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Abstract

The human body absorption cross section (ACS) is important in the non-

ionized dosimetry, indoor channel modelling, design of electrical biomedical

devices, etc. In order to find the relations between morphological parameters

and the human body ACS, we developed new measurement techniques which

can obtain human body ACS quickly and accurately. Empirical models were

inducted from the accurate measurement results, which enables the human

body ACS to be quickly evaluated from the morphological parameters.

Our researches include the following parts. First, the new measurement

techniques which can give ACS result accurately had been validated by mea-

suring the ACS of a sphere model with known structure and material in the

reverberation chamber (RC). The measurement result matches very well with

the analytical solution of the sphere ACS.

After the new measurement techniques had been validated, measurements

on the human body ACS of 48 subjects were performed to find its relation

to morphological parameters. A strong linear correlation between the ACS

and the body surface area (BSA) was found above 6 GHz and a linear equa-

tion was inducted. No strong linear correlations between the ACS and all

morphological parameters were found below 6 GHz, therefore, the coordinate

of several markers on the ACS curve were correlated to the morphological

parameters to evaluate the ACS below 6 GHz.

At last, due to the similarities between the measured ACS and the ACS

given by multilayer analytical model, a numerical method that can calculate

the ACS of object with arbitrary shape was given. The numerical method

was specially optimized for calculating the object with multiple thin surface

layers, and its accuracy was demonstrated by solving the ACS of a 2D mul-

tilayer cylinder, of which the ACS can be solved analytically. The numerical

result matches well with the analytical solution.
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Chapter 1

Introduction

1.1 Backgrounds

The human body is a heterogeneous object with complex shape. It is formed

by numerous different types of tissues, which makes its electromagnetic (EM)

properties hard to model. However, there are many applications in which the

knowledge of the EM properties of the human body is important, such as

the non-ionizing dosimetry, indoor radio channel modelling, military defence

and so on [1].

Our research focuses on measuring absorption cross section (ACS) of hu-

man body in diffuse environment because it is the diffuse EM fields under

which the human body is exposed on daily basis.

We introduced new techniques to improve the measurement speed and

accuracy. A group study was performed on 48 subjects and the empirical

formulas were inducted for evaluating the human body ACS from morpho-

logical parameters. The measurement also provides valuable reference data

for future researchers who will be studying the same topic.

1



1.2 Aims of research

There are three aims of our research.

The first aim of the research is to develop techniques of measuring the

human body ACS in the reverberation chamber (RC) as accurate as possible

and to record human body ACS data for the future researchers.

The second aim is to model the human body ACS by morphological pa-

rameters.

The third aim of this research is to explain the ACS by the mechanism

of EM power loss in human body by basic EM theories.

1.3 Review: Human body ACS and morpho-

logical parameters

Before starting the measurement on the ACS of human body, it is quite

necessary to have a review on the previous researches of modelling human

body ACS by morphological parameters, such as height, body mass, body

fat percentage (BFP) and so on.

Instead of quantifying the non-ionizing dosimetry of human body by the

ACS, most of the previous papers use specific absorption rate (SAR). The

SAR is defined as the normalization of the EM power dissipated in a partic-

ular piece of tissue by its weight [2]:

SAR =
Pd
m

(1.1)

where Pd is the EM power dissipated in the piece of tissue in the human

body; m is the mass of that tissue.

Since human body is not isotropic, Pd would change with different exci-

tation field. In particular, when the excitation field is a plane wave incident

2



from a specific direction, Pd would be a function of angles of incident plane

waves, written as:

SAR(θ, φ) =
Pd(θ, φ)

m
(1.2)

where (θ, φ) denotes the direction of incident plane wave in the classical

spherical coordinate. θ is the angle between wave vector and z axis. φ is the

angle between wave vector and x axis.

If Pd(θ, φ) was chosen as all the power dissipated in human body, the

whole body SAR (WBSAR) can be obtained by [3]:

WBSAR(θ, φ) =
Pd,wb(θ, φ)

M
(1.3)

where Pd,wb(θ, φ) is all the EM power dissipates in the human body, M is the

whole body mass. The WBSAR(θ, φ) can be converted to the human body

ACS by the following equation [3]:

σa(θ, φ) =
Pd,wb(θ, φ)

|~S(θ, φ)|
=

WBSAR(θ, φ) ·M
|~S(θ, φ)|

(1.4)

where σa(θ, φ) denotes the human body ACS. ~S(θ, φ) is the Poynting vector

of the incident plane wave. The magnitude of ~S(θ, φ) equals to the energy

flux density.

Since it is hard to measure the WBSAR(θ, φ) at a particular direction, nu-

merical calculation was widely used in the study on the morphological param-

eters’ effects on non-ionizing dosimetry. There are two advantages of studying

WBSAR(θ, φ) by numerical calculation: First, the numerical calculation is

easier to perform than measuring the WBSAR(θ, φ) and the excitation field

can be set arbitrarily; Second, the 3-dimensional (3D) numerical models in-

volved in WBSAR(θ, φ) calculation usually have well documented internal

morphological parameters such as body fat percentage (BFP). Among all

the methods of calculating the WBSAR(θ, φ), the finite difference time do-

3



main (FDTD) method is the most popular one [4, 5]. The FDTD method

discretizes the solution region into many small coupling cells, and the field in

each cell is calculated by the numerical differentiation. Since the FDTD does

not involve solving big matrix, it is good at solving high frequency problems

with electrically large objects. But in the study of morphological parame-

ters’ effects on the WBSAR(θ, φ), the disadvantage of numerical calculation

is apparent as well. The high resolution voxel models are usually constructed

from the magnetic resonance imaging (MRI) or the pictures of pathological

slices of the human body. Obtaining the section images would be very time

consuming and expensive, which makes the numerical method poor for large

population study. Fortunately, there had already been a lot of studies on the

numerical calculation of the WBSAR(θ, φ) of different voxel models. The

results of all these studies could shed some light on how the WBSAR(θ, φ)

is changed by morphological parameters.

Since WBSAR(θ, φ) depends upon the direction, we should choose a spe-

cific direction of incident wave for inter-comparison between different stud-

ies. Gandhi had pointed out the standing human body absorbs the most EM

power when the incident plane wave whose E-field is vertically polarized is

coming from the front [6]. This setup of incident wave is most commonly

studied by many researchers. Here we denote the value of WBSAR(θ, φ)

calculated in this case as WBSARmax.

In the 1970s, due to the relatively low computational power, the resolution

of human voxel model was low. Hagmann calculated the WBSARmax of a

human voxel model consisted of only 180 cells by the method of moments

(MoM) [7]. The dielectric properties of each cell in Hagmann’s model was

assigned with respect to anatomical cross sections photos.

Since the low efficiency of MoM in memory usage, the calculation of

WBSARmax at higher frequencies was hard to perform until 1987, Sullivan

introduced the FDTD method into the SAR calculation [8].
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One year later in 1988, Dimbylow published his research on calculating the

SAR of the high resolution lower leg voxel model by FDTD method [9]. Dim-

bylow then conducted the well known research of building up a voxel model

called NORMAN [4]. NORMAN was constructed via MRI scan of a human

male and the model is consisted by 9 million cells. The height and weight

of the model were normalized to the reference man in the ICRP 66 (Interna-

tional Commission on Radiological Protection), hence its name ‘NORMAN’

[10]. Thanks to the high resolution of ‘NORMAN’, the WBSARmax was able

to be calculated up to the frequency of 1 GHz.

After 1997, numerous similar researches were conducted but with different

voxel models. Considering the morphological difference between Asian and

Caucasian, the Japanese voxel models were developed by Nagaoka in 2003

[11]. the Japanese models include a male model and a female model. Both

of the models were constructed from the MRI image of volunteers. The

WBSARmax of the Japanese models were calculated from 30 MHz to 3 GHz

[11].

In 2005, the voxel model NAOMI was developed by Dimbylow as a fe-

male counterpart of NORMAN [12], and the WBSARmax value of NAOMI

was published in his later research [5]. Comparing to the WBSARmax of

NORMAN, the WBSARmax curve of NAOMI has a “hump” at about 900

MHz while the WBSARmax of NORMAN is flat. This hump makes the WB-

SAR of NAOMI 25% higher than that of NORMAN. (See Fig. 1.1) The

higher WBSARmax of NAOMI at 900 MHz was attributed to the thicker sub-

cutaneous fat layer thickness. The Japanese female model HANAKO also

has a 17% higher WBSARmax at 900 MHz than her male conterpart TARO

[13] (See Fig. 1.2).

The higher WBSARmax of female model was also reported by Sandrini

[14]. In Sandrini’s work, the pose and scale of the female voxel model were

adjusted to that of the male model and a constant higher WBSARmax was

5
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given by modified female model from 1 GHz to 4 GHz.

However, there are also researchers gave contradictory results on the ef-

fect of body fat on WBSARmax. Yu preformed a study on the deformable

polygon human models [15]. The deformable human model was deformed to

three different body types of the same height (underweight, normal weight,

overweight) by adjusting the body fat percentage (BFP) , then the the model

was voxelized to calculate the WBSARmax. Results shown the model with

higher body mass index (BMI) tend to have lower WBSARmax from 20 MHz

to 3 GHz.

The negative correlation between the BMI and WBSARmax from 80 MHz

to 2.4 GHz was given in Conil’s work in which the WBSARmax of five different

voxel models were computed [16]. Similar conclusion was also given by Hirata

[17]. He also suggested that the lower WBSARmax at resonant frequencies was

caused by higher BFP. Except from the voxel models mentioned above, there

are many other voxel models with well documented morphological parameters

and the WBSARmax, such as the VIP-man [18, 19], the Chinese visible human

(CVH) models [20], the High definition reference korean man (HDRK) [21],

etc. The morphological parameters of all these models were listed in Table

1.1, and the documented WBSARmax were plotted in Fig. 1.3 and Fig. 1.4.

1.4 Summary

A simple review on the human body ACS was done in this chapter. The

previous researchers gave contradictory conclusions on the effect of morpho-

logical parameters on the ACS. Some researchers suggest high BFP would

increase WBSARmax while others hold the opposite view. Due to the lack of

experiments on measurement of human body ACS, we will present the accu-

rate measurement techniques and show the relation between morphological

parameters and the human body ACS in the following chapters.
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Name GenderWeight (kg) Height(cm) Ethnicity BFP% Image comments

NORMAN [4, 22] male 73 176 Caucasian 22 % [16] MRI

NAOMI [12] female 60 163 Caucasian 40.10%*[12] MRI Fat including
breast tissue

Zubal [23] male 70 178 Caucasian 18%[16] CT Morphological
parameters
are ob-
tained from
measuring
volunteers,
not voxel
data.

TARO [11] male 65 173 Asian 22 %* [11] MRI

HANAKO [11] female 53 160 Asian 31%* [11] MRI

Duke [24] male 70 174 Caucasian 17% [20] MRI

Ella [24] female 58 160 Caucasian 25% [20] MRI

HDRK [21] male 68 171 Asian 34%* [21] Section
Photo

The ex-
tra adipose
tissue was
added to
adjust the
weight and
inner organ
size of HDRK
to that of the
reference Ko-
rean model
[25]

CVH Male [20] male 63 172 Asian 24% [20] Section
Photo

CVH Female [20] female 54 162 Asian 35% [20] Section
Photo

VIP Man [18] male 104 186 Caucasian 35%*[18] Section
Photo

VCH Deformable [15] male
53

170 Asian
30%[15]

Section
Photo

62 38%[15]
75 48%[15]

Table 1.1: An overview of voxel models and their morphological parame-
ters. Citations were put on the right side of the data to show where does it
come from. The asterisk ’*’ means BFP values were not directly given but
calculated from the fat masses and body masses given in the literature.
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Chapter 2

Theory

2.1 Dielectric relaxation and power loss in

tissues

The relaxation rate of a material tells how fast its state change when a

stress is suddenly applied on it, or conversely, how fast it would return to

its original state when the stress is suddenly being removed (even though

sometimes the material would no longer change back to its original state)

[26]. Here the stress is applied by electromagnetic field, and the status of

material is the electrical polarization strength of the tissue. According to

Poynting’s Theorem, the power loss in a non-ferrite lossy material is [27]:

Re

(˛
S

~E ×
−→
H∗dS

)
= Re

(ˆ
V

jω(ε∗| ~E|2 − µ| ~H|2)dV

)
(2.1)

where ε is the complex permittivity. ω is the angular frequency; ~E is the

electric field; ~H is the magnetic field; µ is the permeability of the lossy

material; Here the star ’*’ symbol means complex conjugation. The real part

of both sides of the equation would be non-zero only if the permittivity ε
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is a complex number because µ of a non-ferrite material is real. In other

words, the dielectric relaxation is the reason of heat loss in non-ferrite lossy

material, such as human tissue.

A literature survey on the permittivity of human tissues had been done

by Gabriel [28]. In his survey, Gabriel pointed out that at GHz region, the

relaxation is dominated by the polarization of water molecules [28]. The

complex permittivity of tissues has form:

ε = ε′ − j σ
ω

(2.2)

where ε′ is the real part of permittivity. σ is the conductivity. (2.2) shows

the imaginary part of ε is controlled by σ, which affects the total absorption

power with respect to (2.1).

In order to clearly demonstrate the how lossy the material is, the ’pene-

tration depth’ is used to show how effectively an electromagnetic wave can

transmit through a material. The penetration depth is given in (2.3), which

only stands when σ � ωε′:

dpenetration =

√
2

ωµσ
(2.3)

where dpenetration is penetration depth. The complex permittivity ε of tissues

in frequency domain is not a constant but a spectrum varying with frequen-

cies. Debye model is one of the most simplest dielectric relaxation model[29].

By assuming the polarization level decreases exponentially after the stress

is removed, the Debye model in frequency domain can be given by Fourier

transform:

ε = ε∞ +
ε∞ − εs
1 + jωτd

(2.4)

where εs and ε∞ are the permittivity at zero frequency and the permittivity

as frequency approaches infinity; τd is the relaxation time constant. The
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Debye model has only three degrees of freedom which makes it inaccurate in

modelling the complex dielectric relaxation behaviour.

It Gabriel’s work, the Cole-Cole model with more parameters was used

to fit the dielectric properties of tissues [30, 31]:

ε = ε∞ +
∑
n

∆εn
1 + (jωτn)(1−αn)

+
σ

jωε0
(2.5)

where ε0 is the permittivity in free space; ∆εn is the nth term of total per-

mittivity; τn is the nth relaxation time; the index αn is the index which

determines the order of the nth relaxation time. Gabriel chose max(n)=4.

Comparing to the Debye model, the Cole-Cole model achieves a better fitting

accuracy, but the non-integer index (1−αn) on jω makes it hard to map the

operator ‘jω’ in the frequency domain to the partial differentiation operator
∂
∂t

of time domain Maxwell’s equations, thus the Cole-Cole model is hard

to apply to FDTD[32]. The mapping solution is given in [33], which is Γ

function involved:

jω(jω)β−1P (ω)
IFT−−→ ∂

∂t

ˆ t

0

1

τβΓ(1− β)
P (t− τ)dτ (2.6)

where β = 1 − αn; P (t) is an arbitrary function whose Fourier transform is

P (ω); ’IFT’ is the abbreviation of inverse Fourier transform.

2.2 The multi-layer planar ACS model of hu-

man body

Previous researches have shown that the human body resonates at tens of

MHz at which the body height is about 0.36-0.4 of wave length in free space

[6, 17]. At frequencies way above the resonance frequency, such as tens of

GHz, the ACS is dominated by the body surface area due to the high loss of
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Figure 2.1: The real part of permittivity of three major tissues at the surface
of human body [28]

skin[34, 3]. But at frequencies between these two bands, fast and accurate

modelling of ACS from morphological parameters can be hard since the ACS

is close related to both of shape and superficial layer structure of human

body. Previous researches suggested using layered planar, cylindrical and

spherical model to model the ACS of humna body [35, 36, 37]. The layer

models were usually consisted of three layers which are skin, fat, and muscle.

The real and imaginary part of the permittivity of skin, fat and muscle are

compared in Fig. 2.1 and Fig. 2.2.

Fig.2.1 and Fig.2.2 show that the magnitudes of both the real part and

imaginary part of fat’s permittivity are smaller than those of muscle and

skin from 1 GHz to 18 GHz, which implies the characteristic impedance of

fat is closer to the characteristic impedance of free space. Therefore fat is less

reflective than muscle if a plane wave is incident perpendicularly from free

space onto its surface. The transmission coefficient of three different tissues
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Figure 2.2: The imaginary part of permittivity of three major tissues at the
surface of human body [28]

can be calculated by:

T =
2Z

Z + Z0

=
2
√
ε0√

ε0 +
√
ε

(2.7)

where T is the transmission coefficient; Z0, Z are the characteristic impedances

of free space and tissues; ε0 is the permittivity of free space; ε is the permit-

tivity of tissues. The transmission coefficients of the three tissues are plotted

in Fig. 2.3, which shows fat have much higher transmission coefficient than

skin and muscle:

The penetration depth of the three tissues were also calculated by (2.3)

and plotted in Fig. 2.4.

It can be seen that the penetration depths of all three tissues are lower

than 5 cm above 5 GHz, which suggests the surface layer structure at the

most superficial 5 cm of human body may dominate the ACS at this frequency
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range. Considering the human body is not homogeneous, the power loss in

human body can not simply modelled by the transmission coefficient and

penetration depth. A multilayer model is required to calculate the EM power

dissipation in human body.

One famous study was conducted by Massoudi who did an analytical

study on the cylindrical skin-fat-muscle model [37]. He reported the WB-

SAR of a three-layer cylinder model (skin layer is 0.2 cm, fat layer is 1 cm,

radius is 10.08 cm) is 102% higher at 1.2 GHz and 55% smaller at 4.5 GHz

than the homogeneous muscle cylinder model when the TM wave (the E-field

parallel to the cylinder axis) is incident to the cylinder. In the TE case (the

H-field parallel to the cylinder axis), the WBSAR of the three-layer cylinder

is 53% higher at 1.3 GHz and 58% less at 4.5 GHz than the homogeneous

muscle cylinder. Massoudi also gave a graph of resonance frequency versus

fat layer thickness. Then Massoudi used a multi-cylinder model to evalu-

ate the WBSAR of human body. The SAR of the multi-cylinder model is

calculated by averaging the SARs of 52 different cylinders. Each cylinder

represents a specific part of human body, and the structure of this particular

cylinder is determined from the cross section of the body part it represented.

For instance, the arms of the man are represented by eight short different

cylinders, and each one of the eight cylinders have its own combinations of

layers thickness. The multi-cylinder model still shows an increase of WBSAR

at 1 GHz and a decrease of WBSAR at 5 GHz. Massoudi also studied the

effect of dry cloth on WBSAR. He suggests the effect of dry clothes on the

WBSAR is almost neglectable. Similar conclusions on dry clothes had also

been made by Barber [35].

To clearly explain the mechanism of absorption, the planar model have

been rebuilt in this thesis. The human body tissue is divided into three

layers, namely skin, fat and muscle. The thickness of skin is assumed to be

2 mm. A plane wave is incident from the left to the right, as shown in Fig.

2.6. Since there is no active sources presented in the tissues, the E-field and
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H-field should be continuous at the boundary of each layer. Then it comes

the following six equations:

Einc + Eref = E1,i + E1,r

k0
ωµ0

Einc − k0
ωµ0

Eref = k1
ωµ0

E1,i − k1
ωµ0

E1,r

E1,i exp(−jk1x1) + E1,r exp(jk1x1) = E2,i exp(−jk2x1) + E2,r exp(jk2x1)

k1
ωµ0

E1,i exp(−jk1x1)− k1
ωµ0

E1,r exp(jk1x1) = k2
ωµ0

E2,i exp(−jk2x1)− k2
ωµ0

E2,r exp(jk2x1)

E2,i exp(−jk2x2) + E2,r exp(jk2x2) = E3,i exp(−jk3x2)

k2
ωµ0

E2,i exp(−jk2x2)− k2
ωµ0

E2,r exp(jk2x2) = k3
ωµ0

E3,i exp(−jk3x2)

(2.8)

where Einc is the strength of incident E-field in free space; Eref is the strength

of reflected E-field in free space; En,i {n = 1, 2, 3} is the strength of E-field

propagating inward in the nth layer of tissue; En,r {n = 1, 2} is the strength

of E-field propagating outward in the nth layer of tissue; kn = ω
√
εnµ0 is the

complex wave number and εn is the complex permittivity of the nth layer

of tissue. The permeability of each layer of tissue were chosen as µ0 which

is equal to the permeability of free space because the tissues are non-ferrite

materials. The definition of the symbols were illustrated in Fig. 2.6.

The value of Eref can be obtained by solving (2.8), then the absorption

coefficient of the planar model can be calculated by the following equation:

ξplane =
< σa >

Ssilhouette

(2.9)

where ξplane is the absorption coefficient of the planar model, Ssilhouette denotes

the silhouette area of the absorbing object. Equation (2.9) is a generalized

definition of ξ, so that it can be applied to absorbing objects with different

shapes, including human bodies. It can be shown the absorption coefficient of

planar model < ξplane > is equal to its transmission coefficient. Let the planar

model incident by a plane wave, then the EM power going through a surface

area of the model equals to the multiplication of transmission coefficient,
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Figure 2.5: The multilayer ACS model
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Figure 2.6: The multi-reflection in each layer of planar model
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surface area, and the power flux of the incident plane wave:

Pd,plane = |~S|AplaneT (2.10)

where Pd,plane is the power dissipates in the planar model; ~S is Poynting

vector; Aplane is an arbitrary area on the model’s surface; T is the transmission

coefficient of the model. Considering the definition of ACS given in (1.4), it

can be shown the ξplane is equal to the T by assuming the Aplane = Ssilhouette:

ξ =
σa

Ssilhouette

=
σa

Aplane

=
Pd,plane

|~S|Aplane

= T (2.11)

The ξ of multilayer planar model with different fat layer thickness were plot-

ted in Fig. 2.7.

A conclusion similar to Massoudi’s can be generalized from Fig. 2.7 [37].
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When the fat layer is 10 mm thick, the ξ is 110% higher than the ξ of

homogeneous model at 1.4 GHz (the value in Massoudi’s research is 102%

higher at 1.2 GHz), and we call this frequency point as the ‘enhancement

point’, which is defined as the local maximum point of ξ whose frequency

is closest to 1 GHz; In the same case, the ξ is 46 % lower at 4.4 GHz (the

value in Massoudi’s research is 55% lower at 4.5 GHz), and we call this

point as ‘reduction point’, which is defined as the local minimum point of

ξ that is closest to 1 GHz. The enhancement points of cylinder models

with different fat layer thickness are marked by ‘×’ in Fig. 2.7, and so do

the reduction points by ‘◦’. Fig.2.8 plots the frequencies of enhancement

points and reduction points against different fat layer thickness, which shows

the their frequencies all decrease as the fat layer thickness increases. The

resonant feature of planar model in Fig. 2.7 implies the fat layer may act as

a matching layer between skin and muscle. Considering the fat itself is also a
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lossy media, more calculation is needed to determine whether the lossy effect

dominates the overall absorption, or the matching effect.

Here the percentage of power dissipated in each layer of tissue is calcu-

lated. The effective value of EM power dissipated is each tissue layer can be

calculated by:

Pd,i =

ˆ
Vi

1

2
σi| ~E|2dV (2.12)

where Pd,i is the power dissipated in ith layer; σi is the conductivity of ith

layer; | ~E| is the magnitude of E-field strength at a particular position; Vi is

the volume of ith layer with a constant interface area. The percentage of Pd,i

in the total power loss Pd calculated by:

αi =
Pd,i

Pd

× 100% (2.13)

The αi in each tissue layer is plotted from Fig. 2.9 to Fig. 2.12 as the fat

layer thickness varies from 2 mm to 14 mm, the skin layer thickness are all

2 mm.

Generally, below 1 GHz, the percentage of power loss in fat is lower than

6% in all the cases. Most of the EM power dissipates in muscle below 1 GHz.

Above 5 GHz, the skin starts to absorb more power than any other tissues

beneath it, which means the body surface area (BSA) would be the factor

dominating ACS. In the cases of fat layer equals to 2 mm, 6 mm and 10 mm,

the power dissipated in fat layer is always smaller than the power disspated

in skin and muscle from 1 GHz to 18 GHz, which means the power losses

in fat was not being able to dominate the whole absorption. In the case of

14 mm fat layer thickness, the power loss in fat only exceed skins at 4 GHz.

Similar result on the distribution of power in each layer can be found in the

work of Yu who did the calculation on the full scale human phantom [15].

Yu’s result shows the skin absorbs the similar amount of power as muscle

and fat do at 3 GHz. At frequencies higher than 3 GHz, the skin absorbs
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Figure 2.9: Percentage of power loss in each layer of multi-layer planar model:
2mm fat layer thickness
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Figure 2.10: Percentage of power loss in each layer of multi-layer planar
model: 6mm fat layer thickness
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Figure 2.11: Percentage of power loss in each layer of multi-layer planar
model: 10mm fat layer thickness
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Figure 2.12: Percentage of power loss in each layer of multi-layer planar
model: 14mm fat layer thickness
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the most. Because of the low percentage of power loss in the fat layer at

GHz level, it is reasonable to guess the matching effect of fat dominates the

overall ACS of human body.

2.3 The Spherical ACS model of human body

One disadvantage of multi-layer planar model is the human body surface

curvature was not taken into account. A multi-layer spherical model would

be better in modelling the human body surface curvature than the planar

model. When the sphere radius is over 10% of the wavelength of the inci-

dent wave, the Rayleigh scattering start to lose its accuracy and the Mie

series should be applied to calculate the scattering properties of the sphere.

Developed by Gustav Mie, the Mie series use spherical harmonics to solve

the sphere scattering problem. The relatively easy derivation can be found

in Harrington’s book [38]. The software package of calculating Mie series

applied in this thesis is SPlaC V1.0 [39].

Assuming the skin layer thickness of the sphere model is 2 mm; the cir-

cumference of the multilayer sphere is 90 cm which similar to the size of

human waist; Fig. 2.13 demonstrated the sphere model’s absorption coeffi-

cient which is defined as the ratio of sphere ACS to the silhouette area of the

sphere model:

< ξa,sphere >=
< σa,sphere >

Ssphere

(2.14)

where < ξa,sphere > is the absorption coefficient of the sphere; < σa,sphere > is

the ACS of the sphere; Ssphere is the silhouette area of the sphere, which is

also equal to the maximum cross section area of the sphere.

Comparing to the absorption coefficient of planar model demonstrated in

Fig. 2.7, the resonance behaviour of the sphere model is very similar. The

resonant frequencies of the spherical model go low as the fat layer thickness
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Figure 2.13: The absorption coefficient of the multi-layer spherical model

goes high. But the spherical model tend to have a much higher absorption

coefficient at 1 GHz than the planar model.

2.4 Measurement of human body ACS in the

RC

As stated before, the large population study on the human body ACSs is hard

to achieve by full wave numerical methods, especially at high frequencies.

Thus we use the reverberation chamber (RC) to do the population study over

a wide band of frequency. It is important to point out that the ACS measured

in the RC is different from the the ACS acquired by FDTD calculation. The

ACS measured in the RC is the ACS averaged over different directions, which
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is [40]:

< σa >=
1

4π

ˆ π

0

ˆ 2π

0

σa(θ, φ) sin θdθdφ ≈
1

4π

´ π
0

´ 2π

0
Pd(θ, φ) sin θdθdφ

1
4π

´ π
0

´ 2π

0
S(θ, φ) sin θdθdφ

=
< Pd >

< S >
(2.15)

where < σa > means averaged ACS; < Pd > means Pd(θ, φ) averaged over

different directions; < Sd > means Sd(θ, φ) averaged over different directions.

The angle bracket symbol < · > means averaging. Our research covers the

human body ACS measurement from 1 GHz up to 18 GHz which is the

operation frequency range of the available measurement system.

The RC is a cavity loaded with a moving stirrer which creates a stochastic

field configuration inside. The power losses in an object loaded in the RC

can be obtained by the power balance model since the RC is a enclosed

environment. According to Hill’s theory, the stochastic field in RC can be

expanded into a series of plane wave coming from all directions, therefore the

ACS measured in the RC is the averaged ACS as given by (2.15) [40].

The averaged ACS < σa > of all objects in the RC can be obtained from

measuring the averaged Quality factor. The averaged Quality (Q) factor is

defined by [40, 41]:

< Q >= ω
U

< Pd >
(2.16)

where U is the energy stored in the RC; ω is the angular frequency; < Pd > is

the amount of averaged power loss in the RC. Assume the energy distributed

homogeneously in the RC, (2.16) transform into:

< Q >= ω
WV

< Pd >
(2.17)

where W is the energy density in RC; V is the volume of RC. Since the power
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flow density and energy density has following relation:

W =
< S >

c
(2.18)

where c is the speed of light. Substitute (2.18) into (2.17) gives:

< Q >= ω
< S > V

c < Pd >
(2.19)

And by substituting (2.15) into (2.19) we have:

< σa >=
ωV

c < Q >
=

2πV

λ < Q >
(2.20)

where λ is wavelength. The < σa > obtained by (2.20) includes all the

power loss mechanism in the RC. Equation (2.20) shows < σa > is inversely

proportional to < Q >. (2.20) also implies the averaged ACS of object under

test can be obtained by measuring the averaged Q factor before and after

the chamber is loaded, which is:

< σa >=
2πV

λ

(
1

< Qwo >
− 1

< Qno >

)
(2.21)

where the subscript ’wo’ means with the object loaded in the RC; ’no’ means

no object loaded in the RC. Therefore accurate measurement of averaged Q

factor is very important to the accurate measurement of ACS.

One method of determining averaged Q factor is by measuring the trans-

mission coefficient between the two ports of antennas in the RC [42]:

< Q >=
16π2V

λ3
G (2.22)
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where G is the net transfer function which equals to:

G =
< |S21|2 >

(1− | < S11 > |2) (1− | < S22 > |2) ηTxηRx

(2.23)

where ηTx and ηRx are the radiation coefficients of transmitting antenna and

receiving antenna. Smn are the S-parameters measured at the ports of an-

tennas loaded in the RC.

The disadvantage of determining < Q > by this method is obvious, it

requires antenna efficiencies to be known. Inaccurate values of antenna radi-

ation efficiencies would deteriorate the accuracy of ACS measurement in the

RC.

2.5 Determining < Q > of RC by IFFT

Considering the Q factor is related to the speed of power loss as given in

(2.16), < Q > can be defined by another variable, namely chamber time

constant τ [40, 43]:

< Q >= ωτ (2.24)

τ is defined as the time for a RC to lose its stored energy to 1
e
× 100%

of its initial value. Equation (2.24) is derived from an ordinary differential

equation which gives the speed of power loss in the RC. By assuming the EM

energy is homogeneously distributed in the RC, the power loss speed should

be proportional to the energy stored, therefore we have [40]:

< Pd >=
dU

dt
= −U

τ
(2.25)

where |τ | = U
<Pd>

. Solving (2.25) gives:

U = A exp(− t
τ

) (2.26)
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where A is a constant indicating the signal strength. (2.26) shows U = A

when t = 0; U = A/e when t = τ which corresponds with the definition of

chamber time constant τ . τ can be obtained from the channel impulse re-

sponse (CIR) in the RC. The CIR is obtained by inverse Fourier transforming

(IFFT) the S21 measured in the RC. According to Richardson’s research, the

CIR in a RC can be modelled as a summation of infinite sinusoidal signals

with independent frequency and phase shift multiplied by a factor which

decays exponentially [44]:

h(t) =
∑
i

ai sin(ωit+ θi)e
−t/2τi (2.27)

where h(t) denotes CIR; i is the index of each path; ai is the magnitude of

each path; ωi is the angular frequency; θi is the phase shift. Equation (2.27)

is in fact a form of the Fourier series with random magnitude and phase shift,

it is straightforward to assume the sampled CIR h(t) should follow Gaussian

random process, therefore the (2.27) can be written as:

h(t) = AN(t) exp(− t

2τ
) (2.28)

Where N(t) is a complex Gaussian random process with zero mean and

variance of one. This is an important formula since it would help building

the non-linear curve fitting model which will be introduced in Sec. 2.8.

Equation (2.28) shows the power response of CIR has an exponential form,

which corresponds with (2.26). The power response of CIR is defined as the

power delay profile (PDP) which is obtained form the IFFT of windowed S21:

PDP(t) =< |h(t)|2 >=< |IFFT (S21(f) ·W (f)) |2 > (2.29)

whereW (f) is the window function in frequency domain. Here as an example,

the PDP at 10 GHz measured at one stirrer position in an RC is plotted in
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Figure 2.14: The measured PDP at one stirrer position in the RC

Fig. 2.14. The chamber time constant can be extracted from the slope of

PDP in Fig. 2.14, but the accuracy of extracted chamber time constant would

be low due to the high variance of PDP. Such variance can be reduced by

averaging the PDP measured at different stirrer positions. The PDP averaged

over 200 stirrer positions were demonstrated in Fig. 2.15. Comparing to the

PDP in Fig. 2.14, the averaged PDP is much smoother. The chamber time

constant can be extracted from the PDP in Fig. 2.15 with better accuracy

than it does from the PDP in Fig. 2.14.

2.6 Advantages of determining averaged Q

factor by IFFT

Comparing to determining chamber < Q > by the G factor given in (2.22),

the biggest advantage of determining Q by IFFT is the IFFT method is not

31



0 1 2 3 4 5 6 7 8 9 10

time (µs)

-130

-120

-110

-100

-90

-80

-70

P
D

P
 a

t 1
0 

G
H

z 
av

er
ag

ed
 o

ve
r 

20
0 

st
irr

er
 p

os
iti

on

Figure 2.15: The measured PDP averaged over 200 stirrer positions in the
RC

sensitive to antenna efficiency. The explanation is given as follow.

With respect ot Hill’s research, the power loss in an RC can be broken

down into four parts [41]:

< Pd >=< Pd1 > + < Pd2 > + < Pd3 > + < Pd4 > (2.30)

where < Pd1 > is the power loss on RC walls; < Pd2 > is the power absorbed

by loading objects; < Pd3 > is the power loss through aperture; < Pd4 >

is the power loss on loaded antennas. Remembering the assumption that

energy is distributed homogeneously in the RC, divide both sides of (2.30)

by U and then multiply with ω gives:

< Q >−1=< Q1 >
−1 + < Q2 >

−1 + < Q3 >
−1 + < Q4 >

−1 (2.31)

where < Q > is the overall Q factor in the RC; < Qi > (i ∈ [1, 4] and i ∈ N)
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are the averaged Q factors contributed by particular way of power loss. (2.31)

shows the< Q > of the RC is dominated by the biggest< Qi >
−1. < Q4 >

−1,

which is determined by the power loss on the antenna, is usually the smallest

one, therefore < Q > is not sensitive to < Q4 >
−1. Since the overall Q factor

< Q > can be accurately determined by the PDP, the insensitivity of < Q >

to < Q4 > has also been used in the determination of antenna efficiency by

substituting < Q > into (2.22) [45]. Such < Q > obtained by IFFT can also

be used to calculate the ACS using (2.21) [46, 40, 47].

2.7 Extracting chamber time constant by lin-

ear curve fitting and its inaccuracy

Since PDP is defined as the power response of h(t) as given in (2.29), the

explicit expression of PDP should follow

PDP(t) = A2e−
t
τ (2.32)

In the logarithmic scale, the PDP should be a straight line because

PDP(t)dB = 10 log10

(
A2e−

t
τ

)
= 20 log10 (A)− 10 log10(e)

τ
t

(2.33)

And the PDP slope, which is the coefficient of t, gives the value of the

chamber time constant τ . The slope of PDP can be determined from linear

curve fitting. But applying linear curve fitting on the PDP has following

problems.

Firstly, a proper fitting range should be chosen. As can be seen from Fig.

2.15, the measured PDP is not a straight line but a combination of a decline
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Figure 2.16: The linear fitting range is selected as the top half of PDP

slope and a flat noise floor, which is:

PDPdB,noise(t) = 10 log10

(
A2e−

t
τ +B2

)
(2.34)

where B is a coefficient which determines the level of noise floor. If the

fitting range includes noise floor, the linear curve fitting would produce wrong

results. A way of solving this problem is to choose a fitting range that gives

the top 30 dB of PDP [48]:

{tfit} =
{
t
∣∣max[PDPdB(t)]− PDPdB(t) < 30dB

}
(2.35)

where {tfit} denotes the fitting range. However, this method will not work

in low signal noise ration (SNR) cases. Therefore in our research, the linear

fitting range is chosen dynamically as the time range that gives the top half

of PDP, as shown in Fig. 2.16.
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Secondly, the linear curve fitting will not give the correct chamber time

constant no matter which linear fitting range is selected. This problem can

be demonstrated by calculating the derivative of the PDP respect to t in

logarithmic scale:

dPDPdB,noise(t)

d(t)
=

(
−10 log10 e

τ

)
SNRe−

t
τ

SNRe−
t
τ + 1

(2.36)

where SNR = A2

B2 . Since the fitting range is always chosen close to t = 0 to

give a better linearity of the PDP, substituting t = 0 into (2.36) gives:

dPDPdB,noise(t)

d(t)

∣∣∣∣∣
t=0

=

(
−10 log10 e

τ

)
SNR

SNR + 1
(2.37)

As it shown by (2.37), the derivative of PDP is affected by SNR. If SNR

is a very large value, SNR/(SNR + 1) would be approximate to 1, thus the

derivative of PDP would be equal to the term in the bracket of (2.37). This

term is equal to the coefficient of t in (2.33) which is the linear model of the

PDP without noise floor. But if SNR is a small value then the derivative

of the PDP would be dominated by the value of SNR/(SNR + 1). All these

facts show extracting time constant by linear fitting is not accurate.

Thirdly, the window function can change the shape of PDP, which would

eventually change the output of linear curve fitting. Since chamber time

constant is a frequency dependent variable, the S21 used to calculate PDP

should be windowed at a particular frequency before calculating the IFFT.

The window function’s effect on the PDP is shown in Fig. 2.17. Three

different window functions with different window widths were applied to the

same S21 to extract PDP. The central frequencies of all three windows were

all at 15 GHz and they are all raised-cosine windows with rolling off factor

β = 0.25 [50]. The lower graph of Fig. 2.17 shows the application of different
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Figure 2.17: PDP extracted by applying different window functions at 15
GHz. Win #1: total width 5 MHz, 100 kHz frequency step, 51 samples; Win
#2: total width 2 MHz, 100 kHz frequency step, 21 samples; Win #3: total
width 1 MHz, 100 kHz frequency step, 11 samples. The filtered S21 were
all padded to zero frequency to show the ringing effect of piecewise window
functions in full detail, because adding more zeros to the discrete spectrum
of S21 in frequency domain is equivalent to increasing the resolution of signal
in time domain [49].
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Figure 2.18: Linear curve fitting results of different PDP extracted by ap-
plying different window functions

window function gives very different PDP. If the linear fitting range is chosen

in a way demonstrated in Fig. 2.16, the fitted straight lines are plotted in

Fig. 2.18 Even though the three window functions share the same central

frequency, the linear curve fitting results at this particular frequency are

different. Since the chamber time constant is a property of RC, it should not

change with different data processing method. Therefore the results given

by linear curve fitting is unacceptable.

2.8 The nonlinear curve fitting

To address the three problems of linear curve fitting, the nonlinear curve

fitting is introduced.

In terms of the model of CIR given in (2.28) and the PDP we observed
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from measurement, the full statistical model of the PDP is:

h(t) = AN1(t) exp(− t

2τ
) +N2(t) (2.38)

written in a discrete form, (2.38) should be equal to:

h(n) = AN1(n) exp(−n∆t

2τ
) +BN2(n) (2.39)

where ∆t is the time step size. N1(t) and N2(t) are complex Gaussian

process [51], with zero mean and a standard deviation of 1. A and B controls

the levels of signal and noise floor.

Equation (2.39) shows the distribution of h(n) at a particular moment n0

should have the Gaussian distribution. Here as an example, the Quantile-

Quantile plot is applied on a group of measured h(n0) to test whether the

h(n0) follows the Gaussian distribution, as shown in Fig. 2.19 and Fig.

2.20[52]. The plotted of h(n0) was obtained from the IFFT of S21 windowed

at 10 GHz, n0∆ t is equal to 5µs.

Both the real part and the imaginary part of h(n0) are distributed closely

to the reference line, which means the real part and imaginary part of h(n0)

follow the Gaussian distribution.

The CIR model (2.39) is not complete since it does not include the effect

of window function. Since the CIR is obtained from the IFFT of windowed

S21, the CIR in time domain should have the following relation to S21 in

frequency domain according to the convolution theorem [53]:

h(n)⊗ w(n)
FFT←→ S21(nf )W (nf ) (2.40)

where w(n) and W (nf ) are the response of window function in time do-

main (TD) and frequency domain (FD). n and nf are the indexes of samples

in time domain and frequency domain, respectively. S21(nf )W (nf ) denotes
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Figure 2.19: The Quantile-Quantile plot of the real part of CIR h(n0∆t)
where n0∆t = 5µs
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Figure 2.20: The Quantile-Quantile plot of the imaginary part of CIR h(5
µs)
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the windowed S21 for IFFT. ⊗ means circulated convolution.

Substitute (2.38) into (2.40) gives:

AN1(n) exp(−n∆t

τ
) ⊗ w(n) + BN2(n) ⊗ w(n)

FFT←→ S21(nf )W (nf ) (2.41)

According to the definition of PDP:

PDP(n) =

〈∣∣∣∣AN1(n) exp(−n∆t

2τ
)⊗ w(n) +BN2(n)⊗ w(n)

∣∣∣∣2
〉

(2.42)

Expanding the right side of equation:

PDP(n) =

〈∣∣∣∣AN1(n) exp(−n∆t

2τ
)⊗ w(n)

∣∣∣∣2
〉

+
〈
|BN2(n)⊗ w(n)|2

〉
+〈

AN1(n) exp(−n∆t

2τ
)⊗ w(n) ·BN2(n)⊗ w(n)

〉
+〈

AN1(n) exp(−n∆t

2τ
)⊗ w(n) ·BN2(n)⊗ w(n)

〉
(2.43)

Where the over bar α denotes complex conjugation of α. Because of the

independence between N1 and N2, the expectation of the third term and the

fourth term on the right side of the equation should be equal to zero. Here

we use the symbol E[·] to replace the symbol < · >. E[·] means the expected

value of average. Therefore the expectation PDP will only include the first

two terms.

PDP(n) = E

[∣∣∣∣AN1(n) exp(−n∆t

2τ
)⊗ w(n)

∣∣∣∣2
]

+

E
[
|BN2(n)⊗ w(n)|2

]
(2.44)

Both of the first and second term can be simplified. Here we will use the
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first term as an example. In terms of the definition of circular convolution,

the first term can be written as:

E

[∣∣∣∣AN1(n) exp(−n∆t

2τ
)⊗ w(n)

∣∣∣∣2
]

=

E

∣∣∣∣∣
N−1∑
i=0

AN1(i) exp(−i∆t
2τ

)w(n− i)

∣∣∣∣∣
2
 (2.45)

The square operation on the right side can be expanded into quadratic form.

Because N1 is an Gaussian process, there is :

E[N1(i)N1(j)] = 0 (i 6= j) i, j ∈ N (2.46)

Therefore:

E

∣∣∣∣∣
N−1∑
i=0

AN1(i) exp(−i∆t
2τ

)w(n− i)

∣∣∣∣∣
2
 =

N−1∑
i=0

A2 exp(−i∆t
τ

)|w(n− i)|2 (2.47)

PDP(n) =

[
A2exp(−n∆t

τ
)

]
⊗ |w(n)|2 (2.48)

Same operation can be applied on the noise term of (2.44). Equation

(2.44) can be written as:

PDP(n) =

[
A2exp(−n∆t

τ
) +B2

]
⊗ |w(n)|2 (2.49)

(2.49) is gives the nonlinear model for PDP. The model is controlled by

4 parameters: A, B, τ, w, in which the window function w(n) is known.
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Figure 2.21: the nonlinear model matches well with the PDP

The optimized values of A, B, τ can be found by Levenberg-Marquardt

method. Similar to the gradient descent method, the Levenberg-Marquardt

method is an iteration algorithm which can find the minimum point of the

cost function following its gradient, if a starting point and a step size are

given. The Levenberg-Marquardt method would adjust its step size after

each iteration with respect to its converging speed, which is more superior

than the gradient descent method whose step size is a constant [54].

In order to demonstrate the effectiveness of nonlinear curve fitting, the

PDP in Fig. 2.18 were all fitted to the nonlinear model. The results were

shown in Fig. 2.21. It can be seen all the three PDP match well with the

corresponding nonlinear model.
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2.9 Estimating the starting value for nonlin-

ear curve fitting

The PDP model (2.49) is a mono-exponential decay formula convoluted

with window function, and accurate starting values must be given to the

Levenberg-Marquardt algorithm for to guarantee the convergence of curve

fitting with (2.49). In the practical measurement, we found even though the

linear curve fitting was not able to give an accurate chamber time constant,

but it is accurate enough to give a starting value for the nonlinear curve fit-

ting. This section will present a method of estimating initial values of A, B, τ

by linear curve fitting. The first step is to estimate the starting value of τ .

The starting value of τ was firstly evaluated by linear curve fitting whose

fitting range is selected by the method presented in Fig. 2.16 [48].

After the value of τ has been determined, the next step is to determine

the value of A. A reference signal with unit signal level was selected to help

determining the value of A. The reference signal is a exponential function

convoluted with the power response of window function in time domain.

PDPref =

[
exp(−n∆t

τ0

)

]
⊗ |w(n)|2 (2.50)

where τ0 is the starting value of chamber time constant estimated in the

first step. Comparing to the nonlinear model (2.49), (2.50) has a unit signal

strength, therefore the ratio between measured PDP and reference signal

should equal to:

PDPmeas(n)

PDPref(n0)
≈

[
A2exp(−n∆t

τ0
) +B2

]
⊗ |w(n)|2[

exp(−n∆t
τ0

)
]
⊗ |w(n)|2

(2.51)

If B is a small value comparing to A, at a particular time n = n0, (2.51)
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changes into:

PDPmeas(n0)

PDPref(n0)
≈

[
A2exp(−n0∆t

τ0
)
]
⊗ |w(n)|2[

exp(−n0∆t
τ0

)
]
⊗ |w(n)|2

≈ A2
0 (2.52)

Here the value of n0 was selected at the time when PDPmeas reaches its

maximum.

The last step is to estimate the starting value of B. Since the starting

values of A and τ have been evaluated, the first estimation of PDP can be

given:

PDPg1(n) =

[
A2

0 exp

(
−n∆t

τ0

)]
⊗ |w(n)|2 (2.53)

where the subscript g1 means the first estimation; PDPg1 is a windowed

PDP without noise floor. The value of B can be obtained by subtracting the

evaluated exponential term from the nonlinear model (2.49):

PDPmeas(n)− PDPg1(n) =[
A2exp(−n∆t

τ
) +B2

]
⊗|w(n)|2−

[
A2

0exp(−n∆t

τ0

)

]
⊗|w(n)|2 ≈ B2[w(n)]2

(2.54)

B can be evaluated by choosing any value of n. In order to achieve a better

estimation accuracy of B, it is better to select a an n on which the PDP

has the lowest SNR, as shown in Fig. 2.22. After the value of B has been

determined, the final estimation of PDP can be obtained. Fig. 2.22 also

shows the final estimation of the nonlinear PDP model already matches well

with the measurement result. The techniques of estimating starting values

were applied to the nonlinear curve fitting of PDP from 1 GHz to 18 GHz.

The goodness of the estimation is quantified by the cost function, which

is the RMS difference between measured PDP in dB and estimated PDP in
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Figure 2.22: The first and final estimation of PDP

dB:

δ = RMS(|PDPmeas,dB(t)− PDPmodel,dB(t)|) (2.55)

This formula is chosen because it is also the cost function we used in the

nonlinear curve fitting. The estimation quality over different frequencies is

plotted in Fig. 2.23, which shows the estimated PDP in dB is within 1.2

RMS difference to the measured PDP in dB. Fig. 2.23 shows the estimation

techniques works very well.
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2.10 The early time behaviour of RC and the

effect of zero padding in signal process-

ing

The nonlinear model of PDP (2.49) generally matches very well with the

signal in Fig. 2.21, but with a careful inspection, the figure shows the non-

linear model has a time offset at almost every point of t. This problem may

looks trivial, but it will make a difference to the final output of chamber time

constant, especially in the case when the chamber time constant needs to be

extracted from very few number of S21.

The power building up phase of PDP was studied by Holloway [55]. In

his research, the PDP was modelled by a double-exponential model which
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consisted by a power building up phase and a power decaying phase.

PDP(t) =

P0

[
e−t/τRC − e−t/τe

]
t ≥ 0

0 t ≤ 0
(2.56)

Where τRC is the chamber time constant, τe is the chamber ”ramp-up” time

which gives how fast the stored energy build up. In Andersen’s work [56],

the measurement of PDP was conducted in a low reverberant environment.

The first peak of PDP did not come immediately after t = 0 but after a

certain time which depends upon the distance between transmitting antenna

and receiving antenna. In our research the Anderson’s idea was chosen to

model the PDP since we don’t want to introduce the extra argument τe in

our model. In terms of the periodic property of the IFFT, the delay of the

first peak of PDP can be modelled by circular shifting the PDP for a couple

of time steps. The idea is shown in Fig. 2.24.
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In the process of nonlinear curve fitting, the nonlinear model is circular

shifted from 0 µs to 0.2 µs step by step, from which the optimizer will choose

a shifted PDP that gives the best fitting quality. As it can be seen in Fig.

2.25. In Fig. 2.25, the measured PDP, the non-shifted PDP model and the

shifted PDP model are all looked very similar, but the lower graph shows the

shifted model fits better to the measured PDP than the non-shifted model.

The maximum difference between the shifted model and the measured PDP

is 1.15 dB, while the difference between non-shifted model and measured

PDP is 2.63 dB.

Fig. 2.25 only demonstrates the accuracy of fitting with the shifted non-

linear model at a single frequency. The advantage of fitting with shifted PDP

model can be shown by plotting cost function from 1 GHz to 18 GHz. The

cost function is defined as the RMS difference between measured PDP in

decibel and the nonlinear PDP model in decibel:

δ = RMS(|PDPmeas,dB(t)− PDPmodel,dB(t)|) (2.57)

The comparison results were plotted in Fig. 2.26.

Clearly the fitting quality of shifted PDP model is much better than the

non-shifted PDP model over all frequencies from 1 GHz to 18 GHz. The

delay of the first peak of the shifted PDP is also given in Fig. 2.27.

2.11 The variation coefficient of chamber time

constant extracted by nonlinear curve

fitting

Comparing to the Q factor determined from G factor in (2.22), the Q factor

determined by the chamber time constant is more accurate and has lower
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variation coefficient [45]. The low variation coefficient will bring lots of bene-

fits to the power related measurements in RC. Since extracting chamber time

constant from S21 by IFFT involves complex data processing, it is hard to

give an analytical model for the variation coefficient of chamber time con-

stant.

The Monte Carlo method is applied to study the distribution of extracted

chamber time constant [57]. The Monte Carlo method is defined as the

method of studying the distribution propagation by performing random sam-

pling from known probability distributions. Here, the relation between the

CIR in the RC and Gaussian process was given in (2.39). A sequence of the

CIR can be obtained by choosing a set of values of A, B, τ , then generating

a sequence of N1(t) and a sequence of N2(t). Each generated CIR repre-

sents a CIR measured at an independent stirrer position in the RC. Thus

the whole measurement performed at Nind independent stirrer positions can
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be simulated by generating the sequence of CIR for Nind times. All the gen-

erated CIR was filtered by a particular window function and then averaged

to calculate the PDP. The nonlinear curve fitting was then performed on

the averaged PDP to give a evaluation on the chamber time constant. n

samples of chamber time constant can be extracted by repeating the whole

Monte Carlo process for n times. The flow chart of Monte-Carlo method is

illustrate in Fig. 2.28

2.12 Evaluating the variation coefficient of ACS

from the variation coefficient of cham-

ber time constant

Substituting (2.24) in to (2.21), the measured ACS can be calculated from

the chamber time constant by:

< σa >=
V

c

(
1

τwo

− 1

τno

)
(2.58)

where τwo is the chamber time constant in the loaded RC; τno is the chamber

time constant in the unloaded RC.

The variance of ACS can be evaluated by calculating the Taylor series of

ACS about the point (τwo, τno) [58]:

< σa(τwo, τno) >≈< σa(τ̃wo, τ̃no) > +

∂ < σa >

∂τwo

∣∣∣∣
τwo=τ̃wo

∆τwo +
∂ < σa >

∂τno

∣∣∣∣
τno=τ̃no

∆τno (2.59)

where τwo and τno are the measurement value of chamber time constant;τ̃wo

and τ̃no are the two fixed values of chamber time constant close to the cor-

responded measurement value; ∆τwo = τ̃wo − τwo and ∆τno = τ̃no − τno.
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Equation (2.59) is a linear formula of evaluating the variance of ACS from

the variance of τ .

Since τ̃wo and τ̃no are fixed values, and τwo and τno are random variables,

the variation of σa(τwo, τno) can be calculated by:

Var(< σa >) =

[
∂ < σa >

∂τwo

∣∣∣∣
τwo=τ̃wo

]2

Var(τwo) +

[
∂ < σa >

∂τno

∣∣∣∣
τno=τ̃no

]2

Var(τno)

(2.60)

Substitute (2.58) into (2.60) gives:

Var(< σa >) =

[
V 2

c2τ̃ 4
wo

]
Var(τwo) +

[
V 2

c2τ̃ 4
no

]
Var(τno) (2.61)

According to the definition of variation coefficient which is the ratio between

standard deviation and mean value, Equation (2.61) can be rewritten as [59]:

Var(< σa >) =

[
V 2

c2τ̃ 2
wo

]
c2
v(τwo) +

[
V 2

c2τ̃ 2
no

]
c2
v(τno) (2.62)

where cv(τwo) and cv(τno) are the variation coefficient of τwo and τno. So the

variance of σa becomes a function of cv(τwo) and cv(τwo). Since we assume

the values of τ̃wo and τ̃no are very close to the values of τwo and τno, the

coefficient of variation of the measured ACS is approximate to:

c2
v(< σa >) ≈ Var(< σa >)

σ2
a(τ̃wo, τ̃no)

=

[
V 2

c2τ̃2wo

]
c2
v(τwo) +

[
V 2

c2τ̃2no

]
c2
v(τno)

V 2

c2

(
1
τ̃wo
− 1

τ̃no

)2 (2.63)

where cv(< σa >) is the variation coefficient of the measured ACS. After

some simplification, (2.63) transform into:

c2
v(< σa >) ≈ c2

v(τwo) + t2c2
v(τno)

(1− t)2
, 0 ≤ t =

τ̃wo
τ̃no
≤ 1 (2.64)
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Equation (2.64) is very important because it gives an analytical method of

estimating cv(σa) from the value of τ̃no, τ̃wo, cv(τno) and cv(τwo). It is also

important to point out that this equation has two singular point t = 1 and

t = 0.

If t = 1, there is τ̃wo = τ̃no, which corresponds to the case where the object

under test has a very small ACS. t = 1 will make the denominator on the

right side of (2.64) close to zero, thus the variation coefficient of measured

ACS will become very big. On the other hand, t = 0 corresponds to the case

where τ̃wo = 0, which means the ACS of the object under test is infinitely

big. τ̃wo = 0 also means the PDP measured in a loaded RC transform into

a pulse function in time domain, and the extraction of τwo from the pulse

function is impossible.

Since the Q factor is in proportional to the chamber time constant τ , a

similar conclusion can be given to the ACS evaluated from the Q factor by

replacing τ in (2.64) by Q, which is:

c2
v(< σa >) ≈ c2

v(Qwo) + t2c2
v(Qno)

(1− t)2
, 0 ≤ t =

Q̃wo

Q̃no

≤ 1 (2.65)

where cv(Qwo) and cv(Qno) are the variation coefficient of measured Q factor

in an RC, Q̃wo and Q̃no are the two fixed values of Q factor close to the

measured Q factors.

2.13 The chamber time constants can give

ACS with smaller variation coefficient

than the G factors do

Equation (2.65) gives the relation between cv(σa) and Q factors. This equa-

tions shows measuring Q factor with lower variation coefficient will benefit
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the measurement of ACS. As Q factor can be determined by both (2.23)

and (2.24), it is worthwhile to show the Q factor determined by chamber

time constant has lower variation coefficient than the Q factor determined

by G factor, otherwise the development of nonlinear curve fitting techniques

would lost its meaning since the determination of G factor is much easier to

perform.

The advantage of determining ACS by chamber time constant is demon-

strated by showing the variation coefficient of G factor is dominated by the

variation coefficient of < |S21|2 >. It is reported in the previous research

that the variation coefficient of < |S21|2 > is usually much higher than the

variation coefficient of τ extracted from PDP [45].

Here we give the analytical formula of the variation coefficient of <

|S21|2 >. According to Hill’s theory, the real and imaginary part of S21

follows the Gaussian distribution [40]. Therefore, if the expectation of the

real part and imaginary part are zero, the second moment of S21 follows the

Chi-squared distribution with a coefficient [60, 61]

< |S21|2 >=
E(< |S21|2 >)

2Nind

2Nind∑
i=1

Y 2
i (2.66)

where E(< |S21|2 >) is the expectation of < |S21|2 >. Nind is the number

of independent S21 samples in mode stirring; Yi follows normal distribution;∑2Nind

i=1 Y 2
i follows the Chi-squared distribution with the degree of freedom

2Nind. Since the variance of the Chi-squared distribution is twice of its de-

grees of freedom, the variance of < |S21|2 > is:

Var(< |S21|2 >) =
< |S21|2 >2

4N2
idp

4Nidp =
< |S21|2 >2

Nidp

(2.67)
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So the variation coefficient of < |S21|2 > can be written as:

cv
(
< |S21|2 >

)
=

√
Var(< |S21|2 >)

E (|S21|2)
=

1√
Nind

(2.68)

Then we will give the analytical solution of the variation coefficient of ACS

evaluated from G factor. Remembering the format of G factor in (2.23), if

we assume the value of | < S11 > |2, | < S22 > |2, ηTx, ηRx are all fixed, then:

cv(G) = cv(< |S21|2 >) (2.69)

According to the relation amongst ACS, G factor, and Q factor, there is

c2
v(< σa >) ≈ c2

v(Gwo) + t2c2
v(Gno)

(1− t)2
, 0 ≤ t =

G̃wo

G̃no

≤ 1 (2.70)

Substitute (2.69) into (2.70), we have:

c2
v(< σa >) ≈ c2

v(< |S21,wo|2 >) + t2c2
v(< |S21,no|2 >)

(1− t)2
,

0 ≤ t =
< |S̃21,wo|2 >
< |S̃21,no|2 >

≤ 1 (2.71)

Equation (2.71) shows the variation coefficient of ACS calculated by G factor

is dominated by the variation coefficient of < |S21|2 >. In Sec. 3.8, we will

show by experiment that the G factor gives the ACS with larger variation

coefficient than the chamber time constant does.

2.14 Summary

In this chapter we firstly modelled the human body by a multilayer planar

model and calculated its properties of absorbing EM power. The calculation
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shows the fat layer acts as a matching layer between the skin layer and mus-

cle. At one of resonant frequencies, the multilayer model is more lossy than

the homogeneous muscle model; while at the other resonance frequency, the

multilayer model is weaker in absorbing EM energy than the homogeneous

muscle model. Both of the resonance frequencies decreases as the fat layer

thickness increases.

Then we introduced the theories on extracting chamber time constant

accurately from S21. The theories are based on the nonlinear PDP model

which includes the effects of window function and noise floor. The nonlinear

PDP model matches very well with the measured PDP with RMS error

smaller than 1.3 dB from 1 GHz to 18 GHz. The Monte Carlo method of

evaluating the statistical uncertainty of chamber time constant is also given.

Validation experiment will be conducted in the next chapter to demonstrate

the effectiveness of the Monte Carlo method.
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Chapter 3

Validation experiments of IFFT

techniques

3.1 The selection of reference object

Just like the vector network analyzer (VNA) needs calibration kit for cali-

bration, the effectiveness of a measurement technique requires an reference

object for validation. Here the reference object has been selected as a spher-

ical shell containing 28 litres of deionized water. The shape of the shell is

very close to a sphere but not perfectly. It is expected that its ACS could be

evaluated using analytical method. The picture of the sphere shell is shown

in Fig. 3.8.

The reasons of selecting a sphere as a reference object are two folds. First,

the sphere is an isotropic object, which means there is no need of averaging

ACS over different directions. Second, the ACS of sphere can be calculated

by analytical methods, such as Mie series.

The outer radius of the sphere is 19.4 cm which is obtained by measuring

the circumference. The shell thickness is 4 mm measured by a calliper close

to the rim of the sphere. The complex permittivity of deionized water is
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calculated by Kaatze’s formula, in which the water temperature is equal to

20 ◦C [62]. The sphere shell is made by high density polyethylene (HDPE)

and its permittivity is extracted from documented data. There are many

researches on HDPE’s permittivity but very few of the research had given

the wide band permittivity of HDPE. Riddle’s research gave the permittivity

of HDPE as 2.35 at 11.5 GHz at 21 ◦C [63]. Seeger’s research is done by fitting

a sample HDPE into a high frequency wave guide and then curve fitting the

spectrum of transmission coefficient to get the permittivity [64]. It gives the

result of 2.34 from 26.5 GHz to 40 GHz and no relaxation was found, which

means HDPE has no loss. Seeger’s measurement is conducted at 26.85 ◦C

(300 K). Seeger also mentioned that the permittivity is 2.34 at 1 MHz and

there is no loss of HDPE from 1 MHz to 40 GHz. In general, the permittivity

of HDPE is a complicated function of temperature and frequency. Since

exhaustively determining the dielectric properties of HDPE in all cases is

not the major task of this research, we just use the real constant 2.35 as an

approximation to the relative permittivity of HDPE from 1 GHz to 18 GHz.

3.2 The University of York reverberation cham-

ber

The University of York reverberation chamber is a shielded room with di-

mension 4.7 m × 3 m×2.37 m, loaded with a stirrer whose shape is optimized

by GA to minimize the total variation of the field [65]. The field uniformity

in the reverberation chamber is verified in the work of Armstrong [66]. Both

sides of the chamber wall are galvanized with zinc. There is also a small

brass chamber nested in the big chamber, as shown in Fig. 3.2 and Fig. 3.1

The small chamber’s size is 0.6 m × 0.7 m× 0.8 m which will be subtracted

from the big chamber’s volume in the calculation of ACS.
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Figure 3.1: Top View of the University of York RC

Figure 3.2: The small RC

62



-6 -4 -2 0 2 4 6

Stirrer position lag (degrees)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
ut

oc
or

re
la

tio
n 

fu
nc

tio
n 1

e

1 GHz
6 GHz
10 GHz
14 GHz
18 GHz

Figure 3.3: Correlation coefficient of S21 vs stirrer position lag

3.3 Calculating the independent number of

S21 samples

As stated in Sec. 2.5 and Sec. 2.13, the variation coefficient of PDP, G

factor and < |S21|2 > will all decrease with the number of independent

stirrer positions. The number of independent stirrer positions are quantified

by calculating the auto correlation function of S21 measured at a particular

frequency, as demonstrated in Fig. 3.3. The number of markers over the

line 1
e

give the number of correlated stirrer positions measured at the specific

frequency. For example in Fig. 3.3, the number of correlated stirrer positions

at 1 GHz is 5; the number of correlated stirrer positions at other frequencies

is 1. Therefore, the number of independent stirrer positions can be calculated
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Figure 3.4: correlation coefficient of s21 vs frequency lag

by:

Ns,ind(f0) =
Ns,tot(f0)

Ns,corr(f0)
(3.1)

where Ns,ind is the number of independent stirrer positions; Ns,tot(f0) is the

total number of S21 measured at a particular frequency f0; Ns,corr(f0) is the

number of correlated S21 at f0. Therefore if no frequency stirring is applied,

the Ns,ind can be substitute into (2.68) to calculate the variation coefficient

of < |S21|2 >.

But in the cases where frequency stirring is applied, the number of in-

dependent frequencies Nf,ind should also be considered in Nind [67]. Nf,ind

can be calculated in the similar way as Ns,ind is. Firstly, the correlated fre-

quencies can be obtained by calculating the auto correlation function of a

band-limited S21 spectrum, as shown in Fig. 3.4 The number of markers

over the line 1
e

gives the number of correlated frequencies. The number of
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independent frequencies Nf,ind can be got by:

Nf,ind(f0) =
Nf,tot(f0)

Nf,corr(f0)
(3.2)

where Nf,tot(f0) denotes the total number of frequency points within the

band-limited S21 spectrum; Nf,corr(f0) is the number of correlated frequencies.

In the case where both mode stirring and frequency stirring were applied,

the independent number of S21 can be calculated by:

Nind(f0) = Ns,ind(f0)Nf,ind(f0) (3.3)

3.4 Choosing the stirrer speed

Since the University of York RC is a single stirrer RC, the S21 samples col-

lected at two consecutive rounds of stirring show very strong correlations, as

illustrated in Fig. 3.5 and 3.6. Two peaks of auto correlation function can

be observed at low frequencies, one at zero degree of stirrer lag; the other at

360 degrees. Therefore, the key to a good ACS measurement is to obtain as

many independent number of S21 in one round of stirring as possible.

In order to improve the measurement speed, continuous stirring tech-

niques were used. The VNA was working at the maximum sampling rate,

which means the total number of S21 samples collected in one round of stir-

ring can be adjusted by changing the stirring speed. Slower stirring speed

would allow more samples of S21 to be measured but the measurement time

is longer. In order to find out the best stirring speed, the reference object

mentioned in Sec. 3.1 were measured with different stirring speeds, and the

measurement results were compared to the theoretical calculations. The de-

tails of measurement settings are given in Tab. 3.1. Here the measurement

speeds are chosen as 10 steps/sec, 20 steps/sec, and 30 steps/sec; and 6400
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Method number #1 #2 #3 #4
Stirring method Continuous Continuous Continuous Stepped

Stirrer speed (steps/sec) 10 20 30 N/A
Stirrer speed (deg/sec) 0.5625 1.1250 1.6875 N/A

Repeats of frequency sweeping 800 400 300 200
Measurement time 11 m 23 s 5 m 38 s 4 m 17 s 24 m 21 s

Stirrer moved 384◦ 380◦ 434◦ 360◦

Results MAPE 3.593% 3.881% 3.885% 3.696%

Table 3.1: The setups of sphere measurement. The ‘Repeats of frequency
sweeping’ means the times of frequency sweeping from 1 GHz to 18 GHz
during the ’Measurement time’. Techniques of segmented frequency sweeping
were applied in all the measurements, which is introduced in Sec. 3.5. The
total number of frequency samples from 1 GHz to 18 GHz is 8721.

steps of stirrer moving is idential to the turning of 360 degrees. After the

stirrer moves at a particular speed, the frequency sweeping repeats for a

specific times which makes the stirrer turning slightly over 360◦. The mean

absolute percentage error (MAPE) of the measured ACS is defined as [68]:

MAPE(< σa,meas >) = mean

(∣∣∣< σa,meas(f) > − < σa,sim(f) >

< σa,sim>(f)

∣∣∣) ∗ 100%

(3.4)

where < σa,meas > is measured ACS of the sphere model; < σa,sim > is the

theoretical value of ACS; mean(·) denotes averaging over frequencies. Tab.

3.1 shows the measurement setup #1 (continuous stirring) gives ACS with

smaller MAPE than the stepped stirring does, and the measurement with

setup #1 also finishes about 12 minutes quicker than the stepped stirring.

Since the measurement accuracy of setup #2 and setup #3 is worse than

setup #1, we applied setup #1 in the measurement of human body ACS.
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Figure 3.5: Correlation functions in the RC loaded with reference sphere

Figure 3.6: Correlation functions in the empty RC
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100 MHz 5 MHz

Figure 3.7: The segmented frequency sweeping setups

3.5 Segmented sweeping

As shown in Fig. 2.21, the nonlinear curve fitting works fine with arbitrary

window functions. Therefore, we are free to choose narrow window functions

to extract PDP. To improve the measurement speed, the S21 samples which

were not included in the IFFT are skipped in the measurement. Only small

segments distributed at desired frequencies were measured. Many of today’s

VNA have such a function of segmented frequency sweeping. The central

frequencies of each segment were linearly stepped from 1 GHz to 18 GHz

with a step size of 100 MHz. The bandwidth of each segment is 5 MHz and

the frequency step of each segment is 100 kHz. Therefore, every segment

have 51 S21 samples. The whole frequency sweep from 1 GHz to 18 GHz will

be performed 800 times in 11 minutes as given in Table 3.1. The setup of

segmented frequencies were illustrated in Fig. 3.7.
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Figure 3.8: The measurement setups of the sphere model

3.6 Measurement results: Non-shifted model

and shifted model

The measurement setups are shown in Fig. 3.8. The reverberation chamber

was loaded with an ETS 3115 horn antenna and an ETS 3117 horn antenna

that both operate from 1 GHz to 18 GHz. Both of the antennas were con-

nected to the VNA through the bulk head on the chamber walls. The stirring

setup is chosen as setup #1 in Table 3.1. The frequency sweeping setups were

given in Sec. 3.5. Win #1 illustrated in Fig. 2.17 was applied to each fre-

quency segment from 1 GHz to 18 GHz to extract the PDP. The PDP were

then fitted by both the shifted model and non-shifted model to extract the
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chamber time constant, and the chamber time constant were then used to

calculate the ACS of the sphere model. The ACS results given by the non-

shifted model and shifted model were compared in Fig. 3.9. The shifted

model gave ACS results closer to the Mie series from 11 GHz to 16 GHz than

non-shifted model does.

Considering the advantage of the shifted PDP model shown in Fig. 3.9

and Fig. 2.25, it was used in the extraction of ACS in the remainder of this

thesis.

3.7 Measurement results: application of dif-

ferent window functions

As shown in Fig. 2.21, the nonlinear PDP model fits well with the PDP

filtered by arbitrary window functions. In this section we will show experi-

mentally that the nonlinear curve fitting technique can give more accurate

chamber time constant value than the linear curve fitting by applying both

techniques to the same group of S21.

Firstly, the S21 of a RC loaded with the sphere model was measured.

The three different window functions shown in Fig. 2.17 were applied on the

S21. All the PDP extracted by three different window functions were fitted

by both the linear model and nonlinear model to extract the chamber time

constants. The chamber time constant were then used to calculate the sphere

ACS.

All the ACS extracted by linear curve fitting with different window func-

tions was shown in Fig. 3.10.

The figure shows the linear curve fitting lost its accuracy when the nar-

rowist window (Win #3) is applied. The mean absolute percentage error

(MAPE) of ACS extracted by Win #1, Win #2, Win #3 are 3.6%, 7.5%,
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Figure 3.9: Benefit of fitting with shifted PDP model on ACS measurement
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Figure 3.10: The ACS extracted by linear curve fitting

22.7%, respectively.

In contrast with the ACS extracted by linear curve fitting, the ACS ex-

tracted by nonlinear curve fitting achieves a much better accuracy, as shown

in Fig. 3.11. The MAPE of ACS extracted by nonlinear curve fitting with

Win #1, Win #2, Win #3 are 3.4%, 3.5%, 5.4%, respectively.

Generally, the ACS extracted by the application of smaller window func-

tions tend to have larger MAPE and the nonlinear curve fitting is less sen-

sitive to the window width than linear curve fitting. In the case where the

window function is only 1 MHz wide, the nonlinear curve fitting can reduce

the MAPE of extracted ACS by 17.3%.
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Figure 3.11: The ACS extracted by nonlinear curve fitting

3.8 Measurement results: IFFT method vs.

G factor method

As pointed out in Sec. 2.13, the ACS of the object under test in the RC can be

extracted from the G factor and chamber time constant. The averaged ACS

extracted from chamber time constant have both the better accuracy and

smaller uncertainty than the ACS calculated from G factor. This conclusion

will be proved experimentally in this section.

Due to the homogeneous property of the diffuse field in the RC, the object

under test is free to be placed at any position within the working volume

of the RC and similar averaged ACS measurement results were expected.

Therefore, we chose 16 independent measurement setups and the distribution

of measured ACS were studied. The measurement setups were shown in Fig.

3.12. The sphere model was moved to 4 different positions which were at
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74



1 2 4 6 8 10 12 14 16 18

Frequency (GHz)

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

A
C

S
 (

m
)

G factor method
IFFT method
Mie Series

Figure 3.13: The ACS extracted by G factor method and the ACS extracted
by IFFT method

least one wave length apart from each other. For each sphere position the

transmitting antenna was moved to 4 different positions as well. Therefore

the whole measurement included 4 × 4 = 16 different setups. The ACS of

the sphere model was measured in all 16 different setups and the variation

coefficient of measured ACS was then calculated.

Fig. 3.13 compares the ACS extracted by the G factor and the ACS

extracted by the chamber time constant. In the evaluation of G factor,

the radiation antenna efficiencies of both receiving antenna and transmitting

antenna were assumed to be 0.9 [69]. The figure shows ACS extracted by G

factor method has higher variance than the ACS extracted by the chamber

time constant. The big error of G factor method above 16 GHz because of

the power leakage through the ventilation panel. The picture and structure

of the ventilation window is shown in Fig. 3.14 and Fig. 3.15, respectively.

The edge length of each cell of the ventilation window is 9 mm. Since each
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Figure 3.14: The picture of the ventilation panel in the University of York
RC

mm60

mm9

Figure 3.15: The structure of the ventilation panel in the University of York
RC
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Figure 3.16: The coefficient of variation of measured ACS

cell of the ventilation window can be considered as a small wave guide, the

cut off frequency of each cell can be evaluated by:

fc =
c0

2∆x
(3.5)

where fc is the cut off frequency; c0 is the speed of light in free space; ∆x

is the edge length of each cell. Here we have fc = 3.0×108 m/s
2×9×10−3 m

= 16.7 GHz,

which is close to the frequency above which the G factor method lose its

accuracy. Below 16 GHz, the MAPE of the ACS given by G factor is 7.50%,

while MAPE of ACS given by the chamber time constant is only 3.52%,

which is 3.98% less. The variation coefficient of the ACS extracted by both

methods were compared in Fig. 3.16. The theoretical value of the variation

coefficient is calculated by (2.70) and (2.64), where the Nind for calculating

cv(G) is obtained by the method introduced in Sec. 3.3. The value of cv(τ)

is obtained by the Monte-Carlo method introduced in Sec. 2.11. Fig. 3.16
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shows both (2.70) and (2.64) can predict the variation coefficient of measured

ACS effectively. Fig. 3.16 also shows the ACS calculated from chamber time

constant has lower variation coefficient than the ACS calculated from the G

factor, which proves the idea given in Sec. 2.13. In general, the G factor

are more sensitive to the slight non-uniformity of the fields in the RC than

the chamber time constant, because the G-factor is evaluated from the S-

parameters measured at a single position in the chamber; while the chamber

time constant shows the overall power level change in the whole chamber, so

that the non-uniform feature of the fields is averaged out.

3.9 Measurement results: Measurement range

of ACS

As mentioned in Sec. 2.12, the IFFT technique of extracting ACS from S21

tend to have larger uncertainty if the object under test has very small ACS.

To validate this theory, a series of cuboid absorbers were measured in the

RC.

The cuboid sizes were listed in Tab. 3.2 and the picture of all cuboids

were in Fig. 3.17. The cuboid were made by LS22 absorber whose complex

permittivity was fitted to a three-pole Debye dispersion model [61, 70]:

ε̂r = ε∞ +
3∑

k=1

∆εk
1 + jωτk

+
σDC

jωε0
(3.6)

where ε∞ = 1.1725, ∆ε1 = 1.04×10−3, ∆ε2 = 17.9, ∆ε3 = 0.490, τ1 = 55.3ms,

τ2 = 0.188ns, τ3 = 6.20ps, σDC = 0.1mS/m.

The theoretical value of all cuboids’ ACS was calculated by Mie series.

The radius of the Mie models were chosen as the volume-equivalent radius

of each cuboid. The ACS of 5 cuboids extracted by nonlinear curve fitting
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Table 3.2: Mean absolute percentage error (MAPE) of cube ACS measure-
ment

cube/cuboid size
Win #1 Win #2 Win #3

linear nonlinear linear nonlinear linear nonlinear
40*40*33 mm3 41% 28% 75% 42% 144% 75%

(50mm)3 27% 20% 39% 26% 69% 54%
(70mm)3 22% 20% 27% 21% 54% 30%
(90mm)3 16% 13% 19% 15% 32% 21%
(115mm)3 7% 5% 12% 7% 24% 12%

Figure 3.17: The series of absorber cuboids, made from carbon-loaded foam
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Figure 3.18: The ACS of the absorber cuboids extracted by Win #1. The
dashed line is the results calculated by Mie series.

with Win #1 were demonstrated in Fig. 3.18, which shows the measurement

result of all cuboids matches well with the Mie predictions. Win #2, Win

#3 were also applied to extract the ACS of the cuboids. The MAPE of

ACS extracted by different techniques is listed in Table 3.2. The nonlinear

curve fitting always gives the ACS with higher accuracy than the linear curve

fitting does in the application of any one of the three window functions. The

ACS of the smallest cuboid has the maximum MAPE, which proves the point

given in Sec. 2.12. The MAPE decreased as the cuboid size increases.
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3.10 The polystyrene sheets to support hu-

man subjects

Since the tangential electric field on the conducting wall of a cavity needs to

be zero, the total field close to the boundaries of a reverberation chamber

can not maintain its statistical isotropy and homogeneity [71]. Therefore,

the subject should be placed far away from the walls of the RC (including

the floor) to make sure it is exposed under a isotropic diffuse electromagnetic

fields. On the other hand, the morphological study requires the surface of

human body to be fully exposed in the electromagnetic fields, therefore the

human subjects should spread theirs limbs during the measurement. How-

ever, spreading the limbs without support during the whole measurement

can be hard because the measurement would last 11 minutes and 23 seconds.

In our research, 16 layers of polystyrene sheets were purchased to sup-

port the human subjects. The size of each polystyrene sheet is 1200 mm ×
2400 mm×25 mm. Therefore, the stacked sheets are of 25 mm×16 = 400 mm

height, which is larger than the wavelength of lowest frequency at 1 GHz.

The human subjects would be able to lie down on the polystyrene sheets and

spread their limbs without problem.

The polystyrene sheets should not have high ACS since the PDP would

transform to a impulse-like function. The ACS of the polystyrene sheets

have been extracted by shifted PDP model, which is introduced in Sec. 2.10

and the measurement results is compared to the ACS of sphere model in

Fig. 3.19. The figure shows the ACS of polystyrene sheets increase with

frequencies, but still quite small comparing to the ACS of sphere. According

to Hill’s theory, the Q factor of a reverberation chamber will be dominated

by the major power loss mechanism [41], the effect of polystyrene blocks can

be neglected.
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Figure 3.19: ACS of polystyrene sheets

3.11 Determining the structure of the sphere

model by genetic algorithm

As demonstrated in Fig. 3.11, the sphere ACS extracted by nonlinear curve

fitting corresponds very well with the theoretical value, which makes it pos-

sible to map the measured ACS to the structure of the spherical model.

The genetic algorithm (GA) is applied to extract the structure of the

spherical model from the measured ACS. GA is an optimization technique

which can be used for both constrained and unconstrained problems. Unlike

classical optimization methods which finds the optimized value by iteration,

the GA finds optimized value by random sampling and selection. Therefore,

the GA is very good at dealing with multidimensional problems in which the

cost function have complicated landscapes [72].

Since GA is a randomized method of optimization, it does not give a fixed
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Optimization method GA
bound of r [0.1 m, 0.3 m]
bound of d [1 mm, 10 mm]
bound of ε [1, 4]

Population Size 10
Generation Size 50

Table 3.3: Setups for GA optimization

result but a random variable. Therefore, the output given by GA was then

input to the Levenberg-Marquardt optimization method to get a fixed result.

The optimization problem is as follow:

Given the measured ACS of a deionized water sphere covered by a lossless

dielectric shell, determine the outer radius, shell thickness and the permit-

tivity of the shell.

The cost function is defined as the MAPE of measured ACS to optimised

model:

δ (r, d, ε) = mean
(∣∣∣ < σmeas > − < σopt(r, d, ε) >

∣∣∣)× 100% (3.7)

where r is radius. d is the thickness of shell. ε is the relative permittivity of

shell. < σopt(r, d, ε) > is the ACS of sphere model under optimization. The

goal is to find the values of r, d, and ε which minimize the cost function δ.

The setups of the GA optimization were listed in Table 3.3. The GA will

give optimized values of r, d, and ε, which will then be used as the starting

values for Levenberg- Marquardt method to obtain fixed solutions. The fitted

results were plotted in Fig. 3.20.

The figure shows the GA gives a very good fit to the measurement data,

and the value of optimized cost function (3.7) is only 0.12%. The optimized

value of r, d, ε were compared to the measurement data in Table 3.4. It can

be seen the GA outputs are very close to the measurement data.
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Figure 3.20: The ACS of Sphere: comparison between measurement value
and Mie results

GA optimized value measured value
r 19.8 cm 19.4 cm
d 4.0 mm 4.0 mm
ε 2.07 2.35

Table 3.4: A comparison of GA optimized sphere parameters and measured
parameters
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3.12 Summary

A series of experiments were performed to validate the theories of extracting

ACS from S21 by IFFT techniques. Experiments have shown the IFFT tech-

niques give ACS results with 3.98% less MAPE than the G factor method

does. Different window functions were applied to filter the PDP, and the

chamber time constant given by nonlinear curve fitting is not sensitive to

the applied window functions. The result shows the nonlinear curve fitting

typically requires 60% fewer of S21 than linear curve fitting to extract the

ACS with the same accuracy. Thanks to the accuracy of ACS extracted by

nonlinear curve fitting, the structures of the object under test can be ex-

tracted from the measured ACS by the GA optimizer, which provided a new

way of determining the inner structures of a lossy object.
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Chapter 4

Human body ACS

measurement

4.1 The ACS of human body with different

postures

As mentioned in the earlier research, the posture of human body can make

a lot of difference to its ACS or WBSAR. In the computational research

of Uusitupa [73], one model with with six different postures were put under

simulation. The result shows seated pose would have about 10% less WBSAR

comparing to standing straight over 2 GHz if a plane wave with vertically

polarized E-field is incident from the front. This conclusion also stands if

the E-field of incident wave is horizontally polarized. Findlay’s research on

the NORMAN model with 4 different poses shows sitting down can decrease

the WBSAR by at least 20% at the resonant frequencies below 300 MHz

[74]. The ACS measurement of a sitting posture in the RC shown a 4-17%

of decrease comparing to the both-hands-up posture from 1 GHz to 15 GHz

[75, 76].
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Since the new IFFT technique was introduced, the posture effect on hu-

man body ACS can be determined more accurately than before. Here five

postures shown in Fig. 4.1 were studied. The measurement setups were the

same as the setups we used in the sphere model measurement. The measured

ACS of 5 different postures were compared in Fig. 4.2.

Same as the conclusion given in [75], the physically more stretched posture

tend to give higher ACS, therefore the Supine-X posture gives the overall

highest ACS from 1 GHz to 18 GHz. The Seated-1 posture gives the least

ACS. Fig. 4.2 also shows the posture change will not change the shape of ACS

but simply shift the ACS curve up and down. This can be demonstrated by

normalizing the measured ACS of different postures by the ACS of ’Supine-

Normal’ pose, which is

< σa,norm >=
< σa >

< σa,Supine−Normal >
(4.1)

The results of < σa,norm > were plotted in Fig. 4.3. In the remainder sections

we will show the morphological parameters will change the shape human body

ACS curve, not simply shift the curve up and down.

In our research the ’Supine-Star’ pose was selected in the human body

ACS measurement. ’Supine-X pose’ was not chosen because it is uncomfort-

able to hold for 11 minutes.

4.2 Populations under study

The ethics approval for the experiment is obtained from the Physical Sci-

ences Ethics Committee of the University of York. The subjects under study

are mainly recruited from the faculty and students of the Department of

Electronic Engineering of the University. The following parameters of the

subjects were recorded: age, ethnicity (asian or non-asian), gender, height,
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Figure 4.1: The five different postures measured in the RC. The names of
the all poses are (left to right, top to bottom): Seated-1, Seated-2, Supine-
Normal, Supine-Star, Supine-X
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Figure 4.2: The human body ACS of the subject in Fig. 4.1 in five different
postures
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weight, and skin fold thickness. The histograms of all the parameters are

plotted in Fig. 4.4. Due to the specific identity of the subjects (teachers and

students), the general population composition of the subjects were different

from the population composition in ordinary society. 69% of the subjects

were below 25 years old and 70% of the subjects are male.

4.3 The skin fold thickness formula for eval-

uating body fat percentage

Different from previous researches on the human body ACS, we take the skin

fold measurement into account. In general anthropometric studies, the skin

fold thickness is a variable that had often been investigated. The skin fold

thickness (SFT) was found to be correlated to the body density (BD) from

which the body fat percentage (BFP) can be extracted.

One of the most famous study was conducted by Jackson and Pollock who

measured the body density of 403 male subjects between 18 and 61 years old

[77]. Form the 403 subjects, 308 subjects were selected for inducting the skin

fold equation of predicting body density, while the rest of 95 subjects were

used for the cross validation of the inducted equation. The body density

is measured by under water weighting method in which the body volume is

extracted by weighting the subject’s body submerged in a water tank [78].

Similar study was conducted by Jackson and Pollock on 283 female subjects

and a skin fold equation for estimating the female body density was given

[79]. Finally, the BD can be converted to the BFP by Siri’s equation [80]:

BFP(%) =
495

BD
− 450; (4.2)

The unit of BD is grams/cc.

Jackson and Pollock have pointed out in their research that the SFT
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Figure 4.4: The population composition of 48 subjects under test
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Equation name Equation Skin fold sites
#1 2 Site (M) [82] BD = c1 −m1 log10 S Triceps, Suprailium
#2 2 Site (F) [82] BD = c2 −m2 log10 S Triceps, Suprailium
#3 4 Site (M) [83] BFP(%) = 0.29288S − 0.0005S2 +

0.1585Y − 5.76377
Triceps,Suprailium, Abdomi-
nal, Thigh

#4 4 Site (F) [83] BFP(%) = 0.29669S − 0.00043S2 +
0.02963Y + 1.4072

Triceps,Suprailium, Abdomi-
nal, Thigh

Table 4.1: The SFT equations for estimating BFP and BD. S denotes the
sum of all skin folds in mm. Y is age in years. BD is body density in
grams/cc. (M) means male. (F ) means female. The parameters of SFT
equation #1 and #2 were listed in Table 4.2 and Table 4.3

tend to give more accurate estimation on the BD than the height-weight

ratio, but they also mention the empirical SFT equations were population

specified. False using SFT equations to estimate BD of wrong population

groups would cause error [78]. Such points have been proved by Nevill who

had given an empirical SFT formula specially for obese subject, while Jackson

and Pollock’s formula tend to underestimate the BFP by 1% [81].

The SFT equations used in this thesis were given in Table 4.1. The two

site SFT equations is for those subjects whose skin over thighs are too tight

to pinch .

Age 17 to 19 20 to 29 30 to 39 40 to 49 ≥ 50
c1 1.1370 1.1362 1.1273 1.1383 1.1415
m1 0.0545 0.0538 0.0531 0.0660 0.0718

Table 4.2: the c1 and m1 value for male subjects

Age 17 to 19 20 to 29 30 to 39 40 to 49 ≥ 50
c2 1.1311 1.1377 1.1281 1.1198 1.1158
m2 0.0624 0.0684 0.0644 0.0630 0.0635

Table 4.3: the c1 and m1 value for female subjects
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4.4 The skin fold measurement techniques

In our research, we use the skin fold techniques introduced in the interna-

tional standard of anthropometric assessment [84]. The caliper we used is

the slim guide calliper whose measurement range is 0-80 mm. The pinch sites

were chosen at triceps, abdominal wall, suprailium, and mid thigh. One skin

fold reading at each site was obtained consecutively, and the four readings

was repeated for three rounds. This order of measurement reduces the mea-

surement error introduced by repeatedly pinching at an inaccurate position.

Here is a brief on how the pinching sites were selected [84].

1. Triceps: The subject was standing with right arm relaxed. The mid

point was marked between the Acromiale and the Radiale. The pinching site

is at the most posterior point of right arm and the site has the same height

as the mid mark. The skin is pinched vertically.

2. Abdominal: The subject is standing facing towards the experimenter.

The pinching site is at 5 cm to the right side of the navel. The skin is pinched

vertically.

3. Suprailium: The subject was standing with the right arm slightly

raised. The site is right above the iliocristale. The pinching is done by

grasping the skin with sufficiently opened the thumb and index, and the

pinching direction follows the natural fold of the skin.

4. Thigh: The subject is seated on a stool with the right feet rest on

the ground. The mid point between the Inguinal fold and anterior patella is

selected as the pinching site. The skin is pinched along the mid line of the

thigh.

The anthropometric result of 48 subjects is listed in Table 4.4.

To validate the skin fold techniques, the BFP calculated by SFT were

compared to the BFP calculated by the body mass index (BMI) [85]. The
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N G E Y H W SF1 SF2 SF3 SF4
1 M Non-Asian 49 160 70.3 23.3 21.0 N/A 15.3
2 M Non-Asian 58 175 76.5 29.0 19.3 13.0 22.7
3 M Non-Asian 53 188 99.4 27.7 18.0 21.7 24.0
4 M Asian 28 183 79.6 29.3 19.7 N/A 22.3
5 F Non-Asian 55 165 61.6 18.0 15.0 N/A 18.0
6 F Non-Asian 29 166 55.3 19.0 16.0 24.0 27.7
7 F Asian 28 166 56.6 24.0 14.7 19.7 25.3
8 F Asian 28 166 54.9 20.7 14.3 18.7 19.7
9 M Asian 26 178 64.3 21.3 14.0 18.3 23.0
10 M Asian 29 180 84.5 28.0 16.3 17.3 24.3
11 M Non-Asian 24 190 91.6 27.0 16.0 23.3 21.0
12 M Asian 22 168 66.4 19.0 12.3 18.0 19.7
13 M Non-Asian 20 173 70.3 23.0 13.0 13.7 28.3
14 M Non-Asian 21 185 64.6 9.3 7.3 9.0 12.7
15 M Asian 22 183 81.4 27.7 22.7 24.7 39.3
16 M Asian 24 181 84.5 30.7 15.7 27.0 29.3
17 M Asian 24 169 63.2 26.0 18.0 17.0 28.7
18 M Asian 28 166 68.5 15.7 11.7 12.7 13.7
19 M Asian 35 169 52.6 8.3 6.0 11.0 12.0
20 F Non-Asian 23 160 43.5 6.8 12.0 20.2 6.3
21 M Asian 24 186.4 86.5 18.3 16.0 13.3 15.3
22 M Non-Asian 24 176 70.2 9.0 5.7 6.7 7.7
23 M Non-Asian 19 171 57.7 10.3 10.3 13.0 12.3
24 M Non-Asian 24 180 73.6 16.0 9.3 8.7 11.7
25 M Asian 25 175 81.5 14.3 11.7 13.7 16.0
26 M Non-Asian 28 173 69.7 23.0 15.3 15.7 20.7
27 M Non-Asian 20 164 68.7 18.0 9.3 17.0 17.3
28 M Non-Asian 20 185 86.2 24.3 16.3 14.0 23.7
29 M Asian 28 180 81.4 25.7 17.0 25.7 28.0
30 F Non-Asian 22 168 63.3 13.0 26.7 N/A 16.7
31 M Non-Asian 22 164 54.2 7.7 5.0 4.0 9.0
32 M Non-Asian 23 170 79.6 31.0 16.7 27.0 34.0
33 M Non-Asian 25 177 71.9 11.7 7.0 6.0 14.3
34 M Non-Asian 21 174 142.4 46.0 38.0 54.7 70.0
35 M Non-Asian 21 186 75.9 18.3 15.7 16.3 16.7
36 F Non-Asian 19 164 72.3 30.7 30.3 45.3 34.3
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N G E Y H W SF1 SF2 SF3 SF4
37 F Asian 20 158 48 13.0 15.7 16.3 14.3
38 M Non-Asian 22 178 69.6 9.3 6.0 7.7 10.7
39 M Asian 24 176 72.2 23.3 9.7 11.7 21.3
40 M Non-Asian 19 176 87.3 25.7 16.0 22.0 25.7
41 F Asian 25 169 54.2 8.7 19.0 16.7 15.0
42 M Asian 24 176 80.5 30.0 13.7 15.7 33.0
43 F Asian 23 161 53.3 13.3 20.0 N/A 17.0
44 M Non-Asian 42 187 91.9 28.3 16.3 15.0 26.7
45 F Non-Asian 24 167 53.3 21.7 21.0 N/A 25.7
46 F Asian 28 163 60.7 15.3 21.0 32.0 29.7
47 F Asian 19 160 47.7 6.0 14.7 21.0 7.7
48 F Non-Asian 27 170 78.9 29.7 34.0 53.7 41.0

Table 4.4: The morphological parameters of 48 subjects. ’N’: Subject num-
ber, ’G’: Gender, ’F’: Female, ’M’: Male, ’E’: Ethics, ’Y’: Age in years, ’H’:
Height in cm, ’W’: Weight in kg, ’SF1’: Skin fold at abdominal site in mm,
’SF2’: Skin fold at tricep site in mm, ’SF3’: Skin fold at thigh site in mm,
’SF4’: Skin fold at supraillium site in mm, ’N/A’: the skin over thigh is too
tight to measure the skin fold.
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Figure 4.5: BFP calculated by empirical SFT equation vs. BFP calculate by
BMI

following is the formulae for BFP calculated by BMI:

BFP = 76.0− 1097.8

BMI
− 20.6G+ 0.053Y

+
95.0E

BMI
− 0.044EY +

154G

BMI
+ 0.034GY (4.3)

where ’G’ is gender (1 for male, 0 for female), ’E’ is ethnicity (1 for Asian,

0 for non-Asian), ’Y’ is age in years, BMI is the body mass index which is

defined as the ratio between body weight and height squared.

The BFP calculated by SFT equation and the BFP calculated by BMI is

compared in Fig. 4.5 in which a strong linear correlation can be found. The

correlation coefficient is 0.81.
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Figure 4.6: The overview of the ACS of human body. The outlier belongs to
the subject with very high BMI, which is 47.0kg/m2, while the average BMI
of the rest of the subjects is 23.2kg/m2

4.5 The human ACS measurement result

The measurement setups demonstrated in Sec. 4.1 were used for the mea-

surement of all 48 human body ACS. Win #1 were used to extract the human

body ACS from S21. An overview of all ACS results were plotted in Fig. 4.6.

The measured human ACS of this research are very close to the human body

ACS measured by Melia [76], but with more detail. The highest ACS of each

subject is at about 1 GHz, and the minimum value of each subject’s ACS

is between 4 - 6 GHz, then the ACS of each subject slightly goes up as the

frequency raises over 6 GHz.

As shown in Fig. 4.2, the less stretched posture tend to give smaller ACS

and the ACS curve shifts up and down as the posture changes. However,

the effect of morphological parameters on ACS is more complicated. To
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Figure 4.7: the ACS of subjects with maximum, mean, and minimum skin
fold readings

demonstrate the problem, the ACS of three subjects with maximum, mean

and minimum SFT is plotted in Fig. 4.7. The figure shows the effect of SFT

is not simply shifting the ACS up and down. The shape of the ACS curve

changes as the SFT changes.

According to Melia’s research , the body surface area (BSA) is a mor-

phological parameter that correlates well with the ACS over most of the

frequencies, therefore BSA was also put into study in our research on ACS

[76]. The BSA is evaluated by the empirical formula [86, 76]:BSA = 128.1W 0.44H0.60 (men)

BSA = 147.1W 0.47H0.55 (women)
(4.4)

Where W is body weight in kg. H is height in cm. This formula is given by

Tikuisis who conducted BSA measurements on 641 adults by laser scanning
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Figure 4.8: The correlation coefficient between human body ACS and mor-
phological parameters at different frequencies

[86]. Equation 4.4 has an overall RMS error of 1.26%.

The correlation coefficient between measured ACS and all morphological

parameters over different frequencies were plotted in Fig. 4.8. A very strong

correlation between ACS and BSA can be observed above 6 GHz in Fig. 4.8,

which can be explained by the study of power distribution in each layer of

the planar model shown in Sec. 2.2. The study of planar model in Sec. 2.2

shows the skin layer absorbs the most percentage of power above 5 GHz no

matter how thick the fat layer is. Fig. 4.8 shows the correlation coefficient

between the ACS and the BSA reaches above 0.9 from 6 GHz to 18 GHz.

Therefore the ACS above 6 GHz can be modelled by a linear function of

BSA:

< σa(f) >= C1(f)BSA + C2(f) (4.5)

Where C1 and C2 are the frequency dependent coefficients. BSA is in m2.

The linear regressions were performed at different frequencies and the value

99



6 8 10 12 14 16 18

Frequency

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

C
1
 a

nd
 C

2

C
1

C
2

Figure 4.9: The coefficient of linear ACS model from 6 GHz to 18 GHz

of C1(f) and C2(f) were plotted in Fig. 4.9. The quality of regression is

quantified by R2 which is plotted in Fig. 4.10 [87].

Fig. 4.9 proves the skin absorbs most of the power by showing the values

of C2 are close to zero from 6 GHz to 18 GHz. This corresponds with the

physical concept that a lossy object with zero surface area have zero ACS.

On the other hand, the R2 > 0.8 from 6 GHz to 18 GHz shows the linear

model gives a good evaluation on the ACS.

Considering the BSA dominates the ACS at high frequency, the ACS is

normalized by the BSA to study the effect of other morphological parameters

on non-ionizing dosimetry:

< ξ >=
< σa >

As
=

σa
0.25BSA

(4.6)

where < ξ > denotes the averaged absorption coefficient of human body. As

is the averaged silhouette area of human body. Here the value of As was
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Figure 4.10: R2 of linear ACS model

chosen as 0.25BSA by assuming the human body is a perfect convex object.

An overview of the < ξ > of all human subjects are shown in Fig. 4.11.

The < ξ > value is around 0.8 - 0.9 at 1 GHz. The < ξ > quickly

decrease as the frequency rises until at around 6 GHz its value start to

increase very gently with frequency. The value of < ξ > above 6 GHz is

distributed between 0.45 - 0.65 for all subjects, which is slightly higher than

the values reported in [76]. The reason might be the different selection of

poses in our study. We chose the ’Layed-Star’ pose in Fig. 4.1 for all the

ACS measurements while in [76] the ’Sitted 1’ pose was chosen.

The correlation coefficients between < ξ > and all morphological param-

eters was also calculated. The results are shown in Fig. 4.12. It can be

seen that almost every morphological parameters lose the correlation with

the < ξ >. The value of correlation coefficients are all between -0.5 and

0.25 above 6 GHz. Below 6 GHz, all the correlation coefficients seem to be

unpredictable, but there are two frequencies that worth special notice.
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Figure 4.11: The overview of the absorption coefficient of human body
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Figure 4.12: The correlation coefficient between human body absorption co-
efficient and morphological parameters at different frequencies
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Morphological Parameters C3 C4 R
BMI (kg/m2) −9.192× 10−3 0.8758 −0.7767
Weight (kg) −7.473× 10−3 0.7156 −0.8357
SFT (mm) −2.674× 10−3 0.8492 −0.5755
BSA (m2) −0.198 1.02 −0.8122

Table 4.5: Linear relations between ξ and morphological parameters at 2.5
GHz

The first frequency is 2.5 GHz. The < ξ > shows a very strong negative

linear correlation with BMI, Weight, BSA, and BFP. Similar results were also

reported by Melia [76], but in Melia’s research, the correlation coefficient

is only calculated at 3 GHz. This negative correlation of < ξ > to the

morphological parameters might be explained by the resonant effect of fat

layer shown in Sec. 2.2. < ξ > is correlated to the morphological parameter

by the following equation:

< ξ(2.5GHz) >= C3Morph + C4 (4.7)

where ‘Morph’ means morphological parameters. It can be BMI, weight,

SFT, BSA in this equation; C3 and C4 are constants which will vary with

different morphological parameters. The values of C3 and C4 are given in

Tab. 4.5.

The second frequency worth noticing is 1 GHz. At 1 GHz in Fig. 4.12,

the < ξ > shows almost no correlations with any morphological parameters

except the BFP calculated from skin fold. This may also be the effect of

resonance due to the average fat layer thickness of human body.

In general, the modelling of non-ionizing dosimetry can be separated into

two different regions. The first region is from 1 GHz to 6 GHz, in which both

the ACS and < ξ > show very vague linear correlation with all morphological

parameters, as can be seen from Fig. 4.8 and Fig. 4.12. The second region
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Figure 4.13: Features of absorption coefficient

is from 6 GHz to 18 GHz, in which the BSA have the most prevailing effect

on the ACS, which is shown in Fig. 4.8.

4.6 Simple predictors of human body ACS

According to Fig. 4.11, the absorption coefficient < ξ > of Human body

generally follows a shape demonstrated in Fig. 4.13.

In the figure, the feature of the absorption coefficient is described by

several simple predictors on it. The meaning of these simple predictors are:

(f<ξmax>, < ξmax >): The coordinate of the maximum absorption coef-

ficient point. Since the measured absorption coefficient is not a smoothed

curve, the polynomial fit of order 5 was conducted from 1 GHz to 2 GHz,

and the maximum point was picked up from the polynomial model.

(f<ξmin>, < ξmin >): The coordinate of the minimum absorption coefficient

point. Polynomial fit of order 5 was performed on the measured absorption
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coefficient from 1 GHz to 12 GHz, and the minimum point was extracted

from the polynomial model.

∆ < ξmax1 > and ∆ < ξmax2 >: As shown in Fig. 4.13.
d<ξ>

df

∣∣∣
<ξ>=0.5(<ξmax>+<ξmin>)

: Derivative of absorption coefficient at point

where < ξ >= 0.5(< ξmax > + < ξmin >). The derivative was calculated

from the polynomial model which is obtained from the 5th order polynomial

fitting < ξ > from < fmin > to < fmin >

After all the simple predictors on < ξ(f) > had been defined, the linear

correlation between simple predictors and morphological parameters were

calculated. The results were shown in Fig. 4.14 and Table 4.6.

In Table 4.6, we consider the ‘highly correlated parameters’ as the pair of

parameters whose correlation coefficient higher than 0.5, then there are nine

pairs of highly correlated parameters. They are: 1. BMI v.s. f<ξmin>, 2. BSA

v.s. f<ξmin>, 3. Weight v.s. f<ξmin>, 4. Fat thickness v.s. f<ξmin>, 5. SFT v.s.

105



/ f<ξmax> < ξmax > f<ξmin> < ξmin >
d<ξ>
df

∆ < ξmax1 > ∆ < ξmax2 >

Age -0.0346 0.1428 0.1406 0.0316 -0.0638 0.1131 0.0947
BMI -0.3842 -0.1731 -0.6804 -0.3277 -0.4399 0.0487 0.2765
BSA -0.1605 -0.3717 -0.6762 -0.3452 -0.2683 -0.2141 0.3388

Height 0.1475 -0.4651 -0.3991 -0.1897 0.0488 -0.3419 0.2629
Weight -0.2350 -0.3304 -0.7165 -0.3493 -0.3405 -0.1774 0.3372

SFT -0.3472 0.2281 -0.5312 -0.5061 -0.6386 0.3507 0.2736
BFP -0.2220 0.5610 -0.1722 -0.4363 -0.6394 0.6156 0.1038

Table 4.6: Correlation coefficient between simple predictors and morpholog-
ical parameters, the parameters in bold font are the correlation coefficients
whose absolute value higher than 0.5

< ξmin >, 6. SFT vs d<ξ>
df

, 7. BFP v.s. < ξmax >, 8. BFP v.s. d<ξ>
df

, 9.BFP

v.s. ∆ < ξmax1 >. However, among these 9 pairs of parameters, there is not

a single pair whose absolute value of correlation coefficient exceeds 0.7.

The nine pairs of parameters can be divided into 3 groups. The first

group includes the parameter pairs involving BMI, BSA and weight. The

second group includes the parameter pairs involving BFP. The third group

includes parameter pairs involving fat layer thickness. The reasons are as

follows.

As discussed in Sec. 4.2, the morphological parameters of subjects are not

totally randomized. For instance in group one, BMI, BSA are all evaluated

from empirical functions of weight therefore the correlation coefficients in

group one are likely to give similar conclusion. The rest of the six pairs of

parameters was divided into two groups because the relation between the

BFP and the SFT is not linear.

The 9 linear regressions of simple predictors against morphological pa-

rameters are plotted in Fig. 4.15, Fig. 4.16 and Fig. 4.17.

The coefficients of 9 linear regressions are given in the legend of each

figure. The formulas of evaluating simple predictors are:

y = ax+ b (4.8)
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where y denotes the simple predictors. x denotes the morphological param-

eters. a and b are constants given in the legend.

Firstly, a negative correlation was observed between f<ξmin> and the body

weight dominated parameters such as BMI, BSA. Such a negative correlation

was also observed between f<ξmin> and SFT. Both of these two facts corre-

spond with the properties of the three layer spherical model whose resonant

frequencies shift to lower frequencies as the fat layer thickness increases.

On the other hand, < ξmin > is also decreasing along with the increase of

SFT. < ξmax > and ∆ < ξmax1 > are slightly increasing as the BFP goes up.

This fact can be observed in the change of the spherical models’ < ξmax >

and ∆ < ξmax1 > as the fat layer thickness of the sphere model goes up,

which is shown in Fig. 2.13.

Generally, the linear model of simple predictor only serves as a quantified

indicator of abortion efficiency. Even though the absorption coefficient from

1 GHz to 6 GHz is very unpredictable, such a method is still useful in the

quick evaluation of absorption coefficient of human body. The weak point of

the simple predictors is there is no physical explanation for the model.

4.7 Expansion of human body absorption co-

efficient into series of models absorption

coefficient

In this section, we will demonstrate the method of mapping human body

absorption coefficient < ξ > to the surface layer thickness of human body.

The surface layer thickness of human body is defined as the summation

of fat layer thickness and skin layer thickness.

As shown in Sec. 3.11, the shell thickness can be extracted from the

measured ACS of the sphere model by the GA. Since similarities are observed
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Figure 4.15: The linear regression of simple predictors
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Figure 4.16: The linear regression of simple predictors
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Figure 4.17: The linear regression of simple predictors
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between the measured human bodies’ absorption coefficient ’< ξbody >’ and

the absorption coefficient of the multilayer spherical model ’< ξsphere >’ in

Sec. 4.6, especially at 1 GHz, both ’< ξbody >’ and ’< ξsphere >’ are high.

We can try to expand the < ξbody > into a series of < ξsphere > with different

fat layer thickness and skin layer thickness.

To demonstrate the method of inverse mapping < ξbody(f) > to surface

layer thickness, the following assumptions were made:

Firstly, the human body surface is divided into N different partitions,

and the area of each partition is αi. Therefore, the summation of all αi is

equal to the BSA:

BSA =
N∑
i=1

αi (4.9)

In (4.6), the averaged silhouette area of human body is obtained by mul-

tiplying BSA with 0.25, so that:

Ssilhouette = 0.25BSA =
N∑
i=1

0.25αi (4.10)

Where Ssilhouette is the averaged silhouette area of human body; 0.25αi is

considered as the averaged silhouette area of the ith partition.

According to the definition of absorption coefficient given by (2.14) , the

ACS of human body equals to the multiplication of absorption coefficient

and the averaged total silhouette area:

< σa,body >=
N∑
i=1

0.25αi < ξsphere,i > (4.11)

where < ξsphere,i > is the the absorption coefficient of the sphere model

representing ith partition of human body surface. We assume the skin layer

thickness and fat layer thickness of ith sphere model is equal to that of the
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ith partition of human body surface.

Dividing both sides of (4.11) by BSA gives the absorption coefficient of

human body:

< ξbody >=
N∑
i=1

0.25
αi

BSA
< ξsphere,i >=

N∑
i=1

βi < ξsphere,i > (4.12)

where βi = 0.25 αi
BSA

. There might be other factors that would affect the

value of < ξbody >, such as the light clothes wearing by subjects, the small

posture difference among the subjects, etc. We use one term ‘c’ as a rough

representation of the effect of all those factors and add into (4.12), which

gives the final form of the model of human body absorption coefficient:

< ξbody >=
N∑
i=1

βi < ξsphere,i > +c (4.13)

In this approach, we will use GA to find the values of (β1, β2, ..., c) such that

(4.13) is as close to the measured absorption coefficient as possible. The cost

function of GA optimization is defined as the RMS difference between (4.13)

and the measured absorption coefficient over different frequencies, which is

minimize RMS (< ξbody,meas(f) > − < ξbody(f) > −c) (4.14)

where < ξbody,meas(f) > is the measured absorption coefficient of a human

subject.

According to the definition of βi in the (4.12), βi is proportional to the

percentage of αi in the BSA. Therefore, the averaged skin fold thickness can

be evaluated from

SFT =
2
∑N

i=1 βi(dskini + dfati)∑N
i=1 βi

(4.15)
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where dskini and dfati are the skin layer thickness and fat layer thickness of

the ith spherical model. The coefficient ’2’ in front of (4.15) is because the

SFT is measured by pinching two layers of fat and skin. Equation (4.15) is

twice the numerical average of surface layer thickness with weight αi.

The value of each < ξsphere,i(f) > should be evaluated from specific choices

of fat layer thickness and skin layer thickness. The choices of fat layer thick-

ness and skin layer thickness should not exceed the reasonable range. In our

research, the range of fat layer thickness was chosen as [0.5 mm, 30.5 mm] to

make sure it covers all the results of skin fold measurements. The range of

skin layer thickness was chosen from documented data. In Lee’s research,

biopsy techniques were applied on 452 Asian subjects over different body

parts and the skin layer thickness is measured under a microscope [88]. The

measurement shows the skin layer thickness range from 521 µm to 1977 µm

around human body. Therefore the range of skin layer thickness chosen as

[0.5 mm, 1.9 mm]. The radius of all spherical models in (4.13) was chosen to

give the circumference equal to the waist size of the human subject under

test. Since the waist size was not measured in the experiment, the waist size

of each subject is calculated by the empirical formula [89]:dcirc = (BMI + 2.6)/0.307 (cm) men

dcirc = (BMI + 6.0)/0.394 (cm) women
(4.16)

where dcirc is the waist size.

In summary, the optimization problem can be expressed as follow:

Determine the values of βi and c, which

minimize RMS

(
< ξbody,meas(f) > −

N∑
i=1

βi < ξsphere,i(f) > −c

)
(4.17)

where < ξbody,meas(f) > is the measured averaged absorption coefficient of a
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human subject. The optimized βi will be substitute into (4.15) to calculate

the averaged skin fold thickness. Consider the definition of βi, its value

should be less than 1. The boundaries of βi and c in GA optimization were

set to be: βi ∈ [0, 0.2]

c ∈ [0, 1]
(4.18)

The population size of GA optimization is 100, and the maximum generation

size is set to be 50.

The value of < ξsphere,i > is calculated by choosing a particular set of

values of (dskin,i, dfat,i, radi) from the following domain:
dskin,i ∈ {[0.5, 1.9] mm step 0.2 mm}

dfat,i ∈ {[0.5, 30.5] mm step 5 mm}

radi = dcirc/2π

(4.19)

For instance in (4.19), dskin,i has 8 available choices; dfat,i has 6 avail-

able choices; radi has 1 choice. dskin,i, dfat,i and radi have 8 × 6 × 1 = 48

combinations from which 48 different < ξsphere,i(f) > can be obtained.

Here as an example, all the < ξsphere,i(f) > used for evaluating the surface

layer thickness of subject No.1 is plotted in Fig. 4.18. The fitted absorption

coefficient is shown in Fig. 4.19 It can be seen that the GA gives a very good

fit. The RMS difference between the fitted curve and measurement data is

0.012.

The optimizations were then performed on the other 47 subjects. The

SFT evaluated by GA were compared to the SFT measured by the calliper

in Fig. 4.20. The values of minimized (4.17) is given in Fig. 4.21 which

shows the fitted curves of all 48 subjects have less than 0.025 RMS difference

to the corresponded measured absorption coefficient.

Since GA is a randomized optimization method, the output of GA is not
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Figure 4.18: The basis functions for expanding absorption coefficient of Sub-
ject No. 1
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Figure 4.19: Fitting the absorption coefficient of Subject No.1 by genetic
algorithm
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Figure 4.20: The GA predicted SFT vs. SFT measured by calliper, the red
line is the reference line. The more accurate the GA prediction, the closer
the dots to the reference line
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Figure 4.21: The value of minimized cost function
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Figure 4.22: The GA predicted SFT of 10 times of optimization

fixed but a random variable. To check the stability of the GA optimization,

the optimization problem (4.17) has been optimized by the GA with the same

options for 10 times, and the GA predicted SFT is plotted in Fig. 4.22. The

values of minimized cost functions of 10 times of optimization is plotted in

Fig. 4.23.

Fig. 4.22 and Fig. 4.23 show the output of 10 times of optimization is

very close, therefore the optimization problem (4.17) is not ill conditioned.

4.8 Impedance patching on the surface

The previous chapter shows a method of evaluating the surface layer thickness

of human body by the multisphere model. But this method is not rigorous

enough since it does not take the detailed shape of human body into account.

In this chapter we will show a efficient method of calculating the scattering
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Figure 4.23: The value of cost functions of 10 times of optimization

properties of a multilayer object with arbitrary shape. The basic idea is to

use an ABCD matrix to describe the coupling between the field in the inner

most layer and the field in free space.

As presented in Fig. 4.8, the ACS of human body above 6 GHz is domi-

nated by the surface area, while the ACS below 6 GHz does not show strong

linear correlations to any of the morphological parameters. Therefore, higher

order model is required in accurate modelling human body ACS from mor-

phological parameters.

As the basic rule of electromagnetics, Maxwell equations are consisted by

two curl equations and two divergence equations which give the relationship

between four variables ~E, ~D, ~H, ~B.

The Maxwell equations can be solved analytically only if the problem can

be fitted into the grid of the three basic types of orthogonal coordinate sys-

tem (Cartesian, cylindrical, and spherical). But when the problem involves

solving objects with complex shape such as human body, the analytical tech-
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nique would lose its effect because the boundary condition is not separable

by variables. To accurately calculate the ACS of human body, the numerical

techniques are unavoidable.

Even though the FDTD has been widely used as a method of calculating

the WBSAR, it is not a very efficient method of calculating the absorption

cross section of human body in diffuse environments. The reason is the diffuse

field is modelled as a expansion of plane wave incident from all different

directions and the independent calculation of ACS at different directions can

take a very long time [40].

The remainder part of this section will present a method of effective mod-

elling the surface layer’s effect on lossy object. The method is basically an

application of ABCD matrix on the surface integral equation (SIE). There

are three advantages of this method, firstly, comparing to the volume inte-

gral equation, this method is more efficient in memory usage. Secondly, the

coupling between the inner most layer and external region is simplified by an

ABCD matrix at a particular position on the surface, therefore the coupling

between each layer do not need to be modelled independently [90]. Thirdly,

the scattering field is mapped to the incident field by a impedance matrix,

and the impedance matrix is only determined by the shape and material of

the scattering object. so that scattered fields under different incident wave

can be obtained by solving impedance matrix for only once, which is time

efficient [91].

Our problem is about efficient modelling a homogeneous object covered

by thin layers. Similar problem of scattering by thin layer media is studied

by Richmond [92], Harrington [93], Chiang [94], who used the technique of

solving volume integral equation (VIE). Such a technique has been used by

Livesay [95] to solve the non-ionizing dosimetry problems. The idea of VIE

is simple. After an incident wave is scattered by a object, the total field can
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be expressed by the summation of scattering field and incident field: ~E = ~Einc + ~Es

~H = ~Hinc + ~Hs

(4.20)

where ~E, ~H are the total electric field and magnetic field out side the scat-

tering object; ~Einc, ~Hinc are incident electric field and magnetic field; ~Es, ~Hs

are the scattered electric field and magnetic field. Of course ~E, ~H should

satisfy the Maxwell’s equations in source free region:∇× ~H = jωε ~E

∇× ~E = −jωµ ~H
(4.21)

On the other hand, the incident wave ~Einc, ~Hinc satisfies the Maxwell’s equa-

tions in free space: ∇× ~Hinc = jωε0 ~Einc

∇× ~Einc = −jωµ0
~Hinc

(4.22)

Due to the linearity of Maxwell’s equations, (4.21) - (4.22) gives:∇×
(
~H − ~Hinc

)
= jω

(
ε ~E − ε0 ~Einc

)
∇×

(
~E − ~Einc

)
= −jω

(
µ ~H − µ0

~Hinc

) (4.23)

Then substituting (4.20) into (4.23) gives:∇× ~Hs = jω(ε− ε0)( ~Einc + ~Es) + jωε0 ~Es

∇× ~Es = −jω(µ− µ0)( ~Hinc + ~Hs)− jωµ0
~Hs

(4.24)

If the scattering object is formed by non-ferrite material, µ would be equal
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to µ0. So (4.24) changes into:∇× ~Hs = jω(ε− ε0)( ~Einc + ~Es) + jωε0 ~Es

∇× ~Es = −jωµ0
~Hs

(4.25)

where ~Jp = jω(ε−ε0)( ~Einc + ~Es) in the first equation is the polarized current.

(4.25) shows the scattered field Es can be considered as the field generated

by polarized currents in free space. The advantage of solving (4.25) by VIE

is that the permittivity ε is only included in the ~Jp, which means only the

Green’s function in free space is involved in the whole calculation. Solving

(4.25) would be good in dealing with inhomogeneous scatterers.

But the shortcoming of solving (4.25) by VIE is obvious too. It needs the

region occupied by ~Jp to be discretized. Therefore the number of unknown

variables of solving VIE is increased with the volume of the scatterer, while

the number of unknown variables in solving SIE is increased with the surface

area of the scatterer.

Chiang’s approach was to discrete only the surface layer of a scatterer into

small patches. When the problem goes to multi-layer surface structure, each

layer would be discretized separately [96], so the unknowns still increases

with the increasing number of surface layers.

To reduce the number of unknown variables introduced by multilayer

structure, a little bit more simplification can be made. Here we use ABCD

matrix, also known as transfer matrix, to model the relationship between

the internal field within the homogeneous core and the scattered field on the

outer surface of the scattering object

The ABCD matrix is defined by:[
Eext

Hext

]
=

[
A B

C D

][
Eint

Hint

]
(4.26)
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Figure 4.24: Field transmission through multilayer structure

where Eext, Hext are the external E field and external H field; Eint, Hint

are the internal E field and internal H field.

Assuming the coupling between internal field and external field at a par-

ticular position of a scatterer’s surface is dominated by the superficial layer

structure, the ABCD matrix can be calculated from a multilayer planar

model, as shown in Fig. 4.24, where all layers are numbered consecutively

from the outermost layer to innermost layer. layer 0 is free space. layer n+1

is the homogeneous core of scatterer. layer 1 to layer n are the surface layers

around the scatterer. di denotes the thickness of ith layer. li is the coordinate

of interface between ith layer and i + 1th layer. li equals to
∑i

k=1 dk.
~Ei,f

denotes the electric field transmitting forwardly along the positive direction

of x axis in ith layer. Similarly ~Ei,b is the E field transmitting backward in

ith layer. ~Hi,f and ~Hi,b are the corresponding H field transmitting forward

and backward in ith layer.

Assuming ~Ei,f and ~Ei,b are both pointing to ŷ direction, the coupling
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between the ~E field and the ~H field in each layer can be written as:

~Ei,f = Ei,f exp(−jkix)ŷ

~Ei,b = Ei,b exp(jkix)ŷ

~Hi,f = ki
ωµ0

Ei,f exp(−jkix)ẑ

~Hi,b = − ki
ωµ0

Ei,b exp(jkix)ẑ

(4.27)

Where Ei,f and Ei,b are the only two independent variables determining the

field distribution in ith layer.

Since the E field and H field should be continuous on every interface, on

the interface li there is relation:Ei,f exp(−jkidi) + Ei,b exp(jkidi) = Ei+1,f + Ei+1,b

ki
ωµ0

Ei,f exp(−jkidi)− ki
ωµ0

Ei,b exp(jkidi) = ki+1

ωµ0
Ei+1,f − ki+1

ωµ0
Ei+1,b

(4.28)

The permittivity of µ0 can be cancelled on both sides of the equations, which

gives:Ei,f exp(−jkidi) + Ei,b exp(jkidi) = Ei+1,f + Ei+1,b

√
εiEi,f exp(−jkidi)−

√
εiEi,b exp(jkidi) =

√
εi+1Ei+1,f −

√
εi+1Ei+1,b

(4.29)

(4.29) can not be applied on l0 because there is no d0 defined in the problem.

On interface l0 there is:E0,f + E0,b = E1,f + E1,b

√
ε0E0,f −

√
ε0E0,b =

√
ε1E1,f −

√
ε1E1,b

(4.30)

The ABCD matrix can be obtained directly from solving the combination

of (4.29) and (4.30). For instance, when there are only one surface layer,
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(4.29) and (4.30) becomes:


1 1 −1 −1 0 0
√
ε0 −

√
ε0 −√ε1

√
ε1 0 0

0 0 e−jkd1 ejkd1 −1 −1

0 0
√
ε1e
−jkd1 −√ε1ejkd1 −

√
ε2
√
ε2





E0,f

E0,b

E1,f

E1,b

E2,f

E2,b


=



0

0

0

0

0

0


(4.31)

Moving the term E2,f and E2,b to the right side of the equation gives:


1 1 −1 −1
√
ε0 −√ε0 −√ε1

√
ε1

0 0 e−jkd1 ejkd1

0 0
√
ε1e−jkd1 −√ε1ejkd1



E0,f

E0,b

E1,f

E1,b

 =


0 0 0 0

0 0 0 0

0 0 −1 −1

0 0
√
ε2 −√ε2




0

0

E2,f

E2,b

 (4.32)

Then, calculating the inverse of the matrix on the left side of (4.32) and

multiplying the inverse matrix to the right side of the same equation can

give the relation between (E0,f , E0,b) and (E2,f , E2,b), and the ABCD matrix

can be obtained right after this relation is known. The similar method can

be used to obtain the ABCD matrix when the number of surface layers is

more than two.

Here an example is given to demonstrate how to apply ABCD matrix

to calculate the scattering problem. For simplicity, the problem is to solve

the TM wave scattered by a coated water cylinder in 2D. The basic setup is

shown in Fig. 4.25.

A plane wave is propagating along the x axis from the negtive direction

to the positive direction, and scattered by a cylinder whos axis is z-axis. The

outer radius of the cylinder is 0.132 m. This value is selected just because it

gives the circumference 0.83 m which is the same as the average waist size

of all subjects in the experiment. The thickness of the shell would be set to
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Figure 4.25: The coated water cylinder scattered by a TM wave

different values to test the algorithm. The shell is made up by HDPE.

According to Huygens’ equivalence principle, the overall scattering prob-

lem can be broken down into two sub-problems. One sub-problem is calcu-

lating the field in the core (inside boundary Ω1) of the cylinder; The other

sub-problem is calculating the scattered field in free space (out of boundary

Ω2). The relation between the tangential fields on Ω1 and Ω2 can be described

by the ABCD matrix. Since we are only dealing with the TM wave, applying

both ~J and ~M to the boundary would make the problem more complicated

because ~M is located in x-y plane. solving ~M would introduce extra dimen-

sions into the equation system. Here only ~J was applied as the equivalent

source and the equivalent problems is demonstrated in Fig. 4.26 where Ω0

denotes the outer boundary of the cylinder, Ω1 denotes the inner boundary

of the cylinder; ~Einc and ~Hinc are the E-field and H-field of the incident wave;

~Es0 and ~Hs0 are the scattered E-field and H-field out of boundary Ω0; ~Es1

and ~Hs1 are the scattered field within boundary Ω1; For the problem out of

boundary Ω0, the background material is free space, and the field is gener-

ated by the equivalent current ~J0; For the problem in Ω1, the background

material is identical to the core material of the original problem, and the

field in Ω1 is generated by ~J1.

The next step is to combine these two equivalent problems together and
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give an equation system. Since Ω0 and Ω1 are two different surfaces and

the field across the boundaries in two equivalent problems is unknown, the

relations between ~J0 and ~J1 is not known as well.

Applying the Green’s function, the ~E field and ~H field at arbitrary point

~r generated by current ~Je can be written as:

E(~r, ε, µ, ~Je) =

‹
S

[
jωµ ~Je(~r′)G(~r, ~r′)

]
dS (4.33)

H(~r, ε, µ, ~Je) =

‹
S

[
~Je(~r′)×∇′G(~r, ~r′)

]
dS (4.34)

To be more specifically, the EM field generated by ~J1 and ~J0 is:

Es0(~r, ε0, µ, ~Je) =

‹
S

[
jωµ ~J0(~r′)G0(~r, ~r′)

]
dS (4.35)

Hs0(~r, ε0, µ, ~Je) =

‹
S

[
~J0(~r′)×∇′G0(~r, ~r′)

]
dS (4.36)

Es1(~r, ε, µ, ~Je) =

‹
S

[
jωµ ~J1(~r′)G1(~r, ~r′)

]
dS (4.37)

Hs1(~r, ε, µ, ~Je) =

‹
S

[
~J1(~r′)×∇′G1(~r, ~r′)

]
dS (4.38)

Where G0 and G1 are the Green’s function in free space and water, respec-

tively .

Now consider a pair of points on each side of the surface layer, as shown

in Fig. 4.27 where ~r0 and ~r1 are the position vector of the two points P0

and P1, respectively. P0 is skewed by the surface normal vector at P1. If the

thickness of surface layer is much smaller than the radius of surface curvature,

for every P1 on surface Ω1 there should be a P0 on the surface Ω0.

The tangential EM field at P0 and P1 should have a relation defined by
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ABCD matrix. Substituting (4.37) and (4.38) into (4.26) gives:[
Et,e(~r0, ε0, µ0, ~J0)

Ht,e(~r0, ε0, µ0, ~J0)

]
=

[
A B

C D

][
Einc,t + Et,i(~r0, ε, µ0, ~J1)

Hinc,t +Ht,i(~r0, ε, µ0, ~J1)

]
(4.39)

where the subscript t, e means the tangential external field, and t, i means

the tangential internal field, correspondingly. Solving (4.39) would give the

solution of J0 and J1.

To validate the numerical method, the shell thickness was set to be 1 mm

and 5 mm with outer radius fixed at 0.132 m, then the E-field on the outer

surface Ω0 was calculated in each case at 6 GHz. The cylinder surface is

divided into 400 segments in 2D. The memory consumption is 10.24 MByte.

CPU runtime is 32 seconds. The result was then compared to the analytical

solution which is demonstrated in Fig. 4.28.

The figure shows two facts. First, the impedance patching techniques can

successfully calculate the E field. Its result matches good with that given by
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Figure 4.28: The E-field on the outer surface of cylinder at 6 GHz

the analytical method. The maximum difference between numerical results

and analytical results is 0.071 V/m. Secondly, the accuracy of numerical

method goes down as the shell thickness increases. Thirdly, changing on

the surface layer thickness can be critical to the overall absorption cross

section of the scattering object, the increases of 4 mm shell thickness almost

quadrupled the maximum field on the surface.

To demonstrate the problem further, the water cylinder in Fig. 4.25 is

replaced by a muscle cylinder covered by a fat layer and a skin layer. Same

as the water cylinder, the surface of the cylinder is also divided into 400

segments, so the memory consumption is the same as the previous water

cylinder problem. The outer radius of the covered muscle cylinder is also

0.132 m. The skin layer thickness is 2 mm. The E-field at 6 GHz on the sur-

face of the skin layer of the muscle cylinder with different fat layer thickness

is given in Fig. 4.29. The CPU runtime is 35 seconds. The figure shows the

analytical results matches well with the numerical results. In the case of fat
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Figure 4.29: E field on the outer surface of the muscle cylinder at 6 GHz

layer thickness is 5 mm, the numerical results and analytical results almost

overlap.

The power absorbed by a unit length of the muscle cylinder is calculated

by integrating the Poynting vector on its surface. We choose 1 GHz to 6

GHz as the frequency range since this is a band where the fat layer thickness

makes a lot of difference to the ACS, while over 6 GHz most of the EM power

would be absorbed by the skin, as being analysed in Fig. 2.2. The results

calculated by numerical impedance patching was compared to the analytical

solution in Fig. 4.30. Fig. 4.30 proves the effectiveness of surface impedance

patching in calculating the power loss. The effect of 3 mm fat layer change on

the power absorption can be evaluated accurately by the numerical method.
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Figure 4.30: The EM power absorbed by a unit length of the muscle cylinder

4.9 Summary

In this chapter we firstly performed a study on the posture’s effect on the

averaged human body ACS. The study shows the more extended posture tend

to give higher averaged ACS. Then the group measurements were conducted

on 48 subjects and the relation between the averaged human body ACS and

morphological parameters were studied. The measurement results show the

averaged human body ACS is highly correlated with the BSA over 6 GHz.

Therefore a linear empirical formula was inducted for quickly evaluating the

human body ACS from BSA with R2 > 0.8 over 6 GHz.

Below 6 GHz, the correlations between the human body ACS and all

morphological parameters become weaker. Therefore the linear empirical

formula is not suitable for predicting the ACS by morphological parameters

below 6 GHz. Instead, we modelled the ACS below 6 GHz by choosing several
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markers on the curve of human body absorption coefficient and use their

coordinates as simple predictors. The simple predictors were correlated to the

morphological parameters by linear formula. We found the local minimum

of the human body absorption coefficient around 5 GHz will shift to lower

frequencies as averaged fat layer thickness increases, which is very similar to

the feature of the absorption coefficient of the multi-layer spherical model.

The high absorption coefficient of human body at 1 GHz is also very similar

to the absorption property of multi-layer spherical model.

Enlightened by the similarity between the human body absorption coef-

ficient and that of a multi-layer sphere, we expanded the human body ab-

sorption coefficient into a summation of the absorption coefficients of several

multi-layer spheres with different surface layer thickness. The contribution

of each multi-layer sphere into the whole absorption coefficient is weighted

by a factor whose value is determined by the GA. The weighted average of

the surface layer thickness (skin layer thickness + fat layer thickness) of all

sphere models with the weight factor given by the GA gives results very close

to the skin fold measurement.

In the last section of this chapter, we presented a surface impedance

patching algorithm of calculating the EM power losses in an object. This

method can calculate the power absorption of objects with arbitrary surface

structure. The coupling between the internal field and the external field of

an object is modelled by an ABCD matrix. Then the Huygens’s principle

was applied to assign the ABCD matrix to a small patch on the surface of the

object. The coupling among all patches were given by the surface integral

equations. The integral equations were solved to give the EM field on the

surface.

The algorithm is validated by calculating the power absorption of a infi-

nite long multilayer cylinder incident by a TM plane wave. The numerical

results matches very well with the analytical solution.
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The merit of the surface impedance patching method is that it models the

multilayer surface structure by only one ABCD matrix, thus the number of

integral equations would not increase as the number of surface layer increases.

The impedance patching method provides a reliable way of modelling EM

power absorption from 1 GHz to 6 GHz.
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Chapter 5

Conclusion

In order to measure the ACS more efficiently in the RC, a new nonlinear

curve fitting technique in extracting chamber time constant were developed.

The new technique can cancel the effect of piecewise window function in the

IFFT, therefore it allows narrow window functions to be applied in the IFFT.

Comparing to the old linear fitting technique, the nonlinear curve fitting can

extract the ACS from fewer samples of S21, and do not harm the accuracy

at the same time. The measurement of small absorbing cubes in the RC

shows the nonlinear curve fitting typically requires 50% fewer S21 samples to

extract the ACS than the ordinary linear curve fitting does, but the accuracy

does not decrease.

The accurate ACS measurements were performed on 48 subjects from 1

GHz to 18 GHz. The morphological data of all subject were recorded. The

skin fold thickness was included in the measurement of morphological pa-

rameters. The subjects under test were supported by a stack of polystyrene

sheets with limbs extended for better exposure. Strong positive linear cor-

relations between the BSA and ACS were observed over 6 GHz. Another

very strong negative linear correlation between the measured ACS and SFT

was shown at 2.5 GHz. Techniques of mapping the human body absorption
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coefficient to SFT was demonstrated by expanding the absorption coefficient

of human into the summation of absorption coefficients of the multilayer

spherical model. The local minimum of human body absorption coefficient

at GHz region shifts to lower frequencies as the fat layer thickness increases,

which is assumed to be the result of matching effect of fat layer.

In order to accurately model the effect of the surface layer on the power

absorption of an object with arbitrary shape, the surface impedance patching

algorithm was brought out. The method was validated in 2D TM cases by

calculating the power absorption of lossy cylinders with different surface layer

thickness. The result given by the impedance patching method matches very

well with the analytical solution from 1 GHz to 6 GHz.

In general, all the three aims mentioned in Chapter 1 were achieved.

First, the human body ACS is extracted accurately from the S21 measured in

the RC. The measurement of a reference sphere model shows our method has

3.98% less MAPE than the method applied in the previous research. Second,

an empirical model of human body ACS was given by linear correlating

the coordinates of the saddle points on the absorption coefficient curves to

morphological parameters. At last, the EM power dissipation on the human

body surface is modelled by solving Maxwell equations numerically with

surface impedance patching algorithm.

5.1 Future works

Here are some suggestions on the future works.

1. In order to accurately determine the relations between the BFP and

the averaged ACS of human body, the MRI or the dual-energy X-ray ab-

sorptiometry (DEXA) can be applied to determine the BFP more accurately

than the skin fold method. The MRI is a non-invasive imaging technique

which produce section images of human body by magnetic fields and radio
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waves; The DEXA produces the inner body image by X-rays of different

energy levels, which are usually used for body composition determination.

2. We conducted the group study on the correlation between BFP and

human body ACS, which suggests the fat layer acts as a matching layer in the

power absorption. This conclusion may be validated more comprehensively

by tracking on a single subject’s BFP and ACS. The subjects may be asked

to manage their diet and exercise, thus their BFP and ACS would change

with time. The single subject study would help in excluding the unknown

factors that might change the ACS.

3. Our research only validated the impedance patching method in the

2D cases, we suggest the future work should include 3D application of this

algorithm. This algorithm would be helpful in general applications such as

the calculation of fields scattered by objects covered by thin surface layers.
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Chapter 6

Appendices

6.1 Huygen’s equivalent principle

The Huygens’ equivalence principle says the actual sources (antenna, trans-

mitter) can be replaced by equivalent surface sources about a region, and

the equivalent sources will be generating the same field in that region as the

actual sources do [97]. The basic idea is shown in Fig. 6.1 where n̂ is the

unit normal vector on a enclosed surface; ~J and ~M are the actual electric

current source and magnetic current source being enclosed; ~E and ~H are the

external field generated by the actual sources; ~Je and ~Me are the equivalent
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Figure 6.1: The Huygens equivalent principle
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current sources which generate the same external field E and H as the actual

source do; ~E1 and ~H1 are the internal field generated by ~Je and ~Me. Beware

that the internal field ~E1 and ~H1 of the equivalent problem may be different

from the ~E and ~H of the original problem inside the boundary. The ~Je and

~Me can be calculated from ~E, ~H, ~E1, ~H1 by ~Je = n̂×
(
~H − ~H1

)
~Me = −n̂×

(
~E − ~E1

) (6.1)

In fact, the inner field ~E1 and ~H1 can be any field distributions as long as

both of them satisfy the Maxwell’s equations in source free region. Obviously

~E1 and ~H1 can be chosen as zero. Then (6.1) transform into: ~Je = n̂× ~H

~Me = −n̂× ~E
(6.2)

It is also worth to point out (6.1) stands only when the whole region (inside

and outside the boundary) is homogeneous. In the non-homogeneous cases,

such as a scattering object is presented, the equivalent currents should be

given in a different way. One common approach is to break down the scat-

tering problem into two problems: one external, one internal [98]. The idea

is presented in Fig. 6.2.

The background media for the two problems are different. In problem 1

(the external problem), the background media is free space, and the external

field generated by equivalent sources is the same as the external field of

the original scattering problem. Using (6.1), The equivalent sources are

calculated by:  ~J0 = n̂× ~Hs0

~M0 = −n̂× ~Es0
(6.3)
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In problem 2 (the internal problem), the background media is the same as

the media of the scattering object in the original scattering problem. In this

case, the external field is set to be zero and the internal field is same as that

of the original problem. The equivalent source is calculated by ~J1 = −n̂× ~Hs1

~M1 = n̂× ~Es1
(6.4)

Since the tangential EM field on Ω should be continuous in the original

problem, there is: n̂× ~Hs1 = n̂×
(
~Hinc + ~Hs0

)
n̂× ~Es1 = n̂×

(
~Einc + ~Es0

) (6.5)
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Substituting (6.3) and (6.4) into (6.5) gives:− ~J1 = n̂× ~Hinc + ~J0

~M1 = n̂× ~Einc − ~M0

(6.6)

Equation (6.6) gives the relation between the equivalent sources of two sub

problems. But these are only two linear equations from which is not possible

to solve four unknown variables. Therefore we need two other independent

equations to give a unique solution of ~J0, ~M0, ~J1, ~M1.

The Green’s function has to be introduced to give the rest of the two

equations. The Green’s function is the solution of an inhomogeneous linear

differential equation [91]:

LG(~r, ~r′) = δ(~r − ~r′) (6.7)

where δ(~r− ~r′) is the Dirac delta function; ~r′ is the position vector indicating

the position of the impulse source; G is Greens function; L is the linear

differentiate operator acting on ~r. Simply speaking, Green’s function gives

a field distribution excited by a impulse source. Since an arbitrary source

can be represented by a linear combination of many independent impulse

sub-sources, the total field excited by this arbitrary source can be calculated

by the summation of all the fields excited by the impulse sub-sources.

Given equivalent sources ~Je, and ~Me, the field generated by the equivalent

sources in the media (µ, ε) can be written as [99]:

E(~r, ε, µ, ~Je, ~Me) =
‹
S

[
jωµ ~Je(~r′)G(~r, ~r′)− ρJ(~r′)

ε
∇′G(~r, ~r′) + ~Me(~r′)×∇′G(~r, ~r′)

]
dS (6.8)
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H(~r, ε, µ, ~Je, ~Me) =
‹
S

[
jωε ~Me(~r′)G(~r, ~r′)− ρM(~r′)

µ
∇′G(~r, ~r′) + ~Je(~r′)×∇′G(~r, ~r′)

]
dS (6.9)

where ρJ is free electric charges; ρM is fictional magnetic charges. They

can be calculated by: ρJ = −∇· ~J
jω

ρM = −∇· ~M
jω

(6.10)

In the original problem demonstrated in Fig. 6.2, the tangential compo-

nent of EM field is continuous over the boundary, the full form of SIE can

be written as:n̂×
[
~Es0(~r′, ε0, µ0, ~J0, ~M0) + ~Einc

]
= n̂× ~Es1(~r′, ε1, µ1, ~J1, ~M1)

n̂×
[
~Hs0(~r′, ε0, µ0, ~J0, ~M0) + ~Hinc

]
= n̂× ~Hs1(~r′, ε1, µ1, ~J1, ~M1)

(6.11)

where Es0, Hs0, Es1, Hs1 are calculated by (6.8) and (6.9). ~J0, ~M0, ~J1, ~M1

satisfy (6.6).

The SIE (6.11) can be solved by method of moments [91]. So far the

problem is restricted to homogeneous scatterers. When the scatterer is inho-

mogeneous, equivalent sources should be applied on every enclosed interfaces

within the scatterer, therefore the number of unknowns would quickly in-

crease, which makes solving the SIE becoming very inefficient.
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List of Abbreviations

2D 2 dimensional

3D 3 dimensional

ACS absorption cross section

BD body density

BFP body fat percentage

BMI body mass index

BSA body surface area

CIR channel impulse response

DEXA Dual energy X-ray absorptiometry

EM electromagnetic

FD frequency domain

FDTD finite difference time domain

GA genetic algorithm

HDPE high density polystyrene

IFFT inverse Fourier transform

MAPE mean absolute percentage error

MoM method of moments

MRI magnetic resonance imaging

PDP power delay profile

RC reverberation chamber

RMS root mean square
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SAR specific absorption rate

SFT skin fold thickness

SIE surface integral equation

TD time domain

VNA vector network analyser

VIE volume integral equation

WBSAR whole-body specific absorption rate
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