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Abstract

This study comprises of three essays on the subject of financial risk management

with applications in the fields of portfolio optimization, continuous and discrete

time stochastic volatility (SV) modelling. We jointly consider two risk measures:

Value-at-Risk (VaR) and conditional Value-at-Risk (CVaR) to measure the financial

market risk. In order to model the distribution of financial asset returns which is

characterized by skewness, heavy tails and leptokurtosis, we employ the Asymmetric

Laplace distribution (ALD) in the first and third essay while constructing the risk

model on the basis of the Heston stochastic volatility (SV) model in the second essay.

Specifically, in the first essay, we provide a comprehensive empirical examination of

the viability of the new proposed Mean-CVaR-Skewness optimization model under

ALD by Zhao et al. (2015). In addition, we propose the Mean-VaR-Skewness

model under ALD by employing VaR as risk measure. The closed-form solution of

the two optimization models is shown to be consistent and is obtainable by using

the Lagrange Multiplier approach. In the second essay, we construct the VaR and

CVaR models for the financial dynamics that do not have a closed-form probability

density function. The only input required in our approach is the knowledge of

the characteristic function of the underlying asset. In the numerical analysis, we

investigate the elements that could impact the VaR and CVaR approximations in

the Heston model. The third essay contributes to the existing literature by extending

the ALD (Kotz et al., 2001) to the return error term of a standard discrete time

SV model. We give the closed-form VaR and CVaR formulas for oil supply and

demand. As additional contribution, we propose a new scale mixture of uniform

(SMU) representation for the AL density so that the model can be implemented

efficiently within the Bayesian Markov Chain Monte Carlo framework.
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Chapter 1

Introduction

This thesis consists of three essays on financial risk measurement with applications in

the fields of portfolio optimization, continuous and discrete time stochastic volatility

models. In this thesis, we consider the measurement of a specific financial risk: the

market risk. Market risk is due to unforeseen changes of asset prices, such as stock

prices and commodity prices. Choosing an appropriate risk measure is of great

practical and regulatory importance, as exemplified in the Basel II (2004) and Basel

III (2010) accord, which recommends Value-at-Risk (VaR) as a risk measure to set

capital requirements for banks’ daily operations.

As a measure of market risk, VaR has been widely developed since its introduction

in RiskMetrics by JP Morgan (1994). It is defined as the maximum potential loss of

an underlying asset at a specific probability level over a certain horizon. Despite its

popularity, an obvious and distinctive limitation of the VaR approach is that it only

specifies the maximum one can lose at a given risk level, but provides no indication

for how much more than VaR one can lose if extreme tail events happen. This may

lead to an equivalent VaR estimate for two different positions, though they have

completely different risk exposures. Artzner et al. (1999) proposed the concept

of coherent risk measure, which has become the paradigm of risk measurement.

To further illustrate this concept, let us consider W1 and W2, which represent the

return of two portfolios. ϕ is a risk measure over a given horizon, so ϕ is said to be

a coherent risk measure if the following four axioms are satisfied:

14



CHAPTER 1. INTRODUCTION 15

(i) Monotonicity : If W2 ≥ W1, then ϕ(W2) ≤ ϕ(W1).

(ii) Subadditivity : ϕ(W1 +W2) ≤ ϕ(W1) + ϕ(W2).

(iii) Positive homogeneity : ϕ(αW1) = aϕ(W1) for a > 0.

(iv) Translation invariance : ϕ(W1 + n) = ϕ(W1)− n.

The most important criterion a risk measure needs to satisfy in order to be considered

“valid” is property (ii). Subadditivity, the idea behind portfolio diversification,

reflects the expectation that the risk of a merged portfolio cannot be greater than the

sum of the risks of its individual constituents. This spells trouble for VaR, because

it does not satisfy the subadditivity property. A good alternative is conditional

Value-at-Risk (CVaR), which is a coherent risk measure and retains the benefits of

VaR in terms of the capability to define quantiles of the loss distribution. Hence,

considering the fact that VaR is still employed by Basel II and III, as well as the

additional desirable property of CVaR, our thesis contributes to the construction

and modelling of these two risk measures in several fields.

In Chapter 2, we provide a comprehensive examination of the viability of a

theoretical portfolio optimization model first proposed by Zhao et al. (2015),

namely, the Mean-CVaR-Skewness model with incorporation of Asymmetric Laplace

distribution (ALD) and an extension of this model by employing VaR as the risk

measure. The superiority of Zhao et al.’s (2015) model is that it considers a

series of stylized facts in realistic scenarios that relate to portfolio optimization

analysis. For example, the importance of higher moments, the fat-tailed, skewed and

leptokurtic features of financial asset returns, and the drawbacks of using Normal-

based risk measures are all scenarios that Zhao et al.’s (2015) model considers. Our

contribution in this Chapter is threefold. First, we propose a three-dimensional

optimization model under ALD using VaR as a risk measure, called the Mean-

VaR-Skewness model. We find that the solution of this model (or the analytical

optimal weight expression) is exactly the same as the solution proposed by Zhao

et al. (2015). Both solutions can be obtained by transforming the multi-objective

optimization functions into an equivalent, single-objective, quadratic programming

problem through the Lagrange Multiplier method. Second, as the main objective
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in this chapter, we empirically investigate the viability of Mean-CVaR-Skewness

model under ALD in terms of the portfolio CVaR performance from in-sample,

Monte-Carlo simulation and out-of-sample forecasting perspectives. This process is

realized by conducting comparative analysis with other classical approaches, and

the accuracy judgment is concluded according to a number of statistical measures.

Notably, there have not been any attempts to explore the practical implications

of this model empirically. Therefore, we study the empirical performance of this

model, optimal portfolio allocations, and portfolio risk-adjusted returns in different

economic periods, with a special focus on the variations of portfolio risk in the period

of the 2007-2008 global financial crisis. The evaluation of economic significance

represents the third contribution.

Chapter 3 addresses the problems of measuring parametric VaR and CVaR for

heavy-tailed distributions (i.e. stable distribution) or the financial dynamics (i.e.

Hull and White, 1987; Stein and Stein, 1991; Heston, 1993; Schöbel and Zhu, 1999)

that do not have analytical representation for their probability density functions

(p.d.f.). We build a general framework for the VaR and CVaR computations in

a generalized Fourier transform scheme to apply to those financial dynamics that

are fully characterized by their characteristic function, considering the fact that

an asset distribution always has a characteristic function but not a p.d.f.. As the

first paper to build the connection between risk measures and models defined by

characteristic function, our paper differs from that of Bormetti et al. (2010) in

several aspects, such as the method used to construct VaR and CVaR formula,

in the adoption of characteristic function forms in risk measurement, and, most

importantly, in the differences of concentrations on data analysis.1 In our numerical

experiment, we focus on the determinants of VaR and CVaR approximations by

employing the Heston stochastic volatility model in a trapezoidal integration scheme.

We investigate how the settings of grid size space could impact the accuracy of VaR

and CVaR estimates. In addition, we provide evidence for the influence of the

potential parameters in the Heston model on the movements of VaR and CVaR

approximations given a series of risk levels.

1For details see the introduction of Chapter 3.
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Considering the remarkably volatile nature of world crude oil markets and potential

return uncertainties caused by the instability of oil prices, in Chapter 4, we propose

a new parametric approach to estimate the market risk for crude oil prices using

VaR and CVaR from the perspective of both oil supply and demand. To capture the

potential heavy-tailed and leptokurtic features of oil return series, we employ the

ALD to model the extreme tail risks. A standard discrete stochastic volatility (SV)

model, which treats the latent volatilities as an unobservable stochastic process,

is considered to characterize the behavior of return volatility with extension of

adopting ALD as the distribution of return errors. Our theoretical contribution

to the literature is reflected in the construction of the SV-ALD model, and the VaR

and CVaR formula derivations for both oil supply and demand. Since the likelihood

function of volatilities in the SV-ALD model is intractable, the Bayesian approach,

which uses a simulation-based Markov Chain Monte Carlo (MCMC) algorithm, is

employed in our paper for statistical inference.

However, implementing the SV-ALD model is often problematic. As in the

framework of Bayesian MCMC, the full conditional posterior distributions are

of non-closed forms. As such, our second contribution in terms of improving

estimation methodology is to propose a new scale mixture of uniform (SMU)

representation for the AL density. The use of SMU for scaled AL density is a

data augmentation technique and its advantage is that some of the full conditional

posterior distributions can be reduced to standard form, hence facilitating an

efficient Gibbs sampling algorithm in the Bayesian MCMC framework. With

this SMU representation, we can straightforwardly implement the SV-ALD model.

Last, in the empirical analysis, a model comparison study from Bayesian statistical

perspective is conducted between the SV-ALD model and the classical SV Normal

model to test model fitting abilities for target oil return series. In addition, we

investigate the market risk of two major oil markets using the SV-ALD model, along

with an accuracy assessment by backtesting VaR and CVaR violations. Finally, the

economic implications and applicability of the model are discussed.

Chapter 5 summarizes the thesis and discusses the avenues for future research.



Chapter 2

Portfolio Optimization in Higher

Moments with Incorporation of

Asymmetric Laplace Distribution

2.1 Introduction

The prevailing paradigm for optimal portfolio allocation is the seminal work by

Markowitz (1952), which proposed the mean-variance model aimed at minimizing

risk for a given level of expected return or, equivalently, maximizing expected return

for a given level of risk. However, it remains controversial as to whether variance is

appropriate for measuring risk and whether higher moments should be incorporated

in the portfolio selection model.

The standard mean-variance model operates on the assumption that asset returns

follow multivariate Normal distribution. Following Markowitz’s seminal work, a

series of optimization models were proposed such as, mean-lower partial moment

model (Bawa and Lindenberg, 1977), mean-absolute deviation model (Konno and

Yamazaki, 1991) and mean-semivariance model (Markowitz et al., 1993), etc. A

distinct characteristic of those models is that only the first two moments of return

distribution are considered. However, real financial asset returns may represent

asymmetric leptokurtic features. Therefore, higher moments of return distributions

18
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cannot be neglected unless there is reason to believe that asset returns are normally

distributed, investor’s utility is a quadratic function of rate of return, or higher

moments are irrelevant to investors’ decision.1 Samuelson (1970) introduces a

critical work on the limitations of the mean-variance optimization model from the

perspective of its non-practicability, showing the standpoint that higher moments

are relevant to the portfolio selection problem. Arditti and Levy (1975) stress

the importance of skewness in purchasing lottery tickets and pricing of stock. In

addition to this, after replacing variance with absolute deviation as a risk measure,

Konno et al. (1993) incorporate skewness in the optimization model and shed light

on practical means to obtain a portfolio with large skewness. Konno and Suzuki

(1995) extend the mean-variance model to the mean-variance-skewness model and

show the importance of skewness in selecting an optimal portfolio. Therefore, in a

multi-objective portfolio optimization problem, it is necessary to consider the role

of portfolio skewness (see, e.g., Prakash et al., 2003; Jurczenko et al., 2005; Jondeau

and Rockinger, 2006; Rubinstein et al., 2006.). Holding everything else constant,

risk-averse investors should pursue portfolios that are right-skewed rather than left-

skewed, i.e. they prefer fewer but high pay-offs rather than fewer but large losses.

Markowitz’s model is being questioned with the use of variance as a risk measure

(Artzner et al., 1999). Variance considering measures to positive and negative

fluctuations of expected returns in the same way: this approach fails to capture

the asymmetric features of real asset return distributions. On the other hand, Value

at Risk (VaR) has been widely employed by regulators and financial institutions in

real practice, because its representation of percentile losses is easy to understand

(see, e.g., Wipplinger, 2007; Huang et al., 2009; Dimitrakopoulos et al., 2010).

However, its limitations are obvious due to the undesirable properties such as lack

of sub-additivity, which indicates that VaR is not a coherent risk measure (Artzner

et al., 1999).2 Besides, VaR as a risk control tool does not take into account the

part of the distribution that falls beyond the confidence level, and thus minimizing

1On the other hand, the achievement of Markowitz’s portfolio optimization model could not be
denied as a number of classical models and works with less demanding in calculation are proposed
successively based on the original ideal of that (i.e. CAMP and APT, etc.).

2That is, the VaR of a portfolio with two or more securities may be larger than the sum of the
VaRs of the securities in the portfolio, which implies the potential failure of portfolio diversification.
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VaR may increase extreme losses. Rockfeller and Uryasev (2000, 2002) thereafter

proposed the Conditional Value-at-Risk (CVaR), also named the expected shortfall

(ES), which is defined as the conditional expectation of losses exceeding VaR over a

time period at a given confidence level. Its superiorities can be reflected in several

aspects. CVaR is a coherent risk measure. Pflug (2000) demonstrates the convexity

property of CVaR, which implies that CVaR is also a convex risk measure. In

addition, CVaR implies less computational burden in modelling optimization than

VaR as it can be expressed by a clear minimization formula (Rockfeller and Uryasev,

2000; Krokhmal et al., 2002). Such computational advantage of CVaR over VaR has

provided a major stimulus for the development of CVaR as a key risk measure in

portfolio optimization and other practical financial problems; see, for example, Zhu

and Fukushima (2009), Stoyanov et al. (2013) and Dai and Wen (2014).

Despite growing interest in CVaR and higher moments of portfolio optimization,

very few studies have considered higher moment (i.e. skewness) in the context

of Mean-CVaR optimization model. Zhao et al. (2015) are a notable exception.

They propose a theoretical Mean-CVaR-Skewness optimization model by adopting

the Asymmetric Laplace distribution (ALD) to take into account the heavy-tailed

and leptokurtic features of asset returns. The main advantage of using ALD for

asset returns is that it allows for asymmetry and peakness observed in the data,

and is thus more suitable and attractive for modelling fat-tailed and peaked return

series, especially considering its capability for modelling multivariate asymmetric

data from a portfolio management point of view (Kozubowski and Podgrski, 2001;

Hürlimann, 2013). In addition, unlike other skewed distributions (i.e. stable Pareto

distribution), ALD provides more flexibility and parsimony with fewer parameters to

estimate.3 Notably, there has not been any attempt to evaluate the model accuracy

and performance in terms of modelling financial data. Therefore, this paper is

expected to fill this gap.

By extending the framework of Zhao et al.’s (2015) model, we use VaR as a

3Studies enrich the application of Asymmetric Laplace law in financial fields can also refer to
Ayebo and Kozubowski (2003), Kotz and Van Dorp (2005), Jayakumar and Kuttykrishnan (2007),
Komunjer (2007) and Chen et al. (2012).
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risk measure to study a new Mean-VaR-Skewness optimization model under ALD

considering the fact that VaR is still widely adopted by regulators and financial

intermediaries (see, e.g., Cuoco and Liu, 2006; Natarajan et al., 2008; Adrian

and Shin, 2010). Alexander and Baptista (2004) study the portfolio selection

implications by comparing the imposition of VaR and CVaR constraints on the

mean-variance model. They find that for a given confidence level to control slightly

risk-averse agents, the CVaR constraint is more effective than the VaR constraint. To

help investors hedge their portfolios, Yamai and Yoshiba (2005) argue that CVaR is

a better risk measure than VaR, but when asset returns are fat-tailed, the estimation

error of CVaR is much greater than that of VaR. As a consequence, a larger sample

size for CVaR estimation is a prerequisite to improve the accuracy level. These

findings reveal that a single risk measure should not dominate the risk management

decision, but rather that supplementing one with another represents an efficient

way to monitor the tail risks. Moreover, extensive literatures have been developed

to improve risk measures’ estimation error and handle the unstable nature of asset

return distributions in optimization problems, such as robust optimization in the

mean-variance framework (DeMiguel and Nogales, 2009; Delage and Ye, 2010; Chen

et al., 2011), robust VaR optimization (Ghaoui et al., 2003; Natarajan et al., 2008)

and robust CVaR optimization (Quaranta and Zaffaroni, 2008; Huang et al., 2010).

However, it is important to emphasize that unless the return distribution is known,

the actual value of portfolio VaR/CVaR cannot be obtained, as argued by Natarajan

et al. (2008). In this sense, the accuracy of the parametric portfolio VaR/CVaR

relies heavily on the modelling ability of prescribed innovation of asset returns. In

other words, the modelling ability of ALD in the parametric optimization model

determines the model performance.

The goal of this paper is threefold. First, we are optimizing the reduced Mean-

CVaR-Skewness model under ALD using the Lagrange multiplier method in order

to find a closed-form solution rather than using the software, as Zhao et al. (2015)

claimed. Following Zhao et al.’s (2015) work, we develop a Mean-VaR-Skewness

optimization model under ALD, the solution of which is shown to be exactly the

same as that of Zhao et al.’s (2015) model. We then calculate the VaR of a single
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asset in the portfolio based on Normal distribution in order to further explore the

empirical performance of the single asset if using the conventional method. To

evaluate the portfolio performance, we compare the new-constructed portfolio VaR

model under ALD with conventional portfolio VaR model under Normal distribution

and the benchmark historical portfolio VaR model.

Second, computational experiments are conducted to test the viability of the Mean-

CVaR-Skewness model under ALD in terms of the portfolio CVaR performance

by employing three different methods. The computed in-sample portfolio CVaR

estimates under Mean-CVaR-Skewness model based on ALD are compared with

historical CVaR estimates and estimates from classical Mean-CVaR model, where

the portfolio return follows a jointly Normal distribution. In addition, a numerical

experiment using Monte Carlo simulated data is introduced to evaluate the model

performance. In order to test the accuracy of the above methods, three loss

functions, root-mean-squared-error (RMSE), mean-absolute-error (MAE) and sum

of squared relative errors (SSRE), are computed correspondingly. Moreover, the

out-of-sample portfolio CVaR performance of Mean-CVaR-Skewness model and

Mean-CVaR model are examined using monthly return data. The results of those

experiments consistently confirm the practicability of the Mean-CVaR-Skewness

optimization model under ALD in modelling extreme tail events, and it is thus

suitable to measure tail risks when the distribution of portfolio asset returns

demonstrate heavy-tailed and skewed features. In this regard, the Mean-CVaR-

Skewness optimization model under ALD offers an efficient management tool in

minimizing the portfolio CVaR, and at the same time maximizing the skewness for a

given expected portfolio return. It should be noted that the analysis for both Mean-

VaR-Skewness model and Mean-CVaR-Skewness models is implemented across three

different economic periods in order to observe the consistency of model performance

and to learn how people’s investment behaviour is changing under different economic

environments based on the target optimization models.4

4Saranya and Prasanna (2014) compare the performance of three models (mean-variance-
skewness, mean-variance and mean-variance-skewness-kurtosis) using non-Normal stocks from the
BSE 200 across bullish, bearish and crisis periods, showing that mean-variance-skewness and mean-
variance-skewness-kurtosis model provide higher returns than that of mean-variance model.
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Third, unlike conventional portfolio risk-adjusted return measures, i.e. Sharpe ratio,

in order to evaluate the performance of a portfolio in the context of the Mean-CVaR-

Skewness optimization model, we use CVaR deviation to replace standard deviation

in the denominator and compare the calculated Sharpe-like ratios of the portfolio at

the three economic periods for various confidence levels. Moreover, we discuss the

optimal portfolio configurations and Mean-CVaR-Skewness efficient frontiers, and

examine the economic implications under ALD assumption.

The structure of this paper is organized as follows. Section 2 studies the VaR,

CVaR and skewness of a single asset under univariate ALD as well as the portfolio

VaR, portfolio CVaR and portfolio skewness under multivariate ALD. Section 3

describes the construction of Mean-CVaR-Skewness model under ALD and places

the proposed Mean-VaR-Skewness model under ALD in this section. Section

4 presents the algorithm to solve the optimization models. In section 5, we

briefly explore the empirical performance of Mean-VaR-Skewness model under ALD.

In addition, three experiments are implemented using in-sample, Monte Carlo

simulation and out-of-sample methods to test the performance of Zhao et al.’s (2015)

optimization model. Section 6 gives the optimal portfolio configuration and risk-

adjusted performance. Section 7 concludes.

2.2 Preliminaries of VaR, CVaR and Skewness

under ALD

This section first presents the assumptions for the discussed portfolio optimization

models. Then, we introduce the single asset VaR, CVaR and skewness with

incorporation of ALD, followed by the model specification of the portfolio VaR,

CVaR and skewness using multivariate ALD.

2.2.1 Assumptions

A number of standard assumptions in the portfolio selection model are presented

by Lai (1991). Similar hypotheses have been used by Kemalbay et al. (2011) and
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Saranya et al. (2014). In this paper, the assumptions can be summarized as follows:

Assumption 2.1. Investors are risk averse. Investors are more likely to invest their

money on the assets with lower risk and they always pursue the maximization of their

expected utility of personal wealth. Besides, investors are more concerned about the

downside risk as it gives investors closer feelings for the risk of their investments.

Assumption 2.2. Portfolio consists of n (n> 1) risky assets and investors do not

have access to a riskless asset, implying that the portfolio weights must sum to one.

Assumption 2.3. Single asset return in the portfolio jointly follows the multivariate

Asymmetric Laplace Distribution, the correlation of them is a positive definite

covariance matrix.

Assumption 2.4. There are no taxes and transaction costs in markets.

Assumption 2.5. Short selling is allowed, implying negative weights can occur.

2.2.2 VaR, CVaR and Skewness of single asset under ALD

As developed by J.P. Morgan in 1994, VaR provides a measure for the largest

potential loss that can be incurred by an investor over a given time period at a

certain confidence level. It is a threshold value, such that probability of loss exceed

the given amount of asset values.

Specifically, if the VaR of a portfolio return at a given confidence level (1−α) ∈ (0, 1)

is defined as V aR1−α. Then the mathematical formula of VaR can be shown as:

Prob(L ≥ V aR1−α|Ωt) = α, where Ωt denotes the information set up to time

t, α is risk probability level and L are the possible losses of the portfolio for a

holding time period. For CVaR, the mathematical expression can be formulated

as: CV aR1−α = E{L|L ≥ V aR1−α}. Given a random variable X denoting random

portfolio returns, the equation X = −L holds. Hence, CVaR can be equivalently

written as: CV aR1−α = −E{X|X ≤ −V aR1−α}. The skewness, which plays

an important role in making investment choices, is a measure for the asymmetry

of probability distribution of asset returns. The analytic formula is given by:

s = E[(X−µ)3/σ3] = E[(X−µ)3]/E[(X−µ)2](3/2), where s denotes the skewness of
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X, u is the mean, σ is the standard deviation and E is the expected value operator.

A positive skewness indicates that the poor returns are more likely to occur but

losses are small, while a negative skewness indicates that very high returns are less

frequent and extreme losses are possible.

Asymmetric Laplace Distribution (ALD). As a member of the skewed

distribution families, ALD has attracted many attentions in modelling financial

asset returns as it provides more flexibilities, allows for asymmetry and symmetry

(in which case ALD reduce to a symmetric Laplace distribution). In addition, its

advantage in terms of application can be attributed to the simplicity with respect

to mathematical computations. Explicit definition, distribution function and other

characteristics of ALD allows for straightforward calculations, multivariate setting

of ALD motivate further extensions like conventional Normal distribution, and the

closed form expression of p.d.f. and c.d.f. ideally facilitate the implementation of

model estimation, simulation and quantile calculations, etc. Before specifying the

optimization models, we first introduce the properties of ALD.

Definition 2.6. A random variable X is said to follow an Asymmetric Laplace

Distribution if the characteristic function of X can be defined as:

ψ(t) = E[eitX ] =
1

1 + τ2t2

2
− iµt

(2.1)

where i is the imaginary unit, t ∈ R is the argument of the characteristic function,

τ is the scale parameter with τ > 0 and µ is the mean of X. Then, we have

X ∼ AL(µ, τ).5

Proposition 2.7. Let fκ,τ (x) denote the p.d.f of an AL∗(κ, τ) distribution, then,

the fκ,τ (x) can be expressed as:

fκ,τ (x) =


√

2

τ

κ

1 + κ2
exp(−

√
2κ

τ
x) x ≥ 0

√
2

τ

κ

1 + κ2
exp(

√
2

τκ
x) x < 0

(2.2)

5Note that this characteristic function is a standardized form with location parameter θ = 0. A
simplified notation for the distribution of X can be written as AL(µ, τ) and AL∗(κ, τ) to replace
of AL(0, µ, τ) and AL∗(0, κ, τ), respectively. More details can refer to Kotz et al. (2001).
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where κ is the skewness parameter with κ =
√

2τ/(µ +
√
µ2 + 2τ 2) > 0 , x is a

random variable representing return of assets. Then, x is said to be AL distributed

if its p.d.f. is given by (2.2).

Remark 2.8. For κ = 1, the asymmetric Laplace distribution degenerates to a

symmetric Laplace distribution.

Remark 2.9. For κ 6= 1, the mode, median and mean of the ALD satisfies the

following inequalities:

If κ ≤ 1, then Mode ≤Median ≤Mean

If κ ≥ 1, then Mode ≥Median ≥Mean

Parameter κ controls the probability assigned to each side of location parameter

θ. κ = 1 means the probability of the two sides is equivalent and the distribution is

symmetric with respect to θ. When κ > 1, the left tail of the distribution is thicker

than the right, and the right tail is thicker than the left if 0 < κ < 1. This is shown

in Figure 2.1 which presents the impact of the variations of κ and τ on the density

distribution while keeping the other parameters fixed.

Note that the three-parametric p.d.f of ALD given by:

fθ,κ,τ (x) =


√

2

τ

κ

1 + κ2
exp(−

√
2κ

τ
|x− θ|) x ≥ 0

√
2

τ

κ

1 + κ2
exp(−

√
2

τκ
|x− θ|) x < 0

(2.3)

takes into account the displacement characteristics of the distribution. Following

the work of Kotz et al. (2001) and Zhao et al. (2014), the mean and variance of X

are given as follows:

E(X) = µ+ θ (2.4)

V ar(X) = µ2 + τ 2 (2.5)

Since the location parameter θ has no impact on the shape of density distribution,

we can assume that θ = 0 without loss of generality.
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Figure 2.1: Asymmetric Laplace densities. Left: θ = 0, τ = 3, κ = 0.65, 1, 1.4;
Right: θ = 0, κ = 1.5, τ = 2, 5, 7

Univariate VaR, CVaR and Skewness. Following the mathematical definition of

VaR: Prob(X ≤ −V aR1−α|Ωt) = α and CVaR: CV aR1−α = −E[E|X ≤ −V aR1−α],

employing density function (2.2), the analytic expression of VaR and CVaR of a

single asset under ALD can be obtained as follows:6

V aR = − τκ√
2
ln
α(1 + κ2)

κ2
(2.6)

CV aR = − τκ√
2
ln
α(1 + κ2)

κ2
+
τκ√

2
(2.7)

Here, the VaR and CVaR are positive values which indicate the inequality 0 < α <

κ2/(1 + κ2) holds, considering the fact that κ estimate is close to 1 (see Appendix

C) and α is generally selected as 0.01, 0.05 and 0.1.

The skewness of X is given by:7

s =
2µ3 + 3µτ 2

σ3
=

2µ3 + 3µτ 2

(µ2 + τ 3)3/2
(2.8)

6Derivation of VaR and CVaR see Appendix A.1 and A.2, respectively.
7See Appendix A.3 for derivation.
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2.2.3 VaR, CVaR and Skewness of asset portfolio under

multivariate ALD

Multivariate ALD. Since empirical data show that the return distribution of

assets in the portfolio exhibits the characteristics of multivariate non-Normality,

it is necessary to introduce the theory of multivariate ALD before constructing

the portfolio. The multivariate ALD is employed to capture the multivariate non-

Normal features, which as a combination, can be regarded as an extension of both

the univariate ALD and multiple symmetric Laplace distribution. The univariate

ALD has been successfully applied in financial markets because of the practicability

of the explicit analytical density function and the finite second moments of random

sums of i.i.d. random vectors.8 As a result, the multivariate ALD, on the other

hand, is believed to be effective, especially in describing skewed and leptokurtic

multivariate datasets (see, e.g., Kotz et al., 2001; Lindsey and Lindsey, 2006). The

multivariate ALD is defined via the form of characterization.

Definition 2.10. A random vector Y in Rd is said to follow a multivariate

asymmetric Laplace distribution if its characteristic function is in the form:

ψ(t) =
1

1 + 1
2
t′Σt− iµ′t

(2.9)

where µ ∈ Rd and Σ is a d× d non-negative definite symmetric matrix.9

If quoting term ALd(µ,Σ) as the distribution of the d−dimensional random

vector Y and expressing as Y ∼ ALd(µ,Σ), then the relationship between mean

vector E(Y ), covariance matrix Cov(Y ) and the parameters µ and Σ can be

concluded as follows:10

E(Y ) = µ (2.10)

Cov(Y ) = V = Σ + µµ
′

(2.11)

8Random sums can be written as X1 + · · · + Xvp , where vp has a geometric distribution with
the mean 1/p. More details see Kotz et al. (2001).

9Note that Σ in multivariate ALD is no longer denotes the variance-covariance matrix of random
vector Y unless mean vector µ is zero.

10Let X ∼ Nd(0,Σ), Z be a standard exponentially random variable, independently of X. Then,
the following formula holds: Y = µZ +

√
ZX, correspondingly, E(Y ) = µ and V ar(Y ) = Σ + µµ

′

exist. Further discussions and proofs see Kozubowski and Podgorski (2000).
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Linear transformations are generally involved in portfolio optimization problems.

Proposition 2.11 indicates that if Y ∼ ALd(µ,Σ), then all linear combinations of

the components of Y are jointly AL distributed. In other words, if asset returns

in the portfolio follow a multivariate AL distribution, their linear combination is

subject to a one-dimensional ALD.

Proposition 2.11. Let Y = (Y1, Y2 · · · · · ·Yn)
′ ∼ ALd(µ,Σ) and W is a real matrix

whose size is n ∗ 1, then the random variable W
′
Y ∼ AL(µW ,Σ

2
W ) with µW = W

′
µ,

Σ2
W = W

′
ΣW .

Proof. The assertion follows the relation:

ψW ′Y (t) = Eei(W
′
Y )
′
t = EeiY

′
Wt = ψY (Wt)

Also, the characteristic function of W
′
Y satisfies that:

ψY (Wt) =
1

1 + 1
2
(Wt)′Σ(Wt)− iµ′Wt

=
1

1 + 1
2
t′W ′ΣWt− i(W ′µ)′t

, t ∈ R

Hence, we have W
′
Y ∼ ALn(W

′
µ,W

′
ΣW ).

Portfolio VaR, CVaR and Skewness. Suppose a portfolio consists of n risky

assets with W = (w1, w2, w3 · · ·wj)T , where wj represents the weight of the jth asset

with j = 1, 2 · · ·n. Setting W T1 = 1,1 = (1, 1, 1 · · · 1)T and Y = (Y1, Y2, Y3 · · ·Yj)T ,

where Yj is the rate of return of the jth asset. Then we can denote the return of the

portfolio as R(W,Y ) = W TY and the loss of the portfolio as L(W,Y ) = −W TY . If

there is a feasibility condition such that W = {W ∈ Rn|W T1 = 1}, then the mean

and variance of the return of the portfolio can be shown as:

µW = E[R(W,Y )] = W Tµ (2.12)

VW = σ2(W ) = W TVW (2.13)

According to proposition 2.11, we have random variable Y ∼ ALd(µ,Σ) and the

random vector W
′
Y = ALd(µW ,Σ

2
W ), thus we can conclude that the return of the

portfolio follows a one-dimensional AL distribution and therefore, an alternative
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expression for the variance of the portfolio return is obtained as:

VW = Σ2
W + µ2

W (2.14)

Following proposition 2.11 and equation (2.11), we can obtain the analytic form of

Σ2
W by transforming equation (2.14):

Σ2
W = W TΣW = W TVW −W Tµ(W Tµ)T (2.15)

Substituting κ =
√

2τ/(µ +
√
µ2 + 2τ 2) into CVaR formula of single asset, the

portfolio CVaR can be formulated as:11

CV aRW = (1− lnα)g(µW ,ΣW )− g(µW ,ΣW )ln(2 +
µW

g(µW ,ΣW )
) (2.16)

where CV aRW denotes the CVaR of the portfolio and function g(µW ,ΣW ) is defined

as g(µW ,ΣW ) = Σ2
W/(µW +

√
µ2
W + 2Σ2

W ) with parameter µW and ΣW are the

replacement of µ and τ , respectively.

Similarly, portfolio VaR can be shaped as:12

V aRW = −ln(α)g(µW ,ΣW )− g(µW ,ΣW )ln(2 +
µW

g(µW ,ΣW )
) (2.17)

where V aRW is the VaR of the portfolio, g(µW ,ΣW ) = Σ2
W/(µW +

√
µ2
W + 2Σ2

W ).

Taking SW as the skewness of the portfolio and replace µ and τ in equation (2.8)

by µW and ΣW respectively, the portfolio skewness can be written as:

SW =
2µ3

W + 3µWΣ2
W

σ3
W

=
2µ3

W + 3µWΣ2
W

(µ2
W + Σ2

W )3/2
(2.18)

2.3 Portfolio optimization model

The objective of portfolio optimization is to reach an equilibrium status that can

meet multiple objective functions at the same time, i.e. maximizing the expected

11See Appendix B.1 for proof.
12See Appendix B.2 for proof.
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return of portfolio meanwhile minimizing the risk. In addition, the skewness of

portfolio return is important in portfolio selection problems especially for investors

who are completely risk averse.13 Hence, for the Mean-CVaR-Skewness optimization

model, the main aim is to minimize the portfolio CVaR and maximize the skewness

simultaneously, at a given expected portfolio return. Using equation (2.16) and

(2.18), the Mean-CVaR-Skewness model can be written as an optimization problem:

Min
W∈Rn

CV aRW = (1− lnα)g(µW ,ΣW )− g(µW ,ΣW )ln(2 +
µW

g(µW ,ΣW )
)

Max
W∈Rn

SW =
2µ3

W + 3µWΣ2
W

σ3
W

=
2µ3

W + 3µWΣ2
W

(µ2
W + Σ2

W )3/2

s.t. µW = W Tµ = r,W T1 = 1

(2.19)

where r is the expected return of the portfolio, g(µW ,ΣW ) = Σ2
W/(µW +√

µ2
W + 2Σ2

W ).

Obviously, this is a multi-target optimization problem with the first and second

objective being nonlinear functions of W . Traditional mathematical approaches

(i.e. simplex method) cannot perform well in solving the nonlinear programming

problems. In addition, the process to solve the nonlinear programming problems

tend to be difficult, existing techniques, including linear approximation and

nonlinear goal programming, are overly complex and time consuming. A general

hint behind optimizing multiple objectives is to reduce the multi-target functions

to a single-target function, i.e. the Mean-variance-skewness optimization problem

(Konno and Suzuki, 1995), which is suitable to apply here.

Monotonic analysis. Given the expected return of the portfolio r, replacing µW

by r in equation (2.16), the CVaR of portfolio can be written as:

CV aRW = (1− lnα)g(r,ΣW )− g(r,ΣW )ln(2 +
r

g(r,ΣW )
) (2.20)

13Empirical results from Lai (1991) indicate that the construction of an optimal portfolio is
highly replying on the incorporation of skewness.
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It is clear that CV aRW is a function of ΣW and r. To simplify the analysis, equation

(2.20) can be decomposed into two parts:

CV aRW = f1(ΣW ) + f2(ΣW )

where

f1(ΣW ) = (1− lnα)g(r,ΣW ) (2.21)

f2(ΣW ) = −g(r,ΣW )ln(2 +
r

g(r,ΣW )
) (2.22)

(1) Monotonicity of f1(ΣW ). It is obvious that f1(ΣW ) is a function of ΣW ,

then we have:

dg(r,ΣW )

dΣW

=
ΣW

r +
√
r2 + 2Σ2

W

(2− 2Σ2
W

(r
√
r2 + 2Σ2

W )(r +
√
r2 + 2Σ2

W )
) > 0 (2.23)

The inequality 0 < α < 1 implies that (1− lnα) > 0, then we can get:

df1(ΣW )

dΣW

= (1− lnα)
dg(r,ΣW )

dΣW

> 0 (2.24)

The equation (2.24) indicates that f1(ΣW ) is a monotonically increasing function

with respect to ΣW .

(2) Monotonicity of f2(ΣW ). It has been shown that ΣW is positively correlated

with g(r,ΣW ), implying that g(r,ΣW ) will become larger when ΣW increases. Since r

is positive, 2+
r

g(r,ΣW )
tends to decrease when ΣW increase, thus −ln(2+

r

g(r,ΣW )
)

increase. Applying the monotonicity rule of composite function, we conclude

that f2(ΣW ) tends to rise as ΣW increase. Therefore, f2(ΣW ) is a monotonically

increasing function with respect to ΣW . Overall, CV aRW = f1(ΣW ) + f2(ΣW ) is a

monotonically increasing function with respect to ΣW .
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Taking VaR as a risk measure, the portfolio selection problem under Mean-VaR-

Skewness model becomes:

Min
W∈Rn

V aRW = −ln(α)g(µW ,ΣW )− g(µW ,ΣW )ln(2 +
µW

g(µW ,ΣW )
)

Max
W∈Rn

SW =
2µ3

W + 3µWΣ2
W

σ3
W

=
2µ3

W + 3µWΣ2
W

(µ2
W + Σ2

W )3/2

s.t. µW = W Tµ = r,W T1 = 1

(2.25)

where g(µW ,ΣW ) = Σ2
W/(µW +

√
µ2
W + 2Σ2

W ). It is not difficult to show that V aRW

is a monotonically increasing function with respect to ΣW .

Replacing µW by r, the skewness of the portfolio becomes:

SW =
2µ3

W + 3µWΣ2
W

(µ2
W + Σ2

W )3/2
=

2r3 + 3rΣ2
W

(r2 + Σ2
W )3/2

(2.26)

Since we have:

dSW (r,ΣW )

dΣW

= − 3rΣ3
W

(r2 + Σ2
W )5/2

< 0 (2.27)

then we can conclude that SW is a monotonically decreasing function of ΣW . That

is, if Σ2
W is minimized, V aRW and CV aRW will be minimized and SW will be

maximized. This indicates that the original multi-objective optimization problems

can be reduced to a one-objective problem by minimizing Σ2
W . As a result, an

equivalent reduced optimization model is introduced.

Proposition 2.12. The Mean-CVaR-Skewness model has the same solution as that

of Mean-VaR-Skewness model, both of which can be transferred to the following

optimization problem:


Min
W∈Rn

1

2
Σ2
W =

1

2
W TΣW =

1

2
W T (V − µµT )W

s.t. µW = W Tµ = r,W T1 = 1

(2.28)
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2.4 Algorithm of the optimization model

This section shows the computational scheme to solve the simplified optimization

model using the Lagrange multiplier method.14 This simplified form is a quadratic

programming (QP) problem which involves minimizing a quadratic function Σ2
W

subject to few linear constraints.15 Following notations in section 2.2, the expected

returns µj = E(Yj) for j = 1, 2, · · ·n is set to be in a one-column matrix µ =

[µ1, µ2, · · ·µn]T . The covariance of returns denoted by V = Cov(Yi, Yj) for i =

1, 2, · · ·n and j = 1, 2, · · ·n is the entries of the n ∗ n variance-covariance matrix

given by:

V =


var(Y1) . . . cov(Y1, Yn)

...
. . .

...

cov(Yn, Y1) . . . var(Yn)


Then, we are able to show that the covariance matrix V in our datasets is a

positive definite matrix and Σ = V − µµT is also a positive definite matrix.16 This

is consistent with the acknowledgement that covariance matrix of financial asset

returns are generally positive-definite. A large number of mathematical techniques

are designed to solve the QP problems (i.e. ellipsoid algorithm, interior point

method, simplex type method and Lemke-Howson method, etc.). In addition,

computer-based methods are studied and developed (see, e.g., Hasan, 2012; Hasan

and Hasan, 2014). In this paper, we show that it is possible to reach a closed-form

solution by using the Lagrange multiplier approach.

Suppose λ and β are two Lagrange multipliers, then the Lagrange function can

14This is different from Zhao et al. (2014) who claim to solve the model using a statistical
software. Indeed, the Lagrange multiplier method has been shown to be a powerful tool in solving
conventional mean-variance model, and the application here can be seen as a supplement to the
existing studies.

15Quadratic programming problem is a subfield of nonlinear programming problem, and is
defined based on its feature that the objective function is quadratic and constraints are linear.
It has been widely applied in the fields of constrained regression and portfolio selection. Other
subfield includes linear programming, geometric programming and convex programming, etc.

16This implies that WTΣW is strictly convex on W , hence, this optimization model can also be
classified as a quadratic convex programming problem (see Hasan, 2012). Besides, the positive-
definite feature of Σ means the matrix is invertible which can be written in the form of Σ−1.
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be formulated as:

L(W,λ, β) =
1

2
W TΣW − λW T1− βW Tµ (2.29)

Equating the partial derivative of L(W,λ, β) with respect to the optimal weights

(W ) of portfolio to zero, we can obtain the optimal weight as:

W = λΣ−11 + βΣ−1µ (2.30)

Substituting equation (2.30) into the constraints of optimization model (2.28), a

system of linear equations can be obtained as follows:

r = µTλΣ−11 + µTβΣ−1µ (2.31)

1 = 1TλΣ−11 + 1TβΣ−1µ (2.32)

which are equivalently to:

λC + βA = 1 (2.33)

λA+ βB = r (2.34)

where A = 1TΣ−1µ = µTΣ−11, B = µTΣ−1µ and C = 1Σ−11. Then, we can obtain

the solution of λ and β by solving the above binary linear equations:

λ =
B − rA
BC − A2

(2.35)

β =
rC − A
BC − A2

(2.36)

As a result, the analytical expression of portfolio weight vector can be obtained by

substituting the solution (2.35) and (2.36) into (2.30):

W = λ1Σ−1 + βµΣ−1 =
(B − rA)1Σ−1

BC − A2
+

(rC − A)µΣ−1

BC − A2

=
B(Σ−11)− A(Σ−1µ)

BC − A2
+
C(Σ−1µ)− A(Σ−11)

BC − A2
r

(2.37)
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By setting a constant required return r, the optimal asset weights in the portfolio can

be obtained using (2.37), and then the CV aRW , V aRW and SW can be calculated

following equations (2.16), (2.17) and (2.18), respectively.

2.5 Empirical analysis

2.5.1 Data and portfolio construction

The preliminary work for a portfolio selection problem is to choose the potential

securities. There are two main possible approaches in the portfolio selection process.

The first approach starts from the experience and observation of investors and ends

with relevant beliefs about the future performance of potential securities, while the

second approach is to initially consider the likely performance of potential securities

and then the choice of portfolio (Markowitz, 1952). Our criterion for choosing

assets is based on the second approach, that is, the top 20 constituents (with the

exception of GOOG and PM) of Standard & Poor 500 by index weight in the year

2012 are considered.17 The left 18 stocks are expressed with ticker as: AAPL, XOM,

CVX, MSFT, IBM, GE, JNJ, PFE, PG, INTC, CSCO, KO, WMT, ORCL, ABT,

MRK, T and COP. These stocks have large overall trading volume hence are highly

representative in the stock market. In addition, we employ three datasets with

cognitive standard as “pre-crisis” (D1), “crisis” (D2) and “all” (D3) to examine the

consistency in model performance.

It is debatable to have a consistent criterion to define the time periods of global

financial crisis. Frankel and Saravelos (2012) define financial crisis broadly from the

view of both financial and real symptoms. They have considered the crisis period

continued to 2009 rather than the end of 2008 because many asset prices and real

output indicators still decreased after 2008. The starting point was marked from

September 15, 2008 as the day of Lehman brother bankruptcy. Demirguc-Kunt et al.

(2013) analyzed whether better capitalized banks experienced higher stock returns

17The reason to drop the two indexes is because the historical prices of them are dissatisfied our
requirement for time periods. GOOG was first listed in NASDAQ on August 18, 2004 and PM
started from March 16, 2008.
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and they have defined the crisis time from Q3 2007 to Q1 2009. In this paper, we

study a two-year cycle from September 2007 to September 2009 with dataset named

as D2, considering both the time of US recession starting from December 2007 that

claimed by NBER and progressively recovery of economy started from March of

2009 that indicated by MSCI world equity index. D1 was dated from January 2002

to the end of 2006 and there is an 8 months time gap between D1 and D2 due to

the consideration of emerging of pre-recession (See Demirguc-Kunt et al., 2013). D3

was collected with time span from January 2002 to December 2012, covering both

D1, D2 and three years lag. We obtain the raw data from Yahoo! Finance using

historical daily adjusted close prices, which have been adjusted for dividends, stock

splits and new stock offerings thus can be treated as an accurate technical signal.

Daily log returns are calculated based on the natural logarithm of the price ratio

for 2 consecutive days, which is defined by Rt = [ln(pt) − ln(pt−1)] ∗ 100 with pt

as the closing price on day t, and that would yield a total of 1259, 524 and 2769

observations in D1, D2 and D3, respectively.

The descriptive statistics of the portfolio stocks for the three datasets are summarized

in Table 2.1. It is clear to see that stock returns during financial crisis time (D2)

have exhibited considerable variance comparing to the mean than that of D1 and

D3, and the mean value of returns in D2 are more likely to be negative. In addition,

there is evidence that the stock returns in our portfolio exhibite asymmetric features,

either positive or negative.

Since the purpose of incorporating higher moments is to illustrate the non-Normality

feature of asset returns, then our empirical work starts from testing the Normality

of stock returns in our portfolio. To check Normality, we employ the Jarque-Bera

(J-B) test, which is regarded as an optimal tool with excellent asymptotic power

under various alternative specifications of probability distribution (Jarque and Bera,

1987).18 Results show that J-B statistics are significantly larger than 5.99 with

18The Jarque-Bera statistic has a chi-squared (χ2) distribution with two degrees of freedom.
Inverting the χ2 at the 5% and 1% significance level lead to a critical value of 5.99 and 9.21,
respectively. Hence, for instance, if a Jarque-Bera statistic is larger than 5.99, the null hypotheses
of Normality will be rejected at 5% significance level, which means the distribution is not normally
distributed.



CHAPTER 2. PORTFOLIO OPTIMIZATION UNDER ALD 38

Table 2.1: Descriptive Statistics of assets in the portfolio for the three datasets

Number Ticker Stock Datasets Mean Std.dev. Skewness Kurtosis Jarque-Bera Prob.

1 AAPL Apple Inc.

D1 0.1624 2.5726 0.0885 6.3953 606.3732 0

D2 0.0557 3.1001 -0.4784 7.1436 394.8604 0

D3 0.1405 2.4514 -0.1379 7.5558 2403.3690 0

2 XOM Exxon Mobil Corp.

D1 0.0622 1.4048 -0.2667 6.9668 840.3928 0

D2 -0.0348 2.5533 0.2168 11.6369 1632.7890 0

D3 0.0375 1.6500 -0.0217 14.9260 16410.0200 0

3 CVX Chevron Corp.

D1 0.0530 1.3429 -0.3884 4.7707 196.1374 0

D2 -0.0295 2.7575 0.2829 11.4668 1572.1630 0

D3 0.0451 1.7193 0.0178 15.8632 19090.4000 0

4 MSFT Microsoft Corp.

D1 0.0034 1.6929 -0.1677 9.1682 2001.7750 0

D2 -0.0135 2.7171 0.3515 8.0438 566.2219 0

D3 0.0022 1.8316 0.1597 10.8550 7130.5770 0

5 IBM
International Business

Machines Corp.

D1 -0.0138 1.5662 0.0700 11.0497 3400.1890 0

D2 0.0116 2.0431 0.2561 5.6950 164.3073 0

D3 0.0220 1.5493 0.0860 9.1629 4385.5490 0

6 GE General Electric Co.

D1 0.0046 1.5518 0.2169 8.3320 1501.2600 0

D2 -0.1433 3.4332 0.1076 6.7236 303.7403 0

D3 -0.0102 2.0509 0.0452 11.8384 9013.7430 0

7 JNJ Johnson & Johnson

D1 0.0162 1.2701 -1.7189 31.6439 43660.6700 0

D2 0.0086 1.4995 0.6980 14.0837 2724.7370 0

D3 0.0165 1.1856 -0.6761 26.2610 62637.4600 0

8 PFE Pfizer Inc.

D1 -0.0246 1.6607 -0.6402 10.1402 2760.4270 0

D2 -0.0549 2.1557 -0.0447 6.7309 304.0925 0

D3 -0.0022 1.6348 -0.3448 9.3319 4680.5770 0

9 PG
The Procter &

Gamble Co.

D1 0.0469 1.0391 -0.1104 6.8954 798.5580 0

D2 -0.0130 1.7112 -0.1569 7.3958 424.0443 0

D3 0.0295 1.1516 -0.1658 9.7009 5193.2380 0

10 INTC Intel Corp.

D1 -0.0312 2.4569 -0.7503 11.5816 3981.3810 0

D2 -0.0415 2.8598 -0.0751 5.2486 110.8862 0

D3 -0.0071 2.2709 -0.4802 10.0486 5838.6070 0

11 CSCO Cisco Systems Inc.

D1 0.0327 2.4270 0.4190 11.2905 3642.4420 0

D2 -0.0581 2.6993 0.0294 5.6515 153.5687 0

D3 0.0043 2.3031 -0.0119 11.7397 8812.7160 0

12 KO The Coca-Cola Co.

D1 0.0108 1.1821 -0.8805 12.3390 4737.9620 0

D2 0.0126 1.8467 0.7211 10.7715 1364.0680 0

D3 0.0259 1.2616 0.0453 14.1497 14343.8600 0

13 WMT Wal-Mart Stores Inc.

D1 -0.0136 1.3573 0.2176 5.4132 315.4331 0

D2 0.0298 1.8099 0.2800 7.8884 528.5792 0

D3 0.0127 1.3525 0.1704 7.9878 2883.7040 0

14 ORCL Oracle Corp.

D1 0.0172 2.4615 0.0897 6.3385 586.3673 0

D2 0.0062 2.6522 0.2041 5.5245 142.7830 0

D3 0.0331 2.2567 0.0306 6.9269 1779.6210 0

15 ABT Abbott Laboratories

D1 0.0097 1.6336 -0.6601 18.6821 12992.3700 0

D2 0.0017 1.7614 -0.2477 7.0839 369.4943 0

D3 0.0218 1.4744 -0.4873 16.0235 19678.5300 0

16 MRK Merck & Co. Inc.

D1 -0.0049 1.8491 -3.9804 70.2453 240537.2000 0

D2 -0.0688 2.6871 -0.4724 8.3863 652.9196 0

D3 0.0048 1.8750 -2.0067 37.5149 139301.8000 0

17 T AT & T,Inc.

D1 0.0118 1.7368 -0.0764 7.2160 933.6592 0

D2 -0.0546 2.3425 0.6772 8.4649 692.1116 0

D3 0.0148 1.6748 0.2618 10.0753 5807.2190 0

18 COP ConocoPhillips

D1 0.0792 1.5588 -0.2399 3.7806 44.0428 0

D2 -0.1016 3.0821 -0.2793 7.0485 364.6614 0

D3 0.0456 1.9251 -0.4112 10.1907 6043.5690 0
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corresponding p-values equal to zero for the 18 assets in all three periods. Hence,

there are sufficient evidences to against the null hypotheses that the asset returns in

the portfolio are normally distributed. This result provides good evidence for using

heavy-tailed distribution (i.e. ALD) to fit the datasets.19

2.5.2 Portfolio VaR model analysis

Single asset Normal VaR investigation. Methodology for VaR calculation can

be summarized into three categories: Parametric-Normal approach, Non-parametric

approach and Simulation approach. Parametric-Normal method assumes that asset

returns are subject to a specific Normal distribution: the VaR at confidence level

(1 − α) is defined as the (1 − α) quantile of the Normal distribution. Conversely,

the non-parametric method does not take into account any parameters and depends

only on the historical return series, therefore it is also called historical method

or parameter-free method. As a result, the VaR estimates under non-parametric

approach can be calculated immediately from real dataset at the corresponding

confidence levels.

Figure 2.2 shows the differences between parametric-Normal VaR estimates and non-

parametric VaR estimates of each single stock in our portfolio among three datasets

at different confidence levels. Let d̃ denotes the differences between the parametric

VaR estimates and the non-parametric VaR estimates. Then, at 90% conference

level, we have d̃ > 0 for all stocks in the three datasets with d̃ ranging from 0.05

to 0.74. At 95% conference level, d̃ fluctuates between -0.12 and 0.69 which implies

that some of the parametric-Normal VaR estimates are lower than the historical

VaR estimates. If the confidence level reaches 99%, almost all parametric-Normal

VaR estimates are less than their counterparts. Therefore, we conclude that the

parametric-Normal approach could underestimate the true VaRs at high confidence

level for the heavy-tailed return series. The underestimation of VaR becomes much

more obvious when moving further towards to the tail and this larger deviation may

result in larger errors of exposure to the market risks. As a result, the potential losses

19Fitting ALD(κ, τ) via the maximum likelihood estimation (MLE) approach, estimates of the
three datasets are shown in Appendix C.
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Figure 2.2: Differences between Parametric-Normal VaR estimates and
Non-parametric VaR estimates for single asset in the portfolio of the three datasets

at different conference levels

can be magnified if a risk manager is operating a large amount of asset positions.

Portfolio VaR comparisons. To test the viability of Mean-VaR-Skewness ALD

optimization model in equation (2.25), we compare it with the portfolio optimization

VaR model under Normal distribution and the historical portfolio VaR approach,

the latter being regarded as a benchmark. To observe the consistency of model

performance, the empirical analysis is implemented under three different time

periods for a sequence of given confidence levels.

The algorithm of historical portfolio VaR approach firstly computes the equally

weighted average return of assets in the portfolio, and then repeats over to the whole

time periods thus eventually obtaining n sample portfolio returns. The portfolio VaR

estimate is the threshold of this return distribution at a specific confidence level. For

parametric-Normal portfolio VaR, we adopt the method proposed by Rockafellar and
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Table 2.2: Comparison of portfolio VaR estimates under Historical, Normal and
ALD approach for three datasets at different confidence levels

Confidence level Dataset
Portfolio VaR

Historical Normal (r = 10%) ALD (r = 10%)

90%

D1 1.144 1.0918 1.0673

D2 2.1187 1.4174 1.3950

D3 1.3024 1.3665 1.3438

92.5%

D1 1.4256 1.1663 1.2667

D2 2.4005 1.5122 1.6531

D3 1.5617 1.4581 1.5927

95%

D1 1.6641 1.2407 1.5478

D2 2.8763 1.6070 2.0168

D3 1.8883 1.5498 1.9435

97.5%

D1 2.1636 1.3152 2.0282

D2 4.0219 1.7018 2.6386

D3 2.4099 1.6414 2.5432

99%

D1 2.7042 1.3599 2.6634

D2 5.1383 1.7587 3.4605

D3 3.5603 1.6964 3.3360

Note: The portfolio VaR optimization model under the two innovations are
implemented at a given expected portfolio return r = 10%.

Uryasev (2000) whose expression is:

V aR1−α(x) = c1(1− α) ∗ σ(α)− r (2.38)

where c1(1−α) =
√

2 erf−1(2∗(1−α)−1) > 0, erf−1 represents the inverse of error

function which is defined as erf(z) = 2/
√

2π
∫ z

0
e−t

2
dt and σ(x) is the minimized

standard deviation of the portfolio for a given expected portfolio return r.

Table 2.2 compares the portfolio VaR estimates of various approaches for the three

datasets over a range of confidence levels by setting the expected portfolio return to

be 10%. Assuming there is a fund manager who has made an investment with

$100 million position in this portfolio, under the parametric-Normal approach,

the portfolio VaR estimate is $1.4174 million in the period of crisis (D2) at

90% confidence level, significantly lower than the maximum loss of the portfolio
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Figure 2.3: Portfolio VaR estimates of Historical, Normal and ALD approach for
three datasets over a range of confidence levels

that calculated using historical distribution approach ($2.1187 million).20 The

discrepancy of portfolio VaR between historical approach and parametric-Normal

approach is rising from $0.7013 million at 90% percentile to $3.3796 million when

the percentile reaches at 99%. Likewise, the portfolio loss of these two methods

for the other two datasets (D1 and D3) have both shown an ascending tendency

from $0.0522 million and $-0.0641 million at 90% percentile to $1.3443 million and

$1.8639 million at 99% percentile, respectively. This indicates that the parametric-

Normal portfolio VaR approach underestimates the true portfolio losses especially

when focusing on the extreme tail events. A consistent finding is that portfolio VaR

is obviously higher in the periods of crisis, no matter which methods we use.

The portfolio VaR estimates under ALD, along with estimates of the other two

20This is saying that the fund manager has 90% confidence to believe that the losses will not
exceed $1.4174 million if using parametric-Normal approach and $2.1187 million using historical
distribution approach.
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approaches, are shown in Figure 2.3. We can conclude that in both the three

datasets, portfolio VaR estimates obtained under ALD assumption are much closer

to historical estimates than that calculated under Normal assumption. To further

examine the accuracy of the two methods, we employ root-mean-square error

(RMSE), mean absolute error (MAE) and sum of squared relative error (SSRE)

to present model evaluation statistics.21 The functional forms are defined as:

RMSEV aR =

√√√√ 1

N

N∑
i=1

(
V̂ aRn(1− α)− V aRn(1− α)

)2

(2.39)

MAEV aR =
1

N

N∑
i=1

∣∣∣V̂ aRn(1− α)− V aRn(1− α)
∣∣∣ (2.40)

SSREV aR =

√√√√ N∑
i=1

(
V̂ aRn(1− α)− V aRn(1− α)

V aRn(1− α)

)2

(2.41)

where N represents the number of calculated VaRs, V̂ aRn(1 − α) denotes the

theoretical VaR values at (1-α) confidence level and V aRn(1 − α) is the actual

VaR values at (1-α) confidence level.22 According to the computational results in

Table 2.3, both RMSE, MAE and SSRE values for the ALD approach are lower than

the case where Normal distribution is assumed in the three datasets. This implies

a better performance of modelling stock return series using ALD when calculating

portfolio VaRs.

To conclude, we find that the portfolio VaR estimates under ALD outperform the

portfolio VaR estimates under the assumption of Normal distribution in terms of tail

risk modelling accuracy. Although VaR has gained great popularities and often be

requested by regulators considering its computational simplicity and ease property

21Both RMSE, MAE and SSRE have been widely used as a standard metric to evaluate model
performance. Although it is quite controversial about which one is better, there is no consensus on
the most appropriate indicator for model errors (Willmott and Matsuura, 2005; Willmott et al.,
2009; Yao et al., 2013). Since a single metric only provides a unique prediction of model errors,
therefore, multiple metrics are often required for testing model performance (See Chai and Draxler,
2014).

22Theoretical VaR value means the minimized VaR value of the optimization model under the

corresponding Normal distribution or ALD. For every given confidence level (1−α), the V̂ aRn(1−α)
value can be obtained, here N = 5.
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Table 2.3: Metrics for portfolio VaR errors under Normal and ALD approach in
the three datasets

Dataset RMSEN RMSEALD MAEN MAEALD SSREN SSREALD

D1 0.7452 0.1137 0.5855 0.1056 0.7077 0.1611

D2 1.9848 1.1445 1.7117 1.0783 1.0985 0.7265

D3 0.9159 0.1215 0.6277 0.0971 0.6440 0.0964

for calculation, the intrinsic limitations are still obvious. We find the VaR loss of a

portfolio that consisting of all risky assets can be larger than the sum of VaR loss of

each single asset in the portfolio. In addition, VaR could be a misleading indicator

to investors as it does not give any indications for the risk that exceed a specific

quantile, hence investors’ optimizing behavior may lead to market positions that

are subject to extreme losses and eventually resulting in market instability. In the

following, we empirically investigate the viability of the Mean-CVaR-Skewness model

under ALD that proposed by Zhao et al. (2014) considering three different sets of

market data. The analysis is conducted by comparing with classical mean-CVaR

optimization model under Normal distribution based on three methods: In-sample,

Monte Carlo simulation and Out-of-sample.

2.5.3 Portfolio CVaR model performance: In-sample

We examine the model performance with regard to the CVaR losses for the two

innovations. The original Mean-CVaR optimization model was first proposed by

Rockafellar and Uryasev (2000) based on the Normality assumption of underlying

risk factors. Analytic minimized CVaR expression can be expressed as:

CV aR1−α(x) = c2(1− α) ∗ σ(x)− r (2.42)

where c2(1− α) = (
√

2π ∗ (exp(erf−1(2 ∗ (1− α)− 1))2) ∗ α)−1, erf−1 denotes the

inverse of error function which is defined as erf(z) = (2/
√

2π)
∫ z

0
e−t

2
dt and σ(x) is

the minimized standard deviation of the portfolio for a given expected rate of return

r. In the scenario of allowing short-selling, the analytic expression of σ(x) can be
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Table 2.4: In-sample portfolio CVaR estimates under various approaches for the
three datasets at different confidence levels

Confidence level Dataset
Portfolio CVaR

Historical M-C(r=10%) M-C-S(r=10%)

90%

D1 1.8964 2.1159 1.7605

D2 3.449 2.7212 2.2921

D3 2.2274 2.6267 2.2090

92.5%

D1 2.0945 2.6205 1.9599

D2 3.847 3.3638 2.5501

D3 2.4915 3.2477 2.4579

95%

D1 2.3631 3.6389 2.2409

D2 4.4619 4.6604 2.9138

D3 2.8766 4.5008 2.8087

97.5%

D1 2.8016 6.7171 2.7214

D2 5.5472 8.5795 3.5356

D3 3.8484 8.2885 3.4084

99%

D1 3.4318 15.9840 3.3565

D2 7.0826 20.3782 4.3575

D3 4.731 19.6916 4.2012

Note: M-C denotes the Mean-CVaR optimization model under Normal
distribution and M-C-S represents Mean-CVaR-Skewness model under ALD.
This two models are implemented at a given expected portfolio return r = 10%.

derived in the Mean-Variance theoretical framework (See Yao et al., 2013) as:

σ(x) =
1√
D

√
Cx2 − 2Ax+B

where A = 1TΣ−1µ,B = µTΣ−1µ,C = 1TΣ−11 and D = B ∗ C − A ∗ A.

Table 2.4 contains the in-sample portfolio CVaR estimates for historical optimization

model, Mean-CVaR model under Normal distribution and Mean-CVaR-Skewness

model under ALD. The computed outcomes of CVaR represent the worst average

portfolio loss (in percentage) per unit invested that can happen with probability

α. Consider a portfolio manager who is managing an investment with a position

of $100 million, following the Mean-CVaR-Skewness ALD model at 10% expected

portfolio return, for instance, the manager would expect to incur a loss of $4.3573
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Figure 2.4: Portfolio CVaR estimates of Historical, Mean-CVaR model and
Mean-CVaR-Skewness model for three datasets over a range of confidence levels

million in the period of crisis (D2) at 99% confidence level if things do get bad.

We find that the portfolio average losses are relatively high in the time of global

financial crisis for all these three methods, no matter what confidence level we choose.

In addition, the Mean-CVaR Normal model yields remarkably higher portfolio CVaR

values than that of Mean-CVaR-Skewness ALD model at 99% quantile level.23

To study the performance of these two models, we calculate the portfolio CVaR

estimates under the historical approach and the comparisons of these three methods

are represented in Figure 2.4. We can see that the Mean-CVaR-Skewness ALD

model demonstrates the capability of modelling heavy-tailed data especially at high

confidence levels. Compared to the performance of the Mean-CVaR Normal model,

23The reason of the distinct larger numbers under the Mean-CVaR model is because the value of
coefficient c2 in equation (2.42) varies significantly when confidence level is changing. For instance,
the value of c2 at quantile 97.5%, 98% and 98.5% is 6.4717, 7.9366 and 10.3799, respectively.
However, when confidence level rises to 99%, c2 becomes 15.2691 and at 99.5%, it even reaching
at 29.9425.
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Table 2.5: Metrics for portfolio CVaR errors under Mean-CVaR Normal and
Mean-CVaR-Skewness ALD in the three datasets

Dataset RMSEMC RMSEMCS MAEMC MAEMCS SSREMC SSREMCS

D1 5.9134 0.1128 3.6978 0.1096 3.9622 0.1151

D2 6.1118 1.8379 3.5475 1.7477 1.9710 0.7913

D3 7.0271 0.3100 4.4361 0.2179 3.4313 0.1625

the Mean-CVaR-Skewness ALD model can accurately reflect the portfolio CVaR

estimates for the whole range of confidence levels. To further test the estimation

accuracy, we define the loss functions RMSE, MAE and SSRE as follows:

RMSECV aR =

√√√√ 1

N

N∑
i=1

(
ĈV aRn(1− α)− CV aRn(1− α)

)2

(2.43)

MAECV aR =
1

N

N∑
i=1

∣∣∣ĈV aRn(1− α)− CV aRn(1− α)
∣∣∣ (2.44)

SSRECV aR =

√√√√ N∑
i=1

(
ĈV aRn(1− α)− CV aRn(1− α)

CV aRn(1− α)

)2

(2.45)

where N is the number of calculated portfolio CVaRs, ĈV aRn(1 − α) denotes

the theoretical portfolio CVaRs that are calculated based on the two parametric

optimization models at (1-α) confidence level, CV aRn(1 − α) is the historical

portfolio CVaRs at (1-α) confidence level.

Results from Table 2.5 show that both RMSEMCS, MAEMCS and SSREMCS are

significantly lower than the corresponding RMSEMC , MAEMC and SSREMC in the

three datasets, which provide evidence that portfolio CVaR estimates of Mean-

CVaR-Skewness model under ALD outperforms Mean-CVaR model under Normal

distribution in terms of the accuracy of modelling extreme tail risks in the portfolio

framework.



CHAPTER 2. PORTFOLIO OPTIMIZATION UNDER ALD 48

2.5.4 Portfolio CVaR model performance: Monte Carlo

simulations

This part aims to test the validity of the Mean-CVaR-Skewness model under ALD,

in comparison with the Mean-CVaR model under Normal distribution using Monte

Carlo simulations. Specifically, we compare the portfolio CVaR values produced by

the two models with historical portfolio CVaR values. The data information for the

two models stem from the generated random numbers.

For the Mean-CVaR Normal model, we assume that the vector of the underlying

risk factors follows a multivariate Normal distribution N(µ,Σ). Then ri ∼ N(µ,Σ),

where µ is the mean return of sample dataset (D3 daily returns) and Σ is the

corresponding variance-covariance matrix. To calculate the minimized CVaR value

for a given expected rate of return of the portfolio, we use the agreed algorithm

following formula (2.42). The simulated sample size that is generated from the

multivariate Normal distributions are 1,000, 5,000 and 10,000.24

The simulation algorithm for generating random numbers from multivariate Asymmetric

Laplace distributions can be summarized into three steps (see Kotz et al., 2001):

• Generate a standard exponential variate M ;

• Generate a multivariate Normal Nd(0,Σ) variate N , independently of M ;

• Let y = µM +
√
MN , then y ∼ ALd(µ,Σ)

Table 2.6 shows the simulated experiments of Mean-CVaR Normal model and Mean-

CVaR-Skewness ALD model. For a given required rate of return of the portfolio,

simulated portfolio CVaRs based on the Mean-CVaR-Skewness ALD model exhibit

smaller values than that of Mean-CVaR Normal model at an identical confidence

level. This property holds even when the number of sample size varies. In

addition, we can see that the simulated CVaR values for both the two models have

demonstrated an ascending trend when the expected portfolio return becomes larger,

24Analogously to Proposition 2.11, if asset returns in the portfolio are jointly following a
Normal distribution, then the linear combination of them is subject to a one-dimensional Normal
distribution (See Rachev et al., 2003).
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Table 2.6: Comparison of portfolio CVaR estimates for the two optimization
models with different expected portfolio returns at different confidence levels:

Monte Carlo simulations generated by random numbers.

Sample size r

Portfolio CVaR

Mean-CVaR Mean-CVaR-Skewness

90% 95% 99% 90% 95% 99%

1,000

0.02 1.8902 3.2032 13.8455 1.6352 2.0721 3.0868

0.04 1.9030 3.2385 14.0634 1.6332 2.0723 3.0918

0.06 1.9410 3.3164 14.4644 1.6542 2.1014 3.1397

0.08 2.0021 3.4332 15.0330 1.6959 2.1567 3.2266

0.1 2.0837 3.5847 15.7507 1.7559 2.2351 3.3479

0.12 2.1832 3.7662 16.5977 1.8315 2.3334 3.4986

0.14 2.2978 3.9734 17.5550 1.9205 2.4484 3.6742

5,000

0.02 1.9200 3.2534 14.0614 1.6516 2.0930 3.1177

0.04 2.0009 3.4036 14.7736 1.6486 2.0917 3.1207

0.06 2.1685 3.7002 16.1154 1.7301 2.1975 3.2827

0.08 2.4032 4.1100 17.9446 1.8816 2.3918 3.5763

0.1 2.6868 4.6022 20.1279 2.0857 2.6526 3.9689

0.12 3.0049 5.1528 22.5624 2.3275 2.9612 4.4326

0.14 3.3476 5.7448 25.1752 2.5961 3.3036 4.9466

10,000

0.02 1.9424 3.2913 14.2243 1.6897 2.1411 3.1894

0.04 2.0595 3.5026 15.1994 1.7757 2.2527 3.3600

0.06 2.2696 3.8709 16.8496 1.9449 2.4694 3.6871

0.08 2.5484 4.3550 18.9983 2.1754 2.7636 4.1294

0.1 2.8752 4.9203 21.4959 2.4484 3.1117 4.6519

0.12 3.2353 5.5415 24.2345 2.7508 3.4970 5.2296

0.14 3.6185 6.2018 27.1409 3.0736 3.9081 5.8457

Note: r denotes the expected rate of return of the portfolio. Mean-CVaR
represents the Mean-CVaR optimization model under Normal distribution and
Mean-CVaR-Skewness represents Mean-CVaR-Skewness model under ALD.

no matter what confidence level we consider. Then the question arises, how do those

simulated portfolio CVaRs in the two models perform compared to historical CVaRs?

Taking 10,000 simulated samples as an example Figure 2.5 shows the corresponding

comparison of portfolio CVaRs for the two simulated models with historical results

under different expected portfolio returns at different confidence levels. At the 90th
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Figure 2.5: Comparison of portfolio CVaRs for the two Monte Carlo simulated
models based on 10,000 sample size with historical results under different expected

portfolio returns at different confidence levels

percentile, it is difficult to distinguish which line is closer to the historical one, while

this uncertainty seems become clear at 95% percentile. When the confidence level

increases up to 99%, we can see that the portfolio CVaRs generated by the Mean-

CVaR-Skewness ALD model almost overlaps with historical losses. The line of

portfolio CVaRs generated by the Mean-CVaR Normal model becomes further from

the historical line than that at 90% and 95% percentiles, and the discrepancy is more

obvious when expected portfolio return is high. We thus preliminarily conclude from

the experiment that the Mean-CVaR-Skewness model under ALD is more capable to

fit true portfolio CVaRs at high confidence level than the Mean-CVaR model which

is relying on the Normality assumption.
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Table 2.7: Metrics for portfolio CVaR errors under Mean-CVaR Normal and
Mean-CVaR-Skewness ALD model using three simulated samples at different

confidence levels

Sample
size

Confidence
level

RMSEMC RMSEMCS MAEMC MAEMCS SSREMC SSREMCS

1,000

90% 0.2328 0.5054 0.2045 0.4951 0.2765 0.6003

95% 0.6800 0.6869 0.6256 0.6738 0.6254 0.6318

99% 10.6754 1.4508 10.5990 1.4359 5.9701 0.8114

5,000

90% 0.5670 0.4139 0.4466 0.3726 0.6735 0.4917

95% 1.6477 0.5563 1.4044 0.4954 1.5155 0.5116

99% 14.4672 1.1553 13.9491 1.0147 8.0906 0.6461

10,000

90% 0.7156 0.4802 0.5518 0.4163 0.8500 0.5704

95% 1.9300 0.6110 1.6496 0.5381 1.7751 0.5619

99% 15.6469 1.0145 15.0037 0.8929 8.7503 0.5674

Accuracy test based on RMSE, MAE and SSRE are defined as follows:

RMSECV aR =

√√√√ 1

N

N∑
i=1

(
ĈV aRn(r)− CV aRn

)2

(2.46)

MAECV aR =
1

N

N∑
i=1

∣∣∣ĈV aRn(r)− CV aRn

∣∣∣ (2.47)

SSRECV aR =

√√√√ N∑
i=1

(
ĈV aRn(r)− CV aRn

CV aRn

)2

(2.48)

where N is the number of calculated portfolio CVaRs, ĈV aRn(r) is the theoretical

portfolio CVaR values which are calculated based on the two optimization models at

different expected portfolio returns for a specific confidence level, CV aRn denotes

the historical portfolio CVaR values at the corresponding confidence levels.

Results are shown in Table 2.7. It is worth noting that when the number of simulated

samples is small, i.e. 1,000, the model errors of the Mean-CVaR are lower than

that of the Mean-CVaR-Skewness at 90% and 95%. Whereas, the model errors of

the Mean-CVaR-Skewness ALD model are significantly lower than that of Mean-

CVaR Normal model at all three confidence levels when the sample size is 5,000
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and 10,000.25 To conclude, the model evaluation statistics show a more accurate

portfolio CVaR estimate, which indicate that ALD is more capable of modelling

extreme tail events.

2.5.5 Portfolio CVaR model performance: Out of sample

forecasting

The evaluation of the out-of-sample performance of the Mean-CVaR-Skewness ALD

model is conducted using monthly data in comparison with the Mean-CVaR Normal

model. Specifically, the first sample portfolio of the 18 risky assets is constructed

using monthly returns from Jan 2002 to Dec 2006 and the second sample portfolio

is constructed taking a rolling-window pattern from Feb 2002 to Jan 2007. Thus,

72 sample portfolios are constructed with a time frame up to Dec 2012. All the 72

sample portfolios are iteratively examined using both Mean-CVaR-Skewness ALD

model and Mean-CVaR Normal model, which is altogether 144 times. To evaluate

the out-of-sample performance of the two optimization models, we first calculate

the optimal weights using the 60 in-sample returns for a given required portfolio

return (i.e. 10%), then we multiply by the return vector of the first following

month to ultimately get the out-of-sample portfolio return.26 For instance, the first

constructed portfolio taking data form Jan 2002 to Dec 2006 as in sample, following

one month (Jan 2007) return as out-of-sample. The algorithm of portfolio CVaR

under Mean-CVaR Normal model is the same as in section 2.5.3 (see Rockafellar

and Uryasev, 2002).

Table 2.8 shows the average monthly out-of-sample portfolio returns and average

monthly out-of-sample portfolio CVaR values for each year at different confidence

levels. That is, each portfolio is constructed based on the 60 rolling monthly returns

and for each year, the average value of 12 portfolios is calculated. We can observe

that for a same out-of-sample portfolio return, the Mean-CVaR-Skewness model

under ALD performs equivalently or better than the Mean-CVaR model at 95%

25It is believed that the reconstructed error distributions under the three metrics are more reliable
when the sample size is large enough (see Chai and Draxler, 2014).

26Formulized as µp out = w
′
x, where w is the in-sample optimal weight, x is the one month

out-of-sample return vector (Methodology see Ledoit and Wolf, 2003; Sarykalin et al., 2008).
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Table 2.8: Out-of-sample portfolio performance of the two optimization models at
different confidence levels

Year
Mean-CVaR (r=10%) Mean-CVaR-Skewness (r=10%)

Return CVaR(90%) CVaR(95%) CVaR(99%) Return CVaR(90%) CVaR(95%) CVaR(99%)

2007 0.5838 3.9993 7.1494 32.6827 0.5838 4.1560 5.2470 7.7800

2008 -1.0311 4.9989 7.7261 29.8313 -1.0311 8.9005 10.9403 15.6767

2009 -0.5611 5.7333 9.2884 38.1037 -0.5611 9.6566 11.9061 17.1291

2010 -0.3169 5.8797 9.7033 40.6949 -0.3169 7.4644 9.2753 13.4800

2011 2.1302 3.7807 7.8435 40.7740 2.1302 3.9949 5.1193 7.7302

2012 0.3674 5.3080 9.2090 40.8280 0.3674 5.6639 7.1180 10.4944

Average 0.1954 4.9500 8.4866 37.1524 0.1954 6.6394 8.2677 12.0484

Note: Results in the first 6 rows represent the average value of 12 months at that year and the “average” in the last
row calculate the average value of the above 6 years. Mean-CVaR represents the Mean-CVaR optimization model under
Normal distribution and Mean-CVaR-Skewness represents Mean-CVaR-Skewness model under ALD. This two models are
implemented at a given expected portfolio return r = 10%.

confidence level in the sense of a smaller risk, with exception of years 2008 and

2009.27 In addition, we find that the Mean-CVaR-Skewness ALD model produces

much smaller CVaR values than the Mean-CVaR Normal model at 99% confidence

level which indicates that the former is superior to the latter in modelling extreme

tail events.

To conclude, the in-sample, Monte Carlo simulation and Out-of-sample experiment

have drawn consistent conclusions that the Mean-CVaR-Skewness optimization

model with incorporation of ALD performs comparatively better than Mean-CVaR

Normal optimization model when the stock returns in the portfolio exhibit heavy-

tailed features, and the former is much more adoptable especially for investors who

are more concerned about extreme tail risks.

2.6 Portfolio Configuration and risk-adjusted returns

Portfolio Configuration. We present the optimal portfolio weight, portfolio CVaR

value and portfolio skewness value under different expected portfolio returns for the

three datasets in Tables 2.9, 2.10 and 2.11 respectively, in order to observe the

variation of stock allocation and portfolio risk level. From Table 2.9, we can see

that asset 9 (“PG”) takes the largest weight (in a long position) of the portfolio in

27The year 2008 was the period of global financial crisis and the year 2009 was the recovery
phase of this crisis (see Goh et al., 2012; Saranya and Prasanna, 2014).
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Table 2.9: Optimal assets weights, portfolio CVaR and skewness values at different
required return of the portfolio in D1

r 0.02 0.04 0.06 0.08 0.1 0.12 0.14

w1 -0.0205 0.0324 0.0853 0.1382 0.1911 0.2440 0.2969

w2 -0.1990 -0.1476 -0.0962 -0.0448 0.0066 0.0580 0.1095

w3 0.2133 0.1867 0.1602 0.1336 0.1070 0.0805 0.0539

w4 0.0109 0.0054 -0.0001 -0.0056 -0.0112 -0.0167 -0.0222

w5 0.1234 0.0831 0.0427 0.0024 -0.0380 -0.0783 -0.1187

w6 -0.0670 -0.0693 -0.0717 -0.0740 -0.0763 -0.0787 -0.0810

w7 0.1153 0.1147 0.1141 0.1134 0.1128 0.1122 0.1116

w8 -0.0085 -0.0506 -0.0927 -0.1348 -0.1769 -0.2190 -0.2611

w9 0.3068 0.3772 0.4476 0.5181 0.5885 0.6589 0.7293

w10 -0.0390 -0.0709 -0.1028 -0.1347 -0.1665 -0.1984 -0.2303

w11 -0.0070 0.0109 0.0289 0.0468 0.0647 0.0826 0.1006

w12 0.2034 0.1727 0.1419 0.1112 0.0804 0.0497 0.0189

w13 0.1538 0.1034 0.0530 0.0025 -0.0479 -0.0983 -0.1487

w14 -0.0042 0.0083 0.0208 0.0333 0.0458 0.0583 0.0708

w15 0.0623 0.0571 0.0519 0.0467 0.0415 0.0363 0.0311

w16 0.0178 0.0143 0.0107 0.0071 0.0035 0.0000 -0.0036

w17 0.0378 0.0387 0.0395 0.0403 0.0411 0.0420 0.0428

w18 0.1004 0.1337 0.1670 0.2003 0.2336 0.2669 0.3002

CVaR(0.99) 2.7062 2.6757 2.7903 3.0272 3.3565 3.7523 4.1949

CVaR(0.95) 1.8163 1.7925 1.8665 2.0226 2.2409 2.5039 2.7983

CVaR(0.90) 1.4330 1.4122 1.4686 1.5900 1.7605 1.9663 2.1969

Skewness 0.0753 0.1490 0.2101 0.2544 0.2839 0.3028 0.3147

D1 (“pre-crisis”) for the given portfolio required return r, whereas, asset 7 (“JNJ”)

(in a long position) becomes more valuable in time of financial crisis (D2). We

can notice the variations of stocks’ weight with the changing of r in all the three

datasets, either in a long position or in a short position. The long position or short

position themselves are not a form of diversification in the Mean-CVaR-ALD model

as the essence of diversification consists of reducing the risks by owning a variety of

different securities. However, taking a short position can be more risky than taking a

long since there are no limitations in terms of the losses. Therefore, shorting stocks

in the portfolio may not reduce risks as much as buying them in this diversified

portfolio.

For D1(“pre-crisis”) and D3 (“all”), an interesting finding is that when r rises,
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Table 2.10: Optimal assets weights, portfolio CVaR and skewness values at
different required return of the portfolio in D2

r 0.02 0.04 0.06 0.08 0.1 0.12 0.14

w1 0.0165 0.0534 0.0903 0.1272 0.1641 0.2010 0.2379

w2 -0.0325 -0.0198 -0.0072 0.0055 0.0181 0.0308 0.0434

w3 -0.1922 -0.1165 -0.0408 0.0348 0.1105 0.1862 0.2619

w4 -0.0173 -0.0161 -0.0149 -0.0138 -0.0126 -0.0115 -0.0103

w5 0.2154 0.2499 0.2845 0.3190 0.3536 0.3881 0.4226

w6 -0.0089 -0.0359 -0.0630 -0.0900 -0.1171 -0.1442 -0.1712

w7 0.4225 0.4678 0.5132 0.5585 0.6039 0.6493 0.6946

w8 0.0067 -0.0196 -0.0460 -0.0723 -0.0987 -0.1250 -0.1513

w9 0.2105 0.2010 0.1915 0.1820 0.1725 0.1629 0.1534

w10 -0.0211 -0.0219 -0.0227 -0.0235 -0.0243 -0.0251 -0.0258

w11 -0.0666 -0.0987 -0.1308 -0.1629 -0.1950 -0.2270 -0.2591

w12 0.1585 0.1637 0.1688 0.1740 0.1792 0.1844 0.1896

w13 0.1418 0.1622 0.1826 0.2030 0.2234 0.2438 0.2642

w14 -0.0505 -0.0398 -0.0291 -0.0185 -0.0078 0.0029 0.0135

w15 0.1950 0.1894 0.1838 0.1782 0.1726 0.1670 0.1613

w16 -0.0486 -0.0738 -0.0990 -0.1242 -0.1494 -0.1746 -0.1998

w17 0.0132 -0.0239 -0.0611 -0.0982 -0.1353 -0.1725 -0.2096

w18 0.0576 -0.0212 -0.1000 -0.1788 -0.2576 -0.3364 -0.4153

CVaR(0.99) 4.3752 4.2329 4.1838 4.2274 4.3575 4.5641 4.8357

CVaR(0.95) 2.9384 2.8395 2.8033 2.8295 2.9138 3.0496 3.2291

CVaR(0.90) 2.3196 2.2394 2.2088 2.2274 2.2921 2.3974 2.5372

Skewness 0.0470 0.0957 0.1432 0.1864 0.2233 0.2532 0.2766

the CVaR values at 99%, 95% and 90% confidence levels increase with the only

exception of a slight decrease at 4% expected portfolio return. This phenomenon

is basically consistent with the fact that higher returns are generally accompanied

by higher risks. However, if we consider the financial crisis time period, that seems

not to be the case. Results indicate that within a 10% amount of required returns,

risks are quite volatile and could not convey certain information to investors. That

is, higher returns are not accompanied by higher risks anymore, thus investors may

able to cash higher returns with relatively low risks. By comparing portfolio CVaR

values of the three different economic periods, another important observation is

that the values of portfolio CVaR in D1 are always lower than the corresponding

portfolio CVaR values in the periods that including financial crisis (D2 and D3).

Interestingly, one identical finding is that the skewness of portfolio always exhibits
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Table 2.11: Optimal assets weights, portfolio CVaR and skewness values at
different required return of the portfolio in D3

r 0.02 0.04 0.06 0.08 0.1 0.12 0.14

w1 0.0071 0.1189 0.2306 0.3424 0.4542 0.5660 0.6778

w2 -0.0273 -0.0043 0.0188 0.0418 0.0648 0.0878 0.1108

w3 -0.1026 -0.0719 -0.0412 -0.0105 0.0201 0.0508 0.0815

w4 -0.0002 -0.0284 -0.0565 -0.0847 -0.1129 -0.1410 -0.1692

w5 0.2673 0.2612 0.2551 0.2490 0.2429 0.2368 0.2307

w6 -0.0308 -0.0602 -0.0896 -0.1190 -0.1485 -0.1779 -0.2073

w7 0.5025 0.4729 0.4433 0.4137 0.3841 0.3545 0.3249

w8 -0.0119 -0.0456 -0.0793 -0.1130 -0.1467 -0.1803 -0.2140

w9 0.1608 0.2271 0.2935 0.3599 0.4263 0.4927 0.5591

w10 0.0003 -0.0408 -0.0820 -0.1232 -0.1643 -0.2055 -0.2466

w11 -0.0885 -0.1309 -0.1732 -0.2155 -0.2579 -0.3002 -0.3425

w12 0.1587 0.1716 0.1845 0.1974 0.2103 0.2232 0.2361

w13 0.1812 0.1615 0.1419 0.1222 0.1025 0.0829 0.0632

w14 -0.0417 -0.0303 -0.0189 -0.0074 0.0040 0.0155 0.0269

w15 0.1807 0.1924 0.2042 0.2159 0.2276 0.2394 0.2511

w16 -0.0750 -0.0915 -0.1081 -0.1246 -0.1411 -0.1577 -0.1742

w17 -0.0278 -0.0482 -0.0686 -0.0890 -0.1094 -0.1298 -0.1502

w18 -0.0527 -0.0536 -0.0545 -0.0554 -0.0563 -0.0572 -0.0581

CVaR(0.99) 3.1414 3.0966 3.2909 3.6781 4.2012 4.8144 5.4870

CVaR(0.95) 2.1089 2.0755 2.2030 2.4602 2.8087 3.2178 3.6669

CVaR(0.90) 1.6642 1.6358 1.7345 1.9357 2.2090 2.5303 2.8831

Skewness 0.0651 0.1295 0.1799 0.2124 0.2310 0.2411 0.2463

a significant increasing trend if the required return of portfolio rises.

Given an expected portfolio return, we can calculate the portfolio CVaR and

skewness, thus a three dimensional efficient frontier of the Mean-CVaR-Skewness

model can be constructed. A portfolio, which is able to generate the minimum risk

for a given expected return would be preferred by investors who are risk-averse,

hence the most risk-efficient portfolios are those that exactly located at the efficient

frontier. For a lower confidence level, the larger expected return seems to be a better

choice because the portfolio CVaR values are more likely to be smaller.28 This is

what we commonly called “high return but low risk”. The visualized efficient frontier

28Note that our result is consistent with the finding of Liu et al. (2005) who have theoretically
investigated the evolution of Mean-CVaR efficient frontier based on the Normality assumption of
risky assets in the portfolio.
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at different time periods are shown in Figures 2.6, 2.7 and 2.8 respectively.

Sharpe ratio and Sharpe-like ratio. As Markowitz argued, risk/return profiles

of assets should not be considered separately but in the context of a portfolio. A

portfolio is considered efficient either when it has a minimal risk level for a given

expected return or when it can maximize expected return for a given level of risk.

The difference between these two concepts is reflected in algorithm distinctions.

The former deals with a quadratic objective function with linear constraints while

the latter is intended to solve a linear objective function with quadratic constraints.

Therefore, in order to examine the performance of the investment by adjusting for its

risks, we calculate the Sharpe ratio and Sharpe-like ratio of the portfolio at the three

different time periods.29 The top left part of Figure 2.9 plots the percentage Sharpe

ratio values based on the minimal variance portfolio framework. It shows a clear

changing tendency when the required rate of return of the portfolio increases. We

can observe that the Sharpe ratio values of the portfolio in D2 are relatively lower

than those in D1 especially at high expected returns, which indicate a less attractive

risk-adjusted return by holding the portfolio in the period of global financial crisis.

However, it would be contentious to calculate a Sharpe ratio when asset returns

are not normally distributed. The remaining three graphs in Figure 2.9, in which

the portfolio CVaR based Sharpe ratio (or Sharpe-like ratio) at different confidence

levels is presented, solve this problem. The Sharpe-like ratio, which is defined as the

ratio of expected excess return to portfolio CVaR deviation, replaces the standard

deviation with the coherent CVaR deviation measure.30 We should distinguish

between the CVaR risk measure and the CVaR deviation measure. The former

defines losses versus zero while the latter defines mean values of the portfolio returns.

The relationship between CVaR risk measure (CV aRα(X)) and CVaR deviation

29The calculation of Sharpe ratio is by: (r − rf )/VW , where r is the required portfolio return,
rf is the risk free rate and VW is the portfolio standard deviation.

30Standard deviation is not a coherent risk measure and has received lots of criticisms for its
Normality assumption for return distributions. Sarykalin et al. (2008) in their key observations
argue that CVaR deviation is a strong “competitor” to the standard deviation and can be applied
in financial concepts, such as sharpe ratio and portfolio beta, etc.
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Figure 2.6: The mean-CVaR-skewness efficient frontier in 2002-2006

Figure 2.7: The mean-CVaR-skewness efficient frontier in 2007-2009

Figure 2.8: The mean-CVaR-skewness efficient frontier in 2002-2012
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measure (CV aR∆
α (X)) can be formulated as:

CV aRα(X) = CV aR∆
α (X) + E(X) (2.49)

From Figure 2.9, we can see that the Sharpe-like ratios depict similar trajectories

as the Sharpe ratio at various confidence levels. However, compared to the values of

the Sharpe ratio, the vertical Sharpe-like ratio values at various confidence levels are

smaller.31 A consistent finding is that, in terms of both Sharpe ratio and Sharpe-

like ratio, the portfolio performance in D2 is more likely to be worse than the

performance in D1 while portfolio performance in D3 falls across them. Hence,

we conclude that in the framework of the Mean-CVaR-Skewness ALD optimization

model, the inclusion of periods of global financial crisis can result in a relatively

lower Sharpe-like ratio for the holding portfolio at any confidence levels.

Moreover, by using CVaR as a risk measure, investors can be provided with a

wider range of choices according to their personal risk preferences. We find that

conservative investors who may prefer a larger confidence level, and thus estimate a

larger risk, could have a relatively lower Sharpe-like ratio than aggressive investors

who may estimate a smaller risk with a smaller confidence level.

2.7 Conclusion

This paper presents a comprehensive empirical analysis of the Mean-CVaR-Skewness

portfolio optimization model with incorporation of ALD. The theoretical analysis

of the model is provided in Zhao et al. (2015), but there are as yet no relevant

empirical investigations of the model performance. Therefore, one of the main

objectives of this paper is to examine the model performance by constructing a risky

portfolio. Extending Zhao et al.’s (2015) framework, we study a new optimization

model using VaR as a risk measure and assuming asset returns are Asymmetric

Laplace distributed, thus construct the Mean-VaR-Skewness model under ALD.

We find that Mean-CVaR-Skewness and Mean-VaR-Skewness model have same

31Considering the fact that using factor variance as a risk measure in a non-Normal world may
lead to underestimation of portfolio risks, one thus calculates a higher and improper Sharpe ratio.
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Figure 2.9: Sharpe ratio and Sharpe-like ratio of the portfolio in three time periods

solution after reducing the multi-objective portfolio selection problem into a single-

target quadratic programming problem. The closed-form solution of the simplified

optimization model can be straightforwardly obtained using the Lagrange multiplier

method, the algorithm of which can be considered as an extension of the original

Markowitz portfolio model (Mean-Variance model).

Both the Mean-CVaR-Skewness and Mean-VaR-Skewness models have been examined

using data from three different time periods in order to observe the consistence

of model performance. For the single asset VaR in the constructed portfolio,

we find that the underestimation of single VaRs becomes more obvious when

moving further to the tails if heavy-tailed asset returns are assumed to be normally

distributed. Additionally, by comparing the portfolio VaR model under ALD with

the parametric-Normal portfolio VaR and historical portfolio VaR model, we find
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that the ALD assumption can accurately replicate the tail characteristics of asset

returns. The smaller RMSE, MAE and SSRE values further reinforce this finding.

We then empirically investigate the Mean-CVaR-Skewness model under ALD from

in-sample, Monte Carlo simulations and out-of-sample forecasting perspectives,

and simultaneously compare it with the existing benchmark Mean-CVaR model

which assumes that asset returns are normally distributed. Results consistently

show that the Mean-CVaR-Skewness optimization model with the incorporation

of ALD performs comparatively better than the Mean-CVaR model under Normal

distribution when the stock returns in the portfolio exhibit heavy-tailed features. In

addition, we find that in D1 (“pre-crisis”) and D3 (“all”), higher expected portfolio

returns (r) are generally accompanied by higher risk levels at a specific confidence

level. It should be emphasized that at lower confidence levels, we find evidence

of “high return but low risk” in the Mean-CVaR-Skewness model under ALD.

Furthermore, one identical finding is that the portfolio skewness responds positively

to a higher r. Finally, we assess the risk-adjusted performance of the Mean-

CVaR-Skewness model by calculating the Sharpe-like ratio at different economic

periods. We find that the risk-adjusted portfolio returns are relatively low at a

given confidence level when we consider the impact of the global financial crisis.

Compared to aggressive investors at the same r level, conservative investors who are

more sensitive to risk will inevitably have a lower Sharpe-like ratio.



Chapter 3

Risk Measuring under Heston

Stochastic Volatility Model

3.1 Introduction

As an inherent component of the financial world, the market risk, in the sense of

the possibility of suffering losses from unexpected movements of asset prices, is

of utmost importance for individual investors, financial institutions and corporate

entities. However, there is no unified agreement on the measure to quantify the

market risk. A number of measures, such as standard deviation, lower partial

moments and quantiles are generally used. A standard benchmark risk measure

that has been widely adopted since 1994 is the Value-at-risk (VaR), which was

first proposed by J.P. Morgan. VaR summarizes the potential largest loss over a

target horizon for a given confidence level. To ensure that banks have adequate

capital to expose themselves to the operational risks, the Basel Committee on

Banking Supervision published the Basel II Accord (2004), which established the

risk and capital management requirements and recommended VaR as the preferred

approach to measure market risk. Despite its conceptual simplicity and applicability

to most financial instruments, the drawbacks are obvious, and there is thus reason

to be skeptical about its accuracy and reliability. VaR violates the subadditivity

criterion of a coherent risk measure, which may lead to concentration rather than

diversification of a portfolio. In addition, VaR fails to take account of the losses

that exceed the threshold value for a given risk tolerance level. The Conditional

62
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Value-at-risk (CVaR) that was proposed by Artzner et al. (1999) overcomes these

disadvantages, as it is a coherent risk measure and considers the average losses that

exceed VaR.

The existing approaches for VaR and CVaR estimation in practice can be classified

into three categories: non-parametric historical simulation approach, Monte Carlo

simulation approach and parametric-Normal approach. It is worth noting that

the implementation of the parametric-Normal approach depends on the Normality

assumption of the underlying asset distribution even if extensive studies have shown

the existence of heavy-tailed and leptokurtic features in financial asset returns.

Essentially, the VaR/CVaR calculation is to specify the quantiles of asset or portfolio

returns. As such, the estimation results are very sensitive to the tail behavior

of the distribution of the loss function. As a result, a broad range of heavy-

tailed distributions are applied to modelling the extreme tail risk of the underlying

return series. Dokov et al. (2007) construct the VaR and CVaR model using

the skewed-t distribution, whilst Bali and Theodossiou (2007) build risk models

based on the skewed generalized-t (SGT) distribution. Fan et al. (2008) embed the

Generalized Error distribution (GED) in the Generalized Autoregressive Conditional

Heteroscedasticity (GARCH) type models, finding that VaR is effective in in-sample

and out-of-sample performance compared to other methods. Moreover, Gerlach et al.

(2011) employ the Asymmetric Laplace distribution (ALD) as the error innovation

of return equation in a quantile GARCH model, arguing that the proposed model

provides more accurate VaR forecasting than other alternatives.

Unlike conventional methods that characterize the financial dynamics using probability

density function (p.d.f.), this paper provides an alternative route to calculate VaR

and CVaR that is fully characterized in terms of the characteristic function to

describe the random variables. One of the important applications of characteristic

function is the analysis of linear combinations of independent random variables in

the context of portfolio construction (i.e. Chapter 2 in this thesis). In addition, it

completely defines the probability distribution of a number of real-valued random

variables. Considering the one-to-one relationship between the variables, the
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characteristic function of a distribution can be obtained by taking the Fourier

transform of its p.d.f..1 This indicates that our methods are readily applicable to

a wide range of models, not only those with an explicit closed-form p.d.f., but are

also especially suited to those distributions whose p.d.f. are not known analytically.2

The construction of VaR and CVaR in our approach follows the framework of Lewis

(2001) by using the generalized Fourier transform technique. This entails extending

the argument of the characteristic function from a real number to a complex number

(also see Bormetti et al., 2010).3 This requires the target characteristic function to

be reformulated as an extended form, and can thus be evaluated in our models.

One possible way to estimate VaR and CVaR is to apply the GARCH-type models

using the Autoregressive Conditional Heteroscedasticity (ARCH) model introduced

by Engle (1982). However, stochastic volatility (SV) model, as an innovative

alternative for modelling the time-varying volatility process, is more appropriate

mainly due to its natural capability to capture the volatility behavior of actual asset

returns in financial markets (see, e.g., Pederzoli, 2006). The existing literature on

risk management using SV models is generally based on the discrete time scenario

(e.g., Li, 2006; Zhou and Liu, 2010; Zhou et al., 2012), while the SV model under

continuous time scheme is intensively applied in option pricings (e.g., Nicolato and

Venardos, 2003; Cont and Voltchkova, 2005; Cai and Kou, 2011; Tong, 2016). This

paper contributes to the existing studies on VaR and CVaR calculation by employing

the Heston (1993) continuous time stochastic volatility model, the characteristic

function of which is analytically tractable, thus ensuring its applicability to our

proposed risk models.

The development of Heston’s (1993) stochastic volatility model was prompted by

1The Fourier transform method shows how to extract p.d.f. from the characteristic function,
and the most extensive applications are in option pricings (see, e.g., Bakshi and Madan, 2000;
Lewis, 2001; Wu, 2007; Hurd and Zhou, 2010).

2Note that the characteristic function of a distribution always exists, even if the corresponding
p.d.f. is not analytically tractable.

3Lewis (2001) employ a generalized Fourier transform approach to evaluate option prices by
allowing the argument of characteristic function φ → z ∈ C, while Bormetti et al. (2010) is the
first to apply this technique to risk management. More details will be discussed in the following
section.
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the flaw in the benchmark option pricing model: the Black-Scholes formula, which is

based on the assumption of log-Normal return process with constant volatility. Two

driving mechanisms for the diffusions are proposed in Heston dynamics, including

the geometric Brownian motion process of return series and the mean-reversion

Ornstein-Uhlenbeck process of volatility. The Heston model’s prominence amongst

financial practitioners can be attributed to its realistic-closed properties, such as the

capturing ability of skewness and kurtosis for real financial data and the non-negative

and mean-reverting feature of return volatility process. In addition, it allows for a

correlation factor between return series and volatility process, which is generally

shown to be negative in reality. Most importantly, the closed-form characteristic

function is tractable by solving the systemic partial differential equations (PDE),

and can thus be applied to a great deal of financial models. This computational

efficiency is critical when evaluating the model using market prices and is the

greatest advantage of Heston over other potentially realistic SV models, such as

in the literature by Hull and White (1987), Johnson and Shanno (1987), Wiggins

(1987) and Melino and Turnbull (1990) (also see Moon et al., 2009; Č́ıžek et al.,

2011). Therefore, in this paper, we study the evolution of the extended characteristic

function (ECF) of the Heston model and its application to the proposed VaR and

CVaR models.

The main advantages of our risk models are twofold. First, we provide a general

framework for VaR and CVaR computation with the employment of function Tv and

Hv.
4 These two functions are suited to a variety of financial models and especially

work for those distributions whose p.d.f. are not known analytically, because the

only input required in our approach is the closed-form expression of the characteristic

function. When the characteristic function is obtainable, we can evaluate function

Tv and Hv, and thus approximate the VaR and CVaR values. Second, our approach

provides great flexibility for people who have different risk tolerance levels. The VaR

and CVaR approximations can be produced using a numerical integration algorithm

by setting a wide range of risk levels first. This overcomes the drawbacks of the

4Function Tv and Hv are two derived formulas for calculating VaR and CVaR, details see
equation (3.17) and (3.18).
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traditional VaR and CVaR models, in which the value has to be recalculated once

the risk level is changed.

As an important precursor to our paper, the study of Bormetti et al. (2010) is

the first to efficiently conjugate the risk measures to the models that are defined

by the characteristic function. However, our study differs from that of Bormetti et

al. (2010) in three important respects. First, we are deriving the VaR and CVaR

model strictly starting from their mathematical definitions, and assuming that the

asset returns are the natural logarithm of stock prices. While in Bormetti et al.’s

(2010) paper, the centered logarithm returns are used. This leads to different CVaR

expressions, though we have the same VaR formula.5 Second, contrary to Bormetti

et al. (2010), who adopted Heston’s cumulant generating function for parameter

estimation and then conducted empirical analysis, we derive an explicit ECF of the

Heston model and investigate the impact of the grid size on the VaR and CVaR

approximations in a numerical integration framework. This process is realized by

setting the initial parameter values and selecting a range of risk levels in advance.

Third, our study focuses on the determinants of VaR and CVaR approximations.

Therefore, we seek to explain the VaR and CVaR variations via changing parameter

values in the Heston model, while keeping everything else constant. Our aim is to

answer the following questions: how the grid size spacing influences the accuracy of

VaR and CVaR approximations in a trapezoidal integration scheme? Which factors

in the Heston case can persistently affect the VaR and CVaR values? How the

factors play a major role in determining the movements of risk estimates?

The paper unfolds as follows. In section 2, we present the construction of the

VaR and CVaR model in a Fourier space using the generalized Fourier transform

technique and give the general framework for risk measurement. Section 3 provides

a discussion of Heston dynamics, determination of PDE and evolution of Heston

ECF. Section 4 presents numerical analysis for the proposed VaR and CVaR model

under the Heston framework and gives numerical findings. Section 5 concludes.

5Since asset returns are generally obtained using natural logarithm in financial empirical studies,
hence this paper derives the risk measures in such a realistic and simpler manner.
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3.2 Model setup

The first part in this section presents the application of the Fourier transform method

and the construction of VaR in a generalized Fourier transform framework. Then, we

introduce the CVaR measure in the Fourier space as well as an equivalent systemic

risk measures following the algorithm of Euler translation.

3.2.1 VaR measure in a Fourier space

The Fourier transform and its inverse are generally well defined in most functions

encountered in financial practical analysis, and have been successfully applied to

determine option prices, i.e. Carr and Madan (1999), Duffie et al. (2000), Hurd

and Zhou (2010), Escobar and Gschnaidtner (2016). As mentioned by Zhu (2009),

almost all new developed option valuation models have extensively involved Fourier

transforms and their inverse form in option pricing calculations, mainly due to their

capability in modeling stochastic processes and loss distributions. There are several

common conventions to define the Fourier inversion Ff (φ) of an integrable function

f : R→ C which satisfies the integrability condition:

∫ +∞

−∞
|f(x)|dx <∞ (3.1)

The one we will use is in the following form:

Ff (φ) =

∫ +∞

−∞
eiφxf(x)dx (3.2)

where i =
√
−1 ∈ C is the imaginary unit. As the key identity for the application of

Fourier transform to risk management in this paper, formula (3.5) stems from the

Parseval theorem which presents the fact that the scalar product of two integrable

functions m, n : R→ C on (−∞,+∞) is preserved under Fourier transform.6 Define

the inner product of m and n by:

< m,n >=

∫ +∞

−∞
m(x)n(x)dx (3.3)

6Application of Parseval theorem in option pricing and insurance can refer to Dufresne et al.
(2009).
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where n(x) is the complex conjugate of n(x), then we have:

< m,n >=
1

2π
< Fm(φ),Fn(φ) > (3.4)

Hence, a direct consequence is that given Ff (φ), the function f in equation (3.2)

can be recovered using the inverse Fourier transform:

f(x) =
1

2π

∫ +∞

−∞
e−iφxFf (φ)dφ (3.5)

We consider now a stochastic process X as the random variable of the rate of return

of an asset and L (with L > 0) as the maximum potential loss of the asset over a

fixed holding time horizon τ , then equation X = −L holds.7 Given a confidence

level (1 − α), the mathematical formula of VaR can be formulated by prob(L ≥

V aR1−α) = α, or equivalently written as prob(X ≤ −V aR1−α) = α.8 Then, we can

explicitly express the integral equation of VaR as follows:

α =

∫ −V aR
−∞

f(x)dx (3.6)

where x denotes the rate of return of an asset at time t and can be obtained using

the natural logarithm (i.e. xt = ln(st/st−1)), α represents the risk level and f(x) is

the p.d.f associated with X.

For a parametric VaR and CVaR computation, the prescribed density function is

generally required. It has turned out that even though the p.d.f. of asset returns

cannot be explicitly computed, the characteristic function of the return is still

tractable, for example, the Heston stochastic volatility model and Levy process,

etc. Hence, the characteristic function can be an efficient alternative because of its

one to one relationship with the p.d.f.. To be specific, the characteristic function

of a given stochastic process X is a Fourier transform of its p.d.f.. Following the

representation in equation (3.2) where f(x) represents the density of X, then the

7Note that a stochastic process can be written, among other ways, as X(t), {Xt}t∈T or Xt. We
use notation X here to define a series of random variables.

8VaR and CVaR defined in this paper is a positive value which indicate that a negative VaR or
CVaR represents a gain rather than a loss.



CHAPTER 3. RISK MEASURING UNDER HESTON SV MODEL 69

Fourier transform Ff (φ) is the characteristic function of X:

Ff (φ) = ψX(φ) = E[eiφX ] =

∫ +∞

−∞
eiφxf(x)dx (3.7)

A generalized Fourier transform. If we take argument φ to be a complex number

z where z = w+ iv has w, v ∈ R with v 6= 0, then Ff (z) is defined as the generalized

Fourier transform of function f .9 Lewis (2001) employed the generalized Fourier

transform of the derivative value f to valuate option prices:

Ff (z) =

∫ +∞

−∞
eizxf(x)dx (3.8)

Extending Lewis’ (2001) approach to the context of risk management, we are able to

calculate the p.d.f. of a stochastic process X in terms of its characteristic function

ψX(z) by taking the inverse Fourier transform.10

Definition 3.1. (p.d.f. of X). For a complex number z that has a < Im(z) < b,

and defining ψX(z) = E[exp(izX)] as the characteristic function of the process X,

then we can obtain the p.d.f. of X through:

f(x) =
1

2π

∫ iv+∞

iv−∞
ψ(z)e−izxdz (3.9)

where z = w + iv is a complex number, w is the real part that can be any real

numbers and v is the imaginary part which belongs to the proper strip of regularity

of the extended characteristic function (ECF) ψ(z).

Suppose the stochastic process X with ECF ψ(z) is regulated in the strip SX =

{z = w + iv : v ∈ (a, b)} for the real numbers a and b such that a < b (See Lewis,

2001). Then, to derive the VaR in the generalized Fourier transform framework, we

substitute the p.d.f of stochastic process X (equation 3.9) into the integral equation

9For a complex number with a formation function of z = a+ bi, we define the real part of this
complex number as: Re(z) = a while the imaginary part is given as: Im(z) = b. In this paper,
both a and b are real numbers. However, if Re(z) = a = 0, we say that the complex number z is
pure imaginary and z is pure real when Im(z) = b = 0.

10The difference between regular Fourier transform and generalized Fourier transform is that the
former assumes φ is real while the latter uses complex z ∈ C. The generalized Fourier transform
exist by integrating a straight line in a z plane which indicate that the characteristic function ψ(z)
is regulated in the z-plane strip.
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of V aR (equation 3.6), a composite expression can be obtained:

α =
1

2π

∫ iv+∞

iv−∞

(
−e

izV aR

iz

)
ψ(z)dz (3.10)

or equivalently written as:11

α =
e−vV aR

2π

∫ +∞

−∞

(
eiwV aR

v − iw

)
ψ(w + iv)dw (3.11)

3.2.2 CVaR measure in a Fourier space

The construction of CVaR in a Fourier space starts strictly from the mathematical

definition which calculates the conditional expected tail loss of an asset over a fixed

period τ at a given confidence level (1 − α). We define the mathematic expression

of CVaR as CV aR1−α = E[L|L ≥ V aR1−α], or equivalently written as an integral

equation:

CV aR1−α =− E[X|X ≤ −V aR1−α] =
−
∫ −V aR
−∞ xf(x)dx

prob(x ≤ −V aR)

=− α−1

∫ −V aR
−∞

xf(x)dx

(3.12)

where α denotes the risk level. We use consistent notations as those of VaR and plug

the p.d.f. of stochastic process X (equation 3.9) in the above integral formula of

CVaR, yield the following CVaR with respect to the generalized Fourier transform

ψ(z):

CV aR = − 1

2πα

∫ iv+∞

iv−∞

eizV aR

iz

(
V aR− 1

iz

)
ψ(z) dz (3.13)

or eventually shown as:12

CV aR =
e−vV aR

2πα

∫ +∞

−∞

eiwV aR

v − iw

(
V aR +

1

v − iw

)
ψ(w + iv) dw (3.14)

11See Appendix D.1 for the derivation of VaR under the generalized Fourier transform.
12See Appendix D.2 for the derivation of CVaR under the generalized Fourier transform.
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Thus, the two risk measures VaR and CVaR under the framework of generalized

Fourier transform algorithm in this paper can be integrated as:
α =

e−vV aR

2π

∫ +∞
−∞ ψ(w + iv)

(
eiwV aR

v − iw

)
dw

CV aR =
e−vV aR

2πα

∫ +∞
−∞ ψ(w + iv)

(
eiwV aR

v − iw

)(
V aR +

1

v − iw

)
dw

(3.15)

The integrand of VaR equation in (3.15) is a complex number, whereas the risk

level α is a real number. This implies that we can ignore the imaginary part of the

integrand and only consider the real part, which is even-valued.13 This is similar to

achieving the p.d.f which is a real-valued function while the imaginary part must

be offset when taking the integration over the real line.14 In addition, if we consider

the symmetric property of the real and imaginary part of ψ(z) over the integration

interval, we can eventually recover equation (3.15) as a simplified form:15


α =

ReTv(V aR, v)

π

CV aR = V aR +
ReHv(V aR, v)

ReTv(V aR, v)

(3.16)

where

Tv(V aR, v) = e−vV aR
[∫ +∞

0

ψ(w + iv)

v − iw
eiwV aR dw

]
(3.17)

and

Hv(V aR, v) = e−vV aR
[∫ +∞

0

ψ(w + iv)

(v − iw)2
eiwV aR dw

]
(3.18)

An alternative form for systemic equation (3.16) is shown below by taking the

real part of function Tv and Hv into further consideration. By applying Euler’s

translation in a complex plane, it is not difficult to get the following real part of

13The ECF ψ(z) has the property ψ(z) = ψ(−z) with ψ(−z) to be the complex conjugate. Thus
ψ(z) is an even function in its real part over z while odd in its imaginary part. Similar study can
refer to Rough (2013) who has studied a simplified call prices formula by considering the fact that
the real part of the integrand is even and the imaginary part is odd.

14For example, one can recovers the p.d.f. using the inverse Fourier transform: f(x) =
1
π

∫ +∞
0

Re[ψ(z)e−izx]dz.
15See Appendix D.3 for derivation.
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function Tv and Hv, expressed as TTv and HHv, respectively.

Definition 3.2. (Euler’s Formula). Let ϕ be any real number or complex number,

thus eiϕ = cosϕ + i sinϕ, where the argument ϕ is defined as radians, e is the base

of natural logarithm, i is the imaginary unit, the trigonometric function “cosϕ”

represents real part of a complex number and the trigonometric function “sinϕ” is

the imaginary part.

Remark 3.3. For any two random complex numbers expressed in the form a + bi

and c+ di with a, b, c, d ∈ R, we have:

a+ bi

c+ di
=

(a+ bi)(c− di)
(c+ di)(c− di)

=
ac+ bd

c2 + d2
+

(bc− ad)i

c2 + d2
(3.19)

By applying Euler’s formula and Remark 3.3 to equation (3.16), we can explicitly

write the real part of function Tv as a function of trigonometric function, which

produces an alternative for the VaR computation:

TTv(V aR, v) = Re Tv(V aR, v)

=e−vV aR
∫ +∞

0

dw

v2 + w2
{cos(wV aR) [vReψ(w + iv)− wImψ(w + iv)]}

− e−vV aR
∫ +∞

0

dw

v2 + w2
{sin(wV aR) [wReψ(w + iv) + v Imψ(w + iv)]}

(3.20)

Likewise, a new transform of the real part of function Hv in terms of CVaR

computation can be formulated as:16

HHv(V aR, v) = Re Hv(V aR, v)

=e−vV aR
∫ +∞

0

dw

(v2 + w2)2

{
cos(wV aR)

[
(v2 − w2) Reψ(w + iv)− 2vwImψ(w + iv)

]}
− e−vV aR

∫ +∞

0

dw

(v2 + w2)2

{
sin(wV aR)

[
2vwReψ(w + iv) + (v2 − w2) Imψ(w + iv)

]}
(3.21)

16See Appendix D.4 and D.5 for derivation.
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where Reψ(w+ iv) and Imψ(w+ iv) are the real and imaginary parts of ψ(w+ iv),

respectively. As a result, we obtain an alternative expression of risk measures VaR

and CVaR with respect to trigonometric function:
α =

TTv(V aR, v)

π

CV aR = V aR +
HHv(V aR, v)

TTv(V aR, v)

(3.22)

The two equalities obtained in both equation (3.16) and (3.22) for calculating

VaR and CVaR in a generalized Fourier transform framework represent the first

contribution of this paper, which proposes the numerical calculation of the VaR

and CVaR for an interest stochastic process X that is completely specified by its

characteristic function.17 As most studies have argued, the prerequisite to evaluate

a parametric VaR and CVaR is undoubtedly to identify a closed-form p.d.f. of the

distribution. In this paper, equations (3.16) and (3.22) ease this restriction and

are readily applicable to a number of interesting innovations whose p.d.f. are not

well-defined analytically. This is realized because the characteristic function of a

stochastic process X always exists, and has a unique interdependent relationship

with the p.d.f.. For example, Lewis (2001) listed a number of characteristic functions

for Lévy Processes in Table 2.1 to evaluate option prices in a Fourier space.

In addition, an important factor for investors who are evaluating VaR and CVaR

is the choice of the risk tolerance level α. In general, the VaR and CVaR are

computed for a fixed α (e.g., Chapter 2 and Chapter 4 in this thesis). However, this

seems a limitation for evaluating the risk of security prices using a continuous time

stochastic process (e.g., geometric Brownian motion or Lévy Process). Equations

(3.16) and (3.22) provide flexibility and are analytically tractable to overcome this

drawback by varying a series of target α values. The only input required in our risk

model is the extended characteristic function. As long as it is specified, a grid of w

17The first paper that conjugate the risk measuring tools with financial dynamic models that are
fully characterized by its characteristic function is the one that studied by Bormetti et al. (2010),
to the best of our knowledge. However, unlike Bormetti et al. (2010) who are using centered
logarithmic returns to define VaR and CVaR. In this paper, we adopt the natural logarithm
algorithm to define the asset returns like most empirical works did and the derivation starts strictly
from the original mathematic definition of VaR and CVaR. The analytic difference reflects on the
CVaR expression while VaR is consistent.
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(real part of z) values can be set with an admission value v (imaginary part of z)

so that the corresponding VaR and CVaR can be computed along with a number

of prescribed α values.18 The solution of equations (3.16) and (3.22) involves a

numerical integration algorithm such as the Fast Fourier Transform (FFT) method

or the trapezoidal integration rule, the latter of which that we adopted in this paper

will be discussed in detail in a later section.

3.3 The Heston stochastic volatility model

As shown in equations (3.16) and (3.22), the VaR and CVaR computation requires

the analytical expression of a characteristic function. The algorithm of our risk

model is highly consistent with dynamic models used in the context of option

valuation under stochastic volatility (i.e. exponential Ornstein-Uhlenbeck model,

Heston model and Stein-Stein model, etc). Hence, it can be applied to thses

models using equations (3.16) and (3.22) as long as the characteristic function is

analytically tractable. Therefore, we explore the VaR and CVaR model on the basis

of the extended characteristic function of the Heston model which has gained great

popularity in option pricing but less in risk measuring.

3.3.1 Heston dynamics and parameters

The Heston model (1993) assumes that both the underlying asset price and its

volatility follow diffusion processes. In contrast to Black and Scholes (1973) who

used a constant volatility, the stochastic volatility over time can be more accurate for

pricing options than the Black-Scholes model. The model is given by the bivariate

system of stochastic differential equations (SDEs):

dSt =µStdt +
√
VtStdW

S
t (3.23)

dVt =κ(θ − Vt)dt + ξ
√
VtdW

V
t (3.24)

18Essentially, equations (3.16) and (3.22) design a similar mechanism as, for example, the Heston
option pricing model, in the sense that a number of call prices are obtainable when a series of strike
prices are assigned.
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where St and Vt are the underlying price and volatility, following a Black-Scholes type

stochastic process and Cox-Ingersoll-Ross process (Cox et al., 1985), respectively.

Other parameters of the model are:

• Vt is the variance for underlying asset price returns

• µ is the rate of return of the asset

• θ is long-term variance, if t tends to infinity, then E(Vt) tends to θ

• κ is the speed of variance mean-reversion

• ξ is the non-stochastic volatility of variance process, or volatility of volatility

• dW S
t and dW V

t are two correlated Wiener processes: EP[dW S
t dW

V
t ] = ρdt

The assumption of correlation between the two Brownian motions can be formulated

as follows:

dW V
t = ρdW S

t +
√

1− ρ2dWt (3.25)

where Wt is a Wiener process independently of W S
t and ρ ∈ [−1, 1] is the correlation

coefficient.

The Heston stochastic volatility model, among various volatility models, has

desirable properties in modeling specific characteristics that generally are observed

in the behavior of financial markets.19 Moreover, the Heston can follow a number

of different distributions and it allows for the statistical interdependence factor (ρ)

between the underlying asset returns and volatility. Since empirical analysis has

substantially demonstrated the heavy-tailed and leptokurtic features of asset returns

in financial markets, the variation of ρ can flexibly reflect the asymmetry level of

density distributions.

To illustrate, we plot Figure 3.1 which shows the simulated asymmetric variation

19Such as the assumption that Vt follows a mean-reverting Cox-Ingersoll-Ross process properly
describing the behavior of volatility in real markets.
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Figure 3.1: Asymmetry variations of the simulated density distributions under
different ρ. The setting parameters: S0 = 5, V0 = 0.01, µ = 0, κ = 2, ∆t = 0.02,

θ = 0.01, ξ = 0.1

of the density distribution for different values of ρ.20 The parameter setting is:

S0 = 5, V0 = 0.01, µ = 0, κ = 2, ∆t = 0.02, θ = 0.01, ξ = 0.1. Specifically, when

ρ < 0, the volatility tends to decrease as asset returns increase, and vice versa. For

example, if we set ρ = −0.95, the distribution is skewed to the left with heavier left

tails comparing to the scenario that ρ = 0. Conversely, a positive ρ implies that

volatility increases when asset returns rise. The graph with ρ = 0.95 suggests a

right skewed distribution with fatter right tails. Empirically, ρ is usually negative

for financial time series but the economic explanation regarding the leverage effect

between asset price and volatility shocks is controversial.21

20The simulation work is conducted by discretizing the stochastic processes based on Euler-
Maruyama method (Moodley, 2005). Specifically, Heston dynamics can be written as: St =
St−1 + µSt−1∆t +

√
Vt−1St−1

√
∆tZSt and Vt = Vt−1 + κ(θ − Vt−1)∆t + ξ

√
Vt−1
√

∆tZWt , where
{ZSt }t≥0 and {ZWt }t≥0 are two standard Normal random variables with correlations ZSt = ϕSt and

ZWt = ρϕSt +
√

1− ρ2ϕWt , in which ϕSt and ϕWt are two standard Normal random variables.
21The negative correlation reflects on the decline of asset price when volatility goes up, but for

simplicity it is typically be assumed to be a constant in empirical scenarios (See Duffie et al., 2000).
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Figure 3.2: Kurtosis variations of the simulated density distribution under different
ξ. The setting parameters: S0 = 5, V0 = 0.01, µ = 0, κ = 2, ∆t = 0.02, θ = 0.01,

ρ = 0

The volatility of variance parameter ξ controls the kurtosis of a distribution. This

is shown in Figure 3.2, where the density distribution under different values of ξ is

plotted. The parameter setting is: S0 = 5, V0 = 0.01, µ = 0, κ = 2, ∆t = 0.02,

θ = 0.01, ρ = 0. When ξ is 0, the volatility of the variance is zero and the log-return

of assets follows a Normal distribution. While a value of ξ different from zero implies

a more volatile behavior of the variance process, thus extreme movements of asset

prices are more likely to appear, resulting in a higher kurtosis and fatter tails.

Now suppose that f(t, St) is a twice-differentiable scalar function of two real variables

t and St. Applying Itô’s lemma with f(t, St) = lnSt to the SDE of asset price
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(equation 3.23) yield:22

ln(
St
S0

) = (µ− 1

2
Vt)t+

√
VtW

S
t (3.26)

We can rewrite the dynamics of log-price process lnSt as Xt = lnSt in accordance

with the literature (see Shreve, 2004), thus:

dXt = (µ− 1

2
Vt)dt+

√
VtdW

S
t (3.27)

The application of Itô’s formula implies that {Xt, t ≥ 0} satisfies the new derived

SDE (3.27). As a result, we are able to reformulate the bivariate system of Heston

SDEs as follows:

dXt =(µ− 1

2
Vt)dt+

√
VtdW

S
t (3.28)

dVt =κ(θ − Vt)dt + ξ
√
VtdW

V
t (3.29)

The SDE (3.28) is often used instead of (3.23) because the Heston characteristic

function is derived using a log-price process Xt rather than the real price process

St. In general, the characteristic function of a random variable Xt that is defined

by a SDE can be obtained without actually solving the SDE. When the PDE is

solvable, we are able to calculate the corresponding characteristic function using the

Feynman-Kac representation theorem.

3.3.2 Partial differential equation

Given the SDEs (3.28) and (3.29), we introduce the following theorem to determine

a pair of PDE via the multi-dimensional version of Itô’s formula.

Theorem 3.4. (Partial differential equation). Let {Xt, t ≥ 0} and {Vt, t ≥ 0} are

22Transform equation (3.26) by taking the exponential e on both sides, then the formula becomes:

St = S0 exp

(
(µ− 1

2
Vt)t+

√
VtW

S
t

)
, implying that St is log-Normal distributed. See Appendix

E.1 for the derivation of Itô’s lemma.
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two diffusion processes that satisfy the stochastic differential equations given by:

dXt = a1(t,Xt, Vt)dt+ b1(t,Xt, Vt)dW
1
t

dVt = a2(t,Xt, Vt)dt+ b2(t,Xt, Vt)dW
2
t

where {W 1
t , t ≥ 0} and {W 2

t , t ≥ 0} are two standard one-dimensional Wiener

processes. Let f be a twice-differentiable scalar function of its arguments and f ∈

C1,2([0,∞)× R),23 then we have the partial differential equation as:24

df(t,Xt, Vt) =ḟ(t,Xt, Vt)dt + f1(t,Xt, Vt)dXt + f2(t,Xt, Vt)dVt

+
1

2
f11(t,Xt, Vt)d〈X〉t +

1

2
f22(t,Xt, Vt)d〈V 〉t + f12(t,Xt, Vt)d〈X, V 〉t

where the partial derivatives are mathematically defined as:

ḟ(t, x, v) =
∂f(t, x, v)

∂t
, f1(t, x, v) =

∂f(t, x, v)

∂x
, f2(t, x, v) =

∂f(t, x, v)

∂v

f11(t, x, v) =
∂2f(t, x, v)

∂x2
, f22(t, x, v) =

∂2f(t, x, v)

∂v2
, f12(t, x, v) =

∂2f(t, x, v)

∂x∂v

and the computation result of d〈X, V 〉t is expressed as:

d〈X, V 〉t = dXt × dVt = b1(t,Xt, Vt) b2(t,Xt, Vt) dW
1
t dW

2
t

Remark 3.5. For the multi-dimensional Itô Processes, the correlation coefficient

ρij between the quadratic variation Wiener processes W i
t and W j

t is expressed as

EP[d(W i
t ,W

j
t )] = ρijdt. Two specific cases should be noticed that when ρij = 1, then

EP[dW i
t dW

j
t ] = dt, and EP[dW i

t dW
j
t ] = 0 if ρij = 0.

Given the Theorem 3.4 and Remark 3.5, quoting same notations and keeping

23C1,2([0,∞) × R) is defined to be the class of functions that are continuously differentiable in
the first argument and are twice continuously differentiable in the second argument (See Chang,
2004).

24Here employing Newton’s notation for differentiation where the independent variable is time
t. For example, ḟ() represents the first-order derivative of dependent variable f(t,Xt, Vt) with
respect to time t.
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the functional form consistent with the Heston (1993) model, we can formulate the

PDE as follows:25

df(t,Xt, Vt) =
∂f(t,Xt, Vt)

∂Xt

√
VtdW

S
t +

∂f(t,Xt, Vt)

∂Vt
ξ
√
VtdW

V
t + (Af)(t,Xt, Vt)dt

(3.30)

where A is the differential generator defined as:26

(Af)(t,Xt, Vt) =
∂f(t,Xt, Vt)

∂t
+ (µ+ pVt)

∂f(t,Xt, Vt)

∂Xt

+ (a− qVt)
∂f(t,Xt, Vt)

∂Vt

+
Vt
2

∂2f(t,Xt, Vt)

∂X2
t

+
ξ2Vt

2

∂2f(t,Xt, Vt)

∂V 2
t

+ ξVtρ
∂2f(t,Xt, Vt)

∂Vt∂Xt

(3.31)

with parameter p, a and q in our case is given by: p = −1
2
, a = κθ and q = κ.

3.3.3 Closed-form extended characteristic function of Heston

As we have mentioned, the modern approach to determine the characteristic function

is not to solve a SDE, but is simply to obtain the solution of the PDE. This method

has been successfully applied by Christoffersen et al. (2009) in the context of double

Heston model via the multi-dimensional Feynman-Kac theorem. We present the

univariate Feynman-Kac theorem as follows.

Theorem 3.6. (Feynman-Kac Representation Theorem). Suppose that u ∈ C1,2(R)

and that the diffusion {Xt, t ≥ 0} is defined by an SDE:

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt

then, the unique bounded function f(t,Xt) which satisfies the partial differential

equation is given by:

(Af)(t,Xt) = ḟ(t,Xt) + µ(t,Xt)f
′(t,Xt) +

1

2
σ2(t,Xt)f

′′(t, x) = 0, 0 ≤ t ≤ T, Xt ∈ R

25See Appendix E.2 for derivation.
26Equation (3.30) establishes a connection between stochastic calculus and the partial differential

equations. As Itô’s integral is a martingale, then function f(t,Xt, Vt) is a martingale if the
coefficient of term dt is 0. Namely, the PDE (Af)(t,Xt, Vt) = 0. This idea is indicated and
developed by the Feynman-Kac representation theorem.
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subject to the terminal condition:

f(T, x) = u(x) = eiφx, x ∈ R

has a unique bounded solution:27

f(t, x) = E [u(XT )|Xt = x] = E
[
eiφXT |Xt = x

]

If we jointly consider the two diffusions {Xt, t ≥ 0} and {Vt, t ≥ 0} in Heston

model (Equations 3.28 and 3.29), then we can extend Theorem 3.6 to a multi-

dimensional form. The ECF of Xt based on the multi-dimensional Feynman-Kac

representation theorem can be written as:

ψX(z) = f(t, x, v) = E
[
eizXT |Xt = x, Vt = v

]
(3.32)

Guided by the equation of terminal condition and studies from Heston (1993), the

functional form of ECF is formulated as:

f(t, x, v) = E(eizXT ) = f(t,Xt, Vt) = eC(τ)+D(τ)Vt+izXt (3.33)

where C(τ) and D(τ) are coefficients in a form of function and satisfy the Riccati

differential equation, τ = T − t represents the holding time of an asset or the

time to maturity in option pricings. Note that at maturity τ = 0, XT = lnST is

known, hence we have f(t, x, v) = eizXT . This indicate that the two initial conditions

D(0) = 0 and C(0) = 0 are satisfied at τ = 0 (also see Rieck, 2007 and Rouah, 2013).

Differentiate the ECF (3.33) and substitute to (Af)(t,Xt, Vt) = 0. Then, the

corresponding results can lead us to obtain two reduced ordinary differential

27Note that the explicit solution equation indicated by the Feynman-Kac representation theorem
conveys a information that the solution u(x) to the PDE (Af)(t,Xt) can be written as a form of
conditional expectation, which provides the same way as defining the characteristic function.
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equations (ODEs):28

∂D(τ)

∂τ
+ izξρD(τ) +

1

2
ξ2D2(τ)− 1

2
z2 − qD(τ) + izp = 0 (3.34)

∂C(τ)

∂τ
+ izµ+ aD(τ) = 0 (3.35)

where p = −1
2
, a = kθ and q = κ. The first equation of the ODEs is a Riccati

equation for coefficient D(τ), while the second one for coefficient C(τ) is a function

of D(τ) which can be solved using integration methods as long as the solution of

D(τ) is obtained first.29

Given the derived analytical solution of parameters D(τ) and C(τ) (equation E.15

and E.19), the ECF of Heston model can be eventually formulated as:

f(t, x, v) = E(eizXT ) = f(t,Xt, Vt) = eC(τ)+D(τ)Vt+izXt (3.36)

where

C(τ) = izµτ +
a

ξ2

[
(q − ρξiz + d)τ − 2ln

(
1− gedτ

1− g

)]
(3.37)

D(τ) =
q − ρξiz + d

ξ2

(
1− edτ

1− gedτ

)
(3.38)

and

g =
q − ρξiz + d

q − ρξiz − d
(3.39)

d =
√

(ρξiz − q)2 − ξ2(2piz − z2) (3.40)

p = −1

2
, a = κθ, q = κ (3.41)

28See Appendix E.3 for derivation.
29Appendix E.4 demonstrates the solution of C(τ) and D(τ).
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3.4 Numerical illustration

In this section, we present and evaluate the experimental results of the proposed

risk models based on the Heston ECF. The calculation of VaR and CVaR estimates

requires the evaluation of an integral. Hence we first reformulate the risk models

using the ECF of Heston and present the trapezoidal integration rule for numerical

analysis. Subsequently, the convergence of the integrand of function T ∗v and H∗v is

discussed to ensure efficient approximations. In the end, we examine the impact of

several key ingredients on the approximation of VaR and CVaR.

3.4.1 Trapezoidal integration rule for the reformulated VaR

and CVaR model

The characteristic function is the prerequisite for evaluating the derived VaR and

CVaR model (equatioin 3.16). Therefore, we substitute the extended form of Heston

characteristic function (equation 3.36) into equation (3.16), so that the two risk

measures can be reformulated as follows:
α =

ReT ∗v (V aR, v)

π

CV aR = V aR +
ReH∗v (V aR, v)

ReT ∗v (V aR, v)

(3.42)

where

T ∗v (V aR, v) = e−vV aR
[∫ +∞

0

eC(τ)+D(τ)Vt+(iw−v)Xt

v − iw
eiwV aR dw

]
(3.43)

H∗v (V aR, v) = e−vV aR
[∫ +∞

0

eC(τ)+D(τ)Vt+(iw−v)Xt

(v − iw)2
eiwV aR dw

]
(3.44)

and

C(τ) = izµτ +
a

ξ2

[
(q − ρξiz + d)τ − 2ln

(
1− gedτ

1− g

)]
(3.45)

D(τ) =
q − ρξiz + d

ξ2

(
1− edτ

1− gedτ

)
(3.46)
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and

g =
q − ρξiz + d

q − ρξiz − d
(3.47)

d =
√

(q − izξρ)2 − ξ2(2izp− z2) (3.48)

p = −1

2
, a = κθ, q = κ (3.49)

It is worth noting that the risk model consists of two functions T ∗v and H∗v , which

require the evaluation of an integral. In general, the antiderivative of the integrand

can be found by applying the Fundamental Theorem of Calculus, according to

which the integral values are obtainable by the difference between the antiderivative

values evaluated at the endpoints of the interval. However, the antiderivative of the

integrand (namely ECF) for the Heston model is analytically intractable, hence the

integrals must be approximated using a numerical approach. This resembles most of

the option pricing models that we have encountered by inverting the characteristic

function to evaluate the option call prices (e.g. Stein and Stein, 1991; Rchöbel

and Zhu, 1999; Lewis, 2000 and Attari, 2004), or the models that produce the

probabilities for a given inverted characteristic function. The integral in functions

T ∗v and H∗v can be approximated by a quadrature and we will use the numerical

approximation approach called the trapezoidal integration rule, to evaluate functions

T ∗v and H∗v .

Conventionally, the quadrature method approximates an integral as the weighted

sum of functional values evaluated at discrete points over the integration domain

[Φmin,Φmax]:

∫ Φmax

Φmin

Ψ(x)dx ≈
N∑
j=1

ηiΨ(xj) j = 1, 2, ...., N (3.50)

where (x1, ..., xN) are called abscissas and (η1, ..., ηN) are the weights for each point.

For the trapezoidal integration rule, however, the integral in (3.50) is approximated

as the sum of a number of trapezoids and the integral interval [Φmin,Φmax] is assumed

to be split into equally spaced subintervals using the abscissas (x1, ..., xN). This
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indicates that the size of abscissas needs to be large enough to ensure the accuracy

of the approximations and this is particularly important if there are specific regions

over [Φmin,Φmax] where the function Ψ(x) is substantially oscillatory.

The integration domain, as indicated by functions T ∗v and H∗v , ranges from (0, ∞)

and also the characteristic function of Heston is involved in the integrand of T ∗v

and H∗v . This implies the possibility of the integrand being highly oscillatory over

this integration range. Rouah (2013) pointed out that the Heston integrand has a

fair amount of oscillation especially when τ is small. Indeed, in some scenarios, it

could pose a numerical problem for the integration approximation if the integrand

was not well-behaved. In other scenarios, the integrand might be not oscillating

anywhere and could quickly decay to 0, not causing any numerical problems. We

then investigate how large the upper limit (Φmax) of the numerical integration in

terms of function T ∗v and H∗v need to be in order to ensure that the integrands are

not oscillating.30

The choice of upper limit Φmax means to truncate the interval (0, ∞). Suppose we

choose a point ηN which is large enough to ensure the convergence of the integrand to

0 for both T ∗v and H∗v function so that the points after ηN are all negligible. Then, we

divide the interval [0, ηN ] into N−1 subintervals with equal width ∆w = wj+1−wj,

which yield the grid points w = {wj = j∆w, j = 0, 1, ..., N}.31

If we denote the real part of the integrand of functions T ∗v and H∗v to be two functions

m(x,w) and n(x,w), respectively:

m(x,w) = Re

[
eC(τ)+D(τ)Vt+(iw−v)Xt

v − iw
eiwV aR

]
(3.51)

n(x,w) = Re

[
eC(τ)+D(τ)Vt+(iw−v)Xt

(v − iw)2
eiwV aR

]
(3.52)

30An alternative to choose the integration domain is by Kahl and Jäckel (2005), who used a
closed interval [0, 1] instead of truncating domain (0, ∞). However, their approach is especially
appropriate for Gauss-Lobatto quadrature rather than the trapezoidal rule. More details can also
refer to Rouah (2013).

31Trapezoidal rule use the weight η1 = ηN = ∆w/2 and ηj = ∆w with j = 2, ..., N − 1.
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then the height of each trapezoids can be evaluated by the functions of m(x,w) and

n(x,w) at each endpoints. As a result, we are able to approximate the integrals of

functions T ∗v and H∗v using the trapezoidal rule as follows:

∫ +∞

0

m(x,w)dw ≈ 1

2
m0(x)∆w +

N−1∑
j=1

mj(x)∆w +
1

2
mN(x)∆w (3.53)

∫ +∞

0

n(x,w)dw ≈ 1

2
n0(x)∆w +

N−1∑
j=1

nj(x)∆w +
1

2
nN(x)∆w (3.54)

3.4.2 Convergence of the integrand and efficient computation

As prerequisites for the evaluation of VaR and CVaR models, the upper integration

limit ηN and grid space ∆w should be cautiously identified in order to receive an

accurate approximation, and this is done through investigating the convergence of

m(x,w) and n(x,w). The selection of ηN can be guided by the speed of decay

of m(x,w) and n(x,w), while a fine grid of ∆w is generally required in order to

accurately calculate the density of the tail distribution.32

To illustrate this point, we investigate the impact of changing the values of three

factors (ξ, V aR and τ) on the integrand m(x,w) and n(x,w), respectively, following

the work of Moodley (2005). In addition, for setting the parameter values, we use the

Heston estimates of Bormetti et al. (2010), which uses a series of 5000 observations

of real daily returns of German DAX 30 Index ranging from 14th of November 1988

to 9th of September 2008. The parameter set Θ is given by: κ = 0.86, θ = 0.0471,

µ = 0.1102, ρ = −0.17, X0 = 0.1102, V0 = 0.0471.

Figure 3.3 shows the effect of changing three factors on the integrand of T ∗v . In

the graph, we have set the upper integration limit ηN = 30 and use a relatively fine

grid size ∆w = 0.1, which generates 300 grid points. In the first scenario, we fix ξ

and VaR whilst change τ . We can see that the integrand is sufficiently close to 0

before ηN = 10 although the integrand for shorter τ may oscillate for much longer.

32Chourdakis (2008) empirically discussed the selection criterion about the size of grid space,
arguing the necessities to employ a large amount of grid points if people are focusing on the tail
of a distribution instead of the central part of a distribution.
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Figure 3.3: Convergence of the integrand of function T ∗v for different values of
τ(upper), VaR(middle) and ξ(bottom) with a given parameter set Θ.

Figure 3.4: Convergence of the integrand of function H∗v for different values of
τ(upper), VaR(middle) and ξ(bottom) with a given parameter set Θ.
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This indicates that high and long oscillations are more likely to be associated with

shorter τ , which has also been claimed by Rouah (2013). In the second scenario,

we fix ξ and τ and investigate the VaR variations. It is easy to see that larger VaR

values can cause a steep oscillation of the integrand but they decay very quickly when

approach to ηN = 10. This effect is the same as using lower VaR values. In contrast

to the quick convergence of integrand for lower ξ, in the last scenario, by fixing VaR

and τ , a larger ξ apparently results in a slow convergence of the integrand until when

approach to ηN = 20. Note that our findings when varying ξ are consistent with

the results of Chourdakis (2008) in terms of revealing the important relationship

between kurtosis and the decay of the characteristic function.33

Since the calculation of CVaR relies on both T ∗v and H∗v , the selected ηN and ∆w

must ensure the convergence of the two integrands simultaneously. We use the same

parameter set Θ for the H∗v integrand calculation and adopt consistent integral

conditions with upper integration bound ηN = 30 and grid size ∆w = 0.1. Figure

3.4 shows the oscillation of the H∗v integrand affected by ξ, V aR and τ , respectively.

In all the three scenarios, we can see that the integrand of H∗v is highly oscillatory at

the beginning but rapidly goes close to 0 far before ηN = 10. Therefore, we conclude

that the prudent selection of ηN = 30 and ∆w = 0.1 should be able to ensure the

convergence of the integrand of the functions T ∗v and H∗v , therefore being suitable

for the numerical approximations of the VaR and CVaR model.

3.4.3 Numerical results

To evaluate the reformulated VaR and CVaR in equation (3.42) under the

trapezoidal integration rule, we use the parameter sets specified in Table 3.1 to

produce VaR and CVaR approximations over a range of risk levels α. The target

ingredients in Table 3.1 we are exploring are those that could have the most

significant impact on the VaR and CVaR approximations. We aim to check how

33The results of Chourdakis (2008) indicate that a coarse grid may be sufficient if people are
simply focusing on the central part of the Normal distribution. However, a fine grid size, or
probably a larger interval is necessary if one is interested in the tail density. As we have argued in
previous section that ξ determines the kurtosis of the simulated Heston p.d.f., hence our finding
confirms the opposite relationship between kurtosis and the speed of decay of Heston characteristic
function.
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Table 3.1: Grid size and Heston parameter specification for the VaR and CVaR
integral approximations

Targets w κ θ ξ ρ τ X0 V0 µ

w
(0:0.1:30)
(0 : 2 : 30)

0.86 0.0471 0.0467 -0.17 20 0.1102 0.0471 0.1102

κ (0:0.1:30) 0.05→0.6 0.0471 0.0467 -0.17 20 0.1102 0.0471 0.1102

θ (0:0.1:31) 0.86 0.1→0.8 0.0467 -0.17 20 0.1102 0.0471 0.1102

ρ (0:0.1:32) 0.86 0.0471 0.0467 -0.95→0.95 20 0.1102 0.0471 0.1102

τ (0:0.1:33) 0.86 0.0471 0.0467 -0.17 1→20 0.1102 0.0471 0.1102

Note: This table lists the setting parameter values for the numerical integrations. “Targets” refers to the
ingredients that could affect the VaR and CVaR approximations. The bold fonts represent the allowable variation
range of the interested parameters that we explored. For instance, (0:0.1:30) represents an increment of 0.1 up to
30 and “→ ” means a successive increase.

these ingredients could impact on the approximations, how sensitive they are to the

behavior of VaR and CVaR, and whether the impacts are sustainable.

Impact of the grid size. One main advantage of the VaR and CVaR risk

models (equation 3.42) is the speed and efficiency of the algorithm, in the sense

that they are able to produce a large number of approximations in one single

calculation when setting a series of risk levels α. In the following VaR and CVaR

calculation, we employ a grid of one hundred equally spaced α values ranging from

0.1% to 10% with an admission value of v = 1. Figure 3.5 first investigates the

effect of changing grid size w on the VaR and CVaR approximations. The grid

size ∆w with w = (0 : 0.1 : 30) has been proved to be large enough and the

integrand can be sufficiently decaying to 0 without causing any loss of accuracy in

the numerical approximation in equations (3.53) and (3.54). However, when we use

a coarse grid size ∆w with w = (0 : 2 : 30), the VaR and CVaR approximations

apparently become larger. This indicates that caution is called for when setting

up the numerical integration procedures using formula (3.42), because a coarse grid

size (or the shortage of trapezoids) will inevitably calculate extra trapezoidal areas,

thus, reduce the integration accuracy. Conceivably, the VaR and CVaR estimates

will gradually move downward with smaller ∆w until they approximate to the

theoretically “perfectly accurate” values.

Impact of changes in parameters κ, θ, ρ, τ . To investigate the effect of changing
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the Heston parameter values on the VaR and CVaR estimates for a given sets of α

values, we consider four starting values of κ, θ, ρ and τ and then progressively raise

their values.34 Figure 3.6 presents the variation of VaR and CVaR estimates by

varying the values of mean-reversion speed parameter κ. We begin with the initial

value of κ as 0.05. It is clear to see that if we increase the value of κ, the VaR

and CVaR estimates move downwards simultaneously until, for example, κ = 0.6.

After κ = 0.6, the decline slows down and we find that the line of CVaR at κ = 1

completely coincides with the line of VaR for κ = 0.05. This result implies a negative

relationship between the speed of mean-reversion and the approximation of the two

risk measures.

Figure 3.7 shows the results of VaR and CVaR variations along with changing the

long-term variance θ. By starting at θ = 0.1 and progressively increasing the value

of θ up to 0.8, we can see that the VaR and CVaR estimates demonstrate an upward

trend. However, our experiment indicates that the magnitude of growth for VaR is

much lower than the one for CVaR. In other words, a small amount of increment of

θ can push the CVaR estimates remarkably higher. Overall, we conclude that the

parameter θ can positively affect both the two risk measures, but that this effect is

more obvious for the CVaR estimates.

In Figure 3.8, we examine the impact of changing values for the correlation coefficient

ρ on the VaR and CVaR estimates over a sequence of α levels. In real financial

markets, there is generally a negative correlation between asset returns and variance.

We thus first set ρ = −0.95 as a benchmark and then change the value of ρ from

-0.95 to 0 and from 0 to 0.95. The results show that the variations of VaR and CVaR

are consistently towards one direction for ρ ∈ [−0.95, 0.95], both the two lines move

downward stably with the increase of ρ and there are no radical movements during

the selected interval. As a result, we can conclude that there is a negative correlation

between ρ and the two risk measures.

34In our experiment, we find that only these four parameters could have an obvious impact on
the estimates of VaR and CVaR in a trapezoidal integration scheme.
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Figure 3.5: VaR and CVaR approximations using trapezoidal rule against a
hundred equally spaced α level ranging from 0.1% to 10% at {ηN = 30,∆w = 0.1}

and {ηN = 30,∆w = 2}

Figure 3.6: VaR and CVaR approximations using trapezoidal rule against a
hundred equally spaced α level ranging from 0.1% to 10% at different values for

the mean reversion speed κ = 0.05, 0.6
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Figure 3.7: VaR and CVaR estimates using trapezoidal rule against a hundred
equally spaced α level ranging from 0.1% to 10% at different values for the

long-term variance θ = 0.1, 0.8

Figure 3.8: VaR and CVaR approximations using trapezoidal rule against a
hundred equally spaced α level ranging from 0.1% to 10% at different values for

the correlation ρ = −0.95,+0.95
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Figure 3.9: VaR and CVaR approximations using trapezoidal rule against a
hundred equally spaced α level ranging from 0.1% to 10% at different values for

the asset holding period τ = 1, 20

Last, to study the impact of maturity τ , we adjust the maturity range from 1

to 20. Similarly to the findings of κ and ρ, the effect of τ on both the VaR and

CVaR estimates are negative. As indicated by Figure 3.9, we can see that VaR

and CVaR could estimate a relatively smaller risk value when the maturity becomes

longer. This result is in line with our previous findings in Figures 3.3 and 3.4, where

we observed that a short maturity is generally associated with higher and longer

oscillations of the integrand of T ∗v and H∗v . Combining the outcomes of all four cases,

we can find that the CVaR estimates are comparatively larger than the estimates of

VaR, which is reasonable as CVaR calculates the average losses that greater than

VaR. To conclude, the mean-reversion speed κ, correlation factor ρ and maturity

τ could negatively affect the estimates of VaR and CVaR in our model, while the

long-term variance parameter θ is the only one that has a positive relationship with

the VaR and CVaR estimates in the Heston model.
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3.5 Conclusion

This paper develops a general framework by using the generalized Fourier transform

approach in the context of risk management. We analytically build the VaR and

CVaR formula with the introduction of two deterministic functions Tv and Hv by

using only the closed-form solution for the characteristic function that describes

the distribution of financial data. We also present alternative functions TTv and

HHv when taking the real part of Tv and Hv into further consideration by applying

Euler’s translation. The proposed VaR and CVaR model extends risk analysis to

those non-Gaussian models in a Fourier space, readily applicable to a number of

distributions whose p.d.f. is not analytically known.

In our application, we assume asset prices follow the Heston dynamics, which has

become the most popular stochastic volatility model for option pricing but remains

inadequate in the context of risk management. An important implication of the

Heston model is that it allows a number of different non-Gaussian distributions,

with correlation parameter ρ controlling the skewness of tail density and volatility

of volatility parameter ξ affecting the kurtosis of the distribution. The inherent

properties such as non-Gaussian distribution, mean-reversion and volatility persistence

ensure the practicality for our VaR and CVaR analysis. The calculation of our VaR

and CVaR involves the evaluation of integrals, which is analogous to most option

pricing models we have encountered (see, e.g., Heston, 1993; Carr and Madan, 1999;

Lewis, 2001). Since the anti-derivative of the integrand for Heston does not exist,

the VaR and CVaR values must be approximated numerically. In our analysis a

quadrature is adopted, namely the trapezoidal integration rule.

The integrand in our deterministic functions Tv and Hv involves the Heston

characteristic function, which can sometimes be highly oscillatory (see Rouah, 2013).

Thus, given a set of initial parameter values by employing estimates from Bormetti

et al. (2010), we investigate the convergence of the integrands with a selection of

appropriate upper integration bounds and grid space in order to ensure that the

integrands can sufficiently decay to 0 so as to not cause a loss of accuracy for VaR
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and CVaR approximations. We find that the integral range of (0:0.1:30) is prudent

and desirable in our case.

In addition, we investigate the impact of the grid size on VaR and CVaR

approximations. Our results indicate that we will potentially have to carry out

numerical integration with a fine grid because a coarse grid size would inevitably

result in an overestimation of VaR and CVaR values. Finally, to provide answers to

the key questions related to the determinants of VaR and CVaR approximations in

the Heston scheme, we explore a series of potential parameters. Our results show

that an increase of mean-reversion speed κ, correlation factor ρ and maturity τ can

inversely affect VaR and CVaR approximations, for a sequence of risk levels α. The

changing trajectory of the risk estimates is stable and does not create any significant

jumps. In contrast, we find that the long-term variance θ is the only parameter that

could positively impact the VaR and CVaR values and the influence on CVaR is

remarkably higher than that on VaR.



Chapter 4

VaR and CVaR Estimation for Oil

Prices via SV-ALD Model: A

Bayesian Approach Using Scale

Mixture of Uniform Distribution

4.1 Introduction

The world crude oil markets have been quite volatile and risky in the past few

decades due to the large fluctuations of oil prices, which have become a principal

concern for oil suppliers, oil consumers, relevant firms and governments. In addition,

as a primary source of energy in the power industry, industrial production and

transportation, volatile oil prices may lead to cost uncertainties for other markets,

thus extensively affecting the development of the economy. A large number of

studies have shown that oil price fluctuations could have considerable impact on

economic activities. Papapetrou (2001) argue that the variability of oil prices plays a

critical role in affecting real economic activity and employment. Lardic and Mignon

(2008) explore the long-term relationship between oil prices and GDP, and find

evidence that aggregate economic activity seems to be retarded particularly when

oil prices increase. The asymmetry phenomenon is found in both the U.S. and

European countries. Consequently, quantifying and managing the risks inherent to

96
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the volatility of oil prices has become critical for both researchers and energy market

participants.

The Value at Risk (VaR) measure, which was first proposed by J.P. Morgan in

the RiskMetrics model in 1994, has been developed as one of the most popular

approaches in financial markets to manage market risk. VaR defines the maximum

amount of loss of an investment over a given period of time at a specific confidence

level. It answers the question as to how much an investor can lose for a given

tolerance level over a certain time horizon. Although VaR is recommended by

Basel II and III and has been widely adopted by financial institutions, it has been

challenged by the Bank of International Settlements (BIS) Committee, who pointed

out that VaR cannot measure market risk as it fails to consider the extreme tail

events of a return distribution (see, Chen et al., 2012). In addition, Artzner et al.

(1999) argue that VaR does not meet the requirements of sub-additivity and thus

is not a coherent measure. As an alternative, they proposed a conservative, but

more coherent measure, called Conditional VaR at risk (CVaR) or expected shortfall

(ES), which considers the average loss that exceeding the VaR threshold. Given all

these factors, in this paper, both measures are used to quantify oil return risks.

Additionally, similarly to studies on financial markets, existing literatures using

VaR and CVaR to measure oil risks generally focus on the scenario of declining oil

price (i.e. downside risk). However, the oil market has its own traits which are quite

different from those of financial assets. When oil prices fall due to sudden negative

news, oil exporting countries or oil producers would inevitably incur losses while oil

consumers would benefit from those negative extreme events. On the other hand, if

oil prices rise suddenly, oil consumers might have to pay more to compensate this

rising risk. Therefore, in comparison to risk measurement in financial markets, we

quantify VaR and CVaR by considering both shocks to oil supply and oil demand.1

A parametric VaR/CVaR estimation relies heavily on the estimation of price

volatility. In order to accurately measure volatility, Engle (1982) proposed the

1Note that we use the terminology “oil supply and oil demand” in this paper which refers to
the long (or downside risk) and short (or upside risk) trading positions, respectively.
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autoregressive conditional heteroscedasticity (ARCH) model based on the clustering

and long-memory features of assets returns. Later, Bollerslev (1986) proposed the

generalized ARCH (GARCH) model, which has been extensively used to model

the time-varying oil price volatility (see, e.g., Sadorsky, 1999; Kang et al., 2009;

Wei et al., 2010; Lux et al., 2016).2 Alternatively, a growing number of empirical

papers have adopted the stochastic volatility (SV) model, first proposed by Taylor

(1994) to capture volatility features, where the unobserved volatility is treated as

a latent variable that follows a stochastic process (see, e.g., Regnier, 2007; Vo,

2009; Vo, 2011; Brooks and Prokopczuk, 2013; Wichitaksorn et al., 2015). Debate

subsequently arose as to which of these is more appropriate in modelling time-varying

volatility. Hence, the recent literature has devoted extensive attention to studying

the ability of the GARCH-type models and SV models to fit the volatility of the data.

Wei (2012) explores the forecasting performance of volatility in the fuel oil futures

market in China, and finds that the SV model performs better than many linear and

non-linear GARCH-type models in capturing volatility features. Chan and Grant

(2016) compare various GARCH models to a number of stochastic volatility models

using nine series of energy prices, indicating that stochastic volatility models are

almost always superior to their counterpart GARCH models when modelling time-

varying volatility. Comparatively speaking, the SV model, which defines conditional

variance as a latent stochastic process, is more capable of providing flexibility and

practicality than GARCH-type models.3

However, a main challenge for the SV model is the more statistically and

computationally demanding implementation. Unlike GARCH-type models where

conditional volatility that can be easily estimated, the likelihood function of

volatility in the SV model has no closed-form expression and thus parameters

cannot be directly estimated using a classical approach, i.e. Maximum likelihood

estimation. Hence, traditional model comparison criteria that are readily available

in GARCH models, such as AIC and BIC, would be inapplicable in SV model

2GARCH model defines the conditional variance of assets returns as a deterministic function
of model parameters and historical data. For instance, a GARCH(1,1) model is formulated as:
return equation: yt = axt + et; volatility equation: V ar(et) = ht = b + b1e

2
t−1 + b2ht−1 where

et ∼ N(0, σ2
t ).

3A comprehensive review of SV and GARCH model refers to Shephard (2005).
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comparisons. Recently, a simulation-based technique, the Bayesian Markov Chain

Monte Carlo (MCMC) approach, has been developed rapidly and is used extensively

for estimating SV models. Therefore, considering the special advantage of Bayesian

MCMC in dealing with latent variables, in this paper, the SV model is employed to

model oil prices volatilities and interested parameters are estimated in the framework

of the Bayesian MCMC algorithm.

It has long been recognized that the distribution of financial asset returns are rarely

normally distributed. A Gaussian assumption for return errors in the SV model

may fail to account for the skewness, heavy tails and leptokurtic features in financial

returns. As a result, the simple SV model with normally distributed error has been

widely extended to heavy-tailed errors in the literature. Student’s t distribution is

often used in return errors of the SV model (see, e.g., Chi et al., 2002; Omori et

al., 2007; Asai, 2008; Nakajima and Omori, 2009). In addition, Tsiotas (2012) and

Abanto-Valle et al. (2015) extend previous studies by employing Skew Student’s t

distribution in the SV model, Joanna et al. (2013) employ generalized-t distribution

with SV to model financial time series, while Nakajima and Omori (2012) adopt

generalized hyperbolic (GH) Skew Student’s t error in the SV model.

In this paper, we extend the Bayesian analysis of the SV model by allowing the return

error to follow an Asymmetric Laplace distribution (ALD), the density of which was

proposed by Kotz et al. (2001). ALD has been successfully applied in many fields

of finance and economics, i.e. modelling return skewness and leptokurtic features

of financial data, incorporating Laplace noise in autoregressive moving average

(ARMA) model, VaR estimation and portfolio optimizations, etc. However, to the

best of our knowledge, the application of ALD within the SV framework has not

been used, with one exception of Nuttanan et al. (2014) who have explored return

asymmetry and quantiles using the SV model with incorporation of Asymmetric

Laplace error in the return equation. Instead of employing the p.d.f. proposed by

Yu and Zhang (2005) as in Nuttanan et al. (2014), our paper focuses on extending
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the application of ALD proposed by Kotz et al. (2001) to the SV model.4 In

addition, we derive the closed form expression of VaR and CVaR based on SV-ALD

model to measure oil price risks from the perspective of both supply and demand.

It is challenging to estimate volatility within the SV-ALD model because in the

context of Bayesian inference via MCMC algorithm, the full conditional posterior

distributions are of non-closed form. The data augmentation technique to express

the p.d.f. of the heavy-tailed distribution using a scale mixture form has been

extensively used. Meyer and Yu (2000), Abanto-Valle et al. (2010) and Wang et al.

(2011) have studied Student t distribution in SV using a scale mixture of Normal

(SMN) representation to replace its density. Choy and Chan (2008) propose the

scale mixture of uniform (SMU) representation to substitute generalized t density

function, so that Bayesian MCMC algorithm can be implemented and ease the

computational burden. Nuttanan et al. (2014) incorporate Yu and Zhang’s (2005)

ALD to SV by transforming the scaled density to an SMU form. In this study,

based on the constructed SV-ALD model, a new SMU representation is proposed

for ALD error to solve the parameter estimation difficulties in the Bayesian MCMC

framework. The main advantage of the proposed SMU is to ensure that some of

the full conditional posterior distributions are obtainable in a standard form, hence

facilitating an efficient Gibbs sampling algorithm for the parameter estimation.5

In summary, this paper studies a new parametric approach to estimate VaR and

CVaR for crude oil prices from both perspective of oil supply and demand. We

model the time-varying oil price volatilities using classical discrete SV model with

the extension of adopting ALD (Kotz et al., 2001) for the return error distribution

4According to the p.d.f. of ALD studied by Zhang and Yu (2005), there are three parameters:
skew p, scale σ and location u, where 0 < p < 1, σ > 0 and −∞ < u < +∞. When p = 1

2 , it
becomes a symmetric distribution called Laplace double exponential distribution. ALD of Kotz et
al. (2001) is another asymmetric extension of double exponential distribution by splitting it where
two random variables are independent but no longer identically distributed. Further empirical
explorations of ALD (Kotz et al., 2001) have not been conducted, especially in SV framework.
More details can refer to Chapter 3 of Kotz et al. (2001).

5Choy et al. (2009) and Wang et al. (2013) study SMU for Student t distribution and generalized
t distribution, respectively, demonstrating that Gibbs sampler for Bayesian MCMC computation
can be substantially simplified when using SMU representation. In other words, most of the full
conditional posterior distributions are of standard forms, thus satisfying the requirements for Gibbs
sampling scheme.
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in order to take account of the heavy-tailed and leptokurtic features. Hence we build

the SV-ALD model and derive the corresponding analytic expressions of VaR and

CVaR for oil supply and demand. To estimate the parameters, a Bayesian approach

is employed to sample model parameters and unobserved volatilities from their

posterior distributions via the simulation-based MCMC approach through Gibbs

sampling algorithm. In order to overcome the difficulties to realize this procedure, we

use a data augmentation technique by proposing a new SMU representation for the

scaled AL density, which can simplify the algorithm of Bayesian MCMC. In practice,

a model comparison study from Bayesian statistical perspectives is performed

between the SV-ALD model and SV Normal model to test model fitting abilities

using the oil return series. We then model the time-varying oil price volatilities

in the WTI and Brent markets based on the SV-ALD model, and investigate the

market risk of oil supply and demand. In addition, we conduct an accuracy test

by backtesting VaR and CVaR violations. Considering the complexity of CVaR

backtesting in comparison to VaR, an equal-quantile based method suggested by

Kerkhol and Melenverg (2004) is used by confirming a specific quantile level that

CVaR of ALD falls at. We prove that this quantile level depends only on the

prescribed risk level α and is irrelevant to any other parameters. Thus, standard

tests in the application of VaR can be applied to CVaR. The implementation of

the SV-ALD model under SMU representation in this paper relies on the Bayesian

specific software WinBugs.6

The rest of this paper is organized as follows. Section 2 gives a brief review of

the market risk concept, discrete SV model and ALD structure, prior to providing

details for the VaR and CVaR formula of oil supply and demand in the framework of

SV-ALD model. Section 3 outlines the estimation methodology, including Maximum

likelihood estimation (MLE) and Bayesian MCMC algorithm. Additionally, the

proposed SMU representation of ALD is discussed. Section 4 is devoted to the

empirical analysis of market risk in two major oil markets WTI and Brent. Finally,

concluding remarks are given in Section 5.

6WinBugs is short for Windows version of Bayesian Analysis Using Gibbs Sampler, details
about the application of WinBugs in SV can refer to Meyer and Yu (2000).
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4.2 Model specification

In this section, the statistical concepts of VaR and CVaR for oil supply and

demand are first introduced. Then, we discuss the specification of standard discrete

stochastic volatility model.7 Next, we introduce the mathematical definition and

properties of ALD. Last, we propose the closed-form VaR and CVaR model for both

oil supply and demand in the framework of SV-ALD.

4.2.1 VaR and CVaR risk measure

Although the VaR approach has been widely employed in measuring the market

risk, existing studies have not extensively used yet the CVaR as risk measure in

energy markets.8 In this paper, we employ both the VaR and CVaR approach to

measure the market risk with focus not only on the left tail risks for oil supply but

on the right tail risks for oil demand. Specifically, the probability of left tail of the

return distribution measures the potential risk when the oil price drops. The left α

quantile is the point of VaR which indicates the extra expenses of oil supply as a

result of a sharp fall of oil prices. On the other hand, the probability of the right

tail represents the risk when the oil price raises, namely, the risk for oil supply.

Considering V aRs,t(l) and V aRd,t(l) as the VaR for oil supply and oil demand in

l-period with confidence level (1− α) ∈ (0, 1) respectively, then, we have:

Supply : Prob (yt(l) ≤ −V aRs,t(l)|Ωt) = α (4.1)

Demand : Prob (yt(l) ≥ V aRd,t(l)|Ωt) = α (4.2)

where yt(l) denotes the oil return series for l period of time (from t to t + l), Ωt

is the information set up to time t and α is the risk level. Notably, the value of

V aRs,t and V aRd,t is defined to be positive. Likewise, CV aRs,t(l) and CV aRd,t(l)

are defined as the CVaR for oil supply and demand respectively over l-period time

7Relevant studies of SV model can also refer to Jian et al. (2011) and Chan et al. (2016).
8One can be found is by Youssef et al. (2015) who have evaluated the VaR and CVaR for crude

oil and gasoline markets by employing a series of GARCH-type models using extreme value theory
to model the tail distributions. They advocate CVaR as an alternative risk measure to the quantile
based VaR because of the desirable properties of CVaR over VaR.



CHAPTER 4. VAR AND CVAR ESTIMATION UNDER SV-ALD MODEL 103

at confidence level (1− α) and they can be mathematically expressed as:

Supply : CV aRs,t(l) = −E{yt(l)|yt(l) ≤ −V aRs,t(l)} (4.3)

Demand : CV aRd,t(l) = E{yt(l)|yt(l) ≥ V aRd,t(l)} (4.4)

4.2.2 Stochastic volatility model

A traditional approach to measure financial risk is to assume that the asset returns

are normally distributed with constant variance. Undoubtedly, results obtained

under this method are rough and inaccurate as a result of the time-varying volatility

features in real markets. Therefore, a number of GARCH-type models are widely

applied for modelling the dynamics of oil prices (see, e.g., Chkili et al., 2014; Youssef

et al., 2015; Chan et al., 2016). Although EGARCH and EGARCH-GED models

are generally have a good performance (see Jian et al., 2011), most GARCH-type

models are not very suitable to model the asymmetry, kurtosis and leverage effect

features of oil returns. On the other hand, extensive studies have shown that the

SV models are more likely to outperform their GARCH counterparts. However, due

to the difficulty to estimate the parameters, SV models were rarely used in practice

until recently (e.g. Jian et al., 2011 and Chan et al., 2016, among others). Hence,

it is of interest in this paper to explore the market risks by modelling the oil return

series using the SV model.

The discrete SV model can be considered as the discretization of the Ornstein-

Uhlenbeck stochastic differential equations (Scott, 1987; Taylor, 1994). In this

paper, we adopt a standard discrete SV model to capture the volatility feature

of oil markets which has been studied recently by Jian et al. (2011) and Chan

et al. (2016).9 To be specific, the return equation in the SV model is a linear

function of conditional mean and latent volatilities, and the volatility equation has

9A number of empirical works via the extended SV models can be found from Breidt et al.
(1998), Yu and Yang (2002), Koopman and Uspensky (2002) and Cappuccio et al. (2004), among
others.
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the first-order autoregressive component:

yt = µ+ σtzt (4.5)

lnσ2
t = ht = α + β(ht−1 − α) + ηt ηt ∼ N(0, σ2

η) (4.6)

where t = 1, 2, ..., T is the time horizon, yt are the oil returns at time t which can

be calculated through yt = ln(pt/pt−1) with pt being the daily spot price at time

t, µ denotes conditional mean,10 ht is the log-volatility at time t,11 lnσ2
t follows a

stationary AR(1) process with persistence parameter β having |β| < 1,12 zt and ηt

represents a series of independent identical distributed (i.i.d.) random errors in the

return and volatility equations respectively and they are uncorrelated.

In the current setting, the error term zt in the return equation is assumed to be

Asymmetric Laplace distributed (Kotz et al., 2001), while ηt follows a Normal

distribution with mean 0 and variance σ2
η. Given the value of ht−1, α and β, ht follows

a Normal distribution with conditional mean E[ht|ht−1] and variance V ar(ht|ht−1)

expressed as:

E[ht|ht−1] = E[α + β(ht−1 − α)] + E[ηt] = α + β(ht−1 − α) (4.7)

V ar(ht|ht−1) = E[(ht|ht−1 − E[ht|ht−1])2] = E[η2]

= V ar(ηt)− (E[ηt])
2 = σ2

η

(4.8)

or equivalently written as:

ht|ht−1, α, β, σ
2
η ∼ N(α + β(ht−1 − α), σ2

η) t = 2, 3, ..., T (4.9)

10As indicated in Table 4.1, sample mean of return series is quite small comparing to its standard
deviation, hence it is assumed to be 0 in this paper, follow the work of Koopman et al. (2005) and
Wei et al. (2010). It should be noticed that the criteria are different regarding to the definition of
return equation in discrete SV model, i.e. µ is simply abandoned in some studies (See Omori et
al., 2007; Takahashi et al., 2009; Nakajima and Omori, 2012).

11For ht = lnσ2
t , equation (4.5) can also be written in another equivalent form: yt = µ+ zte

ht/2.
12This condition is necessary to satisfy the requirement for stationarity, it is not difficult from

equation (4.6) to observe that persistence parameter β reflects the impact of current volatilities on
future volatilities.
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Similarly, the unconditional distribution of ht follows a Normal distribution with

unconditional mean and unconditional variance expressed as E[ht] = α and

V ar(ht) = σ2
η/(1−β2), respectively. Since each of ηt is i.i.d., then the unconditional

expectation and variance of ht can be formally specified as:13

ht ∼ N(α,
σ2
η

1− β2
) t = 1, 2, ..., T (4.10)

4.2.3 Asymmetric Laplace distribution

The Asymmetric Laplace Distribution, as one with good-property of skewed

distribution families, is often adopted to describe the distribution of the losses of

financial assets because it can feature skewness which is observed in the distribution

of asset returns. An obvious advantage of the application of ALD can be attributed

to the fact that it is simple to compute. A closed form expression for the p.d.f.

would ideally make the simulation of the model simpler. Therefore, to measure the

market risk of oil prices in a SV setting, we assume that the disturbance term of oil

returns is AL distributed rather than Normal. Before conducting empirical analysis,

it is necessary to review the statistical properties of ALD that proposed by Kotz et

al. (2001).14

We consider the error term zt of the return equation (formula 4.5) in SV model

follows the ALD, thus zt ∼ AL(θ, κ, τ), where θ is the location parameter, κ is the

skewness parameter and τ is the scale parameter.15 A simplified form of the p.d.f.

for ALD is introduced via the following proposition:

Proposition 4.1. Let f(z|κ, θ, τ) denote the p.d.f of a AL(κ, θ, τ) distribution,

13See Appendix F.1 for derivation.
14Notably, as mentioned in the introduction, there are different analytic expressions of the p.d.f.

of ALD. Guermat and Harris (2002) have explored short horizon assets returns by employing
GARCH volatility model with symmetric Laplace distribution, this work was then being extended
via AL distribution that proposed by Lu et al. (2010). Chen et al. (2012) slightly simplify and
modify their model to estimate and forecast VaR and CVaR using GJR-GARCH model by assuming
error term follows AL distribution. Another known formation of ALD is proposed by Yu and Zhang
(2005). Based on this, Wichitaksorn et al. (2015) study asymmetries and quantiles of stock index
returns using stochastic volatility model with ALD error.

15Following the suggestion of Kotz et al. (2001), location parameter θ in ALD is set to be 0 in
our following empirical practice but still left in writings to keep the completeness of notions.



CHAPTER 4. VAR AND CVAR ESTIMATION UNDER SV-ALD MODEL 106

then, the f(z|κ, θ, τ) can be expressed as:

f(z|κ, θ, τ) =


√

2

τ

κ

1 + κ2
exp(−

√
2κ

τ
(z − θ)) z ≥ θ

√
2

τ

κ

1 + κ2
exp(

√
2

τκ
(z − θ)) z < θ

(4.11)

The error term of return equation in SV model is said to behave as ALD if its

p.d.f. follows equation (4.11). The parameter κ controls the probability assigned

to each side of location parameter θ, κ = 1 implies the probability are equivalent

and distribution is symmetric of θ. When κ > 1, the left tail of the distribution is

thicker than the right. When 0 < κ < 1, the right rail is thicker than the left.

4.2.4 VaR and CVaR in SV-ALD setting

Risk of oil Supply

VaR: Follow the definition, the VaR for oil supply can be written as:

P (yt ≤ −V aRs,t|Ωt) =

∫ −V aRs,t
−∞

f(yt|Ωt) dyt = α (4.12)

where f(yt|Ωt) is the conditional p.d.f. of yt that follows ALD.

Substituting the return equation of SV model (formula 4.5) into the above definition

and rewrite it, we thus have a standard form:

P (yt ≤ −V aRs,t|Ωt) = P

(
yt − µ
σt

≤ −V aRs,t + µ

σt

∣∣∣∣Ωt

)

= P

(
zt ≤ −ms,q = −V aRs,t + µ

σt

)
=

∫ −ms,q
−∞

f−(zt) dzt = α

(4.13)

where ms,q is designed as the left α-quantile of the ALD, which is used for the

residual series of SV model, ms,q is set to be equal to (V aRs,t + µ)/σt and f−(zt)

represents the negative part of the p.d.f. of ALD. The analytic expression of ms,q
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can be obtained by solving the integral equation (4.13):16

ms,q = − κτ√
2
ln
α(1 + κ2)

κ2
(4.14)

Hence, the analytic form of VaR for oil supply under SV-ALD model can be

expressed as follows:

V aRs,t = −µ+ms,qσt = −µ− κτσt√
2
ln
α(1 + κ2)

κ2
(4.15)

CVaR: Similarly, using the same notation as in the VaR framework, a standard

form of CVaR for oil supply can be written as17:

CV aRs,t =− E [yt|yt ≤ −V aRs,t] = −(µ+ σtE [zt|zt ≤ −ms,q]) (4.16)

As a result, the ultimate closed-form expression of CVaR for oil supply under SV-

ALD model can be shaped as:18

CV aRs,t = −µ− κτσt√
2

(
1− lnα(1 + κ2)

κ2

)
(4.17)

or equivalently written as:

CV aRs,t = V aRs,t +
κτσt√

2
(4.18)

Risk of oil Demand

VaR: The initial VaR of oil demand can be formulated as follows:

P (yt > V aRd,t|Ωt) =

∫ +∞

V aRd,t

f(yt|Ωt) dyt = α (4.19)

where f(yt|Ωt) is the conditional p.d.f. of yt that follows ALD.

16See Appendix F.2 for derivation of ms,q.
17A similar way for defining CVaR under the dynamic mean equation can refer to Youssef et

al. (2015), which has studied the estimation of extreme risks in crude oil and gasoline market via
GARCH-EVT model.

18See Appendix F.3 for derivation of CV aRs,t.
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By incorporating SV model, a standard form can be written as:

P (yt > V aRd,t|Ωt) = P

(
yt − µ
σt

>
V aRd,t − µ

σt

∣∣∣∣Ωt

)

= P

(
zt > md,q =

V aRd,t − µ
σt

)
=

∫ +∞

md,q

f+(zt) dzt = α

(4.20)

where md,q = (V aRd,t − µ)/σt is the right α-quantile of the AL distribution and

f+(zt) denotes the positive part of the p.d.f. of ALD. Solving the above integral, an

analytic expression of md,q can be obtained:19

md,q = − τ√
2κ

ln(α(1 + κ2)) (4.21)

Hence, VaR for oil demand under SV-ALD model can be formulated as:

V aRd,t = µ+md,qσt = µ− τσt√
2κ

ln(α(1 + κ2)) (4.22)

CVaR: Analogously, the standard formation of CVaR for oil demand is given by:

CV aRd,t =E [yt|yt > V aRd,t] = µ+ σtE [zt|zt > md,t] (4.23)

As a result, the analytic expression of CVaR for oil demand under SV-ALD model

can be written as follows:20

CV aRd,t = µ+
τσt√

2κ

(
1− ln

(
α(1 + κ2)

))
(4.24)

or equivalently:

CV aRd,t = V aRd,t +
τσt√

2κ
(4.25)

4.3 Estimation methodology

Given the explicit analytical expressions of VaR and CVaR, related parameters (i.e.

κ, τ and σt) are necessary for risk measuring. We employ the Maximum Likelihood

19See Appendix F.4 for derivation of md,q.
20See Appendix F.5 for derivation of CV aRd,t.
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Estimation method to estimate density parameter κ and τ in ALD and Bayesian

Markov Chain Monte Carlo approach for model parameters and latent volatilities in

SV scheme. In addition, a new scale mixture of uniform representation is proposed

for the implementation of the Bayesian SV-ALD model.

4.3.1 Maximum likelihood estimation

Since the p.d.f of ALD is analytically tractable, hence the MLE approach is

applicable to the parameter estimations of ALD. Suppose that Y1, . . . Yn are i.i.d.

random samples from Y ∼ AL(θ, κ, τ), and let y1, . . . yn be the nth order statistics

of the random sample. Then the maximum likelihood function is defined as:

L(y; θ;κ; τ) =
2
n
2

τn
kn

(1 + k2)n
exp

[
−
√

2κ

τ

n∑
i=1

(yi − θ)+ −
√

2

κτ

n∑
i=1

(yi − θ)−
]

(4.26)

where

(yi − θ)+ =

yi − θ if yi ≥ θ

0 if yi < θ

and

(yi − θ)− =

θ − yi if yi < θ

0 if yi ≥ θ

Taking the natural logarithm of equation (4.26) yields the log-likelihood function:

lnL(θ;κ; τ) =
n

2
ln(2)− nln(τ) + nln(

k

1 + κ2
)−
√

2

τ
M (4.27)

where

M(y;κ; θ) = k
n∑
i=1

(yi − θ)+ +
1

κ

n∑
i=1

(yi − θ)−
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For a given θ (i.e. 0), then our aim becomes to maximize the following function:21

P (κ; τ) = ln(κ)− ln(1 + κ2)− ln(τ)−
√

2

τ
{κ, 1

κ
}Z̄(n) (4.28)

where the vector Z̄(n) is given by:

Z̄(n) =
1

n

n∑
i=1

Z(i) =

[
1

n

n∑
i=1

Z
(i)
1 ,

1

n

n∑
i=1

Z
(i)
2

]′

and the two components of the vector Z̄(n) are:

Z̄
(n)
1 =

1

n

n∑
i=1

Z
(i)
1 =

1

n

n∑
i=1

(yi − θ)+, Z̄
(n)
2 =

1

n

n∑
i=1

Z
(i)
2 =

1

n

n∑
i=1

(yi − θ)−

4.3.2 Scale mixture of uniform representation of ALD

Expressing ALD as an SMU representation can alleviate the computational burden

when using Gibbs sampling algorithm in MCMC and thus simplifying the estimation

method in the Bayesian analysis. In this paper, a new scale mixture of uniform

(SMU) representation for the AL density of Kotz et al. (2001) is proposed to

facilitate the implementation of SV-ALD model. According to Choy and Chan

(2008), the definition of SMU can be presented as:

Definition 4.2. For a continuous random variable z∗ with location parameter θ∗

and scale parameter τ ∗, the probability density function of z∗ is said to have an

SMU if it can be expressed as:

f(z∗|θ∗, τ ∗) =

∫ ∞
0

fU(z∗|θ∗ − ψ(λ)τ ∗, θ + ψ(λ)τ ∗) fψ(λ) dλ (4.29)

where fU(a, b) denotes the uniform density function with interval [a,b], λ is the

scale mixing parameter that has been commonly used as a global diagnostic check for

outliers (Choy and Smith, 1997), ψ(·) is a positive function and fψ(·) is a density

function defined on R+ = (0,∞).

21MLE methodology for ALD has been explicitly described by Kotz et al. (2001) and more
discussions of the case when θ 6= 0 can be found in Kotz et al. (2001) ch.3.
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Combining the method proposed by Wichitaksorn et al. (2015) and definition

4.2, the AL density of Kotz et al. (2001) can be expressed equivalently by an SMU.22

Proposition 4.3. If λ ∼ Ga(2, 1) and z ∼ U(θ − κτλ√
2
, θ + τλ√

2κ
), then the SMU

density:

f(z|κ, τ, θ, λ) =

∫ ∞
0

fU(z|θ − κτλ√
2
, θ +

τλ√
2κ

)× fGa(λ|2, 1) dλ (4.30)

has the same form as that of the AL density function given by:

f(z|κ, τ, θ) =


√

2

τ

κ

1 + κ2
exp(−

√
2κ

τ
(z − θ)) z ≥ θ

√
2

τ

κ

1 + κ2
exp(

√
2

τκ
(z − θ)) z < θ

(4.31)

where z is a random variable follows ALD, κ, τ and θ denote skewness, scale and

location parameters in the AL density respectively and fGa(c, d) is the gamma density

function of the form:

Ga(λ|c, d) =
1

Γ(c)dc
λc−1 exp(−λ

d
) λ, c, d > 0 (4.32)

with shape parameter c and scale parameter d, and Γ(c) is the gamma function

evaluated at c.

To estimate the parameters in the context of SV model, we use the scaled

ALD (SALD) which means that the ALD random variable is scaled by its standard

deviation.23 The p.d.f. of SALD is characterized as follows.

Proposition 4.4. Let z be an ALD random variable with z ∼ ALD(κ, τ, θ), then

the random variable εt = z
S.D.[z]

has SALD with p.d.f. given by:

f(εt|κ, θ, σt) =


√

1 + κ4

1 + κ2

1

σt
exp(
−
√

1 + κ4

σt
(εt − θ)) εt ≥ θ

√
1 + κ4

1 + κ2

1

σt
exp(

√
1 + κ4

κ2σt
(εt − θ)) εt < θ

(4.33)

where κ is skewness parameter and σt is the standard deviation (or the time-varying

22See appendix G.1 for the derivation.
23More details of this algorithm can refer to Chen et al.(2009) and Wichitaksorn et al. (2015).
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volatility) of zt.
24

Hence, the corresponding SMU of SALD can be obtained as follows:

Proposition 4.5. If λ ∼ Ga(2, 1) and εt ∼ U(εt|θ − λκ2σt√
1+κ4

, θ + λσt√
1+κ4

), then the

SMU density:

f(εt|κ, θ, λ, σt) =

∫ ∞
0

fU(εt|θ −
λκ2σt√
1 + κ4

, θ +
λσt√
1 + κ4

)× fGa(λ|2, 1) dλ (4.34)

has the same form as the SALD density function given in equation (4.33).25

Using the SMU representation of SALD, an efficient simulation algorithm is

developed to overcome the parameter estimation difficulties. It facilitates the Gibbs

sampling for Bayesian computation in SV model where return errors are modelled

by ALD while volatility errors are modelled by Normal distribution. As a result,

the SV model discussed in section 4.2.2 can be written hierarchically as:

Return equation:

yt|κ, θ, λ, ht ∼ U(θ − λκ2eht/2√
1 + κ4

, θ +
λeht/2√
1 + κ4

) (4.35)

λ ∼ Ga(2, 1) (4.36)

Volatility equation:

ht|α, β, σ2
η, ht−1 ∼N(α + β(ht−1 − α), σ2

η) t = 1, 2, ..., T (4.37)

h1|α, β, σ2
η ∼ N(α,

σ2
η

1− β2
) (4.38)

4.3.3 Bayesian Markov Chain Monte Carlo

Parameter estimation of the SV model is not straightforward due to the intractable

form of likelihood function, hence, traditional method, such as MLE, cannot be

used.26 Several estimation methods have been proposed in literature in order to

24Note that scale parameter τ has been canceled out in this derivation, location parameter θ is
set to be 0 in real practice. Relevant derivations see appendix G.2.

25See appendix G.3 for the derivation.
26In the SV-ALD model, the likelihood function is a t-dimensional integration with unknown

latent volatilities, which means the closed-form could not been identified.
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solve this problem, including the Generalized Method of Moments (Melino and

Turnbull, 1990), the Quasi-Maximum Likelihood (Nelson, 1988 and Harvey et

al., 1994), the Efficient Method of Moments (Gallant, 1997) and the Simulated

Maximum Likelihood (Danielsson, 1994 and Sandmann and Koopman, 1998).

Unlike conventional statistical inference methods based on the maximum-likelihood

approach, Bayesian inference simply relies on the joint posterior distributions, which

according to the Bayes’ rule, can be factored as:

f(h, θ̇|y) ∝ f(y|h, θ̇) f(h|θ̇) f(θ̇) (4.39)

where sign ∝ stands for proportion, y = (y1, ..., yT ) is a series of observed returns,

h = (h1, ..., hT ) denotes the unobserved latent volatilities, θ̇ represents the estimated

parameters in SV model (i.e. θ̇ = (α, β, σ2
η)), f(y|h, θ̇) is the full-information

likelihood function, f(h|θ̇) is conditional distribution of the state variables and f(θ̇)

represents the prior distribution that summarizes all initial beliefs in parameters.27

However, using the posterior distribution generally involves computing integrals

and the target posterior distribution f(h, θ̇|y) in equation (4.39) is analytically

intractable due to the non-linearity in equation (4.5), hence it is not easy to sample

immediately. Yu and Meyer (2006) point out that the difficulties of multidimensional

numerical integration involved in the posterior computations have been overcome by

the development of MCMC techniques following and extending the seminal work of

Jacquier et al. (1994). As a simulation based approach, MCMC is particularly well

suited to the estimation of non-linear state space models (Karali et al., 2011) and has

been extensively studied in empirical applications. It works through generating a

number of random samples and then constructing a Markov chain whose stationary

distribution converges to the joint posterior distribution.

The Bayesian MCMC algorithm via Gibbs sampling algorithm is employed in this

27A mathematical expression according to Bayes’ theorem is shaped as: f(h, θ̇|y) = f(y|h,θ̇) f(h,θ̇)
f(y) .

In the application of Bayesian inference, however, the posterior density distribution f(h, θ̇|y) does
not relying on density f(y) =

∫
f(y|h, θ̇)f(h, θ̇)dhdθ̇. The reason is that for a fixed return series,

the density is irrelevant to h and θ̇, thus f(y) is regarded as a constant. Bayes’ theorem then shows
that the posterior is proportional to the prior times likelihood function.
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paper to make posterior inferences. To implement the MCMC, we set priors as:

α ∼ N(µα, σ
2
α) (4.40)

1 + β

2
= β∗ ∼ Be(aβ, bβ) (4.41)

σ2
η ∼ IG(aσ, bσ) (4.42)

whereBe(·, ·) denotes a beta distribution and IG(·, ·) is an inverse-gamma distribution.

Let f(α), f(β) and f(σ2
η) denote the prior probability densities of α, β and σ2

η

respectively, then, the conditional posterior distributions of model parameters and

latent variables can be formulated as follows:

f(α|β, σ2
η, h, y) ∝ f(y|α, β, σ2

η, h)f(h|α, β, σ2
η)f(α) (4.43)

f(β|α, σ2
η, h, y) ∝ f(y|α, β, σ2

η, h)f(h|α, β, σ2
η)f(β) (4.44)

f(σ2
η|α, β, h, y) ∝ f(y|α, β, σ2

η, h)f(h|α, β, σ2
η)f(σ2

η) (4.45)

f(ht|h−t, α, β, σ2
η, y) ∝ f(y|ht, α, β, σ2

η)f(ht|h−t, α, β, σ2
η) (4.46)

where h−t represents all the elements of h = (h1, ..., hT ) except ht. The system of

full conditional distributions via the SMU of ALD are:28

• Full conditional distribution for α:

α|β, σ2
η, h, y ∼ N(µ̂α, σ̂

2
α)

where µ̂α = σ̂2
α[
h1(1−β2)+(1−β)

∑T
t=2(ht−βht−1)

σ2
η

+ µα
σ2
α

] and σ̂2
α = [1−β2+(T−1)(1−β)2

σ2
η

+ 1
σ2
α
]−1.

• Full conditional distribution for β∗:

f(β∗|α, σ2
η, h, y) = f(h1|α,

σ2
η

1− β2
)×

T∑
t=2

f(ht|α + β(ht−1 − α), σ2
η)× f(β∗|aβ, bβ)

28Derivations can be found in Appendix G.4.
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• Full conditional distribution for σ2
η:

σ2
η|α, β, h, y ∼ IG(âσ, b̂σ)

where âσ = aσ + T
2

and b̂σ = bσ + 1
2
(h1−α)2(1−β2)+ 1

2

∑T
t=2(ht−α−β(ht−1−α))2.

• Full conditional distribution for ht:

ht|h−t, α, β, σ2
η, y ∼ N(µ̂h, σ̂

2
h)

where

µ̂h =


α + β(ht+1 − α)−

σ2
η

2
if t = 1,

α +
β[(ht−1 − α) + (ht+1 − α)]

1 + β2
if t = 2, 3, ..., T − 1 and

α + β(hT−1 − α)−
σ2
η

2
if t = T,

σ̂2
h =


σ2
η if t = 1, T and

σ2
η

1 + β2
if t = 2, ..., T − 1

Thus, it is possible to directly sample from the full conditional posterior distributions

by sweeping each variable while keeping the remaining variables fixed. The resulting

Gibbs sampling algorithm is summized as Algorithm 1.

Algorithm 1 Gibbs sampler

1: Initialize α(0), β(0), σ
2(0)
η and h(0).

2: Sample α from f(α|β, σ2
η, h, y).

3: Sample β from f(β|α, σ2
η, h, y).

4: Sample σ2
η from f(σ2

η|α, β, h, y).
5: Sample ht from f(ht|h−t, α, β, σ2

η, y).
6: Return to step 2 and repeat this procedure untile convergence is achieved.

This procedure is implemented in the Bayesian specific software WinBugs which

gives the flexibility of using various density functions (i.e. Normal, t, Gamma,

Beta, etc.) to specify the prior distributions and likelihood functions for Bayesian
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inference. The proposed SMU representation of ALD enables some of the full

conditional distributions reduced to standard forms to simplify the Gibbs sampling

algorithm, hence making the statistical inference of the SV-ALD model easy to

implement within the WinBugs environment.29

4.4 Empirical analysis

4.4.1 Data description and preliminary results

The objective of this study is to estimate the crude oil price risk by modelling its

returns and volatilities using the proposed SV-ALD model. With this aim, two major

crude oil markets are considered: West Texas intermediate crude oil (WTI) and

Europe Brent oil (Brent). Daily closing spot prices, which are quoted in US dollars

per barrel, are obtained from the U.S. Energy Information Administration (EIA)

covering the periods from May 22, 2006 to May 20, 2016 with 2520 observations in

WTI and 2522 observations in Brent. Let pt denotes the oil price on day t, then the

sample price can be converted into daily price return yt by: yt = ln(pt/pt−1).

The time variations of daily prices and returns for WTI and Brent are plotted in

Figure 4.1. We can see that the trajectory of historical prices for WTI and Brent

have exhibited high similarities during May, 2006 to May, 2016. The graphs of

daily returns show the volatility clustering effect in both the two oil markets which

reveal the presence of heteroscedasticity. In addition, we can observe that both

WTI and Brent oil prices are quite volatile in the 2007-2009 global financial crisis

characterized by a succession of large fluctuations of oil returns within a short time

period, and this in turn reflect the necessities of strengthening oil risk control. The

largest changes of oil returns for WTI and Brent occurred on September 22, 2008

and January 2, 2009 with a record of 16.41% and 18.13% surge respectively. Figure

4.2 demonstrates a scatterplot of the observed oil returns versus quantiles calculated

from a standard Normal distribution. This subjective check indicates the plausibility

of using heavy-tailed distribution for oil returns as there are more extreme values

29This paper gives a major contribution from an implementation point of view as develops the
statistical modelling of the SV-ALD model using WinBugs.



CHAPTER 4. VAR AND CVAR ESTIMATION UNDER SV-ALD MODEL 117

Table 4.1: Descriptive statistics of crude oil price returns

WTI Brent

Panel A: Descriptive statistics

Mean -0.000144 -0.000127

Std.dev. 0.024863 0.021998

Maximum 0.164137 0.181297

Minimum -0.128267 -0.168320

Skewness 0.1567 0.1443

Kurtosis 7.6122 8.8043

J-B test 2243.0570*** 3547.5790***

Q(10) 30.6030*** 16.9600*

Q(20) 60.8980*** 54.2270***

ARCH(10) 475.9680*** 215.7230***

ARCH(20) 575.8620*** 409.0370***

Panel B: Unit roots and stationarity tests

ADF -51.4930*** -48.9570***

PP -51.5220*** -48.9660***

Zivot-Andrews -13.5590*** -12.2245***

KPSS 0.0507 0.0690

Note: Q(l) is the Ljung-Box statistic with order up to l. Test statistic of ARCH(m)
is obtained using chi-squared distribution with lag up to m while ADF, PP and
Zivot-Andrews statistics are based on t distribution. The largest value from the
first 8 lags of KPSS test is listed. ∗, ∗∗ and ∗∗∗ denote rejection of null hypothesis
at 10%, 5% and 1% significance level respectively.

that are curve off in the extremities of the Normal line.

It is evident that large fluctuations of crude oil prices can be caused by aggregate

demand and supply shocks. Looking back to history, a typical example of an oil

demand shock is the Asian financial crisis in 1998, which led to large crashes in

WTI and Brent crude oil prices. On the other hand, oil production decreased in 2003

due to the second Gulf War, thus correspondingly stimulating the rise of oil prices

in a short period of time. After that, oil prices experienced a persistent increase

from 2003 to 2008 which was driven by the prosperity of emerging economies. With

time span shortened to the past ten years, the U.S. subprime mortgage crisis has

aggravated the turbulence of global economic markets, leading to a quick drop in
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Figure 4.1: Daily spot prices and returns for WIT and Brent from May 1987 to
May 2016

Figure 4.2: Normal probability plots of oil returns
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crude oil prices from the third quarter of 2008. In addition, it is clear to see from

Figure 4.1 that there is a sharp drop in oil prices for the two markets from the

second half of year 2014 because of the worldwide imbalance in aggregate demand

and supply. Overall, we can summarize from the historical oil prices that there

exist high uncertainty over time for both the main oil markets. Although many

other factors, such as geopolitical, weather conditions and cash flow fluctuations

etc., could affect the movements of oil prices, the aggregate demand and supply

level are undoubtedly playing a more important role, especially in the long run.

Descriptive statistics for the WTI and Brent returns as well as their stochastic

characteristics are provided in Table 4.1. From Panel A, the Jarque-Bera statistics

suggest the rejection of the null hypothesis of Gaussian distribution for the two

returns at 1% significance level.30 This is confirmed by the mild skewness and

kurtosis. Results from Ljung-Box Q statistics of order up to 20 indicate that the null

hypothesis of no serial correlation is rejected at 1% significance level, implying the

existence of autocorrelation in the WTI and Brent return series. In addition, Engel’s

test shows the presence of autoregressive conditional heteroscedasticity (ARCH)

effects in WTI and Brent returns.31 These results can be observed from the pattern

of return series in Figure 4.1 where large price movements are followed by large

movements while small changes are followed by small changes.

Before fitting return series, we employ some tests to check the presence of unit roots

and to examine stationarity. In Panel B, both the Augmented Dicky-Fuller (ADF)

test and Phillips-Perron (PP) test significantly reject the null hypothesis of unit root

in the studied WTI and Brent series at 1% significant level, and results from the

Zivot-Andrews unit root test are robust to the presence of a potential structural

break in the two markets.32 Statistics from Kwiatkowski-Phillips-Schmidt-Shin

30This corresponds to Figure 4.2 which demonstrates significant fat tail features of the observed
returns comparing to Normal probability values.

31The return series demonstrate strong ARCH effects from lag(1), this feature may explains
the reason why GARCH-type models are widely applied by researchers and practitioners for the
analysis of financial time series and appreciated for measuring risks.

32The most significant structural break point selected by the Zivot-Andrews test in the WTI
and Brent markets are in the period of Global financial crisis, at 22nd September 2008 and 2nd
January 2009, respectively.
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(KPSS) test indicate do not reject the null hypothesis of stationarity. These results

imply that the return series in the WTI and Brent markets are stationary and

appropriate for further analysis.

4.4.2 Estimation results of SV-ALD model

The computation of VaR and CVaR under SV-ALD model can be summarized in

the following steps:

-Step 1: SV-ALD model estimation: We fit the proposed SV-ALD model to

oil return datasets using the Bayesian MCMC approach, that is, we implement

Bayesian inference by sampling from the joint posterior distributions via the SMU

representation. Then we estimate the time-varying volatilities (σt) from the fitted

model and then extract the standardized residual series zt.

-Step 2: Density parameter estimation: We employ the standardized residuals

obtained in Step 1, which can be seen as the realization of a white noise process, to

estimate parameter κ and τ in AL density function using the Maximum likelihood

estimation method. Then, we calculate the corresponding α-quantile of the ALD

according to the derived formulas (ms,q for oil supply and md,q for oil demand).

-Step 3: VaR and CVaR quantification: We compute the dynamics of VaR and

CVaR for both oil supply and demand at a given confidence interval using the

estimated parameters coming from the above two steps.33

Convergence diagnostics. Prior to estimating the parameters from the joint

posterior distribution, convergence diagnostic of the constructed Markov chain in

the MCMC algorithm is necessary in order to ensure the estimation accuracy from

the posterior distributions. If there are any parameters that are not converging in

the chain, the corresponding estimation for other parameters would be deviating

from its original path, leading to large estimation errors. Generally, preliminary

convergence tests can be monitored using different methods: (i) observing the

produced trace plots for parameters; (ii) using autocorrelation plots; (iii) monitoring

33Related work can refer to Bali et al. (2008) and Marimoutou et al. (2009).
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the evolution of selected quantiles; (iv) checking the MC errors by comparing them

to the corresponding estimated posterior standard deviations. Nevertheless, other

formal diagnostic tests have been developed in the literature and can be directly

implemented through Convergence Diagnostic and Output Analysis (CODA) or

Bayesian output analysis (BOA) packages in R. This paper employs the Brooks-

Gelman-Rubin (BGR) diagnostics, proposed by Gelman and Rubin (1992) and

developed by Brooks and Gelman (1998), to assess the convergence of the Markov

chain in the MCMC scheme.34

To complete a Bayesian paradigm, the prior distribution of the estimated SV model

parameters are set as: α ∼ N(−10, 0.001), τη ∼ Ga(2.5, 0, 025) with τη = 1
σ2
η
,

β∗ ∼ Be(20, 1.5) with β∗ = β+1
2

and the prior distribution of skewness parameter

is chosen as: κ ∼ U(0, 2), where τη is the precision parameter, Ga(·, ·), Be(·, ·) and

U(·, ·) represents the Gamma distribution, the Beta distribution and the Uniform

distribution, respectively.35 To implement the BGR diagnostic test, two independent

Markov chains are generated in parallel by setting different initial values. Four

parameters are assigned to initial values in each chain and for other parameters, i.e.

the latent parameters, are generated randomly from the prior distributions. The

initial values of the two Markov chains are set as: (1) α = 1.5, τη = 100, κ = 0.95

and β0 = 0.95; (2) α = 2.5, τη = 100, κ = 1.05 and β0 = 0.95. The BGR diagnostic

relies on a statistic R, known as the shrinking factor or the potential scale reduction

factor, which is estimated by calculating and comparing the between-chain variance

and the within-chain variance of the two chains, defined by:

R̂ =
V̂p

V̂w
= 1− 1

N
+

V̂b

V̂wN

M + 1

M
(4.47)

where M is the number of generated Markov chains which in this case is equal to

2, N is the number of iterations after discarding the burn-in period samples in each

chain, V̂b and V̂w represent the mean of variances between each chain and within

34BGR is one approach that recommended by CODA and BOA in R.
35The selection of prior distribution follows Kim et al. (1998) and recently see Takahashi et al.

(2009), Abanto-Valle et al. (2010), Wang (2012), Nakajima and Omori (2012) and Abanto-Valle
et al. (2015).
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Figure 4.3: Gelman-Rubin convergence diagnostic for the parameters in SV-ALD
model of WTI market

Figure 4.4: Gelman-Rubin convergence diagnostic for the parameters in SV-ALD
model of Brent market
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each chain respectively, and V̂p is defined as:

V̂p = (1− 1

N
)V̂w +

V̂b(1 +M)

MN
(4.48)

representing the pooled estimate of posterior variance.36

The criteria for checking convergence of the Markov chain using BGR approach is to

observe the variations of the estimated shrinking factor R̂ as the number of iterations

increases. When convergence is reached, values of V̂p and V̂w should coincide and

R̂ should be close to 1. Results of BGR diagnostic test based on WIT and Brent

return series are shown in Figure 4.3 and Figure 4.4 respectively. Under the Gibbs

sampling principle, two Markov chains are running and corresponding parameters

(α, β and ση) in the SV-ALD model are simulated simultaneously with each of

them drawing 60,000 times in one chain. In the WTI market, the estimated pooled

posterior variance estimate V̂p (green line) and within-chain variance V̂w (blue line

in) stabilize and the estimated shrinking factor R̂ (red line) converges to 1 quickly

for parameters α and β after drawing 15,000 times. However, the estimated R̂

for parameter ση appears to be unstable between 15,000 to 25,000 draws which

implies that more draws may be appropriate. On the contrary, the convergence for

parameters in Brent market is faster at approximately 20000 draws.37 Therefore,

for consistency in the empirical applications, 60,000 MCMC draws are performed

in one chain and the first 30,000 draws are discarded as the burn-in period in both

of the two oil markets, thus remaining 2 × 30,000=60,000 simulated samples for

posterior inference.

Posterior estimates and model comparison. Posterior summaries of parameters

in SV-ALD model are shown in the first half of Table 4.2. To compare the

performance of the SV-ALD model with classical SV model using Normal distribution

for return errors, datasets for WTI and Brent are also fitted by the SV-N model with

estimates listed in the second half of Table 4.2. In order to assess the performance of

36More details for the mathematical algorithm of BGR refer to Ntzoufras (2011).
37Concrete numerical estimates of V̂p, V̂w and R̂ for parameters are not listed here but is available

upon request.
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the generated posterior distribution under SV-N model, BGR convergence diagnostic

are employed by running two Markov chains with 60,000 simulations each. Results

suggest that the estimated shrinking factor R̂ is able to closely converge to 1 very

fast within 5,000 iterations for all relevant parameters in both the WTI and Brent

markets.38 To be consistent with SV-ALD model in terms of the iteration times, the

first 30,000 draws are discarded as burn-in period and the remaining 60,000 samples

are used for posterior inference.

The model comparison criterion between SV-ALD and SV-N is based on Deviance

Information Criterion (DIC) (Spiegelhalter et al., 2002) which is computationally

applicable and has been successfully applied to the family of SV models under

Bayesian MCMC scheme (see, e.g., Berg et al., 2004; Choy and Chan, 2008; Abanto-

Valle et al., 2011), the function of DIC can be defined as:

DIC = E[D(θ̈)] +D(E[θ̈]) (4.49)

where θ̈ is the vector of model parameters, D(·) denotes the posterior deviance

function, E[D(θ̈)] is the posterior mean of deviance which measures the goodness-

of-fit of the Bayesian model and D(E[θ̈]) represents the deviance function with

posterior expectation of the model parameters. The model with smallest DIC value

is regarded to be superior to the other one. Although there are other model selection

criteria, such as traditional AIC and BIC criteria, they are inappropriate in this case

as the number of parameters to be estimated is not well-defined due to the large

amount of latent variables (see, Wang, 2012). Besides, using Bayes factor as an

alternative is unrealistic because it is difficult to implement especially for models

with numerous unknown parameters, i.e. latent variables in SV-ALD model and

models using vague/non-informative priors (Wichitaksorn et al., 2015).39

Results for posterior mean, standard derivation (SD), MC errors and estimated

values within their 95% confidence interval (95% CI) for the SV-ALD and SV-N

38Plots of BGR test for parameters in SV-N model are not listed here but is available upon
request.

39More details about computations and discussions of Bayes factor can refer to Carlin and Chib
(1995) and Dellaportas et al. (2002).
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Table 4.2: Posterior summary statistics of the parameters in SV-ALD and SV-N
model in WTI and Brent markets

Market Parameter Mean SD MC error 95% CI DIC Sample

SV-ALD

WTI

α -7.58700 0.48730 0.00408 (-8.42200,-6.69800)

-15898.3 60,000β 0.99470 0.00224 0.00005 (0.98990,0.99870)

ση 0.08891 0.00992 0.00051 (0.07065,0.10810)

Brent

α -7.75000 0.56200 0.00587 (-8.66000,-6.69600)

-16595.5 60,000β 0.99590 0.00184 0.00004 (0.99200,0.99910)

ση 0.07351 0.00812 0.00042 (0.06106,0.09410)

SV-N

WTI

α -7.87200 0.32060 0.00218 (-8.48000,-7.26900)

-12566.3 60,000β 0.98990 0.00378 0.00012 (0.98150,0.99640)

ση 0.12960 0.01677 0.00080 (0.10020,0.16560)

Brent

α -7.95400 0.49910 0.00334 (-8.76800,-7.03900)

-13028.7 60,000β 0.99450 0.00247 0.00007 (0.98900,0.99870)

ση 0.09329 0.01252 0.00060 (0.07317,0.1207)

models are shown in Table 4.2. The posterior means of β in WTI and Brent markets

under SV-ALD model are highly close to 1. This is consistent with our general beliefs

that there exist a strong persistence of volatility in oil returns. It is worth noting that

the estimated posterior mean of β in WTI and Brent markets under the SV-N model

are slightly lower than their counterparts in the SV-ALD model and the estimates of

ση for the SV-ALD model in both of the two oil markets are lower than these in the

SV-N model. These results are consistent with the findings in Chib et al. (2002) and

Abanto-Valle et al. (2010), which indicate that introducing an heavy-tailed error

distribution (ALD) in mean equation appears to explain the excess of returns, thus

decreasing the variance of volatility process. The lower posterior standard deviations

of parameters β and ση under SV-ALD model in the two markets provide further

evidence for this. In addition, MC errors, which measure the variations of parameter

mean in the simulation, are relatively low compared to the corresponding estimated

posterior SD for all parameters in the two competing models, thus confirming the

high precision of the estimated posterior mean. Most importantly, the evidence in

favor of the SV-ALD model is supported by DIC values, which for the WTI and

Brent markets are -15898.3 and -16595.5 respectively, significantly lower than the

values generated in the SV-N model.
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Figure 4.5: Bayesian MCMC estimation of the latent volatilities for WTI and
Brent oil returns from May 2006 to May 2016

The time-varying posterior means of volatilities for the WTI and Brent oil returns

based on the SV-ALD model are depicted in Figure 4.5. We can notice that the

volatility estimates in the WTI and Brent oil markets produce similar trajectories

in the ten-year time. Nevertheless, the ten-year average value of posterior mean

of volatilities (0.0215) in the Brent market, represented by the dotted horizontal

lines in Graph 4.5, is slightly lower than the average value (0.0245) in the WTI

market. This is in line with the findings reported in Table 4.2 where the estimated

ση (0.07351) for the Brent series is lower than the estimated ση (0.08891) in the WTI

market. Noticeably, there are two large fluctuations of the estimated volatilities in

both of the two major oil markets during this time: one during the global financial

crisis and the other one from the second half of year 2014 characterized by the

worldwide imbalance of aggregate demand and supply for oil. Those large vibrations

of volatility again are a symptom for the existence of extreme risks in international

crude oil markets, thus is necessary to control them.

ML estimation for κ and τ . To estimate the VaR and CVaR for oil supply

and demand, it is necessary to estimate the skewness (κ) and scale (τ) statistic
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Table 4.3: Maximum likelihood estimates and standard errors (s.e.) for the
skewness and scale parameters in AL(κ,τ) fit to the standardized residuals

Market κ̃ (s.e.) τ̃ (s.e.)

WIT 0.99562*** (0.01403) 0.97557*** ( 0.01944)

Brent 0.99926*** (0.01407) 0.98778*** (0.01967)

Note: ∗∗∗ denotes statistically significant of estimates with p-value less than 0.01.

of the standardized residuals. We fit the AL(κ, τ) distribution via the Maximum

Likelihood approach for each of the standardized residual series. Results for the

estimated κ̃ and τ̃ in the two markets are shown in Table 4.3.

4.4.3 VaR and CVaR estimations under SV-ALD model

This part focuses on the application of the Bayesian SV-ALD model on the

measurement of market risks. Figure 4.6 and 4.7 show oil returns in the WTI

and Brent markets, along with the VaR estimates for oil supply and demand at

different risk levels produced by the Bayesian MCMC SV-ALD model. The graphs

reveal that the VaR estimates under SV-ALD model are very flexible in both the

two oil markets and adjust efficiently to the fluctuations of oil returns. One quick

response to the high volatility is evident during the 2008-2009 global financial crisis.

Notice that some violations can be found for both oil supply and demand in the two

markets, even at 1% risk level.

Figure 4.8 and 4.9 show oil returns in the two markets, superimposed by the CVaR

estimates for both supply and demand at different confidence intervals. Clearly,

the trends of those CVaR estimates have high similarities compared to the VaR

estimates, but appear to be more dispersed in netting actual losses. Although there

are some exceptions for CVaR at different tail risk levels, these are fewer than

for VaR. To identify the viability of the dynamic VaR and CVaR estimates before

risk managers proceed to any actual financial risk management, it is necessary to

backtest the model in order to help them making appropriate decisions on when to

utilize these risk tools. This process is put in place by further studying the behavior

of VaR and CVaR violations over time. Results from the backtesting exercise are
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Figure 4.6: Dynamic VaR estimates for oil supply and demand in WTI market
using SV-ALD model at different risk levels α

Figure 4.7: Dynamic VaR estimates for oil supply and demand in Brent market
using SV-ALD model at different risk levels α
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Figure 4.8: Dynamic CVaR estimates for oil supply and demand in WTI market
using SV-ALD model at different risk levels α

Figure 4.9: Dynamic CVaR estimates for oil supply and demand in Brent market
using SV-ALD model at different risk levels α
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shown in the following section.

4.4.4 Backtesting VaR model

In order to back-examine the accuracy of the estimated VaRs, we calculate the

empirical failure rates for both oil supply and demand. The failure rate (FR) or

violation rate, computes the ratio of the number of times oil returns exceed the

estimated VaRs over the total number of observations. The model is said to be

correctly specified if the calculated ratio is equal to the pre-specified VaR level α

(i.e. 10%, 5% and 1%). If the ratio is greater than α, we can conclude that the model

underestimates the risks, and vice versa. In our work, the failure rate FRV aRs for

oil supply (or in long trading position) is calculated as the percentage of negative

returns that are smaller than the left quantile VaRs, while the failure rate FRV aRd

for oil demand (or in short trading positions) is the ratio of positive returns larger

than the right quantile VaRs. We define FRV aRs and FRV aRd as follows:

FRV aRs =
1

T

T∑
t=1

It(yt < −V aRs,t) (4.50)

FRV aRd =
1

T

T∑
t=1

It(yt > V aRd,t) (4.51)

where V aRs,t and V aRd,t are the estimated VaRs for supply and demand at time

t for a given confidence interval, T is the number of observations and It(·) is the

indicator function which is defined as:

Supply : It =

1, ifyt < −V aRs,t

0, ifyt ≥ −V aRs,t

(4.52)

Demand : It =

1, ifyt > V aRd,t

0, ifyt ≤ V aRd,t

(4.53)

Furthermore, we consider three formal tests based on the above criteria to backtest

the VaR estimates. The unconditional coverage test (LRuc), proposed by Kupiec

(1995), is to examine whether the null hypothesis H0 : FR = α can be
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satisfied. A good performance of VaR model should be accompanied by an accurate

unconditional coverage, that is, the failure rate is statistically expected to be equal

to the prescribed VaR level α. The likelihood ratio statistic is given by:

LRuc = −2 log

{
αN(1− α)T−N

}
+ 2 log

{(
N

T

)N (
1− N

T

)T−N }
(4.54)

where N =
∑T

t=1 It is the number of failures in the sample size T. Under the null

hypothesis, the LRuc statistic is asymptotically distributed as χ2(1).

The method proposed by Kupiec (1995) is capable to test the overestimates or

underestimates of a VaR model. It does not, however, consider whether the

exceptions are scattered or if they appear in clusters.40 In order to examine whether

the VaR violations are serially uncorrelated over time, Christoffersen (1998) propose

the following likelihood ratio test with null hypothesis of serial independence:

LRind = 2 log

{
(1− π01)n00 πn01

01 (1− π11)n10 πn11
11

}
− 2 log

{
(1− π)n00+n10 πn01+n11

}
(4.55)

where nij is the times of the transform from state i to state j for i, j = 0, 1, πij =

nij
ni0+ni1

is the probability that state i is followed by state j, π = n01+n11

n01+n11+n00+n10
is the

probability of transform to state 1. Under the null hypothesis, the LRind statistic

is asymptotically distributed as χ2(1). In addition, a more strict and elaborate

conditional coverage test (LRcc) to jointly examine the unconditional coverage and

independence of violations has been developed by Christoffersen (1998). This test

investigates if the failure rate is equal to the expected prescribed risk level and if

the exceptions are independently distributed over time. Under the null hypothesis

that the exceptions are independent and that the expected failure rate is equal to

40Kupiec’s (1995) approach is an unconditional test. On the other hand, we need to conditionally
examine the VaR performance under the time-varying volatility framework. A good VaR model
should be able to reflect this dynamic behavior, which implies the losses exceed VaR should be
independent and unpredictable.
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Table 4.4: VaR backtesting results under SV-ALD and SV-N model for WTI and
Brent markets at different confidence intervals

α Risk
Failure times Failure rate LRuc LRind LRcc

WTI Brent WTI Brent WTI Brent WTI Brent WTI Brent

SV-ALD

10%
V aRs,t 250 267 9.925% 10.591% 0.8995 0.3267 0.3618 0.3317 0.5896 0.3450

V aRd,t 252 257 10.004% 10.194% 0.9947 0.7457 0.8635 0.9635 0.8867 0.8511

5%
V aRs,t 81 104 3.216% 4.125% 0.0000∗ 0.0380∗ 0.4058 0.8819 0.0000∗ 0.1101

V aRd,t 87 103 3.454% 4.086% 0.0002∗ 0.0298∗ 0.2738 0.1922 0.0004∗ 0.0387∗

1%
V aRs,t 7 8 0.279% 0.317% 0.0000∗ 0.0000∗ 0.8434 0.8214 0.0000∗ 0.0003∗

V aRd,t 5 7 0.199% 0.278% 0.0000∗ 0.0000∗ 0.8878 0.8435 0.0000∗ 0.0000∗

SV-N

10%
V aRN,s,t 235 243 9.329% 9.639% 0.2568 0.5436 0.6304 0.1466 0.4246 0.2620

V aRN,d,t 245 244 9.726% 9.679% 0.6454 0.5890 0.0615∗ 0.7086 0.1413 0.7279

5%
V aRN,s,t 99 122 3.93% 4.839% 0.0106∗ 0.7099 0.9549 0.2110 0.0366∗ 0.4061

V aRN,d,t 104 119 4.129% 4.720% 0.0388∗ 0.5156 0.7291 0.4516 0.1068 0.5810

1%
V aRN,s,t 19 24 0.754% 0.952% 0.1951 0.8071 0.5909 0.4969 0.3710 0.7633

V aRN,d,t 15 21 0.595% 0.833% 0.0273 0.3856 0.6716 0.5525 0.0796 0.5705

Note: α of 10%, 5% and 1% represent prescribed VaR level corresponding to 90%, 95% and 99% CI respectively,
LRuc columns show p-values of Kupiec’s (1995) unconditional coverage test, LRind columns are p-values of
Christofferson’s (1998) independent test and LRcc columns are p-values of Christofferson’s (1998) conditional
coverage test, * denotes significance at its corresponding risk level.

prescribed risk level, the likelihood ratio statistic is defined as:

LRcc = −2 log

{
αN(1− α)T−N

}
+ 2 log

{
(1− π01)n00 πn01

01 (1− π11)n10 πn11
11

}
(4.56)

where the LRcc statistic is asymptotically χ2(2) distributed.

Table 4.4 shows the VaR backtesting summary results under the SV-ALD and SV-N

model for WTI and Brent markets considering both supply and demand risks.41 In

the SV-ALD model, it is clear from the LRind test that the null hypothesis, that

the exceptions are independent, cannot be rejected at all three risk levels in the two

markets, for either oil supply or demand suggesting that there are few consecutive

violations, or none at all. At 10% risk level, the failure rate for oil suppler and

demand in both the WTI and Brent markets are approximately equal to the pre-

specified risk level, indicating the capability of the model to accurately specify the

market risks. This is confirmed by the LRuc test which has statistically insignificant

41See Appendix H for the VaR setting under SV-N model.
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p-values that do not reject the null hypothesis of “FR=α”. The LRcc results indicate

that the events of losses exceeding VaR are independent and that the expected failure

rate is equal to the prescribed risk level. Moving further to 5% and 1% tail risk,

both markets are estimated to have a higher level of risks for both oil supply and

demand, though the failure rate in the Brent market is closer to the pre-specified

risk level than that in the WTI market. The deduced p-values from the LRuc and

LRcc tests at 5% and 1% risk level remain consistent with those findings, except for

the oil supply in the Brent market at 95% confidence level. Moreover, the Bayesian

SV-ALD model shows a much more rigorous performance when moving further to

the extreme tails (or equivalent increases in confidence level). This is evidenced by

the fact that the overestimation of risk is smaller in magnitude at the 5% risk level

than at the 1% risk level. On the other hand, as a competitor, we find that the SV

model with Normally distributed errors is more capable of estimating the tail risk

for both supply and demand in the Brent market while it tends to overestimate risk

in WTI market at 5% risk level over the study period.

It should be noticed that the obtained backtesting results of VaR under SV-ALD

are similar to the findings of Chen et al. (2012), who have constructed a VaR and

CVaR model by employing the Asymmetric Laplace form as error distribution for

a well-known GJR-GARCH model.42 Their outcomes suggest that the models with

AL errors are the only ones that consistently estimate a higher level of risk when

focusing on the extreme tail risk, i.e. at 1%. Moreover, by studying the periods of

pre-financial-crisis and post-financial-crisis, the same conclusions are reached that

GJR-AL models are the only consistently conservative models in risk forecasting.

4.4.5 Backtesting CVaR model

Although CVaR approach has been widely used for risk measuring, the implementation

of backtesting for CVaR models is much harder than VaR models. Nevertheless,

formal backtesting methods can be found in literature, such as the most commonly

42The employed AL density has different forms in this two papers. This paper extended the
application of AL density form of Kotz et al. (2001) to a SV model while they are working on the
basis of the one proposed by Yu and Zhang (2005). More discussions of ALD can be found in the
introduction of this paper.
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used approach zero-mean residual test by McNeil and Frey (2000) which rely on

bootstrapping or one sample t principle, censored Gaussian method by Berkowitz

(2001) and the functional delta approach by Kerkhol and Melenverg (2004).43

However, applying these methods tend to be difficult and overly complex. The

application of these methods is based upon the realization of specific conditions,

hence only available to backtest CVaR in appropriate circumstances. Kerkhol and

Melenverg (2004) suggest a viable and simpler alternative to backtest CVaR on the

basis of equal quantiles, after finding a nominal risk level α̃ that CVaR is located

at. This method relies on a parametric model for calculating specific quantiles of

CVaR. This is straightforward in this paper as ALD is employed and analytic CVaR

expression for oil supply and demand can be easily derived. Specifically, we use the

cumulative distribution function (c.d.f) of the ALD which, according to Kotz et al.

(2001), is given by:

F (z|κ, θ, τ) =


1− 1

1 + κ2
exp

(
−
√

2κ

τ
(z − θ)

)
z ≥ θ

κ2

1 + κ2
exp

(√
2

τκ
(z − θ)

)
z < θ

(4.57)

Then, this c.d.f is evaluated at the CVaR level. As a consequence, the probability

(α̃) that CVaR occurs under ALD for oil supply and demand can be mathematically

expressed as:44

Supply : α̃ =F (CV aRs|α) =
α

e
(4.58)

Demand : α̃ =1− F (CV aRd|α) =
α

e
(4.59)

where e is the natural exponent. For both oil supply and demand, the quantile level

of CVaR under ALD is simply a function of α and e and is irrelevant with respect to

any other parameters in the AL density. This finding is consistent with the results by

Chen et al. (2012). Hence, according to formula (4.58) and (4.59), the nominal risk

level α̃ for CVaR under ALD at 10%, 5% and 1% can be correspondingly obtained

as 3.68%, 1.84% and 0.37%, respectively. Using α̃ as the prescribed risk level for

43A comprehensive discussion of various CVaR backtesting methodologies as well as their
implementations at different circumstances can refer to Wimmerstedt (2015).

44See Appendix I for derivation.
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Table 4.5: CVaR backtesting results under SV-ALD and SV-N model for WTI and
Brent markets at different confidence intervals

α̃ Risk
Failure times Failure rate LRuc LRind LRcc

WTI Brent WTI Brent WTI Brent WTI Brent WTI Brent

SV-ALD

3.68%
CV aRs,t 54 63 2.144% 2.499% 0.0000∗ 0.0008∗ 0.1239 0.6154 0.0000∗ 0.0033∗

CV aRd,t 52 61 2.064% 2.420% 0.0000∗ 0.0003∗ 0.4132 0.6747 0.0000∗ 0.0015∗

1.84%
CV aRs,t 23 17 0.913% 0.674% 0.0001∗ 0.0000∗ 0.5149 0.6308 0.0005∗ 0.0000∗

CV aRd,t 14 19 0.556% 0.754% 0.0000∗ 0.0000∗ 0.6924 0.5911 0.0000∗ 0.0000∗

0.37%
CV aRs,t 3 2 0.119% 0.079% 0.0155 0.0035∗ 0.9326 0.9551 0.0533 0.0141

CV aRd,t 3 0 0.119% 0.000% 0.0155 0.0000∗ 0.9326 1.0000 0.0533 0.0000∗

SV-N

3.96%
CV aRN,s,t 80 100 3.176% 3.967% 0.0368∗ 0.9863 0.7160 0.9868 0.1025 0.9601

CV aRN,d,t 84 94 3.335% 3.729% 0.0983 0.5477 0.0160∗ 0.3658 0.0136∗ 0.5338

1.96%
CV aRN,s,t 40 46 1.588% 1.825% 0.1637 0.6200 0.2558 0.1909 0.1957 0.3691

CV aRN,d,t 33 45 1.310% 1.785% 0.0123∗ 0.5199 0.3492 0.2008 0.0278 0.3523

0.38%
CV aRN,s,t 8 9 0.318% 0.357% 0.6002 0.8496 0.8213 0.7995 0.8470 0.9476

CV aRN,d,t 7 9 0.278% 0.357% 0.3816 0.8496 0.8434 0.7995 0.6669 0.9476

Note: α̃ of 3.68% (3.96%), 1.84% (1.96%) and 0.37% (0.38%) represent nominal CVaR level corresponding to 90%,
95% and 99% CI respectively in the context of SV-ALD model (SV-N model), LRuc columns show p-values of Kupiec’s
(1995) unconditional coverage test, LRind columns are p-values of Christofferson’s (1998) independent test and LRcc

columns are p-values of Christofferson’s (1998) conditional coverage test, * denotes significance at its corresponding
risk level.

CVaR backtesting, the failure rate of CVaR for oil supply and demand, denoted as

FRCV aRs and FRCV aRd, can be defined as follows:

FRCV aRs =
1

T

T∑
t=1

It(yt < −CV aRs,t) (4.60)

FRCV aRd =
1

T

T∑
t=1

It(yt > CV aRd,t) (4.61)

where the indicator function It(·) is equal to one if the condition is satisfied and zero

otherwise. As a consequence, three formal statistic test LRuc, LRind and LRcc can

be run to examine the CVaR model accuracy based on the nominal risk level α̃.

Table 4.5 presents the CVaR backtesting results under the SV-ALD and SV-N model

for oil supply and demand in the WTI and Brent markets.45 The performance of

CVaR is very similar to the performance of VaR. Looking at the failure rate in

the SV-ALD framework, for example, the value for both oil supply and demand

in the WTI and Brent markets is lower than the corresponding nominal risk level.

45See Appendix H for the CVaR setting under SV-N model.
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This means they overestimate the risk and is consistent with the fact that CVaR

gives conservative estimates at the other two nominal risk levels for both supply

and demand in the two markets. Moreover, LRuc and LRcc statistic results indicate

that there are no differences with the above findings at 3.68% and 1.84% risk levels.

At the 0.37% risk level, however, there is a slight difference between these two

markets. LRuc and LRcc agree that the SV-ALD model cannot be rejected to

capture the dynamic risks in the WTI market for both oil supply and demand,

while it is controversial in terms of oil supply in the Brent market. Results of CVaR

backtesting in this paper are again consistent with the findings by Chen et al. (2012),

who forecast a higher level of CVaR risks at both 5% and 1% levels when employing

the AL error to the GJR-GARCH model. In comparison, we find that the CVaR

model under SV-N can statistically accurately estimate the tail risks in most cases

for both types of investors.

To summarize, the two risk measures are consistent in estimating WTI and Brent

market risks for oil supply and demand over the ten-year study period and they

both reach conservative positions in the framework of the SV-ALD model when

focusing on extreme tail risks. According to LRuc and LRcc, VaR under SV-ALD

is accurately estimated at 10% risk level, but tends to be more conservative at 5%

and 1% levels in both markets. The exception is the LRcc test for oil supply in the

Brent market at 95% CI. In addition, the SV-ALD model overestimates the CVaR

risk level at 10% and 5% in the WTI and Brent markets and at 1% in the Brent

markets for oil demand, while it is statistically significant to capture the 1% tail

risks in WTI market.

4.5 Conclusion

As the volatility of crude oil markets fluctuate dramatically, especially in the period

of global financial crisis, it is important to implement appropriate risk measure

tools that are suitable to different market participants. In this context, VaR and

CVaR are employed to quantify the financial market risk embedded in oil prices in

WTI and Brent markets for both oil supply and demand. We extend the AL density
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function (Kotz et al., 2001) to a standard discrete stochastic volatility model, to take

account of the potential heavy-tailed and leptokurtic features of oil return series.

This new model is called SV-ALD. Because VaR is based on the Normal distribution

assumption, for assets with fat-tailed distributions, the minimization of VaR may

result in a significant increase in the frequency of high losses exceeding VaR. Our

model solves this problem, as we assume that the distribution of the asset returns

is SV-ALD and therefore capable of modeling moments of market stress.

Considering the difficulty to evaluate the likelihood function of the SV-ALD model

analytically, the Bayesian MCMC approach via the Gibbs sampling algorithm is

employed for posterior inference of model parameters and latent volatilities. To

facilitate an efficient Gibbs sampling, we propose a new SMU form to replace

the heavy-tailed error distribution ALD, which enables the SV model to be

straightforwardly implemented within the Bayesian MCMC scheme. The produced

estimates of latent volatilities using this SMU representation not only promote our

computation for VaR and CVaR in the SV-ALD model but are also applicable to

other fields of financial modelling that related to time-varying volatilities. Regarding

the empirical results, we find that the introduction of ALD in the return errors of

the SV model explains the excess returns better than the SV-N model. The VaR

and CVaR under SV-ALD can adjust flexibly to the fluctuations of oil returns in

the two markets. From a Bayesian statistical viewpoint, the SV-ALD model is more

capable to fit oil returns than the SV-N model, this is evidenced by lower DIC value

in both of WTI and Brent markets.

On the basis of equal quantiles as suggested by Kerkhof and Melenberg (2004),

a viable backtesting procedure of CVaR is conducted when obtaining a nominal

risk level α̃. We find that α̃ depends only on the risk level α and is independent

with respect to other parameters in the AL density, in either of the two sided

tails. Consequently, three formal backtesting methods, LRuc, LRind and LRcc are

applicable to examine model accuracy. Results from the empirical investigation

of the proposed VaR and CVaR model for both oil supply and demand in the

two key markets indicate that the two risk measures are consistently conservative
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in modelling tail risks at high confidence intervals, i.e. 95% and 99%, this

indicates that the models generate higher risk measurement at a given risk exposure.

Comparatively, traditional SV model with Normal distributed errors provides better

tail risk measures throughout the period studied.

To conclude, we use the SV-ALD model and Bayesian simulation-based approach

to estimate the dynamics of VaR and CVaR for oil prices. Backtesting results

show that the SV-ALD model is able to model the tail risk for oil supply and

demand, and that both VaR and CVaR overestimate the extreme tail risk leading

to more conservative investment choices. As a result, we are proposing two new

types of risk management tools which can be regarded as a valuable addition to

the toolbox of risk management especially in the framework of stochastic volatility

models and the techniques applied in this study demonstrate the feasibility to utilize

more sophisticated SV-type models.



Chapter 5

Conclusion and Future Work

In this thesis, we have studied the measurement of market risk using VaR and

CVaR as two risk tools by focusing on the construction and modelling in the

fields of portfolio optimizations, continuous and discrete time stochastic volatility

models. Our main contribution can be summarized in three aspects: the extension

of existing theoretical models, improvements in the estimation methodology in

Bayesian MCMC inference and practical implications.

In Chapter 2, we prove that the analytical solution of our proposed Mean-VaR-

Skewness optimization model under ALD is consistent with that of Zhao et al.’s

(2015) model, which can be obtained using the Lagrange Multiplier method. Our

preliminary study, in the context of the Mean-VaR-Skewness model, shows the

ability of ALD in describing the heavy-tailed features of stock returns. We then focus

on examining the performance of Zhao et al.’s (2015) model from in-sample, Monte

Carlo simulation and out-of-sample perspectives. Our results support the benefits

of using ALD to model the asymmetry of asset returns. In terms of the empirical

analysis under the Mean-CVaR-Skewness model, our findings indicate that in the

two economic periods D1 (pre-crisis-period) and D3 (all-periods), higher expected

portfolio returns are accompanied by higher risks, while the findings are ambiguous

for the D2 (crisis-period). In addition, we find evidence that for a given risk level,

the risk-adjusted return (measured by Sharpe-like ratio) of our portfolio is relatively

low in the periods that include the financial crisis, and the outcomes are irrelevant to

the chosen risk levels. Considering the applicability of CVaR for different risk levels,

139
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our results imply that aggressive investors, who may estimate a smaller risk level

with their investments, have a relatively higher Sharpe-like ratio than conservative

investors.

Chapter 3 has introduced a general framework for VaR and CVaR measurements

using a generalized Fourier transform approach. We provide two deterministic

functions: Tv and Hv, which are applicable to various financial dynamic models,

especially to those distributions whose p.d.f. are not known analytically and fully

characterized by its characteristic function. Our numerical explorations in the

context of the Heston stochastic volatility model provide answers to the key questions

that arose at the beginning. We conclude that it is important to identify the number

of integration points along an integral interval for the VaR and CVaR calculations

in order to ensure the accuracy of risk approximations. In addition, the results from

our numerical analysis indicate the presence of three key parameters: κ, ρ and τ ,

which could uniformly affect the movements of VaR and CVaR estimates in opposite

direction; while parameter θ is the only one that could positively impact the VaR

and CVaR values.

In Chapter 4, we employ VaR and CVaR to quantify the market risk embedded

in oil prices in WTI and Brent markets for both oil supply and demand. We extend

the AL density function (Kotz et al., 2001) to a standard discrete SV model to take

into account the potential heavy-tailed and leptokurtic features in oil return series

and thus construct the SV-ALD model. To overcome estimation difficulties, we

propose a new SMU representation for the error distribution (ALD) to facilitate an

efficient Gibbs sampling in the Bayesian MCMC framework. Regarding the empirical

analysis, our results indicate that the introduction of ALD in return errors of the

SV model explains the excess returns better than the SV-N model. The VaR and

CVaR under SV-ALD can adjust flexibly to the fluctuations of oil returns in the two

markets. From a Bayesian statistical viewpoint, the SV-ALD model is more capable

to fit oil returns than the SV-N model, as evidenced by lower DIC value in both

the WTI and Brent markets. In addition, the backtesting results of the estimated

dynamics of VaR and CVaR show that the SV-ALD model is able to model the tail



CHAPTER 5. CONCLUSION AND FUTURE WORK 141

risk for both oil supply and demand, and that both VaR and CVaR overestimate the

risk, leading to more conservative investment choices. As a result, we are proposing

two new types of risk management tools, which could be very useful for managers

who are risk averse.

There are a number of avenues for future research. Developing on Chapter 2,

a future research project could look at the forecasting performance of the Mean-

VaR-Skewness model under ALD, and comparative analysis with conventional VaR

optimization models. Although we have preliminarily studied the portfolio VaR in

an in-sample scenario, in-depth work on this model will improve the understanding of

its application prospective. In addition, given the closed-form formula for single asset

and multiple asset portfolios in the VaR and CVaR optimization models, it would

be of interest to further investigate portfolio diversifications and offer references for

practical applications in various markets. Moreover, undertaking a more extensive

series of analyses by handling a large-scale portfolio consisting of a larger number

of assets would be valuable for practical applications.

Developing from Chapter 3, a possible extension to this study could be to construct

the VaR and CVaR models by employing other financial dynamic models, such

as the Stein-Stein model (1991) and Schöbel-Zhu model (1999). Extending the

present study to a valid empirical investigation could also be a constructive step

in financial risk management. Finally, developing from Chapter 4, further research

can be devoted to the assessment of VaR and CVaR forecasting abilities under SV-

ALD scheme. In addition, it would be of interest to quantify the market risk using

the SV-ALD model in comparison to those heavy-tailed GARCH-type models using

oil data. Notably, the risk models that we propose under SV-ALD provide large

flexibilities for a variety of financial models whose densities are non-Gaussian, hence

would be applicable to various markets, including: exchange rate market, stock

market and commodity market. Last, in terms of volatility forecasting accuracy,

more research can aim to use high-frequency intra-day data to estimate the daily

“realized volatility”.



Appendix A

VaR, CVaR and Skewness of

single asset under ALD

A.1 Derivation of single asset VaR

Following the mathematical definition of VaR and incorporating the negative part

of p.d.f. of ALD to the integration equation, VaR under ALD can be formulated as:

prob(x ≤ −V aR) =

∫ −V aR
−∞

√
2

τ

κ

1 + κ2
exp(

√
2x

τκ
)dx

=
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Rearranging the equation, we have:
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2
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κ2

(A.1)
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A.2 Derivation of single asset CVaR

Suppose that we only consider the downside risk of asset return (i.e. x < 0), then

the evolution of CVaR under ALD is shown as:

CV aR(1−α) =− E[X|X ≤ −V aR(1−α)] =
−
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A.3 Derivation of single asset skewness

Expressing skewness of X as a form of non-central moment EX3, then we have:

s =E

[(
X − µ
σ

)3
]

=
EX3 − 3µEX2 + 3µ2EX − µ3
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=
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=
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(A.3)

Since we have:

EX3 =
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and the p.d.f. of ALD, thus the first term of equation (A.4) can be written as:
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Likewise, the second term of equation (A.4) can be reformulated as:

∫ +∞

0

x3fX(x) =

∫ 0

−∞
x3

√
2

τ

k

1 + k2
exp(−

√
2κ

τ
x) dx =

√
2

τ

k

1 + k2

∫ +∞

0

x3 exp(−
√

2κ

τ
x) dx

=

√
2

τ

k

1 + k2
(− τ√

2κ
)

∫ +∞

0

x3 d(exp(−
√

2κ

τ
x))

=− 1

1 + κ2

[
x3 exp(−

√
2κ

τ
x)|+∞0 −

∫ +∞

0

exp(−
√

2κ

τ
x) 3x2 dx

]

=
3

1 + κ2

∫ +∞

0

exp(−
√

2κ

τ
x)x2 dx

=
3

1 + κ2

(
− τ√

2κ

)∫ +∞

0

x2 d(exp(−
√

2κ

τ
x))

=
3

1 + κ2

(
− τ√

2κ

)[
−
∫ +∞

0

exp(−
√

2κ

τ
x) 2x dx

]

=
6

1 + κ2

τ√
2κ

∫ +∞

0

exp(−
√

2κ

τ
x)x dx

=
6

1 + κ2

τ√
2κ

(
− τ√

2κ

)∫ +∞

0

x d(exp(−
√

2κ

τ
x))

=
6

1 + κ2

τ√
2κ

(
− τ√

2κ

)[
−
∫ +∞

0

exp(−
√

2κ

τ
x) dx

]

=
6

1 + κ2

τ 2

2κ2

(
− τ√

2κ

)[∫ +∞

0

d(exp(−
√

2κ

τ
x))

]

=
3τ 3

√
2(1 + κ2)κ3

Given condition κ =
√

2τ/(µ+
√
µ2 + 2τ 2), then we have equation (A.4) as:

EX3 =
3τ 3

√
2

(1 + κ4)(1− κ2)

κ3
=

3τ 3

√
2κ3
− 3τ 3

√
2κ

+
3τ 3

√
2
κ− 3τ 3

√
2
κ3 = 6µ3 + 6µτ 2

Consequently, we can express the skewness of ALD as follows:
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Appendix B

VaR and CVaR of portfolio under

multivariate ALD

B.1 Derivation of portfolio CVaR

As indicated by proposition 2.11 that portfolio return follows a one-dimensional

ALD, then we are able to obtain portfolio CVaR by substituting the portfolio

parameters for single asset CVaR parameters. Note that expression of CVaR for

single asset involves parameter κ. Then for simplicity of the monotonicity analysis,

we can first transform the single CVaR to the following form:

CV aR =− τκ√
2
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2

=
τκ√

2
ln(

κ2

α(1 + κ2)
) +

τκ√
2

=
τκ√

2
ln(

κ2

1 + κ2
)− τκ√

2
lnα +

τκ√
2

=
τκ√

2
ln(

κ2

1 + κ2
) +

τκ√
2

(1− lnα)

=
τκ√

2
(1− lnα)− τκ√

2
ln(1 +

1

κ2
)

146



APPENDIX B. VAR AND CVAROF PORTFOLIO UNDERMULTIVARIATE ALD147

Given κ =
√

2τ/(µ+
√
µ2 + 2τ 2), then we have:
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or in a simpler form:

CV aR = (1− lnα)g(µ, τ)− g(µ, τ)ln(2 +
µ

g(µ, τ)
) (B.1)

where the new function g(µ, τ) is defined as g(µ, τ) = τ 2/(µ +
√
µ2 + 2τ 2).

Expressing CV aRW as the CVaR of the portfolio, and changing µ, τ in equation

(B.1) by µW and ΣW , respectively. The portfolio CVaR can be expressed as:

CV aRW = (1− lnα)g(µW ,ΣW )− g(µW ,ΣW )ln(2 +
µW

g(µW ,ΣW )
) (B.2)

where g(µW ,ΣW ) = Σ2
W/(µW +

√
µ2
W + 2Σ2

W ).

B.2 Derivation of Portfolio VaR

To derive portfolio VaR, we first transfer the single VaR as follows:
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2
ln(
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Substituting κ =
√

2τ/(µ+
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µ2 + 2τ 2) into this equation, then we have:

V aR = −ln(α)g(µ, τ)− g(µ, τ)ln(2 +
µ
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) (B.3)

where g(µ, τ) = τ 2/(µ+
√
µ2 + 2τ 2). Expressing V aRW as the VaR of the portfolio,

and changing µ, τ in equation (B.3) by µW and ΣW , respectively. Then, the portfolio

VaR can be written as:

V aRW = −ln(α)g(µW ,ΣW )− g(µW ,ΣW )ln(2 +
µW

g(µW ,ΣW )
) (B.4)
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Appendix C

Maximum likelihood estimates for

ALD parameters

Fitting parameter κ and τ in ALD to the datasets, we can obtain the parameter

estimates and corresponding standard errors (s.e.) of each stock via the maximum

likelihood estimation approach. The maximum log-likelihood function of ALD is

given by:1

lnL(θ;κ; τ) =
n

2
ln(2)− nln(τ) + nln(

k

1 + κ2
)−
√

2

τ
M (C.1)

where

M(x;κ; τ) = k
n∑
i=1

(xi − θ)+ +
1

κ

n∑
i=1

(xi − θ)− (C.2)

Table C.1 reports the estimates of stock returns among the three datasets. In D1, we

can observe that there are five assets (IBM, PFE, INTC, WMT and MRK) are left

skewed. This situation is more obvious in the time of financial crisis with 11 stocks

shown negative skewness. The number of left-skewed stocks is smaller under D3,

only 3 stocks left. Stock PFE is the only one that has exhibited negative skewness

in all three datasets.

1More details about MLE methodology refer to Kotz et al. (2001).
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Appendix D

VaR and CVaR derivations in a

generalized Fourier transform

framework

D.1 VaR derivation in a Fourier space

Given the generalized Fourier transformation of stochastic process X, we substitute

the corresponding p.d.f. (equation 3.9) into the original integral formula of VaR

(equation 3.6), then we have:

α =
1

2π

∫ iv+∞

iv−∞
ψ(z)dz

∫ −V aR
−∞

e−izxdx

=
1

2π

∫ iv+∞

iv−∞
ψ(z)dz(− 1

iz
)

∫ −V aR
−∞

d(e−izx)

=
1

2π

∫ iv+∞

iv−∞
ψ(z)dz

[
(− 1

iz
)eizV aR − 0

]

=
1

2π

∫ iv+∞

iv−∞
ψ(z)dz

(
−e

izV aR

iz

)
(D.1)

In order to ensure the convergence of the second integral, we follow Bormetti et

al. (2010) to define the imaginary part v to be greater than 0. Given conditions

z = w + iv and iv − ∞ < z = w + iv < iv +∞, we have −iz = −i(w + iv) =

−iw − i2v = v − iw with −∞ < w < +∞.
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As a result, equation (D.1) becomes:

α =
1

2π

∫ +∞

−∞
ψ(w + iv)dw

(
eiwV aR e−vV aR

v − iw

)

=
e−vV aR
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(
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) (D.2)

D.2 CVaR derivation in a Fourier space

To derive the CVaR in a Fourier space, we plug the p.d.f. (equation 3.9) in terms

of the generalized Fourier transform ψ(z) in equation (3.12), then the CVaR is

established as follows:

CV aR =
1

2π

∫ iv+∞

iv−∞
ψ(z)dz (− 1

α
)

∫ −V aR
−∞

xe−izxdx

=− 1

2πα

∫ iv+∞

iv−∞
ψ(z)dz (− 1

iz
)

∫ −V aR
−∞

xd(e−izx)

=− 1

2πα

∫ iv+∞

iv−∞
ψ(z)dz (− 1

iz
)

[
xe−izx

∣∣−V aR
−∞ −

∫ −V aR
−∞

e−izxdx

]

=− 1

2πα

∫ iv+∞

iv−∞
ψ(z)dz (− 1

iz
)

[
−V aR eizV aR − 0−

∫ −V aR
−∞

e−izxdx

]

=− 1

2πα

∫ iv+∞

iv−∞
ψ(z)dz (

1

iz
)

[
V aR eizV aR + (− 1

iz
)

∫ −V aR
−∞

d(e−izx)

]

=− 1

2πα

∫ iv+∞

iv−∞
ψ(z)dz (

1

iz
)

[
V aR eizV aR − 1

iz
(eizV aR − 0)

]

=− 1

2πα

∫ iv+∞

iv−∞
ψ(z)dz

eizV aR

iz

(
V aR− 1

iz

)

(D.3)

Given conditions z = w + iv and iv −∞ < z = w + iv < iv +∞, then we have

−iz = −i(w+ iv) = −iw− i2v = v− iw with −∞ < w < +∞. This provides a new

transformation of equation (D.3) as follows:

CV aR =− 1

2πα

∫ +∞

−∞
ψ(w + iv)dw

eiwV aR e−vV aR

iw − v

(
V aR− 1

iw − v

)

=
e−vV aR

2πα

∫ +∞

−∞
ψ(w + iv)dw

eiwV aR

v − iw

(
V aR +

1

v − iw

) (D.4)
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D.3 Simplified transform of VaR and CVaR

Considering the symmetric property of the real and imaginary parts of the ECF

ψ(z), then we are able to rewrite the first equation in (3.15) as follows:

α =
e−vV aR

π
Re

[∫ +∞

0

ψ(w + iv)dw

(
eiwV aR

v − iw

)]
(D.5)

Thus, we have:

α =
ReTv(V aR, v)

π
(D.6)

where

Tv(V aR, v) = e−vV aR
[∫ +∞

0

ψ(w + iv)

v − iw
eiwV aR dw

]

Accordingly, the expression of CVaR in equation (3.15) can be reformulated as:

CV aR =
e−vV aR

2πα

∫ +∞

−∞

ψ(w + iv)

v − iw
eiwV aR V aR dw

+
e−vV aR

2πα

∫ +∞

−∞

ψ(w + iv)

v − iw
eiwV aR

1

v − iw
dw

=
e−vV aR

2ReTv(V aR, v)

∫ +∞

−∞

ψ(w + iv)

v − iw
eiwV aR V aR dw

+
e−vV aR

2πα

∫ +∞

−∞

ψ(w + iv)

v − iw
eiwV aR

1

v − iw
dw

=
V aRReTv(V aR, v)

ReTv(V aR, v)
+

e−vV aR

ReTv(V aR, v)
Re

[∫ +∞

0

ψ(w + iv)

(v − iw)2
eiwV aR dw

]

=V aR +
ReHv(V aR, v)

ReTv(V aR, v)

(D.7)

where

Hv(V aR, v) = e−vV aR
[∫ +∞

0

ψ(w + iv)

(v − iw)2
eiwV aR dw

]
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D.4 Real part of function TV

We define a new function TTv representing the real part of function Tv. Following

Definition 3.2, we have:

TTv(V aR, v) = Re Tv(V aR, v) = Re

{
e−vV aR

[∫ +∞

0

ψ(w + iv)

v − iw
eiwV aR dw

]}

=Re

{
e−vV aR

[∫ +∞

0

ψ(w + iv) cos(wV aR) + ψ(w + iv) i sin(wV aR)

v − iw
dw

]}
(D.8)

Since e−vV aR is simply a real number for an admission value v, thus by applying the

Remark 3.19, we can rewrite the integrand in (D.8) as follows:1

Re
ψ(w + iv) cos(wV aR) + ψ(w + iv) i sin(wV aR)

v − iw

=Re
v ψ(w + iv) cos(wV aR) + ψ(w + iv) sin(wV aR) (−w)

v2 + w2

+ Re
[v ψ(w + iv) sin(wV aR) + wψ(w + iv) cos(wV aR)] i

v2 + w2

=
v cos(wV aR) Reψ(w + iv)− w sin(wV aR) Reψ(w + iv)

v2 + w2

+
−v sin(wV aR) Imψ(w + iv) − w cos(wV aR) Imψ(w + iv)

v2 + w2

=
cos(wV aR) [vReψ(w + iv)− wImψ(w + iv)]

v2 + w2

− sin(wV aR) [wReψ(w + iv) + v Imψ(w + iv)]

v2 + w2

Substituting this expression into equation (D.8) yield:

TTv(V aR, v) = Re Tv(V aR, v)

=e−vV aR
∫ +∞

0

dw

v2 + w2
{cos(wV aR) [vReψ(w + iv)− wImψ(w + iv)]}

− e−vV aR
∫ +∞

0

dw

v2 + w2
{sin(wV aR) [wReψ(w + iv) + v Imψ(w + iv)]}

(D.9)

1The application of Im(·) in the derivation process is based on the hint that if f = a+ bi, then
fi = ai− b, since Im(f) = b, thus we have Re(fi) = −b = −Im(f).
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D.5 Real part of function Hv

Analogously to TTv, we are able to define another new function HHv, which

represents the real part of function Hv. Given Definition 3.2, we have:

HHv(V aR, v) = Re Hv(V aR, v) = Re

{
e−vV aR

[∫ +∞

0

ψ(w + iv)

(v − iw)2
eiwV aR dw

]}

=Re

{
e−vV aR

[∫ +∞

0

ψ(w + iv) cos(wV aR) + ψ(w + iv) i sin(wV aR)

v2 − w2 − 2vwi
dw

]}
(D.10)

By applying the Remark 3.19 to the integrand of (D.10), we have:

Re
ψ(w + iv) cos(wV aR) + ψ(w + iv) i sin(wV aR)

v2 − w2 − 2vwi

=Re
(v2 − w2)ψ(w + iv) cos(wV aR) + ψ(w + iv) sin(wV aR) (−2vw)

(v2 − w2)2 + 4v2w2

+ Re
[(v2 − w2)ψ(w + iv) sin(wV aR) + 2vw ψ(w + iv) cos(wV aR)] i

(v2 − w2)2 + 4v2w2

=
(v2 − w2) cos(wV aR) Reψ(w + iv)− 2vw sin(wV aR) Reψ(w + iv)

(v2 + w2)2

+
−(v2 − w2) sin(wV aR) Imψ(w + iv) − 2vw cos(wV aR) Imψ(w + iv)

(v2 + w2)2

=
cos(wV aR) [(v2 − w2) Reψ(w + iv)− 2vw Imψ(w + iv)]

(v2 + w2)2

− sin(wV aR) [2vwReψ(w + iv) + (v2 − w2) Imψ(w + iv)]

(v2 + w2)2

As a consequence, it is not difficult to obtain the following function if we substitute

the above expression into equation (D.10):

HHv(V aR, v) = Re Hv(V aR, v)

=e−vV aR
∫ +∞

0

dw

(v2 + w2)2

{
cos(wV aR)

[
(v2 − w2) Reψ(w + iv)− 2vwImψ(w + iv)

]}
− e−vV aR

∫ +∞

0

dw

(v2 + w2)2

{
sin(wV aR)

[
2vwReψ(w + iv) + (v2 − w2) Imψ(w + iv)

]}
(D.11)



Appendix E

Relevant proofs in Heston model

E.1 Application of Itô’s lemma

The Itô’s lemma is an important foundmental tool in stochastic calculus. It acts like

the chain rule in solving the PDEs and the application of Itô’s lemma can simplify

the SDEs. Suppose the asset prices process {St, t ≥ 0} satisfies the SDE given in

equation (3.23). Applying Itô’s lemma to f(t, St) = lnSt, where f(·) depends on the

particulars of t and St, we can specify the dynamics of this process as follows:

f(t, St) =f(0, S0) +

∫ t

0

∂f(s, Ss)

∂s
ds+

∫ t

0

∂f(s, Ss)

∂Ss
dSs +

1

2

∫ t

0

∂2f(s, Ss)

∂S2
s

VsS
2
sds

ln(St) =ln(S0) + 0 + (

∫ t

0

1

Ss
µSsds+

∫ t

0

1

Ss

√
VsSsdW

S
s )− 1

2

∫ t

0

1

S2
s

VsS
2
sds

ln(St) =ln(S0) + µt+
√
VtW

S
t −

1

2
Vtt

ln(
St
S0

) =(µ− 1

2
Vt)t+

√
VtW

S
t

(E.1)

where f(t, St) is a twice-differentiable scalar function of two real variables t and S.

E.2 Derivation of Heston PDE

Given the algorithm of PDE defined in Theorem 3.31 and Remark 3.5, and the

SDEs of Heston model (formula 3.28 and 3.29), we can derive the PDE in terms of

155
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log-return Xt = lnSt as follows:1

df(t,Xt, Vt) =ḟ(t,Xt, Vt)dt + f1(t,Xt, Vt)dXt + f2(t,Xt, Vt)dVt

+
1

2
f11(t,Xt, Vt)d〈X〉t +

1

2
f22(t,Xt, Vt)d〈V 〉t + f12(t,Xt, Vt)d〈X, V 〉t

=
∂f(t,Xt, Vt)

∂t
dt+

∂f(t,Xt, Vt)

∂Xt

dXt +
∂f(t,Xt, Vt)

∂Vt
dVt

+
1

2

∂2f(t,Xt, Vt)

∂X2
t

Vtdt+
1

2

∂2f(t,Xt, Vt)

∂V 2
t

ξ2Vtdt+ ξVtρ
∂2f(t,Xt, Vt)

∂Vt∂Xt

dt

=
∂f(t,Xt, Vt)

∂t
dt +

∂f(t,Xt, Vt)

∂Xt

(
(µ− 1

2
Vt)dt+

√
VtdW

S
t

)

+
∂f(t,Xt, Vt)

∂Vt

(
κ(θ − Vt)dt + ξ

√
VtdW

V
t

)
+

1

2

∂2f(t,Xt, Vt)

∂X2
t

Vtdt

+
1

2

∂2f(t,Xt, Vt)

∂V 2
t

ξ2Vtdt+ ξVtρ
∂2f(t,Xt, Vt)

∂Vt∂Xt

dt

=
∂f(t,Xt, Vt)

∂Xt

√
VtdW

S
t +

∂f(t,Xt, Vt)

∂Vt
ξ
√
VtdW

V
t +Af(t,Xt, Vt)dt

(E.2)

where A represents differential generator defined as:

(Af)(t,Xt, Vt) =
∂f(t,Xt, Vt)

∂t
+ (µ− 1

2
Vt)

∂f(t,Xt, Vt)

∂Xt

+ κ(θ − Vt)
∂f(t,Xt, Vt)

∂Vt

+
Vt
2

∂2f(t,Xt, Vt)

∂X2
t

+
ξ2Vt

2

∂2f(t,Xt, Vt)

∂V 2
t

+ ξVtρ
∂2f(t,Xt, Vt)

∂Vt∂Xt

(E.3)

Time evolution function f(t,Xt, Vt) must be a martingale by iterated expectations.2

Given E[df ] = 0, and substitute it to equation (E.2) yields a new PDE:

∂f(t,Xt, Vt)

∂t
+ (µ− 1

2
Vt)

∂f(t,Xt, Vt)

∂Xt

+ κ(θ − Vt)
∂f(t,Xt, Vt)

∂Vt

+
Vt
2

∂2f(t,Xt, Vt)

∂X2
t

+
ξ2Vt

2

∂2f(t,Xt, Vt)

∂V 2
t

+ ξVtρ
∂2f(t,Xt, Vt)

∂Vt∂Xt

= 0

(E.4)

1Note that in the derivation, a series of simple rules in the statement of Itô’s lemma are applied.
All terms with (dt)2, dt dWS

t and dt dWV
t are deleted as a consequence of the limit dt → 0, and

terms with (dWS
t )2 and (dWV

t )2 are substituted by dt.
2f(t,Xt, Vt) is a martingale if and only if the differential generator A satisfies a condition that

the PDE Af(t,Xt, Vt) = 0.
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E.3 Reduced form of ODEs

As indicated by Feynman-Kac representation theorem, the ECF (equation 3.33) of

Heston dynamics follows the PDE in equation (E.4). That is, if a function f(t,Xt, Vt)

of the Heston SEDs satisfies the PDE defined in equation (E.4), then the solution

of function f(t,Xt, Vt) is the conditional expectation of u(Xt) = eizXt .

To evaluate the PDE (equation E.4) of the ECF of Heston (equation 3.33), following

derivatives are required:

∂f(t,Xt, Vt)

∂t
=

(
∂C(τ)

∂τ
+
∂D(τ)

∂τ
Vt

)
f(t,Xt, Vt),

∂f(t,Xt, Vt)

∂Xt

= izf(t,Xt, Vt)

∂f(t,Xt, Vt)

∂Vt
=D(τ)f(t,Xt, Vt),

∂2f(t,Xt, Vt)

∂X2
t

= −z2f(t,Xt, Vt)

∂2f(t,Xt, Vt)

∂V 2
t

=D2(τ)f(t,Xt, Vt),
∂2f(t,Xt, Vt)

∂Vt∂Xt

= izD(τ)f(t,Xt, Vt)

Substituting those derivatives to the PDE (equation E.4) and cancel out the common

term f(t,Xt, Vt) yields:

(
∂D(τ)

∂τ
+ izξρD(τ) +

1

2
ξ2D2(τ)− 1

2
z2 − qD(τ) + izp

)
Vt +

∂C(τ)

∂τ
+ izµ+ aD(τ) = 0

where p = −1
2
, a = kθ and q = κ.

This equality can be statisfied if and only if the coefficient part of Vt equals to 0

and the constant term to be 0, then it can be hierarchically written as two ordinary

differential equations (ODEs):

∂D(τ)

∂τ
+ izξρD(τ) +

1

2
ξ2D2(τ)− 1

2
z2 − qD(τ) + izp = 0 (E.5)

and

∂C(τ)

∂τ
+ izµ+ aD(τ) = 0 (E.6)
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E.4 Closed-form solution of parameters in ODEs

Let us write the ODE (equation 3.34) in a form of non-linear Riccati equation:

∂D(τ)

∂τ
= RD2(τ)−QD(τ) + P (E.7)

where R =
1

2
ξ2, Q = q − izξρ and P = izp− 1

2
z2.

This equaton can be solved by considering the following second-order ODE:

w′′ +Qw′ + PRw = 0 (E.8)

which can also be written as w′′+bw′+c = 0. One solution of equation (E.8) implies

a solution of equation (E.7) which can be expressed as:

D(τ) = −w
′

w

1

R
(E.9)

According to the auxiliary equation, two solutions (α and β) of equation (E.8) are

shown as:

α =
−b+

√
b2 − 4c

2
=
−Q+

√
Q2 − 4PR

2
=
−Q+ d

2
(E.10)

β =
−b−

√
b2 − 4c

2
=
−Q−

√
Q2 − 4PR

2
=
−Q− d

2
(E.11)

where

d = α− β =
√
Q2 − 4PR =

√
(q − izξρ)2 − ξ2(2izp− z2) (E.12)

The solution to the second-order ODE in equation (E.8) is formulated as:

w = Meατ +Neβτ (E.13)



APPENDIX E. RELEVANT PROOFS IN HESTON MODEL 159

where M and N are two constant, τ = T−t denotes the time to maturity. Therefore,

the solution of the non-linear Riccati equation (E.7) is given by:

D(τ) = −Mαeατ +Nβeβτ

Meατ +Neβτ
1

R
= − 1

R

Kαeατ + βeβτ

Keατ + eβτ
(E.14)

where K = M
N

. Given the initial condition D(0) = 0 at maturity T , the numerator

becomes Kα + β = 0, thus K = −β
α

, then the solution can be rearranged as:

D(τ) =− β

R

(
−eατ + eβτ

−geατ + eβτ

)
= − β

R

1− edτ

1− gedτ

=
Q+ d

2R

1− edτ

1− gedτ
=
q − izξρ+ d

ξ2

1− edτ

1− gedτ

(E.15)

where

g = −K =
β

α
=
Q+ d

Q− d
=
q − izξρ+ d

q − izξρ− d
(E.16)

The solution of C(τ) in the ODE (equation 3.35) can be derived by taking

integration:3

C(τ) =

∫ τ

0

izµ(dy) + a
Q+ d

2R

∫ τ

0

1− edy

1− gedy
(dy) + F (E.17)

where F is arbitrarily a constant.

Substituting:

x = edy, (dx) = dedy(dy), (dy) =
(dx)

dedy
=

(dx)

dx

into equation (E.17), then we have:

C(τ) = izµτ +
a

d

Q+ d

ξ2

∫ edτ

1

1− x
1− gx

1

x
(dx) + F (E.18)

3For simplicity and clarification, here we difine the notations as following which are only applied
in this appendix. “(dy)” or “(dx)” represents the differential symbol while independent “d” is
simply a parameter which is equal to α− β, i.e. dx means parameter d times x.
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This equation can be further rearranged as:4

C(τ) =izµτ +
a

d

Q+ d

ξ2

∫ edτ

1

(
1

x
− 1− g

1− gx

)
(dx)

=izµτ +
a

d

Q+ d

ξ2

[
lnx+

1− g
g

ln(1− gx)

]x=edτ

x=1

=izµτ +
a

d

Q+ d

ξ2

[
dτ +

1− g
g

ln

(
1− gedτ

1− g

)]

=izµτ +
a

ξ2

Q+ d

d

[
dτ − 2d

Q+ d
ln

(
1− gedτ

1− g

)]

=izµτ +
a

ξ2

[
(q − izξρ+ d)τ − 2ln

(
1− gedτ

1− g

)]

(E.19)

where

a = κθ, q = κ (E.20)

4The constant F becomes 0 in the calculation due to the initial condition C(0) = 0, then we

have C(τ) = 0 + a
d
Q+d
ξ2

∫ 1

1
1−x
1−gx

1
x (dx) + F = 0, thus F = 0.



Appendix F

Derivations in the section of

model specification

F.1 Derivation of unconditional expectation and

variance of function ht

Expectation. Given the volatility function of SV model (formula 4.6), the

unconditional expectation of ht can be derived in the following procedure:1

E[ht] = α + βE[ht−1]− αβ

=⇒E[ht]− βE[ht−1] = α(1− β)

=⇒E[ht](1− β) = α(1− β) =⇒ E[ht] = α

(F.1)

Variance. According to the law of total variance, the unconditional variance of ht

is formulated as follows:

V ar(ht) = E[V ar(ht|ht−1)] + V ar(E[ht|ht−1])

= σ2
η + V ar[α + β(ht−1 − α)]

= σ2
η + V ar(βht−1) = σ2

η + β2V ar(ht−1)

(F.2)

1Here by assuming h0 ∼ N(α, σ2
t ), then we can obtain E[h1] = α, E[h2] = α..., hence there

exist an equality where E[ht] = E[ht−1] = α.
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and since ht is a stationary process, then we have:

V ar(ht)(1− β2) = σ2
η

=⇒V ar(ht) =
σ2
η

1− β2

(F.3)

Consequently, it can be formally expressed as:

ht ∼ N(α,
σ2
η

1− β2
) t = 1, 2, ..., T (F.4)

F.2 Process to derive function ms,q

According to the mathematical definition of VaR, it is not difficult to find a

correlation between f(zt) and α, since oil suppliers are more considered about the

downside risk of oil price returns, thus we substitute the negative part of p.d.f.

of ALD into this correlation function. Corresponding analytic quantile expression

(ms,q) for the ALD can be obtained with the calculation process shown as follows:

P (yt ≤ −V aRs,t|Ωt) = P

(
yt − µ
σt

≤ −V aRs,t + µ

σt

∣∣∣∣Ωt

)

= P

(
zt ≤ −ms,q = −V aRs,t + µ

σt

)
=

∫ −ms,q
−∞

f−(zt) dzt

=

∫ −ms,q
−∞

√
2

τ

κ

1 + κ2
exp(

√
2zt
τκ

) dzt

=

√
2

τ

κ

1 + κ2

∫ −ms,q
−∞

τκ√
2
d(exp(

√
2zt
τκ

))

=
κ2

1 + κ2

(
exp(

√
2(−ms,q)

τκ
)− exp(

√
2(−∞)

κτ
)

)

=
κ2

1 + κ2
exp(

√
2(−ms,q)

κτ
) = α

where f−(zt) represents the negative part of the p.d.f. of ALD. Transforming this

equation, it is easy to obtain:

ms,q = − κτ√
2
ln
α(1 + κ2)

κ2
(F.5)
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F.3 Process to derive CV aRs,t under SV-ALD

The CVaR for supply (in the case yt ≤ 0) under SV-ALD model is shown as:

CV aRs,t =− E [yt|yt ≤ −V aRs,t] = −(µ+ σtE [zt|zt ≤ −ms,q]) (F.6)

Since we have:

E [zt|zt ≤ −ms,q] =

∫ −ms,q
−∞ zt f

−(zt) dzt

prob(zt ≤ −ms,q)

=α−1

∫ −ms,t
−∞

ztf
−(zt)dzt = α−1

∫ −ms,q
−∞

zt

√
2

τ

κ

1 + κ2
exp(

√
2zt
κτ

)dzt

=
1

α

√
2

τ

κ

1 + κ2

∫ −zs,t
−∞

zt exp(

√
2zt
κτ

)dzt

=
1

α

√
2

τ

κ

1 + κ2

τκ√
2

∫ −zs,t
−∞

zt d(exp(

√
2zt
κτ

))

=
κ2

α(1 + κ2)

[
exp(

√
2zt
κτ

) zt

∣∣∣∣−ms,q
−∞

−
∫ −ms,q
−∞

exp(

√
2zt
κτ

) dzt

]

=
κ2

α(1 + κ2)

[
(−ms,q) exp(

√
2(−ms,q)

κτ
)

− (
κτ√

2
exp(

√
2(−ms,q)

κτ
)− τκ√

2
exp(

√
2(−∞)

κτ
))

]

=
κ2

α(1 + κ2)

[
(−ms,q −

τκ√
2

)exp(

√
2(−ms,q)

κτ
)

]

=−ms,q −
κτ√

2
=
κτ√

2
ln
α(1 + κ2)

κ2
− κτ√

2

Substituting the above equation to (F.6), then CV aRs,t can be formulated as:

CV aRs,t = −µ− σt
κτ√

2

(
1− lnα(1 + κ2)

κ2

)
(F.7)

or equivalently expressed as:

CV aRs,t = V aRs,t +
κτσt√

2
(F.8)



APPENDIX F. DERIVATIONS FOR MODEL SPECIFICATION 164

F.4 Process to derive function md,q

Regarding the risk of oil demand, f+(zt) should be substituted by the positive part

of the p.d.f. of ALD. We have the following derivation process:2

P (yt > V aRd,t|Ωt) = P

(
yt − µ
σt

>
V aRd,t − µ

σt

∣∣∣∣Ωt

)

= P

(
zt > md,q =

V aRd,t − µ
σt

)
=

∫ +∞

md,q

f+(zt) dzt

=

∫ +∞

md,q

√
2

τ

κ

1 + κ2
exp(−

√
2κzt
τ

) dzt

=

√
2

τ

κ

1 + κ2

∫ +∞

md,q

−τ√
2κ
d(exp(−

√
2κzt
τ

))

= − 1

1 + κ2

(
exp(−

√
2κ(+∞)

τ
)− exp(−

√
2κmd,q

τ
)

)

=
1

1 + κ2
exp(−

√
2κmd,q

τ
) = α

Then, we have:

exp(−
√

2κmd,q

τ
) = α(1 + κ2)

=⇒ −
√

2κmd,q

τ
= ln

(
α(1 + κ2)

)
=⇒ md,q = − τ√

2κ
ln
(
α(1 + κ2)

)
(F.9)

F.5 Process to derive CV aRd,t under SV-ALD

For oil demand, risk measure CVaR under SV-ALD model (in the case yt > 0) can

be mathematically defined as:

CV aRd,t =E [yt|yt > V aRd,t] = µ+ σtE [zt|zt > md,q] (F.10)

2Another way to derive function md,t is to consider the other part of the integration interval and

transform the equation to the form as: P (yt ≤ V aRd,t|Ωt) =
∫md,t

−∞ f(zt)dzt =
∫ 0

−∞ f−(zt)dzt +∫md,t

0
f+(zt)dzt = 1−α, where f−(zt) and f+(zt) represent negative and positive part of the p.d.f.

of ALD respectively. Consistent result can be obtained in this logic.
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For the conditional expectation of zt, we have:

E [zt|zt > md,q] =

∫ +∞
md,q

zt f
+(zt) dzt

prob(zt > md,q)

=α−1

∫ +∞

md,q

ztf
+(zt)dzt = α−1

∫ +∞

md,q

zt

√
2

τ

κ

1 + κ2
exp(
−
√

2κzt
τ

)dzt

=
1

α

√
2

τ

κ

1 + κ2

∫ +∞

md,q

zt exp(
−
√

2κzt
τ

)dzt

=
1

α

√
2

τ

κ

1 + κ2
(− τ√

2κ
)

∫ +∞

md,q

zt d(exp(
−
√

2κzt
τ

))

=− 1

α(1 + κ2)

[
exp(
−
√

2κzt
τ

) zt

∣∣∣∣+∞
md,q

−
∫ +∞

md,q

exp(
−
√

2κzt
τ

) dzt

]

=− 1

α(1 + κ2)

[
(−md,q)exp(

−
√

2κmd,q

τ
)−

∫ +∞

md,q

exp(
−
√

2κzt
τ

)dzt

]

=− 1

α(1 + κ2)

[
(−md,q) exp(

−
√

2κmd,q

τ
)

−
(
− τ√

2κ
exp(
−
√

2κ(+∞)

τ
) +

τ√
2κ
exp(
−
√

2κmd,q

τ
)

)]

=− 1

α(1 + κ2)

[
(−md,q −

τ√
2κ

)exp(
−
√

2κmd,q

τ
)

]

=
1

α(1 + κ2)
(md,q +

τ√
2κ

)(α(1 + κ2))

=md,q +
τ√
2κ

= − τ√
2κ
ln
(
α(1 + κ2)

)
+

τ√
2κ

(F.11)

Substituting the above equation to formula (F.10), then CV aRd,t can be obtained:

CV aRd,t = µ+ σt
τ√
2κ

(
1− ln

(
α(1 + κ2)

))
(F.12)

or equivalently written as:

CV aRd,t = V aRd,t +
τσt√

2κ
(F.13)



Appendix G

Derivations in the section of

methodology

G.1 Derivation of ALD as an SMU

Consider a random variable z follows the ALD (equation 4.11), then the ALD can

be expressed as a scale mixture of fU(z|θ − κτλ√
2
, θ + τλ√

2κ
) and fGa(λ|2, 1):1

f(z|κ, τ, θ, λ) =

∫ ∞
0

fU(z|θ − κτλ√
2
, θ +

τλ√
2κ

)× fGa(λ|2, 1) dλ

=

∫ ∞
0

√
2κ

τ(1 + κ2)λ
I(θ − κτλ√

2
< z < θ +

τλ√
2κ

)λ exp(−λ) dλ

(G.1)

In equation (G.1), there are two cases for z where (1): z > θ − κτλ√
2

or equivalently

λ > −
√

2(z−θ)
τκ

and (2): z < θ + τλ√
2κ

or equivalently λ >
√

2κ(z−θ)
τ

.

Case (1):

∫ ∞
0

√
2κ

τ(1 + κ2)
I(λ >

−
√

2(z − θ)
τκ

) exp(−λ) dλ

=
−
√

2κ

τ(1 + κ2)

∫ ∞
−
√
2(z−θ)
τκ

exp(−λ) d(−λ)

=

√
2κ

τ(1 + κ2)
exp(

√
2(z − θ)
τκ

)

(G.2)

1Here, location parameter θ is included, though it is assumed to be 0 in the empirical part.
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Since −
√

2(z−θ)
τκ

> 0, thus we have z < θ which implies:

f−(z|κ, τ, θ) =

√
2κ

τ(1 + κ2)
exp(

√
2(z − θ)
τκ

) z < θ

Case (2):

∫ ∞
0

√
2κ

τ(1 + κ2)
I(λ >

√
2κ(z − θ)

τ
) exp(−λ) dλ

=
−
√

2κ

τ(1 + κ2)

∫ ∞
√

2κ(z−θ)
τ

exp(−λ) d(−λ)

=

√
2κ

τ(1 + κ2)
exp(
−
√

2κ(z − θ)
τ

)

(G.3)

Since
√

2κ(z−θ)
τ

≥ 0, then we have z ≥ θ which implies:

f+(z|κ, τ, θ) =

√
2κ

τ(1 + κ2)
exp(
−
√

2κ(z − θ)
τ

) z ≥ θ

Hence, it is shown that the Asymmetric Laplace density function of the random

variable z:

f(z|κ, τ, θ) =


√

2

τ

κ

1 + κ2
exp(−

√
2κ

τ
(z − θ)) z ≥ θ

√
2

τ

κ

1 + κ2
exp(

√
2

τκ
(z − θ)) z < θ

(G.4)

has been equivalently transformed into the SMU distribution with density representation

expressed as:

f(z|κ, τ, θ, λ) =

∫ ∞
0

fU(z|θ − κτλ√
2
, θ +

τλ√
2κ

)× fGa(λ|2, 1) dλ (G.5)
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G.2 Derivation of the pdf of scaled ALD

Consider a random variable z follows the Asymmetric Laplace density function in

equation (4.11) with mean and variance given by:2

E(z) = θ +
τ√
2

(
1

κ
− κ) V ar(z) =

τ 2

2
(

1

κ2
+ κ2)

A random variable z can be transformed to another random variable εt by taking:

εt =
z√

V ar(z)
(G.6)

Taking partial derivatives of εt with respect to z, then we have:

dz =
√
V ar(z) dεt =

τ√
2

√
1 + κ4

κ
dεt (G.7)

In the case z ≥ 0 or εt ≥ 0, by substituting (G.6) and (G.7) into density function

(G.4), we are able to obtain:

Pr+(εt) =

∫ +∞

0

√
2

τ

κ

1 + κ2

τ√
2

√
1 + κ4

κ
exp(
−
√

2κ

τ

τ√
2

√
1 + κ4

κ
(εt − θ)) dεt

=

∫ +∞

0

√
1 + κ4

1 + κ2
exp(−

√
1 + κ4 (εt − θ)) dεt

(G.8)

Similarly, in the case z < 0 or εt < 0, it has:

Pr−(εt) =

∫ 0

−∞

√
2

τ

κ

1 + κ2

τ√
2

√
1 + κ4

κ
exp(

√
2

τκ

τ√
2

√
1 + κ4

κ
(εt − θ)) dεt

=

∫ 0

−∞

√
1 + κ4

1 + κ2
exp(

√
1 + κ4

κ2
(εt − θ)) dεt

(G.9)

As a result, the pdf of SALD of random variable εt given σt can be written as:3

f(εt|κ, θ, σt) =


√

1 + κ4

1 + κ2

1

σt
exp(
−
√

1 + κ4

σt
(εt − θ)) εt ≥ θ

√
1 + κ4

1 + κ2

1

σt
exp(

√
1 + κ4

κ2σt
(εt − θ)) εt < θ

(G.10)

2See Kotz et al. (2001) for more details.
3Note that scale parameter τ has been canceled out in this derivation.
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where κ is skewness parameter and σt is the time-varying volatility of return series.

G.3 Derivation of scaled ALD as an SMU

This part demonstrates the derivation of SALD as a scale mixture of fU(εt|θ −
λκ2σt√
1+κ4

, θ + λσt√
1+κ4

) and fGa(λ|2, 1):

f(εt|κ, θ, λ, σt) =

∫ ∞
0

fU(εt|θ −
λκ2σt√
1 + κ4

, θ +
λσt√
1 + κ4

)× fGa(λ|2, 1) dλ

=

∫ ∞
0

√
1 + κ4

1 + κ2

1

σt

1

λ
I(θ − λκ2σt√

1 + κ4
< εt < θ +

λσt√
1 + κ4

)λ exp(−λ) dλ

(G.11)

Consider two cases for random variable εt where (1): εt > θ− λκ2σt√
1+κ4

or equivalently

λ > −
√

1+κ4(εt−θ)
κ2σt

and (2): εt < θ + λσt√
1+κ4

or equivalently λ >
√

1+κ4(εt−θ)
σt

.

Case (1):

∫ ∞
0

√
1 + κ4

1 + κ2

1

σt
I(λ >

−
√

1 + κ4(εt − θ)
κ2σt

) exp(−λ) dλ

=
−
√

1 + κ4

1 + κ2

1

σt

∫ ∞
−
√

1+κ4(εt−θ)
κ2σt

exp(−λ) d(−λ) =

√
1 + κ4

1 + κ2

1

σt
exp(

√
1 + κ4(εt − θ)

κ2σt
)

(G.12)

Since −
√

1+κ4(εt−θ)
κ2σt

> 0, thus we have εt < θ, which follows:

f−(εt|κ, θ, σt) =

√
1 + κ4

1 + κ2

1

σt
exp(

√
1 + κ4(εt − θ)

κ2σt
) εt < θ

Case (2):

∫ ∞
0

√
1 + κ4

1 + κ2

1

σt
I(λ >

√
1 + κ4(εt − θ)

σt
) exp(−λ) dλ

=
−
√

1 + κ4

1 + κ2

1

σt

∫ ∞
√

1+κ4(εt−θ)
σt

exp(−λ) d(−λ) =

√
1 + κ4

1 + κ2

1

σt
exp(
−
√

1 + κ4(εt − θ)
σt

)

(G.13)
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Since
√

1+κ4(εt−θ)
σt

≥ 0, thus we have εt ≥ 0, which follows:

f+(εt|κ, θ, σt) =

√
1 + κ4

1 + κ2

1

σt
exp(
−
√

1 + κ4(εt − θ)
σt

) εt ≥ θ

As a result, it is demonstrated that the scaled Asymmetric Laplace density function

of random variable εt:

f(εt|κ, θ, σt) =


√

1 + κ4

1 + κ2

1

σt
exp(
−
√

1 + κ4

σt
(εt − θ)) εt ≥ θ

√
1 + κ4

1 + κ2

1

σt
exp(

√
1 + κ4

κ2σt
(εt − θ)) εt < θ

(G.14)

can be replaced by an SMU distribution given by:

f(εt|κ, θ, λ, σt) =

∫ ∞
0

fU(εt|θ −
λκ2σt√
1 + κ4

, θ +
λσt√
1 + κ4

)× fGa(λ|2, 1) dλ (G.15)

G.4 Derivation of full conditional distributions

The full conditional distributions of model parameters and latent volatilities are:

• For parameter α, we have:

f(α|β, σ2
η, h, y) ∝ f(h1|α, β, σ2

η)
T∏
t=2

f(ht|ht−1, α, β, σ
2
η)fN(µα, σ

2
α)

= exp

[
−(h1 − α)2(1− β2)

2σ2
η

−
∑T

t=2(ht − α− β(ht−1 − α))2

2σ2
η

]
(

1

σ2
η

)T
2 1√

2πσα
exp

[
−(α− µα)2

2σ2
α

]

∝ exp

{
− 1

2

{[
1− β2 + (T − 1)(1− β2)

σ2
η

+
1

σ2
α

]
A︸ ︷︷ ︸α

2

− 2α

[
h1(1− β2) + (1− β)

∑T
t=2(ht − βht−1)

σ2
η

+
µα
σ2
α

]
︸ ︷︷ ︸

B

}}

(G.16)
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Hence, we can obtain:

α|β, σ2
η, h, y ∼ N(

B

A
,

1

A
)

• The beta prior distribution is assigned to β∗ = β+1
2
∼ Be(aβ, bβ), then we have:

f(β∗|α, σ2
η, h, y) ∝ f(h1|α, β, σ2

η)
T∏
t=2

f(ht|ht−1, α, β, σ
2
η)fBe(aβ, bβ)

= exp

[
−(h1 − α)2(1− β2)

2σ2
η

−
∑T

t=2(ht − α− β(ht−1 − α))2

2σ2
η

]
(

1

σ2
η

)T
2 β∗(aβ−1)(1− β∗)(bβ−1)

B(aβ, bβ)

∝ exp

[
β
∑T

t=2(ht − 1)(ht−α − α)

σ2
η

+
β2[(h1 − α)2 −

∑T
t=2(ht−1 − α)2]

2σ2
η

]

(1 + β)(aβ−1)(1− β)(bβ−1)

(G.17)

where B(·, ·) is beta function with B(aβ, bβ) =
Γ(aβ)Γ(bβ)

Γ(aβ+bβ)
, and Γ(·) is gamma function.

• For parameter σ2
η, we have:

f(σ2
η|α, β, h, y) ∝ f(h1|α, β, σ2

η)
T∏
t=2

f(ht|ht−1, α, β, σ
2
η)fIG(aσ, bσ)

=
1√

2
σ2
η

1−β2π
exp

−(h1 − α)2

2
σ2
η

1−β2

 1√
2σ2

ηπ

exp

[
−
∑T

t=2(ht − α− β(ht−1 − α))2

2σ2
η

]
baσσ

Γ(aσ)
σ2(−aσ−1)
η exp

(
− bσ
σ2
η

)

∝ exp

[
−
bσ + 1

2
(h1 − α)2(1− β2) + 1

2

∑T
t=2(ht − α− β(ht−1 − α))2

σ2
η

]
(

1

σ2
η

)(aσ+T
2

)+1

(G.18)
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Therefore, we can obtain:

σ2
η|α, β, h, y ∼ IG(âσ, b̂σ)

where âσ = aσ + T
2

and b̂σ = bσ + 1
2
(h1−α)2(1−β2)+ 1

2

∑T
t=2(ht−α−β(ht−1−α))2.

• For latent variables ht, we have:

f(ht|h−t, α, β, σ2
η, y) ∝ f(y|ht, α, β, σ2

η)f(ht|h−t, α, β, σ2
η)

=
1

λeht/2√
1+κ4

+ λκ2eht/2√
1+κ4

1√
2πB2

exp

[
−(ht − A)2

2B2

]

∝ e−
ht
2 exp

[
−1

2

(
h2
t

B2
− 2ht

A

B2

)]

= exp

{
− 1

2

 1

B2︸︷︷︸
C

h2
t − 2ht

(
A

B2
− 1

2

)
︸ ︷︷ ︸

D

}
(G.19)

where

A = α +
β[(ht−1 − α) + (ht+1 − α)]

1 + β2
, B2 =

σ2
η

1 + β2

is the mean and variance of Normal density function fN(ht|A,B2), which has

equality:

f(ht|h−t, α, β, σ2
η) = f(ht|ht−1, ht+1, α, β, σ

2
η) = fN(ht|A,B2)

Hence, it can be shown that:

ht|h−t, α, β, σ2
η, y ∼ N(

D

C
,B2) or N(A− B2

2
, B2) (G.20)



Appendix H

VaR and CVaR setting under

SV-N model

Risk for oil Supply

(1) VaR: V aRN,s,t = −µ− σtΦ−1(α)

where Φ−1(α) is the inverse cumulative distribution function of a N(0,1).

(2) CVaR: CV aRN,s,t = −E
[
yt| yt ≤ −V aRN,s,t

]
= −µ− σt

α
φ(Φ−1(α))

where φ(·) denotes the probability density function of a N (0,1).1

Risk for oil demand

(1) VaR: V aRN,d,t = µ+ σtΦ
−1(α)

where Φ−1(α) is the inverse cumulative distribution function of a N(0,1).

(2) CVaR: CV aRN,d,t = E
[
yt| yt ≥ V aR

N,d,t

]
= µ+

σt
α
φ(Φ−1(α))

where φ(·) is the probability density function of a N (0,1).

1The nominal risl level α̃ for CVaR backtesting under SV-N model is found depends only on the
risk level α. That is, α̃ of 3.96%, 1.96% and 0.38% corresponds to 10%, 5% and 1%, respectively
(details see Chen et al., 2012).
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Derivation of nominal risk level α̃

To calculate the nominal risk level α̃ (or the probability that CVaR falls at under

ALD), the c.d.f. of ALD is employed given by:

F (z|κ, θ, τ) =


1− 1

1 + κ2
exp

(
−
√

2κ

τ
(z − θ)

)
z ≥ θ

κ2

1 + κ2
exp

(√
2

τκ
(z − θ)

)
z < θ

(I.1)

Then, we need to evaluate the c.d.f. at the point that equate to the CVaR level.

A closed form solution of CVaR under ALD is firstly required for oil supply and

demand, which can be obtained as:1

CV aRs =
κτ√

2

(
1− lnα(1 + κ2)

κ2

)
(I.2)

CV aRd =
τ√
2κ

(
1− ln

(
α(1 + κ2)

))
(I.3)

Substituting the negative (I.2) and positive (I.3) into the second and first formula

of (I.1) respectively, then we have:

1Derivation of CV aRs and CV aRd is straightforward and not to be shown here, it is similar to
the derivation of CV aRs,t and CV aRd,t but in a more simpler manner.
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For supply:

F (CV aRs|κ, τ, α) =
κ2

1 + κ2
exp

[√
2

τκ

κτ√
2

(
ln
α(1 + κ2)

κ2
− 1

)]

=
κ2

1 + κ2
exp

[
ln
α(1 + κ2)

κ2
− 1

]

=
κ2

1 + κ2

exp

[
ln
α(1 + κ2)

κ2

]
e

=
κ2

1 + κ2

α(1 + κ2)

κ2

e

=
α

e

=α̃

(I.4)

For demand:

F (CV aRd|κ, τ, α) =1− 1

1 + κ2
exp

[
−
√

2κ

τ

τ√
2κ

(
1− ln

[
α(1 + κ2)

])]

=1− 1

1 + κ2
exp

(
ln
[
α(1 + κ2)

]
− 1
)

=1− 1

1 + κ2

exp(ln [α(1 + κ2)])

e

=1− 1

1 + κ2

α(1 + κ2)

e

=1− α

e

(I.5)

Since for oil demand, they are focusing on the right tail of return distribution. Thus,

the probability that CVaR of oil demand falls at is calculated as:

α̃ = 1− (1− α

e
) =

α

e
(I.6)

In summary, we conclude that the nominal risk level α̃ of CVaR under ALD for oil

supply and demand are identical, relying only on α and irrelevant to the skewness

and scale parameter in ALD.
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