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Abstract

I present in this thesis a wide analysis of stochastic and deterministic

models of the vascular endothelial growth factor (VEGF) and vascular

endothelial growth factor receptor (VEGFR) on human umbilical vein

endothelial cells (HUVEC).

Firstly, the analysis addresses the contribution of ligand induced dimeri-

sation, receptor competition between VEGFR1 and VEGFR2 and im-

mediate or delayed dimers phosphorylation in the overall behaviour of

the VEGFR/VEGF system. The analysis is based on van Kampen ap-

proximation of the solution of the corresponding master equations and

matrix-analytic techniques to analyse different signalling hypotheses

upon ligand stimulation.

Secondly two mathematical models are provided, with accompanying

quantitative experimental data, for binding and trafficking properties

of VEGFR on HUVECs, which propose a theoretical dependence of

ERK phosphorylation and transport rate of receptors from the Golgi

to the cell surface on these properties. The signal for ERK phos-

phorylation or perturbation of transport rate is generated by intrin-

sic VEGFR tyrosine kinase activation via VEGF binding at the cell

surface, and terminated by receptor/growth factor complex internali-

sation and degradation. Presented in this thesis models consist of ki-

netic equations which describe the binding, internalisation, recycling

and synthesis of VEGF and VEGFR, along with a simple expression

for the dependence of ERK phosphorylation or receptor synthesis on

VEGFR/VEGF dynamics.
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Chapter 1

Introduction

1.1 Biological introduction

The mammalian vascular network is a system of biological tubes that enables the

delivery of diverse array of proteins, lipids, sugars, micelles, vesicles, nucleic acids

and cells to different cells, tissues and organs (see de Almodovar et al. (2009)).

This network is also exploited by blood-borne pathogens (e.g. bacteria, viruses)

and can also display aberrant regulation that contributes to major disease states

such as cancer, heart disease and pre-eclampsia. Many key features of vascular

homoeostasis, development and control are dependent on the endothelial cell.

This unique cell forms a confluent monolayer that lines all blood vessels, forming

a single cell barrier between the blood and the walls of the blood vessels such

as arteries, veins and capillaries. The endothelial cell has the unique ability to

respond to circulating growth factors, lipid particles and mechanosensory stimuli

to integrate the animal response to the environment, diet and other biological

cues.

The ability of the endothelial cell to integrate the cellular response to biological

cues is dependent on the controlled activation of different signalling networks that

impact on cellular homoeostasis and gene expression. One such example is the

vascular endothelial growth factor (VEGF) family that is conserved in metazoan

species from man to fish (see Smith et al. (2015)). The founding member of

this family, VEGF-A, exerts complex biological responses from endothelial cells.

This is further complicated by the fact that the human VEGF-A gene encodes
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multiple protein isoforms such as VEGF-A165 and VEGF-A121, which differ within

their lengths (see Harper & Bates (2008)). Mounting evidence suggests that

the various isoforms are involved in diverse cellular responses (see Olsson et al.

(2006)). VEGF-A isoforms bind to two different membrane-bound receptors,

VEGFR1 and VEGFR2, which are receptor tyrosine kinases (RTK) and potent

switches in signal transduction. Each receptor has an extra-cellular domain for

binding ligand, a trans-membrane domain, and an intra-cellular or cytoplasmic

domain (see Figure 1.1 ).

Figure 1.1: VEGFR phosphorylation sites and signal transduction by Olsson et al.

(2006).

Intracellular domains of dimerised and activated VEGFR1 and VEGFR2 in Fig-

ure 1.1 are shown with tyrosine-phosphorylation sites that are indicated by num-

bers. Circled R indicates that use of the phosphorylation site is regulated de-

pendent on the angiogenic state of the endothelial cell (for VEGFR2) or is reg-

ulated by a particular ligand (for VEGFR1) or by hetero-dimerisation. Dark

blue squares in the receptor molecules indicate positions of tyrosine residues.

Binding of signalling molecules (dark blue ovals) to certain phosphorylation sites

(boxed numbers), initiates signalling cascades (light blue ovals), which leads to

the establishment of specific biological responses (pale blue boxes). The mode of

initiation of certain signalling chains is unclear (dashed arrows). Final biological
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outcomes that are coupled to the respective receptors are indicated in pink boxes.

The following molecules shown in Figure 1.1 are involved in signalling cascade:

DAG, diacylglycerol; EC, endothelial cell; eNOS, endothelial nitric oxide syn-

thase; FAK, focal adhesion kinase; HPC, haematopoietic progenitor cell; HSP27,

heat-shock protein-27; MAPK, mitogen-activated protein kinase; MEK, MAPK

and ERK kinase; PI3K, phosphatidylinositol 3 kinase; PKC, protein kinase C;

PLC, phospholipase C-; Shb, SH2 and -cells; TSAd, T-cell-specific adaptor.

VEGFR1 role is negative regulation of VEGF-A signalling whereas VEGFR2

transduces all known effects of VEGF-A (see Simons (2012), Simons et al. (2016)).

VEGF-A binding to VEGFR1 or VEGFR2 causes transmission of conformational

changes, which induces receptor homo-dimerisation or hetero-dimerisation and

results in activation of the tyrosine kinase activity within the VEGFR cytoplas-

mic domain located on the other side of the lipid bilayer. Phosphotyrosines and

surrounding amino acid residues constitute binding sites for adapter molecules,

which initiate various intracellular signalling pathways (see Simons et al. (2016)).

These pathways mediate immediate responses, such as vascular permeability, and

longer-term responses that require gene regulation, such as endothelial cell sur-

vival, migration and proliferation (see Figure 1.1).

Most of the work in this field has focused on studying the endothelial re-

sponse to VEGF-A165, the major isoform present in most extracellular fluids,

cells and tissues. Nonetheless, work has suggested that differences in the proper-

ties of VEGF-A165 and VEGF-A121 enabled the controlled activation of different

signalling pathways (see Whitaker et al. (2001), Karihaloo et al. (2005), Rennel

et al. (2009)). Much of the work has focused on VEGFR2, which is thought to

be the key molecule that controls the endothelial response to VEGF-A.

In order to model endothelial cell behaviour regulated by VEGFR/VEGF-A

signalling, initial cell surface binding events and subsequent intra-cellular traf-

ficking processes must be first quantified. Once this foundation is established,

cellular behaviour can more easily be analysed based on the number, state, and

location of all molecules and complexes involved. The receptor population is

involved in binding to other receptors or membrane associated molecules, in-

ternalisation, recycling, degradation and synthesis, broadly termed “trafficking”

events. Both VEGFR monomers and VEGFR dimers undergo internalisation by
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the same mechanism. The molecules are internalised and transferred to the early

endosome, in a process called endocytosis. After entering the early endosome,

monomeric and dimeric VEGFRs follow different pathways. The latter are trans-

ported to the late endosome and then to the lysosome for degradation, whereas

the former are rapidly recycled to the membrane (see Teis & Huber (2003) and

Figure 1.2).

Figure 1.2: Intracellular trafficking adapted from Scott & Mellor (2009). At

the surface there are two pools: a stable pool, and a pool that is constantly

internalising. Internalised VEGFR is trafficked to the early/sorting endosomal

compartment, where it is recycled to the cell surface or sent to late endosome for

degradation. New receptors are synthesised from the Golgi apparatus.

VEGF-A-induced signalling cascades can cause diverse cellular responses such

as cell motility, division or death (or apoptosis). Thus, a quantitative study of

binding and phosphorylation kinetics is crucial to the understanding of processes

like angiogenesis and vasculogenesis.
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1.2 Short review of previously studied receptor-

ligand models

Alarcón & Page (2007) propose a stochastic model which includes binding, dimeri-

sation, endocytosis and early signalling events. The authors carry out an anal-

ysis of the master equation of the process, by a generalisation of the Wentzel-

Kramers-Brillouin method, to address the contribution of ligand induced receptor

dimerisation, activation of src-homology-2 domain-carrying kinases and receptor

internalisation in the behaviour of the VEGFR/VEGF-A system, where only one

receptor type is considered (VEGFR2).

In order to analyse in detail the dimerisation and phosphorylation kinetics on

the cell membrane, it is usual to consider mathematical models which neglect in-

ternalisation events, and strictly focus on the biochemical reactions taking place

on the cell surface. Mac Gabhann & Popel (2007) introduce a comprehensive set

of models with different dimerisation pathways: the first allowing pre-dimerisation

without ligand and the second considering only ligand induced receptor dimeri-

sation. In this way, the authors can address the role of pre-formed dimers in

the binding process. It is also worth mentioning, that Olsson et al. (2006) re-

port that blood flow might activate VEGFRs in a ligand-independent manner

(promoting the activation of mechanosensory complexes). The consideration of

more than one receptor type by Mac Gabhann & Popel (2007) is also essential,

given that the authors note that prostacyclin synthesis has been reported to be

under the control of VEGFR heterodimers, which suggests that the signalling

of heterodimers is unique and significant for cellular responses. In most papers,

VEGFR1 is often neglected, even when it might be essential for the recruitment of

haematopoietic precursors and migration of monocytes and macrophages. Fur-

thermore, in many biological responses to VEGF-A, the contribution of both

VEGFR1 and VEGFR2 might be required for a balanced signalling (see Olsson

et al. (2006)). VEGFR signal-transduction models have to provide a context for

potential communication between different VEGF receptors at the plasma mem-

brane (through hetero-dimerisation). Therefore, the dynamics of competition for

ligand availability between VEGFR1 and VEGFR2 needs still to be analysed in

greater depth.

5



1. INTRODUCTION

There is a wealth of previous studies that have developed mathematical mod-

els of RTKs and their role in cellular responses. For example, Starbuck et al.

(1990) consider a different receptor tyrosine kinase, the endothelial growth factor

receptor (EGFR) to study the role of endothelial growth factor (EGF) on B82 fi-

broblasts. They argue that the receptor signal is generated at a rate proportional

to the number of activated receptors present, so that the amount of phosphory-

lated dimers is directly related to the initiation of signalling cascades. Tan et al.

(2013a) consider a mathematical model of pre-formed dimers, with instantaneous

phosphorylation of dimers upon ligand binding. However, phosphorylation is in

fact a multi-step process, in which the different tyrosine residues of the intra-

cellular tails of the dimeric receptors trans-phosphorylate each other as noted by

Olsson et al. (2006). Stochastic models of receptor oligomerisation by bivalent

ligands are introduced by Alarcón & Page (2006) to study the role of cross-linking

in cell activation. A particular feature of this study is that a small number of

receptors is considered, making a stochastic approach more appropriate than a

deterministic one (see Mac Gabhann et al. (2005) for a comparison between de-

terministic and stochastic approaches in VEGFR models). In order to decipher

how the dynamics on the membrane relates to cell activation, the authors define

a threshold number, θ, of oligomers that need to be formed in order to trigger a

cellular response. Once the process reaches this threshold, they study (by means

of Gillespie simulations — see Subsection 2.2.13), the probability of staying above

this threshold for a given time, T = 10 k−1
off , which is identified with the time to

initiate the signalling pathway as stated by Alarcón & Page (2006).

1.3 Objectives of this thesis

Systems in biology can be analysed, from a mathematical perspective, by de-

terministic or stochastic approaches. A deterministic approach implies that the

outcome of the system is always the same for identical initial conditions, and is

generally used in mathematical models that involve large population sizes (large

number of particles, molecules, individuals, etc.). The objective when analysing

a deterministic system is then to compute the trajectory of the process given

initial conditions. On the other hand, a stochastic approach aims to compute
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the probability of the different potential outcomes of the system under study,

where different outcomes can be obtained under identical initial conditions. A

stochastic approach is usually required when dealing with small population sizes,

with processes with external stochastic perturbations, or when extinction events

play a significant role (see Allen (2003)).

When analysing stochastic processes arising in systems biology, the focus is

usually on the transient behaviour of the process (see Kulkarni (1996)); that is,

computing the probability of the process being at each possible state at any given

time t > 0, which involves the master equation (see Subsection 2.2.5). Solving

the master equation in the case of a Markov process, is equivalent to solving

the forward Kolmogorov differential equation (see Equation (2.5)) in the theory

of continuous-time Markov chains (see Subsection 2.2.1). This is not only an

ambitious objective, but the Kolmogorov equations are not explicitly solvable in

general. Thus, different alternatives are usually implemented in the literature to

find solutions, such as Gillespie stochastic simulations algorithm (see Gillespie

(1977) and Subsection 2.2.13) or moment-based approaches (see Van Kampen

(1992), Hespanha (2008a) and Section 3.3).

The first part of this thesis (Chapter 3) focuses on finding analytical solutions

of mathematical models describing VEGFR/VEGF-A systems. Four different

stochastic models for the binding of VEGFR1 and VEGFR2 to VEGF-A ligand,

taking place on the membrane of a endothelial cell, are introduced in Section 3.1.

Phosphorylation and competition for ligand availability are studied in these mod-

els, assuming ligand induced dimerisation. Moment closure methods described

in Section 3.3 are used to analyse the transient behaviour of Markov processes

describing these four models. The parameters of the models are carefully derived

following approach presented by Lauffenburger & Linderman (1993) assuming

that the binding process is two-step process (diffusion and intrinsic reaction).

Depending on the objectives pursued, the analysis of the transient behaviour

of the stochastic process may not always be the best way to proceed. In particular,

it is possible to analyse different probabilistic performance measures that do not

require solving the master equation, and allow one to obtain exact information

about the stochastic process. In Section 3.4 and Section 3.5 an example of how to

obtain the desired information from a stochastic process by analysing a continuous
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probabilistic measure, which results in a first-passage time is provided. First-

passage times are not the only measures which can be addressed, and in Section

3.5 the analysis of alternative stochastic descriptors, such as time to generate

signal upon ligand stimulation, is discussed.

The analysis of these stochastic descriptors can be carried out by means of

auxiliary Markov processes, making use of Laplace-Stieltjes transforms (see Sub-

section 2.1.9) or probability generating functions (see Subsection 2.1.8), or ex-

ploiting structural properties of the processes under study. In particular, if these

processes have specific structural properties such as quasi-birth-and-death pro-

cesses (see Latouche & Ramaswami (1999) and Subsection 2.2.12), it is possible

to follow the matrix-analytic approach (originally developed by Neuts (1994) in

the field of queueing theory), in order to efficiently analyse the stochastic de-

scriptors of interest. This approach is mainly based on the analysis of phase-type

distributions (see He (2014)) and the structure of the state space by groups and

sub-groups (usually referred as levels and sub-levels) of states. Thus, transitions

between states are seen as transitions between levels and sub-levels, a by-blocks-

structure matrix arises in the analysis of the stochastic descriptors, and an algo-

rithmic approach is proposed for the computation of the descriptors of interest.

The second part of this thesis (Chapter 4) focuses on deterministic mod-

elling of experimental data with help of Bayesian methods (see Section 2.4) used

for parameterisation of studied models. Understanding VEGFR1 and VEGFR2

kinetics and turnover is important as VEGF-A-stimulated signal transduction

and endothelial cell responses depend on activated VEGFR residence at differ-

ent locations within the cell (see Gourlaouen et al. (2013), Jopling et al. (2009),

Koch et al. (2014), Lanahan et al. (2013), Lanahan et al. (2010), Lanahan et al.

(2014), Manickam et al. (2011), Nakayama et al. (2013), Yamada et al. (2014),

Zhang et al. (2013)). Therefore the deterministic trafficking models are studied

in Chapter 4 in order to understand how localisation of phosphorylated dimers

affect different signalling responses. In particular, in Section 4.1, the trafficking

VEGFR2/VEGF-A model is studied where two types of isoforms, VEGF-A165

and VEGF-A121 are considered as a stimulus. Two hypotheses are explored to

analyse the most probable location of phosphorylated dimers within a cell caus-

ing ERK phosphorylation, which can lead to cell proliferation, migration and
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homoeostasis. In Section 4.2 a VEGFR/VEGF-A trafficking model with two

receptors VEGFR1 and VEGFR2 is considered. For this model the aim is to

answer the question related with the synthesis of new receptors from the Golgi

apparatus. To be precise, several hypotheses are tested to find the most probable

localisation of phosphorylated dimers causing perturbation of receptor synthesis

upon ligand stimulation.

The data used in Chapter 4 are provided by the group of Dr Sreenivasan

Ponnambalam from School of Molecular and Cellular Biology at the University

of Leeds. It is shown in this thesis how experimental data, obtained from western

blot, can be used for modelling, and I discuss the problems one can encounter

when dealing with this type of data.

Additionally in Chapter 5 I once more make use of Bayesian methods to

parametrise thymic development models studied previously during my master

project (see Sawicka et al. (2014)). The experimental data, which have not been

used before for modelling in this form, are used in order to learn about the insides

of T cell maturation processes in the thymus. All biological introduction for these

models is provided within Chapter 5.

9
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Chapter 2

Mathematical background

2.1 Probability theory

This section details the important concepts and definitions of probability theory

which are required in this thesis, based on work presented by Allen (2003) and

Taylor & Karlin (2014). Probability theory is needed to introduce the stochastic

processes which are used to model the biological phenomena described in this

work.

2.1.1 Probability space

Let S be a set or any collection of objects, which is referred to as sample space.

For example, the sample space could be the set of all possible outcomes of a

random experiment. A sample point is an element of S whereas an event is a

subset of S. For any experiment, the probability space is defined as (S,A, P rob),

where S is the sample space, A is the collection of events in S, and Prob is a

probability measure defined on A.

Let A be a collection of subsets of S. A is called a σ-algebra and the ordered

pair (S,A) is called a measurable space if A has the following properties,

(i) A contains the sample space S, that is S ∈ A;

(ii) If B ∈ A, then the complement of B, denoted Bc, is in A, i.e.

B ∈ A⇒ Bc = {s ∈ S : s /∈ B} ∈ A;

11



2. MATHEMATICAL BACKGROUND

(iii) For any sequence {Bn}+∞
n=1, with Bn ∈ A ∀n ≥ 1, the union ∪+∞

n=1Bn ∈ A.

Hence the probability measure Prob is defined on A as follows.

Definition 2.1. Let (S,A) be a measurable space. Let Prob be a real-valued set

function defined on the σ-algebra A. The set function Prob : A→ [0, 1] is called

a probability measure if it has the following properties:

(i) Prob(B) ≥ 0 for all B ∈ A.

(ii) Prob(S) = 1.

(iii) If Bi ∩Bj = ∅ for integers i, j ≥ 1, where i 6= j, then

Prob(∪+∞
i=1Bi) =

+∞∑
i=1

Prob(Bi),

where Bi ∈ A for i ≥ 1.

The ordered triple (S,A, P rob) defines a probability space.

Definition 2.2. A partition of a sample space is simply the decomposition of

the sample space into a collection of mutually exclusive events with positive

probability. That is {B1, . . . , Bn} forms a partition of S if

(i) S = B1 ∪B2 ∪ . . . ∪Bn =
n⋃
i=1

Bi,

(ii) Bi ∩Bj = ∅, ∀i 6= j,

(iii) Prob(Bi) > 0, ∀i.

2.1.2 Conditional probability and independence

Other important concepts to be defined are conditional probability and indepen-

dence. Let (S,A, P rob) be a probability space. Let B1 and B2 be two events from

A. The conditional probability of event B1 given event B2 is defined as

Prob(B1|B2) =
Prob(B1 ∩B2)

Prob(B2)
,
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2.1 Probability theory

assuming that Prob(B2) > 0. Two events B1 and B2 are independent if and only if

Prob(B1|B2) = Prob(B1) or Prob(B2|B1) = Prob(B2). In other words the events

B1 and B2 are independent if and only if Prob(B1 ∩ B2) = Prob(B1)Prob(B2).

Now one can write the following theorem of total probability.

Theorem 2.3 (Theorem of total probability). Suppose that there is a partition

{B1, . . . , Bn} of a sample space S, then for any event A in the sample space S,

Prob(A) =
n∑
i=1

Prob(A|Bi)Prob(Bi).

One can use Theorem 2.3 to formulate Bayes theorem.

Theorem 2.4 (Bayes theorem). Suppose that there is a partition {B1, . . . , Bn}
of a sample space S and there is an event A such that Prob(A) > 0. Then, for

1 ≤ j ≤ n the probability of Bj given A is

Prob(Bj|A) =
Prob(A|Bj)Prob(Bj)

Prob(A)
=

Prob(A|Bj)Prob(Bj)
n∑
i=1

Prob(A|Bi)Prob(Bi)
.

Bayes theorem is the most important concept used in parameter inference meth-

ods described in Section 2.4.

2.1.3 Random variables and state space

A variable whose values depend on the possible outcomes in S is called a random

variable. This idea is central to probability theory and can be defined as follows.

Let (S,A) be a measurable space. A random variable X is a real-valued function

defined on the sample space S,

X : S → R,

such that ∀a ∈ R

X−1 (−∞, a] = {s ∈ S : X(s) ≤ a} ∈ A.

13



2. MATHEMATICAL BACKGROUND

The measurable space SX such that,

SX = {x ∈ R : X(s) = x for some s ∈ S},

is called the state space of X. The random variable X is called a discrete random

variable if the state space of X is finite or countably finite, whereas if the state

space is infinite, the random variableX is said to be a continuous random variable.

The random variable can be also mixed type if it has some properties of both a

discrete and a continuous random variable.

2.1.4 Cumulative distribution function

The cumulative distribution function (c.d.f.) of the random variable X is the

function F : R→ [0, 1], with domain R and range [0, 1], defined by

F (x) = Prob(X ≤ x).

The function F (·) is non-decreasing, right continuous and satisfies

lim
x→−∞

F (x) = 0 and lim
x→+∞

F (x) = 1.

The cumulative distribution function describes how the probabilities accumulate.

2.1.5 Probability mass function and probability density

function

Functions that define the probability measure for discrete and continuous random

variables are called the probability mass function (p.m.f.) and the probability

density function (p.d.f.), respectively. Suppose X is a discrete random variable

on a state space SX . The function p(x) = Prob(X = x) that is defined for each

x ∈ SX is called the probability mass function. The p.m.f. has the following

properties which result from Definition 2.1,∑
x∈SX

p(x) = 1 and Prob(X ∈ B) =
∑
x∈B

p(x), (2.1)

for any B ⊂ SX . Additionally the c.m.f. of a discrete random variable satisfies

F (x) =
∑
a≤x

p(a),
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2.1 Probability theory

and F (x) = 0 if x < inf{a ∈ SX}.
On the other hand, suppose X is a continuous random variable with c.d.f.

F (·) and there exists a non-negative, integrable function f : R → [0,+∞), such

that

F (x) =

x∫
−∞

f(y)dy.

The function f(·) is called the probability density function (p.d.f.) of X. Analo-

gously to Equation (2.1)

+∞∫
−∞

f(x)dx = 1 and Prob(X ∈ B) =
∫

x∈B
f(x)dx.

2.1.6 Joint probability distributions

Let X and Y be two random variables with state space SX and SY , respectively,

so that the random vector (X, Y ) is defined on the state space SXY = SX × SY

(× denotes the Cartesian product). In order to study two (or more) random

variables the joint probability mass function, for discrete random vectors, or the

joint probability density function, for continuous random vectors, needs to be

defined.

Let X and Y be some discrete random variables, then the joint p.m.f. can be

written as

p(x, y) = Prob(X = x, Y = y),

and the following equation is satisfied∑
(x,y)∈SXY

p(x, y) = 1.

The joint p.m.f. contains all the information regarding the distributions of X and

Y . This means that one can obtain the p.m.f. of X or the p.m.f. of Y from the

joint p.m.f. of (X, Y ) as follows,

pX(x) =
∑
y∈SY

p(x, y), pY (y) =
∑
x∈SX

p(x, y).

pX(·) and pY (·) are called the marginal p.m.f. of X and Y , respectively.
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2. MATHEMATICAL BACKGROUND

Let now X and Y be some continuous random variables. X and Y are called

jointly continuous if there exists a non-negative function fXY : R2 → [0,+∞),

such that, for any set A ∈ SXY

Prob((X, Y ) ∈ A) =

∫
(x,y)∈A

fXY (x, y)dxdy.

The function fXY (·, ·) is called the joint probability density function of X and Y

and it satisfies the following equation∫
(x,y)∈SXY

fXY (x, y)dydx = 1.

Analogously to the discrete case one can find the marginal probability density

functions of X and Y from their joint p.d.f.

fX(x) =
∫

y∈SY
fXY (x, y)dy, fY (y) =

∫
x∈SX

fXY (x, y)dx,

where fX(·) and fY (·) are the marginal p.d.f. of X and Y , respectively.

2.1.7 Expectation, standard deviation and covariance

The expectation, the standard deviation and the covariance are fundamental con-

cepts to characterise the p.d.f. of a random variable. Suppose X is a discrete

random variable with p.m.f. p(·) defined on a discrete state space SX, then the

expectation of X is defined as,

E(X) =
∑
x∈SX

xp(x).

Suppose X is a continuous random variable with p.d.f. f(·) defined on a con-

tinuous state space SX. Then the expectation of X, denoted E(X) is defined

as

E(X) =

∫
SX

xf(x)dx.

In general, given a random variable X, the expectation E(Xk) for k ∈ N is called

the kth moment of X. The kth moment about the mean (or kth central moment)

is defined as,

E(X − E(X))k.
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2.1 Probability theory

The variance of the random variable X, denoted V ar(X) is defined as,

V ar(X) = E(X − E(X))2.

Suppose Y is also a continuous random variable, then the law of total variance

or variance decomposition formula, (see Weiss (2006)) says that

V ar(Y ) = E(V ar(Y |X)) + V ar(E(Y |X)). (2.2)

The standard deviation of X is the square root of the variance, σ =
√
V ar(X).

The covariance of two random variables X and Y characterise the dependence of

the random variables on each other and is defined as

Cov(X, Y ) = E ((X − E(X))(Y − E(Y ))) .

If Cov(X, Y ) = 0, then X and Y are said to be uncorrelated.

2.1.8 Generating functions

The generating function describes an infinite sequence of numbers by treating

them as the coefficients of a series expansion. The sum of this infinite series is

called the generating function. Generation function representation of the proba-

bility mass function of the random variable is called probability generating func-

tion and it is defined as follows.

Definition 2.5. Let X be a discrete random variable defined on a state space

SX with p.m.f. p(·), then for z ∈ R the probability generating function (p.g.f.)

of X is defined as

PX(z) = E(zX) =
∑
x∈SX

p(x)zx.

Let X be a continuous random variable with p.d.f. f(·), then the p.g.f. of X is

PX(z) = E(zX) =

∫
SX

f(x)zxdx.

A useful alternative generating function in the study of stochastic processes is

the moment generating function.
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Definition 2.6. The moment generating function (m.g.f.) of a discrete random

variable X defined on a state space SX with probability function p(·), denoted

MX(·) is defined for z ∈ R as

MX(z) = E(ezX) =
∑
x∈SX

p(x)exz.

Let X be a continuous random variable with p.d.f. f(·), then the m.g.f. is given

by,

MX(z) = E(ezX) =

∫
R
f(x)ezxdx.

An alternative function that provides an alternative distribution to the moments

is the cumulant generating function.

Definition 2.7. The cumulant generating function (c.g.f) of the random variable

X is the natural logarithm of the moment generating function, denoted KX(·),

KX(t) = log (MX(t)),

where log(·) denotes the natural logarithm to the base of e.

The cumulants κn are obtained from a power series expansion of the c.g.f,

KX(t) =
+∞∑
n=1

κn
tn

n!
. (2.3)

The nth cumulant can be obtained by differentiating Equation (2.3) n times and

by evaluating the result at t = 0,

κn = K
(n)
X (0).

2.1.9 Laplace-Stieltjes transform

Define Laplace-Stieltjes transform which is used later in Sections 3.4 and 3.5 of

Chapter 3.

Definition 2.8. Let X be a non-negative real valued random variable with c.d.f.

F (·). Laplace-Stieltjes transform of X (or of its c.d.f.) is defined as

φX(s) = E(e−sX) =

+∞∫
x=0

e−sxdF (x),<(s) ≥ 0.

The LST has the following properties,
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2.1 Probability theory

1. φX(0) = Prob(X < +∞).

2. The moments of X are given by

E(Xk) = (−1)k
dk

dsk
φX(s) |s=0 , k ≥ 1.

3. Let X and Y be independent random variables, then

φX+Y (s) = φX(s)φY (s).

2.1.10 Exponential distribution

In probability theory and statistics the Poisson process is a process in which

events occur continuously and independently at a constant average rate. The

exponential distribution describes the time between events in this process.

Definition 2.9. If a random variable X is exponentially distributed with rate

parameter α then its p.d.f. is defined as,

f(x) =

{
αe−αx, x > 0,

0, x ≤ 0.

The kth moment of X is given by,

E(Xk) =
k!

αk
,

and its Laplace-Stieltjes transform is

φX(s) =

+∞∫
x=0

e−sxαe−αxdx =
α

α + s
.

The exponentially distributed random variable X obeys the following memoryless

property,

Prob(X > s+ x|X > s) = Prob(X > x), ∀s, x ≥ 0.

When X is interpreted as the waiting time for an event to occur relative to some

initial time, this relation implies that, if X is conditioned on a failure to observe
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the event over some initial period of time s, the distribution of the remaining

waiting time is the same as the original unconditional distribution.

Let X1, X2, . . . Xn be independent exponentially distributed random variables

with rate parameters α1, α2, . . . , αn. Then variable Z = min{X1, X2, . . . , Xn} is

also exponentially distributed with parameter α = α1 +α2 + . . .+αn. The index

of the variable which achieves the minimum is distributed as

Prob(Z = Xk) =
αk
α
, 1 ≤ k ≤ n.

2.2 Stochastic Processes

In probability theory, a stochastic process is usually defined as a collection of ran-

dom variables. A stochastic model described by a stochastic process can be used

to estimate probable outcomes when one or more model variables are changed

randomly. In this section, I define a stochastic process and give some examples

of the kind of processes which are used later in this thesis. I also show some

methods which can help to solve stochastic equations. The theory in this section

is based mainly on work presented by Allen (2003), Kulkarni (1996), Latouche &

Ramaswami (1999) and He (2014).

Definition 2.10. A stochastic process X is a collection of random variables X =

{X(t) : t ∈ T}, where T is some index set and variables X(t) take values in the

state space of the stochastic process, SX. For each realisation of the stochastic

process, {X(t) : t ∈ T} becomes a function defined on T that is called a sample

path of the process.

A stochastic process can be multivariate, i.e. it can consist of a collection of

random vectors,

X(t) = (X1(t), X2(t), . . . , Xk(t)), where k ∈ N.

2.2.1 Continuous time Markov chain

Let X = {X(t) : t ∈ [0,+∞)} be a collection of discrete random variables with

values in a discrete state space SX, which can be finite or infinite, and where
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2.2 Stochastic Processes

the index set is continuous, t ∈ [0,+∞). The stochastic process X is called

a continuous time Markov chain (CTMC) if for any sequence of real numbers

satisfying 0 ≤ t0 < t1 < . . . < tn < tn+1,

Prob (X(tn+1) = in+1|X(t0) = i0, X(t1) = i1, . . . , X(tn) = in)

= Prob (X(tn+1) = in+1|X(tn) = in) ,
(2.4)

where i0, i1, . . . , in+1 ∈ SX. The condition defined in Equation (2.4) is known as

the Markov property and intuitively means that the state transition from in to

in+1 depends only on the value of the state at time tn and does not depend on the

history of the process. Each random variable X(t) has an associated probability

distribution,

pi(t) = Prob(X(t) = i), where i ∈ SX.

2.2.2 Transition probabilities

Transition probabilities define a relation between the random variables X(t) and

X(s), where s < t, in the following way,

pij(t, s) = Prob(X(t) = j|X(s) = i), for i, j ∈ SX.

The CTMC X is called homogeneous if the transition probabilities depend only

on the length of the interval t− s; that is, if

pij(t, s) = pij(t− s) = Prob(X(t− s) = j|X(0) = i).

In this case the matrix of transition probabilities is called the transition matrix,

P (t) = (pij(t))i,j∈SX .

The transition matrix P (t) is a stochastic matrix for all t ≥ 0; that is, elements

of each row sum up to 1. This is because the sum of transition probabilities from

a state i to any state must be equal to one.
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2.2.3 Chapman-Kolgomorov equations

The transition probabilities are solutions of the Chapman-Kolgomorov equations

for all s, t ∈ [0,+∞), ∑
k∈SX

pkj(s)pik(t) = pij(s+ t),

which can written in matrix form as,

P (s)P (t) = P (s+ t).

2.2.4 Infinitesimal generator matrix

Assume that transition probabilities pij(t) are continuous and differentiable for

t ≥ 0, pij(0) = 0 for i 6= j and pii(0) = 1. Transition rates for the stochastic

process are defined as,

qij =


lim

∆t→0+

pij(∆t)− pij(0)

∆t
= lim

∆t→0+

pij(∆t)

∆t
if i 6= j,

lim
∆t→0+

pii(∆t)− pii(0)

∆t
= lim

∆t→0+

pii(∆t)− 1

∆t
if i = j.

These transition rates can be stored in a matrix, which is called the infinitesimal

generator matrix Q = (qij)i,j∈SX . The matrixQ encodes all the information about

the process. Note that
∑

i,j∈SX
pij(∆t) = 1, hence

1− pii(∆t) =
∑
i 6=j
j∈SX

pij(∆t) =
∑
i 6=j
j∈SX

(qij∆t+ o(∆t)) .

Thus the elements on the diagonal of Q can be written as

qii = lim
∆t→0+

1

∆t

∑
i 6=j
j∈SX

(qij∆t+ o(∆t)) = −
∑
i 6=j
j∈SX

qij

so that elements at each row of Q sum up to zero and the matrix Q is said to be

conservative. The notation o(·) is the Landau order symbol such that

lim
∆t→0+

o(∆t)

∆t
= 0.
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2.2.5 Kolgomorov differential equations

Applying the Chapman-Kolgomorov equations to the transition probability pij(t+

∆t), dividing by ∆t, and considering ∆t → 0 leads to the system of differential

equations,
dpij(t)

dt
=
∑
k∈SX

qkjpik(t), ∀i, j ∈ SX

called the forward Kolgomorov differential equation, which can also be expressed

in matrix form as
dP (t)

dt
= QP (t). (2.5)

Equation (2.5) is often referred to as the master equation (ME) or the chemical

master equation (CME) of the stochastic process.

2.2.6 Stationary probability distribution

For a CTMC X with the infinitesimal generator matrix Q and the transition ma-

trix P (t), a steady state of Equation (2.5) is a stationary probability distribution

π = (πi ∈ [0, 1] : i ∈ SX) which verifies

Qπ = 0, and
∑
i∈SX

πi = 1.

This condition is equivalent to

P (t)π = π, ∀t ≥ 0,
∑
i∈SX

πi = 1.

Under some conditions, value πi = lim
t→+∞

Prob(X(t) = i) represents the long-term

probability of process X being at state i, for each i ∈ SX (see Allen (2003)).

2.2.7 Generating function techniques

In general, it is not always possible to find a solution for Equation (2.5) and to

obtain the transition matrix P (t) for a CTMC X. This problem is directly related

to the computation of the exponential of a matrix, since a theoretical solution for

Equation (2.5) is given by P (t) = P (0)eQt (see Allen (2003)). One method for

trying to obtain P (t) is based on the generating functions defined in Subsection
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2.1.8. In this method, a partial differential equation is derived from Equation

(2.5) so that the solution of this equation is a generating function. I show this

method for a multi-variate random variable as the stochastic models in this thesis

are usually described in terms of multi-variate continuous time Markov processes

(CTMP).

Consider a multi-variate CTMP X = {X(t) : t ∈ [0,+∞)}, defined in terms

for k ∈ N different random variables X(t) = (X1(t), X2(t), . . . , Xk(t)) with state

space SX1× . . .×SXk
. For an initial state X(0) = (x1, x2, . . . , xk) denote the p.g.f.

of that CTMP as,

PX(z, t) =
∑

n1∈SX1

. . .
∑

nk∈SXk

Prob(X(t) = n)zn1
1 . . . znk

k , (2.6)

where z = (z1, z2, . . . , zk), n = (n1, n2, . . . , nk) and

Prob(X(t) = n) = Prob(X1(t) = n1, X2(t) = n2, . . . , Xk(t) = nk|X(0)).

Similarly denote the moment generating function of X, where θ = (θ1, θ2, . . . , θk)

as,

M(θ, t) = P(eθ, t) =
∑

n1∈SX1

. . .
∑

nk∈SXk

Prob(X(t) = n)en1θ1 . . . enkθk . (2.7)

By differentiating Equation (2.7) with respect to time t, one can obtain a partial

differential equation for the moment generating function of the CTMP X. This

partial differential equation can be used to derive ordinary differential equations

for the mean and higher-order moments ofX(t). In general, differentiating Equa-

tion (2.7) with respect to θn1
1 , . . . , θnk

k , where n1 + . . .+nk = N , and interchanging

the order of the differentiation yields a partial differential equation for ∂N+1M

∂t∂θ
n1
1 ...∂θ

nk
k

.

Evaluating this differential equation at θ1 = . . . = θk = 0 and using the fact that

∂NM

∂θn1
1 . . . ∂θnk

k

∣∣∣∣
θ1=...=θk=0

= E(Xn1
1 (t) . . . Xnk

k (t)),

an ordinary differential equation for the kth moment E(Xn1
1 (t) . . . Xnk

k (t)) may

be obtained. This technique is applied in Subsection 3.3.1 of Chapter 3.
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2.2.8 Moment closure methods

Moment closure is an approximation method used to estimate moments of a

stochastic process. Consider a CTMP X, with X(t) = (X1(t), X2(t), . . . , Xk(t)).

Let m = (m1,m2, . . . ,mk), where m1,m2, . . . ,mk ∈ N. Denote by µ(m)(t) the

mth moment as,

µ(m)(t) = E(Xm1
1 (t)Xm2

2 (t) . . . Xmk
k (t)).

One may construct a vector µ(t) containing all moments of X(t) up to order

n. The integer n is called the order of truncation (see Hespanha (2008a)). The

evolution of µ(t) is determined by a differential equation of the form,

dµ(t)

dt
= Aµ(t) +Bµ̄(t), µ(t) ∈ RN , µ̄(t) ∈ RN̄ , (2.8)

where N, N̄ ∈ N and µ̄(t) is a vector containing moments of order larger than n.

The dimension N in Equation (2.8) is always larger than n since there are many

moments of each order. Moment closure is the procedure of approximating the

exact (open) moment dynamics by an approximate (closed) equation of the form,

dv(t)

dt
= Av(t) +Bφ(v(t)), v(t) ∈ RN , (2.9)

where φ(v(t)) is a column vector that approximates the moments in µ̄(t). The

function φ(·) is called the moment closure function. The goal of any moment

closure method is to construct φ(·) so that the solution v(t) of Equation (2.9) is

close to the solution µ(t) of Equation (2.8). There are three main approaches to

construct the moment closure function (see Hespanha (2008a), Gillespie (2009b)),

1. Matching-based methods, which directly attempt to match the solutions of

Equations (2.8) and (2.9).

2. Distribution-based methods, based on constructing φ(·) by making reason-

able assumptions on the statistical distribution of the variable X(t).

3. Large volume methods, which construct φ(·) by assuming that reactions

take place in a large volume.
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In this thesis, I use the zero cumulants method (see Hespanha (2008a)), which is

a distribution-based method, and the van Kampen approximation (see Van Kam-

pen (1992)), which is a large volume method.

Zero cumulants method

The zero cumulants methods assumes that all multi-variable cumulants of the

population X(t) with order larger than the order of truncation n are negligible

(see Hespanha (2008a)). This makes the distribution of X(t) as close as possible

to a Gaussian distribution, which has all cumulants of order higher than two

equal to zero. The cumulant can be expressed as

κ(m)(t) = µ(m)(t) +
∑

∑
i m̄i<

∑
imi

αm̄µ
(m̄)(t), (2.10)

where the summation is over moments µ(m̄)(t) of order strictly smaller than
∑

imi

and values αm̄ are appropriately selected constants. This shows that the cumulant

κ(m)(t) depends only on the moment µ(m)(t) and lower-order moments µ(m̄)(t),

so by setting κ(m)(t) = 0 one obtains an expression for µ(m)(t) as a function of

lower-order moments. The procedure to compute the zero-cumulants moment

closure function φ(·) consists of setting to zero all cumulants corresponding to

the moments that do not appear in µ(t) and then solving Equations (2.10) for

the moments in µ̄(t).

van Kampen approximation

The van Kampen approximation, like any other moment-closure method, aims

to obtain the time evolution of the different order moments for the random vari-

ables of the CTMPs under consideration. It is possible to obtain a system of

differential equations for the different order moments of the random variables

considered. However, this system of differential equations relates any order mo-

ment of a studied variable to its immediately posterior order moment, which

yields an infinite system of differential equations. The main assumption of the

van Kampen approximation is that the distribution of the stochastic fluctuations

around a steady state follows a multi-variate normal distribution, which allows to
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close the order moment hierarchy. The van Kampen approximation, also called

linear noise approximation, is developed in Van Kampen (1992) in Chapter X

and can be applied when the matrices A,B in Equation (2.8) depend on some

parameter Ω that can be assumed large, i.e.,

dµ(t)

dt
= A(Ω)µ(t) +B(Ω)µ̄(t),

with Ω large. This form of moment closure results is exact in the limit as Ω →
+∞. Typically, Ω is the volume on which the chemical reactions take place.

Both methods, the zero cumulant and the van Kampen approximation are

fully described in the example in Subsection 3.3.1 and Subsection 3.3.2 of Chapter

3.

2.2.9 First-passage time

Consider a CTMC X = {X(t) : t ≥ 0} on the state space SX = {0, 1, 2, . . .} with

infinitesimal generator matrix Q = (qij)i,j∈SX . Assume that one is interested in

the random variable

T = inf{t ≥ 0 : X(t) = 0};

that is the first time at which X enters into state 0, for some initial state X(0) 6= 0.

T is called the first-passage time to 0 and represents the first time at which the

variable X(t) gets into state 0. Define the matrix R(t) = (rij(t))i,j≥1 where

rij(t) = Prob(T > t,X(t) = j|X(0) = i), for t ≥ 0.

Then the complementary c.d.f. of T conditioned on X(0) = i is given by

ri(t) = Prob(T > t|X(0) = i) =
+∞∑
j=1

rij(t).

It can be shown that the matrix functionR(t) with the initial conditionR(0) = I

satisfies the set of differential equations

dR(t)

dt
= MR(t) = R(t)M ,

where I is the identity matrix and M = (qij)i,j≥1 is a sub-matrix of the generator

matrix Q = (qij)i,j≥0. In particular matrix M is obtained by deleting the row

and the column corresponding to state 0.
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2.2.10 Phase-type distribution

Assume now that SX = {0, . . . , K} and 0 is an absorbing state for the CTMC

X, so that q0j = 0 ∀j ≥ 1. This means that once process X enters in state 0, it

remains in this state forever and that its infinitesimal generator can be expressed

as

Q =

(
0 0
t M

)
,

where t is a column vector such that

M1 + t = 0,

and 1 is a column vector of ones. In this case T , which is the first-passage time

to 0, is usually referred to as the absorption time of the CTMC X. One can

define an initial distribution α = (α1, α2, . . . , αK) with αj = Prob(X(0) = j)

and
K∑
i=1

αi = 1 where K ∈ N. Then the absorption time T is known to follow a

phase-type distribution denoted as PH(α,M) with c.d.f.

Prob(T ≤ t) = 1−αeMt1,

where M = (qi,j)1≤i,j≤K .

2.2.11 Birth-and-death process

Consider CTMC X = {X(t) : t ≥ 0} on the state space SX = {0, 1, 2 . . .} (alter-

natively, one can also consider a finite state space). Assume now that events in

process X can be births or deaths, moving the process from each state n to state

n + 1 with rate λn (birth) or to state n − 1 with rate µn (death), as shown in

Figure 2.1.

0 1 2 . . . n− 1 n n+ 1 . . .

λ0 λ1 λn−1 λn

µn+1µnµ2µ1

Figure 2.1: State diagram for a birth-and-death process.
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Then the stochastic process X with transition probabilities defined as

pij(∆t) = Prob(X(t+ ∆t) = j|X(t) = i)

=


λi∆t+ o(∆t), if j = i+ 1,
µi∆t+ o(∆t), if j = i− 1,

1− (λi + µ1)∆t+ o(∆t) if j = i,
o(∆t), otherwise,

is called birth-and-death process, where i, j ∈ SX and o(·) is the Landau order

symbol defined in Subsection 2.2.4. The corresponding infinitesimal generator of

a birth-and-death process is then the following tridiagonal matrix

Q =


−λ0 λ0 0 0 · · ·
µ1 −(λ1 + µ1) λ1 0 · · ·
0 µ2 −(λ2 + µ2) λ2 · · ·
0 0 µ3 −(λ3 + µ3) · · ·
...

...
...

...
. . .

 . (2.11)

2.2.12 Quasi-birth-and-death process

A quasi-birth-and-death (QBD) process is a bivariate Markov process with a state

space SX = {(i, j) : i ≥ 0, j = 1, 2, . . . ,Mi} where i is called the level of the

process, j is called the phase of the process, and Mi are integers that can be finite

or infinite. The process is restricted in level jumps only to its nearest neighbours

but is unrestricted in the phase dimension. More precisely, from state (i, j) ∈ SX

the process may transition to states of the form (i, k), (i− 1, k) or (i+ 1, k), but

not to states of the form (i± n, k) where n ≥ 2. Clearly, the QBD process is an

extension of the standard birth-and-death process whose state space containing

levels formed by a single phase. Suppose X = {X(t) = (X(t), J(t)) : t ≥ 0} is a

CTMP on the state space S. With a suitable ordering of the states,

L(0) ≺ L(1) ≺ . . . ≺ L(n), where L(k) = {(k, 0), . . . , (k,Mk)}

the infinitesimal generator matrix of X has the tridiagonal-by-block structure

(similar to the matrix defined by Equation (2.11)),

Q =


A0,0 A0,1 0 0 · · ·
A1,0 A1,1 A1,2 0 · · ·

0 A2,1 A2,2 A2,3 · · ·
0 0 A3,2 A3,3 · · ·
...

...
...

...
. . .
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where sub-matrices Ak,k′ contain the infinitesimal transition rates of the transi-

tions from states at level L(k) to states at level L(k′), with k′ ∈ {k− 1, k, k+ 1}.

For each k ≥ 0, the diagonal elements of Ak,k are strictly negative, and the off-

diagonal elements of Ak,k are non-negative. The matrices Ak,k′ where k 6= k′ are

non-negative. For k ≥ 1, the matrix A(k) = Ak,k−1 +Ak,k +Ak,k+1 has zero row

sums as does the matrix A0,0 +A0,1. The structure of the generator matrix Q

reveals that its transitions are restricted to nearest neighbours in the levels and

unrestricted (in general) across the phase dimension.

The processes described in Sections 3.4 and 3.5 in Chapter 3 are studied an-

alytically using QBD representation in order to consider a number of specifically

defined stochastic descriptors.

2.2.13 The Gillespie algorithm

In probability theory, the Gillespie algorithm allows to generate numerical sim-

ulations of the stochastic processes under consideration. It was presented by

Gillespie (1976) where the algorithm was used to simulate chemical or biochem-

ical systems of reactions efficiently and accurately using limited computational

power. Since a CTMP can be seen as a sequence of competitions of exponential

random variables (see Gillespie (1976)), the Gillespie algorithm is based on the

properties presented in Subsection 2.1.10. For a CTMP X with a space of states

SX and with the infinitesimal generator matrix Q = (qij)i,j∈SX , the Gillespie al-

gorithm can be described by Algorithm 1.
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Define two counters to represent time, t, and the state of the process, n.
Set t = 0 and n = n0, where n0 is the initial state of the CTMP X. Choose
a time to end the process, Tmax. Repeat the following steps until t > Tmax,

1. Calculate the transition rate to each state that can be reached
from n in a single jump, that is qnj for all j ∈ SX.
Let α =

∑
j 6=n

qnj be the sum of these transition rates.

2. Draw a random number τ from an exponential distribution with
parameter α, representing the time until process X leaves n.

3. Update the time t, to t+ τ .

4. Draw a uniformly distributed random number u from the interval
[0, 1].

5. Partition the interval [0, 1] by the relative size of each transition
probability, 1/qnj, j ∈ SX.

6. Determine which sub-interval u falls within.

7. Update n based on the corresponding transition probability
determined by u.

8. Record the time and state of the process as a vector, (t, n).

Algorithm 1: by Gillespie (1976) for simulating a CTMP.

2.3 Global sensitivity analysis

Mathematical models describing some systems in biology or physics usually have

some unknown parameters, and which need to be estimated from data. In order

to know which parameters need more statistical effort when being estimated, one

needs to assess which parameters have more impact in the output of a given data

set. In this Section I briefly describe a global sensitivity analysis method called

the Sobol algorithm, which can help to identify the most relevant parameters of

the model under study. The Sobol algorithm is used in practice in Sections 4.1

and 4.2 of Chapter 3 of this thesis.

Saltelli et al. (2004), Campolongo & Cariboni (2007) and Wu et al. (2013) de-

scribed in detail the Sobol algorithm. This method is a variance-based global sen-
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sitivity analysis technique capable of estimating the influence of individual param-

eters, or a group of parameters, on some output variables of a non-linear model.

Consider a model of the relationship between the parameters θ = (θ1, θ2, . . . , θk)

and the output variable Y = f(θ) which depends on those parameters. The main

idea of Sobol’s method is to decompose the output variance into the contribu-

tions associated with each input factor. In order to quantify the importance of

an input factor θi on the variance of Y , imagine that one can fix it at its true

value, θ∗i . To answer the question of how much would this assumption change the

variance of Y one can first compute the following conditional variance

V ar(Y |θi = θ∗i ),

where the variance is taken over the (k−1) dimensional parameter space consisting

in all the parameters of θ except θi. As the true value θ∗i is unknown, one can

look at the average of the above variance over all possible values θ∗i of θi,

E(V ar(Y |θi)).

and take the factor with the smallest E(V ar(Y |θi)). By the law of total variance

(see Equation (2.2)) the variance of Y can be written as,

V ar(Y ) = E(V ar(Y |θi)) + V ar(E(Y |θi)). (2.12)

Given that V ar(Y ) is a constant, betting on the lowest E(V ar(Y |θi)) is equivalent

to betting the highest V ar(E(Y |θi)). Therefore by dividing Equation (2.12) by

V ar(Y ) one can obtain the first order sensitivity index Si for the parameter θi as

follows,

1 =
E(V ar(Y |θi = θ∗i ))

V ar(Y )
+
V ar(E(Y |θi = θ∗i ))

V ar(Y )
, (2.13)

hence

Si =
V ar(E(Y |θi))

V ar(Y )
,

so that Si ≤ 1.

As proved by Sobol (1993) if the function f(·) is integrable over [0, 1]k then it

can be decomposed into terms of increasing dimensionality as follows ,

Y = f(θ) = f0 +
k∑
i=1

fi(θi) +
k∑
j>i

fi,j(θi, θj) + . . .+ f1,2,...,k(θ1, θ2, . . . , θk),
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where each term is a function only of the factors in its index, i.e. fi = fi(θi), fi,j =

fi,j(θi, θj) and so on. Moreover Sobol (1993) demonstrated that if each term in

this expansion has a zero mean, then the total variance of an output variable can

be decomposed and represented as,

V ar(Y ) =

∫
f(θ)2dθ − f0 =

k∑
i=1

Vi +
k∑
i

k∑
j>i

Vi,j + . . .+ V1,2,...,k, (2.14)

where Vi, Vi,j, . . . , V1,2,...,k denote the variance of fi, fij, f1,2,...,k, respectively, that

is

Vi = V ar(E(Y |θi)),
Vi,j = V ar(E(Y |θi, θj))− Vi − Vj,

. . .

V1,2,...,k = V ar(Y )−
k∑
i=1

Vi −
∑

1≤i<j≤k
Vi,j − . . .−

∑
1≤i1≤...ik−1≤k

Vi1,...,ik ,

where, for simplicity, the indices for the variance and the mean were omitted.

Homma & Saltelli (1996) introduced an additional index, the total-order sensi-

tivity index, ST i, that accounts for all the contributions to the output variation

due to factor θi (i.e. first-order index plus all its interactions):

ST i =
∑
p#i

Si,

where #i indicates all the indexes associated to the factor θi. Using Equation

(2.14) it can be shown that,

ST i = 1− V ar(E(Y |θ∼i)
V ar(Y )

,

where θ∼i denotes all elements of θ except θi. If Si = STi = 0 then f(θ) does

not depend on θi, while Si = STi = 1 indicates that f(θ) depends solely on θi.

The Sobol method captures the effects of individual parameters as well as their

interactions and it provides quantitative information on the contribution of each

parameter to the sensitivity of the mathematical model.

Sobol algorithm is performed using SALib library in python in this thesis.
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2.4 Bayesian approximation methods

In this section I show Bayesian statistical inference methods for estimating the

probability distribution of the parameters of a mathematical model on the basis

of experimental data. The algorithms presented in this section are described in

detail by Toni et al. (2009), Wegmann et al. (2009), Boys et al. (2008), Marjoram

et al. (2003), Wilkinson (2011), Beaumont et al. (2002) and many others.

2.4.1 Bayesian inference

Let X be defined on a sample space SX and X is an outcome of a model which can

differ among various possible hypotheses Hi, where i = 1, 2, . . . , n and Hi form a

partition (see Definition 2.2). One can then compute the probabilities of an out-

come X = x given each chosen hypothesis, Prob(X = x|Hi), where i = 1, 2, . . . , n

and x ∈ SX . However usually what is observed is an outcome X = x∗ and there-

fore it is interesting to find the probabilities of the hypotheses conditional on

that outcome, Prob(Hi|X = x∗). This probability can be computed from Bayes

theorem (see Theorem 2.4) as follows,

Prob(Hi|X = x∗) =
Prob(X = x∗|Hi)Prob(Hi)
n∑
j=1

Prob(X = x∗|Hj)Prob(Hj)
, i = 1, . . . , n,

where Prob(Hi) is called the prior belief about the hypothesisHi and Prob(Hi|X =

x∗) is called the posterior belief about the hypothesis Hi based on the occurrence

of X = x∗. The probabilities Prob(X = x∗|Hi) are known as likelihoods and are

often written as L(Hi;x
∗).

Let now X be a discrete outcome and θ represent a continuum of hypotheses,

which might be for example related to the possible values of a given parameter of

the model. The prior beliefs must now be represented by density functions π(θ),

where θ ∈ θ. In the continuum limit, Bayes theorem becomes,

π(θ|X = x∗) =
π(θ)Prob(X = x∗|θ)∫

θ∗∈θ
Prob(X = x∗|θ∗)π(θ∗)dθ∗

. (2.15)
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In this case the likelihood function is L(θ;x∗) = Prob(X = x∗|θ). Equation (2.15)

can be rewritten in simpler form, as

π(θ|X = x∗) ∝ π(θ)L(θ;x∗),

meaning that the posterior distribution (π(θ|X = x∗)) is proportional to the prior

distribution (π(θ)) times the likelihood.

In the following subsections I introduce two algorithms which can help in

estimating the posterior distribution, in particular, the ABC algorithm which

does not require computing the likelihood function.

2.4.2 The ABC algorithm

The approximate Bayesian computation (ABC) algorithm has its root in the re-

jection algorithm to generate samples from a probability distribution. Imagine

there is a model M with a parameter θ described by a prior π(θ), and the data

D defined by π(D|θ). It is clear that a simple algorithm for simulating from the

desired posterior π(θ|D) can be obtained as follows. First sample from the joint

distribution π(θ,D) by sampling θ∗ ∼ π(θ) and then D∗ ∼ π(D|θ∗). This gives a

sample (θ∗,D∗) from the joint distribution. A simple rejection algorithm which

rejects the proposed pair unless D∗ matches the true data D clearly gives a sample

from the required posterior distribution. This algorithm is exact, and for discrete

D will have a non-zero acceptance rate. However, in most of the cases, the rejec-

tion rate will be intolerably high. In particular, the acceptance rate will typically

be zero for continuous valued D. Therefore the ABC algorithm, reported here as

Algorithm 2, generates n ∈ N samples from a distribution which is not the true

posterior distribution of interest, but a distribution which is hoped to be close to

the real posterior distribution of interest.
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1. Set i = 1.

2. Generate θ∗ ∼ π(θ).

3. Simulate new data D∗ from the model M with parameter θ∗.

4. Calculate the distance δ(D,D∗).

5. Accept θ∗ if δ(D,D∗) ≤ ε, where ε ∈ R such that ε ≥ 0
is a tolerance level for the distance δ(·, ·). Set i = i+ 1.
If i < n return to Step 2, otherwise end the algorithm.

Algorithm 2: Approximate Bayesian computation for a distance δ(·, ·).

For a suitable and small enough choice of ε this will closely approximate the true

posterior. However, smaller choices of ε will lead to higher rejection rates. This

is a particular problem in the context of highly variable or high-dimensional D,

where it is often unrealistic to expect a close match between all components of

D and the simulated data D∗, even for a good choice of θ∗.

2.4.3 MCMC methods

A more sophisticated class of algorithms comprises Markov chain Monte Carlo

(MCMC). Imagine a model M, describing the data D, determined by a pa-

rameter θ. MCMC algorithm constructs a Markov chain of parameter values

(θ1, θ2, . . . , θn) where the next parameter combination θi+1 is chosen by proposing

a random move conditional on the last parameter combination θi, and accepting

conditional on the likelihood and proposal ratio and where L(θi;D) ∝ Prob(D|θi)
for all i ≥ 1. Note that proposal for θ1 is sampled from an empirical prior distri-

bution π, that is θ1 ∼ π and the transition kernel is also built using π in this thesis

(see Subsection 4.1.2 in Chapter 4 for details). Given that certain conditions are

met (see Andrieu et al. (2003)), the Markov chain of parameter values will even-

tually converge to the target posterior distribution. The advantage of MCMC

method is that the time needed to obtain acceptable convergence is typically

short because the sampling effort is concentrated in the areas of high likelihood
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of the posterior density. The ABC algorithm is based on the assumption that the

distance function would pick up all important information about the posterior

distribution (sufficient summary statistics) whereas MCMC algorithm converges

to posterior distribution by its construction. MCMC is recommended to use,

instead of the ABC, if the ratio of likelihood function can be calculated and can

be used in combination with the ABC algorithm in order to find the empirical

distribution used as transition kernel (see Wegmann et al. (2009)). MCMC algo-

rithm, as used in this thesis, to find nth long chain is described by Algorithm 3.

1. Set i = 1.

2. Sample the parameter θi from the empirical prior distribution π.

3. Propose to move θi to θi+1 according to a transition kernel
q(θi → θi+1).

4. Calculate the following value

h = min

(
1,
P rob(D|θi+1)π(θi+1)q(θi+1 → θi)

Prob(D|θi)π(θi)q(θi → θi+1)

)
Move to θi+1 with probability h, and remain at θi otherwise.
Set i = i+ 1. If i < n go to Step 3 otherwise end the algorithm.

Algorithm 3: Markov chain Monte Carlo.
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Chapter 3

Cell surface binding

VEGF-VEGFR models

In this chapter I focus on the binding kinetics of VEGFR/VEGF-A on the cell sur-

face. The aim is to study the dynamics of VEGFR1, VEGFR2 and VEGF-A. First

a mathematical model is introduced in which monomeric receptors, VEGFR2, can

bind a bivalent ligand, VEGF-A. I assume that receptor dimerisation is ligand

induced and dimers are considered to be instantaneously phosphorylated. The

phosphorylation can be considered as an intrinsic characteristic of the cross-linked

VEGFR2 dimers which leads to a cellular response. Therefore the time to initiate

the signalling cascade can be identified with the time to reach a given threshold

number of phosphorylated dimers (see Alarcón & Page (2006)). The model is

called the instantaneous phosphorylation R2 model (IP R2 model). An alterna-

tive model can be constructed where phosphorylation and de-phosphorylation

of dimers are considered as new reactions in the process. This second model is

called the delayed phosphorylation R2 model (DP R2 model). Finally, and in

order to study the role of VEGFR1 in the dynamics of VEGFR2 and VEGF-A,

two stochastic models (IP R1/R2 model and DP R1/R2 model) are introduced,

which are extensions of the IP R2 model and the DP R2 model, respectively, in

the presence of VEGFR1. The analysis of these models would lead to the study

of multi-variate stochastic processes, in particular multi-variate CTMPs.

As stated in by Alarcón & Page (2006), the analytical treatment of multi-

variate stochastic processes is usually extremely difficult, and numerical approaches,
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such as Gillespie simulations or some approximative techniques for dealing with

the corresponding master equation, are often used instead (see Subsections 2.2.8

and 2.2.13). However I show in this chapter that it is still possible to carry out an

analytical study of these processes without solving the master equation. To this

aim, I make use of a matrix-analytic technique to consider a number of quantities

of interest (usually referred to as summary statistics or stochastic descriptors).

This approach, which has its origins in the seminal work by Neuts (1994), allows

studying the stochastic descriptors of interest for moderate concentrations of lig-

ands and receptors, as discussed in Section 3.4. Matrix-analytic techniques have

been applied in Mathematical Biology before by Gómez-Corral & López Garćıa

(2012a,b) (competition model between two species of individuals).

This chapter is organised as follows. In Section 3.1, four stochastic models are

introduced to describe the binding dynamics of receptor monomers and dimers on

the surface of endothelial cells. These models include phosphorylation or com-

petition for ligand availability. In Section 3.2, parameter estimation is carried

out following arguments described by Lauffenburger & Linderman (1993). The

stochastic formulation of the studied models allows finding the probability density

function for the population counts of the different molecular species involved. It

is often done through various Monte Carlo techniques described in detail by Hes-

panha (2008a), and the algorithm proposed by Gillespie (1976) at relatively low

significant computational cost. Since one is often interested in computing only

the first and second order statistical moments of the population count, much

time and effort can be saved by applying approximative methods (see Subsection

2.2.8) to directly compute these low-order moments, without actually having to

solve for the probability density function. The application of moment closure

methods and Gillespie simulations are discussed in Section 3.3 to study the tran-

sient behaviour of the Markov processes under consideration, when dealing with

the master equation. Matrix-analytic techniques are applied in Section 3.4 and

Section 3.5 in order to study different stochastic descriptors of interest in the

VEGF-A/VEGFR system. One special property of this method is that a sensi-

tivity analysis for the effect of binding, dissociation and phosphorylation rates on

the stochastic descriptors can be carried out. Additionally in Section 3.5 three
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different hypotheses on how to account for signal formation in the process are

studied.

3.1 Stochastic models of VEGF-VEGFR bind-

ing on the cell membrane

In this section, I introduce four different stochastic models for the binding ki-

netics of a receptor with a bivalent ligand, taking place on the membrane of a

cell. I consider a bivalent ligand that can bind to plasma membrane receptors,

creating receptor-with-ligand bound monomers. The free pole of the ligand in

a bound monomer can then bind to free receptors during the diffusion of these

molecules on the cell surface, creating bound dimers consisting of two receptors

bound to the ligand. It is assumed that two free receptors are not able to cre-

ate a pre-dimer without ligand. Dimerisation of receptors is only possible upon

ligands stimulation in all studied models in this thesis, which is called ligand-

induced dimerisation (LID) (see Mac Gabhann & Popel (2007)). I point out here

that the consideration of receptor pre-dimerisation does not significantly affect

the dynamics of these processes, specially under low ligand concentrations (as

found by Mac Gabhann & Popel (2007)). The impact in the system dynamics

of pre-dimers may only occur, in some cases, under highly saturated situations.

Moreover, when analysing the interaction between receptor VEGFR and ligand

VEGF-A, there is experimental support for this hypothesis stated by Ruch et al.

(2007): free VEGFR is observed (electron microscopy) in monomeric form on the

cell surface.

The study of the number of bound monomer and bound dimer molecules on

the cell surface over time can be viewed as the analysis of the transient behaviour

of a specific Markov process, a problem which, in general, is not solvable in closed

form as said by Kulkarni (1996) (see Section 3.3). Therefore, one typically carries

out Gillespie simulations, or applies moment-closure techniques (see Gillespie

(1976) and Hespanha (2008a)) to deal with the master equation of the Markov

process under study (see Section 3.3 and Subsection 2.2.13).
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3.1.1 Instantaneous phosphorylation model with VEGFR2

(IP R2 model)

Consider the simplest model describing one receptor type binding with one ligand

type on the plasma membrane. Here only VEGFR2 is considered so in the no-

tation of the molecules containing receptor, a subscript 2 is used. In Subsections

3.1.3 and 3.1.4 models with two different receptors, VEGFR1 and VEGFR2, are

considered.

Figure 3.1: Schematic of the IP R2 model. a) Formation and dissociation of

bound monomers (M2). b) Formation and dissociation of bound dimers (P2),

which instantaneously phosphorylate (represented by red phosphorylated residues

in the intra-cellular tail of the receptors).

The standard description for the binding kinetics of free bivalent ligand L to free

receptor R2 to form bound monomer M2 involves association and dissociation

rates. Assume ligand induced dimerisation, with binding rate α+, and dissociation

rate α−. Then the free pole of bound ligand in the monomer M2 can bind the

second receptor R2 creating a bound phosphorylated dimer P2 with rate β+. That

reaction is reversible and one of the receptors in the bound phosphorylated dimer

complex can dissociate with rate β−. I assume constant number of ligand nL and

constant number of receptors nR2 . Consider a CTMP XIP R2 = {X(t) : t ≥ 0}
where the state vector X(t) ∈ SIP R2 ⊂ (N ∪ {0})2 is a collection of discrete

random variables representing the number of each type of molecule at time t,

X(t) = (M2(t), P2(t)), where

M2(t) = “number of M2 bound monomers at time t”,

P2(t) = “number of P2 bound phosphorylated dimers at time t”.
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Assuming a constant number of receptors nR2 and ligands nL means that the

total number of free ligands and free receptors at any time t ≥ 0 can be found

from the following equations,

L(t) = nL −M2(t)− P2(t),
R2(t) = nR2 −M2(t)− 2P2(t).

Furthermore, from the reactions in Figure 3.1, it is clear that since R2(t), L(t) ≥ 0

for all t ≥ 0,
M2(t) + P2(t) ≤ nL,
M2(t) + 2P2(t) ≤ nR2 .

The transition probabilities (see Subsection 2.2.2) are given as,

Pn(t) = Prob(X(t) = n),

where n = (n1, n2) ∈ SIP R2 and n1, n2 refer to M2, P2, respectively. The state

space SIP R2 can be identified by the implicit restrictions imposed by the reactions

described in Figure 3.1. Thus, SIP R2 = {(n1, n2) ∈ (N ∪ {0})2 : n1 + n2 ≤
nL, n1 + 2n2 ≤ nR2}. The process XIP R2 evolves from a given state n to a

state n′ 6= n according to four possible reactions described by Figure 3.1, where

n,n′ ∈ SIP R2 . In particular, the possible states n′ accessible from n in one jump,

and the corresponding infinitesimal transition rates qnn′ are listed in Table 3.1.

qnn′ for reaction n = (n1, n2)→ n′ n′

2α+(nR2 − n1 − 2n2)(nL − n1 − n2) (n1 + 1, n2)

α−n1 (n1 − 1, n2)

β+n1(nR2 − n1 − 2n2) (n1 − 1, n2 + 1)

2β−n2 (n1 + 1, n2 − 1)

Table 3.1: The infinitesimal transition rates qnn′ of the process XIP R2 , based on

the reactions shown in Figure 3.1.
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As shown in Equation (2.5), the transition probabilities satisfy the master equa-

tion as follows,

dP(n1,n2)(t)

dt
= 2α+(nR2 − n1 + 1− 2n2)(nL − n1 + 1− n2)P(n1−1,n2)(t)

+ α−(n1 + 1)P(n1+1,n2)(t) + 2β−(n2 + 1)P(n1−1,n2+1)(t)

+ β+(n1 + 1)(nR2 − n1 − 1− 2n2 + 2)P(n1+1,n2−1)(t)

− {2α+(nR2 − n1 − 2n2)(nL − n1 − n2) + α−n1

+ β+n1(nR2 − n1 − 2n2) + 2β−n2}P(n1,n2)(t),

(3.1)

where P(0,0)(0) = 1 is the initial condition for the process XIP R2 .

3.1.2 Delayed phosphorylation model with VEGFR2 (DP

R2 model)

In the previous subsection, P2 complexes are instantaneously phosphorylated.

However, this process can be in fact a separate reaction. Thus one can consider

an alternative model where dimer phosphorylation is included as an additional

reaction (see Figure 3.2). The relevance of considering phosphorylation as an

independent reaction can now be evaluated. Hence the model is called delayed

phosphorylation R2 (DP R2) model. Consider a CTMP XDP R2 = {X(t) : t ≥ 0}

where the state vector X(t) ∈ SDP R2 ⊂ (N ∪ {0})3 is a collection of discrete

random variables representing the number of each type of molecule at time t,

X(t) = (M2(t), D2(t), P2(t)), where

M2(t) = “Number of bound monomers M2 at time t”,

D2(t) = “Number of bound, non-phosphorylated dimers D2 at time t”,

P2(t) = “Number of bound, phosphorylated dimers P2 at time t”.
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Figure 3.2: Schematic of the DP R2 model. a) Formation and dissociation of

bound monomers (M2). b) Formation and dissociation of non-phosphorylated

dimers (D2). c) Formation and de-phosphorylation of phosphorylated dimers

(P2) (represented by red phosphorylated residues in the intra-cellular tail of the

receptors).

It is assumed as before that the number of receptors nR2 and the number of

ligands nL are constant. This implies that the total number of free ligands and

free receptors at any time t ≥ 0 can be found from the following equations,

L(t) = nL −M2(t)−D2(t)− P2(t),
R2(t) = nR2 −M2(t)− 2D2(t)− 2P2(t).

Therefore from reactions in Figure 3.2, it is clear that for all t ≥ 0

M2(t) +D2(t) + P2(t) ≤ nL,
M2(t) + 2D2(t) + 2P2(t) ≤ nR2 ,

and the space of states SDP R2 of XDP R2 is defined as SDP R2 = {(n1, n2, n3) ∈

(N∪{0})3 : n1 +n2 ≤ nL, n1 + 2n2 + 2n3 ≤ nR2}. There are six possible reactions

involved in the DP R2 model, listed in Table 3.2 together with their corresponding

infinitesimal transition rates qnn′ , where n,n′ ∈ SDP R2 .
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qnn′ for reaction n = (n1, n2, n3)→ n′ n′

2α+(nR2 − n1 − 2n2 − 2n3)(nL − n1 − n2 − n3) (n1 + 1, n2, n3)

α−n1 (n1 − 1, n2, n3)

β+n1(nR2 − n1 − 2n2 − 2n3) (n1 − 1, n2 + 1, n3)

2β−n2 (n1 + 1, n2 − 1, n3)

γ+n2 (n1, n2 + 1, n3 − 1)

γ−n3 (n1, n2 − 1, n3 + 1)

Table 3.2: The infinitesimal transition rates qnn′ of the process XDP R2 , based on

the reactions shown in Figure 3.2

.

Hence the master equation of the process XDP R2 , for n = (n1, n2, n3), can be

written as follows,

dPn(t)

dt
= 2α+(nR2 − n1 + 1− 2n2 − 2n3)(nL − n1 + 1− n2 − n3)P(n1−1,n2,n3)(t)

+ α−(n1 + 1)P(n1+1,n2,n3)(t) + 2β−(n2 + 1)P(n1−1,n2+1,n3)(t)

+ β+(n1 + 1)(nR2 − n1 − 1− 2n2 + 2− 2n3)P(n1+1,n2−1,n3)(t)

+ γ+(n2 + 1)P(n1,n2+1,n3−1)(t) + γ−(n3 + 1)P(n1,n2−1,n3+1)(t)

− {2α+(nR2 − n1 − 2n2 − 2n3)(nL − n1 − n2 − n3) + α−n1

+ β+n1(nR2 − n1 − 2n2 − 2n3) + 2β−n2 + γ+n2 + γ−n3}P(n1,n2,n3)(t),
(3.2)

where P(0,0,0)(0) = 1 is the initial condition for this process.

3.1.3 Competition between VEGFR1 and VEGFR2

assuming instantaneous phosphorylation

(IP R1/R2 model)

In Subsections 3.1.1 and 3.1.2 the interactions only between bivalent ligands

VEGF-A and VEGFR2 receptors on the cell surface are analysed. However,

both VEGFR1 and VEGFR2 are expressed on endothelial cells, and can bind

VEGF-A (see Mac Gabhann & Popel (2004)).
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Figure 3.3: Schematic of the IP R1/R2 model. a) Formation and dissociation of

bound monomers (M2). b) Formation and dissociation of bound monomers (M1).

c) Formation and dissociation of bound homodimers (P2). d) − f) Analogous

reactions for homodimers (D1) and heterodimers (PM). VEGFR2 involved in a

bound dimer becomes instantaneously phosphorylated which is represented by

red phosphorylated residues in the intra-cellular tail of the receptors.

VEGFR1 has a greater binding affinity to VEGF-A than VEGFR2. However,

it is VEGFR2 phosphorylation which generates strong signal and it is required

for the homoeostasis of normal endothelial cells (see Alarcón & Page (2007) and

Casaletto & McClatchey (2012)). Therefore the reaction of VEGFR1 phospho-

rylation is not considered in this thesis. VEGFR1 competes with VEGFR2 for

ligand, and it is assumed that these receptors induce different signalling pathways.

Finally, VEGFR1 and VEGFR2 are found at different copy numbers in a variety

of cell lines by Imoukhuede & Popel (2011, 2012). Previous studies show that the

heterogeneity in these two receptor numbers contributes to a major complexity

of the VEGF-A signal transduction process, and should be studied further (see

Mac Gabhann & Popel (2007)).

The IP R1/R2 model is constructed by assuming as before that all ligands (L)

are bivalent (with two binding sites) and dimerisation of the receptors is possible
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under ligand binding only, i.e. two free receptors are not able to dimerise. There

are two kinds of receptors, VEGFR1 (R1) and VEGFR2 (R2) being considered.

In this model two types of bound monomers can be formed, M1 and M2, as

a result of the ligand binding to VEGFR1 and VEGFR2, respectively. Then,

ligand induced receptor dimerisation leads to the formation of homodimers, D1

and P2, or heterodimers PM . VEGFR2 homodimers P2 and heterodimers PM

are instantaneously phosphorylated (PM only on one site as VEGFR1 does not

phosphorylate as noted before). Figure 3.3 shows all possible reactions with

their rates between receptors, ligands and bound complexes. Consider a CTMP

XIP R1/R2 = {X(t) : t ≥ 0} where the state vector X(t) ∈ SIP R1/R2 ⊂ (N ∪ {0})5

is a collection of discrete random variables representing the number of each type

of molecule at time t, X(t) = (M1(t),M2(t), D1(t), P2(t), PM(t)), where

M1(t) = “Number of bound monomers M1 at time t”,

M2(t) = “Number of bound monomers M2 at time t”,

D1(t) = “Number of bound, non-phosphorylated homodimers D1 at time t”,

P2(t) = “Number of bound, phosphorylated homodimers P2 at time t”,

PM(t) = “Number of bound, phosphorylated heterodimers PM at time t”.

The number of VEGFR1 (nR1), the number of VEGFR2 (nR2) and the number of

ligands (nL) are assumed to be constant. Hence the total number of free ligands

and free receptors at any time t ≥ 0 can be found from the following equations,

L(t) = nL −M1(t)−M2(t)−D1(t)− P2(t)− PM(t),
R1(t) = nR1 −M1(t)− 2D1(t)− PM(t),
R2(t) = nR2 −M2(t)− 2P2(t)− PM(t).

Therefore from reactions in Figure 3.3, it is clear that for all t ≥ 0,

M1(t) +M2(t) +D1(t) + P2(t) + PM(t) ≤ nL,
M1(t) + 2D1(t) + PM(t) ≤ nR1 ,
M2(t) + 2P2(t) + PM(t) ≤ nR2 ,

and the space of states SIP R1/R2 of the process XIP R1/R2 is defined as SIP R1/R2 =

{(n1, n2, n3, n4, n5) ∈ (N ∪ {0})5 : n1+n2+n3+n4+n5 ≤ nL, n1+2n3+n5 ≤ nR1 ,

n2 + 2n4 + n5 ≤ nR2}. There are twelve reactions involved in the IP R1/R2
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model, listed in Table 3.3 together with their corresponding infinitesimal transi-

tion rates qnn′ , where n,n′ ∈ SIP R1/R2 .

qnn′ for reaction n = (n1, n2, n3, n4, n5)→ n′ n′

2α1+(nL − n1 − n2 − n3 − n4 − n5)(nR1 − n1 − 2n3 − n5) (n1 + 1, n2, n3, n4, n5)

α1−n1 (n1 − 1, n2, n3, n4, n5)

β11+n1(nR1
− n1 − 2n3 − n5) (n1 − 1, n2, n3 + 1, n4, n5)

2β11−n3 (n1 + 1, n2, n3 − 1, n4, n5)

β12+n1(nR2
− n2 − 2n4 − n5) (n1 − 1, n2, n3, n4, n5 + 1)

β12−n5 (n1 + 1, n2, n3, n4, n5 − 1)

2α2+(nL − n1 − n2 − n3 − n4 − n5)(nR2 − n2 − 2n4 − n5) (n1, n2 + 1, n3, n4, n5)

α2−n2 (n1, n2 − 1, n3, n4, n5)

β22+n2(nR2 − n2 − 2n4 − n5) (n1, n2 − 1, n3, n4 + 1, n5)

2β22−n4 (n1, n2 + 1, n3, n4 − 1, n5)

β21+n2(nR1
− n1 − 2n3 − n5) (n1, n2 − 1, n3, n4, n5 + 1)

β21−n5 (n1, n2 + 1, n3, n4, n5 − 1)

Table 3.3: The infinitesimal transition rates qnn′ of the process XIP R1/R2 , based

on the reactions shown in Figure 3.3.

Dynamics of the IP R1/R2 model can be described by the master equation in

general form

dPn(t)

dt
=

∑
n′ 6=n

n′∈SIP R1/R2

qn′n Pn′(t)−
∑
n′ 6=n

n′∈SIP R1/R2

qnn′ Pn(t), (3.3)

for all n ∈ SIP R1/R2 , where,

qnn = −
∑
n′ 6=n

n′∈SIP R1/R2

qnn′

and the initial condition is P(0,0,0,0,0)(0) = 1.

3.1.4 Competition between VEGFR1 and VEGFR2 as-

suming delayed phosphorylation (DP R1/R2 model)

Here a variant of the IP R1/R2 model is introduced, denoted by the DP R1/R2

model (as the DP R2 model for the IP R2 model in Subsection 3.1.2) in which
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phosphorylation is not assumed to be instantaneous. In this case, the dimeric

bound complexes, D2 and DM , can become phosphorylated, P2 and PM , com-

plexes, respectively. As noted in previous subsection, bound homodimers D1 are

not become phosphorylated. The complete set of reactions for the DP R1/R2

model is given in Figure 3.4.

Figure 3.4: Schematic of the DP R1/R2 model. Reactions a) − b) are like those

in Figure 3.3 for IP R1/R2 model. Reactions c) − f) describe the formation of

non-phosphorylated dimers. Reactions g) and h) represent, respectively, phos-

phorylation of homodimers D2 and heterodimers DM .

The infinitesimal transition rates can be obtained in a similar way to the IP

R1/R2 model, and an analogous master equation to Equation (3.3) could be

written, which is omitted here.
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3.2 Parameter estimation

It was noted by Berg & Purcell (1977), Berezhkovskii & Szabo (2013), Shoup &

Szabo (1982), Keizer (1985), DeLisi (1980), Lauffenburger & Linderman (1996)

and many others that the rate at which a biomolecular chemical reaction occurs

is determined by two factors, one chemical and the other physical. Thus for

the models in Section 3.1, the reaction of receptor-ligand binding or receptor

dimerisation can be that type of biomolecular reaction. A local electron density

can be a chemical factor determining the intrinsic rate of reaction when reactants

approach close to one other (i.e. the ligand is in close proximity to bind the free

receptor). Physical factors, such as diffusion, can determine the rate at which

these potentially reactive encounters occur. The biomolecular constant, such as

binding rate or dimerisation rate can be written in terms of these factors.

Consider ligand L and receptor R which can form monomer M in free solution.

The reaction of binding can be written as follows, based on the assumption that

it occurs in two steps,

R + L
kdL
�
kdL

RL
k+

�
k−

M,

where kdL is the diffusion rate, k+, k− are reaction intrinsic rates, and RL denotes

receptor and ligand in close enough proximity to start intrinsic reaction. The

concentration of RL is usually small compare to R,L and M . Hence, by using

steady-state approximation, as suggested by Eigen (1974), one gets dRL
dt

= 0. The

dynamics of monomers can be described by the ordinary differential equation

(ODE),
dM(t)

dt
=

kdLk+

kdL + k+

R(t)L(t)− kdLk−
kdL + k+

M(t),

with the initial condition M(0) = 0, where L(t), R(t) and M(t) denote the

number of ligands L, receptors R and monomers M , respectively, at time t.

Hence receptor-ligand binding reaction can be described as

R + L
qon

�
qoff

M,

where

qon =
kdLk+

kdL + k+

, qoff =
kdLk−
kdL + k+

,
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are forward and backward binding and dissociation rates. Using the classic

work of Smoluchowski (1917) the association rate constant for purely diffusion-

controlled reaction of two molecules R and L is directly given by the diffusion

rate kdL . If ligand is in free solution having diffusion constant equal to DL, and

receptor is on the membrane of a cell with radius a, one can get kdL = 4πDLa

as explained in detail by Erickson et al. (1987) or Lauffenburger & Linderman

(1993). Therefore the overall qcell
on , q

cell
off rates for the entire cell can be found as,

qcell
on =

4πDLak
cell
+

4πDLa+ kcell
+

, qcell
off =

4πDLak
cell
−

4πDLa+ kcell
+

,

where kcell
+ = nTRk+, kcell

− = nTRk− and nTR denotes the total number of receptors

per cell. Hence it is possible to compute the forward and backward binding rates

for single reaction by dividing qcell
on , q

cell
off by total number of receptors nTR,

qon =
4πDLak+

4πDLa+ k+nTR
, qoff =

4πDLak−
4πDLa+ k+nTR

.

In Subsections 3.2.1 and 3.2.2 I show how that approach can be implemented in

order to find the rates in the binding models described in Section 3.1 with one or

two receptor types.

3.2.1 One receptor type

First I show how to estimate parameters α+, α−, β+ and β− [s−1] which represent

binding or unbinding of a single type of receptor (or monomer) to a bivalent

ligand. The focus here is on the dynamics for a fraction 0 < f < 1 of a cell. From

the equilibrium dissociation constant Kd[mm
−3mol] given by Kd = koff/kon of the

receptor and ligand under consideration, it is possible to obtain the biophysical

binding rate kon[mol−1mm3s−1]. Therefore the transition rates α+ and α− are

given by

α+ =
kon

NA f h sc
, α− = koff ,

where h[mm] is the height of the experimental volume, sc[mm
2] is the total area

of the cell surface, and NA[mol−1] is Avogadro’s number.
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Note that the binding process between the receptor and the ligand, such as re-

action a) in Figure 3.1, can be considered as a one-step process, with qon[mm3s−1]

the association constant and qoff [s−1] the dissociation constant, as explained be-

fore. Constants qon and qoff are directly related to the biophysical rates kon and

koff as follows,

qon = kon/NA, qoff = koff .

As mentioned before the focus is on a particular fraction 0 < f < 1 of the cell,

so that the radius of this target surface is given by

r =

√
nRsc
nTRπ

,

where nTR is the total number of receptors on the cell surface, and nR = fnTR

is the number of receptors present on the target surface, which amounts to the

assumption of an homogeneous spatial distribution of receptors on the cell surface

(see Ewan et al. (2006a), Mittar et al. (2009)), neglecting receptor clustering,

which might be initiated upon ligand simulation (see Almqvist et al. (2004)).

Consider now the binding as a two-step process described above in this section,

see Figure 3.5 a), where the intrinsic forward rate is denoted as k3D
+ [mm3s−1] to

emphasise that this process takes place in 3D space.

Figure 3.5: a) Two-step binding and unbinding of receptor and ligand: kdL is

the ligand transport rate, k3D
+ and k− are the intrinsic binding and unbinding

rates, respectively, and h is the height of the experimental volume; b) Diffusive

transport of surface receptor: kdR is the transport rate for both receptor R and

bound monomer M ; c) Once in the reaction zone of M , R can bind with rate k2D
+

(which is a 2D version of k3D
+ ) or unbind with rate k−.
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As a fraction of the cell is targeted and not the entire cell, the contributions of

the rates k3D
+ and k− to the overall association and dissociation rates, qon and

qoff , respectively, are given by

qon =
4πDLrk

3D
+

4πDLr + nRk3D
+

, qoff =
4πDLrk−

4πDLr + nRk3D
+

. (3.4)

Note here that qon is a per receptor rate.

Denote the overall rate of an unoccupied receptor which binds a free pole, of

bound to the other receptor, ligand by kc and the unbinding rate of this type

by ku, on the cell membrane. A similar argument (Figure 3.5 b) and c)) to the

one presented above applies when computing kc[mm
2s−1] or ku[s

−1] (see Lauffen-

burger & Linderman (1993)), which occurs with rates

kc =
k2D

+ kdR
kdR + k2D

+

, ku =
k−kdR

kdR + k2D
+

, (3.5)

where the transport rate kdR [mm2s−1] (Figure 3.5 b)) is given by kdR = 2πD
log w

b
.

The diffusion constant D = DR + DM [mm2s−1] is the sum of diffusivities of the

receptor and the bound monomer on the cell membrane (which are assumed the

same DR = DM), b[mm] is the characteristic length of the receptor, and w[mm]

is one-half the mean distance between receptors, given by

w =

√
sc
π nTR

.

k3D
+ and k− can be found from Equation (3.4). Once k3D

+ is in hand, this 3D

intrinsic binding rate allows to compute its 2D version, k2D
+ , as

k2D
+ =

k3D
+

th

where th[mm] is the cell membrane thickness, as suggested by Lauffenburger &

Linderman (1993). Once k2D
+ is computed, the rate constants kc and ku can be

found by means of Equation (3.5), and they are identified with or directly related

to the rates β+ and β−, respectively, as follows

β+ =
kc
f sc

, β− = ku.
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3.2.2 Two receptor types (VEGFR1 and VEFGR2)

In this subsection the values of the parameters for the IP R1/R2 and the DP

R1/R2 models are established. In this case, there are two types of receptors

(VEGFR1 and VEGFR2) in the system, R1 and R2, with the same diffusion

coefficient DR. Since the amount of each type of receptor on the cell surface

is significantly different (see Imoukhuede & Popel (2011), Imoukhuede & Popel

(2012)), the average distance w between two given receptors, considered in the

previous subsection, depends here on the particular pair of receptors under study.

This changes the diffusion rate kdR of each possible reaction in Figures 3.3 and 3.4.

Let kijd be the transport rate for receptor Rj diffusing towards monomer Mi

(Figure 3.5 b)), with i, j ∈ {1, 2}. The probability of monomer Mi meeting

receptor Rj can be approximated by

pj =
nTRj

nTR1
+ nTR2

,

where nTRj
is the total number of receptors Rj per cell. It is assumed that the

diffusion of a free receptor is much higher than a bound monomer, regardless the

type of the molecule, so the probability pj does not depends on the monomer (i.e.

does not depend on the index i). In the same way, the average distance between

receptors Ri and Rj can be written as

wij =



√
sc

π nTRi

, if i = j,

√
sc

π (nTR1
+ nTR2

)
, if i 6= j.

Finally, the diffusion rates are then given by

kijd =


2πDR

log wii

b

, if i = j,

2πDR

log
wij

b

pi, if i 6= j.

Having that the rates of the IP R1/R2 and the DP R1/R2 models can be easily

obtain from,

βij+ =
kijc
fsc

, βij− = kiju ,
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where

kijc =
k2D

+ kijd
kijd + k2D

+

, kiju =
k−k

ij
d

kijd + k2D
+

.

Finally, the binding rates αi+, αi− are found in the same way as for a single

receptor.

3.2.3 Sensitivity analysis for physiological parameters and

kinetic rates

In this subsection the interest is in studying how key rates k3D
+ , k−, kc, and ku

depend on some of the other parameters. The aim is to analyse in what follows

how these four kinetic rates depend on physiological parameters such as the area

sc of the cell, the total number nTR of receptors, the ligand diffusion coefficient DL,

the receptor diffusion coefficient DR, and the receptor length b. The sensitivity

analysis is carried out which allows identifying the most relevant parameter(s) of

the model.

Physiological parameter Sign of partial derivatives

Area of the cell surface, sc
∂k3D

+

∂sc
, ∂k−
∂sc

, ∂kc
∂sc
, ∂ku
∂sc

< 0

Total number of receptors, nTR
∂k3D

+

∂nT
R
, ∂k−
∂nT

R
, ∂kc
∂nT

R
, ∂ku
∂nT

R
> 0

Diffusion coefficients, DL and DR
∂k3D

+

∂DL
, ∂k−
∂DL

< 0, ∂kc
∂DR

, ∂ku
∂DR

> 0

Receptor length, b ∂kc
∂b
, ∂ku
∂b

> 0

Table 3.4: Signs of partial derivatives.

One can obtain the partial derivatives of these four rates with respect to the

physiological parameters. The effect of a given parameter on a kinetic rate is

determined by the sign of the corresponding partial derivative, which is reported

in Table 3.4. As the cell surface increases, it becomes more difficult to find

nearby receptors, thus binding/unbinding rates (intrinsic and overall) decrease.
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On the other hand, when the number of receptors increases, it is easier to find

nearby receptors, so that the association and dissociation rates are larger for

increasing receptor numbers. If the diffusion coefficient of the ligand increases,

kdL also increases and thus, the overall binding rate decreases. Yet, if the diffusion

coefficient of the ligand increases, the probability of dimerisation is greater, and

overall rates grow. Finally, by increasing the receptor length, the average time to

find a free receptor decreases.

In order to compare the magnitudes of the different partial derivatives in Ta-

ble 3.4, they need to be normalised by the introduction of sensitivity coefficients.

The sensitivity coefficient (also called elasticity) of a given dependent parameter

with respect to an independent one can be calculated from the corresponding

partial derivative. Specifically, if a parameter y depends on the parameter z as

y = f(z), where f(·) is a certain function, one can define their associated sen-

sitivity coefficient as ∂y
∂z

z∗

y∗
, where z∗ is the actual value of the parameter z and

y∗ = f(z∗). Quotient z∗

y∗
is then introduced to normalise the partial derivative,

leading to an elasticity. For example, given the definition of k3D
+

k3D
+ =

qon 4πDL

√
nR sc
nT
R π

4πDL

√
nR sc
nT
R π
− qon nR

,

the following partial derivatives can be computed:

∂k3D
+

∂DL

= −
q2

on4πnR
√

nR sc
nT
R π

(4πDL

√
nR sc
nT
R π
− qonnR)2

,
∂k3D

+

∂nTR
=

q2
on4πDL

√
nRsc
nT
Rπ
nR

2nTR(4πDL

√
nRsc
nT
Rπ
− qonnR)2

,

∂k3D
+

∂sc
= −

q2
onnR4πDL

nR

nT
Rπ

2
√

nRsc
nT
Rπ

(4πDL

√
nRsc
nT
Rπ
− qonnR)2

.

Then, regardless of the particular values of the parameters, it can be shown that∣∣∣∣∂k3D
+

∂DL

DL

k3D
+

∣∣∣∣ >

∣∣∣∣∂k3D
+

∂nTR

nTR
k3D

+

∣∣∣∣ =

∣∣∣∣∂k3D
+

∂sc

sc
k3D

+

∣∣∣∣.
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Similar arguments to the previous ones yield the following inequalities:∣∣∣∣ ∂k−∂DL

DL

k−

∣∣∣∣ >

∣∣∣∣∂k−∂nTR

nTR
k−

∣∣∣∣ =

∣∣∣∣∂k−∂sc sck−
∣∣∣∣,∣∣∣∣∂kc/u∂DR

DR

kc/u

∣∣∣∣ >

∣∣∣∣∂kc/u∂nTR

nTR
kc/u

∣∣∣∣ =

∣∣∣∣∂kc/u∂b

b

kc/u

∣∣∣∣ > ∣∣∣∣∂kc/u∂sc

sc
kc/u

∣∣∣∣,
so that the diffusion coefficients, DL and DR, are the most sensitive physiological

parameters having the greatest impact on the binding and dissociation rates,

while the specific value of the area of the cell surface has a smallest impact. Note

that the previous inequalities are obtained under the following assumptions:

• the binding rate is much smaller than the diffusion rate of the ligand,

qonnR << 4πDL

√
nR sc
nTR π

,

• surface receptor density is low, b2πnR << sc, which also implies that the

average distance between receptors is larger than the length of the receptor,

and

• the intrinsic binding rate is greater than the diffusion rate of the receptor,

k2D
+ > 2πDR.

3.3 Moment closure approximation methods

In this section I show how the solution of master equations from Section 3.1

describing the cell surface models can be found using the moment closure ap-

proximation methods.

3.3.1 Zero cumulant method

One of the methods for obtaining information about the probability distribution

associated with the Markov process is the generating function technique described

in Subsection 2.2.7 of Chapter 2. The partial differential equation for moment

generating function can be found by differentiating Equation (2.7) with respect
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to t. For example, for the IP R2 model, the moment generating function M(·, ·)

satisfies the following partial differential equation,

∂M(θ, t)

∂t
=

∂M(θ, t)

∂θ1

{
(−2α+nR2 − 2α+nL)(eθ1 − 1) + β+nR2(e−θ1+θ2 − 1)

+ α−(eθ1 − 1)
}

+
∂2M(θ, t)

∂θ1∂θ2

{
−2β+(e−θ1+θ2 − 1) + 6α+(eθ1 − 1)

}
+

∂M(θ, t)

∂θ2

{
(−2α+nR2 − 4α+nL)(eθ1 − 1) + 2β−(eθ1−θ2 − 1)

}
+ 2α+nR2nLM(θ, t)(eθ1 − 1) +

∂2M(θ, t)

∂θ2
2

{
4α+(eθ1 − 1)

}
+

∂2M(θ, t)

∂θ2
1

{
2α+(eθ1 − 1)− β+(e−θ1+θ2 − 1)

}
,

(3.6)

where θ = (θ1, θ2) and the boundary conditions are M((θ1, θ2), 0) = 1 and

M((0, 0), t) = 1. This differential equation is used to derive differential equations

satisfied by the mean and higher-order moments. By executing the procedure

described in Subsection 2.2.7 of Chapter 2 on Equation (3.6), one can get the

system of ordinary differential equations for the moments,

dm10(t)

dt
= 2α+nLnR2 −m10(t) (2α+(nR2 + nL) + α− + β+nR2) + 4m02(t)α+

+ m20(t) (2α+ + β+)−m01(t) (2α+(nR2 + 2nL)− 2β−)
+ m11(t) (6α+ + 2β+) ,

dm01(t)

dt
= m10(t)β+nR2 − 2m01(t)β− −m20(t)β+ − 2m11(t)β+,

dm11(t)

dt
= m01(t) (2α+nLnR2 − 2β−)−m10(t)β+nR2 +m20(t)β+ (nR2 + 1)

+ m12(t)(6α+ + 2β+) +m02(t) (−4α+nL − 2α+nR2 + 2β−)
+ m21(t)(2α+ − β+) + 4m03(t)α+ −m30(t)β+

+ m11(t) (−2α+nL − 2α+nR2 − α− − β+nR2 + 2β+ − 2β−) ,
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dm02(t)

dt
= m10(t)β+nR2 + 2m01(t)β− −m20(t)β+ − 4m02(t)β−

+ m11(t)[2nR2β+ − 2β+]− 2m21(t)β+ − 4m12(t)β+,

dm20(t)

dt
= m10(t) (4α+nLnR2 − 2α+nL − 2α+nR2 + α− + β+nR2) + 2α+nLnR2

+ m01(t) (−4α+nL − 2α+nR2 + 2β−) +m21(t) (12α+ + 4β+)
+ m20(t) (−4α+nL − 4α+nR2 + 2α+ − 2α− − 2β+nR2 − β+)
+ 4m02(t)α+ +m11(t) (−8α+nL + 6α+ − 4α+nR2 − 2β+ + 4β−)
+ m30(t) (4α+ + 2β+) + 8m12(t)α+,

(3.7)

with the initial conditions mij(0) = 0 for i, j ∈ {0, 1, 2} and where mij(t) =

E(M2(t)iP2(t)j). Equation (3.7) for m10(·) and m01(·) cannot be solved alone,

since m10(·) and m01(·) also depend on m20(·),m02(·) and m11(·). In the same

manner, differential equations for the second-order moments also depend on

higher-order moments and so on, forming an infinite system of the differential

equation. That kind of system is called open, or not closed. The zero cumulant

method (distribution-based), described in Subsection 2.2.8, can be used in order

to find the solution of the ODEs system given by Equation (3.7). For example,

assuming that all multi-variable cumulants of population M2(t) with order larger

than 2 are negligible leads to the following approximation,

E (M2(t)3) = 3E (M2(t)2)E (M2(t))− 2 (E (M2(t)))3 ,
E (M2(t)2P2(t)) = E (M2(t)2)E (P2(t)) + 2E (M2(t))E (M2(t)P2(t))

− 2 (E(M2(t)))2E (P2(t)) .

(3.8)

Therefore in the ODEs system given by Equation (3.7), the third moments can

be approximated by,

m30(t) = 3m20(t)m10(t)− 2m10(t)3,
m03(t) = 3m02(t)m01(t)− 2m01(t)3,
m21(t) = m20(t)m01(t) + 2m10(t)m11(t)− 2m10(t)2m01(t),
m12(t) = m02(t)m10(t) + 2m01(t)m11(t)− 2m01(t)2m10(t).

(3.9)

The zero cumulant technique is applied in this thesis only for the IP R2 model to

compare the closure technique with the van Kampen expansion, which is applied

in the following section for all models presented in Section 3.1. The results of

that numerical work are shown further in Subsection 3.3.3.
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3.3.2 van Kampen approximation

An alternative moment closure method is the system-size expansion technique,

based on the power-series approximation proposed by Van Kampen (1992). It can

also be used on the non-linear master equations given by Equations (3.1), (3.2)

or (3.3). Using the van Kampen approximation the deterministic macroscopic

equation and the equation for fluctuations might be obtained. First of all the

expansion parameter Ω needs to be identified, with Ω � 1. In this study Ω

represents the volume of the system, so that fluctuations are of order Ω
1
2 .

Consider a CTMP X = {X(t) : t ≥ 0} defined on a state space SX with

Pn(t) = Prob(X(t) = n) for n = (n1, n2, . . .) ∈ SX. The variable X(t) can be

written as a sum of “mean” number x(t) (macroscopic concentration of order Ω)

and fluctuation ξ(t) of order Ω
1
2 , that is

X(t) = Ωx(t) + Ω
1
2ξ(t), (3.10)

for all t ≥ 0, where X(t) = (X1(t), X2(t), . . .), x(t) = (x1(t), x2(t), . . .) and

ξ(t) = (ξ1(t), ξ2(t), . . .). This conversion of variables implies that for all t ≥ 0

Pn(t) transforms to a function Ψ(t) as follows,

Pn(t) = Prob(X(t) = n) = Prob(Ωx(t) + Ω
1
2ξ(t) = n) = Ψ(ξ(t), t). (3.11)

Hence, the transformation of derivatives is found from the following equations,

∂Ψ

∂ξ(t)
= Ω

1
2
∂Pn(t)

∂n
,

∂Ψ

∂t
=

∂Pn(t)

∂t
+ Ω

∂Pn(t)

∂n

dx(t)

dt
,

therefore,
∂Pn(t)

∂t
=
∂Ψ

∂t
− Ω

1
2
∂Ψ

∂ξ(t)

dx(t)

dt
. (3.12)

Using the transformation defined above I show in the following subsections how to

carry out the van Kampen approximation for all the models described in Section

3.1.

I introduce here the operator E which is needed to perform the van Kampen

linear noise approximation. Let E be the operator changing ni into ni±1 for any
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function f(·) and i ≥ 1, that is Ef(ni) = f(ni + 1) and E−1f(ni) = f(ni − 1).

This means that for all t ≥ 0 the operator E changes ξi(t) into ξi(t) + Ω
1
2 , that is

E(ξi(t)) = Ei(ξi(t)) = ξi(t) + Ω
1
2 ,

E−1(ξi(t)) = E−1
i (ξi(t)) = ξi(t)− Ω

1
2 ,

where

Ei = 1 + Ω−
1
2

∂

∂ξi(t)
+ 1

2
Ω−1 ∂2

∂ξ2
i (t)

+ . . . ,

E−1
i = 1− Ω−

1
2

∂

∂ξi(t)
+ 1

2
Ω−1 ∂2

∂ξ2
i (t)

+ . . . .

(3.13)

van Kampen approximation for the IP R2 model

Consider the CTMP XIP R2 with the state space SIP R2 , defined in Subsection

3.1.1. By using the transformation defined by Equations (3.10) and (3.11) one

can rewrite the master equation (3.1) in the form of Equation (3.12), as follows

dPn(t)

dt
=
∂Ψ

∂t
− Ω

1
2

2∑
i=1

∂Ψ

∂ξi(t)

dxi(t)

dt
, (3.14)

where ξ(t) = (ξ1(t), ξ2(t)) and x(t) = (x1(t), x2(t)) for t ≥ 0. Rewrite now Equa-

tion (3.1) in terms of the operators Ei and E−1
i given by Equation (3.13),

dPn(t)

dt
= (E−1

1 − 1) {2α+(nR2 − n1 − 2n2)(nL − n1 − n2)Pn(t)}
+ (E1 − 1) {α−n1Pn(t)}+ (E−1

1 E2 − 1) {2β−n2Pn(t)}
+ (E1E−1

2 − 1) {β+n1(nR2 − n1 − 2n2)Pn(t)} .
(3.15)

Note that the following expressions can be simplified,

EiE−1
j = 1+Ω−

1
2 (

∂

∂ξi(t)
− ∂

∂ξj(t)
)+

1

2
Ω−1(

∂2

∂ξ2
i (t)

+
∂2

∂ξ2
j (t)
−2

∂2

∂ξi(t)∂ξj(t)
)+ · · · .

The rates α+ and β+ are involved in non-linear terms of qnn′ (see Table 3.1).

Therefore α+ and β+ require reduction of the volume of the system as follows

α+ = a+Ω−1, β+ = b+Ω−1. (3.16)
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nL and nR2 represent the total numbers of ligands and receptors, respectively, in

the model. These two quantities need to be rescaled to macroscopic concentration

expressed in the order of Ω, that is

nL = NLΩ, nR2 = NR2Ω. (3.17)

By introducing the rescaled parameters to Equation (3.15) and compare the terms

−Ω
1
2
∂Ψ

∂ξi(t)
for i ∈ {1, 2} with the analogue terms in Equation (3.14) one can get

the macroscopic description of the IP R2 model,

dx1(t)

dt
= 2a+(NL − x1(t)− x2(t))(NR2 − x1(t)− 2x2(t))

− b+x1(t)(NR2 − x1(t)− 2x2(t))− α−x1(t) + 2β−x2(t),

dx2(t)

dt
= b+x1(t)(NR2 − x1(t)− 2x2(t))− 2β−x2(t),

(3.18)

with the initial conditions x1(0) = 0, x2(0) = 0 (as the initial condition of the

process XIP R2 says that Prob ((X1(0), X2(0)) = (0, 0)) = 1 which induces that

(ξ1(0), ξ2(0)) = (0, 0)). This implies that for all t ≥ 0 the deterministic variable

x1(t) represents the evolution of the monomers M2 whereas x2(t) represents the

evolution of the phosphorylated dimers P2. Moreover, by comparing all terms of

order Ω0, the following Fokker-Planck equation can be obtained,

∂Ψ

∂t
= −

2∑
i,j=1

Aij
∂

∂ξi(t)
(ξj(t)Ψ) +

1

2

2∑
i,j=1

Bij
∂2Ψ

∂ξi(t)∂ξj(t)
, (3.19)

where all elements of the matrices A = (Aij)i,j∈{1,2} and B = (Bij)i,j∈{1,2} are

given by Equation (3.20).

A11 = −2a+(NL − x∗1 − x∗2)− 2a+(NR2 − x∗1 − 2x∗2)− α− − b+(NR2 − 2x∗1 − 2x∗2),

A12 = −4a+(NL − x∗1 − x∗2)− 2a+(NR2 − x∗1 − 2x∗2) + 2b+x
∗
1 + 2β−,

A21 = b+(NR2 − 2x∗1 − 2x∗2),

A22 = −2b+x
∗
1 − 2β−,
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B11 = 2a+(NL − x∗1 − x∗2)(NR2 − x∗1 − 2x∗2) + α−x
∗
1 + b+x

∗
1(NR2 − x∗1 − 2x∗2),

+ 2β−x
∗
2,

B12 = B21 = −b+x
∗
1(NR2 − x∗1 − 2x∗2)− 2β−x

∗
2,

B22 = b+x
∗
1(NR2 − x∗1 − 2x∗2) + 2β−x

∗
2,

(3.20)

and where (x∗1, x
∗
2) denotes the steady state of the ODEs system given by Equation

(3.18). From the Fokker-Planck equation given by Equation (3.19) it is possible

to obtain the equations for the mean value of the fluctuations ξ(t) as well as the

correlations of these fluctuations for all t ≥ 0. By multiplying Equation (3.19) by

ξk(t), and integrating the obtained expression over ξk(t) one can get the following

equations

dE(ξk(t))

dt
=

2∑
i=1

AkiE(ξi(t)), (3.21)

for all t ≥ 0 and k ∈ {1, 2}, where E(ξk(0)) = 0 is the initial condition for this

ODEs system. On the other hand, by multiplying Equation (3.19) by ξi(t)ξj(t)

and integrating the obtained expression over ξi(t)ξj(t) one can get the equation

for the second moments, ξi(t)ξj(t), that is

dE(ξi(t)ξj(t))

dt
=

2∑
k=1

AikE(ξk(t)ξj(t)) +
2∑

k=1

AjkE(ξi(t)ξk(t)) +Bij, (3.22)

for all t ≥ 0 and i, j ∈ {1, 2}, where E(ξi(0)ξj(0)) = 0 is the initial condition for

this ODEs system. Results of zero cumulant method are compared with results of

the van Kampen approximation in Subsection 3.3.3 for the IP R2 model. As the

results of both methods give similar approximations I use only the van Kampen

approximation for the DP R2, the IP R1/R2 and the DP R1/R2 models.
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van Kampen approximation for the DP R2 model

Using the van Kampen approximation, as for the IP R2 model, the deterministic

description of the DP R2 model is obtained,

dx1(t)

dt
= 2a+(NL − x1(t)− x2(t)− x3(t))(NR2 − x1(t)− 2x2(t)− 2x3(t))

− α−x1(t) + 2β−x2(t)− b+x1(t)(NR2 − x1(t)− 2x2(t)− 2x3(t)),

dx2(t)

dt
= b+x1(t)(NR2 − x1(t)− 2x2(t)− 2x3(t))− 2β−x2(t)− γ+x2(t)

+ γ−x3(t),

dx3(t)

dt
= γ+x2(t)− γ−x3(t),

(3.23)

with the initial condition x1(0) = x2(0) = x3(0) = 0 which is consequence of the

initial condition for Equation (3.2) (see the previous subsection where this issue

is explained in detail for the IP R2 model), and for all t ≥ 0 the deterministic

variables x1(t), x2(t) and x3(t) represent the evolution of the monomers M2, the

bound dimers D2 and the phosphorylated dimers P2, respectively. The param-

eters α+, β+, nL and nR2 require the same rescaling as for the IP R2 model (see

Equations (3.16) and (3.17)). Accordingly it is possible to write down Equations

(3.21) and (3.22) for the moments, where the matrix A = (Aij)i,j∈{1,2,3} is given

by,

A11 = −2a+(NL − x∗1 − x∗2 − x∗3)− 2a+(NR2 − x∗1 − 2x∗2 − 2x∗3)
− b+(NR2 − x1 − 2x∗2 − 2x∗3) + b+x

∗
1 − α−,

A12 = −4a+(NL − x∗1 − x∗2 − x∗3)− 2a+(NR2 − x∗1 − 2x∗2 − 2x∗3) + 2b+x
∗
1

+ 2β−,

A13 = −4a+(NL − x∗1 − x∗2 − x∗3)− 2a+(NR2 − x∗1 − 2x∗2 − 2x∗3) + 2b+x
∗
1,

A21 = b+(NR2 − x∗1 − 2x∗2 − 2x∗3)− b+x
∗
1,

A22 = −2b+x
∗
1 − 2β− − γ+,
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A23 = −2b+x
∗
1 + γ−, ccccccccccccccccccccccccccccccccccccccccccccccccc

A31 = 0,

A32 = γ+,

A33 = −γ−,
and the matrix B = (Bij)i,j∈{1,2,3} is given by

B11 = 2(NL − x∗1 − x∗2 − x∗3)(NR2 − x∗1 − 2x∗2 − 2x∗3) + α−x
∗
1 + 2β−x

∗
2,

+ b+x
∗
1(NR2 − x∗1 − 2x∗2 − 2x∗3)

B22 = b+x
∗
1(NR2 − x∗1 − 2x∗2 − 2x∗3) + 2β−x

∗
2 + γ−x

∗
3 + γ+x

∗
2,

B33 = γ−x
∗
3 + γ+x

∗
2,

B12 = B21 = −b+x
∗
1(NR2 − x∗1 − 2x∗2 − 2x∗3)− 2β−x

∗
2,

B13 = B31 = 0,

B23 = B32 = −γ−x∗3 − γ+x
∗
2,

where (x∗1, x
∗
2, x
∗
3) is the steady state of the ODEs system given by Equation (3.23).

van Kampen approximation for the IP R1/R2 model

Consider the IP R1/R2 model described in Subsection 3.1.3. The following rates

are involved in non-linear terms of qnn′ (see Table 3.3) and these rates require

reduction of the volume of the system as follows,

α1+ = a1+Ω−1, α2+ = a2+Ω−1, β11+ = b11+Ω−1,
β12+ = b12+Ω−1, β21+ = b21+Ω−1, β22+ = b22+Ω−1.

(3.24)

As for the IP R2 model, the parameters representing the total number of ligands

and receptors need to be rescaled to match macroscopic representation expressed

in the order of Ω, that is

nL = NLΩ, nR1 = NR1Ω, nR2 = NR2Ω. (3.25)

In the case of the IP R1/R2 model the deterministic variables x1(t), x2(t), x3(t),

x4(t) and x5(t) represent the evolution of the monomers M1, M2, the bound

66



3.3 Moment closure approximation methods

homodimers D1, P2 and the bound heterodimers PM , respectively, and they are

described by the following system of the ordinary equations,

dx1(t)

dt
= 2a1+(NR1 − x1(t)− 2x3(t)− x5(t))(NL − x1(t)− x2(t)− x3(t)

− x4(t)− x5(t))− b11+x1(t)(NR1 − x1(t)− 2x3(t)− x5(t)) + β12−x5(t)
− b12+x1(t)(NR2 − x2(t)− 2x4(t)− x5(t))− α1−x1(t) + 2β11−x3(t),

dx2(t)

dt
= 2a2+(NR2 − x2(t)− 2x4(t)− x5(t))(NL − x1(t)− x2(t)− x3(t)

− x4(t)− x5(t))− b22+x2(NR2 − x2(t)− 2x4(t)− x5(t)) + β21−x5(t)
− b21+x2(t)(NR1 − x1(t)− 2x3(t)− x5(t))− α2−x2(t) + 2β22−x4(t),

dx3(t)

dt
= −2β11−x3(t) + b11+x1(t)(NR1 − x1(t)− 2x3(t)− x5(t)),

dx4(t)

dt
= b22+x2(t)(NR2 − x2(t)− 2x4(t)− x5(t))− 2β22−x4(t),

dx5(t)

dt
= b12+x1(t)(NR2 − x2(t)− 2x4(t)− x5(t)) + b21+x2(t)(NR1 − x1(t)

− 2x3(t)− x5(t))− β12−x5(t)− β21−x5(t),
(3.26)

for all t ≥ 0, where the initial conditions are determined by the initial condition

for Equation (3.3), that is xi(0) = 0 for 1 ≤ i ≤ 5. Denote by (x∗1, x
∗
2, x
∗
3, x
∗
4, x
∗
5)

the steady state of this ODEs system. From Equation (3.19) the equations for

the moments are obtained from Equations (3.21) and (3.22). The matrices A =

(Aij)1≤i,j≤5 and B = (Bij)1≤i,j≤5 are such that Bij = Bji and Aij = 0, Bij = 0,

except for

A11 = −2a1+ ((NL − x∗1 − x∗2 − x∗3 − x∗4 − x∗5) + (NR1 − x∗1 − 2x∗3 − x∗5))− α1−
− b11+(NR1 − x∗1 − 2x∗3 − x∗5)− b12+(NR2 − x∗2 − 2x∗4 − x∗5) + b11+x

∗
1,

A12 = b12+x
∗
1 − 2a1+(NR1 − x∗1 − 2x∗3 − x∗5),

A13 = −2a1+ (2(NL − x∗1 − x∗2 − x∗3 − x∗4 − x∗5) + (NR1 − x∗1 − 2x∗3 − x∗5))
+ 2b11+x

∗
1 + 2β11−,

A14 = 2b12+x1 − 2a1+(NR1 − x∗1 − 2x∗3 − x∗5),

A15 = −2a1+ ((NL − x∗1 − x∗2 − x∗3 − x∗4 − x∗5) + (NR1 − x∗1 − 2x∗3 − x∗5))
+ b11+x

∗
1 + b12+x

∗
1 + β12−,
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A21 = b21+x
∗
2 − 2a2+(NR2 − x∗2 − 2x∗4 − x∗5),

A22 = −2a2+ ((NL − x∗1 − x∗2 − x∗3 − x∗4 − x∗5) + (NR2 − x∗2 − 2x∗4 − x∗5))− α2−
− b21+(NR1 − x∗1 − 2x∗3 − x∗5)− b22+(NR2 − x∗2 − 2x∗4 − x∗5) + b22+x

∗
2,

A23 = 2b21+x
∗
2 − 2a2+(NR2 − x∗2 − 2x∗4 − x∗5),

A24 = −2a2+ (2(NL − x∗1 − x∗2 − x∗3 − x∗4 − x∗5) + (NR2 − x∗2 − 2x∗4 − x∗5))
+ 2b22+x

∗
2 + 2β22−,

A25 = −2a2+ ((NL − x∗1 − x∗2 − x∗3 − x∗4 − x∗5) + (NR2 − x∗2 − 2x∗4 − x∗5))
+ b21+x

∗
2 + b22+x

∗
2 + β21−,

A31 = b11+(NR1 − x∗1 − 2x∗3 − x∗5)− b11+x
∗
1,

A33 = −2b11+x
∗
1 − 2β11−,

A35 = −b11+x
∗
1,

A42 = b22+(NR2 − x∗2 − 2x∗4 − x∗5)− b22+x
∗
2,

A44 = −2b22+x
∗
2 − 2β22−,

A45 = −b22+x
∗
2,

A51 = −b21+x
∗
2 + b12+(NR2 − x∗2 − 2x∗4 − x∗5),

A52 = −b12+x
∗
1 + b21+(NR1 − x∗1 − 2x∗3 − x∗5),

A53 = −2b21+x
∗
2,

A54 = −2b12+x
∗
1,

A55 = −b12+x
∗
1 − b21+x

∗
2 − β12− − β21−,

and for the matrix B,

B11 = 2a1+(NL − x∗1 − x∗2 − x∗3 − x∗4 − x∗5)(NR1 − x∗1 − 2x∗3 − x∗5) + α1−x
∗
1

+ β12−x
∗
5 + b11+x

∗
1(NR1 − x∗1 − 2x∗3 − x∗5) + b12+x

∗
1(NR2 − x∗2 − 2x∗4 − x∗5)

+ 2β11−x
∗
3,

B13 = −b11+x
∗
1(NR1 − x∗1 − 2x∗3 − x∗5)− 2β11−x

∗
3,
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B15 = −b12+x
∗
1(NR2 − x∗2 − 2x∗4 − x∗5)− β12−x

∗
5,

B22 = 2a2+(NL − x∗1 − x∗2 − x∗3 − x∗4 − x∗5)(NR2 − x∗2 − 2x∗4 − x∗5) + α2−x
∗
2

+ b21+x
∗
2(NR1 − x∗1 − 2x∗3 − x∗5) + b22+x

∗
2(NR2 − x∗2 − 2x∗4 − x∗5) + 2β22−x

∗
4

+ β21−x
∗
5,

B24 = −b22+x
∗
2(NR2 − x∗2 − 2x∗4 − x∗5)− 2β22−x

∗
4,

B33 = b11+x
∗
1(NR1 − x∗1 − 2x∗3 − x∗5) + 2β11−x

∗
3,

B35 = −b21+x
∗
2(NR1 − x∗1 − 2x∗3 − x∗5)− β21−x

∗
5,

B44 = b22+x
∗
2(NR2 − x∗2 − 2x∗4 − x∗5) + 2β22−x

∗
4,

B55 = b12+x
∗
1(NR2 − x∗2 − 2x∗4 − x∗5) + b21+x

∗
2(NR1 − x∗1 − 2x∗3 − x∗5) + β12−x

∗
5

+ β21−x
∗
5.

van Kampen approximation for the DP R1/R2 model

The DP R1/R2 model requires the same scaling of parameters as the IP R1/R2

model given by Equations (3.24) and (3.25). There are seven variables in the DP

R1/R2 model x1(t), x2(t), x3(t), x4(t), x5(t), x6(t) and x7(t) which represent the

evolution of the monomers M1,M2, the bound homodimers D1, D2, the bound

heterodimers DM , the phosphorylated dimers P2 and the phosphorylated het-

erodimers PM , respectively, which are described by the following ODEs system,

dx1(t)

dt
= 2a1+(NR1 − x1(t)− 2x3(t)− x5(t)− x7(t))(NL − x1(t)− x2(t)

− x3(t)− x4(t)− x5(t)− x6(t)− x7(t))− b11+x1(t)(NR1 − x1(t)
− 2x3(t)− x5(t)− x7(t))− α1−x1(t) + 2β11−x3(t) + β12−x5(t)
− b12+x1(t)(NR2 − x2(t)− 2x4(t)− x5(t)− 2x6(t)− x7(t)),

dx2(t)

dt
= 2a2+(NR2 − x2(t)− 2x4(t)− x5(t)− 2x6(t)− x7(t)) (NL − x1(t)

− x2(t)− x3(t)− x4(t)− x5(t)− x6(t)− x7(t)) + 2β22−x4(t)
− b22+x2(t)(NR2 − x2(t)− 2x4(t)− x5(t)− 2x6(t)− x7(t))− α2−x2(t)
− b21+x2(t)(NR1 − x1(t)− 2x3(t)− x5(t)− x7(t)) + β21−x5(t),

dx3(t)

dt
= −2β11−x3(t) + b11+x1(t)(NR1 − x1(t)− 2x3(t)− x5(t)− x7(t)),
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dx4(t)

dt
= b22+x2(t)(NR2 − x2(t)− 2x4(t)− x5(t)− 2x6(t)− x7(t))

− 2β22−x4(t)− γ22+x4(t) + γ22−x6(t),

dx5(t)

dt
= b12+x1(t)(NR2 − x2(t)− 2x4(t)− x5(t)− 2x6(t)− x7(t))− β12−x5(t)

− β21−x5(t) + b21+x2(t)(NR1 − x1(t)− 2x3(t)− x5(t)− x7(t))
− γ12+x5(t) + γ12−x7(t)

dx6(t)

dt
= γ22+x4(t)− γ22−x6(t),

dx7(t)

dt
= γ12+x5(t)− γ12−x7(t),

(3.27)

for all t ≥ 0, where the initial conditions are xi(0) = 0 for 1 ≤ i ≤ 7. Denote by

(x∗1, x
∗
2, x
∗
3, x
∗
4, x
∗
5, x
∗
6, x
∗
7) the steady state of this ODEs system. The moments can

be obtained from Equations (3.21) and (3.22) where A = (Aij)1≤i,j≤7 and B =

(Bij)1≤i,j≤7. The elements Aij and Bij for i, j ≤ 5 are the same as in the IP R1/R2

model except for the following contributions which must be added: ∆A44 =

−γ22+, ∆A55 = −γ12+, and ∆B44 = γ22−x
∗
6 + γ22+x

∗
4, ∆B55 = γ12−x

∗
7 + γ12+x

∗
5.

There are seven variables in the DP R1/R2 model, therefore the expressions

describing the number of free ligand or free receptor in time have to be updated

in the matrices A, B of the IP R1/R2 model in the following way,

(NL − x∗1 − x∗2 − x∗3 − x∗4 − x∗5) → (NL − x∗1 − x∗2 − x∗3 − x∗4 − x∗5−x∗6 − x∗7),
(NR1 − x∗1 − 2x∗3 − x∗5) → (NR1 − x∗1 − 2x∗3 − x∗5−x∗7),
(NR2 − x∗2 − 2x∗4 − x∗5) → (NR2 − x∗2 − 2x∗4 − x∗5−2x∗6 − x∗7),

Additionally for i ≥ 6 or j ≥ 6, Aij = 0 and Bij = Bji = 0, except for the

following

A16 = 2b12+x
∗
1 − 2a1+(NR1 − x∗1 − 2x∗3 − x∗5 − x∗7),

A17 = b11+x
∗
1 + b12+x

∗
1 − 2a1+((NL − x∗1 − x∗2 − x∗3 − x∗4 − x∗5 − x∗6 − x∗7)

+ (NR1 − x∗1 − 2x∗3 − x∗5 − x∗7)),

A26 = 2b22+x
∗
2 − 2a2+(2(NL − x∗1 − x∗2 − x∗3 − x∗4 − x∗5 − x∗6 − x∗7)

+ (NR2 − x∗2 − 2x∗4 − x∗5 − 2x∗6 − x∗7)),
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A27 = b21+x
∗
2 + b22+x

∗
2 − 2a2+((NL − x∗1 − x∗2 − x∗3 − x∗4 − x∗5 − x∗6 − x∗7)

+ (NR2 − x∗2 − 2x∗4 − x∗5 − 2x∗6 − x∗7)),

A37 = −b11+x
∗
1,

A46 = −2b22+x
∗
2 + γ22−,

A47 = −b22+x
∗
2,

A56 = −2b12+x
∗
1,

A57 = γ12− − b12+x
∗
1 − b21+x

∗
2,

A64 = γ22+,

A66 = −γ22−,

A75 = γ12+,

A77 = −γ12−,

and

B46 = −γ22−x
∗
6 − γ22+x

∗
4,

B57 = −γ12−x
∗
7 − γ12+x

∗
5,

B66 = γ22−x
∗
6 + γ22+x

∗
4,

B77 = γ12−x
∗
7 + γ12+x

∗
5.

3.3.3 Results

Firstly I show in Table 3.5 values of the physiological parameters used in the

models described in Section 3.1. Secondly the comparison between two moment

closure methods, the zero cumulant and the van Kampen approximation, is done

for the IP R2 model. In the next step I compare the IP R2 model with the IP

R1/R2 model and the DP R2 model with the DP R1/R2 model. For these models,

the objective is to analyse the dynamics of the different receptors and complexes

for different VEGF-A ligand concentrations, and to study the competition effect

that the presence of VEGFR1 has in the dynamics of VEGFR2.
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Parameters values

Rates involved in the IP R2, the DP R2, the IP R1/R2 and the DP R1/R2 models

(Figures 3.1, 3.2, 3.3 and 3.4, respectively) have been obtained by following the

approach described in Subsections 3.2.1 and 3.2.2 with physiological parameters

taken from the literature. In particular, physiological parameters are given in

Table 3.5, and computed rates corresponding to the IP R2 and the DP R2 models

are given in Table 3.6, whereas computed rates corresponding to the IP R1/R2

and the DP R1/R2 models are given in Tables 3.7 and 3.8 assuming three different

initial number for VEGFR1 receptors per cell.

Physiological parameter Value Reference

Endothelial cell surface area, sc 10−3 mm2 Mac Gabhann & Popel (2007)

VEGF-A diffusion coefficient at 4 ◦C, DL 5.2× 10−5mm2s−1 Mac Gabhann et al. (2005)

VEGFR1 and VEGFR2 diffusion coefficient, DR 10−8mm2s−1 Linderman & Lauffenburger (2013)

VEGFR1 and VEGFR2 radius, b 5× 10−7 mm Alarcón & Page (2006)

Average membrane thickness of ECs, th 10−4 mm Aird (2007)

Height of the experimental volume, h 1 mm Mac Gabhann & Popel (2007)

Dissociation rate, koff 1.32× 10−3s−1 Mac Gabhann & Popel (2007)

Equilibrium dissociation constant, Kd for VEGFR1 30 pM Mac Gabhann & Popel (2007)

Equilibrium dissociation constant, Kd for VEGFR2 150 pM Mac Gabhann & Popel (2007)

Phosphorylation rate for D complexes, γ+ 3.67× 10−3 s−1 Lauffenburger & Linderman (1993)

De-phosphorylation rate for P complexes, γ− 9.17× 10−4 s−1 Lauffenburger & Linderman (1993)

Table 3.5: Physiological parameters

I consider the subset of endothelial cells, called human umbilical vein endothelial

cells (HUVECs), which have been characterised to express (on average) 5800

VEGFR2 receptors per cell as reported by Imoukhuede & Popel (2012). The

focus is on 4% of the cell surface (f = 0.04) for computational reasons, so that in

this area the total number of VEGFR2 receptors is nR2 = 232. Based on the fact

that HUVECs express a total number of 1800± 100 VEGFR1 receptors per cell

(see Imoukhuede & Popel (2012)) three values were chosen to study the impact

of receptor competition, 1600, 1800 and 2000 VEGFR1 receptors per cell. These

numbers correspond to 64, 72 and 80 VEGFR1 receptors present on 4% fraction

of the cell. Therefore Table 3.7 contains the kinetics rates for different initial

number of VEGFR1 receptors.
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α+ α− β+ β− γ+ γ−

3.65× 10−7 1.32× 10−3 2.16× 10−4 7.80× 10−5 3.67× 10−3 9.17× 10−4

Table 3.6: Kinetic rates (in s−1) for the IP R2 and the DP R2 models, where

nR1 = 0, considering 4% of the cell.

nR1 = 64 nR1 = 72 nR1 = 80

α1+ 1.83× 10−6 1.83× 10−6 1.83× 10−6

α1− 1.32× 10−3 1.32× 10−3 1.32× 10−3

α2+ 3.65× 10−7 3.65× 10−7 3.65× 10−7

α2− 1.32× 10−3 1.32× 10−3 1.32× 10−3

β11+ 2.07× 10−4 2.09× 10−4 2.11× 10−4

β11− 1.50× 10−5 1.51× 10−5 1.52× 10−5

β12+ 1.74× 10−4 1.70× 10−4 1.67× 10−4

β12− 6.30× 10−5 6.16× 10−5 6.02× 10−5

β21+ 5.04× 10−5 5.53× 10−5 6.00× 10−5

β21− 3.64× 10−6 4.00× 10−6 4.33× 10−6

β22+ 2.16× 10−4 2.16× 10−4 2.16× 10−4

β22− 7.80× 10−5 7.80× 10−5 7.80× 10−5

Table 3.7: Kinetic rates (in s−1) for the IP R1/R2 and the DP R1/R2 models

considering 4% of the cell.

The phosphorylation rate of the DM complexes in the DP R1/R2 model is taken

to be γ21+ = 0.5γ22+, since only VEGFR2 is assumed to become phosphorylated

(VEGFR1 phosphorylation is neglected as per Casaletto & McClatchey (2012)),

and the de-phosphorylation rate of PM complexes is taken to be γ21− = γ22−.

γ21+ γ21− γ22+ γ22−

1.833× 10−3 9.167× 10−4 3.667× 10−3 9.167× 10−4

Table 3.8: Phosphorylation and de-phosphorylation rates (in s−1) for the IP

R1/R2 and the DP R1/R2 models considering 4% of the cell.
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Moment closure methods for the IP R2 model

Results for the zero cumulant method (denoted by ZC on Figures 3.6 and 3.7)

are compared with results for the van Kampen approximation (denoted by V K

on Figures 3.6 and 3.7) for the IP R2 model. Figures 3.6 and 3.7 show results

of these moment closure techniques using rates described in Table 3.6 for four

different initial ligand concentrations cl ∈ {0.25nM, 0.1nM, 1nM, 2.5nM}, which

approximately corresponds to nL ∈ {0.25nR2 , 10nR2 , 100nR2 , 250nR2}, where nR2

is the number of VEGFR2. Only 4% of the cell is considered in this experiment.

Blue curves show the solution of the deterministic representation of the IP R2

model defined by Equations (3.18). Black curves show the sampled stochastic

simulation computed using the Gillespie algorithm described in Subsection 2.2.13

of Chapter 2. Shaded area on these Figures represents the mean ± two standard

deviations for the van Kampen approximation and the zero cumulant method.

As both approximation work well only the van Kampen approximation is used

for the DP R2, the IP R1/R2 and the DP R1/R2 models.

Figure 3.6: Comparison of moment closure techniques for the IP R2 model for

bound monomers M2.
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Figure 3.7: Comparison of moment closure techniques for the IP R2 model for

bound dimers P2.

Immediate phosphorylation: IP R2 and IP R1/R2 models

In order to analyse the dynamics of the stochastic process in the presence of

VEGFR1 receptors, in Figure 3.8 the means of the random variables in the IP

R2 and the IP R1/R2 models as a function of time are plotted with shaded area

showing two standard deviations. The time course has been generated with the

van Kampen approximation, where the following VEGF-A ligand copy numbers

are considered nL ∈ {0.1nR2 , 0.25nR2 , 0.5nR2 , 10nR2 , 50nR2 , 100nR2 , 250nR2 ,

625nR2 , 1250nR2}, which approximately correspond to concentrations cL ∈ {1pM,

2.5pM, 5pM, 0.1nM, 0.5nM, 1nM, 2.5nM, 6.25nM, 12.5nM}.
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Figure 3.8: The van Kampen approximation of the IP R2 and the IP R1/R2

models for different initial ligand concentrations cL ∈ {1pM , 2.5pM, 5pM , 0.1nM,

0.5nM, 1nM, 2.5nM, 6.25nM, 12.5nM}. Dashed lines correspond to the IP R2

model and solid lines correspond to the IP R1/R2 whereas the shaded areas show

the mean ± two standard deviations. Time course showed on top for monomers

and on bottom for dimers.
76



3.3 Moment closure approximation methods

For low ligand concentrations the number of dimers grows as the VEGF-A con-

centration is increased. For these concentrations the steady state has not been

reached in the first 60 min of the numerical simulation. However, higher con-

centrations result in saturated situations, where the difference between the num-

ber of P2 complexes with and without considering VEGFR1 receptors becomes

stable. In fact, this saturation results in lower numbers of P2 complexes for

ligand concentrations higher than cL ∼ 2.5nM . Thus, concentrations around

0.1nM − 2.5nM may be considered as the optimum ones. For ligand concentra-

tions of order cL = {6.25nM, 12.5nM}, the system exhibits a reduction in the

number of dimers, which is caused by the rapid formation of monomeric bound

complexes (see Figure 3.8). By analysing the formation of monomers as a function

of time under optimal ligand concentrations a peak of monomeric complexes in

the first 5 minutes can be observed. It is followed by a decrease of P2 complexes.

For high ligand concentrations, the steady state value for monomeric complexes

increases, so that formation of dimers is effectively blocked.

Delayed phosphorylation: DP R2 and DP R1/R2 models

In Figure 3.9, the Gillespie simulations are carried out to obtain the dynamics

of the system in the DP R2 and the DP R1/R2 models for different ligand con-

centrations, as before, cL ∈ {1pM , 2.5pM , 5pM , 0.1nM , 0.5nM , 1nM , 2.5nM ,

6.25nM , 12.5nM}. For high ligand concentrations, phosphorylation events occur

within 10-20 minutes of ligand stimulation as observed by Alarcón & Page (2007),

Ewan et al. (2006a) and Tan et al. (2013a). The number of non-active dimers

(D1, DM , D2) is, in general, lower than the number of active dimers PM and P2,

in steady state. When enough ligand stimulation is given (cL ∈ {0.1nM , 0.5nM,

1nM, 2.5nM, 6.25nM, 12.5nM}) the curves corresponding to dimers D2 and DM

show a peak at early times, which is eventually lost once these complexes become

phosphorylated, as can be seen in the sudden increase for P2 and PM complexes.

Similar comments can be made regarding monomer formation (see Figure 3.9):

a peak is seen during the first 5 minutes, slightly before the dimeric peak. This

clearly indicates a two-step (monomer and non-phosphorylated dimer) formation
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process, which is required for the subsequent creation of phosphorylated com-

plexes on the cell surface. The optimum ligand concentration, cL, for phosphory-

lated dimers in steady state is approximately given by the range 0.1nM−2.5nM .

As depicted in Figure 3.8, for higher ligand concentrations monomeric complexes

are more likely to be formed than either non-phosphorylated or phosphorylated

dimeric complexes. In this case, the peak for non-phosphorylated dimers D2 and

DM is reduced, which is explained by the larger numbers of monomeric bound

complexes formed (see Figure 3.9). When focusing on the number of dimers at

t = 60 min, one can observe an approximately 20% decrease for the number of

P2 dimers in the DP R2 model with respect to the IP R2 model, for small ligand

concentrations cL ∈ {1pM, 2.5pM, 5pM}. As cL grows, the difference between

the number of P2 dimers drops down to 16%. The final aspect to study is the in-

fluence of competition between VEGFR1 and VEGFR2 receptors for the ligand,

VEGF-A, on the number of dimers. Theses results indicate that there is a 35%

decrease in the number of P2 complexes in the IP R1/R2 model with instanta-

neous phosphorylation for small ligand concentration, cL = 1pM with respect to

the IP R2 model.

As the ligand concentration increases, this difference drops down to 22%,

so that the competition between VEGFR1 and VEGFR2 receptors is, again,

reduced when enough ligand stimulation is given. In the model with delayed

phosphorylation, there is a 15% decrease in the number of the dimers P2 in the

DP R1/R2 model compared to the DP R2 model, for small ligand concentration,

cL = 1pM . As the concentration of ligand is increased, this difference also drops

down to 1− 2%.
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Figure 3.9: The van Kampen approximation of the DP R2 and the DP R1/R2

models for different initial ligand concentrations cL ∈ {1pM , 2.5pM, 5pM , 0.1nM,

0.5nM, 1nM, 2.5nM, 6.25nM, 12.5nM}. Dashed lines correspond to the DP R2

model and solid lines correspond to the DP R1/R2 whereas the shaded areas show

mean ± two standard deviations. Time course showed on top for monomers and

on bottom for dimers. 79
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3.3.4 Discussion

A particular assumption in the DP R2 model and the DP R1/R2 model is that

dissociation of phosphorylated dimers requires de-phosphorylation as a first step.

An alternative model that allows for dissociation of phosphorylated dimers would

need to include the following three reactions,

• P2 → R2 +M2,

• PM → R2 +M1,

• PM → R1 +M2.

Results for this alternative model are shown in Figure 3.10, where the most sig-

nificant difference with respect to Figure 3.9 is the lower number of P2 complexes

after 20 minutes under optimal ligand concentrations (0.5nM - 1nM). This small

effect, which is more prominent in the DP R2 model than in the DP R1/R2 model,

can be explained by the new de-phosphorylation pathway of P2 complexes (by

direct dissociation) that arises with the new reactions. However, no significant

differences are identified (see Figure 3.9 and Figure 3.10), which suggests that

the consideration of these additional reactions does not dramatically change the

dynamics or the steady state of the system, with or without VEGFR1 receptors.
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3.3 Moment closure approximation methods

Figure 3.10: Generalisation of the DP R2 and the DP R1/R2 models to include

dissociation of phosphorylated dimers. This figure is analogous to Figure 3.9.
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3.4 Quantifying the phosphorylation timescales

For the IP R2 and the DP R2 models, the aim in this section is to quantify the

time to reach a given signalling threshold on the cell membrane. This signalling

is directly identified in the models with the number of activated (either instan-

taneously or in a delayed fashion) complexes at any given time. Moreover, the

steady-state distribution of the system is computed. Finally, a sensitivity analysis

is developed for both models, in order to understand how the binding, dissoci-

ation, phosphorylation and de-phosphorylation rates affect the dynamics of the

ligand/receptor system.

The study of the number of bound monomer, non-phosphorylated and phos-

phorylated bound dimer molecules on the cell surface over time can be viewed

as the analysis of the transient behaviour of a specific Markov process, a prob-

lem which, in general, is not solvable in closed form Kulkarni (1996). Therefore,

one typically carries out the Gillespie simulations (see Gillespie (1977)), or ap-

plies moment-closure techniques (see Gillespie (2009a), Hespanha (2008b)) to

deal with the master equation of the Markov process under study. In this sec-

tion alternative procedures are applied in order to analyse, in an exact way, the

quantities of interest mentioned above. In particular, by representing the time

to reach a signal threshold as a continuous random variable, and by conveniently

structuring the space of states of the continuous time Markov processes under

study, one can identify this time as the absorption time in an auxiliary absorbing

continuous time Markov process. The Laplace-Stieltjes transform is computed for

this random variable, as well as the steady-state probabilities of the process un-

der study, by making use of first-step arguments and matrix-analytic arguments.

Moreover, a novel local sensitivity analysis for the Markov processes under study

is adapted and applied in Subsection 3.4.3, by generalising arguments given by

Caswell (2011). This analysis allows one to identify how the stochastic descriptors

considered in Subsection 3.4.1 and Subsection 3.4.2 (time to signalling formation

and steady-state probabilities), are affected by the binding, dissociation, phos-

phorylation and de-phosphorylation rates.
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3.4.1 IP R2 model

Consider the IP R2 model described by the process XIP R2 defined on the state

space SIP R2 which was studied in Subsection 3.1.1. Note that given (M2(t) ,

P2(t)) = (n1, n2) at some time instant t ≥ 0, then

• if 2nL ≤ nR2 : n1 + n2 ≤ nL ⇒ n1 + 2n2 ≤ nR2 , and

• if nR2 ≤ nL: n1 + 2n2 ≤ nR2 ⇒ n1 + n2 ≤ nL,

so that three different specifications of the space of states SIP R2 are obtained,

depending on the particular values of nR2 and nL. In particular:

• if 2nL ≤ nR2 , then SIP R2 = {(n1, n2) ∈ (N ∪ {0})2 : n1 + n2 ≤ nL},

• if nR2 < 2nL < 2nR2 , then SIP R2 = {(n1, n2) ∈ (N ∪ {0})2 : n1 + n2 ≤
nL, n1 + 2n2 ≤ nR2}, and

• if nR2 ≤ nL, then SIP R2 = {(n1, n2) ∈ (N ∪ {0})2 : n1 + 2n2 ≤ nR2}.

Although one can deal with each of these cases in a similar manner, the focus

here is on the case 2nL ≤ nR2 , since this is the case under physiological conditions

for VEGFR2 (see Kut et al. (2007)), which is the receptor analysed in numerical

results in Subsection 3.3.3. In this case, XIP R2 is defined over SIP R2 = {(n1, n2) ∈
(N ∪ {0})2 : n1 + n2 ≤ nL}. The objectives in this section amount to study two

descriptors of interest:

1. Starting from any state (n1, n2) ∈ SIP R2 , the time to reach a numberN > n2

of P2 complexes.

2. Starting from any state (n1, n2) ∈ SIP R2 , the stationary distribution of the

process.

Descriptor 2 allows obtaining the theoretical state of the system at steady-state,

thus enabling to analyse the long-term dynamics of the process. Descriptor 1

represents the time to reach some pre-defined threshold number of signalling

complexes, or equivalently a pre-defined signal threshold for cell activation (see

Alarcón & Page (2006), Starbuck et al. (1990)). One of the aims here is to analyse
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how this time depends on the number of ligand and receptor molecules on the cell

surface. Moreover, the sensitivity analysis carried out in Subsection 3.4.3 allows

for analysing as well the impact that small perturbations for each kinetic rate

in the system has on these descriptors of interest. The analysis carried out in

this section is based on the use of levels for the organisation of the state space,

Laplace-Stieltjes transforms, first-step arguments and auxiliary absorbing Markov

processes (see Subsection 2.2.9). First organise the space of states SIP R2 , which

contains

#SIP R2 =
(nL + 1)(nL + 2)

2

states, by levels (groups of states) as

SIP R2 =

nL⋃
k=0

L(k),

where L(k) = {(n1, n2) : n2 = k}, 0 ≤ k ≤ nL, so that J(k) = #L(k) = nL−k+1.

That is, a level L(k) comprises all the possible states (n1, n2) of the process with

a total number of P2 complexes equal to k. Moreover, these levels are ordered as

L(0) ≺ L(1) ≺ · · · ≺ L(nL),

and states inside a level, L(k) = {(0, k), (1, k), . . . , (nL − k, k)}, 0 ≤ k ≤ nL, are

ordered as

(0, k) ≺ (1, k) ≺ · · · ≺ (nL − k, k).

It is clear that from a state (n1, n2) at level L(n2), the process can only move to

states at the same level, L(n2), and to states at adjacent levels, L(n2 − 1) and

L(n2+1). That is, if the state of the system is (n1, n2) (and then, the process is at

level L(n2)), the only possible transitions are to (n1−1, n2) (if a bound monomer

dissociates, in which case the process remains at level L(n2)), to (n1 + 1, n2) (if a

bound monomer is formed, leaving the process at level L(n2)), to (n1 + 1, n2− 1)

(if a bound dimer dissociates, and the process then decreases to level L(n2− 1)),

or to (n1 − 1, n2 + 1) (if a bound dimer is created, increasing the level of the

process to L(n2 + 1)).
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The organisation of SIP R2 , previously proposed, becomes crucial in order to

obtain a convenient structure for the infinitesimal generator Q of XIP R2 , the

matrix containing the transition rates in the Markov process. In particular, the

resultingQ has the quasi-birth-and-death type (see Subsection 2.2.12) tridiagonal

by blocks structure

Q =



A0,0 A0,1 0J(0)×J(2) . . . 0J(0)×J(nL−1) 0J(0)×J(nL)

A1,0 A1,1 A1,2 . . . 0J(1)×J(nL−1) 0J(1)×J(nL)

0J(2)×J(0) A2,1 A2,2 . . . 0J(2)×J(nL−1) 0J(2)×J(nL)

...
...

...
. . .

...
...

0J(nL−1)×J(0) 0J(nL−1)×J(1) 0J(nL−1)×J(2) . . . AnL−1,nL−1 AnL−1,nL

0J(nL)×J(0) 0J(nL)×J(1) 0J(nL)×J(2) . . . AnL,nL−1 AnL,nL


,

(3.28)

where sub-matrices Ak,k′ contain the infinitesimal transition rates of the transi-

tions from states at level L(k) to states at level L(k′), with k′ ∈ {k− 1, k, k+ 1}.
In particular, matrices Ak,k′ in Equation (3.28) are obtained as follows:

• For 1 ≤ k ≤ nL,

(Ak,k−1)ij =

{
2β−k, if j = i+ 1,
0, otherwise,

where 0 ≤ i ≤ nL − k, 0 ≤ j ≤ nL − k + 1.

• For 0 ≤ k ≤ nL,

(Ak,k)ij =


2α+(nR2 − i− 2k)(nL − i− k), if j = i+ 1
α−i, if j = i− 1
− (2α+(nR2 − i− 2k)(nL − i− k)
+α−i+ 2β−k + β+i(nR2 − i− 2k)) , if j = i
0, otherwise.

where 0 ≤ i ≤ nL − k, 0 ≤ j ≤ nL − k.

• For 0 ≤ k ≤ nL − 1,

(Ak,k+1)ij =

{
β+i(nR2 − i− 2k), if j = i− 1,
0, otherwise,

where 0 ≤ i ≤ nL − k, 0 ≤ j ≤ nL − k − 1.
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The time to obtain a number N > 0 of P2 complexes is considered. In particular,

given an initial state of the process (n1, n2), and a certain threshold N > 0, one

can consider the random variable

T(n1,n2)(N) = “Time to reach a number N of P2 complexes in XIP R2,

if the process starts at (n1, n2) ∈ SIP R2.”

= inf{t ≥ 0 : P2(t) = N}.

Observe here that this time is 0 for N ≤ n2. In order to study this descriptor

for N > n2, one can use an auxiliary CTMP, XIP R2(N), which depends on the

threshold value N . Define XIP R2(N) over SIP R2(N) with

SIP R2(N) = C(N) ∪ {N̄},

where C(N) = ∪N−1
k=0 L(k), and N̄ is a macro-state obtained by lumping together

all states in the set ∪nL
k=NL(k). Regarding the transition rates of this auxiliary

CTMP, the transitions of XIP R2 between states in C(N) are retained, and N̄ is

considered as an absorbing macro-state, so that once XIP R2(N) enters N̄ , it does

not leave this state. Transitions from states in level L(N − 1) to states in L(N)

of the original process XIP R2 , become transitions from states in level L(N − 1)

to the macro-state N̄ in XIP R2(N), where their infinitesimal transition rates are

directly obtained from the original ones as follows:

q(n1,n2)N̄ =
∑

(n′1,n
′
2)∈L(N)

q(n1,n2)(n′1,n
′
2), ∀(n1, n2) ∈ L(N − 1).

Process XIP R2(N) can be seen as process XIP R2 until N of P2 complexes are

formed. Then, XIP R2(N) ends since N̄ is an absorbing state for this auxiliary

process. With XIP R2(N) so defined, it is clear that the time taken to obtain a

number N of P2 complexes in the original process XIP R2 is equal to the time until

absorption at N̄ in the absorbing process XIP R2(N), which is known to follow a

continuous phase-type (PH) distribution, (see Subsection 2.2.10). Analysing the

exact distribution of a continuous phase-type random variable is, in general, a

difficult problem. In this case, it would imply obtaining the exponential matrix

exp(T (N)) =
∑+∞

n=0
T (N)n

n!
,where T (N) is a specific sub-matrix of the infinitesi-

mal generator of XIP R2(N). Here, the Laplace-Stieltjes transform of T(n1,n2)(N)
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is used instead, which completely determines its distribution, and which allows

for obtaining any l-th order moment E
(
T(n1,n2)(N)l

)
. Moreover, the l-th order

moment can be efficiently calculated by using the (l − 1)-th order moment, pro-

ceeding recursively, with the computational effort devoted to obtaining inverses of

square blocks Ak,k, which have dimension J(k) = nL−k+1. Again, the proposed

organisation of states is crucial for the construction of an efficient algorithm. By

defining the Laplace-Stieltjes transform of T(n1,n2)(N) as

φN(n1,n2)(z) = E
(
e−zT(n1,n2)(N)

)
, <(z) ≥ 0,

which uniquely determines the distribution of Tn1,n2(N). The different l-th or-

der moments of T(n1,n2)(N) are given by differentiation of the Laplace-Stieltjes

transform,

E
(
T(n1,n2)(N)l

)
= (−1)l

dl

dzl
φN(n1,n2)(z)

∣∣∣∣
z=0

, ∀l ≥ 1.

In order to compute the Laplace-Stieltjes transform φN(n1,n2)(z), one can make use

of a first-step argument, as follows. If the process, XIP R2(N), is at a given time

in state n = (n1, n2), then n→ n′ denotes the event of the next transition of the

process being to state n′ = (n′1, n
′
2). Then, from the theory of Markov processes,

it is well known that

Prob (n→ n′) =
qnn′∑

n′′ 6=n
n′′∈SIP R2

(N)

qnn′′
.

hence, φNn (z) is equal to∑
n′ 6=n

n′∈SIP R2
(N)

E
(
e−z Tn(N)|n→ n′

)
Prob (n→ n′) ,

where

E
(
e−z Tn(N)|n→ n′

)
= E

(
e−z tnn′ e−z Tn′ (N)

)
,

for

tnn′ ∼ exp(κ), where κ =
∑
n′ 6=n

n′∈SIP R2
(N)

qnn′ .
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tnn′ is the time until the event (or transition) n→ n′ occurs, which is indepen-

dent of Tn′(N). Finally, since E
(
e−z X

)
= a/(a + z) if X ∼ exp(a), it can be

concluded that

φN(n1,n2)(z) = (1− δn1+n2,nL
)

2α+(nR2
−n1−2n2)(nL−n1−n2)

z+A(n1,n2)
φN(n1+1,n2)(z)

+ (1− δn1,0)× α−n1

z+A(n1,n2)
φN(n1−1,n2)(z)

+ (1− δn1,0)
β+n1(nR2

−n1−2n2)

z+A(n1,n2)

(
δn2,N−1 + (1− δn2,N−1)φN(n1−1,n2+1)(z)

)
+ (1− δn2,0) 2β−n2

z+A(n1,n2)
φN(n1+1,n2−1)(z),

(3.29)

where from now on A(n1,n2) = 2α+(nR2 − n1 − 2n2)(nL − n1 − n2) + α−n1 +

β+n1(nR2 − n1 − 2n2) + 2β−n2. Equation (3.29) relates the Laplace-Stieltjes

transforms corresponding to all the states of SIP R2(N), so that a system of linear

equations is obtained. By organising the Laplace-Stieltjes transforms in vectors

by levels as follows

gN(z) = (gN0 (z)T , gN1 (z)T , gN2 (z)T , . . . , gNN−1(z)T )T ,

with gNk (z) = (φN(0,k)(z), φN(1,k)(z), φN(2,k)(z), . . . , φN(nL−k,k)(z))T , for 0 ≤ k ≤ N − 1,

then the system given in Equation (3.29) can be expressed in matrix form as

gN(z) = AN(z) gN(z) + aN(z), (3.30)

with the matrix AN(z) given by

A0,0(z) A0,1(z) 0J(0)×J(2) . . . 0J(0)×J(N−2) 0J(0)×J(N−1)

A1,0(z) A1,1(z) A1,2(z) . . . 0J(1)×J(N−2) 0J(1)×J(N−1)

0J(2)×J(0) A2,1(z) A2,2(z) . . . 0J(2)×J(N−2) 0J(2)×J(N−1)
...

...
...

. . .
...

...
0J(N−2)×J(0) 0J(N−2)×J(1) 0J(N−2)×J(2) . . . AN−2,N−2(z) AN−2,N−1(z)
0J(N−1)×J(0) 0J(N−1)×J(1) 0J(N−1)×J(2) . . . AN−1,N−2(z) AN−1,N−1(z)


,

and the vector aN(z) =
(
0TJ(0),0

T
J(1), . . . ,0

T
J(N−2),aN−1(z)T

)T
. Sub-matrices

Ak,k′(z) and sub-vector aN−1(z) in Equation (3.30) are given by:

• (aN−1(z))i =
β+i(nR2

−i−2(N−1))

z+A(i,N−1)
, for 0 ≤ i ≤ nL −N + 1.
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• For 1 ≤ k ≤ nL,

(Ak,k−1(z))ij =

{
2β−k

z+A(i,k)
, if j = i+ 1,

0, otherwise,

where 0 ≤ i ≤ nL − k, 0 ≤ j ≤ nL − k + 1.

• For 0 ≤ k ≤ nL,

(Ak,k(z))ij =


2α+(nR2

−i−2k)(nL−i−k)

z+A(i,k)
, if j = i+ 1,

α−i
z+A(i,k)

, if j = i− 1,

0, otherwise,

where 0 ≤ i ≤ nL − k, 0 ≤ j ≤ nL − k.

• For 0 ≤ k ≤ nL − 1,

(Ak,k+1(z))ij =

{
β+i(nR2

−i−2k)

z+A(i,k)
, if j = i− 1,

0, otherwise,

where 0 ≤ i ≤ nL − k, 0 ≤ j ≤ nL − k − 1.

Exploiting the special block structure of AN(z), allows for an efficient solution

of Equation (3.30), in a recursive manner through a specialised block-Gaussian

elimination process, leading to Algorithm 4 (Part 1). The calculation of the

Laplace-Stieltjes transforms in Algorithm 4 (Part 1) has its own merit, since it

determines the distribution of the random variable under consideration.
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PART 1
HN

0 (z) = IJ(0) −A0,0(z)
for k = 1, . . . , N − 1 do
HN

k (z) = IJ(k) −Ak,k(z)−Ak,k−1(z)×HN
k−1(z)−1Ak−1,k(z)

end

gNN−1(z) = HN
N−1(z)−1aN−1(z)

m
N,(0)
N−1 = gNN−1(0)

for k = N − 2, . . . , 1, 0 do
gNk (z) = HN

k (z)−1Ak,k+1(z)gNk+1(z)

m
N,(0)
k = gNk (0)

end

PART 2
m

N,(0)
N−1 = gNN−1(0)

for k = N − 2, . . . , 1, 0 do

m
N,(0)
k = gNk (0)

end
for p = 1, . . . , l do

P
N,(p)
0 =

p∑
k=1

(
p
k

)
(−1)k

(
A

(k)
0,0(0)m

N,(p−k)
0 +A

(k)
0,1(0)m

N,(p−k)
1

)
for j = 1, . . . , N − 1 do

P
N,(p)
j = Aj,j−1(0)HN

j−1(0)−1P
N,(p)
j−1

+
p∑

k=1

(
p
k

)
(−1)k

(
A

(k)
j,j−1(0)m

N,(p−k)
j−1 +A

(k)
j,j (0)m

N,(p−k)
j

+(1− δj,N−1)×A(k)
j,j+1(0)m

N,(p−k)
j+1

)
end

m
N,(p)
N−1 = HN

N−1(0)−1
(
P
N,(p)
N−1 + (−1)pa

(p)
N−1(0)

)
for j = N − 2, . . . , 1, 0 do

m
N,(p)
j = HN

j (0)−1
(
P
N,(p)
j +Aj,j+1(0)m

N,(p)
j+1

)
end

end

Algorithm 4: to obtain the Laplace-Stieltjes transforms gN(z) and the l-th

order moments mN,(l).

90



3.4 Quantifying the phosphorylation timescales

Moreover, the calculation of the distribution function of T(n1,n2)(N) by numerical

inversion of the transform is possible, although computationally expensive, and

is not developed here (see Abate & Whitt (1992)).

Once the Laplace-Stieltjes transforms are in hand, the different l-th order

moments can be obtained by successive differentiation of the system given by

Equation (3.30). In particular, one can write

mN,(l) =
l∑

p=0

(−1)p
(
l

p

)
dp

dzp
AN(z)

∣∣∣∣
z=0

mN,(l−p) + (−1)l
dl

dzl
aN(z)

∣∣∣∣
z=0

,(3.31)

wheremN,(l) is the column vector containing the desired momentsE
(
T(n1,n2)(N)l

)
,

for (n1, n2) ∈ C(N). These moments are organised in sub-vectors by levels as

mN,(l) = (m
N,(l)T
0 ,m

N,(l)T
1 ,m

N,(l)T
2 , . . . ,m

N,(l)T
N−1 )T ,

where for 0 ≤ k ≤ N − 1

m
N,(l)
k = (E

(
T(0,k)(N)l

)
, E
(
T(1,k)(N)l

)
, E
(
T(2,k)(N)l

)
, . . . , E

(
T(nL−k,k)(N)l

)
)T ,

Note that the notation mN,(0) = gN(0) = e#C(N) is implicit in Equation (3.31).

That is, the moment of order l = 0 is the Laplace-Stieltjes transform for z = 0.

Finally, the system given by Equation (3.31) is rewritten as follows:

mN,(l) = AN(0)mN,(l) +
l∑

p=1

(
l

p

)
(−1)pAN,(p)(0)mN,(l−p) +(−1)laN,(l)(0). (3.32)

It is clear that the direct calculation of the inverse (I#C(N) −AN(0))−1 involved

in the solution of Equation (3.32) can be avoided by working by levels and solving

Equation (3.32) in a similar way to Algorithm 4 (Part 1). By starting with the

known moment of order p = 0, one can proceed recursively by calculating mN,(p)

from mN,(p−1), until the desired order p = l is reached, leading to Algorithm 4

(Part 2). Matrix AN,(p)(0) in Equation (3.32) is given by

A
(p)
0,0(0) A

(p)
0,1(0) 0J(0)×J(2) . . . 0J(0)×J(N−2) 0J(0)×J(N−1)

A
(p)
1,0(0) A

(p)
1,1(0) A

(p)
1,2(0) . . . 0J(1)×J(N−2) 0J(1)×J(N−1)

0J(2)×J(0) A
(p)
2,1(0) A

(p)
2,2(0) . . . 0J(2)×J(N−2) 0J(2)×J(N−1)

...
...

...
. . .

...
...

0J(N−2)×J(0) 0J(N−2)×J(1) 0J(N−2)×J(2) . . . A
(p)
N−2,N−2(0) A

(p)
N−2,N−1(0)

0J(N−1)×J(0) 0J(N−1)×J(1) 0J(N−1)×J(2) . . . A
(p)
N−1,N−2(0) A

(p)
N−1,N−1(0)
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and matrix aN,(p)(0) is given by,

aN,(p)(0) =


0J(0)

0J(1)
...

0J(N−2)

a
(p)
N−1(0)

 ,

where expressions for a
(p)
N−1(0) and A

(p)
k,k′(0), for p ≥ 1, are as follows:

•
(
a

(p)
N−1(0)

)
i

= (−1)pp!
β+i(nR2

−i−2(N−1))

Ap+1
(i,N−1)

, for 0 ≤ i ≤ nL −N + 1.

• For 1 ≤ k ≤ nL, p ≥ 1,

(
A

(p)
k,k−1(0)

)
ij

=

{
(−1)pp! 2β−k

Ap+1
(i,k)

, if j = i+ 1,

0, otherwise,

where 0 ≤ i ≤ nL − k, 0 ≤ j ≤ nL − k + 1.

• For 0 ≤ k ≤ nL, p ≥ 1,

(
A

(p)
k,k(0)

)
ij

=


(−1)pp!

2α+(nR2
−i−2k)(nL−i−k)

Ap+1
(i,k)

, if j = i+ 1,

(−1)pp! α−i

Ap+1
(i,k)

, if j = i− 1,

0, otherwise,

where 0 ≤ i ≤ nL − k, 0 ≤ j ≤ nL − k.

• For 0 ≤ k ≤ nL − 1, p ≥ 1,

(
A

(p)
k,k+1(0)

)
ij

=

{
(−1)pp!

β+i(nR2
−i−2k)

Ap+1
(i,k)

, if j = i− 1,

0, otherwise,

where 0 ≤ i ≤ nL − k, 0 ≤ j ≤ nL − k − 1.

Finally, the long term behaviour of the process is given by the stationary distri-

bution of the CTMP; that is, by probabilities

π(n1,n2) = lim
t→+∞

Prob((M(t), P (t)) = (n1, n2)), ∀(n1, n2) ∈ SIP R2 ,
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which do not depend on the initial state. This distribution can be stored in a row

vector π = (π0,π2, . . . ,πnL
), where the row sub-vector πk contains the ordered

probabilities π(n1,n2) for states at level L(k). Solving the system

πQ = 0T#SIP R2
and πe#SIP R2

= 1,

where e#SIP R2
represents vector of ones with length equal to number of elements

in SIP R2 , and adapting the arguments presented by Latouche & Ramaswami

(1999) in Chapter 10, one can obtain Algorithm 5. With π in hand, the long

term mean number of M2 and P2 complexes can be obtained as

πM = “Mean number of M2 complexes in steady-state” =

nL∑
k=0

k

(
nL∑
j=0

(πj)k

)
,

πP = “Mean number of P2 complexes in steady-state” =

nL∑
k=0

k
(
πkeJ(k)

)
.

H0 = A0,0

for k = 1, . . . , nL − 1 do
Hk = Ak,k −Ak,k−1H

−1
k−1Ak−1,k

end
π∗nL

= 1
for k = nL − 1, . . . , 0 do
π∗k = −π∗k+1Ak+1,kH

−1
k

end
for k = 0, . . . , nL do
πk = 1

nL∑
j=0

π∗jeJ(r)

π∗k

end

Algorithm 5: to obtain the stationary distribution π.

3.4.2 DP R2 model

In the previous subsection the IP R2, which assumes P2 complexes were instan-

taneously phosphorylated, was studied. Here the DP R2 model described by the

process XDP R2 defined on the state space SDP R2 , assuming two-step process for

P2 phosphorylation, presented in Subsection 3.1.2 is considered. In what follows,

the arguments of the previous subsection are adopted to this model. This allows
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evaluating the relevance of considering phosphorylation as an independent reac-

tion, and serving as an example of how to include new reactions in this type of

models, while adapting the matrix-analytic arguments. Assuming as previously

that 2nL ≤ nR2 , it is straightforward to show that for all t ≥ 0

M2(t) +D2(t) + P2(t) ≤ nL, ⇒ M2(t) + 2D2(t) + 2P2(t) ≤ nR2 ,

so that the space of state of the process XDP R2 becomes simply SDP R2 = {(n1 ,

n2, n3} ∈ (N ∪ {0})3 : n1 + n2 + n3 ≤ nL}. The following descriptors, analogous

to those of the previous section, are studied:

1. Starting from any state (n1, n2, n3) ∈ SDP R2 , the time to reach a number

N > n3 of P complexes.

2. Starting from any state (n1, n2, n3) ∈ SDP R2 , the stationary distribution of

the system.

To study these descriptors, the level structure for the state space is used again,

that is, SDP R2 is split in levels as follows:

SDP R2 =

nL⋃
k=0

L̂(k),

where L̂(k) = {(n1, n2, n3) ∈ SDP R2 : n3 = k}, for 0 ≤ k ≤ nL, so that

Ĵ(k) = #L̂(k) =
(nL − k + 1)(nL − k + 2)

2
.

The three-dimensionality of the process implies that each level L̂(k) may be split

into different sub-levels, as follows:

L̂(k) =

nL−k⋃
r=0

l(k; r),

with l(k; r) = {(n1, n2, n3) ∈ SDP R2 : n2 = r, n3 = k}, for 0 ≤ r ≤ nL − k,

0 ≤ k ≤ nL, and J(k; r) = #l(k; r) = nL − r − k + 1. That is,

l(k; r) = {(0, r, k), (1, r, k), . . . , (nL − r − k, r, k)},
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where 0 ≤ r ≤ nL − k, 0 ≤ k ≤ nL and states in l(k; r) are ordered as indicated

above. The given order of states and the organisation by levels and sub-levels,

thus, yield an infinitesimal generator similar to Equation (3.28), where quantities

J(k) and matrices Ak,k′ are replaced by Ĵ(k) and Âk,k′ , respectively. A matrix

Âk,k′ contains the ordered infinitesimal transition rates corresponding to transi-

tions from states at level L̂(k) to states at level L̂(k′). Each matrix Âk,k′ is formed

by sub-blocks Bk,k′

r,r′ which contain the infinitesimal transition rates correspond-

ing to transitions from states at sub-level l(k; r) ⊂ L̂(k) to states at sub-level

l(k′; r′) ⊂ L̂(k′). It can be observed that the dimension of the matrix Âk,k′ is

Ĵ(k) × Ĵ(k′) = (nL−k+1)(nL−k+2)
2

× (nL−k′+1)(nL−k′+2)
2

, while the dimension of the

sub-blockBk,k′

r,r′ inside Âk,k′ is J(k; r)×J(k′; r′) = (nL−r−k+1)×(nL−r′−k′+1).

Expressions for these matrices are as follows:

• For 0 ≤ k ≤ nL

Âk,k =



Bk,k
0,0 Bk,k

0,1 0 . . . 0 0

Bk,k
1,0 Bk,k

1,1 Bk,k
1,2 . . . 0 0

0 Bk,k
2,1 Bk,k

2,2 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . Bk,k
nL−k−1,nL−k−1 Bk,k

nL−k−1,nL−k
0 0 0 . . . Bk,k

nL−k,nL−k−1 Bk,k
nL−k,nL−k


,

• For 0 ≤ k ≤ nL − 1,

Âk,k+1 =



0 0 0 . . . 0 0

Bk,k+1
1,0 0 0 . . . 0 0

0 Bk,k+1
2,1 0 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 0 0

0 0 0 . . . Bk,k+1
nL−k,nL−k−1 0


,

• For 1 ≤ k ≤ nL,

Âk,k−1 =



0 Bk,k−1
0,1 0 . . . 0 0

0 0 Bk,k−1
1,2 . . . 0 0

0 0 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . Bk,k−1
nL−k−1,nL−k 0

0 0 0 . . . 0 Bk,k−1
nL−k,nL−k+1


.
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Note that, although dimensions of matrices 0 are omitted for the ease of notation,

the dimension of each matrix 0, representing transitions from states at sub-level

l(k; r) to states at sub-level l(k′; r′), is J(k; r)× J(k′; r′). The expressions for the

matrices Bk,k′

r,r′ are given as follows:

• For 0 ≤ r ≤ nL − k, 0 ≤ k ≤ nL,

(
Bk,k
r,r

)
ij

=


α−i, if j = i− 1,
−A(i,r,k), if j = i,
2α+(nR2 − i− 2r − 2k)(nL − i− r − k), if j = i+ 1,
0, otherwise,

where 0 ≤ i ≤ nL − r − k, 0 ≤ j ≤ nL − r − k, and, from now on,

A(i,r,k) = 2α+(nR2 − i− 2r− 2k)(nL− i− r− k) +α−i+ β+i(nR2 − i− 2r−
2k) + 2β−r + γ+r + γ−k.

• For 0 ≤ r ≤ nL − k − 1, 0 ≤ k ≤ nL,(
Bk,k
r,r+1

)
ij

=

{
β+i(nR2 − i− 2r − 2k), if j = i− 1,
0, otherwise,

where 0 ≤ i ≤ nL − r − k, 0 ≤ j ≤ nL − r − k − 1.

• For 1 ≤ r ≤ nL − k, 0 ≤ k ≤ nL,(
Bk,k
r,r−1

)
ij

=

{
2β−r, if j = i+ 1,
0, otherwise,

where 0 ≤ i ≤ nL − r − k, 0 ≤ j ≤ nL − r − k + 1.

• For 1 ≤ r ≤ nL − k, 0 ≤ k ≤ nL − 1,(
Bk,k+1
r,r−1

)
ij

=

{
γ+r, if j = i,
0, otherwise,

where 0 ≤ i ≤ nL − r − k, 0 ≤ j ≤ nL − r − k.

• For 0 ≤ r ≤ nL − k, 1 ≤ k ≤ nL,(
Bk,k−1
r,r+1

)
ij

=

{
γ−k, if j = i,
0, otherwise,

where 0 ≤ i ≤ nL − r − k, 0 ≤ j ≤ nL − r − k.
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For an initial state (n1, n2, n3) ∈ SDP R2 and a number N > 0, the following

random variable is studied,

T(n1,n2,n3)(N) = “Time to reach a number N of P2 complexes in XDP R2,

if the process starts at (n1, n2, n3) ∈ SDP R2.”

= inf{t ≥ 0 : P2(t) = N}.

N is omitted in the notation for convenience. Again, this time is 0 for N ≤ n3.

For N > n3, an argument similar to that of Subsection 3.4.1 is used, so that the

analysis of an auxiliary absorbing CTMP requires the study of T(n1,n2,n3) as an

absorption time in the auxiliary process.

In order to obtain the different l-th order moments in an efficient way, define

the Laplace-Stieltjes transform of T(n1,n2,n3) as

ξ(n1,n2,n3)(z) = E
(
e−zT(n1,n2,n3)

)
, <(z) ≥ 0,

and the different l-th order moments of T(n1,n2,n3) can be obtained as

E
(
T l(n1,n2,n3)

)
= (−1)l

dl

dzl
ξ(n1,n2,n3)(z)

∣∣∣∣
z=0

, ∀l ≥ 1.

By a first-step argument, the following system is obtained,

ĝ(z) = Â(z) ĝ(z) + â(z), (3.33)

where the Laplace-Stieltjes transforms are stored in vectors ĝ(z), following the

order given by levels and sub-levels, and where the expressions for matrices Â(z)

and â(z) are omitted for brevity. By successive differentiation of the system in

Equation (3.33), the different l-th order moments E
(
T l(n1,n2,n3)

)
are obtained

through an adapted version of Algorithm 4, with the l-th order moments stored

in the vectors m̂(l). Note that in the adapted version of Algorithm 4 to solve

Equation (3.33), which is omitted, one needs to deal with inverses of matrices

with dimension Ĵ(k) = #L̂(k). The complexity of transitions between states does

not seem to allow to gain further efficiency in the algorithms by working with

inverses of matrices with the dimensions of the given sub-levels. However, in the

special case γ− = 0, that is, when de-phosphorylation is neglected, it is possible
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to improve the procedures so that the highest computational effort is placed on

inverting matrices with the dimensions of sub-levels instead of levels, which would

yield to an alternative algorithm, which is not described here. Finally, the focus

here is on the stationary distribution of the process, that is, probabilities

π̂(n1,n2,n3) = lim
t→+∞

Prob((M2(t), D2(t), P2(t)) = (n1, n2, n3)),

which do not depend on the initial state of the system for all (n1, n2, n3) ∈
SDP R2 . Similar arguments to those considered in Subsection 3.4.1 which allow

obtaining the stationary distribution in a row vector π̂ = (π̂0, π̂2, . . . , π̂nL
), where

π̂k =
(
π̂k0, π̂

k
2, . . . , π̂

k
nL−k

)
, and where row sub-vectors π̂kr contain, in an ordered

manner, steady-state probabilities of states at sub-levels l(k; r). An adapted

version of Algorithm 5 can be obtained, where the matrices Aj,j′ , in Equation

(3.29), would be now replaced by the matrices Âk,k′ previously defined. Once

these vectors are in hand, it is clear that

π̂M = “Mean number of M2 complexes in steady-state”

=

nL∑
i=0

i

(
nL−i∑
k=0

nL−i−k∑
r=0

(π̂kr)i

)
,

π̂D = “Mean number of D2 complexes in steady-state”

=

nL∑
r=0

r

(
nL−r∑
k=0

nL−r−k∑
i=0

(π̂kr)i

)
,

π̂P = “Mean number of P2 complexes in steady-state”

=

nL∑
k=0

k

(
nL−k∑
r=0

nL−r−k∑
i=0

(π̂kr)i

)
.

3.4.3 Local sensitivity analysis

The objective of this section is to develop a local sensitivity analysis to un-

derstand the effect that each of the (binding, dissociation, phosphorylation or

de-phosphorylation) rates (α+, α−, β+, β−, γ+ and γ−) has on the stochastic de-

scriptors introduced in Subsections 3.4.1 and 3.4.2, in a given neighbourhood

of parameter space. This selected neighbourhood of parameter space may be

obtained from a parameter estimation of in vitro and in silico experiments, as
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shown in Subsection 3.3.3. The aim then is to obtain the partial derivatives of

the descriptors with respect to each parameter, so that these derivatives provide

a measure of the effect of a perturbation of the parameters on the descriptors.

Sensitivity analysis for CTMP with absorbing states has been recently de-

veloped by Caswell (2011). Although Markov processes considered in this pa-

per are, in general, non-absorbing, arguments presented by Caswell (2011)

can be clearly generalised for the CTMPs considered here. For that aim, con-

sider a given matrix Am×n(θ), that depends on θ = (α+, α−, β+, β−, γ+, γ−),

the parameter’s vector, and its element-by-element derivative with respect to

θi ∈ {α+, α−, β+, β−, γ+, γ−}, A(θi)(θ). It is then possible to calculate the deriva-

tive of A−1(θ) with respect to θi from A(θi)(θ) as (see Magnus & Neudecker

(1985); Neudecker & Magnus (1988))

(A−1)(θi)(θ) = −A−1(θ)A(θi)(θ)A−1(θ). (3.34)

One can make use of this and other basic matrix calculus properties, as dis-

cussed by Caswell (2011), to obtain Algorithm 6 and Algorithm 7. Note that

m
N,(r,θi)
k and A

(r,θi)
k,k′ (0) in Algorithm 6, which corresponds to the IP R2 model,

represent the derivatives of m
N,(r)
k and A

(r)
k,k′(0), respectively, with respect θi,

for θi ∈ {α+, α−, β+, β−}. Finally, explicit expressions for matrices in these

algorithms, consisting on the element-by-element partial derivative of the ma-

trices defined in Subsections 3.4.1 and 3.4.2, with respect to any parameter,

θi ∈ {α+, α−, β+, β−, γ+, γ−}, are not reported here.

It is clear that, since the descriptors are stored in the vectorsmN,(l), m̂(l) (time

to reach a threshold number of P2 complexes in the IP and the DP R2 models,

respectively) and quantities πj and π̂j (mean number of j complexes in steady-

state in the IP R2 model (j ∈ {M2, P2}) and the DP R2 model (j ∈ {M2, D2, P2}),
respectively), the objective in Algorithm 6 and Algorithm 7 is to obtain the

derivative vectors mN,(l,θi), m̂(l,θi), π(θi) and π̂(θi). The first two vectors contain

the derivatives of the l-th order moments of the time to reach a given threshold

number of P complexes, and the last two yield the derivatives of quantities πj

and π̂j, with respect to each rate θi ∈ {α+, α−, β+, β−, γ+, γ−}.

99



3. CELL SURFACE BINDING VEGF-VEGFR MODELS

H
N,(θi)
0 (0) = −A(θi)

0,0 (0)

for k = 1, . . . , N − 1 do

H
N,(θi)
k (0) = −A(θi)

k,k (0)−
(
A

(θi)
k,k−1(0)HN

k−1(0)−1Ak−1,k(0)

−Ak,k−1(0)HN
k−1(0)−1 ×HN,(θi)

k−1 (0)HN
k−1(0)−1Ak−1,k(0)

+Ak,k−1(0)HN
k−1(0)−1A

(θi)
k−1,k(0)

)
end

m
N,(0,θi)
N−1 = −HN

N−1(0)−1H
N,(θi)
N−1 (0)HN

N−1(0)−1aN−1(0) +

HN
N−1(z)−1a

,(θi)
N−1(z)

for k = N − 2, . . . , 1, 0 do

m
N,(0,θi)
k = −HN

k (0)−1H
N,(θi)
k (0)HN

k (0)−1Ak,k+1(0)m
N,(0)
k+1

+HN
k (0)−1A

(θi)
k,k+1(0)×mN,(0)

k+1 +HN
k (0)−1Ak,k+1(0)m

N,(0,θi)
k+1

end
for j = 1, . . . , r do

P
N,(j,θi)
0 =

j∑
k=1

(
j
k

)
(−1)k

(
A

(k,θi)
0,0 (0)m

N,(j−k)
0 +A

(k)
0,0(0)m

N,(j−k,θi)
0

+A
(k,θi)
0,1 (0)m

N,(j−k)
1 +A

(k)
0,1(0)m

N,(j−k,θi)
1

)
for p = 1, . . . , N − 1 do

PN,(j,θi)
p = A

(θi)
p,p−1(0)HN

p−1(0)−1P
N,(j)
p−1

−Ap,p−1(0)HN
p−1(0)−1H

N,(θi)
p−1 (0)×HN

p−1(0)−1P
N,(j)
p−1

+Ap,p−1(0)HN
p−1(0)−1P

N,(j,θi)
p−1 +

j∑
k=1

(
i
k

)
(−1)k ×

(
A

(k,θi)
p,p−1(0)m

N,(j−k)
p−1

+A
(k)
p,p−1(0)m

N,(j−k,θi)
p−1 +A(k,θi)

p,p (0)m
N,(j−k)
p +A(k)

p,p(0)m
N,(j−k,θi)
p

+(1− δp,N−1)
(
A

(k,θi)
p,p+1(0)m

N,(j−k)
p+1 +A

(k)
p,p+1(0) ×mN,(j−k,θi)

p+1

))
;

end

m
N,(j,θi)
N−1 = −HN

N−1(0)−1H
N,(θi)
N−1 (0)HN

N−1(0)−1
(
P
N,(j)
N−1 + (−1)ja

,(j)
N−1(0)

)
+HN

N−1(0)−1
(
P
N,(j,θi)
N−1 + (−1)ja

,(j,θi)
N−1 (0)

)
for p = N − 2, . . . , 1, 0 do

m
N,(j,θi)
p = −HN

p (0)−1HN,(θi)
p (0)HN

p (0)−1
(
PN,(j)
p +Ap,p+1(0)m

N,(j)
p+1

)
+HN

p (0)−1 ×
(
PN,(j,θi)
p +A

(θi)
p,p+1(0)m

N,(j)
p+1 +Ap,p+1(0)m

N,(j,θi)
p+1

)
end

end

Algorithm 6: to obtain the derivative of the r-th order moments

E
(
T(n1,n2)(N)r

)
with respect θi ∈ {α+, α−, β+, β−}.
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H
(θi)
0 = A

(θi)
0,0

for k = 1, . . . , nL − 1 do

H
(θi)
k = A

(θi)
k,k −

(
A

(θi)
k,k−1H

−1
k−1Ak−1,k −Ak,k−1H

−1
k−1H

(θi)
k−1H

−1
k−1Ak−1,k

+Ak,k−1H
−1
k−1A

(θi)
k−1,k

)
end

π
∗,(θi)
nL = 0

for k = nL − 1, . . . , 1, 0 do

π
∗,(θi)
k = −

(
π
∗,(θi)
k+1 Ak+1,kH

−1
k + π∗k+1A

(θi)
k+1,kH

−1
k

−π∗k+1Ak+1,kH
−1
k H

(θi)
k H−1

k

)
end
for k = 0, . . . , nL do

π
(θi)
k = 1

π∗e#S

(
π
∗,(θi)
k − πkπ∗,(θi)e#S

)
end

π
(θi)
M =

nL∑
k=0

k

(
nL∑
j=0

(π
(θi)
j )k

)
π

(θi)
P =

nL∑
k=0

k
(
π

(θi)
k eJ(k)

)
Algorithm 7: to obtain the derivative of πM and πP with respect θi ∈
{α+, α−, β+, β−}.

3.4.4 Results

Here I develop a number of numerical results in order to illustrate the analytical

work carried out in Subsection 3.4.1 and 3.4.2. In particular, the focus here is on

the interaction between VEGFR2 receptors and VEGF-A ligands on the surface

of human vascular endothelial cells, an interaction initiating signalling cascades

that can cause diverse cellular responses such as cell motility, division or death

(i.e., apoptosis).

One can analyse the stochastic descriptors of interest when the IP R2 or the

DP R2 models are considered for this interaction. This allows studying the impact

of considering phosphorylation as a separate reaction in the process (delayed

phosphorylation), to quantify timescales for signalling formation under different

ligand concentrations, and to analyse the impact that each kinetic rate in these
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processes has in these stochastic descriptors.

Time to reach a signal threshold

In Figure 3.11, E
(
T(0,0)(N)

)
(for the IP R2 model) and E

(
T(0,0,0)(N)

)
(for the

DP R2 model) are plotted, for values 0 ≤ N ≤ nL, where nL ∈ {23, 58, 116} is

the number of ligands considered, which corresponds to 10%, 25% and 50% of the

total number of VEGFR2, respectively, and to ligand concentrations cL ∈ {1pM,

2.5pM, 5pM}.

Figure 3.11: E (Tx(N)) for (from left to right) ligand concentrations cL ∈ {1pM ,

2.5pM , 5pM}, for the IP R1 model (solid curves) and the DP R2 model (dashed

curves). IP R2 model: x = (0, 0). DP R2 model: x = (0, 0, 0).

The number of ligands considered in these three cases verifies the condition

2nL ≤ nR2 , assumed in the analysis of T(0,0)(N), as discussed in Subsection 3.4.1.

T(0,0)(N) is the continuous random variable that represents the time to reach

a total number, N , of phosphorylated bound dimers P2, given the initial state

(0, 0), in the IP R2 model where instantaneous phosphorylation is considered (for

details, see Subsection 3.4.1), while T(0,0,0)(N) is its DP R2 model counterpart.
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Figures in this subsection have been restricted to times up to 60 min, to describe

the early time dynamics on the cell surface. The long-term behaviour of the sys-

tem can be analysed by means of the steady-state distribution. In Figure 3.11,

solid curves represent values of E
(
T(0,0)(N)

)
, while dashed curves represent val-

ues of E
(
T(0,0,0)(N)

)
, obtained by means of Algorithm 4. Shaded areas have

been obtained for both models by considering E (Tx(N)) ± SD (Tx(N)), where

SD(X) represents the standard deviation of the random variable X, obtained

from Algorithm 4.

In Figure 3.11, a monotonic behaviour can be easily identified. For a fixed

value of N in the IP R2 model, E
(
T(0,0)(N)

)
is always smaller for larger ligand

concentrations, cL. Indeed, an increase in the amount of available ligand to bind

receptors implies reaching the given signalling threshold (encoded by the value of

N) in a shorter time. The behaviour for E
(
T(0,0,0)(N)

)
is similar to that observed

for E
(
T(0,0)(N)

)
, so that the consideration of delayed phosphorylation in the DP

R2 model does not seem to qualitatively affect the main features of the descriptor

under consideration. This is related to the fact that the most likely fate of a bound

monomer is to produce signal before its dissociation, regardless of including or

not this additional reaction. However, the consideration of phosphorylation as an

independent reaction in the process clearly amounts to a delay in the time to reach

the threshold N , in comparison with the time to reach the threshold N , and every

curve is displaced to the left. For example, for the ligand concentration given by

cL = 1pM , the mean time E
(
T(0,0)(N)

)
to reach a threshold N = 5 (20% of nL)

of phosphorylated bound dimers is ∼ 25 min under the IP R2 model. When the

phosphorylation of bound complexes is explicitly considered (th DP R2 model),

this mean time increases up to ∼ 31 min.

Stationary distribution

The asymptotic behaviour of curves in Figure 3.11 is directly related to the maxi-

mum signalling threshold that is, in fact, reached by the process in the short- and

mid-term. From a purely mathematical perspective, any state within SIP R2 or

SDP R2 in the IP R2 and the DP R2 models, respectively, is reached as t→ +∞,
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since SIP R2 and SDP R2 are the irreducible finite class of states for process XIP R2

and XDP R2 .

Figure 3.12: Distribution of the number of bound dimers in steady state for

processes XIP R2 (the IP R2 model, P2 bound dimers, red) and XDP R2 (the DP R2

model, D2 and P2 bound dimers, green and blue) for (from top to bottom) ligand

concentrations cL ∈ {1pM, 2.5pM, 5pM}.

However, according to the numerical results, there exists a sub-set of (high) sig-

nalling thresholds that is not reached in practice by XIP R2 (XDP R2). This sig-

nalling threshold is directly related to the steady-state distribution of this process,

which can be computed from Algorithm 5, and which measures the potential of

the system to reach any signalling threshold under different ligand concentrations

for both models.

In Figure 3.12, the distribution of the number of (phosphorylated and non-

phosphorylated) bound dimers at steady-state, for the IP R2 and the DP R2

models, is plotted for different ligand concentrations cL ∈ {1pM, 2.5pM, 5pM}.
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Under low ligand concentrations, near all the nL available ligands are forming

phosphorylated bound dimers in steady-state. This is specially the case in the

IP R2 model, where no non-phosphorylated bound dimers exist. In the DP R2

model, a small number of non-phosphorylated bound dimers can be found in

steady-state. These non-phosphorylated bound dimers in steady-state explain

why the distribution of the number of phosphorylated bound dimers in steady-

state is displaced to the left when phosphorylation is considered as a separate

reaction in the DP R2 model, in comparison with the same distribution in the IP

R2 model.

Local sensitivity analysis

The effect of the binding, dissociation, phosphorylation and de-phosphorylation

rates on the descriptors considered in this subsection, can be estimated by means

of the sensitivity analysis proposed in Subsection 3.4.3. In Tables 3.9 and 3.10

the sensitivity coefficients (i.e., normalised derivatives), also called elasticities,

of the descriptors E
(
T(0,0)(N)

)
, E

(
T(0,0,0)(N)

)
, πP and π̂P are presented, when

N is chosen to be 25% of the total number of ligands nL, and for different con-

centrations of ligands cL. As expected, the effect of each rate on any descriptor

increases with increasing values of ligand concentration cL. It is also worth noting

that the elasticities of the mean number of phosphorylated complexes in steady

state are equal, with opposite sign, with respect binding and dissociation rates

(e.g.,
∂πP
∂α+

/
πP
α+

= − ∂πP
∂α−

/
πP
α−

), which means that this characteristic only de-

pends on ratios
α+

α−
,
β+

β−
and

γ+

γ−
, and not on each particular rate. This can be

easily understood by noting that, from a deterministic perspective the steady

state corresponding to the DP R2 model can be obtained as the solution of

2
α+

α−
R∗2L

∗ −M∗
2 = 0,

·β+

β−
M∗

2R
∗
2 − 2D∗2 = 0,

γ+

γ−
D∗2 − P ∗2 = 0,

which does only depend on these ratios. Note here that, according to results in

Tables 3.9 and 3.10, the rate α+ plays an important role in all the descriptors.

105



3. CELL SURFACE BINDING VEGF-VEGFR MODELS

This is related to the fact that, once a ligand is trapped to form a bound monomer,

its most probable fate is to produce signal before dissociation of the corresponding

dimer occurs.

Elasticity cL α+ α− β+ β−

1pM −9.98× 10−1 1.61× 10−2 −2.17× 10−2 3.42× 10−3

∂E
(
T(0,0)(N)

)
∂θ

E
(
T(0,0)(N)

)
θ

2.5pM −9.99× 10−1 1.78× 10−2 −2.36× 10−2 4.60× 10−3

5pM −1.00 2.01× 10−2 −2.66× 10−2 6.02× 10−3

1pM −8.47× 10−1 1.22× 10−2 −1.73× 10−2 2.12× 10−3

∂E
(
T(0,0,0)(N)

)
∂θ

E
(
T(0,0,0)(N)

)
θ

2.5pM −8.60× 10−1 1.33× 10−2 −1.84× 10−2 2.59× 10−3

5pM −8.72× 10−1 1.51× 10−2 −2.07× 10−2 3.30× 10−3

1pM 3.45× 10−2 −3.45× 10−2 3.82× 10−2 −3.82× 10−2

∂πP
∂θ
πP
θ

2.5pM 6.67× 10−2 −6.67× 10−2 7.17× 10−2 −7.17× 10−2

5pM 1.03× 10−1 −1.03× 10−1 1.10× 10−1 −1.10× 10−1

1pM 7.31× 10−3 −7.31× 10−3 8.08× 10−3 −8.08× 10−3

∂π̂P
∂θ
π̂P
θ

2.5pM 1.73× 10−2 −1.73× 10−2 1.85× 10−2 −1.85× 10−2

5pM 5.88× 10−2 −5.88× 10−2 6.12× 10−2 −6.12× 10−2

Table 3.9: Elasticities of the stochastic descriptors E
(
T(0,0)(N)

)
and

E
(
T(0,0,0)(N)

)
and descriptors πP and π̂P , with respect to each parameter θi ∈

{α+, α−, β+, β−} for different ligand concentrations cL ∈ {1pM, 2.5pM, 5pM}.
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Elasticity cL γ+ γ−

1pM −2.26× 10−1 8.82× 10−2

∂E
(
T(0,0,0)(N)

)
∂θ

E
(
T(0,0,0)(N)

)
θ

2.5pM −2.68× 10−1 1.36× 10−1

5pM −2.99× 10−1 1.76× 10−1

1pM 2.06× 10−1 −2.06× 10−1

∂π̂P
∂θ
π̂P
θ

2.5pM 2.15× 10−1 −2.15× 10−1

5pM 2.49× 10−1 −2.49× 10−1

Table 3.10: Elasticities of the stochastic descriptors E
(
T(0,0)(N)

)
and

E
(
T(0,0,0)(N)

)
and descriptors πP and π̂P , with respect to each parameter

θi ∈ {γ+, γ−} for different ligand concentrations cL ∈ {1pM, 2.5pM, 5pM}.

3.4.5 Discussion

In Section 3.4 the aim was to measure the timescales for signalling formation

for two different stochastic models for receptor-ligand interaction (instantaneous

phosphorylation, the IP R2 model, and delayed phosphorylation, the DP R2

model), and to analyse the long-term dynamics of these systems. Bound dimers

become instantaneously phosphorylated in the IP R2 model, while in the DP

R2 model phosphorylation is considered a new and independent reaction. In

these two models, matrix-analytic techniques have been applied to study the

time to reach a threshold number of phosphorylated bound dimers P2 on the

cell membrane, and the steady-state distribution of the corresponding CTMPs.

These times are identified as absorption times in conveniently defined auxiliary

CTMPs, and their Laplace-Stieltjes transforms and different order moments have

been computed algorithmically by means of a first-step analysis, while exploiting

the quasi-birth-and-death structure of the infinitesimal generators associated to

these processes. Moreover, the construction of the DP R2 model, as an exten-

sion of the IP R2 model in Subsection 3.1.2 allows analysing the role played by

phosphorylation events and showing how different reactions may be incorporated

while adapting the matrix-analytic approach. A particular feature of this ana-
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lytic approach is that it allows one to analyse the role played by each kinetic rate

in these processes, by means of the computation of the partial derivatives of the

descriptors under analysis with respect to the corresponding parameters.

The numerical results in Subsection 3.4.4 are related to the interaction be-

tween receptor VEGFR2 and ligand VEGF-A, in human vascular endothelial

cells. The analysis of these results shows how including phosphorylation as a

separate reaction only seems to quantitatively affect the timescales for signal for-

mation, but does not qualitatively change the dynamics of these processes. The

small qualitative impact of including phosphorylation as a new reaction can be

better clarified by analysing the fate of a bound monomer in the processes from

an individual perspective. In particular, a single ligand can be considered, that

has been captured by a receptor forming a bound monomer and only the dynam-

ics of this new complex is analysed, neglecting the other dynamics related to the

other ligands and receptors in the system. Thus, the focus is on the fate of this

complex (causing or not signalling before the bound monomer dissociates), which

directly depends on the kinetic rates and is controlled by the stochastic processes

illustrated in Figure 3.13.

Figure 3.13: Individual bound monomer fate under a) the IP R2 model, and

b) the DP R2 model. Fate I: dissociation before signal; Fate II: signal before

dissociation.
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Hence, the following probability

psignal = “probability of the complex signalling before dissociation”,

can be obtained for both models in an analytical way, by using the parameters’

values reported in Table 3.6, where nR2 = 232 as only 4% of the cell is considered,

• IP R2 model (instantaneous phosphorylation):

psignal =
β+(nR2 − 1)

α− + β+(nR2 − 1)
= 0.9742.

• DP R2 model (delayed phosphorylation):

psignal =

(
1− β+(nR2 − 1)2β−

(α− + β+(nR2 − 1))(2β− + γ+)

)−1

× γ+β+(nR2 − 1)

(2β− + γ+)(α− + β+(nR2 − 1))
= 0.9393.

On the other hand, if the focus is on the time until the signal occurs, that is

τsignal = “mean time for complex to form signalling,

conditioned on this occurring”,

then this mean time can be obtained for both models in an analytical way:

• IP R2 model (instantaneous phosphorylation):

τsignal =
1

α− + β+(nR2 − 1)
= 9.5356s.

• DP R2 model (delayed phosphorylation):

τsignal =
2β− + γ+

(α− + β+(nR2 − 1))γ+

+
1

γ+

= 283.1053s.

This implies that ligands tend to form signal with probability near one once they

are captured to form a bound monomer, and the phosphorylation/de-phosphorylation

reactions can only cause a delay on this occurring.
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The total number of VEGFR2s per cell varies according to Ewan et al.

(2006a), Ewan et al. (2006b), Napione et al. (2012) and could be tenfold higher

than the numbers, reported by Imoukhuede & Popel (2012), used in this section.

A larger number of VEGFR2 receptors on the cell surface would, however, only

quantitatively change the results. Finally, the sensitivity analysis carried out for

the descriptors enables to show how the monomeric formation rate, α+, plays a

crucial role in these models, with an effect which can be more than twice the

effect of any other rate for some of the descriptors which were considered.

Finally, numerical results presented in Subsection 3.4.4 allowed quantifying

the effect of different ligand concentrations. Increasing ligand concentration de-

creases the times to reach any signalling threshold, while increases the maximum

potential signalling thresholds to be reached. However, too high ligand concen-

trations can result in saturated situations, where the phosphorylation of bound

dimers is reduced and monomeric bound complexes are enhanced.

3.5 Alternative Signalling Hypotheses

The analysis carried out in Section 3.4 for analysing the timescales of signal

generation is complemented here, by means of studying a continuous stochastic

descriptor for the process under different signalling hypotheses. In this section,

a stochastic descriptor and a matrix-analytic method is used in the context of a

stochastic model for the interaction between the receptor VEGFR2 and the solu-

ble dimeric ligand VEGF-A on the surface of a human umbilical vein endothelial

cell. The bivalent nature of the ligand molecule allows the formation of both

monomeric and dimeric ligand-receptor complexes. The assumption is that only

dimeric complexes can signal and thus, they will be considered the signalling units

of the process. The aim is to study the timescales of signal generation. Different

hypotheses are considered for how this signal is produced and stored. To this end,

the time to reach a particular signalling threshold is defined here as a random

variable, identified with a first-passage time of the underlying continuous-time

Markov process, and its different order moments are computed in an algorithmic

manner.
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3.5.1 The stochastic model

The focus here is on the following hypotheses, which have been previously con-

sidered in the literature:

(DS) The signalling unit of the process is the number of bound dimers in the

system (as shown in Subsection 3.4.1 or by Alarcón & Page (2006)) or

Dimer Signalling Hypothesis.

(AS) Each cell is seen as a counter, which keeps track of the signals generated

by the dimers. Thus, signals generated from bound dimers are accumulated

(see Currie et al. (2012)) or Accumulative Signalling Hypothesis.

(ASD-λ) The signal is accumulated as in the AS hypothesis, but a linear signal decay

with rate λ > 0 is introduced (see Starbuck et al. (1990)) or Accumulative

Signalling with Decay Hypothesis.

In Subsection 3.5.2, these three hypotheses are compared by analysing a unique

stochastic descriptor: the time to reach a signalling threshold. This is identified

with a first-passage time (or absorption time) in the theory of stochastic pro-

cesses, which follows a continuous phase-type distribution. Signal generation is

tracked by means of an extended CTMP, whose transitions directly depend on

the signalling hypothesis under consideration. The probabilistic descriptor is then

analysed by means of an algorithmic approach, which requires the introduction

of a matrix formalism.

3.5.2 A probabilistic performance measure: time to reach

a signalling threshold

Consider an additional variable S(t) for the IP R2 model, defined in Subsection

3.1.1, which represents the amount of signal at time t ≥ 0. The introduction of

this variable leads to extended CTMP Xext = {Xext(t) = (M2(t), P2(t), S(t)) : t ≥
0}. The transitions and the state space of Xext directly depend on the signalling

hypothesis (DS, AS or ASD-λ) under consideration. Since the interest here is

in the timescales of signal generation, the aim is to analyse the random variable

T S(n1,n2,s)
, which amounts to the time to reach a signalling threshold S ≥ s, given
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the initial state of the process (n1, n2, s), with T S(n1,n2,S) = 0; that is, T S(n1,n2,s)
=

inf{t ≥ 0 : S(t) = S | (M2(0), P2(0), S(0)) = (n1, n2, s)}.
The DS hypothesis implies considering S(t) = P2(t) for all t ≥ 0, so that the

amount of signalling in the process increases and decreases directly following the

formation and dissociation of dimers. This particular case was analysed in detail

in Subsection 3.4.1.

Under hypotheses AS and ASD-λ, the signal is accumulated according to

the formation of new dimers, while it decays with rate λ ≥ 0 (λ = 0 corresponds

to the AS hypothesis). This implies that Xext has state space given by Sext =

{(n1, n2, s) ∈ N3
0 : n1 + n2 ≤ nL, s ≥ 0}, with transitions and infinitesimal

transition rates given in Table 3.11.

qnn′ for reaction n = (n1, n2, s)→ n′ n′

2α+(nL − n1 − n2)(nR2 − n1 − 2n2) (n1 + 1, n2, s)

α−n1 (n1 − 1, n2, s)

β+n1(nR2 − n1 − 2n2) (n1 − 1, n2 + 1, s+ 1)

2β−n2 (n1 + 1, n2 − 1, s)

λs (n1, n2, s− 1)

Table 3.11: The infinitesimal transition rates qnn′ of the process Xext.

Since the aim is to study the random variable T S(n1,n2,s)
that represents the time

to reach a signalling threshold S ≥ s, the focus is on the dynamics of process

Xext before this signalling threshold is reached. This means that one can consider

Sext = SS ∪ SS0 with SS = {(n1, n2, s) ∈ N3
0 : n1 + n2 ≤ nL, 0 ≤ s ≤ S − 1}

and SS0 = {(n1, n2, S) ∈ N3
0 : n1 + n2 ≤ nL}. States within SS0 are considered

as absorbing from now on (the process Xext ends once the signalling threshold

S is reached), and states (n1, n2, s) with s > S are not included. Then, SS is

a finite irreducible class of transient states, from where the absorbing set SS0 is

accessible. T S(n1,n2,s)
for (n1, n2, s) ∈ SS can be seen as the time to reach SS0 (see

Kulkarni (1996), Section 6.7), and is well-known to follow a continuous phase-type

distribution (see He (2014), Chapter 1). Thus, its probability density function is

given by

fTS
(n1,n2,s)

(t) = −q0 e
Mt M e#SS , t ≥ 0 ,
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where q0 is a row vector with the initial distribution of Xext in SS, ej represents

a column vector of ones with dimension j, #SS is the cardinality of SS, and M is

the sub-matrix of the infinitesimal generator of Xext corresponding to transitions

between states within the irreducible class of transient states SS.

The practical computation of fTS
(n1,n2,s)

(t) is restricted by the computational

difficulties of calculating the exponential of the matrix M (see Moler & Van Loan

(2003)). Thus, the different order moments of T S(n1,n2,s)
are computed instead.

Consider the Laplace-Stieltjes transform of T S(n1,n2,s)
, as follows

φS(n1,n2,s)
(z) = E

(
e
−z TS

(n1,n2,s)

)
, <(z) ≥ 0 ,

which uniquely determines the distribution of T S(n1,n2,s)
. The different order mo-

ments of T S(n1,n2,s)
are given by differentiation of the Laplace-Stieltjes transform,

that is

wS,l(n1,n2,s)
= E

(
(T S(n1,n2,s)

)l
)

= (−1)l
dl

dzl
φS(n1,n2,s)

(z)

∣∣∣∣
z=0

, l ≥ 1 .

To simplify notation, the superscript S is omitted. A first-step argument can be

applied in order to obtain a system of linear equations for the Laplace-Stieltjes

transform φ(n1,n2,s)(z), given a state n = (n1, n2, s) such that n ∈ SS (see Sub-

section 3.4.1), hence

(z + ∆n) φn(z) = 2α+(nL − n1 − n2)(nR2 − n1 − 2n2)φ(n1+1,n2,s)(z)

+ α−n1φ(n1−1,n2,s)(z) + β+n1(nR2 − n1 − 2n2)φ(n1−1,n2+1,s+1)(z)

+ 2β−n2φ(n1+1,n2−1,s)(z) + λsφ(n1,n2,s−1)(z), n ∈ SS ,
(3.35)

with ∆n = 2α+(nL − n1 − n2)(nR2 − n1 − 2n2) + α−n1 + β+n1(nR2 − n1 −
2n2) + 2β−n2 + λs, and with boundary conditions φ(n1,n2,S)(z) = 1 for states

(n1, n2, S) ∈ SS0 . Once the system of equations given by Equation (3.35) is ob-

tained, an analogous system for computing the moments wln can be obtained by

direct differentiation of Equation (3.35), as follows

∆nw
l
n = 2α+(nL − n1 − n2)(nR − n1 − 2n2)wl(n1+1,n2,s)

+ α−n1w
l
(n1−1,n2,s)

+ β+n1

×(nR − n1 − 2n2)wl(n1−1,n2+1,s+1) + 2β−n2w
l
(n1+1,n2−1,s) + λswl(n1,n2,s−1)

+lwl−1
(n1,n2,s)

, l ≥ 1 , n ∈ SS , (3.36)
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with boundary conditions wl(n1,n2,S) = 0 for all (n1, n2, S) ∈ SS0 and w0
(n1,n2,s)

= 1

for all (n1, n2, s) ∈ SS. The system given by Equation (3.36) implies that the

moment of order r, for a given initial state (n1, n2, s) ∈ SS, can be directly

computed from the moment of order r−1, starting with wr=0
(n1,n2,s)

= φ(n1,n2,s)(0) =

1 and until the desired order l is reached.

The system given by Equation (3.36) can be solved by constructing and in-

verting its corresponding coefficient matrix. However, the number of states in

SS requires working in an efficient manner. Therefore, the level structures for

the state space is used again (see Subsection 3.4.1). In particular, Sext can be

organised by levels

Sext = SS ∪ SS0 , SS =
S−1⋃
k=0

L(k) , SS0 = L(S) ,

with L(k) = {(n1, n2, s) ∈ Sext : s = k}, and by sub-levels

L(k) =

nL⋃
r=0

L(k; r) , 0 ≤ k ≤ S ,

with L(k; r) = {(n1, n2, s) ∈ Sext : n1 = k, n2 = r}. The structure introduced by

levels and sub-levels guarantees that the infinitesimal generator of Xext is three-

diagonal-by-blocks (as in Equation (3.28)), and given by

Q =



Q0,0 Q0,1 0J . . . 0J 0J
Q1,0 Q1,1 Q1,2 . . . 0J 0J
0J Q2,1 Q2,2 . . . 0J 0J
...

...
...

. . .
...

...
0J 0J 0J . . . QS−1,S−1 QS−1,S

0J 0J 0J . . . 0J 0J


. (3.37)

The square matrixQk,k′ contains those infinitesimal transition rates, in an ordered

manner, corresponding to transitions from states in L(k) to states in L(k′), so

that it has dimension #L(k)×#L(k′) = J × J , with J = (nL+1)(nL+2)
2

. Matrices

0J are square matrices of zeros with dimension J . Given the structure by sub-

levels and the transitions of the process (see Table 3.11), matrices Qk,k−1, Qk,k
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and Qk,k+1 can be written as follows

Qk,k =


Q0,0
k,k 0J(0)×J(1) 0J(0)×J(2) . . . 0J(0)×J(nL−1) 0J(0)×J(nL)

Q1,0
k,k Q1,1

k,k 0J(1)×J(2) . . . 0J(1)×J(nL−1) 0J(1)×J(nL)

0J(2)×J(0) Q2,1
k,k Q2,2

k,k . . . 0J(2)×J(nL−1) 0J(2)×J(nL)

...
...

...
. . .

...
...

0J(nL)×J(0) 0J(nL)×J(1) 0J(nL)×J(2) . . . QnL,nL−1
k,k QnL,nL

k,k

 ,

for 0 ≤ k ≤ S − 1, Qk,k−1 = diag(Q0,0
k,k−1, . . . ,Q

nL,nL

k,k−1 ) with 1 ≤ k ≤ S − 1, and

Qk,k+1 =


0J(0)×J(0) Q0,1

k,k+1 0J(0)×J(2) . . . 0J(0)×J(nL−1) 0J(0)×J(nL)

0J(1)×J(0) 0J(1)×J(1) Q1,2
k,k+1 . . . 0J(1)×J(nL−1) 0J(1)×J(nL)

0J(2)×J(0) 0J(2)×J(1) 0J(2)×J(2) . . . 0J(2)×J(nL−1) 0J(2)×J(nL)
...

...
...

. . .
...

...

0J(nL)×J(0) 0J(nL)×J(1) 0J(nL)×J(2) . . . 0J(nL)×J(nL−1) QnL−1,nL

k,k+1

 ,

for 0 ≤ k ≤ S − 1, with J(r) = nL − r + 1. In the previous expressions,

diag(A1, . . . ,Ap) is a diagonal-by-blocks matrix with blocks A1, . . . , Ap in the

diagonal, and the matrices 0a×b are matrices of zeros with dimension a× b. The

sub-matrix Qr,r′

k,k′ contains those infinitesimal transition rates corresponding to

transitions from states in L(k; r) to states in L(k′; r′). By ordering states within

L(k; r) as indicated below and making use of the transitions described in Table

3.11

(0, r, k) ≺ (1, r, k) ≺ · · · ≺ (nL − r − 1, r, k) ≺ (nL − r, r, k) ,

the following can be obtained

(
Qr,r
k,k

)
ij

=


2α+(nL − i− r)(nR2 − i− 2r) , if j = i+ 1 ,
α−i , if j = i− 1 ,
−∆(i,r,k) , if j = i ,
0 , otherwise ,

for 0 ≤ i, j ≤ nL − r,(
Qr,r−1
k,k

)
ij

=

{
2β−r , if j = i+ 1 ,
0 , otherwise ,

for 0 ≤ i ≤ nL − r, 0 ≤ j ≤ nL − r + 1,(
Qr,r+1
k,k+1

)
ij

=

{
β+i(nR2 − i− 2r) , if j = i− 1 ,
0 , otherwise ,
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for 0 ≤ i ≤ nL − r, 0 ≤ j ≤ nL − r − 1, and

(
Qr,r
k,k−1

)
ij

=

{
λk , if j = i ,
0 , otherwise ,

for 0 ≤ i, j ≤ nL − r.

The system of equations given by Equation (3.36) can be rewritten in matrix

form, by storing the moments wl(n1,n2,s)
for (n1, n2, s) ∈ SS in a column vector wl.

Hence, wl is equal to


wl

0

wl
1

...
wl
S−2

wl
S−1

 =


A0,0 A0,1 0J . . . 0J
A1,0 A1,1 A1,2 . . . 0J
0J A2,1 A2,2 . . . 0J
...

...
...

. . .
...

0J 0J 0J . . . AS−1,S−1




wl

0

wl
1

...
wl
S−2

wl
S−1

+


bl−1

0

bl−1
1
...

bl−1
S−2

bl−1
S−1

 ,(3.38)

which is directly related to the QBD structure of Q (Equation (3.37)). In par-

ticular, each matrix Ak,k′ is obtained from the matrix Qk,k′ by dividing each

row i (corresponding to a given state (n1, n2, s)) by ∆(n1,n2,s), except for the

case (Ar,r
k,k)ii = 0, for 0 ≤ i ≤ nL − r, 0 ≤ k ≤ S − 1 and 0 ≤ r ≤ nL.

Furthermore, the sub-vectors blk are obtained from wl
k by multiplying each row

i (corresponding to a particular state (n1, n2, s)) by (l + 1)/∆(n1,n2,s). Equa-

tion (3.38) clearly shows how the moment of order l is obtained from the mo-

ment of order l − 1, with w0 = e#SS a column vector of ones with dimension

#SS. Finally, Equation (3.38) can be solved by a forward-elimination backward-

substitution method suggested by Ciarlet et al. (1989), making use of Algorithm

8. Matrix IJ in Algorithm 8 represents the identity matrix of dimension J .
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p = 0
wp
k = eJ , 0 ≤ k ≤ S − 1

for k = 0, . . . , S − 1 do
for i = 0, . . . , J − 1 do

(bpk)i = p+1
∆(n1,n2,s)

(wp
k)i

end

end
H0 = IJ −A0,0

for k = 1, . . . , S − 1 do
Hk = IJ −Ak,k −Ak,k−1H

−1
k−1Ak−1,k

end
for p = 1, . . . , l do

Jp0 = bp−1
0

end
for k = 1, . . . , S − 1 do

Jpk = Ak,k−1H
−1
k−1J

p
k−1 + bp−1

k

end

wp
S−1 = H−1

S−1J
p
S−1

for k = S − 2, . . . , 0 do
wp
k = H−1

k

(
Ak,k+1w

p
k+1 + Jpk

)
end
for k = 0, . . . , S − 1 do

for i = 0, . . . , J − 1 do
(bpk)i = p+1

∆(n1,n2,s)
(wp

k)i

end

end

Algorithm 8: for solving Equation (3.38).

3.5.3 Local sensitivity analysis

The aim in this section is to analyse how the kinetic rates contribute to the signal

generation. In particular, a local sensitivity (perturbation) analysis is developed,

which allows to study how the time T S(n1,n2,s)
changes with small perturbations

of the parameters (α+, α−, β+, β−, λ), as it was shown for the DS hypothesis in

Subsection 3.4.3. Since T S(n1,n2,s)
has been identified with an absorption time the
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partial derivatives

∂E
(

(T S(n1,n2,s)
)l
)

∂θ
, (3.39)

can be computed for θ ∈ {α+, α−, β+, β−, λ}, and for any l ≥ 1. The arguments

by Caswell (2011) can be applied and adapted to Algorithm 8. Given a matrix

B(θ) that depends on a parameter θ, one can write an equation analogous to

Equation (3.34), as follows

∂ (B(θ)−1)

∂θ
= −B(θ)−1∂B(θ)

∂θ
B(θ)−1 .

Thus, Algorithm 9 can be obtained by directly differentiating matrices and vec-

tors in Algorithm 8. Then, the desired partial derivatives ∂E
(

(T S(n1,n2,s)
)l
)
/∂θ

are computed and stored in the vectors w
l,(θ)
k for θ ∈ {α+, α−, β+, β−, λ}. In

Algorithm 9, the derivatives of the matrices Ak,k′ with respect to θ, A
(θ)
k,k′ , are

computed by direct element-by-element differentiation. Moreover, the derivative

of ∆(n1,n2,s) = 2α+(nL−n1−n2)(nR2−n1−2n2)+α−n1 +β+n1(nR2−n1−2n2)+

2β−n2 + λs with respect to θ, ∆
(θ)
(n1,n2,s)

, is given by

∆
(θ)
(n1,n2,s)

=


2(nL − n1 − n2)(nR2 − n1 − 2n2) , if θ = α+ ,
n1 , if θ = α− ,
n1(nR2 − n1 − 2n2) , if θ = β+ ,
2n2 , if θ = β− ,
s , if θ = λ .

p = 0
b
p,(θ)
k = 0J , 0 ≤ k ≤ S − 1

H
(θ)
0 = −A(θ)

0,0

for k = 1, . . . , S − 1 do

H
(θ)
k = −A(θ)

k,k −A
(θ)
k,k−1H

−1
k−1Ak−1,k

+Ak,k−1H
−1
k−1H

(θ)
k−1H

−1
k−1Ak−1,k

−Ak,k−1H
−1
k−1A

(θ)
k−1,k

end
. . . continue on the next page
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for p = 1, . . . , l do

J
p,(θ)
0 = b

p−1,(θ)
0

for k = 1, . . . , S − 1 do

J
p,(θ)
k = A

(θ)
k,k−1H

−1
k−1J

p
k−1 −Ak,k−1

×H−1
k−1H

(θ)
k−1H

−1
k−1J

p
k−1

+Ak,k−1H
−1
k−1J

p,(θ)
k−1 + b

p−1,(θ)
k

end

w
p,(θ)
S−1 = −H−1

S−1H
(θ)
S−1H

−1
S−1J

p
S−1

+H−1
S−1J

p,(θ)
S−1

for k = S − 2, . . . , 0 do

w
p,(θ)
k = −H−1

k H
(θ)
k H

−1
k

(
Ak,k+1w

p
k+1

+Jpk) +H−1
k

(
A

(θ)
k,k+1w

p
k+1

+Ak,k+1w
p,(θ)
k+1 + J

p,(θ)
k

)
end
for k = 0, . . . , S − 1 do

for i = 0, . . . , J − 1 do

(b
p,(θ)
k )i = (p+1)

∆2
(n1,n2,s)

(
(w

p,(θ)
k )i∆(n1,n2,s)

−(wp
k)i∆

(θ)
(n1,n2,s)

)
end

end

end

Algorithm 9: to obtain the derivative of the l-th order moments

E
(

(T S(n1,n2,s)
)l
)

with respect to θ ∈ {α+, α−, β+, β−, λ}.

3.5.4 Results

A series of numerical experiments related to those developed in Section 3.4 for a

HUVEC are carried out in this section. For computational convenience, receptor-

ligand dynamics are restricted to 4% of the cell surface, as in Section 3.4 so

that nR = 232, if a HUVEC contains, on average, 5800 VEGFR2 receptors.

Given ligand-limiting conditions, I take nL ∈ {23, 58, 116}, so that 2nL ≤ nR.

These correspond to soluble ligand concentrations approximately equal to cL ∈
{1pM, 2.5pM, 5pM}. The kinetic rates θ ∈ {α+, α−, β+, β−} are given in Table 3.6

(γ+ and γ− are not used). In Figure 3.14 the mean time E
(
T S(0,0,0)

)
(± standard
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deviation) to reach a signalling threshold S is plotted, as a function of S, for

the DS (which corresponds to the results reported in Section 3.4.4) and the

AS hypotheses, for different ligand concentrations. First it can be noted that

the asymptotic behaviour of the curves corresponding to the DS hypothesis is

directly related to the biological interpretation of T S(0,0,0). Since T S(0,0,0) represents

the time to reach a signalling threshold S, with S(t) = P2(t) under the DS

hypothesis, it is clear that S(t) can only take values in the interval 0 ≤ s ≤ nL.

This is not the case in the AS hypothesis, where S(t) can take any value s ≥ 0, so

that an almost linear behaviour is obtained for E
(
T S(0,0,0)

)
as a function of S. As

the number of ligands, nL, increases and thus, the ligand concentration increases,

signal generation is faster and the time required to reach a signalling threshold

decreases. For example, E
(
T S(0,0,0)

)
for cL = 1pM and the DS hypothesis, is

approximately 2.5 times higher than for cL = 2.5pM , for S = 5.

Figure 3.14: Mean time E
(
T S(0,0,0)

)
(± standard deviation) to reach a signalling

threshold S, as a function of S, for the DS (left), see Figure 3.11 and the AS

(right) hypotheses, and for ligand concentrations cL = 1pM (dotted), cL = 2.5pM

(dashed) and cL = 5pM (solid).

In Figure 3.15 the mean time E
(
T S(0,0,0)

)
(± standard deviation) is plot-

ted, when the ASD-λ hypothesis is considered, for different decay rates λ ∈
{10−4, 0.5 × 10−3}. Numerical results of Figure 3.15, together with additional

ones corresponding to different values of λ and not reported here show that, as

expected, in the limit λ → 0, the behaviour under the ASD-λ hypothesis tends
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to the behaviour observed in Figure 3.14 for the AS hypothesis. The process

under the ASD-λ hypothesis should be seen as an intermediate regime between

the DS and the AS case, for moderate values of the decay rate λ. Thus, a sim-

ilar asymptotic behaviour for E
(
T S(0,0,0)

)
can be observed in Figure 3.15 for the

ASD-λ hypothesis to the observed for the DS case in Figure 3.14. For higher

values of the decay signal λ, the signalling threshold S is reached slowly, regard-

less of the ligand concentration. In particular, the results displayed in Figure 3.15

suggest that concentration would play a more important role if cellular mecha-

nisms led to low signal decay rates. For higher values of λ, ligand concentration

becomes less important.

Figure 3.15: Mean time E
(
T S(0,0,0)

)
(± standard deviation) to reach a signalling

threshold S, as a function of S, under the ASD-λ hypothesis for ligand concen-

trations cL = 1pM (dotted), cL = 2.5pM (dashed) and cL = 5pM (solid) and for

λ = 10−4s−1 (left) and λ = 0.5× 10−3s−1 (right).

The impact of the different kinetic rates in the descriptor, for each hypoth-

esis considered, can be analysed by means of the results summarised in Ta-

ble 3.12. In particular, the dimensionless partial derivatives (or elasticities)(
∂E
(
T S(0,0,0)

)
/∂θ
)
×
(
θ/E

(
T S(0,0,0)

))
are computed for the parameters θ ∈ {α+,

α−, β+, β−, λ}, for concentration cL = 2.5pM , and for the DS (see Tables 3.9

and 3.10), AS and ASD-λ hypotheses.

121



3. CELL SURFACE BINDING VEGF-VEGFR MODELS

Signalling

hypothesis α+ α− β+ β− λ

DS −9.93× 10−1 3.15× 10−2 −4.31× 10−2 4.82× 10−3 −
ASD-λ

λ = 0 −8.71× 10−1 2.65× 10−2 −4.17× 10−2 −1.14× 10−1 −
ASD-λ

λ = 10−4 −9.39× 10−1 2.93× 10−2 −4.41× 10−2 −1.43× 10−1 9.60× 10−2

ASD-λ

λ = 0.5× 10−3 −1.47× 100 6.02× 10−2 −7.53× 10−2 −5.90× 10−1 1.08× 100

Table 3.12: Elasticities
(
∂E
(
T S(0,0,0)

)
/∂θ
)
×
(
θ/E

(
T S(0,0,0)

))
, where θ ∈

{α+, α−, β+, β−, λ}, for the DS, AS and ASD-λ (with λ = 10−4s−1 and

λ = 0.5 × 10−3s−1) hypotheses. S is chosen as 25% of the total number, nL,

of ligands. Concentration cL = 2.5pM .

Results of Table 3.12 lead to the following insights:

• The monomer formation rate, α+, is the most important rate regardless

of the scenario under consideration. That is, the formation of monomers

in the system, which allows the subsequent formation of dimers and sig-

nal generation, is more important than, for example, the signal (or dimer)

formation rate itself, β+.

• When signal decay is considered, the decay rate λ becomes one of the most

important kinetic rates in the system.

• A qualitative difference is observed for the dimer dissociation rate, β−,

between the DS and the rest of hypotheses. ∂E
(
T S(0,0,0)

)
/∂β− is posi-

tive under the DS hypothesis, since β− represents loss of signal (or bound

dimeric complex). Thus, if the dimer dissociation rate increases, the time

to reach a given signalling threshold also increases. On the other hand,

∂E
(
T S(0,0,0)

)
/∂β− is negative under the AS and ASD hypotheses. This

implies that, since signal is generated each time a dimer is formed, stable

dimers would result in a disadvantage for signal generation (given that the

total number of soluble molecules is fixed). Thus, dimer dissociation would
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allow the formation of new dimers, so that signal could be generated in a

more efficient way.

3.5.5 Discussion

In this section a matrix-analytic approach was used to compute the timescales for

signal generation under different hypotheses. It was done so by studying a con-

tinuous probabilistic performance measure which results in a first-passage time,

and which follows a phase-type distribution. First-passage times are not the only

descriptors that can be considered, and alternative probabilistic measures can be

proposed depending on the particular features of interest for the process under

analysis. For example, for the stochastic process considered in this section, a dis-

crete probabilistic descriptor that complements the analysed descriptor T S(n1,n2,s)
,

and that helps to understand the results, is

NS
(n1,n2,s)

= “Number of dimer formation events that take place before

a signalling threshold S is reached, given the current state

(n1, n2, s) of the process”.

This stochastic descriptor can be seen as a discrete version of T S(n1,n2,s)
. That is,

NS
(n1,n2,s)

represents the required number of dimer formation events in order to

reach the signalling threshold S, so that NS
(n1,n2,s)

= S under the AS hypothesis.

The random variable NS
(n1,n2,s)

measures the resistance of the system to signal

generation (through signal decay for the ASD-λ hypothesis, or through dimer

dissociation for the DS hypothesis), and it can be analysed in a similar way

as done for T S(n1,n2,s)
. In particular, if one considers the probability generating

function µS(n1,n2,s)
(z) = E

(
z
NS

(n1,n2,s)

)
for |z| ≤ 1, the different factorial moments

and the probability mass function of NS
(n1,n2,s)

can be computed as

vS,l(n1,n2,s)
= E

(
NS

(n1,n2,s)
(NS

(n1,n2,s)
− 1) · · · (NS

(n1,n2,s)
− l + 1)

)
= dl

dzl
µS(n1,n2,s)

(z)
∣∣∣
z=1

,

P rob
(
NS

(n1,n2,s)
= a
)

= 1
a!

da

dza
µS(n1,n2,s)

(z)
∣∣∣
z=0

.
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The probability generating function, µS(n1,n2,s)
(z), can be computed in a similar

way to that of φS(n1,n2,s)
(z), by following a first-step argument, so that an analogous

equation to Equation (3.35) is obtained. Successive differentiation of this equation

leads to (omitting the superscript S)

∆nv
l
n = 2α+(nL − n1 − n2)(nR2 − n1 − 2n2)vl(n1+1,n2,s)

+ α−n1v
l
(n1−1,n2,s)

+ β+n1

×(nR2 − n1 − 2n2)vl(n1−1,n2+1,s+1) + 2β−dv
l
(n1+1,n2−1,s) + λsvl(n1,n2,s−1)

+lβ+m(nR2 − n1 − 2n2)vl−1
(n1−1,n2+1,s+1) , n ∈ SS , (3.40)

for l ≥ 1 and n = (n1, n2, s), so that a system of linear equations is ob-

tained. The difference between Equation (3.40) and Equation (3.36) lies in the

last term of both equations, where lwl−1
(n1,n2,s)

is replaced by lβ+n1(nR2 − n1 −

2n2)vl−1
(n1−1,n2+1,s+1). This implies that an adapted version of Algorithm 8 can be

implemented as follows to solve the system given by Equation (3.40): vectors wp
k

(storing moments wp(n1,n2,s)
for states (n1, n2, s) ∈ L(k)) are replaced by vectors vpk

(storing factorial moments vp(n1,n2,s)
), and auxiliary vectors bpk (with component i

obtained as p+1
∆(n1,n2,s)

(wp
k)i) are replaced by auxiliary vectors cpk (with component

i obtained as p+1
∆(n1−1,n2+1,s+1)

(vpk+1)i).

The mean of NS
(0,0,0) is plotted in Figure 3.16 as done in Figure 3.15 for the

mean of T S(0,0,0). The qualitative behaviour displayed in Figure 3.16 is in agree-

ment to that observed in Figure 3.15. For example, E
(
NS

(0,0,0)

)
displays a linear

behaviour with respect to S when λ → 0, which is related to the fact that

NS
(0,0,0) = S under the AS hypothesis. The values of E

(
NS

(0,0,0)

)
for small values

of S are much the same, do not depend on the particular value of λ or the con-

centration cL. This implies that low signalling thresholds S are reached after S

dimer formation events, where signal decay does not have enough time to play a

role for short timescales. If the interest is in the time to reach a large signalling

threshold S, then the decay rate λ plays a fundamental role, as well as the ligand

concentration cL.
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Figure 3.16: Mean number E
(
NS

(0,0,0)

)
(± standard deviation) of dimer formation

events to reach a signalling threshold S, as a function of S, under the ASD-λ

hypothesis for ligand concentrations cL = 1pM (dotted), cL = 2.5pM (dashed)

and cL = 5pM (solid) and for λ = 10−4s−1 (left) and λ = 0.5× 10−3s−1 (right).

The stochastic descriptor T S(n1,n2,s)
= inf{t ≥ 0 : S(t) = S | (M(0),

P2(0), S(0)) = (n1, n2, s)} is proposed for measuring the time to reach a sig-

nalling threshold S, for different signalling hypotheses (DS, AS and ASD-λ)

that translate into different definitions for the stochastic variable S(t). Since

T S(n1,n2,s)
is a random variable, the values of E

(
T S(n1,n2,s)

)
and SD

(
T S(n1,n2,s)

)
(standard deviation) are plotted. However, a slightly different alternative is to

consider the scalar value

ET S(n1,n2,s)
= inf{t ≥ 0 : E (S(t)) = S | (M(0), P2(0), S(0)) = (n1, n2, s)},

where in general E
(
T S(n1,n2,s)

)
6= ET S(n1,n2,s)

. Value ET S(n1,n2,s)
should be seen

as the stochastic version of the deterministic counterpart DT S(n1,n2,s)
= inf{t ≥

0 : S(t) = S | (M(0), P2(0), S(0)) = (n1, n2, s)} where here S(t) represents the
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variable of the deterministic process given by equations

dM2(t)

dt
= 2α+(nL −M2(t)− P2(t))(nR2 −M2(t)− 2P2(t)) + 2β−P2(t)

−α−M2(t)− β+M2(t)(nR2 −M2(t)− 2P2(t)),

dP2(t)

dt
= β+M2(t)(nR2 −M2(t)− 2P2(t))− 2β−P2(t),

dS(t)

dt
=


dP2(t)
dt

, under the DS,
β+M2(t)(nR2 −M2(t)− 2P2(t)), under the AS,
β+M2(t)(nR2 −M2(t)− 2P2(t))− λS(t), under the ASD-λ.

These comments can be illustrated by comparing in Table 3.13 between values

of E
(
T S(0,0,0)

)
, ET S(0,0,0) and DT S(0,0,0), for cL = 2.5pM , for different signalling

hypotheses and for different values of λ.

Signalling hypothesis E
(
TS(0,0,0)

)
ETS(0,0,0) DTS(0,0,0)

DS 30.90 32.00 31.98

AS (ASD-λ, λ = 0) 27.43 27.50 27.58

ASD-λ, λ = 10−4 29.52 30.17 30.20

ASD-λ, λ = 0.5× 10−3 42.50 63.33 63.33

Table 3.13: Values of E
(
T S(0,0,0)

)
, ET S(0,0,0) and DT S(0,0,0) (in minutes) for DS, AS

and ASD-λ (with λ = 10−4s−1, λ = 0.5 × 10−3s−1) hypotheses. S is chosen as

25% of the total number nL of ligands. Concentration cL = 1pM .

ET S(0,0,0) is computed by carrying out 105 Gillespie simulations of the stochas-

tic process, while DT S(0,0,0) is computed by simulating the deterministic process.

While in those scenarios that favour signalling (e.g., AS hypothesis) the three de-

scriptors report similar values, those scenarios that prevent from signalling (e.g.,

ASD-λ hypothesis, with λ = 0.5 × 10−3s−1) report similar values for ET S(0,0,0)

and DT S(0,0,0), but a value of E
(
T S(0,0,0)

)
that significantly differs from these. This

is related to the fact that ET S(n1,n2,s)
and DT S(n1,n2,s)

are the stochastic and deter-

ministic version of the same quantity (time at which the system has an average

signalling level S), while E
(
T S(n1,n2,s)

)
has a slightly different meaning (average

time until the system reaches signalling level S for the first time). This difference

can be noticed from the fact that, for example for the DS hypothesis and for high
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values of S, one may have ET S(n1,n2,s)
= DT S(n1,n2,s)

=∞, while E
(
T S(n1,n2,s)

)
is al-

ways finite for 0 ≤ S ≤ nL since the stochastic process under study evolves among

an irreducible class of positive recurrent states, so that every state is visited with

probability one in finite mean time.

The dynamics of the process were restricted in previous results within a 4%

of the cell, for computational convenience. However, one should expect similar

results if the entire cell were to be considered instead. To illustrate this, the

values of E
(
T S(n1,n2,s)

)
when considering 4% or 100% of the cell are compared

in Table 3.14. Results related to 4% of the cell are analytically computed, while

results corresponding to 100% of the cell are computed by carrying out 105 Gille-

spie simulations of the stochastic process. When considering 100% of the cell,

new binding rates α̂+ = 0.04α+ and β̂+ = 0.04β+ need to be considered (see

Subsection 3.2.1). Values of E
(
T S(n1,n2,s)

)
slightly vary only from a quantitative

perspective, while the qualitative behaviour is the same when considering 4% or

100% of the cell. Thus, the conclusions in this section remain valid.

% of Signalling S = 5% S = 10% S = 15%

the cell hypothesis of nL of nL of nL

4% DS 5.69 11.52 17.89

AS (ASD-λ, λ = 0) 5.61 11.05 16.63

ASD-λ, λ = 10−4 5.67 11.37 17.43

ASD-λ, λ = 0.5× 10−3 5.91 12.83 21.85

100% DS 5.54 11.28 17.47

AS (ASD-λ, λ = 0) 5.43 10.72 16.09

ASD-λ, λ = 10−4 5.50 11.08 16.92

ASD-λ, λ = 0.5× 10−3 5.85 12.89 22.18

Table 3.14: Values of E
(
T S(0,0,0)

)
(in minutes) when analysing 4% or 100% of the

cell, for DS, AS and ASD-λ (with λ = 10−4s−1, λ = 0.5 · 10−3s−1) hypotheses,

and different values of S. Concentration cL = 2.5pM .

This Section shows how to exploit the Markovian nature of the stochastic

process under study in order to analyse a number of characteristics of interest in

the process (e.g., time to reach a signalling threshold), while sidestepping the so-
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lution of the CME. The application of first-step arguments over Laplace-Stieltjes

transforms and probability generating functions, corresponding to a number of

random variables (stochastic descriptors, or performance measures) conveniently

defined, allow us to reduce the analysis of these random variables to the solution

of a number of systems of linear equations. While this approach is, in principle,

feasible in any CTMC, computational limitations related to the dimensionality

of the process under study imply the convenience of exploiting, if possible, the

structure of the space of states of this process.
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Chapter 4

VEGF-VEGFR intracellular

trafficking

In Chapter 3 I focused on finding an approximation of the solution of master

equations describing models on the cell surface only. As there was small number

of complexes involved in these studied models it was possible to find analytical

solution for the moments. In Chapter 4 I introduce more complex models in-

volving events that happen not only on the cell surface but also inside the cell.

This chapter contains more statistical work as I use experimental data in order

to infer parameters of the proposed models. I use here Bayesian inference which

is a flexible method and it can be used even for complex mathematical models.

The data presented in this chapter were gathered by researchers at the labora-

tory of Dr. Sreenivasan Ponnambalam from the School of Molecular and Cellular

Biology at the University of Leeds using western blot methodology (sometimes

called the protein immunoblotting). It is a technique used in molecular biology,

immunogenetics and other molecular biology disciplines to detect specific proteins

in a sample of tissue homogenate or extract (see Mahmood & Yang (2012)).

This chapter is organised as follows: in Section 4.1 I provide a mathematical

model, with accompanying quantitative experimental data, for binding and traf-

ficking kinetics of vascular endothelial growth factor receptors on human umbilical

vein endothelial cells. I calibrate the mathematical model of one receptor type,

VEGFR2, and for two different isoforms of VEGF-A ligand to analyse how each of

the isoforms can affect VEGFR2 phosphorylation. In order to study intracellular
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signalling I additionally propose and test two hypotheses explaining dependence

of extracellular signal-regulated kinases (ERK) phosphorylation on the localisa-

tion of the phosphorylated bound receptors in a cell. In Section 4.2 I study the

mathematical model for two types of receptors, VEGFR1 and VEGFR2. The

parameters of this model are calibrated using quantitative experimental data. I

also analyse how the localisation of the bound phosphorylated dimers may affect

the synthesis of new receptors in a cell.

4.1 A model of ERK phosphorylation induced

by VEGF-A isoforms

Vascular endothelial growth factor A regulates many aspects of vascular phys-

iology. All VEGF-A isoforms display similar binding affinity to VEGFR2 but

unique receptor-ligand complexes can produce different functional outputs (see

Delcombel et al. (2013), Keyt et al. (1996)). The kinetics of the endothelial

response to different VEGF-A isoforms suggests that the exact location of the

VEGF-A/VEGFR2 complex could have considerable implications for the con-

trolled activation of different signalling pathways (see Ballmer-Hofer et al. (2011),

Fearnley et al. (2014), Fearnley et al. (2015), Fearnley et al. (2016)). Notably,

depending on the location of VEGF-A-stimulated VEGFR2 at the plasma mem-

brane or the endosomes different enzymes could be activated that have pro-

nounced effects on gene expression and endothelial function. Fearnley et al.

(2014) show that VEGFR2 activation by VEGF-A programs differential phos-

phorylation of the residue Y1175. In particular VEGF-A165 isoform seems to

greatly increase VEGFR2 phosphorylation at residue Y1175 when comparing it

with VEGF-A121. Binding of VEGF-A to VEGFR2 stimulates ERK phosphory-

lation and activation. Fearnley et al. (2014) measured phosphorylation of ERK at

the residues Tr202 and Tr204 to find that VEGF-A165 was better in stimulating

ERK than VEGF-A121.
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4.1 A model of ERK phosphorylation induced by VEGF-A isoforms

4.1.1 The experimental data for phosphorylation of

VEGFR2 and ERK

In order to obtain some biological insights Fearnley et al. (2014) gathered some

quantitative results via western blot analysis. In particular, the human umbilical

vein endothelial cells were stimulated with 0.025, 0.25 and 1.25 nM of VEGF-

A ligands (both isoforms, VEGF-A165 and VEGF-A121), and some protein level

measurements were obtained at different time instants within the following hour

(for each ligand concentration and each isoform under consideration):

• the intensity of VEGFR2 phosphorylation at the residue Y1175,

• the intensity of ERK phosphorylation at the residues Tr202 and Tr204 (si-

multaneously).

All these intensities were given normalised by the levels of a control protein called

(Tubuline), and where all the experiments were repeated four or six times. The

data for the phosphorylated VEGFR2 receptors protein levels (pVEGFR2) are

summarised in Table 4.1 whereas the data for the phosphorylated ERK pro-

tein levels (pERK) are summarised in Table 4.2. In particular, the experi-

mental intensity value ei(j, p, t, iso, cl) corresponds to the jth experiment, j ∈
{1, 2, 3, 4, 5, 6}, when measuring the levels of protein p ∈ {pVEGFR2, pERK}
at time t ∈ T = {5 min , 15 min, 30 min, 60 min} after the ligand stimu-

lation with isoform iso ∈ I = {165, 121} and using the ligand concentration

cl ∈ CL = {0.025nM, 0.25nM, 1.25nM}. Each data point data(j, p, t, iso, cl) in

Tables 4.1 and 4.2 was computed relative to a specific experiment,

data(j, p, t, iso, cl) =
ei(j, p, t, iso, cl)

ei(j, p, t = 5 min, iso = 165, cl = 1.25nM)
. (4.1)

Table 4.2 consists of the data related only to the experiments 1, 4, 5 and 6, since

the pERK observations from experiments 2 and 3 appear to deviate markedly

from the other observations in the sample and were thus discarded as outliers by

the experimentalists.
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stimulation with VEGF-A165

a)

time conc. set set set set set set sample

[min] [nM ] 1 2 3 4 5 6 mean SD

5 0.025 0.11 0.20 0.33 0.71 0.47 0.50 0.39 0.22

0.25 1.27 2.23 0.88 1.42 2.00 0.79 1.43 0.58

1.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00

15 0.025 0.19 0.14 0.25 0.24 0.30 0.78 0.32 0.23

0.25 0.76 0.80 0.92 0.21 1.12 0.63 0.74 0.31

1.25 0.78 0.47 0.83 0.30 1.11 0.85 0.73 0.29

30 0.025 0.04 - - 0.23 0.23 0.77 0.32 0.31

0.25 0.17 - - 0.32 0.26 0.88 0.41 0.32

1.25 0.17 - - 0.29 0.23 0.87 0.39 0.32

60 0.025 0.02 - - 0.11 0.21 0.38 0.18 0.15

0.25 0.10 - - 0.16 0.28 0.55 0.27 0.20

1.25 0.08 - - 0.37 0.25 0.24 0.23 0.12

stimulation with VEGF-A121

b)

time conc. set set set set set set sample

[min] [nM ] 1 2 3 4 5 6 mean SD

5 0.025 0.08 0.05 0.05 0.31 0.16 0.06 0.12 0.10

0.25 0.17 0.17 0.07 0.68 0.18 0.10 0.23 0.23

1.25 0.52 0.23 0.30 0.51 0.42 0.27 0.37 0.12

15 0.025 0.03 0.07 0.06 0.14 0.18 0.17 0.11 0.06

0.25 0.10 0.09 0.15 0.35 0.37 0.50 0.26 0.17

1.25 0.51 0.19 0.88 0.74 0.83 0.75 0.65 0.26

30 0.025 0.09 - - 0.15 0.19 0.36 0.20 0.12

0.25 0.37 - - 0.45 0.27 0.51 0.40 0.10

1.25 0.37 - - 0.77 0.33 0.68 0.54 0.22

60 0.025 0.06 - - 0.08 0.15 0.10 0.10 0.04

0.25 0.08 - - 0.15 0.21 0.22 0.16 0.07

1.25 0.06 - - 0.29 0.21 0.17 0.18 0.09

Table 4.1: Quantified VEGFR2 phosphorylation data: a) results for the experi-

ments using VEGF-A165 as a stimulus; b) results for the experiments using VEGF-

A121 as a stimulus. The experiments related with the data set 2 and set 3 were

performed only up to 15 minutes.
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stimulation with VEGF-A165

a)

time conc. set set set set sample

[min] [nM ] 1 4 5 6 mean SD

5 0.025 0.223 0.430 0.498 0.345 0.374 0.119

0.25 0.844 1.147 0.797 1.061 0.962 0.169

1.25 1.000 1.000 1.000 1.000 1.000 0.000

15 0.025 0.728 0.534 0.771 0.926 0.740 0.161

0.25 2.668 0.314 0.638 2.630 1.562 1.262

1.25 2.300 0.526 0.851 2.584 1.565 1.027

30 0.025 0.147 0.342 0.807 0.159 0.364 0.309

0.25 1.911 0.461 0.944 2.074 1.348 0.773

1.25 1.534 0.639 0.859 1.524 1.139 0.459

60 0.025 0.097 0.214 0.396 0.152 0.215 0.130

0.25 0.398 0.342 0.548 0.376 0.416 0.091

1.25 0.255 0.243 0.243 0.275 0.254 0.015

stimulation with VEGF-A121

b)

time conc. set set set set sample

[min] [nM ] 1 4 5 6 mean SD

5 0.025 0.070 0.147 0.073 0.129 0.105 0.039

0.25 0.102 0.218 0.110 0.129 0.140 0.054

1.25 0.696 0.223 0.289 0.691 0.475 0.254

15 0.025 0.215 0.087 0.193 0.323 0.205 0.097

0.25 1.235 0.081 0.515 1.611 0.861 0.690

1.25 2.339 0.133 0.783 2.571 1.457 1.187

30 0.025 0.141 0.094 0.380 0.180 0.199 0.126

0.25 0.301 0.111 0.510 0.309 0.308 0.163

1.25 1.132 0.059 0.665 0.818 0.669 0.450

60 0.025 0.069 0.069 0.120 0.131 0.097 0.033

0.25 0.147 0.073 0.230 0.199 0.162 0.068

1.25 0.136 0.066 0.191 0.195 0.147 0.060

Table 4.2: Quantified ERK phosphorylation data: a) results for the experiments

using VEGF-A165 as a stimulus; b) results for the experiments using VEGF-A121

as a stimulus. The experiments related with the data set 2 and set 3 were not

considered (see text for details).
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4.1.2 Model 1: binding, trafficking

In this Section I propose a mathematical model, called Model 1, that explains

how different VEGF-A isoforms can exert a different endothelial response by in-

corporating changes in VEGFR2 signal transduction, the membrane trafficking

and the turnover. To this aim, the cell is split into three compartments (cell

surface, endosome and Golgi apparatus), under the assumption that without lig-

and stimulation VEGFR2 receptors are located in these compartments following

proportions 60% (surface), 20% (endosome) and 20% (Golgi apparatus) accord-

ing to observations from Jopling et al. (2011) and personal communication with

the group of Dr. Ponnambalam from the University of Leeds. Golgi appara-

tus, which is directly involved in receptor synthesis, is not explicitly included

in the model, and synthesis of new receptors on the cell surface is assumed to

occur with a constant rate for the first 60 minutes. This condition is relaxed in

Section 4.2 where Golgi apparatus is considered as separate compartment. The

marker iso ∈ I = {121, 165} indicates that the rate for a specific reaction is

isoform-dependent.

Rj Mj Pj

Table 4.3: Diagrams of molecules considered in Model 1. The index j denotes

the localisation of each molecule; that is, j = S for a molecule in the cell surface

and j = E for a molecule in the endosome.

The following reactions occurring according to the diagram in Figure 4.1 are

considered for molecules described in Table 4.3

• binding (with rate α+) of free receptor (RS) with free ligand (LS) on the

cell surface, forming monomer (MS), and dissociation (with rate α−),

• binding (with rate β+) of monomer (MS) with free receptor (RS) on the

cell surface, forming phosphorylated dimer (PS), and dissociation (with

rate β−),
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• internalisation of free receptor (RS) and monomers (MS) with rate kint and

phosphorylated dimers (PS) bound to VEGF-Aiso with rate kP,isoint ,

• recycling of free receptor (RE) with rate krec,

• dissociation of phosphorylated dimers (PE) and monomers (ME) (formed

with VEGF-Aiso) in the endosome, occurring with the same rates than on

the cell surface but multiplied by a factor f iso ≥ 1 (related to the more

acidic environment of the endosome),

• degradation of free receptors (RE) with rate kdeg in the endosome,

• synthesis of new free receptors (RS) with rate ksyn on the cell surface.

cell surface

kint krec

kdeg

ksynkint kP,isoint

α+

α−

β+

β−

f iso · α− f iso · β−

endosome

Figure 4.1: Events involved in Model 1 for binding and trafficking of the VEGFR2

receptor. Model parameters are described in the text.

The values of the binding and the dissociation rates are proposed to be identical

for both isoforms. This assumption agrees with observations reported by Del-

combel et al. (2013), where all of examined VEGF-A isoforms were able to bind

to VEGFR2 with a dissociation constant within the 10−10 − 10−11M range. The
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internalisation of the bound monomers occurs at the same rate regardless the

isoform. It is based on the assumption that the conformal change of the receptor

takes place after the dimerisation. Therefore I assume that the internalisation

of bound dimers occurs with a different rate for each isoform. The variables of

Model 1 can be defined as follows,

LS(t) = “number of free ligands LS at time t”,

RS(t) = “number of free receptors RS on the cell surface at time t”,

MS(t) = “number of monomers MS on the cell surface at time t”,

PS(t) = “number of phosphorylated dimers PS on the cell surface at time t”,

RE(t) = “number of free receptors RE in the endosome at time t”,

ME(t) = “number of monomers ME in the endosome at time t”,

PE(t) = “number of phosphorylated dimers PE in the endosome at time t”,

for t ≥ 0, where t = 0 represents the time instant when the ligand stimulation

occurs. Dynamics of Model 1 can be described by the following equations,

dLS(t)

dt
= −2α+LS(t)RS(t) + α−MS(t),

dRS(t)

dt
= −2α+LS(t)RS(t) + α−MS(t)− β+MS(t)RS(t) + 2β−PS(t)

− kintRS(t) + krecRE(t) + ksyn,

dMS(t)

dt
= 2α+LS(t)RS(t)− α−MS(t)− β+MS(t)RS(t) + 2β−PS(t)− kintMS(t),

dPS(t)

dt
= β+MS(t)RS(t)− 2β−PS(t)− kP,isoint PS(t),

dRE(t)

dt
= kintRS(t)− krecRE(t)− kdegRE(t) + 2f isoβ−PE(t) + f isoα−ME(t),

dME(t)

dt
= kintMS(t) + 2f isoβ−PE(t)− f isoα−ME(t),

dPE(t)

dt
= kP,isoint PS(t)− 2f isoβ−PE(t),

(4.2)
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where (LS(0), RS(0), MS(0), PS(0), RE(0), ME(0), PE(0)) = (nL, n
S
R, 0, 0, n

E
R, 0, 0)

is the initial condition based on the assumption that at t = 0 (that is without

any ligands) monomers or dimers are not in the system. nL, n
S
R and nER are fixed

numbers of ligands, receptors on the cell surface and receptors in the endosome.

Model 1 in the absence of ligand: parameters’ constraints

The first aim here is to approximate some of the rates described above, for both

isoforms VEGF-A165 and VEGF-A121 simultaneously, by using the data provided

in Table 4.1. However, one can first reduce the dimensionality of the parameter

space by computing the surface binding and the dissociation rates α+, α−, β+ and

β− by following the arguments described for this particular receptor and ligand in

Subsection 3.2.1. Note that rates β+ and β− are equal for both isoforms due to the

similar value of the diffusion coefficient of VEGF-A165 and VEGF-A121 as shown

by Mac Gabhann & Popel (2005). Moreover, one can consider the deterministic

equations for the process without ligand stimulation,

dRS(t)

dt
= −kintRS(t) + krecRE(t) + ksyn,

dRE(t)

dt
= kintRS(t)− krecRE(t)− kdegRE(t),

with the initial condition (RS(0), RE(0)) = (nSR, n
E
R). The steady state (R∗S, R

∗
E)

of this system is given by

R∗S =
ksyn(krec + kdeg)

kdegkint
, R∗E =

ksyn
kdeg

. (4.3)

As explained earlier, the number of VEGFR2 on the cell surface and in the

endosome at the steady state should verify the following proportion R∗S/R
∗
E =

0.6/0.2 = 3. Let nTR be the total number of receptors in the cell under no ligand

stimulation, then R∗S + R∗E = 0.8nTR, which means that R∗S = 3/5nTR and R∗E =

1/5nTR. This, together with Equation (4.3) leads to the following expressions for

the synthesis and the internalisation rates,

ksyn =
kdegn

T
R

5
, kint =

1

3
(krec + kdeg). (4.4)
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Global sensitivity analysis of Model 1

The experimentalists measured the total phosphorylation intensity of bound dimers

which may be identified in Model 1 as a sum of dimers on the cell surface and

in the endosome at any time t, for the initial ligand VEGF-Aiso concentration

cl, which is denoted here as P (t, cl, iso) = PS(t) + PE(t) for L(0) = cl. Each

measured value was divided by the results for VEGF-A165 stimulation for the

initial concentration cl = 1.25nM at the time point t = 5 min. Thus to compare

the simulation of Model 1 with the data from Table 4.1 the following expression

must be computed,

sim(t, cl, iso) =
P (t, cl, iso)

P (t = 5 min, cl = 1.25nM, iso = 165)
, (4.5)

where t ∈ T , cl ∈ CL, iso ∈ I.

By using Sobol method, described in Section 2.3, one can learn about the

impact of the parameters on the model. In particular, sim(·, ·, ·) defined by

Equation (4.5) is used as the model output of interest, where the input is the set of

parameters left to be estimated, that is θ = (nTR, krec, kdeg, k
P,165
int , kP,121

int , f 165, f 121),

where ranges considered for these parameters are defined in Table.

nTR [molecules] krec [s−1] kdeg [s−1] kP,isoint [s−1] f iso

(103, 106) (10−4, 10−1) (10−5, 10−1) (10−5, 10−1) (1, 102)

Table 4.4: Ranges considered for nTR, krec, kdeg, k
P,iso
int , f iso for Model 1, when ap-

plying Sobol algorithm, where iso ∈ {121, 165}.

For each parameter from θ there are 24 results obtained by performing Sobol

algorithm as there are four time points, three concentrations and two isoforms

being considered. The results of the sensitivity analysis are summarised in Table

4.5 and 4.6.
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S1 mean S1 st deviation S1 range ST mean ST st deviation ST range

nTR 0.60 0.06 (0.50, 0.69) 0.82 0.05 (0.75, 0.88)

krec 0.01 0.001 (0.00, 0.03) 0.05 0.03 (0.02, 0.13)

kdeg 0.02 0.01 (0.00, 0.04) 0.14 0.05 (0.07, 0.25)

kP,165
int 0.09 0.04 (0.05, 0.16) 0.19 0.07 (0.07, 0.31)

kP,121
int - - - - - -

f 165 0.03 0.02 (0.00, 0.06) 0.12 0.03 (0.08, 0.16)

f 121 - - - - - -

Table 4.5: Results of Sobol algorithm. The main effect index S1 and the total

effect index ST for the model output sim(·, ·, iso = 165). The mean and the

standard deviation were taken over all time points t and all concentrations cl.

Note that sim(·, ·, iso = 165) does not depend on kP,121
int and f 121.

S1 mean S1 st deviation S1 range ST mean ST st deviation ST range

nTR 0.05 0.03 (0.01, 0.08) 0.40 0.07 (0.30, 0.51)

krec < 10−5 < 10−5 - 0.06 0.01 (0.03, 0.08)

kdeg < 10−5 < 10−5 - 0.06 0.01 (0.04, 0.08)

kP,165
int 0.01 0.01 (0.00, 0.04) 0.21 0.05 (0.12, 0.30)

kP,121
int 0.31 0.07 (0.16, 0.39) 0.63 0.09 (0.48, 0.77)

f 165 0.01 0.01 (0.00, 0.03) 0.18 0.02 ( 0.14, 0.22)

f 121 0.06 0.05 (0.00, 0.14) 0.15 0.06 ( 0.08, 0.25)

Table 4.6: Results of Sobol algorithm. The main effect index S1 and the total

effect index ST for the model output sim(·, ·, iso = 121). The mean and the

standard deviation were taken over all time points t and all concentrations cl.

Note that sim(·, ·, iso = 121) depends on kP,165
int and f 165 due to normalisation in

Equation (4.5).

The parameter nTR is found to be the most sensitive parameter whereas krec, kdeg

and f 165 are found to have weak influence on the model output sim(·, ·, iso = 165).

The mean total effect index of krec is close to zero, meaning that there is not much

interaction going on between krec and the rest of the parameters.

As for the output sim(·, ·, iso = 121), the most sensitive parameter is kP,121
int ,
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whereas krec and kdeg are found to be the least sensitive. krec and kdeg have low

mean of the total index which suggests that there is not much interaction between

each of them and the other parameters. There is lot of interaction between nTR

and the other parameters as the mean ST = 0.40.

The recycling rate krec and the degradation rate kdeg are the least sensitive

parameters for all the outputs and therefore those rates are set in what fol-

lows from rates reported in the literature. The rest of the parameters, θ̂ =

(nTR, k
P,165
int , kP,121

int , f 165, f 121), are estimated in next subsection as they have some

impact on the model output directly or by interacting with the other parameters.

Parameter inference for Model 1

The aim here is to use the data from Table 4.1 in order to estimate the remaining

rates of interest θ̂ = (nTR, k
P,165
int , kP,121

int , f 165, f 121) by using Bayesian techniques.

Taking into consideration the results of the global sensitivity analysis the recy-

cling rate krec and the degradation rate kdeg are fixed as krec = 10−3s−1 and

kdeg = 10−4s−1 (see Tan et al. (2013c) and Mac Gabhann & Popel (2004)). This

automatically leads to fixing free receptors and bound monomers internalisation

rate according to Equation (4.4), that is kint = 3.67× 10−4s−1. The prior distri-

butions for the rest of the parameters are proposed based on the literature (see

Mac Gabhann & Popel (2004), Vempati et al. (2010),Tan et al. (2013c), Anderson

et al. (2011), French et al. (1995), Starbuck & Lauffenburger (1992) and Tzafriri &

Edelman (2007)), so that parameters are considered in the ranges, nTR ∈ (103, 106)

receptors per cell, kP,isoint ∈ (10−4, 10−2)s−1, f iso ∈ (100, 102). Taking this into con-

sideration, there are four different set of prior distributions proposed in Table 4.7.

Each distribution has different mean and variance allowing to explore the same

parameter space differently.
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Prior1 Prior2 Prior3 Prior4

nTR U(103, 106) 10r, r ∼ U(3, 6) 10r, r ∼ U(3, 6) U(103, 106)

kP,165
int U(10−5, 10−1) 10r, r ∼ U(−5,−1) r−1, r ∼ U(101, 105) 10r, r ∼ U(−5,−1)
kP,121
int U(10−5, 10−1) 10r, r ∼ U(−5,−1) r−1, r ∼ U(101, 105) 10r, r ∼ U(−5,−1)
f165 U(100, 102) 10r, r ∼ U(0, 2) 10r, r ∼ U(0, 2) 10r, r ∼ U(0, 2)

f121 U(100, 102) 10r, r ∼ U(0, 2) 10r, r ∼ U(0, 2) 10r, r ∼ U(0, 2)

Table 4.7: Proposal for prior distributions for θ̂ = (nTR, k
P,165
int , kP,121

int , f 165, f 121).

The ABC algorithm, described in Subsection 2.4.2, is used to perform a series

of n ∈ N simulations to obtain an approximation of the posterior distribution

for θ̂. Algorithm 10 describes in detail the ABC algorithm for Model 1, where

the number of drawn samples n = 106 and the tolerance level ε = 0.001 (which

gave the acceptance ratio 0.1%). The comparison of the data with sim(t, cl, iso)

defined by Equation (4.5) is done by a proper distance measure. In this particular

case the Pearson distance (called normalised Euclidean distance) is used, defined

as follows,

δ(sim, data)2 =
∑
iso∈I

∑
cl∈CL

∑
t∈T

(sim(t, cl, iso)− µdata(t, cl, iso))2

σdata(t, cl, iso)
. (4.6)

The mean µdata(t, cl, iso) and the sample variance σdata(t, cl, iso) of the data

data(j, p = pVEGFR2, t, iso, cl) defined by Equation (4.1) at the time t ∈ T

for the concentration cl ∈ CL for the isoform iso ∈ I over the series of the experi-

ments performed in this setup (see Table 4.1) is given by the following equations,

µdata(t, cl, iso) =
∑
j∈K

data(j, p = pVEGFR2, t, iso, cl),

σdata(t, cl, iso) =
1

k

∑
j∈K

(data(j, p = pVEGFR2, t, iso, cl)− µdata(t, cl, iso))2 ,

(4.7)

where K = {1, 2, 3, 4, 5, 6}, k = 6 for t ∈ {5, 15}min and K = {1, 4, 5, 6}, k = 4

for t ∈ {30, 60}min. The obtained approximation of the posterior distribution is

later used as a prior distribution in the more computationally expensive MCMC

algorithm, described in Subsection 2.4.3.
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c c

A1. Let π(θ̂) be one of the prior distributions, Prior1, Prior2, Prior3 or
Prior4 defined in Table 4.7 for θ̂ = (nTR, k

P,165
int , kP,121

int , f 165, f 121).

A2. for i = 1, . . . , n do

1. Generate θ∗i from π(θ̂).

2. Generate sim(t, cl, iso|θ∗i ) where t ∈ {5 min, 15 min,

30 min, 60 min}, cl ∈ {0.025nM, 0.25nM, 1.25nM} and

iso ∈ {165, 121}.

3. Compute the distance δ∗i = δ(sim, data|θ∗i )

from Equation (4.6).

end

A3. Accept, for each 1 ≤ i ≤ n, nε proposed θ∗i which result with
the smallest distance δ∗i .

Algorithm 10: to find the approximation of posterior distribution of θ̂

using the ABC method.

Figures 4.2, 4.3, 4.4 and 4.5 show the posterior distributions (in blue) obtained by

Algorithm 10 for θ̂ = (nTR, k
P,165
int , kP,121

int , f 165, f 121) using the prior distributions (in

red) Prior1, Prior2, Prior3 and Prior4, respectively, defined in Table 4.7. The

results are shown in logarithmic scale.
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4.1 A model of ERK phosphorylation induced by VEGF-A isoforms

Figure 4.2: The red histograms represent sampled Prior1, whereas the blue his-

tograms represent the estimated posterior distribution, called Posterior1, for θ̂

obtained by Algorithm 10. Results are presented in logarithmic scale.

nTR [rec. per cell] kP,165
int [s−1] kP,121

int [s−1] f 165 f 121

Min. 1.00× 103 2.18× 10−4 2.30× 10−3 1.14× 100 2.85× 100

1st Qu. 7.37× 103 1.32× 10−2 3.39× 10−2 1.27× 101 3.64× 101

Median 1.30× 104 2.68× 10−2 5.98× 10−2 2.31× 101 6.18× 101

Mean 1.35× 104 3.63× 10−2 5.65× 10−2 3.38× 101 5.89× 101

3rd Qu. 1.93× 104 5.78× 10−2 8.05× 10−2 5.10× 101 8.22× 101

Max. 3.34× 104 9.95× 10−2 1.00× 10−1 9.98× 101 1.00× 102

Table 4.8: Summary statistics for the posterior distribution Posterior1 of θ̂ =

(nTR, k
P,165
int , kP,121

int , f 165, f 121) in Figure 4.2, found by Algorithm 10 using the prior

distribution Prior1 defined in Table 4.7.
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Figure 4.3: The red histograms represent sampled Prior2, whereas the blue his-

tograms represent the estimated posterior distribution, called Posterior2, for θ̂

obtained by Algorithm 10. Results are presented in logarithmic scale.

nTR [rec. per cell] kP,165
int [s−1] kP,121

int [s−1] f 165 f 121

Min. 1.00× 103 7.41× 10−4 2.60× 10−3 1.00× 100 3.03× 100

1st Qu. 2.99× 103 2.87× 10−3 8.76× 10−3 2.87× 100 1.02× 101

Median 5.53× 103 6.57× 10−3 1.78× 10−2 6.02× 100 1.98× 101

Mean 6.60× 103 1.67× 10−2 2.76× 10−2 1.50× 101 2.91× 101

3rd Qu. 9.47× 103 2.01× 10−2 3.93× 10−2 1.63× 101 4.17× 101

Max. 2.19× 104 1.00× 10−1 1.00× 10−1 9.96× 101 1.00× 102

Table 4.9: Summary statistics for the posterior distribution Posterior2 of θ̂ =

(nTR, k
P,165
int , kP,121

int , f 165, f 121) in Figure 4.3, found by Algorithm 10 using the prior

distribution Prior2 defined in Table 4.7.
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Figure 4.4: The red histograms represent sampled Prior3, whereas the blue his-

tograms represent the estimated posterior distribution, called Posterior3, for θ̂

obtained by Algorithm 10. Results are presented in logarithmic scale.

nTR [rec. per cell] kP,165
int [s−1] kP,121

int [s−1] f 165 f 121

Min. 1.05× 103 1.00× 10−5 2.09× 10−4 1.00× 100 1.00× 100

1st Qu. 4.89× 104 1.34× 10−5 7.64× 10−4 3.04× 100 4.33× 100

Median 2.36× 105 2.05× 10−5 1.43× 10−3 9.61× 100 1.34× 101

Mean 3.12× 105 6.51× 10−5 3.64× 10−3 2.10× 101 2.43× 101

3rd Qu. 5.27× 105 4.16× 10−5 3.04× 10−3 3.06× 101 3.68× 101

Max. 1.00× 106 4.45× 10−2 9.99× 10−2 1.00× 102 1.00× 102

Table 4.10: Summary statistics for the posterior distribution Posterior3 of θ̂ =

(nTR, k
P,165
int , kP,121

int , f 165, f 121), in Figure 4.4, found by Algorithm 10 using the prior

distribution Prior3 defined in Table 4.7.
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Figure 4.5: The red histograms represent sampled Prior4, whereas the blue his-

tograms represent the estimated posterior distribution, called Posterior4, for θ̂

obtained by Algorithm 10. Results are presented in logarithmic scale.

nTR [rec. per cell] kP,165
int [s−1] kP,121

int [s−1] f 165 f 121

Min. 1.03× 103 1.00× 10−5 1.33× 10−3 1.00× 100 1.22× 100

1st Qu. 1.41× 104 2.96× 10−4 4.60× 10−3 2.27× 100 4.56× 100

Median 2.44× 104 1.45× 10−3 1.06× 10−2 5.93× 100 1.04× 101

Mean 2.56× 104 8.79× 10−3 2.15× 10−2 1.64× 101 2.13× 101

3rd Qu. 3.57× 104 6.62× 10−3 3.05× 10−2 2.04× 101 2.86× 101

Max. 6.70× 104 1.00× 10−1 1.00× 10−1 9.99× 101 1.00× 102

Table 4.11: Summary statistics for the posterior distributions Posterior4 of

θ̂ = (nTR, k
P,165
int , kP,121

int , f 165, f 121) in Figure 4.5, found by Algorithm 10 using the

prior distribution Prior4 defined in Table 4.7.
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Prior3 and Posterior3 are very similar (see Figure 4.4) suggesting that the

data with the prior distribution do not introduce any new information about the

parameters. Using Prior1, Prior2 or Prior4 reveals some information regard-

ing the initial number of receptors per cell nTR which intends to be of the order

103 − 104. The mean and the median of the internalisation rates, for both iso-

forms, are of the order 10−3−10−2 for Posterior1, Posterior2 and Posterior4. The

internalisation rate of the phosphorylated dimers PS, bound with VEGF-A165, is

lower than the one of complexes built with VEGF-A121. Thus, fewer molecules

with VEGF-A165 are internalised per second in comparison to those with VEGF-

A121. The dissociation constant for the bound dimers in the endosome is greater

for VEGF-A121 than for VEGF-A165. This suggests that the dissociation takes

place faster for the dimers bound with VEGF-A121 in the endosome. Overall,

the results suggest that dimers bound with VEGF-A121 tend to be quickly inter-

nalised, dissociated and finally degraded. This conclusion agrees with the results

reported by Fearnley et al. (2014).

The deterministic evolution of the phosphorylated dimers (both on the cell

surface and in the endosome), in the model defined by Equation (4.2), is plotted

in Figures 4.6, 4.7, 4.8 and 4.9. The plots show the median at each time point

over the simulations computed using all accepted θ̂. Similarly, the shaded area

is found between the 5th and the 95th percentile at each time point over the

simulations computed using all accepted θ̂. One can notice that the number

of bound dimers is always greater for VEGF-A165 in comparison with VEGF-

A121, which leads to the conclusion that VEGF-A165 is better in phosphorylation.

According to the results of the experiment the optimal initial concentration giving

the highest phosphorylation peak is cl = 0.25nM . One can see similar behaviour

in the simulation using Posterior2 (Figure 4.7) and Posterior4 (Figure 4.9) for

the time point t = 5 min. However the phosphorylation peak appears within

first 360 seconds for this concentration in the simulated results. It is not definite

from this analysis which initial ligand concentration is optimal to get the maximal

total number of the phosphorylated dimers.
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Figure 4.6: Numerical solution of Equation (4.5) using the parameters from Pos-

terior1: phosphorylated dimers on the cell surface (left column) and in the endo-

some (right column) bound with VEGF-A121 and VEGF-A165. The shaded area

is found between the 5th and the 95th percentile at each time point over the

simulations computed using all accepted θ̂.
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Figure 4.7: Numerical solution of Equation (4.5) using the parameters from Pos-

terior2: phosphorylated dimers on the cell surface (left column) and in the endo-

some (right column) bound with VEGF-A121 and VEGF-A165. The shaded area

is found between the 5th and the 95th percentile at each time point over the

simulations computed using all accepted θ̂.
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Figure 4.8: Numerical solution of Equation (4.5) using the parameters from Pos-

terior3: phosphorylated dimers on the cell surface (left column) and in the endo-

some (right column) bound with VEGF-A121 and VEGF-A165. The shaded area

is found between the 5th and the 95th percentile at each time point over the

simulations computed using all accepted θ̂.
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Figure 4.9: Numerical solution of Equation (4.5) using the parameters from Pos-

terior4: phosphorylated dimers on the cell surface (left column) and in the endo-

some (right column) bound with VEGF-A121 and VEGF-A165. The shaded area

is found between the 5th and the 95th percentile at each time point over the

simulations computed using all accepted θ̂.
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Figure 4.10: Quantified VEGFR2 phosphorylation from Table 4.1 plotted as black

dots with bars representing 95% confidence interval of the data at each time

point. The curves represent simulation of data given by Equation (4.5) using

the parameters from Posterior1. The shaded area is found between the 5th and

the 95th percentile at each time point over the simulations computed using all

accepted θ̂.
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Figure 4.11: Quantified VEGFR2 phosphorylation from Table 4.1 plotted as black

dots with bars representing 95% confidence interval of the data at each time

point. The curves represent simulation of data given by Equation (4.5) using

the parameters from Posterior2. The shaded area is found between the 5th and

the 95th percentile at each time point over the simulations computed using all

accepted θ̂.
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Figure 4.12: Quantified VEGFR2 phosphorylation from Table 4.1 plotted as black

dots with bars representing 95% confidence interval of the data at each time

point. The curves represent simulation of data given by Equation (4.5) using

the parameters from Posterior3. The shaded area is found between the 5th and

the 95th percentile at each time point over the simulations computed using all

accepted θ̂.
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Figure 4.13: Quantified VEGFR2 phosphorylation from Table 4.1 plotted as black

dots with bars representing 95% confidence interval of the data at each time

point. The curves represent simulation of data given by Equation (4.5) using

the parameters from Posterior4. The shaded area is found between the 5th and

the 95th percentile at each time point over the simulations computed using all

accepted θ̂.
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Figures 4.10, 4.11, 4.12 and 4.13 represent how the results from the ABC approach

describe the data. The black dots are the mean of the data at each of the time

points. The error bars show the 95% confidence interval. The solid line represents

the numerical simulation of Equation 4.5 using the median of the ODE simulations

for all accepted parameters obtained by the ABC algorithm with shaded area

between the 5th and the 95th percentile of the ODE simulations found using the

accepted parameters. The results for Posterior3 do not describe well with the

data. The simulation does not capture the data evolution behaviour.

For sufficiently complex models or large data sets, it is difficult, if not impos-

sible, to find a model simulation that always describes the data within ε using

the ABC algorithm (see Sadegh & Vrugt (2014)). This Bayesian methodology

is very often computationally not very efficient, as it requires the simulation of

millions of samples, a large majority of which, typically 99%, will be discarded

for parameter estimation. More recently, Marjoram et al. (2003) proposed an-

other likelihood-free approach where simulations are directly embedded within

a Markov chain Monte Carlo (MCMC) framework. A problem linked with this

approach is to define how close simulations need to be to data in order to ac-

cept them, which depends on (i) the acceptance rate and (ii) the mixing and the

convergence of the chain, but also (iii) the burn-in period, since it may require

a very large number of simulations to have the first accepted step if the starting

point is in a region with low likelihood. Therefore MCMC method described in

Subsection 2.4.3 is used on top of the ABC algorithm to improve the results. The

other possibility is to run much more simulations for ABC algorithm which is

time consuming.

Let θ =
(
nTR , kP,165

int , kP,121
int , f 165, f 121) be the vector of parameters, which

follows its prior distribution π. I choose Posterior1 and Posterior2 as sampled

prior distributions for my MCMC algorithm, that is π ∼ Posterior1 or π ∼
Posterior2, since these are arguably the ones that better explain the data. The

distribution π is also used to adjust the transition kernel in MCMC algorithm

(see step 3 in Algorithm 3) as follows,

θ′ ∼ N(θ, ϕ ·Cov),
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where Cov is the covariance matrix of the sampled prior distribution π and

the coefficient ϕ expresses the units of variance in the propagation mechanism.

The probability of the data for a particular isoform, iso ∈ I, denoted here as

data(p = VEGFR2, iso) given the parameter θ is defined as,

Prob(data(p = VEGFR2, iso)|θ) =
∏
cl∈CL

∏
t∈T

Prob(µdata(t, cl, iso)|θ),

where µdata(·, ·, ·) is defined by Equation (4.7). It is assumed that

µdata(t, cl, iso)|θ ∼ N(sim(t, cl, iso|θ), σdata(t, cl, iso)),

for t ∈ T, cl ∈ CL, iso ∈ I where sim(·, ·, ·|θ) is found from Equation (4.5) and

the variance σdata(·, ·, ·) is defined by Equation (4.7).

The chains obtained by MCMC algorithm were 3×106 long (for π ∼ Posterior1

and π ∼ Posterior2). Setting π ∼ Posterior1 results with satisfactorily accep-

tance rate r = 38.62%. The chain is mixed well enough (see the left column on

Figure 4.14) however the autocorrelation plots, not reported here, did not decay

with the time and this was adjusted by thinning the chain. The first 104 elements

of the chain were chopped, which is called burning period, and then the chain

was thinned by taking every 200th element of the burnt chain. This procedure

allows to obtain a well mixed chain of 1.5 × 104 elements with quickly decaying

autocorrelation (see Figure 4.15). Table 4.12 consists of the summary statistics

of that chain.

MCMC algorithm allows learning more about the parameters. The right col-

umn on Figure 4.14 shows the distribution of the results obtained by MCMC

algorithm (blue) versus the distribution obtained by the ABC algorithm (red),

which accounts to Posterior1. The mean and the variance of the total number

of receptors (nTR) becomes smaller. The internalisation rate and the dissociation

constant for complexes built with VEGF-A165 have similar posterior distributions

to its prior. The medians of these two rates become smaller. The results of the

ABC algorithm did not bring any new information about the distribution of kP,121
int

and f 121 whereas MCMC approach results in obtaining informative posterior dis-

tributions for these rates (see Figure 4.14).
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Figure 4.14: Left column: the trace; right column: histograms of Posterior1 (red)

versus histograms of the posterior distribution obtained by MCMC algorithm

(blue).
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Figure 4.15: The autocorrelation functions (ACF) after thinning of the results

obtained by MCMC algorithm for π ∼ Posterior1.

As it was noted before the internalisation rate for the dimers created with VEGF-

A121 tends to be higher than for the dimers created with VEGF-A165. The dis-

sociation constant in the endosome is also greater for the molecules containing

VEGF-A121.

nTR [rec. per cell] kP,165
int [s−1] kP,121

int [s−1] f 165 f 121

Min. 1.69× 103 2.53× 10−3 5.01× 10−3 2.74× 100 5.18× 100

1st Qu. 4.33× 103 8.71× 10−3 1.79× 10−2 7.02× 100 1.90× 101

Median 5.49× 103 2.52× 10−2 3.11× 10−2 8.93× 100 2.82× 101

Mean 5.84× 103 3.62× 10−2 3.98× 10−2 1.72× 101 3.70× 101

3rd Qu. 6.98× 103 6.18× 10−2 5.87× 10−2 1.30× 101 4.97× 101

Max. 1.98× 104 1.00× 10−1 1.00× 10−1 1.00× 102 1.00× 102

Table 4.12: Summary statistics for the posterior distribution found by MCMC

algorithm with π ∼ Posterior1.
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Figure 4.16: Numerical solution of Equation (4.5) using the parameters obtained

by MCMC algorithm with π ∼ Posterior1: phosphorylated dimers on the cell

surface (left column) and in the endosome (right column) bound with VEGF-

A121 and VEGF-A165. The shaded area is found between the 5th and the 95th

percentile at each time point over the simulations computed using all accepted θ̂.

Figure 4.16 shows the deterministic solution of Model 1 defined by Equation (4.5).

As before, the curves shows the median at each time point over the simulations

computed using all accepted parameters. The shaded area is between the 5th and

the 95th percentile computed in the same way. The maximum phosphorylation
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peak appears for initial concentration cl = 0.25nM before t = 5 min. There is

more VEGF-A165-bound dimers in the endosome than on the cell surface whereas

the number of bound VEGF-A121 dimers is similar in those two compartments

over time. The simulations describe the data well (see Figure 4.17) revealing

the fact that peak phosphorylation could actually be occurring within the first 5

minutes.

Figure 4.17: Quantified VEGFR2 phosphorylation from Table 4.1 plotted as black

dots with bars representing 95% confidence interval of the data at each time point.

The curves represent simulation of data given by Equation (4.5) using the results

of MCMC algorithm with π ∼ Posterior1. The shaded area is found between the

5th and the 95th percentile at each time point over the simulations computed

using all accepted θ̂.
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The second MCMC algorithm was run with π ∼ Posterior2 and gave the accep-

tance rate 31.51%. The chain is mixed well as shown on Figure 4.18.

Figure 4.18: Left column: the trace; right column: histograms of Posterior2 (red)

versus histograms of the posterior distribution obtained in MCMC algorithm

(blue).
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After burning the first 104 chain and thinning the chain by taking every 100th

element the autocorrelation plots decay in time (see Figure 4.19). The remaining

chain is 3× 104 long.

Figure 4.19: The autocorrelation functions (ACF) after thinning of the results

obtained by MCMC with π ∼ Posterior2.

nTR [rec. per cell] kP,165
int [s−1] kP,121

int [s−1] f 165 f 121

Min. 1.46× 103 2.83× 10−3 5.03× 10−3 2.50× 100 5.91× 100

1st Qu. 4.34× 103 8.81× 10−3 1.75× 10−2 7.03× 100 1.90× 101

Median 5.51× 103 2.41× 10−2 3.11× 10−2 8.92× 100 2.81× 101

Mean 5.83× 103 3.55× 10−2 3.98× 10−2 1.65× 101 3.70× 101

3rd Qu. 6.96× 103 5.98× 10−2 5.93× 10−2 1.29× 101 5.01× 101

Max. 2.40× 104 1.00× 10−1 1.00× 10−1 1.00× 102 1.00× 102

Table 4.13: Summary statistics for the posterior distribution found by MCMC

algorithm with π ∼ Posterior2.

Table 4.13 consists the summary statistic of the chain. Using π ∼ Posterior2

reveals some new information about the parameters in comparison to the ABC
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algorithm (see Figure 4.18). All parameter values tend to move towards larger

values.

Figure 4.20: Numerical solution of Equation (4.5) using the parameters obtained

by MCMC algorithm with π ∼ Posterior2: phosphorylated dimers on the cell

surface (left column) and in the endosome (right column) with VEGF-A121 and

VEGF-A165. The shaded area is found between the 5th and the 95th percentile

at each time point over the simulations computed using all accepted θ̂.
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Figure 4.21: Quantified VEGFR2 phosphorylation from Table 4.1 plotted as black

dots with bars representing 95% confidence interval of the data at each time point.

The curves represent simulation of data given by Equation (4.5) using the results

of MCMC algorithm with π ∼ Posterior2. The shaded area is found between the

5th and the 95th percentile at each time point over the simulations computed

using all accepted θ̂.

Figure 4.20 shows the deterministic solution of Model 1 given by Equation (4.5).

The curves and the shaded areas are obtained as before. The maximum peak

is reached before time point t = 5 min for the initial ligand concentration cl =

0.25nM for the phosphorylated dimers bound with VEGF-A165 in the endosome.

The simulation describe the data reasonably well (see Figure 4.21) revealing again

the fact that the peak phosphorylation could have happened earlier then at time
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5 minutes after ligand stimulation.

The results from both MCMC approaches (with π ∼ Posterior1 and π ∼
Posterior2) are similar (see Tables 4.12 and 4.13). It is reassuring taking into

consideration that the initial ABC prior distributions were different. The be-

haviour of the deterministic simulations are almost identical and describe well

the data. It is interesting to see the posterior distribution of the synthesis rate

which is found by Equation (4.4). Both approaches led to similar posterior distri-

bution of the synthesis rate (see Figure 4.22 and the summary statistics in Table

4.14).

Figure 4.22: Posterior distributions of the synthesis rate ksyn obtained by MCMC

algorithm and from Equation (4.4), for π ∼ Posterior1 and π ∼ Posterior2.

ksyn[s−1] for Posterior1 ksyn[s−1] for Posterior2

Min. 3.38× 10−2 2.92× 10−2

1st Qu. 8.67× 10−2 8.69× 10−2

Median 1.10× 10−1 1.10× 10−1

Mean 1.17× 10−1 1.17× 10−1

Mean 3rd Qu. 1.40× 10−1 1.39× 10−1

Max. 3.96× 10−1 4.80× 10−1

Table 4.14: Summary statistics of the synthesis rate ksyn.

Quantification of the receptor degradation rate

Using the results from MCMC algorithm one may find that degradation of recep-

tors in the endosome can happen two times more rapidly for stimulated cells. In
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order to do that one more equation must be added to Equation (4.2),

dRL(t)

dt
= kdegRE(t), (4.8)

where RL(t) is a strictly increasing variable accounting for the number of degraded

receptors moved to the lysosome, up to time t ≤ 0, with the initial condition

RL(0) = 0.

Figure 4.23: The ratio of degradation of the receptors in the endosome between

stimulated (using VEGF-A121 and VEGF-A165) and non-stimulated cells.

Figure 4.23 shows the time evolution of the ratio of degraded receptors from

the endosome between stimulated and non-stimulated cells. Parameters used in

Figure 4.23 are the median values reported in Table 4.12 for π ∼ Posterior1.

There are more degraded receptors if the cell is stimulated by VEGF-A121 than

by VEGF-A165 which agrees with previous observation about faster turnover of

receptors bound with VEGF-A121. Additionally on average there is twice as

many degraded receptors once the cell is stimulated with VEGF-A comparing to

non-stimulated cell.

4.1.3 Model 2: ERK phosphorylation

Phosphorylation of vascular endothelial growth factor receptors is important at

many stages of the signalling pathway. When a growth factor ligand binds to the
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receptor, the receptor pairs up and acts as kinases, attaching phosphate groups

to one another’s intracellular tails. The activated receptors trigger a series of

events (see Lodish et al. (1995)). These events activate the kinase Raf. Active

Raf phosphorylates and activates MEK, which phosphorylates and activates the

ERKs. The ERKs phosphorylate and activate a variety of target molecules which

include the transcription factors, like ATF-2, as well as the cytoplasmic targets.

The activated targets promote cell growth and division. Together, Raf, MEK,

and the ERKs make up a three-tiered kinase signalling pathway called a mitogen-

activated protein kinase (MAPK) cascade (a mitogen is a signal that causes cells

to undergo mitosis, or divide).

A simple signalling model, referred to as Model 2, is introduced here in order

to examine which types of the phosphorylated bound dimers are more likely to be

responsible for ERK phosphorylation (see Figure 4.24). The MAPK cascade is

modelled here by one equation which describes a signal response to the phospho-

rylated dimers. Assume that the ERK signal can decay at a constant rate µ and

grows at a constant rate λ with the signal capacity κ. There are the following

two hypotheses to be checked:

H1) signal is generated from bound dimers on the cell surface with a delay τ

dS(t)

dt
= −µS(t) + λ

PS(t− τ)

PS(t− τ) + κ
, (4.9)

H2) signal is generated from bound dimers in the endosome with a delay τ

dS(t)

dt
= −µS(t) + λ

PE(t− τ)

PE(t− τ) + κ
, (4.10)

where S(t) = 0 for t < τ . Here I assume that rates µ, λ, τ are isoform-independent.

However, ERK phosphorylation is still implicitly isoform-dependent, since the

amounts of bound dimers PS(t) and PE(t) at any given time t ≥ 0 do depend on

the particular isoform used for stimulation.
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cell surface
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Figure 4.24: Events involved in Model 2 for binding and trafficking of the

VEGFR2 receptor. H1 and H2 with the waved arrows indicates the hypothe-

sis under consideration triggering ERK signalling (phosphorylation in this case).

Global sensitivity analysis of Model 2

The Sobol algorithm was run for the Model 2 for both hypotheses where the

parameters µ, λ, κ and τ were varied (see Table 4.15).

µ[s−1] λ[molecules s−1] κ[molecules] τ [s]

(0, 10) (0, 10) (1, 104) (0, 300)

Table 4.15: Ranges considered for µ, λ, κ and τ for Model 2, when applying Sobol

algorithm.

Similarly to sim(t, cl, iso) from Equation (4.5), to compare the simulation of

Model 2 with the data from Table 4.2 the following expression must be computed

sim(t, cl, iso) =
S(t, cl, iso)

S(t = 5 min, cl = 1.25nM, iso = 165)
, (4.11)

where t ∈ T , cl ∈ CL and iso ∈ I. Thus the parameter τ is constrained by

the data normalisation to be less than 5 min, because if τ > 5 min then S(t =

5 min, cl = 1.25nM, iso = 165) = 0 (due to the initial condition for Equations

(4.9) and (4.10)) and sim(t, cl, iso) is undefined. The analyses revealed that the
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parameter τ is the most sensitive parameter to the model output (see Tables 4.16

and 4.17).

S1 mean S1 st deviation S1 range ST mean ST st deviation ST range

µ < 10−5 < 10−5 - 0.02 0.01 (0.00,0.03)

λ < 10−5 < 10−5 - < 10−5 < 10−5 -

κ 0.00 0.01 (0.00, 0.02) 0.00 0.01 (0.00, 0.03)

τ 1.00 0.01 (0.97,1) 1.00 0.01 (0.98,1)

Table 4.16: The results for Sobol algorithm for Model 2 with the hypothesis H1.

The mean and the standard deviation were taken over all time points t and all

initial ligand concentrations cl.

S1 mean S1 st deviation S1 range ST mean ST st deviation ST range

µ < 10−5 < 10−5 - 0.01 0.00 (0.00,0.01)

λ < 10−5 < 10−5 - < 10−5 < 10−5 -

κ 0.04 0.11 (0.00, 0.43) 0.04 0.12 (0.00, 0.48)

τ 0.96 0.12 (0.51,1) 0.96 0.11 (0.58,1)

Table 4.17: The results for Sobol algorithm for Model 2 with the hypothesis H2.

The mean and the standard deviation were taken over all time points t and all

initial ligand concentrations cl.

The main effect index S1 and the total effect index ST approximately equal to 1 for

both hypotheses, whereas the rest of the parameter’s indexes where approximately

equal to 0 for the time points 15, 30 and 60 minutes, regardless of the initial

concentration and the isoforms considered. The parameter κ matters more only

for hypothesis H2 for the outputs at the time point 5 minutes with the initial

concentration 0.025nM or 0.25nM, where κ’s main effect index S1 ≈ 0.29.

Parameter inference: Model 2

The ABC algorithm, described in Chapter 2 in Subsection 2.4.2 is used in order

to find the distributions for the parameters µ, λ, κ and τ of Model 2. The prior

distributions for these parameters are uniform distributions on ranges defined in
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Table 4.15. The rest of parameters in Model 2 are taken from the median of the

results of MCMC inference for π ∼ Posterior1.

µ[s−1] λ[molecules s−1] κ[molecules] τ [s]

Min. 0.0015 0.02 148 7

1st Qu. 0.5477 2.26 3935 290

Median 3.3922 4.82 5975 292

Mean 3.8218 4.95 5859 273

3rd Qu. 6.6883 7.60 7984 292

Max. 9.9999 9.99 9993 292

Table 4.18: Summary statistics of the posterior distribution for hypothesis H1.

µ [s−1] λ [molecules s−1] κ[molecules] τ [s]

Min. 0.0019 0.01 220 1

1st Qu. 0.0153 2.63 1671 217

Median 0.2774 4.88 2741 259

Mean 2.1217 4.99 3796 225

3rd Qu. 3.8907 7.39 5754 262

Max. 9.9999 9.99 9984 262

Table 4.19: Summary statistics of the posterior distribution for hypothesis H2.

The ABC algorithm was run to get 106 samples for each hypotheses. The accep-

tance ratio was set to 0.1% which allows to obtain 1000 accepted samples. Table

4.18 contains the summary statistics for the computed posterior under hypothe-

sis H1 (signal is generated from the cell surface) whereas Table 4.19 contains the

summary statistics for the computed posterior under the hypothesis H2 (signal is

generated from the endosome). The constant µ is much greater for the hypothesis

H2 indicating that the signal decay would be faster in that case. The capacity

κ is greater for the model with signalling from the cell surface and the delay is

similar for both hypotheses.
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Figure 4.25: The probability histograms of the posterior distribution (in blue)

versus the prior distribution (in red) assuming the hypothesis H1.

Figure 4.26: The probability histograms of the posterior distribution (in blue)

versus the prior distribution (in red) assuming the hypothesis H2.

The probability histograms of the posterior distributions obtained by the ABC

algorithm are similar for the parameter τ for both hypotheses (see Figure 4.25 and
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4.26). However, it seems that τ could be pushed even further than 300 seconds for

the hypothesisH1 whereas for the hypothesisH2 the maximum is τ = 262 seconds.

Significant learning for parameter µ occurs under both hypotheses (see Figure

4.26). According to findings by Schoeberl et al. (2002) the de-phosphorylation

rate of ERK is equal to 0.27s−1 for the first phosphorylation site and 0.30s−1 for

the second phosphorylation site. The rate responsible for the de-phosphorylation

or the signal decay in Model 2 is the rate µ. This rate is found to be close to

the ones reported by Schoeberl et al. (2002) for the hypothesis H2. The value of

µ for the hypothesis H1 is much too high. The distribution for κ is more spread

out but the mass is concentrated around κ = 2000 for the hypothesis H2 results.

The distribution of λ in both hypotheses is similar to its prior distribution.

Figure 4.27: Quantified ERK phosphorylation from Table 4.2 plotted as black

dots with bars representing 95% confidence interval of the data at each time point.

The curves represent simulation defined by Equation (4.11) for the hypothesis

H1 and hypothesis H2. The shaded area is found between the 5th and the 95th

percentile at each time point over the simulations computed using all accepted θ̂.
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The curves on Figure 4.27 are obtained by finding the median taken over the

numerical solution of Equation (4.5) together with Equation (4.9) or (4.10) (de-

pending on the hypothesis) for all accepted parameters for the hypothesis H1

(in red) and the hypothesis H2 (in blue). The shaded area is between the 5th

and the 95th percentile of these simulations. According to the experiment the

peak of ERK phosphorylation is around 15-20 minutes. The peak is reached for

the smallest concentration for the isoform VEGF-A165 (see Figures 4.27) for the

hypothesis H2. For the concentration 0.25nM and 1.25nM the peak is closer to

10 minutes for the hypothesis H2 but the peak for the hypothesis H1 is highly

overestimated.

Model selection

The hypotheses can be compared by finding their relative probabilities, which

have their grounds on Bayes theorem (see Theorem 2.4), defined as follows,

p(Hi|δ = δ∗) =
f(Hi|δ = δ∗)

f(H1|δ = δ∗) + f(H2|δ = δ∗)
, (4.12)

where f(Hi) is the number of accepted parameters given that in the ABC al-

gorithm one accepts only the results with the distance equal or less than δ∗.

Figure 4.28 shows how the relative probability changes for each hypothesis versus

δ∗. Once threshold δ∗ grows enough the relative probability of both hypotheses

converges to 1
2
, meaning that all of the proposed parameters are being accepted

under both hypotheses. The most plausible is the hypothesis H2 with higher

relative probability for small enough distance. Similarly the number of accepted

parameters grows faster for the hypothesis H2 compared to the hypothesis H1.

The analysis of Model 2 indicates that the signal for ERK phosphorylation

more likely comes from the endosome compartment. In the following section,

I investigate how incorporating VEGFR1 into the model, which leads to the

presence of heterodimers, can affect signalling. In particular, I test different

hypotheses on how receptor transport from the Golgi to the cell surface can be

triggered by signal generated at different cell locations.
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Figure 4.28: The relative probability for two tested hypotheses depending on the

distance threshold δ∗ and the frequency of two tested hypotheses.

4.2 Modelling calcium-regulated VEGFR2 sig-

nalling

Calcium ions play multiple regulatory roles in cell function and physiology (see

Clapham (2007)). In mammals, calcium levels are tightly regulated to maintain

millimolar (10−3mol/L) concentrations in extracellular fluids, such as blood, but

less than micromolar (10−6mol/L) concentrations within the cytosol. Such a cal-

cium gradient allows rapid fluxes of calcium ion levels in different intracellular

compartments in response to external stimuli, with subsequent effects on cell and

animal physiology (see Bao et al. (2012)). Changes in intracellular calcium-ion

levels can modulate different aspects of endothelial physiology and vascular func-

tion, such as wound repair and blood pressure. Disruption of calcium homoeosta-

sis in vascular endothelial cells is therefore associated with cellular dysfunction.

Here, I investigate how VEGFR2 phosphorylation upon VEGF-A stimulation

can regulate VEGFR synthesis through calcium ions release. I hypothesise that

transportation of VEGFR1 or/and VEGFR2 from the Golgi to the cell surface

is perturbed (either enhanced or inhibited) by signalling from phosphorylated

VEGFR2 homodimers. This enhancement, or even a potential inhibition, is rep-

resented by parameters ω
(j)
t ∈ (−1, 1), for j ∈ {1, 2}, where the specific values

will be estimated using the Bayesian inference.
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4.2.1 Experimental data

The data presented in this section were provided by the group of Dr. Sreenivasan

Ponnambalam from the School of Molecular and Cellular Biology at the Univer-

sity of Leeds. As in the previous section, the quantitative data were obtained

via western blots analysis. In particular, human umbilical vein endothelial cells

were stimulated with 0.25 of VEGF-A165 and protein level measurements were

obtained at different time points within the first hour after stimulation:

• the intensity of VEGFR2 phosphorylation at the residue Y1175 at the cell

surface,

• the intensity of VEGFR1 receptors at the cell surface,

• the intensity of VEGFR2 receptors at the cell surface,

where all these intensities were given normalised by the intensity of the transferrin

receptor (TfR), and where all the experiments were repeated three times. The

intensity data are given in Table 4.20.

The aim here is to use these data to estimate some of the parameters in

the binding and trafficking model described later in Subsection 4.2.3. As the

deterministic model describes how the numbers of each molecule change with

time, it is not possible to make use of the intensity data directly. In Section

4.1 the data were given normalised by the intensity of phosphorylated VEGFR2

receptors at time 5 min. In this case one can choose the way of normalisation.

Here the data are normalised by the sum of the intensities of VEGFR1 and

VEGFR2 at the time 0 min (without any ligand stimulation). Let ei(p, t, i) be

the value for the experimental intensity of the protein p, at time point t, for the

experiment from the set i, where p ∈ M = {pVEGFR2,VEGFR1,VEGFR2},
t ∈ T = {0 min, 5 min, 15 min, 30 min, 60 min}, and i ∈ I = {1, 2, 3} from

Table 4.20. Hence the quantified data for the phosphorylated VEGFR2 at time

t for the experimental set i, denoted as q(pVEGFR2, t, i), is found from the

following equation,

q(pVEGFR2, t, i) =
ei(pVEGFR2, t, i)

ei(VEGFR1, t = 0min, i) + ei(VEGFR2, t = 0min, i)
,
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for t ∈ T and i ∈ I. The results of this quantification are given in Table 4.22.

Intensity of the phosphorylated VEGFR2 on the cell surface

time [min] set 1 set 2 set 3 mean sample SD

5 1.19 1.80 1.11 1.37 0.38

15 1.78 0.81 1.43 1.34 0.49

30 0.87 0.22 0.10 0.39 0.41

60 0.69 0.48 0.59 0.58 0.11

Intensity of VEGFR1 on the cell surface

time [min] set 1 set 2 set 3 mean sample SD

0 0.89 0.81 0.66 0.79 0.12

5 0.34 0.76 0.75 0.62 0.24

15 1.73 0.92 1.45 1.37 0.41

30 1.78 1.60 1.60 1.66 0.10

60 2.44 2.07 1.20 1.90 0.64

Intensity of VEGFR2 on the cell surface

time [min] set 1 set 2 set 3 mean sample SD

0 2.25 2.83 0.95 2.01 0.96

5 1.50 1.98 0.42 1.30 0.80

15 1.83 1.45 1.57 1.61 0.19

30 1.11 0.70 0.92 0.91 0.21

60 1.56 0.38 0.49 0.81 0.65

Table 4.20: The intensities of the phosphorylated VEGFR2, the total VEGFR1

and the total VEGFR2 on the cell surface upon 0.25nM of VEGF-A165 stimula-

tion normalised by the level of the intensity of TfR.

As for the number of the membrane bound receptors one can translate the

intensities from Table 4.20 into the actual numbers of receptors. In Section 4.1 it

was assumed that the cell can be split into three different spatial compartments

(cell surface, endosome and the Golgi apparatus). In the absence of ligand stim-

ulation the relative fractions of receptors in these three compartments have been

estimated as follows (see Table 4.21).
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receptor cell surface endosome Golgi

VEGFR1 20% 2% 78%

VEGFR2 60% 20% 20%

Table 4.21: The fractions of the receptors VEGFR1 and VEGFR2 located in

different cell compartments according to observations made by Jopling et al.

(2011).

This information together with the assumption about the mean number of recep-

tors in the unstimulated cell is used to quantify the intensity data into numbers

of receptors. According to private communication with Dr. Ponnambalam, the

cells used in the experiments have on average 104 VEGFR1 and 2×105 VEGFR2

per cell, which agrees with observations reported by Napione et al. (2012). This

indicates that there are 2 × 103 VEGFR1 and 1.2 × 105 VEGFR2 on the cell

surface on average. The mean intensity of VEGFR1 at time point 0 min is equal

to 0.79, which should correspond to 2 × 103 receptors. Therefore each intensity

of VEGFR1 from Table 4.20 can be translated into numbers of receptors, using

the following equation

q(V EGFR1, t, i) =
ei(V EGFR1, t, i) · 2000

0.79
.

Similarly the intensities of VEGFR2 at the cell surface are translated into num-

bers of VEGFR2 using the following equation,

q(V EGFR2, t, i) =
ei(V EGFR2, t, i) · 120000

2.01
,

where 2.01 is the mean intensity of VEGFR2 at time point 0 min. This quantifi-

cation for both receptors is reported in Table 4.22.
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Quantified phosphorylated VEGFR2 data

time [min] set 1 set 2 set 3 mean sample SD

5 0.38 0.49 0.69 0.52 0.16

15 0.57 0.22 0.89 0.56 0.33

30 0.28 0.06 0.06 0.13 0.12

60 0.22 0.13 0.36 0.24 0.12

Quantified number of VEGFR1 per cell upon ligand stimulation

time [min] set 1 set 2 set 3 mean sample SD

0 2264 2060 1676 2000 299

5 863 1937 1902 1567 610

15 4398 2335 3680 3471 1048

30 4514 4066 4050 4210 263

60 6192 5261 3035 4829 1622

Quantified number of VEGFR1 per cell upon ligand stimulation

time [min] set 1 set 2 set 3 mean sample SD

0 134159 168899 56942 120000 57306

5 89188 117955 24902 77348 47643

15 109014 86287 93542 96281 11608

30 66251 41654 54982 54296 12313

60 92837 22629 29062 48176 38812

Table 4.22: Quantification of the data given in Table 4.20. The description of the

quantification is in the text.

4.2.2 Basal mathematical model (no ligand)

Consider the human umbilical vein endothelial cells that express VEGFR1 and

VEGFR2, which can be found in three different spatial compartments of the cell:

the Golgi apparatus, the endosome and the cell surface. Schematic models for

VEGFR1 and VEGFR2 basal trafficking are presented in Figures 4.29 and 4.30

where the following reactions are considered:

• k(j)
s - synthesis of receptors in the Golgi,
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• k(j)
t - trafficking of receptors from the Golgi to the cell surface,

• k(j)
i - internalisation of receptors from the surface to the endosome,

• k(j)
r - recycling of receptors from the endosome to the surface,

• k(j)
d - degradation of receptors in the endosome,

• k(j)
e - trafficking of receptors from the endosome to the Golgi.

Surface

Golgi

k
(1)
t

k
(1)
s

∅
Endosome

k
(1)
e
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k
(1)
i k

(1)
r
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d

Figure 4.29: The schematic model for basal VEGFR1 receptor trafficking.
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Figure 4.30: The schematic model for basal VEGFR2 receptor trafficking.
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For rates above the index j ∈ {1, 2} refers to VEGFR1 and VEGFR2, respec-

tively. I assume that k
(2)
e = 0 since receptor VEGFR2 does not traffic from

the endosome to the Golgi (see Simons (2012), Smith et al. (2015), Smith et al.

(2016)). The fact that this rate vanishes implies that the trafficking dynam-

ics of VEGFR1 and VEGFR2 are different. Note that VEGFR1 and VEGFR2

have independent trafficking dynamics in the absence of ligand, and thus, in the

following sections, they will be analysed separately.

VEGFR1 basal dynamics

Dynamics of VEGFR1 without any ligand stimulation is different from the dy-

namics of VEGFR2. This is not only due to the different kinetic rates, but also

due to the fact that VEGFR1 is known to traffic from the endosome to the Golgi.

The variables of VEGFR1 the basal model can be defined as follows,

RG
1 (t) = “number of free VEGFR1 in the Golgi apparatus at time t”,

RE
1 (t) = “number of free VEGFR1 in the endosome at time t”,

RS
1 (t) = “number of free VEGFR1 in the cell surface at time t”,

for t ≥ 0. The dynamics of VEGFR1 described by Figure 4.29 can be expressed

in terms of the following equations:

dRG
1 (t)

dt
= k

(1)
s + k

(1)
e RE

1 (t)− k(1)
t RG

1 (t),

dRE
1 (t)

dt
= k

(1)
i RS

1 (t)− k(1)
d RE

1 (t)− k(1)
e RE

1 (t)− k(1)
r RE

1 (t),

dRS
1 (t)

dt
= −k(1)

i RS
1 (t) + k

(1)
r RE

1 (t) + k
(1)
t RG

1 (t),

(4.13)

with initial conditions RG
1 (0) = 7.8× 103, RE

1 (0) = 2× 102, RS
1 (0) = 2× 103 given

by proportions from Table 4.21, together with the total number of receptors per

cell found from experiments (see Subsection 4.2.1 for details). The steady state
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R∗1 = (RG,∗
1 , RE,∗

1 , RS,∗
1 ) of Equation (4.13) is given as

RG,∗
1 =

k
(1)
s (k

(1)
e + k

(1)
d )

k
(1)
t k

(1)
d

,

RE,∗
1 =

k
(1)
s

k
(1)
d

,

RS,∗
1 =

k
(1)
s (k

(1)
d + k

(1)
r + k

(1)
e )

k
(1)
d k

(1)
i

. (4.14)

Hence, the total number of VEGFR1 per cell in steady state (RT,∗
1 = RG,∗

1 +

RE,∗
1 +RS,∗

1 ) can be found from the following equation

RT,∗
1 =

k
(1)
s

(
k

(1)
i (k

(1)
e + k

(1)
d + k

(1)
t ) + k

(1)
t (k

(1)
r + k

(1)
e + k

(1)
d )
)

k
(1)
i k

(1)
d k

(1)
t

. (4.15)

In order to analyse the stability of this steady state defined by Equation (4.14),

the Jacobian matrix J1 is computed

J1 =

 −k
(1)
t k

(1)
e 0

0 −(k
(1)
d + k

(1)
e + k

(1)
r ) k

(1)
i

k
(1)
t k

(1)
r −k(1)

i

 .

The eigenvalues of matrix J1 are obtained from the following characteristic poly-

nomial

σ3 + σ2
(
k

(1)
i + k

(1)
t + k

(1)
d + k

(1)
e + k

(1)
r

)
+ σ

(
k

(1)
i k

(1)
d +k

(1)
t k

(1)
e + k

(1)
t k

(1)
r

+k
(1)
i k

(1)
e + k

(1)
d k

(1)
i +k

(1)
t k

(1)
i

)
+ k

(1)
d k

(1)
i k

(1)
t = 0.

Routh-Hurwitz criteria (see Section 4.5 by Linda (2007) for details) can be used to

show that steady state defined by Equation (4.14) is stable, by checking that the

real parts of these eigenvalues are negative. In particular, for the characteristic

polynomial of order three above, the Routh-Hurwitz criteria states that all its

roots have negative real part if and only if

k
(1)
i + k

(1)
t + k

(1)
d + k

(1)
e + k

(1)
r > 0, k

(1)
d k

(1)
i k

(1)
t > 0,(

k
(1)
i + k

(1)
t + k

(1)
d + k

(1)
e + k

(1)
r

)(
k

(1)
i (2k

(1)
d + k

(1)
e ) + k

(1)
t (k

(1)
e + k

(1)
r + k

(1)
i )
)

> k
(1)
d k

(1)
i k

(1)
t .
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These conditions are clearly verified for any positive values of the kinetic rates,

so that the steady state is stable. From Equations (4.14) and (4.15), one can

obtain the fractions of receptors in each compartment at steady state f∗1 =

(fG,∗1 , fE,∗1 , fS,∗1 ), which are

fG,∗1 =
RG,∗

1

RT,∗
1

=
k

(1)
i (k

(1)
d + k

(1)
e )

k
(1)
i (k

(1)
e + k

(1)
d + k

(1)
t ) + k

(1)
t (k

(1)
d + k

(1)
r + k

(1)
e )

,

fE,∗1 =
RE,∗

1

RT,∗
1

=
k

(1)
t k

(1)
i

k
(1)
i (k

(1)
d + k

(1)
t + k

(1)
e ) + k

(1)
t (k

(1)
e + k

(1)
d + k

(1)
r )

,

fS,∗1 =
RS,∗

1

RT,∗
1

=
k

(1)
t (k

(1)
e + k

(1)
d + k

(1)
r )

k
(1)
i (k

(1)
e + k

(1)
d + k

(1)
t ) + k

(1)
t (k

(1)
e + k

(1)
d + k

(1)
r )

,

(4.16)

so that clearly fG,∗1 + fE,∗1 + fS,∗1 = 1.

VEGFR2 basal dynamics

As noted before VEGFR2 is not transported from the endosome to the Golgi (see

Figure 4.30). The variables of the VEGFR basal model can be defined, for t ≥ 0,

as follows,

RG
2 (t) = “number of free VEGFR2 in the Golgi apparatus at time t”,

RE
2 (t) = “number of free VEGFR2 in the endosome at time t”,

RS
2 (t) = “number of free VEGFR2 in the cell surface at time t”.

The dynamics for VEGFR2 can be expressed in terms of the following equations:

dRG
2 (t)

dt
= k(2)

s − k
(2)
t RG

2 (t),

dRE
2 (t)

dt
= k

(2)
i RS

2 (t)− k(2)
d RE

2 (t)− k(2)
r RE

2 (t), (4.17)

dRS
2 (t)

dt
= −k(2)

i RS
2 (t) + k(2)

r RE
2 (t) + k

(2)
t RG

2 (t),

for t ≥ 0, and initial conditions RG
2 (0) = 4 × 104, RE

2 (0) = 4 × 104, RS
2 (0) =

1.2 × 105 taken from the experimental results (see Table 4.21 and comments
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regarding the total number of receptors per cell in Subsection 4.2.1). The steady

state R∗2 = (RG,∗
2 , RE,∗

2 , RS,∗
2 ) of Equation (4.18) is given as

RG,∗
2 =

k
(2)
s

k
(2)
t

,

RE,∗
2 =

k
(2)
s

k
(2)
d

, (4.18)

RS,∗
2 =

k
(2)
s (k

(2)
d + k

(2)
r )

k
(2)
d k

(2)
i

.

Hence, the total number of VEGFR2 per cell (RT,∗
2 = RG,∗

2 +RE,∗
2 +RS,∗

2 ) at the

steady state can be found from the following equation,

RT,∗
2 =

k
(2)
s

(
k

(2)
t (k

(2)
d + k

(2)
r ) + k

(2)
i (k

(2)
t + k

(2)
d )
)

k
(2)
i k

(2)
d k

(2)
t

. (4.19)

In order to analyse the stability of this steady state, the Jacobian matrix J2 is

computed,

J2 =

 −k
(2)
t 0 0

0 −(k
(2)
d + k

(2)
r ) k

(2)
i

k
(2)
t k

(2)
r −k(2)

i

 .

The eigenvalues of the matrix J2 are

σ
(2)
1 = −k(2)

t ,

σ
(2)
2 = −1

2

(
(k

(2)
d + k

(2)
i + k(2)

r ) +

√
(k

(2)
i + k

(2)
d + k

(2)
r )2 − 4k

(2)
i k

(2)
d

)
,

σ
(2)
3 = −1

2

(
(k

(2)
d + k

(2)
i + k(2)

r ) −
√

(k
(2)
i + k

(2)
d + k

(2)
r )2 − 4k

(2)
i k

(2)
d

)
.

σ
(2)
1 , σ

(2)
2 and σ

(2)
3 are real and negative for any positive values of the kinetic rates.

Thus, the steady state defined by Equation (4.18) is stable. The fractions of

receptors in each compartment, f∗2 = (fG,∗2 , fE,∗2 , fS,∗2 ), at steady state can be
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obtained from Equations (4.18) and (4.19), which are

fG,∗2 =
RG,∗

2

RT,∗
2

=
k

(2)
d k

(2)
i

k
(2)
i (k

(2)
d + k

(2)
t ) + k

(2)
t (k

(2)
d + k

(2)
r )

,

fE,∗2 =
RE,∗

2

RT,∗
2

=
k

(2)
t k

(2)
i

k
(2)
i (k

(2)
d + k

(2)
t ) + k

(2)
t (k

(2)
d + k

(2)
r )

,

fS,∗2 =
RS,∗

2

RT,∗
2

=
k

(2)
t (k

(2)
d + k

(2)
r )

k
(2)
i (k

(2)
d + k

(2)
t ) + k

(2)
t (k

(2)
d + k

(2)
r )

,

(4.20)

so that clearly fG,∗2 + fE,∗2 + fS,∗2 = 1.

4.2.3 Model 3: mathematical model of ligand stimulation

In this section I introduce the model, called Model 3, with two different type

of receptors, VEGFR1 and VEGFR2 and one type of ligand, VEGF-A165. The

variables at time t in Model 3 are defined as follows,

L(t) = “number of free ligands L”,

RS
j (t) = “number of free receptors RS

j on the cell surface”,

MS
j (t) = “number of monomers MS

j on the cell surface”,

P S
j (t) = “number of phosphorylated homodimers P S

j on the cell surface ”,

P S
12(t) = “ number of phosphorylated heterodimers P S

12 on the cell surface”,

RE
j (t) = “number of free receptors RE

j in the endosome”,

ME
j (t) = “ number of monomers ME

j in the endosome”,

PE
j (t) = “number of phosphorylated homodimers PE

j in the endosome”,

PE
12(t) = “ number of phosphorylated heterodimers PE

12 in the endosome”,

RE
j (t) = “number of free receptors RG

j in the Golgi”,
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where j ∈ {1, 2} denotes the receptor type involved in the corresponding complex

(j = 1 for VEGFR1 and j = 2 for VEGFR2). The complexes which occur in

Model 3 are described in Table 4.23.

Rloc
1 Rloc

2 M loc
1 M loc

2 P loc
1 P loc

2 P loc
12

Table 4.23: Molecules occurring in Model 3. The index loc denotes the localisation

of each molecule, that is loc ∈ {G,E, S}, where G,E, and S stands for a molecule

in the Golgi apparatus, in the endosome and on the cell surface, respectively.

Surfaceβ
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Figure 4.31: Events involved in the model for binding and trafficking of two recep-

tor types (VEGFR1 and VEGFR2). The parameters of the model are described

in the text.

The following reactions, from Figure 4.31, are considered in Model 3,
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• binding (with rate α
(j)
+ ) of free receptors VEGFRj (RS

j ) with free ligands on

the cell surface, forming monomers MS
j , and dissociation (with rate α

(j)
− ),

where j ∈ {1, 2};

• binding (with rate βj+) of monomers MS
j with free receptors VEGFRj (RS

j )

forming phosphorylated homodimers P S
j , and dissociation (with rate βj−),

where j ∈ {1, 2};

• binding (with rate βij+) of monomers MS
i with free receptors VEGFRj (RS

j )

forming phosphorylated heterodimers P S
ij , and dissociation (with rate βij−),

where i, j ∈ {1, 2} and i 6= j;

• internalisation from the cell surface to the endosome of free receptors VEGFRj

(RS
j ) (with rate k

(j)
i ), monomers MS

j (with rate k
(j)
i ), phosphorylated ho-

modimers P S
j (with rate k̂

(j)
i ), phosphorylated heterodimers P S

12 (with rate

k
(12)
i ), where j ∈ {1, 2};

• recycling from the endosome to the cell surface of free receptors VEGFRj

(RS
j ) (with rate k

(j)
r ), monomers MS

j (with rate k
(j)
r ), phosphorylated ho-

modimers P S
j (with rate k̂

(j)
r ), phosphorylated heterodimers P S

12 (with rate

k
(12)
r ), where j ∈ {1, 2};

• degradation of free receptors RE
i (with rate k

(i)
d ), monomers ME

i (with rate

k
(i)
d ), phosphorylated homodimers PE

i (with rate k̂
(i)
d ), phosphorylated het-

erodimers PE
12 (with rate k

(12)
d ) in the endosome, where i ∈ {1, 2};

• dissociation of phosphorylated dimers and monomers in the endosome, oc-

curring with the same rates as on the cell surface, but multiplied by a factor

f > 1 (as the more acidic environment in the endosome enhance the rate

of dissociation in this compartment);

• synthesis of free receptors RS
i into the Golgi (with rate k

(i)
s ), where i ∈

{1, 2};

• transport of free receptors RS
i from the Golgi into the cell surface (with rate

k̂
(i)
t ), where i ∈ {1, 2};
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• trafficking of receptors RS
1 from the endosome to the Golgi (with rate k

(1)
e ).

As it was explained in Section 4.1 for Model 1, the internalisation rates are

the same for free receptors and monomers as the conformational change of the

receptor, which can affect its internalisation rate, is assumed to take place after

dimerisation. There are number of rates with the symbol ˆ, representing the

effect receptor-ligand phosphorylation has on them. In particular, the following

mechanism is studied in this section,

k̂
(j)
t (s) = k

(j)
t

(
1 + ωj

x
(j)
s

x
(j)
s + κj

)
, j ∈ {1, 2}, (4.21)

for s ≥ 0, where x
(j)
s is the signal causing the enhancement (for ωj > 0) or the

inhibition (for ωj < 0) of the transport of free VEGFRj from the Golgi to the

cell surface, and κj is the carrying capacity of the signal. Two hypotheses are

examined in this section assuming that the transport rate is changed by

H1) the number of phosphorylated homodimers on the cell surface

x(j)
s = P

(2)
S (s),

H2) the number of phosphorylated homodimers in the endosome

x(j)
s = P

(2)
E (s).

The signal can hypothetically cause the enhancement or the inhibition of the

transport rate k̂
(j)
t (·), which is also studied later in this section by proposing

different prior distributions for ωj during Bayesian parameterisation.

Initial conditions for Model 3 are set by combining the information about

the total number of receptors per cell (see Subsection 4.2.1) together with the

percentages from Table 4.21, yielding to (L(0), RS
1 (0), RS

2 (0), MS
1 (0), MS

2 (0),

P S
1 (0), P S

2 (0), P S
12(0), RE

1 (0), RE
2 (0), ME

1 (0), ME
2 (0), PE

1 (0), PE
2 (0), PE

12(0),

RG
1 (0), RG

2 (0)
)

= (nL , 2 × 103, 1.2 × 105, 0, 0, 0, 0, 0, 2 × 102, 4 × 104, 0,

0, 0, 0, 0, 7.8×103, 4× 104), where nL = 1.5×105 which is equivalent to 0.25nM

per cell.
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Thus for t ≥ 0 Model 3 is determined by the following system of ODEs

dL(t)

dt
= α

(2)
− M

S
2 (t) + α

(1)
− M

S
1 (t)− 2α

(2)
+ RS

2 (t)L(t)− 2α
(1)
+ RS

1 (t)L(t),

dRS
1 (t)

dt
= k̂

(1)
t RG

1 (t) + k
(1)
r RE

1 (t) + α
(1)
− M

S
1 (t) + 2β

(1)
− P S

1 (t) + β
(21)
− P S

12(t)

−2α
(1)
+ RS

1 (t)L(t)− k(1)
i RS

1 (t)− β(1)
+ MS

1 (t)RS
1 (t)− β(21)

+ MS
2 (t)RS

1 (t),

dRS
2 (t)

dt
= k̂

(2)
t RG

2 (t) + k
(2)
r RE

2 (t) + α
(2)
− M

S
2 (t) + 2β

(2)
− P S

2 (t) + β
(12)
− P S

12(t)

−2α
(2)
+ RS

2 (t)L(t)− k(2)
i RS

2 (t)− β(2)
+ MS

2 (t)RS
2 (t)− β(12)

+ MS
1 (t)RS

2 (t),

dMS
1 (t)

dt
= 2α

(1)
+ RS

1 (t)L(t) + k
(1)
r ME

1 (t) + 2β
(1)
− P S

1 (t) + β
(12)
− P S

12(t)

−β(1)
+ MS

1 (t)RS
1 (t)− β(12)

+ MS
1 (t)RS

2 (t)− α(1)
− M

S
1 (t)− k(1)

i MS
1 (t),

dMS
2 (t)

dt
= 2α

(2)
+ RS

2 (t)L(t) + k
(2)
r ME

2 (t) + 2β
(2)
− P S

2 (t) + β
(21)
− P S

12(t)

−β(2)
+ MS

2 (t)RS
2 (t)− β(21)

+ MS
2 (t)RS

1 (t)− α(2)
− M

S
2 (t)− k(2)

i MS
2 (t),

dP S
1 (t)

dt
= β

(1)
+ MS

1 (t)RS
1 (t) + k̂

(1)
r PE

1 (t)− 2β
(1)
− P S

1 (t)− k̂(1)
i P S

1 (t),

dP S
2 (t)

dt
= β

(2)
+ MS

2 (t)RS
2 (t) + k̂

(2)
r PE

2 (t)− 2β
(2)
− P S

2 (t)− k̂(2)
i P S

2 (t),

dP S
12(t)

dt
= β

(21)
+ MS

2 (t)RS
1 (t) + β

(12)
+ MS

1 (t)RS
2 (t) + k

(12)
r PE

12(t)− β(21)
− P S

12(t)

−β(12)
− P S

12(t)− k(12)
i P S

12(t),

dRE
1 (t)

dt
= k

(1)
i RS

1 (t) + fα
(1)
− M

E
1 (t) + fβ

(21)
− PE

12(t) + 2fβ
(1)
− PE

1 (t)− k(1)
e RE

1 (t)

−k(1)
d RE

1 (t)− k(1)
r RE

1 (t),

dRE
2 (t)

dt
= k

(2)
i RS

2 (t) + fα
(2)
− M

E
2 (t) + 2fβ

(2)
− PE

2 (t) + fβ
(12)
− PE

12(t)− k(2)
d RE

2 (t)

−k(2)
r RE

2 (t),

dME
1 (t)

dt
= k

(1)
i MS

1 (t) + 2fβ
(1)
− PE

1 (t) + fβ
(12)
− PE

12(t)− fα(1)
− M

E
1 (t)− k(1)

d ME
1 (t)

−k(1)
r ME

1 (t),
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dME
2 (t)

dt
= k

(2)
i MS

2 (t) + 2fβ
(2)
− PE

2 (t) + fβ
(21)
− PE

12(t)− fα(2)
− M

E
2 (t)− k(2)

d ME
2 (t)

−k(2)
r ME

2 (t),

dPE
1 (t)

dt
= k̂

(1)
i P S

1 (t)− 2fβ
(1)
− PE

1 (t)− k̂(1)
d PE

1 (t)− k̂(1)
r PE

1 (t),

dPE
2 (t)

dt
= k̂

(2)
i P S

2 (t)− 2fβ
(2)
− PE

2 (t)− k̂(2)
d PE

2 (t)− k̂(2)
r PE

2 (t),

dPE
12(t)

dt
= k

(12)
i P S

12(t)− fβ(21)
− PE

12(t)− fβ(12)
− PE

12(t)− k(12)
r PE

12(t)− k(12)
d PE

12(t),

dRG
1 (t)

dt
= k

(1)
s + k

(1)
e RE

1 (t)− k̂(1)
t RG

1 (t),

dRG
2 (t)

dt
= k

(2)
s − k̂(2)

t RG
2 (t).

(4.22)

4.2.4 Parameters’ constraints

As for Model 1 in Section 4.1, the dimensionality of the parameter space can be

reduced in a few ways. Firstly, note that the binding and the dissociation rates

α
(1)
+ , α

(2)
+ , α

(1)
− , α

(2)
− , β

(1)
+ , β

(2)
+ , β

(12)
+ , β

(21)
+ , β

(1)
− , β

(2)
− , β

(12)
− and β

(21)
− are computed fol-

lowing the arguments described in Section 3.2.1 and 3.2.2. Additionally using

Equations (4.16) and (4.20), for the fractions of the receptors in each compart-

ment, together with Equations (4.15) and (4.19), for the total number of receptors

per cell, the information about the fractions of receptors in each compartment

from Table 4.21 and the assumption about the total number of receptors per cell

(RT,∗
1 = 104, RT,∗

2 = 2× 105), one can find the equations for the following rates

k
(1)
t = 1

39
(k

(1)
e + k

(1)
d ), k

(1)
s = 2× 102k

(1)
d , k

(1)
i = 1

10
(k

(1)
d + k

(1)
r + k

(1)
e ),

k
(2)
t = k

(2)
d , k

(2)
s = 4× 104k

(2)
d , k

(2)
i = 1

3
(k

(2)
d + k

(2)
r ).

(4.23)
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4.2.5 Global sensitivity analysis

Denote by θ the vector of 19 parameters left in the model to be estimated,

θ =
(
k

(1)
d , k

(2)
d , k̂

(1)
d , k̂

(2)
d , k

(12)
d , k

(1)
r , k

(2)
r , k̂

(1)
r , k̂

(2)
r , k

(12)
r , k̂

(1)
i , k̂

(2)
i , k

(12)
i ,

k
(1)
e , f, κ1, κ2, ω1, ω2

)
.

(4.24)

By using the Sobol method described in Section 2.3, one can learn about the

impact of these parameters on the output of Model 3.

S1 mean S1 st. deviation S1 range ST mean ST st. deviation ST range

k
(1)
d 0.09 0.20 (0.00, 0.65) 0.09 0.20 (0.00, 0.67)

k
(2)
d 0.18 0.28 (0.00, 0.82) 0.19 0.30 (0.00, 0.88)

k̂
(1)
d < 10−2 < 10−2 - < 10−2 < 10−2 -

k̂
(2)
d 0.03 0.03 (0.00, 0.09) 0.11 0.11 (0.00, 0.36)

k
(12)
d 0.04 0.07 (0.00, 0.18) 0.06 0.09 (0.00, 0.22)

k
(1)
r < 10−2 < 10−2 - < 10−2 < 10−2 -

k
(2)
r < 10−2 < 10−2 - < 10−2 < 10−2 (0.00, 0.01)

k̂
(1)
r < 10−2 < 10−2 - < 10−2 < 10−2 -

k̂
(2)
r 0.01 0.02 (0.00, 0.04) 0.12 0.17 (0.00, 0.57)

k
(12)
r 0.01 0.02 (0.00, 0.07) 0.02 0.03 (0.00, 0.08)

k̂
(1)
i < 10−2 < 10−2 - < 10−2 < 10−2 -

k̂
(2)
i 0.39 0.36 (0.00, 0.83) 0.51 0.47 (0.00, 0.99)

k
(12)
i 0.14 0.26 (0.00, 0.74) 0.17 0.29 (0.00, 0.79)

k
(1)
e < 10−2 < 10−2 - < 10−2 < 10−2 -

f < 10−2 < 10−2 - 0.02 0.01 (0.00, 0.06)

κ1 < 10−2 < 10−2 (0.00, 0.01) < 10−2 < 10−2 (0.00, 0.01)

κ2 < 10−2 < 10−2 - < 10−2 < 10−2 -

ω1 < 10−2 < 10−2 (0.00, 0.01) < 10−2 0.01 (0.00, 0.02)

ω2 < 10−2 < 10−2 - < 10−2 < 10−2 -

Table 4.24: The results for the Sobol algorithm for the hypothesis H1, where S1

denotes the main effect index and ST denotes the total effect index.
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S1 mean S1 st. deviation S1 range ST mean ST st. deviation ST range

k
(1)
d 0.09 0.20 (0.00, 0.66) 0.09 0.20 (0.00, 0.67)

k
(2)
d 0.18 0.28 (0.00, 0.82) 0.19 0.30 (0.00, 0.87)

k̂
(1)
d < 10−2 < 10−2 - < 10−2 < 10−2 -

k̂
(2)
d 0.03 0.03 (0.00, 0.09) 0.11 0.11 (0.00, 0.35)

k
(12)
d 0.04 0.07 (0.00, 0.17) 0.06 0.09 (0.00, 0.22)

k
(1)
r < 10−2 < 10−2 - < 10−2 < 10−2 -

k
(2)
r < 10−2 < 10−2 - < 10−2 < 10−2 (0.00, 0.01)

k̂
(1)
r < 10−2 < 10−2 - < 10−2 < 10−2 -

k̂
(2)
r 0.01 0.01 (0.00, 0.04) 0.12 0.16 (0.00, 0.57)

k
(12)
r 0.01 0.02 (0.00, 0.07) 0.02 0.03 (0.00, 0.08)

k̂
(1)
i < 10−2 < 10−2 - < 10−2 < 10−2 -

k̂
(2)
i 0.39 0.36 (0.00, 0.84) 0.51 0.48 (0.00, 0.99)

k
(12)
i 0.14 0.26 (0.00, 0.74) 0.17 0.29 (0.00, 0.79)

k
(1)
e < 10−2 < 10−2 - < 10−2 < 10−2 -

f < 10−2 < 10−2 - 0.02 0.01 (0.00, 0.06)

κ1 < 10−2 < 10−2 - < 10−2 < 10−2 (0.00, 0.01)

κ2 < 10−2 < 10−2 - < 10−2 < 10−2 -

ω1 < 10−2 < 10−2 (0.00, 0.01) < 10−2 0.01 (0.00, 0.02)

ω2 < 10−2 < 10−2 - < 10−2 < 10−2 -

Table 4.25: The results for Sobol algorithm for the hypothesis H1 where S1

denotes the main effect index and ST denotes the total effect index.

The input of the Sobol algorithm is a vector θ defined by Equation (4.24), where

parameters are studied in the following ranges, defined by taking into consider-

ation similar values published by Mac Gabhann & Popel (2004), Vempati et al.

(2010), Tan et al. (2013b), Anderson et al. (2011), Starbuck & Lauffenburger

(1992), Tzafriri & Edelman (2007), that is k
(j)
r , k̂

(j)
d , k̂

(j)
r , k̂

(j)
i , k

(12)
d , k

(12)
r , k

(12)
i in

interval (10−3, 10−1), k
(j)
d in interval (10−5, 10−1), k

(1)
e in interval (10−5, 100), f

in interval (100, 102), κj in interval (100, 105) and ωj in interval (−1, 100), where

j ∈ {1, 2}. To define the output of the Sobol algorithm one can first find the

solution of Equation (4.22) and then compute the following outputs,

out1(i, t) = RS
i (t) +MS

i (t) + 2P S
i (t) + P S

12(t), (4.25)
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and the ratio

out2(t) =
2P S

2 (t) + P S
12(t)

out1(1, 0) + out1(2, 0)
(4.26)

for i ∈ {1, 2}, at the time point t ∈ T . The outputs out1(1, t), out1(2, t) and

out2(t) are analysed at each time point t ∈ {5 min, 15 min, 30 min, 60 min}.
The mean, the sample standard deviation and the range are computed over twelve

results for each parameter (four time points for the three types of outputs). These

results are given in Tables 4.24 and 4.25 for hypotheses H1 and H2, respectively.

Results from the Sobol algorithm give very similar results for hypotheses H1 and

H2. The parameter with the strongest influence on the model outputs is k̂
(2)
i ,

the internalisation rate of homodimers P S
2 . The degradation rate k

(2)
d of free

VEGFR2 receptors and the monomers MS
2 together with the internalisation rate

k
(12)
i of the heterodimers P S

12 are parameters with intermediate impact on the

model outputs. Lastly, rates k
(1)
d (degradation of free VEGFR1 and monomers

MS
1 ) and k

(12)
d (degradation of heterodimers PE

(12)) have an intermediate effect on

the model outputs.

4.2.6 Bayesian inference and parameter estimation

Taking into consideration the results for the Sobol algorithm from the previous

section on global sensitivity analysis I fix the parameters k̂
(j)
d , k

(j)
r , k̂

(j)
r , k

(12)
r , k̂

(1)
i , f,

and κj, where j ∈ {1, 2}. Degradation rate k̂
(2)
d for homodimers is chosen to be

two orders of magnitude higher than the degradation rate for free receptors and

monomers, as observed by Tan et al. (2013c) and Tan et al. (2013b) after analysing

four published data sets. Therefore k̂
(2)
d = 102k

(2)
d . Given that there are no ex-

perimental measurements of trafficking rates for VEGFR1, I have assumed the

same recycling rate as VEGFR2 (free or bound). Values for the recycling rates

k
(j)
r , k̂

(j)
r , k

(12)
r are given in Table 4.26. Moreover, I follow the assumption stated

by Mac Gabhann & Popel (2004) that the internalisation rate for the homodimers

is the same regardless of the receptor type. Therefore k̂
(1)
i = k̂

(2)
i where k̂

(2)
i is

going to be estimated by the ABC algorithm later in this section. The value of

the dissociation coefficient f was estimated in Section 4.1 and it is chosen to be

the median from Table 4.12. As a results of testing many simulations the carrying

capacity κj are chosen arbitrary to be equal to 104 molecules for j ∈ {1, 2}. This
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choice allows one to study the difference between the hypotheses H1 and H2 as

the number of the phosphorylated dimers differ between 104 − 105 molecules on

the cell surface and in the endosome. If the value for the capacity is chosen to be

low, e.g. κj = 103 molecules, then the impact of the phosphorylation from the

cell surface or from the endosome is almost the same as P S
2 (t), PE

2 (t) >> 103.

name value reference

k
(j)
r 7.81× 10−2 s−1 Tan et al. (2013c)

k̂
(j)
r 5.07× 10−2s−1 Tan et al. (2013c)

k
(12)
r 5.07× 10−2s−1 Tan et al. (2013c)

f 23.10 the result obtained in Subsection 4.1.2

Table 4.26: Values of some fixed parameters in Model 3, where j ∈ {1, 2}.

Parameters k
(1)
e , ω1 and ω2 have very small impact on the model outputs but the

aim here is to learn about these parameters in the view of the hypotheses H1 and

H2 being tested. There are 8 remaining parameters to be estimated by the ABC

algorithm,

θ̂ =
(
k

(1)
d , k

(2)
d , k

(12)
d , k̂

(2)
i , k

(12)
i , k(1)

e , ω1, ω2

)
. (4.27)

The prior distributions for θ̂ are the uniform distributions taken on the ranges

defined for the global sensitivity analysis in the previous subsection, except for

k
(1)
d , k

(2)
d , ω1 and ω2. The prior distributions for the degradation rates k

(j)
d are the

uniform distributions on the range (10−5, 10−3)s−1 so that k̂
(j)
d ≤ 10−1s−1 for j ∈

{1, 2}. It is important to make sure that the prior distributions of all parameters

are defined in the intervals tested by the Sobol algorithm. The aim here is to

test not only hypotheses H1 and H2 but also to test if ligand stimulation causes

the inhibition or the enhancement of the transport rate k̂
(j)
t , where j ∈ {1, 2}. In

order to do this, the parameters ω1 and ω2 are sampled for each hypothesis from

the prior distributions in Table 4.27.

The ABC algorithm described in Subsection 2.4.2 of Chapter 2 was performed

using the prior distributions for θ̂ described above. Simulated values were gen-

erated from Equations (4.25) and (4.26) at the time point t ∈ {5 min, 15 min,
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4.2 Modelling calcium-regulated VEGFR2 signalling

30 min, 60 min} and compared with the data given in Table 4.22 using the

Pearson distance, that is

δ2 =
2∑
i=1

(out1(i)− µi)2

σi
+

(out2 − µp)2

σp
,

where out1(i) = (out1(i, 0 min), out1(i, 5 min), out1(i, 15 min), out1(i, 30 min),

out1(i, 60 min)), out2 = (out2(5min), out2(15min), out2(30min), out2(60min)),

µi is the vector of mean and σi is the vector of sampled standard deviation, of

quantified number of VEGFRi per cell upon ligand stimulation, µp is the vector

of mean and σp is the vector of sampled standard deviation, of quantified phos-

phorylated VEGFR2 data. The algorithm was run 107 times for each hypothesis

and each case. The acceptance ratio was set to 10−4 to obtain 103 results.

ω1 ω2

case A U(−1, 0) U(−1, 0)

case B U(−1, 0) U(0, 100)

case C U(0, 100) U(−1, 0)

case D U(0, 100) U(0, 100)

Table 4.27: The prior distributions for ω1 and ω2. case A) the inhibition of VEGF

receptors; case B) the inhibition of VEGFR1 and the enhancement of VEGFR2;

case C) the enhancement of VEGFR1 and the inhibition of VEGFR2; case D)

the enhancement of VEGF receptors upon VEGF-A165 stimulation.

Model selection

There were in fact eight cases tested, four for each hypothesis H1 and H2 depend-

ing on the prior distribution for ωj, where j ∈ {1, 2}. Therefore first I compute

the relative probabilities to test which case or cases give the highest probability

of being accepted. Later I describe the results from the ABC algorithm for those

cases. As it was done in Subsection 4.1.3, I denote the relative probability for

Model 3 as follows,

p(Hj, case k|δ = δ∗) =
f(Hj, case k|δ = δ∗)∑

j=1,2
k=A,B,C,D

f(Hj, case k|δ = δ∗)
, (4.28)
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where f(Hj, case k|δ = δ∗), called frequency, is the number of accepted parame-

ters for hypothesis Hj with the prior distribution for ω1 and ω2 denoted as case

k (see Table 4.27) and given that the distance between the simulation output

and the data was equal or less than δ∗ (arbitrary chosen value). These relative

probabilities and frequencies are plotted in Figure 4.32.

Figure 4.32: The relative probabilities defined by Equation (4.28) and the fre-

quencies for hypotheses H1 and H2 assuming the prior distribution for ω1 and ω2

described by the cases A,B,C and D.

Largest relative probability is obtained for hypothesis H1, assuming case B

(inhibition of the transport rate of free receptors VEGFR1 from the Golgi to the

cell surface upon ligand stimulation). If one assumes that this transport rate for

free VEGFR1 receptors can only be only enhanced by ligand stimulation (cases

C and D) then hypothesis H2 gives the highest relative probability. According

to the obtained results it is not important (when comparing model simulation

with the experimental data) if the transport rate for receptors VEGFR2 from the

Golgi to the cell surface is inhibited or enhanced (comparing the case A and B

or C and D from Figure 4.32). Having that in mind I analyse in Subsection 4.2.6

the results for cases A and D only.
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4.2 Modelling calcium-regulated VEGFR2 signalling

Results of the ABC algorithm for cases A and D.

Results for parameters from the vector θ̂ defined by Equation (4.27), for both

hypotheses assuming cases A and D, are given in Tables 4.29, 4.30, 4.31, 4.32.

The summary statistics are also given in these tables for the parameters obtained

by Equation (4.23) and for k̂
(j)
d = 102k

(j)
d , k̂

(1)
i = k̂

(2)
i for j ∈ {1, 2}. The proba-

bility histograms for the prior and the posterior distributions are plotted only for

parameters in vector θ̂ (see Figures 4.33, 4.34, 4.35, 4.36).

Bayesian parameterisation did not revealed any new information for k
(1)
d and

ω2, but some new information about the distribution of ω1 is obtained for both

hypotheses (see Figures 4.33, 4.34, 4.35, 4.36). The heterodimer trafficking rate

has not been experimentally determined. One of the outcomes of the parameteri-

sation is that the median of the degradation rate of phosphorylated heterodimers

PE
12 is of the order of 10−3s−1 regardless of the hypotheses tested. Similarly one

can learn that the median of the internalisation rate for the phosphorylated het-

erodimers P S
12 is within the range 10−2 − 10−3s−1. Values for k

(2)
d , k̂

(2)
d and k̂

(2)
i

were previously computed from the data set of the experiments performed by

Bruns et al. (2010) and published by Tan et al. (2013c)

k
(2)
d = 3.86× 10−4s−1, k̂

(2)
d = 5.51× 10−2s−1, k̂

(2)
i = 7.80× 10−2s−1.

One can notice that the results for the hypothesis H1 assuming case A (Table

4.29) and the results for the hypothesis H2 assuming case D (Table 4.32) are very

close to these published values, see Table 4.28.

median mean

H1 with case A k
(2)
d 1.8× 10−4s−1 3.1× 10−4s−1

k̂
(2)
d 1.8× 10−2s−1 3.1× 10−2s−1

k̂
(2)
i 4.1× 10−3s−1 1.2× 10−2s−1

H2 with case D k
(2)
d 3.5× 10−4s−1 4.1× 10−4s−1

k̂
(2)
d 3.5× 10−2s−1 4.1× 10−2s−1

k̂
(2)
i 4.9× 10−3s−1 1.4× 10−2s−1

Table 4.28: Comparison of some specific parameter values between the hypotheses

which were previously published by Tan et al. (2013c).
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Figure 4.33: The probability histograms of the sample prior (in red) and posterior

(in blue) distributions for the results for H1 assuming the case A.

Min. 1st Qu. Median Mean 3rd Qu. Max.

k
(1)
d 1.1× 10−5 2.4× 10−4 5.2× 10−4 5.1× 10−4 7.7× 10−4 1.0× 10−3

k
(2)
d 1.0× 10−5 3.6× 10−5 1.8× 10−4 3.1× 10−4 5.6× 10−4 1.0× 10−3

k
(12)
d 1.0× 10−3 2.6× 10−3 7.5× 10−3 1.5× 10−2 2.2× 10−2 9.7× 10−2

k̂
(2)
i 1.2× 10−3 2.5× 10−3 4.1× 10−3 1.2× 10−2 1.5× 10−2 9.3× 10−2

k
(12)
i 1.0× 10−3 1.5× 10−3 2.9× 10−3 5.0× 10−3 7.2× 10−3 2.8× 10−2

k
(1)
e 1.3× 10−2 1.3× 10−1 3.4× 10−1 3.9× 10−1 6.2× 10−1 1.0× 100

ω1 −1.00 −0.91 −0.82 −0.76 −0.68 −4.1× 10−3

ω2 −1.00 −0.74 −0.49 −0.49 −0.24 −6.7× 10−4

k
(1)
t 3.4× 10−4 3.4× 10−3 8.8× 10−3 1.0× 10−2 1.6× 10−2 2.6× 10−2

k
(1)
s 2.1× 10−3 4.8× 10−2 1.0× 10−1 1.0× 10−1 1.5× 10−1 2.0× 10−1

k
(1)
i 9.2× 10−3 2.1× 10−2 4.2× 10−2 4.7× 10−2 7.0× 10−2 1.1× 10−1

k
(2)
t 1.0× 10−5 3.6× 10−5 1.8× 10−4 3.1× 10−4 5.6× 10−4 1.0× 10−3

k
(2)
s 4.0× 10−1 1.4× 100 7.3× 100 1.3× 101 2.3× 101 4.0× 101

k
(2)
i 2.6× 10−2 2.6× 10−2 2.6× 10−2 2.6× 10−2 2.6× 10−2 2.6× 10−2

k̂
(1)
d 1.1× 10−3 2.4× 10−2 5.2× 10−2 5.1× 10−2 7.7× 10−2 1.0× 10−1

k̂
(2)
d 1.0× 10−3 3.6× 10−3 1.8× 10−2 3.1× 10−2 5.6× 10−2 1.0× 10−1

Table 4.29: Summary statistics for results under hypothesis H1, assuming case A.

ω1, ω2 are dimensionless (no units), κ1, κ2 are in [molecules] and all other rates

are in s−1.
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Figure 4.34: The probability histograms of the sample prior (in red) and posterior

(in blue) distributions for the results for H2 assuming the case A.

Min. 1st Qu. Median Mean 3rd Qu. Max.

k
(1)
d 1.0× 10−5 2.6× 10−4 5.0× 10−4 5.1× 10−4 7.7× 10−4 1.0× 10−3

k
(2)
d 1.0× 10−5 1.7× 10−5 3.4× 10−5 1.7× 10−4 1.6× 10−4 9.9× 10−4

k
(12)
d 1.0× 10−3 2.1× 10−3 6.0× 10−3 1.5× 10−2 1.9× 10−2 9.7× 10−2

k̂
(2)
i 1.4× 10−3 4.8× 10−3 1.8× 10−2 2.5× 10−2 3.6× 10−2 9.9× 10−2

k
(12)
i 1.0× 10−3 1.8× 10−3 4.4× 10−3 7.0× 10−3 1.1× 10−2 3.7× 10−2

k
(1)
e 6.1× 10−3 5.6× 10−2 1.1× 10−1 2.2× 10−1 3.2× 10−1 1.0× 100

ω1 −1.00 −0.86 −0.68 −0.63 −0.43 −6.5× 10−3

ω2 −1.00 −0.73 −0.48 −0.49 −0.24 −5.1× 10−4

k
(1)
t 1.8× 10−4 1.4× 10−3 2.9× 10−3 5.7× 10−3 8.1× 10−3 2.6× 10−2

k
(1)
s 2.1× 10−3 5.3× 10−2 1.0× 10−1 1.0× 10−1 1.5× 10−1 2.0× 10−1

k
(1)
i 8.5× 10−3 1.3× 10−2 1.9× 10−2 3.0× 10−2 3.9× 10−2 1.1× 10−1

k
(2)
t 1.0× 10−5 1.7× 10−5 3.4× 10−5 1.7× 10−4 1.6× 10−4 9.9× 10−4

k
(2)
s 4.0× 10−1 6.9× 10−1 1.3× 100 6.6× 100 6.6× 100 4.0× 101

k
(2)
i 2.6× 10−2 2.6× 10−2 2.6× 10−2 2.6× 10−2 2.6× 10−2 2.6× 10−2

k̂
(1)
d 1.0× 10−3 2.6× 10−2 5.0× 10−2 5.1× 10−2 7.7× 10−2 1.0× 10−1

k̂
(2)
d 1.0× 10−3 1.7× 10−3 3.4× 10−3 1.7× 10−2 1.6× 10−2 9.9× 10−2

Table 4.30: Summary statistics for results under hypothesis H2, assuming case A.

ω1, ω2 are dimensionless (no units), κ1, κ2 are in [molecules] and all other rates

are in s−1.
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Figure 4.35: The probability histograms of the sample prior (in red) and posterior

(in blue) distributions for the results for H1 assuming the case D.

Min. 1st Qu. Median Mean 3rd Qu. Max.

k
(1)
d 1.0× 10−5 2.2× 10−4 5.2× 10−4 5.0× 10−4 7.5× 10−4 1.0× 10−3

k
(2)
d 1.0× 10−5 3.0× 10−5 8.8× 10−5 2.6× 10−4 4.8× 10−4 1.0× 10−3

k
(12)
d 1.0× 10−3 1.2× 10−3 1.5× 10−3 9.7× 10−3 7.7× 10−3 9.6× 10−2

k̂
(2)
i 1.2e× 10−3 5.1× 10−3 1.7× 10−2 2.6× 10−2 3.8× 10−2 9.8× 10−2

k
(12)
i 1.0× 10−3 4.2× 10−3 1.9× 10−2 1.9× 10−2 2.8× 10−2 9.9× 10−2

k
(1)
e 2.3× 10−5 2.0× 10−2 1.8× 10−1 3.3× 10−1 6.5× 10−1 1.0× 100

ω1 2.1× 10−4 2 18 30 53 100

ω2 2.9× 10−2 28 52 52 79 100

k
(1)
t 8.6× 10−6 5.2× 10−4 4.6× 10−3 8.4× 10−3 1.7× 10−2 2.6× 10−2

k
(1)
s 2.0× 10−3 4.5× 10−2 1.0× 10−1 1.0× 10−1 1.5× 10−1 2.0× 10−1

k
(1)
i 7.8× 10−3 9.8× 10−3 2.6× 10−2 4.1× 10−2 7.3× 10−2 1.1× 10−1

k
(2)
t 1.0× 10−5 3.0× 10−5 8.8× 10−5 2.6× 10−4 4.8× 10−4 1.0× 10−3

k
(2)
s 4.0× 10−1 1.2× 100 3.5× 100 1.0× 101 1.9× 101 4.0× 101

k
(2)
i 2.6× 10−2 2.6× 10−2 2.6× 10−2 2.6× 10−2 2.6× 10−2 2.6× 10−2

k̂
(1)
d 1.0× 10−3 2.2× 10−2 5.2× 10−2 5.0× 10−2 7.5× 10−2 1.0× 10−1

k̂
(2)
d 1.0× 10−3 3.0× 10−3 8.8× 10−3 2.6× 10−2 4.8× 10−2 1.0× 10−1

Table 4.31: Summary statistics for results under hypothesis H1, assuming case

D. ω1, ω2 are dimensionless (no units), κ1, κ2 are in [molecules] and all other

rates are in s−1.
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Figure 4.36: The probability histograms of the sample prior (in red) and posterior

(in blue) distributions for the results for H2 assuming the case D.

Min. 1st Qu. Median Mean 3rd Qu. Max.

k
(1)
d 1.1× 10−5 2.5× 10−4 5.1× 10−4 5.0× 10−4 7.5× 10−4 1.0× 10−3

k
(2)
d 1.0× 10−5 7.6× 10−5 3.5× 10−4 4.1× 10−4 7.1× 10−4 1.0× 10−3

k
(12)
d 1.0× 10−3 1.5× 10−3 4.0× 10−3 1.5× 10−2 2.0× 10−2 9.9× 10−2

k̂
(2)
i 1.1× 10−3 2.7× 10−3 4.9× 10−3 1.4× 10−2 1.5× 10−2 1.0× 10−1

k
(12)
i 1.0× 10−3 2.3× 10−3 7.7× 10−3 1.2× 10−2 2.0× 10−2 9.2× 10−2

k
(1)
e 5.3× 10−5 1.6× 10−2 6.8× 10−2 2.2× 10−1 3.6× 10−1 1.0× 100

ω1 9.8× 10−3 2 8 21 30 100

ω2 1.3× 10−3 24 47 49 76 100

k
(1)
t 6.2× 10−6 4.3× 10−4 1.8× 10−3 5.6× 10−3 9.2× 10−3 2.6× 10−2

k
(1)
s 2.2× 10−3 5.1× 10−2 1.0× 10−1 1.0× 10−1 1.5× 10−1 2.0× 10−1

k
(1)
i 7.8× 10−3 9.5× 10−3 1.5× 10−2 3.0× 10−2 4.4× 10−2 1.1× 10−1

k
(2)
t 1.0× 10−5 7.6× 10−5 3.5× 10−4 4.1× 10−4 7.1× 10−4 1.0× 10−3

k
(2)
s 4.1× 10−1 3.0× 100 1.4× 101 1.6× 101 2.9× 101 4.0× 101

k
(2)
i 2.6× 10−2 2.6× 10−2 2.6× 10−2 2.6× 10−2 2.6× 10−2 2.6× 10−2

k̂
(1)
d 1.1× 10−3 2.5× 10−2 5.1× 10−2 5.0× 10−2 7.5× 10−2 1.0× 10−1

k̂
(2)
d 1.0× 10−3 7.6× 10−3 3.5× 10−2 4.1× 10−2 7.1× 10−2 1.0× 10−1

Table 4.32: Summary statistics for results under hypothesis H2, assuming case

D. ω1, ω2 are dimensionless (no units), κ1, κ2 are in [molecules] and all other

rates are in s−1.

201



4. VEGF-VEGFR INTRACELLULAR TRAFFICKING

Figure 4.37: Numerical simulations versus experimental data. Simulations are

generated using Equations (4.25) and (4.26) for 100 randomly sampled θ̂ copies

from the posterior distributions obtained assuming the hypothesis H1 or H2 with

the case A or D. Black dots represent the quantified data from Table 4.22.

One can see on Figure 4.37 that the parameters estimation for all four cases

analysed in this subsection result in capturing by the numerical simulation the

pattern represented by the experimental data. Simulated results under hypothe-

ses H1 and H2 with case A are closest to the mean of the data. The peak for

number of VEGFR1 receptors (out1(1, t)) is on average greater within first 5 min-

utes of simulation in the case D, in comparison to case A, for both hypotheses,
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which is to be expected as the case D describes the enhancement of the receptors’

synthesis.

The numerical results for both hypotheses and both cases are compared in Fig-

ure 4.38 for receptors in the Golgi apparatus and on the cell surface, and in Figure

4.39 for the phosphorylated dimers on the cell surface and in the endosome. The

dynamics of VEGFR1 receptors in the Golgi changes between case A and case D

but the dynamics is very similar between the hypotheses. The difference between

the hypotheses is noticeable for VEGFR2 receptors in the Golgi. The number of

RG
2 (t) is higher for the hypothesis H1 for t ≥ 0, especially for the case D, that is,

the assumption that synthesis is perturbed by the phosphorylated dimers on the

cell surface leads to higher number of VEGFR2 receptors in the Golgi. This has

an effect on the number of phosphorylated dimers, which is symmetric between

case A and case D (see Figure 4.39). There is more phosphorylated dimers on

the cell surface under hypothesis H1 than under hypothesis H2 if one assume that

the receptor transport from the Golgi to the cell surface is inhibited upon ligand

stimulation (case A). However the number of phosphorylated dimers in the endo-

some is higher under hypothesis H2 in case A. Results for case D show opposite

behaviour, that is there are more phosphorylated dimers on the cell surface under

hypothesis H2 and there are more phosphorylated dimers in the endosome under

hypothesis H1.

Model 3, together with the data, does not give a definite answer to which

of the hypotheses and which case is more probable. However, Model 3 together

with the data support better the inhibition of the receptors’ synthesis under

hypothesis H1. However if one assumes that only the enhancement is possible,

then the analysis above indicates that the signalling is more likely triggered by

the phosphorylated dimers in the endosome (the hypothesis H2). This would lead

to higher number of phosphorylated heterodimers (P S
12 and PE

12) in comparison

with the case A. Also in the case A the dynamics of VEGFR2 seems to be not

affected whereas in the case D one can clearly see that the number of RG
2 (t) drops

down quickly for t ≥ 0.
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Figure 4.38: Numerical solutions for receptors in the Golgi and on the cell surface.

Curves are plotted for the median whereas shaded areas are plotted between the

5th and the 95th percentile, taken over numerical solutions found for all accepted

parameters θ̂.
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Figure 4.39: Numerical solutions for the phosphorylated dimers on the cell surface

and in the endosome. Curves are plotted for the median whereas shaded areas are

plotted between the 5th and the 95th percentile, taken over numerical solutions

found for all accepted parameters θ̂.
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4.3 Discussion

In Chapter 4 binding and trafficking models have been studied. The parameters

in these models have been calibrated with help of Bayesian methods and the

experimental data. As it was shown here, it is often difficult to efficiently use

the experimental data because they cannot be directly translated to the model

molecules, signals, etc. In Subsection 4.1.3, it was demonstrated for Model 2

how the normalisation of the data can introduce an additional constraints for the

parameters (here τ must be less then 5 min). The data used for parameterisation

in Model 3 are easier to handle, as one can choose the way of normalisation in

order to find a suitable way to compare the data with the model. It is important

to emphasise how Bayesian methods, as the ABC or MCMC algorithms, can be

helpful in inferring the parameters of such complex models.

The modelling in this chapter has allowed one to answer some questions relat-

ing to cell signalling upon ligand stimulation mediated by VEGFR2 phosphoryla-

tion and trafficking. The results of the hypotheses tested in Model 2 suggest that

it is more likely that the phosphorylation from the endosomal compartments trig-

gers ERK phosphorylation. This important discovery could not have been done

without the help of mathematical models, as current experimental techniques do

not allow to determine intracellular kinetic rates.

The other important result is that Model 3 with the data presented in Table

4.22 support best the hypotheses that the inhibition of the receptor synthesis upon

ligands stimulation is caused by phosphorylated dimers from the cell surface. It

has not been tested in any experiments if the receptors’ synthesis is inhibited

or enhanced upon ligand stimulation. The mathematical models presented in

Section 4.2 provide new understanding about the mechanisms of this synthesis.

Binding rates in models studied in this chapter are computed by following

the argument proposed by Lauffenburger & Linderman (1996) and explained in

detail in Section 3.2 of Chapter 3. One could argue that the binding rates could

have been estimated with help of the Bayesian inference instead. It would also

be beneficial to include binding rates in the Sobol algorithm as it is possible that

some of these rates (most probably α+ for Model 1 and Model 2 and α
(1)
+ or α

(2)
+ for

Model 3) have strong impact onto studied model output. In future the estimation
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of rates for Model 1 and Model 2 could be done by simultaneously using both,

VEGFR2 and ERK phosphorylation data. It would also be helpful to obtain new

experimental results without its normalisation at time 5 min which imposed the

constraint for τ in Model 2. The calibration of parameters in Model 3 could be

more plausible if some experimental data could be provided for the number of

receptors in the endosome and the Golgi during ligand stimulation. Furthermore,

one could also consider introducing delay τ in x
(j)
s−τ in the expression for k̂

(i)
t (·)

given by Equation (4.21) (similarly to Model 2) which is possible taking into

consideration that a signalling cascade triggered by VEGFR2 phosphorylation

leads to k̂
(i)
t (·) perturbation, not phosphorylated VEGFR2 itself.
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Chapter 5

Mathematical models of T cell

development in the thymus

In this chapter I present a mathematical model of T cell development in the thy-

mus, which is an extensions of two mathematical models, which I developed as

part of my MSc project (see Sawicka et al. (2014)). I incorporate here Bayesian in-

ference methods learnt through my PhD studies, such as the ABC algorithm, into

the modelling using the full data set provided by the group of Kristin Hogquist

(see Stritesky et al. (2013)).

5.1 Introduction

T cells are a major component of the adaptive immune system that play a cru-

cial role in protection against a wide variety of pathogens. T cells express T cell

receptors on their surface. The T cell receptor is generated by somatic recom-

bination and has a vast potential to recognise foreign organisms. However, T

cells do not recognise pathogens directly, but rather through binding pathogen

fragments displayed by major histocompatibility complex (MHC) proteins on the

surface of antigen presenting cells. Since MHC molecules are highly polymorphic,

useful T cells must be selected for in each individual of the species. These T cells

must have lineage specific effector functions that include the production of cy-

tokines and the ability to regulate immune reactions. Furthermore, some T cells

have the potential to drive dangerous autoimmune responses (see Anderson et al.
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(2007)). For all of these reasons, the development of a T cell repertoire is a highly

specialised and tightly regulated process (see Stritesky et al. (2012) and Palmer

(2003)). It takes place in a dedicated organ, the thymus, where unique properties

in the micro-environment ensure the production of functional yet self-tolerant T

cells (see Jameson et al. (1995), Werlen et al. (2003), Petrie & Zúñiga-Pflücker

(2007)).

Figure 5.1: Scheme of T cell development in the thymus by Germain (2002).

Multipotent stem cells travel from the bone marrow to the thymus through

the blood (see Di Nicola et al. (2002)). When they enter the thymus, these pre-

cursors commit to the T cell lineage and eventually transition from the double

negative (DN) stage, where they do not express the co-receptors CD4 and CD8,

to the double positive (DP) stage, where they express both co-receptors. At this

stage a majority of cells have made productive T cell receptor (TCR) gene re-
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arrangements and express a fully formed TCR on the cell surface. DP cells are

located in the cortex region of the thymus, where they use their TCR to survey

self-peptides presented by major histocompatibility complexes (MHC) on cortical

thymic epithelial cells. DPs that recognise self-peptide MHC complexes with low

affinity undergo positive selection whereas those with high affinity are deleted

(negative selection). Those DPs that fail to recognise self-peptide MHC will un-

dergo apoptosis in a process referred to as death by neglect. The DP cells that

are positively selected will then transition to the single positive (SP) stage where

they express either CD4 or CD8 co-receptor, depending upon their MHC class

specificity. MHC class specificity also dictates gene expression changes that will

ultimately determine the effector functions of that T cell, generally cytotoxicity

for CD8 T cells, and cytokine production for CD4 T cells. All positively selected

cells, whether MHC Class I or Class II specific, up-regulate the chemokine recep-

tor CCR7, which facilitates their migration to the medulla, where they undergo

further selection events. The medulla contains medullary epithelial cells that ex-

press tissue-restricted antigens regulated by the nuclear factor Aire (see Anderson

et al. (2007)). Exposure to tissue-restricted antigens allows for further deletion

of T cells specific for self-antigens they may encounter in the periphery. Finally,

those cells that have been positively selected yet have avoided negative selection

will mature and migrate to the periphery.

Previous studies have tried to determine the number of cells going through

positive and negative selection in the thymus. However, reports estimating the

relative number of cells undergoing negative selection compared to positive se-

lection have been widely variable. Groups such as Surh & Sprent (1994), Laufer

et al. (1996), van Meerwijk et al. (1997) and Merkenschlager et al. (1997) have

reported that even two times more cells can undergo negative selection than pos-

itive selection. Two mathematical models of T cell development in the thymus

were presented by Sawicka et al. (2014). The parameters of those models were

calibrated using the data published in a report by Stritesky et al. (2012), where

a novel approach was used to calculate the number of cells undergoing positive

and negative selection. The parameters were calculated exactly from the steady

state equations. Additionally the information about the residency time in the

cortex and the medulla for different population were used together with recently

211



5. MATHEMATICAL MODELS OF T CELL DEVELOPMENT IN
THE THYMUS

reported death rates for single positive thymocytes. In this chapter I show how

a posterior probability distribution for the parameters can be estimated using an

adaptation of the ABC algorithm described in Subsection 2.4.2. Model 1 and

Model 2 described in Section 5.2 were presented by Sawicka et al. (2014) whereas

Model 3 has been developed as part of my PhD project and it adds the novelty of

considering regulatory T cells, which are generated during the SP CD4 stage (see

Figure 5.4). Model 1 and Model 2 are parametrised using the ABC approach in

this thesis which allows incorporating the uncertainty in the data in a way that

the previous calibration of parameters by Sawicka et al. (2014) did not meet.

Model 3 has been developed in order to make use of additional data that includes

different subsets of thymocytes and the strength of their TCR signal. To this end,

in Model 3, the possibility of rescuing from apoptosis those cells that have had a

strong TCR signal has been allowed (see arrows with rates βi where i ∈ {2, 4, 8}
in Figure 5.4).

5.2 Mathematical models

In this section I introduce three deterministic models of thymocyte development

after the DN stage in the thymus (see Figure 5.1). The first model is required to

calibrate the parameter values of the second model and subsequently the second

model is required to calibrate the parameter values of the third model, which

is done in Section 5.4 using Bayesian estimation methods. Overall, the models

describe the population in two spatial compartments, the cortex and the medulla.

In the cortex one can find the pre-selection DP (pre-DP) and post-selection DP

(post-DP) thymocytes. The assumption here is that DN thymocytes differentiate

to become pre-DP thymocytes with rate φ (cells/day). The SP thymocytes are

found in the medulla and its fate is determined by the TCR signal, which a given

thymocyte has received. Sinclair et al. (2013) and Stritesky et al. (2012) found no

evidence of proliferation at pre-DP and post-DP stage, therefore, a proliferation

term is only included in the SP thymocyte populations. All parameter values in

the studied models are assumed to be positive unless otherwise stated.
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5.2.1 Model 1

Model 1 describes three populations, pre-DP (n1), post-DP (n2) and SP (n3)

thymocytes. These three populations are involved in the following selection events

in the cortex and the medulla (see Figure 5.2):

• ∅ φ−→ n1 - flux of DN thymocytes into the pre-DP compartment (n1),

• n1
ϕ1−→ n2 - differentiation from pre-DP (n1) to post-DP (n2) thymocytes

induced by TCR signal,

• n1
µ1−→ ∅ - death by neglect of pre-DP thymocytes due to lack of (or weak)

TCR signal,

• n2
µ2−→ ∅ - apoptosis of post-DP (n2) thymocytes due to strong TCR signal,

• n2
ϕ2−→ n3 - differentiation from post-DP (n2) to SP (n3) thymocytes sus-

tained by an intermediate TCR signal,

• n3
ϕ3−→ periphery - exit of SP thymocytes (n3) to the periphery (thymic

maturation),

• n3
λ3−→ n3 - proliferation of SP thymocytes (n3) in the medulla,

• n3
µ3−→ ∅ - apoptosis of SP (n3) thymocytes due to strong TCR signal.

pre-DP

n1

φ

µ1

ϕ1 ϕ2

post-DP

n2

µ2

λ3

µ3

ϕ3

SP

n3

Figure 5.2: Thymic development as hypothesised in Model 1. The first two

compartments (in blue) pre-DP and post-DP are part of the cortex of the thymus,

whereas the third compartment (in red) SP is part of the medulla in the thymus.
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The variables of Model 1 are defined as follows,

n1(t) = “number of pre-DP thymocytes (n1) at time t,”

n2(t) = “number of post-DP thymocytes (n2) at time t,”

n3(t) = “number of mature SP thymocytes (n3) at time t,”

where t ≥ 0. The time evolution of the three populations can be described by the

following set of ODEs, which are based on the selection events described above:

dn1(t)

dt
= φ− (ϕ1 + µ1)n1(t),

dn2(t)

dt
= ϕ1n1(t)− (ϕ2 + µ2)n2(t),

dn3(t)

dt
= ϕ2n2(t)− (ϕ3 + µ3 − λ3)n3(t),

(5.1)

for t ≥ 0. The experimental data, as explained further in Section 5.3, correspond

to the population cell numbers of the steady state in the thymus, therefore the

main interest here is in studying the steady state of these populations. The steady

state of the ODE system (Equation (5.1)), called n∗M1 = (n∗1, n
∗
2, n

∗
3), is given by

n∗1 =
φ

ϕ1 + µ1

, n∗2 =
n∗1ϕ1

ϕ2 + µ2

, n∗3 =
n∗2ϕ2

ϕ3 + µ3 − λ3

, (5.2)

and it exists and it is unique if and only if ϕ3 + µ3 − λ3 > 0, so that n∗3 > 0.

In order to study the linear stability of the steady state the Jacobian matrix of

Equation (5.1) is calculated,

J1 =

 −(ϕ1 + µ1) 0 0
ϕ1 −(ϕ2 + µ2) 0
0 ϕ2 −(ϕ3 + µ3 − λ3)

 .

J1 is also the Jacobian matrix at the steady state n∗M1 as the system of ODEs

given by Equation (5.1) is linear. There are three eigenvalues of the matrix J1,

δ1 = −(ϕ1 + µ1), δ2 = −(ϕ2 + µ2) δ3 = −(ϕ3 + µ3 − λ3). (5.3)

Therefore the steady state n∗M1 is stable if and only if ϕ3 + µ3 − λ3 > 0, which

is also the condition for its existence.
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5.2.2 Model 2

In the second model the SP population is subdivided in two classes: CD4+ SP

and CD8+ SP thymocytes. This is an extension of Model 1 and is motivated by

the fact that experimentally, SP thymocytes express either the CD4 or the CD8

co-receptor. Hence, for t ≥ 0, there are four different thymocyte populations to

be considered, n1(t), n2(t) (as in Model 1) and n4(t), n8(t) defined as,

n4(t) = “the number of mature CD4+ SP thymocytes (n4) at time t,”

n8(t) = “the number of mature CD8+ SP thymocytes (n8) at time t.”

pre-DP

n1

φ

µ1

ϕ1

post-DP

n2

µ2

SP CD4+

ϕ4

µ4

ξ4

n4

λ4

SP CD8+

ϕ8
λ8

µ8

ξ8

n8

Figure 5.3: Thymic development as hypothesised in Model 2. The first two

compartments (in blue) pre-DP and post-DP are part of the cortex of the thymus,

whereas the remaining two compartments (in red) SP CD4+ and SP CD8+ are

part of the medulla in the thymus.

The first four selection events, involving the parameters φ, µ1, ϕ1 and µ2 are

the same for Model 1 and Model 2. Additionally there are eight new selection
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events in Model 2 due to division of the medulla into two compartments (see

Figure 5.3),

• n2
ϕ4−→ n4 - differentiation from post-DP (n2) to CD4+ SP (n4) sustained

by an intermediate TCR signal,

• n2
ϕ8−→ n8 - differentiation from post-DP (n2) to CD8+ SP (n8) sustained

by an intermediate TCR signal,

• n4
ξ4−→ periphery - exit of CD4+ SP thymocytes (n4) to the periphery (thymic

maturation),

• n8
ξ8−→ periphery - exit of CD8+ SP thymocytes (n8) to the periphery (thymic

maturation),

• n4
λ4−→ 2n4 - proliferation of CD4+ SP thymocytes (n4) in the medulla,

• n8
λ8−→ 2n8 - proliferation of CD8+ SP thymocytes (n8) in the medulla,

• n4
µ4−→ ∅ - apoptosis of CD4+ SP thymocytes (n4) due to strong TCR signal,

• n8
µ8−→ ∅ - apoptosis of CD8+ SP thymocytes (n8) due to strong TCR signal.

The time evolution of n1(t), n2(t), n4(t) and n8(t) is described by the following

set of ODEs,

dn1(t)

dt
= φ− (ϕ1 + µ1)n1(t),

dn2(t)

dt
= ϕ1n1(t)− (ϕ4 + ϕ8 + µ2)n2(t),

dn4(t)

dt
= ϕ4n2(t)− (ξ4 + µ4 − λ4)n4(t),

dn8(t)

dt
= ϕ8n2(t)− (ξ8 + µ8 − λ8)n8(t),

(5.4)

for t ≥ 0.The steady state n∗M2 = (n∗1, n
∗
2, n

∗
4, n

∗
8) of Equation (5.4) is what one

needs to compare to the experimental data,, where n∗1, n
∗
2 are defined by Equation

(5.2) and

n∗4 =
n∗2ϕ4

ξ4 + µ4 − λ4

, n∗8 =
n∗2ϕ8

ξ8 + µ8 − λ8

. (5.5)
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The previous steady state exists and is unique if and only if ξ4 + µ4 − λ4 > 0

and ξ8 + µ8 − λ8 > 0, so that n∗4 > 0 and n∗8 > 0. The Jacobian matrix J2 is

calculated to study the linear stability of the steady state of Equation (5.4),

J2 =


−(ϕ1 + µ1) 0 0 0

ϕ1 −(ϕ4 + ϕ8 + µ2) 0 0
0 ϕ4 −(ξ4 + µ4 − λ4) 0
0 ϕ8 0 −(ξ8 + µ8 − λ8)

 .

J2 is also the Jacobian at steady state n∗M2 as the ODE system defined in Equa-

tion (5.4) is linear. There are four eigenvalues of the matrix J2,

δ1 = −(ϕ1 + µ1), δ2 = −(ϕ4 + ϕ8 + µ2),

δ3 = −(ξ4 + µ4 − λ4), δ4 = −(ξ8 + µ8 − λ8).
(5.6)

Hence the steady state n∗M2 is stable if and only if ξ4 +µ4−λ4 > 0 and ξ8 +µ8−
λ8 > 0, which is also the condition for its existence.

5.2.3 Model 3

The first two models were described and studied, using different parameterisation

techniques from those used in this thesis (see Sawicka et al. (2014)). The third

model takes into account the level of activation of thymocytes in the post-DP and

the SP compartments. Therefore post-DP, SP CD4+ and SP CD8+ stages are all

subdivided into two compartments for high and low signal response of thymocytes.

Additionally there is another set of the data taken into account, describing the

regulatory T cell population. Treg cells can be found in the medulla at the SP

CD4+ stage. Hence there are in fact three compartments at the SP CD4+ stage

(see Figure 5.4). There are eight populations of thymocytes to be considered,

where t ≥ 0,

n1(t) = “the number of pre-DP thymocytes (n1)at time t, ”

n2L(t) = “the number of post-DP thymocytes that have received
a low TCR signal (n2L)at time t, ”

n2H(t) = “the number of post-DP thymocytes that have received
a high TCR signal (n2H)at time t, ”
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n4L(t) = “the number of mature CD4+ SP thymocytes that have received
a low TCR signal (n4L)at time t,′′

n4H(t) = “the number of mature CD4+ SP thymocytes that have received
a high TCR signal (n4H)at time t,′′

nR(t) = “the number of regulatory T cells (nR) at time t,′′

n8L(t) = “the number of mature CD8+ SP thymocytes that have received
a low TCR signal (n8L)at time t,′′

n8H(t) = “the number of mature CD8+ SP thymocytes that have received
a high TCR signal (n8H)at time t.′′

pre-DP

φ

ν1

n1

ϕ1

post-DP

n2L

n2H

σ2 β2

ν2

SP CD4+

χ4

ν4

σ4 β4

ζ4

ζRσRn4H

νR φR

n4L

nR

γ4

γR

SP CD8+
χ8

γ8

ν8

σ8 β8

ζ8
n8L

n8H

Figure 5.4: Thymic development as hypothesised in Model 3. The first two com-

partments (in blue) pre-DP and post-DP are part of the cortex of the thymus,

whereas the remaining compartments (in red and in green) SP CD4+ and SP

CD8+ are part of the medulla in the thymus. The compartment in green repre-

sents the Treg population within SP CD4+ thymocytes.
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These eight populations are involved in the following selection events in the cortex

and the medulla (see Figure 5.4),

• ∅ φ−→ n1 - flux of DN thymocytes into the pre-DP compartment,

• n1
ϕ1−→ n2L - differentiation from pre-DP (n1) to post-DP (n2L) thymocytes

induced by TCR signal,

• n1
ν1−→ ∅ - death by neglect of pre-DP thymocytes due to lack of (or weak)

TCR signal,

• n2L
σ2−→ n2H - negative selection of post-DP thymocytes n2L into n2H due

to strong TCR signal,

• n2H
β2−→ n2L - rescue of thymocytes that have received a strong TCR signal,

• n2H
ν2−→ ∅ - apoptosis of post-DP (n2H) thymocytes due to strong TCR

signal,

• n2L
χ4−→ n4L - differentiation from post-DP (n2L) to CD4+ SP (n4L) sustained

by an intermediate TCR signal,

• n2L
ϕ8−→ n8L - differentiation from post-DP (n2L) to CD8+ SP (n8L) sustained

by an intermediate TCR signal,

• n4L
ζ4−→ periphery - exit of CD4+ SP thymocytes (n4L) to the periphery

(thymic maturation),

• n4L
γ4−→ 2n4L - proliferation of CD4+ SP thymocytes (n4L) in the medulla,

• n4L
σ4−→ n4H - negative selection of SP CD4+ thymocytes n4L into n4H due

to strong TCR signal,

• n4H
β4−→ n4L - rescue of thymocytes that have received a strong TCR signal,

• n4H
ν4−→ ∅ - apoptosis of CD4+ SP thymocytes (n4H) due to strong TCR

signal,

• n4H
σR−→ nR - positive selection of n4H thymocytes into Treg cells (nR),
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• nR
γR−→ 2nR - proliferation of Treg cells (nR) in the medulla,

• nR
ζR−→ periphery - exit of Treg thymocytes (nR) to the periphery (thymic

maturation),

• nR
νR−→ ∅ - apoptosis of Treg cells (nR),

• ∅ φR−→ nR - flux of Treg cells from the periphery,

• n8L
ζ8−→ periphery - exit of CD8+ SP thymocytes (n8L) to the periphery

(thymic maturation),

• n8L
γ8−→ 2n8L - proliferation of CD8+ SP thymocytes (n8L) in the medulla,

• n8L
σ8−→ n8H - negative selection of SP CD4+ thymocytes n8L into n8H due

to strong TCR signal,

• n8H
β8−→ n8L - rescue of thymocytes that have received a strong TCR signal,

• n8H
ν8−→ ∅ - apoptosis of CD8+ SP thymocytes (n8H) due to strong TCR

signal.

Model 3 can be described by the following ODEs,

dn1(t)

dt
= φ− (ϕ1 + ν1)n1(t),

dn2L(t)

dt
= ϕ1n1(t)− (χ4 + χ8 + σ2)n2L(t) + β2n2H(t),

dn2H(t)

dt
= σ2n2L(t)− (β2 + ν2)n2H(t),

dn4L(t)

dt
= χ4n2L(t)− (σ4 + ζ4 − γ4)n4L(t) + β4n4H(t),

dn4H(t)

dt
= σ4n4L(t)− (β4 + σR + ν4)n4H(t),

dnR(t)

dt
= σRn4H(t)− (νR + ζR − γR)nR(t) + φR,

dn8L(t)

dt
= χ8n2L(t)− (σ8 + ζ8 − γ8)n8L(t) + β8n8H(t),

dn8H(t)

dt
= σ8n8L(t)− (β8 + ν8)n8H(t),

(5.7)
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for t ≥ 0.n∗M3 = (n∗1 , n∗2L, n∗2H , n∗4L, n∗4H , n∗R, n∗8L, n∗8H) is the steady state of

Equation (5.7) where n∗1 is defined in Equation (5.2) and

n∗2L = n∗1
ϕ1(β2 + ν2)

σ2ν2 + (χ4 + χ8)(β2 + ν2)
,

n∗2H = n∗2L
σ2

β2 + ν2

,

n∗4L = n∗2L
χ4(β4 + σR + ν4)

(ζ4 − γ4)(β4 + σR + ν4) + σ4(σR + ν4)
,

n∗4H = n∗4L
σ4

β4 + σR + ν4

,

n∗R =
φR + σRn

∗
4H

νR + ζR − γR
,

n∗8L = n∗2L
χ8(β8 + ν8)

σ8ν8 + (ζ8 − γ8)(β8 + ν8)
,

n∗8H = n∗8L
σ8

β8 + ν8

.

(5.8)

The unique steady state n∗M3 exists if and only if (ζ4−γ4)(β4 +σR+ν4)+σ4(σR+

ν4) > 0, νR+ζR−γR > 0 and (ζ8−γ8)(β8 +ν8)+σ8ν8 > 0, so that nL∗4 > 0, n∗R > 0

and nL∗8 > 0. The Jacobian matrix J3 is calculated to study the linear stability

of the steady state n∗M3. The matrix J3 = (jij)i,j∈S, where S = {1, 2, . . . , 8}, is

8× 8 matrix with its elements equal to 0 except the following,

j11 = −ϕ1 − ν1, j12 = ϕ1, j22 = −σ2 − χ4 − χ8,
j23 = σ2, j24 = χ4, j27 = χ8,
j32 = β2, j33 = −β2 − ν2, j44 = γ4 − σ4 − ζ4,
j45 = σ4, j54 = β4, j55 = −β4 − σR − ν4,
j56 = σR, j66 = γR − νR − ζR, j77 = γ8 − σ8 − ζ8,
j78 = σ8 j87 = β8, j88 = −β8 − ν8.
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There are eight eigenvalues of the matrix J3,

δ1 = −ϕ1 − ν1

δ2 = −1
2
(σ2 + χ4 + χ8 + β2 + ν2) + 1

2
{(σ2 + χ4 + χ8 + β2 + ν2)2

−4(σ2ν2 + (χ4 + χ8)(β2 + ν2))}
1
2

δ3 = −1
2
(σ2 + χ4 + χ8 + β2 + ν2)− 1

2
{(σ2 + χ4 + χ8 + β2 + ν2)2

−4(σ2ν2 + (χ4 + χ8)(β2 + ν2))}
1
2

δ4 = −1
2
(β4 + σR + ν4 + σ4 + ζ4 − γ4) + 1

2
{(β4 + σR + ν4 + σ4 + ζ4 − γ4)2

−4((ζ4 − γ4)(β4 + σR + ν4) + σ4(σR + ν4))}
1
2 ,

δ5 = −1
2
(β4 + σR + ν4 + σ4 + ζ4 − γ4)− 1

2
{(β4 + σR + ν4 + σ4 + ζ4 − γ4)2

−4((ζ4 − γ4)(β4 + σR + ν4) + σ4(σR + ν4))}
1
2 ,

δ6 = γR − νR − ζR

δ7 = −1
2
(β8 + ν8 + σ8 + ζ8 − γ8) + 1

2
{(β8 + ν8 + σ8 + ζ8 − γ8)2

+4(σ8γ8 + (ζ8 − γ8)(β8 + ν8))}
1
2

δ8 = −1
2
(β8 + ν8 + σ8 + ζ8 − γ8)− 1

2
{(β8 + ν8 + σ8 + ζ8 − γ8)2

+4(σ8γ8 + (ζ8 − γ8)(β8 + ν8))}
1
2

The steady state n∗M3 exists and it is stable if and only if the following constraints

are satisfied,

1. (ζ4 − γ4)(β4 + σR + ν4) + σ4(σR + ν4) > 0,

2. νR + ζR − γR > 0,

3. (ζ8 − γ8)(β8 + ν8) + σ8ν8 > 0,

4. β4 + σR + ν4 + σ4 + ζ4 > γ4,

5. β8 + ν8 + σ8 + ζ8 > γ8.

(5.9)

5.3 Experimental data

The original experimental data were previously published by Stritesky et al.

(2013). The experiment was carried out on seven mice aged between 5.5 and
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17 weeks. The data are the experimental thymocyte cell counts at the steady

state of each mouse, in each of the eight compartments defined by Model 3 (see

Subsection 5.2.3).

mouse n̄k1 n̄k2L n̄k2H n̄k4L n̄k4H n̄kR n̄k8L n̄k8H
k = 1 82.58 5.79 3.51 9.37 4.48 - 2.62 1.89

k = 2 142.19 14.46 5.49 14.31 4.43 - 4.63 2.83

k = 3 89.00 3.84 2.14 8.28 3.60 - 2.32 1.78

k = 4 29.32 1.70 0.39 3.59 0.81 0.15 0.98 0.23

k = 5 51.26 2.98 2.95 4.70 2.15 0.46 1.1 1.06

k = 6 64.48 3.74 3.07 5.89 3.14 0.54 1.28 1.33

k = 7 218.94 9.33 6.09 18.59 10.88 2.60 5.14 5.6

Table 5.1: Each column represents the thymocyte counts n̄ki (each row for kth

mouse) for population ni, described by Model 3 from Subsection 5.2.3, given in

units [106 cells], where i ∈ {1, 2L, 2H, 4L, 4H,R, 8L, 8H}.

The data are used in the next Section 5.4 to estimate the parameters of all three

models presented in Section 5.2. The data for Model 1 and Model 2 are found

from the following equations,

n̄k2 = n̄k2L + n̄k2H , n̄k4 = n̄k4L + n̄k4H , n̄k8 = n̄k8L + n̄k8H , n̄k3 = n̄k4 + n̄k8. (5.10)

Published data suggest that the mean time spent by a single cell in the pre-

DP stage is τ1 = 2.5 days, whereas the mean time spent by a single cell in the

post-DP stage is τ2 = 16 hours (see Egerton et al. (1990), Saini et al. (2010),

McCaughtry et al. (2007)). It is also known, according to the experimental data

presented by Stritesky et al. (2013), Thomas-Vaslin et al. (2008), and Scollay

et al. (1980), that the flux from the medulla is about 1 − 4 × 106 cells per day.

The death rates for SP CD4+ and SP CD8+ thymocytes were also estimated

to be 0.04 day−1 and 0.11 day−1 respectively (see Sinclair et al. (2013)). This

information is summarised in Table 5.2.

223



5. MATHEMATICAL MODELS OF T CELL DEVELOPMENT IN
THE THYMUS

name value

mean time spent by a single cell

in the pre-DP stage τ1 = 2.5 days

mean time spent by a single cell

in the post-DP stage τ2 = 16 hours

mean flux from the medulla φout ∈ (106, 4× 106) cells/day

death rate at the SP CD4+ stage µ̄4 = 0.04 day−1

death rate at the SP CD8+ stage µ̄8 = 0.11day−1

Table 5.2: Additional published information regarding T cell development in the

thymus.

5.4 Bayesian parameter estimation

An adapted version of the ABC algorithm described in Chapter 2 Subsection 2.4.2

is used to estimate the parameters in all three models of thymocyte development

in the thymus. The data allow the use of the Mahalanobis distance to decide

whether to accept or reject parameter samples for Model 1 and Model 2. The

covariance matrix of the data for eight compartments of Model 3 is not positive

definite therefore it is not possible to compute the inverse of this matrix thereby

the Mahalanobis distance cannot be calculated. Hence, Pearson distance (also

called normalised Euclidean distance) is used instead. In the following subsections

I describe how the prior distributions for the parameters in each model are chosen.

5.4.1 Prior distributions in Model 1

The information about T cell development in the thymus from Table 5.2 is used

to define the prior distribution for some of the parameters in Model 1.

Assume that the exit rate ri from compartment i is a random variable and

it follows an exponential distribution with parameter τi, for i = 1, 2. Therefore

the expectation of ri is equal to τ−1
i . The cumulative distribution function for

the exponential distribution is F (ri) = 1 − e(−τiri). The variable ri satisfies the

inequality 0.975 > F (ri) > 0.025 if −τ−1
i log(0.975) < ri < −τ−1

i log(0.025).
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The exit rate in each compartment is defined as ri = ϕi + µi. Hence the pro-

posal for ϕi + µi (and for ϕi, µi separately) is expected to be in the interval(
−τ−1

i log(0.975),−τ−1
i log(0.025)

)
for i = 1, 2.

The information about death rates in the SP populations is also provided.

As the death rates for SP CD4+ and SP CD8+ are given separately one can

compute the overall average death rate in the SP compartment of Model 1 as

µ̄3 = µ̄4a4 + µ̄8a8, where coefficients a4 and a8 are found from the data reported

in Table 5.1 using linear regression (see Freedman (2009)), that is

a4 =
7∑

k=1

(n̄k4n̄
k
3)

(
7∑

k=1

(n̄k3n̄
k
3)

)−1

, a8 =
7∑

k=1

(n̄k8n̄
k
3)

(
7∑

k=1

(n̄k3n̄
k
3)

)−1

,

where n̄k3, n̄
k
4, n̄k8 are defined by Equation (5.10). Assume now that the death rate

µ3 is a random variable and it follows an exponential distribution with parameter

µ̄3. Therefore, similarly to the approach with the exit rate, the proposal µ3 is

expected to be in the interval (−µ̄3 log(0.975),−µ̄3 log(0.025)).

φ and ϕ3 are sampled from arbitrarily chosen uniform distributions to explore

wide ranges of possible values for these rates. The prior distribution for λ3 is

constrained to be less or equal to ϕ3 + µ3 to get the stability of the steady state

n∗M1 (see Equation (5.3) for the eigenvalues of Jacobian matrix J1).

The flux from the medulla in Model 1 can be computed as, φout = n∗3ϕ3,

where n∗3 is defined in Equation (5.2). The flux from the medulla is expected to

be between 105 and 107 cells per day. In this way the algorithm is able to explore

a wider prior distribution for parameters than aiming to match exactly the flux

reported by the experimental data.

The mice considered in the experimental study are 5.5-17 weeks old and their

thymus is in the steady state (see Egerton et al. (1990)). It is expected that the

parameter values can only be accepted if the corresponding system of ODEs given

by Equation (5.1) attains steady state by 3 weeks. Therefore the only accepted

parameters for the prior distributions are ones that provide thymocyte counts at

time t = 21 days within 5% of the values at steady state.

The prior distributions for the parameters in Model 1 can be sampled from

Algorithm 11. The prior distribution is the combination of the distribution in step

A1 and constraints in step A2 where a typical prior would be just the distribution

from step A1.
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A1. Let θ = (φ, ϕ1, ϕ2, ϕ3, µ1, µ2, µ3, λ3). Sample each element

of the vector θ from the following distributions,

φ ∼ U(1, 109) cells · day−1,

ϕi, µi ∼ U
(
−τ−1

i log(0.975),−τ−1
i log(0.025)

)
for i = 1, 2,

ϕ3 ∼ U(0, 10)day−1,

µ3 ∼ U(−µ̄3 log(0.975),−µ̄3 log(0.025)),

λ3 ∼ U (0, ϕ3 + µ3) .

A2. Check the following constraints,

1. −τ−1
1 log(0.975) < ϕ1 + µ1 < −τ−1

1 log(0.025).

2. −τ−1
2 log(0.975) < ϕ2 + µ2 < −τ−1

2 log(0.025).

3. Compute the steady state n∗M1 = (n∗1, n
∗
2, n

∗
3) using Equation (5.2)

and parameters from θ. Check if

105 cells day−1 < n∗3ϕ3 < 107 cells day−1.

4. Find a numerical solution of Equation (5.1) at time t = 21 days,

using parameters from θ, and call it m = (m1,m2,m3).

Check if for i = 1, 2, 3

|mi − n∗i | < 0.05 · n∗i .

Accept θ if all the constraints 1-4 in point A2 hold.

Algorithm 11: to sample from the prior distributions in Model 1.

The Mahalanobis distance is used in the ABC algorithm and it is given by the

following equation

δ(n∗, n̄) = (n∗ − n̄)Σ−1(n∗ − n̄)T (5.11)

where n∗ = n∗M1 is the steady state defined by Equation (5.2), n̄M1 = (n̄jM1)j∈{1,2,3}

is a vector of the mean thymocyte counts from Table 5.1 , that is,

n̄M1 =

(
1

7

7∑
k=1

n̄kj

)
j∈{1,2,3}

= (96.82× 106, 9.35× 106, 18.14× 106) cells,
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where nk2, n
k
3 are defined in Equation (5.10). The covariance matrix of the thy-

mocyte counts Σ = ΣM1 =

(
1
6

7∑
k=1

(nki − n̄iM1)(nkj − n̄
j
M1)

)
i,j∈{1,2,3}

, hence

ΣM1 =

 4.15× 1015 3.30× 1014 7.58× 1014

3.30× 1014 3.85× 1013 6.09× 1013

7.58× 1014 6.09× 1013 1.40× 1014

 cells2.

5.4.2 Prior distributions in Model 2

Some of the results from the parameterisation of Model 1 are used as a prior for

some of the parameters in Model 2. To be precise, the joint posterior distribu-

tion of φ, ϕ1, µ1, µ2 obtained in Model 1 is used as a prior distribution for these

parameters in Model 2. This approach is valid under the assumption that the

dynamics in the pre-DP compartment and the post-DP compartment is the same

for those two models. The rest of parameters from Model 2 is sampled from prior

distributions defined below based on information from Table 5.2.

The thymocytes’ differentiation from the post-DP to the SP stage is encoded

in two parameters ϕ4 and ϕ8 instead of one parameter ϕ2. In Model 1, the

parameter ϕ2 was sampled from the uniform distribution U(−τ−1
2 log (0.975),

−τ−1
2 log (0.025)). Therefore the parameters ϕ4 and ϕ8 are sampled from the

same distribution and they are expected to be in the same distribution as a sum

to make sure the overall flux from post-DP to SP thymocytes stays the same. Ad-

ditionally, as it was shown for Model 1, the proposal for ϕ4 +ϕ8 +µ2 (and for ϕ4,

ϕ8 separately) is expected to be in the interval (−τ−1
2 log(0.975),−τ−1

2 log(0.025)).

Similarly, the proposal for µi, is expected to be in the interval (−µ̄i log(0.975),

−µ̄i log(0.025)) for i = 4, 8.

ξ4 and ξ8 are sampled from arbitrarily chosen uniform distributions to explore

wide ranges of possible values for these rates. As before, the prior distributions for

λ4 and λ8 are constrained by the requirements of the steady state n∗M2 stability

(see Equation (5.6) for the eigenvalues of Jacobian matrix J2).

The assumption about the flux from the medulla is also used and this time,

this flux can be written as

φout = ξ4n
∗
4 + ξ8n

∗
8,
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where n∗4 and n∗8 are found from Equation (5.5).

Lastly the parameters of Model 2 must yield thymocyte counts at time t = 21

days within 5% of their observed value at the steady state.

A1. Let θ = (φ, ϕ1, ϕ4, ϕ8, µ1, µ2, µ4, µ8, λ4, λ8, ξ4, ξ8). Sample each element
of θ from the following distributions,

(φ, ϕ1, µ1, µ2) ∼ π1, where π1 is the join posterior distribution of the
parameters obtained by the ABC algorithm for Model 1,

ϕi ∼ U(−τ−1
2 log(0.975),−τ−1

2 log(0.025)) for i = 4, 8,

µi ∼ U(−µ̄i log(0.975),−µ̄i log(0.025)) for i = 4, 8,

ξi ∼ U(0, 10) day−1 for i = 4, 8,

λi ∼ U(0, ξi + µi) for i = 4, 8.

A2. Check the following constraints,

1. −τ−1
2 log(0.975) < ϕ4 + ϕ8 < −τ−1

2 log(0.025).

2. −τ−1
2 log(0.975) < ϕ4 + ϕ8 + µ2 < −τ−1

2 log(0.025).

3. Compute the steady state n∗M2 = (n∗1, n
∗
2, n

∗
4, n

∗
8) from Equations (5.2)

and (5.5) using parameters from θ. Check if

105 cells day−1 < n∗4ξ4 + n∗8ξ8 < 107 cells day−1.

4. Find a numerical solution of Equation (5.4) at time t = 21 days,

using parameters from θ, and call it m = (m1,m2,m4,m8).

Check if for i = 1, 2, 4, 8

|mi − n∗i | < 0.05n∗i .

Accept θ if all the constraints 1-4 in point A2 hold.

Algorithm 12: to sample from the prior distributions in Model 2.

The prior distribution of the rates in Model 2 can be found using Algorithm 12. As

noted before, the Mahalanobis distance defined in Equation (5.11) is used in the

ABC algorithm where n∗ = n∗M2 = (n∗1, n
∗
2, n

∗
3, n

∗
4) is the steady state defined by

Equations (5.2) and (5.5), n̄ = n̄M2 = (96.82×106, 9.35×106, 13.46×106, 4.68×
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106) cells is the vector of the mean thymocyte counts, and the covariance matrix

of the thymocyte counts Σ = ΣM2 (both the mean and the covariance matrix

can be found in a similar way to that shown for Model 1), where

ΣM2 =


4.15× 1015 3.30× 1014 5.43× 1014 2.15× 1014

3.30× 1014 3.85× 1013 4.30× 1013 1.79× 1013

5.43× 1014 4.30× 1013 7.20× 1013 2.83× 1013

2.15× 1014 1.79× 1013 2.83× 1013 1.13× 1013

 cells2.

5.4.3 Prior distributions in Model 3

φ, ϕ1 and µ1 are the parameters with join posterior distribution taken from the

ABC algorithm applied in Model 2. This distribution is used as prior distribution

in the Bayesian parameterisation of Model 3.

The mean time spent by a single cell in the post-DP stage is found to be 16

hours (see Table 5.2). However in Model 3 the post-DP stage is divided into two

thymocyte types, those that have received a low TCR signal (n2L) and those that

have received a high TCR signal (n2H) . It is assumed here that the mean time

spent by a single cell at the n2H stage is equal to τ2H = τ2 whereas the average

time spent by cell at the n2L stage is longer and equal to τ2L = τ2 + 4 hours, to

allow more time for a cell to decide its fate.

The thymocytes’ differentiation parameters, called now χ4 and χ8, are sam-

pled from a uniform distribution on the range (−τ2L log (0.975),−τ2L log (0.025))

and their sum is expected to be in the same interval. As the mean time which

a single cell spends at the n2L stage is proportional to τ2L the proposal for

χ4 + χ8 + σ2 (and for σ2 separately) is expected to be found in the interval

(−τ2L log (0.975),−τ2L log (0.025)). Similarly the proposal for β2 and ν2 are sup-

posed to be found as a sum in the interval (−τ2H log (0.975),−τ2H log (0.025)).

The death rates of SP thymocytes, called ν4 and ν8, are sampled as µ4 and

µ8 in Model 2.

As there is not much information provided about σ4, σ8, σR, νR, ζ4, ζ8, ζR, and

φR, the prior distributions for them are set to a uniform distribution on wide in-

tervals. The prior distributions for γ4, γ8 and γR are set as a uniform distributions

on some intervals which ensure that the constraints 2, 4 and 5 from Equation (5.9)

hold, which is necessary for the existence and the stability of the steady states.

229



5. MATHEMATICAL MODELS OF T CELL DEVELOPMENT IN
THE THYMUS

There is no clear evidence suggesting that the rescue of thymocytes which have

received a high TCR signal takes place in vivo. Therefore the prior distributions

for the rates β2, β4 and β8 must be set to take that uncertainty into account.

Therefore I introduce the probability of rescue ωi, where ωi follows U(0, 1) for

i ∈ 2, 4, 8. Then βi is equal to 0 with probability (1− ωi). The prior distribution

of parameters in Model 3 can be found using Algorithm 13.

A1. Let θ = (φ, ϕ1, χ4, χ8, ν1, ν2, ν4, νR, ν8, σ2, σ4, σR, σ8, γ4, γR, γ8, ζ4, ζR, ζ8,
φR, β2, β4, β8). Sample each element of θ from the following distributions,
helo

(φ, ϕ1, µ1) ∼ π2, where π2 is the join posterior distribution of the

parameters obtained by the ABC algorithm for Model 2,

σ2 ∼ U(−τ−1
2L log(0.975),−τ−1

2L log(0.025)),

ν2 ∼ U(−τ−1
2H log(0.975),−τ−1

2H log(0.025)),

χi ∼ U(−τ−1
2L log(0.975),−τ−1

2L log(0.025)) for i = 4, 8,

σi ∼ U(0, 10) days−1 for i = 4, 8, R,

νi ∼ U(−µ̄i log(0.975),−µ̄i log(0.025)) for i = 4, 8,

νR ∼ U(0, 10) days−1,

ζi ∼ U(0, 10) days−1 for i = 4, 8, R,

φR ∼ U(1, 108)cells per day ,

γi ∼ U(0, ζi + σi) for i = 4, 8,

γR ∼ U(0, νR + ζR),

β2 ∼

{
U(−τ−1

2H log(0.975),−τ−1
2H log(0.025)) with probability ω2

0 per day with probability 1− ω2,

βi ∼

{
U(0, 10) days−1 with probability ωi for i = 4, 8,

0 per day with probability 1− ωi,

where ωi ∼ U(0, 1) for i ∈ {2, 4, 8}.
A2. Check the following constraints,

1. (ζ4 − γ4)(β4 + σR + ν4) + σ4(σR + ν4) > 0,

2. (ζ8 − γ8)(β8 + ν8) + σ8ν8 > 0,
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3. −τ−1
2L log(0.975) < χ4 + χ8 < −τ−1

2L log(0.025),

4. −τ−1
2L log(0.975) < χ4 + χ8 + σ2 < −τ−1

2L log(0.025),

5. −τ−1
2H log(0.975) < ν2 + β2 < −τ−1

2H log(0.025),

6. Compute the steady state n∗M3 = (n∗1 ,n∗2L,n∗2H ,n∗4L,n∗4H ,n∗R,n∗8L,n∗8H)

from Equations (5.2) and (5.8) using parameters from θ. Check if

105 cells day−1 < nL∗4 ζ4 + nL∗8 ζ8 + n∗RζR < 107 cells day−1.

7. Find a numerical solution of Equation (5.7) at time t = 21 days

using the parameters from θ and call it m = (m1 ,m2L,m2H ,m4L,m4H ,

mR,m8L,m8H). Check if for i ∈ I = {1, 2L, 2H, 4L, 4H,R, 8L, 8H}

|mi − n∗i | < 0.05 n∗i .

Accept θ if all the constraints 1-7 in point A2 hold.

Algorithm 13: to sample from the prior distributions in Model 3.

As the inverse of the covariance matrix of the full data set is unstable, the Pearson

(normalised Euclidean) distance is used instead in the ABC algorithm,

δ(n∗, n̄) =

√√√√∑
i,j∈I

(n∗i − n̄j)2

ρ2
j

,

where n∗ = n∗M3 = (n∗1, n
∗
2L, n

∗
2H , n

∗
4L, n

∗
4H , n

∗
R, n

∗
8L, n

∗
8H) is the steady state found

from Equations (5.2) and (5.8), n̄ = n̄M3 = (96.82 × 106, 5.98 × 106, 3.38 ×

106, 9.25× 106, 4.21× 106, 0.94× 106, 2.58× 106, 2.10× 106) cells is the vector of

mean thymocyte counts, and ρ = ρM3 = (ρi)i∈I is the vector of sample variances

of thymocyte counts, ρM3 = (4.15×1015, 2.00×1013, 3.76×1012, 2.96×1013, 1.03×

1013, 1.26× 1012, 2.88× 1012, 3.02× 1012) cells.
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5.5 Results

In this section I present the results of the ABC algorithm described in Subsection

2.4.2 (Algorithm 2) where the prior distributions π for the parameters is described

by Algorithm 11, 12 and 13 for Model 1, Model 2 and Model 3, respectively.

5.5.1 Results of the parameter estimation in Model 1

The ABC algorithm was performed 108 times. The acceptance ratio was set to

0.01% to accept 104 samples. This gave the distance threshold δ∗ ' 0.76.

Figure 5.5: The blue dots show the accepted parameter as a function of the

distance δ. The black line shows the mean of the accepted value for the given

parameter. Denote a vector of the obtained ordered distances δ̂ = (δ1, δ2, . . . , δn)

δ1 < δ2 < . . . < δn where n = 104. For each δk the red line shows the mean of the

accepted parameter value (φ̂k, ϕ̂k1, ϕ̂
k
2, ϕ̂

k
3, µ̂

k
1, µ̂

k
2, µ̂

k
3, λ̂

k
3) which gave the distance

≤ δk.

Denote a vector of increasingly ordered accepted distances δ̂ = (δ1, δ2, . . . , δn),

where n = 104. Each element of δ̂ is computed using the relative set of the

accepted parameters. One can study how the mean of each parameter value
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changes as the distance grows. Figure 5.5 shows how the choice of the distance

may affect each parameter. The parameter values vary (red line) for small values

of δ̂ where there is only a few parameters accepted. As the distance threshold

increases the values of the parameters are close to its mean. Note that the death

rates are fairly sensitive to the choice of distance threshold.

Figure 5.6 represents the solution of the system of ODEs given by Equation

(5.1) for 100 randomly chosen sets of accepted parameters. As one can observe

the solutions converge to the mean of the data within a 95% confidence interval.

Figure 5.6: The solution of the ODE system given by Equation (5.1) for 100

randomly chosen sets of parameters obtained from the posterior distribution.

The black line is the mean of the data. The grey area is the 95% confidence

interval of the data. The dots on the left hand side of the plots represent the

data points.

The statistics of the results obtained by the ABC algorithm for Model 1 are

given in Table 5.3.
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Minimum-maximum

Mean Median 95% CI interval range

φ 8.16× 107 7.86× 107 (2.68× 107, 1.46× 108) ( 9.63× 106,2.06× 108 )

ϕ1 0.371 0.375 (0.112, 0.614) (0.044, 0.731)

ϕ2 0.799 0.742 (0.262, 1.485) (0.225 , 2.200)

ϕ3 0.475 0.468 (0.099, 0.864) (0.008, 1.050)

µ1 0.673 0.703 (0.054, 1.185) (0.010, 1.400)

µ2 2.930 3.091 (0.450, 4.877) (0.042, 5.250)

µ3 0.119 0.124 (0.016, 0.216) (0.002, 0.216)

λ3 0.177 0.138 (6.68× 10−5, 0.477) (6.68× 10−5, 0.872)

Table 5.3: Means, medians, 95% credible intervals and minimum-maximum in-

tervals of the parameters in Model 1. φ is in units cells per day whereas the rest

of the parameters in the table are in units day−1.

Figure 5.7: The prior distributions (in red) versus the posterior distributions

(in blue) generated by the ABC algorithm for Model 1 for the parameters

ϕ1, ϕ2, ϕ3, µ1, µ2 and µ3.
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Figure 5.8: The prior distributions (in red) versus the posterior distributions (in

blue) generated by the ABC algorithm for Model 1 for the parameters φ and λ3.

The prior distributions described by Algorithm 11 are shown as the red histograms

in Figures 5.7 and 5.8 including the effects of the deterministic and the stochastic

constraints embedded in this algorithm, whereas the posterior distributions are

shown as the blue histograms. The data helped to learn mostly about parameters

φ, ϕ1, ϕ2, ϕ3 and λ3. The posterior distributions for the death rates µ1, µ2 and µ3

are very similar to their prior distributions.

One can investigate how each parameter can affect the steady state value

by plotting the steady state against the accepted parameter value. Looking at

Figure 5.9 one can examine how each of the parameters φ, ϕ2, ϕ3, λ3 separately

contributes to the steady state value. As the flux to the thymus φ increases the

minimum of the steady state value, which can be obtained for this φ, grows with

it. One interpretation can be that the higher flux of new cells into the cortex

leads to more cells at the steady state in each compartment, which is obvious as

there is linear relation between φ and n∗1, n
∗
2, and n∗3 (see Equation (5.2)). The

parameters ϕ2, ϕ3 and λ3 have the opposite effect: the higher value of each of

those parameters is causing a decrease in the maximum number of cells in the

steady state in each compartment. This relationship can be explained for the

differentiation rates ϕ2 and ϕ3 as follows, the higher value of ϕ2 or ϕ3 is forcing

cells to leave each compartment resulting in fever number of cells left. As for the

proliferation rate λ3 it is unclear why the increase of cells in the medulla would

cause the decrease of cells in this compartment at the steady state. It is possible

that with the higher proliferation rate more cells are leaving the medulla which

leads to a lower number of cells left to proliferate.
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Figure 5.9: The relationship plots between the accepted parameters and the

steady state value in each compartment. The plots for the death rates µi where

i ∈ {1, 2, 3} and the differentiation rate ϕ1 are not included as there is no clear

relation between them and the steady state values.

To examine the relationship between the parameters, scatter plots have been

displayed in Figure 5.10. The black dots represent the values from the prior

distribution whereas the yellow overlapping dots represent the accepted values

from the posterior distribution. Some of the constraints built in Algorithm 11

are clearly visible in Figure 5.10; the third subplot in the second row (ϕ1 versus µ1

— constraint 1), the second subplot in the third row (ϕ2 versus µ2 — constraint

2). The first subplot in the fourth row (ϕ3 versus λ3) is the result of sampling

the proliferation rate λ3 from a uniform distribution on the interval (0, ϕ3 + µ3).

It can be noticed that as a results of the ABC algorithm most of the correlations

between the parameters stay the same but on the truncated intervals. However

there is a clear positive correlation between ϕ1 and µ2 which can be explained

as more pre-DP thymocytes differentiate to the post-DP stage and thus, more
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post-DP thymocytes die by apoptosis. Similarly there is a positive correlation

between φ and µ1, if more thymocytes become pre-DP cells, then more will die

due to negative selection at this stage. There is no clear correlation between ϕ2

and µ3 probably due to the proliferation term at the SP stage.

Figure 5.10: The scatter plots of the parameters obtained by the ABC algorithm

for Model 1. The black dots represent the values from the prior distribution

whereas the overlapping yellow dots represent the values from the posterior dis-

tribution.
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5.5.2 Results of the parameter estimation in Model 2

The ABC algorithm for Model 2 was performed 108 times and 0.01% of the results

were accepted which gave the distance threshold δ∗ ' 1.23. As it was done for

Model 1 one can investigate how the choice of the threshold δ∗ affects the results

by plotting Figure 5.11. The change of the acceptance threshold does not have

great effect on the proliferation rates λ4, λ8 and the death rates µ1, µ4, µ8.

Figure 5.11: The blue dots show the accepted parameter as a function of the

distance δ. The black line shows the mean of the accepted value for the given

parameter. Denote a vector of the obtained ordered distances δ̂ = (δ1, δ2, . . . , δn)

δ1 < δ2 < . . . < δn where n = 104. For each δk the red line shows the mean

of the accepted parameter value (φ̂k, ϕ̂k1, ϕ̂
k
4, ϕ̂

k
8, µ̂

k
1, µ̂

k
2, µ̂

k
4, µ̂

k
8, ξ̂

k
4 , ξ̂

k
8 , λ̂

k
4, λ̂

k
8) which

gave the distance less or equal to δk.
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Figure 5.12 presents the solution of the system of ODEs given by Equation (5.4)

for 100 randomly chosen sets of the accepted parameters. Closer inspection of

Figure 5.12 indicates that 97% of curves are below the mean of the data. This

implies that Model 2, predicts on average lower cell counts than the experimental

results.

Figure 5.12: The solution of the ODE system given by Equation (5.4) for 100

randomly chosen sets of the accepted parameters. The black line is the mean of

the data. The grey area is the 95% confidence interval of the data. The dots on

the left hand side of the plots represent the data points.

The statistics of the results obtained by the ABC algorithm performed on Model

2 are reported in Table 5.4. One can notice that on average there are more cells

coming to the SP CD8+ compartment than SP CD4+ compartment as ϕ8 > ϕ4.

However the data suggest that there are more SP CD4+ thymocytes. On the other

hand the death rate µ8 and the differentiation rate ξ8 are significantly higher for

SP CD8+ thymocytes, which agrees with the lower cell count at the SP CD8+

stage, when compared to the CD4+ stage.
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Minimum-maximum

Mean Median 95% CI interval range

φ 6.42× 107 6.49× 107 (2.32× 107, 1.05× 108) (9.63× 106, 1.63× 108)

ϕ1 0.344 0.336 (0.137, 0.571) (0.061, 0.715)

ϕ4 0.672 0.577 (0.179, 1.450) (0.150, 3.220)

ϕ8 0.846 0.755 (0.076, 1.812) (0.058, 3.590)

µ1 0.691 0.723 (0.054, 1.180) (0.010, 1.360)

µ2 2.450 2.490 (0.422, 4.304) (0.046, 5.060)

µ4 0.079 0.082 (0.011, 0.148) (0.001, 0.148)

µ8 0.219 0.225 (0.026, 0.406) (0.003, 0.406)

ξ4 0.445 0.429 (0.086, 0.872) (0.020, 1.400)

ξ8 1.550 1.484 (0.190, 2.992) (0.007, 4.570)

λ4 0.148 0.113 (6.00× 10−6, 0.412) (6.00× 10−5, 0.954)

λ8 0.227 0.194 (2.80× 10−5, 0.558) (2.80× 10−5, 1.010)

Table 5.4: Means, medians, 95% credible intervals and minimum-maximum in-

tervals of the parameters in Model 2. φ is in units cells per day whereas the rest

of the parameters in the table are in units day−1.

Figure 5.13: The results of the ABC algorithm for the parameters

ϕ1, ϕ4, ϕ8, φ, λ4, λ8 for Model 2. The red histograms correspond to the prior dis-

tributions whereas the blue histograms correspond to the posterior distributions.
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Figure 5.14: The results of the ABC algorithm for the parameters

µ1, µ2, µ4, µ8, ξ4, ξ8 for Model 2. The red histograms correspond to the prior dis-

tributions whereas the blue histograms correspond to the posterior distributions.

Figures 5.13 and 5.14 show the probability histograms of the prior distributions

(in red) versus the probability histograms of the posterior distributions (in blue)

of the parameters. Significant learning is achieved for the parameters λ4, λ8, ξ4

and ξ8. The posterior distributions of ϕ1, ϕ2, ϕ4 are shifted to the right whereas

the distribution of ϕ8 is shifted to the left compared to its prior distributions.

There is no additional learning for the death rates µ1, µ4 and µ8.

The corresponding rates between Model 1 and Model 2 which were split into

two compartments in the medulla, ϕ2 → ϕ4 and ϕ8, µ3 → µ4 and µ8, ϕ3 →
ξ4 and ξ8, and λ3 → λ4 and λ8 can be compared. The probability histograms

of those rates are shown in Figure 5.15. The overall shapes of the distributions

remain similar. The distributions of the parameters describing the SP CD4+

compartment are more like those obtained from Model 1 in the SP compartment.

The distributions for the parameters describing the SP CD8+ compartment are

more spread out.
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Figure 5.15: The probability histograms of the parameters in the medulla for

Model 1 versus Model 2. In the first row the parameters refer to the results of

the ABC algorithm for Model 1. The second and the third row refer to the results

of the ABC algorithm for Model 2.

Figure 5.16 shows the difference between some quantities related to the SP com-

partment for Model 1 (in red) and Model 2 (in blue). The first plot in the first

row shows the estimated probability density of the number of post-DP thymo-

cytes becoming SP cells for Model 1 (in red) versus Model 2 (in blue) per day. On

average Model 2 predicts that the number of thymocytes differentiating to the

single positive cells is higher than that predicted by Model 1. The second plot in

the first row of Figure 5.16 shows the density of the number of thymocytes dying

due to strong signal in the medulla per day. This number is higher on average

for Model 1 (in red) compared to Model 2 (in blue). There are more proliferating

cells in the medulla per day for Model 2 than Model 1 (the first plot in the second

row of Figure 5.16). Also on average there are more thymocytes leaving the thy-

mus per day according to Model 2 than Model 1 (the second plot in the second
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row of Figure 5.16). Overall Model 2 predicts that there is more thymocyte dif-

ferentiation from post-DP to SP cells, therefore there is more proliferation, death

and differentiation in the medulla compartment.

Figure 5.16: The comparison of the estimated probability density of cell counts

per day differentiating into SP thymocytes (top left plot); dying due to strong

TCR signal at the SP stage (bottom left plot); proliferating in the SP compart-

ment (top right plot); exiting the medulla to the periphery (bottom right plot).

The density of those quantities are plotted for Model 1 (in red) and Model 2 (in

blue).

As it was shown for Model 1, the relationship between each parameter and the

steady state value can be plotted. Figure 5.17 shows plots where the relationship

was clear. As the number of thymocytes coming into the pre-DP stage per day

grows, the minimum of the number of cells at the steady state in each compart-

ment is higher. As the differentiation rates ϕ4, ϕ8, ξ4, ξ8 or the proliferation rates

λ4, λ8 grow, the maximum number of cells in each compartment at the steady
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state decreases.

Figure 5.17: The relationship plots between the accepted parameters and the

steady state value in each compartment. The plots for the death rates µi where

i ∈ {1, 2, 4, 8} and the differentiation rates ϕ1, ϕ2 are not included as there is no

clear relation between them and the steady states.

To examine the relationship between the parameters the scatter plots are given in

Figure 5.18. The black dots represent the values taken from the prior distribution

whereas the overlapping yellow dots represent the values taken from the posterior

distribution. Most of the correlation plots look the same for the prior and the

posterior distribution or the correlations are the truncated version of the prior

correlations. The positive correlations between ξi and ϕi for i ∈ {4, 8} appear

after performing the ABC algorithm on Model 2 (see Figure 5.18). It means that

if more thymocytes differentiate from the pre-DP to the SP stage, then more cells

leave the medulla to the periphery.
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Figure 5.18: The scatter plots of the parameters obtained by the ABC algorithm

for Model 2. The black dots represent the values from the prior distribution

whereas the overlapping yellow dots represent the values from the posterior dis-

tribution.
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5.5.3 Results of the parameter estimation in Model 3

The ABC algorithm was performed 107 times for Model 3. The acceptance ratio

was set to 0.1% to accept 104 samples. This gave the threshold δ∗ ' 2.20. Figure

5.19 shows how the choice of the threshold would affect the parameter values. As

one can observe most of the parameters are on average close to its mean regardless

the choice of distance. The most variable parameters are σ4, σR, ζ4, ζ8, γ4 and γ8.

Figure 5.19: The blue dots show the accepted parameter as a function of the distance

δ. The black line shows the mean of the accepted value for the given parameter. Denote

a vector of the obtained ordered distances δ̂ = (δ1, δ2, . . . , δn) δ1 < δ2 < . . . < δn where

n = 104. For each δk the red line shows the mean of the accepted parameter value
(
φ̂k ,

ϕ̂k1, χ̂
k
4, χ̂

k
8, ν̂

k
1 , ν̂

k
2 , ν̂

k
R, ν̂

k
4 , ν̂

k
8 , σ̂

k
2 , σ̂

k
R, σ̂

k
4 , σ̂

k
8 , ζ̂

k
4 , ζ̂

k
8 , ζ̂

k
R, γ̂

k
4 , γ̂

k
R, γ̂

k
8 , φ̂

k
R, β̂

k
2 , β̂

k
4 , β̂

k
8

)
which gave the distance less or equal to δk.
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Figure 5.20 represents the solution of Equation (5.7) for 100 randomly chosen sets

of the parameters from the posterior distribution obtained by the ABC algorithm.

As it was noted in Model 2, Model 3 predicts that the average cell count in each

compartment is lower than the average experimental value.

Figure 5.20: The solution of the ODE system given by Equation (5.7) for 100

randomly chosen sets of the parameters obtained by the ABC algorithm. The

black line is the mean of the data. The grey area shows the 95% confidence

interval of the data. The dots on the left hand side of the plots represent the

data points.

The results of the ABC algorithm performed on Model 3 are reported in Table

5.5 except for the rates β2, β4 and β8 which are shown in Table 5.6. Adding

the regulatory T cell compartment to Model 3 changes the overall cell behaviour

compared to Model 2. Model 3 parameterisation reveals that there are more cells

coming into the SP CD4+ compartment then into the SP CD8+ from the post-DP

population (χ4 > χ8). As there is an additional flux into the Treg compartment

proportional to φR, there is more Treg cells at the SP CD4+ stage. However most

of the posterior distributions obtained from the ABC algorithm are similar to the

prior distributions (see Figures 5.21-5.24).
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Minimum-maximum

Mean Median 95% CI interval range

φ 6.35× 107 6.50× 107 (1.87× 107, 1.03× 108) (9.63× 106, 1.61× 108)

ϕ1 0.250 0.239 (0.127, 0.394) (0.083, 0.584)

χ4 0.726 0.627 (0.056, 1.625) (0.033, 3.500)

χ8 0.414 0.348 (0.032, 0.970) (0.032, 1.830)

ν1 0.777 0.821 (0.181, 1.301) (0.010, 1.360)

ν2 2.690 2.680 (1.285, 4.078) (1.150, 4.700)

ν4 0.076 0.076 (0.007, 0.146) (0.001, 0.148)

νR 7.060 7.580 (2.615, 9.999) (0.006, 10.00)

ν8 0.246 0.264 (0.042, 0.406) (0.003, 0.406)

σ2 2.550 2.580 (1.262, 3.743) (0.102, 4.240)

σ4 4.240 3.740 (0.019, 9.323) (3.04× 10−4, 10.00)

σR 3.290 2.480 (0.039, 8.836) (0.001, 10.00)

σ8 4.120 3.740 (0.068, 9.272) (0.002, 10.00)

γ4 1.970 1.080 (5.67× 10−4, 6.924) (5.66× 10−4, 16.80)

γR 2.390 1.860 (1.77× 10−4, 6.500) (1.77× 10−4, 15.10)

γ8 1.580 0.928 (1.09× 10−5, 5.450) (1.09× 10−5, 16.00)

ζ4 1.900 0.960 (2.45× 10−4, 7.217) (2.45× 10−4, 9.990)

ζR 3.340 2.760 (2.86× 10−4, 8.430) (2.85× 10−4, 10.00)

ζ8 3.520 2.780 (0.204, 8.881) (4.62× 10−4, 10.00)

φR 3.26× 106 2.5× 106 (3.85× 102, 8.91× 106) (385, 1.85× 107)

Table 5.5: Means, medians, 95% credible intervals and minimum-maximum in-

tervals of the parameters in Model 3. φ and φR are in units cells per day whereas

the rest of the parameters in the table are in units day−1.

There is some learning about the flux rate into Treg compartment φR, and

the differentiation rates from post-DP to SP stage (χ4 and χ8) are shifted to the

right (see Figure 5.21). Bayesian parameter estimation has not revealed anything

new compared to the prior beliefs for the death rates (see Figure 5.22). The

distribution of the negative selection rate for SP thymocytes, σ4 and σ8 is shifted

to the left compared with theirs priors (see Figure 5.23). This can be compared

with the positive selection rates for SP cells, ζ4 and ζ8 (see Figure 5.24). It seems
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like on average more cells are going through the negative selection at the SP stage

than through positive selection. Nevertheless, a death due to high TCR signal,

is more likely than a positive selection event or exit to the periphery for the Treg

population (on average ζR < νR).

Figure 5.21: The prior distributions (in red) versus the posterior distributions (in

blue) generated by the ABC algorithm for Model 3 for the parameters φ, φR, ϕ1χ4,

and χ8.

Figure 5.22: The prior distributions (in red) versus the posterior distributions (in

blue) generated by the ABC algorithm for Model 3 for the parameters ν1, ν2, νR, ν4

and ν8.
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Figure 5.23: The prior distributions (in red) versus the posterior distributions (in

blue) generated by the ABC algorithm for Model 3 for the parameters σ2, σR, σ4

and σ8.

Figure 5.24: The prior distributions (in red) versus the posterior distributions

(in blue) generated by the ABC algorithm for Model 3 for the parameters

γ4, γR, γ8, ζ4, ζR and ζ8.
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The results for the recovery rates β2, β4 and β8 need to be interpreted separately

due to their prior distribution (see Algorithm 13). The prior and the posterior

distributions of these rates are plotted in Figure 5.25. β2, as can be seen in Figure

5.25, is not likely to be close to 0, indicating that at this post-DP stage, there is a

non-zero probability of being rescued from the high TCR signal compartment to

the low TCR signal compartment. As for the rescuing of thymocytes at the SP

stage (CD4+ and CD8+) the answer is ambiguous. The probability that β4 = 0

is equal to 0.62 whereas the probability that β8 = 0 is equal to 0.32 based on the

posterior sample (see Table 5.6). Hence, it is more likely that thymocytes are

going to be rescued (from high TCR to low TCR) at the SP CD8+ stage than

the CD4+ stage.

Figure 5.25: The prior distributions (in red) versus the posterior distributions (in

blue) generated by the ABC algorithm for Model 3 for the parameters β2, β4 and

β8.

mean of βi median of βi 95% CI

Prob(βi = 0) for βi 6= 0 for βi 6= 0 for βi 6= 0

β2 0.00 1.890 1.680 (0.979, 3.516)

β4 0.62 4.489 4.215 (6.52× 10−5, 9.364)

β8 0.32 4.688 4.434 (0.355, 9.622)

Table 5.6: Means, medians and credible intervals for β2, β4 and β8 obtained by

the ABC algorithm performed on Model 3. βi are in units day−1 for i ∈ {2, 4, 8}.

One can study the relationship between the parameters and the steady state

values as it was done for Models 1 and 2. There are three relationships worth

noticing, which are plotted in Figure 5.26.
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Figure 5.26: The relationship plots between the accepted parameters and the

steady state values obtained from the ABC algorithm performed on Model 3.

The first plot from the left shows a positive relation between the negative selection

rate σ2 and the number of cells in the n2H compartment. It is clear that higher

σ2 leads to a higher number of thymocytes receiving a strong TCR signal. The

other two are not so obvious as they suggest that a higher proliferation rate at

the SP stage for those thymocytes that have received a low TCR signal, results

in a lower number of cells in the SP stage. To investigate this feature the scatter

plots for γi were plotted against χi, σi and ζi for i ∈ {4, 8} in Figure 5.27.

Figure 5.27: The relevant scatter plots obtained from the ABC algorithm per-

formed on Model 3. The black dots represent the values from the prior distribu-

tion whereas the overlapping yellow dots represent the values from the posterior

distribution.
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The plots suggest that by increasing the proliferation in one of those two SP

compartments the positive selection rate χi is decreasing, whereas the exit rates

σi and ζi increase. It means that if more cells are proliferating at the SP stage,

then more are leaving this stage and less are allowed to differentiate from the

post-DP stage into the SP stage.

5.5.4 Comparison of the differentiation and the prolifera-

tion rates

The estimated posterior distributions are very similar to their prior distributions

for the death rates regardless of the model used (see Figures 5.7, 5.14 and 5.22).

It indicates that there is nothing new one can learn about the death rates from

the data on top of the prior beliefs. However, Bayesian computation reveals some

more information about the differentiation rates in all models, especially about

ϕ1 and ϕ2 (see Figures 5.7 and 5.13). Hence the data may suggest how many cells

go through the differentiation process in each compartment. These quantities are

compared between the models in Table 5.7.

pre-DP post-DP SP to

to post-DP to SP the periphery

Model 1 ϕ1n
∗
1 ϕ2n

∗
2 ϕ3n

∗
3

mean 28.61 5.91 6.60

95% CI (7.04, 51.96) (1.93, 10.36) (2.29, 10.00)

Model 2 ϕ1n
∗
1 (ϕ4 + ϕ8)n∗2 ξ4n

∗
4 + ξ8n

∗
8

mean 21.22 7.49 8.08

95% CI (7.30, 35.68) (4.19, 10.61) (5.13, 10.00)

Model 3 ϕ1n
∗
1 (χ4 + χ8)n∗2L ζ4n

∗
4L + ζ8n

∗
8L

mean 19.20 8.32 6.92

95% CI (2.50, 42.94) (0.75, 20.74) (0.25, 16.69)

Table 5.7: Number of cells that go through differentiation for Model 1, Model 2

and Model 3, where n∗1, n
∗
2, n

∗
3, n

∗
4, n

∗
8, n

∗
2L, n

∗
4L and n∗8L are found from Equations

(5.2), (5.5) and (5.8) using the parameters obtained from the prior distributions

found by the ABC algorithm. All values are given in units 106cells per day.
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The estimated number of cells differentiate from the pre-DP to the post-DP

stage goes down with each model, that is Model 3 predicts approximately one

third less cells entering the post-DP stage in comparison to Model 1. This result

is mainly due to fact that the flux into the thymus (with rate φ) is lowest and

the death rate in the first compartment (ν1) is the highest for Model 3. The

differentiation from the post-DP to the SP stage have the opposite behaviour,

that is Model 3 predicts the highest number of cells going into the SP stage

(5.30× 106 cells per day expressing CD4 and 3.02× 106 cells per day expressing

CD8). Model 2 estimates similar numbers but with more thymocytes expressing

CD8 (4.14 × 106 cells per day) than CD4 (3.35 × 106 cells per day). However,

published work by Sinclair et al. (2013) suggests that the number of thymocytes

go into the SP stage is lower for those expressing CD8 when compare to CD4.

This agrees with what has been found in Model 3. Model 2 predicts a higher

number of cells leaving the thymus than Model 1, which means Model 1 has a

more strict differentiation process as there are more cells going into the thymus

for Model 1 than for Model 2. Model 3 reveals additionally that per day 5.64×106

SP CD4+ thymocytes have received a high TCR signal (n4H population) and have

become Treg cells (σRn
∗
4H , where n∗4H defined by Equation (5.8)).

The Bayesian methods presented in this Chapter have helped to learn more

about the proliferation rates, especially λ3 in Model 1 and λ4, λ8 in Model 2 (see

Figures 5.8 and 5.13). Model 3 with the data did not change much the prior

beliefs about the proliferation rates (see Figure 5.24). Nevertheless the numbers

of proliferating cells in the medulla are compared between the models. These

results are given in Table 5.8. The results of the Bayesian inference for Model

2 indicate that there are 1.9 × 106 cells per day proliferating on average at the

SP stage. This agrees with numbers of proliferating cells estimated by Thomas-

Vaslin et al. (2008) (1.8 × 106 cells per day). The Bayesian inference did not

introduced any new information about proliferation rates in Model 3, γ4 and γ8,

on top of prior beliefs (see Figure 5.24), and therefore one can not truly learn

anything new about number of proliferating cells per day at the SP stage.
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SP SP CD4+ SP CD8+

Model 1 λ3n
∗
3 - -

mean 2.47 - -

95% CI (0.00, 6.42) - -

Model 2 λ4n
∗
4 + λ8n

∗
8 λ4n

∗
4 λ8n

∗
8

mean 1.90 1.28 0.62

95% CI (0.08, 4.46) (0.00, 3.56) (0.00, 1.50)

Model 3 γ4n
∗
4L + γ8n

∗
8L γ4n

∗
4L γ8n

∗
8L

mean 5.03 3.42 1.61

95% CI (0.03, 14.44) (0.00, 11.45) (0.00, 5.50)

Table 5.8: Number of proliferating cells at the SP stage for Model 1, Model 2 and

Model 3, where n∗3, n
∗
4, n

∗
8, n

∗
4L and n∗8L are given by Equations (5.2), (5.5) and

(5.8) using the posterior parameters obtained making use of the ABC algorithm.

All values are given in units 106cells per day.

Model 1 with the data provide the estimated posterior distribution for the number

of cells coming into the thymus into the pre-DP stage (φ) which differs greatly

from its prior. The distribution of φ does not change for Model 2 and Model

3 as it is calibrated well enough by Model 1. The exit rates from the thymus

are calibrated well for each model (see Figures 5.7, 5.14 and 5.24). Model 3

with the data provide new information about the distribution of φR (the flux to

the Treg compartment from the periphery) on top of prior beliefs (see Figure

5.21). Taking all of that into consideration one may compare the stringency of

the thymic selection between the three models considered (see in Table 5.9). The

three models indicate that about 85%-90% of thymocytes die through thymic

selection. These results agree with previous estimations by Klein et al. (2014).

Model 1 Model 2 Model 3

the stringency
ϕ3n3

φ

ξ4n4 + ξ8n8

φ

ζ4n4L + ζ8n8L

φ
mean 0.10 0.15 0.11

95% CI (0.01, 0.21) (0.04, 0.30) (0.01, 0.25)

Table 5.9: Stringency of thymic selection

255



5. MATHEMATICAL MODELS OF T CELL DEVELOPMENT IN
THE THYMUS

As the posterior distributions for the proliferation and the exit rates in Model 1

and Model 2 differ from their prior distributions one may say that the models

with the data can provide information about the probability to proliferate and

the probability to exit the thymus. The probability to proliferate (p3) in the

medulla and the probability to exit the thymus (q4) for Model 1 are defined as

follows,

p3 =
λ3

λ3 + µ3 + ϕ3

, q3 =
ϕ3

λ3 + µ3 + ϕ3

. (5.12)

Similarly one can find the probability to proliferate at the SP CD4+ stage (p4)

or at the SP CD8+ stage (p8) and the probability to exit the thymus as a mature

CD4 thymocyte (q4) or as a mature CD8 thymocyte (q8) in Model 2 from the

following equations,

p4 =
λ4

λ4 + µ4 + ϕ4

, p8 =
λ8

λ8 + µ8 + ϕ8

,

q4 =
ξ4

λ4 + µ4 + ξ4

, q8 =
ξ8

λ8 + µ8 + ξ8

.

(5.13)

The results of the Bayesian parameterisation performed on Model 3 reveal some

information about the selection of thymocytes in the cortex and the medulla.

Hence one can find the probability of negative selection at the post-DP stage

(h2) or the probability to rescue thymocytes which have received a strong TCR

signal (r2). It is also worth to study the probability of positive selection of

thymocytes that have received a strong TCR signal into Treg cells (hR) as the

posterior distribution for σR brings some new information compared to its prior.

Those two probabilities are defined by the following equations,

h2 =
σ2

σ2 + χ4 + χ8

, hR =
σR

σR + β4 + ν4

. (5.14)

One of the main reasons to introduce Model 3 was to consider the possibility

of rescuing thymocytes which have received a strong TCR signal. Therefore the

probability to be rescued at the SP CD4+ stage (r4) and at the SP CD8+ stage

(r8) have been studied. Those probabilities are defined as follows

r2 =
β2

β2 + ν2

, r4 =
β4

β4 + σR + ν4

, r8 =
β8

β8 + ν8

. (5.15)
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5.6 Discussion

The results for all probabilities defined in this section are given in Table 5.10.

mean 95% CI

p3 0.21 (0.00, 0.40)

p4 0.19 (0.00, 0.38)

p8 0.12 (0.00, 0.31)

q3 0.62 (0.36, 0.93)

q4 0.67 (0.44, 0.93)

q8 0.75 (0.46, 0.98)

h2 0.69 (0.46,0.91)

hR for β4 > 0 0.46 (0.03, 0.91)

hR for β4 = 0 0.94 ( 0.77 1.00)

r2 for β2 > 0 0.42 (0.21,0.72)

r4 for β4 > 0 0.53 (0.08, 0.96)

r8 for β4 > 0 0.92 (0.72, 1.00)

Table 5.10: Means with 95% credible intervals for the probabilities defined by

Equations (5.12), (5.13), (5.14), (5.15). Note that the results for hR are given in

two cases, assuming that the transition from n4H to n4L is possible (β4 > 0) or

not (β4 = 0). The probabilities r2, r4 and r8 are equal to zero for β2 = 0, β4 =

0, β8 = 0, respectively.

5.6 Discussion

There were three deterministic models introduced to study thymocyte develop-

ment in the thymus. The first model, called Model 1, is the simplest version

but the steady state given by Equation (5.2), for 100 randomly chosen sets of

parameters obtained by the Bayesian inference, is reached within first 21 days

and it is close to the average of the data (see Figure 5.6). Model 2 was studied

to understand how the split between SP CD4+ and SP CD8+ thymocytes takes

place. The last model, called Model 3, was analysed to check if it is plausible for

cells which have received a high TCR signal to be rescued and for the ones to

have received a low TCR signal to go through positive selection. The Bayesian

inference has helped to learn only about some of the parameters of Model 3 in
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comparison to Model 1 and Model 2. It is mainly caused by including the Treg

population, which was not part of Model 1 or Model 2. Hence, Model 3 could be

calibrated better if one has more information regarding the rates connected with

the Treg compartment. Nevertheless Model 3 is worth studying to reveal some

information regarding the rescue rates βi for i ∈ {2, 4, 8}.
According to the analysis performed in Subsection 5.5.4 the probability to exit

the medulla (for Model 1) is around three times higher than the probability to

proliferate (see Table 5.10). A similar ratio can be observed for the thymocytes

at the SP CD4+ stage in Model 2. It is even more probable that the cell at the

SP CD8+ stage will exit rate than proliferate in Model 2. It would suggests that

once a thymocyte commits to become an SP CD8 cell, it would leave the thymus

to the periphery rather than stay and proliferate.

The possibility of thymocyte rescue from apoptotic death due a a strong TCR

signal has been studied in Model 3. The probability of such rescue at the post-DP

stage is 0.42, with a wide credible interval (see Table 5.10). On the other hand,

the analysis reveals that on average there is 69% chance that a thymocyte, which

receives low TCR signal at the post-DP stage, starts receiving high TCR signal.

The probability of being rescued from the high TCR signal compartment to

the low TCR compartment is equal to 0.62 for the SP CD4+ stage and 0.32 for

the SP CD8+ stage. Hence, it is more likely that thymocytes are going to be

rescued (from high TCR to low TCR) at the SP CD8+ stage than at the SP

CD4+ stage. Interestingly, assuming that this rescue is possible (β4 6= 0 and

β8 6= 0), the probability to start receiving low TCR signal instead of high TCR

signal at the SP CD8+ stage is much higher (0.92) then at the SP CD4+ stage

(0.53).

The last value to be analysed is the probability of positive selection of thy-

mocytes that have received a strong TCR signal into Treg cells (hR). The result

of the Bayesian inference of Model 3 indicate that thymocytes that have received

a strong TCR signal can be positively selected into Treg cells with probability

0.94, assuming that β4 = 0. It is not so clear for opposite case when β4 6= 0 as

the credible interval for hR covers almost whole unit interval.
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Chapter 6

Concluding remarks

The binding and trafficking models for VEGFR/VEGF-A systems have been ex-

tensively studied previously by Mac Gabhann & Popel (2004), Mac Gabhann &

Popel (2005), Mac Gabhann et al. (2005), Alarcón & Page (2007), Tan et al.

(2013c), Tan et al. (2013b) and many others. Assumptions for the cell surface

models presented in this thesis are similar to the published ones but have not

been explored before in this configuration. The binding and trafficking models

are studied here with use of some experimental data obtained thanks to Dr Sreeni-

vasan Ponnambalam from School of Molecular and Cellular Biology at University

of Leeds.

In Chapter 3 I focus on the cell surface only to analyse different ways of

signalling through VEGFR2 phosphorylation. The IP R2 model in Subsection

3.1.1 and the DP R2 model in Subsection 3.1.2 consist of processes where ligand

VEGF-A binds receptor VEGFR2 in order to form monomers and dimers, which

can eventually dissociate. Dimers become instantaneously phosphorylated in the

IP R2 model, while in the DP R2 model phosphorylation is considered as a new

reaction in the process. The IP R1/R2 model, from Subsection 3.1.3, and the

DP R1/R2 model, from Subsection 3.1.4, are extensions of the IP R2 and the

DP R2 models respectively, where two types of receptor are considered, VEGFR1

and VEGFR2. These different stochastic models help to analyse how varying the

initial number of ligand, nL, or how the competition for ligand (in the IP R1/R2

and the DP R1/R2 models) by two receptors, can affect number of phosphorylated

dimers, which is a key determinant in endothelial cell signalling.
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It is shown in Subsection 3.3.3 that high ligand stimulation can actually lead

to lower number of phosphorylated dimers. To be precise, high ligand stimu-

lation can cause that there are lots of receptors occupied by ligands, as bound

monomers, and there are not enough free receptors to create bound dimers with

these monomers. This important discovery lead to the conclusion that the bind-

ing process for VEGFR receptors should be analysed in two steps, formation

of monomers and then dimers, to peak up this behaviour. Many previously

published models were studied assuming dimer formation as one step process

(see Mac Gabhann & Popel (2004), Mac Gabhann et al. (2005), Mac Gabhann

& Popel (2007), Mac Gabhann & Popel (2005), Tan et al. (2013a), Tan et al.

(2013b) Tan et al. (2013c)). This type of model can overestimate the number

of phosphorylated dimers for higher ligand concentration (see Mac Gabhann &

Popel (2007)) so it is important to consider two step dimerisation process.

As it should be expected the number of phosphorylated VEGFR2 dimers

decrease by including two receptors in the model. However total number of phos-

phorylated dimers, homodimers and heterodimers, is higher for the IP R1/R2 and

the DP R1/R2 models compared to the IP R2 and the DP R2 models respectively.

Although, it is important to mention that phosphorylation of homodimers and

heterodimers can lead to different signalling outcomes (see Cudmore et al. (2012)

and Simons et al. (2016)).

The phosphorylation is also included as a separate reaction in the DP R2 and

the DP R1/R2 model to explore how does it change receptors phosphorylation.

This extension shows quantitative change of the number phosphorylated dimers,

that is approximately 20% decrease for the number of VEGFR2 homodimers in

the DP R2 model with respect to the IP R2 model for small ligand concentrations

cL ∈ {1pM , 2.5pM , 5pM} and approximately 16% for higher ligand concentra-

tions. However, the dynamics of the processes is not qualitatively changed.

In the IP R2 and the DP R2 models, matrix-analytic techniques have been

applied in order to study the time until reaching a threshold of phosphorylated

VEGFR2 dimers on the cell membrane, and the steady-state distribution of the

corresponding CTMPs. Moreover, the construction of the DP R2 as an extension

of the IP R2 permits, not only to analyse the role played by the phosphorylation

reaction, but also to show how different reactions may be incorporated while
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adapting the matrix-analytic approach. The analysis of the results shows again

that including phosphorylation as a separate reaction seems to quantitatively

affect the timescale for signal formation, but does not qualitatively change the

dynamics of the processes. The additional study demonstrates that ligands tend

to form signal (here dimer phosphorylation) with probability near one, where

the phosphorylation/de-phosphorylation reactions can only cause a delay on this

occurring.

In Section 3.5 it is shown how to exploit the Markovian nature of the stochastic

process under study in order to analyse a number of characteristics of interest

in the process. I analyse in this section different hypotheses of signal creation,

such as the number of bound dimers (DS), the accumulated number of bound

dimers (AS) and the accumulated number of bound dimers with delay λ (ASD-

λ). These three hypotheses are compared in Subsection 3.5.4 by analysing the

time to reach a signalling threshold. The process under the ASD-λ hypothesis is

an intermediate regime between the DS and the AS case, for moderate values of

the rate λ. The results suggest that the initial concentration of ligand would play

a more important role if cellular mechanisms led to low signal decay rates. For

higher values of the decay signal λ, the signalling threshold S is reached slowly

independent of the ligand concentration. Additional analysis of the impact of the

different kinetic rates in the descriptor indicates that the monomer formation rate

α+ is the most important rate regardless of the hypothesis under consideration.

It is important to emphasise that any particular tyrosine residue has not been

specified in the models described in Chapter 3. In future models different phos-

phorylation kinases could be studied which may or may not be phosphorylated

symmetrically.

From a biological perspective, it should be noted that the total number of

VEGFR2s per cell varies according to Ewan et al. (2006b) and Napione et al.

(2012) and could be larger than the numbers used in this thesis (see Imoukhuede

& Popel (2012)). A larger number of VEGFR2 receptors on the cell surface would,

however, only quantitatively change the results, and in particular a higher opti-

mum ligand concentration threshold would be reported. The sensitivity analysis

carried out for the descriptors enables one to show how the monomeric formation

rate, α+, plays a crucial role in these models, with an effect which can be more
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than twice the effect of any other rate for some of the descriptors considered in

this thesis. Finally, the numerical results presented in Chapter 3 for the VEGF-A

and VEGFR system have allowed quantifying the effect of different ligand concen-

trations on the timescales to signalling, the late time behaviour of the system and

the time course dynamics of the individual molecular species. Increasing ligand

concentration decreases the times to reach any signalling threshold and increases

the maximum potential signalling thresholds to be reached. However, high lig-

and concentrations can result in saturated scenarios, where the phosphorylation

of bound dimers is reduced and monomeric bound complexes are enhanced. The

approach presented here could be, in principle, applied to other RTKs, most no-

tably the epidermal growth factor receptor (EGFR), which is over-expressed in

a variety of epithelial tumours. This receptor is of special relevance in clinical

oncology, since a series of promising anti-EGFR small-molecule tyrosine kinase in-

hibitors have already been designed. Unfortunately, treatment resistance emerges

over time and it is important to understand the molecular mechanisms that un-

derlie the development of treatment resistance (see Wheeler et al. (2010)). Other

RTKs of interest, for example, are those of the fibroblast growth factor receptor

family, insulin receptor family and the leukocyte receptor tyrosine kinase family.

The main aim of Chapter 4 is to show how mathematical modelling can bring

some more insights into the studies of vascular system by using data generated

by experimental researchers. In Chapter 4 the models including binding and traf-

ficking are studied. The parameters of the models in this chapter are calibrated

by using the experimental data after performing careful global sensitivity anal-

yses. There are two mechanisms studied in this chapter, in Section 4.1 I study

how the signalling (here phosphorylation) of ERK is triggered and in Section 4.2

I study how the transport of receptors from Golgi to cell surface is perturbed

upon ligand stimulation. In the both sections I hypothesise that the localisation

of phosphorylated dimers can have impact on these mechanisms.

The model studied in Section 4.1, called Model 1, considers only one receptor

type, VEGFR2, and two type of ligands, VEGF-A165 and VEGF-A121. The

analysis of Model 1 in Subsection 4.1.2, describing binding and trafficking of

VEGFR2 upon ligand stimulation, stays with the agreement of the outcomes of

the experiment published by Fearnley et al. (2014), that is VEGF-A165 is better
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VEGFR phosphorylation prompter than VEGF-A121. It is also shown in this

subsection that turnover of VEGF-A121 bound monomers and dimers is faster

than molecules bound with VEGF-A165. There are also more degraded receptors

if the cell is stimulated with VEGF-A121 then by VEGF-A165. Additionally on

average there is twice as many degraded receptors once the cell is stimulated

with VEGF-A comparing to non-stimulated which stays in the agreement with

results shown by Smith et al. (2017). Moreover the order of internalisation rates

of bound dimers agrees with results published by Tan et al. (2013c) using the

experimental data from Lamalice et al. (2007), Chabot et al. (2009), Bruns et al.

(2010) and Zhang et al. (2010).

Analysis of Model 2, which is an extension of Model 1, includes description of

ERK signalling. Results from Subsection 4.1.3 suggest that the ERK phospho-

rylation is most likely triggered by the phosphorylated dimers in the endosome,

rather than on the cell surface. This important result could be potentially tested

by blocking internalisation to measure and compare level of ERK phosphoryla-

tion. Additionally the result for ERK de-phosphorylation rate agrees with the

value published by Schoeberl et al. (2002).

Model 2 describes the internal signalling cascade by the ordinary equation

with delay, which take into account all events involved in that cascade. This

simplification omits all internal molecules involved in triggering ERK phosphory-

lation. Therefore one can only learn about level of delay involved in that process.

To study the whole cascade a new model such as that proposed by Tan et al.

(2013c) should be used. On the other hand parametrisation of Model 2 is easier

to handle because of simplification of internal signalling cascade.

It would be beneficial to test the current model with one more isoform (VEGF-

A145) as there are data available. Additionally in future one could develop a model

which includes events involved in VCAM-1 gene regulation, which was exten-

sively studied by Fearnley et al. (2014). VCAM-1 expression controls endothelial

leukocyte-interactions and it is regulated by VEGF-A stimulation and through

ERK activation. Different VEGF-A isoforms play different roles in regulation of

many gene expression (see Ferrara et al. (2003)).

The model studied in Section 4.2, called Model 3, considers two receptor types,

VEGFR1 and VEGFR2, and one type of ligand VEGF-A165. Model 3 is built to
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study how the transport rate of free receptors from the Golgi to the cell surface

can be perturbed by ligand stimulation. This process has not been studied in

detail yet and there are no experimental results suggesting a way of transport

perturbation. The analyses performed in Subsection 4.2.6 indicates that the

rate is inhibited by ligand stimulation (which is in contradiction with common

belief, hence case D was chosen to be explored in detail together with case A

regardless low relative probability being obtained). Moreover one cannot learn

about the character of perturbation of VEGFR2, that is results for case A and B

or case C and D are very similar. It is also shown that it is more likely that the

transport from Golgi to the surface is triggered by the phosphorylated VEGFR2

homodimers on the cell surface. It is noted here that additional hypotheses,

that the heterodimers can be involved in this process, was studied with the same

outcome.

The binding rates in Model 2 and Model 3 are computed by following the

argument proposed by Lauffenburger & Linderman (1996). The binding rates

could have been estimated using Bayesian inference instead in future. New ex-

periments measuring levels of receptors in internal compartments (endosome and

Golgi) could bring more information about trafficking rates and perturbation rate

ω1 and ω2. More data could also help in supporting or rejecting inhibition hy-

potheses. One could also design an experiment to validate Model 3 by following

individual receptors in some part of the cell as shown by Pryor et al. (2013).

Future work for Model 3 could also use the MCMC algorithm for parameters

inference instead of ABC algorithm. It was shown for Model 2 that the MCMC

approach leads to more robust results as one does not have to rely on choosing

appropriate distance measure.

To summarise models from Chapter 3 can be used as good description of

short time binding and cell surface phosphorylation events as for longer time

behaviour (≥ 15 min) internalisation and recycling should be taken into con-

sideration. Model 1 from Section 4.1.2 describes binding and trafficking events

without using high level of complexity. The phosphorylated dimers peak is how-

ever to be found earlier then at 5 minutes (as suggested by the data). This

observation could be tested by performing experiment which could measure the

level of phosphorylation at time point earlier then 5 minutes. Both Model 1 and
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Model 2 would also benefit by introducing second receptor VEGFR1 or other

co-receptors as Neuropilin which play important role in regulation of VEGFR ac-

tivity. Some models with co-receptors were proposed by Mac Gabhann & Popel

(2004) or Mac Gabhann & Popel (2005). As Model 3 is already complex (with

many parameters to be estimated) one should decide about introducing any co-

receptors after performing some analyses on extended Model 1 or Model 2 with

co-receptors.

Some of the work presented in Chapter 3 are under second revision and soon

should be published. Results gained from the analyses of Model 1 and Model 2 are

under preparation to be published. Model 3 explores some interesting hypotheses

and will be carefully studied in future. New experiments will be designed to prove

or reject the hypothesis stating that the transport rate is inhibited upon ligand

stimulation.

Chapter 5 is an extension of my MSc project describing T cell development

in the thymus. The modelling in this chapter bring some more insights into the

mechanism of thymocytes selection, indicating that it is possible for thymocytes

receiving high TCR signal at the post-DP compartment in the cortex of the

thymus, to avoid death fate by starting receiving intermediate (or low) signal

which allow that thymocyte to be positively selected into the medulla. The

similar scenario is not so clear at the SP CD4 and at the SP CD8 compartments

in the medulla as probability of possible rescue is 0.62 and 0.32, respectively. This

additional chapter contains Bayesian estimation methods for parameters under

studied models and should be read separately.

As the data describe the steady state only in each compartment one should

expect to learn only about the ratio of the parameters. As there is high variability

between mice for thymocytes counts one could also consider normalisation of all

data by the thymocytes counts in first compartment that is pre-DP n1 (see Table

5.1). In future parameters in all three models, Model 1, Model 2 and Model

3, will be estimated using MCMC algorithm for the reasons explained before in

receptor-ligand case. It would also be beneficial to gain more prior beliefs about

some of the rates or at least residency times in each compartment (especially for

Model 3).
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