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Abstract

Many economic time series exhibit random walk or trend dynamics and other persistent non-

stationary behaviour (e.g. stock prices, exchange rates, unemployment rate and net trading). If

a time series is not stationary, then any shock can be permanent and there is no tendency for

its level to return to a constant mean over time; moreover, in the long run, the volatility of the

process is expected to grow without bound, and the time series cannot be predicted based on

historical observations, see Diebold and Kilian (2001). Cointegration allows the identi�cation of

economic integrated time series that exhibit similar dynamics in the long run and the estimation

of their relationships, by exploiting the stationary linear combinations of these time series, see

Granger (1981).

This thesis proposes three Bayesian estimation methods of the well-known Vector Error Cor-

rection Model (VECM) about di�erence stationary time series in order to extract the long-run

equilibrium relationships. Each method used in this thesis is implemented using Markov Chain

Monte Carlo (MCMC) and illustrated on synthetic data, and then on real economic data sets.

The �rst method consists of a static model, where we compare comovements between Eurozone

economic time series comprising net trading, long-term interest rates and the harmonised unem-

ployment rate. Primiceri (2005) established a time-varying model for the vector autoregressive

model. Following Primiceri and the idea of the static model seen in the �rst method, we are

constructing a time-varying model for our VECM, from which we extract information about the

time-varying cointegration matrix, and more interestingly about its time-varying rank (i.e. the

cointegration rank) and independent cointegration relationships. These two �rst methods are

based on the singular value decomposition of the cointegration matrix from the error correction

model and the so-called irrelevance criterion, a �exible thresholding approach to determine its

rank. In these two methods, the joint estimation of the cointegration rank and the cointegration

relationships is deducted from synthetic data sets before applying them to real data sets (Euro-

pean economies and major stock market exchange indices). The last main chapter of this thesis
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covers the use of a prior singular distribution on the long-run relationship matrix of the VECM

given the cointegration rank. Based on the de�nition of the singular matrix normal distribution

proposed by Gupta and Nagar (2000), we also learn about the space de�nition and the density of

such a distribution based on the work of Uhlig (1994) and Díaz-García et al. (2006). Gupta and

Nagar (2000), Díaz-García et al. (1997) and Díaz-García and Gutiérrez-Jáimez (1997) also de�ne

the singular Inverse-Wishart distribution and in our discussion, we eventually open the issues

arising in implementing a dynamic model, by developing the idea of a singular Inverse-Wishart

distribution on the variance covariance matrix of the transition equation (see Chapter 6).

3



Contents

1 Introduction 11

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Aim of the thesis and layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Literature Review 16

2.1 Introduction to cointegration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 De�nitions of cointegration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Theory of cointegration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 The Dickey-Fuller test: Testing stationarity of time series . . . . . . . . . . 20

2.3 Cointegration and Vector Error Correction Model . . . . . . . . . . . . . . . . . . 26

2.3.1 Introduction to the Vector Error Correction Model . . . . . . . . . . . . . 26

2.3.2 Method to stack the data of the VECM in this thesis . . . . . . . . . . . . 28

2.3.3 Johansen tests: Frequentist estimation of the cointegration rank . . . . . . 30

2.3.4 Cointegrating relations and common trends . . . . . . . . . . . . . . . . . 30

2.4 Bayesian work on cointegration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.1 The Gibbs Sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.2 A prior on the cointegrating space . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.3 A Bayesian estimation of the Error Correction Model including the coin-

tegration rank: Villani (2005) . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.4 The embedding approach on the Error Correction Model . . . . . . . . . . 36

4



2.4.5 Bayesian estimation of the lag order of the model . . . . . . . . . . . . . . 39

2.4.6 Time-varying Bayesian estimation of the VECM . . . . . . . . . . . . . . . 39

2.4.7 Bayesian cointegration on other models than the VECM . . . . . . . . . . 39

2.5 Estimation from a pre-sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Estimation of the cointegration rank and the coe�cients in a static model 43

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Approximation of the rank of Π . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Bayesian inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 The likelihood of the VECM . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.2 The prior distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.3 A prior of the rank implied by the prior of the singular values of the

cointegrating matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.4 The posterior distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.5 The posterior distributions of Π and Ψ unconditional on the variance ma-

trix Σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.6 Pre-sample and hyperparameters choice . . . . . . . . . . . . . . . . . . . . 60

3.3.7 Obtaining the linearly independent cointegrating relationships from the

matrix Π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.8 General Gibbs for a static Error Correction Model using a non-singular

posterior distribution for Π and Ψ conditional on Σ . . . . . . . . . . . . . 63

3.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4.1 Synthetic data sets and implementation . . . . . . . . . . . . . . . . . . . . 65

3.4.2 The economic data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4.3 Comparison with Johansen tests for the European panel data sets . . . . . 71

3.4.4 Comparison of the independent cointegrating relations with Villani . . . . 78

3.4.5 Interpretation of cointegrating relations . . . . . . . . . . . . . . . . . . . . 79

3.4.6 Study of the cointegrating relations before and after the Euro . . . . . . . 80

5



3.4.7 Posterior summaries on the real data sets . . . . . . . . . . . . . . . . . . . 86

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4 Time-varying cointegration 93

4.1 Time-varying Vector Error Correction Model . . . . . . . . . . . . . . . . . . . . . 93

4.2 State space models and estimating the parameters . . . . . . . . . . . . . . . . . . 96

4.2.1 The general state space model . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2.2 State space model of the Vector Error Correction Model . . . . . . . . . . 97

4.2.3 Forward Filtering and Backward Recursion of the Vector Error Correction

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2.4 Bayesian inference on the covariance matrix Σ . . . . . . . . . . . . . . . . 100

4.3 Bayesian inference on the parameters of the transition equation: Q and ρ . . . . . 101

4.3.1 The likelihood of the transition equation . . . . . . . . . . . . . . . . . . . 101

4.3.2 Bayesian inference on ρ: a uniform prior . . . . . . . . . . . . . . . . . . . 102

4.3.3 Bayesian inference on Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.4 Initialization of the parameters and hyperparameters . . . . . . . . . . . . . . . . 104

4.5 Time-varying cointegration: the rank and the cointegrating relations . . . . . . . . 106

4.5.1 Evolution of the cointegration rank . . . . . . . . . . . . . . . . . . . . . . 106

4.5.2 Evolution of the independent cointegrating relations . . . . . . . . . . . . . 106

4.6 Recapitulation of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.7 Simulated data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.7.1 Description of the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.7.2 Implementation of the code for the simulated data sets . . . . . . . . . . . 114

4.7.3 Estimation of the cointegrating parameters . . . . . . . . . . . . . . . . . . 115

4.7.4 Posterior summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.8 Application to real data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.8.1 Application to the European panel data . . . . . . . . . . . . . . . . . . . 126

6



4.8.2 An application to the stock prices of three company sectors from the Dow

Jones Industrial Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5 Cointegration analysis based on singular distributions 143

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.2 The matrix-variate normal singular distribution . . . . . . . . . . . . . . . . . . . 145

5.2.1 De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.2.2 A probability density function for the matrix-variate normal singular dis-

tribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.2.3 Method to simulate a matrix-variate normal singular distribution . . . . . 147

5.3 Prior distributions and the likelihood of the model . . . . . . . . . . . . . . . . . . 149

5.3.1 Prior on Π given S and Σ . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.3.2 Issues in �xing S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.3.3 Inference on S and introduction to a Bayesian hierarchical model . . . . . 151

5.3.4 Prior on Ψ given Σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.3.5 Prior on Σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.3.6 The joint prior distribution and the likelihood . . . . . . . . . . . . . . . . 153

5.4 Full conditional posterior distribution of the non-singular lag parameters: Ψ . . . 154

5.5 Bayesian inference on the non-singular variance matrix of the errors Σ . . . . . . . 157

5.6 Bayesian inference on the singular parameter of the VECM: Π . . . . . . . . . . . 159

5.6.1 Full conditional posterior distribution of Π . . . . . . . . . . . . . . . . . . 159

5.6.2 Fixed cointegration rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.7 Metropolis-Hastings to estimate the conditional distribution of U . . . . . . . . . 168

5.8 Gibbs sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.8.1 Setting of the hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . 170

5.8.2 Algorithm of the Gibbs sampler . . . . . . . . . . . . . . . . . . . . . . . . 171

5.9 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7



5.9.1 Application to the synthetic data set of Chapter 3 . . . . . . . . . . . . . . 175

5.9.2 Sensitivity analysis around B . . . . . . . . . . . . . . . . . . . . . . . . . 175

5.9.3 Adjusting the acceptance rate of the Metropolis step with the variance C

of the proposal distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5.9.4 Posterior summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

5.9.5 Comparison with the static model of Chapter 3 for the European net tradings187

5.9.6 Application to six major stock market indices . . . . . . . . . . . . . . . . 189

5.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6 Consideration for future work: A dynamic VECM including a singular distri-

bution for the time-varying cointegrating matrix 195

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

6.2 Bayesian inference about the transition equation . . . . . . . . . . . . . . . . . . . 196

6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

7 Conclusions and future work 200

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

7.1.1 Main �ndings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

7.1.2 Advantages of the novel methods on Bayesian cointegration . . . . . . . . . 202

7.1.3 Limitations of these Bayesian estimations . . . . . . . . . . . . . . . . . . . 202

7.2 Future work and other directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

APPENDICES 205

A Generalized inverse of a positive semi-de�nite matrix 205

A.1 Introduction and de�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

A.2 Solution of linearly-dependent equations . . . . . . . . . . . . . . . . . . . . . . . 206

A.3 The unicity of the generalized inverse of a positive semide�nite matrix . . . . . . . 207

A.4 Decomposition of a positive semide�nite matrix A with reduced diagonal matrix . 209

8



B The choice of the lag order 213

9



Notation

p ∈ N?, p ≥ 2, 1 ≤ r < p. In this thesis, p denotes the number of time series used in a data set.

T > p denotes the total length of the time series.

Mp,n(R) is the vector space of the real matrices of dimension p× n with n ∈ N?.

Mp,p(R) is the vector space of the real square matrices of dimension p× p.

Dp(R) is the vector space of the real diagonal matrices of dimension p× p.

GLp(R) is the vector space of the real invertible matrices of dimension p× p.

S+
p (r) is the set of p× p semide�nite positive matrices of rank r.

0p is the null element ofMp,p(R). Ip represents the identity matrix ofMp,p(R).

∀A ∈ Mp,n(R), A+ will de�ne the Moore-Penrose inverse of A. Op is the group of orthogonal

p× p matrices H, i.e. respecting HHT = HTH = Ip.

Vr,p is the set of matrices H ∈ Mp,r of full rank r and such that HTH = Ir. Vr,p is called the

Stiefel manifold.

Np×n(M,Q,P ) with M ∈ Mp,n(R), P ∈ Mp,p(R) and Q ∈ Mn,n(R) represents the matrix

variate normal distribution seen in Chapter 2 of Gupta and Nagar (2000) with mean M and

covariance matrix P ⊗Q.

tp×n(M,P,Q, n) represents the matrix variate t-distribution seen in Chapter 4 of Gupta and

Nagar (2000) with location matrixM ∈Mp,n(R), scale matrices P ∈Mp,p(R) and Q ∈Mn,n(R)

and degrees of freedom n.

TN(η1, η2, µ, s) with η1 < η2 denotes the truncated normal distribution with mean µ and standard

deviation s and where η1 and η2 are respectively, the lower bound and the upper bound.
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Chapter 1

Introduction

1.1 Background

Economic time series are in general considered as trend dynamics or having a non-stationary

behaviour over time. Such economic time series include stock market prices, foreign exchange

rates, or macroeconomic variables, such as the unemployment rate, net trading and others. If a

time series evolves as a random walk, then in the long run, the process will not be stable and the

time series will grow or decrease without any limit. In this case it will become hard to predict

the behaviour of these time series based on historical data, see Diebold and Kilian (2001). The

principle of cointegration established by Granger (1981) allows the identi�cation of economic time

series that exhibit similar dynamics in the long run and the estimation of their relationships.

This similarity is studied via the mean-reversion or stationarity of linear combinations of several

time series.

Cointegration occurs for a set of integrated time series of order m if we can �nd a linear

combination between them, that is integrated of lower order d < m, see Engle and Granger

(1987), Johansen (1996) and Johansen (1997). But in this thesis we will only consider di�erence

stationary time series (integrated of order 1), as it is often the case in econometrics, and we will

propose methodologies to establish cointegration relationships between them that are stationary
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(integrated of order 0). The cointegration rank, denoted generally as r in this thesis, represents

the number of independent linear combinations satisfying the property of stationarity. Our set of

economic time series will then be said to be cointegrated of rank r, see Engle and Granger (1987).

After the groundbreaking work of Granger (1981) and Engle and Granger (1987), there has been a

large literature on cointegration, see Johansen (1988), Johansen (1991), Johansen (1997), Phillips

and Perron (1988) and Phillips (1991). Among Bayesian analysts, one can mention the works

of Villani (2000), Strachan (2003), Kleibergen and van Dijk (1994) and Bauwens and Lubrano

(1996). As for non-Bayesian analysts, Johansen (1997) developed two tests in order to evaluate

the cointegration rank in a set of time series. These two tests are widely used for any study

about cointegration.

A method that can come to mind in order to study the comovement between di�erence

stationary time series is to conduct an Ordinary Least Squares (OLS) regression. For instance

let us consider an OLS regression between 2 non-stationary time series xt and yt:

yt = βxt + ut

with ut representing the error terms and β the slope of the regression. If our time series are di�er-

ence stationary, then the error terms may be non-stationary and the regression would therefore

incorrectly reject the null hypothesis H0 : β = 0. This comes from the fact that the estimator β̂

of the slope would not actually follow a Student distribution, leading to a spurious regression, see

Banerjee et al. (1993), Damghani et al. (2012) and Granger and Newbold (1974). The regression

results are then wrong, leading to a misinterpretation of the value of the coe�cient β. However,

if we regress instead ∆yt with ∆xt by OLS: ∆yt = γ∆xt + vt with vt as a white-noise process,

then because ∆yt and ∆xt are stationary, the estimator γ̂ will be consistent.

By estimating the VECM, we actually take the lag di�erence ∆xt of our VAR model xt and

determine the cointegrating matrix with a Bayesian approach (see Section 2.3). We will then

avoid the case of spurious regression. One of the key points in the Bayesian approach is to choose

a suitable prior distribution for the parameters of the VECM we want to estimate. We will see

that the prior distribution implies the use of other parameters called hyperparameters, of which
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one has to choose suitable estimates by appealing to certain methods (see for instance Section

3.3.2). Luetkepohl (2006) gives a method to estimate the parameters of the model that we will

use to initialize the parameters in this thesis (see Section 2.5). The main parameter of interest

in this thesis is the long-run relationships matrix obtained from the VECM. In this thesis, we

focus on Bayesian inference of the cointegration matrix, by choosing a suitable prior and then

derive a posterior distribution given the data and other parameters of the model. On the other

hand, the likelihood can easily be derived from the distribution of the error terms in the VECM

(see Section 3.3.1). Once both the likelihood and suitable priors are obtained, we can determine

the full conditional posterior distributions of our parameters and run a Gibbs Sampler so that

at the end we can get adequate estimates of the distribution of the parameters of the VECM.

1.2 Aim of the thesis and layout

This thesis introduces three methods to estimate the cointegration matrix: two methods are

used to estimate static parameters (static methods) and the other method is about estimating

time-varying parameters of the VECM (dynamic method). For the static methods as well as for

the dynamic method, we will consider non-singular and singular Bayesian inferences around the

cointegration matrix. In the non-singular Bayesian methods, we estimate the cointegration rank

based on the singular values of the cointegration matrix (see Chapters 3 and 4). In the singular

method, we de�ne a singular prior for the long-run impact matrix conditional on the rank (see

Chapter 5).

First of all, a static model is used to compare the economies of the 4 biggest countries of the

eurozone before and after the introduction of the single currency (see Chapter 3). This method

starts from the VECM, from which priors are initialised on the parameters. In that model, we

consider the long-run relationships matrix and the matrix of lag parameters as each having a non-

singular multivariate normal prior distribution each, given the covariance matrix of the errors.

This latter parameter will have an Inverse-Wishart prior distribution. Based on the likelihood

of our model, we �nd the three full conditional distributions wanted. But we decide to integrate
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out the covariance matrix, in order to obtain matrix t-distributions for both the cointegrating

matrix and the lag parameters matrix. This allows the Markov Chain Monte Carlo algorithm

to run faster. For each cointegrating matrix simulated, an estimation of the rank is given by

assessing the number of its most irrelevant singular values.

The second method consists of estimating a time-varying VECM (see Chapter 4), that we call

the dynamic model, in order to di�erentiate it from the static model, seen in the previous chapter.

For that, a Forward Filtering Backward Recursion algorithm is employed. In that method we

still de�ne a non-singular distribution for the cointegrating matrix. Since the cointegration

matrix is time-varying, then the cointegration rank is also evolving over time. Then by using the

same estimation of the rank on the time-varying cointegrating matrix as in the static method

of Chapter 3, we are able to estimate a dynamic rank. Then from this dynamic rank and the

dynamic cointegration matrix, we can easily obtain dynamic independent cointegrating relations.

We can then obtain, for each time, an estimation of the rank and of the independent cointegrating

relations. We test this novel method on a set of simulated data where we change on purpose the

number of cointegrating relations over time. An application is then carried out on real data sets

such as the European panel data seen in Chapter 3. We also decide to study the evolution of

the cointegration rank in 3 sectors of the Dow Jones data set (see Chapter 4) from the year 2001

until 2009.

In Chapter 5, we go back to a static model but we establish a singular prior distribution on

the long-run relationships matrix. Such a distribution may be called a reduced rank distribution.

However, the prior singular distribution used on the cointegration matrix is based on knowledge

of the rank. By �xing the rank of the prior, we achieve the property of conjugacy and obtain

a full conditional singular posterior distribution for the cointegrating matrix, with reduced rank

the same as de�ned in the prior. The prior distribution of the cointegrating matrix is a singular

normal matrix distribution, see Gupta and Nagar (2000) and Díaz-García et al. (2006). The

lag parameter matrix still has a non-singular normal prior and the covariance matrix of the

errors will have an Inverse-Wishart distribution. In this chapter, we will not integrate out the
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variance of the errors and we will therefore have three full conditional distributions: the singular

posterior distribution of the cointegrating matrix, the non-singular posterior distribution of the

lag parameter matrix and the non-singular posterior of the covariance matrix of the errors.

Unlike the 2 previous methods, we cannot estimate the rank in the MCMC procedure. We use

Johansen tests, see Johansen (1988), to assess the rank of the data, before running the algorithm.

The property of conjugacy is veri�ed and the MCMC algorithm uses a full conditional posterior

singular distribution on the long-run impact matrix. The methods are applied on simulated data

sets with a comparison with Chapter 3 and some real economic and �nancial data sets.
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Chapter 2

Literature Review

2.1 Introduction to cointegration

In general, most �nancial time series are di�erence stationary. Over many decades econo-

metricians have been interested in developing models to study economic time series behaviours,

see Keynes (1936). If we think about mathematical models such as autoregressive models, a

white-noise process is used to represent the error terms in such models. This section introduces

the advantages in choosing a Gaussian distribution for the error terms. In general, analysis of

market data has shown that we can model economic time series as random walks, evolving as

di�erence stationary or unit root processes. The future of such time series cannot be predicted.

This theory goes with the e�cient-market hypothesis studied by Fama (1970):

xt = xt−1 + ut , ut ∼ N(0, σ2)

where ut is a sequence of i.i.d. random variables following a normal distribution with mean 0 and

variance σ2. With this hypothesis in mind, we can state that �nancial markets are information-

ally e�cient and therefore, we cannot predict returns given the information available at the time

of investment. But there also exist many other types of di�erence stationary time series. For

example, the GDP of a country or its interest rate is not stationary, as it is typically exhibiting

a trend.
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However, in this thesis we believe in mathematical models in order to retrieve the facts that

have occured in reality whether it is about the comovements in the Eurozone before and after

the Euro (see Chapters 3 and 4) or in stock market indices (see Chapters 4 and 5). Financial

data cannot be accurately predicted or evaluated only from geopolitical situations and intuition.

Mathematical models are one of the most rational ways of predicting markets and often involves

the knowledge of the trend in the past, or in a pre-sample before predicting more or less the

behaviour of stock trends afterwards (e.g. comparing a moving-average time series and the real

time series). For that reason and throughout many decades, investors have chosen to employ

statisticians in order to make a decision on which stocks they should invest. Knowing events in

the world and reading newspapers about �nance are more than necessary in order to invest well,

but it is not enough to understand comovements between such or such stocks. We can also bring

that same argument to governments and their economies in the world.

The models proposed in this thesis are used to give an idea of which stocks or macroeconomic

variables are potentially coevolving. Cointegration occurs when there exists a linear combina-

tion of these non-stationary time series, that is stationary. Cointegrating relations and their

cointegrating coe�cients can inform us about the coevolution between these trend time series,

see Johansen (2005), and inform a lot on market investment strategies. One of the recurring

methods in which cointegration occurs is the pair trading strategy, see Schmidt (2008) and Rad

et al. (2016). For instance, let us consider a pair of 2 stocks (Coca Cola and Pepsi) that are

cointegrated over a training sample. Suppose now that at this present date, the Pepsi index goes

down compared to the Coca-Cola index. We therefore think that since both of these stocks are

cointegrated, there is a high chance that the Pepsi index will go back up again, in order to catch

up with the Coca Cola index and to satisfy the long-run cointegrating relationship. In that case,

the investor might want to short sell a certain amount of stocks from Coca-Cola (when the value

of Pepsi suddenly goes downwards), in order to buy at the same time for the same price a certain

amount of stocks from Pepsi. At the time when Pepsi goes back up again, the investor can then

sell the stocks from Pepsi and pocket a pro�t.
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Cointegration in other areas than economics and �nance

Cointegration is often used in econometrics or �nance due to the frequency of integrated

time series we encounter in these two �elds. However, it is interesting to know that numerous

works about cointegration have been applied to other �elds such as, for instance, biology, socio-

economic and environmental science panel data. Many �elds can contain integrated time series

and therefore cointegration techniques come naturally to assess relations between variables.

For instance, Chintrakarn and Herzer (2012) used panel cointegration techniques to investi-

gate the e�ect of income inequality on crime in the United States. Kaufmann and Stern (2002)

used cointegration to study co-movements between hemispheric temperature and the radiative

forcing: solar irradiance, greenhouse gases, and tropospheric sulfates. Ostergaard et al. (2017)

applied cointegration to a system of linearly phase coupled oscillating processes.

2.2 De�nitions of cointegration

In this section, we recall general de�nitions on weakly stationary time series and the order of

integration for a given time series. Any time series (xt)1≤t≤T of length T will be denoted as xt

in this section. We also assume that any time series has a known initial value x0.

De�nition 1. Stationary time series

Let xt be a real time series. xt is said to be weakly stationary, if: ∀ t ∈ [[1, T ]],

∃ µ ∈ R , such that E[xt] = µ

∃ σ ∈ R , such that V ar[xt] = σ2

∀ h ∈ Z, ∃ γh ∈ R , such that Cov[xt+h, xt] = γh

De�nition 2. Order of integration 0: Stationary

Let xt be a real time series. xt is said to be integrated of order 0 , denoted xt ∼ I(0) , or

trend stationary if xt is stationary.

De�nition 3. Order of integration 1: Di�erence stationary
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Let xt be a real time series. xt is said to be integrated of order 1 , denoted xt ∼ I(1) , or

di�erence stationary if ∆xt = xt − xt−1 is stationary, i.e., xt ∼ I(1) i� ∆xt ∼ I(0).

Remark 1. xt ∼ I(0)⇒ xt ∼ I(1) is true but xt ∼ I(1)⇒ xt ∼ I(0) is wrong!

A vector ut of time series integrated of order 1 is a vector for which each component is

integrated of order 1. It is denoted as ut ∼ I(1). We will use mostly the vector xt to describe

our time series xi,t.

2.2.1 Theory of cointegration

In this section, we consider a set of p di�erence time series represented as a vector xt =

(xit)1≤i≤p, in which each component xit represents the i
th time series of our group at time t.

De�nition 4. Cointegration

A p-vector of di�erence stationary time series xt ( xt ∼ I(1) ) is said to be cointegrated

if there exists at least one non-zero p-vector β such that β′xt is trend stationary (i.e. β
′xt ∼ I(0)).

β is called a cointegrating vector.

De�nition 5. Cointegration rank

If there exists r ∈ [[1, p − 1]] linearly independent vectors βi, i ∈ [[1, r]] , such that βi
′xt is

stationary, then xt is said to have cointegration rank r.

The r linearly independent p-vectors βi are called independent cointegrating relations.

They are stacked in a cointegration matrix denoted as β = (β1, β2, ..., βr) in this thesis.

Granger (1981) and Engle and Granger (1987) were the �rst to develop the notion of cointe-

gration. Later on, Johansen (1988, 1991, 1996, 1997, 2005, 2006) will introduce several statistical

tests to determine the cointegration rank. In addition, the cointegration rank can be thought as

an index of how well time series are co-evolving: the bigger the cointegration rank is in a set of

time series, the more comovements will be present in that set of time series.

19



2.2.2 The Dickey-Fuller test: Testing stationarity of time series

Establishing cointegrating relationships requires the need to test if the linear combination of

our time series, i.e. the cointegrating relation, is stationary. For that matter, several statistical

tests are employed in order to evaluate if a time series is stationary or not: Phillips and Perron

(1988), Kwiatkowski et al. (1992) (KPSS) and Dickey and Fuller (1979). We focus in this chapter

on the Dickey Fuller test.

Let us �rst consider a simple autoregressive model AR(1) represented by:

xt = φxt−1 + et , ∀t ∈ [[1, T ]]

where φ and x0 are real numbers and where et
iid∼ N(0, σ2) with σ2 > 0.

Let us now study the following three di�erent cases leading to the conclusion if xt is stationary

or not:

1. |φ| < 1⇒ xt is stationary:

Since |φ| < 1, then one has:

xt = φxt−1 + et ⇐⇒ xt − φxt−1 = et ⇐⇒ (1− φB)xt = et

with B being the backward shift operator. If |φ| < 1 then (1− φB) is invertible and:

(1− φB)−1 =
∞∑
i=0

φiBi

Then we can write:

xt = (1− φB)−1et =
∞∑
i=0

φiBiet =
∞∑
i=0

φiet−i

Since all the et are independent we have ∀t ∈ N∗,

(a) E[xt] =
∑∞

i=0 φ
iE[et−i] = 0 ,

(b) V ar[xt] =
∑∞

i=0 φ
2iV ar[et−i] =

∑∞
i=0 φ

2iσ2 = σ2
∑∞

i=0 φ
2i and then V ar[xt] = σ2 1

1−φ2 =

σ2

1−φ2 .
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(c) ∀h ∈ {1, ..., T − t},

Cov[xt+h, xt] = Cov[
∞∑
j=0

φjet+h−j,

∞∑
i=0

φiet−i]

=
∞∑
i=0

∞∑
j=0

φi+jCov[et+h−j, et−i]

Then, since Cov[et−i, et+h−j] 6= 0 ⇐⇒ t− i = t+h− j ⇐⇒ j = h+ i, then we have

∀ t,

Cov[xt+h, xt] =
∞∑
i=0

φ2i+hσ2 = φhσ2

∞∑
i=0

φ2i =
φhσ2

1− φ2

proving thereby stationarity.

2. |φ| = 1⇒ xt is not stationary.

If |φ| = 1, then φ = ±1 and then we can write:

xt =
t−1∑
i=0

φiet−i + φtx0

Then we have:

∀t > 0, E[xt] =
t−1∑
i=0

φiE[et−i] + φtx0 = φtx0

and we can see that the expectation of xt is not constant if and only if x0 6= 0, and then

the vector of time series xt is not stationary.

If x0 = 0, then the expectation is constant and equal to 0. But in that case if we write the

variance of xt, we get:

V ar[xt] = V ar[
t−1∑
i=0

φiet−i + φtx0] =
t−1∑
i=0

φ2iV ar[et−i] = σ2

t−1∑
i=0

1 = σ2t

and we can clearly see that the variance of xt is not constant and thus the time series is

not stationary.

3. |φ| > 1⇒ xt is not stationary.

In that case we can use similar computations to write the variance of xt as:

V ar[xt] =
t−1∑
i=0

φ2iV ar[et−i] = σ2

t−1∑
i=0

φ2i

21



Since |φ| > 1, then φ2 > 1 and therefore the above time series diverges as t tends to in�nity.

Therefore we conclude that xt is non-stationary.

The Dickey-Fuller distribution

Dickey and Fuller (1979) developed a test for detecting the presence of a unit root in an

autoregressive model. If a unit root is present then it means that the process is not stationary.

This test uses critical values corresponding to a distribution called the Dickey-Fuller distribution

which depends also on the sample size.

Let us take the example of a process without deterministic terms based on T observations

x1, x2,..., xT :

xt = φxt−1 + et , ∀t ∈ [[1, T ]]

where et
iid∼ N(0, σ2).

Given these T observations x1, x2, ..., xT , the maximum likelihood estimator of φ is obtained

from the moment condition, i.e. that the error terms et and the time series xt are uncorrelated:

E[etxt−1] = 0 =⇒
T∑
t=1

etxt−1 =
T∑
t=1

(xt − φ̂xt−1)xt−1 = 0

Hence:

φ̂ =

∑T
t=1 xtxt−1∑T
t=1 x

2
t−1

The Dicky-Fuller test is based on the following statistic:

f̂ =
φ̂− 1

SE(φ̂)

where SE(φ̂) is the usual standard error estimate. Then we can write f̂ as:

f̂ =
φ̂− 1

S/(
√∑T

t=2 x
2
t−1)

=

∑T
t=2(∆xt)xt−1

S
√∑T

t=2 x
2
t−1
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where S is the unbiased estimator of σ2: S2 = 1
T−2

∑T
t=2(xt − φ̂xt−1)2. Using the fact that S2 is

consistent, that is, S2 converges in probability to σ2 (as T takes large values), we obtain:

f̂ =
1
T

∑T
t=2(∆xt)xt−1

S
√

1
T 2

∑T
t=2 x

2
t−1

(2.1)

Phillips and Perron (1988) proved that the sample moments of {xt} converge to functions of

Wiener processes:

A = T−1

T∑
t=1

xt−1εt
d→ σ2

∫ 1

0

W (r)dW (r)

B = T−2

T∑
t=1

x2
t−1

d→ σ2

∫ 1

0

W (r)2dr

where
d→ means "converges in distribution to�. Now, as T tends to in�nity we have:

f̂ =
A

S
√
B

d−→ X =

∫ 1

0
W (r)dW (r)√∫ 1

0
W (t)2dt

(2.2)

where {W (t), t ≥ 0} is the standard Wiener process, see Phillips and Perron (1988).

The asymptotic distribution of the Dickey-Fuller statistic f̂ (2.1) is in fact a functional of the

Wiener process. This asymptotic distribution of f̂ is called the Dickey-Fuller (DF) distribution

and does not have any closed form representation. The quantiles and critical values are therefore

derived from numerical approximations or simulations (see Figure 2.1).

In order to approximate the Dickey-Fuller distribution, we will need to simulate several times

a random walk of a given time length T :

xt = xt−1 + et , ∀t ∈ [[1, T ]]

with et
iid∼ N(0, σ2).

If we simulate N random walks, then we can extract N values f̂ (2.1), that will build our

Dickey-Fuller distribution (see Figure 2.1). The approximation is more accurate when the number

N gets bigger, that is the number of random walks simulated. From the N di�erent values of f̂

obtained, it is straightforward to derive some quantiles for the distribution created.
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Figure 2.1: Simulated Dickey-Fuller distribution

The histogram in Figure 2.1 is constructed based on 1, 000 simulations of X from the ex-

pression derived in (2.2). Based on this histogram and with a lot of simulations of the random

variable X, we are able to determine an approximation of the 10%, 5% and 1% quantiles.

Instruction and explanation of the test

From a data set measured from t = 1 to t = T (with T > 1), we can calculate the statistic f̂

from Equation (2.1). The null hypothesis of the Dickey-Fuller test is:

H0 : f̂ ≥ 0 i.e. φ̂ = 1, or xt is not stationary

H1 : f̂ < 0 i.e. φ̂ < 1, or xt is stationary

From the simulated Dickey-Fuller distribution (see Figure 2.1), we obtain the quantiles -2.451,

-1.992, -1.603, that is:

P (X < −2.451) = 0.01
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P (X < −1.992) = 0.05

P (X < −1.603) = 0.10

If for example f̂ = −1.7 we will reject the null hypothesis of non-stationarity (i.e. consider

the process xt to be stationary) at risk 10%. On the other hand we will not reject the fact

that it is not stationary at risk 5%. We can also directly look at the p-value of the test which

corresponds to the value of P (X ≤ f̂). If that p-value is lower than 10% but greater than 5%

we will draw the same conclusion.

The Augmented Dickey-Fuller test

Said and Dickey (1984) augmented the basic autoregressive unit root test to time series of

unknown lag order k > 1. This test is called the Augmented Dickey-Fuller (ADF) test. The ADF

test tests the null hypothesis that a process xt is di�erence stationary against the alternative

that xt is trend stationary. This ADF test is based on estimating the test regression:

xt = φxt−1 +
k∑
j=1

ψj∆xt−j + γ′Dt + εt

where Dt is a vector of deterministic terms (constant, trend, etc.). But again, as mentioned above

the deterministic part of the equation is not taken into account throughout this thesis. The k

terms ∆xt−j are called the lagged di�erence terms. Under the null hypothesis, xt is di�erence

stationary, i.e. ∆xt = xt − xt−1 is stationary, which implies φ = 1.

In fact, an alternative formulation of the ADF test regression is:

∆xt = πxt−1 +
k∑
j=1

ψj∆xt−j + γ′Dt + εt

where π = φ − 1. Under the null hypothesis, ∆xt is stationary which entails that π = 0. The

ADF test statistic is then the statistic for testing π = 0:

ADFt =
π̂

SE(π̂)
=

∑T
t=2(∆xt)xt−1

S
√∑T

t=2 xt−1
2
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with S2 = 1
T−2

∑T
t=2(xt −

∑k
j=1 ∆xt−j)

2 which is an unbiased estimator of σ2 because:

E[S2] = E
[ 1

T − 2

T∑
t=2

(xt −
k∑
j=1

∆xt−j)
2
]

=
1

T − 2

T∑
t=2

E[(xt −
k∑
j=1

∆xt−j)
2]

=
1

T − 2

T∑
t=2

E[ε2]

=
1

T − 2
(T − 2)σ2 = σ2

2.3 Cointegration and Vector Error Correction Model

2.3.1 Introduction to the Vector Error Correction Model

Most of the research papers about cointegration use the Vector Error Correction Model to

retrieve the cointegrating relations (see Engle and Granger (1987) and Villani (2005)). This

model indeed provides a cointegrating matrix, from which independent relationships are derived

as well as the cointegration rank. If we consider (xt)
t=T
t=1 as a realization of the p-dimensional

Vector Autoregressive (VAR) process of lag length k ∈ N?, then:

xt =
k∑
i=1

Γixt−i + εt (2.3)

with εt ∼ Np(0p,Σ) and Σ a positive de�nite matrix (Σ > 0).

From there, we can obtain the Vector Error Correction Model (VECM) by taking the lag

di�erence of order 1 ∆xt = xt − xt−1:

∆xt = Πxt−1 +
k−1∑
i=1

Ψi∆xt−i + εt (2.4)

with εt ∼ Np(0p,Σ).

From the parameters of the VAR model (2.3), we can obtain the parameters of the VECM
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(2.4):

Ψj = −(Γj+1 − ...− Γk) = −
k∑

i=j+1

Γi, ∀j ∈ [[1, k − 1]] (2.5)

Π = −(Ip − Γ1 − Γ2 − ...− Γk) = −(Ip −
k∑
j=1

Γj) (2.6)

From Equation (2.4), we can isolate the term Πxt−1 on one side of the equation:

Πxt−1 = ∆xt −
k−1∑
i=1

Ψi∆xt−i − εt (2.7)

Our vector of time series xt = (xit)1≤i≤p is composed of p integrated processes xit of order

1: xit ∼ I(1). Thus, each �rst di�erence lag vector of time series {∆xt−j}0≤j≤k−1 will be a

vector of stationary processes. Since the error processes vector εt = (εit)1≤i≤p is also composed

of stationary signals εit ∼ I(0), then by operation, the right hand side of (2.7) is also stationary.

Therefore Πxt−1 is equal to a vector of stationary processes:

Πxt−1 = vt = (vit)1≤i≤p with each vit ∼ I(0) (2.8)

The matrix Π, called the long-run impact matrix, is a cointegrating matrix from which each

row constitutes a cointegrating vector in Rp. Then, depending on the rank of Π, we have 3 cases.

Case 1: The cointegrating matrix Π is of full rank

If the cointegrating matrix Π is of full rank, i.e. the rank of Π is p, then Π is invertible and,

from equation (2.8) above, we will have for each t: xt−1 = Π−1vt. From this point we can deduce

by operation that each component xit of xt is a stationary time series.

In this particular case, Π is invertible and the rows of Π are p independent cointegrating

relations.

Case 2: The cointegrating matrix Π is of lower rank r ∈ [[1, p− 1]]

In this case, the rank of Π is supposed to be not full and equal to 1 ≤ r < p. This rank is

de�ned to be the cointegration rank. From the properties of the rank of a matrix, and the full
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rank decomposition theorem, see Banerjee and Roy (2014), we know that we can derive at most

r independent cointegrating relationships from Π. We can indeed decompose Π into a product

αβ′ where α and β are 2 matrices ofMp,r(R) of full rank r, see Puntanen et al. (2011).

We can obtain from (2.8) that Πxt−1 = αβ′xt−1 = vt = (vit)1≤i≤p with each vit ∼ I(0). Then,

by operation, we can obtain:

β′xt−1 = ut = (uit)1≤i≤r with each uit ∼ I(0) (2.9)

Therefore, the r independent cointegrating relations are obtained from the r rows of the matrix

β′, or the r columns of matrix β. Matrix β will therefore give the independent cointegrating

relations.

Case 3: The cointegrating matrix Π is of rank 0

If the rank of Π is 0, then Π is the null element ofMp,p(R), and there is no cointegration.

2.3.2 Method to stack the data of the VECM in this thesis

This section describes how we stack the data so that we can de�ne a general likelihood of the

VECM, taking into account all the data we have from time 1 to time T . We assume a lag order

k ≥ 2 to be known for the VAR model from which the VECM is de�ned. We have:

∆xt = Πxt−1 +
k−1∑
j=1

Ψj∆xt−j + εt (2.10)

Firstly, we de�ne the p × p (k − 1) matrix Ψ gathering the lag parameter matrices of the

VECM given by Equation (2.10):

Ψ = [Ψ1,Ψ2, . . . ,Ψk−1]

Then we de�ne for each time t ∈ [[1, T ]], the vector zt, of size p (k−1), containing respectively

[∆xt−1, ∆xt−2, ... , ∆xt−k+1], i.e.

zt =
[
∆x′t−1 ∆x′t−2 · · · ∆x′t−k+1

]′
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We can now write (2.10) as :

∆xt = Πxt−1 + Ψzt + εt (2.11)

Then, by denoting each ∆xt as yt, we can transpose both sides of the expression (2.11) and

obtain:

yt
′ = xt−1

′Π′ + zt
′Ψ′ + εt

′ (2.12)

Let us assume now that x−k, x−k+1, ..., x0 exist and are provided. Then we can create the

matrix Y of size T × p, that gathers all the yts of Equation (2.12) from t = 1 to t = T :

Y =
[
y1 y2 · · · yT

]′
=
[
∆x1 ∆x2 · · · ∆xT

]′
We also create the matrix X of size T × p, that gathers all xt−1 from t = 1 to t = T :

X =
[
x0 x1 · · · xT−1

]′
Then, we create the matrix Z of size T × p (k − 1), that gathers all zt from t = 1 to t = T :

Z =
[
z1 z2 · · · zT

]′
Finally the matrix of the errors E of size T × p, that gathers all the errors εt from t = 1 to

t = T , is:

E =
[
ε1 ε2 · · · εT

]′
(2.13)

Therefore, the t-th row of X, Y , Z and E are respectively x′t−1, ∆x′t, [∆x′t−1, . . . ,∆x
′
t−k+1]

and ε′t. In this thesis, we will often de�ne "the information brought by the data� by the set

D = {X, Y, Z}. We can write the total VECM system, based on the data from D, as:

Y ′ = ΠX ′ + ΨZ ′ + E ′ (2.14)

Then, by transposing the above expression (2.14), we can also obtain:

Y = XΠ′ + ZΨ′ + E (2.15)
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2.3.3 Johansen tests: Frequentist estimation of the cointegration rank

Johansen (1991) elaborated two types of tests for cointegration. These tests in fact study, for

each cointegration rank r assumed, if the r independent linear combinations for a set of p time

series give stationary processes.

The two tests that Johansen elaborated are the Maximum Eigenvalue test and the Trace test.

The Maximum Eigenvalue test examines the null hypothesis if the cointegration rank r is equal

to a certain value r0 against the alternate hypothesis that it is r0 + 1. The Trace test examines

the null hypothesis that the number of linear combinations r is equal to a given value r0 against

the alternative hypothesis that the cointegration rank r is greater than r0.

2.3.4 Cointegrating relations and common trends

If the matrix Π has rank r, then we can decompose Π into the product of two p × r full

rank matrices α and β as Π = αβ′. Then, since matrix β is of full rank, the columns of β will

represent r independent cointegrating relations.

According to Johansen (1988) and Johansen (1991), we can �nd a p× (p− r) matrix β⊥, that

is orthogonal to β, i.e. β′β⊥ = 0, and such that the p× p matrix G = [β, β⊥] is invertible. The

matrix β⊥ is called the common trends loading matrix, see Johansen (1988), Johansen (1991)

and Stock and Watson (1996).

If we have for example a vector of p time series xt of which we �nd r independent cointegrating

vectors stacked as the columns of β, then the space spanned by β′xt is called the cointegrated

space of the set of time series xt and the space spanned by β⊥
′xt is called the unit root space of

xt. The number of common trends is in fact equivalent to the number of time series subtracted

to the number of independent cointegrating relations. Stock and Watson (1996) proposed tests

to evaluate the number of common trends rather than the number of cointegrating relations.

Their tests are applied to U.S. postwar interest rates.
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2.4 Bayesian work on cointegration

Since the work of Sims (1988), who advocated the Bayesian paradigm for unit root testing,

there has been a growing interest in Bayesian cointegration as evidenced by Schotman and van

Dijk (1991), Kleibergen and van Dijk (1994), Strachan (2003), Bauwens and Lubrano (1996), Vil-

lani (2005), Conigliani and Tancredi (2009) and Meligkotsidou et al. (2014). A good review of the

Bayesian approach to cointegration is given in Koop and Tobias (2006). Considering multivariate

unit root testing, there appears to be two main points of interest (a) estimating the number of

cointegrating relationships (i.e. the cointegration rank) and (b) estimating the coe�cients which

take part in these cointegrating relationships, usually adopting the vector error correction model

(VECM) introduced by Engle and Granger (1987). For example, Villani (2005) estimates the

parameters of the error correction model conditional on the cointegration rank, by splitting the

cointegrating matrix Π into two full rank matrices α (matrix of adjustment coe�cients) and β

(matrix containing the independent cointegrating vectors). Given the cointegration rank, Villani

then derives a full conditional posterior distribution for the parameters α, β, Ψ and Σ. Besides,

Villani (2005) derives a posterior distribution conditional on the data for the cointegration rank.

A Bayesian analysis of cointegration is very useful because it produces a distribution rather

than a point estimate of the parameters used to establish cointegration. We can obtain more

information (credible intervals, mode, median, mean) than a simple estimate. Multivariate coin-

tegration methods o�er an important framework of identifying relationships between �nancial

time series, hence are often exploited in developing long term decision making, trading and port-

folio management. We propose in this thesis a Bayesian analysis of the Error Correction Model,

using Markov Chain Monte Carlo methods (MCMC) in a static or dynamic context.

As part of the literature on Bayesian cointegration, Koop et al. (2006) provides a detailed

summary of Bayesian methods developed in the last thirty years. We will recapitulate them in

some of the next sections in this chapter (see Sections 2.4.2, 2.4.3, 2.4.4).
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2.4.1 The Gibbs Sampler

The Gibbs sampler is a Markov Chain Monte Carlo algorithm (or MCMC), that allows us

to obtain a sequence of observations that are approximately sampled from a speci�ed multi-

variate probability distribution. This sequence is then used to approximate the joint posterior

distribution of the parameters of a model. The idea of sampling comes from the physicist and

researcher J. W. Gibbs who wanted to make an analogy between the sampling algorithm and

statistical physics. The work of Casella and George (1992) gives more details about the idea

of Gibbs sampling. Although the principles of the Gibbs algorithm were to be used in physics,

they are also widely used in econometrics, and are also applicable to the mathematical models of

many �elds (biology, weather forecasting, etc.). Let us assume we have a model where we want

to determine parameters θj, j ∈ [[1, h]]. We decide to represent the set of parameters in a vector

of parameters θ:

θ =
(
θ1 θ2 · · · θh

)′
The Gibbs sampler begins with an initial vector of parameters, called θ(0). Those initial values

will be assumed to be known at the beginning in order to explain the Gibbs sampling algorithm.

Initial values can usually be determined from a pre-sample, but also given subjectively. We will

recall later some methods developed in the thesis in order to have suitable initial conditions for

the Vector Error Correction Model. The ith draw of a parameter in the Gibbs sampler will be

denoted by θ(i). The ith draw of θ is obtained by collecting sequentially and in the right order

the h draws from the full conditional posteriors for θj , with j = 1, ..., h, where:

θ
(i)
j ∼ p(θj|θ(i)

1 , ..., θ
(i)
j−1, θ

(i−1)
j+1 , ..., θ

(i−1)
h ,D)

where j = 1, ..., h and i = 1, ..., g. In the end we collect the ith drawn vector

θ(i) =
(
θ

(i)
1 θ

(i)
2 · · · θ

(i)
h

)′
θ(i) is a draw from the joint posterior distribution p(θ|D), where D represents the data or

the information brought by the likelihood in Bayes' theorem. It follows that each element θ(i) is

32



simulated at each step i from:

θ(i) = (θ
(i)
1 , · · · , θ(i)

j−1, θ
(i)
j , θ

(i−1)
j+1 , · · · , θ(i−1)

h ) ∼ p(θ|D)

Hence, θ(i) is also a draw from the joint posterior distribution of θ. Bauwens and Giot (1998)

use a Gibbs sampling approach to cointegration by applying it to a cointegrated Vector Au-

toregressive system and therefore derive the cointegrating relations from a Bayesian perspective.

Similarly, Villani (2005) makes use of the Gibbs sampling method to estimate the parameters of

the Error Correction Model.

2.4.2 A prior on the cointegrating space

It may also be of interest to mention from the literature some Bayesian works around the

possibility of setting a prior on the cointegrating space, i.e. the space spanned by the independent

cointegrating vectors: sp(β). Villani (2005) and Strachan and Inder (2004) adopted this novel

approach where sp(β) becomes the centre of interest rather than the values of the cointegrating

coe�cients β.

The cointegrating space sp(β) is generally denoted as þ in the literature. For Strachan and

Inder (2004) þ = sp(β) is actually a random parameter taking values in the Grassmann manifold

Gr,p−r. We recall that Vr,p is the set of matrices H ∈Mp,r of full rank r and such that HTH = Ir

(orthogonal matrices). If the p × r matrix β ∈ Vr,p, then the space spanned by the matrix β is

in the Grassmann manifold Gr,p−r: þ = sp(β) ∈ Gr,p−r.

Villani (2005) and Strachan and Inder (2004) use a uniform prior on þ, which can be obtained

from a prior distribution of β on Vr,p. A draw from a uniform prior over Vr,p can be obtained by

the operation β = Z(Z ′Z)−1/2 where V ec(Z) ∼ N(0, Ipr). Then the space spanned by β will be

uniformly distributed over Gr,p−r. Villani (2005) in Lemma 3.4 states that if we have β = (Ir B
′)′

with B ∼ t(p−r)×r(0, Ip−r, Ir, 1), then β will be uniformly distributed over the Grassman manifold

Gr,p−r. Villani then derives a matrix variate normal full conditional posterior distribution for B,

see Theorem 4.5, Villani (2005).

In addition, Strachan and Inder (2004) mentioned the possibility of having an informative
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prior on the cointegrating space. We will assume that we have p = 3 economic time series x1t, x2t

and x3t with cointegration rank r = 2. If we have an idea of what the 2 independent cointegrating

coe�cients are (for instance, x1t − β1x2t ∼ I(0) and x2t − β2x3t ∼ I(0)), then we can de�ne the

matrix H as:

H =


1 0

−β1 1

0 −β2


We have that þh = sp(H) is a value in Gr,p−r. Strachan and Inder (2004) propose a prior for

the random parameter þ where its mass is centered around þ
h. For that, they de�ne the p × p

random matrix Pτ as:

Pτ = HH ′ +H⊥H⊥
′τ

where τ is chosen as being a scalar random variable normally distributed as τ ∼ N(0, στ
2).

Then, by de�ning a random p× r matrix Z distributed as V ec(Z) ∼ N(0, Ipr), we construct

the matrix X = PτZ that can be decomposed later on as X = βκ, where κ is an r × r lower

triangular matrix. The dispersion around þ
h is controlled by the chosen value of the variance of

τ , i.e. στ
2.

2.4.3 A Bayesian estimation of the Error Correction Model including

the cointegration rank: Villani (2005)

A very interesting paper on Bayesian estimation of the Vector Error Correction Model was

developed by Villani (2005). Conditional on the cointegration rank r, Villani (2005) splits the

cointegrating matrix Π into 2 full rank p× r matrices α and β and infers these two latter.

In Villani (2005), the VECM is then constructed as the following, conditional on the cointe-

gration rank r:

∆xt = αβ′xt−1 +
k−1∑
i=1

Ψi∆xt−i + εt (2.16)
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with εt ∼ Np(0p,Σ).

Villani (2005) then infers α, β, Ψ and Σ conditional on r by building �rst the joint prior

distribution of these four parameters. The prior of Σ is an Inverse-Wishart: Σ ∼ IW (A, q)

where A > 0 and q are two hyperparameters. A uniform prior is de�ned on Ψ = [Ψ1, · · · ,Ψk−1]

and the prior of α is Gaussian and conditional on β and Σ: α ∼ Np×r(0, (β
′β)−1, v−1Σ) with v

as a hyperparameter. As for β, Villani (2005) sets a uniform prior on the cointegration space by

using the form β = (Ir B
′)′ with B ∼ t(p−r)×r(0, Ip−r, Ir, 1). Finally the joint distribution of α ,

β, Ψ and Σ conditional on r is given by:

f(α, β,Ψ,Σ|r) ∝ cr|Σ|−
p+r+q+1

2 exp

(
−1

2
Tr(Σ−1(A+ vαβ′βα′))

)
(2.17)

where cr is a scalar depending on r.

The likelihood is constructed on the error terms of the VECM (2.16), each having a normal

distribution with covariance matrix Σ: εt ∼ N(0,Σ). Hence,

f(D|α, β,Ψ,Σ, r) ∝ f(V ec(E ′)|α, β,Ψ,Σ, r) ∝ |Σ|−
T
2 exp

(
−1

2
Tr(Σ−1E ′E)

)
(2.18)

where E ′ = Y ′ − ΠX ′ −ΨZ ′ from equation (2.14) will contain α, β (by Π = αβ′) and Ψ.

As for the cointegration rank, the prior distribution f(r) is a discrete uniform distribution

over the space [[0, p]], i.e. f(r = ν) = 1
p+1

for each ν ∈ [[0, p]]. Villani (2005) then derives the

posterior distribution of the cointegration rank that is conditional on the data D only:

f(r|D) =
f(D|r)f(r)∑p
r=0 f(D|r)f(r)

(2.19)

Villani (2005) obtains this posterior distribution of the cointegration rank by integrating out

Σ, Ψ, α and β, in order to obtain the marginal likelihood of the data given the cointegration

rank f(D|r):

f(D|r) =

∫∫∫∫
f(D|α, β,Ψ,Σ, r)f(α, β,Ψ,Σ|r) dΣ dΨ dα dβ (2.20)

The cointegration rank r will therefore have a posterior distribution conditional on the data

only (2.19): f(r|D). According to a sensitivity analysis on the hyperparameters, the posterior
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distribution of r will have more mass around certain values. Villani (2005) uses a bivariate

process in order to assess the probability of three di�erent values for the rank: f(r = 0|D),

f(r = 1|D) and f(r = 2|D). The other parameters of the VECM such as α and β are also

estimated. Following the methods of Villani (2005), an application to the demand for the Euro

Area was performed by Warne (2006).

2.4.4 The embedding approach on the Error Correction Model

Let us consider an Error Correction Model as in (2.16) in which the rank is established to be

r < p and the matrix Π is split into 2 full rank p× r matrices α and β. For this section, we will

call that model the Error Correction Cointegration model (ECC model).

The embedding approach involves the existence of a parameter matrix that will evaluate the

degree of the rank of Π. Let us now construct a model called the Unrestricted Error Correction

model (UEC model) by adding a (p − r) × (p − r) parameter matrix λ making the long-run

relations matrix Π to be of full rank. We can write the long-run relations matrix Π as:

Π = αβ′ +

 0

Ip−r

λ [0 Ip−r

]
(2.21)

where α =
[
α1
′ α2

′
]′
and β′ =

[
Ir B′

]
We have α1 of size r × r, α2 of size (p− r)× r and B

of size (p− r)× r.

If we now write Π as:

Π =

 Π11 Π12

Π21 Π22

 (2.22)

where Π11 is of size r × r, Π12 is of size r × (p − r), Π21 is of size (p − r) × r and Π22 is of size

(p − r) × (p − r), then thanks to (2.22), we can identify the expressions of α, B and λ from

Equation (2.21).
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We have:

α1 = Π11 (2.23)

α2 = Π21

B′ = Π11
−1Π12

λ = Π22 − Π21Π11
−1Π12

However, a problem of local non-identi�cation can occur when Π11 is not invertible, in which

case λ and B are diverging. An embedding model will be constructed in order to nest various

Error Correction Cointegration models according to di�erent values of r. The embedding model

approach was �rst investigated by Kleibergen and van Dijk (1994) and then by Kleibergen and

Paap (2002).

Kleibergen and Paap (2002) proposed a singular value decomposition of Π in the UEC model

as:

Π = USV ′ =

U11 U12

U21 U22

S1 0

0 S2

V11
′ V21

′

V12
′ V22

′

 (2.24)

where by de�nition U and V are orthonormal matrices and S is a diagonal matrix containing the

singular values of Π (of the UEC model) in descending order. This implies that S2 is a diagonal

matrix containing the p− r smallest singular values of Π.

By using (2.24) and (2.21), we can retrieve the parameters:

α′ = V11S1[U11
′, U21

′]

B = V11
−1V12

λ = (V22
′V22)−

1
2V22S2U22

′(U22
′U22)−

1
2

In that way, there is no local non-identi�cation issue since V22
′V22 and U22

′U22 are both

invertible (unitary matrices). Kleibergen and Paap (2002) then use the help of Bayes factors in

order to assess a posterior probability distribution for the cointegration rank r. At �rst, they set

a prior distribution for the rank, P [rank = r], e.g. a uniform distribution over [[0, p]], and then
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construct a prior odds ratio function consisting of the ratio between the prior probability of rank

r and the prior probability of full rank r = p:

PROR[r|p] =
P [rank = r]

P [rank = p]
(2.25)

A Bayes Factor BF [r|p] for each rank r is then constructed as follows:

BF [r|p] =
P [D|rank = r]

P [D|rank = p]
(2.26)

P [D|rank = r] is computed by integrating out Σ, Ψ, α and β from the joint posterior of the

parameters of the ECC model fECC(α, β,Ψ,Σ|D) (conditional on the rank):

P [D|rank = r] =

∫∫∫∫
fECC(α, β,Ψ,Σ|D) dΣ dΨ dα dβ

P [D|rank = p] is computed by integrating out Σ, Ψ, α, β and λ from the posterior of the

parameters of the UEC model fUEC(λ, α, β,ΨΣ|D):

P [D|rank = p] =

∫
· · ·
∫
fUEC(λ, α, β,Ψ,Σ|D) dΣ dΨ dα dβ dλ

If the Bayes Factor (2.26) is larger than 1, then the model of rank r is preferred to the full

rank model. Thanks to Equations (2.25) and (2.26), we can obtain the posterior odds ratio (2.27)

below:

POR[r|p] = PROR[r|p]×BF [r|p] (2.27)

Then, from all the posterior odds ratios POR[r|p] derived for each r ∈ [[0, p]], we can obtain

a posterior distribution for the rank r:

P [rank = r|D] =
POR[r|p]∑p
r=0 POR[r|p]

(2.28)

Kleibergen and Paap (2002) estimate the cointegration rank between real money supply M2,

real income, price level and costs of holding money in Denmark by using the posterior distribution

of the rank given the data, i.e. Equation (2.28). They �nd a cointegration rank in favor of 1 for

an Error Correction model considering a restricted constant by using the fact that the posterior

probability P [rank = 1|D] is the highest. Besides, all restricted models are more likely than the

full rank model because each of their Bayes factors (2.26) are higher than 1.
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2.4.5 Bayesian estimation of the lag order of the model

As for the lag order k, it can enter into the model as a parameter on which Bayesian inference

can be performed. Phillips (1996), Corander and Villani (2004) and Chao and Phillips (1999)

estimate the posterior distribution for the lag order jointly with the cointegration rank.

2.4.6 Time-varying Bayesian estimation of the VECM

In the literature about time-varying Bayesian cointegration, it is worth mentioning a few

works on the time-varying Error Correction Model (ECM). To start with, Granger and Lee

(1991) introduced a time-varying cointegrated process that they applied to US data prices and

wages. Bierens and Martins (2010) propose a time-varying ECM where the cointegrating rela-

tions change smoothly over a certain time period. These works assume a constant cointegration

rank and focus more on the values of the cointegrating coe�cients evolving over time.

Koop et al. (2011) also developed a dynamic ECM in which he considers the cointegrating

space (see Section 2.4.2) evolving over time. He introduces a Markov Chain Monte Carlo pro-

cedure and an algorithm for state space models in order to infer the time-varying ECM. Koop

et al. (2011) showed the behaviour over time of one cointegrating relation between US economic

variables.

2.4.7 Bayesian cointegration on other models than the VECM

A signi�cant amount of Bayesian works around cointegration do not involve the use of the

Error Correction model , such as DeJong (1992), Dorfman (1994), Koop (1991) and Koop (1994).

Let us consider a VAR model (2.3) for the p-dimensional process xt composed of di�erence-

stationary elements such as xt =
∑k

j=1 Γjxt−j + εt with t ∈ [[1, T ]] and we can write the VAR

representation as:

(Ip −
k∑
j=1

ΓjL
j)xt = εt (2.29)
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where Lj is the lag operator raised to the integer power j.

The number of independent cointegrating relations is estimated from the number of non-

stationary roots of the VAR model: the elements of xt will be cointegrated if (Ip −
∑k

j=1 Γjz
j)

has 0 < p − r < p non-stationary unit roots. In such a case, there exist r cointegrating vectors

βi such that βi
′xt is stationary.

DeJong (1992) uses non-informative uniform priors on the Γj coe�cients in order to derive

posterior distributions from which draws are made thanks to Monte Carlo integration methods.

We can obtain the roots of the VAR representation by constructing their posteriors based on the

simulated Γj coe�cients. By still using the approach of the number of non-stationary roots in a

VARmodel, Dorfman (1994) develops a Bayesian cointegration test focusing on the posterior odds

of the number of unit roots in the set of integrated processes. DeJong (1992) and Koop (1991)

use this approach to verify common behaviours between stock prices and dividends. Koop (1994)

also detects common trends between spot and forward exchange rates from di�erent countries

(USA, Canada, Germany and the UK). Apart from between stocks and dividends, DeJong (1992)

investigates these methods of �nding cointegration between other pairs of bivariate processes:

consumption and income, short and long term interest rates, GNP and money supply M2.

2.5 Estimation from a pre-sample

Bayesian analyses covered in this thesis use a pre-sample or historical data in order to initialize

the parameters or give an objective estimate of some hyperparameters. In this section, we present

the method on how to estimate the essential parameters of the VECM based on a pre-sample:

the long-run relations matrix Π, the lag parameters matrix Ψ and the covariance matrix Σ of

the errors.

Let us assume we have a collection of data for p di�erence stationary time series over a period

of time length T . From that data set, we can extract a small period from time 1 until a certain

time τ < T . This time-period [[1, τ ]] of size τ corresponds to the time period of the pre-sample

(see Figure 2.2). Then based on this pre-sample, we will obtain the parameter estimates Π̂, Ψ̂
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and Σ̂ of the VECM model that will be used to initialize our algorithms in Chapter 3, Chapter 4

and Chapter 5 (see Algorithms 1, 4 and 8). The initial parameters will then be used sometimes

to evaluate the values of certain hyperparameters (scale matrix A of the covariance matrix of the

errors in the VECM in Chapters 3, 4 and 5).

The sample corresponds to the time-period [[τ +1, T ]] (see Figure 2.2). The size of the sample

is T − τ and it will be the time period on which Bayesian inference on the parameters of the

VECM will be made in Chapters 3, 4 and 5. The sample and the pre-sample do not overlap and

the size of the pre-sample is usually much smaller than the sample.

Figure 2.2: Arrangement of the data: Pre-sample and sample.

Based on a small pre-sample of size τ < T , we then construct and estimate the parameters of

the VECM. The detailed methodology is given in Section 7.2 of Luetkepohl (2006). We obtain

estimates of the parameters of the VECM (2.4): Π̂, Ψ̂ and the variance of the errors Σ̂. We recall

how to obtain their least squares estimates below.
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We have:

∆xt = Πxt−1 +
k−1∑
i=1

Ψi∆xt−i + εt

where εt ∼ N(0,Σ). Furthermore, we assume that for each vector xt, x−k+1, · · · , x0 are available

(t = 1 is the �rst time of the pre-sample). We can then build the following matrices:

∆X = [∆x1, · · · ,∆xτ ]

X−1 = [x0, · · · , xτ−1]

∆Z = [∆Z0, · · · ,∆Zτ−1] with ∆Zt−1 =


∆xt−1

...

∆xt−k+1


U = [ε1, · · · , ετ ]

Then, we have the following VECM for t ∈ [[1, τ ]]:

∆X = ΠX−1 + Ψ∆Z + U

and we obtain the least squares estimators of Π, Ψ and Σ by:

[Π̂, Ψ̂] = [∆XX−1
′,∆X∆Z ′]

 X−1X−1
′ X−1∆Z ′

∆ZX−1
′ ∆Z∆Z ′

−1

(2.30)

Σ̂ = (τ − pk)−1(∆X − Π̂X−1 − Ψ̂∆Z)(∆X − Π̂X−1 − Ψ̂∆Z)′
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Chapter 3

Estimation of the cointegration rank and

the coe�cients in a static model

3.1 Introduction

This chapter develops Bayesian cointegration methods for a set of time series where coin-

tegration is assumed. This chapter has two aims: to estimate �rst the cointegration rank by

avoiding reliance upon Johansen tests and to �nd the cointegrating relationships by operations

based on the long-run impact matrix of the Error Correction Model (see Section 2.3). We decide

to determine the cointegration rank within an MCMC procedure based on the singular values of

the cointegration matrix from the Error Correction Model. Based on that rank r, we then derive

r independent cointegrating relations from the cointegration matrix. The proposed methodology

is tested on simulated data sets and then illustrated with a panel data set of Eurozone economic

time series consisting of net trading, long-term interest rates and the harmonized unemployment

rate. Our cointegration methods will try to establish their performance, co-evolution and long-

run relationships.

In this chapter, we propose to set-up a weakly informative Gaussian prior on the cointegra-
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tion matrix, asserting that a priori we expect that the cointegration matrix has zero mean (the

case of no cointegration), but there is wide uncertainty around this. We propose a new deter-

mination of the cointegration rank by the number of irrelevant singular values of the estimated

cointegration matrix. The estimation commences by Markov chain Monte Carlo, which provides

posterior samples of the cointegration rank. Thus, we can have access to an approximation of

the posterior distribution of the cointegration rank, which provides also the associated uncer-

tainty around this estimation. Comparisons with Johansen's test indicate that this approach

works reasonably well. The resulting cointegration relationships are derived by determining �rst

the cointegration rank based on the singular values of the long-run relations matrix (during the

MCMC), and then decomposing the latter into two full rank matrices (after the MCMC). The

proposed methodology is illustrated by considering two simulated data sets and panel data on

several macroeconomic variables (net trading, long-term interest rates and unemployment rate)

across four Euro zone countries (Germany, France, Italy and Spain).

The approach adopted in this chapter is somewhat associated with the embedding approach

of the Error Correction Model, see Kleibergen and van Dijk (1994) and Kleibergen and Paap

(2002), recalled brie�y in the literature review (see Section 2.4.4). In this approach, they build

an Unrestricted Error Correction model by adding a (p− r)× (p− r) parameter matrix λ to the

lower rank product of matrices αβ′ of rank r. The long-run relations matrix Π of this unrestricted

ECM is then of full rank: while matrices α and β are p × r full rank matrices of rank r, it is

the matrix parameter λ which controls the evaluation of the rank (see Section 2.4.4). Posterior

probability distributions for the cointegration rank r can be derived by the use of Bayes factors,

see Kleibergen and Paap (2002). In this chapter, the assumption of having a non-singular prior

for the cointegrating matrix Π implies a prior for its singular values. We discuss brie�y the prior

of these singular values and how it can imply a prior for the rank (see Section 3.3.3).

The chapter is organised as follows: Section 3.2 introduces the approximation method for the

determination of the cointegration rank. The Bayesian inference is in Section 3.3, which includes

the operations on the long-run relationships matrix Π for the determination of the cointegrating
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relationships. Section 3.4 gives the application of the methodology to the simulated data sets

and to the real panel data sets of European economies. This chapter concludes with closing

comments in Section 3.5.

Following standard notation seen in Chapter 2 we use the notation xt = (xit)1≤i≤p to be a

vector of economic I(1) time series represented by a p-dimensional vector autoregressive (VAR)

process of lag length k = 2: an argument for this value is given in Section 3.4.3 and in Appendix

B.

3.2 Approximation of the rank of Π

This section describes a method to obtain the rank of the long-run relationships matrix by

numerical approximations based on its singular values. Finding the rank of any matrix is in fact

equivalent to �nding the number of non-zero singular values of that matrix. Suppose that Π has

been speci�ed or estimated and is of size p × p. We can always obtain p real positive or null

singular values for Π by its singular value decomposition (SVD):

Π = UDV ?

where U and V are p× p unitary matrices. U (resp. V ) represents the left (resp. right) singular

vectors. D contains the p singular values, which are called µ1, µ2, ... , µp.

Let Π? be the conjugate transpose of Π. The singular values of Π are actually the square

roots of the eigenvalues of the matrix Π?Π, which is semide�nite positive if Π has lower rank, so

all the singular values are either strictly positive or equal to 0. The rank of the matrix Π is the

same as the rank of Π?Π and thus equal to the number of non-zero singular values of Π.

We are using the programming language R Core Team (2013) to obtain those p singular values

of Π: (µ1, µ2, . . . , µp) such that {µ1 ≥ µ2 ≥ · · · ≥ µp ≥ 0} thanks to the command svd. When

computations are involved in the evaluation of those values (e.g. in the programming language

R Core Team (2013)) of Π having rank r < p, it is not uncommon that the p− r singular values

that are supposed to be zero are close to zero, but not exactly zero. If in addition Π is estimated,
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there might be some uncertainty around the zero (or near zero) singular values.

Based on this observation, we propose that the rank of Π will be r < p if the sum of the

singular values from µr+1 to µp is �close� to 0. In other words, the rank of Π is considered

to be r once
∑p

i=r+1 µi represents a small percentage of the total sum of the singular values∑p
i=1 µi. We then propose to use a threshold, an insigni�cance criterion ε, corresponding to the

percentage below which the singular values are considered too small. Let us de�ne the function

K that represents the percentage of this contribution, i.e. ∀j ∈ {1, ..., p − 1}, K(j) represents

the contribution brought by the smallest p− j singular values:

K(j) =

∑p
i=j+1 µi∑p
i=1 µi

. (3.1)

When K(j) ≤ ε, we suggest that the rank r is equal to j. The insigni�cance criterion ε is

taken preferably to be below 10%. Let us assume for instance that we are provided with a 15×15

matrix Π with 15 eigenvalues. If we rely on ε to be 5% and if for any i ≤ 9, K(i) ≥ 0.05 but

K(9) < 0.05, then an estimation of the rank will be 9. In this chapter we propose to estimate

Π in a Gibbs sampler and then apply the above insigni�cance criterion to approximate the rank

r. From each simulated cointegrating matrix Π, a rank will be determined by this method. At

the end of the Gibbs sampler, we can either make an approximation of the rank by taking the

median of all the rank estimations or make a histogram representing the frequency of each value

of r (see Section 3.4.3). The value of the irrelevance criterion ε can be determined by conducting

some sensitivity analysis and by comparison with Johansen's tests for consistency (see Section

3.4.3).

3.3 Bayesian inference

3.3.1 The likelihood of the VECM

This section describes the steps to �nd the likelihood of the Vector Error Correction Models

used in this thesis. For the VECM used in this chapter, the error terms are normally distributed
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with mean 0 and covariance matrix Σ > 0 and we can write the total VECM system (2.14) as:

Y ′ = ΠX ′ + ΨZ ′ + E ′

where E =
[
ε1 ε2 · · · εT

]′
contains all the error terms εt.

For any t ∈ [[1, T ]], we have εt ∼ N(0,Σ). It is then straightforward to see that the matrix of

the errors E ′ grouping all the εt from Equation (2.13) (see Section 2.3.2), will be distributed as:

E ′ =
[
ε1 ε2 · · · εT

]
∼ N(0,Σ, IT )

which gives:

V ec(E ′) ∼ N(0, IT ⊗ Σ) (3.2)

Recall that E ′ = Y ′−ΠX ′−ΨZ ′ depends on the data D = {X, Y, Z} and the parameters of

the Error Correction Model {Π,Ψ,Σ}. Therefore from Equation (3.2), we have:

f(V ec(E ′)|D,Π,Ψ,Σ) = (2π)−
Tp
2 |Σ|−

T
2 |IT |−

p
2 exp

(
−1

2
V ec(E ′)′(IT ⊗ Σ)−1V ec(E ′)

)
Then we have:

(IT ⊗ Σ)−1V ec(E ′) = (IT ⊗ Σ−1)V ec(E ′) = V ec(Σ−1E ′)

Now since V ec(E ′)′V ec(Σ−1E ′) = Tr(Σ−1E ′E), we obtain:

f(V ec(E ′)|D,Π,Ψ,Σ) = (2π)−
Tp
2 |Σ|−

T
2 |IT |−

p
2 exp

(
−1

2
Tr(Σ−1E ′E)

)
We can therefore de�ne the likelihood function of our model by:

L(D; Π,Ψ,Σ) ∝ f(V ec(E ′)|D,Π,Ψ,Σ) (3.3)

which gives:

L(D; Π,Ψ,Σ) ∝ |Σ|−
T
2 exp

(
−1

2
Tr(Σ−1E ′E)

)
(3.4)
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3.3.2 The prior distributions

Unlike the derivation of the likelihood in Section 3.3.1, �nding a joint prior distribution for

our parameters requires us to make a good and suitable choice of distributions. In Bayesian

analysis, this choice of prior distributions constitutes perhaps a dangerous but compulsory step

in order to provide a good posterior distribution after that. We can clearly see that all our

analysis will be a�ected by this choice.

The general prior

Let (xt)
t=T
t=1 be a realisation of a p-dimensional Vector Autoregressive process of lag length

k from which a Vector Error Correction Model in (2.10) is derived. We have then 3 unknown

parameters to determine: Π, Ψ and the covariance matrix of the errors Σ.

Works of Bauwens and Lubrano (1996), Geweke (1996) and Kleibergen and van Dijk (1994)

directly impose a reduced rank r for the cointegrating matrix Π and decompose this later into

two full rank p× r matrices α and β. They infer α and β to analyse the cointegration relations.

For each model, the Bayesian analysis is conditioned on the knowledge of the rank r beforehand.

They actually try di�erent models according to di�erent values of the cointegration rank. They

generally use posterior or predictive Bayesian odds ratios to assess the value of the cointegration

rank.

On the other hand, the method used by Villani (2005) consists of inferring the parameters

α, β, Ψ and Σ of the Error Correction Model conditional on the rank and to develop a posterior

distribution for the rank, that is conditional on the data only (see Section 2.4.3).

In this chapter, we want to determine the cointegration rank by including it in the MCMC

procedure with all the other parameters. For that, we decided not to do any decomposition of

Π and to use a non-singular prior distribution on Π, that is a distribution from which we can

only simulate a non-singular (or invertible) matrix. The idea of this chapter is to simulate at

each step of the MCMC procedure the matrix Π and to estimate the rank of that matrix based

on the irrelevance of some of its singular values. We consider in this thesis that the number of
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independent cointegration relations, i.e. the cointegration rank, is a one-to-one function of the

cointegrating matrix Π, and thus does not need to have a prior distribution.

A non-singular prior distribution for Π given Σ

This section is about giving a non-singular prior distribution for Π and explaining the choice

of non-singularity for Π despite the fact that it is theoretically singular.

Since our time series are considered as I(1) and that at least one of them is not stationary,

Π has lower rank r. Therefore in principle, we should not choose a non-singular distribution for

Π. However, the general assumption of this chapter is to consider the cointegrating matrix Π

as being a full rank matrix. We can �rstly assume that Π has a non-singular prior distribution.

A non-singular posterior distribution will then be derived and under the programming language

R Core Team (2013), we will see that for each simulated cointegrating matrix Π, some singular

values will be close to 0. These singular values will therefore be considered as irrelevant and we

can then have an estimation of the cointegration rank by the number of singular values that are

not considered as irrelevant.

A reasonable non-singular prior for Π given Σ is to consider a matrix normal prior distribution:

Π|Σ ∼ Np×p(0, v
−1Σ, Ip) (3.5)

The aim of this section is to motivate now the choice of this normal distribution. First of

all, the property of conjugacy is witnessed, i.e. the posterior distribution will also be a matrix

normal distribution. Now let us analyze the form of the prior distribution:

Π|Σ ∼ Np×p(0, v
−1Σ, Ip) ⇐⇒ V ec(Π)|Σ ∼ Np2(0, Ip ⊗ v−1Σ) (3.6)

We have chosen the prior mean to be equal to 0 in order to have no in�uence on the values

of the coe�cients at the beginning. The scalar v is a regulatory �xed hyperparameter re�ecting

how much the probability distribution of Π is concentrated around 0 (i.e. the mean of Π). But

on the other hand, since we have no information and do not want to emphasize the initial non-

cointegration assumption too much, we will increase the value of the variance covariance matrix
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of Π. In that way, we will use a weakly informative prior on Π. For that, we will use the scalar v

in order to get a bigger covariance matrix. We can input a small value for v = 0.001 so that the

variance is increased by v−1 = 1000. The regular Bayesian updates will anyway shift the mean

of Π towards a more actual value thanks to the information we add from the data and the other

parameters.

Let us now have a look at the variance of V ec(Π) in order to explain in more detail our choice:

Ip ⊗ v−1Σ =


v−1Σ 0 · · · 0

0 v−1Σ · · · 0

...
...

. . .
...

0 0 · · · v−1Σ


= v−1


Σ 0 · · · 0

0 Σ · · · 0

...
...

. . .
...

0 0 · · · Σ


This variance must depend on Σ since it is reasonable to think that Π depends on the error

terms of our model. In order to stay the most objective as possible, we decided to create a block

diagonal matrix containing the same amount (v−1) of Σ for each block diagonal element. We set

all matrix elements not in the diagonal to be 0 because we assume that the columns of Π are

uncorrelated, that is, if we let πi denote the i
th column of Π, then we have that Cov[πi, πk] = 0p×p

with i 6= k.

A prior for Ψ given Σ

Ψ is a random matrix of size d× p (with d = (k − 1)p), that will depend on Σ. This prior is

chosen to be a matrix normal distribution, a change from Villani (2005), where he sets a uniform

prior on Ψ for more simplicity. In addition, like for the distribution of Π, we can introduce a

scale w in order to control the weakness of prior information about Ψ. However, in all our results

in this thesis, a scale of w = 1 was used without any problem. This scale hyperparameter was

created by convention, in the potential case we needed it.

The prior distribution of Ψ|Σ is given in that case by:

Ψ|Σ ∼ Nd×p(0, w
−1Σ, Id) ⇐⇒ V ec(Ψ)|Σ ∼ Np×d(0, Id ⊗ w−1Σ) (3.7)
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A prior for Σ: Inverse-Wishart distribution

The de�nition below recapitulates the probability density function of an Inverse-Wishart

distribution:

De�nition 6. Probability density function of the Inverse-Wishart distribution

Let V ∼ IWp(B,m) where B is a positive de�nite scale matrix, and m and p are non-zero

integers. Then V is positive de�nite and has the probability density function:

f(V ) =
|B|m/2

|V |m+p+1
2 2

mp
2 Γp(

m
2

)
exp

(
−1

2
Tr(BV −1)

)
where Γp(.) is the multivariate gamma function.

The Inverse-Wishart distribution is commonly used in Bayesian statistics to infer covariance

matrices of normally distributed data. For instance, we can consider ε1, ε2, ..., εN to be a sequence

of N random variables where each random p-vector εi has a multivariate normal distribution with

mean 0 and covariance matrix Σ. Then if an Inverse-Wishart IWp(B,m) prior is de�ned for Σ,

we shall achieve the property of conjugacy and obtain an Inverse-Wishart posterior distribution

IWp(B + S,m + N) where S represents the sample sums of squares
∑N

i=1 εiεi
′. The equivalent

univariate distribution is the Inverse-Gamma, which is also used to infer the variance of a uni-

variate random variable in Bayesian statistics.

In this chapter, the prior of Σ is chosen to be an Inverse-Wishart distribution with parameters

A and q:

Σ ∼ IWp(A, q) (3.8)

The parameter A is called the scale matrix and q represents the degrees of freedom of the

Inverse-Wishart distribution. A and q will then consist of hyperparameters which we must set

to suitable values. The hyperparameter A is estimated from a pre-sample (a training data set)

of the data (see Section 3.3.6). As for q, it must be strictly higher than p + 3 in order for the

variance of Σ (see equation (3.33) in Section 3.3.6) to stay positive de�nite, see also the de�nition

of the density of an Inverse-Wishart distribution in Gupta and Nagar (2000). We subjectively

took a value of q = p+ 4.
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The prior for all the parameters

In this chapter, we will assume that Π|Σ, Ψ|Σ and Σ are independent. Thus, we can easily

obtain the joint prior distribution of these parameters, which in other words constitutes the prior

of our model:

f(Π,Ψ,Σ) = f(Π|Σ) f(Ψ|Σ) f(Σ) (3.9)

According to the chosen prior distributions of Π|Σ , Ψ|Σ and Σ, we can write the relation of

proportionality that their respective densities verify:

f(Π|Σ) ∝ |Σ|−p/2 exp

(
−1

2
Tr(Σ−1vΠΠ′)

)
(3.10)

f(Ψ|Σ) ∝ |Σ|−d/2 exp

(
−1

2
Tr(Σ−1wΨΨ′)

)
(3.11)

f(Σ) ∝ |Σ|−(p+q+1)/2 exp

(
−1

2
Tr(Σ−1A)

)
(3.12)

Therefore by using (3.9) and by multiplying f(Π|Σ) f(Ψ|Σ) and f(Σ), we immediately obtain

the relation of proportionality, that the full prior of the VECM veri�es:

f(Π,Ψ,Σ) ∝ |Σ|−(2p+d+q+1)/2 exp

(
−1

2
Tr(Σ−1vΠΠ′ + Σ−1A+ Σ−1wΨΨ′)

)
(3.13)

where | · | denotes determinant and Tr(·) denotes trace.

3.3.3 A prior of the rank implied by the prior of the singular values of

the cointegrating matrix

In this section, we focus on the prior for the singular values implied by the prior of Π|Σ (3.5).

We can �rst rewrite the density of the prior for Π|Σ given in (3.10) by:

f(Π|Σ) ∝ exp

(
−1

2
Tr(Σ−1vΠΠ′)

)
(3.14)

where ΠΠ′ is symmetric and thus can be decomposed as the following:

ΠΠ′ = PDP ′ (3.15)
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where P is an orthogonal matrix and D contains the p singular values of Π.

Since a non-singular prior is set on Π, then the product matrix ΠΠ′ is positive de�nite and

the p singular values are strictly positive. If we denote by µi each singular value of Π, we can

derive the prior for µi from (3.14) by:

f(Π|Σ) ∝ exp

(
−1

2
Tr(Σ−1vΠΠ′)

)
∝ exp

(
−1

2
Tr(Σ−1vPDP−1)

)
∝ exp

(
−1

2
Tr(vP−1Σ−1PD)

)
Now by calling M = vP−1Σ−1P = (Mij)1≤i,j≤p, we can derive:

f(µi|P,Σ) ∝ exp

(
−1

2
Miiµi

)
(3.16)

Expression (3.16) is then proportional to an exponential distribution of parameter Mii

2
. Thus

the prior of µi given Σ and P is:

µi | P,Σ ∼ Exp

(
Mii

2

)
(3.17)

The prior of the singular values of Π (3.17) would indeed imply a prior for the cointegration

rank but the goal of this chapter is not to infer the rank. The approach adopted in this chapter is

quite similar to the embedding approach detailed in Section 2.4.4 where we de�ne the unrestricted

ECM by adding a parameter λ that will make the ECM of full rank. In this approach, it is the

parameter λ that is in fact estimating the cointegration rank, see Kleibergen and van Dijk (1994)

and Kleibergen and Paap (2002).

3.3.4 The posterior distributions

The full conditional posterior distribution is the posterior distribution for one parameter (or

possibly a reduced group of parameters) conditional on the data and the rest of the parameters.

Let us de�ne a set of h (h > 2) parameters by the vector θ:

θ =
(
θ1 θ2 · · · θh

)′
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If we denote the information from the data by D, then the full conditional posterior of θj (

∀ j ∈ [[1, h]]) is denoted by f(θj|θ1, ..., θj−1, θj+1, ..., θh,D).

Villani (2005) develops an approach in which the impact matrix Π is split into two full rank

matrices α and β of size p × r, where r is the cointegration rank. Inference about α and β are

then conditional on r. Villani then sets priors on the parameters of the equation and �nds the

full conditional posterior distributions for α, β, Ψ and Σ, conditional on r, see Theorem 4.5 of

Villani (2005). The posterior distribution of the rank r is evaluated as a function of σ = v−1/2

where v is the hyperparameter of the covariance matrix of the prior of α in this case (see Section

2.4.3). According to a certain value of v, Villani (2005) then assesses the rank to be r = 1 in a

bivariate process.

In this chapter, we will establish the posterior distributions of the long-run impact matrix Π

and Ψ, unconditional on the covariance matrix Σ.

3.3.5 The posterior distributions of Π and Ψ unconditional on the vari-

ance matrix Σ

In this section we describe the unconditional posterior distributions of Π and Ψ on the variance

covariance matrix Σ. The covariance matrix Σ can indeed slow down the Gibbs Sampler if we

simulate it as an additional parameter. The next result gives the conditional posteriors of Π

and Ψ given the data D and the cointegration rank r. The Gibbs Sampler is in fact generating

samples directly from f(Π,Ψ|D, r).

Based on the priors of Section 3.3.2, the full conditional posterior distributions of Π and Ψ

are �rst derived by an application of Bayes' theorem.

Result 1. We have the following posterior distributions for Π and Ψ unconditional on Σ:

1. Ψ|Π, r,D ∼ tp×d(M,S,Ω, n).

2. Π|Ψ, r,D ∼ tp×p(N,R, P, n
′)

54



with

Q = Y −XΠ′ (3.18)

W = Y − ZΨ′

Ω = (Z ′Z + wId)
−1 (3.19)

M = Q′ZΩ

S = A+Q′Q+ vΠΠ′ −M ′Ω−1M

n = T + q + 1

P = (vIp +X ′X)−1 (3.20)

R = A+ wΨΨ′ +W ′W −NP−1N ′

N = W ′XP

n′ = T + d+ q − p+ 1

In the application of the above Gibbs sampler, the posterior samples of Π will be non-

singular, but with singular values close to zero. In principle, we apply the rank approximation

after obtaining the posterior sample of Π and this e�ectively means that we can obtain a sample

for the cointegration rank r, given the data. This allows us to provide summary statistics about

the rank.

Proofs

Proof. Unconditional posterior distribution of Ψ on Σ (Result 1):

We will prove now the �rst distribution of Result 1:

Ψ|Π, r,D ∼ tp×d(M,S,Ω, n)
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with: 

Ω = (wId + Z ′Z)−1

M = Q′ZΩ

S = A+Q′Q+ vΠΠ′ −M ′Ω−1M

n = T + q + 1

First of all, let us write down Bayes' theorem for the joint posterior distribution of the three

parameters Π, Ψ and Σ:

f(Π,Ψ,Σ|D) ∝ L(Π,Ψ,Σ;D)f(Π,Ψ,Σ) (3.21)

Now, the unconditional distribution of Π and Ψ is written as:

f(Π,Ψ|D) ∝
∫

Σ>0

L(Π,Ψ,Σ;D)f(Π,Ψ,Σ)dΣ (3.22)

From Equation (3.4) the likelihood L(Π,Ψ,Σ;D) in (3.21) and (3.22) can be written as:

L(Π,Ψ,Σ;D) ∝ |Σ|−T/2 exp

(
−1

2
Tr(Σ−1E ′E)

)
The joint prior (3.13) can also be written as the product of successively f(Π|Σ) (3.10), f(Ψ|Σ)

(3.11) and f(Σ) (3.12):

f(Π,Ψ,Σ) ∝ |Σ|−
2p+d+q+1

2 exp

(
−1

2
Tr(Σ−1vΠΠ′ + Σ−1A+ Σ−1ΨΨ′)

)
Now if we write g(Σ) = |Σ|−(T+2p+d+q+1)/2 exp

(
−1

2
Tr(Σ−1(A+ ΨΨ′ + vΠΠ′ + E ′E))

)
, we then

have:

f(Π,Ψ,Σ|D) ∝ g(Σ)

In order to obtain the joint posterior distribution of Π and Ψ unconditional on Σ, written as

f(Π,Ψ|D), we have to integrate out Σ:

f(Π,Ψ|D) ∝
∫

Σ>0

g(Σ)dΣ

Furthermore, we have:

f(Ψ|Π,D) ∝ f(Ψ,Π|D)

f(Π)
∝ f(Ψ,Π|D)
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Finally, we can also derive the unconditional posterior distribution of Ψ by integrating:

f(Ψ|Π,D) ∝
∫

Σ>0

g(Σ)dΣ

In order to integrate out Σ, let us �rst recall the expression of the probability density function

of an Inverse-Wishart distribution:

If Σ ∼ IWp(B,m), then the p.d.f. of Σ is proportional to:

f(Σ) ∝ |Σ|−
m+p+1

2 |B|
m
2 exp

(
−1

2
Tr(Σ−1B)

)
(3.23)

If we look at the expression of g(Σ), we have:

g(Σ) = |Σ|−(T+2p+d+q+1)/2 exp

(
−1

2
Tr(Σ−1(A+ ΨΨ′ + vΠΠ′ + E ′E))

)
so we can integrate out Σ by using m = T + p + d + q and B = A + wΨΨ′ + vΠΠ′ + E ′E and

write g(Σ) as:

g(Σ) ∝ f(Σ)|B|−
m
2

Now we can start by integrating out Σ:∫
Σ>0

g(Σ)dΣ ∝
∫

Σ>0

f(Σ)dΣ× |B|−
m
2 (3.24)

∝ |B|−
m
2 = |A+ wΨΨ′ + vΠΠ′ + E ′E|−

m
2

Finally, ∫
Σ>0

g(Σ)dΣ ∝ |A+ ΨΨ′ + vΠΠ′ + E ′E|−
T+p+d+q

2 (3.25)

Let us now consider the term post-multiplied by Σ−1 in the trace of the exponential:

A+ wΨΨ′ + vΠΠ′ + E ′E = A+ wΨΨ′ + vΠΠ′ + (Q− ZΨ′)′(Q− ZΨ′)

= A+ wΨΨ′ + vΠΠ′ + (Q′ −ΨZ ′)(Q− ZΨ′)

= A+ wΨΨ′ + vΠΠ′ +Q′Q−Q′ZΨ′ −ΨZ ′Q+ ΨZ ′ZΨ′

= A+Q′Q+ vΠΠ′ + wΨΨ′ −Q′ZΨ′ −ΨZ ′Q+ ΨZ ′ZΨ′

= A+Q′Q+ vΠΠ′ + Ψ(wId + Z ′Z)Ψ′ −Q′ZΨ′ −ΨZ ′Q
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Then we have:

(Ψ−M)Ω−1(Ψ−M)′ = ΨΩ−1Ψ′ −ΨΩ−1M ′ −MΩ−1Ψ′ +MΩ−1M ′

Then we can identify the parameters:

Ω−1 = wId + Z ′Z ⇒ Ω = (wId + Z ′Z)−1

MΩ−1 = Q′Z ⇒M = Q′ZΩ = Q′Z(wId + Z ′Z)−1

Ψ(wId + Z ′Z)Ψ′ −Q′ZΨ′ −ΨZ ′Q = (Ψ−M)Ω−1(Ψ−M)′ −MΩ−1M ′

Now, by calling S = A+Q′Q+ vΠΠ′ −MΩ−1M ′, we can obtain:

A+Q′Q+vΠΠ′−MΩ−1M ′ = S+(Ψ−M)Ω−1(Ψ−M)′ = S(Ip+S
−1(Ψ−M)Ω−1(Ψ−M)′) (3.26)

Finally, we can start distinguishing the form of the probability density function of a matrix

t-distribution:

f(Ψ|Π,D) ∝ |A+wΨΨ′+vΠΠ′+E ′E|−
T+p+d+q

2 ∝ |Ip+S−1(Ψ−M)Ω−1(Ψ−M)′|−
T+p+d+q

2 (3.27)

Now if we deal with the degrees of freedom, nmust satisfy the equation n+p+d−1 = T+p+d+q,

so n = T + q + 1. Finally, we can conclude that the distribution of Ψ is:

Ψ|Π,D ∼ tp×d(M,S,Ω, n) (3.28)

with:

Ω = (wId + Z ′Z)−1

M = Q′ZΩ

S = A+Q′Q+ vΠΠ′ −M ′Ω−1M

n = T + q + 1

Proof. Unconditional posterior distribution of Π on Σ (Result 1):

We will now prove:

Π|Ψ, r,D ∼ tp×p(N,R, P, n
′)
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with:

N = W ′XP

R = A+ wΨΨ′ +W ′W −NP−1N ′

P = (vIp +X ′X)−1

n′ = T + d+ q − p+ 1

In order to obtain the unconditional distribution of Π on Σ, we start again from:

f(Π,Ψ|D) ∝
∫

Σ>0

g(Σ)dΣ

We have of course:

f(Π|Ψ,D) ∝ f(Π,Ψ|D)f(Ψ) ∝ f(Π,Ψ|D)

so in fact:

f(Π|Ψ,D) ∝
∫

Σ>0

g(Σ)dΣ (3.29)

However, we will now deal di�erently with the term post-multiplied by Σ−1 in the trace of the

exponential: A+wΨΨ′+vΠΠ′+E ′E, that is we will try to write A+wΨΨ′+vΠΠ′+E ′E under

the form R+ (Π−N)P−1(Π−N)′ where R, N and P are matrices to be determined. For that:

A+ wΨΨ′ + vΠΠ′ + E ′E = A+ wΨΨ′ + vΠΠ′ + (W −XΠ′)′(W −XΠ′)

= A+ wΨΨ′ + vΠΠ′ + (W ′ − ΠX ′)(W −XΠ′)

= A+ wΨΨ′ + vΠΠ′ +W ′W −W ′XΠ′ − ΠX ′W + ΠX ′XΠ′

= A+ wΨΨ′ +W ′W + Π(vIp +X ′X)Π′ −W ′XΠ′ − ΠX ′W

If we expand R + (Π−N)P−1(Π−N)′ we get:

R + (Π−N)P−1(Π−N)′ = R + ΠP−1Π′ − ΠP−1N ′ −NP−1Π′ +NP−1N ′ (3.30)

Now, we recognize from expression (3.30):

P−1 = vIp +X ′X ⇒ P = (vIp +X ′X)−1

NP−1 = W ′X ⇒ N = W ′XP = W ′X(vIp +X ′X)−1
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Now:

A+ wΨΨ′ + vΠΠ′ + E ′E = A+ wΨΨ′ +W ′W + Π(vIp +X ′X)Π′ −W ′XΠ′ − ΠX ′W

= A+ wΨΨ′ +W ′W −NP−1N ′ + (Π−N)P−1(Π−N)′

= (A+ wΨΨ′ +W ′W −NP−1N ′)︸ ︷︷ ︸
R

+(Π−N)P−1(Π−N)′

and we �nd:

R = A+ wΨΨ′ +W ′W −NP−1N ′

Now we can write our proportionality relation (3.29) as:

f(Π|Ψ,D) ∝
∫

Σ>0

g(Σ)dΣ (3.31)

∝ |A+ wΨΨ′ + vΠΠ′ + E ′E|−
1
2

(T+p+d+q)

∝ |R + (Π−N)P−1(Π−N)′|−
1
2

(T+p+d+q)

∝ |R(Ip +R−1(Π−N)P−1(Π−N)′)|−
1
2

(T+p+d+q)

∝ |Ip +R−1(Π−N)P−1(Π−N)′|−
1
2

(T+p+d+q)

Now, we can recognize a matrix t-distribution for Π|Ψ, r,D:

Π|Ψ, r,D ∼ tp×p(N,R, P, n
′)

where the only parameter now to determine is the degrees of freedom n′. From the expression

of the probability density function of a multivariate t-distribution, we can derive the relation:

n′ + p+ p− 1 = T + p+ d+ q, which leads to the following expression for n′:

n′ = T + d+ q − p+ 1

3.3.6 Pre-sample and hyperparameters choice

For each of the periods studied we split the data into two parts. The �rst part of the data

(of length τ < T ) is used as a pre-sample in order to determine the initial parameters (Σ0, Π0
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and Ψ0) by estimating the VECM model based on the methods described by Luetkepohl (2006)

and recapitulated in Section 2.5.

We also decided to use the �rst third of the data to estimate the hyperparameter matrix

A from the Inverse-Wishart distribution. The value of this hyperparameter is not obvious to

decide because it is a p × p matrix and we do not want to put a subjective choice such as the

identity matrix simply because it would imply no covariance between the errors of the time series

( Σ = V ar(εt)). Since the mean of the random variable Σ is A/(q− p− 1), see Gupta and Nagar

(2000), then we can estimate A by (q − p− 1)× Σ0.

After estimating from the pre-sample we use the rest of the data (the other two thirds) to

run the Gibbs Sampler and �nally obtain the parameter estimates (see Figure 2.2). In the VAR

and VECM model, we have:

εt
i.i.d.∼ Np(0p,Σ)

with Σ as one of the unknown parameters of the Bayesian analysis. The prior chosen for the

parameter Σ is an Inverse-Wishart distribution of parameters A (matrix of size p× p) and q (a

real number). We will �rst start by �nding an unbiased estimator of Σ so that we have good

hyperparameters A and q.

First of all, since Σ ∼ IW (A, q) , we get:

E[Σ] =
A

q − p− 1
(3.32)

and:

V ar[Σij] =
(q − p+ 1)A2

ij + (q − p− 1)AiiAjj

(q − p)(q − p− 1)2(q − p− 3)
(3.33)

Cov[Σij,Σkl] =
2AijAkl + (q − p− 1)(AikAjl + AilAkj)

(q − p)(q − p− 1)2(q − p− 3)

Then by observing the denominator of the variance in (3.33), we can see the terms �q − p − 3�

and �q − p�. We have to make sure that the variance in (3.33) is positive. Since A > 0, if we set

the condition that �q > p + 3�, then the positivity of the variance is ensured. Therefore we will

�x a value of q to be strictly larger than p+ 3. We will �rst pick the value of p+ 4 . From now
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on, we call by q̂ any arbitrary number taken for q. For example to start the program, we will set

q̂ = p+ 4.

Then we have Â = (q̂ − p− 1)× E[Σ] = (q̂ − p− 1)× Σ̂ since we will say that the unbiased

estimator Σ̂ previously calculated estimates E[Σ].

Finally, v is a hyperparameter �xed to the value 0.001 in order to establish a weakly infor-

mative prior for Π as said in Section 3.3.2.

3.3.7 Obtaining the linearly independent cointegrating relationships

from the matrix Π

Let us now assume that Π is a p × p cointegrating matrix of the multivariate time series xt

with p ≥ 2: Πxt = yt = (yit)1≤i≤p where ∀i ∈ [[1, p]], xit ∼ I(1) and ∀i ∈ [[1, r]], yit ∼ I(0). If Π is

of rank r ≤ p, then by using the full rank decomposition theorem, Π can be written as Π = αβ′

where α and β are full rank matrices of size p× r.

Let us now write the matrix Π in terms of blocks where the �rst block Πr,r on the top left-

hand side represents an r × r square matrix corresponding to the �rst r rows and the �rst r

columns of Π.

Π =

 Πr,r Πr,p−r

Πp−r,r Πp−r,p−r

 = αβ′

Then the matrix β is in general written as: β =
[
Ir B′

]′
in which each column of β will in

fact represent an independent cointegrating relation since β is of full rank. The crucial matrix to

�nd in order to obtain the independent cointegrating relations is actually the matrix B, which

contains all the coe�cients we need to perform a study of cointegration.

We can let matrix α be equal to the �rst r columns of Π, which actually constitute a rectan-

gular submatrix of Π of full rank. From this value of α, we can then easily obtain the matrix β

from the matrix Π by the following operation:

α =

 Πr,r

Πp−r,r

 =⇒ β′ = (α′α)−1α′Π =
[
Ir B′

]
(3.34)
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Therefore we can estimate the independent cointegrating relations (given by matrix β) just

from the long-run impact matrix Π of size p × p and from its rank estimated by the Gibbs

Sampler.

3.3.8 General Gibbs for a static Error Correction Model using a non-

singular posterior distribution for Π and Ψ conditional on Σ

This section outlines the initialization, Gibbs sampling and post-processing algorithms used

in this chapter. A Directed Acyclic Graph is constructed in order to have a better view of the

algorithms and of the Bayesian network built in this chapter (see Figure 3.1):

v A q

Π Ψr

D

Figure 3.1: Directed Acyclic Graph: Square boxes contain the �xed parameters, circles contain

the random parameters. The cointegration rank r is estimated from the simulated cointegrating

matrix Π (Double arrow).
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Algorithm 1 Initialization based on the pre-sample.

Set the size of the pre-sample which contains observations: τ = [T/3], where the square

brackets represent the nearest integer function.

For the pre-sample data set [[1, τ ]]:

• Create matrices ∆X, X−1, ∆Z following the instructions in Section 2.5.

• Initialize Π(0) ← Π̂ , Ψ(0) ← Ψ̂ , Σ(0) ← Σ̂ from the LS estimates (2.30) seen in Section 2.5.

Set the values of the hyperparameters:

• v = 1, q = p+ 4, A = (q − p− 1)× Σ(0).

• r(0) is estimated from the singular values of Π(0) and by choosing an irrelevance criterion

ε: see Section 3.2.

Algorithm 2 Gibbs sampler on the sample.

For the sample data set which contains observations [[τ + 1, T ]]:

• Create matrices Y , X, Z and E following the instructions in Section 2.3.2 for t ∈ [[τ +1, T ]].

We have: D = {X, Y, Z}.

Set the number of iterations m = 50,000.

for i ∈ [[1,m]] do

• Sample Π(i) from the posterior distribution of Result 1.2. using Ψ = Ψ(i−1) and D.

• Sample Ψ(i) from the posterior distribution of Result 1.1. using Π = Π(i) and D.

• r(i) is estimated from the singular values of Π(i) and by choosing an irrelevance criterion

ε: see Section 3.2.

end for
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Algorithm 3 Final results: Obtaining the independent cointegrating relations.

Final results:

• Πmean ← mean
{m−10,000≤i≤m}

[Π(i)]

• rmedian ← median
{m−10,000≤i≤m}

[r(i)]

• The independent cointegrating relations (i.e. β) are then obtained from Πmean and rmedian,

by using the operation of Section 3.3.7.

3.4 Application

We analyse two kinds of data sets, the �rst are synthetic and we use then to assess accuracy

in the estimation of the cointegration rank and to aid model evaluation. The second is a panel of

long term economic variables comprising net trading, long-term interest rates and unemployment

from four European countries, before and after the introduction of the Euro.

3.4.1 Synthetic data sets and implementation

Description of the data sets

We have created two data sets with T = 350 data points each. The �rst data set (P1) consists

of seven time series x1t, x2t, ..., x7t with 4 independent cointegrating relations y1t, y2t, y3t, y4t. The

process uit is de�ned as a white noise process for any i = 1, . . . , 7 below and we have:

x1t =
t∑

k=1

u1k ∼ I(1) , x2t =
t∑

k=1

u2k ∼ I(1)

x3t = x2t + x1t + u3t ∼ I(1) =⇒ y1t = x3t − x2t − x1t ∼ I(0)

x4t = x2t + u4t ∼ I(1) =⇒ y2t = x4t − x2t ∼ I(0)

x5t = x1t + u5t ∼ I(1) =⇒ y3t = x5t − x1t ∼ I(0)

x6t =
t∑

k=1

u6k ∼ I(1)
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x7t = x6t − x2t + u7t ∼ I(1) =⇒ y4t = x7t − x6t + x2t ∼ I(0)

The second data set (P2) consists of �ve time series x1t, x2t, ..., x5t with three independent

cointegrating relations y1t, y2t, y3t. Letting vit be a white noise process for any i = 1, 2, 3, we

have:

x1t =
t∑

k=1

v1k ∼ I(1) , x2t =
t∑

k=1

v2k ∼ I(1)

x3t = x2t + x1t + v3t ∼ I(1) =⇒ y1t = x3t − x2t − x1t ∼ I(0)

x4t = x2t + v4t ∼ I(1) =⇒ y2t = x4t − x2t ∼ I(0)

x5t = x1t + v5t ∼ I(1) =⇒ y3t = x5t − x1t ∼ I(0)

Implementation of the code on the synthetic data sets

We create these two data sets in R Core Team (2013) and we take the size of the pre-sample

to be τ = [T/3] (see Algorithm 1). On the pre-sample data set containing observations [[1, τ ]],

we estimate Π̂, Ψ̂ and Σ̂ from the methods of Luetkepohl recapitulated in Section 2.5 which will

be our initial parameters: Π(0) ← Π̂ , Ψ(0) ← Ψ̂ , Σ(0) ← Σ̂. The initial cointegration rank r(0)

is estimated from Π(0) on the method based on the irrelevance criterion seen in Section 3.2. In

order to estimate r(0), we take an irrelevance criterion ε = 5%. We then set the hyperparameters

as v = 0.001, q = p+ 4 and A = (q − p− 1)× Σ(0) (see Section 3.3.6).

For each data set, we will run four Gibbs samplers each using a di�erent level for the insignif-

icance criterion: ε = 3, 4, 5, 8% on the sample data set corresponding to the period [[τ + 1, T ]].

The MCMC procedure where the parameters of the VECM are simulated at each iteration is

presented in Algorithm 2. For both of our data sets, we consider a burn-in set of 40,000 iterations,

leaving the 10,000 last simulations (of m = 50,000 iterations) to estimate the parameters of the

VECM. At the end of the MCMC, we will compare the estimated rank with the rank determined

by the Johansen tests on the data. The determined rank is equal to the median rank of the last

10,000 estimated ranks.
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Finally, we will determine the independent cointegrating relations by using the operation seen

in Section 3.3.7 on the mean of the last 10,000 simulated cointegrating matrices Π (see Algorithm

3).

Study of the cointegration rank and the cointegration relations for the simulated

data

We apply Johansen trace tests to the simulated data sets P1 and P2, see Johansen (1991).

Results are presented in Table 3.1. For the �rst simulated data set P1, the test does not reject a

rank less than or equal to 4 (Test: 20.03 < 31.52) but rejects a rank less than or equal to 3 (Test:

131.25 > 48.28). We then retrieve a rank equal to 4 for data set P1. For the simulated data set

P2, the test does not reject a rank less than or equal to 3 (Test: 10.62 < 17.95) but rejects a

rank less than or equal to 2 (Test: 143.53 > 31.52). The cointegration rank for the data set P2

is then 3.

Table 3.1: Johansen trace tests for the cointegration rank of the simulated data of cointegration

rank 4 (P1) and 3 (P2): For each data set, the �rst column corresponds to the test statistics and

the second column corresponds to the 95% critical values from Johansen trace tests.

Test: r ≤ r0 P1 Critical values ( 95%) P2 Critical values ( 95%)

0 580.30 124.25 441.66 70.60

1 413.14 90.39 284.96 48.28

2 262.46 70.60 143.53 31.52

3 131.25 48.28 10.62 17.95

4 20.03 31.52 4.18 8.18

5 11.38 17.95

6 4.66 8.18

Based on an insigni�cance criterion ε = 5% or 4% (see Table 3.2 below) we �nd a credible

interval of (3, 4, 4) and (4, 4, 4) respectively for the �rst simulated data set P1. As for the second
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simulated data set, we �nd a credible interval of (2, 3, 3) for ε = 5% and (3, 3, 3) for ε = 4%. We

can conclude that the cointegration rank determined by Johansen and the rank determined by

our methods based on the insigni�cance criterion are in agreement. Big insigni�cance criteria

(ε = 5% and ε = 8%) tend to neglect some singular values that are relevant, giving then a smaller

rank (see Table 3.2).

Table 3.2: Cointegration rank posterior credible intervals of size 0.95 and median from the

synthetic data sets P1 and P2 from di�erent levels of the insigni�cance criterion.

ε P1 P2

3% (4,4,5) (3,3,4)

4% (4,4,4) (3,3,3)

5% (3,4,4) (2,3,3)

8% (3,4,4) (2,3,3)

Figure 3.2 below shows the contribution of the singular values of a simulated cointegrating

matrix Π from the data set P2 at iteration 10,000. We can see on Figure 3.2 the drop o� in the

contribution (3.1) of the singular values. In particular, after the third singular value, we can see

that the contributions of the 2 last singular values are irrelevant, suggesting a rank of 3 for that

simulated matrix at the 10,000th iteration.
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Figure 3.2: Contribution of the singular values of the simulated cointegrating matrix Π(10,000) for

the data set P2.

The cointegrating relations of the �rst simulated data set are presented in Table 3.3 below.

We have, by descending row by row in the table, the cointegrating relations y1t, y2t, y3t, y4t:

Table 3.3: Cointegrating relations for the �rst simulated data set P1

x7t x5t x4t x3t x6t x2t x1t

y1t 1 0 0 0 -0.941 1.009 0.043

y2t 0 1 0 0 -0.058 0.043 -0.971

y3t 0 0 1 0 -0.014 -0.965 0.047

y4t 0 0 0 1 -0.056 -0.961 -0.961
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As for the second simulated data set, the results are presented in Table 3.4 below, and likewise,

we obtain the three cointegrating relations y1t, y2t, y3t by descending row by row:

Table 3.4: Cointegrating relations for the second simulated data set P2

x5t x4t x3t x2t x1t

y1t 1 0 0 -0.012 -1.009

y2t 0 1 0 -0.983 0.014

y3t 0 0 1 -1.019 -1.009

We can retrieve quite accurately the theoretical cointegrating relations of the two synthetic

data sets in Tables 3.3 and 3.4.

3.4.2 The economic data sets

Net trading (NX) (also known as national current account) is the di�erence between the

value of exports and imports for an economy over a certain period of time (in general, a month or

a year). It is measured in the currency of that economy (in our case, the four countries studied

share the same currency). A positive balance consists of exporting more than importing and

thus leads to economic growth. A negative net trading brings a de�cit to the economy.

Long-term interest rates (IR) can be considered as an index of business investment.

Low long-term interest rates encourage investment whereas high interest rates discourage it.

Consequently, since investment is a major source of economic growth then we can consider long-

term interest rates to be related to it. Long-term interest rates refer to government bonds with

a maturity of T = 10 years. They are not the interest rates at which the loans were issued, but

the interest rates implied by the prices at which these government bonds are traded on �nancial

markets.

The unemployment rate (UR) is a measure of the prevalence of unemployment and is the

ratio between unemployed individuals and all individuals in the labour force. The unemployment
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rate in a country is considered to be linked to economic growth and therefore could be related

to the long-term interest rate and net trading.

Implementation of the real data sets

For both of our data sets about the European economies we will use the same implementation

of the MCMC algorithm as seen in Section 3.4.1 for the two simulated data sets. In particular

the size of the pre-sample will be equal to τ = [T/3] and with that pre-sample, we will estimate

the initial parameters of the VECM: Π(0), Ψ(0) and Σ(0). The hyperparameters will be estimated

using the same methods: v = 0.001, q = p+ 4 and A = (q− p− 1)×Σ(0). The �rst cointegration

rank r(0) is estimated with an irrelevance criterion ε = 5% from matrix Π(0).

The number of iterations is chosen to be m = 50,000 again and likewise, we choose a burn-in

set of 40,000 iterations, leaving the last 10,000 iterations to estimate the mean of the parameters

of the VECM and the median of the cointegration ranks. Based on the median rank of the last

10,000 iterations, we determine the independent cointegrating relations from the mean of the

last 10,000 cointegrating matrices Π.

3.4.3 Comparison with Johansen tests for the European panel data

sets

This section describes a comparison between the cointegration rank estimated by our methods

and the cointegration rank found by using Johansen tests. We recall that one of the aims of this

chapter is to propose another way to determine the cointegration rank other than by using

Johansen tests. The estimation of the cointegration rank is based on the insigni�cance criterion

ε (see Section 3.2). From the function K seen in Section 3.2, we can see that if ε is small, then

the smallest singular values will be less likely to be rejected, therefore it will increase the estimate

of the rank.

By using the MCMC algorithm, we run several Gibbs samplers and test four insigni�cance

criteria: ε = 3%, ε = 4%, ε = 5% and ε = 8%. In this section, we will compare our method based
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on the insigni�cance criterion with Johansen cointegration tests by studying the two European

panel data sets corresponding to the time periods (1991− 1998) and (1999− 2008).

We used a lag order of 2 for both of the European data sets by using Luetkepohl's methods

in comparing the AIC values, see Luetkepohl (2006). In any case, Appendix B gives reasons for

the choice of the lag order. A lag order of 2 permits the MCMC algorithm to run faster and does

not really a�ect the resulting cointegrating relations of our methods, should the data set actually

have a lag order of 3 or 4 (see Appendix B). In our VECM, we restricted the constant term to

be 0, so we will use critical values of the Johansen trace tests (see Table 3.6) de�ned for constant

term 0. For the �rst time period (1991− 1998), Johansen tests reject the null hypotheses r = 0

to r ≤ 5 but do not reject r ≤ 6. For the second time period (1999 − 2008), the tests suggest

that we do not reject the hypothesis r ≤ 5. We then have a smaller cointegration rank than in

the �rst data set.

Histograms 3.3 and 3.4 both represent the distribution of the rank for the time period before

and the time period after the Euro. Each histogram shows an estimation of the cointegration

rank r throughout the Gibbs sampler. The median rank from all the simulations is eventually

taken as the decision value for the cointegration rank.
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Figure 3.3: Histogram representing the distribution of the rank for the period pre-Euro (1991-

1998).
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Figure 3.4: Histogram representing the distribution of the rank for the period post-Euro (1999-

2008).

From Table 3.5, we can see that for any irrelevance criterion taken, the median rank is 3

for the time period after the Euro. As for the data before the Euro, we �nd a median rank of

6 by using an insigni�cance criterion of ε = 4% or 5%. Like for the Johansen tests, Table 3.5

suggests a smaller cointegration rank during the period after the Euro, hence less independent

cointegrating relations. However, a little di�erence is pointed out compared with Johansen tests:

indeed whatever the value of the insigni�cance criterion, the cointegration rank should be no more

than 3 for the post-Euro data set. Thus, on the one hand Johansen tests reveal a cointegration
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rank of 5 whilst on the other hand we �nd a cointegration rank of 3 by using the insigni�cance

criteria. An insigni�cance criterion ε = 8% is de�nitely too large and tends to reject singular

values that should be taken as �big�. Indeed, for the real pre-Euro data set with cointegration

rank of 6, we �nd 5 for the median rank. An insigni�cance criterion of ε = 4% or 5% seems to

be closer to reality than for ε = 8%.

Table 3.5: Cointegration rank posterior credible intervals of size 0.95 and median for the Euro-

pean panel data set (PrE = 1991�1998, PoE= 1999�2008) from di�erent levels of the insigni�-

cance criterion.

ε PrE PoE

3% (6,7,8) (2,3,4)

4% (5,6,7) (2,3,4)

5% (5,6,7) (2,3,4)

8% (4,5,6) (2,3,3)
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Table 3.6: Johansen tests for the two periods of the European panel data set (PrE = 1991�1998,

PoE= 1999�2008).

Test: r ≤ r0 Period 1991-1998 Period 1999-2008 Critical values ( 95%)

0 536.64 441.09 301.95

1 394.50 353.29 277.39

2 308.73 278.59 232.49

3 245.90 218.50 192.84

4 184.84 164.43 157.11

5 135.27 117.57 124.25

6 90.18 81.49 90.39

7 61.47 53.54 70.60

8 39.20 34.81 48.28

9 22.08 18.64 31.52

10 8.61 9.09 17.95

11 0.24 0.41 8.18

According to Table 3.2 and Table 3.5, the insigni�cance criterion of 4% is the one that is

in the most agreement with our simulated data and Johansen. The only problem is that it

shows a cointegration rank of 3 for the period after the euro (instead of 4 as Johansen tests

show in Table 3.6). We prefer to trust our method using the insigni�cance criterion and take

ε = 4%. In addition, it is less risky to reduce the cointegration rank to 3. Therefore we will use a

cointegration rank of 6 for the data before the Euro (1991− 1998) and 3 for the period after the

Euro (1999− 2008). According to the results we obtained in our new method, an insigni�cance

criterion of ε = 4% may be more in agreement with Johansen and the simulated data sets.

However, for more details, we decide to present in the next section a sensitivity analysis that

explores more irrelevance criteria.
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A more detailed sensitivity analysis on the irrelevance criterion

Table 3.7 below gives a more detailed sensitivity analysis on the irrelevance criterion by

looking at values covering a range from 1% to 10%. This table presents the credible intervals

of the rank for the two real data sets of the decade before the Euro (PrE= 1991�1998) and

the decade after the Euro (PoE= 1999�2008) as well as the two synthetic data sets P1 and P2

previously studied in Section 3.4.1.

Table 3.7: Cointegration rank posterior credible intervals of size 0.95 and median for the synthetic

VAR and the European panel data sets (PrE = 1991�1998, PoE= 1999�2008) from di�erent levels

of the irrelevance criterion.

ε P1 P2 PrE PoE

1% (5,5,6) (3,4,4) (8,8,9) (3,5,6)

1.5% (4,5,6) (3,4,4) (7,8,8) (3,4,5)

2% (4,5,5) (3,3,4) (7,7,8) (3,4,5)

2.5% (4,4,5) (3,3,4) (6,7,8) (3,4,5)

3% (4,4,5) (3,3,4) (6,7,8) (2,3,4)

3.5% (4,4,5) (3,3,3) (6,6,7) (2,3,4)

4% (4,4,5) (3,3,3) (5,6,7) (2,3,4)

4.5% (4,4,5) (2,3,3) (5,6,7) (2,3,4)

5% (4,4,5) (2,3,3) (5,6,7) (2,3,4)

5.5% (3,4,5) (2,3,3) (5,6,7) (2,3,4)

6% (3,4,4) (2,3,3) (5,6,6) (2,3,4)

7% (3,4,4) (2,3,3) (5,5,6) (2,3,3)

8% (3,4,4) (2,3,3) (4,5,6) (2,3,3)

9% (3,4,4) (2,3,3) (4,5,6) (2,2,3)

10% (3,4,4) (2,3,3) (4,5,5) (2,2,3)

From Table 3.7, we can see in each column that the credible intervals show a range of
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decreasing values as the value of the irrelevance criterion becomes more important. Based on

the simulated data sets P1 and P2, a too small irrelevance criterion is more likely to a�ect the

results than a high value: high irrelevance criteria indeed give the correct cointegration rank for

both P1 and P2. A too small irrelevance criterion (less than 2.5%) on the other hand leads to

incorrect results. For the real data set, we retrieve the fact that the period before the Euro has

a higher cointegration rank than the period post-Euro for any irrelevance criterion used.

3.4.4 Comparison of the independent cointegrating relations with Vil-

lani

The idea in this section is to compare the independent cointegrating relations between the

method developed in this chapter and the inference of β proposed by Villani (2005). On the

one hand we use our posterior distributions on Π and Ψ unconditional on Σ and estimate the

cointegration rank in the MCMC procedure. We will only use the full conditional posterior

distributions of α, β, Ψ and Σ in Theorem 4.5 Villani (2005) and not infer the cointegration

rank based on its posterior distribution (2.19) and recapitulated in Section 2.4.3. The rank will

be a constant and �xed to the rank found by the methods of this chapter. Thus, we will only

compare the independent cointegrating relations between the two methods.

We will now study the independent cointegrating relations between the four net tradings of

Germany, France, Italy and Spain for the time period before the introduction of the Euro. Based

on the methods of this chapter, the cointegration rank is derived from the MCMC procedure (one

rank estimated per simulation of Π) by taking the median rank of the last 10,000 iterations. From

the last 10,000 simulations, we determine a median rank of 3. We are then going to run a Gibbs

sampler using the full conditional distributions of Theorem 4.5 from Villani (2005) conditional on

rank 3 with the same number of iterations and same burn-in period. We will therefore simulate

the two full rank 4× 3 matrices α and β composing the matrix Π.

Table 3.8 shows the results obtained by using both methods. We can clearly see that the two

methods are in close agreement. But while the method employed by Villani (on the left) uses
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four full conditional distributions on Σ, α, β and Ψ, here with our new method (on the right)

we only use two posterior distributions of Π and Ψ unconditional on Σ, avoiding the simulation

of Σ.

Table 3.8: Estimated relations between net trading, pre Euro (1991�1998): Villani and new

method

Villani Irrelevance criterion

FraNX GerNX ItaNX SpaNX FraNX GerNX ItaNX SpaNX

1 0 0 -1.233 1 0 0 -1.234

0 1 0 -1.624 0 1 0 -1.630

0 0 1 -1.374 0 0 1 -1.383

3.4.5 Interpretation of cointegrating relations

Let us assume that there exists a cointegrating relation over a period of time between the French

and the German net trading ((Fra)NT and (Ger)NT respectively) with α and β being the 2

respective coe�cients of France and Germany. Then we can write:

α(Fra)NT + β(Ger)NT = ut ∼ I(0)⇒ (Fra)NT =
−β
α

(Ger)NT + ut ∼ I(0) (3.35)

The sign is very important to reveal if the time series are coevolving (positively) in the same

direction or (negatively) in the opposite direction. This section will explain this by taking the

two cases in which the coevolution is positive and negative. If in the example above, α and

β are both of the same sign, then −β
α

is negative. In that case, if the German net trading is

increasing, then according to (3.35) we have that −β
α

(Ger)NT is decreasing and then (Fra)NT

is decreasing and we obtain a negative coevolution between the two countries. If now, for

instance, α and β are of opposite sign, then −β
α

is positive. In that case if the German net trading

is increasing, then −β
α

(Ger)NT is increasing and (Fra)NT is increasing. We would then obtain a

positive coevolution between the two countries.

By studying the value of the cointegrating coe�cients, we can see how fast one variable is
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evolving compared to another. If in the example above we have |β| < |α|, then the ratio |β||α|

is lower than 1. Assuming that the German net trading coevolves at a certain rate ρ with the

French net trading, then France would evolve at a slower rate |β||α|ρ than Germany.

3.4.6 Study of the cointegrating relations before and after the Euro

Like for the simulated data set and as the algorithms 1, 2 and 3 suggest, we used a burn-in

period of 40,000 iterations (the number of iterations used is 50,000) for both of our real data

sets. The �rst data set, consisting of the economies in the Euro-zone before the introduction of

the Euro, has a cointegration rank of 6. Table 3.9 describes the six independent cointegrating

relationships derived from the methods explained in Section 3.3.7. This choice in the order of

the variables is to explain better the comovements between the countries of the Euro-zone.

Table 3.9: Cointegrating relations before the introduction of the Euro: 1991-1998

GerNX ItaNX SpaNX ItaIR GerUR ItaUR FraNX GerIR FraIR SpaIR FraUR SpaUR

1 0 0 0 0 0 -2.27 0.51 0.69 -0.54 0.23 0.35

0 1 0 0 0 0 -0.69 -1.18 1.91 -0.41 -0.36 -0.15

0 0 1 0 0 0 -1.45 -0.72 0.48 0.30 1.51 -0.50

0 0 0 1 0 0 0.31 0.30 -0.68 -0.76 0.07 -0.24

0 0 0 0 1 0 -0.90 -0.14 -0.44 0.46 0.27 -0.02

0 0 0 0 0 1 -1.04 -0.02 0.75 -0.34 0.03 0.01

Let us �rst look at the �rst three rows of Table 3.9. These rows compare the French current

account (seventh column) with each of the other net tradings seperately (each of coe�cient 1 for

column 1, 2 or 3). Each coe�cient of France is of negative sign when comparing with Germany

(−2.27), Italy (−0.69) and Spain (−1.45). It means that the French net trading is evolving

positively with each of those countries (since its coe�cient is of opposite sign to the others, see

Johansen (1988)). Figure 3.5 gives the four net tradings during both periods before and after the

Euro. The straight line separates the two time periods (January 1999). By looking at the period
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before the introduction of the Euro, we can see the common increasing movement between the

four countries.

Figure 3.5: Traces depicting net trading of Germany, France, Italy and Spain for the period

1991-2008. The vertical line marks the start of the Euro. Comparing both sides, a common

increasing movement between these countries can be appreciated.

Now we can have a look at the e�ect of the German and the Italian current accounts on the

unemployment rates of France and Spain by looking at the two �rst rows of Table 3.9. The �rst

row suggests that as the German net trading is increasing, the unemployment rates of France

and Spain are decreasing (positive coe�cient of +0.23 for the French unemployment rate and

+0.35 for the Spanish unemployment rate). But the second row, on the other hand, leads to the

fact that an increasing Italian current account has a bad e�ect on the French and the Spanish

unemployment rates (due to the coe�cients −0.36 and −0.15 being of opposite sign).

In order to summarize the period before the introduction of the Euro, we can retain the fact
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that there is a positive comovement between the four countries current accounts, which is a good

sign of convergence between the economies. The behaviour of the unemployment rates are, on

the other hand, harder to describe if there is any comovement between them.

As for the data set after the introduction of the Euro, we found a cointegration rank of

3. Table 3.10 describes the three independent cointegrating relationships derived from the same

methods as in Section 3.3.7. We chose the same order of variables as in Table 3.9.

Table 3.10: Cointegrating relations after the introduction of the Euro: 1999-2008

GerNX ItaNX SpaNX ItaIR GerUR ItaUR FraNX GerIR FraIR SpaIR FraUR SpaUR

1 0 0 3.97 0.31 1.11 2.78 -61.60 77.53 -23.18 -3.98 -2.17

0 1 0 3.80 0.25 -0.66 0.26 -14.97 21.12 -10.55 -0.71 -0.40

0 0 1 0.94 -0.27 0.24 -1.50 23.15 -27.24 3.83 0.82 0.13

If we compare the coe�cients of the net tradings this time, we have that the German and the

French net tradings are coevolving negatively: the coe�cient of France is +2.78, which suggests

that the French net trading is evolving in the opposite direction as the German current account,

with a quite fast speed rate of 2.78. The graph on Figure 3.5 indeed shows the German net

trading increasing while the French current account is decreasing. However, the cointegrating

relations inform more about the speed of this decrease than by just looking at the graph. On

the other hand the French current account still coevolves positively with the Spanish net trading

(−1.50). As for the Italian net trading, it is di�cult to draw conclusions. The Italian current

account is coevolving negatively with the French one. In Figure 3.5, we notice that the Italian

current account is actually the hardest to de�ne (in terms of tendency). The graph also shows

vaguely a tendency for the Italian net trading to decrease after the introduction of the Euro, but

less faster than the Spanish and the French net tradings. In addition the cointegrating coe�cient

of the French current account is below 1 and is quite small (+0.26). For this reason, it is unclear

to state if Italy is actually more similar to France and Spain, rather than Germany, in terms of
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evolution of the current account.

Figure 3.5 indeed shows a decreasing movement for France and Spain after the Euro (on

the right handside of the straight line separating the two periods). A decrease is noticeable

also for Italy but we notice a tendency to stabilize at the end and the cointegrating relations

actually reveal an increasing tendency. Compared to the data before the introduction of the

single currency, we can separate the set of countries into two groups: Germany on the one side

that is clearly increasing, but France and Spain clearly decreasing. Italy is a country of which

the net trading was indeed decreasing as well in the beginning of the decade, but �stabilized�

itself more at the end of that period. A reason suggested would be that the Italian economy

focused more on heavy industries, more exportable by using the Euro.

If we look at the interest rates in Figure 3.6, we can say that they are almost �equal� and

conclude a quasi perfect positive comovement between the four interest rates. By looking at the

three rows of Table 3.10, a complementarity can indeed be noticed between the 4 coe�cients

corresponding to the interest rates. If for each row we sum all the coe�cients corresponding to

the interest rates we will obtain a very small number close to 0. This tells us that the coe�cients

are complementary and go with the fact that these four variables are almost equal (see Figure

3.6 after 1999). We can almost say that the four interest rates are cointegrated independently

from the other variables.
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Figure 3.6: Long-term interest rates in France, Germany, Italy and Spain as a percentage. The

vertical dashed line marks the periods before and after the Euro. Convergence is apparent as

the inception of the Euro approaches.

After the Euro, the German unemployment rate is di�cult to interpret due to a steady growth

before 2005 and then a sudden decrease as the years of the �nancial crisis are approaching (see

Figure 3.7). By looking at the �rst row of Table 3.10, as the German current account is increas-

ing, the French and the Spanish unemployment rates are increasing (positive coevolution due

to negative coe�cients for the unemployment rates of those two countries: −3.98 and −2.17,

respectively). On the other hand, the Italian and the German unemployment rates are decreas-

ing, due to positive coe�cients (+1.11 and +0.31, respectively), as the German net balance is

increasing. If we look at the comparison with the Italian net trading in the second row of Table

3.10, the unemployment rates of Italy (−0.66), France (−0.71) and Spain (−0.40) increase as the

Italian net trading increases, but the German unemployment rate decreases (+0.25). The Italian

current account thus has a negative e�ect on its own unemployment rate but not on the German
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unemployment rate. Eventually, when comparing with the Spanish current account in the third

row of Table 3.10, we notice that the German unemployment rate is coevolving positively (−0.27)

but the French unemployment rate's coe�cient (+0.82) is coevolving negatively with the Span-

ish net trading. This suggests that the Spanish net trading has a positive impact on the French

unemployment rate but not on the German one. In that same row, the Spanish unemployment

rate is positive (+0.13) and thus it suggests that the Spanish unemployment rate increases as

the Spanish net trading decreases. The Spanish net trading also has a positive impact on the

Italian unemployment rate due to a positive coe�cient (+0.24).

Figure 3.7: Unemployment rates in France, Germany, Italy and Spain as a percentage. The

vertical dashed line marks the periods before and after the Euro. Although slowly, there are

signs of convergence after the inception of the single currency.

In order to sum up the results over the period following the adoption of the Euro, the German

current account is the only one doing well in increasing while the French and Spanish net tradings
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decrease. The Italian net trading is decreasing at the beginning of the decade but starts to

increase by the end of the time period studied (according to the analysis of both the graph and

the cointegrating coe�cients). From the cointegrating relations after the adoption of the Euro

in Table 3.10, we can say that the French and the Spanish economies are coevolving well: indeed

the net tradings are coevolving positively and the Spanish net trading has a positive impact

on the French and Spanish unemployment rates. Finally it is also good to point out that the

cointegration rank dropped to the value of 3 in this second period, which proves that there is in

fact less comovements between the economies after the introduction of the Euro.

3.4.7 Posterior summaries on the real data sets

This section presents traceplots from the MCMC procedure of some coe�cients of the VECM.

Figure 3.8 shows the traceplot of the coe�cients Π63, Π81, Ψ23 and Ψ93 after running the Gibbs

sampler for the European panel data set before the introduction of the Euro. We can see

immediate convergence of the Markov chain for these coe�cients. Likewise, we obtain the trace

plots of other coe�cients for the European panel data set for the time period post-Euro (see

Figure 3.9). Again, the convergence is very visible in the chain for those particular coe�cients

(Π32, Π99, Ψ21 and Ψ78).
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Figure 3.8: Trace plots of the coe�cients Π63, Π81, Ψ23 and Ψ93 after running the Gibbs sampler

for the data set of the period pre-Euro (1991-1998).
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Figure 3.9: Trace plots of the coe�cients Π32, Π99, Ψ21 and Ψ78 after running the Gibbs sampler

for the data set of the period post-Euro (1999-2008).

Figures 3.10 and 3.11 present the posterior and prior distributions obtained for the same

coe�cients presented in the traceplots of Figures 3.8 and 3.9, after running the MCMC described

by Algorithms 1 and 2. Prior distributions are represented in blue whereas posterior distributions

are in red. Priors of Π and Ψ are simulated at each step of the MCMC from the priors de�ned in

(3.5) and (3.7) where the covariance matrix Σ is simulated from the Inverse-Wishart prior de�ned

in (3.8). The same hyperparameters described in Algorithm 1 are used. For both of our data

sets, we obtain fairly symmetric distributions with a sharp shape for the posterior distributions

compared to the �at shape of the priors.
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Figure 3.10: Posterior and prior densities of the coe�cients Π63, Π81, Ψ23 and Ψ93 after running

the Gibbs sampler for the data set of the period pre-Euro (1991-1998): Priors in blue and

posteriors in red.
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Figure 3.11: Posterior and prior densities of the coe�cients Π32, Π99, Ψ21 and Ψ78 after running

the Gibbs sampler for the data set of the period post-Euro (1999-2008): Priors in blue and

posteriors in red.

3.5 Discussion

This chapter is based on the use of a non-singular Gaussian prior for the cointegrating matrix

Π and on determining the cointegration rank by assessing the number of irrelevant singular values

of Π throughout the Gibbs sampler. The lag-parameters Ψ of the VECM are inferred thanks

to a non-singular Gaussian prior as well. While we set an Inverse-Wishart prior distribution for

the covariance matrix Σ of the errors, we derive unconditional distributions for Π and Ψ from

Σ. In the Gibbs sampler, we then only have to simulate Π and Ψ from these unconditional

distributions.

The core of our methods develops Gibbs sampling based on Gaussian priors, while the coin-

90



tegration space is taken into account when the posterior samples are trimmed using a threshold,

the insigni�cance criterion. Our methodology bene�ts by avoiding the requirements of applying

Johansen cointegration tests and of pre-ordering the data before Gibbs sampling takes place.

This allows assessment of uncertainty in the estimation of the cointegration rank and results

in signi�cant computational savings. Our proposal via the insigni�cance criterion provides �ex-

ibility in the stringency the analyst may apply for rank estimation. It is expected that the

threshold speci�cation will depend on the particular application and will require some amount

of experimentation. It bene�ts from �exibility and subjectivity without being di�cult to set

and interpret, hence it is expected to appeal to practicing econometricians and economists alike.

Furthermore, the proposed rank determination is applied post-hoc which can allow the adoption

of other MCMC estimation procedures of the cointegration matrix, adding further �exibility and

adaptability to this procedure.

The methodology is illustrated with simulated data sets and a panel of macro-economic vari-

ables of Euro-zone countries before and after the introduction of the Euro. We found that the

cointegration rank was signi�cantly smaller for the period after the adoption of the Euro (rank

of 3 after and 6 before), suggesting less cointegration relations, and therefore less comovement

among these economies after the introduction of the Euro.

We can associate this Error Correction Model to the Unrestricted Error Correction model of

the embedding approach, see Kleibergen and van Dijk (1994) and Kleibergen and Paap (2002).

Such a prior on the cointegrating matrix Π implies a prior for its singular values, and therefore

we can have a prior for the rank (see Section 3.3.3). For future work, we could try to derive a

posterior distribution for the cointegration rank in order to evaluate it in a Bayesian methodol-

ogy.

The methodology seen in this chapter will be extended to time-varying cointegration systems

by allowing MCMC estimation of the time-varying cointegration matrix in the next chapter (see

Chapter 4). Indeed, a forward �ltering backward sampling MCMC scheme may be adopted,

while the cointegration rank can be determined using the insigni�cance criterion proposed in
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this chapter, given that our methodology allows estimating the cointegration matrix as if it were

non-singular and then determining its reduced rank post-hoc. This extension of the time-varying

cointegration systems is proposed in the next chapter of this thesis: �Time-varying cointegration�.
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Chapter 4

Time-varying cointegration

4.1 Time-varying Vector Error Correction Model

In models involving macroeconomic or �nancial time series, some parameters may change

over time (e.g. Ang and Bekaert (2002), Cogley (2005), Cogley and Sargent (2001), Cogley and

Sargent (2005) and Stock and Watson (1996)). For instance, a model on �nancial time series

can be used to take into account the data before the crisis of the subprimes, but that model will

not be applicable on the period following the crisis. The theory of time varying parameters can

actually make the parameters of that model change over time and thus adapt them on di�erent

time periods. The parameters of such a model are then said to be time varying or dynamic.

Estimating time-varying parameters in an economic model also makes it possible to �nd out

similarities between time periods in historical data.

Among works about time-varying cointegration, we can �rst mention Granger and Lee (1991)

who described a time-varying cointegrated process applied to US data prices and wages. Bierens

and Martins (2010) also developed a model in which a smooth evolution of the cointegrating

relations over time is seen in the Purchasing Power Parity between di�erent countries. As for

Choi and Saikkonen (2004) they developed statistical tests about the linearity in cointegrating

smooth transition regressions and applied them to a U.K. money demand function.
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Among works about cointegration, we can mention Koop et al. (2011) who developed a time

varying Error Correction model. In particular, they proposed a method, that allowed the coin-

tegrating space (i.e. a vector space spanned by the independent cointegrating vectors) to evolve

over time. They then use a state space model algorithm in order to infer the time-varying ECM

and highlight the evolution of some cointegrating relations between US macroecomic variables.

Besides, it is also important to mention the work of Primiceri (2005) who proposed an e�-

cient MCMC procedure applied to a Vector Autoregressive model in order to model US monetary

policies and its private sector behavior. Following the work of Primiceri, we start this chapter by

introducing the VAR model with time varying coe�cients. In our case we assume the lag order

k to be known and �xed.

xt = Γ1,txt−1 + Γ2,txt−2 + ...+ Γk,txt−k + ut (4.1)

xt =
k∑
j=1

Γj,txt−j + ut, ut ∼ N(0,Σ)

The Vector Error Correction Model (VECM) is derived from the time-varying VAR model

(4.1). We eventually have a time-varying VECM from which we can see how cointegration evolves

over time by studying the movements of the time-varying long-run impact matrix Πt. Papers

about Bayesian time-varying cointegration have assumed a constant cointegration rank so far

and focus more on the values of the cointegrating coe�cients evolving over time, see Granger

and Lee (1991), Bierens and Martins (2010) and Koop et al. (2011). In this chapter, we can use

the same idea of applying a non-singular distribution on the cointegrating matrix and assess the

time varying cointegration rank from it. From the expression of the VAR model (4.1) we obtain

the following VECM:

∆xt = Πtxt−1 +
k−1∑
j=1

Ψj,t∆xt−j + ut, ut ∼ N(0,Σ) (4.2)

with:

Πt = −(Ip − Γ1,t − Γ2,t − ...− Γk,t) = −(Ip −
k∑
j=1

Γj,t) (4.3)
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Ψj,t = −(Γj+1,t − ...− Γk,t) = −
k∑

i=j+1

Γi,t, ∀j ∈ [[1, k − 1]]

However, Primiceri (2005) considered in his model a time-varying error variance matrix Σt

for the VAR (4.1) in which he de�nes the following triangular reduction:

LtΣtLt
′ = DtDt

′ (4.4)

where Lt is a lower triangular matrix with diagonal elements all equal to 1 and Dt is a diagonal

matrix. According to Smith and Kohn (2002), Pinheiro and Bates (1996) and Pourahmadi (2000),

such a decomposition (4.4) allows to estimate more e�ciently a variance matrix. Inferring Σt

at each time can indeed present a huge computational task and they consequently need to use

the decomposition (4.4). With this triangular decomposition, the error correction model can be

written as:

∆xt = Πtxt−1 +
k−1∑
j=1

Ψj,t∆xt−j + Lt
−1Dtεt, εt ∼ N(0, Ip)

In this chapter, we make the choice of Σ to be time-invariant. Some researchers insist on

having a time-varying variance matrix of the errors, see Primiceri (2005) and Koop (1991).

However in this thesis, we think that a time-varying covariance matrix will a�ect the cointegrating

relations. Indeed by de�nition, a cointegrating relation is stationary, and the variance of such a

relation should therefore be constant over time. For instance, assuming a random walk process for

Σt as Uhlig (1994) suggests would break the assumption of stationarity and lead to an inaccurate

estimation of the cointegrating relations. We also think that a time-invariant matrix Σ in the

VECM (4.2) will allow a smooth and gradual evolution of the parameters and the data, which is

what can be seen in practice. Finally, having a time-invariant covariance matrix will considerably

ameliorate the speed of our algorithms, especially with high dimensional data. We will therefore

assume for our model that each ut ∼ N(0,Σ) and we will infer Σ from all the data u1, u2, ..., up.

Section 4.2 gives a reminder of the general state space model used in the literature and the

state space model used for the Vector Error Correction Model (VECM). We then recapitulate

in Section 4.2.3 the algorithm of the Forward Filtering and Backward Recursion in order to
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estimate the dynamic parameters of the VECM (4.3). Based on the singular values of the time-

varying cointegration matrix Πt, we describe an estimate of the cointegration rank at each time in

Section 4.5.1. We also give the method for estimating the time-varying cointegrating independent

relations in Section 4.5.2.

In Section 4.7, this novel methodology is exploited on two synthetic data sets where we de�ne

di�erent time periods with a di�erent number of independent cointegrating relations. In these

simulated processes, the cointegrating relations also evolve over time. Section 4.8.1 will be an

application of this new approach on real data sets: a part of the European panel data set seen

in Chapter 3 and three sectors of the Dow Jones, introduced in Section 4.8.2.

4.2 State space models and estimating the parameters

This section presents the general state space model and how we apply it to the Vector Error

Correction Model (VECM).

4.2.1 The general state space model

The general state space model used in this chapter is composed of two main equations, the

measurement equation and the transition equation (4.5). We use the same notation as for the

state space model introduced by Primiceri (2005).

yt = Htβt + εt , Measurement equation (4.5)

βt = Fβt−1 + ut , Transition equation

where

εt
ut

 ∼ N

0

0

 ,
Rt 0

0 G

 (4.6)

Now let:

βt|s = E(βt|Ys, Hs, Rs, G)

Vt|s = V ar(βt|Ys, Hs, Rs, G)
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Then, given β0|0 and V0|0, we use the following standard Kalman �lter:

βt|t−1 = Fβt−1|t−1 (4.7)

Vt|t−1 = FVt−1|t−1F
′ +G

Kt = Vt|t−1Ht
′(HtVt|t−1Ht

′ +Rt)
−1

βt|t = βt|t−1 +Kt(yt −Htβt|t−1)

Vt|t = Vt|t−1 −KtHtVt|t−1

The backward recursion is de�ned as follows. We �rst start to simulate βT from its moment

and variance given the information at time T : βT |T and VT |T . Then recursively, for each t from

T − 1 to 1, we draw βt from βt|t+1 and Vt|t+1 where:

βt|t+1 = βt|t + Vt|tF
′V −1
t+1|t(βt+1 − Fβt|t) (4.8)

Vt|t+1 = Vt|t − Vt|tF ′V −1
t+1|tFVt|t

4.2.2 State space model of the Vector Error Correction Model

We can rewrite the VECM (4.2) as:

yt = ΘtZt + ut, ut ∼ N(0,Σ) (4.9)

where:

yt = ∆xt , (size p× 1)

Θt = (Πt,Ψ1,t, ...,Ψk−1,t) , (size p× pk)

Zt = (x′t−1,∆x
′
t−1, ...,∆x

′
t−k+1)′ , (size pk × 1)

The VECM model (4.9) constitutes in fact the measurement equation of our state space

model. Let us now de�ne θt = V ec(Θt) and b = p× pk = p2k where:

θt = V ec(Θt) = V ec(Πt,Ψt) (4.10)
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Then, from the measurement equation (4.9), we have:

V ec(yt) = yt = V ec(ΘtZt) + V ec(ut)

= V ec(ΘtZt) + ut

= (Zt
′ ⊗ Ip)V ec(Θt) + ut

(because V ec(AXB) = (B′ ⊗ A)V ec(X))

= (Zt
′ ⊗ Ip)θt + ut

Hence, the measurement equation can be written as:

yt = (Zt
′ ⊗ Ip)θt + ut, ut ∼ N(0,Σ) (4.11)

We now need to construct the dynamics of the state equation in the state space model, which

implies that a b× b parameter matrix F should be introduced like in the transition equation in

the general state space model shown in Equation (4.5). In our model we decided to simplify the

lag parameter matrix F by a scale variable ρ to which we will apply a Bayesian inference later on

in this chapter (see Section 4.3.2). This choice is made in order to avoid lengthy computations

in the Forward Filtering Backward Recursion algorithm.

The time-varying models that are in the literature consider a constant variance of the errors

for the transition equation, meaning that the expected evolution of the parameters θt is the

same for all the time periods. A constant variance of the errors then allows gradual and smooth

evolution of the parameters, which happens to be generally the case. We will denote by Q the

variance matrix of the errors in the transition equation. Therefore the b × 1 vector θt will have

the following dynamics:

θt = ρθt−1 + νt, νt ∼ N(0, Q) (4.12)

Finally, our state space model is summarised as follows:

yt = (Zt
′ ⊗ Ip)θt + ut, ut ∼ N(0,Σ) Measurement equation (4.13)

θt = ρθt−1 + νt, νt ∼ N(0, Q) Transition equation
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Also, in the following sections, Dt will denote the information brought by the data at time

t, i.e. the information brought by yt and yt−1. Furthermore, we can denote by D1:t all the

information brought by the data from time 1 to time t, that is, the information brought by

y0, y1, · · · , yt.

4.2.3 Forward Filtering and Backward Recursion of the Vector Error

Correction Model

This section describes the Kalman Filter applied to the Vector Error Correction Model. In this

chapter, we use a two-�lter smoothing algorithm in order to calculate the posterior distribution

of the parameter vector θt (conditional on observations). The �rst algorithm goes forward in

time from t = 1 to t = T whereas the second algorithm goes backward in time from t = T to

t = 1 hence the notion of Forward Filtering and Backward Recursion algorithm (FFBS). This

algorithm is also referred in the literature as the forward-backward smoothing algorithm. Gibbs

sampling in state space models is achieved by this algorithm. In this methodology, we must rely

on the posterior distributions of the backward recursion because the parameters θt are simulated

given all the data: θt|D0:T . If we take the posterior distributions of the forward �ltering part,

then these distributions would only depend on the previous data time points: θt|D0:t, see Carter

and Kohn (1994) and Fruewirth-Schnatter (1994).

The �rst part consists in creating the expectation and the variance of our parameter θt given

the information at time t: θt|t and Pt|t. That �rst part is called the Forward Filtering algorithm

(4.14). By applying the Kalman Filter (4.7) seen in Section 4.2.1 to our state space model (4.13)

and given θ0|0 and P0|0, we have:

θt|t−1 = ρθt−1|t−1 (4.14)

Pt|t−1 = ρ2Pt−1|t−1 +Q

Kt = Pt|t−1(Zt ⊗ Ip)((Zt′ ⊗ Ip)Pt|t−1(Zt ⊗ Ip) + Σ)−1

θt|t = θt|t−1 +Kt(yt − (Zt
′ ⊗ Ip)θt|t−1)
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Pt|t = Pt|t−1 −Kt(Zt
′ ⊗ Ip)Pt|t−1

The following step in the estimation of the time-varying parameters is to introduce the back-

ward recursion. This step constitutes the smoothing �ltering part in which we collect the expec-

tation and the variance of our parameter θt given the information at time t+ 1, ∀t ∈ [[1, T − 1]].

We use the same algorithm described by Primiceri (2005) for the VAR process, but applied to

the Vector Error Correction Model instead. After the forward �ltering steps, we �rst simulate θT

from its moment and variance given the information at time T : θT |T and PT |T . Then recursively,

for each time t from T − 1 to 1 (backward recursion), we draw θt from a multivariate normal

distribution with mean θt|t+1 and variance Pt|t+1 where:

θt|t+1 = θt|t + ρPt|tP
−1
t+1|t(θt+1 − ρθt|t) (4.15)

Pt|t+1 = Pt|t − ρ2Pt|tP
−1
t+1|tPt|t

4.2.4 Bayesian inference on the covariance matrix Σ

For any time t, we assume Σ to have an Inverse-Wishart prior distribution implying two

hyperparameters A and q like in the previous chapter (see Section 3.3.2):

Σ ∼ IW (A, q) (4.16)

Let us now write the likelihood of the measurement equation given the data. This likelihood

is the one that takes into account all the information from time 1 to time T . It is therefore

proportional to the product from time 1 to time T of the probability distribution functions of

each error ut:

L(Σ;D1:T , θ0:T ) ∝
T∏
t=1

f(ut|D1:t, θt) ∝
T∏
t=1

|Σ|−1/2 exp

(
−1

2
Tr(Σ−1utut

′)

)
giving:

L(Σ;D1:T , θ0:T ) ∝ |Σ|−T/2 exp

(
−1

2
Tr(Σ−1

T∑
t=1

utut
′)

)
(4.17)
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where D1:T represents all the information given by the data yt from time 1 to T and θ0:T represents

all the information given by θt = V ec(Πt,Ψt) from time 0 to T .

After that, it is straightforward to derive the expression of the posterior Inverse-Wishart

distribution of Σ, conditional on all the parameters θ0:T and all the data D1:T :

Σ|D1:T , θ0:T ∼ IW (A+
T∑
t=1

utut
′, T + q) (4.18)

where ut = yt − (Zt
′ ⊗ Ip)θt.

4.3 Bayesian inference on the parameters of the transition

equation: Q and ρ

In this section, we will begin by recalling our state space model (4.13):

yt = (Zt
′ ⊗ Ip)θt + ut, ut ∼ N(0,Σ) Measurement equation (4.19)

θt = ρθt−1 + νt, νt ∼ N(0, Q) Transition equation

The aim of this section is to present a Bayesian inference around the two parameters Q and ρ

of the transition equation (Q and ρ are time invariant). We are going to assume ρ to be a priori

uniformly distributed over the interval [−1, 1] (see details in Section 4.3.2) on the one hand and

the variance matrix Q to have an Inverse-Wishart prior on the other hand (see details in Section

4.3.3). The range of ρ was chosen to be between −1 and +1 in order for the process θt to be

stationary (see the transition equation in (4.19)).

4.3.1 The likelihood of the transition equation

As previously seen in the section about the measurement equation, we need to derive the

likelihood of the transition equation. In our case though, the parameters Q and ρ are not time-

varying. It is then preferable to use all the information obtained over the period [[1, T ]]. For

that, we need to remember the fact that the likelihood over the total period is proportional
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to the product of all the individual likelihoods at time t. We decide to name the likelihood

function of the transition equation as �LT � in order to avoid confusion with the likelihood of the

measurement equation (4.17):

LT (Q, ρ|θ0:T ) ∝
T∏
t=1

f(νt|D1:t, θt)

where for each t ∈ [[1, T ]]:

f(νt|D1:t, θt) ∝ |Q|−1/2 exp

(
−1

2
Tr(Q−1νtνt

′)

)
with νt = θt − ρθt−1 (hence the need of the information at time t and t− 1).

After that, we can derive the following expression of proportionality for the total likelihood

of the transition equation:

LT (Q, ρ|θ0:T ) ∝ |Q|−T/2 exp

(
−1

2
Tr(Q−1

T∑
t=1

νtνt
′)

)
(4.20)

4.3.2 Bayesian inference on ρ: a uniform prior

A uniform prior for ρ

The condition |ρ| < 1, see Koop et al. (2011), must be assumed if the transition equation

is a stationary AR(1) process, and we will set a uniform prior for ρ over [−1, 1] (η1 = −1 and

η2 = +1). Our uniform prior for ρ actually follows the suggestions from Huerta and West (1999)

for prior structure and their related MCMC algorithm where they extend the possibility of having

a non-stationary process (|ρ| = 1).

Conjugacy and posterior of ρ

In this chapter, the truncated normal distribution is denoted as �TN � and takes into account

the two delimiting bounds required (�nite or in�nite) in the de�nition, between which the random

variable can take its values. Here, the lower bound de�ned in the prior is η1 and the upper bound

is η2 (η2 > η1). Thus, at iteration i of the MCMC procedure, we have:

ρ(i)|Q(i−1), θ
(i)
0:T ∼ TN(η1, η2, µ, s) (4.21)
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where µ and s depend both on Q(i−1) and θ
(i)
0:T :

µ = µ(Q(i−1), θ
(i)
0:T ) =

∑T
t=1 θ

(i)
t

′
Q−1(i−1)

θ
(i)
t−1∑T

t=1 θ
(i)
t−1

′
Q−1(i−1)θ

(i)
t−1

(4.22)

and

s = s(Q(i−1), θ
(i)
0:T ) =

1√∑T
t=1 θ

(i)
t−1

′
Q−1(i−1)θ

(i)
t−1

(4.23)

Due to the expression of µ (4.22), we can guess that the values of µ will be very close to

1 since the smoothing e�ect of the algorithm will bring the value of θ
(i)
t to be very close to

θ
(i)
t−1. Furthermore, the standard deviation (4.23) is expected to be quite small because of its

denominator.

4.3.3 Bayesian inference on Q

Prior distribution for Q

Recall that Q is a positive de�nite covariance matrix of size b× b, where b = p2k. We decide

to represent it by an Inverse-Wishart distribution involving 2 hyperparameters, the b × b scale

matrix B and the degrees of freedom w:

Q ∼ IW (B,w) (4.24)

Conjugacy and full conditional posterior distribution of Q

By multiplying the prior of Q (4.24) with the likelihood of the transition equation LT (4.20),

we easily obtain the full conditional posterior distribution of Q, i.e. a conjugate Inverse-Wishart

distribution:

Q(i)|ρ(i), θ
(i)
0:T ∼ IW (B +

T∑
t=1

(θ
(i)
t − ρ(i)θ

(i)
t−1)(θ

(i)
t − ρ(i)θ

(i)
t−1)′, w + T ) (4.25)

Also, for each iteration i, we decide to simulate ρ before Q (see Algorithm 5). The covariance

matrix Q of the transition equation is sampled from the appropriate Inverse-Wishart distribution

using the previously simulated ρ inside the same step i of the MCMC loop. In fact, the order
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of the simulations of ρ and Q does not really matter (or very little). The results of this chapter

would have not been signi�cantly altered whether ρ was simulated before or after Q.

4.4 Initialization of the parameters and hyperparameters

In this section, we describe how we initialize the respective parameters of the measurement

equation θt = V ec(Πt,Ψt), Σ, ρ and Q: θ0 , Σ0 , ρ0 and Q0. We will also give arguments on

the choice of the hyperparameters A and q for the measurement equation and B and w for the

transition equation. Time t = 0 is taken as the initial time of the sample.

Initial parameters and hyperparameters for the measurement equation

For all the data sets studied in this chapter (see Sections 4.7, 4.8.1 and 4.8.2), we estimated

the initial parameters of the VECM by the use of a pre-sample of a certain size τ < T with the

methods developed by Luetkepohl (2006) (see Section 2.5). Therefore for any t ∈ [[1, τ ]] we will

estimate:

∆xt = Π0xt−1 +
k−1∑
j=1

Ψ0j∆xt−j + εt

with εt ∼ N(0,Σ0).

Π0, (Ψ0j)1≤j≤k−1 and Σ0 are estimated from the methods stated in Section 2.5. The parameter

vector θ0 is obtained thanks to the estimation of Π0 and (Ψ0j)1≤j≤k−1. Σ0 will be used as the

value of Σ at iteration 0 (Σ(0) ← Σ0) and for estimating the hyperparameter A.

Hyperparameters A and q are chosen like in the previous chapter (see Section 3.3.6): q is

equal to p+ 4 where p is the dimension of Σ and A is determined by the estimation of the error

covariance matrix from the pre-sample by which we multiply (q − p+ 1) (see Section 3.3.6):

A = (q − p− 1)× Σ0
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Initial parameters and hyperparameters in the transition equation

The parameter ρ of the transition equation is expected to have a value between −1 and +1,

in order for the transition equation to be stable. We decide to input the initial value ρ0 = 1,

assuming a random walk for the transition equation at the beginning.

Values of Q should not be very large because we want to keep the smoothing e�ect in the

estimation of the parameter θt of the transition equation. Therefore we need to de�ne a sensible

scale hyperparameter B and sensible degrees of freedom w for the Inverse-Wishart prior distri-

bution of Q so that the order of magnitude of the elements contained in Q is small.

Since Q is distributed as an Inverse-Wishart, the expectation of Q in this prior is B/(w−b−1).

We will choose the hyperparameter w to be the usual addition of the dimension of Q and 4:

w = b + 4. In addition, we would like the error covariance matrix of the transition equation

not to be too big. From the full conditional distribution (4.25), we have that the sum of the

estimated errors would be relatively small compared with B if B had large values. The value of

ρ is generally very close to 1 due to the posterior distribution that concentrates around 1 (see

Section 4.3.2). Therefore, a far too big value for B would neglect the part concerning the error

terms
∑T

t=1(θ
(i)
t − ρ(i)θ

(i)
t−1)(θ

(i)
t − ρ(i)θ

(i)
t−1)′ in the posterior distribution scale matrix of Equation

(4.25). Thanks to a sensitivity analysis conducted on Q (see Section 4.7.3), we noticed that the

dynamic of the cointegration rank was much more volatile over time when B was taken to be

too large (B = 10−2 × Ib or 10−3 × Ib). Therefore, we will choose an order of magnitude of 10−4

or 10−5 for B: when starting by using this order of magnitude for B = 10−4 × Ib, we saw that

the dynamic of the cointegration rank was much more accurate with our simulated data sets

(see Section 4.7.3). In our examples on the simulated data sets, we discuss the choice of the

hyperparameters w and B and how they can have an impact on the �nal results (see Section

4.7).
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Size of the pre-sample

The data sets treated in this chapter contain a lot of time points (T ≈ 1,000) in general,

and the size of the pre-sample should therefore be small. We decide to have a pre-sample of size

τ = 50 and estimate the parameters and hyperparameters of the measurement equation from

this pre-sample.

4.5 Time-varying cointegration: the rank and the cointe-

grating relations

4.5.1 Evolution of the cointegration rank

One of the goals in introducing the VECM as a state space model is also to see if the

cointegration rank is evolving over time. We have seen in Chapter 3 that the cointegration rank

can be estimated from the long-run impact matrix Π of the VECM. This method of estimation

was based on the singular values of the matrix Π and on the contribution of the smallest singular

values. We compared this contribution of the last singular values with a parameter called the

irrelevance criterion, ε.

With the state space model introduced in (4.9), we can extract a time-varying cointegrating

matrix Πt from each θt = V ec(Θt) (4.10), and derive a time-varying cointegration rank rt.

4.5.2 Evolution of the independent cointegrating relations

It is of course theoretically possible to see the evolution of the cointegrating relations over

all the data period of length T . But that would mean analysing T cointegrating matrices Πt for

each t deriving its cointegration rank and its independent cointegrating relations contained in

the p× rt matrix βt.

Therefore, for each time t and based on the last 50 iterations of Πt, we can derive the mean

cointegrating matrix Πmean,t and the median cointegration rank rmedian,t. Then, by using the same
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methods as in Section 3.3.7, we can obtain the independent cointegrating relations contained in

a matrix βt:

βt
′ = (αt

′αt)
−1αt

′Πt =
[
Irt Bt

′
]

If we were in three dimensions (p = 3) and the cointegration rank was 2, e.g., we could

imagine the two cointegrating vectors in a 3-D graph changing progressively their length and

directions over time.

4.6 Recapitulation of the algorithm

The algorithms described in this section are based on the assumption that our data set is

de�ned for a large time period (T > 500). Financial data sets consist in general of daily data and

imply large data sets (see Section 4.8.2). The pre-sample taken to calculate the initial parameters

and to estimate some hyperparameters can then be a small part of the actual data set, of size

τ = 50, for example. The real data set applied to a European panel has, however, less data time

points (due to monthly data) and we will therefore specify another size for the pre-sample (see

Section 4.8.1).
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Algorithm 4 Initialization of the parameters

Set the size of the pre-sample τ = 50. The data set treated is of size T > 500.

For the pre-sample data set containing observations [[1, τ ]]:

Elements of the measurement equation:

• Initialize Π
(0)
0|0 ← Π̂ , Ψ

(0)
0|0 ← Ψ̂ , Σ(0) ← Σ̂ from the LS estimates (2.30) seen in Section 2.5.

• Thanks to Π
(0)
0|0 and Ψ

(0)
0|0 we can construct the b× 1 vector θ

(0)
0|0: θ

(0)
0|0 = V ec(Π

(0)
0|0,Ψ

(0)
0|0).

Set the values of the hyperparameters:

• q = p+ 4 and A = (q − p− 1)× Σ(0)

Elements of the transition equation:

• Q0 , ρ0 are initialized as being Q0 = 10−5 × Ib and ρ0 = 1 (see the justi�cation in Section

4.4).

• Initialize P0|0 as being the identity matrix (of size b× b): P0|0 = Ib.
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Algorithm 5 General Gibbs for the dynamic VECM

Set the number of iterations to be m = 300.

for i ∈ [[1,m]] do

for t ∈ [[1, T ]] do

Forward �ltering:

• Obtain θ
(i)
t|t and P

(i)
t|t thanks to the forward �ltering part of the algorithm (i.e. from

Equation (4.14) in Section 4.2.3).

end for

• Set θ
(i)
T ← θ

(i)
T |T . Set P

(i)
T ← P

(i)
T |T .

for t ∈ {T − 1, T − 2, · · · , 1} do

Backward recursion:

• Obtain θ
(i)
t and P

(i)
t thanks to the backward recursion part of the algorithm (i.e. from

Equation (4.15) in Section 4.2.3).

end for

for t ∈ {1, 2, · · · , T} do

• Extract Π
(i)
t from θ

(i)
t : The columns of Π

(i)
t are the �rst column elements in θ

(i)
t .

• Estimate r
(i)
t from Π

(i)
t based on the irrelevance of the last singular values of Π

(i)
t (see

Section 3.2).

end for

• Sample Σ(i) from the Inverse-Wishart posterior distribution stated in Equation (4.18) in

Section 4.2.4.

• Sample ρ(i) from the truncated normal posterior distribution stated in Equation (4.21)

in Section 4.3.2.

• Sample Q(i) from the Inverse-Wishart posterior distribution stated in Equation (4.25) in

Section 4.3.3.

end for
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Algorithm 6 Final decisions for the time-varying cointegration rank and independent relations

for t ∈ [[1, T ]] do

• Calculate the �nal time-varying cointegration ranks as follows:

rmedian,t ← median
{m−50≤i≤m}

(rt
(i)).

• Calculate the �nal time-varying cointegrating matrices as follows:

Πmean,t ← mean
{m−50≤i≤m}

(Πt
(i)).

• Calculate the �nal independent time-varying cointegrating relationships using the oper-

ation of Chapter 3 and recapitulated for each t in Section 4.5.2 as:

βmean,t
′ ← (αt

′αt)
−1αt

′Πmean,t =
[
Irt Bt

′
]

end for

A Directed Acyclic Graph (DAG) is helpful to understand better the Bayesian network built

in this chapter and described by the previous algorithms. Such a graph is represented in Figure

4.1 below. In this Figure, we can see two plates with one plate embedded in the other. Outside

the plates are the parameters that neither depend on the iterations of the MCMC nor the time

points. The hyperparameters A, q, η1, η2, B and w are �xed before running the algorithm and

lie outside the two plates. The biggest plate contains the �xed parameters of the state space

models, that are the parameters that are simulated at each iteration step of the MCMC. The

small plate, that is embedded in the big plate, contains the parameters of the VECM that are

simulated at each time point for each iteration of the MCMC. In particular, the cointegrating

matrix Π belongs to the small plate in which a cointegration rank is estimated and will depend

on time.
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A q η1 η2 B w

Σ(i) ρ(i) Q(i)

θ
(i)
t

r
(i)
t Π

(i)
t Ψ

(i)
t

t = τ + 1, . . . , T

i = 1, . . . ,m = 300

Figure 4.1: Directed Acyclic Graph of the Bayesian network established in this chapter: Square

boxes contain the �xed parameters, circles contain the randomized parameters.

4.7 Simulated data

4.7.1 Description of the data

First of all, we build one simulated data set that we call D1. This set consists of �ve di�erence

stationary time series for which we create a certain number of cointegrating relations that will

evolve over di�erent time periods. Our �rst data set D1 will consist of �ve time series of length

T = 1050 and divided into three time periods. Each time period has its speci�c cointegrating

relations and each time period has a di�erent cointegration rank (i.e. number of independent

cointegrating relations). In the �rst time-period (of length 350) we have four cointegrating

relations, in the second time period (of length 300) we have three cointegrating relations and

�nally the last time period (of length 400) deals with four cointegrating relations.

Let xt = (xit)1≤i≤5, ∀t ∈ [[1, T = 1050]] represent our simulated data D1. We start by

simulating v1t ∀t ∈ [[1, τ1 = 350]] from the standard normal distribution, thus giving it a
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stationary signal: v1t ∼ I(0). As a consequence,
∑t

k=1 v1k is di�erence stationary or I(1). We

decide to give our �rst time series of the list, x1t, a di�erence stationary signal, i.e. ∀t ∈ [[1, τ1 =

350]], x1t =
∑t

k=1 v1k. After that we can build the time series x2t, x3t, x4t and x5t as independent

linear combinations of the previous time series so that we have 4 cointegrating relations:

∀t ∈ [[1, τ1]],

x1t =
∑t

k=1 v1k ∼ I(1)

x2t = x1t + v2t ∼ I(1)⇒ y1t = x2t − x1t ∼ I(0)

x3t = x2t + x1t + v3t ∼ I(1)⇒ y2t = x3t − x2t − x1t ∼ I(0)

x4t = x2t + v4t ∼ I(1)⇒ y3t = x4t − x2t ∼ I(0)

x5t = x4t + v5t ∼ I(1)⇒ y4t = x5t − x4t ∼ I(0)

where v2t, v3t, v4t, and v5t are simulated from the standard normal distribution.

We can see that we have four cointegrating relations giving our �rst period of the data set a

cointegration rank of 4. These cointegrating relations are respectively:

∀t ∈ [[1, τ1]],

y1t = x2t − x1t = v2t ∼ I(0)

y2t = x3t − x2t − x1t = v3t ∼ I(0)

y3t = x4t − x2t = v4t ∼ I(0)

y4t = x5t − x4t = v5t ∼ I(0)

Then, our second time period has the following three cointegrating relations (therefore a cointe-

gration rank of 3):

∀t ∈ [[τ1 + 1 = 351, τ2 = 650]],

x1t =
∑t

k=1 v1k ∼ I(1)

x2t =
∑t

k=1 v2k ∼ I(1)

x3t = x2t + x1t + v3t ∼ I(1)⇒ y1t = x3t − x2t − x1t ∼ I(0)

x4t = x2t + v4t ∼ I(1)⇒ y2t = x4t − x2t ∼ I(0)

x5t = x4t + v5t ∼ I(1)⇒ y3t = x5t − x4t ∼ I(0)
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Finally, the last time period of the data set D1 has the following four independent cointegrating

relations (cointegration rank 4):

∀t ∈ [[τ2 + 1 = 651, T = 1050]],

x1t =
∑t

k=1 v1k ∼ I(1)

x2t = x1t + v2t ∼ I(1)⇒ y1t = x2t − x1t ∼ I(0)

x3t = x2t + x1t + v3t ∼ I(1)⇒ y2t = x3t − x2t − x1t ∼ I(0)

x4t = x2t + v4t ∼ I(1)⇒ y3t = x4t − x2t ∼ I(0)

x5t = x4t + v5t ∼ I(1)⇒ y4t = x5t − x4t ∼ I(0)

Let us now describe our second simulated data set called D2. This data set is composed

of p = 4 time series over a time period of length T = 850. In this data set, we distinguish

two time periods. The �rst time period [[1, τ = 450]] will have three independent cointegrating

relations whereas the second time period [[τ+1 = 651, T ]] will have two independent cointegrating

relations.

Let xt = (xit)1≤i≤4, ∀t ∈ [[1, T = 1050]], represent our simulated data. We can build the time

series x2t, x3t and x4t as independent linear combinations of the previous time series so that we

obtain 4 cointegrating relations:

∀t ∈ [[1, τ ]],

x1t =
∑t

k=1 v1k ∼ I(1)

x2t = x1t + v2t ∼ I(1)⇒ y1t = x2t − x1t ∼ I(0)

x3t = x2t + x1t + v3t ∼ I(1)⇒ y2t = x3t − x2t − x1t ∼ I(0)

x4t = x2t + v4t ∼ I(1)⇒ y3t = x4t − x2t ∼ I(0)

where v1t, v2t, v3t and v4t are simulated from the standard normal distribution.

As for the second time period, D2 will have two independent cointegrating relations:

∀t ∈ [[τ + 1 = 651, T = 1050]],

x1t =
∑t

k=1 v1k ∼ I(1)

x2t = x1t + v2t ∼ I(1)⇒ y1t = x2t − x1t ∼ I(0)

x3t = x2t + x1t + v3t ∼ I(1)⇒ y2t = x3t − x2t − x1t ∼ I(0)

x4t =
∑t

k=1 v4k ∼ I(1)
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4.7.2 Implementation of the code for the simulated data sets

For both of our simulated data sets, we take a pre-sample size of order of magnitude τ = 50.

In the time-period of the pre-sample [[1, τ ]], we then initialize the parameters of the VECM

thanks to the estimation methods of Luetkepohl stated in Section 2.5. On the pre-sample data

set containing observations [[1, τ ]], we can obtain Π̂, Ψ̂ and Σ̂ that will be the values given to

the initial parameters of the Gibbs sampler (see Algorithm 4). These initial parameters are the

parameters Π and Ψ of the VECM at iteration 0 and at time 0 given 0, where the forward �ltering

part of the algorithm starts: Π
(0)
0|0, Ψ

(0)
0|0. From these latter two parameters we can build the �rst

element θ
(0)
0|0 of the forward �ltering algorithm. The covariance matrix of θ

(0)
0|0 will be equal to the

identity matrix, i.e. P0|0 = Ib.

In the measurement equation, the parameter Σ is time-invariant (see Section 4.1) and the

value Σ̂ will be given to Σ at iteration 0: Σ(0) ← Σ̂. As for the transition equation, the parameters

Q0 and ρ0 are set as follows: Q0 = 10−5 × Ib and ρ0 = 1 (see Section 4.4).

The hyperparameters used in the measurement equation are q and A and will be given values

in the same way as in the previous chapter: q = p+4 and A = (q−p−1)×Σ(0) (see Section 3.3.6).

The hyperparameters of the Inverse-Wishart covariance matrix Q in the transition equation are

taken as being equal to B = 10−5 × Ib and w = b + 4 (i.e. the dimension of Q plus four).

The bounds of the uniform prior of ρ are −1 and +1 (see Section 4.4). In the next section (see

Section 4.7.3), we show that taking the hyperparameter scale B with too large values a�ects the

results of �nding the cointegration rank for the �rst simulated data set D1. However on the same

example, we show that increasing the degrees of freedom w a little will not a�ect the derivation

of the cointegration rank (see Section 4.7.3).

At each iteration i, the Forward Filtering and Backward Recursion algorithm is then running

for the sample corresponding to the time period [[τ+1, T ]]. At the end, we obtain all the posterior

distributions from which one θ
(i)
t is simulated (see Algorithm 5) at each time t of iteration i. We

then take the cointegrating matrix Π
(i)
t contained in θ

(i)
t and estimate the cointegration rank r

(i)
t

at time t by the methods based on the irrelevance criterion seen in Chapter 3 (see Section 3.2).
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The number of iterations is equal to m = 300 and we have a burn-in set of 250 iterations. For

each time t, we will derive the mean of the 50 last cointegrating matrices Π
(i)
t and the median

of the 50 last cointegration rank r
(i)
t . We will then obtain at each time point t, a cointegrating

matrix Πmean,t and a cointegration rank rmedian,t. Based on the cointegration rank at each time

t, we will be able to obtain the rmedian,t independent cointegrating relations from Πmean,t, see

Section 4.5.2 and Algorithm 6.

4.7.3 Estimation of the cointegrating parameters

In Chapter 3, we found that an irrelevance criterion of 4% was actually the one that �t the most

with our simulations. However it is still good to investigate several values of ε around 5% in this

chapter as well. For the �rst simulated data set consisting of three di�erent time periods with

a di�erent rank, the resulting median cointegration rank is given in Figure 4.2. The fact that

the pre-sample was of size 50 implies that the cutting point from Period 1 to Period 2 is t = 300

and the cutting point from Period 2 to Period 3 is t = 600. We can see from Figure 4.2 that

an irrelevance criterion of ε = 3− 5% captures well the time points when the cointegration rank

changes.
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Figure 4.2: Evolution of the median cointegration rank in the simulated data set with p = 5

time series: cointegration rank is 4 from t = 0 to t = 300, cointegration rank 3 from t = 300 to

t = 600 and cointegration rank 4 from t = 600 to t = 1000 (m = 300 iterations).

In Section 4.4 we discussed about asserting the value of the hyperparameters of the Inverse-

Wishart prior in the transition equation. We stated that too large values for B would make the

estimation of the rank volatile and therefore an order of magnitude of 10−5 is adapted because B

would not then overwhelm the information added by the sum of squared errors in Equation (4.25).

Figure 4.3 represents the time-varying estimation of the cointegration rank for the synthetic data
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setD1 when we set B to be 10−2×Ib. We can see that the dynamics of the cointegration rank does

not re�ect reality. The cointegration rank keeps having the same value (r = 4) for irrelevance

criteria of ε = 5% and 8% whereas for the small criterion ε = 3%, the resulting cointegration

rank seems to be very volatile and taking wrong values between 4 and 5.
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Figure 4.3: Evolution of the median cointegration rank for the simulated data set D1 with p = 5

time series: cointegration rank is 4 from t = 0 to t = 300, cointegration rank 3 from t = 300 to

t = 600 and cointegration rank 4 from t = 600 to t = 1000 (m = 300 iterations). Here we use

B = 10−2 × Ib and w = b+ 4 = 54.
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In Figure 4.4, we have used an order of magnitude of 10−5 for the hyperparameter B but we

have chosen a larger value of w (w = b + 10). We can see, on the other hand, that changing

a little the value of w does not really change the dynamics of the cointegration rank over time.

Therefore we conclude that a small matrix B (of magnitude 10−5) will smooth the dynamics of

the cointegration rank. Values of w that are not too much above the threshold b+ 4 do not have

an impact on the results.
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Figure 4.4: Evolution of the median cointegration rank in the simulated data set with p = 5

time series: cointegration rank is 4 from t = 0 to t = 300, cointegration rank 3 from t = 300 to

t = 600 and cointegration rank 4 from t = 600 to t = 1000 (m = 300 iterations). Here we use

B = 10−5 × Ib and w = b+ 10 = 60.

By applying the good hyperparameters B and w on the second simulated data set, we obtain

the dynamic of the cointegration rank in Figure 4.5. As we can see from that Figure, this

estimation of the rank is reasonably accurate. The cutting time point between Period 1 and

Period 2 is t = 400.
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Figure 4.5: Evolution of the median cointegration rank in the simulated data set with p = 4 time

series: cointegration rank of 3 from t = 0 to t = 400, cointegration rank of 2 from t = 600 to

t = 800 (m = 300 iterations).

We can see the accuracy of the estimation of the cointegrating coe�cients in the tables

provided below. They compare the theoretical cointegrating coe�cients (Tables 4.1, 4.3 and 4.5)

with the estimated coe�cients that are obtained from the algorithm (respectively, Tables 4.2,

4.4 and 4.6).
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Table 4.1: Independent cointegrating relations for Period 1: coe�cients created in the simulated

data (left) transformed into the form [Ir, B
′] (right).

x5t x4t x3t x2t x1t

1 -1 0 0 0

0 1 0 -1 0

0 0 1 -1 -1

0 0 0 1 -1

=⇒

x5t x4t x3t x2t x1t

1 0 0 0 -1

0 1 0 0 -1

0 0 1 0 -2

0 0 0 1 -1

Table 4.2: Independent cointegrating relations for Period 1: coe�cients found for β1 after running

the algorithm.

x5t x4t x3t x2t x1t

1 0 0 0 -0.976

0 1 0 0 -0.970

0 0 1 0 -1.962

0 0 0 1 -0.982

Table 4.3: Independent cointegrating relations for Period 2: coe�cients created in the simulated

data (left) transformed into the form [Ir, B
′] (right).

x5t x4t x3t x2t x1t

1 -1 0 0 0

0 1 0 -1 0

0 0 1 -1 -1

=⇒

x5t x4t x3t x2t x1t

1 0 0 -1 0

0 1 0 -1 0

0 0 1 -1 -1
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Table 4.4: Independent cointegrating relations for Period 2: coe�cients found for β1 after running

the algorithm.

x5t x4t x3t x2t x1t

1 0 0 -0.973 -0.010

0 1 0 -0.970 -0.017

0 0 1 -0.960 -0.970

Table 4.5: Independent cointegrating relations for Period 3: coe�cients created in the simulated

data (left) transformed into the form [Ir, B
′] (right).

x5t x4t x3t x2t x1t

1 -1 0 0 0

0 1 0 -1 0

0 0 1 -1 -1

0 0 0 1 -1

=⇒

x5t x4t x3t x2t x1t

1 0 0 0 -1

0 1 0 0 -1

0 0 1 0 -2

0 0 0 1 -1

Table 4.6: Independent cointegrating relations for Period 3: coe�cients found for β1 after running

the algorithm.

x5t x4t x3t x2t x1t

1 0 0 0 -0.979

0 1 0 0 -0.985

0 0 1 0 -1.946

0 0 0 1 -0.989

The dynamic Error Correction model introduced in this chapter does not pretend to be

infallible but it must be seen as a �rst approach for estimating the cointegration rank over time,

and also for deriving independent cointegration relations from the time-varying matrix Πt. It
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can happen that the rank estimated is not exactly the same as the actual rank. In our real data,

where we are not supposed to know the rank before, we will see if the time-varying independent

cointegration relations �t with the cointegrating rank found: We will need to check if the relations

are long-run stationary over a neighbourhood about the time of interest.

4.7.4 Posterior summaries

We present in this section the posterior summaries of some time-varying cointegrating coef-

�cients and the covariance matrix Σ of the dynamic VECM introduced in this chapter. These

posterior summaries are taken from the results of the �rst simulated data set D1 after applying

Algorithms 4 and 5.

Figure 4.6 shows a reasonable convergence for the trace plots of some cointegrating coe�-

cients Π32, Π25, Π15 at the speci�c time t = 100. The dynamic model indeed implies at each time

t a di�erent posterior distribution for the time-varying parameters. In this chapter, we make the

assumption of having a time-invariant covariance matrix Σ, the trace plot of Σ43 presented on

the bottom right is the same for each time t and shows a clear convergence.
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Figure 4.6: Trace plots of the coe�cients Π32, Π25, Π15 at t = 100 and Σ43 for the �rst simulated

data set D1.

Figure 4.7 shows the posterior densities of the same coe�cients for which the trace plots are

presented in Figure 4.6. Figure 4.8 highlights the change of position over time of the posterior

density of one of the dependent cointegrating coe�cients Π32. We can see the mean of the density

shifting over 4 di�erent time points: t = 100, t = 300, t = 600 and t = 800.
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Figure 4.7: Posterior densities of the coe�cients Π32, Π25, Π15 at t = 100 and Σ43 for the �rst

simulated data set D1.
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Figure 4.8: Posterior densities of the coe�cient Π32 for the �rst simulated data set D1 taken at

di�erent times: t = 100 (Mean = 0.012), t = 300 (Mean = −0.041), t = 600 (Mean = −0.075)

and t = 800 (Mean = 0.009).

4.8 Application to real data sets

4.8.1 Application to the European panel data

In this section, we still study the dynamic of the cointegration rank for a part of our European

panel data set seen in Chapter 3. The data set used in this section consists of three net tradings

and three long-term interest rates between France, Germany and Spain over the period before

and after the Euro. The data time period covers both periods of before and after introduction

of the Euro: 1991-2008. The interest in this section is to see the evolution of the number of
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independent cointegrating relations by grouping the two time periods of before the Euro (1991-

1998) and the decade after (1999-2008). We decided to limit the number of time series to 6

rather than the entire European panel data set. If we take the 12 time series as in Chapter 3, the

FFBS algorithm encounters problems of memory space. Furthermore the time for the algorithm

to run becomes very long as the number of time series p increases. We decided not to take more

than 6 time series for that reason.

The number of total time points in that set of time series is only T = 211 (covering the

monthly data taken from January 1991 until July 2008). Unlike for the simulated data sets (see

Section 4.7), we decide for this data set to take a pre-sample size of τ = 26 ≈ T/8 in order to

be able to have the maximum number of data time points in our sample [[τ + 1, T ]]. The data

set starts from March 1993. For this data set, we initialize the parameters and hyperparameters

in the same way as for the simulated data described in Section 4.7.2 of this chapter. The FFBS

Algorithm 5 then runs and we estimate the time-moving cointegration rank as described in

Algorithm 6. We can then obtain the independent cointegrating relations that we want for any

time t (see Section 4.7.2).

In Figure 4.9 below, we display the evolution of the cointegration rank between the time

series FraNX, GerNX, SpaNX, FraIR, GerIR and SpaIR. The whole time-period starts in April

1993 because we took a pre-sample time-period between January 1991 and March 1993 in order

to estimate the initial parameters (see Algorithm 4). From June 1997, we observe that the

cointegration rank is decreasing, suggesting less relations between the three economies, and thus

less convergence. We can think that the cointegration rank is maybe decreasing in advance

compared with what has been concluded previously in Chapter 3, that is, less convergence

between European economies after the introduction of the Euro. On the other hand, we can

state that the cointegration rank started to decrease in 1997 and that the adoption of the Euro

may not be the principal reason as to why the European economies diverged in the post-Euro

decade (1999-2008).
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Figure 4.9: Evolution of the median cointegration rank between the net trading of France, Ger-

many and Spain and the long term interest rate over the period before and after the introduction

of the Euro (April 1993 - July 2008).

The time-varying independent cointegrating relations of the European panel data

after the introduction of the Euro

In this section, we show the smoothing e�ect of the algorithm for the coe�cients of the

European panel data set during the second time-period (from June 1997). For this time-period

we decided to rely on the irrelevance criterion ε = 8% and used a cointegration rank of 3 in order

to establish our independent cointegrating relations.

At �rst, we will consider the three independent cointegrating relations taken in August 2002
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(Table 4.7):

Table 4.7: Independent cointegrating relations in August 2002.

SpaNX FraIR GerIR SpaIR FraNX GerNX

1 0 0 0.110 -0.678 0.284

0 1 0 -0.807 -0.149 -0.055

0 0 1 -0.562 -0.414 -0.158

We observe a smooth change of the cointegrating coe�cients in September 2002 (Table 4.8):

Table 4.8: Independent cointegrating relations in September 2002.

SpaNX FraIR GerIR SpaIR FraNX GerNX

1 0 0 0.114 -0.655 0.275

0 1 0 -0.823 -0.149 -0.040

0 0 1 -0.575 -0.414 -0.135

Let us now look at the relations one year later in August 2003 (Table 4.9) and the relations

in January 2006 (Table 4.10).

Table 4.9: Independent cointegrating relations in August 2003.

SpaNX FraIR GerIR SpaIR FraNX GerNX

1 0 0 0.108 -0.805 0.329

0 1 0 -0.729 -0.134 -0.141

0 0 1 -0.482 -0.402 -0.298
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Table 4.10: Independent cointegrating relations in January 2006.

SpaNX FraIR GerIR SpaIR FraNX GerNX

1 0 0 0.101 -0.715 0.285

0 1 0 -0.781 -0.114 -0.081

0 0 1 -0.557 -0.364 -0.208

We observe that the cointegrating relations have changed quite a bit but not very abruptly

in the time period after the introduction of the single currency. Overall, we retrieve the results

of Chapter 3, that is, that the Spanish net trading is coevolving positively with the French net

trading, but negatively with the German net trading. The coe�cient of the French net trading

is negative while the coe�cient of the German net trading is positive: August 2002, Table 4.7,

(FraNX:−0.678, GerNX: 0.284), September 2002, Table 4.8, (FraNX: −0.655, GerNX: 0.275),

August 2003, Table 4.9, (FraNX: −0.805, GerNX: 0.329) and January 2006, Table 4.10, (FraNX:

−0.715, GerNX: 0.285).

We notice that the coe�cients of the �rst row in Table 4.10 are closer to the coe�cients in

2002: the French net trading has a coe�cient close to −0.70 in 2002 while in August 2003 it is

approaching −0.80 (see Tables 4.7 and 4.9). However, the second row looks more similar between

August 2003 and January 2006 (see Tables 4.9 and 4.10). On the other hand, the values of the

coe�cients of the third row stay stable over time (August 2002, September 2002, August 2003

and January 2006). We observe overall a smooth evolution in the values of the coe�cients over

time.

The time-varying independent cointegrating relations of the European panel data

before the introduction of the Euro

If we rely on the irrelevance criterion ε = 8%, we will obtain a cointegration rank of 4 for

the time period before June 1997 (see Figure 4.9). Table 4.11 represents the four independent

cointegrating relations derived in March 1995. The columns are built in the same order as for
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Tables 4.7, 4.8, 4.9 and 4.10

Table 4.11: Independent cointegrating relations in March 1995

SpaNX FraIR GerIR SpaIR FraNX GerNX

1 0 0 0 -1.024 0.510

0 1 0 0 1.090 -1.763

0 0 1 0 0.783 -1.738

0 0 0 1 1.746 -2.490

From the �rst row of the relations in March 1995, we notice that the Spanish net trading is

coevolving positively with the French net trading at a higher speed (−1.024) than in the decade

following the adoption of the Euro. However, we still notice a negative comovement with the

German net trading (0.510) and this negative comovement actually has a faster rate in 1995

than after the adoption of the Euro. This is a little in contradiction with what we concluded in

Chapter 3, however we can think of less convergence between the French and the Spanish net

trading after the adoption of the Euro: According to the relations seen in this section there is

a faster speed of convergence before the introduction of the Euro between the French and the

Spanish net tradings.

4.8.2 An application to the stock prices of three company sectors from

the Dow Jones Industrial Indices

This section is about a study of the evolution of the cointegration rank (i.e. the number of

independent cointegrating relations) for three sectors of companies in the Dow Jones Industrial

Average index during the �rst decade of the century. The Dow Jones Industrial Average is a

stock market index created by the Wall Street Journal in 1896, see Stillman (1986). It is now

owned by S&P Dow Jones Indices. It is the second oldest U.S. stock market index. The av-

erage is named after Dow Jones & Company co-founder Charles Dow and one of his business
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statistician associates, Edward Jones. The average index is price-weighted and shows mainly the

performance of the 30 largest industries in the United States.

The data consists of three sets of daily industry indices extracted from June 18, 2001 un-

til September 4, 2009 (source: The Wall Street Journal, Baker (1996)). The three sectors of

study are IT/Technologies (electronics sector), Manufacturing (manufacturing sector), and Bank-

ing/Insurance (banking sector). The �rst sector consists of the following �ve companies: Cisco

(CSCO), Hewlett-Packard (HP), IBM (IBM), Intel (INTC) and United Technologies (UTX). The

stock prices of these companies are presented in Figure 4.10. The second sector is about four

manufacturing companies: Alcoa Inc. (AA), Caterpillar (CAT), E.I. du Pont de Nemours and

Co. (DD) and 3M company (MMM). The stock prices are presented in Figure 4.11. Finally, the

third sector covers four banking/insurance groups' stock prices: American Express (AXP), Bank

of America Corporation (BAC), JPMorgan Chase (JPM) and Travelers insurance (TRV). The

stock prices are presented in Figure 4.12.
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Figure 4.10: The Dow Jones stock prices for the Electronics sector: Cisco Systems (CSCO),

Hewlett-Packard (HP), International Business Machines Corporation (IBM), Intel Corporation

(INTC), Microsoft Corporation (MSFT). Daily data collected from the Dow Jones from 18 June

2001 to 4 September 2009. (Source: The Wall Street Journal, Baker (1996))
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Figure 4.11: The Dow Jones stock prices for the Manufacturing sector: Alcoa Inc. (AA), Cater-

pillar Inc. (CAT), E.I. DuPont de Nemours & Co. (DD), Minnesota Mining and Manufacturing

Company (3M). Daily data collected from the Dow Jones from 18 June 2001 to 4 September

2009. (Source: The Wall Street Journal, Baker (1996))
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Figure 4.12: The Dow Jones stock prices for the Banking sector: American Express Company

(AXP), Bank of America Corporation (BAC), JPMorgan Chase & Co (JPM), Travelers Com-

panies Inc. (TRV). Daily data collected from the Dow Jones from 18 June 2001 to 4 September

2009. (Source: The Wall Street Journal, Baker (1996))

For the three sectors, we initialize the parameters of the VECM and the hyperparameters of

the measurement and transition equations with the same methods as described in Section 4.7.2
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for the simulated data of this chapter. We take a pre-sample of size τ = 50 like for the simulated

data sets. We then follow the same steps as seen in Algorithms 4, 5 and 6 for the synthetic data

sets (see Section 4.7) and the European panel data set (see Section 4.8.1).

Results

The electronics sector shows a signi�cant change in the value of the rank (see Figure 4.13),

and yet, the change in the cointegration rank is only detected with an irrelevance criterion of 8%.

Based on the irrelevance criterion of 8%, we have split our time period into 2 di�erent periods

for the electonics sector (see Figure 4.13). The �rst time period is from June 2001 until March

2005 where the cointegration rank found is 3. The second time period is from March 2005 until

the last time point in June 2009 where the cointegration rank is 4.
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Figure 4.13: Evolution of the median cointegration rank for the Electronics Sector: CSCO-HP-

IBM-INTC-UTX. Time period: 18 June 2001 to 4 September 2009.

Figure 4.14 gives the evolution of the cointegration rank for the Manufacturing sector. From

that Figure we can say that the cointegration rank is roughly the same over time. Based on the

irrelevance criterion ε = 8%, we detect some jumps from cointegration rank 3 to 2 but it can

still be considered as not signi�cant enough to distinguish di�erent time periods.
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Figure 4.14: Evolution of the median cointegration rank for the Manufacturing Sector: AA-CAT-

DD-MMM. Time period: 18 June 2001 to 4 September 2009.

In Figure 4.15, we have the evolution of the cointegration rank for the Banking/Insurance

sector. There we can say that based on the irrelevance criterion of 8% and 5%, there is a tendency

for the cointegration rank to decrease from 3 to 2 at the end of the decade.
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Figure 4.15: Evolution of the median cointegration rank for the Banking Sector: AXP-BAC-

JPM-TRV. Time period: 18 June 2001 to 4 September 2009.

The time-varying independent cointegrating relations for the electronics sector

This section presents the independent cointegrating relations of the sector of the Dow Jones

where an evolution of the cointegration rank has been observed: the Electronics sector (see Figure

4.13). The cointegration rank for the �rst time period (before March 2005) will be taken as 3

based on the irrelevance criterion ε = 8% whereas for the second time period (after March 2005)

we will consider four independent cointegrating relations.

Table 4.12 represents three independent cointegrating relations taken in May 2004 (�rst time-

period, rank 3). Table 4.13 represents four independent cointegrating relations taken in May 2004
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(�rst time-period, rank 4).

Table 4.12: Independent cointegrating relations in May 2004 for the Electronics sector of the

Dow Jones.

CSCO HP IBM INTC MSFT

1 0 0 -0.275 -0.167

0 1 0 -1.208 -0.536

0 0 1 0.043 -0.264

Table 4.13: Independent cointegrating relations in January 2008 for the Electronics sector of the

Dow Jones.

CSCO HP IBM INTC MSFT

1 0 0 0 -0.686

0 1 0 0 -1.876

0 0 1 0 -0.363

0 0 0 1 -0.363

Like for the European panel data (see Section 4.8.1), we decided to see the smoothing e�ect

of the FFBS algorithm by studying the coe�cients taken a little later than January 2008. Tables

4.14 and 4.15 are taken respectively in February 2008 and March 2008. We can see on these tables

that there is no abrupt change, but rather a smooth evolution between the values of February

and March 2008 (Tables 4.14 and 4.15) of the coe�cients compared with January 2008 (Table

4.13).
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Table 4.14: Independent cointegrating relations in February 2008 for the Electronics sector of

the Dow Jones.

CSCO HP IBM INTC MSFT

1 0 0 0 -0.739

0 1 0 0 -1.822

0 0 1 0 -0.315

0 0 0 1 -0.358

Table 4.15: Independent cointegrating relations in March 2008 for the Electronics sector of the

Dow Jones.

CSCO HP IBM INTC MSFT

1 0 0 0 -0.659

0 1 0 0 -1.651

0 0 1 0 -0.285

0 0 0 1 -0.324

4.9 Discussion

The methods of time-varying cointegration allow us to see a movement of the cointegration

rank over time, but can also permit to derive the cointegrating coe�cients (also time-varying)

over di�erent periods. However, the methods seen in this chapter imply the use of a non-singular

distribution over parameters that are in fact singular (e.g. the long-run impact matrix Π is of

rank lower than p). These methods used in Chapters 3 and 4 can indeed be criticized for that

aspect. The next chapter of this thesis deals with this issue of singularity of the parameters

of the VECM and proposes Bayesian inference around singular distributions, but for the static

model only (see Chapter 5). A discussion in Chapter 6 is brought in order to give ideas on how
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we could include a singular distribution for Π in a dynamic VECM.

When looking at the simulated data (see Section 4.7.1), we have obtained reasonable accu-

racy in the determination of the cointegration rank, and obtained its evolution over time. The

observation of the evolution of the cointegration rank is quite striking. In addition we retrieve

the cointegration relations well (see Tables 4.2, 4.4 and 4.6). For that reason, we have trusted

our methods and applied it to a part of the European data set seen in Chapter 3 and to some

sectors of the Dow Jones.

We found a decrease of the cointegration rank like in Chapter 3 between three economies of

the European panel data set (see Section 4.8.1): the variables involved are the net trading and the

long-term interest rate between France, Germany and Spain over the time period (1993-2008),

including therefore the two periods before and after the introduction of the Euro. That decrease

is observed to be occuring two years before the o�cial date of the adoption of the Euro (June

1997) as the evolution of the cointegration rank in Figure 4.9 suggests. The introduction of the

Euro in 1999 may not be the main reason why the Eurozone countries are not converging in the

post-Euro decade (1999-2008).

Finally, we applied our algorithm to three sectors of the Dow Jones from June 2001 until June

2009. We detect the presence of two time periods between the companies of the Electronics sector

in the Dow Jones (see Figure 4.13), where the number of independent cointegrating relations is

increasing. We use an irrelevance criterion of 8% to conclude of these two time periods. That

increase would occur approximately in the middle of the decade (March 2005), and thus would

suggest more convergence between the companies of the electronics sector.

As for the evolution of the independent cointegrating relations over time, we can see the

smoothness of our algorithms by looking at the values of the cointegrating coe�cients not chang-

ing abruptly over time (see Tables 4.7, 4.8, 4.9 and 4.10 for the European panel data set and

Tables 4.13, 4.14 and 4.15 for the Electronics sector of the Dow Jones).
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Chapter 5

Cointegration analysis based on singular

distributions

5.1 Introduction

As we have seen in the previous chapters (see Chapters 3 and 4), Π should be a matrix of

reduced rank and the prior of Π should re�ect this important fact. Therefore, a more systematic

way would be to start to introduce a singular prior for the long-run relations matrix, and include

it in the MCMC algorithm. This singular prior, which involves the cointegration rank, entails a

singular posterior distribution, which has the same lower rank. We give a detailed explanation

in Section 5.6. Thus the cointegration rank cannot change over the iterations of the MCMC

procedure. The method in this chapter does not include the rank in the Gibbs sampling, unlike

in the two previous chapters. The cointegration rank r is estimated from the data, by using

Johansen tests, see Johansen (1991), and the cointegration rank found from these tests is used

as a hyperparameter in the singular prior distribution of the cointegrating matrix Π. The rank

thus enters as a hyperparameter. However, we mention in our discussion in Section 5.10 about

the possibility of �nding a posterior distribution for the rank in the same way as Villani (2005).

Section 5.2 recapitulates the de�nition of a matrix-variate normal singular distribution es-
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tablished in previous works (Díaz-García and Gutiérrez-Jáimez, 1997; Díaz-García et al., 2006,

1997; Gupta and Nagar, 2000), and the de�nition of its density and the Hausdor� measure. In

that same section, we also show how we can simulate a matrix from a matrix-variate normal

singular distribution.

Section 5.4 is about obtaining the full conditional posterior distribution of Ψ: we are using

Bayes' theorem with the densities of the prior and the likelihood of the parameters. The prior and

the full conditional distribution of Ψ are non-singular. We are using the same prior (Gaussian)

for the lag parameters as in Chapter 3. The covariance matrix Σ will follow an Inverse-Wishart

prior distribution from which we obtain a full conditional Inverse-Wishart posterior distribution

by conjugacy.

In Section 5.6, we retrieve a matrix-variate normal singular full conditional posterior distri-

bution for the cointegrating matrix Π by using the joint distribution of the prior and the data.

The prior mean of Π will be taken as equal to 0 (no cointegration). The covariance matrix of

this prior is the Kronecker product of a positive semide�nite hyperparameter matrix S of rank r

with the covariance matrix Σ of full rank.

We learn that the rank de�ned for the singular covariance matrix S of the prior distribution

of Π is the same as the rank of the singular covariance matrix of the full conditional posterior

distribution of Π. Besides, although we set a prior mean equal to 0, we retrieve a mean of rank

r in the full conditional distribution of Π. As a consequence, all the matrices Π simulated in

the algorithm will be singular of rank r. Therefore, the rank cannot be changed or modi�ed

throughout the iterations of the MCMC algorithm. We open a discussion at the end of the

chapter about the possibility of deriving a posterior distribution of the rank r given the data.

We also learn that �xing the covariance hyperparameter S makes wrong assumptions in the

prior of S. In order to infer S, we will in fact decompose the Moore-Penrose generalized inverse

of S, that is S+, into the product UU ′ where U has a matrix variate normal prior distribution.

As the full conditional distribution of U will be of an unknown form, we will use a Metropolis-

Hastings algorithm in order to infer U at each step of the MCMC procedure. A covariance
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matrix S is then retrieved from the simulated matrix U . Note that the prior distribution implied

for S+ is a singular Wishart distribution, see Gupta and Nagar (2000), which would therefore

imply a pseudo-Wishart distribution for S or generalized singular Inverse-Wishart distribution,

see Díaz-García et al. (2006).

In Section 5.9, these new methods will be applied to two simulated data sets and to some

real data sets: we will compare the cointegrating relations between the net tradings of the Eu-

ropean panel data set found in Chapter 3 (see Section 3.4.4) and between the companies of the

Electronics sector for the second time-period for the Dow Jones data set seen in Chapter 4 (see

Section 4.8.2).

5.2 The matrix-variate normal singular distribution

5.2.1 De�nition

We �rst recall the de�nition introduced by Gupta and Nagar (2000) of a matrix-variate normal

singular distribution:

De�nition 7. Let X(p×n) be a random matrix with E(X) = M and cov(V ec(X)) = Ξ⊗Λ, where

either Λ(p × p) or Ξ(n × n) or both are positive semide�nite with ranks p1(≤ p) and n1(≤ n)

respectively (?). Then X is said to have a matrix-variate normal singular distribution, denoted in

this thesis as X ∼ NSp,n(M,Λ,Ξ|p1, n1), if there exist matrices H1 ∈ Vp1,p, P1 ∈ Vn1,n of ranks

p1 and n1 respectively such that X = H1Y P1
′ +M for some random matrix Y ∼ Np1,n1(0,∆, G)

with G(n1× n1) > 0 and ∆(p1× p1) > 0. H1 and ∆ are the matrices associated with the spectral

decomposition of Λ: Λ = H1∆H1
′. P1 and G are the matrices associated with the spectral

decomposition of Ξ: Ξ = P1GP1
′.

(?) In order to satisfy the singular property of the distribution of X, it su�ces that only one

of the covariance matrices is singular (either p1 < p or n1 < n), or both of them (p1 < p and

n1 < n). If both of the covariance matrices are positive de�nite (p1 = p and n1 = n), then the

distribution of X becomes a non-singular matrix-variate normal distribution.
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Then we can write:

X ∼ NSp,n(M,Λ,Ξ|p1, n1)⇔ V ec(X ′) ∼ NSpn(V ec(M ′),Λ⊗ Ξ|p1n1)

⇔ V ec(X) ∼ NSpn(V ec(M),Ξ⊗ Λ|p1n1)

Alternatively, we can say that V ec(X) follows a vector-variate normal singular distribution

with mean V ec(M) and variance Ξ ⊗ Λ with rank p1n1. In order to avoid any confusion with

the non-singular normal distribution, we decide to denote the matrix-variate normal singular

distribution by NS, as Normal Singular.

5.2.2 A probability density function for the matrix-variate normal sin-

gular distribution

Díaz-García et al. (2006) de�ned the density function of the random matrix X from De�nition

7 as the following:

De�nition 8. Let X ∼ NSp,n(M,Λ,Ξ|p1, n1) as in De�nition 7. Then its density function is

given by:

1

(2π)p1n1/2(Πp1

i=1λ
n1/2
i )(Πn1

j=1ξ
p1/2
j )

exp

(
−1

2
Tr(Ξ+(X −M)′Λ+(X −M))

)
(5.1)

where A+ is the Moore-Penrose inverse of the positive semide�nite matrix A, and {λi}1≤i≤p1

and {ξj}1≤j≤n1 are the nonzero eigenvalues of Λ and Ξ, respectively.

This density is de�ned according to the Hausdor� measure (dX), that is recalled in the

following proposition of Díaz-García et al. (2006):

Proposition 1. For any p×p matrix X of lower rank r < p, there exists a Singular Value Decom-

position (SVD) such that X = H1DP1
′ in which H1 ∈ Vr,p, P1 ∈ Vr,p and D = diag(D11, D22, · · · , Drr)

with D11 > D22 > · · · > Drr > 0. Such a decomposition is called the non-singular part of the

SVD of X. If X is random, we can recall the Hausdor� measure (dX) as (see Hausdor� (1918)
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and Díaz-García et al. (2006)):

(dX) = 2−r|D|2p−2r

r∏
i<j

(D2
ii −D2

jj) (dD) (H1
′dH1) (P1

′dP1) (5.2)

where (dD) =
∧r
i=1 dDii, (H1

′dH1) =
∧r
i=1

∧p
j=i+1 hj

′dhi and (P1
′dP1) =

∧r
i=1

∧p
j=i+1 pj

′dpi.∧
denotes the exterior product, or the wedge product, see Muirhead (1982).

With r = min(p1, n1), the density (5.1) of De�nition 8 can be written as:

dFX(X) =
1

(2π)p1n1/2(Πp1

i=1λ
n1/2
i )(Πn1

j=1ξ
p1/2
j )

exp

(
−1

2
Tr(Ξ+(X −M)′Λ+(X −M))

)
(dX)

where H = (H1|H2) ∈ Op and P = (P1|P2) ∈ On are associated with the spectral decompositions

of Λ and Ξ, respectively. (dX) represents the Hausdor� measure recalled in Equation (5.2).

5.2.3 Method to simulate a matrix-variate normal singular distribution

We can simulate a random matrix X following a matrix-variate normal distribution. If we

want to simulate such a matrix, we will �rst need to decompose each variance matrix Λ and Ξ

de�ning the variance of X (see De�nition 7). According to Appendix A.4 and the expression of

A as in (A.5), we can write any semi-de�nite positive matrix A as:

A = FrDrFr
′

where Fr are the eigenvectors associated with the non-zero eigenvalues of A, corresponding to

the diagonal elements of the diagonal matrix Dr.

We can use the same decomposition for Λ = H1∆H1
′ and Ξ = P1GP1

′. For Λ, it su�ces to

take ∆ as the diagonal matrix of size p1 × p1 containing the p1 non-zero eigenvalues, whereas

their corresponding eigenvectors will be stored in the matrix H1, which will be of size p× p1. We

decompose Ξ by employing the same methods and obtain the diagonal matrix G containing the

n1 non-zero eigenvalues of Ξ and P1 ∈ Vn1,n containing the n1 corresponding eigenvectors.

After that, it is straightforward to simulate Y ∼ Np1,n1(0,∆, G), which is a non-singular

distribution with positive de�nite matrices ∆ > 0 and G > 0. We then multiply the simulated
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matrix Y on the left and right hand sides by H1 and P1
′, respectively, to obtain H1Y P1

′. Finally

we add the mean of the distribution of X, that is, M . We therefore obtain a value for X:

X = H1Y P1
′ +M

For example, suppose we want to simulate X ∼ NS3,2(M,Ξ,∆|2, 1) where:

M =


1 2

3 4

5 6



Λ =


0 0 0

0 3 0

0 0 2


and

Ξ =

 2 0

0 0


As we can see, the ranks of Λ and Ξ are respectively 2 and 1, which makes them positive

semide�nite matrices of lower rank. Then we have that the spectral decompositions of Λ (5.3)

and Ξ (5.4) are:

Λ = H1∆H1
′ with H1 =


0 0

1 0

0 1

 and ∆ =

 3 0

0 2

 (5.3)

and

Ξ = P1GP1
′ with P1 =

 1

0

 and G =
[

2
]

= 2 (5.4)

Now we can simulate Y ∼ N2,1(0,∆, G) from the non-singular normal distribution. We obtain:

Y =

 −4.38

2.73


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Finally, we �nd the value of X by X = H1Y P1
′ +M :

X =


1 2

11.76 4

−0.46 6


5.3 Prior distributions and the likelihood of the model

In this section we describe the joint prior distribution of the parameters used in the model.

We recapitulate the VECM model (2.4) by:

∆xt = Πxt−1 +
k−1∑
i=1

Ψi∆xt−i + εt (5.5)

where εt ∼ N(0,Σ).

5.3.1 Prior on Π given S and Σ

In this chapter, the cointegrating matrix Π has a matrix-variate normal singular prior dis-

tribution with mean 0 and covariance S ⊗ v−1Σ where S is a p× p positive semide�nite matrix

of rank r and v is a �xed scalar hyperparameter. The prior of Π depends on the parameters

S ∈ S+
p (r) and Σ > 0:

Π|S,Σ ∼ NSp,p(0, v
−1Σ, S|p, r)⇔ V ec(Π)|S,Σ ∼ NSp2(0, S ⊗ v−1Σ|p× r) (5.6)

We will denote the prior density of Π as f(Π|S,Σ). Following De�nition 8 from Díaz-García

et al. (2006), we have:

f(Π|S,Σ) =
1

2πpr
|Σ|−

r
2

r∏
j=1

σj
− p

2 exp

(
−1

2
Tr(vS+Π′Σ−1Π)

)
(5.7)

where S+ denotes the Moore-Penrose generalized inverse of the positive semide�nite parameter

matrix S ∈ S+
p (r) and {σj}1≤j≤r consist of the eigenvalues of S.

The density (5.7) is de�ned under the Hausdor� measure (dΠ):

dFΠ(Π) =
1

2πpr
|Σ|−

r
2

r∏
j=1

σj
− p

2 exp

(
−1

2
Tr(vS+Π′Σ−1Π))

)
(dΠ)
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where (dΠ) is the Hausdor� measure de�ned in the same way as in Proposition 1 in Díaz-García

et al. (2006) and recalled in this chapter by Proposition 1. We can take the non-singular part of

the SVD of the matrix Π. H = (H1|H2) ∈ Op is associated with the spectral decomposition of

Σ = H∆H ′ with: H1 ∈ Vr,p and H2 ∈ Vp−r,p. P = (P1|P2) ∈ Op, with P1 ∈ Vr,p and P2 ∈ Vp−r,p,

is associated with the spectral decomposition of S = PGP ′ where:

G =

Gr 0

0 0


Gr contains the r non-zero eigenvalues of S. The non-singular part of the SVD of Π can be

written as:

Π = H1DP1
′

where D = diag(D11, · · · , Drr) and D11 > · · · > Drr > 0.

According to Díaz-García et al. (2006), since r = min(r, p), then the Hausdor� measure of Π

is de�ned as:

(dΠ) = 2−r|D|2p−2r

r∏
i<j

(D2
ii −D2

jj) (dD) (H1
′dH1) (P1

′dP1) (5.8)

with (dD) =
∧r
i=1 dDii, (H1

′dH1) =
∧r
i=1

∧p
j=i+1 hj

′dhi and (P1
′dP1) =

∧r
i=1

∧p
j=i+1 pj

′dpi.

5.3.2 Issues in �xing S

In this section, we highlight the fact that S should not be used as a �xed value. Before any

analysis of a time series data set, it is di�cult to de�ne a �xed positive semide�nite matrix as a

hyperparameter.

Fixing S would mean that some coe�cients of Π would have di�erent variances than others.

This results in an impact in the cointegrating relations because some cointegrating coe�cients

would have larger variance than others. Therefore, �xing S would imply the need to have some

information about the cointegrating relations before running the MCMC procedure. In dealing

with the non-singular case in Chapter 3, we had taken S as the identity matrix and obtained the

same variance covariance matrix v−1 × Σ in the prior of each column of Π, bringing therefore a
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uniform distribution of the variance among the coe�cients of Π.

By randomizing S, we allow more equality between the cointegrating coe�cients and therefore

more objectivity in the de�nition of this hyperparameter.

5.3.3 Inference on S and introduction to a Bayesian hierarchical model

S is a positive semide�nite p×p matrix of rank r < p and we will actually focus on the Moore-

Penrose generalized inverse of S, i.e. S+. We will decompose it into the following form S+ = UU ′

where U is a p× r random matrix. This latter parameter is in fact a hyperparameter, on which

we will de�ne a hyperprior distribution. For this hyperprior, we decide to take a matrix-variate

normal distribution of mean 0 and variance given by Ir and a positive de�nite parameter matrix

B > 0 of size p×p. Note that the matrix B enters as a hyperparameter of a hyperprior and thus

should be classi�ed as a hyperhyperparameter in this Bayesian hierarchical model:

S+ = UU ′ with U ∼ Np,r(0, B, Ir) (5.9)

We also notice that according to the de�nition of Gupta and Nagar (2000) and Uhlig (1994),

the product S+ = UU ′ follows a singular Wishart distribution. This de�nition introduced by

Gupta and Nagar (2000) is recapitulated below:

De�nition 9. If we have r vectors uj that are i.i.d. random p-vectors having a normal distri-

bution with mean 0 and variance B > 0, with r < p, and if we stack the vectors uj into a p× r

matrix U = [u1, u2, · · · , ur], then the product G = UU ′ is a p × p positive semide�nite matrix

that has a singular Wishart distribution (denoted as WS in this thesis) of degrees of freedom r:

∀j ∈ [[1, r]], uj ∼ Np(0, B) ⇒ G = UU ′ ∼ WSp(r, B) with U = [u1, u2, ..., ur] (5.10)

As a consequence we can say that the covariance hyperparameter S is following a Pseudo-

Inverse Wishart prior distribution, that is the corresponding singular Inverse-Wishart of the

singular Wishart distribution, see Díaz-García et al. (2006).

Let us now recapitulate the Bayesian hierarchical model below:
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• Stage 1: The errors of the VECM are Gaussian and are distributed with mean 0 and

parameter covariance matrix Σ.

• Stage 2: The parameters Π, Ψ and Σ have a prior distribution and we derive their respective

full conditional distributions from the likelihood of the VECM (constructed from the errors

of the VECM).

• Stage 3: The hyperparameter U , from which S+ and S is constructed, has a hyperprior

and we derive a full conditional distribution depending on Π and Σ thanks to the prior

distribution of Π given Σ and U . The likelihood of U is actually proportional to the

prior distribution of Π given Σ. The hyperparameter U depends on the data through the

parameters Π and Σ.

However, the full conditional distribution of U will be of unknown form and we will have to

use the Metropolis-Hastings algorithm (see Metropolis et al. (1953) and Hastings (1970)) in

order to simulate U at each step of the �nal MCMC procedure (see Section 5.7). While the other

parameters Π, Ψ and Σ will be simulated by Gibbs steps, the hyperparameter U will be simulated

by a Metropolis-Hastings step, in this context, as part of a hybrid or Metropolis-within-Gibbs

algorithm. This introduction of a Metropolis-Hastings step in Gibbs sampling has been used

several times in the literature, see e.g. Gilks et al. (1995), Martino et al. (2015).

5.3.4 Prior on Ψ given Σ

The prior for the lag parameter matrix will be the same prior used as in Chapter 3, that is,

a Gaussian distribution depending on Σ. The prior of Ψ|Σ is then given by:

V ec(Ψ)|Σ ∼ Npd(0, Id ⊗ Σ) (5.11)

We will denote the prior of Ψ|Σ as f(Ψ|Σ) and we can write the relation:

f(Ψ|Σ) ∝ |Σ|−
d
2 exp

(
−1

2
V ec(Ψ)′(Id ⊗ Σ)−1V ec(Ψ)

)
∝ |Σ|−

d
2 exp

(
−1

2
Tr(Σ−1ΨΨ′)

)
(5.12)
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5.3.5 Prior on Σ

The parameter Σ, corresponding to the variance covariance matrix of the errors εt of (5.5),

remains non-singular since it is a positive de�nite matrix. The prior on Σ will be an Inverse-

Wishart distribution with hyperparameters A > 0 and q estimated in the same way as in Chapter

3:

Σ ∼ IWp(A, q) (5.13)

The prior of Σ does not depend on the other parameters of the VECM (5.5) and will have

the following relation:

f(Σ) ∝ |Σ|−
q+p+1

2 exp

(
−1

2
Tr(Σ−1A)

)
(5.14)

5.3.6 The joint prior distribution and the likelihood

The joint prior distribution of the VECM (5.5) is based on the priors de�ned previously in

Sections 5.3.1, 5.3.3, 5.3.4 and 5.3.5:

f(Π,Ψ,Σ, U) ∝ f(Π|Σ, U)f(U)f(Ψ|Σ)f(Σ) (5.15)

The likelihood is the same as the one used in Chapter 3 (see Section 3.3.1). We de�ne the

same matrix of the errors E ′ = Y ′ − ΠX ′ − ΨZ ′ as in Equation (2.13) (see Section 2.3.2). We

thus obtain the following distribution of the vectorized form of E ′ (5.16) de�ning the likelihood

of our model (5.17):

V ec(E ′) ∼ N(0, IT ⊗ Σ) (5.16)

L(D; Π,Ψ,Σ) ∝ |Σ|−
T
2 exp

(
−1

2
Tr(Σ−1E ′E)

)
(5.17)

We notice that neither E nor Σ contain the covariance hyperparameter S, which means that

they do not contain the hyperparameter U : U will depend on its prior f(U) and the prior of

Π|U,Σ only.
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5.4 Full conditional posterior distribution of the non-singular

lag parameters: Ψ

Based on the non-singular prior distribution of Ψ given Σ, we are going to �nd the full

conditional posterior distribution of Ψ, i.e. Ψ|Σ,Π,D established in Result 2 below:

Result 2. Full conditional posterior distribution of Ψ.

V ec(Ψ)|Σ,Π,D ∼ Npd(µΨ,ΩΨ1 ⊗ ΩΨ2) (5.18)

with:

µΨ = (Y ′ − ΠX ′)Z(Id + Z ′Z)−1 (5.19)

ΩΨ1 = (Id + Z ′Z)−1 (5.20)

ΩΨ2 = Σ (5.21)

Proof. First of all the prior of Ψ|Σ is given by V ec(Ψ)|Σ ∼ Npd(0, Id ⊗ Σ), according to (5.11).

We apply Bayes' theorem with the joint prior (5.15) and the likelihood (5.17):

f(Ψ|Σ,Π, U,D) ∝ f(Π,Ψ,Σ, U)L(D; Π,Ψ,Σ)

∝ f(Π|Σ, U)f(U)f(Ψ|Σ)f(Σ)L(D; Π,Ψ,Σ)

We notice that Ψ depends on neither U (or S), nor the priors of Π|U,Σ (5.7) and Σ (5.14):

f(Ψ|Σ,Π,D) ∝ f(Ψ|Σ)L(D; Π,Ψ,Σ) (5.22)

In the exponential term of the likelihood (5.17), we de�ne W = Y −XΠ′ and G = Z ⊗Σ−1/2
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and we have:

Tr(Σ−1E ′E) = Tr((Σ−1/2W ′ − Σ−1/2ΨZ ′)(WΣ−1/2 − ZΨ′Σ−1/2))

= Tr[(WΣ−1/2 − ZΨ′Σ−1/2)(Σ−1/2W ′ − Σ−1/2ΨZ ′)

= Tr[(Σ−1/2W ′ − Σ−1/2ΨZ ′)(Σ−1/2W ′ − Σ−1/2ΨZ ′)]

= (V ec[Σ−1/2W ′]− V ec[Σ−1/2ΨZ ′])′(V ec[Σ−1/2W ′]− V ec[Σ−1/2ΨZ ′])

= (V ec[Σ−1/2W ′]−GV ec[Ψ])′(V ec[Σ−1/2W ′]−GV ec[Ψ])

= (V ec[Σ−1/2W ′]′ − V ec[Ψ]′G′)(V ec[Σ−1/2W ′]−GV ec[Ψ])

= V ec[Σ−1/2W ′]′V ec[Σ−1/2W ′]− V ec[Ψ]′G′V ec[Σ−1/2W ′]− V ec[Σ−1/2W ′]′GV ec[Ψ]

+ V ec[Ψ]′G′GV ec[Ψ]

Then we have:

Tr(Σ−1E ′E) = V ec[Ψ]′G′GV ec[Ψ]− V ec[Ψ]′G′V ec[Σ−1/2W ′]

− V ec[Σ−1/2W ′]′GV ec[Ψ] + (a term not depending on Ψ)

By multiplying the likelihood (5.17) by the prior (5.12) of Ψ|Σ, we can obtain the following

relation:

f(Ψ|Σ,Π,D) ∝ exp

(
−1

2
gΨ

)
where:

gΨ = V ec(Ψ)′(Id ⊗ Σ−1)V ec(Ψ) + V ec[Ψ]′G′GV ec[Ψ]

− V ec[Ψ]′G′V ec[Σ−1/2W ′]− V ec[Σ−1/2W ′]′GV ec[Ψ]

+ (a term not depending on Ψ)

= V ec(Ψ)′(Id ⊗ Σ−1 +G′G)V ec(Ψ)− V ec(Ψ)′G′V ec(Σ−1/2W ′)

− V ec(Σ−1/2W ′)′GV ec(Ψ) + (a term not depending on Ψ)
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Besides, we have:

Id ⊗ Σ−1 +G′G = Id ⊗ Σ−1 + (Z ⊗ Σ−1/2)′(Z ⊗ Σ−1/2)

= Id ⊗ Σ−1 + (Z ′ ⊗ Σ−1/2)(Z ⊗ Σ−1/2)

= Id ⊗ Σ−1 + (Z ′Z ⊗ Σ−1)

= (Id + Z ′Z)⊗ Σ−1

We will then obtain:

gΨ = V ec(Ψ)′((Id + Z ′Z)⊗ Σ−1)V ec(Ψ)− V ec(Ψ)′G′V ec(Σ−1/2W ′) (5.23)

− V ec(Σ−1/2W ′)′GV ec(Ψ) + (a term not depending on Ψ)

Since the prior of Ψ is a matrix-variate normal non-singular distribution and that the errors

are also Gaussian, then the full conditional posterior distribution of Ψ will also be a matrix-

variate normal non-singular distribution by the property of conjugacy. Therefore, we only have

to identify the mean µΨ (5.19) and the covariance matrices ΩΨ1 (5.20) and ΩΨ2 (5.21) of the full

conditional distribution of Ψ (5.18) of Result 2. We have:

f(Ψ|Σ,Π,D) ∝ exp

(
−1

2
(V ec(Ψ)− V ec(µΨ))′Ω−1

Ψ (V ec(Ψ)− V ec(µΨ))

)
(5.24)

By expanding the expression in the general formula of the full conditional posterior distribution

of Ψ (5.24) and by de�ning ΩΨ = ΩΨ1 ⊗ ΩΨ2, we have:

(V ec(Ψ)− V ec(µΨ))′Ω−1
Ψ (V ec(Ψ)− V ec(µΨ)) (5.25)

= V ec(Ψ)′Ω−1
Ψ V ec(Ψ)− V ec(Ψ)′Ω−1

Ψ V ec(µΨ)− V ec(µΨ)′Ω−1
Ψ V ec(Ψ)

+ (a term not depending on Ψ)

The aim now is to identify ΩΨ1, ΩΨ2 and µΨ from (5.23). We can already obtain the precision

matrix Ω−1
Ψ = Ω−1

Ψ1 ⊗ Ω−1
Ψ2 by looking at the quadratic term in V ec(Ψ) in (5.23):

Ω−1
Ψ = (Id + Z ′Z)⊗ Σ−1
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We then have:

(Id + Z ′Z)−1 ⊗ Σ = ΩΨ1 ⊗ ΩΨ2

and retrieve ΩΨ1 = (Id + Z ′Z)−1 and ΩΨ2 = Σ.

The mean µΨ is also identi�ed from (5.23) and from (5.25) by:

V ec(Ψ)′Ω−1
Ψ V ec(µΨ) = V ec(Ψ)′G′V ec(Σ−1/2W ′)

Then we have Ω−1
Ψ V ec(µΨ) = G′V ec(Σ−1/2W ′), from which we obtain (since Ω−1

Ψ is invertible):

V ec(µΨ) = ΩΨG
′V ec(Σ−1/2W ′)

= (Id + Z ′Z)−1 ⊗ Σ(Z ⊗ Σ−1/2)′V ec(Σ−1/2W ′)

= (Id + Z ′Z)−1 ⊗ Σ(Z ′ ⊗ Σ−1/2)V ec(Σ−1/2W ′)

Then, by using the property (B′ ⊗ A)V ec(X) = V ec(AXB) with the sizes of A, B and X

correctly compatible, we have:

(Z ′ ⊗ Σ−1/2)V ec(Σ−1/2W ′) = V ec(Σ−1/2Σ−1/2W ′Z) = V ec(Σ−1W ′Z)

Finally:

((Id + Z ′Z)−1 ⊗ Σ)V ec(Σ−1W ′Z) = V ec(ΣΣ−1W ′Z(Id + Z ′Z)−1) = V ec(W ′Z(Id + Z ′Z)−1)

which means that:

µΨ = W ′Z(Id + Z ′Z)−1 = (Y ′ − ΠX ′)Z(Id + Z ′Z)−1

5.5 Bayesian inference on the non-singular variance matrix

of the errors Σ

The parameter Σ, corresponding to the variance covariance matrix of the errors εt, is kept

as non-singular and invertible. The prior of Σ is still chosen as an Inverse-Wishart distribution
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with hyperparameters A > 0 and q (5.13) like in Chapter 3. By using Bayes' theorem, we have:

f(Σ|Π,Ψ, U,D) ∝ L(D; Π,Ψ,Σ)f(Π|U,Σ)f(Ψ|Σ)f(Σ)

It is straightforward to obtain the full conditional posterior distribution of Σ since the Inverse-

Wishart distribution of the variance matrix respects the property of conjugacy when the likeli-

hood of the model is Gaussian. We then have:

f(Σ|Π,Ψ, U,D) ∝ L(D; Π,Ψ,Σ)f(Π|U,Σ)f(Ψ|Σ)f(Σ)

∝ |Σ|−
T
2 |Σ|−

r
2 |Σ|−

d
2 |Σ|−

q+p+1
2 exp

(
−1

2
Tr(Σ−1E ′E)

)
exp

(
−1

2
Tr(Σ−1vΠS+Π′)

)
exp

(
−1

2
Tr(Σ−1ΨΨ′)

)
exp

(
−1

2
Tr(Σ−1A)

)
∝ |Σ|−

T+r+d+q+p+1
2 exp

(
−1

2
Tr(Σ−1(E ′E + vΠS+Π′ + ΨΨ′ + A)

)
We can then recognize the scale parameter matrix of the full conditional posterior Inverse-

Wishart distribution of Σ, denoted as Apost here:

Apost = E ′E + vΠS+Π′ + ΨΨ′ + A > 0

Apost is the sum of positive de�nite and positive semide�nite matrices (the hyperparameter scale

A is also positive de�nite). As a consequence, Apost is a positive de�nite matrix. The degrees of

freedom of that posterior, denoted as qpost, will be identi�ed from the following relation:

qpost + p+ 1 = T + r + d+ q + p+ 1

where we can immediately derive qpost:

qpost = T + r + d+ q

The full conditional distribution of Σ is then given by:

Σ|Π,Ψ, U,D ∼ IWp(E
′E + vΠS+Π′ + ΨΨ′ + A, T + r + d+ q) (5.26)
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5.6 Bayesian inference on the singular parameter of the

VECM: Π

5.6.1 Full conditional posterior distribution of Π

In this section we will use the joint distribution of the matrix-variate singular normal prior of

Π (5.6) and the likelihood of the model (5.17) to derive the full conditional posterior distribution

of Π.

Let β and y be two random Gaussian vectors of size m > 1 and n > 1, respectively. We

denote P and R as the variance of β and y, respectively, and we assume that these two variables

depend on each other with the m× n covariance matrix C:

C = Cov[β, y]

Then, the joint distribution of β and y is also Gaussian and it is de�ned as the following:β
y

 ∼ N

(β̂
ŷ

 ,
P C

C ′ R

) (5.27)

In addition, we will also note that if at least one of the two parameters β or y has a singular

distribution, then their joint distribution will also be a singular normal distribution. For that,

let us de�ne two vectors β ∈ Rm and y ∈ Rn. We can now de�ne the mapping F from Rm ×Rn

to Rmn:

F : Rm × Rn −→ Rmn

(β, y) 7−→

β
y


Then let λ ∈ R, (u1, u2) ∈ Rm × Rn and (v1, v2) ∈ Rm × Rn. We can verify the property of

linearity:

F(λ(u1, u2) + (v1, v2)) = F(λu1 + v1, λu2 + v2)
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=

λu1 + v1

λu2 + v2

 = λ

u1

u2

+

v1

v2


= λF((u1, u2)) + F((v1, v2))

Therefore F is linear. Now, by de�nition, any linear transformation of Gaussian random variables

is also a Gaussian random variable. Therefore the joint distribution of β and y (5.27) is Gaussian.

Moreover, if β has a strictly singular Gaussian distribution, that is, its covariance matrix P is

strictly rank de�cient (with rank strictly lower than m), then the covariance matrix of the joint

distribution (5.27) is also singular, and therefore the joint distribution will be a singular normal

distribution as well.

The posterior distribution of β|y can be retrieved by using the joint distribution of the prior

β and the data y (5.27):

β|y ∼ N(β?, P ?)

with:

β? = β̂ + CR−1(y − ŷ) (5.28)

P ? = P − CR−1C ′ (5.29)

By using the same approach we will �nd the full conditional posterior distribution of Π by

using the joint distribution of the prior of Π (5.7) and the likelihood of the model (5.17). We

will also show that this posterior distribution will have a mean of rank r and that we retrieve

a singular covariance matrix with rank r × p like in the prior distribution of Π (5.6). Result

3 below gives the full conditional posterior distribution which preserves the conjugacy and the

rank of the covariance matrix:

Result 3. Full conditional posterior distribution of Π.

V ec(Π)|Σ,Ψ,D ∼ NSp2(V ec(µΠ),ΩΠ1 ⊗ ΩΠ2|r × p) (5.30)
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with:

µΠ = Q′XS1/2(vIp + S1/2X ′XS1/2)−1S1/2 = Q′XΩΠ1 (5.31)

Q = Y − ZΨ′

ΩΠ1 = S1/2(vIp + S1/2X ′XS1/2)−1S1/2 (5.32)

ΩΠ2 = Σ (5.33)

Rank(ΩΠ1) = Rank(µΠ) = r (5.34)

Proof. Firstly, we use β as V ec(Π)|Ψ, S,Σ and y as V ec(Y ′)|Ψ,Σ from the general example (5.27).

We need to clarify the prior variance P of V ec(Π)|Ψ, S,Σ, the variance R of V ec(Y ′)|Ψ,Σ and

the covariance matrix C between V ec(Π)|Ψ, S,Σ and V ec(Y ′)|Ψ,Σ.

We have:

P = V ar[V ec(Π)|Ψ, S,Σ] = S ⊗ v−1Σ

We then have for the variance R of y:

R = V ar(V ec(Y ′)|Ψ,Σ)

= V ar(V ec(ΠX ′ + ΨZ ′ + E ′)|Ψ,Σ)

= V ar((X ⊗ Ip)V ec(Π) + (Z ⊗ Ip)V ec(Ψ) + V ec(E ′)|Ψ,Σ)

Now we notice that the term (Z ⊗ Ip)V ec(Ψ) is actually a constant for V ec(Y ′)|Ψ,Σ and so we

have:

V ar((X ⊗ Ip)V ec(Π) + (Z ⊗ Ip)V ec(Ψ) + V ec(E ′)|Ψ,Σ)

= V ar((X ⊗ Ip)V ec(Π) + V ec(E ′)|Ψ,Σ)

= (X ⊗ Ip)V ar(V ec(Π))(X ′ ⊗ Ip) + V ar(V ec(E ′))

= (X ⊗ Ip)(S ⊗ v−1Σ)(X ′ ⊗ Ip) + (IT ⊗ Σ)

= (XSX ′ ⊗ v−1Σ) + (IT ⊗ Σ)

= (IT + v−1XSX ′)⊗ Σ
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As for the covariance between V ec(Π)|Ψ, S,Σ and V ec(Y ′)|Ψ,Σ, we have:

C = Cov[V ec(Π), V ec(Y ′)|Ψ,Σ]

= Cov[V ec(Π), (X ⊗ Ip)V ec(Π)|Ψ,Σ]

= V ar[V ec(Π)|Ψ,Σ](X ⊗ Ip)′

= (S ⊗ v−1Σ)(X ′ ⊗ Ip)

= (v−1SX ′ ⊗ Σ)

We then retrieve the variance part of Π|Ψ, S,Σ, which is called ΩΠ = ΩΠ1⊗ΩΠ2. Recall that

if r < p, then the variance is strictly singular of lower rank p × r < p2. We notice that since

S is positive semide�nite, then S is symmetric and S ′ = S. According to Equation (5.29), the

variance P ? = ΩΠ, is given by:

ΩΠ = P − CR−1C ′

= (v−1S ⊗ Σ)− (v−1SX ′ ⊗ Σ)((IT + v−1XSX ′)⊗ Σ)−1(v−1SX ′ ⊗ Σ)′

= (v−1S ⊗ Σ)− (v−1SX ′ ⊗ Σ)((IT + v−1XSX ′)−1 ⊗ Σ−1)(v−1XS ⊗ Σ)

= (v−1S ⊗ Σ)− (v−1SX ′(IT + v−1XSX ′)−1v−1XS ⊗ ΣΣ−1Σ)

= (v−1S ⊗ Σ)− ((v−2SX ′(IT + v−1XSX ′)−1XS)⊗ Σ)

Now we have:

v−2SX ′(IT + v−1XSX ′)−1XS (5.35)

= v−1S1/2v−1/2S1/2X ′(IT + v−1XSX ′)−1v−1/2XS1/2S1/2

We recall the following result for any T × p matrix H:

H ′(IT +HH ′)−1H = (Ip +H ′H)−1H ′H (5.36)
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Indeed we have:

H ′(IT +HH ′)−1 = (Ip +H ′H)−1M ⇔M = (Ip +H ′H)H ′(IT +HH ′)−1 (5.37)

⇔M = (H ′ + (H ′H)H ′)(IT +HH ′)−1

⇔M = (H ′ +H ′(HH ′))(IT +HH ′)−1

⇔M = H ′(IT +HH ′)(IT +HH ′)−1

⇔M = H ′

And therefore:

H ′(IT +HH ′)−1 = (Ip +H ′H)−1H ′

from which:

H ′(IT +HH ′)−1H = (Ip +H ′H)−1H ′H

We can take H = v−1/2XS1/2 in Equation (5.35) in order to obtain:

v−1S1/2v−1/2S1/2X ′(IT + v−1XSX ′)−1v−1/2XS1/2S1/2 (5.38)

= v−1S1/2(Ip + v−1S1/2X ′XS1/2)−1v−1/2S1/2X ′XS1/2v−1/2S1/2

By applying the result (5.36) with H = v−1/2XS1/2 to (5.38), we can obtain the singular

posterior variance of V ec(Π)|Ψ, S,Σ:

ΩΠ = (v−1S ⊗ Σ)− ((v−2SX ′(IT + v−1XSX ′)−1XS)⊗ Σ)

= (v−1S ⊗ Σ)− (v−1S1/2(Ip + v−1S1/2X ′XS1/2)−1v−1/2S1/2X ′XS1/2v−1/2S1/2 ⊗ Σ)

= (v−1S − v−2S1/2(Ip + v−1S1/2X ′XS1/2)−1S1/2X ′XS)⊗ Σ

= ΩΠ1 ⊗ ΩΠ2

with ΩΠ2 as required in (5.33).
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Now we simplify the form of ΩΠ1:

ΩΠ1 = (v−1S − v−2S1/2(Ip + v−1S1/2X ′XS1/2)−1S1/2X ′XS)

= v−1(S − S1/2(vIp + S1/2X ′XS1/2)−1S1/2X ′XS)

= v−1(S1/2S1/2 − S1/2(vIp + S1/2X ′XS1/2)−1S1/2X ′XS1/2S1/2)

= v−1S1/2(Ip − (vIp + S1/2X ′XS1/2)−1S1/2X ′XS1/2)S1/2

= v−1S1/2(vIp + S1/2X ′XS1/2)−1(vIp + S1/2X ′XS1/2 − S1/2X ′XS1/2)S1/2

= v−1S1/2(vIp + S1/2X ′XS1/2)−1vIpS
1/2

= S1/2(vIp + S1/2X ′XS1/2)−1S1/2

as required in (5.32).

We need to prove now that the rank of ΩΠ1 is equal to r (5.34). We can recall that if A is a

p×p positive semi-de�nite matrix of lower rank r < p and B is a p×p positive de�nite matrix of

full rank p then the rank of ABA is r. Indeed, we have ABA = AB1/2B1/2A = (AB1/2)(AB1/2)′.

Then, the rank of ABA will be the same as AB1/2, that is, the same as A since B is invertible.

Now, if we replace A by the positive semide�nite matrix S1/2 of rank r and B by the positive

de�nite matrix (vIp + S1/2X ′XS1/2)−1, then we have that ΩΠ1 is of rank r, as required.

The full conditional posterior mean of Π (5.31), that we call µΠ, is retrieved thanks to

Equation (5.28). We have:

V ec(µΠ) = β̂ + CR−1(y − ŷ)

= 0 + (v−1SX ′ ⊗ Σ)((IT + v−1XSX ′)⊗ Σ)−1(y − ŷ)

= (v−1SX ′ ⊗ Σ)((IT + v−1XSX ′)−1 ⊗ Σ−1)(y − ŷ)

= (v−1SX ′(IT + v−1XSX ′)−1 ⊗ Ip)(y − ŷ)

Note that:

v−1SX ′(IT + v−1XSX ′)−1
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= (v−1/2S1/2)(v−1/2S1/2X ′)(v−1/2XS1/2S1/2X ′v−1/2 + IT )−1

= (v−1/2S1/2)(v−1/2S1/2X ′XS1/2v−1/2 + Ip)
−1v−1/2S1/2X ′

= v−1S1/2(v−1S1/2X ′XS1/2 + Ip)
−1S1/2X ′

Since y = V ec(Y ′)|Ψ,Σ, we have:

ŷ = E[V ec(Y ′)|Ψ,Σ]

= E[V ec(ΠX ′ + ΨZ ′ + E ′)|Ψ,Σ]

= E[V ec(ΠX ′) + V ec(ΨZ ′) + V ec(E ′)|Ψ,Σ]

= V ec(ΨZ ′)

Thus, given Σ and Ψ, we obtain:

y − ŷ = V ec(Y ′)− V ec(ΨZ ′) = V ec(Y ′ −ΨZ ′) = V ec(Q′)

Finally, we get:

V ec(µΠ) = (v−1SX ′(IT + v−1XSX ′)−1 ⊗ Ip)V ec(Q′)

= V ec(IpQ
′(v−1SX ′(IT + v−1XSX ′)−1)′)

= V ec(Q′(v−1S1/2(v−1S1/2X ′XS1/2 + Ip)
−1S1/2X ′)′)

= V ec(v−1Q′XS1/2(v−1S1/2X ′XS1/2 + Ip)
−1S1/2)

= V ec(Q′XS1/2(vIp + S1/2X ′XS1/2)−1S1/2)

= V ec(Q′XΩΠ1)

Hence, we retrieve Equation (5.31):

µΠ = Q′XS1/2(vIp + S1/2X ′XS1/2)−1S1/2

To complete the proof we need to show that the rank of the full conditional posterior mean

of Π, i.e. the rank of µΠ, is equal to the rank r. We have indeed:

µΠ = Q′XS1/2(vIp + S1/2X ′XS1/2)S1/2 = Q′XΩΠ1
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Then, since Q and X are of size T × p, with T very large compared to p, then the product of

the two matrices Q′X is of full rank p. And since ΩΠ1 has rank r, then the product Q′XΩΠ1, i.e.

µΠ, also has rank r, as in Equation (5.34).

The rank of the realisations of Π is the rank of the posterior mean

The long-run impact matrix Π is a random variable that can be simulated according to Result

3 and De�nition 7 by:

Π← µΠ +HY P1
′ (5.39)

where H and P1 are retrieved by the spectral decomposition of the variance matrices ΩΠ1 and

ΩΠ2, respectively:

ΩΠ1 = P1GrP1
′ (5.40)

ΩΠ2 = (Σ =)H∆H ′ (5.41)

In our case, Σ is of full rank, so H corresponds to the p eigenvectors associated with the p

non-zero eigenvalues of Σ contained in the diagonal matrix ∆. P1 ∈ Vr,p corresponds to the r

eigenvectors associated with the r non-zero eigenvalues of S contained in the diagonal matrix

Gr. Besides, Y is a p × r random variable following a matrix non-singular normal distribution

with variance given by ∆ and Gr.

We notice that HY P1
′ is the multiplication of two matrices HY and P1

′. H is a p × p

invertible matrix and Y is of full rank, since it is simulated by a p× r non-singular distribution.

Consequently the product of the two matrices H and Y is also a full rank matrix. As for the

columns of P1, they represent the r eigenvectors of ΩΠ1, so P1 is a p× r full rank matrix as well.

Finally, by multiplying the two full rank matrices HY with P1
′, the rank of HY P1

′ is r.

Let us denoteMr
p,p(R) to be the set of p×p square matrices of rank r < p and let Z = HY P1

′.

Then Z is a random variable taking values in Mr
p,p(R). We also have µΠ ∈ Mr

p,p(R) since we

know according to Result 3 that µΠ = Q′XΩΠ1 and that Q′X is an invertible matrix, implying

that µΠ has the same rank as ΩΠ1, that is r (5.34).
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We will show that:

µΠ + Z ∈Mr
p,p(R) almost everywhere (5.42)

Suppose we denote EµΠ
as the following set:

EµΠ
=
{
Z ∈Mr

p,p(R) : µΠ + Z /∈Mr
p,p(R)

}
(5.43)

We can show that the set EµΠ
is negligible compared withMr

p,p(R), i.e. it is a �nite set. We have

indeed Z + µΠ /∈ Mr
p,p(R) if and only if there exist a linear transformation T of µΠ such that

T (µΠ) = Z + µΠ /∈Mr
p,p(R). However, there is a �nite number of linear transformations T such

that T (µΠ) /∈Mr
p,p(R). Therefore there is a �nite number of realisations of the random variable

Z such that Z ∈ EµΠ
. Therefore EµΠ

is negligible compared with Mr
p,p(R), i.e. EµΠ

is a �nite

set, and then, if we denote P as the probability measure associated with (Mr
p,p(R),F(Mr

p,p(R))),

we have:

P [Z ∈ EµΠ
] = 0 (5.44)

Therefore the simulated matrix Π is taking values in Mr
p,p(R)) with probability 1 almost

surely. Hence the result (5.42):

µΠ + Z = Π ∈Mr
p,p(R) almost everywhere (5.45)

We conclude that any simulation of Π will have rank r.

5.6.2 Fixed cointegration rank

In this paragraph, we highlight the fact that throughout this thesis we do not set a prior and

perform Bayesian inference on the cointegration rank. Although de�ning a prior distribution

on the cointegrating matrix Π induces a prior distribution for the rank, we prefer to infer the

cointegrating matrix Π conditional on the rank. Therefore we do not put any prior on the coin-

tegration rank. We can either use Johansen tests on the data in order to have a pre-determined

cointegration rank or use the methods seen in Chapter 3 where we extract the rank from a Gibbs

sampler based on a non-singular inference approach on the long-run impact matrix Π.
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5.7 Metropolis-Hastings to estimate the conditional distri-

bution of U

In this section, we recapitulate the Metropolis-Hastings step in order to be able to simulate the

hyperparameter U (5.9). In many works involving Bayesian statistics, the Metropolis-Hastings

algorithm is used in order to obtain samples from a distribution of unknown form, see Metropolis

et al. (1953) and Hastings (1970). The Metropolis-Hastings algorithm is a Markov Chain Monte

Carlo method and can be included as part of a hybrid or Metropolis-within-Gibbs algorithm.

Let us now describe in terms of density the prior of U de�ned in (5.9) (see Section 5.3.3).

The density of this prior is given by:

f(U) = 2π−
pr
2 |B|−

r
2 exp

(
−1

2
Tr(U ′B−1U)

)
which is proportional to:

f(U) ∝ exp

(
−1

2
Tr(U ′B−1U)

)
(5.46)

In terms of U , the density (5.7) of the distribution of Π|U,Σ can be written as:

f(Π|U,Σ) ∝
r∏
j=1

σj
− p

2 exp

(
−1

2
Tr(vS+Π′Σ−1Π)

)

∝
r∏
j=1

σj
− p

2 exp

(
−1

2
Tr(vUU ′Π′Σ−1Π)

)

∝
r∏
j=1

σj
− p

2 exp

(
−1

2
Tr(U ′(v Π′Σ−1Π)U)

)
(5.47)

where
∏r

j=1 σj
− p

2 depends on U because the σjs represent the non-zero eigenvalues of S, which

is a function of U : S = (UU ′)+. The density (5.47) is proportional to the likelihood of U used

to derive the full conditional of U . This distribution is conditional on Π and Σ. Indeed, by using
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Bayes' theorem and multiplying (5.46) and (5.47) we �nd:

f(U |Π,Σ) ∝ f(Π|U,Σ)f(U)

∝
r∏
j=1

σj
− p

2 exp

(
−1

2
Tr(U ′(vΠ′Σ−1Π)U)

)
exp

(
−1

2
Tr(U ′B−1U)

)

∝
r∏
j=1

σj
− p

2 exp

(
−1

2
Tr(U ′(B−1 + vΠ′Σ−1Π)U)

)
(5.48)

The presence of the eigenvalues of S in the expression (5.48) above brings some di�culties in

�nding the full conditional distribution of U as those eigenvalues are directly linked to the values

of U : S+ = UU ′. The full conditional distribution of U is therefore of an unknown form and

we need to use the Metropolis-Hastings algorithm in order to infer U . We will therefore de�ne

a function φ proportional to this unknown density, simply equal to the expression obtained in

(5.48):

φ(U) =
r∏
j=1

σj
− p

2 exp

(
−1

2
Tr(U ′(B−1 + vΠ′Σ−1Π)U)

)
(5.49)

For that, at step i, we propose a symmetric distribution centered on the previous value

U (i−1). The symmetric distribution is a matrix-variate normal distribution with mean U (i−1) and

variance Ir and C where C is a positive de�nite matrix of size p×p. We will denote this proposal

distribution as g(U |V ) where V is acting as the value of U obtained from the previous iteration,

that is, if we are at step i of the MCMC algorithm, V will take the value U (i−1):

U |V ∼ Np,r(V,C, Ir) (5.50)

The initial parameter U (0) is simulated from a matrix-variate normal distribution with mean

0 and variance Ir ⊗ C. The Metropolis-Hastings algorithm is constructed as follows:
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Algorithm 7 Metropolis-Hastings algorithm to simulate hyperparameter U at step i of the

MCMC procedure.

At step i of the MCMC procedure:

Simulate Uprop from g(U |U (i−1)).

Construct the acceptance ratio α as: α = φ(Uprop)

φ(U(i−1))

IF (α ≥ 1) THEN: U ← Uprop.

ELSE IF(α < 1) THEN:

Simulate h from a Uniform distribution over [0, 1]:

IF(h < α) THEN: U ← Uprop.

ELSE: U ← U (i−1).

After a burn-in period, the simulated U (i) will converge to the full conditional distribution of

U , see Metropolis et al. (1953). This period is the same burn-in period of 20,000 iterations used

for the other parameters simulated by Gibbs steps. Like in Chapter 3, we decide to take the last

10,000 iterations in order to evaluate the distribution of the parameters Π, Ψ and Σ. We will

use the same period to evaluate the distribution of U .

5.8 Gibbs sampler

5.8.1 Setting of the hyperparameters

We use the same hyperparameters as in Chapter 3 so A = (q− p+ 1)×Σ(0) where q = p+ 4

and Σ(0) is equal to Σ̂ estimated from a pre-sample as in Section 2.5. The hyperparameter v will

be taken equal to 0.001 like in Chapter 3, in order to give a weakly informative prior on Π|S,Σ.

The cointegration rank r is pre-determined either by Johansen tests or by the methods seen in

Chapter 3 when comparing the same data sets. r is therefore taken as a �xed hyperparameter

in our model.
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The parameter C introduced in the proposal distribution g(U |V ) of the Metropolis-Hastings

step for simulating U (5.50) has to be chosen so that the acceptance rate of the Metropolis

step satis�es certain conditions (see Section 5.9.3). We discuss in Section 5.9.3 the fact that the

matrix C should not have too small values because if that was the case, the proposal distribution

of U would simulate almost the same value at each iteration. This would make the covariance

matrix S have the same value at each iteration approximately, leading to faulty cointegrating

relations.

In Section 5.3.3, we have seen that the distribution of U involves a parameter matrix B that

we set as �xed. The conditional distribution of U (5.48) induces in the exponential part the

addition of the matrices B−1 and vΠ′Σ−1Π (see Section 5.7). A sensitivity analysis is needed

here in order to see the e�ects of choosing B. In the methodology proposed in this chapter, we

will �rst do a sensitivity analysis for the variance B of the prior distribution of U (see Section

5.9.2). Once B is speci�ed, we will adjust the acceptance rate of the Metropolis algorithm by

changing the values of C, i.e. the variance of the proposal distribution (see Section 5.9.3).

5.8.2 Algorithm of the Gibbs sampler

We recapitulate here the Gibbs sampler used in this chapter, i.e. a static VECM, but using a

singular distribution over the long-run impact matrix. First of all, we can introduce a Directed

Acyclic Graph (DAG) in order to summarize the techniques covered in this chapter (see Figure

5.8.2). The algorithms for the Gibbs sampler are presented below the DAG (see Algorithms 8, 9

and 10).
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Figure 5.1: Directed Acyclic Graph of the Bayesian model studied in this chapter: Square boxes

contain the �xed parameters, circles contain the randomized parameters. The cointegration rank

r is a �xed parameter in this model. Double arrows mean that the �rst parameter is used to

compute the following parameter. Simple arrows mean that the �rst parameter contributes to

the distribution of the following parameter.
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Algorithm 8 Initialization based on the pre-sample.

Set the size of the pre-sample τ = T/3.

• Create matrices ∆X, X−1, ∆Z following the instructions in Section 2.5.

For the pre-sample data set containing observations [[1, τ ]]:

• Initialize Π(0) ← Π̂ , Ψ(0) ← Ψ̂ , Σ(0) ← Σ̂ from the LS estimates (2.30) seen in Section 2.5.

Set the values of the hyperparameters:

• v = 0.001, q = p+ 4, A = (q − p− 1)× Σ(0) and B is speci�ed in Section 5.9.2.

• C is speci�ed according to the acceptance rate (see Section 5.9.3).

• r is estimated from the Johansen frequentist trace tests and enters as a �xed hyperparameter

in the Gibbs sampler.

• Initialize U (0) ∼ N(0, Ir ⊗ C).
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Algorithm 9 Gibbs sampler on the sample.

For the sample data set containing observations [[τ + 1, T ]]

• Create matrices Y , X, Z and E following the instructions in Section 2.3.2 for t ∈ [[τ +1, T ]].

We have: D = {X, Y, Z}.

Gibbs Sampler:

Set the number of iterations m = 50,000.

for i ∈ [[1,m = 50, 000]] do

• U (i) is constructed from the Metropolis-Hastings step recapitulated in Algorithm 7.

• S+(i)
= U (i)U (i)′ (see Section 5.3.3).

• S(i) is retrieved by taking the Moore-Penrose inverse of S+(i).

• Sample Π(i) from the singular full conditional posterior distribution of Result 3 with

value Ψ(i−1) instead of Ψ and Σ(i−1) instead of Σ.

• Sample Ψ(i) from the full conditional posterior distribution (5.18) with value Π(i) instead

of Π and Σ(i−1) instead of Σ.

• Sample Σ(i) from the full conditional Inverse-Wishart posterior distribution (5.26) with

value Π(i) instead of Π and Ψ(i) instead of Ψ.

end for

Algorithm 10 Final results: Obtaining the independent cointegrating relations.

• Πmean ← mean
{m−10,000≤i≤m}

[Π(i)]

• The independent cointegrating relations (i.e. β) are then obtained from Πmean and r, by

using the operation of Section 3.3.7.

α =

 Πmean r,r

Πmean p−r,r

 =⇒ β′ = (α′α)−1α′Πmean =
[
Ir B′

]
(5.51)
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5.9 Applications

5.9.1 Application to the synthetic data set of Chapter 3

We take the same two data sets as in Chapter 3 (see Section 3.4.1). The �rst data set

(P1) consists of the same synthetic data set from Chapter 3 consisting of seven time series

x1t, x2t, ..., x7t with T = 350 data points each and with four independent cointegrating relations

y1t, y2t, y3t, y4t. The process uit represents a white noise process for any i = 1, . . . , 7 and we have:

x1t =
t∑
i=1

u1i ∼ I(1) , x2t =
t∑
i=1

u2i ∼ I(1)

x3t = x2t + x1t + u3t ∼ I(1) =⇒ y1t = x3t − x2t − x1t ∼ I(0)

x4t = x2t + u4t ∼ I(1) =⇒ y2t = x4t − x2t ∼ I(0)

x5t = x1t + u5t ∼ I(1) =⇒ y3t = x5t − x1t ∼ I(0)

x6t =
t∑
i=1

u6i ∼ I(1)

x7t = x6t − x2t + u7t ∼ I(1) =⇒ y4t = x7t − x6t + x2t ∼ I(0)

The second data set (P2) consists of the same �ve time series x1t, x2t, ..., x5t with three inde-

pendent cointegrating relations y1t, y2t, y3t (see Section 3.4.1). Letting vit be a white noise process

for any i = 1, 2, 3, we have:

x1t =
t∑
i=1

v1i ∼ I(1) , x2t =
t∑
i=1

v2i ∼ I(1)

x3t = x2t + x1t + v3t ∼ I(1) =⇒ y1t = x3t − x2t − x1t ∼ I(0)

x4t = x2t + v4t ∼ I(1) =⇒ y2t = x4t − x2t ∼ I(0)

x5t = x1t + v5t ∼ I(1) =⇒ y3t = x5t − x1t ∼ I(0)

5.9.2 Sensitivity analysis around B

As seen in Section 5.3.3, the matrix S has an Inverse-Wishart prior distribution implied by

the Gaussian prior of the p× r matrix U obtained from the decomposition S+ = UU ′. The prior
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of V ec(U) is a multivariate normal distribution with mean 0 and variance Ir⊗B. In this section,

we will study the impact of certain values of the variance parameter B on the cointegrating

relations and on the posterior distributions of some parameters of the VECM.

We decide to take the �rst simulated data set P1 to do this sensitivity analysis. For each

algorithm, we set C, i.e. the value for the variance of the proposal distribution of U , for which we

obtain a good acceptance rate for the Metropolis-Hastings algorithm (see Algorithm 7, Section

5.7). The value of this acceptance rate is discussed in much more detail in Section 5.9.3, Table

5.2. We run Algorithms 8, 9 and 10 three times for the �rst simulated data set P1: the �rst

MCMC procedure uses large values for B (B = 10 × Ip), the second MCMC procedure takes

the identity matrix (B = Ip) and the third MCMC procedure uses an even smaller norm for B

(B = 0.1× Ip).

The posterior and prior densities of some coe�cients of the VECM when B = 10 × Ip are

presented in Figure 5.2. We decide to display the density of a coe�cient of the covariance matrix

S in the top right (S22). If B is too big, then the values of U can indeed become quite big

and therefore the values of S will become very much concentrated around 0. The prior and the

posterior will be very similar (see Figure 5.2). The other coe�cients show a posterior density

that is di�erent from the prior, as expected. Note that the shape of the density of the coe�cient

of Π is due to the singular property of the cointegrating matrix Π.
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Figure 5.2: Posterior and prior densities of the coe�cients Π32, S22, Ψ24 and Σ42 with B = 10×Ip:

Posteriors in red and priors in blue.

Prior and posterior densities when using B = Ip are presented in Figure 5.3 and seem to be

quite di�erent from each other for all the coe�cients. In particular, the posterior density of S22

is sharper than its corresponding �at prior.
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Figure 5.3: Posterior and prior densities of the coe�cients Π32, S22, Ψ24 and Σ42 with B = 1×Ip:

Posteriors in red and priors in blue.

Finally, densities shown in Figure 5.4 where we use B = 0.1 × Ip present a rather �at

posterior distribution for S22. From this sensitivity analysis, we think it is preferable to take

B equal to the identity (see Figure 5.3) for the simulated data sets and the real data sets later

on. In the next section (see Section 5.9.3), we will try to adjust the variance parameter of the

proposal distribution for the Metropolis-Hastings algorithm (see Algorithm 7, Section 5.7) to be

acceptable.
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Figure 5.4: Posterior and prior densities of the coe�cients Π32, S22, Ψ24 and Σ42 with B = 0.1×Ip:

Posteriors in red and priors in blue.

5.9.3 Adjusting the acceptance rate of the Metropolis step with the

variance C of the proposal distribution

In this section, we highlight the fact that we should be careful in parameterizing the variance

C of the proposal distribution in the Metropolis-Hastings algorithm (see Algorithm 7). We can

compute the acceptance rate, denoted as ar, i.e. the proportion of times in the MCMC procedure

for which the proposal value is accepted. If we have a multidimensional random walk Metropolis

algorithm, which is the case when simulating U , then Roberts et al. (1997) show that the optimal

acceptance rate is 0.234. However, in the literature, it is generally accepted to have an acceptance

rate that lies between 0.20 and 0.40. We will try in this section to obtain the optimal acceptance

rate for our simulated data sets by scaling the value of C when the variance B of the prior of U
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is equal to the identity: B = Ip (see Section 5.9.2).

Small values of C will reduce the variance around the previous value of U in the MCMC

algorithm, and make each simulated U (i) very close to the mean of the proposal distribution, i.e.

the previous value U (i−1). Therefore the acceptance ratio α (see Algorithm 7) is more likely to

be equal to 1, and we will have an acceptance rate that is more likely to be close to 1. Therefore

we would need to increase the size of C, so that the acceptance rate is closer to the optimal

value 0.234, see Roberts et al. (1997). If the norm of C tends to be large, then the simulated

values for U (i) by the proposal distribution will be more likely far from the previous value U (i−1),

making the acceptance ratio more likely to be di�erent from 1. We will therefore bring down the

acceptance rate to smaller values.

A good acceptance rate leads to more volatility for the values of U as shown at the top

of Figure 5.5. However, if the acceptance rate is too low, the simulated U (i)s are rejected at

almost every step i of the MCMC algorithm. This example is a little extreme but if we look

at the bottom of Figure 5.5, we can see that the trace plots of the coe�cients U21 and U32

stay the same for almost all the iterations of the MCMC algorithm. As a consequence, the

covariance matrix S = (UU ′)+ simulated at each iteration becomes almost �xed during the

MCMC algorithm because the previous value is chosen. Therefore we come back to the problem

where S is �xed (see Section 5.3.2). The resulting independent cointegrating relations presented

in Table 5.1 below and obtained from Algorithm 10 are not correctly found.
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Figure 5.5: Trace plots of the coe�cients U21, U32 for the �rst simulated data set P1. Trace plots

on the top with C = 0.3 × Ip and ar = 0.227, and trace plots on the bottom with C = Ip and

ar = 0.021.

Table 5.1: Cointegrating relations for the �rst simulated data set P1 with B = Ip and C = Ip

and ar = 0.021.

x7t x5t x4t x3t x6t x2t x1t

1 0 0 0 -0.662 -0.239 -0.831

0 1 0 0 0.168 1.147 0.121

0 0 1 0 0.921 -0.601 1.032

0 0 0 1 2.709 0.481 2.281

Table 5.2 compares the values of C with the acceptance rate ar that we obtain after running
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the MCMC procedure de�ned by Algorithms 8 and 9 in Section 5.8.2. We use the same other

hyperparameters as de�ned in Algorithm 8 but we change the value of C only. At the end of

each MCMC procedure, we collect the corresponding acceptance rate ar. From these tables we

can see that as we reduce the amplitude of C, the acceptance rate increases towards the optimal

acceptance rate desired.

Table 5.2: Acceptance ratio for the two simulated data sets P1 and P2

Simulated data set P1 Simulated data set P2

C ar C ar

1× Ip 0.021 1× Ip 0.135

0.5× Ip 0.112 0.8× Ip 0.157

0.3× Ip 0.227 0.5× Ip 0.254

Table 5.3 shows the independent cointegrating relations for the �rst simulated data set with

the optimal acceptance rate found from Table 5.2, that is the closest ar to the value 0.234, see

Roberts et al. (1997). The value of ar = 0.227 is taken and then we choose C = 0.3× Ip. After

that, we run the algorithm seen in Section 5.8 with m = 30,000 iterations and a burn-in period

of 20,000 iterations. We use the �xed hyperparameters de�ned in Algorithm 9.

Table 5.3: Cointegrating relations for the �rst simulated data set P1: C = 0.3× Ip, ar = 0.227.

x7t x5t x4t x3t x6t x2t x1t

1 0 0 0 -0.952 0.911 0.070

0 1 0 0 0.009 0.076 -0.946

0 0 1 0 -0.043 -0.950 -0.069

0 0 0 1 -0.024 -0.946 -0.993

Table 5.4 shows the cointegrating relations obtained from the second simulated data set P2

by specifying the value C for which we have an acceptance rate of 0.254, that is C = 0.5 × Ip.
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Here we can see that when C is well chosen we obtain accurate estimates of the cointegrating

coe�cients.

Table 5.4: Cointegrating relations for the second simulated data set P2: C = 0.5×Ip, ar = 0.254.

x5t x4t x3t x2t x1t

1 0 0 0.001 -0.991

0 1 0 -0.997 -0.002

0 0 1 -0.989 -0.995

Comparison with the static model of Chapter 3 for the simulated data sets

In this section, we recall the cointegrating relations found by applying the methods seen in

Chapter 3 with Algorithms 1, 2 and 3. The cointegrating relations found with the methods

described in this chapter are not very di�erent if we compare the �rst simulated data set P1 (see

Table 5.3 and Table 3.3) or the second simulated data set P2 (see Table 5.4 and Table 3.4).

Table 5.5: Cointegrating relations for the �rst simulated data set P1 with the static model of

Chapter 3.

x7t x5t x4t x3t x6t x2t x1t

1 0 0 0 -0.941 1.009 0.043

0 1 0 0 -0.058 0.043 -0.971

0 0 1 0 -0.014 -0.965 0.047

0 0 0 1 -0.056 -0.961 -0.961
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Table 5.6: Cointegrating relations for the second simulated data set P2 with the static model of

Chapter 3.

x5t x4t x3t x2t x1t

1 0 0 -0.012 -1.009

0 1 0 -0.983 0.014

0 0 1 -1.019 -1.009

The advantage of the method seen in Chapter 3 is that the cointegration rank is evaluated

during the MCMC procedure. However in this chapter, the novelty relies on the fact that we

used singular distributions to infer the cointegrating matrix. This chapter would constitute the

�rst step in a new approach for inferring the cointegrating matrix in the VECM.

5.9.4 Posterior summaries

In this section, we highlight posterior summaries of some parameters of the VECM for the

�rst simulated data set P1. The trace plots shown in Figure 5.6 are taken after running the

MCMC procedure presented by Algorithms 8 and 9 and by using the parameters C = 0.3 × Ip

and B = Ip that we thought were appropriate in Sections 5.9.3 and 5.9.2, respectively. We also

display trace plots of some coe�cients of the hyperparameter U , showing convergence as well

(see Figure 5.7).
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Figure 5.6: Trace plots of the coe�cients Π63, Π71, Ψ52 and Σ42 for the �rst simulated data set

P1.
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Figure 5.7: Trace plots of the coe�cients U64, U42, U31 and U24 for the �rst simulated data set

P1.

We can see convergence of those parameters in these trace plots (see Figure 5.6). Their

respective densities are represented in Figure 5.8. We decide to show two coe�cients of the

singular long-run impact matrix (Π63 and Π71). The property of singularity for the distribution

of Π makes the shape of the distribution non-Gaussian. This comes from the fact that a singular

distribution is not de�ned under the Lebesgue measure and therefore it is not entirely correct to

expect these coe�cients to have a Gaussian shaped distribution. The posterior distribution of

Ψ is however non-singular and Gaussian, and we should expect a symmetric distribution for its

coe�cients (see Ψ52 in Figure 5.8).
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Figure 5.8: Posterior densities of the coe�cients Π63, Π71, Ψ52 and Σ42 for the �rst simulated

data set P1.

5.9.5 Comparison with the static model of Chapter 3 for the European

net tradings

We will compare the results we obtain from the method seen in this chapter and the method

seen in Chapter 3 with non-singular posterior distributions for Π and Ψ. In Chapter 3 we com-

pared the independent cointegrating relations between the four net tradings of France, Germany,

Italy and Spain during the decade preceding the introduction of the Euro (see Table 3.8, Sec-

tion 3.4.4). Table 5.7 below compares the cointegrating relations obtained for these time series

previously and by using the Bayesian model of this chapter. We use the Algorithms seen in this

chapter (see Algorithms 8 , 9 and 10). After having run some MCMC procedures, it was found

187



that with a variance matrix of the proposal distribution C = 0.6 × Ip, we have an acceptance

rate ar = 0.231. The independent cointegrating relations presented on the left hand side of Table

5.7 are derived with C = 0.6× Ip. We can clearly see a similarity between the results of the two

methods.

Table 5.7: Estimated relations between net trading, pre Euro (1991�1998): Method of Chapter

3 and method of Chapter 5.

Chapter 5 Chapter 3

FraNX GerNX ItaNX SpaNX FraNX GerNX ItaNX SpaNX

1 0 0 -1.240 1 0 0 -1.234

0 1 0 -1.647 0 1 0 -1.630

0 0 1 -1.393 0 0 1 -1.383

Table 5.8 shows the six independent cointegrating relations between the European economies

before the Euro found based on the Bayesian model seen in this chapter. We run Algorithms 8, 9

and 10. In Algorithm 8, we set the cointegration rank r = 6. The six independent cointegrating

relations presented in Table 3.9 of Section 3.4.6 are not completely the same but they share quite

signi�cant similarities. In particular, the net tradings of Germany, Italy and Spain are coevolving

positively with the net trading of France (−1.59, −0.79 and −0.63) with a better coevolution

between Germany and France (−1.59).
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Table 5.8: Cointegrating relations for the pre-Euro time period (1991-1998) obtained with C =

0.1× Ip and B = Ip. Acceptance rate ar = 0.278

GerNX ItaNX SpaNX ItaIR GerUR ItaUR FraNX GerIR FraIR SpaIR FraUR SpaUR

1 0 0 0 0 0 -1.59 -0.42 0.82 -0.42 -0.18 -0.14

0 1 0 0 0 0 -0.79 -0.26 1.28 -0.26 -0.84 0.09

0 0 1 0 0 0 -0.63 -0.29 -0.28 0.60 0.72 -0.55

0 0 0 1 0 0 0.68 -0.06 -0.80 -0.48 0.26 -0.58

0 0 0 0 1 0 -0.61 -0.01 -0.33 0.71 0.60 -0.56

0 0 0 0 0 1 -0.89 -0.16 0.90 -0.29 -0.69 0.32

5.9.6 Application to six major stock market indices

In this section we will study six stock market indices across the world: three stock market

indices from the United States of America (NASDAQ, S&P 500, Dow Jones), one stock market

index from Japan (Nikkei 225) and two stock market indices from Europe (Paris CAC 40 and

Euro Next). The Japanese Nikkei 225 is one of the stock market indices of the Tokyo Stock

Exchange and represents the movement of the 225 main Japanese equities' market values. It

is a daily price-weighted index in Yen and has been published in the Nihon Keizai Shimbun

newspaper since 1950. It is similar to the Dow Jones Industrial Average index used in America

(see Chapter 4). As for the CAC 40 (Cotation Assistée en Continu) and Euro Next 100, they

represent major European stock market indices and are a weighted measure of the most relevant

companies' market values in Europe. The Dow Jones Industrial Average index (see Chapter

4), NASDAQ composite (National Association of Securities Dealers Automated Quotations) and

Standard and Poor 500 are the three most commonly followed stock market indices in US stock

markets.

Our time series consist of daily data collected from 1 January 2012 to 20 September 2016

(source Yahoo) for the six stock market indices: NASDAQ, S&P 500, Dow Jones, Nikkei 225,
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CAC 40 and Euro Next. The six time series are represented in Figure 5.9.
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Figure 5.9: Stock market index of NASDAQ, S&P 500, Dow Jones, Nikkei 225, CAC 40 and

Euro Next from 1 January 2012 to 20 September 2016.

We follow the instructions of Algorithms 8 and 9 with the number of iterations equal to 30,000.

The hyperparameters and initial parameters are based on a pre-sample of size T/3 as Algorithm

8 describes. This pre-sample consists of the time period going from 1 January 2012 until 17 July

2013. The sample on which the Bayesian analysis is conducted goes from 18 July 2013 until 20

September 2016. Johansen tests are based on the sample data set and are presented in Table
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5.9. Based on these tests, we �nd a cointegration rank of 2 with 95% con�dence level. The

test statistic of 43.98 is indeed the �rst value smaller than the corresponding critical value using

the 5% threshold (48.28), and this corresponds to the row where the null hypothesis is r ≤ 2.

Therefore, we reject the null hypothesis that the cointegration rank is smaller than or equal to 1,

but we do not reject a rank smaller than or equal to 2, hence the choice of a cointegration rank

of 2. Therefore we �x the hyperparameter r = 2 in our algorithms.

Table 5.9: Johansen tests for the sample data set of the six stock market indices NASDAQ, S&P

500, Dow Jones, Nikkei 225, CAC 40 and Euro Next. Time Period: 18 July 2013 - 20 September

2016.

Test: r ≤ r0 Statistic Critical values (90%) Critical values (95%) Critical values (99%)

0 208.76 85.18 90.39 104.20

1 105.11 66.49 70.60 78.87

2 43.98 45.23 48.28 55.43

3 23.66 28.71 31.52 37.22

4 11.11 15.66 17.95 23.52

5 4.07 6.50 8.18 11.65

The independent cointegrating relations presented in Table 5.10 reveal a positive relation

between NASDAQ and the Japanese Nikkei 225 (−0.958) and CAC 40 (−0.361). The Euro Next

index is coevolving negatively with the Japanese Nikkei 225 (+1.614) and positively with CAC

40 (−9.454). As for the two other American stock market indices (S&P 500 and Dow Jones),

they do not seem to coevolve positively with neither NASDAQ (+0.024 and +0.742) nor Euro

Next (+0.537 and +0.589).
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Table 5.10: Independent cointegrating relations between NASDAQ, Euro Next, S&P 500, Dow

Jones Index, Nikkei 225, CAC 40. Time period of the sample: July 2013 - September 2016

NASDAQ Euro Next S&P 500 Dow Jones Nikkei 225 CAC 40

1 0 0.024 0.742 -0.958 -0.361

0 1 0.537 0.589 1.614 -9.454

5.10 Discussion

In this chapter, we described a method assuming a singular prior on the long-run impact

matrix Π, which led to a singular posterior distribution for Π. Furthermore, assuming a singular

prior on the long-run matrix with a certain lower rank r < p implies the derivation of a singular

(full conditional) posterior distribution with same rank r. Therefore the rank cannot change

throughout the algorithm. We need to set a value of r for the rank before running the algorithm.

In the methods given in this chapter, we decide to create a second covariance matrix S in the

prior of Π|Σ that is positive semide�nite of rank r. The prior variance of V ec(Π)|S,Σ is then

de�ned by S ⊗ v−1Σ. However, �xing S is not adequate because the prior of Π would not be

uniformly distributed over the cointegrating coe�cients, implying some knowledge about them

before the analysis (see Section 5.3.2). This chapter introduces a Metropolis step in order to

infer an a priori Gaussian p × r matrix U taken from the decomposition of the Moore-Penrose

generalized inverse of S: S+ = UU ′. However unlike in Chapter 3 (where we �x S = Ip as full

rank, see Section 3.3.2), and because S is not a diagonal matrix, the method seen in this chapter

considers correlation between the vectors of Π.

For the simulated data sets, the rank was already known before running the algorithm. The

cointegrating relations in the simulated data sets match correctly with the reality (see Tables

5.3 and 5.4). By comparing the four net tradings before the introduction of the Euro, the

cointegration rank of 3 found in Chapter 3 was used (see Section 3.4.4). The comparison with
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the cointegrating relations found for the four net tradings before the introduction of the Euro in

Chapter 3 are very similar (Table 5.7). We also made an application to six major stock market

indices (see Section 5.9.6).

However, in this chapter the cointegration rank is considered as �xed. For future works and

on the same path as Villani (2005), we could infer the cointegration rank r and �nd a posterior

distribution depending on the data only. We can for instance give a discrete uniform prior for

r: f(r) = 1/(p + 1) for r ∈ [[0, p]]. As described in the literature review (see Section 2.4.3), we

would then need to integrate out Π, Ψ, Σ and U from the joint posterior distribution of all these

parameters in order to obtain the marginal likelihood of the data given the cointegration rank:

f(D|r) =

∫
· · ·
∫
L(D; Π,Ψ,Σ, r)f(Π,Ψ,Σ, U, r) dΣ dΨ (dΠ) dU

where (dΠ) de�nes the Hausdor� measure (5.8). The posterior distribution of the cointegration

rank given the data is then established by the ratio (2.19) (see Section 2.4.3):

f(r|D) =
f(D|r)f(r)∑p
r=0 f(D|r)f(r)

Similar to Kleibergen and Paap (2002), we could also use Bayes factors in order to evaluate

the cointegration rank. In Section 2.4.4, we saw how Kleibergen and Paap (2002) set a Bayes

factor BF [r|p] (2.26) for each rank r in order to test it against the full rank model:

BF [r|p] =
f(D|rank = r)

f(D|rank = p)
(5.52)

If this Bayes factor has a value larger than 1, then the model with rank r is more likely than

the full rank model. The posterior probability of the rank (2.28) based on the posterior odds

ratio (2.27) would basically evaluate the rank (see Section 2.4.4). In that case, the most likely

cointegration rank will be the one for which the posterior probability is the highest. The use of

singular distributions for the cointegrating matrix Π could maybe simplify the computations of

the Bayes factors based on di�erent Error Correction Models (induced by di�erent corresponding

cointegration ranks).

Another idea for inferring the cointegration rank would be to use a Metropolis step for
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the joint distribution of U and r. Indeed, since U is conditional on the rank, as being the

number of columns in U , we cannot infer the rank r separately from it. We can use a uniform

or binomial distribution as the proposal distribution π(r) for the cointegration rank r. As

for U |r, we can use the same Gaussian proposal distribution as seen in this chapter, called

π(U |r) here. The multiplication of both π(r) and π(U |r) creates our joint proposal distribution

π(U, r) = π(r)π(U |r). We also need to use the joint prior distribution f(U, r) = f(U |r)f(r)

in order to derive an unknown form of density for our full conditional distribution f(U, r|Π,Σ)

from which we will be able to de�ne an acceptance ratio at each step of the MCMC algorithm.

However, with this new approach in mind, we would have to consider a reversible-jump Markov

Chain Monte Carlo methodology in order to sample this joint posterior distribution with varying

dimensions, see Green (1995).
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Chapter 6

Consideration for future work: A dynamic

VECM including a singular distribution

for the time-varying cointegrating matrix

6.1 Introduction

By continuing with the same idea of having a dynamic model as in Chapter 4, we can think

about constructing a forward �ltering and backward recursion algorithm, by using a singular

distribution on the cointegration matrix. We provide a set of ideas for this new concept in this

chapter.

In our assumptions, at each time t, the long-run impact matrix Πt will have a singular

distribution given the rank rt and Ψt will have a non-singular distribution. Like in Chapters 3,4

and 5, we also assume independence between our long-run relationships matrix Πt and the lag

parameter matrix Ψt. We can split the transition equation into a part concerning Πt and a part

concerning Ψt:

yt = (Zt
′ ⊗ Ip)θt + ut, ut ∼ N(0,Σt) Measurement equation (6.1)

πt = Fπt−1 + ν1t, ν1t ∼ NS(0, Q1,t|p× rt) Transition equation 1 (6.2)
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ψt = Gψt−1 + ν2t, ν2t ∼ N(0, Q2,t) Transition equation 2 (6.3)

with

θt =

πt
ψt

 (6.4)

Q1,t is a positive semide�nite matrix of rank p × rt implying a vector-variate normal distri-

bution for ν1t. The lag parameter matrix Ψt is still considered as non-singular and therefore Q2,t

is de�ned as the positive de�nite variance matrix of ψt = V ec(Ψt).

Then for each t, and given the rank rt, the forward �ltering part of πt would then consist of

the following �ve steps:

πt|t−1 = Fπt−1|t−1 (6.5)

Pt|t−1 = FPt−1|t−1F
′ +Q1,t−1 (6.6)

Kt = Pt|t−1(xt−1 ⊗ Ip)((xt−1
′ ⊗ Ip)Pt|t−1(xt−1 ⊗ Ip) + Σt)

−1 (6.7)

πt|t = πt|t−1 +Kt(yt − (xt−1
′ ⊗ Ip)πt|t−1) (6.8)

Pt|t = Pt|t−1 −Kt(xt−1
′ ⊗ Ip)Pt|t−1 (6.9)

Since for each time t, Pt|t−1 ≥ 0 and Σt > 0, then the sum (xt−1
′ ⊗ Ip)Pt|t−1(xt−1 ⊗ Ip) + Σt > 0

and is therefore invertible (step (6.7) of the forward �ltering algorithm).

The backward recursion part of πt is de�ned as the following:

πt|t+1 = πt|t + Pt|tF
′P+
t+1|t(πt+1 − Fπt|t) (6.10)

Pt|t+1 = Pt|t − Pt|tF ′P+
t+1|tFPt|t (6.11)

6.2 Bayesian inference about the transition equation

Since the cointegration rank is time-varying, the variance of the transition equation depends

on it, i.e. Q1,t, is also dynamic, unlike the variance of the transition equation seen in Chapter 4.

Given the fact that there exists a unique Moore-Penrose inverse matrix of Q1,t, which we will

call Λ1t here, we will try to �nd a prior distribution for that latter matrix.
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Q1,t is a singular matrix in our assumptions and of rank rt, then the prior of Λ1t is also

singular of rank rt. The singular Wishart distribution introduced in De�nition 9 of Section 5.3.3

will be used for the dynamic precision Λ1t. Under the condition of singularity, this prior depends

on the dynamic rank rt associated with Πt. Therefore, the prior explained in the next section

will be the prior of Λ1t|rt, where rt is also a dynamic parameter.

From Uhlig (1994) and Gupta and Nagar (2000), who explored the singular Wishart dis-

tribution (see De�nition 9 in Section 5.3.3), we can also de�ne the singular Inverse-Wishart

distribution as Díaz-García et al. (1997) and Uhlig (1994) suggested. The idea would then be to

elicit an Inverse-Wishart prior distribution on the variance parameter of the transition equation

(6.2). Instead, we decide not to go too far in developing de�nitions about too many singular

distributions and prefer to focus more on the singular Wishart distribution, which is easier to

handle and simulate. The idea is now more to conduct Bayesian inference on the precision matrix

Λ1t of the transition equation (6.2) rather than the covariance matrix Q1,t itself.

Prior of the singular precision matrix given the time-varying cointegrating rank rt

A singular Wishart distribution is used for the precision matrix Λ1t = Q+
1,t in (6.2). This

distribution involves two hyperparameters: the scale matrix B and the degrees of freedom, wt,

which is a time-varying hyperparameter involving the dynamic cointegration rank rt. It is useful

to note that B is a positive de�nite matrix: B > 0. For the singular Wishart distribution, the

number of degrees of freedom is equal to the rank of the matrix we want to simulate.

The vector ν1t is simulated from a singular normal distribution of which the variance is of

rank rt× p. Suppose wt = rt× p and let us assume that the rank of the matrix Πt is rt < p, then

we can state the prior of each Λ1t as:

Λ1t ∼ WS(B,wt) (6.12)
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The full conditional distribution of Q1,t

We denote the density of each ν1t as f(ν1t) from the transition equation (6.2). But we notice

that ν1t has a singular normal distribution and therefore the likelihood function of the transition

equation will be proportional to the singular likelihood implied by the distribution of ν1t. This

likelihood will therefore be singular and de�ned on the Hausdor� measure, see Díaz-García et al.

(2006) and Proposition 1 in Section 5.2.2.

Now we notice that in order to �nd the full conditional posterior distribution of Λ1t, we

will have to multiply the singular prior density (6.12) of rank wt by the singular likelihood

proportional to the singular normal distribution of ν1t. We know that a posterior distribution

for Λ1t exists, but in order to apply Bayes' theorem we need to study more about the Hausdor�

measure, in which our singular parameter and our likelihood do have a density.

6.3 Discussion

In this new approach, we encounter three di�culties:

• First of all, this approach would be based on the knowledge of a stochastic process repre-

senting the cointegration rank (rt)1≤t≤T beforehand. We are not sure about what type of

stochastic process could be involved in order to describe precisely the cointegration rank.

• Then, given the stochastic process rt, the FFBR algorithm would require us to �nd a

full conditional singular posterior distribution for the precision matrix of the transition

equation (6.2) Λ1t. Setting a prior and obtaining a posterior singular Wishart on the

precision matrix Λ1t is not a simple task. We cannot simply apply Bayes' theorem by

multiplying the likelihood by the density of the Wishart prior, and then derive a conjugate

posterior distribution, like in Chapter 4. The density of a singular parameter is not de�ned

under the Lebesgue measure. The only fact that we know is that the posterior distribution

of the precision matrix will have to be de�ned on the same space as the prior distribution,

i.e. the space of square matrices of lower rank rt.
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• Finally, even if we derive a suitable stochastic process for the cointegration rank (rt) and

a suitable de�ned posterior distribution for the precision parameter of Πt, then the simu-

lations of Λ1,t, would give a matrix of rank rtp, as required. However, the addition with

FPt−1|t−1F
′ in (6.6) would not necessarily give a matrix of rank rtp. Then, following the

steps (6.7), (6.8) and (6.9), the covariance matrix (6.11), of which the rank de�nes the rank

of the singular distribution of Πt, will not necessarily be rtp.
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Chapter 7

Conclusions and future work

7.1 Conclusions

7.1.1 Main �ndings

The goal of this thesis is to develop methods to determine the cointegration rank and the

cointegrating relationships for a set of di�erence stationary time series. For that, we develop

Bayesian methods around the cointegration matrix of the Vector Error Correction Model.

In previous studies, the long-run relationships matrix was split into two full rank matrices

on which non-singular priors were set. The work of this thesis focuses on developing Bayesian

inference methods on the cointegrating matrix of the VECM. The �rst two methods include the

determination of the cointegration rank inside the Markov Chain Monte Carlo procedure or the

Forward Filtering Backward Recursion algorithm (see Chapters 3 and 4). These two methods

set a non-singular prior on the cointegration matrix and determines the cointegration rank based

on the number of irrelevant singular values of the cointegration matrices simulated. We are then

able to avoid the use of frequentist Johansen tests in order to determine the cointegration rank.

The last method introduces a singular prior distribution for the cointegration matrix depending

on the cointegration rank, pre-determined from the data by using Johansen tests.
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In Chapter 3 a full conditional posterior distribution is used for the cointegration matrix

and the lag parameters matrix, by integrating out the covariance matrix of the errors. At each

step of the Gibbs sampler, a cointegration rank is estimated from the number of relevant singular

values of the cointegration matrix simulated. These methods are then applied to the four most

important economies of the Eurozone over a period before and a period after the introduction of

the Euro. The cointegration rank is decreasing between the period before the Euro and the pe-

riod after the Euro, allowing less cointegrating relations and therefore less comovements between

those four economies. We also note a divergence in the net trading between the Mediterranean

countries (including France) and Germany after the introduction of the single currency.

Chapter 4 o�ers a time-varying estimation of the parameters of the Vector Error Correction

Model and sets a Forward Filtering Backward Recursion algorithm for estimating, in particu-

lar, the time-varying cointegration rank and matrix. This model that allows the parameters to

change over time is called the dynamic VECM, in order to di�erentiate it from a static VECM,

seen in the previous chapter (Chapter 3). We create simulated data sets split into two or three

time periods, where the number of cointegrating relationships and the relationships themselves

change over time. Results show a good similarity between the evolution of the cointegration rank

over the separate time-periods, but also the nature of the cointegrating relationships, and the

simulated data sets created (see Section 4.7.3). We then decide to study the evolution of the

cointegration rank on real data sets. We detect a decrease of the cointegration rank in a part

of the European panel data set studied in the previous chapter. We also study stock market

indices of companies from three di�erent sectors from the Dow Jones: manufacturing companies,

banking/insurance and electronic companies. The dynamic VECM is used over the time period

covering June 2001 to June 2009. We noted that during this time period, the cointegration rank

of the Electronics sector seemed to start at 3, and then increase to 4 from 2005 (see Figure 4.13).

Chapter 5 sets a singular distribution on the cointegration matrix of the VECM conditional

on the rank. The long-run relationships matrix is indeed a singular matrix in our hypothesis.

We established in this chapter another way of obtaining the posterior distribution of Π than by
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using Bayes' theorem. We also retrieved the important property that the rank of the singular

full conditional posterior distribution of Π is equal to the rank of the prior distribution of Π. We

decided to use the traditional Johansen cointegration tests on the data, or use the method seen

in Chapter 3 to determine the rank before running the Gibbs sampler.

The simulated data set guarantees the e�ciency of this method, with again a very good simi-

larity between the synthetic cointegration relationships and their estimated coe�cients from the

MCMC procedure. The new methods are then applied to some real data sets from the previous

chapters and to six major stock market indices taken from January 2012 to September 2016.

7.1.2 Advantages of the novel methods on Bayesian cointegration

The main advantage in the methods developped in this project is the fact that we are esti-

mating the long-run relationships matrix, and thus being able to extract a rank out of it, after

each simulation. We can thus identify a distribution of the cointegration rank given the data.

Furthermore, the cointegration relationships can be selected by manipulating the mean, the mode

or the median of the general cointegrating matrix.

This thesis elaborates Bayesian inference methods for the cointegration matrix and the coin-

tegration rank. The methods seen in Chapters 3 and 4 do not require the use of Johansen tests

in order to determine the cointegration rank. These methods also estimate the cointegrating

relationships, coming from simulations of the long-run impact matrix. We can use this new ap-

proach of estimation by constructing dynamic models that highlight in particular the evolution

of the cointegration rank over time, as well as the evolving cointegration relationships (see the

simulated data in Chapter 4).

7.1.3 Limitations of these Bayesian estimations

One of the key issues about doing Bayesian estimations is the time required to run an al-

gorithm. In R Core Team (2013), Gibbs sampling for large matrices often takes quite long,

especially for the dynamic version of the VECM seen in Chapter 4, taking about an hour. How-
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ever, by de�ning the main functions in C++, it is possible to re-use them in our R programs

thanks to the RCPP package, see Eddelbuettel (2013) and Eddelbuettel and François (2011).

The Gibbs samplers are approximately three times faster as a consequence.

Our thesis is also limited by the fact that we do not set any Bayesian inference on the

cointegration rank. Once we simulate a cointegration matrix, the rank is determined from the

cointegration matrix simulated. The rank is a one-to-one function of the matrix and therefore,

if we set a prior and derive a posterior distribution for the matrix, then we should not set a

prior on the rank. There are two ways in which we can determine the rank: either the rank is

determined with the Johansen tests on the data before running the analysis (see Chapter 5), or

the rank is determined from the simulations of the cointegration matrix, based on its irrelevant

singular values, because the latter follows a non-singular distribution (see Chapters 3 and 4).

Another issue that occurs in our methods comes from the fact that the lag order of the

original Vector Autoregressive model is not determined by Bayesian inference, but estimated by

a frequentist analysis across the whole data set at the beginning, by comparing di�erent AIC

values.

7.2 Future work and other directions

For the static Vector Error Correction Models, one possibility would be to create a prior on

the lag-order of the Vector Autoregressive model at the beginning, and include it in the MCMC

algorithm by sampling from its full conditional posterior distribution. In this thesis, we applied a

lag order of 2 for all sets of time series studied. An argument for this is given in Appendix B. In

this Appendix, we reinforce the assumption that if we choose a small lag order, the lag parameter

matrices would automatically compensate and we would retrieve the cointegrating relationships

in Π. We �nally choose a lag order of 2 in order for our simulations of the lag parameter matrices

Ψ to be faster. The lag order could, for example, have a Poisson prior distribution (where the

support N is in�nite, in which case no restriction is imposed). However, this new technique would

involve changing the dimensions of the lag parameters Ψ, and in the case where the simulated
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lag order k(i) would be big, then the simulation process of Ψ(i) would become much slower.

In the models of Chapter 3 and Chapter 4 where we assumed the cointegrating matrix to

have a non-singular prior, we did not explore the idea of having a prior distribution for the rank

implied by the priors of the singular values of Π. An interesting future work would be to derive

a posterior distribution for the rank and therefore, to infer it in our MCMC procedure.

The singular approach in the static Error Correction Model in Chapter 5 could be improved

by also inferring the cointegration rank r with matrix U (see Section 5.3.3). In this chapter, we

decompose the Moore-Penrose generalized inverse of the covariance matrix S into the product

UU ′ where the p × r matrix U has a Gaussian prior distribution. The number of columns of

U is de�ned to be r and therefore, U is conditional on r. We can start by setting a joint prior

distribution for (U, r): f(U, r) = f(U |r)f(r). We can use the same Gaussian prior for U |r and a

uniform prior for r, for instance. After that, we could estimate the joint conditional distribution

of (U, r) associated with this prior by a Metropolis-Hastings step.

In Chapter 6 we described several theoretical approaches for a dynamic Error Correction

Model that would involve a singular prior on the cointegration matrix. The aim is to try to

establish a cointegration rank evolving over time along with the cointegrating relations. The

cointegration rank could be de�ned as a stochastic process (rt)1≤t≤T . Based on this moving coin-

tegration rank, we could de�ne a full conditional singular posterior distribution for the precision

matrix of the transition equation (6.2), and therefore obtain singular cointegrating matrices Πt

evolving over time. More works have to be explored on this side.
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Appendix A

Generalized inverse of a positive

semi-de�nite matrix

A.1 Introduction and de�nition

This section recalls some properties of the generalized inverse and in particular the generalized

inverse of a positive semide�nite matrix. These properties are necessary to be reminded because

we will have to deal with positive semide�nite covariance matrices in the singular distribution of

the long-run relations matrix Π (see Chapter 5). One of the key points of the singular distribution

is that they have a singular variance.

In this section, m and n will denote two natural integers such that m > 1 and n > 1. The

aim of this section is to explain how to obtain a solution of the following system:

Ax = b (A.1)

where A is a m× n singular matrix (i.e. non invertible), x ∈ Rn, b ∈ Rm.

Following the notes from Abu-Saman (2012) we �rst recall the de�nition of a generalized

inverse of a matrix.

De�nition 10. If A ∈ Mm,n(R), then G is a generalized inverse of A if G ∈ Mn,m(R) and:

AGA = A.
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With that de�nition in mind it is obvious that the inverse of any n × n invertible matrix

A is a generalized inverse of A. In addition, it is good to remember that there may be several

generalized inverse matrices for one matrix. In this chapter, we recall and implement the method

in order to obtain a generalized inverse matrix of a positive semide�nite matrix.

A.2 Solution of linearly-dependent equations

We will prove the following theorem mentioned by Abu-Saman (2012):

Theorem 1. Let A ∈Mm,n(R) and assume that G is a generalized inverse of A. Then for any

�xed b ∈ Rm:

1. The system Ax = b has a solution x ∈ Rn if and only if AGb = b

2. If Ax = b has any solution, then:

x is a solution of Ax = b if and only if x = Gb+ (In −GA)z for some z ∈ Rn

A particular solution of Ax = b for b in the range of A is x = Gb (A.2)

Proof 1. Let us prove �Ax = b has a solution x ∈ Rn ⇔ AGb = b.�

1. Ax = b has a solution x ∈ Rn ⇒ AGb = b:

Ax = b has a solution. Then AGAx = AGb, and since AGA = A then we have AGAx =

Ax = AGb. Finally, since Ax = b we obtain AGb = b, as required.

2. AGb = b⇒ Ax = b has a solution x ∈ Rn:

AGb = b⇒ x = Gb is a solution of Ax = b.

Proof 2. Let us assume that Ax = b has a solution.

We will prove �x is a solution of Ax = b⇔ x = Gb+ (In −GA)z for some z ∈ Rn.�

1. x is a solution of Ax = b⇒ x = Gb+ (In −GA)z for some z ∈ Rn:
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x is a solution of Ax = b. Then, thanks to the �rst point of Theorem 1, x = Gb is a

solution and x = Gb = Gb+ (In −GA)0 implies that:

∃z ∈ Rn, such that x = Gb+ (In −GA)z (by taking z = 0).

2. x = Gb+ (In −GA)z for some z ∈ Rn ⇒ x is a solution of Ax = b

If x = Gb+ (In −GA)z for some z ∈ Rn, then

Ax = A(Gb+ (In −GA)z) = AGb+ A(In −GA)z = AGb+ (A− AGA)z

and as A = AGA, then we have A − AGA = 0 and Ax = AGb which means x = Gb is a

solution of Ax = b.

A.3 The unicity of the generalized inverse of a positive semidef-

inite matrix

This section describes a method to obtain a generalized inverse matrix for any positive

semide�nite matrix. p will de�ne a non-zero integer in this section.

De�nition 11. A (p× p) square matrix A is said to be positive semide�nite if it satis�es these

two conditions:

1. A is symmetric, i.e. A′ = A.

2. ∀x ∈ Rp, x′Ax ≥ 0.

We can also recall the property of the eigenvalues for a positive semide�nite matrix.

Proposition 2. If A is a p× p positive semide�nite matrix, then all its eigenvalues are positive

or equal to 0:

If λ1, λ2, ..., λp represent the eigenvalues of A, then ∀j ∈ {1, ..., p}, λj ≥ 0.
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Now we will see how we can obtain a generalized inverse of a positive semide�nite real matrix

A. If A is a p × p positive semide�nite matrix, then A will be symmetric. If, in addition,

A is a real matrix, then A is diagonalizable in such a way that there exists a diagonal p × p

matrix D, of which the diagonal is composed of the p eigenvalues of A (positive or null), and an

orthogonal p× p matrix F such that A = FDF ′. If λ1, λ2, . . . , λp represent the p eigenvalues of

A and let us assume now that A is of rank r < p, then we have λ1 > 0, λ2 > 0, . . . , λr > 0 and

λr+1 = ... = λp = 0 and let us call Dr the r × r invertible matrix:

Dr =


λ1 0 · · · 0

0 λ2 · · ·
...

... 0
. . . 0

0 0 · · · λr


Then, we can write the diagonal matrix D as:

D =

 Dr 0

0 0


Now, we will show that a generalized inverse of matrix A is G = FD+F ′ where:

D+ =

 Dr
−1 0

0 0


with

Dr
−1 =


1/λ1 0 · · · 0

0 1/λ2 · · ·
...

... 0
. . . 0

0 0 · · · 1/λr


Firstly, note that if we expand AGA, we have:

AGA = (FDF ′)(FD+F ′)(FDF ′)

= FDF ′FD+F ′FDF ′
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But since F is orthogonal, we have F ′F = FF ′ = Ip and:

AGA = FDD+DF ′

It is obvious to see now that:

DD+ =

 Dr 0

0 0

 Dr
−1 0

0 0

 =

 DrDr
−1 0

0 0

 = Ip|r

where

Ip|r =

 Ir 0

0 0


We also have that:

Ip|rD =

 Ir 0

0 0

D =

 Ir 0

0 0

 Dr 0

0 0

 =

 Dr 0

0 0

 = D

So in fact:

AGA = FDD+DF ′ = FDF ′ = A (A.3)

Finally, from (A.3) and De�nition 10 in Section A.1, we conclude that G = FD+F ′ is indeed

a generalized inverse of A.

A.4 Decomposition of a positive semide�nite matrix A with

reduced diagonal matrix

Let A be a p× p positive semide�nite matrix that is of rank r < p (to be taken as one of our

covariance matrices). This section recapitulates the fact that there exists a decomposition of A

as the product of a p× r matrix Fr with an invertible r × r matrix Dr and multiplied again by

the transpose of Fr. This property will be used later in order to be able to create a function in R

Core Team (2013) that can simulate a random matrix from a singular normal distribution. Let

us prove then that such a decomposition exists:
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Theorem 2. Let A be a p× p positive semide�nite matrix of rank 0 < r < p. Then there exists

a p× r matrix Fr and an invertible diagonal r × r matrix Dr such that:

A = FrDrFr
′

Since A is a p × p positive semide�nite matrix, A is symmetric (and real) and then there

exists an orthogonal p× p matrix F and a diagonal p× p matrix D such that:

A = FDF ′

We denote by λ1, λ2, ..., λp the eigenvalues of A and v1, v2, ..., vp their corresponding eigenvectors.

We can choose D to be the diagonal matrix of which the elements of the diagonal are the

eigenvalues of A put in a descending order: the r �rst elements of the diagonal will correspond

to the non-zero eigenvalues of A: λ1 > 0, ... , λr > 0 (the rest of the eigenvalues of A being zero:

λr+1 = · · · = λp = 0). We have:

D =

 Dr 0

0 0


with

Dr =


λ1 0 · · · 0

0 λ2 · · ·
...

... 0
. . . 0

0 0 · · · λr


F is the matrix of which the rows correspond to the eigenvectors of the respective eigenvalues

contained in D. Hence, we have:

A = FDF ′ = [v1, v2, ..., vp]

 Dr 0

0 0

 [v1
′, v2

′, ..., vp
′]′

Then we have:

FD = [v1, v2, ..., vp]

 Dr 0

0 0

 = [λ1v1, λ2v2, ..., λpvp]
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But since ∀j ∈ {r + 1, ..., p}, λj = 0, we have:

FD = [λ1v1, λ2v2, ..., λrvr, 0, ..., 0]

Finally, by multiplying FD by the transpose of F , we have:

FDF ′ = [λ1v1, λ2v2, ..., λrvr, 0, ..., 0]


v′1

v′2
...

v′p


= λ1v1v

′
1 + λ2v2v

′
+ · · ·+ λrvrv

′
r

Therefore, we have:

A = FDF ′ =
r∑
j=1

λjvjv
′
j (A.4)

Now, let us call Fr the p× r matrix of which the rows are the r �rst rows of F :

Fr = [v1, v2, ..., vr]

We will prove that FrDrF
′
r =

∑r
j=1 λjvjv

′
j.

For that we need to derive the product FrDrF
′
r in terms of the eigenvectors and eigenvalues

of A:

FrDr = [v1, v2, ..., vr]


λ1 0 · · · 0

0 λ2 · · ·
...

... 0
. . . 0

0 0 · · · λr


= [λ1v1, λ2v2, ..., λrvr]

Then by post-multiplying FrDr by F
′
r, we have:

FrDrFr
′ = [λ1v1, λ2v2, ..., λrvr]


v′1

v′2
...

v′r


= λ1v1v

′
1 + λ2v2v

′
2 + · · ·+ λrvrv

′
r

Therefore:

FrDrF
′
r =

r∑
j=1

λjvjv
′
j
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Hence, from equation (A.4), we have:

A = FDF ′ = FrDrFr
′ (A.5)

Therefore for any positive semide�nite matrix A we can �nd a decomposition as in Theorem 2.

Thanks to this result, we can implement a function in R that can simulate a matrix from a normal

singular distribution. During the study of this chapter, we have created a special package in R

to be able to simulate some very important singular distributions: the singular matrix normal

distribution and singular Wishart and Inverse-Wishart distributions (derived from Wishart and

used later on in Chapter 5).
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Appendix B

The choice of the lag order

In this thesis, we assumed a lag order of 2 for our vector autoregressive process, in order to

ligthen our algorithms and make our programs run faster. This part of the Appendix shows that

the use of a lag order of k = 2 in order to estimate the cointegrating relations can be used no

matter what the lag order of the VAR model is. The method used in this Appendix concerns the

ones described in Chapter 3, assuming a non-singular prior distribution for the long-run relations

matrix Π (in a non-time varying model).

We will respectively simulate a VAR(4) model and test the algorithm of Chapter 3 of this

thesis, using a non-singular prior on Π and by assuming a lag order of k = 2.

We create a set of p = 5 time series such that they are di�erence stationary and they depend

on four lag parameter matrices Γj. The vector autoregressive model is then constructed as

follows:

xt = Γ1xt−1 + Γ2xt−2 + Γ3xt−3 + Γ4xt−4 + εt, εt ∼ N(0, 1) (B.1)

where:

Γ1 =



0 0 0 0 0

0.5 0 0 0 −0.1

0 0 0 0 0

0 0 −0.2 0.5 0

0 0.1 0 0 0


Γ2 =



0.5 0 0 0 0

0.1 1 0 0 0.1

0 0 0.5 0 0

−1.0 0 0 −0.1 0

0 0 0 0.3 0


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Γ3 =



0 0 0 0.1 0

−0.1 0 0 0 0

0 0 0 −0.1 0.2

0.5 0 0.2 0.1 0

0 0.6 0 0 0.1


Γ4 =



0.3 0 0 0.1 0

−0.5 0 0 0 0

0 0 0 −0.1 0

0.5 0 0 0.5 0

0 0 0 0 0


The data consists of T = 700 data points. An ADF test has been run on our �ve time series

to see if they are e�ectively I(1). The following p-values have been found: 0.43, 0.70, 0.09, 0.92

and 0.79, which are all above 0.05, retaining then the null hypothesis of non-stationary time

series. On the di�erence of those time series, we �nd that all the p-values are smaller than 0.01,

proving that their di�erences are stationary.

We have: Π = −(Ip − Γ1 − Γ2 − Γ3 − Γ4), and the following matrix for our model represents

the cointegrating relations:

Π =



−0.20 0 0 0.20 0.05

0 0 0 0 0

0 0 −0.50 −0.20 0.20

0 0 0 0 0

0 0.70 0 0.30 −0.90


(B.2)

Since the matrix is of rank 3, the cointegration rank will again be 3 for this model (B.1).

The Gibbs sampler gives an estimation of the rank that is 3 on the dot.

After applying the steps of Section 3.3.7 to the mean of the last 2,000 matrices Π simulated

using the Gibbs sampling algorithm, we obtain the following independent cointegrating relations:

β̂′ =


1 0 0 −0.9933 −0.2538

0 1 0 0.4259 −1.2681

0 0 1 0.4346 −0.4012

 (B.3)

Then, by applying the same steps, from the actual cointegrating matrix (B.2) of our model,
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we have the following independent cointegrating relations:

β′ =


1 0 0 −1.0000 −0.2500

0 1 0 0.4286 −1.2857

0 0 1 0.4000 −0.4000

 (B.4)

The di�erence between β and β̂ is very small, and the percentage of the norm of that di�erence

is equal to:

||β − β̂||/||β|| = 0.0438/1.9357 = 2.27%

This small di�erence obtained between the actual relations and the results we obtain with a

lag order of 2 con�rms that we could indeed trust the results obtained in this thesis, and proceed

by using our algorithms with a lag order 2. Even though the lag order may not be the same as

in the true models along this thesis, the Markov chain Monte Carlo procedure indeed adjusts the

parameters estimated.
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