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Abstract

The underwater acoustic channel is characterized by time-varying mulipagagation with
large delay spreads of up to hundreds of milliseconds, which introdesesesintersymbol in-
terference (ISI) in digital communication system. Many of the existing cHagstanation and
equalization techniques used in radio frequency wireless communicatitamsymight be prac-
tically inapplicable to underwater acoustic communication due to their high commahtom-

plexity.

The recursive least squares (RLS)-dichotomous coordinate dg8eD) algorithm has been
recently proposed and shown to perform closely to the classical RL&italgowhile having a
significantly lower complexity. It is therefore a highly promising channel estonaalgorithm
for underwater acoustic communications. However, predicting the cgenee performance of
the RLS-DCD algorithm is an open issue. Known approaches are foatrapplicable, as in the
RLS-DCD algorithm, the normal equations are not exactly solved at everyitistent and the
sign function is involved at every update of the filter weights. In this thesgsjntroduce an
approach for convergence analysis of the RLS-DCD algorithm basedmputations with only

deterministic correlation quantities.

Equalization is a well known method for combatting the ISI in communication cheinGe-
efficients of an adaptive equalizer can be computed without explicit eéha&stimation using the
channel output and known pilot signal. Channel-estimate (CE) basedizas which re-compute
equalizer coefficients for every update of the channel estimate, caartartp equalizers with the
direct adaptation. However, the computational complexity of CE basedisgpsafor channels
with large delay spread, such as the underwater acoustic channel, jeanssue. In this the-
sis, we propose a low-complexity CE based adaptive linear equalizet wkptoits DCD itera-
tions for computation of equalizer coefficients. The proposed techniggiafilow complexity as
O(Nyu(K + M)) operations per sample, whekéand M are the equalizer and channel estimator
length, respectively, and, is the number of iterations such thsf, < K andN,, < M. More-
over, when using the RLS-DCD algorithm for channel estimation, the coripuitaf equalizer
coefficients is multiplication-free and division-free, which makes the eqeradizractive for hard-

ware design. Simulation results show that the proposed adaptive equitems close to the
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minimum mean-square-error (MMSE) equalizer with perfect knowleddgleeothannel.

Decision feedback equalizers (DFEs) can outperform LEs, provlusdhe effect of decision
errors on performance is negligible. However, the complexity of existing&#d DFEs normally
grows squarely with the feedforward filter (FFF) lendth In multipath channels with large delay
spread and long precursor part, such as in underwater acoustitethiahe FFF lengtfk’ needs
to be large enough to equalize the precursor part, and it is usuakthat /. Reducing the
complexity of CE based DFEs in such scenarios is still an open issue. In &sis thve derive
two low complexity approaches for computing CE based DFE coefficients.pfdposed DFEs
operate together with partial-update channel estimators, such as the GDSHannel estimator,
and exploit complex-valued DCD iterations to efficiently compute the DFE coefis. In the first
approach, the proposed DFE has a complexit§®90N, [ log,2!) real multiplications per sample,
wherel is the equalizer delay and, is the number of iterations such thlf, < I. In the second
proposed approach, DFE has a complexity as lo@@¥, K ) + O(N, B) + O(N, M) operations
per sample, wheré is the feedback filter (FBF) length andl, < M. Moreover, when the
channel estimator also exploits the DCD iterations, e.g. such as in the RLSa0gmive filter,
the second approach is multiplication-free and division-free, which ntakesqualizer attractive
for hardware implementation. Simulation results show that the proposed Cdfesmp close to
the RLS CE based DFE, where the CE is obtained using the classical RpBvaddter and the

equalizer coefficients are computed according to the MMSE criterion.

Localization is an important problem for many underwater communication systrols as
underwater sensor networks. Due to the characteristics of the urtdeagaustic channel, local-
ization of underwater acoustic sources is challenging and needs tolrai@cand computationally
efficient. The matched-phase coherent broadband matched-fieldpifdégssor has been previ-
ously proposed and shown to outperform other advanced broadibamdocessors for underwa-
ter acoustic source localization. It has been previously proposed tohsiéee matched phases
using the simulated annealing, which is well known for its ability for solving dloipéimization
problems while having high computational complexity. This prevents simultar@ousssing of
many frequencies, and thus, limits the processor performance. In this, tvesntroduce a novel
iterative technique based on coordinate descent optimization, the prssstdsearch (PDS), for
searching the matched phases. We show that the PDS algorithm obtainsdratelses similar
to that obtained by the simulated annealing, and has significantly lower complEéyefore, it
enables to search phases for a large number of frequencies anctaighifimproves the proces-
sor performance. The proposed processor is applied to experimetdaiod locating a moving
acoustic source and shown to provide accurate localization of the saettenatched to GPS

measurements.
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Chapter 1

Introduction

Contents
1.1 OVEIVIEW . . . . o i e e e 1
1.2 Objectives . . . . . . . . e 4
1.3 Notations . . . . . . . . . . 5
1.4 Fundamental techniques . . . . ... ... ... ... ... ..... 5
1.5 Contributions . . . . . . . ... 8
1.6 ThesisOutline . ... .. ... ... . . . ... .. . .. 10
1.7 PublicationList . . . ... ... ... .. ... 11

1.1 Overview

The underwater acoustic channel is considered to be one2ahtst challenging com-
munication media in use today [1]. It is characterized by ynfattors which prevent
implementation of high-speed and reliable communicatisash as time-varying multi-
path propagation with large delay spreads of up to hundréiisenonds [1-3]. In digital
communication systems, the effect of multipath propagatvith large delay spreads is
severe intersymbol interference (ISI) that can extend fow@r several tens to several
hundreds of symbol periods. This makes many of the techeigueéely used in radio

frequency wireless communication systems practicallpphaable to underwater acous-
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CHAPTER 1. INTRODUCTION 2

tic communications, from a computational complexity pahtview. For example, the
classical recursive least squares (RLS) channel estimgtb} flas a computational com-
plexity that grows squarely with the delay spread of the ae&(channel length), and the
MMSE channel-estimate (CE) based decision-feedback egual{(DFES) [6, 7] have a
computational complexity that grows at least squarely whih feedforward filter (FFF)
length which normally needs to be greater than the channgthefor channels with a
long precursor part. In this thesis, we investigate low-ptaxity channel estimation and
CE based equalization techniques to overcome the ISI prolllamderwater acoustic
communications. Localization is important for underwaeoustic communications in
many aspects, such as time synchronization, underwatsoseatworks [8—10] and net-
working protocols [11]. In underwater sensor networkstrdigted sensors are used to
collect specific data. However, the collected data can bexmgkess if the location of the
sensor is unknown. Although many techniques have beenajmetifor terrestrial local-
ization, most of these techniques cannot be applied dyrectinderwater acoustic source
localization mainly due to the variable speed of sound ineuwdter, and the unavoidable
movement of sensors. Moreover, due to the large propagdatay in the underwater
acoustic channel and the limited computational power o$gex; localization needs to be
accurate and computationally efficient. In this thesis, i8e mvestigate low-complexity

techniques for underwater acoustic source localization.

Although the underwater acoustic channel exhibits lard@ydspreads, it normally has
a limited number of multipath components. This enables eeaf sparse channel estima-
tion techniques [12-15] which have low computational caripy when comparing with
the classical channel estimation techniques, such as thecRashel estimator. The di-
chotomous coordinate descent (DCD) algorithm has been peaiio efficiently solve the
linear least-squares problem without involving any miiltgtions nor divisions. Itis even
more efficient when the expected solution vector is sparSe [h [17], low-complexity
RLS algorithms using DCD iterations have been proposed ansirshg empirical anal-
ysis to perform closely to the classical RLS algorithm. The HAED channel estimator
is therefore a highly promising candidate for underwateuatic communications. How-
ever, predicting the convergence performance of the RLS-DIG@rithms is still an open
issue. Traditional methods for convergence analysis dritte algorithms [4] are difficult
to apply, since, in the RLS-DCD algorithm, the normal equatiare not exactly solved

at every time instant and the sign function is involved atrgwpdate of the weights. A
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CHAPTER 1. INTRODUCTION 3

general framework for analysis of adaptive filtering algons is introduced in [18, 19].
However, in the RLS-DCD algorithm, due to multiple iteraticaatseach time instant, it
is difficult to represent the RLS-DCD algorithm using such aniesvork. A statistical
analysis of the affine projection algorithm proposed in [RObased on some statistical
properties of a residual vector. However, such a residugbveloes not exist in the RLS
algorithms. It is desirable to find a new approach for conseeg analysis of the RLS-
DCD algorithm, and other adaptive algorithms based on maliterations at a single

time instant.

Equalization is a well known method for combatting the IScammunication chan-
nels [21]. Coefficients of an adaptive equalizer can be coatpwithout explicit channel
estimation using the channel output and known pilot sig@al.[ However, CE based
equalizers which re-compute equalizer coefficients foryeupdate of the channel esti-
mate, can outperform equalizers with the direct adaptd@h In CE based adaptive
linear equalizers (LEs), computation of equalizer coedfitcs normally requires genera-
tion and inversion of & x K channel autocorrelation matrix, whekeis the equalizer
length. In general, it results in a complexity ©f K3) operations per sample. Exploiting
structural properties of the matrix, the complexity can éduced down t@(K?) oper-
ations [7]. For channel estimation, the RLS adaptive filg@tgorithms [4] which are
known to possess fast convergence, have a complexity(df2) operations per update,
where M is the channel estimator length. It is usual that> M, thus the complexity
of computing the equalizer coefficients determines thd tmmplexity. Moreover, the
RLS-DCD algorithms [17] only require a complexity 6 N,,M ) operations per sample,
where N, << M. Thus, adaptive channel estimation can be significantlpknthan
CE based computation of equalizer coefficients. To reducevtide complexity, the

computation of equalizer coefficients should be simplified.

It is known that DFEs can outperform LEs, provided that tHeatfof decision errors
on performance is negligible [21]. However, the computaiaomplexity of CE based
DFEs can be higher than that of CE based LEs. Extensive etisrbben made to reduce
the complexity of computing the DFE taps (see [6, 7, 23—-3@] seferences therein).
However, the complexity normally grows squarely with theFREngth K. In multipath
channels with large delay spread and long precursor pa, &siin underwater acoustic
channels [31], the FFF lengthi needs to be large enough to equalize the precursor part,

T. Chen, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 1. INTRODUCTION 4

and itis usual thak’ > M. Reducing the complexity of CE based DFEs in such scenarios

is still an open issue.

For underwater source localization, broadband (or mudiiffiency) MFP has been
actively investigated in the past two decades [32—39]. fbusd that coherent combin-
ing of ambiguity surfaces obtained at different frequesg@eovides better performance
compared to incoherent combining [38]. In scenarios wharacaustic source transmits
sound at multiple frequencies, phases of the source fregeicontribute in the mea-
sured acoustic data. The phase shifts between differequidrecies are often unknown
and need to be compensated. A matched-phase coherentqmopesposed in [38] com-
pensates for these phase shifts and has been shown to outp@ther advanced MF
processors, especially when the ambient noise level andoanvent mismatch are sig-
nificant [38]. In [38], it is proposed to search the phasetstbly using the simulated
annealing algorithm, which is well known for its ability oblsing global optimization
problems while having high computational complexity. Altlgh different approaches
have been proposed to reduce the complexity [40, 41], itli€emputationally consum-
ing and increases dramatically as the number of free paeasieicreases. This prevents
simultaneous processing of many frequencies, and thui$s line processor performance.
Furthermore, for most of the simulated annealing methdds,found to be exhausting
to determine some algorithm parameters such as the ingilpérature and the cool-
ing schedule, which need to be carefully set. Reducing theptmaty of searching the

matched phases for the matched-phase coherent procebggitlisdesirable.

1.2 Objectives

This research aims to reduce the computational compleXisigmal processing tech-
nigues for underwater acoustic communications by usimgtitee techniques, such as the
DCD algorithm. We start with a convergence analysis of the algorithm, which
will be used for channel estimation in the equalizers thatleréve in this thesis. We then
focus on developing low-complexity CE based adaptive LE aR& Which exploit DCD
iterations for computation of equalizer coefficients. Wgoahvestigate the application

of the matched-phase coherent MF processor for undernaiteceslocalization. Specifi-
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cally, we are interested in reducing the complexity of seiagthe matched phases for the
matched-phase coherent MF processor, by applying a DCD Iphsee search algorithm,

the phase descent search (PDS) algorithm.

1.3 Notations

In this thesis, we use capital and small bold fonts to dena@&ices and vectors, respec-
tively; e.g. G is a matrix and- a vector. Elements of the matrix and vector are denoted as
G, andr,, respectively. Apth column anchth row of G are denoted a6 (®) andGy,),
respectively. We also denote? and G” are transpose of the vecterand matrixG,
respectivelyG* is conjugate transpose of matiix; r* is the complex conjugate of the
vectorr; Iy is aK x K identity matrix;0x s is @K x M matrix of all zeros;{-} is the
expectation; tf-} denotes the trace operat®{-} and<3{-} are the real and imaginary
part of a complex number, respectively. The variablis used as a time index ards

iteration index. The symbglis an imaginary unij = +/—1.

1.4 Fundamental techniques

In this section, we first briefly discuss the existing teches for solving the normal
equations. Fundamental techniques used throughout gssstare then introduced. These
are: DCD algorithm; time-varying channel models; and timmeying underwater acoustic

channel model.

1.4.1 Solving normal systems of equations

Many of the signal processing techniques for communicatrequire solving the linear
least-square (LS) problem in real time, such as channehastn [4], equalization [21]
and adaptive array processing [5]. Itis known that solvirggltS problem is equivalent to

solving a system of linear equations, called the normal ggusRh = 3, whereR is an

T. Chen, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 1. INTRODUCTION 6

M x M symmetric positive definite matrix and bdthand3 are M x 1 column vectors.
The matrixR and the vecto are known, whereas the vecthmeeds to be estimated.
Techniques for solving the normal equations is mainly aidithto two categories: direct

methods and iterative methods.

Direct methods for solving the normal equations, such ass&8an elimination, LU
decomposition, Cholesky decomposition and QR decompasifiod an exact solution
through a finite number of pre-specified operations [42]. dimect methods can only
provide solutions after the pre-specified operations. Mege they normally involve di-
visions and multiplications, and have a complexityf\/3) operations [42]. Therefore,
the direct methods are too complex for real-time implem@niaespecially when solving

the very large or very sparse systems of linear equations.

Iterative methods solve the normal equations iterativehd at each iteration, they
find better approximations to the optimal solution [42]. Camipg with the direct meth-
ods, the iterative methods have lower complexity, and igeeésr real-time implemen-
tation [42]. The iterative methods are also known to be mdiieient than the direct
methods when solving both very large and very sparse systétimear equations [42].
Moreover, the iterative methods have the ability to use algoitial guess of the solution,

which may reduce the computational complexity.

The iterative methods can be further divided into two typsationary methods and
non-stationary methods. Stationary methods, such as iJandbGauss-Seidel meth-
ods [42], normally have a complexity as low & /) operations per iteration. How-
ever, their convergence speed is usually much slower thanahthe non-stationary
methods [43]. Non-stationary methods, such as conjugadient (CG) and coordi-
nate descent (CD) algorithms, possess fast convergencbabeita high complexity of
O(M?) operations per iteration. These algorithms also involwésitins and multipli-
cations, which make them expensive for real-time imple@nt. The DCD algorithm
as a non-stationary iterative technique, performs a sirndavergence speed to the CG
and CD algorithms, while it does not require any multiplioatior division, and has a

complexity as low a®) (M) additions per successful iterations [16].
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1.4.2 DCD algorithm

The DCD algorithm with a leading element [17] which solvesgiistem of normal equa-
tions, Rh = g3, is presented in Table 1.1. In Table 1.1, the DCD algorithmsfiad
‘leading’ (pth) element in the solution vectdrto be updated according to an element of
a residual vector, which has the largest absolute value. The step-<sigechosen from
one of M, predefined values, which correspond to binary representafielements of the
solution vectoih with M, bits within an amplitude range- H, H|, whereH is preferably

a power-of-two number. The step-size= 2~ H is therefore also a power-of-two num-
ber. With such settings, operations required in the DCD é&lgorare only additions as
all multiplications and divisions are replaced by bit-shiDue to the quantized step-size,
there are ‘unsuccessful’ iterations (decided at step 4)owit updates of the solution and
‘successful’ iterations where the solution and the redideetor are updated (steps 5 and
6). With N,, successful iterations, the complexity of the DCD algoritlsnupper limited
by (2M + 1)N, + M, additions, which corresponds to a worst-case scenario \Ween

condition at step 3 is never satisfied.

The DCD algorithm has been widely used for real-time impletagon of some
adaptive filtering algorithms, such as the affine projectfgorithm and the RLS algo-
rithm [17,44-47]. It is multiplication-free and divisidnee, and has significantly lower
complexity than the Cholesky decomposition and other kn@ehriques. It is therefore
attractive for hardware implementation and has been impieed on FPGA and DSP
platforms [48-53]. In this thesis, the DCD algorithm will bensidered and applied to

different signal processing techniques for underwatermanications.

1.4.3 Time-varying Rayleigh fading channel models

Two time-varying Rayleigh fading channel models are usedhénsubsequent chapters:

first order autoregressive (AR) model and modified Jakes’ inode

For modeling the time-varying channel impulse respohge) with length M, the
first order AR modeh(n) = /v h(n — 1) + /1 — v w(n) is used [54], wherg/v is

the autoregressive factor andn) are zero-mean independent random Gaussian vectors,
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Table 1.1: DCD algorithm for solving a system of normal equaRh = 3
Step Equation +
Initialization:th =0, r =8, a=H/2,m =1
for k=1,...,N,

1 p = argmax,—1, m{|rn|}, gotostep4d | M —1
2 m=m+1,a=a/2

3 if m > M, the algorithm stops

4 if |rp| < (a/2)R,,, then go to step 2 1

5 hy = hy, + sign(rp)a 1

6 r =r — sign(r,)aR® M

Total: < (2M + 1)N,, + M, adds

whose elements have variancel/. Jakes’ model [55] as a simplified version of Clarkes
model [56] has been widely used for modeling time-varying IBigi fading channels.
In this thesis, we adopt the modified Jakes’ model proposd8ihfor modeling the

time-varying channel impulse response.

1.4.4 Time-varying underwater acoustic channel model

In this thesis, we also employ the simulator recently predas [58, 59] for modeling
underwater acoustic signals propagating through a tinngings multipath underwater
acoustic channel caused by transmitter and/or receiveionsot In this simulator, the
movement trajectory is sampled at a low rate and the ‘wayhmampulse responses are
computed at these sampling instances by solving the wayggation equation. Some
well developed programs, such as the normal mode method KRRl the ray tracing
method BELLHOP [60-62] are used for solving the wave equatibime waymark im-
pulse responses are then interpolated in time using localiBes [63] to obtain impulse

responses for each sampling instant of the source signal.

1.5 Contributions

Major contributions in this thesis can be summarized agvst
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e An approach for convergence analysis of the RLS-DCD adaptieeifig algorithm
based on computations with only deterministic quantitias heen derived. Deter-
ministic expressions for time dependent correlation gtiasthave been obtained
without involving any stochastic processes and used to themormal equations.
Deterministic equations for evaluating the predicted M8& lslSD learning curves
of the RLS-DCD algorithm have been derived. Simulation resliow good agree-

ment between the predictions and the practical learningesur

e A low-complexity CE based adaptive linear equalizer has loksgived, which ex-
ploits DCD iterations for computation of equalizer coeffit® It has been shown
that, when using the RLS-DCD algorithm for channel estimatiba computation
of equalizer coefficients is multiplication-free and digis-free, which makes the
equalizer attractive for hardware design. The performanfntiee proposed adaptive
equalizer over the channels with large delay spreads amernstmbe close to that
of the MMSE equalizer with perfect knowledge of the channel.

e Two partial-update CE based adaptive DFEs have been progastbddf which can
operate together with partial-update channel estimatai®a&ploit complex-valued
DCD iterations to efficiently compute the DFE taps. The firsgtgmsed DFE has
been implemented not only in the conventional structunewtach a simple recur-
sive method has been derived for computing the FBF taps, soitmathe modified
structure which does not require computing the FBF. The skpooposed DFE is
derived and implemented in the conventional structure eién lower computa-
tional complexity. It has been shown that, when using theohkestimator which
also exploits the DCD iterations, all multiplications invetl in computation of
the equalizer taps can be replaced by bit-shift operati@hg. proposed approach
for computing the linear equalizer coefficients has beearadd to the complex-
valued case. The proposed DFEs have been applied to diftererrvarying chan-
nels with small and large delay spreads and shown to perfergnclose to the RLS
CE based DFE, where the CE is obtained using the classical Rigialflter and

the equalizer taps are computed according to the MMSE icniter

e The complex-valued DCD iterations and the complex-valued-RIC® adaptive

filtering algorithm for channel estimation have been introed.
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e One of the most advanced underwater acoustic channel gorailgecently pro-
posed has been used to model acoustic signals propagatingkha time-varying
multipath underwater acoustic channel caused by traresmitbtion. The later pro-
posed DFE has been applied to the time-varying underwataerséic channel and
shown to perform very close to the RLS CE based DFE.

e The phase decent search (PDS) algorithm has been introdocd@ matched-
phase coherent broadband matched-field (MF) processoedocising the matched
phases. The proposed PDS algorithm has been compared withated anneal-
ing algorithm and shown to have significantly lower compigxivhich enables si-
multaneous processing of many frequencies and improvesgsor performance.
The proposed processor has been applied to experimengaiaiatource localiza-
tion. The proposed processor has been shown to have betterrpance when
processing more frequencies. The estimated range trajastobtained by using

the proposed processor and shown to be well matched to GPSureezents.

1.6 Thesis Outline

The rest of this thesis is organized into the following cleapt

e Chapter 2: Convergence Analysis of RLS-DCD Algorithm

In this chapter, the RLS-DCD algorithm is briefly introducede Yien derive an
approach for convergence analysis of the RLS-DCD algorithseth@n computa-
tions with only deterministic quantities obtained from #gexond order statistics.
Finally, we compare the practical MSE and MSD learning csiofthe RLS-DCD
algorithm with the predictions obtained by using the praubapproach.

e Chapter 3: Low-complexity channel-estimate based adaliigar equalization

In this chapter, the data models and the normal equatiort®faputing the MMSE
LE coefficients are firstly given. We then introduce the agsiions that we use
in our derivation, and derive a low-complexity approachdomputing the LE co-
efficients. Simulation results which compare the perforoeaand computational

complexity of the proposed LE against known techniques laee@esented.
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e Chapter 4: Partial-update channel-estimate based adagt&on feedback equal-
izer: Approach 1

In this chapter, we start with introducing the structurehaf tonventional DFE and
giving expressions for computing the DFE taps. Assumptioasle for deriving

the partial-update DFE are then given. We also introduceadhgplex-valued DCD

iterations and RLS-DCD algorithm for adaptive channel edimna We derive a

low-complexity approach for computing the FFF taps andnsee computation of
the FBF taps. The modified DFE structure is also introduced.fikiddly present

numerical results that demonstrate the performance anguational complexity

of the proposed DFE against known techniques.

e Chapter 5: Partial-update channel-estimate based addetision feedback equal-
izer: Approach 2

In this chapter, we derive another partial-update DFE whecheven lower compu-
tational complexity. We apply the proposed DFE to the undgewacoustic channel
and present numerical results that demonstrate the peafaenand computational

complexity of the proposed DFE against known techniques.

e Chapter 6: Matched-phase coherent broadband matched+elegsor using phase
descent search

In this chapter, the matched-phase coherent MF procesddharcross-frequency
incoherent processor are reviewed. We then introduce tHe &gorithm to the
match-phase coherent MF processor for searching the nthptteeses, and the fre-
guency estimator based on the dichotomous search of thexpgriam peak for esti-
mating the compression factor in the experiment. We ap@yptioposed processor
to experimental data, and compare the localization pedora and computational
complexity of the PDS algorithm against simulated anngadiigorithm.
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Convergence Analysis of RLS-DCD
Algorithm
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The recursive least squares (RLS)-dichotomous coordiredeethit (DCD) algorithm
introduced in [17] for adaptive filtering is characterizeglbw complexity, while pos-
sessing fast convergence. However, predicting the coemeggperformance of the RLS-
DCD algorithm is still an open issue. Known approaches aredawt applicable, as
in the RLS-DCD algorithm, the normal equations are not exastlyed at every time
instant and the sign function is involved at every updatéeffiiter weights. In this chap-
ter, we propose an approach for convergence analysis of tl&eXLD algorithm based
on computations with only deterministic correlation quies. This new approach can
be also used for other adaptive filtering algorithms baseitenative solving the normal

equations.

This chapter is organized as follows. In the next sectiorintoduction is given. In
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Section 2.2, the data models and the RLS-DCD algorithm ardybiréroduced. Sec-
tion 2.3 presents the derivation of the proposed approactoiovergence analysis of the
RLS-DCD algorithm. Simulation results which compare pradtieaning curves and the

predictions are given in Section 2.4. Section 2.5 finallyndraonclusions.

2.1 Introduction

The classical RLS algorithm is well known for its fast converge. However, it has
a high computational complexity [4,5]. The RLS-DCD algoritiencharacterized by
low complexity, while possessing fast convergence. Emglianalysis of the RLS-DCD
algorithm has been presented in [17] to show that its perdoica can be made very close
to that of the RLS algorithm. However, predicting the conesaige performance of the
RLS-DCD algorithms is still an open issue. In this chapter, wappse an approach for
convergence analysis of this adaptive algorithm based mpuatations with deterministic

quantities derived from the second order statistics.

Traditional methods for convergence analysis of the expoaléy weighted RLS
(ERLS) algorithm presented in [4] are difficult to apply, ®naén the RLS-DCD algo-
rithm, the normal equations are not exactly solved at evieng instant and the sign
function is involved at every update of the weights. A geh&amework for analysis
of adaptive filtering algorithms introduced in [18] is sdesd by a generic filter-weight
update equation, and correspondence between specialafadbesequation and various
adaptive filtering algorithms. The subsequent transiealyais of adaptive filters based
on this framework is proposed in [19]. However, in the RLS-DABoathm, due to
multiple iterations at each time instant, it is difficult terdve such an update equation.
Furthermore in [19], estimates of some quantities are nbthfrom asingle realization
of signals involved in the adaptive filteringe. stochastic signals are involved. We want
to use only statistical characteristics of signals in owalgsis. A statistical analysis of
the affine projection (AP) algorithm for a unity step size amndoregressive inputs is pro-
posed in [20] based on some statistical properties of auabicgector. However, such a
residual vector does not exist in the RLS algorithm. It is ddde to find a new approach

for convergence analysis of the RLS-DCD algorithm, and otdaptve algorithms based
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Figure 2.1: Adaptive filtering for identification scenario

on multiple iterations at a single time instant.

2.2 Data models

We consider the application of adaptive filtering for a gahétentification scenario as
shown in Figure 2.1, in which an adaptive filter is used taneste the impulse response of
an unknown system. We consider that the unknown system ofitgudesired response)
y(i) and theM -length input data vectox(:) are related by thenultiple linear regression
model[4]:

y(i) = x" (i)ho + v(i), (2.1)
wherex(i) = [z(i) 2(i —1)... (i — M +1)]", hy is the unknown impulse response
that we want to estimate, and:) is the measurement noise; the vedigris constant,
the measurement noiséi) is white with zero mean and varianeg, and theM x 1 data

vectorx (i) has a positive-definite covariance matRx,, given by
Rux = E {x(i)x" (i)} .

The adaptive filter adjusts its estimate of the impulse naspﬁ(z') in such a way to

minimize the error signat(i) = y(i) — z(i), wherez(i) = x”(i)h(i). Most often,
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an adaptive algorithm adjusts its estimate to minimize tleamsquare error (MSE)
B (e} = £ {Ju) - x"0h00) |
the error signak(i) should be orthogonal to the input data veckdi), which gives
E {x(i) [y(z’) - xT(i)fl(i)] } = 0. Therefore, solving the MSE minimization problem is
equivalent to solving the normal equatidRg.h(i) = 3,,, whered,, = E {x(i)y(i)}.

}. According to the orthogonality principle [5],

In the RLS problem, at every time instaintan adaptive algorithm should find a solu-

tion to the normal equations
R(1)h(i) = B(q), (2.2)

whereR (i) and3(i) are an instantaneous autocorrelation matrix of the filfentrsignal
and instantaneous crosscorrelation vector between tlu signal and the desired signal,
respectively. R(i) is assumed to be a symmetric positive-definite matrix of dizex
M, B(i) andh(i) are M- length vectors. The matriR(:) and vector3(i) are known,
whereas the vectdi(i) should be estimated. It has been shown in [17] that, whergusin
iterative techniques, such as DCD iterations, an approaathvigbased on transforming
the original sequence of normal equations into a sequenaaxiiary normal equations,

is preferable.

~

Letr(: — 1) = B8(i — 1) — R(¢ — 1)h(i — 1) be a residual vector for the approximate
solutionh(i — 1) at time instanti — 1). We denoteAR (i) = R(i) — R(i — 1), AB(i) =
B(i) — B(i — 1) andAh(i) = h(i) — h(i — 1). The normal equations (2.2) can then be
rewritten as

R(i) [ﬁ(i — 1) + Ah(i)| = B().

This can be represented as a system of equations with reep&hi(7)

R(i)Ah(i)) = B(i)—R(i)h(i—1)
= B(i—1)—R(i —1)h(i — 1) + AB(i) — AR(i)h(i — 1)

= (i — 1)+ AB>i) — AR(i)h(i — 1).

The original sequence of normal equations is now transfdinte a sequence of auxiliary
normal equations, given by [17]

R(i)Ah(i) = B,(i),

~

whereB,(i) = r(i — 1) + AB(:) — AR(i)h(i — 1). A recursive approach for solving a

sequence of systems of equations is presented in Table 2.1.
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Table 2.1: Recursively solving a sequence of equations

Step Equation
Initialization: r(—1) = 0,3(—1) = 0,h(—1) = 0
fori =0,1,...
1 Find AR(:) andAS3(i)
2 Bo(i) =r(i —1) + AB(i) — AR(i)h(i — 1)
3 SolveR(i)Ah = 3, (i) = Ah(i), r(i)
4 h(i) = h(i — 1) + Ah(i)

Table 2.2: Exponentially Weighted RLS Algorithm
Step Equation
Initialization: h(—1) = 0, r(—1) = 0, R(=1) = II
fori =0,1,...
R(i) = AR(i — 1) + x(i)xT (i)
2(i) = xT(i)h(i — 1)
e(i) = y(i) — 2(2)
Bo(t) = Ar(i — 1) + e(i)x(7)
SolveR(i)Ah(i) = B, (i) = Ah(i), r(i)
h(i) = h(i — 1) + Ah(:)

OO~ W|IN|PF

In the exponentially weighted RLS (ERLS) algorithm, the vedi¢i) is found by
solving the normal equations (2.2) with the instantaneaisnates to the correlation
guantities, given by [4]:

R(i) = Y N7x(j)x"(j) + ML,
§=0

7

Bl = 3N X(G).
j=0

wherell is a regularization matrix an@l< A < 1is a forgetting factor. The regularization
matrix is usually chosen as a diagonal matrix and is useddbileing the algorithm [4].
After applying the method in Table 2.1 to this problem, we sammarize the ERLS
algorithm as shown in Table 2.2 [17]. The DCD algorithm haglfirseen introduced
in [16]. In this work, we are interested in the new DCD algamtfiL7], which is shown
in Table 2.3. In Table 2.3, elements of the matrix and veaterdenoted a®,,,, andr,,,
respectively, and ath column ofR is denoted aR®). This DCD algorithm is then used

to solve the normal equation at step 5 in Table 2.2.
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Table 2.3: DCD algorithm with leading element
Step Equation

Initialization: Ah = 0,r = By, « = H/2, m = 1
for k=1,...,N,

p = argmax,=1.. m{|r|}, g0 to step 4

m=m+1,a=a/2

if m > M,, the algorithm stops

if |rp] < (a/2)R,,p, then go to step 2
Ah, = Ah, + sign(r,)a

r = r — sign(r,)aR®

OO W[N]

2.3 Convergence analysis

In this section, we derive an approach for convergence aisabf the RLS-DCD algo-
rithm based on computations with only deterministic catieh quantities. We explore
deterministic expressions for time dependent correlajisantities without involving any
stochastic processes, and then solve modified normal egsatiith only deterministic
guantities by using the DCD algorithm. Finally, we derive theterministic equations
for the Mean Squared Error (MSE) and Mean Squared DeviaM$l)). The common

independence assumptigd$ are employed in our analysis.

2.3.1 Deterministic correlation quantities

The auto-correlation matriR () at instant > M, can be approximated by the determin-
istic expression [72]
Rd(l) = a(i)Rxx + )\Zna (23)

wherea(i) = (1 — A\")/(1 — )). For the cross-correlation vect@(:), according to the

desired responsg3) in (2.1), we obtain
B(i) =Y N Ix()x" ()ho + D NTIx(j)r ().
§=0 §=0
Let a deterministic cross-correlation vectdy(i) be expressed as

Ba(i) = B, (i) + B, (i),
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whereg3, (i) denotes the instantaneous cross-correlation vector ket noise free
desired responsgi) = x* (j)hg [v(i) = 0in (2.1)] and the data vectot(i), andg3,, (i)
denotes the cross-correlation vector between the measutemiser (i) and the data
vectorx(i). The vector3,, (i) can be derived by using the similar approximation as in

R,(i). Attime instant > M, 3, ;(i) can be approximated by
B,.;(1) = a(i)Ryxho. (2.4)

The vector3,, (i) involves the measurement noise procegs, which is an obstacle for
us to evaluatg3, (i). Instead of evaluating the vectgr, (i), we are more interested in
deriving the deterministic expression for the auto-catieh matrix of3,, (i), given as

Rp, (i) = E{B,(1)8, (i)} .
Since the measurement noigg) is assumed to be white and with variance we have

o j=1
B =1 " j _

Therefore, we obtain

Rg, (i) = o ) NUIE{x()x"(7)}

=0

which can then be expressed at every time instant\/ by
R, (i) = 00b(i)Rx, (2.5)

whereb(i) = (1 — X\%)/(1 — \?).

We now replace the instantaneous correlation quanitiaad3 by their deterministic
expression®,; and3,, respectively, into the RLS normal equations (2.2), whictegiat
every time instant:

Ra(i)hy (i) = B, (i) + B,(1), (2.6)
whereh, (i) denotes the prediction of the solution vector. Since onitite hand side of

(2.6), the deterministic quantif®,, () is unknown and difficult to derive, we let

hP(Z) = hnf(i) + hn(i)a (27)

where we assume
Rd@')hnf(i) = ﬁnf(i)7 (28)
Ry(i)h,(i) = B,(i). (2.9)
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Equations (2.8) are now dealing with only deterministicjuges that we have derived:
R, (i) given by (2.3) ang,, (i) given by (2.4). As we considered in Section 2.1, the RLS-
DCD algorithm deals with the auxiliary normal equations. tder to solve the equations
(2.8) by using the DCD algorithm, we need to transform thegerdenistic equations

into a sequence of deterministic auxiliary equations, eefioy

R(i) Ay, (i) = By 4(i).

According to the recursive approach for solving the ausyliequations in Table 2.1, and
by substituting all the variables by their deterministipessions, we obtain a sequence
of equations with only deterministic quantities as showiTable 2.4. Heref, 4(i) is
the deterministic expression for vectgy(:), and according to the equation at step 2 in

Table 2.1, it is given by
Bo ali) = ra(i — 1) + AB, (i) — ARq(i)hns (i — 1), (2.10)

wherery(i) = 3,,;(7) — Ra(i)h,;(7) is the deterministic residual vector for the solution

vector at time instant, and

AR,4(i) = Ry(i) —Ry(i — 1),
Aﬁnf(i) = ﬂnf<i> - an(i - 1)~

Equation (2.10) can then be rewritten as

Boali) = Bupli—1) = Ra(i = Dhyyp(i = 1) + B, (1) — Bp(i — 1)
— [Ra(i) = Ra(i = D]y, (2 — 1)
= B(i) = Ra(i)hyy(i — 1),

as given at step 2 in Table 2.4. At every time instatite DCD algorithm is used to solve

the equation at step 3 in Table 2.4, and the solution végigfi) is deterministic.

For equations (2.9), the deterministic quaniity(i) is unknown to us, and thus, the
deterministic solution vectdt,, (i) can not be obtained. However, for the analysis of mean
square performance of adaptive filtering algorithms, siechmaan square error (we will
consider in the next section), we are more interested ingeonler statistical quantities.
Therefore, instead of evaluatirig, (i), we evaluate the autocorrelation matrix1of(i),

denoted by
R, (i) = E {h,(i)h} (i)} .
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Table 2.4: A sequence of equations with only determinigtiardities
Step Equation

Initialization: h,,;(—1) = 0

fori =0,1,...
Find R,(i) andg,, ¢ (i)
Bo (i) = By (i) — Ra(i)hny(i — 1)
SolveR4(i)Ah, s = B 4(i) = Ah,;(7)
by (i) = g (i = 1) + Ahyp(4)

AW |IN|PF

By assuming thah,, (i) = R, '(i)3,,(i), we then have
Ru, (1) = R;'()Rg, ()R, (),

n

whereRg (i) is the deterministic auto-correlation matrix @f (¢), given by (2.5).

2.3.2 Deterministic equations for evaluating MSE and MSD

The Mean Squared Error (MSE) at each time instastdefined by [5]:
MSE = E {|e(i)"} ,where e(i) = y(i) — x" (i)h(3).

Under the assumption that the measurement ng(iseis i.i.d. and statistically indepen-

dent of the input vectax (i), the Mean Squared Error (MSE) can then be evaluated by [5]
MSE = E {|e,(i)]*} + o2, (2.11)
wheree, (i) is thea priori error at instani and defined by
eali) =x" (i) [bo ~ B(3)]

Considering the predicted solutidm,(i) defined by (2.7) instead dﬁ(z’), we have
ea(i) = x7(i) [ea(i) — h,(7)], whereey(i) = hy — h,;(i). The vectore,(i) is deter-
ministic, since botth, andh,, (i) are deterministic.

According to theéndependence assumptjdhe error vectoe(i) = hy — h(7) is indepen-

dent ofx(7), and therefore, we can obtain the mean sqaggori error as

E{lea(i)[*} = €} (i)Ruxea(i) — E {2€] (i) Ruxhy (i) }
+ E{h?(i)Ryxh, (i)} . (2.12)

T. Chen, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 2. CONVERGENCE ANALYSIS OF RLS-DCD ALGORITHM 23

The first term on the right hand side of (2.12) is determiojstincee,(7) is deterministic
and R, is a constant matrix. According to the assumptibp(i) = R;'(i)3, (i), the

second term on the right hand side of (2.12) can be expressed a
E{2€; (1) Roxhn(i) } = 2E {€; (i) RoxRy (1) B, (1) }

According to thendependence assumptjome find thate, (i), 3, (i) andR R, (i) are
independent of each other, anda$3,,(i)} = 0, we obtainE {2€l (i)Rxxh, (i)} = 0.
The third term on the right hand side of (2.12) can be exprkease

E {h;, (i)Ruxhy (i) } = tr {RyxRn, (1)},

which is deterministic. The mean squaragriori error given by (2.12), can now be

evaluated by a deterministic expression, which gives
E{le.(d)]?} = €] (i) Ruxea(i) + tr {RyR, ()} - (2.13)

Therefore, the prediction of the MSE learning curves candraputed by substituting
(2.13) into (2.11), which gives

MSE(i) = € (i) Rux€a(i) + tr {Rux R, (1)} + o2 (2.14)

The Mean Squared Deviation (MSD) at each time inst&tlefined by [5]: MSD:) =
LT .
E { [ho - h(i)} [ho - h(z’)] } . Again, considering the predicted solutibp(i) defined
by (2.7) instead oh(:), we obtain
MSD(i) = €] (i)eq(i) — E {2€ (i)h, (i)} + E {h, (i)h,(i)} . (2.15)

After some algebra and employing tlielependence assumptisimilar to that used for
derivation of the MSE as presented above, we finally obtaiatarchinistic equation for

predicting the learning curve of MSD at every time instargiven by

MSD(i) = € (i)eq(i) + tr {Ry, (i)} . (2.16)

2.4 Simulation results

Below, we present simulation results which compare the ptiedi of the MSE and MSD

learning curves obtained by using the proposed approacdusehe practical learning
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curves for the ERLS-DCD algorithm. The desired respayiseis generated according
to (2.1). The input vector to the filtet(i) = [z(i) x(i — 1) ... x(i — M + 1)]* contains
autoregressive correlated random numbers generateddawgdo x(i) = vx(i — 1) +
w(i), wherew is the autoregressive factdy € v < 1) andw(i) are uncorrelated zero-
mean random Gaussian numbers of unit variance. In our siionga the regularization
matrixIT is chosen as a diagonal matiik = nI,,. For generating the predicted learning
curves, the auto-correlation matik,, is derived according to the autoregressive model
by (Rxx)mn = rxx(|m — n|) [4], wherery(n) = v"02 ando? is the variance of the
input samples, which can be evaluatedly= 1/(1 —v?) [73]. The autoregressive factor
v and vectoth, are given. For generating the practical learning curvessMBE curve is
computed by averaging as [74]:

Neap
E(i) = (1/Nep) Y eD(i)?, (2.17)
=1
~ O]
wheree (i) = |y(i) — x"(i)h(i — 1)} and N, is the number of independent experi-
ments. The MSD curve is computed by averaging as [74]:

Ne.rp

D(i) = (1/Neap) 3 [€V(0)[" (2.18)

W(; oY
wheree') (i) = [ho — h(@)] :

In the following simulations, the practical curves are aigd by ensemble aver-
age over 200 independent experimems,( = 200). Our predictions to the learning
curves start at the time instant M, since the approximation of the deterministic auto-
correlation matrix R, expressed by (2.3) is only valid fer> M. Figures 2.2 and 2.3
show the predicted learning curves against the simulatecesudor the ERLS-DCD al-
gorithm with different autoregressive factarand with different number of updatés,,
respectively. It is seen that the prediction shows goodeagent with the practical learn-

ing curves, although our predictions are somewhat optienist
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Figure 2.2: Predicted vs Practical learning curves for tRLEDCD algorithm with
different autoregressive factors (a) MSE; (b) MSD. Simulation parameters! = 16,
02=103A=1-1/(8M),n=10"% N, =1, H =1, M}, = 16, N,,,, = 200.
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Figure 2.3: Predicted vs Practical learning curves for tRLE&EDCD algorithm with
different successful updatéé,: (a) MSE; (b) MSD. Simulation parameterd/ = 16,
02=103,A=1—-1/(8M),n=10"%v=0.9, H = 1, M, = 16, N, = 200.
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2.5 Conclusions

In this chapter, we have presented a new approach for cavesganalysis of the RLS-
DCD adaptive filtering algorithm. This approach is based anmatation with only de-
terministic quantities, which are derived from statidticharacteristics of signals. The
approach can be also used for other adaptive filtering dlgos based on iteratively
solving the normal equations with one or more iterationstana instant. Deterministic
equations for predicting the MSE and MSD learning curveefRLS-DCD algorithm
have been obtained, and simulation results have shown ggree@ment when < 1,
although the predictions are somewhat optimistic. Fromamalysis, we have observed
fast convergence of the RLS-DCD algorithm. In the next chapterwill introduce a
low-complexity channel-estimate based adaptive lineaakzgr, in which the computa-
tion of equalizer coefficients can be multiplication-fremalivision-free, when using the
RLS-DCD algorithm for channel estimation and the DCD iterationthe equalizer.
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In Chapter 2, we have presented the convergence analysis BLi&-DCD algorithm
and shown its fast convergence. It is also known that the RC® @lgorithm has a
complexity as low a®) (N, M) operations per sample, wheié is the filter length and
N, is the number of iterations such thiit, < M [17].

In this chapter, we propose a low-complexity channel-estinbased adaptive linear
equalizer, which exploits DCD iterations for computationegualizer coefficients. The
proposed technique has as low complexity(®sV, (K + M)) operations per sample,
where K and M are the equalizer and channel estimator length, respbgtarsed V,, is
the number of iterations such that, < K and N, < M. Moreover, when using the
RLS-DCD algorithm for channel estimation, the computatioeafializer coefficients is

multiplication-free and division-free, which makes theualiger attractive for hardware
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design. Simulation shows that the proposed adaptive eguagderforms close to the min-

imum mean-square-error (MMSE) equalizer with perfect kieolge of the channel.

This chapter is organized as follows. In the next sectionintnoduction is given.
Section 3.2 gives the data models and normal equations fepeting the MMSE LE co-
efficients. In Section 3.3, we firstly introduce the assuonaiused in our derivation, and
then propose a low-complexity approach for computing thechEfficients. Simulation
results which compare the performance and computatiomaplexity of the proposed
LE against known techniques are given in Section 3.4, faldwy conclusions in Sec-
tion 3.5.

3.1 Introduction

Equalization is a well known method for combatting the irdgmbol interference in
communication channels [21]. Coefficients of an adaptivedmequalizer (LE) can be
computed without explicit channel estimation using thencieh output and known pilot
signal [21]. However, channel-estimate (CE) based equalizan outperform LEs with
the direct adaptation [22]. The CE based adaptive equalizezempute equalizer coeffi-
cients for every update of the channel estimate, preferfablgvery sample of a received
signal. This requires generation and inversion &f a K channel autocorrelation matrix,
whereK is the equalizer length. In general, it results in a compyexfi O ( K3) operations
per sample. Exploiting structural properties of the mative complexity can be reduced
down toO(K?) operations [7]. RLS adaptive channel estimators have a @xityplof
O(M?), where M is the channel estimator length [4]. It is usual tfat> M, thus
the complexity of computing the equalizer coefficients datees the total complexity.
Moreover, the RLS-DCD adaptive algorithm has been proposédye a complexity as
low asO(N, M) operations per sample, whekg << M, while to perform very close to
the RLS algorithm [17]. Thus, adaptive channel estimatiam loa significantly simpler
than CE based computation of equalizer coefficients. To eedue whole complexity,

computation of equalizer coefficients should be simplified.

In this chapter, we propose a novel CE based adaptive LE. Toymoped equalizer
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is applicable for using together with channel estimatorsedaon adaptive algorithms
with partial update (see [75] and references therein)ugtiolg adaptive algorithms with
coordinate descent iterations [16,17,76,77]. Moreovershow that when using the DCD
iterations, computation of equalizer coefficients can béiplication-free and division-

free. When using the DCD algorithm in both the channel estimamnal equalizer, the

overall complexity of the equalization is as low@sN,, (K + M)) operations per sample.

3.2 Linear MMSE equalizer

We consider that the received signéh) is given by
y(n) =x"(n)h(n) + v(n), (3.1)

where x(n) = [z(n)z(n—1)... z(n — M +1)]", z(n) is the transmitted signal,
h(n) = [h(n) ha(n) ... har(n)]" is the channel impulse response, afd) is the white
noise with zero mean and varianeg; x(n), h(n) andv(n) are real-valued. At time
instantn, a K-length LE with the tap weight coefficient vectfin) estimates the trans-
mitted signal asi(n) = y”(n)f(n), wherey(n) = [y(n) y(n —1)...y(n — K +1)]".
Figure 3.1 shows the block diagram of the direct adaptatienilhe equalizer vectdi(n)
is adjusted to minimize the mean square error (MBE)r(n) — #(n)]?}. For CE based

equalization, minimizing the MSE requires solving the nakequations [21]

G(n)t(n) = &(n), (3.2)

whereG(n) = H' (n)H(n) + 021k, £(n) = H' (n)e;, e;isa(K + M — 1) x 1 vector of
all zeros except thah element, which equals one and corresponds to the equdéizey,
andH(n) isa(K + M — 1) x K time-varying channel convolution matrix. In practice,

as the time-varying channel is unknown, estimd&(a;s —7J),j =0,...,K —1, of the
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Transmitted Signal Received Signal Decision
z(n) . y(n) &(n)
nKnown .
——3|  Channel —)? > e;lll:iirer > | —
h(n)
Noise v(n) If(n)
Adaptive
> filtering
algorithm
T Pilot
Figure 3.1: Direct adaptation LE.
channel impulse response are used to fbf(n) as given by
[ hu(n) 0 0 0 |
ho(n)  h(n—1)
has(n : hi(n— K +2 0
H(n) = m(n) ) f( ) ) (3.3)
0  hu(n—1) haoln — K +2)  hi(n—K+1)
0 : hao(n — K +1)
0 0 0 ha(n— K +1) |

Figure 3.2 shows the block diagram of the Channel estimatedoadaptive LE.

3.3 Low-complexity CE based adaptive LE

3.3.1 Assumptions

We use the following assumptions:

1) For every time sample, the channel estimate can be updatédtimes. We will
be using the index= (n — 1)N, + k, wherek = 1, ..., N,, to indicate such an update.
Correspondingly, the sequence of the normal equations tolisedsin the MMSE LE is
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Transmitted Signal Received Signal Decision
z(n) . y(n) Z(n)
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—3]  Channel + > eg&‘;‘fiazrer > | I
h(n)
Noise v(n) ]f(n)

Adaptive

filtering

algorithm

Tico
Adaptive
—) channel
estimator
T Pilot
Figure 3.2: Channel estimate based adaptive LE.
now given by
G(0)f (i) = £(7) (3.4)
2) For everyi, the channel estimator updates only opie)th, element irh(i) as
hpiy (i) = hp@) (i — 1) + Ah(i).
3) For everyi, only one(i)th, equalizer coefficient iﬁ(@') is updated as
Ja (1) = fo (0 = 1) + Af (D).
Here,f(i) denotes an approximation to the MMSE soluti) at iteration.
2011
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4) The convolution matrix (3.3) can be approximated for eaa$

) = | @O o {“@ AO. . (3.5)
0 ha(d) ho(i)  hy(7)
0 ()
ha(i)
0 0 o 0 hu(i) |

The number of iterations for computing the equalizer coieffits after an update of
the channel estimate can be made greater than one. Thig@ghtbrward extension of
the algorithm described below. However, our simulationgtasvn little improvement in
the equalizer performance compared to the case of oneder@is given by assumption
3).

3.3.2 Derivation

Equations (3.4) can be transformed into a sequence of apkilhormal equations
G(i)Af(i) = &,(7) [17]. A recursive approach for solving the equations is dbsed

in Table 3.1 [17], wherer(7) is the residual vector(i) = £(i) — G(i)f(i); AG(i) =
G(i) — G(i — 1); andA&(i) = &(i) — (i — 1),

Although, by considering the Toeplitz structure of matsicaost of the computations
in Table 3.1 can be simplified. Step 1 requires findxi@ (:) which involves computation
of the matrixG (i) = H” (i)H(i) with a complexity ofO()?). Step 2 require® (M K)
operations to computAG(z')f(z'—l). These are still the most computationally demanding
operations and below we show how these operations can béifsschpvhen using our

assumptions.

~

Computation oAG(7)f(i — 1):

T. Chen, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 3. LOW-COMPLEXITY CHANNEL-ESTIMATE BASED ADAPTIVE LINEAR
EQUALIZATION 33

Table 3.1: Recursively solving a sequence of equations

Step Equation
Initialization: r(0) = 0, £(0) = 0, £(0) = 0
fori=1,2,...
1 Find AG (i) and A&(4)
2 £o(i) =r(i — 1) + AL(i) — AG()f(i — 1)
3 SolveG (i) Af = &,(i) = Af(i), r(i)
4 (i) = f(i — 1) + Af(4)

LetH(i) = H(i — 1) + A(4), then we have
AG@) = AT()H(G — 1)+ H (i — 1)A®) + ATG)A®), (3.6)

and

AGHE(i—1) = AT)HG — Df(i — 1)

+H G —1D)AGEG—1)+ AT(O)AGEG—1).  (3.7)
Denotingb(i — 1) = H(i — 1)f(i — 1), we obtain
b(i —1) = [H(i — 2) + A(i — D][f(i — 2) + Af(i — 1)),
which gives a recursion fds(i — 1):
b(i —1) =b(i —2) + H(i — 2)Af(i — 1) + A — Df(i — 1). (3.8)

Note thatA (i — 1) is a Toeplitz matrix whose first column iSh (i — L)ep—1). We also
haveAf(i — 1) = Af(i — 1)ey,_1). Then (3.8) can be rewritten as

b(i —1) = b(i — 2) + Af(i — 1)hla-VI(; — 2)
+ Ah(i — D)fPEDI(G — 1),
wherehl?(~Dl(; —2) isa(K + M —1) x 1 vector obtained by shifting elementslofi —2)
by ¢(i — 1) positions down, and the other element&hfi—! (i — 2) are zeros. Definition

for fiP(—11(; — 1) is similar to that ohl2(~DI(; — 2). Thus, the first term on the right hand
side of (3.7) is given by

ATOH@G — DEG—1) = AT(i)b(i — 1)
= Ah(i) by r—1(i — 1), (3.9)
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whereb,).,i)+x-1(i — 1) isaK x 1 vector whose elements are obtained by extracting
thep(i)thtop(i) + K — 1th elements from the vectdr(i — 1).
Let HT (i — 1)A(i) = A" ())HZ(i — 1), where A (i) is a Toeplitz matrix whose first

column isAB(z’)eM_p(,-)H, and the matri¥I(i) is given by

[ husli) 0 - 0 0 ]
haro1(i)  ha(i) :
: hoar—1(4) 0
H(5) = ha (i) A;}M(z')- Ao.
0 hl (Z) T h]yjfl(Z) hM (Z)
: 0 ' ; P (4)
ha (i) :
|0 0 0 hi(i) |

The second term on the right hand side of (3.7) can then bessed as
HY (i — DAG)EG — 1) = AT()HT (i — DG — 1).
Denotinge(i — 1) = H” (i — 1)f(i — 1), we obtain
c(i—1) = [H(i —2) + A@i — 1)][f(i — 2) + Af(i — 1)),
which gives a recursion far(i — 1):

cli—1)=c(i—2)+H(@i—2)Af(i — 1)+ A(i — )f(i — 1)
—c(i —2) + Af(i — Dalt=bIG — 2)
+ Ah(i — DfM=p=D+1 G _ 1),

where elements of the vectafi — 2) are given by
G (i — 2) = hpgmpr (i —2),m=1,..., M.
The second term on the right hand side of (3.7) is now given by
H7(i — DA — 1) = A" (i)e(i — 1)
= Al (i)CM—p(i)Jrl:M—p(i)JrK(i —1). (3.10)
SinceA” (i) A(i) = Ah2(i)I, the third term on the right hand side of (3.7) is given by

ATHAGE(—1) = AR ()i — 1). (3.11)
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From (3.9), (3.10) and (3.11), denoting) = AG(i)f‘(z’ — 1), we finally obtain a simpli-
fied expression for (3.7):

~

z(i) = Ah(i) [Pygyp(iy+r-1(i — 1)
+ Crr—p(i)+1:m—p(i)+ (1 — 1) + Ah(i)E(i — 1)] :

Computation oAG(7):

The matrixAG(7) can be obtained by using (3.6), which can also be written as
AG (i) = AT()H(i) + H (i — 1) A(3). (3.12)

Since the matrixG (i) is a symmetric Toeplitz matribx)AG(7) is also a symmetric Toeplitz
matrix. Therefore, for each update of the channel estinoatg the first column oA G (7)
given by (3.12) needs to be updated. In this column, only teeMi elements are nonzero,

which are given by
AG11(3) = D) o (0) + iy i = 1)] (3.13)
AGh (i) = Ah(i) [f}p(i),mﬂu 1)+ e (i — 1))

wherem = 2,..., M.

The proposed technique for computing the equalizer coeffisiis now summarized
in Table 3.2. Here, we assume that the noise variafjés known. Table 3.2 also shows
the complexity of the computation steps in terms of multiplions and additions. The
complexity of computing the LE coefficients will depend oe tkerative technique used
for solving the equatiol=Af = &, at step 6, wheré’,,, and P,; denote the number of

multiplications and additions, respectively.

3.3.3 DCD iterations

We propose to use the DCD iteration described in Table 3.3gtwisi simple for imple-
mentation and shows fast convergence to optimal perforend’@. When using the DCD
iteration, it is assumed that the equalizer coefficientsepeesented a¥/,-bit fixed-point

numbers within an intervg A, A], whereA is preferably a power-of-two number. The
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Table 3.2: Low-complexity computation of CE based equalafficients

Step Equation X +
Initialization: i = 0, G(0) = 02Ix, £(0) = 0, r(0) = 0, b(0) = 0,¢c(0) =0
forn=1,2,...
for k=1,...,Ny,
1 1=1+1
2 Obtainh(i), Ah(i) and positiorp(i) from a channel estimator
3 2(i) = D) [byiyp(iy+ k-1 — 1) + Crr—p(iy+ 1:m—p(i) + K (0 — 1) 2K 2K
+AR()E (i — 1)) 2K 2K
4 & =r(i — 1) + Ah(i)ey ;) — (i) - K+1
5 ComputeAG (V) (i) using (3.13) and updae (M) (i) = G (i — 1) + AG (4) M 2M
6 Use one iteration to solv& Af = £, and obtainA f(3), ¢(i), andr (i) P Puq
7 Fay (D) = foy i — 1) + AF (D) - 1
8 b(i) = b(i — 1) + AF())hla@DI (i — 1) + AL EPO](3) K+M | K+M
9 c(i) = c(i — 1) + Af@)ale®I G — 1) + Ah()FIM—P(D+1](5) K+M | K+M
Total for each sample: Ny (4K + 3M + Pp,.) mult. andNy (6K + 4M + 1 + P,4) adds

Table 3.3: DCD algorithm with one update
Step Equation +

Initialization: r = &,,a = A/2,a =0

1 g =argmax,— _ x{|r;|}, gotostep 4| K —1
2 a=a+1,a=a/2 _
3 if a > M,, the algorithm stops —
4 if |rq] < (a/2)Gy,q, then go to step 2 1
5 Af = sign(ry)a 1
6 r = r — sign(r,)aG@ K

Af(i)=Af q(i) = q.r(i) =r
Total: P,,,,, = 0 andP,y < 2K + M, + 1

step-size parameteris a = 27 %A, i.e. also a power-of-two number. With such settings,
operations required in the DCD algorithm are only additiossath multiplications and
divisions are replaced by bit-shifts; see more details enpdrameter choice in [17]. If,
in addition, the adaptive channel estimator is implementadg the RLS-DCD adaptive
filter of complexity O (N, M) [17], the increments\ (i) will be power-of-two numbers.
Therefore, all multiplications in Table 3.2 can be replabgdit-shift operations. With
the DCD iteration, step 6 in Table 3.2 is multiplication-fraied requires no more than
2K + M, + 1 additions.
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3.4 Simulation results

In this section, we compare the performance of seven LEs:

1) MMSE LE. For every time sample, the convolution matri (n) is formed using
the perfectly known channel resporisg: — j), 7 = 0,..., K — 1, instead of its estimate
as in (3.3). The equalizer vectfyris found by solving (3.2);

2) RLS CE based adaptive LE. The time-varying channel is estitnasing the clas-
sical RLS algorithm with a forgetting factoy, and for every sample, the convolution

matrix H(n) is formed using (3.3). The equalizer vecfas obtained by solving (3.2);

3) LMS CE based adaptive LE. This is similar to the RLS CE baseptagd_E except
that the time-varying channel is estimated using the atatkMS algorithm [4];

4) RLS CE based adaptive LE{(samples). This is the RLS CE based adaptive LE
which estimates the time-varying channel for every sampl&hile the equalizer coeffi-

cients are computed once far samples;

5) RLS directly adaptive (DA) LE. The equalizer coefficiente directly computed
for every sample: using the RLS algorithm [21];

6) LMS DA LE. The equalizer coefficients are directly complter every sample.
using the LMS algorithm [21];

7) Proposed LE. The time-varying channel is estimated usi@grRLS-DCD algorithm
from [17] with a forgetting factor\ and for everyi, the leading index(i) is chosen
according to the position of the maximum in the residual @efgee [17]). The choice of
N, for the DCD algorithm is investigated in [17,52]. The equatizectorf is obtained
using the algorithm in Table 3.2.

To simulate the time-varying channel impulse respdnge), we adopt the first order
autoregressive model given byn) = /v h(n — 1) + v/1 — v w(n) [54], where /v is
the autoregressive factor andn) are zero-mean independent random Gaussian vectors,
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Figure 3.3: MSE performance of LEs: SNR20dB,v =1 — 1073, M = 51, K = 201,
M, = 16, A = 1, forgetting factor i9).9804 for the RLS CE and the proposed LE and
0.995 for the RLS DA LE, step size i8.005 for the LMS DA LE and0.02 for the LMS
CE.

whose elements have variantg\/. The channel length i8/ = 51 and the equalizer
length isK = 201. We use = (K + M)/2 = 126 as the equalizer delay [78]. Different
signal to noise ratios (SNRs) are considered, and for each SiNRJation results are
obtained by averaging ové00 independent simulation trials. For each trigl)0 BPSK

pilot symbols of unit power are transmitted.

Fig.3.3 compares the MSE performance of the seven LEs for SNR dB and the
time-varying channel withh = 1 — 10~3. For computing the MSE for each a 1000-
length data sequence independent of the pilot is filteret thié equalizer vecto?(n)
derived using the pilot. It is seen that the proposed LE per$overy close to the RLS CE

based adaptive LE and outperforms the other LEs.

Fig.3.4 and Fig.3.5 compare the MSE performance of LEs fdrdiit SNRs, for time-
varying channels withh = 1—-1075 andv = 1—10~%, respectively. For a simulation trial,
the steady-state MSE is evaluated as MSEL S°1%% [2(n) — yT(n)f(n)]?. Itis seen
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Figure 3.4: MSE performance of the three LEs at different SNRs 1 —107°, M = 51,
K = 201, M, = 16, A = 1; forgetting factor i9.9975 for SNR= 5 and10 dB, 0.9951
for SNR= 15 and20 dB, and0.9902 for SNR= 25 dB.
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Figure 3.5: Steady-state MSE performance of the three LESfferent SNRs:v =
1—-107% M =51, K = 201, M, = 16, A = 1; forgetting factor i).9951 for SNR= 5
and10 dB, 0.9902 for SNR= 15 and20 dB, and0.9804 for SNR= 25 dB.
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Figure 3.6: MSD performance of the proposed LE and the RLS CEdbadaptive LE:
v=1-10"% M =51, K = 201, M, = 16, A = 1; forgetting factor i€).9975 for SNR
= 5, and0.9951 for SNR= 20 dB.

that with N, = 4 and evenV, = 2, the proposed LE provides performance very close
to that of the RLS CE based adaptive LE, and close to that of theSENME. We also
applied the proposed LE witlv, = 2 but with 2 iterations for computing the equalizer
coefficients after an update of the channel estimate, tcatiime simulation trials as we ran
to obtained Fig.3.5. We observed for SNRI5 and20 dB, little improvement 0f).07 dB

in the MSE performance of the equalizer compared to the padgnce of the proposed
LE with N, = 2 as shown in Fig.3.5.

Fig.3.6 compares the mean square deviation (MSD) perfacenahthe proposed LE
and the RLS CE based adaptive LE. For each LE, at every time samphe MSD
is evaluated as MS@) = [fy(n) — £(n)]7[fo(n) — £(n)]/[EL(n)fs(n)], wherefy(n) is
the equalizer vector obtained from the MMSE LE. From Fig.®@s seen that asv,
increases, the proposed LE performs close to the RLS CE baaptivadLE.

Table 3.4 compares the number of multiplications requiredifferent LEs at each

sample for different equalizer lengths. For the MMSE LE yothle multiplications in-
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Table 3.4: Number of multiplications per sample (= 51)

K=51 | K=101 | K =201 | K =401

MMSE 3.9x10° | 25 x10% | 1.8 x 107 | 1.3 x 108

RLS CE 4.1 x10° | 2.6 x 105 | 1.8 x 107 | 1.3 x 108

RLS CE (K samples)| 8113 2.6 x 10* | 9.1 x 10* | 3.4 x 10°

LMS CE 3.9x10° | 2.5 x10% | 1.8 x 107 | 1.3 x 108

RLS DA 1.6 x 10* | 6.2 x 10* | 2.4 x 10° | 9.7 x 10°
LMS DA 153 303 603 1203
Proposed N, =2 1020 1470 2370 4170
N, =4 1734 2584 4284 7684

volved in the computation of the equalizer coefficients anestdered, where the equal-

izer coefficients are obtain by solving (3.2) directly. Fthher CE based LEs, the multi-

plications involved in both the channel estimation and themgutation of the equalizer

coefficients are taken in to account, where the equalizefficeats are also obtain by

solving (3.2) directly. From Table 3.4, we can find that, for kdSed LES, the complexity

of computing the equalizer coefficients determines the tataplexity. It is seen that the

proposed LE has much lower computational complexity tharother CE based LEs. Its

complexity is also significantly lower than that of the RLS DA.L
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3.5 Conclusions

In this chapter, we have proposed a channel-estimate bdsgtivae LE with a complex-
ity as low asO(N,(K + M)) operations per sample, whel¢, < K andN, < M.
The proposed technique exploits coordinate descentigasator computing the equal-
izer coefficients. Moreover, when using the dichotomousdinate descent iterations,
computation of the equalizer coefficients is multiplicativee and division-free, which
makes it attractive for hardware design. Simulation ressittow that, with only a few
updates per sample, the proposed LE performs very close®BIlt® CE based adaptive
LE and close to the MMSE LE with perfect knowledge of the clednt is shown in [21]
that the MMSE LE may have poor performance on channels witbregnter-symbol in-
terference, while the MMSE decision-feedback equalizétEpPoutperforms the MMSE
LE and yields good performance, provided that the decisicor®are negligible. In the
next two chapters, we will introduce two partial-update CEdzhadaptive DFES, both of

which are based on DCD iterations for computing the equatiaefficients.

T. Chen, Ph.D. Thesis, Department of Electronics, University of York 2011



Chapter 4

Partial-Update Channel-Estimate Based
Adaptive Decision Feedback Equalizer:

Approach 1

Contents

4.1 Introduction . . . . . . . .. 45
4.2 MMSE decision-feedback equalizer . . . . ... ... ... ..... a7
4.3 AsSSUMPLIONS . . . . . . e e e 51
4.4 Partial-update adaptive channel estimation . . . . .. ... ... .. 53
4.5 Low-complexity computation of FFFtaps . . . . ... ... ... .. 54
4.6 Low-complexity implementationof FBF . . . . .. ... ... .. .. 62
4.7 Simulationresults . . . . .. ... 64
4.8 CoONCIUSIONS . . . . . . . 68

In the previous chapter, we have proposed a low-complexignoel-estimate (CE)
based adaptive linear equalizer, which performs very dosbe RLS CE based adap-
tive linear equalizer (LE) and close to the minimum meanasgerror (MMSE) LE with
perfect knowledge of the channel. However, for channelb sétvere inter-symbol inter-
ference, such as the underwater acoustic channel, the MM&Eian-feedback equalizer
(DFE) can outperform the MMSE LE, provided that the effectie€ision errors on per-
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formance is negligible [21].

In this chapter, we propose a novel CE based adaptive DFE.dii@dto the low
complexity computation of equalizer taps, the proposelrtegie can operate with low-
complexity channel estimators. Specifically, it is assunied every CE update involves
only one channel tap, e.g. the CE is generated by a partiattediptive filter. The
proposed DFE exploits DCD iterations and has complexity @O (N, [ log,2]) mul-
tiplications per sample, whetés the equalizer delay and, is the number of updates per
sample such thaV, < [. For every update of the equalizer, only one feedforwardrfilt
tap is updated, while feedback filter taps can be computedsizely, or they do not need
to be computed when a modified DFE structure is used. Thusawe & partial-update

equalizer.

The proposed DFE is especially efficient when the channighagir also exploits the
DCD iterations, e.g. such as in the RLS-DCD adaptive filter. Ttherchannel estimator
has a complexity significantly lower than that of the equalizMoreover, most of the
multiplications involved in the computation of the equalizoefficients can now be re-
placed by bit-shift operations, which makes the equalifeactive for hardware design.
Simulation results show that the proposed DFE performsesiese to the CE based DFE,
where the CE is obtained using the classical RLS adaptive dittéithe equalizer taps are

computed according to the MMSE criterion.

This chapter is organized as follows. In the next sectioningnoduction is given.
In Section 4.2, we introduce the structure of the conveali@E and give expressions
for computing the DFE taps. Section 4.3 introduces assamgtnade for deriving the
partial-update DFE. The complex-valued DCD iterations an&fRICD algorithm for
adaptive channel estimation are presented in Section®3edtion 4.5, a low-complexity
approach for computing the FFF taps is proposed. In Sect@rrdcursive computation
of the FBF taps is derived, and the modified DFE structure m®dhuiced. Section 4.7
presents numerical results that demonstrate the perfaerard computational complex-
ity of the proposed DFE against known techniques. Finakgt®n 4.8 draws conclu-

sions.
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4.1 Introduction

Decision-feedback equalizers (DFEs) are widely used forlzaiting the inter-symbol in-
terference in communication channels [21,79]. Taps of aptek DFE can be computed
without explicit channel estimation, by direct adaptat{@®) using the channel output
and known pilot signal [21]. However, channel-estimate (6&Sed DFESs can outperform
DFEs with the direct adaptation [22]. As the demand for bbaad communications in-
creases, the computational complexity of CE based DFEs bexam important issue.
Extensive effort has been made to reduce the complexity{fs@g23—-30] and references
therein). However, the complexity normally grows squamnelth the length/K of the
feedforward filter (FFF). In multipath channels with largelay spread and long precur-
sor part, such as in underwater acoustic channels [31],FRddngth/K needs to be large
enough to equalize the precursor part, and it is usualthat M/, whereM is the channel
estimator length. Reducing the complexity of CE based DFEsgh scenarios is still an

open issue.

In [7], an efficient approach for computing the minimum meapare error (MMSE)
DFE taps [6] with a complexity of) (K (K + M)) is proposed. It relies on fast Cholesky
factorization, which is still difficult for practical imphaentation. In [26], a DFE with a
complexity of O((2K + 1)?) is proposed.

In [28, 80], an alternative approach for fast computatiodMdASE DFE taps is pro-
posed; it has a complexity @ (/K + Klog,2K)) for K > M, wherel is the equalizer
delay. In [28], the FFF taps are obtained by solving a sehefdr equations using the fast
RLS algorithm [81], and the feedback filter (FBF) taps are camgbloy convolving the
FFF taps with the channel impulse response. In [28], theRaSt algorithm is simplified
and it is stated to have some advantages in stabilizatiofirfive precision implemen-
tation. However, there is still no guarantee of stabilitypractice, and such a fast RLS
algorithm can still exhibit instability [5].

In Chapter 3, we proposed a CE based adaptive linear equalitea\womplexity as
low asO(N,K) + O(N, M), whereN,, is the number of updates such thét < K and
N, < M. The equalizer exploits dichotomous coordinate desceBO(Diterations for
the tap computation. It is attractive to apply this approfrifast computation of DFE
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taps. However, the approach in Chapter 3 is not directly egple to the computation
of the DFE taps. Besides, the approach in Chapter 3 has beaediéor real-valued
signals and channels. Moreover, complex-valued DCD immathave not been intro-
duced yet. The linear equalizer from Chapter 3 is especidfigient when using the
RLS-DCD adaptive filter [17] as the channel estimator. In tlaise; the tap computa-
tion is multiplication-free and division-free, which igctive for hardware implementa-
tion [52]. However, an RLS-DCD adaptive filter for complexwadl signals and channels
has not been introduced yet.

In this chapter, we propose a novel CE based adaptive DFE vdainhoperate to-
gether with partial-update channel estimators (see [7baiid reference therein). The
proposed DFE exploits complex-valued DCD iterations (thatimtroduce here) to effi-
ciently compute the DFE taps. The equalizer tap computdtama complexity as low
asO(N,l log,2l)) multiplications per sample. The proposed DFE is especédflgient
if the channel estimation is performed by the complex-valR&S-DCD adaptive filter
that we also introduce here. The DFE can be implemented indheentional or modi-
fied structure [24—26]. For the conventional structure, 186 propose a simple recursive
method for computing the FBF taps, whereas the modified sireicdioes not require com-
puting the FBF.

Notations:We use capital and small bold fonts to denote matrices andngcespec-
tively; e.g. G is a matrix and- a vector. Elements of the matrix and vector are denoted as
G, andr,, respectively. Apth column anchth row of G are denoted a&?) andG,,),
respectively. We also denot€&’ and G’ are transpose and conjugate transpose of the
matrix G, respectivelyy* is the complex conjugate of vecter I is a K x K identity
matrix; Ox s is @a K x M matrix of all zeros;E{-} is the expectatiori{-} and{-} are
the real and imaginary part of a complex number, respegtiéie variablen is used as

a time index and is the iteration index.
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Figure 4.1: Conventional structure of a symbol-spaced DFE.

4.2 MMSE decision-feedback equalizer

We consider that the received signéh) at a time-instant is given by
y(n) =x" (n)h(n) + v(n) (4.1)

whereh(n) = [hi(n) ha(n)... ha(n)]" is the channel impulse response(n) =
[z(n) z(n —1)... z(n — M 4+ 1)]" is a sequence of transmitted symbols, afd) is the

white noise with zero mean and variancg x(n), h(n), andv(n) are complex-valued.

Fig.4.1 shows the structure of a DFE [21] consisting df dength FFF with the tap
vector f(n) and B-length FBF with the tap vectag(n). At time instantn, the DFE

estimates the transmitted symhbdgh — [) as
i(n—1) =y (n)f(n) — %" (n)g(n) (4.2)

wherey(n) = [y(n) y(n — 1) ...y(n — K+ 1)]", %(n) = [#(n =1 = 1) ... &(n -1 —
B)]T and! is the equalizer delay. The received data vegtor) can be expressed as

y(n) = H" (n)x(n) + v(n) (4.3)

where  x(n) = [z(n)z(n—1)... z(n— M — K +2)]",  v(n) =
v(n)v(n—1)...v(n—K+1)]" andH(n) is a (K + M — 1) x K time-varying
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channel convolution matrix

[ ha(n) 0 0 0 |
ho(n)  hi(n—1) : :
: ha(n—1) . 0
H(n) - har(n) : oo h(n—K+2) 0 44
0  hy(n—1) = hoin—K+2) h(n—K+1)
0 f ha(n — K + 1)
0 0 0 ha(n— K +1) |

By introducing two(B + K) x 1 vectors

y(n) f(n)

dw(n) = ,
oo | N )

s(n) =

the symbol estimate (4.2) can be rewritten as

i(n—1)=s"(n)w(n). (4.5)
The vectord'(n) andg(n) are adjusted to minimize the mean square error (MSE)

E{|z(n—1) = &(n =)} = E{|z(n — 1) = s" (n)w(n)[*}.
Solving this minimization problem is equivalent to solviaget of linear equations [21]
L(n)w(n) = ¢ (n), (4.6)
wherel'(n) = E{s(n)s”(n)} and(,(n) = E{s(n)xz*(n —1)}.
In the DA DFE,T'(n) and (,(n) are estimated without explicit channel estimation

using the received data and known pilot or estimated datdsign The equalizer taps

are then obtained by solving (4.6) using an adaptive algori21, 82], such as the RLS
algorithm [4, 5]. Fig.4.2 shows the block diagram of the DABDF

For a CE based MMSE equalizer, assuming that the transmiytetbas =(n) are
independent and identically distributed with unit powke matrixI'(n) and vectok(n)

can be represented as [28]

I'(n) = 4.7)
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Figure 4.3: Channel estimate based adaptive DFE.
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and
cm = | 48)
0B><1
where
G(n) = H#(n)H(n) + oI, (4.9)
and
¢(n) =H"(n)er. (4.10)

H(n) is a B x K submatrix of the channel convolution matik(n) as illustrated in
Fig.4.4;e;is a(K + B — 1) x 1 vector of all zeros except théh element, which equals

one and corresponds to the equalizer delay.

In the CE based adaptive DFE, shown in Fig.4.3, the channellsapesponse is esti-
mated by using the received data and pilot or estimated gatbads. The quantitieE (n)
and¢,(n) are then computed using (4.7) and (4.8), respectively.lliyjtiae equalizer taps

are obtained by solving (4.6) using an adaptive algorithm.

Using (4.6), (4.7) and (4.8), we obtain

G(n)f(n) — H” (n)g(n) = ¢(n), (4.11)
g(n) = H(n)f(n). (4.12)

Substituting (4.12) into (4.11), we have

[H” (n)H(n) + H” (n)H(n) + 071x] £(n) = ¢(n). (4.13)
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whereH (n) andH(n) are submatrices of the channel convolution makix.) as illus-
trated in Fig.4.4. The size of matrBl(n)is (I + 1) x K.

Since we consideB > M, equation (4.13) can be rewritten as [28]
G(n)f(n) = {(n), (4.14)

whereG(n) = HY(n)H(n). The MMSE DFE taps can also be obtained by solving
the normal equations (4.14) for the FFF vecfér) using an adaptive algorithm, and
then computing the FBF vectg(n) using (4.12). For the CE based DFE, the FFF and
FBF taps can also be obtained by solving separate MMSE ogatiorz problems [83].

In [84], the separate MMSE DFE optimization has been demaiast to be equivalent to

the simultaneous optimization, which is considered in ¢thigpter.

4.3 Assumptions

For computation of the DFE taps, we use the following assiongt

1) In practice, as the time-varying channel is unknown nesstiésh (n) of the channel

impulse responsk(n) are used for computing the DFE taps.

2) For every time sample, the channel impulse response estirrff(be) can be updated
N, times. We will be using index to indicate such an update. Correspondingly, the
sequence of normal equations to be solved for the FFF tapsvgiven by

G()E() = ¢(i). (4.15)
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3) For every iteration, the convolution matrix (4.4) can be approximated as

) = | @O o {“@ AO. . (4.16)
0 hun(d) ho(i)  hy(7)
0 ()
ha(i)
0 0 - 0 hy() |

4) For every iteratior, the channel estimator updates only on@)th, element irh (i)
as

~

By (i) = By (i — 1) + Ah(i).

Note that, when using the DCD iteration in channel estimatfoneveryi, Ah(i) is a

power-of-two number.

5) For everyi, only one,q(i)th, FFF coefficient irf’(z') is updated as
(@) = faw (i — 1) + AF(9),
As we will propose to use the DCD iteration in the computatibthe FFF taps, for every
i, Af(i) is also a power-of-two number.

The number of iterations for computing the FFF taps after @atate of the channel
estimate can be made greater than one. This is a straigltfdre@xtension of the algo-
rithm described below. However, our simulation (not présédrnere) has shown little
improvement in the equalizer performance compared to the cbone iteration (as given

by assumption 5).

6) We assume that the noise variange and thus the signal to noise ratio (SNR) are

known.
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Table 4.1: Complex-valued RLS algorithm

Step Equation
Initialization: h(0) = 0x7x1, £(0) = Oprx1, R(0) = eIy,
forn=1,2,...

R(n) = AR(n — 1) + x(n)x(n)

j(n) = x"(n)h(n - 1)

e(n) =y(n) — g(n)

Bo(n) = Ar(n — 1) + e*(n)x(n)

SolveR(n)Ah(n) = By(n) = Ah(n), r(n)

fl(n) = fl(n -1)+ Afl(n)

OO W[N]

4.4 Partial-update adaptive channel estimation

To satisfy assumption 2 above, we need to use a partial-epgtannel estimator. For this
purpose, we propose to use the RLS-DCD adaptive algorithmaiie fbw complexity,
stability, and fast convergence [17,52]. Moreover, thencleh estimate updates in the
RLS-DCD algorithm allow the DFE taps to be computed withoutiekpnultiplications.
However, the RLS-DCD algorithm in [17] deals with real-valigghals. Therefore, here
we present a complex-valued version of the RLS-DCD algoritimcivis a straightfor-
ward extension of the RLS-DCD algorithm in [17].

In the RLS algorithm, the vectoh(n) is found by solving the normal equations
R(n)h(n) = B(n), where [4]

R(n) = Z N'7x(m)x (m) + Aely,

Bln) = Y A"x(m)y"(m),

e > 0 is a regularization factor angl < A < 1 is a forgetting factor. This can be done
recursively as presented in Table 4.1. The implementatfaihis variant of the RLS
algorithm is especially efficient when, at step 5, DCD itenasi are used for solving the
systemR(n)Ah(n) = B,(n). In this case, step 5 can be implemented without explicit
multiplications and divisions.

Table 4.2 describes the complex-valued DCD algorithm witbaaling element [17],

which is used to solve the normal equations at step 5 in TalleRbr convenience, we
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Table 4.2: Complex-valued DCD algorithm.
Step Equation +

Initialization: Ah = 0/, T = Bpoa=A4Aa=1,d=[a,—a,ja, —ja
fork=1,...,N,

1 9= [R{r"} S{rT}], p = argmax,,—1._am {|9ml}, 2M — 1
if p> M, thenp < p— M,

goto step 4

2 a+—a+1l,a+a/2,d=a,—qa,ja,—ja] -

if a > My, the algorithm stops -

p=argmin{[—R{rp}, R{rp}, =S{rp}, S{rp}, —aRy,/2]} 2
if > 4, then go to step 2

5 Ah, = Ahy, +d, 1
r=r—d,RP 2M

Total: 0 real mult. and< N,,(4M + 2) real adds.

omit here the time index. It is assumed that the channel taps are representéf -&é
fixed-point numbers within an amplitude interyalA, A], whereA is preferably a power-
of-two number. The step-size parametels given bya = 27 A, wherea is a positive
integer number, i.ex is also a power-of-two number (see more details on the paesme
choice in [17]). With such settings, operations requirethima DCD algorithm are only

additions as all multiplications and divisions are repthbg bit-shifts.

4.5 Low-complexity computation of FFF taps

For computation of the FFF taps, equations (4.15) can bafoaned into a sequence
of auxiliary normal equation&: (i)Af(i) = ¢,(i) [17]. A recursive approach for solv-
ing these equations can be derived, which is described iteTal3. In Table 4.3,
f(i) denotes an approximate solution obtained at iteratjas{i) is the residual vector
e(i) = ¢(i) — G()E(); AG() = G(i) — G(i — 1); and AC(i) = ¢(i) — ¢(i — 1),

In Table 4.3, step 1 requires findinyG (i) which involves computation of the matrix
G(i) = HY(i)H(i) with a complexity ofO((I + 1)K?). Step 2 require®(K?) oper-
ations to computexf}(z')f(z’ — 1). These are the most computationally demanding op-
erations in the computation of the FFF taps. For computaifdhe FBF taps, equation
(4.12) can be computed directly with a complexity@tB k'), which is also computa-
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Table 4.3: Recursively solving a sequence of equations fmpcation of FFF taps

Step Equation
Initialization: €(0) = 0 1, €(0) = Ox 1, £(0) = Ox 1
fori=1,2,...
1 Find AG (i) and A7)
2 Coli) = (i — 1) + AL(i) — AG(i)f(i — 1)
3 SolveG (i) Af = ¢, (i) = Af(i), €(i)
4 £(i) = (i — 1) + Af(i)

tionally consuming. In the followings of this chapter, weshhow these operations can

be simplified when using our assumptions.

4.5.1 Computation of AG(i)f(i — 1)

LetH (i) = H(i — 1)+ A(i), then we hav& (i) = G(i — 1) + A" (i) H(i — 1) + HY (i —
(7) and thus,

=
_|_ N—r
>
AE
by

AGHE@E—1) = A" (OHGE— DG — 1)
+HYG - DAGEG— 1)+ AT OHAGEG - 1). (4.17)

For convenience, we rewrite (4.17) as
z(i) = c(i) + b(i) + D()f (i — 1), (4.18)

where

Now, we derive expressions for computing these variaki@g; b(i) andD (7). Note that
A(i)isa(l+1) x K submatrix of § K + M — 1) x K Toeplitz matrix whose first column
is Ah(i )e,y;) and elements of the first row are zerog(f) > 1. Forp(i) = 1, A(i) is
a rectangular diagonal matrix whose diagonal elementsxél(e'). The structure of the
matrix A (3) is illustrated in Fig.4.5.
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K
p(i) —1
1 —p(i)+2 .
Ah(7)

Figure 4.5: Structure of the matrix ()

The matrixA” (i)H(i — 1) can then be expressed as

A"(OH(® — 1) = AR (i) Fe—1) : (4.19)

Ok —14p(i)-2)x K

whereF (i — 1) is a(l — p(i) + 2) x K submatrix ofH(i — 1) as illustrated in Fig.4.6(a).
The structure of matri¥'(: — 1) is shown in Fig.4.6(b). For convenience, we now define
a(l—p(i) +2) x (I +1) matrix F(i — 1), which is a submatrix oF (i — 1) as illustrated

in Fig.4.6(c).

According to the structure df(: — 1) and by using (4.19)(7) can be expressed as

c(i) = Ah*(i) F(i — D (i— 1) , (4.20)

O(K—H-p(i)—Z) x1

wheref,,, 1 (i—1) denotes the firgt+1) elements of the vectdi(i—1). F(i—1)f;,1 (i—

1) can be computed directly witli—p(i)+2)(I+1)/2 complex multiplications. However,
when a large FFF lengthil{ > M, and thusl > M) is used, this operation will be
computationally consuming. Alternatively, this can be lempented using the fast fourier
transform (FFT) [85] as explained in Appendix A, withl + 1) + 6(1 + 1)log,2(l + 1)
complex multiplications. In Appendix B, we also derive a neston for computingF (i —
1)f1.41 (i — 1), which only require®(K + M) real multiplications an@(K + M) real
additions for each. Moreover, as we propose to use the DCD iteration in both atlann
estimation and the computation of the FFF taps, all the plidétions required in this

recursive approach can be replaced by bit-shift operations

From (4.19), we obtain

H7 (i — 1)A() = AGE) [F7(i — 1) | Ocs(re—taptiy-2)) -
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(c) F(i — 1) as a submatrix oF (i — 1)

Figure 4.6: Matrices structures
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According to the structure df (i — 1) (see Fig.4.6)b(i) can be expressed as

b(i) = Ah(i) P06 = Dby (i = 1) , (4.21)

Ok —1-1)x1

where the vectoF 7 (i — 1)flzl_p(i)+2(z'— 1) can be computed directly witth—p(i)+2) (1+
1)/2 complex multiplications. Alternatively, it can also be goated using an approach
based on the FFT similar to that as given in Appendix A, ®i{th+1)+6((+1)log,2(1+1)
complex multiplications. However, a recursive computatgnot available for this vector
because the number of elementsfof ;) 2(i — 1) involved in the computation varies

according to the positiop(i).

SinceD(i) = A" (i)A(i), whereA(i) has the structure as given in Fig.4.5, elements

of D(7) are given by

IARD2, m=n=1,...,(1—p()+2),

Dm,n = .
0, otherwise

Thus, we have
D(i)f(i — 1) = [AR(G)|*Frapiy (i — 1). (4.22)

From (4.20), (4.21) and (4.22)(:) in (4.18) can finally be computed by

F(i — )i — 1)

z(i) = AR (i)
0(K—l+p(i)—2)><1
FA(i — 1)fiypyo(i — 1)
O(r—1-1)x1

+ ARG [PErpya(i — 1). (4.23)

+ Ah(i)

4.5.2 Computation of AG (i)

The matrixAG (i) will have three different structures as illustrated in &ig, depending

on the position of updatg(i) from the channel estimator.

1) Forp(i) = 1, AG(i) contains an upper-left cornér+ 1) x (I + 1) matrix AG(4)
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(b) Case2: 1 < p(i) < (1+3)/2

~

[ —p(i) + 2 AG(Z)

\\\\\\\\\\ e '

[ —p(i) +2 \Ag(zé
\

N\

(c) Case3: p(i) > (14 3)/2

Figure 4.7: Structure of matriAG(7)
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which is a Hermitian Toeplitz matrix, and the other elemafitA G (i) are zeros. In such

a case, only the first column of matrixG (i) needs to be computed.

2) Forl < p(i) < (I +3)/2, AG(i) contains three Toeplitz submatrices: one is an
upper-left cornetl —p(i) +2) x (I —p(i) +2) matrix AG(i) which is a Hermitian Toeplitz
matrix, and the other two are Toeplitz square matriag€s(;) and AG” (i), which are
conjugate transpose of each other. Furthermt@(i) is a(p(i) — 1) x (p(i) — 1) lower
triangle matrix. The other elementsAfG (i) are zeros. In this case, only the first column

of matrix AG (i) and the first column of matriA G (i) need to be computed.

3) Forp(i) > (I + 3)/2, AG(i) also contains three Toeplitz submatrices: one is an
upper-left cornetl —p(i) +2) x (1—p(i)+2) matrix AG(i) which is a Hermitian Toeplitz
matrix, and the other two are Toeplitz matric®&: (i) andAG* (i), which are conjugate
transpose of each other. The size of matki (i) is (I — p(i) + 2) x (p(i) — 1). The
otherG (i) are zeros. In this case, the first column of matki&: (i), and the first column

and row of matrixAG (i) need to be computed.

According to these matrix structureSG (i) can be obtained as described in Table 4.4.
For eachi, the complexity of computing\G (i) is a function of the positiop(i), where
1 < p(i) < M. Therefore, we can only evaluate the maximum complexity. Quation
of AG (i) requires no more thah/ +21/3+ 3 real multiplications andi+ 3 real additions.
Moreover, sinceﬁﬁ(z’) is a power-of-two number, all the multiplications requiiadhe

computation ofAG (i) can be done by bit-shift operations.

Table 4.5 summarizes the proposed technique for compuimEF taps. Here, we
assume that the noise variangg and thus the signal to noise ratio (SNR) are known.
Table 4.5 also shows the complexity of the computation steferms of multiplications
and additions. The complexity of computing the FFF taps délpbend on the iterative
technique used for solving the equatiGa\ f = ¢, at step 8 £, multiplications andP,
additions). Since we propose to use adaptive algorithmis pattial update for solving
the equation at step 8, for eveiyonly theq(i)th column ofG(i) needs to be updated,
GUO () = GUD)(; — 1) + AGUD)(4). Therefore, at step 7, we can only take into
account the operations for updating #ig)th column ofG (i), which will only require
3l/2+ 2 real additions. Note that the total number of real additiprevided at the bottom
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Table 4.4: Computation aA G (i)
Step Equation
Initialization: p = p(i), Ah = Ah(i), AG(i) = O x x
P =04_piox1, v =min{l +1, M}

1 p1 = Ah[h(i — 1) + Ah¥]
pm = ARhS . (i—1),m=2,... v—p+1,
2 pm = pm + ARRE_ (i — 1),
m=1,....l—p+2 forp>(1+2)/2
{ m=1,...,p otherwise
AGW (i) =p

if1<p<(+3)/2
AGW (i) = Ah*hy, (i — 1)
if p(i) > (1 +3)/2
AGW (i) = Ah*hyy 1 95 1(i—1)
AG ) (i) = A ligy 1 (i — 1)
whereii,, (i — 1) = hyemir (i —1),m=1,..., M

of the table is the upper bound of the complexity. This is duthe fact that the actual
complexity of the computation in step 7 will depend on theitp@s p(i). However, since
the complexity of computing(:) in step 3 determines the total complexity, this upper

bound will be close to the actual complexity of the propodgdrithm.

45.3 DCD iterations

For solving the auxiliary normal equations at step 8 in Tabt we propose to use the
DCD iteration with one update as described in Table 4.6. As awe Imentioned in Sec-
tion 4.4, in the DCD iteration, it is assumed that the FFF tapsepresented a%/,-bit
fixed-point numbers within an intervah A, A], where A is preferably a power-of-two
number. The step-size parametgs o = 2% A, i.e. also a power-of-two number. There-
fore, operations required in the DCD algorithm are only addg as all multiplications
and divisions are replaced by bit-shifts. When using the D@Eatton in both channel
estimation and computation of the FFF taps, the increm&nts) andA f(i) are power-
of-two numbers. This means that multiplications which imeceither Ah(i) or Af (i)
can be done by bit-shift operations. Therefore, our prop@g®roach as presented in

Table 4.5 does not require any multiplication except thaselved in the computation of
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Table 4.5: Low-complexity computation of FFF taps

Step Equation X +
Initialization: i = 0, G(0) = 621, £(0) = Ox x1, €(0) = Ox x1,
forn=1,2,...
for k=1,...,Ny
1 i=1+1

N

Use one iteration in the channel estimator and okteir), Ak (7)
and positiorp(4)

3 Computec(z) using (4.20) andb (i) using (4.21) Vmu Yad

4 z(i) = c(i) + b(i) + | A |[2F (G — 1) - 4K

5 Co = €(i — 1) + Ah* (i)e;_p(i) 12 — 2(i) - 2K +2

6 v = [R{eT} S{eT}], q(i) = arg maxyp—1.... 25 {[vm |} — 2K
if (i) > K, thenq(i) < q(i) — K

7 ComputeAG (4) using Table 4.4 and upda@ (i) = G(i — 1) + AG(7) - <Bl+4)(1+1)/2

8 Use one iteration to soV&Af = ¢, and obtainAf (i) ande(:) P Pua
Fay (D) = Foy G — 1) + AF (D) - 1

Total for each sample: Ny [Ymu + Pma] real mult. and< Ny, [thqq + 312 /2 4+ 8K + 71/2 + Pyq + 4] real adds,
wherey,, = 81+ 8 + 24(1 + 1)log,2(1 + 1) andy,q = 2K + 2M + 12(1 + 1)log,2(1 + 1)

b(7) in step 3.

4.6 Low-complexity implementation of FBF

4.6.1 Recursive computation

For the conventional DFE whose structure is shown in Fig#hd FBF taps, in addition
to the FFF taps, need to be computed at every iteratiéd@omputation of the FBF taps
can be done directly using (4.12) with a complexity@fBK). Alternatively, as the
matrix ﬁ(i) is a block of the channel convolution matrix (see Fig.4.4g EBF taps
can be obtained by convolving the FFF tdp8 and the vectofi(i) whose elements are
given by (A.1) in Appendix A. This can be computed using th& F85] similar to the
approach explained in Appendix A, withk’ + 6Klog,2K complex multiplications (for
K > M). In Appendix B, we derive a recursion for computing the vegi(i) as a result

of convolving the vectof (i) andi(i):

(i) = p(i — 1)+ Af ()" — 1)
+ AR(i)EPDI(7),
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Table 4.6: DCD algorithm with one update
Step Equation +

Initialization: ¢ = (i), Af = 0k 1, € = ¢,

a=A/2,a=1,d=[a,~a,aj, —aj]

gotostep 4 —

a+—a+1l,a+a/2,d=|a—qa,af —aj] -

if a > My, the algorithm stops —
p = arg min{[—R{e}, R{eg}, —S{eg}, S{eg} aGoq/2]} | 5
if > 4, then go to step 2
Af, = Af, +d, 1
e=¢€—aGW 2K
Af(i) = Af, e(i) = €
Total: P,,,,, = 0 andP,y; < 2K + 6 + M,

AlWIN|PF

o | O

The FBF tapg(i) can then be obtained from(i) as

g(i) = Soz+2:l+B(i)- (4.24)

By using such a recursion, the computation of the FBF taps adyires2(K + M)
real multiplications an@ (K + M) real additions. Moreover, when using the recursive
approach given in Appendix B for the computation of the FR¥Stavhich also involves
the computation ofp(i) at every iteration, the FBF taps can be obtained directly from

(4.24) without any extra computation.

4.6.2 Modified DFE

Z(n —1)

Figure 4.8: Modified structure of symbol-spaced DFE
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Table 4.7: DFEs used for simulation

) = Convolution Computation of | Computation of
Algorithm Channel Decision | Structure .
matrix H(n) FFF taps FBF taps
MMSE . . solving (4.14) .
o known known Fig.4.1 formed using (4.4) ) using (4.12)
(known decision) directly
RLS CE estimated . . solving (4.14) .
o . known Fig.4.1 formed using (4.4) . using (4.12)
(known decision) using RLS directly
estimated ) ) ) solving (4.14) )
RLS CE . estimated| Fig.4.1 formed using (4.4) . using (4.12)
using RLS directly
. . . . estimated estimated
RLS DA not required estimated| Fig.4.1 not required . .
using RLS using RLS
Proposed estimated using ) . . .
. known Fig.4.8 | formed using (4.16)| using Table 4.5 not required
(known decision) RLS-DCD
estimated using . ) ) ) )
Proposed RLS-DCD estimated| Fig.4.8 | formed using (4.16)| using Table 4.5 not required

DFEs can also be implemented using the modified structurb@sgrsin Fig.4.8 [24,
25], which does not require any computation for the FBF tapshis modified DFE, for
every time sample, the FBF simply multiplies the detected data symhel—[) with the
estimated channel impulse respoﬂ?l:{e — [). Outputs from the FBF are fed into the FFF
directly in order to precancel postcursors according teetiigalizer delay. Note that the
modified DFE structure shown in Fig.4.8 applies for the calserw” > M. For the case
whenK < M, the equalizer structure is slightly different and can henfibin [25]. In this
modified DFE, the FBF taps are the coefficients of the estimatpdlse response, which

can be obtained directly from the channel estimator witlamytextra computation.

4.7 Simulation results

In this section, we compare the performance of six DFEs asmarined in Table 4.7:

1) MMSE DFE (known decision). For every time samplethe convolution matrix
H(n) is formed using (4.4), in which the channel impulse respdnge is perfectly
known. The FFF vectof(n) is found by solving (4.14), and the FBF vecigfn) is
obtained using (4.12). Correct decisions are perfectly knaad used in the FBF.

2) RLS CE based adaptive DFE (known decision). The time-vgrgimnnel is es-
timated using the classical RLS algorithm [4] with a forgedtifactor\, and for every
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samplen, the convolution matridi(n) is given by (4.4). The FFF vectd(n) is found
by solving (4.14), and the FBF vectg(n) is obtained using (4.12). Correct decisions are
perfectly known and used in the FBF.

3) RLS CE based adaptive DFE. This is similar to the DFE in 2) pixiteat the correct

decisions are unknown; decisions obtained from the eradie used in the FBF.

4) RLS directly adaptive (DA) DFE. In the DA DFH}(n) and{(n) are estimated
without explicit channel estimation using the receivedadatd known pilot or estimated
data symbols. The equalizer taps are then obtained by gol¢i6) using the RLS algo-
rithm.

5) Proposed DFE (known decision). The time-varying chamestimated using the
RLS-DCD algorithm presented in Section 4.4. For evierthe FFF vector is obtained
using the algorithm in Table 4.5. Correct decisions are p#yfé&nown and used in the
FBF.

6) Proposed DFE. This is similar to the DFE in 5) except thatdbrrect decisions are

unknown; decisions obtained from the equalizer are usdukifrBF.

We adopt the first order autoregressive model giverhby) = /v h(n — 1) +
V1 —v w(n) [54], to simulate the time-varying channel impulse resgdns:), where
y/v is the autoregressive factor andn) are zero-mean independent random Gaussian
vectors, whose elements have variamng¢#/. In our simulation, we consider two differ-
ent channels: one is a short chann®@l & 21), for which the initial impulse response
is generated as a complex zero-mean independent randonsi@auwsctor, whose ele-
ments have variance/M; the other is a long channeM = 101), for which the initial
impulse response is generated as a vector Withon-zero elements, whose positions are
uniformly distributed between and 101. These non-zero elements are complex zero-
mean independent random Gaussian numbers with varigfide Different signal to
noise ratios (SNRs) are considered, and for each SNR, simolegsults are obtained
by averaging ove200 independent simulation trials. For each triaj®0-length data
sequence of unit power is transmitted, which contains aesszpiofL pilot symbols fol-
lowed by4000 — L unknown data symbols. In the CE based DFEs, channel estisuaes
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Figure 4.9: BER performance of the DFEs over short time-varghannelsy = 1 —
1074, M =21, K = 41, B = 21, M, = 16, A = 1, The number of pilot symbols for the
RLS DA DFE isL = 600; for the other DFESL = 100.

first obtained from the pilot symbols and then from the eqealidata symbols. In all the

simulation scenarios, QPSK symbols are transmitted.

Fig.4.9 and Fig.4.10 compare the performance of the DFEsshat and long time-
varying channels, respectively. For each SNR, the RLS fangetactor is chosen in the
interval 0.988 < X < 0.997, so that the minimum BER is achieved. It is seen that, with
N, = 4 and evenV, = 2, the proposed DFE performs very close to the RLS CE based
adaptive DFE and outperforms the RLS DA DFE.

Fig.4.11 compares the complexity in computation of DFE tapsg the proposed
approach and the approach in [28]. The comparison is mad&nmstof the number of
real multiplications required per sample, for differentFHlength K. It is seen that, as
K increases, the computational complexity of the proposgdogzh grows linearly and

becomes much lower than that of the approach in [28].
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Figure 4.10: BER performance of the DFEs over long time-vayyghannelsy = 1 —
1074, M =101, K = 201, B = 101, M, = 16, A = 1, L = 300.
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Figure 4.11: Number of real multiplications required fomngautation of DFE taps per
sample for different FFF length: M = 101, B =101,l = K — 1.
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4.8 Conclusions

In this chapter, we have proposed a CE based adaptive DFE widmplexity as low as
O(N, (I + 1)log,2(1 + 1)) real multiplications per sample, whefrés the equalizer delay
and N, is the number of iterations such thslf, < [. We have also presented a complex-
valued RLS adaptive filtering algorithm that is preferabletfee channel estimator used
together with the proposed DFE, as well as a complex-value® Rlgorithm used for
both the channel estimation and computation of the DFE tepthe proposed DFE, the
DCD iteration is used in both channel estimation and comjmutadf the equalizer taps.
In such a case, most of the multiplications involved in theapatation of equalizer taps
can be replaced by bit-shift operations, which makes thelespr attractive for hard-
ware design. Simulation shows that, even with a small nurabét,, the proposed DFE
significantly outperforms the DA DFE and performs very clts¢he known CE based
DFEs. However, the proposed DFE also involv@&V, (I*> + [ log,2l)) real additions
per sample, which is still computationally consuming ingbice, especially for channels
with large delay spreads, such as the underwater acoustimels. In the next chapter,
we will derive an even lower complexity method for recursteanputation of CE based
DFE taps.
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In the previous chapter, we have presented a partial-upztatenel-estimate (CE)
based adaptive decision-feedback equalizer (DFE), whashahcomplexity as low as
O(N,l 10g,2l) real multiplications per sample, whetds the equalizer delay and,
is the number of updates per sample such tNat < [. However, it still requires
O(N,(I*> +1log,21)) real additions per sample. In this chapter, we propose amlewer
complexity method for recursive computation of CE based Ddffs.t The proposed DFE
exploits DCD iterations and is especially efficient when #eursive-least-squares DCD
(RLS-DCD) algorithm is used for channel estimation. Simolatiesults show that the
proposed DFE performs close to the CE based DFE, where the Cfaismed using the
classical RLS adaptive filter and the equalizer taps are ctedpaccording to the mini-

T. Chen, Ph.D. Thesis, Department of Electronics, University of York 2011
69



CHAPTER 5. PARTIAL-UPDATE CHANNEL-ESTIMATE BASED ADAPTIVE DECISION
FEEDBACK EQUALIZER: APPROACH 2 70

mum mean-square error criterion.

This chapter is organized as follows. In the next sectionp&aduction is given. Sec-
tion 5.2 introduces assumptions made for deriving the glampdate DFE. In Section 5.3,
the partial update DFE is derived. Section 5.4 presents rnioaheesults that demonstrate
the performance and computational complexity of the pred@3FE against known tech-

niques. Finally, Section 5.5 draws conclusions.

5.1 Introduction

In this chapter, we propose another novel CE based adaptigevidifich can operate
together with partial-update channel estimators (seeq7pband reference therein). At
every sample, only a few CE taps may be updated, and every sugitate involves only
one tap, e.g. the CE can be generated by a low complexity papiiate adaptive filter.
Every update of the equalizer involves one tap in the feediad filter (FFF) and one tap
in the feedback filter (FBF). The proposed DFE exploits comyptued DCD iterations
and has a complexity as low &4 N, K') + O(N, B) + O(N, M) operations per sample,
whereK is the FFF lengthp the FBF length ) the channel estimator length, ang the
number of updates such that, << M. The proposed DFE is especially efficient when
the channel estimator also exploits the complex-valued Di€fations, e.g. such as in
the the complex-valued RLS-DCD adaptive filter that we havedhiced in Section 4.4.
Then all multiplications involved in the computation of thgualizer taps can be replaced

by bit-shift operations. This makes the equalizer attvadibr hardware design.

5.2 Assumptions

For computation of the DFE taps, we use the following assiompi which are essentially

the same as we introduced in 4.3. The difference is in assam$}.

1) In practice, as the time-varying channel is unknownnmdesﬁ(n) of the channel

impulse responsk(n) are used for computing the DFE taps.
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2) For every time sample, the channel impulse response estinﬁa(be) can be updated
N, times. We will be using index to indicate such an update. Correspondingly, the

sequence of normal equations to be solved for the equatipser(4.6) is now written as
TL)w(i) =¢(1), 1=0,1,...,nN,,.... (5.1)

For convenience, in this chapter, we (§e) to represent (i) in (4.6).

3) For every iteration, the convolution matrix (4.4) can be approximated as

H(i) - o (7) A fm@ A (5.2)
0 ho(7) ho(i)  hy(7)
0 L he(d)
har(i)
0 0 0 ‘(i)

4) For every iteration, the channel estimator updates only gn@)th, element irh (i)

as

A~

ilp(i) (1) = Ap(i)(i - 1) + Ah(i)'

5) For every iteration, only oneq(i)th, FFF coefficient irf (i) is updated as
Jaty (0) = fan i = 1) + Af (i),
and only oney (i)th, FBF coefficient ing(:) is updated as
97 (1) = gr@py (i — 1) + Ag(a).

The number of iterations for computing the equalizer tapsr & update of the channel
estimate can be made greater than one. This is a straigltfdrextension of the algo-
rithm described below. However, our simulation (not présérhere) has shown little

improvement in the equalizer performance compared to the agbone iteration.

6) We assume that the noise variamce and thus the signal to noise ratio (SNR) are

known.
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Table 5.1: Recursively solving a sequence of equations fopeation of equalizer taps
Step Equation
Initialization: €(0) = 0k +B)x1, €(0) = O(x4B)x1, W(0) = O(x 4 B)x1
fori=1,2,...

Find AT'(7) andA{ ()

Coli) = €(i — 1) + AL(i) — AT(i)W(i — 1)

SolveIl' (i) Aw = (y (i) = Aw(i), €(7)

w(i) = w(i — 1) + Aw(i)

AW |IN|PF

5.3 Partial-update DFE

We use (5.1) for computation of the equalizer tags). The sequence of equations (5.1)
can be transformed into a sequence of auxiliary normal @nsk (i)Aw (i) = {,(i) as
described in Table 5.1 (see [17]). In Table 5&l(;) denotes an approximate solution for
the weight vectow (i) obtained at iteration, €(7) is the residual vecto¢(i) = {(i) —
T'(i)w(i), AT(i) =T'(i) = T(i — 1), andA (i) = (i) — ¢(i — 1).

In Table 5.1, step 1 requires findingl'(:) which, in general, involves computation of
the matrixG(7) using (4.9) with a complexity oD ((K + M — 1)K?). Step 2 requires
O(K(K + 2B)) operations to computAI'(i)w(i — 1). Direct computation at step 3
requiresO((K + B)?) operations. Thus, direct computations according to ste{&
ble 5.1 would result in significant computational load. le flollowing, we show how

these operations can be simplified when using assumptieseipied in Section 5.2.

5.3.1 Computation of AT'(:)w (i — 1)

Let AG(i) = G(i) — G(i — 1), A(i) = H(i) — H(i — 1), then according to (4.7), we
have

AT() = | 2C0 A% (5.3)
“A(0) | Opus
Since
o f(i— 1)
Wii—1)= |———|, (5.4)
gi—1)
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from (5.3) and (5.4) we obtain

AGHEG—1) — AT (gl — 1)
~ADE(i—1)

AT(i)W(i — 1) =

(5.5)

Now, we derive expressions for computing the following vest AG(i)f(i — 1),

A()E(i — 1) andA” (i)g(i — 1).
Computation ofAG (i)f(i — 1): For computingAG (i)f (i — 1) we extend the approach
in Chapter 3 to the complex-valued case, and obtain a set oifsige equations (see the

derivation in Appendix C). We have

AG(@)E(i — 1) = AR (4)bpgaypiysx—1(i — 1)
+ AR(i)Crr—p(iy1:01—py i (0 — 1) + | AR PR — 1),
(5.6)

whereb,,;).,)+x—-1(i — 1) isakK x 1 vector whose elements are obtained by extracting
thep(i)thtop(i) + K — 1th elements from a vectds(i — 1); car—p()+1:00—p(i)+k (1 — 1)
is a K x 1 vector whose elements are obtained by extractingMhe- p(i) + 1th to
M — p(i) + Kth elements from a vectaf(i — 1). The vectord(i — 1) andc(i — 1) are

obtained using the following recursions:

b(i —1) = b(i — 2) + Af(i — 1)hla=V(; — 2)
+ Ah(i — 1)fPEDIG — 1) (5.7)

and

c(i—1)=c(i—2)+Af(i — Dalt-VG —2)
+ Ah(i — 1)fM=PE=D+ (G 1), (5.8)
wherehl?-D](; — 2) is a (K + M — 1) x 1 vector obtained by shifting elements of
h(i — 2) by ¢(i — 1) positions down, and the other elementshéfi—1! (i — 2) are zeros.

Definitions forfl?(~11(; — 1), ala-Dl(; — 2) andflM-»(~D+1(; — 1) are similar to that

of hleG-DI(; — 2. Elements of the vectai(i — 2) are given by

(i — 2) = hppmsr (i —2), m=1,..., M.
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Since we propose to use DCD iterations in both the channehastin and computation
of the equalizer taps)h(i) and Af(i) are power-of-two numbers. Therefore, all mul-

tiplications in (5.6), (5.7) and (5.8), required for comgtitn of AG(:)f(i — 1), can be
replaced by bit-shift operations.

Computation ofA (i)f(i — 1): Depending on the position(i), the matrixA (i) has
different structures as illustrated in Fig.5.1. Thus, thetar A (i)f(i — 1) is given by

A(i)f(i — 1) = Ah(i)x

fipoysi—p(yap2(i— 1), P <p(i) <1+2

f_z' k(-1
1—p(i)+3:5 (7 ) p(i) <1+ 2andp(i) < P

Y

O(B—K+i—p(i)+2)x1

o (5.9)
(p(i)—1=2)x1 . pl(i) > 1+ 2andp(i) > P

f1.5_piyrir2(i — 1)

O(p(iy—1-2)x1

~

f(i —1) ., l+2<pli)<P

| L OB-K-pi)+1+2)x1

whereP = B — K + 1+ 2.
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I-pi)+2 B

Ah(i)
B
' Ah(i)
K
(@ P <p(i) <l+2
l—p(i) +2 N
Ah(i)
N
B
Ah(i)
K
(b) p(i) <1+ 2andp(i) < P
K
Q@
AR(7)
B-@Q
Ah(i)
B-@
(¢) p(é) >1+2andp(i) > P
Q
Ah(i)
K
B-Q
Ah(i)
K

di+2<p@iE)<P

Figure 5.1: Structure of matriA(i); P = B— K+ 14+ 2, N = K — 1+ p(i) — 2;
Q=p()—1-2.
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Computation ofAH(z’)g(z’ — 1): According to Fig.5.1AH(z’)g(z’ — 1) can be repre-

sented as
~H, . ... S
A ()g(i—1)=Ah™(i)x
/-
0 —p(i)+2)x1

g(i— 1) . P<pli)<i+2

| O(k—B—11p(i)-2)x1

0(—p(i)+2)x1

N ) , p(i) <1+ 2andp(i) < P
g1k —14p(i)—2(1 — 1) (5.10)

Ep(i)—i-1:8(1 — 1)

., pt)>1+2andp(i) > P

O(K—Bap(i)—1-2)x1

| &p)—1-1p()-1+k—2(i — 1), [+2<p(i) <P

Note that with the DCD iterationi%(i) is a power-of-two number. Consequently, all
multiplications in (5.9) and (5.10) can be replaced by hiftoperations. Thus, the com-

putation of AT'(i)w(z — 1) is multiplication-free and division-free.

5.3.2 Computation ofT'()

According to (4.7), the matriX'(i) is defined byG (i) andH(i). The matrice<G (i) and
AG(7) are Hermitian Toeplitz matrices and thus defined by the fiotirons. Conse-
quently, for updating=(i) only the first column ofAG (i) needs to be computed. In this

column, only the first\/ elements are nonzero and given by

AG11(0) = 2R { AR @Dy (i = 1)} + 18,
AGLm@) = Ami)ﬁ;(i)—mﬂ(i - 1)
+ AR (0) iy pm—1 (i — 1), (5.11)

wherem = 2,...,min{M, K}. SinceAh(i) is a power-of-two number, all multiplica-

tions in (5.11) can be replaced by bit-shift operations.
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Forp(i) < 1+2, all elements in the first column & (i) are zeros. Therefore, for each
update of the channel estimate, only elemientp(i) + 3 in the first row of H(i) needs
to be updated. Fas(i) > I + 2, all elements in the first row df(i) are zeros, and only

elemenip(i) — [ — 1 in the first column offI(i) needs to be updated. Thus, we have

Hy g p(iya(i) = Dy (i), forp(i) <1+2,
ﬁp(i)—z—l,l(i) = ﬁp(i)(z’), for p(i) > 1 + 2.

5.3.3 Computation of DFE taps

The proposed technique for computing the equalizer tapsnmsrsarized in Table 5.2.
The computational complexity will depend on the iteratieehtnique used for solving
the equation’Aw = ¢, at step 10. With the DCD iterations, the equalizer taps are
represented a¥/,-bit fixed-point numbers within an amplitude interyalA, A}, whereA

Is a power-of-two number. When using the DCD iterations in lleghchannel estimation
and computation of the equalizer taps, the incremevit&), Af(i) and Ag(i) are also
power-of-two numbers. Multiplications by these numbens ba replaced by bit-shifts.
Therefore, the proposed approach for computing the DFEaspsesented in Table 5.2 is
multiplication-free and division-free. Table 5.2 shows ttomplexity of the computation

steps in terms of additions.

Table 5.3 presents a DCD iteration for updating one FFF tappard-BF tap.

5.4 Simulation results

In this section, we compare the performance of six DFEs asmarined in Table 5.4:

1) MMSE DFE (known decision).
For every time sample, the convolution matrixH (n) is formed using (4.4) and the
channel impulse respondgn) is perfectly known. The FFF vectdi(n) is found by
solving (4.14), and the FBF vectdi(n) is obtained using (4.12). Correct decisions are
perfectly known and used in the FBF.
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Table 5.2: Low-complexity computation of equalizer taps
Step Equation +

Initialization: i = 0, G(0) = 021k, W(0) = O(x 1 Byx1, €(0) = O(x 4+ Byx1:
b(0) = 01 ar—1)x 1, €(0) = O(x 4 ar—1yx1, H(0) = Opx k
forn=1,2,...
for k=1,...,Ny,
t=144+1

Use one iteration in the channel estimator and obi(if), A/(:) and positionp(s)
AGi)f(i — 1) = AR* ()bp(iypiy 4 k-1 — 1) 1K

+AR()Crr—p(i)+1:M—p(i)+k (0 — 1) + [Ah@E)*E( — 1)
ComputeA (i)f(i — 1) and A" (i)g(i — 1) using (5.9) and (5.10), respectively -

UseAG ()i — 1), A()E(i — 1) andA™ (i)g(i — 1) 2K

to represenAAT'(i)w (¢ — 1) according to (5.5)

Co = €(i — 1) + Ah*(i)e;_p(iy 42 — AT ()W (i — 1) 2(K+B)+1
ComputeAG (1 (4) using (5.11) and upda@ (M) (i) = G (i — 1) + AG(D)(4) AM — 2

H (i) = Hy (i — 1) andH®) (i) = A® (i — 1) 1

Forp(i) <142, Hyj_p(iy+3(1) = by (i),
and forp(z) >+ 2, Hp(i)*l*l,l(i) = hp(l) (l)

9 UseG (i) andH (i) to represenT” according to (4.7) —

10 SolveI'Aw = ¢, using Table 5.3 and obtait\ f (i), Aj(i), q(i), 7(:) ande(s) <8K +8B+6
11 Fa()(8) = Fqe (i = 1) + AF(6) andg. () () = (i) (i — 1) + Ag(3) 2

12 b(i) = b(i — 1) + Af()hlDI(G — 1) + AhG)FPDI () 2(K + M)
13 c(i) = c(i — 1) + AF@)ale®IG — 1) + Ah* (§)FIM—p@D+1](5) 2(K + M)

Total for each sample: 0 real mult. and< N, (20K + 10B + 8 M + 8) real adds.

2) RLS CE based adaptive DFE (known decision).
The time-varying channel is estimated using the classic& Rigorithm [4] with a for-
getting factor\, and for every sample, the convolution matrid(n) is given by (4.4).
The FFF vectoif(n) is found by solving (4.14), and the FBF vecto(n) is obtained

using (4.12). Correct decisions are perfectly known and uséte FBF.

3) RLS CE based adaptive DFE.
This is similar to the DFE in 2) except that the correct trait®d symbols are unknown;

the decisions on the symbols obtained from the equalizensed in the FBF.

4) RLS directly adaptive (DA) DFE.
In the DA DFE,TI'(n) and{(n) are estimated without explicit channel estimation using
the received data and known pilot or estimated data symbbks.equalizer taps are then

obtained by solving (4.6) using the RLS algorithm.

5) Proposed DFE (known decision).
The time-varying channel is estimated using the RLS-DCD #lgorpresented in Sec-
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Table 5.3: DCD iteration for solvinf Aw = ¢,,.

Step Equation +

Initialization: AW = 0(x 4 B)x1,€ = §g, @ = A/2,
Af(E) =0,A§(i) =0,a=1,d = [o, —a, jo, —jal
forp=1,2

1 if p=1,v=[R{el -} S{eT 1 }], 2K
q= argmaxm:l,mgk{\vm&
if g > K,theng + ¢ — K

2 ifp=2v= PR{E}T(+1:K+B} ${€£+1:K+BH' 2B
g = argmaxp—1,._sp{lvml},
if ¢ > B,thenqg + K +q— B,
if ¢ < B,theng + K +¢q

go to step 6 -

a+a+1l,a+ a/2,d=|a,—q,ja,—ja] -

if a > My, end the loop -

p = argmin{[~R{eq}, R{eq ), 2
—S{eq}, S{egt —al'q,q/2]}

if © > 4, then go to step 4

Aty = d, 1

e=e€—d, I 2K + 2B

if p=1, Af(i) = Ay andq(i) = q -

10 if p=2,Ag(i1) = Awg andr(i) =g — K -

e(i) =€

(o200 &) B 0 SN I OV ]

Total: 0 real mult. and< 8 K + 8 B + 6 real adds.

tion 4.4. For everyi, the equalizer taps are obtained using the algorithm ineTat.

Correct decisions are perfectly known and used in the FBF.

6) Proposed DFE.
This is similar to the DFE in 5) except that the correct detisiare unknown; decisions

obtained from the equalizer are used in the FBF.
In the simulation, we consider four time-varying channels:

1) Short time-varying channel (Jakes’ model).
The channel has a uniform power delay profile of length= 21 and path variancé/M .
For modeling the time variation, the Jakes’ model as desdrib [57] with a normalized
Doppler frequency (ratio of the Doppler frequency to the bghrate) of f; = 10~ is
used.

2) Long time-varying channel (Jakes’ model).
The channel of length/ = 101 has a sparse power delay profile withnon-zero paths of
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Table 5.4: DFEs used in the simulation

) = Convolution Computation of | Computation of
Algorithm Channel Decision ]
matrix H(n) FFF taps FBF taps
MMSE . solving (4.14) .
o known known formed using (4.4) . using (4.12)
(known decision) directly
RLS CE estimated . solving (4.14) .
. . known formed using (4.4) . using (4.12)
(known decision) using RLS directly
estimated . . solving (4.14) .
RLS CE . estimated| formed using (4.4) . using (4.12)
using RLS directly
. . ) estimated estimated
RLS DA not required estimated not required . .
using RLS using RLS
Proposed estimated ) ) )
. . known formed using (5.2)| using Table 5.2| using Table 5.2
(known decision) | using RLS-DCD
estimated ) ) ) )
Proposed . estimated| formed using (5.2)| using Table 5.2| using Table 5.2
using RLS-DCD

variancel /11. Delays of the non-zero paths are randomly generated foy simulation
trial. The Jakes’ model with a normalized Doppler frequenty, = 10~ is used to

model the channel time variations.

3) Long time-varying channel (autoregressive model).
This is similar to the channel model 2). However, for modglihe channel time vari-
ations, we adopt the first order autoregressive model giveh(b) = /v h(n — 1) +
V1 —v w(n) [54], where,/v is the autoregressive factor aadn) are zero-mean inde-

pendent random Gaussian vectors, whose elements haveosirjd/; v = 107,

4) Underwater acoustic channel.
The time-varying underwater acoustic channel is modeletkasribed in [58] for a deep-
water environment. In this scenario, the receiver is statip at a depth of 400 m and the
transmitter is moving at a speed @f at a depth of 200 m. The initial distance between
the transmitter and receiver is 40 km. The delay spread othla@nel is about 150 ms
and a channel estimator of lengilh = 201 is used. An example of the channel impulse

response is shown in Fig.5.2.

In all the simulation scenarios, QPSK symbols are transuhitin channels 1 to 3, these
are baseband symbols. In the underwater acoustic chaheealymbols are transmitted at
a carrier frequency of 3072 Hz and the symbol rate is 1024 He.r&ceived signal is first
transformed to a baseband signal by a carrier frequenclyastubunting for the speed of

the transmitter. The baseband signal is further resamplé¢ake the time compression
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Figure 5.2: An example of the underwater acoustic channglise response.

caused by the transmitter motion into account. The basetemadnpled signal is used for

the equalization.

For every signal to noise ratio (SNR), the bit-error-rate (BER)omputed by averag-
ing over400 simulation trials. For each trial, 2000-length data sequence of unit power
is transmitted, which contains a sequencéd.gdilot symbols followed by2000 — L in-
formation symbols. In the CE based DFEs, channel estimagefirsir obtained from the

pilot symbols and then from the equalized data symbols.

Fig.5.3 compares the BER performance of the six DFEs in a sicewéh the short
time-varying channel. For each SNR, the RLS forgetting faisti@hosen in the interval
0.988 < X < 0.997, so that the minimum BER is achieved. The MMSE (known dec)sion
DFE that possesses the perfect channel knowledge and eseegdtransmitted symbols
to feed the FBF provides the best performance. The RLS CE DFEMkmzcision)
that also uses the true transmitted symbols in the FBF, buma&ists the channel, has an
inferior performance by about 1 dB at BERLO~*. The proposed DFE (known decision)
with N, = 4 demonstrates almost the same performance as the RLS CE DF&ENnkno
decision). When the FBF is fed by decisions made by the equatize performance
of the proposed DFE witlv, = 4 and N, = 8 is almost the same as that of the RLS
CE DFE and about 1.3 dB inferior to the MMSE (known decision)@# BER= 10—,
With N, = 2 updates, the proposed DFE is inferior to the RLS CE DFE by ds &1
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Figure 5.3: BER performance of the six DFEs in the short tiragmng channels (Jakes’
model): f; = 107%, M = 21, K = 41, B = 21, M, = 16, A = 1. The number of pilot
symbols for the RLS DA DFE i = 600; for the other DFESL = 100.
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Figure 5.4: BER performance of the DFEs in the long time-vayychannels (Jakes’
model): f; = 107%, M = 101, K = 201, B = 101, M, = 16, A = 1. The number of
pilot symbols isL. = 300.

0.5 dB. Thus, in this scenario, the proposed DFE wWth= 2 updates provides a BER
performance which is very close to that of the RLS CE DFE. Theatiadaptation DFE

is inferior to the proposed DFE witN,, = 2 by about 1.9 dB. Note that the RLS DA DFE
also requires a much longer pilat & 600) than the other techniques & 100).

Fig.5.4 compares the BER performance of the DFESs in a scewéhidhe long time-
varying channel. The RLS forgetting factor is chosen witlhia interval0.988 < \ <
0.997 to achieve the best BER performance. The performance of tgoped DFE with
N, = 4is very close to that of the RLS CE DFE. However, at BER0*, the proposed
DFE with N, = 2 is inferior to the RLS CE DFE by about 1.5 dB.

Simulation results for the autoregressive model of the obhwaariations, shown in
Fig.5.5, are similar to that in Fig.5.4 with a common shiftloé BER curves towards the
lower SNRs. We do not show results for the RLS DA DFE due to iteiBgantly low

performance compared to the other DFEs.
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Figure 5.5: BER performance of the DFEs in the long time-vagyhannels (autoregres-

sive model)w = 1074, M = 101, K = 201, B = 101, M, = 16, A = 1. The number of
pilot symbols isL. = 300.

Fig.5.6 compares the BER performance of the RLS CE and propoBé&s i the
scenario with the underwater acoustic channel. Again,dche&NR, the RLS forgetting
factor is chosen within the interval988 < A < 0.997 to minimize the BER. This is
a channel with a high multipath spread (we ugle = 201 in the channel estimator)
and, consequently, the lengths of the FFF and FBF increage+0401 and B = 201,
respectively. In this case, the performance of the prop&de approaches that of the
RLS CE DFE withN,, = 16, higher than in the previous scenarios.

It can be seen that the increase in the channel length recuipeoportional increase
in the number of updates,, in the proposed DFE to approach closely the performance of
the RLS CE DFE. However, in all the cases, we still can seeXhak M.

We now analyze the complexity of the proposed DFE in comparis the complexity
of the MMSE DFE where the DFE taps are computed using thedakhique proposed
in [28]. We take into account the complexity of computing #wualizer taps and also
the equalization (FFF and FBF filtering). Note that the pregoBFE requires no mul-
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Figure 5.6: BER performance of DFEs in the underwater acogsénnel:M = 201,
K =401, B =201, L =500, M, =16, A =1.
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Figure 5.7: Complexity of computing DFE taps and equalizafar the short channel
against the FFF length’; M = 21, B = 21, M, = 16.

tiplications for computing the equalizer taps; howeveeg ttumber of additions can be
substantial. Therefore, we analyze both the number of piigliitions and number of ad-
ditions in the DFEs. For the proposed DFE, we use the uppeandon the number of
additions given in the lowest row of Table 5.2. For the MMSEEJR8], the number of
additions involved in the computation of the DFE taps is anshme order as the num-
ber of multiplications. Thus, only the number of multiplicas in the MMSE DFE is

considered.

Fig.5.7 shows the number of operations per sample as a «unofithe FFF length
K for the short channel case; the other parameters of theiegrgaare as shown in the
caption to Fig.5.3. It can be seen that the number of mutagilons in the proposed
DFE (which are only used for the equalization) is signifibatawer than the number
of multiplications in the MMSE DFE. FoK = 41 (as used in the simulation above in
Fig.5.3), the difference is approximately 40 times. Assumthat the number of additions
required by the MMSE DFE is the same as the number of mulépbas, we notice that
the proposed DFE requires fewer additions than the MMSE DyBHout 4 times for
N, = 2 and about 2 times foN,, = 4, when the performance of the two equalizers is
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Figure 5.8: Complexity of computing DFE taps and equalizafiar the long channel
against the FFF length’; M = 101, B = 101, M, = 16.

similar. The significant reduction in the number of multgaliions is beneficial when a
hardware design platform such as the FPGA platform is usdth Mtrease in the FFF
length, the proposed technique shows more significant tieshuio complexity compared
to the MMSE DFE.

Fig.5.8 shows the complexity of the two equalizers for theglchannel case. In this
case, fork’ = 201 as used in the simulation above (see Fig.5.4), the propesbaitjue
allows reduction in the number of multiplications by abo003imes. The number of
additions for/V,, = 8, that provides almost the same performance for the two exgus)
is about 3 times lower than that of the MMSE DFE. With the iaseink, the difference

in the complexity also increases.
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5.5 Conclusions

In this chapter, we have proposed a novel low complexitynegre for computation of
equalizer taps in the channel estimate (CE) based decisdbdek equalizer (DFE). The
proposed technique operates with partial-update chamstiehaors, such as RLS-DCD
channel estimator, and based on the dichotomous coordiaatent (DCD) iterations that
allow the equalizer tap computation to be multiplicatioeefand division-free. Thus, this
technique is very attractive for design on hardware platksuch as the FPGA platform.
The complexity of the proposed technique is upper bounded glue of O(N,K) +
O(N,B) + O(N,M) operations per sample. We have applied the proposed DFE and
known DFEs to two time-varying Rayleigh fading channel medmtd a time-varying
underwater acoustic channel model. The simulation rekalie shown that withv,, <
M, the proposed DFE provides the BER performance similar toofitae RLS CE DFE.
Up to this point, we have investigated low-complexity chalrgstimation and CE based

equalization techniques for underwater acoustic comnadioias.
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Localization is important for underwater acoustic comngations in many aspects.

For example, by knowing the location of the transmitter amel acoustic fields, time

synchronization can be easily achieved at the receiver.ntferwater sensor networks,

distributed sensors are used to collect specific data wrdohbe meaningless if the lo-

cation of the sensor is unknown. Global positioning syst&i$) [86] which uses radio

frequency is a well-known technique for terrestrial lozation. However, since radio

frequency are severely attenuated in underwater [3, 87§ Gih not be used for under-

water source localization. Acoustic waves which can prapagver very long distances
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in underwater have been considered as the most robust asibblé&aarrier for under-
water source localization [8, 10]. Many beamforming teqgueis [88—90] which rely on
time differences of arrival and direction of arrival estiioa, have been developed for
terrestrial acoustic source localization. However, mdshese techniques are based on
plane wave signals which are usually not the case in the owaseguide [91]. This is
mainly due to the characteristics of underwater acoustamohls, such as variable speed
of sound, and unavoidable movement of the source and redéiv8]. Matched-field
processing (MFP) [32, 91] which explores the spatial coxipés of acoustic fields in
an ocean waveguide to locate sources has attracted mudraieseterest in the past
few decades. It does not rely on plane wave signals and m@e\ddperior performance
than plane wave methods for underwater source localizg8dh Due to bandwidth
limitations of underwater acoustic channels, receiveesrequired to process broadband
communications signals. Therefore, in this chapter, werdezested in broadband MFP

techniques [33, 37, 38, 92] for underwater acoustic sowcaization.

This chapter is organized as follows. In the next sectionpanduction is given. In
Section 6.2, the data model is described. In Section 6.3nttehed-phase coherent MF
processor is introduced and the cross-frequency incoherenessor is reviewed. The
PDS algorithm and the frequency estimation technique d@reduaced in Section 6.4 and
Section 6.5, respectively. Application of the proposedcpssor to experimental data is

presented in Section 6.6. Finally, Section 6.7 gives c@ichs.

6.1 Introduction

Matched-field processing (MFP) has been widely used in oeeanstic applications,
such as source localization [37,93] and estimation of ogeaameters [94, 95]. For lo-
cating an acoustic source, the MFP computes a set of modetedtz fields, "replicas”,
at a hydrophone array. Each replica is produced for a péati@ource location in the
underwater environment of interest. The measured acdigdtic "data”, collected by the
real hydrophone array is then matched with each of the &pli€his produces an ambi-

guity surface, which shows the correlation between eacheofdéplicas and the data. The
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peak in the ambiguity surface should indicate the true sopasition, where the replica
and the data are well correlated, provided that the propagatodel used to generate the

replicas is accurate.

Broadband (or multi-frequency) MFP has been actively ingagtd in the past two
decades [33-38, 92, 96]. Coherent combining of ambiguitfasas obtained at different
frequencies provides better performance compared to @reohcombining. In scenarios
where an acoustic source transmits sound at multiple frezjeg, phases of the source
frequencies contribute in the measured acoustic data. fiasepshifts between different
frequencies should be compensated before the MFP; howieegrare often unknown. In
order to compensate for these phase shifts, a matched-pblaseent processor was pro-
posed [38]. This processor has been shown to outperfornn attvanced MF processors,
especially when the ambient noise level and environmentatish are significant [38].
A cross-frequency processor, which can be seen as an irgh@rsion of the matched-
phase processor, is then proposed in [39]; it has been sh@tthis processor provides

similar maximum of the ambiguity surface as the matchedseltaherent processor.

In [38], it was proposed to search the phase shifts by usiagitmulated annealing
algorithm, which is well known for its ability for solving gbal optimization problems
while having high computational complexity. Although éifént approaches have been
proposed to reduce the complexity [40,41], itis still veigthand increases dramatically
as the number of free parameters increases. This prevemidtaneous processing of
many frequencies, and thus, limits the processor perfocmaRurthermore, for most of
the simulated annealing methods, it is found to be exhayistirdetermine some algo-
rithm parameters such as the initial temperature and thingogchedule, which need to
be carefully set. For all these reasons, we propose to sd#achatched phases by using
a novel iterative technique, the phase descent search @@ajthm [97] which is based
on coordinate descent iterations with respect to the unknomases and constrains the
solution to have a unit magnitude. Since coordinate desg@imrhization is mainly appli-
cable to solving convex problems, it is not clear how it wilhave in application to the
phase search problem which has been considered as a glainailzagion problem [38].

In this work, we investigate the application of the PDS aildpon to this problem and show
that it can obtain matched phases similar to that obtaingtdgimulated annealing. The
PDS algorithm has significantly lower complexity as compasgth simulated annealing
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methods, and thus, enables searching matched phases fgeanlanber of processed
frequencies. This can significantly improve the processofopmance. In addition, the
PDS algorithm is simple for practical implementations siatl the algorithm parameters

can be easily chosen.

For localization of a fast moving acoustic source, freqyerarrection is required, in
order to capture the information on the shifted transmis$iequencies before applying
MFP. In this work, we employ a frequency estimator with dimous search of peri-
odogram peak [98] for estimating the transmitted frequesan the received data. Due
to the fast movement of the source, in order to achieve atziloealization at each time
instant, a short data record (a few short snapshots) hasusdukfor MFP. Thus, the abil-
ity of an MF processor to solve the localization problem vétehort data record is very
important. We apply the proposed MF processor to the dataatet in the SWellEx-96

experiment using as short &second snapshots and show accurate localization results.

Notations:In this chapter, we use capital and small bold fonts to den@tices and
vectors, respectively. For exampl,andd represent a matrix and a vector, respectively.
Elements of the matrix and vector are denotedras, andd;. A pth column ofR is
denoted aR. df is the Hermitian transpose of the vecir diag{R} denotes a
vector whose entries are diagonal element®ofOther notations used throughout this

chapter are defined when considered.

6.2 Data Model

We consider a single acoustic source transmitting soundutiipte frequencies, and the
source position can be characterized by range and depthddtaemodel for the signal

received by théth hydrophone of aid/-hydrophone array at frequencyis given by
di(w) = hi(w)s(w) + €;(w), (6.1)

whered;(w) is the measured acoustic pressuréy) is the channel transfer functiosw)
is the source signal, and(w) is a zero-mean stochastic process representing additive
observation noise. We can define vecth(s) = {h;(w)}, ande(w) = {e;(w)}Y, for

the channel transfer function and the additive observatmee, respectively. The data
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model can then be represented by
d(w) = h(w)s(w) + e(w), (6.2)

whered(w) = {d;(w)}, is a "data” vector containing the measured acoustic pres-
sure field at thel/-hydrophone array. We also define a complex-valued "replieator
p(w,x) = {pi(w,x)}i]\il which contains the modeled acoustic pressure field af\fhe
hydrophone array, wherg(w, x) is a modeled solution to the acoustic wave equation at
the:th hydrophone for a source locatedsaand transmitting acoustic signal at frequency

W.

6.3 Broadband matched-field processing

In this section, we review the single-frequency Bartletigessor and its extension dealing
with multiple frequencies, the multi-frequency cohererdgessors. Then the matched-
phase coherent processor which requires searching thepbgthe replica is considered,
and an alternative expression of its ambiguity functionaewed. Finally, the incoherent

version of this matched-phase processor called the cregsincy incoherent processor

is also considered, which does not require any phase search.

6.3.1 Single-frequency Bartlett processor

The single-frequency Bartlett processor is an MF procesbaiwaverages the projection

of the data vectord(w) at radial frequencw on the normalized replica vectar(w, x)

= p(w,x)/|p(w,x)| at radial frequencyvs and spatial coordinate. It produces the

ambiguity function [33]

<‘dH(w)u(w,x)‘2>T
tr [D(w)]

where we denoté . .)r as the time average; [A] as the trace of a matriX, andD(w) =

(d(w)d"(w)),.. By defining a normalized covariance matbXw) = D(w)/tr [D(w)],

(6.3) can be written as

Bp(w,x) = (6.3)

Bp(w,x) = u” (w, x)K(w)u(w, x). (6.4)
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6.3.2 Matched-phase coherent processor

In [38], the coherent broadband MF processor is defined basdde single-frequency

Bartlett processor (6.4) but taking account for the nonzéiasp difference between fre-

)

quencies. Itis given by [38]

BC(X) = <

L
1 dH n n»y id
ZZ (wn)u(w X)emn
n=1

Vir [D(wn)]

L
1 s
= 72 Z uﬁKmmune](‘z’"_‘%), (6.5)
m,n=1
where 4 a4
Ky = K(womion) = o))y (6.6)
\/tr [D (wm)] \/tr [D (Wn)]
~ ~ L
u,, = u(w,,x). Here the phase estimatg¢s= {qﬁn} are given by
n=1
L
h = argmax u (x)K,, o, (x) el @n—9m) , 6.7
¢ = argmas {mZ (Kot () 67)
where¢ = {¢n}£:1. Equation (6.5) can be divided into two terms as
1 L
BC(X) = ﬁ [ ugKm,mum
m=1
L ~ ~
+ Z uT}iKm,nunej(¢n_¢m)] ) (68)
m#n

where the first and second terms are the summation of awjodrney components and

the summation of cross-frequency components, respectivel

In [38], for a matched-phase coherent processor, it is @egdo use only the cross-
frequency components. The processor proposed is defineddang to the second term

of (6.8):
1

L
E H j(dn—dm)
Kmn n J y 6.9
L(L . 1) u,, s u,e ( )

m#n

BM<X) =

~ ~ L
where the phase termg = {¢n} are estimated by using (6.7). It has been shown

n=1
in [38] that by using only the cross-frequency componeriis, grocessoi3,,(x) has
better performance than the coherent broadband procékset), especially when the

ambient noise is significant.
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In order to find the phase terngsin (6.7), the maximization is performed simultane-
ously with respect to both the phasés and the location search grid It is only possible
to directly search over the location grid and relative peasgith sufficiently high resolu-
tion for a few frequencies( < 3) [38]. For a larger number of processed frequencies,
it was proposed in [38] to search the relative phases usimgithulated annealing. It is
well known for its ability for solving global optimizationrpblems while having an ex-
tremely high computational complexity (The maximum numtigsrocessed frequencies
considered in [38] was). For searching the matched phases, we propose to use a much

more efficient phase search method, the phase descent §eBx8halgorithm [97].

In order to apply the phase search algorithm to the matchedegprocessor, we find
that it is useful to derive an alternative expression for aémebiguity function of the

matched-phase processor (6.9), which can be rewritten as

L
1 .
Bu) = T [Z s

m,n=1

L
-y ugKmmum] . (6.10)

m=1

We introduce a matriR and a column vectdﬁ, whose elements are defined as
Ry =K, u, (6.11)

and
by, =% n=1,... L, (6.12)

respectively. Equation (6.10) can then be expressed as

Bu(x) = {BHRB - [R]} . (6.13)

L(L—-1)
The phase search problem in this matched-phase processtirerabe interpreted as the
problem of finding a vectds by maximizing the quadratic function given by the first term
of (6.13):

b=arg max {b"Rb} . (6.14)
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6.3.3 Cross-frequency incoherent processor

The cross-frequency incoherent processor proposed inrf&Bjces the computational
load at the cost of reducing the capability of suppressidglsbes but still can obtain
the same maximum output @f,, as the matched-phase coherent processor. Instead of
searching for the matched phases over the location griccfoeging the maximum output
of B, in (6.9), it takes the modules of the quadratic terms acresgiency, which results
in

1

m#n

Bx(X) =

6.4 Phase descent search algorithm

The PDS algorithm is based on coordinate descent iteratitnese coordinates are the
unknown phases, and a constraint forcing the solution te hawnit magnitude. Elements

of the solution vectob are given by
by=¢e" " n=1,...,L, ¢, €[, 7] (6.16)

The coordinate descent iterations are applied to the phasasd the PDS algorithm is
derived by applying the dichotomous coordinate descentoagtl6] to the optimization
problem (6.14) with elements, from (6.16).

We can describe the PDS algorithm as shown in Table 6.1 [97¢. algorithm starts
with initialization of the solution vectdb = by, a phase vectap = ¢,,, a residual vector
r = —Rby where elements of the matrRR are defined by (6.11), a step-size parameter
B = By wherefs, € [0,27], and an indexa = 0 which denotes “successful” iterations.
For eachn = 1,..., M,, the step-size is reduced 4 A5, 0 < A < 1 and a vector
0 is computed byd = diag{R} [l — coq5)]. The parametei, indicates the number
of reductions of the step-sizé For thepth element of the solution vectbr, wherep is
chosen in a circle order = 1,..., L, the element, might be updated als,; = /%»?
whereg, | = ¢, + 3, 0rb,» = e’»2 wheregp, , = ¢, — 3. Thus, we havd; = R {Ajr,}
whereA, = b, — by, or Tp, = R{Ajr,} whereA, = b,, — b,, respectively. If one of

the inequalitie®, > T} or 6, > T, is satisfied, the iteration is successful, and thus, the
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Table 6.1: Phase Descent Search Algorithm

Step Equation
Init. | b =bg, ¢ = ¢y, r = —Rbg, 8= Fy,n =0
1 form=1:M,
2 B+ A3
3 6 = diag{R} [1 — coqp)]
4 Flag=0
5 forp=1:L
6 $p1 = bp + B bpy = eI
7 Ay =by1 — by, Th =R{ATr,}
8 if 0, > T
9 n<n+1,Flag=1
10 r<r—AR®P
11 bp = Pp1,bp =bp1
12 Pp2 = bp — Brbpa = e/¥r2
13 Ag =bpo—by, To = R{Asr,}
14 if 0, > T
15 n<+<n+1,Flag=1
16 r<r—A,R®
17 Gp = Op2,bp =bpo
18 end the loop ovep
19 if n > N, the algorithm stops
20 if Flag = 1 go to stept
21 | endthe loop ovem

indexn is incremented, the phasg, the element,, and the residual vecterare updated
as¢, = ¢p1, b, = by1 andr < r — A RP or ¢, = ¢, 9, b, = by andr < r — ARP),
respectively. Otherwise, they are not changed. The indexompared with a predefined
number of “successful” iterations,, for stopping criterion. The choice &%, A and M,
defines the final phase resolutiog\*’; e.g., in the case of, = 27, A = 1/2 and
M, = 5, the final phase resolution /2™ = 7 /32.

6.5 Frequency correction

For localization of a moving acoustic source, frequencyexdron is very important. Due
to the movement of the source, the received signal suffera the Doppler effect. The
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frequencies received at the hydrophone array will be shidted the shifts are usually
unknown. We estimate these frequency shifts by using a érecyuestimator based on the
dichotomous search of the periodogram peak which provigeperformance similar to

that of the maximum likelihood estimator [98].

Since the source frequencies are transmitted simultaheadire frequency shifts
should be determined by the same compression factgiven by, = f/fo, where f
is the received frequency arfd is the transmitted frequency. Here, it is assumed that the
compression factor is constant within a snapshot. We cengidee different approaches
for choosing the reference compression factor and use fd® ME one which gives the
most reliable results. Fig. 6.1 shows the reference cormjume$actors obtained from the
data collected during the SWellEx-96 experiment by usimgéthree approaches.

1.002

LOOBTW ' o W

1.001

T
1st Approach
2nd Approach
3rd Approach

1.0005 \ 7

Compression Factor

0.9995 *

0.999 b

0.9985 I I I I I I |
0 10 20 30 40 50 60 70 80

Time (min)

Figure 6.1: Compression factorg., obtained from the data collected during the
SWellEx-96 experiment by using three different approaches

In the first approach, the frequency shifts are estimateelbas the periodogram aver-
aged over the receiver hydrophones. As a result, we obtatteagth vector of compres-
sion factors and a vector of corresponding signal-to-n@asies (SNRs), and denote the
compression factor and the SNR for thih frequency ag,, and SNR, respectively. The
compression factomes corresponding to the frequency with the highest SNR is ahose

for computation of all shifted frequencieges = 7, wheren = argmax,, {SNR, }.
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The SNR for each estimated frequency is computed by

B P(f) B
SNR =y g 640

whereP(f) is the signal power at the estimated frequerficand P(f;,) is the power at

the noise reference frequengy = f+ ex/Ts, e = [—2,—1,1,2],k = 1,...,4, T is the
length of snapshot. The reason for using these frequensiesise references is that they
are the nearest frequencies to the estimated transmissigneincies without containing
any signal information. The frequency stefil’; guarantees that frequencigscontain

purely noise components that are not affected by the trdtesrione.

In the second approach, the frequencies are estimated baskd periodograms ob-
tained from each receiver hydrophone. In such a case, fdr saapshot, we obtain a
M x L matrix of compression factors and a matrix of correspond@iNRs, and de-
note the compression factor and the SNR for #iie frequency at thenth hydrophone

as .., and SNR, ,,, respectively. The reference compression factor is coetpas
Tret = Z%Zl ,I;:1 Nimn SNRm,n/SNRsums where SNBum = 2%21 ,I;:1 SNRm,n

The third approach is almost the same as the second appexa@eipt that the reference

compression factor is chosen@g = 7, where[m, n] = argmaxg, ,j {SNR;, . }.

According to Fig 6.1, the first and third approaches providelar results with smaller
fluctuations compared to the second approach. The first apipie computationally less
expensive, and thus, is chosen to obtain the reference essipn factors for our MFP

analysis.

Fig. 6.2 shows SNR of the data collected at every 1-secornukbioafor the transmis-
sion frequencyd38 Hz during the experiment. We can see that, as the source isigov
towards the receiver array (see Section 6.6.1), the SNRasess steadily from abol
dB to 20 dB. As mentioned in [99], the source stopped transmittingcthrestant-wave
(CW) tones at the beginning, midway point, and the end of thektr&rom Fig. 6.2, we
can see the time periods when the source stopped transmiggich are the 2nd, 18th
to 20th, 22nd to 23rd, 39th to 40th, 57th and 60th minuteseftitita collected during the

experiment.
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Figure 6.2: Signal-to-noise (SNR) ratio of the data colldci¢ the frequency38 Hz
during the experiment.

6.6 Numerical results

In this section, we present results of application of theecteht matched-phase MF pro-
cessor using the PDS algorithm to the data obtained in thdlEX¥86 Event S5 exper-
iment. Brief description of the experiment, the source tras&d for the analysis and
the data collection are firstly presented. Then, the cohenaitched-phase MF processor
using the PDS algorithm is applied to provide range-deptbiguity surfaces and the
estimated range trajectories. The results are comparédht obtained by applying the

simulated annealing algorithm.

6.6.1 SWellEx-96 Event S5 experiment

The SWellEx-96 experiment was conducted in May 1996 temidrs off the coast of
San Diego in California. Details of the experiment can be tbum{99]. Fig. 6.3 shows a
map of the source track during event S5 and the location okiteiver hydrophone array,
a vertical line array (VLA) used for data collection. Duritige SWellEx-96 event S5
experiment, a shallow source at a supposed depth of 9 m argpasdarce at a supposed
depth of 54 m were towed along an isobath by a source ship [B8fing this event,
the source ship started its track from the south of the amaypaoceeded northward at a
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speed of abou?.5 m/s. Our analysis is based on the data collected on the VLAGlwh
consisted of an array of 21 hydrophones with unequal deghbisg betwee®4.125 m
and212.25 m. The sampling rate on the VLA is500 Hz.

WepE End at 75 min

Distance ~ 8.6 km

I
|
)
|
I
I
|
I
|

Start at 0 min

Figure 6.3: Map of the source track and the location of th&aadrline array (VLA).

The shallow source transmitted a setaones which spanned frequencies between
109 Hz and385 Hz. The frequencies of the set werel@9 Hz, 127 Hz, 145 Hz, 163 Hz,
198 Hz, 232 Hz, 280 Hz, 335 Hz and385 Hz. The deep source transmitted a tonal pattern
consisted of sets ofl 3 tones each. Each set spanned frequencies beti9gén and400
Hz. The first set of 3 tones which were projected at the maximum level were usediin 0
MFP analysis. The frequencies of the set weré%itiz, 64 Hz, 79 Hz, 94 Hz, 112 Hz,
130 Hz, 148 Hz, 166 Hz, 201 Hz, 235 Hz, 283 Hz, 338 Hz and388 Hz. Fig.6.4 shows the
frequency spectrum between Hz and450 Hz, which is obtained from the experimental

data.

A CTD (Conductivity, Temperature, and Depth) survey was cetetl during the
SWellEx-96 experiment to provide the water column souncedpata. A sound speed
profile as recommended by [99] is used in our MFP analysiss $bund speed profile
is plotted in Fig. 6.5. The seafloor is modeled by three laj@®$ the first layer is a
23.5 m thick sediment layer with an approximate densityl 6 g/cm’® and an compres-
sional attenuation of abo0t2 dB/kmHz. The top and bottom of this sediment layer have
compressional sound speedsl572.368 m/s and1593.016 m/s, respectively; the second
layer is an800 m thick mudstone layer with an approximate densit.66 g/cn?® and an
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Figure 6.4: Frequency spectrum obtained during the SWélEgxperiment.

attenuation of about.06 dB/kmHz. The top and bottom sound speeds of the mudstone
layer arel881 m/s and3245 m/s, respectively; the third layer is modeled as a halfspace

with a density of2.66 g/cn?, an attenuation of.02 dB/kmHz, and a sound speedi#00
m/s.

6.6.2 MFP analysis

In this analysis, the program KRAKEN [61] implementing themal mode method was
employed to compute the replicas with the resolution(in in range and m in depth.
The three-layer seafloor model as described in Section &r&élthe sound speed profile
in Fig. 6.5 were used for computation of the acoustic fielde Wratched-phase coherent
processor (6.13) was employed. The PDS algorithm as surnadaim Table 6.1 with
A = 1/2, M, = 5 was applied for searching the matched phases. The data weted
into snapshots and only one snapshot was used in the MFP.

In order to show the importance of frequency correction tarating the acoustic

T. Chen, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 6. MATCHED-PHASE COHERENT BROADBAND MATCHED-FIELD PROCESSOR
USING PHASE DESCENT SEARCH 103

50 b

=
o
o
T
|

Depth (m)

150 b

200 b

Il Il Il Il
1485 1490 1495 1500 1505 1510 1515 1520 1525
Sound Speed (m/s)

C =1572m/s Density = 1.76 g/cm °
top
235m Attenuation = 0.2 dB/kmHz

Ch _— 1593 m/s

Figure 6.5: Sound speed as a function of depth generatedtfrefocal CTD cast during
the SWellEx-96 experiment.

source, we applied the proposed MF processor to the expetiaingata with and with-
out frequency correction. Fig. 6.6 shows the estimatededragectories for the deep
source by using the proposed MF processor with and withaufréguency correction.
The proposed MF processor was applied to the data collectedecond snapshots with
13 frequencies. With the-second snapshots, the frequency resolutidn2s Hz. With
the ship speed of abodts m/s, the maximum Doppler shifts are abOui8 Hz for the
lowest frequency49 Hz) and abou6.64 Hz for the highest frequencg&8 Hz). Without
the frequency correction, the high frequencies only cbatd noise, and thus, the MFP
fails to locate the source at the beginning of the experimehere SNR is low. Also,
from Fig. 6.6, we see that, with frequency correction, thepppsed MF processor always
provides accurate localization even at the beginning oeperiment. In the remainder
of this section, all simulation results were obtained wiite frequency correction.

We also implemented the adaptive simplex simulated amgpedASSA) proposed
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Figure 6.6: Range trajectory estimated by the MFP-PDS psocesingd-second snap-
shots and 3 frequencies with and without the frequency correction.

in [41] to the matched-phase processor for computing theclmedt phases, and com-
pared its performance and complexity with that of the MFPSRiDocessor. Fig. 6.7 and
Fig. 6.8 show the ambiguity surfaces obtained by these twogssors fob and13 pro-
cessed frequencies, respectively. We can see that the edapttase processor with the
PDS algorithm provides similar ambiguity surfaces as th&head-phase processor with
ASSA: the peak to sidelobe ratios read from Fig. 6.7 for trexessors arg.16 dB and
3.17 dB, respectively. The peak to sidelobe ratios read from E&a6e6.59 dB and6.55
dB, respectively. The matched phases obtained by using thaltyerithms are listed in
Table 6.2. We see that the phases obtained by the PDS algaaith very close to those
obtained by the ASSA.

We compared the computational complexity of the PDS and A&®@rithms by
counting how many times the quadratic folsf Rb was computed. For each point in
the location search grid, the quadratic form is computectan@ach iteration of the al-
gorithms, and this is the most computationally consuming glthe algorithms. These
counts were averaged over the number of positions in theitocgrid. When process-
ing 5 frequencies, the count for the ASSA algorithm is approxetyat2 times of that of
the PDS algorithm; specifically, they at899 and 116, respectively. When processing
13 frequencies, the ratio is higher; the PDS algorithm congbtite quadratic forn356
times, whereas the ASSA algorithm requirgib54 computations, i.e., the ASSA com-
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Figure 6.7: Range-depth ambiguity surfaces computed bygalmatched-phase coher-
ent processor with PDS; (b) matched-phase coherent praroggh ASSA.5 frequencies
(Hz): 112 130 148 166 201 were processed in both processors.

plexity was about6 times the PDS complexity. The difference is further inceebas the

number of processed frequencies increases.

Fig. 6.9(a)-(c) show the range-depth ambiguity surfacetioed by using the
matched-phase coherent processor with the PDS algorithdifferent numbers of pro-
cessed frequencies. For Fig. 6.9(a), the middieequencies at12 Hz, 130 Hz, 148 Hz,
166 Hz and201 Hz as used in [38] were processed. For Fig. 6.9(b),%tleequencies
which had the highest SNR were processed. For Fig. 6.9(¢theafrequencies in the first
set of tones were usetlsecond snapshot starting at flie minute of the experiment data
was processed. We can see that, as the number of procesgeenites increases, the
performance of the matched-phase coherent processor WEhaRyorithm is improved.
The peak to sidelobe ratios read from Fig 6.9 (a), (b) andrecaboutl .6 dB, 5.5 dB and
6.3 dB, respectively.
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Table 6.2: Phase shifts obtained by using PDS and ASSA #lgaosi
Phase shifts (in degrees) with respect to the phase

at frequencyl 12 Hz obtained fofs processed frequencie
PDS 0, —90, 135, 45, —56
ASSA 0, —89, 140, 49, —48

Uy

Phase shifts (in degrees) with respect to the phase

at frequencyt9 Hz obtained forl 3 processed frequencie

Uy

PDS 0,112, —124, 33, —56, —146, 78,
—11, —112, —112, 90, 101, 157
ASSA 0, 108, —129, 29, —63, —156, 74,

—16, —116, —118, 83, 97, 147
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Figure 6.8: Range-depth ambiguity surfaces computed byga)matched-phase coher-
ent processor with PDS; (b) matched-phase coherent parcegh ASSA. 13 frequen-
cies (Hz): 49 64 79 94 112 130 148 166 201 235 283 338 388 were processed in both
processors.
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Figure 6.9: Range-depth ambiguity surfaces computed byusatched-phase coherent
processors with PDS algorithm, for different numbers ofcpssed frequencies: (&)
frequencies (Hz)112 130 148 166 201; (b) 9 frequencies (Hz)112 130 148 166 201 235
283 338 388; (c) 13 frequencies (Hz)49 64 79 94 112 130 148 166 201 235 283 338 388.
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Figure 6.10: Range trajectory obtained by the MFP-PDS peacesith 5 and 13 pro-
cessed frequencies.

Fig.6.10 shows the range trajectory obtained by the MFP-P@8essor with 5 and
13 processed frequencies. We can see how increase in theenofrhe processed fre-
guencies improves the performance of the processor, thstifyjog the need to have a

computationally efficient algorithm for the phase search.

Fig. 6.11(a) and 6.11(b) show ambiguity surfaces obtaiyatiéb MFP-PDS processor
and the cross-frequency incoherent processor [39], régpc For both the proces-
sors, 13 frequencies were used and ohaecond snapshot starting at thi@ minute of
the experiment. It is seen that the proposed processorda®the same peak level as
the cross-frequency incoherent processor, which has bemms[39] to have the same
maximum of the ambiguity surface as the matched-phase enphprocessor using the
simulated annealing method. It is also seen that, the dregsiency incoherent proces-
sor gives a much wider peak in range and much higher sidelokies peak to sidelobe
ratios read from Fig 6.11(a) and (6.11(b) are alsbudB and0.3 dB, respectively.

Fig. 6.12 shows the range trajectory generated from the GSrdcorded during the
experiment [99] and the estimated range trajectories dtep source by applying the

matched-phase coherent processor with the PDS algorittihetenapshots of different
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Figure 6.11: Range-depth ambiguity surfaces computed Imgys) matched-phase co-

herent processor with PDS algorithBy,(x); (b) cross-frequency incoherent processor
BX (X)
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Figure 6.12: Range trajectory obtained from GPS measurenaantthe estimated range
trajectories for the deep source by applying the matched@lcoherent processor with
PDS algorithm to the data collected in different snapshugtle with 13 frequencies.

length. All the frequencies in the first set of tones were useastimating the source
trajectory. Due to the uncertainty about the corresponel@fidhe starting time of the
GPS measurements to the experiment data, the estimatesl trajertories were shifted

1 minute forwards to better match the shape of the GPS measutsifthe 2nd minute of
the experiment data corresponds to the 1st minute of the GRSurements). Estimates
of the range trajectories for those periods when the sotopped transmitting CW tones
were removed. From Fig. 6.12, we see that withs-second snapshots, the proposed
matched-phase processor failed to locate the source inrgiedi minutes of the ex-
periment and provided accurate localization afterwards Been that as with a longer
snapshot, the proposed matched-phase processor carefyrémisite the source at more
positions. We observe that the estimated trajectory obthby applying the matched-
phase processor tesecond snapshots is well matched to the GPS measuremdmss. T
Is because the SNR for the data collected.itb-second snapshot was much lower, espe-
cially when the source was far away from the receiver arraywéver, shifts of around
50 — 400 meters between the estimated trajectory and the GPS meanieare also
observed. These shifts were probably caused by the misnmetica bathymetry assump-

tions which were used for the calculations of the replicageported in [100,101]. These
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Figure 6.13: Range-depth ambiguity surfaces computed blyiagphe matched-phase
coherent processor with PDS algorithm to the data colleictelifferent snapshot length

with 13 frequencies: (a).25-second snapshot; (h)second snapshot.
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Figure 6.15: Depth trajectories for the shallow source aggpdsource obtained by the
MFP-PDS processor.
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shifts are found to be very close to those shown in the cormpaiof ranges estimated by
MFP with GPS measurements in [60, 102].

Fig.6.13 shows the range-depth ambiguity surfaces oltdp@pplying the matched-
phase coherent processor with the PDS algorithm to the ddexted in different snap-
shot length withl 3 frequencies. It is seen that with bdil25-second and-second snap-
shots, the proposed matched-phase processor precisatg tbe source. However, with
0.25-second snapshot, the peak value of the ambiguity surfaagghwidicates the source
position, is abouB.3 dB lower than that of ambiguity surface obtained witlsecond
snapshot. The peak to sidelobe ratios read from Fig 6.1 ¢hjl@ are aboui.3 dB and
4.8 dB, respectively.

Finally, Fig. 6.14 and Fig. 6.15 show the range trajectoaied the depth trajectories
for both the shallow source and deep source, respectivbigired by the MFP-PDS
processor. For locating the shallow sourtesecond snapshots with all the frequencies
were used. For locating the deep sourcsecond snapshots with all the frequencies in
the first set of tones were used. From Fig. 6.14, it is seenbibidt the estimated range
trajectories of the shallow source and deep source are thodee GPS measurements.
From Fig. 6.15, it is seen that the shallow source fluctuatetepth betweef m and18

m, and the deep source fluctuated in depth betvis@an and75 m.
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6.7 Conclusions

In this chapter, we have reviewed the matched-phase cahmeched-field processor
and introduced the phase descent search (PDS) algorithme toatched-phase coherent
processor for searching the matched phases. The PDS higastbased on coordinate
descent iterations with respect to the unknown phases arsiramns the solution to have a
unit magnitude. When compared with simulated annealingrithgo, it has significantly
lower complexity, which enables simultaneous processimgany frequencies, and thus,

improves processor performance.

The proposed processor has been applied to experimengdicdaource localization.
It has been shown that, by using the proposed PDS algorittematched-phase coherent
processor can process more frequencies, and thus, gitesatformance in reinforcing
the main peak at the source location while reducing the cliged. The estimated range
trajectory obtained by applying the processor to the ddtaated in everyl-second snap-

shot is well matched to GPS measurements.
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This thesis investigated the low-complexity channel eation, CE based equaliza-
tion and source localization techniques using DCD algorifomunderwater acoustic
communications. We have firstly derived an approach for emyence analysis of the
RLS-DCD adaptive filtering algorithm based on computationthwnly deterministic
guantities (Chapter 2). We have then proposed a low-contpl©& based adaptive LE
(Chapter 3), in which the computation of equalizer coeffitses multiplication-free and
division-free when using the DCD iterations for both chanestimation and equaliza-
tion. We have presented the complex-valued DCD iteratiomstha complex-valued
RLS-DCD adaptive filtering algorithm for channel estimati@hépter 4), and derived
two partial-update CE based adaptive DFEs (Chapter 4 and 8§),dbavhich operate
together with partial-update channel estimators, such é&-BCD channel estimator,
and exploit complex-valued DCD iterations to efficiently qmute the DFE coefficients.
Finally, we have investigated the application of MFP for emvdater acoustic source lo-
calization and introduced the PDS algorithm to the matgbiease coherent broadband

MF processor for searching the matched phases (Chapter 6).
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7.1 Conclusions

Chapter 1 has stated the motivations, objectives and catibiis of the whole work, and
briefly introduced fundamental techniques including the D&@orithm, time-varying
channel models and time-varying underwater acoustic alamodel, which are used
throughout this thesis.

Chapter 2 has presented a new approach for convergenceiaralyise RLS-DCD
adaptive filtering algorithm. The proposed approach is dasecomputations with only
deterministic quantities obtained from the second ordarssics. Deterministic expres-
sions for time dependent correlation quantities have bégaireed without involving any
stochastic processes and used to form the normal equaiidmfave derived determin-
istic equations for predicting the MSE and MSD learning esrof the RLS-DCD al-
gorithm. Simulation results have shown good agreementdsivihe predictions and

practical learning curves, although the predictions aneesghat optimistic.

In Chapter 3, we have proposed a channel-estimate (CE) baaptivadinear equal-
izer (LE) with a complexity as low a9 (N, (K +M)) operations per sample, whelkeand
M are the equalizer and channel estimator length, respbgtared IV, is the number of
iterations such tha¥V, < K andN, < M. The proposed technique exploits coordinate
descent iterations for computing the equalizer coeffisieMtoreover, we have shown that
when using the DCD iterations in both the channel estimatiwhesjualization, computa-
tion of the equalizer coefficients is multiplication-freedadivision-free, which makes it
attractive for hardware implementation. We have companedoerformance of the pro-
posed LE with that of the MMSE LE with perfect knowledge of tfennel and known
LEs over time-varying multipath channel. Simulation réshlave shown that, with only a
few updatesV,, per sample, the proposed LE outperforms the RLS directlytada{DA)
LE, and performs very close to the RLS CE based adaptive LE ais& ¢b the MMSE
LE.

In Chapter 4, we have introduced complex-valued DCD iterat@amd the complex-
valued RLS-DCD channel estimator, and proposed a partistepGE based adaptive
DFE with a complexity as low a® (N, (I + 1)log,2(l + 1)) real multiplications per sam-

ple, wherel is the equalizer delay and, is the number of iterations such that, < .
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The proposed technique operates with partial-update @hastimators, such as the RLS-
DCD channel estimator. It is assumed that every CE updateviesainly one channel
coefficient and every update of the equalizer involves only equalizer coefficient. The
proposed DFE has been implemented in both the conventiodamadified DFE struc-
tures. For the conventional structure, we have also prapasgmple recursive method
for computing the FBF coefficients, whereas the modified strecdoes not require com-
puting the FBF. We have compared the performance of the peolddBE with that of the
MMSE DFE with perfect knowledge of the channel and known DBty time-varying
multipath channels. Simulation results have show that eviéh a small number of up-
datesN,, the proposed DFE significantly outperforms the DA DFE, aadgms very
close to the RLS CE based DFE and close to the MMSE DFE. It is foladthe pro-
posed DFE also involve® (N, (I? + [ log,2l)) real additions per sample, which is still
computationally consuming for channels with large delagags, such as the underwater

acoustic channel.

In Chapter 5, we have derived another approach for recursivgpatation of CE based
DFE coefficients with even lower complexity. The proposedEDiperates with partial-
update channel estimators, such as RLS-DCD channel estjnaathrexploits DCD it-
erations. It is assumed that every CE update involves only abra@nel coefficient,
and every update of the equalizer involves one coefficierthefFFF and one coeffi-
cient of the FBF. The complexity of the proposed DFE is uppemided by a value of
O(N,K) + O(N,B) + O(N, M) operations per sample, wheféis the FFF lengthB
the FBF length M the channel estimator length, ang the number of updates such that
N, < M. We have shown that when using a channel estimator whichealsioits the
DCD iterations, such as in the RLS-DCD adaptive filter, all nplitations involved in
computation of the equalizer coefficients can be replaceditaghift operations, which
makes the equalizer attractive for hardware design. We appked the proposed DFE
and known DFEs to two time-varying Rayleigh fading channetieli® and a time-varying
underwater acoustic channel model. Simulation resulte Baown that withV, < M,
the proposed DFE provides the BER performance similar todtae RLS CE DFE, and
outperforms the RLS DA DFE.

Chapter 6 has investigated the application of the matchedepboherent MF proces-
sor for underwater acoustic source localization. We hatrediniced the PDS algorithm
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to the matched-phase coherent MF processor for searchengatched phases. The PDS
algorithm is based on coordinate descent iterations wipeaet to the unknown phases
and constrains the solution to have a unit magnitude. We $tawen that when compared
with simulated annealing algorithm, the PDS algorithm hgsiicantly lower complex-
ity, which enables simultaneous processing of many fregjeepand thus, improves pro-
cessor performance. The proposed processor has beendajgpégperimental data for
source localization. Simulation results have shown thatyding the proposed PDS al-
gorithm, the matched-phase coherent processor can pnowessfrequencies, and thus,
gives better performance. We also shown that the estimategertrajectory obtained by

applying the processor to experimental data is well matth&PS measurements.

7.2 Further Work

Based on this research, we have concluded the following stiggs for further work:

In this thesis, we have proposed a novel approach for coexmegganalysis of the
RLS-DCD adaptive filtering algorithms based on computatioits wnly determinis-
tic quantities. This approach can also be used for otherta@afitering algorithms
based on iteratively solving the normal equations with onenore iterations at a time
instant [76, 103-105]. Its applications to other adaptilterfng algorithms are worth to

be investigated.

The low-complexity LE and DFEs we have derived are symbaksd equalizers. Itis
known that fractionally-spaced equalizers can outperfsymbol-spaced equalizers due
to the fact that the actual bandwidth of the signal is soméVeinger than expected and the
sampling rate of the input signal should be increased inrdodsatisfy the Nyquist theo-
rem [106]. However, fractionally-spaced equalizers regjgven more computation. Itis
therefore interesting to extend our proposed low complexproaches to fractionally-
spaced CE based equalizers.

Multiple-input-multiple-output (MIMO) systems have retly drawn extensive re-
search interest in underwater acoustic communicationsci@ase the transmission data

rate over the acoustic channel, which is bandwidth-limitedithough many equal-
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ization techniques have been introduced for MIMO underwat®ustic communica-
tions [107-110], these techniques have not been considernde computational com-
plexity point of view. They might therefore be impracticaldedifficult for real-time im-

plementation. Extension of our proposed low-complexitgrapches to MIMO systems

can be promising.

The maximum likelihood sequence estimation (MLSE) eqealj211] is an optimal
equalization technique, which finds the minimum over allpbssible data sequences of
the log-likelihood function. The Viterbi algorithm [11140 be used to exactly solve this
minimization problem. However, it involves a computatibneamplexity which grows
exponentially with an increase of channel length. It is @fajrinterest to develop a low-
complexity MLSE-like equalizer by introducing a DCD baseglalthm for solving such

a minimization problem.

DFEs are known to suffer from error propagation due to thelldaek of error deci-
sions. Error correction coding techniques can help addnesssue and ensure low BER
performance. Many joint equalization and decoding teaesd112—-115] have been pro-
posed to improve the performance of the MMSE DFEs. Howeliesd techniques may
have some difficulty with sparse channels [116], and may bectonplex for hardware
implementation. Hence, it is interesting to investigate davelop a low-complexity joint
equalization and decoding approach by applying a DCD basggditim.

Although the underwater acoustic channel exhibits lardaydgpreads, it is typically
sparse. There has been increasing research interest ipgheasion of the sparse chan-
nel estimation techniques for underwater acoustic comaatioins [12—15]. The sparse
channel estimators are known to be simple for implementatiad only require a very
short training sequence. It is interesting to compare tted@iques with the RLS-DCD
channel estimator, which also takes into account the spaitsee of the channel. In [12],
it has been shown that by exploiting the natural sparsenfeg®eainderwater acoustic
channel, it is possible to ignore the small equalizer tagsabtain sparse equalization,
at the cost of slightly worse performance. Extension of coppsed approaches to the
sparse equalization techniques may further reduce the wiatignal complexity, which

makes it even more attractive for practical implementation
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The matched-phase coherent broadband MF processor usiBgigbrithm we pro-
posed in this thesis has been shown to provide accuratedatiah of a moving source
transmitting broadband signal, by using only one short shafp However, it cannot be
applied to locate multiple sources directly, since only strengest source will be rein-
forced as the main peak and all the other weaker sourcesevidepressed as sidelobes.
In underwater sensor networks [8], accurate and efficierdlimation of multiple sources
is highly desirable. It is interesting and worth to inveategghow the matched-phase ap-
proach can be applied to the multi-source localization lgmtio achieve high resolution

localization of sources with a small number of snapshots.
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Appendix A

Computation of F(i — 1)f;; (i — 1):
Approach 1

According to the definition oF (i —1) and the structure df (i —1) as shown in Fig.4.6(b),
F(i — 1) is a block of the channel convolution matrix. Therefdf¢; — 1)f,.,,1(i — 1) can
be computed by convolving the FFF tafps,; (i — 1) and a vectofi(i — 1) with elements
given by

(i — 1) = hppompr (i — 1), m=1,..., M. (A.1)

As aresult, (1 + 1) x 1 vector¢(i — 1) can be obtained, and we have
F(i — Dfia(i—1) = Gpiya1(i — 1) (A.2)

By applying the fast fourier transforms (FFT) [8%](i — 1)f1.,41(i — 1) can be computed
as shown in Table A.1, where{-} andf ~*{-} denote FFT and inverse FFT operations,

respectively, and denotes point-by-point matrix multiplication.
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Table A.1: Low-complexity computation & (i — 1)?1:“1(@' —1)

Step Equation X +
1 Extendh (i — 1) with zeros to lengti2(l + 1) 2(1+ 1)logy2(1 + 1) 2(1 + 1)logy2(1 + 1)
and computg {h(i — 1)}
2 Extendfy.; 1 (i — 1) with zeros to lengtt2(l + 1) | 2(1 + 1)log,2(l + 1) 2(1+1)logy2(1 + 1)
2 | and computg {f;.;41(i — 1)}
3 | Pli—1)=r{h*G—-1)}or{fiiG-1)} 2(1+1) -
4 o(i—1) = P> —-1)} 2(1+ 1)logy2(1 + 1) 2(1 4 1)logy2(1 + 1)
5 | Fi—Dfiugi(i—1) = ¢papura(i—1) - -
Total for each iteration: 2(1 + 1)(1 + 3log,2(1 + 1)) complex mult. and(I + 1)log,2(1 + 1) complex adds
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Appendix B

Computation of F(i — 1)f;; (i — 1):
Approach 2

According to assumption 5 given in Section 4.3, convolubbthe FFF tapé"(z‘ —1)and
the vectori(i — 1) can be computed recursively with a complex@yK + M), and thus,
F(i — 1)fi,.1 (i — 1) can also be obtained by recursive computation. Derivaticguch

recursion is given below.

According to the definition ofi(z — 1) in (A.1) and assumption 4 given in Section 4.3,
we have
u(i—1)=nu(i —2)+ Aua(i — 1),

where all the elements dfu(: — 1) are zeros, except
Adipr -1y (i — 1) = Ah(i — 1). (B.1)

We denote the convolution of the FFF tdffs — 1) and the vectofi(i — 1) as

pi—1)=u@—1)«f(@—1), (B.2)
and using the recursive expressionsii¢r — 1) andf(i — 1), we obtain
o(i —1) = [a(i — 2) + At(i — 1)] [f'(i —9) + Af(i — 1)]

= (i —2)+u(i —2) « Af(i — 1)
+AG(i— 1)« f(i — 1). (B.3)
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According to (B.1) and assumption 5, (B.3) can be rewritten as

@(i— 1) = (i — 2) + Af(i — DRI - 2)
+ Ah(i — 1)fPEDI(G — 1), (B.4)

wherep(0) = 05,1, hl?0-DI(; — 2) is a2K x 1 vector obtained by shifting elements
of h(i — 2) by (i — 1) positions down, and other elementstofi—)(; — 2) are zeros.
Definition forfP(=!(;—2) is similar to that ohl?—1)(;—2). Finally, F(i—1)f,,,1 (i—1)
can be obtained fromp(i — 1) as

F(i — Dian(i — 1) = (i — 1), (B.5)

whereyp(i—1) is computed using the recursion in (B.4). For each iteratitinis approach

requires only2(K + M) real multiplications an@( K + M) real additions. Moreover, as
we propose to use the DCD iteration in both channel estimatimhthe computation of
the FFF tapsAh(i) andAf (i) are power-of-two numbers for every Therefore, all the

multiplications required in this approach can be replacebitshift operations.
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Appendix C

Computation of AG(i)f(i — 1)

The derivation below is a straightforward extension of thal+valued case in Chapter 3
to the complex-valued case.

Let H(i) = H(i — 1) + A(i), then we haveG (i) = G(i — 1) +A7(()H(i — 1) +
HY (i — 1)A(i) + A (i)A(i) and thus,

AGHE(G—1) = ATEOH@G — DfG — 1)
+HY(i - DA — 1)+ AT AGEG 1), (C.1)

Denotingb(i — 1) = H(i — 1)f(i — 1), we obtain
b(i —1) = [H(i — 2) + A(i — D][f(i — 2) + Af(i — 1)],
which gives a recursion fds(i — 1):
b(i — 1) = b(i — 2) + H(i — 2)Af(i — 1)

+ A>—1D)f(i —1). (C.2)
Note thatA (i — 1) is a Toeplitz matrix whose first column ish(i — L)epi—1). We also
haveAf(i — 1) = Af(i — 1)e,;_1). Then (C.2) can be rewritten as

b(i — 1) = b(i — 2) + Af(i — 1)hl=DI(; — 2)
+ Ah(i — D)FPEDI(G — 1),

wherehle(-Dl(; —2) is a(K + M —1) x 1 vector obtained by shifting elementslofi — 2)

by ¢(i — 1) positions down, and the other element&i6fi—! (i — 2) are zeros. Definition
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for fl?(~1](; — 1) is similar to that o2~ 1] (; — 2). Thus, the first term on the right hand
side of (C.1) is given by
ATOHG — 1Df(i — 1) = AT (i)b(i — 1)
= Aﬁ*(z)bp(l)p(l)JrKfl(Z - 1)7 (CS)
whereb,;).,i)+xk-1(¢ — 1) is ak x 1 vector whose elements are obtained by extracting

thep(i)th top(i) + K — 1th elements from the vectdr(i — 1). After some algebra, we

find that the second term on the right hand side of (C.1) can peesged as

~

HY (i — DA (i —1) = AT(i)c(i — 1)
= Aﬁ<i)cM—p(i)+1:NI—p(i)+K(i — 1), (C.4)

where, for the vectoe(i — 1) we obtain a recursion similar to that fbfi — 1):
c(i—1)=c(i—2)+Af(i — Dalt-V;G —2)
+ AR*(i — 1)fM=PE=DH (G ),
where elements of the vecta(: — 2) are given by
(i —2) =By (i —2),m=1,... M.

Since A" (i)A(i) = |Ah(i)|*I, the third term on the right hand side of (C.1) is given
by
AT A()EG—1) = |ARG)* (i — 1). (C.5)

From (C.3), (C.4) and (C.5), we finally obtain a simplified expres for (C.1):

AG(i)E(i — 1) = AR (i) by(aypiiye -1 (i — 1)
+ AR(i)enr—p(oy 1.0 —piy i (0 = 1) + | ARG PR — 1).
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