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Abstract 

Replication of many positive-strand RNA viruses have been shown to occur within 

intracellular membrane-associated compartments termed replication complexes. 

Replication of viral RNA occurs within these intracellular compartments as a way for 

the virus to concentrate the structural and non-structural components into a small 

area to facilitate replication as well as protecting the virus components from host-

cell pathogen recognition and innate immune responses. Using immunofluorescent 

confocal and electron microscopy, foot-and-mouth disease virus (FMDV) has been 

shown to dysregulate Golgi and ER-derived membranes, but to date, no distinct 

membrane-bound replication complex comprised of viral RNA, structural and non-

structural proteins, and host-cell proteins have yet to be identified for FMDV. 

The FMDV RNA-dependent RNA polymerase, 3Dpol, is the primary protein involved in 

virus genome replication and has been previously shown to form higher-order fibril-

like structures in vitro in the presence of RNA. These 3Dpol fibril structures could act 

to ‘scaffold’ replication complex formation. Here, several mutations were made in 

3Dpol to assess their role in higher-order complex formation. The ability for the 

different 3Dpol mutations to function was assessed biochemically, structurally and in 

cell culture. The results point towards the necessity for a fully functional (catalytically 

active) polymerase in the formation of the higher-order structures. Furthermore, 

complementation studies indicate that 3Dpol has two distinct functions necessary for 

replication within cells. 

Additionally, it was pertinent to investigate the role of membrane-associated kinases, 

such as PI4K, as a number of related viruses utilise this cellular pathway to form an 
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optimal environment within which viral replication can occur by upregulating the 

formation of lipids used in the building of intracellular membranes. Investigation of 

translation and replication of FMDV RNA within cells show that FMDV does not 

appear to utilise the PI4K pathway. These results highlight differences between 

FMDV and other related picornaviruses and provide a basis to investigate alternative 

methods for replication complex formation. 
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Chapter 1  

Introduction 

1.1 Picornaviruses 

1.1.1 Classification and genome structure 

Picornaviruses are a diverse family of small RNA viruses. The family consists of 35 

genera and over 80 species of single-stranded positive sense RNA (+ve ssRNA) viruses 

as classified by the International Committee on Taxonomy of Viruses (ICTV) in 2016 

(ICTV, 2016; Adams et al., 2017). Many of these viruses (summarised in Table 1.1) are 

significant causative agents of human and animal disease. Members include 

poliovirus (PV), human rhinovirus, bovine enterovirus, hepatitis A virus and, foot-

and-mouth disease virus (FMDV). PV, belonging to the genus Enterovirus, is one of 

the most well-defined viruses; much of the research on the replication processes of 

Picornaviridae is due to the discovery that PV could be propagated in cell culture 

(Enders et al., 1949) and for review see Racaniello, 2007. 

The term “picornavirus” is derived from “pico”, meaning small, and “RNA”, which 

refers to the ribonucleic acid contained within the non-enveloped, icosahedral capsid 

of all picornaviruses. Picornaviruses measure between 18-30 nm in diameter and 

contain a +ve ssRNA genome between ≈7.5-8.5 kb in length (reviewed in Racaniello, 

2007).  Despite being a diverse family, picornaviruses share a very similar genome 

structure and organisation (as highlighted in Fig. 1.1). The FMDV RNA encodes for a 

large single polyprotein that can be separated into three regions: P1 (1A-1D) that 
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encodes for the structural (capsid) proteins, P2 (2A-2C) and P3 (3A-3D) which encode 

for the non-structural proteins necessary for the replication of the genome and the 

manipulation of the host-cell environment. The genome is flanked by two highly 

structured untranslated regions (UTR) located at the 5ʹ and 3ʹ termini of the genome. 

The 5ʹ UTR is covalently linked to protein VPg, and contains a number of highly-

structured RNA elements including an internal ribosome entry site (IRES). The 3ʹ UTR 

is polyadenylated (Rueckert et al., 1984; Stanway, 1990) and contains two stem-loop 

structures preceding the poly-A tract. The two stem-loops at the 3ʹ UTR have been 

shown, through studies using FMDV infectious clones and passaging in cell culture, 

to be involved in the replication ability of the RNA. Exchanging the 3ʹ UTR with the 

equivalent region of swine vesicular disease virus, or deleting the 3’ UTR region 

abrogated virus replication (Sáiz et al., 2001). The FMDV 3ʹ UTR has also been shown 

to be involved in the circularisation of the genome by interacting with structural 

elements in the 5ʹ UTR (Serrano et al., 2006). 

Figure 1.1 Schematic representation of the FMDV genome organisation. Most 

picornaviruses share a similar genome structure and organisation. FMDV contains a 

very long 5ʹ UTR, a ‘leader’ protease (Lpro) coloured in light blue, and three tandem 

copies of the 3B protein. Adapted from (Forrest et al., 2014). 

Upon entry into the cell and after capsid uncoating, the FMDV RNA genome is 

translated in a cap-independent mechanism using the IRES located in the 5ʹ UTR. 

Following translation, the polyprotein is cleaved into the structural and non-
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structural proteins by two viral-encoded proteases: leader (Lpro) (present in some 

picornaviruses) and 3C, and by a region termed 2A that results in cleavage of the 

polyprotein through due to ribosome skipping (see section 1.2.3.5.1). 2A cleaves the 

structural P1 proteins away from the non-structural P2 and P3 regions, and 3C 

cleaves the remaining non-structural proteins into their active forms (Stanway, 1990; 

Lin et al., 2009). 

Despite sharing a similar genome organisation, a number of picornavirus species 

differ in some of their genomic constituents. A major difference between some 

picornavirus family members is located in the 5ʹ UTR. Cardioviruses and 

aphthoviruses have a significantly larger 5ʹ UTR than enteroviruses and rhinoviruses 

(1300 bp compared to 600 bp) as they contain a large poly-C tract. Other differences 

can be found within Lpro, 2A and in the number of 3B protein copies they contain 

(Palmenberg, 1987; Stanway, 1990). These are discussed in more detail in 

subsequent sections. 

Genus Species examples Accession number 

Ampivirus 
Ampivirus (newt 

picornavirus) 
KP770140 

Aphthovirus 

Foot-and-mouth disease 

virus 
AY593829 

Bovine rhinitis A virus EU236594 

Equine rhinitis A virus DQ272578 

Aquamavirus Seal aquamavirus AY593829 

Avihepatovirus Duck hepatitis A virus EU142040 

Avisivirus 
Avisivirus (chicken 

picornavirus) 
DQ226541 

Cardiovirus Encephalomyocarditis virus KC614703 



4 
 

Genus Species examples Accession number 

Theiler's murine 

encephalomyeltits virus 
M81861 

Cosavirus Human cosavirus FJ438902 

Dicipivirus Canine picodicistrovirus JN819202 

Enterovirus 

Coxsackievirus A16 AY421760 

Coxsackievirus B3 M88483 

Poliovirus V01149 

Enterovirus D68 AY426531 

Rhinovirus A FJ445111 

Erbovirus Equine rhinitis B virus X96871 

Gallivirus Gallivirus JQ691613 

Harkavirus Falcovirus KP230449 

Hepatovirus Hepatitis A virus M14707 

Hunnivirus Hunnivirus JQ941880 

Kobuvirus Aichi virus AB040749 

Kunsagivirus Kunsagivirus KC935379 

Limnipivirus Carp picornavirus KF306267 

Megrivirus Turkey hepatitis virus HM751199 

Mischivirus Mischivirus JQ814851 

Mosavirus Mosavirus JF973687 

Oscivirus Oscivirus GU182408 

Parechovirus Human parechovirus S45208 

Pasivirus Pasivirus JQ316470 

Passerivirus Passerivirus GU182406 

Potamipivirus Eel picornavirus KC843627 

Rabovirus Rabovirus KP233897 

Rosavirus Rosavirus JF973686 

Sakobuvirus Feline sakobuvirus KF387721 

Salivirus Salivirus GQ179640 

Sapelovirus Avian sapelovirus AY563023 
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Genus Species examples Accession number 

Porcine sapelovirus AF406813 

Simian sapelovirus AY064708 

Senecavirus Seneca Valley virus DQ641257 

Sicinivirus Sicinivirus KF741227 

Teschovirus Porcine teschovirus AF231769 

Torchivirus Tortoise picornavirus KM873611 

Tremovirus 
Avian encephalomyelitis 

virus 
AJ225173 

Table 1.1 Summary of the 35 confirmed genera in the family Picornaviridae (as of 

2016). Adapted from ICTV 2016 Master Species List (ICTV, 2016). 

1.1.2 Aphthoviruses 

Aphthoviruses are a genus of picornaviruses, members include FMDV, bovine rhinitis 

A virus (BRAV), bovine rhinitis B virus (BRBV) and equine rhinitis A virus (ERAV), 

according to the ICTV (Knowles et al., 2012; Knowles, 2017) (Fig. 1.2). FMDV has 

seven serotypes that are prevalent globally (A, O, C, Asia-1 and South African 

Territories (SAT) 1, 2 and 3). FMDV is the causative agent of foot-and-mouth disease 

(FMD) in cloven hooved animals. BRAV has two serotypes, and BRBV only has one 

serotype. Both infect cattle, as their name suggests. ERAV contains one serotype and 

is the causative agent of upper respiratory infection in horses (Knowles, 2017). The 

different aphthovirus members contain a poly-C tract within the 5ʹ UTR, and an Lpro 

sequence marking the start of the polyprotein open reading frame (ORF). FMDV is 

the only aphthovirus species that contains three non-identical tandem repeats of 

protein 3B (Stanway, 1990; Knowles et al., 2012; Palmenberg, 1987). 
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Figure 1.2 Neighbour-joining phylogenic tree of the aphthovirus genus members. 

The P1 (1A-1D) amino acid sequences were used to show the relationship between 

the different serotypes of each species. The FMDV serotypes compared here are O, 

A, C, Asia-1, SAT1, SAT2 and SAT3. Accession numbers of each serotype is shown. 

Adapted from (Knowles, 2017).  
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1.2 Foot-and-Mouth Disease Virus 

1.2.1 History, Taxonomy and Epidemiology 

Foot-and-mouth disease (FMD) is a highly infectious, vesicular disease of both 

domestic and wild cloven-hooved animals including cattle, sheep, swine, goats, 

buffalo and deer (Otto, 1994; Pacheco et al., 2003; Grubman et al., 2004; García-

Briones et al., 2006). The first written description of FMD in cattle is believed to have 

been documented by Hieronymus Fracastorius in 1514, and later published in his 

major work “De contagione et contagiosis morbis et eorum curatione” (Infectious and 

contagious diseases and their treatment) where he also outlined the concept of 

epidemic disease in 1546 that identifies the transmission of a vesicular disease in 

cattle (Grubman et al., 2004). In 1897, at the dawn of the “virology era”, German 

scientists Loeffler and Frosch identified that the causative agent of FMD was 

filterable. This later led to the characterisation of foot-and mouth-disease virus 

(FMDV) (Loeffler et al., 1897; Modrow, 1929; Grubman et al., 2004). 

There are seven different serotypes of FMDV (A, O, C, Asia-1, SAT1, 2, and 3). The 

large number of FMDV serotypes contributes to the difficulty in the development of 

effective FMDV vaccines as there is no cross-protection. There is a global prevalence 

of FMDV and there is a propensity for regions to be endemic to a number of different 

serotypes, which can be classified as pools (Fig. 1.3) (Di Nardo et al., 2011; Jamal et 

al., 2013). Serotypes O, A and C were considered the most widely distributed 

(Knowles et al., 2005), however, it is believed that serotype C is no longer extant 

outside of laboratories with the last reported outbreak being in Ethiopia in 2005 
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(Rweyemamu et al., 2008), and the last reported outbreak of serotype A was in 

eastern Asia in 2010 (Park et al., 2013). Asia-1, SAT1 and SAT2 have a more limited 

geographic distribution. SAT3 is only present in pools identified in southern Africa. 

Figure 1.3 Map showing the geographical distribution of the seven different FMDV 

serotypes highlighted in pools. Map from (Jamal et al., 2013). 

1.2.2 Virus Transmission and Control 

FMDV is highly contagious and has multiple known routes of transmission. The 

known routes of transmission are by respiratory transmission, by direct contact of 

infected animals through the fluid from blisters, blood, saliva and milk, through 

fomite contact including via agricultural trucks and loading ramps, and from feed 

containing products from infected animals (reviewed in Grubman and Baxt, 2004; 

Racaniello, 2007).  

FMDV has been classified as a zoonosis, although transmission and manifestation of 

clinical symptoms in humans are extremely rare. Since the characterisation of the 

virus in 1897, only one confirmed and 40 unconfirmed human cases of FMDV have 
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been documented worldwide (Bauer, 1997). The only confirmed case of a human 

infected with FMDV in the UK was recorded in 1966. The infection resulted in the 

development of clinical symptoms, virus recovery from the lesions and antibody 

production (Armstrong et al., 1967). However, humans have been shown to be 

carriers of the virus; following contact with infected animals the virus was recovered 

from the nose, throat and saliva of the individuals, however no clinical symptoms 

were identified, nor was there any increase in antibody production resulting from 

exposure to the virus (Sellers et al., 2009). Humans are also able to physically 

transport the virus via fomite transmission to susceptible animals. No human-to-

human transmission has been documented (Brown, 2001; Sellers et al., 2009). 

The threat of FMDV infection in cloven-hooved livestock is increased by the ability 

for the virus to replicate rapidly within the target cells, and by the high levels of 

excreted virions. These characteristics contribute to the production of highly 

antigenic variability and a quasispecies nature of the virus which poses a challenge 

to vaccine production. Upon infection, FMDV mediates efficient host-cell protein 

synthesis shut down by cleavage of the essential cap-dependent translation initiation 

factor eIF4G. As a result of this shut down, infected cells struggle to mount an 

effective antiviral response based on de novo protein synthesis (Domingo, Escarmís, 

et al., 2005; Domingo, Pariente, et al., 2005; Summerfield et al., 2009). 

Due to the need to produce an efficient vaccine against FMDV, knowledge of the 

adaptive immune response against FMDV infection has been well-characterised. 

FMDV has been shown to elicit a rapid humoral response followed by effective 

clearance through phagocytic cells. Within 3-4 days post-infection high levels of 
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neutralising antibodies can be detected in infected livestock (McCullough et al., 1988; 

Doel, 2005). However, the innate immune response to FMDV infection and viral 

replication is less well understood. Recent studies have attempted to shed light on 

these interactions particularly when considering novel antiviral strategies 

(Summerfield et al., 2009). 

As with most viral infections, FMDV-infected non-immunological cells induce the 

production of interferons (IFNs), chemokines and cytokines, however, due to the 

effective host-cell protein synthesis shut-down mediated by FMDV, the production 

IFN, chemokines and cytokines from mRNA is limited resulting in a downregulation 

of MHC-I-mediated antigen presentation (Sanz-Parra et al., 1998; Ku et al., 2005; de 

Los Santos et al., 2006; de los Santos et al., 2007). Studies by de los Santos et al. 

demonstrated that FMDV can also interfere with NFκB signalling, and result in the 

down-regulation of the p65/RelA subunits of the molecule even at later times during 

infection (de los Santos et al., 2007). The generation of a rapid, and well-established 

adaptive immune response points to an active innate response being present within 

infected cells.  

FMDV was responsible for the slaughter of over 7 million livestock in the UK alone 

during two major national outbreaks in 1967 and 2001. The spread and control of the 

virus had an unprecedented economic impact of over £8 billion. Other countries 

including Taiwan, Ireland, France, South Africa and the Netherlands have had similar 

outbreaks with comparably devastating effects on their tourism, agricultural and 

financial economies (reviewed in Sobrino et al., 2001; Sáiz et al., 2002). There are a 

number of vaccines against FMDV already available, however they are only 
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economically viable in regions and farms that are endemic to FMDV (Sobrino et al., 

2001; Sáiz et al., 2002). There are a number of limitations associated with the 

vaccines despite their success, making them counter-productive in an emergency 

outbreak situation. Some of the concerns include the need for a high-containment 

facility to produce the vaccines and the use of cell suspensions to grow virus for the 

vaccine. The use of cell suspension for vaccine production can result in a high 

concentration of contaminating non-structural proteins resulting in the animals 

producing antibodies against these proteins making it difficult to serologically 

distinguish between vaccinated animals and infected animals. Modern methods of 

production of these vaccines have, however, improved and contamination of the 

vaccine with non-structural proteins has been reduced. 

Additionally, the current inactivated vaccines do not induce a rapid immune response 

and vaccinated animals have the potential to become carriers of the virus and 

experience long-term asymptomatic infection but still able to shed virus to naïve 

animals; animals may remain in a carrier-state for up to 4 years (Brown, 2001; 

reviewed in Grubman and Baxt, 2004). However, recent studies have defined 

methods such as ELISA-based assays and diagnostic assays targeting non-structural 

viral proteins, that allow for easier differentiation of vaccine-derived and virus-

infected animals (reviewed in Sáiz et al., 2002; Alexandersen et al., 2002). The most 

widely-used method of containing an outbreak in the UK and the European Union is 

by the inhibition of movement and the slaughter of infected and in-contact 

susceptible livestock (Grubman et al., 2004); this could potentially be prevented by 

the development of therapeutic drugs and alternative vaccine strategies. 
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There have been recent developments in the field of alternative vaccines that do not 

require infectious virus. A vaccine using the highly immunogenic VP1 capsid protein 

(encoded for by 1D) has been developed; however, when tested in a bovine 

population, the vaccine produced limited protection against a challenge. It is believed 

that the quasispecies nature of the virus resulted in the selection of antigenic variants 

as a response to the vaccine, which can make the development of an effective 

vaccine challenging (Kleid et al., 1981; Taboga et al., 1997; Tami et al., 2003). More 

recently, studies have shown that the antigenic region of the VP1 (termed the G-H 

loop) may have been necessary for protection against challenge in cattle. As such, by 

removing a portion of the VP1 G-H loop, a ‘negative vaccine’ could be developed 

which could both protect cattle from challenge as well as differentiate vaccinated 

and infected animals (through the detection of antibody production against the 

modified G-H loop sequence) (Fowler et al., 2008; Fowler et al., 2010; Fowler et al., 

2011). Live-attenuated vaccines have also been developed and tested, although they 

provide good protection in the bovine population, there were concerns that the 

attenuated strains may still be virulent in other host populations (e.g. porcine) in 

addition to the risk that live attenuated vaccines may revert back to the wildtype 

phenotype (Beck et al., 1987; Sobrino et al., 2001; Grubman et al., 2004). Empty viral 

capsids and virus-like particles consisting of the co-expression of the capsid proteins 

VP0, VP1 and VP3 (encoded for by 1D, 1A-B and 1C, respectively) on a plasmid in E. 

coli, have also been developed for the use as a vaccine. To date, they have been the 

most successful alternative form of vaccination, inducing complete protection when 

challenged at seven days (Grubman et al., 2004; Porta, Xu, et al., 2013; Porta, 

Kotecha, et al., 2013; Xiao et al., 2016).  
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However, in an emergency situation, a method is needed to rapidly reduce virus 

shedding and contain an outbreak. To do this, antiviral approaches could be 

developed. It has been shown that interferon effectively inhibits virus production and 

induces an innate immune response in the infected cells. If delivered prophylactically 

and in combination with the current vaccine, the interferon treatment could allow 

time for the adaptive immune response induced by the vaccine to activate and clear 

the infection (Ahl et al., 1976; Almeida et al., 1998; Chinsangaram et al., 2001; 

Grubman et al., 2002). However, trials using interferon in combination with the 

empty viral capsids failed to completely clear the challenged animals of the virus (Wu 

et al., 2003). 

For a successful antiviral drug to be developed, a better understanding of the innate 

immune response, particularly in ruminants, needs to be established. The production 

of an effective antiviral requires a target that is conserved in all serotypes of the virus 

and inhibit the ability of the virus to replicate and spread to other cells. Key targets 

include the major viral protease, 3C and the viral polymerase, 3Dpol, responsible for 

the replication of the viral genome and highly conserved among all serotypes. 

Understanding and inhibiting the function of these proteins could lead to the 

development of an effective broad-spectrum and fast-acting antiviral therapeutic. 

1.2.3 Genome Structure  

The FMDV virion is composed of an 8.3 kb +ve ssRNA genome encapsidated in a 

simple pseudo-icosahedral capsid approximately 25 nm in diameter. The capsid is 

composed of 60 copies of four structural proteins VP1-4, encoded by 1D, 1B, 1C and 

1A, respectively (protomer). VP1, VP2 and VP3 are exposed on the surface of the 
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capsid, whereas VP4 is internalised (Fig. 1.4). The viral RNA that is packaged within 

the capsid is arranged in a single ORF, organised like a cellular mRNA, which is 

translated as a single polyprotein that is co- and post-translationally cleaved by three 

virus-encoded proteases (Lpro, 2A and 3C) into intermediate and mature structural 

and non-structural proteins  (Burroughs et al., 1971; Robertson et al., 1985; Grubman 

et al., 2004; Jamal et al., 2013; Gao et al., 2016). The viral genome is flanked by 5ʹ and 

3ʹ UTRs that contain regulatory elements of replication and translation.   



15 
 

Figure 1.4 Schematic of the FMDV genome organisation and capsid protein 

structure. The structural proteins 1A-1D encoding for VP1-4 are colour coded in 

yellow, blue, pink and green, respectively and their organisation within the protomer, 

pentamer and pseudo-icosahedral capsid are depicted. VP4, encoded by 1A is not 

visible as it is internalised. Non-structural proteins are depicted in dark blue. Arrows 

show the major cleavage sites between Lpro (turquoise) and the P1 region, 2A 

between the P1 and P2-P3 region and 3C that cleaves between the non-structural 

proteins in the P2-P3 region. Adapted from (Jamal et al., 2013).  
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1.2.3.1 The 5ʹ UTR 

Figure 1.5 Schematic depicting the location and organisation of the FMDV 5ʹ UTR. 

It is a 1.3 kb region of five highly structured RNA elements. The elements are: the S-

fragment, the poly-C tract, two to four pseudoknot structures, the cis-acting 

replicative element (cre), and the internal ribosome entry site (IRES). 

1.2.3.1.1 The S-fragment 

FMDV has a much larger 5ʹ UTR that other picornaviruses containing approximately 

1,300 bases (Forss et al., 1984; Grubman et al., 1984; Robertson et al., 1985). The 

5’UTR, upstream of the ORF, can be divided into five structural elements (Fig 1.5). 

The first structural element is the S-fragment, a long, 360 base-pair stem-loop 

structure believed to be involved in maintaining genome stability, and may play a 

role in virus genome replication. The S-fragment is found in all FMDV serotypes, some 

sequence conservation has been observed by digestion with RNase H in the presence 

of oligo (dG), and use of sequencing gels within this region of the FMDV genome 
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(Rowlands et al., 1978; Harris, 1979; Harris, 1980; Newton et al., 1985; Belsham et 

al., 1990; Bunch et al., 1994; Mason et al., 2002; Belsham, 2005; Carrillo et al., 2005; 

Jamal et al., 2013). Some S-fragment truncations have been reported in the wild 

within SAT isolates (personal communication Lidia Lasecka, Pirbright Institute; Joseph 

Ward, Leeds; Valdazo-González et al., 2013) 

1.2.3.1.2 The Poly-C tract 

Following the highly structured S-fragment is a poly-C tract of variable length (100-

200 bp) (Brown et al., 1974; Newton et al., 1985; Black et al., 1979; Costa Giomi et 

al., 1984) (Fig 1.5). The function of the poly-C tract is currently unknown, however, it 

has been suggested that it could be associated with virulence, or in regulating the 

switch from translation to genome replication through a proposed interaction with 

the cellular poly(rC) binding protein (PCBP). Other studies have suggested that the 

removal of the poly-C tract had no effect on viral replicon in vitro (personal 

communication, Joseph Ward (Leeds)), or on virus infectivity (Harris et al., 1977; 

Rowlands et al., 1978; Sangar et al., 1980; Kühn et al., 1990; Rieder et al., 1993; 

Gamarnik et al., 1997).  

1.2.3.1.3 The Pseudoknots and the cis-acting replicative element 

At the 3ʹ end of the poly-C tract are a series of two to four RNA pseudoknots of 

unknown function (Clarke et al., 1987; Rieder et al., 1993; Le et al., 1993; Escarmís et 

al., 1995; Carrillo et al., 2005), followed by a cis-acting replicative element (cre) (Fig 

1.5). The cre is a short (55 nucleotide) stem-loop structure with a conserved motif 

around the bulge of the loop (AAACA) which is essential for the initiation of RNA 

genome replication. The cre acts as the template for the uridylylation of replication 
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primer(s) 3B (or VPg) (which then becomes linked to the 5ʹ end of the genome 

upstream of the S-fragment). In other picornaviruses, for example, in PV, the cre is 

located within the protein-coding region, however, in FMDV this structure is localised 

to the 5ʹ UTR (Paul et al., 2000; Mason et al., 2002; Mason et al., 2003; Grubman et 

al., 2004; Belsham, 2005). 

1.2.3.1.4 The Internal Ribosome Entry Site 

As with all picornaviruses, FMDV does not contain a 5ʹ 7-methylguanosine cap to 

initiate translation, instead it contains a 450-nucleotide internal ribosome entry site 

(IRES) structure. The FMDV IRES immediately precedes the AUG translation initiation 

codons of the genome (Fig 1.5). It is at this site that the ribosome and translation 

initiation factors bind and drive translation of the viral RNA. (Belsham et al., 1990; 

Kühn et al., 1990; Pilipenko et al., 1992; Mason et al., 2002; Grubman et al., 2004; 

García-Nuñez et al., 2014).  

The FMDV IRES is classified as a type II IRES structure, shared with cardioviruses such 

as encephalomyocarditis virus (EMCV). Other types of IRESs include type I (found in 

enteroviruses and rhinoviruses), type III found in hepatitis A virus, and finally a HCV-

like ‘type IV’ IRES (Beales et al., 2003; Martínez-Salas et al., 2015). As with other IRES, 

the FMDV type II IRES it is a cis-acting highly-structured RNA sequence located at the 

5ʹ region of the genome. Despite the lack of conserved sequence and RNA structure, 

the function of the IRESs of different viruses remains the same. The key differences 

between the different IRES types are primarily in the number and secondary RNA 

structure of the domains, and the combination of cellular interacting and binding 

partners (Beales et al., 2003; Kieft, 2008; Martínez-Salas et al., 2015). 
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Eukaryotic cells have also been shown to be able mediate translation of up to 85 

mRNAs in a cap-independent manner. The first of such IRES-containing cellular 

mRNAs that was defined encodes for BiP, the immunoglobulin heavy chain binding 

protein (Sarnow, 1989; Macejak et al., 1991; Hellen et al., 2001; Baird, 2006). 

1.2.3.2 The 3ʹ UTR 

Figure 1.6 Schematic depicting the location and organisation of the FMDV 3ʹ UTR. 

The region is composed of two stem-loop structures preceding a poly-A tail. 

The 3’ UTR located downstream of the ORF termination codon contains a sequence 

of ≈90 nucleotides that forms two stem-loop structures, followed by a poly-A tail 

(Porter et al., 1978; Belsham, 2005; Serrano et al., 2006) (Fig 1.6). The 3’ UTR has 

been shown by multiple studies to be important in PV and FMDV genome replication 

and infectivity through the circularisation of the genome mediated by the poly-A 

binding protein (PABP) and the S-fragment in the 5ʹ UTR (Barton et al., 2001; Herold 

et al., 2001; López de Quinto et al., 2002; Serrano et al., 2006). The terminal A 

residues of the poly-A tail also permit for the generation of a negative strand 
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replication intermediate through the binding of the uridylylated VPg during genome 

replication (Herold et al., 2001; Barton et al., 2001; Mason et al., 2003). As mentioned 

previously, the two stem-loops at the 3ʹ UTR have been shown to be involved in the 

replication ability of the RNA. Exchanging the 3ʹ UTR with the equivalent region of 

swine vesicular disease virus, or deleting the 3’ UTR region abrogated virus 

replication (Sáiz et al., 2001). Additionally, the deletion of one of the stem-loop 

structures in 3’ UTR has been shown to affect the replication efficiency in virus 

infected, and in replicon transfected cells (Sáiz et al., 2001; Gao et al., 2016; Fiona 

Tulloch (Edinburgh), personal communication). 

1.2.3.3 The Leader proteinase 

The first product of the genome ORF is the leader (Lpro) protein, a proteinase unique 

to Aphthoviruses, which contains two in-frame initiation codons (AUG). Two forms of 

the L-proteinase are generated: Labpro and Lbpro. Site-directed mutagenesis studies 

have shown that Lbpro alone was sufficient and necessary for the production of live, 

infectious virus (Fig 1.7). Deletion of the first AUG (Labpro) abolished replication of 

viral RNA, whereas deleting the second AUG (Lbpro) had no effect on replication 

(Carroll et al., 1984; Sangar et al., 1987; X Cao et al., 1995; Belsham, 2013). Deletion 

of the Lpro from the genome without the spacer function of the leader sequence, 

rendering it ‘leaderless’, whilst maintaining the second AUG, affected the virulence 

of FMDV, but was not necessary for viral replication (Piccone et al., 1995; Grubman 

et al., 2004). Studies of viruses recovered from infectious clones where the L-

proteinase was deleted showed remarkable attenuation in cattle, caused no clinical 

symptoms, and were unable to spread to other animals despite being able to 
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replicate at slightly reduced efficiency in cell culture (X Cao et al., 1995; Brown et al., 

1996; Chinsangaram et al., 1998).  

L-proteinase has been shown to play a role in promoting translation of the virus RNA 

as it inhibits host-cell cap-dependent mRNA translation and protein synthesis. The L-

proteinase cleaves the host-cell translation initiation factor eIF4G (Piccone et al., 

1995; Mason et al., 1997). Cleavage of eIF4G effectively shuts off the host-cell 

translation mechanism and allows for the various translation initiation factors 

including eIF4A to bind to the virus IRES and interact with the ribosome to drive viral 

RNA translation but eliminates the ability of eIF4G to bind eIF4E, the cap binding 

protein (Devaney et al., 1988; Kirchweger et al., 1994; López de Quinto et al., 2000; 

Saleh et al., 2001). 

Figure 1.7 Schematic of the FMDV genome showing the proposed ORFs of each of 

the viral proteins. The 5’ untranslated region (UTR) is located upstream of the 

polyprotein. The leader protease (Lpro) is shown containing both transcription start 

codons; (LbPro) is sufficient for transcription and translation. The structural proteins 

are transcribed from segment P1 (1A-1D) and are co-and post-translationally 

processed to make mature capsid proteins (VP1-4). Segments P2 and P3 encode for 

the non-structural proteins necessary for replication of the genome (2A-3D). 

Likewise, both these segments are co- and post-translationally modified into the 

mature proteins. A poly-A tract at the 3’ UTR signifies the end of the genome ORF. 

Adapted from Forrest et al., 2014. 
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1.2.3.4 Structural proteins 1A-1D/2A  

As highlighted in figure 1.4, the structural proteins of FMDV that form the virus capsid 

are encoded by the P1 region of the genome. 1A, 1B, 1C and 1D encode for VP2, VP4, 

VP3 and VP1, respectively (Bachrach, 1968) (Fig 1.7). The capsid is composed of 60 

copies of each of the four proteins but is initially assembled into asymmetric 

protomers consisting of VP1, VP3 and VP0 (precursor to VP2 and VP4). Five 

protomers associate into a pentamer, and 12 pentamers form into a pseudo-

icosahedral capsid containing the ssRNA genome. VP0 is autocatalytically cleaved 

into the mature structural proteins VP2 and VP4 upon genome encapsidation 

(reviewed in Sobrino et al., 2001) It is important to highlight that the protomers never 

exist ‘alone’; the smallest stable capsid component is the pentamer. 

The three-dimensional arrangement of the structural proteins provides the main 

antigenic sites used for antibody binding that elicit responses to vaccination or to 

infection, as well as to mediate receptor binding of the virus to the host cell (Mason 

et al., 2003). Unlike enteroviruses and cardioviruses, FMDV lacks receptor binding 

sites formed within surface pockets, or canyons. Instead, FMDV has a protruding loop 

in the VP1 protein that may comprise of a major neutralisation and receptor-binding 

site (Hogle et al., 1985; Rossmann, 1989; Acharya et al., 1989).  

The FMDV capsid contains a hydrophobic channel located at the 5-fold axis which 

allows for the penetration of small molecules such as intercalating dyes and caesium 

ions which results in the inactivation of the virus and capsid instability at pH < 6. It is 

because of this that FMDV also has a high buoyant density compared to other 

picornaviruses (Acharya et al., 1989). 
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1.2.3.5 Non-structural proteins 2A-3Dpol 

1.2.3.5.1 Proteins 2A, 2B and 2C 

The P2 region of the FMDV polyprotein encodes for three mature protein: 2A, 2B and 

2C (Rueckert et al., 1984) (Fig 1.7). 2A in FMDV is smaller than its PV analogue, at only 

18 amino acids in length (Robertson et al., 1985; Ryan et al., 1997). During the 

primary polyprotein processing events, the 2A protein remains associated with the 

P1 region mediating cleavage between the P1 and P2 regions through 

autoproteolysis, despite a lack of any characteristic protease motifs (Ryan et al., 

1994; Ryan et al., 2001). 2A is removed from the P1 region to allow for maturation of 

the structural proteins by cleavage with another FMDV protease, 3C (Vakharia et al., 

1987; Ryan et al., 1989; Ryan et al., 1991). The autoproteolytic property of 2A has 

been shown to function and mediate cleavage in an artificial system, however for this 

to occur the 2A-2B boundary needed to remain intact (Ryan et al., 1994; Ryan et al., 

1997; Donnelly et al., 2001). This cleavage function of 2A yielded a much higher ratio 

of proteins upstream to the 2A insertion site, which led to the hypothesis that FMDV 

2A was not a traditional protease but was mediating a modification of the translation 

machinery termed ‘ribosome skipping’ which allowed for the ribosome to release at 

2A but then continue to translate the proteins downstream (Ryan et al., 2001; 

Donnelly et al., 2001).  

Proteins 2B and 2C have been shown to function synergistically as a precursor, 2BC, 

as well as having distinct functions as individual proteins. One of the functions 

attributed to the 2BC precursor protein, as defined by immunofluorescence and co-

localisation studies, is the blocking of host protein ER-to-Golgi transport which results 
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in eventual generalised cytopathic events within FMDV infected cells (Mason et al., 

2003; Moffat et al., 2005). A similar function is attributed to PV 3A. 

2B is thought to function as a viroporin. The 54 amino acid peptide contains two 

putative transmembrane domains typical of viroporins (Nieva et al., 2012; Ao et al., 

2014; Ao et al., 2015). 2B in related picornaviruses including PV and Coxsackievirus 

has been shown to localise to the ER membrane, thought to be the site of viral 

replication, but has also been shown to be able to induce damage to the cell 

membrane resulting in a dysregulation of the calcium ion concentration within the 

cell and activating autophagy (Bienz et al., 1987; Doedens et al., 1995; van Kuppeveld, 

Melchers, et al., 1997; van Kuppeveld, Hoenderop, et al., 1997; Suhy et al., 2000; Ao 

et al., 2015). However, knowledge on the exact function of the protein is limited and 

much remains to be confirmed for FMDV. 

FMDV 2C is a 318 amino acid protein shown to co-localise with membrane-bound 

replication complexes within infected cells concentrating at the cell membrane and 

the ER (Tesar et al., 1989; Klein et al., 2000; Teterina et al., 2006; J. Wang et al., 2012; 

Gao et al., 2016). It is the largest membrane-binding protein of the FMDV genome 

and is proposed to have a number of functions primarily in the role of membrane 

rearrangements and the regulation of the cellular immune response, similar to those 

seen in other picornaviruses such as hepatitis A virus and PV (Troxler et al., 1992; 

Bolten et al., 1998; Jecht et al., 1998; Gosert et al., 2000; O’Donnell et al., 2011; 

Gladue et al., 2012).  

Studies on FMDV, PV, and on enterovirus 71 2C have shown that it may function as a 

helicase, unwinding RNA in an ATP-dependent manner, due to the presence of a well 
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conserved ATPase domain placing 2C within the superfamily III helicases. 

(Gorbalenya et al., 1990; Mirzayan et al., 1994; Sweeney et al., 2010; Xia et al., 2015). 

Through inhibition studies on PV and FMDV with guanidine hydrochloride, it has been 

observed that 2C is essential for virus replication (Saunders et al., 1982; Saunders et 

al., 1985; Barton et al., 1997; Pfister et al., 1999; Klein et al., 2000). Studies on PV 2C 

have also identified the necessity for 2C in the initiation of negative strand RNA 

synthesis, and, as the protein is highly conserved across all picornaviruses, it is 

believed that FMDV 2C could also share the same function (Barton et al., 1997). 

Interestingly, the presence of 2C has only been observed within virus replication 

complexes and not in clarified virus stocks used in vaccine preparation, providing an 

attractive candidate as a differentiator between ‘carrier’ livestock (that had been 

previously infected and had cleared the infection), and vaccinated livestock (Lubroth 

et al., 1995; Lubroth et al., 1996; Meyer et al., 1997; Lu et al., 2010). 

1.2.3.5.2 Proteins 3A and 3B 

The 3A protein encoded by FMDV is the largest picornaviral 3A protein (at 153 amino 

acids in length) compared to the 87 amino acid PV protein (Mason et al., 2003). Using 

in situ protein fluorescent ligation assays and structural data from nuclear magnetic 

resonance studies, it has been determined that FMDV 3A homodimerizes through 

interactions between two intermolecular hydrophobic α-helix domains (González-

Magaldi et al., 2012; González-Magaldi et al., 2015). Interference of the hydrophobic 

interface interaction results in a reduction in virus yield in virus-infected cells 

(González-Magaldi et al., 2015).  
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The N-terminal domain of 3A  is highly conserved amongst the FMDV serotypes and 

contains a hydrophobic, membrane-associated domain that co-localises to ER and 

Golgi-derived membranes (O’Donnell et al., 2001; Moffat et al., 2005; García-Briones 

et al., 2006). In contrast to PV 3A, the C-terminal domain of FMDV 3A is structurally 

flexible and is prone to a number of deletions and mutations as identified from 

sequencing data. There were two natural deletion mutants reported in the C-

terminal domain, both of which resulted in a change in virulence and host range of 

the virus (Beard et al., 2000; Pacheco et al., 2013). These deletions in 3A were 

associated with an increased virulence in swine infected with FMDV, but showed a 

reduced ability for these viruses to cause disease in cattle, or in bovine-derived cells 

(Giraudo et al., 1987; Beard et al., 2000; Knowles et al., 2001). 

FMDV encodes for three non-identical tandem repeats of 3B (3B1, 3B2, 3B3) and is the 

only picornavirus to do so. Each copy of 3B is 23-24 amino acids in length and encodes 

the VPg protein. Therefore viral RNA includes VPg covalently linked through the 

conserved tyrosine residue at position 3 (Tyr3) at the 5ʹ end (Forss et al., 1982; Mason 

et al., 2003; Pacheco et al., 2003). In order for replication to occur, the VPg is 

uridylylated into VPg-pU(pU) by the viral polymerase 3Dpol (Paul, 2002). Most 

naturally circulating FMDV strains contain three copies of 3B , suggesting a strong 

selective advantage (Pacheco et al., 2003; Carrillo et al., 2007), however, studies have 

observed that, although the presence of all three 3B copies are required for efficient 

replication, there appears to be a preference for 3B3 (Falk et al., 1992; Pacheco et al., 

2003; Nayak et al., 2005; Arias et al., 2010; Herod et al., 2017). These studies show 

that deleting 3B3 resulted in the production of a non-infectious RNA transcript. 

Studies have shown that the VPg is removed from the genome during translation 
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(Sangar, Rowlands, et al., 1977; Sangar et al., 1980), but is present at the 5ʹ ends of 

transcripts. 

1.2.3.5.3 Protein 3C 

The major protease encoded by FMDV is 3C (Klump et al., 1984). 3C is one of the 

more well-defined proteins of the species and is responsible for the majority of the 

processing of the viral polyprotein during replication of the genome. 3C is responsible 

for the processing of 7 cleavage sites between the non-structural proteins with the 

exception of the autocatalytic cleavage events occurring between Lpro and P1, P1-2A 

and 2BC, and the maturation cleavage of VP0 into VP2 and VP4 (Vakharia et al., 1987; 

Clarke et al., 1988; Palmenberg, 1990; Bablanian et al., 1993). FMDV 3C shows 

greater heterogeneity amongst its cleavage sites being able to cleave between Gln-

Gly, Glu-Gly, Gln-Leu and Glu-Ser dipeptides, in comparison to the singular Gln-Gly 

cleavage site for PV 3C (Robertson et al., 1985; Palmenberg, 1990; Birtley et al., 

2005). 

Similar to the protease activity seen in Lpro, FMDV 3C is able to cleave host-cell 

proteins as well, primarily cleaving the translation initiation factor eIF4A (Belsham et 

al., 2000) and the histone protein H3 (Grigera et al., 1984; Falk et al., 1990; Tesar et 

al., 1990). This function of 3C is thought to be a unique mechanism of FMVD to 

subvert host-cell translation in favour of viral replication. More recently, 3C has also 

been implicated in immune evasion by reducing the RIG-I/MDA-5 signalling through 

the cleavage of the nuclear transcription factor kappa B (NF-kB) essential modulator 

(NEMO) (Wang et al., 2012). 
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3C and its precursor 3CD may also have non-catalytic roles during the FMDV life-

cycle, particularly during the initiation of replication and the mediating of VPg 

uridylylation (Murray et al., 2003; Nayak et al., 2005; Nayak et al., 2006; Steil et al., 

2009) 

1.2.3.5.4 3Dpol 

The RNA-dependent RNA polymerase (RdRp) from FMDV, 3Dpol, is a 54 kDa enzyme. 

The main function that has been described for 3Dpol is in the synthesis of positive- 

and negative-strand RNA during viral genome replication. The first description of 

3Dpol was detailed in a study by Polatnick and Arlinghaus, 1967 where the 3Dpol was 

originally described as the foot-and-mouth disease virus infection-associated antigen 

(FMD-VIAA) as antibodies against it could be detected in the sera of infected cattle 

(Cowan et al., 1966) but was unable to antigenically recognise FMDV structural 

proteins (Morgan et al., 1978). As such, it was subsequently shown to be the viral 

polymerase (Lowe et al., 1981). 

The sequence and structure of 3Dpol is highly conserved among the different FMDV 

serotypes (Villaverde et al., 1988; George et al., 2001). Crystal structure analyses also 

show a similar structure between all other picornavirus RdRps. The structure 

resembles a standard ‘right-hand’, that consists of ‘palm’, ‘fingers’ and a ‘thumb’ 

domains (Ferrer-Orta et al., 2004). The catalytic domain of these RdRps is located in 

the ‘palm’ region. This region has the most conserved structure amongst 

polymerases and consists of a three-stranded antiparallel β-sheet flanked by three 

α-helices. This core domain is integral in maintaining correct structure of the enzyme 

catalytic site (a highly conserved YGDD sequence) and is necessary for the 
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recognition, binding, and priming of nucleotides for downstream binding to the 

phosphoryl transferase and subsequent formation of nascent RNA strands (Hansen 

et al., 1997; O’Reilly et al., 1998; Ferrer-Orta, Arias, Escarmís, et al., 2006). 3Dpol is a 

non-proof-reading polymerase resulting in a high level of mutation and 

recombination occurring during replication, lending FMDV a quasispecies nature, 

common across all picornaviruses. 

Most of the understanding of the structure and function of the FMDV 3Dpol has 

occurred as a result of studies on PV 3Dpol and from recent crystallographic studies. 

FMDV 3Dpol structures have been solved as unliganded or as proteins in complex with 

RNA. Structures have also been solved showing the interaction of 3Dpol along with 

the VPg (Ferrer-Orta et al., 2004; Ferrer-Orta, Arias, Agudo, et al., 2006; Ferrer-Orta, 

Arias, Escarmís, et al., 2006; Ferrer-Orta et al., 2009). Additionally, PV 3Dpol was 

shown to function as a higher-order oligomeric structure and form complex fibrils 

that have been shown by cryo-EM to contain RNA within the active sites (Pata et al., 

1995; Beckman et al., 1998; Lyle, Bullitt, et al., 2002). The formation of fibrils within 

FMDV has also been investigated. These studies have shown that FMDV 3Dpol is able 

to form higher-order fibrils, however, their function is still being investigated 

(Bentham et al., 2012).  

The elongation of nascent RNA chains and replication of the genome catalysed by PV 

3Dpol has been shown to occur within membrane associated replication complexes 

(Flanegan et al., 1977; Bienz et al., 1983; Bienz et al., 1987; Bienz et al., 1992). 

Structures resembling PV replication complexes containing 3Dpol and RNA have also 

been described in FMDV-infected cells (Polatnick and S.H. Wool, 1983; Polatnick and 



30 
 

S. Wool, 1983). However, more recent evidence from the literature shows that the 

reorganisation of cellular membranes during FMDV infection is different to that seen 

during infection with other picornaviruses. FMDV infection results in a dramatic 

condensation and relocalisation of intracellular organelles to one side of the 

cytoplasm in the perinuclear region (Monaghan et al., 2004) as opposed to the 

association to specific intracellular membranes. 

The highly-conserved structure and function of the FMDV 3Dpol make it an attractive 

target for antiviral therapeutics. Studies using nucleoside analogue 5-fluorouracil 

have shown it to be mutagenic for a number of viruses including FMDV. A well-

defined antiviral, Ribavirin, has also been shown to be able to eliminate FMDV from 

persistently infected cells due to its ability to enhance mutagenesis (Sierra et al., 

2000; Graci et al., 2002; Airaksinen et al., 2003). 

1.2.4 FMDV genome replication  

FMDV enters cells by binding the αV subgroup of the integrin family of receptors via 

a highly-conserved arginine-glycine-aspartic acid (RGD) motif located on the VP1 

capsid protein (Berinstein et al., 1995; Neff et al., 1998; Jackson et al., 2000; Jackson 

et al., 2002; Duque et al., 2003; Jackson et al., 2004; O’Donnell et al., 2005). Upon 

binding to the cellular receptor, the virus is internalised by clathrin-mediated 

endocytosis (Fox et al., 1989; Mason et al., 1994; Leippert et al., 1997; Berryman et 

al., 2005; O’Donnell et al., 2005; Martín-Acebes et al., 2007). The capsid is 

subsequently broken down into pentamers within the low pH environment of the 

endosomes, and the viral RNA is released into the cytoplasm where replication can 
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occur (Cavanagh et al., 1978; Baxt, 1987; O’Donnell et al., 2005; O’Donnell et al., 

2008). 

FMDV RNA first undergoes initial translation mediated by host-cell translation factors 

once within the cytoplasm. Two of the first host-cell interacting partners that were 

discovered to be involved in the translation of the FMDV genome were a 57 kDa 

protein known as the polypyrimidine tract-binding protein (PTBP), and a 45 kDa IRES-

specific trans-acting factor (ITAF45) protein (Luz et al., 1991; Stewart et al., 1997; 

Pilipenko et al., 2000). Both of these proteins have been shown to interact with the 

FMDV IRES and are essential for the formation of the ribosomal translation initiation 

complex. 

Figure 1.8 Schematic of the relationship of host-cell translation initiation factors 

and the FMDV 5 ʹUTR. The recruitment of these translation initiation factors allows 

for the cap-independent translation of the FMDV viral genome. Adapted from (Jamal 

et al., 2013). 
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Host-cell translation initiation factors eIF4G and recruited subunits eIF4A, eIF3a and 

eIF4B, and the 40s-ribosomal subunit, along with cellular co-factors PTBP, ITAF45, the 

poly-A binding protein (PABP) and the PCBP bind to the IRES element located in the 

5ʹ UTR. The binding of the cellular co-factors to the RNA initiate internal translation 

of the viral RNA genome in a cap-independent manner typical of a number of 

positive-sense RNA viruses such as pestiviruses, hepaciviruses, aphthoviruses and 

enteroviruses (Pelletier et al., 1988; Jang et al., 1988; Belsham et al., 1990; Sizova et 

al., 1998; Niepmann, 2009) (Fig. 1.8). The viral genome is thus translated into a single 

polyprotein from which the structural and non-structural protein precursors are co- 

and post-translationally processed into the mature, functional proteins (detailed in 

section 1.2.3.5) (Blyn et al., 1997; López de Quinto et al., 2002; Rodríguez Pulido et 

al., 2007; Martínez-Salas, 2008; Yu et al., 2011). The processing of the non-structural 

proteins is mediated by the action of 3C, and various defined intermediate precursors 

are formed, as highlighted in figure 1.7, in a defined order (Semler et al., 1981; 

Pallansch et al., 1984; Lawson et al., 1992; Oh et al., 2009; Cameron et al., 2010; 

Herod et al., 2017) 
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Figure 1.9 Schematic of the process of FMDV replication. Positive strand RNA is used 

as the template for replication and the synthesis of a negative strand intermediate. 

This negative strand intermediate is used as the template to form nascent positive 

strand RNA which can either be packaged into newly synthesised virions or be further 

used for replication. 

Following translation of the genome, replication is initiated. Initiation of both 

replication and translation has been shown to involve the circularisation of the 

genome through discrete RNA-RNA and RNA-protein interactions between the 3ʹ 

UTR, the 5ʹ UTR, cellular host factors, and virus-encoded proteins such as 3Dpol, 3A 

and 2BC. Examples of interactions that have been proposed are the PCBP with the 5ʹ 

UTR, the PABP with the 3ʹ UTR and the PCBP and the PABP with the S-fragment 

(Herold et al., 2001; López de Quinto et al., 2002; Serrano et al., 2006). This 
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mechanism is thought to be widespread amongst positive-strand RNA viruses (Pogue 

et al., 1994; Gamarnik et al., 1998; Villordo et al., 2010; Park et al., 2013). 

Replication of FMDV RNA begins with 3Dpol, in the presence of 3CD, mediating the 

uridylylation the Tyr3 residue of VPg. The template for VPg uridylylation has been 

shown to be the cre, however in PV, the poly-A tail at the 3ʹ end of the genome is 

also responsible for VPg uridylylation (Paul et al., 1998; Murray et al., 2003). In FMDV, 

a copy of uridylylated VPg (VPg-pUpU) binds to the 3’ end of the template RNA and 

acts as a primer to initiate replication. It is thus covalently linked to the 5ʹ end of the 

daughter strand for both positive and negative strand synthesis (Fig. 1.9) (Goodfellow 

et al., 2003; Murray et al., 2003; Nayak et al., 2005; Nayak et al., 2006; Steil et al., 

2009).  

The process of replication involves 3Dpol binding to the poly-A tail and replicating the 

RNA template to form a negative strand intermediate from which positive strands 

can be made and used as templates for translation and to be packaged into nascent 

virions (Fig 1.9). Translation of the input RNA occurs in a 5’ to 3’ direction beginning 

at the IRES located in the 5ʹ UTR, whereas replication occurs in the opposite direction. 

Therefore, these two functions cannot occur concurrently on the same RNA strand, 

and it is proposed that a switch must occur for replication to begin, or the two 

processes of replication and translation occur within different compartments (Harris 

et al., 1994; Gamarnik et al., 1998; Barton et al., 2001; Paul, 2002; Nayak et al., 2005). 

In PV, the switch from translation to replication on the genomic RNA is mediated by 

the binding of the cellular protein PCBP to the cloverleaf. This binding enhances viral 

translation, while the binding of the viral protein 3CD represses translation and 
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facilitates negative-strand synthesis (Gamarnik et al., 1998; Serrano et al., 2006). It is 

possible that in FMDV the S-fragment (section 1.2.3.1) performs the same function 

as the PV cloverleaf, but this has yet to be elucidated.  
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1.3 Replication Complex  

Replication of viral RNA is thought to occur within intracellular membrane-associated 

compartments known as replication complexes. Evidence of such compartments 

have been shown for a number of positive-strand RNA viruses such as PV, HCV and 

dengue virus (Troxler et al., 1992; Schlegel et al., 1996; Westaway et al., 1999; Gosert 

et al., 2003; Novoa et al., 2005; den Boon et al., 2010; den Boon et al., 2010). 

Replication is thought to occur within these compartments as a way for the virus to 

concentrate the structural and non-structural components into a small area to 

facilitate replication, as well as to be able to protect the virus components from host-

cell pathogen recognition and innate immune responses.  

Studies on FMDV have shown that the virus dysregulates Golgi and ER-derived 

membranes like PV and has been found to concentrate on small membranous 

vacuoles within the cell (Polatnick and S. Wool, 1983; Schlegel et al., 1996; O’Donnell 

et al., 2001; Monaghan et al., 2004; Knox et al., 2005). However, no distinct 

membrane-bound replication complex comprised of viral RNA, structural and non-

structural proteins, and host-cell proteins have yet to be identified for FMDV. 

1.3.1 FMDV Fibrils 

Investigations on the formation of a discrete replication complex during FMDV 

replication are ongoing. Studies have shown that, like PV, FMDV 3Dpol is able to form 

higher-order fibrils in vitro, but only when combined with an RNA template-primer 

and free nucleotides, suggesting that these structures could be associated with 
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replication of the viral genome (Pata et al., 1995; Lyle, Bullitt, et al., 2002; Bentham 

et al., 2012; Wang et al., 2013). 

The function of the fibrils in FMDV replication is still to be elucidated, however, it is 

speculated that these structures may play a role in concentrating the viral replication 

complex to increase the efficiency of replication, or that these structures may be 

involved in preventing the formation of double-stranded RNA which could trigger an 

innate immune response against the virus. 

1.3.2 Cellular Interacting Partners in Replication Complex Formation 

Viruses have been shown to hijack ER, Golgi and trans-Golgi network (TGN) 

membranes in order to form these factories. Although of particular interest is the 

composition of the membranes that are formed, the membranes are rich in 

phosphatidylinositol-4-phosphate (PI4P) lipids, shown to be required for the 

replication of multiple members of the family Picornaviridae and Flaviviridae. These 

viruses enrich the factory membranes with PI4P lipids by up-regulating and 

selectively recruiting components of the phosphatidylinositol-4-kinase (PI4K) enzyme 

pathway that phosphorylate phosphatidylinositol lipids into their functional form 

(discussed in more detail in chapter 5).  

There are two types of well-defined families of PI4Ks expressed in mammalian cells, 

type II and type III. Type III PI4Ks are the larger of the two and are made up of two 

enzymes PI4KIIIα and PI4KIIIβ, which function in ER and Golgi, respectively (Balla et 

al., 2006; Konan et al., 2014). Previous studies on PV and Coxsackievirus B3 (CVB3) 

have identified PI4KIIIβ as the host enzyme upregulated in viral replication factories 

(Belov et al., 2007; Hsu et al., 2010; Arita et al., 2011; Altan-Bonnet et al., 2012; Boura 
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et al., 2015). Depletion of PI4KIIIβ activity within infected cells by RNA silencing or 

the use of specific kinase inhibitors, such as PIK93, a selective small molecule 

inhibitor against PI4KIIIβ, (Belov et al., 2007; Altan-Bonnet et al., 2012) appeared to 

block poliovirus RNA synthesis (Hsu et al., 2010; Arita et al., 2011; Greninger et al., 

2012). It is thought that the PV 3Dpol is able to bind to PI4P lipids and is then either 

anchored to the viral replication complex, or is stimulated to perform its enzymatic 

activity (Hsu et al., 2010). A related family of PI-kinases, is the PI3K family of enzymes. 

These have been documented to be involved in hepacivirus replication in a similar 

manner to the PI4Ks (Altan-Bonnet et al., 2012).  

Other lipids have also been shown to interact with related picornavirus replication. 

Cholesterol is known to be recruited into the enterovirus replication complex by 

oxysterol-binding protein (OSBP) (Balla et al., 2006; Arita, 2014; Wang et al., 2014). 

OSBP plays a central role in cholesterol transport and shuttles cholesterol between 

different cellular organelles in exchange for PI4P (Mesmin et al., 2013). Enteroviruses 

have been shown to subvert OSBP in order to exchange PI4P for cholesterol at the 

replication complex (Ilnytska et al., 2013; van der Schaar et al., 2013; Arita et al., 

2013; Roulin et al., 2014; Dorobantu, Albulescu, et al., 2015; Albulescu et al., 2015). 

Similar to the studies on PI4K, the chemical inhibition of OSBP disrupts virus 

replication factory formation, and subsequent RNA synthesis. In PV cholesterol has 

also been shown to be involved in the processing of the 3CD precursor into mature 

3C and 3Dpol, however in other enteroviruses (namely human rhinovirus) cholesterol 

biosynthesis has been shown to have little active role in replication, but to be crucial 

to support replication, and is enriched in the replication sites (Ilnytska et al., 2013; 

Roulin et al., 2014; Berryman et al., 2016). 
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The involvement of the PI4KIIIβ family of enzymes, or OSBP and cholesterol, on FMDV 

replication and translation has yet to be clearly defined, however previous studies on 

other Picornaviridae, and the identification of 3Dpol fibril formation, suggest that 

FMDV may use these mechanisms.  
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1.4 Aims of the Project 

The principal aim of this project was to dissect the role of the FMDV 3Dpol in viral 

replication and to further investigate the formation of 3Dpol fibrils in vitro in an 

attempt to understand the relationship between structure and function of these 

higher-order structures. 

In order to investigate this, a number of FMDV 3Dpol mutations were made that 

abrogated function. Structure was investigated using cryo-electron microscopy and 

x-ray crystallography. 

Additionally, it was pertinent to investigate the role of membrane-associated kinases, 

such as PI4K, as a number of related viruses utilise these cellular factors to form an 

optimal environment within which viral replication can occur.  

Ultimately, by improving our understanding of the formation of the FMDV replication 

complex, either through the abrogation of intracellular membranes and the 

pathways necessary for this function to occur, or by investigating the role of the 3Dpol 

fibrils, we will be able to develop better treatments or antiviral therapeutics. 
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Chapter 2  

Materials and Methods 

2.1 General Buffers, Media and Solutions 

Media/Buffer/Reagent Recipe 

Luria-Bertani (LB) medium and agar 1 % (w/v) Tryptone 

0.5 % (w/v) NaCl 

0.5 % (w/v) Yeast Extract 

(Add 1.5 % (w/v) Agar for LB Agar) 

1 x TBE buffer (Tris-borate-EDTA) 10 % 10 x TBE buffer (Thistle Scientific) 

90 % ml dH2O 

1 x Tris-glycine SDS-PAGE running buffer 25 mM Tris 

192 mM Glycine 

0.1 % sodium dodecyl sulphate (SDS)  

1 x Transfer buffer 25 mM Tris 

192 mM Glycine 

0.1 % SDS  

15 % (v/v) Methanol 

10 x TBS (Tris-buffered saline) 250 mM Tris 

1.37 M NaCl 

pH 7.5 

1 x TBS-T (Tris-buffered saline-Tween-20®) 10 % 10 x TBS 

0.1 % ml Tween-20® 

Diethylpyrocarbonate (DEPC)-treated 
dH2O 

0.1 % (v/v) DEPC in dH2O 

1 x 3-(N-morpholino)propanesulphonic 
acid (MOPS) buffer 

10 % 10 x MOPS buffer (VWR) 

90 % DEPC-treated dH2O 

Buffer A (wash) 50 mM Tris 

500 mM NaCl 

25 mM Imidazole 

pH 8 with HCl 
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Media/Buffer/Reagent Recipe 

Buffer B (elution) 50 mM Tris 

500 mM NaCl 

500 mM Imidazole 

pH to 8 with HCl 

Dialysis buffers (pH 8) 50 mM Tris 

500 mM NaCl 

Buffer 1) 250 mM Imidazole 

Buffer 2) 100 mM Imidazole 

Buffer 3) 25 mM Imidazole 

Buffer 4) 0 mM Imidazole 

10 x Elongation assay buffer 300 mM MOPS (pH 7) 

250 mM NaCl 

50 mM MgCl2 

600 µM ZnCl2 

RNA binding buffer 20 mM Tris-HCl (pH 8) 

100 mM NaCl 

0.01 % Triton X-100 

RIPA buffer 25 mM Tris (HCl) pH 7.6 

150 mM NaCl 

1 % (v/v) nonidet-P40 (NP-40) 

1 % (v/v) sodium deoxycholate 

0.1 % (v/v) SDS from 10 % (w/v) stock. 

1 mM EDTA 

1 x protease inhibitor 

4 % paraformaldehyde (100 ml) 4 g paraformaldehyde powder 

10 µl 10M NaOH 

10 ml 10 x PBS 

90 ml ddH2O 

pH 7 

Saponin buffer (100 ml) 10 ml FCS (Foetal calf serum) 

100 mg saponin 

90 ml 1 x PBS 



43 
 

Media/Buffer/Reagent Recipe 

MOPS-formaldehyde gel 0.32 g Agarose 

29.5 ml DEPC-treated dH2O 

3.5 ml 10 x 3-(N-
morpholino)propanesulphonic acid 
(MOPS) buffer (VWR) 

2 ml 37 % formaldehyde 

5 ml 5 % SDS-PAGE Stacking gel 

(Cold Spring Harbor Laboratory, 2015) 

3.44 ml dH2O 

0.63 ml 1 M Tris-HCl (pH 6.8) 

0.05 ml 10 % (w/v) SDS 

0.83 ml 30 % Acrylamide/bis-acrylamide 

0.05 ml 10 % (w/v) ammonium persulfate 
(APS) 

0.005 ml TEMED 

10 ml 10 % SDS-PAGE Running gel 

(Cold Spring Harbor Laboratory, 2015) 

4.0 ml dH2O 

2.5 ml 1.5 M Tris-HCl (pH 8.8) 

0.1 ml 10 % (w/v) SDS 

3.3 ml 30 % Acrylamide/bis-acrylamide 

0.1 ml 10 % (w/v) APS 

0.01 ml TEMED 

Full MEM MEM 

0.1 % (v/v) NEAA 

1 % (v/v) L-glutamine 

10 % (v/v) FBS 

100 units/ml penicillin  

100 units/ml streptomycin 

Transfection Minimum Essential Media 
(MEM) 

MEM (Life Technologies) 

0.1 % (v/v) NEAA 

1 % (v/v) L-glutamine 

DNA Transfection mix for 6-well plate 2 µg DNA 

10 µl Polytheylenimine (PEI) 

700 µl Transfection MEM 
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2.2 Cell Lines 

Cell Line Derivation 
Cell 

Type 
Source 

BHK-21 Hamster kidney Fibroblast ATCC 

Huh 7.5 Human hepatocarcinoma Epithelial ATCC 

HeLa Human cervical adenocarcinoma Epithelial ATCC 

MDBK Bovine kidney Epithelial ATCC (via St. Andrews) 

SK-RST Porcine kidney Epithelial ATCC (via St. Andrews) 

2.3 Compounds 

Compound 
Stock 
conc. 

Working conc. 
range 

Source 

PIK93 5 mM 1 μM- 5 μM Sigma 

Compound 3 40 mM 0.5 μM – 20 μM AstraZeneca 

Compound 7 40 mM 0.5 μM – 20 μM AstraZeneca 

Wortmannin 2 mM 0.5 μM – 2 μM 
Calbiochem (Gift from Jamel 

Mankouri, Leeds) 
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2.4 Antibodies 

Antibody Species Dilution Source Target 

Anti-3A (2C2) Rabbit 1:2000 Gift from Francisco Sobrino 
(Madrid) 

Primary 

Anti-3B (IF8) Mouse 1:1000 Gift from Francisco Sobrino 
(Madrid) 

Primary 

Anti-3C (2D2) Mouse 1:2000 Gift from Francisco Sobrino 
(Madrid) 

Primary 

Anti-3D (397) Rabbit 1:5000 Gift from Francisco Sobrino 
(Madrid) 

Primary 

Anti-His (HRP) Mouse 1:5000 Sigma-Aldrich Primary 

Anti-FLAG Rabbit 1:5000 Sigma-Aldrich Primary 

Anti-HA Mouse 1:5000 Sigma-Aldrich Primary 

Anti-Biotin Mouse 1:5000 Sigma-Aldrich Primary 

Anti-GAPDH Mouse 1:5000 Sigma-Aldrich Primary 

Anti-PI4P Mouse 1:50 Echelon Primary 

Anti-NS5A Sheep 1:5000 Gift from Mark Harris (Leeds) Primary 

Anti-Mouse (HRP) Goat 1:2000 Sigma-Aldrich Secondary 

Anti-Rabbit (HRP) Goat 1:5000 Sigma-Aldrich Secondary 

Anti-Rabbit Alexa 
Fluor 568 

Goat 1:5000 Life Technologies Fluorescent 
secondary 

Anti-Mouse Alexa 
Fluor 647 

Donkey 1:5000 Life Technologies Fluorescent 
secondary 

2.5 Nucleic acid manipulation 

2.5.1 Plasmids and Replicons 

Several plasmids have been designed and DNA or RNA from those plasmids were 

used in both replication and translation assays. The plasmids can be classed into four 

types; those based on GFP-pac, ptGFP and mCherry, luciferase, and bicistronic. The 

bicistronic plasmids contained sequences of FMDV, encephalomyocarditis virus 

(EMCV), hepatitis C virus (HCV) and human rhinovirus (HRV) IRES. 
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2.5.1.1 FMDV Replicon Constructs 

GFP-pac based plasmid constructs include the FMDV replicon insert replacing the 

structural proteins 1A-1D with a green fluorescent protein (GFP) reporter gene and a 

puromycin acetyltransferase resistance gene (pac). ptGFP replicons are the second 

generation GFP-pac plasmids designed by Fiona Tulloch (St. Andrews) replacing the 

GFP-pac reporter with a GFP derived from Ptilosarcus gurneyi (ptGFP), a 

bioluminescent sea pen, which is brighter than the Aequorea GFP (extracted from 

the Aequorea victoria jellyfish) used in GFP-pac. mCherry constructs have replaced 

the structural proteins 1A-1D with the mCherry fluorescent report gene (Fiona 

Tulloch, St. Andrews). Plasmids have also been designed to contain various point 

mutations or synonymous scrambled DNA sequences to act as experimental controls. 

These replicons are shown schematically in Table 2.1 and 2.2. 
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Replicon Name Designed by Plasmid backbone 

GFP-pac-WT F. Tulloch (St. Andrews) pBR3222 

 

GFP-pac-LL F. Tulloch (St. Andrews) pBR3222 

 

GFP-pac-Δ3D F. Tulloch (St. Andrews) pBR3222 

 

GFP-pac-GNN F. Tulloch (St. Andrews)/M. Herod (Leeds) pBR322 

 

ptGFP-WT F. Tulloch (St. Andrews)/M. Herod (Leeds) pCDNA 

 

Table 2.1: Summary of GFP-containing replicon constructs. All GFP-pac replicon constructs 

have been designed with the structural proteins encoded for by 1A-1D have been replaced 

by GFP-pac reporter cassette. The final ptGFP replicon shows the change from GFP-pac with 

a simple exchange of the structural proteins 1A-1D to the new ptGFP reporter gene. 

 

 

Table 2.2: Summary of mCherry-containing replicon constructs. The mCherry 

replicon constructs share a similar structure to the GFP-pac constructs; replacing 

the 1A-1D structural proteins with an mCherry red fluorescent protein. 

Replicon Name Designed by Plasmid Backbone 

mCherry-WT F. Tulloch (St. Andrews) pCDNA 
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2.5.1.2 Bicistronic Replicon Constructs 

The bicistronic luciferase constructs contain a Renilla luciferase reporter gene under 

the control of a 7-methylguanosine cap, followed by a firefly luciferase reporter gene 

under the control of an IRES from FMDV, EMCV, HCV, and HRV. These constructs 

were designed in the Hirasawa laboratory (Memorial University of Newfoundland, 

Canada). These replicons are shown schematically in Table 2.3. 

Replicon Name Designed by  

pRF-Negative Control Licursi et al., 2012  

 

pR-FMDV-F 

pR-HCV-F 

pR-HRV-F 

pR-EMCV-F 

Licursi et al., 2012  

 

Table 2.3: Summary of bi-cistronic reporter constructs. The constructs described are dual 

luciferase bi-cistronic constructs. Two different luciferase reporter genes are under the 

expression of two alternative methods of translation: cap- and IRES-dependent. 

Luminescence of luciferase depends on the method of translation being utilised.  

2.1.1.3 CVB3 Replicon Constructs 

The CVB3 plasmids (kind gift from Frank van Kuppeveld, University of Utrecht) 

encode an ORF for a CVB3 replicon. The structural proteins have been replaced with 

a luciferase reporter gene. Two plasmids were provided, one encoding a WT CVB3 
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replicon, and one with a mutation in non-structural protein 3A rendering the replicon 

replication-defective. The replicons are shown schematically in Table 2.4. 

Replicon Name Designed by  

Rib-Fluc-CB3/T7 or CB3/T7-3A H.Tongren-van der Schaar (Utrecht)  

 

Table 2.4: Summary of CVB3 replicons constructs. The CVB3 replicon constructs, Rib-Fluc-

CB3/T7 contain a firefly luciferase reporter gene in place of the structural proteins 1A-1D. A 

mutant construct was also provided (Rib-Fluc-CB3/T7-3A) which replaced amino acids at 

positions 6-11 in non-structural protein 3A with 5 alanine residues. 

2.5.1.4 HCV Replicon Constructs 

The HCV sub-genomic replicon RNA (kind gift from Mark Harris, University of Leeds) 

termed HCV SGR-Luc-GFP-JFH1, is encoded by a plasmid containing the non-

structural proteins of HCV genotype 2a, JFH-1. The structural proteins E1, E2, core 

and P7 have been replaced with a luciferase reporter gene and a neomycin resistance 

gene used for stable selection in cell culture. The luciferase reporter gene is under 

the control of the HCV IRES, and the non-structural proteins NS3-5B are under the 

control of the EMCV IRES. The replicon is shown schematically in Table 2.5. 

Replicon Name Designed by  

SGR-Luc-GFP-JFH1 Jones et al., 2007; Saeed et al., 2012  

 

Table 2.5: Summary of HCV replicon construct. The HCV replicon construct, SGR-Luc-

GFP-JFH1 contains a firefly luciferase reporter gene and a neomycin resistance gene 

in place of the structural proteins E1, E2, core and p7.  
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2.5.2 Replicon DNA Preparation 

2.5.2.1 Transformation 

Plasmids were transformed into and DH5α competent E. coli bacterial cells by adding 

250 ng DNA to 50 µl thawed DH5α competent cells and incubated on ice for 30 mins. 

Subsequently, the bacteria and DNA were subjected to a heat shock at 42°C for one 

minute, followed by rapid cooling on ice for two minutes. 500 µl LB media was added 

and the transformed bacteria were recovered at 37°C for one hour prior to lawn 

spreading on LB agar plates containing 100 μg/ml ampicillin. The plates were 

incubated for 16 hours at 32°C. 

2.5.2.2 Preparation of plasmid DNA 

A single colony from the LB agar plates was picked and grown for 16 hours (overnight) 

in a 32°C shaking incubator in 10 ml LB containing 100 μg/ml ampicillin. Following the 

overnight culture growth of the colony in the media, 300 μl of the culture was 

transferred to an Eppendorf tube and mixed with 600 μl 30 % (v/v) glycerol. The 

glycerol stock of the culture was stored at -80°C for long term storage. 

The overnight cultures were subjected to either Miniprep or Maxiprep protocols per 

manufacturer’s instructions (Qiagen), depending on the volume of the culture. 

Distilled water was used to elute the DNA. The concentration of the eluted plasmid 

DNA was measured using a nanodrop spectrophotometer and recorded. 
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2.5.2.3 DNA linearisation 

GFP-pac plasmid DNA was linearised with restriction enzyme HpaI (New England 

Biolabs - NEB). ptGFP and mCherry plasmid DNA was linearised with AscI (NEB). CVB3 

Rib-Fluc-CB3/T7(-3A) was linearised with MluI (NEB). HCV SGR plasmid was linearised 

with XbaI (NEB). Linearisation occurred by incubating 1 µl enzyme with 500 ng DNA 

in a 10 µl reaction. Linearisation was confirmed by resolving DNA by 1 % agarose (1 

% (w/v) agarose in 1 x TBE buffer) gel electrophoresis. 

2.5.2.3 DNA Purification 

Linearised plasmid DNA (500 ng) was phenol-chloroform extracted and ethanol-

precipitated by mixing equal volumes of phenol-chloroform with linearised plasmid 

DNA and centrifuging the sample at approximately 16,000 x g (or 13,300 RPM) for 10 

minutes at 16°C. The upper aqueous phase was carefully withdrawn and dispensed 

into a fresh nuclease-free Eppendorf tube. The aqueous phase was then mixed with 

an equal volume of chloroform and centrifuged at 16,000 x g (or 13,300 RPM) for a 

further 10 minutes at 16°C. The upper aqueous phase was once again removed and 

dispensed into a fresh nuclease-free Eppendorf tube. The aqueous phase was 

subjected to ethanol precipitation by mixing in 1/10 volume 3M sodium acetate and 

2.5 x volume 100 % ethanol. The mixture was gentle agitated and placed at -20°C for 

20 mins. After precipitation, the mixture was centrifuged at 16,000 x g (or 13,300 

RPM) for 30 mins at 16°C. The supernatant was removed and discarded. Equal 

volume of the supernatant was replaced with fresh nuclease-free 70 % ethanol. The 

DNA pellet was gently resuspended and the mixture was centrifuged once more at 

16,000 x g (or 13,300 RPM) for 30 minutes at 16°C. The supernatant was removed 
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and discarded and the pellet of purified DNA is resuspended in 18 µl nuclease-free 

dH2O. The concentration of the purified DNA was measured using a nanodrop 

spectrophotometer. 

2.5.3 RNA Preparation 

2.5.3.1 T7 In vitro Transcription 

The purified DNA containing the FMDV insert was used as a template for in vitro 

transcription in a T7 in vitro transcription reaction. 2.5 μl 10 x T7 transcription buffer, 

0.5 μl bovine serum albumin (BSA) (10 mg/ml) and 1.25 μl 20 x RNA Secure were 

added to the purified DNA and incubated at 60°C for 10 minutes, followed by cooling 

on ice. Subsequently, 0.75 μl RNase inhibitor, 2 μl ribonucleoside tri-phosphates 

(RNTPs) from 100 mM stock and 1 μl T7 RNA polymerase was added prior to 

incubation at 32°C for four hours. Reactions were treated with 1.25 μl RQ1 RNase-

free DNase for 30 minutes at 37°C. The RNA was recovered and purified using RNA 

Clean and ConcentratorTM-25 (Zymo Research) according to manufacturer’s 

instructions and eluted twice in 25 μl nuclease-free water. The RNA concentration 

was measured by nanodrop spectrophotometry and stored at -80°C. 

Ethanol-precipitated, purified HCV SGR DNA was in vitro transcribed using a 

RiboMAX™ T7 in vitro transcription kit (Promega) according to the manufacturer’s 

instructions. The integrity and concentration of the RNA was tested by 

electrophoresis on a 1 % MOPS-formaldehyde gel (see section 2.1). 500 ng RNA was 

heated to 85°C for 10 minutes and added to the gel. The gel was subjected to 80 V 

for 45 minutes.  
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2.6 Cell Culture 

2.6.1 Cell Culture Maintenance 

The cell lines used during the project (BHK-21, Huh 7.5 and HeLa) were maintained 

in DMEM in T75 or T175 flasks (Corning). Cells were passaged every 48-72 hours, or 

when they were 80-90 % confluent by removing the media and washing the cells in 

1 x PBS and detaching the cells using 1 x trypsin-EDTA. Cells were re-suspended in 

DMEM supplemented with 10 % (v/v) Foetal Bovine Serum (FBS), 100 units/ml 

penicillin and 0.1 units/ml streptomycin, and passaged at 1:12 dilution. Cells were 

grown at 37°C in a humidified incubator with 5 % carbon dioxide.  

2.6.2 Preparing Cells for IncuCyte Analyses 

IncuCyte analyses to measure levels of fluorescence in replicon-transfected cells 

were undertaken in cells seeded out into 24-well plates at a density of 1x105 cells per 

well and maintained in 500 µl DMEM for 24 hours.  

2.6.3 Transfection of RNA 

Cells prepared in 24-well plates were used for transfection with a total of 1 µg RNA 

using Lipofectin® transfection reagent (Life Technologies) as previously described 

(Tulloch et al., 2014; Herod et al., 2015). For complementation studies, 0.5 µg of both 

ptGFP and mCherry replicon RNAs were simultaneously co-transfected using 

Lipofectin® (Life Technologies) as previously described. Evidence of replication as a 

result of transfection was monitored using IncuCyte Dual Colour ZOOM® FLR for 24 

hours. 
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2.6.4 Preparing Cells for Dual Luciferase Assays 

Dual luciferase assays were undertaken in BHK-21 cells seeded at a density of 2x105 

per well in 6-well plates. These cells were maintained in DMEM for 24 hours until 

they reach 40-60 % confluency at the time of transfection.  

2.6.5 Transfection of DNA 

Cells were prepared as described in section 2.6.4. The transfection mix (section 2.1) 

was optimised as previously described in Licursi et al., 2011; the cells were 

supplemented in 1300 µl full MEM and placed at 37°C. After 5-8 hours post-

transfection, the media was changed to 2 ml full MEM for a further 48 hours. The 

cells were lysed in 1 x passive lysis buffer (Promega) and placed at -20°C for at least 

2 hours. The cell lysates were collected in Eppendorf tubes, vortexed briefly and 

centrifuged at approximately 1,000 x g (or 4,000 RPM) for 5 minutes to pellet the cell 

debris. Following pelleting, 30 μl of an undiluted lysate sample and a lysate sample 

diluted to 1/100 in 1 x PBS, and were placed in a white opaque 96-well plate and 

placed in the luminometer. The Dual-Luciferase® Reporter Assay System kit 

(Promega) was used.  The luciferase luminescence in luciferase forming units (LFU) 

in the neat, undiluted lysate samples and lysate samples diluted 1/100 was 

measured.  

2.6.6 Preparing cells for electroporation 

Huh 7.5 cells in a T175 flask (Corning) were washed with 1 x PBS and trypsinised to 

remove the adherent cells from the flask. The cells were collected and washed three 

times in diethyl pyrocarbonate (DEPC)-treated 1 x PBS by centrifuging the cells at 
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approximately 1,000 x g (or 4,000 RPM) for 5 mins at 4°C. Cells were resuspended in 

DEPC-treated 1 x PBS at a density of 2x106 cells. 

2.6.7 Electroporation of RNA 

5 µg RNA transcripts were transfected into 2x106 cells in DEPC-treated 1 x PBS by 

electroporation using a square-wave protocol at 260 V for 25 ms. Electroporated cells 

were resuspended in DMEM to 2x105 cells/ml and seeded on cover slips in 24-well 

plates at a density of 1x105 cells per well. 

2.6.8 Compound treatments 

PIK93, Compound 3 and Compound 7, and wortmannin were added to cell cultures 

either 2 hours prior to transfection, or at the same time as transfection or 

electroporation at the concentrations described in section 2.3. If the compounds 

were added 2 hours prior to transfection, the compound was refreshed when the 

transfection components were added to the cells. 

2.6.9 Cytotoxicity (MTT) assay 

An MTT cytotoxicity assay of the compounds described in section 2.3 was 

undertaken prior to experimental use. Cells were plated out into a 96-well plate at a 

density of 1x104 cells per well. Cells were allowed to recover and settle for 24 hours 

in 100µl DMEM. The compounds were added to the cells at increasing 

concentrations (ranging from 0 µM up to 20 µM) and allowed to incubate for 24-48 

hours. Following the appropriate incubation times, MTT substrate MW414 (Sigma) 

was dissolve to a concentration of 1 mg/ml in filter-sterilised serum-free medium. 
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The DMEM and compound were removed from the cells and they were washed in 1 

x PBS. 100 µl of MTT solution was added to each well and incubated in the dark at 

37°C in a humidified incubator with 5 % carbon dioxide for 30 minutes. Following 

incubation, the MTT solution was removed from the cells and replaced with 100 µl 

DMSO. The plate was agitated for 5 minutes at 60 rpm to allow for the purple 

precipitant to re-dissolve. Any bubbles were removed and the plate was analysed 

by measuring absorbance at 570 nm using a fluorescent plate reader. 

2.7 Immunofluorescence 

2.7.1 Preparation of Cells for Immunofluorescence 

BHK-21 and Huh 7.5 cells were seeded on to glass coverslips in 24-well plates and 

transfected with FMDV replicon RNA as described in section 2.6.2 and section 2.6.3, 

or after electroporation with HCV SGR as described in section 2.6.6 and 2.6.7. 

Transfected cells were incubated for a range of times (2-8 hours). Following 

incubation, the media was removed and the cells were gently washed once with 1 x 

PBS and fixed using 4 % paraformaldehyde for 10 minutes at room temperature. 

Once fixed, the cells were stored in 1 x PBS at room temperature. 

2.7.2 Permeabilisation and Antibody Probing 

Cells were permeabilised either in 0.2 % triton X-100 in PBS or in saponin buffer for 

2 hours at room temperature on a rocking platform. Permeabilised cells were 

subsequently washed 3 times in 1 x PBS and probed with the appropriate primary 
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antibody diluted in 1 x PBS for 2 hours at room temperature, or for 16 hours at 4°C. 

Cells treated with the appropriate primary antibody (as listed in section 2.4).  

Following primary antibody incubation, coverslips were washed 3 times in 1 x PBS 

and probed with the appropriate secondary fluorescent antibodies (as listed in 

section 2.4). The antibodies were diluted in 1 x PBS. Cells were incubated with 

secondary fluorescent antibodies for 2 hours at room temperature on a rocking 

platform. Incubation of coverslips with secondary antibody was undertaken in the 

dark.  

Coverslips were washed 3 times in 1 x PBS and mounted on microscope slides after 

blotting dry with 5 µl ProLong Gold antifade mountant with DAPI (Life Technologies). 

Mounted coverslips were sealed before visualising by confocal microscope. 

2.8 Immunoblotting 

2.8.1 Harvesting Cell Lysates 

BHK-21 cells were transfected with RNA as outlined previously. Every hour after 

transfection for 10 hours the cells were lysed by adding 100 μl RIPA buffer and 

scraped from the well into an Eppendorf tube, vortexed and centrifuge at 

approximately 16,000 x g (or 13,300 RPM) for 15 minutes to pellet the lysates. The 

lysates could be stored in -20°C. Lysate samples were subjected to SDS-PAGE 

electrophoresis on 10 or 15 % resolving gels, with 5 % stacking gel (Cold Spring Harbor 

Laboratory, 2015).  

 



58 
 

2.8.2 SDS-PAGE Gel Electrophoresis 

SDS-PAGE gels were prepared for electrophoresis of samples (Cold Spring Harbor 

Laboratory, 2015) . An equal volume of cell lysate sample and 2 x Laemelli loading 

dye was heated at 95°C for five minutes. The samples were loaded on to the gels. The 

gels were subjected to 200 V for one hour in 1 x Tris-glycine SDS-PAGE running buffer. 

2.8.3 Western Blotting  

After electrophoresis, the protein on the gel was transferred onto Immobilon®-P 

polyvinylidene difluoride (PVDF) membrane (Merck) (activated in 100% methanol 

prior to transfer) on XCell SureLock Mini-Cell wet transfer apparatus (Life 

Technologies) in 1 x transfer buffer for one hour 30 minutes at 25 mA. The membrane 

was subsequently washed in 1 x TBS-T and blocked in 10 % blocking buffer (10 % 

(w/v) skimmed milk powder in 1 x TBS-T) for one hour at room temperature on a 

rocking platform.  

2.8.4 Antibody Incubation 

The membranes were incubated for 16 hours at 4°C on a rocking platform with the 

primary antibodies (section 2.4), diluted to the appropriate concentration in in 5 % 

milk (5 % (w/v) milk powder in 1 x TBS-T). Following incubation, the membranes were 

washed 3 times in 1 x TBS-T and incubated for 2 hours at room temperature on a 

rocking platform with the appropriate secondary antibody (section 2.4) diluted to the 

appropriate concentration in 5 % blocking buffer.  
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2.8.5 Developing SDS-PAGE membranes 

The membranes were washed and incubated in combined ECL I and II enhanced 

chemiluminescence reagents (Pierce) and are exposed on film. The film was 

automatically developed using the Xograph Compact X4 Automatic Processor to 

develop the film. 

2.9 Expression and purification of His-tagged 3Dpol 

WT his-tagged 3Dpol (kind gift from Esteban Domingo) and mutants constructed by 

PCR mutagenesis were expressed in Codon plus (+) RiPL competent E. coli. For protein 

production, a 12 ml LB medium containing kanamycin (100 µg/ml) and 

chloramphenicol (34 µg/ml in 100% ethanol) was grown for 16 hours at 37°C was 

used as a starter culture. 10 ml of starter culture was used to inoculate 1 L LB broth 

with 100 µg/ml kanamycin. The cultures were grown at 37°C in a shaking incubator 

until optical density at 600 nm (OD600) was in the range of 0.6-0.8. Cultures were then 

induced with 1 mM IPTG and grown for a further 3 hours at 37°C. The cultures were 

centrifuged at approximately 6,000 x g (or 5,000 RPM) for 10 minutes and the 

supernatant was discarded. The bacterial pellet was resuspended in 1 ml storage 

buffer (20 mM Tris-HCl, pH 8) and stored at -80°C. 

Pellets were lysed with the addition of 30 ml lysis buffer (20 mM Tris-HCl, 500 mM 

NaCl, pH 8), 200 µl 100 mg/ml lysozyme (Sigma), 15 µl 100 mg/ml DNaseI (Life 

Technologies), and 1 cOmplete EDTA-free protease inhibitor cocktail tablet (Roche) 

and placed on a roller at 4°C for 30 minutes. The lysed pellets were subsequently 

sonicated alternating 10 seconds on and 40 seconds off for 6 minutes. The sonicated 



60 
 

lysate was centrifuged at approximately 27,000 x g (or 15,000 RPM) for 20 minutes 

and the supernatant filtered through 0.22 µm filter. 

The filtered supernatant (load) was subjected to nickel affinity chromatography using 

1 ml HisTrap HP columns (GE Healthcare) attached to a peristaltic pump. HisTrap 

columns were prepared by washing with five column volumes (CV) dH2O, and 

equilibrating with five CV buffer A (wash). The load was added and collected as 

flowthrough. The column was washed three times in 3 CV buffer A (wash). Each wash 

was collected separately. The column was then washed with 5 CV buffer B (elution). 

The flowthrough was collected in eight 250 µl fractions and the final three ml was 

collected in fraction 9. 

The load flowthrough, washes and eluted fractions (1-9) are analysed by SDS-PAGE 

and Coomassie (brilliant blue) stain. The typical approximate concentrations, as 

determined by Bradford assay, of the purified His-3Dpol WT, DD388/9NN, DD240/5NN 

and GC216/7AA mutant proteins were 185 µM, 300 µM, 92 µM and 130 µM, 

respectively. 

2.10 His-tagged 3Dpol in vitro assays 

2.10.1 3Dpol Activity Assay 

A 100 µl master-mix of 10 µl 10x elongation buffer, 20 µl 500ng/µl poly-A template 

RNA (GE Healthcare), 2.4 µg oligo-d(T)15 (Promega), 4 mM UTP (Thermo Fisher), and 

1 µl [α-32P]-UTP (250 µCi) (Perkin Elmer) was made alongside 20 µl master-mix for 

controls which include one without any RNA components, one without poly-A 

template RNA, one without oligo-d(T) primer DNA, and one without any UTP. 10 µl 
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of each master mix was aliquoted into an RNAse-free Eppendorf tubes (one for each 

timepoint and for the controls). Immediately before use, a final concentration of 

18.52 µM of his-3Dpol was added to each reaction tube except for the control tube 

(that contained no protein). All reactions were controlled for salt concentrations as 

dilution of individual components (solutes) of the assay were made using the same 

solvent/buffer. 

Reaction tubes were incubated at 30°C for increasing lengths of time (1-120 minutes). 

Reactions were stopped by the addition of 1.5 µl 500 mM EDTA. 2 µl of each reaction 

was blotted onto filter paper (Whatmann) and allowed to dry. The dried filter paper 

was washed by gentle rocking for 2.5 minutes in activity assay wash buffer (200 mM 

di-sodium hydrogen phosphate, 75.2 mM sodium pyrophosphate) 5 times, followed 

by once in in dH2O for 1 minute and, once in 100 % ethanol for 1 minute. The filter 

paper was allowed to dry and was then exposed on to film for 16 hours at -80°C. The 

film was developed automatically using Xograph Compact X4 Automatic Processor. 

The individual dots on the filter paper could then be excised and scintillated with the 

addition of 3 ml scintillation fluid (Perkin Elmer) and the radioactive counts were 

measured by 32P scintillation counts per minute. 

2.10.2 3Dpol Crosslinking Assay 

Individual RNase-free Eppendorf tubes were prepared containing 7.5 µl 1 x 

elongation buffer and 15 µL 10 mM glutaraldehyde, alongside 80 µl activity assay 

master-mix consisting of 8 µl 10 x elongation buffer, 16 µl 500ng/µl poly-A template 

RNA (GE Healthcare), 2.4 µg oligo-d(T)15 (Promega) and 4 mM UTP (Thermo Fisher). 

Immediately before use, a final concentration of 18.52 µM of his-3Dpol was added to 
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the master-mix. Controls were also included that substituted each RNA component, 

protein, or the addition of glutaraldehyde with nuclease-free dH2O. 

7.5 µL of master-mix was added to each individual assay Eppendorf tube before the 

samples were incubated at 30oC for increasing lengths of time (1-120 minutes). 

The reaction was stopped by the addition of 30 µL 2x Laemmli buffer. The samples 

were then heated for 5 minutes at 95oC. Samples were analysed by gradient SDS-

PAGE (12 %, 10 %, 8 %, 6 %, 4 % resolving gels, and 4 % stacking gel (Cold Spring 

Harbor Laboratory, 2015)), Coomassie (brilliant blue) stain and Western blot probing 

with primary anti-His or anti-3D antibodies as detailed in section 2.4.  

2.10.3 3Dpol RNA-binding fluorescent polarisation anisotropy 

Using a black opaque 384-well plate (Perkin Elmer), 20 µl of RNA binding buffer (20 

mM Tris-HCl (pH 8), 100 mM NaCl, 0.01 % Triton X-100) was added to each well 

followed by 40 µl of protein to the first well and mixed by pipetting. A serial dilution 

of the protein was completed across each well by transferring 40 µl of the RNA 

binding buffer and protein to the next adjoining well and finally discarding 40 µl from 

the last well resulting in each well containing equal volumes of 20 µl. 

Next, 20 µl of 20 nM FITC-labelled 13mer poly-A (from 1 µM stock) was overlaid into 

each well containing buffer and protein. A control row that contained no fluorescent 

RNA to establish background polarisation was included. The plate was incubated at 

room temperature for 1 hour in the dark. 
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Polarisation was measured using the Tecan plate reader (Darren Tomlinson, 

University of Leeds) with an excitation filter at 480 nm and S and P channel emission 

filters at 530 nm. 

2.10.4 Transmission electron microscopy (TEM) negative staining 

Carbon-coated copper grids were prepared by glow discharge at 25 mA for 30 

seconds. 

The activity assay master mix was prepared as described for the crosslinking assay in 

section 2.10.2. Samples were incubated for 30 minutes at 30°C. Reactions were 

stopped by loading 10 µl onto carbon-coated copper EM grids for 1 minute. The 

sample was blotted off and the grids washed twice with 10 µl dH2O for 5 seconds 

each. The grids were loaded with 10 µl 2 % uranyl acetate for 1 minute and blotted 

off with filter paper.  

TEM was analysed on the Jeol 1400 (Jeol USA Inc.) at 30, 000 x magnification. 

2.10.5 Cryo-electron microscopy (Cryo-EM) 

Activity assay master-mix was prepared as described in section 2.10.2 and incubated 

at 30°C for 30 minutes. 10 µl of the master-mix was loaded on a C-flat (protochips) 

CF1.2/1.3-4C grid (1.2 µm holes) that had been glow discharged at 25 mA for 1 

minute. The grids were blotted for 6 seconds at blot force 10, using an FEI Vitrobot 

Mark IV in chamber conditions at 4˚C and 95 % relative humidity. 
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Initial analysis of the grids took place at the University of Glasgow. 129 micrographs 

were analysed, yielding 23,700 filament sections by autopicking in Relion 2.0.3. After 

2 rounds on 2D classification, 12,521 sections were used in the 3D classifications. 

Further cryo-EM analysis involved data collection on the Krios 1 microscope 

(University of Leeds), using the Falcon III detector in integrating mode. Data was 

collected at nominal 75,000 x magnification, giving a sampling of 1.05 Å/pixel. The 

dose rate is 60 e¯/pixel/second, giving a dose of 54 e¯/Å2/second. The length of 

exposure was 2 seconds, with 79 frames in total, giving 1.4 electrons/frame. 

Collection of data occurred at a defocus range of -1.5 to 2. 
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Chapter 3 

Investigating mutations in foot-and-mouth 

disease virus 3D polymerase in viral replication 

3.1 Introduction 

The RNA-dependent RNA polymerase from FMDV, 3Dpol, is a 54 kDa enzyme. The 

main function that has been described for 3Dpol is in viral RNA synthesis. 3Dpol is a 

non-proof-reading polymerase resulting in both mutations and recombination 

occurring during replication, lending FMDV a quasispecies nature, common across all 

picornaviruses (reviewed in Domingo et al., 2012).  

The process of FMDV infection from entry through to egress is extremely quick, 

completing a single lifecycle in cell culture in 6 hours. In livestock, transmission can 

result in disease signs being identified as early as 2-3 days post infection (reviewed 

in Grubman and Baxt, 2004). 

Upon entry into the host-cell cytoplasm, the viral RNA genome undergoes initial 

translation. Host-cell translation initiation factors and ribosomes bind to an IRES 

element located in the 5ʹ UTR and initiate internal translation of the viral RNA 

genome in a cap-independent manner typical of a number of positive-sense RNA 

viruses such as pestiviruses, hepaciviruses, aphthoviruses and enteroviruses (Jang et 

al., 1988; Pelletier et al., 1988; Belsham et al., 1990; Sizova et al., 1998; Niepmann, 

2009). The process of translation is mediated by the binding of translation initiation 
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factor eIF4G to the IRES. This subunit recruits eIF4A, eIF3a and eIF4B, and the 40s-

ribosomal subunit, along with an ever-growing list of cellular co-factors (IRES trans-

acting factors – ITAFs) including the poly-pyrimidine tract binding protein (PTB), the 

poly-A binding protein (PABP) and the poly-C binding proteins 1 and 2 (PCBP1, PCBP2) 

(Martínez-Salas, 2008; Yu et al., 2011; Blyn et al., 1997; Rodríguez Pulido et al., 2007; 

López de Quinto et al., 2002).  

Figure 3.1 Schematic of the FMDV genome showing the proposed ORFs of each of 

the viral proteins. The 5’ untranslated region (UTR) is located upstream of the 

polyprotein. The structural proteins are transcribed from segment P1 (1A-1D) and 

are co-and post-translationally processed to make mature capsid proteins (VP1-4). 

Segments P2 and P3 encode for the non-structural proteins necessary for replication 

of the genome (2A-3D). Likewise, both these segments are co- and post-

translationally modified into the mature proteins. Adapted from Forrest et al., 2014. 

The genome is translated into a polyprotein from a single ORF from which the 

structural and non-structural precursors are co- and post-translationally processed 

into the active mature proteins (Fig. 3.1). The polyprotein is initially processed into 

four primary products: Lpro, P1-2A, 2BC and P3 (Laporte, 1969; Sangar, Black, et al., 

1977; Rueckert et al., 1984). Intermediate polyprotein precursors 2BC and P3 are 

cleaved into the functional, ‘mature’ proteins by the virus-encoded protease, 3C via 

several further intermediates (Doel et al., 1978), including 3AB1-3, and 3CD (Flint et 
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al., 1997). Further processing releases the 3A transmembrane protein (Moffat et al., 

2005; González-Magaldi et al., 2014), three non-identical tandem repeats of primer 

3B (3B1-3) (Forss et al., 1982), 3C (Birtley et al., 2005) and 3Dpol (Ferrer-Orta et al., 

2004). 

The process of replication involves the viral polymerase scanning and replicating the 

RNA template from 5’ to 3’ direction to form a negative strand intermediate from 

which positive strands can be made and used as a template for translation and/or to 

be packaged into virions. Translation of the input RNA occurs in a 5’ to 3’ direction 

beginning at the IRES located in the 5ʹ UTR, however, this cannot occur concurrently 

with replication on the same RNA strand, and it is proposed that a switch occurs for 

replication to begin (Gamarnik et al., 1998; Paul, 2002; Nayak et al., 2005). However, 

it is possible that replication and translation can occur concurrently within different 

cellular compartments. 

Initiation of both replication and translation has been shown to involve the 

circularisation of the genome through discrete RNA-RNA and RNA-protein 

interactions between the 3ʹ UTR, the 5ʹ UTR, cellular host factors, and virus-encoded 

proteins  (Herold and Andino, 2001; López de Quinto et al., 2002; Serrano et al., 

2006). This mechanism is thought to be widespread amongst positive-strand RNA 

viruses (Pogue et al., 1994; Gamarnik et al., 1998; Kim et al., 2003; Villordo et al., 

2010). 

Replication of viral RNA commonly occurs within intracellular membrane-associated 

compartments known as replication complexes. Evidence of such compartments 

have been shown in HCV, dengue virus, and in other picornaviruses such as PV  (Bienz 
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et al., 1992; Schlegel et al., 1996; Westaway et al., 1999; Gosert et al., 2003; Novoa 

et al., 2005; den Boon et al., 2010). Replication of viral RNA occurs within these 

intracellular compartments as a way for the virus to concentrate the structural and 

non-structural components into a small area to facilitate replication as well as to be 

able to protect the virus components from host-cell pathogen recognition and innate 

immune responses. Using immunofluorescent confocal and electron microscopy, 

FMDV has been shown to dysregulate Golgi and ER-derived membranes in a similar 

way to PV (Schlegel et al., 1996; O’Donnell et al., 2001; Monaghan et al., 2004; Knox 

et al., 2005), but no distinct membrane-bound replication complex comprised of viral 

RNA, structural and non-structural proteins, and host-cell proteins have yet to be 

identified for FMDV. 

Much like PV, where replication is mediated by the binding of 3Dpol to the VPg in the 

presence of 3CD binding to the cloverleaf structure (Harris et al., 1994), replication 

of FMDV RNA begins with 3Dpol, in the presence of 3CD, mediating the uridylylation 

of the third tyrosine of VPg. VPg is encoded for by non-structural proteins 3B1, 3B2, 

and 3B3. The template for VPg uridylylation is the cis-acting replicative element (cre) 

located in the 5ʹ UTR. A copy of uridylylated VPg (VPg-pUpU) hybridises to the 3’ end 

of the template RNA and acts as a primer to initiate replication. It is thus covalently 

linked to the 5ʹ end of the daughter strand and is used as a primer for both positive 

and negative strand synthesis (Murray et al., 2003; Nayak et al., 2005; Steil et al., 

2009).  

In addition to functioning as the major catalytic protein necessary for viral genome 

replication, PV 3Dpol has been shown, biochemically and by microscopy, to have 
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another role in creating a support scaffold within which replication can occur. Studies 

on PV have shown that individual molecules of 3Dpol are able to interact with one 

another and multimerise to form higher-order fibril-like structures (Pata et al., 1995; 

Lyle, Bullitt, et al., 2002; Spagnolo et al., 2010; Tellez et al., 2011; Wang et al., 2013). 

Previous work on FMDV has shown, biochemically and by transmission electron 

microscopy, that 3Dpol is also able to form higher-order fibril-like structures, similar 

to those formed by PV 3Dpol (Bentham et al., 2012). This chapter investigates the role 

of FMDV 3Dpol in RNA replication by studying the formation of higher-order 

structures and the effects of a number of mutant polymerases on their ability to 

function.  
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3.2 Mutations of 3Dpol 

The structure of FMDV 3Dpol has been well characterised and there are high-

resolution crystal structures of wildtype and several mutant polymerases have been 

identified (Ferrer-Orta et al., 2004; Agudo et al., 2010; Ferrer-Orta, Ferrero, et al., 

2015; Ferrer-Orta, de la Higuera, et al., 2015). These structures have also aided in our 

understanding of the catalytic domains and the key RNA binding domains, and 

identified the minimum requirement for nucleotide binding in the polymerase RNA 

binding site (6 nucleotides).  

The model of FMDV serotype C WT 3Dpol, as shown in Fig 3.2, has the different motifs 

outlined. FMDV 3Dpol has the standard ‘right-hand’ structure similar to other 

template-dependent nucleic acid polymerases (Steitz, 1998). The catalytic domain of 

the polymerase is located in conserved motif C in the ‘palm’ region of the structure 

highlighted in green in Fig. 3.2. The main catalytic residues are two aspartic acid 

residues located at amino acid positions 388 and 389. These residues have been well 

characterised as the primary catalytic site in several RNA viruses and is conserved 

amongst all serotypes of FMDV (Jablonski et al., 1991; Hansen et al., 1997; George et 

al., 2001; Carrillo et al., 2005). Changing either one or both aspartic acid residues 

hinders the enzymatic activity of the protein and ability to replicate the viral RNA 

genome. 
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Figure 3.2 Three-dimensional model structure of FMDV 3Dpol produced in PyMol 

based on the structure of recombinant serotype C protein (PDB: 1WNE). The 

structure shows the protein in the standard right-hand orientation with the location 

of the palm, thumb and fingers highlighted. The seven conserved motifs are 

highlighted. Motif A (Orange), Motif B (Yellow), Motif C (Green), Motif D (Purple), 

Motif E (Pink) and Motif F (Red).  

To identify other mutations that affected the function of 3Dpol, work by Herod et al. 

identified areas in the genome that could tolerate insertions by random transposon-

mediated mutagenesis using an FMDV replicon (Herod et al., 2015). The FMDV 

replicons that were developed and used have substituted the structural proteins in 

the P1 region with fluorescent reporter cassettes to monitor replication. These 

replicons are unable to form infectious virus but can still replicate once transfected 

into cell culture. The use of transposon-mediated mutagenesis using the FMDV 

replicon system has been a useful tool to identify key functional regions within viral 

proteins. By identifying permissive insertion sites, these regions can be further 

manipulated to include epitope tags for improved downstream studies such as 
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immunofluorescence (McMahon et al., 1998; Brune et al., 1999; Teterina et al., 2011; 

Remenyi et al., 2014).  

The method of transposon-mediated mutagenesis was used to identify regions in 

FMDV serotype O 3Dpol that could primarily tolerate small genetic insertions but also 

resulted in the identification of non-permissive insertion sites within the replicon. 

These non-permissive sites led to the production of replication-defective replicon 

phenotypes by rendering the polymerase inactive (Herod et al., 2015; Herod et al., 

2016). Out of nine mutations in the 3Dpol region that were identified, three were 

chosen to take forward into further studies: catalytic mutations DD388/9NN and 

DD240/5NN, and non-catalytic mutation GC216/7AA. These mutations were chosen 

to take forward in the studies as it was expected that the catalytic mutations would 

affect the ability for the polymerase to function as an enzyme. The phenotype of the 

non-catalytic mutation was as yet unknown. 

Mutant DD240/5NN corresponds to a substitution of the aspartic acid residues 240 

and 245 for asparagine, GC216/7AA corresponds to a substitution of glycine and 

cysteine residues in positions 216 and 217 for alanine and finally DD388/9NN 

corresponds to a substitution of the two aspartic acid residues in positions 388 and 

389 for asparagine. These mutations are represented schematically in Fig. 3.3a. The 

location of the mutated residues in the polymerase protein in Fig.3.3b is highlighted 

by differently coloured spheres.  

It is important to note that the protein sequences of serotype O and serotype C FMDV 

3Dpol are almost identical (99 % sequence identity) as highlighted in the sequence 

alignment in Table 3.1 below. There are four amino acid changes that differentiate 
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serotypes O and C, the first is located at position 68 from glutamic acid to glycine, the 

second at position 158 from valine to alanine, the third is at position 170 from leucine 

to methionine, and the fourth is located at position 294 from glycine to glutamic acid. 

The amino acids that have been mutated in serotype O (as a result of the transposon 

mutagenesis studies) are the same as those found in serotype C. 

Protein sequence alignment of FMDV 3Dpol serotype O and serotype C 

 

Serotype-O GLIVDTRDVEERVHVMRKTKLAPTVAHGVFNPEFGPAALSNKDPRLNEGVVLDEVIFSKH 

Serotype-C GLIVDTRDVEERVHVMRKTKLAPTVAHGVFNPEFGPAALSNKDPRLNEGVVLDEVIFSKH 

           ************************************************************ 

Serotype-O KGDTKMSEEDKALFRRCAADYASRLHSVLGTANAPLSIYEAIKGVDGLDAMEPDTAPGLP 

Serotype-C KGDTKMSAEDKALFRRCAADYASRLHSVLGTANAPLSIYEAIKGVDGLDAMEPDTAPGLP 

           ******* **************************************************** 

Serotype-O WALQGKRRGALIDFENGTVGPEVEAALKLMEKREYKFVCQTFLKDEIRPLEKVRAGKTRI 

Serotype-C WALQGKRRGALIDFENGTVGPEVEAALKLMEKREYKFACQTFLKDEIRPMEKVRAGKTRI 

           *************************************.***********:********** 

Serotype-O VDVLPVEHILYTRMMIGRFCAQMHSNNGPQIGSAVGCNPDVDWQRFGTHFAQYRNVWDVD 

Serotype-C VDVLPVEHILYTRMMIGRFCAQMHSNNGPQIGSAVGCNPDVDWQRFGTHFAQYRNVWDVD 

           ************************************************************ 

Serotype-O YSAFDANHCSDAMNIMFEEVFRTEFGFHPNAEWILKTLVNTEHAYENKRITVGGGMPSGC 

Serotype-C YSAFDANHCSDAMNIMFEEVFRTEFGFHPNAEWILKTLVNTEHAYENKRITVEGGMPSGC 

           **************************************************** ******* 

Serotype-O SATSIINTILNNIYVLYALRRHYEGVELDTYTMISYGDDIVVASDYDLDFEALKPHFKSL 

Serotype-C SATSIINTILNNIYVLYALRRHYEGVELDTYTMISYGDDIVVASDYDLDFEALKPHFKSL 

           ************************************************************ 

Serotype-O GQTITPADKSDKGFVLGHSITDVTFLKRHFHMDYGTGFYKPVMASKTLEAILSFARRGTI 

Serotype-C GQTITPADKSDKGFVLGHSITDVTFLKRHFHMDYGTGFYKPVMASKTLEAILSFARRGTI 

           ************************************************************ 

Serotype-O QEKLISVAGLAVHSGPDEYRRLFEPFQGLFEIPSYRSLYLRWVNAVCGDA---------- 

Serotype-C QEKLISVAGLAVHSGPDEYRRLFEPFQGLFEIPSYRSLYLRWVNAVCGDAAAALEHHHHH 

           **************************************************           

Serotype-O - 

Serotype-C H 

 

Table 3.1 Comparison of the protein sequence alignment of FMDV 3Dpol serotypes 
O and C. Nucleotides that were mutated are highlighted in blue, yellow and green. 
(Carrillo et al., 2005; Ferrer-Orta, Arias, Escarmís, et al., 2006)  
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Figure 3.3 Schematic outlining the location of the mutations identified in 3Dpol. A) 

Schematic of the location of the 3Dpol mutations, in context of the replicon in which 

the mutations were initially introduced by transposon mutagenesis. Non-catalytic 

mutation GC216/7AA is shown in blue, and catalytic mutations DD240/5NN in orange 

and DD388/9NN in green. B) Shows the locations of the three mutations in context 

of the recombinant serotype C WT his-3Dpol model based on protein sequence with 

the individual residues highlighted in coloured spheres (produced in PyMol, PDB: 

1WNE). 

The mutations are located in three different regions of the polymerase molecule. 

DD240/5NN, in motif A, is categorised as a catalytic mutation as the residues that 

have been changed are located in the region that interacts with the magnesium ion 

necessary and integral for enzymatic function of 3Dpol during replication (Jablonski et 

al., 1991; Ferrer-Orta, Ferrero, et al., 2015; Herod et al., 2016).  
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The DD388/9NN mutation located in the enzymatic active site in motif C, was used 

as a standard negative control as the phenotypic profile of this type of mutation in 

these key catalytic residues has been previously defined both in FMDV and in many 

different viruses such as HCV, PV, EMCV and HIV (Jablonski et al., 1991; Hansen et al., 

1997; Krieger et al., 2001; Carrillo et al., 2005; Ferrer-Orta, Ferrero, et al., 2015). In 

the literature this mutation is commonly termed GNN, or GND when only one 

aspartic acid residue is substituted for asparagine. 

The location of the non-catalytic GC216/7AA mutation is at the double-stranded RNA 

exit site (Ferrer-Orta et al., 2004; Ferrer-Orta et al., 2007; Ferrer-Orta, Ferrero, et al., 

2015) (highlighted in blue spheres in Fig. 3.3b).  
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3.3 Purification and validation of mutant 3Dpol 

These mutations (DD388/9NN, GC216/7AA, and DD240/5NN) were introduced into 

recombinant serotype C his-tagged 3Dpol constructs (kind gift from Esteban Domingo, 

Madrid). The protein was purified by affinity chromatography alongside WT his-3Dpol 

as described in section 2.9. Mutants DD240/5NN and GC216/7AA expressed well (Fig. 

3.4a). Purity was assessed by SDS-PAGE followed by Coomassie staining and Western 

blot (Fig 3.4) using antibodies specific to 3Dpol or the his-tag as described in section 

2.4. All of the proteins migrated as single species, around the expected molecular 

mass of the WT protein (54 kDa). There was, however, a clear difference in migration 

of one of the mutant proteins; DD388/9NN migrated quicker than WT.  

To investigate this further, samples of each protein were subjected to analysis by 

denaturing mass spectroscopy. Samples were dialysed into Tris-NaCl buffer 4 (pH 8) 

at 50 µM (section 2.1) by spin column buffer exchange. The LC-MS analysis was 

performed by James Ault (University of Leeds) and allows comparison of theoretical 

and measured masses of each protein (Fig. 3.5a-d). 

 It can be seen that all four mutants have very similar masses within the 54 kDa range, 

which is close to the expected mass derived from protein sequence, suggesting that 

there are no additional mutations (Table 3.2). The error range present as part of the 

measured mass (Table 3.2) was due to the method of mass calculation from the data 

produced from the spectra.  It is possible that there are changes in the local 

environment of the mutation as a result of two adjacent amino acid changes that 

result in the slower migration of DD388/9NN by SDS-PAGE.  
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Figure 3.4 Purification of serotype C his-3Dpol recombinant proteins. A) Coomassie 

staining of denaturing SDS-PAGE of uninduced bacterial cell pellet and supernatant 

during protein expression after 3 hours of incubation at 37°C. B) Coomassie staining 

of denaturing SDS-PAGE of bacterial cell pellet and supernatant induced with 1 mM 

IPTG for 4 hours at 37°C during protein expression. C) Coomassie staining of 

denaturing SDS-PAGE of his-trap affinity chromatography purified hexahistidine-

tagged 3Dpol recombinant proteins. D) Western blot of purified his-3Dpol probed with 

polyclonal anti-3D (397) primary antibody. E) Western blot of purified his-3Dpol 

probed with monoclonal anti-histidine (HRP) primary antibody. 
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One explanation for proteins migrating differently than expected can be due to 

charge differences. However, in this case, both of the 3Dpol mutant proteins included 

DD to NN mutations (DD388/9NN and DD240/5NN) and only the latter migrated the 

same as WT.  

Table 3.2 Comparison of theoretical and measured masses of his-3Dpol recombinant 

WT and mutant proteins. 

 

Mutant Theoretical Mass (Da) Measured Mass (Da) 

WT 54036 54037.5 ± 0.67 

DD388/9NN 54034 54036.8 ± 1.01 

GC216/7AA 54018 54022.0 ± 7.98 

DD240/5NN 54034 54032.8 ± 0.87 
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Figure 3.5 Mass spectroscopy analysis of his-3Dpol recombinant protein. A) WT his-

3Dpol LC-MS spectrum. B) his-3Dpol DD388/9NN mutant LC-MS spectrum. C) his-3Dpol 

GC216/7AA mutant LC-MS spectrum. D) his-3Dpol DD240/5NN mutant LC-MS 

spectrum. 
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3.4 Assessing activity of mutant 3Dpol 

3.4.1 Incorporation of radiolabelled UTP 

The phenotypes of the different polymerase mutants were verified using an 

established polymerase activity (elongation) assay following a protocol originally 

defined in Bentham et al., 2012, and detailed in section 2.10. The activity of 3Dpol was 

assessed by the ability of the enzyme to incorporate [α-32P] UTP into a growing strand 

of RNA, or as part of a larger protein-RNA complex.  

The assay utilised 3Dpol combined with a poly-A template and an oligo-d(T) primer. 

This was supplemented with a 5:1 ratio of UTP to [α-32P] UTP and incubated at 30°C 

as detailed in section 2.10.1. Polymerase activity was measured by dot-blot and 

subsequent scintillation counts per minute (CPM) (Fig.3.6a, b). Increased intensity of 

the signal developed from the dot-blot correspond with higher scintillation counts. 

Incorporation of radiolabelled [α-32P] UTP by the polymerase was unable to occur if 

one or more of the RNA constituents was missing, as shown through the use of 

controls that had either the template, the primer, or the UTP removed (Fig. 3.6a). 

These controls had similar intensities on the dot-blot to the control containing no 

protein (-3Dpol), with the exception of the control containing no UTP which showed 

no dot-blot intensity. Catalytic mutations DD240/245NN and DD388/9NN also 

showed similar reduced levels of intensity as those of the controls (Fig. 3.6a). It is 

interesting to note that the intensity of [α-32P] UTP incorporation of GC216/7AA 

appears to be greater than that of WT at both 10 and 30 minutes incubation, however 
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due to the level of ‘bleed’, it was difficult to determine the difference in intensity and 

in scintillation CPM accurately (Fig. 3.6a, b). 

Normalised scintillation counts quantifying the dot-blot samples incubated for 30 

minutes (Fig. 3.6b) show a greater than 10-fold decrease in CPM of the catalytic 

mutants when compared to the wildtype (96.7 ± 0.6 % and 97.8 ± 1.1 % respectively 

for DD388/9NN and DD240/5NN). The non-catalytic mutation GC216/7AA is able to 

incorporate [α-32P] UTP to increased levels of efficiency to wildtype (106.6 ± 57.7 %) 

(Fig. 3.6a, c). However, the difference in scintillation CPM between WT and 

GC216/7AA are not statistically significant. Once again, it is difficult to accurately 

determine this difference due to the level of ‘bleed’.  

In order to ascertain the difference in [α-32P] UTP intensity by dot-blot, a time course 

of WT and the three different mutants was undertaken (Fig. 3.6c). The time course 

confirmed the initial study (Fig. 3.6a) that the catalytic mutants DD240/5NN and 

DD388/9NN did not appear to be able to incorporate [α-32P] UTP, as expected. 

Mutant GC216/7AA was able to incorporate [α-32P] UTP to a comparable level to WT 

3Dpol. The rate of incorporation was also determined by extrapolating the scintillation 

CPM (Fig. 3.6d). The difference in the rate of total incorporation by WT 3Dpol and 

GC216/7AA is statistically non-significant (Fig 3.6d, e), however, there is a statistically 

significant (p = 0.0014) increase in initial rate of incorporation of radiolabelled 

nucleotides for mutant GC216/7AA compared to WT (Fig. 3.6f). This suggests that the 

initial binding of the polymerase to the RNA may occur more efficiently that it does 

for WT. 
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Figure 3.6 Polymerase activity assays used to determine activity of the 3Dpol 

recombinant proteins. A) Dot-blot result of an RNA incorporation assay over time 

including controls showing that incorporation and polymerase activity is only 

possible when all RNA components are available. B) Quantification of levels of 

incorporated radiolabelled nucleotides after 30 minutes incubation by scintillation 

counts per minute normalised to WT. (n=3, ± SEM, analysed by two-tailed unpaired 

t-test). C) [α-32P] UTP incorporation by different 3Dpol mutants over time (minutes) 

as detected by dot-blot. D) Linear representation of rate of incorporation of 

radiolabelled nucleotides by 3Dpol over time. E) Graph of the mean slope of the rate 

of incorporation (n=1 ± SEM). F) mean slope of the initial rate of incorporation (1-10 

minutes) (n=1 ± SEM). Statistical analysis performed using two-tailed unpaired t-test; 

* p > 0.05, ** p > 0.01, **** p > 0.0001 
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All the data presented in Fig 3.6 show that WT and non-catalytic mutant GC216/7AA 

are able to incorporate [α-32P] UTP. The polymerases with the mutations located in 

the catalytic domains (DD240/5NN and DD388/9NN) were, as expected, unable to 

function in this way.  

The intensity of the dot-blots for the two catalytic mutants DD338/9NN and 

DD240/5NN are similar to the controls consisting of samples without either template, 

primer, or 3Dpol (Fig. 3.6a-c). Therefore, the catalytic mutants DD388/9NN and 

DD240/5NN do not appear to be able to form either protein-RNA complexes, or 

incorporate [α-32P] UTP, as expected.  

The RNA-protein complex could involve the formation of higher-order oligomers of 

3Dpol, or aggregates. However, it was not possible to accurately determine the size of 

the protein-RNA complex that was being retained on the dot-blot filter paper. 

3.4.2 Determining the structure of non-catalytic mutant GC216/7AA 

The non-catalytic mutation GC216/7AA is located in the double-stranded RNA exit 

site region of the polymerase. A sample (5 mg/ml) of purified his-tagged 3Dpol 

GC216/7AA was prepared for x-ray crystallography. The crystal structure of 

GC216/7AA, was solved by Cristina Ferrer-Orta (Molecular Biology Institute of 

Barcelona) to a resolution of 2.8 Å (Herod et al., 2016) (Fig. 3.7a). The resulting crystal 

structure, co-crystallised with a 10-nucleotide RNA template-primer duplex 

(GCAUGGGCCC) in the RNA binding channel, showed that there is a minor change in 

the structure of the protein located in the loop region opposing the region of the 

introduced mutation (Fig. 3.6a).  
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Figure 3.7 Crystal structure of mutant polymerase. A) Crystal structure of 

GC216/7AA non-catalytic mutant (from Herod et al., 2016) co-crystallised with 10-

nucleotide RNA primer-template molecule. The mutated residues are highlighted in 

grey spheres. B) Centre: Superimposition of WT 3Dpol (orange) (PDB: 1WNE) and 

GC216/7AA 3Dpol (grey) (PDB: 5JXS) shows the minor structural changes caused as a 

result of the residue changes in the non-catalytic RNA exit site. Left inset: detail of 

mutated region at residues 216 and 217 shows no difference in structure between 

WT and mutant. Right inset, top: Orientation of M16-R17 region of RNA entry 

channel in WT 3Dpol. Right inset, bottom: Orientation of M16-R17 region of RNA entry 

channel in GC216/7AA 3Dpol. (Note: error in right inset, top: CG216/7AA should read 

GC216/7AA – figure cannot be edited to correct for the error). 

  

b) 
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The structural data shown in Fig 3.7b shows the superimposition of wildtype (orange) 

(PDB 1WNE) and the mutant (grey) (PDB 5JXS) polymerase structures. The structures 

of the mutant and WT proteins are virtually identical with a slight difference in the 

loop region containing residues M16 and R17 opposing the region containing the 

non-catalytic mutations (Fig. 3.7b top right inset) and minor changes in the region 

containing the GC216/7AA mutations (Fig. 3.7b left inset) (Herod et al., 2016).  

The structural changes did not alter the interactions of the RNA with the polymerase 

at the dsRNA exit site. There was, however, a larger structural change as a result of 

the mutation at GC216/7AA located at the opposing RNA template entry channel (Fig. 

3.7b top/bottom right inset). The segment that is altered the most is the M16-R17 

region highlighted in Fig. 3.7b top right inset.  

In all known WT polymerase complexes, the R17 basic side chain has been shown to 

interact with the template nucleotide t+2 (Ferrer-Orta et al., 2007; Ferrer-Orta et al., 

2009; Ferrer-Orta, Ferrero, et al., 2015). In these complexes the t+2 nucleotide is 

orientated towards the active site of the polymerase with the t+1 nucleotide located 

at the entry of the cavity (Fig. 3.7b bottom right inset). In the GC216/7AA mutant, 

the M16-R17 region is orientated differently, with the basic side chain of R17 pointed 

towards the interior of the polymerase molecule instead of towards the polymerase 

active site. This reorientation has been identified before in three different mutants 

(3D-K20E, 3D-K18E and 3D-SSI) that affect the affinity of the polymerase with the 

incoming RNA template molecule and subsequent nucleotide incorporation (Agudo 

et al., 2010; Ferrer-Orta, de la Higuera, et al., 2015). 
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It was hypothesised that this mutation in the GC216/7AA that resulted in an 

alteration in the template RNA entry channel would decrease the ability for the 

polymerase to transiently bind to RNA (Herod et al., 2016). However, the data shown 

here supports that the mutant polymerase incorporates the radiolabelled 

nucleotides with increased efficiency when compared to WT. The affinity of the 

polymerase-RNA interaction was thus investigated. 

3.4.3 Investigation into RNA binding 

To address this question of protein-RNA binding affinities, a fluorescent polarisation 

anisotropy (FPA) assay was used. FPA measures the tumbling rate of a fluorescently 

labelled molecule, fluorescein- (FITC) labelled RNA (used here). The principle of FPA 

results in the excitation of a fluorescent molecule by polarised light. The excited 

fluorophore emits light whereby the degree of polarisation of the emitted light is 

inversely proportional to the tumbling rate of the fluorescent molecule in solution. 

The smaller the molecule, the higher the tumbling rate resulting in the depolarisation 

of the emitted light as the fluorophore reorients in solution during the lifetime of the 

excitation. Conversely a larger molecule, in this case where fluorescent RNA is bound 

to the polymerase, the tumbling rate will be slower, and thus less depolarisation of 

the emitted light will be detected.  

The FPA assay here used FITC-labelled 13mer poly-A RNA together with the 

polymerases as detailed in section 2.10.3 (Fig. 3.8a, b). The Kd values of WT and 

GC216/7AA were 5.83 ± 0.33 and 6.75 ± 0.52 μM, respectively. The slight decrease in 

binding affinity seen for mutant GC216/7AA was not significant (p > 0.063). In 

contrast, the Kd values of the catalytic mutants DD240/5NN and DD388/9NN were 
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1.92 ± 0.17 and 3.50 ± 0.27 μM respectively. The differences in Kd value when 

compared to WT were highly significant (p > 0.001). The lower Kd values for the 

catalytic mutants would suggest that they bind the 13-mer poly-A RNA with a higher 

affinity.  

The FPA data support the hypothesis that the mutation in the RNA exit site 

(GC216/7AA) results in a slight deficiency in the polymerase binding affinity. 

However, based on the results gleaned from the polymerase activity assay, the 

structural changes due to the RNA exit site mutation do not appear to affect the 

ability for the GC216/7AA mutant to incorporate [α-32P] UTP (Fig. 3.6).  
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Figure 3.8 Fluorescence polarisation anisotropy assay. A) Graph showing the binding 

affinity of FITC-labelled 13mer poly-A RNA to each of the recombinant 3Dpol mutants. 

B) Graph showing the mean Kd values for RNA binding affinity compared to WT (n=3, 

± SEM, two-tailed unpaired t-test). C) Table summarising the Kd values for each of 

the mutant polymerases (n=3 ± SEM). Statistical analysis performed using two-tailed 

unpaired t-test; *** p > 0.001, **** p > 0.0001. 
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3.5 Investigation into formation of higher-order 

complexes 

Extensive studies on PV polymerase, and previous work on FMDV polymerase, 

outlined in Bentham et al., 2012, showed that catalytically active polymerase 

molecules were able to form higher-order lattice or helical structures (Arnold et al., 

1999; Lyle et al., 2002; Spagnolo et al., 2010; Tellez et al., 2011; Wang et al., 2013). 

In the case of PV, these higher-order structures could form de novo without the 

addition of RNA primer-templates (Arnold et al., 1999). In contrast, studies on the 

oligomerisation of FMDV 3Dpol have shown that higher-order structures could only 

form in the presence of RNA primer-template (Bentham et al., 2012).  

The concept of oligomerization of the polymerase molecules and the binding of the 

RNA to the protein has been shown biochemically to be highly co-operative; multiple 

molecules interact to facilitate the efficient replication of the viral RNA. 

Oligomerisation of replication-associated proteins, such as the polymerase, could 

feature as a functional control by providing stability and protecting the RNA from 

degradation and denaturation (Ferrer-Orta, Ferrero, et al., 2015). Dimers and higher-

order oligomers of polymerase molecules have been reported in a number of 

positive-strand RNA viruses (Hansen et al., 1997; Luo et al., 2000; Lyle et al., 2002; 

Hogbom et al., 2009; Chinnaswamy et al., 2010; Spagnolo et al., 2010). In PV in 

particular, the ability for the polymerase molecules to oligomerise into a planar 

lattice provides an attractive model for the formation of membrane-associated 

replication complexes especially when such models suggest the interaction of PV 

3Dpol with membrane-associated viral precursor protein 3AB and host-cell factors 
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including phosphoinositides such as phosphatidylinositol-4-phosphate (Lama et al., 

1994; Lyle, Clewell, et al., 2002; Lyle, Bullitt, et al., 2002; Hsu et al., 2010). These 

studies have also shown that PV 3Dpol planar lattices are able to fold into helical 

arrays, termed fibrils (Lyle, Bullitt, et al., 2002; Wang et al., 2013). 

Previous work on FMDV polymerase struggled to consistently identify fibril formation 

by transmission electron microscopy (TEM). It was believed that this was the case 

due to the transient nature of the fibril formation during the assay. In order to form 

a more stable and permanent protein-RNA fibril complex, glutaraldehyde, a potent 

crosslinking agent was added to the assay described here (see also section 2.10.2). 

Additionally, the inclusion of a crosslinking reagent could allow for the confirmation 

and resolution of higher-order structure formation by SDS-PAGE. 

Purified his-tagged 3Dpol (WT and mutants) were incubated at 30°C for up to 2 hours 

with glutaraldehyde and the RNA template-primer used for the aforementioned 

activity assay (section 3.4.1). Initially, to characterise 3Dpol oligomerisation, non-

radiolabelled UTP nucleotide was used. Samples were taken at increasing timepoints, 

from 1 to 120 minutes, and the reactions were stopped by adding SDS-PAGE 2x 

Laemmeli buffer loading dye as outlined in Chapter 2 (section 2.10.2). The samples 

were resolved by gradient SDS-PAGE and analysed by Western blot using antibodies 

either against the hexa-histidine tag or against 3Dpol (Fig. 3.9). 
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Figure 3.9 Glutaraldehyde crosslinking assay showing the formation of higher-order 

oligomers by Western blot on denaturing SDS-PAGE gels from a polymerase activity 

assay (section 2.10.2). A) WT polymerase, B) DD388/9NN, C) GC216/7AA and D) 

DD240/5NN. Controls include no protein (-P), no RNA (-R) and no glutaraldehyde (-

G) all incubated for 30 minutes at room temperature. Arrows denote hypothesised 

higher-order species. The Western blot was probed with anti-his antibody at the 

dilution stated in section 2.4. 
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The SDS-PAGE and subsequent Western blot analysis of the crosslinked protein-RNA 

complexes showed the gradual increase in oligomer formation over time for WT 3Dpol 

(Fig. 3.9a) before appearing to form oligomers too large to migrate through the gel. 

Figures 3.9b-d show the resolved crosslinked protein-RNA complexes of the mutant 

polymerases. It is clear to see that the development of oligomers over time differs 

slightly to that seen in WT 3Dpol. While WT shows a gradual increase over time, the 

mutants all appear to show oligomer formation during the early timepoints (1-20 

minutes) before the complexes became too large to migrate through the gel. 

However, it is important to note that the rate of UTP incorporation and subsequent 

oligomer formation was not different between mutants as shown in figures 3.6c and 

3.6d. Reactions containing no RNA (template, primer, or nucleotides), no 3Dpol and 

no glutaraldehyde were included as controls. It is interesting to note that WT 3Dpol 

that was incubated without any RNA also appeared to form oligomers after 30 

minutes of incubation. 

To confirm that the bands of increasing size seen in each polymerase corresponded 

to the formation of higher-order fibril structures, samples were taken at 30 minutes 

and the reactions stopped by the addition of 2 % uranyl acetate when the samples 

were loaded onto carbon-coated copper TEM grids. The grids were analysed under 

standard TEM by negative stain (Fig. 3.10).  
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Figure 3.10 Negative stain TEM of crosslinked polymerase activity assay after 30-

minute incubation. A) WT 3Dpol forms visible fibril formations when incubated with 

RNA template-primer, B) DD388/9NN, C) DD240/5NN and D) GC216/7AA mutant 

polymerases do not show any distinct fibril structure formation but protein 

aggregates. E) WT 3Dpol incubated without RNA. Scale bar 100 nm. 
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Negative stain analysis by TEM showed that WT 3Dpol was able to form higher-order 

fibrillar structures when RNA primer-template and free nucleotides were present (Fig 

3.10a). These structures were similar to previous FMDV 3Dpol fibrils (produced in the 

absence of glutaraldehyde) (Bentham et al., 2012). The mutant polymerases were 

therefore investigated in a similar assay (Fig. 3.10b-d). After 30 minutes of 

incubation, no evidence of regular higher-order fibrillar were evident, although 

aggregated protein was visible.  

WT 3Dpol glutaraldehyde crosslinked assay without any RNA (-RNA) appeared to form 

oligomers at 30 minutes (Fig. 3.9a). This sample was also analysed by TEM and 

showed that some fibrils were able to form, however, there was a marked difference 

in morphology, particularly in the diameter of the fibrils, and in abundance to those 

formed by WT 3Dpol in the presence of RNA (Fig. 3.10e). Early incubation timepoints 

were also analysed (Fig. 3.11) and revealed that WT 3Dpol was able to form fibrils 

from as early as 2 minutes.  

Figure 3.11 Negative stain TEM of crosslinked polymerase activity assay after 2-

minute incubation of WT crosslinked 3Dpol with primer-template RNA. Scale bar 100 

nm. 
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3.6 Structural determination of FMDV 3Dpol fibrils 

It has been hypothesised through work on other RNA viruses such as PV and HCV 

(Hansen et al., 1997; Luo et al., 2000; Lyle, Clewell, et al., 2002; Hogbom et al., 2009; 

Chinnaswamy et al., 2010; Spagnolo et al., 2010) that these fibrils could reflect part 

of a ‘replication complex’. Therefore, studies focussed on the determination of a 

higher resolution fibril structure. 

WT 3Dpol fibrils were produced as detailed in section 2.10.2 and samples were 

prepared for cryo-EM. Samples were loaded on to carbon-coated C-flat grids and 

plunge-frozen in liquid ethane, after blotting for 6 seconds, using a Vitrobot (FEI). The 

preliminary data collection for a medium-resolution structure was undertaken at the 

Centre for Virus Research at the University of Glasgow with the assistance of Dr David 

Bhella. Using a T12 cryo-EM, 129 micrographs were taken from a single grid, from 

those 129, 23,700 fibril sections were used for computational helical reconstruction. 

Figure 3.12 2D class averaging of fibrils detected by cryo-EM. From this class 

averaging of over 200 micrographs and 25,000 fibril segments. The averaging 

depicted here is from the narrow fibril species with a diameter of 21.6 nm. 
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 The helical reconstruction identified two different species of fibrils of different 

diameters as identified by class averaging (Fig. 3.12). The narrower fibril species was 

calculated to have a diameter of 21.6 nm with a maximal distance between peak to 

peak of 10 nm, the larger fibril species had a diameter of 23.2 nm and a maximal 

peak-to-peak distance of 12 nm. Both fibril species had a 2-start helical assembly with 

D2 symmetry. From the class averages a medium-resolution (11 Å) model was 

determined (Fig. 3.13).  

Figure 3.13 Intermediate resolution three-dimensional model fibril structure of WT 

fibril with docked WT 3Dpol crystal structure (PDB: 9EC0). The model is based on 

helical reconstruction of the narrow fibril species. 

The 11 Å resolution model of the narrow FMDV fibrils appears to show a lattice of 

repeating WT 3Dpol dimers (Fig. 3.13). The dimers appear to be oriented in an anti-

parallel formation. Using the standard right-hand orientation, the major 
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intermolecular interfaces appear to lie between the fingers and the thumb, and the 

palm in adjacent molecules and between fingers only between opposing molecules 

(head to tail). 

Figure 3.14 Cartoon schematic depicting the proposed arrangement of polymerase 

molecules. A) Arrangement of FMDV 3Dpol molecules forming the fibrils. B) 

Arrangement of PV 3Dpol molecules forming the fibrils (Tellez et al., 2011; Wang et 

al., 2013). Fingers (F) and Thumb (T) locations are detailed and the arrows () depict 

the direction the individual molecules face highlighting the antiparallel arrangement. 

Dotted cross placed at interacting interfaces to highlight the differences in 

orientation of individual molecules between FMDV and PV. 

Initial analysis of hypothesised interacting residues between molecules in the fibril 

show that they are comparable with the PV fibril counterpart (between fingers and 

thumb in the antiparallel conformation, and fingers and palm between adjacent 

molecules) especially as both helical fibril structures appear to be formed of anti-

parallel interacting molecules, however where FMDV 3Dpol molecules appear to be 

mirror images, PV head-to tail dimers are oriented at 90° to each other (Fig. 3.14), 
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and translated 44 Å relative to the adjacent molecule as a result of the difference in 

size and flexibility of the helix (Hansen et al., 1997; Wang et al., 2013). PV helical 

polymerase lattices form a much larger (50 nm) fibril body with a 6-start helix. In PV, 

a model has been described whereby the RNA molecule travels through the active 

site which is conveniently located at the head-to-tail interface to fit with the dimer 

orientation, however, the orientation of the FMDV dimers suggest that the RNA 

template would need to weave through adjacent molecules.  

In order to determine the interacting residues more definitively, and to resolve 

nucleic acid density, the grids that were prepared in Glasgow were transferred to 

Leeds, in the Astbury Biostructure Laboratory, to be analysed by the Krios I 

microscope with the Falcon III detector in integrating mode. Data collection was 

automated and collected at nominal 75K magnification, giving a sampling of 

1.05Å/pixel. The calculated dose rate was 60e¯/pixel/second resulting in a dose of 

54e¯/Å2/second. The exposure time was 2 seconds with 79 frames in total giving a 

final 1.4e¯/frame. Data collection occurred at a defocus range of -1.5 to 2.8 nm. 

During 36 hours of automated data collection, 3100 micrographs were taken. The 

data was transferred back to the University of Glasgow for analysis by Dr James 

Streetley. Analysis is currently ongoing using the same helical reconstruction 

parameters developed for the medium-resolution model. After further analysis, a 

higher resolution structure was determined at 9 Å (Fig. 3.15).  
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Figure 3.15 Intermediate resolution cryo-EM structure of FMDV 3Dpol fibrils with 

crystal structure of WT 3Dpol (PDB: 9EC0) docked into the density. 

Despite this, further analysis needs to be undertaken to discern nucleic acid density, 

as even at higher resolution no RNA can be identified. A reason for this could lie in 

the level of occupancy of the RNA within the individual polymerase molecules. If only 

a fraction of the molecules contained RNA, their density may not be easily 

discernible. The current helical reconstruction data is based on the narrow fibril 

species. Analysis of the data for the larger fibril species is currently on-going.  
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3.7 The importance of RNA in the formation of fibrils 

RNA appears to be necessary for the efficient formation of regular fibrils, however, 

the location of RNA within fibrils is under investigation. In order to determine 

whether higher-order complexes contained RNA, samples from a glutaraldehyde 

crosslinked polymerase activity assay with [α-32P] UTP were resolved by SDS-PAGE 

(Fig. 3.9). The gels were subsequently dried and autoradiographed to identify if the 

input RNA used in the activity assay was included within the observed higher-order 

oligomers forming as a result of the assay (Fig. 3.16). 

Figure 3.16 Autoradiograph of glutaraldehyde crosslinking assay showing the 

presence of primer-template RNA and [α-32P] UTP within the formation of higher-

order oligomers on denaturing SDS-PAGE gels over time. A) WT, B) DD388/9NN, C) 

GC216/7AA, D) DD240/5NN. Controls include no RNA (-R), no glutaraldehyde (-G) and 

no protein (-P).  
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The autoradiograph detecting the radiolabelled incorporated nucleotides show 

bands of increasing size appearing from as early as one minute after commencing 

incubation for both WT 3Dpol and GC216/7AA 3Dpol. The pronounced bands appear 

at approximately 54 kDa, 150 kDa, and at greater than 245 kDa (Fig. 3.16a, c). Three 

pronounced bands of similar sizes appear in the crosslinked WT 3Dpol oligomeric 

species bands seen in the Western blot of the activity assay (Fig. 3.9a). From this data, 

we can infer that the higher-order species of WT and GC216/7AA identified by 

Western blot are likely to contain RNA.  

There was no evidence of RNA in the 3Dpol oligomers for the catalytic mutants 

DD388/9NN and DD240/5NN (Fig. 3.16b, d). This is consistent with these proteins 

being unable to incorporate [α-32P] UTP as seen in figures 3.6a and 3.6e, and in 

figures 3.9b and 3.9d. 

With the evidence that RNA may be included in the oligomers, or aggregates, we 

sought to investigate whether the RNA is protected within the fibril helix. It is 

hypothesised that because PV fibrils and FMDV fibrils appear to be oriented 

differently in the model and structure, it may also be hypothesised that instead of 

the RNA running through the groove made by interactions between the different 

3Dpol molecules as seen in PV, the RNA may be weaving in and out of neighbouring 

molecules in this FMDV structure. As such, the RNA may be protected by the protein 

as well as providing a scaffold for the polymerase to multimerise around.  
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Figure 3.17 Glutaraldehyde crosslinking activity assay showing the higher-order 

oligomers treated with DNase I, RNase A and proteinase K. Higher-order oligomer 

formation of WT his-3Dpol analysed by Western blot on a denaturing SDS-PAGE gel. 

Controls include no protein (-P), no RNA (-R) and no glutaraldehyde (-G). The 

crosslinked samples were also treated with RNase A, proteinase K and DNase I after 

30 minutes of incubation at 30°C. Arrow denote hypothesised higher-order species. 

The products of a crosslinked activity assay were treated with either DNase I, RNAse 

A, or proteinase K after incubating the assay for 30 minutes (Fig. 3.17). The data 

showed that there may be a minor effect on oligomer formation (by Western blot) 

when treated with RNase A suggesting that the RNA may not be completely 

protected. When treated with RNase A, the apparent quantity of higher-order 

species is reduced, particularly those species at very high molecular weights 

(highlighted by the arrow). However, these results may not be definitive as the 

reduction in higher-order species may also be due to an error in initial loading of the 

sample. When the assay containing WT 3Dpol and primer-template RNA components 

was treated with DNase I a reduction in higher-order oligomerisation was seen, 

suggesting that there may have been some RNase contamination of the DNase I. 

When treated with proteinase K, no evidence of oligomers remained, as expected.  
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Figure 3.18 Negative stain TEM of A) his-3Dpol fibrils when products of a 

glutaraldehyde crosslinking assay were treated with B) RNase A, C) proteinase K and 

D) DNase I after 30 minutes of incubation. Scale bar 100 nm. 

Samples of the treated crosslinked activity assay were visualised by TEM in order to 

directly observe the differences in fibril formation when the samples were treated 

with RNase A. The micrographs (Fig. 3.18) show that when treated with RNase A, no 

evidence of higher-order oligomers can be detected by TEM. This is consistent with 

previous results (in the absence of glutaraldehyde) (Bentham et al., 2012). 

Interestingly, treatment of the samples with DNase I appears to have a slight effect 

on fibrils consistent with the data in figure 3.17. Endoribonuclease RNase A was 

chosen as it preferentially cleaves the 3ʹ end of unpaired C and U (pyrimidine) 

residues in RNA (Cuchillo et al., 2011), and can also cleave dsRNA or RNA/DNA 

hybrids at low salt concentrations (Myers et al., 1985). This makes it an appropriate 

choice for endoribonuclease as the nucleotide incorporation due to polymerase 

activity is of UTP. 
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3.8 Is 3CD a catalytically functional precursor? 

3CD is a precursor of 3Dpol and has several documented roles in the lifecycle of FMDV. 

Previous data shows that 3CD contains a potential nuclear localisation signal (García-

Briones et al., 2006; Sanchez-Aparicio et al., 2013). Other roles of 3CD include 

functioning as a potential initiator of viral replication in formation of a complex for 

uridylylation (Murray et al., 2003; Nayak et al., 2005; Nayak et al., 2006; Steil et al., 

2009). Here, the oligomerisation of 3CD was investigated.  

3C is the FMDV major protease involved in the processing of the viral polyprotein 

during replication of the genome (Klump et al., 1984). 3C has also been shown to be 

able to cleave host-cell proteins such as the translation initiation factor eIF4A and 

histone protein H3, as well being involved in immune evasion (Grigera et al., 1984; 

Belsham et al., 2000; Wang et al., 2012). 3C was used as a control in the investigation 

of 3CD oligomerisation alongside 3Dpol. 

To determine these potential functions, samples of recombinant his-tagged 3C and 

3CD were purified (plasmids were kind gifts from Stephen Curry, Imperial College, 

London and Esteban Domingo, Madrid) as described in chapter 2. The optimisation 

of the purification of his-3CD was undertaken by Sue Matthews, University of Leeds. 

Optimisation of his-3C purification was performed by myself and experimental 

results were obtained by an undergraduate project student (Kate Loveday) under my 

supervision (Fig. 3.19). Production of purified recombinant his-3C was undertaken in 

order to assess whether the function of 3CD could be recapitulated by incubating 3C 

and 3Dpol concurrently. 
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Figure 3.19 Purification of his-tagged recombinant 3CD protein. A) Coomassie stain 

of purified 3CD. Initial eluates were pooled and dialysed prior to resolving by SDS-

PAGE. B) Western blot analysis of purified his-tagged 3C and 3CD probed with a 

monoclonal anti-3C antibody. 

Purification of the his-3C protein was more complicated than expected due to its 

propensity to aggregate and precipitate out of solution at high concentration. The 

recombinant protein contained three mutations from the catalytically active cysteine 

residues in order to inhibit protease activity and improve protein solubility (C95K, 

C142L, and C163A). It should be noted that such mutations may have a downstream 

effect on the ability for the protein to function in the proposed assays.  

His-3CD, however, did not have any mutations that affected the solubility of the 

protein, but the active site of the protease was mutated to disable its function as a 

protease. Once again, this may play a role in the downstream functional assays. It is 

interesting to note that although Coomassie staining of purified 3CD (Fig. 3.19a) 

shows a band at 75 kDa (the expected size of 3CD), the subsequent Western blot (Fig. 

3.19b) shows a number of smaller protein products possibly representing aberrant 

cleavage products, most likely as a result of bacterial proteases during protein 

expression, or the presence of 3D* at approximately 35 kDa. 3D* is thought to be a 
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fragment of incorrectly processed 3CD. Studies on PV have observed a similar 

aberrant processing event (Lawson et al., 1992; Parsley et al., 1999). 

As his-3CD is a precursor to 3C and 3Dpol, it was hypothesised that the recombinant 

precursor protein would still be able to interact with RNA, or at least be able to bind 

nucleotides, particularly as it is believed to be involved with VPg uridylylation. A dot-

blot activity assay was used to determine the ability for 3CD to bind to, or incorporate 

[α-32P] UTP. An RNA primer-template and [α-32P] UTP, as described for his-3Dpol 

activity assays (section 2.10) was used, and the complex was incubated at 30°C for 

increasing lengths of time from 0 to 10 minutes. The samples were blotted on to filter 

paper. Samples incubated for longer than 10 minutes resulted in the formation of 

aggregate too large to be resolved by SDS-PAGE, therefore it was decided to limit the 

length of the reaction times to match the trends observed in 3Dpol crosslinking assays. 

Figure 3.20a shows that his-3CD is unable to incorporate nucleotide, as expected. 
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Figure 3.20 Dot-blot of 3CD activity assay. A) Incorporation activity dot-blot assay 

with purified recombinant his-3CD protein over time (minutes). B) Dot-blot of his-

3Dpol activity assay from figure 3.5 with the controls (No template, no primer, no UTP) 

for comparison. The his-3Dpol and his-3CD assays were undertaken on the same day 

with identical controls. 

3CD was subjected to the same glutaraldehyde crosslinking assay as was used for 

3Dpol in an attempt to capture the formation of potential higher-order structures, or 

fibrils. The crosslinked assay was resolved by gradient SDS-PAGE (as described in 

section 2.10.2) and analysed by Western blot using anti-His, polyclonal anti-3D 397, 

and anti-3C 2D2 antibodies as outlined in section 2.4. 

Similarly to the his-3Dpol recombinant proteins mutants, 3CD appears to form some 

higher-order oligomeric structures by Western blot, despite being unable to 

incorporate [α-32P] UTP (Fig. 3.21). However, TEM of these early timepoint oligomers 

show aggregate formation instead of any distinct higher-order structure formation 

(Fig. 3.21d) similar to the results of the 3Dpol mutants (Fig. 3.10 b-d). 
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Figure 3.21 Glutaraldehyde crosslinking assay on recombinant 3CD incubated with 

RNA over time. A) Western blot of crosslinking assay probed with monoclonal anti-

3C antibody. Control lanes with  no RNA (-R), no protein (-P), no glutaraldehyde (-G), 

and purified 3CD not subjected to the crosslinking assay (3CD) were also included 

(n=2). B) Repeat of the glutaraldehyde crosslinking assay with 3CD probed with 

monoclonal anti-3C antibody, C) Repeat of the glutaraldehyde crosslinking assay with 

3CD probed with polyclonal anti-3D antibody (n=1). D) Negative stain TEM of 3CD 

with RNA primer-template incubated for 10 minutes. 3CD does not show any distinct 

fibril structure formation but shows the formation of protein aggregates (n=1). 
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3.9 Chapter discussion 

The RNA-dependent RNA polymerase, 3Dpol, was one of the first proteins to be 

characterised both in PV (Baltimore et al., 1962) and in FMDV (Polatnick et al., 1967). 

In both viruses one of the initial findings showed that the polymerase was not 

sensitive to actinomycin D (Baltimore et al., 1962; Black et al., 1969), but was able to 

incorporate nucleoside triphosphates into virus RNA. Both PV and FMDV 

polymerases were also shown to mediate replication of the virus genomes by binding 

to VPg (Paul et al., 1998; Nayak et al., 2005). Recent biochemical, microscopic, and 

structural studies on PV and FMDV 3Dpol have also shown that they are both able to 

form higher-order structures in vitro in the form of fibrils (Pata et al., 1995; Lyle, 

Bullitt, et al., 2002; Tellez et al., 2011; Bentham et al., 2012; Wang et al., 2013). 

Here, we have confirmed previous data, showing that FMDV fibrils can only form if 

the polymerase is catalytically active and replication-competent. Mutations located 

in the catalytic active sites and in the non-catalytic dsRNA exit site of the protein 

abrogated protein function in vitro and in context of the RNA replicon. All three 

mutations that were tested: DD388/9NN, DD240/5NN, and GC216/7AA, were unable 

to form fibrils, even in the presence of primer-template RNA, as was shown for WT 

(Bentham et al., 2012). The non-catalytic mutant GC216/7AA was able to bind RNA 

with a similar affinity to WT, despite incorporating RNA nucleotides at a faster rate 

than WT. However, GC216/7AA was unable to form fibrils. The catalytic mutations 

DD388/9NN and DD240/5NN bound RNA with low affinity and were unable to 

incorporate RNA nucleotides or form fibrils. This is in contrast to data for PV (Arnold 

et al., 1999), where fibrils form spontaneously. These data would suggest that the 
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formation of the fibrils in FMDV replication is functional in addition to providing 

support and protection, contrary to the function suggested for PV fibrils (Tellez et al., 

2011; Wang et al., 2013). 

All three FMDV 3Dpol mutations were able to form oligomers as detected by Western 

blot, however mutant DD240/5NN appeared to aggregate more readily instead of 

forming distinct higher-order structures unlike DD388/9NN. This would suggest an 

aberrant protein-protein interaction occurring. For non-catalytic mutant GC216/7AA 

and WT, the ability to incorporate [α-32P] UTP would also suggest that, in addition to 

there being a protein-protein interaction, protein-RNA interactions are involved, 

however they only lead to the formation of fibrils for WT. In PV, a number of different 

polymerase mutations that affected catalytic function were analysed and it was 

suggested that some, despite resulting in a non-functional, non-catalytically active 

protein, were still able to provide structural support to the planar lattice and result 

in helical fibril formation (Spagnolo et al., 2010; Tellez et al., 2011).  

The crystal structure of non-catalytic mutant GC216/7AA showed that the mutation 

in the double-stranded RNA exit site had minor effects on the structure of the 

polymerase when compared to WT (Herod et al., 2016). The differences in the 

structure of the molecule are predicted to have a minor effect on the incoming 

nucleotides which lends to the non-replicative phenotype of the mutant. From the 

cryo-EM structure, the residue changes do not have any effect on the regions on the 

molecule that could be involved in inter-molecular interactions with neighbouring 

polymerases. The structural changes in the DD240/5NN and DD388/9NN mutants are 

also predicted to have no effect on the inter-molecular interactions. These structural 
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predictions suggest that the formation of fibrils is linked to the enzymatic function of 

FMDV 3Dpol. Work is currently ongoing to dock the crystal structure of the 

GC216/7AA mutant into the fibril cryo-EM model to verify that the mutation does 

not affect the protein to form intra-molecular interactions necessary to form fibrils. 

Further work to establish the interacting residues between polymerase molecules is 

necessary to establish additional regions of the FMDV polymerase that are essential 

for fibril formation. Identifying these residues could help elucidate the function of 

the fibrils in vitro and in vivo. It is predicted that similar residues are involved as those 

found in PV fibril intra-molecular interactions. These regions are found 

predominantly in the finger regions of the molecules (Lyle, Bullitt, et al., 2002; Wang 

et al., 2013) and those regions that are located towards the N-terminus of the 

molecule (Lyle, Bullitt, et al., 2002). 

The importance of the enzymatic ability for 3Dpol to form fibrils can also been seen in 

the assays with 3CD. Here, a mutant 3CD was used in which the 3C active site within 

his-3CD was abrogated and thus the protease was unable to function and cleave 

correctly to release 3Dpol. 3CD is unable to form higher-order structures. This 

supports the model that 3CD has an independent, non-catalytic function in 

replication. However, more work needs to be undertaken to identify the exact role 

of 3CD and interactions with components of the replication complex. Additionally, it 

would be prudent to identify the reason for the aberrant cleavage events occurring 

post-purification in 3CD as seen in the Western blot in figure 3.19b. These cleavage 

products equate to sizes larger than 3C but smaller than 3Dpol suggesting that 
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cleavage is occurring in a location within 3Dpol. However, it appears that this 

truncated 3Dpol cannot form fibrils. 

The formation of a classical intracellular, membrane-associated replication complex 

for FMDV has yet to been identified within infected cells. Studies have shown, that 

like a number of related positive-strand RNA viruses, FMDV is capable of 

dysregulating cellular membranous organelles such as the Golgi and the ER, but no 

distinct complexes composed of viral structural, non-structural and host-cell proteins 

have been identified unlike PV (Schlegel et al., 1996; O’Donnell et al., 2001; 

Monaghan et al., 2004; Knox et al., 2005).  

The formation of 3Dpol fibrils provides a plausible model for a replication complex in 

FMDV. However, the lack of RNA in the current fibril structure was unexpected. The 

model proposed here is based upon the ability for FMDV 3Dpol to be involved in 

protein-protein interactions mediated by RNA binding. The ability to form fibrils 

could be as a result of a conformational change mediated by the binding of 3Dpol to 

RNA. The conformational change would then allow for the binding of further 

polymerase molecules in a regular pattern to form a fibril-like structure. The catalytic 

mutants were unable to bind or incorporate RNA and therefore may not be able to 

change confirmation. They would therefore be unable to form structured fibrils and 

aggregation could result instead. The non-catalytic mutant GC216/7AA, although 

able to bind and incorporate [α-32P] UTP was still unable to form fibrils suggesting 

that the mutation may be unable to adapt the correct conformation or to form the 

correct interactions necessary for fibril formation. 
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The precursor 3AB has been found to associate with PV 3Dpol fibrils (Spagnolo et al., 

2010). Further work needs to be undertaken to establish if other non-structural 

proteins, such as 3CD, 3A and 3B1,2,3, are also able to interact with the FMDV 3Dpol 

fibrils. Apart from providing an enclosed, protective environment within which 

replication can occur, one could speculate, in the context of a cellular replicon 

complex, that the polymerase molecules could coat newly synthesised negative-

sense intermediate and prevent the formation of double-stranded RNA, a potent 

innate immune response trigger. By avoiding the double-stranded RNA formation it 

would also allow for a more energetically favourable replication process.  

Finally, it would be important to identify if fibrils are able to form when FMDV 

template RNA is used instead of poly-A, particularly to determine if RNA secondary 

structure hinders the ability for 3Dpol to form fibrils. The use of FMDV genomic RNA 

would also allow for the development of a more physiological environment to assess 

any other hypothesised protein-protein interactions that could occur, such as with 

cellular PABP and PCBP2 and with other viral proteins such as 3B1,2,3 and 3CD. 
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Chapter 4 

Investigating the role of foot-and-mouth 

disease virus 3D polymerase mutants on 

replicon replication 

4.1 Introduction 

Upon entry of the FMDV into the host-cell cytoplasm, the viral RNA genome 

undergoes initial translation by host-cell translation initiation factors and the 40s 

ribosomal subunit by binding to the IRES element in the 5ʹ UTR. (Belsham et al., 1990; 

López de Quinto et al., 2002; Rodríguez Pulido et al., 2007).  

FMDV has a much larger 5ʹ UTR than other picornaviruses, containing approximately 

1,300 bases (Forss et al., 1984; Grubman et al., 1984; Robertson et al., 1985). It can 

be divided into five functional elements comprising of a 360-base stem-loop 

structure called the S-fragment, followed by a poly-C tract of variable length, 

between two and four RNA pseudoknot structures, the cre, and a type II IRES 

(Newton et al., 1985; Belsham et al., 1990; Rieder et al., 1993; Bunch et al., 1994; 

Escarmís et al., 1995; López de Quinto et al., 2002; Mason et al., 2002; Carrillo et al., 

2005). The functions of the S-fragment, poly-C tract, and the pseudoknots have yet 

to be elucidated.  

The genome is translated into a polyprotein from which the structural and non-

structural precursors are co- and post-translationally cleaved into the active proteins. 



116 
 

Lpro autocatalytically cleaves itself from the polyprotein.  Intermediate polyprotein 

precursors 1A-2A and 2BC separate themselves from the P3 intermediate through a 

process known as ribosomal skipping due to the sequence of 2A (Ryan et al., 1994). 

Both 2BC and P3 are further cleaved into the mature proteins by the virus-encoded 

protease, 3C, via several intermediate precursors: 2B, 2C, 3AB1-3, and 3CD (Flint et 

al., 1997). The P3 region (3A-3D) undergoes further processing to produce mature 

3A, 3B1-3, 3C and 3Dpol (Forss et al., 1982; Flint et al., 1997; Ferrer-Orta et al., 2004; 

Birtley et al., 2005; Moffat et al., 2005; González-Magaldi et al., 2014). 

Replication of FMDV RNA begins with 3Dpol binding to a copy of uridylylated VPg (VPg-

pUpU) that is covalently linked to the 5ʹ end of the negative strand intermediate 

genome and acts as primer for both positive and negative strand synthesis (Murray 

et al., 2003; Nayak et al., 2005; Steil et al., 2009). 3Dpol replicates the genome in a 5ʹ 

to 3ʹ direction via a negative sense intermediate which acts as a template for the 

positive sense RNA that can either be packaged into new virions or translated into 

viral proteins. 
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4.2 Replicons 

The development of FMDV replicon systems based on the genome of FMDV serotype 

O (O1/Kaufbeuren/FRG/66) have provided the opportunity to study the replication 

of a high-containment pathogen under low-containment (McInerney et al., 2000; 

Tulloch et al., 2014; Forss et al., 1984) and have allowed for the study of separate 

stages of the virus life cycle such as replication and packaging. The replicon systems 

that have been developed have substituted the structural proteins in the P1 region 

with chloramphenicol acetyltransferase (1st generation replicons) or with green 

fluorescent reporter gene and antibiotic resistance fusion protein, puromycin-N-

acetyltransfease (GFP-PAC) (2nd generation replicons) (McInerney et al., 2000; 

Tulloch et al., 2014; Herod et al., 2015). These FMDV replicons are unable to form 

infectious viruses, but are still able to replicate within a host cell when transfected as 

RNA. The inclusion of a fluorescent protein (in the second generation GFP-PAC 

replicons) (Fig. 4.1) has allowed the monitoring of viral RNA replication in real-time 

(Forrest et al., 2014).  
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Figure 4.1 Schematic diagrams of second-generation FMDV replicons. A) Schematic 

of infectious viral genome containing structural proteins 1A-1D in the P1 region. B) 

Schematic of WT replicon showing the substitution of structural proteins 1A-1D with 

GFP-PAC reporter cassette (GFP-pac-WT). C) Schematic of replicon showing the 

substitution of structural proteins in P1 with GFP-PAC reporter cassette. This replicon 

contains a large deletion in the polymerase protein encoding region (3Dpol) and is 

termed GFP-pac-Δ3D. D) Schematic of replicon showing the substitution of structural 

proteins in P1 with GFP-PAC reporter cassette. This replicon contains two point 

mutations (GNN) in 3Dpol that renders the polymerase enzymatically inactive (GFP-

pac-GNN). 

Here we have investigated the effect of the catalytic and non-catalytic mutations 

within 3Dpol previously described in Chapter 3, in context of an FMDV replicon, and 

the ability to recover the function of the mutated polymerases within cells by co-

transfection with WT functional helper replicons. The process of co-transfection and 

the ability to recover replication-deficient replicons in trans has been well 
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established in PV as well as in HCV (Ryan et al., 1994; Xuemei Cao et al., 1995; 

Teterina et al., 1995; Towner et al., 1998; Lyons et al., 2001; Tiley et al., 2003; Appel 

et al., 2005; Jones et al., 2009; Herod et al., 2014). 

4.2.1 Replication 

In order to determine the replicative ability of the GFP-expressing FMDV replicons, 

GFP-pac-WT, GFP-pac-Δ3D, and GFP-pac-GNN RNA was transfected into BHK-21 cells. 

The number of GFP-positive cells, which correlated with the efficiency of GFP-

expression, following transfection reflected the replicative ability of the replicon 

construct (Fig. 4.1). It is important to note that the replicons containing the mutation 

termed GNN are the same as the active site catalytic mutation DD388/9NN used in 

the activity assays in Chapter 3; the mutation is referred to as GNN here for simplicity. 

To establish the correct conditions for the transfection reactions, experimental 

conditions were optimised. Reassuringly, the optimum conditions were identical to 

those previously identified (Forrest et al., 2014). The conditions that produced the 

best GFP expression in all three of the GFP-pac RNAs were found to be: 0.5 µg RNA 

with 2.5 µl Escort transfection reagent in 250 µl total volume of MEM per well in a 

24-well plate reaction (section 2.6.3).  

Transfected cells were imaged at regular intervals over 16 hours post-transfection in 

an IncuCyte FLR Zoom kinetic imaging system (Essen Bioscience); a fluorescence 

microscope, housed inside an incubator at 37°C/5 % CO2. The images were analysed 

by measuring the number of GFP-positive cells per well, indicating translation and 

subsequent replication of the GFP-containing replicons, using the IncuCyte imaging 

processing software.  
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Figure 4.2 Representative data of transfected BHK-21 cells. A) graph showing the 

mean number of GFP-expressing BHK-21 cells over time (hours) after transfection 

with GFP-pac replicons (WT, GNN and Δ3D). n=3, error bars removed for clarity. B) 

IncuCyte image showing representative levels of GFP expression in BHK-21 cells 

transfected with GFP-pac-WT replicon at 10 hours post-transfection. C) IncuCyte 

image showing representative levels of GFP expression in BHK-21 cells transfected 

with GFP-pac-GNN replicon at 10 hours post-transfection. D) IncuCyte image showing 

representative levels of GFP expression in BHK-21 cells transfected with GFP-pac-Δ3D 

replicon at 10 hours post-transfection. 

Data collected on the IncuCyte were analysed using two different methods; by 

enumerating the total number of cells expressing the fluorescent transgene (e.g. 

number of GFP-positive cells per well) and by measuring the total fluorescent 

intensity per well using the integrated software. It is important to note that there 

was no difference observed when the data were analysed either as total cell counts 

of total fluorescent intensity. The data presented here represents the total number 

of fluorescence-positive cells per well unless otherwise stated. 
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The results from the IncuCyte analysis of the optimisation reaction defined the 

optimum levels of GFP expression for each of the replicon RNAs (GFP-pac-WT, -Δ3D 

and -GNN). Figure 4.2a shows the results of a representative assay. The graph 

represents the expression of GFP over time post-transfection. Expression of GFP 

began at 4 hours post-transfection. As expected, GFP-pac- Δ3D and GFP-pac-GNN 

had very low GFP counts per well suggesting that the fluorescence measured 

reflected input RNA translation only, as expected. These replicon constructs can thus 

be used as controls in further replication assays. Expression of GFP from the construct 

GFP-pac-WT peaked at 10-12 hours post-transfection. Representative images of peak 

GFP expression for each replicon are shown in figure 4.2 b-d.  

4.2.2 Evidence of protein expression 

To complement the IncuCyte analysis, a Western blot analysis of BHK-21 cells 

transfected with GFP-pac-WT replicon was undertaken. Cells were lysed with RIPA 

buffer and harvested as described in section 2.8.1. Lysates were subjected to SDS-

PAGE and membranes were probed with antibodies against three FMDV non-

structural proteins: 3A, 3B and 3D (described in section 2.4 and 2.8.4) (Fig. 4.3). 

The results from the Western blot analysis showed the presence of each of the three 

viral proteins with the appropriate antibody. A band at 54 kDa corresponding to the 

expected size of 3Dpol was visible in figure 4.3a when probed with the rabbit anti-3D 

397 polyclonal antibody as specified in section 2.4. The antibody also seemed to 

identify the 3CD precursor at ≈75 kDa and the P3 precursor at ≈110 kDa at later time 

points (Fig. 4.3a). The mouse anti-3A 2C2 monoclonal antibody used to probe cell 

lysates transfected with GFP-pac-WT (fig. 4.3b) that was used was very non-specific 
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which resulted in the detection of non-specific, background bands on the blots. 

However a band at ≈20 kDa visible after 7 hours may indicate the presence of 3A 

expression. Analysis of the blots identified a darker band located at approximately 

26 kDa from the lysates transfected with GFP-pac-WT. It is possible that this band 

may be corresponding to the expected size of a 3A-3B precursor (Fig. 4.3b). Figure 

4.3c shows the presence of at least 5 bands when the cell lysates were probed with 

a mouse anti-3B 1F8 monoclonal antibody. The sizes of individual 3B bands do not 

correspond to the molecular weight of the proteins suggesting that the bands 

represent a variety 3B precursors, however the identities of the precursors have yet 

to be determined.  
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Figure 4.3 Western blot analysis of BHK-21 cells transfected with GFP-pac-WT 

replicon RNA and lysed at incremental time points. A) Blot probed with anti-3D (397) 

antibody showing levels of protein expression corresponding to 3Dpol (54 kDa), 3CD 

(75 kDa) and P3 (110 kDa). B) Blot probed with anti-3A antibody showing levels of 

protein expression corresponding to 3A (20 kDa) and a 3A-B precursor (≈27 kDa). C) 

Blot probed with anti-3B antibody showing levels of protein expression over time 

corresponding to 3B precursors (≈30-50 kDa). 

The Western blot data supports the IncuCyte transfection data shown in figure 4.2. 

However, FMDV non-structural protein expression in the cell lysates occurs at earlier 

time points, i.e. beginning as early as 4 hours and peaking at 7-9 hours for GFP-pac-

WT transfected lysates, instead of peaking at 10-12 hours as seen in figure 4.2. The 
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earlier expression times of the non-structural proteins seen in the cell lysates could 

be due to the different modes of measuring replication. In figure 4.2, replication was 

measured by analysing the number of GFP-positive cells per well, whereas in figure 

4.3, protein expression was measured by probing with the appropriate antibody. The 

difference in expression times could be due to the rate of GFP synthesis and 

degradation within the cell, and may need longer to accumulate enough to induce a 

measurable signal within transfected cells.  
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4.3 Mutations in 3Dpol 

It has been previously discussed in Chapter 3 that work by Herod et al. identified 

areas in the genome that could tolerate insertions by random transposon-mediated 

mutagenesis (Herod et al., 2015). Transposon-mediated mutagenesis identified key 

functional regions within viral proteins, particularly within 3Dpol that were both 

permissive and could be further manipulated to include epitope tags for improved 

downstream studies such as immunofluorescence, and also non-permissive, which 

resulted in the production of replication-defective replicon phenotypes (McMahon 

et al., 1998; Brune et al., 1999; Teterina et al., 2011; Remenyi et al., 2014; Herod et 

al., 2015; Herod et al., 2016).  

Out of nine mutations in the 3Dpol region that were identified, three were chosen to 

take forward into further studies: catalytic metal ion-interacting site DD240/5NN, 

dsRNA exit site GC216/7AA, and classical replication-deficient motif C mutation GNN 

(also known as DD388/9NN) (Jablonski et al., 1991; Hansen et al., 1997; Ferrer-Orta 

et al., 2004; Carrillo et al., 2005; Ferrer-Orta et al., 2007; Ferrer-Orta, Ferrero, et al., 

2015; Herod et al., 2016). These functional 3Dpol mutations (characterised in the 

context of recombinant proteins in Chapter 3) were introduced into FMDV replicons 

here. The schematic in figure 4.4 summarises the location of the mutations in context 

of the replicon. 
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Figure 4.4 Schematic diagram of FMDV replicon highlighting 3Dpol diagrammatically 

showing the location of the three non-replicative mutations in 3Dpol identified by 

transposon mutagenesis. 

4.3.1 Epitope-tagging of replicons 

Recognition of replication-competent insertion sites by transposon-mutagenesis 

allowed for the identification of potential locations for insertion of epitope tags such 

as FLAG (DYKDDDDK) and haemagglutinin (HA; YPYDVPDYA). Herod et al., 2015 

identified two locations in non-structural protein 3A and one in 3Dpol that could 

tolerate insertions by transposon-mutagenesis and demonstrated high levels of 

replication in BHK-21 cells (Herod et al., 2015). As a result of this, FLAG and HA 

epitope tags were cloned into these sites. The 3A epitope tag-containing insertion 

sites replicated to the levels of WT, whereas the epitope-tagged 3Dpol insertion site 

was unable to replicate. 

Due to the inability of the original epitope-tagged 3Dpol insertion to replicate, the 

FLAG and HA epitope tags were cloned into the C-terminus of 3Dpol, in an identical 

location to the his-tag in the recombinant protein described in Chapter 3. It was 

believed that although the C-terminus was not identified by transposon mutagenesis 

as a permissive location, it would not affect the function of the WT protein, thereby 
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not affecting the replication ability of the replicon due to flexible nature of that 

region of the protein. The hypothesis was tested by transfecting GFP-pac-WT 

replicons containing FLAG and HA tags at the C-terminus of 3Dpol into BHK-21 cells as 

described in section 2.6.3 (Fig. 4.5). FLAG- and HA-tagged GFP-pac-WT replicons were 

able to replicate to the level of the unmodified GFP-pac-WT replicon.  

Figure 4.5 Levels of GFP-expression in BHK-21 cells transfected with GFP-pac 

replicon RNA. A) Levels of GFP-expression at 11 hours post-transfection in BHK-21 

cells transfected with GFP-pac-WT, GFP-pac-GNN, GFP-pac-WT-FLAG and GFP-pac-

WT-HA replicon RNA. B) Mean levels of GFP-expression in BHK-21 cells transfected 

with GFP-pac-WT, GFP-pac-GNN, GFP-pac-WT-FLAG and GFP-pac-WT-HA replicon 

RNA over time. n=2, ± SEM. Error bars on the graph have been removed for clarity. 

To ensure that the epitope-tagged replicons had been successfully cloned and were 

not structurally altered, transfected BHK-21 cells were lysed as described in section 

2.8.1, resolved by SDS-PAGE, and then analysed by Western blot (Fig. 4.6). The 

Western blots were probed with rabbit anti-3D 397 polyclonal antibody, anti-FLAG, 

and anti-HA antibodies. As the antibodies were able to detect the protein (3Dpol) and 

the appropriate tags at 54 kDa it can be assumed that the insertion of the epitope 

tags did not alter the native folding of the protein or obscure the antigenic site, 
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providing support that the insertion of the epitope tags did not affect the function of 

the replicon, or polyprotein processing.  

Figure 4.6 Western blot analysis of BHK-21 cells transfected with 3Dpol epitope-

tagged GFP-pac-WT constructs in addition to controls (unmodified GFP-pac-WT and 

unmodified GFP-pac-GNN). Protein lysates were prepared at eight hours post-

transfection and probed by Western blotting for FLAG and HA expression and 3Dpol. 

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as a loading control. 

The appearance of extra bands in the samples probed with anti-3D 397 antibody was 

expected due to the polyclonal nature of the antibody. This resulted in the detection 

of additional bands upon Western blot analysis at 75 kDa and a doublet band located 

at approximately 35 kDa. It is thought that the band located at 75 kDa is 3CD, and the 

band at approximately 35 kDa is a non-specific interaction of the antibody with a 
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fragment of incorrectly processed 3CD, termed 3D*. A similar observation has been 

made in studies on PV (Lawson et al., 1992; Parsley et al., 1999). 

4.3.2 Next generation replicons 

A third generation of WT and GNN replicons were also developed replacing the GFP-

pac reporter cassette with either mCherry red fluorescent protein or with a new GFP 

report gene from Ptilosarcus sea pen (ptGFP) (Herod et al., 2015, F. Tulloch, G. Luke, 

J. Nicholson and M. D. Ryan, unpublished data) as shown in figure 4.7.  

Figure 4.7 Schematic diagrams of third-generation FMDV replicon. A) Schematic of 

infectious viral genome containing structural proteins 1A-1D in the P1 region. B) 

Schematic of WT replicon showing the substitution of structural proteins 1A-1D with 

ptGFP (ptGFP-WT). C) Schematic of WT replicon showing the substitution of 

structural proteins 1A-1D with mCherry (mCherry-WT). 

ptGFP is a GFP that has been described as having higher absorption peak (495 nm), 

and an emission peak at 508 nm, than the corresponding enhanced GFP (eGFP) or 

Aequorea GFP used in the GFP-pac replicons (absorption at 395 and 470 nm and 
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emission at 507-510 nm). The emission curve of ptGFP show that the molar 

absorbance of ptGFP is higher, and the excitation and emission peaks are nearly 

symmetrical, unlike those of Aequorea GFP, and is therefore brighter (Bryan et al., 

2001; Environmental Sciences Inc., 2015; Hicks, 2002). Particularly as Aequorea GFP 

has two excitation peaks and current green fluorescence filters are largely 

inadequate for detection of both (Hicks, 2002). Negative control ptGFP-GNN and 

mCherry-GNN replicons were also prepared (mutagenesis performed by Morgan 

Herod, University of Leeds). A representative replication assay (Fig. 4.8) shows the 

expression of both ptGFP and mCherry over time in BHK-21 transfected cells. The 

trend in fluorophore expression is similar to that seen in GFP-pac replicon-

transfected cells (Fig. 4.2), however, the expression of ptGFP appears earlier in 

transfected cells (from 3 hours) and peaks at an earlier timepoint (7-9 hours). 

Expression of ptGFP is not thought to occur at a faster rate, but is detected sooner 

due to the increase brightness when compared to GFP-pac. 

Figure 4.8 Representative data of transfected BHK-21 cells. Graph showing the 

mean number of ptGFP- and mCherry-expressing BHK-21 cells over time (hours) after 

transfection with ptGFP-and mCherry (WT and GNN). n=3, error bars removed for 

clarity. 
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Identical replicons with contrasting fluorescent reporters opened up the possibility 

of being able to use two replicons simultaneously as they could be easily 

distinguishable from each other when co-transfected (Herod et al., 2015). 

4.3.3 Epitope-tagging of replication-deficient replicons 

To improve the signal of GFP, two epitope tags (FLAG and HA), and mutations were 

introduced into the ptGFP third-generation replicon. Replication of the different 

replicons was assayed in BHK-21 cells alongside unmodified controls (Fig. 4.9). There 

is a 100-fold difference in the number of cells expressing GFP between WT ptGFP 

replicons and GNN ptGFP replicons.  

Figure 4.9 Levels of GFP-expression in BHK-21 cells transfected with ptGFP replicon 

RNA. A) Levels of GFP-expression at eight hours post-transfection in BHK-21 cells 

transfected with ptGFP-WT, ptGFP-GNN, ptGFP-WT-FLAG and -HA, ptGFP-GNN-FLAG 

and -HA, ptGFP-D240/5NN-FLAG and -HA, and ptGFP-GC216/7AA-FLAG and -HA 

replicon RNA. Levels of GFP expression of mutants GC216/7AA and DD240/5NN are 

compared to ptGFP-GNN. n=3, ± SEM (all statistically non-significant when compared 

to ptGFP-GNN). 
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As expected, the replicons that contained the point mutations in 3Dpol (DD240/5NN 

and GC216/7AA) were unable to replicate, resulting in significantly lower levels of 

GFP expression than that the WT control, and to approximately the same level of GFP 

expression as the ptGFP-GNN negative controls. All the mutant replicons had similar 

levels of GFP expression as the GNN control, within error. 

4.3.4 Recovery of replication-deficient replicons 

Co-transfection and use of helper replicons to recover replication-deficient replicons 

in trans is an established method to determine the function of viral proteins, 

particularly their role in viral genome replication. A number of studies on FMDV and 

other picornaviruses have used this method to demonstrate that certain non-

functional, non-structural proteins can be recovered in trans by co-expression with 

replication-competent helper virus or replicon (Xuemei Cao et al., 1995; Teterina et 

al., 1995; Towner et al., 1998; Tiley et al., 2003; Nayak et al., 2005).  

As it can be seen from previous figures (Figs. 4.2, 4.7 and 4.9), the mutant replicon 

3Dpol-GNN is unable to replicate, producing levels of GFP expression synonymous 

with input translation from positive-strand template RNA. Previous work outlined in 

Herod et al., 2015 observed that the replication-deficient ptGFP-GNN replicon was 

able to be recovered by co-transfection of a WT ‘helper’ replicon containing the 

different fluorescent reporter gene, mCherry as outlined in figure 4.10. The use of 

different reporter genes allowed for the discrimination of replication between the 

WT helper replicons and the mutant replication-defective replicons.  
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Figure 4.10 Co-transfection of mCherry-WT helper replicon RNA and control tRNA 

with ptGFP mutant replicon (ptGFP-GNN) or with ptGFP-WT replicon. Levels of GFP 

expression was measured using the IncuCyte FLR as the number of GFP-positive 

cells/well at eight hours post-transfection when GFP expression was maximal. n=6 ± 

SEM. *** = p < 0.001. 

The levels of GFP expression produced by ptGFP-GNN replicon, when co-transfected 

with mCherry-WT replicon, were increased significantly when compared to the 

ptGFP-GNN replicon co-transfected with transfer RNA (tRNA) that is used as a control 

to maintain equal amounts of RNA in the transfections. The replication-deficient 

mutant ptGFP-GNN was unable to be recovered when co-transfected with tRNA 

control, highlighting that it is necessary for a fully-functional WT polymerase to be 

present for the recovery of replication to occur. Levels of GFP expression of ptGFP-

WT replicon when co-transfected with WT mCherry helper replicon or with control 

tRNA were not significantly different, implying that there were no negative effects as 

a result of competition for cellular resources. 

It has been previously mentioned in Chapter 3 that two additional replicons with 

mutations in 3Dpol were chosen to take into further functional studies: DD240/5NN 
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and GC216/7AA (in addition to GNN, or DD388/9NN). In vitro polymerase activity 

assays performed on recombinant his-tagged mutant 3Dpol (detailed in Chapter 3) 

showed that mutant DD240/5NN was unable to incorporate 32P-αUTP when 

incubated with an RNA-primer-template as a result of the point mutations located in 

a catalytic site of the enzyme. Mutant GC216/7AA was, however, able to incorporate 

radiolabelled nucleotides to a similar level as WT his-tagged recombinant 3Dpol 

protein, showing that the mutant was still enzymatically active as a result of the 

mutation not being located in a catalytic domain. 

Here, investigations into whether these mutations could be recovered by co-

transfection with a WT helper replicon as with the ptGFP-GNN replicon were 

undertaken. As expected based on previous transposon mutagenesis data, all three 

replicons containing mutations in 3Dpol were unable to replicate, producing levels of 

GFP expression approximately equivalent to the ptGFP-GNN replicon due to input 

translation only (Herod et al., 2016; Herod et al., 2015) (Fig. 4.11).  

Figure 4.11 Levels of GFP expression at eight hours post-transfection of mutant 

polymerase ptGFP replicons (DD240/5NN, GC216/7AA, and GNN) when co-

transfected with either mCherry-WT or mCherry-GNN helper replicons n=7 ± SEM. * 

=  p < 0.05. 
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Levels of GFP expression in these two replicons were increased significantly when 

compared to the levels of GFP expression in the same replicons co-transfected with 

a replication-deficient helper replicon. When the mutant replicons were co-

transfected with mCherry-GNN helper replicons, none of the mutants were able to 

replicate confirming that a fully functional 3Dpol is necessary for replication to occur 

(Fig. 4.11). Surprisingly, only two of the three mutant replicons (ptGFP-GNN and 

ptGFP-DD240/5NN) could be recovered when co-transfected with an mCherry-WT 

replicon. These two mutant replicons (DD240/5NN and GNN) contained mutations in 

catalytic domains of the polymerase.  

Mutant replicon ptGFP-GC216/7AA, containing a mutation in the non-catalytic 

polymerase dsRNA exit site, was unable to be recovered when co-transfected with a 

WT helper replicon (Fig. 4.11). These results suggest that only catalytic mutations 

GNN and DD240/5NN were able to be recovered in trans, opening the possibility that 

there were certain functions of the polymerase that could only be supplied in cis. It 

is interesting to note that the non-catalytic mutant, GC216/7AA, recombinant 

protein was able to incorporate 32P-αUTP in the in vitro assay (section 2.10, and 

Chapter 3), but was unable to replicate in context of the replicon (Fig. 4.9 and Fig. 

4.11) suggesting that both catalytic and non-catalytic mutations were essential for 

the replication of RNA. 

4.3.5 Cellular localisation of FMDV 3Dpol 

One of the reasons that the WT helper replicon could not recover the non-catalytic 

mutant GC216/7AA could be that the two replicons were localising to different areas 

of the cell and were unable to come into close enough proximity for the functional 
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WT polymerase to be provided to the non-functional replicon in trans. The use of 

epitope-labelled replicons could be analysed successfully by confocal microscopy, 

therefore in order to test this hypothesis of differential localisation BHK-21 cells were 

transfected with mutant C-terminal FLAG-tagged replicons in a ptGFP replicon 

backbone (ptGFP-GNN-FLAG, ptGFP-GC216/7AA-FLAG and ptGFP-DD240/5NN-FLAG) 

and C-terminal HA-tagged WT (ptGFP-WT-HA) helper replicons in a Renilla luciferase 

replicon backbone.  

By removing the fluorescent reporter gene, the replicons would be able to be used 

for confocal microscopy with the ability to probe for more than two targets as there 

would be no interference from the fluorescent gene. It should be noted that by 

removing the fluorescent reporter the same replicons could not be monitored using 

the IncuCyte in real-time. 

The transfected cells were fixed at four hours post-transfection as detailed in section 

2.7 and the epitope tags were detected by indirect immunofluorescence using 

commercially available antibodies (section 2.4). The cells were analysed by confocal 

microscopy using a Zeiss LSM-880 confocal microscope with Airyscan (Fig 4.12a).  

The results of the dual colour immunofluorescence analysis show that there is clear 

co-localisation of both FLAG- and HA-labelled polymerases within cells (Fig 4.12b). 

This is indicative of both mutant and WT polymerases targeting the same intracellular 

compartments. This would suggest that the lack of recovery of the GC216/7AA 

mutant was not due to differential localisation. 
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Figure 4.12 (p. 137) Dual immunofluorescence analysis showing co-localisation of 

WT and mutant non-structural proteins (adapted from Herod et al., 2016). A) BHK-

21 cells co-transfected with FLAG-tagged mutant replicon and HA-tagged WT helper 

replicons. Cells were fixed at four hours post-transfection and labelled with anti-FLAG 

(green) and anti-HA (red) antibodies. Cell nuclei were stained with DAPI (blue). 

Zoomed images represent the boxed are outlined in ‘merge’. Scale bar: 20 µM. B) 

Quantification (%) of co-localised 3D-FLAG and 3D-HA by measuring the number of 

co-expressing pixels n=8, horizontal lines represent the mean values ± SEM. 
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4.4 Role of structural RNA elements in 5ʹ UTR in replicon 

recovery 

There is evidence for the interaction of the non-structural proteins with the 5ʹUTR 

particularly involved in the control of translation and replication of the viral genome. 

The non-structural proteins that have been identified to interact with the 5ʹUTR are 

primarily the polymerase 3Dpol and the precursor 3CD. 

3Dpol and 3CD have been shown to mediate replication by binding to various 

structural RNA elements in the 5ʹUTR, such as the cre and the S-fragment (Nayak et 

al., 2005; Nayak et al., 2006; Lawrence et al., 2009). The cre  and poly-A act as the 

template for VPg uridylylation which drives the production of negative strand 

synthesis by acting as a primer for 3Dpol (Paul et al., 1998; Goodfellow et al., 2000; 

Barton et al., 2001; Murray et al., 2003; Nayak et al., 2005; Steil et al., 2009). A current 

model outlined in Herod et al., 2016 suggests that 3CD, or a 3D-containing precursor,  

may also be able to bind to the VPg and prime for genome replication similar to the 

models described for the process of PV replication (Andino, Rieckhof and Baltimore, 

1990; Andino, Rieckhof, Trono, et al., 1990; Andino et al., 1993; Xiang et al., 1995; 

Herold et al., 2001; Serrano et al., 2006; Spear et al., 2015).  

A study detailed in Lawrence and Rieder, 2009 has shown that 3C binds to the S-

fragment and can be co-precipitated with the large RNA structure highlighting the 

potential for the FMDV 3CD precursor to also be involved. 
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4.4.1 Role of mutations the 5ʹ UTR in replicon recovery 

To investigate the relationship of the 5ʹ UTR structural RNA elements with non-

structural proteins in the process of replicon recovery, two regions of the FMDV 5ʹ 

UTR were mutated. It was hypothesised that the structured RNA elements in the 5ʹ 

UTR may sequester 3Dpol, or its precursors, in cis therefore reducing their availability 

to assist in trans in the recovery of replication-deficient replicons (Herod et al., 2016). 

Morgan Herod and Joseph Ward (University of Leeds) undertook mutagenesis of the 

first adenine nucleotide located in the conserved cre stem-loop sequence (AAACA) 

into a guanine (creA1G, hence GAACA) as previously described (Mason et al., 2002), 

and removed the S-fragment in its entirety. Both mutations to the 5ʹ UTR structured 

RNA elements rendered the replicon unable to replicate (Joseph Ward, personal 

communication). These mutations were cloned into the helper replicon constructs 

and were then co-transfected with the replication-deficient polymerase mutant 

replicons ptGFP-GNN, ptGFP-DD340/5NN, and ptGFP-GC216/7AA. 

When the replicons containing the mutations in the polymerase were co-transfected 

with either the tRNA control or with the mCherry-WT helper replicon, the results 

were the same as observed previously (Fig. 4.13). With the tRNA control, no recovery 

of replication was observed, as expected. When co-transfected with mCherry-WT 

replicon, both ptGFP-GNN and ptGFP-DD240/5NN were readily recovered. However, 

when the two catalytic mutant replicons ptGFP-GNN and ptGFP-DD240/5NN were 

co-transfected with a helper replicon mCherry-ΔS-creA1G, containing both mutations 

in the 5ʹ UTR, levels of GFP expression was increased more than 100-fold above the 

tRNA control.  
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Figure 4.13 Levels of GFP expression at eight hours post-transfection of mutant polymerase 

ptGFP replicons (ptGFP-GNN, ptGFP-DD240/5NN and ptGFP-GC216/7AA) when co-

transfected with either control tRNA, mCherry-WT or mCherry-ΔS-creA1G helper replicons.  

n=3 ± SEM. * = p < 0.05, ** = p < 0.01. 

The replicon mutant ptGFP-GC216/7AA was not recovered to the same levels as the 

other mutants when co-transfected with mCherry-WT helper replicon as previously 

observed (Fig. 4.11). However, when the replicon was co-transfected with the 

mCherry-ΔS-creA1G helper replicon, a greater than 100-fold increase in GFP 

expression was observed, similar to that seen with the catalytic mutant replicons 

GNN and DD240/5NN.  

These data would suggest that there is a cis function of 3Dpol which interacts with the 

structured RNA elements in the 5ʹ UTR, distinct from its catalytic polymerisation 

function which is provided in trans. By removing the RNA elements from the 5ʹ UTR 

of the helper replicon that are proposed to interact with 3Dpol or with 3Dpol 

precursors, the WT functional polymerase would be unable to interact with the WT 

genome in cis. Conversely, it would be free to bind to the replication-deficient 

replicon that still has an intact 5ʹ UTR.  
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4.4.2 Is 3Dpol sufficient to recover replication? 

With the characterisation of a novel cis function of FMDV 3Dpol (Herod et al., 2016) 

we asked whether the presence of a functional WT 3Dpol was sufficient for the 

recovery of a replication-deficient replicon.  

The FMDV genome encodes for 12 functional proteins, four structural proteins (1A-

1D), followed by a short peptide sequence, 2A that is necessary for processing and 

separation of the structural proteins from the eight non-structural proteins (2B-3D). 

All 12 proteins are expressed as a single polyprotein that is co- and post-

translationally processed during the replication cycle of the virus. During polyprotein 

processing, several precursors are formed (outlined in Fig. 4.14). The function of 

many of the precursors have yet to be elucidated.  

Figure 4.14 Schematic of the FMDV genome outlining the different regions (P1, P2 

and P3), the structural proteins (1A-1D), and non-structural proteins (2B-3D). Arrow 

denotes cleavage of the polyprotein by Lpro. Ribosomal skipping through short 

peptide 2A separates the structural and non-structural proteins denoted by ellipses 

(…). The asterisks (*) denote cleavage by FMDV protease 3C. Schematic of some of 

the possible variations of P3 polyprotein processing are also shown whereby full P3 

can be produced followed by 3A and 3B-3D, 3A-3B, 3A-3C, and 3C-3D before 

production of individual proteins. 
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In order to determine if 3Dpol was sufficient to recover a replication-deficient 

replicon, ptGFP-GNN, ptGFP-DD240/5NN, and ptGFP-GC216/7AA were co-

transfected into BHK-21 cells with truncated replicons, as described previously. 

These truncated replicons (made by Morgan Herod, University of Leeds) contained 

the mutated 5ʹ UTR from mCherry-ΔS-creA1G and no reporter gene. The mutated 5ʹ 

UTR was linked to decreasing lengths of the genome starting from the full-length 

non-structural proteins 2A-3Dpol, successively down to just 3Dpol (Fig. 4.15) 

Figure 4.15 Schematic outlining the FMDV replication-deficient mutant ptGFP 

replicon that was co-transfected with a series of truncated helper replicons 

containing the mutated 5ʹ UTR (ΔS-creA1G) into BHK-21 cells. 
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The replication-deficient ptGFP replicons were co-transfected with each truncated 

helper replicon and control helper replicons (mCherry-ΔS-creA1G-WT and mCherry-

ΔS-creA1G-GNN), and tRNA. Levels of GFP expression were monitored for 24 hours 

using the IncuCyte FLR (Fig. 4.16). The results for the recovery of all mutant replicons 

with the controls were the same as previously observed with the tRNA and mCherry-

ΔS-creA1G helper replicons as shown in figure 4.13. There was a statistically significant 

difference in GFP expression between all mutant replicons co-transfected with 

mCherry-ΔS-creA1G-WT and those transfected with successively truncated replicons 

from 2C-3D (Fig. 4.16). 
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Figure 4.16 Recovery of truncated replicons. Levels of GFP expression at nine hours post-

transfection of mutant polymerase ptGFP replicons co-transfected with control tRNA, 

control mCherry-ΔS-creA1G WT and GNN helper replicons, against truncated P2 and P3-

containing replicons compared to the control mCherry-ΔS-creA1G WT replicon (A) ptGFP-GNN 

n = 6 ± SEM,  B) ptGFP-GC216/7AA n = 4 ± SEM and C) ptGFP-DD240/5NN n = 2 ± SEM. 

Statistical analysis performed using two-tailed unpaired t-test; * = p > 0.05, ** = p > 0.01, *** 

= p > 0.001. 
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Recovery of GFP expression in the mutant replicons ptGFP-GNN, ptGFP-GC216/7AA, 

and ptGFP-DD240/5AA to the levels of mCherry-ΔS-creA1G-WT co-transfected 

replicons was achieved when co-transfected with truncated replicons of increasing 

size from 2B-3D (Fig. 4.16). 

It was interesting to observed that, although 3Dpol alone was not sufficient to recover 

replication in any of the replication-deficient mutant replicons, the full non-structural 

protein region was not necessary. The results across all the mutants show that when 

the size of the helper replicon was at least the size of 2B-3D, the replication-deficient 

replicon could be recovered to produce the same levels of GFP expression as when 

co-transfected with the mCherry-ΔS-creA1G-WT helper replicon. It appears from these 

data that 2B, 2BC, or a P2-P3 precursor may be important for the recovery of 

replication-deficient replicons. Alternatively, the cleavage site between 2B and 2C 

could also be a region of interest in the same vein as the importance of the 3B3-3C 

cleavage boundary as described in the recent Herod et al. publication (Herod et al., 

2017). 
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4.5 Discussion 

In this chapter, we have investigated the phenotype of several of the mutations in 

the FMDV polymerase, 3Dpol, that were identified by transposon mutagenesis as 

described in Herod et al., 2015. Two mutations in 3Dpol were located in catalytic sites 

(GNN, also termed DD388/9NN, and DD240/5NN) and one was located in a non-

catalytic region (GC216/7AA). All three mutations resulted in an inability to replicate 

replicon RNA when transfected into cells. However, the mutations did not appear to 

affect the cellular localisation of the polymerase as identified by 

immunofluorescence. 

The ability for picornaviruses to provide non-structural proteins in trans has been 

well documented, particularly the interactions between non-structural proteins 2B, 

3A, and 3D with structural RNA elements such as the cre and the IRES (Giachetti et 

al., 1992; Ryan et al., 1994; Xuemei Cao et al., 1995; Teterina et al., 1995; Towner et 

al., 1998; Lyons et al., 2001; Tiley et al., 2003; Nayak et al., 2005). 

Here, the mutant replicons, ptGFP-GNN, ptGFP-GC216/7AA, and ptGFP-DD240/5NN, 

were co-transfected with replicons containing a WT 3Dpol in an attempt to recover 

their activity. The two polymerase replicons that contained mutations in the catalytic 

domains of 3Dpol were shown to be readily recovered by a functional WT helper 

replicon when the two were co-transfected within cells, however, the non-functional 

mutation located in the dsRNA exit site, GC216/7AA was not able to be recovered 

with a functional WT helper replicon. These data would point to the existence of a 

necessary secondary non-catalytic function of the polymerase that could not be 

provided in trans.  
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It was hypothesised that the polymerase has a secondary cis-preferential function 

that interacted with the structured RNA elements within the 5ʹ UTR. The hypothesis 

led to the removal of these RNA elements (S-fragment and cre) from the WT helper 

replicon. This could increase the “availability” of the WT 3Dpol as it would no longer 

be able to bind in cis to the parental genome and would thus be recruited by the 

replication-deficient replicon. Since the replication-deficient replicon would have a 

fully structured 5ʹ UTR, the WT 3Dpol would be able to bind to those structures and 

provide its necessary cis-function in addition to its catalytic (trans) function. In the 

case of the GC216/7AA mutant, in vitro studies outlined in chapter 3 showed that the 

protein was catalytically active and could bind RNA with similar affinity to WT and 

could also incorporate radiolabelled UTP nucleotides to a similar rate as WT. The 

results would suggest that the trans activity within replicon could be provided by the 

mutant. However, replicon studies show that this mutation rendered the replicon 

non-functional as well as non-recoverable unless the structured 5ʹ UTR elements 

were removed, suggesting that the cis function was vital for replication of the 

replicon RNA. 

The two different function of 3Dpol described here alongside the results discussed in 

chapter 3 that highlight the ability for FMDV WT 3Dpol to form fibrils provide an 

attractive hypothesis that these higher-order structures could act as “sponges” for 

withholding polymerase molecules and maintaining an appropriate equilibrium of 

enzyme to RNA. In order to test this hypothesis proposed experiments include 

performing complementation assays with the different mutants (catalytic and non-

catalytic) and observing their ability to replicate in the context of replicon, as well as 



149 
 

in the context of recombinant proteins within activity assays and fibril formation 

assays. 

The non-covalent interaction of viral non-structural proteins and host proteins with 

the 5ʹ and 3ʹ UTRs have been shown to be necessary for the formation of a 

ribonucleoprotein complex that may facilitate the process of replication, 

transcription, and translation of the PV genome (Herold et al., 2000; Barton et al., 

2001; Herold et al., 2001). In FMDV, replication is thought to begin with the binding 

of 3Dpol to the uridylylated VPg in the presence of 3CD. The template for VPg 

uridylylation is the cre located in the 5ʹ UTR. A copy of uridylylated VPg (VPg-pUpU) 

is covalently linked to the 5ʹ end of the daughter strand and acts as a primer for 

positive strand synthesis (Goodfellow et al., 2003; Murray et al., 2003; Nayak et al., 

2005; Steil et al., 2009). Studies have shown that FMDV 3CD is also able to bind to 

the S-fragment, equivalent to PV 3CD binding to its cloverleaf structure (Nayak et al., 

2006; Lawrence et al., 2009). In PV, the switch from translation to replication on the 

genomic RNA is thought to be mediated by the binding of the cellular protein PCBP 

to the cloverleaf. This binding enhances viral translation, while the binding of the viral 

protein 3CD represses translation and facilitates negative-strand synthesis (Gamarnik 

and Andino, 1998; Serrano et al., 2006). However, biochemical studies have shown 

that 3CD has no polymerase activity in PV, suggesting that the processing of 3CD into 

active 3C and 3Dpol is essential for the function of 3Dpol (Flanegan and Baltimore, 

1979; Flanegan and Van Dyke, 1979; Harris et al., 1994). The studies reported in 

Chapter 3 have also demonstrated no polymerase activity for FMDV 3CD. 
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The data presented here, and additional studies outlined in Herod et al., 2016 and 

Herod et al., 2015 are consistent with studies performed on both PV and HCV. A 

recent study in PV  by Spear et al., 2015 proposed a mechanism to characterise the 

role of 3Dpol and its precursors during replication using a cell-free system. The model 

based on their data suggested that 3Dpol entered the replication complex in the form 

of its precursor, P3 (or 3CD), and was cleaved to release the active polymerase 

enzyme. One P3 molecule (or smaller precursor 3CD) binds directly to the 5ʹ UTR, 

while a second precursor molecule provides the functionally active 3Dpol (Spear et al., 

2015). In HCV, similar co-transfection studies outlined in Kazakov et al., 2015 showed 

that the RdRp NS5B could be supplemented in trans, it was also required in cis 

indicating that the polymerase had an essential cis-acting role distinct from its 

enzymatic activity (Kazakov et al., 2015; Gomes et al., 2016). 

The non-recoverable mutant GC216/7AA, which has helped identify an essential cis-

preferential role for FMDV 3Dpol, contains a mutation in the dsRNA 

binding/interacting residues located in the dsRNA exit sites. This mutant polymerase, 

as shown in Chapter 3, was still able to bind RNA as shown by fluorescent anisotropy 

assays, and was able to incorporate [α-32P] UTP. However, in context of the FMDV 

replicon, it resulted in a phenotype unable to replicate.  

The S-fragment, proposed to have a long stem-loop structure (Bunch et al., 1994), is 

inherently highly base-paired. This structure could point to a potential interaction 

between the polymerase and the 5ʹ UTR. By mutating the dsRNA exit site residues, 

the interaction was abrogated. However, it is interesting to note that a study showed 

no interaction between the polymerase and the S-fragment by co-
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immunoprecipitation (Lawrence et al., 2009). This may suggest that the interaction 

is with a polymerase precursor, or by a separate protein. 

Despite both cis and trans functions of 3Dpol being necessary for replication to occur, 

the polymerase, or its precursors, were not sufficient to recover replication of a 

mutant replicon. For recovery to occur it appears that having a minimum size for a 

helper replicon that includes 2B may be important for recovery, however, it is not 

known if 2B alone is sufficient for replicon recovery. The function of FMDV 2B protein 

is still not very well understood. Recent studies have suggested that 2B may be a 

viroporin due to the presence of two putative transmembrane domains that target 

the ER membrane and induces damage to the host-cell membrane integrity (Ao et 

al., 2015; Gao et al., 2016). However, the viroporin activity of 2B in FMDV has still not 

been confirmed.  

Some reports have indicated that 2B may also function synergistically with other non-

structural proteins, particularly with 2C, or as the precursor 2BC. These studies have 

shown that the presence of 2BC or the co-expression of 2B and 2C abolished ER-to-

Golgi transport of cellular proteins during infection (Moffat et al., 2005; Moffat et al., 

2007; Gao et al., 2016).  

There has been no evidence to date of a direct interaction between FMDV 2B and 

3Dpol however, the potential function of 2B, or the precursor 2BC, to dysregulate the 

ER membrane could be necessary for FMDV replication to occur by facilitating the 

recruitment of cellular membranes within which a replication complex can form.  

Work is ongoing to determine whether it is the RNA structure or the protein function 

of 2B that is important in the recovery of mutant replicon RNA. To do this, the 2B 
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RNA sequence has been scrambled to produce synonymous mutations of every 

codon, this ensures that although the native RNA structure is disrupted, the protein 

sequence remains the same and thus protein function should not be disrupted. 

Cloning of the scrambled 2B region into the helper replicon has been undertaken by 

Morgan Herod (University of Leeds), and ongoing studies will evaluate this construct. 
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Chapter 5 
Foot-and-mouth disease virus genome 

replication is unaffected by inhibition of type III 

phosphatidylinositol-4-kinases 

5.1 Introduction 

Due to the highly infectious nature of FMDV, handling is restricted to a small number 

of facilities worldwide. Sub-genomic replicons were developed to allow for the study 

of viral replication in laboratories at lower containment level (Forss et al., 1984; 

McInerney et al., 2000; Tulloch et al., 2014). The FMDV replicon constructs employed 

here (GFP-pac-WT) have the structural proteins replaced by a GFP reporter and a 

puromycin acetyltransferase resistance gene cassette. Replication-deficient 

constructs have a GDD to GNN substitution in the catalytic active site of 3Dpol (GFP-

pac-GNN) as described previously (refer to Chapters 3 and 4, also termed 

DD388/9NN). Levels of GFP expression over time can be measured using an IncuCyte 

Dual Colour ZOOM® FLR (Forrest et al., 2014; Tulloch et al., 2014; Herod et al., 2015). 

Replicons have also been used to study the replication of a number of other viruses. 

Here, we have also used hepatitis C virus (HCV) sub-genomic replicons pSGR-Luc-GFP-

JFH-1 (Jones et al., 2007) and SGR-feo-JFH-1 (Wyles et al., 2009), together with a 

Coxsackievirus B3 (CVB3) sub-genomic replicon, pRib-Fluc-CB3/T7 (Lanke et al., 

2009).  

Replication of a number of positive-sense RNA viruses has been shown to occur at 

cytoplasmic membrane-associated sites (den Boon et al., 2010). The formation of 
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such membrane compartments is thought to allow for the creation of a kinetically-

favourable environment in which viruses can replicate rapidly and effectively, 

concurrently protecting the replication machinery from the hostile environment of 

the host cell. A number of viruses including CVB3, PV, and HCV have been shown to 

subvert and rearrange the membranes of the ER, Golgi, and trans-Golgi network in 

order to form discrete intracellular membranous complexes where viral replication 

can take place in a protected environment within the cytoplasm, as well as 

maintaining a region of high concentration of viral proteins for efficient virus 

assembly. Membranes rich in phosphatidylinositol-4-phosphate (PI4P) lipids, such as 

those found on the Golgi complex, have been specifically implicated in the replication 

of multiple members of the Picornaviridae and Flaviviridae families, including PV, 

enterovirus 71, CVB3, encephalomyocarditis virus (EMCV), and HCV (den Boon et al., 

2010; Altan-Bonnet et al., 2012; Dorobantu, Albulescu, et al., 2015). 

The relationship between PI4P and the role it plays in viral replication has been well-

defined through studies with HCV (Trotard et al., 2009; Reiss et al., 2011; Bishé et al., 

2012; Zhang et al., 2012). HCV, a +ve ssRNA virus in the family Flaviviridae, and the 

causative agent of hepatitis C and related sequealae including hepatocellular 

carcinoma, utilises a number of phosphoinositide (PI) lipids and kinases to build 

cytoplasmic membrane-associated replication complexes. PIs are phosphorylated 

derivatives of phosphatidylinositol. It has been documented that the primary kinase 

used by HCV for viral replication is phosphatidylinositol-4-kinase IIIα (PI4KIIIα) 

(Trotard et al., 2009). HCV has also been shown to utilise another related pathway, 

the phosphatidylinositol-3-kinase (PI3K) pathway, especially during the formation of 

autophagosomes within the cells (Sir et al., 2012; Liu et al., 2012; Mohl et al., 2016). 
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Another well-characterised virus that utilises the PI pathway is CVB3, a +ve ssRNA 

virus and a related picornavirus to FMDV. It is a cardiotropic virus and is primarily 

known for its role as a causative agent of myocarditis (Melnick et al., 1949; 

Garmaroudi et al., 2015). Multiple studies have shown that CVB3 is dependent on 

PI4KIIIα and PI4KIIIβ for replication as it hijacks the function of these kinases, 

including their interacting partners such as oxysterol binding protein and becomes 

able to subvert intracellular membrane formation in favour of viral replication 

(Greninger et al., 2012; van der Schaar et al., 2012; Arita et al., 2013; van der Schaar 

et al., 2013; Dorobantu et al., 2014). As a result, both HCV and CVB3 serve as excellent 

controls to investigate the effects of PI4K and PI3K inhibitors on FMDV translation 

and replication. 
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5.2 The role of phosphoinositides in virus RNA 

replication 

Different intracellular membrane-bound organelles contain one of the seven distinct 

PI species (Matteis et al., 2004; Di Paolo et al., 2006; Krauß et al., 2007). For example, 

the plasma membrane contains more free phosphatidylinositol 4,5-bisphosphate 

than PI4P, which is found predominantly on Golgi-derived membranes (Matteis et 

al., 2004; Krauß et al., 2007). The distribution of PIs on the different intracellular 

membranes is largely determined by the enzymatic activity of specific lipid kinases 

and phosphatases.  

Phosphorylation of PI lipids on the 4-carbon of the inositol ring which generates PI4P 

(Fig 5.1) is affected by the up-regulation and selective recruitment of PI4K (Fig 5.2). 

There are two types of well-defined families of PI4Ks: type II (PI4KIIα and PI4KIIβ) and 

type III (PI4KIIIα and PI4KIIIβ). Previous studies on PV and CVB3 have identified 

PI4KIIIβ as the host enzyme upregulated in viral replication factories (Belov et al., 

2007; Lanke et al., 2009; Hsu et al., 2010; Arita et al., 2011). Depletion of PI4KIIIβ 

activity within infected cells by RNA silencing or the use of kinase inhibitors, such as 

PIK93 (Knight et al., 2006), were shown biochemically to be able to block PV and CVB3 

viral RNA synthesis and virus replication. In contrast, HCV replication is generally 

accepted to be dependent on PI4KIIIα activity (Berger et al., 2011; Reiss et al., 2011; 

Bishé et al., 2012), although there is some evidence for a dependence on PI4KIIIβ 

(Borawski et al., 2009; Arita et al., 2011; Zhang et al., 2012).  

The PI4K family represents a possible pan-viral therapeutic target, however, 

involvement in FMDV replication has yet to be clearly defined. Using bi-cistronic 
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reporter constructs and sub-genomic replicons, we have compared the effects of 

type III PI4K and PI3K inhibitors on FMDV with other positive-sense RNA viruses. 

Using this approach, we have separated effects on RNA translation from direct 

effects on genome replication and show that FMDV replication appears not to be 

significantly dependent on either kinase pathway. 

Another class of PIs, phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) and its related 

kinase PI3K, has also been shown to be involved in viral RNA replication, particularly 

during HCV replication (Fig 5.1). PI(3,4)P2 synthesis on endosomal membranes is 

initiated after clathrin-mediated endocytosis by PI3K. There are three classes of PI3Ks 

active in a mammalian cell. Class I PI3Ks (p110α-δ) are involved in engaging the Akt 

pathway (a signal transduction pathway also known as the PI3K-Akt pathway) and 

acting as effectors to further downstream activation of the pathway required for cell 

growth and survival by generating PIP3 (phosphatidylinositol (3,4,5)-triphosphate) 

phospholipids concentrated at the plasma membrane. Classes II and III PI3Ks are 

involved in intracellular trafficking through the synthesis of PI3P lipids by 

phosphorylating PIs. 
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Figure 5.1 Schematic adapted from Delang et al., 2012 showing the chemical structures 

of the different PI phosphorylation states. PI4K phosphorylates the 4-carbon on the 

inositol ring (highlighted) to form PI4P, the reaction is reversible with the catalytic activity 

of phosphatidylinositol 4-phosphatase (4-pase). PI4P is an intermediate lipid which can be 

further phosphorylated into phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) or 

phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) by PI3K or phosphatidylinositol 5-kinase 

(PI5K1), respectively. 
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Figure 5.2 Simplified diagrammatic representation of the localisation of 

phosphatidylinositol (PI) lipids in the cell. Unphosphorylated PI is concentrated on 

the plasma membrane. PI is phosphorylated by either PI4Ks and PI3K into PI4P or 

PI3P, and thus translocate to intracellular membranes where the phosphorylated PIs 

are active. PI4P lipids are concentrated on the Golgi complex, as well as on the plasma 

membrane and are responsible for intracellular transport. PI4KIIIα primarily is active 

on PIs located on the plasma membrane, whereas PI4KIIIβ is functional on Golgi-

associated PIs. Additionally, inhibitors to each kinase is highlighted.  



160 
 

5.3 Inhibitors of phosphatidylinositol-4 kinases 

Previous studies have identified the prominent role that the PI4KIIIβ pathway plays 

in the development of intracellular viral replication factories in cells infected with 

other positive-sense RNA viruses (e.g. HCV, PV and CVB3) (Altan-Bonnet et al., 2012). 

CVB3, HCV, and PV infection results in a dramatic remodelling of the host-cell 

secretory membrane pathway. During peak replication times of these viruses 

(approximately 6 hours post infection for enteroviruses) a large pool of viral proteins 

involved in genome replication are found localised within membranous organelles at 

the Golgi and ER membranes (Hsu et al., 2010; Limpens et al., 2011; Reiss et al., 2011; 

Belov et al., 2012). These membrane-bound organelles have been shown by 

immunofluorescence and coimmunoprecipitation to contain high levels of PI4KIIIβ; 

the enzyme responsible for catalysing the production of PI4P lipids in the ER 

membrane. Depletion of PI4KIIIβ from the cells by either siRNA or through the use of 

inhibitors (such as PIK93), results in a marked reduction in PV and CVB3 RNA synthesis 

(Knight et al., 2006; Hsu et al., 2010; Arita et al., 2011; Greninger et al., 2012). 

Similarly HCV infection enhanced the production of PI4P through stimulation of both 

PI4KIIIα and PI4KIIIβ, and depletion of PI4P also inhibited HCV RNA synthesis 

(Borawski et al., 2009; Berger et al., 2011; Zhang et al., 2012). 

In order to elucidate the role of the intracellular lipid PI4P in the formation of FMDV 

replication factories, a number of small-molecule inhibitors of the lipid pathway were 

used to treat replicon-transfected BHK-21 cells. These were the well-characterised 

inhibitors PIK93 and wortmannin, alongside two novel compounds recently 

developed by AstraZeneca. 
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Figure 5.3 Chemical structures of the PI4K inhibitors used. A) Phenylthiazole PIK93 

(adapted from Knight et al., 2006), B) AstraZeneca PI4KIIIβ inhibitor, compound 3 

(adapted from Waring et al., 2014). C) AstraZeneca PI4KIIIα inhibitor, compound 7 

(adapted from Waring et al., 2014). D) Fungal steroid metabolite, wortmannin 

(adapted from NCBI, PubChem Substance Database; SID=24278777). 

5.3.1 PIK93 

PIK93 was originally developed as an inhibitor of a class I PI3K, p110α (IC50: 39 nM) 

as a treatment for diabetes, due to the key role the kinase plays in the downstream 

activity of the insulin receptor.  

PIK93 is a phenylthiazole compound (Fig. 5.3a), a multi-targeted compound designed 

to have several target selectivities within the PI-kinase family. It was shown to have 

a potent effect against members of the PI4K family of enzymes, particularly on 

PI4KIIIβ (IC50 PI4KIIIα: 1.1 µM, PI4KIIIβ: 19 nM) despite being designed as a PI3K 

inhibitor (Knight et al, 2006). 

  

a) 

c) 

b) 

d) 
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5.3.2 Compounds 3 and 7 

Recently, the pharmaceutical company AstraZeneca (AZ) produced a number of 

different compounds from a 100,000-compound screen with complementary 

selectivities for PI4KIIIα and PI4KIIIβ (Waring et al., 2014; Raubo et al., 2015). These 

compounds were designed to inhibit the phosphatidylinositol signalling cascade and 

cancer cell proliferation (Waring et al., 2014). Compound 7 (Fig 5.3c) exhibits 

selective inhibition of PI4KIIIα (IC50 PI4KIIIα: 7 nM, PI4KIIIβ: 1.8 µM), whereas 

Compound 3 (Fig 5.3b) exhibits a similar selectivity as PIK93 on PI4KIIIβ (IC50 PI4KIIIα: 

7.3 µM, PI4KIIIβ: 15 nM). These compounds are termed CMPD (7) and CMPD (3), 

respectively, in their literature. 

5.3.3 Wortmannin  

Wortmannin (Fig 5.3d) is a fungal steroid metabolite from Penicillium funiculosum 

and a potent inhibitor of PI3K (Powis et al., 1994; Wymann et al., 1996). Wortmannin 

functions to inhibit PI3K in a non-competitive, irreversible, and non-specific manner; 

as a result it is able to interact with other PI3K-related proteins, including PI4K (Powis 

et al., 1994; Nakanishi et al., 1995; Downing et al., 1996; Meyers et al., 1997). Its 

mode of action is by binding irreversibly to the catalytic domain of the enzyme 

inhibiting its function. It has also been used to inhibit autophagy induced by HCV 

replication in HCV-infected cells. (Wu et al., 2010; Mohl et al., 2016). 
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5.4 Effect of PI4K on IRES-mediated translation 

Many positive-sense RNA viruses have been documented to replicate in membrane-

associated complexes (den Boon and Ahlquist, 2010). There have been several 

reports demonstrating the mechanism of inhibitors affecting membrane lipid 

modification, such as PIK93, on viral replication. However, with the use of GFP-

expressing replicons, it has been difficult to separate effects on translation of input 

viral RNA with those effecting genome replication. To elucidate effects of various 

inhibitors including PIK93 on host and viral translation, we exploited the use of bi-

cistronic vectors containing renilla luciferase (Rluc) and firefly luciferase (Fluc) 

reporter genes under the control of either cap- or IRES-dependent translation 

mechanisms, respectively (Licursi et al., 2011) (Fig 5.4). We have employed a similar 

approach previously to demonstrate the absence of any non-specific effects on 

translation with RNA aptamers selected to FMDV 3Dpol (Forrest et al., 2014).  

Figure 5.4 Schematic of bi-cistronic reporter constructs. The control (pRF) contains 

a structured RNA stem-loop element in place of an IRES resulting in minimal Fluc 

expression. The test constructs contain an IRES from different viruses including 

FMDV, HCV, HRV, and EMCV. All constructs have a 7-methylguanosine cap which 

allows for Rluc expression to test for efficient transfection in BHK-21 cells. 
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Five different constructs were used; a control (pRF) with no IRES structure, resulting 

in minimal Fluc expression, and constructs in which Fluc translation was controlled 

by the IRES from FMDV, HCV, human rhinovirus (HRV), or EMCV. The HRV IRES is type 

I, EMCV and FMDV are type II, and the HCV IRES is classed as a type III (Tsukiyama-

Kohara et al., 1992; Belsham, 2009; Martínez-Salas et al., 2015).  

Following transfection of the bi-cistronic reporter constructs into BHK-21 cells as 

described in sections 2.6.4 and 2.6.5, translation was assessed by measuring the 

levels of renilla and firefly luciferase luminescence produced as a result of cap-

dependent and IRES-dependent translation respectively, in the presence or absence 

of the inhibitor PIK93 in increasing concentrations (0-5 µM). A preliminary MTT assay 

did not reveal any reduction in cell viability in the presence of PIK93 at any of the 

concentrations used for the translation assay (Fig 5.5). 

Figure 5.5 MTT cytotoxicity assay of a range of PIK93 concentrations (0-5 µM) on 

BHK-21 cells. The assay shows no cytotoxicity of PIK93 on cells at the concentrations 

used (0-5 µM) based on the percentage of viable cells, normalised to the untreated 

control (0 µM). Data showing mean values with SEM (n = 2).  
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For all of the bi-cistronic constructs used, there was a modest but non-significant 

inhibition of cap-mediated translation in the presence of an increasing concentration 

of PIK93 (0–5 µM). However, the effects of PIK93 on IRES-mediated translation (Fig. 

5.6b) were more profound. There was an average decrease in luciferase signal 

ranging from 44.2 ± 13.5 % in constructs treated with 1 µM to 73.3 ± 5.0 % in those 

treated with 5 µM PIK93. Treatment with concentrations higher than 1 µM of PIK93 

significantly reduced FMDV, HCV, and EMCV IRES-driven luciferase expression. 

However, with the HRV IRES, a significant reduction in luciferase expression was only 

observed at 5 µM PIK93.  
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Figure 5.6 BHK-21 cells transfected with the bi-cistronic constructs and treated with 

varying concentrations of PIK93 for 48 hours. The data show levels of luciferase 

expression under the control of (a) Cap-mediated translation, and (b) IRES-mediated 

translation. The control (pRF) contains the Firefly reporter under the control of a non-

IRES structure and the Renilla reporter under the control of cap-mediated 

translation. Data showing mean values with SEM (n = 3). Statistical analysis 

performed using two-tailed unpaired t-test; * = p < 0.05, ** = p < 0.01 *** = p < 0.001, 

**** = p < 0.0001).   



167 
 

5.5 Effect of PI4K on RNA replication  

The result of the initial translation assay and treatment with PIK93 brings into 

question whether some of the documented effects of PIK93 on replication could be 

the result of suppression of input viral RNA translation. In order to clarify this, we 

compared the effects of PIK93 on the replication of wildtype (WT) and replication-

deficient FMDV replicons with those of CVB3, previously shown to be dependent on 

PI4K activity (Lanke et al., 2009). Due to the different reporters used, replication was 

monitored by luciferase assay or by GFP expression. 

The development of the FMDV GFP-pac replicon and optimisation of the replication 

assay has been previously described (Forrest et al., 2014). Replication was detected 

by measuring the levels of GFP expression over time using an IncuCyte Dual Colour 

ZOOM® FLR (Tulloch et al., 2014), with maximum fluorescence values being observed 

at 8-10 hours post-transfection. At this time-point up to 80 % of cells transfected with 

the GFP-pac-WT replicon RNA expressed high levels of GFP, and therefore replication 

can be equally assessed by either number of GFP positive cells or total GFP 

fluorescence. Use of the replication-deficient mutant replicon (GFP-pac-GNN) 

resulted in a markedly lower GFP signal (i.e. as a result of input translation only). 

Levels of GFP expression in GFP-pac-GNN replicon-transfected cells were similar to 

those with a second replication-deficient replicon, GFP-pac-Δ3D that contained a 

large deletion in the 3Dpol gene (data not shown) (Tulloch et al., 2014). 
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Figure 5.7 Levels of GFP expression as a measure of replication in BHK-21 cells 

transfected with replicon RNA. BHK-21 cells transfected with GFP-pac-WT (a, b, and 

c) or GFP-pac-GNN (d, e, and f) were either pre-treated for two hours with PIK93 at 

the indicated concentrations, or concurrently with transfection (T=0). Levels of GFP 

expression of pre-treated cells transfected with GFP-pac-WT and GFP-pac-GNN were 

measured over 20 hours (a, b, d, and f). Levels of GFP expression of the treated and 

untreated cells were compared against untreated controls at peak GFP expression 

(11 hours). GFP data were collected by imaging GFP fluorescence hourly in 

transfected cells using an IncuCyte Dual Colour ZOOM® FLR and measuring the 

number of GFP-expressing cells per well. (n = 1).
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Due to the observed lack of cytotoxic effects of PIK93 on the cells at the 

concentrations used for the MTT assay (Fig 5.5), the same concentrations of PIK93 

were applied to the cells at two hours prior to transfection. The effects of the 

addition of PIK93 prior to transfection were investigated to assess if depleting 

intracellular PI4P prior to transfection would further affect the ability for the replicon 

to replicate.  

Results outlined in Fig. 5.7 show that for both GFP-pac-WT and GFP-pac-GNN, two-

hour pre-treatment of cells with PIK93 results in the greatest inhibition of GFP 

expression than in cells treated with PIK93 at the same time as transfection (T=0). In 

WT-transfected cells, pre-treatment with 5 µM PIK93 resulted in a 44.2 % decrease 

in the levels of GFP expression when compared to un-treated cells. Cells that were 

treated with PIK93 concurrently had similar reduction in GFP expression (40.7 %) (Fig 

5.7a). Likewise, GNN-transfected cells showed a 50.3 % reduction in GFP expression 

when pre-treated with PIK93, but no inhibitory effect on GFP expression when cells 

were treated with PIK93 at the time of transfection (14.4 % increase in GFP 

expression) (Fig. 5.7d). It seems possible that PIK93 may be reducing the levels of 

cellular PI4P. 

The addition of PIK93 at two hours pre-transfection was selected as the condition to 

be used for future experiments, this resulted in a dose-dependent reduction in GFP 

expression in cells transfected with GFP-pac-WT or –GNN replicon RNA (Fig. 5.8). 

Reduction of GFP expression in cells transfected with GFP-pac-WT ranged from 30.9 

± 6.7 % to 50.0 ± 3.9 % after treatment with 1 and 5 µM PIK93 respectively, when 

compared to untreated control cells (Fig. 5.8a, b). In GFP-pac-GNN transfected cells 
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there was a 45.5 ± 2.3 % to 69.8 ± 5.2 % reduction (Fig. 5.8c, d). The reduction in GFP 

expression in cells transfected with GFP-pac-GNN in the presence of 5 µM PIK93 (69.8 

± 5.2 %) is similar to the decrease observed on FMDV IRES-mediated translation with 

the same concentration of PIK93 (74.1 ± 5.4 %).  

Figure 5.8 Measuring the effect of replication of FMDV replicon RNA in BHK-21 cells 

treated with PIK93. BHK-21 cells transfected with (a, b) GFP-pac-WT and (c, d) GFP-

pac-GNN replicon RNAs. Transfected cells were pre-treated for two hours with PIK93 

at the indicated concentrations and levels of GFP expression were compared against 

untreated controls. Data were collected by imaging GFP fluorescence hourly in 

transfected cells using an IncuCyte Dual Colour ZOOM® FLR. Levels of GFP expression 

9 hours post-transfection are shown (b) and (d), indicated by dotted line on (a) and 

(c). Mean values with SEM (n = 3) are shown. Statistical analysis performed using two-

tailed unpaired t-test; ** = p < 0.01, *** = p < 0.001, ****= p < 0.0001.  
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The effect of PIK93 was then assayed on WT and replication-deficient CVB3 replicons 

(Fig. 5.9). As expected, and in contrast to the results with FMDV replicons (Fig. 5.8b), 

there was a more pronounced dose-dependent effect of PIK93 on CVB3 replication. 

At 5 µM, PIK93 treatment resulted in a 98.7 ± 0.6 % decrease in luciferase expression 

in cells transfected with WT Rib-Fluc-CB3/T7 RNA, compared to untreated controls 

(Fig. 5.9b). However, cells transfected with replication-deficient Rib-Fluc-CB3/T7-3A 

RNA and treated with 5 µM PIK93 only, exhibited a 38.9 ± 13.7 % decrease in 

luciferase expression (Fig. 5.9c); much less than that seen with FMDV (Fig. 5.8d). It 

should be noted that replication of the FMDV and CVB3 constructs were assayed 

differently; despite this the data were consistent with the hypothesis that FMDV 

genome replication did not require PI4K activity, and that the effect of PIK93 was an 

indirect effect of inhibition of protein translation.



172 
 

Figure 5.9 Measuring the effect of PIK93 on CVB3 replicon RNA replication in BHK-

21 cells. a) Schematic diagram of the CVB3 replicon indicating location of the 5' and 

3' untranslated region flanking the genes encoding replication proteins. The firefly 

luciferase reporter gene replaces the structural capsid proteins. Levels of luciferase 

expression in HeLa cells transfected with (b) Rib-Fluc-CB3/T7 or (c) Rib-Fluc-CB3/T7-

3A CVB3 replicon RNAs. Transfected cells were pre-treated for two hours with PIK93 

at the indicated concentrations and levels of luciferase expression were compared 

against an untreated control. Levels of luciferase expression were measured at eight 

hours post-transfection. Data show mean values with SEM (n = 3). Statistical analysis 

performed using two-tailed unpaired t-test; * = p < 0.05, *** = p < 0.001, ****= p < 

0.001.  



173 
 

5.5.1 FMDV replication does not require PI4KIIIα or β activity. 

Given that some positive strand RNA viruses have been shown to require PI4KIIIα for 

genome replication (e.g. HCV), it was thus formally possible that the lack of effect of 

PIK93 could be explained if FMDV genome replication exhibited a requirement for 

PI4KIIIα but not PI4KIIIβ. 

We therefore proceeded to directly test if the lack of sensitivity to PIK93 could be 

explained by a requirement for PI4KIIIα in FMDV genome replication. As a positive 

control for inhibition of PI4KIIIα we utilised Huh 7.5 cells transiently expressing an 

HCV sub-genomic replicon (SGR-Luc-GFP-JFH1), derived from the JFH-1 infectious 

clone and containing an insertion of GFP into domain III of NS5A (Jones et al., 2007).  

This allowed HCV genome replication to be assayed using the IncuCyte system, as 

described for FMDV above. 

In order to determine if FMDV required PI4KIIIα two novel compounds produced by 

AstraZeneca, compounds (CMPD) 3 and 7 were used. CMPD (7) was designed to have 

selective inhibitory activity against PI4KIIIα, and CMPD (3) against PI4KIIIβ. Prior to 

any experimentation with the compounds it was first necessary to determine 

whether either CMPD (3) or (7) exhibited any cytotoxicity in BHK-21 cells (for FMDV 

experiments), or Huh 7.5 (for HCV) using an MTT assay. As shown in Figs. 5.10a and 

5.10b the compounds were tolerated up to 10 µM by both cell types, although at 20 

µM both exhibited significant cytotoxicity. We therefore tested the effects of CMPD 

(3) and CMPD (7) on both FMDV (Fig. 5.10c) and HCV (Fig. 5.10d) replication at 0.5 

and 10 µM. As shown in Fig. 5.10c, FMDV replication was only modestly reduced (≈20 

%) by the higher concentration of both compounds. Reassuringly, CMPD (7) (selective 
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for PI4KIIIα) inhibited HCV replication even at 0.5 µM (Fig. 5.10d), CMPD (3) (selective 

for PI4KIIIβ) had no effect. We deduce that FMDV genome replication is not 

dependent on either PI4KIIIα or PI4KIIIβ. 

Figure 5.10 The effect of novel PI4KIIIα/β compounds on the replication of FMDV 

and HCV replicon RNA. A) MTT assay of BHK21 cells or (B) Huh 7.5 cells treated with 

either a selective PI4KIIIα inhibitor (compound 7), or PI4KIIIβ inhibitor (compound 3) 

at the indicated concentrations. (C) GFP-pac-WT replicon RNA-transfected BHK21 

cells were treated with inhibitors as indicated and levels of GFP expression were 

compared against an untreated control. Levels of GFP expression was measured at 

eight hours post-transfection. (D) HCV SGR-Luc-GFP-JFH1 replicon RNA-

electroporated Huh 7.5 cells were treated with inhibitors as indicated and levels of 

NS5A-GFP expression were compared against an untreated control. Levels of NS5A-

GFP expression was measured at 48 hours post-electroporation. Data show mean 

values with SEM (n = 3). Statistical analysis performed using two-tailed unpaired t-

test; * = p < 0.05, ** = p < 0.01.  
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5.5.2 FMDV replication does not result in upregulation of PI4P lipids. 

It has previously been described (Reiss et al., 2011; Zhang et al., 2012; Ross-

Thriepland et al., 2015) that HCV utilises the PI4K pathway to assist in the formation 

of membranous intracellular replication factories, termed the ‘membranous web’ 

and consequently the abundance of PI4P lipids is upregulated during HCV RNA 

replication. Due to the lack of evidence that FMDV replication is dependent on PI4K 

activity, it was predicted that cells harbouring FMDV replicons would not exhibit a 

similar upregulation of PI4P lipids. To test this, we compared the levels of PI4P lipids 

in cells harbouring either HCV- or FMDV-derived replicons. As shown in Fig. 5.11a and 

b, Huh 7.5 human hepatoma cells harbouring an HCV replicon showed high levels of 

PI4P lipids as judged by immunofluorescence analysis using antibodies specific for 

PI4P (Ross-Thriepland et al., 2015). This was lost following treatment with PIK93 and 

CMPD (7) (selective for PI4KIIIα), consistent with the replication data shown in Fig. 

5.10d. 

In contrast, BHK-21 cells transfected with FMDV GFP-pac RNA did not exhibit an 

increase in PI4P staining compared to untransfected cells (Fig. 5.11c and d). 

Furthermore, there were no significant differences in the levels of PI4P staining in 

BHK-21 cells after treatment with any of the inhibitors tested. We propose that FMDV 

does not require type III PI4K activity for genome replication and consequently does 

not upregulate activity of these kinases. 
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Figure 5.11 (pp. 176-177) Effect of PIK93, CMPD (3), and CMPD (7) on the levels of 

PI4P expression in cells. Fluorescence microscopy of (a) Huh 7.5 cells electroporated 

with HCV SGR-Luc-GFP-JFH1 replicon RNA, and (c) BHK21 cells transfected with GFP-

pac-WT replicon RNA. Transfected cells were treated with 10 µM PI4KIIIα inhibitor 

(AZ13647670), PI4KIIIβ inhibitor (AZ13686489), or 5 µM PIK93. Fixed cells were 

stained with anti-PI4P antibody (mouse).  NS5A was detected by anti-NS5A antibody 

(sheep). Levels of PI4P expression were measured and presented as total PI4P 

intensity measured in arbitrary units in (b) Huh 7.5 cells and (d) BHK21 cells. Scale bar 

= 20 µm. Data show mean values with SEM (n = 10). 

5.5.3 Involvement of PI3K pathway in FMDV replication 

The observed effects of PIK93 on translation of the FMDV replicon (Fig. 5.6), could 

have been as a result of non-specific interactions between the inhibitor and the host-

cell translation mechanism, coupled with the colocalisation immunofluorescence 

studies described in Berryman et al. 2016 supported the hypothesis that FMDV did 

not utilise the PI4K pathway like other Picornaviruses.  

To test if alternative PI pathways were involved in FMDV replication, wortmannin, a 

fungal steroid metabolite that has been shown to inhibit PI3K in a non-competitive, 

irreversible, and non-specific manner was used (Powis et al., 1994; Wymann et al., 

1996; Meyers et al., 1997). The use of wortmannin would discern if FMDV utilised 

PI3K for RNA replication.  

Cells transfected with GFP-pac-WT showed a reduction of GFP expression of up to 

71.6 % in cells treated with 2 µM wortmannin. Similarly, cells transfected with GFP-

pac-GNN also had a decrease of GFP expression of 82.5 %. The results were 

inconclusive in that treatment of cells with wortmannin still resulted in a decrease in 

GFP-positive cells per well in both GFP-pac-WT and GFP-pac-GNN transfected cells, 
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similar to the effects seen in transfected cells treated with PIK93, even with lower 

concentrations of wortmannin (Fig. 5.12).  

When the wortmannin data were combined with the PIK93 data, the wortmannin 

data suggest that the PI3K as well as the PI4K pathway were either affecting the 

translation mechanisms inside the cells, or both compounds have a non-specific 

effect on transfected cells degrading the replicon RNA. 

Figure 5.12 Effect of wortmannin on replication of FMDV replicon RNA. BHK-21 cells 

transfected with either GFP-pac-WT or GFP-pac-Δ3D replicon RNA were treated with 

a titration of wortmannin (0-2 µM). Graph indicates the percentage of cells 

expressing GFP as an indication of replication when treated with wortmannin when 

compared to an untreated control (0 µM). Levels of GFP expression were measured 

at 8 hours post-transfection. (n=1). 
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5.6 Chapter discussion 

The PI4K family of enzymes has been shown to be involved in the genome replication 

of many positive-sense RNA viruses, primarily in the formation of intracellular 

membranous compartments by generating PI4P lipids. These compartments are 

proposed to house the viral replication factories to protect the viral RNA from 

degradation and recognition by the host-cell innate immune response. It has also 

been observed that some viruses, such as HCV, upregulate PI4K expression and 

activity. PIK93 is a PI4KIIIβ small molecule inhibitor, but has shown to have an 

additional inhibitory effect on PI4KIIIα and PI3K (Knight et al., 2006). It has been 

demonstrated previously that the treatment of cells with PIK93 down-regulated the 

generation of PI4P lipids by inhibiting the activity of PI4KIIIα and β. Furthermore, 

studies with HCV, CVB3, and PV have shown that treating infected cells with PIK93 

reduced virus genome replication (Altan-Bonnet et al., 2012). However, from the 

studies reported here, it appears that the apparent effect on FMDV genome 

replication is actually due to effects on translation. We have demonstrated that IRES-

mediated translation is sensitive to PIK93. There is an additional effect on genome 

replication for CVB3, but not for FMDV.  

We found no evidence by immunofluorescence microscopy staining for PI4P lipids 

that FMDV replication leads to an accumulation of these lipids. However, in cells 

electroporated with HCV replicon, RNA levels of PI4P were stimulated as expected. 

These data suggest that the PI4K pathway is not the primary pathway involved with 

FMDV genome replication. 
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Membrane reorganisation during HCV infection has been well defined and it has 

been reported that PI4KIIIα plays an essential role in the formation of intracellular 

replication factories required for replication (Trotard et al., 2009; Reiss et al., 2011). 

PI3K has also been implicated in HCV replication by recruiting membranous 

compartments from the endocytic pathway (Sir et al., 2012; Liu et al., 2012; Mohl et 

al., 2016). It has been demonstrated that FMDV induces the formation of 

autophagosomes from the endocytic pathway to facilitate cell entry, but this does 

not appear to be involved in viral replication. In FMDV, autophagosome formation is 

induced in a PI3K-independent manner (Berryman et al., 2012), whereas inhibition 

of both PI3K and PI4KIIIα significantly inhibits HCV replication (Gosert et al., 2003; 

Berger et al., 2009).  

There is evidence from the literature that reorganisation of cellular membranes 

during FMDV infection is different to that seen during infection with other 

picornaviruses. FMDV infection results in a dramatic condensation and relocalisation 

of intracellular organelles to one side of the cytoplasm in the perinuclear region 

(Monaghan et al., 2004) and is unaffected by brefeldin A, a fungal metabolite that 

disrupts retrograde Golgi-ER transport. It has been shown that brefeldin A interacts 

with Arf1/GBF1; interference with GBF1 affects the recruitment of PI4KIIIβ and 

subsequent PI4P-lipid up-regulation. Interestingly, treatment of cells with brefeldin 

A has been shown to enhance FMDV infection (Midgley et al., 2013). Recent studies 

have shown that PV, CVB3, and HRV are able to recruit PI4KIIIβ in an Arf1/GBF1-

independent manner highlighting the complexity of the mechanisms by which 

picornaviruses recruit intracellular membranes. (O’Donnell et al., 2001; Midgley et 

al., 2013; Dorobantu et al., 2014; Dorobantu, Ford-Siltz, et al., 2015). 
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Overall, these studies support the results shown here suggesting that PI4Ks are not 

involved in FMDV replication. The data and conclusions described here are supported 

by a recently published paper (Berryman et al., 2016). Therefore, it can be 

hypothesised that FMDV may subvert an alternative cellular pathway to affect the 

membrane reorganisation required to support virus replication, or may not require 

any upregulation of the PI4K pathway.
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Chapter 6 
Concluding Remarks and Future Perspectives 

The primary focus of the work in this thesis was to dissect the role of FMDV 3Dpol in 

viral replication. Although the formation of a classical, discrete intracellular 

membrane-associated replication complex, usually associated with picornavirus 

replication, had yet to be identified within FMDV infected cells, the ability for FMDV 

to form higher-order fibril structures, which appear to require the presence of RNA, 

provide an attractive candidate for the nucleus of a replication complex. The fibrils 

could provide an enclosed, protective environment within which replication can 

occur in an energetically favourable manner. However, there are still outstanding 

questions of how FMDV fibrils form, and what is necessary for these structures to 

form in cells, if indeed, they are involved in whole, or as part of the proposed 

replication complex. 

The studies described in Chapter 3 and 4 provide preliminary results concerning the 

function and structure of the 3Dpol fibrils. The results showed that although WT 3Dpol 

was able to form fibrils, none of the mutants tested here were able to do so. 

Mutations in the polymerase that were located within the catalytic domain of the 

protein (DD388/9NN and DD240/5NN) resulted in non-functional, replication-

deficient replicons and were unable to form any higher-order fibril-like structures. 

The polymerase containing a mutation located in the non-catalytic dsRNA exit site, 

GC216/7AA, was also unable to replicate in context of the FMDV replicon, or form 

any distinctive higher-order fibril-like structures. However, the GC216/7AA mutant 
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was able to bind to RNA with WT affinity, and was able to incorporate radiolabelled 

RNA nucleotides. However, this mutation rendered the replicon non-functional and 

unable to be recovered when co-transfected with WT helper replicon, unlike the 

catalytic mutations, unless both the S-fragment was removed from the 5ʹ UTR, and if 

the cre was inactivated. 

The combination of the ability of the non-catalytic mutant GC216/7AA to incorporate 

RNA nucleotides, along with only being able to be recovered when the regions of the 

5ʹ UTR were removed, points to a novel, necessary cis function for the polymerase in 

addition to its catalytic polymerase activity as suggested in Herod et al., 2016. 

This novel information highlights the importance to undertake further work to 

determine what aspects of polymerase function are important for the formation of 

fibrils. This process of fibril formation identified here is unique to FMDV; PV can form 

fibrils spontaneously even if the polymerase is catalytically inactive. This would 

suggest that the formation of fibrils during FMDV replication has a functional role, as 

opposed to simply acting as a scaffold. The natural progression of this assay would 

be to assess the ability of FMDV 3Dpol to form fibrils if a different non-catalytic site 

were mutated. For example, investigating whether the fibrils are able to form if the 

proposed protein-protein interacting residues were changed, and investigating 

whether these mutations hinder the ability for 3Dpol to bind or incorporate RNA. 

Additionally, it would indicate to further investigate whether these mutations 

affected the replication ability of FMDV in context of the replicon. 
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The hypothesis that the polymerase may have a primary catalytic function and a 

secondary non-catalytic role in replication, both of which involve binding to RNA 

supports the notion that RNA is necessary for the correct formation of fibrils.  

Based on the orientation of the individual polymerase molecules within the fibril 

from the cryo-EM data, it is possible to imagine that the RNA would be replicated by 

the catalytic polymerase, and the newly synthesised negative-strand replicative 

intermediate could become coated by the other polymerase molecules, protecting it 

from degradation by host-cell ribonucleases or detection by the host innate immune 

system. However, proving this hypothesis has been challenging, primarily due to 

being unable to identify density corresponding to RNA associated with the fibrils as 

analysed by cryo-EM. The presence of RNA is necessary for the formation of fibrils 

but so far, no evidence of an interaction has been visualised. 

A reason for the inability to identify RNA density within the fibrils could be due to low 

occupancy levels: if only one of 20 molecules contained RNA, RNA density would not 

be detected. Another reason for the inability to measure any RNA density within the 

fibrils could be due to the RNA primer-template that was used being too unstructured 

and flexible to be visualised by standard negative-stain TEM or cryo-EM as a result of 

the presence of flexible loops extending from the fibril. These loops, if present, could 

be subjected to immunogold labelling and subsequent visualisation by TEM. 

However, the presence of flexible RNA is unlikely as RNA density would be expected 

to be seen within the polymerase active site, and as yet this has not been identified. 

Further work needs to be undertaken to elucidate a potential interaction between 

fibrils and RNA. Methods to determine this interaction include purifying fibrils by 
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gradient densitometry then determining if the protein and RNA appear in the same 

fractions, or alternatively by a particle stability thermal release (PaSTRy)-style assay 

(Walter et al., 2012) where identification of potentially protected RNA can occur by 

disassembling the fibrils and labelling the RNA that may be trapped within.  

Furthermore, identifying whether there are interactions between additional non-

structural proteins and fibrils in vitro would strengthen the hypothesis that the fibrils 

were central for the formation of replication complexes, particularly if there was a 

direct interaction with proteins such as 3A that have a known membrane-associating 

domain. Studies on PV have shown that its polymerase associates with precursor 

proteins 3AB; based on the existing similarities between PV and FMDV, it is 

conceivable that a similar interaction is probable, potentially even with other non-

structural proteins such as 2B and 2C. 

It would also be interesting to see if fibrils can be identified in replicon-containing 

cells. As the 3Dpol is his-tagged, it provides an attractive target for 

immunoprecipitation studies and could provide evidence for potential replication 

complex formation within cells if interactions with other non-structural viral proteins, 

cellular protein or RNA can be identified using this method. Additionally, the use of 

tagged constructs could be used in super-resolution microscopy studies. Preliminary 

confocal studies described in chapter 4 showed that WT and mutant 3Dpol could be 

identified within cells following replicon transfection. A similar process could thus be 

used to try and identify replication complex formation on a single molecule scale. 

Identifying interactions between the P2 non-structural proteins and other non-

structural proteins, particularly 3Dpol, may also provide answers to the apparent 
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importance of 2B in the recovery of replicon RNA in transfected cells. The co-

transfection studies between replicons that contain a WT or a mutant polymerase 

showed that either the presence of 2B, or the presence of a helper RNA of a specific 

length was necessary for recovery to occur. However, studies have pointed to the 

importance of 2B, 2C, and 2BC in virus replication, particularly in the dysregulation 

of the ER- and Golgi-derived membranes. It is highly likely that these proteins are 

necessary in the formation of a replication complex. 

The potential for a large protected replication complex to form involving the 3Dpol 

fibrils and non-structural proteins such as 2BC which results in the dysregulation of 

host-cell intracellular membrane compartments provides an attractive hypothesis for 

the lack of PI4K pathway involvement during replication. Our data has shown that 

the use of this pathway is not required for FMDV replication and that the 

dysregulation of the ER- and Golgi-derived membranes previously observed during 

FMDV replication was not due to the hijacking of the cellular kinase pathway. Further 

work focussing on alternative membrane trafficking pathways needs to be 

undertaken to identify the involvement of other host-cell mechanisms that could be 

involved in the rearrangement of intracellular membranes due to FMDV infection. 

In conclusion, the studies outlined here have provided the scaffold for the 

understanding of the formation of the FMDV replication complex. As a picornavirus, 

the structure and formation of the replication complex is likely to share some 

similarities to other related viruses such as PV and CVB3. However, there are a 

number of key differences not only in the genome structure and organisation, but 

also in the formation of the 3Dpol higher-order complexes, as well as the ability for 
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the virus to replicate independently without the recruitment of host-cell membrane 

rearrangement factors. Therefore, it is likely that predicting the components and 

formation of the replication complex may be more challenging than expected. 



189 
 

References 

 

Acharya, R., Fry, E., Stuart, D., Fox, G., Rowlands, D. and Brown, F. 1989. The three-
dimensional structure of foot-and-mouth disease virus at 2.9 A resolution. 
Nature. 337(6209), pp.709–16. 

Adams, M.J., Lefkowitz, E.J., King, A.M.Q., Harrach, B., Harrison, R.L., Knowles, N.J., 
Kropinski, A.M., Krupovic, M., Kuhn, J.H., Mushegian, A.R., Nibert, M., 
Sabanadzovic, S., Sanfa?on, H., Siddell, S.G., Simmonds, P., Varsani, A., Zerbini, 
F.M., Gorbalenya, A.E. and Davison, A.J. 2017. Changes to taxonomy and the 
International Code of Virus Classification and Nomenclature ratified by the 
International Committee on Taxonomy of Viruses (2017). Archives of Virology. 

Agudo, R., Ferrer-Orta, C., Arias, A., de la Higuera, I., Perales, C., Pérez-Luque, R., 
Verdaguer, N. and Domingo, E. 2010. A multi-step process of viral adaptation 
to a mutagenic nucleoside analogue by modulation of transition types leads to 
extinction-escape. PLoS Pathogens. 6(8), p.e1001072. 

Ahl, R. and Rump, A. 1976. Assay of bovine interferons in cultures of the porcine cell 
line IB-RS-2. Infection and Immunity. 14(3), pp.603–6. 

Airaksinen, A., Pariente, N., Menéndez-Arias, L. and Domingo, E. 2003. Curing of 
foot-and-mouth disease virus from persistently infected cells by ribavirin 
involves enhanced mutagenesis. Virology. 311(2), pp.339–49. 

Albulescu, L., Wubbolts, R., van Kuppeveld, F.J.M. and Strating, J.R.P.M. 2015. 
Cholesterol shuttling is important for RNA replication of coxsackievirus B3 and 
encephalomyocarditis virus. Cellular Microbiology. 17(8), pp.1144–1156. 

Alexandersen, S., Zhang, Z. and Donaldson, A.I. 2002. Aspects of the persistence of 
foot-and-mouth disease virus in animals--the carrier problem. Microbes and 
Infection / Institut Pasteur. 4(10), pp.1099–110. 

Almeida, M.R., Rieder, E., Chinsangaram, J., Ward, G., Beard, C., Grubman, M.J. and 
Mason, P.W. 1998. Construction and evaluation of an attenuated vaccine for 
foot-and-mouth disease: difficulty adapting the leader proteinase-deleted 
strategy to the serotype O1 virus. Virus Research. 55(1), pp.49–60. 

Altan-Bonnet, N. and Balla, T. 2012. Phosphatidylinositol 4-kinases: hostages 
harnessed to build panviral replication platforms. Trends in Biochemical 
Sciences. 37(7), pp.293–302. 

Andino, R., Rieckhof, G.E., Achacoso, P.L. and Baltimore, D. 1993. Poliovirus RNA 
synthesis utilizes an RNP complex formed around the 5’-end of viral RNA. The 
EMBO Journal. 12(9), pp.3587–98. 

Andino, R., Rieckhof, G.E. and Baltimore, D. 1990. A functional ribonucleoprotein 
complex forms around the 5’ end of poliovirus RNA. Cell. 63(2), pp.369–80. 



190 
 

Andino, R., Rieckhof, G.E., Trono, D. and Baltimore, D. 1990. Substitutions in the 
protease (3Cpro) gene of poliovirus can suppress a mutation in the 5’ 
noncoding region. Journal of Virology. 64(2), pp.607–12. 

Ao, D., Guo, H.-C., Sun, S.-Q., Sun, D.-H., Fung, T.S., Wei, Y.-Q., Han, S.-C., Yao, X.-P., 
Cao, S.-Z., Liu, D.X. and Liu, X.-T. 2015. Viroporin activity of the foot-and-mouth 
disease virus non-structural 2B protein. PLoS ONE. 10(5), p.e0125828. 

Ao, D., Sun, S.-Q. and Guo, H.-C. 2014. Topology and biological function of 
enterovirus non-structural protein 2B as a member of the viroporin family. 
Veterinary Research. 45(1), p.87. 

Appel, N., Herian, U. and Bartenschlager, R. 2005. Efficient rescue of hepatitis C 
virus RNA replication by trans-complementation with nonstructural protein 5A. 
Journal of Virology. 79(2), pp.896–909. 

Arias, A., Perales, C., Escarmís, C. and Domingo, E. 2010. Deletion mutants of VPg 
reveal new cytopathology determinants in a picornavirus. PLoS ONE. 5(5), 
p.e10735. 

Arita, M. 2014. Phosphatidylinositol-4 kinase III beta and oxysterol-binding protein 
accumulate unesterified cholesterol on poliovirus-induced membrane 
structure. Microbiology and Immunology. 58(4), pp.239–256. 

Arita, M., Kojima, H., Nagano, T., Okabe, T., Wakita, T. and Shimizu, H. 2013. 
Oxysterol-binding protein family I is the target of minor enviroxime-like 
compounds. Journal of Virology. 87(8), pp.4252–60. 

Arita, M., Kojima, H., Nagano, T., Okabe, T., Wakita, T. and Shimizu, H. 2011. 
Phosphatidylinositol 4-kinase III beta is a target of enviroxime-like compounds 
for antipoliovirus activity. Journal of Virology. 85(5), pp.2364–72. 

Armstrong, R., Davie, J. and Hedger, R.S. 1967. Foot-and-mouth Disease in Man. 
British Medical Journal.  4, pp.529–530. 

Arnold, J.J., Ghosh, S.K. and Cameron, C.E. 1999. Poliovirus RNA-dependent RNA 
polymerase (3D(pol)). Divalent cation modulation of primer, template, and 
nucleotide selection. Journal of Biological Chemistry. 274(52), pp.37060–9. 

Bablanian, G.M. and Grubman, M.J. 1993. Characterization of the foot-and-mouth 
disease virus 3C protease expressed in Escherichia coli. Virology. 197(1), 
pp.320–7. 

Bachrach, H.L. 1968. Foot-and-mouth disease. Annual Review of Microbiology. 22, 
pp.201–44. 

Baird, S.D. 2006. Searching for IRES. RNA. 12(10), pp.1755–1785. 

Balla, A. and Balla, T. 2006. Phosphatidylinositol 4-kinases: old enzymes with 
emerging functions. Trends in Cell Biology. 16(7), pp.351–361. 

Baltimore, D. and Franklin, R.M. 1962. Preliminary data on a virus-specific enzyme 
system responsible for the synthesis of viral RNA. Biochemical and Biophysical 
Research Communications. 9, pp.388–92. 

Barton, D.J. and Flanegan, J.B. 1997. Synchronous replication of poliovirus RNA: 



191 
 

initiation of negative-strand RNA synthesis requires the guanidine-inhibited 
activity of protein 2C. Journal of Virology. 71(11), pp.8482–9. 

Barton, D.J., O’Donnell, B.J. and Flanegan, J.B. 2001. 5’ cloverleaf in poliovirus RNA 
is a cis-acting replication element required for negative-strand synthesis. The 
EMBO Journal. 20(6), pp.1439–48. 

Bauer, K. 1997. Foot- and-mouth disease as zoonosis. Archives of Virology. 
Supplementum. 13, pp.95–7. 

Baxt, B. 1987. Effect of lysosomotropic compounds on early events in foot-and-
mouth disease virus replication. Virus Research. 7(3), pp.257–71. 

Beales, L.P., Holzenburg, A. and Rowlands, D.J. 2003. Viral internal ribosome entry 
site structures segregate into two distinct morphologies. Journal of Virology. 
77(11), pp.6574–6579. 

Beard, C.W. and Mason, P.W. 2000. Genetic determinants of altered virulence of 
Taiwanese foot-and-mouth disease virus. Journal of Virology. 74(2), pp.987–
91. 

Beck, E. and Strohmaier, K. 1987. Subtyping of European foot-and-mouth disease 
virus strains by nucleotide sequence determination. Journal of Virology. 61(5), 
pp.1621–9. 

Beckman, M.T. and Kirkegaard, K. 1998. Site size of cooperative single-stranded 
RNA binding by poliovirus RNA-dependent RNA polymerase. Journal of 
Biological Chemistry. 273(12), pp.6724–30. 

Belov, G.A., Altan-Bonnet, N., Kovtunovych, G., Jackson, C.L., Lippincott-Schwartz, J. 
and Ehrenfeld, E. 2007. Hijacking components of the cellular secretory 
pathway for replication of poliovirus RNA. Journal of Virology. 81(2), pp.558–
67. 

Belov, G.A., Nair, V., Hansen, B.T., Hoyt, F.H., Fischer, E.R. and Ehrenfeld, E. 2012. 
Complex dynamic development of poliovirus membranous replication 
complexes. Journal of Virology. 86(1), pp.302–312. 

Belsham, G.J. 2009. Divergent picornavirus IRES elements. Virus Research.  139, 
pp.183–192. 

Belsham, G.J. 2013. Influence of the Leader protein coding region of foot-and-
mouth disease virus on virus replication. Journal of General Virology. 94(Pt_7), 
pp.1486–1495. 

Belsham, G.J. 2005. Translation and replication of FMDV RNA. Current Topics in 
Microbiology and Immunology. 288, pp.43–70. 

Belsham, G.J. and Brangwyn, J.K. 1990. A region of the 5’ noncoding region of foot-
and-mouth disease virus RNA directs efficient internal initiation of protein 
synthesis within cells: involvement with the role of L protease in translational 
control. Journal of Virology. 64(11), pp.5389–95. 

Belsham, G.J., McInerney, G.M. and Ross-Smith, N. 2000. Foot-and-mouth disease 
virus 3C protease induces cleavage of translation initiation factors eIF4A and 



192 
 

eIF4G within infected cells. Journal of Virology. 74(1), pp.272–80. 

Bentham, M., Holmes, K., Forrest, S., Rowlands, D.J. and Stonehouse, N.J. 2012. 
Formation of higher-order foot-and-mouth disease virus 3D(pol) complexes is 
dependent on elongation activity. Journal of Virology. 86(4), pp.2371–4. 

Berger, K.L., Cooper, J.D., Heaton, N.S., Yoon, R., Oakland, T.E., Jordan, T.X., Mateu, 
G., Grakoui, A. and Randall, G. 2009. Roles for endocytic trafficking and 
phosphatidylinositol 4-kinase III alpha in hepatitis C virus replication. 
Proceedings of the National Academy of Sciences of the United States of 
America. 106(18), p.7577–82. 

Berger, K.L., Kelly, S.M., Jordan, T.X., Tartell, M.A. and Randall, G. 2011. Hepatitis C 
virus stimulates the phosphatidylinositol 4-kinase III alpha-dependent 
phosphatidylinositol 4-phosphate production that is Eesential for its 
replication. Journal of Virology. 85, pp.8870–8883. 

Berinstein, A., Roivainen, M., Hovi, T., Mason, P.W. and Baxt, B. 1995. Antibodies to 
the vitronectin receptor (integrin alpha V beta 3) inhibit binding and infection 
of foot-and-mouth disease virus to cultured cells. Journal of Virology. 69(4), 
pp.2664–6. 

Berryman, S., Brooks, E., Burman, A., Hawes, P., Roberts, R., Netherton, C., 
Monaghan, P., Whelband, M., Cottam, E., Elazar, Z., Jackson, T. and Wileman, 
T. 2012. Foot-and-mouth disease virus induces autophagosomes during cell 
entry via a class III phosphatidylinositol 3-kinase-independent pathway. Journal 
of Virology.  86, pp.12940–12953. 

Berryman, S., Clark, S., Monaghan, P. and Jackson, T. 2005. Early events in integrin v 
6-mediated cell entry of foot-and-mouth disease Virus. Journal of Virology. 
79(13), pp.8519–8534. 

Berryman, S., Moffat, K., Harak, C., Lohmann, V. and Jackson, T. 2016. Foot-and-
mouth disease virus replicates independently of phosphatidylinositol 4-
phosphate and type III phosphatidylinositol 4-kinases. Journal of General 
Virology. 97(8), pp.1841–52. 

Bienz, K., Egger, D. and Pasamontes, L. 1987. Association of polioviral proteins of 
the P2 genomic region with the viral replication complex and virus-induced 
membrane synthesis as visualized by electron microscopic 
immunocytochemistry and autoradiography. Virology. 160(1), pp.220–6. 

Bienz, K., Egger, D., Pfister, T. and Troxler, M. 1992. Structural and functional 
characterization of the poliovirus replication complex. Journal of Virology. 
66(5), pp.2740–7. 

Bienz, K., Egger, D., Rasser, Y. and Bossart, W. 1983. Intracellular distribution of 
poliovirus proteins and the induction of virus-specific cytoplasmic structures. 
Virology. 131(1), pp.39–48. 

Birtley, J.R., Knox, S.R., Jaulent, A.M., Brick, P., Leatherbarrow, R.J. and Curry, S. 
2005. Crystal structure of foot-and-mouth disease virus 3C protease. New 
insights into catalytic mechanism and cleavage specificity. Journal of Biological 
Chemistry. 280(12), pp.11520–7. 



193 
 

Bishé, B., Syed, G. and Siddiqui, A. 2012. Phosphoinositides in the hepatitis C virus 
life cycle. Viruses.  4, pp.2340–2358. 

Black, D.N. and Brown, F. 1969. Effect of actinomycin D and guanidine on the 
formation of a ribonucleic acid polymerase induced by foot-and-mouth-
disease virus and on the replication of virus and viral ribonucleic acid. 
Biochemical Journal. 112(3), pp.317–323. 

Black, D.N., Stephenson, P., Rowlands, D.J. and Brown, F. 1979. Sequence and 
location of the poly C tract in aphtho- and cardiovirus RNA. Nucleic Acids 
Research. 6(7), pp.2381–90. 

Blyn, L.B., Towner, J.S., Semler, B.L. and Ehrenfeld, E. 1997. Requirement of poly(rC) 
binding protein 2 for translation of poliovirus RNA. Journal of Virology. 71(8), 
pp.6243–6. 

Bolten, R., Egger, D., Gosert, R., Schaub, G., Landmann, L. and Bienz, K. 1998. 
Intracellular localization of poliovirus plus- and minus-strand RNA visualized by 
strand-specific fluorescent In situ hybridization. Journal of Virology. 72(11), 
pp.8578–85. 

den Boon, J. and Ahlquist, P. 2010. Organelle-like membrane compartmentalization 
of positive-strand RNA virus replication factories. Annual Review of 
Microbiology.  64, pp.241–256. 

den Boon, J., Diaz, A. and Ahlquist, P. 2010. Cytoplasmic viral replication complexes. 
Cell Host & Microbe. 8(1), pp.77–85. 

Borawski, J., Troke, P., Puyang, X., Gibaja, V., Zhao, S., Mickanin, C., Leighton-
Davies, J., Wilson, C.J., Myer, V., Cornellataracido, I., Baryza, J., Tallarico, J., 
Joberty, G., Bantscheff, M., Schirle, M., Bouwmeester, T., Mathy, J.E., Lin, K., 
Compton, T., Labow, M., Wiedmann, B. and Gaither, L.A. 2009. Class III 
phosphatidylinositol 4-kinase alpha and beta are novel host factor regulators 
of hepatitis C virus replication. Journal of Virology. 83(19), pp.10058–74. 

Boura, E. and Nencka, R. 2015. Phosphatidylinositol 4-kinases: Function, structure, 
and inhibition. Experimental Cell Research. 337(2), pp.136–145. 

Brown, C.C., Piccone, M.E., Mason, P.W., McKenna, T.S. and Grubman, M.J. 1996. 
Pathogenesis of wild-type and leaderless foot-and-mouth disease virus in 
cattle. Journal of Virology. 70(8), pp.5638–41. 

Brown, D.W. 2001. Foot and mouth disease in human beings. The Lancet. 
357(9267), p.1463. 

Brown, F., Newman, J., Stott, J., Porter, A., Frisby, D., Newton, C., Carey, N. and 
Fellner, P. 1974. Poly(C) in animal viral RNAs. Nature. 251(5473), pp.342–344. 

Brune, W., Ménard, C., Hobom, U., Odenbreit, S., Messerle, M. and Koszinowski, 
U.H. 1999. Rapid identification of essential and nonessential herpesvirus genes 
by direct transposon mutagenesis. Nature Biotechnology. 17(4), pp.360–364. 

Bryan, B.J. and Szent-Gyorgyi, C. 2001. Luciferases, fluorescent proteins, nucleic 
acids encoding the luciferases and fluorescent proteins and the use thereof in 
diagnostics, high throughput screening and novelty items. 



194 
 

Bunch, T., Rieder, E. and Mason, P. 1994. Sequence of the S fragment of foot-and-
mouth disease virus type A12. Virus Genes. 8(2), pp.173–5. 

Burroughs, J.N., Rowlands, D.J., Sangar, D. V., Talbot, P. and Brown, F. 1971. Further 
Evidence for Multiple Proteins in the Foot-and-Mouth Disease Virus Particle. 
Journal of General Virology. 13(1), pp.73–84. 

Cameron, C.E., Suk Oh, H. and Moustafa, I.M. 2010. Expanding knowledge of P3 
proteins in the poliovirus lifecycle. Future Microbiology. 5(6), pp.867–881. 

Cao, X., Bergmann, I.E., Füllkrug, R. and Beck, E. 1995. Functional analysis of the two 
alternative translation initiation sites of foot-and-mouth disease virus. Journal 
of Virology. 69(1), pp.560–3. 

Cao, X. and Wimmer, E. 1995. Intragenomic complementation of a 3AB mutant in 
dicistronic polioviruses. Virology. 209(2), pp.315–326. 

Carrillo, C., Lu, Z., Borca, M. V, Vagnozzi, A., Kutish, G.F. and Rock, D.L. 2007. 
Genetic and phenotypic variation of foot-and-mouth disease virus during serial 
passages in a natural host. Journal of Virology. 81(20), pp.11341–51. 

Carrillo, C., Tulman, E.R., Delhon, G., Lu, Z., Carreno, A., Vagnozzi, A., Kutish, G.F. 
and Rock, D.L. 2005. Comparative genomics of foot-and-mouth disease virus. 
Journal of Virology. 79(10), pp.6487–504. 

Carroll, A.R., Rowlands, D.J. and Clarke, B.E. 1984. The complete nucleotide 
sequence of the RNA coding for the primary translation product of foot and 
mouth disease virus. Nucleic Acids Research. 12(5), pp.2461–2472. 

Cavanagh, D., Rowlands, D.J. and Brown, F. 1978. Early events in the interaction 
between foot-and-mouth disease virus and primary pig kidney cells. Journal of 
General Virology. 41(2), pp.255–264. 

Chinnaswamy, S., Murali, A., Li, P., Fujisaki, K. and Kao, C.C. 2010. Regulation of de 
novo-initiated RNA synthesis in hepatitis C virus RNA-dependent RNA 
polymerase by intermolecular interactions. Journal of Virology. 84(12), 
pp.5923–5935. 

Chinsangaram, J., Koster, M. and Grubman, M.J. 2001. Inhibition of L-deleted foot-
and-mouth disease virus replication by alpha/beta interferon involves double-
stranded RNA-dependent protein kinase. Journal of Virology. 75(12), pp.5498–
503. 

Chinsangaram, J., Mason, P.W. and Grubman, M.J. 1998. Protection of swine by live 
and inactivated vaccines prepared from a leader proteinase-deficient serotype 
A12 foot-and-mouth disease virus. Vaccine. 16(16) ,pp.1516–22. 

Clarke, B.E., Brown, A.L., Currey, K.M., Newton, S.E., Rowlands, D.J. and Carroll, A.R. 
1987. Potential secondary and tertiary structure in the genomic RNA of foot 
and mouth disease virus. Nucleic Acids Research. 15(17), pp.7067–7079. 

Clarke, B.E. and Sangar, D. V 1988. Processing and assembly of foot-and-mouth 
disease virus proteins using subgenomic RNA. Journal of General Virology. 69 
(Pt 9), pp.2313–25. 



195 
 

Cold Spring Harbor Laboratory 2015. SDS-PAGE gel. Cold Spring Harbor Protocols. 
2015(7), p.pdb.rec087908. 

Costa Giomi, M.P., Bergmann, I.E., Scodeller, E.A., Augé de Mello, P., Gomez, I. and 
La Torre, J.L. 1984. Heterogeneity of the polyribocytidylic acid tract in 
aphthovirus: biochemical and biological studies of viruses carrying 
polyribocytidylic acid tracts of different lengths. Journal of Virology. 51(3), 
pp.799–805. 

Cowan, K.M. and Graves, J.H. 1966. A third antigenic component associated with 
foot-and-mouth disease infection. Virology. 30(3), pp.528–40. 

Cuchillo, C.M., Nogués, M.V. and Raines, R.T. 2011. Bovine pancreatic ribonuclease: 
Fifty years of the first enzymatic reaction mechanism. Biochemistry. 50(37), 
pp.7835–7841. 

Delang, L., Paeshuyse, J. and Neyts, J. 2012. The role of phosphatidylinositol 4-
kinases and phosphatidylinositol 4-phosphate during viral replication. 
Biochemical Pharmacology. 84(11), pp.1400–1408. 

Devaney, M.A., Vakharia, V.N., Lloyd, R.E., Ehrenfeld, E. and Grubman, M.J. 1988. 
Leader protein of foot-and-mouth disease virus is required for cleavage of the 
p220 component of the cap-binding protein complex. Journal of Virology. 
62(11), pp.4407–9. 

Doedens, J.R. and Kirkegaard, K. 1995. Inhibition of cellular protein secretion by 
poliovirus proteins 2B and 3A. The EMBO Journal. 14(5), pp.894–907. 

Doel, T.R. 2005. Natural and vaccine induced immunity to FMD. Current Topics in 
Microbiology and Immunology. 288, pp.103–31. 

Doel, T.R., Sangar, D. V., Rowlands, D.J. and Brown, F. 1978. A re-appraisal of the 
biochemical map of foot-and-mouth disease virus RNA. Journal of General 
Virology. 41(2), pp.395–404. 

Domingo, E., Escarmís, C., Lázaro, E. and Manrubia, S. 2005. Quasispecies dynamics 
and RNA virus extinction. Virus Research. 107(2), pp.129–139. 

Domingo, E., Pariente, N., Airaksinen, A., Gonzaĺez-Lopez, C., Sierra, S., Herrera, M., 
Grande-Pérez, A., Lowenstein, P.R., Manrubia, S.C., Lázaro, E. and Escarmís, C. 
2005. Foot-and-mouth disease virus evolution: exploring pathways towards 
virus extinction. Current Topics in Microbiology and Immunology. 288, pp.149–
73. 

Domingo, E., Sheldon, J. and Perales, C. 2012. Viral quasispecies evolution. 
Microbiology and Molecular Biology Reviews. 76(2), pp.159–216. 

Donnelly, M.L.L., Gani, D., Luke, G., Ryan, M.D., Mendoza, H. and Hughes, L.E. 2001. 
The ‘cleavage’ activities of foot-and-mouth disease virus 2A site-directed 
mutants and naturally occurring ‘2A-like’ sequences. Journal of General 
Virology. 82(5), pp.1027–1041. 

Dorobantu, C.M., Albulescu, L., Harak, C., Feng, Q., van Kampen, M., Strating, 
J.R.P.M., Gorbalenya, A.E., Lohmann, V., van der Schaar, H.M. and van 
Kuppeveld, F.J.M. 2015. Modulation of the host lipid landscape to promote 



196 
 

RNA virus replication: The picornavirus encephalomyocarditis virus converges 
on the pathway used by hepatitis C virus. PLoS pathogens. 11(9), p.e1005185. 

Dorobantu, C.M., Ford-Siltz, L.A., Sittig, S.P., Lanke, K.H.W., Belov, G.A., van 
Kuppeveld, F.J.M. and van der Schaar, H.M. 2015. GBF1- and ACBD3-
independent recruitment of PI4KIIIβ to replication sites by rhinovirus 3A 
proteins. Journal of Virology. 89, pp.1913–1918. 

Dorobantu, C.M., van der Schaar, H.M., Ford, L. a, Strating, J.R.P.M., Ulferts, R., 
Fang, Y., Belov, G. and van Kuppeveld, F.J.M. 2014. Recruitment of PI4KIIIβ to 
coxsackievirus B3 replication organelles is independent of ACBD3, GBF1, and 
Arf1. Journal of Virology. 88, pp.2725–36. 

Downing, G.J., Kim, S., Nakanishi, S., Catt, K.J. and Balla, T. 1996. Characterization of 
a soluble adrenal phosphatidylinositol 4-kinase reveals wortmannin sensitivity 
of type III phosphatidylinositol kinases. Biochemistry. 35(11), pp.3587–3594. 

Duque, H. and Baxt, B. 2003. Foot-and-mouth disease virus receptors: comparison 
of bovine alpha(V) integrin utilization by type A and O viruses. Journal of 
Virology. 77(4), pp.2500–11. 

Enders, J.F., Weller, T.H. and Robbins, F.C. 1949. Cultivation of the Lansing strain of 
poliomyelitis virus in cultures of various human embryonic tissues. Science. 
109(2822), pp.85–7. 

Environmental Sciences Inc. 2015. Ptilosarcus GFP. AthenaESTM. 

Escarmís, C., Dopazo, J., Dávila, M., Palma, E.L. and Domingo, E. 1995. Large 
deletions in the 5’-untranslated region of foot-and-mouth disease virus of 
serotype C. Virus Research. 35(2), pp.155–67. 

Falk, M.M., Grigera, P.R., Bergmann, I.E., Zibert, A., Multhaup, G. and Beck, E. 1990. 
Foot-and-mouth disease virus protease 3C induces specific proteolytic 
cleavage of host cell histone H3. Journal of Virology. 64(2), pp.748–56. 

Falk, M.M., Sobrino, F. and Beck, E. 1992. VPg gene amplification correlates with 
infective particle formation in foot-and-mouth disease virus. Journal of 
Virology. 66(4), pp.2251–60. 

Ferrer-Orta, C., Agudo, R., Domingo, E. and Verdaguer, N. 2009. Structural insights 
into replication initiation and elongation processes by the FMDV RNA-
dependent RNA polymerase. Current Opinion in Structural Biology. 19(6), 
pp.752–758. 

Ferrer-Orta, C., Arias, A., Agudo, R., Pérez-Luque, R., Escarmís, C., Domingo, E. and 
Verdaguer, N. 2006. The structure of a protein primer–polymerase complex in 
the initiation of genome replication. The EMBO Journal. 25(4), pp.880–888. 

Ferrer-Orta, C., Arias, A., Escarmís, C. and Verdaguer, N. 2006. A comparison of viral 
RNA-dependent RNA polymerases. Current Opinion in Structural Biology. 16(1), 
pp.27–34. 

Ferrer-Orta, C., Arias, A., Perez-Luque, R., Escarmis, C., Domingo, E. and Verdaguer, 
N. 2007. Sequential structures provide insights into the fidelity of RNA 
replication. Proceedings of the National Academy of Sciences. 104(22), 



197 
 

pp.9463–9468. 

Ferrer-Orta, C., Arias, A., Perez-Luque, R., Escarmís, C., Domingo, E. and Verdaguer, 
N. 2004. Structure of foot-and-mouth disease virus RNA-dependent RNA 
polymerase and its complex with a template-primer RNA. Journal of Biological 
Chemistry. 279(45), pp.47212–21. 

Ferrer-Orta, C., Ferrero, D. and Verdaguer, N. 2015. RNA-dependent RNA 
polymerases of picornaviruses: From the structure to regulatory mechanisms. 
Viruses. 7(8), pp.4438–60. 

Ferrer-Orta, C., de la Higuera, I., Caridi, F., Sánchez-Aparicio, M.T., Moreno, E., 
Perales, C., Singh, K., Sarafianos, S.G., Sobrino, F., Domingo, E. and Verdaguer, 
N. 2015. Multifunctionality of a picornavirus polymerase domain: Nuclear 
localization signal and nucleotide recognition. Journal of Virology. 89(13), 
pp.6848–6859. 

Flanegan, J.B. and Baltimore, D. 1977. Poliovirus-specific primer-dependent RNA 
polymerase able to copy poly(A). Proceedings of the National Academy of 
Sciences. 74(9), pp.3677–3680. 

Flanegan, J.B. and Baltimore, D. 1979. Poliovirus polyuridylic acid polymerase and 
RNA replicase have the same viral polypeptide. Journal of Virology. 29(1),  
pp.352–60. 

Flanegan, J.B. and Van Dyke, T.A. 1979. Isolation of a soluble and template-
dependent poliovirus RNA polymerase that copies virion RNA in vitro. Journal 
of Virology. 32(1), pp.155–61. 

Flint, M. and Ryan, M.D. 1997. Virus-encoded proteinases of the picornavirus super-
group. Journal of General Virology. 78(4), pp.699–723. 

Forrest, S., Lear, Z., Herod, M.R., Ryan, M., Rowlands, D.J. and Stonehouse, N.J. 
2014. Inhibition of the foot-and-mouth disease virus subgenomic replicon by 
RNA aptamers. Journal of General Virology. 95, pp.2649–2657. 

Forss, S. and Schaller, H. 1982. A tandem repeat gene in a picornavirus. Nucleic 
Acids Research. 10(20), pp.6441–6450. 

Forss, S., Strebel, K., Beck, E. and Schaller, H. 1984. Nucleotide sequence and 
genome organization of foot-and-mouth disease virus. Nucleic Acids Research. 
12(16), pp.6587–601. 

Fowler, V.L., Bashiruddin, J.B., Maree, F.F., Mutowembwa, P., Bankowski, B., 
Gibson, D., Cox, S., Knowles, N. and Barnett, P.V. 2011. Foot-and-mouth 
disease marker vaccine: Cattle protection with a partial VP1 G–H loop deleted 
virus antigen. Vaccine. 29(46), pp.8405–8411. 

Fowler, V.L., Knowles, N.J., Paton, D.J. and Barnett, P.V. 2010. Marker vaccine 
potential of a foot-and-mouth disease virus with a partial VP1 G-H loop 
deletion. Vaccine. 28(19), pp.3428–3434. 

Fowler, V.L., Paton, D.J., Rieder, E. and Barnett, P.V. 2008. Chimeric foot-and-mouth 
disease viruses: Evaluation of their efficacy as potential marker vaccines in 
cattle. Vaccine. 26(16), pp.1982–1989. 



198 
 

Fox, G., Parry, N.R., Barnett, P. V., McGinn, B., Rowlands, D.J. and Brown, F. 1989. 
The cell attachment site on foot-and-mouth disease virus includes the amino 
acid sequence RGD (Arginine-Glycine-Aspartic Acid). Journal of General 
Virology. 70(3), pp.625–637. 

Gamarnik, A. V and Andino, R. 1998. Switch from translation to RNA replication in a 
positive-stranded RNA virus. Genes & Development. 12(15), pp.2293–304. 

Gamarnik, A. V and Andino, R. 1997. Two functional complexes formed by KH 
domain containing proteins with the 5’ noncoding region of poliovirus RNA. 
RNA. 3(8), pp.882–92. 

Gao, Y., Sun, S.-Q. and Guo, H.-C. 2016. Biological function of foot-and-mouth 
disease virus non-structural proteins and non-coding elements. Virology 
Journal. 13(1), p.107. 

García-Briones, M., Rosas, M.F., González-Magaldi, M., Martín-Acebes, M.A., 
Sobrino, F. and Armas-Portela, R. 2006. Differential distribution of non-
structural proteins of foot-and-mouth disease virus in BHK-21 cells. Virology. 
349(2), pp.409–21. 

García-Nuñez, S., Gismondi, M.I., König, G., Berinstein, A., Taboga, O., Rieder, E., 
Martínez-Salas, E. and Carrillo, E. 2014. Enhanced IRES activity by the 3ʹUTR 
element determines the virulence of FMDV isolates. Virology. 448, pp.303–
313. 

Garmaroudi, F.S., Marchant, D., Hendry, R., Luo, H., Yang, D., Ye, X., Shi, J. and 
McManus, B.M. 2015. Coxsackievirus B3 replication and pathogenesis. Future 
Microbiology. 10(4), pp.629–653. 

George, M., Venkataramanan, R., Pattnaik, B., Sanyal, A., Gurumurthy, C.B., 
Hemadri, D. and Tosh, C. 2001. Sequence analysis of the RNA polymerase gene 
of foot-and-mouth disease virus serotype Asia1. Virus Genes. 22(1), pp.21–6. 

Giachetti, C., Hwang, S.S. and Semler, B.L. 1992. cis-acting lesions targeted to the 
hydrophobic domain of a poliovirus membrane protein involved in RNA 
replication. Journal of Virology. 66(10), pp.6045–57. 

Giraudo, A.T., Sagedahl, A., Bergmann, I.E., La Torre, J.L. and Scodeller, E.A. 1987. 
Isolation and characterization of recombinants between attenuated and 
virulent aphthovirus strains. Journal of Virology. 61(2), pp.419–25. 

Gladue, D.P., O’Donnell, V., Baker-Branstetter, R., Holinka, L.G., Pacheco, J.M., 
Fernandez-Sainz, I., Lu, Z., Brocchi, E., Baxt, B., Piccone, M.E., Rodriguez, L. and 
Borca, M. V 2012. Foot-and-mouth disease virus nonstructural protein 2C 
interacts with Beclin1, modulating virus replication. Journal of Virology. 86(22), 
pp.12080–90. 

Gomes, R.G.B., Isken, O., Tautz, N., McLauchlan, J. and McCormick, C.J. 2016. 
Polyprotein-driven formation of two interdependent sets of complexes 
supporting hepatitis C virus genome replication. Journal of Virology. 90(6), 
pp.2868–2883. 

González-Magaldi, M., Martín-Acebes, M.A., Kremer, L. and Sobrino, F. 2014. 



199 
 

Membrane topology and cellular dynamics of foot-and-mouth disease virus 3A 
protein. PLoS ONE. 9(10), p.e106685. 

González-Magaldi, M., Postigo, R., de la Torre, B.G., Vieira, Y.A., Rodríguez-Pulido, 
M., López-Viñas, E., Gómez-Puertas, P., Andreu, D., Kremer, L., Rosas, M.F. and 
Sobrino, F. 2012. Mutations that hamper dimerization of foot-and-mouth 
disease virus 3A protein are detrimental for infectivity. Journal of Virology. 
86(20), pp.11013–23. 

González-Magaldi, M., Vázquez-Calvo, Á., de la Torre, B.G., Valle, J., Andreu, D. and 
Sobrino, F. 2015. Peptides interfering 3A protein dimerization decrease FMDV 
multiplication. PLoS ONE. 10(10), p.e0141415. 

Goodfellow, I., Chaudhry, Y., Richardson, A., Meredith, J., Almond, J.W., Barclay, W. 
and Evans, D.J. 2000. Identification of a cis-acting replication element within 
the poliovirus coding region. Journal of Virology. 74(10), pp.4590–600. 

Goodfellow, I.G., Polacek, C., Andino, R. and Evans, D.J. 2003. The poliovirus 2C cis-
acting replication element-mediated uridylylation of VPg is not required for 
synthesis of negative-sense genomes. Journal of General Virology. 84(Pt 9), 
pp.2359–63. 

Gorbalenya, A.E., Koonin, E. V. and Wolf, Y.I. 1990. A new superfamily of putative 
NTP-binding domains encoded by genomes of small DNA and RNA viruses. 
FEBS Letters. 262(1), pp.145–148. 

Gosert, R., Egger, D. and Bienz, K. 2000. A cytopathic and a cell culture adapted 
hepatitis A virus strain differ in cell killing but not in intracellular membrane 
rearrangements. Virology. 266(1), pp.157–169. 

Gosert, R., Egger, D., Lohmann, V., Bartenschlager, R., Blum, H.E., Bienz, K. and 
Moradpour, D. 2003. Identification of the hepatitis C virus RNA replication 
complex in Huh-7 cells harboring subgenomic replicons. Journal of Virology.  
77, pp.5487–5492. 

Graci, J.D. and Cameron, C.E. 2002. Quasispecies, error catastrophe, and the 
antiviral activity of ribavirin. Virology. 298(2), pp.175–80. 

Greninger, A.L., Knudsen, G.M., Betegon, M., Burlingame, A.L. and Derisi, J.L. 2012. 
The 3A protein from multiple picornaviruses utilizes the golgi adaptor protein 
ACBD3 to recruit PI4KIIIβ. Journal of Virology. 86(7), pp.3605–16. 

Grigera, P.R. and Tisminetzky, S.G. 1984. Histone H3 modification in BHK cells 
infected with foot-and-mouth disease virus. Virology. 136(1), pp.10–9. 

Grubman, M.J. and Baxt, B. 2004. Foot-and-Mouth Disease. Clinical Microbiology 
Reviews. 17(2),pp.465–493. 

Grubman, M.J. and Mason, P.W. 2002. Prospects, including time-frames, for 
improved foot and mouth disease vaccines. Revue Scientifique et Technique 
(International Office of Epizootics). 21(3), pp.589–600. 

Grubman, M.J., Robertson, B.H., Morgan, D.O., Moore, D.M. and Dowbenko, D. 
1984. Biochemical map of polypeptides specified by foot-and-mouth disease 
virus. Journal of Virology. 50(2), pp.579–86. 



200 
 

Hansen, J.L., Long, A.M. and Schultz, S.C. 1997. Structure of the RNA-dependent 
RNA polymerase of poliovirus. Structure. 5(8), pp.1109–1122. 

Harris, K.S., Xiang, W., Alexander, L., Lane, W.S., Paul, A. V and Wimmer, E. 1994. 
Interaction of poliovirus polypeptide 3CDpro with the 5’ and 3’ termini of the 
poliovirus genome. Identification of viral and cellular cofactors needed for 
efficient binding. Journal of Biological Chemistry. 269(43), pp.27004–14. 

Harris, T.J. 1980. Comparison of the nucleotide sequence at the 5’ end of RNAs from 
nine aphthoviruses, including representatives of the seven serotypes. Journal 
of Virology. 36(3), pp.659–64. 

Harris, T.J. 1979. The nucleotide sequence at the 5’ end of foot-and-mouth disease 
virus RNA. Nucleic Acids Research. 7(7), pp.1765–85. 

Harris, T.J. and Brown, F. 1977. Biochemical analysis of a virulent and an avirulent 
strain of foot-and-mouth disease virus. Journal of General Virology. 34(1), 
pp.87–105. 

Hellen, C.U.T. and Sarnow, P. 2001. Internal ribosome entry sites in eukaryotic 
mRNA molecules. Genes & Development. 15(13), pp.1593–612. 

Herod, M.R., Ferrer-Orta, C., Loundras, E.-A., Ward, J.C., Verdaguer, N., Rowlands, 
D.J. and Stonehouse, N.J. 2016. Both cis and trans activities of foot-and-mouth 
disease virus 3D polymerasea are essential for viral RNA replication. Journal of 
Virology. 90(15), pp.6864–6883. 

Herod, M.R., Gold, S., Lasecka-Dykes, L., Wright, C., Ward, J.C., McLean, T.C., 
Forrest, S., Jackson, T., Tuthill, T.J., Rowlands, D.J. and Stonehouse, N.J. 2017. 
Genetic economy in picornaviruses: Foot-and-mouth disease virus replication 
exploits alternative precursor cleavage pathways. PLoS Pathogens. 13(10), 
p.e1006666. 

Herod, M.R., Loundras, E.-A., Ward, J.C., Tulloch, F., Rowlands, D.J. and Stonehouse, 
N.J. 2015. Employing transposon mutagenesis to investigate foot-and-mouth 
disease virus replication. Journal of General Virology. 96(12), pp.3507–3518. 

Herod, M.R., Schregel, V., Hinds, C., Liu, M., McLauchlan, J., McCormick, C.J. and 
Sandri-Goldin, R.M. 2014. Genetic complementation of hepatitis C virus 
nonstructural protein functions associated with replication exhibits 
requirements that differ from those for virion assembly. Journal of Virology. 
88(5), pp.2748–2762. 

Herold, J. and Andino, R. 2000. Poliovirus requires a precise 5’ end for efficient 
positive-strand RNA synthesis. Journal of Virology. 74(14), pp.6394–400. 

Herold, J. and Andino, R. 2001. Poliovirus RNA replication requires genome 
circularization through a protein-protein bridge. Molecular Cell. 7(3), pp.581–
91. 

Hicks, B.W. 2002. Green Fluorescent Protein  New Jersey: Humana Press. 

Hogbom, M., Jager, K., Robel, I., Unge, T. and Rohayem, J. 2009. The active form of 
the norovirus RNA-dependent RNA polymerase is a homodimer with 
cooperative activity. Journal of General Virology. 90(2), pp.281–291. 



201 
 

Hogle, J.M., Chow, M. and Filman, D.J. 1985. Three-dimensional structure of 
poliovirus at 2.9 Å resolution. Science. 229(4720), pp.1358–65. 

Hsu, N.-Y., Ilnytska, O., Belov, G., Santiana, M., Chen, Y.-H., Takvorian, P.M., Pau, C., 
van der Schaar, H., Kaushik-Basu, N., Balla, T., Cameron, C.E., Ehrenfeld, E., van 
Kuppeveld, F.J.M. and Altan-Bonnet, N. 2010. Viral reorganization of the 
secretory pathway generates distinct organelles for RNA replication. Cell. 
141(5), pp.799–811. 

ICTV 2016. ICTV Master Species List 2016 v1.3 - Master Species Lists - Master 
Species Lists - International Committee on Taxonomy of Viruses (ICTV). 

Ilnytska, O., Santiana, M., Hsu, N.-Y., Du, W.-L., Chen, Y.-H., Viktorova, E.G., Belov, 
G., Brinker, A., Storch, J., Moore, C., Dixon, J.L. and Altan-Bonnet, N. 2013. 
Enteroviruses harness the cellular endocytic machinery to remodel the host 
cell cholesterol landscape for effective viral replication. Cell Host & Microbe. 
14(3), pp.281–293. 

Jablonski, S.A., Luo, M. and Morrow, C.D. 1991. Enzymatic activity of poliovirus RNA 
polymerase mutants with single amino acid changes in the conserved YGDD 
amino acid motif. Journal of Virology. 65(9), pp.4565–72. 

Jackson, T., Clark, S., Berryman, S., Burman, A., Cambier, S., Mu, D., Nishimura, S. 
and King, A.M.Q. 2004. Integrin alphavbeta8 functions as a receptor for foot-
and-mouth disease virus: role of the beta-chain cytodomain in integrin-
mediated infection. Journal of Virology. 78(9), pp.4533–40. 

Jackson, T., Mould, A.P., Sheppard, D. and King, A.M.Q. 2002. Integrin alphavbeta1 
is a receptor for foot-and-mouth disease virus. Journal of Virology. 76(3), 
pp.935–41. 

Jackson, T., Sheppard, D., Denyer, M., Blakemore, W. and King, A.M. 2000. The 
epithelial integrin alphavbeta6 is a receptor for foot-and-mouth disease virus. 
Journal of Virology. 74(11), pp.4949–56. 

Jamal, S.M. and Belsham, G.J. 2013. Foot-and-mouth disease: past, present and 
future. Veterinary Research. 44(1), p.116. 

Jang, S.K., Krausslich, H.-G., Nicklin, M.J.H., Duke, G.M., Palmenberg, A.C. and 
Wimmer, E. 1988. A segment of the 5’ nontranslated region of 
encephalomyocarditis virus RNA directs internal entry of ribosomes during In 
vitro translation. Journal of Virology.  62(8), pp.2636–2643. 

Jecht, M., Probst, C. and Gauss-Müller, V. 1998. Membrane permeability induced by 
hepatitis A virus proteins 2B and 2BC and proteolytic processing of HAV 2BC. 
Virology. 252(1), pp.218–227. 

Jones, D.M., Gretton, S.N., McLauchlan, J. and Targett-Adams, P. 2007. Mobility 
analysis of an NS5A-GFP fusion protein in cells actively replicating hepatitis C 
virus subgenomic RNA. Journal of General Virology.  88, pp.470–475. 

Jones, D.M., Patel, A.H., Targett-Adams, P. and McLauchlan, J. 2009. The hepatitis C 
virus NS4B protein can trans-complement viral RNA replication and modulates 
production of infectious virus. Journal of Virology. 83(5), pp.2163–2177. 



202 
 

Kazakov, T., Yang, F., Ramanathan, H.N., Kohlway, A., Diamond, M.S. and 
Lindenbach, B.D. 2015. Hepatitis C virus RNA replication depends on specific 
cis- and trans-acting activities of viral nonstructural proteins. PLoS Pathogens. 
11(4), p.e1004817. 

Kieft, J.S. 2008. Viral IRES RNA structures and ribosome interactions. Trends in 
Biochemical Sciences. 33(6), pp.274–283. 

Kim, Y.K., Lee, S.H., Kim, C.S., Seol, S.K. and Jang, S.K. 2003. Long-range RNA-RNA 
interaction between the 5’ nontranslated region and the core-coding 
sequences of hepatitis C virus modulates the IRES-dependent translation. RNA. 
9(5), pp.599–606. 

Kirchweger, R., Ziegler, E., Lamphear, B.J., Waters, D., Liebig, H.D., Sommergruber, 
W., Sobrino, F., Hohenadl, C., Blaas, D. and Rhoads, R.E. 1994. Foot-and-mouth 
disease virus leader proteinase: purification of the Lb form and determination 
of its cleavage site on eIF-4 gamma. Journal of Virology. 68(9), pp.5677–84. 

Kleid, D.G., Yansura, D., Small, B., Dowbenko, D., Moore, D.M., Grubman, M.J., 
McKercher, P.D., Morgan, D.O., Robertson, B.H. and Bachrach, H.L. 1981. 
Cloned viral protein vaccine for foot-and-mouth disease: responses in cattle 
and swine. Science. 214(4525), pp.1125–9. 

Klein, M., Zimmermann, H., Nelsen-Salz, B., Hadaschik, D. and Eggers, H.J. 2000. The 
picornavirus replication inhibitors HBB and guanidine in the echovirus-9 
system: the significance of viral protein 2C. Journal of General Virology. 81(4), 
pp.895–901. 

Klump, W., Marquardt, O. and Hofschneider, P.H. 1984. Biologically active protease 
of foot and mouth disease virus is expressed from cloned viral cDNA in 
Escherichia coli. Proceedings of the National Academy of Sciences of the United 
States of America. 81(11), pp.3351–5. 

Knight, Z.A., Gonzalez, B., Feldman, M.E., Zunder, E.R., Goldenberg, D.D., Williams, 
O., Loewith, R., Stokoe, D., Balla, A., Toth, B., Balla, T., Weiss, W.A., Williams, 
R.L. and Shokat, K.M. 2006. A Pharmacological map of the PI3-K family defines 
a role for p110α in insulin signaling. Cell. 125(4), pp.733–747. 

Knowles, N. 2017. Aphthovirus. 

Knowles, N., Hovi, T., Hyypiä, T., King, A.M.., Lindberg, A.., Pallansch, M.., 
Palmenberg, A.., Simmonds, P., Skern, T., Stanway, G., Yamashita, T. and Zell, 
R. 2012. Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth 
Report of the International Committee on Taxonomy of Viruses. Elsevier, pp. 
855–880. 

Knowles, N.J., Davies, P.R., Henry, T., O’Donnell, V., Pacheco, J.M. and Mason, P.W. 
2001. Emergence in Asia of foot-and-mouth disease viruses with altered host 
range: characterization of alterations in the 3A protein. Journal of Virology. 
75(3), pp.1551–1556. 

Knowles, N.J., Samuel, A.R., Davies, P.R., Midgley, R.J. and Valarcher, J.-F. 2005. 
Pandemic strain of foot-and-mouth disease virus serotype O. Emerging 
Infectious Diseases. 11(12), pp.1887–1893. 



203 
 

Knox, C., Moffat, K., Ali, S., Ryan, M. and Wileman, T. 2005. Foot-and-mouth disease 
virus replication sites form next to the nucleus and close to the Golgi 
apparatus, but exclude marker proteins associated with host membrane 
compartments. Journal of General Virology. 86(Pt 3), pp.687–96. 

Konan, K. V and Sanchez-Felipe, L. 2014. Lipids and RNA virus replication. Current 
Opinion in Virology. 9, pp.45–52. 

Krauß, M. and Haucke, V. 2007. Phosphoinositide-metabolizing enzymes at the 
interface between membrane traffic and cell signalling. EMBO Reports. 8(3), 
pp.241–246. 

Krieger, N., Lohmann, V. and Bartenschlager, R. 2001. Enhancement of hepatitis C 
virus RNA replication by cell culture-adaptive mutations. Journal of Virology. 
75(10), pp.4614–24. 

Ku, B.-K., Kim, S.-B., Moon, O.-K., Lee, S.-J., Lee, J.-H., Lyoo, Y.-S., Kim, H.-J. and Sur, 
J.-H. 2005. Role of apoptosis in the pathogenesis of Asian and South American 
foot-and-mouth disease viruses in swine. Journal of Veterinary Medical 
Science. 67(11), pp.1081–8. 

Kühn, R., Luz, N. and Beck, E. 1990. Functional analysis of the internal translation 
initiation site of foot-and-mouth disease virus. Journal of Virology. 64(10), 
pp.4625–31. 

van Kuppeveld, F.J., Hoenderop, J.G., Smeets, R.L., Willems, P.H., Dijkman, H.B., 
Galama, J.M. and Melchers, W.J. 1997. Coxsackievirus protein 2B modifies 
endoplasmic reticulum membrane and plasma membrane permeability and 
facilitates virus release. The EMBO Journal. 16(12), pp.3519–3532. 

van Kuppeveld, F.J., Melchers, W.J., Kirkegaard, K. and Doedens, J.R. 1997. 
Structure-function analysis of coxsackie B3 virus protein 2B. Virology. 227(1), 
pp.111–8. 

Lama, J., Paul, A. V, Harris, K.S. and Wimmer, E. 1994. Properties of purified 
recombinant poliovirus protein 3AB as substrate for viral proteinases and as 
co-factor for RNA polymerase 3Dpol. Journal of Biological Chemistry. 269(1), 
pp.66–70. 

Lanke, K.H.W., van der Schaar, H.M., Belov, G.A., Feng, Q., Duijsings, D., Jackson, 
C.L., Ehrenfeld, E. and van Kuppeveld, F.J.M. 2009. GBF1, a guanine nucleotide 
exchange factor for Arf, is crucial for coxsackievirus B3 RNA replication. Journal 
of Virology.  83, pp.11940–11949. 

Laporte, J. 1969. The structure of foot-and-mouth disease virus protein. Journal of 
General Virology. 4(4), pp.631–634. 

Lawrence, P. and Rieder, E. 2009. Identification of RNA helicase A as a new host 
factor in the replication cycle of foot-and-mouth disease virus. Journal of 
Virology. 83(21), pp.11356–66. 

Lawson, M.A. and Semler, B.L. 1992. Alternate poliovirus nonstructural protein 
processing cascades generated by primary sites of 3C proteinase cleavage. 
Virology. 191(1), pp.309–20. 



204 
 

Le, S.-Y., Chen, J.-H., Sonenberg, N. and Maizel, J. V. 1993. Conserved tertiary 
structural elements in the 5’ nontranslated region of cardiovirus, aphthovirus 
and hepatitis A virus RNAs. Nucleic Acids Research. 21(10), pp.2445–2451. 

Leippert, M., Beck, E., Weiland, F. and Pfaff, E. 1997. Point mutations within the 
betaG-betaH loop of foot-and-mouth disease virus O1K affect virus attachment 
to target cells. Journal of Virology. 71(2), pp.1046–51. 

Licursi, M., Christian, S.L., Pongnopparat, T. and Hirasawa, K. 2011. In vitro and in 
vivo comparison of viral and cellular internal ribosome entry sites for 
bicistronic vector expression. Gene Therapy. 18(6), pp.631–6. 

Licursi, M., Komatsu, Y., Pongnopparat, T. and Hirasawa, K. 2012. Promotion of viral 
internal ribosomal entry site-mediated translation under amino acid 
starvation. Journal of General Virology. 93(Pt 5), pp.951–62. 

Limpens, R.W.A.L., van der Schaar, H.M., Kumar, D., Koster, A.J., Snijder, E.J., van 
Kuppeveld, F.J.M. and Barcena, M. 2011. The transformation of enterovirus 
replication structures: a three-dimensional study of single- and double-
membrane compartments. mBio. 2(5), pp.e00166-11-e00166-11. 

Lin, J.-Y., Chen, T.-C., Weng, K.-F., Chang, S.-C., Chen, L.-L. and Shih, S.-R. 2009. Viral 
and host proteins involved in picornavirus life cycle. Journal of Biomedical 
Science. 16(1), p.103. 

Liu, Z., Tian, Y., Machida, K., Lai, M.M.C., Luo, G., Foung, S.K.H. and Ou, J.J. 2012. 
Transient activation of the PI3K-AKT pathway by hepatitis C virus to enhance 
viral entry. Journal of Biological Chemistry. 287(50), pp.41922–41930. 

Loeffler, F. and Frosch, P. 1897. Summarischer Bericht uber die Ergebnisse der 
Untersuchungen zur Erforschung der Maul-und Klauenseuche. Zentralbl. 
Bakteriol. Parasitenkd Abt.  1(22), pp.257–259. 

López de Quinto, S. and Martínez-Salas, E. 2000. Interaction of the eIF4G initiation 
factor with the aphthovirus IRES is essential for internal translation initiation in 
vivo. RNA. 6(10), pp.1380–92. 

López de Quinto, S., Sáiz, M., de la Morena, D., Sobrino, F. and Martínez-Salas, E. 
2002. IRES-driven translation is stimulated separately by the FMDV 3’-NCR and 
poly(A) sequences. Nucleic Acids Research. 30(20), pp.4398–405. 

de Los Santos, T., de Avila Botton, S., Weiblen, R. and Grubman, M.J. 2006. The 
leader proteinase of foot-and-mouth disease virus inhibits the induction of 
beta interferon mRNA and blocks the host innate immune response. Journal of 
Virology. 80(4), pp.1906–14. 

de los Santos, T., Diaz-San Segundo, F. and Grubman, M.J. 2007. Degradation of 
nuclear factor kappa B during foot-and-mouth disease virus infection. Journal 
of Virology. 81(23), pp.12803–12815. 

Lowe, P.A. and Brown, F. 1981. Isolation of a soluble and template-dependent foot-
and-mouth disease virus RNA polymerase. Virology. 111(1), pp.23–32. 

Lu, Z., Zhang, X., Fu, Y., Cao, Y., Tian, M., Sun, P., Li, D., Liu, Z. and Xie, Q. 2010. 
Expression of the major epitope regions of 2C integrated with the 3AB non-



205 
 

structural protein of foot-and-mouth disease virus and its potential for 
differentiating infected from vaccinated animals. Journal of Virological 
Methods. 170(1–2), pp.128–133. 

Lubroth, J. and Brown, F. 1995. Identification of native foot-and-mouth disease 
virus non-structural protein 2C as a serological indicator to differentiate 
infected from vaccinated livestock. Research in Veterinary Science. 59(1), 
pp.70–8. 

Lubroth, J., Grubman, M.J., Burrage, T.G., Newman, J.F. and Brown, F. 1996. 
Absence of protein 2C from clarified foot-and-mouth disease virus vaccines 
provides the basis for distinguishing convalescent from vaccinated animals. 
Vaccine. 14(5), pp.419–27. 

Luo, G., Hamatake, R.K., Mathis, D.M., Racela, J., Rigat, K.L., Lemm, J. and Colonno, 
R.J. 2000. De novo initiation of RNA synthesis by the RNA-dependent RNA 
polymerase (NS5B) of hepatitis C virus. Journal of Virology. 74(2), pp.851–63. 

Luz, N. and Beck, E. 1991. Interaction of a cellular 57-kilodalton protein with the 
internal translation initiation site of foot-and-mouth disease virus. Journal of 
Virology. 65(12), pp.6486–94. 

Lyle, J.M., Bullitt, E., Bienz, K. and Kirkegaard, K. 2002. Visualization and functional 
analysis of RNA-dependent RNA polymerase lattices. Science. 296(5576), 
pp.2218–22. 

Lyle, J.M., Clewell, A., Richmond, K., Richards, O.C., Hope, D.A., Schultz, S.C. and 
Kirkegaard, K. 2002. Similar structural basis for membrane localization and 
protein priming by an RNA-dependent RNA polymerase. Journal of Biological 
Chemistry. 277(18), pp.16324–16331. 

Lyons, T., Murray, K.E., Roberts, A.W. and Barton, D.J. 2001. Poliovirus 5’-terminal 
cloverleaf RNA is required in cis for VPg uridylylation and the initiation of 
negative-strand RNA synthesis. Journal of virology. 75(22), pp.10696–708. 

Macejak, D.G. and Sarnow, P. 1991. Internal initiation of translation mediated by 
the 5ʹ leader of a cellular mRNA. Nature. 353(6339), pp.90–94. 

Martín-Acebes, M.A., González-Magaldi, M., Sandvig, K., Sobrino, F. and Armas-
Portela, R. 2007. Productive entry of type C foot-and-mouth disease virus into 
susceptible cultured cells requires clathrin and is dependent on the presence 
of plasma membrane cholesterol. Virology. 369(1), pp.105–118. 

Martínez-Salas, E. 2008. The impact of RNA structure on picornavirus IRES activity. 
Trends in Microbiology.  16, pp.230–237. 

Martínez-Salas, E., Francisco-Velilla, R., Fernandez-Chamorro, J., Lozano, G. and 
Diaz-Toledano, R. 2015. Picornavirus IRES elements: RNA structure and host 
protein interactions. Virus Research, pp.1–12. 

Mason, P.W., Bezborodova, S. V and Henry, T.M. 2002. Identification and 
characterization of a cis-acting replication element (cre) adjacent to the 
internal ribosome entry site of foot-and-mouth disease virus. Journal of 
Virology. 76(19), pp.9686–94. 



206 
 

Mason, P.W., Grubman, M.J. and Baxt, B. 2003. Molecular basis of pathogenesis of 
FMDV. Virus Research. 91(1), pp.9–32. 

Mason, P.W., Piccone, M.E., Mckenna, T.S., Chinsangaram, J. and Grubman, M.J. 
1997. Evaluation of a live-attenuated foot-and-mouth disease virus as a 
vaccine candidate. Virology. 227(1), pp.96–102. 

Mason, P.W., Rieder, E. and Baxt, B. 1994. RGD sequence of foot-and-mouth 
disease virus is essential for infecting cells via the natural receptor but can be 
bypassed by an antibody-dependent enhancement pathway. Proceedings of 
the National Academy of Sciences of the United States of America. 91(5), 
pp.1932–6. 

Matteis, M.A. De and Godi, A. 2004. PI-loting membrane traffic. Nature Cell Biology. 
6(6), pp.487–492. 

McCullough, K.C., Parkinson, D. and Crowther, J.R. 1988. Opsonization-enhanced 
phagocytosis of foot-and-mouth disease virus. Immunology. 65(2), pp.187–91. 

McInerney, G.M., King, A.M.Q., Ross-Smith, N. and Belsham, G.J. 2000. Replication-
competent foot-and-mouth disease virus RNAs lacking capsid coding 
sequences. Journal of General Virology. 81(7), pp.1699–1702. 

McMahon, C.W., Traxler, B., Grigg, M.E. and Pullen, A.M. 1998. Transposon-
mediated random insertions and site-directed mutagenesis prevent the 
trafficking of a mouse mammary tumor virus superantigen. Virology. 243(2), 
pp.354–365. 

Melnick, J.L., Shaw, E.W. and Curnen, E.C. 1949. A virus isolated from patients 
diagnosed as non-paralytic poliomyelitis or aseptic meningitis. Proceedings of 
the Society for Experimental Biology and Medicine. 71(3), pp.344–9. 

Mesmin, B., Bigay, J., Moser von Filseck, J., Lacas-Gervais, S., Drin, G. and Antonny, 
B. 2013. A Four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P 
exchange by the ER-Golgi tether OSBP. Cell. 155(4), pp.830–843. 

Meyer, R.F., Babcock, G.D., Newman, J.F., Burrage, T.G., Toohey, K., Lubroth, J. and 
Brown, F. 1997. Baculovirus expressed 2C of foot-and-mouth disease virus has 
the potential for differentiating convalescent from vaccinated animals. Journal 
of Virological Methods. 65(1), pp.33–43. 

Meyers, R. and Cantley, L.C. 1997. Cloning and Characterization of a Wortmannin-
sensitive Human Phosphatidylinositol 4-Kinase. Journal of Biological Chemistry. 
272(7), pp.4384–4390. 

Midgley, R., Moffat, K., Berryman, S., Hawes, P., Simpson, J., Fullen, D., Stephens, 
D.J., Burman, A. and Jackson, T. 2013. A role for endoplasmic reticulum exit 
sites in foot-and-mouth disease virus infection. Journal of General Virology. 
94(Pt 12), pp.2636–46. 

Mirzayan, C. and Wimmer, E. 1994. Biochemical Studies on Poliovirus Polypeptide 
2C: Evidence for ATPase Activity. Virology. 199(1), pp.176–187. 

Modrow, I. 1929. Filtration und Ultrafiltration des Maul- und Klauenseuchevirus. 
Zeitschrift für Hygiene und Infektionskrankheiten. 110(4), pp.618–643. 



207 
 

Moffat, K., Howell, G., Knox, C., Belsham, G.J., Monaghan, P., Ryan, M.D. and 
Wileman, T. 2005. Effects of foot-and-mouth disease virus nonstructural 
proteins on the structure and function of the early secretory pathway: 2BC but 
not 3A blocks endoplasmic reticulum-to-Golgi transport. Journal of Virology. 
79(7), pp.4382–95. 

Moffat, K., Knox, C., Howell, G., Clark, S.J., Yang, H., Belsham, G.J., Ryan, M. and 
Wileman, T. 2007. Inhibition of the secretory pathway by foot-and-mouth 
disease virus 2BC protein is reproduced by coexpression of 2B with 2C, and the 
site of inhibition is determined by the subcellular location of 2C. Journal of 
Virology. 81(3), pp.1129–1139. 

Mohl, B.-P., Bartlett, C., Mankouri, J. and Harris, M. 2016. Early events in the 
generation of autophagosomes are required for the formation of membrane 
structures involved in hepatitis C virus genome replication. Journal of General 
Virology. 97(3), pp.680–693. 

Monaghan, P., Cook, H., Jackson, T., Ryan, M. and Wileman, T. 2004. The 
ultrastructure of the developing replication site in foot-and-mouth disease 
virus-infected BHK-38 cells. Journal of General Virology. 85(Pt 4), pp.933–46. 

Morgan, D.O., Moore, D.M. and McKercher, P.D. 1978. Purification of foot-and-
mouth disease virus infection-associated antigen. Proceedings, Annual 
Meeting of the United States Animal Health Association. (82), pp.277–83. 

Murray, K.E. and Barton, D.J. 2003. Poliovirus CRE-dependent VPg uridylylation is 
required for positive-strand RNA synthesis but not for negative-strand RNA 
synthesis. Journal of Virology. 77(8), pp.4739–50. 

Myers, R.M., Larin, Z. and Maniatis, T. 1985. Detection of single base substitutions 
by ribonuclease cleavage at mismatches in RNA:DNA duplexes. Science. 
230(4731), pp.1242–6. 

Nakanishi, S., Catt, K.J. and Balla, T. 1995. A wortmannin-sensitive 
phosphatidylinositol 4-kinase that regulates hormone-sensitive pools of 
inositolphospholipids. Proceedings of the National Academy of Sciences . 
92(12), pp.5317–5321. 

Di Nardo, A., Knowles, N.J. and Paton, D.J. 2011. Combining livestock trade patterns 
with phylogenetics to help understand the spread of foot and mouth disease in 
sub-Saharan Africa, the Middle East and Southeast Asia. Revue Scientifique et 
Technique (International Office of Epizootics). 30(1), pp.63–85. 

Nayak, A., Goodfellow, I.G. and Belsham, G.J. 2005. Factors required for the 
uridylylation of the foot-and-mouth disease virus 3B1, 3B2, and 3B3 peptides 
by the RNA-dependent RNA polymerase (3Dpol) in vitro. Journal of Virology. 
79(12), pp.7698–7706. 

Nayak, A., Goodfellow, I.G., Woolaway, K.E., Birtley, J., Curry, S. and Belsham, G.J. 
2006. Role of RNA structure and RNA binding activity of foot-and-mouth 
disease virus 3C protein in VPg uridylylation and virus replication. Journal of 
Virology. 80(19), pp.9865–9875. 

Neff, S., Sá-Carvalho, D., Rieder, E., Mason, P.W., Blystone, S.D., Brown, E.J. and 



208 
 

Baxt, B. 1998. Foot-and-mouth disease virus virulent for cattle utilizes the 
integrin alpha(v)beta3 as its receptor. Journal of Virology. 72(5), pp.3587–94. 

Newton, S.E., Carroll, A.R., Campbell, R.O., Clarke, B.E. and Rowlands, D.J. 1985. The 
sequence of foot-and-mouth disease virus RNA to the 5’ side of the poly(C) 
tract. Gene. 40(2–3), pp.331–6. 

Niepmann, M. 2009. Internal translation initiation of picornaviruses and hepatitis C 
virus. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms. 
1789(9–10), pp.529–541. 

Nieva, J.L., Madan, V. and Carrasco, L. 2012. Viroporins: structure and biological 
functions. Nature Reviews Microbiology. 10(8), pp.563–574. 

Novoa, R.R., Calderita, G., Arranz, R., Fontana, J., Granzow, H. and Risco, C. 2005. 
Virus factories: associations of cell organelles for viral replication and 
morphogenesis. Biology of the Cell. 97(2), pp.147–72. 

O’Donnell, V., LaRocco, M. and Baxt, B. 2008. Heparan sulfate-binding foot-and-
mouth disease virus enters cells via caveola-mediated endocytosis. Journal of 
Virology. 82(18), pp.9075–9085. 

O’Donnell, V., LaRocco, M., Duque, H. and Baxt, B. 2005. Analysis of foot-and-
mouth disease virus internalization events in cultured cells. Journal of Virology. 
79(13), pp.8506–18. 

O’Donnell, V., Pacheco, J.M., LaRocco, M., Burrage, T., Jackson, W., Rodriguez, L.L., 
Borca, M. V. and Baxt, B. 2011. Foot-and-mouth disease virus utilizes an 
autophagic pathway during viral replication. Virology. 410(1), pp.142–150. 

O’Donnell, V.K., Pacheco, J.M., Henry, T.M. and Mason, P.W. 2001. Subcellular 
distribution of the foot-and-mouth disease virus 3A protein in cells infected 
with viruses encoding wild-type and bovine-attenuated forms of 3A. Virology. 
287(1), pp.151–62. 

O’Reilly, E.K. and Kao, C.C. 1998. Analysis of RNA-dependent RNA polymerase 
structure and function as guided by known polymerase structures and 
computer predictions of secondary structure. Virology. 252(2), pp.287–303. 

Oh, H.S., Pathak, H.B., Goodfellow, I.G., Arnold, J.J. and Cameron, C.E. 2009. Insight 
into poliovirus genome replication and encapsidation obtained from studies of 
3B-3C cleavage site mutants. Journal of Virology. 83(18), pp.9370–9387. 

Otto, P. 1994. Veterinary Virology. Journal of Basic Microbiology, pp.56–56. 

Pacheco, J.M., Gladue, D.P., Holinka, L.G., Arzt, J., Bishop, E., Smoliga, G., Pauszek, 
S.J., Bracht, A.J., O’Donnell, V., Fernandez-Sainz, I., Fletcher, P., Piccone, M.E., 
Rodriguez, L.L. and Borca, M. V. 2013. A partial deletion in non-structural 
protein 3A can attenuate foot-and-mouth disease virus in cattle. Virology. 
446(1–2), pp.260–267. 

Pacheco, J.M., Henry, T.M., O’Donnell, V.K., Gregory, J.B. and Mason, P.W. 2003. 
Role of nonstructural proteins 3A and 3B in host range and pathogenicity of 
foot-and-mouth disease virus. Journal of Virology. 77(24), pp.13017–27. 



209 
 

Pallansch, M.A., Kew, O.M., Semler, B.L., Omilianowski, D.R., Anderson, C.W., 
Wimmer, E. and Rueckert, R.R. 1984. Protein processing map of poliovirus. 
Journal of Virology. 49(3), pp.873–80. 

Palmenberg, A.C. 1987. Comparitive organization and genome structure in 
picornaviruses. Positive Strand RNA Viruses (UCLA Symposia on Molecular and 
Cellular Biology)., pp.25–34. 

Palmenberg, A.C. 1990. Proteolytic processing of picornaviral polyprotein. Annual 
Review of Microbiology. 44(1), pp.603–623. 

Di Paolo, G. and De Camilli, P. 2006. Phosphoinositides in cell regulation and 
membrane dynamics. Nature. 443(7112), pp.651–657. 

Park, J.H., Lee, K.N., Ko, Y.J., Kim, S.M., Lee, H.S., Park, J.Y., Yeh, J.Y., Kim, M.J., Lee, 
Y.H., Sohn, H.J., Cho, I.S. and Kim, B. 2013. Diagnosis and control measures of 
the 2010 outbreak of foot-and-mouth disease A type in the Republic of Korea. 
Transboundary and Emerging Diseases. 60(2), pp.188–192. 

Parsley, T.B., Cornell, C.T. and Semler, B.L. 1999. Modulation of the RNA binding 
and protein processing activities of poliovirus polypeptide 3CD by the viral RNA 
polymerase domain. Journal of Biological Chemistry. 274(18), pp.12867–76. 

Pata, J.D., Schultz, S.C. and Kirkegaard, K. 1995. Functional oligomerization of 
poliovirus RNA-dependent RNA polymerase. RNA. 1(5), pp.466–77. 

Paul, A. V. 2002. Possible unifying mechanism of picornavirus genome replication. 
Molecular Biology of Picornavirus (American Society of Microbiology). pp.227–
246. 

Paul, A. V., van Boom, J.H., Filippov, D. and Wimmer, E. 1998. Protein-primed RNA 
synthesis by purified poliovirus RNA polymerase. Nature. 393(6682), pp.280–4. 

Paul, A. V, Rieder, E., Kim, D.W., van Boom, J.H. and Wimmer, E. 2000. Identification 
of an RNA hairpin in poliovirus RNA that serves as the primary template in the 
in vitro uridylylation of VPg. Journal of Virology. 74(22), pp.10359–70. 

Pelletier, J. and Sonenberg, N. 1988. Internal initiation of translation of eukaryotic 
mRNA directed by a sequence derived from poliovirus RNA. Nature. 334(6180), 
pp.320–325. 

Pfister, T. and Wimmer, E. 1999. Characterization of the nucleoside triphosphatase 
activity of poliovirus protein 2C reveals a mechanism by which guanidine 
inhibits poliovirus replication. Journal of Biological Chemistry. 274(11), 
pp.6992–7001. 

Piccone, M.E., Rieder, E., Mason, P.W. and Grubman, M.J. 1995. The foot-and-
mouth disease virus leader proteinase gene is not required for viral replication. 
Journal of Virology. 69(9), pp.5376–82. 

Pilipenko, E. V, Gmyl, A.P., Maslova, S. V, Svitkin, Y. V, Sinyakov, A.N. and Agol, V.I. 
1992. Prokaryotic-like cis elements in the cap-independent internal initiation 
of translation on picornavirus RNA. Cell. 68(1), pp.119–31. 

Pilipenko, E. V, Pestova, T. V, Kolupaeva, V.G., Khitrina, E. V, Poperechnaya, A.N., 



210 
 

Agol, V.I. and Hellen, C.U. 2000. A cell cycle-dependent protein serves as a 
template-specific translation initiation factor. Genes & Development. 14(16), 
pp.2028–45. 

Pogue, G.P., Huntley, C.C. and Hall, T.C. 1994. Common replication strategies 
emerging from the study of diverse groups of positive-strand RNA viruses. 
Archives of Virology: Supplementum. 9, pp.181–94. 

Polatnick, J. and Arlinghaus, R.B. 1967. Foot-and-mouth disease virus-induced 
ribonucleic acid polymerase in baby hamster kidney cells. Virology. 31(4), 
pp.601–8. 

Polatnick, J. and Wool, S. 1983. Association of foot-and-mouth disease virus 
induced RNA polymerase with host cell organelles. Comparative Immunology, 
Microbiology and Infectious Diseases. 6(3), pp.265–272. 

Polatnick, J. and Wool, S.H. 1983. Correlation of surface and internal ultrastructural 
changes in cells infected with foot-and-mouth disease virus. Canadian  
Journal of Comparative Medicine. 47(4), pp.440–4. 

Porta, C., Kotecha, A., Burman, A., Jackson, T., Ren, J., Loureiro, S., Jones, I.M., Fry, 
E.E., Stuart, D.I. and Charleston, B. 2013. Rational Engineering of Recombinant 
Picornavirus Capsids to Produce Safe, Protective Vaccine Antigen. PLoS 
Pathogens. 9(3), p.e1003255. 

Porta, C., Xu, X., Loureiro, S., Paramasivam, S., Ren, J., Al-Khalil, T., Burman, A., 
Jackson, T., Belsham, G.J., Curry, S., Lomonossoff, G.P., Parida, S., Paton, D., Li, 
Y., Wilsden, G., Ferris, N., Owens, R., Kotecha, A., Fry, E., Stuart, D.I., 
Charleston, B. and Jones, I.M. 2013. Efficient production of foot-and-mouth 
disease virus empty capsids in insect cells following down regulation of 3C 
protease activity. Journal of Virological Methods. 187(2), pp.406–12. 

Porter, A.G., Fellner, P., Black, D.N., Rowlands, D.J., Harris, T.J.R. and Brown, F. 
1978. 3ʹ-Terminal nucleotide sequences in the genome RNA of picornaviruses. 
Nature. 276(5685), pp.298–301. 

Powis, G., Bonjouklian, R., Berggren, M.M., Gallegos, A., Abraham, R., Ashendel, C., 
Zalkow, L., Matter, W.F., Dodge, J. and Grindey, G. 1994. Wortmannin, a 
potent and selective inhibitor of phosphatidylinositol-3-kinase. Cancer 
Research. 54(9), pp.2419–23. 

Racaniello, V.R. 2007. Picornaviridae: The Viruses and their Replication In: D. M. 
Knipe, P. M. Howley, D. E. Griffin, M. A. Martin, R. A. Lamb, B. Roizman and S. 
E. Straus, eds. Fields Virology Volume 1, pp.795–838. 

Raubo, P., Andrews, D.M., McKelvie, J.C., Robb, G.R., Smith, J.M., Swarbrick, M.E. 
and Waring, M.J. 2015. Discovery of potent, selective small molecule inhibitors 
of α-subtype of type III phosphatidylinositol-4-kinase (PI4KIIIα). Bioorganic & 
Medicinal Chemistry Letters. 25(16), pp.3189–3193. 

Reiss, S., Rebhan, I., Backes, P., Romero-Brey, I., Erfle, H., Matula, P., Kaderali, L., 
Poenisch, M., Blankenburg, H., Hiet, M.S., Longerich, T., Diehl, S., Ramirez, F., 
Balla, T., Rohr, K., Kaul, A., Bühler, S., Pepperkok, R., Lengauer, T., Albrecht, M., 
Eils, R., Schirmacher, P., Lohmann, V. and Bartenschlager, R. 2011. Recruitment 



211 
 

and activation of a lipid kinase by hepatitis C virus NS5A is essential for 
integrity of the membranous replication compartment. Cell Host and Microbe.  
9, pp.32–45. 

Remenyi, R., Qi, H., Su, S.-Y., Chen, Z., Wu, N.C., Arumugaswami, V., Truong, S., Chu, 
V., Stokelman, T., Lo, H.-H., Olson, C.A., Wu, T.-T., Chen, S.-H., Lin, C.-Y. and 
Sun, R. 2014. A comprehensive functional map of the hepatitis C virus genome 
provides a resource for probing viral proteins. mBio. 5(5), pp.e01469-14-
e01469-14. 

Rieder, E., Bunch, T., Brown, F. and Mason, P.W. 1993. Genetically engineered foot-
and-mouth disease viruses with poly(C) tracts of two nucleotides are virulent 
in mice. Journal of Virology. 67(9), pp.5139–45. 

Robertson, B.H., Grubman, M.J., Weddell, G.N., Moore, D.M., Welsh, J.D., Fischer, 
T., Dowbenko, D.J., Yansura, D.G., Small, B. and Kleid, D.G. 1985. Nucleotide 
and amino acid sequence coding for polypeptides of foot-and-mouth disease 
virus type A12. Journal of Virology. 54(3), pp.651–60. 

Rodríguez Pulido, M., Serrano, P., Sáiz, M. and Martínez-Salas, E. 2007. Foot-and-
mouth disease virus infection induces proteolytic cleavage of PTB, eIF3a,b, and 
PABP RNA-binding proteins. Virology. 364(2), pp.466–74. 

Ross-Thriepland, D., Mankouri, J. and Harris, M. 2015. Serine phosphorylation of 
the hepatitis C virus NS5A protein controls the establishment of replication 
complexes. Journal of Virology. 89,pp.3123–35. 

Rossmann, M.G. 1989. The canyon hypothesis. Hiding the host cell receptor 
attachment site on a viral surface from immune surveillance. Journal of 
Biological Chemistry. 264(25), pp.14587–90. 

Roulin, P.S., Lötzerich, M., Torta, F., Tanner, L.B., van Kuppeveld, F.J.M., Wenk, M.R. 
and Greber, U.F. 2014. Rhinovirus uses a phosphatidylinositol 4-
phosphate/cholesterol counter-current for the formation of replication 
compartments at the ER-Golgi interface. Cell Host & Microbe. 16(5), pp.677–
690. 

Rowlands, D.J., Harris, T.J. and Brown, F. 1978. More precise location of the 
polycytidylic acid tract in foot and mouth disease virus RNA. Journal of 
Virology. 26(2), pp.335–43. 

Rueckert, R. and Wimmer, E. 1984. Systematic nomenclature of picornavirus 
proteins. Journal of Virology. 50(3), pp.957–9. 

Rweyemamu, M., Roeder, P., Mackay, D., Sumption, K., Brownlie, J., Leforban, Y., 
Valarcher, J.-F., Knowles, N.J. and Saraiva, V. 2008. Epidemiological patterns of 
foot-and-mouth disease worldwide. Transboundary and Emerging Diseases. 
55(1), pp.57–72. 

Ryan, M.D., Belsham, G.J. and King, A.M. 1989. Specificity of enzyme-substrate 
interactions in foot-and-mouth disease virus polyprotein processing. Virology. 
173(1), pp.35–45. 

Ryan, M.D. and Drew, J. 1994. Foot-and-mouth disease virus 2A oligopeptide 



212 
 

mediated cleavage of an artificial polyprotein. The EMBO Journal. 13(4), 
pp.928–33. 

Ryan, M.D., Flint, M., Donnelly, M.L., Gani, D. and Monaghan, S. 1997. The cleavage 
activities of aphthovirus and cardiovirus 2A proteins. Journal of General 
Virology. 78(1), pp.13–21. 

Ryan, M.D., King, A.M. and Thomas, G.P. 1991. Cleavage of foot-and-mouth disease 
virus polyprotein is mediated by residues located within a 19 amino acid 
sequence. Journal of General Virology. 72 (Pt 11) ,pp.2727–32. 

Ryan, M.D., Mehrotra, A., Gani, D., Donnelly, M.L.L., Hughes, L.E., Luke, G. and Li, X. 
2001. Analysis of the aphthovirus 2A/2B polyprotein ‘cleavage’ mechanism 
indicates not a proteolytic reaction, but a novel translational effect: a putative 
ribosomal ‘skip’. Journal of General Virology. 82(5), pp.1013–1025. 

Saeed, M., Scheel, T.K.H., Gottwein, J.M., Marukian, S., Dustin, L.B., Bukh, J. and 
Rice, C.M. 2012. Efficient replication of genotype 3a and 4a hepatitis C virus 
replicons in human hepatoma cells. Antimicrobial Agents and Chemotherapy. 
56(10), pp.5365–5373. 

Sáiz, M., Gómez, S., Martínez-Salas, E. and Sobrino, F. 2001. Deletion or substitution 
of the aphthovirus 3’ NCR abrogates infectivity and virus replication. Journal of 
General Virology. 82(Pt 1), pp.93–101. 

Sáiz, M., Núñez, J.I., Jimenez-Clavero, M.A., Baranowski, E. and Sobrino, F. 2002. 
Foot-and-mouth disease virus: biology and prospects for disease control. 
Microbes and Infection / Institut Pasteur. 4(11), pp.1183–92. 

Saleh, L., Rust, R.C., Füllkrug, R., Beck, E., Bassili, G., Ochs, K. and Niepmann, M. 
2001. Functional interaction of translation initiation factor eIF4G with the foot-
and-mouth disease virus internal ribosome entry site. Journal of General 
Virology. 82(Pt 4), pp.757–63. 

Sanchez-Aparicio, M.T., Rosas, M.F. and Sobrino, F. 2013. Characterization of a 
nuclear localization signal in the foot-and-mouth disease virus polymerase. 
Virology. 444(1–2), pp.203–210. 

Sangar, D. V., Black, D.N., Rowlands, D.J. and Brown, F. 1977. Biochemical mapping 
of the foot-and-mouth disease virus genome. Journal of General Virology. 
35(2), pp.281–297. 

Sangar, D. V., Rowlands, D.J., Harris, T.J.R. and Brown, F. 1977. Protein covalently 
linked to foot-and-mouth disease virus RNA. Nature. 268(5621), pp.648–650. 

Sangar, D. V, Black, D.N., Rowlands, D.J., Harris, T.J. and Brown, F. 1980. Location of 
the initiation site for protein synthesis on foot-and-mouth disease virus RNA by 
in vitro translation of defined fragments of the RNA. Journal of Virology. 33(1), 
pp.59–68. 

Sangar, D. V, Newton, S.E., Rowlands, D.J. and Clarke, B.E. 1987. All foot and mouth 
disease virus serotypes initiate protein synthesis at two separate AUGs. Nucleic 
Acids Research. 15(8), pp.3305–15. 

Sanz-Parra, A., Ley, V. and Sobrino, F. 1998. Infection with foot-and-mouth disease 



213 
 

virus results in a rapid reduction of MHC class I surface expression. Journal of 
General Virology. 79(3), pp.433–436. 

Sarnow, P. 1989. Translation of glucose-regulated protein 78/immunoglobulin 
heavy-chain binding protein mRNA is increased in poliovirus-infected cells at a 
time when cap-dependent translation of cellular mRNAs is inhibited. 
Proceedings of the National Academy of Sciences of the United States of 
America. 86(15), pp.5795–9. 

Saunders, K. and King, A.M. 1982. Guanidine-resistant mutants of aphthovirus 
induce the synthesis of an altered nonstructural polypeptide, P34. Journal of 
Virology. 42(2), pp.389–94. 

Saunders, K., King, A.M., McCahon, D., Newman, J.W., Slade, W.R. and Forss, S. 
1985. Recombination and oligonucleotide analysis of guanidine-resistant foot-
and-mouth disease virus mutants. Journal of Virology. 56(3), pp.921–9. 

van der Schaar, H.M., Leyssen, P., Thibaut, H.J., de Palma, A., van der Linden, L., 
Lanke, K.H.W., Lacroix, C., Verbeken, E., Conrath, K., Macleod, A.M., Mitchell, 
D.R., Palmer, N.J., van de Poël, H., Andrews, M., Neyts, J. and van Kuppeveld, 
F.J.M. 2013. A novel, broad-spectrum inhibitor of enterovirus replication that 
targets host cell factor phosphatidylinositol 4-kinase IIIβ. Antimicrobial Agents 
and Chemotherapy. 57(10), pp.4971–81. 

van der Schaar, H.M., van der Linden, L., Lanke, K.H.W., Strating, J.R.P.M., 
Pürstinger, G., de Vries, E., de Haan, C.A.M., Neyts, J. and van Kuppeveld, 
F.J.M. 2012. Coxsackievirus mutants that can bypass host factor PI4KIIIβ and 
the need for high levels of PI4P lipids for replication. Cell Research. 22(11), 
pp.1576–92. 

Schlegel, A., Giddings, T.H., Ladinsky, M.S. and Kirkegaard, K. 1996. Cellular origin 
and ultrastructure of membranes induced during poliovirus infection. Journal 
of Virology. 70(10), pp.6576–88. 

Sellers, R.F., Donaldson, A.I. and Herniman, K.A.J. 2009. Inhalation, persistence and 
dispersal of foot-and-mouth disease virus by man. Journal of Hygiene. 68(4), 
p.565. 

Semler, B.L., Anderson, C.W., Kitamura, N., Rothberg, P.G., Wishart, W.L. and 
Wimmer, E. 1981. Poliovirus replication proteins: RNA sequence encoding P3-
1b and the sites of proteolytic processing. Proceedings of the National 
Academy of Sciences of the United States of America. 78(6), pp.3464–8. 

Serrano, P., Pulido, M.R., Sáiz, M. and Martínez-Salas, E. 2006. The 3’ end of the 
foot-and-mouth disease virus genome establishes two distinct long-range RNA-
RNA interactions with the 5’ end region. The Journal of General Virology. 87(Pt 
10), pp.3013–22. 

Sierra, S., Dávila, M., Lowenstein, P.R. and Domingo, E. 2000. Response of foot-and-
mouth disease virus to increased mutagenesis: influence of viral load and 
fitness in loss of infectivity. Journal of Virology. 74(18), pp.8316–23. 

Sir, D., Kuo, C., Tian, Y., Liu, H.M., Huang, E.J., Jung, J.U., Machida, K. and Ou, J.J. 
2012. Replication of hepatitis C virus RNA on autophagosomal membranes. 



214 
 

Journal of Biological Chemistry. 287(22), pp.18036–18043. 

Sizova, D. V, Kolupaeva, V.G., Pestova, T. V, Shatsky, I.N. and Hellen, C.U. 1998. 
Specific interaction of eukaryotic translation initiation factor 3 with the 5’ 
nontranslated regions of hepatitis C virus and classical swine fever virus RNAs. 
Journal of Virology. 72(6), pp.4775–82. 

Sobrino, F., Sáiz, M., Jiménez-Clavero, M.A., Núñez, J.I., Rosas, M.F., Baranowski, E. 
and Ley, V. 2001. Foot-and-mouth disease virus: a long known virus, but a 
current threat. Veterinary Research. 32(1), pp.1–30. 

Spagnolo, J.F., Rossignol, E., Bullitt, E. and Kirkegaard, K. 2010. Enzymatic and 
nonenzymatic functions of viral RNA-dependent RNA polymerases within 
oligomeric arrays. RNA. 16(2), pp.382–93. 

Spear, A., Ogram, S.A., Morasco, B.J., Smerage, L.E. and Flanegan, J.B. 2015. Viral 
precursor protein P3 and its processed products perform discrete and essential 
functions in the poliovirus RNA replication complex. Virology. 485, pp.492–
501. 

Stanway, G. 1990. Structure, function and evolution of picornaviruses. Journal of 
General Virology. 71(11), pp.2483–2501. 

Steil, B.P. and Barton, D.J. 2009. Conversion of VPg into VPgpUpUOH before and 
during poliovirus negative-strand RNA synthesis. Journal of Virology. 83(24), 
pp.12660–12670. 

Steitz, T.A. 1998. A mechanism for all polymerases. Nature. 391(6664), pp.231–2. 

Stewart, S.R. and Semler, B.L. 1997. RNA Determinants of picornavirus cap-
independent translation initiation. Seminars in Virology. 8(3), pp.242–255. 

Suhy, D.A., Giddings, T.H. and Kirkegaard, K. 2000. Remodeling the endoplasmic 
reticulum by poliovirus infection and by individual viral proteins: an 
autophagy-like origin for virus-induced vesicles. Journal of Virology. 74(19), 
pp.8953–65. 

Summerfield, A., Guzylack-Piriou, L., Harwood, L. and McCullough, K.C. 2009. Innate 
immune responses against foot-and-mouth disease virus: Current 
understanding and future directions. Veterinary Immunology and 
Immunopathology. 128(1–3), pp.205–210. 

Sweeney, T.R., Cisnetto, V., Bose, D., Bailey, M., Wilson, J.R., Zhang, X., Belsham, 
G.J. and Curry, S. 2010. Foot-and-mouth disease virus 2C is a hexameric AAA+ 
protein with a coordinated ATP hydrolysis mechanism. Journal of Biological 
Chemistry. 285(32), pp.24347–24359. 

Taboga, O., Tami, C., Carrillo, E., Núñez, J.I., Rodríguez, A., Saíz, J.C., Blanco, E., 
Valero, M.L., Roig, X., Camarero, J.A., Andreu, D., Mateu, M.G., Giralt, E., 
Domingo, E., Sobrino, F. and Palma, E.L. 1997. A large-scale evaluation of 
peptide vaccines against foot-and-mouth disease: lack of solid protection in 
cattle and isolation of escape mutants. Journal of Virology. 71(4), pp.2606–14. 

Tami, C., Taboga, O., Berinstein, A., Núñez, J.I., Palma, E.L., Domingo, E., Sobrino, F. 
and Carrillo, E. 2003. Evidence of the coevolution of antigenicity and host cell 



215 
 

tropism of foot-and-mouth disease virus in vivo. Journal of Virology. 77(2), 
pp.1219–26. 

Tellez, A.B., Wang, J., Tanner, E.J., Spagnolo, J.F., Kirkegaard, K. and Bullitt, E. 2011. 
Interstitial contacts in an RNA-dependent RNA polymerase lattice. Journal of 
Molecular Biology. 412(4), pp.737–750. 

Tesar, M., Berger, H.G. and Marquardt, O. 1989. Serological probes for some foot-
and-mouth disease virus nonstructural proteins. Virus Genes. 3(1), pp.29–44. 

Tesar, M. and Marquardt, O. 1990. Foot-and-mouth disease virus protease 3C 
inhibits cellular transcription and mediates cleavage of histone H3. Virology. 
174(2), pp.364–74. 

Teterina, N.L., Gorbalenya, A.E., Egger, D., Bienz, K., Rinaudo, M.S. and Ehrenfeld, E. 
2006. Testing the modularity of the N-terminal amphipathic helix conserved in 
picornavirus 2C proteins and hepatitis C NS5A protein. Virology. 344(2), 
pp.453–467. 

Teterina, N.L., Lauber, C., Jensen, K.S., Levenson, E.A., Gorbalenya, A.E. and 
Ehrenfeld, E. 2011. Identification of tolerated insertion sites in poliovirus non-
structural proteins. Virology. 409(1), pp.1–11. 

Teterina, N.L., Zhou, W.D., Cho, M.W. and Ehrenfeld, E. 1995. Inefficient 
complementation activity of poliovirus 2C and 3D proteins for rescue of lethal 
mutations. Journal of Virology. 69(7), pp.4245–54. 

Tiley, L., King, A.M.Q. and Belsham, G.J. 2003. The foot-and-mouth disease virus cis-
acting replication element (cre) can be complemented in trans within infected 
cells. Journal of Virology. 77(3), pp.2243–2246. 

Towner, J.S., Mazanet, M.M. and Semler, B.L. 1998. Rescue of defective poliovirus 
RNA replication by 3AB-containing precursor polyproteins. Journal of Virology. 
72(9), pp.7191–200. 

Trotard, M., Lepère-Douard, C., Régeard, M., Piquet-Pellorce, C., Lavillette, D., 
Cosset, F.-L., Gripon, P. and Le Seyec, J. 2009. Kinases required in hepatitis C 
virus entry and replication highlighted by small interference RNA screening. 
FASEB journal : Official Publication of the Federation of American Societies for 
Experimental Biology. 23(11), pp.3780–9. 

Troxler, M., Egger, D., Pfister, T. and Bienz, K. 1992. Intracellular localization of 
poliovirus RNA by in situ hybridization at the ultrastructural level using single-
stranded riboprobes. Virology. 191(2), pp.687–97. 

Tsukiyama-Kohara, K., Iizuka, N., Kohara, M. and Nomoto, A. 1992. Internal 
ribosome entry site within hepatitis C virus RNA. Journal of Virology. 66(3), 
pp.1476–1483. 

Tulloch, F., Pathania, U., Luke, G.A., Nicholson, J., Stonehouse, N.J., Rowlands, D.J., 
Jackson, T., Tuthill, T., Haas, J., Lamond, A.I. and Ryan, M.D. 2014. FMDV 
replicons encoding green fluorescent protein are replication competent. 
Journal of Virological Methods. 209C, pp.35–40. 

Vakharia, V.N., Devaney, M.A., Moore, D.M., Dunn, J.J. and Grubman, M.J. 1987. 



216 
 

Proteolytic processing of foot-and-mouth disease virus polyproteins expressed 
in a cell-free system from clone-derived transcripts. Journal of Virology. 61(10), 
pp.3199–207. 

Valdazo-González, B., Timina, A., Scherbakov, A., Abdul-Hamid, N., Knowles, N.J. 
and King, D.P. 2013. Multiple introductions of serotype O foot-and-mouth 
disease viruses into East Asia in 2010–2011. Veterinary Research. 44(1), p.76. 

Villaverde, A., Martínez-Salas, E. and Domingo, E. 1988. 3D gene of foot-and-mouth 
disease virus. Conservation by convergence of average sequences. Journal of 
Molecular Biology. 204(3), pp.771–6. 

Villordo, S.M., Alvarez, D.E. and Gamarnik, A. V. 2010. A balance between circular 
and linear forms of the dengue virus genome is crucial for viral replication. 
RNA. 16(12), pp.2325–2335. 

Walter, T.S., Ren, J., Tuthill, T.J., Rowlands, D.J., Stuart, D.I. and Fry, E.E. 2012. A 
plate-based high-throughput assay for virus stability and vaccine formulation. 
Journal of Virological Methods. 185(1), pp.166–170. 

Wang, D., Fang, L., Li, K., Zhong, H., Fan, J., Ouyang, C., Zhang, H., Duan, E., Luo, R., 
Zhang, Z., Liu, X., Chen, H. and Xiao, S. 2012. Foot-and-mouth disease virus 3C 
protease cleaves NEMO to impair innate immune signaling. Journal of Virology. 
86(17), pp.9311–9322. 

Wang, H., Perry, J.W., Lauring, A.S., Neddermann, P., De Francesco, R. and Tai, A.W. 
2014. Oxysterol-binding protein is a phosphatidylinositol 4-kinase effector 
required for HCV replication membrane integrity and cholesterol trafficking. 
Gastroenterology. 146(5), p.1373–1385.e11. 

Wang, J., Lyle, J.M. and Bullitt, E. 2013. Surface for catalysis by poliovirus RNA-
dependent RNA polymerase. Journal of Molecular Biology. 425(14), pp.2529–
2540. 

Wang, J., Wang, Y., Liu, J., Ding, L., Zhang, Q., Li, X., Cao, H., Tang, J. and Zheng, S.J. 
2012. A critical role of N-myc and STAT interactor (Nmi) in foot-and-mouth 
disease virus (FMDV) 2C-induced apoptosis. Virus Research. 170(1–2), pp.59–
65. 

Waring, M.J., Andrews, D.M., Faulder, P.F., Flemington, V., McKelvie, J.C., Maman, 
S., Preston, M., Raubo, P., Robb, G.R., Roberts, K., Rowlinson, R., Smith, J.M., 
Swarbrick, M.E., Treinies, I., Winter, J.J.G. and Wood, R.J. 2014. Potent, 
selective small molecule inhibitors of type III phosphatidylinositol-4-kinase α- 
but not β-inhibit the phosphatidylinositol signaling cascade and cancer cell 
proliferation. Chemical Communications. 50(40), pp.5388–5390. 

Westaway, E.G., Khromykh, A.A. and Mackenzie, J.M. 1999. Nascent flavivirus RNA 
colocalized in situ with double-stranded RNA in stable replication complexes. 
Virology. 258(1), pp.108–117. 

Wu, Q., Brum, M.C.S., Caron, L., Koster, M. and Grubman, M.J. 2003. Adenovirus-
mediated type I interferon expression delays and reduces disease signs in 
cattle challenged with foot-and-mouth disease virus. Journal of Interferon & 
Cytokine Research. 23(7), pp.359–68. 



217 
 

Wu, Y.-T., Tan, H.-L., Shui, G., Bauvy, C., Huang, Q., Wenk, M.R., Ong, C.-N., 
Codogno, P. and Shen, H.-M. 2010. Dual role of 3-methyladenine in 
modulation of autophagy via different temporal patterns of inhibition on class 
I and III phosphoinositide 3-kinase. Journal of Biological Chemistry. 285(14), 
pp.10850–10861. 

Wymann, M.P., Bulgarelli-Leva, G., Zvelebil, M.J., Pirola, L., Vanhaesebroeck, B., 
Waterfield, M.D. and Panayotou, G. 1996. Wortmannin inactivates 
phosphoinositide 3-kinase by covalent modification of Lys-802, a residue 
involved in the phosphate transfer reaction. Molecular and Cellular Biology. 
16(4), pp.1722–33. 

Xia, H., Wang, P., Wang, G.-C., Yang, J., Sun, X., Wu, W., Qiu, Y., Shu, T., Zhao, X., 
Yin, L., Qin, C.-F., Hu, Y. and Zhou, X. 2015. Human enterovirus nonstructural 
protein 2CATPase functions as both an RNA helicase and ATP-independent 
RNA chaperone. PLoS Pathogens. 11(7), p.e1005067. 

Xiang, W., Harris, K.S., Alexander, L. and Wimmer, E. 1995. Interaction between the 
5’-terminal cloverleaf and 3AB/3CDpro of poliovirus is essential for RNA 
replication. Journal of Virology. 69(6), pp.3658–67. 

Xiao, Y., Chen, H.-Y., Wang, Y., Yin, B., Lv, C., Mo, X., Yan, H., Xuan, Y., Huang, Y., 
Pang, W., Li, X., Yuan, Y.A. and Tian, K. 2016. Large-scale production of foot-
and-mouth disease virus (serotype Asia1) VLP vaccine in Escherichia coli and 
protection potency evaluation in cattle. BMC Biotechnology. 16(1), p.56. 

Yu, Y., Abaeva, I.S., Marintchev, A., Pestova, T. V and Hellen, C.U.T. 2011. Common 
conformational changes induced in type 2 picornavirus IRESs by cognate trans-
acting factors. Nucleic Acids Research. 39(11), pp.4851–4865. 

Zhang, L., Hong, Z., Lin, W., Shao, R.X., Goto, K., Hsu, V.W. and Chung, R.T. 2012. 
ARF1 and GBF1 generate a PI4P-Enriched environment supportive of hepatitis 
C virus replication. PLoS ONE. 7(2), p.e32135. 

 


