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Abstract

We review the Källén-Lehmann spectral representation in �at spacetime before moving

on to de Sitter space. We compute one-loop corrections of de Sitter invariant two-point

functions in the Lorentzian signature which are de�ned by the interacting Euclidean vac-

uum for scalar �elds with cubic interactions. These apply to all massive scalars in the

complementary and principal series. Our investigations are motivated by the behaviour of

the spectral density at the one-loop level whereby we can �nd a general expression relating

the two-point function and the free propagators. Using well established techniques for

treating quantum �elds in de Sitter, we compute the spectral density for speci�c cases,

in both complementary and principal series in three dimensions and discuss the nature of

particle stability. We also comment on extending this beyond the one-loop level.
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1 Introduction

Quantum �eld theory is one of the fundamental pillars of modern physics. It successfully

combines the principles of Einstein's theory of special relativity with that of quantum

mechanics to accurately describe a whole range of theories in Nature. From quantum

chromodynamics (QCD) to electroweak interactions and moving beyond the fundamental

forces, quantum �eld theory also has numerous applications to condensed matter physics.

There are multiple tools that have been developed to treat quantum �elds and calculate

observables systematically and consistently; perturbation theory and the renormalisation

group to name but two.

Quantum �eld theory de�ned for �at, or Minkowski spacetime, are theories for funda-

mental forces of Nature and have applications for solid state physics . However, we know

that the universe is not �at everywhere, there is curvature. General relativity, developed by

Albert Einstein over a hundred years ago combines special relativity with Newton's law of

gravitation, leading to the idea of gravitation being the geometry of the spacetime [2, 3]. In

the absence of gravitational e�ects we have our standard Minkowski spacetime. Curvature

of spacetime is related by the energy and momentum of whatever matter and radiation is

present in the system. Quantum �eld theory in curved spacetime can provide an accurate

description of quantum phenomena where the e�ects of curved spacetime become more

pronounced for example, in the vicinity of black holes and of quantum �uctuations in the

early universe. In the early universe there is strong evidence for the theory of in�ation

[4, 5, 6], there was an exponential expansion of space, eventually leading to the formation

of our universe. Many models of in�ation, where the e�ects of gravity were much more

prevalent, looking at quantum �eld theory in curved space time.

Taking the model of de Sitter space time, de�ned by constant positive curvature with

its dynamics dominated by a positive cosmological constant, we examine interacting theo-

ries [7, 8, 9]. A de Sitter universe is a solution of the �eld equations of general relativity and

a strong candidate for the behaviour of universe at a time close to t = 10−33 seconds after

the Big Bang theory. It is also a candidate for the universe's ultimate fate in the in�nite
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future, at the end of all things. While free quantum �elds are relatively well understood,

interacting theories pose problems [9]. Our interest is the Källén-Lehmann spectral repre-

sentation and the behaviour of the two-point function at the one-loop level [2, 10, 11, 12].

We �rstly review the spectral density and the Källén-Lehmann representation for scalar

�eld theory in �at space and illustrate with an example in two dimensions how we can

obtain the spectral density at the one-loop level before moving on to a review of de Sitter

spacetime as a candidate for the early universe and cosmology.

We investigate scalar �eld theory in de Sitter space [6, 13], computing one-loop correc-

tions of two-point functions de�ned by the interacting Euclidean vacuum for scalar �elds

considering cubic interactions applying to all massive scalars in the complementary and

principal series [14]. We investigate spectral functions at the one-loop level whereby we

can �nd a general expression of relating the two-point function and the free propagators by

way of the spectral density. Reviewing the work of Marolf and Morrison [10], we adopt the

techniques developed to deal with analytic continuation in de Sitter �eld theory from the

Euclidean to the Lorentzian signature, as well as a review of the treatment of ultraviolet

(UV) divergences in the de Sitter spacetime and perturbative corrections to the two-point

function. These arise in correlation functions due to the denominator having terms both

dependent on the angular momentum L and the mass, which in the zero mode and massless

limit generate divergences [10, 15, 16, 17, 18, 19]. With masses large enough, infrared (IR)

divergences can be avoided at tree level, but still occur in loop diagrams [10].

We explore the perturbative corrections to the propagators [10]. While some previous

work has focussed on decays at large distances in de Sitter spaces, we focus on the spectral

density and compute it for some cases when the particles masses lie in both the comple-

mentary and principal series. Currently, there is debate about the particle instability in de

Sitter with some arguing that all particles are unstable [21], while others say that before

some critical mass we lose particle stability. We comment on these matters by making

some investigations into the nature of the spectral density and its behaviour in de Sitter

9



space [11, 19, 20, 21, 22, 23].
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2 Källén-Lehmann representation in �at space

2.1 Introduction to spectral density

Everything we compute in this section relies on principles of quantum mechanics and spe-

cial relativity. We begin by examining the analytic structure of the time ordered two-point

function for scalar �eld φ in �at spacetime before continuing this to curved spacetime. For

the free �eld case the interpretation of a two-point function 〈0|Tφ(x)φ(y)|0〉 is straight-

forward. It is the amplitude for a particle to propagate from y to x. In the interacting

theories however, the interpretation has some di�erences. For this �rst chapter we only

require the general principles of relativity and quantum mechanics. Calculations will not

depend on an expansion in perturbation theory or on the type of interactions [8]. Our

examination begins with the two-point function,

〈Ω|Tφ(x)φ(y)|Ω〉 (1)

where Ω is the true vacuum. We begin our examinations with the two-point function, by

inserting the identity operator inside our two-point function; introducing a complete set

of states. The states are chosen to be eigenstates of a fully interacting Hamiltonian, H,

and knowing that H and P commute, [H,P] = 0, these states can be chosen so they are

also the eigenstates of P through Lorentz invariance [8]. Additionally, we let |λ0〉 be an

eigenstate of H such that P|λ0〉 = 0, so it is has zero momentum. Therefore, by Lorentz

invariance, any boost of the λ0 state, denoted here as λp is an eigenstate of H. We can now

make use of a useful completeness relation for one particle states, [8]

(1)1−particle =

∫
d3p

(2π)3

1

2Ep
|p〉〈p| (2)

This can be written for the entire Hilbert space. We �rst assume these states have been

relativistically normalised allow |λp〉, with momentum p, be a boost of λ0. The identity

for entire Hilbert space has the form,

I = |Ω〉〈Ω|+
∑
λ

∫
d3p

(2π)3

1

2Ep
|λp〉〈λp| (3)
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Here EP =
√
p2 +m2

λ and mλ is the rest mass of states |λp〉. Our two-point function is,

T 〈Ω|φ(x)

(
|Ω〉〈Ω|+

∑
λ

∫
d3p

(2π)3

1

2Ep
|λp〉〈λp|

)
φ(y)|Ω〉 (4)

Our summation here runs over all zero momentum states. The �rst term 〈Ω|φ(x)|Ω〉〈Ω|φ(y)|Ω〉,

is equal to some constant which can normally be set to zero by symmetry, for scalar �elds.

Therefore for the purpose of this paper we will neglect it. We also assume x0 > y0. It then

takes the form,

〈Ω|Tφ(x)φ(y)|Ω〉 =
∑
λ

∫
d3p

(2π)3

1

2Ep
〈Ω|φ(x)|λp〉〈λp|φ(y)|Ω〉 (5)

where we can break up elements accordingly,

〈Ω|φ(x)|λp〉 = 〈Ω|eiP ·xφ(0)e−iP ·x|λp〉

〈Ω|φ(x)|λp〉 = 〈Ω|φ(0)|λp〉e−ip·x|p0=Ep (6)

and using U−1φ(0)U = φ(0), where U is the unitary operator which implements a Lorentz

boost from −→p to 0 [8]. This allows us to arrive at,

〈Ω|φ(x)|λp〉 = 〈Ω|φ(x)|λ0〉e−ip·x|p0=Ep (7)

As stated previously this is true for scalars but not for cases where we must consider higher

spins. Introducing an integration over p0, again for x0 > y0, our two-point function takes

the form,

〈Ω|Tφ(x)φ(y)|Ω〉 =
∑
λ

∫
d4p

(2π)4

i

p2 −m2
λ + iε

e−ip·(x−y)|〈Ω|φ(0)|λ0〉|2 (8)

where we have the Feynman propagator save for a replacement of m with mλ. However,

there is a way of representing the two-point function more succinctly, known as the Källén-
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Lehmann representation.

〈Ω|Tφ(x)φ(y)|Ω〉 =

∫ ∞
0

dM2

2π
ρ(M2)

ie−ip·(x−y)

p2 −M2 + iε
(9)

where ρ(M2) is the spectral density de�ned by,

ρ(M2) =
∑
λ

(2π)δ(M2 −m2
λ)|〈Ω|φ(0)|λ0〉|2 (10)

For a general theory, 4m2 & M2 we have one-particle states only contributing a delta

function. The spectral density, has the form,

ρ(M2) = 2πδ(M2 −m2) · Z + (terms for whenM2 & 4m2) (11)

where Z is the �eld strength renormalisation and m is the physical mass. The spectral

density is a positive de�nite quantity [8, 25].
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m2 (2m)2

ρ(M 2)

M 2

bound states

multiparticle states

Figure 1: The spectral density ρ(M2) for some interacting theory. We observe that one-

particle states contribute a δ-function at m2, m being the particle's mass [8]. Bound states,

if any, contribute similar poles before we reach a continuous spectrum of multiparticle

states.

The Fourier transform of the two-point function is therefore,

∫
d4xeip·x〈Ω|Tφ(x)φ(y)|Ω〉 =

∫ ∞
0

dM2ρ(M2)
i

p2 −M2 + iε

∫
d4xeip·x〈Ω|Tφ(x)φ(y)|Ω〉 =

iZ

p2 −m2 + iε

+

∫ ∞
4m2

dM2ρ(M2)
i

p2 −M2 + iε
(12)

where, on the complex p2-plane, we pick up an isolated pole at m2 coming from the one-

particle states. In the event of bound states we acquire more poles. At (2m)2, when we

encounter a continuous spectrum of two particle and multiparticle states, we take a branch

cut.
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p2

4m2m2

Poles arising from bound states

Figure 2: Analytic structure of Fourier transform of the two-point in complex p2 plane.

In practice, when calculating the spectral density it is often possible to expand the two-

point function, compare this expression and simply read o� the spectral density. While

these calculations can be in principle straightforward to solve, there exists a simpler ex-

pression for computing the spectral density. To be precise, we can de�ne the spectral

density in a more convenient representation by the propagator and its complex conjugate.

It is merely the sum of the two with a factor of i. De�ning the propagator,

∆(p2) =
i

p2 −m2 − Σ(p2)
=

∫
dσ2

2π
ρ(σ2)

i

p2 − σ2 + iε
(13)

where Σ(p2) is the sum of all one-particle irreducible (1PI) diagrams. The spectral density

can be found by adding this to its complex conjugate, through the formula,

1

p2 − σ2 + iε
− 1

p2 − σ2 − iε
= −2πiδ(p2 − σ2) (14)

therefore,

ρ(p2) = ∆(p2) + ∆(p2)∗ =
i

p2 −m2 − Σ(p2)
− i

p2 −m2 − Σ(p2)∗

ρ(p2) =

∫
dσ2

2π
ρ(σ2)

[
i

p2 − σ2 + iε
− i

p2 − σ2 − iε

]
=

∫
dσ2

2π
ρ(σ2)2πiδ(p2 − σ2) (15)

If we expand our original expression for the propagator out, splitting into both real and
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imaginary parts of the sum 1PI diagrams, we can show that the spectral density is positive

de�nite,

ρ(p2) =
i

p2 −m2 −Re(Σ(p2))− iIm(Σ(p2))
− i

p2 −m2 −Re(Σ(p2)∗) + iIm(Σ(p2)∗)

ρ(p2) = − 2ImΣ(p2)

(p2 −m2 −Re(Σ(p2)))2 + (Im(Σ(p2)))2
(16)

where Σ(p2) is de�ned accordingly,

Σ(p2) = 2πλ2

∫
dσ2

2π

f(σ2)

p2 − σ2 + iε
(17)

with some arbitrary function f(σ2). After some simple rearrangement and algebra the

form for the spectral density can be given as,

ρ(p2) = − 2Im Σ(p2)

[p2 −m2 −Re Σ(p2)]2 + Im Σ(p2)2
(18)

where it can be shown the Im Σ(p2) will be negative.

2.2 Computing the spectral density in �at space

Our ultimate aim is to understand the spectral density in curved spacetime but �rst it is

worthwhile comparing it with the �at spacetime case. We can use this as a step on the

path to understanding how the spectral density behaves in the curved spacetime case, for

massive scalars for Lagrangians with interactions beyond the quadratic order [10, 15, 18].

We wish to examine the Källén-Lehmann spectral representation and see where we have a

relationship between the two-point function and the propagators.

Firstly, we consider some Lagrangian with a cubic interaction term of the form,

L = ...− λ

2
Φ2φ (19)

of some φ→ φ scattering process, mediated by 2Φ's with momentum k and p− k

the reason we are looking at the interactions is because interacting quantum �eld theory

in de Sitter proves more challenging than the free theory.
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λλ

p

k

p

p− k

Figure 3: φ→ φ scattering mediated by scalar Φ particles

Taking the case where φ going to φ via some interactions of Φ's with masses m and M

respectively, and we assume m > 2M so φ can decay into 2Φ particles. Neglecting the

external lines, this can be computed accordingly for the simple two dimensional case as,

−iΣ(p2) = λ2

∫
d2k

(2π)2

1

k2 −M2 + iε

1

(k − p)2 −M2 + iε
(20)

which according to the Feynman parametrisation prescription for evaluating loop integrals,

takes the following form,

1

A1A2...An
=

∫ 1

0

dx1...dxn δ

(∑
i

xi − 1

)
(n− 1)!

[x1A1 + ...xnAn]n
(21)

leading to,

1

A1A2...An
= λ2

∫
d2`

(2π)2

∫ 1

0

dx
1

[`2 − p2 · x(1− x)−M2 + iε]2
= −iλ

2

4π

∫ ∞
0

d`

∫ 1

0

dx
2`

[`2 + ∆]2

1

A1A2...An
= −iλ

2

4π

∫ 1

0

dx
1

[M2 − x(1− x)p2]
= −iλ

2

2π

∫ 1/2

0

dy
1

[M2 − (1
4
− y2)p2]

(22)

We then make the substitution σ2 = M2

1
4
−y2 , where σ

2 is our variable rather than the square

of the variable leaving us with,

Σ(p2) = −λ
2

2π

∫ ∞
4M2

dσ2 1

p2 − σ2

1

2M2

√
1
4
− M2

σ2

(23)

So our full propagator, to O(λ2), can be represented in the Källén-Lehmann spectral
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representation through the two-point function relating the spectral density ρ de�ned by,

〈Ω|Tφ(x)φ(y)|Ω〉 =

∫ ∞
0

dσ2

2π
ρ(σ2)DF (x− y;σ2) (24)

with the spectral density ρ,

ρ(σ2) =
∑
λ

(2π)δ(σ2 −m2
λ)|〈Ω|Tφ(0)|λ0〉|2 (25)

For p2 � 4M2 Σ(p2) is real then we have,

ρ(p2) = i

[
1

p2 −m2 − Σ(p2) + iε
− 1

p2 −m2 − Σ(p2)− iε

]

ρ(p2) = i
[
−2πiδ

(
p2 −m2 − Σ(p2)

)]
(26)

where we de�ne mphys as the physical mass of the particle, where m2 � 4M2, as,

mphys = m2 + Σ(p2) (27)

Giving us,

ρ(p2) = 2πZδ(p2 −mphys) (28)

For values our p2 > M2, Σ(p2) is no longer real and we have the spectral density as,

ρ(p2) = i

[
1

p2 −m2 − Σ(p2)
− 1

p2 −m2 − Σ∗(p2)

]
(29)

and returning to our form for the Σ(p2),

Σ(p2) =
λ2

2π

∫ ∞
4M2

dσ2 1

p2 − σ2 + iε

1√
(σ)2 − 4M2σ2

(30)

turning �rst to the imaginary part,

i Im Σ(p2) =
λ2

2π

∫ ∞
4M2

dσ2 1√
(p2)2 − 4M2σ2

× [−iδ(p2 − σ2)] (31)
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therefore the imaginary part has the form of,

Im Σ(p2) = −λ
2

2π

1√
(p2)2 − 4M2σ2

(32)

The real part of Σ(p2) cannot be computed in closed form. Our spectral density will

therefore be,

ρ(p2) = −
−2

(
λ2

2π
1√

(p2)2−4M2σ2

)
(p2 −m2 −Re Σ(p2))2 +

(
λ2

2π
1√

(p2)2−4M2σ2

)2

ρ(p2) =
λ2

π (p2 −m2 −Re Σ(p2))2 ((p2)2 − 4M2σ2)1/2 + λ4

4π
[(p2)2 − 4M2σ2]−1/2

(33)

in two dimensions.

The way the spectral density behaves in �at space can be illustrated in the stable case

and unstable case. In the stable case for an interacting scalar �eld, we have a delta func-

tion coming from the one-particle states, located at m2 where m is the mass of the particle.

We then have a continuous spectrum of two or more particle states beginning at (2m)2. In

the case where we encounter bound states we will encounter additional delta functions in

between the physical mass squared and twice the physical mass squared, m2
phys and 4m2

phys

after which, we get the multiparticle states.
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ρ(M 2)

M 2

m2
phys 4m2

phys

Figure 4: An example of a stable spectral density in �at space for a generic interacting

theory in the absence of bound states.

In the unstable case we get a continuous spectrum with the spectral density decaying

rapidly as can be seen below.

ρ(M 2)

M 2

Figure 5: A general spectral density for the unstable particle case in �at space.
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3 De Sitter �eld theory

3.1 Introduction

Here we review some of the foundations of de Sitter spacetime, [2, 4, 5, 9, 20, 24] be-

fore reviewing the previous work focusing at the one-loop level on the behaviour at large

distances, large Z, while our focus is on computing the spectral density in both the com-

plementary and principal series.

De Sitter space has many resemblances to Minkowski space, as a sphere in Euclidean

space. Working in D-dimensions, it is the Lorentzian manifold analogue of a D-sphere

which is a specialised case of pseudo-Riemannian manifold. It is maximally symmetric

meaning it retains the same number of symmetries as Euclidean. This can also be de�ned

as having,

D

2
(D + 1) (34)

linearly independent Killing vectors, D being the dimension; it is also homogeneous [7].

Furthermore, the Riemann tensor obeys the relationship,

Rµνρσ =
R

D(D − 1)
(gµρgνσ − gµσgνρ) (35)

R here being the Ricci scalar curvature and gµν being the metric. In de Sitter space it is

maximally symmetric and its scalar curvature is both positive and constant.

Construction of a de Sitter space can be done as follows. Consider �rst a D = 5 �at space

with a metric,

gµν = diag(1,−1,−1,−1,−1) (36)

5-vectors Xµ can de�ne a four dimensional space satisfying,

−XµXνgµν =
1

H2
(37)

where H is the Hubble parameter which determines the rate of spatial expansion [9].

We then induce a metric by considering this as a subspace of (R, gµν) and the space we
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have can be said to be a de Sitter space. De Sitter space is also simply connected for D ≥ 3

meaning all paths between two-points can be transformed continuously but remain in that

topological space. It is represented by the hyperboloid given below.

x

x̄

Xµ

−Xµ

Y µ

y

γ̄

γ

Figure 6: De Sitter hyperboloid where with antipodal point x̄. Future directed paths

denoted by γ are sent to a past directed curve γ̄
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Comparing it with the sphere we �nd many similarities with every point having an

antipodal point denoted by a bar with the following relationship,

Xµ(x̄) = −Xµ(x) (38)

where Xµ is de�ned as,

Xµ = (t,−
−→
X ) (39)

d(x, y) is de�ned by,

d(x, y) = H−1 arccos(Z(x, y)) (40)

where Z(x, y) is given as,

Z(x, y) ≡ H2gµνX
µXν (41)

which displays similarities to the sphere replacing arccos(Z) with arccos(θ), therefore

arccos(Z) is the hyperbolic angle between points x and y. Here Z(x, y) has the prop-

erty that when we replace x with x̄ we get an overall minus sign.

Z(x̄, y) = −Z(x, y) (42)

Z(x̄, ȳ) = Z(x, y) (43)

3.2 Interacting scalar �elds in de Sitter

Free quantum �elds in de Sitter behave very well while interacting �eld theories pose a

number of challenges. While particles in Minkowski space cannot decay into a heavier

product of daughter particles due to energy conservation, in de Sitter this can be the case.

The reason this, initially alarming, phenomenon is possible is due to the lack of a globally

timelike Killing vector �eld. This means that the notion of, positive de�nite, energy con-

servation no longer applies as it does in �at space. To that end let us �rst consider the

D-dimensional de Sitter space dSD metric,

ds2 = `2(−dt2 + cosh2 t dΩ2
d) (44)
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where l is the de Sitter length scale [10], which is the inverse of the Hubble parameter H,

l =
1

H
(45)

so we can see de Sitter is a contracting and expanding spacetime more clearly,

t

ds2

Figure 7: A generic de Sitter spacetime where we observe the contraction and expansion

for early past and late future.

as well as dΩ2
d is the metric on the unit d where D = d + 1 sphere. For a free theory, our

scalar �elds de�ne a representation in the connected de Sitter group SO0(D, 1), obeying

the Klein-Gordon equation,

�φ−M2φ = 0 (46)

with some mass M . By representation here we mean a group representation where our

group SO0(D, 1) is de�ned in terms linear transformations of vector spaces. Rescaling the

mass with a dimensionless parameter, σ, so that,

−σ(σ + d) := M2`2 (47)

24



choosing the positive root

σ := −d
2

+

√(
d

2

)2

−M2`l (48)

with three de Sitter representations,

� Complementary series where −d
2
< σ < 0

� Principal series where σ = −d
2

+ iρ , ρ ∈ R, ρ ≥ 0

� Discrete series for σ ∈ N0

We ignore the discrete series as they are not physical, our work focusing instead on the com-

plementary and principal series [10]. Here our σ will correspond to a unitary irreducible

representation in our two cases; the complementary and principal series [10]. An irre-

ducible representation is one that cannot be expressed by any subrepresentations. Heavier

�elds belong in the principal series while the lighter �elds lie in the complementary case.

Green's functions can be de�ned in the three dimensional sphere and analytically continue

to de Sitter space denoted ∆σ
xy denoting arguments x and y. These Green's functions are

invariant under de Sitter transformations. In both principal and complementary series and

�xing one argument, while taking the other as |t| → ∞, terms in the propagators fall o�

as eσ|t|, e−(σ+d)|t|.

In spite of this exponential decay of propagators in de Sitter, we get exponential growth

from the contracting and expanding Nature of the de Sitter volume from the (cosh(t))d.

Multiple products of propagators decay slowly enough so that tree level diagrams diverge,

even with σ near to zero.

In the principal series, IR divergences emerge from loop diagrams [10]. This is a dia-

gram with two external lines where we �x the end points at x1 and x2. We need to �x

the relative positions of vertices and then integrate over dSD. We will pick up exponential

factors with argument d · t, which for t→∞ from the measure, with the integrand being

suppressed by the propagators which decay at most exponential factors −d · t. Every
∫
dt

will diverge proportional to powers of t. The form chosen for treating these IR divergences

is by analytic continuation from Euclidean signature.
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3.3 Analytic continuation in de Sitter space

With the metric for D-dimensional de Sitter space,

ds2 = `2(−dt2 + cosh2 t dΩ2
d) (49)

we can relate it for the D-sphere in Euclidean space via the following Wick rotation, by

the transformation,

t = i
(
τ − π

2

)
(50)

with the metric for our Euclidean sphere transforms as,

dΩ2
D = `2

[
−(i dτ)2 +

(
ei(τ−

π
2

) + e−i(τ−
π
2

)

2

)2

dΩ2
d

]
(51)

through Euler's formula,

dΩ2
D = `2

[
dτ 2 +

(
cos(τ − π

2
)
)2

dΩ2
d

]

= `2(dτ 2 + sin2 τ dΩ2
d) (52)

No IR divergences occur from integrating over the Euclidean sphere SD due to it being

compact [9, 10, 11, 16, 19, 23]. This is valid provided we are only considering massive

scalars, which we are in accordance with [10]. In this case, the Feynman diagrams in

Euclidean signature converge to de�ne an interacting state on the sphere that is SO(D +

1) invariant and therefore satisfy Schwinger-Dyson equations in the Euclidean signature

where, for some action S in the presence of some source J takes the form,

δS

δφ(x)

[
−i δ

δJ(x)

]
Z[J ] + J(x)Z[J ] = 0 (53)

with Z here being the generating functional. That this is satis�ed means when we analyti-

cally continue this from the Euclidean to the Lorentzian signature, these equations are also

satis�ed and also invariant under SO(D, 1) to all orders of . We can therefore evolve the

correlators over time, t, starting at t = 0 where the Lorentzian correlators are identical to
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the Euclidean save for factors of i coming from the derivatives. Our Euclidean-signature

Feynman diagrams converge and de�ne interacting states on the sphere which are invariant

under SO(D, 1) satisfying the Euclidean Schwinger-Dyson equations. To perform the ana-

lytic continuations, we employ two tools, the embedding distance and Watson-Sommer�eld

transformations [10].

The Euclidean two-point correlation functions denoted 〈φ(xi)φ(xj)〉 can be written as

functions of geodesic distance between xi and xj,[10] by parametrising this using embed-

ding distance [10]. This is the length of chord in some ambient space RD+1 between two

points x and y [10]. Ambient space being the space that surrounds the object we are

examining; while chord length here is de�ned as a line segment on the sphere which end

points both lie on the edge of the sphere. It is not a length as such. Embedding distance

is given in terms of coordinates on the sphere as,

Zij := Z(xi, xj) = cos τi cos τj + sin τi sin τj(
−→xi · −→xj ) (54)

where we restrict to Z ∈ [−1, 1] when analytically continued, using equation (3.17), from

the sphere,[10] becomes the de Sitter embedding distance

Zij = − sinh τi sinh τj + cosh τi cosh τj(
−→xi · −→xj ) (55)

embedded into the manifold M(D,1) which on dSD has a range of values over R [10]. We

then perform analytic continuation to the Lorentzian by continuing Zij from [−1, 1] to R.

This is because it satis�es the following conditions,

� for spacelike separations Zij ∈ [−1, 1)

� null for Zij = 1

� for timelike case |Zij| > 1

The time ordered two-point correlation functions in the Lorentzian will be,

〈Tφ(xi)φ(xj)〉L := 〈φmφn(Z̄ij)〉
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= 〈φmφn(Zij + iε)〉 (56)

Generalising this we can de�ne Wightman two-point function in Lorentzian to be,

〈Tφ(xi)φ(xj)〉L := 〈φmφn(Z̃ij)〉 (57)

where Z̃ij may be de�ned as,

Z̃ij = Zij ± iε (58)

depending on whether x0
1 > x0

2 or x0
2 > x0

1 respectively.

3.4 Spherical harmonics, Watson-Sommer�eld transformations and

Gegenbauer polynomials

Calculating Feynman diagrams, working in the Euclidean signature in the basis L2(SD)

given by spherical harmonics Y−→
L
. Here

−→
L is a D-dimensional vector satisfying LD ≥

LD−1 ≥ · · · ≥ L2 ≥ |L1| and spherical harmonics satisfying the following relations,

−`2∇2
xY−→L (x) = −L(L+ d)Y−→

L
(59)

`Dδ̃(xi, xj) =
∑
−→
L

Y−→
L

(xi)Y
∗−→
L

(xj) (60)

`Dδ−→
L ,
−→
M

=

∫
Y−→
L

(xi)Y
∗−→
M

(xi) (61)

Here our ∇2
x is just the Laplacian on the Euclidean sphere de�ned by our metric dΩ2

D

[10, 15, 18]. The last two equations are orthonormality and completeness relations.
−→
L =

(LD, LD−1, ..., L1) represents the set of angular momentum on the D-sphere and have the

property of,

LD ≥ LD−1 ≥ ... ≥ |L1| (62)

There is also the relation for when
−→
L = (L,

−→
j ),

∑
−→
j

Y
L
−→
j

(xi)Y
∗
L
−→
j

(xj) =
Γ(d

2
)(2L+ d)

4πd/2+1
C
d/2
L (Zxixj) (63)

28



where Γ(d/2) is a gamma function which is de�ned for complex t with positive real part

(so that it is absolutely convergent),

Γ(t) =

∫ ∞
0

xt−1e−xdx (64)

specifying to the case for positive integer values, n ∈ N, however the Γ-function has the

form,

Γ(n) = (n− 1)! (65)

C
d/2
L (Zxixj) is a Gegenbauer polynomial and the Gegenbauer function Cα

λ (z) is a polynomial

provided that λ is a non-negative integer. Feynman diagrams on SD can be expressed as

sums over spherical harmonics which we can express in terms of Gegenbauer polynomials.

Looking at its expression in terms of a hypergeometric function, we �nd the hypergeometric

series will terminate. C
d/2
L (Zxixj) de�ned in terms of the hypergeometric function 2F1 as,

Cα
λ (z) :=2 F1

(
−λ, λ+ 2α, α +

1

2
;
1− z

2

)
Γ

[
2α + λ

1 + λ, 2α

]
(66)

where this notation for gamma functions follows a shorthand prescription de�ned as,

Γ

[
2α + λ

1 + λ, 2α

]
=

Γ(2α + λ)

Γ(1 + λ)Γ(2α)
(67)

2F1 is the Gaussian hypergeometric function given by,

2F1(a, b; c; z) = 1+
ab

c
z+

a(a+ 1)b(b+ 1)

c(c+ 1)2!
z2...+

a(a+ 1)...(a+ n− 1)b(+1)...(b+ n− 1)

c(c+ 1)...(c+ n− 1)n!
zn+...

2F1(a, b; c; z) = 1 +
ab

c
z + · · · (a)n(b)n

(c)n
zn (68)

and where (a)n represents the Pochhammer symbol de�ned by,

(a)n = Γ

[
a+ n

a

]
= a(a+ 1) · · · (a+ n− 1) (69)
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for any complex a and n ∈ N0. The Gegenbauer polynomials obey useful relations,

(λ+ α)Cα
λ (Z) = α

[
Cα+1
λ (Z)− Cα+1

λ−2 (Z)
]

dn

dZn
Cα
λ (Z) = 2n(α)nC

α+n
λ−n (Z) (70)

Cα
L(Z) = (−1)LCα

L(Z)

the �rst two being recursion relations and the �nal one being the Gegenbauer re�ection for-

mula. Summations over Gegenbauer polynomials can, by analytic continuation, transform

into contour integrals in the complex plane. Returning to our sum, while it is possible to

analytically continue such sums over the polynomials using (3.25), this diverges for large

Zxy. We therefore use Watson-Sommer�eld transformations which can be thought of as an

analytic continuation in momentum space.

3.5 Watson-Sommer�eld transformations

Consider some function, f(z), so that it is analytic ∀z = n ∈ Z and otherwise arbitrary,

which decays at a minimum like,

1

|z|2
as |z| → ∞ (71)

Then for an in�nite sum,

N =
∞∑

n=−∞

f(n) (72)

and consider a function F related to f by,

F (z) = πf(z) cot(πz) (73)

which has simple poles for ∀z = n ∈ Z with all residues as,

Res (F (z), z = n) = f(n) (74)
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An integral over a circle with radius R → ∞ centred at the origin will be zero due to its

behaviour as |z| → ∞ ∮
F (z)dz = 0 (75)

By the residue theorem however we know,

∮
C

F (z)dz = 2πi

{
∞∑

n=−∞

Res (F (z), z = n) +
∑
i

Res (F (z), z = zi)

}
= 0 (76)

with zi being the poles coming from the function f(n). Using these equations we can

rearrange to get,
∞∑

n=−∞

f(n) = −
∑
i

Res [F (z), z = zi] (77)

While this a simple example, the general case a sum S =
∑

L s(L), we de�ne a function

s̃(L) with the following two key features. Firstly, that they must agree with s(L) ∀ L

appearing in the sum. Secondly, s̃(L) must be analytic in some open neighbourhood of our

complex L-plane at each of the aforementioned points where they agree. We then multiply

s̃(L) by some kernel function k(L), which is meromorphic meaning holomorphic except at

a series of isolated poles. A suitable contour of integration is chosen, C0, resulting in our

original series now being represented as,

S =
∑
L

s(L) =

∮
C0

dL

2πi
k(L)s̃(L) (78)

We can then deform our contour to another over which we may perform calculations more

easily, C0 → C, and have greater control over. As can be seen, our sum contains a

Gegenbauer polynomial which we analytically continue to a function of our complex L,

denoted ΓP associated with the principal series for our dimensionless parameter σ de�ned

previously.
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3.6 Free Klein-Gordon equation

For illustration of these techniques we review the free Klein-Gordon �eld. Beginning with

the free propagator, ∆σ
xy, there exists a unique solution to the Klein-Gordon equation,

−(∇2
x −M2)∆σ

xy = −(∇2
y −M2)∆σ

xy = δxy (79)

In terms of spherical harmonics, our propagator ∆σ
xy has the form,

∆σ
xy = `2−D

∑
−→
L

Y−→
L

(x)Y−→
L

(y)

M2`2 + L(L+ d)
(80)

in terms of our dimensionless mass parameter σ and rearranging for M2`2,

M2`2 = −σ2 − σd (81)

So our denominator transforms accordingly denoted λLσ ,

λLσ = L(L+ d) +M2`2 = L(L+ d)− σ2 − σd = (L− σ)(L+ σ + d) (82)

so our propagator has the form,

∆σ
xy = `2−D

∑
−→
L

Y−→
L

(x)Y−→
L

(y)

λLσ
(83)

which gives us a spectral representation of our propagator on (x, y) ∈ SD × SD. We now

employ the relations developed above between spherical harmonics as well as Gegenbauer

functions summing over which yields us an expression for the propagator of the form,

∆σ = `2−D Γ(d
2
)

4πd/2+1

∞∑
L=0

2L+ d

λLσ
C
d/2
L (Z) (84)

which gives us the spectral representation of the propagator over Z ∈ [−1, 1].

We are now free to compute the �nal sum letting s̃(L) be,

s̃(L) =
(2L+ d)

λLσ
e−iπLC

d/2
L (Z) (85)
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which we obtain from the re�ection formula for Gegenbauer polynomials from our propa-

gator,

Cα
L(Z) = (−1)LCα

L(−Z) (86)

and the kernel function,

k(L) =
πeiπL

sin(πL)
= −eiπLΓ[−L,L+ 1] (87)

which gives us poles of unit residue,

∆σ(Z) = `2−D Γ(d
2
)(−1)

4πd/2+1Γ(d)

1

2πi

∮
C1

dL2F1

(
−L,L+ d;

d+ 1

2
;
1 + Z

2

)
Γ[−L,L+ d]

2L+ d

λLσ
(88)

The hypergeometric function is singular at Z = 1 and our contour integral has poles

L ∈ N0, L = −s,−(d + 1), · · · as well as L = σ,−(σ + d). We deform the contour

C1, integrating around poles encountered, to a straight line passing through L = −d/2

deforming through either the L = σ or L = −(σ + d). We therefore acquire a residue,

which is equal to the other, while the remaining integral vanishes because our integrand

is antisymmetric under the transformation L → −(L + d) and we obtain a form for the

propagator, which gives us poles of unit residue,

∆σ(Z) = `2−D Γ(d
2
)

4πd/2+1Γ(d)
×Res

[
2L+ d

λLσ
Γ[−L,L+ d]2F1

(
−L,L+ d;

d+ 1

2
;
1 + Z

2

)]
L=L0

(89)

where L0 is the pole σ or −(σ + d) taking L = σ.

For illustration we choose the pole L0 = σ,

∆σ(Z) =
`2−D

4πd/2+1
×2 F1

(
−σ, σ + d;

d+ 1

2
;
1 + Z

2

)
Γ

[
d
2
,−σ, σ + d

d

]
(90)
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X
−2α

C1C2

X X

L

X X X X

−α

Figure 8: Example of the location of the poles in the complex L-plane when computing the

propagator. C1 is the original curve which is deformed, while C2 is some arbitrary straight

line going through re�ection point L = −d/2. Retaining the notation of previous literature,

poles in the principal series are denoted by boxes while those in the complementary are

represented by circles.

Reviewing Watson-Sommer�eld transformations, we see how propagators that can be ex-

pressed in terms of spherical harmonics and Gegenbauer polynomials, can be recast as

contour integrals in the complex L-plane. The reason we develop this machinery for com-

puting propagators is to apply this to correlation functions and then the spectral density

function in de Sitter space.
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4 Perturbative corrections in de Sitter

4.1 Corrections to O(µ2)

4.2 Introduction

Following investigations into the previous literature in de Sitter space [10], corrections to

propagators through interactions of the form, Vint = µφ1(x)φ2(x) at tree level, with some

coupling constant µ with mass dimension [µ] = 6−D
2
, gives us interactions of form,

〈φ1(x1)φ2(x2)〉 = −µ
∫
y∈SD

∆σ1
1y∆

σ2
y2 +O(µ3) (91)

which, in the Euclidean signature takes the form,

〈φ1(x1)φ2(x2)〉 =
µ

M2
1 −M2

2

[∆σ1(Z12)−∆σ2(Z12)] +O(µ3) (92)

due to the fact that there are no surface terms upon integration by parts. This is not

true however, in de Sitter space [10]. At the one-loop level for our case, we present the

two-point function which will be made up of three and four particle interactions only.

We are considering three particle interactions as they provide more interesting features

while computations for four particle interactions can be found in the literature [10]. Our

interaction will now take the form,

Vint = µφ1(x)φ2(x)φ3(x) +
3∑
i=1

[
−1

2
φi(x)[(δφi)∇2

x − (δM2
i )]φi(x)

]
(93)

with δφi and δM
2
i are the counterterms to the �eld and mass renormalisation respectively.

Respectively, they have mass dimension 0 and +2. For the corrections to the two-point

function we sum diagrams of terms and counter terms at one-loop level, we de�ne them

as,

〈φ1(x1)φ1(x2)〉(2) = (I) + (II) + (III) (94)
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σ1 σ1

σ2

σ3

σ1 σ1

σ1 σ1

(I)

(II)

(III)

Figure 9: Perturbative corrections to the two-point function to O(µ2). Here, (I), (II) and

(III) are the one-loop contribution, counterterm arising from renormalisation of the �eld

and mass renormalisation respectively. The slash in diagram (II) represents the action of

∇2.

will give us one term which is the one-loop contribution and two counter terms: the

�eld and mass renormalisations, denoted (I), (II) and (III) respectively. We also use a

shorthand for the spacetime dimension, α := d/2 = (D − 1)/2.

(I) = µ2

∫
x∈SD

∫
y∈SD

∆σ1
1x∆

σ2
xy∆

σ3
xy∆

σ1
y2 (95)

where the product of two propagators is de�ned through the spherical harmonics,

∆σ1∆σ2(Z12) =
∑
−→
L

ρσ1σ2(L)Y−→
L

(x1)Y ∗−→
L

(x2)

so,

∆σ1∆σ2(Z12) = `4−2D Γ(α)

2πα+1

∞∑
L=0

(L+ α) σ1σ2(L)Cα
L(L) (96)

and where ρσ1σ2(L) is a spectral function not to be confused with the spectral density. It

is de�ned through the integral of three Gegenbauer polynomials,

ρσ1σ2 := `2D−4 2πα+1

Γ(α)(L+ α)

1

AαL

∫ 1

−1

dZ(1− Z2)α−1/2Cα
L(Z)∆σ1(Z)∆σ2(Z) (97)
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which converges for 0 < α < 3
2
with normalisation AαL de�ned as,

AαLδ
LM :=

∫ 1

−1

dZ(1− Z2)α−1/2Cα
L(Z)Cα

M(Z)δLM (98)

There are several features, which we will see later prove useful, that our spectral function

remains invariant under the following transformations,

σ1 → −(σ1 + 2α), σ2 → −(σ2 + 2α), σ1 ↔ σ2 (99)

ρσ1σ2(L) = ρσ1σ2(L) (100)

ρσ1σ2 has the feature of being absolutely convergent and provided we are working with on

shell masses σ1 and σ2,

ρσ1σ2(L) = ρσ1σ2(L) (101)

are invariant under these complex conjugations [10]. This means ρσ1σ2 will only be complex

if L is complex. Turning now to our counterterms, these are given as,

(II) = (δφ1)

∫
x∈SD

∆σ1
1x�x∆

σ1
x2 = −`2−D Γ(α)

2πα+1

∞∑
L=0

(L+ α)(δφi)L(L+ 2α)

(λLσ1)
2

Cα
L(Z12) (102)

(III) = −(δM2
1 )

∫
x∈SD

∆σ1
1x∆

σ1
x2 = −`4−D Γ(α)

2πα+1

∞∑
L=0

(L+ α)(δM2
1 )L(L+ 2α)

λ2
Lσ1

Cα
L(Z12)

(103)

Summing (I), (II), (III) together yields,

〈φ1(x1)φ1(x1)〉(2) = `2−D Γ(α)

2πα+1

∞∑
L=0

µ2`6−Dρσ2σ3 (L)− `2(δM2
1 )− L(L+ 2α)(δφ1)

(λLσ1)
2

(104)

which we simplify,

〈φ1(x1)φ1(x1)〉(2) = `2−D Γ(α)

2πα+1

∞∑
L=0

Π(L)

(λLσ1)
2
(L+ α)Cα

L (105)

Π(L) being the dimensionless self-energy de�ned as,

Π(L) = µ2`6−2Dρσ2σ3(L)− `2(δM2
1 )− L(L+ 2α)(δφ1) (106)
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and �nally putting this into its simplest form,

〈φ1(x1)φ1(x1)〉(2) = `2−D Γ(α)

2πα+1

∞∑
L=0

f(L)(L+ α)Cα
L(L) (107)

with f(L) being de�ned accordingly,

f(L) :=
µ2`6−Dρσ2σ3 (L)− `2(δM2

1 )− L(L+ 2α)(δφ1)

(λLσ1)
2

=
Π(L)

(λLσ1)
2

(108)

4.3 Watson-Sommer�eld transformations applied to perturbative

corrections

With all of our shorthand notation now de�ned, we can now implement the Watson-

Sommer�eld transformation, transforming our corrections using some kernel function and

integrating around some contour, C, in order to analytically continue this to the Lorentzian

signature using Watson Sommer�eld transformation [10]. This contour has poles ∀L ∈ N0,

〈φ1(x1)φ1(x1)〉(2) = −2

∮
C

dL

2πi
f(L)(L+ α)∆L(Z12) (109)

Our contour of integration may be shifted away from our curve C to a new contour Γ

to the line ΓP whereby the real part of our momentum lies on the line −α, choosing the

contour to pass on the left side of the poles we will encounter. There will be multiple poles

acquiring their residues. The poles lie at,

L = σ1, −(σ1 + 2α), L = n, L = −(n+ 2α) for n ∈ N0 (110)

The �rst two are simple poles coming from our distribution of ∆L(Z) the last two being

double poles in (λLσ1)
2 as well as simple poles arising from the spectral function in complex

plane L,

L = σ1 + σ2 − 2n, −σ1 + σ2 − 2n, +σ1 − σ1 − 2n, −σ1 − σ2 − 4α− 2n (111)
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However, relatively few poles are acquired when we deform our contour accordingly C →

Γ. This will be a�ected whether our φi's are in the complementary or principal series

[10, 11, 22, 23]. For the complementary series case, if just φ1 is in the complementary

series our pole is at L = σ1 with our mass lying between, −α < σ1 < 0. If σ2 and σ3 lie

in the complementary series, our poles lie at L = σ2 + σ3, and L = σ2 + σ3 = 2, with the

range of masses lying in the −α < σ2 + σ3 < 0 and possibly −α < σ2 + σ3 − 2 < 0. In

these cases all poles lie to the right of the contour Γ. When φ1 is in the principal series,

both poles, L = σ1 and L = −(σ1 + 2α), are on ΓP . Our corrections to order O(µ2) are

then,

〈φ1(x1)φ1(x2)〉(2) = 2Res
[
f(L)(L+ α)∆L(Z12)

]
L=σ1,−(σ1+2α),(σ2+σ3),(σ2+σ3−2)

+2

∫
Γ

dL

2πi
f(L)(L+ α)∆L(Z12) (112)

The last three poles in the �rst line need not be considered unless Re(L) ≥ −α. Returning

to our example of φ1 being in the complementary case, the �rst term in our previous

equation will be just the residue computed at L = σ1,

R1 = 2Res
[
f(L)(L+ α)∆L(Z12)

]
L=σ1

(113)

Expanding this out we can rewrite it as,

R1 = − ∂

∂M2

[(
µ2Re[`4−Dρσ2σ3(σ(M2))]− (δM2

1 ) +M2(δφ1)
)]
M2=M2

1
(114)

The integral over our contour Γ is a little more di�cult however. We �rst let L = −α+ iν

so our integral,

I := 2

∫
ΓP

dL

2πi
(L+ α)f(L)∆L(Z12)

I =
i

π

∫ ∞
−∞

dν ν
[
f(−α + iν)∆−α+iν(Z12)

]
(115)
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Our contour is symmetric under complex conjugation so we can rewrite it so our integral

is real for real Z12.

I =
i

π

∫ ∞
0

dν ν
[
f(−α + iν)∆−α+iν(Z12)− f(−α− iν)∆−α−iν(Z12)

]
(116)

Expanding out, our counterterms cancel and we are left with just an expression in terms of

the propagator and the spectral function ρσ2σ3 , which is absolutely convergent. There

are also some simpli�cations owing to the fact that λ−α+iν,σ1 = λ−α−iν,σ1 as well as

∆−α+iν(Z12) = ∆−α−iν(Z12)

I =
iµ2`6−D

π

∫ ∞
0

dν
ν [ρσ2σ3(−α + iν)− ρσ2σ3(−α− iν)]

(λ−α+iν,σ1)
2

I = −2
µ2`6−D

π

∫ ∞
0

dν
νIm [ρσ2σ3(−α + iν)]

(M2
1 `

2 −M2
−α+iν`

2)2
∆−α+iν(Z12)

I = −2
µ2`2−D

π

∫ ∞
0

dν
νIm [ρσ2σ3(−α + iν)]

(M2
1 −M2

−α+iν)
2

∆−α+iν(Z12) (117)

In the case of φ1(x) being in the principal series with σ1 = −α + iτ for τ ∈ R, both poles

lie along ΓP . The residues sum to twice our result in the complementary case, 2R1. The

last case considered is when φ2 and φ3 have light enough masses, therefore lying in the

complementary series. We then specify to,

−α < σ2 + σ3 < 0 (118)

and perhaps also,

−α < σ2 + σ3 − 2 < 0 (119)

Deforming the contour, we encounter the poles L = σ2 + σ3, σ2 + σ3 − 2, whose residues

when evaluated give,

R2 = 2Res
[
f(L)(L+ α)∆L(Z12)

]
L=σ2+σ3

=
µ2`6−D

4πα+1(λσ2+σ3)
2
Γ

[
−σ2, σ2 + α,−σ3, σ3 + α

−σ2 − σ3, σ2 + σ3 + α

]

as well as,

×∆σ2+σ3(Z12) (120)
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R3 = 2Res
[
f(L)(L+ α)∆L(Z12)

]
L=σ2+σ3−2

=
µ2`6−D

πα+1(λσ2+σ3−2)2

α(σ2 + σ3 + 2α− 2)

σ2 + σ3 + α− 1

×Γ

[
1− σ2, σ2 + α− 1, 1− σ3, σ3 + α− 1

2− σ2 − σ3, σ2 + σ3 + α− 2

]
∆σ2+σ3−2(Z12) (121)

Our corrections to order O(µ2) are the sum of these residues,

〈φ1(x1)φ1(x2)〉(2) = R1 + P (I) +R2 +R3 (122)

The last two terms R2 and R3 exist only for −α < σ2 + σ3 < 0 and −α < σ2 + σ3− 2 < 0,

respectively; when their masses are su�ciently light. The P (I) represents that we are

taking the principal part of the branch whereby we are integrating poles that lie on the

axis. Our correlator in the Lorentz signature, 〈Tφ1(x1)φ1(x2)〉, is obtained by going from

Z12 → Z̃12 while our corrections 〈φ1(x1)φ1(x2)〉(2)
L is identical to our result for the Euclidean

save for Z12 → Z̄12. This is related to the spectral density we encounter with the Källén-

Lehmann representation,

〈φ1(x1)φ1(x2)〉(2)
L =

∫ ∞
0

dM2ρ(M2)∆M2

(Z12) (123)

We need to bring all terms in 〈φ1(x1)φ1(x2)〉(2) into a form whereby they are integrals over

our masses lying in the principal series. Our expression for I is by de�nition already in

this form, so the remaining terms, R1, R2 and R3 also need to be brought into this form.

These terms however, can brought into an integral over M2 by multiplying them by delta

functions.

4.4 Gegenbauer polynomials and normalisation

Gegenbauer polynomials Cα
L(Z) obey some useful relations so we de�ne AαL as the normal-

isation for our Gegenbauer polynomials integral,

AαLδ
LM :=

∫ 1

−1

dZ(1− Z2)α−1/2Cα
L(Z)Cα

M(Z)δLM (124)
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as well as the integral of three Gegenbauer polynomials with a common degree, in our case

denoted α. This integral de�ned as D(α;L,M,N),

D(α;L,M,N) :=

∫ 1

−1

dZ(1− Z2)α−1/2Cα
L(Z)Cα

M(Z)Cα
N(Z) (125)

which is non-zero only when,

J :=
L+M +N

2
∈ N0 (126)

where J is a natural number, giving us the form,

D(α;L,M,N) =
21−2απ

Γ4(α)
Γ

[
J + 2α, J − L+ α, J −M + α, J −N + α

J + α + 1, J − L+ 1, J −M + 1, J −N + 1

]
(127)

4.5 Spectral function calculations

For computing the spectral function, which di�ers from the spectral density [10], we incor-

porate the above restrictions of requiring J ∈ N and the triangle inequalities.

ΛLσ :=
2(L+ α)

λLσ
=

2(L+ α)

(L− σ)(L+ σ + 2α)
=

1

L− σ
+

1

L+ σ + 2α
(128)

ρσ1σ2 =
2πα+1

Γ(α)(L+ α)AαL

Γ2(α)

(4πα+1)2

×
∞∑

M=0

∞∑
N=0

ΛMσ1ΛNσ2

∫ 1

−1

dZ(1− Z2)α−1/2Cα
L(Z)Cα

M(Z)Cα
N(Z)

ρσ1σ2 =
Γ(α)

8πα+1(L+ α)AαL

∞∑
M=0

∞∑
N=0

ΛMσ1ΛNσ2D(α;L,M,N)

=:
1

8πα+1
Γ

[
L+ 1

α,L+ 2α

]
Sσ1σ2 (129)

where Sσ1σ2 is de�ned as,

Sσ1σ2 :=
∑
M,N

ΛM,σ1ΛN,σ2Γ

[
J + 2α, J − L+ α, J −M + α, J −N + α

J + α + 1, J − L+ 1, J −M + 1, J −N + 1

]
(130)
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L,M and N satisfy the triangle inequalities

|L−M | ≤ N ≤ L+M (131)

|L−N | ≤M ≤ L+N (132)

Following the previous prescription [10] we make a change of variables which allow us to

encapsulate the conditions.

G :=
−L+M +N

2
= J − L, K :=

L+M −N
2

= J −N (133)

Re-expressing Sσ1σ2 in terms of these new variables G and K yields,

Sσ1σ2 =
∞∑
G=0

L∑
K=0

ΛG+K,σ1ΛG+L−K,σ2Γ

[
K + α,L−K + α,G+ α,G+ L+ 2α

K + 1, L−K + 1, G+ 1, G+ L+ α + 1

]
(134)

Performing the sum over K �rst gives us,

H(L;G) :=
L∑

K=0

ΛG+K,σ1ΛG+L−K,σ2Γ

[
K + α,L−K + α,G+ α,G+ L+ 2α

K+, L−K + α

]
(135)

To treat this sum, previous literature has attempted to solve this problem by means of

contour integration in the complex K-plane. To do this our integral is multiplied by

π cot(πK), which has poles for K ∈ N0. This obeys the relationship

π cot(πK) = − cos(πK)Γ[−K,K + 1] (136)

Our contour integral I now becomes,

I := − 1

2πi

∮
∞
dK cos(πK)ΛG+K,σ1ΛG+L−K,σ2

Γ[K + α,L−K + α]

(K)L+1

(137)

with the contour of integration
∮
∞ chosen to be an arc where the modulus of momentum

is near in�nity. It is assumed σi 6= −α + Z so as to ensure poles do not overlap. This

integral has multiple simple poles at,

� K = 0, 1, ..., L from the (K)L+1 Pochhammer symbol for complex K
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� K = −α− n, n ∈ N0 coming a Γ(K + α)

� K = L+ α + n from the other Γ(L−K + α) in the numerator

� K = −G+ σ1 and K = −G− σ1 − 2α from ΛG+L,σ1

� Poles from the other ΛG+L−K,σ2 located at K = G+ L− σ2 and K = G+ σ2 + 2α

These will all sum to zero but nevertheless allow us to get a concrete answer for H(L;G).

The solutions to these poles are given, respectively as,

� The Pochhammer poles are chosen sum to −H(L;G) by construction

� The in�nite series cos(πα)×
∑∞

n=0 ΛG−n−α,σ1ΛG+n+L+α,σ2Γ
[
n+α,n+L+2α
n+1,n+L+α+1

]
� Another in�nte series cos(πα)×

∑∞
n=0 ΛG+n+L+α,σ1ΛG−n−L−α,σ2Γ

[
n+α,n+L+2α
n+1,n+L+α+1

]
�

π cos(πσ1)
sinπ(σ1+α)

× Λ2G+L−σ1,σ2 × Γ
[

G−σ1,G+L−σ1+α
G+L+1−σ1,G+1−σ1−α

]
+ (σ1 → −(σ1 + 2α))

�
π cos(πσ2)

sinπ(σ2+α)
× Λ2G+L−σ2,σ1 × Γ

[
G−σ2,G+L−σ2+α

G+L+1−σ2,G+1−σ2−α

]
+ (σ2 → −(σ2 + 2α))

combining these results yields,

H(L;G) =

[
π cos πσ1

sin(σ1 + α)
Λ2G+L−σ1,σ2Γ

[
G− σ1, G+ L− σ1 + α

G+ L+ 1− σ1, G+ 1− σ1 − α

]
+ 3 sym

]

+ cos(πα)
∞∑
n=0

[(ΛG−n−α,σ1ΛG+n+L+α,σ2 + ΛG+n+L+α,σ1ΛG−n−α,σ2)] (138)

where our 3-sym contains three terms referring to our original term save for the following

alterations: σ1 → −(σ1 +2α), σ1 ↔ σ2 and σ1 → −(σ2 +2α) with σ2 → σ1 simultaneously.

The rest of the function Sσ1,σ2 will involve computing the G-sum,

Sσ1σ2 =
∞∑
G=0

Γ

[
G+ α,G+ L+ 2α

G+ 1, G+ L+ α + 1

]
H(L;G) (139)

The in�nite series will give a term proportional to,
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∞∑
G=0

∞∑
n=0

[
(ΛG−n−α,σ1ΛG+n+L+α,σ2 + ΛG+n+L+α,σ1ΛG−n−α,σ2)

×Γ

[
G+ α,G+ L+ 2α, n+ α, n+ L+ 2α

G+ α,G+ L+ 2α, n+ α, n+ L+ 2α

]]
(140)

This is invariant under the transformation G↔ n as is our ΛG+n+L+α,σi although for G−n

in our Λ′s we pick up an additional minus sign, i.e.,

ΛG−n−α,σi = −Λn−G−α,σi (141)

giving each an overall (−1) under these transformations, which results in the double sum

vanishing and valid ∀α ∈ R as well as ∀σi ∈ C. This leaves us with our Sσ1σ2(L) being,

Sσ1σ2(L) =
π cos(πσ1)

sin (π(σ1 + α))

∞∑
G=0

[
Λ2G+L−σ1,σ2

×Γ

[
G+ α,G+ L+ 2α,G− σ1, G+ L− σ1 + α

G+ α,G+ L+ 2α, n+ α, n+ L+ 2α

]]
+ 3 sym (142)

We will be considering this in the case of α = 1, so it is useful to consider that in this case

it simpli�es down with the Γ-functions completely cancelling out and we are left with,

Sσ1σ2(L) =
π cos(πσ1)

sinπ(σ1 + 1)

∞∑
G=0

[Λ2G+L−σ1,σ2 + 3 syms]

Sσ1σ2(L) = −π cot(πσ1)
∞∑
G=0

[Λ2G+L−σ1,σ2 + 3 syms]

Sσ1σ2(L) = −π cot(πσ1)
∞∑
G=0

[
1

2G+ L− σ1 − σ2

+
1

2G+ L− σ1 + σ2 + 2
+ 3 syms

]

= −π
2

cot(πσ1)
∞∑
G=0

[
1

G+ L−σ1−σ2
2

+
1

G+ L−σ1+σ2+2
2

+ 3 syms

]
(143)

which can be rendered into the form of a digamma or ψ-function, which is de�ned by the
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derivative of the logarithmic gamma function,

ψ(x) =
d

dx
ln [Γ(x)] =

[
Γ′(x)

Γ(x)

]

and has several useful relations that listed in the appendix along with the unabridged

calculation, which we employ. Recalling that our spectral function, ρσ1σ2 , just contains a

prefactor the spectral function ρσ1σ2 is,

ρσ1,σ2 =
1

8πα+1
Γ

[
L+ 1

α,L+ 2α

]
Sσ1σ2 (144)

which for α = 1 gives us,

ρσ1σ2 =
1

8π2

1

L+ 1
Sσ1σ2 (145)

which put in its simplest form becomes,

ρσ1σ2 =
1

16π(L+ 1)

[(
sin(π(σ1 + σ2))

sin(πσ1) sin(πσ2)
ψ

(
L− σ1 − σ2

2

)
+ σ syms

)
+ 2π

]
(146)

where our σ syms is σ1 → −(σ1 + 2α), σ1 ↔ σ2 and �nally σ1 → −(σ2 + 2α) with σ2 → σ1

in conjuncture. We observe that it is in agreement with prior work [10]. This means that

our dimensionless self free energy in α = 1 will be,

Π(L) = µ2ρσ2σ3(L) (147)

where because D = d + 1 = 3 our counterterms are not needed as IR divergences do not

arise in the α = 1 case. We wish to compute ρσ2,σ3 for an interaction of the form found in

�gure 4.1 and when we compare this with the literature for our α = 1 case, specialising to

σ2 = σ3 = −1
2
,

ρ− 1
2
,− 1

2
=

1

8(L+ 1)
(148)

This will be the case that we use when extending to calculations of the spectral density

in both the complementary and principal series. This is because the term will contain our
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dimensionless self energy de�ned above. For our case for α = 1 and σ2 = σ3 = −1
2
will be,

Π(L) =
µ2

8(L+ 1)
(149)

4.6 Generalising to n-loop chain diagrams

While the main focus of this body of work concerns the spectral density at the one-loop

level, it is possible to extend this to any number of loop diagrams. To do this we make

several assumptions, �rstly that the loop is mediated by σ2 and σ3 noting that the identical

particle case will have a symmetry factor of two to our coupling µ. The second is we are

simply working in α = 1 and therefore can neglect our counter terms.

σ1

−µ−µ

σ3

σ1

σ2

y2′y2

−µ−µ

σ3

σ1

σ2

y1′x1 y1

σ3

−µ−µ

σ1 σ1

σ2

yn′yn x2
· · ·

· · ·

Figure 10: Summing over n-loop diagrams of σ1 being mediated by σ2 and σ3. For σ2 = σ3

we get a symmetry factor of two with our coupling.

Using the relationships de�ned previously for the spherical harmonics, there will be 2n

δ-functions which will simplify our calculation enormously. With n-loops we will have
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(n+ 1)-propagators and again we specialise to α = 1.

〈φ(x1)φ(x2)...φ(xn)〉 = `−1
∑
−→
L

Y−→
L

(x1)Y ∗−→
L

(x2)

λLσ1

∞∑
n=0

[
`2µ2ρσ2σ3(L)

λLσ1

]n
(150)

where again the full derivation of this is found in the appendix. This can be simpli�ed

down as a �nal summation over n, and making use of the relations for spherical harmonics,

shown above, gives us

〈φ(x1)φ(x2)...φ(xn)〉 =
1

2π2`

∞∑
L=0

L+ 1

λLσ1 − µ2ρσ2σ3
C1
L(Z12) (151)

our de�nition for f(L) being,

f(L) =
1

λLσ1 − µ2ρσ2σ3
(152)

Putting this all together in the Källén-Lehmann spectral representation, we �nd that,

〈φ1(x1)φ1(x2)〉(2) = `−1
∑
−→
L

Y−→
L

(x1)Y ∗−→
L

(x2)

λLσ1 − µ2ρσ2σ3

=

∫ ∞
0

dM2

2π
ρ(M2)

∑
−→
L

1

L(L+ 2α) +M2 − µ2ρσ2σ3
Y−→
L

(x1)Y ∗−→
L

(x2) (153)
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4.7 Summary

In summary, we have reviewed the work found in [10] for computing perturbative cor-

rections to propagators in de Sitter space. Our motivation is to apply this machinery to

the spectral density at the one-loop level, computing it in both the complementary and

principal series. Through reviewing Gegenbauer polynomials and the digamma function in

conjunction with the techniques of Watson-Sommer�eld transformations can we see how

propagators can be recast as contour integrals in the complex plane. We then computed

the spectral density function, ρσ2σ3 , not to be confused with the spectral density, for the

case of α = 1 �nding it in agreement with previous results [10]. As was shown, this spec-

tral function is related to the dimensionless-self free energy which we require in order to

compute the spectral density for the case of α = 1 in the next chapter.

Lastly, we made attempts to extend this to the n-loop level which as was shown pre-

sented several challenges in the Lorentzian regime. We leave this as an open question as

to why e�orts to extend this prove challenging.
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5 Computing the spectral density in the complementary

and principal series

Now we arrive at the focus of our work, computing the spectral densities in both the

lighter, complementary series, and, heavier �elds, in the principal series. We will present

our calculations in the d-dimensional form before restricting ourselves to the case of

α = (D − 1)/2 = d/2 = 1 and σ2 = σ3 = −1
2
.

We present these results for the spectral density and comment on its nature compar-

ing it with the �at space case. We also �nd, for the complementary series, an interesting

result which appears to be in con�ict with previous results [10, 14, 19, 21] and support

arguments found in [11, 23].

5.1 Complementary

C

Γ

L

−α X X X X

Figure 11: Contour in the complementary series picking up only one pole as it is deformed.

In the complementary series M2`2 < 1, we deform our contour away from the poles for

L = 0, 1, ... and we change the direction of the curve Γ resulting in us multiplying by −1.
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X X X X

C

Γ

L

−α

Figure 12: Contour in the complementary series with the direction reversed.

〈φ1(x1)φ1(x2)〉 = −2

∮
C

dL

2πi

L+ α

λLσ1 − Π(L)
∆L(Z12) (154)

for the simple case for illustration where Π(L) = 0 we just get,

〈φ1(x1)φ1(x2)〉 = −2

∮
C

dL

2πi

L+ α

(L− σ1)(L+ σ1 + 2α)
∆L(Z12)

〈φ1(x1)φ1(x2)〉 = +2× σ1 + α

2σ1 + 2α
∆σ1(Z12) = ∆σ1(Z12) (155)

which is just the propagator. Returning to the case at hand, where Π(L) = µ2`6−2Dρσ2σ3 6=

0 in the complementary series our one-loop propagator has the form,

〈0|φ1(x1)φ1(x2)|0〉 = −2

∮
C

dL

2πi

L+ α

λLσ1 − Π(L)
∆L(Z12)

〈0|φ1(x1)φ1(x2)|0〉 = 2 lim
L→L0

(L− L0)(L+ α)

λLσ1 − Π(L)
∆L0(Z12)

+2

∫ − d
2

+i∞

− d
2
−i∞

dL

2πi

L+ α

λLσ1 − Π(L)
∆L(Z12) (156)
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The �rst term corresponding to the �rst term in equation (2.11) [8, 10]. L0 is our pole

encountered at,

L0 = −α +
√
M2

0 `
2 − α2 (157)

The location of poles can be computed exactly, but this is quite lengthy and perturbative

corrections give us simpler results. The exact locations of the poles have been calculated,

using Vieta's substitution method, and are found in the appendix. We have that, to O(µ2),

λLσ1 − Π(L) = L(L+ 2)− σ1(σ1 + 2)− µ2

8(L+ 1)

λLσ1 − Π(L) = L(L+ 2)−−σ1(σ1 + 2)− µ2

8(σ1 + 1)
− µ2

8

[
1

L+ 1
− 1

σ1 + 1

]
simplifying we get,

λLσ1 − Π(L) = (L− L0)(L+ 2 + L0) +
µ2(L− σ1)

8(L+ 1)(σ1 + 1)
(158)

where L0 is,

L0 = σ1 +
µ2

16(σ1 + 1)2
(159)

Therefore, we have that,

λLσ1 − Π(L) ≈ (L− L0)(L+ 2 + L0)
µ2

8(σ1 + 1)2
(L− L0)

λLσ1 − Π(L) = (L− L0)

[
L+ 2 + L0 +

µ2

8(σ1 + 1)2

]
(160)

Applying this to 5.3 we get,

= 2 lim
L→L0

(L− L0)(L+ 1)

(L− L0)
[
L+ 2 + L0 + µ2

8(σ1+1)2

]

=
2
[
σ1 + µ2

16(σ1+1)2

]
2
[
σ1 + µ2

16(σ1+1)2

]
+ µ2

8(σ1+1)2

≈ 1

1 + µ2

8σ1(σ1+1)2

≈ 1− µ2

8σ1(σ1 + 1)2
(161)
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For now we return to the second term in equation (5.3) where we will be able to gen-

erate an expression for the spectral density. In order to �nd the spectral density in the

complementary series, we �rst decompose the integral into two parts over the space.

2

∫ − d
2

+i∞

− d
2
−i∞

dL

2πi

L+ α

λLσ1 − Π(L)
∆L(Z12) = 2

∫ − d
2

+i∞

− d
2

dL

2πi

L+ α

λLσ1 − Π(L)
∆L(Z12)

+2

∫ − d
2

− d
2
−i∞

dL

2πi

L+ α

λLσ1 − Π(L)
∆L(Z12) (162)

Making a change of variables L = iLE − α will allow us to form this into the Källén-

Lehmann spectral representation leaving our integrand as a function of L for simplicity,

2

∫ − d
2

+i∞

− d
2
−i∞

dL

2πi

L+ α

λLσ1 − Π(L)
∆L(Z12) = 2

∫ ∞
0

dL

2π

iLE
λL,σ1 − Π(L)

∆L(Z12) (163)

+2

∫ 0

−∞

dLE
2π

iLE
λLσ1 − Π(L)

∆L(Z12) (164)

We then make use of the fact that the second term is invariant under the transformation

iLE → −iLE and rearranging our limits to yield,

2

∫ − d
2

+i∞

− d
2
−i∞

dL

2πi

L+ α

λLσ1 − Π(L)
∆L(Z12) = 2

∫ ∞
0

dL

2π

iLE
λL,σ1 − Π(L)

−2

∫ ∞
0

dLE
2π

−iLE
λLσ1 − Π(L)

∆L(Z12)

2

∫ − d
2

+i∞

− d
2
−i∞

dL

2πi

L+ α

λLσ1 − Π(L)
∆L(Z12) = 2

∫ ∞
0

dLE
2π

iLE

[
1

λL,σ1 − Π(L)
− 1

λL,σ1 + Π(L)

]
∆L(Z12)

2

∫ − d
2

+i∞

− d
2
−i∞

dL

2πi

L+ α

λLσ1 − Π(L)
∆L(Z12) = 4

∫ ∞
0

dLE
2π

iLE

[
Π(L)

λ2
L,σ1
− Π(L)2

]
∆L(Z12) (165)

Recalling that our values of L must range over all values of,

L = −
(
d

2

)
+

[(
d

2

)2

−M2`2

]1/2

= −α + i
[
M2`2 − α2

]1/2
(166)

therefore our variable LE now will range over,

LE =
(
M2`2 − α2

)1/2
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dLE =
`2dM2

2 (M2`2 − α2)1/2
(167)

where our variable will be changed once more, this time to M2 to put it into the Källén-

Lehmann spectral representation. Therefore our function will now be of the form,

2

∫ − d
2

+i∞

− d
2
−i∞

dL

2πi

L+ α

λLσ1 − Π(L)
∆L(Z12) = i`2

∫ ∞
`−2

dM2

4π

[
µ2

8i(M2`2−1)2

`4(M2 −M2
1 )2 + µ4

(64(M2`2−1))

]
∆M2

(Z12)

so we get,

2

∫ − d
2

+i∞

− d
2
−i∞

dL

2πi

L+ α

λLσ1 − Π(L)
∆L(Z12) =

∫ ∞
`−2

dM2

2π

[
8`2µ2(M2`2 − 1)1/2

64`4(M2 −M2
1 )2(M2`2 − 1) + µ4

]
∆M2

(Z12)

(168)

again specifying α = 1, σ2 = σ3 = −1
2
and recalling our calculation for Π(L) use Π(L) =

µ2/8(L+1) = µ2/8iLE, for the speci�c α = 1 case. Putting this all together, our two-point

function when we recombine with the �rst term has the form,

〈φ1(x1)φ1(x2)〉 =

∮
C

dL

2πi

L+ 1

λLσ1 − Π(L)
∆L(Z12)

+

∫ ∞
`−2

dM2

2π

[
8`2µ2(M2`2 − 1)1/2

64`4(M2 −M2
1 )2(M2`2 − 1) + µ4

]
∆M2

(Z12)

(169)

Therefore our spectral density, ρ(M2), for the case where α = 1, σ2 = σ3 = −1
2
will have

the form,

ρ(M2) =
8`2µ2(M2`2 − 1)1/2

64`4(M2 −M2
1 )2(M2`2 − 1) + µ4

(170)

for M2`2 < 1.
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M 2

ρ(M 2)

`−2

Figure 13: Graph of the spectral density in the complementary case in de Sitter space. It

exhibits the delta function from one-particle states and continuous spectrum after `−2.

From (5.8) we determine therefore that, for the complementary case we have,

µ2

8σ1(σ1 + 1)2
= `2

∫ ∞
l−2

dM2

4π

8µ2(M2`2 − 1)1/2

64(M2`2 − 1)`4(M2 −M2
1 )2 + µ4

(171)

The right hand side will be just equal to one if we are in the principal series where,

M2
1 > `−2.

This behaves remarkably similar to the stable case in �at spacetime. There has been

an ongoing debate about particle stability and particle decay in de Sitter space. Some ar-

gue that the concept of particle stability is not present in de Sitter space at all [10, 19, 21],

while others argue that in the case of the complementary series, we �nd that particle sta-

bility is possible, before a certain critical mass (mc) [11, 23]. This work appears to support

the latter argument although we must stress that, working in α = 1 specifying to the

case, σ2 = σ3 = −1
2
, we are very tightly constrained and beyond this case our results may

change.
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5.2 Principal series

Now we compute the spectral density for heavier masses lying in the principal series. Due

to the perturbative corrections we will not cross any poles. Our work here will only focus

on the shift in λLσ1 .

C

L

X X X X

Γ

−α

again changing the direction of our contour therefore introducing an overall minus sign,

C

L

X X X X

Γ

−α

Here our masses lie in the range,

σ = −α + iν (172)

for ν ∈ R, ν ≥ 0. From our de�nition of our dimensionless mass parameter, we can obtain
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a value of ν,

σ = −α +
(
α2 −M2`2

)1/2

σ = −α + i
(
M2`2 − α2

)1/2
= −α + iν (173)

The location of the poles which lie in the principal series is shifted in such a way that

we never encounter the poles as we deform our contour away from C1 to Γ. Our spectral

density for α = 1, σ2 = σ3 = −1
2
is therefore given as,

ρ(M2) =
8`2µ2(M2`2 − 1)1/2

64`4(M2 −M2
1 )2(M2`2 − 1) + µ4

(174)

however, this time M2`2 > 1, so this changes the nature of the spectral density. We pass

close to the pole while never actually encountering it. Our spectral density therefore grows

very large as it nears the pole but remains �nite. We note that this looks similar to our

unstable �at space case.

`−2

ρ(M 2)

M 2

Figure 14: Graph of the spectral density in the principal series in de Sitter space. We pass

close to the pole while never actually encountering it. Our spectral density becomes very

large at the pole, but never reaches in�nity.
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5.3 Summary

To conclude, we have, by restricting ourselves to the case of α = 1, computed the spec-

tral density to O(µ2) noting the qualitative and quantitative di�erences for our two cases

where the mass lies in both the complementary and principal series. We note that the

calculations made in these cases appear to give very di�erent behaviour for the spectral

density. In the principal series, we note that it behaves very similar to the unstable case

we examined in �at space.

However, in the complementary series, we �nd that it behaves very similar to the sta-

ble �at space scenario. There have been two competing arguments about the nature of

particle stability in de Sitter space developing recently. One argument put forward postu-

lates that all particles behave like the unstable �at space case in both complementary and

principal series cases [10, 14, 19, 21]. The other, con�icting argument put forth is that in

the case of the complementary series, for certain masses the concept of particle stability is

possible and the spectral density behaves like the stable �at space case [11, 23, 27]. Our

work appears to support the latter argument and in moving forward it would be interesting

to see how our result would be a�ected by expanding our work beyond the α = 1 case.

Our calculation here points out a mathematical fact, which in our simple set up can be

naively interpreted as stability of scalar particles with lower masses and some coupling in

D = 3. It remains unclear as to the physical interpretation of this because we do not know

how to extract physics from the spectral density function in de Sitter space. Given more

time we would have liked to consider the wider implications of this result.
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Conclusions

In conclusion, we have studied aspects of scalar �eld theory in �at space as well as de Sitter

to gain a better understanding of the spectral density functions in de Sitter space. In de

Sitter due to the lack of a globally timelike Killing vector �eld, there is no notion of positive

de�nite energy conservation [7, 9, 10, 11, 19, 23]. Physically this means that particles in

de Sitter space can decay into heavier daughter particles. We examined scalar �elds with

cubic interactions in de Sitter space and the spectral density in de Sitter for a variety of

masses, also examining the UV divergences which arise in de Sitter. We presented the

relationship between the spectral density and the two-point function in �at space and how

it behaves in both stable and unstable particle cases in chapter 2.

In chapter 3, we presented an introduction to de Sitter space and reviewed work examining

large distance behaviour adapting it for our own investigations of the spectral density and

its behaviour in curved spacetime [10]. We showed how we analytically continue correla-

tion functions from Euclidean signature to Lorentzian signature quantum �eld theory. We

presented how we get equations of motion and how they can be solved in terms of spher-

ical harmonics on the D-sphere. We then explained the process of Watson-Sommer�eld

transformations and how we used them to obtain forms for the propagators in the complex

L-plane.

We then moved to computing perturbative corrections in de Sitter space ranging over

both the lighter, complementary series, and heavier �elds lying in the principal series,

while choosing to ignore discrete or tachyonic masses and how we compute the spectral

function, ρσ2σ3 , and its relation with the spectral density, ρ(M2). This was done for the

case of α = 1 where we neglected our counterterms, at the one-loop level. As an extension

we also expand this to n-loop chain diagrams. E�orts to extend this into the Lorentzian

signature proved di�cult and we leave this an open problem in de Sitter as well as the

reason why this proves challenging.

Finally, we presented some numerical calculations of the spectral density making con-
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servative approximations and specifying some values for isolated cases. We computed the

spectral density function in both complementary and principal series representations high-

lighting the qualitative and quantitative di�erences for the case of α = 1, σ2 = σ3 = −1/2.

We observed that the spectral density appears to behave similar to the stable case in �at

space when working in the complementary series and like that of the unstable (�at space)

case when working in the principal series. Investigations into this are highly speci�c, and

moving beyond our case of α = 1 we must acknowledge and stress that not only the con-

sideration of UV divergences, but also other dynamics, may complicate matters further in

the physical picture developed here.

There has been some debate about particle stability in de Sitter space for the comple-

mentary and principal series cases which we have reviewed and commented upon. The

di�erence related to particle stability in the complementary series. Previous work has

claimed that particles in de Sitter space will decay in both the complementary and prin-

cipal series [10, 14, 19, 21, 26], but our work appears to support arguments made to the

contrary [11, 23, 27] referring to the behaviour in the complementary series.

It is the second argument which postulates that, for speci�c cases in the complemen-

tary series, it is indeed possible to recover the notion of particle stability in de Sitter space.

This is a hotly debated topic in the �eld and while they both agree for the principal series,

it is in the lighter masses case where the discrepancy lies. This can be observed from the

behaviour of our spectral density in both our cases and compared with that of the �at

space developed in chapter 2. As we showed in chapter 5, for the complementary series

case, we found the spectral density looks very similar to the stable �at space case contrary

to arguments made in [10, 21]. This points to the idea that we might be able to recover

the notion of particle stability in de Sitter space in the complementary series in agreement

with [11, 23, 27].

This result is rather surprising given that the machinery we have reviewed and developed

is put forth by those who argue against the result we obtain [10]. As stated previously,
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the lack of a globally timelike Killing vector �eld means that the notion of positive de�nite

energy conservation does not exist in de Sitter. Again we need to stress that we are simply

pointing out a mathematical fact, that can be interpreted, naively, as stability of scalar

particles in lower-mass, but non-zero, limit inD = 3 for a particular coupling. The physical

interpretation remains unclear as it is not clear how to extract physics from the spectral

density function in de Sitter space. Given more time we would have liked to consider the

wider implications of this result. As previously stated, we note that this may be a feature

of the approximations made in our calculations with the restrictions we have imposed. It

would be interesting to consider whether this is an artefact of the assumptions we have

made, or is a genuine physical feature of de Sitter space for lower-masses scalar particles

in the complementary series.
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Appendix

Computing the spectral function

with the ψ-function is de�ned as

ψ(x) =
d

dx
ln [Γ(x)] =

[
Γ′(x)

Γ(x)

]

with some useful properties we employ,

ψ(x+ 1) = ψ(x) +
1

x

= −γ +

∫ ∞
0

[
e−t

t
− e−xt

1− e−t

]
dt (175)

where γ is the Euler?Mascheroni constant.

ψ

(
3

4
− n

)
= ψ

(
1

4
+ n

)
+ π (176)

∞∑
n=0

[
1

n+ a
− 1

n+ b

]
= ψ(a)− ψ(b) (177)

After employing these we are rendered a solution of the form,

Sσ1σ2(L) = −π
2

cot(πσ1)
∞∑
G=0

[
1

G+ L−σ1−σ2
2

+
1

G+ L−σ1+σ2+2
2

+ 3 syms

]
(178)
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expanding out our 3-syms getting,

Sσ1σ2(L) = −π
2

cot(πσ1)
∞∑
G=0

[
1

G+ L−σ1−σ2
2

+
1

G+ L−σ1+σ2+2
2

+ 3syms

]

= −π
2

cot(πσ1)

[
ψ

(
L− σ1 − σ2

2

)
− ψ

(
L− σ1 + σ2 + 2

2

)

+ψ

(
L− σ1 − σ2 + 2

2

)
− ψ

(
L+ σ1 − σ2

2

)]

−π
2

cot(πσ2)

[
ψ

(
L− σ1 − σ2

2

)
− ψ

(
L− σ1 + σ2 + 2

2

)

+ψ

(
L− σ1 + σ2 + 2

2

)
− ψ

(
L− σ1 + σ2

2

)]

= −π
2

sin(π(σ1 + σ2))

sin(πσ1) sin(πσ2)

[
ψ

(
L− σ1 − σ2

2

)
− ψ

(
L− σ1 + σ2 + 2

2

)

+ψ

(
L− σ1 + σ2 + 2

2

)
− ψ

(
L− σ1 + σ2

2

)]

= −π
2

sin(π(σ1 + σ2))

sin(πσ1) sin(πσ2)

[
ψ

(
L− σ1 − σ2

2

)
− ψ

(
L− σ1 + σ2 + 2

2

)
+ψ

(
L− σ1 + σ2 + 2

2

)
− ψ

(
L− σ1 + σ2

2

)
+π cot

[
π

(
L+ σ1 + σ2 + 2

2

)]
− π cot

[
π

(
L− σ1 + σ2 + 2

2

)]
+ 2π

]
(179)

using the relationship between Sσ2σ3 and ρσ1σ2 which put in its simplest form becomes,

ρσ1σ2 =
1

16π(L+ 1)

[(
sin(π(σ1 + σ2))

sin(πσ1) sin(πσ2)
ψ

(
L− σ1 − σ2

2

)
+ σ syms

)
+ 2π

]
(180)
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Computing n-loop chain diagrams

= `−1
∑
−→
L 1

Y−→
L 1

(x1)Y ∗−→
L 1

(y1)

λL1σ1

· `
∑
−→
L ′1

µ2ρσ2σ3(L
′
1)Y−→

L ′1
(y1)Y ∗−→

L 1
(y′1)

×`−1
∑
−→
L 2

Y−→
L 2

(y′1)Y ∗−→
L 2

(y2)

λL2σ1

· `
∑
−→
L ′2

µ2ρσ2σ3(L
′
2)Y−→

L ′2
(y2)Y ∗−→

L ′2
(y′2) · · ·

· · · × `−1
∑
−→
Ln

Y−→
Ln

(y′n−1)Y ∗−→
Ln

(yn)

λLnσ1
· `
∑
−→
L ′n

µ2ρσ2σ3(L
′
n)Y−→

L ′n
(yn)Y ∗−→

L ′n
(y′n)

×`−1
∑
−→
Ln+1

Y−→
Ln+1

(y′n)Y ∗−→
Ln+1

(yn)

λLn+1σ1

using the relations for spherical harmonics developed in chapter 3 and 4,

= `−1
∑
−→
L

Y−→
L

(x1)Y ∗−→
L

(x2)

λLσ1
× 1

1− µ2ρσ2σ3
λLσ1

= `−1
∑
−→
L

Y−→
L

(x1)Y ∗−→
L

(x2)

λLσ1 − µ2ρσ2σ3

= `−1

∞∑
L=0

1

λLσ1 − µ2ρσ2σ3
× 2(L+ 1)

4π2
C1
L(Z12)
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Exact location of the poles

Vieta's substitution

The exact location of the pole must satisfy the cubic equation,

L3 + 3L2 + (2− 2σ − 8σ2
1)L− 2σ1 − 2σ2

1 −
µ2

8
= 0 (181)

where for some cubic satisfying,

z3 + a2z
2 + a1z + a0 = 0 (182)

by the substitution,

z = x− a2

3
(183)

our cubic takes the following form,

x3 + px− q = 0 (184)

with p and q being,

p = a1 −
a2

2

3

q =
a1a2

3
− a0 −

2a3
2

27
(185)

We then make the substitution known as Vieta's substitution which allows our cubic to be

rendered into the form of a quadratic which we then can solve for our pole L0,

x = ω − p

3ω
(186)

giving us,

ω3 − q − p3

27ω3
= 0→ (ω3)2 − qω3 − p3

27
= 0

ω3 =
q

2
+

√(q
2

)2

+
(p

3

)3

(187)
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therefore ω is just,

ω =
3

√
q

2
+

√(q
2

)2

+
(p

3

)3

(188)

in order to return to the original pole z0 in terms of the variables p and q, the second term

for our formula for x can be expressed as,

−p
3

27
=

3

√
q

2
−
√(q

2

)2

+
(p

3

)3

(189)

Exact location of poles

The location of our poles will be therefore be,

z0 =
3

√
q

2
+

√(q
2

)2

+
(p

3

)3

+
3

√
q

2
−
√(q

2

)2

+
(p

3

)3

− a2

3
(190)

The pole in the �rst term L0 of equation (5.3) is found as,

L0 = −1 +

3

√(
µ2

8
+ 16

9

)√
1
4

(
µ2

8
+ 16

9

)2

+ 1
27

(−σ2
1 − 2σ1 − 1)

3

3
√

2

+
3

√√√√√1

4

(
µ2

8
+

16

9

)2

+
1

27
(−σ2

1 − 2σ1 − 1)
3

+
1

2

(
µ2

8
+

16

9

)
(191)

In the second term, we get our pole, denoted L
(2)
0 , from the second term of the two-point

function, which has the same form as the solution for the �rst term save for our p and q

as,

p = 2H2M2
1 −

1

3

(
H2 + 2M2

1

)2
+ (M2

1 )2

q = − 1

64
H6µ4 +H2(M2

1 )2 +
1

3

(
H2 + 2M2

1

) (
2H2M2

1 + (M2
1 )2
)
− 2

27

(
H2 + 2M2

1

)
(192)
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where H is the Hubble parameter and the pole lies at,

L
(2)
0 = −1 + 2−1/3

[(
H2(M2

1 )2 − 2/27(H2 + 2M2
1 ) + 1/3(H2 + 2M2

1 )(2H2M2
1 + (M2

1 )2)

−
(H6µ4

64

))
+
[ 1

27

(
2H2M2

1 −
1

3

(
H2 + 2M2

1

)2
+ (M2

1 )2

)3

+
1

4

(
− 1

64
H6µ4

+H2(M2
1 )2

+
1

3

(
H2 + 2M2

1

) (
2H2M2

1 + (M2
1 )2
)
− 2

27

(
H2 + 2M2

1

) )2]1/2
]1/3

+

[
1

2

(
− 1

64
H6µ4 +H2(M2

1 )2 +
1

3

(
H2 + 2M2

1

) (
2H2M2

1 + (M2
1 )2
)
− 2

27

(
H2 + 2M2

1

))
+
(

1/27(2H2M2
1 + (M2

1 )2 − 1/3(H2 + 2M2
1 )2)3

+1/4(H2(M2
1 )2 − 2/27(H2 + 2M2

1 ) + 1/3(H2 + 2M2
1 )(2H2M2

1 + (M2
1 )2)

−(
H6µ4

64
))2
)1/2

]1/3

(193)
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