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Abstract

The underwater acoustic channel is characterized by time-varying multipathpropagation with

large delay spreads of up to hundreds of milliseconds, which introduces severe intersymbol in-

terference (ISI) in digital communication system. Many of the existing channel estimation and

equalization techniques used in radio frequency wireless communication systems might be prac-

tically inapplicable to underwater acoustic communication due to their high computational com-

plexity.

The recursive least squares (RLS)-dichotomous coordinate descent (DCD) algorithm has been

recently proposed and shown to perform closely to the classical RLS algorithm while having a

significantly lower complexity. It is therefore a highly promising channel estimation algorithm

for underwater acoustic communications. However, predicting the convergence performance of

the RLS-DCD algorithm is an open issue. Known approaches are found not applicable, as in the

RLS-DCD algorithm, the normal equations are not exactly solved at every timeinstant and the

sign function is involved at every update of the filter weights. In this thesis, we introduce an

approach for convergence analysis of the RLS-DCD algorithm based on computations with only

deterministic correlation quantities.

Equalization is a well known method for combatting the ISI in communication channels. Co-

efficients of an adaptive equalizer can be computed without explicit channel estimation using the

channel output and known pilot signal. Channel-estimate (CE) based equalizers which re-compute

equalizer coefficients for every update of the channel estimate, can outperform equalizers with the

direct adaptation. However, the computational complexity of CE based equalizers for channels

with large delay spread, such as the underwater acoustic channel, is an open issue. In this the-

sis, we propose a low-complexity CE based adaptive linear equalizer, which exploits DCD itera-

tions for computation of equalizer coefficients. The proposed technique has as low complexity as

O(Nu(K +M)) operations per sample, whereK andM are the equalizer and channel estimator

length, respectively, andNu is the number of iterations such thatNu ≪ K andNu ≪ M . More-

over, when using the RLS-DCD algorithm for channel estimation, the computation of equalizer

coefficients is multiplication-free and division-free, which makes the equalizer attractive for hard-

ware design. Simulation results show that the proposed adaptive equalizerperforms close to the
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minimum mean-square-error (MMSE) equalizer with perfect knowledge ofthe channel.

Decision feedback equalizers (DFEs) can outperform LEs, providedthat the effect of decision

errors on performance is negligible. However, the complexity of existing CEbased DFEs normally

grows squarely with the feedforward filter (FFF) lengthK. In multipath channels with large delay

spread and long precursor part, such as in underwater acoustic channels, the FFF lengthK needs

to be large enough to equalize the precursor part, and it is usual thatK > M . Reducing the

complexity of CE based DFEs in such scenarios is still an open issue. In this thesis, we derive

two low complexity approaches for computing CE based DFE coefficients. The proposed DFEs

operate together with partial-update channel estimators, such as the RLS-DCD channel estimator,

and exploit complex-valued DCD iterations to efficiently compute the DFE coefficients. In the first

approach, the proposed DFE has a complexity ofO(Nul log22l) real multiplications per sample,

wherel is the equalizer delay andNu is the number of iterations such thatNu ≪ l. In the second

proposed approach, DFE has a complexity as low asO(NuK)+O(NuB)+O(NuM) operations

per sample, whereB is the feedback filter (FBF) length andNu ≪ M . Moreover, when the

channel estimator also exploits the DCD iterations, e.g. such as in the RLS-DCDadaptive filter,

the second approach is multiplication-free and division-free, which makesthe equalizer attractive

for hardware implementation. Simulation results show that the proposed DFEs perform close to

the RLS CE based DFE, where the CE is obtained using the classical RLS adaptive filter and the

equalizer coefficients are computed according to the MMSE criterion.

Localization is an important problem for many underwater communication systems, such as

underwater sensor networks. Due to the characteristics of the underwater acoustic channel, local-

ization of underwater acoustic sources is challenging and needs to be accurate and computationally

efficient. The matched-phase coherent broadband matched-field (MF)processor has been previ-

ously proposed and shown to outperform other advanced broadbandMF processors for underwa-

ter acoustic source localization. It has been previously proposed to search the matched phases

using the simulated annealing, which is well known for its ability for solving global optimization

problems while having high computational complexity. This prevents simultaneousprocessing of

many frequencies, and thus, limits the processor performance. In this thesis, we introduce a novel

iterative technique based on coordinate descent optimization, the phase descent search (PDS), for

searching the matched phases. We show that the PDS algorithm obtains matched phases similar

to that obtained by the simulated annealing, and has significantly lower complexity. Therefore, it

enables to search phases for a large number of frequencies and significantly improves the proces-

sor performance. The proposed processor is applied to experimental data for locating a moving

acoustic source and shown to provide accurate localization of the sourcewell matched to GPS

measurements.
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4.5.1 Computation of∆Ḡ(i)f̂(i− 1) . . . . . . . . . . . . . . . . . . 55
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1.1 Overview

The underwater acoustic channel is considered to be one of the most challenging com-

munication media in use today [1]. It is characterized by many factors which prevent

implementation of high-speed and reliable communications, such as time-varying multi-

path propagation with large delay spreads of up to hundreds milliseconds [1–3]. In digital

communication systems, the effect of multipath propagation with large delay spreads is

severe intersymbol interference (ISI) that can extend fromover several tens to several

hundreds of symbol periods. This makes many of the techniques widely used in radio

frequency wireless communication systems practically inapplicable to underwater acous-
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CHAPTER 1. INTRODUCTION 2

tic communications, from a computational complexity pointof view. For example, the

classical recursive least squares (RLS) channel estimator [4,5] has a computational com-

plexity that grows squarely with the delay spread of the channel (channel length), and the

MMSE channel-estimate (CE) based decision-feedback equalizers (DFEs) [6, 7] have a

computational complexity that grows at least squarely withthe feedforward filter (FFF)

length which normally needs to be greater than the channel length for channels with a

long precursor part. In this thesis, we investigate low-complexity channel estimation and

CE based equalization techniques to overcome the ISI problemin underwater acoustic

communications. Localization is important for underwateracoustic communications in

many aspects, such as time synchronization, underwater sensor networks [8–10] and net-

working protocols [11]. In underwater sensor networks, distributed sensors are used to

collect specific data. However, the collected data can be meaningless if the location of the

sensor is unknown. Although many techniques have been developed for terrestrial local-

ization, most of these techniques cannot be applied directly to underwater acoustic source

localization mainly due to the variable speed of sound in underwater, and the unavoidable

movement of sensors. Moreover, due to the large propagationdelay in the underwater

acoustic channel and the limited computational power of sensors, localization needs to be

accurate and computationally efficient. In this thesis, we also investigate low-complexity

techniques for underwater acoustic source localization.

Although the underwater acoustic channel exhibits large delay spreads, it normally has

a limited number of multipath components. This enables the use of sparse channel estima-

tion techniques [12–15] which have low computational complexity when comparing with

the classical channel estimation techniques, such as the RLSchannel estimator. The di-

chotomous coordinate descent (DCD) algorithm has been proposed to efficiently solve the

linear least-squares problem without involving any multiplications nor divisions. It is even

more efficient when the expected solution vector is sparse [16]. In [17], low-complexity

RLS algorithms using DCD iterations have been proposed and shown by empirical anal-

ysis to perform closely to the classical RLS algorithm. The RLS-DCD channel estimator

is therefore a highly promising candidate for underwater acoustic communications. How-

ever, predicting the convergence performance of the RLS-DCD algorithms is still an open

issue. Traditional methods for convergence analysis of theRLS algorithms [4] are difficult

to apply, since, in the RLS-DCD algorithm, the normal equations are not exactly solved

at every time instant and the sign function is involved at every update of the weights. A
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CHAPTER 1. INTRODUCTION 3

general framework for analysis of adaptive filtering algorithms is introduced in [18, 19].

However, in the RLS-DCD algorithm, due to multiple iterationsat each time instant, it

is difficult to represent the RLS-DCD algorithm using such a framework. A statistical

analysis of the affine projection algorithm proposed in [20]is based on some statistical

properties of a residual vector. However, such a residual vector does not exist in the RLS

algorithms. It is desirable to find a new approach for convergence analysis of the RLS-

DCD algorithm, and other adaptive algorithms based on multiple iterations at a single

time instant.

Equalization is a well known method for combatting the ISI incommunication chan-

nels [21]. Coefficients of an adaptive equalizer can be computed without explicit channel

estimation using the channel output and known pilot signal [21]. However, CE based

equalizers which re-compute equalizer coefficients for every update of the channel esti-

mate, can outperform equalizers with the direct adaptation[22]. In CE based adaptive

linear equalizers (LEs), computation of equalizer coefficients normally requires genera-

tion and inversion of aK ×K channel autocorrelation matrix, whereK is the equalizer

length. In general, it results in a complexity ofO(K3) operations per sample. Exploiting

structural properties of the matrix, the complexity can be reduced down toO(K2) oper-

ations [7]. For channel estimation, the RLS adaptive filtering algorithms [4] which are

known to possess fast convergence, have a complexity ofO(M2) operations per update,

whereM is the channel estimator length. It is usual thatK > M , thus the complexity

of computing the equalizer coefficients determines the total complexity. Moreover, the

RLS-DCD algorithms [17] only require a complexity ofO(NuM) operations per sample,

whereNu << M . Thus, adaptive channel estimation can be significantly simpler than

CE based computation of equalizer coefficients. To reduce thewhole complexity, the

computation of equalizer coefficients should be simplified.

It is known that DFEs can outperform LEs, provided that the effect of decision errors

on performance is negligible [21]. However, the computational complexity of CE based

DFEs can be higher than that of CE based LEs. Extensive effort has been made to reduce

the complexity of computing the DFE taps (see [6, 7, 23–30] and references therein).

However, the complexity normally grows squarely with the FFF lengthK. In multipath

channels with large delay spread and long precursor part, such as in underwater acoustic

channels [31], the FFF lengthK needs to be large enough to equalize the precursor part,

T. Chen, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 1. INTRODUCTION 4

and it is usual thatK > M . Reducing the complexity of CE based DFEs in such scenarios

is still an open issue.

For underwater source localization, broadband (or multi-frequency) MFP has been

actively investigated in the past two decades [32–39]. It isfound that coherent combin-

ing of ambiguity surfaces obtained at different frequencies provides better performance

compared to incoherent combining [38]. In scenarios where an acoustic source transmits

sound at multiple frequencies, phases of the source frequencies contribute in the mea-

sured acoustic data. The phase shifts between different frequencies are often unknown

and need to be compensated. A matched-phase coherent processor proposed in [38] com-

pensates for these phase shifts and has been shown to outperform other advanced MF

processors, especially when the ambient noise level and environment mismatch are sig-

nificant [38]. In [38], it is proposed to search the phase shifts by using the simulated

annealing algorithm, which is well known for its ability of solving global optimization

problems while having high computational complexity. Although different approaches

have been proposed to reduce the complexity [40,41], it is still computationally consum-

ing and increases dramatically as the number of free parameters increases. This prevents

simultaneous processing of many frequencies, and thus, limits the processor performance.

Furthermore, for most of the simulated annealing methods, it is found to be exhausting

to determine some algorithm parameters such as the initial temperature and the cool-

ing schedule, which need to be carefully set. Reducing the complexity of searching the

matched phases for the matched-phase coherent processor ishighly desirable.

1.2 Objectives

This research aims to reduce the computational complexity of signal processing tech-

niques for underwater acoustic communications by using iterative techniques, such as the

DCD algorithm. We start with a convergence analysis of the RLS-DCD algorithm, which

will be used for channel estimation in the equalizers that wederive in this thesis. We then

focus on developing low-complexity CE based adaptive LE and DFE which exploit DCD

iterations for computation of equalizer coefficients. We also investigate the application

of the matched-phase coherent MF processor for underwater source localization. Specifi-
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CHAPTER 1. INTRODUCTION 5

cally, we are interested in reducing the complexity of searching the matched phases for the

matched-phase coherent MF processor, by applying a DCD basedphase search algorithm,

the phase descent search (PDS) algorithm.

1.3 Notations

In this thesis, we use capital and small bold fonts to denote matrices and vectors, respec-

tively; e.g.G is a matrix andr a vector. Elements of the matrix and vector are denoted as

Gn,p andrn, respectively. Apth column andnth row ofG are denoted asG(p) andG(n),

respectively. We also denote:rT andGT are transpose of the vectorr and matrixG,

respectively;GH is conjugate transpose of matrixG; r∗ is the complex conjugate of the

vectorr; IK is aK×K identity matrix;0K×M is aK×M matrix of all zeros;E{·} is the

expectation; tr{·} denotes the trace operator;ℜ{·} andℑ{·} are the real and imaginary

part of a complex number, respectively. The variablen is used as a time index andi is

iteration index. The symbolj is an imaginary unitj =
√
−1.

1.4 Fundamental techniques

In this section, we first briefly discuss the existing techniques for solving the normal

equations. Fundamental techniques used throughout this thesis are then introduced. These

are: DCD algorithm; time-varying channel models; and time-varying underwater acoustic

channel model.

1.4.1 Solving normal systems of equations

Many of the signal processing techniques for communications require solving the linear

least-square (LS) problem in real time, such as channel estimation [4], equalization [21]

and adaptive array processing [5]. It is known that solving the LS problem is equivalent to

solving a system of linear equations, called the normal equationsRh = β, whereR is an
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CHAPTER 1. INTRODUCTION 6

M ×M symmetric positive definite matrix and bothh andβ areM × 1 column vectors.

The matrixR and the vectorβ are known, whereas the vectorh needs to be estimated.

Techniques for solving the normal equations is mainly divided into two categories: direct

methods and iterative methods.

Direct methods for solving the normal equations, such as Gaussian elimination, LU

decomposition, Cholesky decomposition and QR decomposition, find an exact solution

through a finite number of pre-specified operations [42]. Thedirect methods can only

provide solutions after the pre-specified operations. Moreover, they normally involve di-

visions and multiplications, and have a complexity ofO(M3) operations [42]. Therefore,

the direct methods are too complex for real-time implementation, especially when solving

the very large or very sparse systems of linear equations.

Iterative methods solve the normal equations iteratively,and at each iteration, they

find better approximations to the optimal solution [42]. Comparing with the direct meth-

ods, the iterative methods have lower complexity, and is easier for real-time implemen-

tation [42]. The iterative methods are also known to be more efficient than the direct

methods when solving both very large and very sparse systemsof linear equations [42].

Moreover, the iterative methods have the ability to use a good initial guess of the solution,

which may reduce the computational complexity.

The iterative methods can be further divided into two types:stationary methods and

non-stationary methods. Stationary methods, such as Jacobi and Gauss-Seidel meth-

ods [42], normally have a complexity as low asO(M) operations per iteration. How-

ever, their convergence speed is usually much slower than that of the non-stationary

methods [43]. Non-stationary methods, such as conjugate gradient (CG) and coordi-

nate descent (CD) algorithms, possess fast convergence, buthave a high complexity of

O(M2) operations per iteration. These algorithms also involve divisions and multipli-

cations, which make them expensive for real-time implementation. The DCD algorithm

as a non-stationary iterative technique, performs a similar convergence speed to the CG

and CD algorithms, while it does not require any multiplication or division, and has a

complexity as low asO(M) additions per successful iterations [16].

T. Chen, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 1. INTRODUCTION 7

1.4.2 DCD algorithm

The DCD algorithm with a leading element [17] which solves thesystem of normal equa-

tions, Rh = β, is presented in Table 1.1. In Table 1.1, the DCD algorithm finds a

‘leading’ (pth) element in the solution vectorh to be updated according to an element of

a residual vectorr, which has the largest absolute value. The step-sizeα is chosen from

one ofMb predefined values, which correspond to binary representation of elements of the

solution vectorh with Mb bits within an amplitude range[−H,H], whereH is preferably

a power-of-two number. The step-sizeα = 2−mH is therefore also a power-of-two num-

ber. With such settings, operations required in the DCD algorithm are only additions as

all multiplications and divisions are replaced by bit-shifts. Due to the quantized step-size,

there are ‘unsuccessful’ iterations (decided at step 4) without updates of the solution and

‘successful’ iterations where the solution and the residual vector are updated (steps 5 and

6). WithNu successful iterations, the complexity of the DCD algorithm is upper limited

by (2M + 1)Nu + Mb additions, which corresponds to a worst-case scenario whenthe

condition at step 3 is never satisfied.

The DCD algorithm has been widely used for real-time implementation of some

adaptive filtering algorithms, such as the affine projectionalgorithm and the RLS algo-

rithm [17, 44–47]. It is multiplication-free and division-free, and has significantly lower

complexity than the Cholesky decomposition and other known techniques. It is therefore

attractive for hardware implementation and has been implemented on FPGA and DSP

platforms [48–53]. In this thesis, the DCD algorithm will be considered and applied to

different signal processing techniques for underwater communications.

1.4.3 Time-varying Rayleigh fading channel models

Two time-varying Rayleigh fading channel models are used in the subsequent chapters:

first order autoregressive (AR) model and modified Jakes’ model.

For modeling the time-varying channel impulse responseh(n) with lengthM , the

first order AR modelh(n) =
√
υ h(n − 1) +

√
1− υ ω(n) is used [54], where

√
υ is

the autoregressive factor andω(n) are zero-mean independent random Gaussian vectors,
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CHAPTER 1. INTRODUCTION 8

Table 1.1: DCD algorithm for solving a system of normal equationsRh = β

Step Equation +

Initialization: h = 0, r = β, α = H/2, m = 1

for k = 1, . . . , Nu

1 p = argmaxn=1,...,M{|rn|}, go to step 4 M − 1

2 m = m+ 1, α = α/2

3 if m > Mb, the algorithm stops

4 if |rp| ≤ (α/2)Rp,p, then go to step 2 1

5 hp = hp + sign(rp)α 1

6 r = r− sign(rp)αR(p) M

Total:≤ (2M + 1)Nu +Mb adds

whose elements have variance1/M . Jakes’ model [55] as a simplified version of Clarkes

model [56] has been widely used for modeling time-varying Rayleigh fading channels.

In this thesis, we adopt the modified Jakes’ model proposed in[57] for modeling the

time-varying channel impulse response.

1.4.4 Time-varying underwater acoustic channel model

In this thesis, we also employ the simulator recently proposed in [58, 59] for modeling

underwater acoustic signals propagating through a time-varying multipath underwater

acoustic channel caused by transmitter and/or receiver motions. In this simulator, the

movement trajectory is sampled at a low rate and the ‘waymark’ impulse responses are

computed at these sampling instances by solving the wave propagation equation. Some

well developed programs, such as the normal mode method KRAKEN and the ray tracing

method BELLHOP [60–62] are used for solving the wave equation. The waymark im-

pulse responses are then interpolated in time using local B-splines [63] to obtain impulse

responses for each sampling instant of the source signal.

1.5 Contributions

Major contributions in this thesis can be summarized as follows:
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CHAPTER 1. INTRODUCTION 9

• An approach for convergence analysis of the RLS-DCD adaptive filtering algorithm

based on computations with only deterministic quantities has been derived. Deter-

ministic expressions for time dependent correlation quantities have been obtained

without involving any stochastic processes and used to formthe normal equations.

Deterministic equations for evaluating the predicted MSE and MSD learning curves

of the RLS-DCD algorithm have been derived. Simulation results show good agree-

ment between the predictions and the practical learning curves.

• A low-complexity CE based adaptive linear equalizer has beenderived, which ex-

ploits DCD iterations for computation of equalizer coefficients. It has been shown

that, when using the RLS-DCD algorithm for channel estimation, the computation

of equalizer coefficients is multiplication-free and division-free, which makes the

equalizer attractive for hardware design. The performanceof the proposed adaptive

equalizer over the channels with large delay spreads are shown to be close to that

of the MMSE equalizer with perfect knowledge of the channel.

• Two partial-update CE based adaptive DFEs have been proposed, both of which can

operate together with partial-update channel estimators and exploit complex-valued

DCD iterations to efficiently compute the DFE taps. The first proposed DFE has

been implemented not only in the conventional structure, for which a simple recur-

sive method has been derived for computing the FBF taps, but also in the modified

structure which does not require computing the FBF. The second proposed DFE is

derived and implemented in the conventional structure witheven lower computa-

tional complexity. It has been shown that, when using the channel estimator which

also exploits the DCD iterations, all multiplications involved in computation of

the equalizer taps can be replaced by bit-shift operations.The proposed approach

for computing the linear equalizer coefficients has been extended to the complex-

valued case. The proposed DFEs have been applied to different time-varying chan-

nels with small and large delay spreads and shown to perform very close to the RLS

CE based DFE, where the CE is obtained using the classical RLS adaptive filter and

the equalizer taps are computed according to the MMSE criterion.

• The complex-valued DCD iterations and the complex-valued RLS-DCD adaptive

filtering algorithm for channel estimation have been introduced.
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• One of the most advanced underwater acoustic channel simulators recently pro-

posed has been used to model acoustic signals propagating through a time-varying

multipath underwater acoustic channel caused by transmitter motion. The later pro-

posed DFE has been applied to the time-varying underwater acoustic channel and

shown to perform very close to the RLS CE based DFE.

• The phase decent search (PDS) algorithm has been introducedto the matched-

phase coherent broadband matched-field (MF) processor for searching the matched

phases. The proposed PDS algorithm has been compared with simulated anneal-

ing algorithm and shown to have significantly lower complexity, which enables si-

multaneous processing of many frequencies and improves processor performance.

The proposed processor has been applied to experimental data for source localiza-

tion. The proposed processor has been shown to have better performance when

processing more frequencies. The estimated range trajectory is obtained by using

the proposed processor and shown to be well matched to GPS measurements.

1.6 Thesis Outline

The rest of this thesis is organized into the following chapters.

• Chapter 2: Convergence Analysis of RLS-DCD Algorithm

In this chapter, the RLS-DCD algorithm is briefly introduced. We then derive an

approach for convergence analysis of the RLS-DCD algorithm based on computa-

tions with only deterministic quantities obtained from thesecond order statistics.

Finally, we compare the practical MSE and MSD learning curves of the RLS-DCD

algorithm with the predictions obtained by using the proposed approach.

• Chapter 3: Low-complexity channel-estimate based adaptivelinear equalization

In this chapter, the data models and the normal equations forcomputing the MMSE

LE coefficients are firstly given. We then introduce the assumptions that we use

in our derivation, and derive a low-complexity approach forcomputing the LE co-

efficients. Simulation results which compare the performance and computational

complexity of the proposed LE against known techniques are also presented.
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• Chapter 4: Partial-update channel-estimate based adaptivedecision feedback equal-

izer: Approach 1

In this chapter, we start with introducing the structure of the conventional DFE and

giving expressions for computing the DFE taps. Assumptionsmade for deriving

the partial-update DFE are then given. We also introduce thecomplex-valued DCD

iterations and RLS-DCD algorithm for adaptive channel estimation. We derive a

low-complexity approach for computing the FFF taps and recursive computation of

the FBF taps. The modified DFE structure is also introduced. Wefinally present

numerical results that demonstrate the performance and computational complexity

of the proposed DFE against known techniques.

• Chapter 5: Partial-update channel-estimate based adaptivedecision feedback equal-

izer: Approach 2

In this chapter, we derive another partial-update DFE whichhas even lower compu-

tational complexity. We apply the proposed DFE to the underwater acoustic channel

and present numerical results that demonstrate the performance and computational

complexity of the proposed DFE against known techniques.

• Chapter 6: Matched-phase coherent broadband matched-field processor using phase

descent search

In this chapter, the matched-phase coherent MF processor and the cross-frequency

incoherent processor are reviewed. We then introduce the PDS algorithm to the

match-phase coherent MF processor for searching the matched phases, and the fre-

quency estimator based on the dichotomous search of the periodogram peak for esti-

mating the compression factor in the experiment. We apply the proposed processor

to experimental data, and compare the localization performance and computational

complexity of the PDS algorithm against simulated annealing algorithm.
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Convergence Analysis of RLS-DCD

Algorithm
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The recursive least squares (RLS)-dichotomous coordinate descent (DCD) algorithm

introduced in [17] for adaptive filtering is characterized by low complexity, while pos-

sessing fast convergence. However, predicting the convergence performance of the RLS-

DCD algorithm is still an open issue. Known approaches are found not applicable, as

in the RLS-DCD algorithm, the normal equations are not exactlysolved at every time

instant and the sign function is involved at every update of the filter weights. In this chap-

ter, we propose an approach for convergence analysis of the RLS-DCD algorithm based

on computations with only deterministic correlation quantities. This new approach can

be also used for other adaptive filtering algorithms based oniterative solving the normal

equations.

This chapter is organized as follows. In the next section, anintroduction is given. In
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Section 2.2, the data models and the RLS-DCD algorithm are briefly introduced. Sec-

tion 2.3 presents the derivation of the proposed approach for convergence analysis of the

RLS-DCD algorithm. Simulation results which compare practical leaning curves and the

predictions are given in Section 2.4. Section 2.5 finally draws conclusions.

2.1 Introduction

The classical RLS algorithm is well known for its fast convergence. However, it has

a high computational complexity [4, 5]. The RLS-DCD algorithmis characterized by

low complexity, while possessing fast convergence. Empirical analysis of the RLS-DCD

algorithm has been presented in [17] to show that its performance can be made very close

to that of the RLS algorithm. However, predicting the convergence performance of the

RLS-DCD algorithms is still an open issue. In this chapter, we propose an approach for

convergence analysis of this adaptive algorithm based on computations with deterministic

quantities derived from the second order statistics.

Traditional methods for convergence analysis of the exponentially weighted RLS

(ERLS) algorithm presented in [4] are difficult to apply, since, in the RLS-DCD algo-

rithm, the normal equations are not exactly solved at every time instant and the sign

function is involved at every update of the weights. A general framework for analysis

of adaptive filtering algorithms introduced in [18] is specified by a generic filter-weight

update equation, and correspondence between special casesof this equation and various

adaptive filtering algorithms. The subsequent transient analysis of adaptive filters based

on this framework is proposed in [19]. However, in the RLS-DCD algorithm, due to

multiple iterations at each time instant, it is difficult to derive such an update equation.

Furthermore in [19], estimates of some quantities are obtained from asingle realization

of signals involved in the adaptive filtering,i.e. stochastic signals are involved. We want

to use only statistical characteristics of signals in our analysis. A statistical analysis of

the affine projection (AP) algorithm for a unity step size andautoregressive inputs is pro-

posed in [20] based on some statistical properties of a residual vector. However, such a

residual vector does not exist in the RLS algorithm. It is desirable to find a new approach

for convergence analysis of the RLS-DCD algorithm, and other adaptive algorithms based
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Figure 2.1: Adaptive filtering for identification scenario

on multiple iterations at a single time instant.

2.2 Data models

We consider the application of adaptive filtering for a general identification scenario as

shown in Figure 2.1, in which an adaptive filter is used to estimate the impulse response of

an unknown system. We consider that the unknown system output (the desired response)

y(i) and theM -length input data vectorx(i) are related by themultiple linear regression

model[4]:

y(i) = xT (i)h0 + ν(i), (2.1)

wherex(i) = [x(i) x(i− 1) . . . x(i−M + 1)]T , h0 is the unknown impulse response

that we want to estimate, andν(i) is the measurement noise; the vectorh0 is constant,

the measurement noiseν(i) is white with zero mean and varianceσ2
ν , and theM × 1 data

vectorx(i) has a positive-definite covariance matrixRxx, given by

Rxx = E
{

x(i)xT (i)
}

.

The adaptive filter adjusts its estimate of the impulse response ĥ(i) in such a way to

minimize the error signale(i) = y(i) − z(i), wherez(i) = xT (i)ĥ(i). Most often,
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an adaptive algorithm adjusts its estimate to minimize the mean square error (MSE)

E
{

|e(i)|2
}

= E

{

∣

∣

∣
y(i)− xT (i)ĥ(i)

∣

∣

∣

2
}

. According to the orthogonality principle [5],

the error signale(i) should be orthogonal to the input data vectorx(i), which gives

E
{

x(i)
[

y(i)− xT (i)ĥ(i)
]}

= 0. Therefore, solving the MSE minimization problem is

equivalent to solving the normal equationsRxxh(i) = βxy, whereβxy = E {x(i)y(i)}.

In the RLS problem, at every time instanti, an adaptive algorithm should find a solu-

tion to the normal equations

R(i)h(i) = β(i), (2.2)

whereR(i) andβ(i) are an instantaneous autocorrelation matrix of the filter input signal

and instantaneous crosscorrelation vector between the input signal and the desired signal,

respectively.R(i) is assumed to be a symmetric positive-definite matrix of sizeM ×
M , β(i) andh(i) areM - length vectors. The matrixR(i) and vectorβ(i) are known,

whereas the vectorh(i) should be estimated. It has been shown in [17] that, when using

iterative techniques, such as DCD iterations, an approach which is based on transforming

the original sequence of normal equations into a sequence ofauxiliary normal equations,

is preferable.

Let r(i− 1) = β(i− 1)−R(i− 1)ĥ(i− 1) be a residual vector for the approximate

solutionĥ(i− 1) at time instant(i− 1). We denote∆R(i) = R(i)−R(i− 1), ∆β(i) =

β(i) − β(i − 1) and∆h(i) = h(i) − ĥ(i − 1). The normal equations (2.2) can then be

rewritten as

R(i)
[

ĥ(i− 1) + ∆h(i)
]

= β(i).

This can be represented as a system of equations with respectto ∆h(i)

R(i)∆h(i) = β(i)−R(i)ĥ(i− 1)

= β(i− 1)−R(i− 1)ĥ(i− 1) + ∆β(i)−∆R(i)ĥ(i− 1)

= r(i− 1) + ∆β(i)−∆R(i)ĥ(i− 1).

The original sequence of normal equations is now transformed into a sequence of auxiliary

normal equations, given by [17]

R(i)∆h(i) = β0(i),

whereβ0(i) = r(i − 1) + ∆β(i) −∆R(i)ĥ(i − 1). A recursive approach for solving a

sequence of systems of equations is presented in Table 2.1.

T. Chen, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 2. CONVERGENCE ANALYSIS OF RLS-DCD ALGORITHM 18

Table 2.1: Recursively solving a sequence of equations
Step Equation

Initialization: r(−1) = 0,β(−1) = 0,ĥ(−1) = 0

for i = 0, 1, . . .

1 Find∆R(i) and∆β(i)

2 β0(i) = r(i− 1) + ∆β(i)−∆R(i)ĥ(i− 1)

3 SolveR(i)∆h = β0(i)⇒ ∆ĥ(i), r(i)

4 ĥ(i) = ĥ(i− 1) + ∆ĥ(i)

Table 2.2: Exponentially Weighted RLS Algorithm
Step Equation

Initialization: ĥ(−1) = 0, r(−1) = 0, R(−1) = Π

for i = 0, 1, . . .

1 R(i) = λR(i− 1) + x(i)xT (i)

2 z(i) = x
T (i)ĥ(i− 1)

3 e(i) = y(i)− z(i)

4 β0(i) = λr(i− 1) + e(i)x(i)

5 SolveR(i)∆h(i) = β0(i)⇒ ∆ĥ(i), r(i)

6 ĥ(i) = ĥ(i− 1) + ∆ĥ(i)

In the exponentially weighted RLS (ERLS) algorithm, the vector h(i) is found by

solving the normal equations (2.2) with the instantaneous estimates to the correlation

quantities, given by [4]:

R(i) =
i

∑

j=0

λi−jx(j)xT (j) + λiΠ,

β(i) =
i

∑

j=0

λi−jx(j)y(j),

whereΠ is a regularization matrix and0 < λ ≤ 1 is a forgetting factor. The regularization

matrix is usually chosen as a diagonal matrix and is used for stabilizing the algorithm [4].

After applying the method in Table 2.1 to this problem, we cansummarize the ERLS

algorithm as shown in Table 2.2 [17]. The DCD algorithm has firstly been introduced

in [16]. In this work, we are interested in the new DCD algorithm [17], which is shown

in Table 2.3. In Table 2.3, elements of the matrix and vector are denoted asRp,n andrn,

respectively, and apth column ofR is denoted asR(p). This DCD algorithm is then used

to solve the normal equation at step 5 in Table 2.2.
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Table 2.3: DCD algorithm with leading element
Step Equation

Initialization: ∆ĥ = 0, r = β0, α = H/2, m = 1

for k = 1, . . . , Nu

1 p = argmaxn=1,...,M{|rn|}, go to step 4

2 m = m+ 1, α = α/2

3 if m > Mb, the algorithm stops

4 if |rp| ≤ (α/2)Rp,p, then go to step 2

5 ∆ĥp = ∆ĥp + sign(rp)α

6 r = r− sign(rp)αR(p)

2.3 Convergence analysis

In this section, we derive an approach for convergence analysis of the RLS-DCD algo-

rithm based on computations with only deterministic correlation quantities. We explore

deterministic expressions for time dependent correlationquantities without involving any

stochastic processes, and then solve modified normal equations with only deterministic

quantities by using the DCD algorithm. Finally, we derive thedeterministic equations

for the Mean Squared Error (MSE) and Mean Squared Deviation (MSD). The common

independence assumptions[4] are employed in our analysis.

2.3.1 Deterministic correlation quantities

The auto-correlation matrixR(i) at instanti ≥M , can be approximated by the determin-

istic expression [72]

Rd(i) = a(i)Rxx + λiΠ, (2.3)

wherea(i) = (1 − λi)/(1 − λ). For the cross-correlation vectorβ(i), according to the

desired responsey(i) in (2.1), we obtain

β(i) =
i

∑

j=0

λi−jx(j)xT (j)h0 +
i

∑

j=0

λi−jx(j)ν(j).

Let a deterministic cross-correlation vectorβd(i) be expressed as

βd(i) = βnf (i) + βn(i),

T. Chen, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 2. CONVERGENCE ANALYSIS OF RLS-DCD ALGORITHM 20

whereβnf (i) denotes the instantaneous cross-correlation vector between the noise free

desired responsey(i) = xT (j)h0 [ν(i) = 0 in (2.1)] and the data vectorx(i), andβn(i)

denotes the cross-correlation vector between the measurement noiseν(i) and the data

vectorx(i). The vectorβnf (i) can be derived by using the similar approximation as in

Rd(i). At time instanti ≥M , βnf (i) can be approximated by

βnf (i) = a(i)Rxxh0. (2.4)

The vectorβn(i) involves the measurement noise processν(i), which is an obstacle for

us to evaluateβn(i). Instead of evaluating the vectorβn(i), we are more interested in

deriving the deterministic expression for the auto-correlation matrix ofβn(i), given as

Rβn
(i) = E

{

βn(i)β
T
n (i)

}

.

Since the measurement noiseν(i) is assumed to be white and with varianceσ2
ν , we have

E {ν(j)ν(l)} =







σ2, j = l

0, j 6= l

Therefore, we obtain

Rβn
(i) = σ2

ν

i
∑

j=0

λ2(i−j)E
{

x(j)xT (j)
}

,

which can then be expressed at every time instanti ≥M by

Rβn
(i) = σ2

νb(i)Rxx, (2.5)

whereb(i) = (1− λ2i)/(1− λ2).

We now replace the instantaneous correlation quantitiesR andβ by their deterministic

expressionsRd andβd, respectively, into the RLS normal equations (2.2), which gives at

every time instanti:

Rd(i)hp(i) = βnf (i) + βn(i), (2.6)

wherehp(i) denotes the prediction of the solution vector. Since on the right hand side of

(2.6), the deterministic quantityβn(i) is unknown and difficult to derive, we let

hp(i) = hnf (i) + hn(i), (2.7)

where we assume

Rd(i)hnf (i) = βnf (i), (2.8)

Rd(i)hn(i) = βn(i). (2.9)
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Equations (2.8) are now dealing with only deterministic quantities that we have derived:

Rd(i) given by (2.3) andβnf (i) given by (2.4). As we considered in Section 2.1, the RLS-

DCD algorithm deals with the auxiliary normal equations. In order to solve the equations

(2.8) by using the DCD algorithm, we need to transform these deterministic equations

into a sequence of deterministic auxiliary equations, defined by

Rd(i)∆hnf (i) = β0 d(i).

According to the recursive approach for solving the auxiliary equations in Table 2.1, and

by substituting all the variables by their deterministic expressions, we obtain a sequence

of equations with only deterministic quantities as shown inTable 2.4. Here,β0 d(i) is

the deterministic expression for vectorβ0(i), and according to the equation at step 2 in

Table 2.1, it is given by

β0 d(i) = rd(i− 1) + ∆βnf (i)−∆Rd(i)hnf (i− 1), (2.10)

whererd(i) = βnf (i) −Rd(i)hnf (i) is the deterministic residual vector for the solution

vector at time instanti, and

∆Rd(i) = Rd(i)−Rd(i− 1),

∆βnf (i) = βnf (i)− βnf (i− 1).

Equation (2.10) can then be rewritten as

β0 d(i) = βnf (i− 1)−Rd(i− 1)hnf (i− 1) + βnf (i)− βnf (i− 1)

− [Rd(i)−Rd(i− 1)]hnf (i− 1)

= βnf (i)−Rd(i)hnf (i− 1),

as given at step 2 in Table 2.4. At every time instanti, the DCD algorithm is used to solve

the equation at step 3 in Table 2.4, and the solution vectorhnf (i) is deterministic.

For equations (2.9), the deterministic quantityβn(i) is unknown to us, and thus, the

deterministic solution vectorhn(i) can not be obtained. However, for the analysis of mean

square performance of adaptive filtering algorithms, such as mean square error (we will

consider in the next section), we are more interested in second order statistical quantities.

Therefore, instead of evaluatinghn(i), we evaluate the autocorrelation matrix ofhn(i),

denoted by

Rhn
(i) = E

{

hn(i)h
T
n (i)

}

.
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Table 2.4: A sequence of equations with only deterministic quantities
Step Equation

Initialization: hnf (−1) = 0

for i = 0, 1, . . .

1 FindRd(i) andβnf (i)

2 β0 d(i) = βnf (i)−Rd(i)hnf (i− 1)

3 SolveRd(i)∆hnf = β0 d(i)⇒ ∆hnf (i)

4 hnf (i) = hnf (i− 1) + ∆hnf (i)

By assuming thathn(i) = R−1d (i)βn(i), we then have

Rhn
(i) = R−1d (i)Rβn

(i)R−1d (i),

whereRβn
(i) is the deterministic auto-correlation matrix ofβn(i), given by (2.5).

2.3.2 Deterministic equations for evaluating MSE and MSD

The Mean Squared Error (MSE) at each time instanti is defined by [5]:

MSE= E
{

|e(i)|2
}

,where e(i) = y(i)− xT (i)ĥ(i).

Under the assumption that the measurement noiseν(i) is i.i.d. and statistically indepen-

dent of the input vectorx(i), the Mean Squared Error (MSE) can then be evaluated by [5]

MSE= E
{

|ea(i)|2
}

+ σ2
ν , (2.11)

whereea(i) is thea priori error at instanti and defined by

ea(i) = xT (i)
[

h0 − ĥ(i)
]

.

Considering the predicted solutionhp(i) defined by (2.7) instead of̂h(i), we have

ea(i) = xT (i) [ǫd(i)− hn(i)], whereǫd(i) = h0 − hnf (i). The vectorǫd(i) is deter-

ministic, since bothh0 andhnf (i) are deterministic.

According to theindependence assumption, the error vectorǫ(i) = h0 − ĥ(i) is indepen-

dent ofx(i), and therefore, we can obtain the mean squarea priori error as

E
{

|ea(i)|2
}

= ǫTd (i)Rxxǫd(i)− E
{

2ǫTd (i)Rxxhn(i)
}

+ E
{

hTn (i)Rxxhn(i)
}

. (2.12)
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The first term on the right hand side of (2.12) is deterministic, sinceǫd(i) is deterministic

andRxx is a constant matrix. According to the assumption,hn(i) = R−1d (i)βn(i), the

second term on the right hand side of (2.12) can be expressed as

E
{

2ǫTd (i)Rxxhn(i)
}

= 2E
{

ǫTd (i)RxxR
−1
d (i)βn(i)

}

.

According to theindependence assumption, we find thatǫd(i), βn(i) andRxxR
−1
d (i) are

independent of each other, and asE {βn(i)} = 0, we obtainE
{

2ǫTd (i)Rxxhn(i)
}

= 0.

The third term on the right hand side of (2.12) can be expressed as

E
{

hTn (i)Rxxhn(i)
}

= tr {RxxRhn
(i)} ,

which is deterministic. The mean squareda priori error given by (2.12), can now be

evaluated by a deterministic expression, which gives

E
{

|ea(i)|2
}

= ǫTd (i)Rxxǫd(i) + tr {RxxRhn
(i)} . (2.13)

Therefore, the prediction of the MSE learning curves can be computed by substituting

(2.13) into (2.11), which gives

MSE(i) = ǫTd (i)Rxxǫd(i) + tr {RxxRhn
(i)}+ σ2

ν . (2.14)

The Mean Squared Deviation (MSD) at each time instanti is defined by [5]: MSD(i) =

E

{

[

h0 − ĥ(i)
]T [

h0 − ĥ(i)
]

}

. Again, considering the predicted solutionhp(i) defined

by (2.7) instead of̂h(i), we obtain

MSD(i) = ǫTd (i)ǫd(i)− E
{

2ǫTd (i)hn(i)
}

+ E
{

hTn (i)hn(i)
}

. (2.15)

After some algebra and employing theindependence assumptionsimilar to that used for

derivation of the MSE as presented above, we finally obtain a deterministic equation for

predicting the learning curve of MSD at every time instanti, given by

MSD(i) = ǫTd (i)ǫd(i) + tr {Rhn
(i)} . (2.16)

2.4 Simulation results

Below, we present simulation results which compare the prediction of the MSE and MSD

learning curves obtained by using the proposed approach versus the practical learning
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curves for the ERLS-DCD algorithm. The desired responsey(i) is generated according

to (2.1). The input vector to the filterx(i) = [x(i) x(i− 1) . . . x(i−M + 1)]T contains

autoregressive correlated random numbers generated according to x(i) = vx(i − 1) +

w(i), wherev is the autoregressive factor (0 ≤ v < 1) andw(i) are uncorrelated zero-

mean random Gaussian numbers of unit variance. In our simulations, the regularization

matrixΠ is chosen as a diagonal matrixΠ = ηIM . For generating the predicted learning

curves, the auto-correlation matrixRxx is derived according to the autoregressive model

by (Rxx)m,n = rxx(|m− n|) [4], whererxx(n) = vnσ2
x andσ2

x is the variance of the

input samples, which can be evaluated byσ2
x = 1/(1−v2) [73]. The autoregressive factor

v and vectorh0 are given. For generating the practical learning curves, the MSE curve is

computed by averaging as [74]:

Ê(i) = (1/Nexp)

Nexp
∑

l=1

e(l)(i)2, (2.17)

wheree(l)(i) =
[

y(i)− xT (i)ĥ(i− 1)
](l)

andNexp is the number of independent experi-

ments. The MSD curve is computed by averaging as [74]:

D̂(i) = (1/Nexp)

Nexp
∑

l=1

∣

∣ǫ(l)(i)
∣

∣

2
, (2.18)

whereǫ(l)(i) =
[

h0 − ĥ(i)
](l)

.

In the following simulations, the practical curves are obtained by ensemble aver-

age over 200 independent experiments (Nexp = 200). Our predictions to the learning

curves start at the time instanti = M , since the approximation of the deterministic auto-

correlation matrix,Rd, expressed by (2.3) is only valid fori ≥ M . Figures 2.2 and 2.3

show the predicted learning curves against the simulated curves for the ERLS-DCD al-

gorithm with different autoregressive factorsv and with different number of updatesNu,

respectively. It is seen that the prediction shows good agreement with the practical learn-

ing curves, although our predictions are somewhat optimistic.
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Figure 2.2: Predicted vs Practical learning curves for the ERLS-DCD algorithm with

different autoregressive factorsv: (a) MSE; (b) MSD. Simulation parameters:M = 16,

σ2
ν = 10−3, λ = 1− 1/(8M), η = 10−6, Nu = 1, H = 1, Mb = 16, Nexp = 200.

Predicted Curves

Practical Curves

Predicted Curves

Practical Curves
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Figure 2.3: Predicted vs Practical learning curves for the ERLS-DCD algorithm with

different successful updatesNu: (a) MSE; (b) MSD. Simulation parameters:M = 16,

σ2
ν = 10−3, λ = 1− 1/(8M), η = 10−6, v = 0.9, H = 1, Mb = 16, Nexp = 200.
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2.5 Conclusions

In this chapter, we have presented a new approach for convergence analysis of the RLS-

DCD adaptive filtering algorithm. This approach is based on computation with only de-

terministic quantities, which are derived from statistical characteristics of signals. The

approach can be also used for other adaptive filtering algorithms based on iteratively

solving the normal equations with one or more iterations at atime instant. Deterministic

equations for predicting the MSE and MSD learning curves of the RLS-DCD algorithm

have been obtained, and simulation results have shown good agreement whenλ . 1,

although the predictions are somewhat optimistic. From ouranalysis, we have observed

fast convergence of the RLS-DCD algorithm. In the next chapter, we will introduce a

low-complexity channel-estimate based adaptive linear equalizer, in which the computa-

tion of equalizer coefficients can be multiplication-free and division-free, when using the

RLS-DCD algorithm for channel estimation and the DCD iterations in the equalizer.
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In Chapter 2, we have presented the convergence analysis of the RLS-DCD algorithm

and shown its fast convergence. It is also known that the RLS-DCD algorithm has a

complexity as low asO(NuM) operations per sample, whereM is the filter length and

Nu is the number of iterations such thatNu ≪M [17].

In this chapter, we propose a low-complexity channel-estimate based adaptive linear

equalizer, which exploits DCD iterations for computation ofequalizer coefficients. The

proposed technique has as low complexity asO(Nu(K + M)) operations per sample,

whereK andM are the equalizer and channel estimator length, respectively, andNu is

the number of iterations such thatNu ≪ K andNu ≪ M . Moreover, when using the

RLS-DCD algorithm for channel estimation, the computation ofequalizer coefficients is

multiplication-free and division-free, which makes the equalizer attractive for hardware
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design. Simulation shows that the proposed adaptive equalizer performs close to the min-

imum mean-square-error (MMSE) equalizer with perfect knowledge of the channel.

This chapter is organized as follows. In the next section, anintroduction is given.

Section 3.2 gives the data models and normal equations for computing the MMSE LE co-

efficients. In Section 3.3, we firstly introduce the assumptions used in our derivation, and

then propose a low-complexity approach for computing the LEcoefficients. Simulation

results which compare the performance and computational complexity of the proposed

LE against known techniques are given in Section 3.4, followed by conclusions in Sec-

tion 3.5.

3.1 Introduction

Equalization is a well known method for combatting the inter-symbol interference in

communication channels [21]. Coefficients of an adaptive linear equalizer (LE) can be

computed without explicit channel estimation using the channel output and known pilot

signal [21]. However, channel-estimate (CE) based equalizers can outperform LEs with

the direct adaptation [22]. The CE based adaptive equalizersre-compute equalizer coeffi-

cients for every update of the channel estimate, preferablyfor every sample of a received

signal. This requires generation and inversion of aK×K channel autocorrelation matrix,

whereK is the equalizer length. In general, it results in a complexity ofO(K3) operations

per sample. Exploiting structural properties of the matrix, the complexity can be reduced

down toO(K2) operations [7]. RLS adaptive channel estimators have a complexity of

O(M2), whereM is the channel estimator length [4]. It is usual thatK > M , thus

the complexity of computing the equalizer coefficients determines the total complexity.

Moreover, the RLS-DCD adaptive algorithm has been proposed tohave a complexity as

low asO(NuM) operations per sample, whereNu << M , while to perform very close to

the RLS algorithm [17]. Thus, adaptive channel estimation can be significantly simpler

than CE based computation of equalizer coefficients. To reduce the whole complexity,

computation of equalizer coefficients should be simplified.

In this chapter, we propose a novel CE based adaptive LE. The proposed equalizer
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is applicable for using together with channel estimators based on adaptive algorithms

with partial update (see [75] and references therein), including adaptive algorithms with

coordinate descent iterations [16,17,76,77]. Moreover, we show that when using the DCD

iterations, computation of equalizer coefficients can be multiplication-free and division-

free. When using the DCD algorithm in both the channel estimator and equalizer, the

overall complexity of the equalization is as low asO(Nu(K+M)) operations per sample.

3.2 Linear MMSE equalizer

We consider that the received signaly(n) is given by

y(n) = xT (n)h(n) + ν(n), (3.1)

where x(n) = [x(n) x(n− 1) . . . x(n−M + 1)]T , x(n) is the transmitted signal,

h(n) = [h1(n) h2(n) . . . hM(n)]T is the channel impulse response, andν(n) is the white

noise with zero mean and varianceσ2
ν ; x(n), h(n) andν(n) are real-valued. At time

instantn, aK-length LE with the tap weight coefficient vectorf(n) estimates the trans-

mitted signal aŝx(n) = yT (n)f(n), wherey(n) = [y(n) y(n− 1) . . . y(n−K + 1)]T .

Figure 3.1 shows the block diagram of the direct adaptation LE. The equalizer vectorf(n)

is adjusted to minimize the mean square error (MSE)E{[x(n) − x̂(n)]2}. For CE based

equalization, minimizing the MSE requires solving the normal equations [21]

G(n)f(n) = ξ(n), (3.2)

whereG(n) = HT (n)H(n)+ σ2
νIK , ξ(n) = HT (n)el, el is a(K +M − 1)× 1 vector of

all zeros except thelth element, which equals one and corresponds to the equalizer delay,

andH(n) is a(K +M − 1) ×K time-varying channel convolution matrix. In practice,

as the time-varying channel is unknown, estimatesĥ(n − j), j = 0, . . . , K − 1, of the
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Figure 3.1: Direct adaptation LE.

channel impulse response are used to formH(n) as given by

H(n) =
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. (3.3)

Figure 3.2 shows the block diagram of the Channel estimate based adaptive LE.

3.3 Low-complexity CE based adaptive LE

3.3.1 Assumptions

We use the following assumptions:

1) For every time samplen, the channel estimate can be updatedNu times. We will

be using the indexi = (n− 1)Nu + k, wherek = 1, . . . , Nu, to indicate such an update.

Correspondingly, the sequence of the normal equations to be solved in the MMSE LE is
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Figure 3.2: Channel estimate based adaptive LE.

now given by

G(i)f(i) = ξ(i). (3.4)

2) For everyi, the channel estimator updates only one,p(i)th, element in̂h(i) as

ĥp(i)(i) = ĥp(i)(i− 1) + ∆ĥ(i).

3) For everyi, only one,q(i)th, equalizer coefficient in̂f(i) is updated as

f̂q(i)(i) = f̂q(i)(i− 1) + ∆f̂(i).

Here,f̂(i) denotes an approximation to the MMSE solutionf(i) at iterationi.
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4) The convolution matrix (3.3) can be approximated for eachi as

Ĥ(i) =






































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... 0
. ..

... ĥ2(i)
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. (3.5)

The number of iterations for computing the equalizer coefficients after an update of

the channel estimate can be made greater than one. This is a straightforward extension of

the algorithm described below. However, our simulation hasshown little improvement in

the equalizer performance compared to the case of one iteration (as given by assumption

3).

3.3.2 Derivation

Equations (3.4) can be transformed into a sequence of auxiliary normal equations

G(i)∆f(i) = ξ0(i) [17]. A recursive approach for solving the equations is described

in Table 3.1 [17], where:r(i) is the residual vectorr(i) = ξ(i) − G(i)f̂(i); ∆G(i) =

G(i)−G(i− 1); and∆ξ(i) = ξ(i)− ξ(i− 1).

Although, by considering the Toeplitz structure of matrices, most of the computations

in Table 3.1 can be simplified. Step 1 requires finding∆G(i) which involves computation

of the matrixG(i) = ĤT (i)Ĥ(i) with a complexity ofO(M2). Step 2 requiresO(MK)

operations to compute∆G(i)f̂(i−1). These are still the most computationally demanding

operations and below we show how these operations can be simplified when using our

assumptions.

Computation of∆G(i)f̂(i− 1):
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Table 3.1: Recursively solving a sequence of equations
Step Equation

Initialization: r(0) = 0, ξ(0) = 0, f̂(0) = 0

for i = 1, 2, . . .

1 Find∆G(i) and∆ξ(i)

2 ξ0(i) = r(i− 1) + ∆ξ(i)−∆G(i)f̂(i− 1)

3 SolveG(i)∆f = ξ0(i)⇒ ∆f̂(i), r(i)

4 f̂(i) = f̂(i− 1) + ∆f̂(i)

Let Ĥ(i) = Ĥ(i− 1) +∆(i), then we have

∆G(i) = ∆T (i)Ĥ(i− 1) + ĤT (i− 1)∆(i) +∆T (i)∆(i), (3.6)

and

∆G(i)f̂(i− 1) = ∆T (i)Ĥ(i− 1)f̂(i− 1)

+ ĤT (i− 1)∆(i)f̂(i− 1) +∆T (i)∆(i)f̂(i− 1). (3.7)

Denotingb(i− 1) = Ĥ(i− 1)f̂(i− 1), we obtain

b(i− 1) = [Ĥ(i− 2) +∆(i− 1)][f̂(i− 2) + ∆f̂(i− 1)],

which gives a recursion forb(i− 1):

b(i− 1) = b(i− 2) + Ĥ(i− 2)∆f̂(i− 1) +∆(i− 1)f̂(i− 1). (3.8)

Note that∆(i − 1) is a Toeplitz matrix whose first column is∆ĥ(i − 1)ep(i−1). We also

have∆f̂(i− 1) = ∆f̂(i− 1)eq(i−1). Then (3.8) can be rewritten as

b(i− 1) = b(i− 2) + ∆f̂(i− 1)ĥ[q(i−1)](i− 2)

+ ∆ĥ(i− 1)f̂ [p(i−1)](i− 1),

whereĥ[q(i−1)](i−2) is a(K+M−1)×1 vector obtained by shifting elements ofĥ(i−2)
by q(i− 1) positions down, and the other elements ofĥ[q(i−1)](i− 2) are zeros. Definition

for f̂ [p(i−1)](i−1) is similar to that of̂h[q(i−1)](i−2). Thus, the first term on the right hand

side of (3.7) is given by

∆T (i)Ĥ(i− 1)f̂(i− 1) = ∆T (i)b(i− 1)

= ∆ĥ(i)bp(i):p(i)+K−1(i− 1), (3.9)
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wherebp(i):p(i)+K−1(i − 1) is aK × 1 vector whose elements are obtained by extracting

thep(i)th top(i) +K − 1th elements from the vectorb(i− 1).

Let ĤT (i − 1)∆(i) = ∆̌
T
(i)ȞT (i − 1), where∆̌(i) is a Toeplitz matrix whose first

column is∆ĥ(i)eM−p(i)+1, and the matrix̌H(i) is given by

Ȟ(i) =
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... ĥM−1(i)
...

...
. .. ĥ1(i)
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The second term on the right hand side of (3.7) can then be expressed as

ĤT (i− 1)∆(i)f̂(i− 1) = ∆̌
T
(i)ȞT (i− 1)f̂(i− 1).

Denotingc(i− 1) = ȞT (i− 1)f̂(i− 1), we obtain

c(i− 1) = [Ȟ(i− 2) + ∆̌(i− 1)][f̂(i− 2) + ∆f̂(i− 1)],

which gives a recursion forc(i− 1):

c(i− 1) = c(i− 2) + Ȟ(i− 2)∆f̂(i− 1) + ∆̌(i− 1)f̂(i− 1)

= c(i− 2) + ∆f̂(i− 1)û[q(i−1)](i− 2)

+ ∆ĥ(i− 1)f̂ [M−p(i−1)+1](i− 1),

where elements of the vectorû(i− 2) are given by

ûm(i− 2) = ĥM−m+1(i− 2),m = 1, . . . ,M.

The second term on the right hand side of (3.7) is now given by

ĤT (i− 1)∆(i)f̂(i− 1) = ∆̌
T
(i)c(i− 1)

= ∆ĥ(i)cM−p(i)+1:M−p(i)+K(i− 1). (3.10)

Since∆T (i)∆(i) = ∆ĥ2(i)IK , the third term on the right hand side of (3.7) is given by

∆T (i)∆(i)f̂(i− 1) = ∆ĥ2(i)f̂(i− 1). (3.11)
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From (3.9), (3.10) and (3.11), denotingz(i) = ∆G(i)f̂(i− 1), we finally obtain a simpli-

fied expression for (3.7):

z(i) = ∆ĥ(i)
[

bp(i):p(i)+K−1(i− 1)

+ cM−p(i)+1:M−p(i)+K(i− 1) + ∆ĥ(i)f̂(i− 1)
]

.

Computation of∆G(i):

The matrix∆G(i) can be obtained by using (3.6), which can also be written as

∆G(i) = ∆T (i)Ĥ(i) + ĤT (i− 1)∆(i). (3.12)

Since the matrixG(i) is a symmetric Toeplitz matrix,∆G(i) is also a symmetric Toeplitz

matrix. Therefore, for each update of the channel estimate,only the first column of∆G(i)

given by (3.12) needs to be updated. In this column, only the firstM elements are nonzero,

which are given by

∆G1,1(i) = ∆ĥ(i)
[

ĥp(i)(i) + ĥp(i)(i− 1)
]

, (3.13)

∆G1,m(i) = ∆ĥ(i)
[

ĥp(i)−m+1(i− 1) + ĥp(i)+m−1(i− 1)
]

,

wherem = 2, . . . ,M .

The proposed technique for computing the equalizer coefficients is now summarized

in Table 3.2. Here, we assume that the noise varianceσ2
ν is known. Table 3.2 also shows

the complexity of the computation steps in terms of multiplications and additions. The

complexity of computing the LE coefficients will depend on the iterative technique used

for solving the equationG∆f = ξ0 at step 6, wherePmu andPad denote the number of

multiplications and additions, respectively.

3.3.3 DCD iterations

We propose to use the DCD iteration described in Table 3.3, which is simple for imple-

mentation and shows fast convergence to optimal performance [17]. When using the DCD

iteration, it is assumed that the equalizer coefficients arerepresented asMb-bit fixed-point

numbers within an interval[−A,A], whereA is preferably a power-of-two number. The
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Table 3.2: Low-complexity computation of CE based equalizercoefficients
Step Equation × +

Initialization: i = 0, G(0) = σ2
νIK , f̂(0) = 0, r(0) = 0, b(0) = 0, c(0) = 0

for n = 1, 2, . . .

for k = 1, . . . , Nu

1 i = i+ 1

2 Obtainĥ(i), ∆ĥ(i) and positionp(i) from a channel estimator

3 z(i) = ∆ĥ(i)[bp(i):p(i)+K−1(i− 1) + cM−p(i)+1:M−p(i)+K(i− 1) 2K 2K

+∆ĥ(i)f̂(i− 1)] 2K 2K

4 ξ0 = r(i− 1) + ∆ĥ(i)el+p(i) − z(i) − K + 1

5 Compute∆G(1)(i) using (3.13) and updateG(1)(i) = G(1)(i− 1) + ∆G(1)(i) M 2M

6 Use one iteration to solveG∆f = ξ0 and obtain∆f̂(i), q(i), andr(i) Pmu Pad

7 f̂q(i)(i) = f̂q(i)(i− 1) + ∆f̂(i) − 1

8 b(i) = b(i− 1) + ∆f̂(i)ĥ[q(i)](i− 1) + ∆ĥ(i)f̂ [p(i)](i) K +M K +M

9 c(i) = c(i− 1) + ∆f̂(i)û[q(i)](i− 1) + ∆ĥ(i)f̂ [M−p(i)+1](i) K +M K +M

Total for each samplen: Nu(4K + 3M + Pmu) mult. andNu(6K + 4M + 1 + Pad) adds

Table 3.3: DCD algorithm with one update
Step Equation +

Initialization: r = ξ0, α = A/2, a = 0

1 q = argmaxj=1,...,K{|rj |}, go to step 4 K − 1

2 a = a+ 1, α = α/2 −
3 if a > Mb, the algorithm stops −
4 if |rq| ≤ (α/2)Gq,q, then go to step 2 1

5 ∆f̂ = sign(rq)α 1

6 r = r− sign(rq)αG(q) K

∆f̂(i) = ∆f̂ , q(i) = q, r(i) = r

Total: Pmu = 0 andPad ≤ 2K +Mb + 1

step-size parameterα is α = 2−aA, i.e. also a power-of-two number. With such settings,

operations required in the DCD algorithm are only additions as all multiplications and

divisions are replaced by bit-shifts; see more details on the parameter choice in [17]. If,

in addition, the adaptive channel estimator is implementedusing the RLS-DCD adaptive

filter of complexityO(NuM) [17], the increments∆ĥ(i) will be power-of-two numbers.

Therefore, all multiplications in Table 3.2 can be replacedby bit-shift operations. With

the DCD iteration, step 6 in Table 3.2 is multiplication-freeand requires no more than

2K +Mb + 1 additions.
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3.4 Simulation results

In this section, we compare the performance of seven LEs:

1) MMSE LE. For every time samplen, the convolution matrixH(n) is formed using

the perfectly known channel responseh(n− j), j = 0, . . . , K − 1, instead of its estimate

as in (3.3). The equalizer vectorf̂0 is found by solving (3.2);

2) RLS CE based adaptive LE. The time-varying channel is estimated using the clas-

sical RLS algorithm with a forgetting factorλ, and for every samplen, the convolution

matrixH(n) is formed using (3.3). The equalizer vectorf̂ is obtained by solving (3.2);

3) LMS CE based adaptive LE. This is similar to the RLS CE based adaptive LE except

that the time-varying channel is estimated using the classical LMS algorithm [4];

4) RLS CE based adaptive LE (K samples). This is the RLS CE based adaptive LE

which estimates the time-varying channel for every samplen, while the equalizer coeffi-

cients are computed once forK samples;

5) RLS directly adaptive (DA) LE. The equalizer coefficients are directly computed

for every samplen using the RLS algorithm [21];

6) LMS DA LE. The equalizer coefficients are directly computed for every samplen

using the LMS algorithm [21];

7) Proposed LE. The time-varying channel is estimated usingthe RLS-DCD algorithm

from [17] with a forgetting factorλ and for everyi, the leading indexp(i) is chosen

according to the position of the maximum in the residual vector (see [17]). The choice of

Nu for the DCD algorithm is investigated in [17, 52]. The equalizer vector̂f is obtained

using the algorithm in Table 3.2.

To simulate the time-varying channel impulse responseh(n), we adopt the first order

autoregressive model given byh(n) =
√
υ h(n − 1) +

√
1− υ ω(n) [54], where

√
υ is

the autoregressive factor andω(n) are zero-mean independent random Gaussian vectors,
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Figure 3.3: MSE performance of LEs: SNR= 20 dB, υ = 1− 10−3, M = 51, K = 201,

Mb = 16, A = 1, forgetting factor is0.9804 for the RLS CE and the proposed LE and

0.995 for the RLS DA LE, step size is0.005 for the LMS DA LE and0.02 for the LMS

CE.

whose elements have variance1/M . The channel length isM = 51 and the equalizer

length isK = 201. We usel = (K +M)/2 = 126 as the equalizer delay [78]. Different

signal to noise ratios (SNRs) are considered, and for each SNR,simulation results are

obtained by averaging over500 independent simulation trials. For each trial,1000 BPSK

pilot symbols of unit power are transmitted.

Fig.3.3 compares the MSE performance of the seven LEs for SNR= 20 dB and the

time-varying channel withυ = 1 − 10−3. For computing the MSE for eachn, a 1000-

length data sequence independent of the pilot is filtered with the equalizer vector̂f(n)

derived using the pilot. It is seen that the proposed LE performs very close to the RLS CE

based adaptive LE and outperforms the other LEs.

Fig.3.4 and Fig.3.5 compare the MSE performance of LEs at different SNRs, for time-

varying channels withυ = 1−10−5 andυ = 1−10−4, respectively. For a simulation trial,

the steady-state MSE is evaluated as MSE= 1
926

∑1000
n=75[x(n) − yT (n)f̂(n)]2. It is seen
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Figure 3.4: MSE performance of the three LEs at different SNRs: υ = 1−10−5, M = 51,

K = 201, Mb = 16, A = 1; forgetting factor is0.9975 for SNR= 5 and10 dB, 0.9951

for SNR= 15 and20 dB, and0.9902 for SNR= 25 dB.
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Figure 3.5: Steady-state MSE performance of the three LEs atdifferent SNRs:υ =

1 − 10−4, M = 51, K = 201, Mb = 16, A = 1; forgetting factor is0.9951 for SNR= 5

and10 dB, 0.9902 for SNR= 15 and20 dB, and0.9804 for SNR= 25 dB.

T. Chen, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 3. LOW-COMPLEXITY CHANNEL-ESTIMATE BASED ADAPTIVE LINEAR

EQUALIZATION 40

100 200 300 400 500 600 700 800
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

Number of sample

M
S

D
 (

dB
)

 

 

RLS CE
Proposed (Nu = 8)
Proposed (Nu = 4)
Proposed (Nu = 2)

SNR = 5 dB

SNR = 20 dB

Figure 3.6: MSD performance of the proposed LE and the RLS CE based adaptive LE:

υ = 1− 10−5, M = 51, K = 201, Mb = 16, A = 1; forgetting factor is0.9975 for SNR

= 5, and0.9951 for SNR= 20 dB.

that withNu = 4 and evenNu = 2, the proposed LE provides performance very close

to that of the RLS CE based adaptive LE, and close to that of the MMSE LE. We also

applied the proposed LE withNu = 2 but with 2 iterations for computing the equalizer

coefficients after an update of the channel estimate, to the same simulation trials as we ran

to obtained Fig.3.5. We observed for SNR= 15 and20 dB, little improvement of0.07 dB

in the MSE performance of the equalizer compared to the performance of the proposed

LE with Nu = 2 as shown in Fig.3.5.

Fig.3.6 compares the mean square deviation (MSD) performance of the proposed LE

and the RLS CE based adaptive LE. For each LE, at every time sample n, the MSD

is evaluated as MSD(n) = [f̂0(n) − f̂(n)]T [f̂0(n) − f̂(n)]/[f̂T0 (n)f̂0(n)], wheref̂0(n) is

the equalizer vector obtained from the MMSE LE. From Fig.3.6, it is seen that asNu

increases, the proposed LE performs close to the RLS CE based adaptive LE.

Table 3.4 compares the number of multiplications required in different LEs at each

sample for different equalizer lengths. For the MMSE LE, only the multiplications in-
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Table 3.4: Number of multiplications per sample (M = 51)
K = 51 K = 101 K = 201 K = 401

MMSE 3.9× 105 2.5× 106 1.8× 107 1.3× 108

RLS CE 4.1× 105 2.6× 106 1.8× 107 1.3× 108

RLS CE (K samples) 8113 2.6× 104 9.1× 104 3.4× 105

LMS CE 3.9× 105 2.5× 106 1.8× 107 1.3× 108

RLS DA 1.6× 104 6.2× 104 2.4× 105 9.7× 105

LMS DA 153 303 603 1203

Proposed
Nu = 2 1020 1470 2370 4170

Nu = 4 1734 2584 4284 7684

volved in the computation of the equalizer coefficients are considered, where the equal-

izer coefficients are obtain by solving (3.2) directly. For other CE based LEs, the multi-

plications involved in both the channel estimation and the computation of the equalizer

coefficients are taken in to account, where the equalizer coefficients are also obtain by

solving (3.2) directly. From Table 3.4, we can find that, for CEbased LEs, the complexity

of computing the equalizer coefficients determines the total complexity. It is seen that the

proposed LE has much lower computational complexity than the other CE based LEs. Its

complexity is also significantly lower than that of the RLS DA LE.
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3.5 Conclusions

In this chapter, we have proposed a channel-estimate based adaptive LE with a complex-

ity as low asO(Nu(K + M)) operations per sample, whereNu ≪ K andNu ≪ M .

The proposed technique exploits coordinate descent iterations for computing the equal-

izer coefficients. Moreover, when using the dichotomous coordinate descent iterations,

computation of the equalizer coefficients is multiplication-free and division-free, which

makes it attractive for hardware design. Simulation results show that, with only a few

updates per sample, the proposed LE performs very close to the RLS CE based adaptive

LE and close to the MMSE LE with perfect knowledge of the channel. It is shown in [21]

that the MMSE LE may have poor performance on channels with severe inter-symbol in-

terference, while the MMSE decision-feedback equalizer (DFE) outperforms the MMSE

LE and yields good performance, provided that the decision errors are negligible. In the

next two chapters, we will introduce two partial-update CE based adaptive DFEs, both of

which are based on DCD iterations for computing the equalizercoefficients.
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In the previous chapter, we have proposed a low-complexity channel-estimate (CE)

based adaptive linear equalizer, which performs very closeto the RLS CE based adap-

tive linear equalizer (LE) and close to the minimum mean-square error (MMSE) LE with

perfect knowledge of the channel. However, for channels with severe inter-symbol inter-

ference, such as the underwater acoustic channel, the MMSE decision-feedback equalizer

(DFE) can outperform the MMSE LE, provided that the effect ofdecision errors on per-
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formance is negligible [21].

In this chapter, we propose a novel CE based adaptive DFE. In addition to the low

complexity computation of equalizer taps, the proposed technique can operate with low-

complexity channel estimators. Specifically, it is assumedthat every CE update involves

only one channel tap, e.g. the CE is generated by a partial update adaptive filter. The

proposed DFE exploits DCD iterations and has complexity as low asO(Nul log22l) mul-

tiplications per sample, wherel is the equalizer delay andNu is the number of updates per

sample such thatNu ≪ l. For every update of the equalizer, only one feedforward filter

tap is updated, while feedback filter taps can be computed recursively, or they do not need

to be computed when a modified DFE structure is used. Thus, we have a partial-update

equalizer.

The proposed DFE is especially efficient when the channel estimator also exploits the

DCD iterations, e.g. such as in the RLS-DCD adaptive filter. Thenthe channel estimator

has a complexity significantly lower than that of the equalizer. Moreover, most of the

multiplications involved in the computation of the equalizer coefficients can now be re-

placed by bit-shift operations, which makes the equalizer attractive for hardware design.

Simulation results show that the proposed DFE performs veryclose to the CE based DFE,

where the CE is obtained using the classical RLS adaptive filterand the equalizer taps are

computed according to the MMSE criterion.

This chapter is organized as follows. In the next section, anintroduction is given.

In Section 4.2, we introduce the structure of the conventional DFE and give expressions

for computing the DFE taps. Section 4.3 introduces assumptions made for deriving the

partial-update DFE. The complex-valued DCD iterations and RLS-DCD algorithm for

adaptive channel estimation are presented in Section 4.4. In Section 4.5, a low-complexity

approach for computing the FFF taps is proposed. In Section 4.6, recursive computation

of the FBF taps is derived, and the modified DFE structure is introduced. Section 4.7

presents numerical results that demonstrate the performance and computational complex-

ity of the proposed DFE against known techniques. Finally, Section 4.8 draws conclu-

sions.
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4.1 Introduction

Decision-feedback equalizers (DFEs) are widely used for combatting the inter-symbol in-

terference in communication channels [21,79]. Taps of an adaptive DFE can be computed

without explicit channel estimation, by direct adaptation(DA) using the channel output

and known pilot signal [21]. However, channel-estimate (CE)based DFEs can outperform

DFEs with the direct adaptation [22]. As the demand for broadband communications in-

creases, the computational complexity of CE based DFEs becomes an important issue.

Extensive effort has been made to reduce the complexity (see[6,7,23–30] and references

therein). However, the complexity normally grows squarelywith the lengthK of the

feedforward filter (FFF). In multipath channels with large delay spread and long precur-

sor part, such as in underwater acoustic channels [31], the FFF lengthK needs to be large

enough to equalize the precursor part, and it is usual thatK > M , whereM is the channel

estimator length. Reducing the complexity of CE based DFEs in such scenarios is still an

open issue.

In [7], an efficient approach for computing the minimum mean-square error (MMSE)

DFE taps [6] with a complexity ofO(K(K +M)) is proposed. It relies on fast Cholesky

factorization, which is still difficult for practical implementation. In [26], a DFE with a

complexity ofO((2K + 1)2) is proposed.

In [28, 80], an alternative approach for fast computation ofMMSE DFE taps is pro-

posed; it has a complexity ofO(lK + K log22K)) for K > M , wherel is the equalizer

delay. In [28], the FFF taps are obtained by solving a set of linear equations using the fast

RLS algorithm [81], and the feedback filter (FBF) taps are computed by convolving the

FFF taps with the channel impulse response. In [28], the fastRLS algorithm is simplified

and it is stated to have some advantages in stabilization forfinite precision implemen-

tation. However, there is still no guarantee of stability inpractice, and such a fast RLS

algorithm can still exhibit instability [5].

In Chapter 3, we proposed a CE based adaptive linear equalizer with a complexity as

low asO(NuK) +O(NuM), whereNu is the number of updates such thatNu ≪ K and

Nu ≪ M . The equalizer exploits dichotomous coordinate descent (DCD) iterations for

the tap computation. It is attractive to apply this approachfor fast computation of DFE
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taps. However, the approach in Chapter 3 is not directly applicable to the computation

of the DFE taps. Besides, the approach in Chapter 3 has been derived for real-valued

signals and channels. Moreover, complex-valued DCD iterations have not been intro-

duced yet. The linear equalizer from Chapter 3 is especially efficient when using the

RLS-DCD adaptive filter [17] as the channel estimator. In this case, the tap computa-

tion is multiplication-free and division-free, which is attractive for hardware implementa-

tion [52]. However, an RLS-DCD adaptive filter for complex-valued signals and channels

has not been introduced yet.

In this chapter, we propose a novel CE based adaptive DFE whichcan operate to-

gether with partial-update channel estimators (see [75–77] and reference therein). The

proposed DFE exploits complex-valued DCD iterations (that we introduce here) to effi-

ciently compute the DFE taps. The equalizer tap computationhas a complexity as low

asO(Nul log22l)) multiplications per sample. The proposed DFE is especiallyefficient

if the channel estimation is performed by the complex-valued RLS-DCD adaptive filter

that we also introduce here. The DFE can be implemented in theconventional or modi-

fied structure [24–26]. For the conventional structure, we also propose a simple recursive

method for computing the FBF taps, whereas the modified structure does not require com-

puting the FBF.

Notations:We use capital and small bold fonts to denote matrices and vectors, respec-

tively; e.g.G is a matrix andr a vector. Elements of the matrix and vector are denoted as

Gn,p andrn, respectively. Apth column andnth row ofG are denoted asG(p) andG(n),

respectively. We also denote:GT andGH are transpose and conjugate transpose of the

matrixG, respectively;r∗ is the complex conjugate of vectorr; IK is aK ×K identity

matrix;0K×M is aK×M matrix of all zeros;E{·} is the expectation;ℜ{·} andℑ{·} are

the real and imaginary part of a complex number, respectively. The variablen is used as

a time index andi is the iteration index.
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Figure 4.1: Conventional structure of a symbol-spaced DFE.

4.2 MMSE decision-feedback equalizer

We consider that the received signaly(n) at a time-instantn is given by

y(n) = xT (n)h(n) + ν(n) (4.1)

where h(n) = [h1(n) h2(n) . . . hM(n)]T is the channel impulse response,x(n) =

[x(n) x(n− 1) . . . x(n−M + 1)]T is a sequence of transmitted symbols, andν(n) is the

white noise with zero mean and varianceσ2
ν ; x(n), h(n), andν(n) are complex-valued.

Fig.4.1 shows the structure of a DFE [21] consisting of aK-length FFF with the tap

vector f(n) andB-length FBF with the tap vectorg(n). At time instantn, the DFE

estimates the transmitted symbolx(n− l) as

x̂(n− l) = yT (n)f(n)− x̌T (n)g(n) (4.2)

wherey(n) = [y(n) y(n− 1) . . . y(n−K + 1)]T , x̌(n) = [x̌(n− l − 1) . . . x̌(n− l −
B)]T andl is the equalizer delay. The received data vectory(n) can be expressed as

y(n) = HT (n)x̄(n) + ν(n) (4.3)

where x̄(n) = [x(n) x(n− 1) . . . x(n−M −K + 2)]T , ν(n) =

[ν(n) ν(n− 1) . . . ν(n−K + 1)]T and H(n) is a (K + M − 1) × K time-varying
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channel convolution matrix

H(n) =







































h1(n) 0 · · · 0 0

h2(n) h1(n− 1)
. ..

...
...

... h2(n− 1)
. .. 0

...

hM(n)
...

. .. h1(n−K + 2) 0

0 hM(n− 1)
. .. h2(n−K + 2) h1(n−K + 1)

... 0
. ..

... h2(n−K + 1)
...

...
. .. hM(n−K + 2)

...

0 0 · · · 0 hM(n−K + 1)







































. (4.4)

By introducing two(B +K)× 1 vectors

s(n) =





y(n)

−x̌(n)



 and w(n) =





f(n)

g(n)



 ,

the symbol estimate (4.2) can be rewritten as

x̂(n− l) = sT (n)w(n). (4.5)

The vectorsf(n) andg(n) are adjusted to minimize the mean square error (MSE)

E{|x(n− l)− x̂(n− l)|2} = E{|x(n− l)− sT (n)w(n)|2}.

Solving this minimization problem is equivalent to solvinga set of linear equations [21]

Γ(n)w(n) = ζs(n), (4.6)

whereΓ(n) = E{s(n)sH(n)} andζs(n) = E{s(n)x∗(n− l)}.

In the DA DFE,Γ(n) and ζs(n) are estimated without explicit channel estimation

using the received data and known pilot or estimated data symbols. The equalizer taps

are then obtained by solving (4.6) using an adaptive algorithm [21, 82], such as the RLS

algorithm [4,5]. Fig.4.2 shows the block diagram of the DA DFE.

For a CE based MMSE equalizer, assuming that the transmitted symbolsx(n) are

independent and identically distributed with unit power, the matrixΓ(n) and vectorζs(n)

can be represented as [28]

Γ(n) =





G(n) −H̃H(n)

−H̃(n) IB



 (4.7)
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Figure 4.2: Direct adaptation DFE.

Figure 4.3: Channel estimate based adaptive DFE.
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Figure 4.4: Submatrices of the channel convolution matrixH(n)

and

ζs(n) =





ζ(n)

0B×1



 , (4.8)

where

G(n) = HH(n)H(n) + σ2
νIK , (4.9)

and

ζ(n) = HH(n)el. (4.10)

H̃(n) is a B × K submatrix of the channel convolution matrixH(n) as illustrated in

Fig.4.4;el is a(K + B − 1)× 1 vector of all zeros except thelth element, which equals

one and corresponds to the equalizer delay.

In the CE based adaptive DFE, shown in Fig.4.3, the channel impulse response is esti-

mated by using the received data and pilot or estimated data symbols. The quantitiesΓ(n)

andζs(n) are then computed using (4.7) and (4.8), respectively. Finally, the equalizer taps

are obtained by solving (4.6) using an adaptive algorithm.

Using (4.6), (4.7) and (4.8), we obtain

G(n)f(n)− H̃H(n)g(n) = ζ(n), (4.11)

g(n) = H̃(n)f(n). (4.12)

Substituting (4.12) into (4.11), we have

[

H̄H(n)H̄(n) + ȞH(n)Ȟ(n) + σ2
νIK

]

f(n) = ζ(n). (4.13)
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whereH̄(n) andȞ(n) are submatrices of the channel convolution matrixH(n) as illus-

trated in Fig.4.4. The size of matrix̄H(n) is (l + 1)×K.

Since we considerB ≥M , equation (4.13) can be rewritten as [28]

Ḡ(n)f(n) = ζ(n), (4.14)

whereḠ(n) = H̄H(n)H̄(n). The MMSE DFE taps can also be obtained by solving

the normal equations (4.14) for the FFF vectorf(n) using an adaptive algorithm, and

then computing the FBF vectorg(n) using (4.12). For the CE based DFE, the FFF and

FBF taps can also be obtained by solving separate MMSE optimization problems [83].

In [84], the separate MMSE DFE optimization has been demonstrated to be equivalent to

the simultaneous optimization, which is considered in thischapter.

4.3 Assumptions

For computation of the DFE taps, we use the following assumptions:

1) In practice, as the time-varying channel is unknown, estimatesĥ(n) of the channel

impulse responseh(n) are used for computing the DFE taps.

2) For every time samplen, the channel impulse response estimateĥ(n) can be updated

Nu times. We will be using indexi to indicate such an update. Correspondingly, the

sequence of normal equations to be solved for the FFF taps is now given by

Ḡ(i)f(i) = ζ(i). (4.15)
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3) For every iterationi, the convolution matrix (4.4) can be approximated as

Ĥ(i) =







































ĥ1(i) 0 · · · 0 0

ĥ2(i) ĥ1(i)
. ..

...
...

... ĥ2(i)
. .. 0

...

ĥM(i)
...

. .. ĥ1(i) 0

0 ĥM(i)
. .. ĥ2(i) ĥ1(i)

... 0
. ..

... ĥ2(i)
...

...
. .. ĥM(i)

...

0 0 · · · 0 ĥM(i)







































. (4.16)

4) For every iterationi, the channel estimator updates only one,p(i)th, element in̂h(i)

as

ĥp(i)(i) = ĥp(i)(i− 1) + ∆ĥ(i).

Note that, when using the DCD iteration in channel estimation, for everyi, ∆ĥ(i) is a

power-of-two number.

5) For everyi, only one,q(i)th, FFF coefficient in̂f(i) is updated as

f̂q(i)(i) = f̂q(i)(i− 1) + ∆f̂(i),

As we will propose to use the DCD iteration in the computation of the FFF taps, for every

i, ∆f̂(i) is also a power-of-two number.

The number of iterations for computing the FFF taps after an update of the channel

estimate can be made greater than one. This is a straightforward extension of the algo-

rithm described below. However, our simulation (not presented here) has shown little

improvement in the equalizer performance compared to the case of one iteration (as given

by assumption 5).

6) We assume that the noise varianceσ2
ν , and thus the signal to noise ratio (SNR) are

known.
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Table 4.1: Complex-valued RLS algorithm
Step Equation

Initialization: ĥ(0) = 0M×1, r(0) = 0M×1, R(0) = εIM

for n = 1, 2, . . .

1 R(n) = λR(n− 1) + x(n)xH(n)

2 ŷ(n) = x
T (n)ĥ(n− 1)

3 e(n) = y(n)− ŷ(n)

4 β0(n) = λr(n− 1) + e∗(n)x(n)

5 SolveR(n)∆h(n) = β0(n)⇒ ∆ĥ(n), r(n)

6 ĥ(n) = ĥ(n− 1) + ∆ĥ(n)

4.4 Partial-update adaptive channel estimation

To satisfy assumption 2 above, we need to use a partial-update channel estimator. For this

purpose, we propose to use the RLS-DCD adaptive algorithm due to its low complexity,

stability, and fast convergence [17, 52]. Moreover, the channel estimate updates in the

RLS-DCD algorithm allow the DFE taps to be computed without explicit multiplications.

However, the RLS-DCD algorithm in [17] deals with real-valuedsignals. Therefore, here

we present a complex-valued version of the RLS-DCD algorithm which is a straightfor-

ward extension of the RLS-DCD algorithm in [17].

In the RLS algorithm, the vectorh(n) is found by solving the normal equations

R(n)h(n) = β(n), where [4]

R(n) =
n

∑

m=0

λn−mx(m)xH(m) + λnεIM ,

β(n) =
n

∑

m=0

λn−mx(m)y∗(m),

ε > 0 is a regularization factor and0 < λ ≤ 1 is a forgetting factor. This can be done

recursively as presented in Table 4.1. The implementation of this variant of the RLS

algorithm is especially efficient when, at step 5, DCD iterations are used for solving the

systemR(n)∆h(n) = β0(n). In this case, step 5 can be implemented without explicit

multiplications and divisions.

Table 4.2 describes the complex-valued DCD algorithm with a leading element [17],

which is used to solve the normal equations at step 5 in Table 4.1. For convenience, we
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Table 4.2: Complex-valued DCD algorithm.
Step Equation +

Initialization: ∆ĥ = 0M×1, r = β0, α = A, a = 1, d = [α,−α, jα,−jα]
for k = 1, . . . , Nu

1 ϑ = [ℜ{rT } ℑ{rT }], p = argmaxm=1,...,2M{|ϑm|}, 2M − 1

if p > M , thenp← p−M ,

go to step 4

2 a← a+ 1, α← α/2, d = [α,−α, jα,−jα] −
3 if a > Mb, the algorithm stops −
4 µ = argmin{[−ℜ{rp}, ℜ{rp},−ℑ{rp}, ℑ{rp}, −αRp,p/2]} 2

if µ > 4, then go to step 2

5 ∆ĥp = ∆ĥp + dµ 1

6 r = r− dµR
(p) 2M

Total: 0 real mult. and≤ Nu(4M + 2) real adds.

omit here the time indexn. It is assumed that the channel taps are represented asMb-bit

fixed-point numbers within an amplitude interval[−A,A], whereA is preferably a power-

of-two number. The step-size parameterα is given byα = 2−aA, wherea is a positive

integer number, i.e.α is also a power-of-two number (see more details on the parameter

choice in [17]). With such settings, operations required inthe DCD algorithm are only

additions as all multiplications and divisions are replaced by bit-shifts.

4.5 Low-complexity computation of FFF taps

For computation of the FFF taps, equations (4.15) can be transformed into a sequence

of auxiliary normal equations̄G(i)∆f(i) = ζ0(i) [17]. A recursive approach for solv-

ing these equations can be derived, which is described in Table 4.3. In Table 4.3,

f̂(i) denotes an approximate solution obtained at iterationi; ǫ(i) is the residual vector

ǫ(i) = ζ(i) − Ḡ(i)f̂(i); ∆Ḡ(i) = Ḡ(i) − Ḡ(i − 1); and∆ζ(i) = ζ(i) − ζ(i − 1).

In Table 4.3, step 1 requires finding∆Ḡ(i) which involves computation of the matrix

Ḡ(i) = H̄H(i)H̄(i) with a complexity ofO((l + 1)K2). Step 2 requiresO(K2) oper-

ations to compute∆Ḡ(i)f̂(i − 1). These are the most computationally demanding op-

erations in the computation of the FFF taps. For computationof the FBF taps, equation

(4.12) can be computed directly with a complexity ofO(BK), which is also computa-
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Table 4.3: Recursively solving a sequence of equations for computation of FFF taps
Step Equation

Initialization: ǫ(0) = 0K×1, ζ(0) = 0K×1, f̂(0) = 0K×1

for i = 1, 2, . . .

1 Find∆Ḡ(i) and∆ζ(i)

2 ζ0(i) = ǫ(i− 1) + ∆ζ(i)−∆Ḡ(i)f̂(i− 1)

3 SolveḠ(i)∆f = ζ0(i)⇒ ∆f̂(i), ǫ(i)

4 f̂(i) = f̂(i− 1) + ∆f̂(i)

tionally consuming. In the followings of this chapter, we show how these operations can

be simplified when using our assumptions.

4.5.1 Computation of∆Ḡ(i)f̂(i− 1)

Let H̄(i) = H̄(i−1)+∆̄(i), then we havēG(i) = Ḡ(i−1) +∆̄
H
(i)H̄(i−1)+ H̄H(i−

1)∆̄(i) + ∆̄
H
(i)∆̄(i) and thus,

∆Ḡ(i)f̂(i− 1) = ∆̄
H
(i)H̄(i− 1)f̂(i− 1)

+ H̄H(i− 1)∆̄(i)f̂(i− 1) + ∆̄
H
(i)∆̄(i)f̂(i− 1). (4.17)

For convenience, we rewrite (4.17) as

z(i) = c(i) + b(i) +D(i)f̂(i− 1), (4.18)

where

z(i) = ∆Ḡ(i)f̂(i− 1),

c(i) = ∆̄
H
(i)H̄(i− 1)f̂(i− 1),

b(i) = H̄H(i− 1)∆̄(i)f̂(i− 1),

D(i) = ∆̄
H
(i)∆̄(i).

Now, we derive expressions for computing these variables:c(i), b(i) andD(i). Note that

∆̄(i) is a(l+1)×K submatrix of a(K+M−1)×K Toeplitz matrix whose first column

is ∆ĥ(i)ep(i) and elements of the first row are zeros ifp(i) > 1. For p(i) = 1, ∆̄(i) is

a rectangular diagonal matrix whose diagonal elements are∆ĥ(i). The structure of the

matrix∆̄(i) is illustrated in Fig.4.5.
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Figure 4.5: Structure of the matrix̄∆(i)

The matrix∆̄H
(i)H̄(i− 1) can then be expressed as

∆̄
H
(i)H̄(i− 1) = ∆ĥ∗(i)





F(i− 1)

0(K−l+p(i)−2)×K



 , (4.19)

whereF(i− 1) is a(l− p(i) + 2)×K submatrix ofH̄(i− 1) as illustrated in Fig.4.6(a).

The structure of matrixF(i− 1) is shown in Fig.4.6(b). For convenience, we now define

a (l− p(i) + 2)× (l+ 1) matrix F̄(i− 1), which is a submatrix ofF(i− 1) as illustrated

in Fig.4.6(c).

According to the structure ofF(i− 1) and by using (4.19),c(i) can be expressed as

c(i) = ∆ĥ∗(i)





F̄(i− 1)f̂1:l+1(i− 1)

0(K−l+p(i)−2)×1



 , (4.20)

wherêf1:l+1(i−1) denotes the first(l+1) elements of the vector̂f(i−1). F̄(i−1)f̂1:l+1(i−
1) can be computed directly with(l−p(i)+2)(l+1)/2 complex multiplications. However,

when a large FFF length (K ≫ M , and thusl > M ) is used, this operation will be

computationally consuming. Alternatively, this can be implemented using the fast fourier

transform (FFT) [85] as explained in Appendix A, with2(l + 1) + 6(l + 1)log22(l + 1)

complex multiplications. In Appendix B, we also derive a recursion for computinḡF(i−
1)f̂1:l+1(i − 1), which only requires2(K + M) real multiplications and2(K + M) real

additions for eachi. Moreover, as we propose to use the DCD iteration in both channel

estimation and the computation of the FFF taps, all the multiplications required in this

recursive approach can be replaced by bit-shift operations.

From (4.19), we obtain

H̄H(i− 1)∆̄(i) = ∆ĥ(i)
[

FH(i− 1) | 0K×(K−l+p(i)−2)
]

.
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(a) Structure of the matrix̄H(i− 1)

(b) Structure of the matrixF(i− 1)

(c) F̄(i− 1) as a submatrix ofF(i− 1)

Figure 4.6: Matrices structures

T. Chen, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 4. PARTIAL-UPDATE CHANNEL-ESTIMATE BASED ADAPTIVE DECISION

FEEDBACK EQUALIZER: APPROACH 1 58

According to the structure ofF(i− 1) (see Fig.4.6),b(i) can be expressed as

b(i) = ∆ĥ(i)





F̄H(i− 1)f̂1:l−p(i)+2(i− 1)

0(K−l−1)×1



 , (4.21)

where the vector̄FH(i−1)f̂1:l−p(i)+2(i−1) can be computed directly with(l−p(i)+2)(l+

1)/2 complex multiplications. Alternatively, it can also be computed using an approach

based on the FFT similar to that as given in Appendix A, with2(l+1)+6(l+1)log22(l+1)

complex multiplications. However, a recursive computation is not available for this vector

because the number of elements off̂1:l−p(i)+2(i − 1) involved in the computation varies

according to the positionp(i).

SinceD(i) = ∆̄
H
(i)∆̄(i), where∆̄(i) has the structure as given in Fig.4.5, elements

of D(i) are given by

Dm,n =







|∆ĥ(i)|2, m = n = 1, . . . , (l − p(i) + 2),

0, otherwise.

Thus, we have

D(i)f̂(i− 1) = |∆ĥ(i)|2f̂1:l−p(i)+2(i− 1). (4.22)

From (4.20), (4.21) and (4.22),z(i) in (4.18) can finally be computed by

z(i) = ∆ĥ∗(i)





F̄(i− 1)f̂1:l+1(i− 1)

0(K−l+p(i)−2)×1





+∆ĥ(i)





F̄H(i− 1)f̂1:l−p(i)+2(i− 1)

0(K−l−1)×1





+ |∆ĥ(i)|2f̂1:l−p(i)+2(i− 1). (4.23)

4.5.2 Computation of∆Ḡ(i)

The matrix∆Ḡ(i) will have three different structures as illustrated in Fig.4.7, depending

on the position of updatep(i) from the channel estimator.

1) Forp(i) = 1, ∆Ḡ(i) contains an upper-left corner(l + 1) × (l + 1) matrix∆Ǧ(i)
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(a) Case1: p(i) = 1

(b) Case2: 1 < p(i) ≤ (l + 3)/2

(c) Case3: p(i) > (l + 3)/2

Figure 4.7: Structure of matrix∆Ḡ(i)
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which is a Hermitian Toeplitz matrix, and the other elementsof ∆Ḡ(i) are zeros. In such

a case, only the first column of matrix∆Ǧ(i) needs to be computed.

2) For 1 < p(i) ≤ (l + 3)/2, ∆Ḡ(i) contains three Toeplitz submatrices: one is an

upper-left corner(l−p(i)+2)×(l−p(i)+2) matrix∆Ǧ(i) which is a Hermitian Toeplitz

matrix, and the other two are Toeplitz square matrices∆G̃(i) and∆G̃H(i), which are

conjugate transpose of each other. Furthermore,∆G̃(i) is a(p(i)− 1)× (p(i)− 1) lower

triangle matrix. The other elements of∆Ḡ(i) are zeros. In this case, only the first column

of matrix∆Ǧ(i) and the first column of matrix∆G̃(i) need to be computed.

3) For p(i) > (l + 3)/2, ∆Ḡ(i) also contains three Toeplitz submatrices: one is an

upper-left corner(l−p(i)+2)×(l−p(i)+2) matrix∆Ǧ(i) which is a Hermitian Toeplitz

matrix, and the other two are Toeplitz matrices∆G̃(i) and∆G̃H(i), which are conjugate

transpose of each other. The size of matrix∆G̃(i) is (l − p(i) + 2) × (p(i) − 1). The

otherḠ(i) are zeros. In this case, the first column of matrix∆Ǧ(i), and the first column

and row of matrix∆G̃(i) need to be computed.

According to these matrix structures,∆Ḡ(i) can be obtained as described in Table 4.4.

For eachi, the complexity of computing∆Ḡ(i) is a function of the positionp(i), where

1 ≤ p(i) ≤ M . Therefore, we can only evaluate the maximum complexity. Computation

of ∆Ḡ(i) requires no more thanM+2l/3+3 real multiplications andl+3 real additions.

Moreover, since∆ĥ(i) is a power-of-two number, all the multiplications requiredin the

computation of∆Ḡ(i) can be done by bit-shift operations.

Table 4.5 summarizes the proposed technique for computing the FFF taps. Here, we

assume that the noise varianceσ2
ν , and thus the signal to noise ratio (SNR) are known.

Table 4.5 also shows the complexity of the computation stepsin terms of multiplications

and additions. The complexity of computing the FFF taps willdepend on the iterative

technique used for solving the equationḠ∆f = ζ0 at step 8 (Pmu multiplications andPad

additions). Since we propose to use adaptive algorithms with partial update for solving

the equation at step 8, for everyi, only theq(i)th column ofḠ(i) needs to be updated,

Ḡ(q(i))(i) = Ḡ(q(i))(i − 1) + ∆Ḡ(q(i))(i). Therefore, at step 7, we can only take into

account the operations for updating theq(i)th column ofḠ(i), which will only require

3l/2+2 real additions. Note that the total number of real additionsprovided at the bottom
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Table 4.4: Computation of∆Ḡ(i)

Step Equation

Initialization: p = p(i), ∆ĥ = ∆ĥ(i), ∆Ḡ(i) = 0K×K

ρ = 0(l−p+2)×1, v = min{l + 1,M}
1 ρ1 = ∆ĥ[ĥ∗

p(i− 1) + ∆ĥ∗]

ρm = ∆ĥĥ∗

p+m−1(i− 1), m = 2, . . . , v − p+ 1,

2 ρm = ρm +∆ĥĥ∗

p−m+1(i− 1),






m = 1, . . . , l − p+ 2 for p > (l + 2)/2

m = 1, . . . , p otherwise

3 ∆Ǧ
(1)(i) = ρ

4 if 1 < p ≤ (l + 3)/2

∆G̃
(1)(i) = ∆ĥ∗

ĥ1:p−1(i− 1)

if p(i) > (l + 3)/2

∆G̃
(1)(i) = ∆ĥ∗

ĥ2p−l−2:p−1(i− 1)

∆G̃(1)(i) = ∆ĥ∗
û2:p−1(i− 1)

whereûm(i− 1) = ĥM−m+1(i− 1),m = 1, . . . ,M

of the table is the upper bound of the complexity. This is due to the fact that the actual

complexity of the computation in step 7 will depend on the position p(i). However, since

the complexity of computingg(i) in step 3 determines the total complexity, this upper

bound will be close to the actual complexity of the proposed algorithm.

4.5.3 DCD iterations

For solving the auxiliary normal equations at step 8 in Table4.5, we propose to use the

DCD iteration with one update as described in Table 4.6. As we have mentioned in Sec-

tion 4.4, in the DCD iteration, it is assumed that the FFF taps are represented asMb-bit

fixed-point numbers within an interval[−A,A], whereA is preferably a power-of-two

number. The step-size parameterα isα = 2−aA, i.e. also a power-of-two number. There-

fore, operations required in the DCD algorithm are only additions as all multiplications

and divisions are replaced by bit-shifts. When using the DCD iteration in both channel

estimation and computation of the FFF taps, the increments∆ĥ(i) and∆f̂(i) are power-

of-two numbers. This means that multiplications which involve either∆ĥ(i) or ∆f̂(i)

can be done by bit-shift operations. Therefore, our proposed approach as presented in

Table 4.5 does not require any multiplication except those involved in the computation of
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Table 4.5: Low-complexity computation of FFF taps
Step Equation × +

Initialization: i = 0, Ḡ(0) = σ2
νIK , f̂(0) = 0K×1, ǫ(0) = 0K×1,

for n = 1, 2, . . .

for k = 1, . . . , Nu

1 i = i+ 1

2 Use one iteration in the channel estimator and obtainĥ(i), ∆ĥ(i)

and positionp(i)

3 Computec(i) using (4.20) andb(i) using (4.21) ψmu ψad

4 z(i) = c(i) + b(i) + |∆ĥ(i)|2 f̂(i− 1) − 4K

5 ζ0 = ǫ(i− 1) + ∆ĥ∗(i)el−p(i)+2 − z(i) − 2K + 2

6 v = [ℜ{ǫT } ℑ{ǫT }], q(i) = argmaxm=1,...,2K{|vm|} − 2K

if q(i) > K, thenq(i)← q(i)−K

7 Compute∆Ḡ(i) using Table 4.4 and updatēG(i) = Ḡ(i− 1) + ∆Ḡ(i) − ≤ (3l + 4)(l + 1)/2

8 Use one iteration to solvēG∆f = ζ0 and obtain∆f̂(i) andǫ(i) Pmu Pad

9 f̂q(i)(i) = f̂q(i)(i− 1) + ∆f̂(i) − 1

Total for each samplen: Nu[ψmu + Pmu] real mult. and≤ Nu[ψad + 3l2/2 + 8K + 7l/2 + Pad + 4] real adds,

whereψmu = 8l + 8 + 24(l + 1)log22(l + 1) andψad = 2K + 2M + 12(l + 1)log22(l + 1)

b(i) in step 3.

4.6 Low-complexity implementation of FBF

4.6.1 Recursive computation

For the conventional DFE whose structure is shown in Fig.4.1, the FBF taps, in addition

to the FFF taps, need to be computed at every iterationi. Computation of the FBF taps

can be done directly using (4.12) with a complexity ofO(BK). Alternatively, as the

matrix H̃(i) is a block of the channel convolution matrix (see Fig.4.4), the FBF taps

can be obtained by convolving the FFF tapsf̂(i) and the vector̂u(i) whose elements are

given by (A.1) in Appendix A. This can be computed using the FFT [85] similar to the

approach explained in Appendix A, with2K + 6K log22K complex multiplications (for

K > M ). In Appendix B, we derive a recursion for computing the vector ϕ(i) as a result

of convolving the vector̂f(i) andû(i):

ϕ(i) = ϕ(i− 1) + ∆f̂(i)ĥ[q(i)](i− 1)

+ ∆ĥ(i)f̂ [p(i)](i),
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Table 4.6: DCD algorithm with one update
Step Equation +

Initialization: q = q(i), ∆f̂ = 0K×1, ǫ = ζ0,

α = A/2, a = 1, d = [α,−α, αj,−αj]
1 go to step 4 −
2 a← a+ 1, α← α/2, d = [α,−α, αj,−αj] −
3 if a > Mb, the algorithm stops −
4 µ = argmin{[−ℜ{ǫq},ℜ{ǫq},−ℑ{ǫq},ℑ{ǫq}, αGq,q/2]} 5

if µ > 4, then go to step 2

5 ∆f̂q = ∆f̂q + dµ 1

6 ǫ = ǫ− αḠ(q) 2K

∆f̂(i) = ∆f̂ , ǫ(i) = ǫ

Total: Pmu = 0 andPad ≤ 2K + 6 +Mb

The FBF tapŝg(i) can then be obtained fromϕ(i) as

ĝ(i) = ϕl+2:l+B(i). (4.24)

By using such a recursion, the computation of the FBF taps only requires2(K + M)

real multiplications and2(K + M) real additions. Moreover, when using the recursive

approach given in Appendix B for the computation of the FFF taps, which also involves

the computation ofϕ(i) at every iterationi, the FBF taps can be obtained directly from

(4.24) without any extra computation.

4.6.2 Modified DFE

Figure 4.8: Modified structure of symbol-spaced DFE
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Table 4.7: DFEs used for simulation

Algorithm Channel Decision Structure
Convolution Computation of Computation of

matrixH(n) FFF taps FBF taps

MMSE
known known Fig.4.1 formed using (4.4)

solving (4.14)
using (4.12)

(known decision) directly

RLS CE estimated
known Fig.4.1 formed using (4.4)

solving (4.14)
using (4.12)

(known decision) using RLS directly

RLS CE
estimated

estimated Fig.4.1 formed using (4.4)
solving (4.14)

using (4.12)
using RLS directly

RLS DA not required estimated Fig.4.1 not required
estimated estimated

using RLS using RLS

Proposed estimated using
known Fig.4.8 formed using (4.16) using Table 4.5 not required

(known decision) RLS-DCD

Proposed
estimated using

estimated Fig.4.8 formed using (4.16) using Table 4.5 not required
RLS-DCD

DFEs can also be implemented using the modified structure as shown in Fig.4.8 [24,

25], which does not require any computation for the FBF taps. In this modified DFE, for

every time samplen, the FBF simply multiplies the detected data symbolx̌(n−l) with the

estimated channel impulse responseĥ(n− l). Outputs from the FBF are fed into the FFF

directly in order to precancel postcursors according to theequalizer delayl. Note that the

modified DFE structure shown in Fig.4.8 applies for the case whenK ≥M . For the case

whenK < M , the equalizer structure is slightly different and can be found in [25]. In this

modified DFE, the FBF taps are the coefficients of the estimatedimpulse response, which

can be obtained directly from the channel estimator withoutany extra computation.

4.7 Simulation results

In this section, we compare the performance of six DFEs as summarized in Table 4.7:

1) MMSE DFE (known decision). For every time samplen, the convolution matrix

H(n) is formed using (4.4), in which the channel impulse responseh(n) is perfectly

known. The FFF vectorf(n) is found by solving (4.14), and the FBF vectorg(n) is

obtained using (4.12). Correct decisions are perfectly known and used in the FBF.

2) RLS CE based adaptive DFE (known decision). The time-varying channel is es-

timated using the classical RLS algorithm [4] with a forgetting factorλ, and for every
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samplen, the convolution matrixH(n) is given by (4.4). The FFF vectorf(n) is found

by solving (4.14), and the FBF vectorg(n) is obtained using (4.12). Correct decisions are

perfectly known and used in the FBF.

3) RLS CE based adaptive DFE. This is similar to the DFE in 2) except that the correct

decisions are unknown; decisions obtained from the equalizer are used in the FBF.

4) RLS directly adaptive (DA) DFE. In the DA DFE,Γ(n) andζ(n) are estimated

without explicit channel estimation using the received data and known pilot or estimated

data symbols. The equalizer taps are then obtained by solving (4.6) using the RLS algo-

rithm.

5) Proposed DFE (known decision). The time-varying channelis estimated using the

RLS-DCD algorithm presented in Section 4.4. For everyi, the FFF vector is obtained

using the algorithm in Table 4.5. Correct decisions are perfectly known and used in the

FBF.

6) Proposed DFE. This is similar to the DFE in 5) except that the correct decisions are

unknown; decisions obtained from the equalizer are used in the FBF.

We adopt the first order autoregressive model given byh(n) =
√
υ h(n − 1) +

√
1− υ ω(n) [54], to simulate the time-varying channel impulse response h(n), where
√
υ is the autoregressive factor andω(n) are zero-mean independent random Gaussian

vectors, whose elements have variance1/M . In our simulation, we consider two differ-

ent channels: one is a short channel (M = 21), for which the initial impulse response

is generated as a complex zero-mean independent random Gaussian vector, whose ele-

ments have variance1/M ; the other is a long channel (M = 101), for which the initial

impulse response is generated as a vector with11 non-zero elements, whose positions are

uniformly distributed between1 and101. These non-zero elements are complex zero-

mean independent random Gaussian numbers with variance1/11. Different signal to

noise ratios (SNRs) are considered, and for each SNR, simulation results are obtained

by averaging over200 independent simulation trials. For each trial, a4000-length data

sequence of unit power is transmitted, which contains a sequence ofL pilot symbols fol-

lowed by4000−L unknown data symbols. In the CE based DFEs, channel estimatesare
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Figure 4.9: BER performance of the DFEs over short time-varying channels:υ = 1 −
10−4, M = 21, K = 41, B = 21, Mb = 16, A = 1, The number of pilot symbols for the

RLS DA DFE isL = 600; for the other DFEs:L = 100.

first obtained from the pilot symbols and then from the equalized data symbols. In all the

simulation scenarios, QPSK symbols are transmitted.

Fig.4.9 and Fig.4.10 compare the performance of the DFEs over short and long time-

varying channels, respectively. For each SNR, the RLS forgetting factor is chosen in the

interval0.988 ≤ λ ≤ 0.997, so that the minimum BER is achieved. It is seen that, with

Nu = 4 and evenNu = 2, the proposed DFE performs very close to the RLS CE based

adaptive DFE and outperforms the RLS DA DFE.

Fig.4.11 compares the complexity in computation of DFE tapsusing the proposed

approach and the approach in [28]. The comparison is made in terms of the number of

real multiplications required per sample, for different FFF lengthK. It is seen that, as

K increases, the computational complexity of the proposed approach grows linearly and

becomes much lower than that of the approach in [28].
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Figure 4.10: BER performance of the DFEs over long time-varying channels:υ = 1 −
10−4, M = 101, K = 201, B = 101, Mb = 16, A = 1, L = 300.
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Figure 4.11: Number of real multiplications required for computation of DFE taps per

sample for different FFF lengthK: M = 101, B = 101, l = K − 1.
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4.8 Conclusions

In this chapter, we have proposed a CE based adaptive DFE with acomplexity as low as

O(Nu(l + 1)log22(l + 1)) real multiplications per sample, wherel is the equalizer delay

andNu is the number of iterations such thatNu ≪ l. We have also presented a complex-

valued RLS adaptive filtering algorithm that is preferable for the channel estimator used

together with the proposed DFE, as well as a complex-valued DCD algorithm used for

both the channel estimation and computation of the DFE taps.In the proposed DFE, the

DCD iteration is used in both channel estimation and computation of the equalizer taps.

In such a case, most of the multiplications involved in the computation of equalizer taps

can be replaced by bit-shift operations, which makes the equalizer attractive for hard-

ware design. Simulation shows that, even with a small numberof Nu, the proposed DFE

significantly outperforms the DA DFE and performs very closeto the known CE based

DFEs. However, the proposed DFE also involvesO(Nu(l
2 + l log22l)) real additions

per sample, which is still computationally consuming in practice, especially for channels

with large delay spreads, such as the underwater acoustic channels. In the next chapter,

we will derive an even lower complexity method for recursivecomputation of CE based

DFE taps.

T. Chen, Ph.D. Thesis, Department of Electronics, University of York 2011



Chapter 5

Partial-Update Channel-Estimate Based

Adaptive Decision Feedback Equalizer:

Approach 2

Contents

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 Partial-update DFE . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

In the previous chapter, we have presented a partial-updatechannel-estimate (CE)

based adaptive decision-feedback equalizer (DFE), which has a complexity as low as

O(Nul log22l) real multiplications per sample, wherel is the equalizer delay andNu

is the number of updates per sample such thatNu ≪ l. However, it still requires

O(Nu(l
2+ l log22l)) real additions per sample. In this chapter, we propose an even lower

complexity method for recursive computation of CE based DFE taps. The proposed DFE

exploits DCD iterations and is especially efficient when the recursive-least-squares DCD

(RLS-DCD) algorithm is used for channel estimation. Simulation results show that the

proposed DFE performs close to the CE based DFE, where the CE is obtained using the

classical RLS adaptive filter and the equalizer taps are computed according to the mini-
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mum mean-square error criterion.

This chapter is organized as follows. In the next section, anintroduction is given. Sec-

tion 5.2 introduces assumptions made for deriving the partial-update DFE. In Section 5.3,

the partial update DFE is derived. Section 5.4 presents numerical results that demonstrate

the performance and computational complexity of the proposed DFE against known tech-

niques. Finally, Section 5.5 draws conclusions.

5.1 Introduction

In this chapter, we propose another novel CE based adaptive DFE which can operate

together with partial-update channel estimators (see [75–77] and reference therein). At

every sample, only a few CE taps may be updated, and every such an update involves only

one tap, e.g. the CE can be generated by a low complexity partial update adaptive filter.

Every update of the equalizer involves one tap in the feedforward filter (FFF) and one tap

in the feedback filter (FBF). The proposed DFE exploits complex-valued DCD iterations

and has a complexity as low asO(NuK) +O(NuB) +O(NuM) operations per sample,

whereK is the FFF length,B the FBF length,M the channel estimator length, andNu the

number of updates such thatNu ≪ M . The proposed DFE is especially efficient when

the channel estimator also exploits the complex-valued DCD iterations, e.g. such as in

the the complex-valued RLS-DCD adaptive filter that we have introduced in Section 4.4.

Then all multiplications involved in the computation of theequalizer taps can be replaced

by bit-shift operations. This makes the equalizer attractive for hardware design.

5.2 Assumptions

For computation of the DFE taps, we use the following assumptions, which are essentially

the same as we introduced in 4.3. The difference is in assumption 5).

1) In practice, as the time-varying channel is unknown, estimatesĥ(n) of the channel

impulse responseh(n) are used for computing the DFE taps.
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2) For every time samplen, the channel impulse response estimateĥ(n) can be updated

Nu times. We will be using indexi to indicate such an update. Correspondingly, the

sequence of normal equations to be solved for the equalizer taps (4.6) is now written as

Γ(i)w(i) = ζ(i), i = 0, 1, . . . , nNu, . . . . (5.1)

For convenience, in this chapter, we useζ(i) to representζs(i) in (4.6).

3) For every iterationi, the convolution matrix (4.4) can be approximated as

Ĥ(i) =







































ĥ1(i) 0 · · · 0 0

ĥ2(i) ĥ1(i)
. ..

...
...

... ĥ2(i)
. .. 0

...

ĥM(i)
...

. .. ĥ1(i) 0

0 ĥM(i)
. .. ĥ2(i) ĥ1(i)

... 0
. ..

... ĥ2(i)
...

...
. .. ĥM(i)

...

0 0 · · · 0 ĥM(i)







































. (5.2)

4) For every iterationi, the channel estimator updates only one,p(i)th, element in̂h(i)

as

ĥp(i)(i) = ĥp(i)(i− 1) + ∆ĥ(i).

5) For every iterationi, only one,q(i)th, FFF coefficient in̂f(i) is updated as

f̂q(i)(i) = f̂q(i)(i− 1) + ∆f̂(i),

and only one,τ(i)th, FBF coefficient in̂g(i) is updated as

ĝτ(i)(i) = ĝτ(i)(i− 1) + ∆ĝ(i).

The number of iterations for computing the equalizer taps after an update of the channel

estimate can be made greater than one. This is a straightforward extension of the algo-

rithm described below. However, our simulation (not presented here) has shown little

improvement in the equalizer performance compared to the case of one iteration.

6) We assume that the noise varianceσ2
ν , and thus the signal to noise ratio (SNR) are

known.
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Table 5.1: Recursively solving a sequence of equations for computation of equalizer taps
Step Equation

Initialization: ǫ(0) = 0(K+B)×1, ζ(0) = 0(K+B)×1, ŵ(0) = 0(K+B)×1

for i = 1, 2, . . .

1 Find∆Γ(i) and∆ζ(i)

2 ζ0(i) = ǫ(i− 1) + ∆ζ(i)−∆Γ(i)ŵ(i− 1)

3 SolveΓ(i)∆w = ζ0(i)⇒ ∆ŵ(i), ǫ(i)

4 ŵ(i) = ŵ(i− 1) + ∆ŵ(i)

5.3 Partial-update DFE

We use (5.1) for computation of the equalizer tapsw(i). The sequence of equations (5.1)

can be transformed into a sequence of auxiliary normal equationsΓ(i)∆w(i) = ζ0(i) as

described in Table 5.1 (see [17]). In Table 5.1,ŵ(i) denotes an approximate solution for

the weight vectorw(i) obtained at iterationi, ǫ(i) is the residual vectorǫ(i) = ζ(i) −
Γ(i)ŵ(i), ∆Γ(i) = Γ(i)− Γ(i− 1), and∆ζ(i) = ζ(i)− ζ(i− 1).

In Table 5.1, step 1 requires finding∆Γ(i) which, in general, involves computation of

the matrixG(i) using (4.9) with a complexity ofO((K + M − 1)K2). Step 2 requires

O(K(K + 2B)) operations to compute∆Γ(i)ŵ(i − 1). Direct computation at step 3

requiresO((K + B)3) operations. Thus, direct computations according to steps in Ta-

ble 5.1 would result in significant computational load. In the following, we show how

these operations can be simplified when using assumptions presented in Section 5.2.

5.3.1 Computation of∆Γ(i)ŵ(i− 1)

Let ∆G(i) = G(i) −G(i − 1), ∆̃(i) = H̃(i) − H̃(i − 1), then according to (4.7), we

have

∆Γ(i) =





∆G(i) −∆̃H
(i)

−∆̃(i) 0B×B



 . (5.3)

Since

ŵ(i− 1) =





f̂(i− 1)

ĝ(i− 1)



 , (5.4)
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from (5.3) and (5.4) we obtain

∆Γ(i)ŵ(i− 1) =





∆G(i)f̂(i− 1)− ∆̃
H
(i)ĝ(i− 1)

−∆̃(i)f̂(i− 1)



 .

(5.5)

Now, we derive expressions for computing the following vectors: ∆G(i)f̂(i − 1),

∆̃(i)f̂(i− 1) and∆̃
H
(i)ĝ(i− 1).

Computation of∆G(i)f̂(i−1): For computing∆G(i)f̂(i−1) we extend the approach

in Chapter 3 to the complex-valued case, and obtain a set of recursive equations (see the

derivation in Appendix C). We have

∆G(i)f̂(i− 1) = ∆ĥ∗(i)bp(i):p(i)+K−1(i− 1)

+ ∆ĥ(i)cM−p(i)+1:M−p(i)+K(i− 1) + |∆ĥ(i)|2f̂(i− 1),

(5.6)

wherebp(i):p(i)+K−1(i − 1) is aK × 1 vector whose elements are obtained by extracting

thep(i)th top(i) +K − 1th elements from a vectorb(i− 1); cM−p(i)+1:M−p(i)+K(i− 1)

is a K × 1 vector whose elements are obtained by extracting theM − p(i) + 1th to

M − p(i) +Kth elements from a vectorc(i− 1). The vectorsb(i− 1) andc(i− 1) are

obtained using the following recursions:

b(i− 1) = b(i− 2) + ∆f̂(i− 1)ĥ[q(i−1)](i− 2)

+ ∆ĥ(i− 1)f̂ [p(i−1)](i− 1) (5.7)

and

c(i− 1) = c(i− 2) + ∆f̂(i− 1)û[q(i−1)](i− 2)

+ ∆ĥ(i− 1)f̂ [M−p(i−1)+1](i− 1), (5.8)

whereĥ[q(i−1)](i − 2) is a (K + M − 1) × 1 vector obtained by shifting elements of

ĥ(i− 2) by q(i− 1) positions down, and the other elements ofĥ[q(i−1)](i− 2) are zeros.

Definitions forf̂ [p(i−1)](i− 1), û[q(i−1)](i− 2) andf̂ [M−p(i−1)+1](i− 1) are similar to that

of ĥ[q(i−1)](i− 2). Elements of the vector̂u(i− 2) are given by

ûm(i− 2) = ĥM−m+1(i− 2), m = 1, . . . ,M.
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Since we propose to use DCD iterations in both the channel estimation and computation

of the equalizer taps,∆ĥ(i) and∆f̂(i) are power-of-two numbers. Therefore, all mul-

tiplications in (5.6), (5.7) and (5.8), required for computation of∆G(i)f̂(i − 1), can be

replaced by bit-shift operations.

Computation of∆̃(i)f̂(i − 1): Depending on the positionp(i), the matrix∆̃(i) has

different structures as illustrated in Fig.5.1. Thus, the vector∆̃(i)f̂(i− 1) is given by

∆̃(i)f̂(i− 1) = ∆ĥ(i)×














































































































f̂l−p(i)+3:l−p(i)+B+2(i− 1), P < p(i) ≤ l + 2





f̂l−p(i)+3:K(i− 1)

0(B−K+l−p(i)+2)×1



 , p(i) ≤ l + 2 andp(i) ≤ P





0(p(i)−l−2)×1

f̂1:B−p(i)+l+2(i− 1)



 , p(i) > l + 2 andp(i) ≥ P









0(p(i)−l−2)×1

f̂(i− 1)

0(B−K−p(i)+l+2)×1









, l + 2 < p(i) < P

(5.9)

whereP = B −K + l + 2.

T. Chen, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 5. PARTIAL-UPDATE CHANNEL-ESTIMATE BASED ADAPTIVE DECISION

FEEDBACK EQUALIZER: APPROACH 2 75

(a) P < p(i) ≤ l + 2

(b) p(i) ≤ l + 2 andp(i) ≤ P

(c) p(i) > l + 2 andp(i) ≥ P

(d) l + 2 < p(i) < P

Figure 5.1: Structure of matrix̃∆(i); P = B − K + l + 2; N = K − l + p(i) − 2;

Q = p(i)− l − 2.
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Computation of∆̃
H
(i)ĝ(i − 1): According to Fig.5.1,∆̃

H
(i)ĝ(i − 1) can be repre-

sented as

∆̃
H
(i)ĝ(i− 1) = ∆ĥ∗(i)×























































































































0(l−p(i)+2)×1

ĝ(i− 1)

0(K−B−l+p(i)−2)×1









, P < p(i) ≤ l + 2





0(l−p(i)+2)×1

ĝ1:K−l+p(i)−2(i− 1)



 , p(i) ≤ l + 2 andp(i) ≤ P





ĝp(i)−l−1:B(i− 1)

0(K−B+p(i)−l−2)×1



 , p(i) > l + 2 andp(i) ≥ P

ĝp(i)−l−1:p(i)−l+K−2(i− 1), l + 2 < p(i) < P

(5.10)

Note that with the DCD iterations,∆ĥ(i) is a power-of-two number. Consequently, all

multiplications in (5.9) and (5.10) can be replaced by bit-shift operations. Thus, the com-

putation of∆Γ(i)ŵ(i− 1) is multiplication-free and division-free.

5.3.2 Computation ofΓ(i)

According to (4.7), the matrixΓ(i) is defined byG(i) andH̃(i). The matricesG(i) and

∆G(i) are Hermitian Toeplitz matrices and thus defined by the first columns. Conse-

quently, for updatingG(i) only the first column of∆G(i) needs to be computed. In this

column, only the firstM elements are nonzero and given by

∆G1,1(i) = 2ℜ
{

∆ĥ∗(i)ĥp(i)(i− 1)
}

+ |∆ĥ(i)|2,

∆G1,m(i) = ∆ĥ(i)ĥ∗p(i)−m+1(i− 1)

+ ∆ĥ∗(i)ĥp(i)+m−1(i− 1), (5.11)

wherem = 2, . . . ,min{M,K}. Since∆ĥ(i) is a power-of-two number, all multiplica-

tions in (5.11) can be replaced by bit-shift operations.
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Forp(i) ≤ l+2, all elements in the first column of̃H(i) are zeros. Therefore, for each

update of the channel estimate, only elementl − p(i) + 3 in the first row ofH̃(i) needs

to be updated. Forp(i) > l + 2, all elements in the first row of̃H(i) are zeros, and only

elementp(i)− l − 1 in the first column ofH̃(i) needs to be updated. Thus, we have

H̃1,l−p(i)+3(i) = ĥp(i)(i), for p(i) ≤ l + 2,

H̃p(i)−l−1,1(i) = ĥp(i)(i), for p(i) > l + 2.

5.3.3 Computation of DFE taps

The proposed technique for computing the equalizer taps is summarized in Table 5.2.

The computational complexity will depend on the iterative technique used for solving

the equationΓ∆w = ζ0 at step 10. With the DCD iterations, the equalizer taps are

represented asMb-bit fixed-point numbers within an amplitude interval[−A,A], whereA

is a power-of-two number. When using the DCD iterations in boththe channel estimation

and computation of the equalizer taps, the increments∆ĥ(i), ∆f̂(i) and∆ĝ(i) are also

power-of-two numbers. Multiplications by these numbers can be replaced by bit-shifts.

Therefore, the proposed approach for computing the DFE tapsas presented in Table 5.2 is

multiplication-free and division-free. Table 5.2 shows the complexity of the computation

steps in terms of additions.

Table 5.3 presents a DCD iteration for updating one FFF tap andone FBF tap.

5.4 Simulation results

In this section, we compare the performance of six DFEs as summarized in Table 5.4:

1) MMSE DFE (known decision).

For every time samplen, the convolution matrixH(n) is formed using (4.4) and the

channel impulse responseh(n) is perfectly known. The FFF vectorf(n) is found by

solving (4.14), and the FBF vectorb(n) is obtained using (4.12). Correct decisions are

perfectly known and used in the FBF.
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Table 5.2: Low-complexity computation of equalizer taps
Step Equation +

Initialization: i = 0, G(0) = σ2
νIK , ŵ(0) = 0(K+B)×1, ǫ(0) = 0(K+B)×1,

b(0) = 0(K+M−1)×1, c(0) = 0(K+M−1)×1, H̃(0) = 0B×K

for n = 1, 2, . . .

for k = 1, . . . , Nu

1 i = i+ 1

2 Use one iteration in the channel estimator and obtainĥ(i), ∆ĥ(i) and positionp(i)

3 ∆G(i)f̂(i− 1) = ∆ĥ∗(i)bp(i):p(i)+K−1(i− 1) 4K

+∆ĥ(i)cM−p(i)+1:M−p(i)+K(i− 1) + |∆ĥ(i)|2 f̂(i− 1)

4 Compute∆̃(i)f̂(i− 1) and∆̃
H
(i)ĝ(i− 1) using (5.9) and (5.10), respectively −

5 Use∆G(i)f̂(i− 1), ∆̃(i)f̂(i− 1) and∆̃
H
(i)ĝ(i− 1) 2K

to represent∆Γ(i)ŵ(i− 1) according to (5.5)

6 ζ0 = ǫ(i− 1) + ∆ĥ∗(i)el−p(i)+2 −∆Γ(i)ŵ(i− 1) 2(K +B) + 1

7 Compute∆G(1)(i) using (5.11) and updateG(1)(i) = G(1)(i− 1) + ∆G(1)(i) 4M − 2

8 H̃(1)(i) = H̃(1)(i− 1) andH̃(1)(i) = H̃(1)(i− 1) 1

Forp(i) ≤ l + 2, H̃1,l−p(i)+3(i) = ĥp(i)(i),

and forp(i) > l + 2, H̃p(i)−l−1,1(i) = ĥp(i)(i)

9 UseG(i) andH̃(i) to representΓ according to (4.7) −

10 SolveΓ∆w = ζ0 using Table 5.3 and obtain∆f̂(i), ∆ĝ(i), q(i), τ(i) andǫ(i) ≤ 8K + 8B + 6

11 f̂q(i)(i) = f̂q(i)(i− 1) + ∆f̂(i) andĝτ(i)(i) = ĝτ(i)(i− 1) + ∆ĝ(i) 2

12 b(i) = b(i− 1) + ∆f̂(i)ĥ[q(i)](i− 1) + ∆ĥ(i)f̂ [p(i)](i) 2(K +M)

13 c(i) = c(i− 1) + ∆f̂(i)û[q(i)](i− 1) + ∆ĥ∗(i)f̂ [M−p(i)+1](i) 2(K +M)

Total for each samplen: 0 real mult. and≤ Nu(20K + 10B + 8M + 8) real adds.

2) RLS CE based adaptive DFE (known decision).

The time-varying channel is estimated using the classical RLS algorithm [4] with a for-

getting factorλ, and for every samplen, the convolution matrixH(n) is given by (4.4).

The FFF vectorf(n) is found by solving (4.14), and the FBF vectorb(n) is obtained

using (4.12). Correct decisions are perfectly known and usedin the FBF.

3) RLS CE based adaptive DFE.

This is similar to the DFE in 2) except that the correct transmitted symbols are unknown;

the decisions on the symbols obtained from the equalizer areused in the FBF.

4) RLS directly adaptive (DA) DFE.

In the DA DFE,Γ(n) andζ(n) are estimated without explicit channel estimation using

the received data and known pilot or estimated data symbols.The equalizer taps are then

obtained by solving (4.6) using the RLS algorithm.

5) Proposed DFE (known decision).

The time-varying channel is estimated using the RLS-DCD algorithm presented in Sec-
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Table 5.3: DCD iteration for solvingΓ∆w = ζ0.
Step Equation +

Initialization: ∆ŵ = 0(K+B)×1, ǫ = ζ0, α = A/2,

∆f̂(i) = 0, ∆ĝ(i) = 0, a = 1, d = [α,−α, jα,−jα]

for ρ = 1, 2

1 if ρ = 1, v = [ℜ{ǫT1:K} ℑ{ǫ
T
1:K}], 2K

q = argmaxm=1,...,2K{|vm|},

if q > K, thenq ← q −K

2 if ρ = 2, v = [ℜ{ǫTK+1:K+B} ℑ{ǫ
T
K+1:K+B}], 2B

q = argmaxm=1,...,2B{|vm|},

if q > B, thenq ← K + q −B,

if q ≤ B, thenq ← K + q

3 go to step 6 −

4 a← a+ 1, α← α/2, d = [α,−α, jα,−jα] −

5 if a > Mb, end the loop −

6 µ = argmin{[−ℜ{ǫq},ℜ{ǫq}, 2

−ℑ{ǫq},ℑ{ǫq},−αΓq,q/2]}

if µ > 4, then go to step 4

7 ∆ŵq = dµ 1

8 ǫ = ǫ− dµΓ
(q) 2K + 2B

9 if ρ = 1, ∆f̂(i) = ∆ŵq andq(i) = q −

10 if ρ = 2, ∆ĝ(i) = ∆ŵq andτ(i) = q −K −

ǫ(i) = ǫ

Total: 0 real mult. and≤ 8K + 8B + 6 real adds.

tion 4.4. For everyi, the equalizer taps are obtained using the algorithm in Table 5.2.

Correct decisions are perfectly known and used in the FBF.

6) Proposed DFE.

This is similar to the DFE in 5) except that the correct decisions are unknown; decisions

obtained from the equalizer are used in the FBF.

In the simulation, we consider four time-varying channels:

1) Short time-varying channel (Jakes’ model).

The channel has a uniform power delay profile of lengthM = 21 and path variance1/M .

For modeling the time variation, the Jakes’ model as described in [57] with a normalized

Doppler frequency (ratio of the Doppler frequency to the symbol rate) offd = 10−4 is

used.

2) Long time-varying channel (Jakes’ model).

The channel of lengthM = 101 has a sparse power delay profile with11 non-zero paths of
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Table 5.4: DFEs used in the simulation

Algorithm Channel Decision
Convolution Computation of Computation of

matrixH(n) FFF taps FBF taps

MMSE
known known formed using (4.4)

solving (4.14)
using (4.12)

(known decision) directly

RLS CE estimated
known formed using (4.4)

solving (4.14)
using (4.12)

(known decision) using RLS directly

RLS CE
estimated

estimated formed using (4.4)
solving (4.14)

using (4.12)
using RLS directly

RLS DA not required estimated not required
estimated estimated

using RLS using RLS

Proposed estimated
known formed using (5.2) using Table 5.2 using Table 5.2

(known decision) using RLS-DCD

Proposed
estimated

estimated formed using (5.2) using Table 5.2 using Table 5.2
using RLS-DCD

variance1/11. Delays of the non-zero paths are randomly generated for every simulation

trial. The Jakes’ model with a normalized Doppler frequencyof fd = 10−4 is used to

model the channel time variations.

3) Long time-varying channel (autoregressive model).

This is similar to the channel model 2). However, for modeling the channel time vari-

ations, we adopt the first order autoregressive model given by h(n) =
√
υ h(n − 1) +

√
1− υ ω(n) [54], where

√
υ is the autoregressive factor andω(n) are zero-mean inde-

pendent random Gaussian vectors, whose elements have variance1/M ; v = 10−4.

4) Underwater acoustic channel.

The time-varying underwater acoustic channel is modeled asdescribed in [58] for a deep-

water environment. In this scenario, the receiver is stationary at a depth of 400 m and the

transmitter is moving at a speed ofvs at a depth of 200 m. The initial distance between

the transmitter and receiver is 40 km. The delay spread of thechannel is about 150 ms

and a channel estimator of lengthM = 201 is used. An example of the channel impulse

response is shown in Fig.5.2.

In all the simulation scenarios, QPSK symbols are transmitted. In channels 1 to 3, these

are baseband symbols. In the underwater acoustic channel, the symbols are transmitted at

a carrier frequency of 3072 Hz and the symbol rate is 1024 Hz. The received signal is first

transformed to a baseband signal by a carrier frequency shift accounting for the speed of

the transmitter. The baseband signal is further resampled to take the time compression
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Figure 5.2: An example of the underwater acoustic channel impulse response.

caused by the transmitter motion into account. The basebandresampled signal is used for

the equalization.

For every signal to noise ratio (SNR), the bit-error-rate (BER)is computed by averag-

ing over400 simulation trials. For each trial, a2000-length data sequence of unit power

is transmitted, which contains a sequence ofL pilot symbols followed by2000 − L in-

formation symbols. In the CE based DFEs, channel estimates are first obtained from the

pilot symbols and then from the equalized data symbols.

Fig.5.3 compares the BER performance of the six DFEs in a scenario with the short

time-varying channel. For each SNR, the RLS forgetting factoris chosen in the interval

0.988 ≤ λ ≤ 0.997, so that the minimum BER is achieved. The MMSE (known decision)

DFE that possesses the perfect channel knowledge and uses the true transmitted symbols

to feed the FBF provides the best performance. The RLS CE DFE (known decision)

that also uses the true transmitted symbols in the FBF, but estimates the channel, has an

inferior performance by about 1 dB at BER= 10−4. The proposed DFE (known decision)

with Nu = 4 demonstrates almost the same performance as the RLS CE DFE (known

decision). When the FBF is fed by decisions made by the equalizer, the performance

of the proposed DFE withNu = 4 andNu = 8 is almost the same as that of the RLS

CE DFE and about 1.3 dB inferior to the MMSE (known decision) DFE at BER= 10−4.

With Nu = 2 updates, the proposed DFE is inferior to the RLS CE DFE by as little as
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Figure 5.3: BER performance of the six DFEs in the short time-varying channels (Jakes’

model): fd = 10−4, M = 21, K = 41, B = 21, Mb = 16, A = 1. The number of pilot

symbols for the RLS DA DFE isL = 600; for the other DFEs:L = 100.
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Figure 5.4: BER performance of the DFEs in the long time-varying channels (Jakes’

model): fd = 10−4, M = 101, K = 201, B = 101, Mb = 16, A = 1. The number of

pilot symbols isL = 300.

0.5 dB. Thus, in this scenario, the proposed DFE withNu = 2 updates provides a BER

performance which is very close to that of the RLS CE DFE. The direct adaptation DFE

is inferior to the proposed DFE withNu = 2 by about 1.9 dB. Note that the RLS DA DFE

also requires a much longer pilot (L = 600) than the other techniques (L = 100).

Fig.5.4 compares the BER performance of the DFEs in a scenariowith the long time-

varying channel. The RLS forgetting factor is chosen within the interval0.988 ≤ λ ≤
0.997 to achieve the best BER performance. The performance of the proposed DFE with

Nu = 4 is very close to that of the RLS CE DFE. However, at BER= 10−4, the proposed

DFE withNu = 2 is inferior to the RLS CE DFE by about 1.5 dB.

Simulation results for the autoregressive model of the channel variations, shown in

Fig.5.5, are similar to that in Fig.5.4 with a common shift ofthe BER curves towards the

lower SNRs. We do not show results for the RLS DA DFE due to its significantly low

performance compared to the other DFEs.
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Figure 5.5: BER performance of the DFEs in the long time-varying channels (autoregres-

sive model):υ = 10−4, M = 101, K = 201, B = 101, Mb = 16, A = 1. The number of

pilot symbols isL = 300.

Fig.5.6 compares the BER performance of the RLS CE and proposed DFEs in the

scenario with the underwater acoustic channel. Again, for each SNR, the RLS forgetting

factor is chosen within the interval0.988 ≤ λ ≤ 0.997 to minimize the BER. This is

a channel with a high multipath spread (we useM = 201 in the channel estimator)

and, consequently, the lengths of the FFF and FBF increase toK = 401 andB = 201,

respectively. In this case, the performance of the proposedDFE approaches that of the

RLS CE DFE withNu = 16, higher than in the previous scenarios.

It can be seen that the increase in the channel length requires a proportional increase

in the number of updatesNu in the proposed DFE to approach closely the performance of

the RLS CE DFE. However, in all the cases, we still can see thatNu ≪M .

We now analyze the complexity of the proposed DFE in comparison to the complexity

of the MMSE DFE where the DFE taps are computed using the fast technique proposed

in [28]. We take into account the complexity of computing theequalizer taps and also

the equalization (FFF and FBF filtering). Note that the proposed DFE requires no mul-
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Figure 5.6: BER performance of DFEs in the underwater acoustic channel:M = 201,

K = 401, B = 201, L = 500, Mb = 16, A = 1.
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Figure 5.7: Complexity of computing DFE taps and equalization for the short channel

against the FFF lengthK; M = 21, B = 21, Mb = 16.

tiplications for computing the equalizer taps; however, the number of additions can be

substantial. Therefore, we analyze both the number of multiplications and number of ad-

ditions in the DFEs. For the proposed DFE, we use the upper bound on the number of

additions given in the lowest row of Table 5.2. For the MMSE DFE [28], the number of

additions involved in the computation of the DFE taps is on the same order as the num-

ber of multiplications. Thus, only the number of multiplications in the MMSE DFE is

considered.

Fig.5.7 shows the number of operations per sample as a function of the FFF length

K for the short channel case; the other parameters of the equalizers are as shown in the

caption to Fig.5.3. It can be seen that the number of multiplications in the proposed

DFE (which are only used for the equalization) is significantly lower than the number

of multiplications in the MMSE DFE. ForK = 41 (as used in the simulation above in

Fig.5.3), the difference is approximately 40 times. Assuming that the number of additions

required by the MMSE DFE is the same as the number of multiplications, we notice that

the proposed DFE requires fewer additions than the MMSE DFE by about 4 times for

Nu = 2 and about 2 times forNu = 4, when the performance of the two equalizers is
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Figure 5.8: Complexity of computing DFE taps and equalization for the long channel

against the FFF lengthK; M = 101, B = 101, Mb = 16.

similar. The significant reduction in the number of multiplications is beneficial when a

hardware design platform such as the FPGA platform is used. With increase in the FFF

length, the proposed technique shows more significant reduction in complexity compared

to the MMSE DFE.

Fig.5.8 shows the complexity of the two equalizers for the long channel case. In this

case, forK = 201 as used in the simulation above (see Fig.5.4), the proposed technique

allows reduction in the number of multiplications by about 300 times. The number of

additions forNu = 8, that provides almost the same performance for the two equalizers,

is about 3 times lower than that of the MMSE DFE. With the increase inK, the difference

in the complexity also increases.
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5.5 Conclusions

In this chapter, we have proposed a novel low complexity technique for computation of

equalizer taps in the channel estimate (CE) based decision feedback equalizer (DFE). The

proposed technique operates with partial-update channel estimators, such as RLS-DCD

channel estimator, and based on the dichotomous coordinatedescent (DCD) iterations that

allow the equalizer tap computation to be multiplication-free and division-free. Thus, this

technique is very attractive for design on hardware platforms such as the FPGA platform.

The complexity of the proposed technique is upper bounded bya value ofO(NuK) +

O(NuB) + O(NuM) operations per sample. We have applied the proposed DFE and

known DFEs to two time-varying Rayleigh fading channel models and a time-varying

underwater acoustic channel model. The simulation resultshave shown that withNu ≪
M , the proposed DFE provides the BER performance similar to that of the RLS CE DFE.

Up to this point, we have investigated low-complexity channel estimation and CE based

equalization techniques for underwater acoustic communications.
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Localization is important for underwater acoustic communications in many aspects.

For example, by knowing the location of the transmitter and the acoustic fields, time

synchronization can be easily achieved at the receiver. In underwater sensor networks,

distributed sensors are used to collect specific data which can be meaningless if the lo-

cation of the sensor is unknown. Global positioning system (GPS) [86] which uses radio

frequency is a well-known technique for terrestrial localization. However, since radio

frequency are severely attenuated in underwater [3, 87], GPS can not be used for under-

water source localization. Acoustic waves which can propagate over very long distances
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in underwater have been considered as the most robust and feasible carrier for under-

water source localization [8, 10]. Many beamforming techniques [88–90] which rely on

time differences of arrival and direction of arrival estimation, have been developed for

terrestrial acoustic source localization. However, most of these techniques are based on

plane wave signals which are usually not the case in the oceanwaveguide [91]. This is

mainly due to the characteristics of underwater acoustic channels, such as variable speed

of sound, and unavoidable movement of the source and receiver [1–3]. Matched-field

processing (MFP) [32, 91] which explores the spatial complexities of acoustic fields in

an ocean waveguide to locate sources has attracted much research interest in the past

few decades. It does not rely on plane wave signals and provides superior performance

than plane wave methods for underwater source localization[91]. Due to bandwidth

limitations of underwater acoustic channels, receivers are required to process broadband

communications signals. Therefore, in this chapter, we areinterested in broadband MFP

techniques [33,37,38,92] for underwater acoustic source localization.

This chapter is organized as follows. In the next section, anintroduction is given. In

Section 6.2, the data model is described. In Section 6.3, thematched-phase coherent MF

processor is introduced and the cross-frequency incoherent processor is reviewed. The

PDS algorithm and the frequency estimation technique are introduced in Section 6.4 and

Section 6.5, respectively. Application of the proposed processor to experimental data is

presented in Section 6.6. Finally, Section 6.7 gives conclusions.

6.1 Introduction

Matched-field processing (MFP) has been widely used in oceanacoustic applications,

such as source localization [37, 93] and estimation of oceanparameters [94, 95]. For lo-

cating an acoustic source, the MFP computes a set of modeled acoustic fields, ”replicas”,

at a hydrophone array. Each replica is produced for a particular source location in the

underwater environment of interest. The measured acousticfield, ”data”, collected by the

real hydrophone array is then matched with each of the replicas. This produces an ambi-

guity surface, which shows the correlation between each of the replicas and the data. The
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peak in the ambiguity surface should indicate the true source position, where the replica

and the data are well correlated, provided that the propagation model used to generate the

replicas is accurate.

Broadband (or multi-frequency) MFP has been actively investigated in the past two

decades [33–38, 92, 96]. Coherent combining of ambiguity surfaces obtained at different

frequencies provides better performance compared to incoherent combining. In scenarios

where an acoustic source transmits sound at multiple frequencies, phases of the source

frequencies contribute in the measured acoustic data. The phase shifts between different

frequencies should be compensated before the MFP; however,they are often unknown. In

order to compensate for these phase shifts, a matched-phasecoherent processor was pro-

posed [38]. This processor has been shown to outperform other advanced MF processors,

especially when the ambient noise level and environment mismatch are significant [38].

A cross-frequency processor, which can be seen as an incoherent version of the matched-

phase processor, is then proposed in [39]; it has been shown that this processor provides

similar maximum of the ambiguity surface as the matched-phase coherent processor.

In [38], it was proposed to search the phase shifts by using the simulated annealing

algorithm, which is well known for its ability for solving global optimization problems

while having high computational complexity. Although different approaches have been

proposed to reduce the complexity [40,41], it is still very high and increases dramatically

as the number of free parameters increases. This prevents simultaneous processing of

many frequencies, and thus, limits the processor performance. Furthermore, for most of

the simulated annealing methods, it is found to be exhausting to determine some algo-

rithm parameters such as the initial temperature and the cooling schedule, which need to

be carefully set. For all these reasons, we propose to searchthe matched phases by using

a novel iterative technique, the phase descent search (PDS)algorithm [97] which is based

on coordinate descent iterations with respect to the unknown phases and constrains the

solution to have a unit magnitude. Since coordinate descentoptimization is mainly appli-

cable to solving convex problems, it is not clear how it will behave in application to the

phase search problem which has been considered as a global optimization problem [38].

In this work, we investigate the application of the PDS algorithm to this problem and show

that it can obtain matched phases similar to that obtained bythe simulated annealing. The

PDS algorithm has significantly lower complexity as compared with simulated annealing
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methods, and thus, enables searching matched phases for a large number of processed

frequencies. This can significantly improve the processor performance. In addition, the

PDS algorithm is simple for practical implementations since all the algorithm parameters

can be easily chosen.

For localization of a fast moving acoustic source, frequency correction is required, in

order to capture the information on the shifted transmission frequencies before applying

MFP. In this work, we employ a frequency estimator with dichotomous search of peri-

odogram peak [98] for estimating the transmitted frequencies in the received data. Due

to the fast movement of the source, in order to achieve accurate localization at each time

instant, a short data record (a few short snapshots) has to beused for MFP. Thus, the abil-

ity of an MF processor to solve the localization problem witha short data record is very

important. We apply the proposed MF processor to the data collected in the SWellEx-96

experiment using as short as1-second snapshots and show accurate localization results.

Notations:In this chapter, we use capital and small bold fonts to denotematrices and

vectors, respectively. For example,R andd represent a matrix and a vector, respectively.

Elements of the matrix and vector are denoted asRm,n anddi. A pth column ofR is

denoted asR(p). dH is the Hermitian transpose of the vectord. diag{R} denotes a

vector whose entries are diagonal elements ofR. Other notations used throughout this

chapter are defined when considered.

6.2 Data Model

We consider a single acoustic source transmitting sound at multiple frequencies, and the

source position can be characterized by range and depth. Thedata model for the signal

received by theith hydrophone of anM -hydrophone array at frequencyω is given by

di(ω) = hi(ω)s(ω) + ei(ω), (6.1)

wheredi(ω) is the measured acoustic pressure,hi(ω) is the channel transfer function,s(ω)

is the source signal, andei(ω) is a zero-mean stochastic process representing additive

observation noise. We can define vectorsh(ω) = {hi(ω)}Mi=1 ande(ω) = {ei(ω)}Mi=1 for

the channel transfer function and the additive observationnoise, respectively. The data
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model can then be represented by

d(ω) = h(ω)s(ω) + e(ω), (6.2)

whered(ω) = {di(ω)}Mi=1 is a ”data” vector containing the measured acoustic pres-

sure field at theM -hydrophone array. We also define a complex-valued ”replica” vector

p(ω,x) = {pi(ω,x)}Mi=1 which contains the modeled acoustic pressure field at theM -

hydrophone array, wherepi(ω,x) is a modeled solution to the acoustic wave equation at

theith hydrophone for a source located atx and transmitting acoustic signal at frequency

ω.

6.3 Broadband matched-field processing

In this section, we review the single-frequency Bartlett processor and its extension dealing

with multiple frequencies, the multi-frequency coherent processors. Then the matched-

phase coherent processor which requires searching the phases of the replica is considered,

and an alternative expression of its ambiguity function is derived. Finally, the incoherent

version of this matched-phase processor called the cross-frequency incoherent processor

is also considered, which does not require any phase search.

6.3.1 Single-frequency Bartlett processor

The single-frequency Bartlett processor is an MF processor which averages the projection

of the data vectorsd(ω) at radial frequencyω on the normalized replica vectoru(ω,x)

= p(ω,x)/ |p(ω,x)| at radial frequencyω and spatial coordinatex. It produces the

ambiguity function [33]

BB(ω,x) =

〈

∣

∣dH(ω)u(ω,x)
∣

∣

2
〉

T

tr [D(ω)]
(6.3)

where we denote〈. . .〉T as the time average,tr [A] as the trace of a matrixA, andD(ω) =
〈

d(ω)dH(ω)
〉

T
. By defining a normalized covariance matrixK(ω) = D(ω)/tr [D(ω)],

(6.3) can be written as

BB(ω,x) = uH(ω,x)K(ω)u(ω,x). (6.4)
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6.3.2 Matched-phase coherent processor

In [38], the coherent broadband MF processor is defined basedon the single-frequency

Bartlett processor (6.4) but taking account for the nonzero phase difference between fre-

quencies. It is given by [38]

BC(x) =

〈∣

∣

∣

∣

∣

1

L

L
∑

n=1

dH(ωn)u(ωn,x)
√

tr [D(ωn)]
ejφ̂n

∣

∣

∣

∣

∣

2〉

T

=
1

L2

L
∑

m,n=1

uHmKm,nune
j(φ̂n−φ̂m), (6.5)

where

Km,n = K(ωm, ωn) =

〈

d(ωm)d
H(ωn)

〉

T
√

tr [D(ωm)]
√

tr [D(ωn)]
, (6.6)

un = u(ωn,x). Here the phase estimatesφ̂ =
{

φ̂n

}L

n=1
are given by

φ̂ = argmax
[x,φ]

{

L
∑

m,n=1

uHm(x)Km,nun(x)e
j(φn−φm)

}

, (6.7)

whereφ = {φn}Ln=1. Equation (6.5) can be divided into two terms as

BC(x) =
1

L2

[

L
∑

m=1

uHmKm,mum

+
L
∑

m 6=n

uHmKm,nune
j(φ̂n−φ̂m)

]

, (6.8)

where the first and second terms are the summation of auto-frequency components and

the summation of cross-frequency components, respectively.

In [38], for a matched-phase coherent processor, it is proposed to use only the cross-

frequency components. The processor proposed is defined according to the second term

of (6.8):

BM(x) =
1

L(L− 1)

L
∑

m 6=n

uHmKm,nune
j(φ̂n−φ̂m), (6.9)

where the phase termŝφ =
{

φ̂n

}L

n=1
are estimated by using (6.7). It has been shown

in [38] that by using only the cross-frequency components, the processorBM(x) has

better performance than the coherent broadband processorBC(x), especially when the

ambient noise is significant.
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In order to find the phase termŝφ in (6.7), the maximization is performed simultane-

ously with respect to both the phasesφ’s and the location search gridx. It is only possible

to directly search over the location grid and relative phases with sufficiently high resolu-

tion for a few frequencies (L 6 3) [38]. For a larger number of processed frequencies,

it was proposed in [38] to search the relative phases using the simulated annealing. It is

well known for its ability for solving global optimization problems while having an ex-

tremely high computational complexity (The maximum numberof processed frequencies

considered in [38] was5). For searching the matched phases, we propose to use a much

more efficient phase search method, the phase descent search(PDS) algorithm [97].

In order to apply the phase search algorithm to the matched-phase processor, we find

that it is useful to derive an alternative expression for theambiguity function of the

matched-phase processor (6.9), which can be rewritten as

BM(x) =
1

L(L− 1)

[

L
∑

m,n=1

uHmKm,nune
j(φ̂n−φ̂m)

−
L
∑

m=1

uHmKm,mum

]

. (6.10)

We introduce a matrixR and a column vector̂b, whose elements are defined as

Rm,n = uHmKm,nun (6.11)

and

b̂n = ejφ̂n , n = 1, . . . , L, (6.12)

respectively. Equation (6.10) can then be expressed as

BM(x) =
1

L(L− 1)

{

b̂HRb̂− tr [R]
}

. (6.13)

The phase search problem in this matched-phase processor can then be interpreted as the

problem of finding a vector̂b by maximizing the quadratic function given by the first term

of (6.13):

b̂ = arg max
[x,|bn|=1,n=1,...,L]

{

bHRb
}

. (6.14)
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6.3.3 Cross-frequency incoherent processor

The cross-frequency incoherent processor proposed in [39]reduces the computational

load at the cost of reducing the capability of suppressing sidelobes but still can obtain

the same maximum output ofBM as the matched-phase coherent processor. Instead of

searching for the matched phases over the location grid for achieving the maximum output

of BM in (6.9), it takes the modules of the quadratic terms across frequency, which results

in

BX(x) =
1

L(L− 1)

L
∑

m 6=n

∣

∣uHmKm,nun
∣

∣. (6.15)

6.4 Phase descent search algorithm

The PDS algorithm is based on coordinate descent iterationswhere coordinates are the

unknown phases, and a constraint forcing the solution to have a unit magnitude. Elements

of the solution vectorb are given by

bn = ejφn , n = 1, . . . , L, φn ∈ [−π, π] (6.16)

The coordinate descent iterations are applied to the phasesφn and the PDS algorithm is

derived by applying the dichotomous coordinate descent method [16] to the optimization

problem (6.14) with elementsbn from (6.16).

We can describe the PDS algorithm as shown in Table 6.1 [97]. The algorithm starts

with initialization of the solution vectorb = b0, a phase vectorφ = φ0, a residual vector

r = −Rb0 where elements of the matrixR are defined by (6.11), a step-size parameter

β = β0 whereβ0 ∈ [0, 2π], and an indexn = 0 which denotes “successful” iterations.

For eachm = 1, . . . ,Mb, the step-size is reduced asβ ← λβ, 0 < λ < 1 and a vector

θ is computed byθ = diag{R} [1− cos(β)]. The parameterMb indicates the number

of reductions of the step-sizeβ. For thepth element of the solution vectorb, wherep is

chosen in a circle orderp = 1, . . . , L, the elementbp might be updated asbp,1 = ejφp,1

whereφp,1 = φp+β, or bp,2 = ejφp,2 whereφp,2 = φp−β. Thus, we haveT1 = ℜ{∆∗1rp}
where∆1 = bp,1 − bp, or T2 = ℜ{∆∗2rp} where∆2 = bp,2 − bp, respectively. If one of

the inequalitiesθp > T1 or θp > T2 is satisfied, the iteration is successful, and thus, the
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Table 6.1: Phase Descent Search Algorithm
Step Equation

Init. b = b0, φ = φ0, r = −Rb0, β = β0, n = 0

1 for m = 1 : Mb

2 β ← λβ

3 θ = diag{R} [1− cos(β)]

4 Flag= 0

5 for p = 1 : L

6 φp,1 = φp + β, bp,1 = ejφp,1

7 ∆1 = bp,1 − bp, T1 = ℜ{∆∗

1rp}
8 if θp > T1

9 n← n+ 1,Flag= 1

10 r← r−∆1R
(p)

11 φp = φp,1, bp = bp,1

12 φp,2 = φp − β, bp,2 = ejφp,2

13 ∆2 = bp,2 − bp, T2 = ℜ{∆∗

2rp}
14 if θp > T2

15 n← n+ 1,Flag= 1

16 r← r−∆2R
(p)

17 φp = φp,2, bp = bp,2

18 end the loop overp

19 if n > Nu the algorithm stops

20 if Flag = 1 go to step4

21 end the loop overm

indexn is incremented, the phaseφp, the elementbp and the residual vectorr are updated

asφp = φp,1, bp = bp,1 andr← r−∆1R
(p) or φp = φp,2, bp = bp,2 andr← r−∆2R

(p),

respectively. Otherwise, they are not changed. The indexn is compared with a predefined

number of “successful” iterationsNu for stopping criterion. The choice ofβ0, λ andMb

defines the final phase resolutionβ0λ
Mb; e.g., in the case ofβ0 = 2π, λ = 1/2 and

Mb = 5, the final phase resolution isπ/2Mb = π/32.

6.5 Frequency correction

For localization of a moving acoustic source, frequency correction is very important. Due

to the movement of the source, the received signal suffers from the Doppler effect. The
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frequencies received at the hydrophone array will be shifted and the shifts are usually

unknown. We estimate these frequency shifts by using a frequency estimator based on the

dichotomous search of the periodogram peak which provides the performance similar to

that of the maximum likelihood estimator [98].

Since the source frequencies are transmitted simultaneously, the frequency shifts

should be determined by the same compression factorη given byη = f̂/fo, wheref̂

is the received frequency andfo is the transmitted frequency. Here, it is assumed that the

compression factor is constant within a snapshot. We consider three different approaches

for choosing the reference compression factor and use for MFP the one which gives the

most reliable results. Fig. 6.1 shows the reference compression factors obtained from the

data collected during the SWellEx-96 experiment by using these three approaches.
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Figure 6.1: Compression factorsηref obtained from the data collected during the

SWellEx-96 experiment by using three different approaches.

In the first approach, the frequency shifts are estimated based on the periodogram aver-

aged over the receiver hydrophones. As a result, we obtain aL-length vector of compres-

sion factors and a vector of corresponding signal-to-noiseratios (SNRs), and denote the

compression factor and the SNR for thenth frequency asηn and SNRn, respectively. The

compression factorηref corresponding to the frequency with the highest SNR is chosen

for computation of all shifted frequencies:ηref = ηn̂, wheren̂ = argmaxn {SNRn}.
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The SNR for each estimated frequency is computed by

SNRn =

[

P (f̂)

(1/4)
∑4

k=1 P (fk)
− 1

]

, (6.17)

whereP (f̂) is the signal power at the estimated frequencyf̂ , andP (fk) is the power at

the noise reference frequencyfk = f̂ + ǫk/Ts, ǫ = [−2,−1, 1, 2], k = 1, . . . , 4, Ts is the

length of snapshot. The reason for using these frequencies as noise references is that they

are the nearest frequencies to the estimated transmission frequencies without containing

any signal information. The frequency step1/Ts guarantees that frequenciesfk contain

purely noise components that are not affected by the transmitted tone.

In the second approach, the frequencies are estimated basedon the periodograms ob-

tained from each receiver hydrophone. In such a case, for each snapshot, we obtain a

M × L matrix of compression factors and a matrix of correspondingSNRs, and de-

note the compression factor and the SNR for thenth frequency at themth hydrophone

as ηm,n and SNRm,n, respectively. The reference compression factor is computed as

ηref =
∑M

m=1

∑L
n=1 ηm,n SNRm,n/SNRsum, where SNRsum =

∑M
m=1

∑L
n=1 SNRm,n.

The third approach is almost the same as the second approach,except that the reference

compression factor is chosen asηref = ηm̂,n̂, where[m̂, n̂] = argmax[m,n] {SNRm,n}.

According to Fig 6.1, the first and third approaches provide similar results with smaller

fluctuations compared to the second approach. The first approach is computationally less

expensive, and thus, is chosen to obtain the reference compression factors for our MFP

analysis.

Fig. 6.2 shows SNR of the data collected at every 1-second snapshot for the transmis-

sion frequency338 Hz during the experiment. We can see that, as the source is moving

towards the receiver array (see Section 6.6.1), the SNR increases steadily from about10

dB to 20 dB. As mentioned in [99], the source stopped transmitting theconstant-wave

(CW) tones at the beginning, midway point, and the end of the track. From Fig. 6.2, we

can see the time periods when the source stopped transmission, which are the 2nd, 18th

to 20th, 22nd to 23rd, 39th to 40th, 57th and 60th minutes of the data collected during the

experiment.
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Figure 6.2: Signal-to-noise (SNR) ratio of the data collected at the frequency338 Hz

during the experiment.

6.6 Numerical results

In this section, we present results of application of the coherent matched-phase MF pro-

cessor using the PDS algorithm to the data obtained in the SWellEx-96 Event S5 exper-

iment. Brief description of the experiment, the source trackused for the analysis and

the data collection are firstly presented. Then, the coherent matched-phase MF processor

using the PDS algorithm is applied to provide range-depth ambiguity surfaces and the

estimated range trajectories. The results are compared with that obtained by applying the

simulated annealing algorithm.

6.6.1 SWellEx-96 Event S5 experiment

The SWellEx-96 experiment was conducted in May 1996 ten kilometers off the coast of

San Diego in California. Details of the experiment can be found in [99]. Fig. 6.3 shows a

map of the source track during event S5 and the location of thereceiver hydrophone array,

a vertical line array (VLA) used for data collection. Duringthe SWellEx-96 event S5

experiment, a shallow source at a supposed depth of 9 m and a deep source at a supposed

depth of 54 m were towed along an isobath by a source ship [99].During this event,

the source ship started its track from the south of the array and proceeded northward at a
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speed of about2.5 m/s. Our analysis is based on the data collected on the VLA, which

consisted of an array of 21 hydrophones with unequal depth spacing between94.125 m

and212.25 m. The sampling rate on the VLA is1500 Hz.

Start at 0 min

End at 75 min

Distance ˜ 8.6 km

Distance ˜ 0.9 km

Distance ˜ 2.5 km

VLA

N

S

W E

Figure 6.3: Map of the source track and the location of the vertical line array (VLA).

The shallow source transmitted a set of9 tones which spanned frequencies between

109 Hz and385 Hz. The frequencies of the set were at109 Hz, 127 Hz, 145 Hz, 163 Hz,

198 Hz, 232 Hz, 280 Hz, 335 Hz and385 Hz. The deep source transmitted a tonal pattern

consisted of5 sets of13 tones each. Each set spanned frequencies between49 Hz and400

Hz. The first set of13 tones which were projected at the maximum level were used in our

MFP analysis. The frequencies of the set were at49 Hz, 64 Hz, 79 Hz, 94 Hz, 112 Hz,

130 Hz, 148 Hz, 166 Hz, 201 Hz, 235 Hz, 283 Hz, 338 Hz and388 Hz. Fig.6.4 shows the

frequency spectrum between45 Hz and450 Hz, which is obtained from the experimental

data.

A CTD (Conductivity, Temperature, and Depth) survey was conducted during the

SWellEx-96 experiment to provide the water column sound speed data. A sound speed

profile as recommended by [99] is used in our MFP analysis. This sound speed profile

is plotted in Fig. 6.5. The seafloor is modeled by three layers[99]: the first layer is a

23.5 m thick sediment layer with an approximate density of1.76 g/cm3 and an compres-

sional attenuation of about0.2 dB/kmHz. The top and bottom of this sediment layer have

compressional sound speeds of1572.368 m/s and1593.016 m/s, respectively; the second

layer is an800 m thick mudstone layer with an approximate density of2.06 g/cm3 and an
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Figure 6.4: Frequency spectrum obtained during the SWellEx-96 experiment.

attenuation of about0.06 dB/kmHz. The top and bottom sound speeds of the mudstone

layer are1881 m/s and3245 m/s, respectively; the third layer is modeled as a halfspace

with a density of2.66 g/cm3, an attenuation of0.02 dB/kmHz, and a sound speed of5200

m/s.

6.6.2 MFP analysis

In this analysis, the program KRAKEN [61] implementing the normal mode method was

employed to compute the replicas with the resolution of10 m in range and1 m in depth.

The three-layer seafloor model as described in Section 6.6.1and the sound speed profile

in Fig. 6.5 were used for computation of the acoustic field. The matched-phase coherent

processor (6.13) was employed. The PDS algorithm as summarized in Table 6.1 with

λ = 1/2,Mb = 5 was applied for searching the matched phases. The data were divided

into snapshots and only one snapshot was used in the MFP.

In order to show the importance of frequency correction for locating the acoustic
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Figure 6.5: Sound speed as a function of depth generated fromthe local CTD cast during

the SWellEx-96 experiment.

source, we applied the proposed MF processor to the experimental data with and with-

out frequency correction. Fig. 6.6 shows the estimated range trajectories for the deep

source by using the proposed MF processor with and without the frequency correction.

The proposed MF processor was applied to the data collected in 4-second snapshots with

13 frequencies. With the4-second snapshots, the frequency resolution is0.25 Hz. With

the ship speed of about2.5 m/s, the maximum Doppler shifts are about0.08 Hz for the

lowest frequency (49 Hz) and about0.64 Hz for the highest frequency (388 Hz). Without

the frequency correction, the high frequencies only contribute noise, and thus, the MFP

fails to locate the source at the beginning of the experiment, where SNR is low. Also,

from Fig. 6.6, we see that, with frequency correction, the proposed MF processor always

provides accurate localization even at the beginning of theexperiment. In the remainder

of this section, all simulation results were obtained with the frequency correction.

We also implemented the adaptive simplex simulated annealing (ASSA) proposed
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Figure 6.6: Range trajectory estimated by the MFP-PDS processor using4-second snap-

shots and13 frequencies with and without the frequency correction.

in [41] to the matched-phase processor for computing the matched phases, and com-

pared its performance and complexity with that of the MFP-PDS processor. Fig. 6.7 and

Fig. 6.8 show the ambiguity surfaces obtained by these two processors for5 and13 pro-

cessed frequencies, respectively. We can see that the matched-phase processor with the

PDS algorithm provides similar ambiguity surfaces as the matched-phase processor with

ASSA: the peak to sidelobe ratios read from Fig. 6.7 for the processors are3.16 dB and

3.17 dB, respectively. The peak to sidelobe ratios read from Fig. 6.8 are6.59 dB and6.55

dB, respectively. The matched phases obtained by using the two algorithms are listed in

Table 6.2. We see that the phases obtained by the PDS algorithm are very close to those

obtained by the ASSA.

We compared the computational complexity of the PDS and ASSAalgorithms by

counting how many times the quadratic formbHRb was computed. For each point in

the location search grid, the quadratic form is computed once in each iteration of the al-

gorithms, and this is the most computationally consuming part of the algorithms. These

counts were averaged over the number of positions in the location grid. When process-

ing 5 frequencies, the count for the ASSA algorithm is approximately 12 times of that of

the PDS algorithm; specifically, they are1399 and116, respectively. When processing

13 frequencies, the ratio is higher; the PDS algorithm computed the quadratic form356

times, whereas the ASSA algorithm required16554 computations, i.e., the ASSA com-
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Figure 6.7: Range-depth ambiguity surfaces computed by using (a) matched-phase coher-

ent processor with PDS; (b) matched-phase coherent processor with ASSA.5 frequencies

(Hz): 112 130 148 166 201 were processed in both processors.

plexity was about46 times the PDS complexity. The difference is further increased as the

number of processed frequencies increases.

Fig. 6.9(a)-(c) show the range-depth ambiguity surfaces obtained by using the

matched-phase coherent processor with the PDS algorithm for different numbers of pro-

cessed frequencies. For Fig. 6.9(a), the middle5 frequencies at112 Hz, 130 Hz, 148 Hz,

166 Hz and201 Hz as used in [38] were processed. For Fig. 6.9(b), the9 frequencies

which had the highest SNR were processed. For Fig. 6.9(c), all the frequencies in the first

set of tones were used.1-second snapshot starting at the9th minute of the experiment data

was processed. We can see that, as the number of processed frequencies increases, the

performance of the matched-phase coherent processor with PDS algorithm is improved.

The peak to sidelobe ratios read from Fig 6.9 (a), (b) and (c) are about1.6 dB, 5.5 dB and

6.3 dB, respectively.
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Table 6.2: Phase shifts obtained by using PDS and ASSA algorithms.
Phase shifts (in degrees) with respect to the phase

at frequency112 Hz obtained for5 processed frequencies

PDS 0,−90, 135, 45,−56
ASSA 0,−89, 140, 49,−48

Phase shifts (in degrees) with respect to the phase

at frequency49 Hz obtained for13 processed frequencies

PDS 0, 112,−124, 33,−56,−146, 78,

−11,−112,−112, 90, 101, 157

ASSA 0, 108,−129, 29,−63,−156, 74,

−16,−116,−118, 83, 97, 147
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Figure 6.8: Range-depth ambiguity surfaces computed by using (a) matched-phase coher-

ent processor with PDS; (b) matched-phase coherent processor with ASSA.13 frequen-

cies (Hz): 49 64 79 94 112 130 148 166 201 235 283 338 388 were processed in both

processors.
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Figure 6.9: Range-depth ambiguity surfaces computed by using matched-phase coherent

processors with PDS algorithm, for different numbers of processed frequencies: (a)5

frequencies (Hz):112 130 148 166 201; (b) 9 frequencies (Hz):112 130 148 166 201 235

283 338 388; (c) 13 frequencies (Hz):49 64 79 94 112 130 148 166 201 235 283 338 388.
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Figure 6.10: Range trajectory obtained by the MFP-PDS processor with 5 and 13 pro-

cessed frequencies.

Fig.6.10 shows the range trajectory obtained by the MFP-PDSprocessor with 5 and

13 processed frequencies. We can see how increase in the number of the processed fre-

quencies improves the performance of the processor, thus justifying the need to have a

computationally efficient algorithm for the phase search.

Fig. 6.11(a) and 6.11(b) show ambiguity surfaces obtained by the MFP-PDS processor

and the cross-frequency incoherent processor [39], respectively. For both the proces-

sors,13 frequencies were used and one1-second snapshot starting at the4th minute of

the experiment. It is seen that the proposed processor provides the same peak level as

the cross-frequency incoherent processor, which has been shown [39] to have the same

maximum of the ambiguity surface as the matched-phase coherent processor using the

simulated annealing method. It is also seen that, the cross-frequency incoherent proces-

sor gives a much wider peak in range and much higher sidelobes. The peak to sidelobe

ratios read from Fig 6.11(a) and (6.11(b) are about6.1 dB and0.3 dB, respectively.

Fig. 6.12 shows the range trajectory generated from the GPS data recorded during the

experiment [99] and the estimated range trajectories for the deep source by applying the

matched-phase coherent processor with the PDS algorithm tothe snapshots of different
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Figure 6.11: Range-depth ambiguity surfaces computed by using (a) matched-phase co-

herent processor with PDS algorithmBM(x); (b) cross-frequency incoherent processor

BX(x).
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Figure 6.12: Range trajectory obtained from GPS measurements and the estimated range

trajectories for the deep source by applying the matched-phase coherent processor with

PDS algorithm to the data collected in different snapshot length with13 frequencies.

length. All the frequencies in the first set of tones were usedfor estimating the source

trajectory. Due to the uncertainty about the correspondence of the starting time of the

GPS measurements to the experiment data, the estimated range trajectories were shifted

1 minute forwards to better match the shape of the GPS measurements (the 2nd minute of

the experiment data corresponds to the 1st minute of the GPS measurements). Estimates

of the range trajectories for those periods when the source stopped transmitting CW tones

were removed. From Fig. 6.12, we see that with0.25-second snapshots, the proposed

matched-phase processor failed to locate the source in the first 20 minutes of the ex-

periment and provided accurate localization afterward. Itis seen that as with a longer

snapshot, the proposed matched-phase processor can precisely locate the source at more

positions. We observe that the estimated trajectory obtained by applying the matched-

phase processor to1-second snapshots is well matched to the GPS measurements. This

is because the SNR for the data collected in0.25-second snapshot was much lower, espe-

cially when the source was far away from the receiver array. However, shifts of around

50 − 400 meters between the estimated trajectory and the GPS measurements are also

observed. These shifts were probably caused by the mismatchin the bathymetry assump-

tions which were used for the calculations of the replicas, as reported in [100,101]. These
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Figure 6.13: Range-depth ambiguity surfaces computed by applying the matched-phase

coherent processor with PDS algorithm to the data collectedin different snapshot length

with 13 frequencies: (a)0.25-second snapshot; (b)1-second snapshot.
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Figure 6.14: Range trajectories for the shallow source and deep source obtained by the

MFP-PDS processor.
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Figure 6.15: Depth trajectories for the shallow source and deep source obtained by the

MFP-PDS processor.
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shifts are found to be very close to those shown in the comparison of ranges estimated by

MFP with GPS measurements in [60,102].

Fig.6.13 shows the range-depth ambiguity surfaces obtained by applying the matched-

phase coherent processor with the PDS algorithm to the data collected in different snap-

shot length with13 frequencies. It is seen that with both0.25-second and1-second snap-

shots, the proposed matched-phase processor precisely locate the source. However, with

0.25-second snapshot, the peak value of the ambiguity surface which indicates the source

position, is about3.3 dB lower than that of ambiguity surface obtained with1-second

snapshot. The peak to sidelobe ratios read from Fig 6.13 (a) and (b) are about7.3 dB and

4.8 dB, respectively.

Finally, Fig. 6.14 and Fig. 6.15 show the range trajectoriesand the depth trajectories

for both the shallow source and deep source, respectively, obtained by the MFP-PDS

processor. For locating the shallow source,1-second snapshots with all the frequencies

were used. For locating the deep source,1-second snapshots with all the frequencies in

the first set of tones were used. From Fig. 6.14, it is seen thatboth the estimated range

trajectories of the shallow source and deep source are closeto the GPS measurements.

From Fig. 6.15, it is seen that the shallow source fluctuated in depth between8 m and18

m, and the deep source fluctuated in depth between50 m and75 m.
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6.7 Conclusions

In this chapter, we have reviewed the matched-phase coherent matched-field processor

and introduced the phase descent search (PDS) algorithm to the matched-phase coherent

processor for searching the matched phases. The PDS algorithm is based on coordinate

descent iterations with respect to the unknown phases and constrains the solution to have a

unit magnitude. When compared with simulated annealing algorithm, it has significantly

lower complexity, which enables simultaneous processing of many frequencies, and thus,

improves processor performance.

The proposed processor has been applied to experimental data for source localization.

It has been shown that, by using the proposed PDS algorithm, the matched-phase coherent

processor can process more frequencies, and thus, gives better performance in reinforcing

the main peak at the source location while reducing the sidelobes. The estimated range

trajectory obtained by applying the processor to the data collected in every1-second snap-

shot is well matched to GPS measurements.
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This thesis investigated the low-complexity channel estimation, CE based equaliza-

tion and source localization techniques using DCD algorithmfor underwater acoustic

communications. We have firstly derived an approach for convergence analysis of the

RLS-DCD adaptive filtering algorithm based on computations with only deterministic

quantities (Chapter 2). We have then proposed a low-complexity CE based adaptive LE

(Chapter 3), in which the computation of equalizer coefficients is multiplication-free and

division-free when using the DCD iterations for both channelestimation and equaliza-

tion. We have presented the complex-valued DCD iterations and the complex-valued

RLS-DCD adaptive filtering algorithm for channel estimation (Chapter 4), and derived

two partial-update CE based adaptive DFEs (Chapter 4 and 5), both of which operate

together with partial-update channel estimators, such as RLS-DCD channel estimator,

and exploit complex-valued DCD iterations to efficiently compute the DFE coefficients.

Finally, we have investigated the application of MFP for underwater acoustic source lo-

calization and introduced the PDS algorithm to the matched-phase coherent broadband

MF processor for searching the matched phases (Chapter 6).
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7.1 Conclusions

Chapter 1 has stated the motivations, objectives and contributions of the whole work, and

briefly introduced fundamental techniques including the DCDalgorithm, time-varying

channel models and time-varying underwater acoustic channel model, which are used

throughout this thesis.

Chapter 2 has presented a new approach for convergence analysis of the RLS-DCD

adaptive filtering algorithm. The proposed approach is based on computations with only

deterministic quantities obtained from the second order statistics. Deterministic expres-

sions for time dependent correlation quantities have been obtained without involving any

stochastic processes and used to form the normal equations.We have derived determin-

istic equations for predicting the MSE and MSD learning curves of the RLS-DCD al-

gorithm. Simulation results have shown good agreement between the predictions and

practical learning curves, although the predictions are somewhat optimistic.

In Chapter 3, we have proposed a channel-estimate (CE) based adaptive linear equal-

izer (LE) with a complexity as low asO(Nu(K+M)) operations per sample, whereK and

M are the equalizer and channel estimator length, respectively, andNu is the number of

iterations such thatNu ≪ K andNu ≪ M . The proposed technique exploits coordinate

descent iterations for computing the equalizer coefficients. Moreover, we have shown that

when using the DCD iterations in both the channel estimation and equalization, computa-

tion of the equalizer coefficients is multiplication-free and division-free, which makes it

attractive for hardware implementation. We have compared the performance of the pro-

posed LE with that of the MMSE LE with perfect knowledge of thechannel and known

LEs over time-varying multipath channel. Simulation results have shown that, with only a

few updatesNu per sample, the proposed LE outperforms the RLS directly adaptive (DA)

LE, and performs very close to the RLS CE based adaptive LE and close to the MMSE

LE.

In Chapter 4, we have introduced complex-valued DCD iterations and the complex-

valued RLS-DCD channel estimator, and proposed a partial-update CE based adaptive

DFE with a complexity as low asO(Nu(l+ 1)log22(l+ 1)) real multiplications per sam-

ple, wherel is the equalizer delay andNu is the number of iterations such thatNu ≪ l.
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The proposed technique operates with partial-update channel estimators, such as the RLS-

DCD channel estimator. It is assumed that every CE update involves only one channel

coefficient and every update of the equalizer involves only one equalizer coefficient. The

proposed DFE has been implemented in both the conventional and modified DFE struc-

tures. For the conventional structure, we have also proposed a simple recursive method

for computing the FBF coefficients, whereas the modified structure does not require com-

puting the FBF. We have compared the performance of the proposed DFE with that of the

MMSE DFE with perfect knowledge of the channel and known DFEsover time-varying

multipath channels. Simulation results have show that, even with a small number of up-

datesNu, the proposed DFE significantly outperforms the DA DFE, and performs very

close to the RLS CE based DFE and close to the MMSE DFE. It is foundthat the pro-

posed DFE also involvesO(Nu(l
2 + l log22l)) real additions per sample, which is still

computationally consuming for channels with large delay spreads, such as the underwater

acoustic channel.

In Chapter 5, we have derived another approach for recursive computation of CE based

DFE coefficients with even lower complexity. The proposed DFE operates with partial-

update channel estimators, such as RLS-DCD channel estimator, and exploits DCD it-

erations. It is assumed that every CE update involves only onechannel coefficient,

and every update of the equalizer involves one coefficient ofthe FFF and one coeffi-

cient of the FBF. The complexity of the proposed DFE is upper bounded by a value of

O(NuK) + O(NuB) + O(NuM) operations per sample, whereK is the FFF length,B

the FBF length,M the channel estimator length, andNu the number of updates such that

Nu ≪ M . We have shown that when using a channel estimator which alsoexploits the

DCD iterations, such as in the RLS-DCD adaptive filter, all multiplications involved in

computation of the equalizer coefficients can be replaced bybit-shift operations, which

makes the equalizer attractive for hardware design. We haveapplied the proposed DFE

and known DFEs to two time-varying Rayleigh fading channel models and a time-varying

underwater acoustic channel model. Simulation results have shown that withNu ≪ M ,

the proposed DFE provides the BER performance similar to thatof the RLS CE DFE, and

outperforms the RLS DA DFE.

Chapter 6 has investigated the application of the matched-phase coherent MF proces-

sor for underwater acoustic source localization. We have introduced the PDS algorithm
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to the matched-phase coherent MF processor for searching the matched phases. The PDS

algorithm is based on coordinate descent iterations with respect to the unknown phases

and constrains the solution to have a unit magnitude. We haveshown that when compared

with simulated annealing algorithm, the PDS algorithm has significantly lower complex-

ity, which enables simultaneous processing of many frequencies, and thus, improves pro-

cessor performance. The proposed processor has been applied to experimental data for

source localization. Simulation results have shown that, by using the proposed PDS al-

gorithm, the matched-phase coherent processor can processmore frequencies, and thus,

gives better performance. We also shown that the estimated range trajectory obtained by

applying the processor to experimental data is well matchedto GPS measurements.

7.2 Further Work

Based on this research, we have concluded the following suggestions for further work:

In this thesis, we have proposed a novel approach for convergence analysis of the

RLS-DCD adaptive filtering algorithms based on computations with only determinis-

tic quantities. This approach can also be used for other adaptive filtering algorithms

based on iteratively solving the normal equations with one or more iterations at a time

instant [76, 103–105]. Its applications to other adaptive filtering algorithms are worth to

be investigated.

The low-complexity LE and DFEs we have derived are symbol-spaced equalizers. It is

known that fractionally-spaced equalizers can outperformsymbol-spaced equalizers due

to the fact that the actual bandwidth of the signal is somewhat larger than expected and the

sampling rate of the input signal should be increased in order to satisfy the Nyquist theo-

rem [106]. However, fractionally-spaced equalizers require even more computation. It is

therefore interesting to extend our proposed low complexity approaches to fractionally-

spaced CE based equalizers.

Multiple-input-multiple-output (MIMO) systems have recently drawn extensive re-

search interest in underwater acoustic communications to increase the transmission data

rate over the acoustic channel, which is bandwidth-limited. Although many equal-
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ization techniques have been introduced for MIMO underwater acoustic communica-

tions [107–110], these techniques have not been consideredin the computational com-

plexity point of view. They might therefore be impractical and difficult for real-time im-

plementation. Extension of our proposed low-complexity approaches to MIMO systems

can be promising.

The maximum likelihood sequence estimation (MLSE) equalizer [111] is an optimal

equalization technique, which finds the minimum over all thepossible data sequences of

the log-likelihood function. The Viterbi algorithm [111] can be used to exactly solve this

minimization problem. However, it involves a computational complexity which grows

exponentially with an increase of channel length. It is of great interest to develop a low-

complexity MLSE-like equalizer by introducing a DCD based algorithm for solving such

a minimization problem.

DFEs are known to suffer from error propagation due to the feedback of error deci-

sions. Error correction coding techniques can help addressthis issue and ensure low BER

performance. Many joint equalization and decoding techniques [112–115] have been pro-

posed to improve the performance of the MMSE DFEs. However, these techniques may

have some difficulty with sparse channels [116], and may be too complex for hardware

implementation. Hence, it is interesting to investigate and develop a low-complexity joint

equalization and decoding approach by applying a DCD based algorithm.

Although the underwater acoustic channel exhibits large delay spreads, it is typically

sparse. There has been increasing research interest in the application of the sparse chan-

nel estimation techniques for underwater acoustic communications [12–15]. The sparse

channel estimators are known to be simple for implementation and only require a very

short training sequence. It is interesting to compare thesetechniques with the RLS-DCD

channel estimator, which also takes into account the sparsenature of the channel. In [12],

it has been shown that by exploiting the natural sparseness of the underwater acoustic

channel, it is possible to ignore the small equalizer taps and obtain sparse equalization,

at the cost of slightly worse performance. Extension of our proposed approaches to the

sparse equalization techniques may further reduce the computational complexity, which

makes it even more attractive for practical implementation.

T. Chen, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 7. CONCLUSIONS AND FURTHER WORK 120

The matched-phase coherent broadband MF processor using PDS algorithm we pro-

posed in this thesis has been shown to provide accurate localization of a moving source

transmitting broadband signal, by using only one short snapshot. However, it cannot be

applied to locate multiple sources directly, since only thestrongest source will be rein-

forced as the main peak and all the other weaker sources will be depressed as sidelobes.

In underwater sensor networks [8], accurate and efficient localization of multiple sources

is highly desirable. It is interesting and worth to investigate how the matched-phase ap-

proach can be applied to the multi-source localization problem to achieve high resolution

localization of sources with a small number of snapshots.
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Appendix A

Computation of F̄(i− 1)f̂1:l+1(i− 1):

Approach 1

According to the definition of̄F(i−1) and the structure ofF(i−1) as shown in Fig.4.6(b),

F̄(i−1) is a block of the channel convolution matrix. Therefore,F̄(i−1)f̂1:l+1(i−1) can

be computed by convolving the FFF tapsf̂1:l+1(i− 1) and a vector̂u(i− 1) with elements

given by

ûm(i− 1) = ĥM−m+1(i− 1), m = 1, . . . ,M. (A.1)

As a result, a2(l + 1)× 1 vectorφ(i− 1) can be obtained, and we have

F̄(i− 1)f̂1:l+1(i− 1) = φp(i):l+1(i− 1). (A.2)

By applying the fast fourier transforms (FFT) [85],F̄(i− 1)f̂1:l+1(i− 1) can be computed

as shown in Table A.1, where̥{·} and̥−1{·} denote FFT and inverse FFT operations,

respectively, and⊙ denotes point-by-point matrix multiplication.
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Table A.1: Low-complexity computation of̄F(i− 1)f̂1:l+1(i− 1)
Step Equation × +

1 Extendĥ(i− 1) with zeros to length2(l + 1) 2(l+ 1)log22(l + 1) 2(l + 1)log22(l + 1)

and compute̥ {ĥ(i− 1)}

2 Extendf̂1:l+1(i− 1) with zeros to length2(l + 1) 2(l+ 1)log22(l + 1) 2(l + 1)log22(l + 1)

2 and compute̥ {f̂1:l+1(i− 1)}

3 P(i− 1) = ̥{ĥ∗(i− 1)} ⊙ ̥{f̂1:l+1(i− 1)} 2(l + 1) −

4 φ(i− 1) = ̥
−1{P(i− 1)} 2(l+ 1)log22(l + 1) 2(l + 1)log22(l + 1)

5 F̄(i− 1)f̂1:l+1(i− 1) = φp(i):l+1(i− 1) − −

Total for each iterationi: 2(l + 1)(1 + 3log22(l + 1)) complex mult. and6(l + 1)log22(l+ 1) complex adds
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Computation of F̄(i− 1)f̂1:l+1(i− 1):

Approach 2

According to assumption 5 given in Section 4.3, convolutionof the FFF tapŝf(i− 1) and

the vector̂u(i− 1) can be computed recursively with a complexityO(K +M), and thus,

F̄(i − 1)f̂1:l+1(i − 1) can also be obtained by recursive computation. Derivation of such

recursion is given below.

According to the definition of̂u(i− 1) in (A.1) and assumption 4 given in Section 4.3,

we have

û(i− 1) = û(i− 2) + ∆û(i− 1),

where all the elements of∆û(i− 1) are zeros, except

∆ûM−p(i−1)+1(i− 1) = ∆ĥ(i− 1). (B.1)

We denote the convolution of the FFF tapsf̂(i− 1) and the vector̂u(i− 1) as

ϕ(i− 1) = û(i− 1) ∗ f̂(i− 1), (B.2)

and using the recursive expressions forû(i− 1) andf̂(i− 1), we obtain

ϕ(i− 1) = [û(i− 2) + ∆û(i− 1)] ∗
[

f̂(i− 2) + ∆f̂(i− 1)
]

= ϕ(i− 2) + û(i− 2) ∗∆f̂(i− 1)

+ ∆û(i− 1) ∗ f̂(i− 1). (B.3)
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According to (B.1) and assumption 5, (B.3) can be rewritten as

ϕ(i− 1) = ϕ(i− 2) + ∆f̂(i− 1)ĥ[q(i−1)](i− 2)

+ ∆ĥ(i− 1)f̂ [p(i−1)](i− 1), (B.4)

whereϕ(0) = 02K×1, ĥ[q(i−1)](i − 2) is a2K × 1 vector obtained by shifting elements

of ĥ(i − 2) by q(i − 1) positions down, and other elements ofĥ[q(i−1)](i − 2) are zeros.

Definition for f̂ [p(i−1)](i−2) is similar to that of̂h[q(i−1)](i−2). Finally,F̄(i−1)f̂1:l+1(i−1)
can be obtained fromϕ(i− 1) as

F̄(i− 1)f̂1:l+1(i− 1) = ϕp(i):l+1(i− 1), (B.5)

whereϕ(i−1) is computed using the recursion in (B.4). For each iterationi, this approach

requires only2(K +M) real multiplications and2(K +M) real additions. Moreover, as

we propose to use the DCD iteration in both channel estimationand the computation of

the FFF taps,∆ĥ(i) and∆f̂(i) are power-of-two numbers for everyi. Therefore, all the

multiplications required in this approach can be replaced by bit-shift operations.
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Appendix C

Computation of ∆G(i)f̂(i− 1)

The derivation below is a straightforward extension of the real-valued case in Chapter 3

to the complex-valued case.

Let H(i) = H(i − 1) + ∆(i), then we haveG(i) = G(i − 1) +∆H(i)H(i − 1) +

HH(i− 1)∆(i) +∆H(i)∆(i) and thus,

∆G(i)f̂(i− 1) = ∆H(i)H(i− 1)f̂(i− 1)

+HH(i− 1)∆(i)f̂(i− 1) +∆H(i)∆(i)f̂(i− 1). (C.1)

Denotingb(i− 1) = H(i− 1)f̂(i− 1), we obtain

b(i− 1) = [H(i− 2) +∆(i− 1)][f̂(i− 2) + ∆f̂(i− 1)],

which gives a recursion forb(i− 1):

b(i− 1) = b(i− 2) +H(i− 2)∆f̂(i− 1)

+∆(i− 1)f̂(i− 1). (C.2)

Note that∆(i − 1) is a Toeplitz matrix whose first column is∆ĥ(i − 1)ep(i−1). We also

have∆f̂(i− 1) = ∆f̂(i− 1)eq(i−1). Then (C.2) can be rewritten as

b(i− 1) = b(i− 2) + ∆f̂(i− 1)ĥ[q(i−1)](i− 2)

+ ∆ĥ(i− 1)f̂ [p(i−1)](i− 1),

whereĥ[q(i−1)](i−2) is a(K+M−1)×1 vector obtained by shifting elements ofĥ(i−2)
by q(i− 1) positions down, and the other elements ofĥ[q(i−1)](i− 2) are zeros. Definition
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for f̂ [p(i−1)](i−1) is similar to that of̂h[q(i−1)](i−2). Thus, the first term on the right hand

side of (C.1) is given by

∆H(i)H(i− 1)f̂(i− 1) = ∆H(i)b(i− 1)

= ∆ĥ∗(i)bp(i):p(i)+K−1(i− 1), (C.3)

wherebp(i):p(i)+K−1(i − 1) is aK × 1 vector whose elements are obtained by extracting

thep(i)th to p(i) +K − 1th elements from the vectorb(i − 1). After some algebra, we

find that the second term on the right hand side of (C.1) can be expressed as

HH(i− 1)∆(i)f̂(i− 1) = ∆T (i)c(i− 1)

= ∆ĥ(i)cM−p(i)+1:M−p(i)+K(i− 1), (C.4)

where, for the vectorc(i− 1) we obtain a recursion similar to that forb(i− 1):

c(i− 1) = c(i− 2) + ∆f̂(i− 1)û[q(i−1)](i− 2)

+ ∆ĥ∗(i− 1)f̂ [M−p(i−1)+1](i− 1),

where elements of the vectorû(i− 2) are given by

ûm(i− 2) = ĥ∗M−m+1(i− 2),m = 1, . . . ,M.

Since∆H(i)∆(i) = |∆ĥ(i)|2IK , the third term on the right hand side of (C.1) is given

by

∆H(i)∆(i)f̂(i− 1) = |∆ĥ(i)|2f̂(i− 1). (C.5)

From (C.3), (C.4) and (C.5), we finally obtain a simplified expression for (C.1):

∆G(i)f̂(i− 1) = ∆ĥ∗(i)bp(i):p(i)+K−1(i− 1)

+ ∆ĥ(i)cM−p(i)+1:M−p(i)+K(i− 1) + |∆ĥ(i)|2f̂(i− 1).
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