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Abstract 

Flooding is a serious natural disaster in urban areas. Moreover, the 

consequences of land use change and rainfall can affect the flood process in 

urbanised catchments. Fluvial flooding can be seen at downstream locations 

due to the high and fast discharge from sub-catchments. In addition, pluvial 

flooding can be seen at settlements are situated on the floodplains by river 

channel at downstream locations, due to the impermeable surfaces and 

insufficient drainage capacity. Therefore, the combined pluvial and fluvial 

flooding can be observed on the floodplains of urban stream basins. 

Although, flood risk can be severe for these places, research on combined 

fluvial and pluvial flooding is very rare. 

One of these places is Wortley Beck catchment, Leeds, UK. To observe the 

interaction between fluvial and pluvial flooding, the floods were modelled for 

different land-use scenarios and rainfall events for an urbanised and 

ungauged catchment. The inflow hydrographs and rainfall hyetograph were 

designed by using the ReFH rainfall-runoff method. 1D and 2D 

hydrodynamic models were used to simulate fluvial and pluvial flooding. 

The outcomes were peak flow values and probabilistic inundation maps with 

maximum water depth values. The peak flow values were used to 

investigate the relationship of return period between rainfall and flow by 

using the FEH statistical model. The effects of the land use change and 

rainfall on the flood risk were observed from the maps. In addition, the flood 

extent of combined pluvial and fluvial flooding was observed from these 

maps. Water depth values in the inundation area by combined flooding were 

computed. Hence, fluvial flooding in combination with pluvial flooding was 

observed to have a higher flood risk in the urban stream basins. These 

outcomes can be used to manage flood risk due to land use change in the 

future for ungauged catchments by National and Local Governments. 
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Chapter 1 Introduction 

Changes in watershed hydrology may affect the catchment water balance 

thus causing, as a result, adverse hydrological events such as a flooding 

and droughts (Weng, 2001). Flood events can be observed when a normally 

dry land is inundated. Magnitude, frequency, and duration are fundamental 

parameters for consideration of the effect of a flood event. The parameters 

that govern a flood event are varied, uncertain, and very difficult to estimate. 

For instance, a flood event can re-occur at irregular intervals and with 

varying magnitude and duration. It means that to predict with accuracy the 

timing and magnitude of any particular flood event in a given location is a 

significant challenge. Furthermore, the consequences of flood events may 

depend heavily on floodwater depth, return period, the location of the 

inundated area and the length of the event itself. These add that the 

designing of appropriate (i.e. offering sufficient protection for acceptable 

cost) flood defences is difficult (Jha et al., 2012).  Moreover, there are 

several reasons why flooding occurs, for example, flooding may be the result 

of natural circumstances, human actions or, very often, a combination of 

both (Calder and Aylward, 2006). In addition, within a particular catchment, 

one or more of several types of flooding processes and their combinations 

can often be observed namely: fluvial flooding, coastal flooding, pluvial 

flooding, and groundwater flooding (Thorne, 2014). Any or all of these flood 

events can have negative effects on residences, sewerage systems, 

agriculture and the economy and these may be anywhere on the planet 

(Marsh et al., 2016). Consequently, to manage the flood events, flood 

frequency and consequences are the primary parameters to examine. Both 

the frequency and the consequences of flooding are affected by future 

changes in land use and climate (Ashley et al., 2005). 
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Flooding is possible in anywhere in the world, where it rains, and it is a 

significant risk worldwide (Guha-Sapir et al., 2016). Flooding is often 

described as being the most dangerous natural disaster (MunichRe, 2015). 

Guha-Sapir et al. (2014) reported that nearly 10000 people were killed from 

flooding in 2013 in the world. Furthermore, the most frequent natural disaster 

has been flooding specifically, between in 1994 and 2013 years (UNISDR, 

2015). Flooding is the most frequent disasters in Asia also (Budiyono et al., 

2015). In addition, the flooding happened in 2014/2015, 2013/2014, 2009, 

2007, 2006, 2000/2001, 1998, 1995, 1990, 1986, 1982, 1974, and 1968 

years at the regional scale in the UK (Marsh et al., 2016). 

In all of these cases, there is a significant impact on the economy in all over 

the world. Floods are one of the biggest reasons for the economic losses 

from the natural disasters (UNISDR, 2009). Annual economic losses from 

natural disasters decreased between 2003 and 2012 years in all areas, 

except flooding. Estimates of the cost of flood damage have been put at US$ 

53.2 billion in 2013 in the world (Guha-Sapir et al., 2014). Similarly, the cost 

of property damage is high. More than 5 million properties can be at flood 

risk in the UK (Thorne, 2014).  It is clear that expense has increased sharply 

due to the effects of flood damage. The budget can be expected to rise 

because annual damage of flooding could increase in the future (CCRA, 

2012). Besides the economic cost of flooding, consequences of flooding can 

also cause of disruption of daily life, industrial and agricultural production 

(Pitt, 2008). During and after flooding, life routine can be disrupted in both 

urban and rural areas. For instance, flooding can cause disruptions in 

transportation or water supply system (Rafiq et al., 2016), e.g. the water 

supply and electrical system were not functional for a while following the July 

2007 floods in the UK (Pitt, 2008). Similarly, some residences were left 

without power because of the flood event on the Christmas 2013 in the UK 

(Thorne, 2014). A further potentially more widespread effect could occur in 

the form of diseases and discomfort trauma (Ahern et al., 2005). For 

instance, Malaria and leptospirosis diseases can spread because of 

contamination after flooding (Hammond et al., 2013). Lastly, cultural heritage 

can also be damaged by the flooding (Nedvedová and Pergl, 2013).   
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The rainfall-runoff process in urban areas is that during or immediately after 

the precipitation event, rainfall can enter the subsurface by infiltration 

through permeable surfaces in parks and gardens, storm runoff can be 

conveyed by sewer system and discharged into river channel. The rainfall-

runoff process in urbanised catchment may depend heavily on the 

magnitude of a rainfall event, the capacity, quantity of the permeable 

surfaces, and the effectiveness of the sewer system in the city (Dawson et 

al., 2008; Rafiq et al., 2016). 

When climate change and urbanisation are incorporated into this process, 

the consequences of flooding can be much serious in the future. The 

magnitude of the rainfall event can be a major contributory factor of flood risk 

in the UK (Marsh et al., 2016) while climate change is expected to increase 

the rainfall intensity and frequency and thus the magnitude (Waters et al., 

2003). Therefore, climate change can affect the magnitude of flood risk. For 

instance, 1 % AEP river flood can increase 20% from 2025 year to 2115 

year in England due to the climate change (DCLG, 2010).   

In addition, urbanisation is constantly expanding in terms of space and 

population density throughout the world. Population is expected to rise to 6.3 

billion in 2050 in urban areas (Nations, 2014), due to the economic growth, 

employment opportunities, better living standards, and education in cities 

(Turok and McGranahan, 2013). Therefore, land use in cities is changing 

from green fields and permeable areas to the impervious areas by building 

residential areas, roads, highways, roofs, pavements, car parks, industrial 

places and asphalt surfaces (Cheng and Wang, 2002; Evans et al., 2008; 

Abdullah, 2012) by Governments, city councils and businessmen. The 

increased ratio of impervious surfaces on previously rural land, (due to the 

urbanisation process of a watershed), increase the volume of water runoff, 

and flood peak, or reduce the infiltration, and the time of catchment 

response (Weng, 2001; Cheng and Wang, 2002; Abdullah, 2012). In fact, it 

is common to see ephemeral ponds on the low-level surface during high 

rainfall. 
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This urban surface water becomes a flood, when it is too deep, extensive or 

it stays too long i.e. does not drain or is not managed (Shi et al., 2007; 

Wheater and Evans, 2009; Du et al., 2015).  

Capacity and performance of the infrastructure systems rarely can manage 

heavy runoff in streets effectively. The performance of a sewer system can 

have a significant impact on the flood management in the cities. When the 

surface runoff cannot be managed by the sewer system due to being 

overwhelmed with water, the runoff process can become a flooding situation 

(Dawson et al., 2008).  For example, debris, rubbish inside of the pipe 

system can affect the capacity of the sewer system. Furthermore, some 

infrastructure systems are designed as combined storm water and sewerage 

system. These can be resulting in that the infrastructure system struggle to 

manage and to collect surface runoff in the streets along with the sewage, so 

that pluvial flooding can occur as local flooding or backup events in urban 

areas (WMO and GWP, 2008; Abdullah, 2012; Rafiq et al., 2016). According 

to OFWAT (2002), in the UK, 16,000 settlements have been identified as at 

risk of being affected by the 10-year return period of a sewer flooding, which 

means that pluvial flood is a high risk for these places. Whatever the 

capacity issue is with existing infrastructure systems, maintenance and 

upgrading of the systems to increase their performance are never cheap or 

easy. Impermeable surfaces, the lack of sewer system and growth of 

population in the flood-prone areas have the significant influence on flood 

incidents in urban watershed. These have resulted in flooding becoming a 

serious problem in cities all over the world (Jha et al., 2012). Some of the 

cities that have been particularly affected are Bangkok, Dhaka, Jakarta, and 

Kuala Lumpur (Abdullah, 2012). In the cities, the management of the factors 

of urban flood risk is becoming an emergency mission. Climate change and 

urbanisation can increase the risk to assets and population that are the 

exposure to floods in urban areas. Therefore, climate change and 

urbanisation can be considered the primary factors of concern for the future 

for predicting flood events in urban areas (Merz et al., 2010; Yin et al., 

2015).  
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Besides the climate change and land use change factors, the combination of 

flood events can be added into the strategies of flood risk management to be 

addressed in urban areas (Cheng and Wang, 2002; Re, 2005; Dawson et 

al., 2008; Evans et al., 2008; WMO and GWP, 2008; Ten Veldhuis, 2010; 

Singh and Singh, 2011). 

Various flood events such as coastal flooding, fluvial flooding, pluvial 

flooding, and their combinations can be observed in urban areas due to the 

location (Ten Veldhuis, 2010). Coastal flooding can happen, where the cities 

are settled by a coastline, at high sea water levels. Fluvial flooding can 

happen, where the cities are settled by a tributary, by overflowing of 

riverbanks (Burton et al., 2010). Furthermore, the processes of these flood 

events can have a relationship. Therefore, a combined flood event can incur 

from the combination of these various floods in urban areas. More than one 

simultaneous flood events can be observed such as, overwhelmed urban 

stream channel and coastal with high sea levels, or tidal and surface runoff 

(Ten Veldhuis, 2010; Lian et al., 2013; Thorne, 2014; House of Commons, 

2015).  Flood events such as those in the UK in winter 2013/14 were results 

of a variety of combinations of tidal, rainfall, river, and groundwater source 

(Thorne, 2014). Asian mega-cities are prone to the combination of flood 

events due to their extraordinary urban growth by river channels and their 

monsoonal rainfall events (Chan et al., 2012), these resulting in both pluvial 

flooding and fluvial flooding, and are being observed either consecutively or 

coincidentally in these locations. Similarly, in tropical regions in smaller 

towns and cities the annual monsoon, local intensive precipitation events are 

observed (and predictable) and often result in both fluvial and pluvial 

flooding occurring at the same time (Apel et al., 2015). Chen et al. (2010) 

and Apel et al. (2015) pointed out that the reason of a fluvial flooding is 

heavy rainfall in upstream locations while the reason for pluvial flooding is 

intense precipitation in the local area. 

The process of the combined pluvial and fluvial flooding in urban areas can 

be explained as that. Historically, people have settled near the rivers. 

Settlements have been built on the floodplains thus impermeable surfaces 

have rapidly grown up along the rivers (Evans et al., 2008).  
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Urbanisation on the floodplains such as farmland, forested land can reduce 

the land’s ability to retain rainfall thus the generation of surface runoff and of 

discharge from the sub-catchments may increase (WMO and GWP, 2008; 

Du et al., 2015).  

These lowland locations also have a potential to have riverine flooding 

(WMO and GWP, 2008; Hammond et al., 2015). These locations are usually 

low cost, so become subject to being impacted by the spatial distribution of 

population. This situation is likely to encourage more settlements on the 

floodplains (WMO and GWP, 2008). Therefore, the urban drainage system 

cannot manage runoff after an intense rainfall event and pluvial flood events 

can occur in these locations. Consequently, intensive precipitation on 

saturated soil and impervious surfaces, an excessive flow load within a 

sewer/storm water system, also an overwhelmed river channel with 

inadequate flood defence structures on the floodplains in urban stream 

basins can cause combined pluvial and fluvial flooding.  

In general, the impact of the fluvial and pluvial flood events are analysed 

separately. Studies considering the combined effects of fluvial and pluvial 

flooding in detail are very few (Apel et al., 2015; Breinl et al., 2015). 

Furthermore, Chen et al. (2010) and Ashley et al. (2005) implied that the 

effects of the combination of fluvial and pluvial flood events can be severe 

than their individual potential effects. Burton et al. (2010) added that if 

simultaneous flood events are analysed separately, the hazard could be 

underestimated.  

Briefly, as land use change, population and climate change parameters are 

considered for urbanised catchments, flood frequency and magnitude of 

flood damage can be expected at significant level in the future (Ten 

Veldhuis, 2010).   All these aspects make flood resilience approaches to be 

insufficient in the future. Therefore, the urban flood risk might have 

assessment priority alongside other natural disasters (Winsemius et al., 

2013). The primary challenges can be to predict the process of the urban 

flood event, to construct resilient infrastructure, and to update these 

approaches (Hammond et al., 2015).  
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Probabilistic approaches can be applied to adapt flood inundation analysis 

with future growth taken into account in the urbanised catchments (Yanyan 

et al., nd.; Thompson and Frazier, 2014).  

These strategies are not likely to be low cost and can require long-term 

adaptation plans, and various vulnerability assessments (Budiyono et al., 

2015) by local and national planning boards. To apply flood defence 

strategies with the long-term adaptation plans estimation of the future flood 

risk is always required. Adaptation scenarios can be created to define these 

risk factors by setting up the hydrology models, hydraulic models, and flood 

damage assessment models (Yanyan et al., nd.).  

In conclusion, changes in water balance in a watershed can cause flood 

events. Magnitude, frequency, and duration of flood events have many 

uncertainties. These facts make difficult the estimation of flooding. Flooding 

is one of the most dangerous natural disasters. Urban areas are most prone 

to flooding. These locations have many more frequent flood events, severe 

damage, destruction of the properties and the human life than rural areas. In 

addition, the effects of the land use change and climate change on the flood 

processes can have multiple and changing aspects. Due to urbanisation and 

climate change, the ratio of saturated surfaces decreases and with high 

rainfall magnitude, surface runoff cannot be managed by the sewer system 

in the cities. These can result in various flood events and their combinations 

in urban areas. Old-style and single-line wall flood defences of a single flood 

event can be recognised as ineffective for these events. Moreover, it is clear 

that the definition and understanding of the interdependencies of the flood 

processes are essential to developing the flood defence systems. In 

addition, the analysis of the frequency, magnitude, and interaction of any 

flooding are required for the advanced and predictive assessment of the 

urban flood risk. As a consideration of this, Sustainable Urban Drainage 

Systems (SUDS) as a toolbox of solutions might be useful to attenuate 

runoff. 

All of the above contribute to the easily drawn conclusion that urban flood 

risk assessment deserves priority amongst the other natural disasters. 

National and local governments have an imperative to achieve the balance 
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between urbanisation and vulnerability to flooding due to the economic 

growth and population in cities. To manage the land use change and to 

adapt to the climate change are essential approaches to analyse and 

mitigate the consequences of flood risk. It is important to note that the 

influence of climate change and urbanisation on the relationship between 

direct runoff generation and flood risk are not straightforward. Therefore, 

significant research is needed and ongoing in this area. To update and 

modify strategies of the flood risk management for the future and the variety 

of flood events will always be necessary.   

1.1 Research framework 

1.1.1 Aim 

The aim of this research is to assess the urban flood risk to enrich the 

mitigation approaches of the adverse flood consequences in urban areas of 

local government agencies. 

1.1.2 Objectives 

To reach the aim the below objectives have been set, 

1. To analyse the impact of land use changes on flood risk in urban basins. 

2. To analyse the impact of rainfall events on flood risk in urban basins. 

3. To develop a method to assess the interactions between the fluvial and 

pluvial flood events in urban basins. 

All research was undertaken at the representative urban catchment, Wortley 

Beck catchment, Leeds, UK. 

1.1.3 Research methodology 

This section gives a brief explanation of the methodology of this research.   

The case study was developed for Wortley Beck catchment. Wortley Beck 

catchment has three sub-catchments. These are Farnley, Farnley Wood, 

and New Farnley basins. Wortley Beck catchment is an ungauged and 

urbanised catchment. The flood risk of the Wortley Beck catchment was 

analysed by simulating three flood processes. These were fluvial flooding, 

single event, and pluvial flooding. 
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The probabilistic flood events were simulated by using hydrodynamic 

models. One- dimensional (1D) hydraulic model was used to simulate river 

system of the Lower Wortley Beck. Flood Modeller Suite (v 3.7.0) software 

was used for this simulation. Flood Modeller Suite software was developed 

by CH2MHILL and was benchmarked by the Environment Agency.  Flood-

prone areas of the Wortley Beck catchment were simulated by using a two-

dimensional (2D) hydrodynamic model. Two-dimensional Unsteady FLOW 

(TUFLOW, 2013-12-AD-w64) software was used for this simulation. 

TUFLOW was developed by BMT. 

The urban flood risk can be assessed based on the results of the 

simulations. The outcomes from this research can be used to improve urban 

flood resilience tools in Wortley Beck catchment. In this study, the sewer 

system is neglected neither pluvial nor fluvial, due to its limited capacity in 

the hydraulic flood simulations. 

A.) Modelling of fluvial flooding  

To assess the impact of the discharge at the outfall of the sub-catchment on 

the downstream fluvial flood risk, fluvial flood event simulation was 

undertaken. 

The following methodology steps were used to simulate the probabilistic 

fluvial flood events at the Lower Wortley Beck, Leeds, UK, 

1. The inflows from Farnley Beck and Farnley Wood Beck basins were 

estimated for different return periods, by using the Revitalised Flood 

Hydrograph (ReFH) model. 

2. A coupled 1D-2D hydrodynamic model was set up. 

B.) Modelling of single event simulation  

To assess the impact of the peak flow at the outfall of a sub-catchment on 

the downstream fluvial flood risk, single event simulation was undertaken. 

The maximum discharge was used to display the surface runoff at the 

upstream basin. The peak flow at the outfall of a sub-catchment was 

modelled as a lateral flow in the river system. New Farnley sub-catchment 

was assessed and utilised for this approach. 
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The following methodology steps were used to simulate the probabilistic 

single event at the Lower Wortley Beck, Leeds, UK,  

1. The Rational model was used to calculate peak flows for various return 

periods. 

2- A coupled 1D-2D hydrodynamic model was set up. In addition to the 

inflows, lateral flow was integrated within the fluvial system of the Lower 

Wortley Beck. 

C.) Modelling of pluvial flooding 

To assess the surface flood risk in the Wortley Beck catchment, a direct 

rainfall-runoff model was set up. 

The following methodology steps were used to simulate the probabilistic 

pluvial flood events at the Wortley Beck catchment, Leeds, UK, 

1. A net event hyetograph was estimated by using the Revitalised FSR/FEH 

loss model. Rainfall events were produced by using the Flood Modeller Suite 

ReFH boundary framework. 

2. Rainfall-runoff process was simulated by using a 2D hydrodynamic model. 

3. Surface runoff was modelled for permeable and impermeable surfaces. 

4. Peak flows were computed from various rainfall events. 

D.) Calibration  

Calibration process was carried out by using measured rainfall and water 

level data.   Measured rainfall data set was taken from Headingley, 

Knostrop, and Heckmondwike rain gauges stations. The water level data 

was taken from Pudsey stage gauge station. The data sets were supplied by 

the UK Environment Agency and Met office in 2016 for this research. 

E.) Probabilistic flood inundation maps 

It was essential to produce flood inundation maps for a range of annual 

exceedance probability (AEP) to identify vulnerability of regions within this 

urban area, which could then be translated to reach generalizable 

conclusions on the effect of other urban areas. Probabilistic flood inundation 

maps with water depth were produced by using the outcomes of the 
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hydrological and hydraulic models simulations. These maps were used to 

identify the flood vulnerable areas in the research areas. Hydrodynamic 

model was linked geographic information system (GIS) tool to produce these 

maps by using LiDAR data and the master map of the catchment. 

Catchment surface was investigated by using the LiDAR data, and Master 

Map. The data sets and surface roughness parameters were supplied by the 

UK Environment Agency and Leeds City Council for this research. 

Background of the probabilistic flood inundation map was created by using 

the ordnance survey 1:25 000-scale colour raster in this research.  

1.1.4 Research steps  

The below research steps were taking to reach the objectives.  

Fluvial and pluvial flood processes in urbanised catchments were simulated 

in this research. The flood events were designed by using the following 

parameters: different ranges of land use scenario, rainfall duration, and 

annual exceedance probability. 

1. The impact of land use change (urban developments, SUDS) on the flood 

risk were analysed in this research.  

2. The impact of rainfall events on the flood risk were analysed in this 

research. 

3. The interaction between fluvial and pluvial flood drivers on the floodplains 

of urban stream basins was assessed in this research. 

Step 1. Analysis of the impact of the land use change on flood risk in 

urban basins 

The impact of the land use change (urban developments, SUDS) on flood 

risk was analysed by adjusting the ratio of impermeable surfaces. Thus, the 

effects of the impermeable surfaces on surface runoff and on outflow 

discharge of the sub-basin could be examined. This also means that the 

impacts of the land use on the downstream flood risk could be observed.  

The ratio of the impermeable surface was adjusted by using URBEXT 

parameter. The URBEXT is a catchment descriptor parameter, which refers 

to the extent of urban and suburban land cover for a specific year.  
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The URBEXT was used to calculate different urban growth ratios of various 

years in this research. 

Step 2. Analysis of the impact of rainfall events on flood risk in urban 

basins  

Climate change is expected to affect rainfall events. The effects of rainfall 

events on pluvial flooding and downstream fluvial flooding were investigated 

in this research. The rainfall event analysis was performed by using various 

rainfall durations and return periods in this research.  

The Wortley Beck catchment is an ungauged catchment. Therefore, the 

flood events were designed from the rainfall-based hydrological model. 

Catchment response time is used to estimate rainfall duration in this 

research. The link between rainfall event and flood risk can be determined 

by using assessments of the catchment response time. 

Step 3. Assessment of the interactions between the fluvial and pluvial 

flood events in urban basins 

To assess the interaction between the fluvial and pluvial flooding in urban 

basins, various fluvial and pluvial flood events were simulated. In addition, 

the combined fluvial and pluvial flooding on the floodplains of urban stream 

basin was analysed. 

Firstly, the fluvial flood events at the Lower Wortley Beck area were 

designed. Secondly, the single event simulations were modelled to 

understand the impact of the lateral flow on the downstream fluvial flood risk. 

Thirdly, the pluvial flooding was designed on the Wortley Beck catchment. 

Lastly, the combined fluvial and pluvial flood events on the floodplains of the 

Lower Wortley Beck were modelled.  

The interaction between fluvial and pluvial flooding in the urban areas was 

investigated by using the below approaches. 

1. Assess the fluvial flood model and single event simulations, 

2. Assess independent fluvial flood events and pluvial flood events,  

3. Determine the relationship between the return period of the rainfall and 

the return period of the flow, 
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4. Assess the combinations of the pluvial and fluvial flood events on the 

floodplains of the Lower Wortley Beck.  

The interaction between the fluvial and pluvial flood events on the 

floodplains was determined by using flood frequency, flood extent, flow 

values, and water depth parameters. The probabilistic flood inundation maps 

and water level results were used to present the independent and dependent 

relationship between fluvial and pluvial flooding. 

3.1) Assessment of the fluvial flood model and single event simulations 

The probabilistic fluvial flood events were simulated to observe the Lower 

Wortley Beck fluvial flood extent. Inflow event hydrographs of the Lower 

Wortley Beck were estimated for Farnley Beck and Farnley Wood Beck sub-

catchments of the Wortley Beck catchment. Probabilistic single flood events 

were simulated to observe the impact of the peak discharge at the outlet of 

New Farnley Beck basin on the Lower Wortley Beck fluvial flood extent. In 

addition to the inflow hydrographs, the lateral flow was integrated within the 

simulations. These simulations were designed for various return periods and 

urbanisation scenarios. The advantage of this method is to analyse the 

interaction between surface runoff in the upper catchment and river flow at 

the downstream.  

Limitation of this method can be that lateral flow was applied as constant 

during the simulation. However, the lateral flow and inflow of the fluvial flood 

event could have different time durations and peak time.  

3.2) Assessment of independent fluvial flood events and pluvial flood 

events, 

1. Fluvial flooding and pluvial flooding were modelled by using various return 

periods.  

2. The probabilistic flood inundation maps with water depth scale were 

produced by using the results of the simulations.  

3. The common flood-prone areas were observed for a specific return 

period. 
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The advantage of this method is to design various pluvial and fluvial flood 

events in Wortley Beck catchment. A limitation of this method is that the 

interaction between pluvial and fluvial flood risk cannot be captured in detail. 

3.3) Determination of the relationship between the return period of 

rainfall events and the return period of flows 

The Regional (Pooled) approach of the statistical flood estimation method 

was applied to determine the return period of flows from the specified return 

period of rainfall events. 

A rainfall-runoff model was set up to analyse flood frequency for an 

ungauged catchment, by using 2D TUFLOW hydrodynamic model. The 

advantage of the usage of 2D TUFLOW for a rainfall-runoff model is that it is 

capable of computing the flow over the whole period at selected locations in 

the research area for each rainfall events. This application was very suitable 

to compute peak flow in the ungauged catchment. 

3.4)  Assessment of the combinations of the pluvial and fluvial flood 

events on floodplain 

The interdependency of pluvial and fluvial flooding has been discussed for 

the Lower Wortley Beck area in this research. The combined fluvial and 

pluvial flooding was simulated by using the 2D direct rainfall model link with 

the river channel in Lower Wortley Beck area. Inflow hydrographs of the sub-

catchments of Wortley Beck and net rainfall hyetograph of the Lower Wortley 

Beck area were integrated within the simulations. Thus, the flood extent with 

water depth of the combined fluvial and pluvial flooding on the floodplains of 

the Lower Wortley Beck can be simulated and observed. 

Probabilistic flood inundation maps with water depth scales were used to 

display the flood-prone locations from combined fluvial and pluvial flood 

events on the floodplains of the Lower Wortley Beck area.  

According to this approach, various combined fluvial and pluvial flood events 

can be simulated. In addition, the consequences of the combined flood 

events can be observed. 
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1.2 Wortley Beck catchment 

The research area is Wortley Beck catchment. This catchment is located in 

the south-west of Leeds, UK. The basin is approximately 63 km2 and drains 

into the River Aire. The catchment consists in Farnley Beck, New Farnley, 

and Farnley Wood Beck sub-catchments (Figure 1.1).This catchment is 

ungauged and urbanised. 

 

Figure 1.1 Wortley Beck catchment 

1.2.1 Flood risk in Wortley Beck catchment 

Flood alert areas of the Wortley Beck catchment can be found in Figure 1.2. 

This area has been flooded since 1886 (Atkins, 2004). Historically, Wortley 

Beck catchment was flooded in 1946, 2005, 2007 (Hope, 2011). Moreover, 

Atkins (2004) informed that flooding occurred at the Farnley Wood Beck and 

Farnley Beck basins in 1946, on September 1993, December 2000, and 

August 2002.  

In addition, in the Christmas period, in 2015/2016, approximately 1,000 

homes were flooded in Leeds as the Aire River overtopped its banks (Marsh 

et al., 2016). 
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Figure 1.2 Flood alert areas of the Wortley Beck catchment 

Flood risk assessment of the Lower Wortley area was the focus of this 

research. This location was selected because there are important 

settlements, industrial areas, state buildings, and transportation links (Ring 

Road, M621 Road) in the flood alert areas. In addition, there are new built-

up areas along the route of the Lower Wortley River. Lastly, there are two 

critical important structures in this area. These are Farnley Flood Storage 

Reservoir and culvert. 

A.) Flood risk before Farnley Flood Storage Reservoir 

Figure 1.3 is a historic flood map and shows the historical flooding location 

upstream the Farnley flood storage reservoir. The historic flood data was 

provided by the Environment Agency. The area was labelled as ‘1’ is at the 

junction of Wood Road and Pudsey Road. The area was labelled, as ‘2’ 

shows above the Farnley reservoir (Figure 1.3). The reason for the flooding 

of this location could be reservoir has overtopped. 
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Figure 1.3 The historic flood map 

1.2.2 Farnley flood storage reservoir 

Farnley flood storage reservoir was built to manage the flood risk in the 

Lower Wortley Beck area by attenuating flows for a 15-year return period. 

However, this reservoir is not efficient in its present state because it filled 

with silt, rubbish, and sediments (Figure 1.4 and 1.5). In order to use it with 

original capacity, it should regularly be cleaned and maintained, which is 

very expensive and difficult.  
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Figure 1.4 Farnley flood storage reservoir picture 1 

 

 

Figure 1.5 Farnley flood storage reservoir picture 2 
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1.2.3 Culvert and backwater effect 

A culvert is located at the junction of the Ring Road and M621, in the Lower 

Wortley Beck area. The capacity of the culvert is generally not sufficient for 

the flow. Culvert can be blocked so the backwater effect can be observed. 

1.2.4 Flood risk assessment in the Wortley Beck catchment 

The first flood risk assessment of Wortley Beck catchment report was 

produced by Atkins, in 2004. This report analysed the 18.0 km length area 

by using unsteady one-dimensional hydrodynamic model. Atkins- Transport 

Solutions Warrington - Survey Department completed a topographic survey 

in October 2003 for this report. Outcomes of this survey were used to 

determine the hydraulic characteristics of the channels such as roughness 

values, the physical properties of cross section and hydraulic structures. The 

hydraulic model was version 2.2 of the Flood Modeller Suite (ISIS) one-

dimensional model. Farnley Flood Storage Reservoir and culvert were built 

to manage the flood risk. However, the reservoir and culvert could have 

limited capacity for the flow. There could be backwater risk in the area. 

Potential flood risk was found at the Ring Road in Lower Wortley. The model 

could not be calibrated. Some recommendations of this study were to have a 

measured data to calibrate the model, to update the topographic survey 

data, to maintain regularly the hydraulic structures and to update the 

URBEXT values to analyse the impact of urban growth on the flood risk 

(Atkins, 2004). 

Another report was prepared by the Thomas Mackay Ltd as required by 

PPS25. The flood level and extent were examined in this report because 

flood risk was severe at the Farnley Beck basin. Hydrological data, 

topographical data, roughness values of the cross sections, and 1D model 

schematisation were the same as Atkins (2004)`s research. The 1m 

resolution LiDAR data of Environment Agency was used in this research. 

The research area was visited on 22 July 2010 for this research. The Flood 

Modeller Suite (1D ISIS version 3.4) model was linked to the TUFLOW 2D 

model to simulation. Ordnance Survey Master Map with scale 1:10000 was 
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used to model 2D domain of the research area. The 2D domain 6.7 km2 area 

was modelled with a cell size of 5 metre.  

The downstream of the model was at the River Aire. Flood extents maps 

were produced for a fixed time step of 1 second in the 1D domain and 2 

second in the TUFLOW 2D domain. Lastly, the model could not be 

calibrated (Jepps, 2011). This report recommended that hydrological 

assessment should be updated (Jepps, 2011). 

Consequently, the reports recommended a further research for the Wortley 

Beck catchment to update the fluvial flood risk assessment. The updates 

could contain in calibration the model, in a new survey data, or in a high 

resolution updated topographical data. 

1.2.5 The suitability of Wortley Beck catchment with the research 

purpose  

Wortley Beck catchment is an urban stream basin. There are some 

settlements and population along the route of the river. In addition, this 

location has built-up areas. Moreover, the ratio of impermeable surfaces has 

increased on the floodplains. Therefore, the catchment has several levels of 

both fluvial and pluvial flood risk. In addition, the combination of fluvial and 

pluvial flood event can be observed more often than the present in the 

future. The consequences of flood events will be much serious. Lastly, 

updated information is necessary to manage the future flood risk for Wortley 

Beck catchment. 
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Chapter 2 Literature review 

2.1 Existing combination methods of fluvial and pluvial 

flooding 

In this section, the evaluation of methodologies for assessing combined 

fluvial and pluvial flooding is presented. 

Flooding can be observed from multiple causes and sources, which may 

affect individually or in some combined way. To disregard the combined 

flood events can cause failures of flood defences (Burton et al., 2010). In 

publications, fluvial flooding is mostly investigated (Moncoulon et al., 2014) 

with more recently pluvial flooding is incoming of interest, but the combined 

fluvial and pluvial flooding is a very new approach in literature (Breinl et al., 

2015). Furthermore, the papers have discussed the different combinations of 

coastal, tidal, fluvial, pluvial, and groundwater flooding; and by using 

procedures mostly based on Monte-Carlo analysis, the joint probability of 

tidal and fluvial flooding (Apel et al. 2006; Chen et al., 2010; Lian et al., 

2013).  

The approaches of previous papers that investigated the combined fluvial 

and pluvial flooding can be listed as that. 

Burton et al. investigated the combined hazard of fluvial and pluvial flooding 

for the South East London Resilience Zone (SELRZ) in 2010. The nested 

modelling approach provided datasets for simultaneous analysis of pluvial 

and fluvial flooding. Both disaggregated rainfall data and upstream discharge 

were applied into the urban inundation hydraulic model to assess both 

pluvial and fluvial flooding. This simulation and analysis were performed by 

using two-dimensional non-inertial overland flow model (Burton et al., 2010). 

Rainfall data was estimated by using climate projections. The methodology 

of the climate projections based on the UKCP09 future climate scenarios for 

the 2050s. The discharge was estimated by using hourly rainfall data and 

then, was entered into the fluvial flood model. The disaggregated rainfall 

data at 15-minute on a 2 km resolution, (and finer spatial-temporal 

resolution), was entered into the hydraulic model of pluvial flooding. 
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Horton Soil infiltration was applied to calculate the runoff on rural areas. 

Sewer drainage loss was applied to the runoff in urban areas (Burton et al., 

2010). 

In summary, Burton et al. (2010) investigated the combined hazard of fluvial 

and pluvial flooding in an urbanised catchment. Rainfall dataset was 

produced with consideration climate change. Combined hydraulic and 

hydrological modelling approach was used for simulations of flooding. The 

nested modelling approach was recommended to provide input datasets for 

both pluvial and fluvial flooding analysis. 

Chen et al. (2010) investigated both pluvial and fluvial flood events in 

Stockbridge area in Keighley (Bradford, UK), and stated that heavy rainfall 

could cause both pluvial and fluvial flooding in this area because it is both an 

urban and settled along the route of the River Aire. They simulated 

combined fluvial and pluvial flood events and compared the consequences. 

The combined peak river water level and rainfall were assessed in this 

research. 

Fluvial flood events with a return period of 200 years were set-up for 

hypothetical overtopping and breaching situations. The pluvial rainfall 

durations ranged from 15 minutes to 360 minutes with return periods from 1 

in 2 to 100 years. The SIPSON software was used to design 1D flow in the 

drainage system. While UIM software was used to model 2D overland flow 

for the surface flow simulation. The results of the composite flood events 

were used to identify the dominant factor that caused flood inundations in 

different parts of the research area. The results showed that the combined 

flood extents displayed greater flood inundation areas and depths than the 

results of a single type of flood event. 

In summary, Chen et al. (2010) studied the determination of the risk of the 

combined pluvial and fluvial flooding for settlements along the route of the 

river. Intense rainfall can cause both pluvial flood events because of the 

overwhelmed sewer system and can cause fluvial flooding because of the 

limited capacity of the river channels in urban areas. This situation is very 

similar to the combined flooding process in the Wortley Beck catchment as 

well. They recommended that the timing and the duration of the rainfall 
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events should be considered, in addition to the peak water level in flood 

inundation areas of composite flood events. This approach can make the 

parameter of the catchment response time very significant to evaluate the 

rainfall and discharge in a catchment. 

They recommended that the joint probability approach based on Monte 

Carlo could be used to analyse the combination flood risk in more detail. The 

main outcome of this research seems to be that the consequences of the 

combined flood events can be much serious than the consequences of a 

single type of flood event. This knowledge could be used to develop flood 

damage mitigation approaches much efficiently in the future. 

Horritt et al. (2010) suggested two different approaches to combine flood 

events. These are the fully integrated approach and the map combination 

approach. The different flood event sources were combined, and then routed 

along pathways to the risk receptors in the fully integrated approach. The 

different sources of flooding probability can be assessed at the same time by 

this approach (Horritt et al., 2010). In the map combination approach, 

common boundary conditions of the flood events of different sources were 

generated and were routed separately then probabilistic flood maps were 

combined. 

Horritt et al. (2010) aimed to combine different sources of a flood event, such 

as, river, coastal, surface water etc. into the single map with both the 

individual and combined probability of each of these events. Therefore, the 

outcomes, such as likelihood, extent, depth, velocities of flood events from 

different sources could be used by flood risk professionals, decision makers 

and the public to improve the flood risk assessment. 

The approach of the overlapped map can have a limitation for the evaluation 

of the independent sources and probability. Therefore, the fully integrated 

approach could be very useful to evaluate risk of combination flooding. 

Lian et al. (2013) investigated the effects of the combined rainfall and the 

tidal level in Fuzhou City, which is a coastal city. Lian et al. (2013) examined 

the joint impact of rainfall and downstream tidal level on flood risk in a 

coastal city with a complex river network. The effects of the combined rainfall 

and tidal levels with and without pumped flood relief systems on flood 
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probability were assessed. Rainfall events were derived based on the 10, 

20, 50 and 100-year return period and the hydrographs were estimated by 

using design rainfall events. A precipitation event and a typical tide event 

were selected and used as boundary condition for the simulation by using 

HEC-RAS software.  

In the analysis of the results, they introduced the joint probability method to 

examine the relationship between tidal floods and extreme precipitation. The 

results showed that a high tidal level is usually accompanied by heavy rains 

and this causes the greatest threat in Fuzhou to be from heavy rainfall 

events. However, the risk of both rainfall and tidal level exceeded their 

threshold is very low. In this methodology, the decision for the threshold 

could be very critical to assess the combination of the flooding. Lian et al. 

(2013) recommended investigating the joint of flood probability and 

consequence into a single risk function in the future in detail. 

Moncoulon et al. (2014) combined two independent probabilistic events 

involving overflowing rivers and surface water runoff due to heavy rainfall on 

the slopes of the watershed. They used a stochastic distribution of river 

discharges on the large catchments and a stochastic distribution of 

spatialized rainfall on the small catchments. Moncoulon et al. (2014) 

produced a distributed hazard model from the combined stochastic runoff–

rainfall and river routing models. River overflow and surface runoff were 

combined with a homogeneous approach. 

In this approach, to produce data for rainfall-runoff model and river routing 

model could be the hardest part. In addition, the length and the quality of the 

measured input data can be the most important part. 

Breinl et al. (2015) focused on finding the days of combined of fluvial and 

pluvial flooding so they developed a joint probabilistic modelling framework 

to simulate daily peak discharge and maximum hourly precipitation in the city 

of Salzburg (over 30 km2 area). Daily peak discharge was used to identify of 

the days of fluvial flooding, and maximum hourly precipitation was used to 

identify of the days of pluvial flooding. A stochastic Weather generator was 

used to produce daily precipitation, which was passed through a hydrological 

model to produce daily mean discharge, and subsequently daily peak 
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discharge. Daily precipitation was also converted into maximum hourly 

precipitation data. Occurrence critical thresholds of river discharge for fluvial 

flooding and extreme precipitation for pluvial flooding were studied to define 

and to examine combined fluvial and pluvial flood in this research (Breinl et 

al., 2015). 

The joint occurrence of fluvial and pluvial flooding was investigated by using 

long-term data. Breinl et al. (2015) estimated the probabilities of joint 

occurrence of fluvial and pluvial floods. In addition, they asked whether or 

not the days when fluvial or pluvial flooding occurred could be simultaneous 

and whether this could be analysed by using observational data. In this 

approach, the quality of the observed data of the flood days can be very 

important. 

They presented a joint probabilistic modelling framework to identify the 

combined fluvial and pluvial flood events days. The results showed that the 

days of the combined floods are rare. They pointed out that to define exact 

catchment response times is not easy, and to determine a certain threshold 

for flood days can be very complicated. In addition, the land use properties 

in the catchments have changed since urbanisation. They recommended 

that future research could focus on the definition of critical thresholds to 

define it better. 

Lastly, they mentioned that this method could be coupled with a hydraulic 

model to produce inundation maps and these maps could be used to assess 

the hazard from fluvial and pluvial flood events. This kind of approaches can 

be linked with the GIS tool as well to produce flood inundation maps. 

Apel et al. (2015) examined the combined fluvial and pluvial flood hazard in 

a set of joint flood events. The events were simulated by using the combined 

fluvial and pluvial flood events with the same individual probability of 

occurrence. The research area was the Mekong River basin that is in a 

tropical environment. Fluvial and pluvial flooding can be seen at the same 

time due to heavy local convective rainfall events during the annual 

monsoon season. However, the fluvial and pluvial flood events were 

assumed independent from each other even they were observed in the 
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same season. The probabilistic hazard maps were produced for both 

individual and combined hazard. 

A synthetic rainfall event was added at the time of the maximum water level 

of the fluvial boundary for per probability level of fluvial flood scenarios, to 

produce combined fluvial and pluvial flood hazard maps. Maximum 

inundation maps were produced to display the median maximum inundation 

depth for different probability levels from the 5% to 95%. 

In conclusion, based on the observations from the previous papers that 

investigated the combined fluvial and pluvial flooding, these can be said that; 

some research approaches consisted in rainfall data set as the input into the 

combined hydraulic and hydrological modelling approach. Furthermore, the 

combined flood events were investigated mostly to assess the hazard. 

Moreover, the studies mostly focused on the fluvial and pluvial events 

independently, also, fluvial and pluvial events were modelled separately. To 

model pluvial and fluvial flood events separately can cause to underestimate 

the hazard. Lastly, some flood extents of the different sources were 

observed by only overlapping the inundation maps. The assessment of the 

combined events by only overlapping the maps may not give realistic 

outcomes. 

The interdependency of pluvial and fluvial flooding has been discussed for 

urbanised catchments to identify the relationship between fluvial and pluvial 

flooding in this research. The combination of the fluvial flooding from urban 

streams and pluvial flooding on the settlements that lie on the floodplains of 

these streams are the main aspects of this research. 

If a dependency is determined and a relationship is assessed by fluvial and 

pluvial flood events in an urban stream basin, the inflow hydrograph and 

hyetograph must be considered with the land use change. It is crucial to 

examine the impact of rainfall duration, discharge from upstream basins and 

land use change of the floodplain on the flood processes to assess the 

combined flood risk. 
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2.2 Review of the methodology  

This section presents a review of the fundamental methodology that is used 

to estimate and simulate the flooding in ungauged catchments. 

2.2.1 Hydrological cycle in a watershed  

Water evaporates by heat, followed by vapor, which transpires from plants, 

and then condenses, after which precipitation can occur. During this cycle, 

some parts of precipitation may be intercepted by vegetation and be 

returned back into the atmosphere by evaporation. Some parts can be 

infiltrated by soil and be stored in the subsurface as groundwater. Later, the 

excess level in the water table can be discharged to fill rivers. Some 

precipitation can become runoff on saturated or impermeable surfaces 

(Buttle, 1998). 

Water balance in a watershed can be analyzed from precipitation, storage 

and discharge functions (Black, 1997). Analyzing the water balance is crucial 

for water management. The Parameters for consideration when analyzing 

the water balance can be agriculture, population growth, urbanization, and 

industrialization (Kumar et al., 2017). Climate change and change of land 

use can influence water quantity and the quality of the watershed hydrology, 

due to the relationship between water and heat transfer, in addition to the 

relationship between the land surface and atmosphere (Singh and 

Woolhiser, 2002).  

2.2.2 Rainfall-runoff process in a watershed 

Investigation of the amount of water in a catchment can be one of the 

primary scopes of the water management. This can be done by analysing 

rainfall (input) and discharge (output) in the water cycle (Davie, 2008).   

2.2.2.1 Rainfall  

Rainfall estimation is essential for rainfall-runoff modelling, watershed 

management, discharge estimation, and flood estimation (Keller et al., 

2015). The frequency of rainfall distribution can be estimated from measured 

data (Guo and Adams, 1998).  
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Rainfall data sets can be obtained from sources such as rain gauges, 

weather radar, or satellites. However, each of them has own errors and 

uncertainty (Brauer et al., 2016).  

The quality of measured rainfall data can be affected by the number of 

available rainfall gauge stations, its location, the elevation differences 

between the rain gauge and catchment, wind direction, and spatial 

distribution of the rainfall. It is important to consider these factors because 

errors in the rainfall data can cause errors when estimating the runoff (Smith, 

2006; Taesombat and Sriwongsitanon, 2009; Romanowicz and Kiczko, 

2016).  

2.2.2.2 Areal rainfall estimation procedure 

When rainfall data is measured from the rain falling at a point in a space, this 

is point rainfall estimation. However, mean rainfall estimation for the whole 

catchment is required for hydrological modelling (Lebel et al., 1987; Keller et 

al., 2015).  

Areal rainfall can be estimated by calculating the average rainfall depths of 

several point rain gauges by using arithmetic mean (Thiessen method, and 

Isohyetal method) (Tabios and Salas, 1985). Taesombat and 

Sriwongsitanon (2009) found that areal rainfall depths from isohyetal 

techniques are smaller than those are from the Thiessen polygon technique. 

However, the effects of topographical variation on the rainfall data cannot be 

analysed using the hypsometric method, isohyetal or Thiessen polygon 

techniques (Davie, 2008; Taesombat and Sriwongsitanon, 2009).  Keller et 

al. (2015) recommended using 1 km grids of daily and monthly rainfall data 

sets to estimate mean areal rainfall. This dataset can be used to calibrate 

the rainfall-runoff model. 

2.2.2.3 Runoff in a watershed 

Horton (1933) determined that surface runoff could be seen when rainfall 

events exceed the soil infiltration capacity. Green and Ampt (1911) stated 

that runoff could be calculated by subtracted infiltration from total rainfall. 

Storm runoff mechanisms can be different in each catchment (Davie, 2008). 
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Runoff is affected by rainfall duration, intensity, season, and catchment 

characteristics, such as catchment area, soil porosity, soil moisture, and land 

use material (Tarboton, 2003; Davie, 2008). Effective runoff can be 

calculated by subtracting hydrological loses from total rainfall. These losses 

could be caused by evaporation, depression storage loss, and infiltration 

losses (Guo and Adams, 1998; El-Kafagee and Rahman, 2011). Total 

infiltration loses consists of initial soil wetting and throughout the duration of 

the runoff event (Guo and Adams, 1998). Soil infiltration capacity can be 

affected by humid air conditions as well (Beven and Kirby, 1979). 

2.2.3 Flooding in a watershed 

Changes in water balance can cause flooding in a watershed. The reasons 

could be prolonged and intense rain, snowmelt, insufficient saturated 

surface, flood defence failure, or a combination of these reasons (Pilgrim 

and Cordery, 1993). 

2.2.4 Flood risk 

The flood risk must somehow be identified to improve the protection of land 

and communities in a catchment against flooding. Helm (1996) pointed that 

risk can be determined by analysing probabilities and consequences. Jones 

et al. (2004) determined the risk by analysing probabilities and 

consequences.  Further, Pitt (2008) defined the flood risk as combining the 

probability with the potential negative consequences of the flood event.  

Lastly, Chen et al. (2013) added that these two primary components must 

both be assessed properly in order to enable a full analysis of the risk of 

flooding. In summary, likelihood and the potential effects of flooding should 

be clearly understood to manage the flood risk and reduce the adverse 

impacts of flood events (Pitt, 2008). 

2.2.5 Land use change and flooding 

Land use change due to the human activity such as agricultural techniques 

(deforestation) and urbanization (population, industrial, residential buildings) 

in a watershed can have a significant impact on streams, rivers, and wetland 

(Guo and Adams, 1998). Urbanization could increase the direct runoff. The 

increase of the overland flow can increase the discharge. In addition, 

impervious areas of the watershed cause both a quick response to storms 
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and rapid fluctuations in the flow (Weng, 2001; Shi et al., 2007; Marshall et 

al., 2009). This kind of water movement with high rainfall intensity in a 

watershed can cause increased flooding events (Cheng and Feng, 1994). 

Land use change has an impact on downstream flood risk. Pattison et al. 

(2009) pointed out the timing and magnitude of the discharge from sub-

catchment can have a significant impact on downstream flood risk. When 

outfall from a highly developed sub-catchment enters into the stream, the 

river water level can increase. In addition, populations tend to live closer the 

rivers, so urbanization can cause a reduction of floodplains and can change 

the balance of the river ecosystem and floodplains. As results of these 

processes, pluvial flooding in a catchment, and fluvial flood risk on the 

downstream of the catchment can be observed (Hayes and Young, 2006; 

Chen et al., 2010; Kummu et al., 2011; Jha et al., 2012). Therefore, both 

pluvial and fluvial flooding can be observed in the urban areas due to 

impervious surfaces and rainfall event (Breinl et al., 2015). Lastly, the 

surface runoff can be managed by using some land-use management 

practices and supportive infrastructure such as SUDS in urbanised 

catchments. 

2.2.6 Flood risk management 

Flood risk management approaches can be applied to decrease adverse 

effects of flooding.  Some flood risk management approaches can be used 

to assess flood hazards, and to prepare effective flood resilience tools (Apel 

et al., 2015). 

The water balance can be protected by using some land-use management 

practices and supporting infrastructure such as SUDS in urban areas. The 

estimation of flood discharges of a given return period and extent of a flood 

event are required to design flood defences, to improve flood resilience and 

to update a flood elevation scheme (Fernández and Salas, 1999; Smithers, 

2012). For instance, urbanisation can make the surface runoff faster or to 

use of SUDS can make the surface runoff slower in the catchment. 
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2.2.7 Flood frequency analysis 

Flood frequency analyzes the relationship between flood magnitude and 

annual exceedance probability so flood defense structures can be designed 

(Abdo et al., 2005). Return period determines the magnitude of a flood and 

can be used to define flood frequency for a certain probability (Smithers, 

2012). Bedient et al. (1948) defined the return period as an annual maximum 

event that has a recurrence interval as years (T). The return period is 

calculated as T return = 1/ (exceedance probability) (Urías et al., 2007). An 

annual maximum event has a return period (or “recurrence interval”) of T 

years if its magnitude is exceeded, on average, every T years (Fernández 

and Salas, 1999). 

Flood frequency can be analysed and its distribution produced for a 

catchment when there are a sufficient record of flood flows, and rainfall data 

(Romanowicz and Kiczko, 2016). When there is not sufficient flow data of 

the study site, regional method can be used to produce the flood frequency 

from a number of gauged basins (pooled method), or rainfall data can be 

used as intensity/ duration/ frequency curve or storm events can be 

designed (Blazkov and Beven, 1997; Abdo et al., 2005). 

2.2.8  Flood estimation 

Flood risk estimation may be required to design and improve flood 

management tools (Krupka et al., 2007). There is wide range of approaches 

to estimate flood in the literature but selecting methods may depend heavily 

on the purpose, availability of sufficient measured rainfall and flow data of 

the research area.  The quality and quantity of these data sets can also have 

a very significant impact on the methodology.  If high quality and sufficient 

length streamflow records are available, the frequency, location, magnitude, 

and extent of the flood event can be estimated directly from the data. 

However, sufficient records of flow data are rarely available. In these cases, 

flood estimation can require input data for initial and boundary conditions of 

the watershed (Krupka et al., 2007). Therefore, rainfall data, catchment 

characteristics, and flow routing models can be the primary parameters for 

flood estimation. Flood estimation can be used to present the watershed 

response to rainfall input.  
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Thus, a relationship between input, rainfall dataset (hyetograph, rainfall 

depth, intensity) and output (runoff volume, peak discharge rate) can be 

established (Falter et al., 2015; Romanowicz and Kiczko, 2016).  

Simulation of the water movement on the surface and in an open channel 

can be required for flood estimation in a watershed, and hydrological models 

can be used for the simulation (Yu, 2002). Flood processes in rivers and 

urban areas can be simulated and described in time and space by 

conceptual and mathematical models. Thus, catchment hydrological 

responses can be predicted (Guo and Adams, 1998: Yu, 2002). For 

example, the upstream flow data can be put in a mathematical model to 

estimate downstream hydrograph. Routing model procedure is used to 

determine the flow hydrograph at a point on a watershed from a known 

hydrograph upstream. This procedure could be applied as a lumped 

approach to model the entire catchment, as a semi-distributed model by 

modelling sub-catchments of the basin or as a distributed model by diving 

the catchment into the grids (Moore, et al., 2007; WMO, 2009). Lumped 

models can be used in hydrological assessments and fluvial flood 

forecasting of the whole drainage basin. Lumped (hydrologic) model is used 

to calculate flow at time duration for a particular location in the catchment. 

Parameters of the lumped models do not change in space. Distributed 

(hydraulic) model is used to calculate flow movement at space and time 

duration of sub-catchments of the basin. The advantage of applying a 

distribution approach is that the rainfall model can assume the events are 

independent and realistic (Moore, et al., 2007; WMO, 2009).   

Moreover, rainfall-runoff models with a dynamic model can be used to 

investigate the relationship between river flow in a cross-section of interest 

and earlier rainfall events over this cross-section in the basin (WMO, 2009).  

Instead of using sole large-scale hydrological models, rainfall-runoff models 

with a hydrodynamic model can be used for better flood estimations. Large-

scale hydrological models usually use simple flow routing models that focus 

only on the flood wave delay and attenuation. They cannot deal with some of 

the hydrodynamic processes such as backwater effects, floodplain storage 

effects and 2D flood extent (Paiva et al., 2011). However, hydrodynamic 

models can require much detailed information about boundary and initial 
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conditions, such as; land use material, soil type, and hydraulic properties 

(Yu, 2002; Paiva et al., 2011).  

Continuity and momentum equations can be used calculations of the flood 

estimations in a watershed (Yu, 2002).  

The relationship between storage and flow is determined empirically by 

Muskingum method (McCarthy, 1938; Moore et al., 2007).  

Equation 2.1: The Muskingum Routing the continuity equation  

I − Q = dS/dt 

Where in Equation 2.1 (McCarthy, 1938); I is input, Q is output, S is storage. 

Complete dynamic routing determines flows and water-surface elevations 

accurately by using unsteady flow situations known as the Saint Venant 

equations (Patowary and Sarma, 2017). 

The momentum conservation equation of the Saint Venant contains 

Dynamic model, Diffusion model and Kinematic model (WMO, 2009). 

Equation 2.2 Dynamic Model 
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∂h

∂x
− SO + Sf = 0 

Where in Equation 2.2: t is Time; x is distance through the channel (m); g is 

Acceleration due to gravity (m/s2); So is the bottom slope of the channel; Sf is 

Friction Slope of the energy line. 

Equation 2.3 Diffusion Model 

∂h

∂x
− SO + Sf = 0 

When the time variation of inflow and the spatial variation in velocity are 

neglected, this approximation is known as the diffusion model. The diffusion 

model can be used on rivers with smaller slopes (WMO, 2009). 

Equation 2.4 Kinematic Model 

−SO + Sf = 0 

When the momentum equation has a balance between the forces of gravity 

and friction, this approximation is known as the kinematic model.  
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The kinematic and diffusion models can be used to describe overland flows 

and flows in streams. However, the kinematic model cannot simulate 

backwater effects from lateral inflows (WMO, 2009).      

On the other hand, fully distributed models are often computationally 

expensive and data demanding. In addition, partial differential equations 

(PDEs) are used to represent hydrological processes by the physical 

distributed models (WMO, 2009).  The partial differential equations can be 

solved by using the numerical scheme and a finite difference scheme (Yu, 

2002). A linear and implicit finite difference numerical scheme was 

developed by Chen (1973), and the Preissman scheme was developed by 

Cunge et al. (1980) (Paiva et al., 2011). 

2.2.9 Flood modelling 

Flood modelling software packages are required to design appropriate 

mitigation measures, for flood risk assessment in urban areas at local, 

street, and catchment-scale. Flood risk can be assessed by defining the flow 

paths, ponding areas, and water depth values in the research area. These 

modelling tools can be used to convert the overflow to water level (m AOD) 

and flow (m3/s) values along the flooding pathway. Thus, high-risk 

inundation areas could be identified, water depths (m) and peak flows (m3/s) 

can be computed (Evans et al., 2004; Paiva et al., 2011). The 1D simulation 

can be performed using software packages such as Info works-RS, Flood 

Modeller Suite, Mike-11, and HEC-RAS. Two-dimensional shallow water 

equation models can be used for inundation prediction in flood risk 

management, through the application of commercial packages such as 

TUFLOW, MIKE FLOOD, Flood modeller Suite (ISIS) 2D, Info works 2D and 

SoBEK. 

One-dimensional (1D) hydrodynamic river models have been used to solve 

the full Saint Venant equations since 1980 (Cunge et al., 1980). The 

advantages of one-dimensional models can be fast in the calculation and 

they require fewer bathymetry data (Villanueva and Wright, 2006). However, 

this approach could result in a very simple model to represent floodplain 

(Paiva et al., 2011).  
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To simulate fluvial flood extents in detailed, the one-dimensional and two-

dimensional models can be linked to combine the river channel and 

floodplain. Hence, the river channel is displayed with nodes and floodplain 

are determined by light detection and ranging (LiDAR) data (Villanueva and 

Wright, 2006).  The movement of the fluvial floodwater is expected towards 

the floodplain areas (Néelz, 2009). A rainfall–runoff model with a dynamic 

link can be used to observe the interactions between flows in the main 

channel and floodplain. In this approach, the hydrological model is linked to 

both the 1D flood routing model along and 2-D flood inundation model. This 

approach can be applied to combine 1D river channels with 2D overland flow 

hydrodynamic models (Evans et al., 2007; Chen et al., 2010). WBM Oceanic 

Australia and The University of Queensland developed a 2D/1D dynamically 

linked modelling system in 1990 (Syme, 1992). 2D solutions can solve the 

two-dimensional depth-averaged shallow water wave equations, so that 

interaction between river and floodplain can be simulated accurately (Syme 

et al., 1999).  The value of water depth at each cross-section is taken from 

the 1D model and is overlaid onto a DEM by 2D model with using GIS 

software to simulate flood inundation extent (BMT WMB, 2016). Thus, the 

size of the 2D domain is smaller than the research basin therefore; model 

run times can be shorter (Engineers Australia, 2012). 

The flow in the streets is mostly one-dimensional, such as overland flows 

and pipe flow whereas, in reality, flows by junctions can be three-

dimensional. However, simulation of urban runoff can be done by using a 2D 

modelling method on a catchment scale analysis (Mignot et al., 2006). In 

addition, a two-dimensional model can combine topographical data such as; 

DEM, and hydraulic principles to determine flow movement in the channel 

and on the floodplain surface (Bates and De Roo, 2000; Engineers Australia, 

2012). Thereby, the two-dimensional model can be used to simulate 

complex flow pathways, flood depth, velocity, and direction of urban surface 

flow (Morris et al., 2009). Additionally, the impact of different land-use 

scenarios on these results can be analysed to investigate flood risks (Evans 

et al., 2007). Outcomes of these simulations, such as the water depth, 

velocity, flood levels, and peak flow can be computed at each computational 

node for each time step (Bates and De Roo, 2000). 
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2D free surface models can represent water flow in a horizontal and can be 

used for many flood events, such as; fluvial, direct rainfall and urban flood 

modelling. However, the use of full 2D hydrodynamic models in simulations 

and predictions is still relatively expensive due to requiring long computer 

run time and detailed, high-resolution topographic data (Syme et al., 1999; 

Zhang, 2015). 

However, Floods Directive requires using flood risk mapping to analyse flood 

hazard in detail, to identify flood risk areas and to develop flood risk 

management plans (Martinkova, 2013). Therefore, to manage flood risk 

efficiently, flood risk assessment should be done strategically by producing 

and analysing flood risk maps, flood hazard maps, and flood inundation 

maps.  

Flood risk maps can be derived starting from the design rainfall based on 

observed rainfall events followed by a rainfall–runoff and flow routing 

models. Flood risk maps are estimated using 1-D or 2-D hydrodynamic 

models with flood wave input data (Martinkova, 2013: Romanowicz and 

Kiczko, 2016). In addition, the GIS-based algorithms have been developed 

to extract the parameters from DEM for hydrodynamic models (Paiva et al., 

2011).  

2.2.10 Flood estimation methods in ungauged catchments 

Measured flow data is required to model flood events, and to estimate flood 

risk. However, sufficient observed flow records may not available for the site 

of interest (Smithers, 2012). Therefore, rainfall-based flood estimation 

methods have to be used. These are continuous simulation or event–based 

approaches (Romanowicz and Kiczko, 2016). To select a suitable method of 

estimating stream flow; catchment characteristics, quality, and quantity of 

the measured rainfall data are the primary concerns. If there are sufficient 

quality and quantity rainfall historical or stochastic rainfall data sets, flood 

estimation can be performed by using continuous simulation. The continuous 

simulation can be used to observe water balance and to estimate discharge 

in a watershed (Boughton and Droop, 2003). For instance, catchment 

behavior at the evaporation, transpiration, infiltration, interception, and 

storage stages of the water cycle can be observed in the catchment. 
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Whereas, this simulation requires rainfall data sets and computation time for 

a long period.  

On the other hand, the event-based method can be applied to estimate flood 

(Faulkner and Wass, 2005). Guo and Adams (1998) proposed the event-

based probabilistic models as an alternative to continuous simulation 

models. They are user-friendly and preferred for real-time operational 

applications in Southern Europe (Tramblay et al., 2012).   

Moreover, event-based uses probabilistic approaches to estimate runoff 

volumes and peak discharge for specified return periods. Probabilistic 

approaches can produce results for reinsurance brokers and modelling 

companies.  

Moreover, to design urban drainage facilities, flood defenses, and to improve 

flood resilience, event-based probabilistic models can be used as an 

alternative to the Numerical hydrologic model (Guo and Adams, 1998).  

Flood events can be estimated from a design rainfall event, which can be 

designed for a given return period in ungauged catchments (Faulkner and 

Wass, 2005).  The limitations of this approach are, firstly, return period is 

assumed the same as the flood event. Whereas, the rainfall return period 

could be bigger than flood return period. Secondly, this method could 

overestimate design flows in some catchments. Even after similar rainfall 

events, different magnitude of flood events can be observed due to the soil 

moisture capacity before and during the rainfall event (Romanowicz and 

Kiczko, 2016). In addition, by using this method, only single peak flow can 

be estimated and flood estimation is performed for a fixed duration (Faulkner 

and Wass, 2005). 

To simulate flood inundation scenarios in ungauged catchment, rainfall data 

set is entered into a rainfall–runoff model with a flow routing model. Faulkner 

and Wass (2005) generated rainfall series and used the rainfall–runoff model 

to compute inflows. These inflows were used as an input to a 1-D hydraulic 

model. Moreover, Falter et al. (2015) added a flood loss model in this 

approach (Romanowicz and Kiczko, 2016). However, these studies showed 

that model simplifications are necessary to run the simulations in an 

acceptable computational time (Romanowicz and Kiczko, 2016). 
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Hence, simple flow routing methods can be used with hydrological models, 

these methods can still provide reasonable outputs with reasonable input 

data (Paiva et al., 2011). A similar integrated approach to flood risk 

assessment was presented by McMillan and Brasington (2008). Falter et al. 

(2015) extend the approach by presenting the complete flood risk chain, 

apart from rainfall generator, rainfall–runoff, and flow routing models. 

Additionally, a flood loss model was included (Romanowicz and Kiczko, 

2016).  

A rainfall based flood estimation approach consists of rainfall estimation and 

flow routing models. Rainfall data is used as an input to a rainfall–runoff 

model.  

Rainfall intensity can be produced from the intensity/duration/frequency 

analysis (IDF) to produce peak flow. Alternatively, rainfall depth values and 

durations can be used to produce a hydrograph from a long-time series 

rainfall data set. 

Using flood frequency analysis on this rainfall data in a flow routing 

hydrological model allows runoff as peak flow or a discharge hydrograph to 

be calculated for a required return period. Finally, this can be used in a 

hydrodynamic model so that flood risk maps can be produced (Blazkov and 

Beven, 1997; Romanowicz and Kiczko, 2016). 

2.2.10.1 Rainfall estimation methods 

When streamflow data is not available at the subject site, flood events can 

be designed from storm events in ungauged catchments. Rainfall event is 

designed from rainfall depth, intensity and return period of the storm 

(Romanowicz and Kiczko, 2016). Rainfall frequency estimation can be done 

by using depth/duration/frequency (DDF) curves (Svensson and Jones, 

2010).  Rainfall depth parameter can be used as a function of duration for 

given return periods or probabilities of exceedance (Overeem et al., 2008) 

Firstly, annual maximum precipitation depth can be calculated for a given 

duration for each year. Next, frequency analysis can be performed to derive 

design precipitation depth for different return periods by using the Extreme 

Value Type I (EV1 distribution), or Gumbel distribution (Chow et al., 1988).  
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The frequency is determined as return period (T); this parameter represents 

the average length of time (year) between rainfall events that equal or 

exceed the design period. The return period is fundamental for depth-

duration-frequency curves, to calculate the depth of the rainfall event 

(Fitzgerald, 2007). The frequency of occurrence of total rainfall may depend 

heavily on the length of rainfall duration, and season (Shaw et al., 2011). 

Finally, after plotting depth versus duration for different frequencies, the 

rainfall depths (D) are converted to intensities (Chow et al., 1988). To 

estimate the flood frequency distribution from rainfall records may require 

the estimation of an effective runoff coefficient or percentage runoff for each 

storm and this is a particularly difficult problem for ungauged catchments 

(Blazkov and Beven, 1997).  

2.2.11 Loss model  

The magnitude of loss is dependent on a number of catchment parameters 

such as topography, vegetation, soil moisture conditions, and storage (El-

Kafagee and Rahman, 2011). In design flood estimation, the initial loss and 

continuing loss model are calculated to obtain surface runoff (El-Kafagee 

and Rahman, 2011). Initial and continuous loss parameters are developed 

with some assumptions in rainfall-runoff models of event-based approaches. 

Initial loss is the amount of rainfall that occurs before the start of surface 

runoff, while continuous loss is assumed the average loss rate throughout 

the remainder of the rainfall event. Infiltration starts after surface 

depressions are filled. Runoff starts after initial soil wetting is satisfied by 

infiltration. Initial soil wetting is accepted as the same during the rainfall 

event (Guo and Adams, 1998). Initial soil moisture conditions can depend on 

the antecedent soil moisture (Tramblay et al., 2012). 

Loss models in the design of flood estimation might not represent the spatial 

and temporal distribution of the actual loss in a catchment. Rainfall could not 

be uniform during the event over the entire catchment in space and time. 

Similarly, Antecedent moisture conditions should not be assumed as fixed 

values for the whole catchment (Blazkov and Beven, 1997; El-Kafagee and 

Rahman, 2011). 
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2.2.12 Flood frequency analysis for ungauged catchments 

The analysis of flood frequency of an event is an important concept. If the 

measured rainfall and flood data (annual maximum series) are sufficient, the 

magnitude of flood events can be estimated from the measured data for a 

catchment. However, in ungauged catchments, the magnitude of flood 

events can be estimated from measured data of a similar catchment as the 

subject ungauged catchment. If the characteristics of two catchments are 

similar and have similar rainfall events, flood events could have similarities. 

If the subject catchment in the UK does not have sufficient measured flow 

data, by using pooling approach of FEH statistical flood estimation method, 

flood frequency analysis can be performed for this catchment.  In this 

method, measured flood data of the catchment with similar characteristics 

are used. Thus, flood frequency curve of the ungauged subject site can be 

plotted and peak flow values for different return periods can be estimated 

(Cunderlik and Burn, 2002; WHS, 2009; Kjeldsen, 2010). 

Calculation of flood frequency can be used to gain a better understanding of 

the relationship between flood magnitude and rainfall intensity in ungauged 

catchments. This knowledge can contribute to design flood resilience tools 

and assessing the magnitude of the flood events in detail at ungauged sites 

(Viglione and Blöschl, 2009). 

To investigate the probability of peak flow values in the ungauged Wortley 

Beck catchment, the pooled method of statistical procedures for flood 

frequency estimation in ungauged catchments was used. Statistical Flood 

estimation procedure can be one of the primary techniques to calculate the 

frequency of peak flow.  

2.2.12.1 Statistical flood estimation method 

Index flood method can be used to create flood frequency curves in this 

research like the Flood Estimation Handbook guideline. In addition, 

improved statistical procedures and the index flood methods have been 

selected from hydrologists and engineers for design flood estimation in the 
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UK as well (Institute of Hydrology, 1999; Kjeldsen and Jones, 2007; Kjeldsen 

and Jones, 2010). 

Briefly, the steps of producing flood frequency curve are:  

1. Estimation of the QMED (the index flood), 

2. Definition of a pooling group for the catchment of interest, 

3. Application of the urban adjustment equation to the QMED rural, 

4. Estimation of an appropriate flood growth curve (zT), 

5. Production of the flood frequency curve, 

2.2.12.2  Estimation QMED (the index flood) 

The index flood can be defined as the median annual maximum flood 

(Kjeldsen and Jones, 2007). QMED (m3/s) has a two-year return period 

(Robson and Reed, 1999).  

QMED is used to produce the flood growth curve. QMED can be estimated 

from either AM data, and POT data if there are sufficient measured flood 

data, or QMED can be estimated by using the catchment descriptors 

equation (Kjeldsen and Jones, 2007; WHS, 2009). 

Measured flood data of gauged catchments in the pooled group is used for 

the subject-ungauged catchment.  The gauged catchments in the pooled 

group are selected according to their similarity to the ungauged subject 

catchment descriptors (WHS, 2009). The catchment descriptors parameters 

are the catchment area (AREA), standard average annual rainfall (SAAR), 

flood attenuation by reservoirs and lakes (FARL), and floodplain extent 

(FPEXT) (WHS, 2009). Gauged sites in the pooled group are recommended 

to have at least 5 years (preferably 8 years) of AM data, to be larger than 0.5 

km2 and the URBEXT2000 value of the Gauged sites in the pooled group 

should be lower than 0.030. In addition to these, similar flood history, and 

flood seasonality factors can be assessed (Robson and Reed, 1999; 

Kjeldsen et al., 2008; WHS, 2009). Catchments in the pooled group can be 

selected by using WINFAP-FEH 3™ software. 

After calculation QMED rural from catchment descriptors equation, it is 

recommended to adjust QMED rural value by using a donor site.  
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This adjustment can be accomplished by using the data transfer method 

(Kjeldsen et al., 2007; WHS, 2009). The donor catchment is recommended 

to be nearby the subject catchment, such as by the same river, upstream or 

downstream of the subject site and have good quality flood data (Robson 

and Reed, 1999; Kjeldsen et al., 2008; WHS, 2009; Kjeldsen and Jones, 

2010).  

Lastly, a flood growth curve (zT) was constructed by using the pooling-group 

data to derive a flood frequency curve because the flood frequency curve 

can be obtained by multiplying with the zT by QMED (Kjeldsen et al., 2008; 

WHS, 2009). A flood growth curve is created by fitting a distribution to the 

observed AM data (WHS, 2009). This distribution is selected by using the 

goodness-of-fit measure (Z).  

The Generalised Logistic distribution and the Generalised Extreme Value 

distribution could give the best fit for the UK data (Robson and Reed, 1999; 

Kjeldsen et al., 2008). Finally, a flood frequency curve is plotted. A flood 

frequency curve can be used to define the relationship between peak flow 

(Q, m3/s) and the return period (T, year) (WHS, 2009). 
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Chapter 3 Fluvial flood event modelling 

3.1  Introduction 

River flooding (Fluvial flooding) is the most frequent, a harmful and an 

effective natural threat in the worldwide (Field et al., 2012; Jongman et al., 

2012; Tanoue et al., 2016). A river flooding can be seen, when the riverbank 

is overwhelmed, and the flood defence systems are insufficient, so the water 

overflows onto the floodplain.  

The initial reason for the river flooding can be intense discharge at the outfall 

of sub-catchment because of the high and fast runoff volumes in the sub-

catchment. The reason for the great magnitude of runoff volumes in a sub-

catchment can be an intense rainfall event, ice melting, impermeable 

surfaces, and the failure of drainage systems (Chen et al., 2010; Jha et al., 

2012). As consequences of climate change, and urbanisation in the sub-

catchments, high discharge can be observed. Thus, fluvial flooding can be 

observed frequently and can have a great magnitude at the downstream 

area (Putro, 2013). Therefore, the downstream area can have a potential to 

be inundated with fluvial floodwaters. Furthermore, under natural conditions, 

wetlands are located on the floodplains (riverine wetlands) therefore the 

adverse effects of flooding can be mitigated (Nghia and Chau, 2000; Old et 

al., 2008). However, population increases and settlements can be found on 

the floodplains (Uyen, 2002; Hung et al., 2010; Kummu et al., 2011).  

Consequently, fluvial flood frequency, flood event duration, and magnitude of 

flooding can be affected by land use change in the sub-basins (Old et al., 

2008).  Land use assessment could have a priority to mitigate discharge and 

to decrease the flood risk at the downstream location (Pattison et al., 2010; 

Putro, 2013). 

The aim of this chapter is to assess the fluvial flood risk for the Lower 

Wortley Beck. The effects of the inflows from sub-catchments of the Wortley 

Beck catchment on fluvial flood risk of the Lower Wortley Beck were 

assessed in this research. 
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The suitability of the Lower Wortley Beck with this research 

The sub-catchments of Wortley Beck catchments are Farnley Wood Beck 

and Farnley Beck basins. The locations of these sub-catchments can be 

found in Figure 3.3. Farnley Wood Beck and Farnley Beck are Critical 

Ordinary Watercourses. Critical Ordinary Watercourses (COWs) represent 

that this area has a risk of flooding (Atkins, 2004).  In addition, Flood Map for 

Planning (Rivers and Sea) (Environment Agency, 2017) displays that the 

Lower Wortley Beck is in the Flood Zone 3 (Figure 3.1).  Flood Zone 3 

means that the area could have the 1 in 100-year or greater chance of the 

fluvial flood event for each year (Environment Agency, 2017). 

 

Figure 3.1 Flood zone 3 area of the Lower Wortley Beck catchment at 

Flood Map for Planning (Rivers and Sea) (Environment Agency, 2017) 

In addition, valuable properties have been building in the flood-vulnerable 

locations in the research area.  
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Research Steps 

The fluvial flood risk was assessed by investigating the impact of inflows 

from sub-catchments on the Lower Wortley Beck area. The inflows were 

predicted for various ratios of the impermeable surfaces of the sub-

catchments and rainfall durations on the sub-catchments. These inflow 

hydrographs were integrated with the 1D/2D hydrodynamic fluvial flood 

model to assess the downstream flood risk. 

1. Fluvial flood extent maps of the Lower Wortley Beck area were produced. 

Fluvial flood extent was predicted for 1% AEP flood event and 1990 year of 

URBEXT values of the sub-catchments. 

2. The effects of the land-use change in the sub-catchments on the fluvial 

flood risk were assessed. 

The impacts of the ratio of impermeable surfaces of the sub-catchments on 

the discharge at outfalls of the sub-catchments and flood extents at the 

Lower Wortley Beck area were investigated in this section. This assessment 

was performed by changing the value of the URBEXT parameter of the sub-

catchments.  

3. The effects of rainfall duration on the fluvial flood risk were assessed. 

The impacts of the rainfall duration on the discharge at outfalls of the sub-

catchments and flood extents at the Lower Wortley Beck area were 

investigated in this section. The length of the rainfall events was changed 

from 0.5 hr. to 1 hr., and then to 6 hr. 
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3.2 Methodology  

Fluvial flood model of the Lower Wortley Beck is explained in this section.  

In the UK,  as a part of the fluvial flood risk management, river channel, 

hydraulic structures can be modelled using the 1D hydrodynamic software 

such as Flood Modeller Suite software (Evans et al., 2007). Flood Modeller 

Suite 1D model is one of the preferred simulators to investigate the hydraulic 

effect, flows and water levels in open channels and estuaries such as 

bridges, culverts and other hydraulic structures (Wangpimool and Pongput, 

2011). 

Flood Modeller Suite 1D hydrodynamic model was produced by CH2M HILL 

/Halcrow (UK).  Flood Modeller Suite software can be used for both 

unsteady and steady flow with options that include simple backwaters and 

flow routing (Wangpimool and Pongput, 2011). Flood Modeller Suite 

software uses an implicit finite difference method called the Preissmann 

implicit scheme to solve the De Saint Venant Equation in unsteady flow. 

Flood Modeller Suite software uses adaptive time-stepping methods to 

manage run-time and model stability (Wangpimool and Pongput, 2011). 

To simulate fluvial flooding, the Environment Agency investigated a tool to 

link 1D to 2D between Flood Modeller Suite and 2D solvers. For instance, 

embankments and structures including culverts can be displayed in one 

dimension, and the flood extents can be represented in 2D domains. In 

addition, computational run time can be reduced (Evans et al., 2007). 

Hydraulic structures such as the drain, creek, and rivers are not 

recommended to represent by the 2D cells. They are better represented by 

1D cross-section. The 2D cells can be shown as wet and dry at any point 

during a simulation (Syme, 2001).  Moreover, the 2D solution is used to 

manage momentum for downstream controlled regimes by switching with 

upstream controlled regimes (weir or supercritical flow) (BMT WMB, 2010). 

Lastly, 2D models are used for flow and inundation patterns in floodplains, 

coastal waters, estuaries, rivers, and urban areas. Among of these 2D 

solvers, TUFLOW and DIVAST were recommended to present reasonable 

predictions of flood extents (Evans et al., 2007). 
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 Advantages of this dynamically link with TUFLOW or DIVAST are that river 

and floodplain can be schematisation easily. The TUFLOW is specifically 

adjusted for these flood simulations (BMT WMB, 2016).  TUFLOW is 

selected due to its strengths over finite element schemes in rapid wetting 

and drying, and its unique and flexible dynamic links with a 1D scheme 

(Syme, 2001). 

The Flood Modeller Suite (CH2M) and the TUFLOW (BMT WMB) software 

can be classified as suitable to simulate flood events in literature such as 

Liang et al, 2008; Delis and Kampanis, 2009 (BMT WMB, 2010); Zhang, 

2015. For instance, 1D channel model and two-dimensional (2D) floodplain 

hydrodynamic model (Flood Modeller Suite linked TUFLOW) was 

constructed by Jacobs for the flood modelling and mapping of the Thames 

River.  

Flood Modeller Suite link to TUFLOW  produces depth, velocity, and water 

level outputs and that can be imported into GIS software to produce flood 

inundation maps (BMT WMB, 2010). This approach is suitable to identify 

flood zones, flood hazard and water depth so that the results can be used for 

strategic level decision-making and development planning.  

In conclusion, in this research, a 1D / 2D finite difference numerical model 

(Flood Modeller Suite/TUFLOW hydrodynamic model) was preferred to 

investigate the flood flow routing across the floodplain. This approach was 

considered suitable given the perceived mechanisms of flooding to the site 

and in the study area.   

3.2.1 Setting-up the 1D/2D fluvial hydraulic model 

The ReFH FSR/FEH rainfall-runoff method and a one-dimensional (1D) link 

two-dimensional (2D) hydrodynamic model were used. Flood Modeller Suite 

1D (CH2M HILL) 3.7.0 version was linked to the TUFLOW 2D (BMT WBM) 

Build 2013-12-AD-ISP-w64 version software.  

Hydraulic structures and initial conditions of the river channel were 

constructed by Environment Agency. However, the model was updated and 

calibrated during this research.  
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The river channel of Lower Wortley Beck was linked to the domain of the 

Lower Wortley Beck. Wortley Beck sub-catchments were integrated with the 

model by using inflow hydrographs.  

1. The estimation of the inflow hydrographs 

The inflow hydrographs were entered into the model. These were produced 

by using the ReFH rainfall-runoff method. The inflow hydrographs presented 

the discharge from Farnley Beck and Farnley Wood Beck basins into the 

Lower Wortley Beck. 

2. 1D Flood Modeller Suite Model  

One-dimensional river flow was run unsteady. 1D Domain time step was 1 

second. 

3. 1D link 2D 

One-dimensional Flood Modeller Suite software was linked to two-

dimensional TUFLOW software by control file (.tcf). 2D Time step was 2 sec. 

2D TUFLOW model controlled geometry, boundary condition, and land-use 

categories (materials) in the 2D Domain.  Geometry was used to define river 

channel and flood extent area. 2D domain elevation information was 

obtained from topographical data.  

 

Figure 3.2   The fluvial flood model region 
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Figure 3.2 displays that the inflow points of the Lower Wortley Beck, and the 

2D domain area of the Lower Wortley Beck. The inflow points are the outfalls 

of the Farnley Wood Beck and Farnley Beck sub-catchments. The length of 

the river channel was measured nearly 3.5 km in the research area. 

Topographic and bathymetric data were used in the construction of the 

hydraulic model and in the production of flood maps. 2D domain elevation 

information was obtained from topographic data. Light Detection and 

Ranging (LiDAR) data was used to generate digital elevation map (DEM) by 

using GIS software (Figure 3.3). Grid resolution of the data is 2m and it was 

taken from Environment Agency data. Figure 3.3 displays the surface 

elevation of the Lower Wortley Beck area. Cell size of the model was 8 

metre for this simulation. 

 

Figure 3.3 Geometry of fluvial flood modelling 

The material file was used to define roughness. Manning`s n values were 

applied for each surface material in the research area. Material values were 

defined for both river channel and along the right and left floodplains of the 

Lower Wortley Beck (Table 3.1). The values were determined by the 

Environment Agency in the 2003 (summer) topographic survey (Atkins, 

2004). The values were selected according to Table 4.8 in French (1985) 

(Atkins, 2004). Values were selected between 0.030 and 0.045 for the 

channel (Atkins, 2004). Values of Manning’s n (Table 3.1) for the 2D 

TUFLOW domain of the floodplain have been schematised based upon OS 
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1:10000 mapping of the model area, aerial photography and Google Street 

view and site walkover (Atkins, 2004). The upstream area of the Wortley 

Beck catchment was observed mainly rural in nature and some grassed 

fields were found on the floodplains. The downstream area of the Wortley 

Beck catchment was observed mainly urbanised. A mixture of grassed 

banks and impermeable surfaces were seen on the floodplains in this area 

(Atkins, 2004; Jepps, 2011). 

Table 3.1 Manning's roughness (n) values of the materials 

n Materials 

0.04  Grass 

0.06   Dense trees 

0.05   Fence shrubs 

0.035   Gravel road 

0.025   Footpaths and paved areas (roads) 

0.05   Hard surface, standing areas, work 

yards 

0.04 Open Carparks 

0.20  Multi-storey carparks 

2.00  Buildings 

 

3.2.2 Flood movement equations in the 1D/2D Fluvial Model  

Flood Modeller Suite hydraulic model was used to model along the river 

channel. In order to represent the river channel, nodes were used. The types 

of the nodes displayed the hydraulic units such as river section, spill, bridge, 

and conduit. Watercourses, bridges, culverts, weirs, and rail embankments 

etc. were investigated from field survey and were inserted into the model. 

Hydraulic structures of Lower Wortley Beck were constructed by 

Environment Agency in this research. 
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1. Spill 

The Spill unit was used to calculate the flow over an irregular weir in this 

model (Figure 3.4). Fundamental knowledge can be read from “A 

mathematical model of overbank spilling and urban flooding” by EP Evans 

and PH von Lany (1983). 

 

 

Figure 3.4 Weir Spill (Atkins, 2004) 

Equation 3.1The weir equation for free flow used in the Spill 

Q = C𝑑  bh1.5 

Where in Equation 3.1; b is the width of spill section; h is inverted elevation 

as a function of time t (above datum); Cd value can be 1.85 for sharp crested 

weirs and 1.7 for round nosed horizontal-crested weirs (Flood modeller, 

2017). 
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2. Floodplain flow 

Floodplain flow can be modelled by using spill (Equation 3.2) (Flood 

modeller, 2017). 

Equation 3.2 The spill coefficient equation 

 

C𝑑 =
d0.67√(1 − m)

n√DX
 

Where in Equation 3.2; d is average depth of flow (m); DX is the distance 

between spill source and sink (m); n is Manning's n for the region of flow (eg 

0.1); m is the user defined modular limit (eg 0.8) (Flood modeller, 2017). 

 

3. Drowned Weir Flow 

When the Floodplain Section is connected between two Reservoirs, 

Drowned Weir Flow equation is used (Flood modeller, 2017). 

Equation 3.3 Drowned Weir Flow equation 

qs =

Cbby1√(y1 − y2)

√(1 − m)
 

Where in Equation 3.3: y1 is water depth above section in upstream cell; y2 is 

water depth above section in downstream cell; m is modular limit; b is width 

of segment (Flood modeller, 2017). 

4. The US BPR Bridge  

The modelling of a bridge structure in Flood Modeller Suite could be 

performed by using the bridge structure unit (Flood modeller, 2017). A 

sample of the bridge in the model can be found in Figure 3.5. The US BPR 

Bridge can be used to compute the afflux at bridges using the methodology 

developed by the US Bureau of Public Roads (US BPR). The bridge afflux is 

calculated by using the methods described in Hydraulics of Bridge 

Waterways (1978) (Flood modeller, 2017).   
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Figure 3.5 Road bridge (Atkins, 2004) 

To set up the bridge section into the model, a River section can be required 

at the upstream of the US BPR Bridge and this point is the maximum 

backwater.  In addition, a River section can be required at the downstream 

of the US BPR Bridge and this point has the normal water level (Flood 

modeller, 2017).   

Equation 3.4 The expression for computation of backwater upstream 
from a bridge constricting flow 

h1
∗  =  K∗ α 2

VB
2

2g
+ α 1 [((

AB

A4
)

2

− (
AB

A1
)

2

)]
VB

2

2g
 

Where in Equation 3.4: h1
* is total backwater (or afflux); K*is total backwater 

coefficient; a1 is kinetic energy coefficient at the upstream section; a2 is 

kinetic energy coefficient in the constriction; VB is average velocity in 

constriction; AB is gross water area in constriction; A4 is water area in 

downstream section; A1 is total water area in upstream section including that 

produced by the backwater (Flood modeller, 2017). 
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5. Reservoir 

There is Farnley flood storage reservoir in the model. 

Equation 3.5 The conservation of mass equation  

qnet − A(h) ∗
∂h

∂t
= 0 

qnet = ∑ qi

N

1

 

Where in Equation 3.5: h is water surface elevation, 𝜕t is time step; N is 

number of inflows; qi is flow at node; A is surface area of the reservoir (Flood 

modeller, 2017) 

6. The Rectangular Conduit 

A 4-kilometre culvert was modelled on the Lower Wortley Beck area as the 

Rectangular Conduit. The Rectangular Conduit is based on the Saint-Venant 

equations, which express the conservation of mass and momentum of the 

water body. The equations used for the Rectangular Conduit are the mass 

conservation or continuity equation (Flood modeller, 2017).   

The continuity and momentum equation can be expressed as Equations 

(3.6) and (3.7) (Flood modeller, 2017). 

Equation 3.6 Continuity Equation 

∂Q

∂x
+

∂A

∂t
= q 

Where in Equation 3.6: q is lateral inflow (m3 /s/m); Q is the flow (m3 /s); A is 

cross section area of flow (m2); X is longitudinal channel distance (m); t is 

time (s)   

Equation 3.7 The momentum conservation or dynamic equation                   

∂Q

∂t
+

∂

∂X
(

βQ2

A
) + gA

∂h

∂x
− g

AQ/Q/

𝑘2
= 0   

Where in Equation 3.7: t is the time (s); β is the momentum correction 

coefficient; g is the gravitational acceleration (m/s2); h is the water surface 

elevation above datum (m) and k is channel conveyance (Flood modeller, 

2017). 
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Equation 3.8 Channel conveyance (k)  

 

k2 = A2
R4/3

n2
 

Where in Equation 3.8: n is Manning's roughness coefficient; R is hydraulic 

radius = (A/P) (Flood modeller, 2017)  

The relationship between stage (water level) and discharge is normally 

estimated by using Manning’s equation. 

The representation of some of the hydraulic structures was simplified in 

order to improve the stability of model runs. 

3.2.3 2D Free Surface Shallow Water Flow Equations 

TUFLOW “Classic” (Two-dimensional Unsteady FLOW) is a two-dimensional 

depth-averaged hydrodynamic model. It can model free surface flow pattern 

of the catchment. TUFLOW software uses the Finite Difference Alternating 

Direction Implicit (ADI) solution scheme to solve the full Two-dimensional 

(2D) free surface Shallow Water flow Equation (SWE). This 2D SWE 

solution scheme was proposed in Stelling (1984). The Stelling`s (1984) 

scheme is an alternating direction implicit finite difference based on the well-

established Leendertse`s (1967, 1970) schemes (Syme, 1992).  The 2D 

SWE consist of continuity and conservation of momentum equations in the 

horizontal x and y directions in Cartesian coordinates (Syme 1992; Krupka, 

et al., 2007; BMT WMB, 2010; Abdullah 2012). 

The 2D Continuity equation  

Equation 3.9 The 2D Continuity 
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Equation 3.10 X Momentum  
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Equation 3.11 Y Momentum 

 

F = 
y

p

ρ

1

y

v
 + 

x

v
 μ - v + u 

2gΔg

f

H

n
 v g

 + 
y

ζ
 g + u c  

y

v
 v + 

x

v
 u + 

t

v

y2

2

2

2
22l

3
4

2

f



























































 

Where in Equation 3.9, 3.10 and 3.11:  ζ is water surface elevation; u and v 

are depth averaged velocity components in X and Y directions; H is depth of 

water; t is Time; x and y is distance in X and Y directions; Δx and Δy are cell 

Dimensions in X and Y directions; Cf is Coriolis force coefficient; n is 

Manning`s n; ƒi is Form (Energy) Loss coefficient; p is Atmospheric 

pressure; ρ is density of water; Fx and Fy is sum of components of external 

forces (eg.the wind) in X and Y directions (BMT WMB, 2010). 

In TUFLOW, the solutions of these equations proceed in stages: Stage 1 

has two steps; Step 1 involves solving the momentum equation in the y-

direction for the v-velocities. The equation is solved using a 

predictor/corrector method, which involves two sweeps.  For the first sweep, 

the calculation proceeds column by column in the y-direction.  If the signs of 

all velocities in the x-direction are the same the second sweep is not 

necessary, otherwise the calculation is repeated sweeping in the opposite 

direction (BMT WMB, 2010). 

The second step of Stage 1 solves for the water levels and x-direction 

velocities by solving the equations of mass continuity and of momentum in 

the x-direction. A tridiagonal equation is obtained by substituting the 

momentum equation into the mass equation and eliminating the x-velocity.  
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The water levels are calculated and back substituted into the momentum 

equation to calculate the x-velocities. Stage 2 proceeds in a similar manner 

to Stage 1 with the first step using the X-direction momentum equation and 

the second step using the mass equation and the Y-direction momentum 

equation (BMT WMB, 2010).  

3.2.4 Estimation of the inflow hydrographs 

After set–up the 1D/2D hydrodynamic model, inflow hydrographs were 

computed and entered into the model. Inflow hydrograph displayed the 

discharge from the outflow points of the Farnley Beck (FB) and Farnley 

Wood Beck (FWB) basins into the Lower Wortley Beck. Inflow hydrograph 

was estimated by using event-based approach because the catchment did 

not have sufficient measured flow data.  The hydrographs can be computed 

by using the rainfall-runoff model in the ungauged catchments. Therefore, 

inflow hydrographs were estimated by using the ReFH rainfall-runoff 

method. This model was applied by using revitalised boundary unit of the 

Flood Modeller Suite tool in this research. 

The Revitalised Flood Hydrograph (ReFH) FSR/FEH method was generated 

by the Centre for Ecology and Hydrology. This method has been used since 

2006 for the UK catchments. This flood estimation method can be applied to 

catchments that are bigger than 0.5 km2. This method consists of three main 

processes. These are Loss model (Cmax), Routing model (Tp) and Baseflow 

model (Kjeldsen et al., 2005). 

The loss model is used to estimate the net rainfall from total rainfall. Then, 

the direct runoff is entered into the routing model. Lastly, the Baseflow is 

added and total discharge into the river channel can be obtained (Kjeldsen 

et al., 2005). 

1. The Critical Storm Duration 

To design the fluvial flood events, storm durations (D) for FB and FWB 

basins were calculated from the response time of the catchment (time to 

peak, Tp) and the general wetness of the catchment (the standard average 

annual rainfall, SAAR) from Equation 3.12  
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Equation 3.12 The Critical Storm Duration  

D = TP(1 +  
SAAR

1000
) 

Where in Equation 3.12 (Houghton-Carr, 1999): D is the Critical Storm 

Duration (h) 

Secondly, the response time of the catchment (time to peak, Tp) was 

calculated to calculate the critical storm duration (h).  

TP = Time to Peak (h) 

Equation 3.13 Time to Peak  

 

Tp = 1.563 ∗ PROPWET−1.09 ∗ DPLBAR0.60 ∗ (1 + URBEXT)−3.34 ∗ DPSBAR−0.28 

Where in Equation 3.13 (Kjeldsen, 2007): DPLBAR is mean drainage path 

length (km); DPSBAR is mean of all the inter-nodal slopes for the catchment 

(m/km); PROPWET is index of proportion of time that soils are wet; SAAR is 

Standard Period Average Annual Rainfall (mm); SPRHOST is Standard 

Percentage Runoff (%) derived using HOST classification; URBEXT1990 is a 

FEH index of urban and suburban land cover in 1990 (Houghton-Carr, 1999; 

Kjeldsen, 2007). 

Storm duration for critical flood peak was produced by using catchment 

descriptors.   

1.1 Catchment descriptors  

The catchment descriptors were obtained from the FEH CD-ROM 3.0 (CEH, 

2009) by using Easting-Northing coordinates (Table 3.2).   
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Table 3.2 Catchment descriptors of FB and FWB basins 

Catchment 
Characteristics 

FB FWB 

Easting- 

Northing 

424500, 

433600 

427700, 

431400 

Area (km2) 29.67 20.95 

URBEXT 1990 0.1704 0.2314 

SAAR 799 731 

PROPWET 0.33 0.32 

DPLBAR 5.85 4.87 

BFIHOST 0.449 0.359 

DPSBAR 75.3 61.7 

 

2. Baseflow model 

The Baseflow was added as subsurface flow to calculate the total flow of the 

catchment.  This Baseflow can display the outflow from the storage in the 

basin. The Baseflow was calculated by using Baseflow lag (BL (hours)) 

Equation 3.14, baseflow recharge (BR) Equation 3.15 and Initial Baseflow 

(BF0, (m3/s)) Equation 3.16. These three Baseflow parameters were 

computed from catchment descriptors (Kjeldsen et al., 2005) by using 

Revitalised boundary of the Flood Modeller Suite software.  

Equation 3.14 Baseflow Lag  

BL =  25.5 BFIHOST0.47  PROPWET−0.53  (1 +  URBEXT)−3.01  DPLBAR0.21 

Equation 3.15 Baseflow Recharge  

BR =  3.75 BFIHOST 1.08 PROPWET0.36 

 Equation 3.16 Baseflow Recharge  

BF0, summer =  AREA (33.94 (Cini  −  85.42)  +  3.14 SAAR)  × 10−5 
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Where in Equation 3.14, 3.15, and 3.16 (Kjeldsen, 2007): BFIHOST is 

Baseflow Index derived by using the UK Hydrology of Soil Types (HOST) 

classification; Cini is initial loss; AREA is Catchment Area (km2) 

3.2.5 Assessment of the land use change and fluvial flood risk 

The components of the water balance can be influenced by land-use change 

(Piao et al., 2007; Kumar et al., 2017). The urbanisation of the sub-

catchments could have a significant impact on the fluvial flood risk.  Kumar 

(2017) found that annual surface runoff rose evidently due to the expansion 

in urbanisation over the years. This situation can be observed at sub-

catchment level as well. The impact on the water balance of the sub-

catchment can be determined like that infiltration decreases and surface 

runoff increases (Kumar et al., 2017). This could result in increased river 

discharge worldwide (Piao et al. 2007). Kumar et al. (2017) stated that the 

variety and concentration of vegetation land cover could be one of the 

important parameters to affect the surface runoff and evapotranspiration. 

WMO and GWP (2008) added that soil, vegetation cover, and land use have 

a direct impact on the amount of runoff generated. The water balance can be 

managed by using some land-use management practices and sustainable 

drainage systems (Kumar et al., 2017). Putro (2013) investigated the impact 

of urbanisation on the river system and water quality by analysing the rainfall 

and Urban Extent (URBEXT) values with the changes in the river flow, river 

temperature, and dissolved oxygen. 

As considered the above knowledge, the impact of surface runoff of a sub-

catchment on the discharge hydrograph at the outfall of the sub-catchment 

could be observed. In addition, the relationship between the land use 

change of a sub-catchment and fluvial flood risk of the downstream location 

can be investigated.  

A part of this research focused to investigate the effects of land use change 

on the fluvial flood risk. The impact of the land use change was assessed by 

changing the ratio of the impermeable surfaces thus, surface runoff can be 

observed. This link was obtained by using urban extent (URBEXT) 

catchment parameter and 1D/2D hydrodynamic fluvial model in this 
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research.  The URBEXT parameter was used to manage the ratio of the 

impermeable surface in a catchment.  

Inflow hydrographs were estimated for different URBEXT values. Firstly, the 

URBEXT value was increased to assess the impact of the urbanisation. The 

1990-year and the 2016-year of URBEXT values were used.  Secondly, the 

URBEXT value was decreased to assess the impact of the Sustainable 

Urban Drainage Systems (SUDS). Thus, the change of the impermeable 

surface of the sub-catchment on the discharge hydrograph at the outfall of 

the sub-catchment could be examined in this research. 

Consequently, the impact of the ratio of the impervious surface of sub-

catchments (Farnley Beck and Farnley Wood Beck basins) on the flood risk 

of the downstream area (between The Ring Road and the Gelderd Road, 

and M621 in Figure 3.16) was assessed.  

A. Urbanisation of the sub-catchment and fluvial flood risk 

Urban extent is calculated for the 2016 year for two sub-catchments so the 

impact of future urbanisation on the fluvial flood risk could be assessed by 

using the Equation 6.8 on Page 53 in FEH VOL 5 (Bayliss, 1999). 

Equation 3.17 Urbanisation expansion factor (UEF) 

UEF= 0.8165+ 0.2254 TAN-1 {(YEAR-1967.5) /21.25} 

URBEXT1990 values (obtained from the FEH CD-ROM) were adjusted, by 

using the Urbanisation Expansion Factor (UEF) according to the year of 

2016. 

The urban extent of the Farnley Beck (FB) sub-catchment was calculated by 

using the Equation 3.17, as 0.275 and urban extent of the Farnley Wood 

Beck (FWB) sub-catchment was calculated as 0.375 for the year of 2016. 

B. Reducing the ratio of impermeable surface of the sub-catchment  

In this section of the research, the relationship between the ratio of the 

impermeable surface and discharge at the outfall of the sub-catchment was 

assessed by decreasing the ratio of the impermeable surface in the sub-

catchment. This part can be used to analyse the impact of the sustainable 

urban drainage systems on the fluvial flood risk.  
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If sustainable urban drainage systems are applied to the impermeable 

surfaces, surface runoff could be decreased and slower. 

This scenario was applied to the Farnley Wood Beck basin. The rate of the 

impermeable surface of the Farnley Wood Beck basin was decreased. The 

minimum rate of the impermeable surface of the Farnley Wood Beck basin 

was calculated. An empirical relationship between Urban and URBEXT was 

calculated from Equation 3.18 (Kjeldsen, 2009). 

Equation 3.18 An empirical relationship between Urban and URBEXT 

Urban =  2.05 (URBEXT) 

The total percentage imperviousness (I) was estimated from the functional 

relationship between URBEXT and Urban. The assumption is that a typical 

urban area has at least 30 % impermeable surfaces that could be the 

minimum total percentage imperviousness in that urban (Kjeldsen, 2009). 

The total percentage imperviousness is calculated by using Equation 3.19. 

Equation 3.19 Total percentage imperviousness 

 

I = 30% Urban =30% 2.05 URBEXT = 0.615URBEXT  

The value of URBEXT1990 of the FWB sub-catchment is 0.23.  

The urban extent value of FWB basin is calculated as 0.15 as having 

minimum impervious surface by using the Equation 3.19.  

C. Calculation the effect of the urbanisation on the inflow hydrographs 

Inflow hydrographs were produced from urban part and the sections of 

Undeveloped (Rural Area) and Paved (Urban Area) of the ReFH framework 

of the Flood Modeller Suite. To calculate this, impermeable surface and rural 

area of the sub-catchments were computed by using Equations 3.20 and 

3.21. 
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Equation 3.20 Undeveloped (Rural Area) 

Undeveloped area = (AREA - (AREA*URBEXT)) 

Equation 3.21 Paved (Urban Area) 

Paved area = (AREA*URBEXT) 

In this study, the developed area was accepted as paved, drawing towards 

watercourse. Runoff was accepted 70 percent for impermeable surfaces 

(Flood modeller, 2017). 

Table 3.3 Urbanisation of Farnley Beck (FB) basin 

URBEXT 

value 

(1990yr) 

0.17 

(2016yr) 

0.275 

Undeveloped 

(km2) 

24.6 21.5 

Urban( km2 ) 5.0 8.13 

 

Table 3.4 Urbanisation of Farnley Wood Beck (FWB) basin 

 

URBEXT 

value 

(SUDs) 

0.15 

(1990yr) 

0.23 

(2016yr) 

0.375 

Undeveloped 
(km2) 

 

17.81 16.10 13.09 

Urban (km2) 3.14 4.85 7.86 

 

According to the above assumptions, Urban (impermeable surface) and 

Undeveloped (permeable surface) of Farnley Beck (FB) basin (Table 3.3), 

and Farnley Wood Beck (FWB) basin (Table 3.4) were computed.  
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3.3 Calibration of the fluvial flood model 

The fluvial model of the Lower Wortley Beck was tested for the credibility of 

the results in this section. The calibration process was the comparison of the 

measured data of the Pudsey gauge station to the predicted results from the 

fluvial model of the Lower Wortley Beck. 

Measured water level data was taken from Pudsey gauge station and 

measured rainfall data was taken from Headingley, Knostrop and 

Heckmondwike gauge stations. These datasets were provided by 

Environment Agency during this research.  

The predicted results from the fluvial model of the Lower Wortley Beck were 

computed for the same location as the Pudsey gauge station (Figure 3.6). 

 

Figure 3.6 The location of Pudsey gauge station  

Figure 3.6 displays the location of the Pudsey stage gauge station. This 

location presents both observation point and computed point. 
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According to the data quality and historical flood events, the data of 

06/07/2012 date and 24/09/2012 date were selected. Measured rainfall data 

from Headingley, Knostrop and Heckmondwike gauge stations were 

assessed for these dates and were adjusted by using mean precipitation 

theory (Thiessen method) for the catchment area. To calibrate the model, 

firstly, measured rainfall data was entered into the ReFH rainfall-runoff 

framework tool of the Flood Modeller Suite. Hydrograph was produced for 

each Farnley Beck and Farnley Wood Beck basins.  Inflows from these sub-

catchments into the Lower Wortley Beck were computed by using this 

rainfall data. Next step was to enter these inflow hydrographs into the fluvial 

model of the Lower Wortley Beck and to compute water depth for the 

Pudsey Location. 

1. 06/07/2012 Event day for calibration 

 
 

Figure 3.7 06/07/2012 Date input data 

Calibration input data of the 06/07/2012 date can be seen in Figure 3.7 
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Figure 3.8 Water depth (m) from 06/07/2012 event day 

The measured water depth (m) data from observed Pudsey gauge station 

and the computed water depth (m) data from the Lower Wortley Beck fluvial 

model were compared for 06/07/2012 event day. Maximum measured water 

depth is 0.9 m, and maximum computed water depth is 0.7 m (Figure 3.8). 

2. 24/09/2012 event day for calibration 

 

Figure 3.9 Figure 3.9 24/09/2012 Event Date input data 

Calibration input data of the 24/09/2012 date can be seen in Figure3.9. 
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    Figure 3.10 Water depth (m) from 24/09/2012 event day  

The measured water depth (m) data from observed Pudsey gauge station 

and the computed water depth (m) data from the Lower Wortley Beck fluvial 

model were compared for 24/09/2012 event day. Maximum measured water 

depth is 1.1 m, and maximum computed water depth is 0.7 m (Figure 3.10). 

The differences could be because the geomorphology of the river channel 

could not be displayed exactly in the model. 

3.4 Results and Discussions 

Catchment response time (time to peak (TP)) and storm duration (D) of 

Farnley Beck (FB) and Farnley Wood Beck (FWB) basins were calculated to 

estimate inflow hydrographs of the Lower Wortley Beck. Ungauged 

catchment equations of the ReFH rainfall-runoff method (Kjeldsen, 2007) 

were used.  

URBEXT1990 values of the FB and FWB basins are 0.17 and 0.23 

respectively. Catchment response time of the FB and FWB basins are 2.7 h 

and 2.2 h respectively. The estimated rainfall duration values of the FB and 

FWB basins are 4.8 h and 3.8 h respectively. The urban area of FB basin is 

5.06 km2, and FWB basin is 4.8 km2 in 1990 yr. 
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URBEXT2016 values of the FB and FWB basins are 0.27 and 0.375 

respectively. Catchment response time of the FB and FWB basins are 2.0 h 

and 1.5 h respectively. The estimated rainfall duration values of the FB and 

FWB basins are 3.6 h and 2.64 h respectively  

While the ratio of impervious surface increases (URBEXT values), both time 

to peak and rainfall duration decrease so that catchment response becomes 

faster. 

The above rainfall duration (h) and time to peak values (h), and the URBEXT 

values were used to obtain the inflow hydrographs. Inflows from FB and 

FWB basins into the Lower Wortley Beck were computed. Inflow 

hydrographs were produced to display the discharge from FB and FWB sub-

catchments into the Lower Worley Beck. The results were displayed by 

producing probabilistic flood inundation maps. The background of Figure 

3.12, 3.18, 3.19, 3.23, 3.24, 3.28, 3.30 and 3.32 were produced by using OS 

1:25 000 Scale Colour Raster and contain OS data © Crown copyright and 

database right (2015) (Ordnance Survey, 2015). Arc MAP 10.2.2 tool was 

used to produce these maps. 

3.4.1 Fluvial Flood Risk at the Lower Wortley Beck 

The hydrographs were estimated for a 1% annual exceedance probability 

(AEP) event by using the ReFH rainfall-runoff method. In addition to this, 

URBEXT1990 value was used for FB and FWB basins. Inflow hydrographs 

were displayed in Figure 3.11. 

 

Figure 3.11 Inflow hydrographs 
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The peak flow of FB basin hydrograph is 26 m3/s at the 4th hour of simulation 

(Figure 3.11). Peak flow of FWB basin hydrograph is 23 m3/s at the 3.4th 

hour of simulation (Figure 3.11). 

 

Figure 3.12 Flood inundation map  

This above probabilistic flood inundation map was created to display flood 

extent for the 1 in 100-year event by using the URBEXT1990 value of the sub-

catchments (Figure 3.12).  

This event was analysed in detail in Figure 3.13, Figure 3.14 and Figure 3.15 

maps.  
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Figure 3.13 ReFH URBEXT1990 1% AEP (flood movements) 

Background of Figure 3.13 that is street view contains OS data © Crown 

copyright and database right (2013) (Ordnance Survey, 2013). 
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Figure 3.14 Fluvial flooding 1 % AEP (water depth / stages)  

 

 

Figure 3.15 Fluvial flooding 1 % AEP (velocity / stages) 
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Figure 3.13, Figure 3.14, and Figure 3.15 display fluvial flooding at different 

times (hour) of the simulation. According to fluvial flood inundation maps in 

Figure 3.15, Lower Wortley Beck area, specifically, the Gelderd Road, Ring 

road, and A62 road were observed as primary flood risk areas.  

Flood event began at between the Ring road and the A58 Road. Later water 

cumulated at the Lower Wortley Beck area between the A6110 and the 

M621 on the Gelderd Road. The reason of this flood could be the limitation 

of the culvert and reservoir capacity, and so backwater effect was observed.  

 

Figure 3.16 Flood risk area  

Figure 3.16 presents the map of the Lower Wortley Beck, Leeds, and West 

Yorkshire (Google Map, 2015). It shows the areas that would be inundated 

by the flooding of the 1 in 100-year event.  The map can be used to identify 

the built-up locations in the fluvial flood risk. According to the baseline 

results, primary risk places were determined. It was seen that there are 

developing places in the fluvial risk location such as industrial and residential 

settlements. In addition, there is an important transportation link. 

Consequently, fluvial flood risk should be managed for this area.  
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3.4.2 The impact of land-use change of sub-catchment on the 

fluvial flood risk 

The impact of Farnley Wood Beck (FWB) basin on fluvial flood risk of the 

Lower Wortley Beck area was observed.  

Below scenarios were created 

1. There is no inflow from FWB sub-catchment into the system 

2. The impervious surface ratio of FWB basin is 0.375  

The impervious surface ratio of FWB basin was changed from 0.23 that is 

the URBEXT value of the 1990 year, to 0.375 URBEXT value of the 2016 

year to assess the future land-use change.  

3. The impervious surface ratio of FWB basin is 0.15  

The impervious surface ratio of FWB basin is 0.23. It was decreased to the 

0.15. The ratio of the impermeable surface was decreased to assess the 

discharge from FWB.  

This assumption can be accepted like that if sustainable urban drainage 

systems (SUDS) were applied in the Farnley Wood Beck basin, the ratio of 

the impermeable surface would decrease, and the discharge would be 

affected. 

The limitation of this method that it is an approximate value, also specific 

flood resilience methods and their locations could not be observed and 

assessed.  

Farnley Beck basin was kept the same as the value of the URBEXT of the 

1990 year and the 1 in 50-year event of the inflow hydrograph was used 

(Figure 3.17). 

The inflow hydrographs were estimated for the 1 in 15-year, 1 in 50-year, 

and 1 in 100-year fluvial flood event for both the baseline and proposed 

scenarios. To observe this risk, 15-year return period created low flood risk, 

whereas the 1 in 100-year event created a big flood event and it was an 

obvious flood risk. Therefore, to observe the influence of Farnley Wood Beck 

basin on downstream location a 2% AEP flood event was analysed. 
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The impermeable surfaces of the Farnley Wood Beck basin were computed 

for each scenario. The ratios of the impermeable surface are 0.15, 0.23, and 

0.375 respectively and the area of impermeable surfaces of the FWB basin 

is 3 km2, 4.8 km2, and 7.86 km2 at each urban percent scenarios. 

 

Figure 3.17 Inflows for a 2 % AEP for each URBEXT 

Figure 3.17 indicates the inflow values (m3/s) from the Farnley Wood Beck 

(FWB) sub-catchment for each URBEXT values. Peak flows of inflow 

hydrograph from the FWB are 14 m3/s, 19 m3/s and 29 m3/s respectively for 

a 2 % AEP flood event. 
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Figure 3.18 Flood extent of no inflow from FWB  

Scenario 1 was applied and the flood inundation map in Figure 3.18 was 

produced. 

 

Figure 3.19 Flood extent of inflow from URBEXT2016 of FWB  
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Scenario 2 was applied and the flood inundation map in Figure 3.19 was 

produced. 

It can be observed that there is a significant impact from Farnley Wood sub-

catchment on the Lower Wortley Beck fluvial flood risk. In addition, 

backwater flow movement might be observed at the Lower Wortley Beck 

area due to the inflow from Farnley Wood Beck, and in consequence of 

limited culvert capacity. Lastly, Farnley Wood Beck basin has been 

developing, and urbanisation is expected to be much more in the future. 

 

Figure 3.20 Water depth percentage (%)  

Figure 3.20 indicates the water depth percentage (%) in the flood inundation 

area for each scenario of FWB sub-catchment. When the URBEXT value 

increases, water depth at the flood inundation area can become higher. 
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Figure 3.21 Flood inundation area (km2)  

Figure 3.21 indicates the flood inundation area (km2) for the 1 in 50-year 

event for each URBEXT values of FWB basin. When the ratio of URBEXT 

increases, the flood extent area can become greater. 

3.4.3 The impact of land use change on the fluvial flood risk 

In this section, the impact of the land use change of the sub-catchments on 

the fluvial flood risk at the Lower Wortley Beck was assessed. Two 

scenarios were designed. 

1. Increasing the ratio of impermeable surfaces of the sub-catchments  

The ratio of impervious surfaces was increased so the expected urbanisation 

in the year of 2016 was calculated.  

URBEXT2016 values of the FB and FWB basins are 0.27 and 0.375 

respectively. The urban area of FWB basin is 4.8 km2 in 1990 yr. and 7.86 

km2 in 2016 yr. The urban area of FB basin is 5.06 km2 in 1990 yr., 8.13 km2 

in 2016 yr. 

2. A decrease in the ratio of the impermeable surfaces of the sub-

catchments 

The ratios of impervious surfaces were decreased. After increasing the 

portion of permeable surfaces of URBEXT1990 values of the FWB basin by 

applying SUDS, the URBEXT value became 0.15; the urban area of FWB 
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basin became 3.14 km2. Whereas, the SUDS was not applied into the FB 

basin because its URBEXT1990 value is already very small that is 0.17. 

These scenarios were applied for the 1 in 100-year event. 

 

 

Figure 3.22 Inflow hydrographs of FWB and FB  

 

Figure 3.22 displays the inflows from FWB and FB sub-catchments for the 1 

in 100-year event for each URBEXT values. The peak flow of the inflow 

hydrograph from FB sub-catchment is 39 m3/s and URBEXT value is 0.27 

for the year of 2016 (Figure 3.22). The peak flow of the inflow hydrograph 

from FWB sub-catchment is 35 m3/s and URBEXT value is 0.375 for the 

year of 2016 (Figure 3.22).  The peak flow of the inflow hydrograph from 

FWB sub-catchment is 16 m3/s and URBEXT value is 0.15 with SUDS 

(Figure 3.22).   
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Figure 3.23 Flood extent of inflow from URBEXT2016 of FWB and FB 

sub-catchments 

Figure 3.23 indicates the flood extent for the 1 in 100-year event. Inflows 

hydrographs were estimated for the URBEXT value of FWB basin was 

0.375, and URBEXT value of FB basin was 0.27.  
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Figure 3.24 Flood extent of inflow from URBEXT value 0.15 FWB and 

URBEXT value 0.17 FB  

Figure 3.24 indicates the flood extent of the 1 in 100-year event. This flood 

extent is simulated when the value of URBEXT parameter of FWB basin is 

0.15 and the value of URBEXT of FB basin is 0.17. In this scenario, there is 

a decrease in the ratio of impervious surfaces of FWB basin but the ratio of 

impervious surfaces of FB basin was kept same as in the1990 year. 
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Figure 3.25 Water depth percentage (%)  

According to the impact of the land use change of the sub-catchments, 

maximum water depth (m) was computed. Figure 3.25 indicates maximum 

water depth percentages of these scenarios. It seems that SuDS did not 

have a significant impact on the water depth values in the flood extent. It is 

similar to the scenario of URBEXT 1990 values. Whereas, urbanisation has a 

significant impact on the water depth values (m). Water depth became 

higher in the flood extent. 

 

Figure 3.26 Flood Inundation area (km2) 
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Flood extent area reached to 0.53 km2 when urbanisation increased in the 

catchment (Figure 3.26). However, flood extent area can be decreased to 

the 0.38 km2 by applying SUDS.  

3.4.4 The impact of rainfall duration on the fluvial flood risk  

The impact of the rainfall duration on the inflow hydrograph and downstream 

fluvial flood risk was investigated in this section. Inflow hydrographs were 

produced to display the discharge from FB and FWB sub-catchments into 

the Lower Worley Beck. The hydrographs were estimated for a 1% annual 

exceedance probability (AEP) event by using the ReFH rainfall-runoff 

method. In addition to this, URBEXT of the 1990 year was used for FB and 

FWB basins. The length of the rainfall events in the FB and FWB basins 

were changed from 0.5 hr. to 1 hr., and then to 6 hr. 

1.) Rainfall duration is 0.5 hour in the Wortley Beck catchment 

 

Figure 3.27 Inflow hydrographs for 0.5-hour rainfall duration 

Figure 3.27 indicates the inflow hydrographs of the sub-catchments and for 

0.5 h rainfall duration for the 1 in 100-year event. The peak flow of inflow 

hydrograph of FB sub-catchment is 17.9 (m3/h) and FWB sub-catchment is 

17.05 (m3/h).  
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Figure 3.28 Flood extent from 0.5-hour rainfall duration  

Fluvial flood inundation area of the 0.5-hour rainfall duration at the Lower 

Wortley Beck area can be seen in Figure 3.28. Inflow hydrographs were 

computed for URBEXT1990 and for a 1 % AEP. This event does not have a 

significant flood risk at the Gelderd Road. 

 

2.) Rainfall duration is 1 hour in the Wortley Beck catchment 

 

Figure 3.29 Inflow hydrographs for 1-hour rainfall duration 

Figure 3.29 indicates the inflow hydrographs of the sub-catchments and for 

one-hour rainfall duration for the 1 in 100-year event.  
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Peak flow of inflow hydrograph of FB sub-catchment is 21.6 (m3/h), and 

FWB sub-catchment is 20.08 (m3/h). Fluvial flood inundation area at the 

Lower Wortley Beck can be seen in Figure 3.30. 

 

Figure 3.30 Flood extent from 1-hour rainfall duration  

Figure 3.30 displays the flood extent from 1-hour rainfall duration and inflow 

hydrographs were produced from URBEXT1990 and for a 1 % AEP flood 

event. 
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3.) Rainfall duration is 6hour in the Wortley Beck catchment 

 

Figure 3.31 Inflow hydrographs for 6-hour rainfall duration 

Figure 3.31 indicates the inflows from the sub-catchments, for 6-hour rainfall 

duration and for the 1 in 100-year event. Peak Inflow value of FB sub-

catchment is 25.74 (m3/h), and Peak inflow value of FWB sub-catchment is 

22.59 (m3/h). Fluvial flood extend at the Lower Wortley Beck area can be 

seen in Figure 3.32. 
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Figure 3.32 Flood extent of 6-hour rainfall duration  

Flood inundation area of the rainfall event of the rainfall duration (6-hour) is 

the biggest one when the rainfall event duration becomes smaller; flood 

inundation area is also smaller (Figure 3.33). When rainfall duration event is 

0.5-hour flood inundation area is 0.07 km2. When rainfall duration event is 6-

hour, flood inundation area is 0.4 km2.  
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Figure 3.34 Water depth percentage (%) for each rainfall duration (hr.) 

Figure 3.34 displays that water depth percentage (%) in the flood inundation 

area at the Lower Wortley Beck area. The flood inundation area was 

simulated by using the 1 in 100-year event. Flood event was created by 

using 0.5 hr., 1 hr., and 6hr., rainfall duration.  6-hour rainfall duration 

created higher floodwater depth than 1-hour and 0.5-hour rainfall duration. 

Water depth levels become greater when the rainfall duration become longer 

in the catchment. 
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3.5 Conclusion 

The fluvial flood event of the Lower Wortley Beck is a sample fluvial flooding 

from an urban stream. The Lower Wortley Beck area has a severe level of 

fluvial flood risk and new developments can be found on the floodplains in 

the area.  Therefore, fluvial flood risk can be more series in the future.  

The impact of the inflows from sub-catchments of the Wortley Beck 

catchment on the downstream fluvial flood risk was assessed in this 

research. The assessment of the Lower Wortley Beck fluvial flood risk 

insisted in two main sections. These were that the impact of the land-use 

change of sub-catchments and the impact of rainfall event duration in the 

sub-catchments. 

The land-use change scenarios were used to display the impact of the 

urbanisation and sustainable urban drainage systems of the sub-catchment 

on the discharge at the outfall of the sub-catchment. This approach can be 

useful to have an assumption between the ratio of the impermeable surfaces 

and its impact on the discharge from the basin. 

The impact of the rainfall duration on the downstream fluvial flood risk was 

assessed as well in this chapter. This approach can be useful to have an 

assumption between the rainfall event and runoff. Thus, interdependency 

can be established between surface runoff and discharge in urbanised and 

ungauged catchments. 

The assessment of fluvial flood risk was performed with the probabilistic 

fluvial flood inundation maps and the maximum water depth (m). 

The contributions of this chapter are that 

1. The hydrological modelling part of the 1D/2D hydraulic model of Lower 

Wortley Beck catchment was updated. 

Inflow hydrographs were estimated by using the ReFH rainfall-runoff 

method. Inflows from sub-catchments were produced for different scenarios 

such as return periods and the critical rainfall duration (h) in this research 

section. 
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2. The 1D/2D hydraulic model of Lower Wortley Beck was calibrated. 

3. The impact of the ratio of the impermeable surface and the rainfall 

duration on the fluvial flooding risk were analysed in the Lower Wortley Beck 

location. 

The urbanisation level (URBEXT) of the sub-catchments has a significant 

impact on the fluvial flood extent and magnitude. When the urbanisation is 

increased on the sub-catchment, the peak flow can be seen earlier and 

greater in the hydrograph. 

The rainfall event duration becomes shorter, flood inundation area and flood 

water levels are smaller.  Longer rainfall duration can make longer surface 

runoff thus inflows can become greater.   
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Chapter 4 Single Event Simulation 

4.1 Introduction 

This chapter presents an assessment of the impact of the peak discharge on 

the downstream fluvial flood risk. The peak discharge was used to display 

the surface runoff of the upstream basin. The assessment was carried by 

simulating a range of peak flows. The peak discharges were estimated by 

using the rational method for different rainfall and land-use scenarios. Then, 

the peak flow was entered into the Flood Modeller Suite-TUFLOW 

hydrodynamic model to estimate the fluvial flood risk of the Lower Wortley 

Beck (Figure 4.1). 

4.1.1 Research Area 

The hydrological analysis of the peak discharge was carried for New 

Farnley. New Farnley is a small-ungauged urbanised catchment. The 

catchment boundary of the New Farnley (SE 26150 31850) is shown in 

Figure 4.1 with the corresponding drainage area of 2.18 km2. The catchment 

characteristics were obtained from FEH CD-ROM version 3.0 (CEH, 2009) 

as shown in Table 4.1 and Table 4.2. Catchment Properties of the New 

Farnley can be found in Table 4.1. 
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Figure 4.1 Location of New Farnley Beck catchment 

Table 4.1New Farnley (Lateral Inflow Sub-Catchment) Properties 

DPLBAR 1.41km 

DPSBAR 56.5 m/km 

PROPWET 0.32 

SAAR 742 mm 

SPRHOST 38.58 

URBEXT1990 0.13 

 

Where in Table 4.1: DPLBAR is mean drainage path length (km); DPSBAR 

is mean of all the inter-nodal slopes for the catchment (m/km); PROPWET is 

index of proportion of time that soils are wet; SAAR (mm) is Standard Period 

Average Annual Rainfall (mm); SPRHOST is Standard Percentage Runoff 

(%) derived  by using HOST classification; URBEXT1990 is FEH index of 

fractional urban extent for 1990 (Houghton-Carr, 1999). 
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Table 4.2 Catchment design rainfall parameters 

 

 

 

The design rainfall parameters of the New Farnley, which were extracted 

from FEH data CD-ROM version 3.0 (CEH, 2009), are indicated in Table 4.2.  

4.2 Research Methodology 

The peak flow rates were estimated by incorporating the urban extent 

(URBEXT) scenarios and the rainfall durations, to analyse the impact of the 

maximum discharge on the downstream fluvial flood risk. URBEXT value 

displays the ratio of the impermeable surface in the catchment. In addition, 

rainfall durations were used to assess the rainfall intensity. Thus, the impact 

of land-use change and rainfall events on the flood risk could be assessed. 

The rational method was selected based on the New Farnley catchment 

properties. After calculation peak flow by using the rational method, the peak 

flow was added as lateral flow into the coupled 1D/2D (Flood Modeller Suite 

link TUFLOW) hydrodynamic model. This modelling approach was the same 

as Chapter 3 fluvial flood modelling. Fluvial flood modelling consisted of two 

inflows from Farnley Beck and Farnley Wood Beck basins in the model. In 

addition to these, the peak discharge at the outfall of New Farnley Beck 

basin was incorporated as a lateral flow in this methodology.  The outcomes 

of this approach were examined and observed by using the flood inundation 

maps and water depth values thus the flood risk of the Lower Wortley Beck 

area was analysed. 

4.2.1 The Rational Method 

Mulvaney established the principles of the rational method in 1851 

(Alsuwaidi et al., 2015). Kuichling (1889) mentioned firstly rational method in 

the United States (Hayes and Young, 2006). Chow (1964) mentioned that 

the rational method referred to the Lloyd-Davies approach in England, and 

was published in 1906. The Rational formula can be used to calculate peak 

flow in the drainage system in the UK (Chadwick et al., 2004). 

c d1 d2 d3 e f 

-0.026 0.377 0.35 0.318 0.301 2.38 
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Rational method can be used to assess a simplified relationship between 

rainfall and runoff, and to estimate floods in small and urbanised catchments 

(Faulkner et al., 2012). In addition, Fleig and Wilson (2013) recommended 

the rational method in the absence of flood data as an empirical method for 

small catchments. Watts and Hawke (2003) added that this method has 

been used for the urban and small rural ungauged catchments (Gebre and 

Nicholson, 2012). In the UK, the rational method is applied to basins that are 

between 2 to 4 km2 size (Gebre and Nicholson, 2012). Whereas, Virginia 

Department of Transportation recommended the use of the rational method 

for basins are less than 0.8km2 in the USA (Hayes and Young, 2006). 

The rational method consists of the catchment surface characteristics, 

average rainfall intensity, and drainage area to calculate the peak flow 

(Hayes and Young, 2006). Land use change, the ratio of imperviousness, 

watershed slope, surface roughness, duration and intensity of rainfall, 

recurrence interval of the precipitation can also have an impact on peak flow 

(Gebre and Nicholson, 2012; Fleig and Wilson, 2013). For example, if a 

catchment has low land-surface slopes, or high infiltration rates, and surface 

storage, it could cause low runoff (Hayes and Young, 2006). 

Rational method (Equation 4.1) was used to calculate the peak flow rate for 

the drainage area. 

Equation 4.1Rational method (Houghton-Carr, 1999) 

Q =  0.278 × C × i × A 

Where in Equation 4.1: Q is the peak flow rate (m3/s); i is the rainfall intensity 

(mm/hr); A is catchment area (km2); C is the runoff coefficient. 

4.2.2 Modified Rational Method 

On the other hand, the Institute of Hydrology, Meteorological Office, and HR-

Wallingford assessed the rational method and obtained the modified rational 

method (Gebre and Nicholson, 2012). The modified rational method could 

be used to design drainage systems (Faulker et al., 2012).  
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4.2.3 The parameters of the calculation peak flow 

The parameters of the equation to calculate peak flow are the runoff 

coefficient, catchment area (km2), and the rainfall intensity (mm/hr). These 

parameters were explained for both the rational method and the modified 

rational method. 

1. The runoff coefficient 

Runoff coefficient (C) was used to calculate the peak flow. The runoff 

coefficient is a dimensionless empirical coefficient (Hayes and Young, 2006). 

The runoff coefficient can be between 0.1 and 0.5 in the rational method 

(Houghton-Carr, 1999).  In the rational method (Houghton-Carr, 1999), the 

runoff coefficient value was computed by using the ratio of the impervious 

surface of the New Farney. It is URBEXT parameter of the catchment 

descriptors (Table 4.1). It can assist to analyse the impact of urbanisation on 

the runoff. 

Urban extent was calculated for the 2016 year for New Farnley by using the 

Equation 6.8 on Page 53 in FEH VOL 5 (Bayliss, 1999). 

Equation 4.2 Urbanisation Expansion Factor (UEF) 

UEF =  0.8165 + 0.2254ATAN {(YEAR − 1967.5)/21.25} 

Equation 4.2 was used to calculate the rate of impermeable surface in the 

New Farnley and the results were displayed in Table 4.3. 

Table 4.3 URBEXT values of the New Farnley  

URBEXT1990 0.13 

URBEXT2000 0.19 

URBEXT2016 0.22 

 

On the other hand, in the modified rational method, the runoff coefficient (C) 

value was calculated from Wallingford Procedure volume 1(National Water 

Council, 1981) as given in Equation 4.3 (Chadwick et al., 2013). Runoff 

coefficient values are higher in the equation of the modified rational method. 
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Equation 4.3Runoff coefficient of the modified rational method  

C =  CV × CR 

Where in Equation 4.3: CR is 1.3 and CV is PR/100 (Chadwick et al., 2004). 

PR is urban the percentage runoff of an urban catchment calculated from 

Equation 4.4.  

Equation 4.4 Urban percentage runoff 

PR =  0.829 × PIMP + 25 × SOIL + 0.078 × UCWI − 20.7        

Where in Equation 4.4: Percentage runoff represents the proportion of 

rainfall, which flows directly contribute to in the river; PIMP is percentage 

impermeable area to total area (URBEXT value); SOIL is a number 

depending on soil type (BFIHOST value); UCWI is the urban catchment 

wetness index (mm) (SAAR value) (Chadwick et al., 2004).  

PIMP value is the URBEXT values per each year (Table 4.3), SOIL value is 

used as BFIHOST value is 0.329, UCWI parameter was used as SAAR. 

SAAR value is 742 from catchment descriptors data (Table 4.1). In the 

modified rational method, the runoff coefficient (C) value was 0.6. 

Nevertheless, the runoff coefficient should be modified due to the change in 

soil permeability as precipitation occurs (Gebre and Nicholson, 2012; 

Faulkner et al., 2012). The runoff coefficient can be affected by soil moisture 

condition, rainfall event, and land use (El-Hames, 2012). Hayes and Young 

(2006) mentioned that the runoff coefficient could be between 0 and 1.0. 

While the value of the runoff coefficient is 0, no surface runoff and is 1, a 

100% surface runoff can be observed in the basin. The runoff coefficient in a 

catchment is associated with the infiltration, storage, and evapotranspiration 

(Hayes and Young, 2006). 

2. Catchment Area 

Catchment area (A) was accepted as the whole basin area to calculate the 

peak flow in the rational method (Houghton-Carr, 1999).  Whereas, the 

catchment area was accepted as equal to the area of the impermeable 

surface of the basin in the modified rational method, that was 0.3 km2 for 

URBEXT1990 and 0.5km2 for URBEXT2016 (Chadwick et al., 2004). 
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Calculation of rainfall intensity for the rational method in an ungauged 

catchment was explained in this section. 

4.2.3.1 Rainfall intensity to calculate peak flow  

Peak flow (m3/s) can be calculated by using the rational method from the 

use of point precipitation (Chow et al., 1988). One of the links between point 

precipitation and peak flow is rainfall intensity (i). The rainfall intensity 

represents total precipitation for each unit of time (Nyman et al., 2002). The 

rainfall intensity can be calculated by dividing the rainfall depth (mm) to the 

rainfall duration (hr) for any frequency of the catchment of interest. This 

calculation can be done by producing rainfall Depth (D)/ Duration (D)/ 

Frequency (F) curve (Nyman et al., 2002, Chadwick et al., 2004).  

The DDF curves can be used to estimate total depth (mm) from the rainfall 

duration and frequency at any point in the catchment when there is not 

sufficient measured rainfall data in the catchment (Faulkner, 1999; 

Fitzgerald, 2007). New Farnley is an ungauged catchment so that a DDF 

curve was plotted by using FEH data CD-ROM v3.0 software by NERC 

(CEH, 2009). The curve was plotted by entering defined rainfall duration. 

The time of concentration of the catchment can be accepted as equal to the 

storm duration (D) (Hayes and Young, 2006). Time to peak (TP) formula of 

the ReFH method was applied to calculate the rainfall duration in this work. 

Rational method and Depth-Duration-Frequency curve can allow the 

estimation of the peak flow only for the same defined return period of a 

rainfall event (Fleig and Wilson, 2013). This assumption causes the return 

period of the peak flow is the same as the return period of the rainfall 

intensity (Hayes and Young, 2006). 

The rainfall-runoff models need a rainfall depth value to design flood events 

(Faulkner, 1999). Thus, these flood events can be used to design flood 

defence in ungauged catchments (Faulkner, 1999). 

Rainfall duration of the design rainfall event should be computed to calculate 

rainfall intensity for a rainfall frequency. 
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1. Calculation of the Storm Duration 

Rainfall duration was supplied to compute rainfall depth from FEH data CD 

for each return period. Storm duration (D) was calculated (Equation 4.5) by 

using the time to peak. Time to peak was calculated for various URBEXT 

values by using the ReFH rainfall-runoff method (Equation 4.6). Finally, 

rainfall intensity was calculated for each frequency by using depth-duration-

frequency model. This calculation method of rainfall depth is used in 

ungauged catchments. 

Equation 4.5 Storm Duration (D) 

D = TP(1 +  
SAAR

1000
) 

Where in Equation 4.5: D is Critical Storm Duration (h); TP is Time to Peak; 

SAAR is Standard Average Annual Rainfall.  

SAAR is 742 mm from FEH data CD-ROM v3.0 (CEH, 2009). It can be seen 

from Equation 4.5 that time to peak should be known to calculate rainfall 

duration.   

TP was calculated by using the Revitalised Flood Hydrograph (ReFH) 

method (Kjeldsen, 2007 page 19. Equation 3.19) as follows:  

Tp can be calculated by using Equation 4.6 below 

Equation 4.6 Time to peak equation 

Tp = 1.563 ∗ PROPWET−1.09 ∗ DPLBAR0.60 ∗ (1 + URBEXT)−3.34 ∗ DPSBAR−0.28 

Parameters of the TP Equation 4.6 can be found in Table 4.1: New Farnley 

(Lateral Inflow Sub-Catchment) Properties.  

2.  Plotting rainfall Depth-Duration-Frequency (DDF) Curve  

The rainfall duration (hour) and return period (year) are entered into the FEH 

CD-ROM software to calculate the rainfall depth (mm). The FEH CD-ROM 

software was generated by NERC (CEH, 2009) for any catchment in the UK 

(Faulkner, 1999). Joint Environment Agency/Defra funded the project, 

researchers from the Met Office, CEH, and the Universities of Salford and 

Sheffield developed the model of rainfall Depth-Duration-Frequency (DDF) 

for the UK.  
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The DDF model can estimate rainfall return periods from 2 years. The model 

is based on the analysis of annual maxima. Data from 1 hour to 8 days can 

be derived from rain gauges throughout the UK. The Met Office, the 

Environment Agency, and SEPA supplied the rain gauge data. The model 

can fit across the UK on a 1-km grid (CEH, 2009; Stewart et al., 2010). 

3. Calculation of the rainfall depth (mm)  

After the catchment was defined by the outlet coordinates, the rainfall return 

period and duration were entered into the FEH CD-ROM software. Rainfall 

duration was used the same as the time of concentration and the return 

period of rainfall intensity was accepted the same as the return period of the 

peak flow. Rainfall has been estimated for a return period on the POT scale, 

by using the approach of FEH Volume 2, Section 2.4 and by using sliding 

duration. The biggest total rainfall could be captured during the rainfall event, 

by using sliding duration. Catchment design rainfall parameters (c, d1, d2, 

d3, e, and f) can be found in Table 4.2.  

An areal reduction factor has been applied to a point rainfall to yield a 

catchment rainfall (Faulkner, 1999; Fitzgerald, 2007). Areal reduction factor 

values were obtained from FEH CD-ROM v3.0 (CEH, 2009) for the rainfall 

DDF curves of the New Farnley area (Table 4.3). 

4.3 Single Event Simulation Results 

These results present the impact of peak discharge at the outlet of a New 

Farnley basin on the fluvial flood risk of the Lower Wortley Beck.  

A.) Rainfall duration and Time to peak 

The impact of rainfall duration on the rainfall-runoff process was analysed. 

Rainfall duration (hr) was calculated from time to peak value to design the 

rainfall event in ungauged catchments.  Time to peak and rainfall durations 

were calculated by using ReFH rainfall-runoff model (Equation 4.5 and 4.6). 
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Table 4.4 Time to peak (TP), rainfall duration (D) 

 URBEXT 

values 

Tp D Areal 

reduction 

factor 

URBEXT(1990) 0.13 1.4(hr) 2.45(hr) 0.963 

URBEXT(2016) 0.22 1.1(hr) 1.94(hr) 0.959 

 

While URBEXT value changes from 0.13 to 0.22, time to peak changes from 

1.4 hr., to 1.1 hr., and rainfall duration changes from 2.45 hr., to 1.94 hr., for 

New Farnley area (Table 4.4). The impact of urbanisation on the estimation 

of the rainfall duration could be observed in Table 4.4. Time to peak shows 

the catchment response time to the rainfall event. The increase in the ratio of 

the impermeable surface can cause a decrease in the catchment respond 

time. 

B.) Rainfall return period and rainfall intensity 

The rainfall duration (hr) was used to calculate rainfall intensity (mm/h) for 

various return periods. After calculating rainfall duration as 2.45 hour for 

urbanisation value of the 1990 year, rainfall intensity (mm/hr) was computed 

for each rainfall return periods (T) by using FEH CD-ROM v3.0 (Table 4.5).   

Table 4.5 Return period (T) and Rainfall intensity (i) 

Return 

period 

Intensity 

(mm/hr) 

15 yr. 12.65 

50 yr. 17.67 

100 yr. 21.42 

 

Rainfall intensity is getting higher with the increase of the rainfall return 

period. 
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C.) The relationship between rainfall duration, and rainfall intensity  

Rainfall intensity was assessed for various rainfall durations for the New 

Farnley area in this section. Rainfall return period was used as the 1 in 100-

year event to calculate rainfall intensity for this assessment. 

Table 4.6 Rainfall duration and Intensity 

Rainfall 

Duration 

Rainfall 

Intensity  

0.5 hr 67.58 (mm/h) 

1hr 41.1 (mm/h) 

2hr 24.84 (mm/h) 

3hr 18.49 (mm/h) 

6hr 11.14 (mm/h) 

12hr 6.70 (mm/h) 

 

Table 4.6 indicates the relationship between rainfall duration and intensity. 

Rainfall duration is changing from 0.5 hr., to 12 hr., rainfall intensity 

decreases from 67.6 to 6.7 mm/h. Rainfall duration increases when rainfall 

intensity decreases for a design rainfall event. 

D.) Calculation of peak discharge 

Peak discharge was calculated by using rainfall intensity, surface runoff 

coefficient, and catchment area parameters. After calculation rainfall 

intensity by using the ReFH rainfall–runoff model and FEH CD-ROM v 3.0 

(CEH, 2009) software, peak flow (Q) was computed for both Modified 

Rational method (Chadwick et al., 2004) and Rational method (Houghton-

Carr, 1999) approaches. 
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Table 4.7 Peak flows (Q) from different rational methods 

Method Modified 

Rational 

Method 

Rational 

Method 

(URBEXT1990)  1.04(m3/s) 1.7(m3/s) 

(URBEXT2016)  2.0(m3/s) 3.4(m3/s) 

 

Peak flows (m3/s) were compared between Modified Rational Method 

(Chadwick et al., 2004) and Rational Method (Houghton-Carr, 1999) of the 1 

in 100-year event (Table 4.7). It is observed that peak flow values of the 

rational method (Houghton-Carr, 1999) are higher than the values of the 

modified rational method (Chadwick et al., 2004). The impact of peak flow on 

the discharge and on the fluvial flood risk of the Lower Wortley Beck can be 

observed better in the rational method (Table 4.7). Therefore, the rational 

method (Houghton-Carr, 1999) was chosen to assess the fluvial flood risk for 

various situations such as frequency, land use change, and rainfall duration 

in this research. 

Table 4.8 Peak Flow (Q) from Rational Method for different return 
periods and URBEXT values 

Return period 15 yr. 50 yr. 100 yr. 

Peak flow (Q) 

URBEXT1990 

(0.13)  

1(m3/s) 1.4(m3/s) 1.7(m3/s) 

Peak flow (Q) 

(URBEXT2016) 

(0.22) 

1.97(m3/s) 2.8(m3/s) 3.4(m3/s) 

 

Peak flow values (Q) (m3/s) for each URBEXT values and return periods can 

be found in Table 4.8. When the ratio of the impermeable surfaces 

increases, the response time of the catchment (time to peak, Tp) can be 

smaller, so that runoff can be faster.  
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In addition, when the ratio of the impermeable surfaces increases, the 

design rainfall duration decreases, and peak flow increases.  It is obvious 

that when the rainfall return period increases, peak flow values increase.  

The crucial outcome from this table is that the peak discharge from high-

urbanised catchments with long return periods can cause serious flood risk. 

Table 4.9 Peak Flow (Q) (m3/s) from Rational Method for different 
rainfall duration (h) and return periods (yr) 

Rainfall 

Duration  

Q  

15 yr. 

Q 

50 yr. 

Q 

100 yr. 

0.5 hr 2.9(m3/s) 4.3(m3/s) 5.4(m3/s) 

1hr 1.8(m3/s) 2.6(m3/s) 3.3(m3/s) 

2hr 1.15(m3/s) 1.6(m3/s) 1.97(m3/s) 

6hr 0.55(m3/s) 0.74(m3/s) 0.88(m3/s) 

 

Peak flow values (Q) (m3/s) were assessed for various rainfall durations (hr) 

and return periods (yr) (Table 4.9). Table 4.9 displays that rainfall duration 

increases, peak flow decreases, when the return period (yr.) is constant. 

Return period increases from 15 yr. to 100 yr., peak flow increases, when 

the rainfall duration (hr) is constant. The primary outcome from this table is 

that peak discharge from longer rainfall duration events can be lower, but a 

short rainfall event can cause high rainfall intensity for design rainfall events 

and so high peak flow can be observed. Therefore, short but high-intensity 

rainfall event may cause flash flooding, backwater effect and pluvial flooding 

in the sub-catchment area. 

4.3.1 Results of fluvial flood inundation area and water depth 

The results of this chapter were used to assess fluvial flood risk of the Lower 

Wortley Beck. The fluvial flood risk was assessed by using the flood 

inundation area, the percentage of water depth values and flood inundation 

maps. The fluvial flooding at the Lower Wortley Beck area was simulated by 

integrated the lateral inflow from New Farnley basin with the inflows from the 

Farnley Beck and Farnley Wood Beck basins, in this chapter. 
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Inflow hydrographs from Farnley Beck and Farnley Wood Beck sub-

catchments were plotted by using ReFH rainfall-runoff model. The lateral 

inflows were calculated by using the rational method of the Houghton-Carr 

(1999). The 1D/2D fluvial hydrodynamic model was used for the simulations. 

During these simulations, the input data of sub-catchments were designed 

for the constant rainfall return period, rainfall duration, and the URBEXT 

values in the whole catchment. Inflow hydrographs, sub-catchments, and the 

hydrodynamic model were explained in detail in fluvial flood event chapter.   

The outcomes were produced for various design events. These model 

simulations were performed for the URBEXT value of the 1990-year, and the 

URBEXT value of the 2016-year for the 15, 50 and 100-year return periods. 

In addition, these model simulations were performed for the rainfall durations 

were 0.5-hr., 1-hr., and 6-hr.  The impact of the ratio of the impermeable 

surface (URBEXT) was used to assess the urbanisation. The impact of the 

rainfall frequency and rainfall duration were applied to assess the rainfall-

runoff process of the sub-catchment. 

A.) Flood inundation area 

The effects of impermeable surfaces (URBEXT values), the return periods, 

and the rainfall durations were assessed on the flood inundation areas in this 

section (Figure 4.2, Figure 4.3, and Figure 4.4). Flood inundation area is at 

the Lower Wortley Beck area. 

 

Figure 4.2 Urbanisation and flood inundation area 
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The interaction between the URBEXT value of sub-catchment and flood 

inundation area was assessed in Figure 4.2 for the 1 in 100-year event of 

peak flow.  

The impact of the ratio of the impermeable surface (URBEXT) of the New 

Farnley was assessed to analyse fluvial flood risk of the Lower Wortley 

Beck. The values of URBEXT1990 and URBEXT2016 were 0.13 and 0.22 

respectively for this assessment. Flood inundation area is 0.42 km2 for the 

URBEXT1990 and 0.6 km2 for the URBEXT2016 for 1 % AEP flood event. 

Figure 4.2 displays that when the ratio of impermeable surface increases by 

urbanisation or decreases by the sustainable urban drainage system, these 

situations can have an impact on maximum discharge and the downstream 

fluvial flood risk. 

 

Figure 4.3 Return period and flood inundation area 

The interaction between the return period (yr.) of peak flow and flood 

inundation area was assessed in Figure 4.3. The ratio of the impermeable 

surface (URBEXT 1990) of the New Farnley was used. The return period of 

the peak flow was changed from 100 yr. to 50 yr., fluvial flood inundation 

area of the Lower Wortley Beck changed from 0.4 km2 to 0.3 km2. 

Figure 4.3 displays that the magnitude of the rainfall event can have an 

impact on the maximum discharge value and the downstream fluvial flood 

risk. 
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Figure 4.4 Rainfall duration and flood inundation Area 

The interaction between the rainfall duration (hr.) and flood inundation area 

(km2) was assessed in Figure 4.4. The ratio of the impermeable surface 

(URBEXT1990) of the New Farnley and the 1 in 100-year event were used for 

simulation. The rainfall duration was changed from 0.5 hr. to 1 hr. and to 6 

hr., so that the fluvial flood inundation area of the Lower Wortley Beck 

changed from 0.18 km2 to 0.23 km2 and to 0.45 km2 respectively. 

Figure 4.4 displays that the rainfall duration can have an impact on the 

maximum discharge and the downstream fluvial flood risk. 

B.) The percentage of water depth values 

The effects of the URBEXT values, the return periods and the rainfall 

durations on the ratio of water depth values in flood extent of the Lower 

Wortley Beck area were assessed in this section (Figure 4.5, Figure 4.6, and 

Figure 4.7). 
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Figure 4.5 Water depth percentages (%) and urbanisation 

Figure 4.5 displays the percentages of water depth (m) in a flood inundation 

area for URBEXT1990 and URBEXT2016 values. The water depth becomes 

higher when the ratio of the impermeable surface of the sub-catchment 

becomes larger. 

 

Figure 4.6 Water depth percentages (%) and rainfall return period (yr.) 

Figure 4.6 displays the percentages of water depth (m) values for return 

period of the catchment of the 1 in 100-year and 1 in 50-year event. The 

water depth becomes higher when the return period of the peak flow 

becomes longer. 
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Figure 4.7 Water depth percentages (%) and rainfall duration (hr.) 

Figure 4.7 displays the percentages of water depth (m) values for rainfall 

duration of 0.5 hr., 1 hr., and 6 hr. The water depth becomes higher when 

the rainfall duration of the rainfall event in the catchment becomes longer. 
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data © Crown copyright and database right (2015) (Ordnance Survey, 2015). 

Arc MAP 10.2.2 tool was used to produce these maps. 

1. ) URBEXT 1990 1 % AEP 

 

Figure 4.8 URBEXT 1990 1 % AEP 

Flood inundation area in Figure 4.8 displays the flood event for URBEXT 

value year of 1990. 

2.) URBEXT 2016 1 % AEP 

 

Figure 4.9 URBEXT 2016 1 % AEP 
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Flood inundation area in Figure 4.9 displays the flood event for URBEXT 

value year of 2016.  

The urbanisation parameter can affect both catchment response time in the 

sub-catchments and flood extent at the downstream 

3. URBEXT 1990 1 % AEP for 0.5 hour rainfall duration  

 

Figure 4.10 URBEXT 1990 1 % AEP for 0.5 hour rainfall duration  

Figure 4.10 displays the flood event of the rainfall duration 0.5 hr., for all the 

catchment with the urbanisation of the 1990-year. Flood extent area is 0.18 

km2. 

4. URBEXT 1990 1 % AEP for 1 hour rainfall duration 

 

Figure 4.11 URBEXT 1990 1 % AEP for 1 hour rainfall duration 
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Figure 4.11 displays the flood event of the rainfall duration 1 hr., for all the 

catchment with urbanisation of the 1990-year. Flood extent area is 0.23 km2. 

 

5. URBEXT1990 1 % AEP for 6 hour rainfall duration  

 

Figure 4.12 URBEXT1990 1 % AEP for 6 hour rainfall duration 

Figure 4.12 displays the flood event of the rainfall duration 6 hr., for all the 

catchment with urbanisation of the 1990-year. Flood extent area is 0.45 km2.  

Results of the design flood events were produced for the same return period 

and URBEXT value in the Wortley Beck catchment. In addition, the rainfall 

durations were changed from 0.5 hr., to 1 hr., and to 6 hr.  

Results indicate that when the rainfall durations are changed from 0.5 hr., to 

6 hr., inflow hydrograph becomes greater, and peak flow becomes smaller. 

In addition, when the rainfall durations are changed from 0.5 hr., to 6 hr., the 

flood extent area becomes greater, and the water depth becomes higher. 
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The outcomes show that the area of the flood extent becomes larger. Flood 

inundation areas are 0.18 km2, 0.23 km2, and 0.45 km2 respectively. The 

reason of this can be that longer rainfall duration is significant for fluvial flood 

risk whereas short with high-intensity rainfall event can be more significant 

for pluvial flooding in urbanised catchments. 

Lastly, the main flood risk areas in the Lower Wortley Beck area could be 

Gelderd road and A6110 transportation link, and Leeds train station.  Flood 

risk mitigation approaches such as sustainable urban drainage systems in 

the upstream catchment can be used to retard the surface runoff and to 

attenuate the downstream flood risk for large river basins (de Kok and 

Grossmann, 2010; Du et al., 2015). 

4.4 Conclusion 

The relationship between maximum discharge and downstream fluvial flood 

events was assessed in this chapter. The maximum discharge that drains 

into the river channel from a sub-catchment was observed for this 

assessment. It was integrated as a lateral flow with the Lower Wortley Beck 

fluvial system. This lateral flow represents the peak flow at the outlet of the 

New Farnley Beck basin. The flooding at the downstream area can be 

affected by the properties of the surface and the rainfall intensity in the New 

Farnley Beck basin. The interaction between surface overflow and fluvial 

flood risk at the downstream was analysed by using the ratio of impermeable 

surfaces and rainfall event duration in this research. 

The lateral flow was computed by using the rational method in this research. 

However, in literature, this method has been mostly used to estimate peak 

flow in the design of urban drainage systems. The rational method 

calculation has three main parameters. These are surface runoff coefficient, 

rainfall intensity, and basin area. To calculate peak flow, rainfall intensity 

was computed from a Depth (mm) /Duration (hr.)/ Frequency (T, return 

period year) curve by using FEH software version 3.0  by NERC (CEH, 

2009). However, the D/D/F curve can only allow estimation of the peak flow 

for the same defined return period of a rainfall event. 
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To investigate the fluvial flood risk at the downstream of Wortley Beck 

catchment and to produce probabilistic flood inundation maps, the coupled 

1D (Flood Modeller Suite) / 2D (TUFLOW) hydrodynamic model was linked 

with GIS software. Both rainfall event and the impermeable surfaces in the 

sub-catchments influence the flood peak magnitude and arrival time. 

1. The impact of the ratio of impermeable surfaces on the peak flow was 

investigated to assess the urbanisation. 

The URBEXT value was used to observe the impact of the impermeable 

surfaces of the New Farnley on the peak flow. When the ratio of the 

impermeable surface increases, the catchment response time decreases, 

because the surface runoff becomes faster. This can cause high peak flow; 

as a result, a higher discharge value can be seen, causing a large flood 

extent downstream. 

 2. The impact of rainfall duration on the peak flow was investigated to 

observe the discharge. 

Inflows from Farnley Beck and Farnley Wood Beck sub-catchments and 

peak discharge from New Farnley sub-catchment were estimated for the 

same rainfall durations, the same return periods, and the same urban 

extents in the whole basin. Rainfall duration has a significant impact on peak 

flow. Short rainfall duration causes high rainfall intensity. 

When the URBEXT and return period are constant, and rainfall duration is 

increased to estimate peak flow and inflow hydrographs, rainfall intensity 

becomes lower, peak flow becomes lower, but inflow hydrograph becomes 

greater. Inflow hydrograph becomes longer with longer rainfall durations. 

The flow of the inflow hydrograph becomes higher, so that even when peak 

flow is low at the outlet of the New Farnley Beck basin, the flood extent area 

becomes larger, water depth becomes higher, and downstream flood risk 

increases.  

Longer rainfall duration is significant for fluvial flood risk whereas short with 

high-intensity rainfall event can be more significant for pluvial flooding in 

urbanised catchments. 
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3. The impact of return period on peak flow, when the URBEXT value and 

the rainfall duration are constant, shows that as the return period increases, 

rainfall intensity increases, peak flow increases, and flood extent increases 

with higher water depth values. 

In summary, increasing in rainfall intensity and impermeable surfaces can 

cause great overflows.  

Rainfall duration is effective on water depth and flood extent, but the impact 

of urbanisation on flood events is the most significant one. Moreover, short 

duration but high-intensity rainfall on an urbanised basin can cause a serious 

of high-level peak flow. Therefore, this event can be the source of a pluvial 

flooding in the basin. When the rainfall duration increases, this can cause a 

low level of rainfall intensity and so a small magnitude of peak flow, but 

fluvial flood risk is higher at downstream location. 

Due to the methodology, the application of this method has a number of 

inherent assumptions.  The assumptions could cause some limitations in the 

calculation. Rainfall intensity cannot be uniform during the event but peak 

flow was applied as constant in the basin. The runoff coefficient or 

antecedent soil moisture was accepted as constant over the basin during the 

rainfall event. Drainage loss and the influence of basin storage were not 

considered. The basin surface was assumed homogeneous. These could 

cause the estimation of the maximum discharge becomes greater in this 

research. 

Consequently, this project assesses the impact of urbanisation and rainfall 

duration on the rainfall-runoff process of the upstream. Peak flow calculation 

was used to assess surface overflow in the New Farnley area. The surface 

overflow in the sub-catchment can be the source of the urban drainage 

outfall as maximum discharge into the river channel. The discharge 

efficiency of the urban drainage system, the ratio of impermeable surfaces, 

and rainfall intensity could create an interaction between the pluvial flooding 

and fluvial flooding. Sustainable urban drainage systems (SUDS) can be 

used in the urbanised catchment to decrease and retard runoff. Flood risk 

mitigation approaches in the upstream catchment can be applied to 

decrease the downstream flood risk. 
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Chapter 5 Pluvial Flood Modelling 

5.1 Introduction 

This chapter introduces an assessment of the pluvial flooding in the Wortley 

Beck catchment, Leeds. The pluvial flooding can be observed in a 

combination of high-intensity rainfall events, limited urban drainage systems 

capacity, and limited permeable surfaces in urban areas. Surface runoff and 

ponds could occur, when rainfall could not be infiltrated by the saturated 

ground and could not be managed by the drainage system in urban areas 

(Falconer et al., 2008; Pitt, 2008; Falconer et al., 2009; Morris et al., 2009; 

Kellagher et al., 2010; Houston et al., 2011; Falconer and Smyth, 2012;  Jha 

et al., 2012). Pluvial flood events can occur in a short time; therefore, it is 

difficult to warn, and to detect the vulnerable places with in a sufficient lead-

time (Pitt, 2008; Houston et al., 2011). 

Pluvial flood events were observed in many locations including in 

Newtownards, Comber, Omagh, Magherafelt, and Belfast in Northern 

Ireland, Newcastle West, in England, and Dublin in Ireland. Some pluvial 

flood events were observed in Glasgow, Scotland in 2002. Similarly, pluvial 

flood events were observed in Hull and other parts of the UK in summer 

2007 (Falconer et al., 2008; Morris et al., 2009). One-third of flood risk in the 

UK is a result of pluvial flooding (Houston et al., 2011). 

The consequences of pluvial flooding can be severe, due to the physical 

damage to property and due to the disruption to daily life in heavily built 

urban areas. Moreover, when rainfall exceeds the capacity of the drainage 

system, the effects of pluvial flooding can be the health hazard to the public 

due to the contaminated surface water with foul sewage (Falconer et al., 

2009). Vulnerable places can be residences, industrial locations, rail 

stations, infrastructure systems, and transportation links in the urban areas 

(Houston et al., 2011; Falconer and Smyth, 2012). 

These consequences can be much more adverse in the future due to 

urbanisation and climate change. These factors can result in faster and 

larger magnitude runoff in urban areas so it is difficult to manage runoff with 

urban drainage systems. 
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According to the annual growth projections, population growth can anticipate 

as between 1% and 1.5% (Falconer and Smyth, 2012). Around three times 

more population can be at surface flood risk due to the population growth in 

the urban areas than due to climate change, by 2050, in the UK (Houston et 

al., 2011). 

5.1.1 The suitability of Wortley Beck catchment  

Wortley Beck catchment is an ungauged and urbanised catchment. The 

population growth and valuable investment in the flood risk locations can 

make the Wortley Beck catchment vulnerable. Moreover, The Environment 

Agency confirmed that this area (Figure 5.1) Lower Wortley has a severe 

level surface flood risk (Environment Agency, 2013). Therefore, flood risk 

should be managed as soon as possible, and flooding is a research priority 

for the Wortley Beck catchment. 

 

Figure 5.1Lower Wortley surface flood risk (Environment Agency, 2013 
RFI no: 29864) 

 

 

 

 

 

 

 



- 116 - 
 

 

5.2 Methodology of the pluvial flooding  

The simulation methodology of the pluvial flood modelling for the Wortley 

Beck catchment is explained in this section. The Wortley Beck catchment 

can be seen in Figure 5.2. Pluvial flooding was assessed by using a 2D 

direct rainfall method. 

 

Figure 5.2 The Wortley Beck Catchment (WBC) 
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5.2.1 Direct rainfall method 

The Direct Rainfall Model (DRM) is a relatively new approach and can 

replace traditional rainfall-runoff processes (Engineers Australia, 2012; 

Boyte, 2014; Hall, 2015). The traditional flood modelling approach consists 

of hydrological and hydraulic analysis. Hydrological models can generate 

peak flows significantly faster than direct rainfall models but to build a 

traditional hydrologic model can take longer time (Engineers Australia, 

2012). This approach uses only one model, the rainfall event is applied over 

the 2D domain for the entire catchment without using any hydrological 

routing model and runoff can be observed on the 2D flow pathways of the 

research area (Engineers Australia, 2012). Therefore, this modelling 

approach does not require the estimation of flow at discrete locations 

because the flow is automatically generated from the rainfall event, so that 

the hydrological routing process can be partially or completely removed from 

the modelling in the direct rainfall approach (Davin et al., 2011; Engineers 

Australia, 2012; Johnson, 2015). Rehman et al. (2003) discovered that the 

DRM has longer runoff times than Lumped conceptual models. Caddis et al. 

(2008) and Clark et al. (2008) supported this (Johnson, 2015). The 2D model 

uses the entire catchment area so model run times could be longer, high-

quality terrain data and aerial survey data are necessary as well (Engineers 

Australia, 2012; Hall, 2015). Nevertheless, it could be said that a direct 

rainfall model with good quality topographic basin data and drainage system 

data could indicate more realistic outcomes than the traditional rainfall-runoff 

models (Engineers Australia, 2012). 

5.2.2 TUFLOW 2D hydrodynamic surface flooding model 

The direct rainfall method was applied by using Two-Dimensional Unsteady 

Flow (TUFLOW) hydrodynamic modelling package software. The version of 

software was TUFLOW (2013-12-AD-w64) “Classic”. It uses a CPU based 

second order semi-implicit solution (BMT WMB, 2016).  The reason for the 

selection of the TUFLOW 2D hydrodynamic model for direct rainfall 

modelling was that the software could simulate the overland flow pattern of 

the catchment from direct rainfall data input. In addition, the TUFLOW 

software can be used to assess the impact of urbanisation, to compute water 



- 118 - 
 

level and peak flow in the research area. This is very useful for ungauged 

catchments.  

The software solves the full two-dimensional depth averaged shallow water 

equations to produce flow and water depth values for each rainfall events 

and probabilistic flood inundation maps. The theory was implemented within 

the program by BMT WBM Pty Ltd and The University of Queensland in 

1990 (Syme, 2001; BMT WMB, 2016). Later, a 2D/1D dynamically linked, an 

advanced 2D/1D, 2D/2D linked modelling system, and Geographic 

Information System (GIS) link application system were developed and 

integrated into this (Syme, 1992; Syme, 2001; BMT WMB, 2016). TUFLOW 

has been tested and validated in many published research studies, for 

example, Barton, 2001; Huxley, 2004; Néelz and Pender, 2013 (BMT WMB, 

2016). 

5.2.3 Build-up process of the direct rainfall model  

To simulate pluvial flooding in the Wortley Beck catchment, main input data 

was the rainfall hyetograph. However, TUFLOW does not have a UK rainfall 

generator built in, so the rainfall has to be generated separately and put into 

the model manually. Net rainfall data was the first input of the modelling 

process. The format was rainfall depth (mm) for per time step (hour). The net 

rainfall hyetograph was estimated by using loss model section of the 

Revitalised boundary unit of the Flood Modeller Suite tool. Interception, 

evaporation, depression storage, and infiltration are excessed from gross 

rainfall data to define the net rainfall. The net rainfall hyetograph was applied 

on the permeable and impermeable surfaces of the Wortley Beck Catchment 

(WBC). Two kinds of rainfall input data were used for this modelling. These 

were the measured rainfall data and design rainfall event data. The 

measured rainfall data was taken from the Environment Agency.  

A LiDAR data and master map data of WBC were the second input data, 

and used to simulate the surface runoff. The LiDAR data with 2 m resolution 

was used to assess elevation of the catchment (Figure 5.5), the master map 

was used to assess feature of the land surfaces in Figure 5.6 Impermeable 

surfaces in the Wortley Beck catchment. In addition, the roughness values of 

the land surface materials can be found in Table 5.3 Land use materials. 
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These data sets for the Wortley Beck catchment were obtained from the 

Environment Agency. A 2D (TUFLOW) hydrodynamic modelling tool was 

used for the interaction between rainfall data and topographical data.  

Lastly, model run time was the final input. Figure 5.3 displays the steps of 

the build-up the pluvial flood model. Figure 5.4 displays the framework of 

direct rainfall- runoff model for TUFLOW. 

 

Figure 5.3 2D Hydrodynamic direct rainfall-urban surface flood-
modelling approach 

 

Figure 5.4 Framework of direct rainfall- runoff model for TUFLOW 
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Figure 5.5 The DEM of the Wortley Beck Catchment (WBC) 

The model was run for 10 m and 5 m cell resolutions. As cell size becomes 

smaller, the model-run time significantly increases (Hall, 2015). However, 

model cell size should be smaller than 10m (Clark et al., 2008). Model cell 

size 5 m resolution was found to be suitable for the evaluation of the results 

in this research. 

The function of sewer drainage was neglected in this methodology. The 

outcomes of this model were analysed by using probabilistic flood inundation 

maps with maximum water depth (m), water level (m AOD), and peak flows 

(m3/s) so that vulnerable areas were determined. These outcomes were 

produced by using the (1 in 5 yr., 15 yr., 30 yr., 50 yr., and 100 yr., also 0.5 

hr., 1hr., and 6hr., of a 100-year return period) rainfall events for the Wortley 

Beck catchment (WBC). 
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5.2.4 Estimation of the rainfall events for the pluvial flood risk 

assessment 

In this section, the calculation of a hyetograph for the pluvial flood modelling 

is explained.  The Wortley Beck catchment did not have sufficient recorded 

rainfall data to estimate rainfall events. As a result, the net rainfall 

hyetograph was produced by using the ReFH boundary (ReFHBDY) unit of 

the Flood modeller suite. The net rainfall hyetograph was calculated for 

impermeable and permeable surfaces of the Wortley Beck catchment, by 

using ReFH loss model. The FEH techniques accounting for infiltration 

losses could be applied either implicitly (in the case of the statistical method) 

or explicitly (using ReFH) (Davin et al., 2011). In this research, the loss 

model was based on the assumptions and parameters of the Revitalised 

FSR/FEH rainfall-runoff method (Kjeldsen et al., 2005; Kjeldsen, 2007). The 

scope of usage of the ReFH model was to compute the infiltration loss and 

to produce the net rainfall hyetograph.  

ReFHBDY unit of the Flood modeller suite interface consists of Catchment 

descriptor tab, Rainfall tab, and Models tab. Wortley Beck catchment 

descriptors, rainfall duration and loss model parameters were the essential 

inputs for this calculation. 

1. Catchment descriptor tab 

The catchment descriptors tab was filled with catchment descriptors data. 

The data was extracted from the Flood Estimation Handbook (FEH) CD-

ROM Version 3 database (CEH, 2009) by using the easting and northing 

coordinates of Wortley Beck catchment. 
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Table 5.1 Catchment descriptors of WBC 

Catchment 
Characteristics 

WBC 

Easting- 

Northing 

X is 429750 

and Y is 

433000 

Area (km2) 63 

URBEXT 2016 0.375 

SAAR 761 mm 

PROPWET 0.32 mm 

DPLBAR 9.72 km 

BFIHOST 0.394 

DPSBAR 68.0 (m/km) 

SPRHOST 34.42 

 

Physical Characteristics of the catchment can be found at Table 5.1, where 

DPLBAR is mean drainage path length (km); DPSBAR is mean of all the 

inter-nodal slopes for the catchment (m/km); PROPWET is index of 

proportion of time that soils are wet; SAAR is Standard Period Average 

Annual Rainfall (mm); SPRHOST is Standard Percentage Runoff (%) 

derived using HOST classification; BFIHOST is Base flow index catchment 

descriptor URBEXT2016 is a FEH index of urban and suburban land cover in 

2016 (Houghton-Carr, 1999; Kjeldsen, 2007). 

Depth-duration-frequency model catchment descriptor parameters are that c 

is -0.025, d1is 0.369, d2 is 0.365, d3 is 0.310, e is 0.300, and f is 2.380. The 

parameters of the Depth/Duration/Frequency (DDF) model were exported 

from FEH CD-ROM 3 (CEH, 2009), at 21:13:58 GMT on Tue 18-Aug-2015 

for this research. 
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2. Rainfall tab 

The rainfall duration of a rainfall event can be estimated from catchment 

descriptors and rainfall data. The rainfall duration of the Wortley Beck 

catchment was calculated by using ReFH rainfall-runoff model equation in 

this tab. One of the fundamental sections of a rainfall profile is the 

calculation of rainfall duration. Time to peak (Tp) and rainfall duration (D) 

were calculated (Equation 5.2 and 5.1) for Wortley Beck catchment by using 

the ungauged catchment equations of the ReFH rainfall-runoff method, 

which can be found in Equation 3.19 (Kjeldsen, 2007 document at page 19) 

and the value of the URBEXT2016. Tp value was calculated as 2.24 hr., and 

D was calculated as 3.95 hr. 

Equation 5.1 The Critical Storm Duration (h) 

D = TP(1 +  
SAAR

1000
) 

Where in Equation 5.1: D is the Critical Storm Duration (h) 

The storm duration (D) is calculated by using the response time of the 

catchment (time to peak, Tp) and the general wetness of the catchment 

(SAAR). 

Equation 5.2 Time to Peak 

Tp = 1.563 ∗ PROPWET−1.09 ∗ DPLBAR0.60 ∗ (1 + URBEXT)−3.34 ∗ DPSBAR−0.28 

Where in Equation 5.2: TP is Time to Peak; SAAR is Standard Average 

Annual Rainfall (mm). 

Storm Duration (hr.) was found as 3.9h for the Wortley Beck catchment. 

Return period was selected for each design event. Storm area is the Wortley 

Beck catchment size. The estimation of the rainfall duration can be affected 

by the catchment topography, land use, size, and steepness. These 

parameters and values can be found in the Catchment descriptor tab. 
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3. Flood modeller suite REFHBDY Loss model 

Loss model is applied to the total rainfall hyetograph to derive the net rainfall 

hyetograph by using a soil moisture accounting approach (Kjeldsen, 2007).  

A net rainfall hyetograph can display the direct runoff when simulating a 

flood event. In the Revitalised FSR/FEH rainfall-runoff method, the loss is 

calculated for each individual time step. In addition, this option is 

recommended for the design events. As the soil becomes increasingly wet 

during the rainfall, the loss decreases, and the runoff rate increases so the 

loss could change during this time. The loss model that is based on the 

uniform Probability Distributed Model (PDM) of Moore (1985) (Kjeldsen, 

2007) and was used to remove the evaporation and infiltration rate of soil 

moisture storage, groundwater recharge and interception losses from gross 

rainfall. This allowed the net rainfall could be computed (Kjeldsen and Fry, 

2006; Kjeldsen, 2007; Martinkova, 2013). 

Loss model parameters are Cmax, Cini and α factor method. Cmax means 

maximum soil moisture capacity (mm). Cmax (Equation 5.4) can be 

estimated from Baseflow index BFIHOST and PROPWET of catchment 

descriptors, for ungauged catchments (Kjeldsen, 2007).  

Cini means initial soil moisture content (mm) (Equation 5.5). Lastly, α factor 

method relies on the selected return period. It was estimated from ReFH 

Design Standard in the Flood modeller suite REFHBDY interface in this 

research. 

A) Loss model for impermeable surfaces  

Urbanised areas consist of the permeable and impermeable surfaces. The 

Wortley Beck catchment was divided into urban and rural areas according to 

the master map data. Urbanised areas were accepted as impermeable 

surfaces that could resist the infiltration of water. Whereas, in rural areas 

water could be more able to infiltrate into the soil and these permeable 

surfaces could have a tendency to be converted to direct runoff.  

Calculating the loss model for impermeable surfaces is straightforward. 

ReFH boundary framework of the Flood modeller suite could define a fixed 

value of percentage runoff for impermeable areas. (Design rainfall event X 

loss factor of developed areas) formula gave net rainfall of the impermeable 
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areas for each time step. Figure 5.6 displays the impermeable surfaces in 

the Wortley Beck catchment. 

 

Figure 5.6 Impermeable surfaces in the Wortley Beck Catchment 

In this research, direct surface runoff value was applied as 70% to the 

impermeable surfaces. The 70% is a good average value for built-up areas, 

and a mix of the city centre and more suburban land uses (Kjeldsen, 2007). 

The area of impermeable surfaces can be calculated from this formula (WBC 

AREA*URBEXT value).   

B) Loss model for permeable surfaces 

Permeable surfaces are undeveloped areas in the catchment.  Undeveloped 

area was calculated from this formula (WBC AREA - (WBC 

AREA*URBEXT)). Hyetograph of the permeable surfaces was computed 

from the undeveloped tool in the flood modeller suite. 

The loss model was applied to the permeable surfaces to generate net 

rainfall hyetograph. The formula (Design rainfall event X loss factor of 

undeveloped areas) gave net rainfall of the permeable areas for each time 

step. Loss factor of undeveloped areas can be applied by using percentage 

runoff value.  
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This value can be calculated from the maximum soil moisture capacity 

(Cmax), initial soil moisture content (Cini), and soil moisture correction factor 

(αT) parameters. 

B1.) The percentage runoff 

During a rainfall event, the depth of water in each storage element is 

increased by rainfall and when rainfall exceeds the storage capacity, direct 

runoff (qt) generates. The depth of water in each storage element increases 

by rainfall volume (Pt) at time (t). It is depleted by evaporation. The ratio qt/Pt 

of rainfall transformed into the direct runoff is a measure of the percentage 

runoff. Equation 5.3 can be used to derive the percentage runoff (Kjeldsen, 

2007).  

Equation 5.3 The percentage runoff  

qt

Pt
=

Ct−1

Cmax
+

Pt

2Cmax
 

 

Where in Equation 5.3: C is soil moisture capacity at any time. It is constant 

for elements of the capacity greater than soil moisture storage (Ct) and it is 

at full capacity, for elements of the capacity smaller than Ct. Once Ct 

exceeds Cmax, the model assumes that 100% of the rainfall is converted 

into the runoff.  Cmax is the maximum soil moisture capacity within the 

selected catchment (Stewart et al., 2003; Kjeldsen, et al., 2005; Kjeldsen 

and Fry, 2006). 

B2.) The maximum soil moisture capacity (Cmax) 

The model also requires an estimate for Cmax, which can also be obtained 

from catchment descriptors or defined by the user.  

Equation 5.4 Cmax  

Cmax =  596.7x BFIHOST 0.95 x PROPWET−0.24 

Where in Equation 5.4 (Kjeldsen, 2007): Cmax is the maximum soil moisture 

capacity within the selected catchment (mm). Cmax of Wortley Beck 

catchment value was found as 323.774 mm (Equation 5.4). 
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B3.) The initial soil moisture content (Cini) 

Cini is estimated from the soil moisture content at the start of an event. Initial 

loss is applied to the rainfall amount before surface runoff occurs. It can 

include interception, surface wetting, and infiltration. Infiltration loss can 

change due to the surface properties. It is an estimation of the initial soil 

moisture content (Cini) at time zero. Cini is estimated on a seasonal basis 

(summer or winter) by using catchment descriptors (equations), or the user 

can define a value in millimetres. Cini was calculated from the catchment 

descriptor values in the ReFH rainfall-runoff model in this research 

(Kjeldsen, 2007). 

Equation 5.5 The initial soil moisture content (Cini)  

Cini, summer =  0.5 x CMAX x( 0.9 −  0.82xBFIHOST −  0.43 xPROPWET ) 

Where in Equation 5.5 (Kjeldsen, 2007): Cmax / 2 is the catchment average 

soil moisture capacity; BFIHOST is the base flow index derived from HOST 

classes and PROPWET is the proportion of time catchment soils are wet as 

described by Bayliss (1999).  Cini value was found as 71.120 mm for the 

Wortley Beck catchment in this research (Equation5.5). 

The season of storm profile was selected as summer, because the 

URBEXT1990 value of Wortley Beck catchment is greater than 0.125. 

Therefore, the 50% summer profile was used in the calculation (Kjeldsen, 

2007).  

B4.) Soil moisture correction factor (αT) 

The soil moisture correction factor (αT) was necessary to calculate the loss 

factor of undeveloped areas. The correction factor (αT) was set for the 

summer season in this calculation.  The αT correction factor from return 

period can be calculated by using Equation 5.6 (Kjeldsen, 2007) below, 

Equation 5.6 Initial soil moisture correction factor 

𝛼𝑇,𝑠𝑢𝑚𝑚𝑒𝑟 = 1.444 𝑥 T−0.182 

Where in Equation 5.6: T is return period.  
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For return periods less than 5 years, initial soil moisture correction equals to 

1 in both seasons. If return period (T) is bigger than 5 yr., this factor is 

applied to the calculation (Kjeldsen, 2007). Table 5.2 displays the correction 

factor (αT) values for each design event for this research. 

Table 5.2The αT correction factor for each return periods 

Design storm 

events (T) 

correction 

factor (αT) 

1 in 5-year 1.0 

1 in 15-year 0.886 

1 in 30-year 0.776 

1 in  50-year 0.710 

1 in 100-year 0.630 

 

5.2.5 Roughness 

The surfaces of the catchment such as buildings, roads, car parks, and 

green areas were identified by using Master Map classification data. 

Manning`s n roughness values were taken from the Environment agency 

data and were applied for the feature of surfaces in the Wortley Beck 

catchment (Table 5.3). 

Table 5.3 Land use materials 

Manning’s 

n values 

Feature of the surface 

0.1    Buildings, Building , Manmade 

0.050     Land, General Surface, Multi 

Surface, Multiple,  

0.050     Land, General Surface, Step, 

Manmade,  

 0.050     Land, General Surface, Natural, 

Manmade  
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 0.100     Buildings, Glasshouse, 

Manmade 

 0.030     Water, Inland Water, Natural 

0.050  Land, Landform, Natural 

0.050     Land, Landform, 

Slope, Manmade 

0.050     Land, Landform, Cliff, Natural 

0.075     Land, Natural Environment, 

Orchard, Natural,  

0.022     Roads Tracks And Paths, Path, 

Step, Manmade,  

0.022     Roads Tracks And Paths, Path, 

Manmade,  

0.080     Rail, Rail, Manmade,  

0.022     Roads Tracks And Paths, Road 

/Track,  Manmade,  

0.040     Roads Tracks And Paths, 

Roadside, Manmade,  

0.025     Structures, Structure, Manmade,  

0.055     Structures, Structure, Manmade, 

Pylons 

 0.030     Water, Tidal Water, Foreshore, 

Natural,  

 0.050     Land, Landform, Cliff, Natural 

0.075     Land, Natural Environment, 

Orchard, Natural,  

 0.030     Water, Tidal Water, Natural 

0.050  Land, Unclassified, Unclassified, 
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5.2.6 Calibration process of the pluvial flood model  

The aim of the calibration process was to assess the credibility of the 

computed results. The computed water level values were compared with the 

observed water level of the Pudsey stage gauge station. The measured 

water level at the Pudsey station was taken from the Environment Agency 

data. The predicted water level results were obtained by using TUFLOW 2D 

direct rainfall model for the same coordinate as the Pudsey stage gauge 

station. 

A.) To compute water level  

1. Measured stage water level data 

Dates of the historical flood events were checked for the Wortley Beck 

catchment, then, water level values of the Pudsey station were analysed. 

There were water level data sets between 05/08/2011 and 21/01/2016.  

The dates to use from the Pudsey stage gauge station were obtained by 

selecting high water values dates. The dates were listed below that, 

06/07/2012, 24/09/2012, 25/11/2012, 15/11/2015, 12/12/2015, and 

26/12/2015 

After selection of the dates of the water level data from Pudsey stage 

station, rainfall data was analysed for these dates.  

2. Measured gross rainfall data  

The predicted water level results were produced by using measured rainfall 

data. Measured rainfall data was taken from Headingley, Knostrop and 

Heckmondwike rain gauge logger stations (Figure 5.9). Initially, historical 

flood events at the Wortley Beck catchment were investigated. Two criteria 

were used to select measured rainfall data. These were return period and 

the quality of the rainfall data. Firstly, return period of measured rainfall data 

was analysed, it should be enough to create flood flow for the model. 

Secondly, the continuity and consistency of the rainfall data were analysed.  

 

 



- 131 - 
 

These records have missing data due to natural damage or a fault with the 

rain gauge during the measurements. The data from these dates might not 

be enough for calibration. Therefore, the measured rainfall data of the 

06/07/2012 and 24/09/2012 dates were found suitable for the validation 

process. 

 

Figure 5.7 06/07/2012 event day 
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Figure 5.8 24/09/2012 event day 

Figure 5.7 and 5.8 were created to observe the cumulative rainfall (mm) and 

water depth (m) values for event days. 

5.2.6.1 Thiessen polygon method 

Measured rainfall data was applied by using the mean precipitation 

approach in the model. Mean precipitation can be calculated from Thiessen 

polygon method (Tilford et al., 2003). Mean precipitation was computed by 

using gross rainfall data of the Headingley, Knostrop and Heckmondwike 

rain gauge logger stations. 

The spatially averaged rainfall calculation was performed by using the below 

approach (Thiessen, 1911), 

 ((Rainfall value of Headingley x area of Headingley rain gauge station) + 

(Rainfall value of Knostrop x area of Knostrop rain gauge station) + (Rainfall 

value of Heckmondwike x area of Heckmondwike rain gauge station)) / (The 

area of Wortley Beck catchment) 

The areas of the rain gauge stations were calculated by using GIS tool and 

the results are displayed below (Figure 5.9). The areas for the rain gauge 

stations are 26 km2 for Headingley, 18 km2 for Knostrop and 17 km2 for 

Heckmondwike in Figure 5.9. 
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 Figure 5.9 Thiessen method 

Figure 5.9 indicates locations of rain gauges and denotes the area of each 

polygon. 

 

Figure 5.10 Gross rainfall of the 06/07/2012 event 

Figure 5.10 displays the gross rainfall data of the 06/07/2012 date from 

Thiessen polygon method. Rainfall duration is 11 hours of the 06/07/2012 

event. 
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Figure 5.11 Gross rainfall of the 24/09/2012 event 

Figure 5.11 displays the gross rainfall data of the 24/09/2012 date from 

Thiessen polygon method. Rainfall duration is 14.25 hours of 24/09/2012 

event. 

3. Net rainfall data was calculated from the gross rainfall data 

After mean precipitation was calculated by using Thiessen polygon method, 

net rainfall hyetograph was computed for impermeable and permeable 

surfaces by using the ReFH boundary unit of the Flood modeller suite. 

4. Net rainfall data was entered to the 2D Hydrodynamic model to 

compute water level 

The net rainfall hyetograph was entered into the TUFLOW 2D direct rainfall 

model to produce water level. The computed water level data was used to 

compare with the measured water level data of the Pudsey gauge station. 

TUFLOW 2D surface flood was simulated by using 5 m cell resolution. 

Urban permeable and impermeable surfaces data based on the year of 2016 

were used. 
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5. The computed water level 

 

Figure 5.12 Water level from rainfall data of 06/07/2012  

Figure 5.12 displays the computed water level of the 06/07/2012 date from 

Thiessen polygon method and measured water level values from Pudsey 

stage gauge station of 06/07/2012 date. 

 

Figure 5.13 Water level from rainfall data of 24/09/2012  

Figure 5.13 displays the computed water level of the 24/09/2012 date from 

Thiessen polygon method and measured water level values from Pudsey 

stage gauge station of 24/09/2012 date. 
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It can be said that the predicted water levels are higher than the water levels 

of the Pudsey stage station. The reasons for the differences between 

measured and computed results could be due to the quality of rainfall data. 

Rainfall data for some days was either missing or suspected. In addition to 

this, rainfall cannot be uniform over the entire catchment. The lack of adding 

the continuous loss in the model could cause this result. Thiessen polygon 

method and simplified surface features from the master map data cannot 

capture the influence of topography on the rainfall event. Lastly, the 

behaviour of computed and measured water level is similar, only computed 

water level value is higher than measured water level.  The reason for this 

difference could be the model resolution. Using smaller than 5 m cell size of 

model resolution can make the computed water level values lower so they 

can be closer. 

5.2.7 Estimation of the flood frequency for Farnley Beck sub-

catchment 

To determine the relationship of return period between the rainfall events 

and flood events, flood frequency analysis was performed in this research. 

The peak flow value of the discharge at the outfall point of the Farnley Beck 

sub-catchment was computed by using 2D TUFLOW direct rainfall modelling 

approach (Figure 5.14). 

The statistical flood estimation (pooled group) method was used to estimate 

the return periods of peak flow values. The pooled group was obtained from 

WINFAB FEH CD version 3.0 according to the catchment descriptor 

parameters of the Farnley Beck sub-catchment.  
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Figure 5.14 Peak flow discharge point  

The location of the peak flow discharge at the Lower Wortley Beck can be 

found in the Figure 5.14. 

The FEH statistical procedure for flood frequency estimation was applied by 

using WINFAP-FEH 3™ software. WINFAP-FEH 3™ software package was 

released on 9 September 2009 by Wallingford HydroSolutions Ltd (WHS, 

2009). The WINFAP-FEH 3™ software could create flood frequency curves 

for flood estimation so that a relationship between the peak flow and the 

expected frequency of occurrence could be defined (WHS, 2009). 

1. Estimating QMEDrural from catchment descriptors 

QMEDrural can be estimated by using the catchment descriptor method when 

the subject catchment is ungauged or had a length of the AM or POT flood 

data is lower than two years (WHS, 2009). Therefore, Kjeldsen et al. (2008) 

`s QMEDrural catchment descriptor was used (Equation 5.7) in this research. 

Equation 5.7 QMEDrural catchment descriptor 

QMEDrural = 8.3062AREA0.8510 0.1536(
1000
SAAR

)FARL3.4451 0.0460BFIHOST2
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Where in Equation 5.7: AREA is catchment area (km2); SAAR is standard 

average annual rainfall (mm); BFIHOST is hydrological soil properties and 

FARL is index of flood attenuation based on upstream reservoirs and lakes 

(Kjeldsen et al., 2008; WHS, 2009; Kjeldsen and Jones, 2010). These 

catchment descriptors can be found at FEH CD-ROM 3 software. 

Farnley Beck catchment descriptors for the calculation Qmedrural were that 

AREA was 29.67 km2, SAAR value was 799 (mm), FARL value was 1.0, and 

the BFIHOST value was 0.449. Qmedrural value was calculated as a 7.66 

m3/s by using catchment descriptor (Equation 5.7). 

2. Defining a pooling group 

While gauged catchments of pooled group were selected, the pooled group 

was generated by using WINFAP-FEH_v4.1 data at the Centre of Ecology 

and Hydrology (CEH) web page (http://nrfa.ceh.ac.uk/winfap-feh-files).  

3.  Urbanisation calculation 

URBEXT2000 value can be updated for the year of the present. Equation 5.8 

by Bayliss et al. (2006) was used to apply the urbanisation adjustment to the 

URBEXT2000. 

 Equation 5.8 Urban Extension Factor (UEF) 

UEF = 0.7851 +  (0.2124 ∗ ATAN ((YEAR − 1967.5)/20.32)) 

To estimate flood frequency of Farnley Beck sub-catchment, a statistical 

procedure was applied by using URBEXT2000. According to the URBEXT 2000 

value, that is 0.219, the urban extent of the Farnley Beck sub-catchment in 

the 2016 year was assumed by using urban extent factor equation (Equation 

5.8).  

During this research, urbanisation of Wortley Beck catchment was assumed 

as a 2016 year so the urban adjustment was applied to the Qmedrural. So, it 

was calculated as a 0.226 m3/s.  

4. The urban adjustment methods 

If the URBEXT 2000 value of the subject site is bigger than 0.03, additional 

procedures are recommended to apply to produce a growth curve because 

urbanisation has a significant impact on flooding.  

http://nrfa.ceh.ac.uk/winfap-feh-files
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Urban adjustment Equation 5.9 was applied to the QMEDrural to assess the 

impact of urbanisation on the flood frequency curve (WHS, 2009). 

Equation 5.9 The urban adjustment  

QMED = UAF QMEDrural 

Where in Equation 5.9: QMEDrural is multiplied by the Urban Adjustment 

Factor (UAF) (WHS, 2009). 

UAF is calculated by using Equation 5.10: 

Next, by using this value in urban adjustment factor, Equation 5.10 (Robson 

and Reed, 1999) Qmed was calculated as 9.894 m3/s value.  

Equation 5.10 The Urban Adjustment Factor (UAF) 

UAF = (1 + URBEXT2000)0.37PRUAF2.16 

Where in Equation 5.10: URBEXT 2000 is Urban extent value of the 2000 

year; PRUAF is the percentage runoff urban adjustment factor and was 

defined by Kjeldsen (2010) (Equation 5.11). 

Equation 5.11 the percentage runoff urban adjustment factor 

PRUAF = 1 + 0.47URBEXT2000 (
BFIHOST

1 − BFIHOST
) 

5. Estimating QMED by data transfer 

In addition to this, because of Qmed was calculated from catchment 

descriptor equation, it was adjusted by using donor catchment.   The closest 

gauged catchment was used for this aim, and it was selected by using 

WINFAB FEH CD version 3. The basic transfer process for adjustment was 

applied by using Kjeldsen et al., (2008) `s data transfer equation (Equation 

5.12). 

Equation 5.12 The transfer equation 

QMEDs,adj = QMEDs,cds (
QMEDg,obs

QMEDg,cds
)

asg

 

asg = 0.4598 exp(−0.02dsg) + (1 − 0.4598)exp(−0.4785dsg) 
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The steps of the procedure of the data transfer 

1. A donor site is selected  

2. QMED (QMEDg,obs) of the donor site is derived.  

QMEDobs is the observed QMED value and calculated from the AM data. 

3. QMED value is calculated from catchment descriptors for both the subject 

site and donor site, QMEDs,cds and QMEDg,cds, respectively.  

QMED s,adj is the adjusted value of QMED for the subject site  

4. dsg is the geographical distance (km) between the centroid of the subject 

site and the centroid of the donor site (Kjeldsen et al., 2008; WHS, 2009).  

The QMEDs,adj value was calculated as a 10.18 m3/s.  

6. Estimating an appropriate flood growth curve 

A flood growth curve (zT) was constructed by using the pooling-group data to 

derive a flood frequency curve. The flood frequency curve can be obtained 

by multiplying with the zT by QMED (Kjeldsen et al., 2008; WHS, 2009). 

Equation 5.13 Estimation of the peak flow for return interval 

QT =  QMEDzT 

Where in Equation 5.13: QT is the peak flow for a return interval (T) 

Estimation of peak flow for the return interval was calculated by using 

Equation 5.13. A flood growth curve was created by fitting the Generalised 

Logistic (GL) distribution. Finally, flood frequency was computed by using 

this value. 

A given return period of a rainfall event is used as an input to a rainfall-runoff 

model. The return period of the rainfall event is accepted as the same as the 

return period of computed peak discharge in the ungauged catchment 

(Packman and Kidd, 1980; Bradley and Potter, 1992). However, return 

period of the rainfall event could be different from the return period of the 

flood event in nature (Linsley et al., 1988). The correlation between rainfall 

return period (TR) and flood return period (TQ) is an important parameter to 

assess flood frequency and to manage flood risk. Nevertheless, this 

relationship could not be completely identified (Viglione and Blöschl, 2009).  
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It is not a straightforward process. Rainfall intensity, rainfall duration, 

temporal and spatial storm patterns, and antecedent soil moisture are 

required in detail to assess this relationship (Viglione and Blöschl, 2009). 

5.3 Pluvial flood modelling results 

In this section, the results of the TUFLOW 2D direct rainfall model were 

displayed. These outcomes can be used for the assessment of the pluvial 

flood risk in Wortley Beck Catchment.  

The estimated hyetograph was the main input data of the direct rainfall 

model and each hyetograph can be seen in between Figure 5.15 and 5.20. 

The storm duration of Wortley Beck catchment was calculated as 3.95 hr., 

by the Revitalised Flood Hydrograph (ReFH) model. Net rainfall hyetograph 

of the impermeable areas, permeable areas, and total rainfall (mm) were 

obtained for each design event. 

5.3.1 The estimated hyetographs 

Storm hyetograph was generated for the following events 

1. Pluvial flood events were designed by estimating hyetographs for various 

return periods, covering the 1 in 5-year, 1 in 15-year, 1 in 30-year, 1 in 50-

year, and 1 in 100-year event (from Figure 5.15 to Figure 5.19). 

2. Pluvial flood events were designed for different rainfall durations (hr.) as 

well, covering the 0.5hr., 1hr., and 6hr. rainfall durations of the 1 in 100-year 

event (Figure 5.20). 

Figures display the rainfall depth (mm) for time durations (hr.). The rainfall 

depth values display total rainfall (gross), impermeable surfaces (Imp) and 

permeable surfaces (Perm), lastly, cumulative gross rainfall depth values. 

These figures can be used to assess the input values for the modelling 

approach. 
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Figure 5.15 Estimated hyetographs for the 1 in 5-year event  

 

 

 

 Figure 5.16 Estimated hyetographs for the 1 in 15-year event  
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 Figure 5.17 Estimated hyetographs for the 1 in 30-year event 

 

 

     Figure 5.18 Estimated hyetographs for the 1 in 50-year event  
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Figure 5.19 Estimated hyetographs for the 1 in 100-year event 

While the frequency of the rainfall event is greater, rainfall depth values of 

the rainfall events become greater. 
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Figure 5.20  Cumulative gross rainfall events for the1 in 100-year event 
for 0.5/1/6 hr., rainfall durations 

Longer rainfall duration (6 hr.) can have lower peak rainfall depth (mm) but 

have greater cumulative gross rainfall depth (mm) in comparison to short 

duration of rainfall events (0.5/1hr.) within the same return period (1 in 100-

year event) (Figure 5.20).  

After estimating the rainfall events, the rainfall data of impermeable and 

permeable surfaces was entered into the 2D hydrodynamic model directly, 

and probabilistic flood inundation maps were obtained. 

5.3.2 Pluvial flood inundation maps 

The pluvial flood inundation maps of the Wortley Beck catchment (WBC) 

were produced from each estimated rainfall data. This was to assess the 

impact of return period of rainfall event and the impact of rainfall duration on 

the pluvial flooding. Pluvial flood extent maps were produced by using 

TUFLOW 2D hydrodynamic software link GIS tool.  
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Figure 5.21  Rainfall event for the 1 in 5-year event 

Figure 5.21 displays surface flood inundation areas in the Wortley Beck 

catchment for the 1 in 5-year rainfall event. 
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Figure 5.22  Rainfall event for the 1 in 15-year event 

Figure 5.22 displays surface flood inundation areas in the Wortley Beck 

catchment for the 1 in 15-year rainfall event. 
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Figure 5.23 Rainfall event for the 1 in 30-year event 

Figure 5.23 displays surface flood inundation areas in the Wortley Beck 

catchment for the 1 in 30-year rainfall event. 
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Figure 5.24 Rainfall event for the 1 in 50-year event 

Figure 5.24 displays surface flood inundation areas in the Wortley Beck 

catchment for the 1 in 50-year rainfall event. 
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Figure 5.25 Rainfall event for the 1 in 100-year event 

Figure 5.25 displays surface flood inundation areas in the Wortley Beck 

catchment for the 1 in 100-year rainfall event. 
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Figure 5.26 Rainfall event for the 0.5 hour duration of the 1 in 100-year 
event  

Figure 5.26 displays surface flood inundation areas in the Wortley Beck 

catchment for the 30 minutes of 1 in 100-year rainfall event. 
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Figure 5.27 Rainfall event for the 1 hour duration of the 1 in 100-year 
event  

Figure 5.27 displays surface flood inundation areas in the Wortley Beck 

catchment for the 1-hour of 1 in 100-year rainfall event. 
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Figure 5.28 Rainfall event for the 6hour duration of the 1 in 100-year 
event 

Figure 5.28 displays surface flood inundation areas in the Wortley Beck 

catchment for the 6-hour of 1 in 100-year rainfall event. 
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5.3.3 Water depth results 

From design rainfall events, the figures and probabilistic flood inundation 

maps were produced 

1. To assess the impact of return period of rainfall event on the surface flood 

water depth. 

2. To assess the impact of rainfall duration of rainfall event on the surface 

flood water depth. 

A.) Water depth percentages and Rainfall return periods  

 

Figure 5.29 The percentages of the water depth values for rainfall 
return periods (30 yr., 50 yr., and 100 yr.) 

Figure 5.29 displays the percentages of water depth values in the flood 

inundation areas of rainfall events for the 1 in 30-year, 1 in 50-year, and 1 in 

100-year event of 4hr. rainfall duration. Water depth values were scaled 

between 0.15 m and 0.6 m above.  
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B.) Water depth percentages and Rainfall duration  

 

Figure 5.30 The percentages of the water depths (m) for rainfall 
durations 

Figure 5.30 displays the percentages of the water depths (m) for various 

rainfall durations (0.5 hr., 1 hr., and 6 hr.).  

It is apparent in Figure 5.29 that water depths become deeper when design 

rainfall events from for the 1 in 5-year to for the 1 in 100-year event. The 

locations of vulnerable places can be identified on the maps. In addition, 

when the rainfall duration becomes longer water depth can become higher 

for the same return period events (Figure 5.30).  
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5.3.4  Flood frequency analysis of the Farnley Beck (FB) 

catchment 

This section aimed to determine the return period of the maximum discharge 

of the Farnley Beck (FB) sub-catchment. Initially, the rainfall events were 

designed for the 1 in 5 year, 1 in 10-year, 1 in 15-year, 1 in 25-year, 1 in 50-

year and 1 in 100-year event and rainfall durations (D) were applied 0.5/1/6 

hour for the 1 in 100-year event. Then, peak flow values were computed 

from these rainfall events. Meanwhile, return periods of the peak flow were 

determined by using the pooled method of statistical flood estimation 

procedure for the Farnley Beck (FB) sub-catchment. Next, the return periods 

of the statistical approach were used to determine the return periods of the 

computed peak flows from TUFLOW 2D direct rainfall model. Lastly, the 

return periods of the computed peak flow were compared to the return 

periods of the rainfall event. Table 5.4 indicates the relationship of the return 

periods between rainfall event and flood frequency for Farnley Beck (FB) 

sub-catchment. 

Table 5.4 The relationship between the return periods 

Rainfall 

Event 

T(year)  

D (h) 

FB 

Computed 

Peak flow 

(m3/s) 

Return period of 

the Peak Flow 

(year) 

(Pooled method) 

Peak flow 

value 

(Pooled 

method) 

5 yr (4h) 3.97 2 10.18 

15 yr  (4h) 9.38 5 13.4 

30 yr (4h) 12.84 10 15.65 

50 yr (4h) 16.69 15 16.99 

100 yr (4h) 23.99 25 18.76 

100 yr  

0.5h 

3.117 30 19.42 

100 yr  

1 h 

8.918 50 21.35 
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100 yr  

6 h 

24.77 75 22.985 

  100 24.20 

  200 27.36 

 

Table 5.4 displays the flood frequency and the relationship of return period 

between the rainfall and peak flow. 

The first column shows the rainfall return period and duration of the design 

rainfall events. The second column displays the peak flow values of the 

discharge at the outfall point Farnley Beck basin from each design rainfall 

events. The return period of the peak flow from the pooled method of the 

statistical flood frequency approach is shown in the third column. The fourth 

column displays the peak flow values from the pooled method of the 

statistical flood frequency approach. 

 This could be said that from Table 5.4 

The 1in 5-year rainfall event cannot create a flood event.  

The 1in 15-year rainfall event can create the 1 in 2-year flood even, 

The 1 in 30-year rainfall event can create the 1 in 5-year flood event, 

The 1 in 50-year rainfall event can create the 1 in 15-year flood event, 

The 1 in 100-year rainfall event can create the 1 in 100-year flood event. 

When the impact of rainfall duration is assessed for the 1 in 100-year rainfall 

event, it is observed that short rainfall durations could not cause flood event 

such as 0.5-hr. 1-hour rainfall duration of the 1 in 100-year event could 

cause nearly for the 1 in 2-year flood event. The 6-hour rainfall duration of 

the 1 in 100-year rainfall event could nearly cause the 1 in 100-year flood 

event. 
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However, the FEH recommends using observed annual maximum flood data 

where are available (Kjeldsen and Jones, 2007). The FEH noted that the 

uncertainty of QMED estimation is generally larger than the uncertainty of 

QMED estimation from directly flood data (Kjeldsen et al., 2008). 

To assess the relationship of return period between the rainfall and flood 

events, catchment soil characteristics can need to be investigated in detail. 

The season can influence the runoff as well. Usually, flow return period can 

be smaller than the return period of the rainfall event (Viglione and Blöschl, 

2009). In addition, rainfall duration can influence flood magnitudes as well. If 

catchment size is small, short rainfall durations can create strong flood 

events (Viglione and Blöschl, 2009). Consequently, rainfall return period is 

not always the same as return period of the flood. 

5.4 Conclusion 

Pluvial flooding in Wortley Beck catchment was assessed by using a direct 

rainfall approach in this research. It can be used as an alternative to 

traditional rainfall-runoff models. The approach of the direct rainfall model 

consisted of two main sections. These were net rainfall estimation by using 

ReFH loss model and flood inundation simulation by using the 2D TUFLOW 

hydrodynamic model. The advantage of the TUFLOW 2D hydrodynamic 

model for this research was that peak flow values could be computed 

anywhere inside the research area. Hence, flow values can be computed for 

different rainfall events and flood frequency analysis can be applied in an 

ungauged catchment by using this method.  

The model was used to analyse the effects of various rainfall events on the 

Wortley Beck catchment. The results display that  

1. When the rainfall return period is changed from 1 in 50-year to 1 in 100-

year, the rainfall depth of the rainfall event becomes higher. 

2. Long duration rainfall events have lower peak rainfall depth (mm) in 

comparison to short duration rainfall events (0.5/1hr.) for the same return 

period, but the total rainfall depth value become larger for longer rainfall 

durations.  
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3. The probabilistic flood inundation maps display the drain area of the 

Wortley Beck River. When return period changed from the 1 in 5-year to a 1 

in 100-year event in this research, the water becomes higher both on the 

surface and inside river channel. In addition, similar behaviour was observed 

when the rainfall duration became longer (from 0.5 hour to 6 hours for the 1 

in 100-year rainfall event). However, the ratios of the water depth values 

display that majority of the water depth is lower than 0.6 m. 

4. The peak flow of the Farnley Beck sub-catchment was also computed. 

The results shows that rainfall return period can be different from return 

period of the flood event. 

In conclusion, it can be said that if the return period of a rainfall event is 

longer than the 1 in 30-year event, the surface flood event can become 

serious, but if the rainfall duration becomes longer, any event can have 

serious consequences.  

Some limitations points of the research methodology to reach the aims were 

that there was not sufficient measured rainfall data. Therefore, design rainfall 

events were created as input for the direct rainfall model. Furthermore, 

drainage system data could not be provided for this research so that the loss 

for the drainage system could not be added to the model. Moreover, 

improvements and updates necessary to verify the methodology because 

the direct rainfall model is a new approach. Lastly, to capture the peak flow 

anywhere in the catchment requires the model running with a cell size 

smaller than 5 m. However, computation can take weeks or longer.  

In summary, the outcomes of this chapter can be used to improve the flood 

resilience approaches, as well as assist to understand the relationship 

between rainfall and flow in ungauged catchments. In addition, the results 

can be used to better identify Wortley Beck catchment vulnerability to the 

pluvial flood risk. 
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Chapter 6 Combined fluvial and pluvial flooding 

6.1 Introduction 

The main motivation of this research is that the risk of combined flood events 

should be estimated by simulating the combined sources and pathways of 

the flood events in models. Floodwater depth and flood extent are estimated 

by simulating the combined fluvial and pluvial flood models in this research. 

In this section of Chapter 6, firstly, the differences between pluvial and fluvial 

flood events in a catchment are explained. Secondly, the relationship 

between pluvial and fluvial flood events in an urbanised catchment is 

determined. Thirdly, the importance of the investigation of the combined 

fluvial and pluvial flooding is discussed. 

Pluvial and fluvial flood events can have different flood pathways, and 

different event durations so that pluvial and fluvial flood events have been 

mostly seen as independent. The fluvial flood event can affect the 

floodplains by streams while a pluvial flood event can affect the lower local 

locations in urbanised basins (Chen et al., 2010; Bhattarai et al., 2015). 

Pluvial flooding can be on smaller spatial and temporal scales than fluvial 

flooding can (Rözer et al., 2016). Pluvial flood events can be seen sooner 

than fluvial flood event. Fluvial flood event can take time, and the 

consequences of the fluvial flooding can be observed after days or weeks 

because the river water level rises slowly (Chen et al., 2010). 

Intense rainfall event and land use change might affect the fluvial and pluvial 

flood process in an urbanised catchment. Firstly, heavy precipitation can be 

a source of an intense surface runoff. The overflow on saturated soil or 

impermeable surfaces can result in a pluvial flooding. In addition, the surface 

runoff in the upstream location can be the source of discharge into the river 

channel and this could result in a fluvial flooding. Secondly, the land use 

change in a catchment can increase the ratio of the impermeable surfaces.  

Urbanisation can cause fast runoff, overwhelmed drainage systems, and the 

settlements on the floodplains so that pluvial flooding can be seen on the 

floodplains. In addition, the settlements on the floodplains by urban streams 
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can face to the fluvial flooding (Evans, 2004; Pitt, 2008; Chen et al., 2010; 

Apel, et al., 2015). 

In summary, this could be said that the consequences of the rainfall events 

and impermeable surfaces on the floodplains by urban streams could create 

combined fluvial and pluvial flood events. Therefore, pluvial and fluvial flood 

events could be considered consecutively and dependently in these 

locations. 

Fluvial flooding and local heavy rainfall events can be observed during the 

annual monsoon therefore both fluvial and pluvial flooding can occur at the 

same time in the tropical environments (Apel et al., 2015). Historically, there 

are some samples of combined fluvial and pluvial flood events in England. 

Surface water and Local River flooding were observed between 23 and 27 

December 2013 from Dorset through Hampshire also Surrey to Kent 

(Thorne, 2014). In addition, pluvial flooding occurred in conjunction with the 

fluvial flood event in January 2005 at Carlisle (Falconer et al., 2009). A 

pluvial flood event was observed due to the limited capacity of the drainage 

system in the River Eden catchment, after a while a fluvial flood event was 

observed due to the limited capacity of the banks of the River Eden and its 

tributaries in the Carlisle in January 2005 (Shaw et al., 2011). 

Naturally, the combined fluvial and pluvial flood events can occur. If flood 

events are considered separately, the hazard can be underestimated 

(Ashley et al., 2005; Burton et al., 2010; Chen et al., 2010). This can result 

that the flood defence systems cannot be used efficiently and to manage the 

flooding can be very difficult. Consequently, the approaches of simulation of 

the combined events should be generated. The outcomes of the simulations 

can be used to improve and update the flood risk management approaches 

and flood resilience tools (Houston et al., 2011). 
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6.2 Methodology of the combined fluvial and pluvial 

flooding  

The most of the research in the literature has assessed fluvial and pluvial 

flood events independently and the flood extents maps have been 

overlapped to observe the combined floods. However, this method can have 

some limitations. For instance, firstly, if pluvial and fluvial flood events are 

simulated separately, the interactions of the sources and the interactions 

along on the pathway cannot be obtained and observed. Secondly, if the 

flood inundation maps of the pluvial and fluvial flood events are only 

overlapped, the water depth in the inundation area of the combined events 

could not be computed and the flood extents from combined events cannot 

be observed. 

Alternatively, a method to assess the combined fluvial and pluvial flooding 

should be generated. Horritt et al. (2010) recommended two approaches; 

these were to compare independent flood inundation maps of the different 

flood events and to assess the dependency of the flood events at the 

sources. Lian et al. (2013) recommended researching the combination of the 

effect of flood probability and consequences as a single risk function. Breinl 

et al. (2015) recommended adding a hydrodynamic model to simulate the 

flood inundation maps to improve the combined flood risk assessment. 

The aim of this methodology is to assess the interactions between the fluvial 

pluvial flood events on the floodplains in urban stream basins. Thus, flood 

risk from the combined fluvial and pluvial flooding on the urbanised 

floodplains by urban streams can be observed. This methodology was 

applied to the Lower Wortley Beck area. The Lower Wortley Beck area is 

suitable for this research because there is a fluvial flood risk by the Lower 

Wortley Beck, and urbanised areas are located by the stream. Pluvial flood 

risk can also be observed on the impermeable and lower locations by the 

stream. 
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6.2.1 Modelling approach of the combined fluvial and pluvial 

flooding on the floodplain 

The methodology of the combined fluvial and pluvial flood simulations is 

explained in this section. The modelling approach is to produce and examine 

the combined fluvial flooding and pluvial flooding on the floodplain in urban 

stream basins. In order to simulate the combined fluvial and pluvial flood 

events, both inflow hydrograph and net rainfall hyetograph were included in 

the same model. 

 

Figure 6.1 The combined fluvial and pluvial flood modelling at the 
Lower Wortley Beck area 

The 2D domain of the Lower Wortley was activated for both fluvial and 

pluvial flooding (Figure 6.1). Inflows from the Farnley Beck and Farnley 

Wood Beck basins entered into the Lower Wortley Beck, and net rainfall 

hyetograph of the Lower Wortley Beck area were applied on the 2D domain 

of the Lower Wortley area. Inflows enter the river channel at the same time 

with the rainfall event starts. Inflow points of the sub-catchments, active area 

of the rainfall event, and 1D river channel can be seen in Figure 6.1 for this 

modelling approach. 
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The Flood Modeller Suite 1D River model was set up with initial conditions 

and inflow events. River nodes of the Lower Wortley Beck channel were 

used. The model was run with the hydrograph time that was 20 hours. The 

1D model time step was 1 second. Roughness values of the 1D river 

channel were selected between 0.030 and 0.045 (Atkins, 2004). The Flood 

modeller Suite 1D Model was linked with the 2D scheme of the TUFLOW 

software. 2D model time step was 2 second. 2D control file was used to 

manage the 2D domain geometry for the active area, to manage the 

boundary condition commands of 2D net rainfall events, and to manage the 

2D domain topography from the material file of roughness values. 

Roughness values of the 2D surface can be found at Table 5.3 Master Map 

land use assessment. Elevation data was used for both river channel and 

Lower Wortley surface area. Model topographical area (DEM) can be found 

in Figure 6.1. 

Net rainfall hyetograph was applied on the impermeable and permeable 

surfaces of Lower Wortley Beck area (Figure 6.2). The net rainfall profiles 

were designed for the 1 in 100-year event and for 4-hour rainfall duration. 

Net rainfall event was added into the 2D domain boundary condition 

database in the model. 

 

Figure 6.2 2D Rainfall boundary condition control area 
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This modelling approach was applied by using tools are 1D Flood Modeller 

Suite version 3.7 linked to TUFLOW 2D software (version 2013-12-AD-IDP-

w64). The model was run for 1D unsteady flow and 2D double precision. 

Model Grid cell size was 8 metre. 

The results display the combination of river overflow and surface runoff on 

the floodplain, along with the Lower Wortley Beck. 

6.3 Results of the combined fluvial and pluvial flooding  

In this section, fluvial and pluvial flooding and their interaction on the 

floodplain by the Lower Wortley Beck are assessed.  

The assessment considers three comparison steps: 

1. Fluvial flooding and single event simulation,  

2. Independent fluvial and pluvial flood events,  

3. Combined pluvial and fluvial flood events, 

The assessment parameters were taken to be water level data and flood 

inundation extents (as assessed via comparison of inundation maps that 

also serve to indicate flood risk at the Lower Wortley Beck catchment) from 

the simulation results. The models of fluvial flooding, single event simulation, 

pluvial flooding, and combined fluvial and pluvial flooding were set-up for the 

1 in 100-year event, with the ratio of impermeable surface was for the year 

of 2016 being consistently used.  Arc MAP 10.2.2 tool was used to produce 

the maps. 

Water level graphs were produced for specific observation points for all 

simulation for comparison, these locations points are shown in Figure 6.3. 

Flood inundation maps were produced to assess the flood risk at the Lower 

Wortley Beck area. 
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Figure 6.3 Observation points on the Lower Wortley Beck  

Figure 6.3 displays the observation points used to compare the water levels 

of different flood events. They are at specific locations that are each useful 

points to indicate flood behaviours in the sub-regions of the catchment. 

Point 1 located downstream of the Farnley Beck basin thus the impact of the 

inflow from the Farnley sub-catchment can be observed. 

Point 2 lies just before the river enters into the reservoir. Data from this point 

allows flood events to be identified between point 1 and point 2. 

Point 3 is located just below the reservoir so the impact of the reservoir can 

be determined. 

Point 4 is the upstream extent of where fluvial flooding occurs. 

Point 5, 6, and 7 are within the flood inundation area. This area is between 

Gelderd Road and A6110 transportation link M621 highway.  The points of 

these locations are important because these areas have settlements and 

transportation links. The inflow from Farnley Wood Beck enters in this 

location. The backwater effect observed here might be the reason for the 

flood event due to overcapacity of the culvert at this location. Both pluvial 

and fluvial flooding can be seen in these locations while a combination of 

events can increase the risk here as well. Point 8 is toward the end of the 

catchment after longer culvert and gives as an indication of the water that is 

able to flow through the catchment. 
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6.3.1 Assessment of the fluvial flood model and single event 

flood models 

Fluvial and single event model simulations were set-up for the 1 in 100-year 

event, with the urbanisation scenario was for the 2016 year. The same 1D 

/2D linked fluvial flood model was used for each simulation.  

Inflows were added from Farnley Beck and Farnley Wood Beck sub-

catchments for the fluvial flood simulation. In addition, the lateral flow was 

included in the fluvial system for the single event simulation. The lateral flow 

was computed by using the rational method to estimate the peak discharge 

at the outlet of the New Farnley Beck basin. The peak flow was used to 

display the impact of the drainage system outfall on the downstream fluvial 

flood risk. The impact of the outfall indicates the resulting difference between 

the fluvial flooding and the single event simulation in the catchment. 

A.)  Comparison of the computed water levels between fluvial and 

single event simulations 

The impact of the peak discharge at the outfall of New Farnley area on the 

water level can be observed from the examination of Figures 6.4, 6.5 and 

6.6 for the Point 3, 4 and 5. The points can be seen in Figure 6.3. Point 3 is 

the location where the entrance of lateral flow. The impact of the outfall 

shows the difference between the fluvial flooding and the single event 

simulation in the catchment. 

 

Figure 6.4 The water level at Point 3 
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Figure 6.5 The water level at Point 4 

 

 

Figure 6.6 The water level at Point 5 

Single event simulation displays higher water levels than fluvial flooding 

because of the impact of the peak discharge from the outlet of New Farnley 

Beck basin. 

 

 

45.20
45.40
45.60
45.80
46.00
46.20
46.40
46.60
46.80
47.00
47.20

1 3 5 7 9 11 13 15 17 19 21

W
a

te
r 

L
e
v
e

l 
(m

 A
O

D
) 

Time (h) 

Point 4 

Single event
flooding

Fluvial flooding

38.50
38.80
39.10
39.40
39.70
40.00
40.30
40.60
40.90
41.20
41.50

1 3 5 7 9 11 13 15 17 19 21

W
a

te
r 

le
v
e

l 
(m

 A
O

D
) 

Time (h) 
 

Point 5 

Single event
flooding

Fluvial flooding



- 169 - 
 

B.) Comparison of the flood inundation maps between fluvial and 

single event simulations 

The impact of the lateral flow from the New Farnley on the Lower Wortley 

Beck area can be observed in Figure 6.8. OS 1:25 000 Scale Colour Raster 

was used for background map. 

 

Figure 6.7 Fluvial flood inundation map 

The fluvial flood inundation area can be seen in Figure 6.7 for the 1 in 100-

year event. 

 

Figure 6.8 Single flood inundation map 
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The flood inundation area of the single event simulation can be seen in 

Figure 6.8 for the 1 in 100-year event. 

In summary, the outfall from New Farnley caused higher water level, water 

depth, and larger flood extent area on the Lower Wortley Beck area.  

6.3.2 Assessment of discrete pluvial and fluvial flooding  

The discrete fluvial and pluvial flooding was designed for the 1 in 100-year 

event and for the impermeable surface of the 2016 year in the catchment. 

Inflows from the Farnley Beck and Farnley Wood Beck sub-catchments were 

estimated for the fluvial flooding. Hyetograph of the Wortley Beck catchment 

was estimated for the pluvial flooding. The 1D link 2D river model (Flood 

Modeller Suite/TUFLOW) was used for fluvial flooding and the rainfall-runoff 

model (2D TUFLOW) was used for the pluvial flooding. 

The aim at using these arrangements was to observe the independent fluvial 

and pluvial flood processes in the catchment. Thus allowing flood risk from 

fluvial and pluvial to be identified in the catchment.   

The fluvial flood event consists of both baseflow (initial conditions) in the 

river channel and inflow from the upstream sub-catchment. The pluvial flood 

event uses the rainfall-runoff process from the Wortley Beck catchment.  In 

order to assess these events and detailed inspections, the focus of this 

research was on the Lower Wortley Beck area. 

A.)  Comparison of the computed water levels between fluvial and 

pluvial flood events 

The results of this section display that the comparison of the computed water 

levels between fluvial and pluvial flooding. The water level data were 

computed from the river model for fluvial flooding, and from the rainfall-runoff 

model for pluvial flooding. The results are shown in Figure 6.9 to 6.13 for the 

observation points (described in Figure 6.3).  
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 Figure 6.9 The water levels at Point 2 

 

 

Figure 6.10 The water levels at Point 4 
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Figure 6.11 The water levels at Point 5 

 

 

 

Figure 6.12 The water levels at Point 6 
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Figure 6.13 The water levels at Point 7 

The water levels from the fluvial flooding are higher than from those for the 

pluvial flooding (see Figures 6.9 to 6.13). However, the values of the pluvial 

flooding virtually reach to the water levels of the fluvial flooding. This could 

mean that fluvial flooding is fast when inside the river channel while pluvial 

flooding takes more time due to the runoff being slower and longer. 

B.) Comparison of the flood inundation maps between fluvial and 

pluvial event simulations 

The probabilistic flood inundation maps with maximum depth (m) scales 

were created to assess of fluvial flood risk and pluvial flood risk at Lower 

Wortley Beck area.  
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Figure 6.14 Fluvial flood inundation map 

Fluvial flooding of the 1 in 100-year event on the Lower Wortley Beck area 

can be seen in Figure 6.14.  
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Figure 6.15 Pluvial flood inundation map 

Pluvial flooding on the Lower Wortley Beck area is shown in Figure 6.15. 

This map displays the rainfall-runoff event from the rainfall event of the 1 in 

100-year event on the Wortley Beck catchment. Pluvial flooding was 

simulated for the Wortley Beck catchment. This approach did not have river 

channel and urban drainage system within the 2D model. 

Figure 6.14 and Figure 6.15 were produced to enable comparison of the 

independent fluvial and pluvial flooding.  

Figure 6.14 and Figure 6.15 display similar locations by Lower Wortley Beck 

where there is a higher risk of flooding.  
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Figure 6.16 Fluvial flooding 2 % AEP on the Lower Wortley Beck area 

Fluvial flooding of the 1 in 50-year event on the Lower Wortley Beck area is 

shown in Figure 6.16. 

 

Figure 6.17 Pluvial flooding 2 % AEP on the Lower Wortley Beck area 
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Pluvial flooding on the Lower Wortley Beck area displayed in Figure 6.17. 

This shows the result of the rainfall-runoff event from rainfall event of 1 in 50-

year event on the Wortley Beck catchment. Again, this approach did not 

have river channel embedded within the model. 

The limitation of the analysis of the discrete fluvial and pluvial flooding maps 

is that water levels of the same points inside the flood inundation area of 

fluvial flooding and pluvial flooding cannot be merged so flood extent cannot 

be quantified directly from this figure.   

6.3.3  Assessment of the combined pluvial and fluvial flood 

events  

The effects of the combined fluvial and pluvial flooding on the flood risk are 

assessed in this section. The fluvial flood model was simulated by using the 

1 in 100-year event of 20-hour inflow hydrograph, and pluvial flood event 

was simulated by using the 1 in 100-year event of 4-hour duration net rainfall 

hyetograph. The ratio of the impermeable surface was the year of 2016. This 

map was produced by combining inflow hydrographs and rainfall 

hyetographs and to observe flood risk on the floodplains at the Lower 

Wortley Beck area from combined flood events. 

A.) Probabilistic flood inundation maps of the combined pluvial and 

fluvial flooding  

Probabilistic flood inundation maps are used to display the combination 

between rainfall and river flow on the floodplain. From these, it is possible to 

observe the combined fluvial and pluvial flood events in the Lower Wortley 

Beck area. 
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Figure 6.18 Combined fluvial and pluvial flooding 

Combined fluvial and pluvial flooding of the 1 in 100-year event is displayed 

in Figure 6.18 
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Figure 6.19 Combined fluvial and pluvial flooding water depth/ stages 
(1%AEP) 

 

The processes of the combined fluvial and pluvial flooding can be seen in 

Figure 6.19. Stages display the flood inundation area at different times from 

the modelling at the Lower Wortley Beck area. 
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Figure 6.20 Combined fluvial and pluvial 1 %AEP flooding velocity map 

 

The velocity (m/s) of the combined fluvial and pluvial flooding can be seen in 

Figure 6.20.  The Gelderd Road location at the Lower Wortley Beck area is 

shown to be within the flood risk area. 
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Figure 6.21 Combined fluvial and pluvial flooding 1% AEP (velocity 
/stages) 

 

The velocity (m/s) of the combined fluvial and pluvial flooding can be seen in 

Figure 6.21. Stages display the velocity movement for different times of the 

modelling at the Lower Wortley Beck. 
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Figure 6.22 Pluvial flooding with the fluvial flood (no inflow from 
upstream) 

The pluvial flooding simulation was designed for the 1 in 100-year rainfall 

event with the sole baseflow of the Lower Wortley Beck and no inflow from 

sub-catchments. The flood inundation area of this event can be seen in 

Figure 6.22. In addition, the effects of inflows on the fluvial flooding at the 

lower Wortley Beck area can be observed from the pluvial flooding map of 

the Lower Wortley Beck area (Figure 6.22) by comparing with Figure 6.18. 
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Figure 6.23 Combined fluvial and pluvial 2 %AEP flooding on the flood 
plain 

 

The flood inundation area of the combined fluvial and pluvial flooding on the 

floodplain for the 1 in 50-year event can be seen in Figure 6.23.  

In conclusion, the combined fluvial and pluvial flooding maps show the 

merged water depth and flood extent along the river channel from both river 

flow and rainfall.  
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6.3.4 Discussion of the combination fluvial and pluvial flooding 

at the Lower Wortley Beck area 

This section presents the significance of the assessment of combined fluvial 

and pluvial flooding. The outcomes of combined fluvial and pluvial flooding 

were compared to the outcomes of only fluvial flooding, to the outcomes of 

the single event simulation, and to the outcomes of discrete fluvial and 

pluvial flood events for the assessment. To examine the outcomes, water 

level, water depth, and flood extent were used. 

A.) Comparison of water levels between combined fluvial and pluvial 

flooding and only fluvial flooding 

The impact of the pluvial flooding on the fluvial flooding was assessed by 

comparison of fluvial flooding to the combined fluvial and pluvial flooding for 

the 1 in 100-year event. This assessment was performed by comparing 

water level values of between fluvial flooding and combined fluvial and 

pluvial flooding. The graphs of water level values for each point can be seen 

between in Figures 6.24 to Figure 6. 28. 

 

Figure 6.24 The water levels at Point 3 
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Figure 6.25 The water levels at Point 4 

 

 

Figure 6.26 The water levels at Point 5 
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Figure 6.27 The water levels at Point 7 

 

 

Figure 6.28 The water levels at Point 8 

The figures (Figure 6.24 to Figure 6.28) show that the combined fluvial and 

pluvial flooding has higher water level value than only fluvial flooding. 

Results from Figure 6.24 and Figure 6.28 show that the combined fluvial and 

pluvial flooding can be dangerous than sole fluvial flood event. 
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B.) The impact of the combined fluvial and pluvial flooding on the water 

level in the flood extent 

Fl1 and FI2 water level points were positioned inside the severe flood risk 

area (as shown in Figure 6.29). Both fluvial and pluvial flood events and 

backwater effects can be seen at the Fl1 and FI2 locations. Thus, the impact 

of the combined fluvial and pluvial flooding on the flood extent can be 

obtained for these points.  

 

Figure 6.29 Fl1 and FI2 water level points 
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Figure 6.31  Comparison of the water levels for each simulation at point 
FI2 

It can be seen in Figure 6.30 and in Figure 6.31 that the combined fluvial 

and pluvial flooding can cause higher water levels than only fluvial flooding 

can for the same point, and the same return period.  The combined fluvial 

and pluvial flooding has a significant impact on the flood inundation area. 

C.) Comparison of water depths (m) between combined and discrete 

flood events 

The combined flood events with discrete flood events were compared in this 

section.  Firstly, water depth was calculated from the summation of the water 

depth values of the same point from discrete pluvial and fluvial flooding 

(Figure 6.3). These discrete fluvial and pluvial flooding events were designed 

for the 1 in 100-year event. The methodology of the fluvial flooding can be 

found at the methodology section of Chapter 3. The methodology of the 

pluvial flooding can be found at the methodology section of Chapter 5. The 

water depth value of discrete events was named as Sum in the figures. 

Secondly, water depth was calculated directly from the combined fluvial and 

pluvial flooding event simulation for the 1 in 100-year event. The 

methodology of the combined fluvial and pluvial flooding can be found in the 

methodology section of Chapter 6. This was named as Combination in the 

figures. 
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Figure 6.32 The water depth at Point 1 

  

 

Figure 6.33 The water depth at Point 2 
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Figure 6.34 The water depth at Point 4 

 

Figure 6.35 The water depth at Point 5 
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Figure 6.36 The water depth at Point 8 

The discrete fluvial and pluvial flooding (Figure 6.14 and 6.15) was 

compared to the combined fluvial and pluvial flooding. The combined fluvial 

and pluvial flooding map (Figure 6.18) displays the flood extent and the 

water level of both river flow and rainfall. 

Figures (from Figure 6.32 to Figure 6.36) display that water depth (m) from 

sum-up of independent fluvial and pluvial flooding is bigger than combined 

fluvial and pluvial flooding. The limit can be that the results from discrete 

flood events cannot indicate the sum of outcomes from the different flooding 

source directly. For instance, the water level of the fluvial and pluvial flooding 

at the same point in the flood extent cannot be summed directly. Therefore, 

to overlap the maps of discrete flood events is not realistic approach to 

observe the water depth of combined events. However, the combined pluvial 

and fluvial flooding can be displayed in the flood inundation area directly 

because this approach has both rainfall and river flow inside the model.  
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D.) Discussion of single event simulation and combined fluvial and 
pluvial events 

The levels of the water level in the single event simulation and combined 

fluvial and pluvial flooding model can be seen in Figures 6.37 to 6.40 for the 

observation points (see Figure 6.3). 

 

 

Figure 6.37 The water level at Point 3 

 

 

Figure 6.38 The water level at Point 4 
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Figure 6.39 The water levels at Point 5 

 

Figure 6.40 The water levels at Point 8 

The water levels of the single event simulation are almost similar with the 

combined of fluvial and pluvial flooding for the points, except point 3 in 

Figure 6.37. The reasons are likely to be that lateral flow is effective at this 

particular point, the peak flow could have been calculated high, and it was 

applied as constant value during the single event simulation. In addition, 

rainfall event was applied only on the Lower Wortley Beck area in the 

combined simulation. 
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This assessment presented comparisons of combined fluvial and pluvial 

flooding with the only fluvial flood, with the single event simulations and with 

discrete flood events. 

The important outcomes of the assessments are that  

1. Single event simulation displays higher water levels than fluvial flooding 

because of the impact of the peak flow at the outfall of the New Farnley sub-

catchment to the river channel.   

2. The water levels from the fluvial flooding are higher than from those for 

the pluvial flooding. However, the values of the pluvial flooding virtually 

became closer to the water levels of the fluvial flooding. This could mean 

that rainfall-runoff process of the pluvial flooding takes more time due to the 

runoff being slower and longer. 

3. There are some limitations of only overlapping discrete fluvial and pluvial 

flooding maps. Firstly, water levels of the same points in the flood extent 

area of fluvial flooding and pluvial flooding cannot be aggregated directly. 

Secondly, flood extent of the combined sources cannot be presented 

accurately. Lastly, the impact of combined water depth on the flood extent 

cannot be observed.   

The dependence of the fluvial and pluvial flood events can be investigated 

by assessing sufficient long time series of river flow and rainfall data or by 

utilizing a large-scale weather generator and a hydrological model (Apel et 

al., 2015; Breinl et al., 2015). The peak water level in river channels, also the 

timing and the duration of local rainfall events are critical to examine the 

fluvial and pluvial flood inundation. To assess the dependency of the fluvial 

and pluvial flood events, the rainfall duration, catchment respond time, and 

land use materials can be the primary concerns. However, the analysis of 

combined fluvial and pluvial events would increase the computational time 

(Apel et al., 2015).  

In summary, to evaluate the flood risk of the combined fluvial and pluvial 

flooding, flood level and extent of the combined events, rainfall-runoff and 

river flow should be combined in the model, and during the simulation. Thus, 

the combined fluvial and pluvial flooding can be observed on the floodplains 

directly. 
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6.4 Conclusion 

Pluvial and fluvial flood events are usually investigated discretely. The 

interdependency of pluvial and fluvial flooding in an urbanised stream basin 

was discussed in this chapter. The interaction point between pluvial and 

fluvial flooding was determined as the floodplains of urban streams in this 

research. The fluvial flooding can be seen because of the overflow urban 

streams, and pluvial flooding can be seen because of the impermeable 

surfaces on the floodplains by these streams. Lower Wortley Beck area is an 

example of this link between the fluvial and pluvial events on the floodplain. 

The aim of this research was to observe combined pluvial and fluvial 

flooding on the floodplains, to aggregate floodwater from both river overflow 

along the river channel and surface runoff on the floodplains by the river. 

The combined fluvial and pluvial flooding was simulated by using the 1D 

river channel link with the 2D direct rainfall model for the Lower Wortley 

Beck area. This approach enables both rainfall and river flow within the 

model as such demonstrates the simulation of pluvial and fluvial flooding on 

the floodplains. Thus, the flood extent with the water depth of the combined 

fluvial and pluvial flooding on the floodplains of the Lower Wortley Beck can 

be simulated and observed. Maximum water depth, water levels, and 

common flood inundation areas from combined fluvial and pluvial flood 

events were produced and examined. The Lower Wortley Beck area is 

suitable for this research because there is both fluvial flood risk and pluvial 

flood risk by the Lower Wortley Beck due to the area by the stream is 

urbanised. This approach was used for the Lower Wortley Beck area, but 

this approach can be applied to other urban stream basins. Lastly, the 

outcomes confirmed that the combined flooding could be more dangerous 

than single flood event, to analyse flood events separately can cause to 

underestimate the flood risk and only overlapping the flood inundation maps 

cannot display the realistic flood extents and depth values. 
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Chapter 7 Conclusion 

7.1 Introduction 

Urban flooding is a significant risk all over the world because the adverse 

effects of flood events on society and economy. In addition, process, 

magnitude, and length of the flood events have many uncertainties. When all 

of these factors are considered, to enrich the approaches of the urban flood 

risk assessment and management used by National and Local Governments 

are necessary.  

In this research, to enrich the approaches of the urban flood risk 

assessment, the effects of rainfall events (rainfall duration), land use 

changes (urban developments, SUDS), and return periods (AEP) were 

analysed on flood risk in urbanised catchments. In addition, combined pluvial 

and fluvial flooding on the floodplains of urban stream basins was 

investigated. The interdependencies of flood processes were defined, and 

their interactions were viewed on the floodplains. The consequences of the 

combined flooding can be severe because the magnitude of their combined 

effects can be larger.  However, the studies of combined fluvial and pluvial 

flooding are very rare. 

The area for this research is the Wortley Beck catchment, in the South West 

of the City of Leeds, UK. Wortley Beck catchment is an ungauged and 

urbanised catchment. Fluvial and pluvial flood events were modelled by 

using hydrological and hydrodynamic models. The simulation results 

confirmed that the site has a severe level flood risk from both pluvial and 

fluvial, specifically, between Gelderd Road and the Ring Road area. The 

reasons for food risk of this area could be both the lack of culvert capacity 

and Farnley Reservoir. This research area is important because new 

settlements are expected to be built in the flood zone. 
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Chapter 3 presents the fluvial flood model of the Lower Wortley Beck in this 

research. The Revitalised Flood Hydrograph (ReFH) model was used to 

estimate the inflows from Farnley Beck and Farnley Wood Beck sub-

catchments. 1D (Flood Modeller Suite) linked with the 2D (TUFLOW) fluvial 

hydrodynamic model. The effects of the sub-catchments were assessed on 

fluvial flood risk of the Lower Wortley Beck, Leeds, UK. 

Chapter 4 presents single event simulation. In this chapter, in addition to the 

inflow, lateral flow from New Farnley was integrated within the fluvial system 

of the Lower Wortley Beck. Lateral flow represents the peak discharge at the 

outlet of the New Farnley basin. Peak flow was estimated by using rational 

method. Therefore, surface overflow at the New Farnley was observed as 

discharge at the outfall of the basin. The peak flow was estimated by using 

different rainfall event and land-use scenarios. Single event simulation was 

performed to assess the effects of the peak discharge of the upstream sub-

catchment on the fluvial flood risk at Lower Wortley Beck.  

In Chapter 5 a pluvial urban flooding, caused by extreme rainfall intensities 

combined with impermeable surfaces, was modelled. As there is not 

sufficient recorded data in the Wortley Beck catchment, net rainfall 

hyetograph was estimated by using Revitalised loss model in the Flood 

Modeller Suite tool. 2D TUFLOW hydrodynamic model with direct rainfall 

approach was used to model pluvial flooding so that the relationship 

between rainfall event and flood risk can be determined. The primary 

advantage of this method for an ungauged catchment was that flow values 

were computed from different design rainfall events.  

Chapter 6 combined fluvial and pluvial flooding presents a methodology to 

assess the interaction between the pluvial and fluvial flooding on the 

floodplains of urban stream basins. Combined fluvial and pluvial flooding 

was examined on the floodplains in the Lower Wortley Beck area. 

Settlements in urban areas have increased specifically, on the floodplains. 

These settlements create impermeable surfaces so that an intense rainfall 

event can cause pluvial flooding in the Lower Wortley Beck area.  
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In addition, due to urbanisation and high-intensity rainfall events, fast 

discharge can be observed from the sub-catchments of Wortley Beck. Thus, 

fluvial flooding can be observed at the Lower Wortley Beck area.   

The methodology was used to combine inflow hydrographs of the sub-

catchments of Wortley Beck catchments and net rainfall hyetograph of the 

Lower Wortley Beck area. This approach was developed specifically, for this 

part of Leeds but this method can be applied to other cities in the world. 

Overall, the results were produced for various return periods, land use and 

rainfall event scenarios to display the flood depth and flood extents. The 

flood extents were displayed by using the probabilistic flood inundation 

maps.  

Key contributions of the project are that,  

1. This research reviewed and updated the hydrological and hydraulic 

assessments of the Wortley Beck catchment. Hydrological assessment of 

the fluvial floods system was updated by using the ReFH rainfall-runoff 

model. The fluvial model was calibrated by using measured rainfall and 

water level data in this research. 

2. The rational method has been used to design the urban drainage system. 

However, the rational method was used to calculate the maximum discharge 

to display the surface runoff of the upstream basin in this research. Thus, the 

impact of peak flow on the fluvial food risk at the downstream locations could 

be assessed. 

3. Urban pluvial flooding was modelled by using the direct rainfall modelling 

approach rather than the traditional rainfall-runoff models.  

4. Flood frequency was investigated for the ungauged catchments by 

computed discharge for any location in the catchment by using direct rainfall-

runoff model and pooled method.  

5. This research provided an approach that can be used to assess combined 

fluvial and pluvial flooding in urbanised catchments and displayed their 

interaction on the floodplains.  
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Key findings of the project are that, 

1. The rainfall intensity, duration, and ratio, location of the impermeable 

surface area in sub-catchments can influence the flood magnitude and 

arrival time. 

2. The overflow of the upstream basin has a significant impact on the flood 

risk of the downstream location. Therefore, land use change, the capacity of 

drainage system and rainfall duration of the upstream area should be 

considered to manage flood risk at the downstream area. 

3. The results indicated that rainfall return period is not always the same as 

the flood return period.  

4. Combined flood events can have larger flood extents and depths than a 

single type of flood event.  This information could be used to develop further 

flood damage mitigation approaches. 

However, there are some limitations of this research. For instance, urban 

drainage system data of the Wortley Beck catchment could not be provided 

in this research. A continuous loss can be integrated into the pluvial flood 

modelling. There were not sufficient measured flow data to estimate flood 

events from the measured data directly. In addition, there were not sufficient 

historical flood records of Wortley Beck catchment.  

Further work is required to improve the methodology of combined fluvial and 

pluvial flood events. The peak time and duration of the rainfall event and 

flooding should be considered. This approach can be enriched by analysing 

the catchment response time. To improve the results of the simulations of 

fluvial and pluvial flooding, small grid resolution can be used. 

New settlements should be avoided building in the flood-prone areas. In 

addition, some flood resilience approaches can be used to manage the 

surface runoff. In these places, sustainable urban drainage systems should 

be used, such as, permeable surfaces in car parks or green roofs. Flood risk 

assessment should regularly be conducted and updated. Innovative 

research approaches can be adapted to the urbanised and ungauged 

catchments. 
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The outcomes of this research can be used to enhance the flood resilience 

approaches to mitigate the adverse flood consequences of flooding in urban 

areas by the insurance agencies, stakeholders, urban planners, and local 

government agencies. 
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