Over-expression of DNA methyltransferase MET1 in Arabidopsis creates novel epi-alleles with heritable expression states

Samuel George Philip Brocklehurst

Submitted in accordance with the requirements for the degree of Doctor of Philosophy

The University of Leeds

School of Biology

September 2017

Intellectual Property and Publication Statement.

The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others.

This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgment.
© 2017 The University of Leeds and Samuel George Philip Brocklehurst

Acknowledgements

Firstly, I would like to thank my project supervisor Professor Peter Meyer for his invaluable advice and support, especially for organizing the transcription data. I will always be grateful for the time you have committed to me and the project.

I also wish to thank Iris Heidmann and her team, including Suzan Out and Marieke Ykeme. Their willingness to guide me during the collaboration made gathering data at Enza Zaden infinitely easier. I would especially like to thank Iris for the excellent pictures she captured for this thesis and her support while at Enza.

To the Bioinformatician Dr. Ian Carr for compiling all the transcription data and spending the time and energy required to explain the process and what the data means. Thank you.

Thank you to my fellow lab members past and present. Dr. Michael Watson for his guidance and patience, especially during the early years of my Ph.D. Associate Professor. Valya Vassileva, Dr. Matthew Gentry, Dr, Mohd Ahmad Mokhtar, Elizabeth Hollwey, Susan Marcus and Najiha Mohamed, whose knowledge and friendship, made working much more enjoyable.

I owe a great deal of thanks to my mum and sister Lorraine and Megan Brocklehurst for their love and encouragement. Most of all, thank you to my loving and patient partner Louise Frankland whose support during this Ph.D. is greatly appreciated.

Abstract

DNA methylation marks and histone modifications are important factors involved in regulating gene expression and genome structure. By destabilizing these vital factors we can create novel epi-alleles that are transgenerational. To investigate the potential of destabilizing an epigenetic function, we over-expressed DNA METHYLTRANSFERASE1 (MET1) in both Arabidopsis and tomato. In Arabidopsis thaliana, MET1 controls maintenance of cytosine methylation at symmetrical CG positions. At certain densely methylated loci, loss of MET1 causes the loss of all cytosine methylation marks. Over-expression of either the catalytically active or inactive versions of MET1 in Arabidopsis stochastically generates new epi-alleles at loci encoding transposable elements, non-coding RNAs, and proteins, which mainly results in increased expression. These altered expression states can be transmitted to the next generation, without the need for increased MET1 concentration, but long-term stability differs for individual loci. Destabilizing epigenetic factors in tomato appears to be more sensitive, causing lethality when levels of MET1 are increased at certain stages of development. The over-expression of MET1, or other epigenetic factors, offers an alternative strategy to create novel epi-alleles, identify phenotypes under epigenetic control and determine which genes are epigenetically regulated.

Table of Contents
1 General Introduction. 12
1.1 An Introduction to Epigenetics 12
1.2 DNA Methylation 14
1.3 De novo DNA methylation 15
1.4 Maintenance of DNA methylation. 18
1.5 DNA Demethylation 19
1.6 Histones 21
1.7 The biological function of DNA methylation 23
1.8 The structure and novel functions of MET1 25
1.9 Thesis objective. 27
2 Over-expression of DNA methyltransferase MET1 in Arabidopsis thaliana generates new epi- alleles with heritable expression states 29
2.1 Introduction 29
2.2 Results 31
2.2.1 Generating MET1 over-expression lines 31
2.2.2 Phenotypic analysis of the MET1 over-expression lines. 33
2.2.3 Transcript analysis of the MET1 over-expression lines. 38
2.2.4 Bisulphite analysis of MET1 over-expression lines 42
2.2.5 Histone analysis of the MET1 over-expression lines 45
2.2.6 Heritability of epigenetic changes 48
2.2.7 Protein analysis of over-expressing MET1 52
2.2.8 Genetic analysis of AT5G34850 54
2.2.9 Investigating the phenotypic effects of the four candidate genes. 55
2.3 Discussion. 58
3 Investigating the application of over-expressing MET1 in tomato 65
3.1 Introduction 65
3.2 Results 67
3.2.1 Determining the structure of tomato MET1 67
3.2.2 Phenotypic analysis of the tomato ArMET1 over-expression lines 68
3.2.3 Transcript analysis of MET1 over-expression in tomato. 73
3.3 Discussion 78
4 General discussion 80
4.1 Over-expression of MET1 induces heritable epigenetic diversity 80
4.2 Investigating the tomato epigenome 82
4.3 Outlook and open questions 83
4.3.1 Linking phenotypic change to alternatively expressed epi-alleles 83
4.3.2 Using an inducible system to over-express MET1 83
4.3.3 Investigating the protein interactions of MET1 84
4.3.4 The function of the MET1 homologs 85
4.3.5 Epigenetic changes induced by transformation 85
5 Materials and Methods 86
5.1 Materials 86
5.1.1 Arabidopsis material 86
5.1.2 Solanum lycopersicum material 87
5.1.3 Bacterial strains 87
5.2 Primer list. 87
5.3 Construction of plasmids and plant transformation 89
5.3.1 Over-expression Constructs 89
5.3.2 Arabidopsis transformation by floral dip 89
5.3.3 Leaf disc transformation of Solanum lycopersicum. 90
5.4 Agrobacterium protocols 91
5.4.1 Agrobacterium tumefaciens GV3101::pMP90 electro-competent cells 91
5.4.2 Binary plasmid electroporation Agrobacterium 91
5.4.3 Isolation of plasmid DNA from Agrobacterium tumefaciens GV3101::pMP90 91
5.5 E. coli protocols 92
5.5.1 Preparation of chemically competent E. coli 92
5.5.2 Heat-shock transformation 93
5.5.3 Mini-prep isolation of plasmid DNA from E.coli 93
5.6 Phenotypic analysis 94
5.6.1 Arabidopsis phenotyping 94
5.6.2 Tomato phenotyping 94
5.7 DNA Protocol 95
5.7.1 Isolation of genomic DNA from Arabidopsis. 95
5.7.2 Restriction digest 95
5.7.3 Ligation reaction 95
5.7.4 Polymerase chain reaction (PCR). 96
5.7.5 Bisulphite analysis 96
5.7.6 DNA sequencing 97
5.7.7 Data analysis 97
5.8 RNA analysis 98
5.8.1 Isolation of RNA from plants 98
5.8.2 Semi-quantitative PCR 98
5.8.3 Quantitative RT-PCR assay 99
5.8.4 Sequencing and data analysis 99
5.9 Protein analysis 102
5.9.1 ChIP assay 102
5.9.2 Western blot assay. 102
6 References 103
7 Supplementary data 122
Supplementary Table 139
Supplementary Table 2 141
Supplementary Table 3 147
Supplementary Table 4 148
Supplementary Table 5 160
Supplementary Table 6 163
Supplementary Figure 1 164
Supplementary Figure 2 165
Supplementary Figure 3 166

List of Abbreviations.

5-aza	5-Azacytidine
A	Adenine
AGO	Argonaute
ArMET1	Arabidopsis Methyltransferase 1
BAH	Bromo-Adjacent homology
bp	base pairs
C	Cytosine
CaMV	Cauliflower Mosaic Virus
cDNA	Complementary Deoxyribonucleic acid
CHD	Chromo-Domain
CLE3	Clavata 3
CLE9	Clavata 9
CMT2	Chromomethyltransferase 2
CMT3	Chromomethyltransferase 3
Col	Arabidopsis Columbia
DCL	Dicer-Like
DCM	DNA Cytosine Methyltransferase
DDM1	Decrease in DNA Methylation 1
DME	Demeter
DML	Demeter-Like
DNA	Deoxyribonucleic acid

DNMT1	DNA Methyltransferase 1
DNMT3A	DNA Methyltransferase 3 A
DNMT3B	DNA Methyltransferase 3 B
DNMT3L	DNA Methyltransferase 3-Like
DRM2	Domains Re-Arranged Methyltransferase 2
ds	double stranded
E.coli	Escherichia coli
EDTA	Ethylenediaminetetraacetic acid
FWA	Flowering Wageningen
G	Guanine
GUS	β-Glucuronidase
H3K4me3	Histone 3 lysine 4 trimethylation
H3K9me2	Histone 3 lysine 2 dimethylation
H3K27ac	Histone 3 lysine 27 acetylation
H3K27me3	Histone 3 lysine 27 trimethylation
H4ac	Histone 4 acetylation
HDA6	Histone Deacetylase 6
IAA	Isoamyl Alcohol
KTF1	Kow Domain-Containing Transcription Factor 1
LB	liquid lysogeny broth
LINE	Long Interspersed Nuclear Element
mC	5-methyl-cytosine
MEA	MEDEA

MET1	Methyltransferase 1
met1-1RE	MET1 Restored
METo	Methyltransferase 1 over-expressioning
mRNA	messenger Ribonucleic acid
MS	Murashige and Skoog
NASC	Nottingham Arabidopsis Stock Centre
nc	non-coding
NCBI	National Center for Biotechnology Information
nt	nucleotide
PAP26	Purple Acid Phosphatase 26
PCNA	Proliferating Cell Nuclear Antigen
PCR	Polymerase Chain Reaction
PEV	position effect variegation
PGC	Primordial Germ Cells
pi	piwi-interacting
POLII	RNA Polymerase II
POLIV	RNA Polymerase IV
POLV	RNA Polymerase V
PTGS	Post-Transcriptional Gene Silencing
RdDM	RNA-directed DNA Methylation
rDNA	ribosomal DNA
RDR2	RNA-Dependent RNA Polymerase 2
RDR6	RNA-dependent RNA polymerase 6

RISC	RNA-Induced Silencing Complex
RNA	Ribonucleic acid
ROS	Repressor of Silencing
RPS	Repetitive Petunia Sequence
SAM	S -adenosyl methionine
SaM	Shoot apical Meristem
SDS	Sodium Dodecyl Sulphate
si	small interfering
SNP	Single Nucleotide Polymorphism
SP9D	Self-Pruning 9D
sq	semi-quantitative
SRA	Set and Ring Associated
sup	superman
SUVH4	Suppressor of Variegation 3-9 Homologue 4
T	Thymine
TAE	Tris-acetate-EDTA
T-DNA	Transfer-DNA
TE	Transposable Element
TGS	Transcriptional Gene Silencing
SIMET1	tomato Methyltransferase 1
VCN	Vegetative Cell Nucleus
WT	Wildtype
wUs	Wuschel

1 General Introduction

1.1 An Introduction to Epigentics

From the beginning when DNA was first identified as a distinct molecule by the Swiss physician Friedrich Miescher in 1869 (Dahm, 2005), to the discovery of the molecular structure and function of DNA in 1953 by Watson and Crick (Watson and Crick, 1953), DNA has established itself as the universal language of life. This led to the founding of the central dogma of molecular biology which describes the transfer of information from DNA to RNA to protein, giving rise to a wide variety of functions. This simplistic view led many scientists to focus solely on protein encoding genes, disregarding over 90% of the human genome leading to the term junk DNA which was believed to have no function or purpose. However, new findings have brought to light the importance of DNA structure, not just DNA sequence, in determining gene expression and development. The importance of genotype determining phenotypic change during development and the interaction between the two led to the coining of the term 'epigenetics' (Waddington, 1942). At the time, however, it was not yet fully understood the significance of epigenetic control and its wider implications in cell development. One of the most powerful metaphors used to illustrate cellular development is the epigenetic landscape (Fig 1.1) introduced by Conrad Waddington (Waddington, 1957).

Figure 1.1: Waddington's classic model of an epigenetic landscape. At the top of the landscape is a ball which represents an undifferentiated totipotent cell, the troughs and peaks below portray the countless developmental pathways that the ball can traverse. The further the ball travels down a specific pathway, the more established it becomes in a particular developmental route until the cell becomes fully committed to its fate.

Over time the term epigenetics has been redefined as the study of internal factors and external stimuli leading to a heritable change in gene expression that is independent of alterations in the DNA sequence (Dupont et al., 2009). This can occur as post-transcriptional gene silencing (PTGS) which involves the cleavage of mRNAs directed by short interfering RNA (siRNAs), or as transcriptional gene silencing (TGS). The mechanism of TGS is primarily regulated by the structural organisation of the genome. In eukaryotes, the genomic structure is comprised of an eight histone protein wound by DNA twice to form a nucleosome. This, in turn, forms the fundamental repeating unit that structures the genome Covalent marks such as acetylation and methylation at the N-terminal tails of histone proteins have the ability to alter the structural conformation of chromatin into a tightly packed and repressed heterochromatic state, or a more open transcriptionally active euchromatic state. Methylation marks are another important layer of epigenetic control which involves the transfer of a methyl group $\left(-\mathrm{CH}_{3}\right)$ from S-adenosyl methionine (SAM) to a cytosine residue. These epigenetic modifications must adhere to two fundamental rules The alteration must be revisable in the sense that the original structure can be recovered; conversely, the modifications should be heritable so that the epi-alleles generated are stable following cell division, and even span multiple generations. The ability of epigenetic modifications to work independently or coordinate between each other is essential genome regulation. This includes position effect variegation (PEV) (Muller, 1930), paramutations (Brink, 1959), transgene silencing (Napoli et al., 1990; Meyer et al., 1992) and imprinting (Dechiara et al., 1991).

1.2 DNA Methylation

From Prokaryotes to Eukaryotic organisms the genetic code is highly conserved. However, the epigenetic strategies implemented to regulate the genome are often very different. For example, DNA methylation in bacteria occurs at nitrogen 6 of adenine $\left({ }^{m 6} A\right)$, carbon 5 of cytosine $\left({ }^{\mathrm{m}} \mathrm{C}\right)$ and in some cases nitrogen 4 of adenine $\left({ }^{\mathrm{m} 4} \mathrm{~A}\right)$. DNA methylation in bacteria is used as a defence mechanism against foreign DNA. The methylated genome prevents cleavage from endonucleases, unlike unmethylated invading phage genomes which are readily degraded (Casadesus \& Low, 2006).

In eukaryotes, the most prominent type of methylation is cytosine methylation, which in vertebrates accounts for nearly 100% of all methylated loci. In the mammalian system, methylation is found exclusively at the carbon 5 of cytosine, and this epigenetic modification is present throughout the whole genome. At gene promoters (Larsen et al., 1992) and origins of replication (Antequera \& Bird, 1999) unmethylated regions can be found with higher than average CG content called CpG islands (Cooper et al., 1983) which function as a genomic platform for regulating transcription. In mammals, DNA methylation is located at cytosines in a CG sequence context, with the exception of embryonic stem cells, where methylation is found at cytosines in CA and CT sequence contexts (Ramsahoye et al., 2000).

In plants, DNA methylation can occur in CG, CHG and CHH sequence contexts (where H represents A, C or T). Establishment and maintenance of methylation in these three specific contexts requires the particular action of one of three methyltransferases; DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2), METHYLTRANSFERASE 1 (MET1) and CHROMOMETHYLASE 3 (CMT3). DRM2 is a homologue of the mammalian DNA methyltransferase DNA METHYLTRANSFERASE 3 (DNMT3) and is responsible for de novo methylation in all sequence contexts (Cao et al., 2003). MET1 is a homolog of the mammalian DNA methyltransferase DNA METHYLTRANSFERASE 1 (DNMT1), that is responsible for maintenance of CG methylation during DNA replication (Jones et al., 2001). CMT3 is another maintenance methyltransferase that is plant specific and is required for CHG methylation (Lindroth et al., 2001). While these enzymes seem to have specific roles, there are studies that demonstrate their ability to coordinate or compete at specific
genomic regions. One example would be the maintenance of non-CG methylation which is carried out by both CMT3 and DRM2 via small interfering RNA (siRNA) (Cao et al., 2003). In a met1 mutant, methylation is lost in all three sequence contexts (Stroud et al., 2013). Though loss of CHG methylation is possibly due to the loss of chromatin marks required for CMT3 binding (Soppe et al., 2002; Tariq et al., 2003), the loss of CHH marks remain unclear, but may reflect a failed interaction between CMT3 and DRM2, or a direct role of MET1 in CHH methylation targeting.

1.3 De novo DNA methylation

De novo methylation is described as the addition of a methyl group to a cytosine base, that had been previously unmethylated. It was first identified from studies in tobacco when an RNA viroid containing a high level of secondary structures was shown to direct methylation to homologous transgenic sequences (Wassenegger et al., 1994). In mammals, there is an escalation of de novo methylation that occurs during two stages of development. During early embryogenesis, there is a universal removal of epigenetic markers shortly after fertilisation. This mechanism allows for a wave of de novo methylation to generate new methylation patterns (Reik et al., 2001), and silence one copy of the X-chromosome in females (Goto \& Monk, 1998). During gametogenesis, there is a significant increase in the levels of de novo methylation which establishes DNA methylation at transposable elements (TE) and imprinted genes (Chen et al., 2003). The majority of the de novo methylation processes are catalysed by DNA METHYLTRANSFERASE 3A (DNMT3A) and DNA METHYLTRANSFERASE 3B (DNMT3B) which are guided by PIWI-like ARGONAUTE (AGO) proteins and PIWI-interacting RNA (piRNA). Although DNMT3A \& B play different roles, they both have the ability to catalyse both CG and non-CG methylation. The major role of DNMT3A is the establishment of genomic imprinting, while DNMT3B serves to catalyse de novo methylation of repetitive centromeric DNA to increase the stability of the genome.

Unlike mammals, plants do not undergo an extensive reprogramming of DNA methylation but appear to have a stable methylation pattern. Plants have two distinct pathways which they can employ to target cytosine residues for methylation. The two pathways that control de novo methylation are the RNA-directed DNA methylation pathway (RdDM) and the independent pathway. DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2), a homologue of the mammalian methyltransferase DNMT3A is highly regulated by the RdDM pathway which is responsible for de novo methylation. The RdDM pathway utilises siRNA in order to target de novo methylation in a sequence-specific manner to regulate various epigenetic activities. The generation of a diverse range of siRNAs for targeting requires a variety of plant-specific proteins and enzymes. Precursor dsRNA is generated by plant specific RNA-DEPENDENT RNA-POLYMERASE 2 (RDR2) which synthesises the complementary strand of RNA POLYMERASE IV (PoIIV) transcripts. Furthermore, dsRNA can be produced by the RNA POLYMERASE II (PolII) which produces transcripts derived from inverted repeats or over-lapping antagonistic regions. The generated dsDNA is recognised by DICER-LIKE (DCL) for cleavage into siRNAs. In total plants contain four DCL proteins, the first being DCL1 which is associated with the production of microRNAs (miRNA) (Henderson et al., 2006). DCL3 is the primary protein involved in cleavage of dsRNA into 21-24nt siRNAs, although DCL2 and DCL4 have some overlapping function (Xie et al., 2004). These 21-24nt small RNA duplexes are in turn stabilised by ribose methylation at the 3 ' terminal catalysed by the enzyme HEN1 methyltransferase (Yu et al., 2005). It is believed this modification acts as a two-fold function: firstly to protect the sRNAs from degradation by exonucleases, and secondly, it may help with recognition and loading onto ARGONAUTE (AGO) complexes (Yu et al., 2005). In Arabidopsis, there a ten AGO proteins present, of these, three (AGO4, AGO6 and AGO9) are known to associate with $24 n t$ siRNAs and have a preference for sRNAs with a 5' terminal adenosine (Mi et al., 2008; Havecker et al., 2010). The mature siRNA is loaded onto an AGO4- RNA-induced silencing complex (RISC) or AGO6-RISC (Li et al., 2006) which is facilitated by KOW DOMAIN-CONTAINING TRANSCRIPTION FACTOR 1 (KTF1) (He et al., 2009). The AGO4 complex is then targeted to a specific site through the use of the PolV scaffold complexes (Wierzbicki et al., 2009), which allows the AGO4 complex to direct DRM2 to the particular site (Wierzbicki et al., 2009), for targeted de novo methylation (Fig. 1.2).

Figure 1.2: RNA dependent DNA de novo methylation. Pol IV transcribes ssRNA that is copied into a dsRNA by RDR2. DCL3 processes the dsRNA into 24-nucleotide siRNAs. HEN 1 then methylates the 3^{\prime} ends of the siRNA to be incorporated into the AGO4-RISC complex. Pol V transcribes a scaffold that base-pairs with the AGO4-bound siRNAs. The AGO4-RISC complex is recruited via Pol V to create a complex with KTF1, which binds the non-coding nascent PolV transcripts. AGO4 links DRM2, which catalyses de novo methylation of DNA.

Despite, RdDM pathways ability to direct de novo methylation at all three-sequence context, there is an alternate path independent of siRNAs that can de novo methylate at CHH sites.

This alternative pathway requires CMT2 (Zemach et al., 2013). It is hypothesised that the targeting of CMT2 to CHH regions occurs through interaction with the dimethylation of lysine 9 on histone 3 (H3K9me2) via its chromodomain and not siRNA (Pikaard, 2013).

1.4 Maintenance of DNA methylation

Once methylation has been established, it must be maintained. In mammals, the responsibility of CG methylation maintenance is carried out by DNMT1. DNMT1's primary function is the maintenance of DNA methylation lost during semi-conservative replication. To ensure the faithful duplication of methylation patterns, a range of histone modifications and proteins have evolved allowing DNMT1 to actively associate with the replication foci during S-phase (Fig 1.3). DNMT1 functions to restore hemimethylated DNA during semiconservative replication to its fully methylated state (Kim et al., 2009). Studies have shown that the C-terminal catalytic domain of DNMT1 is recruited to the replication fork via PROLIFERATING CELL NUCLEAR ANTIGEN (PCNA) elements found at the replication foci (Chuang et al., 1997). Other chromatin-associated proteins, such as the multi-domain protein UHRF1 assist in the stable association of DNMT1 to hemimethylated DNA during replication. The PCNA/ DNMT1 interaction along with the activity of UHRF1 enhances DNMT1 affinity for hemimethylated DNA. This function allows DNMT1 to recognise and replicate the methylation pattern from the parent strand to the daughter strand as they are generated during semi-conservative replication (Mortusewicz et al., 2005).

Like DNMT1 the primary function of MET1 is the maintenance of methylation patterns during semi-conservative replication. The mechanism by which MET1 targets the replication foci is believed to be similar in manner to DNMT1 targeting (Fig 1.3). MET1 binds to hemimethylated DNA mediated by VARIANT IN METHYLATION (VIM) proteins. These contain the Set and Ring associated (SRA) domain that binds methylated Cytosine residues (Woo et al., 2008). The VIM1 protein also interacts with histone modifications (H2B, H3, H4, and HTR12) suggesting that the protein acts as a DNA methylation-histone interface. At heterochromatic regions, an SWI/SNF family chromatin remodelling factor, DECREASE IN DNA METHYLATION 1 (DDM1) allows access to the target area allowing MET1 to bind (Woo
et al., 2007). Once MET1 has attached, the parent DNA strand is utilised during semiconservative replication to reproduce the methylation pattern onto the newly synthesised daughter strand.

Figure 1.3: Model is depicting the maintenance of CG methylation during replication in both plants and mammals. DNMT1 is believed to be recruited to the replication foci through UHRF1 which specifically interacts with hemimethylated DNA as well as with PCNA. After being recruited, DNMT1 functions to maintain methylation patterns by restoring the hemimethylated DNA to a fully methylated state. In plants, MET1 and the VIM family of SRA domain proteins, which are homologues of DNMT1 and UHRF1, respectively, are likely to function in a similar manner to maintain CG methylation patterns.

1.5 DNA Demethylation

Epigenetic modifications must be reversible, but for such an important role there is little documentation how active demethylation is carried out and the underlying mechanisms that are involved. There are two ways methylation can be removed; passive demethylation and active demethylation. Passive demethylation of genomic regions occurs via the loss of
function of maintenance enzymes, leading to a global loss of methylation following cell division. An example of passive DNA demethylation can be observed in MET1 mutants which possess a global loss of methylation in all three sequence contexts (Kankel et al., 2003). In plants, active demethylation removes methylated cytosines ($5-\mathrm{mC}$) directly excised via the base excision repair process carried out by REPRESSOR OF SILENCING 1 (ROS1), DEMETER (DME), DEMETER like 2 (DML2) and DML3 (Penterman et al., 2007; Zhu, 2009). Each of the four enzymes can remove $5-\mathrm{mC}$ in all sequence contexts, although preferential removal of specific substrates is debated (Agius et al., 2006; Gehring et al., 2006; Morales-Ruiz et al., 2006; Penterman et al., 2007). In addition to hydrolysing the glycosidic bond between the cytosine and sugar-phosphate backbone, they can also nick the DNA backbone at the abasic site via apurinic/apyrimidinic (AP) lyase activity (Bruner et al., 2000; Jiricny, 2002). During removal of 5-mC, these enzymes simultaneously glycosylates the 5-methylcytosine base and cleaves the DNA backbone, generating a single-nucleotide gap that induces the base excision repair pathway, eventually refilling it with an unmethylated cytosine.

In vegetative cells, ROS1, DML2 and DML3 remove DNA methylation at the 5^{\prime} and 3^{\prime} ends of genes in a sequence-specific context (Penterman et al., 2007). ROS1 offsets the DNA methylation established by RdDM, to prevent hypermethylation and the spreading of DNA methylation via the self-reinforcement mechanisms that could lead to adverse gene silencing. DNA methylation and DNA methyltransferases may act as feedback mechanisms that play a role in establishing and regulating ROS1 demethylation (Mathieu et al., 2007 Williams et al., 2015). When DNA methylation levels are reduced in a met1 mutant or treated with DNA methylation inhibitors, ROS1 levels are down-regulated (Mathieu et al., 2007). However, it is still not fully understood how plant DNA glycosylases are targeted to specific sequences. One possibility is a RNA-based targeting system. It has been demonstrated that ROS1 co-localises with REPRESSOR OF SILENCING 3 (ROS3), which possesses RNA binding capacity (Zheng et al., 2008).

During gametogenesis, DME is responsible for maternal allele DNA demethylation in the endosperm that establishes gene imprinting (Gehring et al., 2006). Maternal DME also has the ability to change the endosperm methylation landscape completely, demethylating TEs and repeat sequences (Hsieh et al., 2009). In the central cell during female gametogenesis, the levels of MET1 are reduced (Jullien et al., 2008), and DME levels are increased (Choi et
al., 2002), culminating in the global loss of DNA methylation via both passive and active demethylation.

Although demethylation directly removes methylation modifications, it may also lead to modifications of the chromatin before or during the removal of $5-\mathrm{mC}$. A histone acetyltransferase INCREASED DNA METHYLATION 1 (IDM1) was identified as a regulator of DNA demethylation in Arabidopsis (Qian, W. et al., 2012). IDM1 recognises chromatic regions with CG methylation and low histone 3 lysine 4 (H3K4). ROS1 and IDM1 interact with each other and appear to function in the same pathway for DNA demethylation, albeit only a portion of ROS1 targets are regulated by IDM1. Currently, it is uncertain how ROS1 is recruited to the modified chromatin, but the discovery that there is interplay between IDM1 and ROS1 suggests that histone modifications and chromatin structure may play a role in active DNA demethylation. Maintenance of CHG methylation can be impaired by INCREASE IN BONSAI METHYLATION 1 (IBM1), which is a histone demethylase that prevents H3K9 methylation (Saze et al., 2008; Miura et al., 2009), further supporting this theory.

1.6 Histones

Chromatin is made up of the basic structural unit, the nucleosome, which consists of a 146bp fragment of DNA that's wrapped almost twice around a protein octamer which is comprised of a histone H3-H4 tetramer and two H2A-H2B dimers (Kornberg, 1974; Richmond et al, 1999; Wolffe and Guschin, 2000). Each histone protein possesses an Nterminal tail which allows for a variety of modifications such as methylation, acetylation, ubiquitination or phosphorylation of specific amino acids which can alter the conformational state of chromatin, essential for gene regulation. An example of a histone modification creating a conformational change is acetylation of lysine residues. One of the primary 'active' modifications is acetylation of the N -terminal tail which neutralises the positive charge on the ε amino group which acts as a binding site for the bromodomain-containing proteins, leading to a more open and active euchromatic state (Taverna et al., 2007).

Methylation of lysine residues are a more complex epigenetic mark, that can either silence transcription or activate chromatin domains, depending on which lysine residues are methylated and the degree of methylation. The overall charge of the histone tail is not
affected by lysine methylation, but an increase in hydrophobicity may allow intra- or intermolecular interactions between proteins or the modification alters the conformational structure allowing proteins to bind preferentially to the methylated domain (Du et al., 2012; Lanouette et al., 2014). Typically, histone H3K9 and H3K27 methylation are associated with repressed regions, whereas H3K4 methylation is associated with a more active open chromatin structure (Berger, 2007). In Arabidopsis, SET domain proteins are responsible for modulating lysine methylation, which can be classified into four distinct groups: SU(VAR)3-9, ENHANCER OF ZESTE (E(Z)) homologs, TRITHORAX (TRX) groups, and ABSENT, SMALL, OR HOMEOTIC DISCS 1 (ASH1) (Baumbusch et al, 2001).

B

Figure 1.4: The different conformational structures of chromatin. A) Euchromatic structure of histones with the active modification H3K4me3 at the N-terminal tail. B) Heterochromatic structure of histone with the repressive marks H3K9me2 and H3K27me3.

It has been well documented that there is a complex interplay between DNA methylation and the methylated H3K9 modification. In kyp/suvh4 mutants, H3K9me2 is reduced, leading to a loss of CHG methylation catalysed by CMT3 (Jackson et al., 2002). Transposable elements were also identified as common targets for both KYP/SUVH4 and CMT3 using expression profiling (Tran et al., 2005), and CHROMATIN IMMUNOPRECIPITATION (ChIP) analysis revealed a high correlation between H 3 K 9 me 2 and CHG methylation (Bernatavichute et al., 2008). These results indicate that maintenance of non-CG methylation requires H3K9 methylation and is critical for presevation of genome stability and transcriptional repression. DNA methylation can also reinforce histone methylation in a positive feedback loop. In a met1 mutant where CG levels are diminished, a decrease in H3K9me2 is observed at 180bp centromeric repeats and transposable elements (Johnson et al., 2002; Tariq et al., 2003).

1.7 The biological function of DNA methylation

DNA methylation is essential for a number of cellular functions including gene expression, cell differentiation, regulation of transposable elements and even plant immunity (Choi et al., 2002; Chan et al., 2006; Agorio and Vera, 2007). DNA methylation present at gene promoters are commonly associated with transcriptional silencing, by directly obstructing transcription factors, and recruiting methyl-binding proteins that can modify the histone tail altering the chromatin structure. Methylation of DNA in all three-sequence context "dense methylation" is often found at TEs to prevent activation and mobilisation, which would disrupt the genome integrity by inserting into critical regions. One example would be the transposable element ATGP3, a class I TE in the gypsy family, which is not active in either a cmt3 or met1 mutant, but does occur in the ddm1 and met1 cmt3 double mutant
(Tsukahara et al., 2009). This observation suggests a redundant function of CG and non-CG methylation in the transcriptional silencing of the TEs.

TEs should not be seen as just mobile deleterious mutagens, as they can also have positive regulatory roles. At regions with hypermethylated TEs, a lower meiotic recombination rate is observed compared to hypomethylated low copy number genes, which indicates that DNA methylation can influence the rate of recombination (Melamed-Bessudo \& Levy, 2012). In the ddm1 hypomethylated mutant's recombination rates were analysed in both euchromatin and heterochromatin. It was discovered that the rate of recombination between markers located in euchromatin increased, whereas recombination went unchanged between markers located in heterochromatin. Interestingly it is heterochromatic regions that are most affected by the loss of methylation in the ddm1 mutant; this suggests that DNA methylation may only act as a repressor of meiotic recombination at euchromatic regions where the chromatin is tightly packed (Melamed-Bessudo \& Levy, 2012).

Genomic imprinting a mechanism by which genes are expressed in a parent-specific manner is also mediated by DNA methylation. Imprinting is present throughout the plant kingdom and occurs in the endosperm during seed development (Jahnke \& Scholten, 2009). There are many examples of imprinted genes in plants including the Arabidopsis MEA, FIS2, FIE (Luo et al., 2000) and FWA (Kinoshita et al., 2004) genes, which are all expressed from the maternal alleles of the endosperm. FWA is an imprinted gene that is by default, silenced via methylation (Choi et al., 2002). Expression of FWA during endosperm development occurs via maternal-specific activation that is dependent on the removal of methylation by DME. However, the loss of MET1 activity induces ectopic FWA expression causing late flowering. This observation indicates that maintenance of endosperm-specific and parent of originspecific FWA expression depends on MET1. If hypomethylation of FWA occurs in embryonic lineages, the fwa epigenetic mutation and its associated late-flowering phenotype can be stably inherited over many generations.

Methylation also plays a crucial role in plant immunity by regulating immune response genes. In Arabidopsis, crown gall tumours increased levels of MET1, DRM2, CMT3, and AGO4 transcripts were detected along with a global increase of methylation (Gohlke et al., 2013). These findings indicate that enhanced expression of these epigenetic factors may be part of a plant-induced defence response to prevent Agrobacterium-induced tumour
development. Six disease resistance genes carrying repeats in their vicinity were identified to be derepressed in met1 nrpd2 mutants (Yu et al., 2013). One of these genes, RESISTANCE METHYLATED GENE 1 (RMG1) possesses two repeats in its promoter, a distal repeat that is strongly methylated in all mC contexts and a proximal repeat that is unmethylated in the wildtype but hypermethylated in ros1 mutants (Zhu et al., 2007). The hypermethylated repeat in the ros1 mutant prevents transcriptional activation. This suggests that RMG1 is controlled by a dual and antagonistic mechanism. Basal expression of RMG1 is repressed via siRNA-directed DNA methylation, while active DNA demethylation maintains pathogentriggered induction by regularly pruning DNA methylation at the boundaries of its proximal repeat, which may contain functional cis-regulatory elements (Deleris et al., 2016).

Currently, the significance of DNA methylation found within the gene bodies is poorly understood. DNA methylation found within the gene is predominantly located in exons especially those found within genes that are longer than average and functionally more important. This observation supports the hypothesis that body methylation may function as a marker allowing enhanced accuracy for splicing, preventing aberrant transcription (Takuno \& Gaut, 2012). Since methylation of DNA is considered a repressive mark especially on single copy genes and TEs, it may play a role in the silencing of cryptic promoters found within the gene body (Zilberman et al., 2007).

1.8 The structure and novel functions of MET1

MET1 is structurally similar to that of the mammalian methyltransferase, DNMT1. Both MET1 and DNMT1 have a conserved methyltransferase domain but diverge at the N terminus responsible for DNA targeting and regulation (Finnegan and Dennis, 1993). The Nterminal domain is connected to the C-terminus via a stretch of alternating glycine-lysine (GK) that acts as a nuclear import mechanism (Vanderkrol and Chua, 1991). Within the Nterminal of MET1, a slight hydrophobic region serves as a replication foci targeting sequence, assisting in MET1 localisation at the replication foci (Hermann et al., 2004). MET1 also contains two BAH domains, that have been demonstrated to interact with histone deacetylase HDA6 and coordinate the maintenance of TE silencing (Liu et al., 2012). The
methyltransferase domain of MET1 contains six highly conserved regions (Fig 1.5). Motifs I and X are responsible for the binding of the methyl donor SAM (Posfai et al., 1989). Motif IV contains an invariable Pro-Cys dipeptide that is the catalytic site of all known C-5 cytosinespecific DNA methylases. Motif VI is responsible for the binding of the methyltransferase domain to the targeted cytosine (Jeltsch, 2006), while motif VIII is believed to negate the negative charge of the DNA backbone via nonspecific association with cytosine residues Motif IX interacts with the target recognition domain (TRD) located between motif VII and IX. The variable TRD is thought to be responsible for nearly all base-specific interactions with the 5'-GCGC-3' target site (Lee et al., 2002).

Figure 1.5: The structure of Arabidopsis MET1. The positions of the major conserved catalytic motifs at the C-terminus are represented by Roman numerals.

In the literature, the function of MET1 is primarily discussed in the context of its maintenance of CG methylation marks. The role of MET1, however, is not strictly limited to maintenance of CG methylation. At some target loci, it was found that methylation lost from the body of an endogenous target gene in a met1 mutant, can be partially restored at CG sites when functional MET1 was re-introduced. The target also did not require passage through the germline to be re-methylated, suggesting MET1 may have de novo activity at CG
sequence contexts (Zubko et al., 2012). It has been observed that MET1 can also influence non-CG methylation. REPETITIVE PETUNIA SEQUENCE (RPS) is a repetitive hypermethylated DNA fragment from Petunia hybrida, that attracts DNA methylation in all sequence contexts when transferred into Arabidopsis thaliana. When the RPS was introduced into a met1 Arabidopsis mutant via a genetic cross, a reduction in both CG and non-CG methylation at the RPS was observed. Similarly, both CG and non-CG methylation were eliminated at the RPS when transferred into a drm2/cmt3 mutant. This suggests that MET1, DRM2 and CMT3 may coordinate with each other to establish methylation at the RPS (Singh et al., 2008).

The novel functions of MET1 further extends histone modification layer of epigenetic control. H3K9 methylation, which associates with transcriptionally repressed heterochromatin, is lost when CG methylation is completely removed in a met1 mutant (Tariq et al., 2003). Conversely, loss of non-CG methylation in a cmt3 mutant does not affect H3K9 methylation. When H3k9 methylation is reduced in a kyp suvh5 suvh6 mutant Arabidopsis, there was no significant change in CG methylation, indicating H3K9 methylation is not required for targeting CG methylation (Stroud et al., 2013). Therefore, MET1 and CG methylation may act as a scaffold to directly interact with H 3 K 9 and initiate methylation at the N-terminal tail. The N-terminal domain of MET1 has also been shown to interact directly with the C-terminal domain of HISTONE DEACETYLASE 6 (HDA6) to cooperatively silence TEs and maintain heterochromatic gene silencing (Liu et al., 2012).

1.9 Thesis objective

MET1 does not exclusively act as a CG-specific maintenance methyltransferase; the literature has illustrated that at specific loci MET1 can interact with other methyltransferases to coordinate both CG and non-CG methylation. If MET1 does play a coordinating role, it should involve the direct interaction of MET1 with individual proteins or complexes. Any changes in MET1 concentration, reduction as well as increase, could affect the efficiency and stability of complex formation or interaction with different factors, and could potentially alter epigenetic states at dense methylation regions. Any effect that was induced by protein interaction of MET1 would not necessarily require an increase in MET1
proteins with a functional catalytic activity. To test this model, we over-expressed catalytically active and inactive versions of the MET1 gene under the control of the 35S promoter. This was tested in both the model organism Arabidopsis and a commercially viable crop, Solanum lycopersicum (tomato). By over-expressing MET1 I hope to induce heritable epi-alleles at distinct loci with altered gene expression and epigenetic marks, to generate different phenotypes for commercial use.

2 Over-expression of DNA methyltransferase MET1 in Arabidopsis thaliana generates new epi-alleles with heritable expression states

2.1 Introduction

DNA methylation influences a number of important processes in plants, including DNA repair (Yao et al., 2012) transcription (Huettel et al., 2007), and recombination (Mirouze et al, 2012), with further implications for genome structure (Kato et al, 2003), plant development (Finnegan et al, 1996) and evolution (Lopez-Maury et al, 2008). The stable changes in expression created by DNA methylation has emerged as a significant factor in shaping phenotypic diversity (Becker et al., 2011; O’Malley and Ecker, 2012). DNA methylation patterns also respond and transform in response to environmental stimuli (Finnegan, 2002), indicating that DNA methylation may act as a molecular switch for evolutionary adaptation of plants to environmental change (Kou et al., 2011). Various biotic (Boyko et al., 2007), and abiotic stress conditions (Kovarik et al., 1997) have been shown to alter the DNA methylation profile, further supporting this model.

In Arabidopsis, maintenance of methylation at CG sequences is catalyzed by the maintenance methyltransferase MET1 (Kankel et al., 2003). To further understand the complex roles of MET1, MET1 knockdowns (Finnegan et al., 1996) and knockouts (Kankel et al., 2003) have been created, resulting in global DNA hypomethylation and developmental abnormalities. However, the effects of increasing MET1 levels and what effect that may have on the global DNA methylation profile have never been assessed in plants. The current dogma states that the sole role of MET1 is to maintain CG methylation if this was truly the case we would predict that over-expression of MET1 would result in continued maintenance of CG methylation. Nevertheless, recent evidence suggests that MET1 functions deviate from the classical CG maintenance model. In a met1 mutant, it has been observed that at certain loci the methylated histone mark H3K9 is lost, which results in the loss of CHG and CHH methylation marks (Stroud et al., 2013). A reduction in DNA methylation in both CHG and CHH sequences and the change in histone marks in the met1 mutant, highlights that MET1 has a more complex and diverse function than initially believed. Raising the question, what further roles and functions are MET1 responsible for?

Previous work had confirmed that MET1 does not exclusively act as a CG-specific maintenance methyltransferase. At particular loci, MET1 can act together with other methyltransferases as a central coordinator for both CG and non-CG methylation or 'dense methylation'. Loss of a functional MET1 causes loss of cytosine methylation in all three sequence context at loci that are densely methylated (Singh et al., 2008). This coordinating role of MET1 has been observed in a number of Arabidopsis genes with dense DNA, further supporting this model (Watson et al., 2014). While CHH and CHG methylation at these loci are dependent on the chromomethylases CMT2 and CMT3, all methylation marks are lost in a met1 mutant, highlighting the important coordinating role MET1 plays. This indicates that DNA methylation patterns at particular loci are determined by the joint activity of several DNA methyltransferases that are fundamentally directed by MET1. This may be mediated by epigenetic complexes involving methyltransferases, methylcytosine-binding proteins (Woo et al., 2008), chromatin remodeling factors (Kakutani et al., 1996), and/or histone modifiers (Kelly et al., 2012). MET1 may interact directly and recruit these factors, while other factors are recruited indirectly via epigenetic marks which have been established by the MET1 complex, leading to a change in epigenetic state at some loci and even establishing novel dense methylation at others.

The role of MET1 co-ordinating dense methylation would involve direct interaction with individual proteins or complexes. Any changes in MET1 concentration, reduction as well as increase, could affect the efficiency and stability of complex formation or interaction with different factors, and could potentially alter epigenetic states at dense methylation regions. Any effect that was induced by protein interaction of MET1 would not necessarily require an increase in MET1 proteins with a functional catalytic activity. To test this model, we overexpressed catalytically active and inactive versions of the MET1 gene under the control of the 35 S promoter. We find that at certain loci, over-expression of the MET1 transgene, can establish new epigenetic marks while removing/reducing the presence of previous marks and alter expression levels which are stably maintained over numerous generations. All of which is independent of the catalytic function of MET1 to methylate.

2.2 Results

2.2.1 Generating MET1 over-expression lines

To investigate the quantitative effects of increased MET1, it was first necessary to produce an over-expression construct. This was accomplished by inserting the MET1 cDNA sequence into the polylinker region of the plant transformation vector pGreen 0179, that contains the strong constitutive 35 S promoter (Fig 2.1A). To analyze methylation-independent effects of overexpressing met1 in Arabidopsis, a second construct was created to over-express MET1 with a mutated active site loop, rendering the MET1 protein catalytically inactive (Fig 2.1B). To inhibit the catalytic function a point mutation in the catalytic region of MET1, GGPPCQGFSGMNRFN, introduced a Cystine/Serine replacement (Hsieh, 1999).

Figure 2.1: Maps of the Active MET1 and Inactive MET1 constructs. A) The MET1 wildtype cDNA sequence was inserted into the plant transformation vector 35 S pGreen 0179, to produce the 35 S MET1 over-expression construct. B) A mutation was introduced into the 35S MET1 construct to replace a cysteine with a serine codon within the active site. The position of the point mutation is highlighted by the purple marker.

The two transgenic constructs were transferred into Arabidopsis, and four transgenic lines were selected; A1 and A2 contained the catalytically active MET1 cDNA, and I1 and I2 contained the catalytically inactive MET1 CDNA. If a change in expression at particular loci was observed it was important to determine how stable these changes were if they were heritable over multiple generations or would revert to a wildtype expression state once the MET1 over-expression (METo) transgene was lost. To investigate heritability, plants from the $T 2$ generation of each line were selected which had retained the transgene (labeled ' + ') and plants that had lost the transgene (labeled ' $-\quad$) (Fig 2.2).

Figure 2.2: Genotyping Arabidopsis over-expressing MET1. Lines $A 1$ and $A 2$ express a catalytically active MET1 transgene, lines I1 and I2 express a catalytically inactive MET transgene. The larger bands at 1100 bp indicate the loss of the transgene; the primers were designed to span an intron generating a large band when amplifying wildtype MET1. The Arabidopsis plant that contains the transgene produces bands at 800 bp as the transgene contains a cDNA insert of MET1 containing no introns and 1100 bp (WT gene). In plants that contained the transgene, the MET1 cDNA was preferentially amplified producing a much brighter band than the WT band.

Before proceeding with any further analysis, the overall MET1 expression levels were examined to ensure the transgene was not silenced (Fig 2.3). In the plants that had retained the transgene, MET1 transcript levels were increased in all lines that possessed the METo
transgene, with the greatest increase in A2+ and I1+. In lines that had lost the transgene, MET1 transcript levels had been restored to wildtype levels.

Figure 2.3: Semi-quantitative PCR analysis of the overall MET1 transcript levels. cDNA was generated from seedlings 4 weeks after stratification. Lines A1 and A2 express a catalytically active MET1 transgene, lines I1 and I2 express a catalytically inactive MET transgene. (+) indicates MET1 transformants possessing the METo transgene. Lines derived from MET1 transformants, from which the transgene has been removed are labeled (-). Greater MET1 transcript levels were detected at 24 cycles in lines containing the METo transgene. Actin was used as a standardizing control to ensure equal concentration of input cDNA.

2.2.2 Phenotypic analysis of the MET1 over-expression lines

Once it was established that eight stable METo lines had been generated, four of which were homozygous for the METo transgene, and four lines that had lost the transgene, it was important to evaluate plant growth. This would allow the rapid screening and evaluation of the different lines and provide information on the plant status, enabling an insight into the potential mechanism underlying the phenotypic differences. The Arabidopsis met1 mutant has been previously well documented for its phenotypic differences, more specifically its delay in bolting (Ronemus et al., 1996). It was decided to exploit this phenotype as an indication of vegetative development (Fig 2.4). Plants that bolt later should have a larger number of rosette leaves upon bolting, due to greater resources and developmental time in the vegetative state (Kankel et al., 2003).

Figure 2.4: Phenotypic analysis of bolting and late-stage development. METo lines were compared with a wildtype control, a MET1 mutant, met1-1, and a derivative of met1-1, met1-1 RE, with restored wildtype MET1 alleles. A) METo lines display a delay in bolting phenotype compared to both wildtype and mutated met1 Arabidopsis. Bolting time was analyzed by counting the number of basal rosette leaves upon bolting in long day conditions (Soppe et al., 2002). The parameter used to determine when bolting had occurred was defined, as the stem reaching a minimum of 1 cm in vertical height, for a basal rosette leaf to be counted in the study the leaf had to be at least 1 cm in length and 0.5 cm in width. The significance of a change from wildtype is indicated by asterisks (if present): ${ }^{*}=P<0.05,{ }^{* *}=$ $\mathrm{P}<0.01^{* * *}=\mathrm{P}<0.005$, calculated by Student's two-tailed t-test. B) Image of wildtype, met1 mutant and METo Arabidopsis, taken eight weeks after stratification. The scale bar indicates 5 cm .

Seven of the METo lines displayed a significant delay in bolting compared to wildtype Arabidopsis, including lines that have lost the METo transgene. This implies that there are common target loci in the METo lines involved in bolting and these loci are stably altered, not requiring the presence of the METo transgene. The delayed bolting phenotype was also present in lines that over-expressed the catalytically inactive version of MET1 indicating that MET1 does not need its catalytic function to induce a phenotypic change. The catalytically inactive line $12+$ displayed no significant change in bolting time but still possessed the METo transgene. This suggests that the delayed bolting observed in the majority of METo lines is a stochastic event that requires the over-expression of MET1 but is not always sufficient to cause a change. In the later stages of development, a wide range of phenotypic differences can be observed for the eight different METo lines even within their own independent line, highlighting the broad effect over-expressing MET1 has on healthy plant development and its stochastic nature. There are similar phenotypes between the met1-1 mutant and METo lines such as the irregular shoot structure that curls round, unable to support the entire plant. The root structure was also selected as a phenotypic marker (Fig 2.5). One study found that treating Arabidopsis seedlings with the DNA methylation inhibitor 5-azacytidine reduced the primary root length (Virdi et al., 2015), suggesting the phenotype is associated with the disruption of methylation.

A
Primary root Length

Number of lateral roots per mm primary root

C

Figure 2.5: Root phenotype analysis of METo lines. METo lines were compared with a wildtype control a MET1 mutant, met1-1, and a derivative of met1-1, met1-1 RE, with restored wildtype MET1 alleles. A) Primary root length at four weeks of development. All METo lines display significantly reduced root length, although the severity of the phenotype varies between lines. B) Number of lateral roots greater than 2 mm per mm of primary root length, at four weeks of development. The significance of a change from wildtype is indicated by asterisks (if present): ${ }^{*}=\mathrm{P}<0.05^{* *}=\mathrm{P}<0.01^{* * *}=\mathrm{P}<0.005$, calculated by Student's two-tailed t-test. C) Image of wildtype, met1-1 mutant and METo Arabidopsis, taken four weeks after stratification. The scale bar indicates 10 mm

Primary root length was significantly reduced in all METo lines and the met1-1 mutant compared to wildtype root length. The reduced primary root length is even maintained after the METo transgene has been lost. However, the severity of reduced primary root length varies between each line. The number of lateral root structures per mm of primary root length is increased in several METo lines, while a reduction in lateral roots is observed in the met1-1 mutant. The joint appearance of distinct phenotypes among different METo lines, including lines that have lost the transgene, suggests that these are due to heritable changes induced at common target loci. The changes caused at these common target loci seem not to require the catalytic function of MET1. Many of the phenotypic differences observed in the METo lines appear to be novel and independent of a mutated met1 Arabidopsis. The randomness of the induction of phenotypes in different lines and the lack of a correlation between phenotypes and transgene expression, suggests that the induction of heritable changes is a chance event and that increased MET1 levels are required but not always sufficient to induce the individual phenotypes.

2.2.3 Transcript analysis of the MET1 over-expression lines

Once it was confirmed that a change in phenotype could be caused by over-expressing MET1, transcript profiling was carried out. Due to the stochastic phenotypes observed by over-expressing MET1, it was important to reduce variation specifically resulting from secondary effects, such as the plant's developmental stage (Ogneva et al., 2016), circadian cycle (Lim et al., 2014) and environmental stress (Secco et al., 2015). It was established that all molecular analysis would be carried out at 4 weeks to minimise variation and allow easier comparison of the different lines. Pools of ten, four-week-old seedlings for lines A1+, A1-, A2+ and A2- were selected for transcript profiling. Due to the ubiquitous nature of MET1, there was extensive expression variation among the METo lines, including the lines that had lost the transgene. The RNA sequencing data was meticulously analyzed, identifying genes that had a greater than 2.5 -fold change in expression, then organized into three major categories; transposable elements (S1 Table), genes expressing non-coding transcripts (S3 Table) and coding genes (S5 Table). Many small RNAs were found to have a significant change in expression this included; microRNAs, Natural antisense transcript (NAT), ncRNA, rRNA, snoRNA, snRNA, and tRNA. MicroRNA, NATs, ncRNA, and rRNA were primarily upregulated in METo lines with and without the transgene. Conversely, snoRNA, snRNA, and tRNA were mainly down-regulated, highlighting the possibility of a common pathway responsible for regulating expression which is maintained by methylation. A large number of transposable elements including gypsy and copia like retrotransposons were upregulated in lines with and without the transgene. This suggests that by over-expressing MET1 we are disrupting dense methylation which typically represses transposon expression. Interestingly the domesticated TE (DTE) MUSTANG 8 (MUS8) was severely downregulated in the A1+ and A1- lines. In the mus7/mus8 double mutants, multiple developmental abnormalities occur including shortened stem structure and reduced sterility (Joly-Lopez et al., 2012), both phenotypes which are observed in multiple METo lines. Extensive expression changes were also found in protein-coding genes. Due to the large number of protein-coding genes that possessed greater than 2.5 -fold change in expression, more stringent screening protocols were applied. Genes that maintained or increased in expression once the transgene was lost were selected. The shortened candidate list was then screened for the presence of MET1 dependent dense methylation, and six candidate genes were selected. The expression
levels of the six candidate genes and MET1 were tested further using qpcrR for all eight METo lines along with a wildtype control, met1-1 mutant and a derivative of met1-1, met1-1 RE, with restored wildtype MET1 alleles (Fig 2.6).

Figure 2.6: Comparison of MET1 expression levels. The percentage of MET1 transcripts compared to Actin transcription. The analysis was carried in METo transformants with (+) and without the transgene (-). Lines A1 and A2 express a catalytically active MET1 transgene, lines $I 1$ and $I 2$ express a catalytically inactive MET transgene. Expression was also measured in the control line, met1-1, and met1-RE. In A1+ and I2+, MET1 expression is about 3-fold higher compared to the control. In A2+ and I1+, MET1 levels increase are about 15 -fold compared to the control line.

In plants that had retained the transgene, MET1 transcript levels were ~ 3-fold greater in A1+ and $12+$, and ~ 15-fold higher in A2+ and I1+. In lines that had lost the transgene, MET1 transcript levels had been restored to wildtype levels. The level of MET1 was also unaffected in a met1-1 mutant. This expression data confirms that excess MET1 is not required to maintain any of the phenotypes observed in the lines that have lost the METo transgene.

The difference in MET1 expression also verifies that the induction of phenotypes seen in the METo lines is a stochastic event that requires increased levels of MET1, but is not determined by the levels of MET1 transcript. QPCR was then used to confirm the change in expression levels for the six candidates identified in the transcript analysis (Fig 2.7)
A

[^0]B

Gene ID	Gene Name	Function
AT3G01345	N/A	Unknown expressed protein
AT3G27473	N/A	Cysteine/Histidine-rich C1 domain family protein
AT3G30720	QQS	Orphan gene that modulates carbon/nitogen allocation
AT3G30820	ORF-1	RNA binding protein
AT4G25530	FWA	Homodomain-containing transcription factor for flowering
AT5G34850	PAP26	Purple acid phosphatase involved in phosphate scavenging

Figure 2.7: qPCR analysis of six genes with dense methylation. A) Analysis was carried in METo transformants with (+) and without the transgene (-). Lines A1 and A2 express a catalytically active MET1 transgene, lines 11 and I 2 express a catalytically inactive MET transgene. Expression was also measured in the control line, met1-1, and met1-RE. The mean and the standard error are shown for three biological replicates each having three technical replicates for each line. Values on the y-axis represent the fold difference compared to the control line. B) Table of the six selected candidate genes containing gene $I D$, gene name and the function of the gene where possible.

Q-PCR analysis of the six target genes confirmed that a change in expression had occurred at these loci, and the presence of the catalytic region is not required to cause a change in expression. As already observed in the phenotype analysis, we detect common expression changes for individual genes in all or some METo lines. For most genes, similar changes in METo lines are also detected in the met1-1 mutant, while expression changes of AT4G35770 and AT5G34850 only occur in METo lines. In most METo lines that have lost the transgene, expression changes are conserved. In some cases; AT3G01345, A1, and AT3G38020, I2 an increase in expression are observed once the transgene is lost. Expression levels are predominantly increased in METo lines, but decreased expression can also occur. This is most evident for the gene AT5G34850, which is unchanged in the A2 lines but significantly reduced in all other METo lines.

2.2.4 Bisulphite analysis of MET1 over-expression lines

All the candidate genes selected for expression analysis contain MET1 dependent dense methylation located within or adjacent to its loci. To investigate if the change in expression corresponds to a change in dense methylation changes, bisulphite analysis was carried out for four of the target genes. The four candidate genes could be categorized into one of three distinct dense methylation categories (Fig 2.8A): Genic methylation, dense methylation present throughout the entire body of the gene, 5^{\prime} methylation, dense methylation that is located within the promoter region of the gene, but not present in the gene body. Regional methylation is denes methylation that is localized at a particular exon or intron. The four genes selected possessed one of these distinct methylation pattern; AT3G01345 (genic), AT3G27473 and AT5G34850 (5'), and AT3G30720 (regional) (Fig 2.8B). AT5G34850 was selected due to it being the only candidate gene down-regulated when MET1 is overexpressed (Fig 2.7). Due to highly repetitive nature of transposons and the low efficiency of bisulphite primers, a genomic region of AT5G34850 close to the dense methylation was selected. It was believed that AT5G34850 was silenced due to dense methylation spreading

B

Figure 2.8: Bisulphite analysis of the METo lines. A) Genes with dense DNA methylation patterns in the genic region (AT3G01345), in the 5^{\prime} region (AT3G27473), in the gene region (AT3G30720) and the down-regulated gene (AT5G34850). Boxes label sections that were analyzed by bisulphite sequencing (Figure $2.8 B$). DNA methylation patterns in the four genes with MET1-dependent dense methylation were extracted from http://genomes.mcdb.ucla.edu. B) DNA methylation analysis of AT3G01345, AT3G27473, AT3G30720, AT5G34850 regions in METo transformants (+) and in lines derived from METo transformants, from which the transgene has been removed (-). Line A expresses a catalytically active METo transgene; line I1 expresses a catalytically inactive METo transgene. Red denotes CG methylation, blue is CHG methylation, and green is CHH methylation.

Bisulphite sequencing analysis of the three candidate genes that were upregulated shows a reduction in methylation for all lines analyzed. In lines that have lost the METo transgene a decrease in methylation is maintained or even more severe, indicating that the METo transgene is not required to keep the hypomethylated state. For the A1 lines, a reduction in methylation correlates with an increase in expression. However, the II lines that also show a decline in methylation don't show a significant change in expression, highlighting a more complex mechanism determining the change in expression. Bisulphite analysis of AT5G34850 displayed no change in methylation for the region analyzed.

2.2.5 Histone analysis of the MET1 over-expression lines

As there was no direct correlation between a reduction in methylation and an increase in expression, other factors were also involved in determining expression change. The most likely candidate is histone modifications. There are numerous histone modifications that can alter the chromatin structure and regulate gene expression. Five histone marks were selected for further analysis, the repressive marks H3K9me2 and H3K27me3 and the active marks H3K4me3, H3K27ac and H4 acetylation (Fig 2.9).

Figure 2.9: Histone analysis of the METo lines. ChIP analysis of H3K9me2, H3K4me3, H4ac, H3K27me3 and H3K27ac for AT3G27473, AT3G01345, AT3G30720, and AT5G34850. The relative H3K9me2, H3K4me3, H4ac, H3K27me3 and H3K27ac levels were determined by ChIP assays and normalized via the input DNA. The mean and the standard error are shown for three biological replicates each having three technical replicates for each line. Values on the y-axis represent the relative fold enrichment of histone modification compared to the control line. conclusions about the significance of different histone marks for expression changes. In AT5G34850 a reduction of H3K9me2 does not directly lead to a decrease in gene expression, observed in A2+ and A2-. A decrease in H3K4me3 and an increase in H3K27me3 correlates with a reduction in AT5G34850 expression in all lines. At AT5G34850 deacetylation of H3K27 is required before H3K27 methylation but is not sufficient to reduce expression, seen in line A2+ and A2-. Levels of H 3 K 4 me 3 need to be maintained or increased to enhance gene expression, a reduction in H 3 K 4 me 3 directly leads to silencing which is seen in line A1- for gene AT3G27473. Significant increases of H3K4me3 can cause increased levels of acetylation, but the increase does not proportionately correlate. While METo expression may induce H4 acetylation and H3K9me2 changes, changes in expression appear to depend on changes in H3K4me3 levels. Over-expressing MET1 allows the disruption of dense methylation and alter multiple histone marks at particular loci, leading to complete restructuring of the chromatin environment. Studies have shown that a change to the chromatic structure can become stably maintained over multiple generations (Silveira et al., 2013).

2.2.6 Heritability of epigenetic changes

Once it was established that an epigenetic change could be induced by over-expressing MET1, and change was still maintained without the presence of the METo transgene, it was important to determine if the epigenetic changes observed spanned multiple generations. We proceeded to self-fertilize the initial eight METo lines already analyzed, and carried out both phenotypic and molecular analysis. The easiest phenotypic marker used for determining heritability was primary root length and density of lateral root growth (Fig 2.10)

A
Primary root Length

B
Number of lateral roots per mm primary root length

Figure 2.10: Transgenerational phenotypic analysis of METo lines. A) Primary root length at four weeks of development for both the $3^{\text {rd }}$ and $4^{\text {th }}$ generation of METo Arabidopsis. B) Number of lateral roots greater than 2 mm per mm of primary root length, at four weeks of development for both the 3rd and 4th generation of METo Arabidopsis. The significance of a change from wildtype is indicated by asterisks (if present): ${ }^{*}=\mathrm{P}<0.05,^{* *}=\mathrm{P}<0.01$ *** $=\mathrm{P}<0.005$, calculated by Student's two-tailed t-test.

Seven of the eight, next-generation METo lines still possessed significantly shorter root length, regardless of METo transgene presence. However, the primary root length of A2returned to a wildtype length after only one generation. This could be due to the lack of excess MET1 and reduced phenotypic severity in the third generation, allowing the A2- lines to immediately recover after one generation. Though the reduction in primary root length is still significant in the fourth generation, it is not as severe as the third generation of METo lines. Compared to the third generation which shows a significant increase in lateral root density in some lines, the fourth generation appears more sporadic. Lines A1+, A2+, A2-and I1+ show a significant reduction in lateral root density in the fourth generation, compared to the previous generation which has no significant change or an increase in lateral root density. The substantial increase in lateral root density observed in $12+$ in the third generation is restored to a wildtype density in the next generation. Only A1- and I2- have maintained their increased lateral root density after one generation. Lateral root density appears to be more irregular, varying from one generation to the next, making it a poor phenotypic marker. However, primary root length is stably maintained after one generation without the presence of the METo transgene. This makes primary root length a good hereditary marker. Once it was confirmed that a change in phenotype is heritable over a generation, it was critical to determine if changes in gene expression are still maintained in the next generation. Expression analysis of MET1 and the six candidate genes were carried out in the fourth generation of METo lines (Fig 2.11).

Commented [CW5]: Check y axis label as before

Commented [CW6]: 2.11

A

Figure 2.11: qRT-PCR analysis of MET1 and the six different candidate genes for the $3^{\text {rd }}$ and
$4^{\text {th }}$ generation. A) MET1 expression levels as a percentage compared to actin expression for both $3^{\text {rd }}$ and $4^{\text {th }}$ generation METo Arabidopsis. B) Expression analysis of the six candidate genes compared to the wildtype control for both $3^{\text {rd }}$ and $4^{\text {th }}$ generation METo Arabidopsis. The mean and the standard error are shown for three biological replicates each having three technical replicates for each line. Values on the y-axis represent the fold difference compared to the control line.

In lines that still retained the METo transgene in the $4^{\text {th }}$ generation, the levels of MET1 transcript was maintained in A1+, I1+, and I2+ lines compared to the $3^{\text {rd }}$ generation, though at greater variation. This could be due to silencing of the METo transgene in some of the plants within the line. This observation is supported by the complete restoration of native MET1 transcript levels in the fourth generation of A2+, which had the strongest MET1 expression in the previous generation. Lines that didn't possess the METo transgene in the $3^{\text {rd }}$ generation still maintained innate MET1 transcript levels in the next generation. There appears to be no correlation between the level of MET1 and the increase or reduction of lateral root density. The heritability of expression in the six candidate genes can be categorized into three distinct groups. Genes that have been restored to wildtype in some lines and reduced in expression for others after one generation, AT3G01345, AT3G27473, and AT4G25530. Genes that show a reduction in expression change for all lines in the fourth generation, AT3G38020, and AT5G34850. And finally, genes that have retained or reduced expression change after one generation, AT3G30720. When the level of MET1 transcript is compared to the heritability of each gene, there appears to be no definite correlation. Line A2+ which possessed high MET1 transcript levels in the third generation but native MET1 concentration in the fourth generation, displays varying expression heritability for each gene, demonstrating how over-expressing MET1 is a stochastic event.

2.2.7 Protein analysis of over-expressing MET1

Some genes with altered expression in MET1 over-expression lines have also been reported to be affected in met1 mutants. This implies that increased levels of MET1 transcript may generate co-suppression or protein degradation effects that would resemble a met1 mutant. To confirm this is not the case, and increased MET1 transcripts lead to an increase in MET1 protein, Western blot was carried out. Unfortunately, there was no MET1 Arabidopsis antibody available at the time. To overcome this problem, a FLAG-tagged MET1 overexpression construct was created (S2 Fig) which would allow the analysis of the MET1 protein using an anti-FLAG antibody(Fig 2.12).

Figure 2.12: Protein analysis of over-expressed FLAG-tagged MET1. A) Western blot was carried out for FLAG-tagged MET1 transformants and wildtype control. The expected protein size of the FLAG-tagged MET1 is 176 kDa . Actin (40 kDa) was used as an internal control to determine the concentration of protein extract. B) Semi-quantitative PCR of control line and three biologically different over-expressing MET1 FLAG-tagged lines. Primers were used that only amplified MET1 cDNA with a FLAG tag. Three technical replicates were carried out for each line at 26 cycles. Actin was used as an internal reference to ensure the cDNA analyzed was of the same concentration.

Western blot identified that the MET1 FLAG-tagged protein was present only in the overexpression lines, with an expected protein band of 170 kDa . Secondary bands were observed in all lines at approximately 50 kDa indicating non-specific binding of the FLAG tag antibody. Semi-quantitative PCR of the control line and MET1 FLAG-tagged over-expression lines confirms that increased MET1 transcripts are translated, and doesn't cause cosuppression or protein degradation. Although changes in expression of individual genes are similar to that of a met1 mutant, the mechanism behind the epigenetic change is distinctly different and doesn't involve the loss or reduction of the MET1 protein.

2.2.8 Genetic analysis of AT5G34850

Bisulphite analysis of the silenced gene AT5G34850 (Fig 2.8B), did not demonstrate any change in DNA methylation. However, dense methylation was present in a transposable region upstream of the gene (Fig 2.8 A). Analysis of this region turned out to be more complicated than initially expected and PCR analysis of this locus was performed (Fig 2.13).

Figure 2.13: Mapping AT5G34850. A) The region of AT5G34850 mapped using four different primer pairs (Pp1-Pp4). B) PCR Mapping analysis of AT5G34850 region using the four different primer pairs. PCR analysis was carried out in MET1 transformants (+) and in lines derived from MET1 transformants, from which the transgene has been removed (-). Lines A expresses a catalytically active MET1 transgene; line I1 expresses a catalytically inactive MET transgene. Actin was used as an internal reference to confirm the DNA analyzed was of similar concentration.

PCR-analysis of the locus revealed that the upstream region of the gene, which contains multiple repetitive elements, had been deleted or rearranged in all six lines, in which the gene had been silenced. Moreover, a central region of AT5G34850 could not be amplified, in lines A1+ and A1- suggesting an extensive rearrangement of the locus. Highlighting the possibility of disrupted dense methylation at repetitive regions leading to transposition and gene disruption.

2.2.9 Investigating the phenotypic effects of over-expressing MET1.

Over-expression of MET1 caused distinct changes in both phenotype and gene expression. Although we have identified many different phenotypic changes, few have been directly correlated with a change in gene expression. One gene that has been identified is AT3G30820 (FWA) which is well documented to cause a delay in bolting when it is expressed (Koornneef et al., 1991). In the METO lines, up-regulation of FWA directly correlates with late bolting. METo lines also display reduced primary root length which appears to correlate with the reduction of AT5G34850. However, line A2 that possess increased AT5G34850 levels, still have shorter root length, though not as severe as the remaining METo lines. Indicating that a reduction in AT5G34850 maybe partially responsible for the reduced primary root length, but other factors are involved. Although two genes have been identified to cause a change in phenotype, the remaining candidate genes have not been linked to a change in phenotype. To determine if the up-regulated candidate genes contribute to the observed METo phenotypes, constructs were created that either over-
expressed AT3G01345, AT3G27473, or AT3G30720 (S1 Fig). AT5G34850 was also further examined. AT5G34850 encoded a PURPLE ACID PHOSPHATASE 26 (PAP26) which cleaves inorganic phosphate and transports it to the vacuole. As phosphate is involved in many important plant processes (Bolan et al., 2003), silencing of PAP26 may be responsible for other phenotypic abnormalities. Phenotypic analysis was then carried out for each of the over-expression transformants, along with a pap26 mutant (Fig 2.14).

A

Number of basal rosette leaves at bolting

B
Primary root length

Figure 2.14: Phenotypic analysis of the candidate genes. A) Bolting analysis of the overexpressed AT3G01345, AT3G27473, and AT3G30720 lines compared to wildtype control and pap26 mutant line. Bolting time was analyzed by counting the number of basal rosette leaves upon bolting in long day conditions (Soppe et al., 2002). The parameter used to determine when bolting had occurred was defined, as the stem reaching a minimum of 1 cm in vertical height, for a basal rosette leaf to be counted in the study the leaf had to be at least 1 cm in length and 0.5 cm in width. B) Root phenotype analysis of over-expressed AT3G01345, AT3G27473 and AT3G30720 lines compared to wildtype control and pap26 mutant line, at four weeks of development. The significance of a change from wildtype is indicated by asterisks (if present): ${ }^{*}=\mathrm{P}<0.05,^{* *}=\mathrm{P}<0.01^{* * *}=\mathrm{P}<0.005$, calculated by Student's two-tailed t-test.

Over-expression of AT3G01345 and AT3G307020 caused no significant change in primary root length compared to the control line. However, there was a significant reduction in lines that over-expressed AT3G27473. Although there was a significant decrease in the primary root length, it was not as significant as that observed in the METo lines (Fig 2.5A), indicating that an increase in AT3G27473 could contributes to shorter primary root length. A reduction in primary root length was even greater in the pap26 mutant which had an average primary root length comparable to that of the METo lines (Fig 2.5A), suggesting that a reduction of PAP26 is likely to plays a role in reducing the primary root length for METo lines. No substantial change in bolting was observed in either of the AT3G01345 over-expression lines or the pap26 mutant. Lines that over-expressed AT3G27473 or AT3G30720 did take longer to bolt, but the severity of the delay was not as significant as that observed in the METo lines (Fig 2.4A). Furthermore, METo lines that don't have increased AT3G27473 or AT3G30720 expression (Fig 2.7) still take longer to bolt. This illustrates the complexity of over-expressing MET1 and the numerous effects it has on gene expression. Although genes have been identified in the METo lines to cause a primary phenotypic change, such as FWA, many genes that change in expression may enhance or diminish this phenotypic change. Along with the stochastic nature of increased MET1 and gene expression, directly correlating a change in gene expression with a phenotypic change becomes increasingly challenging.

2.3 Discussion

It has been extensively documented (Vongs et al., 1993) (Finnegan et al., 1996) that MET1 is exclusively responsible for the maintenance of cytosine methylation in a CG-specific context. Recently an alternative function of MET1 has been identified affecting specific loci with dense methylation in CG and non-CG contexts. At these loci, elimination of MET1 activity does not only cause loss of CG methylation but the loss of methylation marks in all sequence contexts. For some loci, this can result in heritable loss of dense methylation patterns creating novel epi-alleles and states of expression (Watson et al., 2014). MET1 dependent dense methylation at many loci is independent of de novo methylation and other components of the RdDM pathway. Instead, dense methylation at these loci requires the nucleosome remodeler DDM1, with CHH methylation being controlled by CMT2 and CHG methylation by CMT3 (Watson et al., 2014).

The coordinating role of MET1 for dense methylation, illustrated by the loss of CG and nonCG marks in met1 mutants, could be based on the MET1 protein facilitating the access of CMT2 and CMT3 to dense methylation targets if MET1 is an essential component of a multiprotein complex that also contains CMT2 and/or CMT3. Alternatively, dense methylation could be meditated by MET1-controlled CG-methylation or by other epigenetic marks established by CG-methylation, which may be required to recruit CMT2 and CMT3. This could involve interaction of MET1 with histone regulators like HDA6, for which direct binding to MET1 has been demonstrated (Liu et al., 2012) and which has been proposed to recruit MET1 to particular target loci as the initial step in establishing subsequent non-CG methylation (To et al., 2011). As MET1 may interact with other epigenetic factors to form a stable complex, it may be sensitive to changes in MET1 concentration, leading to a disruption in complex formation. To test this, high levels of catalytically active and inactive MET1 proteins were introduced to the plant system.

Over-expression of MET1 led to numerous phenotypic variations, some of which were common in multiple METo lines. One example is the delayed bolting phenotype observed in seven of the eight METo lines. FWA is the gene primarily responsible for this delayed bolting and is commonly silenced in wildtype Arabidopsis. Although DNA methylation of FWA has been thoroughly examined, little is understood about the molecular basis of the late-
flowering phenotype (Ikeda et al., 2007). In the METo lines increased expression of FWA correlates with a delay in bolting. Silencing of FWA is mediated by transposable-elementderived tandem repeats in the promoter region which are densely methylated (Lippman et al., 2004). In lines that have lost the METo transgene, FWA activation is still retained, which suggests MET1 over-expression can induce heritable activation. In contrast, FWA allele activated in a met1-1 mutant was efficiently remethylated and re-silenced upon restoration of the MET1 function (Kankel et al., 2003). As the met1-1 allele encodes a MET1 protein with a single amino acid substitution, it is possible that some of the induced phenotypes in the met1-1 mutants are generated by changes in protein structure and interaction, which may produce similar effects as an increase in MET1 concentration.

Reduced primary root length which is present in the METo lines, is also observed in Arabidopsis seedlings treated with the DNA methylation inhibitor 5-azacytidine (Virdi et al., 2015) suggesting the phenotype is associated with cytosine hypomethylation. Among the METo lines, leaf shape, flower structure, and floral organ identity were not significantly altered. Many of these phenotypes, however, have been reported in either the ddm1 mutant (Kakutani et al., 1996) or MET1 antisense lines (Finnegan et al., 1996), but the delay in bolting resembles phenotypes observed in some mutants associated with DNA methylation pathways. Both the HDA6 mutant axe1-5 and HDA6 RNAi lines display lateflowering phenotypes (Wu et al., 2008). Plants with altered MET1 functions show a range of flowering time effects. In both met1-1 and met1-3 mutants, a consistent delay in flowering is observed (Kankel et al., 2003)(Saze et al., 2003). Demethylation of DNA via 5-azacytidine (5-azaC) treatment or via expression of a MET1 antisense gene causes early flowering, with the promotion of flowering being directly proportional to the decrease in methylation in MET1 antisense lines (Finnegan et al., 1998).

Delayed bolting phenotype and reduced primary root length are common phenotypes present in multiple METo lines, highlighting the possibility of common target loci. Though there are common targets, there was no direct correlation between the increased levels of MET1 and the severity of the phenotypes. The randomness of these induced phenotypes in different lines and the lack of a correlation between phenotypic severity and transgene expression levels suggests that the induction of heritable changes is a chance event and that
increased MET1 levels are required but not always sufficient to induce the individual phenotypes.

To identify potential target loci, transcript profiling was carried out for the catalytically active MET1 over-expression lines. In each line, the majority of genes with altered expression show an increase. Applying a cut-off of a log2-fold change of 2.5, increased expression levels were observed in 644 genes in A1+, 565 genes in A1-, 22 in A2+ and 37 in A2-. Reduced expression was found in 240 genes in A1+, 77 genes in A1-, 0 genes in $A 2+$ and 85 genes A2-. Genes with altered expression were organised into three categories; transposable elements (S2 Table), genes expressing non-coding transcripts (S4 Table) and coding genes (S6 Table).

The majority of genes encoding transposable elements are up-regulated (S1 Table). Silencing of the TE populations depends highly on methylation and small RNAs. Most TEs contain and are silenced via the presence of both CG and non-CG methylation (Cokus et al., 2008). Indeed, a TE in the gypsy family, ATGP3, remains silent in single mutants of met1 or cmt3 but activates in a met1 cmt3 double mutant (Tsukahara et al., 2009). This suggests a redundant function of CG and non-CG methylation in the transcriptional silencing of TEs. Within the METo lines, numerous TEs are upregulated, implying a loss of methylation in all three sequence contexts. Among the many TEs upregulated a large subset of these are CACTA-like transposable elements. All CACTA elements carry short sequence motif repeats called subterminal repeats (STRs) in their subterminal regions. It is believed that methylation at these repeat motifs may prevent binding, impairing efficient excision/transposition (Miura et al., 2001). In met1 mutants increased transposition and transcription of CAC1 a CACTA element is observed (Vicient, 2010; Park et al., 2014). This observation correlates with increased CACTA-like transcripts present in the METo lines. It is uncertain if transposition occurs in the METo lines, but given the increase in transcription, it is more than likely.

A number of retrotransposons are also upregulated in the METo lines, which are categorized into either Copia-like or gypsy-like elements. The gypsy-like elements can be further split into those that possess the Athila element and those that are unspecified. Research into Athelia elements identified they contain transcriptional silencing information (TSI) that are released in met1 mutants (Kanno et al., 2005). These TSI or a similar element may also be
present in other TEs, allowing targeted methylation at specific loci. This may explain why we observed common upregulation for TEs that contain TSI-like elements in the METo lines. Some TEs activated in MET1 over-expression lines also deviate in their heritability levels. While, for example, Athila elements that are activated in met1 mutants are efficiently silenced again after re-introduction of a MET1 transgene copy (Catoni et al., 2017), twothirds of all Athila elements activated in MET1 over-expression lines, retain this status after removal of the MET1 transgene.

Small RNAs have emerged as key regulators of gene expression, genome stability, and defense against foreign genetic elements (D'Ario et al., 2017). When MET1 is overexpressed a number of these small RNAs change in expression (S3 Table), these changes appear to have a common underlying regulator for each class of small RNA. A group of micro RNAs that all code for precursors for miR854 are up-regulated in response to increased levels of MET1, which is heritably maintained once the METo transgene is lost. These precursors are all equally up-regulated in both lines indicating a mutual regulator for these miRNAs. Interestingly all miR854 precursors are located within the ATHILA retrotransposon family (Arteag-Vazquez et al., 2006) which may explain the common response to increased levels of MET1. Transposable elements are frequently methylated at all sequence context which has been shown to be heritably disrupted when MET1 levels are significantly increased. With the removal of dense methylation, transcription at these loci can occur leading to increased miR854 expression. Interestingly these miR854 precursors are not located within the same retrotransposons indicating a common regulator of dense methylation at particular loci.
snoRNAs are an ancient class of small non-coding RNAs present in all eukaryotes and a subset of archaea that carry out a fundamental role in the modification and processing of ribosomal RNA. Within the METo lines a large number of these snoRNAs are heritably downregulated. Unfortunately little is known about the role of snoRNAs in plants. There are two main classes of snoRNAs those that direct 2'-O-methylation of the ribose (KissLaszlo et al., 1996) and a group that guides pseudouridination of rRNAs, snRNAs and other RNA targets (Ganot et al., 1997). Many of the snoRNAs identified by the transcript analysis are not annotated. However, two snoRNAs were identified. One of the snoRNAs, SNO30 belongs to the class that methylates ribose, while SNO111 carries out pseudouridylation. Little else is
known about these snoRNAs, but there appears to be no dense methylation present at these loci. The large number of snoRNAs that are heritably upregulated indicates a common epigenetic mechanism that controls expression.

Due to the large number of coding genes with altered expression, it was important to differentiate between potential primary and secondary targets of MET1-based epigenetic modifications. Using a methylome genome browser 31 primary target candidate genes with heritable dense methylation were identified (S6 Table). These genes were grouped into three categories, based on the presence of dense methylation in the promoter or 5^{\prime} region (upstream), in the gene region (genic) or in the genomic region into which the gene is embedded (region). Several of the genes listed have been shown to be sensitive to DNA methylation changes. The gene responsible for delayed flowering, FWA, is up-regulated in METo lines and under the control of MET1 (Kinoshita et al., 2004). The up-regulated gene AT4G03950, which encodes a nucleotide/sugar transporter family protein, is activated in a ddm1-2 mutant (Lippman et al., 2004). AT3G30720, Qua-Quine Starch (QQS), which is upregulated in METo lines, is embedded within a TE-rich region and its expression levels are increased in met1, $d d c$ ($d d m 1 / d d m 2 / c m t 3$), $d d m 1$ and in the RNA-DEPENDENT RNA POLYMERASE 2 mutant rdr2. QQS expression levels correlate negatively with the DNA methylation level of repeated sequences located within the 5'end of the gene and can be inherited for several generations (Silveira et al., 2013). Two genes are directly regulated by DNA methylation. The up-regulated gene AT3G50770, calmodulin-like 41 (CML41,) contains transposon promoter insertions (Baev et al., 2010). Its increased expression, in response to elevated temperature, correlates with reduced promoter DNA methylation (Naydenov et al., 2015). The down-regulated gene AT3G18610, nucleolin like 2 (NOR2), is involved in epigenetic regulation, as its disruption induces rDNA hypermethylation (Durut et al., 2014).

Six genes were selected for further analysis for both expression changes and epigenetic features. Similar to the observed phenotypes, expression changes of the six analyzed genes occur independently of expression levels, catalytic activity or conservation of the MET1 transgene. Within individual lines, expression changes occur stochastically and with different intensity, inducing an increase in expression for all genes except AT5G34850, which displays a significant reduction in expression in six out of eight MET1-overexpression lines. In most MET1- overexpression lines that have lost the transgene, expression changes
were conserved. Bisulphite sequencing analysis was carried out for four of the target genes, and a reduction or loss of dense methylation marks for three of these genes was identified, independent of the expression levels of the three activated genes in different lines. This suggests that MET1 overexpression induced heritable hypomethylation at these loci, which in some cases was not sufficient to increase gene expression. The analysis of the silenced gene AT5G34850 revealed that the upstream region of the gene may have been deleted or rearranged in the lines that had been silenced. This along with the large number of transposable elements upregulated in the METo lines suggests transposition activity maybe occurring on a genome-wide scale.

Analysis of the five different histone marks (H3K9me2, H3K4me3, H4ac, H3K27me3, and H3K27ac), for the four target genes, revealed the complex nature of histone modifications. Among the histone marks tested, Acetylation and H3K4me3 levels show the most significant changes. While there was no consistent correlation between expression changes and individual H3K4me3 marks, some locus-specific correlations were detectable. Increased H3K4me3 levels correlated in all MET1 overexpression lines with enhanced AT3G27473 expression, and in seven out of eight MET1 overexpression lines with enhanced expression of AT3G01345. In the six lines with reduced expression of AT5G34850 H3K4me3 levels are also significantly reduced. However, it is unclear if silencing of AT5G34850 is the consequence of H 3 K 4 me 3 reduction or of the loss of upstream regions that are required for gene expression. It is also unclear if H3K4me3 reduction is linked to DNA rearrangements or expression changes. Acetylation of either H 4 or H 3 K 27 positively correlates with H 3 K 4 me 3 similar to what is seen in transposable elements in met1 and hda6 mutants (Liu et al., 2012). Expression analysis identified loci for which the presence of the MET1 transgene was not required to maintain expression changes. This suggests that for individual loci, altered gene expression can be inherited without the continuous presence of increased MET1 levels. Conversely, lines that have maintained the MET1 transgene and enhanced MET1 levels may continuously induce new novel epigenetic changes. To investigate this hypothesis and to test the long-term stability of MET1-induced expression changes, the expression profiles of six genes in the T3 and T4 generation were compared. In most lines, expression change in genes observed in the T3 generation, were also detectable in the T4 generation, although at lower levels. A comparison of the four lines that had lost the MET1 transgene suggests
locus-specific differences in the efficiency of maintaining expression levels, with altered states being preserved for AT3G30720 but reduced for AT5G34850. This corresponds to previous reports about locus-specific differences in the maintenance of epigenetic changes (Mirouze et al., 2012). The stable epigenetic state of AT3G30720 confirms reports about a ddm1-derived hypomethylated epiallele of AT3G30720 that was inherited for at least eight generations (Silveira et al., 2013). In some lines, enhanced expression levels are higher in T4 lines that have retained the MET1 transgene, supporting the hypothesis that epigenetic changes can be continuously induced in lines that have maintained increased MET1 expression.

The phenotypic investigation into the upregulated genes AT3G01345, AT3G27473, and AT3G30720, along with silenced gene AT5G34859, demonstrated the complex nature of phenotypic change and genetic cause. Increased expression of AT3G27473 induced both a delay in bolting and reduced primary root length. The severity of these phenotypes was not comparable to that seen in the METo lines. However, with the increase of FWA, which also causes late bolting, the phenotype may become compounded explaining the severe bolting delay observed in some METo lines. Similarly, the reduced root length seen in the pap26 mutant may also be enhanced by the increased expression of AT3G27473. Little is known about AT3G27473 except that it is a Cysteine/Histidine-rich C1 domain family protein and that it is upregulated in an ibm1 mutant, which displays no significant phenotypic abnormalities (Duque \& Chua, 2003), although a number of genes have been identified to cause a phenotypic difference many remain uncharacterized.

Our data shows that MET1 over-expression can induce epigenetic changes, with enhanced MET1 expression levels being required but not always sufficient to cause epigenetic change. There is no direct correlation between the level of increased MET1 expression and the efficiency of the induction of epigenetic changes. This implies that MET1 proteins do not act as a transcription factor or like any other concentration-dependent gene regulator. MET1 over-expression behaves stochastically but not randomly as it induces similar changes in epigenetic and expression states at specific target loci in different MET1-overexpression lines. While the mechanisms involved in MET1 over-expression remain unclear, our data show that MET1 over-expression offers a new strategy to induce variants with novel combinations of epi-alleles.

3 Investigating the application of over-expressing MET1 in tomato

3.1 Introduction

Mankind has been improving crops for thousands of years (Doebley et al., 2006), but recent developments in breeding strategies have given rise to many different crop varieties with greater yield and survivability. Varieties with desirable phenotypes must be self-fertilized multiple times to produce a pure line, which can then be crossed and used for breeding (Rommens et al., 2007). With the advancement of technologies such as marker-assisted selection (MAS), plant breeders can identify single nucleotide polymorphisms (SNPs) associated with a trait (Tester \& Langridge, 2010). This is particularly useful for traits that don't display a visible phenotype or when multiple genes are required for the desired characteristic. However, traditional crop breeding does have its limitations. The crossing of traits can only be carried out between plants that can sexually mate with each other, and even if they are successfully crossed unwanted traits may be introduced. Classical breeding strategies also rely on changes in the genome, though there is growing evidence that stable changes in gene expression can occur without altering the DNA sequence (Watson et al., 2014). The molecular mechanisms that contribute to this epigenetic phenomenon are DNA methylation and histone modifications.

DNA methylation is the most frequent modification in plants, commonly acting as a transcriptional repressor, either by directly obstructing transcriptional proteins or by serving as a target for specific proteins which signal chromatin condensation (Klose \& Bird, 2006). Changes in DNA methylation at individual loci can cause heritable changes in gene expression (epi-mutant), leading to epigenetic variation. These epigenetic changes are present throughout the plant kingdom. One example is the late flowering phenotype seen in Arabidopsis, which is caused by an epi-mutant, fwa, due to hypomethylation at direct repeats within the 5' region of the gene (Soppe et al., 2000). The rice epi-mutant, Epi-d1, has shortened vegetative branch shoots, caused by hypermethylation at the gene promoter of dwarf1 (Miura et al., 2009). In tomato, hypermethylation of the colourless non-ripening locus (Cnr) inhibits fruit ripening (Fraser et al., 2001). Histone modifications also play a fundamental role in epigenetic variation by altering the chromatin structure, allowing or
preventing transcriptional activators or repressors access to loci. A mutation in HDA6, a histone deacetylase, causes a delay in flowering in Arabidopsis. HDA6 prevents the chromatin forming an open structure, preventing transcription factors access to FLC, a gene which inhibits flowering (Yu et al., 2011). In tomatoes, the histone deacetylase, SIHDA1, plays a significant role in fruit ripening by negatively regulating carotenoids, the chemical responsible for the red pigmentation (Guo et al., 2017).

All studied plants use DNA methylation (Lane et al., 2014), but not necessarily in the same way (Gent et al., 2013)(Takuno \& Gaut, 2013). Even the distribution of methylation varies among different plant species. In Arabidopsis, 22-30\% of cytosines are methylated in a CG context, in comparison to $6-9 \%$ for CHG and $1.5-4 \%$ for CHH sites, giving an overall methylation level of 5% (Cokus et al., 2008). Other important crop species contain higher levels of methylation, for example, rice, which has $14-18 \%$ of its genome methylated (Zemach et al., 2010), and tomato, which has $22-24 \%$ of its genome methylated (Du et al., 2012). This increase occurs across all contexts, with $73-85 \%$ of CG sites, $52-56 \%$ of CHG sites and $8-14 \%$ of CHH sites being methylated in tomato (Zhong et al., 2013). Even the way the plant responds to a disruption in the epigenetic machinery varies among plant species. A loss of function for met1 in Arabidopsis causes developmental abnormalities such as delayed bolting and abnormal floral development (Kankel et al., 2003)(Finnegan et al., 1996). There is also no phenotypic change to Arabidopsis in either a cmt3 mutant (Lindroth et al., 2001) or a drm2 mutant (Cao \& Jacobsen, 2002). However, a mutation in met1 is lethal in rice at the seedling stage (Hu et al., 2014), cmt3 mutants have reduced fertility and dwarf phenotypes (Cheng et al., 2015) and drm2 mutants are sterile and have developmental abnormalities (Moritoh et al., 2012). In tomato, an RNA Polymerase V mutation, one of the components of the RdDM pathway, causes lethality (Gouil \& Baulcombe, 2016) and transformants containing a MET1 RNAi construct directed against the tomato MET1 gene could not be produced, suggesting seedling lethality (Watson, 2013). In tomato plants, it appears that accurate epigenetic regulation is essencial for plant development. This makes understanding how different epigenetic mechanisms function in tomato, challenging to uncover.

Little is known about the role methylation plays in tomato development, except for its importance in fruit ripening. 5-azacytidine which removes methylation, induces early fruit ripening in the tomato, via the demethylation of the $C N R$ gene promoter. This allows the binding of the transcription factor RIN (Ripening Inhibitor) and subsequent gene expression of CNR and other fruit ripening genes (Zhong et al, 2013). Although investigation into tomato methylation has been limited it still possesses many of the methyltransefase homologues found in Arabidopsis (Cao et al., 2014). MET1 is structurally conserved but its precise function and its role in DNA methylation in tomato is still not clearly understood. It has been suggested that MET1 is essential for tomato development (Watson, M. R., 2013) making studying a met1 mutant difficult. In the previous chapter, it has been demonstrated that over-expressing MET1 in Arabidopsis can disrupt dense methylation and cause epigenetic change. By applying the same strategy to tomato, we will be able to determine if MET1 functions in a similar manner in tomato as it does in Arabidopsis. If dense methylation is disrupted, we can investigate if it plays a larger role in gene regulation and stability and, if this disruption or alteration generates novel epi-alleles, whether they are heritably maintained in the next generation.

3.2 Results

3.2.1 Determining the structure of tomato MET1

Silencing of the tomato MET1 (SIMET) appears to be detrimental to the development of the plant (Watson, 2013). To investigate the function of MET1, the strategy to over-express the protein was chosen. Analysis of the SIMET protein was carried out, revealing that the structure and feature of the methyltransferase in tomato was essentially the same in Arabidopsis, consistent with both factors having similar functions in methylating DNA (Fig 3.1).

Figure 3.1: Predicted domains of Methyltransferases in Solanum lycopersicum and Arabidopsis thaliana. Both proteins are almost structurally identical possessing two DNMT1-RFD domains and BAH domain, and a single DNA methylase domain. Structural analysis was carried out using NCBI Conserved Domain Search (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi).

As both methyltransferases are fundamentally identical, the MET1 over-expression constructs (Fig 1.1) used in the Arabidopsis study were used to study tomato as well. The previous study confirmed that by altering the concentration of MET1 in Arabidopsis, the coordination of dense methylation was disrupted. As the structure of the methyltransferases is the same, it would be safe to assume they carry out the same function in tomato, including the coordination of dense methylation. If this is correct, by overexpressing either the catalytic active or inactive version of the Arabidopsis MET1 the epigenetic state could be altered in tomato. The two transgenic constructs were transferred into tomato, and six transgenic lines were selected; $t A 1+, t A 2+, t A 3+$ and $t A 4+$ containing the catalytically active Arabidopsis MET1 cDNA (ArMET1), and $\mathrm{tI} 1+$ and $\mathrm{tl} 2+$ contained the catalytically inactive ArMET1. Due to the long developmental time of tomato, only lines that possessed the transgene were analysed. Positive transformants were selected using the same primers designed for genotyping the Arabidopsis METo lines. The positive transformants were then allowed to self-fertilize, and their offspring were analysed.

3.2.2 Phenotypic analysis of the tomato ArMET1 over-expression lines

Over-expression of MET1 in Arabidopsis caused numerous phenotypes such as delayed bolting and shorter root growth. To determine if increased levels of ArMET1 caused similar developmental abnormalities in tomato, extensive phenotypic analysis was carried out. Disrupting the epigenetic machinery has been shown to be detrimental to tomato (Gouil \& Baulcombe, 2016; Watson, 2013). However, original tomato transformants containing the

ArMET1 may not critically disrupt the epigenome. Although offspring were produced, increased levels of MET1 may still cause adverse developmental effects in the following generation. To ascertain if this was the case, germination for each METo line was assessed (Fig 3.2).

Percentage of tomato plants that have germinated

Figure 3.2: The germination of METo tomato lines. Line tA expresses a catalytically active METo transgene; line tl expresses a catalytically inactive METo transgene. Germination was determined by the emergence of the radicle after four weeks of development. The significance of a change from wildtype is indicated by asterisks (if present): * $=\mathrm{P}<0.05,^{* *}=$ $\mathrm{P}<0.01^{* * *}=\mathrm{P}<0.005$, calculated by Student's two-tailed t-test.

Germination for three of the catalytically active METo lines was not significantly changed compared to the control lines, with the exception of line tA2+ which displayed increased germination. In comparison, both catalytically inactive METo lines have severely reduced germination with only 33% of seedlings germinating in line tl2+. Interestingly, germination was only severely affected in the catalytically inactive lines suggesting that that the mutated ArMET1 may have a more dramatic effect on tomato development. To confirm if this is correct, further phenotypic analysis was carried out. Previous study of METo Arabidopsis
found that root length was reduced in all METo lines. To determine if similar phenotypes
were observed in tomato, analysis of the root length and stem was carried out at four weeks of development (Fig3.3).

B
Average Tomato Root Length

C
Average Tomato Shoot Length

Figure 3.3: Phenotype analysis of tomato METo lines. A) Images of METo lines and wildtype control taken four weeks after stratification. The scale bar for shoot images indicates 3 cm . B) The average primary root length at four weeks of development, comparing wildtype control and tMETo lines. B) The average shoot length at four weeks of development comparing wildtype control and tMETo lines. The significance of a change from wildtype is indicated by asterisks (if present): ${ }^{*}=\mathrm{P}<0.05,^{* *}=\mathrm{P}<0.01^{* * *}=\mathrm{P}<0.005$, calculated by Student's twotailed t-test.

Compared to the control tomato line there was no significant change in the primary root length for all METo lines analysed, indicating that over-expression of ArMET1 responds differently in tomato root tissue than Arabidopsis root tissue. There was also no significant change in stem length for the tA lines. However, there is a significant reduction in the stem length for the catalytically inactive METo lines. Curiously the reduced stem length phenotype and reduction in germination are only present for the tl lines. This further supports the hypothesis that the catalytically inactive version of ArMET1 has a much more significant effect on tomato development. During the phenotypic analysis, a number of
developmental abnormalities were observed (Fig 3.4); such as the degradation of chlorophyll and the acute curling of cotyledons and true leaves (Fig 3.4A). In one tl tomato, roots developed on the stem (Fig 3.4B). Unfortunately, these phenotypic abnormalities seldom appeared making it impossible to draw any significant conclusions. One phenotype that did appear a number of times in all METo lines was the abnormal development of the shoot apical meristem (SaM) or "blind" phenotype (Fig 3.4C-D). To determine if this was a significant phenotypic event, the number of blind tomatoes were determined for each METo line along with the control line and a line that had undergone plant transformation containing a GUS expression construct (Fig 3.4E).

E
Percentage of Blind Tomato compared to Standard growth

Figure 3.4: Phenotypic analysis of abnormal tomato development present in tMETo lines. A) Image of diminished chlorophyll and acute leaf curling taken at four weeks of development for a catalytically active METo line. B) Image of abherant root growth on the stem of a catalytically inactive METo tomato. C) Image was taken of blind phenotype present in a catalytically active METo tomato D) Image was taken of blind phenotype found in a catalytically inactive METo tomato. E) The percentage of tomato plants that possess the blind phenotype at four weeks of development.

The blind phenotype was not present in any of the wildtype control plants. However, a number of blind plants were observed for each of the METo lines, independent of the catalytic activity of MET1. The percentage of blind plants was greater in the catalytically inactive METo lines which occurred in up to 10% of the plants analysed. The GUS transformant line also produced a similar number of plants possessing the blind phenotype, compared to the METo lines. This indicates the blind phenotype observed in the METo lines is, in fact, an artefact of plant transformation and not a causal effect of over-expressing MET1. Further investigation into the later stages of METo tomato development found no significant phenotypic abnormalities. Though numerous phenotypic analyses had been carried out, a characteristic phenotype that occurred across all METo lines could not be detected.

3.2.3 Transcript analysis of MET1 over-expression in tomato

The detection of no common phenotype in the METo lines implies that either the overexpression of MET1 causes no phenotypic difference due to its inability to disrupt dense methylation in tomato, or the METo transgene is silenced in tomato lines and overexpression of MET1 does not occur. To investigate if the METo transgene is silenced in tomato, qRT-PCR was used to measure the level of MET1 transcripts (Fig 3.5). As the METo transgene over-expresses the Arabidopsis homologue of MET1, both ArMET1 and SIMET1 were analysed. Previous analysis identified that the blind phenotype observed in the METo lines might be linked to plants that have undergone a transformation. Plant transformation
has been shown to cause significant changes in the expression of many genes (Veena et al., 2003) and is likely to be associated with many epigenetic changes. As the blind phenotype appears in the next generation of METo lines and occurs stochastically, it strongly suggests the phenotype is epigenetically linked. To study this possibility, MET1 transcripts were also examined in blind plants for both tA and tl plants (Fig 3.5)

Expression comparison of Tomato MET1 and Arabidopsis MET1

Figure 3.5: qRT-PCR analysis of ArMET1 and SIMET1. Transcription was measured for ArMET1 and SIMET1 in lines tA expressing a catalytically active MET1 transgene, lines tl expressing a catalytically inactive MET transgene. Tomato lines possessing the blind phenotype were also analysed and denoted with a " b ". The analysis was carried out at 4 weeks after stratification. ArMET1 expression was only detected in tl2+, Increased SIMET1 expression was observed in tl1+, $\mathrm{t} 2+\mathrm{t}, \mathrm{A}+\mathrm{b}$ and $\mathrm{tl}+\mathrm{b}$ lines. The mean and the standard error are shown for three biological replicates each having three technical replicates for each line.

For both SIMET1 and ArMET1 the values on the y-axis represent the $\log 2$ fold difference compared to the wildtype SIMET1.
qRT-PCR determined that ArMET1 was not expressed in any of the catalytically active METo lines which resolves why no phenotypic abnormalities were observed. Conversely, ArMET1 expression is detected in one of the catalytically inactive lines albeit with significant variation. This extreme difference in ArMET1 expression is likely caused by the silencing of ArMET1 in some of the plants analysed. No increase in ArMET1 was detected for either of the blind tomatoes analysed. Interestingly an increase of SIMET1 is detected for both the tl lines and plants that are blind. It may be possible that an increase in SIMET1 is observed in response to a disruption of the epigenome, the blind phenotype has been linked to epigenetic change, and increased levels of MET1 have also been shown to alter the epigenome. No increase in SIMET1 was detected in the tA lines, but they still possess the METo transgene, suggesting the transgene had been directly silenced. As no significant phenotypic marker was identified for the METo lines, and the blind phenotype is likely linked to an epigenetic change. It was decided to investigate if there were any genes with altered expression in the blind lines that are epigenetically regulated and have dense methylation. Three genes were identified that may play a role in causing the blind phenotype; SELF-PRUNING 9D (SP9D) which causes abnormal SaM development when silenced (Thouet et al., 2008), a homologue of the Arabidopsis floral repressor (CEN1.1) (Cao et al., 2016), over-expression causes delayed flowering and floral defects (Yoo et al., 2010), and WUSCHEL (WUS) required for shoot and floral meristem integrity (Xu et al., 2015). All three genes selected are involved in regulating correct SaM development and possess dense methylation within or adjacent to the gene (S3 Fig), CLE3, CLE9 and Blind were also selected as they play a role in correct SaM development but didn't possess any dense methylation (Fig 3.6).

Figure 3.6: qRT-PCR analysis of the six genes selected for further analysis. Transcription was measured for six genes believed to play a role in the blind phenotype. Both increases and decreases in gene expression can be seen across different lines, with the exception of WUS, whose expression is reduced in all lines Lines tA expressing a catalytically active MET1 transgene, lines tl expressing a catalytically inactive MET transgene. Tomato lines possessing the blind phenotype are denoted with a " b ". The analysis was carried out at 4 weeks after stratification and compared to the wildtype control. The mean and the standard
error are shown for three biological replicates each having three technical replicates for each line. Values on the y-axis represent the log2 fold difference compared to the control line.

Analysis of all six genes found no significant correlation between increased SIMET1 and gene expression. WUS was downregulated in all the METo lines including those that were blind which may imply that it is a common target in plants that have undergone transformation but that it is not responsible for the blind phenotype. Expression of CEN1.1 was upregulated in all three of the tl lines which had increased SIMET1 levels, but not in tAb+. The Blind gene was down-regulated in the tA+ and tAb+ lines but cannot be directly linked to the blind phenotype as the gene is downregulated in lines that are not blind as well. The remaining genes displayed no common expression pattern and were highly variable across multiple lines.

3.3 Discussion

In the previous chapter, it was discovered that over-expression of MET1 could be used as a strategy to induce new epigenetic variants with novel epi-alleles. MET1 is structurally and functionally similar in many important crops species including; wheat (Thomas et al., 2014), maize (Steward et al., 2000), rice (Teerawanichpan et al., 2004) and tomato (Cao et al., 2014), making over-expression of MET1 in crops ideal. It was decided first to test this strategy in tomato plants, as the tomato MET1 is structurally and functionally similar to Arabidopsis MET1. Both the catalytically active and inactive METo construct was introduced in tomato and tested. Unfortunately, no significant phenotypic difference was observed in any of the over-expression lines except for a severe reduction in germination for lines that over-expressed the catalytically inactive form of MET1. Transcript analysis of MET1 revealed that ArMET1 was completely silenced in all the catalytically active METo lines. Expression of the catalytically inactive ArMET1 was detected, but due to the significant variation in transcription, stable expression of ArMET1 could not be confirmed. As no significant expression of ArMET1 could be detected, and germination in the catalytically inactive lines were significantly lower than both the wildtype control and the catalytically active lines, suggests excess catalytically inactive MET1 could be detrimental to tomato development. Over-expression of the catalytically active may also be detrimental but due to transgene silencing in the previous generation expression of ArMET1 was silenced, preventing any developmental abnormalities in further generations. Disruption of the epigenome and MET1 has been shown to be detrimental to tomato development (Watson, 2013) supporting our observation that increased levels of MET1 causes tomato termination. Interfering with MET1 in tomato may cause such a severe response due to only possessing one copy of MET1. In comparison, Arabidopsis has three additional homologs of MET1 (MET2a, MET2b and MET3) which are structurally similar (Cao et al., 2014), allowing for redundancy. Although over-expression of MET1 appears to be difficult in tomato, many other crop species have multiple copies of MET1 such as maize (Qian et al., 2014) and wheat (Thomas et al., 2014), making them prime candidates for over-expression of MET1.

Although ArMET1 is silenced in tomato, it was identified that SIMET1 levels increased in lines that possess the catalytically inactive METo transgene and those with the blind phenotype. The stochastic nature of the blind phenotype which appears in less than 10% of tomato plants, spaning at least two generations, implies an epigenetic disturbance possibly brought about by plant transformation. As increased levels of MET1 were observed in lines that were epigenetically compromised, there may be a link between MET1 levels and the disruption of the epigenome. To determine if this was the case, six genes were selected all of which play a role in SaM development. Three of the selected genes were also densely methylated, as increased levels of MET1 have been shown to disrupt dense methylation. Analysis of the six genes could not confirm any direct link between the increased levels of MET1 and abnormal development of the SaM causing the blind phenotype. One of the target genes, WUS, which causes abnormal SaM development in Arabidopsis when downregulated (Laux et al., 1996), is also downregulated in all METo lines. However, downregulation of the WUS gene was observed in tomatos that didn't possess the blind phenotype, indicating downregulation of WUS does not directly cause abnormal SaM development.

Despite not being able to over-express MET1 in tomato we have identified that the stress of plant transformation disrupts the epigenome generating a stochastic phenotype. Further investigation into the epigenetic differences in plant transformants will be critical to determine common loci that are altered in response. We have also shown that MET1 is upregulated in response to possible epigenetic disruption (Fig 3.5) making it an attractive candidate to follow in lines that have undergone transformation stress. Over-expressing MET1 in tomato has also highlighted the importance of different expression strategies, such as targeted over-expression in certain tissue types or at distinct MET1 target loci. Spatial and temporal over-expression of MET1 will also offer the opportunity to test if MET1 target loci alter their susceptibility to MET1 over-expression in different tissues and identify developmental stages that are particularly sensitive to the induction of epigenetic switches.

4 General discussion

Variation in gene expression and phenotypes in plants can be induced by different epigenetic states. Our study has shown that by temporarily increasing the level of DNA methyltransferase MET1 we can cause heritable epigenetic changes at specific loci. This provides a new strategy to generate novel epi-alleles, and identify common epigenetic target loci and phenotypes. MET1 over-expression serves as a proof-of-concept study that should stimulate a wider application of over-expressing epigenetic regulator genes to examine the significance and targets of epigenetic regulation in different species.

4.1 Over-expression of MET1 induces heritable epigenetic diversity

The coordinating role of MET1 for dense methylation, illustrated by the loss of CG and nonCG marks in met1 mutants (Singh et al., 2008), may be facilitated by a MET1 multi-protein complex which guides CMT2 and CMT3 to dense methylation targets. Alternatively, MET1 could interact with histone regulators like HDA6, for which direct binding to MET1 has been demonstrated (Liu et al., 2012) and which has been proposed to recruit MET1 to particular target loci as the initial step in establishing subsequent non-CG methylation (To et al., 2011)

As the MET1 complex may involve direct interaction with other epigenetic factors, it should be sensitive to changes in MET1 concentration. To test this, high levels of catalytically active and inactive MET1 protein were introduced. The observation that both approaches can cause expression changes and hypomethylation of dense methylation loci resembles disruption caused by the imbalance of multi-protein complexes induced by over-expression of individual complex partners (Sopko et al., 2006). Stochiometric imbalances can sequester complex partners and disrupt the multiprotein complex. One of the earliest examples demonstrating this effect is the over-expression of either histone $\mathrm{H} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~B}$ or histone $\mathrm{H} 3-\mathrm{H} 4$ gene pairs in yeast, which causes aberrant chromosome segregation (Meeks-Wagner and Hartwell, 1986) and alters transcription due to disturbance of the histone octamer (Clarkadams et al., 1988).

We observe that increased MET1 expression is required but not always sufficient to induce novel epi-alleles. The efficiency of which these epigenetic changes are caused is not directly correlated with the level of MET1. This implies that the epigenetic changes occur in a stochastic manner but with defined probability for individual loci, similar to the effects of position-effect-variegation (Elgin and Reuter, 2013). This explains why not all transformants display the same phenotypic changes and why particular phenotypes occur more frequently than others. This provides us with a pool of new epi-variants that can be used to link phenotypes to ectopically expressed epi-alleles.

The changes in histone marks that accompany expression changes in METo lines suggest a possible involvement of HDA6 or a related histone modifier. Similar effects are observed in transposable elements activated in met1 and hda6 mutants, which also show increased H4 acetylation and H3K4 methylation levels (Liu et al., 2012). So, at some loci, increased levels of MET1 may interfere with the targeting functions of HDA6, causing the observed histone acetylation increases, stimulating hypomethylation and H3K4 methylation, leading to increased expression.

MET1 over-expression does not just copy the effects induced in a met1 mutant. Some, but not all, phenotypes and genes whose expression are altered in METo lines, are not observed in a met1 mutant. Expression changes of common target genes are also reversed when the met1 mutant is restored to a wildtype background, but retained if the METo transgene is out crossed. Although expression change is preserved over multiple generations when the METo transgene is out crossed, the efficiency with which it is maintained varies between target loci. Further enhancement of gene expression is also observed in lines that have retained the METo transgene, suggesting epigenetic changes can be continuously induced in lines that have maintained increased MET1 expression.

4.2 Investigating the tomato epigenome

As tomato MET1 is structurally and functionally similar to Arabidopsis MET1 possessing the same conserved domains (Fig3.1), both the catalytically active and inactive METo constructs were introduced in tomato. However, unlike Arabidopsis which displayed a number of different phenotypic variants, tomato METo lines did not. Transcript analysis confirmed that ArMET1 was silenced in all the METo lines. As only tomatoes with silenced ArMET1 are observed, increased levels of MET1 may be detrimental to plant development. However, unlike the attempted silencing of MET1 which couldn't produce tomato lines transformed with a MET1 inverted repeat, tomatoes can be created containing the METo transgene. This suggests that enhanced MET1 levels may only be detrimental at a specific stage of development, allowing silencing of the transgene.

Although ArMET1 is silenced in the METo lines, enhanced levels of SIMET1 are observed in catalytically inactive METo lines. The increased levels of SIMET1 in the METo lines could imply that MET1 is involved in transgene silencing, and increased levels of MET1 are required to establish this state. Enhanced levels of SIMET1 are also observed in plants that are blind, but transcript analysis of six candidate genes involved in correct SaM development could not determine a correlation. Nevertheless, transcript analysis identified that WUS, a gene which possesses dense methylation, is down-regulated in every METo line, highlighting it as a possible epi-allele that is targeted during plant transformation.

4.3 Outlook and open questions

4.3.1 Linking phenotypic change to alternatively expressed epi-alleles

Over-expression of MET1 has identified a number of novel epi-alleles that induce distinct phenotypes. FWA is upregulated in METo lines and causes delayed bolting. PAP26 is downregulated and plays a significant role in reducing primary root length, and AT3G27473 contributes to both delayed bolting and reduced primary root length when upregulated. Although we have determined three epi-alleles that induce phenotypic change, transcript analysis has identified 31 protein-coding genes and many more small RNAs that may play a role in phenotypic development. Altering these genes may also increase or reduce certain stress tolerance. AT3G30775 (ERD5) for example is involved in pathogen response (Fabro et al., 2016). Increased expression of ERD5 is observed in A1 lines, which may enhance their responsiveness to infections. We ascertained that a reduction of PAP26 correlates with shorter primary root length. PAP26 does not appear to cause root shortening directly, but a recent study found that Pi-deprived plants accelerate the degradation of AUX/IAA proteins (Perez-Torres et al., 2008), which may disrupt root development. To see if this is the case, fluorescent auxin reporters can be transformed into METo lines, to visualize the transportation and distribution of auxin in the roots.

4.3.2 Using an inducible system to over-express MET1

The inability to over-express MET1 in tomato led to the speculation that increased levels of MET1 are lethal to tomato. To test this theory, the METo construct could be modified with an inducible system allowing over-expression of MET1 at different stages of development. The ability to generate tomatoes containing the METo transgene suggests that increased levels of MET1 can be tolerated at later stages of development and lethality occurs during the earlier stages of development. One stage that may be especially sensitive to altered levels of MET1 is embryogenesis. Genes that specify embryo cell identity are incorrectly
expressed, and auxin hormone gradients are not properly formed in abnormal met1 embryos (Xiao et al., 2006), leading to abnormal development and reduced seed viability. Different tissue types may also be more susceptible to epigenetic change. A reduction in root length is observed in all METo lines, yet the development of the flower appeared unaffected. Using a tissue-specific promoter, such as the root-specific promoter HPX1 (Park et al., 2013), will allow us to test this susceptibility, and if the phenotypic changes observed are caused by an epigenetic disruption during embryogenesis or occur during root growth. We may also be able to induce epigenetic changes at distinct MET1 targets via CRISPR dCas9-MET1 fusions construct allowing precise induction of epi-alleles.

4.3.3 Investigating the protein interactions of MET1

Our findings support the idea that MET1 is part of a multiple protein complex that regulates dense methylation. However, we have yet to determine what proteins MET1 directly interacts with. Candidates include CMT2 and CMT3, which have been proposed to play a role in establishing dense methylation (Singh et al, 2008), and HDA6 which has been shown to directly bind to MET1 (Liu et al, 2012) and recruit it to particular target loci as the initial step in establishing subsequent non-CG methylation (To et al, 2011). Using a FLAG-tagged MET1 and tandem affinity purification (TAP), proteins and complexes can be isolated that directly interact with MET1. This can also be used to investigate if the mutation in the catalytically inactive MET1 causes a novel conformational change preventing interaction with individual proteins or allows new interactions. Chromatin tandem affinity purification Sequencing (chTAP-seq) can also be implemented to map the genome-wide binding of the MET1 complex (Soleimani et al., 2013), this may identify other target regions that don't have altered expression levels when grown in normal conditions, but change in response to environmental stress.

4.3.4 The function of the MET1 homologs

Over-expressing MET1 in Arabidopsis causes numerous phenotypic abnormalities, yet in tomato it appears to be lethal. This variation in susceptibility to epigenetic disruption may be due to the different homologs of MET1 found in Arabidopsis (Cao et al., 2014). The structural similarity of both MET2a and MET2b compared to MET1 may imply some redundancy in function. Very little is known about the roles of the MET1 homologs except that MET2a and MET2b are expressed in the mature ovules (Jullien et al., 2012). To determine if there is any redundancy in function a knockout line of all four METs (MET2, MET2a, MET2b, MET3) could be generated to see if the loss of all four METs are lethal. Investigation of the individual MET knockouts should also be studied to determine if the MET1 homologs are active at different stages of development or different tissue types and if they are part of a mechanism that can offset the loss of MET1.

4.3.5 Epigenetic changes induced by transformation

The investigation into the recurrence of the tomato blind phenotype implied it was likely an epigenetic event caused by the stress of plant transformation. It has been documented that plant transformation causes significant expression changes in many genes (Veena et al., 2003), but little is known about the epigenetic effect. Whole transcript and methylome analysis should be carried out for plants that have undergone transformation to determine common target loci along with phenotypic analysis to determine the frequency at which abnormal phenotypes occur. We believe to have identified one common epi-allele, WUS, which is downregulated in all transformed lines and has dense methylation adjacent to the gene. The epigenetic effect of transforming crops will become more important as GM crops increase in popularity.

5 Materials and Methods

5.1 Materials

5.1.1 Arabidopsis material

All Arabidopsis analyzed possessed a Columbia background. Control Arabidopsis plants were derived from non-transgenic seeds raised from a transformation experiment where seeds were cultured on selection-free media. The Arabidopsis met1-1 mutant was provided by Dr. Ortrun Mittelsten Scheid (GMI, Vienna, Austria) and genotyped according to (Singh et al., 2008). MET1 levels were restored (Met1-RE), by self-pollinating a plant derived from a cross between the met1-1 mutant and a wildtype line, and selected a line homozygous for the wildtype MET1 alleles. Homozygous atpap26 T-DNA insertion mutants (Salk_152821) were obtained was obtained from the Nottingham Arabidopsis Stock Centre (http://arabidopsis.info) and genotyped using the T-DNA left-border and gene-specific primers.

T1 METo transformants A1, A2, I1, and I2, were selected on hygromycin medium and selfpollinated. T2 progeny plants of each line were grown without selections and were genotyped. To differentiate between transformants that had retained or lost the MET1 transgene, respectively, primers were designed annealing either side of an intron of the MET1 gene. These primers amplify part of the endogenous MET1 gene yielding a 1161bp fragment, while amplification of a part of the MET1 cDNA transgene without the intron produces a 786bp fragment. Plant with (+) and without (-) the transgene was isolated and selfed. T3 seeds of these plant were placed on hygromycin selection to confirm that the transgene had been lost in (-) plants and to identify (+) lines that were homozygous for the transgene. One (-) plant and one (+) plant, homozygous for the transgene, were selected for each line. The T1 AT3G01345, AT3G27473, and AT3G30720 over-expression lines were selected on hygromycin medium and genotyped using the corresponding primers.

5.1.2 Solanum Lycopersicum material

All Solanum Lycopersicum analyzed possessed the Moneyberg background. All tomato analysis was carried out in T1 METo transformants. A1, A2, A3, A4, I1, and 12 were genotyped using the Arabidopsis MET1 primers to generate one band at 786bp.

5.1.3 Bacterial strains

Plasmid cloning was carried out using Escherichia coli Dh5 α (New England Biolabs). Plant transformations were performed using Agrobacterium tumefaciens GV3101::pMP90 (Hellens et al., 2000).

5.2 Primer list

	Forward Primer	Reverse Primer
Cloning		
AT3G01345	TGTCCCGGGCCAATTTGACATTTTTAA	TGTACTAGTTTTTTTTTGTCAAACAAAGATC
AT3G27473	TGTCCCGGGATGACTTTTAGGCTAGAAG	TGTACTAGTCAAATTGCCCATGGAGGGCA
AT3G30720	TGTCCCGGGCTCAGAAGAAGCCTCCTTTC	TGTACTAGTTCTAGTTGTAATGGGCATTA
Genotyping		
METo	TCCAATCACCGTGAGAGACAC	TCATAGTCTATAGACATCATTGCTTG
met1-1	CTCTTTAGTAGAAGTTGGCATG	GTTAAGCTCATTCATAGCCTTGC
Atpap-26	ATTGCTGAAAACTTAAGCGGG	CAGTTTGCCGATTTCGGAAC
AT3G01345	TGCTTTGAAGACGTGGTTGGAACG	GGAGCTCCATTGGTGATAAGC
AT3G27473	TGCTTTGAAGACGTGGTTGGAACG	TTAAGAACCAAACACCAACTGG
AT3G30720	TGCTTTGAAGACGTGGTTGGAACG	
MET1 FLAG	TCCAATCACCGTGAGAGACAC	
Semi-qPCR analysis		GGGGGTACCGCTGGTTTGGATGAGACAGC
AT5G49160 (MET1)	GGGCTCGAGCTTCCATTATCATCAGTCAC	

AT3G01345	GCGGCTAAACCTAATGCTGC	CAGACCTGGGCCTTAGAGGA
AT3G27473	CCCAAACTGTTATTACCCCAAACC	GATCGATCGCAAGCATCACA
AT3G30720	TTTCTCCACAGATGAAGACCAA	ATTTTGAGCCTTGCGACACC
$\begin{aligned} & \text { AT1G07920 } \\ & \text { (EF1 } \alpha \text {) } \end{aligned}$	GCGTGTCATTGAGAGGTTCG	GTCAAGAGCCTCAAGGAGAG
qPCR analysis Arabidopsis		
AT3G01345	TTGCTGCCCACACCAAGTATCG	ACCAGCCCAAACAGAGGTAGAG
AT3G27473	GCCTCTGGATCTTAGCCTCCAATG	TGACGACAAGCTCGACATCTCC
AT3G30720	AAACCTCCTTTCGATCTGTCAGC	ATGGCTGACCGTGTGAGTCTTG
AT3G30820	CAGAGCATCTTCGCTGTACCTG	TTCGTCGCGGAGAGAAATGAGG
AT4G25530	TCCCATGACTTGCGTGACTCTG	CACGTTGACCCATTTGCCTGTG
AT5G34850	TCACAGTTGGAGACGGAGGAAATC	TGGCTGTGGTTCCGTAAACCTTC
$\begin{aligned} & \text { AT5G49160 } \\ & \text { (MET1) } \end{aligned}$	AGACCTCCGAAGAAGAAACAGA	CTCACGGTGATTGGACGGAA
$\begin{aligned} & \text { AT3G18780 } \\ & \text { (ACT2) } \end{aligned}$	CGGTATGGTGAAGGCTGGAT	ACAAACGAGGGCTGGAACAA
qPCR analysis Tomato		
WUS	CCAGCAACTTACCCTTTTTCTTG	TAAAGCAGAGTTACCCCTTTGG
CLE9	CAATGCAAGCACAATCCTCT	CCTGCATCCTGGCTTATTCT
CLE3	CTGCTGAGATTTTAGTAAAGCCTG	GAATGCCTTTCTGTTTCTATTATCC
CEN1.1	GACCCTGATGCTCCAAGTCC	TGGCTGCAGTTTCTCTCTGG
SP9D	GGTGAGCTATGAGACCCCAAG	CAGCGGTTTCACGTTGTGC
Blind	TTCCAGCAGCCCAACAAAAC	GAACAACTTGCAACTTCCCCAA
SIMET1	CGGCTTGCGTTGAGGTTTAT	GATGACAAAGTCCCTGATGG
elF3-E	GAGCGATGGATGGTGAATCT	TTGTACGTGCGTCCAGAAAG
Bisulphite Sequencing		
AT3G01345	GTTGGTGAYAAAGAGAAGATG	ATAACAACATCAAAAAATTT
AT3G27473	ATAAAATATTAGGTTAAGTG	ATCTCRAATCAATATTTCCARCT
AT3G30720	GAGATATTGGYYTTTGATTTGTYTGTTT	TCTTRTTTCTTCTRATCTTCAAT
AT5G34850	GAATGTTGATTTYAAATYTAGAATGAAG	CAAACTTTTTCTTRACACCAAACTATTTC
ChIP analysis		
AT3G01345	CGAGGCCAAAGCTTCCAAAC	GAGAGCGACAAGGGAACGAT
AT3G27473	ATCCACAACCGCCATGACTT	GAGAACCCATCACCAGACGA
AT3G30720	AGGTTCATTTTGCCTCACACT	GCCCGACCCATGATATGACC
AT5G34850	TGGGTTACACCTGATGAACCTG	TGGTAAGTCCCTTGAGCAACA

AT5G34850 mapping		
Pp1	CTCACTCGCATAGTTCCGACA	ATACAATCTGAGAAATTCGTTGTGA
Pp2	CAAACTTTTTCTTGACACCAAACTATTTC	ATACAATCTGAGAAATTCGTTGTGA
Pp3	AAGACCCAATCCATTTCCCTCA	TGGTAAGTCCCTTGAGCAACA
Pp4	AAGACCCAATCCATTTCCCTCA	CAATCTTGTAATAGTATTTTGTATC

5.3 Construction of plasmids and plant transformation

5.3.1 Over-expression Constructs

The METo and MET1 FLAG-tagged plasmids were constructed by Michael Watson (Watson, 2013). To create the AT3G01345, AT3G27473 and AT3G30720 over-expression constructs the MET1 gene was excised from the METo construct using Spel and Xmal. The target genes were then amplified with primers containing the corresponding site and inserted into the over-expression construct.

5.3.2 Arabidopsis transformation by floral dip

Arabidopsis transformation was carried out by floral dip (Clough and Bent, 1998). 500 ml of LB media (10 g/l bacto-tryptone; $5 \mathrm{~g} / \mathrm{l}$ bacto-yeast extract; $10 \mathrm{~g} / \mathrm{l} \mathrm{NaCl}$) containing the appropriate antibiotics and bacteria were grown at $28^{\circ} \mathrm{C}$ until OD600 1.0 was reached. Cells were pelleted using centrifugation and re-suspended to an OD600 0.8 in 5\% sucrose; 0.05\% Silwet-L77. Wildtype plants were grown at $25^{\circ} \mathrm{C}$, under long day conditions till they had appropriately matured at which point clipping of the primary bolt was carried out to induce lateral bolt formation. The plants were inverted into the re-suspended culture for 1 minute and placed into sealed bags for 24 hours to encourage infiltration. This process was repeated one week after the original floral dip. Seeds were harvested by bagging the matured plants. Positive transformants were identified by growing seeds on MS20 medium ($4.405 \mathrm{~g} / \mathrm{I}$ Murashige and Skoog plus vitamins; $20 \mathrm{~g} / \mathrm{l}$ Sucrose; 0.55% agar; pH 5.8) containing the appropriate antibiotics, at $25^{\circ} \mathrm{C}, 16 / 8$ hour day/light conditions for 2 weeks. Seeds were
sterilized by washing in 70% ethanol for 2 minutes, soaking in 30% bleach (4.8% active hypochlorite) for 10 minutes and washing 5 times with sterilized water.

5.3.3 Leaf disc transformation of Solanum lycopersicum

Leaf disc transformation of Solanum lycopersicum was carried out at the premises of ENZA ZADEN, Enkhuizen, The Netherlands (supervised by Iris Heidmann). Seeds of Moneyberg were sown onto MSB530 medium (Murashige and Skoog salts, B5 vitamins, Duchefa M0231; $30 \mathrm{~g} / \mathrm{I}$ Sucrose; 0.8% agar; pH 5.8) and germinated at $25^{\circ} \mathrm{C}, 16 / 8$ hour day/light conditions for 10 days (until cotyledons expanded). Cotyledons were cut into 0.5 cm pieces, placed onto solid co-cultivation medium ($4.405 \mathrm{~g} / \mathrm{l}$ MSB5; 3% glucose; 0.8% agar; $200 \mathrm{mg} / \mathrm{l} \mathrm{KH}_{2} \mathrm{PO}_{4}$; $0.2 \mathrm{mg} / \mathrm{l} 2 ; 4 \mathrm{D}, 0.1 \mathrm{mg} / \mathrm{I}$ Kinetin; $0.1 \mathrm{mg} / \mathrm{I}$ indole-3-acetic acid; 46.8 mM Acetosyrringone; pH 5.8) and pre-cultured overnight. During this time Agrobacterium containing the required clone was grown in YEB media (5g/l Yeast extract; $5 \mathrm{~g} / \mathrm{l}$ Beef extract; 20g/l Sucrose; pH 7.2; 2.5 mM MgSO4, with the appropriate antibiotics. The Agrobacterium was washed with liquid co-cultivation medium ($4.405 \mathrm{~g} / \mathrm{I}$ MSB5; 3% glucose; $200 \mathrm{mg} / \mathrm{I} \mathrm{KH}_{2} \mathrm{PO}_{4} ; 0.2 \mathrm{mg} / \mathrm{I} 2 ; 4 \mathrm{D}, 0.1 \mathrm{mg} / \mathrm{l}$ Kinetin; $0.1 \mathrm{mg} / \mathrm{I}$ indole-3-acetic acid; 46.8 mM Acetosyrringone; pH 5.8), diluted to a density of OD600 0.4 and poured over the explants. After one hour the explants were briefly dried, transferred onto fresh co-cultivation medium and incubated at $25^{\circ} \mathrm{C}$ for 76 hours under dim light conditions. The explants were transferred to selective medium ($4.405 \mathrm{~g} / \mathrm{I}$ MSB5; 3\% glucose; 0.8% agar; $2 \mathrm{mg} / \mathrm{I}$ Zeatin; 500mg/l Cefotaxime; selective antibiotic; pH 5.8) for regeneration.

5.4 Agrobacterium protocols

5.4.1 Agrobacterium tumefaciens GV3101::pMP90 electro-competent cells

Agrobacterium was grown in 500 ml of liquid lysogeny broth (LB) (10 g/l bacto-tryptone; 5 g / l bacto-yeast extract; $10 \mathrm{~g} / \mathrm{l} \mathrm{NaCl}$) and the appropriate antibiotics at $28^{\circ} \mathrm{C}$, gently agitated. When an OD600 of 0.8 was reached the cells were pelleted and re-suspended in ice cold sterile water. This procedure was repeated 3 times with a final re-suspension in 10\% glycerol. The final re-suspension was made into stock aliquots, then frozen using liquid nitrogen and stored at $-80^{\circ} \mathrm{C}$.

5.4.2 Binary plasmid electroporation Agrobacterium

The plasmid construct pGreenll0029 were co-transferred with pSoup into Agrobacterium. pSoup is a helper plasmid that provides the replicase function for the pSa replication origin of pGreen. A pre-chilled 1 mm cuvette was loaded with $10-50 \mathrm{ng}$ of plasmid construct, 10 ng of pSoup and $50 \mu \mathrm{l}$ of electrocompetent cells of Agrobacterium. The cuvette was transferred onto a BioRAD Gene Pulser cell-porator using the following parameters: $\mathrm{C}=25$ $\mu \mathrm{F}, \mathrm{R}=400 \Omega, 5 \mathrm{~ms}$ delay, and pulsed at $\mathrm{V}=1.8 \mathrm{kV}$. Immediately after electroporation the cells were mixed with $950 \mu \mathrm{LB}$ in a 15 ml tube and incubated at $28^{\circ} \mathrm{C}$ for 4 hours with gentle agitation. The transformation mix was spread on LB plates containing $50 \mu \mathrm{~g} / \mathrm{ml}$ Kanamycin, $50 \mu \mathrm{~g} / \mathrm{ml}$ Gentamycin, and $12 \mu \mathrm{~g} / \mathrm{ml}$ Tetracycline prior to incubation at $29^{\circ} \mathrm{C}$ for 3-4 days.

5.4.3 Isolation of plasmid DNA from Agrobacterium tumefaciens GV3101::pMP90

Mini-prep isolation of plasmid DNA from Agrobacterium was carried out using a modified alkaline lysis method (Wang, 2006). Individual colonies were grown in 10 ml of liquid lysogeny broth (LB) (10 g/l bacto-tryptone; $5 \mathrm{~g} / \mathrm{l}$ bacto-yeast extract; $10 \mathrm{~g} / \mathrm{l} \mathrm{NaCl}$) supplemented with the required antibiotics for 48 hours at $28^{\circ} \mathrm{C}$, and cultures were gently
shaken. The culture was pelleted by centrifugation, and the supernatant was discarded. The cells were re-suspended in $100 \mu \mathrm{l}$ of solution 1 (50 mM glucose; 25 mM Tris- $\mathrm{HCl}, \mathrm{pH} 8.0$; 10 mM EDTA, $\mathrm{pH} 8.0 ; 4 \mathrm{mg} / \mathrm{ml}$ lysozyme) and incubated at room temperature for $30 \mathrm{mins}, 200$ $\mu \mathrm{l}$ of solution 2 (0.2 M NaOH ; 1\%SDS) was added and mixed. Finally, $150 \mu \mathrm{l}$ of solution 3 (3M KAc, pH 5.5) was added and mixed thoroughly. The solution was then centrifuged at 12,000 $x \mathrm{~g}$ for 5 min at $4^{\circ} \mathrm{C}$, and the supernatant was transferred to a new tube containing phenol:chloroform:IAA. The suspension was centrifuged at $12,000 \times \mathrm{g}$ for 1 minute, and the upper layer was transferred to a new tube. The isolated DNA was precipitated with an equal volume of Isopropanol and centrifuged at $12,000 \times \mathrm{g}$ for 10 min at $4^{\circ} \mathrm{C}$ to pellet the DNA. The pellet was washed with 70\% ethanol and allowed to air dry. The DNA was dissolved in 30-50 $\mu \mathrm{l}$ of sterile ddH 2 O

5.5 E. coli protocols

5.5.1 Preparation of chemically competent E. coli cell

E.coli competent cells were made according to (Sambrook et al., 1989). A glycerol stock of the E . coli strain $\mathrm{DH} 5 \alpha$ was plated on $\mathrm{LB}(10 \mathrm{~g} / \mathrm{l}$ bacto-tryptone; $5 \mathrm{~g} / \mathrm{l}$ bacto-yeast extract; $10 \mathrm{~g} / \mathrm{l} \mathrm{NaCl} 0.8 \%$ agar) and incubated overnight at $37^{\circ} \mathrm{C}$. A single colony was selected and inoculated in 2 ml of LB broth and incubated overnight at $37^{\circ} \mathrm{C}$ with agitation. 1 ml of the overnight culture was added to 500 ml of LB broth in a 2000 ml Erlenmeyer flask, followed by incubation at $37^{\circ} \mathrm{C}$ with agitation until the OD600 reached $0.3-0.4$. The culture was cooled on ice for 10 min and divided into two sterile round-bottom centrifuge tubes. The cells were collected by centrifugation at $5,000 \times \mathrm{g}$ for 10 min at $4^{\circ} \mathrm{C}$ and the supernatant discarded. The pelleted cells were kept on ice and gently resuspended in 100 ml of 100 mM ice cold, sterile MgCl_{2}. The cells were collected again by centrifugation. The supernatant was discarded, followed by cells re-suspension in 20 ml of ice-cold 100 mM CaCl . An additional 180 ml of ice-cold 100 mM CaCl 2 was added. This suspension was kept on ice for 20 min , and the cells were collected via centrifugation. The supernatant was discarded, and the cells were re-suspended in the 4 ml volume of ice cold, sterile 85 mM CaCl 2 and 15% of glycerol
(w / v). The suspension was aliquoted into 1.5 ml tubes and frozen in liquid nitrogen prior to storage in $-80^{\circ} \mathrm{C}$ freezer.

5.5.2 Heat-shock transformation

$10-50 \mathrm{ng}$ of plasmid DNA or $10 \mu \mathrm{l}$ of ligation reaction were added to $100 \mu \mathrm{l}$ of thawed competent cells on ice and gently mixed. The suspension was incubated for 30 minutes on ice prior to heat shock treatment at $42^{\circ} \mathrm{C}$ for 90 seconds and transferred immediately back on ice for 2 min . Then, $900 \mu \mathrm{l}$ of LB was added and incubated at $37^{\circ} \mathrm{C}$ with agitation for 1 hour. Next, $100 \mu \mathrm{l}$ of the culture was spread on warmed LB plates containing the appropriate antibiotic for correct transformation selection, followed by overnight incubation at $37^{\circ} \mathrm{C}$.

5.5.3 Mini-prep isolation of plasmid DNA from E.coli

Mini-prep isolation of plasmid DNA from E.coli was carried out using a modified alkaline lysis method (Sambrook et al., 1989). Individual colonies were grown in 2 ml of liquid LB with the required antibiotics for 17 hours at $37^{\circ} \mathrm{C} .1 \mathrm{ml}$ of the overnight culture was transferred to a 1.5 ml tube and centrifuged for 5 min at max speed to pellet the cells. The supernatant was removed and resuspended in $100 \mu \mathrm{l}$ of solution I (50 mM glucose; 25 mM Tris- $\mathrm{HCl}, \mathrm{pH} 8$ and 10 mM EDTA, pH 8) and thoroughly mixed. $200 \mu \mathrm{l}$ of solution II $(0.2 \mathrm{M} \mathrm{NaOH}$ and 1% SDS) and 150μ l of solution III (5 M Potassium Acetate; pH 5.5, adjusted with Glacial Acetic Acid) was added and placed on ice for 10 mins . The tubes were then centrifuged at $12,000 \mathrm{x}$ g for 5 min at $4^{\circ} \mathrm{C}$. The supernatants were transferred into new tubes with an equal volume of ice-cold Isopropanol. The suspension was centrifuged at $12,000 \mathrm{xg}$ for 10 min at $4^{\circ} \mathrm{C}$ to pellet the precipitated plasmid DNA. The supernatant was discarded, and the pellet was washed with 200μ l of 70% Ethanol and allowed to air-dry. The DNA was re-suspended using sterile distilled $\mathrm{H}_{2} \mathrm{O}$ and RNase $\mathrm{A}(20 \mathrm{mg} / \mathrm{I})$.

5.6 Phenotypic analysis

5.6.1 Arabidopsis phenotyping

Seeds were sterilized by washing in 70% ethanol for 2 minutes, then soaked in 30% bleach (4.8% active hypochlorite) for 10 minutes and washed 3 times with sterilized water. Sterilised seeds were sown on MS15 medium ($4.405 \mathrm{~g} / \mathrm{I}$ Murashige and Skoog plus vitamins; $15 \mathrm{~g} / \mathrm{I}$ Sucrose; 1% agar; pH 5.8) and germinated under long day conditions ($25^{\circ} \mathrm{C}, 16 / 8$ hour day/light). For the bolting analysis, 24 seedlings for each line were transferred to soil after two weeks and grown under long day conditions. Once the primary bolt reached 1 cm in height from the base of the plant, leaves above 1 cm in length were counted. Therefore, flowering time is measured as the total number of leaves before flowering, described by (Soppe et al., 2000). For the root analysis, 30 seedlings for each line were transferred 120mm square Petri-dishes containing MS15 (1\% agar). Each plate contained 10 seedlings and was grown in a vertical position under long day conditions $\left(25^{\circ} \mathrm{C}, 16 / 8\right.$ hour day/light). After four weeks of development, root images were captured using a flat-bed scanner at 800ppi (HP Scanjet G3110) and analyzed using ImageJ (Schneider et al., 2012). Lateral roots were only counted if they were bigger than 2 mm . The ratio was calculated by dividing the length of the primary root (mm) by the number of lateral roots.

5.6.2 Tomato phenotyping

Seeds were washed with 99% ethanol, soaked in 25% bleach (4% active hypochlorite) for 20 min and rinsed three times with sterilized water. Seeds were then sewn onto MSB530 medium (Murashige and Skoog salts, B5 vitamins, Duchefa M0231; $30 \mathrm{~g} / \mathrm{I}$ Sucrose; 0.8% agar; pH 5.8) and grown under long day conditions ($25^{\circ} \mathrm{C}, 16 / 8$ hour day/light). For the phenotypic analysis, 100 seeds were sown for each line with each line was analyzed at 4 weeks of development. Germination was calculated by counting the number of seedlings that had emerged from the seed. The stem and root length was measured by removing each tomato plant from the media and using a ruler to measure their lengths. Blind plants were determined via abnormal growth at the shoot apical meristem.

5.7 DNA Protocol

5.7.1 Isolation of genomic DNA from Arabidopsis

Isolation of plant genomic DNA was carried out using a modified Vejlupkova and Fowler protocol (Vejlupkova \& Fowler, 2003). Plant tissue was frozen in liquid nitrogen and ground, $560 \mu \mathrm{l}$ of extraction buffer ($200 \mathrm{mM} \mathrm{NaCl} ; 18 \mathrm{mM} \mathrm{NaHSO} 3 ; 200 \mathrm{mM}$ Tris-HCl, pH 8.0; 0.07 mM EDTA) and $50 \mu \mathrm{l}$ of 5% sarkosyl was added and mixed. The suspension was mixed and incubated at 65° for 1 hour. An equal volume of phenol:chloroform:Isoamyl alcohol (IAA) (12:12:1) was added then centrifuged at $12,000 \times \mathrm{g}$ for 10 min at $4^{\circ} \mathrm{C}$. The upper phase was transferred to a new Eppendorf tube and the phenol:chloroform:IAA extraction was repeated. The DNA was precipitated using $300 \mu \mathrm{l}$ of isopropanol and pelleted by centrifugation at $12,000 \times \mathrm{g}$ for 10 min at $4^{\circ} \mathrm{C}$. The supernatant was discarded and washed with 70\% ethanol. The DNA was re-pelleted and the supernatant removed and allowed to air-dry. The DNA was re-suspended using sterile distilled $\mathrm{H}_{2} \mathrm{O}$ and RNase $\mathrm{A}(20 \mathrm{mg} / \mathrm{I})$.

5.7.2 Restriction digest

Digestion reactions were made to a final volume of $50 \mu \mathrm{l}$. A standard digestion reaction consisted of approximately $1 \mu \mathrm{~g}$ of DNA, the 1 x concentration of appropriate digestion buffer, $5-10$ units of restriction endonuclease enzyme and $0.1 \mathrm{mg} / \mathrm{ml}$ Bovine Serum Albumin (BSA) when required. The reaction was incubated at the optimum temperature for 2 hours.

5.7.3 Ligation reaction

Ligation reactions consisted of 1 x ligase buffer, $1 \mathrm{U} / \mu \mathrm{l}$ of T4 DNA Ligase (Promega M180A) and a $3: 1$ ratio of insert to vector. The final reaction was incubated at $16^{\circ} \mathrm{C}$ overnight.

5.7.4 Polymerase chain reaction (PCR)

PCR for genotyping was carried out using MyTaq DNA polymerase (Bioline). The reaction was made according to manufacturer's instructions which consisted of $0.3 \mu \mathrm{l}$ of MyTaq DNA polymerase, the $1 x$ concentration of red buffer, $10 \mu \mathrm{M}$ of both forward and reverse primers, 250 ng of DNA template and $\mathrm{H}_{2} \mathrm{O}$ to make the final volume to 50μ l. The reaction was placed into a thermocycler with the following settings: initial denaturation at $95^{\circ} \mathrm{C}$ for $5 \mathrm{~min}, 25-29$ cycles of denaturation at $15^{\circ} \mathrm{C}$ for 30 sec , annealing temperature (Ta , according to the primer annealing temperature) for 15 sec and extension at $72^{\circ} \mathrm{C}$ for $10 \mathrm{sec} / \mathrm{kb}$ and followed by final extension at $72^{\circ} \mathrm{C}$ for 5 min

PCR for plasmid construction was carried out using the high fidelity polymerase Phusion (Finnzymes). The reaction was made according to manufacturer's instructions which consisted of $0.5 \mu \mathrm{l}$ of Phusion High-Fidelity DNA Polymerase at $1 \mathrm{U} / \mu \mathrm{l}, 10 \mu \mathrm{l}$ of $5 \times$ Phusion HF Buffer, 10 mM dNTPs, $10 \mu \mathrm{M}$ of both forward and reverse primer, and 250 ng of template DNA was added with $\mathrm{H}_{2} \mathrm{O}$ to a final volume of 50μ. The reaction was placed into a thermocycler with the following setting: initial denaturation at $98^{\circ} \mathrm{C}$ for $5 \mathrm{~min}, 25-29$ cycles of denaturation at $98^{\circ} \mathrm{C}$ for 30 sec , annealing (Ta , according to the primer annealing temperature) for 30 sec and extension at $72^{\circ} \mathrm{C}$ for $30 \mathrm{sec} / \mathrm{kb}$ and followed by final extension at $72^{\circ} \mathrm{C}$ for 5 min . A negative control was run together with the DNA template replaced with $\mathrm{H}_{2} \mathrm{O}$.

5.7.5 Bisulphite analysis

Genomic DNA was isolated from, three replica samples, each contained ten pooled four-week-old seedlings of the T3 generation and subjected to bisulfite treatment using an EZ DNA Methylation-lightning kit (Zymo Research) according to the manufacturer's instructions Regions containing dense methylation for AT3G01345 (Chr3: 129684..129860-177 bp), AT3G27473 (Chr3: 10171884..10172090-207 bp), AT3G30720 (Chr3: 12348994..12349109 116 bp) and AT5G34850 (Chr5: 13111304.. 13111574 - 271bp) were amplified by primers listed S8 Table. For each line, 10 clones were sequenced, and sequences were exported into
the BioEdit program (Hall, T. A., 1999). Aligned sequences were saved in FASTA format and analyzed by the CyMATE program (Hetzl et al., 2007).

5.7.6 DNA sequencing

Approximately $100 \mathrm{ng} / \mu \mathrm{l}$ isolated plasmid DNA was sent to Beckman Genomics for sequencing using the appropriate primers. Sequencing reads were aligned using the Clustal function in Bioedit 7.0.9.0 (Higo et al., 1999)

5.7.7 Data analysis

The ThaleMine platform https://apps.araport.org/thalemine/begin.do was used to extract the annotation for extracted genes. DNA methylation patterns for Arabidopsis were extracted from the Neomorph platform http://neomorph.salk.edu/epigenome/epigenome.html to identify genes with dense DNA methylation patterns. The tomato DNA methylation patterns were extracted using the tomato epigenome database http://ted.bti.cornell.edu/cgi-bin/epigenome/home.cgi to determine genes with dense DNA methylation patterns.

5.8 RNA analysis

5.8.1 Isolation of RNA from plants

Total plant RNA was isolated from each line, with for each line having replica samples, each contained ten pooled four-week-old seedlings of the T3 generation, and performed as described by (Stam et al., 2000). 750 μ l of RNA extraction buffer (100mM Tris-HCL, pH8.5; $100 \mathrm{mM} \mathrm{NaCl} ; 20 \mathrm{mM}$ EDTA; 1% sarcosyl) was added to 0.5 g of plant tissue ground in liquid nitrogen. The suspension was mixed and equal volume of phenol:chloroform:IAA (12:12:1) was added then centrifuged at $12,000 \times \mathrm{g}$ for 10 min at $4^{\circ} \mathrm{C}$. The top phase was transferred to a new Eppendorf and phenol:chloroform:IAA extraction was repeated. Precipitation of the RNA was performed using Isopropanol, 4 M LiCl , and $3 \mathrm{M}, \mathrm{pH} 7.0 \mathrm{NaAc}$. Extractions were quantified using the nano-drop spectrophotometer ND-1000 (Thermo Scientific). DNA was removed using the TURBO DNase kit (Ambion Applied Biosystems) according to the manufacturer's instructions.

5.8.2 Semi-quantitative PCR

cDNA was generated using SuperScript ${ }^{\text {TM }}$ II. The reaction was made according to manufacturer's instructions which consisted of $10 \mu \mathrm{~g}$ of isolated $\mathrm{RNA}, 50 \mu \mathrm{M}$ oligo(dT)20 and 10 mM dNTP mix. The reaction was incubated at $65^{\circ} \mathrm{C}$ for 5 min and then placed on ice for at least 1 min . The 1 x concentration of First stand buffer, 0.2 M of DTT and 40 units $/ \mu \mathrm{l}$ of RNaseOUT was added to each reaction. The mix was incubated at $25^{\circ} \mathrm{C}$ for 2 minutes at which point 200 units of SuperScript ${ }^{\text {TM }}$ II was added to a final volume of 20μ. The mix was incubated for a further 10 min , then $42^{\circ} \mathrm{C}$ for 50 min then final $70^{\circ} \mathrm{C}$ for 15 min . The solution was diluted with $20 \mu \mathrm{l}$ of $\mathrm{ddH}_{2} \mathrm{O}$. Random primers were used as non-coding RNA would be analyzed in the expression analysis. 1μ l of the diluted cDNA solution was added to a standard MyTaq reaction. The reaction was placed into a thermocycler with the following settings: initial denaturation at $95^{\circ} \mathrm{C}$ for $5 \mathrm{~min}, 25-29$ cycles of denaturation at $15^{\circ} \mathrm{C}$ for 30 sec , annealing temperature (Ta , according to the primer annealing temperature) for 15 sec
and extension at $72^{\circ} \mathrm{C}$ for $10 \mathrm{sec} / \mathrm{kb}$, when the thermocycler had performed 20 cycles the reaction was held at $72^{\circ} \mathrm{C}$ while $6 \mu \mathrm{l}$ was removed from the total reaction, this was repeated twice more every three cycles then ran on a Agarose gel. Using Elongation Factor 1α which is ubiquitously expressed the reactions exponential phase could be determined and used to standardize each reaction for expression analysis.

5.8.3 Quantitative RT-PCR assay

Gene expression was analyzed using SsoFast EvaGreen Supermix (BioRad) on the Fluidigm Biomark 96.96 Dynamic Array according to the manufacturer's protocol. Data analysis was carried out utilizing the Fluidigm Gene Expression Analysis software using ACTIN 2 (AT3G18780) as the reference gene.

5.8.4 Sequencing and data analysis

Next-generation sequencing libraries were created from RNA using the TruSeq Stranded total RNA kit (Illumina) which removes rRNA and cleaves the remaining RNA allowing the ligation of random hexamers, and synthesis of CDNA for further analysis https://support.illumina.com/content/dam/illumina-support/documents/documentation/ chemistry_documentation/samplepreps_truseq/truseqstrandedtotalrna/truseq-stranded-total-rna-sample-prep-guide-15031048-e.pdf.

Sequencing was carried out on a HiSeq 2500 to generate 50 bp single-end sequence data. Data analysis was carried out Dr. Ian M Carr (Leeds University, Leeds, England). The data were aligned to the Arabidopsis genome (TAIR website [https://www.arabidopsis.org]) using the STAR aligner (Dobin et al., 2013). Reads mapping to each transcript were determined using the R package rsubRead (Liao et al., 2013)and pairwise comparisons between the wildtype sample and each of the modified samples were performed using the R package DeSeq2 (Love et al., 2014)to identify transcripts whose expression varied markedly between the control and experimental sample for each condition. Reads were used to calculate the mean value of read mapping to a transcript in all sample in the analysis (base Mean), the
change in expression between the control sample and the test sample given as a Log to the base 2 value (log2FoldChange), the standard error of variation for the log2FoldChange values in the analysis (IfcSE = log fold change Standard Error), the Wald statistic; the log2FoldChange divided by IfcSE, the probability the result is real; the log2FoldChange divided by IfcSE, compared to a standard Normal distribution to generate a two-tailed pvalue (pvalue) and the pvalue adjusted for multiple testing using the Benjamini-Hochberg test (Padj).

Raw data were submitted to the short-read archive of NCBI BioProject database under SubmissionID SUB2885208, BioProject ID PRJNA395995 for the following Datasets:

Accession	Sample Name Organism	Tax ID	BioProject
SAMN07419160	WT_1 Arabidopsis thaliana	3702	PRJNA395995
SAMN07419161	WT_2 Arabidopsis thaliana	3702	PRJNA395995
SAMN07419162	WT_3 Arabidopsis thaliana	3702	PRJNA395995
SAMN07419163	A1+_1 Arabidopsis thaliana	3702	PRJNA395995
SAMN07419164	A1+_2 Arabidopsis thaliana	3702	PRJNA395995
SAMN07419165	A1+_3 Arabidopsis thaliana	3702	PRJNA395995
SAMN07419166	A1-_1 Arabidopsis thaliana	3702	PRJNA395995
SAMN07419167	A1-_2 Arabidopsis thaliana	3702	PRJNA395995
SAMN07419168	A1-_3 Arabidopsis thaliana	3702	PRJNA395995
SAMN07419169	A2+_1 Arabidopsis thaliana	3702	PRJNA395995
SAMN07419170	A2+_2 Arabidopsis thaliana	3702	PRJNA395995
SAMN07419171	A2+_3 Arabidopsis thaliana	3702	PRJNA395995
SAMN07419172	A2-_1 Arabidopsis thaliana	3702	PRJNA395995
SAMN07419173	A2-_2 Arabidopsis thaliana	3702	PRJNA395995
SAMN07419174	A2-_3 Arabidopsis thaliana	3702	PRJNA395995

5.9 Protein analysis

5.9.1 ChIP assay

28-day-old seedlings were harvested and cross-linked with 1% formaldehyde. Chromatin was extracted using the ChromaFlash Plant Chromatin Extraction Kit (Epigentek) and sheared to 200-500bp fragments using a Bioruptor (Diagenode). ChIP was carried out using the EpiQuik Plant ChIP Kit (Epigentek). Input samples and immunoprecipitated samples were analyzed using SsoFast EvaGreen Supermix (BioRad) on the Fluidigm Biomark 96.96 Dynamic Array according to the manufacturer's protocol. ChIP-qPCR results were first normalized with input sample. Relative enrichment was then calculated via the enrichment of the signal (the antibody of interest) compared to the enrichment of the noise (negative control). Antibodies used for ChIP: anti-acetyl-histone H4K5K8K12K16 (06-866; Millipore), H3K4me3 (07-473, Millipore), H3K9me3 (07-442, Millipore), normal rabbit IgG (12-370, Millipore).

5.9.2 Western blot assay

Protein was isolated from 28-day-old seedlings using the P-PER plant protein extraction kit (Pierce) in accordance with the manufacturer's instructions. Protein was then denatured by suspending the extract in equal volume laemmli buffer (Bio-Rad) and heated at $95^{\circ} \mathrm{C}$ for 5 minutes. The samples were resolved on 12\% Mini-PROTEAN TGX Stain-Free Protein Gels (Bio-Rad) and transferred to Trans-Blot Turbo Mini Nitrocellulose Transfer Packs using the Trans-Blot Turbo Transfer (Bio-Rad). The nitrocellulose membranes were blocked with 5\% (w/v) nonfat dry milk in Tris-buffered saline (TBS; 20 mM Tris and $137 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 7.7$) with 0.1\% (v/v) Tween-20. The Anti-FLAG (ab197345, Abcam) and Anti-Actin (ab197345, Abcam) were diluted $1 / 1000$ in TBS-Tween $/ 5 \%$ milk solution and incubated overnight at $4^{\circ} \mathrm{C}$. Blots were washed with TBS-Tween 6 times for 10 min each. Blots were further incubated with horseradish peroxidase-conjugated anti-rabbit lgG (ab6721, abcam) at 1/2000 dilution and then washed as above. Blots were covered with SuperSignal ${ }^{\text {TM }}$ West Pico PLUS Chemiluminescent Substrate (Thermo Scientific) for 20 minutes; bound antibodies were visualized on a G:BOX Chemi XX6 (Syngene).

6 References

Agius, F., Kapoor, A. \& Zhu, J.-K. (2006) Role of the Arabidopsis DNA Glycosylase/lyase ROS1 in Active DNA Demethylation. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 103 (31) August, pp. 11796-11801.

Agorio, A. \& Vera, P. (2007) ARGONAUTE4 Is Required for Resistance to Pseudomonas Syringae in Arabidopsis. PLANT CELL, 19 (11) November, pp. 3778-3790.

Antequera, F. \& Bird, A. (1999) CpG Islands as Genomic Footprints of Promoters That Are Associated with Replication Origins. CURRENT BIOLOGY, 9 (17) September, pp. R661R667.

Baev, V., Naydenov, M., Apostolova, E., Ivanova, D., Doncheva, S., Minkov, I. \& Yahubyan, G. (2010) Identification of RNA-Dependent DNA-Methylation Regulated Promoters in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY, 48 (6) June, pp. 393-400.

Baumbusch, L. O., Thorstensen, T., Krauss, V., Fischer, A., Naumann, K., Assalkhou, R., Schulz, I., Reuter, G. \& Aalen, R. B. (2001) The Arabidopsis Thaliana Genome Contains at Least 29 Active Genes Encoding SET Domain Proteins That Can Be Assigned to Four Evolutionarily Conserved Classes. NUCLEIC ACIDS RESEARCH, 29 (21) November, pp. 4319-4333.

Becker, C., Hagmann, J., Mueller, J., Koenig, D., Stegle, O., Borgwardt, K. \& Weigel, D. (2011) Spontaneous Epigenetic Variation in the Arabidopsis Thaliana Methylome. NATURE, 480 (7376) December, pp. 245-U127.

Berger, S. L. (2007) The Complex Language of Chromatin Regulation during Transcription. NATURE, 447 (7143) May, pp. 407-412.

Bernatavichute, Y. V, Zhang, X., Cokus, S., Pellegrini, M. \& Jacobsen, S. E. (2008) GenomeWide Association of Histone H3 Lysine Nine Methylation with CHG DNA Methylation in Arabidopsis Thaliana. PLOS ONE, 3 (9) September.

Bolan, N. S., Adriano, D. C. \& Naidu, R. (2003) Role of Phosphorus in (Im)mobilization and Bioavailability of Heavy Metals in the Soil-Plant System. In: REVIEWS OF

ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY, VOL 177. vol. 177. 175 FIFTH AVE, NEW YORK, NY 10010 USA: SPRINGER-VERLAG, pp. 1-44.

Boyko, A., Kathiria, P., Zemp, F. J., Yao, Y., Pogribny, I. \& Kovalchuk, I. (2007) Transgenerational Changes in the Genome Stability and Methylation in PathogenInfected Plants (Virus-Induced Plant Genome Instability). NUCLEIC ACIDS RESEARCH, 35 (5), pp. 1714-1725.

BRINK, R. A. (1959) PARAMUTATION AT THE R-LOCUS IN MAIZE PLANTS TRISOMIC FOR CHROMOSOME-10. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 45 (6), pp. 819-827.

Bruner, S. D., Norman, D. P. G. \& Verdine, G. L. (2000) Structural Basis for Recognition and Repair of the Endogenous Mutagen 8-Oxoguanine in DNA. NATURE, 403 (6772) February, pp. 859-866.

Cao, D., Ju, Z., Gao, C., Mei, X., Fu, D., Zhu, H., Luo, Y. \& Zhu, B. (2014) Genome-Wide Identification of Cytosine-5 DNA Methyltransferases and Demethylases in Solanum Lycopersicum. GENE, 550 (2) October, pp. 230-237.

Cao, K., Cui, L., Zhou, X., Ye, L., Zou, Z. \& Deng, S. (2016) Four Tomato FLOWERING LOCUS TLike Proteins Act Antagonistically to Regulate Floral Initiation. FRONTIERS IN PLANT SCIENCE, 6 January.

Cao, X., Aufsatz, W., Zilberman, D., Mette, M. F., Huang, M. S., Matzke, M. \& Jacobsen, S. E. (2003) Role of the DRM and CMT3 Methyltransferases in RNA-Directed DNA Methylation. Current Biology, 13 (24) December, pp. 2212-2217.

Cao, X. F., Aufsatz, W., Zilberman, D., Mette, M. F., Huang, M. S., Matzke, M. \& Jacobsen, S. E. (2003) Role of the DRM and CMT3 Methyltransferases in RNA-Directed DNA Methylation. CURRENT BIOLOGY, 13 (24) December, pp. 2212-2217.

Cao, X. F. \& Jacobsen, S. E. (2002) Role of the Arabidopsis DRM Methyltransferases in de Novo DNA Methylation and Gene Silencing. CURRENT BIOLOGY, 12 (13) July, pp. 11381144.

Casadesus, J. \& Low, D. (2006) Epigenetic Gene Regulation in the Bacterial World.

Catoni, M., Griffiths, J., Becker, C., Zabet, N. R., Bayon, C., Dapp, M., Lieberman-Lazarovich, M., Weigel, D. \& Paszkowski, J. (2017) DNA Sequence Properties That Predict Susceptibility to Epiallelic Switching. EMBO JOURNAL, 36 (5) March, pp. 617-628.

Chan, S. W.-L., Zhang, X., Bernatavichute, Y. V \& Jacobsen, S. E. (2006) Two-Step Recruitment of RNA-Directed DNA Methylation to Tandem Repeats. PLOS BIOLOGY, 4 (11) November, pp. 1923-1933.

Chen, T. P., Ueda, Y., Dodge, J. E., Wang, Z. J. \& Li, E. (2003) Establishment and Maintenance of Genomic Methylation Patterns in Mouse Embryonic Stem Cells by Dnmt3a and Dnmt3b. MOLECULAR AND CELLULAR BIOLOGY, 23 (16) August, pp. 5594-5605.

Cheng, C., Tarutani, Y., Miyao, A., Ito, T., Yamazaki, M., Sakai, H., Fukai, E. \& Hirochika, H. (2015) Loss of Function Mutations in the Rice Chromomethylase OsCMT3a Cause a Burst of Transposition. PLANT JOURNAL, 83 (6) September, pp. 1069-1081.

Choi, Y. H., Gehring, M., Johnson, L., Hannon, M., Harada, J. J., Goldberg, R. B., Jacobsen, S. E. \& Fischer, R. L. (2002) DEMETER, a DNA Glycosylase Domain Protein, Is Required for Endosperm Gene Imprinting and Seed Viability in Arabidopsis. CELL, 110 (1) July, pp. 33-42.

Clarkadams, C. D., Norris, D., Osley, M. A., Fassler, J. S. \& Winston, F. (1988) Changes in Histone Gene Dosage Alter Transcription in Yeast. GENES \& DEVELOPMENT, 2 (2) February, pp. 150-159.

Cokus, S. J., Feng, S., Zhang, X., Chen, Z., Merriman, B., Haudenschild, C. D., Pradhan, S., Nelson, S. F., Pellegrini, M. \& Jacobsen, S. E. (2008) Shotgun Bisulphite Sequencing of the Arabidopsis Genome Reveals DNA Methylation Patterning. NATURE, 452 (7184) March, pp. 215-219.

Cooper, D. N., Taggart, M. H. \& Bird, A. P. (1983) Unmethylated Domains in Vertebrate DNA. NUCLEIC ACIDS RESEARCH, 11 (3), pp. 647-658.

D’Ario, M., Griffiths-Jones, S. \& Kim, M. (2017) Small RNAs: Big Impact on Plant Development. TRENDS IN PLANT SCIENCE, 22 (12) December, pp. 1056-1068.

Dahm, R. (2005) Friedrich Miescher and the Discovery of DNA. Developmental Biology [Online], 278 (2) February, pp. 274-288. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0012160604008231 [Accessed 8 June 2017].

Dechiara, T. M., Robertson, E. J. \& Efstratiadis, A. (1991) Parental Imprinting of the Mouse Insulin-Like Growth Factor-II Gene. CELL, 64 (4) February, pp. 849-859.

Deleris, A., Halter, T. \& Navarro, L. (2016) DNA Methylation and Demethylation in Plant Immunity. In: Leach, JE and Lindow, S ed., ANNUAL REVIEW OF PHYTOPATHOLOGY, VOL 54. vol. 54. 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0897 USA: ANNUAL REVIEWS, pp. 579-603.

Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M. \& Gingeras, T. R. (2013) STAR: Ultrafast Universal RNA-Seq Aligner. BIOINFORMATICS, 29 (1) January, pp. 15-21.

Doebley, J. F., Gaut, B. S. \& Smith, B. D. (2006) The Molecular Genetics of Crop Domestication. CELL, 127 (7) December, pp. 1309-1321.

Du, J., Zhong, X., Bernatavichute, Y. V, Stroud, H., Feng, S., Caro, E., Vashisht, A. A., Terragni, J., Chin, H. G., Tu, A., Hetzel, J., Wohlschlegel, J. A., Pradhan, S., Patel, D. J. \& Jacobsen, S. E. (2012) Dual Binding of Chromomethylase Domains to H3K9me2-Containing Nucleosomes Directs DNA Methylation in Plants. CELL, 151 (1) September, pp. 167-180.

Dupont, C., Armant, D. R. \& Brenner, C. A. (2009) Epigenetics: Definition, Mechanisms and Clinical Perspective. SEMINARS IN REPRODUCTIVE MEDICINE, 27 (5) September, pp. 351-357.

Duque, P. \& Chua, N. H. (2003) IMB1, a Bromodomain Protein Induced during Seed Imbibition, Regulates ABA- and phyA-Mediated Responses of Germination in Arabidopsis. PLANT JOURNAL, 35 (6) September, pp. 787-799.

Durut, N., Abou-Ellail, M., Pontvianne, F., Das, S., Kojima, H., Ukai, S., Bures, A. de, Comella, P., Nidelet, S., Rialle, S., Merret, R., Echeverria, M., Bouvet, P., Nakamura, K. \& SaezVasquez, J. (2014) A Duplicated NUCLEOLIN Gene with Antagonistic Activity Is Required for Chromatin Organization of Silent 45S rDNA in Arabidopsis. PLANT CELL, 26 (3)

March, pp. 1330-1344.

Fabro, G., Soledad Rizzi, Y. \& Elena Alvarez, M. (2016) Arabidopsis Proline Dehydrogenase Contributes to Flagellin-Mediated PAMP-Triggered Immunity by Affecting RBOHD. MOLECULAR PLANT-MICROBE INTERACTIONS, 29 (8) August, pp. 620-628.

Finnegan, E. J. (2002) Epialleles - a Source of Random Variation in Times of Stress. CURRENT OPINION IN PLANT BIOLOGY, 5 (2) April, pp. 101-106.

Finnegan, E. J. \& Dennis, E. S. (1993) Isolation and Identification by Sequence Homology of a Putative Cytosine Methyltransferase from Arabidopsis-Thaliana. NUCLEIC ACIDS RESEARCH, 21 (10) May, pp. 2383-2388.

Finnegan, E. J., Genger, R. K., Peacock, W. J. \& Dennis, E. S. (1998) DNA Methylation in Plants. ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 49, pp. 223-247.

Finnegan, E. J., Peacock, W. J. \& Dennis, E. S. (1996) Reduced DNA Methylation in Arabidopsis Thaliana Results in Abnormal Plant Development. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 93 (16) August, pp. 8449-8454.

Fraser, P. D., Bramley, P. \& Seymour, G. B. (2001) Effect of the Cnr Mutation on Carotenoid Formation during Tomato Fruit Ripening. PHYTOCHEMISTRY, 58 (1) September, pp. 7579.

Gehring, M., Huh, J. H., Hsieh, T. F., Penterman, J., Choi, Y., Harada, J. J., Goldberg, R. B. \& Fischer, R. L. (2006) DEMETER DNA Glycosylase Establishes MEDEA Polycomb Gene Self-Imprinting by Allele-Specific Demethylation. CELL, 124 (3) February, pp. 495-506.

Gent, J. I., Ellis, N. A., Guo, L., Harkess, A. E., Yao, Y., Zhang, X. \& Dawe, R. K. (2013) CHH Islands: De Novo DNA Methylation in near-Gene Chromatin Regulation in Maize. GENOME RESEARCH, 23 (4) April, pp. 628-637.

Gohlke, J., Scholz, C.-J., Kneitz, S., Weber, D., Fuchs, J., Hedrich, R. \& Deeken, R. (2013) DNA Methylation Mediated Control of Gene Expression Is Critical for Development of Crown Gall Tumors. PLOS GENETICS, 9 (2) February.

Goto, T. \& Monk, M. (1998) Regulation of X-Chromosome Inactivation in Development in Mice and Humans. MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 62 (2) June, p. 362+.

Gouil, Q. \& Baulcombe, D. C. (2016) DNA Methylation Signatures of the Plant Chromomethyltransferases. PLOS GENETICS, 12 (12) December.

Guo, J.-E., Hu, Z., Zhu, M., Li, F., Zhu, Z., Lu, Y. \& Chen, G. (2017) The Tomato Histone Deacetylase SIHDA1 Contributes to the Repression of Fruit Ripening and Carotenoid Accumulation. Scientific Reports [Online], 7 (1), p. 7930. Available from: https://doi.org/10.1038/s41598-017-08512-x.

Hall, T. A. (1999) BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, pp. 95-98.

Havecker, E. R., Wallbridge, L. M., Hardcastle, T. J., Bush, M. S., Kelly, K. A., Dunn, R. M., Schwach, F., Doonan, J. H. \& Baulcombe, D. C. (2010) The Arabidopsis RNA-Directed DNA Methylation Argonautes Functionally Diverge Based on Their Expression and Interaction with Target Loci. PLANT CELL, 22 (2) February, pp. 321-334.

Hellens, R., Mullineaux, P. \& Klee, H. (2000) A Guide to Agrobacterium Binary Ti Vectors. TRENDS IN PLANT SCIENCE, 5 (10) October, pp. 446-451.

Henderson, I. R., Zhang, X., Lu, C., Johnson, L., Meyers, B. C., Green, P. J. \& Jacobsen, S. E. (2006) Dissecting Arabidopsis Thaliana DICER Function in Small RNA Processing, Gene Silencing and DNA Methylation Patterning. NATURE GENETICS, 38 (6) June, pp. 721725.

Hermann, A., Gowher, H. \& Jeltsch, A. (2004) Biochemistry and Biology of Mammalian DNA Methyltransferases. CELLULAR AND MOLECULAR LIFE SCIENCES, 61 (19-20) October, pp. 2571-2587.

Hetzl, J., Foerster, A. M., Raidl, G. \& Scheid, O. M. (2007) CyMATE: A New Tool for Methylation Analysis of Plant Genornic DNA after Bisulphite Sequencing. PLANT JOURNAL, 51 (3) August, pp. 526-536.

Hsieh, C. L. (1999) In Vivo Activity of Murine de Novo Methyltransferases, Dnmt3a and

Hsieh, T.-F., Ibarra, C. A., Silva, P., Zemach, A., Eshed-Williams, L., Fischer, R. L. \& Zilberman, D. (2009) Genome-Wide Demethylation of Arabidopsis Endosperm. SCIENCE, 324 (5933) June, pp. 1451-1454.

Hu, L., Li, N., Xu, C., Zhong, S., Lin, X., Yang, J., Zhou, T., Yuliang, A., Wu, Y., Chen, Y.-R., Cao, X., Zemach, A., Rustgi, S., Wettstein, D. von \& Liu, B. (2014) Mutation of a Major CG Methylase in Rice Causes Genome-Wide Hypomethylation, Dysregulated Genome Expression, and Seedling Lethality. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 111 (29) July, pp. 10642-10647.

Huettel, B., Kanno, T., Daxinger, L., Bucher, E., Winden, J. van der, Matzke, A. J. M. \& Matzke, M. (2007) RNA-Directed DNA Methylation Mediated by DRD1 and Pol IVb: A Versatile Pathway for Transcriptional Gene Silencing in Plants. BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION, 1769 (5-6), pp. 358-374.

Ikeda, Y., Kobayashi, Y., Yamaguchi, A., Abe, M. \& Araki, T. (2007) Molecular Basis of LateFlowering Phenotype Caused by Dominant Epi-Alleles of the FWA Locus in Arabidopsis. PLANT AND CELL PHYSIOLOGY, 48 (2) February, pp. 205-220.

Jackson, J. P., Lindroth, A. M., Cao, X. F. \& Jacobsen, S. E. (2002) Control of CpNpG DNA Methylation by the KRYPTONITE Histone H3 Methyltransferase. NATURE, 416 (6880) April, pp. 556-560.

Jahnke, S. \& Scholten, S. (2009) Epigenetic Resetting of a Gene Imprinted in Plant Embryos. CURRENT BIOLOGY, 19 (19) October, pp. 1677-1681.

Jeltsch, A. (2006) Molecular Enzymology of Mammalian DNA Methyltransferases. In: Doerfler, W and Bohm, P ed., DNA METHYLATION: BASIC MECHANISMS. vol. 301. HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY: SPRINGER-VERLAG BERLIN, pp. 203-225.

Jiricny, J. (2002) DNA Repair - An APE That Proofreads. NATURE, 415 (6872) February, pp. 593-594.

Johnson, L. M., Cao, X. F. \& Jacobsen, S. E. (2002) Interplay between Two Epigenetic Marks:

DNA Methylation and Histone H3 Lysine 9 Methylation. CURRENT BIOLOGY, 12 (16) August, pp. 1360-1367.

Joly-Lopez, Z., Forczek, E., Hoen, D. R., Juretic, N. \& Bureau, T. E. (2012) A Gene Family Derived from Transposable Elements during Early Angiosperm Evolution Has Reproductive Fitness Benefits in Arabidopsis Thaliana. PLoS Genetics [Online], 8 (9) September, p. e1002931. Available from: http://dx.plos.org/10.1371/journal.pgen.1002931 [Accessed 26 July 2017].

Jones, L., Ratcliff, F. \& Baulcombe, D. F. (2001) RNA-Directed Transcriptional Gene Silencing in Plants Can Be Inherited Independently of the RNA Trigger and Requires Met1 for Maintenance. CURRENT BIOLOGY, 11 (10) May, pp. 747-757.

Jullien, P. E., Mosquna, A., Ingouff, M., Sakata, T., Ohad, N. \& Berger, F. (2008)
Retinoblastoma and Its Binding Partner MSI1 Control Imprinting in Arabidopsis. PLOS BIOLOGY, 6 (8) August, pp. 1693-1705.

Jullien, P. E., Susaki, D., Yelagandula, R., Higashiyama, T. \& Berger, F. (2012) DNA Methylation Dynamics during Sexual Reproduction in Arabidopsis Thaliana. CURRENT BIOLOGY, 22 (19) October, pp. 1825-1830.

Kakutani, T., Jeddeloh, J. A., Flowers, S. K., Munakata, K. \& Richards, E. J. (1996) Developmental Abnormalities and Epimutations Associated with DNA Hypomethylation Mutations. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 93 (22) October, pp. 12406-12411.

Kankel, M. W., Ramsey, D. E., Stokes, T. L., Flowers, S. K., Haag, J. R., Jeddeloh, J. A., Riddle, N. C., Verbsky, M. L. \& Richards, E. J. (2003) Arabidopsis MET1 Cytosine Methyltransferase Mutants. GENETICS, 163 (3) March, pp. 1109-1122.

Kato, M., Miura, A., Bender, J., Jacobsen, S. E. \& Kakutani, T. (2003) Role of CG and Non-CG Methylation in Immobilization of Transposons in Arabidopsis. CURRENT BIOLOGY, 13 (5) March, pp. 421-426.

Kelly, T. K., Liu, Y., Lay, F. D., Liang, G., Berman, B. P. \& Jones, P. A. (2012) Genome-Wide Mapping of Nucleosome Positioning and DNA Methylation within Individual DNA Molecules. GENOME RESEARCH, 22 (12) December, pp. 2497-2506.

Kim, J. K., Samaranayake, M. \& Pradhan, S. (2009) Epigenetic Mechanisms in Mammals. CELLULAR AND MOLECULAR LIFE SCIENCES, 66 (4) February, pp. 596-612.

Kinoshita, T., Miura, A., Choi, Y. H., Kinoshita, Y., Cao, X. F., Jacobsen, S. E., Fischer, R. L. \& Kakutani, T. (2004) One-Way Control of FWA Imprinting in Arabidopsis Endosperm by DNA Methylation. SCIENCE, 303 (5657) January, pp. 521-523.

Klose, R. J. \& Bird, A. P. (2006) Genomic DNA Methylation: The Mark and Its Mediators. TRENDS IN BIOCHEMICAL SCIENCES, 31 (2) February, pp. 89-97.

Koornneef, M., Hanhart, C. J. \& Vanderveen, J. H. (1991) A Genetic and Physiological Analysis of Late Flowering Mutants in Arabidopsis-Thaliana. MOLECULAR \& GENERAL GENETICS, 229 (1) September, pp. 57-66.

Kornberg, R. D. (1974) Chromatin Structure - Repeating Unit of Histones and DNA. SCIENCE, 184 (4139), pp. 868-871.

Kou, H. P., Li, Y., Song, X. X., Ou, X. F., Xing, S. C., Ma, J., Wettstein, D. Von \& Liu, B. (2011) Heritable Alteration in DNA Methylation Induced by Nitrogen-Deficiency Stress Accompanies Enhanced Tolerance by Progenies to the Stress in Rice (Oryza Sativa L.). JOURNAL OF PLANT PHYSIOLOGY, 168 (14) September, pp. 1685-1693.

Kovarik, A., Koukalova, B., Bezdek, M. \& Opatrny, Z. (1997) Hypermethylation of Tobacco Heterochromatic Loci in Response to Osmotic Stress. THEORETICAL AND APPLIED GENETICS, 95 (1-2) July, pp. 301-306.

Lane, A. K., Niederhuth, C. E., Ji, L. \& Schmitz, R. J. (2014) pENCODE: A Plant Encyclopedia of DNA Elements. vol. 48. pp. 49-70.

Lanouette, S., Mongeon, V., Figeys, D. \& Couture, J.-F. (2014) The Functional Diversity of Protein Lysine Methylation. MOLECULAR SYSTEMS BIOLOGY, 10 (4) April.

Larsen, F., Gundersen, G., Lopez, R. \& Prydz, H. (1992) CPG Islands as Gene Markers in the Human Genome. GENOMICS, 13 (4) August, pp. 1095-1107.

Laux, T., Mayer, K. F. X., Berger, J. \& Jurgens, G. (1996) The WUSCHEL Gene Is Required for Shoot and Floral Meristem Integrity in Arabidopsis. DEVELOPMENT, 122 (1) January, pp. 87-96.

Lee, Y. F., Tawfik, D. S. \& Griffiths, A. D. (2002) Investigating the Target Recognition of DNA Cytosine-5 Methyltransferase Hhal by Library Selection Using in Vitro Compartmentalisation. NUCLEIC ACIDS RESEARCH, 30 (22) November, pp. 4937-4944.

Liao, Y., Smyth, G. K. \& Shi, W. (2013) The Subread Aligner: Fast, Accurate and Scalable Read Mapping by Seed-and-Vote. NUCLEIC ACIDS RESEARCH, 41 (10) May.

Lim, A. S. P., Srivastava, G. P., Yu, L., Chibnik, L. B., Xu, J., Buchman, A. S., Schneider, J. A., Myers, A. J., Bennett, D. A. \& Jager, P. L. De (2014) 24-Hour Rhythms of DNA Methylation and Their Relation with Rhythms of RNA Expression in the Human Dorsolateral Prefrontal Cortex. PLOS GENETICS, 10 (11) November

Lindroth, A. M., Cao, X. F., Jackson, J. P., Zilberman, D., McCallum, C. M., Henikoff, S. \& Jacobsen, S. E. (2001) Requirement of CHROMOMETHYLASE3 for Maintenance of CpXpG Methylation. SCIENCE, 292 (5524) June, pp. 2077-2080.

Lippman, Z., Gendrel, A. V, Black, M., Vaughn, M. W., Dedhia, N., McCombie, W. R., Lavine, K., Mittal, V., May, B., Kasschau, K. D., Carrington, J. C., Doerge, R. W., Colot, V. \& Martienssen, R. (2004) Role of Transposable Elements in Heterochromatin and Epigenetic Control. NATURE, 430 (6998) July, pp. 471-476.

Liu, X., Yu, C.-W., Duan, J., Luo, M., Wang, K., Tian, G., Cui, Y. \& Wu, K. (2012) HDA6 Directly Interacts with DNA Methyltransferase MET1 and Maintains Transposable Element Silencing in Arabidopsis. PLANT PHYSIOLOGY, 158 (1) January, pp. 119-129.

Lopez-Maury, L., Marguerat, S. \& Baehler, J. (2008) Tuning Gene Expression to Changing Environments: From Rapid Responses to Evolutionary Adaptation. NATURE REVIEWS GENETICS, 9 (8) August, pp. 583-593.

Love, M. I., Huber, W. \& Anders, S. (2014) Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. GENOME BIOLOGY, 15 (12).

Luo, M., Bilodeau, P., Dennis, E. S., Peacock, W. J. \& Chaudhury, A. (2000) Expression and Parent-of-Origin Effects for FIS2, MEA, and FIE in the Endosperm and Embryo of Developing Arabidopsis Seeds. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 97 (19) September, pp. 10637-10642.

Mathieu, O., Reinders, J., Caikovski, M., Smathajitt, C. \& Paszkowski, J. (2007) Transgenerational Stability of the Arabidopsis Epigenome Is Coordinated by CG Methylation. CELL, 130 (5) September, pp. 851-862.

Melamed-Bessudo, C. \& Levy, A. A. (2012) Deficiency in DNA Methylation Increases Meiotic Crossover Rates in Euchromatic but Not in Heterochromatic Regions in Arabidopsis. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 109 (16) April, pp. E981-E988.

Meyer, P., Linn, F., Heidmann, I., Meyer, H., Niedenhof, I. \& Saedler, H. (1992) Endogenous and Environmental-Factors Influence 35S Promoter Methylation of a Maize A1 Gene Construct in Transgenic Petunia and its Color Phenotype. MOLECULAR \& GENERAL GENETICS, 231 (3) February, pp. 345-352.

Mi, S., Cai, T., Hu, Y., Chen, Y., Hodges, E., Ni, F., Wu, L., Li, S., Zhou, H., Long, C., Chen, S., Hannon, G. J. \& Qi, Y. (2008) Sorting of Small RNAs into Arabidopsis Argonaute Complexes Is Directed by the 5 ` Terminal Nucleotide. CELL, 133 (1) April, pp. 116-127.

Mirouze, M., Lieberman-Lazarovich, M., Aversano, R., Bucher, E., Nicolet, J., Reinders, J. \& Paszkowski, J. (2012) Loss of DNA Methylation Affects the Recombination Landscape in Arabidopsis. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 109 (15) April, pp. 5880-5885.

Miura, A., Nakamura, M., Inagaki, S., Kobayashi, A., Saze, H. \& Kakutani, T. (2009) An Arabidopsis jmjC Domain Protein Protects Transcribed Genes from DNA Methylation at CHG Sites. EMBO JOURNAL, 28 (8) April, pp. 1078-1086

Miura, K., Agetsuma, M., Kitano, H., Yoshimura, A., Matsuoka, M., Jacobsen, S. E. \& Ashikari, M. (2009) A Metastable DWARF1 Epigenetic Mutant Affecting Plant Stature in Rice. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 106 (27) July, pp. 11218-11223.

Morales-Ruiz, T., Ortega-Galisteo, A. P., Ponferrada-Marin, M. I., Martinez-Macias, M. I., Ariza, R. R. \& Roldan-Arjona, T. (2006) DEMETER and REPRESSOR OFSILENCING 1 Encode 5-Methylcytosine DNA Glycosylases. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 103 (18) May, pp. 6853-
6858.

Moritoh, S., Eun, C.-H., Ono, A., Asao, H., Okano, Y., Yamaguchi, K., Shimatani, Z., Koizumi, A. \& Terada, R. (2012) Targeted Disruption of an Orthologue of DOMAINS REARRANGED METHYLASE 2, OsDRM2, Impairs the Growth of Rice Plants by Abnormal DNA Methylation. PLANT JOURNAL, 71 (1) July, pp. 85-98.

Muller, H. J. (1930) Types of Visible Variations Induced by X-Rays in Drosophila. JOURNAL OF GENETICS, 22 (3) July, pp. 299-U7.

NAPOLI, C., LEMIEUX, C. \& JORGENSEN, R. (1990) INTRODUCTION OF A CHIMERIC CHALCONE SYNTHASE GENE INTO PETUNIA RESULTS IN REVERSIBLE CO-SUPPRESSION OF HOMOLOGOUS GENES IN TRANS. PLANT CELL, 2 (4) April, pp. 279-289.

Naydenov, M., Baev, V., Apostolova, E., Gospodinova, N., Sablok, G., Gozmanova, M. \& Yahubyan, G. (2015) High-Temperature Effect on Genes Engaged in DNA Methylation and Affected by DNA Methylation in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY, 87 February, pp. 102-108.

O'Malley, R. C. \& Ecker, J. R. (2012) Epiallelic Variation in Arabidopsis Thaliana. Cold Spring Harbor symposia on quantitative biology [Online], 77 January, pp. 135-145. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23223383 [Accessed 11 July 2017].

Ogneva, Z. V, Dubrovina, A. S. \& Kiselev, K. V (2016) Age-Associated Alterations in DNA Methylation and Expression of Methyltransferase and Demethylase Genes in Arabidopsis Thaliana. BIOLOGIA PLANTARUM [Online], 60 (4), pp. 628-634. Available from: [https://link.springer.com/content/pdf/10.1007\%2Fs10535-016-0638-y.pdf](https://link.springer.com/content/pdf/10.1007%5C%2Fs10535-016-0638-y.pdf) [Accessed 26 July 2017].

Park, S.-H., Jeong, J. S., Han, E. H., Redillas, M. C. F. R., Bang, S. W., Jung, H., Kim, Y. S. \& Kim, J.-K. (2013) Characterization of the Root-Predominant Gene Promoter HPX1 in Transgenic Rice Plants. PLANT BIOTECHNOLOGY REPORTS, 7 (3) July, pp. 339-344.

Penterman, J., Zilberman, D., Huh, J. H., Ballinger, T., Henikoff, S. \& Fischer, R. L. (2007) DNA Demethylation in the Arabidopsis Genome. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 104 (16) April, pp. 6752-6757.

Perez-Torres, C.-A., Lopez-Bucio, J., Cruz-Ramirez, A., Ibarra-Laclette, E., Dharmasiri, S., Estelle, M. \& Herrera-Estrella, L. (2008) Phosphate Availability Alters Lateral Root Development in Arabidopsis by Modulating Auxin Sensitivity via a Mechanism Involving the TIR1 Auxin Receptor. PLANT CELL, 20 (12) December, pp. 3258-3272.

Posfai, J., Bhagwat, A. S., Posfai, G. \& Roberts, R. J. (1989) Predictive Motifs Derived from Cytosine Methyltransferases. NUCLEIC ACIDS RESEARCH, 17 (7) April, pp. 2421-2435.

Qian, W., Miki, D., Zhang, H., Liu, Y., Zhang, X., Tang, K., Kan, Y., La, H., Li, X., Li, S., Zhu, X., Shi, X., Zhang, K., Pontes, O., Chen, X., Liu, R., Gong, Z. \& Zhu, J.-K. (2012) A Histone Acetyltransferase Regulates Active DNA Demethylation in Arabidopsis. SCIENCE, 336 (6087) June, pp. 1445-1448.

Qian, Y., Xi, Y., Cheng, B. \& Zhu, S. (2014) Genome-Wide Identification and Expression Profiling of DNA Methyltransferase Gene Family in Maize. PLANT CELL REPORTS, 33 (10) October, pp. 1661-1672.

Ramsahoye, B. H., Biniszkiewicz, D., Lyko, F., Clark, V., Bird, A. P. \& Jaenisch, R. (2000) NonCpG Methylation Is Prevalent in Embryonic Stem Cells and May Be Mediated by DNA Methyltransferase 3a. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 97 (10) May, pp. 5237-5242.

Reik, W., Dean, W. \& Walter, J. (2001) Epigenetic Reprogramming in Mammalian Development. SCIENCE, 293 (5532) August, pp. 1089-1093.

Richmond, T. J. (1999) Hot Papers - Crystal Structure - Crystal Structure of the Nucleosome Core Particle at 2.8 Angstrom Resolution by K. Luger, A.W. Mader, R.K. Richmond, D.F. Sargent, T.J. Richmond - Comments. SCIENTIST, 13 (23) November, p. 15.

Rommens, C. M., Haring, M. A., Swords, K., Davies, H. V \& Belknap, W. R. (2007) The Intragenic Approach as a New Extension to Traditional Plant Breeding. TRENDS IN PLANT SCIENCE, 12 (9) September, pp. 397-403.

Ronemus, M. J., Galbiati, M., Ticknor, C., Chen, J. C. \& Dellaporta, S. L. (1996) Demethylation-Induced Developmental Pleiotropy in Arabidopsis. SCIENCE, 273 (5275) August, pp. 654-657.

Saze, H., Scheid, O. M. \& Paszkowski, J. (2003) Maintenance of CpG Methylation Is Essential for Epigenetic Inheritance during Plant Gametogenesis. NATURE GENETICS, 34 (1) May, pp. 65-69.

Saze, H., Shiraishi, A., Miura, A. \& Kakutani, T. (2008) Control of Genic DNA Methylation by a jmjC Domain - Containing Protein in Arabidopsis Thaliana. SCIENCE, 319 (5862) January, pp. 462-465.

Schneider, C. A., Rasband, W. S. \& Eliceiri, K. W. (2012) NIH Image to ImageJ: 25 Years of Image Analysis. NATURE METHODS, 9 (7) July, pp. 671-675.

Secco, D., Wang, C., Shou, H., Schultz, M. D., Chiarenza, S., Nussaume, L., Ecker, J. R., Whelan, J. \& Lister, R. (2015) Stress Induced Gene Expression Drives Transient DNA Methylation Changes at Adjacent Repetitive Elements. ELIFE, 4 July.

Silveira, A. B., Trontin, C., Cortijo, S., Barau, J., Vieira Del Bem, L. E., Loudet, O., Colot, V. \& Vincentz, M. (2013) Extensive Natural Epigenetic Variation at a De Novo Originated Gene. PLOS GENETICS, 9 (4) April.

Singh, A., Zubko, E. \& Meyer, P. (2008) Cooperative Activity of DNA Methyltransferases for Maintenance of Symmetrical and Non-Symmetrical Cytosine Methylation in Arabidopsis Thaliana. PLANT JOURNAL, 56 (5) December, pp. 814-823.

Soleimani, V. D., Palidwor, G. A., Ramachandran, P., Perkins, T. J. \& Rudnicki, M. A. (2013) Chromatin Tandem Affinity Purification Sequencing. NATURE PROTOCOLS, 8 (8) August, pp. 1525-1534.

Sopko, R., Huang, D. Q., Preston, N., Chua, G., Papp, B., Kafadar, K., Snyder, M., Oliver, S. G., Cyert, M., Hughes, T. R., Boone, C. \& Andrews, B. (2006) Mapping Pathways and Phenotypes by Systematic Gene Overexpression. MOLECULAR CELL, 21 (3) February, pp. 319-330.

Soppe, W. J. J., Jacobsen, S. E., Alonso-Blanco, C., Jackson, J. P., Kakutani, T., Koornneef, M. \& Peeters, A. J. M. (2000) The Late Flowering Phenotype of Fwa Mutants Is Caused by Gain-of-Function Epigenetic Alleles of a Homeodomain Gene. MOLECULAR CELL, 6 (4) October, pp. 791-802.

Soppe, W. J. J., Jasencakova, Z., Houben, A., Kakutani, T., Meister, A., Huang, M. S., Jacobsen, S. E., Schubert, I. \& Fransz, P. F. (2002) DNA Methylation Controls Histone H3 Lysine 9 Methylation and Heterochromatin Assembly in Arabidopsis. EMBO JOURNAL, 21 (23) December, pp. 6549-6559.

Steward, N., Kusano, T. \& Sano, H. (2000) Expression of ZmMET1, a Gene Encoding a DNA Methyltransferase from Maize, Is Associated Not Only with DNA Replication in Actively Proliferating Cells, but Also with Altered DNA Methylation Status in Cold-Stressed Quiescent Cells. Nucleic Acids Research [Online], 28 (17) September, pp. 3250-3259. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC110715/.

Stroud, H., Greenberg, M. V. C., Feng, S., Bernatavichute, Y. V \& Jacobsen, S. E. (2013) Comprehensive Analysis of Silencing Mutants Reveals Complex Regulation of the Arabidopsis Methylome. CELL, 152 (1-2) January, pp. 352-364.

Takuno, S. \& Gaut, B. S. (2012) Body-Methylated Genes in Arabidopsis Thaliana Are Functionally Important and Evolve Slowly. MOLECULAR BIOLOGY AND EVOLUTION, 29 (1) January, pp. 219-227.

Takuno, S. \& Gaut, B. S. (2013) Gene Body Methylation Is Conserved between Plant Orthologs and Is of Evolutionary Consequence. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 110 (5) January, pp. 1797-1802.

Tariq, M., Saze, H., Probst, A. V, Lichota, J., Habu, Y. \& Paszkowski, J. (2003) Erasure of CpG Methylation in Arabidopsis Alters Patterns of Histone H3 Methylation in Heterochromatin. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 100 (15) July, pp. 8823-8827.

Taverna, S. D., Li, H., Ruthenburg, A. J., Allis, C. D. \& Patel, D. J. (2007) How ChromatinBinding Modules Interpret Histone Modifications: Lessons from Professional Pocket Pickers. NATURE STRUCTURAL \& MOLECULAR BIOLOGY, 14 (11) November, pp. 10251040.

Teerawanichpan, P., Chandrasekharan, M. B., Jiang, Y. M., Narangajavana, J. \& Hall, T. C. (2004) Characterization of Two Rice DNA Methyltransferase Genes and RNAi-Mediated 349.

Tester, M. \& Langridge, P. (2010) Breeding Technologies to Increase Crop Production in a Changing World. SCIENCE, 327 (5967) February, pp. 818-822.

Thomas, M., Pingault, L., Poulet, A., Duarte, J., Throude, M., Faure, S., Pichon, J.-P., Paux, E., Probst, A. V. \& Tatout, C. (2014) Evolutionary History of Methyltransferase 1 Genes in Hexaploid Wheat. BMC GENOMICS, (15) October.

Thouet, J., Quinet, M., Ormenese, S., Kinet, J.-M. \& Perilleux, C. (2008) Revisiting the Involvement of SELF-PRUNING in the Sympodial Growth of Tomato. PLANT PHYSIOLOGY, 148 (1) September, pp. 61-64.

To, T. K., Kim, J.-M., Matsui, A., Kurihara, Y., Morosawa, T., Ishida, J., Tanaka, M., Endo, T., Kakutani, T., Toyoda, T., Kimura, H., Yokoyama, S., Shinozaki, K. \& Seki, M. (2011) Arabidopsis HDA6 Regulates Locus-Directed Heterochromatin Silencing in Cooperation with MET1. PLOS GENETICS, 7 (4) April.

Tran, R. K., Zilberman, D., Bustos, C. de, Ditt, R. F., Henikoff, J. G., Lindroth, A. M., Delrow, J., Boyle, T., Kwong, S., Bryson, T. D., Jacobsen, S. E. \& Henikoff, S. (2005) Chromatin and siRNA Pathways Cooperate to Maintain DNA Methylation of Small Transposable Elements in Arabidopsis. GENOME BIOLOGY, 6 (11).

Tsukahara, S., Kobayashi, A., Kawabe, A., Mathieu, O., Miura, A. \& Kakutani, T. (2009) Bursts of Retrotransposition Reproduced in Arabidopsis. NATURE, 461 (7262) September, pp. 423-U125.

Vanderkrol, A. R. \& Chua, N. H. (1991) The Basic Domain Of Plant B-Zip Proteins Facilitates Import of a Reporter Protein into Plant Nuclei. PLANT CELL, 3 (7) July, pp. 667-675.

Veena, Jiang, H. M., Doerge, R. W. \& Gelvin, S. B. (2003) Transfer of T-DNA and Vir Proteins to Plant Cells by Agrobacterium Tumefaciens Induces Expression of Host Genes Involved in Mediating Transformation and Suppresses Host Defense Gene Expression. PLANT JOURNAL, 35 (2) July, pp. 219-236.

Virdi, K. S., Laurie, J. D., Xu, Y.-Z., Yu, J., Shao, M.-R., Sanchez, R., Kundariya, H., Wang, D.,

Riethoven, J.-J. M., Wamboldt, Y., Arrieta-Montiel, M. P., Shedge, V. \& Mackenzie, S. A. (2015) Arabidopsis MSH1 Mutation Alters the Epigenome and Produces Heritable Changes in Plant Growth. NATURE COMMUNICATIONS, (6) February.

Waddington, C. H. (1942) The Epigenotype. Endevour, 1 (1) February, pp. 18-20.

Waddington, C. H. (1957) The Strategy of the Genes. Allen \& Unwin, London.

Wassenegger, M., Heimes, S., Riedel, L. \& Sänger, H. L. (1994) RNA-Directed de Novo Methylation of Genomic Sequences in Plants. Cell, 76 (3) February, pp. 567-576.

Watson, J. D. \& Crick, F. H. C. (1953) GENETICAL IMPLICATIONS OF THE STRUCTURE OF DEOXYRIBONUCLEIC ACID. NATURE, 171 (4361), pp. 964-967.

Watson, M., Hawkes, E. \& Meyer, P. (2014) Transmission of Epi-Alleles with MET1Dependent Dense Methylation in Arabidopsis Thaliana. PLOS ONE, 9 (8) August.

Watson, M. R. (2013) 'Heritable Epigenetic Variation of DNA Methylation Targets in Plants', PhD thesis, University of Leeds, Leeds.

Wierzbicki, A. T., Ream, T. S., Haag, J. R. \& Pikaard, C. S. (2009) RNA Polymerase V Transcription Guides ARGONAUTE4 to Chromatin. NATURE GENETICS, 41 (5) May, pp. 630-634.

Williams, B. P., Pignatta, D., Henikoff, S., Gehring, M., Winter, C. \& Brooks, M. (2015) Methylation-Sensitive Expression of a DNA Demethylase Gene Serves As an Epigenetic Rheostat. PLOS Genetics [Online], 11 (3) March, p. e1005142. Available from: http://dx.plos.org/10.1371/journal.pgen.1005142 [Accessed 19 June 2017].

Wolffe, A. P. \& Guschin, D. (2000) Chromatin Structural Features and Targets That Regulate Transcription. JOURNAL OF STRUCTURAL BIOLOGY, 129 (2-3) April, pp. 102-122.

Woo, H. R., Dittmer, T. A. m \& Richards, E. J. (2008) Three SRA-Domain MethylcytosineBinding Proteins Cooperate to Maintain Global CpG Methylation and Epigenetic Silencing in Arabidopsis. PLOS GENETICS, 4 (8) August.

Wu, K., Zhang, L., Zhou, C., Yu, C.-W. \& Chaikam, V. (2008) HDA6 Is Required for Jasmonate Response, Senescence and Flowering in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY, 59 (2) February, pp. 225-234.

Xiao, W. Y., Custard, K. D., Brown, R. C., Lemmon, B. E., Harada, J. J., Goldberg, R. B. \& Fischer, R. L. (2006) DNA Methylation Is Critical for Arabidopsis Embryogenesis and Seed Viability. PLANT CELL, 18 (4) April, pp. 805-814.

Xu, C., Liberatore, K. L., MacAlister, C. A., Huang, Z., Chu, Y.-H., Jiang, K., Brooks, C., OgawaOhnishi, M., Xiong, G., Pauly, M., Eck, J. Van, Matsubayashi, Y., Knaap, E. van der \& Lippman, Z. B. (2015) A Cascade of Arabinosyltransferases Controls Shoot Meristem Size in Tomato. NATURE GENETICS, 47 (7) July, p. 784+.

Yao, Y., Bilichak, A., Golubov, A. \& Kovalchuk, I. (2012) ddm1 Plants Are Sensitive to Methyl Methane Sulfonate and NaCl Stresses and Are Deficient in DNA Repair. PLANT CELL REPORTS, 31 (9) September, pp. 1549-1561.

Yoo, S. J., Chung, K. S., Jung, S. H., Yoo, S. Y., Lee, J. S. \& Ahn, J. H. (2010) BROTHER OF FT AND TFL1 (BFT) Has TFL1-like Activity and Functions Redundantly with TFL1 in Inflorescence Meristem Development in Arabidopsis. PLANT JOURNAL, 63 (2) July, pp. 241-253.

Yu, A., Lepere, G., Jay, F., Wang, J., Bapaume, L., Wang, Y., Abraham, A.-L., Penterman, J., Fischer, R. L., Voinnet, O. \& Navarro, L. (2013) Dynamics and Biological Relevance of DNA Demethylation in Arabidopsis Antibacterial Defense. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 110 (6) February, pp. 2389-2394.

Yu, B., Yang, Z. Y., Li, J. J., Minakhina, S., Yang, M. C., Padgett, R. W., Steward, R. \& Chen, X. M. (2005) Methylation as a Crucial Step in Plant microRNA Biogenesis. SCIENCE, 307 (5711) February, pp. 932-935.

Yu, C.-W., Liu, X., Luo, M., Chen, C., Lin, X., Tian, G., Lu, Q., Cui, Y. \& Wu, K. (2011) HISTONE DEACETYLASE6 Interacts with FLOWERING LOCUS D and Regulates Flowering in Arabidopsis. PLANT PHYSIOLOGY, 156 (1) May, pp. 173-184.

Zemach, A., McDaniel, I. E., Silva, P. \& Zilberman, D. (2010) Genome-Wide Evolutionary Analysis of Eukaryotic DNA Methylation. SCIENCE, 328 (5980) May, pp. 916-919.

Zheng, X., Pontes, O., Zhu, J., Miki, D., Zhang, F., Li, W.-X., lida, K., Kapoor, A., Pikaard, C. S. \& Zhu, J.-K. (2008) ROS3 Is an RNA-Binding Protein Required for DNA Demethylation in

Arabidopsis. NATURE, 455 (7217) October, pp. 1259-U70.

Zhu, J.-K. (2009) Active DNA Demethylation Mediated by DNA Glycosylases. ANNUAL REVIEW OF GENETICS, 43, pp. 143-166.

Zhu, J., Kapoor, A., Sridhar, V. V, Agius, F. \& Zhu, J.-K. (2007) The DNA Glycosylase/lyase ROS1 Functions in Pruning DNA Methylation Patterns in Arabidopsis. CURRENT BIOLOGY, 17 (1) January, pp. 54-59.

Zilberman, D., Gehring, M., Tran, R. K., Ballinger, T. \& Henikoff, S. (2007) Genome-Wide Analysis of Arabidopsis Thaliana DNA Methylation Uncovers an Interdependence between Methylation and Transcription. NATURE GENETICS, 39 (1) January, pp. 61-69.

7 Supplementary data

	baseMean	log2Fold	IfcSE	stat	pvalue	padj	1	2	3	4	5	6	Line	Description
AT3630765	14.684143	-4.181766371	0.555460021	-7.528474078	5.13E-14	1.57E-12	0		0	4.16453883	5.310931324	5.065040979	${ }^{\text {Al+ }}$	CACTA- -ike transposase family (En/Spm)
AT3630765	40.230815	-1.876447169	0.179034379	-10.4809321	1.06E-25	4.93E-23	0	0	0	6.479588225	6.5779349	5.897561509	${ }^{\text {A2 }}$	CACTA-ike transposase family (En/spm)
AT3632230	24.951584	-4.372631122	0.545465225	8.016333432	1.09E-15	3.888-14	0.640148721	0	0	6.476563218	5.39625473	4.391288416	${ }^{\text {Al+ }}$	CACTA-Iike transposase family (En/Spm)
AT3G32230	120.16903	-2.809610952	0.179264518	-15.67298974	2.31--55	3.62E-52	0.954186367	0	0	7.437728295	8.331808521	7.829757627	A^{2+}	CACTA-like transposase family (En//spm)
AT5628927	10.498964	-3.653404815	0.573042287	-6.375454133	1.82E-10	3.78E-09	0	0	0	3.480233365	4.786788781	4.767143513	${ }^{\text {Al+ }}$	CACTA-İike transposase family (En//Spm)
AT5628927	26.040792	-1.525089694	0.175505661	-8.689689465	3.63-18	1.188-15	0		0	5.708773051	5.959583079	5.482576886	${ }^{\text {22 }}$	CACTA-like transposase family (En/spm)
AT1633130	4.0486113	-1.945298709	0.512918761	-3.792605881	0.000149075	0.0013427	0 -	0.5889	0	2.797162804	3.546623725	3.027056186	${ }^{\text {A1- }}$	CACTA-like transposase family (Ptta/E//Spm)
AT1633130	206.7877	-7.139678165	0.47208837	-15.12360528	1.138-51	3.16E-49	0	0.626414477	0	7.353641488	9.270813213	8.851451371	${ }^{\text {Al+ }}$	CACTA-like transposase family (Ptta/E/Spm)
AT1633130	152.60219	-2.398624313	0.180176955	-13.31260323	1.966-40	1.86E-37	0	0.940325156	0	7.275227783	8.847923629	8.238471098	${ }^{\text {A2 }}$	CACTA-like transposase family (Ptta/E//Spm)
AT1636460	7.3340864	-2.854420102	0.513380945	-5.560042949	2.708-08	$4.67 \mathrm{E}-07$	0	0	O	3.222033331	4.483532941	3.935732613	A1-	CACTA-like transposase family (Ptta/E//Spm)
AT1636460	171.74301	-4.044193077	0.582499238	-6.942829821	3.84E-12	9.79E-11	0	0	0	6.448866468	8.728738155	9.02751837	${ }^{\text {Al+ }}$	CACTA-like transposase family (Ptta/E//spm)
AT1636460	21.274829	-1.274520171	0.17025739	-7.485843472	7.112-14	1.63E-11	0		0	5.245529421	5.856362086	5.120067235	${ }^{\text {A2 }}$	CACTA-like transposase family (Ptta/En/Spm)
AT1639110	24.922991	-4.44739519	0.465643996	-9.551063099	1.288-21	6.68E-20	0	0.588988589	0	4.94268382	6.024848039	5.811684378	${ }^{\text {A1- }}$	CACTA-Iike transposase family (Ptta/E//spm)
AT1639110	288.18671	-7.655488912	0.457105457	-16.74777404	5.888-63	2.56E-60	0	0.626414477	0	7.97502982	9.475822275	9.58482238	${ }^{\text {Al+ }}$	CACTA-like transposase family (Ptta/En/Spm)
AT1639110	34.174178	-1.697925204	0.177899091	-9.544316359	1.37E-21	5.21E-19	0	0.940325156	0	5.843766725	6.477159848	5.92140565	$\mathrm{A}^{\text {2 }}$	CACTA-like transposase family (Ptta/E//Spm)
AT1640118	4.4192272		0.511409912	${ }^{-4.200205745}$		0.000283432			O	2.192330878	3.546623725			CACTA-like transposase family (Ptta/E//spm)
AT1640118	38.543363	-5.537633727	0.50935096	-10.87194128	${ }^{1.578-27}$	1.29E-25	0	0	0	5.646896475	6.379024116	6.657141708	${ }^{\text {Al+ }}$	CACTA-like transposase family (Ptta/En/Spm)
AT1640124	10.600207	-3.827523708	0.565320878	-6.770533086	1.288-11	3 3.06E-10	0	0	0	4.16453883	4.654502272	4.553554369	${ }^{\text {Al+ }}$	CACTA-Iike transposase family (Ptta/E//spm)
AT1642500	20.868839	-4.444168111	0.531475983	-8.361935918	${ }^{6.178-17}$	2.44E-15	0		0.694589061	5.74125297	5.625572377	4.628319815	A1+	CACTA-like transposase family (Ptta/E//Spm)
AT1642500	60.316593	-2.054377194	0.179785146	-11.42684609	3.07E-30	${ }^{1.82 E-27}$	0	0	1.024858076	${ }^{6.340382871}$	7.397307751	6.836085095	${ }^{\text {A2 }}$	CACTA-like transposase family (Ptta/E//Spm)
AT1643840	47.590252	-5.715878568	0.482165993	-11.8545867	2.04E-32	2.27E-30	0		0.694589061	6.301797049	6.95819704	6.40407374	${ }^{\text {Al+ }}$	CACTA-Iike transposase family (Ptta/E//Spm)
AT1643840	81.150941	-2.066787907	0.179500696	-11.51499414	1.12E-30	7.10E-28	0	0	1.024858076	6.376463566	17.880228928	7.648770878	A^{2+}	CACTA-like transposase family (Ptta/En/Spm)
AT1649080	3.2273194	-1.759047298	0.499803614	-3.519476946	0.000432399	0.00344651	0	0	0	2.192330878	3.546623725	2.610741738	$\mathrm{Al}^{\text {1- }}$	CACTA-like transposase family (Ptta/E//Spm)
AT1649080	103.51033	-4.649504435	0.569143991	-8.169293722	3.108-16	1.16E-14	0		0	6.066915882	8.185975431	8.054206022	Al^{+}	CACTA-like transposase family (Ptta/E//spm)
AT1649080	9.3591187	-0.690790182	0.14453284	-4.753257692	2.008-06	1.94E-04	0	0	0	4.034776506	4.799921877	3.898037328	${ }^{\text {A2 }}$	CACTA-like transposase family (Ptta/En/Spm)
AT1649090	15.050042	-3.284303293	0.487867228	-6.731961284	$1.67 \mathrm{E}-11$	4.11E-10	1.026048597	0.588988589	0	3.816762292	5.617177427	4.837143627	${ }^{\text {A1- }}$	CACTA-Iike transposase family (Ptta/E//Spm)
AT1649090	299.58835	-7.539912221	0.436738134	-17.26414901	8.76E-67	4.79E-64	1.082007379	0.626414477	0	8.148628238	9.542844371	9.58716708	${ }^{\text {A1+ }}$	CACTA-like transposase family (Ptta/En/Spm)
AT1649090	29.688565	-1.468836906	0.175803476	-8.353855901	6.611-17	$1.97 \mathrm{E}-14$	1.523548554	0.940325156	0	5.559831633	6.330810854	5.663124249	A^{2+}	CACTA-like transposase family (Ptta/E//Spm)
AT11650850	5.3377543	-2.374480474	0.514522979	-4.614916281	3.93E-06	$4.88 \mathrm{E}-05$	0		0	2.526213436	4.089833736	3.613294506	${ }^{\text {A1- }}$	CACTA-like transposase family (Ptta/E//Spm)
AT1650850	159.34958	-7.160355178	0.473688079	-15.12001231	1.200-51	3.30E-49	0	0	0	7.308122313	8.516472182	8.762964227	${ }^{\text {Al+ }}$	CACTA-like transposase family (Ptta/E//Spm)
AT1650850	22.422535	-1.330827884	0.171633354	-7.753900119	8.918-15	2.22E-12	0	0	0	5.708773051	5.715995759	5.035194817	${ }^{\text {A2 }}+$	CACTA-1ike transposase family (Ptta/E//spm)
AT2606250	62.278677	-5.849703939	0.433988581	-13.47893514	2.088-41	2.83E-39	0		0	6.691428291	7.470110277	6.585144057	A1-	CACTA-like transposase family (Ptta/E//Spm)
AT2606250	43.420057	-5.338637405	0.527085868	-10.12859142	${ }^{\text {4.13E-24 }}$	2.87--22	0		0	7.292624406	5.478812514	5.958938819		CACTA-like transposase family (Ptta/E//Spm)
AT2606490	43.207362	-5.237175356	0.429643353	-12.18998776	${ }^{3.536-34}$	${ }^{3.42 E-32}$	0.602380384	0.588988589	0	${ }^{6.8634925311}$	6.024848039	6.315890736	${ }^{\text {A1- }}$	CACTAA-like transposase family $(\mathrm{Pta} / \mathrm{ER} / \mathrm{spm})$
AT2606490	42.742307	-5.281807795	0.48889813	-10.80349355	3.31E-27	2.66 -25	0.640148721	0.62641447	0	6.476563218	6.871459168	5.706299342	${ }^{\text {Al+ }}$	CACTA-like transosase family (Ptta/E//Spm)
AT2606590	278.71646	-7.908651285	0.384255004	-20.58177825	4.00E-94	3.31--91	0	0	0	8.91945513	9.396977901	9.013813458	A1-	CACTA-like transposase family (Ptta/E//Spm)
AT2606590	66.175387	-6.007148226	0.503854655	-11.92238389	${ }^{9.056-33}$	1.02E-30	0		0	7.743857191	6.810594236	6.198866574	${ }^{\text {Al+ }}$	CACTA-Iike transposase family (Ptta/E//Spm)
AT2606590	15.244722	-0.956274072	0.159438784	-5.997750665	2.008-09	2.72E-07	0	0	0	${ }^{4.427639234}$	5.527266304	4.745752287	${ }^{\text {A2 }}$	CACTA-like transposase family (Ptta/E//Spm)
AT2606670	204.54662	-7.571446207	0.388488261	-19.48951095	1.35E-84	8.24E-82	0	0	0	8.57684784	8.830120753	8.619515542	${ }^{\text {A1- }}$	CACTA-like transposase family (Ptta/E//Spm)
AT2606670	65.27555	-5.929783281	0.508142524	-11.66952774	1.82E-31	1.91--29		0	0	7.788737976	6.680573214	6.148681867	$\mathrm{Al}^{\text {+ }}$	CACTA-like transposase family (Ptta/E//Spm)
AT2606670	11.367729	-0.855903059	0.155248554	-5.51311452	${ }^{3.535-08}$	4.22E-06	0	0	0	4.357162671	4.799921877	4.514488038	${ }^{\text {A2 }}+$	CACTA-like transposase family (Ptta/E//Spm)
AT2606720	59.971085	-5.508782656	0.438623618	-12.55924769	3.54E-36	3.82--34	0		0.653468127	6.054369667	7.470110277	6.888597855	${ }^{\text {A1- }}$	CACTA-like transposase family (Ptta/E//Spm)
AT2606720	158.17241	-7.211839279	0.447918757	-16.10077533	2.52E-58	9.25E-56	0	0	0.694589061	8.69405606	8.33388297	7.745438878	${ }^{\text {Al+ }}$	CACTA-like transposase family (Ptta/E//Spm)
AT2606720	55.144391	-2.297664455	0.180209781	-12.74994311	${ }^{3.12 E-37}$	${ }^{2.595-34}$	0	0	1.024858076	${ }^{6.750962371}$	6.99730186	6.605319246	${ }^{\text {A2 }+}$	CACTA-Iike transposase family (Ptta/En/spm)
AT2606800	40.166409	-4.995732237	0.464140198	-10.76341212	5.12E-27	3.63E-25	0	0	0	5.672031041	7.128344859	5.730732322	A1-	CACTA-like transposase family (Ptta/E//Spm)
AT2606800	45.421027	-5.508323982	0.518532795	-10.62290376	2.33E-26	1.80E-24	0	0	0	5.319969209	6.841347652	6.917791694	Al^{+}	CACTA-like transposase family (Ptta/E//Spm)
AT2606800	22.160542	-1.38577305	0.173066185	-8.007185529	${ }^{1.178-15}$	3.22E-13	0	0	$0-$	5.245529421	5.624714968	5.605416368	${ }_{\text {A2 }}$	CACTA-Iike transposase family (Ptta/En/Spm)
AT2610000	50.611623	-5.472569969	0.431500094	-12.68266228	7.386-37	8.21--35	0	0	0.653468127	${ }^{6.417856728}$	7.128344859	6.334274225	${ }^{\text {A1- }}$	CACTA-Iike transposase family (Ptta/E//Spm)
AT2610000	6.3574225	-2.793155777	0.583964961	-4.783087965	1.73E-06	$1.98 \mathrm{E}-05$	0		0.694589061	3.684038477	4.164272639	3.284432598	${ }^{\text {Al+ }}$	CACTA-like transposase family (Ptta/En/Spm)
AT2G10640	73.369323	-5.802083302	0.486319369	-11.93060296	8.200-33	9.28E-31	0	0.626414477	0.694589061	5.992129826	7.472095394	7.649976592	Al^{+}	CACTA-like transposase family (Ptta/E//Spm)
AT2612300	10.471056	-2.857505962	0.51416595	-5.557555804	2.74E-08	4.73E-07	0	0	0	2.526213336	5.45092181	4.028969492	${ }^{\text {A1- }}$	CACTA-like transposase family (Ptta/E//Spm)
AT2612300	113.42747	-3.811981822	0.585169473	-6.514321066	7.308-11	$1.60 \mathrm{E}-09$	0	0	0	5.786213592	8.161811847	8.417829413	${ }^{\text {Al+ }}$	CACTA-Iike transposase family (Ptta/E//Spm)
AT2612300	21.315229	-1.227944798	0.168847983	-7.272487202	3.538-13	7.17e-11	0	0	0	5.245529421	5.934461902	4.99080971	${ }^{\text {A2 }}$	CACTA-like transposase family (Ptta/E//Spm)
AT2613160	10.095763	-3.389372496	0.503777481	-6.727915843	1.72E-11	4.22E-10	0		0	4.041933031	4.792504907	4.277198875	Al^{-}	CACTA-like transposase family (Ptta/E//Spm)
AT2613160	101.99372	-6.786888229	0.473587122	-14.33077023	${ }^{1.41 E-46}$	2.94E-44	0		0	7.984706492	7.850243522	7.032350776	${ }^{\text {Al+ }}$	CACTA-like transposase family (Ptta/E//Spm)
AT2613160	188.72581	-3.015595931	0.179119694	-16.83564697	${ }^{1.345-63}$	2.96E-60	0	0	0	7.888656024	9.021979444	8.564184444	${ }^{\text {A2 }+}$	CACTA-like transposase family (Ptta/E//Spm)
AT2613175	33.597119	-4.837804432	0.437895005	-11.04786392	2.24--28	1.70--26	0	0.588988589	0.653468127	5.800812964	6.434335581	5.937261568	${ }^{\text {A1- }}$	CACTA-like transposase family (Ptta/E//spm)
AT2613175	17.324107	${ }_{-4.180599895}$	0.51966921	-8.044732721	8.64E-16	3.10e-14	0	0.626414477	0.694589061	5.319969209	5.123468832	4.953150701	${ }^{\text {A1+ }}$	CACTA-like transposase family (Ptta/E//Spm)
AT2613310	27.125723	4.537443433	62591348	9.808751	1.03E-22	5.75E-21	0.6			5.800812964	6.244071671	5.074348265		CACTA-like transposase family (Ptta/En/Spm),

AT	179.21853	81	37	95		47E-45 0	0.6401487210			37640449	3828	728		CACTA-ike transposase family (Ptta/En/Spm),
AT2613310 51	51.11748	-1.839123188 0	0.178512353	-10.30249814	6.87--25	3.15E-22 0	0.954186367 \| 0			5.9672027267.	7.168667132	6.677105214		CACTA-like transposase family (Ptta/En/Spm),
${ }^{\text {AT2613870 }}$	20.2952	-3.895571054	0.49585509	-7.856269128	3.96E-15	1.33E-13	0		0	3.93373619	6.244071671	5.07434826		CACTA-İike transposase family (Ptta/En/Spm)
AT2613870	178.89096	4.013723005	0.583007705	-6.884511075	5.80E-12	1.45E-10	0	0	0	6.476563218	8.854670971	9.034408035	Al+	CACTA-like transposase family (Ptta/E//spm)
AT2613870	55.869896	-1.988732408	0.179339147	-11.0892264	1.42E-28	7.53E-26	0	0	0	6.24602418	7.321821408	6.677105214	${ }^{\text {A2+ }}$	CACTA-Iike transposase family (Ptta/E//spm)
AT2614230	230.52403	6.580635482	0.333787318	-19.71505546	1.60-86	1.96E-83	2.121326742	1.894766578	1.796470461	9.175955433	8.678527207	8.605327509	${ }^{\text {A1+ }}$	CACTA-like transposase family (Ptta/E//Spm)
AT2614230	76.952873	-2.139727759	0.179910656	-11.89327973	1.28E-32	8.98E-30	2.727903006	2.484087445	2.36149799	6.723210612	7.634164624	7.190249371	A^{2+}	CACTA-like transposase family (Ptta/E//spm)
AT2614970	15.2081	-4.154419067	0.557761933	7.488373254	9.45E-14	2.83-12	0	0	0	4.021446993	5.476812514	5.065040979	${ }^{\text {Al+ }}$	CACTA-like transposase family (Ptta/En/spm)
AT3629634	31.457695	4.756759299	0.514064222	-9.253239365	2.18--20	$1.13 \mathrm{E}-18$	0.640148721	0.62641447		5.051918249	5.883728226	6.620982316	Al^{1+}	CACTA-like transposase family (Ptta/E//spm)
AT3629650	38.296938	-4.802009354	0.472312498	-10.16701734	2.78E-24	$1.69 \mathrm{E}-22$	0		0	5.197878395	7.128344859	5.811684378	A1-	CACTA-like transposase family (Ptta/E//spm)
AT3629730	7.9405242	-2.539887006	0.505151386	-5.028169921	4.95E-07	7.15E-06	0.602380384	0.588988589	0.653468127	3.222033331	4.483532941	4.116544802	${ }^{\text {A1- }}$	CACTA-İike transposase family (Ptta/En/Spm)
AT3629730	124.6654	-6.462805545	0.453906903	-14.23817417	5.31--46	$1.08 \mathrm{E}-43$	0.640148721	0.626414477	0.694589061	6.961280029	${ }^{8.161811847}$	8.40193474	${ }^{\text {A1+ }}$	CACTA-İike transposase family (Ptta/E//spm)
AT3629730	21.211755	1.233208217	0.171952347	-7.171802188	7.40E-13	1.45E-10	0.954186367	0.940325156	1.024858076	5.4624789	5.688205962	4.99080971	A^{2+}	CACTA-like transposase family (Ptta/E//spm)
AT3629734	85.490999	-4.716689998	0.325619928	-14.88526209	1.50E-47	2.61--45	1.619590486	2.710637931	2.324987472	7.030399376	7.672572658	7.405735635	A1-	CACTA-like transposase family (Ptta/E//spm)
AT3629734	149.00303	5.567399774	0.328744058	-16.93536243	2.477-64	1.17E-61	1.693301494	2.803425391	2.413854982	8.558079749	7.894906359	8.07440268	${ }^{\text {A1+ }}$	CACTA-like transposase family (Ptta/E//Spm)
AT3629736	66.079903	-4.687293692	0.346655247	-13.52148489	1.17--41	1.60--39	1.353130444	2.469293851	1.718867729	9.740426363	7.182410679	7.11811844	A1-	CACTA-Iike transposase family (Ptta/E//spm)
AT3629736	125.20746	5.665701496	0.34771476	-16.29410696	1.09-59	4.23-57	1.419792043	2.559127732	1.796470461	18.240343172	7.603487774	7.956025915	Al+	CACTA-like transposase family (Ptta/E//spm)
AT3629739	57.848371	4.78961221	0.390424692	12.26769798	1.35-34	1.36-32	1.353130444	1.329166983	1.442988428	6.417856728	7.425970407	6.456789718	A1-	CACTA-like transposase family (Ptta/E//spm)
AT3629739	86.72343	5.641600726	0.392402562	-14.37707415	7.21E-47	1.56E-44	1.419792043	1.395704924	1.513627237	7.777649993	7.040014478	7.384788387	Al^{1+}	CACTA-like transposase family (Ptta/E//Spm)
AT3630218	69.922816	5.8868097	0.453647891	-12.97660546	1.66--38	2.54-36	0	1.061739724	0.694589061	16.503738247	7.370331015	7.363060739	${ }^{\text {Al+ }}$	CACTA-like transposase family (Ptta/E//spm)
AT3630396	5.5641966	2.505083764	0.515124086	-4.863068593	1.16-06	1.58E-05	0			3.025182302	4.089833736	3.487531741	A1-	CACTA-Iike transposase family (Ptta/E//spm)
AT3630396	5.634488	4.206484277	0.578269798	-7.274258986	3.48E-13	9.788-12	0	0	0	5.786213592	7.835043274	8.196138899	${ }^{\text {Al+ }}$	CACTA-Iike transposase family (Ptta/E//spm)
AT3G30396	20.103713	-1.325076647	0.171871458	7.709695715	1.26E-14	3.08E-12	0 -		0	5.321529027	5.422775442	5.348296429	${ }^{\text {A2 }}$	CACTA-like transposase family (Ptta/E//spm)
AT3G30663	132.31262	6.802671775	0.486891335	-13.97164271	2.32--44	4.45E-42	0	0	0	6.795247521	8.344656357	8.494777544	Al+	CACTA-like transposase family (Ptta/E//spm)
AT3G30663	15.226259	-1.01468414	0.162105356	-6.259411549	3.86E-10	5.59E-08	0	0	0	4.942735706	5.348623431	4.514488038	A^{2+}	CACTA-Iike transposase family (Ptta/E//spm)
AT3630744	8.6825539	2.476283574	0.514696549	-4.811152469	1.50E-06	2.00E-05	0	0	0.653468127	2.797162804	5.26298884	3.197406586	A1-	CACTA-like transposase family (Ptta/E//Spm)
AT3630744	83.661791	-6.561245225	0.453448588	-14.46965632	1.88E-47	4.36E-45	0	0	0.694589061	7.245106023	7.349087498	7.566881295	${ }^{\text {Al+ }}$	CACTA-like transposase family (Ptta/E//spm)
AT3G30746	16.305106	-3.883095245	0.492299358	-7.887670745	3.08E-15	1.05E-13	0		0	4.700053001	5.766238278	${ }^{4.351279944}$		CACTA-like transposase family (Ptta/E//Spm)
AT3630746	24.237105	-5.029104776	0.521771641	-9.638516503	5.50E-22	3.20--20	0	0	0	5.437371235	5.823389642	5.598854652	$\mathrm{Al}^{\text {a }}$	CACTA-like transposase family (Ptta/E//Spm)
AT3630767	2.7055071	-1.699639415	0.496778375	-3.421323272	2.000623172	20.004765903	0	0	0	2.526213436	2.665086523	2.833863982	A1-	CACTA-like transposase family (Ptta/E//spm)
AT3630767	47.173085	5.451382856	0.523606829	10.412142	2.20E-25	1.63E-23	0		0	5.192160237	6.779170955	7.125631731	${ }^{\text {Al+ }}$	CACTA-like transposase family (Ptta/E//spm)
AT3G30767	18.399534	1.23598202	0.16962344	7.28662276	3.18E-13	6.55E-11	0	0	0	5.358078375	5.270478773	5.078255057	${ }^{\text {A2 }}$	CACTA-Iike transposase family (Ptta/E//Spm)
AT3630780	7.4933643	-2.962891523	0.512288797	-5.78363521	7.31--09	1.35E-07	0	0	0	3.395221171	4.089833736	4.35127994	A1-	CACTA-like transposase family (Ptta/E//Spm)
AT3630780	42.552797	5.59615046	0.509534354	10.98287175	4.62--28	3.92E-26	0	0	0	6.838581092	6.53763301	5.671366059	Al^{1+}	CACTA-like transposase family (Ptta/E//Spm)
AT3630780	86.928524	-2.438085277	0.180249009	-13.52620631	1.10E-41	1.12E-38	0	0	0	6.831151563	7.851051244	7.490410749	A^{2+}	CACTA-like transposase family (Ptta/E//spm)
AT3631920	24.562812	-4.448211334	0.556243224	7.996881841	1.28E-15	4.52E-14	0	0	0	4.021446993	5.553108971	6.446015138	${ }^{\text {Al+ }}$	CACTA-like transposase family (Ptta/E/S/Spm)
AT3632226	14.081242	-3.757195693	0.573342328	-6.53145495	$5.63 \mathrm{E}-11$	1.25E-09	0	0	0	4.626795005	5.694569514	3.458449401	${ }^{\text {Al+ }}$	CACTA-İike transposase family (Ptta/E//Spm)
AT3632226	107.5951	-2.346893305	0.180181647	-13.02515181	8.80E-39	7.81--36	0	0	0	6.831151563	8.051285726	8.072696438	A^{2+}	CACTA-like transposase family (Ptta/En//Spm)
AT363220	163.90936	7.191516929	0.3999233	-17.98224041	2.68E-72	1.13E-69				8.024870774	8.687845658	8.292875588	A1-	CACTA-like transposase family (Ptta/E//spm)
AT3632240	142.49938	-6.975919031	0.479714134	-14.54182509	6.58E-48	1.33E-45	0	0	0	8.887002983	7.491614392	7.67664444	${ }^{\text {Al+ }}$	CACTA-like transposase family (Ptta/E//spm)
AT363220	49.746173	-2.012901497	0.179645535	-11.20485126	3.86E-29	2.14--26	0	0	0	6.226388597	7.068388623	6.529773334	${ }^{\text {A2 }}$	CACTA-Iike transposase family (Ptta/E//Spm)
AT3632677	71.723497	-5.8473802	0.499871218	-11.6977332	1.31--31	1.39E-29	0.640148721	-	0	5.829815291	7.472095394	7.631920166	${ }^{\text {Al+ }}$	CACTA-like transposase family (Ptta/E//spm)
AT3633166	69.008133	-2.525308695	0.512247691	-4.92985862	8.23E-07	1.158-05	2.210243364	2.817885107	1.442988428	6.154180496	8.17743592	5.88961735	A1-	CACTA-like transposase family (Ptta/E//spm)
AT3633166	97.522775	-4.547974891	0.436860864	10.41057981	2.22E-25	1.63E-23	2.29555514	2.911630873	1.513627237	8.013353068	7.938227945	6.173860166	Al^{1+}	CACTA-like transposase family (Ptta/E//spm)
AT3633166	18.252487	0.662643997	0.170879602	-3.87841419	0.000105387	70.00735803	2.918845404	3.588268282	2.03712832	4.843112829	5.100202951	4.848821471	${ }^{\text {A2 }}$	CACTA-like transposase family (Ptta/E//Spm)
AT3642720	190.4478	-7.028891146	0.391552285	-17.95134754	${ }^{4.688-72}$	1.94--69	0.602380384	0.588988589		7.950467731	8.959615924	8.641826921	A1-	CACTA-like transposase family (Ptta/E//Spm)
AT3642720	333.08907	7.654669261	0.451440225	16.9561081	1.73E-64	8.41--62	0.640148721	0.62641447	0	10.18942734	8.695459103	8.708005919	Al^{1+}	CACTA-like transposase family (Ptta/E//Spm)
AT3642720	44.578165	-1.698542994	0.17757352	-9.565294403	1.12E-21	4.38E-19	0.954186367	0.940325156		6.226388597	7.056714212	5.92140565	A^{2+}	CACTA-like transposase family (Ptta/E//spm)
AT3646487	43.008742	-4.222406203	0.461251937	-9.154229747	5.477-20	2.56E-18	1.353130444		1.101575979	4.997461935	7.284819017	6.138961869	A1-	CACTA-like transposase family (Ptta/E//spm)
AT3646487	439.5033	8.217801045	0.375058759	-21.91070294	2.05E-106	3.52E-103	1.419792043	0	1.161466416	9.434343195	9.904984574	${ }^{9.946192271}$	${ }^{\text {A1+ }}$	CACTA-Iike transposase family (Ptta/E//spm)
AT3646487	35.871132	-1.603098849	0.17815491	-8.998342234	2.29E-19	8.13E-17	1.930722178		1.618012324	5.791275092	6.54511919	6.013026524	A^{2+}	CACTA-Iike transposase family (Ptta/E//spm)
AT4603775	17.084336	-3.817532925	0.563008201	-6.780599141	1.20E-11	2.86--10	0.640148721		0	5.913254063	5.019733684	3.6137176	Al+	CACTA-like transposase family (Ptta/E//Spm)
AT4603910	5.7002888	-2.00248577	0.507909253	-3.946076128	7.944-05	0.000768661	0	0	0	1.757146478	4.792504907	2.610741738	A1-	CACTA-like transposase family (Ptta/E//spm)
AT4603910	237.40606	-7.71361368	0.45909815	-16.80166577	2.37E-63	1.05E-60	0	O	0	7.97502982	9.177482928	9.221112472	${ }^{\text {Al+ }}$	CACTA-like transposase family (Ptta/E//Spm)
AT4603910	22.880766	-1.261553776	0.169630316	-7.437086758	1.03E-13	2.28E-11	0	0	0	5.205973566	6.079018602	5.160701666	A^{2+}	CACTA-like transposase family (Ptta/E//spm)
AT4604170	1209.6751	-5.434912969	0.41821587	-12.9954728	${ }^{1.300-38}$	1.57-36	4.572990162	4.655421041	3.173323909	10.57513732	11.2446996	11.66794833	A1-	CACTA-like transposase family (Ptta/En/Spm)
AT4604170	528.83917	-3.169233812	0.167847682	-18.88160608	1.62E-79	$5.37 \mathrm{E}-76$	5.400859372	5.495378993	3.952951229	9.973666002	10.22217364	9.77515791	$\mathrm{A}^{2}+$	CACTA-Iike transposase family (Ptta/E//spm)
AT4604430	94.569738	-6.30014286	0.441509129	-14.26956741	3.39E-46	6.96E-44	1.082007379	0.626414477	0	7.625138353	7.909491907	7.032350776	$\mathrm{Al}^{\text {1+ }}$	CACTA-Iike transposase family (Ptta/E//spm)
AT4604430	198.9275	-3.15420033	0.1778699	-17.73318779	2.32E-70	6.87E-67	1.523548554	0.940325156		8.140220139	9.10594287	8.494364233	A^{2+}	CACTA-like transposase family (Ptta/E//Spm)
AT4606698	69.637373	-5.23184533	0.451610179	-11.58487027	4.92E-31	4.24--29	1.026048597		0	5.70532018	7.850087419	7.096741436	A1-	CACTA-like transposase family (Ptta/En//spm)
AT4606698	223.99986	7.726582487	0.411031186	-18.79804439	7.84--79	6.71--76	1.082007379	0		8.717458848	8.720490083	8.974769338	${ }^{\text {Al+ }}$	CACTA-like transposase family (Ptta/E//spm)
AT4606698	21.19688	-1.245940835	${ }^{0.171350467}$	-7.271301076	3.56E-13	7.18E-11	1.523548554	0	0	5.205973566	5.745182859	5,238690264	${ }_{\text {A2 }}$	CACTA-like transposase family (Ptta/E///spm)
AT4607518	84.249802	6.336405263	0.47368802	-13.38296358	7.61--41	1.27e-38	0	0.626414477	0	6.656843146	7.491614392	7.827060764	${ }^{\text {A1+ }}$	CACTA-like transposase family (Ptta/E//Spm)

AT4607518	9.1272643	-0.683690108	0.147247454	-4.64313703	3.43E-06	3.19E-04	0	0.940325156		4.034776506	4.558214482	4.078534946	${ }^{\text {A2 }+}$	CACTA-Iike transposase family (Ptta/En/Spm)
AT4608091	39.699101	-4.837240901	0.447793072	-10.80240228	3.35E-27	$2.40 \mathrm{E}-25$	0	1.006034927	0	5.454346907	6.889210391	6.27840572	A1-	CACTA-like transposase family ($\mathrm{Pta} / \mathrm{En} / \mathrm{Spm}$)
AT4608091	385.88988	-8.405288875	0.400963157	20.96274367	1.446-97	2.05E-94	0	1.061739724	0	9.718646435	9.326220191	9.697625491	${ }^{\text {Al+ }}$	CACTA-like transposase family (Ptta/En/Spm)
AT4608091	31.026126	-1.482909377	0.175320627	-8.458271017	2.711-17	8.49E-15	0	1.504834619	0	6.303376628	6.079018602	5.348296429	${ }^{\text {A2 }}$	CACTA-Iike transposase family (Ptta/En/Spm)
AT4608598	45.567449	-5.468095977	0.447418769	-12.22142735	2.39E-34	2.33E-32	0	0	0	6.105138068	6.244071671	7.041870662	$\mathrm{Al}^{\text {- }}$	CACTA-like transposase family (Ptta/En/Spm)
AT4608598	30.398894	-5.09407699	0.528033429	-9.647262292	5.05E-22	2.96E-20	0	0	0	6.582320762	5.123468832	5.773726325	A1+	CACTA-like transposase family (Ptta/En/Spm)
AT4632340	451.961	-1.671618206	0.173295373	-9.646063717	5.11--22	2.98E-20	7.740014238	7.49093163	7.927315529	9.163229078	9.646610833	9.45988882	${ }^{\text {Al+ }}$	CACTA-iike transposase family (Ptta/En/Spm)
AT5619015	13.758436	-4.104313733	0.557344361	-7.364053578	1.78E-13	5.17E-12	0	0	0	4.896561069	5.220242777	4.208431314	A1+	CACTA-Iike transposase family (Ptta/En/Spm)
AT5619015	37.707028	-1.298298791	0.169278724	-7.669592241	1.73 E-14	4.17E-12	0	0	0	4.942735706	6.870591504	6.348180357	${ }^{\text {A2 }+}$	CACTA-Iike transposase family (Ptta/En/Spm)
AT5628923	137.97609	-6.423606911	0.496719024	-12.93207346	2.97e-38	$4.38 \mathrm{E}-36$	0	0.626414477	0	6.332434805	8.477846986	8.619142096	${ }^{\text {Al+ }}$	CACTA-Iike transposase family (Ptta/En/Spm)
AT5628923	14.16914	-0.937100426	0.160311403	-5.845500745	5.05E-09	$6.62 \mathrm{E}-07$	0	0.940325156	0	4.843112829	5.2297536	4.383282909	${ }^{\text {A2 }+}$	CACTA-like transposase family (Ptta/En/spm)
AT5629408	44.617635	-1.730668814	0.177278128	-9.76244972	1.63E-22	6.58E-20	0	0	0	5.880189541	6.883775214	\|6.633030935	${ }^{\text {A2 }}+$	CACTA-like transposase family (Ptta/En/spm)
AT5629568	5.5922814	-2.525671883	0.5151406	-4.902878713	9.44E-07	1.31--05	0	0	0	3.222033331	4.089833736	3.349749908	$\mathrm{Al}^{\text {1- }}$	CACTA-Iike transposase family (Ptta/En/Spm)
AT5629568	62.89422	-1.979836961	0.58218025	-3.400728487	6.72E-04	4.30E-03	0	0	0	3.480233365	7.268839943	7.75381203	A1+	CACTA-Iike transposase family (Ptta/En/Spm)
AT5630450	63.3628	-5.832860914	0.423380071	-13.77689058	3.51--43	5.18E-41	0.602380384	0	0	6.605874948	6.952811471	7.334467632	${ }^{\text {A1- }}$	CACTA-like transposase family (Ptta/En/Spm)
AT5G30450	8.0965071	-0.61934977	0.142898944	-4.334180179	1.46E-05	1.20E-03	0.954186367	0	0	4.034776506	4.345992327	3.798546962	${ }^{\text {A2 }}$	CACTA-like transposase family (Ptta/En/Spm)
AT5630480	23.95814	-4.273007881	0.487077138	-8.77275394	1.74E-18	7.42E-17	0	0	0	4.324976877	5.617177427	6.27840572	${ }^{\text {A1- }}$	CACTA-like transposase family (Ptta/En/Spm)
AT5630480	8.867826	-0.627890677	0.14070358	${ }^{-4.462506773}$	8.10e-06	0.000708832	0	0	0	4.122374089	4.799921877	3.450808994	${ }^{\text {A2 }}$	CACTA-like transposase family (Ptta/En/Spm)
AT5G32563	26.679603	-4.355785642	0.561718607	-7.75439088	8.88E-15	2.90E-13	0	0	0	3.480233365	6.247434088	6.246861259	A1+	CACTA-like transposase family (Ptta/En/Spm)
AT5632566	17.127012	-3.89184404	0.495342709	-7.856872281	3.94E-15	1.32E-13	0	0	0	3.933736191	5.26298084	5.722706421	A1-	CACTA-like transposase family (Ptta/En/spm)
AT5632566	217.37425	-2.812918788	0.592362208	-4.748646608	2.05E-06	2.33E-05	0	0	0	6.030007392	9.363776641	9.187510222	Al+	CACTA-Iike transposase family (Ptta/En/Spm)
AT5632566	24.19211	-1.400160113	0.173112417	-8.08815532	6.06E-16	1.706-13	0	0	0	5.393724612	6.008550051	5.38305632	${ }^{\text {A2 }+}$	CACTA-Iike transposase family (Ptta/En/Spm)
AT5634790	103.37912	-2.528163688	0.287765071	-8.785512702	1.56-18	6.99E-17	4.768132494	4.816916094	4.880072038	7.522586068	7.923931472	6.841279286	A1+	CACTA-like transposase family (Ptta/En/Spm)
AT5634790	104.55986	-1.248198868	0.166883691	-7.479453872	7.46-14	1.70E-11	5.493835355	5.55299285	5.60285245	7.552565265	7.433619666	7.045866277	A^{2+}	CACTA-like transposase family (Ptta/En/spm)
AT5G36655	8.651573	-2.558827164	0.505798017	-5.058990106	4.21E-07	6.15E-06	1.026048597	0.588988589	0	3.222033331	4.792504907	4.028969492	A1-	CACTA-Iike transposase family ((tta/En/Spm)
AT563665	320.78694	-6.928219905	0.48666463	-14.23612788	5.47e-46	1.11--43	1.082007379	0.62641447	0	7.074356335	9.919469095	9.684545676	${ }^{\text {A1+ }}$	CACTA-Iike transposase family ($\mathrm{Pta} / \mathrm{En} / \mathrm{Spm}$)
ATS63665	125.54573	-2.524350709	0.180179549	-14.01019552	1.35E-44	1.80E-41	1.523548854	0.940325156	0	7.226639302	8.464962907	7.967829969	${ }^{\text {A2 }}$	CACTA-like transposase family (Ptta/En/Spm)
AT1642410	3.4930828	-1.67117003	0.506920138	-3.296712645	0.000978235	0.007045104		0	0.653468127	2.192330878	3.546623725	2.833863982	A1.	CACTA-like transposase family (Tnp1/En/spm)
AT1633570	97.239371	-2.771920546	. 592327666	-4.67970805	2.87E-06	3.19E-05	0	0	0	4.896561069	8.047769012	8.189982436	${ }^{\text {Al+ }}$	CACTA-Iike transposase family (Tnp1/En/Spm)
AT1G34530	29.121055	-4.920605236	0.514521671	-9.56345574	1.14E-21	6.47E-20	0.640148721	0	0	5.694845984	6.420348952	5.31182967	${ }^{\text {Al+ }}$	CACTA-Iike transposase family (Tnp1/E//Spm)
AT1634530	62.39218	-2.005754266	0.179470125	-11.17597853	5.35--29	2.90--26	0.954186367		0	6.284511346	7.47760881	6.909454177	A^{2+}	CACTA-like transposase family (Tnp1/En/spm)
AT1635600	293.66203	-5.634348844	0.552721048	-10.19383804	2.11--24	1.49E-22	0	(0	7.732415395	9.556809943	9.642326152	A1+	CACTA-like transposase family (Tnp1/En/spm)
AT1635600	29.920608	-1.572905872	0.175943326	-8.939843925	3.90E-19	1.36E-16	0	0	0	5.817759631	6.311427547	5.545303641	${ }^{\text {A2 }+}$	CACTA-iike transposase family (Tnp1/En/Spm)
AT1636630	1211.5243	-4.924761673	0.560229973	-8.790607275	1.49E-18	6.72E-17	1.9	3.634383687	1.161466416	10.56813662	11.77537587	11.12481774	${ }^{\text {A1+ }}$	CACTA-Iike transposase family (Tnp1/En/Spm)
AT1639190	6.0752071	-2.720491937	0.5856355	-4.645367192	3.39E-06	3.71E-05	0	0	0.694589061	3.480233365	4.164272639	3.284432598	${ }^{\text {A1+ }}$	CACTA-Iike transposase family (Tnp1/E//spm)
AT1G39190	11.572768	-0.808730753	0.154491609	-5.234787542	1.65--07	1.87-05	0	0	1.024858076	4.736096999	4.799921877	4.078534946	${ }^{\text {A2 }}$	CACTA-like transposase family (Tnp1/En/spm)
AT1642410	56.587698	-5.902700771	0.478972938	-12.32366237	6.76E-35	8.43E-33	0	0	0.694589061	6.961280029	7.117439888	6.293554041	${ }^{\text {Al+ }}$	CACTA-like transposase family (Tnp1/En/spm)
AT1642410	130.64656	-2.707270193	0.179853623	-15.05263082	3.32-51	4.90E-48	0	0	1.024858076	7.488067396	8.55019731	7.85473927	${ }^{\text {A2 }}$	CACTA-like transposase family (Tnp1/E//Spm)
AT1652850	7.2330936	-2.472240442	0.51441568	-4.80591968	1.54E-06	2.05E-05	0.602380384	0	0	2.797162804	4.792504907	3.487531741	$\mathrm{Al}^{\text {- }}$	CACTA-Iike transposase family (Tnp1/En/Spm)
AT1652850	350.50317	-3.432665812	0.58981978	-5.819855366	5.89E-09	$9.83 \mathrm{E}-08$	0.640148721	0	0	7.037640449	9.841749487	10.04502139	${ }^{\text {Al+ }}$	CACTA-Iike transposase family (Thp1/En/Spm)
AT1652850	96.303447	-2.32593616	0.180224766	-12.90575215	4.18E-38	3.58E-35	0.954186367	0	0	6.869634388	8.119745491	7.52972226	${ }^{\text {A2 }+}$	CACTA-like transposase family (Tnp1/En/spm)
AT3630836	229.96415	-7.606872633	0.392471801	-19.38195972	$1.10 E^{-83}$	6.48E-81	0	0	0	8.831735225	9.161544904	8.469584068	${ }^{\text {A1- }}$	CACTA-like transposase family (Tnp1/En/Spm)
AT3630836	25.46866	-8.026060757	0.441515052	-18.17845329	7.65E-74	4.79E-71	0	0	0	9.052569459	8.506912398	9.283167007	${ }^{\text {Al+ }}$	CACTA-Iike transposase family (Tnp1/En/spm)
AT3G30836	8.4934548	-0.637906993	0.14160628	-4.504793088	6.64E-06	0.000591073	0	0	0	3.841804147	4.684124191	3.798546962	${ }^{\text {A2 }}$	CACTA-like transposase family (Tnp1/En/Spm)
AT3632950	15.490315	-4.218748586	0.554886221	-7.602907454	2.90E-14	9.05E-13	0	0	0	4.16453883	5.476812514	5.065040979	${ }^{\text {Al+ }}$	CACTA-like transposase family (Thp1/En/spm)
AT3642650	4.2318645	-1.822551011	0.501897842	-3.631318682	0.000281977	0.002357208		0	0	1.131025967	4.089833736	3.197406586	A1-	CACTA-like transposase family (Tnp1/En/spm)
AT3642650	12.288477	-3.440434667	0.582305333	-5.908300119	3.46E-09	5.96E-08	0	0	0	5.545934233	4.508850015	2.857049598	${ }^{\text {Al+ }}$	CACTA-Iike transposase family (Tnp1/E//Spm)
AT3642650	103.40095	-2.292793985	0.180088248	-12.73150253	3.95-37	3.19E-34	0	0	0	6.764640597	7.903774937	8.104288802	${ }^{\text {A2 }+}$	CACTA-Iike transposase family (Tnp1/En/spm)
AT5628524	8.8468137	-3.462843375	0.577523605	-5.996020499	2.02E-09	3.05E-08	0	0	0	3.480233365	4.654502272	4.302754999	A1+	CACTA-like transposase family (Thp1/En/spm)
AT2604770	3.5397797	-1.829871083	0.502459676	-3.641826741	0.00027071	0.002274869		0	0	1.757146478	3.546623725	3.197406586	$\mathrm{Al}^{\text {- }}$	CACTA-like transposase family (Tnp2/En/Spm)
AT1635590	5.9050085	-2.923907162	0.58913953	-4.963013031	6.94E-07	8.54E-06	-	0	0	4.16453883	3.04536424	3.6137176	${ }^{\text {Al+ }}$	CACTA-like transposase family (Tn 2 / $\mathrm{E} /$ /Spm)
AT1635590	33.347057	-1.822651038	0.178930744	-10.1863492	2.28E-24	$1.03 \mathrm{E}-21$	0	0	0	6.123990007	6.124155242	5.990660999	${ }^{\text {A2 }}$	CACTA-like transposase family (Tnp2/En/Spm)
AT1636200	10.453467	-3.602817924	0.574528961	-6.270907415	3.99E-10	7.12--09	0	0	0	4.626795005	4.907957693	3.458449401	A1+	CACTA-Iike transposase family (Thp2/En/Spm)
AT1636200	69.313769	-2.057128667	0.179481312	-11.46152011	2.06E-30	1.27 --27	0	0	0	6.265396101	7.341066495	7.490410749	${ }^{\text {A2 }}$	CACTA-like transposase family (Tnp2/En/Spm)
AT1636470	7.6375554	-3.311198603	0.581098212	5.698173792	1.21E-08	1.93E-07	0	0	0	3.480233365	4.164272639	4.302754999	${ }^{\text {Al+ }}$	CACTA-like transposase family (Tnp2/En/Spm)
AT1636470	23.558115	-1.462888044	0.174597088	-8.37865088	5.35E-17	1.62E-14	0	0	0	5.4624789	5.715995759	5.575673072	${ }^{\text {A2 }+}$	CACTA-Iike transposase family (Tnp2/En/Spm)
AT1649070	66.000713	-3.73890785	0.585140249	${ }^{-6.389763575}$	1.66E-10	3.46E-09	0	0	0	5.051918249	7.491614392	7.538084146	A1+	CACTA-like transposase family (Tnp2/En/spm)
AT1649070	16.844641	-1.156916239	0.167333666	${ }^{-6.9138283}$	4.72E-12	8.42E-10	0	0	0	5.284029613	5.100202951	4.945015614	${ }^{\text {A2 }}$	CACTA-like transposase family (Tnp2/En/spm)
AT1650860	6.5491679	-3.063565776	0.586846702	-5.220385098	1.79E-07	2.42E-06	0	0	0	3.242825326	3.710677785	4.302754999	${ }^{\text {Al+ }}$	CACTA-like transposase family (Tnp2/En/Spm)
AT1650860	18.24178	-1.22841184	0.169420087	-7.250729279	4.158-13	8.29E-11	0	0	0	5.123451569	5.386165538	5.160701666	${ }^{\text {A2 }}$	CACTA-like transposase family (Tnp2/En/Spm)
AT2604770	526.65975	-3.990396274	0.584242153	-6.830038282	8.49E-12	2.08E-10	0	0	0	1.945604173	10.55816791	10.46014392	${ }^{\text {Al+ }}$	CACTA-Iike transposase family (Tnp2/En/spm)
AT2604770	67.726519	-2.232791414	0.180171182	-12.39219855	2.88E-35	2.19E-32	0	0	0	7.367754976	7.29246369	6.450052057	${ }^{\text {A2 }}+$	CACTA-like transposase family (Tnp2/En/spm)
AT2606740	15.994528	-4.42987978	0.54468147	8.13297317	4.19E-16	1.54--14	0	0	0	5.192160237	4.654502272	5.218117061	A1+	CACTA-like transposase family (Tnp2/En/Spm)

AT2616670	1.88976	196812368	495788702	448583403	1.13E-10	2.53E-09	0	1.006034927		4.700053001	5.046836798	.83605124	A1-	copia-like retrotransposon family (Ty1_Copia-element)
AT2616670	46.290098	5.024897855	0.517189421	9.715778496	2.58E-22	1.566-20	0	1.061739724		7.397768286	6.050935773	5.482759454	${ }^{\text {Al+ }}$	copia-like retrotransposon family (Tyy_Copia-element)
AT2619840	9.495603	-5.062736443	0.390516899	12.96419297	1.95E-38	2.322-36	1.026	1.006034927	1.4429884	6.7563961	7.333420192	6.439911719	A1-	copia-like retrotransposon family (Ty1 Copia-element)
AT2619840	25.125154	-1.312256749	0.176057675	7.453561733	9.09E-14	$2.03 \mathrm{E}-11$	1.523588554	1.504834619	2.03712832	5.495665116	5.908895534	5.38305632	${ }^{\text {A2 }}$	copia-like retrotransposon family (TY1_Copia-element)
AT2621460	28.724868	-3.946485881	0.44642966	8.840106816	$9.566-19$	4.15E-17	1.026048597	1.593003473	0.653468127	5.414644739	5.046836798	6.585144057	A1-	copia-like retrotransposon family (Ty1_Copia-element)
AT3627327	2.7616768	-1.704255371	0.496971783	3.429279953	0.000605185	0.004650492		0	0	3.025182302	2.665086523	2.346684959	A1-	copia-like retrotransposon family (Ty1_Copia-element)
AT3627327	12.74275	-4.071840161	0.55773982	-7.300608655	2.866-13	8.12E-12	0	0	0	4.29471016	4.786788781	5.010180294	${ }^{\text {Al+ }}$	copialilike retrotransposon family (Ty1_Copia-element)
AT3629156	53.434872	3.748345002	0.44889849	8.331534976	7.98E-17	3.111-15	${ }^{6.201705899}$	6.959135593	6.8350584	3.480233365		1.169324837	A1+	copia-like retrotransposon family (TY1_Copia-element)
AT3G30582	6.628812	-3.4723217	0.461452763	7.52476089	5.28E-14	1.618-12	1.026048597	1.815968538	0.653468127	4.324976877	6.4333355	5.702706421	A1-	copia-like retrotransposon family (Ty1_Copia-element)
AT3643867	164.24214	7.109993335	0.389659721	18.24667257	2.20E-74	9.748-72	0	0	0.653468127	8.316365464	8.630654304	8.091461764	A1-	copia-like retrotransposon family (Ty1_Copia-element)
AT3643867	129.45777	-7.021407763	0.448082185	-15.66991056	2.438-55	8.00E-53	0	0	0.694589061	8.311274575	8.086793566	7.566881295	${ }^{\text {Al+ }}$	copia-like retrotransposon family (Ty1_Copia-element)
AT3643867	13.900298	-0.84572974	0.155754981	5.429872849	5.64-08	6.61E-06	0	0	1.024858076	4.736096999	5.386165538	14.078534946	${ }^{\text {A2 }}+$	coppia-like retrotransposon family (Ty1_Copia-element)
AT3642215	8.0869921	-2.84477283	0.504652391	637092647	1.3E-08	3.05E-07	0	0.5889885	0.653468127	3.933736191	3.546623725	4.553113256	$\mathrm{Al}^{\text {- }}$	copia-like retrotransposon family (TY1_Copia-element)
AT3644215	125.36638	-4.020795708	0.579477738	6.938654321	3.96E-12	1.008-10	0	0.626414477	0.694589061	9.020000606	6.610886935	7.099589738	${ }^{\text {Al+ }}$	copia-like retrotransposon family (Ty1_Copia-element)
AT3642215	18.767944	-1.182213954	0.170075974	6.951093245	3.62--12	6.60e-10	0	0.940325156	1.024858076	5.080350208	5.493263672	5.120067235	${ }^{\text {A2 }}$	copia-like retrotransposon family (Ty1_Copia-element)
AT3644325	30.659796	-5.116309896	0.503037871	10.17082448	2.68-24	1.87E-22	0.64014872		0	6.301797049	5.883728226	5.598854652	Al^{+}	copia-like retrotransposon family (Ty_C_Copia-element)
AT3645775	2.099929	-2.56774123	0.591151963	4.343634605	1.40E-05	1.35E-04	0	0.626414477	0.694589061	5.913254063	3.416037926	1.806583236	A1+	copia-like retrotransposon family (TY1_Copia-element)
AT4604426	10.013105	-3.467766735	0.56557534	-6.131396637	8.71E-10	1.64E-08	0	0.626414477		4.896561069	3.955228997	4.107506639	${ }^{\text {Al+ }}$	copia-like retrotransposon family (TY1_Copia-element)
AT4605592	22.870712	-4.477387204	0.475041786	-9.425249176	4.29E-21	2.166-19	0	0		4.826463083	5.901330042	5.702706421	${ }^{\text {A1- }}$	copia-like retrotransposon family (Tyl_Copia-element)
AT4605592	10.951322	-2.930310918	0.591206079	4.956496593	7.188-07	$8.80 \mathrm{E}-06$	0	0	0	5.694845984	1.773370384	3.753887089	A1+	copia-like retrotransposon family (Ty1_Copia-element)
AT4606882	10.548425	-3.303482601	0.498142491	631601719	3.32E-11	7.96E-10	0	0.588988589		4.142578534	4.792504907	4.351279944	$\mathrm{Al}^{\text {- }}$	copia-like retrotransposon family (TY1_Copia-element)
AT4606684	7.7759762	-3.097080449	0.509868911	6.074268073	1.25E-09	2.54E-08	0	0	0	3.933736191	4.089833736	4.116544802	${ }^{\text {A1- }}$	copia-like retrotransposon family (TYy_Copia-element)
AT4606684	3.4935187	-2.050992455	0.586606548	3.49636816	4.72E-04	3.16E-03	0	0		3.862584211	1.773370384	2.55846216	${ }^{\text {Al+ }}$	copia-like retrotransposon family (Ty1_Copia-element)
AT4607810	5.628893	3.332761294	0.580978202	5.736465301	9.67E-09	$1.566-07$	0.64014872			2.133098153	5.396254736	5.63556587	${ }^{\text {Al+ }}$	copia-like retrotransposon family (Ty1_Copia-element)
AT4609316	16.071417	-3.302179166	0.476161048	-6.935004828	${ }^{4.066-12}$	1.06E-10	0.602380384	0.588988589	1.101575979	4.486881573	5.766238278	4.351279944	A1-	copia-like retrotransposon family (Ty1_Copia-element)
AT4609425	32.020761	3.639479221	0.385077244	51296524	35E-21	1.70e-19	1.353130444	2.33157897	1.950365559	5.737858488	5.901330042	6.200380869	A1-	copia-like retrotransposon family (TY1_Copia-element)
AT4618420	16.618625	-3.767336543	0.575659741	6.544380782	5.97E-11	1.32E-09	0	0	0	2.958502988	5.941644221	5.065040979	A1+	copia-like retrotransposon family (Ty1_Copia-element)
AT5617125	21.334787	-3.935020404	0.573344409	6.8632751	33-12	1.67E-10	0	0		3.242825326	6.460522959	5.065040979	${ }^{\text {A1+ }}$	copia-like retrotransposon family (Ty1_Copia-element)
AT5619097	5.5911476	-1.65962189	0.510188786	-3.252956428	0.00114211	0.0080603	1.353130444	1.329166983	0.653468127	3.816762292	3.546623725	2.833863982	${ }^{\text {A1- }}$	copia-like retrotransposon family (Ty1_Copia-element)
AT5619097	137.66905	-4.667496711	0.548982062	8.502093302	1.866-17	7.71E-16	1.419792043	1.395704924	0.694589061	3.684038477	8.617649912	8.712308613	${ }^{\text {Al+ }}$	copia-like retrotransposon family (TY1_Copia-element)
AT5619097	13.487421	-0.646827206	0.153175228	-4.222792521	2.41E-05	$1.89 \mathrm{E}-03$	1.930722178	1.909535826	1.024858076	4.204956009	5.458440254	3.898037328	${ }^{\text {A2 }}$	copia-like retrotransposon family (Ty1_Copia-element)
AT5632702	. 7089433	2.509629345	0.513963563	4.882893506	1.05E-06	1.44E-05	0	0.588988589		3.025182302	4.483532941	3.613294506	${ }^{\text {A1- }}$	copialilike retrotransposon family (Ty1_Copia-element)
AT5635052	94.531883	-6.507488555	0.414016371	-15.71794334	1.14E-55	2.52-53	0		0	7.44924009	7.883112171	7.316086623	${ }^{\text {A1- }}$	copia-like retrotransposon family (Ty1_Copia-element)
AT5635052	12.963455	-0.878052383	0.156019614	5.627833343	1.82E-08	2.25E-06	0	0	0	5.035921409	4.957860877	4.078534946	${ }^{\text {A2 }+}$	copia-like retrotransposon family (Ty1_Copia-element)
AT1636540	13.197985	-3.817627268	0.492496189	-7.751587433	9.088-15	2.95E-13	0	0	0	4.56149373	5.046836798	4.673513852	${ }^{\text {A1- }}$	gypsy-ike retrotransposon family (Athila)
AT1636540	10.593849	-3.834286537	0.565284048	782937801	.18E-11	2.83E-10	0	0	0	4.722432463	4.164272639	4.474701533	${ }^{\text {Al+ }}$	gypsy-like retrotransposon family (Athila)
AT1636795	8.127516	-3.085592619	0.509927515	6.051041631	1.44E-09	2.92E-08				3.816762292	4.483532941	3.935732613	A1-	gypsy-like retrotransposon family (Athila)
AT1636795	4.2060256	-1.980112427	0.584111731	3.389954903	6.99E-04	4.44E-03	0	0	0	4.414102287	1.773370384	1.806583236	${ }^{\text {A1+ }}$	gypsy-like retrotransposon family (Athila)
AT1637160		2699572	0.467946734	87888415	70E-23	2.66E-21	0	0	0	5.373818996	6.024848039	5.352044354	A1-	gypsy-ike retrotransposon family (Athila)
AT1637160	34.438553	-4.953358593	0.540323074	9.167401571	4.85E-20	2.45E-18	0	0	0	7.037640449	5.220242777	5.356497891	${ }^{\text {Al+ }}$	gypsy-like retrotransposon family (Athila)
AT1637340	40.749231	-5.77797446	0.994891008	11.67524641	1.711-31	1.79E-29	0	0	0	6.420627573	6.292642239	6.382636761	${ }^{\text {Al+ }}$	gypsy-like retrotransposon family (Athila)
AT1637340	18.73807	-1.138019369	0.166267917	-6.844491645	7.67E-12	1.36E-09	0	0	0	4.620502376	5.527266304	5.482576886	${ }^{\text {A2 }+}$	gypsy-like retrotransposon family (Athila)
AT1638167	17.417091	-4.21116677	0.480680989	8.760834677	${ }^{1.945-18}$	8.23E-17	0		0	5.050236022	5.45092181	4.936752096	${ }^{\text {A1- }}$	sypsy-like retrotransposon family (Athila)
AT1638167	13.289442	-3.482941615	0.582057889	-5.98384058	2.188-09	3.91E-08	0	0	0	5.872137807	3.416037926	3.753887089	${ }^{\text {Al+ }}$	gypsy-like retrotransposon family (Athila)
AT1638185	7.416552	-5.842590577	0.422249801	13.83681072	1.53E-43	2.27E-41	0	0	0.653468127	6.803271288	7.554534146	6.74483478	${ }^{\text {A1- }}$	gyssy-like retrotransposon family (Athila)
AT1638185	50.752574	-5.345378874	0.51531681	-10.37299496	3.29E-25	$2.41 e^{23}$	0 -	0	0.694589061	7.535810907	5.823389642	${ }^{6.015744504}$	${ }^{\text {A1+ }}$	gypss-like retrotransposon famil (Athila)
AT1638260	42.324171	-4.1710324	0.505686138	8.248263271	1.61E-16	6.15E-15	1.923129797	1.061739724	0.694589061	7.276958206	5.997324674	5.065040979	${ }^{\text {Al+ }}$	gypsy-like retrotransposon family (Athila)
AT1638260	17.887522	-0.960952855	0.16900151	-5.686060781	1.30E-08	1.63E-06	2.507777703	1.504834619	1.024858076	5.245529421	5.270474873	4.745752287	${ }^{\text {A2 }+}$	sypsy-ike retrotransposon family (Athila)
AT1638330	42.324171	-4.1710324	0.505686138	8.248263271	1.61E-16	6.15E-15	1.923129797	1.061739724	0.694589061	7.276958206	5.997324674	5.065040979	A1+	gypsy-like retrotransposon family (Athila)
AT1638330	17.887522	-0.960952855	0.16900151	5.686060781	1.30-08	1.63E-06	2.507777703	1.504834619	1.024858076	5.245529421	5.270474873	4.745752287	${ }^{\text {A2 }+}$	gypsy-like retrotransposon family (Athila)
A11638360	53.55002	-5.494730847	0.417834208	-13.15050503	-1.972-39	${ }^{2.1010-37}$	0.6023883884		0.653468127	6.640707421	-7.072173738	${ }^{6.473472544}$	${ }^{\text {A1- }}$	gypss-like retrotransposon famil (AAthila)
AT1638360	63.909876	-5.84598928	0.471569793	12.39686971	2.72E-35	3.52E-33	0.640148721		0.694589061	7.561902362	6.53766301	6.692416924	${ }^{\text {A1+ }}$	sypsy-like retrotransposon family (Athila)
AT1638430	38.4637	-4.570617931	0.493952291	9.25315666	2.18E-20	1.138-18	1.082007379	1.395704924		6.880650939	6.247434088	5.218117061	${ }^{\text {Al+ }}$	gypsy-like retrotransposon family (Athila)
AT1638430	13.254349	-0.75079561	0.156991408	4.782399363	1.738-06	1.708-04	1.523548554	1.909535826		4.357162671	5.2297536	4.312916238	A^{2+}	gypsy-like retrotransposon family (Athila)
AT1638450	83.151407	-5.853837611	0.433378165	-13.50745857	1.41E-41	1.93E-39	0.602380384	0	0	6.605874948	8.06680322	7.085932967	A1-	gypsy-like retrotransposon family (Athila)
AT1638450	10.682855	-0.764837878	0.15205313	5.030069921	4.90E-07	5.32E-05	0.954186367		0	4.679457118	4.622542481	3.991107087	A^{2+}	Eypsy-like retrotransposon family (Athila)
AT1638460	10.178714	-2.864562092	0.591635088	-4.841771816	1.29E-06	1.51E-05	0	0	0	5.597298362	1.773370384	3.6137176	${ }^{\text {Al+ }}$	gypsy-like retrotransposon family (Athila)
AT1639830	30.620457	-5.275208582	0.516140799	10.22048362	1.61-24	1.148-22	0	0	0	6.391824885	5.694469514	5.671366059	${ }^{\text {A1+ }}$	sypsy-like retrotransposon family (Athila)
AT1639830	14.087072	-1.002692014	0.161852041	-6.195115037	5.82E-10	8.29E-08	0	0	0	4.559035468	5.006885355	4.99980971	${ }^{\text {A2 }}+$	gypsy-like retrotransposon family (Athila)
AT1639990	7.4173289	-2.795888492	0.591632699	4.725716644	2.29E-06	2.58E-05	0	0	0	5.051918249	2.545235219	3.086509522	${ }^{\text {A1+ }}$	gypsy-like retrotransposon family (Athila)
AT1640074	29.814885	-5.220702889	0.518724125	-10.06450757	${ }^{\text {7 }}$ 7.93E-24	5.38E-22	0	0	0	6.391824885	5.553108971	5.671366059	${ }^{\text {A1+ }}$	gypss-like retrotransposon famil (Athila)
													${ }^{\text {A2 } 2+}$	gypsy-like retrotransposon family (Athila)

AT1640077	8.2288607	-3.174622154	. 508567526	6.242282477	4.318-10	9.17E-09	0	0	0	4.324976877	4.089833736	3.935732613	A1.	Eypsy-like retrotransposon family (Athila)
AT1640077	32.565101	-4.968828373	0.537290371	9.247938617	2.29E-20	1.188-18	0	0	0	4.626795005	6.610886935	6.248861259	${ }^{\text {A1+ }}$	gypsy-like retrotransposon family (Athila)
AT1640101	179.93243	-7.218626845	0.403060891	17.90951939	9.948-72	4.05E-69	0	0	0	8.051002506	8.944050566	8.343667141	A1-	gypsy-ike retrotransposon family (Athila)
AT1640101	13.032961	-0.832447696	0.153477176	5.423918499	5.838-08	6.80E-06	0		0	4.357162671	5.386165538	4.238940698	${ }^{\text {A2 }+}$	gypsy-like retrotransposon family (Athila)
AT1641775	35.985815	-5.0786845	0.456186679	11.13290851	8.688-29	6.84E-27	0	0	0	5.831289127	6.752923424	5.758224149	A1-	gypsy-ike retrotransposon family (Athila)
AT1641775	5.100127	-4.527056597	0.552850527	8.188572448	2.64E-16	9.97E-15	0	0	0	6.607591696	4.786788781	4.831847463	${ }^{\text {A1+ }}$	gypsy-like retrotransposon family (Athila)
AT1642370	31.932082	-5.049028696	0.454655048	-11.1051856	${ }^{1.188-28}$	9.19E-27	0 -	0	0 -	5.70532018	6.342337877	5.937261568	${ }^{\text {A1- }}$	gypsy-iike retrotransposon family (Athila)
AT1643060	36.703819	-3.23134805	0.525245495	6.152071905	7.65E-10	1.45E-08	2.450991732	2.091646247	1.161466416	3.684038477	6.499608502	6.793345127	${ }^{\text {Al+ }}$	gypsy-like retrotransposon family (Athila)
AT260688	2.175414	-2.658806716	0.507833377	5.235588749	1.64E-07	2.56E-06	0	0.588988589	1.101575979	2.797162804	5.617177427	4.199106927	${ }^{\text {A1- }}$	gypsy-like retrotransposon family (Athila)
AT2610180	326.93458	-7.819327741	0.385186364	20.30011565	1.288-91	9.99E-89	0	0	0.653468127	9.077177283	9.820032828	9.022342086	A1-	gypsy-like retrotransposon family (Athila)
AT2610180	19.774236	-1.269941555	0.171365905	7.393195029	1.438-13	3.15E-11	0	0	1.024858076	5.4624789	5.348623431	5.160701666	A^{2+}	Esysp-like retrotransposon family (Athila)
AT2G10190	40.422715	-5.185244733	0.44047227	-11.77187926	5.45E-32	4.86E-30	0	0.588988589	0	6.397633656	${ }^{6.679626997}$	5.863334177	${ }^{\text {A1- }}$	Eypss-like retrotransposon family (Athila)
AT2610190	42.988219	-5.543564385	0.491111406	11.287794	1.511-29	1.39E-27	0	0.626414477		6.901234587	6.102628836	6.173860166	${ }^{\text {Al+ }}$	gypsy-like retrotransposon family (Athila)
AT2610250	13.647435	-2.346031775	0.444330643	-5.279923438	1.29E-07	$2.048-06$	1.353130444	2.331571897	1.950365559	4.88574345	4.483532941	4.614569198	${ }^{\text {A1- }}$	gypsy-like retrotransposon family (Athila)
AT2610250	16.338513	-2.568954009	0.476889181	5.386899326	7.17¢-08	1.03E-06	1.419792043	2.419481965	2.032847348	4.414102287	5.396254736	4.831847463	${ }^{\text {Al+ }}$	gypsy-like retrotransposon family (Athila)
AT2G10250	15.748192	-0.68889737	0.168351231	4.092024543	4.288-05	0.0032408	1.930722178	3.062067384	2.62615782	4.559035468	4.743184533	4.99080971	$\mathrm{A}^{\text {2 }+}$	gypsy-like retrotransposon family (Athila)
AT2610280	65.316717	-5.569010722	0.453219763	-12.2876682	1.066-34	1.07E-32	0	0	0	7.399259593	7.425970407	5.758224149	A1-	gypsy-like retrotransposon family (Athila)
AT2G10280	6.5372568	-0.523533632	0.132282407	3.957696607	7.57e-05	5.43E-03	0	0	0	3.202918741	4.097076912	3.991107087	${ }^{\text {A2 }}$	gypsy-ike retrotransposon family (Athila)
AT2610310	136.8064	-6.948767346	0.405301393	-17.14469151	6.89E-66	2.16E-63	0	0	0	7.957392451	8.46603619	7.792290697	${ }^{\text {A1- }}$	gypsy-like retrotransposon family (Athila)
AT2610310		-0.76276932	0.14993841	-5.087217594	3.63E-07	4.01E-05	0	0	0	4.559035468	4.743184533	3.898037328	${ }^{\text {A2 }+}$	gypsy-like retrotransposon family (Athila)
AT2610660	67.574169	-5.654897854	0.435030436	12.99885569	1.24E-38	1.50E-36	0	0.588988589	0	6.691428291	7.74621963	6.489964658	A1-	Egyss-like retrotransposon family (Athila)
AT2611050	21.394074	-4.262227002	0.507775563	-8.393919115	4.70E-17	1.88E-15	0.640148721	0.626414477	0.694589061	5.872137807	4.786788781	5.441887867	${ }^{\text {A1+ }}$	gypsy-ike retrotransposon family (Athila)
AT2611050	10.500677	-0.723394676	0.153795419	-4.703616553	2.566-06	2.44E-04	0.954186367	0.940325156	1.024858076	4.204956009	4.743184533	4.16096601	${ }^{\text {A2 }+}$	gypsy-like retrotransposon family (Athila)
AT2611100	5.9499167	-2.727349778	0.514528812	5.300674448	1.15E-07	1.84-06		0		3.549829232	3.546623725	3.935732613	${ }^{\text {A1- }}$	gypsy-like retrotransposon family (Athila)
AT2611120	40.929438	-5.178993758	0.444634678	-11.6468508	2.38E-31	2.086-29	0	0.588988589	0	6.833696108	6.244071671	5.863234177	${ }^{\text {A1- }}$	gypsy-like retrotransposon family (Athila)
AT2611120	10.562197	-0.696697334	0.147475084	4.724169775	2.31E-06	2.21E-04	0	0.940325156		3.841804147	5.054298527	4.16096601	${ }^{\text {A2 }}$	gypsy-like retrotransposon family (Athila)
AT2611340	17.531194	-4.24493886	0.480279175	-8.7959131	1.42E-18	$6.07 \mathrm{E}-17$	0	0	0	4.94268382	5.45092181	5.074348265	A1-	gypsy-like retrotransposon family (Athila)
AT2611340	22.453254	-4.341641597	0.558794235	76966086	. 87 E-15	2.99E-13	0	0	0	6.476563218	4.654502272	4.553354369	${ }^{\text {A1+ }}$	gypsy-like retrotransposon family (Athila)
AT2611770	5.7917399	-2.555997881	0.581668516	-4.394251728	1.11E-05	1.09E-04	0.640148721		0.694589061	3.480233365	3.416037926	3.881635851	${ }^{\text {Al+ }}$	gypsy-ike retrotransposon family (Athila)
AT2612040	20.536997	-4.236382266	0.457898453	-9.251676292	2.21e-20	1.07E-18	0.602380384	0	0.653468127	5.454346907	5.26298884	5.422470072	${ }^{\text {A1- }}$	gypsy-ike retrotransposon family (Athila)
AT2612040	6.1011607	-2.580023831	0.582021804	-4.432864568	9.30E-06	9.28E-05	0.640148721	0	0.694589061	4.16453883	3.04536424	3.6137176	${ }^{\text {Al+ }}$	gypsy-like retrotransposon family (Athila)
AT2612500	59.24828	-4.087216549	0.511742272	7.986865212	1.38E-15	4.88E-14	1.419792043	2.091646247	1.513627237	7.955479558	6.102625836	5.1178917	${ }^{\text {Al+ }}$	gypsy-like retrotransposon family (Athila)
AT2612500	13.161104	-0.623529354	0.161373958	3.863878427	${ }^{1.125-04}$	0.007751155	1.930722178	2.703491477	2.03712832	4.357162671	5.006883535	4.150966601	${ }^{\text {A2 }}$	Sypsy-like retrotransposon famil (Athila)
AT2613390	47.27832	-5.195799139	0.417560323	-12.44323	1.52--35	1.61--33	1.026048597	0.588988589		6.201610457	6.889210391	6.538339128	A1-	gypsy-like retrotransposon family (Athila)
AT2614180	402.5403	-7.698953101	0.373063883	20.63709044	1.28E-94	1.09E-91	1.353130444	0	0.653468127	9.308695792	10.19357601	9.254830847	${ }^{\text {A1- }}$	gypsy-like retrotransposon family (Athila)
AT2614180	275.71964	-7.39698779	0.425291309	-17.3927556	9.36E-68	5.47e-65	1.419792043		0.694589061	9.755854184	8.678527207	8.572569548	${ }^{\text {A1+ }}$	gypsy-like retrotransposon family (Athila)
AT2614180	30.350841	-1.48248841	0.176544819	-8.397236764	4.57\%-17	1.40 --14	1.930722178	0	1.024858076	6.03649352	6.167922458	5.450160215	A^{2+}	Sypsy-like retrotransposon family (Athila)
AT3G30400	6.1131859	-2.977972562	0.588290865	5.062075139	4.15E-07	5.28E-06	0	0	0	4.16453883	3.04536424	3.753887089	${ }^{\text {A1+ }}$	gypsy-like retrotransposon family (Athila)
AT3G30418	5.2599472	-2.338871715	0.515139758	-4.530560256	5.888-06	7.10e-05	0.602380384		0	3.222033331	2.665086523	4.199106927	${ }^{\text {A1- }}$	gypsy-like retrotransposon family (Athila)
AT3630418	8.1678386	-3.103249691	0.578344675	-5.365744381	8.06E-08	1.15E-06	0.640148721	0	0	4.626795005	3.04536424	4.208431314	${ }^{\text {Al+ }}$	gypsy-like retrotransposon family (Athila)
AT3G30620	1296.2994	-9.199479926	0.325159289	28.29222552	4.311-176	$3.69 \mathrm{E}-172$	1.353130444	1.006034927	1.101575979	11.32918077	11.63959581	10.97557682	A1-	gypsy-like retrotransposon family (Athila)
AT3G30620	1192.1343	-9.287246728	0.354997741	-26.16142485	7.31-151	2.68E-147	1.419792043	1.061739724	1.161466416	11.60969793	10.88590978	11.05961596	A1+	gypsy-like retrotransposon family (Athila)
AT3G30620	80.40007	-2.4688843	0.17929944	-13.76849872	3.94E-43	4.37--40	1.930722178	1.504834619	1.618012324	7.552565265	7.41557795	6.909454177	${ }^{\text {A2 }+}$	gypsy-like retrotransposon family (Athila)
AT3G30668	40.421565	-5.452404226	0.441380601	12.3530672	4.69e-35	4.84E-33	0	0	0	6.292034142	6.434335581	6.334274225	A1-	gypsy-ike retrotransposon family (Athila)
AT3630695	51.94927	-7.3881502	0.37105621	-19.91113477	3.266-88	2.33E-85	0	1.006034927	0.653468127	8.685098487	9.362264676	8.792361099	${ }^{\text {A1- }}$	gypsy-like retrotransposon family (Athila)
AT3G30695	231.50524	-7.32886409	0.425584692	-17.37112859	${ }^{1.37 E-67}$	7.63E-65	0	${ }^{1.061739724}$	0.694589061	9.40941268	8.407659973	8.534197813	${ }^{\text {A1+ }}$	Sypsy-like retrotransposon famil (Athila)
AT3630695	21.154585	-1.261553054	0.172752257	-7.302671912	2.82 E-13	5.86E-11	0	1.504834619	1.024888076	5.284029613	5.6247149688	5.276155547	${ }^{\text {A2 }}$	gypsy-like retrotransposon family (Athila)
AT3G30713	3.3695071	-1.772158264	0.500150806	${ }^{-3.543247843}$	0.000395231	0.003177806	0	0	0	1.757146478	3.546623725	3.027056186	${ }^{\text {A1- }}$	gypsy-iike retrotransposon family (Athila)
AT3G30713	45.05528	-5.913694274	0.49024575	-12.062714	1.66E-33	1.92--31	0	0	0	6.503738247	6.53766301	6.4867716	${ }^{\text {A1+ }}$	gypsy-like retrotransposon family (Athila)
AT3G30713	12.852467	-0.909194155	0.157680748	-5.766044164	8.12e-09	$1.05 \mathrm{E}-06$	0	0	0	4.283065666	4.799921877	5.035194817	$\mathrm{A}^{\text {2 }+}$	sypsy-like retrotransposon family (Athila)
AT3630749	382.13559	-8.345828185	0.375108118	-22.2491271	1.15E-109	${ }^{1.411-106}$	0	0	0	9.554552577	9.759072359	9.403699242	${ }^{\text {A1- }}$	gypsy-like retrotransposon family (Athila)
AT3G30749	22.119423	-1.294500556	0.170692067	-7.588335483	3.35E-14	7.90E-12	0	0	0	5.680189541	5.745182859	4.945015614	${ }^{\text {A2 }+}$	gypsy-like retrotransposon family (Athila)
AT3631356	15.963994	-4.138333193	0.484105039	-8.548419984	1.25E-17	5.09E-16	0	0	0	5.373818996	4.792504907	4.887807353	${ }^{\text {A1- }}$	gypsy-like retrotransposon family (Athila)
AT3631356	12.248899	-0.870709919	0.155810631	5.588257456	2.29E-08	2.79E-06	0	0	0	4.942735706	4.799921877	4.16096601	${ }^{\text {A2 }+}$	gypsy-like retrotransposon family (Athila)
AT3632010	190.0416	-7.34890481	0.397952244	-18.46680079	3.82E-76	1.85E-73	0	0	0	8.469531425	8.944050566	8.210683999	${ }^{\text {A1- }}$	gypsy-ike retrotransposon family (Athila)
AT3632010	10.027062	-0.749073456	0.149150828	-5.02225475	5.11--07	5.52E-05	0	0	0	4.49483273	4.684124191	3.898037328	${ }^{\text {A2 }+}$	Esysp-like retrotransposon family (Athila)
AT3G32880	677.25194	-8.750646586	0.382377928	-22.88481094	6.58E-116	9.39E-113	0	0	0	10.13353544	10.94966754	9.915018453	A1-	ggysy-like retrotransposon family (Athila)
AT3632880	52.519443	-2.276143509	0.180259268	12.627054	1.50¢-36	1.17¢-33	0	0	0	6.818092412	6.843857056	6.498411513	A^{2+}	gypsy-like retrotransposon family (Athila)
AT3G33124	5.4956805	-2.502161074	0.59233959	-4.2242002988	${ }^{2.408-05}$	0.000219589	0	0	0	3.862584211	4.164272639	1.806583236	${ }^{\text {A1+ }}$	Sypsy-like retrotransposon family (Athila)
AT3633136	14.016095	-2.703703725	0.512760102	-5.272843412	$1.348-07$	2.12E-06	0	1.006034927	0	4.408199229	5.901330042	2.346684959	A1-	gypsy-like retrotransposon family (Athila)
AT3G33136 AT3633136	15.67478	-2.935481478	0.586715475	-5.003242364	${ }_{\text {S }}^{\text {5.64E-07 }}$	7.03E-06	0	${ }^{1.061739724}$	0	5.786213592	5.220242777	1.806583236	${ }^{\text {A1+ }}$	Sypsy-like retrotransposon famil (Athila)
					1.95E-06	3.67E-05		0.959285168		5.887451322	4.132225326	2.148557953		Eypsy-like retrotransposon family (Athila)

AT3G33142	5.0062179	-1.705847334	0.50561736	${ }^{-3.373791071}$	0.000741406	0.005536623		0.588988589		3.025182302	4.483532941	1.015522753	A1-	gypsy-like retrotransposon family (Athila)
AT3633142	6.1235265	-2.595942215	0.589308605	-4.40506416	1.06E-05	0.000104556	0	0.626414477	0	3.684038477	4.346824447	2.58406216	A1+	gyssy-ike retrotransposon family (Athila)
AT3633142	5.2174897	-1.767102197	0.44660771	--3.956721203	7.60E-05	0.00094358		0.557947347		4.445238744	2.928709658	2.148557953	A2-	gypsy-ike retrotransposon family (Athila)
AT3633172	7.459969	-3.139435637	0.568836138	5.519050962	3.41-08	5.12E-07	0	1.395704924	0.694589061	5.379864119	5.823389642	2.857049598	A1+	gypsy-ike retrotransposon family (Athila)
AT3637820	31.491177	-1.59059239	0.49377339	-3.22130034	0.001276103	0.008850815	0	0	0.653468127	4.88574345	7.234523327	3.487531741	${ }^{\text {A1- }}$	gypsy-ike retrotransposon family (Athila)
AT3637820	24.987675	-4.388329417	0.543274393	-8.077556159	6.611-16	2.39E-14	0	0	0.694589061	5.913254063	6.200761211	4.208431314	${ }^{\text {Al+ }}$	gypsy-like retrotransposon family (Athila)
AT3642083	23.064955	-3.930211842	0.472142779	-8.324201943	8.49E-17	${ }^{3.27 \mathrm{E}-15}$	0.602380384	0.588988589	0.653468127	6.201610457	5.45092181	4.488922482	${ }^{\text {A1- }}$	gypsy-like retrotransposon family (Athila)
AT364283	14.389297	-2.966820663	0.579257551	-5.121764331	3.038-07	3.94E-06	0.640148721	0.626414477	0.694589061	6.066915882	2.545235219	3.881635851	A1+	gypsy-ike retrotransposon family (Athila)
AT3642252	. 1140937	-2.511544686	0.51513038	-4.87551475	1.09E-06	$1.49 \mathrm{E}-05$	0	0		3.025182302	4.483532941	3.197406586	${ }^{\text {A1- }}$	gypsy-ike retrotransposon family (Athila)
AT3642256	36.488716	-4.069563102	0.392049944	-10.38021601	3.05E-25	1.94E-23	1.619590486	1.32916988	1.718867729	5.94713691	6.602405842	5.83768951	${ }^{\text {A1- }}$	gyps-like retrotransposon family (Athila)
AT3642256	23.478829	-3.039294639	0.535531923	-5.675281917	1.38E-08	$2.19 \mathrm{E}-07$	1.693301494	1.395704924	1.796470461	6.607591696	4.508850015	4.107506639	${ }^{\text {A1+ }}$	sypsy-like retrotransposon family (Athila)
${ }^{\text {AT3642258 }}$	21.032632	-3.702353154	0.0523994453	-7.065634249	${ }^{1.608-12}$	4.23E-11	0.640148721	1.395704924	0.694589061	5.646896475	5.883728226	$\mid 4.107506639$	${ }^{\text {Al+ }}$	gypss-like retrotransposon family (Athila)
AT3642258	23.689489	-3.15399763	0.440359692	-7.162321357	7.93E-13	4.53E-11	0.569648577	1.272930575	0.620679049	6.464267165	5.224140594	4.089549378	A2-	gypsy-ike retrotransposon family (Athila)
AT3642356	8.1697584	-3.067036865	0.588033168	-5.215754877	1.83E-07	2.48E-06	0	0		4.812122267	4.164272639	2.58406216	${ }^{\text {Al+ }}$	gypsy-like retrotransposon family (Athila)
AT3642431	91.37902	-6.545437067	0.411138546	-15.92027099	4.588-57	1.06E-54	0	0	0	7.525773164	7.594962943	7.440091471	${ }^{\text {A1- }}$	gypsy-like retrotransposon family (Athila)
AT3642431	104.95289	-6.609103929	0.487635865	-13.55335898	7.57E-42	1.34--39	0	0	0	8.415115425	7.370331015	6.976208025	A1+	gypsy-like retrotransposon family (Athila)
AT3642445	9.852308	-3.193730502	0.508391923	-6.882024472	3.34E-10	7.20E-09	0	0	0	3.549829232	5.046836798	4.116544802	$\mathrm{Al}^{\text {A- }}$	gypsy-ike retrotransposon family (Athila)
AT3642445	9.1302486	-3.308681192	0.583256991	-5.672767305	1.41E-08	2.22E-07	0	0	0	5.123742659	3.416037926	3.6137176	${ }^{\text {Al+ }}$	gypsy-ike retrotransposon family (Athila)
AT3642716	1225.9224	-9.397782334	0.356391773	-26.36924599	3.09E-153	9.92E-150	0.602380384	0.588988589		11.23828704	11.62990004	10.7915826	${ }^{\text {A1- }}$	gypsy-like retrotransposon family (Athila)
AT3642716	104.68378	-2.39589805	0.180266816	-13.29084357	2.62e-40	2.40E-37	0.954186367	0.940325156	0	7.844256953	8.125306497	6.999454177	${ }^{\text {A2 }}+$	gypsy-like retrotransposon family (Athila)
AT3643304	106.68289	-6.602377878	0.398551139	-16.56594911	1.23E-61	3.19E-59	0	0.588988589		7.598449971	7.915397839	7.996065671	A1-	gypsy-ike retrotransposon family (Athila)
AT3643862	532.77576	-8.445709764	0.36247941	-23.29992758	4.44E-120	6.711-117	0.602380384	0	0.653468127	9.811164092	10.41296845	9.87162487	${ }^{\text {A1- }}$	gypsy-ike retrotransposon family (Athila)
AT3643862	489.49286	-8.421276414	0.420797605	-20.01265292	4.27E-89	5.49E-86	0.640148721		0.694589061	10.52402359	9.4709137	9.563546814	A1+	gypsy-like retrotransposon family (Athila)
AT3643862	49.494249	1.942655568	0.179615297	-10.81564658	$2.906-27$	1.46E-24	0.954186367		1.024858076	6.575830684	7.045025866	6.140393456	${ }^{\text {A2 }}$ +	gypsy-like retrotransposon family (Athila)
AT4603790	465.25032	-8.010041283	0.372504619	-21.50319989	1.45E-102	1.56-99	0	1.329166983		9.643110965	10.35529614	9.416966996	${ }^{\text {A1- }}$	gypsy-like retrotransposon family (Athila)
AT4603790	22.696041	-1.259049684	0.17231639	-7.310211341	$2.67 \mathrm{E}-13$	5.59E-11	0	1.909535826		5.708773051	5.62474968	5.120067235	${ }^{\text {A2 }+}$	gypsy-ike retrotransposon family (Athila)
AT4603795	9.9364853	-3.234785794	0.507355436	-6.35778333	1.82E-10	3.99E-09	0	0	0	3.933736191	5.046836798	3.83605124	$\mathrm{Al}^{\text {- }}$	gypsy-ike retrotransposon family (Athila)
AT4603860	357.689	-7.734930183	0.384255602	-20.12964843	4.06E-90	3.07E-87	0.602380384		0.653468127	9.117921673	10.02627088	9.102285838	$\mathrm{Al}^{\text {1- }}$	gypsy-like retrotransposon family (Athila)
AT4603860	310.65038	-7.591195362	0.450615014	-16.84629922	${ }^{1.12 E-63}$	5.12E-61	0.640148721	0	0.694589061	10.05588792	8.428064239	8.835761247	${ }^{\text {Al+ }}$	gypsy-like retrotransposon family (Athila)
AT4603860	25.595495	-1.359146942	0.173502757	-7.83357549	4.74E-15	1.24E-12	0.954186367		1.024858076	5.708773051	6.055909433	5.160701666	${ }^{\text {A2 }}$	gyps-like retrotransposon family (Athila)
AT4605556	14.105518	-3.937786871	0.489017408	-8.052447223	8.12E-16	2.90E-14	0	0		4.700053001	5.048836798	4.837143627	A1-	gypsy-like retrotransposon family (Athila)
AT4605638	6.1030991	2.667863113	0.514810383	-5.182224762	2.19E-07	3.34E-06	0	0	0	3.222033331	4.089833736	3.728967903	${ }^{\text {A1- }}$	gypsy-like retrotransposon family (Athila)
AT4606485	775.451	-8.652581261	0.342374053	-25.27230435		${ }^{1.27 \mathrm{E}-137}$	0.602388388	${ }^{1.006034927}$	1.101575979	10.38535782	10.97288329	10.35055848	${ }^{\text {A1- }}$	gypsy-iik retrotransposon famil (Aathil)
AT4606485	674.22711	-8.171029262	0.427674129	-19.1057366	2.26-81	2.15E-78	0.640148721	1.061739724	1.161466416	11.22905631	9.461046161	9.876971585	${ }^{\text {Al+ }}$	gsysy-like retrotransposon family (Athila)
AT4606485	79.860902	-2.486526317	0.179532601	-13.84999883	1.27E-43	1.47E-40	0.954186367	1.504834619	1.618012324	7.446241069	7.529007166	\|6.885410025	${ }^{\text {A2 }+}$	Esyss-like retrotransposon family (Athila)
AT4606506	2193.0934	-9.691097062	0.366073802	-26.47306914	1.98E-154	7.27E-151	1.026048597		0.653468127	11.69192283	12.71583348	11.60924296	${ }^{\text {A1- }}$	sypsy-like retrotransposon family (Athila)
AT4606506	167.8216	-3.128119692	0.177483117	-17.62488593	1.59E-69	4.22E-66	1.523548554		1.024858076	8.618170438	8.590884498	7.836043709	${ }^{\text {A2 }}$	sypsy-like retrotransposon family (Athila)
AT4606540	20.360277	-4.29246128	0.466512307	-9.201174791	3.54E-20	1.68E-18	0	0	0.653468127	5.197878395	5.617177427	5.278003551	$\mathrm{Al}^{\text {1- }}$	gypsy-like retrotransposon family (Athila)
AT4606573	198.17658	-7.370265703	0.398963911	-18.47351477	${ }^{3.37 \mathrm{E}-76}$	1.67E-73	0	0	0	8.572344203	9.020250455	8.190644772	${ }^{\text {A1- }}$	gypsy-like retrotransposon family (Athila)
AT4606573	15.885949	-1.078577911	0.164618073	-6.552001783	5.688-11	$9.266-09$	0	0	0	5.035921409	5.310078236	4.691318059	${ }^{\text {A2 }}$	gypsy-like retrotransposon family (Athila)
AT4606578	7.5776188	-3.049869156	0.51067428	-5.972239596	2.34-09	4.66E-08	0	O	0	3.816762292	4.089833736	4.116544802	$\mathrm{Al}^{\text {- }}$	gyssy-ike retrotransposon family (Athila)
AT4606578	7.026292	-3.209033103	0.583432193	-5.502267456	3.79E-08	5.65E-07	0	0	0	3.480233365	3.955288997	4.208431314	${ }^{\text {Al+ }}$	gypsy-ike retrotransposon family (Athila)
AT4606585	6.8758393	-2.936641551	0.581078747	-5.053775527	4.33E-07	5.50E-06	0	0.626414477	0	4.29471016	3.710677785	3.458449401	${ }^{\text {Al+ }}$	gypsy-ike retrotransposon family (Athila)
AT4606624	37.166728	-5.201751216	0.450908949	-11.53614543	8.67E-31	7.38E-29	0	0	0	5.861134793	6.679626697	6.030402809	A1-	gypsy-ike retrotransposon family (Athila)
AT4606656	6.5991725	2.598359229	0.513655287	-5.05856611	4.22E-07	6.16E-06	0	0.588988589	0	4.408199229	3.546623725	3.197406586	${ }^{\text {A1- }}$	gypsy-like retrotransposon family (Athila)
AT4607600	12.006077	-3.621102284	0.498133553	-7.269340243	3.61E-13	1.03E-11	0		0	4.51499373	5.046836798	4.199106927	${ }^{\text {A1- }}$	gypsy-like retrotransposon family (Athila)
AT4607600	11.441163	-3.769067357	0.569711178	-6.615751111	3.70E-11	8.36E-10	0	0	0	5.192160237	4.346824447	3.881635851	Al+	Eypsy-ike retrotransposon family (Athila)
AT4607937	12.43264	-3.698169172	0.495991165	-7.456119044	8.91E-14	2.67-12	0	0	0	4.324976877	5.046836798	4.614569198	${ }^{\text {A1- }}$	gypsy-ike retrotransposon family (Athila)
AT4607937	6.556746	-2.920396715	0.589771976	-4.951738691	$7.366-07$	9.00E-06	0	0	0	4.524364692	2.545235219	3.753887089	A1+	gypsy-ike retrotransposon family (Athila)
AT4608050	641.25511	-6.87255802	0.266160586	-25.82109593	5.14E-147	1.32-143	2.50181502	3.766043455	2.324987472	10.28983645	10.58340395	10.02661749	${ }^{\text {A1- }}$	sypsy-like retrotransposon family (Athila)
AT4608050	43.065087	-1.08427914	0.179763479	-6.031698674	1.62E-09	2.21E-07	3.238386367	4.583399767	3.043224528	6.303376628	6.251664313	6.078115092	${ }^{\text {A2 }+}$	gypsy-like retrotransposon family (Athila)
AT4608078	34.82885	-5.106055806	0.453864527	-11.25017599	2.318-29	1.86E-27	0	0	0	5.769679089	6.602405842	5.913005388	A1-	gypsy-ike retrotransposon family (Athila)
AT4608080	139.22274	-6.7929736	0.400920518	-16.94344214	2.15E-64	6.35E-62	0.602380384		0	7.804498881	8.571101848	7.869950631	${ }^{\text {A1- }}$	gypsy-like retrotransposon family (Athila)
AT4608080	106.33661	-6.320723921	0.489427054	-12.91453726	3.73E-38	5.47e-36	0.640148721		0	8.570984628	6.985988276	7.059623552	${ }^{\text {Al+ }}$	gypsy-like retrotransposon family (Athila)
AT4608080	10.503815	-0.756742094	0.151613967	-4.991242616	6.00E-07	6.38E-05	0.954186367	0	0	4.679457118	4.558214482	3.991107087	${ }^{\text {A2 }}+$	gypsy-ike retrotransposon family (Athila)
AT5604965	22.856191	-4.620970091	0.46761643	-9.881962419	4.986-23	2.82E-21	0	0	0	5.454346907	5.766238278	5.387686903	${ }^{\text {A1- }}$	sypsy-like retrotransposon family (Athila)
AT5604965	11.253832	-3.263720476	0.586088875	-5.568644308	2.57E-08	3.92E-07	0	0	0	5.646896475	3.416037926	3.284432598	${ }^{\text {Al+ }}$	ggysy-like retrotransposon family (Athila)
AT5629032	5.5751912	-2.303786413	0.51397056	-4.482331462	7.38E-06	8.74E-05	0	0	0	2.797162804	4.483532941	2.833863982	A1-	gypsy-ike retrotransposon family (Athila)
AT5629032	6.9332948	-3.046648906	0.587460235	-5.186136394	$2.15 \mathrm{E}-07$	2.87-06	0		0	4.524364692	3.710677785	3.085509522	${ }^{\text {Al+ }}$	Evpsy-like retrotransposon family (Athila)
AT5629975	169.60438	-7.006149265	0.383942573	-18.24790932	2.15E-74	9.69E-72	0	0.588988589	0.653468127	8.120515948	8.760736348	8.264398436	${ }^{\text {A1- }}$	gypsy-like retrotransposon family (Athila)
AT5629975	75.320126	-5.555317167	0.506839422	-10.96670456	${ }_{\text {c }}^{5.90 \mathrm{E}-28}$	4.99E-26	0	${ }^{0.626414477}$	0.694589061	8.191040906	6.460522959	${ }^{6.198860577}$	${ }^{\text {A1+ }}$	gypss-like retrotransposon famil (Aathil)
	29.544608		0.175653931	8.474840	2.35E-17	7.45E-15	0	0.940325156	1.024858076	5.990671378	6.210400905	5.348296429	${ }^{\text {A2 } 2+}$	gypsy-like retrotransposon family (Athila)

AT3G33178	17.703777	-2.713456683	0.511882422	-5.300937417	1.15E-07	1.84-06	0.602380384	0.58898859	0.653468127	4.886881573	6.342337877	. 023221944	A1-	Sypsy-like retrotransposon family (Ty3-element)
AT3G33178	10.962354	-3.000845182	0.566829758	-5.294085465	$1.20 \mathrm{E}-07$	1.66E-06	0.640148721	0.626414477	0.694589061	4.896561069	4.907957693	2.857049598	${ }^{\text {Al+ }}$	gyss-like retrotransposon family (Ty3-element)
AT3633178	19.738591	-2.119574832	0.45322412	-4.676677001	2.92E-06	5.24E-05	0.569648577	0.557947347	0.620679049	6.6548	3.9893347	1.717749548	A2-	gypsy-like retrotransposon family (Ty 3 -element)
AT3G33193	25.347661	-2.473771528	0.491265131	-5.035512137	4.77E-07	6.90E-06	1.026048597	2.009042949	2.324987472	4.041933031	6.822675636	4.116544802	A1-	Sypsy-like retrotransposon family (Ty3-element)
AT3633193	18.570416	-2.50497163	0.53349385	-4.695408631	2.66E-06	2.97E-05	1.082007379	2.091646247	2.413854982	6.066915882	4.654502272	3.753887089	A1+	gypsy-like retrotransposon family (Ty3-lement)
AT3633193	15.015904	-1.957735031	0.443243938	-4.416834303	1.00E-05	1.58E-04	0.97696723	1.938488599	2.251928433	5.782409601	4.262230145	3.498446379	A2-	gypsy-ilike retrotransposon family (Ty3-lement)
AT3642057	12.152635	-2.722953697	0.544301021	-5.002661383	5.65E-07	7.04E-06	1.923129797	0	1.161466416	4.626795005	5.019733684	3.881635851	A1+	gypsy-like retrotransposon famil ((TY--lement)
AT3642622	30.12547	-4.68846012	0.445282659	-10.52917741	6.344-26	4.24E-24	0.602380384	0	0.653468127	5.492985692	6.024848039	6.180197008	$\mathrm{Al}^{\text {- }}$	Eypss-like retrotransposon famil ((Y3-element)
AT3642622	27.022172	-4.297194476	0.538731133	-7.976510387	1.51 -15	5.30E-14	0.640148721	0	0.694589061	6.680852378	4.508850015	5.265734139	A1+	gypsy-like retrotransposon family (Ty3-element)
AT3642993	6.8883003	-2.933888584	0.581064657	-5.04912586	4.44E-07	5.62E-06	0.640148721	0	0	4.29471016	3.710677785	3.458449401	${ }^{\text {Al+ }}$	gypsy-like retrotransposon family (Ty3-element)
AT3642996	9.8584557	-3.085902911	0.497256851	-6.205852986	5.44E-10	1.14E-08	0.602380384	0.5889885		3.933736191	4.483532941	4.553113256	A1-	gypss-like retrotransposon family (Ty-element)
AT3643307	40.429147	-5.005704419	0.450228491	-11.11814227	1.02E-28	7.99E-27	0.602380384	0	0	5.769679089	7.013726692	5.937261568	A1-	gypss-like retrotransposon family (Ty3-lement)
AT3645446	4.9514284	-2.511204797	0.592374735	-4.239216579	2.24E-05	0.00020673	0	0	0	4.29471016	2.545235219	2.857049598	A1+	Sypsy-like retrotransposon family (Ty3-element)
AT3662475	24.12273	-4.422548426	0.479042413	-9.232060271	2.65E-20	1.27E-18	0	0	0	5.861134793	6.024848039	4.614569198	A1-	gypss-like retrotransposon family (Ty3-element)
AT3662475	21.690691	-4.819757492	0.532023861	-9.05928822	1.312-19	6.51--18	0	0	0	5.597298362	4.907957693	5.773726325	${ }^{\text {Al+ }}$	gypsy-like retrotransposon family (Ty3-element)
AT3662475	6.2037182	-0.511684779	0.131247209	-3.898633605	9.67--05	6.81--03		0	0	4.034776506	3.796071554	3.313391952	${ }^{\text {A2 }}$	gypss-like retrotransposon family (Ty--lement)
AT4603770	22.735526	-4.672097577	0.518818017	-9.005272408	2.15E-19	1.05E-17	0	0	0.694589061	5.492673666	5.883728226	5.1178917	${ }^{\text {Al+ }}$	gypss-like retrotransposon family (Ty3-element)
AT4603770	13.707141	-0.718202071	0.148007391	-4.852474374	1.22E-06	0.000124749	0	0	1.024858076	3.493166516	5.527266304	4.745752287	${ }^{\text {A2 }}$	gypss-like retrotransposon family (Ty-element)
AT4603840	11.968761	-3.622892509	0.499047349	-7.259616782	3.88E-13	1.10e-11	0	0	0	4.041933031	4.792504907	4.936752096	${ }^{\text {A1- }}$	gypss-like retrotransposon family (Ty--lement)
AT4605593	27.645811	-4.841968033	0.462140569	-10.47726245	1.10E-25	7.24--24	0	0	0	5.373818996	6.024848039	5.961116661	${ }^{\text {A1- }}$	Bypsy-like retrotransposon family (Ty3-element)
AT4605593	8.9157126	-2.719121788	0.59278664	-4.59095009	4.41E-06	4.99E-05		0	0	5.437371235	1.773370384	3.284432598	Al+	gypsy-like retrotransposon family (Ty--lement)
AT4606566	35.979329	-3.942054955	0.433315243	-9.097429676	9.25E-20	4.25E-18	1.026048597	2.009042949	0.653468127	5.197878395	6.822675636	6.007675152	${ }^{\text {A1- }}$	gypsy-ilike retrotransposon family (Ty3-element)
AT4606566	984.5216	-8.673823152	0.373822373	-23.20306055	4.24E-119	1.09E-115	1.082007379	2.091646247	0.694589061	11.48910394	10.81020146	10.27038343	A1+	gypsy-like retrotransposon family (Ty3-lement)
AT4606566	356.22032	-4.057801369	0.168732421	-24.04873555	8.611-128	$1.14 \mathrm{E}-123$	1.523588854	20349147	1.024858076	9.327025794	9.779157366	9.25497035	${ }^{\text {A2 }}$	gypsy-like retrotransposon family (Ty3-element)
AT4606604	5.4886538	-2.795146891	0.59083941	-4.730806451	2.24E-06	2.52E-05	0	0	0	${ }^{4.16453883}$	3.04536424	3.284432598	${ }^{\text {A1+ }}$	gypsy-like retrotransposon family (Ty3-element)
AT4606628	72.223021	.78275919		-14.2319051	5.81E-46	9.15E-44	0	0	0	6.833696108	7.634289614	6.949490983	A1-	gypsy-like retrotransposon famil ((T3--lement)
AT4606628	99.959791	-6.952400128	0.460127058	-15.10973981	1.40E-51	3.82--49	0	0	0	7.649676544	7.788457339	7.498771382	A1+	gypsy-like retrotransposon family (Ty3-lement)
AT4606686	123.18896	-6.949628345	0.401537969	-17.30752479	4.13E-67	1.34E-64	0	0	0	7.908206555	7.915397839	8.025113884	${ }^{\text {A1- }}$	gypsy-like retrotransposon family (Ty3-element)
AT4606686	18.608115	-1.235294392	0.169561386	7.285234083	3.21E-13	6.57--11	0	0	0	5.284029613	5.422755442	5.035194817	${ }^{\text {A2 }}$	gypss--ike retrotransposon family (Ty3-element)
AT4607850	48.617746	-3.213657532	0.401967092	-7.994827431	$1.30 \mathrm{E}-15$	4.55E-14	2.210244364	3.5	1.718867729	5.70532018	6.952811471	6.674430901	${ }^{\text {A1- }}$	gypsy-like retrotransposon family (Ty3-element)
AT4622415	10.208696	-3.158621134	0.49419985	-6.391394136	1.64E-10	3.63E-09	0.623880384	0	0.653468127	4.486881573	4.483532941	4.199106927	${ }^{\text {Al- }}$	gypsy-like retrotransposon family (Ty3-lement)
AT4G22415	24.499717	-4.571054369	0.5097929	-8.966492796	3.06E-19	$1.48 \mathrm{E}-17$	0.640148721		0.694589061	4.976329861	5.997324674	5.740406713	${ }^{\text {A1+ }}$	gypsy-like retrotransposon family (Ty3-element)
AT5628865	18.06364	-3.70174597	0.569610256	-6.498734757	8.10E-11	1.76E-09		0	0.694589061	2.958502988	5.478812514	5.86930272	${ }^{\text {Al+ }}$	Bypsy-like retrotransposon family (Ty3-element)
AT5629075	15.518143	-3.590112883	0.471894935	-7.607864843	2.79E-14	8.79E-13	0.602380384	0.588988589	0.653468127	4.486881573	5.26298084	5.074348265	A1-	gypsy-like retrotransposon family (Ty--lement)
AT5629562	21.741421	-4.407186228	0.463200767	-9.514634992	1.82E-21	9.37--20	0.602380384		0	5.243915622	5.617177427	5.522054265	$\mathrm{Al}^{\text {- }}$	Sypsy-like retrotransposon family (Ty3-lement)
AT5629562	117.7994	-3.783534474	0.58463008	-6.471672603	9.69E-11	2.08E-09	0.640148721	0	0	5.786213592	8.244670949	8.454249823	${ }^{\text {Al+ }}$	gypsy-like retrotransposon family (Ty3-lement)
AT5629562	17.231189	-1.101052347	0.166451362	-6.614859357	3.72E-11	6.26E-09	0.954186367		0	5.358078375	5.270474873	4.691318059	${ }^{\text {A2 }}$	gypsy-like retrotransposon family (Ty3-element)
AT5631981	9.6037992	-3.260091104	0.507676584	-6.421590445	1.35E-10	3.00E-09	0	0	0 -	3.5498292322	4.483532941	4.730144422	${ }^{\text {A1- }}$	gypsy-like retrotransposon family (Ty3-element)
AT5631981	10.399608	8874769	0.570557749	-6.499390072	8.06E-11	1.75E-09	0	0	0	4.976329861	4.164272639	3.998987077	A1+	Sypsy-like retrotransposon family (Ty--lement)
AT5G32436	7.5996082	-2.779519832	0.514104318	-5.406528861	6.43E-08	1.06E-06	0	0	0	3.549829232	4.792504907	3.197406586	${ }^{\text {A1- }}$	gypsy-like retrotransposon family (T Y 3 -lement)
AT5632436	15.227059	-3.23772449	0.5888150227	-5.50492772	3.69E-08	5.52E-07	0	0	0	1.429370861	5.553108971	5.482759454	${ }^{\text {A1+ }}$	gypsy-like retrotransposon family (Ty-element)
AT1637063	5.9929833	-2.660225746	0.592192099	-4.492166905	7.05E-06	7.22E-05		0	0	4.626795005	3.04536424	2.58406216	A1+	hAT-like transposase family (hobo/Ac/Tam3), put
AT1642110	7.0838914	-2.999108339	0.511678809	-5.861310426	4.59E-09	8.78E-08	-	0	0	4.041933031	3.546623725	4.116544802	${ }^{\text {A1- }}$	hAT-like transposase family (hobo/Ac/Tam3)
AT1642110	10.647708	-3.77365409	0.567581647	-6.648654184	2.96E-11	6.79E-10	0	0	0	4.29471016	4.907957693	4.107506639	${ }^{\text {Al+ }}$	hAT--ike transposase family (hobo/Ac/Tam3)
AT2605700	52.110133	-5.582499691	0.428162796	-13.03826428	7.41E-39	9.02E-37	0	0	0.653468127	6.921300411	6.822675636	6.334274225	${ }^{\text {A1- }}$	hAT-like transposase family (hobo/Ac/Tam3)
AT2605700	50.887595	-5.873841213	0.473502323	-12.40509482	$2.45 \mathrm{E}-35$	3.20--33	0	0	0.694589061	6.656843146	6.841347652	6.506726041	Al^{+}	hAT-like transposase family (hobo/Ac/Tam3)
AT2606760	159.25318	-7.271297631	0.394515918	-18.43093601	7.42E-76	3.53E-73	0	0	0	8.394980128	8.328940593	8.230448887	$\mathrm{Al}^{\text {- }}$	hat-like transposase family (hobo/AC/Tam3)
AT2606760	50.874201	-6.017562348	0.489691757	-12.28846975	1.044-34	1.28E-32	0	0	0	6.99996539	6.460522959	6.526408246	${ }^{\text {Al+ }}$	hAT--ike transposase family (hobo/AC/Tam3)
AT2606760	5.8482434	-0.497563091	0.12996332	-3.828400056	1.29E-04	8.64E-03	0	0	0	3.841804147	3.679951616	3.450808994	${ }^{\text {A2 }}$	hAT-like transposase family (hobo/Ac/Tam3)
AT2614950	32.433885	-5.179309379	0.501377426	-10.33016069	5.15-25	3.73E-23	0.640148721		0	6.36243543	6.050935773	5.598854652	${ }^{\text {A1+ }}$	ATT-like transposase family (hobo/Ac/Tam3)
AT2614950	13.578416	-0.962615312	0.161761865	-5.95081735	2.67--09	3.58E-07	0.954186367	0	0	4.679457118	4.957860877	4.745752287	${ }^{\text {A2 }+}$	hat-like transposase family (hobo/Ac/Tam3)
AT2615160	7.1512973	-2.82569515	0.509740879	-5.543395215	2.97E-08	5.09E-07	0	0	0.653468127	3.933736191	3.54623725	4.199106927	A1-	hAT-like transposase family (hobo/AC/Tam3)
AT2615160	4.1401733	-2.115184283	0.592315557	-3.57104293	3.56E-04	2.46E-03	0	0	0.694589061	2.133098153	3.710677785	3.284432598	${ }^{\text {Al+ }}$	hAT-like transposase family (hobo/Ac/Tam3)
AT2615940	45.142479	-5.097540392	0.407857551	-12.49833521	7.62E-36	8.16E-34	0.602380384	0.588988589	1.101575979	6.551996736	6.602405842	6.334274225	${ }^{\text {A1- }}$	hAT-like transposase family (hobo/Ac/Tam3)
AT2615940	25.512265	-4.006926993	0.527346246	7.598284847	3.00E-14	9.36E-13	0.640148721	0.626414477	1.161466416	16.556599266	5.123468832	4.628319815	A1+	hAT-like transposase family (hobo/AC/Tam3)
AT3623085	14.098186	-2.973476288	0.462600294	-6.427744055	$1.30 \mathrm{E}-10$	2.89E-09	0.602380384	1.815968538	1.101575979	5.150323533	4.483532941	4.673513852	${ }^{\text {A1- }}$	hAT-like transposase family (hobo/Ac/Tam3)
AT3623085	26.426377	-4.035543067	0.455379713	-8.861929846	7.86E-19	3.64E-17	0.640148721	1.894765578	1.161466416	5.545934233	5.625572377	5.92967458	${ }^{\text {Al+ }}$	hAT-like transposase family (hobo/Ac/Tam3)
AT3643523	29.462671	-4.920589921	0.492395871	9.99315838	1.63E-23	1.09E-21	1.082007379		0	6.102903647	5.941644221	5.598854652	${ }^{\text {Al+ }}$	hAT-like transposase family (hobo/Ac/Tam3)
AT3643523	13.598629	-0.896590737	0.160127077	-5.59924502	2.15-08	$2.63 \mathrm{E}-06$	1.523588554	0	0	4.559035468	5.100202951	4.634749171	${ }^{\text {A2 }+}$	hat-like transposase family (hobo/AC/Tam3)
AT3645270	23.041077	-4.209503329	. 466521689	-9.140727636	6.20E-20	2.88E-18		0	1.101575979	5.331804227	6.024848039	5.117442234	A1-	hAT-like transposase family (hobo/Ac/Tam3), putative
AT3645270	9.043695	-5.56344185	0.489637743	11.36236316	5.44E-30	6.08E-28	0	0	1.161466416	7.600175572	6.200761211	${ }^{6.466537287}$	${ }^{\text {Al+ }}$	hAT-like transposase family (hobo/Ac/Tam3), putative
AT4605510	9.312	-2.89922	0.502975	-5.76415	8.211	1.51	0	0	1.101575979	3.689460601	4.483532941	4.488922482	A1-	haT-ike transposase family (hobo/Ac/Tam3)

AT4605510	7.338996	2.961154516	. 58669667	5.04764351	48E-07	5.68E-06	0	0	1.161466416	. 391824885	2.545235219	3.998987077	A1+	hat-ike transposase family (hobo/Ac/Tam3)
AT5635608	14.992602	-3.709583606	0.491722639	-7.544056981	4.566-14	1.40E-12	0	0.588988589	0	4.324976877	4.483532941	5.644966461	A1-	hat-ike transposase family (hobo/AC/Tam3)
AT5635608	9.675927	-2.335743457	0.992049168	-3.945184935	7.97\%-05	6.50E-04	0	0.626414477	0	0	5.220242777	4.474701533	A1+	hat-ike transposase family (hobo/AC/Tam3)
AT5638853	153.53888	68867259	0.437787363	13.63416984	2.51--42	4.57e-40	8.264962839	8.322675221	. 197286765	29370861	0	1.169324837	${ }^{\text {A1+ }}$	MUG8 MUSTANG 8 Encodes a member of a domesticated transposable element gene family MUSTANG. Members of this family are derived from transposable elements genes but gained function in plant fitness and flower development.
AT5634853	42.97172	5.682772	0.39	14.3	7.81--47	1.31--44	8.1573	8.21	8.087478402	0	23	1.015522753	${ }^{\text {A1- }}$	MUG8 MUSTANG 8 Encodes a member of a domesticated transposable element gene family MUSTANG. Members of this family are derived from transposable elements genes but gained function in plant fitness and flower development.
AT163599	91.851902	-4.959512262	0.548113449	-9.048331642	1.45E-19	7.16E-18	0.640148721	477	0	4.021446993	7.804153723	8.291244604	A1+	Mutator-ike transposase family
AT1636885	49.625928	-5.646815497	0.439173117	-12.85783504	7.77E-38	8.95E-36	0		0	6.976880928	6.602405842	6.27840572	A1-	Mutator-ike transposase family
AT1636085	34.007737	-4.661094974	0.553914113	-8.414833395	3.93E-17	1.58E-15	0	0	0	3.862584211	6.574739482	6.602556983	A1+	Mutator-1ike transposase family
AT1636885	8.1353733	-0.629098155	0.141020618	-4.461036734	8.16E-06	7.09E-04	0		0	3.841804147	4.558214482	3.798546962	${ }^{\text {A2 }}$	Mutator-like transposase family
AT1667240	31.615309	4.602968984	0.451819474	-10.18762857	2.25E-24	1.38E-22	0	0.588888589	0.653468127	5.197878395	6.434335581	6.096513381	${ }^{\text {A1- }}$	Mutator-like transposase family
AT1667240	107.03716	-6.768719782	0.430596338	-15.7194086	1.111-55	3.72E-53	0	0.626414477	0.694589061	7.766472101	7.656330959	7.811101638	${ }^{\text {Al+ }}$	Mutator-like transposase family
AT1678350	12.29228	3.47916684	0.581207105	-5.986105141	2.15E-09	3.86E-08	0		0	2.604042178	5.310931324	4.953150701	A1+	Mutator-ilike transposase family
AT2604310	3.4131603	-1.739923964	0.506683336	-3.433947475	0.000594859	0.004577994	0	0	0.653468127	3.549829232		3.349749908	${ }^{\text {A1- }}$	Mutator-1ike transposase family
AT2604310	7.7077301	3.12666905	0.574639721	-5.441094546	5.30E-08	7.73E-07	0	0	0.694589061	4.29471016	3.955228997	3.753887089	${ }^{\text {Al+ }}$	Mutator-like transposase family
AT2610955	8.0244078	-2.849751817	0.513567718	-5.548930977	$2.87 \mathrm{E}-08$	4.95E-07	0	0	0	3.933736191	4.992504907	3.027056186	A1-	Mutator-1ike transposase family
AT2612066	5.6093716	-2.646170685	0.514931481	-5.13887922	2.76E-07	4.15E-06	0	0	0	3.549829232	3.546623725	3.728967903	A1-	Mutator-ilike transposase family
AT2612066	11.951183	-3.985727034	0.560199794	7.114831312	1.12E-12	3.04E-11	0		0	4.896561069	4.554502272	4.302754999	A1+	Mutator-like transposase family
AT2614570	14.413079	-3.967855322	0.490756604	-8.085179671	6.21E-16	2.23E-14	0	0	0	4.88574345	4.089833736	5.422470072	${ }^{\text {A1- }}$	Mutator-1ike transposase family
AT2615810	235.69625	-3.593904352	0.460319443	-7.807413763	5.84-15	1.93E-13	3.632364657	4.5965	2.622111348	8.41524017	9.40836	8.477875946	${ }^{\text {A1- }}$	Mutator-like transposase family
AT2615810	195.45686	-2.037843098	0.178820971	-11.39999614	4.38E-30	2.53E-27	4.434688628	5.435368285	3.36636879	8.508637534	8.779035457	8.228948531	${ }^{\text {A2 }}$	Mutator-1ike transposase family
AT2623500	8.4635139	-3.030670364	0.507439309	-5.972478496	2.34--09	4.65E-08	0.602380384		0	4.486881573	2.665086523	4.614569198	${ }^{\text {A1- }}$	Mutator-like transposase family
AT2623500	17.546855	-4.220446014	0.538899999	-7.81708839	5.41E-15	1.82E-13	0.640148721		0	5.694845984	5.019733684	4.553554369	${ }^{\text {Al+ }}$	Mutator-1ike transposase family
AT2623720	57.503249	-5.861067596	0.43287616	-13.53982532	9.10E-42	1.28E-39	0	0	0	7.191775937	6.752923424	6.554110094	A1-	Mutator-1ike transposase family
AT2623720	42.350222	-4.916888193	0.547707692	-8.977175714	2.788-19	1.35E-17	0		0	4.16453883	6.900955033	6.928810395	A1+	Mutator-1ike transposase family
AT2623720	0.593724	-0.732977749	0.147916142	-4.955360098	7.22E-07	7.62E-05	0		0	4.357162671	5.006885355	3.788546962	${ }^{\text {A2 }}$	Mutator-like transposase family
AT3629695	7.7527356	-3.283500097	0.582044031	-5.641325954	${ }^{1.69 E-08}$	2.64E-07	0	0	0	4.524364692	3.955228997	3.458449401	${ }^{\text {A1+ }}$	Mutator-like transposase family
AT3630170	63.288777	-5.833354758	0.407020908	-14.33183075	1.38E-46	2.26E-44	0.602380384	0	0.653468127	7.094620947	6.822675636	7.041870662	${ }^{\text {A1- }}$	Mutator-ike transposase family
AT3630170	266.58839	7.923117705	0.409314352	-19.35704836	1.78E-83	1.83E-80	0.640148721	0	0.694589061	9.293513457	8.862188413	8.989025613	A1+	Mutator-1ike transposase family
AT3630170	10.99374	-0.789868942	0.15563994	-5.07497587	3.88E-07	4.26E-05	0.954186367		1.024858076	4.357162671	4.622542481	4.450376507	${ }^{\text {A2 }}$	Mutator-1ike transposase family
AT3G30585	9.0123459	-2.523056502	0.5126711502	-4.921390195	8.59E-07	$1.20 \mathrm{E}-05$	0		1.101575979	2.526213436	[4.792504907	4.488922482	${ }^{\text {A1- }}$	Mutator-1ike transposase family
AT3631450	9.6752956	-3.440287115	0.503022467	-6.839231522	7.96E-12	2.01E-10	0	0	0	4.56149373	4.089833736	4.351279944	${ }^{\text {A1- }}$	Mutator-1ike transposase family
AT3631450	11.353188	-3.918886544	0.562588601	-6.965812204	3.27E-12	8.36E-11	0	0	0	4.896561069	4.346824447	4.391288416	A1+	Mutator-1ike transposase family
AT3631909	4.2081117	-2.276156301	0.513492359	-4.432697506	9.31E-06	0.000108125	0	0	0	3.549829232	2.655086523	3.349749908	$\mathrm{Al}^{\text {- }}$	Mutator-ike transposase family
AT3631909	9.8212406	-3.737566177	0.568165378	-6.57830681	4.76E-11	1.07E-09	0	0	0	4.524364692	4.164272639	4.391288416	${ }^{\text {A1+ }}$	Mutator-like transposase family
AT3633160	16.8562	-4.239368177	0.480029045	-8.831482632	1.03E-18	4.46 -17	0	0	0	5.101147555	5.046836798	5.199956346	${ }^{\text {A1- }}$	Mutator-ilike transposase family
AT3633160	14.970133	-2.962665316	0.591431	-5.009316919	5.46E-07	6.83E-06	0	0	0	6.205775127	3.955228997	1.806583236	A1+	Mutator-like transposase family
AT3633377	13.009203	-2.586841509	0.514964739	-5.023337161	5.08E-07	7.32E-06	0	0.588988589	0	3.222033331	6.024888039	2.610741738	A1-	Mutator-1ike transposase family
AT3633377	7.3865274	-2.949480582	0.581485841	-5.072317109	3.93E-07	5.02E-06	0	0.626414477	0	4.16453883	4.346824447	3.086509522	${ }^{\text {Al+ }}$	Mutator-like transposase family
Ат 7633377	12.293117	-2.612679333	0.454984527	-5.742347656	9.34-09	2.75E-07	0	0.557947347	0	5.669115043	4.132225326	2.975939682	${ }^{\text {A2- }}$	Mutator-like transposase family
AT3634299	11.948489	-2.484710571	0.515138235	-4.823386036	1.41E-06	1.90 E-05	0	0.588988589	0	3.222033331	5.901330042	2.346684959	A1-	Mutator-like transposase family
AT3634299	7.3855274	-2.949480582	0.581485841	-5.072317109	3.93E-07	5.02E-06	-	0.62641447	0	4.16453883	4.346824447	3.086509522	${ }^{\text {Al+ }}$	Mutator-ike transposase family
AT3634299	11.600296	-2.608031273	0.454931814	-5.732795974	9.88E-09	2.90E-07	0	0.557947347	0	5.546159418	4.132225326	2.975939682	A2.	Mutator-like transposase family
AT3642353	7.5913909	-3.282026226	0.58173424	-5.641796549	1.68E-08	$2.63 \mathrm{E}-07$	0		0 -	4.29471016	4.164272639	3.458449401	${ }^{\text {A1+ }}$	Mutator-like transposase pseudos
AT3642535	13.408283	-3.356230711	0.480371276	-6.98674313	2.81E-12	7.44E-11	1.026048597		0.653468127	4.826463883	5.046836798	4.351279944	${ }^{\text {A1- }}$	Mutator-ilike transposase family
AT3642712	8.2910246	-2.612577323	0.511429145	-5.10838568	3.25E-07	4.83E-06	1.026048597	0	0	3.025182302	4.089833736	4.730144422	${ }^{\text {A1- }}$	Mutator-like transposase family
AT3642712	9.9485221	2.397130215	0.59211981	-4.048440654	5.16E-05	0.000438124	1.082007379		0	5.597298362	1.773370384	3.284432598	A1+	Mutator-1ike transposase family
AT4608720	19.037686	-4.120162341	0.463580406	-8.887697342	6.24E-19	2.73E-17	0	1.006034927	0	5.331804227	5.046836798	5.422470072	${ }^{\text {A1- }}$	Mutator-1ike transposase family
AT4608720	27.145615	-4.801278484	0.497132701	-9.657941383	4.55E-22	2.88E-20	0	1.061739724		5.492673666	6.050935773	5.740406713	Al^{+}	Mutator-ilike transposase family
AT4609380	5.794203	5.579024584	0.419305522	-13.3053926	2.15E-40	2.79E-38	0.602380384	0.588988589	0	7.179983389	6.752923424	6.489964658	${ }^{\text {A1- }}$	Mutator-1ike transposase family
AT4609380	44.099436	-4.776702752	0.531430563	-8.988385465	2.517-19	1.22E-17	0.640148721	0.626414477	0	4.414102287	6.985988276	6.887671894	A1+	Mutator-like transposase family
AT4609380	2.8135	-0.795447079	0.154833346	-5.137440355	2.79E-07	3.10e-05	0.954186367	0.940325156	0	4.620502376	5.2297536	3.991107087	${ }^{\text {A2 }}$	Mutator-like transposase family
AT4628970	226.58394	-7.665271537	0.389249245	-19.69245064	2.50]-86	1.69E-83	0	0	0	9.061194775	8.778397788	8.60444726	$\mathrm{Al}^{\text {1- }}$	Mutator-like transposase family
AT4628970	118.31291	2.889032433	0.592383427	${ }^{-4.876963634}$	1.08E-06	$1.28 \mathrm{E}-05$	0	0	0	5.257479592	8.497288844	8.291244604	${ }^{\text {A1+ }}$	Mutator-like transposase family
AT4628970	26.527676	1.35736452	0.171771549	-7.902149906	2.74E-15	7.29E-13	0		0	5.358078375			${ }^{\text {A2 }}+$	Mutator-like transposase family

AT5615995	7.104394	-2.559318862	. 591211704	4.328938084	1.50e-05	0.00014398	0.640148721		1.161466416		5.625572377	5.740406713	${ }^{\text {A1+ }}$	Mutator-like transposase family
AT5635791	5.5279927	-2.572690926	0.58887972	4.368788459	1.25E-05	1.22E-04	0.640148721		0	3.684038477	3.955228997	2.857049598	${ }^{\text {A1+ }}$	Mutator-1ike transposase family
AT5635792	8.3881386	-3.242304181	0.507702038	6.386234324	1.70E-10	3.75E-09	0	0	0	4.408199229	3.546623725	4.351279944	${ }^{\text {A1. }}$	Mutator-like transposase family
AT5G35792	0.356766	-5.153837866	0.523082619	9.852818034	6.66E-23	4.19E-21	0	0	0	5.319969209	6.499688502	5.773726325	A1+	Mutator-1ike transposase family
AT5644416	34.586557	-5.164555569	0.45334163	11.39219349	4.57E-30	3.788-28	0	0	0	6.496028094	6.024848039	5.785201876	A1-	Mutator-ike transposase family
AT5644416	23.18194	-4.28655685	0.562350351	7.622573677	2.49E-14	7.83E-13	0	0	0	3.480233365	6.050935773	6.096967386	A1+	Mutator-1ike transposase family
AT1625430	51.797153	-2.701402797	0.343175445	7.871783487	3.50--15	1.118-11	3.133118363	4.055711706	3.34583892	7.003888304	6.434335581	6.052777968	${ }^{\text {A1- }}$	non-LTR retrotransposon family (LINE)
AT1625430	133.45171	-3.923469067	0.376133738	-10.43104797	1.79E-25	${ }^{1.33 E-23}$	3.22917984	4.158291134	3.445564361	6.838581092	8.233121332	8.464488986	${ }^{\text {Al+ }}$	non-LTR retrotransposon family (LINE)
AT1641840	. 0668012	-2.939259629	0.512234442	5.738114007	9.57E-09	1.75E-07	0	0	0	3.816762292	4.089833736	3.83605124	A1-	non-LTR retrotransposon family (LINE)
AT1641840	10.157867	-3.577241438	0.575690838	6.213823809	5.17E-10	1.00E-08	0	0	0	5.123742659	3.710677785	3.998987077	A1+	non-LTR retrotransposon family (LINE)
AT2601840	96.60589	-5.998356257	0.406454999	-14.7577377	2.74E-49	4.93E-47	0.602380384	1.006034927		7.580621111	8.06680322	6.925441264	Al^{-}	non-LTR retrotransposon family (LINE)
AT2601840	36.417231	-4.89404183	0.490591979	9.975788511	1.95E-23	1.29E-21	0.640148721	1.061739724	0	6.205775127	6.680573214	5.441887867	${ }^{\text {Al+ }}$	non-LTR retrotransposon family (LINE)
AT2601840	40.775923	-1.746887297	0.178678595	9.775582201	1.43E-22	5.87E-20	0.954186367	1.504834619		6.058870133	6.80280289	6.05674353	${ }^{\text {A2 }+}$	non-LTR retrotransposon family (LINE)
AT2610820	6.8232688	-2.735982004	0.514380478	5.318984914	1.04E-07	1.67-06	0	0	0	3.222033331	4.483532941	3.613294506	${ }^{\text {A1- }}$	non-LTR retrotransposon family (LINE)
AT2611410	17.638835	-4.320529259	0.478260104	9.033848369	1.66E-19	7.51E-18	0	0	0	5.331804227	4.792504907	5.352043354	A1-	non-LTR retrotransposon family (LINE)
AT2G11410	5.1191317	-2.742119538	0.591217508	4.638089196	3.52E-06	3.83E-05	0	0		3.862584211	3.416037926	3.086509522	${ }^{\text {Al+ }}$	non-LTR retrotransposon family (LINE)
AT2612650	34.849639	-4.910910454	0.436351058	11.25449422	2.20E-29	${ }^{1.788-27}$	0.602380384	0.588988589	0	6.224753232	6.342337877	5.785201876	A1-	non-LTR retrotransposon family (LINE)
AT2612650	25.745245	-4.716560307	0.500314986	9.427181749	4.21E-21	$2.30 \mathrm{E}-19$	0.640148721	0.626414777	0	5.786213592	5.941644221	5.31182967	${ }^{\text {Al+ }}$	non-LTR retrotransposon family (LINE)
AT2615510	13.42463	-3.462423274	0.47746281	7.250445479	4.15E-13	$1.17 \mathrm{E}-11$	1.026048597	0	0.653468127	5.050236022	4.483532941	4.730144422	A1-	non-LTR retrotransposon family (LINE)
AT3632043	77.495965	-6.182776412	0.40876528	-15.12549307	1.10E-51	2.16E-49	0.602380384	0	0	7.271730276	7.425970407	7.139183312	${ }^{\text {A1- }}$	non-LTR retrotransposon family (LINE)
AT3G32043	102.87369	6.851832872	0.444402441	5.41808111	1.24t-53	3.93E-51	0.640148721		0	7.697535257	7.756542763	7.613634882	A1+	non-LTR retrotransposon family (LINE)
AT3643546	6.600936	-2.719610845	0.511576326	5.316138975	1.06E-07	1.69E-06	0	0.588988589	0	3.816762292	3.546623725	4.028969492	A1-	non-LTR retrotransposon family (LINE)
AT3643573	4.3031384	-2.088661565	0.513632685	3.91069654	9.208-05	0.000879199	0	0.588988589	0	3.395221171	3.546623725	2.610741738	A1.	non-LTR retrotransposon family (LINE)
AT3643573	18.176504	-4.062700462	0.552118286	7.358387806	1.86E-13	5.39E-12	0	0.626414477		6.030007392	4.654502272	4.391288416	A1+	non-LTR retrotransposon family (LINE)
AT3643575	8.2477144	-3.163038318	0.509517603	-6.20790783	5.37E-10	$1.13 \mathrm{E}-08$	0	0	0	3.933736191	3.546623725	4.673513852	${ }^{\text {A1- }}$	non-LTR retrotransposon family (LINE)
AT4607355	27.197259	-4.886520402	0.46015966	10.61918466	2.43E-26	1.66 -24	0	0	0	5.567298803	5.766238278	6.007675152	${ }^{\text {A1- }}$	non-LTR retrotransposon family (LINE)
AT5613475	74.174366	-3.772315256	0.579421843	-6.510481614	7.49E-11	$1.63 \mathrm{E}-09$	0	1.061739724	0.694589061	1.429370861	7.690514186	7.889188356	A1+	non-LTR retrotransposon family (LINE)
AT5628523	104.74412	-4.031632353	0.57632023	-6.995472552	2.64E-12	6.84--11	0.640148721	0.626414477	0.694589061	1.429370861	8.173944227	8.40193474	${ }^{\text {A1+ }}$	non-LTR retrotransposon family (LINE)
AT5637665	8.5937814	-2.643720891	0.591085364	4.472654969	7.73E-06	7.82E-05	0	0.626414777		1.429370861	4.346824447	4.953150701	Al+	non-LTR retrotransposon family (LINE)
AT5G38365	5.7189536	-2.600843189	0.588276924	-4.421120536	$9.82 \mathrm{E}-06$	9.75E-05	0	0	0.694589061	2.958502988	4.164272639	3.458449401	${ }^{\text {Al+ }}$	non-LTR retrotransposon family (LINE)
AT5G38365	7.8217539	-0.53910072	0.136222476	-3.95750198	7.57E-05	5.43E-03	0	0	1.024858076	3.493165516	4.684124191	3.576267804	${ }^{\text {A2 }+}$	non-LTR retrotransposon family (LINE)
AT1623930	12.946027	-3.765986845	0.495814643	7.595553895	3.06E-14	9.62E-13	0	0	0	5.243915622	4.883532941	4.351279944	${ }^{\text {A1- }}$	transposable element gene
AT1634590	229.85557	-2.73056217	0.592242593	-4.615546762	4.02E-06	4.31E-05	0		0.694589061	5.953230919	9.431032021	9.297556647	${ }^{\text {Al+ }}$	transposable element gene
AT1634590	23.278883	-1.195743149	0.168522474	7.095452141	1.29E-12	2.43E-10	0	0	1.024858076	5.393724612	6.124155242	4.897720133	A2+	transposable element gene
AT1636763	8.3820431	-3.125417135	0.509309879	-6.13657277	8.43E-10	1.75E-08	0	0	0	4.142578534	4.483532941	3.728967903	${ }^{\text {A1- }}$	\|transposable element gene
AT1636763	6.228366	-2.46334203	0.592039088	4.155708768	3.24E-05	2.88E-04	0	0	0	4.896561069	2.545235219	2.247074573	${ }^{\text {A1+ }}$	transposable element gene
AT1638194	10.231855	-3.130892803	0.50980961	-6.141298127	8.18E-10	1.70 E-08	0	0		3.549829232	5.26298884	3.83605124	$\mathrm{Al}^{\text {1- }}$	transposable element gene
AT1638194	11.944824	-3.862172795	0.566600151	-6.816399162	9.34E-12	2.28E-10	0	0	0	5.257479592	4.164272639	4.208431314	${ }^{\text {A1+ }}$	transposable element gene
AT1638390	5.1674818	-2.33009588	0.51418393	-4.531638866	5.85E-06	7.07E-05	0	0	0	2.526213436	4.089833736	3.487531741	A1-	transposable element gene
AT1638390	4.9514284	-2.511204797	0.592374735	-4.239216579	2.24E-05	2.07E-04	0	0	0	4.29471016	2.545235219	2.857049598	${ }^{\text {Al+ }}$	transposable element gene.
AT1640072	9.486502	-3.269917428	0.584646299	5.592984054	2.23E-08	3.43E-07	0	-	0	5.257479592	3.416037926	3.458449401	${ }^{\text {Al+ }}$	transposable element gene.
AT1640076	4.9710556	-2.751362058	0.591038719	4.655129979	3.24E-06	3.55E-05	O	0	0	3.480233365	3.416037926	3.458449401	A1+	transposable element gene.
AT1640115	23.796707	-4.516098202	0.472886473	9.550068491	1.30E-21	6.73E-20	0	0	0	5.414644739	6.13861985	5.029925195	${ }^{\text {A1- }}$	transposable element gene
AT1640115	16.547026	-4.278957554	0.553688461	7.728095944	1.09E-14	3.56E-13	-	0	0	5.646896475	5.019733684	4.302754999	${ }^{\text {Al+ }}$	transposable element gene
AT1640119	33.676002	-4.938321621	0.447724594	11.02981987	2.74E-28	2.06e-26	0.602380384		0	5.603055814	6.434335581	6.11789374	${ }^{\text {A1- }}$	transposable element gene.
AT1640121	137.5629	-7.00669331	0.402298682	17.41664494	6.17E-68	2.06E-65	0		0	7.842398856	8.376101572	8.058669198	A1.	transposable element gene.
AT1640121	288.46402	-8.13015732	0.442248912	18.38368835	1.78E-75	1.20E-72	0	0	0	8.577394037	9.446117142	9.353721519	${ }^{\text {Al+ }}$	transposable element gene.
AT1640121	16.946726	-1.105172228	0.165416236	-6.681159314	2.37E-11	4.04E-09	0	0	0	5.035921409	5.493263672	4.745752287	${ }^{\text {A2 }}$	transposable element gene.
AT1640125	85.911038	-3.942146824	0.582615824	6.766288633	1.322-11	3.15E-10	0	0	0	5.492673666	7.96640277	7.803055381	A1+	transposable element gene
AT1440135	8.2437342	-2.794406319	0.511062906	5.467832412	4.56-08	7.65E-07	0.602380384		0	3.025182302	4.483532941	4.42174209	${ }^{\text {A1- }}$	transposable element gene.
AT1640135	57.3646	-5.934627838	0.478729916	12.39660952	2.73E-35	3.52E-33	0.640148721		0	${ }^{6.301797049} 8$	${ }^{6.958199704}$	7.163833982	${ }^{\text {A1+ }}$	transposable element gene.
AT1640230	145.70336	-7.400103041	${ }^{0.451208428}$	16.40063123	1.89E-60	7.97e-58	0	O	0	8.46436121	8.073902316	7.991862103	${ }^{\text {Al+ }}$	transposable element gene
AT1640230	12.384131	-0.740792848	0.148013243	5.004909251	5.59E-07	5.97e-05	0	0	0	4.357162671	5.422755442	3.798546962	${ }^{\text {A2 }+}$	transposable element gene
AT1640310	95.551336	-6.51646613	0.414430066	15.72392224	1.044-55	2.32-53	0	0	0	7.607282452	7.850087419	7.240127182	${ }^{\text {A1- }}$	transposable element gene.
AT1640310	396.22968	-8.49382704	0.437180621	-19.4286449	4.42E-84	4.73E-81	0	0	0	10.11888132	9.153175476	9.44961684	${ }^{\text {Al+ }}$	transposable element gene.
AT1640310	39.766456	-1.785246247	0.178177182	-10.01949985	1.25E-23	5.46E-21	0	0	0	6.496081129	6.610020751	5.7455776041	${ }^{\text {A2 } 2+}$	transposable element gene.
AT1641680 AT1641680	10.764095	-3.569053136	0.499570224	-7.1424712	9.05E-13	2.48E-11	0	0	0	4.632436165	4.883532941	4.351279944	${ }^{\text {A1- }}$	transposable element gene.
AT1641680	17.062069	-4.475369504	0.543723172	8.230970709	1.86E-16	7.09E-15	0	0	0	4.626795005	5.310931324	5.356497891	${ }^{\text {A1+ }}$	transposable element gene.
AT1642040	271.14987	-6.34573813	0.458356189	13.84463428	1.37E-43	2.05E-41	0	0	0	8.384742405	9.723045254	8.815445829	A1.	transposable element gene.
AT1642040	397.14116	-8.64726995	0.4263661	-20.28132618	1.88E-91	2.54--88	0	0	0	9.933734481	9.533458315	9.381004733	${ }^{\text {A1+ }}$	transposable element gene.
AT1642040	25.918224	-1.473960341	0.174515636	-8.446007325	3.01E-17	9.32E-15	0	0	0	5.651028252	6.055909433	5.38305632	${ }^{\text {A2 }}$	transposable element gene.
AT1642050	1711.4608	9.599634647	0.364805235	26.31441032	1.31E-152	3.74E-149	0.602380384	,	0.653468127	11.11209956	12.26647223	11.61207088	A1-	transposable element gene.

AT1642050	2313.8802	-10.64797595	0.374367252	-28.44259452	5.02E-178	3.09E-174	0.640148721		0.694589061	12.48970272	11.99813604	11.9812004	${ }^{\text {Al+ }}$	transposable element gene.
AT1642050	193.12285	-3.370772332	0.175986449	-19.15356848	9.04E-82	3.98E-78	0.954186367	0	1.024858076	8.524803503	8.961088321	8.195115684	A_{2+}	transposable element gene.
AT1442360	31.733725	-5.034397768	0.455239861	-11.05878065	1.996-28	1.52E-26	0	0	0	5.672031041	6.342337877	5.937261568	A1-	transposable element gene.
AT1642367	13.016718	-3.846193911	0.49187643	-7.819431207	5.31E-15	1.76E-13	0	0	0	${ }^{4.632436165}$	4.792504907	4.837143627	${ }^{\text {A1- }}$	transposable element gene
AT1942367	11.152589	-3.529274479	0.578702384	-6.098600375	1.07E-09	2.00E-08	0	0	0	5.437371235	3.710677785	3.753887089	Al^{+}	transposable element gene
AT1642745	30.973052	-4.838128019	0.542729456	-8.914437883	4.90E-19	2.33E-17	0	0	0	4.414102287	6.574739482	6.173860166	${ }^{\text {Al+ }}$	transposable element gene.
AT1642745	17.693798	-1.205126617	0.16878604	-7.13966175	9.348-13	1.79E-10	0	0	0	5.035921409	5.270474873	5.238690264	A^{2+}	transposable element gene.
AT1643590	68.233158	-3.500057452	0.323238093	-10.82810944	2.53E-27	2.05E-25	3.848373102	3.3566	2.41385	7.127736197	6.841347652	7.032350776	${ }^{\text {Al+ }}$	transposable element gene
AT2604000	13.22607	-3.822147468	0.492337623	-7.763265068	8.28E-15	2.71E-13	0	0	0	4.632436165	5.046836798	4.614569198	A1-	transposable element gene
AT2604000	20.436053	-4.73139976	0.534161023	-8.857628237	8.17E-19	3.78E-17	0	0	0	5.646896475	5.476812514	4.953150701	Al^{+}	transposable element gene
AT2604320	23.004826	-4.537074144	0.458844546	-9.888042	4.69E-23	2.66 E-21	0.602380384		0	5.637955601	5.45092181	5.553777891	${ }^{\text {A1- }}$	transposable element gene
${ }^{\text {AT2604320 }}$	36.275796	-5.293588158	0.49880313	-10.61258007	2.60--26	2.00-24	0.640148721	0	0	${ }^{6.205775127}$	${ }^{6.574739482}$	5.571366059	${ }^{\text {Al+ }}$	transposable element gene
AT2604330	2.5071497	-1.591766363	0.490901489	-3.24253725	0.001184705	0.008388457	0	0	0	2.192330878	2.665086523	2.833863982	${ }^{\text {A1- }}$	transposable element gene
AT2604330	4.5882649	-2.517404147	0.592391858	-4.249558991	2.14-05	0.000198396	0	0	0	2.958502988	3.955228997	2.857049598	${ }^{\text {Al+ }}$	transposable element gene
AT2604990	6.6915534	-2.877630879	0.59042629	-4.873819014	1.09E-06	1.30--05	0	0	0	4.722432463	3.04536424	3.086509522	${ }^{\text {Al+ }}$	transposable element gene.
AT2606140	8.3148787	-3.204059417	0.507969612	-6.307580886	2.83E-10	6.158-09	0	0	0	4.041933031	4.089833736	4.277198875	A1-	transposable element gene
AT2606180	114.3909	-6.446006064	0.483767859	-13.32458521	1.67--40	2.74E-38	0	0	0.694589061	6.980752372	8.617649912	7.406193655	${ }^{\text {Al+ }}$	transposable element gene.
AT2606180 3	374.44998	-3.487712415	0.17746911	-19.65250408	5.50]-86	2.93E-82	0	0	1.024858076	8.985358558	10.10463315	9.32368238	${ }^{\text {A2 }}$	transposable element gene.
AT2606245	10.889193	-3.533296232	0.500215748	-7.063544574	1.62--12	4.38E-11	0	0	0	4.408199229	4.792504907	4.277198875	A1-	transposable element gene.
AT2606245	10.615364	-3.310250499	0.584572163	-5.662889239	1.49E-08	2.35E-07	0	0	0	5.492673666	3.416037926	3.458449401	${ }^{\text {Al+ }}$	transposable element gene.
AT2606330	140.00587	-6.8676567	0.396012378	-17.34202537	2.27E-67	7.46E-65	0	0	0.653468127	7.957392451	8.487670366	7.876237474	${ }^{\text {Al- }}$	transposable element gene.
AT2606335	11.559288	-3.685827556	0.496654923	-7.421304784	${ }^{1.16 E-13}$	3.45E-12	0	0	0	${ }^{4.486881573}$	4.483532941	4.784635763	A1-	transposable element gene.
AT2206335	7.7735824	-2.741529218	0.592070095	-4.630413259	3.65E-06	3.96E-05	0	0	0	5.192160237	2.545235219	2.857049598	Al^{+}	transposable element gene.
AT2006340	21.967512	-4.565115639	0.470046146	-9.712058444	2.68 E-22	1.45E-20	0	0	0	5.197878395	5.617177427	5.615206122	${ }^{\text {A1- }}$	transposable element gene.
AT2606340	7.7560052	-0.612155209	0.139765721	-4.39866579	1.19E-05	0.001002832	0	0	0	4.357162671	4.097076912	3.576267804	${ }^{\text {A2 }}$	transposable element gene.
AT2606370	39.812839	-5.33448456	0.523579653	-10.18848713	2.23E-24	1.57--22	0	0	0	5.123742659	6.779170955	6.602556983	${ }^{\text {A1+ }}$	transposable element gene.
AT2606460	28.35956	-4.796841655	0.45217046	-10.60848083	2.72E-26	1.85--24	0	0	0.653468127	5.672031041	5.617177427	6.180197008	${ }^{\text {A1- }}$	transposable element gene.
AT2 206480	32.325661	-5.093746243	0.454619287	-11.20442178	3.886-29	3.10-27	0	0	0	5.70532018	6.024888039	6.315890736	A1-	transposable element gene
AT2606914	${ }^{6.4418807}$	-2.696192306	0.51473877	-5.237981794	1.62 -07	2.53E-06	0	0	O	4.041933031	4.089833736	3.027056186	${ }^{\text {Al- }}$	transposable element gene
AT2066965	13.588837	-3.913058477	0.491656265	-7.958931389	1.74E-15	6.02E-14	0	0	0	5.243915622	4.089833736	4.887807353	${ }^{\text {Al- }}$	transposable element gene.
AT2206965	20.624603	-4.668158643	0.538657284	-8.66628704	4.46E-18	1.94--16	0	0	0	5.872137807	5.310931324	4.831847463	${ }^{\text {Al+ }}$	transposable element gene.
AT2606965	12.542821	-0.890260357	0.156778149	-5.678472173	1.36E-08	1.70--06	0	0	0	4.204995609	4.907111711	4.897720133	${ }^{\text {2 } 2+}$	transposable element gene.
AT2607460	31.616336	-4.899807854	0.447266101	-10.95501726	6.29E-28	4.65E-26	0	0	0.653468127	6.028299407	6.244071671	5.674125282	A1-	transposable element gene.
AT2607460	25.669636	-4.847415921	10.512933341	-9.450437091	3.37-21	1.855-19	0	0	0.694589061	5.192160237	5.997324674	5.806293747	${ }^{\text {Al+ }}$	transposable element gene.
AT2609187	931.4208	-9.197934049	0.3628544	${ }^{-25.38863844}$	3.37E-142	7.86E-139	0.602380384	0	0	10.63574792	11.2446996	10.61957506	${ }^{\text {A1- }}$	transposable element gene.
AT2609187	62.316741	-2.163971341	0.18014076	-12.01266911	3.05E-33	2.19E-30	0.954186367	0	0	6.750962371	7.433619666	6.575573926	${ }^{\text {A2 }}$	transposable element gene.
AT2609930	42.538663	-5.434685506	0.44381962	-12.26010974	1.48E-34	1.48E-32	0	0	0	6.079977173	6.752923424	6.370353031	A1-	transposable element gene.
AT2610070	11.192479	-2.70442838	0.591354246	-4.573279716	4.80--06	5.07E-05	0.640148721	0	0	5.786213592	1.773370384	3.458449401	${ }_{\text {Al+ }}$	transposable element gene
AT2610285	17.544758	-4.11773658	0.486299715	-8.467487135	2.51E-17	1.00E-15	-	0	0	5.567298003	5.26298084	4.488922482	${ }^{\text {A1- }}$	transposable element gene
AT2611640	13.146147	-3.887501123	0.491195746	-7.914362356	2.49E-15	8.50--14	0	0	0	4.997461935	4.483532941	4.784635763	${ }^{\text {A1- }}$	transposable element gene.
AT2611640	10.406518	-3.416332881	0.581572636	-5.87481712	4.23E-09	7.20E-08	0	0	0	5.319969209	3.04536424	4.107506639	${ }^{\text {Al+ }}$	transposable element gene.
AT2611650	40.553325	-5.34077445	0.446532399	-11.96055305	5.72E-33	5.34-31	0	0	0	5.974701535	6.752923424	6.239920705	A1-	transposable element gene.
AT2611650	31.15266	-5.074494995	0.52972994	-9.579400015	9.76E-22	5.606-20	0	0	0	6.656843146	5.594569514	5.218117061	${ }^{\text {Al+ }}$	transposable element gene.
AT2611650	12.268362	-0.880895514	0.15636019	-5.633758275	1.76E-08	2.18E-06	0	0	0	4.427639234	5.054298527	4.450376507	${ }^{\text {A2 }}$	transposable element gene.
AT2611780	2722.8708	-10.37061106	0.308625468	-33.60257697	1.54-247	3.95E-243	0.602380384	1.006034927	1.442988428	12.49782975	12.51056085	12.20392611	A1-	transposable element gene.
AT2611780	2589.9178	-10.32601037	0.356583955	-28.95814643	2.22E-184	1.42E-180	0.640148721	1.061739724	1.513627237	11.77496078	12.59233383	12.51646608	${ }^{\text {Al+ }}$	transposable element gene.
AT2611780	157.72817	-3.031525553	0.177379854	-17.09058544	1.74E-65	4.22E-62	0.954186367	1.504834619	2.03712832	8.251261309	8.880490018	7.836043709	A^{2+}	transposable element gene.
AT2612320	14.836882	-3.889912017	0.49076002	-7.926301771	2.26E-15	7.74E-14	0	0	0	4.632436165	5.45092181	4.553113256	A1-	transposable element gene
AT2612320	9.5472714	-3.137967331	0.587639491	-5.339953114	9.30E-08	1.31--06	0	0	0	5.319969209	3.710677785	2.857049598	${ }^{\text {Al+ }}$	transposable element gene
AT2612380	28.790469	-5.221175648	0.517054583	-10.09791969	5.64--24	3.86E-22	0	0	0	5.437371235	5.941644221	6.148681867	Al^{1+}	transposable element gene.
AT2612385	50.915242	-5.06034672	0.488945157	-10.34951804	4.21--25	3.06E-23	0	1.66670863	0	5.597298362	6.900955033	7.112669494	${ }^{\text {Al+ }}$	transposable element gene.
AT2612460	26.924562	-3.424317392	0.48857181	-7.00854241	2.40E-12	6.25E-11	1.923129797	1.66670863	1.513627237	4.29471016	6.292644239	5.899804421	${ }^{\text {A1+ }}$	transposable element gene
AT2612460	39.972393	-1.114585615	0.170274602	-6.545812487	5.92E-11	9.60E-09	2.507777703	2.225226411	2.03712832	4.942773506	7.045025866	6.099174679	${ }^{\text {A2+ }}$	transposable element gene
AT2612520	36.044884	-4.990043964	0.521789671	-9.563324528	1.14E-21	6.47--20	0.640148721		0	5.051918249	6.871459168	6.096967386	${ }^{\text {Al+ }}$	transposable element gene
AT2612540	10.964298	-3.335822606	0.548860235	-6.144901378	8.00E-10	1.51E-08	1.082007379	0.626414477	0	${ }^{4.29471016}$	4.508850015	4.628319815	${ }^{\text {Al+ }}$	transposable element gene.
AT26112540 ${ }^{\text {27 }}$	27.200241	-1.303750727	10.172523506	-7.55694546	4.13E-14	9.63E-12	1.523548554	0.940325156	0	5.035921409	6.189318017	5.848657378	${ }_{\text {A2 }}$	transposable element gene.
AT2612810	7.2822488	${ }^{-3.039712356}$	0.511092218	-5.947483147	2.72E-09	5.34E-08	0	0	0	4.142578534	3.546623725	14.116544802	A1-	transposable element gene.
AT2612810	9.9636261	-3.311241178	0.583952227	-5.67397377	1.42E-08	2.25E-07	0	0	0	5.319969209	3.710677785	3.284432598	${ }^{\text {Al+ }}$	transposable element gene.
AT2612830	11.076556	-3.626420476	0.498017347	-7.281715187	3.30--13	9.41--12	0	0	0	4.56149373	4.483532941	4.553113256	${ }^{\text {A1- }}$	transposable element gene.
AT2612830	12.495987	-3.858471963	0.567616287	-6.797676625	1.06E-11	2.57--10	0	0	0	5.379864119	4.346824447	3.988987077	${ }^{\text {Al+ }}$	transposable element gene.
AT2612840	11.048471	${ }^{-3.621074317}$	0.498188898	${ }^{-7.268505715}$	3.63E-13	1.03E-11	0	0	0	4.486881573	4.483532941	4.614569198	${ }^{\text {A1- }}$	transposable element gene.
AT2612840	12.449154	-3.758407167	0.571857663	6.572277354	4.966-11	1.11E-09	0	0	0	5.492673666	4.164272639	3.881635851	${ }^{\text {Al+ }}$	transposable element gene.

AT2612910	28.40033	-4.326288441	0.479987987	-9.013326491	2.000-19	8.99E-18	0	0.588888589		4.700053001	5.45092181	\|6.688789219		\|transposable element gene.
AT2612910	11.512156	-3.324304621	0.576139035	-5.769969437	7.93E-09	$1.30 \mathrm{E}-07$	0	0.626414477	0	5.492673666	3.955228997	3.458449401	${ }^{\text {Al+ }}$	transposable element gene.
AT2613040	40.948059	-5.31259129	0.525965801	-10.10064016	5.49E-24	3.76E-22	0	0	0	5.051918249	6.871459168	6.620982316	A1+	transposable element gene.
AT2613040	12.308112	-0.58747064	0.136775743	-4.295184606	${ }^{1.75 E-05}$	1.411^{-03}	0°	0	0	${ }^{2.61591609}$	5.422755442	4.798207118	${ }^{\text {A2+ }}$	transposable element gene.
AT2613050	123.0577	-6.871474786	0.47835284	-14.36486671	8.60E-47	1.84E-44	0	0	0	7.110161548	8.525969037	7.873905475	Al^{+}	transposable element gene.
AT2613050	36.009216	-1.188526447	0.166164911	-7.152692088	8.51E-13	1.64E-10	0	0	0	4.620502376	6.887245722	6.514177692	${ }^{\text {A2 }}$	transposable element gene.
AT2613070	5.4545384	-2.574391168	0.592372442	-4.345899617	$1.398-05$	1.34E-04		0	0	2.133098153	[4346824447	3.458449401	${ }^{\text {Al+ }}$	transposable element gene
AT2613320	7.4012508	-2.72383927	0.514524097	-5.293900298	$1.20 \mathrm{E}-07$	1.90E-06	0	0	0	3.395221171	4.792504907	3.197406586	A1-	transposable element gene
AT2613320	33.025959	-4.494214413	0.552041589	-8.141079411	3.92E-16	1.45E-14	0	0	0	4.021446993	5.941644221	5.987621232	${ }^{\text {A1+ }}$	transposable element gene
AT2613400	55.764733	-5.809485694	0.432258619	-13.43983774	3.53E-41	4.75E-39	0	0	0	6.51492659	7.128344859	6.731026182	${ }^{\text {A1- }}$	transposable element gene.
AT2613400	99.295915	-6.80844549	0.470753584	-14.46286492	2.08E-47	4.777-45	2,	0	0	7.074356635	7.865285288	7.850673244	${ }^{\text {Al+ }}$	transposable element gene.
AT2613431	54.83296	-4.290799772	0.350276573	-12.24974806	1.69-34	1.67--32	${ }^{2.744250341}$	1.329166983	1.950365559	6.907064143	${ }^{6.434335581}$	${ }^{6.850788829}$	A1-	\|transposable element gene
AT2613431	45.382614	-3.99261146	0.383999102	-10.39653771	$2.57 \mathrm{E}-25$	1.89E-23	2.836608464	1.395504924	2.032847348	6.503738247	6.610886935	6.246861299	Al^{1+}	transposable element gene
AT2614240 3	37.946883	-5.348899425	0.498177694	-10.73893811	6.688-27	5.35E-25	0	0.626414477	0	6.704468582	6.152527787	5.773726325	Al^{1+}	transposable element gene
AT2614240	9.599877	-0.733097528	0.15047596	-4.871858107	1.111-06	0.000114429	0	0.940325156	0	4.283065656	4.345992327	4.312916238	${ }^{\text {A2 }}$ +	transposable element gene
AT2614730	112.49597	-6.804677446	0.405644055	-16.77499609	3.72E-63	1.06E-60	0		0	7.936517773	7.850087419	7.660082573	${ }^{\text {Al- }}$	transposable element gene
AT2614730	75.108723	-6.296267267	0.491240499	-12.81707692	1.32--37	$1.87 \mathrm{E}-35$	0	0	0	1.864068852	6.810594236	6.760480718	${ }^{\text {Al+ }}$	transposable element gene
AT2614730	10.756258	-0.69748495	0.145429707	-4.796026948	1.62E-06	1.61--04	0	0	0	3.618975234	5.144691693	4.312916238	${ }^{\text {A2 }}$	transposable element gene
AT2615550	10.091431	-2.90583615	0.513674112	-5.65696437	1.54--08	2.74E-07	0	0	0	2.526213436	5.26298084	4.277198875	A1-	transposable element gene
AT2615800	58.321516	-3.217801576	0.4145667	-7.82051139	5.26E-15	1.74E-13	3.133118363	3.098095738	1.950365559	5.831289127	7.709866036	6.096513381	A1-	transposable element gene
AT2615800	58.533188	-3.470068077	0.415514291	-8.351260476	6.75E-17	2.65E-15	3.22917984	3.194694488	2.032847348	7.468440023	5.883728226	${ }^{6.620982316}$	${ }^{\text {Al+ }}$	transposable element gene
AT2615815	7.4659887	-3.014141415	0.579285951	-5.203201306	$1.966-07$	2.64--06	0	0	0.694589061	4.524364692	3.416037926	3.753887089	${ }^{\text {Al+ }}$	transposable element gene
AT2622710	22.225542	-2.757169608	0.393351051	-7.099437506	2.39E-12	6.36--11	2.50181502	2.469293851	1.718867729	5.331804227	5.45092181	5.352044354	A1-	transposable element gene
AT2622710	25.257901	-2.599575319	0.509962821	-5.097578125	3.44E-07	4.43E-06	2.591298417	2.559127732	1.796470461	6.582320762	4.346824447	4.699400813	Al^{+}	transposable element gene
AT2623480	10.992653	-3.44993078	0.494298296	-6.969335735	3.188-12	8.36E-11	0.602380384		0	4.56149373	4.483532941	4.488922482	A1-	transposable element gene
AT2623480	15.000007	-4.043426221	0.543909359	-7.434007444	1.05E-13	3.14E-12	0.640148721		0	4.812122267	5.396254736	4.474701533	A1+	transposable element gene
AT2623710	6.0183011	-2.549992023	0.592357662	-4.279495626	1.87E-05	1.76E-04	0	0	0	1.429370861	4.164272639	4.208431314	Al^{+}	transposable element gene
AT3615310	10.513018	2.708416882	0.505231993	5.36073906	8.29E-08	1.35E-06	4.048461583	4.470931021	4.773757176		0	0	A1-	transposable element gene
AT3615310	13.408933	1.852320008	0.507406939	3.650561052	2.62E-04	1.87-03	${ }^{4.150128613}$	4.575093957	4.880072038	2.604042178	2.545235219	1.806583236	${ }^{\text {Al+ }}$	transposable element gene
AT3615310	10.589572	1.866057273	0.443390218	4.208611726	$2.57 \mathrm{E}-05$	0.000363659	3.956508363	4.380679	4.685353847	0	2.106732017	1.100718415	A^{2}	transposable element gene
AT3629610	4.8031839	-2.426966544	0.514764409	-4.714713179	2.42E-06	3.11--05	0	0	0	3.933736191	2.665086523	3.349749908	${ }^{\text {A }}$ -	transposable element gene
AT3629610	8.692379	-3.553974273	0.573922037	-6.19243389	5.92E-10	1.14E-08	0	0	0	4.021446993	4.164272639	4.391288416	${ }^{\text {Al+ }}$	transposable element gene
AT3629612	51.274592	-5.587478956	0.425829895	-13.12138724	2.48E-39	3.07-37	0	0.588888589	0	6.605874948	6.952811471	6.473472544	${ }^{\text {Al- }}$	transposable element gene.
AT3629612	56.301741	-5.900255931	0.47992503	-12.29412004	9.74-35	1.215-32	0	0.62641447	0	6.238497703	7.117439888	16.976208025	${ }^{\text {Al+ }}$	transposable element gene.
AT3629700	20.115936	-4.494001114	0.478834888	-9.504381184	2.01E-21	1.03E-19	0	0	0	5.637955601	5.046836798	5.352044354	A^{1-}	\|transposable element gene
AT3629700	34.89875	-5.508519685	0.055533096	-10.89645709	$1.20 \mathrm{E}-27$	9.93E-26	0	0	0	6.066915882	6.420388952	5.899804421	${ }^{\text {Al+ }}$	transposable element gene
AT3629710	5.2433163	-2.505605853	0.588892049	-4.247566749	2.16 E-05	0.000199965		0.62641447	0	3.480233365	3.955228997	2.857049598	${ }^{\text {Al+ }}$	transposable element gene
AT3629738	7.7461279	-3.011180944	0.511590391	-5.885921625	3.96E-09	7.63E-08	0	0	0	4.408199229	4.089833736	3.487531741	A1-	transposable element gene.
AT3629738	12.642058	-3.941544236	0.564727092	${ }^{-6.999555774}$	2.96 -12	7.61--11	-	0	0	4.896561069	3.710677785	5.168874549	${ }^{\text {Al+ }}$	transposable element gene.
AT3630360	7.9309221	-2.777319341	0.51455778	-5.397487807	6.76E-08	1.111-06	0	0	0	2.526213436	4.483532941	4.488922482	${ }^{\text {A1- }}$	transposable element gene
AT3630665	3.9645793	-2.098246477	0.510802781	-4.107742865	4.00E-05	0.000409246	0	0	0	2.797162804	3.546623725	3.027056186	A1-	transposable element gene.
AT3630665	25.231159	-5.102905165	0.518769925	-9.836547797	7.84--23	4.906-21	0	0	0	5.545934233	5.760416915	5.740406713	${ }^{\text {Al+ }}$	transposable element gene.
AT3630670	34.929758	-5.176798218	0.527826146	-9.807771478	1.04E-22	6.50--21	0	0	0	4.976329861	6.646150789	${ }^{6.33878287}$	${ }^{\text {Al+ }}$	transposable element gene
AT3630690	9.2895755	-3.318079765	0.505436017	-6.564789946	5.21E-11	1.23E-09	0	0	0	4.324976877	4.4883532941	4.028969492	${ }^{\text {Al- }}$	transposable element gene
AT3630690	8.9017759	-2.901552641	0.591048155	-4.909164536	9.15E-07	1.10-05	0	0	0	5.257479592	1.773370384	3.881635851	${ }^{\text {Al+ }}$	transposable element gene
AT3630700	10.140938	-3.479510551	0.501681166	-6.935700975	4.04E-12	1.05E-10	0	0	0	4.324976877	4.483532941	4.42174209	A1-	transposable element gene
AT3630700	7.0882809	-2.506210132	0.592168505	-4.32258402	2.31E-05	2.13E-04	0	0	0	5.123742659	1.773370384	2.857049598	A1+	transposable element gene
AT3631310	36.359973	-5.32646946	0.455419046	-11.95873189	5.84--33	5.44-31	0	0	0	6.269953976	6.13861985	6.200380869	A1-	transposable element gene
AT3631440	4.0356306	-1.82876781	0.513454492	-3.550220731	0.000384908	0.003107451	0	1.006034927	0	3.549829232	2.655086523	3.027056186	A1-	transposable element gene.
AT3631440	11.318674	-3.463667004	0.553352476	-6.259422623	3.86E-10	7.61-09	0	1.061739724	0	4.021446993	4.786788781	4.699400813	${ }^{\text {Al+ }}$	transposable element gene.
AT3631540	46.894253	-5.42176299	0.449146254	-12.07126397	1.50--33	1.41--31	0	0	0	5.800812964	${ }^{6.8222675636}$	${ }^{6.850788829}$	${ }^{\text {A1- }}$	transposable element gene
AT3631540	115.2923	-7.070074629	0.460817165	-15.34247237	3.986-53	1.25E-50	0	0	0	8.191040906	7.673523812	7.631920166	${ }^{\text {Al+ }}$	transposable element gene
AT3631540	10.472742	-0.805245632	0.152565408	-5.278035443	1.311-07	1.49E-05	0	0	0	4.679457118	4.345992327	4.312916238	${ }^{\text {A2 }}$	transposable element gene
AT3G31915	5.5012543	-2.588988221	0.592378764	-4.370005103	1.24E-05	1.211--04	0	0	0	3.684038477	1.773370384	4.302754999	${ }_{\text {Al+ }}$	transposable element gene
AT3631955	7.3489814	-3.277026102	0.581979767	-5.630824795	1.79E-08	2.79E-07	-	0	0	${ }^{4.16453883}$	3.416037926	4.208431314	${ }^{\text {Al+ }}$	transposable element gene
AT3632070	12.91236	-4.618160718	0.467867982	-9.870649189	5.58E-23	3.14E-21	0	0	0	5.530616574	5.766238278	5.315498883	A1-	transposable element gene
AT3632070	36.967923	-5.584574785	0.03305424	-11.10133728	1.24E-28	1.111-26	0	0	0	6.172293093	6.499688502	5.958938819	${ }^{\text {Al+ }}$	transposable element gene
AT3632897	10.430213	-3.185607688	0.508740468	-6.261754055	3.81--10	8.14E-09	0	0	0	3.689460601	5.26298084	3.83365124	Al^{-}	transposable element gene
AT3632897	14.512702	-1.005376193	0.161867526	-6.21110495	5.26E-10	7.57E-08	0	0	0	4.843112829	5.2297536	4.575877343	${ }^{\text {A2 }}$ +	transposable element gene
AT3632966	129.24947	-6.67245426	0.476103628	-14.01470997	1.27E-44	2.45E-42	0.640148721		0	6.838581092	8.323028526	8.423088895	${ }_{\text {Al+ }}$	transposable element gene.
AT3632966	6.522717	-0.520915554	0.135207336	${ }^{-3.852716634}$	1.17E-04	0.008029416	0.954186367		0	3.734687502	3.903537434	3.691684035	${ }^{\text {A2 }}$ +	transposable element gene.
AT3633072	406.86385	-6.748503357	0.45882486	-14.9031326	3.14E-50	5.85E-48	0	0	0	8.957944187	10.28907469	9.442346388	A1-	transposable element gene.

AT3633072	37.	781	0.177682824	7442	2.21--22	8.76E-20	0	0	0	6.226388597	6.610020751	18612319		transposable element gene.
AT3633073	77.885393	-5.8551512	0.442928994	-13.21916442	6.80E-40	8.56E-38	0	0	0	6.437800235	8.008133702	6.937516237	A1-	transposable element gene
AT3G33081	28.494214	-4.682370926	0.469310593	-9.9712601	1.92--23	1.12E-21	0	0	0	5.331804227	6.520816798	5.387686903	A1-	transposable element gene.
AT3633082	5.5251171	-2.55328409	0.515140719	-4.956409611	7.18E-07	$1.01 \mathrm{E}-05$	0	0	0	3.025182302	3.546623725	4.028969492	${ }^{\text {A1- }}$	transposable element gene.
AT3G33085	21.892488	-4.542089839	0.470221791	-9.659462664	4.48E-22	2.39E-20	0	0	0	5.28852909	5.766238278	5.352044354	${ }^{\text {A1- }}$	transposable element gene.
AT3633118	38.368603	-4.674688882	0.469011566	-9.967103624	2.12E-23	1.23E-21	0	0.588988589	0	4.826463083	6.889210391	6.422833926	${ }^{\text {A1- }}$	transposable element gene.
AT3G33118	2.109054	-0.793190553	0.153195538	-5.177634821	2.25E-07	2.51E-05	0	0.940325156	0	4.122374089	5.187849466	4.383282909	${ }^{\text {A2 }+}$	transposable element gene.
AT3G33225	29.309066	-4.93668197	0.459687236	-10.66740126	1.45--26	1.01E-24	0	0	0	5.861134793	6.244071671	5.48961735	${ }^{\text {A1- }}$	transposable element gene.
AT3633225	112.83328	-6.652854233	0.488588328	-13.61787572	3.14E-42	5.63E-40	0	0	0	8.577394037	7.260839943	7.176346529	${ }^{\text {Al+ }}$	transposable element gene.
AT3633225	15.145459	-1.07720635	0.164741541	-6.538765788	6.20E-11	9.82E-09	0	0	0	4.942735706	5.100202951	4.848821471	${ }^{\text {A2 } 2+}$	transposable element gene.
AT3633575	12.487391	-2.886419236	0.514183764	-5.22462867	1.75-07	2.70E-06	0	0.588988589	0	3.395221171	5.901330042	2.833863982	$\mathrm{Al}^{\text {- }}$	transposable element gene.
AT3633575	13.984532	-3.349257118	0.57841	-5.79045507	7.02E-09	1.16E-07	0	0.626414477	0	5.257479592	5.396254736	2.58406216	${ }^{\text {A1+ }}$	transposable element gene.
AT3G33575	18.11128	-2.638439733	0.455165966	-5.796554257	6.77E-09	2.05E-07	0	0.557947347	0	6.394694577	4.262230145	2.975939682	A2.	transposable element gene.
AT3G33595	26.74328	-3.249166563	0.495393099	-6.558764288	5.43E-11	$1.27 \mathrm{E}-09$	0.602380384	1.329166983	0.653468127	4.700053001	6.889210391	4.028969492	${ }^{\text {A1- }}$	transposable element gene.
AT3633595	22.066609	-3.826915759	0.514835037	-7.433285392	1.06--13	3.15E-12	0.640148721	1.395704924	0.694589061	5.379864119	6.102225836	4.474701533	A1+	transposable element gene.
AT3G33595	25.203309	-2.825248568	0.450768331	-6.26728878	3.67-10	1.40E-08	0.569648577	1.272930575	0.620679049	6.769243841	4.863479393	3.764554301	A2.	transposable element gene.
AT3635707	9.8223825	-3.16904033	0.508915071	-6.22705087	4.75E-10	1.00E-08	0	0	0	4.142578534	5.046836798	3.487531741	${ }^{\text {A1- }}$	transposable element gene.
AT3635707	36.849491	-5.32734791	0.520958253	-10.22605531	$1.52 \mathrm{E}-24$	${ }^{1.08 E-22}$	0	-	0	6.880650939	$5.883728226{ }^{5}$	5.561184823	${ }^{\text {A1+ }}$	transposable element gene.
AT3G38525	40.879693	-5.040184159	0.448664724	-11.23374292	2.788-29	2.24 -27	0	0.588988589	0	5.890375522	7.013726692	5.888334403	A1-	transposable element gene.
AT3642090	. 4812018	-2.578168034	0.513046418	-5.025213986	5.03E-07	7.25E-06	0	0	0.653468127	3.816762292	4.089833736	3.349749908	A1-	transposable element gene
AT3642090	5.712595	-2.644721916	0.586851391	-4.540709895	5.61-06	5.83E-05	0	0	0.694589061	4.021446993	3.416037926	3.284432598	${ }^{\text {Al+ }}$	transposable element gene
AT3642110	5.3191423	-2.231507722	0.515140406	-4.331843701	1.48E-05	0.000164938	0	0	0.653468127	3.025182302	4.089833736	3.197406586	${ }^{\text {A1- }}$	transposable element gene
AT3642110	5.0741262	-2.540643388	0.588758523	-4.315255386	1.59E-05	0.000152057	0	0	0.694589061	3.480233365	3.416037926	3.458449401	${ }^{\text {A1+ }}$	transposable element gene
AT3642181	17.33479	-3.518097774	0.583310709	-6.031258672	1.63E-09	2.96E-08	0	0	0	6.332434805	4.164272639	3.086509522	A1+	transposable element gene
AT3642360	5.3316588	-1.776474072	0.499759676	-3.554656684	0.000378473	0.00305838	0	0	0	1.131025967	4.792504907	2.346684959	A1-	transposable element gene.
AT3642360	61.889198	-5.881049952	0.50849479	-11.56560513	6.16E-31	6.13E-29	0	0	0	7.468440023	7.142351722	5.806293747	${ }^{\text {Al+ }}$	transposable element gene.
AT3642360	18.030593	-1.227802823	0.169442748	-7.246122011	4.29E-13	8.51E-11	0	0	0	5.284029613	5.187849466	5.160701666	${ }^{\text {A2 }+}$	transposable element gene.
AT3642718	87.627887	-6.42224585	0.415738921	-15.44778528	7.811-54	1.62E-51	0	0	0	7.215075738	7.74621963	7.370541662	${ }^{\text {A1- }}$	transposable element gene.
AT3642718	7.0530923	-0.58802127	0.137977352	-4.261723108	2.03E-05	1.62E-03	0	0	0	3.94151438	4.00355019	3.798546962	${ }^{\text {A2 }}$	transposable element gene.
AT3642719	545.38912	-8.604455566	0.379333319	-22.68309991	6.58E-114	8.89E-111	0	0	0	10.01075889	10.50070158	9.634467339	${ }^{\text {A1- }}$	transposable element gene.
AT3642719	36.453085	-1.769905593	0.178199688	-9.932147531	3.02E-23	1.29E-20	0	0	0	6.303376628	6.477159848	5.745576041	${ }^{\text {A2 }+}$	transposable element gene.
AT3643000	14.001389	-3.697681479	0.490145264	-7.544052248	4.56E-14	1.40E-12	0.602380384	0	0	4.408199229	4.483532941	5.422470072	Al^{-}	transposable element gene.
AT3643000	14.47937	-3.368654773	0.578486232	-5.823223763	5.77E-09	$9.66 \mathrm{E}-08$	0.640148721	0	0	5.829815291	4.654502272	2.857049598	${ }^{\text {Al+ }}$	transposable element gene.
AT3643154	27.52176	-4.69357943	0.453613572	-10.34788775	4.311-25	2.72E-23	0	0	0.653468127	5.530616574	6.13861985	5.674125282	A1-	transposable element gene.
AT3643154	27.68147	-4.781751781	0.522880327	-9.145021397	5.966-20	2.98E-18	0	0	0.694589061	6.476563218	5.310931324	5.31182967	${ }^{\text {A1+ }}$	transposable element gene.
AT3643303	6.4436442	-2.74461034	0.514380899	-5.335754777	9.51--08	1.53E-06	0	0	0	3.222033331	4.089833736	3.935732613	${ }^{\text {A1- }}$	transposable element gene.
AT3643680	12.164335	-3.388499008	0.501074909	-6.762360176	1.36E-11	3.388-10	0.602380384	0	0	4.236658341	3.546623725	5.48961735	${ }^{\text {A1- }}$	transposable element gene
AT3643680	18.159338	-3.836278298	0.564162074	-6.799957802	1.05E-11	2.53E-10	0.640148721	0	0	6.205775127	4.346824447	4.107506639	A1+	transposable element gene
AT3643863	275.33593	-7.499753039	0.373244631	-19.95943792	1.24-88	9.11E-86	0.602380384		1.101575979	8.705806974	9.52803634	8.95859549	${ }^{\text {A1- }}$	transposable element gene
AT3643863	206.73714	-7.278904671	0.424544257	-17.14521998	6.82E-66	3.58E-63	0.640148721	0	1.111466416	9.209353554	8.33388297	8.353172208	${ }^{\text {Al+ }}$	transposable element gene
AT3643863	19.72199	-1.08110186	0.167436252	-6.456796835	1.07E-10	1.66E-08	0.954186367	0	1.618012324	5.428511294	5.655788051	4.634749171	${ }^{\text {A2 }}$	transposable element gene
AT3645380	11.27346	-3.608644728	0.576026909	-6.264715534	3.74E-10	7.39E-09	0	0	0	5.379864119	3.955228997	3.753887089	${ }^{\text {A1+ }}$	transposable element gene
AT3647330	3.4989367	-2.014181299	0.508489254	-3.96110888	7.46E-05	0.000724835	0	0	0	3.395221171	2.665086523	2.833863982	${ }^{\text {A1- }}$	transposable element gene
AT3647330	9.5586525	-3.611570629	0.573163379	-6.301118954	2.96E-10	5.95E-09	0	-	0	3.684038477	4.508850015	4.628319815	${ }^{\text {Al+ }}$	transposable element gene
AT3647330	13.361503	-0.87622966	0.155826469	-5.623111807	1.888-08	$2.30 \mathrm{E}-06$	0	0	0	4.49483273	5.348623431	4.312916238	$\mathrm{A}^{2}+$	transposable element gene
AT4603760	37.837848	-4.415376793	0.482752413	-9.146255254	5.89E-20	2.74E-18	0	0	0.653468127	4.56149373	5.901330042	7.190537934	${ }^{\text {A1- }}$	transposable element gene.
AT4603760	103.89141	-6.483885173	0.475707123	-13.62894281	2.69E-42	4.88E-40	0		0.694589061	8.386201366	7.066287353	7.295842604	${ }^{\text {Al+ }}$	transposable element gene.
AT4603760	17.14851	-1.024306323	0.163885995	-6.265407157	3.72E-10	5.41E-08	0	0	1.024858076	4.679457118	5.655788051	4.848821471	${ }^{\text {A2 }+}$	transposable element gene.
AT4603825	8.1104258	-2.940308596	0.51226573	-5.739811247	9.48E-09	1.73E-07	0	0	0	3.549829232	4.792504907	3.613294506	A1-	transposable element gene.
AT4603825	4.6831497	-2.015817613	0.585001693	-3.445832101	5.69E-04	3.73E-03	0	0	0	4.524364692	2.545235219	1.169324837	${ }^{\text {A1+ }}$	transposable element gene.
AT4604165	49.389387	-5.263816353	0.448100796	-11.74694711	7.32-32	6.51E-30	0.602380384	0	0	5.769679089	6.602405842	7.200593083	${ }^{\text {A1- }}$	transposable element gene.
AT4604293	32.58354	-3.250818271	0.400543708	-8.116013826	4.82E-16	1.74E-14	1.844424819	2.710637931	2.149802177	6.588138176	5.45092181	5.553777891	${ }^{\text {A1- }}$	transposable element gene.
AT4G04293	33.644278	-3.086520941	0.475269523	-6.494253879	8.34-11	1.81E-09	1.923129797	2.803425391	2.235892529	6.795247521	5.760416915	4.767143513	${ }^{\text {Al+ }}$	transposable element gene.
AT4604293	43.007878	-1.578184548	0.180225581	-8.756717772	2.011-18	6.68E-16	2.507777703	3.473600888	2.849710139	6.165825564	6.405840287	6.382943012	${ }^{\text {A2 }+}$	transposable element gene.
AT4605588	63.105482	-5.855229904	0.434563446	-13.4738206	2.23E-41	3.02E-39	0	0	0	6.457471803	7.470110277	6.863502253	${ }^{\text {A1- }}$	transposable element gene.
AT4605591	124.29906	-6.576570402	0.422825248	-15.55387347	1.50-54	3.15E-52	0	0	0	7.459031716	8.611075358	7.506442044	Al^{-}	transposable element gene.
AT4G65633	108.86617	-6.620271527	0.413796801	-15.99884658	1.30-57	${ }^{3.076-55}$	0	0	0	7.488814065	8.203817522	7.506442044	${ }^{\text {A1- }}$	transposabale element gene
AT4606507	11.69938	-3.57521854	0.499354778	-7.159676241	8.09E-13	2.23E-11	0	0	0	4.142578534	5.046836798	4.488922482	A1-	transposable element gene.
AT4G06507 AT4G06511	3.7757341	-2.104507392	0.587791182	-3.580365706	3.43E-04	2.38E-03	0	0	0	4.021446993	1.773370384	2.58406216	${ }^{\text {Al+ }}$	transposable element gene.
AT4G06511	14.439967	-3.832015757 -3.77533597 -7272	${ }^{0.492526704}$	${ }^{-7.780320789}$	7.23E-15	2.37E-13	\bigcirc	0	0	${ }^{4.486881573}$	5.45092181	${ }_{3}^{4.75313887089}$	$\frac{A_{1-}^{-}}{A_{1}+}$	transposable element gene.
AT4606517	267.08209	-7.712727573	0.39387402	-19.58171185	2.21--85	1.39E-82	0	0	0	8.734388377	9.52803634	8.785697042	A1-	transposable e ement gene.

AT4G606517	141.59751	-4.26604675	0.578490415	-7.374446734	1.65-13	4.81E-12	0	0	0	9.128732856	\|6.929859918	7.416778359	A1+	transposable element gene.
AT4606517	25.619871	-1.329504318	0.171160932	-7.767568824	8.000-15	2.018-12	0	0	0	5.943345982	6.008550051	4.945015614	A2+	transposable element gene.
AT4606518	5.971906	-2.448127341	0.514979365	-4.753835797	2.008-06	$2.60 E_{-05}$	0	0	0	3.222033331	4.483532941	2.833863982	A1-	transposable e ement gene.
AT4606518	13.80013	-3.619401566	0.578357634	-6.258068278	3.908-10	$7.66 \mathrm{E}-09$	0	0	0	5.829815291	4.164272639	3.458449401	A1+	transposable element gene.
AT4606530	254.59402	-7.50298739	0.403848884	-18.57871864	4.788-77	2.45E-74	0	0	0	8.607985689	9.599326334	8.510574946	A1-	transposable element gene.
AT4606531	292.91697	-7.694052098	0.38690458	-19.88617478	5.366-88	3.72E-85	0.602380384	0	0	9.102386631	9.619064584	8.727774169	A1-	transposable element gene.
AT4606531	11.121303	-0.689991074	0.146792536	-4.70045066	2.60E-06	2.47E-04	0.954186367	0	0	3.94151438	5.2297536	3.991107087	${ }^{\text {A2 }}$	transposable element gene.
AT4606533	11.042375	-3.465179575	0.502036634	-6.90224443	5.12E-12	1.32E-10	0	0	0	4.236658341	5.046836798	4.116544802	${ }^{\text {A1- }}$	transposable e ement gene.
AT4606533	6.154328	-2.555797231	0.592380694	-4.314450586	1.60E-05	1.52E-04	0	0	0	4.812122267	2.545235219	2.58406216	${ }^{\text {A1+ }}$	transposable element gene.
AT4606541	8.5589782	-2.582851061	0.51513939	-5.013887721	5.33E-07	$7.68 \mathrm{E}-06$	0	0	0	2.526213436	5.26298884	3.349749908	A1-	transposable e ement gene.
AT4606541	15.365525	-3.356452892	0.586110434	-5.726656095	1.02E-08	$1.65 \mathrm{E}-07$	0	0	0	6.172293093	2.545235219	4.107506639	${ }^{\text {A1+ }}$	transposable element gene.
AT4G06544	21.338259	-4.392072206	0.476667112	-9.21412889	3.14E-20	1.50E-18	0	0	0	4.826463883	5.901330042	5.422470072	A1-	transposable element gene.
AT4606544	19.115048	-1.15706901	0.166875957	-6.933707092	4.10e-12	7.37E-10	0	0	0	4.679457118	5.624714968	5.416998382	${ }^{\text {A2 }+}$	transposable e ement gene.
AT4606575	23.04412	-4.373818842	0.478481575	-9.141039217	6.198-20	$2.87 \mathrm{~F}-18$	0	0	0	4.94268382	6.244071671	5.117444234	${ }^{\text {A1- }}$	transposable element gene.
AT4606575	24.435121	-4.521772692	0.552314924	-8.186946429	2.688-16	1.01E-14	0	0	0	6.53041085	5.019733684	4.628319815	${ }^{\text {Al+ }}$	transposable element gene.
AT4606592	15.684064	-3.623803066	0.491399001	-7.374461603	1.655-13	4.84E-12	0.602380384	0	0	4.142578534	5.766238278	4.614569198	Al^{-}	transposable e element gene.
AT4606603	33.299115	-2.133780476	0.39248489	-5.436592699	5.43E-08	$9.04 E-07$	2.744250341	3.403219343	2.622111348	5.050236022	5.046836798	5.811684378	${ }^{\text {A1- }}$	transposable e ement gene
AT4606603	48.515405	-3.243955205	0.346996517	-9.348667904	8.888-21	${ }^{4.73 E-19}$	2.836608464	3.502171281	2.714973081	6.773082659	6.499608502	6.173860166	${ }^{\text {Al+ }}$	transposable element gene
AT4606615	237.5282	-7.663820786	0.390602911	-19.6204907	$1.03 \mathrm{E}-85$	6.64--83	0	0	0	8.820385499	9.214402996	8.577693032	Al^{1}	transposable element gene.
AT4G06615	202.63544	-7.792073358	0.443980735	-17.55047629	5.90E-69	3.52E-66	0	0	0	8.981855885	8.35534989	8.591379361	${ }^{\text {A1+ }}$	transposable element gene.
AT4G06615	16.075849	-1.063032713	0.163948836	-6.483929609	8.94E-11	${ }^{1.41 E-08}$	0	0	0	5.123451569	5.348623431	4.575871343	${ }^{\text {A2+ }}$	transposable e ement gene.
AT4G06664	6.5151406	-2.745795837	0.514588538	-5.335905553	9.51E-08	1.53E-06	0	0	0	4.408199229	3.546623725	3.197406586	${ }^{\text {A1- }}$	transposable element gene.
AT4606672	5.2407417	-2.540273125	0.515141079	-4.931218317	8.17E-07	1.14E-05	0	0	0	3.395221171	3.546623725	3.613294506	A1.	transposable element gene
AT4606672	19.501432	-4.728714589	0.532525521	-8.879789604	6.70¢-19	3.12E-17	0	0	0	5.257479592	5.476812514	5.218117061	${ }^{\text {A1+ }}$	transposable element gene
AT4606704	139.67408	-6.840427161	0.412867153	-16.56810698	1.188-61	3.11--59	0	0	0	7.757664216	8.669032662	7.76544644	${ }^{\text {A1- }}$	transposable element gene.
AT4606704	11.739493	-0.863025863	0.155335619	-5.548734537	2.88E-08	3.48E-06	0	0	0	4.679457118	4.854512068	4.238940698	${ }^{\text {A2 }}$	transposable e ement gene.
AT4606712	8.7379149	-3.125373588	0.510282716	-6.124782261	9.08E-10	1.88E-08	0	0	0	4.764642118	4.089833736	3.487531741	A1-	transposable element gene.
AT4606720	992.03935	-9.233090089	0.364091501	-25.3592574	7.10E-142	1.52E-138	0	0.588988589	0	10.78722857	11.36061969	10.60545376	${ }^{\text {A1- }}$	transposable element gene.
AT4606720	70.566226	-2.437182913	0.180083665	-13.53361458	9.90e-42	1.05E-38	0	0.940325156	0	7.294214054	7.350593615	6.718522526	$\mathrm{A}^{\text {2 }+}$	transposable element gene.
AT4G06736	397.52263	-8.111417954	0.391385179	-20.7248981	2.07E-95	1.97E-92	0	0	0	9.531536734	10.13308726	9.036445373	${ }^{\text {A1- }}$	transposable e ement gene.
AT4606736	14.90054	-0.966198681	0.159983953	-6.039347476	1.55E-09	2.12e-07	0	0	0	4.990080801	5.348623431	4.312916238	${ }^{\text {A2 }+}$	transposable element gene.
AT4606738	53.819847	-5.55927784	0.444858094	-12.49674416	7.78E-36	8.29E-34	0	0	0	6.588138176	7.333420192	6.096513381	A1-	transposable element gene.
AT4607485	9.231492	-3.019641153	0.589596874	-5.121535213	3.03E-07	3.94E-06	0	0	0	5.379864119	3.04536424	3.086509522	${ }^{\text {A1+ }}$	transposable element gene
AT4607490	38.764314	-5.011670636	0.524664153	-9.552149891	1.27e-21	7.17e-20	0.640148721	0	0	7.127736197	5.760416915	5.356497891	A1+	transposable element gene
AT4607490	13.885022	-0.906307289	0.158877092	-5.704455441	1.17E-08	1.48E-06	0.954186367	0	0	4.204956009	5.006885355	5.120067235	${ }^{\text {A2 }+}$	transposable element gene
AT4607493	18.758468	-3.821530272	0.575770633	-6.637244163	3.20E-11	7.31--10	0		0	6.391824885	3.710677785	4.208431314	${ }^{\text {A1+ }}$	transposable element gene
AT4607520	9.9149059	-3.72463792	0.568841125	-6.547764846	5.84--11	$1.29 \mathrm{E}-09$	0	0	0	4.021446993	4.508850015	4.553554369	Al^{+}	transposable element gene
AT4607570	12.65178	-3.831583899	0.492754266	-7.775851298	7.49e-15	2.45E-13	0	0	0	4.700053001	4.483532941	4.936752096	${ }^{\text {A1- }}$	transposable element gene.
AT4607570	4.4274716	-1.875969221	0.580388893	-3.23274788	0.001228089	0.00723452	0	0	0	4.414102287		2.857049598	A1+	transposable e ement gene.
AT4607605	325.03493	-8.053038867	0.38397787	-20.97266402	1.17E-97	1.15E-94	0	0	0	9.30055017	9.657748378	9.008099567	${ }^{\text {A1- }}$	transposable element gene.
AT4607605	41.312447	-1.886360377	0.179068279	-10.53430782	${ }^{6.006-26}$	$2.90 e^{23}$	0	0	0	6.186297032	6.6774769702	6.099174679	${ }^{\text {A2 } 2+}$	transposable element gene.
AT4607936	7.0387163	-2.928631299	0.512400757	-5.715509315	1.09E-08	$1.98 \mathrm{E}-07$	0	0	0	3.689460601	4.089833736	3.935732613	A1-	transposable element gene.
AT4607939	5.477956	-2.298376164	0.515098288	-4.46201476	8.12E-06	9.53E-05	0	0.588988589	0	3.025182302	4.089833736	3.349749908	${ }^{\text {A1- }}$	transposable element gene.
AT4607939	9.2816386	-3.031238869	0.583023552	-5.199170524	2.00E-07	2.69E-06	0	0.626414477	O	5.192160237	3.710677785	3.086509522	${ }^{\text {A1+ }}$	transposable element gene.
AT4608710	18.242485	-4.112197852	0.473716567	-8.680713609	3.93E-18	1.65E-16	0.602380384	0	0	4.826463883	5.45092181	5.315498883	${ }^{\text {A1- }}$	transposable element gene
AT4608710	19.754522	-4.500231872	0.526332181	-8.550172276	1.23 E-17	5.19E-16	0.640148721		0	4.977329861	-5.220242777	5.706299342	${ }^{\text {A1+ }}$	transposabale element gene
AT4609370	4.8141786	-2.310108094	0.513891088	-4.495326242	6.95E-06	8.28E-05	0	0	0	3.816762292	3.546623725	2.610741738	${ }^{\text {A1- }}$	transposable element gene
AT4609370	7.6704513	-2.728630574	0.592120292	-4.68823899	4.06E-06	4.35E-05	0	0	0	1.429370861	4.346824447	4.699400813	${ }^{\text {Al+ }}$	transposable element gene
AT4G09425	43.944173	-4.030065422	0.423810423	-9.509122947	1.92E-21	1.07e-19	1.419792043	2.419481965	2.032847348	6.773082659	5.553108971	6.657141708	${ }^{\text {A1+ }}$	transposable element gene
AT4622450	6.3277778	-2.504418635	0.515028901	-4.862675922	1.16E-06	$1.58 \mathrm{E}-05$	0	0	0	4.236658341	4.089833736	2.346884959	${ }^{\text {A1- }}$	transposable element gene
AT4628960	7.008868	-2.831475908	0.513760377	-5.5127731	3.56E-08	${ }^{6.04 E-07}$	0	0	0	4.236658341	4.089833736	3.197406586	${ }^{\text {A1- }}$	transposable element gene
AT4628960	9.9205964	-2.934219413	0.590921074	-4.965501388	6.85E-07	8.44E-06		0	0	1.429370861	4.786788781	5.010180294	A1+	transposable element gene
AT5627160	15.602356	-3.336432464	0.580763795	-5.744904374	9.20e-09	$1.49 \mathrm{E}-07$	0.640148721	0	0	2.133098153	5.553108971	5.482759454	${ }^{\text {Al+ }}$	transposable element gene
AT5627180	14.394349	-3.196834036	0.588567328	-5.431551981	5.59E-08	8.13E-07	0	0	0	1.429370861	5.553108971	5.31182967	${ }^{\text {A1+ }}$	transposable element gene
AT5628430	23.194579	-1.931328291	0.421259382	-4.584653482	4.55E-06	5.58E-05	3.045280967	3.098095738	2.622111348	4.041933031	5.901330042	5.522054265	${ }^{\text {A1- }}$	transposable element gene
AT5628430	54.395301	-2.835731514	0.51177471	-5.540975597	3.01E-08	4.55E-07	3.140591735	3.194694888	2.714973081	3.684038477	7.040014478	7.35207296	A1+	transposable e ement gene
AT5628870	7.2559274	-2.854174015	0.513944674	-5.53365497	2.806-08	4.83E-07	0	0	0	3.222033331	3.546623725	4.673513852	A1-	transposable element gene.
AT5629058	8.980953	-3.425227195	0.579188404	-5.91383939	3.34E-09	5.78E-08	0	0	0	3.242825326	4.654502272	4.474701533	A1+	transposable e ement gene.
AT5629408	22.920361	-4.845329052	0.531278785	-9.120125224	7.50¢-20	3.74E-18	0	0	0	5.051918249	5.997324674	5.441888867	${ }^{\text {A1+ }}$	transposable element gene
AT5G30762	88.271032	-6.215060583	0.428230511	-14.51335302	9.97E-48	1.74E-45	0	0	0	6.878163103	8.037766677	7.249843723	A1-	transposable element gene.
AT5G30762	87.864101	-6.770612261	0.466264455	-14.52097022	${ }^{8.92 E-48}$	${ }^{2} .188 \mathrm{E}-45$	0	0	0	7.245106023	7.423388886	7.667809819	${ }^{\text {A1+ }}$	transposable element gene.
AT5G30762	8.2796609	-0.650685782		-4.560717097	5.108-06	0.000459694		0	0	4.357162671	4.267697174	3.691684035		transposable element gene.

AT5630852	20.374557	-4.255527317	. 481951325	-8.829786537	1.05E-18	4.52E-17	0	0	0	4.56149373	[5.901330042	5.387689903	A1-	transposable element gene.
AT5631302	14.217857	-3.938007026	0.489184408	-8.050148297	8.277-16	2.95 E-14	0	0	0	4.94268382	5.046836798	4.614569198	A1-	transposable element gene.
AT5631302	6.154328	-2.555797231	0.592380694	-4.314450586	1.600-05	0.000152499		0	0	4.812122267	2.545235219	2.58406216	${ }^{\text {A1+ }}$	transposable element gene.
AT5632107	136.35825	-6.783069573	0.385305431	-17.60439649	2.288-69	8.61E-67	0	0.588988589	0.653468127	7.857284392	8.328940593	8.058669198	${ }^{\text {Al- }}$	transposable element gene.
AT5632107	66.2424	-5.537367429	0.50027827	-11.06857476	1.788-28	1.56-26	0	0.62641447	0.694589061	7.915565832	6.420348952	6.173860166	${ }^{\text {Al+ }}$	transposable element gene.
AT5632107	23.499132	-1.361568254	0.173942021	-7.827713204	4.97E-15	1.288-12	0	0.940325156	1.024858076	5.590875464	5.801843191	5.238690264	A^{2+}	transposable element gene.
AT5632228	108.72814	-6.745192619	0.407087983	-16.56937298	1.168-61	3.07--59	0	0	0	7.571623371	7.915397839	7.80552781	A1-	transposable element gene.
AT5632228	63.885227	-5.896961252	0.509395484	-11.57639091	5.43E-31	5.43E-29	0	0	0	7.799743361	6.423348952	${ }^{6.293554041}$	${ }^{\text {Al+ }}$	transposable element gene.
AT5632228	20.051301	-1.241839337	0.169490971	-7.32687604	2.366-13	4.97E-11	0	0	0	5.358078375	5.886205962	4.945015614	A^{2+}	transposable element gene.
AT5632241	13.284003	-3.797216667	0.493645304	-7.692196474	1.45E-14	4.65E-13	0	0	0	4.324976877	5.046836798	4.887807353	A1-	transposable element gene.
AT5632312	5.2578319	-2.571805006	0.515140281	-4.992436235	5.966-07	8.52E-06	0		0	3.689460601	2.655086523	3.935732613	A1-	transposable element gene
AT5G32312 ${ }^{\text {2 }}$	2.5728345	-1.827535357	0.579444091	-3.153945974	1.61-03	0.009108675	0	0	0	2.958502988	1.773370384	2.857049598	${ }^{\text {Al+ }}$	transposable element gene
AT5632405	6.5580989	-2.616643183	0.51271005	-5.103553525	3.33E-07	4.94--06	0.602380384	0	0	3.395221171	4.889833736	3.83605124	A1-	transposable element gene
AT5632405	4.0497877	-2.207408884	0.592357433	-3.726481281	1.94E-04	0.001432921	0.640148721	0	0	3.480233365	2.545235219	3.284432598	Al^{1+}	transposable element gene
AT5632420	7.6337885	-3.06712195	0.510344292	-6.009907424	1.86E-09	3.73E-08	0	0	0	4.041933031	4.089833736	3.935732613	${ }^{\text {Al- }}$	transposabale element gene.
AT5G32420	8.2367697	-3.102718818	0.587534802	-5.280910688	1.29E-07	1.788-06	0	0	0	5.051918249	3.04536424	3.458449401	${ }^{\text {Al+ }}$	transposable element gene.
AT5632434	6.2325286	-2.790469563	0.514061604	-5.428278518	5.69E-08	9.45E-07	0	0	0	4.041933031	3.546623725	3.613294506	${ }^{\text {A1- }}$	transposable element gene.
AT5G32434	6.4150285	-3.090381946	0.585948754	-5.274150558	1.33E-07	1.85E-06	0	0	0	3.480233365	3.710677785	4.107506639	Al^{1+}	transposable element gene.
AT5632473	17.044129	-3.986981473	0.48918138	-8.150313226	3.638-16	$1.33 \mathrm{E}-14$	0	0	0	4.408199229	5.766238278	4.887807353	${ }^{\text {A1- }}$	transposable element gene.
AT5G32473	9.922484	${ }^{-3.6599421}$	0.571870212	-6.399952332	1.55-10	3.25E-09	0	0	0	4.896561069	3.955228997	4.107506639	Al+	transposable element gene.
AT5632483	7.2370737	-2.978930468	0.511697308	5.821665315	5.83E-09	1.09E-07	0		0	3.81676292	4.889833736	3.935732613	A1-	transposable element gene.
AT5632483	3.003126	-1.877612338	0.581215089	-3.230494826	1.24E-03	0.007273047	0	0	0	3.684038477	1.773370384	2.247074573	${ }^{\text {Al+ }}$	transposable element gene.
AT5632488	9.0069636	-3.264555399	0.50661187	-6.44390705	1.166-10	2.61--99	0	0	0	3.933736191	4.483532941	4.277198875	A1-	transposable element gene.
AT5632490	13.771068	-3.95917993	0.489261679	-8.09214815	5.86E-16	2.11--14	0	0		4.88574345	4.483532941	5.074348265	A1-	transposable element gene.
AT5632490	7.3300222	-2.8496939	0.591063945	-4.821295434	1.438-06	1.66E-05	0	0	0	4.976329861	3.04536424	2.857049598	${ }^{\text {Al+ }}$	transposable element gene.
AT5G32495	213.13654	-7.365784333	0.388659727	-18.95175604	4.27E-80	2.29E-77	0.602380384	0	0	8.531166023	9.13437142	8.448643443	A1-	transposable element gene.
AT5632495	9.8117616	-0.727069548	0.149981239	-4.847736553	1.25E-06	0.000127275	0.954186367	0	0	4.49483273	4.49888377	3.991107087	${ }^{\text {2 } 2+}$	transposable element gene.
AT5632510	7.1918987	-2.844115206	0.513385328	-5.539923041	3.03E-08	5.18E-07	0	0	0	3.395221171	4.483532941	3.728967903	A1-	transposable element gene.
AT5632511	105.49723	-6.476083907	0.420941086	-15.38477503	2.07E-53	4.22E-51	0	0	0	7.33690362	8.880185693	7.352617396	${ }^{\text {Al- }}$	transposable element gene.
AT5G32511	87.297087	-6.742902359	0.468033481	-14.40688034	4.68E-47	1.03E-44	0	0	0	${ }^{7.720882129}$	7.16684068	7.427285971	${ }_{\text {Al+ }}$	transposable element gene.
AT5632511	14.336701	-0.945650013	0.159132987	-5.942514078	2.81--09	3.75E-07	0	0	0	5.205973566	5.054298527	4.238940698	${ }^{\text {A2 }}$	transposable element gene.
AT5632515	26.220799	-4.86742007	0.460319589	-10.5740016	3.93E-26	2.65E-24	0	0	0	5.672031041	5.517177427	5.913005388	A1-	transposable element gene.
AT5G32515	101.44194	-4.081239332	0.580742123	-7.027627528	2.108-12	5.49E-11	0	0	0	5.786213592	8.267496444	7.956025915	${ }^{\text {Al+ }}$	transposable element gene.
AT5G32516	12.634525	-3.24693402	0.509995316	-6.366595766	1.938-10	4.23E-09	0	0	0	2.797162804	5.046836798	5.278003551	A1-	transposable element gene.
AT5G32516	14.7594	-4.252176722	0.552025347	-7.702864992	1.338-14	4.29E-13	0	0	0	5.379864119	4.654502272	4.628319815	${ }^{\text {Al+ }}$	transposable element gene.
AT5G32516	7.9215794	-0.630099433	0.141169359	-4.463429156	8.07E-06	7.08E-04	0	0	0	4.357162671	4.097076912	3.691684035	${ }^{\text {A2 }}$	transposable element gene.
AT5632517	18.965438	-4.057506393	0.48796638	-8.315135147	9.16-17	3.51E-15	-	0	0	4.764642118	6.024848039	4.614569198	${ }^{\text {A1- }}$	transposable element gene.
AT5632517	13.961474	-3.555599316	0.580449837	-6.12559275	9.038-10	1.69E-08	0	0	0	5.913254063	3.955228997	3.458449401	${ }_{\text {Al+ }}$	transposable element gene.
AT5G32520	6.848218	-2.630365522	0.515140651	-5.106113284	3.29E-07	4.88E-06	0	0	O	3.025182302	2.665086523	4.887807353	${ }^{\text {A1- }}$	transposable element gene.
AT5632520	5.9309944	-2.106951447	0.586971466	-3.589529591	3.311-04	2.31--03	0	0	0	0	4.346824447	4.107506639	${ }^{\text {Al+ }}$	transposable element gene.
AT5632591	7.5715233	-2.781592755	0.514067011	-5.410953623	6.27]-08	1.04E-06	0	0	0	3.395221171	4.792504907	3.349749908	${ }^{\text {A1- }}$	transposable element gene.
AT5632591	5.8784712	-2.847949912	0.590250971	-4.824972851	1.40--06	$1.63 \mathrm{E}-05$	0	0	0	4.16453883	3.710677785	2.857049598	${ }^{\text {Al+ }}$	transposable element gene.
AT5632623	62.218994	-2.88115926	0.592263874	-4.864654753	1.15E-06	1.36-05	0	0	0.694589061	4.414102287	7.214605745	7.685425298	${ }^{\text {Al+ }}$	transposable element gene.
AT5632623	28.884203	-1.410869885	0.173542835	-8.129807728	4.308-16	1.22E-13	0	0	1.024858076	5.245529421	6.330810854	5.798037166	${ }^{\text {A2+ }}$	transposable element gene.
AT5632630	4.7579157	-1.895588785	0.515001896	-3.680741369	0.000232557	0.001993377	0.602380384	1.006034927	0	3.025182302	3.546623725	3.349749908	${ }^{\text {A1- }}$	transposable element gene.
AT5632630	35.226609	-3.010235297	0.589207832	-5.108953303	3.24E-07	4.19E-06	0.640148721	1.061739724	0	0	6.336480569	7.032350776	Al^{+}	transposable element gene.
AT5632726	26.800544	-4.851990243	0.461536679	-10.51288612	7.55E-26	5.03E-24	0	0	0	5.492985692	5.766238278	6.007675152	A1-	transposable element gene.
AT5632775	13.197985	-3.817627268	0.492496189	-7.751587433	9.088-15	2.95E-13	0	0	0	4.56149373	5.046836798	4.673513852	A1-	transposable element gene
AT5633150	6.1201893	-2.763380308	0.514294475	-5.373147959	7.74-08	1.26-06	0	0	0	3.549829232	3.546623725	4.028969492	A1-	transposable element gene.
AT5633150	6.2011606	-2.763144317	0.591532367	-4.671163357	2.99E-06	3.31--05	0	0	0	4.626795005	3.04536424	2.857049598	${ }^{\text {Al+ }}$	transposable element gene.
AT5633240	14.536413	-4.041305802	0.486935338	-8.299467772	${ }^{1.05 E-16}$	$3.99 \mathrm{E}-15$	0	0	0	5.050236022	4.4 .483532941	5.117444234	${ }^{\text {A1- }}$	transposable element gene
AT5633240	18.714887	-4.637754159	0.536915131	-8.6372201	5.76E-18	2.48E-16	0	0	0	4.896561069	5.476812514	5.356497891	${ }^{\text {A1+ }}$	transposable element gene
AT5633254	47.555331	-5.652721147	0.435555116	-12.97819941	1.63E-38	1.94E-36	0	0	0	6.533580725	6.752923424	6.456789718	${ }^{\text {A }}$ -	transposable element gene.
AT5633254	22.470994	-4.929930927	0.525750832	-9.36932597	7.30E-21	3.92E-19	0	0	0	5.74125297	5.396254736	5.399824542	${ }^{\text {Al+ }}$	transposable element gene.
AT5633255	105.44682	-6.57970285	0.402274948	16.35623318	3.93E-60	9.89E-58	0	0.588988589	0	7.624786828	7.470110277	8.025113884	A1-	transposable element gene.
AT5633255	57.344516	-6.053831986	0.467921073	-12.93772034	2.766-38	4.096-36	0	0.626414477	0	6.6888523378	6.9895888276	6.877372855	${ }^{\text {Al+ }}$	transposable element gene.
AT563325	14.742384	-1.0010648714	0.163507598	-6.18105045	6.378-10	9.011-08	0	0.940325156	0	4.620502376	5.006885355	5.078255057	${ }^{\text {A2 }}$	transposable element gene.
AT5633384	7.1605157	-2.971755705	0.580381526	-5.120348551	3.05E-07	3.96E-06	0.640148721		0	4.414102287	3.710677785	3.458449401	${ }^{\text {Al+ }}$	transposable element gene.
AT5633387	7.549934	-3.029097404	0.511087721	-5.92676615	3.09E-09	${ }^{6.021-08}$	0	0	0	3.689460601	4.089833736	4.199106927	${ }^{\text {A1- }}$	transposable e element gene.
AT5633387	5.8974304	-2.705263841	0.591919061	-4.570327293	4.87E-06	5.12E-05	0	0	0	2.133098153	3.955228997	4.208431314	${ }_{\text {Al+ }}$	transposable e element gene.
AT5633391	87.362994	-6.494207174	0.413586287	-15.70218206	1.46E-55	3.21-53	0	0	0	7.409395174	7.284819017	7.652776989	${ }^{\text {A1- }}$	transposable element gene.
AT5633391	57.148643	-5.939408823	0.501625828	-11.84031701	2.422-32	2.68E-30	0	0	0	6.030007392	6.841347652	7.373965466	${ }^{\text {Al+ }}$	transposable element gene.

AT5633391	14.016196	-0.922966732	0.158059096	-5.835138591	5.37-09	[6.97E-07	0	0		5.080350208	5.144691693	4.16096601	A2+	transposable element gene.
AT5633427	9.9768948	-3.345466481	0.583097526	-5.737404687	9.61E-09	1.55E-07	0	0		5.319969209	3.416037926	3.6137176	A1+	transposable element gene.
AT5G34623	5.1715913	-2.385348634	0.515006109	-4.331689979	3.63E-06	4.53E-05	0	0.588988589	0	3.689460601	2.665886523	3.83605124	A1-	transposable element gene.
AT5634623	6.4784438	-2.719331581	0.587535942	-4.28836349	3.69E-06	$3.998-05$	0	0.626414477	0	2.604042178	3.955288997	4.302754999	$\mathrm{Al}^{\text {+ }}$	transposable element gene.
AT5634835	3.4259184	-1.643064078	0.503864039	-3.26927454	0.001110484	0.007860908	0	0	0.653468127	1.757146478	2.665086523	3.728967903	A^{1-}	transposable element gene.
AT5634835	6.6124325	-2.818312103	0.583768388	-4.827791568	$1.38 \mathrm{E}-06$	1.61E-05	0	0	0.694589061	3.242825326	4.346824447	3.6137176	Al^{1+}	transposable element gene.
AT5634843	5.5158592	-2.57841138	0.592382088	-4.35261537	1.35E-05	0.00013054	0	0	0	4.524364692	2.545235219	2.857049598	${ }^{\text {Al+ }}$	transposable element gene.
AT5635048	17.167248	-4.05477477	0.47643378	-8.510499981	1.73E-17	7.01E-16	0.602380384	0	0	5.454346907	5.048836798	4.837143627	A1-	transposable element gene.
AT5635048	6.1986894	-2.554255449	0.590536856	-4.32531081	1.52E-05	1.46E-04	0.640148721	0	0	2.133098153	3.95528897	4.302754999	${ }^{\text {Al+ }}$	transposable element gene.
AT5635061	4.8660162	-1.957423842	0.506923916	-3.861375995	${ }^{0.00011275}$	0.001049837	O	0	O	2.526213436	4.483532941	2.023221944	${ }^{\text {Al- }}$	transposable element gene.
AT5635061	6.3005165	-2.771599765	0.591480237	-4.885870454	2.79E-06	3.11E-05	0	0		2.133098153	4.164272639	4.208431314	Al^{+}	transposable element gene.
AT5635145	37.360186	-5.306860058	0.446362674	-11.88912149	1.35-32	1.24E-30	0	0	0	6.00174936	6.434335581	6.259291536	A1-	\|transposable element gene.
AT5635146	32.400293	-5.10264461	0.452691789	-11.27178522	1.81--29	${ }^{1.478-27}$	0	0	0	6.054369667	6.244071671	5.785201876	A1-	transposable element gene.
AT5635146	16.803256	-3.897551643	0.571521998	-6.819600396	9.13E-12	2.23E-10	0	0	0	6.102903647	4.346824447	3.881635851	Al^{1+}	transposable element gene.
AT5635794	4.6456695	-2.314588745	0.514014015	-4.502968161	6.70E-06	$8.00 \mathrm{E}-05$	0	0	0	2.797162804	3.546623725	3.613294506	A1-	transposable element gene
AT5635794	5.2728983	-2.59969325	0.592313581	-4.389048876	1.14E-05	0.000111871	0	0	0	2.133098153	3.95528899	3.881635851	A1+	transposable element gene
AT5636650	55.601656	-2.914816715	0.592314033	-4.921066449	8.61E-07	$1.04 e^{-05}$	0	0	0	4.29471016	7.190920881	7.416778359	Al^{1+}	transposable element gene
AT5636650	20.533907	-1.165026506	0.16698854	-6.980027501	2.95E-12	5.45E-10	0	0	0	4.679457118	5.829360154	5.450160215	${ }^{\text {A2+ }}$	transposable element gene
AT5637385	49.966473	-5.666660556	0.438298081	-12.9287825	3.10--38	3.67--36	0	0	0	6.976880928	6.602405842	6.315890736	${ }^{\text {Al- }}$	transposable element gene
AT5637385	33.846393	-4.490466078	0.568847636	-8.006570399	1.18E-15	4.19e-14	0	0	-	3.480233365	6.610886935	6.602556983	${ }^{\text {Al+ }}$	transposable element gene
AT5637385	8.5258178	-0.604588854	0.138908324	-4.352429259	1.35E-05	0.001112263	0	0	0	3.94151438	4.799921877	3.450888994	${ }^{\text {A2 }}$	transposable element gene
AT5637390	2.9319493	-1.794993304	0.501114007	-3.58200585	0.0003409	0.002792183	0	0	0	3.025182302	2.665886523	2.610741738	A1-	transposable element gene
AT5637390	6.2264784	-2.562952023	0.592386544	-4.326485887	1.52E-05	0.000145393	-	0	0	1.429370861	4.164272639	4.302754999	${ }^{\text {Al+ }}$	transposable element gene
AT5638595	9.1613423	-2.971866038	0.513615409	-5.786169934	7.20E-09	$1.34 \mathrm{E}-07$	0	0	0	4.408199229	0	5.1592901	A1-	transposable element gene
AT5638595	13.366731	-3.144488412	0.589883525	-5.337882113	9.40E-08	1.32E-06	0	0	0	1.429370861	5.476812514	5.168874549	A1+	transposable element gene
AT4606474	9.7575109	-2.928834601	0.579396188	-5.054977339	4.30E-07	5.47E-06	0.640148721	0.626414477	0	5.319969209	3.04536424	3.6137176	Al^{1+}	transposable element gene; retroelement pol polyprotein
AT2609910	21.12784	-3.717153931	0.485248075	-7.60316692	1.85E-14	5.92E-13	0.602380384	0.588988589	0	4.324976877	6.342337877	4.784635763	${ }^{\text {A1- }}$	transposable element gene; similar to ASY2, ONA binding
AT11654430	11.538683	-3.527397112	0.550330927	-6.409592736	1.46E-10	3.066-09	1.082007379	0	0	4.626795005	4.164272639	4.831847463	${ }^{\text {11+ }}$	transposable element gene; similar to AT hook motif-
AT3642100	20.470802	-3.985051845	0.48886798	-8.185076869	2.72E-16	1.02E-14	0.640148721	0.626414477	1.513627237	5.123742659	5.478812514	5.441887867	${ }^{\text {A1+ }}$	transposable element gene; similar to AT hook motif- containing protein-related
AT3642100	18.022249	3.667337502	0.451208367	-8.127813599	4.37-16	1.59E-14	0.602380384	0.588988589	1.442988428	5.150323533	5.046836798	5.315498883	A1-	transposable element gene; similar to AT hook motif- containing protein-related
AT3642100	5.8280072	1.718922919	0.455097361	-3.777044358	1.59E-04	1.80E-03	0.569648577	0.55794734	1.385594591	4.13977271	2.928709658	3.344390632	A2-	transposable element gene; similar to AT hook motif- containing protein-related
AT4601980	21.716676	-3.183229072	0.50614161	-6.289206443	3.19E-10	6.388-09	1.693301494	1.66670863	1.513627237	6.270494512	4.786788781	4.474701533	Al^{+}	transposable element gene; similar to myb family protein
AT4601980	26.786068	-3.700203649	0.403239963	-9.176182888	4.47e-20	2.11E-18	1.619590486	1.593003473	1.442988428	5.492985692	5.901330042	5.730732322	A1-	transposable element gene; similar to myb family protein
AT2607510	6.0512614	2.758010467	0.514509891	-5.360461511	8.30E-08	1.355-06	0	0	0	4.142578534	2.665086523	3.935732613	A1-	transposable element gene; similar to Ulp1 protease family
AT1608740	7.6717875	3.213353548	0.583769548	-5.504489846	3.70e-08	5.52E-07	0	0	0	3.684038477	4.654502272	3.458499401	${ }^{11+}$	transposable element gene; similar to Ulp1 protease family protein
AT1608740	19.046346	-1.070106948	0.163652952	-6.538879606	6.20E-11	9.82E-09	0	0	0	4.559035468	5.856362086	5.160701666	A2+	transposable element gene; similar to Ulp1 protease family protein
AT1621020	7.1813948	-3.06886844	0.586959663	-5.228411834	1.71E-07	2.32E-06	0	0	0	3.480233365	4.654502272	3.284432598	${ }^{\text {A1+ }}$	$\left\lvert\, \begin{aligned} & \text { transposable element gene; similar to Ulp1 protease family } \\ & \text { protein }\end{aligned}\right.$
AT1621020	17.483416	-1.030708196	0.1623197	-6.349865098	2.16 -10	3.288-08	0	0	0	4.49483273	5.715995759	5.035194817	A2+	transposable e element gene; similar to Ulp1 protease family protein
AT1634610	8.9063313	-3.35427951	0.56773693	-5.90815804	3.46E-09	5.96E-08	0.640148721	0	0	3.862584211	4.346824447	4.391288416	Al^{1+}	transposable element gene; similar to Ulp1 protease family protein
AT2614010	4.0057742	-1.655556218	0.505801626	-3.73133441	0.001063623	0.007579306	0.602380384	0	0	1.757146478	4.089833736	2.610741738	A1-	transposable element gene; similar to Ulp1 protease family protein
AT2614010	8.2273884	2.823423178	0.587266581	-4.80773684	1.53E-06	$1.77 \mathrm{E}-05$	0.640148721	0	0	2.133098153	4.654502272	4.474701533	${ }^{\text {A1+ }}$	transposable element gene; similar to Ulp1 protease family protein
AT2629240	7.3617831	-2.976907305	0.580130138	-5.131447428	2.88E-07	3.77E-06	0.640148721	0	0	3.684038477	4.508850015	3.458449401	${ }^{\text {A1+ }}$	transposable element gene; similar to Ulp1 protease family protein
AT2629240	18.844512	-1.054560156	0.164241643	-6.420784275	1.36E-10	${ }^{2.088-08}$	0.954186367	0	0	4.559035468	5.801843191	5.160701666	A2+	transposable element gene; similar to Ulp1 protease family protein
AT3609170	8.2077612	-3.218892902	0.572302279	-5.62446284	1.86E-08	2.89E-07	0.640148721	0	0	3.684038477	4.346824447	4.208431314	${ }^{\text {A1+ }}$	transposable element gene; similar to Ulp1 protease family protein
AT3626530	7.6717875	-3.213353548	0.583769548	-5.504489846	3.70E-08	5.52E-07	0	0	0	3.684038477	4.654502272	3.458449401	Al^{+}	transposable element gene; similar to Ulp1 protease family protein

AT3626530	18.867305	1.071386855	0.163738831	-6.543466614	[6.01E-11	${ }^{9.63 E-09}$	${ }^{0}$	0	0	4.559035468	5.829360154	5.160701666	A2+	transposable e ement gene; similar to Ulp1 protease family protein
AT4604400	14.12851	-3.969424199	0.565396107	-7.020607591	2.211-12	5.77E-11	0	0	0	5.646896475	4.164272639	4.302754999	${ }^{11+}$	transposable element gene; similar to Ulp1 protease family protein
AT4604530	6.0191964	2.466152951	0.514248615	-4.795643355	1.62E-06	2.14E-05	0.602380384	0	0	3.222033331	4.088833736	3.613294506	A1-	transposable element gene; similar to Ulp1 protease family protein
AT4604530	7.1529376	2.906265746	0.582749097	-4.887164738	6.13E-07	${ }^{7.608-06}$	0.640148721	0	0	2.958502988	4.346824447	4.107506639	${ }^{\text {A1+ }}$	transposabble element gene; similar to Ulp1 protease family protein
AT4604530	6.8753685	0.539592529	0.136726358	-3.946514301	7.93E-05	5.66E-03	0.954186367	0	0	3.618975234	4.097076912	3.798546962	${ }^{\text {A2 }}$	transposable element gene; similar to Ulp1 protease family protein
AT4607580	6.0640196	2.692817422	0.514821018	-5.230589517	1.69E-07	2.62E-06	0	0	0	3.222033331	3.546623725	4.199106927	A1-	transposable e ement gene; similar to Ulp1 protease family protein
AT4607580	2.9290879	1.917977401	0.582797775	-3.290982712	0.00099838	0.006033487	0	0	0	3.480233365	1.773370384	2.58406216	A1+	transposable element gene; similar to Ulp1 protease family
AT5644890	7.6717875	-3.213353548	0.583769548	-5.504489846	3.70E-08	5.52E-07	0	0	0	3.684038477	4.654502272	3.458449401	Al^{1+}	transposable element gene; similar to Ulp1 protease family
AT5648890	18.867305	1.071388855	0.163733831	-6.543466614	6.011--11	$9.63 \mathrm{E}-09$	0	0	0	4.559035468	5.829360154	5.160701666	A^{2+}	transposable element gene; similar to Ulp1 protease family protein
AT1617277	8.0652508	-2.706820418	0.514748032	-5.258534758	1.45E-07	2.288-06	0	0	0	3.025182302	5.046836798	3.349749908	A1-	transposable element gene; similar to zinc finger protein
AT2615520	13.558998	-3.596860713	0.48982748	-7.343117438	2.09E-13	6.06E-12	0	0	0.653468127	4.700053001	5.26298084	4.277198875	${ }^{\text {A1- }}$	transposable element gene; similar to zinc finger protein
AT5627500	12.963645	-3.126901056	0.589237179	-5.306693414	1.12E-07	1.56E-06	0	0	0	1.429370861	5.396254736	5.168874449	${ }^{\text {A1+ }}$	transposable element gene; similar to zinc finger protein
AT1661510	6.5960005	-2.930731827	0.589573155	-4.970938388	${ }^{6.66 E-07}$	$8.218-06$	0	0	0	2.604042178	3.95528897	4.391288416	${ }^{\text {Al+ }}$	transposable element gene; transposase 154 family protein
AT1661510	12.700731	-3.463534543	0.505070863	-6.857521983	7.01E-12	${ }^{1.788-10}$	0	0	0	5.331804227	4.792504907	3.487531741	A1-	俍posable lement gene, tran
AT3630820	39.641246	-5.25048676	0.435705375	-12.05054393	1.93E-33	1.81E-31	0.602380384	0	0	6.105138068	6.520816798	6.315890736	A1-	retrotransposon ORF-1 protein
AT3630820	44.402842	5.681771104	0.481833834	-11.7919845	4.29E-32	4.70E-30	0.640148721	0	0	6.704688582	6.152527787	6.545825544	${ }^{\text {A1+ }}$	retrotransposon ORF-1 protein
AT4602960	21.143653	-4.056091184	0.48217195	-8.412125974	4.03E-17	${ }^{1.62 E-15}$	0.640148721	1.061739724	1.161466416	5.192160237	5.553108971	5.441887867	${ }^{\text {A1+ }}$	RE2, retro element 2, a copia-type retrotransposon element containing LTRs and encoding a polyprotein. This retro element exists in two loci in Landsberg erecta but only once in Columbia
AT4602960	14.949411	3.313414293	0.466718157	-7.099390156	1.25E-12	3.41E--11	0.602380384	1.006034927	1.101575979	4.408199229	5.046836798	5.1592901	A1-	RE2, retro element 2, a copia-type retrotransposon element containing LTRs and encoding a polyprotein. This retro element exists in two loci in Landsberg erecta but only once in Columbia
AT1650735	122.61481	-6.854758422	0.479254641	-14.30295678	2.10e-46	4.35E-44	0	0	0	7.110161548	8.544777235	7.827060764	A1+	SADHU NON-CODING RETROTRANSPOSON 8 -1, SADHU8-1
AT1650735	18.891848	-1.124512154	0.165755801	-6.784149606	1.17E-11	2.03E-09	0	0	0	4.942735706	5.801843191	4.897720133	A^{2+}	SADHU NON-CODING RETROTRANSPOSON 8-1, SADHU8-1
AT3602515	111.49392	-3.921817062	0.242097615	-16.19932134	5.10E-59	1.27E-56	3.632364657	3.534563286	3.825554911	7.725574522	7.74621963	7.717232473	A1-	SADHU NON-CODING RETROTRANSPOSON 6 -1, SADHU6-1
AT3602515	105.51688	-3.762202139	0.259473629	-14.49936223	1.22E-47	2.91E-45	3.731919154	3.634383687	3.928250694	7.755208958	7.756542763	7.733965466	Al^{+}	SADHU NON-CODING RETROTRANSPOSON 6 -1, SADHU6-1
AT3631442	3.865358	-1.750651476	0.512320001	-3.47105465	0.000632908	0.004818839	0	1.006034927	0	3.549829232	2.655086523	2.833863982	A1-	SADHU NON-CODING RETROTRANSPOSON 7 -2, SADHU7-2
AT3631442	9.7133564	-3.178999466	0.565177063	-5.624714225	1.86E-08	$2.89 E-07$	0	1.061739724	0	3.684038477	4.786788781	4.302754999	${ }^{\text {Al+ }}$	SADHU NON-CODING RETROTRANSPOSON $7-2$, SADHU7-2
AT3642658	56.470238	-4.666410974	0.352753048	-13.228549	6.00E-40	7.63E-38	2.038898622	1.593003473	1.718867729	6.990447813	6.520816798	6.850788829	${ }^{\text {Al- }}$	SADHU NON-CODING RETROTRANSPOSON 3 3-2, SADHU3-2
AT3642658	74.343944	-5.027691351	0.374933911	-13.4095402	5.32E-41	8.93E-39	2.121326742	1.66670863	1.796470461	7.426453731	7.327526492	6.760480718	Al^{+}	SADHU NON-CODING RETROTRANSPOSON 3 -2, SADHU3-2
AT2610010	6.5637727	2.967269897	0.588694122	-5.040427251	4.64--07	5.87-06	0	0	0	4.29471016	3.955228997	2.857049598	${ }^{\text {Al+ }}$	TNP2-ike transposon protein, putative
AT2610010	31.79599	-5.103404938	0.45245429	-11.27938237	1.66E-29	1.356-27	0	0	0	5.831289127	6.13861985	6.052777968	A1-	TNP2-like transposon protein, putative

Supplementary Table 1: List of transposable elements with at least log2-fold increases (negative log2-fold change) or decreases (positive $\log 2$-fold change) of 2.5 in at least one of the four lines A1+, A1-, A2+ or A2-.

	No of genes	Genes with heritable changes	Percentage heritable changes
Transposable elements			
CACTA-like transposase family (En/Spm)	3	0	0
CACTA-like transposase family (Ptta/En/Spm)	59	39	66.1
CACTA-like transposase family (Tnp1/En/Spm)	18	3	16.7
CACTA-like transposase family (Tnp2/En/Spm)	32	7	21.9
CACTA-like transposase family, putative	4	0	0
copia-like retrotransposon family (Ty1-Copia-element)	19	7	36.8
gypsy-like retrotransposon family (Athila)	59	39	66.1
gypsy-like retrotransposon pseudogene (Athila)	4	4	100
gypsy-like retrotransposon genes and pseudogenes (Athila)	63	43	68.3
gypsy-like retrotransposon family (Ty3-element)	26	16	61.5
hAT-like transposase family (hobo/Ac/Tam3)	12	9	75
Mutator-like transposase family	24	16	66.7
non-LTR retrotransposon family (LINE)	11	8	72.7
transposable element gene	64	37	57.8
transposable element gene; pseudogene, hypothetical protein	86	69	80.2

Supplementary Table 2: Summary of transposable elements with altered transcript levels and their heritability rates. Data were compiled for different categories of transposable elements (S 1 table) that showed at least log2-fold changes of $+/-2.5$ in line A1+ compared to wildtype. For each gene, the values in A1+ and A1- were compared to score the heritability of expression changes.

	baseMean	log2Fold	IfCSE	stat	pvalue	padj	1	2	3	4	5	6	Line	Description
MIRNAS														
AT4G06130	48.823041	2.6616341	0.348037596	7.647547598	2.05E-14	6.52E-13	6.687749963	6.511758058	6.281227452	3.395221171	0	3.935732613	A1-	M1R3932b
AT4G06130	56.134961	2.3431358	0.331764122	7.062655706	1.63E-12	4.31E-11	6.794708176	6.619508776	6.39006114	4.16453883	3.416037926	4.391288416	A1+	M1R3932b
AT4G06130	60.809848	1.0775738	0.262319457	4.107868466	3.99E-05	5.35E-04	6.590660618	6.418172921	6.190579894	5.411740146	5.158863172	5.233721953	A2-	M1R3932b
AT5G04935	29.951077	-5.003175	0.455475867	10.98450158	4.54E-28	3.38E-26	0	0	0	5.861134793	6.13861985	5.758224149	A1-	M1R854b
AT5G04935	18.476253	-3.819838	0.575639136	-6.635820583	3.23E-11	7.37E-10	0	0	0	6.36243543	3.710677785	4.208431314	A1+	M1R854b
AT5G04985	18.992956	-4.38776	0.475560101	-9.226510241	2.80E-20	1.34E-18	0	0	0	5.454346907	5.26298084	5.117444234	A1-	M1R854c
AT5G04985	8.6734198	-3.307702	0.582592139	-5.677560769	1.37E-08	2.16E-07	0	0	0	4.896561069	3.955228997	3.284432598	A1+	M1R854c
AT5G04995	16.571824	-4.208004	0.481002172	-8.748409344	$2.16 \mathrm{E}-18$	9.14E-17	0	0	0	5.197878395	5.046836798	5.029925195	A1-	M1R854a
AT5G04995	9.5193979	-3.570653	0.574916843	6.210729652	5.27E-10	1.02E-08	0	0	0	4.896561069	3.710677785	4.107506639	${ }^{\text {A1+ }}$	M1R854a
NATs														
AT1605147	55.602953	-3.988832	0.381352049	10.45971049	1.32E-25	8.65E-24	2.628119155	2.331571897	1.101575979	6.623396307	7.333420192	. 052777968	A1-	Natural antisense transcript overlaps with AT1G15040
AT1605147	36.593085	-3.503192	0.426228318	-8.219049683	2.05E-16	7.77E-15	2.719161113	2.419481965	1.161466416	5.913254063	6.646150789	5.671366059	A1+	Natural antisense transcript overlaps with AT1G15040
AT1605147	50.075779	-1.829317	0.452272253	4.044725079	5.24E-05	6.77E-04	2.546368521	2.256221163	1.053248618	3.751761308	7.194898619	7.063667894	A2-	Natural antisense transcript overlaps with AT1G15040
AT1G20515	36.490043	3.2198279	0.471245751	6.832587651	8.34E-12	2.05E-10	5.93821284	5.688356515	6.616070483	3.242825326	0	1.806583236	A1+	Natural antisense transcript overlaps with AT1G20520
AT2G05914	130.97942	-6.158549	0.352696197	-17.461342	2.82E-68	9.80E-66	1.619590486	1.329166983	0.653468127	7.864669958	8.352713783	7.812101098	A1-	Natural antisense transcript overlaps with AT2G05915
AT2G05914	86.917578	-5.305366	0.45978717	-11.53874334	8.41E-31	8.32E-29	1.693301494	1.395704924	0.694589061	8.240343172	7.013254259	6.466537287	${ }^{\text {A1+ }}$	Natural antisense transcript overlaps with AT2G05915
AT2G05914	17.889952	-1.00982	0.170991517	5.9505672939	3.51 -09	4.65E-07	2.24791129	1.909535826	1.024858076	5.035921409	5.054298527	5.200222885	A2+	Natural antisense transcript overlaps with AT2G05915
AT2G07213	61.604197	-2.712589	0.333356156	8.137210545	4.04E-16	1.47E-14	3.748167935	3.403219343	4.091061435	5.974701535	7.128344859	7.041870662	A1-	Natural antisense transcript overlaps with AT2G07215
AT2G07335	204.71295	4.2594967	0.307963187	13.83118793	1.65E-43	3.10E-41	8.346436517	8.638298194	8.854750781	3.242825326	3.416037926	4.767143513	A1+	Natural antisense transcript overlaps with AT2G20720
AT2G09885	43.322048	1.8782984	0.365222821	5.142883563	2.711-07	4.07E-06	6.270122728	5.819185431	6.15931073	3.025182302	5.26298084	3.83605124	A1-	Natural antisense transcript overlaps with AT2G47380
AT2G09885	42.045404	2.3501722	0.368886625	6.370987908	1.88E-10	3.88E-09	6.376741883	5.926227133	6.268024009	3.242825326	3.710677785	3.881635851	A1+	Natural antisense transcript overlaps with AT2G47380
AT2G09885	34.146669	2.5441704	0.369242779	6.890237295	5.57E-12	2.75E-10	6.173363621	5.726260252	6.068770621	0	3.44909067	2.749120822	A2-	Natural antisense transcript overlaps with AT2G47380
AT2G36792	982.81518	2.7691232	0.561632593	4.930488851	8.20E-07	9.97E-06	10.49933628	10.8479465	11.18839905	7.697535257	4.907957693	5.356497891	A1+	Natural antisense transcript overlaps with AT2G36790
AT2G36792	1241.0115	0.863097	0.243536863	3.544009519	3.94E-04	3.92E-03	10.29344818	10.64450757	10.98642687	9.999441728	9.963046814	9.0923252	A2-	Natural antisense transcript overlaps with AT2G36790
AT2G36792	2263.4614	0.7865937	0.170552202	3.612040642	3.99E-06	3.66E-04	11.24620047	11.60475651	11.93077862	9.651728572	10.69851526	10.70819435	${ }^{\text {A2 }}$	Natural antisense transcript overlaps with AT2G36790
AT3G01055	54.390945	3.0220773	0.373896769	8.082651678	6.34E-16	2.31E-14	6.61731651	6.704698897	6.66084573	4.16453883	0	3.284432598	A1+	Natural antisense transcript overlaps with AT3G01830
AT4G08285	17.542525	2.9292223	0.523180879	5.560643358	2.69E-08	4.09E-07	4.935457856	4.84448128	5.46889724	2.133098153	0	1.169324837	A1+	Natural antisense transcript overlaps with AT4G30430
AT4G09715	20.361683	2.9701382	0.499284644	5.948787415	2.70E-09	4.75E-08	5.284562511	5.226103179	5.407161218	2.604042178	0	1.169324837	A1+	Natural antisense transcript overlaps with AT4G38560
AT5G03195	105.74101	2.7465586	0.287074818	9.567396353	1.10E-21	5.72E-20	7.494287162	7.240783438	7.889067639	4.700053001	4.483532941	4.553113256	A1-	Natural antisense transcript overlaps with AT5G20720
AT5G03195	118.87937	2.3741958	0.280577995	8.461803224	2.63E-17	1.07E-15	7.601677754	7.348990441	7.998818478	4.976329861	4.907957693	5.482759454	A1+	Natural antisense transcript overlaps with AT5G20720
AT5603195	97.741857	2.7384995	0.294967689	9.284065879	1.63E-20	1.98E-18	7.396776466	7.146773257	7.797601071	3.751761308	4.689499909	4.354624822	A2-	Natural antisense transcript overlaps with AT5G20720
ncRNA														
AT1605913	524.34374	3.7121625	0.264491909	14.03507019	9.51E-45	1.45E-42	9.808132885	10.23482958	9.703019224	5.530616574	6.952811471	5.553777891	A1-	ncRNA
AT1605913	550.20548	4.3674999	0.23246395	18.78785905	9.49E-79	7.87E-76	9.9159845	10.3436432	9.813090394	5.597298362	5.883728226	5.1178917	A1+	ncRNA
AT1605913	483.13673	3.9467849	0.230304717	17.13722999	7.83E-66	1.15E-62	9.710172648	10.14025391	9.611266371	6.077046792	5.512431154	5.437984731	A2-	ncRNA
AT1606407	10.304055	-3.63271	0.573663237	-6.332477475	$2.41 \mathrm{E}-10$	4.92E-09	0	0	0	3.480233365	4.654502272	4.831847463	A1+	ncRNA
AT1606963	14.603947	-3.802096	0.557930763	-6.814636956	9.45E-12	2.30E-10	0.640148721	0	0	4.626795005	5.625572377	3.998987077	A1+	ncRNA
AT1G07343	16.6693705	-2.548344	0.592338632	4.302173569	1.69E-05	1.60E-04	0	0	0	1.429370861	3.710677785	4.767143513	A1+	ncRNA
AT1G07347	7.9805402	${ }^{-3.408031}$	0.578027773	5.895964619	3.72E-09	6.39E-08	0	0	0	3.862584211	4.346824447	3.998987077	A1+	ncRNA
AT1G08757	16.70058	3.3855569	0.564489274	5.997557514	2.00E-09	3.62E-08	5.061448268	4.362753915	5.621671634	O	0	0	A1+	ncRNA
AT1G08997	22.676064	-3.726693	0.58028439	-6.422183256	1.34E-10	2.84E-09	0	0	0	2.133098153	6.102625836	6.04333002	A1+	ncRNA

AT3G41768	$\left.4039253.4\right\|^{-2.396709}$		0.454946145	-5.268115394	1.38E-07	[3.32E-06	16.60868761	18.20239743	17.26022461	23.93081247	$\left.{ }^{22.22995819}{ }^{21.39951895}\right\|^{\text {A2- }}$			[RNA	
snoRNAs												${ }^{1.30502213}$			
AT1G04517	23.219139	33	0.451975708	7.162405194	7.93E-13	2.19E-11	5.459832183	5.503631239	5.635183114	1.131025967	0	1.60562261	A1-	snoRNA	
AT1G04517	25.294096	3.2934347	0.491257017	6.704097012	2.03E-11	4.73E-10	5.565434319	5.610218077	5.743245306	0	0	2.58406216	A1+	snoRNA	
AT1G04517	21.705127	2.9537402	0.419467162	7.041648299	$1.90 \mathrm{E}-12$	1.02E-10	5.364062716	5.411129121	5.545223732	0	1.407936067	1.100718415	A2-	SnoRNA	
AT1G04527	24.593383	3.3889002	0.463000314	7.319433928	2.49E-13	7.18E-12	5.89624286	5.201540617	5.700220394	1.131025967	0	1.015522753	A1-	snoRNA	
AT1G04527	27.032315	3.3325395	0.493637547	6.750984627	1.47E-11	3.48E-10	6.00246284	5.30758796	5.808376819	1.429370861	0	2.247074573	A1+	SnoRNA	
AT1G04527	23.252455	2.8235328	0.420817487	6.709637413	1.95E-11	8.72E-10	5.799872345	5.10953994	5.610176994	0	0	2.148557953	A2-	SnoRNA	
AT1G05247	256.583	2.0676163	0.474633535	4.356237214	1.32E-05	0.0001491	8.313564819	9.316947419	8.681785153	4.94268382	6.889210391	4.887807353	A1-	snoRNA	
AT1G05247	259.67917	3.8079054	0.305305198	12.47245528	1.06E-35	1.40E-33	8.421205468	9.425683623	8.791725241	4.626795005	5.310931324	4.699400813	A1+	snoRNA	
AT1G05247	225.6679	3.5251882	0.300594841	11.72737431	9.23E-32	2.75E-29	8.21581033	9.222443943	8.590149466	4.697193151	5.018717888	4.43316397	A2-	snoRNA	
AT1G05917	518.52924	3.1763787	0.411035928	7.727739765	1.09E-14	3.54E-13	9.798090474	10.23059788	9.694066052	5.454346907	6.889210391	5.117444234	A1-	snoRNA	
AT1G05917	544.95368	4.5185175	0.243039194	18.59172343	3.75E-77	2.92E-74	9.905941279	10.33941125	9.804136429	5.379864119	5.823389642	4.831847463	A1+	SnoRNA	
AT1G05917	476.34405	4.1549269	0.234922559	17.68636829	5.34E-70	1.47E-66	9.700131027	10.13602245	9.602313907	5.669115043	5.403926096	5.189154551	A2-	snoRNA	
AT1G06087	86.036178	1.5143162	0.282411756	5.362086286	8.23E-08	1.34E-06	6.958103052	7.274061416	6.78702067	4.764642118	5.766238278	5.674125282	A1-	SnoRNA	
AT1G06087	93.870613	1.4223606	0.253178836	5.618007336	1.93E-08	3.00E-07	7.065233812	7.38228424	6.896258094	5.646896475	5.476812514	5.773726325	A1+	snoRNA	
AT1G06087	65.104585	2.6180028	0.374154983	6.997107983	2.61E-12	1.38E-10	6.86084559	7.180036492	6.6960127	2.366511377	1.407936067	4.578473362	A2-	SnoRNA	
AT1G06243	216.92693	2.1309216	0.283214472	7.524056209	5.31E-14	1.62E-12	8.241286045	8.891602497	8.187268232	5.530616574	6.952811471	6.096513381	A1-	SnoRNA	
AT1G06243	214.12524	2.9488991	0.271844816	10.84772978	\|2.04E-27	1.66E-25	8.34890989	9.000282301	8.297102669	5.545934233	5.823389642	5.1178917	${ }^{\text {A1+ }}$	snoRNA	
AT1G06243	193.97859	2.4221971	0.27596083	8.77732207	1.67E-18	1.71E-16	8.143547939	8.797151611	8.095726963	6.394694577	5.403926096	5.399380504	A2-	snoRNA	
AT1G06453	3433.6808	2.1856308	0.154458761	14.15025449	1.86E-45	2.90E-43	12.3674824	12.50025936	12.5213162	10.01905655	10.57332173	10.09019609	A1-	snoRNA	
AT1G06453	3653.028	2.3134996	0.101479959	22.79760087	4.84E-115	8.89E-112	12.47543037	12.60914193	12.63149662	10.11868132	10.27528698	10.32759529	A1+	SnoRNA	
AT1G06453	2909.2632	3.0085106	0.264643285	11.36817266	6.02E-30	1.49E-27	12.26942817	12.40561939	12.42946568	8.759290069	8.329989586	9.692461628	A2-	snoRNA	
AT1G07593	24.917296	3.2406977	0.458958956	7.060974863	1.65E-12	4.46E-11	5.372294687	5.421153397	6.02613228	0	0	2.023221944	${ }^{\text {A1- }}$	SnoRNA	
AT1G07593	28.6164	2.7496809	0.453446839	6.063954292	1.33E-09	2.45E-08	5.477748719	5.527603984	6.13470185	2.604042178	1.773370384	2.857049598	A1+	snoRNA	
AT1G07593	23.242549	2.944716	0.425129504	6.926332884	4.31E-12	2.16E-10	5.276669222	5.328777953	5.935720392	0	0	1.717749548	A2-	SnoRNA	
AT1G07897	537.78415	2.1107167	0.449423416	4.696499234	2.65E-06	3.37E-05	9.37009857	10.07475427	10.08881785	6.224753232	7.977879279	6.259291536	${ }^{\text {A1- }}$	SnoRNA	
AT1G07897	586.64852	2.6038478	0.220816106	11.791929	4.30E-32	4.70E-30	9.477909016	10.18355768	10.19891889	7.037640449	7.54863521	7.284328671	A1+	snoRNA	
AT1G07897	461.63003	3.9092054	0.272677219	14.3363843	1.30E-46	8.94E-44	9.272178488	9.980188119	9.997038292	5.098259903	4.943185652	5.919339118	A2-	SnoRNA	
AT1G08117	27.692177	2.5361253	0.399660246	6.345703294	2.21E-10	4.83E-09	5.509913585	5.698312318	5.792588979	2.526213436	2.665086523	2.833863982	A1-	SnoRNA	
AT1G08117	31.578144	2.232108	0.396424726	5.630597427	1.80E-08	2.80E-07	5.615596492	5.805191445	5.900872131	3.684038477	3.416037926	2.857049598	A1+	snoRNA	
AT1G08117	26.947695	2.1191618	0.368850758	5.745309638	9.18E-09	2.71E-07	5.414065571	5.605538376	5.70243257	3.219377994	2.575486135	3.171895698	A2-	SnoRNA	
AT1G08353	29.366595	2.5008422	0.40266447	6.210734804	5.27E-10	1.11E-08	5.751099165	5.404076523	6.0387604	2.526213436	2.665086523	3.027056186	A1-	SnoRNA	
AT1G08353	31.729082	2.5815371	0.436945632	5.90814263	3.46E-09	5.96E-08	5.857134047	5.510497912	6.147344174	1.429370861	3.04536424	3.458449401	A1+	snoRNA	
AT1G08353	25.274927	3.0651383	0.419639419	7.304219191	2.79E-13	1.71E-11	5.654908771	5.311728223	5.948335841	0	1.407936067	1.100718415	A2-	snoRNA	
AT1G08937	129.85936	2.4537107	0.25065858	9.789055141	1.25E-22	6.95E-21	7.758751624	7.608172481	8.047421967	4.997461935	5.046836798	5.45643433	A1-	snoRNA	
AT1G08937	141.78645	2.3906042	0.252566513	9.465246244	2.93E-21	1.61E-19	7.866238886	7.716535461	8.157219345	5.051918249	5.310931324	5.773726325	A1+	snoRNA	
AT1G08937	112.92637	3.1246058	0.300584093	10.39511352	2.61E-25	4.76E-23	7.661146689	7.514016942	7.955913814	3.751761308	3.212236784	4.772209565	A2-	SnoRNA	
AT1G09087	37.315144	2.2043579	0.370147802	5.955345055	2.60E-09	5.12E-08	5.694476593	5.894484451	6.343626073	3.025182302	4.089833736	3.613294506	A1-	SnoRNA	
AT1G09087	39.585418	2.2504196	0.386602596	5.821015168	5.85E-09	9.77E-08	5.800434055	6.001620748	6.452517557	3.242825326	3.416037926	3.998987077	A1+	SnoRNA	
AT1G09087	31.983828	2.768443	0.395162055	7.005842275	2.46E-12	1.30E-10	5.598361522	5.801471258	6.252926932	3.219377994	2.575486135	1.100718415	A2-	snoRNA	
AT1G09787	192.22253	2.6249574	0.298007517	8.808359607	1.27E-18	5.45E-17	8.10672694	8.574255406	8.462658347	4.324976877	6.13861985	5.888334403	A1-	snoRNA	
AT1G09787	206.98519	2.7173653	0.237665646	11.4335637	2.84E-30	2.76E-28	8.214317172	8.682880863	8.572556049	5.829815291	5.997324674	5.265734139	${ }^{\text {A1+ }}$	SnoRNA	
AT1G09787	162.34738	3.9627019	0.304648524	13.0074549	1.11E-38	5.10E-36	8.009021612	8.479855192	8.371060541	2.366511377	2.928709658	4.43316397	A2-	snoRNA	
AT1G12013	1167.3385	2.5666408	0.189721773	13.52844625	1.06E-41	1.47E-39	11.02674146	10.66801514	11.19813873	8.114333143	8.12317979	8.612001074	A1-	$\begin{aligned} & \text { snoRNA, } \\ & \mathrm{H} / \mathrm{ACA} \text { b } \end{aligned}$	111, Encodes a
AT1G12013	1278.1098	2.4518478	0.189447222	12.94211558	2.60E-38	3.89E-36	11.13465926	10.77685135	11.30829204	8.429358011	8.289966426	8.901296897	A1+	$\begin{aligned} & \text { snoRNA, } \\ & \mathrm{H} / \mathrm{ACA} \end{aligned}$	111, Encodes a
AT1612013	1018.2135	3.2581262	0.28328753	11.50112811	$1.30 \mathrm{E}-30$	3.46E-28	10.92871667	10.57341841	11.10631245	6.464267165	6.739154825	7.921922333	A2-	$\begin{aligned} & \text { SnoRNA, } \\ & \mathrm{H} / \mathrm{ACA}-\mathrm{b} \end{aligned}$	111, Encodes a
AT1G74456	86.445678	2.1211635	0.26587131	7.978158606	1.49E-15	5.19E-14	7.175392869	7.156618187	7.183705966	4.408199229	5.046836798	5.239507661	A1-	snoRNA	
AT1G74456	88.729407	${ }^{2.623643}$	0.274137658	9.570531146	1.06E-21	66.09E-20	7.282640674	7.264783507	7.293174481	4.626795005	4.786788781	4.302754999	A1+	SnoRNA	
AT1G74456	76.980778	2.3537816	0.279585449	8.418827407	3.80E-17	3.53E-15	7.078021345	7.062646845	7.092491617	4.13977271	3.830719935	4.94298265	A2-	SnoRNA	
AT1G75163	49.197211	2.3974089	0.356426406	6.726238297	1.74E-11	4.26E-10	6.190466913	6.819292537	6.124191366	3.689460601	4.483532941	3.349749908	${ }^{\text {A1- }}$	snoRNA	

AT3G21805	696.92475	3.9092219	0.247888576	15.77007705	5.00E-56	4.80E-53	9.878422823	10.76957318	10.33933533	5.782409601	5.328611903	6.122608045	A2-	SnoRNA	
AT3647348	309.12112	2.378436	0.175457323	13.55563825	7.34E-42	1.04E-39	8.989641116	9.155406717	8.944233915	6.496028094	6.602405842	6.674430901	A1-	SnoRNA	
AT3647348	326.14097	2.6319017	0.182889941	14.39063153	5.93E-47	1.29E-44	9.097404118	9.264123433	9.054216982	6.138015508	6.810594236	6.425196846	A1+	snorna	
AT3G47348	282.78739	2.5754513	0.188109548	13.69123112	1.15E-42	6.84E-40	8.891767306	9.060921413	8.852559814	6.394694577	5.996292971	6.382187399	A2-	snoRNA	
AT3G50825	141.44121	2.9017036	0.246214366	11.78527319	4.65E-32	4.18E-30	7.961317368	8.102113116	7.990056538	5.101147555	2.665086523	5.1592901	A1-	snoRNA	
AT3650825	157.04446	2.8440914	0.225931807	12.58827346	2.45E-36	3.35E-34	8.068867569	8.210632003	8.099837644	5.257479592	5.019733684	5.265734139	A1	SnoRNA	
AT3G50825	129.73624	3.4073302	0.264566906	12.87889804	5.92E-38	2.56E-35	7.863651069	8.007812254	7.898562926	4.13977271	4.381482195	4.089549378	A2-	snoRNA	
AT4G06010	164.24242	2.3556333	0.251026914	9.383986852	6.35E-21	3.16E-19	7.772493982	8.436176083	8.084436315	5.737858488	5.901330042	5.387686903	A1-	SnoRNA	
AT4G06010	172.48461	2.5945095	0.255770214	10.14390786	3.53E-24	2.46E-22	7.879985799	8.544773895	8.194243854	5.74125297	5.476812514	5.356497891	A1+	snoRNA	
AT4606010	156.62084	2.1727385	0.258115595	8.417695489	3.84E-17	3.55E-15	7.674884605	8.341801644	7.992919083	6.163252036	5.661270196	5.318927657	A2-	snoRNA	
AT4G06240	68.348933	2.7541136	0.323725675	8.507553915	1.78E-17	7.16E-16	6.620956795	7.156618187	7.046626167	3.549829232	3.546623725	4.277198875	A1-	snoRNA	
AT4G06240	72.397866	3.1158781	0.346394685	8.995167067	2.36E-19	1.15E-17	6.727867157	7.264783507	7.156021903	4.021446993	3.04536424	3.753887089	A1+	snoRNA	
AT4G06240	65.406785	2.5425544	0.319151557	7.966605066	1.63E-15	1.34E-13	6.523914066	7.062646845	6.955476821	4.13977271	4.381482195	3.344390632	A2-	SnoRNA	
AT4G06250	78.882345	2.6986309	0.291248594	9.265730116	1.94E-20	9.39E-19	6.987859024	7.274061416	7.189380394	4.041933031	3.546623725	4.553113256	A1-	snoRNA	
AT4G06250	83.811852	3.1554501	0.317512615	9.938030606	2.84E-23	1.85E-21	7.095006873	7.38228424	7.298851775	3.684038477	4.508850015	3.6137176	A1+	SnoRNA	
AT4G06250	72.385533	2.9572797	0.304229235	9.720563773	2.46E-22	3.47E-20	6.890584909	7.180036492	7.098163484	3.751761308	3.652487504	3.764554301	A2-	SnoRNA	
AT4G06310	78.543778	2.7242078	0.293688728	9.275833674	1.76E-20	8.61E-19	6.958103052	7.283430105	7.19503259	4.041933031	3.546623725	4.488922482	A1-	SnoRNA	
AT4G06310	84.48376	3.019074	0.326259146	9.253607241	2.17E-20	1.13E-18	7.065233812	7.391657317	7.304506815	3.242825326	4.907957693	3.753887089	${ }^{\text {A1+ }}$	snoRNA	
AT4G06310	71.119009	3.0076698	0.310916001	9.673576654	3.90E-22	5.32E-20	6.86084559	7.189401091	7.10381314	2.366511377	3.830719935	3.764554301	A2-	SnoRNA	
AT4G07625	36.644043	3.5183175	0.430750803	8.167872145	3.14E-16	1.15E-14	5.818888546	6.324776786	6.193595463	1.757146478	3.546623725	0	A1-	SnoRNA	
AT4G07625	38.766109	3.5532625	0.44996692	7.896719478	2.86E-15	9.84E-14	5.9250122	6.432368302	6.302343639	2.133098153	1.773370384	2.247074573	A1+	snoRNA	
AT4G07625	35.42415	2.6599551	0.376041457	7.073568645	1.51E-12	8.25E-11	5.722611772	6.23133989	6.103024215	3.219377994	3.212236784	1.717749548	A2-	SnoRNA	
AT4G07635	126.09933	3.2757592	0.263043985	12.45327529	1.34E-35	1.42E-33	7.849068745	7.974892644	7.757738543	4.408199229	4.483532941	4.351279944	A1-	snoRNA	
AT4607635	131.82729	3.9066005	0.318661701	12.2593975	1.50E-34	1.82E-32	7.956585164	8.08337633	7.867446715	4.626795005	3.710677785	2.58406216	A1+	snoRNA	
AT4607635	121.26384	3.0038614	0.268727927	11.1780766	5.22E-29	1.24E-26	7.751435384	7.880624596	7.666310099	5.411740146	4.381482195	3.989138089	A2-	SnoRNA	
AT4G15258	81.05739	2.605063	0.303435721	8.585221924	$9.07 \mathrm{E}-18$	3.86E-16	6.865515418	7.339335077	7.217261608	4.414102287	4.654502272	4.208431314	A1+	snoRNA, C/D box	A37-2 Encodes a
AT4G39361	264.39394	2.428293	0.211186864	11.4983146	1.35E-30	1.13E-28	8.519097462	9.044067528	8.839865209	6.154180496	6.434335581	6.352426407	A1-	snorna	
AT4G39361	279.06718	2.6385369	0.209475591	12.59591559	2.22E-36	3.06E-34	8.626781536	9.152769484	8.949832114	6.238497703	6.102625836	6.270396543	A1+	SnoRNA	
AT4G39361	243.61429	2.5526745	0.244150511	10.45533126	1.39E-25	2.57E-23	8.421300627	8.949595987	8.748205552	6.464267165	6.104262848	5.437984731	A2-	SnoRNA	
AT4G39366	421.10016	2.211342	0.181079193	12.21201574	2.68E-34	2.61E-32	9.339266424	9.533628834	9.444093667	6.787814836	7.470110277	7.316086623	A1-	SnoRNA	
AT4G39366	441.5255	2.4136843	0.161724026	14.92471045	2.28E-50	6.09E-48	9.447073474	9.642387976	9.554139811	6.859769358	7.013254259	7.329843115	A1+	snoRNA	
AT4G39366	370.44518	2.6535109	0.179005992	14.82358705	1.03E-49	8.43E-47	9.241349655	9.439103969	9.352363184	6.163252036	6.522722717	6.807710617	A2-	snoRNA	
AT5G00750	332.76555	4.1072302	0.241031664	17.04021012	4.13E-65	1.25E-62	9.273137359	9.071366691	9.544914699	4.632436165	5.26298084	5.1592901	${ }^{\text {A1- }}$	snoRNA	
AT5G00750	367.93338	3.4839313	0.237047472	14.69718832	6.72E-49	1.71E-46	9.380936875	9.180072373	9.654971125	5.74125297	5.019733684	6.222935658	A1+	SnoRNA	
AT5G00750	307.15831	4.3345365	0.258187075	16.78835577	2.97E-63	3.64E-60	9.175227938	8.976891677	9.453175026	4.445238744	4.262230145	4.645984426	A2-	SnoRNA	
AT5G01785	273.40377	2.5348558	0.238785554	10.61561603	2.52E-26	1.72E-24	8.784531313	9.169370643	8.59038503	6.054369667	6.889210391	5.888334403	A1-	snoRNA	
AT5G01785	303.01485	2.1602463	0.245553524	8.797455781	1.40E-18	6.34E-17	8.892263047	9.278089131	8.700308217	6.332434805	6.420348952	7.188751486	A1+	snoRNA	
AT5G01785	255.9516	2.4055148	0.263004783	9.146277881	5.89E-20	6.92E-18	8.686687998	9.074883686	8.498764447	6.87521402	5.958429508	5.616881481	A2-	SnoRNA	
AT5G02655	69.463632	2.962621	0.320365989	9.247613835	2.30E-20	1.10E-18	7.180555873	7.045376151	6.733650715	3.933736191	3.546623725	3.613294506	A1-	SnoRNA	
AT5G02655	72.836865	3.5030697	0.359862388	9.734470156	2.15E-22	1.31E-20	7.28780625	7.15348251	6.842851908	3.684038477	3.04536424	3.086509522	${ }^{\text {A1+ }}$	SnoRNA	
AT5G02655	66.059554	2.8998605	0.329177359	8.809416665	1.26E-18	1.31E-16	7.083181843	6.951459744	6.642675095	4.697193151	3.212236784	2.975939682	A2-	snorna	
AT5G02665	63.359	2.8010918	0.33564973	8.34528247	7.10E-17	2.74E-15	6.723563183	7.201787115	6.560562384	3.689460601	3.546623725	3.83605124	A1-	snorna	
AT5G02665	66.034581	3.4018933	0.379394753	8.966632385	3.06E-19	1.48E-17	6.830546154	7.309975108	6.669636406	3.480233365	3.04536424	3.086509522	${ }^{\text {A1+ }}$	snoRNA	
AT5G02665	55.125681	3.5635035	0.377732947	9.433922988	3.95E-21	5.01E-19	6.626449718	7.107794648	6.469700304	0	2.575486135	2.148557953	A2-	SnoRNA	
AT5G07105	742.36408	2.5816635	0.184726019	13.97563537	2.20E-44	3.32E-42	10.34103725	10.49434011	10.08197048	7.468757335	8.12317979	7.498313193	A1-	snoRNA	
AT5G07105	810.55759	2.4321818	0.150418454	16.16943756	8.29E-59	3.13E-56	10.4489247	10.60316807	10.19207106	7.895187087	8.007659435	7.970467384	A1+	snoRNA	
AT5G07105	655.87564	3.0740365	0.246427552	12.47440272	1.03E-35	3.79E-33	10.24304205	10.39975107	9.990191344	7.235050545	6.03318807	7.182110658	A2-	snoRNA	
AT5G08515	94.12318	2.4831312	0.31348531	7.921044783	2.36E-15	8.07E-14	7.280115706	7.763533112	6.85286003	4.56149373	5.26298084	4.351279944	A1-	SnoRNA	
AT5G08515	95.518639	3.0859001	0.345073613	8.942729766	3.80E-19	1.83E-17	7.387413924	7.871950996	6.96214034	4.414102287	4.164272639	3.753887089	${ }^{\text {A1+ }}$	SnoRNA	
AT5G08515	85.989308	2.4001167	0.353107012	6.79713702	1.07E-11	4.97E-10	7.182695048	7.669326401	6.761813764	4.697193151	4.943185652	2.975939682	A2-	snoRNA	
AT5G09515	91.113066	2.5651593	0.356332226	7.198785717	6.08E-13	1.69E-11	7.26074581	7.927874425	6.470220707	4.324976877	4.792504907	4.277198875	A1-	SnoRNA	
AT5G09515	93.529152	3.1949514	0.395324653	8.081842005	6.38E-16	2.32E-14	7.368034977	8.036344295	6.579222035	3.480233365	4.164272639	3.881635851	A1+	SnoRNA	
AT5G09515	81.800904	2.7088379	0.364302065	7.435691978	1.04E-13	6.78E-12	7.163333974	7.833619255	6.379423521	3.219377994	4.262230145	3.764554301	A2-	snoRNA	

Supplementary Table 3: List of non-coding RNAs with at least log2-fold increases (negative log2-fold change) or decreases (positive log2fold change) of 2.5 in at least one of the four lines A1+, A1-, A2+ or A2-

	No of genes	Genes with heritable changes	Percentage heritable changes
non-coding RNAs	4	4	100
miRNAs	10	5	50
NATs	50	41	82
ncRNA	2	0	0
rRNAs	57	56	98.2
snoRNAs	8	8	100
snRNAs	2	2	100
tRNAs			

Supplementary Table 4: Summary of non-coding RNAs with altered transcript levels and their heritability rates. Data were compiled for different categories of genes expressing non-coding RNAs (S3 Table) that showed at least log2-fold changes of $+/-2.5$ in line A1+ compared to wildtype. For each gene, the values in A1+ and A1- were compared to score the heritability of expression changes.

														approximately 36 amino acids each). PUF prote ins regulate both mRNA stability and translation through sequence-specific binding tote ${ }^{3}$ ' UTR f f target mRNA transcrits	
AT1624260	10.988146	-2.7080859	0.56376718	-4.80355	1.56E-06	1.80E-05	1.08200738	0.62641448	${ }^{1.16146642}$	2.60404218	5.12346883	4.62831981	${ }^{\text {A1+ }}$	AGAMOUS-LIKE 9, AGL9, SEP3, SEPALLATA3 Member of the MADs box transcription factor family. SEP3 is redundant with SEP1 and 2. Flowers of SEP1/2/3 triple mutants show a conversion of petals and stamens to sepals.SEP3 forms heterotetrameric complexes with other MADS box family members and binds to the CArG box motif	
AT1624260	10.707127	-2.92776225	0.48300425	-6.06157	1.35E-09	2.74-08	1.0260486	0.5889885	1.10157598	4.82646308	3.54662372	4.6145692	${ }^{\text {A1- }}$		
A11627570	25.341114	-3.46767743	0.5660269	6.12635	8.99-10	1.199-08	1.08200738	1.06173972	0	2.60404218	6.33488057	6.0433302	A1+	Phosphatidylinositol 3 - and 4 -kinase family protein;	
A11630190	80.657804	3.33861717	0.4256309	7.845176	4.32-15	1.46E-13	16.9526569	6.92080442	7.73969719	4.52436469	1.77737038	2.24707457	${ }^{\text {A1+ }}$	Cotton fiber protein	
AT1630370	62.944797	2.567707051	0.3839564	${ }^{6.687496}$	[2.27-11	5.27-10	16.47964108	6.82026915	77.10508681	4.54336469	0	4.30275	${ }^{\text {A1+ }}$	DLAH alpha/beta-Hydrolases supeffamily protein Encodes a mitochondria-Iocalized class III phospholipase A1 that plays a role in	
														seed viability.	
AT1631095	4.9571189	-2.62521578	. 59218065	-4.43313	9.29E.06	99.27-05	0	0	0	2.60404218	3.41603793	3.99888708	A1+	Lactate/malate dehydrogenase, NAD-binding domain protein	
AT163208	393.66224	2.625581472	0.21679548	12.11887	9.25-34	800-32	9.09593325	9.43619354	9.70599131	6.64070742	6.13	6.93751624	${ }^{\text {A1- }}$	LrgB membrane protein, putativ; Encodes a plant LLrgA/CidAB protein localized to the chloroplast envelope that is involved in	
														chloroplast development, carbon partitioning and leaf senescence. The gene may have evolved from gene fusion of bacterial IrgA and $\operatorname{lrg} B$.	
A11632910	13.446124	[2.888225066	0.56591766	[5.015262\|	\|5.30-07	\|6.64-06	4.50976567	4.06763741	5.40716122	1.42937086	0	0	${ }^{\text {A1+ }}$	HXXXO-type acyl-transferase family proten; FUNCTIONS IN: transferase activity, transferring acy\| groups other than amino-acy	groups, transerase activity
AT1633720	197.60122	2.523362541	0.3328352	\|7.581417	${ }^{3.425-14}$	${ }^{1.066-12}$	${ }^{8.19244906}$	8.3202307	[8.73422477	6.53041085	4.65450227	5.16887455	${ }^{\text {Al+ }}$		
														monooxygenase ativity, iron ion binding, oxygen binding, teme bidding	
A11633760	146.81846	$\left.\right\|^{4.268422494} \mid$	0.36499634	${ }^{11.69443}$	$\left.\right\|^{1.366-31}$	$\left.\right\|^{1.445-29}$	18.0340252	17.796335	${ }^{8.53456426}$	4.4141022	1.77737038	2.8570496	${ }^{\text {A1+ }}$	ETHYLENE RESPONSE FACTORO22, ERFO22, encodes a member of the DREB subfamily A-4 of ERF/AP2 trasscription factor for	
														e protein contains one AP2 domain. There are 17 members in this subfamiv y including TINY.	
AT1936060	26.955035	-1.5041823	0.37941084	--.96452	7.35-05	${ }^{\text {6.06-04 }}$	4.10401826	3.10337019	3.92825069	5.31996921	5.47881251	5.3988454	A1+	-6	
AT1636060	50.899524	2.61455431	0.31002659	8.43365	3.35-17	1.32-15	4.002555	3.01054461	3.82554	5.33520582	6.6796267	6.48996466	${ }^{\text {A1- }}$		
														RAP2.4.Overexpression results in increased drought tolerance and vitrified leaves. Binds to DRE/GCC promoter elements and activates expression of aquaporin genes ATTIP $1 ; 1$, AtTIP2;3, and AtPIP $2 ; 2$	
A11642880	14.401981	2.527846059	0.5417764	[4.65845	3.07-06	3.38-05	4.23815049	4.70106583	5.27514959	2.13308815	1.77737038	0	${ }^{\text {A1+ }}$	Actin-binding fH2 (formin homology 2) family protein; FUNCTIONS IN: actin binding	
A11643910	334.42426	3.041107271	0.54668384	${ }^{5.56389}$	2.65-08	4.03-07	9.15930773	9.077345248	10.182122	4.89656107	3.04536424	5.95898882	${ }^{\text {A1+ }}$	P-İop containing nucleoside triphosphate hydrolases superfamily protein; FUNCTIONS IN: nucleoside-triphosphatase activity,	
														ATPase a ativity, nucleotide binding,	
544130	20.558726	2.68549532	0.88509639	5.536004	3.099-08	4.688-07	5.08537786	5.22610318	. 5288995	2.604042	0	2.24707457	${ }^{\text {A1+ }}$	karyotic ssparty protease family	
AT1647590	10.52504	2.998700306	0.57241215	8708		2.20-06	4.32110939	4.43706106							
		.	0.51425	5.23808	1.62-0	2.2	4.321099	4.4376060	4.6147304	-	-	-	${ }^{\text {Al+ }}$	ytokinins, across the plasma membrane.	
A11648285	17.556816	${ }^{-3.282025}$	0.5880518	-5.58118	${ }^{2.392-08}$	66E-07	0	0	0	${ }^{1.42937086}$	5.31093132	6.04333002	${ }^{\text {Al+ }}$	GRF zinc finger protein	
AT1651850	116.09549	2.61073402	0.5722822	4.561969	5.07-06	5.31-05	7.65462057	7.43763045	8. 19728676	4.626795	0	3.08850952	${ }^{\text {A1+ }}$	Leucine-rich repeat protein kinase family protein; FUNCTIONS IN: kinase activity; INVOLVED IN: protein amino acid phosphorlatio	
AT1655390	13.565131	2.621425176	0.53315789	4.91679	8.80-07	1.06E-05	4.57882294	4.60763305	4.99644157	1.42937086	10	1.80658324	${ }^{\text {A1+ }}$	Cysteine/listitidine-rich C1 domain family protein FUNCTIONS IN: zinc io io b binding	
A11657650	24.791551	3.03993756	0.4895977	6.20951	5.33-10	1.03E-08	5.4244596	5.2876416	5.95939724	2.60404218	0	1.80658324	Al^{1+}	ATP binding protein; FUNCTIONS IN: ATP binding: INVOIVED IN: apoptosis, defense	
A11659920	83.406609	-4.0794981	0.37050456	-10.9903	4.26-28	3.62-26	3.04620597	2.41948197	3.1724339	7.17921099	7.90949191	6.62098232	${ }^{\text {A1+ }}$	Q9XID9 MADS-box family protein	
AT1659920	264.36151	${ }^{-3.35886639}$	0.16817948	-199.971	9.67-89	6.43-85	3.7210802	3.06206738	3.85318425	8.7477845	9.33197473	8.91237284	${ }^{\text {A2+ }}$		
AT1659930	171.47592	-4.602686	0.37818128	-12.1642	4.82-34	5.66-32	3.66996625	2.26485625	3.6007003	8.393	8.9565094	7.42728597	${ }^{\text {A1+ }}$	family protein	
AT1659930	481.38601	${ }^{-3.66340969}$	0.16779881	-21.8322	1.15E-105	1.02-101	4.37066785	2.89389119	4.2946969	9.60687286	10.2234705	9.76695616	A2+		
AT1660590	76.765807	1.00523313	0.24956056	4.028013	5.63-05	4.74-04	${ }^{6.54149654}$	${ }^{6.87745828}$	${ }^{6.67887384}$	5.74125297	5.76041692	5.52250498	${ }^{\text {A1+ }}$	Cetin lyase-ike superfamily protein; FUNCCTONS IN: polygalacturonase ativivt, INVOLVED IN: Carbohydrate metaboic	
A11660590	52.981932	2.656145851	0.33015276	8.045203	8.11-16	3.06-14	6.43473192	6.766821	6.569233	3.6894606	2.665086	3.83605124	A1-		
A11661800	69.440077	2.688835027	0.42893995	6.261564	3.81-10	7.53-09	7.15277078	6.11913152	7.4079439	3.68403848	1.773370	4.628319	${ }^{\text {A1+ }}$	GPT2, ATGPT2, ARABIDOPSIS GLUCOSE-6-PHOSPHATE/PHOSPHATE TRANSLOCATOR 2, glucose-6-phosphate/phosphate translocator 2 (GPT2); FUNCTIONS IN: antiporter activity, glucose-6-phosphate transmembrane transporter activity;	
AT1622580	18.541913	-2.13409986	0.46119362	${ }^{-4.62723}$	3.71E-06	4.011-05	1.69930149	2.91163087	2.9639655	5.49267367	4.65450227	4.83184746	${ }^{\text {Al+ }}$		
AT1662580	25.507512	-2.63652232	0.40154293	-6.56598	5.17-11	1.22E-09	1.61959049	2.81768511	2.88836947	5.10114755	5.61717743	5.86332418	${ }^{\text {A1- }}$	binding, monooxygenase activity, FAD binding, flavin-containing monooxygenase activity;	
A11665390	74.177788	3.998164215	0.39530626	10.1	4.78-24	E-22	7.09500687	7.07420579	7.32690788	3.86258421	0	1.80658324	${ }^{\text {A1+ }}$	ATPP2-A5, PHLOEM PROTEIN 2 A5, PP2-A5, FUNCTIONS IN: carbohydrate binding; INVOLVED IN: signal transduction, defense response, innate immune response;	
AT1665481	16.237047	13.501551686	0.55653324	\|6.291721	3.14-10	6.29E-09	5.01236438	4.81691609	5.32050896	${ }^{0}$	0	0	${ }^{\text {A1+ }}$	Transmembrane protein	
A11665610	24.46579	2.8	0.47273391	615	3.13E-09	5.45E-08	5.3253	5.4399702	5.82421041	2.13309815	0	2.8570496	${ }^{\text {A1+ }}$	KOR2, KORRIGAN 2, UNCTIONS IN: hydrolase activity, hydrolyzing O-glycosyl compounds, catalytic activity; INVOLVED IN:	
														carbohydrate metabolic process	
AT1667856	52.363097	2.571485439	0.39528874	. 50517	7.76-11	1.69E-09	6.32742784	6.28925818	6.96214034	${ }^{4.41410229}$	1.77737038	3.6137176	${ }^{\text {Al+ }}$	RING/U-box superfamily protein; FUUCCTIONS IN: zinc ion binding	
A11668050	102.66285	${ }^{-3.34656876}$	0.31573836	-10.5992	3.01-26	2.30-24	3.46634215	4.15829113	4.33421961	6.92152868	7.83504327	7.80305538	${ }^{\text {A1+ }}$	FLAVIN-BINDING, KELCH REPEAT, F BOX ${ }^{\text {1", }}$ ADO3, , KFF1, a flavin-b	
AT11668050	100.0	${ }^{-3.45475441}$	0.26759391	-12.9104	3.93-38	4.59	${ }^{3.36848215}$	4.0557	4.22968	7.8044	7.38043	7.4144016	${ }^{\text {A1- }}$	transition to flowering. Forms a complex with GI on the CO promoter to regulate CO expression.	

														function mutations are defective in the process of ethylene independent floral organ abscission. Although the mutants have a normal appearing abscisision zone, the floral organs do not abscisce. The peptide appears to be secreted and may function as a Iigand. Arabidopsis 355: IDA lines constitutively veverexpessing IDA exxibit eariie abscission of floral organs, showing that the abscission zones are responsive to IDA soon after the opening of the flowers. In addition, ectopic abscission was observed at the bases of the pedicel, branches of the inflorescence, and cauline leaves. The silique valves also dehisced prematurely
A11669930	${ }^{43.887525}$	[2.520914153	0.44541391	[5.659711	1.522-08	\|2.39-07	16.05187904	\|6.54586051	\|6.31360446	\|4.52436469		2.58406216		GSTU11 Ilutathione s.transferase TAU 11/ GSTU11), Encodes gluathione transferase belonging to the tau class of GTs. Naming convention acording to Wagne et al. (2002)
A11673120	88.252489	-2.5153515	0.55723786	-4.51397	${ }^{6.366-06}$	${ }^{6.56-05}$	3.46334215	3.2792195	4.04094365	5.25747999	8.30107153	7.17634653	${ }^{\text {A1+ }}$	F-box/RNN superfamily protein
AT1673120	27.707642	-1.77830777	0.38042657	-4.67451	2.95E-06	3.73E-05	3.36848215	3.18063637	3.9378847	${ }^{6.05436967}$	5.26298884	5.02992519	A1-	
AT1673120	55.715505	-2.33951217	0.3756237	-6.72607	1.74E-11	7.85-10	3.8820153	3.09672909	3.85199566	7.55506206	5.79617978	5.98895825	A2-	
AT1673340	18.354983	3.332039544	0.54230913	6.14417	8.04E-10	1.52-08	5.01236438	4.8888021	5.60343644	0	1.77337038	0	${ }^{\text {Al+ }}$	Cytochrome P450 superfamily protein; FUNCTIONS IN: electron carrier activity, monooxygenase activity, iron ion binding, oxygen binding, heme binding
A11673340	19.631091	1.361088457	0.39343498	3.4595	5.41E-04	5.15-03	4.8131692	4.70183602	5.4058257	2.36651138	3.83071993	2.97593968	A2.	
A11673600	125.05185	2.539954136	0.26881927	9.51938	1.74E-21	8.97-20	17.47993893	8.05911328	7.76535685	5.28852909	4.79250491	4.9367521	${ }^{\text {A1- }}$	S-adenosyl-L-methionine-dependent methyltransferases superfamily protein; FUNCTIONS IN: methyltransferase activity, phosphoethanolamine N -methyltransferase activity;
AT1674710	\|615.44133	3.425883055	0.2379971	14.40701	\|4.688-47	1.03E-44	\|9.9025794	10.1038243	${ }^{10.4090474} \mid$	${ }^{6.85976936]}$	5.62557238	6.85690984	${ }^{\text {A1+ }}$	SID2, EDS16, ENHANCED DISEASE SUSCEPTIBLITYY TO ERYSIPHE ORONTII 16, ICS1, ATICS1, SALCYIC ACID INDUCTION DEFICIENT 2, ARABIDOPSIS ISOCHORISMATE SYNTHASE 1 , SID2, ISOCHORISMATE SYNTHASE 1, Encodes a protein with isochorismate synthase activity. Mutants fail to accumulate salicylic acid. Its function may be redundant with that of ICS2 (AT1618870)
A11676410	117.51577	--2.3872218	0.2416848	-9.87605	5.298-23	$]^{3.36-21}$	5.3458198	4.94975896	5.2043899	7.3386274	7.99403788	7.53808415	${ }^{\text {A1+ }}$	ATL8, RING/U-box superfamily protein
AT1676410	133.91134	-2.68031476	0.21742992	-12.3278	6.42E-35	${ }^{6.57-33}$	5.2400694	4.8445138	5.0972326	7.8488082	8.12317979	7.63805389	A1-	
A11676410	106.82083	-2.43715782	0.23161681	-10.522	6.811-26	1.31-23	5.14467873	4.75325806	5.00812498	7.23505054	7.43439103	7.83780645	A2-	
A11676430	16.97418	2.598031953	0.52590128	4.940151	7.81--07	9.51-06	5.28456251	4.73091216	5.02412426	2.95850299	0	0	Al^{1+}	PHT1;9 phosphate transporter 1;9 Encodes Pht1;9, a member of the Pht1 family of phosphate transporters which include: Pht1;1/At5g43350, Pht1;2/At5g43370, Pht1;3/At5g43360, Pht1;4/At2g38940, Pht1;5/At2g32830, Pht1;6/At5g43340, Pht1;7/At3g54700, Pht1;8/At1g20860, Pht1;9/At1g76430.
A71680160	164.05302	-4.0561453	0.2366768	-16.923	1.03E-64	1.41-61	4.15012861	4.2015675	3.98569724	8.31127458	8.5259694	7.9763427	${ }^{\text {A1+ }}$	GIY I 7 Lactoyligluathione lyase / Ilyoxalase Ifamily protein
A11680160	123.53024	-3.6017271	0.26441863	-13.6192	3.088-42	4.44E-40	4.08846158	4.09880182	3.8827093	7.86466996	8.22972535	7.37054166	${ }^{\text {A1- }}$	
A11680160	132.88895	-3.89843031	0.21821441	-17.8651	2.206-71	9.73E-68	3.9565086	4.00984341	3.79725889	7.84317321	8.0796573	8.00783277	${ }^{\text {A2- }}$	
AT260280	28.573803	3.2147884	0.48246192	6.663321	2.688-11	6.17-10	5.5990688	5.59406939	6.12194776	2.95850299	0	1.16932484	${ }^{\text {A1+ }}$	Cysteine/Histidine-rich C1 domain family protein; FUNCTIONS IN: zinc ion binding; INVOLVED IN: intracelluar signaling pathway;
AT260040	1238.70081	3.285291004	0.27296581	12.03554	${ }^{2.312-33}$	${ }_{\text {2.65-31 }}$	8.27279947	8.84176963	9.10532812	5.59729836	5.0197368	5.26573414	${ }^{\text {A1+ }}$	DTX1 detoxification 1, ATDTX1, TX1, AtDTX1 (At2g04040) has been identified as a detoxifying efflux carrier for plant-derived antibiotics and other toxic compounds, including CD2 . Mistakenly referred to as At2g04070 in PMID:11739388
	23.10081	3.252904	.22268					.8417963	9.1053212	5.59/2836	5.0193568	5.2553414		
AT2604070	179.68045	3.238491446	0.54066033	5.98882	2.10-09	${ }^{3.78 E-08}$	8.24916071	${ }^{8.15116881}$	8.83143766	\|4.52436469	0	3.99888708	${ }^{\text {A1+ }}$	MATE efflux family protein; fUNCTIONS IN: antiporter activity, drug transmembrane transporter activity, transporter activity;
AT2606425	8.363999	-3.41887388	0.57834299	-5.915	[3.39-09	5.85E.08	0	0	0	\|4.52436469	[4.16427264	3.6137176	${ }^{\text {A1+ }}$	Ptt//En//spm family plant transoosase
AT2606425	8.2051079	-3.0673291	0.51188697	-5.9947	2.04E-09	4.08E-08	0	0	0	4.88577345	2.66588652	4.02896949	A1-	
AT260685	25.756452	5.04631967	0.5228166	-9.64913	4.966-22	2.91-20	0	0	-	5.78621359	5.99732467	5.26573414	${ }^{\text {A1+ }}$	Beta-galactosidase related protein
AT260845	28.995333	4.95752186	0.45743919	-10.866	1.67E-27	1.21--25	0	0	0	5.6379556	5.90133004	6.0748114	A1-	
AT2606904	38.919449	-5.2688238	0.52655042	-10.026	${ }^{1.488-23}$	9.96-22	0	0	0	${ }_{6}^{6.8597936}$	6.42034895	5.1178917	${ }^{\text {Al+ }}$	Nucleic acid/ / inc ion binding protein
AT2606904	28.650923	-4.45790023	0.48887415	-9.2887	1.888-20	9.17-19	0	0	0	4.56149373	6.6024058	5.7582415	A1-	
AT2606904	27.5272	-1.44921019	0.17380294	-8.33824	7.54E-17	2.23E-14	0	0	0	5.84476673	6.18931802	5.23869026	${ }^{\text {A2+ }}$	
AT2607240	6.4377869	-2.2029054	0.59213004	-3.72042	1.99E-04	1.46E-03	0.64014872	0	0.69458906	4.88956107	1.77337038	2.850496	${ }^{\text {A1+ }}$	Cystene-type peptidase
AT2607240	19.205232	-3.78756995	0.4770972	-7.9286	2.22E-15	7.62--14	0.60238038	0	0.65346813	4.48688157	6.02488804	4.88780735	A1-	
AT2609840	16.888872	-3.28345428	0.58884963	-5.58553	${ }^{2.335-08}$	${ }^{3.58-07}$	0	0	0	${ }^{6.39182488}$	3.71067778	2.850496	${ }^{\text {Al+ }}$	Nucleic acid/zinc ion-binding protein
AT2611778	758.07342	-9.4613328	0.41228538	-22.945	1.53-116	3.01--113	0	0	0	10.850725	10.5015301	10.2935411	${ }^{\text {A1+ }}$	Transmembrane protein
AT2611778	600.4654	8.98105736	0.36327018	-24.7228	6.088-135	1.12-131	0	0	0	10.2933454	10.1535333	10.2847027	${ }^{\text {A1- }}$	
AT2611778	150.86473	-2.91110163	0.17928499	-16.2373	2.75E-59	4.87-56		0	0	8.30373313	8.63832883	7.5978914	${ }^{\text {A2+ }}$	
AT2613810	48.316469	4.35388561	0.52059004	8.36216	6.16E-17	2.43-15	5.71097342	6.51188102	7.20521986	1.42937086	0	0	${ }^{\text {A1+ }}$	EDTS5, eds two suppressor 5, AGD2-like defense response protein 1 (ALD1); FUNCTIONS IN: transferase activity, transferring nitrogenous groups, pyridoxal phosphate binding, transaminase activity, catalytic activity; INVOLVED IN: asparagine catabolic process, biosynthetic process, glutamate catabolic process to oxaloacetate, aspartate transamidation;
AT2615420	7.5717649	--2.8112347	0.51215603	\|-5.2349	${ }^{1.65 E-07}$	${ }^{2.57-06}$	10	0	\|0.65348813	${ }^{3.0251823}$	\|4.48353294	4.1165448	${ }^{\text {A1- }}$	myosin heay chain-like protein
AT2615890	5072.8289	-2.55910911	0.14263395	-17.9418	${ }^{5.566-72}$	${ }^{3.40-69}$	10.464051	10.3562651	10.6396079	12.8034021	13.272506	13.1885477	${ }^{\text {Al+ }}$	maternal effect embryo arrest 14 (MEE14); FUNCTIONS IN: molecular_function unknown; INVOLVED IN: defense response to fungus, embryo development ending in seed dormancy;
AT2615890	4038.2511	-2.29207207	0.14231046	16.1061	2.311-58	5.55-56	10.3565168	10.2474507	10.5294812	12.9034976	12.7295172	12.4961862	A1-	
AT2615890	3242.3692	-2.00678974	0.15548841	-12.9064	${ }^{\text {4.14E-38 }}$	1.87-35	10.2585207	10.1528743	10.4376788	12.2431688	12.1698791	12.6105703	A2-	
AT2617690	42.038499	-3.6883246	0.42963267	8.39934	4.49E-17	1.806-15	1.9231298	2.80342539	2.03284735	6.88065094	${ }^{6.33648057}$	5.48275945	${ }^{\text {Al+ }}$	SDC, SUPPRESSOR OF DRM1 DRM2 CMT3, Encodes an F-box domain containing protein that is regulated by non-CG DNA methylation. In drm1 drm2 cmt3 triple mutant background SDC expression is no longer suppressed and plants display abnormal
AT2617690	80.35864	1.89452169	0.18026689	10.5095	7.81-26	3.71-23	2.507777	3.47360089	2.26215782	7.16688702	7.78933865	6.648818	$\mathrm{A}^{\text {22+ }}$	

AT2619800	1233.9243	\|-1.78889795	0.44572138	4.00227	${ }^{6.27 E-05}$	0.00052358	8.13914393	9.07345248	9.07917436	10.2727504	11.6892466	10.5590142		MIOX2, MYO-INOSITOL OXVGENASE 2
AT2618800	2490.6113	${ }^{-3.26415631}$	0.2266943	14.3989	5.26E-47	8.94E-45	8.03157389	8.96476175	8.969876	12.2103562	12.366197	11.8410417	${ }^{\text {A1- }}$	
AT2618850	33.818679	-4.5688336	0.41707284	10.9497	${ }^{\text {6.66E-28 }}$	4.911-26	1.0260486	1.32916998	0	6.0282941	6.24407167	5.961116	Al^{1}	Transcription repressor
AT2620350	17.897106	2.652202672	0.52940128	5.008815	5.45E-07	6.822-06	4.70774793	5.6883652	4.7200244	2.60404218	0	1.16933484	A1+	Integrase-type DNA-binding superfamily protein; FUNCTIONS IN: DNA binding, sequence-specific DNA binding transcription factor activity; INVOLVED IN: regulation of transcription, DNA-dependent. encodes a member of the ERF (ethylene response factor) subfamily B-6 of ERF/AP2 transcription factor family. The protein contains one AP2 domain. There are 12 members in this subfamily including RAP2. 11
AT2620720	266.75968	4.505572761	0.8845861	15.83522	1.788-56	6.011-54	8.77576671	9.0581817	9.18413037	3.68403848	3.41603793	4.893773	${ }^{\text {A1+ }}$	GLYCINE-RICH RNA-BINDING PROTEIN 7, cold, circadian rhythm, and rna binding 2" (CCR2); FUNCTIONS IN: double-stranded DNA binding, RNA binding, single-stranded DNA binding, Encodes a small glycine-rich RNA binding protein that is part of a negativefeedback loop through which AtGRP7 regulates the circadian oscillations of its own transcript. Gene expression is induced by cold. GRP7 appears to promote stomatal opening and reduce tolerance under salt and dehydration stress conditions, but, promotes stomatal closing and thereby increases stress tolerance under conditions of cold tolerance.
AT2621660	2116.1192	-2.7842902	0.23958866	11.6211	3.22E-31	3.288-29	8.3290314	9.4650628	8.8626757	11.568824	11.9424875	12.05082	A1+	
AT2621660	1652.774	-2.4888497	0.23312316	10.6547	1.66E-26	1.15E-24	8.22138407	9.35632217	8.75631447	11.6965862	11.3458888	11.352328	A1-	
$\widehat{\text { AT2621660 }}$	1938.0129	-2.77968843	0.2348678	11.8349	${ }^{2.58 E-32}$	8.011-30	8.12365063	9.26181456	8.66466716	11.8356312	11.6729347	11.7378327	A2.	
AT2621900	77.133761	4.397807122	0.41085716	10.70398	9.75E-27	17.73E-25	7.15842198	7.10302156	7.4546703	2.60404218		2.58406216	A1+	WRKY ONA-binding protein 59 (WRKK59);
AT262470	20.03114	3.113374023	0.3114891	9.99513	${ }^{1.60-23}$	1.07E-21	8.44452073	8.15392552	8.88626757	5.87213781	3.95529	5.01018029	${ }^{\text {A1+ }}$	
AT2623030	51.488796	-1.72462103	0.31403167	-5.49187	${ }^{3.98 E-08}$	5.90E-07	4.98718166	4.20156765	4.2429884	6.17229309	6.57773948	6.29355404	${ }^{\text {A1+ }}$	
AT2623030	48.438047	-1.73155631	0.3086487	-5.61017	2.02E-08	3.55E-07	4.88274439	4.09880182	4.1387548	6.51422659	6.13861985	6.13896187	A1-	SNF1-related protein kinase 2.9 (SNRK2.9; FUNCTIONS IN: protein serine/threonine kinase activity, protein kinase activity, kinase activity, ATP binding; INVOLVED IN: protein amino acid phosphorylation, response to osmotic stress; EXPRESSED IN: hypocotyl, root
AT263330	80.550242	-2.6326441	0.26817824	-9.81677	${ }^{9.536-23}$	1.388-20	4.78810675	4.00988341	4.05227356	6.87521402	7.37814109	7.18211066	A2.	
AT263270	40.564177	2.559245933	0.47375406	5.402056	6.59--08	9.500-07	6.07596656	6.18530198	${ }^{6.4216273}$	1.42937086	0	4.302755	${ }^{\text {A1+ }}$	Transmembrane protein
AT2625460	71.059387	2.503553978	0.35154204	7.121635	1.07-12	2.898-11	6.83054615	7.21285235	6.81934414	5.05191825	3.71067778	3.4584494	${ }^{\text {A1+ }}$	EEIG1/EHBP1 protein amino-terminal domain protein, CONTAINS InterPo DOMAIN/s: C2 calcium-dependent membrane targeting
AT2627080	178.91183	[2.988779615	0.32010415	9.33721	${ }^{9.899-21}$	\|5.21--19	8.21160172	7.9596424	[8.75088865	5.82981529	\|4.16427264	[4.8318474	${ }^{\text {A1+ }}$	Late embryogenesis abundant (LEA) hydroxyproline-rich glycoprotein family; CONTAINS InterPro DOMAIN/s: Late embryogenesis abundant protein, group 2
AT2627660	55.824162	2.535964241	0.40183306	6.310989	2.77--10	11-09	1.67765048	6.39557205	6.70427307	4.72243246		3.4584494	${ }^{\text {A1+ }}$	Cysteine//istsidine-rich C1 domain family protein; fUNCTIONS IN: zinc ion binding
AT2627690	132.6374	3.564015813	0.34201992	10.42049	2.00E-25	1.488-23	7.6940635	7.56736362	8.4655718	4.41410229	3.95529	3.88163585	A1+	CYP94C1, cytochrome P450, family 94, subfamily C, polypeptide 1, Encodes a CYP94C1. Has highest omega-hydroxylase activity with 9,10-epoxystearic acid, while also metabolized lauric acid (C12:0) and C18 unsaturated fatty acids. Gene expression is induced in response to wounding and jasmonic acid treatment
AT2632020	\|52.539428	[2.696036325]	[0.3728845	7.164888	[7.79E-13	2.148-11	\|6.2763883	\|6.4504237	6.9259112	3.68403848	2.54523522	3.99897708	A1+	Acyl-COA N-acyltransferases (NAT) superfamily protein; fUNCTIONS IN: N-acetyltransferase activity; INVOLVED IN: response toabscisic acid stimulus, metabolic process
AT2632810	285.30387	3.10929374	0.21424878	14.51254	1.01--47	2.42E-45	8.87692035	9.17329994	8.9620678	5.25747959	6.20076121	5.899804	A1+	BGAL9, beta galactosidase 9 (BGAL9); FUNCTIONS IN: sugar binding, cation binding, beta-galactosidase activity, hydrolase activity, hydrolyzing O-glycosyl compounds, catalytic activity; INVOLVED IN: lactose catabolic process, using glucoside 3-dehydrogenase, carbohydrate metabolic process, lactose catabolic process via UDP-galactose, lactose catabolic process
AT2632810	258.0633	3.423076975	0.2164553	15.81424	2.48E-56	5.69e-54	8.76919114	9.06659018	8.85543787	5.28852909	5.45092181	5.35204435	A1-	
AT2633830	\|176.0517	-2.46363084	0.15152067	-16.2594	[192-59	7.35E-57	${ }^{11.4492732}$	10.9358639	${ }^{11.3406461}$	11.8349075	13.8692431	13.5671133	A1+	Ormanc//axiin associated family protein
AT263830	8691.8351	-2.65841067	0.16885111	-15.6514	3.25-55	7.011-53	11.3413457	10.827021	11.2304918	14.1081301	13.8709234	13.637646	A1-	
AT2638330	6308.2105	-2.20207206	0.1878031	-11.7707	5.52--32	1.67--29	11.2433114	10.732418	11.188647	13.1556804	13.190866	13.6665211	A2.	
AT2634130	79.886095	-6.3430864	0.46794237	-13.5553	${ }^{7.37-42}$	1.32-39	0	0.62641448	0	7.33862744	7.70730679	6.79334513	${ }^{\text {A1+ }}$	MEE19 maternal effect embryo arrest 19; hypothetical protein
AT2634130	3.8502539	-1.85505238	0.5127945	-3.62826	0.0002853	0.00237993	0	0.58898859	0	2.52621344	3.54662372	3.02705619	${ }^{\text {A1- }}$	
AT2634130	147.32616	-2.97018227	0.17873414	-16.6179	5.17-62	1.066-58	0	0.94032516	0	7.7163669	8.64221298	8.10948759	${ }^{\text {A2+ }}$	
AT2635820	258.82682	2.070846629	0.2114287	9.794439	${ }^{1.195-22}$	7.38E-21	8.87704865	8.58822318	8.7067286	7.03764045	6.20076121	6.388263676	${ }^{\text {A1+ }}$	Ureidoglycolate hydrolases; FUNCTIONS IN: ureidogy ${ }^{\text {a colate hydrolase activity ; IVVOLVED IN: allantoin catabolic process; }}$
AT2635820	229.70695	2.535910766	0.20136815	12.59341	${ }^{2.30-36}$	2.500-34	8.76232058	8.47961638	8.59680419	5.86113479	6.43433558	5.93726157	${ }^{\text {A1- }}$	
AT2635930	93.085353	${ }^{3.343311505}$	0.3516482	10.2819	8.50-25	6.108-23	7.37290417	7.27499913	7.65812289	4.41410229	2.54523522	3.88163585	${ }^{\text {A1+ }}$	PUB23, plant U-box 23 , Encodes a cytoplasmically localized U-bx domain containing E3 ubiquitit ligase that is involved in the response to water stress and acts as a negative regulator of PAMP-trigered immunity
AT2636270	11.381569	${ }^{-2.69176041}$	0.4679497	-5.75224	\|8.81-09	1.448-07	${ }^{2.12132674}$	1.39570492	2.23589253	$\mid 4.52436469$	\|5.12346883	5.1178917	${ }^{\text {A1+ }}$	
AT2636750	\|36.425532	3.876054014	0.52065982	7.444504	9.73E-14	\|2.911-12	5.24261498	\|6.3788159	16.6167048		0	1.80658324	${ }^{\text {A1+ }}$	UGT73C1, UDP-glucosyl transferase 73C1
AT2636790	980.09842	2.783866882	0.56146439	4.95825	7.11E-07	8.74E-06	10.494876	10.846692	11.1849541	7.67380434	4.90795769	5.31182967	${ }^{\text {A1+ }}$	UGT73C6, UDP-glucosyl transferase 73C6, The At2336790 gene encodes a UDP-glucose:flavonol-3-0-glycoside-7-0. glucosyltransferase (UGT73C6) attaching a glucosyl residue to the $7-0$-position of the flavonols kaempferol, quercetin and their 3-0 glycoside derivatives. Overexpression of the UGT73C6 alters brassinosteroid glucoside formation in Arabidopsis thaliana
AT2636790	2253.8655	0.788884544	0.17104274	4.609868	4.03E-06	3.688-04	11.2417392	11.6334789	11.9273331	9.62198026	10.690972	10.697871	$\mathrm{A}^{\text {2 }}$	
AT2636790	1237.7828	0.864754363	0.24409756	3.542659	0.0003961	0.00393956	10.2888886	10.6432303	10.989882	9.99357091	9.9606547	9.08322057	A2-	
AT2638800	\|511.21857	2.822011587	0.21804137	12.94255	2.59E-38	\|3.89E-36	9.44248887	9.92171522	0.0393574	. 17921099	37902412	.99049986		DOGT1, don-Ilucosyltranserase 1, Encodes a DoN-Glucosyltransferase. The UGT73C5 glucosylate both brassinolide and

3119390	45.848893	48073004	${ }^{0.32932297}$	7.53282	[4.97--14	1.52E-12	3.39153771	3.91998967	3.74076218	5.99212983	. 714193343	6.19860657	${ }^{\text {A1+ }}$	Granulin repeat cysteine protease family protein; FUNCTIONS IN: cysteine-type endopeptidase activity, cysteine-type peptidase activity; INVOLVED IN: proteolysis
AT3619390	61.896596	-2.81378877	0.3399715	-8.27654	1.27E-16	4.83E-15	3.29421364	3.81854263	3.63910454	6.4574718	7.51233966	6.13896187	${ }^{\text {A1 }}$	
AT3619390	45.630384	-2.4455444	0.35690144	-6.84935	7.42E-12	3.55E-10	3.20644851	3.73080312	3.55483128	4.91161886	6.92731345	6.55018935	A2.	
AT3620340	165.36213	-2.91160591	0.31440446	-9.2607	2.03E-20	1.066-18	5.54831838	4.541804	5.02412426	7.78873798	8.79307821	7.85067324	${ }^{\text {A1+ }}$	Expression of the gene is downregulated in the presence of paraquat, an inducer of photoxidative stress.
AT3620340	136.90471	-2.77028727	0.25018053	-11.0732	${ }^{1.69-28}$	1.306-26	5.44277445	4.43775147	4.9174408	7.84239886	8.12317979	7.80552781	Al^{1}	
AT3620340	163.71946	-2.93090502	0.29839634	-9.82219	${ }^{9.045-23}$	1.311-20	5.34700241	4.34760177	4.88870952	8.78870799	7.67517685	7.98193947	A2.	
AT3621080	109.90144	4.88371438	0.40618704	11.53093	${ }^{9.21-31}$	9.07E-29	00908	7.49958577	8.15409065	2.95850299	1.77337038	2.247074	${ }^{\text {A1+ }}$	ABC transporter-Ilike protein
AT3621570	9.1891304	-3.4505726	0.57864985	-5.96315	2.47E-09	4.39E-08	0	0	0	3.24822533	4.65450227	4.55354437	${ }^{\text {A1+ }}$	Proline-rich nudear receptor coactivator
AT3621570	3.3005793	-1.94878505	0.50665271	-3.84639	0.0001199	0.00110669	0	0	0	3.22203333	2.66508652	2.83388398	${ }^{\text {A1 }}$	
AT3624542	38.685197	-5.55137252	0.50821671	-10.9232	8.93E-28	7.50--26	0	0	0	5.64889647	6.57473948	6.4867716	${ }^{\text {Al+ }}$	-galactosidase related protein
AT3624542	31.852727	-4.88911448	0.46233684	-10.5748	3.90E-26	2.63E-24	0	0	0	5.45434691	6.60240584	5.73077332	A1-	
AT3627150	12.153752	2.637236802	0.54511271	4.837966	${ }^{1.31-06}$	1.54E-05	4.50976567	${ }^{4.541804}$	4.68577835	1.42937086	1.77337038	0	${ }^{\text {A1+ }}$	Galactose oxidase/kelch repeat superfamily protein;Target
AT3627473	12.828131	-2.98424919	0.51966515	-5.74264	${ }^{9.32-09}$	1.51--07	1.08200738	0.62641448	1.79647046	5.05191825	4.16427264	4.62831981	${ }^{\text {Al+ }}$	Cysteine//istidide-rich C1 domain family protein
AT3627473	6.5104928	-1.79671071	0.51325828	-3.5006	0.0004642	0.00367044	1.0260486	0.58898859	1.71888673	3.54988292	0	4.67731385	${ }^{\text {A1- }}$	
AT3628193	12.671876	-3.8231251	0.55087996	-6.94003	3.92--12	9.956-11	0	0	0.69458906	4.4141022	5.12348883	4.47470153	${ }^{\text {A1+ }}$	Tranmembrane protein
AT3628193	23.234293	-4.47698895	0.46079601	-9.71577	2.58-22	1.41--20	0	0	0.65346813	5.60305581	5.76623828	5.27800355	${ }^{\text {A1 }}$ -	
AT362850	54.002216	3.078237266	0.39685658	7.756548	8.73-15	2.866-13	6.32742784	6.89967256	6.72128447	3.24282533	0	3.88163585	${ }^{\text {Al+ }}$	P-loop containing nucleoside triphosphate hydrolases superfamily protein; FUNCTIONS IN: nucleoside-triphosphatase activity, ATPase activity, nucleotide binding, ATP binding; INVOLVED IN: response to abscisic acid stimulus
AT3628917	7.9901805	-2.85207742	0.57760138	-4.9378	7.90E-07	9.611-06	0.64014872	0.62641448	0	4.81212227	3.04536424	3.75388709	${ }^{\text {Al+ }}$	SDR4 short-chain dehydrogenase reductase 4, NAD(P)-binding Rossmann-fold superfamily protein; FUNCTIONS IN: oxidoreductase activity, copper ion binding; INVOLVED IN: oxidation reduction, metabolic process
AT3629250	100.0304	4.008993665	0.40369995	9.930627	3.066-23	1.99--21	7.3847823	7.06251638	8.16034127	2.95850299	3.41603793	2.8570496	${ }^{\text {A1+ }}$	
AT3629250	111.80531	1.261240597	0.35995438	3.50389	4.59E-04	4.45E-03	7.12381447	6.86059334	7.9590341	5.66911504	6.57372237	4.71104703	A2.	
AT3G30165	28.095123	-5.09190701	0.52422841	-9.71315	2.65-22	1.59--20	0	0	0	6.30179705	5.76041692	5.2657314	${ }^{\text {Al+ }}$	Zncs oua-quine starch
AT3G30720	311.0296	-4.18488005	0.18175136	-23.0259	2.57-117	5.50-114	4.90888351	4.97492033	5.02412426	9.04338885	9.19548847	9.37558921	${ }^{\text {A1+ }}$	
AT3G30720	253.0322	${ }^{-3.95130953}$	0.19072375	-20.7174	2.41--95	2.21-92	4.80464288	4.86961204	4.9174408	9.089887702	8.79584563	8.80559775	${ }^{\text {A1 }}$	
AT3630720	79.460869	-0.74802691	0.16612109	-4.5029	${ }^{\text {6.70E-06 }}$	5.92E-04	5.63660448	5.71319536	5.74880253	6.73715322	6.83030173	6.73208822	${ }^{\text {A2 }}$ +	
AT3630751	37.718115	-5.5927317	0.50491903	-11.0766	${ }^{1.63-28}$	${ }^{1.435-26}$	0	0	0	${ }^{6.2384977}$	5.82338964	6.60255698	${ }^{\text {Al+ }}$	Putative uncharacterized protein Eukaryotic asparty protease family protein
AT3630770	35.712351	-5.0974376	0.51469785	-9.9038	${ }^{4.015-23}$	2.57-21	0.64014872	0	0	${ }^{6.85976936}$	5.39625474	5.86930272	${ }^{\text {Al+ }}$	
AT3630770	36.671413	-5.14988705	0.44265561	-11.6323	2.83-31	2.44--29	0.60238038	0	0	6.1288676	5.76623828	6.61552448	Al^{1}	
AT3630775	1990.5298	-1.20501986	0.21129008	-5.70315	1.18E-08	1.88E-07	10.4546776	9.80379883	10.282403	11.4060213	11.8117421	11.0349219	${ }^{\text {Al+ }}$	EARLY RESPONSIVE TO DEHYDRATION 5 (ERD5); CONTAINS InterPro DOMAIN/s: Proline dehydrogenase (InterPro:IPR002872), Proline oxidase, Encodes a proline oxidase that is predicted to localize to the inner mitochondrial membrane, its mRNA expression induced by high levels of Al and by osmotic stress. The promoter contains an L-proline-inducible element.
AT3G30775	4479.6745	-2.71852901	0.21110366	-12.8777	${ }^{\text {6.011-38 }}$	6.99E-36	10.3467898	9.69502471	10.1721338	12.6705281	13.355068	12.6888406	${ }^{\text {A1- }}$	
AT3631910	31.326196	-4.85468126	0.48209751	-10.069	7.50E-24	5.10e-22	1.08200738	0.62641448	0	6.30179705	5.55310897	5.98762123	${ }^{\text {Al+ }}$	Ulp1 protease family protein (DUF1985)
AT3631910	16.358621	-3.7091329	0.46699348	-7.94258	1.98E-15	6.84E-14	1.0260486	0.58898859	0	4.888573345	5.26298084	4.98409069	${ }^{\text {A1- }}$	
AT3642060	108.18227	-6.52370125	0.40624346	-16.0586	4.986-58	1.186-55	0	0	0.65348813	8.0893335	7.74621963	7.36160737	${ }^{\text {A1- }}$	Myosin heavy chain-like protein
AT3642723	33.615858	${ }^{-4.20525915}$	0.53000245	-7.93441	${ }^{2.11-15}$	7.40-14	0	0.62641448	1.51362724	7.03764045	5.01973368	5.26573414	${ }^{\text {Al+ }}$	ATP binding / aminoacyl-RNA ligase/ nucleotide binding protein
AT3642723	10.651867	-2.8695191	0.49134996	-5.84007	5.22E-09	9.87]-08	0	0.58898859	1.44298843	${ }^{4.700053}$	${ }^{4.48835394}$	4.02896949	${ }^{\text {A1- }}$	
AT3644070	62.394514	-5.70907579	0.51940222	-10.9916	4.19e-28	3.58E-26	0	0	0	7.842941	${ }^{6.46052296}$	5.8988044	${ }^{\text {A1+ }}$	Glycosy hydrolase family 35 protein
AT3644070	55.27904	-5.61657919	0.42475	-12.6936	${ }^{\text {6.42-37 }}$	7.17]-35	0	0	0	6.51492659	7.38043732	6.25929154	${ }^{\text {A1- }}$	
AT3644265	87.006571	-6.3759127	0.44867291	-14.2106	${ }^{7.87 \text {-46 }}$	1.57-43	0.64014872	0.62641448	0	7.68571859	7.566115209	7.00455248	${ }^{\text {A1+ }}$	Betagalactosidase-like protein
AT3644265	66.43804	-5.86554841	0.40575965	-14.4557	${ }^{2.31-47}$	3.95E-45	0.60238038	0.58898859	0	${ }^{6.94935831}$	7.18241068	7.04187066	${ }^{\text {A1- }}$	
AT3644265	7.6799656	-0.54900155	0.13881763	-3.92655	${ }^{8.62-05}$	6.11E-03	0.95418637	0.94032516	0	3.35533292	4.09707691	4.31291624	${ }^{\text {A2 }}$	
AT3644350	55.201534	2.831427114	0.40420626	7.00490	2.47-12	6.41--11	6.96560812	6.71966171	6.23288803	4.29471016	0	3.4584494	${ }^{\text {Al+ }}$	NAC61, NAC domain containing protein 61, DOMAIN/s: No apical meristem (NAM) protein (InterPro:PR003441);
AT3645090	60.226327	1.829316156	0.30055986	6.086362	1.16E-09	2.14E-08	6.56721516	6.68857927	6.57922203	4.62699	3.95529	5.06504098	${ }^{\text {Al+ }}$	P-loop containing nucleside triphosphate hydrolases superfamily protein
AT3645990	50.232254	2.533035585	0.32531316	7.78653	6.89E-15	2.26E-13	6.46042928	6.5817406	6.47022071	3.93373619	2.66508652	3.7289679	Al^{1}	
AT3645300	3240.7532	${ }^{-2.84119786}$	0.16339953	-17.388	1.02E-67	5.80E-65	9.9159845	9.38871428	9.38163373	12.2973362	12.5809892	12.5475008	${ }^{\text {Al+ }}$	Isovelev1\|-CAA-dehydrogenase (IVD); FUNCTIONS IN: ISovaleryl-COA dehydrogenase activity, ATP binding; INVOLVED IN: leucinecatabolic process
AT3645300	2673.6069	-2.6183642	0.17855531	-14.6641	1.09E-48	1.95E-46	9.88813289	9.27998234	9.27160694	12.2188632	12.3632741	11.9226559	${ }^{\text {A1- }}$	
AT3645300	2154.1126	-2.34520997	0.18769114	-12.495	7.94--36	3.02E-33	9.71017265	9.18848885	9.17989375	11.5756261	11.826646	12.0520163	A2.	
AT3645700	37.283393	4.0989682	0.52707206	7.77685	7.43E-15	2.46E-13	6.08786116	5.4766499	6.81934414	0	-	1.16932484	${ }^{\text {Al+ }}$	Major facilitator superfamily protein; FUNCTTONS IN: transporter activity; INVOLVED IN: oligopeptide transport
AT3645960	37.7	2.95514566	0.46941799	6.295273	3.07--10	6.166-09	6.03968276	5.4033698	6.72128447	3.24882533	2.54452352	1.80658324	${ }^{\text {Al+ }}$	EXLA3, EXPL3, expansin-like A3, ATEXLA3, ATEXPL3, ATHEXP BETA 2.3, expansin-like A3 (EXLA3); INVOLVED IN: plant-type cell wall organization, unidimensional cell growth, plant-type cell wall loosening;
AT3648640	33.361501	3.51119929	0.45653635	7.69095	1.46E-14	\|4.69-13	5.84316659	6.45042037	16.39006114	2.95850299	1.77737038	1.16933484	${ }^{\text {A1+ }}$	tranmembrane protein
AT3650770	76.348205	2.81603224	0.35774192	7.871686	3.50--15	1.19E-13	6.96713612	7.31491012	7.25279528	4.8121227	3.04536424	3.6137176	${ }^{\text {A1+ }}$	CML41, calmodulin-like 41 Functions IN: calcium ion binding
AT3650770	191.06441	-0.94788585	0.2534824	-3.73922	0.0001846	0.00162621	6.59024851	7.20671969	7.14334748	7.55345777	7.85008742	8.4444186	${ }^{\text {A1 }}$	
AT3653910	20.8705	-4.68239315	0.53931387	-8.68213	3.88E-18	1.708-16	0	0	0	5.43737123	4.65450227	5.89980442	${ }^{\text {A1+ }}$	Malate dehydrogenase-ilike protein

														that hydrolyzes phosphatidycholine, glycolipids as well as triacy Igycerols functions IN: galactolipase activity, trigy yceride lipase activity, phospholipase A1 activity; INVOLVED IN: lipid metabolic process
AT4618150	\|49.639822	5.6599251	0.4688782	12.1229	7.999-34	\|9.299-32	1.08200738		0	6.30179705	6.74704798	6.8247753	A1+	Serine/Threonine-kinase, putative
AT4618150	50.777458	5.3882543	0.4288724	-12.742	3.45E-37	3.911-35	1.0260486	0	0	${ }^{6.64070742}$	7.01372669	6.27840572	Al^{1}	
AT4621680	117.3354	3.126205488	0.3406135	9.178161	4.398-20	2.22E-18	7.20285189	7.62413179	8.2509894	4.52436469	3.955229	4.47470153	${ }^{\text {Al+ }}$	NRT1.8, NITRATE TRANSPORTER 1.8, NRT1/ PTR family 7.2, NPF7.2, AtNPF7.2, Encodes a nitrate transporter (NRT1.8). Functions in nitrate removal from the xylem sap. Mediates cadmium tolerance.
AT4621680	103.67261	2.69304547	0.35300123	7.62897	2.377-14	1.695-12	6.98831337	7.42168197	8.04963608	4.91161886	4.68949991	2.97593968	A2.	
AT462590	120.33706	2.535735923	0.37997522	6.673424	2.500-11	5.78E-10	7.6940635	7.49928577	7.9812722	5.87213781	3.0453624	4.39128842	A1+	TPPG Haloacid dehalogenase-like hydrolase (HAD) superfamily protein; FUNCTIONS IN: catalytic activity, trehalose-phosphatase activity; INVOLVED IN: trehalose biosynthetic process, metabolic process;
AT4623070	24594	110620	974073	5.82475	5.72E-09	9.59E-08	826098	4.70106583	5.44861069		0	1.16932484	${ }^{\text {A1+ }}$	RBL7, RHOMBOID-like protein 7 (RBL7); FUNCTTONS IN: serine-type endopeptidase activity; DIC2 dicarboxylate carrier 2 (DIC2); FUNCTIONS IN: binding, dicarboxylic acid transmembrane transporter activity
AT4624570	111.61367	2.893124774	0.27157608	10.65309	1.698-26	1.32E-24	7.75873667	7.46007907	7.71017741	4.89656107	4.34682445	4.55355437	${ }^{\text {Al+ }}$	
AT462530	988.3379	-10.3163052	0.4469697	-23.0805	7.26-118	2.12-114	0	0	0	0	11.172183	11.3504313	A1+	FLOWERING WAGENINGEN, FWA, HDG6, HOMEODOMAIN GLABROUS 6
AT4625530	104.45451	3.85787677	0.5080234	0	3.100-14	9.74E-13	0	0	0	6.53358073	8.61107536	7.19053793	A1-	
AT4625530	84.596732	-2.50267411	0.1801412	-13.8928	7.008-44	8.466-41	0	0	0	7.10288148	7.8644139	7.13013113	${ }^{\text {A2 }}$ +	
AT4625580	63.812785	-5.2988893	0.4297685	-12.325	${ }^{6.655-35}$	${ }^{8.33-33}$	1.08200738	1.06173972	1.51362724	6.3119705	7.28341303	7.20105069	${ }^{\text {A1+ }}$	utative uncharacterized protein
AT462580	69.81524	-5.25573844	0.38751893	-13.5625	6.688-42	9.488-40	1.0260486	1.00603493	1.44298843	6.756361	7.63428961	6.79884427	Al^{1}	
AT4625580	82.954602	5.57653952	0.33777995	-16.5094	3.144-61	3.65-58	0.97696772	0.95928517	1.38559459	7.23505054	7.36372912	7.50659804	${ }^{\text {A2 }}$ -	
AT4627654	39.756524	2.965474185	0.43548448	6.809598	9.79e-12	2.37-10	5.9642572	6.15259609	6.50257548	3.86258421	0	2.24707457	${ }^{\text {Al+ }}$	Transmembrane protein
AT4627654	44.714233	1.274260556	0.388319	3.76647	0.0001656	0.0018436	5.76175919	5.9521883	6.30290054	5.4174015	4.9395533	3.63762718	A2.	
AT4629200	124.64548	-6.96814846	0.4255825	-16.3761	2.844-60	1.16-57	0	0.62641448	0.69458906	7.9750288	8.02115358	7.89676951	${ }^{\text {A1+ }}$	Beta-galactosidase related protein:(Source:Araport11)
AT4629200	85.43925	-5.7916925	0.42574655	-13.6036	3.811-42	5.47-40	0	0.58898859	0.65346813	6.67471869	8.0956687	7.11811844	${ }^{\text {A1- }}$	
AT4629200	13.500262	-0.84429995	0.15745271	-5.3624	8.22E-08	9.47E-06	0	0.94032516	1.02485808	4.84311283	5.18784947	4.07853495	${ }^{\text {A2+ }}$	
AT4630280	775.45996	3.328055775	0.51889166	6.413778	1.42E-10	2.99E-09	10.311209	10.2750288	10.935849	6.99996539	4.78678878	5.1178917	${ }^{\text {A1+ }}$	XYL18, xyloglucan endotransglucosylase/hydrolase 18, Encodes a xyloglucan endotransglucosylase/hydrolase with onlyy the endotransglucosylase (XET; EC 2.4.1.207) activity towards xyloglucan and non-detectable endohydrolytic (XEH; EC 3.2.1.151) activity. Expressed in the mature or basal regions of both the main and lateral roots, but not in the tip of these roots where cell division occurs.
AT4630430	33.132379	\|3.27873186	0.4762801	\|6.884881	5.78-12	1.44E-10	5.74141419	5.5576071	${ }^{6.48276025}$	2.13308815		2.58406216	Al^{1+}	TET9, Tetraspaning (TeT9); FUNCTTONS IN: molecular_function unknown; INVOLVED IN: aging;
AT4631800	218.36826	2.503573765	0.31001968	8.07532	6.72E-16	2.43E-14	8.30881787	8.486916	${ }^{8.8626757}$	6.53041085	4.5088002	5.86930272	$\mathrm{Al}^{\text {+ }}$	WRKY DNA-binding protein 18 (WRKY18)
AT4633150	1769.7907	-3.77880042	0.12217258	-30.9308	4.611-210	3.95-206	8.05983735	7.87529569	7.6625323	11.6505442	${ }^{11.75533}$	11.655887	${ }^{\text {A1+ }}$	LKR/SDH locus. Encodes two proteins. One protein is the monofunctional saccharopine dehydrogenase involved in Iysine degradation. The longer protein from the same LKR/SDH locus is bifunctional and also has saccharopine dehydrogenase activity. The monofunctional SDH functions mainly to enhance the flux of lysine catabolism. Gene expression is induced by abscisic acid, jasmonate, and under sucrose starvation.
AT4633150	1266.7159	-3.88256763	0.19358003	-16.9572	1.700-64	5.09E-62	7.95228977	7.76687668	7.55289887	11.0364585	11.5626917	10.8358009	A1-	
AT4633150	1530.6515	${ }^{-3.70622686}$	0.15403528	24.0609	${ }^{6.42 E-128}$	1.42E-123	7.85462602	7.67266893	7.46153827	11.2631185	11.589667	11.5698894	A^{2} -	
AT4633465	67.312894	${ }^{-4.00565346}$	0.45496597	8.80429	1.32E-18	[6.018-17	2.71916111	2.41988197	1.79647046	5.43737123	7.70730679	7.15121196	${ }^{\text {A1+ }}$	SCR-LIKE 22, SCRL22, Encodes a member of a family of small, secreted, cysteine rich proteins with sequence similarity to SCR (S locus cysteine-rich protein).
AT4633465	31.170814	-3.1974906	0.37630063	8.99627	1.966-17	7.87-16	2.6881916	2.3315719	1.71886773	5.8081296	6.2407167	5.55377789	A^{1} -	
AT4633465	88.605696	-4.640246	0.32828845	-14.1354	2.300-45	1.49E-42	2.54636852	2.25622116	1.65553269	7.27432006	7.02213107	7.90134866	A^{2} -	
AT4634410	294.07078	2.927365822	0.27902055	10.49158	9.44E-26	7.16--24	9.00319506	9.30562138	8.78864987	${ }_{6}^{6.6324758}$	5.1234688	5.6355687	${ }^{\text {A1+ }}$	RRTF1, ERF109, ethylene response factor 109, redox responsive transcription factor 1 (RRTF1); CONTAINS InterPro DOMAIN/s: DNAbinding, integrase-type (InterPro:IPR016177), Pathogenesis-related transcriptional factor/ERF, DNA-binding
AT4634410	647.43606	0.787881005	0.16507306	4.7705	${ }^{1.844-06}$	1.80E-04	9.74932518	10.0618198	9.52496045	8.22181499	9.1502765	8.48239181	A2+	
AT4637220	132.91322	-2.2069466	0.33305332	-6.62641	3.448-11	7.82E-10	5.28456251	5.42178607	5.5280995	6.83858109	8.48760066	7.65892076	${ }^{\text {Al+ }}$	Cold acclimation protein WCOR413 family, eariy CK response gene
AT4637220	215.88843	-3.14886742	0.21554192	-14.6091	2.466-48	4.36E-46	5.17946829	5.31552177	5.42038057	8.32174183	9.02025045	8.42310676	${ }^{\text {A1- }}$	
AT4637220	91.87239	-1.91481018	0.24479621	${ }^{-7.82206}$	5.200-15	3.98E-13	5.08419255	5.22331949	5.33072716	${ }^{6.76924384}$	7.12825324	7.62006655	A^{2} -	
AT4638560	123.66808	2.56169699	0.30040443	8.527493	1.508-17	6.25E-16	7.6304266	7.61615753	7.99532626	5.74125297	4.50885002	4.47470153	${ }^{\text {A1+ }}$	Phospholipase-like protein (PEARLI 4) family protein. Overlaps with NAT AT4G09715 EDS5 ENHANCED DISEASE SUSCEPTIBILTY 5 (EDS5);SCORD3, SID1, susceptible to coronatine-deficient Pst DC3000 3, SALICYLIC ACID INDUCTION DEFICIENT 1 Encodes an orphan multidrug and toxin extrusion transporter. Essential component of salicylic aciddependent signaling for disease resistance. Member of the MATE-transporter family. Expression induced by salicylic acid. Mutants are salicylic acid-deficient
AT4639030	273.63436	2.525423793	0.23679884	10.66885	1.498-26	1.166-24	8.6062531	8.79388635	9.19482705	6.65684315	5.8238864	6.14868187	${ }^{\text {A1+ }}$	
AT4G39070	50.596541	-1.56648574	0.32629676	4.8008	1.588-06	1.82E-05	4.8260985	4.06763741	4.84945148	6.6075917	6.29264424	5.89980442	${ }^{\text {A1+ }}$	Encodes BZS1, a brassinosteroids-regulated BZR1 target (BRBT) gene. BZS1 is a putative zinc finger transcription factor. Expression of BZS1 was increased under BR-deficient condition and repressed by BR. Transgenic Arabidopsis plants overexpressing BZS1 showed a hypersensitivity to the BR biosynthetic inhibitor brassinazole (BRZ). In contrast, transgenic plants expressing reduced level of BZS1 had longer hypocotyls than wild type when grown on BRZ. B-box zinc finger family protein; FUNCTIONS IN: sequencespecific DNA binding transcription factor activity, zinc ion binding; INVOLVED IN: response to karrikin, response to chitin, regulation of transcription;
AT4639070	99.245303	-2.78869377	0.2665548	-10.158	3.055-24	1.84-22	4.72207007	3.96546697	4.74321981	7.63346001	7.12834886	7.24984372	${ }^{\text {A1- }}$	
AT5601080	10.052266	-2.55025532	0.58888177	-4.3543	1.398-05	0.0001343	0.64014872	0.62641448	0.69458906	1.42937086	4.16427264	5.35649789	${ }^{\text {A1+ }}$	Beta-galactosidase related protein
AT5601080	22.361071	-4.21792242	0.488412	${ }^{-9.40635}$	5.14E-21	2.57-19	0.60238038	0.58898859	0.65348813	5.67203104	5.45992181	5.35204435	Al^{1}	
AT5601380	19.558548	3.117262195	0.51129561	6.09679	1.088-09	2.02E-08	5.08537786	5.42178607	5.2980753	1.42937086	-	1.80658324	${ }^{\text {A1+ }}$	Homeodomain-like superfamily protein; CONTAINS InterPro DOMAIN/s: SANT, DNA-binding (InterPro:IPR001005), MYB-like
AT5610250	32.345702	1.98945362	0.38815291	5.192323	2.088-07	[2.788-06	1.00246284	5.577379	5.69239139	3.48023337	3.7106778	3.6137176	A1+	

AT5610250	27.550389	2.51078304	0.40296113	6.23083	4.64-10	9.838-09	5.8962486	[5.4712037	\|5.58400579	[2.7971628	\|2.66508652	2.61074174		NPH family domain. dot3 mutants have defects in shoot and primary root growth and produce an aberrant parallel venation pattern in juvenile leaves.
AT5613170	54	1.8154332322	0.37472143	4.84475	1.27-.06	1.72E-05	5.66530953	6.93675849	6.60369669	4.88577345	4.0888374	3.83605124	${ }^{\text {A1- }}$	SAG29, senescence-associated gene 29 , Encodes a member of the SWEET sucrose efflux transporter family proteins PBS3, AVRPPHB SUSCEPTIBLE 3, AtGH3.12, GDG1, GH3.12, GH3-LIKE DEFENSE GENE 1, GRETCHEN HAGEN 3.12, WIN3, HOPW1-1INTERACTING 3, Encodes an enzyme capable of conjugating amino acids to 4 -substituted benzoates. 4 -HBA (4-hydroxybenzoic acid) and PABA (4 -aminobenzoate) may be targets of the enzyme in Arabidopsis, leading to the production of pABA-Glu, 4 HBA -Glu, or other related compounds. This enzyme is involved in disease-resistance signaling. It is required for the accumulation of salicylic acid activation of defense responses, and resistance to Pseudomonas syringae. Salicylic acid can decrease this enzyme's activity in vitro and may act as a competitiveinhibitor.
AT5613170	43.821205	2.846884079	0.39718626	7.165616	7.74-13	4.438-11	5.56923443	6.84289997	6.51280503	0	2.92870966	2.74912082	A2.	
AT5613320	812.59623	2.536724107	0.56629758	4.47949	7.48E-06	7.622-05	10.5550248	10.4618187	10.720621	7.4121823	3.71067778	6.58389328	${ }^{\text {A1+ }}$	
AT5613930	177.64877	0.735271732	0.2079302	3.541	0.0003973	0.00278848	7.5182528	7.9148885	7.9527464	7.24510602	7.0920932	6.80950079	A1+	TT4, TRANSPARENT TESTA 4, ATCHS, CHALCONE SYNTHASE, CHS, Encodes chalcone synthase (CHS), a key enzyme involved in the biosynthesis of flavonoids. Required for the accumulation of purple anthocyanins in leaves and stems. Also involved in the regulation of auxin transport and the modulation of root gravitropism.
AT5613930	118.38823	2.766380743	0.26882886	10.216	1.68--24	1.038-22	7.40447177	7.80640655	7.84301032	4.700053	5.45092181	4.55311326	${ }^{\text {A1- }}$	
AT5613930	108.2862	2.781966252	0.27823858	9.998492	1.55-23	2.44E-21	7.30699721	7.71218666	7.75155673	4.9111886	3.989334	4.7104703	A2-	
AT5614920	1149.3031	-1.41374148	0.2084614	-6.78229	1.188-11	2.844-10	9.17611944	8.88388972	9.62364628	10.8652035	10.8987597	10.3303972	${ }^{\text {Al+ }}$	GASA14, A-stimulated in Arabidopsis 14, Gibererlin-reevulated family protein; INVOLVED IN: response to giberellin Stimulus
AT5614920	2058.1372	-2.50623275	0.22549052	-11.1146	1.07-28	8.298-27	9.06834557	8.7752934	9.51359298	11.6476559	12.220375	11.3818077	${ }^{\text {A1- }}$	
AT5615360	47.798425	-4.21413157	0.5625293	7.49142	6.81--14	2.066-12	0.64014872	0	0.69458906	2.95850299	7.1688068	7.09958974	${ }^{\text {A1+ }}$	Transmembrane protein
AT5615360	73.341129	-6.0211389	0.40151677	-14.996	7.80-51	1.500-48	0.60238038	0	0.65346813	7.14001612	7.18241068	7.27860676	A1-	
AT5617460	89.599698	-2.9729055	0.3197862	-9.29654	${ }^{1.455-20}$	7.598-19	4.05638537	4.1136762	4.37778648	6.53041085	7.63893074	7.62280649	${ }^{\text {Al+ }}$	11 -tNNA (GIn) amidotransferase subunit C
AT5617460	38.23128	${ }^{-1.70122265}$	0.3290885	-5.16934	2.35-07	3.566-06	3.95514336	4.01129486	4.27308589	6.33520582	5.90133004	5.45643433	A1-	
AT5617460	84.103257	-2.78812138	0.38821768	${ }^{-8.49473}$	${ }^{1.988-17}$	1.898-15	3.86359518	3.92269205	4.18611696	${ }^{7} .94403054$	6.3286119	7.08814715	A2-	
AT5620260	15.016385	-2.02485671	0.4994604	-4.0549	5.03-05	4.299-04	3.14059174	1.89476658	1.51362724	4.29471016	4.78678878	5.06504098	${ }^{\text {Al+ }}$	Exostosin family protein
AT5620260	22.745821	-2.63763323	0.42277905	-6.2388	4.41-10	9.377-09	3.04528097	1.81598854	1.44298843	5.53061657	5.61717743	5.02992519	${ }^{\text {A1- }}$	
AT562380	85.45932	4.140996733	0.38201548	10.83987	2.238-27	1.811-25	7.2617914	7.23384966	7.61326173	3.24282533	0	3.08650952	${ }^{\text {A1+ }}$	NACO90, NAC domain containing protein 90 (NACO90); FUNCTONS IN: sequence-Specific DNA binding transcription factor activity; INVOLVED IN: multicellular organismal development, regulation of transcription
AT562680	${ }^{23.38055}$	3.01395056	${ }^{0.48238615}$	${ }^{6.248004}$	4.166-10	8.148-09	${ }^{5.32532476}$	5.61021808	5.54730575	2.60404218		1.80658324	${ }^{\text {Al+ }}$	f-box protein
AT5623240	131.49702	-2.88144895	0.2544157	-11.3258	9.78-30	9.188-28	4.88181046	4.541804	5.20431899	7.52258607	7.86588529	8.17135078	${ }^{\text {Al+ }}$	AToJIC17, DJC76, DNA J PROTEIN C76, DNA heat shock N-terminal domain-containing protein;
AT5623240	103.41809	-2.5439015	0.2730722	-9.316	1.21-20	5.966-19	4.77764034	4.43775147	5.09722326	7.86469996	7.47011028	7.05301304	A1-	
AT5623240	130.60801	-3.0455181	0.22516401	-13.5259	${ }^{1.105-41}$	5.922-39	4.68826202	4.34760177	5.00812498	7.64769193	8.06191227	7.92871554	A2.	
AT5624080	13.986962	2.753350104	0.5514855	4.995659	5.86-07	7.308-06	4.43723593	4.40038584	5.3648856	1.42937086	0	1.16932484	${ }^{\text {A1+ }}$	Protein kinase superfamily proteinin fUNCTIONS IN: protein serine/threonine kinase activity, protein kinase activity, kinase activity, ATP binding; INVOLVED IN: protein amino acid phosphorylation;
AT5624150	122.588887	3.09099771	0.52373227	[5.901866	3.59E-09	\|6.188-08	\|4.7077493	5.88699943	[5.5625967	${ }^{2.13309815}$	${ }^{1.77733038}$	0	${ }^{\text {A1+ }}$	SQP1 squalene monooxygenase gene homolog, FUNCTIONS IN: squalene monooxygenase activity; INVOLVED IN: sterolbiosynthetic process;
AT5624150	22.547028	2.204167194	0.4417654	4.889507	6.055-07	8.633-06	4.60406405	5.78000894	5.45847607	2.19233088	2.66508652	2.83386398	A1-	
AT5624240	48.621449	-4.14428579	0.54688537	-7.58075	3.44E-14	1.066-12	0.64018872	1.39570492	0.69458906	3.48023337	7.19092088	7.07306901	Al^{1+}	ATPI4Ky3 Encodes PI4Kc3, localizes to the nucleus and has autophosphorylation activity, but no lipid kinase activity. Overexpression mutants display late-flowering phenotype.
AT5624240	44.037252	-4.52354256	0.4459886	-10.1441	3.522-24	2.12E-22	0.60238038	1.32216698	0.65346813	5.1978784	6.60240584	7.03064156	${ }^{\text {A1- }}$	
AT5626270	181.76099	3.46970054	0.57880781	-5.99456	2.044-09	3.688-08	2.45099173	2.26485625	2.03284735	5.54593423	9.11598871	8.90881485	${ }^{\text {Al+ }}$	Transmembrane protein
AT5626270	131.78805	-5.411206	0.3202317	${ }^{-16.8973}$	4.711-64	${ }^{1.388-61}$	2.36338304	2.17930179	1.95036556	7.55345777	8.38894059	8.0988545	A1-	
AT5626270	26.010065	-1.09839815	0.17851947	-6.15282	7.61--10	1.077-07	3.08744471	2.8938911	2.6261578	5.35807838	5.59295787	5.66312425	A^{2+}	
AT5628235	15.780963	-4.01914835	0.4888885	8.20488	2.31--16	8.566-15	0	0	0	5.637956	4.48853294	4.67351385	${ }^{\text {A1- }}$	Ulp1 protease famil yrotein
AT5628235	8.6186294	-0.67585414	0.14446884	${ }^{-4.6782}$	2.89E-06	2.748-04	0	0	0	${ }^{3.84180415}$	${ }^{4.49088377}$	4.16096601	${ }^{\text {A2+ }}$	
AT5628810	7.4244365	3.0638773	0.51077939	-5.99708	2.011-09	4.02E-08	0	0	0	${ }^{4.04193303}$	3.54662372	4.27119887	${ }^{\text {A1- }}$	
AT5628810	18.29304	${ }^{-1.20014933}$	0.16850073	7.12252	1.066-12	2.011-10	0	0	0	5.20997357	5.49326367	4.94501561	${ }^{\text {A2+ }}$	
AT5634780	116.67902	-2.8831593	0.20581137	-11.593	5.24-31	5.266-29	5.1773142	5.16181962	5.25192365	7.60017557	7.78845734	7.49871138	${ }^{\text {A1+ }}$	Thiamin diphosphate-binding fold (THDP-binding) superfamily protein, FUNCTIONS IN: oxidoreductase activity, acting on the aldehyde or oxo group of donors, disulfide as acceptor, 2-dehydropantoate 2-reductase activity; INVOLVED IN: pantothenate biosynthetic process
AT5634780	129.73309	-2.6027704	0.2121349	-12.2765	1.21-34	1.22E-32	5.0724149	5.05607532	5.14472731	7.76557634	8.09526687	7.57761133	A1-	
AT5634780	93.485269	-2.19949274	0.2437892	-9.0034	2.255-19	$2.538-17$	4.97738096	4.96435614	5.05553944	6.71318926	7.36372912	7.65325752	A2-	
AT5638850	944.38802	1.95557299	0.36435753	21.83452	1.09E-105	1.75--102	10.8638483	10.8782684	10.904541	0	0	2.850496	${ }^{\text {A1+ }}$	Purple acid phosphatase 26
AT5634850	874.99348	7.971465872	0.35623171	22.37719	6.56E-111	8.43E-108	10.755948	10.769478	10.7944023	1.13102597	0	1.01552275	A1-	
AT5635375	24.187825	-3.378782	0.57451982	-5.88101	${ }^{4.088-09}$	6.966-08	1.08200738	0	0.69458906	2.13309815	6.20076121	6.09696739	${ }^{\text {Al+ }}$	Transmembrane protein
AT5635375	6.5867773	2.3978829	0.5089728	4.71069	2.47-06	3.166-05	1.0260486	0	0.65346813	3.8894006	3.5466372	4.0289694	A1-	
AT5637490	45.7	3.0240	0.411	7.35	1.97-13	5.698-12	6.25542754	6.61950878	6.3682	4.02144699	0	2.58406216	${ }^{\text {Al+ }}$	ARM repeat superfamily protein; FUNCTIONS IN: ubiquitin-protein ligase activity, binding; INVOLVED IN: response to chitin; LOCATED IN: ubiquitit ligase complex
AT5638190	10.995715	-3.2388404	0.5863884	-5.52257	3.29E-08	[4.95E-07	0	0	0	${ }^{2.13309815}$	5.1234688	4.89377362	${ }^{\text {A1+ }}$	Myosin heay chain-like protein
AT5638700	33.545355	3.637127063	0.4726541	7.620764	2.52--14	7.938-13	${ }^{6.05187904}$	5.74795637	${ }^{6.29099423}$	2.13309815	0	1.80658324	${ }^{\text {Al+ }}$	Cotton fiber protein
AT5639580	104.34109	2.59960144	0.35529524	7.316901	2.54-13	7.258-12	7.75501157	7.64387669	7.13077913	5.54593423	3.41603793	4.20843131	${ }^{\text {A1+ }}$	Peroxidase superfamily protein; FUNCTTONS IN: peroxidase ativity, heme binding
AT5641080	238.09943	-2.98889183	0.27380384	10.9527	6.45--28	4.766-26	5.44274445	5.4380305	5.60153091	8.03799581	9.3739288	8.54254921	${ }^{\text {A1- }}$	ATGDPD2, GDPD2, GYCCRROPHOSPHODIESTEER PHOSPHODIESTERASE 2

41730	13856				14	6.35E-13	5.89824294			2.13309815		1.80658324	${ }^{1+}$	NCTIONS IN: protein serine/threonine/tyrosine kinase activity, kinase activity; INVOLVED IN:
AT5642900	53.911358	-3.72340193	0.39379189	-9.45525	3.22E-21	1.77-19	2.83660846	2.91163887	${ }^{2.03284735}$	6.13801551	6.42034895	7.27272211	${ }^{\text {Al+ }}$	COR27 cold regulated protein 27
AT5642900	81.185888	-4.34422624	0.32579968	13.3334	1.88-40	1.946-38	2.7425034	2.81788511	1.95036556	7.3046894	7.67257266	${ }^{6.82502086}$	A1-	
AT5642900	41.134378	-3.44235731	0.32840454	-10.4821	1.044-25	1.956-23	2.66124385	2.73683811	1.88883617	6.07704679	6.20471195	6.5677036	A2.	
AT56444	28.154109	-2.50	0.5	-4.618	3.87-06	4.177-05	3.312641	1.39	1.51362724	3.86258421	6.6	5.56	${ }^{\text {A1+ }}$	FAD-binding Berberine family protein; FUNCTIONS IN: electron carrier activity, oxidoreductase activity, FAD binding, catalytic activity
AT5644440	27.099033	-2.78998043	0.43591836	${ }^{-6.4022}$	1.55-10	3.448-09	3.21591338	1.32916988	1.44298843	5.97470154	5.76623828	5.19995635	A1-	
AT5645570	29.16681	-4.756928	0.56799137	8.38549	${ }^{\text {5.05E-17 }}$	2.011-15	0	0.62641448	1.16146642	3.24882533	9.68949857	9.89032466	${ }^{\text {Al+ }}$	Up1 1 protease family protein
AT5645570	14.76882	${ }^{-3.48888875}$	0.48212627	7.23219	4.75E-13	1.338-11	0	0.58898859	1.10157598	5.5672908	4.08883374	4.67351385	A1-	
AT5645570	23.843422	-1.28999413	0.1729219	-7.4599	8.55-14	1.958-11	0	0.94032516	1.61801232	5.35807838	5.9842743	5.2761585	${ }^{\text {A2 } 2+}$	
AT5645630	32.889554	2.731788773	0.4358359	6.267838	3.66-10	7.25-09	5.91	5.49318558	6.27954884	2.60404218	2.54423522	3.08550952	${ }^{\text {A1+ }}$	ATNUDT, NUOIX HYOROLASE HOMOLOG 8, NUDT8, NUDX8
AT5647240	85.708358	-2.65904018	0.2618782	-10.1537	3.19-24	2.238-22	4.32110339	4.32411403	4.78618885	${ }^{6.92158868}$	7.3498875	7.39553072	${ }^{\text {A1+ }}$	
AT5647240	65.642137	-2.25974846	0.29657505	-7.61948	2.55E-14	8.066-13	4.21873955	4.22084958	4.68811374	7.20347287	6.75292342	6.35242641	A1-	
AT5647240	117.24561	-3.31849837	0.2187803	-15.1725	5.38-52	4.758-49	4.12610626	4.13142977	4.59196332	7.73473151	7.74356126	7.80125719	A2-	
AT5647850	41.329649	2.777573796	0.41238881	6.735458	1.63-11	3.848-10	5.95129379	6.44142257	6.3136046	4.0214669	1.77337038	2.58406216	${ }^{\text {Al+ }}$	
AT5649160	621.24181	-2.65610947	0.23121994	${ }^{11.4876}$	1.52-30	1.498-28	6.85162926	7.72397513	7.2586334	10.3040046	10.2031247	9.66247896	${ }^{\text {A1+ }}$	Methyltransferase 1 ;
AT5649160	4864.8109	-3.9411864	0.14971499	26.3246	1.00--152	2.67E-148	7.5988374	8.47831575	7.9974661	13.2507733	13.298542	13.1413712	${ }^{\text {A2+ }}$	
AT5G51000	22.132615	3.746536459	0.55524669	${ }^{6.781716}$	1.199-11	2.855-10	4.855421964	5.4399702	5.98779291		0	0	${ }^{\text {A1+ }}$	MATE efflux family protein; FUUCTIONS IN: antiporter activity, drus transmembrane transporter activity; INVOLVED IN: drug transmembrane transport, transmembrane transport;
AT5652050	153.84908	3.015656808	0.3246789	9.288264	1.57--20	8.198-19	8.25971467	8.07467382	8.05021207	5.78621359	3.955229	4.10750664	${ }^{\text {A1+ }}$	
AT5652310	634.27801	36746606	0.43361792	4598	[4.77-08	7.01-07	26703204	7.52963372	7.09206701	8.986795	10.0337226	10.7984041	${ }^{\text {A1+ }}$	RO29A, LTI78, LOW-TEMPERATURE-INOCCED 78, cold regulated gene, the 5' region of cor78 has cis-acting regulatory elements that can impart cold-regulated geneexpression
AT5652310	912.7899	-2.60889079	0.40505965	${ }^{-6.44076}$	1.19E-10	4.766-09	7.0624817	7.32727884	${ }^{6.89159079}$	11.5756261	10.0556176	9.89681577	A2-	
AT5652760	${ }^{227.39833}$	3.408524221	0.25888876	13.48262	1.98E-41	3.398-39	8.75166842	8.56188066	8.84119729	5.64689647	3.7106777	5.31182967	${ }^{\text {A1+ }}$	Copper transport protein family; BEST Arabidopsis thaliana protein match is: Heavy metal transport/detoxififation superfamily protein (TAR:AT5652750.1).
AT5654030	30.081129	3.817521017	0.53469357	7.139643	${ }^{9.36 E-13}$	2.558-11	5.71097342	5.204992	6.5317972	1.42937086	0	0	${ }^{\text {Al+ }}$	Cysteine/Histdidine-rich C1 domain family protein
AT5654030	32.621718	1.468889532	0.41912314	3.504673	4.57-04	4.448-03	5.50915439	5.00734922	6.33207437	4.69719315	3.83	1.71	A2-	
AT5654710	317.21434	2.91830967	0.54076751	5.396607	6.79E-08	9.788-07	9.00319506	9.07199571	9.57066007	${ }^{6.06691588}$	3.04536424	4.47470153	${ }^{\text {A1+ }}$	Ankyrin repeat family protein
AT5654720	124.54916	4.251248816	0.34855051	12.19691	3.23E-34	${ }^{3.866-32}$	7.8418202	7.68638708	8.17276186	4.02144699	2.54523352	2.850496	${ }^{\text {A1+ }}$	
AT5656870	3218.9635	-2.5523556	0.2191143	-11.6487	2.336-31	2.411-29	10.2790567	9.37760283	9.56242359	12.2312983	12.6990305	12.3441864	${ }^{\text {Al+ }}$	Beta-galactosidase 4 (BGAL4); INVOLVED IN: lactose catabolic process, using glucoside 3-dehydrogenase, carbohydrate metabolic process, lactose catabolic process via UDP-galactose, lactose catabolic process
AT5656870	3255.3293	-2.64618991	0.22650787	-11.682	${ }_{\text {1.57-31 }}$	1.188-29	10.171199	9.26587255	9.45237657	12.2930832	12.8079266	12.252461	A1-	
AT5656870	3536.1097	-2.73357111	0.27205923	10.0477	9.40-24	1.548-21	10.0731938	9.1713746	9.36064531	11.8776745	12.8511952	12.9216918	A2.	
AT5656970	17.34139	2.56410935	0.5072071	5.05335	4.306-07	5.46E-06	4.85421964	4.84448128	5.3859818	2.60404218		1.88055832	${ }^{\text {A1+ }}$	CKX3 cytokinin oxidase 3 (CKX3); FUNCTIONS IN: primary amine oxidase activity, cytokinin dehydrogenase activity; INVOLVED IN: cytokinin catabolic process, It encodes a protein whose sequence is similar to cytokinin oxidase/dehydrogenase, which catalyzes the degradation of cytokinins
AT5657010	5.819181	$2.834448122]$	0.45553799	22199	[4.90-10	9.522-09	5.7859039	5.5576071	5.56625967	2.13309815	0	3.88550952	${ }^{\text {Al+ }}$	Calmodulin-binding family protein 6CK domain-containing protein
AT5657640	45.988995	-2.84965525	0.42269648	-7.07643	${ }^{1.48 E-12}$	3.948-11	3.6052331	2.91163887	3.07400535	5.49267367	7.04001448	6.27339654	${ }^{\text {Al+ }}$	
AT5G57640	${ }^{36.547787}$	-2.612454	0.34523101	-7.56726	${ }^{3.811-14}$	1.188-12	3.50648834	2.81788511	2.97734197	${ }^{6.10513807}$	${ }^{6.34233788}$	5.61520612	${ }^{\text {A1- }}$	
AT5657640	21.095763	-1.8245473	0.37221626	${ }^{-4.90185}$	9.499-07	1.92E-05	3.41727736	2.73683811	2.89746984	4.91161886	4.77911066	5.55014497	${ }^{\text {A2- }}$	
5658810	18.135488	2.60794325	0.5121769	5.091902	3.54-07	4.558-06	4.5788294	5.1397391	5.5088341	2.13309815	0	2.24707457	${ }^{\text {A1+ }}$	PHD finger transcription factor, putative; FUNCTIONS IN: RNA binding, DNA binding, zinc ion binding; INVOLVED IN: N -terminal protein myristoylation, regulation of transcription, DNA-dependent, response to chitin;
AT5658750	35.853928	4.145916297	0.5182061	${ }^{8.000516}$	$\left.\right\|^{1.24 E-15}$	[4.398-14	5.74141419	5.97692474	${ }^{6.64310204}$	${ }^{1.42937086}$		0	${ }^{\text {Al+ }}$	Disease resistance protein (TIR-NBS-LRR class) family; FUNCTIONS IN: transmembrane receptor activity, nucleoside-triphosphatase activity, nucleotide binding, ATP binding; INVOLVED IN: signal transduction, defense response, apoptosis, innate immune response
AT5658750	83.544962	0.694368839	0.179	3.858664	1.148-04	0.00789776	6.47773795	6.72	${ }^{7} .37991092$	4.84311283	6.03242407	5.69113504	${ }^{\text {A2+ }}$	
AT5660100	101.21354	-3.23509598	0.2977089	10.8666	$\left.\right\|^{1.66-27}$	1.366-25	4.19481075	4.36275392	$\mid 3.806034$	${ }^{6.92158888}$	\|7.83504327	7.72002383	${ }^{\text {A1+ }}$	Encodes pseudo-response regulator 3 (APRR3/PRR33). PRR3 transcript levels vary in a circadian pattern with peak expression at dus under long and short day conditions. PRR3 affects the period of the circadian clock and seediling with reduced levels of PRR3 have shorter periods, based on transcriptional assays of clock-regulated genes. PRR3 is expressed in the vasculature of cotyledons and leaves where it may help stabilize the TOC1 protein by preventing interactions between TOC1 and the F-box protein $Z T$ L.
AT5660100	73.01443	-2.85778932	0.25882639	-10.988	3.87-28	2.898-26	4.09295198	4.2593408	3.70396919	7.09462095	7.0721374	6.94949098	${ }^{\text {A1- }}$	
AT5660100	77.164918	2.93346609	0.2844	-10.3133	${ }^{\text {6.144-25 }}$	1.100-22	4.00081328	4.16	3.61936292	6.92541626	6.783	7.57747	${ }^{\text {A2 }}$	
AT5662480	155.57501	4.743708773	0.34720111	13.66272	1.700-42	3.111-40	8.15901254	8.10062543	8.47563218	3.48023337	${ }^{0}$	3.4584994	${ }^{\text {Alt }}$	GST14, ATGSTU9, GST14B, GLUTATHONE S -TRANSEERASE 14B, Elutathione 5 -transferase tau 9, GLUTATHIONE 5 -TRANSE FRASE 14, Encodes glutathione transferase belonging to the tau class of GTTs
AT5662480	368.82281	0.703960436	0.17658326	3.986564	6.70-05	0.0048458	8.90423778	8.85560738	9.21662895	6.91939831	8.44286446	7.73202374	$\mathrm{A}^{\text {22+ }}$	
T5664810	97.064133	3.331983888	0.31882743	10.65119	1.72--26	1.34--24	7.4127719	7.55906841	7.58849961	4.52436469	1.77337038	4.10750664	${ }^{\text {Al+ }}$	WRKY51 WRKY DNA-binding protein 51 , member of WRKY Transcription Factor; Group II-C. Involved in jasmonic acid inducible defense responses
AT5666620	78.807017	2.680791384	0.36757066	7.293268	$]^{3.035-13}$	8.544-12	6.9526569	7.22388921	7.25279528	5.12374266	\|1.77337038	3.88163585	A1+	DAR6, DA1-related protein 6 (DAR6); FUNCTIONS IN: : inc ion binding
AT5666640	90.337731	2.736783793	0.40611597	${ }^{6.738922}$	1.600-11	3.75E-10	6.93958836	7.33933508	7.70163105	5.25747959	1.7	3.7538870	${ }^{\text {A1 }}$	ZF1, zinc-finger protein 1, Encodes zinc-finger protein. mRNA levels are elevated in response to low temperature, cold temperatures and high salt. The protein is localized to the nucleus and acts as a transcriptional repressor
AT5667450	47.392557	3.592800662	0.42883906	8.37797	${ }^{\text {5.38-17 }}$	2.148-15	${ }^{6.5240925}$	6.22778749	6.76295557	2.95850299	0	2.58406216	${ }^{\text {A1+ }}$	

Supplementary Table 5: List of coding genes at least log2-fold increases (negative log2-fold change) or decreases (positive log2-fold change) of 2.5 in at least one of the four lines A1+, A1, A2+ or A2-.

Gene ID	line	$\log 2$-fold change	pvalue	Location of dense C methylation	Annotation
Increased transcript levels					
AT2G34130	A1+	-6.343	7.37E-42	genic	MEE19 maternal effect embryo arrest 19; hypothetical protein
	A1-	-1.855	0.000285		
	A2+	-2.970	5.17E-62		
AT3G01345	A1+	-7.076	4.86E-76	genic	Expressed protein
	A1-	-6.829	5.84E-86		
	A2+	-0.883	6.86E-08		
AT3G21570	A1+	-3.451	2.47E-09	genic	proline-rich nuclear receptor coactivator
	A1-	-1.949	0.000119		
AT3G24542	A1+	-5.551	8.93E-28	genic	Beta-galactosidase related protein
	A1-	-4.889	$3.90 \mathrm{E}-26$		
AT3G53910	A1+	-4.682	3.88E-18	genic	Malate dehydrogenase-like protein
	A1-	-3.701	8.64E-14		
AT4G18150	A1+	-5.660	7.99E-34	genic	Serine/Threonine-kinase, putative
	A1-	-5.388	$3.45 \mathrm{E}-37$		

AT5G15360	A1+	-4.214	6.81E-14	genic	Transmembrane protein
	A1-	-6.021	7.80E-51		
AT5G26270	A1+	-3.470	2.04E-09	genic	Transmembrane protein
	A1-	-5.411	4.71E-64		
AT5G35375	A1+	-3.379	4.08E-09	genic	Transmembrane protein
	A1-	-2.398	$2.47 \mathrm{E}-06$		
AT5G01080	A1+	-2.550	$1.39 \mathrm{E}-05$	upstream/ genic	Beta-galactosidase related protein
	A1-	-4.218	5.14E-21		
AT3G27473	A1+	-2.984	$9.32 \mathrm{E}-09$	upstream	Cysteine/Histidine-rich C1 domain family protein
	A1-	-1.797	0.000464		
AT3G30775	A1+	-1.205	$1.18 \mathrm{E}-08$	upstream	EARLY RESPONSIVE TO DEHYDRATION 5 (ERD5); Encodes a proline oxidase, its mRNA expression induced by high levels of Al and by osmotic stress. The promoter contains an L-proline-inducible element.
	A1-	-2.719	$6.01 \mathrm{E}-38$		
AT4G09430	A1+	-2.531	2.12E-06	upstream	Disease resistance protein (TIR-NBS-LRR class) family; with Natural antisense transcript At4G09432, FUNCTIONS IN: transmembrane receptor activity, ATP binding.
	A1-	-2.721	6.51E-09		
AT4G25530	A1+	-10.316	7.26E-118	upstream	FLOWERING WAGENINGEN, FWA, HDG6, HOMEODOMAIN GLABROUS6
	A1-	-3.858	3.10E-14		
	A2+	-2.503	7.00E-44		
AT5G23240	A1+	-2.881	$9.78 \mathrm{E}-30$	upstream	ATDJC17, DJC76, DNA J PROTEIN C76, DNAJ heat shock N-terminal domaincontaining protein
	A1-	-2.544	$1.21 \mathrm{E}-20$		
	A2-	-3.046	1.10E-41		

AT5G24240	A1+	-4.144	$3.44 \mathrm{E}-14$	upstream	Phosphoinositide 4-kinase PI4Kc3, Overexpression mutants display late-flowering phenotype.
	A1-	-4.524	$3.52 \mathrm{E}-24$		
AT2G06904	A1+	-5.267	$1.48 \mathrm{E}-23$	region	Nucleic acid / zinc ion binding protein
	A1-	-4.457	$1.88 \mathrm{E}-20$		
	A2+	-1.449	7.54E-17		
AT2G07240	A1+	-2.203	$1.99 \mathrm{E}-04$	region	Cysteine-type peptidase
	A1-	-3.788	$2.22 \mathrm{E}-15$		
AT2G11778	A1+	-9.461	1.53E-116	region	Transmembrane protein
	A1-	-8.981	6.08E-135		
	A2+	-2.911	$2.75 \mathrm{E}-59$		
AT3G28193	A1+	-3.823	3.92E-12	region	Transmembrane protein
	A1-	-4.477	$2.58 \mathrm{E}-22$		
AT3G30720	A1+	-4.185	2.57E-117	region	QQS qua-quine starch
	A1-	-3.951	$2.41 \mathrm{E}-95$		
	A2+	-0.748	$6.70 \mathrm{E}-06$		
AT3G30770	A1+	-5.097	$4.01 \mathrm{E}-23$	region	Eukaryotic aspartyl protease family protein
	A1-	-5.149	$2.83 \mathrm{E}-31$		
AT3G31910	A1+	-4.855	7.50E-24	region	Ulp1 protease family protein (DUF1985)
	A1-	-3.709	$1.98 \mathrm{E}-15$		
AT3G42723	A1+	-4.205	$2.11 \mathrm{E}-15$	region	ATP binding / aminoacyl-tRNA ligase/ nucleotide binding protein
	A1-	-2.870	$5.22 \mathrm{E}-09$		
AT3G44070	A1+	-5.709	$4.19 \mathrm{E}-28$	region	Glycosyl hydrolase family 35 protein

	A1-	-5.617	6.42E-37		
AT3G44265	A1+	-6.376	7.87E-46	region	Beta-galactosidase-like protein
	A1-	-5.866	$2.31 \mathrm{E}-47$		
	A2+	-0.549	$8.62 \mathrm{E}-05$		
AT4G03950	A1+	-3.246	$2.27 \mathrm{E}-08$	region	Nucleotide/sugar transporter family protein
	A1-	-3.250	$4.93 \mathrm{E}-11$		
AT5G45570	A1+	-4.759	5.05E-17	region	Ulp1 protease family protein
	A1-	-3.487	$4.75 \mathrm{E}-13$		
	A2+	-1.290	8.65E-14		
Reduced transcript levels					
AT5G34850	A1+	7.956	$1.09 \mathrm{E}-105$	upstream	Purple acid phosphatase 26
	A1-	7.971	$6.56 \mathrm{E}-111$		
Antagonistic transcript level changes in A1+ and A1-					
AT3G50770	A1+	2.816	$3.50 \mathrm{E}-15$	upstream	CML41, calmodulin-like 41 FUNCTIONS IN: calcium ion binding
	A1-	-0.948	0.00018459		
AT4G00130	A1+	2.452	$6.56 \mathrm{E}-08$	region	DNA-binding storekeeper protein-related transcriptional regulator

Supplementary Table 6: List of all coding genes with heritably increased (negative log2-fold change) or reduced (positive log2-fold change) transcript levels in the A1 lines with dense cytosine methylation in all three sequence contexts (CG, CHG, CHH).

Supplementary Figure 1: Map and expression analysis of the three over-expression lines. A)
AT3G01345 was inserted into the plant transformation vector 35 S pGreen 0179, to produce the 35S AT3G01345 over-expression construct. B) AT3G27473 was inserted into the plant transformation vector 35S pGreen 0179, to produce the 35S AT3G27473 over-expression construct. C) AT3G30720 was inserted into the plant transformation vector 35S pGreen

0179, to produce the 35S AT3G30720 over-expression construct. D) cDNA was generated from seedlings 4 weeks after stratification. Greater transcript levels were detected for all over-expression lines (AT3G01345, AT3G27473, AT3G30720). EF1 α was used as a standardizing control to ensure equal concentration of input cDNA.

Supplementary Figure 2: Maps of the FLAG-tagged MET1. A triple FLAG sequence was inserted at the 3' end of the catalytically active METo construct.

Supplementary Figure 3: Bisulphite analysis of CEN1.1, WUS, SP9D. Methylation data from tomato epigenome database. Yellow bars indicate the presence of CG methylation, blue indicates the presence of CHG methylation and red indicate the presence of methylation in a CHH context. Two Genes, CEN1.1 and WUS, possess dense DNA methylation adjacent to the gene. SP9D contains dense methylation within the gen. Methylation profiles in the three genes were extracted from http://epigenome.genetics.uga.edu/PlantMethylome/.

[^0]:
 met1-1
 met1-1RE

