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Abstract 

Service Level Agreements (SLAs) are introduced in order to overcome the 

limitations associated with the best-effort approach in Grid computing, and to 

accordingly make Grid computing more attractive for commercial uses. However, 

commercial Grid providers are not keen to adopt SLAs since there is a risk of SLA 

violation as a result of resource failure, which will result in a penalty fee; therefore, 

the need to model the resources risk of failure is critical to Grid resource providers. 

Essentially, moving from the best-effort approach for accepting SLAs to a risk-

aware approach assists the Grid resource provider to provide a high-level Quality of 

Service (QoS). Moreover, risk is an important factor in establishing the resource 

price and penalty fee in the case of resource failure.  

In light of this, we propose a mathematical model to predict the risk of failure 

of a Grid resource using a discrete-time analytical model driven by reliability 

functions fitted to observed data. The model relies on the resource historical 

information so as to predict the probability of the resource failure (risk of failure) for 

a given time interval. The model was evaluated by comparing the predicted risk of 

failure with the observed risk of failure using availability data gathered from Grids 

resources.  

The risk of failure is an important property of a Grid resource, especially when 

scheduling jobs optimally in relation to resources so as to achieve a business 

objective. However, in Grid computing, user-centric scheduling algorithms ignore 

the risk factor and mostly address the minimisation of the cost of the resource 

allocation, or the overall deadline by which the job must be executed completely. 

Therefore, we propose a novel user-centric scheduling algorithm for scheduling Bag 

of Tasks (BoT) applications. The algorithm, which aims to meet user requirements, 

takes into account the risk of failure, the cost of resources and the job deadline. With 

this in mind, through simulation, we demonstrate that the algorithm provides a near-

optimal solution for minimizing the cost of executing BoT jobs. Also, we show that 

the execution time of the proposed algorithm is very low, and is therefore suitable 

for solving scheduling problems in real-time. 
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Risk assessment benefits the resource provider by providing methods to either 

support accepting or rejecting an SLA. Moreover, it will enable the resource 

provider to understand the capacity of the infrastructure and to thereby plan future 

investment. Scheduling algorithms will benefit the resource provider by providing 

methods to meet user requirements and the better utilisation of resources. The ability 

to adopt a risk assessment method and user-centric algorithms makes the 

exploitation of Grid systems more realistic. 
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1 Chapter 1 

Introduction 

 

1.1 Research Motivation 

Grid computing [1]—much like many other computing technologies before it, 

such as the internet or the web—was initially motivated by the needs of scientists. 

As a result, this has increased the opportunity for collaboration between educational 

and research institutions, and accordingly broadened access to expertise and services 

through the sharing of resources. The need to share resources in order to achieve 

common goals is not limited to science and is fundamental to commerce; whether to 

support business processes across partners in a supply chain or to otherwise enable 

higher utilisation of resources spread across business units, Grid technologies are 

becoming increasingly applied in a wide range of businesses and commercial 

activities [2]. Another major driving force for Grid computing, from a business 

perspective, is that users can concentrate on their business applications as opposed 

to having to maintain complex in-house computing infrastructures. This will remove 

the large investment overhead associated with developing in-house computing 

infrastructures, and thereby reduce the overall costs associated with running and 

maintaining the business. Finally, computing infrastructures do not have to be sized 

on peak load but can use Grid technologies to cleverly share the burden in peak 

hours. This will reduce the cost of developing, running and maintaining a computing 

infrastructure, without incurring any notable decrease in performance.  

Even with the huge commercial benefits of Grid computing, the commercial 

uptake of Grid computing has been slow, with the current Grid middleware (e.g. 

Globus Toolkit [3]) still follows the best-effort approach. Importantly, Grid users do 

not get any assurances that their applications will complete according to their 

requirements. Furthermore, commercial Grid resource providers are not attracted 

either: for a resource provider, agreeing to execute a user application without 
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enough information regarding the state and availability of resources introduces the 

risk of not fulfilling user requirements, which consequently results in a penalty fee 

paid by the resource provider. Moreover, there is a hazard attached to resources 

failure, service unavailability, insufficient resources, etc., all of which could lead to 

users‘ requirements not being fulfilled. Without a method for assessing the risk of 

agreeing to execute a user application, providers are only able to make uncertain 

decisions regarding suitable users‘ requests. 

Essentially, improving the overall Quality of Services (QoS) of the Grid 

infrastructure so as to overcome the best-effort approach is one of the most 

important on-going issues in the Grid community [4]. Furthermore, providing 

greater integration, efficiency and QoS encourages users and businesses to exploit 

Grid infrastructure for commercial benefits. With this in mind, QoS can be 

characterised into two categories: qualitative and quantitative. Qualitative attributes 

are hard to measure, and refer to user satisfactions, trust and the reliability of the 

Grid provider. Essentially, the quantitative attribute can be measured exactly, and 

include user requirements, such as network, CPU or storage. For example, ‗the 

response time should be less than 10 milliseconds‘ or ‗the free memory should be 

more than 2 Gigabytes‘. A number of requirements should be delivered by the Grid 

resource provider when striving to provide QoS. According to [5], these 

requirements include advance resource reservation, reservation policy, agreement 

protocol, security, simplicity and scalability. Another approach of delivering QoS is 

through the use of fault tolerance mechanisms, such as the replication or redundancy 

of resources. Owing to the fact that the probability of resource failure is higher in 

Grid environments than in a traditional distributed system, fault tolerance can 

improve the offered QoS [6]. 

Grid resources failures are frequent, and have fatal effects in relation to job 

execution; even the use of fault tolerance approaches cannot completely eliminate 

the effect of failures. For a Grid resource provider, such failures are a threat to jobs 

running on the Grid, as an unexpected resource failure may lead to user 

requirements not being fulfilled, which subsequently results in a penalty fee. If a 

resource failure affects the overall execution of a time critical application, results 

can be delayed or lost entirely, which therefore has consequences in the real world 

and can ultimately lead to broken commitments. Notably, this can have a knock-on 



Chapter 1                                               3                                      Introduction 

 

effect in other walks of life and, as such, Grid resource failures impose a risk on 

both the Grid provider and the user. 

The word ‗risk‘ is used in a variety of different disciplines/contexts, and has a 

different meaning for each. Even in a single corporation, different departments have 

different definitions for the term. In the Oxford English Dictionary, for example, 

‗risk‘ is defined as ‘[Exposure to] the possibility of loss, injury, or other adverse or 

unwelcome circumstance; a chance or situation involving such a possibility’ [7]. As 

different entities of a single corporation have different definitions for the concept, 

they also have different views: for example, Health and Safety department personnel 

view risk as a bad thing or a negative force; thus, any risk to the health and safety of 

company employees or to the public is to be avoided, or the probability and 

consequence of that risk are to be reduced to the greatest extent possible. On the 

other hand, finance personnel might hold different views, owing to the fact that one 

aspect of their job is to conduct a risk/reward evaluation. In this regard, greater risk 

usually yields greater returns, and so they view risk as a positive force [8]. 

Generally, risk is associated with the uncertainty of a future event, or a hazard, 

which might have a potentially negative impact on an asset by depreciating some of 

its attribute value. The uncertainty can be modelled in terms of probability provided 

sufficient information is known. In this sense, the probability is only considered as 

the occurrence of an event without any consideration to the consequences or the 

impacts of such an event; therefore, the word ‗risk‘ is used to combine the 

probability of events with the impact or the expected losses of those events. 

In order to make sound business decisions—such as outsourcing computing 

infrastructure—users need assurance that the Grid provider is able to guarantee their 

requirements. Moreover, they need to assess the risk of an unsatisfactory outcome 

and to thereby compare different Grid providers. The Grid provider needs to provide 

guarantees to users based on the current infrastructure. Furthermore, the provider 

needs to understand the capacity of the infrastructure and plan future investment.  

In order to address the risk of Grid resources failures, methods to identify the 

events causing failures are needed, as well as estimations regarding the probability 

or frequency, and measurement of the expected losses of those events. A risk 

assessment model for estimating the risk of Grid resource failures provides a 



Chapter 1                                               4                                      Introduction 

 

solution to the risk problem, and would increase the chances of Grid commercial 

take-up, as well as helping in building trust in the Grid. 

Consider the following scenario. A user submits an application execution 

request, as a Service Level Agreement (SLA), to the Grid resource provider, which 

is to be executed in-line with QoS requirements, such as timely execution. The 

provider is then required to estimate the risk of failure for each available resource 

owing to the fact that the resource risk of failure significantly influences the price of 

the resource and the penalty fee; presumably, a resource with low risk of failure is 

more expensive than the one with high risk of failure. The provider will then 

allocate resources to the user‘s application based on the user requirements and the 

estimated risk of failure; this will help the provider to decide whether the user 

application should be accepted or rejected. Furthermore, it will inform the user of 

the rate of not getting the desired QoS, and accordingly provide the opportunity to 

select the desired level of realistic guarantees. The work presented in this thesis 

proposes a number of mechanisms for estimating the Grid resources risk of failure, 

which will meet the requirements of such a scenario. 

1.2 Thesis Objectives 

The aim of this research is to study resources failure in the context of Grid 

computing. This is to estimate the risk of a resource failure, allowing users to 

compare different Grid resources and providers, and to thereby select the resources 

with the most acceptable level of risk. Furthermore, Grid resource providers use the 

resources risk as measures to guarantee users requirements. 

With this in mind, the objectives of this thesis are:  

 To develop a mathematical model which estimates the Grid resource risk 

of failure. Notably, moving from the best-effort approach in managing 

resources to a risk-aware approach which assists the Grid provider in 

offering a high-quality service. This will increase provider‘s revenue and 

demand for resources, whilst decreasing penalty fees to be paid in the 

event of user requirements violation. Furthermore, the reputation of the 

provider will improve so that additional users become motivated to 

outsource part of their computing activities to the provider. 
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 To consider resources risk of failure in the development of a scheduling 

algorithm for minimising the cost of executing applications on the Grid 

whilst simultaneously ensuring the application owners‘ constraints are 

fulfilled. 

1.3 Methodology 

The aim of this thesis is twofold: to develop a mathematical model to estimate 

the Grid resource risk of failure and to develop a scheduling algorithm for 

minimising the cost of executing application on the Grid. The research methodology 

to achieve these objectives is described below (Figure 1). 

1. Gather historical failures 

data.

2. Analyse failure data.

3. Fit distribution to failure 

data.

4. Design a model for 

predicting Grid resources 

risk of failure.

5. Evaluate the proposed risk 

model.

6. Study scheduling 

algorithm literature.

7. Design and develop a 

scheduling algorithm for 

execution cost optimization.

8. Evaluate the proposed 

algorithm through 

simulation.

 

Figure 1: Research Methodology Diagram. 
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1. Gather historical failures data. The failure data is collected from seven 

Grid resources from two Grid sites. The behaviour of these data will be 

analysed to support the prediction of the Grid resources probability of 

failure. 

2. Analyse failure data. The failure data is analysed with respect to three 

important properties of system failures: root cause, time to repair and 

time between failures.  

3. Fit distribution to failure data. This is to interpret failure data for a 

variable in order to drive a distribution that realistically models its true 

variability. The empirical cumulative distribution function for the time 

between failures in the failure data is fitted with four standard 

distributions: Exponential, Weibull, Gamma and Lognormal. 

4. Design a model for predicting Grid resources risk of failure. The 

Markov models techniques [177] are utilised to develop the risk of 

failure model. 

5. Evaluate the proposed risk model. The collected failure data are used to 

compute the observed risk of failure and the risk model is evaluated by 

comparing the observed risk of failure with the risk of failure predicted 

by the proposed model. The two-sample t test is used to validate the 

comparison. 

6. Study scheduling algorithm literature. This study is to identify the Grid 

users‘ requirements. These are heavily influenced by business 

objectives which rely on execution of Grid applications in a timely and 

cost-effective manner.    

7. Design and develop a scheduling algorithm for execution cost 

optimization. The algorithm examines if including risk of failure as a 

scheduling requirement will improve current scheduling algorithms.  

8. Evaluate the proposed algorithm through simulation. The purpose of 

the simulation is to test the allocation of Grid jobs with the use of the 

proposed scheduling algorithm, and to accordingly compare it with the 

optimal allocation of the jobs. Two criteria are used in the evaluation 
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the difference in the number of jobs allocated and the difference in the 

execution cost.  

1.4 Major Contributions 

The major contributions of this thesis include: 

 A mathematical model to predict the Grid resources risk of failure. The 

model is also used to rank Grid resources, and shows the effects of future 

investments. The model is developed after detailed analysis of Grid 

resource failures using failure data collected from different Grid resources 

and spanning for three years. The analysis focuses on the statistical 

properties of the failure data, including the root cause of failures, the mean 

time between failures, and the mean time to repair. 

 The development of an efficient algorithm—known as Deadline and Risk 

of Failure Constraints (DRFC) algorithm—. The algorithm determine a 

near-optimal execution cost for the mathematical model for minimising 

the costs associated with executing Bag of Tasks applications whilst 

ensuring the applications owners‘ constraints are fulfilled. The 

performance evaluation of the DRFC algorithm compared to the cost-

minimising mathematical model optimal solution is conducted using 

simulation. 

1.5 Thesis Overview 

 Chapter 2 reviews background material, which helps to scope the area of 

research, followed by Grid resource management techniques and their 

challenges. A review of current scheduling approaches is provided. 

Finally, a survey of scheduling algorithms for the Bag of Tasks application 

is provided.  

 Chapter 3 presents the risk theory and the various different approaches for 

risk assessment. A review of risk identification and assessment methods 

for Grid-based systems is presented, along with possible risk treatments.  
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 Chapter 4 begins by identifying the events causing resource failures. The 

method adapted to measuring the risk of resource failure is presented. 

Subsequently, before the analysis of Grid resource failures is presented, an 

overview of Grid resources failures data is provided along with the data-

collection process. The models for Grid resources failures and repairs are 

provided.  

 Chapter 5 presents the mathematical model to predict the risk of failure of 

a Grid resource using a discrete time analytical model driven by reliability 

functions fitted to observed failures data. The model evaluation and its 

uses to rank resources and direct future investments are showcased. 

 Chapter 6 begins by providing a mathematical model for scheduling Bag 

of Tasks application on the Grid, and an efficient algorithm for solving the 

mathematical model is presented. The design of the simulation 

experiments is highlighted, along with the resource model and the 

workload model. Finally, the evaluation of the algorithm through 

simulation is discussed. 

 Chapter 7 summarises the work on a chapter-by-chapter basis and outline 

some future work. 



 

9 

2 Chapter 2 

Resource Allocation in Grid Systems 

 

This chapter examines the definition and background of Grid computing in 

Section 2.1. Section 2.2 lists various types of application and Grid systems, as well 

outlining various Grid projects. Section 2.3 presents the Grid architecture. Section 

2.4 provides a description of Grid middleware. Section 2.5 provides a description of 

Service Level Agreements and technologies which exist so as to facilitate their 

usage in Grid environments. Section 2.6 discusses Grid resource management 

technique and their challenges, and also comprises a survey of scheduling 

algorithms. Finally section 2.7 summaries the chapter.    

2.1 Grid Computing 

Computer scientists in the mid-1990s began to explore a new technology 

known as metacomputing. The interest was to link supercomputing sites [11]. The I-

WAY project—which was introduced in the ACM/IEEE conference on 

Supercomputing 1995 (SC 95) and aims to unifying the resources of large US 

supercomputing sites—was the first step in the field [12]. The I-WAY project was 

essential to the understanding and progress of the emerging new technology [13]. 

The evolution from metacomputing through to Grid computing occurred with the 

introduction of middleware, which was designed in order to function as a wide-area 

infrastructure to support data-intensive applications and diverse online processing 

[14]. Currently, the Grid is defined as the coordinated sharing of resources and 

solving problems in dynamic, multi-institutional virtual organisations. This sharing 

must be controlled with clear boundaries regarding what will be shared, who are 

permitted to share, and the conditions under which sharing occurs, as well as 

whether the resources are hardware, software, or users [14, 15]. The sharing should 

also be carried out with the use of standard, open, and general-purpose protocols and 

interfaces, and should deliver nontrivial quality of services (QoS) [12, 15, 16]. 
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2.2 Grid Applications 

The interest in Grids is motivated by the novel uses of computers to solve 

complex applications. These applications provide the useful information and 

services for the reality of Grids. 

2.2.1 Type of Applications 

A survey of four general classes of applications that runs on Grid systems is 

given in [17]. It is summarised as follows: 

 Distributed supercomputing: (also known as metacomputing): these 

systems solve very large and intensive problems with the use of multiple 

computers to achieve greater processing power. Many of the existing Grid 

systems and their applications are based on this class. 

 Real-time widely distributed instrumentation systems: these systems 

involve real-time data sources. These systems rely on distributed-storage, 

network-based caches, agent-based monitoring, and generalized access 

control. 

 Data-intensive computing: these systems are both data and compute 

intensive. These applications focus on processing and analysing 

information and require terabytes or petabytes of data to be processed and 

stored. 

 Teleimmersion: these systems combine advance display technologies, 

computers, and networks to create shared virtual environments for 

collaborative design, education, and entertainments. 

These are the general types of Grid application, and some applications may be 

of more than one type. A list of applications, their motivations for using Grid 

technologies and the architectures and approaches adopted in implementations are 

available in [18].  

2.2.2 Types of Grid Systems 

Notably, the types of Grid system are not identical; essentially, they vary 

widely in terms of both function and purpose. Krauter et al. [19] classify Grid 

systems into three categories: 
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 Computational Grids [20]: denotes systems which have higher total 

computational capacity available for single applications than the capacity of 

any constituent machine in the system. Computational Grids are amongst 

the first type of Grid systems. An important objective of Computational 

Grids is to benefit from the under-utilised computational resources through 

sharing. 

 Data Grid [21]: denotes systems which provide an infrastructure for 

synthesising new information from data repositories, such as data 

warehouses or digital libraries, which are distributed in a wide area 

network. Many scientific applications require access to a large amount of 

data; therefore, data Grids are important when striving to increase the 

performance and to thereby achieve high throughput. 

 Service Grid [22]: denotes systems which provide services that are not 

provided by any single machine. This category is further subdivided as on-

demand, collaborative, and multimedia Grid Systems. An on-demand Grid 

category dynamically aggregates different resources so as to provide new 

services, e.g. allocating new machines to a simulation. A collaborative Grid 

connects users and applications into collaborative workgroups. A 

multimedia Grid provides an infrastructure for real-time multimedia 

applications. 

Other types of Grid systems include. 

 eScience Grids: denotes system devoted primarily to the solution of 

problems from science and engineering. Such Grids support the access to 

computational and data resources required in order to solve complex 

problem arising in the science communities. Enabling Grids for E-sciencE 

(EGEE) [23], Grid 5000 [24], and National Grid Service (NGS) [25] are 

some examples of e-Science Grids. 

 Enterprise Grids: Grid computing is becoming an important component of 

business in the modern world. E-business must be able to adjust 

dynamically and efficiently to increases in demands or market shifts. The 

Grid offers a large potential to solving business problems by enabling 
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active projects within one large enterprise to share resources in a 

transparent way. 

 Desktop Grids: this is the use of idle cycles of desktop Personal 

Computers (PCs). Desktop Grids are a new form of Enterprise Grids. Small 

enterprises are usually equipped with hundreds of desktops which can be 

utilised for setting up a Grid system. 

2.2.3 Grid Projects 

Grid technology is being used in many different areas of research and industry, 

and there are currently numerous projects utilising them. The following shortlist is 

to highlight the scale and diversity of projects being developed currently in Europe: 

 Enabling Grids for E-sciencE (EGEE) [23]: is a project which brings 

together experts from more than 50 countries for developing a service Grid 

infrastructure, which is available to scientists 24 hours a day. The project 

encourages researchers in academia and business to collaborate and provide 

them with access to a production-level Grid infrastructure, independent of 

their geographic location. The EGEE infrastructure is the largest 

collaborative production Grid infrastructure in the world for e-science. 

Through EGEE, scientists are able to do more science and on a larger scale, 

and to therefore gather results in a shorter timeframe, which would not been 

possible without Grid technologies. EGEE closed in April, 2010, and the 

infrastructure is now supported by the new organisation EGI.eu [26], which 

is being developed to coordinate the European Grid Infrastructure (EGI).  

 Integrated Sustainable Pan-European Infrastructure for Researchers 

in Europe (EGI-InSPIRE) [27]: this is a project to provide a sustainable 

and reliable European Grid Infrastructure (EGI) for European scientists and 

their international partners. Importantly, this integrates new Distributed 

Computing Infrastructures, such as clouds, supercomputing networks and 

desktop Grids. EGI-InSPIRE project focuses on application areas of high-

energy physics, computational chemistry and life sciences. 

 A worldwide e-infrastructure for computational neuroscientists 

(outGRID) [28]: this is a project concerned with igniting the process of 

converting the three active e-infrastructures for computational neuroscience 
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into one unique worldwide facility. The three e-infrastructures are 

neuGRID project [29], which provides large sets of brain images paired 

with grid-based computationally intensive algorithms for studies of 

neurodegenerative diseases, CBRAIN Project [30] and LONI [31], which 

offer computational resources and algorithm pipelines. 

 Desktop Grids for International Scientific Collaboration (DEGISCO) 

[32]: this is a project which connects the European Distributed Computing 

Infrastructure (DCI) to International Cooperation Partner Countries (ICPC). 

The European DCI is already interconnected by EDGeS [33], and 

DEGISCO will further extend the infrastructure to ICPC countries. The 

DEGISCO project will support the creation of new Desktop Grids in ICPC 

countries, and the connection of these Grids to European DCIs.  

Note that this list is by no means exhaustive. Grid projects the School of 

Computing at the University of Leeds has been involved with include Distributed 

Aircraft Maintenance Environment (DAME) [34], Business Resource Optimisation 

for Aftermarket & Design on Engineering Networks (BROADEN) [35], Advanced 

Risk Assessment & Management for Trustable Grids (AssessGrid) [36, 37], 

Integration Broker for Heterogeneous Information Sources (IBHIS) [38] and A 

Demand-Led Service-Based Architecture for Dependable e-Science Applications (e-

Demand) [39].  

2.3 Grid Architecture 

2.3.1 Early Architecture 

Grid architecture organizes components into layers. Components within each 

layer share common characteristics. Figure 2 is taken from [15], and describes a 

high level view of the Grid architecture. The architecture contains five layers and the 

following is a brief description of each one [1, 15, 16, 40]. 
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Figure 2: Layered Grid Architecture [15]. 

2.3.1.1 Grid Fabric Layer 

The Grid fabric layer provides access to shared resources; these resources can 

be physical or logical. Notably, there is tight interdependence between functions 

implemented on the fabric and the supported sharing operations, which means richer 

fabric functionality enables sophisticated sharing operation. On the other hand, light 

fabric simplifies the development of the Grid. At a minimum, resources should 

implement introspection mechanisms that allow discovery of their structure, state, 

and capability, on the one hand, and resource management mechanisms that provide 

control of delivered QoS, on the other. 

The shared resources can be divided into three main types of resources. 

 Computational Resources, these are the physical machines that do the 

processing. Four types of computational resources are suggested in [17], 

and are summarised her. 

o End user systems: These are common computer machines; 

they have a single-functional entry and are homogeneous. 

o Clusters: These are a group of linked computers, working 

together closely and are most often highly homogeneous. 

Clusters are usually deployed in order to improve performance 

and/or availability over that of a single computer, whilst 

typically being much more cost-effective than single computers 

of comparable speed or availability. 



Chapter 2                                               15        Resource Allocation on Grid Systems  

 

o Intranets: These are large local networks of resources within a 

single organisation; they are diverse and heterogeneous by 

nature, and different parts of the network may be under 

different administration, which results in less global knowledge 

regarding the resources. 

o Extranets: These are networks of Intranets. They span multiple 

organisations and are more heterogeneous than Intranets and 

have less global knowledge available. 

 Storage Resources: These are dedicated storage machines which can hold 

very large amounts of data. This may be a simple file system or a large and 

complex database. 

 Network Resources: These are the cable switches and routers that make 

the physical network. The network is measured by capacity (bandwidth) 

and latency. 

2.3.1.2 Grid Connectivity Layer 

This layer defines core communication and authentication protocols. The 

communication protocols are to enable the exchange of data between resources. 

Authentication protocols, which are built on the communication protocols, are 

required to provide secure mechanisms for checking users and resources. The most 

important requirements for security include: 

 Single sign-on: the user should sign on only once and use as many remote 

resources as desired, if permitted, without the need to sign on to each 

resource. 

 Delegation: the user must be able to give a program the ability to run on 

her/his behalf, so that the program can access resources the user has access 

to. Furthermore, the program itself could delegate a subset of its permission 

to a subprogram. 

 Integration with local security solution: each resource on the Grid has it 

own security solutions, and provides different users with different 

solutions. A Grid security solution must interoperate with these solutions 

without the need for amendments. 
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 User-based trust relation: the user should be able to use different sites 

without requiring interaction between these sites. 

2.3.1.3 Grid Resource Layer 

This layer is built on the protocols of the connectivity layer, and defines 

protocols for secure negotiation, initiation, monitoring, control, accounting, and 

payment of sharing resources. The two primary protocols on this layer are 

information protocols, and management protocols. 

2.3.1.4 Grid Collective Layer 

This layer contains protocols and services not linked with a specific resource 

but instead containing interaction across collection of resources. This can enable the 

implementation of a wide variety of sharing behaviours without placing new 

requirements on the resources being shared. 

2.3.1.5 Grid Application Layer 

This layer contains the user applications. The applications are implemented by 

calling services defined at any layer.  

2.3.2 Open Grid Services Architecture and Web Service Resource 

Framework 

The Open Grid Forum (OGF) [41] —previously known as the Global Grid 

Forum (GGF)—is leading the global standardisation effort for grid computing. The 

OGF is a very large community of users, developers and vendors from industry and 

research, representing over 400 organisations in more than 50 countries. 

Open Grid Services Architecture (OGSA) [42] was a key proposal from OGF. 

OGSA defines the architecture in terms of Grid Services, aligning it with Web 

Services (WS) technologies [43]. From the set of technologies in WS, the OGSA 

exploits the Simple Object Access Protocol (SOAP) [44], Web Service Description 

Language (WSDL) [45] and Web Service Introspection Language (WSIL) [46]. The 

OGSA underlying infrastructure—the Open Grid Service Infrastructure (OGSI) [47] 

—defines an extension on the use of WSDL so as to enable stateful Web services. It 

defines approaches for: 

 creating, naming, and managing the lifetime of instances of services; 

 declaring and inspecting service state data; 
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 the asynchronous notification of service state change; 

 representing and managing collections of service instances; and 

 common handling of service invocation faults. 

OGSI has attracted criticism from the WS community, stating that the OGSI is 

too large and did not have separation (factoring) between functions to support 

incremental adoption. It also does not work well with existing WS and Extensible 

Mark-up Language (XML) [48] tooling. Furthermore, it is too object-oriented and 

encapsulates the resource state in the WS to model a resource [49]. 

The Web Service Resource Framework (WSRF) [50] was proposed in order to 

tackle the limitations of OGSI. It can be viewed as a straightforward refactoring of 

functionality within the OGSI in a manner that exploits development in WS 

technologies. The following are the components of WSRF specification: WS-

Resource, WS-Addressing, WS-ResourceLifetime, WS-ResourceProprieties, WS-

RenewableReferences, WS-ServiceGroup, WS-BaseFaults and WS-Notification. 

2.4 Grid Middleware 

Grid Middleware is a software layer that enables a seamless access to 

heterogeneous environments, such that the differences between platforms, network 

protocols, and administrative boundaries become completely transparent [51]. The 

main requirements for Grid middleware include: 

 Communication Services: Grid applications‘ communication requirements 

are diverse, and the need to support network protocols and QoS parameters 

is essential. The communication services role is to provide such protocols. 

 Information Services: A Grid is a dynamic enticement where the location 

and availability of Grid services changes rapidly. The monitoring and 

discovery of resources and services is vital for effectively utilising the 

resources. The information services enable the monitoring and discovery of 

resources and services. 

 Data Management: Data in the Grid environment is stored in a distributed 

file system or distributed database. Data management services 
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responsibilities provide data replication and reliable file transfers so as to 

enable file redundancy, indexing and transfer between sites. 

 Security: Enables the delegation of credential and authentication, which 

subsequently enables Grid users to invoke several Grid services from 

different sites without the need for authentication at each individual site 

(single sign-on).  

 Resource Allocation and Management: Enables an efficient and effective 

application scheduling and execution on the Grid resources. Methods for 

locating, executing and terminating Grid services are provided. 

Furthermore, it is important for resource management services to have an 

interface with a local resource manager and a network batch queuing 

system so as to enable the local usage policies. 

There has been a remarkable amount of effort in the design and 

implementation of middleware software for Grid computing. The following are two 

of the most successful and widely used middleware. 

2.4.1 Globus Toolkit 

The Globus Toolkit (GT) [3, 15, 16] has emerged as the de facto standard for 

Grid infrastructures. It was developed by the Argonne National Laboratory in the 

late 1990s with the objective to support the development of service-oriented 

distributed computing applications and infrastructures. Globus provides services and 

protocols to overcome the Grid problem. With this in mind, it is up to developers to 

deploy these services so as to support a range of different applications. 

GT5 [52] is the most recent release, and has a set of service implementation, 

three containers to host the developer code, and a set of client libraries. The most 

important service is the Grid Resource Allocation and Management (GRAM), which 

provides a web interface for initiating, monitoring, and managing the execution of 

the application on the Grid [3, 15, 16, 53]. Other important services include data 

access and movement, e.g. Grid File Transfer Protocol (GridFTP) [54], Reliable File 

Transfer (RTF) [55], and Open Grid Service Architecture—Database Access and 

Integration (OGSA-DAI) [56], security and credential management, e.g. MyProxy, 

Delegation, and SimpleCA. The current version of GT is compliant with the OGSA 

and WSRF. 
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2.4.2 UNICORE 

UNICORE [57, 58] —Uniform Interface to Computing Resources—is a Java-

based middleware implementing a three-tier architecture comprising client, server 

and target system. The client tier supports the creation, manipulation and control of 

complex jobs, which can be executed on different sites running the UNICORE 

middleware; the server tier is the secure entry point into a UNICORE site, which is 

known as the Gateway, the role of which is to authenticate requests from the client 

tier and forward them to a Network Job Supervisor (NJS) for mapping into concrete 

jobs or actions which are performed by the target system; and the target system tier 

provides the Target System Interface (TSI), which resides on the host to interface 

with the local batch system on behalf of the user. In order to increase performance, 

multiple TSIs may be started on a single host. 

2.4.3 Other Middleware 

Other Middleware software applied in Grid systems includes gLite [59, 60], 

which was developed as part of the EDEE Middleware Re-engineering and 

Integration Research Activity. China Research and the development environment 

Over Wide-area Networks (CROWN) [61]. OMII-UK [62] —previously known as 

Open Middleware Infrastructure Institute (OMII)—is an open-source repository of 

Grid middleware components, services and tools. 

2.5 Grid Service Level Agreements 

Grid computing has relied on ‗best effort‘ as the guiding principal of operation 

[63]. Although this approach is acceptable for non-commercial Grid environments, it 

is not the case for commercial Grid environments. Commercial Grid users require 

some form of commitment and assurance on top of the allocated resources, such as 

performance, security, availability, latency, etc., sometimes referred to as QoS. 

Commitment and assurances are specified in terms of Service Level Agreements 

(SLAs). SLAs either provide some measurable capability or perform a specific task, 

and thereby allow Grid users to know what is expected from a service without 

requiring detailed knowledge of the service providers‘ policies [64, 65]. 

Service Level Agreements is outside the scope of this thesis, yet in Chapter 6 

the focus is on the resource provider being able to schedule users‘ application and 
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accordingly guarantee their requirements and constraints. In that chapter the users‘ 

requirements and constraints are assumed to be known, in the real world this is 

achieved through the use of SLAs. Therefore, the remainder of this section is 

dedicated to SLAs.   

Importantly, there are various differences between commercial and non-

commercial Grid users and providers. The distinction between the users and 

providers in non-commercial Grids is difficult because, most of the time, the group 

contributing resources to the Grid are also its users. On the other hand, however, 

commercial Grids have a strong differentiation between providers and users. 

Furthermore, commercial Grid users pay for the services, and so the expectations are 

high; with this in mind, users won‘t tolerate being denied service or being 

rescheduled to a different time slot.  

Importantly, there have been a number of attempts to define SLAs architecture 

for Grid environments. Sahai et al. [63] propose a language for unambiguous and 

precise specification of SLAs, and a monitoring architecture for their evaluation. 

Moreover, Leff et al. [66] propose an architecture which utilises a dynamic offload 

mechanism so as to balance load on a commercial Grid provider‘s resources in order 

to efficiently meet SLAs requirements. Furthermore, Ludwig et al. [67] propose a 

novel SLA language for Web services. Standardising the way of establishing 

agreements between a recourse provider and a resource user is crucial for the wide 

adaption of SLAs. Accordingly, the following provides a description of two of the 

standardisation efforts. 

2.5.1 Web Service Level Agreement (WSLA) 

The Web Service Level Agreement (WSLA) [68] is an SLA language to 

support the specifying and monitoring of QoS guarantees within Web Services 

Framework. WSLA is based on XML, and comprises flexible and extendable XML 

Schema and a runtime architecture containing several SLA monitoring services. 

WSLA enables service users and service providers to unambiguously define an 

SLA, specify the SLA parameters and metrics, as well as the way in which the 

metrics are to be measured, and accordingly relate them to managed resource 

instrumentations. The elements of WSLA are Parties, Service Description, and 

Obligation. Notably, the parties section consists of a description of the parties 

involved in an SLA. The service description section specifies the characteristics of 
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the service and its observable parameters. Finally, the obligation section defines 

various guarantees and constraints that may be imposed on the SLA parameters.  

2.5.2 WS-Agreement 

The Grid Resource Allocation and Agreement Protocol Working Group 

(GRAAP-WG) [69] —which is a part of OGF—proposed the Web Services 

Agreement specification (WS-Agreement) [70] in order to establish an agreement 

between two parties using an extendable XML language. The specification includes 

three parts: a schema for specifying an agreement, a schema for specifying an 

agreement template, and a set of port types and operations for managing agreement 

lifecycle. For compatibility and complexity, the WS-Agreement only defines the 

general structure of the agreement, which makes the implementation of WS-

Agreement open; this allows the defining of domain-specific extensions or specific 

languages for expressing conditions [71]. Owing to the fact that the implementation 

of WS-Agreement is open, the Creation and Monitoring of Agreements (Cremona) 

[72] provides a layered agreement management architecture, which defines 

mechanisms to implement WS-Agreement interactions and connects them to the 

service provider system and the user system. It also implements the WS-Agreement 

interfaces, and provides management functionality for both the agreement templates 

and instances.  

2.6 Resource Management 

Grid resources are distributed on the globe with different administrative 

domains and geographic locations. In order for the Grid to provide coordinate-access 

to resources, regardless of the heterogeneous nature of the resources or their 

geographic locations, a number of challenging problems must be countered [53], as 

listed below: 

 Site autonomy: refers to the fact that resources are owned and operated by 

different organisations, in different administrative domains. 

 Heterogeneous substrate: derived from the site autonomy problem, and 

refers to the fact that different sites can use different local resource 

management systems. Notably, even if the same resource management is 
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used on more than one site, a different configuration leads to different 

functionality. 

 Policy extensibility: as Grid resources are drawn from a wide range of 

domains—each with its own requirements—a resource management system 

must support the regular development of new domain-specific management 

structures. 

 Co-allocation: some Grid jobs have resource requirements which cannot 

be satisfied using a single site. These requirements might be satisfied using 

resources, simultaneously, at several different sites. Owing to site 

autonomy and the possibility of resource failure during allocation, there is 

the need for specialised mechanisms which are able to collect resources 

information and submit jobs to multiple resources to guarantee the jobs 

requirements.  

 Online control: a type of negotiation might be required in order to adapt 

application requirements to resource availability—especially when 

requirements and resource characteristics change during run time. 

Resource management systems for distributed computing can be divided into 

two classes [53]: 

 Network batch queuing systems (NBQS): These systems focus on 

resource management issues for computers in a network; they do not 

address policy extensibility or provide limited support for online control 

and co-allocation; and 

 Wide-area scheduling systems: Resource management on these systems is 

performed through mapping application components to resources and 

scheduling their execution. These systems do not support heterogeneous 

substrates, site autonomy or co-allocation. 

NBQS handles jobs by allocating resources from a networked pool of 

computers. Some examples of these systems include Load-Sharing Facility (LSF) 

[73], Portable Batch System (PBS) [74], and LoadLeveler [75]. The user of these 

systems characterises the requirements of the job to run either explicitly through a 

kind of job control language or implicitly through selecting which queue to submit 

the job to. Network batch queuing systems are designed for single administrative 
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domains, therefore making the site autonomy difficult to achieve. Furthermore, these 

systems assume they are the only resource management system in use, consequently 

further complicating the heterogeneous substrate problem. Policy extensibility is 

limited in these systems, and the end user has little control regarding how his/her 

requirement is interpreted. 

Wide-area scheduling systems are usually distributed over several sites, and 

are more adoptable than NBQS system. Two popular wide-area scheduling systems 

are Legion [76, 77], which become Avaki commercial product, and Condor [78, 79]. 

Grid resource management systems do not have full control over resources. 

Resources exist in different administrative domains; they are heterogeneous and 

operate under different policies. As a result, the aforementioned systems, whilst 

addressing some of the difficulties in Grid resource management, do not cover all 

the issues [14]. The Grid Resource Allocation and Management (GRAM) 

implemented within Globus Toolkit provides a basic solution to the resource 

management problem. Moreover, GRAM resides on top of the local resource 

manager systems (LRM), and consists of several different components, which work 

together to authenticate users, manage jobs, interface with the LRM, and stage files. 

These components are described below. 

 Gatekeeper: the gatekeeper service is responsible for the authentication 

and authorisation of the user‘s request, and also for starting up the job 

manager service. One instance of this daemon is created for each job 

submission. 

 Job Manager: the job manager service is responsible for processing job 

requests and coordinating file transfers. One long-lived instance of this 

daemon is created for each LRM and one short-lived instance for each job. 

 Job Manager Script: the job manager script process is responsible for 

interacting with LRM via the LRM adaptor. 

 Job Manager LRM Adaptor: the LRM adaptor interacts directly with 

LRM, and is loaded into the job manager script component upon start-up. 

 Scheduler Event Generator: the responsibility of the scheduler event 

generator process is parsing the LRM-specific data related to the job start-
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up, execution, and termination into a general format independent from the 

LRM. 

 Scheduler Event Generator LRM Module: the scheduler event generator 

LRM module process the LRM state to produce the event which the 

scheduler event generator writes into event log. 

 GRAM Audit Database: the job manager can be configured to write audit 

into files, and the GRAM audit database program loads these file into a 

database. 

Three stages are required in the process of Grid resource management, namely 

resource discovery, resource scheduling, and job execution and monitoring [80]. The 

Grid resource management system must be able to first discover available resources. 

Subsequently, it will select candidate resources for the job to be executed on. This 

selection is depending on the job requirements and the information gathered by the 

resource manager. Finally, the job is submitted to the local resource manager for 

execution and monitoring [81]. A taxonomy of Grid Resource Management Systems 

(RMS) can be found in [19]. 

In this thesis the focus is on scheduling (chapter 6), yet scheduling hugely 

depends on information gathered by the other stages of resource management, 

namely resource discovery and monitoring. Therefore, section 2.6.1 presents an 

overview of resource discovery. Section 2.6.2 provides a detailed overview of Grid 

scheduling. The 2.6.2 section is further divided into three subsections, type of 

scheduling in Grid systems, predicting execution time and scheduling algorithms. 

The algorithm developed in this thesis (Section 6.4) assumes the knowledge of 

execution time. Therefore, methods for predicting execution time are showcased. 

Also a survey of scheduling algorithms and their limitation is provided. Section 

2.6.3 presents monitoring as a requirement for job scheduling within Grid systems.   

2.6.1 Resource Discovery 

The discovery of Grid resources is a very challenging problem owing to the 

diversity, large number, and dynamic behaviour of resources in the Grid. Grid 

information services [82] provide a mechanism for the discovery of distributed 

resources. The Monitoring and Discovery System (MDS) [83]—which is a part of 

the Globus Toolkit—is a classic example of information services. Notably, MDS has 
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undergone several major changes since it was first introduced. The latest MDS 

release is a suite of web services concerned with monitoring and discovering 

resources and services on Grids. It has two WSRF-based services: an index service 

and a trigger service. The former collects information from various sources and 

publishes that data as resource properties. In this instance, Grid users utilise the 

standard WSRF resource property query and subscription/notification interfaces in 

order to retrieve the resources information, so as to aid them in selecting suitable 

resources. Moreover, resource property entries in the index have a limited life-span, 

and will be removed if it is not renewed again before it expires. The design of 

indexes facilitates a hierarchical model, and thereby enables indexes to register with 

each other to aggregate data at several levels. 

Information services mainly use centralised or static hierarchical models to 

discover resources. Other research works considered decentralised service discovery 

mechanisms—especially peer-to-peer (P2P) techniques [84, 85]. The benefits 

associated with using P2P systems include load-balancing, self-organisation, 

adaptation, and fault-tolerance, although P2P systems also have their own 

limitations. Essentially, they offer limited data management facilities, usually focus 

only on a single functionality, and offer different levels of reliability for individual 

peers. 

2.6.2 Scheduling 

Scheduling is assigning appropriate resources to incoming jobs. The 

assignment of resources can be carried out in a blind way; however, it is more 

profitable to use more advance scheduling technique. Thus, a Grid scheduler must 

automatically and efficiently find the most appropriate assignment of resources. 

The scheduling problem is not limited to Grid systems. In fact, it is one of the 

most studied problems in the operation and optimisation research communities. 

However, in the case of Grid systems, the scheduling problem is different and more 

challenging. According to Xhafa & Abraham [86], the characteristics that make the 

Grid scheduling problem challenging are the following: 

 Dynamic structure of the Grid: Resources in a Grid system cross 

different administrative domains, which makes the resources control very 

difficult. Furthermore, the resources join or leave the Grid system in an 
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unpredictable way; this could be owing to losing connection or the 

resources administrator switching off the resources, disconnecting the 

resources from the Grid system in order to carry out other important 

internal work, or even updating the resources operating system, etc.  

 High heterogeneity of resources: In Grid systems, the resources are very 

heterogeneous and diverse, ranging from personal digital assistants PDAs, 

desktops, laptops, clusters, supercomputers and even special computational 

devices.  

 High heterogeneity of jobs: Jobs arriving to any Grid system are 

heterogeneous, and could adopt computing-intensive or data-intensive 

application.  

 High heterogeneity of interconnecting networks: Grid resources are 

connected together with different interconnection networks. Network 

performance (e.g. transmission speed, cost, latency, etc.) are all very 

important in the overall performance of Grid systems. 

 Existence of local scheduler: Grid systems cross different administrative 

domains (e.g. universities, enterprises, research institutions, etc.), and most 

of these administrative domains have a local scheduler to run the Grid and 

local application. Therefore, a Grid scheduler must have the ability to 

interact with and accordingly use the available local schedulers. 

 Existence of local policies on resources: Again, owing to the different 

administrative domains in the Grid, one cannot assume full control over the 

resources. Each administrative domain has it own set of policies that must 

be taken into account. 

 Jobs resource requirements: Current schedulers assume full availability 

and compatibility of resources; however, this is not the case in real 

situations, as many restrictions and incompatibilities can arise from job and 

resource specifications. 

 The large scale of the Grid system: One of the benefits of the Grid 

systems is the scalability and the ability to tackle large computational 

problems which cannot be solved using local resources. Therefore, Grid 



Chapter 2                                               27        Resource Allocation on Grid Systems  

 

schedulers are required to effectively manage resources in order to achieve 

scalability. 

 Security: Security is fundamental in the case of Grid scheduling. This may 

refer to either the job or application security requirements, or the Grid 

resource security requirements. This characteristic is non-existing in 

classical scheduling. 

2.6.2.1 Type of Scheduling in Grid Systems 

Scheduling in Grid systems depends on two factors: the job requirements and 

the Grid environment characteristics. Different jobs could have different scheduling 

needs, such as batch or immediate scheduling. Furthermore, the Grid environments 

impose restrictions, such as the use of local scheduler. With this in mind, the 

following are the main types of scheduling in Grid environments and a scheduler 

might fit into more than one type. 

 Independent Scheduling: Although much computer-science research has 

been carried out in direct relation to parallel processing, sequential jobs are 

still predominant in the real world of Grid Computing, and a large fraction 

of the jobs in the workloads imposed on such systems is owing to 

sequential applications—often submitted in the form of Bags of Tasks 

(BoT) [87]. The reasons behind this observable fact include the relatively 

high network latencies, the complexities of parallel programming models, 

and the nature of the computational work. BoT jobs are composed of 

sequential independent tasks where there is no communication or 

dependency amongst tasks. Examples of Bag of Tasks applications include 

Monte Carlo simulations, massive searches (such as key-breaking), image 

manipulation applications, data-mining algorithms, and parameter-sweep 

applications. Tasks in theses applications are scheduled independently. 

 Workflows Scheduling: Solving many complex problems—especially e-

Science applications—requires the combination and orchestration of Grid 

resources, such as computational devices, data, applications and scientific 

instruments. This arises owing to the control and data dependencies; these 

jobs are known as Grid workflows. The Grid workflows have many 

advantages, such as building dynamic applications which orchestrate and 
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utilise distributed resources, spanning the execution through multiple 

administrative domains so as to increase the processing capacity, and 

integrating different teams involved in managing different parts of the 

workflow [88]. 

 Centralised and Decentralised Scheduling: the difference between 

centralised and decentralised scheduling is in the control and the knowledge 

of the overall Grid resources. In the case of centralised scheduling, the 

scheduler has full control over resources, and the knowledge of the system 

is available by monitoring the resources state; thus, it is relatively easy to 

achieve efficient scheduling. The drawbacks of the centralised approach 

include limited scalability, which makes it inappropriate for very large-

scale Grids, and the single point of failure. On the other hand, however, the 

decentralised scheduler has less control over the resources and much less 

knowledge, and therefore relies on local scheduler. The decentralised 

scheduler overcomes the drawbacks of the centralised scheduler, yet the 

decentralised scheduler could be less efficient than the centralised 

scheduler because the decentralised scheduler has less resources 

knowledge. 

 Immediate and Batch Mode Scheduling: In immediate mode scheduling, 

the job is scheduled immediately after it arrives at the system. In batch 

mode scheduling, jobs are grouped together in batches and accordingly 

scheduled as a group. Importantly, batch mode scheduling takes better 

advantage of jobs and resources characteristics; therefore, batch mode 

scheduling achieves better resource utilisation by scheduling a batch of jobs 

rather than a single job. Immediate mode scheduling advantages can be 

seen in commercial Grid systems, when the Grid user requires an 

immediate answer to his/her SLA request. 

 Queuing and Planning Base Scheduling In queuing-based scheduling, 

jobs are queued according to the scheduler policies, and the job begins 

executing when it arrives at the head of the queue and sufficient resources 

become available. Examples of queuing-based scheduling include LSF, 

PBS and Oracle Grid Engine [89] —previously known as Sun Grid Engine 

(SGE). On the other hand, planning-based scheduling requires the advanced 
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knowledge of the job execution time, and keeps track of the resources 

available, accordingly allocating a precise resource timeslot to every job. 

Examples of planning-based scheduler include Cluster Computing Software 

(CCS) [90]. Queuing-based schedulers follow the best-effort approach, and 

so there are no guarantees when a job will begin to execute. Planning-based 

schedulers do not suffer from this drawback as a job will be executed 

within a reserved slot, i.e. independent from other jobs. Queuing-based 

approaches are effective and easy to implement, although they produce less 

efficient scheduling than the planning-based approach, and they are also not 

suitable for immediate scheduling, which makes them inappropriate for 

commercial Grid systems. For a queuing-based scheduler to overcome 

these drawbacks, advance resource reservation is required. By using 

resource reservation, the queuing-based scheduler works as a planning-

based one. One of the first attempts made in resource reservation was that 

of Maui [91], which is an external local resource manager, meaning it 

works in conjunction with a site‘s existing resource manager. It operates 

with all major local resource managers, such as PBS, LFS and 

LoadLeveller to extend their capabilities and subsequently enhance their 

scheduling effectiveness. Today, most of the queuing-based schedulers 

have advanced reservation capabilities, such as PBS and Oracle Grid 

Engine.  

 System-Centric and User-Centric Scheduling: System-centric is a 

traditional scheduling approach which is commonly applied in single 

administrative domains by attempts to optimise system-wide measures of 

performance. System-centric Grid resource management systems, such as 

Legion [77] and Condor [78], adopt a conventional strategy where 

scheduling algorithms decide which jobs are to be executed at which 

resources based on functions driven by system-centric parameters. They 

aim to enhance the system throughput and utilisation, and to thereby 

complete execution at the earliest possible time. Notably, they do not take 

resource costs into consideration, which therefore means that the value of 

processing applications at any time is treated the same [92]. On the other 

hand, user-centric approaches concentrate on users‘ requirements by 

delivering maximum utility to the users of the system based on their QoS 
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requirements. For example, a guarantee of certain QoS based on the 

attributes that the user finds important, such as the deadline by which the 

job has to be completed. Enforcing the desired QoS requires a system of 

rewards and penalties; thus, it is common to find user-centric approaches 

driven by economic principles [92]. 

2.6.2.2 Predicting Execution Time 

In the previous section, both planning-based scheduling and queuing-based 

scheduling with reservation assume the knowledge of all computational activities, 

such as required resources and execution time. This knowledge is assumed to be 

available from the resource user. This assumption is invalid, owing to the fact that 

most users do not have the time and experience to establish the required 

computational activities or otherwise make an accurate prediction about the required 

execution time. When users are asked to predict their application execution time, 

they tend to overestimate, which subsequently lowers the utilisation of the Grid 

resources. Systems which automate the prediction of the execution time will help the 

scheduling of jobs and the utilisation of Grid resources. Importantly, predicting 

execution time is an appealing subject which has been pursued by several studies 

[35, 93-101]. The approaches applied in such studies fall into two categories: 

learning-based approach or code-based approach. 

The learning-based approach for predicting executing time assumes that 

applications with similar characteristics have similar runtimes; therefore, historical 

information from previous application runs are used in order to predict the execution 

time of future applications. Moreover, different learning algorithms can be applied 

on the historical information in order to predict the execution time. Kapadia et al. 

[94] evaluate the use of three local learning algorithms: nearest-neighbour, 

weighted-average and locally-weighted polynomial regression; they subsequently 

found that the simple nearest-neighbour algorithm outperforms the more complex 

algorithms. Furthermore, Dushay et al. [95] evaluate the use of three algorithms: 

running average, single last observation, and low-pass filter; they accordingly 

reached the same conclusion that simple prediction methods performed as well as 

more complex methods, and that prediction accuracy was closely related to data 

consistency. Djemame and Haji [35] evaluate the use of the three prediction 

algorithms presented in [95] so as to predict future run-time for the BROADEN 
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system. The low-pass filter algorithm outperforms the other two with the last 

observation algorithm being slightly less accurate. A recent study by Matsunaga and 

Fortes [98] evaluate six different learning algorithms: k-nearest neighbour, linear 

regression, decision table, Radial Basis Function network, Predicting Query 

Runtime and Support Vector Machine. They established that different algorithms 

perform better in different scenarios, and considering different configurations and 

algorithms is key to improving the quality of the prediction. 

The code-based approach uses performance models reflecting application 

source code to provide performance estimates. An example of code-based prediction 

is available in the Performance Analysis and Characterisation Environment (PACE) 

[93]. PACE provides predictive information regarding execution time, system 

design and sizing, scalability and parallelisation strategies. Moreover, PACE 

analyses performance models, constructed from a performance language known as 

CHIP
3
S, in order to achieve time-prediction. Other works include that by Brandolese 

et al. [96], which presents a methodology for the prediction of application execution 

time utilising a mathematical model derived from the source code. 

Both learning and code-based approaches have advantages and disadvantages. 

The advantages of one provide the disadvantages of the other, and vice versa. In the 

case of the learning-based approach, predictions can only be made if historical 

information is available. Furthermore, historical information is crucial for the 

prediction process, and without consistence data, the execution time prediction will 

not be accurate. Another issue concerns the long time it takes to predict the 

execution time. On the other hand, code-based approaches do not depend on 

historical information, and the time that it takes to predict the execution time is 

minimal. However, there is the need to access the application source code, which is 

not always available, for example, because of copy writes. Moreover, application 

source code might need to be reengineered in order to be modelled. 

2.6.2.3 Scheduling Algorithms 

There exist many scheduling algorithms, and considering all of them will be a 

very long process; therefore, in this thesis, we consider only algorithms which 

address either BoT scheduling or scheduling with constraints. The reason for 

selecting BoT is that BoT jobs account for up to 96% of the CPU time consumed in 

Grid systems [87].  
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Maheswaran et al. [102] studied five immediate scheduling algorithms and 

three batch-scheduling algorithms for allocating BoT jobs to heterogeneous 

resources. The main objective of the algorithms is the maximisation of the 

throughput, with no requirements attached to BoT jobs, such as deadlines or costs. 

Casanova et al. [103] considered three heuristic algorithms from [102, 104] for 

scheduling parameter sweep applications, also known as BoT applications (see 

Independent Scheduling in  2.6.2.1), and accordingly proposed an extension to one of 

the algorithms. The objective of the research is to take advantage of file-sharing so 

as to improve the performance of the algorithms. The aim of the algorithms is also to 

maximise the throughput and, as per the prior work, job constraints are not 

addressed. 

Berman et al. [105] considered scheduling algorithms used in the Application 

Level Scheduling (AppLeS) project [106]. The main objective of the algorithms is to 

enhance the system throughput and utilisation; thus, job constraints are also not 

addressed. 

Cirne et al. [107] propose the Workqueue with Replication (WQR) algorithm 

for BoT-scheduling. The algorithm is the same as a standard queuing-based 

scheduling algorithm; the only difference is that, when there are no BoT jobs in the 

queue, idle resources begin to execute a replica of an unfinished BoT job. The first 

replica to complete is the valid execution, whilst the other replicas are cancelled. 

The WQR was introduced in order to improve performance when information 

relating to the resources and BoT are not available. Job constraints are not addressed 

in the algorithm. 

Lee and Zomaya [108] proposed the Multiple Queues with Duplication (MQD) 

algorithm for scheduling BoT jobs. The algorithm takes into account the recent 

workload pattern of resources in order to minimise the BoT makespan and to 

thereby maximise resource utilisation. Lee and Zomaya [109]  also propose the 

Shared-Input-data-based Listing (SIL) algorithm, the main objective of which is to 

minimise data transfer, which will result in shortening the makespan of the BoT. 

Moreover, job constraints are not considered in both algorithms. 

OurGrid is a middleware which facilitates the creation of P2P computational 

Grids [110].  Its aim is to speed-up the execution of BoT jobs. Notably, two different 

scheduling algorithms are proposed, namely Transparent Allocation Strategy [111], 



Chapter 2                                               33        Resource Allocation on Grid Systems  

 

which assigns jobs to idle resources, and Explicit Allocation Strategy [112], which 

assigns jobs to resources in order to reduce the turnaround time. Both algorithms do 

not take the job constraints into account, but merely focus on increasing resource 

utilisation. The algorithms have a simple approach for resource failure, which is re-

executing the tasks affected by such failure. 

The above algorithms are mainly system-centric. Their objectives are 

maximum throughput and utilisation. User-centric algorithms will address job 

constraints through the use of execution time-prediction. The benefits achieved in 

using user-centric rather than system-centric algorithms include the ability to 

address QoS, to optimise jobs requirements, to increase the performance, and to 

better utilise Grid resources so as to achieve QoS requirements.  

Buyya et al. [113] consider scheduling parameter-sweep applications. Whilst 

the scheduling of these applications seems simple, complexities arise when users 

apply various constraints, such as deadline, total cost and quality of services. Four 

scheduling algorithms are proposed in an attempt to address only two constraints— 

deadline and budget. The scheduling algorithms are: 

1. Time minimisation with limited budget (time-optimisation), 

2. Time minimisation with unlimited budget, 

3. Cost minimisation limited by a deadline (cost-optimisation), and 

4. No minimisation, limited by a deadline and budget (no-optimisation).  

It can be seen that Algorithm 2 is the same as Algorithm 1, but with very large 

budget and the algorithms became three. These algorithms were implemented in the 

Nimrod-G [114, 115] Grid resource broker and evaluated in [116]. The scheduling 

algorithms proposed—even with minimisation as a name—attempted to find a 

schedule which satisfies user constraints; however, it did not find a good 

minimisation—optimal or near-optimal—to better utilise the resources. Another 

limitation for such algorithms is that the minimisation only takes one constraint at a 

time and therefore cannot, for example, minimise time whilst simultaneously 

keeping costs at a minimum. Therefore, such scheduling algorithms are not 

sufficient enough, and better optimisation algorithms are required for this problem. 

Buyya et al. [117] extended the aforementioned work by proposing a new 

scheduling algorithm for cost-time optimisation. This algorithm builds on the cost-
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optimisation and time-optimisation scheduling algorithms, and takes into account 

the two constraints of time and budget. The cost-time optimisation algorithm is 

implemented within a simulator using GridSim toolkit [118]. Importantly, this 

algorithm has several limitations: firstly, the algorithm was only evaluated through a 

comparison with the cost-optimisation algorithm, which has its limitations; 

secondly, the algorithm does not consider the quality of the minimisation since it 

does not seek to establish an optimal or near-optimal solution; and finally, in 

arranging the resources, the algorithm takes into account only the cost of the 

resources—and only if two resources have the same cost is the resource performance 

considered. 

Kumar et al. [119] mathematically modelled the cost-optimisation scheduling 

problem and state that it is not only strongly NP-hard, but is also non-approximable. 

A batch-scheduling algorithm is proposed for assigning BoT jobs to resources, 

minimising the cost and satisfying the user deadline constraint. A batch is made of 

BoT jobs, each with a deadline constraint and a penalty fee to be paid if it is not 

scheduled. The scheduling algorithm job is required to minimise the cost of 

allocating jobs to resources by maximising the number of jobs scheduled and 

minimising the penalty fee whilst also satisfying the deadline constraint. An optimal 

solution for this problem is feasible yet, for large problem instances, it will fail to 

provide a solution in a reasonable amount of time. Therefore, Kumar et al. [119] 

propose an efficient heuristic, known as Highest Rank Earliest Deadline (HRED), 

which is able to establish a near-optimal solution for a wide variety of problem 

instances very quickly. This algorithm has several limitations: firstly, the algorithm 

only considers optimising the costs, and it takes the deadline as the only constraint. 

Moreover, it does not address other problems, such as deadline optimisation. 

Secondly, it is a batch-scheduling algorithm which limits its use in the commercial 

Grid environments since commercial Grid users‘ require immediate response to their 

SLA, and an immediate scheduling algorithm is preferable. Finally, it is not a 

realistic scenario for a Grid resource provider to: (1) commit to all jobs; (2) run the 

batch-scheduling algorithm; and (3) pay the penalty fee for non-scheduled jobs. A 

more realistic scenario is: the Grid resource provider only commits to jobs that can 

be fulfilled and rejects the others without any penalty fee. 
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Macías et al. [120] propose an Economically Enhanced Resource Manager 

(EERM) for resource-provisioning based on economic models. The EERM is part of 

the Self-Organising ICT Resource Management (SORMA) project [121], which 

addresses the development of methods and tools for an efficient market-based 

allocation of resources through a self-organising resource management system. The 

overall aim of EERM is to isolate the SORMA economic layer from the Grid 

technical layer and thereby achieve maximum economic profit and resource 

utilisation by orchestrating and managing both economic and technical goals. EERM 

exists at each resource provider‘s site, and is designed to interact with a range of 

execution platforms (e.g. Condor, Oracle Grid Engine, or Globus GRAM). The 

scheduling algorithm in EERM merely focuses on enforcing the SLA requirements 

without any degree of optimisation. The current core SLA requirements include: 

9. The number of CPUs, architecture and speed; 

10. The type of Operating System, kernel version and shared libraries; 

11. The Total free memory physical or virtual; 

12. The total free local/network disk. 

The EERM scheduling algorithm only enforces the SAL requirements, and 

does not have the ability to decide which jobs to accept or reject. A possible 

enhancement to the scheduling algorithm is to be able to optimise user constraints, 

such as cost or time, whilst enforcing the SLA requirements. 

Menascé and Casalicchio [122] propose a simple QoS model for Grid-

scheduling. Two constraints are time and budget, and three scheduling algorithms 

are proposed. The first scheduling algorithm minimises the job makespan without 

any consideration to cost; the second algorithm minimises the job makespan and 

satisfies the cost constraint; and the final algorithm minimises the cost and satisfies 

the time constraint. A limitation of this work is that it cannot be applied in real Grid 

environments owing to the assumption about the tasks: the work assumes a task can 

be divided and executed on more than one resource without any overhead, which is 

not the case in the real world. Another limitation is that the algorithms do not find an 

optimal solution—even though, under the previous assumption, finding an optimal 

solution in a reasonable amount of time is feasible. 
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Kurowski et al. [123] propose a new method for multiuser, multi-criteria job-

scheduling in Grid environments. The work considers two constraints—time and 

cost—and users are able to express these as soft constraints as opposed to hard 

constraints. A batch-scheduling algorithm is used to establish a fair schedule of jobs 

submitted by multiple users; notably, schedule fairness is measured by user 

satisfaction. In a single-user scenario, the scheduler finds the solution that 

maximises the user satisfaction. In a multi-user scenario, the scheduler must find one 

solution which ensures a high satisfaction level for all users. Thus, the scheduling 

algorithm is more focused on modelling users‘ preferences and the evaluation of the 

extent to which a given schedule is satisfactory for each user, rather than optimising 

user constraints, such as minimising the cost or the makespan. 

The user-centric scheduling algorithms above only consider the time and cost, 

and assume the resource price is a function of performance. A more expensive 

resource is always faster than a less expensive one; in the real world, this 

assumption is invalid. Ultimately, the reliability of the resource play a central part in 

the price: a more reliable resource is more expensive than a less reliable, even if the 

latter is faster. The reliability of a resource can be expressed as the resource risk of 

failure, and should be considered when scheduling. Unlike the above algorithms, the 

algorithm proposed in this thesis (Section 6.4) considers cost, time and risk of 

failure. Efficient heuristic is proposed in order to establish near-optimal solution in a 

reasonable amount of time.   

2.6.3 Monitoring 

Grid information services play a central role in Grid resources discovery (see 

 2.6.1). In order to fulfil this role, information services must collect information 

regarding the past and current status of Grid resources, which is known as 

monitoring. Data monitoring is also used in scheduling, performance analysis, 

performance tuning, performance prediction, optimisation of Grid systems, and 

many more; therefore, monitoring systems are of great importance since incorrect or 

out-dated resources information will hinder the Grid usage. Monitoring systems, 

according to Tierney et al. [124], should satisfy five requirements: low latency data 

transmission, high data rate, minimal measurement overhead, security, and scalable. 

The MDS is not only used to discover resources in the Grid, but also to 

monitor these resources. It provides standard interfaces to query WSRF services for 
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resource property information. The MDS is not a monitoring system on its own, but 

rather provides interface connections to local monitoring systems and publishes 

summary data using standard interfaces. The Network Weather Services (NWS) 

[125] is a monitoring system that provides a short-term performance forecast based 

on historical information. NetLogger [126, 127] is another monitoring system that 

provides tools for generating event logs that capture resource and application 

information, as well as a Java interface to manage the large amount of logged data, 

and tools to visualise the data. NetLogger has four main monitoring components: the 

application instrumentation, the monitoring activation service, the monitoring event 

receiver, and the archive feeder. Ganglia [128] is a distributed monitoring system 

which can be used to monitor a single cluster or a federation of clusters through the 

use of point-to-point connection amongst different clusters. Ganglia was proposed 

with the objective to achieve low-node overheads, high concurrency and high 

scalability. Autopilot [129, 130] is an adaptive resource management system for 

dynamic application rather than a monitoring system, yet it uses sensors which 

capture application and system performance data. Autopilot sensors act as a 

monitoring system, recording data in a buffer before transmitting it. The data 

transmit can be on-demand, periodic, event-driven or conditional. For more 

information on Grid monitoring see [131]. 

2.7 Summary 

This chapter has considered Grid computing and discussed the various types of 

Grid systems and applications running on them. The architecture facilitating the 

creation of such systems is presented, in addition to examples of projects which are 

implemented as Grid systems are given. Grid Resource Management activities—

namely resource discovery, resource scheduling, and job execution and 

monitoring—are presented with a focus on resource scheduling. A survey of 

scheduling algorithms has been discussed alongside their benefits and limitations. 

Resource discovery, monitoring and job execution time prediction are also presented 

as requirements for job scheduling within Grid systems.    
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3 Chapter 3 

Risk Assessment and Management 

 

This chapter examines the definition of ‗risk‘ in Section 3.1. Section 3.2 

introduces risk analysis and approaches used. Section 3.3 defines risk management 

in general, and lists the three steps required, namely risk identification, risk 

assessment and risk response or treatment. Section 3.4 defines risk management in 

Grid computing, and provides a survey of models and techniques adopted in order to 

identify and assess risk. Finally, Section 3.5 summaries the chapter. 

3.1 Definitions of Risk 

There are several definitions of risk: for example, ‗the probability and 

magnitude of a loss, disaster, or other undesirable event‘ [132] or ‗a measure of the 

potential loss occurring due to natural or human activities‘ [9]. Regardless of the 

wording used to define the term, risk is nevertheless related to future events and 

their consequences. Notably, there is uncertainty associated with events and their 

consequences. The events uncertainty can be expressed by means of probability or 

likelihood, based on background knowledge [133]. It is important to distinguish 

between risk and opportunity: 

 Risk is associated with events that, if occur, would have a negative 

consequences such as financial loss; 

 Opportunity is associated with events that, if they occur, will have 

positive consequences. 

Another important term linked to risk is ‗hazard‘. Hazard typically refers to the 

source of the risk, i.e. risk is created by a hazard. For example, a toxic gas that is a 

hazard to human health does not represent a risk unless humans are exposed to it. 
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3.2 Risk Analysis 

Risk analysis is the process of characterising and managing the potential 

events which may lead to negative consequences or losses. As with the definition of 

risk, different disciplines often categorise risk differently. Such categorisation can be 

carried out based on the events causing the risk or the consequences of such events. 

However, Modarres [9] categorises the risk into five broad categories: health, 

security, safety, financial and environmental. 

Generally, there are three types of risk analysis: quantitative, qualitative and a 

combination of the two. 

3.2.1 Quantitative Risk Analysis  

The quantitative risk analysis attempts to estimate the risk in the form of the 

frequency of events and the magnitude of the losses or consequences. In this 

context, the ‗uncertainty‘ associated with the estimation of the frequency of the 

occurrence of events and their consequences are characterised by using the 

probability concept. 

Quantitative risk analysis is the preferred method when sufficient filed data, 

test data or other evidences exist so as to estimate the probability of events and 

magnitude of losses; however, quantitative risk analysis is complicated, time-

consuming and expensive to conduct [9, 134, 135]. 

 Quantitative risk analysis techniques includes: discriminate function analysis, 

Bayesian analysis, decision tree analysis, factor analysis, neural nets, risk matrix, 

risk register, and Mont Carlo analysis [8, 136, 137]. 

3.2.2 Qualitative Risk Analysis 

Qualitative risk analysis is the most widely applied method, simply because it 

is simple and quick to perform. In this regard, the risk is estimated using a linguistic 

scale, such as low, medium and high. The frequency of events is measured by the 

likelihood of occurrence. In this type of analysis, a matrix is formed, which 

characterises the risk in the form of the likelihood of events versus the potential 

magnitude of losses in qualitative scale. This type of analysis does not rely on actual 

data and probability treatment of such data; accordingly, it is far simpler to use and 
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understand than the quantitative risk analysis, although it is extremely subjective [9, 

134, 135]. 

Qualitative risk analysis techniques include brainstorming, assumption 

analysis, interviews, hazard and operability studies, and risk mapping. For a 

complete list, see [138]. 

3.2.3 Mixed Risk Analysis 

Mixed risk analysis adopts a combination of qualitative and quantitative 

analyses. This mix can occur in two ways: either the frequency of an event is 

measured qualitatively, but the consequences are measured quantitatively or vice 

versa; or both the frequency of an event and the consequences are measured using 

quantitative methods, but the policy setting and decision-making are reliant on 

qualitative methods [9]. 

Figure 3: Risk Management Steps [139]. 

3.3 Risk Management 

Risk management is the process that enables the identification, assessment, 

planning and control of risk [138]. Thus, the risk management process aim is 
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threefold: it must identify the source of uncertainty, assess the frequency of events 

occurrence and the consequences of those events, and respond to the risk in an 

appropriate and effective manner. The risk management is an iterative process and 

the identified risks are monitored throughout the lifecycle. Figure 3 shows the steps 

of the risk management process. 

3.3.1 Risk Identification 

The purpose of risk identification is to identify which risks are likely to occur, 

where risks may arise, what may be done in response to such risks, and what may go 

wrong with the responses. Both historical and current information are fundamental 

in the risk identification phase, and therefore should be analysed first. The 

identification of risk starts by analysing either the source of the problem or the 

problem itself. Importantly, sources could be internal, such as stakeholders or 

employees, or external, such as cultural differences or natural disasters. Problem 

analysis, on the other hand, identifies events or threats, such as losing money or 

damage repetitions which are not specific for one source but which ultimately arise 

from one or more sources. Essentially, there are a number of different methods for 

risk identification. The most commonly used risk identification methods are [138]: 

 Objective-Based Risk Identification: Organisations and project teams 

have well defined objectives. They define risk as an event that may 

endanger achieving—partly or completely—one of their objectives. 

 Scenario-Based Risk Identification: Different scenarios are created to 

represent alternative ways to achieve objective, and to accordingly analyse 

the interaction of forces in the environment. Any event that triggers an 

undesired scenario is considered a risk. 

 Taxonomy-Based Risk Identification: This method presents a breakdown 

of possible risk sources according to certain criteria, and their degrees of 

importance. Based on the taxonomy and knowledge of best practices, a 

questionnaire is issued and the results are compiled [140]. 

 Checklists: In several industries, there are lists available with known risks. 

Each item in the list represents a threat, which can then be checked as to 

whether or not it applies in a particular situation. The lists take the form of 

either questions to be answered or a list of topics to be considered. 
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 Risk Registers: A risk register is a document or database that records each 

risk related to a project or assets. Risk registers from previous projects can 

be used to identify risk in the same way checklists are used. 

3.3.2 Risk Assessment 

Risk assessment is a set of techniques applied in order to investigate the 

probability of an event, and to thereby assess the effects/consequences of such [136]. 

Risk assessment is the most important phase in risk management: if the risk 

assessment method is not conducted appropriately, the risk management will then 

fail to achieve its objectives. 

Selecting an assessment technique is not a straightforward task. According to 

the authors of [134, 135, 138], the selection of a technique viewed as most suitable 

for application on a process should be determined after considering the following: 

 The availability of resources for analysis, 

 the size and complexity of the process which will be analysed, 

 the phase in which the risk assessment will be considered in the 

process lifecycle, and 

 the availability of information. 

The authors also emphasise the importance of the data considered in the risk 

assessment. The data considered should be accurate, adequate, relevant, coherent, 

unbiased and valid. 

Regardless of the analytical techniques applied in the risk assessment, in order 

for the risk assessment process to be effective, various characteristics must be taken 

into account. According to Freeman et al. [141], the risk analysis must be: 

 Timely: The process produces the best available data in an accepted time 

range. 

 Cost-Effective: The cost of accomplishing a risk assessment is lower than 

the benefit gained from the results. 

 Complete: The risk assessment must address all aspects of the process 

without taking anything for granted. 
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 Consistent: The methods used for evaluating risk and reporting threats 

must be consistent throughout the process. 

 Understandable: The results must be communicated to the appropriate 

authority with clear terms. 

3.3.3 Risk Response 

Risk response is mainly concerned with what can be done in a situation after it 

has been assessed [142]. Once risks have been identified and assessed, some action 

must be considered in order to address each individual risk. The response usually 

falls into one of the following: 

 Risk Avoidance: Risk avoidance involves the removal of the threat—either 

by eliminating the resource by redesign, more detailed design, or alternative 

development methods, or by otherwise avoiding any process which have 

exposure to risk. The later solution has a negative impact in terms of 

financial gain. 

 Risk Reduction: Since risk combines the probability of events with the 

impact or the expected losses of those events, lowering the probability of an 

event, the consequence of the event, or both will ultimately result in risk 

reduction.  

 Risk Transfer: Risk transfer is the process of transferring the risk to 

another party, who is able to bare the risk. Risk transfer does not eliminate 

or reduce the risk, but rather transfers the risk to another party to deal with 

the consequences. Insurance is a popular technique for risk transfer. 

 Risk Retention: Risk may be retained intentionally or unintentionally. The 

latter occurs as a result of a failure, either in the risk identification phase or 

the risk assessment phase. Essentially, risk retention is a very good strategy 

when the risk is small, and the cost of responding to it is greater than the 

impact or the losses of it. All risks which are not avoided or transferred are 

retained by default. 
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3.4 Risk Management in Grid  

The computer industry has expanded rapidly, and is one of the fastest growing 

industries at present. Computer systems are used in almost every aspect of life, such 

as industry, business, education, entertainment, health, defence, etc. As computer 

technologies continue to evolve, the risk of use similarly develops. Computer 

systems used in critical environments—such as nuclear power plants, air travel 

monitoring systems, medical devices, manufacturing processes, defence systems and 

stock exchange systems—need to be almost fault-free; a malfunction of such 

systems could be disastrous and might result in loss to devices, money or, even 

worse, life [143]. Therefore, risk management in such instances is of paramount 

importance. Other computer systems are less or non-critical, such as web servers or 

email servers, and the risk of faults of such systems is also lower than the risk of 

faults in critical systems. Nevertheless, a malfunction of non-critical systems might 

still result in losses of devices or money; therefore, risk management on such 

systems needs to balance between the cost of the risk management process and the 

expected loss as a result of faults. The risk management process cost should always 

be lower than the expected loss, otherwise it is more profitable not to implement 

such a process. Grid systems fall into the arena of non-critical systems (see Grid 

Applications  1.1).  

Risk management can be carried out at various phases during the lifetime of a 

Grid system, i.e. from the development of a Grid infrastructure, through to the 

deployment and testing phase, right up to the operational phase. The rest of this 

section is devoted to review approaches adopted for risk management in computer 

systems in general, and Grid systems in particular. 

3.4.1 Risk Identification 

There are different sources of risks in Grid systems, depending on the systems 

phases: for example, in the development phase, there is a risk of software 

development failure; in the operational phase, there is a risk of hardware failure, 

information security breaches, etc. Each phase has various different risks associated 

with it, and events causing those risks need to be identified. 

Software development projects suffer from a high failure rate [144, 145]. A 

number of risks identification checklists have been proposed [146-152]. Boehm 
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[146] identifies the top 10 risk items based on a survey of several experienced 

project managers. Schmidt et al. [147] identifies 53 risk items, and organises the list 

into 14 groups based on the source of the risk. The identification process was based 

on a three-phase Delphi survey the participants were made up of 41 experienced 

project managers from three different countries—USA, Finland and Hong Kong. 

Keil et al. [151] propose a framework for identifying software project risks whereby, 

instead of focusing on individual risk items, the framework provides four distinct 

types of software project risk, namely Customer Mandate, Scope & Requirements, 

Execution and Environment. All computer systems—not just Grid systems—suffer 

from risks related to software development. 

The European Network and Information Security Agency (ENISA) [153] aims 

to be the European hub for the exchange of information, best practices and 

knowledge in the field of Information Security. In the context of ENISA‘s Emerging 

and Future Risk programme, 35 security risks of Cloud computing1 [154] have been 

identified [155]. The identification process was based on the opinions of 22 experts 

from academia, industry and government. The risk items are organised into 4 

groups: Policy and organisational risks, Technical risks, Legal risks, and risks not 

specific to the Cloud. The risks identified by ENISA are only related to information 

security. 

The context-aware data-centric information sharing (Consequence) project 

[156] aims to deliver a data-centric information protection framework based on data-

sharing agreements. A scenario where a group of organisations share data with each 

other but want to retain control over the usage of that data is used to identify the 

risks imposed on the security goals of confidentiality, integrity, and availability. 

Four critical security goals are identified: authentication, usage control decision, 

enforcement, and availability. Moreover, an attack tree is proposed in order to 

recognise sub-goals that must be achieved in order to accomplish any of the security 

goals. The consequence project only considers the risks of compromising the 

security of data shared in a distributed environment. 

                                                 

1 Cloud computing refers to both the software delivered as services over the Internet as well 

as the hardware and systems software that provide those services. The services themselves 

have long been referred to as Software as a Service (SaaS),  Infrastructure as a Service 

(IaaS) and Platform as a Service (PaaS). 
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The SLA@SOI project [157] is to develop an SLA-aware service-oriented 

infrastructure, empowering the service economy in a flexible and dependable way. 

The project does not address risk specifically, although it does identify three factors 

relevant for reliability: software failures, hardware availability, and network failures 

[158]. Software failures and network failures are modelled in a probabilistic way, 

whilst hardware availability is modelled as the Mean Time To Failure (MTTF), 

divided by the sum of MTTF and Mean Time To Repair (MTTR). Other factors 

relevant for reliability are ignored in this project.   

The main objective of the AssessGrid project [36] is to address obstacles of a 

wide adoption of Grid computing by bringing risk management and assessment to 

this field, thereby enabling the use of Grid technologies in business and society. In 

this scope, AssessGrid delivers generic, customisable, trustworthy, and interoperable 

open-source software for risk assessment, risk management, and decision-support in 

Grids. The AssessGrid project applies a scenario-based risk identification approach 

[159], and identifies two risk items: the risk to the resource provider, and the risk to 

the broker. The risk to the resource provider is the violation of users‘ SLAs, which is 

influenced significantly by resources failure. A source analysis is used to identify 

the resource failure, which can be internal, such as hardware failure, problems in 

software components, version problems in used software systems, power supply 

problems, etc., or external, such as no delivery on external contracts, natural 

disasters, etc. The risk to the broker is the unreliable methods used by the resource 

provider to assess the risk of failure. The broker plays a mediator role between Grid 

providers and users: its primary task includes the assignment of the user jobs to 

certain resource providers in order to minimise the overall possibility of failure in 

carrying out those jobs. Importantly, the broker aims to minimise the aggregate risk 

of failure of all tasks under its management.  

3.4.2 Risk Assessment 

A fundamental concept in risk assessment is the concept of Risk Exposure 

(RE), sometimes referred to as risk impact [160]. RE is defined as: 

RE = Prob (UO) * Loss (UO) 
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where Prob (UO) is the probability of an unsatisfactory outcome and Loss (UO) is 

the loss to the parties affected if the unsatisfactory outcome occurs. RE is then used 

to produce a ranked ordering of the risk items identified.  

In consideration of software development projects, the probability and the loss 

of an unsatisfactory outcome are assessed via application of the qualitative risk 

analysis technique. Boehm [146] proposes the use of a scale 0–10 in order to assess 

the probabilities and losses of unsatisfactory outcomes; such assessments are often 

the result of surveying several domain experts and are frequently subjective. 

Furthermore, there is some uncertainty in terms of estimating the probability or loss 

associated with an unsatisfactory outcome, which is, itself, a major source of risk. 

Keil et al. [151] adopts a three-phase Delphi survey in order to immediately identify 

the most important risk items, rather than simply identifying probability or loss 

associated with an unsatisfactory outcome. The survey identified 11 risk items as the 

most important. 

The aim of this survey is to serve as a checklist of the most important risks for 

project managers to focus on. Wallace and Keil [150] map the 53 risk items 

identified in [147] into the four risk categories proposed in namely Customer 

Mandate, Scope & Requirements, Execution and Environment. A survey of 507 

project managers, representing multiple industries, indicated the extent to which 

each risk item was present during their most recently completed projects. A scale 

from 1–7 is utilised so as to represent the presence of a risk item; higher numbers 

represent a higher presence and lower numbers a lower presence. The result 

identifies the risk associated with the Scope & Requirements and Execution 

categories to be the most critical, and that the Environment category is not of great 

importance.   

The qualitative assessment of the 35 security risk items identified by ENISA in 

[155] is based on three scenarios: Small and Medium Enterprises (SME) migration 

to cloud computing services, the impact of cloud computing on service resilience 

and cloud computing in e-Government. The risk assessment is based on the ISO/IEC 

27005:2008 information security risk management [161]; the risk is estimated on the 

basis of the likelihood of an incident scenario and the negative impact of that 

scenario; and the likelihood and the negative impact of a scenario are estimated 

using the following scale: 
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 0, or Very Low, 

 1, or Low. 

 2, or Medium, 

 3, or High, 

 4, or Very High 

 The likelihood and the negative impact are determined by several domain 

experts. The risk is measured as the sum of the likelihood and the impact. 

Risk = likelihood + impact 

The risk is mapped to a simple risk rating Low Risk 0-2, Medium Risk 3-5 and 

High Risk 6-8. This qualitative risk assessment is based on surveying several 

domain experts and might be subjective. Furthermore, there is some degree of 

uncertainty in terms of estimating the likelihood or the negative impact, which is, 

itself, a major source of risk. 

The objective of the Consequence project [156] is to provide an information 

protection framework and to thereby identify the security risk in sharing data in a 

distributed environment. The risk items are used as a checklist of items to be 

addressed in the Consequence architecture, without any assessment of the 

probability and the negative impact of a risk item. 

The SLA@SOI project [157] does not explicitly address risk assessment, 

although it does propose the utilisation of a prediction service for estimating the 

probability of software failure, hardware availability and network failure in an 

attempt to evaluate the QoS. The work on the prediction service is in its early stage, 

and results are expected later in 2011 [158]. Notably, even in this early stage, a 

number of limitations can be identified. The hardware availability is defined as: 

Hardware Availability = MTTF / (MTTF + MTTR) 

This availability is for the entire lifecycle of the hardware, and it is not the 

probability that a hardware resource is available just at the point in time when it is 

required by service execution as assumed in the prediction service [158]. Another 

shortcoming is that the hardware might be unavailable owing to software failure or 

network failure; this means a single failure is considered twice in the analysis. 

Finally, the prediction service is not able to aggregate the probability of software 
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and network failure to predict the probability of system failure as other components 

affecting the system failure are not addressed, i.e. hardware failure, electricity 

outage, air conditioning failure, etc. 

The AssessGrid project [36] determines the probability of an SLA failure as: 

Probability of (n nodes will fail for the scheduled duration of a task) × 1 - (the 

probability of (m reserve nodes are available for the scheduled duration of a 

task)). 

The probability of node failure is calculated by assuming that the node failures 

represent a Poisson process1, which is non-homogenous in time and has a rate 

function λ(t), t > 0 [162]. Many studies assume that the failure rate follows a 

Poisson process [163-165], although there is strong evidence to support that this is 

not the case [163, 166, 167]. Another limitation of the Poisson process assumption is 

that the repair time is either neglected completely or otherwise follows a Poisson 

process. The determination of the distribution for λ(t) in AssessGrid is based on the 

Possibility theory, as initiated by Zadeh in [168]. It assumes that Grid failure data 

are rarely available, and recording such failures is infrequent; therefore, probability 

theory models cannot be used. With this in mind, possibility theory is based on new 

concepts: possibility measure, necessity measure, possibilistic distributions, etc. The 

parameter estimates are based on Gamma distributions and builds on a family of 

Bayesian models. The subjective selection of the prior distribution in Bayes 

Theorem might violate the objectivity of failure analysis. 

The AssessGrid broker provides information that supports the end-user in 

terms of evaluating the reliability of providers‘ risk assessments. For each accepted 

SLA, the broker stores the details in a database, including the final status (Success or 

                                                 

1 A Poisson process is a continuous-time counting process (N(t), t ≥ 0) that possesses the 

following properties: 

 N(0) = 0 

 Independent increments (the numbers of occurrences counted in disjoint intervals 

are independent from each other) 

 Stationary increments (the probability distribution of the number of 

occurrences counted in any time interval only depends on the length of the 

interval) 

 No counted occurrences are simultaneous. 
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Fail) and the offered Probability of failure PoF. The reliability of the providers‘ risk 

assessment is computed by comparing the number of observed failures with the 

number of failures predicted by the provider‘s offered PoFs normalised by the 

predicted failures standard deviation [169].  

Resources failure plays a fundamental role in assessing risk in the Grid 

operational phase. Estimating the frequencies of failures must be through 

quantitative methods, as: 

 resources failure data are available, and 

 experts have no means to specify the likelihood of such failures. 

Therefore, the next subsection is dedicated to grid resource failures. 

3.4.2.1 Grid Resources Failures 

A large number of studies that look at resource failure are found in the 

literature, including [170-176]. Schroeder and Gibson [170] analyse failure data 

collected over 9 years at Los Alamos National Laboratory (LANL), and includes 

23,000 failures recorded on more than 20 different systems—mostly large clusters of 

Symmetric-Multi-Processing (SMP) and Non-Uniform-Memory-Access (NUMA) 

nodes. The source of a failure falls in one of the following: human errors and 

environments, such as power outages, hardware failure, software failure, network 

failure and unknown failures. They find that the time between failure at individual 

nodes—as well as at an entire system—is fit well by a gamma or Weibull 

distribution with decreasing hazard rate (Weibull shape parameter of 0.7–0.8). The 

observation that the time between failures is best fitted by a Weibull distribution 

with decreasing hazard rate is evidence in the studies [171-175]. Iosup et al. [176] 

consider the availability of CPUs in a Grid environment and analyse availability 

traces recorded from all the clusters. The finding is that the best fit distribution is 

Weibull with a shape parameter > 1. The reason for that is that many of today‘s 

Grids comprise computing resources grouped in clusters, the owners of which may 

share them only for limited periods of time. Often, many of a Grid‘s resources are 

removed by their owner from the system—either individually or as complete 

clusters—in order to serve other tasks and projects; thus, the unavailability of CPUs 

is not owing to a system failure but rather their unavailability by their owner. Most 

of the previous studies considered only short-term availability data [173, 174]. Other 



Chapter 3                                                    51       Risk Assessment and Management 

 

studies used statistical modelling to predict failure at Grid level not resources level 

[175]. Importantly, these studies only consider distribution fitting to the failure data. 

This approach does not take into account the effect of system repairs, and also only 

assigns the probability of first failure at time t. 

Another approach for predicting the probability of resource failure without 

assuming that the resource failures represent a Poisson process is by computing the 

resource availability. The availability function A(t) of a resource is the probability 

that the resource is operational at the instant of time t. Therefore, the probability of 

resource failure at time t is 1 – A(t). On the other hand, the reliability function R(t) 

of a resource is the conditional probability that the resource has survived the interval 

[0,t], given that the resource was operational at time t= 0. Availability differs from 

reliability in that any number of resource failures can have occurred before time t. 

Reliability is used to describe resources in which repairs cannot take place, as in 

satellite systems, resources that provide critical functionality and cannot be down 

even for repairs as in aircraft systems or resources in which the repair is extremely 

expensive. Generally, it is more difficult to build a highly reliable resource than a 

highly available one [177].  

  Nadeem, Prodan & Fahringer [175] propose a model to predict the 

availability of three different Grid resources: dedicated resources which are always 

available to Grid users, temporal resources which are available to Grid users as long 

as they are switched on, and on-demand resources which are only available to Grid 

users by demand. The models proposed are building on Bayes Theorem, and predict 

the availability as a function of day-of-the-week and hour-of-the-day. This approach 

has a number of limitations: for example, it does not differentiate between the 

unavailability as a result of node failure and the unavailability as a result of 

scheduled maintenance or repair; secondly, the models only consider the hour-of-

the-day, and so a 1-minute unavailability and 1-hour unavailability are treated the 

same—even worse if the unavailability falls at the end of an hour and into the 

beginning of the next, and the unavailability subsequently becomes 2 hours.   

Another approach to model system availability and reliability in computing is 

through the use of Markov models. Hacker, Romero & Carothers [178] investigated 

the use of Semi- Markov models to model node reliability in relation to large 

supercomputing systems. Platis et al. [179] adopt a two-phase cyclic non-
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homogeneous Markov chain with the objective to evaluate the performance of a 

replicated database. Koutras, Platis & Gravvanis [180] explored the use of 

homogeneous continuous time Markov chain with the amount of free memory to 

model the resource degradation of a computer system. Furthermore, Koutras, Platis 

& Gravvanis [181] studied the use of a cyclic non-homogeneous continuous time 

Markov chain in terms of driving an optimal software rejuvenation model. 

The probability of resource failure plays a central role in the risk assessment 

process. The above models to compute this probability have some limitations: the 

unrealistic assumption that the resource failures represent a Poisson process, the 

subjective prior distribution selection in the Bayesian model or ignoring resource 

unavailability due to scheduled maintenance. Therefore, this thesis proves that the 

resource failures does not represent a Poisson process (Section 4.4), fit distributions 

to observed resource failures data (Section 5.2), and model the resource using the 

Markov model technique to represent all the resource states and address the 

scheduled maintenance (Section 5.3).     

3.4.3 Grid Risk Response 

Risk response is outside the scope of this thesis, since this thesis focuses on the 

most important step in the risk analysis which is risk assessment (chapter 4 & 5). 

Yet in this section an overview of the risk response is presented to increase the 

reader‘s knowledge.  

The risk to software development projects—as well as the risk to information 

security—is usually treated at the design phase. The aim is to lower both the 

likelihood and the impact of an undesired event. The Software Engineering for 

Service-Oriented Overlay Computers (SENSORIA) project [182] provides tools to 

enable developers to model their Grid applications at a very high level of abstraction 

with the use of service-oriented extensions of the standard UML, or domain-specific 

service-oriented modelling languages to translate into hidden formal representations 

by automated model transformations. Furthermore, such tools are able to perform 

early performance analysis, check the functional correctness of services, and 

accordingly predict the bottlenecks in collaborating services. 

The responses to the risk of resources failure are to lower the probability of the 

failure or to lower the impact. The probability of failure can be lowered by investing 
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in new infrastructures, advanced monitoring services, and experienced system 

administrators, etc. Importantly, the impact of a failure can be lowered through the 

use of fault-tolerance mechanisms, such as reserve idle resources and checkpointing. 

Checkpointing is the process of periodically saving sufficient information about 

application or resource state to avoid having to restart the application from the 

beginning [183]. The advantage of combining the checkpointing with PoF is that 

checkpointing will be carried out frequently in relation to those resources with high 

PoF, and less frequently concerning those resources with low PoF. This will lower 

the overheads on reliable resources. The benefit of checkpointing exactly before the 

point of failure are presented in [184]. 

3.5 Summary 

This chapter has considered risk management and discussed the types of 

methods for risk identification, assessment and response. Examples of risk items 

identified are provided. A survey of the risk assessment methods for software 

development projects, information security and resource failure have been discussed 

alongside their benefits and limitations. Finally, the response to risk is presented. 
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In this chapter, the motivation scenario for introducing risk assessment method 

in order to improve the commercial uptake of Grid computing is showcased. The 

events causing risk have been identified, and the measurement of risk is introduced. 

The analysis of Grid resource failures is presented in detail, following the data 

collection. The statistical proprieties of the data—including the root cause of 

failures, the mean time to repair and time between failures—are also analysed. 

Finally, the resource failures are tested against well-known probabilistic failure 

models in order to verify whether they can be used to model the Grid resources. 

4.1 Motivation Scenario 

 Over the recent years, the use of Grid computing has become the alternative to 

the traditional tightly coupled computer systems. Grids provide cost-effective and 

easily scalable resources, although the commercial uptake of Grid computing has 

remained slow. Current Grid middleware (e.g. Globus Toolkit) still follows the best-

effort approach; there is a risk that users do not get any guarantee that their SLA will 

be fulfilled. Furthermore, Grid resource providers are not attracted either: for a 

resource provider, agreeing on an SLA without enough information about the state 

of resources and the availability of devices introduces a chance of violating the SLA, 

which can then result in a penalty fee. Furthermore, there is a risk attached to system 

failure, service unavailability, insufficient resources, etc., which might lead to SLA 

violation. Importantly, without a method for assessing the risk of accepting an SLA, 

providers are only able to make uncertain decisions regarding suitable SLA offers. 

Furthermore, users would like to evaluate the risk of a provider violating an SLA so 

that they are able to make decisions concerning which Grid resource provider to 

select and the acceptable cost/penalty fee associated with the SLA. 
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Figure 4 illustrates the motivation scenario, and demonstrates how risk 

assessment fits in the use of Grid systems. The user submits an SLA request to the 

resource provider. The SLA includes the user‘s requirements, such as deadline or 

cost. When the resource provider receives the SLA request, it contacts the resource 

reservation component to reserve the end user required resources within the deadline 

requested. If resources are not available, the SLA is rejected; otherwise, for each 

resource, the time t in which the reservation starts and the duration d are sent to the 

risk assessor. 

Figure 4: Flow Chart of the Motivation Scenario. 
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The provider computes the risk for each resource and subsequently allocates the 

resources to the user job. If the resulted allocation fails to satisfy the user 

requirements, resource reservation is revisited; if it does satisfy the user 

requirements, the provider then sends back the SLA, updated with cost and penalty 

fee and pre-commit. The user either commits to the SLA or rejects it. Figure 5 

provides an overview of components in the resource provider infrastructure. The 

user sends an SLA request to the provider with the job requirements (1). The 

provider‘s Resource Manager requests the Reservation & Allocation component to 

reserve the required resources (2). The Reservation & Allocation component 

reserves the physical resources (3) and forward for each reserved resource the time 

and duration of the reservation to the Risk Assessor (4). The Risk Assessor 

computes for each resource the risk of failure based on the resource historical 

information stored in a database (5). The Monitoring component is responsible for 

updating the information in the database. The Risk Assessor returns the risk of 

failure information to the Resource Manager (6). Finally, the Resource Manager 

sends the SLA response back to the user (7), either accepting or rejecting the SLA. 

Figure 5: Overview of Components in Resource Provider. 

The scenario highlights two components in the field of Grid computing which 

is currently suffering from limitations: a risk assessment method (see  3.4.2) and a 

risk aware resource allocation (see  2.6.2.3). The rest of this chapter is dedicated to 

the risk assessment methods, while the risk aware resource allocation is discussed in 

chapter 6. 
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4.2 Risk Identification 

The definition and representation of risk can vary between different fields, as 

highlighted in Chapter  3, and so it is therefore very important to define risk in the 

context of Grid computing. In Grid computing, the assets are the Grid resources, the 

risk failures of which is of great concern. This thesis, investigate the risk of Grid 

resources failures (ROF). In order to correctly specify the ROF the probability of the 

resource failures and the impact of the failures need to be identified. 

In order to compute the probability of resource failures, the events which cause 

a resource to fail first need to be specified. Grid resources can fail as a result of a 

failure of one or more of the resource components, such as CPU or memory; this is 

known as hardware failure. Another event which can result in a resource failure is 

the failure of the operating system or programs installed on the resource; this type is 

known as software failures. The third event is the failure of communication with the 

resource; this is referred to as network failures. Finally, the last event to cause a 

resource failure is the disturbance to the building hosting the resource, such as a 

power cut or an air conditioning failure; this type is known as environment failures. 

Sometimes, it is difficult to pinpoint the exact cause of the failure, i.e. whether it is 

hardware, software or network failure; this is therefore referred to as unknown 

failures. 

4.2.1 Probability of Resource Failure 

A set EH is used to denote the events which cause hardware failures, and P(EH) 

is the probability of such hardware failures, where ES denotes the events that cause 

software failures and P(ES) is the probability of software failures. Notably, EN 

denote events that cause network failures and P(EN) is the probability of network 

failures, EE denotes events that cause environment failures, and P(EE) is the 

probability of environment failures. Finally, EU denotes events which cause 

unknown failures whilst P(EU) is the probability of unknown failures. These sets of 

events represent the complete events, denoted as E, that cause a resource failure. 

Thus: 

E = (EH U ES U EN U EE U EU) 

The probability of resource failure is: 
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P(E) = P(EH U ES U EN U EE U EU) 

Recall that an important consequence from the probability axioms is [185]: 

P(A U B) = P(A) + P(B) – P(A ∩ B) 

The sets EH, ES, EN, EE and EU are disjointed (or mutually exclusive), i.e. if the 

resource fails at a given time t, then only one event from the set could have caused 

this failure. In an extreme case, two events from different sets might take place at 

one time, yet the person responsible for repairs will only identify a single event. 

Therefore:  

 

         {H, S, N, E, U} & I ≠ J 

EI ∩ EJ = Ø 

From the probability axioms: 

P(Ø) = 0 

Therefore the probability of resource failure is defined as: 

P(E) = P(EH) + P(ES) + P(EN) +  P(EE) + P(EU) 

4.2.2 Impact of Resource Failure 

The impact of resource failures is not as straightforward as the probability of 

failures as both resource providers and resource users have competing needs. For 

resource providers, resource failures have a financial impact in the form of penalty 

fee and, if the resource provider has a reputation system1 [186], a reputation impact 

in the form of negative review or feedback from the unsatisfied user. Even in the 

absence of a reputation system, unsatisfied users might put forward their negative 

experiences to friends or co-workers, write about them in blogs or internet forums, 

or review the provider services on review sites, such as www.epinions.com.  

The impact of resource failures on users is very hard to compute. Different 

users have various different requirements. For example, after a resource failure, User 

A might use another available resource to redo the work without any impact, whilst 

                                                 

1 A reputation system collects, distributes, and aggregates ratings and opinions about 

participants‘ past behaviour and dynamically compute the reputation scores. 
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User B has a deadline to meet, and the resource failure would mean User B misses 

it. Even with the payment of the penalty fee, the financial loss owing to the missed 

deadline might be greater than the penalty fee. 

4.2.3 Risk Measures 

It has been pointed out in Chapter  3 that the word ‗risk‘ is used to combine the 

probability of events with the impact of those events. Whilst computing the 

probability of the resource failures is feasible, computing the impact of failures is 

difficult, problematic and complicated—even if only the financial impact of failures 

is considered. The reason for this is that resource providers and resource users have 

competing needs; thus, a resource provider would need to set a low penalty fee in 

case of a resource failure, and the user would require that the penalty fee be high. 

Another problem is that resource providers and users have different views of risk. 

To illustrate this point, an example is provided below. 

Assume that a user requests a resource to use from a resource provider for a 

period of time, starting from 12:00 o‘clock. The provider computes the probability 

of failure for the resource for the period [12:00, (12:00 + t)] as X. The impact of the 

failure is linked with the penalty fee; thus, the provider can lower the impact by 

lowering the penalty fee. Consider that the risk is lessened by either reducing the 

probability of the event, the impact of the event, or both (see  3.3.3). Therefore, the 

provider can reduce the risk by lowering the impact—despite the probability X 

remaining unchanged. For the user, lowering the penalty fee increases the impact, 

and so the risk to the user is increased rather than decreased when the penalty fee is 

lowered. The actions that reduce the risk to the resource provider increase the risk to 

the resource user and vice versa. On the other hand, however, decreasing the 

probability X will reduce the risk for both the provider and the user. 

The above example shows that the impact of failure has an opposite effect on 

the provider and the user, whilst the effect of the probability of failure is the same 

for both parties; therefore, it is more appropriate to measure risk to both parties only 

in terms of the probability of failure. This type of measurement is consistent, since 

resource providers and users have the same view on the probability of failure. As a 

result, in this thesis the ROF is defined as: 

ROF = P(E) 
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The ROF formula above is limited to only the probability of resource failure. 

Even though there are qualitative approaches to compute the impact on both the user 

and the provider, the impact is neglected. This is because the qualitative approaches 

are outside the scope of this thesis. 

4.3 Grid Resource Failures 

Analysing the Grid resources failures and understanding the performance of 

those resources with time is a key requirement for their modelling. Therefore, in this 

section, the need for resource failure data and the collection process is presented 

along with the methodology used to analyse the data. Three metrics are studied: the 

root cause of failure, the repair time, and the time between failures. 

4.3.1 Failures Data Collection 

Gathering information relating to the past and current status of Grid 

resources—known as monitoring—is an essential activity. Monitoring data is used 

in the case of scheduling, performance analysis, performance tuning, performance 

prediction, the optimisation of Grid systems, and many more (see  2.6.3 for 

information about monitoring and monitoring tools). Monitoring resource failures is 

crucial in the design of reliable systems, e.g. the knowledge of failure characteristics 

can be used in resource management to improve cluster availability [172]. Creating 

realistic benchmarks and test-beds for reliability testing requires the knowledge of 

failure characteristics [170]. Furthermore, calculating the probability of failure of a 

resource depends on the past failures of a resource; therefore, access to resource 

failures data is very important. 

Importantly, the resource failures data should be complete in the sense that all 

failures are reported, and also consistent in the sense that the reporting procedure is 

the same and span for a long time. These factors should be ensured for two reasons:  

 A large number of failures observed will smooth out random variations 

and will result in a reasonably good probability estimation; and  

 Long time observation reflects the true behaviour of resources. 

Resource failures data that satisfy the above requirements are not easily 

available, and data collected in academic institutes might be incomplete or 
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inconsistent. Furthermore, commercial institutes are usually reluctant to share their 

data..   

The Grid Operations Centre Data Base1 (GOCDB) [187] is the official 

repository for storing and presenting European Grid Infrastructure (EGI) [26] 

topology and resources information. GOCDB stores information for all sites within 

the Enabling Grids for E-science (EGEE) [23], the National Grid Service (NGS) 

[25] and Worldwide LHC Computing Grid (WLCG) [188]. The stored information 

can be classified into six main groups: Users, Sites, Nodes, Services, Groups and 

Downtimes. GOCDB is publicly available and accessed following registration.  

A user in GOCDB either has read-only access to all the public features or has a 

role to add, delete or edit information. A role is assigned to a user following a 

registration, and a single user may have one or more roles assigned. Roles fall into 

three categories: site level roles, regional level roles, and project level roles. For a 

complete list of roles and permissions associated to them, see [189]. 

A site is a physical location—such as the European Organisation for Nuclear 

Research (CERN) [190] or the Grille de Recherche d'Ile de France (GRIF) [191]—

containing Grid resources. Thus, a Grid provider is represented as a site in GOCDB. 

The site‘s information stored in GOCDB are identification (ID), short name, official 

name, domain name, home web URL, contact email and telephone number, security 

contact email and telephone number, hours of operation, time zone, site‘s Grid 

Information Index Server (GIIS) URL, whether or not the site a primary site, 

description, the latitude and longitude, country in which the site is located, firewall 

IP address and the ID of the user who created the site and the creation date. 

A node is a computer providing Grid services. Therefore, a Grid resource is 

represented as a node in GOCDB. In this thesis, the words ‗Grid node‘ and ‗Grid 

resource‘ are interchangeable. The nodes information stored in GOCDB are ID, 

hostname, IP address, host certificate Distinguished Name (DN), description, 

whether or not the node is a core node and a list of services running on the node. 

                                                 

1 The selection of the failures data source was based on emails exchange with NGS 

support. 
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A service represents Grid software that provides a Grid service to the 

infrastructure, such as storage or processing capacity. Each node provides one or 

more services, and the service type must fall into a predefined set of services, e.g. 

Storage Resource Manager (SRM) or gLite Workload Management Service (WMS). 

For a complete services list see [192]. 

A group is a collection of sites grouped together. GOCDB stores the group 

name, a description of the group, type of the group and a contact email. Unlike other 

information, groups cannot be added to GOCDB through the input system web 

interface, but requires the involvement of a GOCDB administrator. For group 

registration procedure, see [193].  

A downtime is a period of time for which a grid node is declared to be 

inoperable. A downtime record contains unique downtime ID, downtime 

classification (scheduled or unscheduled), the severity of the downtime, the user 

who recorded the downtime, the date at which the downtime was added to GOCDB, 

the start and end of the downtime period, the description of the downtime, and the 

entity affected by the downtime. (For a downtime sample see Appendix A). 

Scheduled downtimes are planned and agreed in advance, whilst unscheduled 

downtimes are unplanned and are usually triggered by an unexpected failure. EGEE 

defines specific rules [194] concerning what should be classified as scheduled 

downtime and what should be classified as unscheduled downtime. The rules are 

based on the length of the intervention, the impact severity, and how long in advance 

the downtime is declared. These rules were later relaxed to one rule: a scheduled 

downtime needs to be declared 24 hours in advance, otherwise it is automatically 

declared as unscheduled downtime. Unscheduled downtimes should be declared as 

soon as they are detected; however, they can be reported up to 48 hours following 

the downtime [195]. 

The severity of the downtime is either ‗at risk‘ (whereupon the resource will 

probably be working as normal, but may experience problems) or ‗outage‘ 

(whereupon the resource will be completely unavailable). 

The user whom has permission to make downtime updates can add, edit, or 

delete downtime information; this is done manually, and there are no rules or 

protocols to make such updates. Accordingly, it might be possible that the resource 

encounters a failure, and that there is no record on the GOCDB for such failure.  
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The description of the downtime is left to the Grid administrator; it is a short 

description of the cause of the downtime. Importantly, there are no rules or protocols 

to follow when writing the description; thus, descriptions are mostly incomplete and 

are very ambiguous, with some possibly having only one very brief word description 

(e.g. Test).   

The downtime data collected in GOCDB is different compared with the data in 

error-logs. Error-logs are generated automatically, and treat every unexpected event 

the same—whether or not it resulted in a system failure. Also, error-logs might 

contain multiple entries for the same event; on the other hand, however, downtime 

data in GOCDB are created manually by system administrators. Human created 

failure data have two potential problems: underreporting of failure events and 

misdiagnosing the cause of the downtime. Although it is possible for a failure not to 

be reported at all, in this thesis, we are assuming that this is not the case; 

misdiagnosing the cause of the downtime is feasible. GOCDB dose not have 

classification of the root cause (e.g. Hardware, Software, etc) it has only a 

description of what might cause the downtime. The diagnosis and description 

depend hugely on the administrators‘ skills. 

In this thesis, we take into account the downtime data for seven Grid resources 

(or nodes) from two different Grid sites. Four resources are from Site 1, and three 

resources are from Site 2. We name Site 1 resources A, B, C, and D, and Site 2 

resources A, B and C. The reasons for selecting these resources are:  

 Different resources and sites are used to generalise the findings; otherwise, 

the finding will be limited to a specific resource or site; 

 The resources considered join GOCDB in its early stage and frequently 

record downtime data; 

 Since the description of the downtime is left to the Grid administrator, some 

descriptions are ambiguous or incomplete. Therefore, the selected resources 

have comprehensive downtimes description. 

 Resources frequently join and leave the Grid; therefore, the selected 

resources never leaved the Grid;  

 The selected resources offer different Grid services; and  
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 The downtime data for all resources span for three years from the start of 

2008 till the end of 2010.  

The downtime data have scheduled and unscheduled downtime, but we only 

consider unscheduled failures. The reason for this is that the uses of advance 

reservation takes into account scheduled downtimes. 

4.3.2 Methodology for Failure Analysis 

A resource is considered to be a failed resource when it is not performing as 

normal. Therefore, a resource declared in GOCDB as ‗at risk‘ or ‗outage‘ is 

considered to be a failed resource.  

In the next sections, we will analyse resource failure data with respect to three 

important properties of system failures: root cause (4.3.3), time to repair (4.3.4.), 

and time between failures (4.3.5). Moreover, the sequence of failure events are 

studied using stochastic process [196] and the distribution of its time between 

failures is also considered. Notably, we characterise repair times for each resource 

using the mean, median and standard deviation. We also consider the empirical 

cumulative distribution function (cdf) of repair time for each resource, as well as 

how well it fits four probability distributions commonly used in reliability theory: 

Exponential, Weibull, Gamma and Lognormal distributions. These distributions fit 

the data well, and so there are no reasons for using other distributions or more 

degree of freedom e.g. a phase-type distribution. Notably, we utilise the Maximum 

Likelihood Estimation (MLE) to parameterise the distributions and thereby evaluate 

the goodness of fit by visual inspection, and the negative log-likelihood test. The 

MLE—unlike moment estimation—is consistent, unbiased and efficient [10]. The 

cdf for the time between failures for each resource is analysed also using MLE and 

the negative log-likelihood test.  

4.3.3 Root Cause Breakdown 

The first question to ask when studying failures in computer systems is ―what 

caused them?‖ In GOCDB data, there is a description of the cause of failure; 

however, there is no classification for such causes. We are therefore required to map 

the description of the failure into five different categories: Environment, Network, 

Software, Hardware and Unknown. Figure 6 shows the percentage of failure in each 

category for Site 1. The right-most bar highlights the breakdown of all the failure 
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recorded in Site 1, whilst the first four bars are for resources A, B, C and D 

respectively. Figure 7 shows the percentage of failure in each category for Site 2. 

The right-most bar shows the breakdown of all the failure recorded in Site 2, whilst 

the first three bars are for resources A, B and C respectively. 

We can see that software and hardware failures are the largest contributors to 

failures. In the case of Site 1, the actual percentage for software ranges from 28.21% 

to 35.29%; the actual percentage for hardware ranges from 41.18% to 43.59%. 

Overall, in Site 1, the two categories are responsible for 73.55% of all the failures 

recorded for the site. 

 

Figure 6: Breakdown of Failures into Root Causes for Resources from Site 1. 
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Figure 7: Breakdown of Failures into Root Causes for Resources from Site 2. 

Figure 8: Breakdown of Downtime into Root Causes for Resources from Site 1. 

Figure 9: Breakdown of Downtime into Root Causes for Resources from Site 2. 
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In Site 2, the actual percentage for software ranges from 37.21% to 45.24%. 

The actual percentage for hardware ranges from 41.46% to 46.51%. Overall, in 

relation to Site 2, the two categories are responsible for 84.92% of all the failures 

recorded for the site. 

The total downtime has been studied for each category. Figure 8 shows the 

percentage of downtime for each category in Site 1. The right-most bar emphasises 

the breakdown of all the downtime recorded in the four resources, whilst the first 

four bars are for resources A, B, C and D respectively.  

We can see that software and hardware failures contribute hugely to the 

downtime. Downtimes owing to software failures contribute from 28.82% to 

37.86%, whilst downtimes due to hardware failures contribute from 39.26% to 

41.14%. Overall, in Site 1, the two categories are responsible for 73.14% of all the 

downtimes recorded in the database. In Site 1, downtime due to environment failures 

is high, ranging from 14.80% to 27.21%; the reason for this is that the site had an air 

conditioning failure, which required a long maintenance work. 

Figure 9 shows the percentage of downtime for each category in Site 2. The 

right-most bar shows the breakdown of all the downtime recorded in the three 

resources, whilst the first four bars are for resources A, B and C respectively. 

We can see that software and hardware failures contribute hugely to the 

downtime. Downtimes owing to software failures contribute from 20.48% up to 

45.35%, whilst downtimes due to hardware failures contribute from 46.40% to 

75.27%. Overall, in Site 2, the two categories are responsible for 93.94% of all the 

downtimes recorded in the database. 

4.3.4 Repair Time Analysis 

The second important metric in studying failures is the time to repair the system. We 

start by considering how the repair time varies between resources. Next, the 

statistical proprieties of repair time for each resource are taken into account—

including their distributions. Finally, how the root cause affects the repair time is 

taken into account. 

Tables 1 & 2 show, in minutes, the mean, median and standard deviation for 

the time to repair resources in Site 1 and Site 2 respectively. The mean time to repair 

in all resources is very high, especially resources in Site 1. The first reason is that 
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the repair time depends hugely on the availability of the Grid administrator, and both 

sites do not have 24-hour user support. Thus, any resource failure occurring after 

normal working hours is not resolved until the next working day; this is also true for 

weekends and public holidays. The second reason is that there is no automatic 

monitoring which will report a resource failure when it occurs. Finally, both sites are 

mainly used for research—not commercial use. In order to improve the mean repair 

time, the sites should increase the availability of administrators and deploy 

automatic monitoring agents. 

Table 1: Repair Mean Median and Standard Deviation for Resources in Site 1 in Minutes. 

 Resource A Resource B Resource C Resource D 

Mean 1922.50 1611.96 1658.85 1829.35 

Median  945.50 433.50 1116.00 865.00 

Standard Deviation 2496.19 2341.05 2089.17 2346.35 

 

Table 2: Repair Mean Median and Standard Deviation for Resources in Site 2 in Minutes. 

 Resource A Resource B Resource C 

Mean 397.69 868.40 537.54 

Median  200.50 240 240 

Standard Deviation 472.77 2179.69 917.89 

 

Another observation is that the time to repair a resource is highly variable 

owing to the difference between the mean and the median. This observation 

indicates that the exponential distribution is not conventional to express repair time 

in Grid resources. With this in mind, it should be noted that an Exponential 

distribution with failure rate = λ the mean = 1/λ and median = ln(2)/λ = 0.6931/λ 

[10]; thus, the mean and median should not have a huge difference. To confirm this 

observation, the empirical Cumulative Distribution Function (cdf) for repair time in 

each resource is fitted with four standard distributions: Exponential, Weibull, 

Gamma and Lognormal. The cdf—referred to as F(x)—describes the probability 

distribution of a real-valued random variable X to be less than x. 

F(x) = P{X < x} 
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That is, for a given value x, F(x) is the probability that the observed value of X will 

be at most x. 

Figure 10: Repair Time Resource A Site 1.  Figure 11: Repair Time Resource B Site 1.

 Figure 10 shows the cdf of repair time for Resource A, Site 1. Visual 

inspection indicates both Lognormal and Weibull have a good fit, but that 

Lognormal fit the data slightly better when tested using the negative log-likelihood. 

The Exponential distribution is the worst fit, as expected, and it is not accurate for 

the purpose of modelling the repair time of this resource. The Lognormal or the 

Weibull is a better model for the repair time. 

Figure 11 shows the cdf of repair time for Resource B, Site 1. Weibull and 

Lognormal distributions have a good visual fit with Weibull having the best fit when 

measured by the negative log-likelihood. Figure 12 shows the cdf of repair time for 

Resource C, Site 1. Both Weibull and Lognormal distributions have a good visual 

fit, yet Lognormal fit the data slightly better when tested using the negative log-

likelihood. Figure 13 shows the cdf of repair time for Resource D, Site 1. Both 

Weibull and Lognormal distributions create an equally good visual fit, and the same 

negative log-likelihood.  

Figure 12: Repair Time Resource C Site 1. Figure 13: Repair Time Resource D Site 1. 
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Figure 14: Repair Time Resource A Site 2. Figure 15: Repair Time Resource B Site 2.

Figure 14 shows the cdf of repair time for Resource A, Site 2. Both Weibull 

and Lognormal distributions create an equally good visual fit, yet Lognormal fit the 

data slightly better when tested using the negative log-likelihood. 

Figure 16: Repair Time Resource C Site 2. 

Figure 15 shows the cdf of repair time for Resource B, Site 2. Both Weibull 

and Lognormal distributions have a good visual fit, with Lognormal having the best 

fit when measured by the negative log-likelihood. 

Finally Figure 16 shows the cdf of repair time for resource C site 2. Lognormal 

distributions have the best visual fit and the best fit when measured by the negative 

log-likelihood. 

From the above results, two observations can be made: firstly, it is clear that 

time to repair a Grid resource does not follow an Exponential distribution; and 

secondly, it is better to describe the repair time in the form of the Lognormal 

distribution, with the Weibull distribution slightly the second best. 
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Table 3: Mean Median and standard Deviation of Time to Repair Resource A Site 1 

Breakdown by Root Causes in Minutes. 

                    Software Hardware Network Environment Unknown 

Mean  1900 1887 432 4185 1120 

Median 1120 961 120 5444 1120 

Standard 

Deviation 
2136.72 2710.19 593.12 3451.25 Undefined 

 

Table 4: Mean Median and standard Deviation of Time to Repair Resource B Site 1 

Breakdown by Root Causes in Minutes. 

                    Software Hardware Network Environment Unknown 

Mean  1830.88 1589.90 432 2862.50 1120 

Median 374.50 597.50 120 2862.50 1120 

Standard 

Deviation 
2360.94 2688.80 593.12 3650.79 Undefined 

 

Now we consider how the root cause of failure affects the repair time. Tables 

3, 4 , 5 & 6 show for Site 1 in minute the mean, median and standard deviation of 

time to repair as a function of root causes for resources A, B, C and D respectively: 

the mean repair time in Resource A ranges from around 7 hours in network errors to 

around 70 hours in environment errors; in Resource B, the mean repair time ranges 

from around 7 hours in network errors to around 48 hours in environment errors; in 

Resource C, the mean repair time ranges from around 8 hours in network errors to 

around 47 hours in environment errors; and finally, in Resource D, the mean repair 

time ranges from around 8 hours in network errors to around 72 hours in 

environment errors.   

The second observation from Site 1 is that the time to repair is highly variable 

in all resources. For example, the median of network repair times is approximately 4 

times lower than the mean in Resource A; the median of software repair times is 

about 5 times lower than the mean in Resource B; the median of hardware repair 

times is about 2 times lower than the mean in Resource C; and the median of 

hardware repair times is about 2 times lower than the mean in Resource D. 
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Table 5: Mean Median and standard Deviation of Time to Repair Resource C Site 1 

Breakdown by Root Causes in Minutes. 

                    Software Hardware Network Environment Unknown 

Mean  1788.18 1494.18 460.75 2776.83 1120 

Median 971.00 775.00 333.50 1483 1120 

Standard 

Deviation 
1994.51 2168.25 487.68 2681.96 Undefined 

 

Table 6: Mean Median and standard Deviation of Time to Repair Resource D Site 1 

Breakdown by Root Causes in Minutes. 

                    Software Hardware Network Environment Unknown 

Mean  1790 1827.86 440.60 4308.33 Null 

Median 1263.50 865 360 5444 Null 

Standard 

Deviation 
1888.89 2597.92 424.74 3596.59 Undefined 

 

In Site 1, there was only one unknown error in resources A, B and C; 

therefore, the standard deviation is undefined for these resources. In Resource D, 

there were no unknown errors, and so the mean, median and standard deviation are 

undefined. 

Finally, in Site 1, software and hardware failure effects are on individual 

resources, whilst a network or an environment failure may affect more than one 

resource—or even the entire Grid site. For example, a power cut in the Grid site will 

result in the failure of all resources in that site. 

Table 7: Mean Median and standard Deviation of Time to Repair Resource A Site 2 

Breakdown by Root Causes in Minutes. 

                    Software Hardware Network Environment Unknown 

Mean  398.63 430.54 92 260 675 

Median 303.00 157.90 92 260 675 

Standard 

Deviation 
323.95 636.13 98.99 98.99 Undefined 

 

For Site 2, Tables 7, 8 & 9 show in minutes the mean, median and standard 

deviation the time to repair as a function of root causes for resources A, B and C 

respectively: the mean repair time in Resource A ranges from around 1.5 hours in 

network errors to around 7 hours in hardware errors; in Resource B, the mean repair 

time ranges from around 1.5 hours in network errors to around 23 hours in 
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environment errors; and finally, in Resource C, the mean repair time ranges from 

around 1 hour in network errors to around 14 hours in environment errors. 

The second observation from Site 2 is, like Site 1, the time to repair, which is 

highly variable in all resources. For example, the median of hardware repair times is 

about 3 times lower than the mean in Resource A; the median of hardware repair 

times is about 6 times lower than the mean in Resource B; and the median of 

hardware repair times is about 5 times lower than the mean in Resource C.  

In Site 2, there was only one unknown error in Resource A; therefore, the 

standard deviation is undefined for the resource. 

Table 8: Mean Median and standard Deviation of Time to Repair Resource B Site 2 

Breakdown by Root Causes in Minutes. 

                    Software Hardware Network Environment Unknown 

Mean  479.25 1385.05 92 260 364 

Median 302 220 92 260 364 

Standard 

Deviation 
576.14 3112.18 98.99 98.99 439.82 

Table 9: Mean Median and standard Deviation of Time to Repair Resource C Site 2 

Breakdown by Root Causes in Minutes. 

                    Software Hardware Network Environment Unknown 

Mean  366.53 826.06 73 260 513 

Median 301 158 35 260 513 

Standard 

Deviation 
312.78 1354.32 77.35 98.99 229.10 

 

Finally, like in Site 1, software and hardware failures in Site 2 effects are on 

individual resources, whilst a network or an environment failure may affect more 

than one resource—or even the entire Grid site. 

4.3.5 Time between Failures Analysis 

In this section, the sequence of failure events are viewed as a stochastic 

process, and we study the time between unscheduled failures, inter-arrival times, for 

each resource. The cdf for the time between failures in each resource is fitted with 

four standard distributions: Exponential, Weibull, Gamma and Lognormal. 

Figures 17, 18, 19 & 20 show, for Site 1, the cdf of time between failures for 

resources A, B, C and D respectively. In the case of Resource A, the distribution 

between failures is well modelled by a Weibull distribution, which creates a good 
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visual fit and the best fit when tested using the negative log-likelihood. The Gamma 

distribution is the second best fit.     

Figure 17: Time between Failures for 

Resource A Site 1. 

Figure 18: Time between Failures for 

Resource B Site 1. 

In Resource B, the distribution between failures is well modelled by a Weibull 

distribution, which creates a good visual fit and the best fit when tested using the 

negative log-likelihood. The Gamma or the Lognormal distributions are the second 

best fit. 

In Resource C, the distribution between failures is well modelled by a Weibull 

distribution, which creates a good visual fit and the best fit when tested using the 

negative log-likelihood. The Gamma distribution is the second best fit.  

Finally, in Resource D, the distribution between failures is well modelled by a 

Weibull or Gamma distribution. Both distributions create an equally good visual fit 

and the same negative log-likelihood. 

Figure 19: Time between Failures for 

Resource C Site 1. 

Figure 20: Time between Failures for 

Resource D Site 1. 

For Site 2, Figures 21, 22 & 23 show the cdf of time between failures for 

resources A, B and C respectively. 
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Figure 21: Time between Failures for 

Resource A Site 2. 

Figure 22: Time between Failures for 

Resource B Site 2. 

In Resource A, the distribution between failures is well modelled by a Weibull 

or Gamma distribution. Both distributions create an equally good visual fit and the 

same negative log-likelihood. 

In Resource B, the distribution between failures is well modelled by a Weibull 

distribution, which creates a good visual fit and the best fit when tested using the 

negative log-likelihood. The Gamma distribution is the second best fit. 

Finally, in Resource C, the distribution between failures is well modelled by a 

Weibull or Gamma distribution. Both distributions create an equally good visual fit 

and the same negative log-likelihood. 

Figure 23: Time between Failures for Resource C Site 2. 

From the above, we can state that the Weibull distribution is the best 

distribution to model distribution between failures in Grid resources where as the 

Gamma distribution is the second best fit. The Weibull distribution is the most 

popular and widely used method of analysing and predicting failures and 

malfunctions of all types, offers flexibility in modelling failure rates, and is easy to 

calculate [197-200]. 
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The Weibull distribution mathematically characterizes the probability of 

system failures as a function of time. The two parameters Weibull function is used 

in this thesis and the probability density function pdf is defined as: 

      
 

 
  

 

 
 
   

   
 
 
 
 

 

The cumulative density function cdf is defined as: 

            
 
 
 
 

 

Where α is the shape parameter (or slop), λ is the scale parameter and t is time. 

Recalling that the reliability function of a distribution is simply one minus the cdf, 

the reliability function for the Weibull distribution is given by: 

             

From the above, we can calculate the Weibull failure rate (or hazard rate) function 

as follow: 

      
    

    
            

The shape parameter α directly influences the hazard function as follows: 

If α < 1, the hazard function is decreasing with time; 

If α = 1, the hazard function is constant with time, i.e., the exponential distribution; 

If α > 1, the hazard function is increasing with time. 

It is useful to determine how the time since the last failure influences the 

expected time until the next failure; this notion is captured by a distribution‘s hazard 

rate function. An increasing hazard rate function predicts that the probability of 

failure increases with time. A decreasing hazard rate function predicts the reverse. 

The shape parameter of less than 1 indicates that the hazard rate function is 

decreasing, i.e. not seeing a failure for a long time decreases the chance of seeing 

one in the near future. 

In this thesis, we use the maximum likelihood estimation to predict the 

parameters and we find decreasing hazard rates a Weibull shape parameter less than 

1; this means not seeing a failure for long time decreases the risk of seeing one 

within a short period of time. Table 10 shows the values of the Weibull shape 

parameter for the resources. 
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Table 10: The Weibull Shape Parameter. 

Site One Resource A Resource B Resource C Resource D 

  0.63618 0.609953 0.673741 0.569431 

Site Two Resource A Resource B Resource C  

 0.623174 0.607578 0.564124  

4.4 Probabilistic Failure Models for Grid Resources 

The Weibull failure rate function provides the probability of resource failure 

up to a point in time, without considering what happens if the resource fails during 

that time and is then repaired. Grid resources are repairable systems and receive 

maintenance actions when they fail. The maintenance actions might change the 

overall makeup of the resource, and must be taken into consideration when assessing 

the probability of failure of the resource as the age of the resource components is no 

longer identical and the time of operation is not continuous.  

In the previous sections, the focus has been directed onto describing the 

behaviour of Grid resources in statistical terms. The distribution failure rate 

functions focus on the first time to failure, or first time to failure in a given 

interval—but not whether the resource is functioning or not functioning at a given 

time. The resource availability function capture the notation of resource functioning 

[177]. Point availability at time t is the probability of the resource functioning at 

time t and is denoted by A(t). The average proportion a resource is functioning 

during an interval (t1, t2) is denoted by Av(t1, t2), and can be obtained by the 

following formula: 

           
       

  
  

      
 

In order to compute the Grid resource availability, a model for the resource 

needs to be driven. Models from reliability engineering can be used to represent a 

Grid resource and to thereby predict the probability of failure. The problem in this 

regard is which model to use. Random processes are widely used as probabilistic 

models for the failure process [9]; the following is a list of random processes and a 

discussion on their ability to model Grid resources failure. 
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 Renewal Process and Homogeneous Poisson Process: A renewal process 

assumes that, upon failure, the system is instantaneously repaired to an ‗as 

good as new‘ state. It also assumes that the distribution of the time between 

failures is identical and independent (IID). The homogeneous Poisson 

process (HPP) is a special case of the renewal process, in which the time 

between failures follows the exponential distribution. Grid resources cannot 

be modelled as HPP as the distribution of the time between failures for 

these resources is Weibull and not exponential (see  4.3.5). Furthermore, 

Grid resources cannot be modelled as a renewal process for two reasons: 

first, the repair of a resource will not return it to an ‗as good as new‘ state. 

Second, a resource changes during repairs and assuming identical 

distribution is inadequate. 

 Modified Renewal Process: A modified renewal process is a process with 

the distribution of the first failure differs from the distribution of the time of 

the second, third or subsequent failures. Grid resources cannot be modelled 

as a modified renewal process as the distribution of the time between 

failures does not change between subsequent failures. 

 Alternating Renewal Process: An alternating renewal process does not 

assume an instantaneous repair, and takes into account the time to repair a 

failed system. Grid resources cannot be modelled as an alternating renewal 

process as the alternating renewal process assumes an IID failures and Grid 

resources change during repairs. 

 Non-Homogeneous Poisson Process: A non- homogeneous Poisson 

process (NHPP) is an extension on HPP whereby the rate of failure, as 

given by the rate of occurrence of failures (ROCOF), is assumed to vary 

with time. The ROCOF function is also referred to as the peril rate. The 

NHPP is widely assumed in modelling computer systems as the rate of 

failures varies with time and the distribution of the time between failures is 

not assumed to be identical. Two NHPP models are widely used in 

reliability engineering: the NHPP following a Power Low and the NHPP 

Following an Exponential Low [196]. 
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4.4.1 NHPP Following a Power Low 

The power low model—also known as Crow‘s model or Weibull process—

because the time to the first failure has a Weibull distribution, has the following 

ROCOF [201]: 

                        

where λ is the scale parameter, β is the growth parameter and t is the time.  

In 1964, Duane [202] introduced the technique of plotting the cumulative 

failure rate against t on a log-log paper. If the system generating the failures follows 

a power-low model then, subject to sampling variability, a liner plot will be obtained 

on the log-log paper. The cumulative failure rate is N(ti)/ti where N(t) is a counting 

function which keeps track of the cumulative number of failures the system has had 

from time zero to time t, where ti is the time of the ith failure. 

Figures 24, 25, 26, 27, 28, 29 & 30 show the Duane plots of failures for 

resources A, B, C, D from Site 1, A, B and C from Site 2 respectively. The X Axis 

represents ln(t) and the Y Axis represents ln(t/N(t))1. From the figures, it can be seen 

that the points in the plots are scattered and do not form a roughly linear plot. 

Therefore, Grid resources, most likely, cannot be modelled as a power low NHPP. 

Furthermore, the resources repair time is not modelled as a power-low NHPP (see 

Appendix A for the Duane plots of repair time). 

                                                 

1 The implementation of Duane plot that‘s put ti/N(ti) on the vertical axis is used. 
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Figure 24: The Dune Plot for Failures of Resource A Site 1. 

Figure 25: The Dune Plot for Failures of Resource B Site 1. 

Figure 26: The Dune Plot for Failures of Resource C Site 1. 
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Figure 27: The Dune Plot for Failures of Resource D Site 1. 

Figure 28: The Dune Plot for Failures of Resource A Site 2. 

 

Figure 29: The Dune Plot for Failures of Resource B Site 2. 
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Figure 30: The Dune Plot for Failures of Resource C Site 2. 

4.4.2 NHPP Following an Exponential Low 

The exponential low model—also known as Cox and Lewis‘s model—has the 

following ROCOF [196]: 

               

where a0 is the scale parameter, a1 is the growth parameter and t is the time.  

Plotting the cumulative failure rate against t on a log-linear paper should 

roughly follow a straight line if the system generating the failures follows an 

exponential low NHPP. 

Figures 31, 32, 33, 34, 35, 36 & 37 show the plots of the cumulative failure 

rate against t on a log-linear paper for resources A, B, C, D from Site 1, A, B and C 

from Site 2 respectively. The X Axis represents the time t in hours, whilst the Y 

Axis represents ln(t/N(t)). The figures show that the points on the plots do not form a 

roughly linear plot; therefore, Grid resources cannot be modelled as an exponential 

low NHPP. Moreover, the resources repair time is not modelled as an exponential 

low NHPP (see Appendix A for the plot of the cumulative repair rate against t on a 

log-linear paper). 
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Figure 31: Cumulative Failure Rate against t on a log-linear Paper for Failures of Resource A Site 1. 

Figure 32: Cumulative Failure Rate against t on a log-linear Paper for Failures of Resource B Site 1. 

Figure 33: Cumulative Failure Rate against t on a log-linear Paper for Failures of Resource C Site 1. 
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Figure 34: Cumulative Failure Rate against t on a log-linear Paper for Failures of Resource D Site 1. 

Figure 35: Cumulative Failure Rate against t on a log-linear Paper for Failures of Resource A Site 2. 

Figure 36: Cumulative Failure Rate against t on a log-linear Paper for Failures of Resource B Site 2. 
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Figure 37: Cumulative Failure Rate against t on a log-linear Paper for Failures of Resource C Site 2. 

4.4.3 Results Analysis 

In this section the random processes are tested as probabilistic models for the 

Grid resources failure. The results show that random processes are not suitable for 

modelling Grid resources failure. The HPP assumes that the time between failures 

follows the exponential distribution, yet the time between failures in grid 

environments follows a Weibull distribution. The renewal process assumes that the 

repair of failed component return it to ―as good as new‖ state, yet in Grid 

environments repairs do not return the resources to as good as new state. The 

modified renewal process assumes that the distribution of the first failure differs 

from the distribution of the time of the second, third or subsequent failures. This 

assumption is not valid in Grid environments since the distribution of the time 

between failures follows the Weibull distribution and does not change between 

subsequent failures. The alternating renewal process assumes that the distribution of 

the time between failures is identical and independent. In Grid environments a 

resource changes during repairs, thus assuming identical distribution is inadequate. 

Finally the NHPP, which is widely assumed in modelling computer systems, is not 

fitting for modelling Grid resources failure. From the Dune plot it is highly unlikely 

that Grid resource failures are modelled by a NHPP following a power low. The 

same conclusion for the NHPP following an exponential low is driven from the log-

linear plot.  
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4.5 Summary 

The motivation scenario is used to demonstrate the need for risk assessment 

methods in order to improve the commercial uptake of Grid computing. The events 

that cause resource failures are identified as hardware failures, software failures, 

network failures, environment failures and unknown failures. The risk of failure 

measure is presented to be the resource probability of failure. Analysing failures 

records for seven different resources shows that software and hardware failures are 

the largest contributors to failures: the actual percentage for software ranges from 

28.21% to 45.24%; the actual percentage for hardware ranges from 41.18% to 

46.51%. Importantly, software and hardware failures contribute hugely to the 

downtime. Another observation is that the mean time to repair—in all resources—is 

very high, and that the time to repair a resource is highly variable owing to the 

difference between the mean and the median. The mean repair times vary widely 

depending on the root cause, and are extremely variable. The time to repair a 

resource is well-fitted by a lognormal distribution, with Weibull distribution as the 

second best. The time between failures are best fitted with a Weibull distribution 

with decreasing hazard rate. Finally, the assumption that failures in Grid resources 

are modelled by a NHPP is invalid, and the Duane plot—along with the log-linear 

plot—confirms this. In the next chapter, new models to estimate the resources risk 

of failures are introduced.  
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Modelling Risk of Failure in Grid Environments 

 

In the previous chapter, it has been highlighted that the Grid resource failures 

cannot be modelled using probabilistic failure models, such as HPP or NHPP. More 

advanced modelling techniques are required. These techniques are based on 

availability models—also known as reliability models for non-repairable systems. 

With this in mind, this chapter introduces a mathematical model for the prediction of 

the risk of failure of a Grid resource with the use of a discrete-time analytical model 

driven by availability functions fitted to observed data. Moreover, the model 

selected and the reasons for selection are presented. In addition, the different 

distribution of the failure data are analysed and, based on these, the risk assessment 

model is developed. The model is validated by comparing the proposed ROF 

generated by the model with the observed ROF. Finally, the use of the model to rank 

resources and plan future investments is studied. 

5.1 Availability Models 

Recall that the resource ROF at time t is the probability of the resource not 

functioning at time t. This can be defined as one minus the probability of the 

resource functioning at t. By computing the probability of the resource functioning 

at t, known as availability A(t), the resource ROF becomes: 

ROF(t) = 1 – A(t) 

An availability model is an abstract mathematical and graphical representation 

of the system availability characteristics. The model can be evaluated so as to obtain 

a prediction of the system availability at a given time [203]. The taxonomy of 

modelling techniques for system reliability and availability is found in [177]. Two 

techniques are widely applied for availability: Combinatorial Models and Markov 

Models. 
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Combinatorial modelling is an approach in which the system is divided into 

overlapping modules. Each module is assigned a probability of working Pl, the goal 

of which is to drive the probability of the correct system operation. Combinatorial 

models have various limitations owing to the fact that they cannot be used to model 

system repairs or dynamic reconfiguration of the system; hence, some non-standard 

extensions have been added to the models so as to increase their expressiveness. 

Furthermore, Combinatorial Models include Reliability Block Diagram (RBD) 

Models, Network Models and Fault Tree Models. A serious limitation of these 

models is that they can only represent two states per module, i.e. operational and 

failed [203]. Regardless of their limitations, however, Combinatorial Models are 

used when the system under study is divided into modules, yet in this thesis, the 

Grid resource is modelled as a black-box; therefore, Combinatorial Models are not 

applied in this work.    

Markov Models address the limitations associated with Combinatorial Models. 

The two central concepts of Markov models are ‗state‘ and ‗state transitions‘. Recall 

that, from the data collected in GOCDB, Grid resources have three states.  

 ‗Up‘ the resource is fully functional, represented as State 0; 

 ‗At Risk‘ the resource will probably be working as normal, but may 

experience problems, represented as State 1; and 

 ‗Outage‘ the resources will be completely unavailable, represented as 

State 2. 

As time passes, the resource moves from state to state as a result of failures and 

repairs. These changes in-state are known as state transitions. Markov models can be 

further divided into two categories: discrete-time and continuous-time models. The 

former, discrete-time models, require all state transitions to occur at fixed intervals, 

with each possible transition assigned a probability. Continuous-time models allow 

state transitions to occur at varying intervals, and each possible transition is assigned 

with a transition rate. Markov models are represented in graphs, and the information 

expressed by the model graph is often summarised in a square matrix P, whose 

elements Pi,j are the probability of a transition from state i to state j. The 

probabilistic character of the matrix requires that all elements of the matrix are non-

negative, and that each row of the matrix sums one. 
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The basic assumption in the case of Markov models is that the resource has no 

memory, which implies that the transition probabilities between states are 

determined only by the present state and not by the history. For continuous-time 

models, the length of time already spent in a state does not influence either the 

transition rate of the next state or the remaining time in the same state before the 

next transition. This general assumption implies that the waiting time spent in any 

state is exponentially distributed in the continuous-time case or geometrically 

distributed in the discrete-time case. Thus, Markov models assume that failure rates 

are constant, thereby leading to exponentially distributed inter-arrival time of 

failures and Poisson arrival of failures [204]. A useful generalisation of Markov 

Models is the Time-Varying Markov Models, which allow state transition 

probability to change over time; thus, the failure rate is no longer assumed as 

constant [177]. With this relaxed assumption, the Grid resources can be modelled 

with the use of the time-varying Markov model. Since Grid resources failures and 

repairs occur at varying intervals, a continuous time-varying Markov model is used 

for Grid resource availability (see Figure 38). The transition matrix for the 

continuous time-varying Markov model is: 

       

           

           
       

   

The resource will start at State 0 and operate until either: (i) the performance 

degrades and the resource transits to State 1; or (ii) the resource stops working and 

transits to State 2. Importantly, ZW(t) is the rate of events that causes a resource to 

transition from State 0 to State 1, whilst ZR(t) is the rate of recovery events that 

result in the resource returning to State 0. Moreover, ZF(t) is the rate of events that 

leads to resource failure, whereas ZG(t) is the rate of repair events resulting in the 

resource returning to State 0. 

In order to predict the Grid resource availability, the continuous time-varying 

Markov model is developed by applying transition functions ZW(t), ZR(t), ZF(t), and 

ZG(t) derived from the distributions fitted to failure data. Therefore, Section 5.2 

deals with establishing distributions for the transition functions, whilst Section 5.3 

presents the analysis of the model. 
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Figure 38: Continuous Time-Varying Markov Model for Resource Availability. 

5.2 Fitting Distributions to Failure Data  

Recall that, in Chapter 4, the downtime data for seven Grid resources from two 

different Grid sites are collected. Four resources are from Site 1, whilst three 

resources are from Site 2. We name Site 1 resources A, B, C, and D, whilst Site 2 

resources are A, B and C. The downtime data for these resources will be used to 

drive the transition functions. 

In order to determine the time-varying functions ZW(t), ZR(t), ZF(t), and ZG(t) 

for the continuous time-varying Markov model shown above, the sequence of 

unscheduled events are analysed for each resource. There are two types of events: 

the first is At Risk, which represents a transition from State 0 to State 1; the second 

is complete failure, which represents the transition from State 0 to State 2. For each 

event, the time to repair the resource is recorded and represents the time to return the 

resource to State 0 from State 1 or 2. Each resource has four functions to be 

modelled: ZW(t), ZR(t), ZF(t), and ZG(t). 

1. The time between transition from ‗UP‘ to ‗AT RISK‘ or State 0 to State 

1 denoted as ZW(t). 

2. The time between transition from ‗AT RISK‘ to ‗UP‘ or State 1 to State 

0 denoted as ZR(t). 

 

ZG(t) 

UP 

 

State 0 ZW(t) 

 

ZR(t) 

DOWN 

 

State 2 

AT RISK 

 

State 1 

ZF(t) 

ZF(t) 
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3. The time between transition from ‗UP‘ to ‗DOWN‘ or State 0 to State 2 

denoted as ZF(t). 

4. The time between transition from ‗DOWN‘ to ‗UP‘ or State 2 to State 1 

denoted as ZG(t). 

 The cdf of the four functions for each resource is fitted with four standard 

distributions: Exponential, Weibull, Gamma and Lognormal; this helps to determine 

the best fit for each function. The MLE is used to parameterise the distributions, and 

the goodness of fit is evaluated by visual inspection and the negative log-likelihood 

test. 
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5.2.1 Summary of Results 

Resource A Site One: 

 From Figure 39, visual inspection shows that the time between transitions 

from State 0 to 1, ZW(t), is well modelled by Weibull or Lognormal distribution, yet 

the Weibull is a better fit when tested with the use of a negative log-likelihood. The 

time between transitions from State 0 to 2, ZF(t), is well modelled by Weibull or 

Gamma; both distributions create an equally good visual fit and the same negative 

log-likelihood. The repair time is the time to return the resource to State 0 from State 

1 or State 2. Moreover, the time between the transitions from State 1 to State 0, 

ZR(t), is well modelled through Weibull or Lognormal distribution, yet the 

Lognormal is a better fit when tested with the use of a negative log-likelihood. The 

time between transitions from State 2 to State 0, ZG(t), is well modelled by Weibull 

or Lognormal distribution, yet the Weibull is a better fit when tested using the 

negative log-likelihood.  

Figure 39: The Time-Varying Functions ZW(t), ZR(t), ZF(t), and ZG(t) for Resource A Site 1. 

(a) ZW(t) (b) ZF(t) 

(c) ZR(t) (d) ZG(t) 
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Resource B Site One: 

 As can be seen from Figure 40, visual inspection shows that the time between 

transitions from State 0 to 1, ZW(t), is well modelled by Weibull or Gamma 

distribution, yet the Weibull is a better fit when tested using negative log-likelihood. 

The time between transitions from State 0 to 2 is, ZF(t), well modelled by Weibull or 

Gamma, yet the Weibull is a better fit when tested using the negative log-likelihood. 

Moreover, the time between transitions from State 1 to State 0, ZR(t), is well 

modelled by Lognormal distribution; both the visual inspection and the negative log-

likelihood test confirm this. The time between transitions from State 2 to State 0, 

ZG(t), is well modelled by Weibull or Lognormal distribution, although the Weibull 

is a better fit when tested using negative log-likelihood. 

Figure 40: The Time-Varying Functions ZW(t), ZR(t), ZF(t), and ZG(t) for Resource B Site 1. 

(a) ZW(t) (b) ZF(t) 

(c) ZR(t) (d) ZG(t) 
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Resource C Site One: 

 From Figure 41, visual inspection shows that the time between transitions 

from State 0 to 1, ZW(t), is well modelled by Weibull or Lognormal distribution, 

although the Weibull is a better fit when tested using negative log-likelihood. The 

time between transitions from State 0 to 2, ZF(t), is well modelled by Weibull or 

Gamma, yet the Weibull is a better fit when tested using the negative log-likelihood. 

Furthermore, the time between transitions from State 1 to State 0, ZR(t), is well 

modelled Lognormal or Weibull distribution, yet the Weibull is a better fit when 

tested using the negative log-likelihood. The time between transitions from State 2 

to State 0, ZG(t), is well modelled through Weibull or Lognormal distribution, yet 

the Lognormal is a better fit when tested using negative log-likelihood. 

Figure 41: The Time-Varying Functions ZW(t), ZR(t), ZF(t), and ZG(t) for Resource C Site 1. 

(a) ZW(t) (b) ZF(t) 

(c) ZR(t) (d) ZG(t) 
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Resource D Site One: 

Figure 42 shows that the time between transitions from State 0 to 1, ZW(t), is 

well modelled by Weibull or Gamma; both distributions create an equally good 

visual fit and the same negative log-likelihood. The time between transitions from 

State 0 to 2, ZF(t), is also well modelled by Weibull or Gamma, although the Gamma 

is a better fit when tested using the negative log-likelihood. The time between 

transitions from State 1 to State 0, ZR(t), is well modelled Lognormal or Weibull 

distribution, yet the Lognormal is a better fit when tested using the negative log-

likelihood. The time between transitions from State 2 to State 0, ZG(t), is well 

modelled by Weibull or Lognormal distribution, though the Weibull is a better fit 

when tested using negative log-likelihood. 

Figure 42: The Time-Varying Functions ZW(t), ZR(t), ZF(t), and ZG(t) for Resource D Site 1. 

 

(a) ZW(t) (b) ZF(t) 

(c) ZR(t) (d) ZG(t) 
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Resource A Site Two: 

Figure 43 shows that the time between transitions from State 0 to 1, ZW(t), is 

well modelled by Weibull or Exponential, although the Weibull is a better fit when 

tested using negative log-likelihood. The time between transitions from State 0 to 2, 

ZF(t), is also well modelled by Weibull or Gamma; both distributions create an 

equally good visual fit and the same negative log-likelihood. The time between 

transitions from State 1 to State 0, ZR(t), is well modelled Gamma or Weibull 

distribution, although the Weibull is a better fit when tested using the negative log-

likelihood. The time between transitions from State 2 to State 0, ZG(t), is well 

modelled by Weibull or Lognormal distribution, yet the Lognormal is a better fit 

when tested using negative log-likelihood. 

 

Figure 43: The Time-Varying Functions ZW(t), ZR(t), ZF(t), and ZG(t) for Resource A Site 2. 

 

(a) ZW(t) (b) ZF(t) 

(c) ZR(t) (d) ZG(t) 
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Resource B Site Two: 

Figure 44 illustrates that the time between transitions from State 0 to 1 is well 

modelled by Weibull or Exponential, although the Weibull is considered to be a 

better fit when tested using negative log-likelihood. The time between transitions 

from State 0 to 2 is well modelled by Weibull or Gamma, although the Gamma is a 

better fit when tested using the negative log-likelihood. The time between transitions 

from State 1 to State 0 is well modelled Lognormal or Weibull distribution, but the 

Weibull is a better fit when tested using the negative log-likelihood. The time 

between transitions from State 2 to State 0 is well modelled by Weibull or 

Lognormal distribution, yet the Lognormal is a better fit when tested using negative 

log-likelihood. 

Figure 44: The Time-Varying Functions ZW(t), ZR(t), ZF(t), and ZG(t) for Resource B Site 2. 

 

(a) ZW(t) (b) ZF(t) 

(c) ZR(t) (d) ZG(t) 
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Resource C Site Two: 

Figure 45 shows that the time between transitions from State 0 to 1, ZW(t), is 

well modelled by Weibull or Gamma; both distributions create an equally good 

visual fit and the same negative log-likelihood. The time between transitions from 

State 0 to 2, ZF(t), is well modelled by Weibull or Gamma, although the Gamma is a 

better fit when tested using the negative log-likelihood. The time between transitions 

from State 1 to State 0, ZR(t), is well modelled Lognormal or Weibull distribution, 

but the Weibull is a better fit when tested using the negative log-likelihood. The 

time between transitions from State 2 to State 0, ZG(t), is well modelled by Weibull 

or Lognormal distribution, although the Lognormal is a better fit when tested using 

negative log-likelihood. 

Figure 45: The Time-Varying Functions ZW(t), ZR(t), ZF(t), and ZG(t) for Resource C Site 2. 

 

(a) ZW(t) (b) ZF(t) 

(c) ZR(t) (d) ZG(t) 
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As can be seen from the above results, the function ZW(t) is modelled by a 

Weibull distribution since the transition from State 0 to State 1 in all seven resources 

is best fitted by the Weibull distribution. The function ZF(t) is similarly modelled by 

a Weibull distribution, owing to the fact that the transition from State 0 to State 2 in 

four out of the seven resources achieves best fit through a Weibull distribution, 

whilst for the remaining three the Gamma distribution fit the data slightly better than 

the Weibull distribution, but still provides a good fit. The function ZR(t) is also 

modelled by a Weibull distribution since the transition from State 1 to State 0 in four 

out of the seven resources achieves a best fit from a Weibull distribution, whilst for 

the other three, the Lognormal distribution fit the data slightly better than the 

Weibull distribution. Finally, the function ZG(t) is also modelled by a Weibull 

distribution, although the transition from State 2 to State 0 in three out of the seven 

resources achieves best fit through Weibull distribution. The reason for this is that, 

in the case of the other four resources, the Lognormal distribution was only a 

slightly better fit than the Weibull distribution.  

Table 11 shows the individual resources along with the best distribution fit for 

the four transition functions. 

Table 11: The Best Fit Distribution for the Transition Functions. 

 ZW(t) ZF(t) ZR(t) ZG(t) 

Site One Resource A Weibull Weibull Lognormal Weibull 

 

Resource B Weibull Weibull Lognormal Weibull 

Resource C Weibull Weibull Weibull Lognormal 

Resource D Weibull Gamma Lognormal Weibull 

Site Two Resource A Weibull Weibull Weibull Lognormal 

 

Resource B Weibull Gamma Weibull Lognormal 

Resource C Weibull Gamma Weibull Lognormal 

5.3 Developing the Risk Assessment Model 

In the previous section, the time between events was found to follow a Weibull 

distribution; therefore, the time-varying functions ZW(t), ZR(t), ZF(t), and ZG(t) are 
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based on a Weibull probability density function (pdf), with unique shape α and scale 

λ values for each function. 

ZW(t) =                              
 

ZR(t) =              
                 

 

ZF(t) =              
                 

 

ZG(t) =              
                 

 

Continuous time-varying Markov models are difficult and complex to solve. 

The numerical integration technique is one method for solving the model, whilst an 

alternative method involves approximating the continuous-time process with 

discrete-time equivalents [205]. The latter will be used as numerical integration 

involves some degree of approximation.  

Figure 46 shows the resulting discrete-time Markov model for time step ∆t. 

Since more than one transition may occur during a time step, the model must take 

into account the joint probability of state transition. 

The state transition probabilities for the discrete-time Markov model changes 

over time; therefore, we need to drive an expression for A(n), B(n), C(n), D(n), and 

E(n). The model we drive is based on models developed by Howard [204] and 

Siewiorek and Swarz [205]. 
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Figure 46: Discrete-time Markov Model for Resource Availability. 

The interest is in calculating the probability transition equations, in which qij (m, 

n) is the probability that the system is in state j at time n given that it was in state i at 

time m (m ≤ n). With this notation, in matrix form the Chapman-Kolmogorov 

equation [204] is: 

Q(m, n) = Q(m, k) Q(k, n)    m ≤ k ≤ n 

Letting k = n – 1, 

Q(m, n) = Q(m, n – 1) Q(n – 1, n) 

Defining P(n) = Q(n, n + 1), 

Q(m, n) = Q(m, n – 1)P(n – 1) 

Expanding the equation recursively 

Q(m, n) = Q(m, n – 2) P(n – 2) P(n – 1) 

                           = Q(m, n – 3) P( n – 3) P(n -2) P(n – 1) 

Yielding the final solution 

            

   

    

 

 

1- E(n) 1- [C(n) + D(n)] 

1- [A(n) + B(n)] 

 

  

E(n) 

UP 

 

State 0 A(n) 

 

C(n) 

DOWN 

 

State 2 

AT RISK 

 

State 1 

B(n) 

D(n) 
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In order to convert from continuous-time probability functions to discrete-time 

probability function, a discrete-time probability distribution must be established that 

corresponds to the continuous-time distribution. The corresponding parameters can 

then be calculated for the desired time-step ∆t. Furthermore, a discrete-time 

approximation has to consider the probability of two failures during the same 

interval; the time-varying reliability functions ZW(t), ZR(t), ZF(t), and ZG(t) are based 

on a Weibull probability density function. 

pdf = f(t) = αλ(λt)
α-1        

The corresponding discrete Weibull function, probability mass function, is: 

pmf = f(k) =    
 –          

Given that f(k) is defined as the probability of an event occurring between time ∆t 

and time (k + 1) ∆t for some chosen interval size ∆t, the probability mass function 

can be expressed as: 

f(k) = P[no event by k∆t] – P[no event by (k + 1)∆t] 

f(k) = R(k) – R(k+1) 

R(k) is the reliability function. By substituting the continuous-time equivalents 

yields: 

f(k) = R(k∆t) – R[(k + 1) ∆t] 

f(k) =           –               

By rearranging terms, we can find that:  

q =          

The probability mass functions ZW(n), ZR(n), ZF(n), and ZG(n) provides the 

reliability for a discrete time step n = tn/∆t. The time-varying functions are: 

qW =             
 

ZW(n) = 1 –   
            

 

qR =            
 

ZR(n) = 1 –   
            

 

qF =            
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ZF(n) = 1 –   
            

 

qG =            
 

ZG(n) = 1 –   
            

 

The transition probability functions in Figure 46, which represent the probability of 

transition from one state to another state, are: 

A(n) = [1 – ZF(n)] ZW(n) 

B(n) = [1 – ZW(n)] ZF(n) 

C(n) = [1 – ZF(n)] ZR(n) 

D(n) = [1 – ZR(n)] ZF(n) 

E(n) = ZG(n)                  

The transition probability matrix  

       

                       

                      
           

  

 A(n) is the probability of not transiting to Down and the probability of 

transiting from Up to At Risk,  

 B(n) is the probability of not transiting to At Risk and the probability of 

transiting from Up to Down,  

 C(n) is the probability of not failing and transiting from At Risk to Up,  

 D(n) is the probability of not been recovered and transiting Down,   

 E(n) is the probability of repairing the system and transiting from 

Down to Up. 

Taking into account that Pi,j is the probability of a transition from state i to 

state j, it can then be stated that the probability of transition P0,0 is the probability of 

remaining in State 0, which is 1 – the probability of leaving State 0, hence 1 – [A(n) 

+ B(n)]. The same can then be applied for the probability of transition P1,1 and P2,2. 

P(n) can be used to compute instantaneous or the point risk of failure, which is 

the probability that the system will not be operational at any random time t. 

However, the most important is the duration risk of failure, which is the probability 
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that the system will not be operational for the entire duration (e.g. job execution 

time). Computing duration risk of failure is an iterative process. Accordingly, 

applying the appropriate values for α and λ, starting at T = start time, P(n) is 

computed forward for successive values of n until the desired finish time t = n ∆t is 

reached. 

5.4 Experimental Results and Validation 

 Adopting the technique described in the previous section, the transition matrix 

P(n) is computed for each resource using the data from GOCDB with ∆t = 1 hour. 

Since Grid jobs usually require long execution times, ∆t should be selected 

accordingly. However, very long ∆t lowers the accuracy of the model, since a state 

transition is not promptly recorded. On the other hand, short ∆t has the overhead of 

calculating P(n) multiple times, despite the probability of transition not changing. 

Therefore, ∆t was selected to be 1 hour.  

The observed risk of failure was calculated using the data from the last 6 

months of 2010. There are two reasons for selecting 6 months as the time-span: 

1. The resources failure data used to calculate the model span for three 

years; and 

2. The Weibull shape parameter for resource failures is less than 1, which 

means that, following a failure, the risk of seeing one soon increases; 

therefore, a short time-span does not reflect the true behaviour of the 

resource failures. 

Table 12 shows, for the resources considered, the values of the Weibull shape α and 

scale λ parameters for the reliability functions ZW(t), ZR(t), ZF(t), and ZG(t). The 

MLE was used to estimate the parameters. The risk of failure is calculated as the 

sum of the probability of transitioning from Up to At Risk and the probability of 

transitioning from Up to Down. 

The data from GOCDB is used to validate the predicted risk of failure. The 

observed risk of failure is defined as: 
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The observed risk of failure was calculated using the data from the last 6 

months of 2010. There are two reasons for selecting 6 months as the time-span: 

3. The resources failure data used to calculate the model span for three 

years; and 

4. The Weibull shape parameter for resource failures is less than 1, which 

means that, following a failure, the risk of seeing one soon increases; 

therefore, a short time-span does not reflect the true behaviour of the 

resource failures. 

Table 12: The Shape α and Scale λ Parameters for the Functions ZW(t), ZR(t), ZF(t), and ZG(t). 

 ZW(t) ZF(t) ZR(t) ZG(t) 

 α λ α λ Α λ Α λ 

Site 

One A 0.6741 1124.29 0.6002 1818 0.665 15.784 0.899 40.08 

 

B 0.8616 376.63 0.6409 1385.26 0.7385 10.454 0.5779 47.05 

C 0.7154 691.27 0.6384 1113.28 0.8022 17.387 0.8708 32.37 

D 0.8326 1138.13 0.6236 974.053 0.7565 12.936 0.8610 37.80 

Site 

Two A 0.5930 4160.27 0.8959 866.254 0.8715 11.014 0.7814 6.676 

 

B 1.0563 398.589 0.6806 613.096 0.7679 7.8319 0.6767 9.946 

C 0.8937 321.602 0.6930 657.811 0.9098 10.984 0.7593 7.392 

 

Figures 47, 48, 49, & 50 show the predicted one-day duration risk of failure 

over a number of days, as well as the observed risk of failure for resources A, B, C 

and D from Site 1 correspondingly. Visual inspection indicates that the observed and 

predicted risks of failure are comparable. Figures 51, 52 & 53 show the predicted 

one-day duration risk of failure over a number of days, as well as the observed risk 

of failure for resources A, B and C from Site 2 correspondingly. Visual inspection 

indicates that the observed and predicted risks of failure are also comparable. 
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Figure 47: Predicted & Observed Risk of Failure for Resource A Site 1. 

Figure 48: Predicted & Observed Risk of Failure for Resource B Site 1. 

Figure 49: Predicted & Observed Risk of Failure for Resource C Site 1. 
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Figure 50: Predicted & Observed Risk of Failure for Resource D Site 1. 

Figure 51: Predicted & Observed Risk of Failure for Resource A Site 2. 

Figure 52: Predicted & Observed Risk of Failure for Resource B Site 2. 
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Figure 53: Predicted & Observed Risk of Failure for Resource C Site 2. 

In order to validate that the predicted risk of failure is a true projection of the 

resource risk of failure (observed risk of failure), the two-sample t test—also known 

as Independent-Samples T Test—is used to compare the means of the two groups 

(observed and predicted risk of failure). The t test is used to compare exactly two 

groups, but differs to the Analysis of Variance (ANOVA) test, which compares three 

or more groups at one time [206]. 

The interest is to show that there is no difference between the predicted risk of 

failure and the observed risk of failure; however, it is impossible statistically to 

demonstrate that a statement is true. In actual fact, statistical techniques are much 

better at indicating that a statement is not true. Let the null hypothesis be there is no 

difference between the predicted and observed risk of failure. The alternative 

hypothesis is that there is a difference between the two.  

The t test shows that the difference between the predicted and observed risk of 

failure is considered to be not statistically significant with P= 0.1636, P= 0.3491, P= 

0.0935, and P= 0.0564, for site one resources, and P= 0.0556, P= 0.3827 and P= 

0.0909 for site two resources (see Appendix B for the t test tables). Therefore, the 

null hypothesis is not rejected and, by default, the alternative hypothesis that there is 

a difference between the predicted and observed risk of failure is not supported. 

Thus, the conclusion is that there is no difference between the predicted and 

observed risk of failure. 

From the above figures and the results of the t test, the conclusion is that the 

risk assessment model predicts accurately the resources risk of failure. Therefore, 
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the Grid resource provider can integrate the risk assessment model in order to 

compute the risk of resources failure. 

5.5 Ranking Grid Resources and Planning Future Investments 

The Grid resources ROF is unavoidable and, as such, ranking the resources 

with respect to their ROF is one of the most important outcomes of the risk 

assessment process. Ranking is simply arranging the resources based on their 

increasing or decreasing ROF. For Grid resources, the ranking is based on increasing 

ROF since resources with low ROF are better than resources with higher ROF. With 

this in mind, Figure 54 shows the predicted ROF of the seven resources over a 

duration of months. The ROF was computed, assuming all resources became 

available at exactly the same time t = 0. The X Axis represents the number of days, 

starting from Day 0, and the Y Axis represents the ROF. Moreover, Figure 55 

illustrates the resources ROF from two randomly selected days—Day 30 and Day 

90. On Day 30, Resource C, Site 2 has the lowest ROF, and therefore ranked first. 

On Day 90, Resource A, Site 2 has the lowest ROF, and thus ranked first. An 

important observation from Figures 54 & 55 is that Site 1 resources‘ ROF is almost 

always higher than Site 2 resources‘ ROF. The primary cause for this may be the 

time to repair a failed resource at each site. In the case of Site 1, for example, the 

time to repair resources A, B C and D, on average, takes approximately 32 hours, 27 

hours, 28 hours and 31 hours respectively. In the case of Site 2, the time to repair 

resources A, B and C, on average, takes approximately 7 hours, 15 hours and 9 

hours respectively (see  4.3.4 Repair Time Analysis).  

Table 13 shows the complete list of ranked resources. 

 

Table 13: The Complete List of Resources Ranked Based on Resource ROF, for Day 30 and 

Day 90.  

Rank Day 30 Day 90 

1 Resource C, Site Two Resource A, Site Two 

2 Resource A, Site Two Resource C, Site Two 

3 Resource B, Site Two Resource B, Site Two 
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4 Resource B, Site One Resource B, Site One 

5 Resource C, Site One Resource C, Site One 

6 Resource A, Site One Resource A, Site One 

7 Resource D, Site One Resource D, Site One 

 

 Figure 54: Resources Predicted ROF Over Days. 

Figure 55: Resources Predicted ROF on Day 30 & Day 90. 

In addition to ranking resources, the ROF model can be used to measure the 

significance of the effect of changes in the Grid resources and environment. The 

changes could be new or updated hardware, software, or even experience system 

administrators in order to lower resources‘ repair time. There are various techniques 
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for measuring this significance, the most commonly used of which is the ‗one-at-a-

time‘ method [9]. In this case, the assumptions and parameters are changed 

individually so as to measure the change in output. 

The one-at-a-time methods, along with the ROF model, are very powerful 

tools for Grid providers to understand the limitations of current infrastructures and 

plan future investments. These tools are explained in the following example. 

Assume a Grid resources provider would like to invest some money to 

improve the resources ROF. If the investment is on hardware, the provider then 

expects the time between hardware failures to increase by 50%. Similarly, the time 

between software failures is expected to increase by 50% if the investment is on 

software; if it was on experienced system administrators, the resources repair time 

would then decrease by 50%. The question is, which investment is the best? In other 

words, which results in lowering the resources ROF to the greatest extent. (The 

hardware and software failures were selected as they are the largest contributors to 

failures. See  4.3.3 Root Cause Breakdown.) 

The procedure to answer this question for each resource is as follows:  

1. Compute the ROF for the resource using the technique introduced in 

Section  5.3. 

2. Decrease the time to repair the resource by 50%, and then compute the 

ROF after the change. 

3. Return the time to repair to its original value and increase the time 

between hardware failures by 50%, and compute the ROF. 

4. Return time between hardware failures to its original value, and 

increase the time between software failures by 50%, and then compute 

the ROF. 

Figures 56, 57, 58, 59, 60, 61 & 62 show the original ROF, the ROF if the 

repair time is decreased by 50%, the ROF if the time between hardware failures is 

increased by 50% and the ROF if the time between hardware failures is increased by 

50% over a number of days for Site 1, resource A, B, C, D, and Site 2, resource A, B 

and C correspondingly. The X Axis represents the number of days, starting from 

Day 0, whilst the Y Axis represents the ROF. Day 0 is the time when the resource 

became available—either after a scheduled maintenance or unscheduled failure. 
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 Figure 56: Investments effect on Resource A Site 1.  

 Figure 57: Investments effect on Resource B Site 1. 

 Figure 58: Investments effect on Resource C Site 1. 
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 Figure 59: Investments effect on Resource D Site 1.   

 Figure 60: Investments effect on Resource A Site 2. 

 Figure 61: Investments effect on Resource B Site 2. 
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Figure 62: Investments effect on Resource C Site 2. 

From the above figures, it can be observed that the investment in lowering the 

repair time is the most rewarding; this is because the repair time—in the case of all 

resources—is very high, even after the 50% decrease. Investment in hardware or 

software, at this stage, is not much rewarding as the benefit on lowering the ROF is 

limited. 

5.6 Summary 

In this chapter, a mathematical model for the prediction of the risk of failure, 

with the use of a discrete-time analytical model driven by distribution functions 

fitted to observed data, is presented. 

The chapter begins by introducing availability models as a means for 

calculating the probability of failures or ROF. Two techniques for availability are 

discussed, namely Combinatorial Models and Markov Models. Grid resource 

availability is modelled by a three-state continuous time-varying Markov model. 

The state transition functions are driven from the distributions fitted to failure data. 

The transition functions were found to follow a Weibull distribution. The chapter 

then describes the method for solving the Markov model, which is to approximate 

the continuous-time process with discrete-time equivalents. The discrete time-

varying Markov model is validated by comparing the predicted ROF with the 

observed ROF. Notably, both graphical and statistical evaluations are presented. The 

validation indicates that the difference between the observed ROF and the predicted 

ROF is not statistically significant. Finally, the chapter presents the use of the risk 
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assessment model to rank Grid resources and to measure the significance of the 

effect of changes in the Grid resources and environment.  
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6 Chapter 6 

Using Resource ROF to Improve Scheduling 

 

Grid environments provide computing platforms for solving large-scale 

computational and data-intensive problems in science, engineering, and commerce. 

They can be very cost-effective and easily scalable yet, owing to resource 

heterogeneity and to the lack of accurate resource information, scheduling jobs in 

such systems can be challenging. In this chapter, the problem of scheduling Bag of 

Tasks (BoT) application on Grid resources is modelled using Mixed Integer 

programming. An efficient algorithm for solving the scheduling problem is 

presented. The algorithm is evaluated with the use of a simulation, allowing a wide 

range of possible scenarios to be considered.  

This chapter is organised as follows: Section 6.1 presents an overview of the 

scheduling problem and presents the Grid application model, as well as limitations 

of current scheduling algorithms. Section 6.2 provides the use of resources ROF to 

overcome the current algorithms limitations, and suggests a model to minimise the 

cost of executing a BoT job whilst guaranteeing the user‘s requirements. Section 6.3 

presents the formal mathematical model and methods to compute the model optimal 

solution. A new scheduling algorithm, along with the algorithm pseudocode, is 

described in Section 6.4. Section 6.5 presents the evaluation of the algorithm 

through simulation. The simulation experiments‘ design, the resource model, the 

workload model, the experimental results, and sensitivity to the user constraints are 

presented and discussed in this section. Finally, Section 6.6 ends the chapter with a 

summary. 

6.1 Overview 

 In the motivation scenario  4.1—as indeed in the real world—Grid users submit 

their application to resource providers through the use of SLAs. The SLA has the 

user application information, as well as the user requirements and constraints. 
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Notably, requirements can include the type of hardware, the type of operating 

system, or even a business objective, such as minimising the costs associated with 

executing the application. Moreover, a constraint could be the deadline by which the 

application results should be delivered. Once the resource provider receive an SLA, 

it is translated into an allocation problem whereby the application is allocated to 

resources for executing, ensuring that, during the execution time, the user 

requirements and constraints are being fulfilled.  

The focus in this chapter is not directed on SLAs and their uses, but rather on 

the resource provider being able to schedule users‘ applications and accordingly 

guarantee their requirements and constraints. Therefore, in the remainder of this 

chapter, the assumption is that the resource provider‘s unit responsible for resource 

allocation—known as the scheduler—receives the user application, requirements 

and constraints in the required format for resources allocation. 

6.1.1 Application Model and Scheduling 

 The type of applications which are executed on Grid systems can vary from 

long running computationally intensive simulations to high demand and high 

priority time critical transaction based executions, to real-time interactive 

visualisations (see  2.2 Grid Applications ). Notably, the majority of these 

applications are sequential applications, often submitted in the form of Bags of 

Tasks (BoT). According to Iosup et al. [87] BoT jobs account for up to 96% of the 

CPU time consumed in Grid environments. BoT jobs are composed of sequential, 

independent tasks where there is no communication or dependencies amongst tasks. 

Examples of BoT jobs include Monte Carlo simulations, massive searches (such as 

key-breaking), image manipulation applications, data mining algorithms, and 

parameter-sweep applications [207]. Therefore, the type of applications which this 

thesis is targeting is BoT jobs. 

Executing BoT jobs involves processing N independent tasks on M distributed 

resources where N is, typically, much larger than M. For each task n Є N its 

computation time is known. Scheduling the tasks to resources appears simple, but 

complexities arise when users place their desired constraints. The job owners submit 

their BoT jobs and requirements in real time (in the reset of the chapter the job 

owners are referred to as users); therefore, the scheduler must find the tasks 

assignment efficiently and effectively for each user. The scheduling is carried out in 
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real-time, and the users‘ BoT are assigned as first in, first out (FIFO). If an 

assignment is found which has satisfied the user requirements, the user BoT job is 

then accepted; otherwise, the job is rejected.  

Scheduling BoT jobs in Grid environments whilst guaranteeing the user 

constraints is an NP-hard problem [119]. A number of algorithms have been 

suggested for solving this problem (for more information about the algorithms see 

 2.6.2.3 Scheduling Algorithms). The available algorithms have a number of 

limitations, such as: 

1. the algorithms only consider the deadline and cost constraints; 

2. the algorithms assume the resource price is a function of performance. 

A more expensive resource is always faster, in term of processing 

speed, than a less expensive one. In the real world this assumption is 

invalid, because resources failures do occur; 

3. the BoT jobs are assumed to be of the same level; accordingly, there is 

no distinction between critical and non-critical BoT jobs. What is 

meant by critical BoT jobs are the jobs that must be completed before a 

strict deadline; after this deadline, the results might be insignificant. 

Examples of critical BoT jobs include a researcher who needs the 

results of his/her BoT job before the submission deadline of a research 

conference or an organisation employee who needs the results of the 

BoT job before an important meeting. Presumably, users with critical 

BoT jobs are willing to pay more to ensure the jobs finish on time. 

Results of non-critical BoT jobs do not lose their significance after the 

deadline; therefore, the owners of such jobs would like to execute the 

jobs as inexpensively as possible rather than paying extra to ensure the 

deadlines are met; and finally, 

4. the algorithms do not take into account the resource ROF. As a result, 

do not distinguish between resources with high ROF and low ROF. 

6.2 Improving the Scheduling Algorithms 

In Chapter 5, a mathematical model for estimating resources ROF was 

presented. The resource ROF is an important characteristic of the resource, and 
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should be considered when scheduling. Including the ROF in scheduling will 

address most of the limitations associated with the current BoT scheduling 

algorithms. The following points are the impacts of considering resources ROF on 

the limitations of current algorithms:  

 current algorithms assume that resources are only identified by 

processing abilities and cost; the resources exhibit high availability 

and there are no resource failures. These are unrealistic assumptions as 

computer resources are prone to failures, with some failing more than 

others. Therefore, including resources ROF as part of the scheduling 

algorithms reflects the real world;   

 current algorithms assume that the resource price per time unit is a 

function of processing ability. In the real world, however, ability is not 

the seldom function for pricing; this can be seen easily in the 

commercial world. For example, consider the ability to travel by air 

between two cities. If the price is a function of ability, then all flights 

should cost the same; unfortunately, however, they do not. Therefore, 

other factors for pricing Grid resources should be considered—one of 

which is the resource ROF. If two resources have the same processing 

ability but different ROF then, in theory, the resource with lower ROF 

is more expensive; 

 current algorithms assume that there are no distinctions between the 

BoT jobs. Including the resources ROF enable the user to request the 

desired resources based on the job requirements. For example for a 

critical job the user request only resources with low ROF to ensure that 

the job requirements are fulfilled—even if these resources are more 

expensive. For non-critical jobs the user, might, request cheaper 

resources with higher ROF to minimize the cost of executing the jobs.  

In this chapter, we present a new model for scheduling BoT jobs. The model 

objective is to minimise the cost of executing a BoT job. Two user constraints are 

considered to be the job deadline, and the resources ROF, i.e. which the user desires 

to use. The model considers the task‘s execution time on different resources, the 

resources prices, and the resources ROF. Moreover, the model takes into account 

that the resources are limited and some BoT jobs may be rejected. 
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To the best of our knowledge, none of the current scheduling algorithms 

address the issue of resources ROF. However we adopt some ideas from Buyya et 

al. [117] and Kumar et al. [119] algorithms to design the proposed algorithm. 

6.3 Model Description 

Scheduling BoT jobs to minimize the cost of execution while guaranteeing the 

user‘s requirements represent an optimization problem. Optimization refers to 

choosing the best elements from some set of available alternatives. Mathematical 

programming has long been recognized as a vital modelling approach to solve 

optimization problems [208]. Other approaches for solving optimization problems 

focus on finding an acceptable, rather than an optimal, solution. This is because for 

complex optimization problems finding the optimal solution is time-consuming. 

Examples for these methods include Genetic Algorithms, Memetic Algorithms and 

Ant Colony Optimization [209]. 

In this section, the formal mathematical model for minimising the cost of 

executing BoT jobs whilst ensuring that the users‘ constraints are satisfied is 

presented. Mixed Integer Programming (MIP) problems, which are a class of liner 

programming problems, is used for the modelling. 

A linear programming problem (LP) is a mathematical method for determining 

a way of finding a set of values for continues variables (x1, x2, …, xn) which 

maximise or minimise a linear objection function z, whilst satisfying a set of 

constraints. An integer programming problem is a linear programming problem 

whereby at least one of the variables is restricted to an integer value. If all the 

variables are restricted to integer values, the model is then known as pure integer 

programming problem, otherwise it is called mixed integer programming problem 

[210]. 

The MIP is a good way of modelling BoT jobs scheduling. The problem is to 

minimise the costs of executing the BoT job; this can be expressed as the objective 

function in the MIP. The user constraints, along with the resources available, can be 

expressed as the constraints functions in the MIP. The scheduling of BoT jobs in the 

Grid environments is an MIP rather than an LP as a single task within a BoT job is 

not permitted to be divided into smaller tasks and subsequently allocated to different 
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resources without any overhead; therefore, a task is only allocated to a single 

resource for the execution. 

The first stage is to define the parameters of the problem and the variables 

used in the model. We therefore assume we have a BoT job, which has e tasks, and a 

resource provider with n resources. The BoT job and the resources parameter are as 

follows: 

tjk total execution time for the kth task if assigned to the jth resource; 

cj the price per time unit for the jth resource; 

Aj the time where the jth resource is available; 

Uj the time where the jth resource is unavailable; 

Rj ROF of the jth resource; 

O arrival time of the BoT job; 

D user deadline constraint which is a time and date in the future; and 

JR user ROF constraint which is the desired ROF level. 

The processing time of a task on a resource (i.e. tjk) is assumed to be known. 

This assumption is a widespread assumption when developing scheduling 

algorithms in the Grid environments, and this approach is already used by [116, 117, 

119, 122, 211]. The reason behind this assumption is the existence of techniques to 

estimate the task execution time on a given resource. (For more information see 

 2.6.2.2 Predicting Execution Time).  

The resource provider is responsible for setting the price per time unit for the 

resources. Setting the price of resources is complicated, and some models have been 

suggested, such as auction or community based models. (The pricing of resources is 

outside the scope of this thesis and for more information on the subject the reader is 

referred to [92, 212, 213]). It is noteworthy to highlight that there is no need for the 

pricing model to be visible to the Grid user [214]. 

In this chapter, the resources prices are assumed to be a function of 

performance and ROF, where the higher the resource performance (in terms of 

processing ability), the higher the resource price per time unit; on the other hand, the 

higher the resource ROF, the lower the resource price per time unit. 
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Resources available (unavailable) times are known to the scheduler through 

the use of advance reservation. The resources ROF are computed with the use of the 

technique proposed in the previous chapter. The BoT job arrival time is the time at 

which the job is submitted to the scheduler. The deadline and ROF constraints are 

the user requirements specified in the SLA. 

The variables used in the model are as follows: 

xjk = 1 if the kth task is assigned to the jth resource, otherwise 0                     j, k 

sk start time of the kth task                                                                               k 

yjkl = 1 if the lth assignment on the jth resource is the kth task, otherwise 0     j, k 

fjl the start time of the lth assignment on the jth resource                                j, l 

As stated earlier, the allocation of tasks, within a BoT job, to the suitable 

resources at the appropriate time should be achieved so that the cost of executing the 

BoT job is minimised and the user requirements are satisfied. This minimisation 

problem is modelled by the following MIP: 

                    

                                                                  

 

 

                      

                                                        

 

 

                                                                

 

 

                                                                          

 

 

                                                                                 

                  

 

                           

 

 

                                                                

 

 



Chapter 6                                    123    Using Resources ROF to Improve Scheduling 

 

                                                                       

 

 

                 

 

                                           

 

 

 Equation (1) represents the objective function that will be minimized, 

which is the cost of executing the BoT job. The cost is computed as 

the sum of the cost of executing the tasks within the BoT job. The 

expression (tjk × cj × xjk) represents the cost of executing the task only 

if the kth task is assigned to the jth resource, hence xjk = 1. Otherwise, 

the expression = 0 since xjk = 0; 

 Equation (2) is the deadline constraint, which all the tasks must finish 

executing on or before it passes. This constraint ensures that all the 

tasks assigned to an individual resource J finish executing on or before 

the deadline. This is computed by adding the BoT arrival time and the 

tasks execution time; 

 Equation 3 is the ROF constraint in which the tasks are only assigned 

to resources with ROF which is less than or equal to the user desired 

ROF. This constraint ensures that, if a resource is used to execute a 

task, the resource ROF then does not violate the user ROF 

requirement; 

 Equation 4 ensures that a task is only assigned to one resource, and 

that all tasks are assigned to resources; this is achieved by ensuring 

that, for any task, the variable ‗xjk = 1‘ is obtained for one resource 

only; 

 Equation 5 ensures that the execution of a task on a resource starts 

only after the resource is available. This is achieved by ensuring that, 

if a task is assigned to a resource, the time the task starts executing is 

then after the resource becomes available; 

 Equation 6, on the other hand, ensures that the execution of a task is 

completed before the resource becomes unavailable; 

 Equation (7) ensures that the execution of a BoT job only starts after 

the arrival of the job; 
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 Equation 8 ensures that there is, at most, one task assigned to a 

resource at any given time; and 

 Equation 9 ensures that a task is assigned to a resource as soon as 

possible. 

6.3.1  Optimal Solution 

 Solving a LP problem (or MIP) to optimality is complicated. Various different 

methods have been proposed in the past for solving such problems; these methods 

include—but are not limited to—the simplex method with its variations, the primal 

simplex method, the dual simplex method, the interior point method, and the branch 

and cut method [210, 215, 216]. Importantly, LP is a powerful modelling technique 

which is used to describe a large number of problems in a number of different fields. 

For example, LP are used in modelling most of the problems in the operations 

research community; network and multi-commodity flow problems; the 

microeconomics and company management, such as planning, production, 

transportation and likewise; commercial organisations, especially in the current 

economic climate, which are seeking to maximise profits and minimise costs with 

limited resources. Owing to the widespread uses of LP, the solving methods 

aforementioned have been implemented as off-the-shelf software tools, commonly 

known as solvers. Solvers functionalities differ between different solvers; some only 

implement a single method and are limited to solving LP problems, whereas others 

are capable of solving LP and MIP problems. Examples of solvers capable of 

solving LP and MIP problems include IBM ILOG CPLEX Optimiser [217], Gurobi 

optimizer [218] and GNU Linear Programming Kit (GLPK) [219]. Another off-the-

shelf software tool for LP is the Modelling Language for Mathematical 

Programming (AMPL) [220]. AMPL is a comprehensive and powerful algebraic 

modelling language which attains a very high level of readability, since a model 

written in AMPL resembles the algebraic notation used to formulate LP or MIP 

problems. Moreover, AMPL is not a solver in itself but rather communicates with 

different solvers (such as CPLEX or Gurobi) in order to establish a solution for the 

model. 

In order to determine the optimal solution for minimising the costs of 

executing BoT jobs whilst ensuring that user constraints are satisfied, the MIP is 

solved using a MIP solver. However, because the scheduling problem is strongly 
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NP-hard, the solver will not determine the optimal solution in a reasonable amount 

of time—especially when the size of the BoT job is large or the number of resources 

available is high. Therefore, an efficient scheduling algorithm for the cost 

minimisation problem is proposed, known as Deadline and Risk of Failure 

Constraints algorithm (DRFC). 

6.4 The DRFC Algorithm  

 In the DRFC algorithm, the interest is directed to striking a balance between 

the objective function and the constraints in order to reduce the BoT execution costs. 

Therefore, tasks should be allocated to the cheapest suitable resources whenever 

possible. The cost per time unit does not reflect the true cost of processing, 

especially when resources have different processing abilities; therefore, the DRFC 

algorithm will start by calculating the true processing cost for each resource. This is 

defined as the resource processing ability, and is measured in million instructions 

per second (MIPS) and divided by the resource price/time unit. 

                      
                                  

                            
 

The DRFC algorithm sorts the resources in decreasing order, based on the true 

cost of processing. It is clear that tasks cannot be assigned to resources with ROF 

higher than the user desired ROF level; therefore, such resources are removed from 

the sorted list.  

The next step in the DRFC algorithm is to arrange the tasks, within a single 

BoT job, in decreasing order, based on executing time, to be assigned to resources. 

Starting from the first task in the sorted tasks list, the task needs to be assigned to the 

first resource in the resources list, if feasible, based on the values of tjk, Aj, Uj and D. 

Subsequently, the task is then removed from the tasks list and the resource variables 

are updated accordingly. If the task cannot be assigned to the resource, it can be kept 

within the list, at which point the next task can be considered and the assignment 

repeated. Once the DRFC goes through the entire tasks list, if there are tasks in the 

tasks list, then go to the next resource in the resources list, start from the beginning, 

and repeat the process. This is repeated until the tasks list is empty and a schedule is 

found or the resources list is empty, before the tasks list, and the BoT job is rejected.  
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Figure 63 shows the pseudocode for the DRFC algorithm. 

// The number of tasks in the BoT job is e 

// The number of resources in the resource provider domain is n 

// The MIP parameters are used in the pseudocode 

Step 1: // Compute the true processing cost (TPC) for each resource 

 for ( Resource1  to  Resourcen) 

               
                                   

                             
 

Step 2:  // Sort the resources in decreasing order based on TPC 

                                                

Step 3:  Remove all Resources with ROF > JR 

Step 4: // Sort the tasks in decreasing order based on execution time 

                        

Step 5: // Assign the tasks to resources 

Start from the first Resource in the Resources list (j = 1) 

Start from the first Task in the Tasks list (k = 1) 

Total cost = 0 

While (the Resources list is in not empty) 

     { 

     While (the Tasks list is not empty) 

          { 

          if (tjk + Aj <= D) then  

               { 

               Assign the task to the resource 

               Remove the task from the Tasks list 

               Update Aj & Uj 

               Total cost += tjk * cj 

               Move to the next task 

               } 

          else 

          Move to the next task in the Tasks list 

          } 

     if ( the Tasks list is empty) then 

          Break 

     else 

     Move to the next Resource in the Resource list 

     } 
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if (the Resource list is empty) then 

     The BoT job cannot be assigned and therefore rejected 

else 

     { 

     The assignment for the BoT job is found 

     The cost of executing the BoT job is Total cost 

     } 

Figure 63: The DRFC Algorithm. 

The approach applied to assign tasks to resources—known as the greedy 

approach—has a number of advantages over other approaches. For example, the 

algorithms in [117, 211]  assign the tasks to resources in the order in which they 

appear in the BoT job. This approach is not efficient for two reasons: firstly, it is 

inconsistent and a BoT job—scheduled on the same resources—will have different 

assignments if the order of tasks in the BoT job is changed; and secondly, it does not 

fully utilise the resources, and a BoT job might be rejected, although an assignment 

is feasible. In order to illustrate these limitations, a simple example is given. 

Assume there are two resources with the same processing ability, and a BoT 

job is submitted for processing with 100 time units as a deadline. Both resources are 

suitable for executing the tasks; Resource A is available from the time the BoT job 

is submitted, whilst Resource B is available after 50 time units. Resource A is 

cheaper than Resource B; thus, tasks will be assigned to Resource A first. Let‘s 

assume that the time the BoT job was submitted is 0. The BoT job has three tasks, 

which are to be carried out in the following order: 

1. Task 1 execution time is 30 time unit. 

2. Task 2 execution time is 40 time unit. 

3. Task 3 execution time is 70 time unit. 

Assigning the tasks to resources in the order in which they appear will result in 

the rejection of the BoT job. Figure 64 shows that, after Task 1 and 2 are assigned, 

Resource A‘s available time is 30 time units and Resource B‘s available time is 50 

time units. Both resources are not able to execute Task 3, which requires 70 time 

units. 

The above assignment approach rejects the BoT job, despite there being two 

possible schedules. Accordingly, Task 1 and 3 should be assigned to Resource A, 
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and Task 2 to Resource B (Figure 65); otherwise, Task 2 and 3 should be assigned to 

Resource A and Task 1 to Resource B (Figure 66). The latter is better as the cheaper 

resource is used for a longer period. Essentially, using the greedy approach will 

result in the latter assignment, and will always be consistent regardless of the tasks 

order.  
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Figure 64: Assignment of Task 1 & 2 to Resource A. 

Figure 65: Assignment of Task 1 & 3 to Resource A and Task 2 to Resource B. 

Figure 66: Assignment of Task 2 & 3 to Resource A and Task 1 to Resource B. 
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6.5 Simulation-Based Performance Analysis 

A variety of methods exist for carrying out performance evaluation of resource 

scheduling algorithms. Some evaluation methods include: analytical, simulation, 

emulation and empirical. Yet the DRFC algorithm is evaluated using simulation. 

This is because simulation has a number of advantages  

 the ability to conduct experiments in controlled environments;  

 the potential to obtain insight concerning the interaction of the 

experiment variables;  

 the potential to obtain insight regarding the effect of changing a single 

variable whilst others are fixed; and  

 no limits to experimental scenarios, which makes it possible to 

reproduce the results [221]. 

The purpose of the simulation is to test the allocation of tasks in a BoT job 

with the use of the DRFC algorithm, and to accordingly compare it with the optimal 

allocation obtained by solving the MIP problem using the Gurobi optimiser 4.0 

[218]. The simulation environment and variables should be identical to the MIP 

solver environment; thus, the differences in experiments results are not owing to the 

environment. 

There are a number of tools for simulating Grid computing environments such 

as GridSim [118], SimGrid [222] and Optorsim [223]. However, these tools do not 

have a method to represent the resource ROF and they do not interact with MIP 

solvers. Therefore, the discrete event simulation tool used in the experiments has 

been developed form scratch. Both the DRFC algorithm simulator and the solver for 

the MIP are written in C++ VisualStudio 2008. The event scheduling approach is 

used in the simulation were the events, arrival of BoT job, might change the status 

of resources if an allocation is found. In the remainder of this section the 

experiments design is presented along with resource modelling and workload 

modelling. This is followed by the experiments results and the sensitivity analysis of 

the deadline and the ROF constraints. 
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6.5.1 Experiments Design 

In order to test the DRFC algorithm in different settings, different resource 

providers and different workloads, three resource providers are considered:  

1. Resource provider 1 with 10 resources. 

2. Resource provider 2 with 50 resources. 

3. Resource provider 3 with 100 resources. 

For each resource provider three scenarios are considered. 

1. The BoT jobs submitted have less than 50 tasks. 

2. The BoT jobs submitted have less than 100 tasks. 

3. The BoT jobs submitted have less than 200 tasks. 

The number of resources in the resource provider was selected from 10 to 100 

so as to enable the Gurobi optimiser to determine a solution for the MIP problem, 

considering hundreds or thousands of resources make finding a solution for the MIP 

problem unfeasible. The average BoT size—submitted to the Grid systems in the 

real world—is between 5 and 50 tasks [224], hence the selection of 50 and 100 tasks 

for the BoT size. The 200 tasks size was selected to investigate the performance of 

the DRFC algorithm when the BoT Job is large.  

In the rest of this chapter, Resource Provider 1 is referred to as a small 

provider, Provider 2 as a medium provider, and Provider 3 as large provider. 

Furthermore, the BoT Job 1 is referred to as small size job; BoT Job 2 as a medium 

job, and BoT Job 3 as a large job. This naming is only used in order to simplify the 

writing and to facilitate reader understanding in relation to the resource providers 

and BoT jobs. 

In order to carry out the simulation, the resource providers and the workloads 

need to be modelled. The following two subsections represent the modelling of 

resource providers and BoT jobs workload. 

6.5.1.1 Resource Provider Modelling 

 Resources within a resource provider domain are not identical; they have 

different characteristics, configurations and capabilities. For these experiments the 
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resources are modelled using three metrics: the processing ability measured in 

million instructions per second (MIPS), price per time unit, and ROF.  

In this simulation the processing ability of resources is assumed to be between 

4000 MIPS and 8000 MIPS in steps of 1000. The price of a resource per time unit is 

assumed to be from 0.6 to 1.8 units. The ROF of a resource is < 0.05, ≤ 0.1 or > 0.1. 

Table 14 shows the exact parameters used for resources in the experiments. 

Table 14: Resources Used for the Simulation. 

MIPS ROF Price ROF Price ROF Price 

4000 < 0.05 1 ≤ 0.1 0.8 > 0.1 0.6 

5000 < 0.05 1.2 ≤ 0.1 1 > 0.1 0.8 

6000 < 0.05 1.4 ≤ 0.1 1.2 > 0.1 1 

7000 < 0.05 1.6 ≤ 0.1 1.4 > 0.1 1.2 

8000 < 0.05 1.8 ≤ 0.1 1.6 > 0.1 1.4 

 The resource price per time unit was randomly assigned, yet two conditions 

were considered.  

1. If two resources have the same ROF, then the resource with the lower 

processing ability is always cheaper; and  

2. Two resources with different processing abilities might have the same 

price if they have a different ROF. 

In the real world, the resource ROF changes with time; however, in this 

simulation, it is assumed to remain constant in order to make the resources identical 

throughout the simulation. Another note regarding the ROF is that it is not limited to 

the three values assumed, but it is the responsibility of the resource provider to 

explicitly specify the type of resources available, the ROF of those resources, and 

the price per time unit.  

The processing ability is assumed to be in the range 4000 to 8000 MIPS. The 

grounds for this assumption is taken from Buyya et al. [211] who, in 2002, provided 

different MIPS for different resources and the average MIPS was around 400 MIPS. 

In 2010, using Moore‘s Law [225], the average should be around 6400. Therefore, 

6000 MIPS is considered to be the average processing ability in the simulation. 
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Another reason for this assumption is that resources processing ability is used in 

modelling BoT jobs. Thus the change of resources MIPS don‘t change the 

processing time of jobs and simulation results will be similar in both cases. This will 

be clarified in the next subsection. 

6.5.1.2 Workload Modelling 

The BoT workload can be either a real workload (trace) or a workload driven 

from a model. Both have advantages and disadvantages. The advantage of using a 

trace directly is that it is the most ‗real‘ test of the Grid system under study, and the 

workload reflects a real workload precisely, with all its complexities. The drawback 

is that the trace reflects a specific workload, and there is always the question of 

whether or not the results can be generalised to other Grid systems or load 

conditions. Workload models have a number of advantages over traces [226]. 

 It is easy to know which workload parameters are correlated with each 

other because this information is part of the model; 

 It is possible to change model parameters one at a time in order to 

investigate the influence of each one, whilst keeping other parameters 

constant; 

 A model is not affected by policies and constraints which are 

particular to the Grid site where a trace was recorded; and 

 Traces may be polluted by bogus data. 

The BoT workload used for these experiments is based on the realistic 

workload model for BoT jobs introduced in [224]. Seven Grid workload traces from 

the Grid Workloads Archive (GWA) [227] were used to validate the model.  

In these experiments, the interest are on three aspects: the BoT jobs arrival 

rate, the BoT jobs sizes (i.e. the number of tasks in the job), and the task 

characteristics. The BoT jobs arrival rate during peak hours is modelled with a 

Weibull distribution. The Weibull distribution is also used to model the BoT jobs 

sizes. The tasks characteristics are the average task run time and the variance of run 

times of the tasks in a single BoT job. The average run time is modelled with a 

normal distribution, and the variance of run times is modelled by a Weibull 

distribution. Table 15 shows the exact parameter values for the workload model. 
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Table 15: The Parameter Values for the Workload Model. W stand for Weibull and N for 

Normal distribution [224]. 

BoT Arrival BoT Size Task Average Run Time Task Variance 

W(4.25, 789) W(1.79,24.16) N(2.73,6.1) W(2.05, 12.25) 

The Matlab environment [228] was used to generate the workload values based 

on the distributions. For each BoT job in the workload, the arrival time is recorded. 

The average task runs time with the tasks run time variance and size, for each BoT 

job, is used to compute the individual tasks run time. The task length in machine 

instruction (MI) is computed using the formula: 

Task Length = Task Run Time × Resource Processing ability (MIPS) 

Where the resource processing ability is assumed to be the average MIPS for 

the simulation. Recall, in the last subsection, it was indicated that the selection of 

resources processing abilities will not affect the simulation as the workload is based 

on the task run time—regardless of the processing ability. 

6.5.2 Simulation Results  

There are, in total, nine experiments: small, medium and large resource 

providers each has three scenarios to consider in which small, medium or large BoT 

jobs are submitted to be scheduled into resources. Each experiment is evaluated 

using two criteria. The first criterion is the percentage of the number of BoT jobs 

scheduled using the DRFC algorithm and the optimal schedule using Gurobi 

optimizer. Since finding the optimal schedule is a memory-intensive process it is 

common that the resource executing the allocation algorithm run out of memory 

before the BoT jobs are scheduled. The number of BoT jobs scheduled using DRFC 

algorithm is the base for calculating the percentage; less than 100% indicate that the 

Gurobi optimiser run out of memory and stop working before finishing the 

workload, higher than 100% indicate that the Gurobi optimiser scheduled more BoT 

jobs than the DRFC algorithm and 100% indicate that both scheduled the same 

number of jobs. The second evaluation criterion is the average difference between 

the costs of executing a BoT job when scheduled with the DRFC algorithm and the 

optimal costs of executing the BoT job when scheduled using Gurobi optimizer. 
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Only the jobs that have been scheduled using DRFC algorithm and Gurobi optimizer 

are considered in the difference the rest are discarded. 

             
                                     

                                             
      

 

            
                                                

                      
      

Since different workloads scheduled on different resources provide different 

results. Each experiment is repeated 10 times with different workloads and different 

resources and the results shown here are the averages of the 10 experiments. The 

number of BoT jobs in a workload is set to 100 jobs.  

For small workloads the deadline constraint is varied in simulation time 

between 1000 and 5000 in steps of 1000, for medium workload the deadline 

constraint is varied between 2000 and 10000 in steps of 2000 and for the large 

workloads the deadline constraint is varied between 5000 and 25000 in steps of 

5000. The deadline is considered from the BoT job arrival time. The ROF constraint 

is similar to resources ROF (i.e. ROF < 0.05, ROF ≤ 0.1 and ROF > 0.1). 

For all the experiments DRFC is coded in C++ Visual Studio 2008 and Gurobi 

optimizer 4.0 was used with the C++ interface. The machine used on these 

experiments is Intel core 2 quad CPU Q9300 2.5 GHz and 3 GB RAM. (See 

Appendix C for the code validation). 
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6.5.2.1 Summary of Results 

Experiment 1- Small Resource Provider Running Small BoT Jobs: 

Figure 67 shows that finding the optimal schedule is not effective since there is 

a high possibility that the resource executing the optimal allocation algorithm ran 

out of memory. The Gurobi solver, on one instant, assigns slightly more BoT jobs, 

which is when the deadline constraint is 1000 and the ROF constraint is < 0.05. 

However, in the rest of the simulation, the DRFC outperforms the Gurobi solver. 

Figure 68 shows that the average difference in cost between the DRFC and the 

optimal cost is minimal and in most cases less than 0.8%. 

Figure 67: Percentage Difference in Number of Jobs assigned with DRFC & Gurobi Experiment 1.  

Figure 68: Percentage Difference between DRFC Execution Cost and Optimal Cost Experiment 1. 
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Experiment 2- Small Resource Provider Running Medium BoT Jobs: 

Figure 69 shows that the optimal allocation algorithm performs badly, 

particularly when the ROF > 0.01. The reason is that, with ROF > 0.01, all resources 

in the resource provider domain are considered, which increases the size of the 

allocation problem, thus requiring more computational time and memory. Figure 70 

shows that the average difference in cost between the DRFC and the optimal cost is 

minimal, with most cases being less than 1%. 

Figure 69: Percentage Difference in Number of Jobs assigned with DRFC & Gurobi Experiment 2. 

 

Figure 70: Percentage Difference between DRFC Execution Cost and Optimal Cost Experiment 2. 
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Experiment 3- Small Resource Provider Running Large BoT Jobs: 

Figure 71 shows that the optimal allocation algorithm performs badly in a 

similar way to Experiment 2. Figure 72 shows that the average difference in cost 

between the DRFC and the optimal cost is minimal, with most cases being less than 

1.5%. 

 

Figure 71: Percentage Difference in Number of Jobs assigned with DRFC & Gurobi Experiment 3. 

 

Figure 72: Percentage Difference between DRFC Execution Cost and Optimal Cost Experiment 3. 
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Experiment 4- Medium Resource Provider Running Small BoT Jobs: 

Figure 73 shows that the optimal allocation algorithm performs badly, 

especially with short deadline constraint. Figure 74 shows that the average 

difference in cost is minimal, with most cases being less than 0.6%. 

 

Figure 73: Percentage Difference in Number of Jobs assigned with DRFC & Gurobi Experiment 4. 

 

Figure 74: Percentage Difference between DRFC Execution Cost and Optimal Cost Experiment 4. 
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Experiment 5- Medium Resource Provider Running Medium BoT Jobs: 

Figure 75 shows that the optimal allocation algorithm performs badly in all 

instances, regardless of the exact constraints. Figure 76 shows that the average 

difference in cost is minimal, with most cases being less than 1%. 

 

Figure 75: Percentage Difference in Number of Jobs assigned with DRFC & Gurobi Experiment 5. 

 

Figure 76: Percentage Difference between DRFC Execution Cost and Optimal Cost Experiment 5. 
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Experiment 6- Medium Resource Provider Running Large BoT Jobs: 

Figure 77 shows that the optimal allocation algorithm performs extremely 

badly.  The reason for this is that, with large BoT jobs, the allocation problem size 

increases; hence requiring more computational time and memory. Figure 78 shows 

that the average difference in cost is minimal, with most cases being less than 0.8%. 

 

Figure 77: Percentage Difference in Number of Jobs assigned with DRFC & Gurobi Experiment 6. 

 

Figure 78: Percentage Difference between DRFC Execution Cost and Optimal Cost Experiment 6. 
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Experiment 7- Large Resource Provider Running Small BoT Jobs: 

Figure 79 shows that the optimal allocation algorithm performs badly in a 

similar way as experiment 2. Figure 80 shows that the average difference in cost is 

minimal, with most cases being less than 0.4%. 

Figure 79: Percentage Difference in Number of Jobs assigned with DRFC & Gurobi Experiment 7. 

  

Figure 80: Percentage Difference between DRFC Execution Cost and Optimal Cost Experiment 7. 
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Experiment 8- Large Resource Provider Running Medium BoT Jobs: 

Figure 81 shows that the optimal allocation algorithm performs badly in a 

similar way as experiment 2. Figure 82 shows that the average difference in cost is 

minimal, with most cases being less than 0.6%. 

Figure 81: Percentage Difference in Number of Jobs assigned with DRFC & Gurobi Experiment 8. 

 

Figure 82: Percentage Difference between DRFC Execution Cost and Optimal Cost Experiment 8. 
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Experiment 9- Large Resource Provider Running Large BoT Jobs: 

Figure 83 shows that the optimal allocation algorithm performs badly in a 

similar way as experiment 2. Figure 84 shows that the average difference in cost is 

minimal, with most cases being less than 0.6%. 

Figure 83: Percentage Difference in Number of Jobs assigned with DRFC & Gurobi Experiment 9. 

Figure 84: Percentage Difference between DRFC Execution Cost and Optimal Cost Experiment 9. 
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most of the cases less than 1%. Another important feature of the DRFC algorithm is 

that it takes a short amount of time to determine a scheduler for the BoT job—on 

average, totalling approximately 1 millisecond—whilst the optimal solution, most of 

the time, is not found in a reasonable amount of time.  

From the above, it can be stated that the DRFC algorithm performs better than 

the optimal scheduler—especially for large BoT jobs and large resource providers. 

The cost of executing a BoT job scheduled using the DRFC algorithm is near-

optimal. Finally, the time to find a scheduler with DRFC algorithm is minimal; this 

makes the DRFC algorithm a superior choice for the real-time scheduling of BoT 

jobs in Grid environments. 

6.5.2.2 Sensitivity to The Deadline and The ROF 

The effect of the deadline and ROF constraints differ between different 

resource providers and BoT jobs sizes. When the resources available are not capable 

of executing all the BoT jobs submitted, either because the number of resources 

available is small or the size of the BoT jobs is large, the deadline and ROF 

constraints are responsible for the number of BoT jobs accepted for scheduling and 

the number of BoT jobs rejected. When the resources available are capable of 

executing all the BoT jobs submitted, and there aren‘t any rejections, the deadline 

and ROF constraints affect the price of executing the BoT jobs. This is further 

explained below using the results of the DRFC algorithm, since the DRFC algorithm 

only reject a BoT job if no schedule was found unlike the Gurobi optimiser where it 

might stop working before the workload is finish. 

Figures 85, 86 & 87 show the number of jobs accepted for different deadline 

and ROF for a small resource provider running small BoT jobs, medium BoT jobs 

and large BoT jobs respectively. As expected, the number of jobs accepted increase 

when the deadline is increased and the number also increase when the ROF is 

increased, even if the deadline is not change. This is because when the ROF 

increased resources that were available but have higher ROF can be used. 

For the BoT job owner (resources user), increasing the deadline and/or the 

ROF constraints increases the chances that his/her BOT job is accepted by the 

resource provider. This is especially true when the BoT job is large. 
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Figure 85: Number of BoT Jobs Accepted, Small Provider Running Small BoT Jobs. 

Figure 86: Number of BoT Jobs Accepted, Small Provider Running Medium BoT Jobs. 
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Figure 87: Number of BoT Jobs Accepted, Small Provider Running Large BoT Jobs. 

Figure 88: Total Execution Cost, Large Provider Running Small BoT Jobs. 

Figure 89: Total Execution Cost, Large Provider Running Medium BoT Jobs. 
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Figure 90: Total Execution Cost, Large Provider Running Large BoT Jobs. 
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6.6 Summary 
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algorithm is evaluated through simulation. The chapter provided a description of the 

simulation and presented the experiments design. This is followed by the resources 

model and the workload model, along with the exact parameters used. The chapter 

then presented the experiments and results. Notably, there were nine experiments to 

ensure that the DRFC performs as intended for a wide variety of problem instances. 

The experiments were evaluated by two criteria: the number of jobs scheduled 

and the difference in the cost of executing a job when scheduled by DRFC and the 

optimal execution cost. The DRFC algorithm provided a near-optimal solution for 

all the experiments considered. Furthermore, the DRFC performance did not 

degraded with the use of large resource provider and large BoT jobs, which 

therefore makes the DRFC algorithm suitable for real-time scheduling. Finally, the 

effect of the user‘s constraints is analysed: by relaxing the constraints, the chance 

that the BoT job is scheduled increased, which is especially true if the resources 

available are limited or the BoT job submitted is large. Another observation is that, 

by relaxing the constraints, the cost of execution is reduced, which continues until, a 

threshold after that, the relaxation of the constraints does not provide any advantages 

to the user.       
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7 Chapter 7 

Conclusion and Future Work 

 

7.1 Summary of Work 

 The work presented in this thesis demonstrates a mathematical model to 

predict the risk of failure of a Grid resource using a discrete-time analytical model 

driven by reliability functions fitted to observed data. The model is also used to 

improve scheduling applications on the Grid. 

 Chapter 2 introduces Grid computing as the broad area in which this 

research is conducted. Architectural philosophies—including OGSA and 

WSRF—are defined. Grid Middleware systems which enable access to 

heterogeneous resources are discussed. Furthermore, Service Level 

Agreements are presented as languages which formalise QoS 

requirements, and a discussion on a number of specifications actively used 

within the Grid research domain is presented. A discussion of Grid 

resource management identifies a number of limitations in Grid resources 

scheduling. In order to highlight these limitations, a number of scheduling 

algorithms are described. Finally, the prediction of application execution 

times and resources monitoring are also discussed as technologies required 

supporting scheduling in Grid environments.  

 Chapter 3 introduces the definition of risk and its application in the real 

world. Methods for risk assessments—including qualitative and 

quantitative—are defined. A discussion of risks affecting Grid systems 

narrows the research to assessing the Grid resources risk of failures. In 

order to highlight risk assessment in Grid computing, a number of 

assessment methods applied in the field are described. 

 Chapter 4 presents the motivation scenario for the Grid resources risk of 

failure model. The events causing resource failures are determined, and 

the method for measuring the risk of these events is presented. The need 
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for historical failure data is showcased, along with the data collection 

process. The statistical proprieties of the data—including the root cause of 

failures, the mean time to repair and time between failures—are analysed. 

Models to describe the time between failures and repair time are provided. 

Finally, the resource failures are tested against well-known probabilistic 

failure models in order to verify whether they can be used to model the 

Grid resources. 

 Chapter 5 presents the mathematical model to predict the risk of failure of 

a Grid resource. The model selection and the modelling method are 

described. The model is then developed based on the different 

distributions of the failure data. The model is validated by comparing the 

model ROF with the observed ROF. Finally, the use of the model to rank 

resources and plan future investments is presented. 

 Chapter 6 provides an overview of the Grid scheduling problem, and 

presents the Grid application model, as well as limitation of current 

scheduling algorithms. The use of resources ROF to overcome the current 

algorithms limitations and the Mixed Integer Programming model to 

minimise the cost of executing a BoT job whilst guaranteeing the user‘s 

requirements are presented. An algorithm to determine a near-optimal 

solution in an acceptable time frame is described. Moreover, the 

evaluation of the algorithm is carried out via simulation. The design of the 

experiments is showcased, along with the resource model and the 

workload model used in the experiments. The experiments compare the 

algorithm with the optimal scheduler, and were evaluated by two criteria: 

the number of jobs scheduled and difference in the cost of executing a job 

when scheduled by algorithm and the optimal execution cost.  

7.2 Thesis Contribution 

 The aim of the work presented in this thesis is to increase the chances of Grid 

commercial take-up and to help building trust in the Grid. The main contributions of 

this thesis are summarised in the following points: 



Chapter 7                                     152               Conclusion 

 

 The development of a mathematical model to predict the Grid resources 

risk of failure. A continuous time-varying Markov Model described the 

Grid resource availability. In order to solve the Markov model, there is the 

need to approximate the continuous-time process with discrete-time 

equivalents. The resulting discrete time-varying Markov Model is used to 

predict the resources risk of failure. The failure data collected from 

GOCDB are used to conduct the mathematical model and to compute the 

observed—or actual—ROF. The mathematical model is then evaluated by 

comparing the model-predicted ROF with the observed ROF. The two-

sample t test—also known as Independent-Samples T Test—is used to 

compare the means of the two groups (observed and predicted risk of 

failure). The test showed that the difference between the predicted and 

observed risk of failure was statistically not significant. The mathematical 

model was developed after a detailed analysis of Grid resource failures 

using failure data collected from different Grid resources and spanning for 

three years. The analysis focused on the statistical properties of the failure 

data, including the root cause of failures, the mean time between failures, 

and the mean time to repair. The best model for the time between failures 

is the Weibull distribution, with decreasing hazard function rate. Repair 

times are much better modelled by a lognormal distribution than an 

exponential distribution. 

 The development of an efficient algorithm—known as DRFC algorithm—

was carried out in order to find a near-optimal execution cost for the cost 

minimising mathematical model. A greedy approach was considered to 

make the resulting resources allocation consistence and to ensure the 

resources were fully utilised. A simulation is used to evaluate the 

performance of the DRFC algorithm compared to the cost-minimising 

mathematical model optimal solution. There were two evaluation criteria: 

the first criterion is the percentage of the number of BoT jobs scheduled 

using the DRFC algorithm and the optimal schedule using Gurobi 

optimiser; whilst the second criterion is the average difference between the 

costs of executing a BoT job when scheduled with the DRFC algorithm, 

and the optimal costs of executing the BoT job when scheduled using 

Gurobi optimiser. The evaluation shows that finding the optimal allocation 
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of tasks is an intensive process requiring a long period of time and a 

powerful computer to compute with a huge internal memory. Thus, it is 

inefficient to use this method for real-time scheduling. The DRFC 

algorithm provided a good solution for a wide variety of resource 

providers and workloads. The difference in the execution cost between the 

optimal solution and the solution found using DRFC algorithm is minimal 

and, in most cases, was less than 1%. This therefore suggests that the 

DRFC algorithm is a superior choice for real-time scheduling of BoT jobs 

in Grid environments. 

7.3 Future Work 

 There are many ways to further extend the work presented in this thesis. The 

most appealing ones are listed below: 

 The risk assessment model presented in this work only considered the 

resources historical data. An extension to this model is to consider 

dynamic data, such as the current resource load or the availability of 

administrators to enhance the model, since the mean time to repair a 

resource is hugely influenced by the availability of administrators. 

 Another extension to the risk model is to consider the internal components 

of a resource rather than considering a resource as a black-box. This 

extension model has different components failures, such as CPU, memory, 

hard drive, etc., and drives the resource risk of failure through 

campaigning all the components models. 

 The risk assessment model did not consider the type and intensity of the 

workload running on a resource. However, there is evidence of a 

correlation between the type and intensity of the workload and the failure 

rate of the resource [170]. Importantly, extending the model to cater for 

this information will provide a more accurate prediction.  

 The data used to develop the model were from research institutes; 

therefore, the mean time to repair all resources is very high as the sites do 

not have 24-hour support and there is no automatic monitoring which will 

report a resource failure when it occurs. It would be ideal to use data from 
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commercial Grid provider, if available, to further validate the risk 

assessment model. 

 The risk assessment model was developed and evaluated analytically. 

Therefore, it would be beneficial to implement the model on a production 

Grid in order to evaluate the performance. 

 The BoT scheduling algorithm did not take into account the time to stage 

input files and output files, the cost of the staging, or the reliability of the 

network. An extension to the algorithm could provide better cost-

optimisation, such as executing the BoT job in a Grid system close to the 

input files in order to reduce the cost of data transfer. 

 Other scheduling algorithms—such as minimising the BoT execution time 

without exceeding the user budget and ROF—would enable the Grid user 

to specify different constraints based on the job requirements. 

 The scheduling algorithm was evaluated using simulation; accordingly, it 

would be ideal to implement the algorithm on a production Grid so as to 

evaluate the performance of the algorithm in a real environment.  
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8 Appendix A 
 

 

Table 16 shows a sample downtime record from GOCDB. 

 

Table 16: A Sample Downtime Record. 

Classification Severity From To Description 

UNSCHEDULED  OUTAGE 17/02/2011 

04:00 

17/02/2011 

17:00 

Deploying kdump after kernel 

panics 

UNSCHEDULED  OUTAGE 07-FEB-11 

13:00:00 

07-FEB-11 

16:00:00 

disk server crashed 

SCHEDULED AT_RISK 12-JAN-11 

20:00:00 

13-JAN-11 

08:00:00 

NREN network maintenance 

pssoible perturbation 

UNSCHEDULED OUTAGE 07-JAN-11 

00:30:00 

07-JAN-11 

05:00:00 

DNS failure 

UNSCHEDULED AT_RISK 01-JAN-11 

01:00:00 

03-JAN-11 

13:00:00 

CRAC failure 

UNSCHEDULED OUTAGE 15-DEC-10 

19:45:00 

16-DEC-10 

08:40:00 

Router down, top BDII 

unavailable 

SCHEDULED OUTAGE 03-DEC-10 

05:00:00 

03-DEC-10 

07:00:00 

Network maintenance 

UNSCHEDULED OUTAGE 02-OCT-10 

17:53:00 

02-OCT-10 

21:25:00 

CRAC failure 

UNSCHEDULED OUTAGE 17-SEP-10 

13:30:00 

22-SEP-10 

15:45:00 

Security stop 

UNSCHEDULED OUTAGE 26-AUG-10 

22:00:00 

27-AUG-10 

16:05:00 

CRAC failure 

UNSCHEDULED AT_RISK 19-AUG-10 

10:00:00 

19-AUG-10 

10:30:00 

Network maintenance 

UNSCHEDULED AT_RISK 19-JUL-10 

09:14:00 

26-JUL-10 

12:30:00 

Server room UPS batteries not 

charging 

UNSCHEDULED OUTAGE 16-JUL-10 

09:14:00 

20-JUL-10 

09:14:00 

Site down ! moving to a new 

comuter room. 

UNSCHEDULED OUTAGE 16-JUL-10 

00:00:00 

16-JUL-10 

09:14:00 

All hardware being relocated 

to new server room 

SCHEDULED OUTAGE 09-JUL-10 

00:00:00 

16-JUL-10 

00:00:00 

All hardware being relocated 

to new server room 
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Figures 91, 92, 93 & 94 show for the Duane plot and log-linear plot for the 

resources repair time. From the figures it is most likely that the Grid resources repair 

time cannot be modelled as NHPP.   

Figure 91: The Duane Plot for Resources Repairs time, Site 1. 
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Figure 92: The Duane Plot for Resources Repairs time, Site 2. 

Figure 93: log-linear Paper for Resources Repairs time, Site 1. 
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Figure 94: log-linear Paper for Resources Repairs time, Site 2. 
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9 Appendix B 

The following table are the results of the t-test. 

 
Independent Samples Test For Observed and Predicted ROF Resource A Site 1. 

 

Levene's Test for 
Equality of Variances t-test for Equality of Means 

F Sig. t Df Sig. (2-tailed) 
Mean 

Difference 
Std. Error 
Difference 

95% Confidence Interval of the 
Difference 

Lower Upper 

 Equal variances assumed 1.526 .218 1.397 258 .164 .01110 .00794 -.00455 .02674 

Equal variances not assumed   1.397 254.904 .164 .01110 .00794 -.00455 .02674 

 

 

 

Independent Samples Test For Observed and Predicted ROF Resource B Site 1. 

 

Levene's Test for 

Equality of Variances t-test for Equality of Means 

F Sig. t Df Sig. (2-tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence Interval of the 

Difference 

Lower Upper 

 Equal variances assumed 3.062 .081 .938 258 .349 .00566 .00603 -.00622 .01753 

Equal variances not assumed   .938 254.222 .349 .00566 .00603 -.00622 .01753 
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Independent Samples Test For Observed and Predicted ROF Resource C Site 1. 

 

Levene's Test for 

Equality of Variances t-test for Equality of Means 

F Sig. t Df Sig. (2-tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence Interval of the 

Difference 

Lower Upper 

 Equal variances assumed 4.011 .046 1.683 258 .093 .01213 .00720 -.00206 .02631 

Equal variances not assumed   1.683 251.506 .094 .01213 .00720 -.00206 .02631 

 

 

 

 

Independent Samples Test For Observed and Predicted ROF Resource D Site 1. 

 

Levene's Test for 

Equality of Variances t-test for Equality of Means 

F Sig. t Df Sig. (2-tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence Interval of the 

Difference 

Lower Upper 

 Equal variances assumed 17.894 .000 1.916 258 .056 .01545 .00806 -.00043 .03132 

Equal variances not assumed   1.916 232.665 .057 .01545 .00806 -.00044 .03133 
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Independent Samples Test For Observed and Predicted ROF Resource A Site 2. 

 

Levene's Test for 

Equality of Variances t-test for Equality of Means 

F Sig. t Df Sig. (2-tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence Interval of the 

Difference 

Lower Upper 

 Equal variances assumed 11.505 .001 1.923 258 .056 .00607 .00316 -.00015 .01229 

Equal variances not assumed   1.923 245.188 .056 .00607 .00316 -.00015 .01229 

 

 

 

 

Independent Samples Test For Observed and Predicted ROF Resource B Site 2. 

 

Levene's Test for 

Equality of Variances t-test for Equality of Means 

F Sig. t Df Sig. (2-tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence Interval of the 

Difference 

Lower Upper 

 Equal variances assumed 18.329 .000 .875 258 .383 .00288 .00329 -.00360 .00936 

Equal variances not assumed   .875 237.853 .383 .00288 .00329 -.00361 .00937 
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Independent Samples Test For Observed and Predicted ROF Resource C Site 2. 

 

Levene's Test for 

Equality of Variances t-test for Equality of Means 

F Sig. T Df Sig. (2-tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence Interval of the 

Difference 

Lower Upper 

 Equal variances assumed 16.255 .000 1.697 258 .091 .00552 .00325 -.00088 .01192 

Equal variances not assumed   1.697 240.073 .091 .00552 .00325 -.00089 .01193 
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10 Appendix C 
 

 

The following experiments are carried out to ensure that the DRFC algorithm 

and the MIP solver have been implemented correctly in the simulations. These were 

carried out prior to the experiments described in chapter 6.  

In all tests the values for the following parameters will be obtained manually 

and using simulation: 

1. The assignment of tasks to resources. 

2. Total execution cost. 

 

For the DRFC algorithm; if the expected schedule and the simulation results 

agree, then this gives confidence that the algorithm is being applied correctly. 

For the Gurobi optimizer; if the optimal schedule and the solver results agree, 

then this gives confidence that the MIP solver is implemented correctly. 

Furthermore, the MIP was also implemented using AMPL with CPLEX solver. The 

Gurobi optimizer results were compared with the AMPL results. Figure 95 

illustrates a snippet of the AMPL code responsible for scheduling a single BoT 

job. 

set Tasks; 

set Resources; 

   param P {Tasks} >  0; 

   param I {Tasks} >  0; 

param cost {Resources} > 0; 

param speed {Resources} > 0; 

param risk {Resources} > 0; 

param A {Resources} >= 0; 

param T = ; # The User Deadline 

param R = ; # The User desire ROF  

param time{Resources}; 

param x; 

param y; 
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param total; 

var In {Tasks,Resources} binary; 

minimize Total_Value:  

                sum {i in Tasks, j in Resources} (ceil(P[i]/speed[j])*cost[j]) * In[i,j]; 

subject to Weight_Limit { j in Resources}: 

                sum {i in Tasks} ceil(P[i]/speed[j]) * In[i,j] <= T - A[j]; 

subject to Only_One {i in Tasks}: 

                sum {j in Resources} In [i,j] = I[i]; 

subject to Risk  {i in Tasks, j in Resources}:  

                risk[j] * In[i,j] <= R; 

Figure 95: Snippet of the AMPL responsible for scheduling a single BoT job. 

Test 1 

Consider 4 identical resources and 3 BoT jobs. Tables 17 & 18 show the exact 

values used in the test. 

Table 17: Resources Used for Test 1. 

Number of Resources 4 

MIPS 6000 

Price per Time Unit 1 

ROF < 0.05 

 

Table 18: BoT Jobs Used for Test 1. 

BoT job 1 2 3 

Arrival Time 0 50 100 

Deadline 500 600 800 

Number of Tasks 5 5 5 

Desire ROF < 0.05 

Execution time/task* 200 

* Execution time is based on a resource with 6000 MIPS 

Test 2 

Consider 4 resources and 3 BoT jobs. Tables 19 & 20 show the resources and 

the BoT jobs values. 
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Table 19: Resources Used for Test 2. 

Resources 1 2 3 4 

MIPS 6000 7000 8000 8000 

Price per Time Unit 1 1 2 3 

ROF < 0.05 > 0.1 ≤ 0.1 < 0.05 

 

Table 20: BoT Jobs Used for Test 2. 

BoT job 1 2 3 

Arrival Time 0 200 400 

Deadline 1000 1200 1600 

Number of Tasks 5 5 5 

Desire ROF < 0.05 > 0.1 ≤ 0.1 

Execution time/task* Between 200 and 600 in steps of 100 

* Execution time is based on a resource with 6000 MIPS 

Test 3 

Consider 5 resources and 4 BoT jobs. Tables 21 & 22 show the resources and 

the BoT jobs values. 

Table 21: BoT Jobs Used for Test 3. 

Resources 1 2 3 4 5 

MIPS 6000 7000 7000 8000 8000 

Price per Time Unit 1 2 3 4 5 

ROF ≤ 0.1 > 0.1 < 0.05 ≤ 0.1 < 0.05 

 

Table 22: BoT Jobs Used for Test 3. 

BoT job 1 2 3 4 

Arrival Time 0 200 400 600 

Deadline 1000 1200 1400 1600 

Number of Tasks 5 5 5 5 

Desire ROF < 0.05 > 0.1 ≤ 0.1 > 0.1 

Execution time/task* Between 200 and 600 in steps of 100 

* Execution time is based on a resource with 6000 MIPS 
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Result for Test 1 

In this test the optimal schedule and the DRFC algorithm schedule are 

identical. Figure 96 shows the Gantt chart for the resulted schedule. The DRFC 

algorithm, the Gurobi optimizer, the AMPL solver and the manual solutions are all 

identical. The total execution cost for all the BoT jobs is 3000.   

Figure 96: The Gantt chart for Test 1 Schedule. 

Results Test 2 

In this test also the optimal schedule and the DRFC schedule are identical. The 

total execution cost is 8544. Figure 97 shows the resulted Gantt chart scheduler. 

Figure 97: The Gantt chart for Test 2 Schedule. 
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Results Test 3 

In this test also the optimal schedule and the DRFC schedule are identical. The 

total execution cost is 19934. Figure 98 shows the resulted Gantt chart scheduler. 

Figure 98: The Gantt chart for Test 3 Schedule. 
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