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Copyright, Designs and Patents Act 1988.

ii



Este trabajo lo dedico a mi familia por su apoyo incondicional

y a mi amada Hanna, siempre estas en mi corazon.

- Diego A.



Acknowledgements

I would like to thank my supervisor Prof. Benjamin Varcoe for his

guidance and for allowing me to work under his supervision. Also

to Prof. Jacob Dunningham for the initial opportunity. The various

discussions with him and Dr. Paul Knott helped me to clarify several

aspects of quantum metrology.

I acknowledge the Mexican National Council for Sciences and Tech-

nology (CONACYT) for the financial support given during my PhD

studies. I was awarded with the CONACYT PhD Scholarship for

Studies Abroad grant, which covered my tuition fees and living ex-

penses. It would not have been possible for me to obtain my PhD

degree without this grant.



Abstract

We present a new model of atomic decoherence by space-time per-

turbations. We propose that decoherence will arise as a result of

two possible effects that gravitational fluctuations will have on the

atom. One is that the nucleus will be displaced relative to the valence

electron, which will be perceived as a sudden change in the electric

potential. This will result in the wave function of the atom being par-

tially projected into lower energy levels. The other is that the strain

in space will change the local electric field as felt by the electron.

This interaction will either induce a change in the angular momen-

tum of the atom or a small shift in the transition of the energy levels,

presenting two different experimental approaches for the detection of

the effect. We calculate how the decoherence is related to the inter-

nal degrees of freedom of the atoms, obtaining that the effect will be

more prominent for atoms initially in a highly excited state (Rydberg

atoms). By applying the nuclear displacement model for the scatter-

ing of neutral particles, we suggest that it could be potentially useful

for the detection of weakly-interacting particles, like possible candi-

dates of Dark Matter. The overall effect of gravitational waves for the

strained-space model was calculated to be several orders of magnitude

higher than for the nuclear displacement model, allowing for detection

in different ranges of frequencies. We analyze how different quantum

states are affected according to the proposed model, calculating that

the information from the measurement of correlated atoms will be

significantly higher. The optimal quantum state that minimizes the

uncertainty of the measurement is described for an arbitrary number

of atoms, giving a relation that follows closely the Heisenberg limit.
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Chapter 1

Introduction

The discovery of gravitational waves has been one of the most exciting discov-

eries of the century for Physics (Abbott et al., 2016b; Taylor, 1994; Weisberg

et al., 1981). Not only does it confirm one of the key predictions of the theory

of general relativity (Hawking, 1979), also opens the possibility of studying the

universe throughout a completely new view (Hogan, 1998; Lasky et al., 2016).

Similar to how radio wave observation provides a clearer picture of celestial sys-

tems, as most of the galactic components are transparent to these kinds of waves

(Jauncey, 1977), observation of gravitational waves could provide invaluable in-

formation about different parts and eras of the universe, as they pass through all

matter mostly unaffected (Copeland et al., 2009; Durrer, 2010; Grishchuk, 2005;

Wang et al., 2016). The problem is that this low interaction that makes them

so significant also makes them very hard to detect (Lasky et al., 2016; LIGO &

Virgo, 2009; Turner, 1997). The direct detection of gravitational waves was re-

cently done by the Laser Interferometer Gravitational-Wave Observatory (LIGO)

experiment (Abbott et al., 2016b), later corroborated by the Virgo interferom-

eter (Abbott et al., 2016a, 2017), by measuring tiny changes in the separation

length of highly separated mirrors (Aasi et al., 2015). These experiments, though

representing a milestone in science and engineering, are still limited in the range

of frequencies they are able to detect.

Gravitational waves exist in a wide frequency spectrum, originated from a vari-

ety of cosmic events (Andriot & Gomez, 2017; Benacquista, 2002; Bildsten, 1998;

Damour & Vilenkin, 2001; Haehnelt, 1994; Poisson, 1993; Ryan, 1995, 1997),
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composing a gravitational background similar to the Cosmic Microwave Back-

ground (Fixsen, 2009; Nelemans, 2009). Some of the high-frequency end of the

gravitational background is believed to have originated during the early stages of

the universe by phase transitions and oscillations of cosmic strings (Durrer, 2010;

Grishchuk, 2005), potentially containing invaluable information about the origin

of the universe and its nature.

Another possible contributor to the gravitational background are gravitational

fluctuations of the vacuum, which arise according to quantum gravity theories

and other unification models (Hogan, 2000; Wang et al., 2016). The detection

of such fluctuations, and even the lack of, could help to verify or disprove many

theories that have been proposed beyond the Standard Model. All of these are

big motivations for new experimental schemes that aim to detect gravitational

waves with different ranges of frequency (Aguiar et al., 2002; Amaro-Seoane et al.,

2012; de Waard et al., 2003; Desvignes et al., 2016; Hobbs et al., 2010; Sesana,

2016; Uchiyama et al., 2004; Yamamoto et al., 2008).

A potentially powerful probe for gravitational detection are atoms (Graham

et al., 2013; Hogan et al., 2011; Oniga & Wang, 2016; Pinto, 1995; Zhao et al.,

2007). Atomic based technologies are currently used in gravimeters (Abend et al.,

2016; Altin et al., 2013; Andia et al., 2013) and for measuring relativistic effects

(Hafele & Keating, 1972; Pound & Snider, 1964; Vessot et al., 1980), also provid-

ing some of the most accurate measurements of the gravitational constant (Fixler

et al., 2007; Schlamminger, 2014). This was made possible because of modern

experimental techniques that allow the manipulation of atomic systems to previ-

ously unthinkable degrees, paving the way to the observation of very small effects

(Dickerson et al., 2013; Fan et al., 2015; Hoth et al., 2016; Lan et al., 2012).

Gravitational radiation is supposed to carry energy (Bondi, 1957; Einstein, 1918;

Merritt et al., 2004; Weisberg et al., 1981), which transfers to some small de-

gree into matter it encounters in its path. This exchange of energy will alter the

state of the particles that compose the matter, potentially inducing some level

of decoherence to the system (Blencowe, 2013; Fischer, 1994; Oniga & Wang,

2016; Parker & Pimentel, 1982; Pinto, 1995; Zhao et al., 2007). Therefore, by

measuring the change in energy in atoms or the induced decoherence, it should
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be possible to detect a gravitational fluctuation and also to obtain information

about its properties.

The outcome of the interaction of atoms with gravitational waves is expected

to be very small (Fischer, 1994; Parker & Pimentel, 1982; Zhao et al., 2007), and

therefore very difficult to be observed experimentally. Because of this, it may

be necessary to use atoms in a special quantum state in order to enhance the

sensitivity of the detection scheme (Johnsson et al., 2016; Kimble et al., 2001;

Ma et al., 2017). Applying these quantum states for measurement improvement,

known as quantum metrology (Giovannetti et al., 2006; Guo-Yong & Guang-Can,

2013), has been proven to increase significantly the resolution of the estimation

of very small effects (Facon et al., 2016; Guo et al., 2015; Martin Ciurana et al.,

2017), even for interactions that occur within very small periods of time (Juff-

mann et al., 2016), which will be the case for incoming gravitational waves from

a particular source (Abbott et al., 2016a,b, 2017). Furthermore, using spatially

separated probes like atoms with two spatial modes or remotely entangled atoms

could additionally increase the visibility of the effect and give information about

the spatial properties of the gravitational radiation (Cadoret et al., 2009; Di-

mopoulos et al., 2009; Dupont-Nivet et al., 2016; Himemoto & Taruya, 2017;

Kolkowitz et al., 2016; Sidhu & Kok, 2017).

In this thesis we present a study of the interaction of atoms and gravitational

waves. We propose a new model of decoherence induced in atomic systems by low

energy interactions, which is applied to the scattering of particles and then ex-

tended for the interaction of semiclassical gravitational waves. The model allows

us to calculate the expected decoherence in the atomic state as a a function of

the properties of both the atom and the interacting agent. We calculate how the

initial state of the atom evolves as a result of the interaction in order to determine

the ideal system that should be used to maximize the decoherence, and therefore

the probability of detection. Finally, we analyze the response to gravitational

interactions of different states commonly used in quantum metrology in order to

determine which of them can further enhance the detection and to what degree.
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1.1 Outline

1.1 Outline

In Chapter 2 we introduce the core ideas of our model and propose a classical

approach to the problem. This representation gives an intuitive picture of the

effect of low energy interactions with the atom, while providing a simple estima-

tion of the order of the perturbation. In the model, an atom interacts with a

particle in the form of scattering by the atomic nucleus. An exchange of energy

between the nucleus and the particle will occur, resulting in a displacement of

the nucleus with respect to its original position. Using the Bohr atomic model,

we calculate the change in the potential of the atom after its nucleus is suddenly

displaced with respect to the electron. Through this calculation, we find that the

resulting potential can be represented as a sum of different functions, similar to

a state superposition, effectively changing the energy of the system. The overall

change in the potential energy is calculated proportional to the initial potential,

suggesting that the effect will be more prominent for atoms with a high energy.

In Chapter 3, using similar assumptions for the nature of the interaction, we

calculate the resulting wave function of the atom after a sudden change in the

potential as felt by the electron. The results suggest that the atom will end in a

superposition of the initial state and lower energy levels. This will introduce an

additional phase between two consecutive eigenstates, generating a small amount

of decoherence in the atomic state. We calculate the order of decoherence as

a function of the initial state of the atom, obtaining that it increases with the

principal quantum number, therefore making the effect more prominent for highly

excited states (Rydberg states). The rise of decoherence in the system is then

proven by calculating a reduction of the non-diagonal elements of the density

matrix, which should manifest itself as a loss of visibility in the fringes of an

interference pattern. We estimate the temporal evolution of the state of an atom

scattering either massless or massive particles as a function of the properties of

said particles. With the obtained equations, we analyze the change in the atomic

state for different cases of interacting particles we considered interesting. From

this we obtain that the expected decoherence should be higher for a particular

type of Dark Matter than for cosmic rays, making the model potentially useful

for the detection of said Dark Matter particle.
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1.1 Outline

In Chapter 4 we analyze how the interaction of gravitational waves alters the

state of the atom. The scattering model was applied, obtaining a change too

small to be experimentally significant. We propose a new model of interaction,

inspired by our previous one, in which the local potential of the atom is altered by

the strain in space from the gravitational wave. In this model, the gravitational

wave will change the potential of the nucleus as perceived by the valence electron,

effectively altering its wave function. Our calculations show that this interaction

will result in the atom also evolving into a state superposition, but this time

of eigenstates with azimuthal quantum numbers that differ by multiples of 2.

The atom will experience a shift in its transition energies, so we calculate the

deviation of a Rabi cycle as a result of this shift. It was once more obtained

that the effect will be more prominent for transitions involving high values of

the principal quantum number. In the last part of the chapter, we analyze the

collective behaviour of an ensemble of mutually interacting atoms. We discuss

the emergence of superradiance as the result of correlated atoms subjected to a

common gravitational fluctuation.

In Chapter 5 we analyze the transformation of different initial states using

the obtained equations. We calculate the quantum Fisher information of the

resulting states, which is the amount of information that will be obtained from

the system after it is measured. We are able to show that a change in the mea-

surement basis of a single atom will not improve the estimation of the properties

of the gravitational interaction. We extend the analysis for the case of multiple

probes, obtaining that correlated atoms will provide higher amounts of informa-

tion than the same number of statistically independent atoms. We examine the

information of different quantum states commonly used in quantum metrology

schemes, observing no major improvement by using entanglement of distinguish-

able macroscopic states. We then describe the optimal quantum state for an

arbitrary number of atoms that minimize the measuring error, which follows very

closely the Heisenberg limit.

In Chapter 6 we present our conclusions and a discussion on the results of

the study. We also provide an outlook for future works, highlighting potential

experimental approaches and their limitations.
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Chapter 2

Classical model of interaction

The simplest model for the interaction between a gravitational wave and an atom

is scattering (Taylor, 2005). The energy exchange between the atom and the

gravitational radiation from the scattering of the latter should alter the state of

the atom so, by observing a particular change in the atom, it would be possible

to determine that an event had occurred.

It should be expected that most of the scattering from the atom is done by

the nucleus given that its mass is several orders of magnitude larger than the

mass of the electrons (Gross & Jackiw, 1968; Sorge, 2015; Takahashi et al., 2005).

We propose that a single scattering event by the nucleus will change its position

relative to its original reference frame. If this shift is fast enough, the electron will

not be able to follow the nucleus smoothly, perceiving it at a different distance.

The overall change in the relative position of the components of the atom will

alter the energy of the system.

To calculate the energy change we try first to use Bohr’s atomic model (Bohr,

1913). This modelling, along with classical mechanics and electromagnetism, will

give us an indication if any change in the energy of the system will occur as a

result of the proposed interaction and could help to estimate the order of the

perturbation in the atom. A significant result will also justify extending our

assumptions to a more realistic model. The classical approximation also works

better for atoms in a highly excited state (Rydberg atoms) (Gallagher, 2007),

which are systems we are interested in because studies have suggested that they

may be more sensitive to gravitational fluctuations (Fischer, 1994; Pinto, 1995).
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Results in the following chapters will further highlight the relevance of these kinds

of states.

In the Bohr atomic model, the electron circles around the nucleus in stable

orbits where the Coulomb attractive force is in balance with the centrifugal force

experienced by the transiting electron. The radius of the orbit is given by the

equation

rn =

(
me +mN

mN

)3
n2~2

meZkCe2
, (2.1)

where me is the mass of the electron, mN is the mass of the nucleus, kC is the

Coulomb constant, e is the fundamental electric charge and ~ is the reduced

Planck constant. More precisely, both the electron and the nucleus move around

the centre of mass of the system. We take this into account in our calculations,

but for convenience we will choose in our equations for the coordinate system

to be centered in the nucleus rather than the centre of mass. The factor n is an

integer number, with n > 0, that arises from the discretization of the orbits, which

is related to the principal quantum number in the quantum model of the atom.

The symbol Z generally represents the atomic number, but in more accurate

calculations the product Ze is equal to the effective charge felt by the electron

from a shielded nucleus, so Z does not need be an integer number. Due to most

of the experiments with trapped atoms using alkali metals i.e. atoms with one

electron in the last occupied orbital (Cooper & Freegarde, 2013; Pedrozo-Penafiel

et al., 2012; Stancari et al., 2007), we will focus our calculations in these kinds of

systems by assuming Z = 1; this approximation is also more precise for Rydberg

atoms (Gallagher, 2007). With this in mind, we have that the binding energy of

the electron in the last orbital will be

En = −kCe
2

rn
. (2.2)

As described before, in our model an incoming particle will interact locally

with the nucleus, shifting the relative position between the nucleus and the orbit-

ing electron, represented in figure 2.1. The exact nature of the nucleus-particle

interaction will depend on the properties of the particle, but we will first only

analyze the resulting change in the energy from the displacement of the nucleus.
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2.1 Nuclear displacement by scattering

Figure 2.1: (a) An incoming particle approaches an atom with initial energy En.

(b) The particle collides with the atomic nucleus, displacing it. This will change

the energy of the atom by an amount ∆E.

2.1 Nuclear displacement by scattering

As represented in figure 2.2, the nucleus that was initially at a distance rn from

the electron will move along the vector ~rd after a scattering event, resulting in a

final distance ~r between electron and nucleus. The distance between the electron

and the nucleus after the displacement will be given by

|~r|2 = |~rn + ~rd|2 = rn
2 + rd

2 − 2rnrd cos θ . (2.3)

where θ is the angle between the vectors ~rn and ~rd. This results in the potential

felt by the electron after the displacement of the nucleus

E = −kCe
2

r
=

−kCe2

(rn2 + rd2 − 2rnrd cos θ)1/2
. (2.4)

If the interaction is very weak, it should be expected that the displacement of

the nucleus will be very small compared to the size of the orbit (rd � rn=1).

Otherwise, if the displacement of the nucleus were of the order of the Bohr radius,

then the energy of the interaction will be big enough to ionize the atom, which

is a case that we will exclude. Because of our assumption that rd/rn < 1, we can

8



2.1 Nuclear displacement by scattering

Figure 2.2: An atom with electron travelling around an orbital of radius rn. The

nucleus originally at the centre is displaced along the vector ~rd after interacting

with an incoming particle.

use the the mathematical identity(
1 +

rd
2

rn2
− 2

rd
rn

cos(θ)

)−1/2
=

∞∑
m=0

Pm (cos θ)

(
rd
rn

)m
, (2.5)

where Pm are the Legendre polynomials. We can substitute the identity in equa-

tion 2.5 into equation 2.4, so the resulting binding energy can be calculated with

E = −kCe
2

rn

∞∑
m=0

Pm (cos θ)

(
rd
rn

)m
. (2.6)

The magnitude of rd and the properties of the polynomials Pm ensure that the

summation in the right side of equation 2.6 is convergent.

9



2.1 Nuclear displacement by scattering

2.1.1 Spectral decomposition

If we define the magnitude of the displacement rd as

rd =

(
me +mN

mN

)3
d2~2

mekCe2
, (2.7)

where d < 1, we get that

kCe
2

rn

(
rd
rn

)m
= kCe

2d2m

[(
me +mN

mN

)3
n2(m+1)~2

mekCe2

]−1
. (2.8)

Because both n and m are integers, the number nm ≡ nm+1 will also be an integer,

so by defining

rn,m ≡
(
me +mN

mN

)3
n2
m~2

mekCe2
, (2.9)

we can establish a new energy

En,m ≡ −
kCe

2

rn,m
, (2.10)

which we use to arrive at the expression

kCe
2

rn

(
rd
rn

)m
= d2mEn,m . (2.11)

By substituting this into equation 2.6, we get that the potential energy after the

displacement of the nucleus can be expressed as

E =
∞∑
m=0

Pm (cos θ) d2mEn,m . (2.12)

This equation tells us that the binding energy of the atom after the interaction

can be expressed as a sum of potentials with discrete values, similar to a superpo-

sition in quantum mechanics. In figure 2.3 we plot the different potentials from

equation 2.12. By adding the potentials corresponding to the first two terms of

the sum in equation 2.12, we are able reproduce with significant accuracy the po-

tential of a charge displaced to the right, as shown in figure 2.4. This illustrates

that the biggest contribution to the potential is made by the first two terms in

the summation (m = 0, 1). A similar result of the spectral decomposition and

the relative magnitude of the terms will be observed in our calculations for the

quantum model of the atom in Chapter 3.
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2.1 Nuclear displacement by scattering

Figure 2.3: Normalized potential corresponding to the terms of the sum in equa-

tion 2.12 for different values of m. Darker areas correspond to higher potential.

Figure 2.4: Potential calculated by adding the first two terms of the summation

in equation 2.12 (m = 0, 1).
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2.2 Energy shift

2.2 Energy shift

After the interaction, the nucleus will be closer to or further from the electron

depending on the angle θ at which the electron is located, so the potential will

be dependent on the angular component. Using equations 2.2 and 2.12 we have

that the change in energy will be

∆E = E − En = −kCe
2

rn

∞∑
m=0

Pm (cos θ)

(
rd
rn

)m
+
kCe

2

rn

= −kCe
2

rn

∞∑
m=1

Pm (cos θ)

(
rd
rn

)m
.

(2.13)

To obtain the average change in energy, we integrate over all possible angles,

∆E = −kCe
2

rn

∞∑
m=1

(
rd
rn

)m
1

2π

∫ 2π

0

Pm (cos θ) dθ . (2.14)

Because of the properties of the polynomials, the integral will be equal to zero

when m is an odd number. After calculating the integral of the even polynomials,

we get that the average change in energy will be

∆E = −kCe
2

rn

[
12

22

(
rd
rn

)2

+
32

82

(
rd
rn

)4

+
52

162

(
rd
rn

)6

+
352

1282

(
rd
rn

)8

...

]

= −kCe
2

rn

∞∑
k=1

C2
k

(
rd
rn

)2k

.

(2.15)

The coefficients Ck can be calculated with

Ck =

(
2k

k

)
1

4k
=

(2k)!

4k(k!)2
∼ 1√

πk
. (2.16)

As previously stated, it is expected that the nucleus is displaced a very small

amount, so rd/rn � 1. Because of this, we can disregard most of the terms of

the sum in equation 2.15, obtaining that

∆E ≈ −kCe
2

4rn

(
rd
rn

)2

=
En
4

(
rd
rn

)2

. (2.17)

This equation tells us that the average change in energy of the system is pro-

portional to the order of the displacement, which is a very intuitive result. It
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2.2 Energy shift

also indicates that the change is smaller for a bigger radius, which can be ex-

plained by the fact that the further the electron is from the nucleus, the less it

will perceive any perturbation (similar to trying to observe displacements in very

distant objects). For a hydrogen atom in its ground state (n = 1), we have that

a displacement of a thousandth of the Bohr radius (rd = 10−3a0) will result in a

change of energy of ∆E ≈ −3.4 µeV, which is of the order of the energy difference

between hyperfine levels in the atom. In this case, the proposed interaction may

induce a flip in the spin projection of the electron, which should be observable in

the laboratory (Heinrich et al., 2004). Although this magnitude in the displace-

ment may not be likely for the scattering of gravitational waves or gravitons, it

may be achievable by the scattering of heavy particles, like neutrons, which can

be done as an experimental test for the model.

To calculate the change in energy for a given interaction it is necessary to first

estimate the displacement distance rd. For the current classical model it would

be hard to justify any displacement for the nucleus without an almost immediate

reaction by the electron, as classically the information about the slightest change

in position will be transmitted instantly; this will result in an arbitrarily small

displacement distance rd, so no actual change in energy will occur.

Using the model of a retarded potential after the nucleus starts moving (Grif-

fiths, 2007), we have that the displacement distance will be equal to

rd = v · t , (2.18)

where v is the velocity the nucleus gains as a result of the scattering and t is the

time it takes for information to travel from the nucleus to the electron. Because

this information is supposed to travel at the speed of light, the travel time will

be

t =
rn
c
, (2.19)

with c the speed of light. The velocity v the nucleus will have in relation to its

original rest frame will be

v =

√
2Ek
mN

, (2.20)
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2.2 Energy shift

with Ek the kinetic energy the electron gains from the scattering. Using equations

2.18 to 2.20 we calculate the coefficient

rd
rn

=

√
2Ek
mNc2

. (2.21)

The term mNc
2 can be easily identify as the invariant energy of the nucleus EN

from Einstein’s famous mass-energy equivalence formula (Einstein, 1905). Using

this in equation 2.17 will give the relation

∆E ≈ En
2

(
Ek
EN

)
. (2.22)

This equation tells us that the change in energy increases with the transferred

energy in the interaction and decreases with the mass of the atom, which is easy

to understand. Also, we see that this change will increase with the initial energy

of the atoms, which is an outcome that will persist in following chapters.

With equation 2.22 we have a notion of the order of the energy change, which

will be extremely small as the invariant energy of the nucleus is expected to be

much bigger than its kinetic energy. If we keep the energy exchange Ek below the

binding energy of the atom, the maximum energy change ∆E will be lower than

0.1 µeV for a hydrogen atom. This is a very small number (just a fraction of the

hydrogen line’s energy (Griffiths, 1982)) and would be very hard to detect because

radiation with this energy is in the radio wave range (Dupays et al., 2003), so

there will be a lot of noise to overcome. Rather than trying to detect any change

in the energy of the system, a better approach will be to measure decoherence in

the system that will arise as a result of the interaction of a space-time fluctuation,

as other studies have suggested (Bonifacio et al., 2009; Wang et al., 2006). For

this we require a quantum modelling of the interaction from which we can obtain

the evolution of the system.
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Chapter 3

Quantum model of decoherence

by scattering

Although the classical modelling of the interaction is useful to estimate the mag-

nitude of the energy change in the atom and provides a picture of the effect that

is easy to visualize, it is necessary to use a more realistic model of the atom in

order to accurately calculate the evolution of the system. Furthermore, the clas-

sical model just gives the average change in the potential energy, which may not

necessarily manifest as a change in the energy levels of the atom, so it can’t be

applied to estimate detuning in its transitions or decoherence in the state.

We study the evolution of the interacting system using the atomic model

provided by quantum mechanics under the following assumptions:

1. The interaction will manifest as a sudden displacement of the nucleus rela-

tive to its original rest frame;

2. The shift in position will be very fast, so that the process will be non-

adiabatic;

3. The energy of the interaction will be below the ionization energy of the

atom.

The first assumption is the same as for our model in Chapter 2, so similarities in

the results can be expected. The second assumption guarantees that the system

will not evolve into an equivalent state and therefore a change in its energy should
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3.1 Wave-function transformation

emerge. The last assumption is necessary for the validity of some of the employed

mathematical identities, but also has an experimental basis as ionized atoms will

not contribute to the atomic spectrum.

3.1 Wave-function transformation

To properly estimate any change in the system, it is necessary to calculate the

wave function of the atom from which we can obtain the eigenstates and corre-

sponding energy levels. In the quantum model of the atom, the wave-function

ψ usually describes the state of the outer-most electron (Griffiths, 1995), which

relates to the energy E of the system through the formula

Hψ = Eψ , (3.1)

where H is the Hamiltonian. The interaction will have the initial wave function

of the system ψ0 evolving into the state ψ′. Because the nucleus will be displaced

along the vector ~rd, the resulting wave function will depend on the initial state

and the displacement vector,

ψ0(~r)→ ψ′(~r, ~rd) . (3.2)

If the displacement is done fast enough, the electron will perceive a sudden change

in the electric potential as examined in section 2.2. It may seem reasonable to

think that the transformed equation should correspond to the solution of equation

3.1 using the new perceived potential in the Hamiltonian, but this solution will

just be the same as the original with a displaced origin.

Another approach lies in applying perturbation theory to find the resulting

wave function. It can be argued that the new potential can be described as the

original potential plus a perturbation, as was calculated in the previous chapter

(the addition of the first two potentials in figure 2.3 will result in the displaced

potential in figure 2.4). The problem will be that any calculated change in the

wave function will be due to the omission of all the remaining terms in the de-

composition, rather than from the effect of the interaction. There is no way in

which a displaced charge can be represented as the charge in its original position
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3.1 Wave-function transformation

plus a small perturbation, even for very small displacements, as the change in the

electric field extends equally over all the space.

Our proposal is that the sudden shift in the potential will project the original

wave function of the electron into the eigenstates of the new position of the atom,

according to the adiabatic theorem (Griffiths, 1995). The resulting wave function

can then be expressed as

ψ′ =
∑
n

Cnψn , (3.3)

where ψn are the eigenfunctions of the unperturbed potential. The coefficients

Cn can be calculated by integrating over the fraction of solid angle dΩ,

Cn =

∫
ψ∗nψ

′drdΩ . (3.4)

Solving equation 3.4 numerically requires a lot of computational power, even for

the simplest atomic system. Instead of solving this equation for every particular

case, we use some approximations that allow us to find an analytical solution.

First, we focus our calculations on hydrogen-like atoms, which are atoms with

only one electron in the last orbital and the remaining particles in an effective

point charge. These kinds of atoms can easily be described mathematically and

most atomic systems can be approximated to this description if they are in a

Rydberg state (Gallagher, 2007), the relevance of which was previously stated.

For hydrogen-like atoms, the potential is given by

V (r) = −kcZe
2

r
. (3.5)

By solving the Schrödinger equation with this potential, it is obtained that the

wave-function can be separated in a radial part R(r) and an angular part Y (θ, φ)

such that

ψ = R(r)Y (θ, φ) , (3.6)

where the radial part is equal to

Rn,l(r) = −

√
(n− l − 1)!

2n[(n+ l)!]3

(
2Z

na0

)l+ 3
2

rle
− Zr
na0L2l+1

n−1−1

(
2Zr

na0

)
, (3.7)

with a0 the Bohr radius and Lji the generalized Laguerre polynomials. The factors

n and l are integer numbers with n > 0 and l ≤ n− 1 called quantum numbers.
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3.1 Wave-function transformation

More specifically, n is known as the principal quantum number and l as the

azimuthal quantum number. For future calculations, we will consider Z = 1,

which implies a small correction to the quantum number n (Kostelecky & Nieto,

1985). In the case of Rydberg atoms, this correction will be mostly negligible

(Gallagher, 2007). The angular part of the function is expressed in term of

spherical harmonics that depend on the quantum numbers l and m,

Y m
l (θ, φ) = (−1)m

√
(2l + 1)(l −m)!

4π(l +m)!
Pm
l

(
cos(θ)

)
eiφ , (3.8)

where Pm
l are the associated Legendre polynomials. We initially analyze the

special case of an atom with no angular momentum (l = m = 0); the general

case is described later in this chapter, obtaining similar results. For an atom in

an initial state with principal quantum number n0 and no angular momentum,

the wave function is

ψ0(r) =

√
(n0 − 1)!

2n0(n0!)3

(
2

n0a0

)3/2

e
− r
n0a0L1

n0−1

(
2r

n0a0

)
. (3.9)

We argue that the displacement will be in an uncertain direction, so rather than

considering it to move along a specific vector, we will describe the nucleus as

being delocalized within a radius rd from its original position,

r → r + rd . (3.10)

By using this change in equation 3.9 we arrive at

ψ0 → ψ′ =
1√

2n0 · n0!

(
2

n0a0

)3/2

e
− r+rd
n0a0L1

n0−1

(
2
r + rd
n0a0

)
. (3.11)

Equation 3.11 implies that we are centering our coordinate system in the inertial

reference frame of the nucleus. Also, because of the lack of angular dependence,

it assumes that no angular momentum exchange occurs between the particle and

the nucleus. Two arguments can be made for this assumption: first, the particle

interacts only with the nucleus so the wave-function of the electron is not expected

to gain an angular dependence as a result of momentum exchange; second, this

equation accounts only for the minimum expected change in energy, so it would
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3.1 Wave-function transformation

represent the limit of the observable effect. The gain of an angular component

will be analyzed in the general case.

Using the mathematical identity (Abramowitz & Stegun, 1983)

L1
n0−1(k0r + k0rd) =

n0∑
i=1

L1
i−1(k0r)L

−1
n0−i(k0rd) , (3.12)

where

k0 =
2

a0n0

, (3.13)

with equation 3.11, we arrive at the identity

ψ′ = e−
k0
2
rd

n0∑
n0−i

i · i!
n0 · n0!

L−1n0−i(k0rd)Ri(r) , (3.14)

where Ri is a radial component as described in equation 3.7 for n = i and l = 0.

Using this representation in equation 3.4 we get that

Cn = e−
k0
2
rd

n0∑
i=1

i · i!
n0 · n0!

L−1n0−i(k0rd)

∫ ∞
0

Ri(r)Rn(r)dr . (3.15)

The functions Rj are orthonormal, so the result of the integral in equation 3.15

will be non-zero only when i = n, so we have that

Cn = e−
k0
2
rd

n0∑
i=1

i · i!
n0 · n0!

L−1n0−i(k0rd)δn,i

= e−
k0
2
rd
n · n!

n0 · n0!
L−1n0−n(k0rd) for n ≤ n0 .

(3.16)

With this, we finally arrive at the identity

ψ′ =

n0∑
n=1

e−
k0
2
rd
n · n!

n0 · n0!
L−1n0−n(k0rd)ψn . (3.17)

This equation tells us that after the interaction, the atom is left in a superposition

of all the eigenstates with principal quantum number equal to and lower than the

number of the initial state. An explanation for this can be that the interaction

transfers potential energy in the atom into kinetic energy, similar to the model

in Chapter 2.
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3.1 Wave-function transformation

Figure 3.1: Coefficients of the eigenstate decomposition of the atomic state after

the scattering of a particle by the nucleus obtained by using equation 3.16 with

different values of nuclear displacement rd. The initial state of the atom has no

angular momentum and principal quantum number n0 = 10.

In figure 3.1 we plot the value of the coefficients for different displacement

distances. Two things can be appreciated from this graph: first, that projection

over states different from the initial state (n < n0) increase with the displace-

ment radius. This means that the magnitude of the effect increases with the

perturbation of the atom, which is an intuitive result. Secondly, coefficients of

the decomposition decay rapidly as the principal quantum number of the state

differs from the initial number n0.

Because the coefficients of the initial state (with n = n0) and the closest-

energy state (with n = n0− 1) are significantly bigger than the other coefficients

(with n < n0 − 1), we can use the approximation

ψ′ ≈ Cn0ψn0 + Cn0−1ψn0−1 , (3.18)

where the coefficients Cn0 and Cn0−1 are equal to

Cn0 = e−
k0
2
rd , Cn0−1 = −k0rd

n0 − 1

n2
0

e−
k0
2
rd , (3.19)

according to equation 3.16.
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3.1 Wave-function transformation

3.1.1 Angular momentum transfer

The obtained results are limited to interactions with no angular momentum ex-

change between the atom and the scattered particle (∆l = 0). For the general

case the scattering moves the nucleus along the angle θ by a distance rd, giving

the transformation

r → r + rd cos θ, (3.20)

which results in the wave function after the interaction changing as

ψ0 → ψ′ =
−1√

2n0 · n0!

(
2

n0a0

)3/2

e
− r+rd cos θ

n0a0 L1
n0−1

(
2
r + rd cos θ

n0a0

)
. (3.21)

With this new transformation, we calculate the eigenstate decomposition of the

state after the interaction as described in equations 3.3 and 3.4. Using a mathe-

matical identity similar to equation 3.12, we can separate the radial and angular

part of the wave function,

ψ′ =
k
3/2
0√

2n0 · n0!

n0∑
m=1

e−
k0
2
rd cos θL−1n0−n(k0rd cos θ)e−

k0
2
rL1

m−1(k0r) . (3.22)

From here we obtain that the integral of the radial part is the same as in the

previous section (equations 3.15 and 3.16), but in this case the integral of the

radial part has no analytical solution.

Because we expect the coefficients of the levels closer to the initial state (n =

n0, n0 − 1 and l = 0, 1) to have a significantly higher value, as in the case of no

angular momentum transfer (equation 3.16), we calculate numerically the value

just for these coefficients. Their values were found to be approximately

Cn0,l=0 ≈ 1− 1

4

(
rd
n0a0

)2

, (3.23)

Cn0−1,l=0 ≈
n0 − 1

n2
0

(
rd
n0a0

)2

e
− rd
n0a0 , (3.24)

Cn0,l=1 ≈ −
1√
3

(
rd
n0a0

)
e
− rd
n0a0 . (3.25)

These terms are similar to the ones in equation 3.16, but increase faster as a

function of the displacement distance rd, which is an intuitive result because, by
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3.1 Wave-function transformation

having more accessible states for the atom to decay, the probability increases ac-

cording to Fermi’s golden rule (Dirac, 1927). The fact that interactions without

angular momentum exchange show smaller coefficients for states other than the

initial means that these kinds of interactions will be the lower bound of the possi-

ble observable effect for our model. In other words, the decomposition calculated

in the previous section (equation 3.18) will be the minimum change that a state

will undergo as a result of a single interaction. Because it would be the limit for

experimentally testing our theory, following analyses will use the coefficients as

calculated in equation 3.16.

3.1.2 Optimal angle

The described interaction will generate a relative amplitude between consecutive

energy levels with n = n0 and n = n0 − 1. This phase depends on the principal

quantum number of the states, so it may be possible to find an initial superposi-

tion state that maximizes said phase, enhancing the probability of detection.

An atom initially in the eigenstate with n = n0, in the bra-ket notation,

|ψ0〉 = |n0〉 , (3.26)

will be the transformed by the interaction, as described in equation 3.18, into the

state

|ψ〉 = Cn0 |n0〉+ Cn0−1 |n0 − 1〉 . (3.27)

Here we have that the change in the relative amplitude between the states |n0〉
and |n0 − 1〉 will be

∆p =
Cn0−1

Cn0

. (3.28)

Using the coefficients given in equation 3.19, we obtain that the change will be

∆p = −2(n0 − 1)

n2
0

(
rd
n0a0

)
. (3.29)

If we rather have an atom initially in the superposition of states

|ψ0〉 =
1√
2

(|n0〉+ |n0 − 1〉) , (3.30)
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3.1 Wave-function transformation

then after the interaction we will obtain the transformation

|ψ0〉 → |ψ〉 =
1√
2

(
Cn0 |n0〉+ Cn0−1 |n0 − 1〉+ C∗n0

|n0 − 1〉+ C∗n0−1 |n0 − 2〉
)
,

(3.31)

where the coefficients C∗i are the same as in equation 3.19, but replacing n0 with

n0 − 1. We have that the the change in the relative amplitude will be

∆p =
Cn0−1 + C∗n0

Cn0

− 1

=

[
−2(n0 − 1)

n2
0

(
rd
n0a0

)
e
− rd
n0a0 + e

− rd
(n0−1)a0

]
/e
− rd
n0a0 − 1

= −2(n0 − 1)

n2
0

(
rd
n0a0

)
+ e

− 1
n0−1

(
rd
n0a0

)
− 1

≈ −2(n0 − 1)

n2
0

(
rd
n0a0

)
− 1

n0 − 1

(
rd
n0a0

)
.

(3.32)

We obtain that the change in the relative population increases by an additional

term rd/(n0 − 1)n0a0 compared to the case of the initial state without superpo-

sition in equation 3.29. This can be attributed to the phase of the factor Cn0−1

being opposite to the initial phase of the state, which further decreases the pop-

ulation in the state |n0 − 1〉. This result is a first indication that the effect can

be amplified by using non-classical states, which will be explored in Chapter 5.

In order to maximize the change in phase, we consider the general superposi-

tion state of the form

|Θ〉 = cos θ |n0〉+ sin θ |n0 − 1〉 , (3.33)

and its perpendicular state

|Θ⊥〉 = sin θ |n0〉 − cos θ |n0 − 1〉 , (3.34)

such that 〈Θ|Θ⊥〉 = 0. These states are orthonormal (〈Θ|Θ〉 = 〈Θ⊥|Θ⊥〉 = 1)

and form a complete basis in the same space as the vectors |n0〉 and |n0 − 1〉,

|ψ〉 = A |Θ〉+B |Θ⊥〉 . (3.35)

After the interaction, an initial state |Θ〉 will evolve as

|Θ′〉 = cos θ[Cn0 |n0〉+ Cn0−1 |n0 − 1〉+ sin θ[C∗n0
|n0 − 1〉+ C∗n0−1 |n0 − 2〉]

= Cn0 cos θ |n0〉+ (Cn0−1 cos θ + C∗n0
sin θ) |n0 − 1〉+ C∗n0.1

sin θ |n0 − 2〉 .
(3.36)
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3.1 Wave-function transformation

The relative amplitude of the states will be given by

〈Θ⊥|Θ′〉
〈Θ|Θ′〉

=
R
[
2(n0−1)
n2
0

cos θ + 1
n0−1 sin θ

]
cos θ

1−R
[
2(n0−1)
n2
0

cos θ + 1
n0−1 sin θ

]
sin θ

, (3.37)

where

R ≡
(

rd
n0a0

)
. (3.38)

To maximize this function we need to find the solution to the equation

d

dθ

〈Θ⊥|Θ′〉
〈Θ|Θ′〉

= 0 , (3.39)

which gives us the equation[
4

n0 − 1

(
n0 − 1

n0

)4

+
1

n0 − 1

]
R− 4

(
n0 − 1

n0

)2 [
1 +

R

n0 − 1

]
sin(2θmax)

+

[
4

n0 − 1

(
n0 − 1

n0

)4

− R

n0 − 1
− 2

]
cos(2θmax) = 0 ,

(3.40)

with θmax is the angle that maximizes the change in the relative amplitude. Pre-

vious calculations suggest that R� 1, so we can make the approximation

2

(
n0 − 1

n0

)2
[

1

n0 − 1

(
n0 − 1

n0

)2

cos(2θmax)− sin(2θmax)

]
≈ cos(2θmax) ,

(3.41)

from which we can get the result

θmax ≈
1

2
tan−1

(
2(n0 − 1)2 − n4

0

2n2
0(n0 − 1)2

)
. (3.42)

The value of the angle θmax for different initial energy levels is shown in figure

3.2. As the value of n0 increases, the optimal angle will tend to θmax ∼ −0.23182.

Using equation 3.42 we obtain the limits for the angle that maximize the relative

change

−0.53 < θmax < −0.23. (3.43)

We will take this information into consideration for future calculations for maxi-

mizing the probability of detection.
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3.1 Wave-function transformation

Figure 3.2: Angle that maximizes the change in the relative amplitude after a

single scattering as a function of n0 for an initial state described in equation 3.33

3.1.3 Function of the perturbation

In order to calculate the magnitude of the coefficients Ci we need to estimate the

value of the displacement rd. This parameter depends on how much the nucleus is

displaced before the electron perceives its movement. We calculate this distance

from the product of the velocity vd that the nucleus gains as a result of the

transferred energy with a time-interval τ , which is small enough to consider the

interaction a non-adiabatic process,

rd = vd · τ . (3.44)

The first component can be obtained by calculating the change in the kinetic

energy ∆E,

vd =

√
2∆E

mN

, (3.45)

where mN is the mass of the nucleus. The exact value for the exchange of energy

between the particle and the nucleus will depend on the nature of the interaction.
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3.1 Wave-function transformation

For simplicity, we approximate the interaction as an inelastic collision, for

which the change in energy can be calculated to be

∆E =
m2
pv

2
p

mN +mp

, (3.46)

where mp and vp ar the mass and velocity of the scattered particle, respectively.

For the time τ we considered different approaches: first, we considered the

time it takes for an electron to go around the nucleus in the Bohr model but

abandoned the idea because there is no solid justification for using this time as

the adiabatic limit. A second consideration for the time was the Planck time,

which is the smallest time at which any interaction can occur. We found this

time to be unnecessarily restrictive and even physically too small as, according to

certain models of a quantized space, no actual displacement could happen within

this period (Caldirola, 1980; Yang, 1947).

The time we ultimately chose is the period of production of force-carrying

photons (Peskin & Schroeder, 1995). This is the time lapsed between the pro-

duction of two consecutive photons that carry the electro-magnetic force between

the nucleus and the electron, and is given by the formula

τ =
~3

4µ3

(
n0me

kCe2

)2

, (3.47)

where µ is the reduced mass of the atom. Any displacement occurring within this

time will be perceived by the electron as occurring instantly because information

about the position of the nucleus cannot be generated any faster. For this time,

using equations 3.44 and 3.46, we have then that the displacement radius will be

rd =
~3

4µ3

(
n0me

kCe2

)2
√

2m2
pv

2
p

mN(mN +mp)
. (3.48)

If the particle is part of an ensemble that follows a thermal distribution, which

is a possibility for stochastic gravitational waves (Kolb & Turner, 1990), we can

use kinetic theory to express the velocity in terms of the temperature T of the

ensemble (Liboff, 2003),

v2p =
3kBT

mp

, (3.49)
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3.1 Wave-function transformation

where kB is the Boltzmann constant. By substituting equation 3.49 into equation

3.48 we find the relation between the properties of the system and the expected

displacement distance. With this relation, we calculate the coefficient of the

initial state after the interaction as

Cn0 = exp

[
− n0~

2kCe2

(
me +mN

mN

)3
√

6mpkBT

mN(mN +mp)

]
. (3.50)

This form of equation 3.50 may not be immediately useful as it depends on the

mass of the scattered particle mp, which gravitational waves lack. Nevertheless, it

should hold for the scattering of any particles interacting solely with the nucleus,

which are required to have a neutral electrical charge. This would make the

scheme useful for the detection of neutral particles, which we will discuss further

in section 3.3.2.

To provide a concise estimation of the change in the atomic state, we calculate

the effect that a neutron will have after colliding with the nucleus. Figure 3.3

shows this calculation for different initial states of the atom; the considered tem-

peratures correspond to the energy of common neutron sources (Carron, 2007).

The figure shows that higher speed of the scattered particle leads to a lower

coefficient of the initial energy level, as should be expected. The effect is also

observed to be more prominent for high values of n0, being consistent with our

previous results and also other studies suggesting that Rydberg states are more

susceptible to decoherence by collision of particles (Diaz-Torres, 2010; Miller &

Olkiewicz, 2011).

Using the same relation for the displacement distance in equation 3.49, we

calculate the coefficient of the closest energy level (n = n0 − 1); the atom will

have the highest probability to be found in this state (second only to the initial

state) after the interaction. We plotted the coefficient Cn0−1 for different initial

states, which is shown in figure 3.4. It can be seen that for the highest velocity, the

magnitude of Cn0−1 stops growing around n0 = 25 and starts to become smaller.

This occurs whenever the magnitude of the displacement radius becomes of the

order of the size of the atom (rd/a0 ∼ 1), which requires a relatively high energy

transference (∆E ∼ 10 eV). Here the ionization of the atom must be taken into

account, which is a case that our model excludes by construction.
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3.1 Wave-function transformation

Figure 3.3: Coefficient of the initial eigenstate of an atom after neutron scattering

by the nucleus as a function of the initial principal quantum number for different

neutron temperatures. The mass of the nucleus is mN = 1.66× 10−27 kg and for

the neutron mp = 1.67× 10−27 kg.

Figure 3.4: Projection after a scattering over the eigenstate one energy level lower

than the initial state as a function of the principal quantum number for different

velocities. The mass of the nucleus is mN = 1.66×10−27 kg and the the scattered

particle mp = 1.67× 10−27 kg.
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3.2 Stochastic interactions

3.2 Stochastic interactions

It may be not fully clear that the results obtained in previous sections imply that

decoherence in the atomic state arises from the interaction, because they can be

interpreted simply as a loss in population for a given energy level that happens at

a predictable rate. The argument can be made that the stochastic nature of the

interaction (as the momentum of the scattered particle and the scattering angle

can’t be exactly predicted) will produce an uncertain displacement of the nucleus.

This will generate a phase distribution between the energy levels of an ensemble

of atoms, which will diminish the coherence of any dynamics that operate within

these states.

A more formal demonstration can be made by analyzing the change in the

density matrix of the system (Zurek, 2003). In quantum mechanics, the density

matrix ρ is a mathematical construct that describes a quantum system with one

or more subsystems. If the state of the system can be represented by a vector

state |ψ〉 such that

ρ = |ψ〉 〈ψ| , (3.51)

the system is said to be in a pure state. If the representation in equation 3.51

can not be found for a particular state, the state is called a mixed state. For a

mixed state the non-diagonal elements are equal to zero and it presents statistical

features of a classic system. Therefore, the smaller the non-diagonal elements

are, the closer the system will obey classic probabilities, effectively losing its

quantumness (Zurek, 2003).

The state of the atom after the interaction can be described as an operator Φ

acting on the initial state

|ψ〉 = Φ |ψ0〉 . (3.52)

For our model, if we truncate the decomposition of the final state, only taking

into account the states |n0〉 and |n0 − 1〉, we have that the operator Φ will be

equal to

Φ =

(
Cn0 0
Cn0−1 C∗n0

)
, (3.53)

where the coefficients Ci are calculated in section 3.1 as a function of the mo-

mentum of the scattered particle (the coefficient C∗n0
for an initial state |n0 − 1〉).
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3.2 Stochastic interactions

Because the scattered particle belongs to a group with a momentum distribution,

we have that the density matrix of the system ρ after the interaction can be

calculated as

ρ =

∫ ∞
0

Φ(p) |ψ0〉 〈ψ0|Φ†(p)P (p)dp , (3.54)

where P (p) is the probability distribution for the momentum p of the group of

particles. By restricting the Hilbert space to the states |n0〉 and |n0 − 1〉 then

the post-interaction density matrix will be

ρ =

(
ρ11 ρ12
ρ21 ρ22

)
, (3.55)

where ρij (with i 6= j) are the off-diagonal elements. For a general initial state,

|ψ0〉 = a |n0〉+ b |n0 − 1〉 , (3.56)

the density matrix ρ0 of the initial state will be

ρ0 =

(
|a|2 ab∗

a∗b |b|2
)
, (3.57)

where a∗ and b∗ are the complex conjugate of a and b, respectively. Given the

transformation matrix in equation 3.53 and using equation 3.54, we have that the

off-diagonal elements can be calculated as

ρij =

∫ ∞
0

(Cn0Cn0−1|a|2 + Cn0C
∗
n0
ab∗)P (p)dp . (3.58)

The displacement coefficient rd can be expressed as a function of the momentum

of the particle as

rd =
~3

mN

(
m3
e

8µ5

)1/2(
n0

kCe2

)2

p . (3.59)

Given that the particles follow a thermal distribution of energy, we have the

probability distribution

P (p) =
4√
π

(
mp

2kBT

)3/2
p2

m2
p

e
− p2

2mpkBT . (3.60)

We substitute equations 3.59 and 3.60 into equation 3.58, obtaining the solution

ρij = e

(
2n0−1
2n0−2

)2
kpab∗ − 12

n0 − 1

n2
0

kpe
kp |a|2 , (3.61)
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3.2 Stochastic interactions

with

kp = kBmpT

(
m3
e

µ5

)(
~3n0

mNa0

)2(
1

kCe2

)4

. (3.62)

We have that the constant kp can be calculated to be kp � 1 even for very large

values of mp and n0. With this consideration, we obtain that the value of the

off-diagonal elements of the density matrix after the interaction will be

ρij ≈ ab∗ − 12
n0 − 1

n2
0

kp|a|2 . (3.63)

By comparing this with the elements of the initial density matrix in equation

3.57, we obtain that there will be a change in the off-diagonal elements of

∆ρij ≈ −12
n0 − 1

n2
0

kp|a|2 . (3.64)

This quantity is less than 0, proving that there is a reduction of the off-diagonal

elements and therefore a loss of coherence in the state after the interaction. Given

that the factor kp is proportional to the square of n0, according to equation 3.62,

the relation expressed in equation 3.64 also shows that the induced decoherence

increases with the principal quantum number of the initial state, which is our

previous claim. Because ρ0 was calculated for a pure state (equation 3.56), the

described calculations will not apply directly for mixed states, although a similar

decoherence is expected to be observed.

3.2.1 Loss of visibility in interference pattern

An interference fringe pattern contains information about the phase of the sys-

tem and decoherence in the atomic state will produce a loss of visibility of the

pattern (Sanz & Borondo, 2007). Because the proposed effect will result in a

reduced coherence of the state, as shown in section 3.2, it could be possible to

obtain information about the interaction by measuring any loss of visibility in the

interference pattern generated by atoms. The loss in visibility can be calculated

using the formula

δv =

∣∣∣∣δρρ0
∣∣∣∣ , (3.65)

where ρ0 is the density matrix of the initial state and

δρ = ρ− ρ0 . (3.66)
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3.2 Stochastic interactions

If we have N atoms and prepare half of them into the state |n0〉, and the other

half in the state |n0 − 1〉 we will have the matrix density

ρ0 =
N

2

(
1 0
0 1

)
. (3.67)

The system described here is in a mixed state, so calculations about the resulting

decoherence may differ from the ones in section 3.2. Using the operator Φ given

in equation 3.53, we get that the density matrix will evolve as the result of the

interaction as

ρ =
N

2

(
C2
n0

Cn0Cn0−1
Cn0Cn0−1 C∗n0

2 + C2
n0−1

)
. (3.68)

Using this matrix, along with equation 3.66 and 3.67, we obtain that

δρ

ρ0
=

(
C2
n0
− 1 Cn0Cn0−1

Cn0Cn0−1 C∗n0

2 + C2
n0−1 − 1

)
. (3.69)

By using this in equation 3.65, we calculate the loss of visibility to be

δv = 1 + C2
n0
C∗n0

2 − C2
n0
− C∗n0

2 − C2
n0−1 . (3.70)

Using the value of the coefficients Ci as calculated in section 3.1, we get that

δv = 1 + e
− 2rd
n0a0

(
2n0−1
n0−1

)
− e−

2rd
n0a0 − e−

2rd
n0a0

(
n0
n0−1

)
−
(

2rd
n0a0

.
n0 − 1

n2
0

)2

e
− 2rd
n0a0

≈
(

2rd
n0a0

)2
[

3n0 − 2

2n0 − 2
−
(
n0 − 1

n2
0

)2
]
,

(3.71)

obtaining that the loss of visibility will increase for the spectrum of Rydberg

atoms, this being consistent with our previous results.

For large values of n0, the magnitude of δv will approximate to the probability

of transition as a result of the interaction (∼ |Cn0−1|2). In this case, measuring

the loss of visibility in the interference pattern and measuring the change in

population of the atomic state will give the same results. A quick calculation gives

us that precision interferometry of caesium atoms measuring a loss of visibility

of δv = 0.03 (Peters et al., 1997) puts a limit to the energy of the interaction

of ∆E < 15.275 keV, which is a relatively high bound. A better estimation will

require us to calculate the decoherence in time for the interacting system.
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3.3 Temporal evolution

Under certain conditions, it is expected that the nucleus will perform multiple

scatterings if it is allowed enough time for interactions to occur. By calculating

how this will change coefficients in the decomposition, we will be able to describe

the evolution in time of the atomic state.

After one interaction, an atom with an initial state ψ(0)(r) will evolve to the

state ψ(1)(r) = ψ(0)(r + rd) as described earlier in this chapter. When another

interaction occurs, the atom will change into the state ψ(2)(r) = ψ(1)(r+rd) whose

eigenstate decomposition is calculated in the same way as for the state after the

first collision (equations 3.3 to 3.16), resulting in

ψ(2)(r) = e−2
k0
2
rd

n0∑
n′=1

L−1n0−n′ (k0rd)
n′∑

n′′=1

n′′ · n′′!
n0 · n0!

L−1n′−n′′ (k0rd)ψ(r)n′′ . (3.72)

Here we have that the coefficients of the decomposition are given by

C(2)
n = e−2

k0
2
rd
n · n!

n0 · n0!

n0∑
n′=n

L−1n0−n′ (k0rd)L
−1
n′−n (k0rd) . (3.73)

Using the same logic as for the state ψ(2)(r), We calculate the coefficients for the

state after a third collision ψ(3)(r) = ψ(2)(r+ rd) and so on until we calculate the

coefficients for an arbitrary number of collisions. We obtain that after q collisions,

the atom will be left in the state

ψ(q) =

n0∑
n(q)=1

Cn(q)ψn(q) , (3.74)

where the coefficients Cn(q) are calculated to be

Cn(q) =e−q
k0
2
rd
n(q) × n(q)!

n0 × n0!

n0∑
n(q−1)=n(q)

n0∑
n(q−2)=n(q−1)

. . .

n0∑
n(0)=n(1)

L−1
n0−n(0)(k0rd)L

−1
n(0)−n(1)(k0rd) . . . L

−1
n(q−1)−n(q)(k0rd) .

(3.75)

Again we have that the coefficients of the initial state and the closest energy level

are several order of magnitude higher than for lower energy levels. Even for a very
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3.3 Temporal evolution

high number of interactions, which may not be very probable, we can disregard

the rest of the coefficients as their contribution will not be significant. With this

consideration, we have that an atom in an initial state with principal quantum

number n0 after q scatterings by the nucleus will evolve into the state

ψn0

q→ ψ(q) ≈ Cn0(q)ψn0 + Cn0−1(q)ψn0−1 (3.76)

where the coefficients Ci, according to equation 3.75, will be

Cn0(q) = e−q
k0
2
rd , (3.77)

Cn0−1(q) = −q(k0rd)
n0 − 1

n0
2
e−q

k0
2
rd . (3.78)

It is important to call attention to the coefficient Cn0−1, which is not exponentially

dependent upon the number of collisions q (which is time-dependent, as shown

next). An exponential dependence is typical for the effect of other sources of

decoherence, like energy relaxation of the electron or the interaction of the atom

with background radiation (Loudon, 2000). This difference in behavior allows

the proposed effect to be distinguishable over other mechanisms of decoherence,

hence making the measuring of coefficient Cn0−1 particularly important. Also,

because it is a function of n0, the change in the atom can be modulated by using

different initial states, helping to distinguish the event over other noise sources.

If the probability of interaction is very low, it will be unlikely that the nucleus

will undergo more than one scattering event. Under this assumption, if multiple

atoms are prepared in the same initial state, the square of the coefficients Ci

will represent the population of the corresponding eigenstate. This is relevant, as

potential experiments should use the highest possible number of atoms to increase

the probability of observing an event and the resolution of the measurements,

which will be further discussed in Chapter 5.

To obtain the time dependence of the coefficients Ci, we have that the average

number of interactions within a certain interval t is given by

q(t) = σFpt , (3.79)
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3.3 Temporal evolution

where σ is the effective cross section and Fp is the flux of particles. By substituting

this expression into equation 3.77 we obtain the time evolution of the coefficient

Cn0(t) = e−
k0
2
rdσFpt , (3.80)

recalling that the displacement radius was calculated in section 3.1.3 as

rd =

√
2∆E

mN

~3

4µ3

(
n0me

kCe2

)2

. (3.81)

With these relations we proceed to estimate the evolution in time of the atomic

state, first for the scattering of photons and then for the scattering of particles

with non-zero mass.

3.3.1 Photon scattering

An alternative form of equation 3.79 that is useful to calculate the number of

scattered photons is

q(t) = σ
ηEc

hν
t , (3.82)

where ηE is the energy density of the electromagnetic radiation, c is the speed of

light and ν is the radiation’s frequency. For low energy photons we can consider

Thomson scattering by the atomic nucleus (Johnson et al., 2012), which gives the

cross section

σT =
8π

3

(
kce

2

mNc2

)2

. (3.83)

The average change in the energy of the photon by the scattering, given in the

inertial frame of the nucleus, is

∆E =
h2ν2

mNc2
, (3.84)

Using equations 3.80 to 3.84 in conjunction with relations from section 3.1.3, we

finally arrive at the function

Cn0(t) = exp

[
−
√

8πn0ηEme
2~3

3a0µ3mN
3c4

t

]
. (3.85)

With this formula, we calculate how the state of an atom differs from its original

state as a function of time for different energy densities of radiation surrounding
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3.3 Temporal evolution

Figure 3.5: Difference in the projection of the initial state of an atom with n0 = 60

and mN = 1.66×10−27 kg as a function of time corresponding to the scattering of

(a) solar radiation (ηE = 8.49 MeV/cm3), (b) laboratory ambient lights (ηE =

1.17 keV/cm3) and (c) the cosmic microwave background (ηE = 0.25 eV/cm3).

the atom, which is shown in figure 3.5. The analyzed energy densities correspond

to (a) the solar radiation on the earth’s surface considering a constant insolation

of 52.2 PW (ηE = 8.49 MeV/cm3) (Bird et al., 1983), (b) the environment of an

atomic physics laboratory with the ambient lights turned on, given a measure-

ment of 4µW with a detector of 9.5 mm of diameter (ηE = 1.17 keV/cm3) and

(c) the cosmic microwave background (ηE = 0.25 eV/cm3)(Blair, 1974). These

cases represent common circumstances for atoms to be exposed to and cover a

fair range of energy densities. The effect of the photon scattering is shown to

be very small even for very long times and the most energetic radiation. The

results may still be relevant for ultra-precise metrology experiments because of

the difficulty of shielding the atoms from different kinds of radiation, for which

the effect may present a fundamental precision limit. Other studies have analyzed

the decoherence induced by the scattering of non-resonant photons, but they are

based on the localization of the atom by the scattered light (Ozeri et al., 2007;

Uys et al., 2010).
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3.3.2 Massive particle scattering

We also analyze the effect of scattering of massive particles by the nucleus. This

is done having in mind the interaction of the graviton, the force-carrying particle

of gravity. Although the graviton is expected to be massless (due to the apparent

infinite range of the gravitational force), our model can be applied to set an upper

limit to its mass and interaction cross-section (Abbott et al., 2017).

The energy transferred to the nucleus for a scattering event of a massive

particle at the most probable angle is given by

∆E =
µ

mNme

(mpvp)
2 , (3.86)

where mp and vp are the mass and the velocity of the scattered particle, respec-

tively. We then have that the coefficient of the initial state evolves as

Cn0(t) = exp

[
−n0σFpmpvp√

8a0mN

(
µ

me

)1/2(
me

kce2

)2(~
µ

)3

t

]
. (3.87)

We use this equation to calculate the evolution of an atom continuously scatter-

ing massive particles, as presented in figure 3.6. We analyze two cases that we

consider the most significant in terms of limiting the stability of states:

(1) Scattering of neutrons.

(2) Scattering of dark matter.

In (1) we consider neutrons from secondary cosmic rays, having a flux of F =

2×104 neutrons/s ·m2, a cross-section of σ = 3 barn and a kinetic energy of 0.07

GeV (Hillas, 1927). In (2) we analyze the local distribution of dark matter with

a reported density of 5.41× 10−22 kg/m3 (Bovy & Tremaine, 2012). We assume

that dark matter is thermalized by the background radiation (T = 2.726 ◦K) and

that it is composed of axions, with a mass of mp = 1 eV/c2 and a cross-section

of σ = 0.01 barn (Bateman et al., 2015; Dzuba et al., 2010). For experimental

observation, all axion-electron interactions can be excluded, as they will result in

excitation or even ionization of the atom (Aprile et al., 2014; Dzuba et al., 2010).

We choose the axion as the particular candidate of dark matter because of its

low mass compared to others, namely the Weakly-Interacting Massive Particle

(WIMP), whose interaction is expected to ionize the atom (Savage et al., 2009).
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3.3 Temporal evolution

Figure 3.6: Difference in the projection of the initial state of an atom with n0 = 60

and mN = 1.66 × 10−27 kg as a function of time corresponding to the interac-

tion with (1) neutrons from secondary cosmic rays and (2) local dark matter

composed of axions .

We can see in figure 3.6 that, within the same period, the effect of massive

particle scattering seems to be more prominent than for the case of photon scat-

tering in figure 3.5. This is understandable as the effect depends on the amount

of momentum transferred to the nucleus, which should be significantly higher for

massive particles. These results imply that the scattering of cosmic rays could

impose the ultimate limit to the stability of excited atomic systems and to the

resolution of Earth-based atomic technology.

It is remarkable that the particular case we analyzed of local dark matter will

perturb the atoms to a higher degree than the cosmic rays. This presents the

possibility of applying our theory to the detection of such particles, or at least to

impose a limit to their mass, by analyzing the coherence in highly stable atomic

systems, like the hydrogen maser (Droz et al., 2009; Howe & Walls, 1983). The

interaction of exotic matter has already been modelled as a s-wave scattering, with

the proposed method of detection based on a model very similar to ours (Bateman

et al., 2015). A search for exotic interactions using the decoherence of a Ramsey
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3.3 Temporal evolution

interferometer has been suggested previously (Everitt et al., 2011, 2013), but the

mechanism for linking the decoherence of internal degrees of freedom of the atom

with momentum transfer was left open, which is solved by our model.

After determining that our model is potentially useful for the detection of

weakly-interacting particles, we now proceed to calculate the evolution in the

atomic state for gravitational interactions.
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Chapter 4

Decoherence by space-time

perturbations

4.1 Scattering model

We now apply the model developed in Chapter 3 first for the case of scattering of

gravitational waves. For a flat space (linear gravity), there is a duality between the

electromagnetic field and the space-time gauge leading to the Gravito-Compton

effect (Rothman & Boughn, 2006) in which particles with gravitational charge

(mass) scatter gravitational radiation; this is an analogue to the Compton effect,

where photons are scattered by electrically charged particles, hence its name.

According to the theory, the cross section σG of the interaction will be given by

σG =
8π

3

(
Gm

c2

)2

, (4.1)

where G is the gravitational constant, c is the speed of light and m is the mass of

the scattering object. Because in our model the scattering is done by the nucleus,

the mass m will correspond to the nuclear mass mN from previous expressions.

To simplify, we can write equation 4.1 in terms of the Schwarzschild radius rSh

of the mass of the nucleus as

σG =
2π

3
r2Sh , (4.2)

with rSh = 2GmN/c
2. This is the radius of a sphere such that, if all the mass

mN were to be contained within its volume, the escape velocity from the surface
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4.1 Scattering model

of the sphere would equal the speed of light (Schwarzschild, 1916). For an atom,

this radius will be rSh ∼ 10−54 m, which is extremely small.

According to section 3.3, we can calculate the evolution of the atomic state

with the product of the displacement radius rd, related to the energy exchange,

and the number of interactions per second q, related to the cross section of the

interaction. Based on the Gravito-Compton analogy, the interaction of the grav-

itational wave will produce a change in energy of

∆E =
E2
G

mNc2 + EG
, (4.3)

where EG is the energy carried by the gravitational wave. Using equations 4.1 to

4.3, along with the relations calculated in Chapter 3, we have that the components

rd and q are equal to

rd =
~3√

8mNµ3

(
n0me

kCe2

)2
EG

(mNc2 + EG)1/2
, (4.4)

q = FG
8π

3

(
GmN

c2

)2

t , (4.5)

where FG is the flux of gravitational waves. By using the numerical value of all the

constants in equations 4.4 and 4.5, we have that the product of the components

will be of the order

q rd ∼ 10−100PGt . (4.6)

The value of this product can increase by using a large number of atoms. In

this case the probability of interaction will grow not only because of the higher

number of targets, but also because of an increment in the Schwarzschild radius,

as the gravitational wave will interact with the mass of the ensemble as a whole.

As an example, for an ensemble of 1010 rubidium atoms prepared at n0 = 60 the

exponent of coefficient C0 will be rdqk0/2t ≈ 7.36 × 10−63, for the interaction

with the gravitational radiation of two merging black holes with estimated FG ≈
4.77 × 1028 m−2s−1 and EG ≈ 0.62 peV (Abbott et al., 2016b). Experimental

observations of this change in the state of the atoms will be quite challenging

given the small magnitude of the effect.
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4.1 Scattering model

Even for the case of a large number of highly excited atoms, and a very ener-

getic gravitational source, the calculated effect is too small to have experimental

implications. Still for the scattering of gravitons, whose cross section is esti-

mated several order of magnitude higher than for gravitational waves in equation

4.2 (Rothman & Boughn, 2006), the proposed interaction will not result in any

observable change. Rather than trying to apply quantum states to increase the

sensitivity of the atoms for the scattering of gravitational waves for the current

model, we instead propose a new model of interaction. Before this, we examine

another possible use of the current model.

4.1.1 Space quantization

Another application for the model of nucleus delocalization is the testing of space

quantization. An atom travelling through a quantized space will generate an

uncertainty in the position of the nucleus relative to that of the electron in the

form

rd = λcLP , (4.7)

where LP = 1.6162×10−35 m is the Planck length and λc is a dimensionless cut-off

parameter (Wang et al., 2006). This will be the size of the space quanta and the

minimum change in the relative position between the nucleus and the electron.

Because the electron obtains information about the position of the nucleus every

period τ , which is the force-carrying photon production time mentioned in section

3.1.3, the position uncertainty will be generated at a rate

1

τ
=

4µ3

~3

(
kce

2

n0me

)2

=
q

t
. (4.8)

The product of the components rd and q will be then

q rd ∼ 10−18λct , (4.9)

which is a more reasonable quantity in comparison to the scattering of gravita-

tional waves in equation 4.6. In figure 4.1 we plot the change in population of an

atomic state for an atom in a quantized space.

Given the values observed in this figure, the model can potentially be used to

measure the parameter λc or at least to impose a bound to its value, which could
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4.1 Scattering model

Figure 4.1: Change in the population of the initial state as a function of the

cut-off parameter λc and time for an atom in a quantized space with n0 = 2.

help testing some theories of space-time quantization. For this particular case,

it will be preferable to use states with low n0 in order to maximize the rate of

photon exchange, which will increase the loss of coherence. Experiments will also

require maximization of the travelling time of the atoms to ensure that enough

decoherence will be generated. In order to obtain an accurate estimation, further

considerations should be taken into account, like a possible non-homogeneous

space and the uncertainty in the period τ , although this is beyond the scope of

this study.
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4.2 Wave function transformation

Figure 4.2: The space in the transversal plane of a gravitational wave will be

compressed in a certain direction and expanded in the perpendicular axis.

4.2 Wave function transformation

It may not be possible to observe the effect of the displacement of the nucleus by

the scattering of gravitational waves as calculated in equation 4.6 within realistic

settings, so we propose that gravitational waves may have other effects in the

atom, presenting a new model of interaction inspired by our previous one. Similar

to how the change in the potential by the displacement of the nucleus will change

the state of the atom, we suggest that gravitational waves will distort the local

potential as perceived by the electron, prompting a similar state change.

A gravitational wave will compress the space along one of the axes of the

transversal plane and will expanded it along the perpendicular direction within

the same plane (see figure 4.2). We model the distortion of the space in this

plane, as seen by an external observer, as

r → r′ = r
1− Sp√

cos2 θ +
(

1−Sp
1+Sp

)2
sin2 θ

≡ rAθ , (4.10)

where Sp is the space strain of the gravitational wave in the transversal plane. It

is worth clarifying that this distortion does not represent a change in the orbital

of the electron, but rather a change in the relative distance for an electron at the
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4.2 Wave function transformation

position ~r. This is because: 1) in the quantum model the electron is not orbiting

the nucleus, like in the Bohr model, and 2) the electron is bound to the nucleus, so

the electromagnetic force will compensate for the distance expansion/contraction,

correcting the orbital. A way to understand the change in the potential perceived

by the electron is to envision the gravitational wave shifting the wavelength of the

force-carrying photons from the nucleus, so the effective force will be different at

a given angle. Modern interferometry-based gravitational detectors have already

detected very small changes in the wavelength of perpendicular light beams caused

by gravitational waves (Abbott et al., 2016a, 2017), providing some validity to

our proposal.

To calculate the change in the atomic state, we first consider a hydrogen-like

atom in an excited state with principal quantum number n0, and no angular

momentum (azimuthal quantum number l = 0), like in previous chapters and

under same arguments. For this system the initial wave function will be

ψn0,0 =

√(
2

n0a0

)3
(n0 − 1)!

8πn0(n0!)3
e

r
n0a0L1

n0−1

(
2r

n0a0

)
. (4.11)

If the wavelength of the gravitational wave is significantly bigger than the size of

the atom, we can consider the strain Sp constant trough the transversal planes

along the atom, so we can use the transformation 4.10 directly in equation 4.11.

By doing this we obtain that the wave function will change as

ψn0,0 → ψ′n0,0 =

√(
2

n0a0

)3
(n0 − 1)!

8πn0(n0!)3
e
rAθ
n0a0L1

n0−1

(
2rAθ
n0a0

)
. (4.12)

We now proceed to find the decomposition of this new wave function in terms of

the eigenstates ψn,l,m, which correspond to an atomic system in an unperturbed

space,

ψ′n0,0 =
∑
n,l,m

Cn,l,mψn,l,m(r, θ, φ) . (4.13)

The coefficients in the decomposition are calculated with

Cn,l,m =

∫ ∞
0

r2dr

∫ π

0

sinθ dθ

∫ 2π

0

dφ ψ∗n,l,mψ
′
n0,0 . (4.14)
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4.2 Wave function transformation

Solving equation 4.14 numerically is once again very time consuming, so we use

other approximations that allow us to find an analytical solution. First, we have

the mathematical identity (Abramowitz & Stegun, 1983)

L1
n0−1

(
2rAθ
n0a0

)
= e

− 2r
n0a0

(1−Aθ)
∑
k=0

(1− Aθ)k

k!

(
2r

n0a0

)k
L1+k
n0−1

(
2r

n0a0

)
. (4.15)

Then, for very small values of the strain constant (Sp � 1), we can use the

approximations

e
− r
n0a0

(3−2Aθ) ≈ e
− r
n0a0 , (4.16)

(1− Aθ)k ≈ [Spcos(2θ)]
k . (4.17)

By substituting equations 4.15 to 4.17 into equation 4.12 we are able to separate

the wave function into a radial part and an angular part

ψ′n0,0 =
∑
k=0

Sp
k

k!
R′n0,k(r) Y

′
k(θ) , (4.18)

with

R′n0,k(r) =

√(
2

n0a0

)3
(n0 − 1)!

2n0(n0!)3
e
− r
n0a0

(
2r

n0a0

)k
L1+k
n0−1

(
2r

n0a0

)
,

Y ′k(θ) =
1√
4π
cosk(2θ)L1+k

n0−1

(
2r

n0a0

)
,

(4.19)

similar to the calculations in Chapter 3. With this, we have that the integral of

the radial component in equation 4.14 is equal to∫ ∞
0

R′n0,k(r) Rn,l(r) dr =

√
(n0 − 1)!(n0 − l − 1)!

[n0!(n0 + l)!]3
[(n0 + k)!]3

(n0 − l − 1)!
δn0n , (4.20)

where δ is the Kronecker delta. Equation 4.20 tells us that the projection of the

wave function is only on the eigenstate with same principal quantum number as

the initial state. This is different from the results obtained in Chapter 3, where the

interaction will partially project the wave function into lower principal quantum

number states. The result can be explained by the fact that in the current model
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4.2 Wave function transformation

Table 4.1: Value of the component Θk,l by solving equation 4.21 for different

values of k and l.

l=0 l=2 l=4 l=6

k=0 1 0 0 0

k=1 -1/3 4/15 0 0

k=2 7/15 -8/105 32/315 0

k=3 -9/15 4/21 -32/1155 128/3003

the atom does not perform any scattering or acquire any additional momentum,

so no transference from potential to kinetic energy should occur.

By solving the integral for the angular component in equation 4.14 we obtain

∫ π

0

∫ 2π

0

sinθ Y ′k(θ) Y
m
l (θ, φ) dφ dθ =

{√
2l + 1 Θk,lδm,0 for l = 0, 2, 4, ...

0 for l = 1, 3, 5, ...
.

(4.21)

Equation 4.21 indicates that after the gravitational interaction, the atom will be

perceived as having a small projection into states with even azimuthal number.

This is a significant result, as the graviton is theorized to have intrinsic angular

momentum l = 2, so a transition in the atom mediated by this particle should

be expected to have ∆l = ±2. The coefficients from equation 4.21 can then be

interpreted as the atom absorbing l/2 number of gravitons. The non-trivial values

of the term Θk,l are shown in table 4.1, where it can be seen that Θk,l = 0 for

k < l/2. With the product of the results in equation 4.20 and 4.21 we obtain the

value of the coefficients Cn,l,m.

From equation equation 4.18 we get that the coefficients are proportional to

Sp
k. Because Sp is expected to be extremely small (∼ 10−20) (Abbott et al.,

2017), we disregard all terms in the summation for k ≥ 2, so we get that the

state of the atom evolves into

ψ′n0,0,0 ≈ C0(n0)ψn0,0,0 + C2(n0)ψn0,2,0 , (4.22)
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4.2 Wave function transformation

with

C0(n0) = 1− Sp
3

(n0 + 1)3 ,

C2(n0) = Sp
4(n0 + 1)

3(n0 + 2)2

√
(n0

2 − 1)(n0
2 − 4)/5 .

(4.23)

We find therefore that an atom with no initial angular momentum will be per-

ceived as having part of its wave function projected into a state with the same

principal quantum number but azimuthal number equal to two after it interacts

with a gravitational wave. The projection is proportional to the strain in space

caused by the gravitational wave and increases for atoms in a higher energy level,

which is consistent which previous results.

4.2.1 General model

For an atomic state corresponding to a principal quantum number n0 ≥ 2 and az-

imuthal quantum number l0 ≥ 1, the wave function is altered by the gravitational

wave as

ψn0,l0, → ψ′ =
∑
n,l

Cn,lψn,l , (4.24)

with a change similar to the one described in equation 4.10. Following the same

steps as for an initial state with no angular momentum (equations 4.14 to 4.17),

and after solving the proper integrals, we find that the state of the atom is

perceived as partially projected into states with azimuthal number equal to the

initial state plus or minus multiples of two (l = l0 ± 2, 4, 6, ...),

ψ′ =Cn0,l0ψn0,l0 + Cn0,l0+2ψn0,l0+2 + Cn0,l0+4ψn0,l0+4 + Cn0,l0+6ψn0,l0+6 + ...

+ Cn0,l0−2ψn0,l0−2 + Cn0,l0−4ψn0,l0−4 + Cn0,l0−6ψn0,l0−6 + ... .

(4.25)

Similar to the case of no initial angular momentum, the projection is mostly over

the initial state and states with azimuthal numbers that differ by two (l = l0±2).

With this consideration we have that the wave function evolves into

ψ′ ≈ C0ψn0,l0 + C+2ψn0,l0+2 + C−2ψn0,l0−2 , (4.26)
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4.2 Wave function transformation

where the coefficients Ci are calculated to be

C0 = 1− Sp
(n0 + l0 + 1)3

(2l0 − 1)(2l0 + 3)

C+2 = 2Sp
(l0 + 1)(l0 + 2)

2l0 + 3

√(
n0 + l0 + 1

n0 + l0 + 2

)3
(n0 − l0 − 1)(n0 − l0 − 2)

(2l0 + 1)(2l0 + 5)

C−2 = 2Sp
l0(l0 − 1)(n0 + l0 + 1)3

2l0 − 1

√
(n0 + l0)3(n0 + l0 − 1)3

(n0 − l0)(n0 − l0 + 1)(2l0 + 1)(2l0 − 3)
.

(4.27)

We now have that the change in the initial state will increase as a function of both

n0 and l0. As an example, by preparing atoms with very high quantum numbers

n0 + l0 ∼ 100 (Dutta et al., 2001), we can increase the effect of the interaction

by around ∆C0 ∼ 106.

We considered two possible interpretations to results from equation 4.26, ac-

cording to the nature of the interaction: first, the gravitational wave exchanges

energy with the atom, altering the angular momentum of the electron. Second,

the gravitational wave only shifts the relative energy between the energy levels

of the atom, as perceived by an external observer.

4.2.2 Atomic transition

In our first interpretation, the gravitational wave induces a transition in the atom

by an exchange of angular momentum through the graviton. It can be argued

that, because no energy transference occurs, the transition is only possible due

to the degeneracy of the energy levels. If so, the transition could not take place

in non-hydrogen atoms due to the quantum defect and the Lamb shift (Griffiths,

1995) separating the levels, which should be specially relevant for more complex

atoms, like rubidium. Nevertheless, both the quantum defect and the Lamb

shift decrease rapidly with the principal quantum number, so their effect will be

negligible for Rydberg atoms (Afrousheh et al., 2006; Low et al., 2012).

A single interaction with gravitons will change the wave function from the

initial state ψ(0) to the state ψ(1),

ψ(0)(l0)→ ψ(1) = C0(l0)ψ(l0) + C+2(l0)ψ(l0 + 2) + C−2(l0)ψ(l0 − 2) , (4.28)
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4.2 Wave function transformation

as previously calculated. A second interaction will then produce a change in the

wave function ψ(1),

ψ(1) → ψ(2) = C0(l0) [C0(l0)ψ(l0) + C+2(l0)ψ(l0 + 2) + C−2(l0 − 2)ψ(l0 − 2)]

+ C+2(l0) [C0(l0 + 2)ψ(l0 + 2) + C+2(l0 + 2)ψ(l0 + 4) + C−2(l0)ψ(l0 − 2)]

+ C−2(l0) [C0(l0 − 2)ψ(l0 − 2) + C+2(l0 − 2)ψ(l0) + C−2(l0 − 2)ψ(l0 − 4)] .

(4.29)

In equation 4.27 we can see that the coefficients Ci depend linearly on the strain

factor Sp. Because of the assumed magnitude of this term, we can make the

approximations

C0C0 ≈ 1− 2Sp
(n0 + l0 + 1)3

(2l0 − 1)(2l0 + 3)
≡ 1− 2c0 , (4.30)

C0C+2 ≈ C+2 , C0C−2 ≈ C−2 , (4.31)

C+2C+2 ≈ 0 , C−2C−2 ≈ 0 , C+2C−2 ≈ 0 . (4.32)

with

c0 = Sp
(n0 + l0 + 1)3

(2l0 − 1)(2l0 + 3)
. (4.33)

Using these approximations in equation 4.29, we have that the wave function

after the second interaction will be

ψ(2) ≈ [1− 2c0(l0)]ψ(l0) + 2C+2(l0)ψ(l0 + 2) + 2C−2(l0)ψ(l0 − 2) . (4.34)

Following the same logic (similar to the method used in section 3.3), we calculate

the wave function after a third and fourth interaction, and so on. We get that

after q interactions, an atom in an initial state ψn0,l0 will evolve as

ψn0,l0

q−→ ψ(q) ≈ (1− q c0)ψn0,l0 + qC+2ψn0,l0+2 + qC−2ψn0,l0−2 , (4.35)

By finding the rate of interaction, equation 4.35 tells us how the state of the atom

is expected to change in time while being subject to gravitational fluctuations.

The number of events q will be given by

q = σGFGt , (4.36)
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4.2 Wave function transformation

Figure 4.3: Change in population of the initial state for an ensemble of 1010

rubidium atoms prepared with n0 = 50 and l0 = 0 interacting with a stream of

gravitational waves with FG = 4.77× 1028m−2s−1 and EG = 0.62peV .

where σG and FG are the cross-section and flux of gravitons, respectively. The

cross-section of the graviton for interactions with matter is theorized to be about

(Rothman & Boughn, 2006)

σG ∼ G~ . (4.37)

Using the same parameters as in the example described in section 4.1, we calculate

the evolution in time of the atomic ensemble for the new model, which is plotted

in figure 4.3. It can be seen that there is a greater change in the population of

the initial state compared to that calculated for scattering in equation 4.6.

An experimental test of this model can be performed by preparing a large

number of atoms in an excited state and measuring the decline in the population

of the state after the atoms interact with the gravitational wave. The measured

change is then adjusted to the evolution of the system predicted with equation

4.35, which will give us the value of the parameter Sp. The decay rate can be

modulated by changing the initial state of the atoms, which can be used to refine

the measurements. For a coherence time of 0.02 s (Deleglise et al. (2008)), the
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4.2 Wave function transformation

expected change in the population will be a fraction of ∼ 10−23, which is several

orders of magnitude smaller than the current achievable resolution.

4.2.3 Transition detuning

Our second interpretation describes a shift in the relative energy of the states as

a result of the change in the perceived potential. The atom interacting with a

gravitational wave will experience a change in the energy of its eigenstates

En,l → E ′n,l , (4.38)

which is a function of the coefficients C0, C+2 and C−2 as

E ′n,l = C0
2En,l + C+2

2En,l+2 + C−2
2En,l−2 . (4.39)

The coefficients Ci depend non-linearly on the principal quantum number (equa-

tion 4.23), so the difference in energy between two distinct energy levels,

∆E = E2 − E1 , (4.40)

will be different after the interaction by ∆,

∆E ′ = E ′2 − E ′1 = ∆E + ∆ . (4.41)

Light originally used to drive a transition between states with energy E1 and E2

will be then detuned by

∆ = ∆E ′ −∆E = (E ′2 − E2)− (E ′1 − E1) , (4.42)

while the atom interacts with the gravitational wave. With the change in energy

described in equation 4.39, we have that

E ′i − Ei = −Ei
(

1− C0
2 − C+2

2Ei+2

Ei
− C−22

Ei−2
Ei

)
. (4.43)

For the values of Cj indicated in equation 4.27, we have that this difference will

be

E ′i − Ei = −Ei
[
2Sp

(ni + li + 1)3

(2li − 1)(2li + 3)
+ κ(Sp

2)

]
, (4.44)
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where κ(Sp
2) is a factor that is proportional to Sp

2. Because this term is very

small, we can make the approximation

E ′i − Ei ≈ −2Sp
Ei(ni + li + 1)3

(2li − 1)(2li + 3)
. (4.45)

With this we finally arrive at the relation

∆ = −2Sp

[
E2(n2 + l2 + 1)3

(2l2 − 1)(2l2 + 3)
− E1(n1 + l1 + 1)3

(2l1 − 1)(2l1 + 3)

]
. (4.46)

Light with energy ∆E will be detuned for the transition by ∆ ∼ Sp∆E, around a

fraction of 10−20 of the original energy difference. For comparison, the most pre-

cise measurement of transition detuning is performed on strontium atomic clocks,

in which the frequency is measured with an uncertainty of ∼ 10−15 (Akamatsu

et al., 2014).

For atoms prepared with n0 ∼ 50 (Kubler et al., 2010; Singer et al., 2004),

the detuning will be augmented by ∼ 105 compared to the lowest energy levels,

even for transitions of states with close quantum numbers. As a more concise

example, the H110α emission of the Carina nebula at 4.8 GHz (Brooks et al.,

2001) would experience a change in its wavelength of ∆λ ≈ 5.6 × 10−16m if a

gravitational wave passed through. A change of this magnitude could be mea-

sured using extremely accurate interferometry, like the one currently applied in

gravitation wave detection (Abbott et al., 2016b, 2017), making the proposed

effect potentially observable with current technology.

It should be noted that only for times much shorter than the period of the

gravitational wave (t� τgw) can the strain in the transversal plane Sp be consid-

ered constant. For longer times, the strain in space by gravitational waves will

fluctuate, so the detuning of the light should be calculated as a function of time

for long-duration experiments,

∆(t) = −2

[
E2(n2 + l2 + 1)3

(2l2 − 1)(2l2 + 3)
− E1(n1 + l1 + 1)3

(2l1 − 1)(2l1 + 3)

]
S(t) . (4.47)

Another possible way to test this model is by analyzing the Rabi oscillations of

an ensemble of atoms (Johnson et al., 2008). If a deviation in the population

of the energy levels is observed after a period of time and it can be adjusted to
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correspond to the detuning in the electromagnetic field as described by equation

4.47, we can infer that the atoms were interacting with gravitational waves. To

calculate the deviation, we have that for a two-level system the probability of

finding an atom in the excited state will be

Pe(∆ω, t) =
ω2

∆ω2 + ω2
sin2

(√
∆ω2 + ω2

2
t

)
, (4.48)

where ω is the Rabi frequency and ∆ω is the frequency detuning, which is related

to the energy shift in equation 4.47 simply by ∆ω = ∆/~. In this case, light that

was previously resonant to the transition will be detuned because of the shift

in the energy of the transition. The Rabi cycle will deviate from its resonant

dynamics Pe(∆ω = 0, t) by

δP = Pe(0, t)− Pe(∆ω, t)

= sin2
(ω

2
t
)
− ω2

∆ω2 + ω2
sin2

(√
∆ω2 + ω2

2
t

)
.

(4.49)

When the detuning is much smaller than the Rabi frequency (∆ � ω), we can

use the approximation

√
∆ω2 + ω2 ≈ ω + ∆ω2/2ω , (4.50)

which can be substituted in equation (4.49) to obtain

δP ≈ sin2
(ω

2
t
)[

1− ω2

∆ω2 + ω2
cos2

(
∆ω2

4ω
t

)]
. (4.51)

Using equation 4.51 for short times (compared to the period of the gravitational

wave), we get that the deviation can be approximated as

δP ≈
(

∆ω2

4ω
t

)2

. (4.52)

This equation indicates that the deviation increases with the detuning and de-

creases with the Rabi frequency, making again the effect more prominent in tran-

sitions of states with high quantum numbers (Dutta et al., 2001). For comparison,

the deviation in the Rabi cycle δP for the transition 50S – 51P of a rubidium
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Figure 4.4: Deviation in the Rabi cycle for a 50S – 51P transition with a Rabi

frequency of 47 kHz, which arises from the interaction with a gravitational wave

with peak strain of Sp = 10−20.

atom (Brune et al., 1996) exposed to gravitational waves will be 104 times higher

than the deviation for the transition 1S – 2P for the same atom.

For longer times (t > πω/∆ω2), the deviation will be mostly due to the

increased frequency of the cycle. In this case, the ideal transition will be obtained

by maximizing the energy difference between the levels (Dudin et al., 2012). If

a system undergoing Rabi oscillations is measured at times corresponding to N

completed cycles (t = 2Nπ/ω), the expected deviation will be

δP (t = 2Nπ/ω) ≈
(
Nπ∆ω2

2ω2

)2

. (4.53)

In figure 4.4 we show the expected measured deviation for completed cycles using

the mentioned 50S – 51P transition. In this figure it can be seen that the effect

becomes significant for very long times, which may require for experiments to

implement a high-Q cavity in order to extend the coherence time of the atoms by

suppressing most of the undesired transitions (Varcoe et al., 2000; Walther et al.,

2006). For the aformentined coherence time (0.02 s) the deviation in the cycle

will be ∼ 10−27, still below current experimental sensitivity.
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Although a large ensemble of Rydberg atoms can be prepared (Dudin et al.,

2012) to improve the probability of detection, collective effects should be taken

into consideration (Quinones et al., 2017) especially for such highly excited atoms,

as they exhibit long-range correlations (Browaeys & Lahaye, 2013; Lee et al., 2012;

Lukin et al., 2001).

4.3 Collective interaction of Rydberg atoms

One of the main features of Rydberg atoms is their high polarizability, which

increases as ∼ n7 (Gallagher, 2007). This results in the atoms having long-range

dipolar interaction between them. The interaction will produce a displacement of

the energy levels, shifting the transition energy. If the shift is big enough, it will

suppress the transition by means of photon absorption or stimulated emission,

because the light will be out of resonance. When two atoms are close enough

(at a distance called the blockade radius), the excitation of one of the atoms will

produce a shift in the transition energy of other one equal to the linewidth of

the transition, completely blocking it (Browaeys & Lahaye, 2013; Singer et al.,

2004); this effect is known as Rydberg blockade. It is not expected for the inter-

action of the gravitational wave to be blocked. A gravitational fluctuation will

rather provide an additional shift to the transition energy as calculated before.

Nevertheless, the quadrupole transition by the gravitational wave will change if a

collective interaction of the atoms with a common field (in this case the oscillating

gravitation field) arises.

To analyze the interaction with the field, we start from the quantum field

equation

φ̈ = ∇2φ− (1 + 2ν)µ2φ , (4.54)

where ν is the external potential and µ = m/~ is the inverse of the reduced

Compton wavelength. This equation gives the solution

φn =

√
~

2wn
(ane

−ıwnt + a†ne
ıwnt)ψn , (4.55)

with wn = µ+En/~ and with an and a†n the annihilation and creation operators,

respectively. If |n〉 represents the state for a given energy level, the ladder operator
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4.3 Collective interaction of Rydberg atoms

an will be such that a†n |0〉 = |n〉. Using this solution in conjunction with the

general master equation for matter interacting with gravitational waves (Oniga

& Wang, 2016)

ρ̇ = − i
~

[Hint, ρ] +Dρ , (4.56)

where Hint describes the interaction with fields other than the gravitational one

and Dρ is the non-Markovian quantum dissipator,

Dρ = Γ0{s(1− s)[Nρ+NGW (ω0)ρ
′]}′ , (4.57)

will lead to a gravitational spontaneous emission rate

Γ =
2Gm2ω5q21,2

45~
, (4.58)

where G is the gravitational constant and q21,2 is the square modulus of quadrupole

moment of the transition between the states |n1, l1〉 and |n2, l2〉. The full math-

ematical derivation of this result can be seen in the reference (Quinones et al.,

2017). It is noticeable that the rate increases with the energy of the transition,

which is consistent with our previous results.

If the wavelength of the gravitational wave is bigger than the size of the

ensemble (which should be true for most gravitational waves), the transition rate

will have a dependence on the number of atoms of the form

ΓGW =
N2

4
ΓNGW (ω) , (4.59)

where N is the number of atoms in the ensemble and NGW (ω) is the distribu-

tion function of the gravitational waves (Gross & Haroche, 1982). A quadratic

dependence on the number of emitters, in this case the atoms, is known as super-

radiance (Bekenstein & Schiffer, 1998). Equation 4.59 can be applied to calculate

the transition rate of the interaction with vacuum fluctuation if its distribution

function NV F (ω) is used instead of NGW (Quinones et al., 2017).

We apply the same amplification effect to our transition model in section 4.2.2,

obtaining the change in time of the initial state population for the same system

as shown in figure 4.5. A significant change can be seen compared to the non-

interacting case in figure 4.3. For the same period of 0.02s, the expected change

in population will be ∼ 10−13, which starts to become experimentally significant.
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4.3 Collective interaction of Rydberg atoms

Figure 4.5: Change in population of the initial state for an ensemble of 1010

mutually interacting rubidium atoms with n0 = 50 and l0 = 0 exposed to a

common gravitational field with FG = 4.77× 1028m−2s−1 and EG = 0.62peV .

From these results it can be concluded that correlated atoms, in this case by

long-range dipolar interactions, will be more sensitive to gravitational perturba-

tion, compared to uncorrelated atoms. With this in mind, we analyze how atoms

with other kind of correlations (entanglement) will change as a result of their

interaction with gravitational waves.
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Chapter 5

Metrology of quantum states

In previous chapters it was calculated that a relative phase will arise between two

eigenstates of the atom after its interaction with a gravitational wave. Depending

on the model, these eigenstates will differ in their principal or azimuthal quantum

numbers. The change can be amplified by using atoms prepared in a highly

excited state, but even for the optimal case (as described in Chapter 4) it will

be very challenging to detect the effect with current technology. In section 4.3 it

was described how correlated atoms (through mutual dipolar interactions) change

their state in a higher degree after interacting with gravitational fluctuations. It

could be expected that atoms prepared in different quantum states that present

correlations will evolve in a way that will make the effect easier to be detected.

Several studies have analyzed how the correlation of the experiment’s probes

enhance their sensitivity to a change of phase, which gives a better estimation of

the interaction for lower experimental resources (Johnsson et al., 2016; Ma et al.,

2017). These resources can be the number of probes, in our case the number of

atoms in the ensemble (Facon et al., 2016), or the interaction time, which for the

case of gravitational waves is expected to be very small (Juffmann et al., 2016). In

order to calculate any possible improvement to the measurements, we analyze the

evolution of the atom after the interaction for different initial quantum states. We

start our calculations for an initial state with principal quantum number n0 and

angular momentum number l0 = 0. According to section 4.2.1, the interaction

of the atom with a gravitational wave will transform the state of the atom such

that it will have a projection in states with ∆l = ±2,±4, ... but, because of the
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magnitude of the coefficients in the decomposition, the resulting transformation

can be approximated as

|ψ0〉 = |n = n0, l0 = 0〉 → |ψ〉

= Cn0,l=0 |n = n0, l = 0〉+ Cn0,2 |n = n0, l = 2〉

≡ C0 |n0, 0〉+ C2 |n0, 2〉 ,

(5.1)

which presents a change in the relative phase of C2/C0 for the states |n0, 0〉
and |n0, 2〉. This result can be extended for the general case of l ≥ 0 as the

observations can be focused only in the transition between levels with l = l0 and

l = l0 + 2, such that

|l0〉 → C0 |l0〉+ C2 |l0 + 2〉 . (5.2)

For convenience, we will use the notation |n0, l0〉 ≡ |0〉 and |n0, l0 + 2〉 ≡ |2〉 for

the rest of the calculations. We have that the probability P of measuring the

atom in the initial state after interacting with a gravitational wave will be

P (Sp) = | 〈ψ0|ψ〉 |2 = C2
0(Sp) , (5.3)

which depends on the the magnitude of the parameter Sp. Experimentally, this

quantity can be estimated with a statistical error of

(∆P )2 = 〈ψ|ψ〉 − | 〈ψ0|ψ〉 |2 = C2
2(Sp) . (5.4)

By estimating the value of the parameter Sp we can acquire important information

about the intrinsic properties of the gravitational fluctuation. Through error

propagation theory it can be obtained that if we try to evaluate the magnitude

of Sp by measuring the state |ψ〉, the error in the estimation will be

∆Sp = ∆P/

∣∣∣∣ ∂P∂Sp
∣∣∣∣ . (5.5)

A lower uncertainty ∆Sp means a better estimation, so it is in our interest to

reduce this quantity for a given measurement as much as possible. From equation

4.27 we have that the coefficient C0 is

C0 = 1− Spκ0(n0, l0) , (5.6)
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5.1 Fisher information

where κ0 is a constant that depends on the quantum numbers n0 and l0 of the

initial state of the atom as

κ0 =
(n0 + l0 + 1)3

(2l0 − 1)(2l0 + 3)
. (5.7)

This is the coefficient calculated for the transformation after a single interaction,

but it can be easily extended for the case of multiple events because the coefficient

Ci increases linearly with the number of interactions as calculated in equation

4.35. Using equations 5.3 to 5.7, we obtain that the uncertainty in the estimation

of Sp will be

∆Sp =
1

2κ0

(
C2

C0

)
. (5.8)

For the value of C2 described by equation 4.27, we have that the uncertainty will

depend on the principal quantum number n0 of the initial state as

∆Sp ∼
1

n2
0

. (5.9)

This suggests that the measurement will be more accurate for higher excitations

of the initial state, once more favouring Rydberg states.

5.1 Fisher information

The Fisher information is defined as the information about the state of a system

that is gained after a particular measurement of said state (Savage, 1976). We

seek to maximize the Fisher information so that experiments can have higher

resolution with less resources (Giovannetti et al., 2006; Guo-Yong & Guang-Can,

2013). Moreover, a greater amount of information per measurement will require

for the experiments to be repeated fewer times, which is ideal given the rarity

of particular gravitational wave events. The classical Fisher information for a

particular measurement of a system can be calculated as

Fc =
∑
i

(P ′i )
2

Pi
, (5.10)
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5.1 Fisher information

with Pi the probability of finding the system in a given state |i〉 and P ′i the partial

derivative of the probability with respect to the estimated parameter,

P ′i =
∂Pi
∂Sp

. (5.11)

Given the initial state |ψ0〉 = |0〉 for an atom, its interaction with a gravitational

wave will leave the system in the state

|ψ〉 = C0 |0〉+ C2 |2〉 , (5.12)

so the probabilities of finding the atom in the states |0〉 and |2〉 after the trans-

formation will be

P0 = C2
0 , P2 = C2

2 , (5.13)

with the derivatives

P ′0 = 2C0C
′
0 , P

′
2 = 2C2C

′
2 . (5.14)

For very large values of n0 and low l0, which are preferable states according to

the results in Chapter 4, the value of the coefficient C2 can be approximated to

C2
2 ≈ 1− C2

0 , (5.15)

which implies an almost unitary transformation of the system. This will be

important to obtain consistent results in following calculations. Using the ap-

proximation in equation 5.15 and the value for C0 in equation 5.6, we obtain the

derivatives

C ′0 = −κ0 , C ′2 = κ0
C0

C2

, (5.16)

which can be substituted in equation 5.14 to get

P ′0 = −2κ0C0 , P
′
2 = 2κ0C0 . (5.17)

With these derivatives and equation 5.10 we obtain that the Fisher information

for the transformed state will be

Fc =
(P ′0)

2

P0

+
(P ′2)

2

P2

=
(2κ0C0)

2

C2
0

+
(−2κ0C0)

2

C2
2

= 4κ20

(
1 +

C2
0

C2
2

)
= 4

(
κ0
C2

)2

(C2
2 + C2

0) .

(5.18)
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5.1 Fisher information

From equation 5.15 we have that C2
0 + C2

2 ≈ 1, so we get finally that the Fisher

information can be calculated as

Fc = 4

(
κ0
C2

)2

. (5.19)

By comparing this equation with the identity in equation 5.8, we can easily see

the relation between the Fisher information and the uncertainty in the estimation

of the value of Sp

Fc ∼
1

(∆Sp)2
. (5.20)

Equation 5.20 tells us that the Fisher information is inversely proportional to the

square of the uncertainty of the estimated parameter, highlighting the importance

of maximizing it in order to increase the resolution of measurements.

For quantum states, a more proper version of the Fisher information can be

calculated. The quantum Fisher information for pure states is defined as

Fq = 4
(
〈ψ′|ψ′〉 − | 〈ψ|ψ′〉 |2

)
, (5.21)

where |ψ′〉 represents the partial derivative of the vector state |ψ〉 with respect

to the estimated parameter,

|ψ′〉 =
∂

∂Sp
|ψ〉 . (5.22)

Given the transformed state |ψ〉 in equation 5.12, we have that the derivative

vector will be

|ψ′〉 = C ′0 |0〉+ C ′2 |2〉 . (5.23)

Using the same values in equation 5.16 for the derivatives C ′i gives us the value

for the quantum Fisher information

Fq = 4
(
〈ψ′|ψ′〉 − | 〈ψ|ψ′〉 |2

)
= 4

(
κ20 + κ20

C2
0

C2
2

− |κ0C0 − κ0
C0

C2

C2|2
)

= 4κ20

(
κ20 + κ20

C2
0

C2
2

)
= 4

(
κ0
C2

)2

(C2
2 + C2

0)

= 4

(
κ0
C2

)2

.

(5.24)
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5.1 Fisher information

Figure 5.1: Quantum Fisher information for the state described in equation 5.12

as a function of the strain constant Sp. This function is normalized with the

constant κ0, which depends on the quantum number of the initial state according

to equation 5.7.

This is the same value for the classical Fisher information in equation 5.19, which

is a special case for 〈ψ|ψ′〉 = 0. In figure 5.1 we plot the value of the calculated

Fisher information as a function of the strain constant Sp. For small values of

Sp, the value of the Fisher information will become asymptotically big,

F (Sp)

κ0
≈ 2

Sp
. (5.25)

Because of the magnitude of Sp, this equation tells us that the information gained

by measuring the atom in a state other than the initial will be very high. Although

measuring a very small Sp will provide an enormous amount of information about

the state of the system, the probability of realizing such measurement will become

extremely small because it depends directly on the value of Sp.

A useful quantity will be the product of the Fisher information F times the

probability P⊥ of measuring the atom in a state |i〉 orthogonal to the initial state

(〈i|ψ0〉 = 0). By maximizing this product we can guarantee a higher success in

measuring any change in the state and also a lower error in such measurement.
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5.1 Fisher information

For the state after the interaction as described in equation 5.12, the product of

the Fisher information and the probability of finding the atom in a orthogonal

state will be will be

F (Sp)P⊥(Sp) = 4κ20 . (5.26)

This result increases drastically with the principal quantum number of the initial

state (κ20 ∼ n6
0), indicating that Rydberg states will increase both the probability

of measuring any change and the resolution of the experiments.

5.1.1 State superposition

Next we analyze the Fisher information for the state of an atom initially in a state

superposition. The eigenstates |n0, 0〉 and |n0, 2〉 of the atom will be transformed

after the interaction with the gravitational wave as

|n0, 0〉 → C0(n0, 0) |n0, 0〉+ C+2(n0, 0) |n0, 2〉 , (5.27)

|n0, 2〉 → C0(n0, 2) |n0, 2〉+ C−2(n0, 2) |n0, 0〉+ C+2(n0, 2) |n0, 4〉 . (5.28)

For large values of n0 we can use the following approximations: first, from equa-

tion 4.27 we have that the value of C+2 in the right side of equation 5.28 is much

smaller than the rest of the coefficients, so we can disregard the projection of the

state |n0, 4〉. Second, by using equation 4.27 it can be calculated that the value

of C0(n0, 0) and C−2(n0, 2) will be very similar, so we can treat them as the same

factor (C−2(n0, 2) ≈ C0(n0, 0)). This will also allow us to keep unitarity in the

transformation. Using these approximations, we obtain that the eigenstates are

transformed as

|0〉 → C0 |0〉+ C2 |2〉 (5.29)

|2〉 → −C2 |0〉+ C0 |2〉 . (5.30)

For an atom initially in an equal superposition of the states |0〉 and |2〉,

|ψ0〉 =
1√
2

[|0〉 − |2〉] , (5.31)
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5.1 Fisher information

we get the transformation

|ψ0〉 → |ψ〉 =
1√
2

[(C0 + C2) |0〉+ (−C0 + C2) |2〉] , (5.32)

with derivative

|ψ′〉 =
1√
2

[(C ′0 + C ′2) |0〉+ (−C ′0 + C ′2) |2〉] . (5.33)

The negative phase between |0〉 and |2〉 is selected here and in following calcu-

lations to maximize the change in phase as suggested in subsection 3.1.2. Using

the same value for the derivative of the coefficients Ci in equation 5.16, we obtain

the derivative vector

|ψ′〉 =
1√
2

[κ0(−1 + C0/C2) |0〉+ κ0(1 + C0/C2) |2〉]

=
1√
2

κ0
C2

[(C0 − C2) |0〉+ (C0 + C2) |2〉] .
(5.34)

By rewriting the vectors |ψ〉 and |ψ′〉 in terms of the coefficients C+ = C0 + C2

and C− = C0 − C2,

|ψ〉 =
1√
2

[C+ |0〉 − C− |2〉]

|ψ′〉 =
1√
2

κ0
C2

[C− |0〉+ C+ |2〉] ,
(5.35)

it can be more easily observed that they are orthogonal to each other (〈ψ|ψ′〉 = 0),

which from previous remarks results in the quantum and classic Fisher informa-

tion having the same value. From the definition in equation 5.21, we obtain that

the Fisher information for the superposition state will then be

F|0〉−|2〉 = 4

(
κ0
C2

)2

(C2
+ + C2

−)

= 4

(
κ0
C2

)2

,

(5.36)

which is the same as for an initial state with no superposition in equation 5.24.

This implies that no extra information can be obtained from the interaction by

using atoms in an equally distributed superposition.
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5.1 Fisher information

Although the state described in equation 5.31 may present the highest change

in the relative phase after the interaction, this does not necessarily imply a better

estimation from measuring the state. To calculate if the measurement of any

particular initial state will provide more information about the parameter Sp, we

analyze the general state

|ψ0〉 = A |0〉+B |2〉 , (5.37)

where A and B are arbitrary complex numbers such that |A|2 + |B|2 = 1. Using

equations 5.29 and 5.30, we have that this state will be transformed into the state

|ψ〉 = (AC0 −BC2) |0〉+ (AC2 +BC0) |2〉 . (5.38)

The derivative vector will then be

|ψ′〉 = −κ0
C2

[(AC2 +BC0) |0〉 − (AC0 −BC2) |2〉] , (5.39)

which is evidently orthogonal to the transformed state vector (〈ψ|ψ′〉 = 0). We

then have the scalar product

〈ψ′|ψ′〉 =
κ20
C2

2

[AC2 +BC0)
2 − (AC0 −BC2)

2]

=
κ20
C2

2

[(A2 +B2)(C2
0 + C2

2)]

=

(
κ0
C2

)2

,

(5.40)

giving the Fisher information

FA,B = 4

(
κ0
C2

)2

, (5.41)

which is once again the same value as for the atom initially in a single eigenstate.

Because a superposition can be seen as a rotation in the observation basis, this

result tells us that no extra information from the state will be gained by changing

the measurement basis.
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5.2 Multiple atom systems

5.2 Multiple atom systems

We now calculate how systems of multiple atoms are transformed by their in-

teraction with gravitational fluctuations and estimate the Fisher information of

the resulting state to examine how initial correlations between the atoms could

reduce the uncertainty of the state measurements.

Let us first consider a system of two atoms. If |ψ0〉1 and |ψ0〉2 represent the

initial state of the first and second atom, respectively, then the state of the whole

system can be represented as

|ψ0〉 = |ψ0〉1 ⊗ |ψ0〉2 , (5.42)

which in this case is a separable state. If both atoms are initially in the base

state |0〉, then the state of the system will be

|ψ0〉 = |0〉1 ⊗ |0〉2 ≡ |0〉 |0〉 . (5.43)

We regard the gravitational wave interacting with both atoms at the same time

and in an equal way. This is based on the argument that the wavelength of the

gravitational wave will be much bigger than the distance between the atoms, so

its effect will be similar for both subsystems. If a gravitational wave interacts

with both of them and they are statistically independent, then the state of the

system will evolve as

|ψ〉 = [C0 |0〉+ C2 |2〉]⊗ [C0 |0〉+ C2 |2〉]

= C2
0 |0〉 |0〉+ C0C2 |0〉 |2〉+ C0C2 |2〉 |0〉+ C2

2 |2〉 |2〉 .
(5.44)

This transformation disregards any mutual interaction of the atoms (see section

4.3), which can be done even for Rydberg atoms if they have a large separation.

The derivative of the state vector in equation 5.44 will be

|ψ′〉 = 2C0C
′
0 |0〉 |0〉+ (C0C

′
2 + C ′0C2)(|0〉 |2〉+ |2〉 |0〉) + 2C2C

′
2 |2〉 |2〉

= −2κ0C0 |0〉 |0〉+ κ0(C
2
0/C2 − C2)(|0〉 |2〉+ |2〉 |0〉) + 2κ0C0 |2〉 |2〉

= −2κ0C0(|0〉 |0〉 − |2〉 |2〉) +
κ0
C2

(C2
0 − C2

2)(|0〉 |2〉+ |2〉 |0〉)

=
κ0
C2

[−2C0C2(|0〉 |0〉 − |2〉 |2〉) + (2C2
0 − 1)(|0〉 |2〉+ |2〉 |0〉)] .

(5.45)
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5.2 Multiple atom systems

We use these vectors to calculate the scalar products

〈ψ′|ψ′〉 =
κ20
C2

2

[8C2
0C

2
2 + 2(2C2

0 − 1)2]

= 2
κ20
C2

2

[8C2
0(1− C2

0) + 2(2C2
0 − 1)(2C2

0 − 1)]

= 2
κ20
C2

2

,

(5.46)

〈ψ|ψ′〉 =
κ0
C2

[−2C3
0C2 + 2C0C2(2C

2
0 − 1) + 2C0C

3
2 ]

=
κ20
C2

2

[2C3
0C2 + 2C0C

3
2 − 2C0C

3
2 ]

= 2C0C2
κ20
C2

2

[C2
0 + C2

2 − 1]

= 0 .

(5.47)

By substituting the identities in equations 5.46 and 5.47 into equation 5.21, we

obtain the Fisher information

F|0〉|0〉 = 4
(
〈ψ′|ψ′〉 − | 〈ψ|ψ′〉 |2

)
= 8

(
κ0
C2

)2

.
(5.48)

This value has double the magnitude of the information calculated for a single

atom in equation 5.24. It is expected for the Fisher information to increase this

way because the two independent probes will produce the same information as

repeating the measurement a second time with a single probe.

If initially both atoms are in a superposition state,

|ψ0〉1 = |ψ0〉2 =
1√
2

[|0〉 − |2〉] , (5.49)

the initial state of the whole system can be represented as

|ψ0〉 =
1√
2

[|0〉1 − |2〉1]⊗
1√
2

[|0〉2 − |2〉2]

≡ 1√
2

[|0〉 − |2〉]⊗2

=
1

2
[|0〉 |0〉 − |0〉 |2〉 − |2〉 |0〉+ |2〉 |2〉] .

(5.50)

69



5.2 Multiple atom systems

This state is transformed into

|ψ〉 =
1

2
[C− |0〉+ C+ |1〉]⊗2

=
1

2
[C2
− |0〉 |0〉+ (2C2

0 − 1)(|0〉 |2〉+ |2〉 |0〉) + C2
+ |2〉 |2〉] ,

(5.51)

and the derivative of the state vector will be

|ψ′〉 = −κ0
C2

(2C2
0 − 1)[|0〉 |0〉 − |2〉 |2〉]− 2κ0C0[|0〉 |2〉+ |2〉 |0〉] . (5.52)

It should be noted that although the state of each atom is transformed inde-

pendently (|ψ0〉1 |ψ0〉2 → |ψ〉1 |ψ〉2), the derivative of the state vector is not cal-

culated as the tensor product of the derivative of the individual state vectors

(|ψ′〉 6= |ψ′〉1 |ψ′〉2). Using these vectors and following the same calculations as in

the previous cases, we calculate the Fisher information to be

F(|0〉−|2〉)2 = 8

(
κ0
C2

)2

. (5.53)

Once more, this value is the same as for an initial state with no superposition

in equation 5.48, further showing that no extra information can be gained by

changing our measurement basis. This result also shows consistency in our cal-

culations. In figure 5.2 we plot the Fisher information of the transformed state

for different values of n0. As before, it is shown that a higher principal quantum

number will improve the resolution of the measurement. This same behaviour

was observed for all future analyzed states.

5.2.1 Entangled states

Now we analyze the evolution of entangled states, which are expected to yield a

lower estimation error. For two atoms initially in the maximally entangled state

|ψ0〉 =
1√
2

[|0〉 |0〉 − |2〉 |2〉] , (5.54)

we have the state after the interaction

|ψ〉 =
1√
2

([C0 |0〉+ C2 |2〉]⊗2 − [−C2 |0〉+ C0 |2〉]⊗2)

=
1√
2

[(2C2
0 − 1)(|0〉 |0〉 − |2〉 |2〉) + 2C0C2(|0〉 |2〉+ |2〉 |0〉)] ,

(5.55)
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Figure 5.2: Quantum Fisher information for two initially uncorrelated atoms after

their interaction with a gravitational wave for different values of n0.

and its derivative vector

|ψ′〉 =
1√
2

κ0
C2

[−2C0C2(|0〉 |0〉 − |2〉 |2〉) + (2C2
0 − 1)(|0〉 |2〉+ |2〉 |0〉)] . (5.56)

Once more we have that the scalar product of the state vector and its derivative

will be equal to zero (〈ψ|ψ′〉 = 0), with the squared modulus of the state vector

equal to

〈ψ′|ψ′〉 = 2
κ20
C2

2

[8C2
0C

2
2 + 2(2C2

0 − 1)2]

= 4

(
κ0
C2

)2

.

(5.57)

With this we calculate the Fisher information associated with the entangled state

F|0〉|0〉−|2〉|2〉 = 16

(
κ0
C2

)2

. (5.58)

The result is double the value of the one calculated for the separable state in

equation 5.53. This means that entangled states can significantly reduce the

uncertainty in the estimation of the parameter Sp compared to statistically inde-

pendent atoms.
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Another kind of state that we are interested in analyzing are cat states. These

are states in a quantum superposition between two macroscopically distinct vec-

tors and have been applied in quantum metrology, significantly improving the

resolution of the measurements (Facon et al., 2016; Guo et al., 2015). Let us

consider an ensemble of 4 atoms in an initial state

|ψ0〉 =
1√
2

[|0〉1 |0〉2 |0〉3 |0〉4 − |2〉1 |2〉2 |2〉3 |2〉4]

≡ |0000〉 − |2222〉√
2

.

(5.59)

This is a non-separable state in which all the atoms will be found in either the

state |0〉 or the state |2〉. If the atoms interact with a gravitational wave, the

system will evolve into the state

|ψ〉 =
1√
2

([C0 |0〉+ C2 |2〉]⊗4 + [−C2 |0〉+ C0 |2〉]⊗4)

=
1√
2

[(2C2
0 − 1)(|0000〉 − |2222〉)

+ (C3
0C2 + C0C

3
2)(|0002〉+ |0020〉+ |0200〉+ |2000〉

+ |0222〉+ |2022〉+ |2202〉+ |2220〉)] .

(5.60)

The derivative of this vector state is

|ψ′〉 =
1√
2

(
κ0
C2

)
(2C2

0 − 1)[− 4C0C2(|0000〉 − |2222〉)

+ |0002〉+ |0020〉+ |0200〉+ |2000〉

+ |0222〉+ |2022〉+ |2202〉+ |2220〉] .

(5.61)

We use these vectors to calculate the scalar products

〈ψ|ψ′〉 = 8
κ0
C2

(2C2
0 − 1)C0C

3
2 , (5.62)

〈ψ′|ψ′〉 = 4
κ20
C2

2

(2C2
0 − 1)2(4C2

0C
2
2 + 1) , (5.63)

which gives the Fisher information

F|0000〉−|2222〉 = 16

(
κ0
C2

)2

(2C2
0 − 1)2(1 + 4C2

0C
2
2 − 16C2

0C
6
2) . (5.64)
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Given the expected value of Sp, the terms in the right side of equation 5.64 that

are proportional to Ci
2 will be extremely small, so we can disregard them. With

this, we get that the value of the Fisher information will be approximately

F|0000〉−|2222〉 ≈ 16

(
κ0
C2

)2

. (5.65)

This is four times the value of the information for measurements of a single atom

in equation 5.41, which is equal to the expected value for an ensemble of four

non-correlated atoms, meaning that the state described in equation 5.59 will

not provide any improvement to the measurement’s precision. This is quite an

unexpected result, as the described quantum states have been calculated to sig-

nificantly increase the resolution of measurements in other studies, in some cases

even reaching the theoretically possible limit (Juffmann et al., 2016; Martin Ciu-

rana et al., 2017). This doesn’t mean that it is not possible to further decrease

the uncertainty in the estimations, but simply shows that some entangled states

are more useful than others in performing this task. For comparison, a system of

two pairs of entangled atoms

|ψ0〉 =
1

2
[|00〉 − |22〉]⊗2 , (5.66)

will have the same number of probes as the state in equation 5.59, but entangled

in a different way. Here we have that the state will be transformed into

|ψ〉 =
1

2
[(2C2

0 − 1)(|00〉 − |22〉) + 2C0C2(|02〉 − |20〉)] , (5.67)

with derivative

|ψ′〉 = 2
κ0
C2

[−2C0C2(|00〉 − |22〉) + (2C2
0 − 1)(|02〉+ |20〉)] . (5.68)

These vectors result in the products

〈ψ|ψ′〉 = 0 (5.69)

〈ψ′|ψ′〉 = 4
κ20
C2

2

[8C2
0C

2 + 2(2C2
0 − 1)2]

= 8
κ20
C2

2

,

(5.70)
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which yield a Fisher information of

F(|00〉−|22〉)⊗2 = 32

(
κ0
C2

)2

. (5.71)

We observe the value of the Fisher information obtained with the initial state

in equation 5.66 doubles that expected for the same number of atoms prepared

in the entangled state described in equation 5.59, being therefore a better initial

state for the estimation of the parameter Sp.

For the general case, the Fisher information from the measurement of an

ensemble of N atoms is expected to increase proportionally with the number of

atoms (F ∝ N). To prove this, we consider an ensemble of N atoms initially in

the state |0〉,

|ψ0〉 = |0〉1 |0〉2 ... |0〉N
≡ |0〉⊗N .

(5.72)

The transformed state vector is calculated as

|ψ〉 = [C0 |0〉+ C2 |2〉]⊗N

=
N∑
i=0

CN−i
0 Ci

2 |Wi〉 ,
(5.73)

where the vectors |Wi〉 are not eigenvectors but a sum of all of the eigenvec-

tors with i number of 2s in their label e.g. |W3〉 = |22200...0〉 + |22020...0〉 +

|20220...0〉+ |02220...0〉+ · · · . The derivative of this vector will be

|ψ′〉 =
∑
i

κ0
C2

CN−i−1
0 Ci−1

2 (i−NC2
2) |Wi〉 . (5.74)

As in previous cases, the transformed state vector and its derivative are orthog-

onal, so their scalar product will be zero (〈ψ|ψ′〉 = 0). For the squared modulus

of the derivative vector we have

〈ψ′|ψ′〉 =
∑
i

κ20
C2

2

C2N−2i−2
0 C2i−2

2 (i−NC2
2)2 〈Wi|Wi〉 . (5.75)

The scalar product 〈Wi|Wi〉 will be equal to the total number of vectors that add

up to form the vector |Wi〉, which can be calculated with

〈Wi|Wi〉 =

(
N

i

)
=

N !

i!(N − i)!
. (5.76)
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Using the proper mathematical analysis, it can be demonstrated that

N∑
i=0

C
2(N−i−1)
0 C

2(i−1)
2 (i−NC2

2)2
(
N

i

)
= N , (5.77)

from which we obtain that the Fisher information will increase as

F|0〉N = 4N

(
κ0
C2

)2

. (5.78)

A simple way to obtain an approximation of this result is by discarding all term

in the summation in equation 5.75 with non-zero coefficient of C2 (i > 1). This

is a reasonable approximation as C2 � 1, so these terms will be extremely small

compared to the terms with i ≤ 1. With this method of discarding the terms that

are proportional to C2, it can be easily obtained that an ensemble of N atoms

prepared in a superposition of two macroscopically distinguishable states

|ψ0〉 =
|0〉⊗N − |2〉⊗N√

2
, (5.79)

will result in a Fisher information

F|0〉N−|2〉N ≈ 4N

(
κ0
C2

)2

, (5.80)

even for a very large number of atoms in the ensemble, allowing us to show that

this kind of entangled state will not increase the resolution of the measurement

of an arbitrary number of atoms over the same number of uncorrelated atoms.

Using the relation of the Fisher information and the uncertainty in equation

5.20, we have that the error in the measurement of N uncorrelated atoms will be

∆Sp ∼
1√
N

. (5.81)

This function of the number of probes is known as the standard limit and is

the maximum accuracy that can be obtained (perfect detection) using classical

probes. In comparison, for N atoms prepared in maximally entangled pairs (N

an even number),

|ψ0〉 =
1

2
[|00〉 − |22〉]⊗N/2 , (5.82)
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Figure 5.3: Error in the measurement for N atomic probes operating between the

states |n = 50, 0〉 and |n = 50, 2〉 after their interaction with a gravitational wave

using the same mathematical analysis as for entangled macroscopic state, it can

be demonstrated that the value of the Fisher information will be

F((|00〉−|22〉)N/2 = 8N

(
κ0
C2

)2

, (5.83)

which is twice the value of that calculated for separable and cat states. We plot

in figure 5.3 the expected uncertainty for the measurement of entangled pairs,

along with the standard limit and the Heisenberg limit. The Heisenberg limit is

the upper theoretical limit to the precision of any measurement and decreases as

1/N . It can be seen that the function of the uncertainty for entangled pairs is

quite far from the Heisenberg limit, so there is the possibility of finding a state

that will give a lower uncertainty.

Due to the nature of the proposed interaction, and the assigned value of the

coefficients Ci, it may not be possible to get close to the Heisenberg limit by

preparing the atoms in a particular initial configuration of macroscopic state.

This is because the highest contribution to the Fisher information is from terms

with coefficient CN−1
0 C2, as its derivative will not be dependent on the coefficient

C2, which is expected to have an extremely small magnitude. It may be possible
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to approach the Heisenberg limit by estimating the state that maximizes the

Fisher information according to our gathered knowledge about how the Fisher

information depends on the eigenvectors from the initial state.

5.2.2 Optimal state

Let us consider an arbitrary eigenstate for an ensemble of N atoms

|a1〉1 |a2〉2 . . . |aN〉N ≡ |a1a2...aN〉 , (5.84)

where the factors ai can be either 0 or 2, corresponding to the base and excited

states such that

|0〉 = |n = n0, l = l0〉 , |2〉 = |n = n0, l = l0 + 2〉 . (5.85)

Given the probability of the interaction of a gravitational wave, we can approxi-

mate the transformation in the state as

|a1a2...aN〉 → CN
0 |a1a2...aN〉+ CN−1

0 C2[(−1)
a1
2 |(2− a1)a2...aN〉

+ (−1)
a2
2 |a1(2− a2)...aN〉+ . . .

· · ·+ (−1)
aN
2 |a1a2...(2− aN)〉] ,

(5.86)

with derivative

κ0
C2

(−NCN−1
0 |a1a2...aN〉+ [CN

0 + (N − 1)CN−2
0 C2

2 ][(−1)
a1
2 (|(2− a1)a2...aN〉

+ (−1)
a2
2 |a1(2− a2)...aN〉+ . . . ]) .

(5.87)

Because of the magnitude of the coefficient C2, this derivative can be approxi-

mated to

κ0
C2

CN
0 [(−1)

a1
2 (|(2− a1)a2...aN〉+ (−1)

a2
2 |a1(2− a2)...aN〉+ . . . ]) , (5.88)

meaning that the derivative of the transformed eigenstate will be approximately

a superposition of all the states that differ by the state of a single atom times

a factor CN
0 κ0/C2. From here also it is easy to see that the scalar product of

the derivative times the transformed state will be negligible compared to the
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square modulus of the derivative vector. To find the transformed state with the

highest modulus of its derivative, which should maximize the Fisher information,

we need to provide states such that the change in the state of a single atom by

the interaction add up constructively. We consider the state for N atoms

|Ev〉 ≡ [|W0〉 − |W2〉+ |W4〉 − |W6〉+ ...]/
√

2N−1 , (5.89)

where the vectors |Wi〉 are the sum of all eigenvectors with i atoms in the excited

state such that

|W0〉 ≡ |000...00〉

|W1〉 ≡ |200...00〉+ |020...00〉+ ...+ |000...20〉+ |000...02〉

|W2〉 ≡ |220...00〉+ |202...00〉+ |022...00〉+ ... |000...22〉
...

(5.90)

similar to a generalized W state for i excited qubits. The transformed vector for

the state |Ev〉 will have a projection into N/2 states (each of the eigenvectors

that doesn’t form part of the vector |Ev〉) and they will add constructively N

times because of the sign of the vectors |Wi〉. From here we have that the 2N−1

vectors will be multiplied by the factor NCN
0 κ0/C2, which will lead to a square

modulus proportional to N2/2N−1, which is close to the Heisenberg limit.

Using the same logic, we consider the similar state

|Od〉 ≡ [|W1〉 − |W3〉+ |W5〉 − |W7〉+ ...]/
√

2N−1 , (5.91)

which leads to the same result as the analysis for the state in equation 5.89. With

both of these states, we arrive at the optimal state

|ψ0〉opt =
|Ev〉 − |Od〉√

2
, (5.92)

which is formed by an equal superposition of all eigenvectors, each of them with

a very specific phase. The state |ψ0〉opt is non-trivial, arising from an extensive

analysis about the transformation of arbitrary state and the associated Fisher

information. Given the derivative of the eigenvectors in equation 5.88, we obtain

that the derivative vector from the optimal state will be

|ψ′〉opt =
√
NCN

0

κ0
C2

[|000...00〉 − |000...02〉 − |000...20〉 − ...+ |222...22〉] , (5.93)
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Figure 5.4: Normalized error for N atomic probes with the states |n = 50, 0〉 and

|n = 50, 2〉 after their interaction with a gravitational wave. The optimal state is

described in equation 5.92.

which contains N eigenvectors. From here we obtain that the Fisher information

for the initial state in equation 5.92 will be

F ≈ 4N2C2N
0

(
κ0
C2

)2

, (5.94)

which is proportional to N2, almost the same as the Heisenberg limit. In figure 5.4

we compare the error associated with the measurement of the atoms initially in

the state from equation 5.92 to the Heisenberg limit. The function follows closely

the Heisenberg limit, deviating just a small amount for very large values of N .

Therefore, by using an ensemble of atoms in the form described by equation 5.92

it will be guaranteed that the measurement will yield the best possible estimation

of the parameter Sp for given experimental resources.

As an example, for 3 atoms we have the states

|Ev〉 = [|000〉 − |220〉 − |202〉 − |022〉]/2

|Od〉 = [|200〉+ |020〉+ |002〉 − |222〉]/2 ,
(5.95)
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which leads to the optimal state

|ψ0〉opt = [(|000〉+ |222〉)− (|200〉+ |020〉+ |002〉)− (|220〉+ |202〉+ |022〉)]/
√

8 ,

(5.96)

which can be demonstrated to be a non-separable state. This state can be ex-

pressed in terms of a Greenberger-Horne-Zeilinger state and W states as

|ψ0〉opt =
1

2
|GHZ〉 −

√
3

8
|W 〉 −

√
3

8

∣∣W〉 , (5.97)

each of which are commonly used for quantum metrology. Individually, these

states will not improve the estimation of the parameter Sp, according to our

previous calculations.

The state described in equation 5.96 may be very hard to obtain experimen-

tally. For 3 atomic probes a simpler state to prepare could be

|ψ0〉 = [|000〉 −
∣∣W〉]/√2 , (5.98)

which is similar to the state |Ev〉. This could lead to an uncertainty closer

to the Heisenberg limit (about half the value) with fewer complications than

trying to prepare the optimal state. This is just particular for a three-atom

system, as in the general case an state superposition of the eigenstate |000...000〉
minus the generalized W state

∣∣W〉 will not lead to a much better estimation

of the parameter Sp because there will be a bigger number of eigenstates in the

projection that will not add up constructively.

From the logic used to obtain the optimal state, it can be conclude that in

order that experiments should aim to generate superpositions involve as many

eigenstates that differ by the state of two atoms between each other as possible.

This, in combination with the amplification of the effect described in Chapter 4,

could be applied for the detection of gravitational waves and other small gravita-

tional perturbations, potentially working at different frequency and energy ranges.

The technical difficulties and experiential limitations of the proposed scheme will

be discussed in section 6.1.
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Chapter 6

Conclusions

We proposed two different models of decoherence in atomic states by gravitational

perturbations. In the first one, the sudden displacement of the atomic nucleus by

the interaction, presented as a scattering event of a neutral particle, will partially

project the wave function of the atom in a superposition of energy levels with lower

energy than the initial state of the atom. The projection is done mostly over the

level with closest energy to the initial state and increases with the excitation of the

atom before the interaction, making the effect more prominent for Rydberg atoms.

This model can be applied to the scattering of any kind of particles with neutral

electric charge, namely photons and neutrons. This presents the opportunity of

testing our theory by exposing atoms to different sources of cold neutrons, whose

scattering should have an effect significant enough to be detected. The scattering

of photons could partially explain perturbations in the signal of Rydberg atoms

that is observed when they are exposed to non-resonant light. More significantly,

the model can be potentially useful to the detection of theoretical particles like

the ones that may compose dark matter, or at least to impose a limit to their

possible mass. The detection scheme will be restricted to interactions with energy

below the ionization threshold, excluding some particles with big mass like the

WIMP. We gave the specific example of axions, whose interaction with the atom

is calculated to be more prominent than the one expected for cosmic rays.

The calculated effect for the scattering of gravitational waves and gravitons

was extremely small, making the experimental observation difficult. According

to our calculations, the model can instead be more effectively applied to measure
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the quantization of space. Because of the limitations of the model, we devel-

oped a second one inspired by our analysis of the potential shift and physically

observable effects of gravitational waves. In the new model, a change in the lo-

cal electric field of the atom by the gravitational wave is proposed. This will

result in a transformation of the wave function, which was calculated to have a

small projection in eigenstates with azimuthal quantum number that differ by

two from the initial state, similar to the effect calculated for the case of particle

scattering. We examined two possible interpretations of these results: the first

one is that the atom interacts with the graviton, exchanging angular momentum.

The overall effect was calculated to be higher than the one for the scattering of

gravitons by the nucleus from the previous model. Secondly, the energy levels of

the atom are perceived as being shifted with respect to each other, resulting in

radiation previously resonant to an atomic transition becoming detuned. Here

the atom will not perceive any change in its own reference frame, but rather will

sense incoming photons as being energy-shifted. The frequency detuning offers

the possibility of detection by looking at radiation from extra-planetary Rydberg

atoms, which can be found with high energy and in large quantities. Another

possibility is analyzing the coherent population-shift dynamics, in which a small

deviation is expected to arise a result of the detuning.

Correlations between the atoms could increase their sensitivity to gravitational

fluctuations, increasing the resolution of measurements. We analyze the evolu-

tion of different quantum states for an ensemble of multiple atoms as a result of

their simultaneous interaction with a gravitational wave. With this we calculated

the Fisher information for a measurement of the resulting state as a function of

the strain in space. Although entangled pairs of atoms significantly increase the

obtainable information of a single measurement compared to the measurement of

the same number of uncorrelated atoms, calculations showed that certain super-

positions of macroscopically distinguishable states will not reduce the uncertainty

in the estimations as is usually the case in other studies. We were able to cal-

culate an ideal initial quantum state for an arbitrary number of atoms, which

reduce the error of measurements almost to the theoretical Heisenberg limit.
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6.1 Discussion

Throughout this thesis we have emphasized that using Rydberg atoms will make

the effect of the interaction more prominent and therefore easier to detect. This

may indicate that experiments should aim to produce the highest excited state

possible in order to ensure the maximum sensitivity, but several considerations

should be taken into account:

The biggest limitation to the experiments is the period of measurement, espe-

cially for the detection of small continuous interactions like the effect of vacuum

fluctuations or the quantization of space. The radiative lifetime of Rydberg atoms

increases as ∼ n5, meaning higher excited states will allow for longer observation

periods. For multiple trapped atoms, this time will dramatically decrease as Ry-

dberg atoms will collide at a higher rate. The analysis of Rabi cycles described in

section 4.2.3 may have an edge over the measurement of changes in state popula-

tions suggested in sections 3.3.2 and 4.2.2, as the coherence times of the dynamics

surpass the mean lifetime of the state (Johnson et al., 2008; Kubler et al., 2010).

Some techniques can be applied to further extend the lifetime of the atoms, like

physically shielding them from the radiation background, focusing on resonant

frequencies. Another possibility is having the atoms inside a high-Q cavity to

suppress undesired transition, which should extend considerably the lifetime of

the state (Brune et al., 1996; Walther et al., 2006). The cavity can also be used

to suppress the transition expected from the interaction e.g. l0 → l0 ± 2, which

will allow the detection scheme to focus only on the observation of transition

events that cannot occur by electromagnetic radiation. The Rydberg blockade

can also be used for the suppression of the transition (Singer et al., 2004). This

will also suppress the Rabi oscillations, so it is a factor that should be taken into

consideration when working with highly excited states.

Time limitations will be less problematic for the detection of a burst of gravi-

tational waves, which last just a fraction of a second. In this case the experiment

can be reset at discrete intervals and repeated until a signal is observed.

The second limitation for the accuracy of experiments is the number of atoms

that can be prepared. As the energy of the atoms increases, the lower the density

of the atomic ensemble will be, so experiments with highly excited atoms will
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have available just a fraction of probes of those using low-energy states. This can

be attributed to higher interactions between atoms, which makes them harder to

contain, and to their susceptibility to externals perturbations, which will result

in some loss in the trapping. Although experiments can be repeated an arbitrary

number of times to compensate for lower probe numbers, this will not be possible

for the detection of singular events like bursts of gravitational waves.

Observations of cosmic clouds of Rydberg atoms may be one of the best ap-

proaches for the detection of gravitational waves, as atoms can be found here

in both high quantities and high energies (Gnedin et al., 2009). In cases where

the atoms manifest atomic blockade (Gnedin et al., 2009; Wunner et al., 1986),

implying strong correlations among them, there is the possibility of a signal am-

plification as described in section 4.3.

In a more controlled experimental setting, the optimal state described in sec-

tion 5.2.2 could provide the highest resolution with the lowest number of resources

(number of atoms and interacting time). Nevertheless, preparing the state could

be quite challenging especially for a large number of atoms. Preparing an en-

semble of multiple entangled atoms or a particular simpler superpositions, de-

pendent on the number atomic probes, could significantly reduce the error in

measurements while requiring a much simpler setting.

As final remarks, the different results obtained in this study indicate that the

best experiment setting in terms of maximizing the signal and reducing the error

will ultimately depend on the type of gravitational fluctuation that is intended

to be measured and the available experimental resources.
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