mesophyll cells between each vein 

(Figure 1.11) (Leegood and Walker, 1999; Ogle, 2003; Langdale, 2011).   

 

Fig. 1.10. Arrangement of mesophyll and bundle sheath cells in Kranz anatomy of 

C4 plants. Kranz anatomy in a C4 plant, such as Zea mays, is formed by specialised 

mesophyll and bundle sheath cells, which partition between carboxylation and 

decarboxylation reactions, respectively. CO2 produced from the decarboxylation of the 

C4-acid is concentrated in bundle sheath cells. Transverse leaf section provided by RC 

Leegood.   
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Fig. 1.11. Schematic showing interveinal distance comparison between C3 (top) and 

C4 (bottom) leaf cross-sections. Shorter interveinal distances in leaves of C4 plants 

allow for the efficient movement of metabolites between mesophyll (M) and bundle 

sheath (BS) cells. Adapted from Langdale (2011). 

The efficient transport of metabolites between mesophyll and bundle sheath cells is 

accomplished by exclusively using plasmodesmata, which are highly abundant in C4 

leaves (Evert et al., 1977; Furbank, 2016). Enhancement of bundle sheath organelles was 

also necessary with the specialisation of the bundle sheath in leaves of C4 plants. Unlike 

C3 leaves, C4 photosynthesis is partitioned between mesophyll and bundle sheath cells, 

and only bundle sheath cells have chloroplasts that are capable of operating the PCR 

cycle because of the cell-specific expression of Rubisco (Majeran and van Wijk, 2009). 

Moreover, the increased photosynthetic capacity of bundle sheath cells is likely to have 

been co-dependent with the increased number and size of chloroplasts during the 

development of Kranz anatomy (Sage, 2004). This is supported by Flaveria and 

Moricandia C3–C4 intermediates, which do not fully express Kranz anatomy, but have 

increased number of organelles in bundle sheath cells (Brown and Hattersley, 1989). 

Brown and Hattersley (1989) suggest that increased number of organelles in bundle 

sheath cells in some C3–C4 intermediates was enough to compensate for reduced 
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photosynthetic capacity due to bundle sheath cells resembling that of C3 plants, which 

have reduced photosynthetic capacity and few chloroplasts (Leegood, 2008).  

Photosystem activity in chloroplast thylakoid membranes is specific in C4 plants, though 

varies in certain species due to the mechanism used for decarboxylation (Laetsch, 1968; 

Pfündel et al., 1996; Kanai and Edwards, 1999). Photosystem activity also varies 

between mesophyll and bundle sheath cells in C4 plants (Meierhoff and Westhoff, 1993; 

Pfündel et al., 1996; Edwards et al., 2001). For instance, Sorghum bicolor has bundle 

sheath cells with reduced grana stacking and lower photosystem II activity, but normal 

photosystem I activity, while mesophyll chloroplasts have comparable photosystem II 

and photosystem I activities with normal grana, resembling that of C3 plants (Woo et al., 

1970; Edwards et al., 2001; Majeran and van Wijk, 2009). By reducing photosystem II 

activity in bundle sheath cells, the intracellular O2 concentration probably declines, thus 

preventing the unfavourable utilisation of O2 by Rubisco (Chollet and Ogren, 1972; 

Chapman et al., 1980). Also, enhancement of mitochondria along with peroxisomes and 

chloroplasts in precursors of C4 species, would have been a requirement before the 

establishment of cell-specific enzyme expression and activity, and indicative of the 

decarboxylation mechanism that is evolving, though exceptions are known to exist 

(Hatch, 1978; Brown and Hattersley, 1989; Meierhoff and Westhoff, 1993).  

 

1.3.4 Photorespiratory CO2 pump in C3–C4 intermediates 

 

The specialisation of bundle sheath chloroplasts was an important phase for the 

development of the photorespiratory CO2 pump, since all dual-cell C4 species use bundle 

sheath cells for the decarboxylation of the C4-acid (Brown and Hattersley, 1989; Sage, 

2004). The evolutionary trajectory of C4 evolution has been explored in C3–C4 

intermediate species, which possess some Kranz-like leaf characteristics and reduced 

rates of photorespiration, though C4-specific enzymes are not regulated or achieve similar 

activities as in C4-like or C4 plants (Ku et al., 1991). Furthermore, the photosynthetic 

CO2 compensation point of Flaveria C3–C4 intermediates is between that of C3 and C4 

plants, even under ambient O2 concentration, suggesting a reduced rate of 

photorespiration (Ku et al., 1983). One major development in C3–C4 intermediate 

species, which enhanced photosynthetic capacity by reducing photorespiration, was the 
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restriction of GDC to bundle sheath cells (Sage, 2004; Bauwe et al., 2010; Sage et al., 

2012). This restricts glycine decarboxylation in mitochondria of bundle sheath cells 

(Figure 1.12), which release photorespired CO2 at the site of Rubisco (Schulze et al., 

2013). Therefore, compartmentation of GDC increases the capacity to recycle 

photorespired CO2 and reduces the loss of carbon through photorespiration or leakage 

from the cell periphery (Rawsthorne et al., 1988; Bauwe et al., 2010; Gowik and 

Westhoff, 2011).  

 

Fig. 1.12. GDC compartmentalisation and the photorespiratory CO2 pump in C3–

C4 intermediate species. Schematic showing the restriction of GDC in mitochondria of 

bundle sheath cells. In the CO2 pump (blue arrows), all glycine produced by 

photorespiration must be transported to bundle sheath cells, where CO2 is released, 

increasing the chance of its utilisation by Rubisco. Serine is transported back into 

mesophyll cells and converted into PGA. P-glycollate, phosphoglycollate; PGA, 

phosphoglycerate. Adapted from Rawsthorne et al. (1988). 

Immunolocalisation experiments conducted in the C3–C4 intermediate species 

Moricandia arvensis showed that the P-protein subunit (encoded by GLDP) of GDC was 

solely expressed in bundle sheath cells, which resulted in the precursors of GDC in 

mesophyll cells to lose activity (Rawsthorne et al., 1988; Morgan et al., 1993). Loss of 

GDC activity in mesophyll cells is also evident in Flaveria C3–C4 intermediate species, 
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and was likely acquired by the gradual suppression of GLDP and GDC activity in 

mesophyll cells (Ku et al., 1991; Schulze et al., 2013), rather than rapid suppression as 

previously suggested (Sage, 2004; Sage et al., 2012). Furthermore, the gradual transition 

of GDC activity from mesophyll to bundle sheath cells would have been advantageous 

to Kranz-like C3 plants with C3-like chloroplasts and mitochondria in bundle sheath cells, 

which would not have the capacity to perform all the required GDC activity (Bauwe, 

2011; Muhaidat et al., 2011; Schulze et al., 2013). Therefore, certain lineages of C3 

species with Kranz-like anatomy or C3–C4 intermediates, in the early trajectory of C4 

evolution, which had the capacity to operate the glycine shuttle between mesophyll and 

bundle sheath cells would have been positively selected during evolution, whereas those 

with low capacity to remove phosphoglycollate would have probably not survived (Sage, 

2004).   

 

1.3.5 Establishing a fully functional C4 cycle 

 

C3–C4 intermediates typically show a distinct progression into C4 characteristics, but do 

not have optimised enzyme activity to achieve similar photosynthetic capacity of C4 

plants (Engelmann et al., 2003). Similar to C3 plants, Flaveria C3–C4 intermediates have 

high concentration of PEPC and NADP-malic enzyme in photosynthetic cells, but the 

activities of these enzymes are not comparable to those found in C4 plants (Ku et al., 

1991). The regulatory properties of PEPC evolved at a much later stage (Svensson et al., 

2003; Gowik et al., 2004) and the significance of increased PEPC activity, with regards 

to C4 evolution, is more evident when comparing the changes in activity between C3 and 

C3–C4 intermediate species. For instance, the activity of PEPC from C3–C4 intermediates 

Flaveria linearis and Flaveria ramosissima is five and seven times higher than that of 

C3 relatives, respectively (Monson and Moore, 1989). In addition, the activity of PEPC 

between C4 Flaveria species can be up to 40 times higher than C3 variants within the 

genus (Monson and Rawsthorne, 2000; Svensson et al., 2003). Enhancement of PEPC 

activity in mesophyll cells was necessary to re-fix leaked CO2 from the bundle sheath, 

which would have readily diffused along a concentration gradient through the chloroplast 

membrane (Monson, 1999; von Caemmerer, 2000; Gowik and Westhoff, 2011).  
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While Flaveria C3–C4 intermediates had elevated PEPC activity at this evolutionary 

stage, the C4 pump would not have been fully established, firstly because the regeneration 

of PEP was not catalysed by the C4-specific pyruvate, phosphate dikinase (PPDK), which 

was not acquired at the same time as PEPC activity increased in mesophyll cells (Sage, 

2004). This is supported by C3–C4 Flaveria intermediates with C3-characteristics that 

operated a pathway for the interconversion of 3-PGA and PEP (Monson and Moore, 

1989). Secondly, CO2 may not have been initially fixed by PEPC, since Rubisco activity 

was still prominent in mesophyll cells (Gowik and Westhoff, 2011). Thirdly, Rubisco 

acquired bundle sheath-specific expression much later in Flaveria species, possibly 

because of the glycine shuttle operating between mesophyll and bundle sheath cells in 

C3–C4 intermediates that efficiently recycled photorespired CO2 (Monson and 

Rawsthorne, 2000). Carbon isotope analysis in Flaveria intermediates showed that a 

large quantity of assimilated carbon was transported through the glycine shuttle rather 

than the C4 pump, suggesting that integration of C3 and C4 cycles would only be achieved 

if the activities of PEPC and Rubisco were equal and localised (Monson et al., 1988). 

 

Fig. 1.13. C4 leaf cross-section of Zea mays showing compartmentation of Rubisco 

(A) and PEPC (B). Rubisco is localised in bundle sheath cells and PEPC is localised in 

mesophyll cells of C4 plants. Transverse leaf sections provided by RC Leegood.  
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1.3.6 Integration of C3 and C4 cycles 

 

The spatial separation of Rubisco to bundle sheath cells (Figure 1.13A) and PEPC to 

mesophyll cells (Figure 1.13B) was the final requirement for the complete integration of 

C3 and C4 cycles (Sage, 2004). Differential gene expression patterns in Sorghum bicolor 

show the restriction of PEPC, PPDK, carbonic anhydrase and photosystem II proteins in 

mesophyll cells, while Rubisco activase, NADP-malic enzyme and other enzymes of the 

PCR cycle are exclusively expressed in bundle sheath cells (Wyrich et al., 1998; Sage, 

2004). In the Flaveria genus, the expression of Rubisco in mesophyll cells decreased 

along the evolutionary gradient of C4 photosynthesis, with certain C4-like species, like 

Flaveria brownii, exhibiting the preferential expression of Rubisco in bundle sheath 

cells, and Flaveria variants with C3-characteristics and Nicotiana tabacum (C3), 

expressing Rubisco in both mesophyll and bundle sheath cells (Bauwe, 1984; Reed and 

Chollet, 1985).  

Once these restrictions were set, Rubisco would not compete with PEPC for carbon and 

the activity of PEPC would have been high enough to match the activity of Rubisco, 

creating a gradient of metabolites that diffused between C3 and C4 cycles and meet 

competing demands for ATP and CO2 in mesophyll and bundle sheath cells, respectively 

(Monson, 1999; von Caemmerer and Furbank, 1999; von Caemmerer and Furbank, 2003; 

Gowik and Westhoff, 2011). Additionally, enhancement of mesophyll-specific carbonic 

anhydrase activity was necessary to generate enough bicarbonate for PEPC to avoid 

limiting the rate of photosynthesis (Hatch and Burnell, 1990). The reduction of carbonic 

anhydrase activity in bundle sheath cells was also an important step in C4 evolution 

(Sage, 2004; Ludwig, 2012). As the intracellular concentration of CO2 increases in 

bundle sheath cells, carbonic anhydrase would catalyse the conversion of CO2 to 

bicarbonate, thus reducing the amount of substrate available for Rubisco (Burnell and 

Hatch, 1988). In C4 species, carbonic anhydrase is expressed in large quantities in the 

cytosol of mesophyll cells, though the gene was acquired from a chloroplastic form 

(Ludwig, 2012), but lost its transit peptide due to a mutation to the sequence that encoded 

its chloroplastic expression (Tanz et al., 2009).  
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While C3 plants contain high amounts of decarboxylating enzymes (NADP- and NAD-

malic enzyme), these were expressed in vascular tissues, and not in photosynthetic cells 

and had to acquire cell-specific expression patterns (Hibberd and Quick, 2002; Sage, 

2004). Both PEPC and NADP-malic enzyme in C4 Flaveria species acquired C4 

characteristics through the duplication of an ancestral C3 gene followed by 

neofunctionalisation, which led to cell-specific gene expression (Hermans and Westhoff, 

1990; Marshall et al., 1996; Monson, 1999). Further establishment of the C4 syndrome 

was dependent on substantial changes in gene expression patterns carried forward from 

ancestor C3 species (Nelson and Dengler, 1992; Ku et al., 1996), but only needed slight 

changes to regulatory elements to achieve C4-specific function (Gowik and Westhoff, 

2011). For instance, PEPC expression in C4 plants is controlled by a transcriptional cis-

regulatory element (mesophyll expression module1, MEM1), which encodes for the 

mesophyll-specific expression of the ppcA gene of PEPC in Flaveria trinervia (Gowik 

et al., 2004). The MEM1 sequence is also found in the orthologous C3 Flaveria pringlei 

gene, but it does not encode PEPC expression in mesophyll cells (Akyildiz et al., 2007). 

It was shown that two discrete changes in the MEM1 sequence were substantial to 

generate the mesophyll-specific expression of PEPC in Flaveria trinervia (Akyildiz et 

al., 2007). The cell-specific expression of the Rubisco found in C4 plants is another well-

documented example of subtle changes to gene expression. While most C4-specific genes 

are regulated by transcriptional elements (Sheen, 1999), certain genes, like those in 

Flaveria bidentis encoding for bundle sheath-specific expression of the small subunit of 

Rubisco, are controlled by both transcriptional and posttranscriptional regulators (Patel 

et al., 2006). Furthermore, despite cell-specific expression, the expression patterns of 

Rubisco genes in C4 plants are very similar to those found in their C3 relatives (Berry et 

al., 2016). In both plant systems Rubisco genes are absent in non-photosynthetic tissues 

and ubiquitously expressed in photosynthetic tissues, where they are regulated by 

developmental signals, illumination or abiotic stress (Berry et al., 2013; Berry et al., 

2016).  

The eight large and small subunits of Rubisco are encoded by rbcL and rbcS genes, 

respectively (Patel et al., 2006; Berry et al., 2016). Despite that in the early stages of C4 

evolution these genes were expressed in both mesophyll and bundle sheath cells, Rubisco 

mRNAs were shown to only accumulate in the latter (Berry et al., 2013). Furthermore, 

Berry et al. (2016) suggested that nucleic acid binding proteins, such as RLSB, could be 
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affecting the regulation of cell-specific Rubisco genes. Recently, highly conserved RLSB 

proteins, from C3 ancestral Flaveria plants, were shown to accumulate in bundle sheath 

cells and bind rbcL mRNAs, in a mechanism that describes the regulation of cell-specific 

Rubisco expression in C4 plants (Yerramsetty et al., 2017). Changes to the sequence of 

RLSB was observed to occur gradually through the progression of C3 to C4-like to C4 

Flaveria plants, which suggest that RLSB co-evolved with C4 photosynthesis, albeit the 

functional significance of these changes through the transition to C4-characterstics is 

unclear (Yerramsetty et al., 2017).  

The light-dependent expression of the small subunit of Rubisco in bundle sheath cells is 

similar to the mechanism previously described for the cell-specific expression of NAD-

malic enzyme in the C4 plant Amaranthus hypochondriacus. In Amaranthus 

hypochondriacus, the functional subunit (α subunit) of NAD-malic enzyme is 

preferentially expressed in bundle sheath cells (Long et al., 1994). During the early stages 

of leaf development, and induced by light, the mRNAs corresponding to the α subunit 

accumulate in bundle sheath cells in amaranth (Long and Berry, 1996). However, the 

NAD-malic enzyme bundle sheath-specific expression pattern in amaranth occurs earlier 

than that of Rubisco (Long and Berry, 1996). During the early stages of leaf development, 

mRNA products of the small and large subunits of Rubisco initially accumulate in 

mesophyll and bundle sheath cells, resembling the expression pattern of C3 plants, and 

bundle sheath cell specificity is acquired later through metabolism cues (Wang et al., 

1992; Wang et al., 1993). Furthermore, acquisition of a C4-specific Rubisco might have 

occurred with fewer changes to regulation patterns, since it was acquired from a 

photosynthetic counterpart, whereas NAD-malic enzyme, PEPC and PPDK, were 

recruited from separate, non-photosynthetic origins (Hatch, 1987; Furbank and Taylor, 

1995). This also suggests that the regulatory patterns for the three latter enzymes were 

recruited around the same time as C4-specific function evolved and therefore share 

similar regulatory elements (Long and Berry, 1996; Gowik and Westhoff, 2011).   
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1.3.7 Fine-tuning C4-specific enzyme activity 

 

Once the C4 cycle was fully established, the enzymes that were recruited from ancestral 

C3 counterparts to serve a C4-specific function were optimised for C4 photosynthesis 

(Sage, 2004). In order to maintain the metabolite gradient that operates the C4 cycle, the 

rate at which PEPC fixes CO2 in mesophyll cells must be equivalent to the rate of 

diffusion into bundle sheath cells, utilisation by Rubisco and regeneration of PEP 

(Leegood and Walker, 1999). In contrast, the rate of transport is no higher than one-sixth 

of the steady-state CO2 assimilation in C3 leaves (Edwards and Walker, 1983). The 

kinetic properties of C4-related enzymes were also optimised during this phase. For 

instance, the C4-specific PEPC affinity for PEP is lower than that of its C3 counterpart, 

while the affinity for bicarbonate is higher in the C4-form (Chollet et al., 1996; Gowik 

and Westhoff, 2011), and achieves higher maximum reaction rates than the C3-form 

because PEP is available in larger quantities (Ku et al., 1996). Also, the C3 PEPC form 

is sensitive to inhibition by malate, but this is reduced in the C4-form, so that it can remain 

active when large quantities of malate are produced during C4 photosynthesis (Bläsing 

et al., 2000; Svensson et al., 2003; Jacobs et al., 2008). Although the C4-specific PEPC 

has evolved at least eight times through separate origins, all C4 PEPCs share a large 

degree of similarity in Flaveria (Christin et al., 2007; Gowik and Westhoff, 2011). 

Moreover, it is likely that these features were the last to evolve, based on the absence of 

these regulatory mechanisms in PEPC from Flaveria C3–C4 intermediates (Sage, 2004). 

Similarly, the C4-specific Rubisco has a lower affinity for CO2, relative to C3 

counterparts, but can achieve a higher turnover rate because CO2 is more readily 

available (Seemann et al., 1984). Similar to the regulatory features of the C4 PEPC, 

Rubisco from Flaveria intermediates do not exhibit C4-specific kinetic properties, but 

more closely resemble those of the C3-form (Wessinger et al., 1989), suggesting that 

these features also evolved in the final phases of C4 evolution (Sage, 2004). NADP-malic 

enzyme also underwent slight changes to its kinetic properties when it was recruited for 

C4-specific function. Unlike the C3-form, NADP-malic enzyme in C4 species exhibits a 

higher maximum activity and has a higher affinity for malate (Drincovich et al., 2001). 

Also, unlike the C4-specific PEPC, NADP-malic enzyme in Flaveria C3–C4 

intermediates exhibited changes to affinity values for malate, somewhere between the 
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values of C3 and C4 variants (Sage, 2004), suggesting that some intermediates evolved 

these characteristics earlier than the regulatory properties PEPC or Rubisco evolved. 

 

1.4 What does it mean to be C4? 

 

1.4.1 Variations of the C4 pathway 

 

During the evolution of the C4 pathway, three decarboxylases were recruited (NAD(P)-

malic enzyme and phosphoenolpyruvate carboxykinase [PEPCK]), creating three distinct 

biochemical variations of the CO2 concentrating mechanism of C4 photosynthesis 

(Hatch, 1987). In the NADP-malic enzyme subtype (Figure 1.14A), malate is formed in 

mesophyll cell chloroplasts, whereas in NAD-malic enzyme (Figure 1.14B) and PEPCK 

subtypes (Figure 1.14C), both malate and aspartate are formed (Wang et al., 2011). 

PEPCK operates as a secondary decarboxylase in several NADP- and NAD-malic 

enzyme subtypes, and does not appear to operate on its own (Walker et al., 1997; Wingler 

et al., 1999; Pick et al., 2011; Bräutigam et al., 2014). For instance, in NADP-malic 

enzyme subtypes, aspartate contributes to roughly 10–15% of assimilated carbon pool 

(Hatch and Mau, 1973; Hatch, 1987; Arrivault et al., 2016).  

The coordination of C3 and C4 pathways depends on the cooperate activity of 

carboxylation and decarboxylation reactions (Bailey et al., 2007) and coordinate 

interaction of the C4 pathway and mitochondrial metabolism (Leegood, 1985; Stitt and 

Heldt, 1985; Leegood and Walker, 1999). In PEPCK subtypes, for example, 

mitochondrial respiration generates the ATP required for the operation of PEPCK in 

bundle sheath cells (Hatch et al., 1988). Moreover, NAD-malic enzyme decarboxylation 

activity in the mitochondria does not compete with PEPCK decarboxylation (Figure 

1.13C), because the rate at which ATP is generated for PEPCK activity is limiting 

(Carnal et al., 1993) and both decarboxylases contribute to the delivery of CO2 at the site 

of Rubisco (Bräutigam et al., 2014). In PEPCK type C4 plants, PEP is regenerated in 

bundle sheath cells from the decarboxylation of oxaloacetate requiring one molecule of 

ATP, whereas in NADP- and NAD-malic enzyme subtypes, PEP is regenerated via 

PPDK in mesophyll cells using two molecules of ATP per molecule of CO2 assimilated 



 

30 

 

(Bräutigam et al., 2014). Theoretical models predict that the energetic costs of PEPCK 

subtypes are slightly lower than in NADP-malic enzyme subtypes, requiring less ATP 

per CO2 molecule assimilated, although require one more molecule of ATP than C3 plants 

(Kanai and Edwards, 1999; Bräutigam et al., 2014).    

 

 

 

Fig. 1.14. 
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Fig. 1.14. Three biochemical variations of the C4 pathway using the (A) NADP-malic 

enzyme, (B) NAD-malic enzyme or (C) PEPCK decarboxylase. C4 photosynthesis is 

characterised by the primary decarboxylase (dark blue) operating in bundle sheath cells. 

Enzymes (light blue): CA, carbonic anhydrase; PEPC, phosphoenolpyruvate 

carboxylase; AAT, aspartate aminotransferase; MDH, malate dehydrogenase; ME, malic 

enzyme; PEPCK, PEP carboxykinase; AlaAT, alanine aminotransferase. Metabolites 

(purple): OAA, oxaloacetate; Mal, malate; Asp, aspartate; Ala, alanine; Glu, glutamate; 

2-OG, 2-oxoglutarate. Transporters: 1, DiT1; 2, BASS2/NHD1; 3, PPT. PCR, 

photosynthetic carbon reduction cycle. Dashed lines show diffusion routes. *AlaAT. 

Adapted from Wang et al. (2011). 

Aside from changes to the kinetic properties of Rubisco in C4 plants, all other enzymes 

of the PCR cycle present in bundle sheath cells of C4 plants are unchanged from their C3 

counterparts (Ashton et al., 1990; Leegood and Walker, 1999). In C3 leaves, triose 

phosphates that are generated in the PCR cycle in mesophyll cells are exported from the 

chloroplast, via a triose phosphate translocator, to be used in the cytosol for sucrose 

synthesis (Leegood and Walker, 1999). Since C4 plants lack the ability to operate the 

PCR cycle in mesophyll cells due to the absence of Rubisco, phosphate, which is released 

from sucrose synthesis, is transported into bundle sheath chloroplasts and used for the 

regeneration of RuBP (Leegood and Walker, 1999). Triose phosphates accumulate in 

large quantities in C3–C4 intermediates Flaveria floridana and Moricandia arvensis, and 

the concentration is about 20-fold higher in C4 plants than in C3 plants (Leegood and von 

C 
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Caemmerer, 1994). Movement of carbon through the 3-PGA/triose-phosphate shuttle 

(Figure 1.15) is another important feature in all C4 plants and is likely to have evolved in 

C3–C4 intermediates to alleviate the burden on the PCR cycle in early developmental 

stages of C4-competent bundle sheath chloroplasts (Leegood, 2013). In this shuttle, the 

concentration gradient of about 10 mM triose phosphate drives diffusion from mesophyll 

to bundle sheath cells, and in exchange return 3-PGA driven by a concentration gradient 

of about 9 mM (Stitt and Heldt, 1985).     

 

Fig. 1.15. 3-PGA/triose-phosphate shuttle operating between bundle sheath and 

mesophyll cells. The conversion of 3-PGA to triose phosphate requires three enzymatic 

reactions catalysed by phosphoglycerate kinase, glyceraldehyde-3-phosphate 

dehydrogenase and triose phosphate isomerase (see Figure 1.2).  
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1.4.2 Increased capacity of metabolite movement 

 

The operation of the C4 cycle depends on the efficient and rapid movement of metabolites 

through diffusion driven transport (Leegood, 1985; Leegood and von Caemmerer, 1989; 

Leegood and Walker, 1999). In C4 plants, the capacity of these transport mechanisms are 

enhanced to move large quantities of metabolites between mesophyll and bundle sheath 

cells (Hatch and Osmond, 1976). In contrast to C3 plants, which require one transport 

step to produce triose phosphates, C4 plants require at least 30 steps (Weber and von 

Caemmerer, 2010). In NADP-malic enzyme subtypes, large quantities of oxaloacetate 

diffuse from the cytosol to chloroplasts of mesophyll cells via a translocator with high 

specificity for oxaloacetate but not malate (Hatch et al., 1984). Another non-specific 

translocator with competing specificity for malate and oxaloacetate operates in 

mesophyll chloroplasts of Zea mays leaves, but is not efficient to operate under high load 

of C4 photosynthesis when malate is in higher content than oxaloacetate (Day and Hatch, 

1981; Hatch, 1987). During C4 photosynthesis, a concentration gradient of about 18 mM 

malate drives diffusion from mesophyll cells to bundle sheath cells (Stitt and Heldt, 

1985). In a recent study, however, Arrivault et al. (2016) noted that previous estimations 

were biased, since metabolite concentrations were determined from whole leaf tissue, 

instead of isolated mesophyll or bundle sheath cells. 

These data also showed that malate, in Zea mays, contributes to the diffusion driven 

transport, and is about twofold more abundant in mesophyll than bundle sheath cells, 

resulting in a concentration gradient of 6 mM and not 18 mM as previously reported 

(Arrivault et al., 2016). Furthermore, in NADP-malic enzyme subtypes, aspartate 

contributes to about 10% of the carbon pool and moves from mesophyll to bundle sheath 

cells in an estimated gradient of 0.96 mM (Kanai and Edwards, 1999; Arrivault et al., 

2016). In PEPCK subtypes, like Megathyrsus maximus, malate is imported into 

mitochondria in bundle sheath cells via a mitochondrial dicarboxylate carrier (DIC), but 

the transport of pyruvate from the mitochondrion to the cytosol has not been elucidated 

(Bräutigam et al., 2011). Also, despite that the transport of pyruvate from bundle sheath 

to mesophyll cells via BASS2 (BILE ACID:SODIUM SYMPORTER FAMILY 

PROTEIN 2) and NDH1 (sodium:proton antiporter) has been elucidated in Flaveria 

bidentis (NADP-malic enzyme) and Cleome gynandra (NAD-malic enzyme), it has yet 

to be described in Zea mays (Furumoto et al., 2011; Leegood, 2013).  



 

34 

 

1.4.3 Physiology and performance of C4 plants 

 

C4 plants are characterised for their capacity to maintain high rates of photosynthesis in 

low CO2 concentrations (Figure 1.16). This is because CO2 can be concentrated around 

Rubisco, allowing Rubisco to operate under high CO2 concentrations, thus suppressing 

the rate of photorespiration and inhibition by O2 (Sage et al., 2012). To allow such a 

response, membrane permeability has been increased to allow the rapid diffusion of 

metabolites, without compromising on the leakage of CO2 or bicarbonate (Hatch, 1987).  

 

Fig. 1.16. Modelled relationship between the rate of photosynthesis (PSA) and 

intracellular concentration of CO2 in leaves of C3 (blue) and C4 plants (red). The 

initial slope of CO2 assimilation in C4 plants is greater than that of C3 plants at a low 

intracellular CO2 concentration, demonstrating the ability of C4 plants to perform better 

in low CO2. Redrawn from Pearcy and Ehleringer (1984). 

The proportion of CO2 leaked from C4 leaves is minimised by the capacity of PEPC to 

rapidly assimilate CO2 into the C4-acid, along with the expression of Kranz anatomy 

(Hatch and Osmond, 1976; Hatch, 1987; Cousins et al., 2007). However, the rate of 

photosynthesis in C4 plants, at low CO2, is limited by the rate at which bicarbonate is 

generated by carbonic anhydrase and delivered to PEPC (Sage and Kubien, 2007; Boyd 
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et al., 2015). Under such conditions, PEPC activity is independent of temperature unless 

the temperature falls below 10 °C, which increases the rate of PPDK inactivation 

(Shirahashi et al., 1978; Hatch, 1979; Long, 1983; Ohta et al., 2004) and the activity of 

PEPC becomes limited by the capacity of PPDK to regenerate PEP. In contrast and 

despite limited by low atmospheric CO2, C3 plants can achieve a higher maximal CO2 

assimilation rate because Rubisco is in higher content in C3 leaves than in C4 leaves (Ku 

et al., 1996). However, nitrogen-use efficiency is increased in C4 plants because less 

Rubisco is required to operate the PCR cycle (Brown, 1978; Schmitt and Edwards, 1981; 

Sage et al., 1987).  

C4 grasses evolved under selective pressures such as increasing temperature, high light 

and declining CO2 (Sage, 2004). A major characteristic of C4 plants, especially those 

occupying open and arid grasslands, is to regulate the amount of water lost through 

transpiration by improving leaf hydraulics (Kocaçinar and Sage, 2004; Sack and 

Holbrook, 2006). As a result, stomata in C4 plants can remain closed for longer during 

the daytime, when the light intensity is presumably higher, thus increasing water-use 

efficiency, which is at least twice as efficient as in C3 plants (Hatch, 1987; Hatfield and 

Prueger, 2011). This is especially important in regions with higher temperatures and 

variable rainfall (Long, 1999; Gowik and Westhoff, 2011). There is also a distinct 

relationship between rate of assimilation and stomatal regulation. For instance, increased 

CO2 fixation in C4 grasses reduces stomatal conductance and minimises water loss 

(Osborne and Sack, 2012). A recent hydro-mechanical model of stomatal conductance 

of C4 photosynthesis suggests that quicker responses in the mechanisms controlling 

stomatal opening and closure might have given C4 plants the competitive advantage in 

achieving and maintaining high rates of CO2 assimilation relative to C3 plants (Bellasio 

et al., 2017). An improved hydraulic design is likely to have co-evolved with the CO2 

concentrating mechanism of C4 photosynthesis and would have served a significant role 

for the emergence of C4 plants in arid zones (Osborne and Sack, 2012; Bellasio et al., 

2017).  
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Fig. 1.17. Overview of the global distribution of higher plants dominated by either 

C3 (yellow) or C4 grasses (orange). Forests (green) and cropland (red) are also 

indicated. Figure does not consider the seasonal emergence of C3 and C4 plants in some 

grasslands. Black dots show the regions of C4 grasslands whose geological history are 

best described. Figure and annotation obtained from Edwards et al. (2010). 

In addition, the CO2 compensation point of C4 plants does not increase as much as it does 

in C3 plants in response to high temperatures (Sage and Kubien, 2007). Therefore, C4 

leaves are less sensitive to leaf temperature, and better adapted for higher temperatures, 

somewhere in the 25 to 30 °C range (Ehleringer and Björkman, 1977). As a result, the 

landscape of grasses that populate the globe has drastically changed since the evolution 

of C4 photosynthesis and it is believed that the C4 syndrome was so successful that 

neighbouring ancestor C3 grasses, mainly of tropical origin, were outcompeted as the 

atmospheric concentration of CO2 decreased and temperatures increased (Sage, 1999; 

Edwards et al., 2010; Sage et al., 2012). C4 grasses dominate in warm, tropical or 

subtropical environments (Figure 1.17), favouring higher daytime temperatures and 

lower altitudes, though need plenty of water and like their C3 relatives are not adapted to 

drought-stress (Sage, 2004; Edwards et al., 2010). Although the C4 pathway was selected 

as an advantageous trait for increasing carbon gain through higher photosynthetic 

efficiency (Monson, 2003), higher energetic costs of C4-related reactions, such as the 

ATP-dependent regeneration of PEP via PPDK or ATP-dependent decarboxylation by 

PEPCK, make C4 plants less competitive in regions where C3 photosynthesis is favoured 

(Bauwe et al., 2010; Sage et al., 2012; Lundgren et al., 2016). It is likely, however, that 

the evolution of C4 photosynthesis in grasslands allowed the broadening, rather than 

replacement, of existing ecological niches, thus allowing new C4 populations to occupy 
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larger spaces, which gradually increased the ecological gap between C3 and C4 grasses 

(Edwards et al., 2010; Lundgren et al., 2015). The capacity of C4 plants to operate at 

their optimum in regions with varying environmental conditions or extremes, such as 

temperature, water availability or soil salinity, which would otherwise directly promote 

photorespiration and dark respiration in C3 plants (Brooks and Farquhar, 1985; Sharkey, 

1988), have greatly contributed to C4 evolution and the distribution of C4 plants (Sage, 

2004; Edwards et al., 2010). Moreover, the diversity of these environmental conditions 

could promote evolution of C4 photosynthesis in some taxa, but not others (Lundgren et 

al., 2015). This is supported by the existence of several intermediate species, including 

Flaveria intermediates (Powell, 1978), in arid and saline habitats, which are zones where 

C4 species originated from (Sage, 2004). However, there is still some doubt as to how 

much photorespiration is reduced in C4 plants, and whether the three distinct subtypes of 

C4 photosynthesis are truly representative or rather an oversimplification of the C4 

syndrome. We will understand the factors that contribute to the efficiency of carbon 

movement and assimilation in C4 plants by investigating how the enzymes involved in 

C4 photosynthesis are regulated (Furbank, 2011; Bellasio and Griffiths, 2014; Wang et 

al., 2014; Arrivault et al., 2016). 
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1.5 Aim of thesis and thesis structure 

 

This research project was part of an international consortium which attempts to engineer 

characteristics of C4 photosynthesis into existing C3 crops in hopes to improve 

photosynthetic performance and crop yields (Leegood, 2013). However, the post-

translational regulatory mechanisms of C4-related proteins and how that regulation 

translates to the efficiency of carbon assimilation through a diurnal cycle remains 

unclear. Therefore, it is vital to identify the factors that contribute to the regulation C4-

related proteins prior to engineering artificial protein networks into existing C3 crops, 

such that the efficiency of carbon fixation, water-use efficiency and nitrogen-use 

efficiency are achieved. Post-translational modifications (PTMs) play a crucial role in 

plant biology (Friso and van Wijk, 2015) and their extensive regulatory mechanisms 

remain largely undiscovered in C4 plants. Characterising unknown PTMs of C4-related 

enzymes can help to understand the regulation of C4 photosynthesis, prior to 

incorporation into C3 plants. With this information, artificial regulatory mechanisms can 

be implemented in C4 crop plant transformants, thus maintaining the expected 

photosynthetic efficiency (Komatsu et al., 2013; Furbank, 2016). Furthermore, 

exploiting these regulatory mechanisms can help maintain biochemical stability and 

increase abiotic stress tolerance of transformant crop plants grown in harsh nutrient-

deficient environments (Hashiguchi and Komatsu, 2016). 

The primary aim of this study was to identify light-dependent PTMs of key C4-related 

proteins in leaves of Setaria viridis (NADP-malic enzyme subtype). Protein 

phosphorylation plays an important role in regulating the diurnal activity of PEPC, 

PEPCK and PPDK and it is hypothesised that several other C4 enzymes, including 

NADP-dependent malic enzyme, aspartate aminotransferase and alanine 

aminotransferase undergo light-dependent phosphorylation. It is expected that not every 

phosphorylation site that is identified is under regulation or contributes to enzyme 

activity. However, identifying novel phosphorylation sites might provide some 

indication to undiscovered phosphoregulatory mechanisms that induce distinct changes 

to diurnal enzyme activity.  
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The secondary aim of this project was to ascertain whether NADP-malic enzyme, 

aspartate aminotransferase and alanine aminotransferase have similar kinetic properties 

across three C4 NADP-malic enzyme monocot grasses, as well as explore the dual-

decarboxylase system in NADP-malic enzyme subtypes and determine if there are 

distinct variations in the properties of aspartate and alanine aminotransferase in Setaria 

viridis, Sorghum bicolor and Zea mays. In the dual-decarboxylase system, C4-acid 

decarboxylation is partitioned between NADP-malic enzyme and PEPCK or NAD-malic 

enzyme (Wang et al., 2014). However, whether these pathways are differently regulated 

in closely related C4 grasses is unclear. The C4 grasses used in this study were chosen 

because they use NADP-malic enzyme as the primary decarboxylase, though have 

varying amounts of PEPCK activity (Hatch, 1987; Bräutigam et al., 2014). Furthermore, 

Sorghum bicolor and Zea mays share a common ancestor whereas Setaria viridis evolved 

C4 photosynthesis through a separate origin (Christin et al., 2009). While it is accepted 

that NADP-malic enzyme activity is pH-dependent across C4 species (Johnson and 

Hatch, 1970), it is hypothesised that each of the C4 grasses in this study regulate NADP-

malic enzyme differently and dependence on pH varies in dark and light conditions. 

Finally, it is hypothesised that there are interspecies differences in the kinetic properties 

of NADP-malic enzyme, aspartate aminotransferase and alanine aminotransferase.  

The novel findings of this project are presented in Chapter 3, Chapter 4 and Chapter 5 of 

this thesis. A summary of our current understanding of the regulation of C4-related 

proteins is presented in Chapter 3, followed by novel light-dependent phosphorylation 

sites identified in Setaria viridis (supplementary data in Appendix A). In Chapter 4, the 

light and dark in vitro activities and the corresponding Michaelis-Menten constants (KM) 

of NADP-malic enzyme from Setaria viridis, Sorghum bicolor and Zea mays are 

presented and discussed. In Chapter 5, novel findings will show that the activity of 

aspartate aminotransferase is sensitive to dark and light changes and only aspartate 

aminotransferase in Zea mays is activated by L-malate and L-alanine. In Chapter 5 and 6, 

the implications of these findings will be discussed, with emphasis towards a putative, 

regulatory mechanism, which controls the flux of carbon, formation of PEP and 

efficiency of carbon assimilation in C4 photosynthesis and sugar homeostasis during 

illuminated and darkened conditions.  
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Chapter 2 – Methods 
 

2.1 Proteomics and Mass Spectrometry 

 

2.1.1 Growth of plant material 

 

Setaria viridis seeds accession A10 (harvested on April 2013) were received from Dr 

Asaph Cousins’ Lab (Washington State University, Pullman, WA, USA) in early 2014. 

Seed dormancy was overcome by cold stratification (Brutnell et al., 2010) or incubation 

at 45 °C prior to sowing (Rizal et al., 2013).  

 

Fig. 2.1. General workflow for the extraction of leaf proteins, sample processing and 

analysis by mass spectrometry. Mass spectrometry method optimised for in-gel 

digestion of plant proteins. Samples were analysed using electrospray ionisation LC-

MS/MS with ultra-sensitive Orbital Trap mass spectrometer.   
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Plants were grown for seed production and seeds were harvested from one-month old 

plants. To increase seed viability upon collection from bristles, seeds were dried at 40 °C 

for five days then stored at room temperature. Ten-month old Setaria viridis seeds were 

culled and sown into large trays containing nutrient rich M3 compost (ICL Levington, 

Ipswich, UK), supplemented with nitrogen (144 mg L–1), phosphorus (73 mg L –1) and 

potassium (239 mg L–1) and covered with a thin layer of compost, following the planting 

method described by Jiang et al. (2013). Trays were watered with distilled water and 

propagator lids were fixed onto potting trays. Lids were covered with a sheet of black 

cloth for no more than 36 h to allow for dark germination. Plants were grown in an 

environment controlled growth chamber using a 16 h photoperiod (28 °C/26 °C 

light/dark), maintaining 350 µmol m–2 s–1 photosynthetic photon flux density (PPFD), 

70% relative humidity and CO2 not exceeding 600 ppm. A week after germination, 

seedlings were transplanted into individual 7 cm pots and grown until the 6th leaf was 

fully emerged, equivalent to 2.5 weeks after germination (Figure 2.2).   

 

Fig. 2.2. 2.5-week old Setaria viridis photographed before the harvesting of leaves. 

During the harvest, cuts were made approximately half way from the tip and base of the 

leaf, indicated by the dashed line. One half-leaf section was collected per plant. 20 half-

leaves were used for each time-point.   
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2.1.2 Extraction of leaf proteins for mass spectrometric analysis 

 

All mass spectrometry protocols were performed under sterile conditions using 

proteomic-grade reagents and MilliQ water (18.2 MΩ cm–1). To assess changes in protein 

post-translational modifications during the dark−light transition, 20 half-leaf sections 

from different 2.5-week old Setaria viridis plants (Figure 2.2) were harvested and flash-

frozen in liquid nitrogen at 4 time-points:  2 h and 7.5 h into the dark period, 4 h and 15.5 

h into the photoperiod. Frozen leaf tissue was ground to a fine powder in liquid nitrogen 

using a pestle and mortar, homogenised in 200 mM Bicine-KOH, pH 9.8 and 50 mM 

dithiothreitol (DTT) containing 1× ethylenediaminetetraacetic acid (EDTA)-free 

protease and PhosSTOP phosphatase inhibitors (Roche, Mannheim, Germany) (Figure 

2.3). Crude extracts were cleared by centrifugation in Eppendorf tubes at 16,800 × g. 

Protein concentrations were determined spectrophotometrically at 595 nm following 

Bradford (1976) using bovine serum albumin (BSA) standards. Crude extracts were 

solubilised and boiled in sodium dodecyl sulfate (SDS) solubilisation buffer containing 

100 mM Tris-HCl pH 6.8, 200 mM DTT, 20% (v/v) glycerol, 4% (w/v) SDS, 0.2% (w/v) 

bromophenol blue (BPB).   

 

Fig. 2.3. Classical method for the extraction of proteins from plant leaves using 

liquid nitrogen. Proteins were extracted by grinding leaf tissue in liquid nitrogen using 

a pestle and mortar and homogenising in Bicine-KOH/DTT extraction buffer. Plant 

lysate was collected in Eppendorf tubes and cleared by centrifugation.       

 

2.1.3 In-gel tryptic digestion  

 

To analyse proteins by mass spectrometry, protein extracts were resolved by one-

dimensional (1D) SDS polyacrylamide gel electrophoresis (PAGE) using 4–20% 

gradient pre-cast SDS-gels (Bio-Rad, Hertfordshire, UK). Gels were run at 180 V for 40 
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min in a Bio-Rad electrophoresis gel tank containing 1× Tris-Glycine-SDS (TGS) 

running buffer. After electrophoresis, gels were stained with Expedeon InstantBlue™ 

(Expedeon, Harston, UK). Bands were excised, placed into Eppendorf Lo-Bind 

microtubes (Figure 2.4) and destained at 37 °C in a solution containing 200 mM 

ammonium bicarbonate (ABC) and 40% acetonitrile (ACN). Gel pieces were dried down 

at 45 °C in a vacuum concentrator (Eppendorf, Stevenage, UK), and then reduced for 1 

h at 56 °C with 200 µL 10 mM DTT and 50 mM ABC. Proteins were then alkylated in 

the dark at room temperature in a solution containing 55 mM iodoacetamide (IAA) and 

50 mM ABC. Gel pieces were briefly washed with 50 mM ABC and 50% ACN then 

dried down. Tryptic digestion reactions were performed at 37 °C using 0.4 µg of trypsin 

from porcine pancreas (Sigma-Aldrich, Saint Louis, USA) in 70 µL containing 1 mM 

HCl, 40 mM ABC and 9% ACN. The following day, peptides were transferred to 

collection Lo-Bind microtubes and gel pieces were treated with 100% ACN and 5% 

formic acid to protonate and extract remaining peptides. Extracted peptides were slowly 

dried at 30 °C to remove interfering organic solvents, and stored at –20 °C until use. 

 

Fig. 2.4. General workflow for sample processing using an in-gel tryptic digestion 

approach, prior to analysis by mass spectrometry. First, proteins were resolved on 4–

20% or 4–12% pre-cast SDS Bis-Tris gel and stained with Coomassie InstantBlueTM. 

Proteins in the SDS matrix were washed, reduced and alkylated to linearise peptides. 

Finally, proteins were treated with trypsin. Scissor symbols indicate trypsin cleavage 

sites at amino acids (orange circles) lysine (K) and arginine (R) within the protein 

(represented by the blue line). Peptides were de-salted using C18 spin tips to remove 

detergents and organic contaminants prior to analysis by mass spectrometry.   
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2.1.4 C18 column clean-up  

 

To increase peptide recovery and spectrum resolution, dried down peptides were desalted 

using Pierce C18 spin columns (ThermoFisher Scientific, Waltham, USA). Spin columns 

were activated with 50% methanol and washed with 0.5% trifluoroacetic acid (TFA) and 

5% ACN (equilibration buffer). Peptides were reconstituted in 50 µL equilibration 

buffer, applied to the C18 resin and centrifuged at 1000 × g, following manufacturer’s 

protocol (Pierce Biotechnology, Rockford, USA). Peptides were eluted in 70% ACN 

containing 0.1% formic acid.    

 

2.1.5 Phosphopeptide enrichment by titanium dioxide 

 

To enrich for phosphopeptides by titanium dioxide (TiO2) metal oxide affinity 

chromatography (MOAC), dried down peptides were reconstituted in 150 µL 26% lactic 

acid, 0.4% TFA and 80% ACN (Buffer A) and applied to the surface of the activated 

TiO2 resin (Figure 2.5) and centrifuged at 1000 × g. The flow-through was reapplied to 

the resin to maximise phosphopeptide binding. TiO2 columns were washed with Buffer 

A at 3000 × g, and peptides were eluted in 1.5% ammonium hydroxide and 5% 

pyrrolidine. Samples were desalted using a graphite clean-up kit.        
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Fig. 2.5. Workflow schematic illustrating the basic flow of analyte through TiO2 

phosphopeptide enrichment columns. Four Eppendorf tubes per time-point, containing 

dried down peptides, were removed from the –20 °C freezer and equilibrated to room 

temperature. Peptides were reconstituted in 150 µL lactic acid and run through activated 

TiO2 resins (blue cones) by centrifugation at low speed. Phosphopeptides were eluted 

into a new Eppendorf tube with 1.5% ammonium hydroxide and 5% pyrrolidine.    
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2.1.6 Mass spectrometry analysis 

 

Mass spectrometry analyses, using a high-performance liquid chromatography (UHPLC) 

MS/MS Orbital Trap Elite mass spectrometer, were performed by Dr Richard G. 

Beniston (Senior Scientific Officer, biOMICS, The University of Sheffield) from 

February 2014 to November 2015 and Dr Adelina E. Acosta Martin (Facility Manager, 

biOMICS, The University of Sheffield) from April 2016 to June 2017. The protocols for 

in-gel protein digests, instrument calibration, sample injection and data analysis were 

issued and performed as a service by biOMICS and optimised through communication 

with Dr R. G. Beniston and Dr A. E. Acosta Martin.   

 

2.1.7 General mass spectrometry protocol 

 

Dried down peptides were reconstituted in 0.1% formic acid and 2% ACN and injected 

into a Dionex Ultimate 3000 UHPLC using a PepMap100 C18 trap column at a constant 

rate of 10 µL min–1. The separation phase was performed over a 71 min gradient with 

increasing ACN concentrations from 2.4% to 72%, using a 15 cm PepMap100 C18 

analytical column (2 µm particle size, 100 Å pore size, 75 µm I.D) (ThermoFisher 

Scientific, Waltham, USA) at a rate of 250 nL min–1, at 35 °C. Nanospray ionization was 

performed at 2.0 kV, with the ion transfer capillary at 250 °C and S-lens setting of 60%. 

MS1 spectra ranging from 350–2000 m/z were acquired at a resolving power of 60,000. 

Following MS1 analysis, the top ten most abundant precursors were selected for MS2 

analysis using collision induced dissociation (CID).   

 

2.1.8 Immunoblotting 

 

Immunoblots were performed using PEPC and NADP-malic enzyme antibodies raised 

from C4 sequences, as described in Lundgren et al. (2016). Polypeptides were visualised 

with their appropriate Immunoglobulin G (IgG) secondary antibody grown in rabbit 

(polyclonal) or mouse (monoclonal) (Sigma-Aldrich, St. Louis, USA), in conjunction 
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with an enhanced chemiluminescence (ECL) blotting kit and Hyperfilm ECL (GE 

Healthcare, Buckinghamshire, UK). 

 

Fig. 2.6. Proteome Discoverer workflow used for identifying novel phosphorylation 

sites. Resulting spectrum files were searched against spectral libraries using MASCOT 

and SEQUEST and validated using a target decoy database. Phosphorylations were 

determined using the PhosphoRS algorithm in Proteome Discoverer.  
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Table 2.1. MS/MS search engines used during the study. The main MS/MS search 

engines that were available during the study. All search engines score protein matches as 

a measure of how similar experimental spectra are to theoretical peptide spectrum files.   

Search 

Engine 
Developer Reference 

MASCOT Matrix Science http://www.matrixscience.com 

SEQUEST 
ThermoFisher 

Scientific 

http://www.thermo.com/com/cda/product/detail/0,

1055,22209,00.html  

MaxQuant Max Planck Institute http://www.biochem.mpg.de/5111795/maxquant  

 

2.1.9 Data acquisition and analyses 

 

The resulting peptide spectra were searched against target databases (Table 2.1), or 

theoretical spectral libraries from the National Center for Biotechnology Information 

non-redundant (NCBInr) and the Universal Protein Knowledgebase (UniProtKB) protein 

sequence databases using MASCOT or SEQUEST. Peptide spectrum match (PSM) 

validation was performed using decoy amino acid sequences assembled from the target 

database during each analysis. Search parameters set as follows:  digestion with trypsin 

with a maximum of two missed cleavages, MS1=5 ppm, MS2=0.2 Da, 

carbamidomethylation of cysteine (57.02 Da) as a static modification and serine (Ser, S) 

and threonine (Thr, T) phosphorylation (79.97 Da, HPO3; 97.99 Da, H3PO4) and 

methionine oxidation (15.99 Da) as variable modifications. Phosphorylations were 

determined using PhosphoRSv3.1. PhosphoRS site probabilities were set to a minimum 

of 0.75 to compensate for poor PSM scores and due to the high degree of automation of 

PTM prediction algorithms (Zhao and Jensen, 2009). Low scoring phosphorylation sites 

were only considered if the phosphorylation was repeatedly assigned in subsequent 

experiments. For statistical confidence, accepted spectra were searched against decoy 

amino acid sequences. The false discovery rate (FDR) was defined at two stringencies 

(1% and 5%), requiring a minimum of two peptides per protein match, filtered above 

95% confidence. Candidate phosphopeptide significance was determined at P < 0.05 (E-

value) in MASCOT and the cross-correlation value (Xcorr) in SEQUEST, where Xcorr 

> 2.15 is significant. 

http://www.matrixscience.com/
http://www.thermo.com/com/cda/product/detail/0,1055,22209,00.html
http://www.thermo.com/com/cda/product/detail/0,1055,22209,00.html
http://www.biochem.mpg.de/5111795/maxquant
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Table 2.2. Online protein sequence databases used for MS/MS analyses. To increase 

the number of peptide spectrum matches, observed peptide spectra were searched against 

several plant protein databases. Uncharacterised proteins were subsequently searched 

against green plant protein sequences using BLAST.     

Target Database Online Directory FASTA 

NCBInr ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr.gz  

All Green 

Plants 

Viridiplantae 

UniProtKB/Swiss-

Prot 

UniProtKB/TrEMBL 

ftp.uniprot.org/pub/databases/uniprot/uniref/

uniref100  

Setaria italica 

Zea mays 

Sorghum 

bicolor 

 

Protein matches, which remained uncharacterised due to unreviewed protein accessions 

in UniProtKB, were searched against green plant protein sequences using the Basic Local 

Alignment Search Tool (BLAST). For consistency and due to uncharacterised matches 

from protein sequence repositories, along with the use of protein sequences from related 

species, differences in protein amino acid sequences of inferred proteins of multiple 

accession numbers and multiple protein isoforms, phosphorylation sites were annotated 

by the position of the modified residue in the phosphopeptide and not the amino acid 

number in the protein sequence, unless specifically indicated. UniProt accession numbers 

are indicated in the text (Table 3.3). 

Full length protein sequences and structural information were obtained from the 

UniProtKB database and annotated using FASTAnnotate. Alignments were performed 

using Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/). Protein schematics 

were drawn to scale using Adobe Illustrator and annotated with experimental data 

obtained (Appendix A). Peptide spectrum annotation was performed using pFind Studio 

(Fu et al., 2004; Li et al., 2005; Wang et al., 2007). Protein structure information was 

acquired from the Protein Data Bank (https://www.rcsb.org/) and proteins were modelled 

using PyMol (https://pymol.org). Additional protein information was acquired from 

BRENDA (http://www.brenda-enzymes.org/). Monoisotopic masses were calculated 

using the Peptide Mass Calculator (http://www.peptidesynthetics.co.uk). 

ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr.gz
ftp://ftp.uniprot.org/pub/databases/uniprot/uniref/uniref100
ftp://ftp.uniprot.org/pub/databases/uniprot/uniref/uniref100
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2.1.10 Phosphopeptide validation 

 

Novel phosphorylation sites were validated using a modified in-gel tryptic digestion. 

Half-leaves from 2.5-week old Setaria viridis and Sorghum bicolor plants were harvested 

at 7.5 h into dark and Megathyrsus maximus leaves were harvested at 7.5 h into the dark 

and 4 h into the light. Leaves were ground to a fine powder in liquid nitrogen, then 

homogenised in 200 Bicine-KOH, pH 9.8 and 40 mM DTT containing EDTA-free 

protease and phosphatase inhibitors. Lysate was centrifuged at 4 °C and aliquots pipetted 

into 0.5 mL Eppendorf tubes.  Protein concentrations were determined following 

Bradford (1976).   

 

Fig. 2.7 Stained protein gel containing four replicates of Setaria viridis (lane 1–4, 

V1–V4) and Sorghum bicolor (lane 6–9, G1–G4) protein extracts from 7.5 h 

darkened leaves. 50 µg of protein was loaded into each lane of a 4–12%, 1.5 mm Bis-

Tris SDS gel (NuPAGE), adding 15 µL of protein ladder into lane 5. Lane 10 was left 

empty. Gel was stained with InstantBlue™ stain for 15 min. Two sections (A and B) of 

the gel were excised per lane, per replicate, along the dashed lines. Dark band indicated 

by the black arrow below 98 kDa in Section A across eight samples is a combination of 

PEPC (109 kDa native) and PPDK (108 kDa native). 
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Protein extracts were solubilised in 4× lithium dodecyl sulfate (LDS) buffer and reduced 

using 10 mM DTT at 70 °C for 15 min then alkylated with 55 mM IAA for 15 min with 

dark incubation. 150 µg of protein was resolved using a 4–12% NuPAGE Bis-Tris 1.5 

mm gel and subsequently stained with Coomassie dye, InstantBlue™ stain for 15 min. 

After staining, gel pieces were excised from two regions of the gel, between 110 kDa 

and 50 kDa, as indicated on Figure 2.7. Gel pieces were destained at room temperature 

and incubated overnight with 0.15 µg of trypsin at 37 °C. The following day, peptides 

were extracted in ACN and 5% formic acid by gentle agitation at room temperature, dried 

down using a SpeedVac at 45 °C and stored at –20 °C before use.     
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2.2 Protein Isoform and Phosphoproteome Analysis 

 

 

Fig. 2.8. Setaria viridis sample preparation workflow for protein isoform analysis. 

Setaria viridis plants were grown in a controlled environment and harvested at four time-

points by flash-freezing in liquid nitrogen. Proteins were extracted using a urea-thiourea 

based buffer. Gels were either stained for whole protein or phosphoprotein, and the 

former subjected to analysis by mass spectrometry. 
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2.2.1 Sample preparation 

 

To analyse protein isoforms by 2-dimensional (2D) SDS-PAGE, 350 mg of plant tissue 

from four specific time-points (2 h and 7.5 h into dark; 4 h and 15.5 h into light) was 

homogenised in a concentrated lysis buffer containing 8.2 M urea, 2.3 M thiourea, 35 

mM Tris-base ((hydroxymethyl)aminomethane), 4.7% 3-[(3-

cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), 1 μM pepstatin, 1× 

nuclease mix, EDTA-free protease and PhosSTOP phosphatase inhibitors (Roche, 

Mannheim, Germany). Crude extracts were transferred into Eppendorf tubes, incubated 

on ice for 30 min with agitation every ten min for the complete removal of nucleic acids, 

and centrifuged at 4 °C at 16,800 × g until liquid fraction appeared clear. The supernatant 

was collected, and proteins were quantified using the 2D Quant Assay Kit (GE 

Healthcare, Buckinghamshire).       

 

2.2.2 Two-dimensional SDS-PAGE 

 

Protein extracts were subjected to analysis by two-dimensional (2D) gel electrophoresis 

on 7 and 24 cm resolving gels using a 29:1 acrylamide:bisacrylamide solution containing 

1.5 M Tris-HCl pH 8.8, 10% SDS, 0.5% (v/v) ammonium persulfate solution (APS) and 

0.05% (v/v) tetramethylethylenediamine (TEMED). Proteins in native conditions were 

solubilised in rehydration buffer (lysis buffer, BPB and 1.6% (v/v) DeStreak) containing 

1.6% (v/v) immobilized pH gradient (IPG) buffer (pH 4–7) and 20 mM DTT, vortexed 

and centrifuged at 13,300 × g for 5 min. 80 or 450 μg of protein for 7 or 24 cm 10% SDS 

gels, respectively, was fixed onto a pH 4–7 Immobiline DryStrip Gel (referred hereafter 

as IPG strip) (GE Healthcare, Buckinghamshire, UK) by passive rehydration. Isoelectric 

focusing (IEF) for 7 cm IPG strips was performed using a 12.5 h protocol (Table 2.3) at 

300–2000 volts (V), 50 μA and 24 cm IPG strips were focused using a protocol at 750–

10,000 V over the course of 15 h (Table 2.4).  
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Table 2.3. Programme for 7 cm IEF. Small format protocol used for isoelectric 

focusing of Setaria viridis proteins using 7 cm 10% SDS gels.   

Step Task Voltage (V) Duration 

1 Gradual voltage increase 300V 1h30 

2 Gradual voltage increase 500V 3h 

3 Voltage hold 500V 0h30 

4 Gradual voltage increase 2000V 1h 

5 Voltage hold 2000V 6h30 

 

Table 2.4. Programme for 24 cm IEF. Large format protocol used for isoelectric 

focusing of Setaria viridis proteins using 24 cm 10% SDS gels. 24 cm gels were used for 

subsequent spot analysis and protein identification using tandem mass spectrometry.   

Step Task Voltage (V) Duration 

1 Gradual voltage increase 750 1h 

2 Gradual voltage increase 2000 5h 

3 Voltage hold 2000 2h 

4 Gradual voltage increase 8000 2h 

5 Voltage hold 8000 3h 

6 Gradual voltage increase 10000 0h30 

7 Voltage hold 10000 1h30 

 

After IEF, IPG strips were immediately stored in plastic containers at –20 ˚C. Before the 

second dimension, IPG strips were immersed in 1× TGS containing 1% (w/v) DTT for 

15 min then alkylated with 2.5% (w/v) IAA. Strips were then positioned on 7 or 24 cm 

SDS gels and stabilised using 1% (w/v) agarose. 7 cm gels were run at 25 V for 15 min, 

then at 200 V until bands migrated to the bottom of the gel. 24 cm gels were run at 600 

V for 6.25 h with a maximum current of 10 μA for the first 3 h, then 40 μA per gel, while 

maintaining 20 °C.  
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2.2.3 ProQ Diamond phosphoprotein staining 

 

For phosphoprotein profiling, 7 cm SDS-PAGE gels were fixed in 50% (v/v) methanol 

and 10% (v/v) acetic acid, then left to stain in the dark on a rocker for 2 h in 65 mL 3-

fold diluted ProQ Diamond phosphoprotein gel stain (ThermoFisher Scientific, 

Weltham, USA), following Agrawal and Thelen (2009). After staining, gels were 

destained in 20% ACN and 5% sodium acetate, pH 4.0. ProQ Diamond stained gels were 

visualised with a FLA-5100 (FUJIFILM Life Science, Stamford, USA) using a 532 nm 

laser at 740 V intensity. Phosphoprotein signal was tuned against a PeppermintStick™ 

phosphoprotein standard (ThermoFisher Scientific, Weltham, USA).   

 

2.2.4 Coomassie staining 

 

7 and 24 cm 2D gels were stained using Coomassie Simply Blue (ThermoFisher 

Scientific, Weltham, USA) with gentle agitation at 4 °C. Stained gels were washed twice 

with ultra-pure water and imaged using the FLA-5100 at 500 V with 635 nm laser 

excitation.     
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2.3 Determining Enzyme Kinetics 

 

 

Fig. 2.9. Schematic showing the workflow for protein assays using Setaria viridis, 

Sorghum bicolor and Zea mays leaf proteins. Plants were grown in four sets of 20 

replicates in a controlled chamber under ambient CO2 (400 ppm), long days at 28 °C and 

900 µmol m–2 s–1 PPFD. Leaf tips of 2.5-week old plants were harvested by flash-freezing 

in liquid nitrogen. Proteins were extracted, quantified and normalised prior to 

measurement.   
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2.3.1 Preparation of leaf homogenates for enzyme measurement  

 

To determine the enzymatic properties of PEPC, NADP-malic enzyme, aspartate 

aminotransferase and alanine aminotransferase in response to the dark to light transition, 

two 16 mm × 8 mm sections (Figure 2.10) were cut no more than 2 cm from each leaf tip 

of mature Setaria viridis and Sorghum bicolor plants at four time-points (2 h and 7.5 h 

into dark; 4 h and 15.5 h into light) and Zea mays at two time-points (7.5 h into dark and 

15.5 h into light), placed into a microtube and flash-frozen in liquid nitrogen. Leaf 

proteins were extracted from the leaf section closer to the leaf tip, as detailed in Chapter 

2, Methods Part I, using 1 mL of 200 mM Bicine-KOH, pH 9.8, including protease 

inhibitors. Crude extracts were cleared by centrifugation in Eppendorf tubes at 16,800 × 

g at 4 °C, then 250 µL aliquots were stored at –80 °C.  

 

Fig. 2.10. 2.5-week old Setaria viridis (I) and Sorghum bicolor (II) leaves 

photographed before harvests. Proteins for enzyme assays were extracted from leaf 

section A. Chlorophyll content was measured in the adjacent leaf section (B). The 16 mm 

× 8 mm leaf sections were accurately cut using a metal template.     

I 

II 
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2.3.2 Protein quantification 

 

Protein concentrations were determined for leaf homogenates spectrophotometrically at 

595 nm using a BSA standard curve (Figure 2.11) following Bradford (1976).   

 

Fig. 2.11. The BSA standard curve that was used to determine protein concentration 

in leaf homogenates. Absorbance of bovine serum albumin standards (0–2000 µg), in 

solution, was determined spectrophotometrically. Linear regression analysis was 

performed, and the equation was used to calculate total protein concentration in leaf 

lysates.  

Prior to each assay, crude extracts were normalised against the lowest protein 

concentration using equation 1, 

(
A𝑛

A𝑥
− 1) × U𝑖 = U𝐹 

where An is the absorbance of a sample, Ax is the absorbance of the least concentrated 

sample, Ui is the initial crude extract volume (mL) and UF is the volume (mL) of buffer 

to add each extract to normalise them against the least concentrated extract.     

(1) 
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2.3.3 Measurement of enzymes 

 

Rapid-assays are summarised in Table 2.8. Each enzyme assay consisted of six biological 

replicates across ten substrate concentrations (5000 range fold), each including three 

technical replicates on a 96-well microtitre plate (Figure 2.12). Reactions were initiated 

by the addition of 5 µL of leaf lysate (150 µL final volume) and monitored over 15 cycles 

(20 min) or until reaction reached saturation. For each assay, no leaf protein and no 

substrate controls were used to subtract non-enzyme mediated reaction background 

signals. Reaction rate given in terms of the amount of NADP (Figure 2.13A) or NADPH 

(Figure 2.13B) formed, per amount of protein used to initiate the reaction, per unit time.   

  

Fig. 2.12. Example of a 96-well microtitre plate assay design used for determining 

Michaelis-Menten kinetics. Each plate contained three biological replicates (A, B and 

C), no substrate () and designated controls (), across ten substrate concentrations to 

determine KM constants. Reactions were initiated by adding 5 µL of normalised protein 

extract to 145 µL of mastermix, giving a final volume of 150 µL and monitored 

spectrophotometrically over time in a continuous assay at 25 °C.    
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Fig. 2.13. NADH (A) and NADPH (B) standard curves for determining enzyme 

reaction rates. The assay was performed using serial dilutions of a freshly made NADH 

or NADPH stock solutions. Linear regression analysis was performed, and the goodness 

of fit was determined. NADH curves were used for PEPC, PEPCK and aminotransferase 

assays. NADPH used for the NADP-malic enzyme assays.  

A 

B 
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2.3.4 Phosphoenolpyruvate carboxylase assay 

 

 

Fig. 2.14. Reaction mechanism showing the carboxylation of phosphoenolpyruvate 

(PEP) to oxaloacetate (OAA) catalysed by PEPC in C4 photosynthesis. Highlighted 

region in blue box indicates the direction of the in vitro reaction, monitoring the reduction 

of OAA to malate via MDH. The number of carbons is indicated below each metabolite. 

CA, carbonic anhydrase; PPDK, pyruvate phosphate dikinase; Pi, phosphate.                      

Phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) was assayed at 340 nm, 25 °C, 

following the reduction of oxaloacetate (OAA) by nicotinamide adenine dinucleotide 

(NADH) (Figure 2.14). 150 μL reaction mixtures contained 97.32 mM 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid-potassium hydroxide (HEPES-KOH), 

pH 7.5, 10 mM NaHCO3, 5 mM glucose-6-phosphate (G6P), 5 mM MgCl2, 0.2 mM 

NADH and 6 units of malate dehydrogenase (MDH) (Table 2.5). Absorbance signals of 

reaction mixtures containing no leaf protein were used to correct for non-enzymatic 

oxidation of NADH.    

Table 2.5. PEPC mastermix. 

Stock Concentration Reagent Final Concentration 

0.1 M HEPES-KOH, pH 7.5 97.32 mM 

1 M NaHCO3 10 mM 

1 M G6P 5 mM 

0.5 M MgCl2 5 mM 

0.25 M NADH 0.2 mM 

1200 U mg–1 (5 mg mL–1) MDH 6 U mL–1 
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2.3.5 NADP-malic enzyme assay 

 

 

Fig. 2.15. Reaction mechanism showing the decarboxylation of L-malate by NADP-

malic enzyme (ME) in bundle sheath chloroplasts of C4 plants. The in vitro assay 

monitors the formation of NADPH (in red) following the decarboxylation of L-malate by 

the NADP-dependent malic enzyme. In bundle sheath chloroplasts of C4 plants, malate 

is oxidised to pyruvate (pyr), forming NADPH and CO2. CO2 then enters the PCR cycle. 

The number of carbons is indicated below each metabolite. RuBP, ribulose-1,5-

bisphosphate; 3-PGA, 3-phosphoglycerate.   

NADP-dependent malic enzyme (NADP-ME; EC 1.1.1.40) was spectrophotometrically 

assayed in the forward direction (decarboxylating), at 340 nm at 25 °C, following the 

reduction of NADP+ (Figure 2.15). The reaction mixture contained 98.90 mM Tris-HCl, 

pH 8.0, 5 mM MgCl2 and 0.5 mM nicotinamide adenine dinucleotide phosphate 

(NADP+) (Table 2.6). The pH and concentration of MgCl2, required to achieve optimal 

rates of reaction, were determined for NADP-malic enzyme from darkened and 

illuminated leaves.  

Table 2.6. NADP-malic enzyme mastermix. 

Stock Concentration Reagent Final Concentration 

0.1 M Tris-HCl, pH 8.0 98.90 mM 

0.5 M MgCl2 5 mM 

0.5 M NADP+ 0.5 mM 
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2.3.6 Aspartate and alanine aminotransferase assay 

 

 

Fig. 2.16. Reaction mechanism for the aspartate (Asp) and alanine (Ala) 

aminotransferase assays. Aminotransferases were assayed by coupling to malate 

dehydrogenase (MDH) or lactate dehydrogenase (LDH).  2-OG, 2-oxoglutarate; OAA, 

oxaloacetate. 

Aspartate aminotransferase (EC 2.6.1.1) was assayed spectrophotometrically at 340 nm 

by coupling to MDH (Table 2.7), following the oxidation of NADH to NAD+ (Figure 

2.16) at pH 8.0. The range of L-aspartate and 2-oxoglutarate concentrations used in this 

assay was 0-25000 µM and 0–2000 µM, respectively. The activity of aspartate 

aminotransferase was assayed in the presence of L-malate, L-alanine, 3-PGA, PEP, 

pyruvate and dimethyl-2-oxoglutarate, an analogue of 2-oxoglutarate.  

Alanine aminotransferase (EC 2.6.1.2) was assayed in the presence of L-alanine towards 

the formation of lactate at pH 7.5, by coupling to LDH. L-Alanine and L-aspartate were 

used as the negative control for aspartate and alanine aminotransferase, respectively. 

Table 2.7. Aminotransferase mastermix. Mastermix used for aspartate and alanine 

aminotransferase assays.  Indicates alanine aminotransferase reagents. 

Stock Concentration Reagent Final Concentration 

1 M Tris-HCl, pH 8.0 or 7.5 50 mM 

50 mg mL–1 Pyridoxal phosphate 10 µg mL–1 

0.5 M EDTA 2 mM 

0.5 M NADH 0.2 mM 

6000 U mg–1 (1.0 mg mL–1) MDH 4 U mL–1 

1000 U mg–1 (9.3 mg mL–1) LDH 4 U mL–1 
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Table 2.8.  Summary of enzyme assays. 

Assay Wavelength 

(nm) 

Spectroscopy 

PEPC 340 

Measures the concentration of NADH.   

Abs should decrease over time due to oxidation to 

NAD+. 

PEPCK 340 

Measures the concentration of NADH. 

Abs should decrease over time due to oxidation to 

NAD+. 

NADP-ME 340 

Measures the concentration of NADPH. 

Abs should increase over time due to NADP+ 

reduction to NADPH. 

AspAT 

AlaAT 
340 

Measures the concentration of NADH.   

Abs should decrease over time due to oxidation to 

NAD+. 

Bradford 595 
Measures the concentration of total protein present 

in the crude extract (Beer-Lambert Law). 

Chlorophyll 
652 (Sample) 

750 (Blank) 

Measures the concentration of chlorophyll a (mg 

L–1) in 80% ethanol or 80% chilled acetone 

(Appendix B).  
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2.3.7 Determining Michaelis-Menten kinetics  

 

Raw data was analysed in Microsoft Excel and enzyme reaction rates were graphed using 

Prism 7 (GraphPad Software) and the Michaelis-Menten constants (KM) were determined 

using a curve fitting algorithm in GraphPad, using the Michaelis-Menten model (2),   

 

𝑉0 = 𝑉max ·
[S]

[S] + 𝐾M

 

 

where V0 is equal to the velocity of the reaction, Vmax is the maximum reaction rate, [S] 

is the substrate concentration and KM is the Michaelis-Menten kinetics constant. Initial 

velocity is given as an arbitrary unit of absorbance (Abs) change over time (min).  

NB. Vmax cannot be reported because enzyme assays were conducted using enzyme in 

crude leaf lysates and not purified protein. Also, for simplicity, KM will be referred to as 

affinity. However, it should be noted that KM and affinity are not interchangeable due to 

limitations of the Michaelis-Menten model. To properly discuss substrate affinity for an 

enzyme, the structural properties and binding interactions must be known. 

Affinity fold change (i.e. increase or decrease) was calculated as a ratio of two KM values 

using equation (3),  

Fold change = 
𝐾M

2

𝐾M
1  − 1 

where KM
2 is the new value (in response to a variable, for example light) and KM

1 is the 

original value. An increase in KM corresponds to a decrease in affinity (positive fold 

change) and decrease in KM corresponds to an increase in affinity (negative fold change).   

(2) 

(3) 
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Chapter 3 – Identification of novel light-dependent 

phosphorylation sites of C4-related enzymes 
 

3.1 Introduction 

 

C4 photosynthesis has evolved independently in over 60 plant lineages from the classical 

C3 pathway, involving the gradual transition to Kranz anatomy and recruitment of C3 

genes for C4 function (Sage et al., 2012). The genetic mechanisms that underpinned the 

regulation of mesophyll- or bundle sheath-cell specific gene expression evolved in 

parallel across multiple C4 origins (Sinha and Kellogg, 1996; Brown et al., 2011; 

Williams et al., 2013). C4 plant lineages have also shared mechanisms for determining 

C4-specific enzyme function through changes to amino acid sequences, though the degree 

of parallelism depends on the selective pressures acting on specific residues. For 

instance, the acquisition of the C4-specific PEPC, through the evolution from the 

ancestral non-C4 PEPC, occurred repeatedly across several independent C4 lineages 

(Christin et al., 2007). Furthermore, Christin et al. (2007), also showed that particular 

PEPC codon mutations, at positions 517, 577, 579, 761 and 780 for serine and threonine 

amino acids, were under positive selection in independent C4 lineages and may be 

determinants of C4 characteristics. These amino acid substitutions, namely the A780S 

transition in Zea mays, have been shown to be contenders associated with the regulatory 

properties and kinetics of C4-specific PEPCs (Dong et al., 1998; Bläsing et al., 2000; 

Svensson et al., 2003). The amino acids that evolved in parallel across independent 

lineages may be indications of the adaptations that were advantageous in determining C4 

function (Williams et al., 2013), but the significance of these residue mutations, with 

regards to the phosphoregulatory mechanisms underlying the kinetic properties of C4-

related enzymes, have not been studied in detail.  

In plants, serine and threonine residues are frequently phosphorylated (Friso and van 

Wijk, 2015) and are prominent sites of regulation for C4-related enzymes like PEPC, 

PPDK and PEPCK. These mechanisms of regulation are often complex, and may be 

dependent on illumination or circadian controllers (Jiao and Chollet, 1988; Jiao et al., 

1991; Wilkins, 1992; Nimmo, 1998; Hartwell et al., 1999). The light-dependent 

phosphorylation of PEPC is well documented at the invariant N-terminal serine across 



 

67 

 

grass species (Jiao and Chollet, 1988; Jiao and Chollet, 1991), however despite evidence 

of the selection pressures of serine and threonine residues in C4 lineages presented by 

Bläsing et al. (2000) and Christin et al. (2007), little is known about the regulatory 

characteristics that span across the C4-specific PEPC sequence. Furthermore, the 

phosphoregulatory properties of other essential C4-related proteins that evolved C4-

specific function, like aspartate and alanine aminotransferase (Hatch and Mau, 1973) or 

NADP-malic enzyme (Christin et al., 2009; Saigo et al., 2013), have not been described 

in C4 plants. 

 

3.1.1 The role and diversity of post-translational modifications in plants 

 

Post-translational modifications (PTMs) play a pivotal role in the regulation of proteins 

and contribute to the functionality of the proteome (Figure 3.1). The diversity of PTMs, 

together with their reversible, dynamic nature, contribute to protein function, which is 

essential for the regulation of metabolic pathways, protein-protein interactions or 

activation of signal transduction pathways (Karve and Cheema, 2011). However, these 

tightly regulated, dynamic mechanisms are often overshadowed by spontaneous 

enzymatic reactions induced by reactive species such as free radicals or redox potentials, 

which non-specifically modify amino acids and result in irreversible changes to protein 

structure and function (Friso and van Wijk, 2015).    

 

Fig. 3.1. Schematic showing the role of PTMs on the functional complexity of the 

proteome. Expressed genes undergo splicing mechanisms creating polyadenylated gene 

transcripts (coloured lines, –AAA). Proteins shown as multi-coloured swirls.  
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In plants, proteins may be phosphorylated, ubiquitinated, acetylated or methylated (Table 

3.1, 3.2) by enzymatic reactions mediated by regulatory enzymes (Friso and van Wijk, 

2015). In the event of phosphorylation (Figure 3.2) protein kinases transfer the γ-

phosphate of ATP onto tyrosine, threonine or serine residues (Hunter, 2007). Histidine 

and aspartate residues can also undergo phosphorylation, but at low frequencies (Friso 

and van Wijk, 2015). 

 

Fig. 3.2. In vivo reversible phosphorylation mechanism of serine, threonine and 

tyrosine residues. Protein kinases and phosphorylases regulate the reversible 

phosphorylation of serine, threonine and tyrosine residues (only functional groups 

shown), whereby phosphate groups are linked by phosphoester bonds (bottom) via an 

oxygen atom (in orange), resulting in an 80 Da mass shift in the target protein (top). 

Arrows show the direction of phosphorylation by protein kinases and dephosphorylation 

by phosphorylases.       
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Reversible modifications, such as phosphorylation, typically regulate protein activity 

through the diurnal cycle, but PTMs in plants like acetylation, play another crucial role 

in determining protein localisation for organelle-specific reactions. Carbon fixation in 

plants depends on cytosolic protein activity as well as protein activity in subcellular 

compartments such as chloroplasts, mitochondria and peroxisomes (Hodges et al., 2013). 

However, the PTM diversity of plastidic proteins and how they regulate plant metabolism 

is unclear (Lehtimäki et al., 2015). Additionally, proteins may undergo non-specific 

modifications, which may affect other PTMs on the same protein or nearby proteins. A 

single PTM can serve as a signal promoting the binding of regulator proteins that mediate 

subsequent specific or non-specific modifications (Hunter, 2007). Direct competition 

between PTMs can result in the blocking of amino acid side chains preventing site-

specific modifications. For instance, cysteine residues are essential for plant 

development, immunity, pathogen defence, protein stability and enzyme activity (Kim et 

al., 2015) but are prone to non-specific PTMs typically by redox regulation (Michelet et 

al., 2013), due to a highly reactive thiol group in the side-chain. Under specific 

conditions, such as oxidative stress, cysteine residues are susceptible to spontaneous, 

non-enzymatic modifications, which block sites of regulation (Marino and Gladyshev, 

2012; Chung et al., 2013; Bhattacharjee et al., 2015; Friso and van Wijk, 2015).  

Enzymes involved in carbon fixation, such as Rubisco, PEPCK and NADP-malate 

dehydrogenase (MDH), as well as enzymes in the PCR cycle, are regulated by redox 

mechanisms (Table 3.2) (Ashton and Hatch, 1983; Drincovich and Andreo, 1994; Raines 

et al., 2000; Schürmann and Buchanan, 2008; Michelet et al., 2013; Gütle et al., 2016). 

These regulatory mechanisms are widespread in plants and other biological systems. For 

instance, in Mycobacterium tuberculosis, PEPCK preferentially catalyses the conversion 

of oxaloacetate to PEP, but under hypoxic and growth-limiting conditions, the 

anaplerotic reaction (in the reverse direction) towards the formation of oxaloacetate is 

favoured (Machová et al., 2014). These changes are controlled by the reduction of 

disulphide bridges forming between cysteine residues, either by maintaining reducing 

intracellular environments, or interaction with reducing agents, such as thioredoxin 

(Machová et al., 2014). It was shown that the formation of disulphide bridges in PEPCK 

resulted in the loss of enzyme activity (Carlson et al., 1978; Krautwurst et al., 1995), but 

such modifications can have more intrinsic effects on tertiary protein structures. It was 

recently shown that the interaction between Cys-391 and Cys-397, via a disulphide 
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bridge, induced changes to the structure and function of PEPCK from Mycobacterium 

tuberculosis, whereas the reduced form of these residues stabilised PEPCK and 

influenced the anaplerotic function (Machová et al., 2017).  

In C4 plants, NADP-MDH is activated in illuminated and reducing conditions. In Zea 

mays, NADP-MDH is inactive in darkened leaves, but when transferred from darkness 

to illumination, activity can be restored (Johnson and Hatch, 1970). In addition, when 

NADP-MDH from darkened leaves was subjected to 5 mM DTT, enzymatic activity was 

fully restored, suggesting that the reduced form of the enzyme was essential for catalysis 

(Johnson and Hatch, 1970). Furthermore, NADP-MDH was inactivated when extracted 

in the absence of thiol-reducing agents such as DTT or thioredoxin (Jacquot et al., 1981; 

Ashton and Hatch, 1983). The light activation of NADP-MDH is regulated by the 

reduction of a disulphide bridge occurring between Cys-10 and Cys-15 within the N-

terminal of NADP-MDH (Decottignies et al., 1988).    

 

3.1.2 Phosphoenolpyruvate carboxylase 

 

PEPC (EC 4.1.1.31) plays a pivotal role in C4 photosynthesis, catalysing the irreversible 

β-carboxylation of PEP to oxaloacetate (OAA) by utilising bicarbonate (HCO3
−

) (Figure 

3.3) in mesophyll cells of C4 plants (Chollet et al., 1996; Cousins et al., 2007) and is by 

far one of the best characterised enzymes of the C4 pathway. The active form of PEPC 

consists of four identical 109 kDa subunits (Hatch, 1978; Matsumura et al., 2002) and in 

vivo catalysis is dependent on a divalent cation, usually Mg2+, though Mn2+ and Co2+ can 

be replaced in vitro (O'Leary et al., 1981).       

 

Fig. 3.3. Irreversible β-carboxylation of PEP to OAA by PEPC. 

In C4 plants, PEPC is activated by glucose-6-phosphate and allosterically inhibited by 

malate and aspartate (Huber and Edwards, 1975; Andreo et al., 1987). Inhibition by 

malate is less pronounced when assayed at pH 8.0, rather than in physiological pH 7.3 

and sensitivity to inhibition by malate is reduced with increasing concentration of Mg2+ 
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(Hatch, 1978; Wedding et al., 1990; Echevarría et al., 1994; Duff and Chollet, 1995). 

Sensitivity to feedback inhibition by malate or activation by glucose-6-phosphate is 

regulated by light-dependent reversible phosphorylation (Jiao and Chollet, 1991; Chollet 

et al., 1996). The underlying mechanism was first described by Nimmo et al. (1984), 

demonstrating that the PEPC from Crassulacean acid metabolism (CAM) species was 

more sensitive to inhibition by malate during illumination than in the dark period, when 

PEPC is active. Furthermore, when the phosphorylated night form was purified and 

dephosphorylated in vitro, the sensitivity to malate inhibition increased (Nimmo et al., 

1986).   

Using the 32P-phosphorylation system, the C4-form of PEPC from Zea mays was shown 

to undergo phosphorylation in vitro (Budde and Chollet, 1986). Consistent with the 

CAM-form, the phosphorylation of the C4-specific PEPC was determined to occur 

predominantly at a single serine residue within the N-terminal of PEPC from Zea mays 

(Ser-15) and Sorghum bicolor (Ser-8) during illumination, when PEPC from C4 plants is 

active (Jiao and Chollet, 1988; Jiao and Chollet, 1990; Jiao et al., 1991). The relationship 

between phosphorylation and sensitivity to malate inhibition was substantiated in 

phosphomimetic mutants of the Sorghum bicolor PEPC expressed in Escherichia coli, 

which showed that substituting the Ser-8 with aspartate (S8D) resulted in reduced 

inhibition by malate (Wang et al., 1992), whereas substitution to cysteine (S8C) showed 

no reduced sensitivity (Duff et al., 1993). Also, while the phosphorylation of the C4-

specific PEPC decreases sensitivity to inhibition by malate during illumination and 

causes about a two-fold increase in Vmax, it does not alter the its affinity for bicarbonate 

or PEP (Vidal and Chollet, 1997). The phosphorylation of PEPC is essential to maintain 

high nocturnal carboxylase activity in CAM plants (Boxall et al., 2017), while in 

Flaveria bidentis (C4), phosphorylation of PEPC is not essential to maintain high CO2 

assimilation rates during illumination (Furumoto et al., 2007). 
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Fig. 3.4. Regulation of C4-specific PEPC activity by in vivo serine phosphorylation. 

Light-dependent PEPC phosphorylation (serine in red) is regulated by PEPC kinase (PK), 

which is more active in the light. PEPC kinase is regulated by cytosolic pH and Ca2+. 

Dephosphorylation (serine in blue) is mediated by protein phosphatase 2A (PP). 

Phosphorylated PEPC can maintain higher maximal activity due to a decrease in 

sensitivity to inhibition by malate. Figure adapted from Chollet et al. (1996). 

PEPC is maximally phosphorylated within one hour of illumination by PEPC kinase 

(Vidal and Chollet, 1997; Bailey et al., 2007) and dephosphorylated by a type 2A protein 

phosphatase shortly before the dark period in C4 plants (Carter et al., 1990; Vidal and 

Chollet, 1997; Dong et al., 2001). Another study showed that the phosphorylation of 

PEPC in Zea mays occurred before the onset of light and was dephosphorylated before 

the dark period (Ueno et al., 2000), suggesting that to some degree, C4 photosynthesis is 

controlled by circadian mechanisms (Wang et al., 2011). In fact, the activity of PEPC is 

largely dependent on the light-dependent activation of PEPC kinase (Figure 3.4) rather 

than changes of protein phosphatase 2A activity (Echevarría et al., 1990; Carter et al., 

1991; McNaughton et al., 1991). Moreover, two protein kinases can phosphorylate PEPC 

at the N-terminal serine residue, but only the Ca2+-dependent protein kinase shows light 

dependency (Jiao and Chollet, 1988; McNaughton et al., 1991; Li and Chollet, 1993; 

Wang and Chollet, 1993). In the C4-form, PEPC kinase is regulated by metabolic factors, 

such as protein turnover, photosynthesis and pH (Jiao et al., 1991; Jiao and Chollet, 1992; 

Li and Chollet, 1993), whereas activation of the CAM-form PEPC kinase is controlled 

by a circadian oscillator, rather than light to dark transitions (Duff et al., 1996; Giglioli-
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Guivarc'h et al., 1996; Vidal and Chollet, 1997). At the protein level, the activity of PEPC 

kinase is also regulated by ubiquitination mediated degradation (Agetsuma et al., 2005). 

In relation to PEPC, the PEPC kinase is also preferentially expressed in mesophyll cells 

in Zea mays, suggesting the existence of additional regulatory controls at the gene level 

(Li et al., 2010). 

Recent studies have suggested that the activation mechanism of the C4-form PEPC is 

dependent on cross-talk between phosphorylation and lysine ubiquitination. Lysine 

ubiquitination has received attention in recent years, because, like phosphorylation, it is 

reversible, widespread in eukaryotic cells, occurs at relatively higher frequencies and 

mediated by a myriad of regulator enzymes (Hunter, 2007; Huber, 2011; Friso and van 

Wijk, 2015). Monoubiquitination was first described by Uhrig et al. (2008), 

demonstrating that the non-photosynthetic PEPC was modified at Lys-628 in 

germinating castor oil seeds. Ruiz-Ballesta et al. (2014) demonstrated that PEPC 

monoubiquitination occurred at Lys-624 in developing Sorghum bicolor seeds, and 

proposed a novel network of regulatory mechanisms contributing to PEPC activity. In 

addition to this, recent evidence suggests that the activation cascade of PEPC depends 

on several modifications, other than phosphorylation. This is supported in maturing 

phosphate-deficient roots of Hakea prostrata, where PEPC deubiquitination was 

followed by phosphorylation, promoting enzyme activity in vivo (Shane et al., 2013).  

 

3.1.3 Pyruvate, phosphate dikinase 

 

PPDK (EC 2.7.9.1) catalyses the ATP-dependent regeneration of PEP from pyruvate in 

mesophyll chloroplasts of C4 plants (Figure 3.5). Similar to PEPC, the active form of 

PPDK is a homotetramer made up of four 94 kDa subunits (Hatch, 1978).  

 

Fig. 3.5. Regeneration of PEP from pyruvate by PPDK in C4 plants. 

The reaction mechanism of the C4-specific PPDK involves two steps. The reaction begins 

when PPDK binds two ATP and phosphate to form a phosphohistidine intermediate, 
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AMP and diphosphate, and is subsequently followed by a ping-pong mechanism for the 

addition of phosphate to pyruvate to form PEP (Hatch, 1978; Roeske et al., 1988). PPDK 

is inhibited by PEP, AMP and PPi, but these products are readily utilised by high 

activities of PEPC, adenylate kinase and pyrophosphatase in mesophyll cells, thus the 

C4-specific PPDK reaction is favoured towards the formation of PEP (Hatch and Slack, 

1968; Hatch, 1978). Mg2+ is also essential for catalysis and the increasing concentration 

of Mg2+ in the stroma during illumination correlates to the light activation mechanism of 

PPDK (Leegood and Walker, 1999).  

An early study demonstrated that PPDK was less active in darkened leaves than 

illuminated leaves of Amaranthus palmeri (Slack, 1968). This study also showed that the 

in vitro activity of PPDK declined after transferring light-grown sorghum and sugarcane 

plants to a period of darkness. In addition to this, PPDK is activated in vitro with 

treatment by a stromal regulatory protein and phosphate and deactivated by a regulatory 

protein and ADP (Budde et al., 1985). To determine the activation properties of PPDK 

from Zea mays, PPDK was assayed in vitro using radioactively labelled phosphate. In 

this approach, it was demonstrated that PPDK underwent phosphorylation at a threonine 

residue by an ADP-dependent regulatory protein, resulting in the deactivation of the 

enzyme (Ashton and Hatch, 1983). Furthermore, the activity of PPDK depends on the 

degree of phosphorylation. It was shown that one 94 kDa subunit from the inactive form 

of PPDK contained two-fold higher content of phosphate than one subunit from the 

active form (Budde et al., 1985). 

In Zea mays, PPDK is inactivated in the dark by phosphorylation at the active site (Thr-

456) and re-activated by dephosphorylation (Roeske et al., 1988). Both the 

phosphorylation and dephosphorylation of PPDK are uniquely regulated by a single 

bifunctional regulatory protein (PPDK-RP) (Figure 3.6) (Chastain et al., 1997; Chastain 

et al., 2000). Although PPDK-RP is active in mesophyll cell chloroplasts where PPDK 

is localised, transcripts of PPDK-RP were predominantly found in bundle sheath cells of 

Zea mays (Li et al., 2010). Also, despite its essential role in the regulation of PPDK, 

PPDK-RP appears to be in low abundance in mesophyll chloroplasts (Wang et al., 2011). 

However, being localised in the stroma of the chloroplast, PPDK-RP is regulated by 

light-dependent changes in ADP, which increases after the light to dark transition, 

resulting in higher PPDK-RP activity and PPDK phosphorylation in darkened leaves 

(Chastain and Chollet, 2003). Conversely, the phosphatase reaction of PPDK-RP is 
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favoured in illuminated conditions, when ADP is limiting, resulting in fewer copies of 

PPDK being phosphorylated. 

 

 

Fig. 3.6. Light activation mechanism of the C4-specific PPDK by reversible 

phosphorylation.  Phosphorylation (in red) and dephosphorylation (in blue) is regulated 

by a bifunctional ADP-dependent regulator protein (PR). PPDK is inactivated by 

phosphorylation in the dark and activated by dephosphorylation. Figure adapted from 

Chastain et al. (1997).  

The catalytic effect of phosphothreonine-456 of PPDK from Zea mays was determined 

by direct mutagenesis in Escherichia coli, using serine (also a target for 

phosphorylation), valine and aspartate substitutions (Chastain et al., 1997). In this study, 

it was shown that a threonine to serine substitution at position 456 (T456S) did not hinder 

the phosphorylation of PPDK nor affected catalysis, but resulted in less effective enzyme 

inactivation, whereas the substitution to aspartate (T456D), mimicking a non-labile 

phosphorylation, resulted in complete enzyme inactivation (Chastain et al., 1997). 

Chastain et al. (1997) also showed that the dephosphorylated form (T456V) remained 

active. Further analysis also showed that a second phosphomimetic mutant (T456E) 

abolishes catalytic activity, while substitutions to tyrosine (T456Y, another target for 

phosphorylation) and phenylalanine (T456F) substantially decreases activity (Chastain 

et al., 2000).   

In a study to determine the tolerance of low temperatures on the photosynthetic activity 

in Zea mays showed that the accumulation of PPDK in mesophyll chloroplasts decreased 

by 50% when plants were grown in low temperature, though transcript amounts were 

unchanged, suggesting that low temperature had little effect on gene expression (Naidu 

et al., 2003). While there are no other known regulatory sites on the C4-specific PPDK, 

Wang et al. (2011) speculates that PPDK may be controlled by more complex 

mechanisms, thus explaining the difference between gene expression and accumulation 
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of PPDK in mesophyll chloroplasts. In fact, it has been recently demonstrated that the 

PPDK regulatory mechanism at Thr-527 in Zea mays is strictly controlled by light 

intensity rather than by the dark to light transition (Chen et al., 2014). It is important, 

however, that inactivation by decreasing light intensity had been previously noted 

(Burnell et al., 1986), but had not been attributed to a single residue. In the recent study, 

it is suggested that increasing the expression of PPDK in mesophyll cells does not imply 

an increase enzymatic activity and there could be other regulatory controls or regulatory 

sites that are still unaccounted for (Chen et al., 2014). 

 

3.1.4 Phosphoenolpyruvate carboxykinase 

 

Compared to PEPC and PPDK, the light-dependent phosphorylation of PEPCK 

(4.1.1.49) is the most recent to be elucidated in C4 plants, yet other C4-related proteins 

have not been shown to be regulated by phosphorylation (Table 3.2). In PEPCK- and 

NAD-malic enzyme subtypes and certain NADP-malic enzyme C4 plants, such as Zea 

mays (Walker et al., 1997), PEPCK catalyses the cytosolic ATP-dependent 

decarboxylation of oxaloacetate (OAA) in bundle sheath cells, forming CO2 and PEP 

(Figure 3.7) (Hatch, 1978). 

 

Fig. 3.7. ATP-dependent decarboxylation of OAA by PEPCK in C4 plants. 

Initial observations noted that the activity of PEPCK and accumulation in bundle sheath 

cells changed very little between light and dark conditions (Walker et al., 2002) and 

regulating the activity PEPCK would be essential to prevent depletion of ATP or 

oxaloacetate during the light to dark transition of C4 photosynthesis (Carnal et al., 1993). 

The light-dependent phosphorylation of PEPCK was first described in cucumber 

cotyledons by feeding seedlings with radioactively labelled phosphate (Walker and 

Leegood, 1995). In this study, the native form of PEPCK was purified and shown to 

undergo phosphorylation by treatment with PEPC kinase from Zea mays. Also, the larger 

and native 74 kDa protein was phosphorylated, whereas the truncated form (62 kDa) was 

not phosphorylated, suggesting that the phosphorylation site was in the N-terminal 
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extension that had been proteolysed (Walker and Leegood, 1995). Walker and Leegood 

(1995) also showed that upon the removal of ATP in the reaction assay, the 

phosphorylation of PEPCK was reversible by treatment with protein phosphatase 2A.  

In C4 plants, such as the PEPCK-type Megathyrsus maximus (previously Panicum 

maximum), PEPCK is phosphorylated in darkened leaves and dephosphorylated in 

illuminated leaves, in a regulatory mechanism that leads to PEPCK activation in 

illuminated leaves (Walker and Leegood, 1996; Walker et al., 2002). The role of 

phosphorylation in this mechanism was studied by Bailey et al. (2007), with emphasis 

towards the coordination between carboxylation by PEPC and decarboxylation by 

PEPCK in darkened and illuminated leaves of Megathyrsus maximus. In this study, the 

authors showed that PEPCK activation at full sunlight correlated to a decrease in its 

phosphorylation state, whereas the phosphorylation state of PEPC during illumination 

correlated with the light-induced activation of PEPC (Bailey et al., 2007). Recently, the 

phosphoregulatory site of PEPCK from Zea mays was determined by mass spectrometry. 

In Zea mays, PEPCK was shown to undergo phosphorylation at Ser-55, Thr-58, Thr-59 

and Thr-120, though phosphorylation at Ser-55 showed a higher degree of light-

dependency (Chao et al., 2014). Furthermore, the study showed that in Zea mays 

seedlings, Ser-55 was phosphorylated in illuminated leaves and dephosphorylated in 

darkened leaves, which is the opposite of what had previously been reported (Walker and 

Leegood, 1995; Walker and Leegood, 1996; Bailey et al., 2007). Differing from previous 

findings, the activity of PEPCK was shown to be lower in illuminated leaves and higher 

in darkened leaves (Chao et al., 2014). 
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3.1.5 Identifying novel phosphorylation sites using LC-MS/MS 

 

The adaptation of proteomic pipelines for large-scale studies has grown in recent years 

through the technological advances of high-throughput mass spectrometry. Proteomics, 

along with genomics and metabolomics, has become a powerful tool for identifying 

proteins and characterising protein function and is essential for elucidating the factors 

that contribute to the complexity of the proteome (Porubleva and Chitnis, 2000; Park, 

2004). Using high resolution mass spectrometry, not only can proteins be inferred from 

peptide spectra, but post-translational modifications (PTMs) can be accurately identified 

to amino acid specificity. The analysis of complex mixtures is most frequently achieved 

by coupling mass spectrometry to high performance liquid chromatography (Pitt, 2009), 

as in the case of the Orbital Trap mass spectrometer (Aebersold and Mann, 2003; Hu et 

al., 2005; Perry et al., 2008), in which ions can be separated on a liquid elution gradient 

prior to injection into the instrument. However, success in proteomic studies, such as 

phosphoproteomics, depends on several factors that may outweigh the technological 

improvements and optimisations during analysis. Phosphoproteomic studies are hindered 

by experimental challenges such as sample preparation, which may affect 

phosphopeptide recovery and yield computational challenges, like poorly annotated 

protein databases (Ma, 2010). In plants, these challenges are more pronounced due to 

incomplete genome sequences and uncharacterised protein entries. Furthermore, proteins 

from plant samples may be underrepresented due to incomplete protein extraction from 

various specialised cell types or organelles (Jorrín et al., 2007), presence of nucleic acids 

and non-protein contaminants that affect subsequent analysis (Haynes and Roberts, 

2007), high concentration of in-soluble membrane proteins, which are lost during 

detergent-free extractions using non-volatile buffers and high content of hydrophobic 

molecules that may block analytical columns (Abdallah et al., 2012; Bagag et al., 2013).    

The success in proteomic studies relies on increased resolution, sensitivity and accuracy 

of analytical protocols. Early proteomic experiments were designed to understand 

cellular function at the protein level by mapping proteins using 2D protein gels, which 

were limited to small-scale experiments due to the increased difficulty in identifying 

multiple proteins in more complex mixtures (O'Farrell, 1975; Mann et al., 2001; Graves 

and Haystead, 2002). This was overcome by the development of mass spectrometry 

technology, which had the necessary sensitivity and resolution to accurately identify 
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proteins in complex mixtures. The study of proteins by mass spectrometry became 

capable after the development of ionisation strategies, which transfer the protein analyte 

from the liquid to the gas phase, maintaining ions in their charged state. There are two 

commonly used methods for ionisation: 1) matrix-assisted laser desorption/ionization 

(MALDI) and 2) electrospray ionisation (ESI); the latter ionisation source is used in 

OrbiTrap-based mass spectrometers (Aebersold and Mann, 2003; Hu et al., 2005). 

During the first stage of analysis (MS1), ions (peptides) are accelerated through 

positively and negatively charged plates, separated and selected by their mass-to-charge 

ratio (m/z) using an electromagnetic field. In tandem mass spectrometry, ions are isolated 

in a collision chamber and fragmented with an inert gas during collision-induced 

dissociation (CID) (Marcotte, 2007; Dephoure et al., 2013), which breaks down peptides 

into smaller fragments, most commonly at the peptide bond, resulting in b-ions (N-

terminal fragments) and y-ions (C-terminal fragments), which are analysed, during the 

second stage of analysis (MS2) (Aebersold and Mann, 2003). 

For rapid protein identification, the resulting peptide spectra are searched against 

theoretical mass spectra, which are generated from the computational digestion of protein 

sequence databases (Zhang et al., 2013). For phosphopeptide determination, observed 

spectra are searched against theoretical peptide spectra generated assuming all possible 

serine, threonine or tyrosine phosphorylation events (Dephoure et al., 2013). 

Phosphorylated peptides bearing a phosphate group (80 Da), unlike dephosphorylated 

peptides, behave differently during CID fragmentation. The behaviour of the labile 

phosphoester bond during fragmentation can affect phosphorylation site assignment due 

to peptide spectra generated from multiple fragment ion products, often from the partial 

neutral loss of phosphoric acid (H3PO4; 98 Da), through the gas-phase β-elimination of 

phosphoserine or phosphothreonine (Schweppe et al., 2003; Thingholm et al., 2009; 

Solari et al., 2015). The neutral loss of phosphoric acid from phosphoserine or 

phosphothreonine is a favourable event during CID, unlike phosphotyrosine which is 

resistant to gas-phase β-elimination due to stabilisation of β-protons in the benzene ring 

(Figure 3.2) (Mann et al., 2002; Schweppe et al., 2003). Moreover, the neutral loss of 

water (18 Da), along with the loss of phosphate competes with mass spectra for the loss 

of phosphoric acid, which, under specific conditions, can hinder phosphorylation site 

assignment (Cui et al., 2014). Although these complex chemical interactions pose 

challenges for neutral loss scanning methods and subsequent mass spectrum analysis, the 
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versatility of new proteomic approaches, as well as, tailored prediction algorithms and 

mass spectra visualisation tools have enhanced the accuracy of PTM identification by 

mass spectrometry (Kwon et al., 2006; Audagnotto and Dal Peraro, 2017).   

To understand the significance of convergent C4-related enzyme evolution and identify 

the determinants for C4-specific enzyme activity, the phosphorylation of C4 proteins in 

three NADP-malic enzyme C4 subtypes was studied using high-resolution tandem mass 

spectrometry. Recent large-scale phosphoproteomic studies in C3 plant models have 

demonstrated that several metabolic proteins undergo phosphorylation, regardless of 

their subcellular compartmentation, indicating that phosphoregulatory mechanisms are 

ubiquitous in C3 plant organelles and in the cytosol (Nakagami et al., 2010; Hodges et 

al., 2013; Liu et al., 2014; Lv et al., 2014; Ye et al., 2016). The enzymes that are involved 

in carbon fixation and photorespiration in C4 plants operate between two specialised cell 

types (Hatch, 1987; Kanai and Edwards, 1999), in the cytosol, as well as in chloroplasts, 

mitochondria and peroxisomes (Hatch and Osmond, 1976; Hodges et al., 2013), and may 

be, like their C3 counterparts, subjected to PTMs. However, the diversity of these 

modifications and how they regulate C4-specific protein activity across subcellular 

compartments as well as how they contribute to the efficiency of C4 photosynthesis is 

unclear. High-resolution mass spectrometry has been previously used in targeted studies 

to describe the light-dependent phosphorylation sites on PEPCK (Chao et al., 2014) or 

light-intensity dependent phosphorylation sites on PPDK in Zea mays (Chen et al., 2014). 

However, there have not been any large-scale phosphoproteomic experiments in C4 

grasses, so the underlying regulatory properties of C4-related proteins involved in C4 

photosynthesis are unaccounted for. The aim of this investigation was to determine novel 

phosphorylation sites on key C4-related proteins from darkened and illuminated leaves 

of Setaria viridis, as well as in Sorghum bicolor and Megathyrsus maximus. In this 

Chapter, novel light-dependent phosphorylation sites identified on C4-related proteins 

are presented and discussed. This was the first attempt to analyse the phosphoproteome 

in Setaria viridis, with hopes to elucidate novel phosphoregulatory mechanisms and 

further understand the role of phosphorylation and how changes of protein activity, 

through a diurnal cycle, are regulated. The comprehensive list of novel phosphorylation 

sites identified are listed in Appendix A.  
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3.2 Results – Novel phosphorylation sites of C4-related enzymes  

 

3.2.1 Identifying key C4 photosynthesis proteins in Setaria viridis 

 

To determine novel phosphorylation sites in the C4 model Setaria viridis, proteins were 

extracted from 2.5-week old leaves 30 min before the onset of light and 4 h and 15.5 h 

into the photoperiod. Leaf extracts were subjected to 1D SDS-PAGE and stained with 

Coomassie Blue protein dye (Figure 3.8). Two bands above 100 kDa were excised to 

identify previously described phosphorylation of PEPC (phosphoserine at position 15, 

residues 12–20, HHSIDAQLR) and PPDK (phosphothreonine at position 527, residues 

524–535, GGMTSHAAVVAR) in Zea mays (Roeske et al., 1988; Jiao et al., 1991). The 

tolerances for subsequent MS/MS spectra validations were established against the 

aforementioned phosphopeptide controls. Twenty-three proteins involved in carbon 

fixation were identified, of which seven were specific to C4 photosynthesis (Table 3.3). 

1,702 spectra were matched from 155 observed peptides of PEPC at 7.5 h into the dark 

compared to 1,669 peptide spectrum matches (PSMs) from 131 observed peptides of 

PPDK.  The number of PEPC PSMs increased to 1,983 at 15.5 h into the light and amino 

acid sequence coverage increased by 16%. Similarly, PPDK sequence coverage 

increased by 41% between 7.5 h into the dark and 15.5 h into the light, resulting in 2,358 

PSMs. 
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Fig. 3.8.  Setaria viridis whole leaf proteins resolved by 1D SDS-PAGE.  The 4–12% 

SDS gel was stained with Coomassie Blue protein dye. Lane 1 and lane 2 contained 

protein and phosphoprotein standards, respectively. 10 µg of protein was loaded into 

each lane, across four replicates (A–D) at three time-points:  7.5 h into the dark (H1A–

H1D, lane 3–6), 4 h into the light (H2A–H2D, lane 7–10) and 15.5 h into the light 

(H3A−H3D, lane 11–14). Lane number 15 did not contain any protein. The gel was 

imaged using a FLA-5100 with 635 nm laser excitation. PEPC and PPDK are indicated 

at 109 kDa and 102 kDa, respectively.     

Unlike PEPC and PPDK, the recovery of NADP-malic enzyme in Setaria viridis was 

less consistent, but protein sequence coverage increased by 58% after the dark to light 

transition. From the total 143 theoretical peptides, assuming a maximum of two missed 

cleavages filtered above 500 Daltons, 48 peptides were identified in NADP-malic 

enzyme from the 7.5 h into dark extracts; this increased by 13% after plants were 

illuminated for four hours, and then again by 2% towards the end of the photoperiod. The 

number of PSMs increased 4-fold from 228 to 1,179 after 15.5 h illumination; however, 

this large difference was due to the increased resolution of observed peptide spectra 

rather than an increased number of total observed peptides.  

PEPC 

PPDK 



 

86 

 

Table 3.3. Summary of proteins involved in C4 photosynthesis identified by MS/MS. 

Accession numbers, protein mass (kDa) and the calculated isoelectric point (pI) obtained 

from the UniProtKB protein database. 

Protein name 

UniProt 

Accession 

Mass 

(kDa) Calc. pI 

Alanine aminotransferase 
K4A868 59.3 8.09 

K3ZSX0 53.2 7.64 

Aspartate aminotransferase 

K3YSB2 50.2 8.63 

K3XHJ0 50.2 8.68 

K4AG31 16.1 5.01 

K3Z6L1 44.6 6.28 

K3YSM6 47.6 6.84 

K3XHZ4 47.3 8.22 

Enolase 

K3XWW9 47.9 5.31 

K3Z681 47.9 5.81 

P42895 48.1 5.97 

P26301 48.0 5.33 

NADP-dependent malate dehydrogenase 
K3YHB4 52.8 6.68 

K3ZT87 49.3 6.35 

NAD-dependent malate dehydrogenase 

K4ACE3 35.5 6.09 

K3ZU36 40.8 7.59 

K3Z7W1 34.3 7.39 

K3XJN7 35.5 7.85 

K3Z7Q4 35.5 8.10 

NADP-dependent malic enzyme 

K3XG11 63.8 7.15 

K3XFW4 65.1 6.16 

K3XFH6 70.0 6.77 

K3ZRI5 69.4 6.51 

Phosphoenolpyruvate carboxylase 
K3XV32 109.9 6.34 

K3YPN6 109.8 6.20 

Pyruvate, phosphate dikinase K3Z3Q6 95.7 5.12 

 

Smaller sized or less abundant proteins in the leaf at the time of harvesting showed a 

lower number of PSMs and below 50% sequence coverage on average, suggesting that 

analyte recovery may have been overwhelmed by large quantities of more abundant ions 

(peptides) from PEPC and PPDK. PEP carboxykinase (PEPCK) was not identified in any 

of the Setaria viridis leaf lysates, but 38% of the total sequence was observed in 

Megathyrsus maximus at 7.5 h into the dark and 4 h into the light (Table 3.7) using a 

similar experimental approach. To evaluate the subset proteins that undergo in vivo 

phosphorylation, gels were stained with ProQ Diamond phosphoprotein gel stain. The 
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light-dependent phosphorylation of PEPC was evident in illuminated leaf lysates, 

whereas no banding was observed in darkened leaves (Figure 3.9). Conversely, the 

phosphorylation of PPDK was more prominent at 7.5 h into dark. The phosphorylation 

pattern of PEPC and PPDK at 4 h and 15.5 h into the light was less consistent across the 

biological replicates, and there was no distinguishable pattern of light-dependency 

between the light time-points. Phosphoprotein profiling using 2D gels (Figure 3.10) 

concurred with Figure 3.9 and showed that PEPC phosphorylation increased from dark 

to light, while PPDK phosphorylation remained constant throughout the 16h light and 8h 

dark cycle. 

 

Fig. 3.9. Fluorescence stained gel showing phosphorylated proteins in Setaria viridis. 

10 µg of protein from 7.5 h into the dark, 4 h and 15.5 h into the light were resolved 

using a 12% SDS gel. After electrophoresis, the gel was stained with ProQ Diamond 

phosphoprotein fluorescent gel stain. 8 µL of PeppermintStick™ phosphoprotein 

standard was loaded into lane 2 (lane 1 is not shown). Phosphorylation of PEPC and 

PPDK is indicated. The gel was visualised with 532 nm laser excitation.  
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Using tandem mass spectrometry, PEPC was confirmed to undergo phosphorylation at 

Ser-11 (Figure 3.12A, residues 9–17, HHSIDAQLR), strictly after leaves were 

illuminated.  However, during validation experiments, a triply charged phosphopeptide 

ion (residues 2–17, ASKPVE-KHHSIDAQLR, m/z 604.99) was observed four times in 

7.5 h into the dark protein extracts (Table 3.7). The phosphorylation of PEPC at 7.5 h 

into the dark was not evident from the phosphoprotein stained gel (Figure 3.10) and 

presumably remained present in the dark period as an intermediate PEPC isoform during 

the light to dark transition. While the phosphorylation at Ser-11 in PEPC generally 

exhibited a strict light-dependent regulatory mechanism, PPDK phosphorylation at Thr-

462 (Figure 3.15, residues 459–470, GGMTSHAAVVAR) was identified in every leaf 

sample mixture, irrespective of the harvesting time-point in Setaria viridis and Sorghum 

bicolor leaf lysates. Additionally, the phosphorylation at Ser-463 was detected four 

times, although in low confidence, at 7.5 h into dark in validation experiments using a 

1% FDR (Table 3.6). The phosphorylation of Ser-463 had not been identified in Setaria 

viridis protein extracts. In total, 69 putative phosphorylation sites from key C4 

photosynthesis enzymes in Setaria viridis were identified by LC-MS/MS (Appendix A): 

12 sites in alanine aminotransferase, 9 sites in aspartate aminotransferase, 13 sites in 

malate dehydrogenase, 20 sites in NADP-malic enzyme, seven sites in PEPC including 

the identified phosphorylation at Ser-15 in Zea mays, and eight sites in PPDK, including 

the phosphorylation identified at Thr-527 in Zea mays.      
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3.2.2 Phosphoenolpyruvate carboxylase phosphorylation 

 

Seven phosphorylation sites (Figure 3.11) were identified in Setaria viridis PEPC 

(K3XV32), including the phosphoserine described in Zea mays PEPC (P04711). PEPC-

2 (K3YPN6) was also identified in Setaria viridis, but despite conserved active site 

residues, the extent of similarity between PEPC-2 and the C4 PEPC was not investigated. 

Furthermore, the N-terminal phosphopeptide was not detected in PEPC-2. Based on the 

phosphoproteomic data and information obtained from the UniProtKB database, 

candidate protein K3XV32 was selected as the true counterpart to Zea mays’ C4 PEPC 

primarily because of 1) the fully conserved N-terminal phosphopeptide which bears the 

phosphorylated regulatory site described in Zea mays, 2) higher sequence similarity to 

Zea mays PEPC and 3) more substantial peptide recovery, suggesting that PEPC is 

relatively more abundant in leaf lysates than PEPC-2 (Table 3.5). 

PEPC sequence information was obtained from the UniProtKB database, aligned using 

Clustal Omega and illustrated to scale as Figure 3.11. Sequence similarity between C4 

PEPC in Zea mays (P04711) and PEPC in Setaria viridis (K3XV32) is 84% covering 

814 identical positions, which is close to the 83% similarity between PEPC and PEPC-

2, whereas similarity between PEPC-2 and P04711 is slightly lower at 80%, based on 

781 identical positions. All phosphorylated residues, except for Ser-378 in K3XV32, are 

conserved in the Zea mays C4 PEPC. PEPC in Setaria viridis was phosphorylated at Ser-

11 (Figure 3.12A, residues 9–17, HHSIDAQLR) after the onset of light and remained 

phosphorylated until the end of the photoperiod (Table 3.4B). While Ser-12 (PEPC-2, 

residues 9–18, HQSIDAQLR) corresponds to Ser-11 in PEPC, it was not 

phosphorylated. The phosphorylation of Ser-25 of PEPC occurred strictly after the onset 

of light and corresponds to Ser-26 in PEPC-2, which was phosphorylated at the same 

time-point.   
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The phosphorylations at Ser-25, Ser-378 and Thr-379 were present in illuminated 

conditions, but absent in darkened leaves. Conversely, the phosphorylation at Ser-752 

(Figure 3.12B, residues 748–757, LNIGSRPAKR) solely occurred in darkened leaves 

and was not identified in illuminated leaves. As shown in Figure 3.9, the 

phosphorylations at Ser-180 (Figure 3.13A, residues 180–189, SLLQKHARIR) and Ser-

702 (Figure 3.13B, residues 688–708, FTAATLEHGMHPPVSPKPEWR) occurred in 

darkened and illuminated leaves and showed no light-dependent regulation. 

Additionally, the light-dependent phosphorylations of Thr-658 and Thr-820 occurred in 

PEPC-2, but the corresponding residues in PEPC were not phosphorylated.   
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3.2.3 Pyruvate, phosphate dikinase phosphorylation 

 

Eight phosphorylation sites were identified in Setaria viridis pyruvate, phosphate 

dikinase  (PPDK, K3Z3Q6), including the previously described phosphopeptide at 

position Thr-527 in Zea mays (Roeske et al., 1988), which corresponds to Thr-462 in 

Setaria viridis (Figure 3.14). The extent of sequence similarity between K3Z3Q6 and 

P11155 is 83% covering 786 identical amino acid positions, including all identified 

phosphorylated residues. The phosphorylation at Thr-462 (Figure 3.15, residues 459–

470, GGMTSHAAVVAR) occurred at 7.5 h into the dark and 4 h and 15.5 h into the light, 

suggesting that PPDK phosphorylation at Thr-462 may be under more extensive 

regulation rather than being simply induced by the dark to light transition. Based on the 

ratio between the phosphopeptide and its unmodified counterpart, as a relative 

quantitative measure, the phosphorylated phosphopeptide was observed in higher 

amounts in 7.5 h darkened leaves than in illuminated leaves. Aside from Thr-462, 

phosphorylations at Ser-104, Ser-394 and Thr-593 (Figure 3.16, residues 584–597, 

AVRQMIMAPTLELR) occurred at 7.5 h into dark, whereas the phosphorylations at Thr-

557, Thr-704, Thr-721 and Thr-753, occurred strictly after the onset of light. 

Additionally, the phosphorylations at Thr-753 and Thr-462 were identified in the 

phosphopeptide enrichment experiments.   
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3.2.4 NADP-dependent malic enzyme phosphorylation 

 

Four NADP-dependent malic enzyme proteins were identified in Setaria viridis:  

K3XFH6, K3XFW4, K3XG11 and K3ZRI5 (Table 3.3). Compared to the primary 

NADP-malic enzyme in Zea mays (P16243), K3ZRI5 is 36% identical, while the protein 

sequence similarity between P16243 and K3XFH6, K3XFW4 and K3XG11 is higher at 

83%, 70% and 75%, respectively. In addition, NADP-malic enzyme K3XG11 was 

approximately 60-fold and 535-fold more abundant in darkened leaf lysates than K3ZRI5 

and K3XFW4, respectively (Table 3.5). Using a standard MS approach without enriching 

for phosphopeptides, 21 phosphorylation sites in NADP-malic enzyme were identified. 

Five putative phosphorylation sites were identified in K3XFH6 during the light time-

points, of which three were significant (Xcorr > 2.15). The phosphorylation at Ser-429 

(Figure 3.18, residues 417–430, VWLVDSKGLIVSSR) corresponded to the 

phosphorylation at Ser-380 in K3XFW4 and Ser-363 in K3XG11 (Figure 3.17). 

Although, the phosphorylations at Ser-373, Ser-379 and Ser-380 in K3XFW4 were 

identified in separate experiments, the phosphopeptides and phosphorylation sites were 

not significant. Furthermore, the triply phosphorylated peptide was not detected in the 

light samples.  
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3.2.5 Alanine and aspartate aminotransferase phosphorylation 

 

Seven phosphopeptides were identified in alanine aminotransferase, of which six were 

significant (Xcorr > 2.15). In total, 12 phosphorylation sites were identified in alanine 

aminotransferase (Figure 3.20). Reoccurring phosphorylations occurred at Thr-167 and 

Ser-189 (Figure 3.19, residues 166–190, ATGAYSHSQGIKGLRDAIAAGIASR) in 7.5 

h into dark and 4 h after the onset of light and remained phosphorylated until 30 min 

before the dark period. The phosphorylations at Thr-57, Ser-62, Thr-203, Ser-207, Thr-

288, Ser-290, Ser-322 and Ser-326 occurred in illuminated leaves, whereas the 

phosphorylations at Thr-167, Ser-189 and Ser-206 occurred in darkened and illuminated 

leaves. Only one putative phosphorylation site, at Ser-285, was present in darkened 

leaves. Conversely, aspartate aminotransferase was phosphorylated at more residues 

during the dark period. Seven phosphopeptides, of the nine identified in aspartate 

aminotransferase, were significant (Xcorr > 2.15). The phosphorylations at Ser-10, Ser-

11, Ser-99, Ser-266, Ser-273, Ser-341 and Ser-391, were only found in darkened leaves, 

whereas the phosphorylations of Ser-300, Thr-394 and Thr-397 were only present after 

illumination (Figure 3.21).
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3.2.6 Phosphoglycerate mutase and enolase phosphorylation 

 

Three phosphopeptides were identified in phosphoglycerate mutase (K3XFX0), one of 

which was detected in the phosphopeptide enrichment experiments (Table 3.4B). The 

phosphorylation at Ser-109 (Figure 3.22A, residues 93–120, AHGTAVGLPSDDDMGN-

SEVGHNALGAGR) occurred in 4 h and 15.5 h illuminated leaves of Setaria viridis, and 

during phosphopeptide validation experiments, the phosphorylation was detected in three 

replicates of 7.5 h darkened Setaria viridis and Sorghum bicolor leaves (Table 3.6 and 

Table 3.7). The phosphopeptide was not detected in darkened leaves in previous 

experiments. Additionally, the phosphorylations at Ser-520, Thr-527 (Figure 3.22B, 

residues 520–549, SGGIQILTSHTLQPVPVAIGGPGLHPGVKFR) occurred at 7.5 h 

into the dark period and 15.5 h into the photoperiod, but were absent 4 h after 

illumination. Either Ser-528 or Thr-530 could be phosphorylated in 7.5 h darkened and 

15.5 h illuminated leaves, but the identified sites were not significant (P < 0.75). 

However, based on a 240.9 Da mass shift between the identified phosphopeptide and the 

unmodified counterpart, the peptide (residues 520–549) could be triply phosphorylated 

in darkened and illuminated leaves.  

Two enolase proteins with 90% sequence similarity (K3XWW9 and K3Z681), 

represented as Figure 3.23, were identified in Setaria viridis. The 7.5 h into dark and 4 h 

into light phosphorylation at Ser-121 (K3XWW9, residues 112–132, 

LGANAILAVSLAVCKAGAMVK) corresponded to the phosphorylation at Ser-120 

(K3Z681, residues 112–133, LGANAILAVSLAVCKAGASIKK) in an almost identical 

phosphopeptide. The phosphorylation of Ser-129 was only present in protein K3Z681, 

while the phosphorylations at Thr-334 and Thr-337 only occurred in K3XWW9.  
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3.2.7 Phosphopeptide validation 

 

To validate the phosphopeptides that may be under light-dependent regulation, proteins 

between 110 kDa and 50 kDa from dark-grown Setaria viridis plants were analysed using 

a modified mass spectrometry protocol. Gradient lengths were optimised for the analyte 

and the resulting peptide spectra were searched against Setaria italica protein sequences 

using MaxQuant. Stringent tolerances were set for the classification of class I 

phosphopeptides and the FDR was set at 1%. Additional validations were carried out in 

two other C4 species: Sorghum bicolor (Table 3.7) and Megathyrsus maximus (Table 

3.8). The degree of reproducibility of putative phosphorylation sites was determined by 

the total number of times each phosphorylation site was observed across four biological 

replicates. Eight phosphorylation sites were validated in 7.5 h darkened Setaria viridis 

leaves (Table 3.7). Phosphoglycerate mutase was phosphorylated at Ser-17 in 

Megathyrsus maximus (Table 3.8), Ser-81 in Sorghum bicolor (searched against Zea 

mays protein sequences) and Ser-109 in Setaria viridis (searched against Setaria italica 

protein sequences). This phosphorylation was detected in several experiments (Table 

3.4B; Table 3.6; Table 3.7; Table 3.8).   
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3.3 Discussion 

 

3.3.1 Overcoming the challenges of phosphoproteomics 

 

Phosphorylated proteins account for approximately 0.1% of the proteome and 

phosphorylated peptides are difficult to detect because of their lower abundance relative 

to unmodified peptides (Seo and Lee, 2004; Tichy et al., 2011). To increase the recovery 

of phosphopeptides in Setaria viridis, protein extracts were first subjected to 

phosphopeptide enrichment using TiO2. TiO2 enrichment was specifically chosen due to 

its low-cost, high specificity for phosphorylation sites and tolerance towards a range of 

detergents and buffers readily used during protein extractions (Tichy et al., 2011). 

However, phosphopeptide enrichment in Setaria viridis was not successful, possibly due 

to low protein concentrations in plant cell lysates, which led to sub-optimal 

phosphopeptide binding. Future approaches may need pre-fractionation using strong 

cation exchange chromatography and multi-step enrichment techniques to gradually 

reduce proteome complexity (Zhao and Jensen, 2009; Fíla and Honys, 2012). Low 

quality spectra and high background noise indicate that there may have been 

contamination from unspecific binding during the enrichment (Figure 3.24). While TiO2 

is highly selective towards phosphopeptides, acidic residues or negatively charged 

contaminants may have bound to the resin instead, co-eluting with phosphopeptides. 

Phosphopeptide signal suppression was evident with most of the phosphorylation 

profiles in Setaria viridis, including the PEPC N-terminal phosphopeptide (Figure 3.24). 

The majority of phosphopeptides identified by TiO2 phosphopeptide enrichment were 

singly phosphorylated (Table 3.4, 3.6), while containing several serine and threonine 

residues that were not mistaken as putative phosphorylation sites, which is likely to occur 

when site-determining ions are absent (Taus et al., 2011). The presented data suggests 

that phosphorylation sites were correctly assigned despite loss of phosphopeptide 

resolution. The use of phosphopeptide enrichment, however, for this analytical approach 

was not efficient mainly due to low peptide recovery, resulting in approximately 80–90% 

of protein sequences being absent. 
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Insufficient fragment ion information from mass spectra hindered phosphorylation site 

assignment in Setaria viridis. While the observation was more notable after 

phosphopeptide enrichment, less abundant ions in the analyte showed diminished peptide 

resolution across all experiments, which not only affected PTM assignment but also 

made it difficult to properly infer proteins or distinguish protein isoforms. PTM 

assignment was also hindered by a low abundance of phosphopeptides in sample 

mixtures. It is not known at which stage the loss of phosphopeptides occurred, but 

addition of protease and phosphatase inhibitors in subsequent protein extracts contributed 

to increased phosphopeptide recovery. In phosphopeptide enrichments, strong binding 

affinities between multiply phosphorylated peptides and the enrichment resin may have 

made it difficult to elute several phosphopeptides. Phosphopeptide elution can be 

increased in future studies by optimising the pH of the peptide elution buffer, since 

phosphate groups contribute to the solution charge, affecting the elution efficiencies of 

phosphorylated peptides (Villen and Gygi, 2008). While subsequent analyses did not 

include a phosphopeptide enrichment step, it remains clear that to counter the effects of 

sub-stoichiometric phosphorylation, plant cell lysates should undergo several steps to 

reduce sample complexity and reduce dephosphorylated peptides, which can supress 

signals from the modified counterparts.    

Singly and multiply phosphorylated peptides in the mixture can also affect the overall 

elution of phosphopeptides. In these experiments, proteins were digested with trypsin to 

guarantee the presence of either lysine or arginine, generating peptides of basic nature, 

which aid the elution of singly phosphorylated peptides after their dephosphorylated 

counterparts, reducing the loss of phosphopeptides during the early stages of the flow 

gradient (Steen et al., 2006). The effects are reversed in the presence of multiply 

phosphorylated peptides, and may be lost due to the predominantly negative charge. In 

multiply phosphorylated peptides, the rate of peptide hydrolysis by trypsin may decrease 

if phosphorylation sites are in proximity to the cleavage site (Figure 3.25), increasing 

peptide lengths, thereby increasing the number basic residues, which may counter the 

effects of multiply phosphorylated peptides (Schlosser et al., 2001; Steen et al., 2006). 

Phosphopeptides could also be lost due to lower ionisation efficiencies, but in a similar 

approach using ESI-LC-MS/MS, phosphopeptides showed better ionisation and 

detection efficiencies than dephosphorylated peptides (Steen et al., 2006). 

  



 

120 

 

 

Fig. 3.25. Schematic showing trypsin inaction due to a phosphorylation site along a 

peptide. A) Tryptic digestion of a phosphopeptide (underlined) showing cleavage sites 

(red lines) at lysine (K) and arginine (R). The phosphorylation site is indicated by P. B) 

Hypothetical protein peptide digestion affected by phosphorylation next to cleavage site 

(K). Red lines crossing peptide sequence represent a successful cleavage.  Negative 

charge (‒); positive charge (+).  

The light intensity for these experiments was maintained at 350 µmol m–2 s– 1, which was 

approximately six-fold lower than the intensity of full sunlight (Peri et al., 2009). 

Although this may have had minimal effect on proteins that undergo light-dependent 

phosphorylation, enzymes that are regulated by more complex light-intensity 

mechanisms, like PPDK (Chen et al., 2014), may have been less phosphorylated at key 

regulatory sites after the dark to light transition or visa-versa. Therefore, these 

phosphorylations may have been more difficult to detect because of their low abundance 

in the analyte. In addition to this, given that the rate of photosynthesis and activity of key 

enzymes could be affected by lower light intensities (Figure 3.26), subsequent enzyme 

kinetic experiments described in Chapter 4 and Chapter 5 were conducted using plants 

grown at 900 µmol m–2 s–1.  
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Fig. 3.26. Model relationship between irradiance and rates of photosynthesis in C4 

plants. Low rates of photosynthesis are observed when light-intensity is low. Rates of 

photosynthesis increase with increasing light intensities. Schematic is adapted from 

experimental data collected by Milner and Hiesey (1964) and Bräutigam et al. (2014).   

Aside from experimental difficulties for PTM assignment in plants, incomplete or poorly 

annotated databases affect protein identification (van Wijk, 2001; Abdallah et al., 2012).  

In UniProtKB, there are currently 267 unreviewed protein entries and 17 reviewed entries 

for Setaria viridis, compared to 40,779 and 27 entries, respectively, in the Setaria italica 

database. Choosing Setaria italica protein sequences as the target database for this study 

was essential for the identification of proteins from MS/MS peptide spectra. Although 

peptide spectra from Setaria viridis could be searched against the well-annotated and 

larger Zea mays protein sequences, Setaria italica is more comparable due to high 

genome similarity (Bennetzen et al., 2012). Initial experimental data was searched using 

MASCOT and NCBI green plant protein sequences. While the advantage of using a 

larger database and filtering peptides using a narrow mass window may assist in 

increasing protein identification, database search times were substantially longer and did 

not yield significant results, as the probability of peptide spectra mismatches increased 

(Hsieh et al., 2010). There were similar issues with the Sorghum bicolor database in 

UniProtKB and resulting MS/MS peptide spectra were searched against the Zea mays 

protein database, which aided the identification of Sorghum bicolor proteins and 

subsequent phosphorylation site assignment.     
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3.3.2 Phosphorylation of phosphoenolpyruvate carboxylase 

 

In Zea mays and Sorghum bicolor, the regulatory phosphorylation of PEPC occurs at 

Ser-15 and Ser-8 respectively (Jiao and Chollet, 1990; Jiao et al., 1991; Chollet et al., 

1996; Vidal and Chollet, 1997). However, regulatory phosphorylation of PEPC at 

additional serine or threonine residues has not been described. Using a non-targeted 

approach in Setaria viridis, seven novel phosphorylation sites were identified (Figure 

3.27). PEPC phosphorylation in Setaria viridis increased after illumination (Figure 3.10), 

but this may be due to increased content of PEPC through the photoperiod, since PEPC 

content in leaves can vary in response light intensity (Slack et al., 1969; Hatch, 1987). 

Also, increased PEPC content was only discernible from 2D gels using 80 µg of total 

protein (Figure 3.10) and not 1D gels using 10 µg of total protein (Figure 3.9) and 

phosphorylated PEPCs in darkened leaves may be in very low content to be detected by 

phosphoprotein staining.  

Fig. 3.27. Phosphorylation of PEPC from Setaria viridis. Cleavage sites at lysine (K) 

and arginine (R) are highlighted in red. Phosphorylation sites indicated by asterixis. 

Active sites are indicated. Sequence annotated with FASTAnnotate. 
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The phosphorylation at Ser-11 (residues 9–17, HHSIDAQLR) in Setaria viridis, which 

corresponds to Ser-15 in Zea mays, occurred after illumination (Jiao and Chollet, 1988; 

Bailey et al., 2007). The phosphorylation of Ser-11 in darkened leaves was only detected 

in a larger peptide (residues 2–17, ASKPVEKHHSIDAQLR), suggesting that a missed 

cleavage at Lys-8 could be affecting the retention of this larger phosphorylated peptide, 

as depicted in Figure 3.25. Furthermore, the identification of phosphorylation sites at 

Ser-25, Ser-180, Ser-378, Thr-379, and Ser-752 could be affected by the proximity of 

cleavage sites (Figure 3.27). In fact, all these phosphorylation sites were detected in 

phosphopeptides with two missed cleavages and it is possible that small phosphopeptides 

were lost during analysis.  

 

Fig. 3.28. Alignment of PEPCs from C4 and C3 plants. PEPC and PEPC-2 

(housekeeping enzyme) are aligned and the phosphorylation sites identified in Setaria 

viridis are shown. Phosphorylations identified in illuminated leaves highlighted yellow 

and phosphorylations found in both light and dark highlighted in blue and yellow. Similar 

residues highlighted green. 
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Ser-11 is conserved in major C4 and C3 plants (Figure 3.28) and it may have similar 

regulatory properties in Setaria viridis as it does in closely related C4 plants. In addition, 

Ser-11 may be a substrate for PEPC kinase. The non-photosynthetic PEPC in C3 plants 

undergoes regulatory phosphorylation in vitro and in vivo by the light- and Ca2+-

dependent PEPC kinase at the invariant N-terminal serine (Wang and Chollet, 1993; Duff 

and Chollet, 1995; Li et al., 1996; Zhang and Chollet, 1997), which suggests that these 

regulatory mechanisms are conserved in plant species, but whether these regulatory 

mechanisms extend to other highly conserved residues like Ser-25 or Thr-379 is 

unknown. The position of conserved positively charged lysine and arginine residues 

around putative phosphorylation sites could also act as recognition binding sites for 

PEPC kinase (Ueno et al., 1997). 

 

 

 

 

 

 

 

 

 

 

Fig. 3.29. Zea mays PEPC annotated with phosphorylation identified in Setaria 

viridis. Annotated residues (red markings) correspond to the phosphorylated sites 

identified in Setaria viridis. C1 indicates the region important for catalysis and PEP 

binding. Cyan lines and markers indicate active sites. Green line indicates the 

phosphorylated Ser-378 residue in Setaria viridis, which corresponds to Asn-384 in Zea 

mays. Blue tubes are alpha helices and yellow arrows show beta sheets. Protein structure 

taken from Matsumura et al. (2002). 
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Using the PEPC structure from Zea mays, the positions of the identified phosphorylated 

residues were determined (Figure 3.29). Using this model, residues Asn-384, Thr-385 

and Ser-708 (corresponding to Ser-378, Thr-379 and Ser-702 in Setaria viridis), are 

exposed and could be readily phosphorylated by kinases, whereas residues Ser-185 and 

Ser-758 (corresponding to Ser-180 and Ser-752 in Setaria viridis) are less accessible. In 

Arabidopsis thaliana, phosphorylation of the C3-form PEPC occurs at Ser-704 (de la 

Fuente van Bentem et al., 2008), which corresponds to Ser-702 in Setaria viridis, but this 

residue is not known to be phosphorylated in C4 species, and could be a determinant for 

C4-specific PEPC function as previously found for Ser-774 in Flaveria species (Bläsing 

et al., 2000; Jacobs et al., 2008).    

 

Fig. 3.30. Schematic model showing the active site of PEPC in higher plants. The 

phosphate and carboxylate of PEP interacts with positively charged lysine (Lys) and 

arginine (Arg) residues. Active site in Setaria viridis at His-172. Figure taken from 

Andreo et al. (1987).    
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More importantly, Ser-752 is conserved in all PEPCs and is near the active site at His-

177 in Zea mays or His-172 in Setaria viridis, suggesting phosphorylation could have 

direct interaction with the carboxylation reaction (Kai et al., 2003). Furthermore, the 

cavity between His-177 and Arg-647, shown as C1 in Figure 3.29, allows for movement 

of PEP during catalysis (Andreo et al., 1987; Matsumura et al., 2002). It is therefore 

possible that the negative charge from a nearby phosphorylated residue (Ser-752) may 

counteract the positive charge of Arg-647 or Lys-606 (Andreo et al., 1987; Scheeff et 

al., 2009). Moreover, the phosphorylation of Ser-752 was only identified in darkened 

leaves. Phosphorylation at Ser-752 could influence the way that PEP interacts with the 

catalytic site. A phosphate interacting with the positively charged lysine and arginine 

residues at the catalytic site might also alter the shape of the catalytic pocket and hinder 

the entrance of Mg2+ and PEP into the active site or disrupt the interaction with histidine 

and cysteine residues, as shown in Figure 3.30. This, together with the identification 

solely in the dark period, suggests that phosphorylation at Ser-752 might correlate with 

PEPC inactivation in darkened leaves and regulate PEP binding during the dark period. 

This region of PEPC may also contribute to C4-specific function and contain regulatory 

properties (Bläsing et al., 2000).  

Additionally, the side chain of Ser-185 in Zea mays (Ser-180 in Setaria viridis) may 

interact with the side chains of Arg-182, Arg-183, Arg-231 and Arg-372 during the 

allosteric binding of glucose-6-phosphate (Bläsing et al., 2000; Matsumura et al., 2002; 

Kai et al., 2003). If Ser-185 (Zea mays numbering) is phosphorylated, the negative 

charge of the phosphate group could repel the phosphate from glucose-6-phosphate, thus 

affecting its binding to PEPC. Ser-180 is also conserved in all C3 and C4 PEPCs and in 

Setaria viridis, Ser-180 was phosphorylated in darkened and illuminated leaves. It is 

therefore possible that phosphorylation at Ser-180 is a necessary structural component to 

regulate activator binding, rather than prevent or promote binding at one specific time-

point.  
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3.3.3 Phosphorylation of pyruvate, phosphate dikinase 

 

Unlike PEPC, the regulatory phosphorylation of PPDK at Thr-462 in Setaria viridis 

occurred in both darkened and illuminated leaves, as evident from phosphoprotein 

stained gels (Figure 3.9 and Figure 3.10). In the phosphoprotein stained 1D gel (Figure 

3.9), the PPDK band intensity from darkened leaves appeared to be greater than PPDK 

from illuminated leaves. This was confirmed by relative quantitation of Thr-462, which 

showed that the phosphopeptide was in higher amounts in darkened leaves. Unlike PEPC, 

there is little indication whether the content of PPDK varied between darkened and 

illuminated conditions, but 2D gels (Figure 3.10) suggest that there was a higher PPDK 

content per 80 µg of total protein in darkened leaves than in illuminated leaves. The 

phosphorylation of Thr-462 in darkened leaves is consistent with the regulatory site 

previously identified in Zea mays (Ashton and Hatch, 1983; Chastain et al., 2000; 

Chastain and Chollet, 2003; Chen et al., 2014). Moreover, the higher degree of 

phosphorylation at Thr-462 in darkened leaves is consistent with the inactivation 

mechanism by phosphorylation (Budde et al., 1985).  

The phosphorylation of Ser-463 was also identified in darkened leaves of Setaria viridis 

(Figure 3.6), but with a lower localisation probability (P = 0.78) when compared to the 

phosphorylation at Thr-462 (P = 0.99). Additionally, the phosphorylation at Ser-463 was 

also identified in Megathyrsus maximus (P = 0.50) in illuminated leaves. However, 

despite Ser-463 being less accessible for phosphorylation, it is possible that Ser-463 in 

Setaria viridis, like in leaves of Zea mays, might be a substrate for PPDK-RP (Chen et 

al., 2014). In a previous study, the phosphoserine was identified in both active and 

inactive preparations of PPDK, while the phosphothreonine was only present in the 

inactive PPDK and although Chen et al. (2014) identified Ser-528 as a substrate for 

PPDK-RP, the phosphorylation at Ser-463 in Setaria viridis may be the result of a non-

enzymatic, nitrogen to oxygen phosphoryl migration (Plapinger and Wagner-Jauregg, 

1953; Rathlev and Rosenberg, 1956; Budde et al., 1985).    
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Fig. 3.31. Alignment of PPDKs from C4 and C3 plants. Phosphorylation sites identified 

in Setaria viridis are indicated. Phosphorylations identified in illuminated leaves 

highlighted yellow and those found in darkened leaves highlighted blue. 

Phosphorylations found in both light and dark highlighted in blue and yellow. Similar 

residues highlighted green. Substrate binding sites highlighted in purple. His-364 

(Setaria italica numbering) is the active site. Green triangle represents phosphorylation 

of Ser-528 identified in Zea mays. 

Thr-704, Thr-721 and Thr-753 are conserved across C4 and C3 plants (Figure 3.31), 

however there is no indication that these residues are phosphorylated. Moreover, the 

proximity of Thr-753 to the metal binding site (Glu-756) could affect binding 

mechanisms. Of the phosphorylation sites identified, Thr-462, Thr-557 and Thr-753 are 

close to the catalytic site of PPDK and may influence catalytic properties (Figure 3.32). 

Thr-593, Thr-721, Thr-704 and possibly Ser-394 are exposed to the surface of the protein 

and may be targets for phosphorylation. However, whether any of these putative sites are 

regulated cannot be determined from these data.  
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Fig. 3.32. Structure of PPDK from Flaveria trinervia reveals the position of 

phosphorylation sites (in red) identified in Setaria viridis. Green rectangle indicates 

the main catalytic domain of PPDK, including the position of the catalytic site at His-

464 and Cys-842 (not labelled). Blue tubes are alpha helices and yellow arrows show 

beta sheets. PPDK structure taken from Minges et al. (2017). 

In the crystal structure of the C4 PPDK, the phosphorylation at Thr-753 may directly 

affect catalysis by interacting with the PEP binding site, which is indicated by the green 

rectangle on Figure 3.32. In addition, the phosphorylation at Thr-753 was only detected 

in illuminated leaves and might hinder PEP binding, thus limiting the reverse reaction 

towards the formation of pyruvate. This could regulate selectivity towards pyruvate 

binding and not PEP binding during illumination, when PPDK is needed to regenerate 

PEP. Furthermore, in Zea mays, binding of PEP during phosphate transfer results in a 

swivelling-domain motion at the C-terminal active site (Nakanishi et al., 2005). During 
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this motion, PEP interacts with surrounding residues and may be easily be influenced by 

proximal negatively charged moieties (Minges et al., 2017). The phosphorylation at Thr-

557 could also influence the binding interaction between PEP and PPDK, but Thr-557 is 

not as close to the catalytic site as Thr-753.      

 

3.3.4 Phosphorylation of NADP-malic enzyme  

 

The regulatory phosphorylation of NADP-malic enzyme has not been described in plants, 

but phosphorylation has been described in mice (Mus musculus) (Huttlin et al., 2010). In 

this study, 20 putative phosphorylation sites were identified. Although four isoforms 

were identified, protein K3XG11 was 53-times more abundant in darkened leaves than 

protein K3XFW4 and six-times more abundant than K3ZRI5 (Table 3.5). However, only 

two phosphorylation sites were identified on the most abundant protein isoform (Figure 

3.17). The phosphorylation at Ser-373 had been previously identified in Zea mays using 

a similar proteomic approach (I. Abreu, personal communication).  Ser-343 is conserved 

in three isoforms in Setaria viridis (Figure 3.33). Aside from NAD-malic enzyme from 

Zea mays and Arabidopsis thaliana, this serine residue is conserved in both NAD- and 

NADP-malic enzyme of C3 and C4 origin (Figure 3.33). Not all the phosphorylation sites 

were identified on every protein isoform detected in Setaria viridis leaf lysates (Figure 

3.34). However, because of high sequence homology, it is possible that some 

phosphopeptides were inferred from different isoforms when in fact they were only from 

a single isoform. Based on sequence similarity to the main NADP-malic enzyme isoform 

from Zea mays and molecular masses, proteins K3XFH6 and K3XG11 might be the 

primary NADP-malic enzyme isoforms in Setaria viridis and correspond to the two 

major C4-specific isoforms previously identified in Zea mays (Maurino et al., 1996). 
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In mice (Mus musculus), NADP-malic enzyme is phosphorylated at Ser-336 (Ser-373 in 

Setaria italica numbering), though its phosphoregulatory properties have not been 

described (Huttlin et al., 2010). In addition, studies have suggested that Asp-335 is 

selective towards NAD+ co-factor binding rather than NADP+, because the negative 

charge of aspartate repels the negative charge of 2′-phosphate of NADP+ (Wierenga et 

al., 1986; Scrutton et al., 1990; Yang et al., 2002). Although it was shown that this 

interaction may not occur since Asp-335 interacts with Arg-354, the presence of 

phosphate groups from nearby phosphorylated residues may confer some disadvantages 

to NADP+ binding. Therefore, the phosphorylation at Ser-373 might conflict with 

NADP+ binding since the 2′-phosphate might interact with the phosphoserine-373 as has 

been shown in the cytosolic-form of NADP-malic enzyme from pigeon (Columba livia) 

(Yang et al., 2002). The phosphorylation at Ser-373, which only occurred in darkened 

leaves, may be part of a mechanism to reduce the activity of NADP-malic enzyme during 

the dark period when CO2 fixation is not required. The phosphorylation of Ser-379 and 

Ser-380 on the same phosphopeptide from protein K3XFW4 may cause additional charge 

differences and disrupt NADP+ binding (Figure 3.34). In addition to this, one protein 

isoform identified in Setaria viridis (K3ZRI5) and NAD-malic enzyme from Zea mays 

and Arabidopsis thaliana have an alanine residue instead of serine in position 373, which 

cannot undergo phosphorylation. This substitution might also indicate preference 

towards NAD+ binding in the NAD-malic enzyme from Zea mays and Arabidopsis 

thaliana. This assumption would also indicate that the identified malic enzyme in Setaria 

viridis (K3ZRI5) might be NAD- rather than NADP-dependent, but despite inferred to 

be NAD+-dependent on the UniProt protein database, there is no other evidence to verify 

this. In addition to Ser-346 (pigeon numbering), NADP+ interaction with the side-chain 

ammonium group of Lys-362 is essential for NADP-dependent enzymatic activity (Yang 

et al., 2002). It was previously shown that the pigeon NADP-malic enzyme with a lysine 

to alanine substitution at position 362 (K362A) drastically decreased the affinity for 

NADP+ (Kuo et al., 2000). All the proteins that do not have a serine at the first NADP+ 

binding site, indicated above Ser-373 by the blue arrow on Figure 3.33, have an alanine 

at the second NADP+ binding site. Since Lys-362 serves an important role in determining 

NADP+ selectivity in NADP-malic enzyme from pigeon (Yang et al., 2002), plant 

proteins lacking the lysine residue at this position may have preference for NAD+ binding 

instead. Both residues at these positions may be determinants for NAD-specific malic 

enzyme activity.  
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Fig. 3.34. Position of phosphorylation sites identified in Setaria viridis. Cyan 

rectangle (C1) indicates the catalytic centre of NADP-malic enzyme. Blue tubes are 

alpha helices and yellow arrows show beta sheets. Phosphorylation sites (Setaria italica 

numbering) are highlighted red on the protein. The labelled residues are the 

phosphorylation sites identified on each protein isoform. Only Ser-429 (K3XFH6) and 

Ser-380 (K3XFW4) occur on both proteins. Protein model based on the pigeon cytosolic 

NADP-malic enzyme taken from Yang et al. (2002). 

The position of Ser-373, Ser-379 and Ser-380, shown in Figure 3.34, further 

demonstrates show this cluster of phosphorylations could be affecting NADP+ binding 

during the dark period. The phosphorylation at Ser-379 and Ser-380 could potential cause 

a charge repulsion with NADP+ as it interacts with Ser-373 during catalysis. Although 

not shown in Figure 3.34, the phosphorylations at Ser-302, Thr-313 and Ser-360 might 

disrupt binding of the metal ion at the aspartate binding site (Figure 3.33). These 
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phosphorylation sites are the first indication of a phosphoregulatory mechanism of the 

C4-specific NADP-malic enzyme from Setaria viridis. Recent research using a 

recombinant NADP-malic enzyme from Zea mays, suggests that NADP-malic enzyme 

is inactivated by phosphorylation in the dark period (V.G. Maurino, personal 

communication). In Setaria viridis, Ser-373, which corresponds to Ser-419 in Zea mays, 

is possibly the most likely target for regulatory phosphorylation because of its role in the 

NADP+ binding mechanism (Kuo et al., 2000; Yang et al., 2002) and previous 

identification in mice (Huttlin et al., 2010). However, validation of this phosphorylation 

in Setaria viridis or identification in Sorghum bicolor has been unsuccessful. The 

recovery of the NADP-malic enzyme containing the phosphorylation at Ser-373 was very 

low, relative to the other isoforms identified (Table 3.5). However, the relative 

abundance coefficient (iBAQ) does not accurately quantify all isoforms expressed in vivo 

and is rather an approximation. Increasing the recovery of phosphopeptides of protein 

K3XFW4 may be the first step in future studies for validating the phosphorylation at Ser-

373 in Setaria viridis.  

 

3.3.5 Phosphorylation of aspartate and alanine aminotransferase 

 

Three phosphorylation sites were solely identified in aspartate aminotransferase from 

illuminated leaves of Setaria viridis (Figure 3.35A), which could be regulating activity 

during the photoperiod. Aspartate aminotransferase is phosphorylated at Ser-49 and Ser-

149 in rat (Rattus norvegicus) (Lundby et al., 2012), though these serine residues are not 

completely conserved in plant species. Setaria italica aspartate aminotransferase 

(K3YSB2) could potentially be phosphorylated at Ser-73 (corresponding to Ser-149 in 

rat), but there is no evidence of this phosphorylation. Ser-300 and Ser-341 from protein 

K3YSB2 are highly conserved in both C3 and C4 species and could be potential targets 

for regulatory phosphorylation, while amino acid substitutions at these positions could 

indicate specific isoform activity (Figure 3.35A). In C4 plants there are at least two major 

aspartate aminotransferase isoforms, compared to three that were identified in 

Arabidopsis thaliana (Numazawa et al., 1989; Wilkie and Warren, 1998). Having 

identified four isoforms in Setaria viridis, it is difficult to ascertain which ones have C4-

specific function. In addition, there could be differences in the regulatory properties 
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between the aspartate aminotransferase isoform localised in the chloroplasts and 

mitochondria (Hatch and Mau, 1973; Meister et al., 1996), which cannot be ascertained 

using whole leaf protein extracts.   

 

Fig. 3.35A. Alignment of aspartate aminotransferases from C4 and C3 plants. 

Putative phosphorylation sites identified in illuminated leaves highlighted yellow and 

those found in darkened leaves highlighted blue. Highly conserved residues highlighted 

green. 

Conversely, alanine aminotransferase was predominantly phosphorylated after 

illumination Figure 3.35B). If the degree of phosphorylation (total number of 

phosphorylation sites identified) were important for enzyme activity, then it would 

suggest that the phosphorylation mechanisms are different for alanine and aspartate 

aminotransferase. While it appeared that Thr-167, Ser-189 and Ser-206 are not light-

dependent, because they were present in both darkened and illuminated leaves, 

phosphorylation at these residues could contribute to enzymatic activity or stability. 

Unlike that phosphorylation sites identified in aspartate aminotransferase, those 

identified in alanine aminotransferase are highly conserved in Zea mays and C3 species, 

except for Ser-326 (Figure 3.35B). Whether the cysteine residue in position 326 

(K3ZSX0 numbering) contributes to additional regulatory mechanisms, such as redox 

regulation, is unknown. Despite catalysing the amino transfer in two similar reactions, 

protein sequences between the aspartate and alanine aminotransferase are very 

dissimilar, probably due to high specificity for either aspartate or alanine, respectively 

(Ashton et al., 1990; Duff et al., 2012). Moreover, the optimal activity of aspartate and 

alanine aminotransferase might directly be associated with upstream enzymes like PEPC 
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or NADP-malic enzyme, respectively (Andrews et al., 1971; Hatch and Mau, 1973). In 

addition to this, alanine aminotransferase is not associated with chloroplasts (Meister et 

al., 1996) and the regulatory properties of the identified isoforms might be more similar 

as opposed to the aspartate aminotransferase isoforms, which may be differently 

compartmentalised.  

 

Fig. 3.35B. Alignment of alanine aminotransferases from C4 and C3 plants. Putative 

phosphorylation sites identified in illuminated leaves highlighted yellow and those found 

in darkened leaves highlighted blue. Phosphorylations found in both light and dark 

highlighted in blue and yellow. Highly conserved residues highlighted green. 

The activities of major aspartate and alanine aminotransferase isoforms in C4 plants are 

higher in dark-grown plants, while minor isoforms differ very little in activity between 

darkened and illuminated conditions (Hatch and Mau, 1973). However, from the 

phosphorylation data, it is not possible to ascertain whether the changes to the degree of 

phosphorylation in darkened and illuminated conditions might be regulating the activity 

of aspartate or alanine aminotransferase. In an early study on the activity of aspartate and 

aminotransferase in C4 plants, Hatch and Mau (1973) suggest that the aminotransferases 

evolved C4-specific function, possibly after the C4 cycle was fully established. Also, the 

activity of these enzymes is linked to decarboxylation by PEPCK in bundle sheath cells 

or NAD-malic enzyme in mitochondria in bundle sheath cells, and not with C4 subtypes 
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that predominantly use NADP-malic enzyme (Andrews et al., 1971; Huber and Edwards, 

1975; Chapman and Hatch, 1981; Meister et al., 1996). Therefore, it is possible that 

aspartate aminotransferase activity evolved together with downstream PEPCK activity 

and the phosphoregulatory mechanisms that evolved with PEPCK could have been 

adapted to regulate the activity of aspartate aminotransferase (Gowik and Westhoff, 

2011). PEPCK, unlike PEPC, is inactivated by the degree of phosphorylation in dark-

grown plants (Bailey et al., 2007). Alternatively, regulatory elements could have evolved 

along with the regulatory phosphorylation of PEPC activation, as aspartate 

aminotransferase could have evolved C4-specific activity in order to increase the options 

for carbon flux during high rates of carboxylation by PEPC (Bräutigam et al., 2014; 

Wang et al., 2014).  

 

3.3.6 Phosphorylation of enolase and phosphoglycerate mutase 

 

Although not directly associated with the C4 pathway, the activity of phosphoglycerate 

mutase and enolase in leaves of C4 plants, particularly in Zea mays, has been considered 

to contribute for the supply of 3-PGA and PEP (Huber and Edwards, 1975; Furbank and 

Leegood, 1984). However, the rate at which this interconversion occurs and how it may 

be regulated is unknown (Arrivault et al., 2016). In this study, novel light-dependent 

phosphorylation sites identified in enolase and phosphoglycerate mutase from Setaria 

viridis suggest that the formation of PEP through enolase and phosphoglycerate mutase 

is regulated. In yeast (Saccharomyces cerevisiae), enolase undergoes phosphorylation at 

Ser-10 (Pearlman et al., 2011), but this residue is not conserved in plants (Figure 3.36). 
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Fig. 3.36. Alignment of enolase (ENL) protein sequences. Novel phosphorylation sites 

indicated in yellow (occurring in light) and yellow and blue (occurring in light and dark). 

Substrate binding site in purple. Red triangle shows phosphoserine in yeast.  

Enolase catalyses the interconversion of 2-PGA and PEP (Zhang et al., 1997) and its 

activity might provide an alternative route for the formation of PEP. The phosphorylation 

at Ser-129 occurred only in enolase-2 in Setaria viridis, though enolase-2 from Zea mays 

and Triticum aestivum could potentially be phosphorylated (Figure 3.36). This might be 

indicative of a specific mechanism regulating the activity of enolase-2 in Setaria viridis. 

In addition, despite Thr-334 and Thr-337 being conserved in enolase-1 and enolase-2, 

only enolase-1 underwent phosphorylation in illuminated leaves in Setaria viridis. 

Because of the proximity to the binding site (Asp-329) and active site (Lys-354), 

phosphorylation at these two residues might hinder substrate binding by charge repulsion 

with the phosphate of 2-PG or PEP. 
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Fig. 3.37. Alignment of phosphoglycerate mutase protein sequences. Novel 

phosphorylation sites indicated in yellow (occurring in light) and yellow and blue 

(occurring in light and dark). Red triangle shows phosphoserine-74 in Trypanosoma 

brucei.  

Phosphoglycerate mutase catalyses the interconversion of 2-PGA and 3-PGA and might 

serve as a direct link with the activity of enolase and formation of PEP (Huber and 

Edwards, 1975). While Ser-520 and Thr-527 were only identified in Setaria viridis, the 

phosphorylation at Ser-109 was detected in illuminated and darkened leaves of Setaria 

viridis (Table 3.4B, 3.6), Sorghum bicolor (Table 3.7) and Megathyrsus maximus (Table 

3.8), suggesting that it serves an important role in the catalytic mechanism. In fact, this 

residue is important for catalysis and exists as a phosphointermediate in several non-

plant species (Collet et al., 2001; Jedrzejas and Setlow, 2001; Potters et al., 2003; Rigden 

et al., 2003). Based on sequence homology, it is possible that the phosphorylation site 

identified in this study might be part of the reaction mechanism rather than a 

phosphoregulatory site.  
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In Trypanosoma brucei, phosphoglycerate mutase undergoes phosphorylation at Ser-74 

and because of the low rates of formation and disappearance during the reaction, the 

phosphoserine is produced as an intermediate of the phosphatase reaction when 

phosphate is removed from either 2-PGA or 3-PGA (Jedrzejas et al., 2000; Collet et al., 

2001). Despite being distant to plants, it has been suggested that trypanosomes retain 

several plant-like genes, most of which are involved in central metabolism and at some 

point, in their evolutionary past, trypanosomes contained chloroplasts (Hannaert et al., 

2003; Martin and Borst, 2003). However, sequence similarity between plant and 

Trypanosoma brucei phosphoglycerate mutase (Figure 3.37) does not necessarily imply 

that the phosphoregulatory elements in the protozoa are retained in plant species. Due to 

the high reproducibility of Ser-109 across three of the investigated C4 plants, the 

phosphorylation at Ser-109 might be a phosphointermediate or at least an important 

residue essential for catalysis. It would be interesting to investigate whether the 

replacement of serine to alanine would affect the catalytic properties of phosphoglycerate 

mutase in plants, as previously investigated in Bacillus stearothermophilus, which 

drastically reduced enzyme activity (Jedrzejas et al., 2000; Jedrzejas and Setlow, 2001). 

 

3.3.7 Quantitative proteomics and future study 

 

In this study, several novel phosphorylation sites were identified on key C4-related 

proteins, suggesting that multiple sites, in addition to those already identified, might 

regulate enzymatic activity. However, it is unlikely that all phosphorylation sites 

identified are under regulation. To ascertain the sites that are under regulation, the degree 

of phosphorylation and how it changes during dark to light transitions requires further 

investigation. This can be done by either quantifying the signal intensity of 

phosphoprotein stained gels or using quantitative proteomics. One method commonly 

used to quantify peptides by mass spectrometry is using stable isotope labelling by amino 

acids in cell culture (SILAC) in conjunction with immunoprecipitation (Zhang and 

Neubert, 2009; Matthes et al., 2014), however, the incorporation of heavy amino acids 

into proteins has only recently been optimised for Arabidopsis thaliana seeds and may 

not be compatible with seeds of other plant species (Lewandowska et al., 2013). An 

alternative to metabolic labelling is using isobaric tags for relative and absolute 
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quantitation (iTRAQ), whereby peptides are chemically tagged in vitro (Wiese et al., 

2007), however is not as reproducible as SILAC (Zhang and Neubert, 2009). 

Having identified putative phosphopeptides, selected reaction monitoring (SRM) is more 

applicable for quantifying phosphorylation than using metabolic labelling. In complex 

mixtures, particularly in untargeted approaches, the analysis of proteins of interest can 

be overwhelmed by more abundant proteins, resulting in poor consistency in 

fragmentation spectra and detection of the associated peptides of interest (Lange et al., 

2008). In SRM, the peptide of interest can be selected by defining a search range given 

its corresponding m/z value, thus the elution of ions can be monitored in the run and 

interfering ions, which are out of the pre-defined monitoring range, can be filtered out 

(Lange et al., 2008). These analyses are performed using triple quadrupole mass 

spectrometers, which can monitor the precursor ion and fragment ion of a given peptide 

over time (Williamson et al., 2006), however, unlike tandem mass spectrometers, SRM-

capable mass spectrometers utilise a non-scanning approach, which by not recording all 

fragmentation spectra detected, the targeted peptide can be preferentially observed 

(Lange et al., 2008). This allows for the selection of ions of interest in a complex mixture, 

which can then be accurately quantified. However, for SRM to be effective for PTM 

identification and quantification, the m/z value of the peptide must be known.  

It is possible that there are additional phosphorylation sites that have not been identified 

in this study due to the loss of peptides of interest during analysis or low amount of 

phosphopeptides due to suboptimal concentration of proteins from the leaf lysate. One 

method to increase the concentration of phosphopeptides is by preparing peptides using 

a gel-free approach.  However, the heterogeneity of the protein suspension and nature of 

globular proteins in their native three-dimensional state makes it difficult to guarantee 

that the trypsin-mediated proteolysis has been equally applied to every protein in the 

sample (Zhang et al., 2013). Also, despite trypsin is widely used, the dynamic mechanism 

of proteolytic digestion does not guarantee complete coverage of the protein sequence 

and peptides are readily lost during analysis (McLachlin and Chait, 2001), making it 

difficult to map all modifications on the protein of interest. To overcome this, intact 

proteins can be analysed, thereby reducing the loss of peptides of interest. However, 

fragmentation efficiencies of intact proteins are lower than that of peptides, 

compromising on the fragment ion spectra needed for subsequent mass spectrometry 

analysis and determination of site-specific modifications (Moradian et al., 2014). In 
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addition to this, fractionating intact proteins by SDS-PAGE is hindered by reduced 

compatibility with non-volatile buffers required for the extraction from the 

polyacrylamide matrix (Garcia, 2010; Zhang et al., 2013). Intact proteins can also be 

enriched using phosphoprotein enrichment, however, the binding interaction between an 

intact, folded phosphoprotein and resin particle in the enrichment column is difficult to 

predict, thus making phosphoprotein enrichment less reliable than phosphopeptide 

enrichment (Fíla and Honys, 2012). Alternatively, larger polypeptides, instead of intact 

proteins, can be analysed using size-dependent peptide fractionation. In this method, 

proteins are partially digested to form large polypeptide fragments, which are then 

selectively fractionated by size (Garcia, 2010). However, this approach is not optimised 

for large-scale phosphoproteomic studies (Zhang et al., 2013). Despite being several 

methods to overcome the difficulties of phosphoproteomics, contaminant peptides from 

human proteins, co-migrating proteins or from the autolysis of trypsin can still pose 

challenges (Seo and Lee, 2004).    

 

3.3.8 Conclusion 

 

It was hypothesised that C4-related proteins in Setaria viridis undergo light-dependent 

phosphorylation similar to the mechanisms elucidated for PEPC and PPDK in Zea mays. 

The findings in this chapter verified that the PEPC and PPDK undergo light-dependent 

phosphorylation at the conversed residues as in Zea mays, and that the degree for 

phosphorylation of PPDK increased after the transition into darkness, as previously 

observed (Chao et al., 2014). In addition, several other C4-related enzymes such as 

NADP-malic enzyme, were phosphorylated, supporting the hypothesis that 

phosphoregulatory mechanisms might regulate the activity of other key C4-related 

proteins. While the exact effect of these modifications cannot be ascertained from this 

data alone, structural evidence has shown that the phosphorylation of NADP-malic 

enzyme at Ser-373, along with Ser-379 and Ser-380 in darkened leaves might regulate 

NADP+ co-factor binding when there is no requirement for NADP-malic enzyme 

activity. This region of NADP-malic enzyme in C4 plants might contain selective factors 

for either NAD- or NADP+ co-factor binding, and therefore could be a prime region for 

post-translational regulation.  
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Chapter 4 – The kinetics of C4-acid decarboxylation by 

NADP-malic enzyme in response to pH and illumination 

in C4 grasses 
 

4.1 Introduction 

 

4.1.1 Regulation of NADP-malic enzyme in plants 

 

NADP-malic enzyme (EC 1.1.1.40) is one of the three decarboxylases in C4 plants, along 

with NAD-malic enzyme and PEPCK. It is widespread in higher plants, including 

Crassulacean acid metabolism (CAM) plants, and present in various tissues including 

leaves, seeds and roots (Edwards and Andreo, 1992; Drincovich et al., 2001). NADP-

malic enzyme is found in bundle sheath chloroplasts of C4 plants and catalyses the 

oxidative decarboxylation of L-malate (Figure 4.1), forming pyruvate and releasing CO2 

at the site of Rubisco (Slack et al., 1969; Hatch, 1987; Maurino et al., 1997; Drincovich 

et al., 2001).  

 

Fig. 4.1. Oxidative decarboxylation of L-malate via NADP-malic enzyme. 

Aside from its essential role in C4 photosynthesis, cytosolic, non-photosynthetic NADP-

malic enzyme isoforms in C4 plants are involved in cellular defence mechanisms, 

nitrogen assimilation and supplying reducing equivalents for use in central metabolism, 

much like their counterparts present in C3 plants (Drincovich et al., 2001; Tausta et al., 

2002; Maier et al., 2011; Badia et al., 2015; Ludwig, 2016). The C4-specific function of 

NADP-malic enzyme, with regards to its subcellular compartmentalisation in bundle 

sheath chloroplasts and activation by illumination (Lai et al., 2002), was acquired from 

an ancestral, chloroplastic NADP-malic enzyme following a gene duplication event 

(Monson, 1999; Tausta et al., 2002). In the Flaveria species, which has C3 and C4 plant 

variants, NADP-malic enzyme belongs to a small gene family, which encodes its 

expression in the cytosol and chloroplasts (Rajeevan et al., 1991). Genes encoding the 

chloroplastic NADP-malic enzyme protein found in Flaveria trinervia (C4) and Flaveria 
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pringlei (C3) were shown to have high similarity and likely to have evolved from a 

common ancestor (Lipka et al., 1994; Marshall et al., 1996). The C3-specific NADP-

malic enzyme, the likely ancestor to the C4-specific form, is also present in chloroplasts 

of C3 plants, but is expressed in low amounts (Maurino et al., 1997; Drincovich et al., 

1998). 

Despite having multiple functions, photosynthetic NADP-malic enzyme isoforms in 

bundle sheath chloroplasts of C4 plants evolved a specialised role in decarboxylase 

activity to suit the demands of malate metabolism in C4 photosynthesis (Maurino et al., 

1996; Maurino et al., 1997; Drincovich et al., 2001; Tsuchida et al., 2001). In Zea mays, 

NADP-malic enzyme isoforms found in the cytosol and chloroplasts show distinct 

kinetic properties and are regulated differently by pH and malate (Johnson and Hatch, 

1970; Nishikido and Wada, 1974; Asami et al., 1979; Edwards and Andreo, 1992; 

Maurino et al., 1996; Tausta et al., 2002). When compared to C3 relatives, NADP-malic 

enzyme in C4 plants has a higher affinity for L-malate and operates at a higher pH 

optimum (Nishikido and Wada, 1974). Furthermore, in Zea mays, the activity of NADP-

malic enzyme is dependent on pH, which alters its sensitivity to inhibition by L-malate 

(Asami et al., 1979). At pH 8.0, NADP-malic enzyme is in its active homotetramer form 

consisting of identical 62 to 68 kDa subunits, and has a high Vmax and a high affinity for 

NADP+ during illumination (Edwards and Andreo, 1992; Kanai and Edwards, 1999). The 

active form dissociates into homodimers at pH 7.0 (Iglesias and Andreo, 1990), which 

decreases its affinity for L-malate and NADP+ and becomes more sensitive to allosteric 

inhibition by high malate concentrations (Asami et al., 1979; Edwards and Andreo, 1992; 

Kanai and Edwards, 1999; Detarsio et al., 2007). While NADP-malic enzyme remains 

active in all oligomeric forms, it is most active at pH 8.0 (Edwards and Andreo, 1992). 

Holaday and Lowder (1989) suggest that the weak acidity of the malate binding site 

promotes catalysis in vivo at the high optimal pH, but Michaelis-Menten kinetics are lost 

at pH 9.0, where some degree of cooperative interaction is observed (Holaday and 

Lowder, 1989; Edwards and Andreo, 1992).  
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4.1.2 Regulation by pH and illumination 

 

The relationship between pH and illumination may be part of a more complex mechanism 

for the regulation of NADP-malic enzyme-dependent decarboxylation in C4 plants. The 

C4-specific NADP-malic enzyme has a lower affinity for L-malate at an alkaline pH, 

albeit activity increases with increasing pH (Edwards and Andreo, 1992). In addition, the 

effect of pH on the activity of NADP-malic enzyme varies with the L-malate 

concentration (Johnson and Hatch, 1970). It is also evident that pH and Mg2+, both of 

which are factors that regulate the activity of NADP-malic enzyme (Johnson and Hatch, 

1970; Asami et al., 1979), increase in the chloroplast stroma when illuminated (Edwards 

and Andreo, 1992). During illumination, the pH in the thylakoid space decreases and 

increases in the stroma, due to the proton flux into the former (Neumann and Jagendorf, 

1964; Heldt et al., 1973; Werdan et al., 1975). In darkened conditions, pH in the stroma 

decreases, which consequently inhibits CO2 fixation, and is considerably a necessary 

mechanism to make sure carbohydrate oxidation occurs exclusively in illuminated 

conditions (Werdan et al., 1975). This oscillation of pH in darkened and illuminated 

conditions may be playing a much greater role in the activation of NADP-malic enzyme 

in C4 plants; and being chloroplastic (Slack et al., 1969), it is conceivable that the activity 

is regulated by light-dependent changes in the stromal pH (Asami et al., 1979; Edwards 

and Andreo, 1992).  

Apart from its regulation by pH, the activity of NADP-malic enzyme is regulated by 

changes in thiol-disulphide bonds in Zea mays leaves (Drincovich and Andreo, 1994; 

Alvarez et al., 2012; Saigo et al., 2013). The in vitro activity of NADP-malic enzyme 

from dark-grown plants can be stimulated in the presence of DTT (reducing agent), and 

under such conditions, the activity in darkened leaves is close to the activity of the light-

form (Drincovich and Andreo, 1994). However, apart from the light-dependent 

regulation by pH or redox regulation, more extensive post-translational mechanisms that 

modulate enzyme activity, like those described for other C4-related proteins, have not 

been described of NADP-malic enzyme in C4 grasses. For instance, the 

phosphoregulatory properties of PEPCK and its involvement in C4-acid decarboxylation 

have been extensively studied in C4 plants (Walker and Leegood, 1996; Walker et al., 

1997; Walker et al., 2002; Bailey et al., 2007; Chao et al., 2014). This poses an issue 

with regards to engineering C4 photosynthesis into target C3 crops, and there is growing 
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advocacy for PEPCK subtypes, with both PEPCK and NAD-malic enzyme activity, to 

be used as an engineering blueprint rather than plants which predominantly use NADP-

malic enzyme (Bräutigam et al., 2014; Wang et al., 2014). Furthermore, PEPCK may be 

subjected to different regulatory mechanisms than NADP-malic enzyme, simply based 

on its location in the cytosol, rather than in plastids.  

 

4.1.3 Identifying species specific NADP-malic enzyme properties 

 

It is important to ascertain if the catalytic properties of NADP-malic enzyme from closely 

related C4 plants are similar or if distinct differences in the molecular design of NADP-

malic enzyme from each of the C4 grasses may be contributing to species-specific C4-

function and regulation. Putatively identified light-dependent phosphorylation sites 

presented in Chapter 3 are the first evidence of the post-translational regulation of 

NADP-malic enzyme in Setaria viridis, but whether these sites confer any biological 

significance, is unknown. Furthermore, phosphorylation at the identified residues may 

alter the physiochemical properties of NADP-malic enzyme, which could possibly alter 

sensitivity to pH and induce changes in the catalytic properties for its reaction with L-

malate. This investigation was aimed to understand the significance of chloroplastic 

NADP-malic enzyme activity and its regulation in response to illumination and pH, and 

aid our attempts in engineering the C4-specific NADP-malic enzyme into target C3 crops. 

This Chapter will show that the activity and kinetics of NADP-malic enzyme from three 

NADP-malic enzyme type C4 grasses varies in response to pH, illumination and reducing 

conditions with DTT (reducing agent). Data presented in this study will also demonstrate 

that the NADP-malic enzyme regulatory mechanism by light activation applies 

differently to NADP-malic enzyme subtypes.  
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4.2 Results 

 

4.2.1 Kinetics of phosphoenolpyruvate carboxylase and NADP-malic enzyme 

 

The dark and light regulation of PEPC and NADP-malic enzyme was determined by 

comparing their in vitro activities. The activity of these enzymes was monitored in 

continuous assays for approximately 20 min using a 96-well plate format, consisting of 

150 µL reaction volumes and a small volume of crude enzyme extract normalised against 

the lowest concentration. Testing the design of this approach, the in vitro activities of 

PEPC showed a decrease in affinity for PEP at 7.5 h into dark (Figure 4.2) consistent 

with the activation mechanism by light-dependent phosphorylation demonstrated by 

Bailey et al. (2007). The KM for PEP decreased approximately 0.45-fold after 

illumination and remained relatively low until the end of the photoperiod.  There was no 

significant difference in KM between 4 h and 15.5 h into light and 2 h into dark time-

points.       

 

Fig. 4.2. The activity of PEPC in Setaria viridis corresponds to shifts in KM during 

the photoperiod. The kinetic properties of PEPC from darkened (2 and 7.5 h into dark 

period) and illuminated (4 and 15.5 h into light) leaves were determined by enzyme 

assays. Immunoblot indicating PEPC content in 2 µL of leaf lysate is shown to the right. 

Data are based on six biological replicates and error bars show the standard error (SE).      
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This approach was also used to assay the activity of NADP-malic enzyme in Setaria 

viridis.  The KM for L-malate was higher at 7.5 h into the dark and 4 h into the light, when 

compared to 2 h into the dark and 15.5 h into the light (Figure 4.3). However, despite 

that the KM for L-malate increased by 1.3-fold from 2 h into the dark and 4 h into the 

light, NADP-malic enzyme maintained high activity. There was no significant difference 

in KM for L-malate in 15.5 h illuminated and 2 h darkened leaves. Considering light 

availability at these two transition points, it is possible that the light-dependent 

mechanism for enzyme activation occurs or is in operation at least 4 h after the onset of 

light.   

 

Fig. 4.3. NADP-malic enzyme KM for L-malate was highest during the dark to light 

transition in Setaria viridis. The kinetic properties of NADP-malic enzyme from 

darkened (2 and 7.5 h into dark period) and illuminated (4 and 15.5 h into light) leaves 

were determined by enzyme assays. Immunoblot indicating NADP-malic enzyme 

content in 2 µL leaf lysate shown to the right. Data are based on six biological replicates 

and error bars show the standard error (SE).      

The initial results suggest that malate metabolism by NADP-malic enzyme occurred 

predominantly towards the end of the photoperiod in Setaria viridis. These observations 

may warrant further investigation into the how NADP-malic enzyme responds to during 

the photoperiod and dark period in other C4 grasses.    
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4.2.2 NADP-malic enzyme is regulated by pH 

 

In the initial test assays the optimal conditions for assaying malic enzyme were obtained 

from Ashton et al. (1990). To further investigate the light-dependent regulation of 

NADP-malic enzyme, the optimal assay conditions in Setaria viridis, Sorghum bicolor 

and Zea mays were determined. NADP-malic enzyme from Sorghum bicolor displayed 

two distinct pH optima. One at pH 7.4 in illuminated leaves and another at pH 8.2 in 

darkened leaves (Figure 4.4). At a low pH, the activity of NADP-malic enzyme was 

highest in illuminated leaves, but lowest in darkened leaves. Conversely, at a high pH, 

the activity of NADP-malic enzyme was highest in darkened leaves and lowest in 

illuminated leaves. The differences in NADP-malic enzyme activity between 2 and 7.5 

h darkened or 4 and 15.5 h illuminated leaves was not significant.          

 

Fig. 4.4. The pH optimum of NADP-malic enzyme activity in Sorghum bicolor 

shifted after illumination. The optimum activity of NADP-malic enzyme, in terms of 

NADPH produced over time, was determined using a pH range from 6.8 to 9.2. NADP-

malic enzyme from Sorghum bicolor displayed two distinct pH optima in light and dark 

(indicated by dashed lines). pH optima were determined at four time-points:  2 and 7.5 h 

into dark (blue lines, black markers) and 4 and 15.5 h into the light (orange lines, clear 

markers). Curve fitting was performed in GraphPad Prism 7, considering the standard 

deviation error bars. 



 

150 

 

Unlike Sorghum bicolor, NADP-malic enzyme in Setaria viridis from darkened and 

illuminated leaves remained active across a broader pH range (Figure 4.5). Furthermore, 

NADP-malic enzyme activity in darkened leaves decreased after pH 8.2, whereas 

enzyme activity in illuminated leaves decreased after pH 9.2. Also, unlike Sorghum 

bicolor, the pH response of NADP-malic enzyme from Setaria viridis illuminated leaves 

was broader and peaked at pH 8.6, while the activity in darkened leaves peaked around 

pH 8.2, which was similar to the activity observed in darkened leaves of Sorghum bicolor 

(Figure 4.4).         

 

Fig. 4.5. NADP-malic enzyme from illuminated Setaria viridis leaves remained 

active across a broader pH range. The optimum activity of NADP-malic enzyme was 

determined using a pH range from 6.8 to 9.2. NADP-malic enzyme from Setaria viridis 

displayed higher tolerance to increasing pH, peaking at pH 8.2 and pH 8.6 (indicated by 

dashed lines), in darkened and illuminated leaves, respectively. The differences in 

optimum activity between light and dark were not significant. pH optima were 

determined at four time-points:  2 and 7.5 h into dark (blue lines) and 4 and 15.5 h into 

the light (orange lines). Curve fitting was performed in GraphPad Prism 7, considering 

the standard deviation error bars. 

In Zea mays, the NADP-malic enzyme pH curve (Figure 4.6) was similar to that of 

Sorghum bicolor and like Sorghum bicolor, the activity of NADP-malic enzyme in Zea 

mays displayed a distinct peak at pH 8.2, but there was no difference in the pH optimum 

between 7.5 h darkened and 15.5 h illuminated leaves.   
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Fig. 4.6. There was no change in the pH optimum of NADP-malic enzyme activity 

in Zea mays leaves. The optimum activity of NADP-malic enzyme was determined using 

a pH range from 6.8 to 9.2. Activity at pH 8.2 (dashed line). pH optima were determined 

at two time-points:  7.5 h into dark (black squares) and 15.5 h into the light (clear 

squares). Curve fitting was performed in GraphPad Prism 7, considering the standard 

deviation error bars. 

NADP-malic enzyme activity in illuminated Zea mays leaves exhibited low activity at a 

lower pH, which was similar to the activity of NADP-malic enzyme from illuminated 

Setaria viridis leaves at pH 7.0 (Figure 4.5). Additionally, the activity of NADP-malic 

enzyme from illuminated leaves of Zea mays dropped substantially at pH 6.8. This was 

not observed in Sorghum bicolor or Setaria viridis. The activity of NADP-malic enzyme 

from darkened leaves in response to pH was similar in Sorghum bicolor (Figure 4.4) and 

Zea mays (Figure 4.6). In Setaria viridis, NADP-malic enzyme displayed a flatter peak 

at the pH optimum (Figure 4.5) and the maximum activity was approximately three times 

lower compared to Sorghum bicolor and Zea mays (Figure 4.7). The differences of 

NADP-malic enzyme activity across all three C4 grasses, in response to increasing pH, 

were mostly observed in illuminated leaves.   

In Zea mays, there was no significant difference in the NADP-malic enzyme activity 

between illuminated and darkened leaves. Similarly, the dark and light activities of 

NADP-malic enzyme in Setaria viridis were not significant around the pH optimum, but 

were distinguishable below and above the pH optimum. In Sorghum bicolor, NADP-

malic enzyme from illuminated leaves remained active at a lower pH (Figure 4.4), unlike 

NADP-malic enzyme activity from Setaria viridis or Zea mays, which was much lower 
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at pH 6.8. Additionally, the activity of NADP-malic enzyme in Sorghum bicolor in 

illuminated leaves, unlike that of Setaria viridis (Figure 4.5) was not restored with 

increasing pH, and declined about 0.5-fold lower than the optimum activity at pH 7.4.  

 

 

Fig. 4.7. Dark and light NADP-malic enzyme activity in leaves of Sorghum bicolor, 

Setaria viridis and Zea mays at the optimum pH. Activity of NADP-malic enzyme in 

leaf lysates normalised against the lowest concentration. Data are based on six biological 

replicates and the error bars show the standard deviation. 
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4.2.3 Optimal NADP-malic enzyme activity at low a Mg2+ concentration 

 

The optimum activity of NADP-malic enzyme was determined in the presence of Mg2+, 

its preferred divalent metal co-factor as previously reported by Johnson and Hatch 

(1970). For both Setaria viridis and Sorghum bicolor, there was no NADP-malic enzyme 

activity in the absence of Mg2+. NADP-malic enzyme from Setaria viridis (Figure 4.8), 

was active in the presence of 1–15 mM at the optimum pH. Activity declined in the 

presence of 20 and 30 mM. In addition, there was no difference in Mg2+ dependence 

between darkened and illuminated leaves.   

 

Fig. 4.8. No difference in NADP-malic enzyme activity from darkened and 

illuminated leaves of Setaria viridis in the presence of Mg2+. NADP-malic enzyme 

was assayed in the decarboxylation direction, towards the formation of pyruvate, in the 

presence of MgCl2 (0–30 mM), at pH 8.4. Data are based on six biological replicates and 

error bars show the standard deviation. 

At the light pH optimum (pH 7.4), the activity of NADP-malic enzyme from Sorghum 

bicolor (Figure 4.9) did not significantly change in the presence of 1 and 30 mM MgCl2. 

NADP-malic enzyme activity was less stable at the dark pH optimum (pH 8.2). Unlike 

Setaria viridis, the activity of Sorghum bicolor NADP-malic enzyme was light-

dependent. In addition, the activity of NADP-malic enzyme from darkened leaves was 

lower than illuminated leaves in both optimal and suboptimal pH.       
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Fig. 4.9. Activity of NADP-malic enzyme in response to Mg2+ may be pH- and light-

dependent in Sorghum bicolor. NADP-malic enzyme assayed in the decarboxylation 

direction, towards the formation of pyruvate, in the presence of MgCl2 (0–30 mM), at pH 

7.4 (light optimum) and pH 8.2 (dark optimum). Data are based on six biological 

replicates and error bars show the standard deviation. 

The optimal Mg2+ concentration for Setaria viridis and Sorghum bicolor NADP-malic 

enzyme was determined at 2 mM. Dependence on Mg2+ may be pH-dependent in 

Sorghum bicolor. The optimal concentration of Mg2+ was not determined for Zea mays.      
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4.2.4 Michaelis-Menten kinetics of NADP-malic from three C4 grasses 

 

To further analyse the effects of illumination and pH, the dark and light Michaelis-

Menten kinetics of NADP-malic enzyme, at the identified pH and Mg2+ optima, were 

investigated. In addition, to test the effect of reducing conditions, the activity of NADP-

malic enzyme was measured by adding 10 mM DTT (reducing agent) into the reaction 

assay. In Sorghum bicolor, the previous results showing that NADP-malic enzyme had 

two distinct pH optima under illuminated or darkened conditions were further 

substantiated by shifts in KM for L-malate under optimal and suboptimal conditions 

(Figure 4.10). There was no change in the KM for L-malate under optimal and suboptimal 

pH in 15.5 h illuminated leaves. At pH 7.4 and pH 8.2, NADP-malic enzyme KM for L-

malate in darkened Sorghum bicolor leaves decreased in the presence of DTT. In 

darkened leaves, the KM for L-malate was nearly 1.8-fold higher than the KM in 

illuminated leaves in optimal pH and about 0.66-fold higher in the suboptimal pH (Figure 

4.10), suggesting that the affinity for L-malate increases after the dark to light transition, 

regardless of pH. This observation concurred with previous findings in Setaria viridis 

(Figure 4.3), in which the KM for L-malate was about 1.3-fold higher at 7.5 h into dark 

and remained high after 4 h of illumination, until lowering after 15.5 h of illumination. 

However, the KM for L-malate decreased in response to suboptimal pH, regardless the 

light condition. 
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Fig. 4.10. 

 

 

pH 7.4 (KM ± SE µM) pH 7.4 + DTT (KM ± SE µM) 

Dark Light Dark Light 

236.6 ± 22.39 154.9 ± 18.98 209.9 ± 12.68 125.0 ± 6.17 
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Fig. 4.10. The differences in light and dark activities of Sorghum bicolor NADP-

malic enzyme in response to pH linked to shifts in KM. Michaelis-Menten curves for 

the NADP-malic reaction in darkened (black dots) and illuminated (clear dots) Sorghum 

bicolor leaves in response to increasing L-malate concentrations. KM was determined at 

two pH optima (pH 7.4 in green and pH 8.2 in blue) and in response to DTT (+) and no 

added DTT (–). Data are based on six biological replicates and error bars show the 

standard deviation (SD). SE, standard error. Units for initial velocity are Abs/min.  

pH 8.2 (KM ± SE µM) pH 8.2 + DTT (KM ± SE µM) 

Dark Light Dark Light 

443.7 ± 56.18 142.3 ± 29.07 318.8 ± 14.82 200.8 ± 20.67 
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The relationship between optimal and suboptimal pH and NADP-malic enzyme activity 

was not conclusive in Setaria viridis. At the optimal pH (pH 8.4), NADP-malic enzyme 

did not display Michaelis-Menten kinetics and the KM for L-malate was ambiguous 

without the addition of DTT (Figure 4.11). However, Michaelis-Menten kinetics were 

restored at the suboptimal (pH 7.4) in both darkened and illuminated leaves. In addition, 

at a higher pH, the activity of NADP-malic enzyme in Setaria viridis was higher, but the 

affinity for L-malate was low. Conversely, enzyme activity was low at a lower pH, but 

the affinity for L-malate was higher.  
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Fig. 4.11. 

pH 7.4 (KM ± SE µM) pH 7.4 + DTT (KM ± SE µM) 

Dark Light Dark Light 

20.9 ± 4.10 35.7 ± 6.92 187.0 ± 38.63 40.7 ± 9.41 
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Fig. 4.11. Link between pH and light/dark activity of NADP-malic enzyme in Setaria 

viridis. Michaelis-Menten curves for the NADP-malic reaction in darkened (black dots) 

and illuminated (clear dots) Setaria viridis leaves in response to increasing L-malate 

concentrations. KM was determined at the optimal pH 8.4 (blue) and suboptimal pH 7.4 

(green), in response to DTT (+) and no added DTT (–). Data are based on six biological 

replicates and error bars show the standard deviation (SD). SE, standard error. Units for 

initial velocity are Abs/min.

pH 8.4 (KM ± SE µM) pH 8.4 + DTT (KM ± SE µM) 

Dark Light Dark Light 

Ambiguous Ambiguous 1973 ± 354 1194 ± 127 
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pH 7.4 (KM ± SE µM) pH 7.4 + DTT (KM ± SE µM) 

Dark Light Dark Light 

10.8 ± 4.42 9.1 ± 4.21 50.6 ± 22.43 44.4 ± 12.75 

 

Fig. 4.12. 
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pH 8.2 (KM ± SE µM) pH 8.2 + DTT (KM ± SE µM) 

Dark Light Dark Light 

5.9 ± 2.31 6.6 ± 2.64 8.8 ± 1.79 11.3 ± 3.75 
 

Fig. 4.12. NADP-malic enzyme in Zea mays maintained high substrate affinity in 

response to pH. Michaelis-Menten curves for the NADP-malic reaction in darkened 

(black dots) and illuminated (clear dots) Zea mays leaves in response to increasing L-

malate concentrations. KM was determined at a single pH optimum (pH 8.2 in blue) and 

a suboptimal pH (pH 7.4 in green), in response to DTT (+) and no added DTT (–). 

Affinity for L-malate remained consistently high (low KM) in darkened and illuminated 

leaves in high and low pH. Presence of DTT had a marginal effect on NADP-malic 

enzyme affinity for L-malate. Data are based on six biological replicates and error bars 

show the standard deviation (SD). SE, standard error. Units for initial velocity are 

Abs/min. 
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In Zea mays, NADP-malic enzyme maintained a higher substrate affinity across all time-

points (Figure 4.12), unlike Sorghum bicolor or Setaria viridis. In the presence of DTT, 

there was a significant change in KM in darkened and illuminated leaves in suboptimal 

pH (pH 7.4). These differences were greater than those observed in Sorghum bicolor and 

Setaria viridis leaves in response to DTT. However, at the pH optimum (pH 8.2), a 

marginal increase in KM was observed, but was not significant. In Zea mays, Sorghum 

bicolor and Setaria viridis, the effect of DTT on the activity and KM for L-malate was not 

discernible in these assays. Furthermore, there were no distinct patterns in the change of 

KM at the optimal and suboptimal pH in response to DTT across the three C4 grasses, and 

therefore the effect of DTT on the activity of NADP-malic enzyme was inconclusive.  

Table 4.1. Changes to NADP-malic enzyme affinity for L-malate in response to 

illumination. Summary of the change in NADP-malic enzyme affinities for L-malate in 

response the light transition, under optimal and suboptimal pH. Up-arrows indicate 

increase in affinity, while down-arrows indicate decrease in affinity. *Fold change 

calculated in the presence of DTT. 

 Optimal pH Suboptimal pH 

 Affinity (fold change) 

Affinity 
Sorghum bicolor 0.65 ↑ 0.40 ↑ 

Setaria viridis 0.40* ↑ 0.71 ↓ 

Zea mays 0.12 ↓ 0.16 ↑ 

 

It was evident that under optimal conditions, the NADP-malic enzyme affinity range for 

L-malate was very high in Zea mays, moderate in Sorghum bicolor, but much lower in 

Setaria viridis. In illuminated leaves, NADP-malic enzyme affinity for L-malate 

increased by almost 0.65-fold in Sorghum bicolor, 0.40-fold in Setaria viridis, but 

decreased about 0.12-fold in Zea mays after the dark to light transition at the pH optimum 

(Table 4.1). Furthermore, under optimal and suboptimal conditions, NADP-malic 

enzyme affinity for L-malate in Zea mays leaves remained higher than in Sorghum 

bicolor and Setaria viridis. However, since NADP-malic enzyme in Setaria viridis did 

not display Michaelis-Menten kinetics under optimal conditions and KM was ambiguous, 

the true relationship between affinity for L-malate and pH cannot be determined.   
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4.3 Discussion 

 

4.3.1 Low pH optimum ensures NADP-malic enzyme activity at the onset of light 

 

The C4-specific NADP-malic enzyme is generally assayed at pH 8.0 (Ashton et al., 1990; 

Edwards and Andreo, 1992), which correlates to the physiological pH in the chloroplast 

stroma during illumination, when NADP-malic enzyme is active in C4 plants (Neumann 

and Jagendorf, 1964; Heldt et al., 1973; Kanai and Edwards, 1999). In this study, NADP-

malic enzyme activity was determined in low and high pH and varying concentrations of 

Mg2+. These results show that the activity of NADP-malic enzyme from darkened and 

illuminated leaves of Setaria viridis (Figure 4.5) and Zea mays (Figure 4.6) was at its 

optimum at a high pH (pH 8.0), which is consistent with previous findings (Johnson and 

Hatch, 1970; Nishikido and Wada, 1974; Edwards and Andreo, 1992). However, the 

activity of the enzyme from illuminated leaves of Sorghum bicolor was at its optimum 

at a lower pH (Figure 4.4), and activity declined as the pH increased. In fact, NADP-

malic enzyme from Sorghum bicolor exhibited two distinct pH optima (Figure 4.13). 

These results indicate that there are interspecies differences in the regulation of NADP-

malic enzyme activity in closely related C4 grasses. Also, while in vitro enzyme assays 

have been performed using 5 mM Mg2+ (Ashton et al., 1990), maximal activity was 

achieved using 2 mM Mg2+ (Figure 4.8, 4.9). This correlates to the physiological 

concentration of Mg2+ in the chloroplast stroma, which rises from about 0.5 mM to 2 mM 

upon illumination (Portis and Heldt, 1976; Heldt, 1979; Ishijima et al., 2003). Apart from 

serving as a co-factor in the reaction, Mg2+ protects NADP-malic enzyme from becoming 

oxidised (Drincovich and Andreo, 1994). Whether 2 mM Mg2+ can grant the same 

protection as 10 mM used in previous experiments, is unclear. It was clear however, that 

the activity of NADP-malic enzyme decreased when using Mg2+ concentrations over 10 

mM. This suggests that a high concentration of Mg2+ can lead to the blockage of substrate 

binding sites in the C4-specific NADP-malic enzyme, and should be taken into 

consideration for future in vitro assays. This has been previously speculated to occur in 

the NADP-malic enzyme from Escherichia coli, whereby concentrations of 4 mM Mg2+ 

and above inhibited enzyme activity (Bologna et al., 2007). Loss of NADP-malic enzyme 

activity could have been due to the oxidised form of the enzyme present in the reaction 

assay. However, these effects were kept to a minimum, because NADP-malic enzyme 
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was extracted in reducing conditions with 5 mM DTT to prevent the formation of 

disulphide bonds.  

NADP-malic enzyme from illuminated Sorghum bicolor leaves displayed maximal 

activity at pH 7.4, but there was no change in affinity for L-malate between pH 7.4 and 

pH 8.2. This suggests that NADP-malic enzyme from Sorghum bicolor is maximally 

active at the onset of light, when the pH in the stroma is close to pH 7.0 (Werdan et al., 

1975). Optimal NADP-malic enzyme activity from dark-grown Sorghum bicolor plants 

was achieved at pH 8.2, which is close to the pH optimum generally used to assay NADP-

malic enzyme activity (Ashton et al., 1990).  

 

Fig. 4.13. Simple model showing two distinct activities of NADP-malic enzyme from 

darkened (blue line) and illuminated (orange line) leaves of Sorghum bicolor. 

Activity of NADP-malic enzyme is shown as high and low, which is modelled from the 

changes in activity shown in Figure 4.4. Dark and light periods are shown in light blue 

and light yellow shaded regions, respectively. A simple model shows the changes in pH 

in the stroma during light transitions (bottom).   
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A simple model of NADP-malic enzyme activity in Sorghum bicolor, Figure 4.13, shows 

that when the activity of NADP-malic enzyme from illuminated leaves is high, the 

activity of the NADP-malic enzyme from darkened leaves is low. These inverse changes 

in dark and light NADP-malic enzyme activity align with the diurnal change of the pH 

in the stroma, which rises after illumination (Heldt et al., 1973; Werdan et al., 1975). 

The pH in the stroma declines at the beginning of the dark period and inhibits carbon 

fixation (Werdan et al., 1975), and it is unlikely that NADP-malic enzyme maintains 

high in vivo activity at a high pH after the light to dark transition. The difference in the 

pH optimum between light-grown and dark-grown Sorghum bicolor plants suggests that 

NADP-malic enzyme exists as two separate isoforms during light transitions. Previous 

studies have shown that the photosynthetic NADP-malic enzyme in Zea mays and 

Flaveria floridana has a high pH optimum, while the non-photosynthetic form, which is 

present in both C3 and C4 species, has a low pH optimum (Drincovich et al., 1991; 

Marshall et al., 1996; Maurino et al., 1996; Casati et al., 1997; Casati et al., 1999). This 

suggests that the distinct differences in the pH optimum observed in these assays may 

have been due to non-photosynthetic NADP-malic enzyme activity in crude leaf extracts.  

However, it is unclear whether the formation of NADPH at a low pH was due to activity 

from the non-photosynthetic form of NADP-malic enzyme in the crude leaf lysates. 

While this may be the case, it is uncertain why NADP-malic enzyme activity was 

relatively lower at the pH optimum of the C4-form (Edwards and Andreo, 1992). Also, 

if NADP-dependent activity came from the non-photosynthetic isoform, then the two 

distinct pH optima would have been evident in assays conducted in Setaria viridis and 

Zea mays, which may contain appreciable amounts of non-photosynthetic NADP-malic 

enzyme (Drincovich et al., 2001), and thus could have contributed to the formation of 

NADPH. A model of NADP-malic enzyme activity from illuminated and darkened 

leaves of Setaria viridis (Figure 4.14) shows that NADP-malic enzyme from illuminated 

leaves had a broader pH dependency and it did not exhibit two distinct pH optima, like 

Sorghum bicolor. Instead, the activity of NADP-malic enzyme rose as pH increased after 

illumination, and the pH optimum was determined at pH 8.4, irrespective of the light 

condition, aligning to the pH optimum of NADP-malic enzyme in C4 plants (Ashton et 

al., 1990) and light-dependent activity of NADP-malic enzyme in vivo (Asami et al., 

1979; Edwards and Andreo, 1992).  
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Fig. 4.14. Simple model showing NADP-malic enzyme activity from darkened (blue 

line) and illuminated (orange line) leaves of Setaria viridis. Activity of NADP-malic 

enzyme is shown as high and low, which is modelled from the changes in activity shown 

in Figure 4.5. Dark and light periods are shown in light blue and light yellow shaded 

regions, respectively. A simple model shows the changes in pH in the stroma during light 

transitions (bottom).  

When compared to the modelled activity of NADP-malic enzyme from darkened and 

illuminated leaves of Zea mays (Figure 4.15) it is unlikely that activity from the non-

photosynthetic NADP-malic enzyme was observed. NADP-malic enzyme activity was 

lower at pH 7.4 in Zea mays and Setaria viridis, while high activity was observed in high 

pH, suggesting that NADP-dependent activity came from the C4-specific malic enzyme, 

which has a high pH optimum. Had there been non-photosynthetic NADP-malic enzyme 

activity, such activity would have been distinctly higher at a lower pH, as observed in 

Sorghum bicolor. Another possibility is that Zea mays and Setaria viridis may have a 

relatively lower amount of the non-photosynthetic NADP-malic enzyme. However, this 

is unlikely since the non-photosynthetic form is the second major isoform of NADP-
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malic enzyme present in chloroplasts of Zea mays (Maurino et al., 1996; Maurino et al., 

1997; Drincovich et al., 2001). 

 

Fig. 4.15. Simple model showing NADP-malic enzyme activity from darkened (blue 

line) and illuminated (orange line) leaves of Zea mays. Activity of NADP-malic 

enzyme is shown as high and low, which is modelled from the changes in activity shown 

in Figure 4.6. Dark and light periods are shown in light blue and light yellow shaded 

regions, respectively. A simple model shows the changes in pH in the stroma during light 

transitions (bottom). 

Since the activity of NADP-malic enzyme was not as high at a low pH in neither Setaria 

viridis or Zea mays, there may be other factors regulating activity of NADP-malic 

enzyme in Sorghum bicolor. Light-dependent differences at the pH optimum may be due 

to post-translational regulation mechanisms occurring at least 30 min before the onset of 

light and 30 min before the dark period. The latter would correlate with the previous 

finding in Setaria viridis, in which NADP-malic enzyme displayed a higher affinity for 

L-malate 30 min before dark period, while the affinity for L-malate was about 1.3-fold 

lower 4 h after the onset of light (Figure 4.3, 4.14). Furthermore, in Sorghum bicolor, the 

affinity for L-malate was about 0.46-fold higher at pH 7.4 than at pH 8.2, 30 min before 
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the onset of light, which does not concur with previous findings that showed that the C4-

form has a lower affinity for L-malate at pH 7.0 when the tetrameter dissociates (Asami 

et al., 1979; Detarsio et al., 2007). However, before the onset of light, a high affinity for 

L-malate might be required to achieve and maintain a high reaction rate since malate has 

not accumulated in the chloroplast. Therefore, the overlap in activity of NADP-malic 

enzyme between darkened and illuminated leaves may contribute to achieving a seamless 

transition in activity between light conditions, and may also correlate to the time it takes 

for metabolites to accumulate in C4 plants. In this case, it is unlikely that NADP-malic 

enzyme in Sorghum bicolor is regulated by diurnal changes in the pH of the stroma, but 

pH serves more as fine-control of enzyme isoforms. An additional time-point, around 4.5 

h into the dark period would ascertain whether this mechanism occurs solely at dark to 

light transitions.  

NADP-malic enzyme may alternatively be regulated by redox mechanisms, which can 

exert more control over the activation and inactivation of chloroplastic enzymes, than 

through diurnal changes in the pH of the stroma (Jacquot et al., 1981; Leegood and 

Walker, 1983; Drincovich and Andreo, 1994; Schürmann and Buchanan, 2008). 

Addition of 10 mM DTT to lysates from illuminated leaves containing NADP-malic 

enzyme from Sorghum bicolor increased the affinity for L-malate when assayed at pH 

7.4 (Figure 4.10), but had no effect on the activity of NADP-malic enzyme. Conversely, 

addition of DTT to illuminated leaf lysates increased the maximal activity of NADP-

malic enzyme at pH 8.2 and decreased affinity for L-malate (Figure 4.10). This might 

indicate that at pH 8.2 the oxidised-form of the enzyme, from Sorghum bicolor, might 

have a higher sensitivity to allosteric inhibition (non-competitive), possibly by malate, 

than the reduced-form, which displayed a higher maximal activity. However, this does 

not align with the catalytic properties of NADP-malic enzyme, whereby sensitivity to 

allosteric inhibition by malate increases at a lower pH (Asami et al., 1979). A previous 

study has shown that NADP-malic enzyme from the intermediate C3–C4 species Flaveria 

floridana is not inhibited by malate at pH 7.0 (Casati et al., 1999), suggesting that the 

enzyme assayed in illuminated leaves of Sorghum bicolor may be distinctly different 

than the C4-form found in leaves of Zea mays. The calculated pI for NADP-malic enzyme 

from these C4 grasses ranges from 5.8 to 6.7 (isoform K3XG11 has pI 7.15) and under 

the range of pH used in these assays (pH 6.8 to 9.2), the enzymes should exist as net-

negatively charged species. Any differences to their activities or affinities for L-malate 
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might be due to the action of the reducing agent (DTT) on cysteine-cysteine disulphide 

bonds, which confers stability to the protein. There are ten cysteine residues in Sorghum 

bicolor, nine residues in Zea mays and seven residues in Setaria viridis, which could 

theoretically be affected. However, since these assays were performed using enzyme in 

crude leaf extracts, kinetic constants like Vmax, Kcat or Ki cannot be calculated, and the 

exact effects of DTT on the activity of NADP-malic enzyme cannot be determined.    

The NADP-malic enzyme in vivo activity in illuminated leaves of Sorghum bicolor may 

increase because malate is at high concentrations (Leegood and von Caemmerer, 1989) 

and therefore, a high affinity for malate might not be required. Also, despite that the 

lower affinity for L-malate at pH 8.2 in illuminated leaves of Sorghum bicolor, the 

maximal activity of NADP-malic enzyme increased (Figure 4.10), which aligns with the 

in vivo NADP-malic enzyme activity, which is activated by a light-induced thiol-

disulphide interchange (Drincovich and Andreo, 1994). The effect of DTT on the activity 

of NADP-malic enzyme is also consistent with that of other chloroplastic enzymes, 

which are regulated by light-dependent redox mechanisms (Jacquot et al., 1981; Ashton 

and Hatch, 1983; Leegood and Walker, 1983; Drincovich and Andreo, 1994; Raines et 

al., 2000; Schürmann and Buchanan, 2008; Gütle et al., 2016).  

Addition of 10 mM DTT to darkened and illuminated leaf lysates from Zea mays lowered 

the affinity for L-malate by fourfold at pH 7.4. A lower affinity at pH 7.4 may affect the 

rate of malate decarboxylation at the onset of light, because malate has not accumulated 

in the stroma. Conversely, the changes in affinity for L-malate were negligible between 

the oxidised- and reduced-form of the enzyme at pH 8.2. This is significant as it ensures 

that NADP-malic enzyme reaches maximal activity, with no major changes to its affinity 

for L-malate at a high pH in the light, regardless whether the enzyme is reduced or not. 

This mechanism may grant some protection since the redox state of disulphide bonds of 

NADP-malic enzyme may depend greatly on cellular stimuli or can be blocked under 

certain conditions such as immune responses (Drincovich and Andreo, 1994; Michelet 

et al., 2013; Bhattacharjee et al., 2015; Friso and van Wijk, 2015). 
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4.3.2 PEPCK dependence may influence NADP-malic enzyme activity 

  

NADP-malic enzyme from illuminated leaves of Setaria viridis had a broader pH-

dependence and exhibited a higher affinity for L-malate at light transitions (Figure 4.14). 

This suggests that the in vivo NADP-malic enzyme activity might be required at the onset 

of light, in a mechanism similar to that of NADP-malic enzyme from Sorghum bicolor. 

Transcriptomic analyses performed in leaves of Sorghum bicolor, Setaria italica, which 

is genetically similar to Setaria viridis (Bennetzen et al., 2012) and Zea mays (Figure 

4.16B and 4.16C) show the relative expression of NADP-malic enzyme and PEPCK in 

these C4 grasses. Therefore, it is conceivable that the activity of NADP-malic enzyme 

might be needed at the onset of light in Setaria viridis and Sorghum bicolor, because 

these two grasses have lower expression of PEPCK, whereas Zea mays has an 

appreciable amount of PEPCK (Figure 4.16). In addition to this, since NADP-malic 

enzyme is localised in the chloroplast, the activity of NADP-malic enzyme would depend 

more on fine-control by pH than PEPCK (Edwards and Andreo, 1992). Despite being 

closely related, the pH-dependency of NADP-malic enzyme from Sorghum bicolor was 

drastically different than that of Zea mays. Unlike NADP-malic enzyme from illuminated 

leaves of Sorghum bicolor, the activity of NADP-malic enzyme from Zea mays was 

relatively lower at pH 7.4 (Figure 4.6, 4.15). This suggests that decarboxylation by 

NADP-malic enzyme is not required in the same degree in Zea mays at the onset of light, 

as it seems for NADP-malic enzyme from Sorghum bicolor and Setaria viridis. One 

possibility might be that at the onset of light, the C4-transfer acid in Zea mays is 

preferentially decarboxylated by PEPCK, instead of NADP-malic enzyme. This might 

also indicate that NADP-malic enzyme from Zea mays is differently regulated during 

light transitions, than the enzyme from Sorghum bicolor and Setaria viridis. Furthermore, 

the flux through aspartate and decarboxylation by PEPCK might be more energetically 

favoured than the flux through malate after the onset of light, since PEP does not need to 

be regenerated via PPDK using an extra ATP (Wang et al., 2014). 

In addition, the conversion of oxaloacetate to malate in the chloroplast of mesophyll cells 

depends on the MDH, which must also undergo activation by light (Johnson and Hatch, 

1970; Jacquot et al., 1981; Ashton and Hatch, 1983; Leegood and Walker, 1983). It is 

unlikely that the supply of NADPH, which is needed for the conversion of oxaloacetate 

to malate by reduction, is limiting the rate of malate formation at the onset of light, since 
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large amounts of NADPH are produced within milliseconds of illumination or supplied 

from metabolite exchanges (Huber and Edwards, 1975; Furbank and Leegood, 1984; Stitt 

and Zhu, 2014). Instead, it is conceivable that decarboxylation by PEPCK might not be 

equally as accessible in Sorghum bicolor and Setaria viridis, simply because expression 

of PEPCK is lower in these two grasses (Figure 4.16C). This is also supported by the 

inability to detect PEPCK in leaves of Sorghum bicolor or Setaria viridis by mass 

spectrometry and suggests that the abundance of PEPCK is lower than that of NADP-

malic enzyme, which was readily detected in leaves of Sorghum bicolor and Setaria 

viridis. Although there may be supplementary PEPCK activity, this shows how much 

lower the amount of PEPCK is relative to the primary decarboxylase. This is further 

supported by the inability to detect NADP-malic enzyme in Megathyrsus maximus using 

a similar approach, while PEPCK, its primary decarboxylase (Bräutigam et al., 2014), 

was readily detected. Comparatively, the expression of PEPCK in Megathyrsus maximus 

is about 88-fold higher than in Setaria italica and Sorghum bicolor and about 10-fold 

higher than in Zea mays.  
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Fig. 4.16. Relative expression of NADP-malic enzyme (B) and PEPCK (C) in C4 

grasses. Activity of NADP-malic enzyme also shown (A). Expression in reads per 

kilobase million (rpkm). Expression data obtained from PA Christin (unpublished). 

In addition, compared to the maximal activity of Sorghum bicolor and Zea mays, the 

activity of Setaria viridis was substantially lower (Figure 4.16A), while transcriptomic 

evidence shows that NADP-malic enzyme is highly expressed in Setaria italica (Figure 

4.16B). KM plots showed that NADP-malic enzyme at that pH optimum (pH 8.4) did not 

saturate with 1 mM L-malate (Figure 4.11). This suggests that the activity of NADP-

malic enzyme from Setaria viridis might have been lower because the concentration of 

L-malate was limiting the rate of the in vitro reaction, rather than containing less NADP-

malic enzyme than Sorghum bicolor or Zea mays. Alternatively, there could have been 

active inhibitors in the Setaria viridis leaf lysates that affected the activity of NADP-

malic enzyme. A comparative assessment between the maximal activities of NADP-

malic enzyme can be further ascertained by mixing Zea mays and Sorghum bicolor leaf 
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lysates with Setaria viridis leaf lysates and determine whether activity in the mixed 

assays is inhibited.  

 

4.3.3 New insights on NADP-malic enzyme regulation in C4 plants 

 

These results indicate that the pH optimum of NADP-malic enzyme activity varies in C4 

grasses. However, the regulatory mechanisms that promote high activity of NADP-malic 

enzyme at a lower pH in Sorghum bicolor, but not Setaria viridis and Zea mays are 

unknown. One major limitation of this investigation is that NADP-malic enzyme was 

assayed in crude leaf extracts. Firstly, the exact concentration of NADP-malic enzyme 

cannot be determined because several isoforms of the enzyme are present in the leaf 

lysate and can, if not equally, contribute to NADP-dependent activity. In addition, kinetic 

coefficients like Vmax and Kcat cannot be calculated and precise changes in NADP-malic 

enzyme activity in response to illuminate cannot be ascertained. Secondly, the formation 

of NADPH may have come from mitochondrial NAD-malic enzyme activity, because it 

can utilise NADP+ as a co-factor and contribute to NADP-dependent activity (Edwards 

and Andreo, 1992).  

The KM determined for L-malate in illuminated leaves of Sorghum bicolor was close to 

the KM previously reported in crude leaf extracts (Table 4.2). The results in this Chapter 

show that affinity for L-malate decreases during the dark period in Sorghum bicolor, 

which is consistent with the light-dependent activation mechanism. More importantly, 

these results indicate that the affinity for L-malate does not change in Zea mays, and is 

significantly lower than that found in purified NADP-malic enzyme (Drincovich et al., 

2001). This further suggests that there were different isoforms of NADP-malic enzyme 

in the crude leaf lysate that may have contributed to the reaction. In this case, KM values 

reported may be the cumulative kinetic properties of all NADP-malic enzyme isoforms 

present in the leaf lysate. In addition to the two major isoforms of NADP-malic enzyme 

in C4 grasses, evidence in the Flaveria species suggests that there are three or four 

NADP-malic genes in total, one of which encodes a cytosolic enzyme (Marshall et al., 

1996; Lai et al., 2002). If the cytosolic enzyme were present in crude leaf lysates, then it 

is conceivable that its pH optimum is different than that of the chloroplastic form.            
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Table 4.2. Comparing the KM for L-malate from previous studies.  

Plant species 
KM for 
L-malate 
(mM) 

KM for L-malate (mM) 
(this study) References 

Dark Light 
Zea mays 0.19 0.006 0.007 (Drincovich et al., 2001) 

Sorghum bicolor 0.10 0.44 0.15 (Nishikido and Wada, 1974) 

Setaria viridis 0.25 – – (Nishikido and Wada, 1974) 
 

The reason for using crude leaf extracts in this study was to maximise the recovery of 

NADP-malic enzyme in its phosphorylated state. It is likely that during extraction some 

enzymes may have been dephosphorylated, thereby losing the chemical modifications 

that may confer some biochemical change. In addition to this, it is not known to what 

degree NADP-malic enzyme remained phosphorylated during the reaction assays. 

Unless the phosphorylated form of NADP-malic enzyme is purified, it is not possible to 

ascertain whether the phosphorylation state is affecting enzymatic activity. The kinetic 

properties of NADP-malic enzyme determined in this study may represent both the 

phosphorylated and dephosphorylated forms of NADP-malic enzyme.   

 

4.3.4 Conclusion 

 

It was shown that the NADP-malic enzyme from Sorghum bicolor leaves was distinctly 

different from the enzyme in Setaria viridis and Zea mays, supporting the hypothesis that 

interspecies variation may account for different NADP-malic enzyme requirements. 

With regards to regulation, pH may modulate the activities of dark and light forms, thus 

ensuring a seamless transition of chloroplastic activity between light conditions. This 

aligns with the initial hypothesis and previous speculation (Asami et al., 1979; Edwards 

and Andreo, 1992). In addition to this, the affinity for L-malate decreased in the light in 

Sorghum bicolor, whereas there was no change in the affinity for L-malate in Zea mays. 

These responses might be particularly important in Sorghum bicolor, because of higher 

requirements for malate decarboxylation than Zea mays, which may operate a dual-

decarboxylation system, whereby decarboxylation is partitioned between PEPCK and 

NADP-malic enzyme (Gutierrez et al., 1974; Wang et al., 2014). 
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Chapter 5 – The regulation of transamination and its 

involvement in controlling carbon trafficking in C4 

photosynthesis 
 

5.1 Introduction 

 

5.1.1 The dual-decarboxylation system of C4 photosynthesis 

 

C4 photosynthesis is a highly complex, but efficient process, which involves the 

movement of carbon between specialised mesophyll and bundle sheath cells, which 

partition carboxylation and decarboxylation pathways and compartmentalises cell-

specific enzymes such as PEPC and Rubisco (Leegood, 2002; von Caemmerer and 

Furbank, 2003). To achieve the efficient movement of organic carbon, mesophyll cells 

surround bundle sheath cells and vascular tissue (Figure 5.1), creating a densely packed, 

wreath-like arrangement of cells that establishes an intimate relationship between the two 

cell types.  

 

Fig. 5.1. Kranz anatomy in C4 plants. C4 leave cross-section (top) shows structure of 

Kranz anatomy in Zea mays made up of concentric tubes of vascular tissue bundle sheath 

cells and mesophyll cells. Biochemical specialisation of these tissues indicated (bottom).   
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This arrangement also promotes the rapid diffusion of organic carbon along 

concentration gradients via plasmodesmata, ensuring the movement of intermediate 

metabolites that drive the C4 cycle and contribute to the carbon pool (Osmond, 1971; 

Hatch and Osmond, 1976; Leegood, 1985; Stitt and Heldt, 1985; Stitt and Zhu, 2014). In 

their elucidation of C4 photosynthesis, Hatch and Slack (1966) showed that radioactively 

labelled CO2 in sugarcane was rapidly incorporated into oxaloacetate, malate and 

aspartate, but not initially into metabolites produced in the PCR cycle as previously 

shown (Benson, 1954; Bassham and Kirk, 1960; Bassham and Calvin, 1962). Further 

dissection of the C4 trait revealed that there were distinct biochemical variations in the 

mechanism used for photosynthetic carbon fixation, thus creating NADP-malic enzyme, 

PEPCK and NAD-malic enzyme subtypes of the C4 pathway (Hatch et al., 1975; 

Furbank, 2011; Furbank, 2016). In NADP-malic enzyme subtype grasses, malate is the 

predominant C4-acid utilised during C4 photosynthesis (Ku et al., 1996), though aspartate 

also contributes, if not equally, to the CO2 pool in bundle sheath cells (Andrews et al., 

1971; Hatch, 1971; Meister et al., 1996; Bräutigam et al., 2014; Arrivault et al., 2016; 

Furbank, 2016; Ludwig, 2016). Recent radioactive CO2 labelling experiments conducted 

in Zea mays, a NADP-malic enzyme subtype, demonstrated that gradients of aspartate, 

as well as alanine and phosphoenolpyruvate (PEP), contribute to the transfer of carbon 

via the PEPCK decarboxylation pathway (Arrivault et al., 2016). 

It is apparent that NADP-malic enzyme subtype C4 plants operate a dual-decarboxylation 

system (Figure 5.2), whereby C4-acid decarboxylation, through the conversion of 

oxaloacetate to aspartate by transamination or to malate by reduction, is divided between 

PEPCK and NADP-malic enzyme, respectively (Wingler et al., 1999; Furbank, 2011; 

Pick et al., 2011; Bellasio and Griffiths, 2014; Bräutigam et al., 2014; Furbank, 2016). 

Also, PEPCK activity in bundle sheath cells may be linked to NAD-malic enzyme 

decarboxylation in the mitochondria in NAD-malic enzyme type C4 plants (Bräutigam et 

al., 2014). One proposed advantage of utilising multiple decarboxylase pathways is that 

they increase the flexibility of carbon trafficking mechanisms, thus creating pools of 

intermediate metabolites that are used as a source of carbon in the absence of CO2 

fixation or during intervals of low-light (Leegood and von Caemmerer, 1989; Stitt and 

Zhu, 2014).  
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Fig. 5.2. C4 pathway showing a theoretical dual-decarboxylation system using 

NADP-malic enzyme (6), PEPCK (7) and NAD-malic enzyme (9). Metabolites 

(purple/grey): PEP, phosphoenolpyruvate; OAA, oxaloacetate; Asp, aspartate; Glu, 

glutamate; 2-OG, 2-oxoglutarate; Mal, malate; Pyr, pyruvate; Ala, alanine. Enzymes: 1, 

carbonic anhydrase; 2, pyruvate, phosphate dikinase; 3, PEP carboxylase; 4, aspartate 

aminotransferase; 5, NADPH-malate dehydrogenase; 6, NADP-malic enzyme; 7, PEP 

carboxykinase; 8, NAD-malate dehydrogenase; 9, NAD-malic enzyme; 10, alanine 

aminotransferase. PCR, photosynthetic carbon reduction cycle. Blue arrows indicate 

movement of assimilated CO2; red arrows show decarboxylation reactions. Adapted from 

Wang et al. (2014). 

It is also plausible that the use of multiple decarboxylases was favoured during the 

evolution of C4 photosynthesis, increasing the options for carbon flux, decreasing the 

concentration of malate required to operate the C4 cycle, and alleviating the burden on a 

single transport mechanism (Furbank and Leegood, 1984; Bräutigam et al., 2014; Wang 

et al., 2014). In fact, several shuttle mechanisms are present in leaves of C4 plants that 

aid in the efficiency of net carbon assimilation. In all C4 plants, a large proportion of 3-

phosphoglycerate (3-PGA) produced in bundle sheath cell chloroplasts is transported to 

mesophyll chloroplasts via the 3-PGA/triose-phosphate shuttle, where it is reduced to 

triose-phosphates, which are transported back to the bundle sheath, and subsequently 

used for the regeneration of ribulose-1,5-bisphosphate (RuBP) (Hatch, 1987). Similarly, 

the interconversion of 3-PGA and PEP is proposed to serve in the flux of carbon from 

bundle sheath to mesophyll cells and increase the amounts of C4 metabolites, though its 
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regulation is not known (Furbank and Leegood, 1984; Leegood and von Caemmerer, 

1989; Bräutigam et al., 2014; Arrivault et al., 2016). The regulation of carbon movement 

through the relative flux of aspartate and malate in plants operating a dual-

decarboxylation system is not entirely understood. Furthermore, there has been some 

debate as to how much the secondary decarboxylation by PEPCK contributes to 

photosynthetic efficiency of C4 plants and whether flux through aspartate is necessary 

for maintaining biochemical stability in plants operating a NADP-malic enzyme system 

(Bräutigam et al., 2014; Wang et al., 2014). Additionally, there is no evidence in C4 

grasses that the interconversion between aspartate and oxaloacetate via aspartate 

aminotransferase or pyruvate and alanine via alanine aminotransferase is regulated at the 

protein level. The formation of aspartate and alanine is linked to PEPCK and NAD-malic 

enzyme decarboxylation (Wang et al., 2014) (Figure 5.2, reactions 4 and 10) and alanine 

might control the flux of carbon through this decarboxylation pathway by regulating the 

activity aspartate aminotransferase. To address whether alanine can stimulate the activity 

of aspartate aminotransferase and understand the regulation of carbon movement, 

through shuttle mechanisms associated with decarboxylation by PEPCK and NADP-

malic enzyme, the kinetics of aspartate and alanine aminotransferase were studied in 

three NADP-malic enzyme C4 grasses:  Setaria viridis, Sorghum bicolor and Zea mays.  

 

5.1.2 Regulation of aspartate and alanine aminotransferase 

 

 

Fig. 5.3. Interconversion of aspartate and oxaloacetate by aspartate 

aminotransferase. 

Aspartate aminotransferase (EC 2.6.1.1) catalyses the interconversion of L-aspartate 

(Asp) and 2-oxoglutarate (2-OG) to L-glutamate (Glu) and oxaloacetate (OAA) (Figure 

5.3), by coupling to pyridoxal 5-phosphate (PLP), via a ping-pong kinetic mechanism 

(Toney, 2014) in mesophyll and bundle sheath cells of C4 plants typically using the 

NAD-malic enzyme or PEPCK decarboxylation pathway (Hatch, 1987). In the first 

reaction, aspartate aminotransferase coupled with PLP reacts with L-aspartate forming 

pyridoxamine 5-phosphate (PMP) enzyme and oxaloacetate, then aspartate 
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aminotransferase coupled with PMP reacts with 2-oxoglutarate forming L-glutamate and 

regenerates PLP (Toney, 2014). In NAD-malic enzyme subtypes, there are three 

aspartate aminotransferase isoforms, two of which are specific to C4 photosynthesis and 

present either in the mesophyll cytosol or in mitochondria of bundle sheath cells (Kanai 

and Edwards, 1999). The third isoform does not contribute to C4-specific activity and  

resembles the C3-form localised in chloroplasts (Taniguchi and Sugiyama, 1990). In 

Panicum miliaceum (NAD-malic enzyme subtype) there are three major alanine 

aminotransferase isoforms (Kanai and Edwards, 1999). In plants alanine 

aminotransferase (EC 2.6.1.2) catalyses the interconversion between L-alanine and 2-

oxoglutarate to L-glutamate and pyruvate (Figure 5.4) and besides its essential role in C4 

photosynthesis, it is involved in gluconeogenesis, glycolysis and amino acid metabolism 

(McAllister and Good, 2015).  

 

Fig. 5.4. Interconversion of aspartate and oxaloacetate by aspartate 

aminotransferase. 

Aspartate and alanine aminotransferase serve a central role in C4 photosynthesis 

(Andrews et al., 1971; Hatch and Mau, 1973; Pick et al., 2011; Toney, 2014; Wang et 

al., 2014), however their underlying regulatory mechanisms and catalytic properties for 

the transamination of oxaloacetate and L-aspartate by aspartate aminotransferase or 

pyruvate and L-alanine by alanine aminotransferase, along with their involvement in the 

flux of carbon with regards to the partitioning control of PEPCK and NADP-malic 

enzyme decarboxylation, are yet to be elucidated in C4 grasses. Large pools of 

metabolites are required to drive the C4 cycle (Leegood and Furbank, 1984; Leegood and 

von Caemmerer, 1989; Stitt and Zhu, 2014), however the effect of feedback inhibition 

or activation by transfer acids such as malate and alanine on the activity of aspartate 

aminotransferase has not been explored in NADP-malic enzyme subtypes. Since 

aspartate aminotransferase acts as a bridge for the PEPCK pathway, activation by alanine 

or malate might be a requirement in C4 grasses that can switch between NADP-malic 

enzyme and PEPCK decarboxylation. It is therefore hypothesised that C4 grasses with 

the ability to use both decarboxylation pathways, such as Zea mays, might be conditioned 

to maintain high aspartate aminotransferase activity in the presence of malate and 

alanine. The results in this Chapter will show that the kinetic properties of aspartate 
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aminotransferase are sensitive to dark and light changes and that the response to effector 

metabolites may contribute to a much greater role in regulating the movement of carbon 

through the PEPCK and NADP-malic enzyme decarboxylation pathways. These novel 

findings indicate that the efficiency and flexibility of C4 photosynthesis depends on the 

proper regulation of aspartate and alanine aminotransferase in NADP-malic enzyme 

subtypes.  

 

5.2 Results 

 

5.2.1 The role and regulation of aspartate aminotransferase in C4 photosynthesis 

 

The kinetic properties of aspartate aminotransferase were determined in the forward 

direction, following the conversion of L-aspartate to oxaloacetate and glutamate utilising 

2-oxoglutarate (Wilkie and Warren, 1998; Toney, 2014). Novel phosphoproteomic data 

presented in Chapter 3 showed that aspartate aminotransferase isoforms undergo 

phosphorylation predominantly in darkened conditions. To further investigate the 

regulation of aspartate aminotransferase in response to illumination, changes in 

Michaelis-Menten kinetics were determined for its primary substrate, L-aspartate, and 

secondary substrate, 2-oxoglutarate, in Setaria viridis, Sorghum bicolor and Zea mays.  

 

Fig. 5.5. Activity of aspartate aminotransferase in Sorghum bicolor, Setaria viridis 

and Zea mays. The activity of aspartate aminotransferase was determined towards the 

formation of oxaloacetate using 2.5 mM L-aspartate and 2-oxoglutarate. Data are based 

on six biological replicates and the error bars show the standard deviation. 
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There was no difference in the activity of aspartate aminotransferase in the presence of 

2.5 mM L-aspartate, in leaf lysates of Sorghum bicolor, Setaria viridis and Zea mays 

(Figure 5.5). In addition, aspartate aminotransferase was not active in the presence of L-

alanine. To determine the concentration of L-aspartate and 2-oxoglutarate required to 

reach saturation, the activity of aspartate aminotransferase was assayed in response to 

increasing substrate concentrations. The initial activity of aspartate aminotransferase was 

high in Setaria viridis and Sorghum bicolor darkened and illuminated leaves, but low in 

Zea mays. In Setaria viridis (Figure 5.6), the aspartate aminotransferase KM for L-

aspartate increased from 1624 ± 233.8 µM to 2334 ± 392.8 µM after the dark to light 

transition, equivalent to approximately a 0.44-fold decrease in affinity for L-aspartate. 

Similarly, the KM for 2-oxoglutarate increased 0.20-fold in response to illumination. 
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L-Aspartate (KM ± SE µM) 2-oxoglutarate (KM ± SE µM) 

Dark Light Dark Light 

1624 ± 233.8 2334 ± 392.8 164.5 ± 21.3 198.1 ± 6.1 

 

Fig. 5.6. Aspartate aminotransferase affinity for L-aspartate and 2-oxoglutarate 

declines in response to light in Setaria viridis. Michaelis-Menten curves for the 

aspartate aminotransferase reaction in darkened (black lines, black dots) and illuminated 

(yellow lines, clear dots) Setaria viridis leaves in response to increasing L-aspartate (Asp) 

or 2-oxoglutarate (2-OG) concentrations. KM was determined at pH 8.0. Data are based 

on six biological replicates and error bars show the standard deviation (SD). SE, standard 

error. Units for initial velocity are Abs/min.   
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The Michaelis-Menten curve of Sorghum bicolor (Figure 5.7) was similar to that of 

Setaria viridis (5.6). However, the change in the aspartate aminotransferase KM for L-

aspartate was more substantial in response to the dark to light transition in Sorghum 

bicolor (Figure 5.7). In Sorghum bicolor, the KM for L-aspartate increased from 1782 ± 

256.2 µM to 5185 ± 1378.0 µM after illumination, which was about twice as high as the 

KM for L-aspartate in Setaria viridis. Conversely, the KM for 2-oxoglutarate declined in 

response to light in Sorghum bicolor leaves.  In Setaria viridis and Zea mays, the KM for 

2-oxoglurate increased after illumination.     
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L-Aspartate (KM ± SE µM) 2-oxoglutarate (KM ± SE µM) 

Dark Light Dark Light 

1782 ± 256.2 5185 ± 1378.0 180.9 ± 11.3 87.8 ± 13.0 

 

Fig. 5.7. Light-induced changes to aspartate aminotransferase affinity for L-Asp 

and 2-oxoglutarate in Sorghum bicolor. Michaelis-Menten curves for the aspartate 

aminotransferase reaction in darkened (black lines, black dots) and illuminated (yellow 

lines, clear dots) Sorghum bicolor leaves in response to increasing L-aspartate or 2-

oxoglutarate (2-OG) concentrations. KM was determined at pH 8.0. Data are based on six 

biological replicates and error bars show the standard deviation (SD). SE, standard error. 

Units for initial velocity are Abs/min.    
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L-Aspartate (KM ± SE µM) 2-oxoglutarate (KM ± SE µM) 

Dark Light Dark Light 

154.3 ± 36.5 2473 ± 402.1 110.1 ± 24.9 142.8 ± 7.4 

 

Fig. 5.8. Aspartate aminotransferase affinity for L-aspartate declines after the onset 

of light in Zea mays. Michaelis-Menten curves for the aspartate aminotransferase 

reaction in darkened (black dots) and illuminated (clear dots) Zea mays leaves in 

response to increasing L-aspartate or 2-oxoglutarate (2-OG) concentrations. Data are 

based on six biological replicates and error bars show the standard deviation (SD). SE, 

standard error. Units for initial velocity are Abs/min. 
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While the changes in KM for L-aspartate and 2-oxoglutarate were significantly different 

in Setaria viridis and Sorghum bicolor, aspartate aminotransferase displayed similar rates 

of activity. In contrast, the activity of aspartate aminotransferase in Zea mays decreased 

by approximately 0.7-fold in saturating conditions with 10 mM L-aspartate (Figure 5.8).  

Aspartate aminotransferase from darkened leaves reached saturation in the presence of 

at least 2.5 mM L-aspartate, while the aspartate aminotransferase in illuminated leaves 

did not saturate until 10 mM L-aspartate. Additionally, the KM for L-aspartate increased 

from 154.3 ± 36.5 µM to 2473 ± 402.1 µM after the dark to light transition in Zea mays, 

which was higher than the observed changes to the affinity for L-aspartate in Setaria 

viridis and Sorghum bicolor in response to light. The affinity for L-aspartate and 2-

oxoglutarate decreased in the dark to light transition in the three C4 grasses, but the dark 

and light affinity differences for L-aspartate were most evident in Zea mays, followed by 

Sorghum bicolor and Setaria viridis (Table 5.1).   

Table 5.1. Aspartate aminotransferase affinity for primary and secondary 

substrates after 15.5 h illumination. Summary of the change in aspartate 

aminotransferase affinities for L-aspartate and 2-oxoglutarate in response to light. In 15.5 

h illuminated leaves, the decrease in affinity for L-aspartate was highest in Zea mays, 

moderate in Sorghum bicolor and smallest in Setaria viridis. The affinity for 2-

oxoglutarate increased in Sorghum bicolor after the transition to light, but decreased in 

both Setaria viridis and Zea mays. Up-arrows indicate increase in affinity (a negative 

fold change, decrease in KM), while down-arrows indicate decrease in affinity (a positive 

fold change, increase in KM). 

 L-Aspartate 2-oxoglutarate 

 Affinity (fold change) 

Sorghum bicolor 1.9 ↓ 0.51 ↑ 

Setaria viridis 0.44 ↓ 0.20 ↓ 

Zea mays 15.0 ↓ 0.30 ↓ 
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Aspartate aminotransferase affinity for dimethyl-2-oxoglutarate, an analogue of 2-

oxoglutarate produced during glucose metabolism (Odegaard et al., 2010), was also 

tested. The changes in KM for 2-oxoglutarate and dimethyl-2-oxoglutarate were larger in 

Zea mays followed equally by Sorghum bicolor and Setaria viridis (Figure 5.9). 

Aspartate aminotransferase activity was reduced across all three C4 species, but was 

relatively higher in Setaria viridis. Moreover, the response to dimethyl-2-oxoglutarate 

was more consistent in darkened and illuminated Setaria viridis leaves, unlike Sorghum 

bicolor and Zea mays. The activity of aspartate aminotransferase in Sorghum bicolor and 

Zea mays declined in the presence of dimethyl-2-oxoglutarate and less consistent than in 

Setaria viridis. 
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5.2.2 The effect of metabolites on the activity of aspartate aminotransferase 

 

The sensitivity of aspartate aminotransferase activity was tested in response to 

metabolites produced during C4 photosynthesis. In Setaria viridis, Sorghum bicolor and 

Zea mays, increasing concentrations of L-malate reduced activity in darkened and 

illuminated leaves (Figure 5.10). However, the magnitude of the inhibitory effect of L-

malate was different across the three C4 species. In Figure 5.10B, aspartate 

aminotransferase from Sorghum bicolor illuminated leaves showed the highest decrease 

in activity in the presence of 20 and 50 mM L-malate when compared to the controls 

(paired t-test: df=5, P < 0.001). This trend was closely followed by Setaria viridis (Figure 

5.10A), in which the changes of enzyme activity between controls and 10, 20 and 50 mM 

L-malate was also significant (paired t-test: df=5, P < 0.001). Conversely, the activity in 

darkened and illuminated Zea mays leaves was the least affected by increasing L-malate 

concentrations (Figure 5.10C) when compared to aspartate aminotransferase activity in 

Setaria viridis and Sorghum bicolor. In darkened leaves of Sorghum bicolor, the 

inhibitory effect of L-malate was evident in the presence of 10 mM (Figure 5.10B), 

whereas the activity of aspartate aminotransferase in illuminated leaves was unaffected, 

suggesting that in the light, the enzyme was less responsive to increasing L-malate 

concentrations. Additionally, the activity of aspartate aminotransferase from darkened 

leaves was not further reduced in the presence of 20 or 50 mM L-malate, while activity 

decreased in illuminated leaves. This effect was also observed in Setaria viridis leaves 

(Figure 5.10A), however aspartate aminotransferase activity in Setaria viridis was lower 

in the presence of 10 mM L-malate. Although the differences in activity between control 

reaction assays and treatment with L-malate were significant, the changes in activity 

between the different concentrations of L-malate were not significant.   
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Fig. 5.10. 

 

A 
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Fig. 5.10. 3-PGA, L-alanine and L-malate affect aspartate aminotransferase activity 

differently in three C4 species. Activity bar graphs show the rate of aspartate 

aminotransferase activity from darkened (grey bars) and illuminated (white bars) Setaria 

viridis (A), Sorghum bicolor (B) and Zea mays (C) leaves in response of 10, 20 and 50 

mM L-malate and L-alanine, and 1 mM 3-PGA. An inhibitory effect is observed by bars 

lowering relatively to controls, whereas an activation effect is observed by bars 

increasing relatively to controls. The changes to aspartate aminotransferase activity in 

the presence of L-malate and L-alanine were most significant in Sorghum bicolor and 

least significant in Zea mays. In Setaria viridis, activity lowered in response to L-malate, 

but not L-alanine. 1 mM 3-PGA had no effect on the activity of aspartate 

aminotransferase across all species. 3-PGA, phosphoglycerate. The significance between 

the average activity between control and metabolite concentrations were determined by 

paired t-tests, where * = P < 0.05, ** = P < 0.005, *** = P < 0.0005. Error bars show the 

standard deviation. 

Unlike Sorghum bicolor and Zea mays, the activity of aspartate aminotransferase from 

darkened and illuminated Setaria viridis leaves was not inhibited by increasing 

concentrations of L-alanine (Figure 5.10A–C). However, despite that the activity of 

aspartate aminotransferase was lower in response to L-alanine in Sorghum bicolor, 

enzyme activity in Zea mays in response to L-alanine was enhanced across all 

concentrations (Figure 5.10C), though not significantly in darkened leaves.  

C 
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Fig. 5.11. Aspartate aminotransferase activity in response to PEP and pyruvate.  

Activity bar graphs show the rate of aspartate aminotransferase activity from darkened 

(grey bars) and illuminated (white bars) Setaria viridis (A), Sorghum bicolor (B) and Zea 

mays (C) leaves in response of 5, 10 and 25 mM pyruvate and 10, 20 and 50 mM 

phosphoenolpyruvate (PEP). PEP reduces aspartate aminotransferase activity equally 

across C4 species, while pyruvate has no effect on activity. The significance between the 

average activity between control and metabolite concentrations were determined by 

paired t-tests, where * = P < 0.05, ** = P < 0.005, *** = P < 0.0005. Error bars show the 

standard deviation. 

The activity of aspartate aminotransferase in Setaria viridis, Sorghum bicolor and Zea 

mays was differently affected by L-malate and L-alanine and it was evident that the 

sensitivity to L-malate and L-alanine of light and dark activities were most significant in 

Sorghum bicolor (Figure 5.10B). Activity in Setaria viridis was most affected by L-

malate, but not by L-alanine (Figure 5.10A), whereas increasing concentrations of L-

malate and L-alanine had the least inhibitory effects on aspartate aminotransferase 

activity in Zea mays (Figure 5.10C). There was no effect on the activity of 1 mM 3-PGA 

on aspartate aminotransferase across all C4 species.   

  

C 
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Aspartate aminotransferase activity was unaffected by 5 mM pyruvate (Figure 5.11A–

C). Changes to mean activities between controls and 25 mM pyruvate were most 

significant in darkened Setaria viridis leaves (paired t-test; df = 5, P < 0.001) as shown 

in Figure 5.11A, although, the standard deviation showed a large degree of variation in 

enzyme activity across the six biological replicates. Furthermore, the inhibitory effect of 

pyruvate was more evident in illuminated Sorghum bicolor leaves in the presence of 10 

mM pyruvate (paired t-test; df = 5, P = 0.0037) (Figure 5.11B) than in the presence of 

25 mM pyruvate (paired t-test; df = 5, P = 0.0359). The activity of aspartate 

aminotransferase in Zea mays leaves was the least affected by pyruvate (Figure 5.11C), 

although changes in activity in illuminated leaves in the presence of 10 mM and 25 mM 

were significant (paired t-test; df = 5, P < 0.05). Conversely, all C4 plants were equally 

affected by increasing concentrations of PEP. Aspartate aminotransferase remained 

active in darkened and illuminated leaves in up to 50 mM PEP, but activity decreased 

0.81-fold in Zea mays, 0.84-fold in Sorghum bicolor and 0.83-fold in Setaria viridis, 

when compared to controls (Figure 5.11A–C).   

 

5.2.3 Specific activity of alanine aminotransferase 

 

Alanine aminotransferase from Sorghum bicolor, Setaria viridis and Zea mays was 

assayed in vitro in the reverse direction towards the formation of pyruvate by coupling 

to lactate dehydrogenase (LDH). No enzyme activity was observed in reaction mixtures 

containing 20 mM L-alanine. Based on alanine aminotransferase assays in Arabidopsis 

thaliana (Miyashita et al., 2007), the concentration of L-alanine was increased to 25, 50 

and 75 mM.  However, after 20 min, there was no activity. In the negative control, there 

was no activity observed in the presence of L-aspartate. 
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Fig. 5.12. Alanine aminotransferase (AlaAT) reaction mechanism towards the 

formation of malate. Metabolites in purple were added to the reaction mixture and 

metabolites in green were produced during the reaction. Assay measures the formation 

of malate through the oxidation of NADH (in red). Pyr, pyruvate; 2-OG, 2-oxoglutarate; 

OAA, oxaloacetate. Aspartate aminotransferase (AspAT) and malate dehydrogenase 

(MDH). 

Alanine aminotransferase was also assayed in the forward direction towards the 

formation of malate, coupling to aspartate aminotransferase and malate dehydrogenase 

(MDH) (Figure 5.12). Activity was measured 10 min after priming the reaction assay 

with leaf protein. Preliminary measurements showed that the activity of alanine 

aminotransferase was highest in Setaria viridis, when compared to Sorghum bicolor and 

Zea mays (Figure 5.13).     

 

Fig. 5.13. Alanine aminotransferase activity in illuminated Zea mays, Sorghum 

bicolor and Setaria viridis leaf lysates. Alanine aminotransferase was assayed in the 

forward direction towards the formation of alanine in leaf lysates normalised against the 

lowest total protein concentration. Preliminary data are based on one biological replicate 

from 15.5 h illuminated leaves.  
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The assay was repeated with four biological replicates, normalised against the lowest 

total protein concentration. The second assay showed that the activity of alanine 

aminotransferase was highest in Setaria viridis (Figure 5.14), consistent with preliminary 

data in Figure 5.13. There was no significant difference in the activity of alanine 

aminotransferase in Zea mays and Sorghum bicolor. Also, there was no change in activity 

between darkened and illuminated leaf protein. 

 

Fig. 5.14. Alanine aminotransferase activity in Setaria viridis leaf lysates is higher 

than in Zea mays and Sorghum bicolor. Alanine aminotransferase was assayed in the 

forward direction towards the formation of alanine in leaf lysates normalised against the 

lowest total protein concentration. Data are based on four biological replicates and error 

bars show the standard deviation.   
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5.3 Discussion 

 

5.3.1 Aspartate aminotransferase affinity aspartate is sensitive to dark–light transitions 

 

C4 plants that use NADP-malic enzyme as the primary decarboxylase may also use a 

supplementary decarboxylation pathway via PEPCK through the conversion of 

oxaloacetate to aspartate and then back to oxaloacetate (Pick et al., 2011; Bräutigam et 

al., 2014; Wang et al., 2014) (Figure 5.2). Previous studies have noted that the C4-acid 

transfer via aspartate aminotransferase is essential in plants with low NADP-malic 

enzyme activity (Andrews et al., 1971; Hatch and Mau, 1973; Meister et al., 1996). 

However, the regulation of carbon flux through aspartate in C4 grasses that 

predominantly use NADP-malic enzyme remains unclear. The results in this Chapter 

show that the catalytic properties of aspartate aminotransferase from three NADP-malic 

enzyme subtypes are sensitive to dark to light transitions and there may be interspecies 

differences, particularly with regards to regulation by transfer acids. In the three C4 

species studied, the affinity for L-aspartate declined in illuminated leaves, which suggests 

that the conversion of aspartate to oxaloacetate may be regulated in illuminated 

conditions, but could correlate to the initial increase of aspartate in illuminated leaves 

(Leegood and von Caemmerer, 1989). Increased affinity for L-aspartate in darkened 

conditions is consistent with previous findings that showed that major aspartate 

aminotransferase isoforms have increased activity in dark-grown plants (Hatch and Mau, 

1973). In activity assays (Figure 5.5), there was no change in aspartate aminotransferase 

activity in darkened and illuminated leaves, which is not characteristic of major isoforms 

as previously shown (Hatch and Mau, 1973). It is possible that activity from minor 

isoforms was observed and could have masked changes in dark and light activity of major 

isoforms.  

In Megathyrsus maximus (PEPCK subtype), the KM for L-aspartate is 2.3 mM 

(Numazawa et al., 1989), which is close to the KM for L-aspartate in illuminated leaves 

of Setaria viridis (2.3 mM) and Zea may (2.5 mM), but not Sorghum bicolor (5.2 mM), 

which may require relatively less PEPCK activity (Gutierrez et al., 1974). In addition, 

the KM for oxaloacetate in Megathyrsus maximus is 0.049 mM (Numazawa et al., 1989) 

and although not determined in this study, the KM for oxaloacetate may be lower than 
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that of L-aspartate in the NADP-malic enzyme subtypes. Large fluxes of oxaloacetate are 

generated by PEPC in the light, but oxaloacetate does not accumulate to high 

concentrations in the cell, because it is quickly converted to malate by reduction via 

MDH in NADP-malic enzyme subtypes (Hatch, 1987). In species like Zea mays that can 

use PEPCK as a supplementary decarboxylation pathway, a relatively higher affinity for 

oxaloacetate may be needed to maintain high rates of aspartate aminotransferase activity 

towards the formation of aspartate. In Sorghum bicolor, the KM for L-aspartate in 

illuminated leaves was substantially higher than the KM for L-aspartate in Setaria viridis 

and Zea mays. Unlike Zea mays, Sorghum bicolor almost exclusively uses NADP-malic 

enzyme (Gutierrez et al., 1974), whereas Zea mays can use both NADP-malic enzyme 

and PEPCK (Hatch, 1987). Thus, a relatively lower affinity for L-aspartate may correlate 

to both the lower activity of PEPCK in Sorghum bicolor leaves and relatively lower 

expression of PEPCK than in Zea mays (Figure 4.16).  

Differences in the decarboxylation chemistry of these C4 grasses may have also 

contributed to the decrease in affinity for 2-oxoglutarate in Sorghum bicolor, while in 

both Setaria viridis and Zea mays, the affinity for 2-oxoglutarate increased after the dark 

to light transition. Unlike oxaloacetate, the amount of aspartate available in the Zea mays 

leaf can vary in response to light intensity or dark to light transitions, and the 

concentration increases upon illumination and then rapidly declines, but remains between 

25 to 60 mM in the whole cell (Hatch and Osmond, 1976; Leegood and Furbank, 1984; 

Hatch, 1987; Leegood and von Caemmerer, 1989). Therefore, it is unlikely that the 

activity of aspartate aminotransferase towards the formation of oxaloacetate will be 

limited by the amount of aspartate when the KM for aspartate is high, but if the KM for 

oxaloacetate were high, then the reverse reaction (towards the formation of aspartate) 

may be limited by the availability of oxaloacetate. Alternatively, if the affinity for L-

aspartate were higher, then aspartate aminotransferase would readily catalyse the 

conversion of aspartate to oxaloacetate, decreasing the amount of substrate for PEPCK. 
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Fig. 5.15. Interchange between aspartate and oxaloacetate by aspartate 

aminotransferase (AAT).  

In illuminated leaves, there was a 15-fold decrease in affinity for L-aspartate in Zea mays, 

which correlates to the increase in aspartate after the onset of light. This suggests that 

there may be additional need for aspartate aminotransferase activity towards the 

formation of oxaloacetate in darkened conditions. This activity might not be associated 

with C4 photosynthesis, and instead aspartate aminotransferase in darkened leaves may 

be catalysing the formation of oxaloacetate from aspartate for cellular respiration or for 

biosynthesis. In fact, oxaloacetate serves a central role in metabolism (Buchanan et al., 

2015) and requirements may differ between dark and light conditions (Figure 5.15). 

There may also be a link between the phosphorylation sites identified solely in darkened 

leaves of Setaria viridis and the relatively higher affinity for L-aspartate in darkened 

conditions. From these observations, it is probable that the activity of aspartate 

aminotransferase is partitioned between photosynthesis in illuminated conditions and 

other cellular processes in darkened conditions, somewhat similar to the regulation of 

photosynthetic PEPC in leaves and anaplerotic activity in non-photosynthetic tissues 

(O'Leary et al., 2011; Shane et al., 2013; Ruiz-Ballesta et al., 2014). These results also 

suggest that the regulation of aspartate aminotransferase may be an additional control for 

downstream PEPCK activity. This is supported by the fact that the amount of PEPCK 

protein and PEPCK activity in C4 plants changes very little in darkened and illuminated 

conditions and PEPCK needs to be regulated to prevent depletion of ATP (Carnal et al., 

1993; Walker et al., 2002). Although PEPCK is regulated by reversible phosphorylation, 

this occurs in darkened leaves of Megathyrsus maximus (Walker and Leegood, 1995; 

Walker et al., 1997; Bailey et al., 2007). In Zea mays, PEPCK appears to be 

phosphorylated in illuminated leaves (Chao et al., 2014) and its regulation might be 

distinctly different than in PEPCK subtypes. Therefore, the regulation of aspartate 
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aminotransferase in illuminated conditions may serve to regulate PEPCK activity by 

controlling the supply of oxaloacetate.  

In addition to this, there may be some aspartate aminotransferase activity associated with 

chloroplasts or mitochondria (Hatch and Mau, 1973; Hatch, 1987; Meister et al., 1996). 

This may contribute to additional regulation by pH, as observed for NADP-malic 

enzyme. Moreover, the stability of aspartate aminotransferase and its interaction with 

competitive inhibitors can be influenced by pH (Bonsib et al., 1975). When assayed at 

pH 8.0 in the presence of dimethyl-2-oxoglutarate, an analogue of 2-oxoglutarate 

(Odegaard et al., 2010), aspartate aminotransferase still followed Michaelis-Menten 

kinetics. However, the affinity for dimethyl-2-oxoglutarate was higher than the affinity 

for 2-oxoglutarate in darkened leaves of Sorghum bicolor, Setaria viridis and Zea mays 

(Table 5.2), suggesting that in the absence of 2-oxoglutarate, dimethyl-2-oxoglutarate 

could be an effective replacement. 

Table 5.2. Aspartate aminotransferase affinity for 2-oxoglutarate and dimethyl-2-

oxoglutarate. Up-arrows indicate an increase in affinity against the original KM value 

for 2-oxoglutarate (a negative fold change, decrease in KM), while down-arrows indicate 

a decrease in affinity (a positive fold change, increase in KM). 

 Dark Light 

 Affinity (fold change) 

Affinity 
Sorghum bicolor 0.9 ↑ 0.7 ↓ 

Setaria viridis 0.5 ↑ 0.6 ↑ 

Zea mays 0.66 ↑ 6.3 ↓ 

 

In the presence of 2 mM dimethyl-2-oxoglutarate, aspartate aminotransferase from 

illuminated Zea mays leaves did not saturate and in Sorghum bicolor, the activity of 

aspartate aminotransferase in the presence of dimethyl-2-oxoglutarate declined. This 

indicates that the properties of aspartate aminotransferase from illuminated leaves of Zea 

mays and Sorghum bicolor may be distinctly different than that of aspartate 

aminotransferase from Setaria viridis, which remained equally active in darkened and 

illuminate leaf lysates in the presence of dimethyl-2-oxoglutarate. This may modulate 

C4-specific function after the onset of light. Furthermore, computer analyses have 

predicted that dimethyl-2-oxoglutarate is a weak inhibitor of aspartate aminotransferase 



 

202 

 

(Bonsib et al., 1975), which is consistent with the minimal effect of  dimethyl-2-

oxoglutarate on the activity of the transaminase (Figure 5.9). However, these effects may 

be more pronounced in the presence of stronger dicarboxylic inhibitors and may conflict 

with native substrate binding and affect the role of aspartate aminotransferase in C4 

photosynthesis. To assess the stability of the enzyme, it would be useful to determine if 

the activity of aspartate aminotransferase and affinity for L-aspartate and 2-oxoglutarate 

changes in low and high pH. 

 

5.3.2 C4 metabolites may regulate the activity of aspartate aminotransferase 

 

C4 photosynthesis involves the efficient movement of carbon between mesophyll and 

bundle sheath cells by the transfer acids malate, aspartate, alanine, pyruvate and PEP 

(Hatch, 1987; Bräutigam et al., 2014). Previous studies have shown that these transfer 

acids are crucial for the coordination of carboxylation and decarboxylation pathways 

(Chapman and Hatch, 1981; Furbank and Leegood, 1984; Leegood, 1985; Stitt and Heldt, 

1985; Leegood and von Caemmerer, 1989; Bräutigam et al., 2014; Arrivault et al., 2016). 

Results presented in this Chapter have shown that the activity of aspartate 

aminotransferase was activated or inhibited in the presence of C4 transfer acids. This 

suggests that similar to the coordination of C3 and C4 cycles afforded by the exchange of 

transfer acids, there could be additional mechanisms that regulate decarboxylation by 

either NADP-malic enzyme or PEPCK/NAD-malic enzyme in C4 species that operate 

the dual-decarboxylation system (Figure 5.2) (Chapman and Hatch, 1979).    
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Fig. 5.16. Relative expression of aspartate aminotransferase (AAT) and alanine 

aminotransferase (AlaAT). Expression in reads per kilobase million (rpkm). 

Transcriptomic data obtained from PA Christin (unpublished). 

This is supported by the inhibition of aspartate aminotransferase activity from Sorghum 

bicolor in the presence of L-alanine (Figure 5.10A), while aspartate aminotransferase 

from Setaria viridis was not inhibited (Figure 5.10B) and in Zea mays, the transaminase 

was activated (Figure 5.10C). This suggests that aspartate aminotransferase from 

Sorghum bicolor might lack regulatory controls that would otherwise maintain high in 

vivo activity in an excess of alanine. This may also reflect the decarboxylation pathway 

in Sorghum bicolor, which unlike Setaria viridis or Zea mays, Sorghum bicolor uses 

NADP-malic enzyme and may not have high in vivo activities of aspartate 

aminotransferase or alanine aminotransferase (Andrews et al., 1971; Gutierrez et al., 

1974). Conversely, aspartate aminotransferase from Zea mays contains more aspartate 

aminotransferase activity (Andrews et al., 1971), albeit has a lower expression of 

aspartate aminotransferase than Sorghum bicolor and Setaria viridis (Figure 5.16). More 

importantly, transcriptomic data shows that the expression of alanine aminotransferase 

in Zea mays is substantially higher than that of Setaria viridis and Sorghum bicolor. This 

may indicate that aspartate aminotransferase in Zea mays is adapted to maintain activity 

in a high concentration of L-alanine, because of the relative dependence on alanine 

aminotransferase activity. Moreover, increasing the concentration of L-alanine 

stimulated the activity of aspartate aminotransferase from illuminated Zea mays leaf 

lysates. This suggests that aspartate aminotransferase may be linked to alanine 
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aminotransferase activity, and is consistent with decarboxylation via PEPCK/NAD-

malic enzyme pathways, which require both aspartate aminotransferase and alanine 

aminotransferase activity (Andrews et al., 1971; Bräutigam et al., 2014; Wang et al., 

2014).  

Aspartate aminotransferase from darkened leaves of Zea mays was not activated by L-

alanine (Figure 5.10C), suggesting that the dark-form of the transaminase may not be 

preconditioned for C4-specific activity. In the absence of L-alanine, the formation of 

oxaloacetate seemed to be favoured in darkened conditions (Figure 5.8), but as noted, 

may not be associated with C4-specific activity. Also, since aspartate aminotransferase 

from Zea mays appeared to be stimulated by the C4 metabolite solely in illuminated leaf 

lysates, this might correspond to an activation mechanism for C4-specific function and 

could signal the formation of oxaloacetate in illuminated leaves and stimulate PEPCK 

activity. Conversely, aspartate aminotransferase from Setaria viridis was not affected by 

L-alanine, which may reflect that Setaria viridis depends more on the flux of L-alanine 

than Sorghum bicolor, but may not utilise a secondary decarboxylation pathway via 

PEPCK/NAD-malic enzyme as readily as Zea mays. This is partially supported by the 

relatively higher alanine aminotransferase activity in Setaria viridis (Figure 5.14) and 

higher alanine aminotransferase expression when compared to alanine aminotransferase 

from Sorghum bicolor, but substantially lower expression of alanine aminotransferase 

when compared to Zea mays (Figure 5.16). 

In addition to this, L-malate stimulated the activity of aspartate aminotransferase in 

illuminated Zea mays leaf lysates, whereas in darkened and illuminated Setaria viridis 

leaf lysates, the activity of aspartate aminotransferase was inhibited by an excess of L-

malate, which is consistent with previous findings (Chapman and Hatch, 1979). 

Furthermore, the activation of aspartate aminotransferase towards the formation of 

oxaloacetate in the presence of L-malate may link malate metabolism via NADP-malic 

enzyme and oxaloacetate decarboxylation via PEPCK (Figure 5.17). 
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Fig. 5.17. Simple schematic depicting a mechanism that could regulate the relative 

flux through malate or aspartate in a dual-decarboxylation system in Zea mays. Red 

arrows indicate increase rate of formation (in the indicated direction; metabolite in bold), 

blue arrows (dashed lines) indicate reduced rate of formation and orange arrows indicate 

PEPC inhibition by aspartate or malate. For simplicity, other feedback inhibition 

mechanisms are not shown. Figure based on experimental data shown in Figures 5.10 

and 5.11 and data from Chapman and Hatch (1979). Asp, aspartate; Pyr, pyruvate; Mal, 

malate; OAA, oxaloacetate. 

This link was previously shown when the formation of pyruvate via malate metabolism 

was stimulated in the presence of aspartate (Chapman and Hatch, 1979). This implies 

that NADP-malic enzyme activity towards the formation of pyruvate is favoured when 

aspartate is formed, but this may affect PEPCK activity, because the formation of 

oxaloacetate may not be favoured. Alternatively, if the formation of oxaloacetate is 

favoured and aspartate declines, then the formation of pyruvate via NADP-malic enzyme 

may decline, implying that malate would be more readily available since the rate at which 

is it decarboxylated may decrease. Conversely, if there were more aspartate and pyruvate, 

it would imply that the rate at which malate is decarboxylated increases. The link between 

aspartate, pyruvate and malate (Figure 5.17), as part of an extended aspartate–malate 

shuttle, is further supported by the decrease in the rate at which aspartate is converted to 

oxaloacetate in an excess of pyruvate (Figure 5.11C).  
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Therefore, in the same way that aspartate can induce the formation of pyruvate and 

stimulate the activity of NADP-malic enzyme (Müller et al., 2008), then malate might 

induce the formation of oxaloacetate and stimulate PEPCK activity. This activation 

effect, which was solely evident in aspartate aminotransferase from Zea mays, may 

reflect the fine control of PEPCK and NADP-malic enzyme decarboxylation, particularly 

when the activity of either decarboxylase is reduced or not favoured. In rats (Rattus 

norvegicus), aspartate aminotransferase activation by L-malate may contribute to the fine 

control and reversibility of the transaminase, and most importantly, may regulate the 

relative flux through aspartate or malate (McKenna et al., 2006). Whether the 

oxaloacetate formed in this mechanism contributes to malate metabolism or PEPCK 

decarboxylation is not clear. The inhibitory effect of L-malate observed in Sorghum 

bicolor and Setaria viridis may suggest the relatively lower dependence on PEPCK-

dependent decarboxylation compared to Zea mays, as previously shown in transcriptomic 

analyses (Figure 4.16). 

10 mM PEP had no effect on the activity of aspartate aminotransferase from illuminated 

leaves of Setaria viridis (Figure 5.11A) and Zea mays (Figure 5.11C), while 20 mM and 

50 mM PEP affected the activity of aspartate aminotransferase from the three C4 grasses 

equally. This suggests that the activity of aspartate aminotransferase may be linked to the 

activity of PEPC, but may not be as significant as control by L-malate or L-alanine, since 

the concentration of PEP used in the experiments was well above the physiological 

amounts (Leegood and von Caemmerer, 1989). The amount of PEP increases upon 

illumination, but is rapidly assimilated into oxaloacetate by PEPC during photosynthesis 

(Leegood and von Caemmerer, 1988; Leegood and von Caemmerer, 1989) and PEP can 

serve as an activator for PEPC activity (Tovar-Méndez and Muñoz-Clares, 2001). 

Aspartate can inhibit PEPC activity (Mareš et al., 1979), and therefore a inhibitory 

mechanism regulated by PEP or aspartate may link aspartate aminotransferase and PEPC 

activities, respectively, and might regulate the formation of oxaloacetate when the rate 

of PEP carboxylation is reduced or in darkened conditions, when photosynthesis is not 

occurring. This may lead to higher aspartate aminotransferase activity in darkened leaves 

and contribute to the fine control of PEPC activity during light transitions, in addition to 

regulation by phosphorylation or other C4 metabolites (Budde and Chollet, 1986; 

Doncaster and Leegood, 1987; Hatch, 1987; Leegood and von Caemmerer, 1988). 
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5.3.3 Alanine aminotransferase may be differently regulated in C4 species 

 

Alanine aminotransferase activity measured towards the formation of pyruvate was 

negligible when assayed in the presence of 20, 50 and 75 mM L-alanine. Previous studies 

have shown that alanine aminotransferase has a high KM for L-alanine (KM 3.03 mM in 

Zea mays compared to KM 10.4 mM in Arabidopsis thaliana) and the reaction assays 

require a high concentration of the substrate (Miyashita et al., 2007; Duff et al., 2012; 

Kendziorek et al., 2012; McAllister et al., 2013). In Zea mays, the KM for pyruvate is 

lower than the KM for L-alanine (Duff et al., 2012), which suggests some selectivity 

towards pyruvate binding. This may also be part of the mechanism to preferentially bind 

pyruvate in illuminated conditions, since the amount of pyruvate decreases with 

increasing light intensity, and while the amount of alanine declines after the onset of 

light, it remains between 30 to 70 mM in darkened or illuminated conditions (Leegood 

and Furbank, 1984; Leegood and von Caemmerer, 1989).  

Preference for pyruvate might be significant for the formation alanine in C4 plants, 

particularly in PEPCK/NAD-malic enzyme subtypes, where the balance of amino acids 

between mesophyll and bundle sheath cells must be kept by transferring alanine from 

bundle sheath to mesophyll cells after aspartate is transferred from mesophyll to bundle 

sheath cells (Hatch, 1987; Weber and Bräutigam, 2013). Furthermore, a concentration 

gradient for the movement of pyruvate from bundle sheath cells to mesophyll cells is not 

required (Arrivault et al., 2016). In addition to this, theoretical models used to model the 

energy costs of C4 photosynthesis have also shown that in PEPCK subtypes, the transport 

of alanine, presumably after the conversion from pyruvate via alanine aminotransferase, 

and PEP via PEPCK compensates the reduction of malate metabolism and pyruvate 

transport to regenerate PEP via PPDK (Wang et al., 2014). This suggests that activity of 

alanine aminotransferase may be preferential for the pyruvate reaction, towards the 

formation of alanine, since a concentration gradient of alanine is required to operate the 

C4 cycle (Arrivault et al., 2016).   

The relative activity of alanine aminotransferase in the three C4 grasses did not correlate 

to transcriptomic analyses (Figure 5.16). High expression of alanine aminotransferase 

and aspartate aminotransferase expression in Zea mays correlates to aspartate–

oxaloacetate and pyruvate–alanine interconversion pathways in species that use PEPCK 
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and NADP-malic enzyme (Hatch, 1987; Wang et al., 2014). However, changes to alanine 

aminotransferase activity as seen on Figure 5.14 may not correlate to requirements of 

PEPCK, but rather to the relative activity of NADP-malic enzyme. This is supported by 

the activity of alanine aminotransferase being lower in Zea mays than in Setaria viridis, 

when Zea mays contains relatively more PEPCK than either Sorghum bicolor or Setaria 

viridis (Gutierrez et al., 1974).  

Considering these results, the alanine aminotransferase reaction towards the formation 

of alanine requires further optimisation and investigation in these C4 species. One major 

problem was that the reaction took more than 20 min to have detectable changes in 

NADH oxidation, compared to only a few minutes to see a decline in the concentration 

of NADH in the aspartate aminotransferase reaction. Also, whether the reaction towards 

the formation of alanine is being masked by catalysis in the reverse direction, is unclear, 

but may be unlikely since activity was not previously observed in high concentrations of 

L-alanine. Improvements to the assay of the activity of alanine aminotransferase and 

determining its kinetic properties in darkened and illuminated leaves may provide some 

indication to its regulation and role in NADP-malic enzyme subtype C4 grasses.   

 

5.3.4 Conclusion 

 

The results in this chapter showed that solely the aspartate aminotransferase from 

illuminated Zea mays leaf lysates was activated by an excess of L-malate and L-alanine, 

whereas aspartate aminotransferase activity in Sorghum bicolor was inhibited by both L-

malate and L-alanine. In Setaria viridis, the inhibitory effect was only observed in the 

presence of L-malate. These results support the role of aspartate aminotransferase as a 

link between PEPCK and NADP-malic enzyme decarboxylation, as well as align with 

the hypothesis that different NADP-malic enzyme C4 subtypes might have differing 

demands for aspartate aminotransferase activity and PEPCK-dependent decarboxylation. 

In addition, these effects were more predominant in illuminated leaf lysates and might 

correspond to a C4-specific aspartate aminotransferase isoform in NADP-malic enzyme 

subtypes. Effector metabolites, rather than light conditions, might assert more control 

over the activation of the transaminase, which appeared to have a lower affinity for L-

aspartate after transition into the light period.  
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Chapter 6 – General Discussion 
 

6.1 Regulating the relative flux through malate and aspartate 

 

In C4 photosynthesis, assimilated carbon is delivered at the site of Rubisco via two main 

pathways through fluxes of malate or aspartate (Bellasio and Griffiths, 2014). 

Historically, C4 plants exist as three distinct subtypes, NAD- and NADP-malic enzyme 

and PEPCK, and are classified by their primary decarboxylase (Hatch, 1987). It has 

become apparent, however, that certain NADP-malic enzyme C4 grass species can 

partition between NADP-malic enzyme and PEPCK decarboxylation using malate and 

aspartate as C4 transfer acids. Furthermore, in PEPCK subtypes, NAD-malic enzyme 

contributes to malate metabolism in mitochondria of bundle sheath (Hatch, 1987; 

Bräutigam et al., 2014). Recent evidence suggests that the decarboxylation pathways of 

C4 grasses are flexible, and multiple decarboxylases may have been selected for during 

evolution (Furbank, 2011; Wang et al., 2014). Moreover, the relative amounts of PEPCK, 

NADP-malic enzyme or NAD-malic enzyme vary among subtypes. For instance, certain 

NADP-malic enzyme subtypes, such as Zea mays, have appreciable amounts of PEPCK 

activity, while others, such as Sorghum bicolor or Setaria viridis have extremely low 

PEPCK activity (Gutierrez et al., 1974). Similarly, certain NAD-malic enzyme species, 

such as Panicum decompositum contain substantial amounts of PEPCK activity, while 

other NAD-malic enzyme species within the Panicum genus do not (Gutierrez et al., 

1974). Interestingly, the decarboxylation chemistry of the dicot NAD-malic enzyme C4 

plant, Cleome gynandra, can be developmentally regulated and mid-aged leaves are able 

to use both NAD-malic enzyme and PEPCK decarboxylase pathways, with enhanced 

aspartate aminotransferase and alanine aminotransferase activity in bundle sheath 

mitochondria (Sommer et al., 2012). However, the regulation of carbon flux through 

malate or aspartate has not been properly understood in NADP-malic enzyme monocot 

grasses.  

The findings presented in this thesis show that NADP-malic enzyme and aspartate 

aminotransferase may be differently regulated in NADP-malic enzyme subtype grasses 

and that the regulation of aspartate aminotransferase by C4 transfer acids may reflect the 

relative flux through malate or aspartate and coordination of NADP-malic enzyme and 
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PEPCK decarboxylation in Zea mays. However, these mechanisms may not be present 

in C4 grasses with lower expression of PEPCK, such as Setaria viridis and Sorghum 

bicolor, which may be less dependent on the flux through aspartate (Gutierrez et al., 

1974). These results describe three distinct regulatory properties of NADP-malic enzyme 

and aspartate aminotransferase that could control the flux of carbon between mesophyll 

and bundle sheath cells of NADP-malic enzyme subtypes. These results also show that 

the classification of C4 plants as distinct subtypes may be an oversimplification and may 

not accurately reflect the regulation of carbon flux, as the interspecies differences in the 

catalytic properties of NADP-malic enzyme and activation of aspartate aminotransferase 

in response to C4 metabolites have shown. 

There is also doubt to how much the malate–pyruvate pathway for NADP-malic enzyme 

and the aspartate–alanine pathway for PEPCK/NAD-malic enzyme overlap.  Plants using 

a dual-decarboxylation system may operate an oxaloacetate–aspartate pathway via 

aspartate aminotransferase and a pyruvate–alanine pathway via alanine 

aminotransferase. Although alanine aminotransferase is primarily used for converting 

pyruvate to alanine from the decarboxylation of malate via NAD-malic enzyme in 

mitochondria of NAD-malic enzyme subtypes (Bräutigam et al., 2014), alanine 

aminotransferase could catalyse the interconversion of pyruvate and alanine downstream 

of malate decarboxylation by NADP-malic enzyme. Enhanced alanine aminotransferase 

activity was observed in leaves of Cleome gynandra in mid-development, while older 

leaves had reduced alanine aminotransferase activity (Sommer et al., 2012). 

While Leegood (1985), Stitt and Heldt (1985) and Arrivault et al. (2016) have identified 

the metabolites and their respective concentration gradients that contribute to the flux of 

carbon, this rate of diffusion must be balanced with the rate of metabolism (von 

Caemmerer and Furbank, 2003). Based on modelling analysis (Wang et al., 2014), it is 

likely that the conversion of oxaloacetate to aspartate in mesophyll cells reduces carbon 

trafficking through malate, thus alleviating chloroplast transport mechanisms. However, 

converting too much aspartate may reduce the ratio of oxaloacetate to malate in 

mesophyll cells, hindering the uptake of oxaloacetate into chloroplasts for reduction to 

malate (Leegood, 2002). Also, movement of carbon through aspartate may reduce pools 

of malate necessary for downstream metabolism and decarboxylation by NADP-malic 

enzyme. This indicates that the diurnal regulation of the relative flux through aspartate 

or malate might be essential in plants that operate a dual-decarboxylation system. 
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Contribution of aspartate, along with malate, to the carbon pool was the subject of 

speculation since the elucidation of the carbon concentrating mechanism of C4 

photosynthesis (Hatch and Slack, 1966; Slack et al., 1969). Recent evidence suggests 

that the utilisation of aspartate and malate in certain C4 plants may improve assimilation 

efficiencies and reduce energy requirements (Wang et al., 2014) and such flexibility in 

decarboxylation chemistry can allow C4 plants to adapt better to environmental changes 

such as fluctuating light intensities (Furbank, 2011; Stitt and Zhu, 2014).  

There has also been concern on which decarboxylation mechanism is most efficient and 

there is growing advocacy for PEPCK subtypes, with both PEPCK and NAD-malic 

enzyme activity, to be used as an engineering template for engineering the C4 trait into 

existing C3 crops. Recent evidence has shown that the PEPCK decarboxylation pathway 

requires fewer ATP than the NADP-malic enzyme pathway because PEP does not need 

to be regenerated via PPDK (Wang et al., 2014). However, decarboxylation via PEPCK 

does not generate reducing equivalents and these must be generated via NAD-malic 

enzyme or enhanced photosystem II activity in bundle sheath cells (Bräutigam et al., 

2014). Since NADP-malic enzyme species have reduced photosystem II activity, because 

NADP-malic enzyme can generate reducing equivalents, relying fully on PEPCK 

decarboxylation might not be selected for during the evolution of decarboxylation 

mechanisms (Furbank, 2011). However, photosystem II activity varies between C4 

species and certain NADP-malic enzyme species, such as Zea mays, have higher 

photosystem II activity than other NADP-malic enzyme grasses (Hardt and Kok, 1978; 

Walker and Izawa, 1979). Enhancement of bundle sheath cell photosystem II activities 

in species such as Zea mays, which use a dual-decarboxylation system may compensate 

the generation of reducing equivalents that are not formed via NADP-malic enzyme. 

Differences in the kinetics of NADP-malic enzyme and aspartate aminotransferase may 

correlate to the relative rates of O2 evolution in bundle sheath cells of NADP-malic 

enzyme subtypes. For instance, in Sorghum bicolor, the activity of NADP-malic enzyme 

might be required at the onset of light, whereas in Zea mays, the activity of NADP-malic 

enzyme at the onset of light might not be equally necessary. This may correlate to the 

absence of photosystem II activity in bundle sheath cells of Sorghum bicolor (Hatch, 

1978; Meierhoff and Westhoff, 1993), whereas Zea mays contains appreciable amount 

of photosystem II and PEPCK activity in bundle sheath cells. The degree of O2 evolution 

in bundle sheath cells of C4 plants, particularly of NADP-malic enzyme subtypes, may 
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be interwoven with the relative flux through aspartate, as previously speculated 

(Chapman and Hatch, 1981; Meister et al., 1996). Furthermore, if the formation of 

reducing equivalents in the bundle sheath is not regulated, then it can influence the 

amount of 3-PGA that is translocated to mesophyll cells, via the triose phosphate porter, 

for reduction to triose phosphates, as well as alter the amount of triose phosphates that 

are translocated back to bundle sheath cells and used to regenerate RuBP under high 

photosynthetic loads (Hatch, 1987; Furbank, 2011). An early attempt in transforming C3 

plants with copies of the Zea mays NADP-malic enzyme caused bleaching of leaves in 

rice and reduced photosynthetic capacity probably by photoinhibition due to an increase 

in the supply of NADPH (Tsuchida et al., 2001). Although overexpression of NADP-

malic enzyme can be deteriorating for transgenic C3 plants, reduced grana stacking in 

bundle sheath cells of C4 plants protects against photoinhibition by preventing the 

accumulation of NADPH in chloroplasts. This study is an example of how 

overexpressing the C4-specific NADP-malic enzyme can induce phenotypic changes. 

Therefore, the formation of reducing equivalents in C4-augemented plants must be 

considered, such that engineered protein networks do not perturb other transport 

mechanisms, such as the 3-PGA/triose-phosphate shuttle via the triose phosphate porter, 

which is relatively less expressed in C3 grasses (Weber and von Caemmerer, 2010; 

Bräutigam et al., 2011). Compared to C3 species, C3–C4 intermediates, such as Flaveria 

floridana and Moricandia arvensis, and C4 species have considerably higher amounts of 

3-PGA and triose phosphates (Badger et al., 1984; Leegood and von Caemmerer, 1994). 

In addition to this, since PEPCK is cytosolic, its regulation may be simpler than that of 

NADP-malic enzyme, which is chloroplastic and may depend on regulation by light-

dependent changes in the stromal pH (Asami et al., 1979; Edwards and Andreo, 1992; 

Bräutigam et al., 2014). It is argued, however, that NADP-malic enzyme might be the 

simplest to engineer, despite having to consider the expression of additional transporters 

for oxaloacetate, malate, 3-PGA and triose phosphates (Bräutigam et al., 2008; Weber 

and von Caemmerer, 2010; Bräutigam et al., 2011; Leegood, 2013). There may also be 

some importance to the selection of decarboxylation by NADP-malic enzyme, which was 

acquired as the primary decarboxylase in over 50% of C4 grasses (Sage et al., 2011). 

Also, the catalytic properties of NADP-malic enzyme may not only differ between C4 

subtypes, but also between species using the same primary decarboxylation pathway. For 

instance, NADP-malic enzyme from Sorghum bicolor exhibited two distinct pH optima, 
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one of which contributed to maximal activity at pH 7.4. This may ensure high in vivo 

activity at the onset of light when the pH of the stroma is low (Werdan et al., 1975). In 

Setaria viridis, also a NADP-malic enzyme subtype, NADP-malic enzyme activity in 

illuminated leaf lysates had a broader pH dependence, and despite that maximal activity 

was not observed at a low pH, like in Sorghum bicolor, the differences in activity between 

low and high pH were negligible (Figure 4.5). These changes were not as distinct as the 

changes in NADP-malic enzyme activity in Zea mays between pH 7.0 and pH 8.4 (Figure 

4.6). Unlike Sorghum bicolor and Setaria viridis, Zea mays has appreciable amounts of 

PEPCK expression and activity (Walker et al., 1997; Furumoto et al., 1999; Wingler et 

al., 1999). These results also indicate that in NADP-malic enzyme subtypes, the activity 

and regulation of NADP-malic enzyme activity may be influenced by a gradient of 

PEPCK-dependent decarboxylation. The dependence on PEPCK decarboxylation is 

higher in Zea mays and lower in Sorghum bicolor (Gutierrez et al., 1974) and PEPCK 

activity in Setaria viridis may be somewhere between that of Zea mays and Sorghum 

bicolor (Figure 6.1) (Gutierrez et al., 1974). 

 

Fig. 6.1. C4 plants grouped by their primary decarboxylase. C4 species are grouped 

by their primary decarboxylase. Positioning depends on the relative expression of 

NADP-malic enzyme (far right), NAD-malic enzyme (far left) and PEPCK (towards the 

centre of the cross). NADP-malic enzyme subtypes used in this study are indicated by 

the boxes. Figure from APM Weber (unpublished). 
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While the kinetics of NADP-malic enzyme may dependent on PEPCK, the regulation 

and activity of aspartate aminotransferase may depend on diurnal PEPC activity and 

correlate to changes in the affinity of PEP between dark and light transitions. Figure 4.2 

shows that the affinity for PEP was lowest in 7.5 h darkened leaves. This is consistent 

with the downregulation of PEPC in darkened conditions to prevent PEP carboxylation 

(Jiao and Chollet, 1988; Jiao and Chollet, 1991; Chollet et al., 1996; O'Leary et al., 

2011). Additionally, the amounts of PEP may be higher in the absence of carbon fixation 

and PEP content may not decrease as rapidly when PEPC is not active (Leegood and von 

Caemmerer, 1989). Conversely, in darkened leaves, aspartate aminotransferase exhibited 

a higher affinity for aspartate and 2-oxoglutarate (Figure 5.6), albeit the activity in the 

dark period was lower than in illuminated leaves (Figure 5.10B). If the concentration of 

PEP were higher, possibly due to the reduced PEPC activity in darkened leaves, then the 

activity of aspartate aminotransferase might be downregulated as well. This is supported 

by the inhibition of aspartate aminotransferase activity in the presence of PEP (Figure 

5.11). In addition to this, PEPC affinity for PEP increased after the dark to light transition, 

but aspartate aminotransferase affinity for aspartate and 2-oxoglutarate declined. This 

implies that when PEP is readily metabolised by PEPC, the activity of aspartate 

aminotransferase can be higher, and it may be less inhibited by PEP. In the absence of 

PEP, the activity of aspartate aminotransferase was higher in illuminated leaf lysates of 

Setaria viridis (Figure 5.10B). 

In addition to this, the activity of alanine aminotransferase may depend on NADP-malic 

enzyme, rather than the relative PEPCK expression in NADP-malic enzyme subtypes. 

This is supported by the relative differences between NADP-malic enzyme activity and 

alanine aminotransferase activity in the C4 grasses studied. Figure 4.7 showed that in 

Setaria viridis the activity of NADP-malic enzyme was substantially lower than that in 

Sorghum bicolor and Zea mays. However, the activity of alanine aminotransferase was 

relatively higher in Setaria viridis, compared to the activity in Sorghum bicolor and Zea 

mays. This observation is supported by the relative expression of alanine 

aminotransferase in Figure 5.16 and corresponds to the higher activity of alanine 

aminotransferase in C4 species with reduced NADP-malic enzyme activity (Andrews et 

al., 1971; Hatch, 1987). It is important to note however, that the rate of NADP-malic 

enzyme activity was substantially higher than that of alanine aminotransferase, and this 

observation is not a direct comparison between changes in specific activities.   
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Novel phosphorylation data presented in Chapter 3 showed that PEPC, aspartate and 

alanine aminotransferase and NADP-malic enzyme undergo light-dependent 

phosphorylation (Appendix A). Along with the in vitro activity assays, it appeared that 

there were changes in the dark and light in vitro activities of these enzymes. However, 

whether the phosphorylation sites identified serve a biological function remains unclear. 

These can be further investigated using phosphomimetic mutants expressed in 

Escherichia coli, similar to the approach used to study the effect of phosphorylation of 

PPDK (Chastain et al., 1997; Chastain et al., 2000). Using site-directed mutagenesis of 

Setaria viridis C4-related proteins, such as PEPC and NADP-malic enzyme, the 

phosphorylation sites identified in this study can be further validated. Recombinant 

proteins can be purified and assayed in vitro and assessed whether the phosphorylations 

affect enzymatic activity. Furthermore, kinetic constants, like Vmax and Kcat can be 

calculated and compared to the in vitro activities of the enzymes from crude leaf lysates. 

While this approach may prove useful, it might not be truly representative of in vivo 

phosphorylation. For instance, phosphorylations are dynamic and the degree of 

phosphorylation of a protein may change in response to intracellular stimuli or 

environmental cues, such as varying light intensities (Chen et al., 2014; Friso and van 

Wijk, 2015). While phosphomimetic mutants can show whether a certain modification 

can alter enzyme activity, the genetically introduced modifications are static and cannot 

dynamically respond to stimulants in vitro. A supplementary approach would be to 

selectively purify phosphorylated proteins from the crude leaf lysate. Anti-

phosphoprotein antibodies are commonly used for phosphoprotein identification by 

immunoblotting or mass spectrometry, but up to now their applications for 

immunoprecipitating phosphorylated proteins and determining physiological enzymatic 

activity are limited. This is partly due to reactions conducted in non-physiological 

conditions, which are likely to lead to loss of enzyme activity and because of low binding 

efficiencies of commercially available anti-phosphoprotein antibodies, namely the 

differences between anti-phosphotyrosine and anti-phosphoserine or anti-

phosphothreonine, which consequently enrich phosphorylated tyrosine residues with 

higher efficiency than phosphoserines and phosphothreonines (Grønborg et al., 2002).   

One method to overcome this might be to develop gel activity assays, whereby proteins 

are kept and assayed in their native conditions (Covian et al., 2012). In addition, by 

selectively purifying proteins of interest using antibodies, proteins may be as close to 

their physiological phosphorylation state and the effects of phosphorylation on protein 
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activity can be determined. Also, certain issues such as ensuring phosphomimetic 

proteins are structurally comparable to the candidate wildtype proteins can be avoided. 

 

6.2 Communication between C3 and C4 cycles and the formation of PEP 

 

The efficient and rapid movement of C4 metabolites depends on the coordinate regulation 

of C3 and C4 pathways (Furbank and Leegood, 1984; Leegood and Furbank, 1984). 

However, one interaction that has not been fully understood is the interchange of 3-PGA 

and PEP using phosphoglycerate mutase and enolase. This pathway was first elucidated 

by Huber and Edwards (1975), suggesting that PEP could be formed via 

phosphoglycerate mutase and enolase without using energy (Figure 6.2). This is 

significant because the two main pathways that form PEP in C4 photosynthesis, via the 

reactions catalysed by PEPCK or PPDK, require energy. However, it is not known how 

rapidly the interconversion between 3-PGA to PEP occurs or whether it is regulated 

(Arrivault et al., 2016), but an early study estimated that the interconversion between 3-

PGA and PEP occurred at one-third the maximal rate of the reactions in the PCR cycle 

(Monson and Moore, 1989). 

 

Fig. 6.2. Interconversion of 3-PGA and PEP via phosphoglycerate mutase and 

enolase in a NADP-malic enzyme system. The interconversion of 3-PGA and PEP in 

C4 plants may link C3 and C4 cycles, thereby generating PEP in a sequential, non-energy 

requiring mechanism. Adapted from Huber and Edwards (1975). 
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Light-dependent phosphorylation sites identified in phosphoglycerate mutase and 

enolase are the first indication that this pathway is regulated in C4 plants. However, since 

the interconversion of 3-PGA and PEP is not energy-dependent, like PEPCK or PPDK, 

its regulation might not be as critical as that of other key C4 enzymes (M. Stitt, personal 

communication). The interconversion between 3-PGA and triose phosphates is crucial in 

C4 plants and the 3-PGA that is translocated from bundle sheath to mesophyll cells needs 

to be reduced to triose phosphates and not necessarily used to form PEP. The conversion 

of 3-PGA to triose phosphates requires three steps and energy (Huber and Edwards, 

1975) (Figure 1.2). First, 3-PGA is converted to 1,3 bisphosphoglycerate via 

phosphoglycerate kinase, which requires activation by ATP. Then, 1,3 

bisphosphoglycerate is reduced to glyceraldehyde-3-phosphate via glyceraldehyde-3-

phosphate dehydrogenase using NADPH. Finally, glyceraldehyde-3-phosphate is 

converted to dihydroxyacetone phosphate (triose phosphate) via triose phosphate 

isomerase (Anderson, 1971; Huber and Edwards, 1975).  

Alternatively, the conversion of 3-PGA to PEP via phosphoglycerate mutase and enolase 

does not require energy, and therefore the flux of carbon through this pathway may offer 

less resistance than the energy-dependent reduction of 3-PGA to triose phosphates. 

Therefore, these two pathways could potentially compete for 3-PGA. The conversion 

between 3-PGA to triose phosphates via the reactions catalysed by phosphoglycerate 

kinase, glyceraldehyde-3-phosphate dehydrogenase and triose phosphate isomerase in 

mesophyll cells is crucial in C4 plants and alleviates the burden of 3-PGA dependent O2 

evolution from bundle sheath cells especially in NADP-malic enzyme subtypes, which 

lack the capacity to generate reducing equivalents due to reduced photosystem II activity 

in bundle sheath cells (Chapman et al., 1980; Leegood, 2013). Triose phosphates that are 

formed in mesophyll cells must be transported back to bundle sheath chloroplasts and 

are essential to regenerate RuBP in the PCR cycle (Hatch, 1987).   

Formation of PEP through the conversion from 3-PGA might be a way of increasing C4 

metabolites by feeding in from the PCR cycle (Leegood and von Caemmerer, 1994) and 

may be advantageous in C3–C4 intermediate species or C4 species such as Sorghum 

bicolor and Setaria viridis, which solely rely on one decarboxylation pathway (Gutierrez 

et al., 1974). Furthermore, metabolites could effectively move between C3 and C4 cycles, 

thus contributing to the larger pool of metabolites in mesophyll or bundle sheath cells 

(Arrivault et al., 2016). Communication between C3 and C4 pathways along with 
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mechanisms allowing to switch between using fluxes malate or aspartate, can increase 

the flexibility of the C4 phenotype and maintain photosynthetic performance during 

intervals of low-light or reduced rates of carbon fixation (Huber and Edwards, 1975; 

Furbank and Leegood, 1984; Leegood and von Caemmerer, 1989; Bellasio and Griffiths, 

2014; Stitt and Zhu, 2014). In addition to this, the interconversion of 3-PGA and PEP 

might have evolved when the C4 pump was first established and PEPC activity was 

enhanced, but there might not have been sufficient PPDK activity in mesophyll cells to 

regenerate PEP since PPDK did not acquire C4-specific function until much later (Sage, 

2004). It has been suggested that reduced rates of PEP formation might have limited the 

progression of C4-evolution in C3–C4 intermediates (Peisker, 1986) and certain C3–C4 

Flaveria intermediates might have used the interconversion of 3-PGA and PEP to 

increase the amount of C4 metabolites needed to operate the CO2 pump  (Monson and 

Moore, 1989). The importance of this interconversion in Flaveria C3–C4  intermediates 

is further supported by the higher activities of phosphoglycerate mutase and enolase 

when compared to the activities in Flaveria cronquistii (C3), Flaveria trinervia (C4) 

(Monson and Moore, 1989), Zea mays and Spinacea oleracea (C3) (Furbank and 

Leegood, 1984). Although the non-energy requiring interconversion between 3-PGA and 

PEP could have been selected for during the early stages of C4-evolution, it is speculated 

that its importance declined after PPDK acquired C4-specific function and could 

regenerate PEP at higher rates (Monson and Moore, 1989).  

Both phosphoglycerate mutase and enolase are present in appreciable amounts in 

mesophyll cells of C4 plants (Ku and Edwards, 1975) and activity might be strictly 

dependent on illumination, which would correlate to the increase in the amount of PEP 

and 3-PGA available in the whole leaf (Furbank and Leegood, 1984; Leegood and von 

Caemmerer, 1989). While this pathway may not be the primary route for PEP formation 

in C4 plants, its reversibility, together with requiring no energy, can be the only way that 

carbon is moved between C3 and C4 cycles. Such communication between C3 and C4 

cycles might be necessary in C4 plants and intermediate species, since they generate 

higher amounts of 3-PGA and triose phosphates during photosynthesis than C3 plants 

(Badger et al., 1984; Leegood and von Caemmerer, 1994; Arrivault et al., 2016). It would 

be interesting to determine if there are any changes in the kinetic properties of 

phosphoglycerate mutase and enolase in response to the dark to light transition in both 

the forward and reverse reactions. It might also be important to understand how the 
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phosphorylation of phosphoglycerate mutase and enolase might affect enzymatic 

activity. In addition to this, it might be beneficial to consider this pathway when 

engineering C4 photosynthesis into C3 crops, since it might have served an important role 

during the early stages of C4 photosynthesis and may have confer some biochemical 

stability for the CO2 pump (Monson and Moore, 1989). Moreover, this pathway might 

maintain high photosynthetic efficiency during light fluctuations by supplying 

metabolites when the rate of CO2 assimilation declines (Furbank and Leegood, 1984; 

Leegood and von Caemmerer, 1989; Stitt and Zhu, 2014).    

With regards to C3–C4 intermediate species, there is some concern as to how PEP is 

regenerated in C3–C4 intermediates and C4 variants of Alloteropsis semialata 

populations. Transcriptomic analyses have shown that the relative expression of PPDK 

in the C4 variant of Alloteropsis semialata is about 0.5-fold lower than the expression in 

Setaria italica (unpublished), raising concern whether there is significant PPDK activity 

in mesophyll cells. Comparatively, PEPCK expression in Alloteropsis semialata is 

approximately 122-fold higher than the expression in Setaria italica, whereas the relative 

expression of NADP-malic enzyme in Setaria italica is approximately 12-fold higher 

than in Alloteropsis semialata (unpublished). Furthermore, evidence suggests that there 

is no substantial formation of pyruvate in Alloteropsis semialata via NADP-malic 

enzyme, suggesting the Alloteropsis semialata might be a true PEPCK subtype, and 

therefore PEP cannot be efficiently regenerated via PPDK (P.A. Christin, personal 

communication). It was also found that C4 Alloteropsis semialata have high PEP 

phosphatase activity and this might serve as an alternative pathway for the formation of 

PEP (P.A. Christin, personal communication). 

 

6.3 Conclusion 

 

In summary, it was shown that NADP-malic enzyme, aspartate aminotransferase and 

alanine aminotransferase undergo light-dependent phosphorylation. This study also 

showed that PEPC and PPDK were phosphorylated at the previously described residues 

in Zea mays and Sorghum bicolor, but there are additional phosphorylation sites that have 

not been described in other C4 plants. It is possible that some of these phosphorylated 

amino acids affect enzymatic activity. Aside from the phosphorylation of key C4-related 
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proteins, the light-dependent phosphorylation of phosphoglycerate mutase and enolase 

was shown. This might be important for regulating the flux of carbon through C3 and C4 

cycles and if there are phosphoregulatory controls, it might be an indication to the 

importance of this pathway and formation of C4 metabolites. 

In addition, this study showed that the properties of NADP-malic enzyme and aspartate 

aminotransferase are species-specific. It is apparent that the flexibility of NADP-malic 

enzyme and aspartate or alanine aminotransferase activity might be important for 

maintaining high photosynthetic performance. Certain NADP-malic enzyme plants, like 

Zea mays, may have the ability to switch between NADP-malic enzyme and PEPCK 

decarboxylation. This is shown by the differences in catalytic properties of NADP-malic 

enzyme and aspartate aminotransferase between Zea mays and Sorghum bicolor. This 

study further supports the fact that the classification of C4 plants as distinct subtypes 

might not be truly representative of the interspecies differences that exist.  

With regards to engineering the C4 trait into existing C3 crops, efforts should consider 

engineering multiple decarboxylase pathways, such that the metabolic robustness of the 

carbon concentrating mechanism of C4 photosynthesis is maintained and responds to 

environmental changes such as fluctuating light intensities (Wang et al., 2014). 

Furthermore, there may not be a single species that provides the best blueprint for 

engineering C4 photosynthesis, as species-dependent changes in NADP-malic enzyme 

activity have been shown to exist. In addition to this, post-translational regulatory 

mechanisms must be validated such that C4-related proteins expressed in target C3 

species maintain the expected photosynthetic capacity. This is particularly important 

since NADP-malic enzyme, aspartate aminotransferase and alanine aminotransferase 

exist in both C3 and C4 plants, but these may be regulated differently (Hibberd and Quick, 

2002).   
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Appendix B 
 

Measuring chlorophyll content. 

To normalise protein samples, chlorophyll content from harvested leaf sections was 

determined. Chlorophyll assays were performed following Arnon (1949) and Leegood 

(1993).  1.28 cm2 leaf sections were placed in a test tube and submerged in 3 mL 80% 

(v/v) ethanol, and incubated in the dark at 70 °C for 35 min. Extra time was added to 

allow complete leaf bleaching. Chlorophyll content was determined 

spectrophotometrically at A652. The instrument was blanked at A750 to correct for sample 

turbidity (Ritchie, 2006). Chlorophyll content was determined in 80% ethanol was 

calculated using equation A, 

 

Chl 𝑎 = A652 × 27.8 

 

To extract in 80% acetone, leaf tissue was ground to a fine powder in a liquid nitrogen 

chilled mortar and homogenised in 1 mL 80% chilled acetone. Plant lysate was 

transferred to an Eppendorf and centrifuged at high speed at 4 °C. Supernatant was 

collected into a light impermeable glass vial and placed on ice. The remaining pellet was 

further washed with acetone until completely bleached; the total volume per chlorophyll 

extract did not exceed 3.5 mL. Glass vials were removed from ice and let to equilibrate 

at room temperature before measuring chlorophyll. Chlorophyll a in 80% acetone was 

quantified spectrophotometrically at A652 and content in mg L–1 was determined using 

equation B,     

  

Chl 𝑎 mg L−1 =
A652 × 1000

34.5
 

 

NB. Protein extracts were normalised against the lowest whole protein concentration.  

(B) 

(A) 




