
Risk Assessment Models for Resource Failure in Grid Computing

By

Raid Abdullah Alsoghayer

Submitted in accordance with the requirements

for the degree of Doctor of Philosophy.

The University of Leeds

School of Computing

February, 2011

The candidate confirms that the work submitted is his own and that appropriate

credit has been given where reference has been made to the work of others.

This copy has been supplied on the understanding that it is copyright material and

that no quotation from the thesis may be published without proper

acknowledgement.

© 2011 The University of Leeds and Raid Alsoghayer

-ii-

Acknowledgements

 This work would never been possible without the guidance of my supervisor

Dr. Karim Djemame. His wealth of experience has provided me with

encouragement and critical feedback and for that I thank you. I would also like to

thank the Collaborative Systems and Performance Research Group at the School of

Computing for much insightful discussion and enjoyable comradeship.

Finally my heartiest gratitude goes to my wife, daughter, father & mother.

Without your constant encouragement, un-conditional love and support I would not

been able to undertake this endeavour.

-iii-

Abstract

Service Level Agreements (SLAs) are introduced in order to overcome the

limitations associated with the best-effort approach in Grid computing, and to

accordingly make Grid computing more attractive for commercial uses. However,

commercial Grid providers are not keen to adopt SLAs since there is a risk of SLA

violation as a result of resource failure, which will result in a penalty fee; therefore,

the need to model the resources risk of failure is critical to Grid resource providers.

Essentially, moving from the best-effort approach for accepting SLAs to a risk-

aware approach assists the Grid resource provider to provide a high-level Quality of

Service (QoS). Moreover, risk is an important factor in establishing the resource

price and penalty fee in the case of resource failure.

In light of this, we propose a mathematical model to predict the risk of failure

of a Grid resource using a discrete-time analytical model driven by reliability

functions fitted to observed data. The model relies on the resource historical

information so as to predict the probability of the resource failure (risk of failure) for

a given time interval. The model was evaluated by comparing the predicted risk of

failure with the observed risk of failure using availability data gathered from Grids

resources.

The risk of failure is an important property of a Grid resource, especially when

scheduling jobs optimally in relation to resources so as to achieve a business

objective. However, in Grid computing, user-centric scheduling algorithms ignore

the risk factor and mostly address the minimisation of the cost of the resource

allocation, or the overall deadline by which the job must be executed completely.

Therefore, we propose a novel user-centric scheduling algorithm for scheduling Bag

of Tasks (BoT) applications. The algorithm, which aims to meet user requirements,

takes into account the risk of failure, the cost of resources and the job deadline. With

this in mind, through simulation, we demonstrate that the algorithm provides a near-

optimal solution for minimizing the cost of executing BoT jobs. Also, we show that

the execution time of the proposed algorithm is very low, and is therefore suitable

for solving scheduling problems in real-time.

-iv-

Risk assessment benefits the resource provider by providing methods to either

support accepting or rejecting an SLA. Moreover, it will enable the resource

provider to understand the capacity of the infrastructure and to thereby plan future

investment. Scheduling algorithms will benefit the resource provider by providing

methods to meet user requirements and the better utilisation of resources. The ability

to adopt a risk assessment method and user-centric algorithms makes the

exploitation of Grid systems more realistic.

-v-

Declarations

Some parts of the work presented in this thesis have been published in the

following articles:

 Probabilistic Risk Assessment for Resource Provision in Grids. R.

Alsoghayer and K. Djemame. Proceedings of the 25th UK

Performance Engineering Workshop, Leeds, UK, July 2009, pp. 99-

110.

 Modeling the Risk of Failure in Grid Environments. R. Alsoghayer

and K. Djemame. Proceedings of the 2010 International Conference

on Grid Computing and Applications (GCA'2010), Las Vegas,

Nevada, July 2010

-vi-

Contents

Acknowledgements .. ii

Abstract ... iii

Declarations ... v

Contents .. vi

Figures .. x

Tables ... xv

Abbreviations .. xvii

1 Chapter 1 Introduction ... 1

1.1 Research Motivation ... 1

1.2 Thesis Objectives .. 4

1.3 Methodology ... 5

1.4 Major Contributions .. 7

1.5 Thesis Overview.. 7

2 Chapter 2 Resource Allocation in Grid Systems .. 9

2.1 Grid Computing .. 9

2.2 Grid Applications .. 10

2.2.1 Type of Applications .. 10

2.2.2 Types of Grid Systems ... 10

2.2.3 Grid Projects .. 12

2.3 Grid Architecture .. 13

2.3.1 Early Architecture .. 13

2.3.1.1 Grid Fabric Layer .. 14

2.3.1.2 Grid Connectivity Layer .. 15

2.3.1.3 Grid Resource Layer ... 16

2.3.1.4 Grid Collective Layer .. 16

2.3.1.5 Grid Application Layer ... 16

2.3.2 Open Grid Services Architecture and Web Service Resource

Framework ... 16

2.4 Grid Middleware ... 17

2.4.1 Globus Toolkit ... 18

2.4.2 UNICORE .. 19

2.4.3 Other Middleware .. 19

-vii-

2.5 Grid Service Level Agreements .. 19

2.5.1 Web Service Level Agreement (WSLA) 20

2.5.2 WS-Agreement ... 21

2.6 Resource Management .. 21

2.6.1 Resource Discovery ... 24

2.6.2 Scheduling .. 25

2.6.2.1 Type of Scheduling in Grid Systems 27

2.6.2.2 Predicting Execution Time .. 30

2.6.2.3 Scheduling Algorithms .. 31

2.6.3 Monitoring ... 36

2.7 Summary ... 37

3 Chapter 3 Risk Assessment and Managment ... 38

3.1 Definitions of Risk .. 38

3.2 Risk Analysis .. 39

3.2.1 Quantitative Risk Analysis ... 39

3.2.2 Qualitative Risk Analysis ... 39

3.2.3 Mixed Risk Analysis .. 40

3.3 Risk Management.. 40

3.3.1 Risk Identification .. 41

3.3.2 Risk Assessment .. 42

3.3.3 Risk Response .. 43

3.4 Risk Management in Grid ... 44

3.4.1 Risk Identification .. 44

3.4.2 Risk Assessment .. 46

3.4.2.1 Grid Resources Failures .. 50

3.4.3 Grid Risk Response .. 52

3.5 Summary ... 53

4 Chapter 4 Analsis of Failures in Grid Environments .. 54

4.1 Motivation Scenario .. 54

4.2 Risk Identification ... 57

4.2.1 Probability of Resource Failure ... 57

4.2.2 Impact of Resource Failure .. 58

4.2.3 Risk Measures .. 59

4.3 Grid Resource Failures .. 60

4.3.1 Failures Data Collection ... 60

-viii-

4.3.2 Methodology for Failure Analysis ... 64

4.3.3 Root Cause Breakdown .. 64

4.3.4 Repair Time Analysis ... 67

4.3.5 Time between Failures Analysis .. 73

4.4 Probabilistic Failure Models for Grid Resources 77

4.4.1 NHPP Following a Power Low .. 79

4.4.2 NHPP Following an Exponential Low ... 82

4.4.3 Results Analysis ... 85

4.5 Summary ... 86

5 Chapter 5 Modelling Risk of Failures in Grid Environments 87

5.1 Availability Models ... 87

5.2 Fitting Distributions to Failure Data ... 90

5.2.1 Summary of Results ... 92

5.3 Developing the Risk Assessment Model... 99

5.4 Experimental Results and Validation .. 104

5.5 Ranking Grid Resources and Planning Future Investments 109

5.6 Summary ... 114

6 Chapter 6 Using Resource ROF to Improve Scheduling 116

6.1 Overview ... 116

6.1.1 Application Model and Scheduling .. 117

6.2 Improving the Scheduling Algorithms .. 118

6.3 Model Description ... 120

6.3.1 Optimal Solution .. 124

6.4 The DRFC Algorithm ... 125

6.5 Simulation-Based Performance Analysis .. 130

6.5.1 Experiments Design ... 131

6.5.1.1 Resource Provider Modelling .. 131

6.5.1.2 Workload Modelling ... 133

6.5.2 Simulation Results ... 134

6.5.2.1 Summary of Results .. 136

6.5.2.2 Sensitivity to The Deadline and The ROF 145

6.6 Summary ... 148

7 Chapter 7 Conclusion and Future Work .. 150

7.1 Summary of Work ... 150

7.2 Thesis Contribution ... 151

-ix-

7.3 Future Work .. 153

8 Appendix A .. 155

9 Appendix B .. 159

10 Appendix C .. 163

References .. 168

-x-

Figures

Figure 1: Research Methodology Diagram. .. 5

Figure 2: Layered Grid Architecture [15]. .. 14

Figure 3: Risk Management Steps [139]. .. 40

Figure 4: Flow Chart of the Motivation Scenario. .. 55

Figure 5: Overview of Components in Resource Provider. 56

Figure 6: Breakdown of Failures into Root Causes for Resources from Site 1. 65

Figure 7: Breakdown of Failures into Root Causes for Resources from Site 2. 66

Figure 8: Breakdown of Downtime into Root Causes for Resources from Site 1. ... 66

Figure 9: Breakdown of Downtime into Root Causes for Resources from Site 2. ... 66

Figure 10: Repair Time Resource A Site 1. .. 69

Figure 11: Repair Time Resource B Site 1. .. 69

Figure 12: Repair Time Resource C Site 1. .. 69

Figure 13: Repair Time Resource D Site 1. .. 69

Figure 14: Repair Time Resource A Site 2. .. 70

Figure 15: Repair Time Resource B Site 2. .. 70

Figure 16: Repair Time Resource C Site 2. .. 70

Figure 17: Time between Failures for Resource A Site 1. .. 74

Figure 18: Time between Failures for Resource B Site 1. .. 74

Figure 19: Time between Failures for Resource C Site 1. .. 74

Figure 20: Time between Failures for Resource D Site 1. .. 74

Figure 21: Time between Failures for Resource A Site 2. .. 75

Figure 22: Time between Failures for Resource B Site 2. .. 75

Figure 23: Time between Failures for Resource C Site 2. .. 75

Figure 24: The Dune Plot for Failures of Resource A Site 1. 80

-xi-

Figure 25: The Dune Plot for Failures of Resource B Site 1. 80

Figure 26: The Dune Plot for Failures of Resource C Site 1. 80

Figure 27: The Dune Plot for Failures of Resource D Site 1. 81

Figure 28: The Dune Plot for Failures of Resource A Site 2. 81

Figure 29: The Dune Plot for Failures of Resource B Site 2. 81

Figure 30: The Dune Plot for Failures of Resource C Site 2. 82

Figure 31: Cumulative Failure Rate against t on a log-linear Paper for Failures of

Resource A Site 1. ... 83

Figure 32: Cumulative Failure Rate against t on a log-linear Paper for Failures of

Resource B Site 1. ... 83

Figure 33: Cumulative Failure Rate against t on a log-linear Paper for Failures of

Resource C Site 1. ... 83

Figure 34: Cumulative Failure Rate against t on a log-linear Paper for Failures of

Resource D Site 1. ... 84

Figure 35: Cumulative Failure Rate against t on a log-linear Paper for Failures of

Resource A Site 2. ... 84

Figure 36: Cumulative Failure Rate against t on a log-linear Paper for Failures of

Resource B Site 2. ... 84

Figure 37: Cumulative Failure Rate against t on a log-linear Paper for Failures of

Resource C Site 2. ... 85

Figure 38: Continuous Time-Varying Markov Model for Resource Availability. ... 90

Figure 39: The Time-Varying Functions ZW(t), ZR(t), ZF(t), and ZG(t) for Resource A

Site 1. .. 92

Figure 40: The Time-Varying Functions ZW(t), ZR(t), ZF(t), and ZG(t) for Resource B

Site 1. .. 93

Figure 41: The Time-Varying Functions ZW(t), ZR(t), ZF(t), and ZG(t) for Resource C

Site 1. .. 94

Figure 42: The Time-Varying Functions ZW(t), ZR(t), ZF(t), and ZG(t) for Resource D

Site 1. .. 95

-xii-

Figure 43: The Time-Varying Functions ZW(t), ZR(t), ZF(t), and ZG(t) for Resource A

Site 2. .. 96

Figure 44: The Time-Varying Functions ZW(t), ZR(t), ZF(t), and ZG(t) for Resource B

Site 2. .. 97

Figure 45: The Time-Varying Functions ZW(t), ZR(t), ZF(t), and ZG(t) for Resource C

Site 2. .. 98

Figure 46: Discrete-time Markov Model for Resource Availability. 101

Figure 47: Predicted & Observed Risk of Failure for Resource A Site 1. 106

Figure 48: Predicted & Observed Risk of Failure for Resource B Site 1. 106

Figure 49: Predicted & Observed Risk of Failure for Resource C Site 1. 106

Figure 50: Predicted & Observed Risk of Failure for Resource D Site 1. 107

Figure 51: Predicted & Observed Risk of Failure for Resource A Site 2. 107

Figure 52: Predicted & Observed Risk of Failure for Resource B Site 2. 107

Figure 53: Predicted & Observed Risk of Failure for Resource C Site 2. 108

Figure 54: Resources Predicted ROF Over Days. ... 110

Figure 55: Resources Predicted ROF on Day 30 & Day 90. 110

Figure 56: Investments effect on Resource A Site 1. .. 112

Figure 57: Investments effect on Resource B Site 1. .. 112

Figure 58: Investments effect on Resource C Site 1. .. 112

Figure 59: Investments effect on Resource D Site 1. .. 113

Figure 60: Investments effect on Resource A Site 2. .. 113

Figure 61: Investments effect on Resource B Site 2. .. 113

Figure 62: Investments effect on Resource C Site 2. .. 114

Figure 63: The DRFC Algorithm. ... 127

Figure 64: Assignment of Task 1 & 2 to Resource A. .. 129

Figure 65: Assignment of Task 1 & 3 to Resource A and Task 2 to Resource B. .. 129

Figure 66: Assignment of Task 2 & 3 to Resource A and Task 1 to Resource B. .. 129

-xiii-

Figure 67: Percentage Difference in Number of Jobs assigned with DRFC & Gurobi

Experiment 1. .. 136

Figure 68: Percentage Difference between DRFC Execution Cost and Optimal Cost

Experiment 1. .. 136

Figure 69: Percentage Difference in Number of Jobs assigned with DRFC & Gurobi

Experiment 2. .. 137

Figure 70: Percentage Difference between DRFC Execution Cost and Optimal Cost

Experiment 2. .. 137

Figure 71: Percentage Difference in Number of Jobs assigned with DRFC & Gurobi

Experiment 3. .. 138

Figure 72: Percentage Difference between DRFC Execution Cost and Optimal Cost

Experiment 3. .. 138

Figure 73: Percentage Difference in Number of Jobs assigned with DRFC & Gurobi

Experiment 4. .. 139

Figure 74: Percentage Difference between DRFC Execution Cost and Optimal Cost

Experiment 4. .. 139

Figure 75: Percentage Difference in Number of Jobs assigned with DRFC & Gurobi

Experiment 5. .. 140

Figure 76: Percentage Difference between DRFC Execution Cost and Optimal Cost

Experiment 5. .. 140

Figure 77: Percentage Difference in Number of Jobs assigned with DRFC & Gurobi

Experiment 6. .. 141

Figure 78: Percentage Difference between DRFC Execution Cost and Optimal Cost

Experiment 6. .. 141

Figure 79: Percentage Difference in Number of Jobs assigned with DRFC & Gurobi

Experiment 7. .. 142

Figure 80: Percentage Difference between DRFC Execution Cost and Optimal Cost

Experiment 7. .. 142

Figure 81: Percentage Difference in Number of Jobs assigned with DRFC & Gurobi

Experiment 8. .. 143

-xiv-

Figure 82: Percentage Difference between DRFC Execution Cost and Optimal Cost

Experiment 8. .. 143

Figure 83: Percentage Difference in Number of Jobs assigned with DRFC & Gurobi

Experiment 9. .. 144

Figure 84: Percentage Difference between DRFC Execution Cost and Optimal Cost

Experiment 9. .. 144

Figure 85: Number of BoT Jobs Accepted, Small Provider Running Small BoT Jobs.

 ... 146

Figure 86: Number of BoT Jobs Accepted, Small Provider Running Medium BoT

Jobs. ... 146

Figure 87: Number of BoT Jobs Accepted, Small Provider Running Large BoT Jobs.

 ... 147

Figure 88: Total Execution Cost, Large Provider Running Small BoT Jobs. 147

Figure 89: Total Execution Cost, Large Provider Running Medium BoT Jobs...... 147

Figure 90: Total Execution Cost, Large Provider Running Large BoT Jobs. 148

Figure 91: The Duane Plot for Resources Repairs time, Site 1. 156

Figure 92: The Duane Plot for Resources Repairs time, Site 2. 157

Figure 93: log-linear Paper for Resources Repairs time, Site 1. 157

Figure 94: log-linear Paper for Resources Repairs time, Site 2. 158

Figure 95: Snippet of the AMPL responsible for scheduling a single BoT job. 164

Figure 96: The Gantt chart for Test 1 Schedule. ... 166

Figure 97: The Gantt chart for Test 2 Schedule. ... 166

Figure 98: The Gantt chart for Test 3 Schedule. ... 167

-xv-

Tables

Table 1: Repair Mean Median and Standard Deviation for Resources in Site 1 in

Minutes. ... 68

Table 2: Repair Mean Median and Standard Deviation for Resources in Site 2 in

Minutes. ... 68

Table 3: Mean Median and standard Deviation of Time to Repair Resource A Site 1

Breakdown by Root Causes in Minutes. ... 71

Table 4: Mean Median and standard Deviation of Time to Repair Resource B Site 1

Breakdown by Root Causes in Minutes. ... 71

Table 5: Mean Median and standard Deviation of Time to Repair Resource C Site 1

Breakdown by Root Causes in Minutes. ... 72

Table 6: Mean Median and standard Deviation of Time to Repair Resource D Site 1

Breakdown by Root Causes in Minutes. ... 72

Table 7: Mean Median and standard Deviation of Time to Repair Resource A Site 2

Breakdown by Root Causes in Minutes. ... 72

Table 8: Mean Median and standard Deviation of Time to Repair Resource B Site 2

Breakdown by Root Causes in Minutes. ... 73

Table 9: Mean Median and standard Deviation of Time to Repair Resource C Site 2

Breakdown by Root Causes in Minutes. ... 73

Table 10: The Weibull Shape Parameter. ... 77

Table 11: The Best Fit Distribution for the Transition Functions. 99

Table 12: The Shape α and Scale λ Parameters for the Functions ZW(t), ZR(t), ZF(t),

and ZG(t). ... 105

Table 13: The Complete List of Resources Ranked Based on Resource ROF, for

Day 30 and Day 90. ... 109

Table 14: Resources Used for the Simulation. .. 132

Table 15: The Parameter Values for the Workload Model. W stand for Weibull and

N for Normal distribution [224]. ... 134

-xvi-

Table 16: A Sample Downtime Record. ... 155

Table 17: Resources Used for Test 1. ... 164

Table 18: BoT Jobs Used for Test 1. .. 164

Table 19: Resources Used for Test 2. ... 165

Table 20: BoT Jobs Used for Test 2. .. 165

Table 21: BoT Jobs Used for Test 3. .. 165

Table 22: BoT Jobs Used for Test 3. .. 165

-xvii-

Abbreviations

AMPL Modelling Language for Mathematical Programming

BoT Bag of Tasks

CCS Cluster Computing Software

Cdf Cumulative Distribution Function

DCI Distributed Computing Infrastructure

DRFC Deadline and Risk of Failure Constraints algorithm

EGEE Enabling Grids for E-sciencE

EGI European Grid Infrastructure

ENISA European Network and Information Security Agency

GOCDB Grid Operations Centre Data Base

GRAAP-WG Grid Resource Allocation and Agreement Protocol Working Group

GRAM Grid Resource Allocation and Management

GT Globus Toolkit

HPP Homogeneous Poisson Process

LP linear programming

LRM Local Resource Manager

LSF Load Sharing Facility

MDS Monitoring and Discovery System

MIP Mixed Integer Programming

MIPS Million Instructions per Second

MLE Maximum Likelihood Estimation

MTTF Mean Time To Failure

MTTR Mean Time To Repair

NBQS Network Batch Queuing Systems

NGS National Grid Service

NHPP Non-Homogeneous Poisson Process

NWS Network Weather Services

OGF Open Grid Forum

OGSA Open Grid Services Architecture

OGSI Open Grid Service Infrastructure

P2P Peer-to-Peer

PACE Performance Analysis and Characterisation Environment

-xviii-

PBS Portable Batch System

Pdf Probability Density Function

QoS Quality of Services

RBD Reliability Block Diagram

RE Risk Exposure

RMS Resource Management System

ROCOF Rate of Occurrence of Failures

ROF Risk of Failure

SGE Sun Grid Engine

SLA Service Level Agreement

SOAP Simple Object Access Protocol

UNICORE Uniform Interface to Computing Resources

WS Web Services

WS-Agreement Web Services Agreement

WSDL Web Service Description Language

WSIL Web Service Introspection Language

WSLA Web Service Level Agreement

WSRF Web Service Resource Framework

XML Extensible Mark-up Language

1

1 Chapter 1

Introduction

1.1 Research Motivation

Grid computing [1]—much like many other computing technologies before it,

such as the internet or the web—was initially motivated by the needs of scientists.

As a result, this has increased the opportunity for collaboration between educational

and research institutions, and accordingly broadened access to expertise and services

through the sharing of resources. The need to share resources in order to achieve

common goals is not limited to science and is fundamental to commerce; whether to

support business processes across partners in a supply chain or to otherwise enable

higher utilisation of resources spread across business units, Grid technologies are

becoming increasingly applied in a wide range of businesses and commercial

activities [2]. Another major driving force for Grid computing, from a business

perspective, is that users can concentrate on their business applications as opposed

to having to maintain complex in-house computing infrastructures. This will remove

the large investment overhead associated with developing in-house computing

infrastructures, and thereby reduce the overall costs associated with running and

maintaining the business. Finally, computing infrastructures do not have to be sized

on peak load but can use Grid technologies to cleverly share the burden in peak

hours. This will reduce the cost of developing, running and maintaining a computing

infrastructure, without incurring any notable decrease in performance.

Even with the huge commercial benefits of Grid computing, the commercial

uptake of Grid computing has been slow, with the current Grid middleware (e.g.

Globus Toolkit [3]) still follows the best-effort approach. Importantly, Grid users do

not get any assurances that their applications will complete according to their

requirements. Furthermore, commercial Grid resource providers are not attracted

either: for a resource provider, agreeing to execute a user application without

Chapter 1 2 Introduction

enough information regarding the state and availability of resources introduces the

risk of not fulfilling user requirements, which consequently results in a penalty fee

paid by the resource provider. Moreover, there is a hazard attached to resources

failure, service unavailability, insufficient resources, etc., all of which could lead to

users‘ requirements not being fulfilled. Without a method for assessing the risk of

agreeing to execute a user application, providers are only able to make uncertain

decisions regarding suitable users‘ requests.

Essentially, improving the overall Quality of Services (QoS) of the Grid

infrastructure so as to overcome the best-effort approach is one of the most

important on-going issues in the Grid community [4]. Furthermore, providing

greater integration, efficiency and QoS encourages users and businesses to exploit

Grid infrastructure for commercial benefits. With this in mind, QoS can be

characterised into two categories: qualitative and quantitative. Qualitative attributes

are hard to measure, and refer to user satisfactions, trust and the reliability of the

Grid provider. Essentially, the quantitative attribute can be measured exactly, and

include user requirements, such as network, CPU or storage. For example, ‗the

response time should be less than 10 milliseconds‘ or ‗the free memory should be

more than 2 Gigabytes‘. A number of requirements should be delivered by the Grid

resource provider when striving to provide QoS. According to [5], these

requirements include advance resource reservation, reservation policy, agreement

protocol, security, simplicity and scalability. Another approach of delivering QoS is

through the use of fault tolerance mechanisms, such as the replication or redundancy

of resources. Owing to the fact that the probability of resource failure is higher in

Grid environments than in a traditional distributed system, fault tolerance can

improve the offered QoS [6].

Grid resources failures are frequent, and have fatal effects in relation to job

execution; even the use of fault tolerance approaches cannot completely eliminate

the effect of failures. For a Grid resource provider, such failures are a threat to jobs

running on the Grid, as an unexpected resource failure may lead to user

requirements not being fulfilled, which subsequently results in a penalty fee. If a

resource failure affects the overall execution of a time critical application, results

can be delayed or lost entirely, which therefore has consequences in the real world

and can ultimately lead to broken commitments. Notably, this can have a knock-on

Chapter 1 3 Introduction

effect in other walks of life and, as such, Grid resource failures impose a risk on

both the Grid provider and the user.

The word ‗risk‘ is used in a variety of different disciplines/contexts, and has a

different meaning for each. Even in a single corporation, different departments have

different definitions for the term. In the Oxford English Dictionary, for example,

‗risk‘ is defined as ‘[Exposure to] the possibility of loss, injury, or other adverse or

unwelcome circumstance; a chance or situation involving such a possibility’ [7]. As

different entities of a single corporation have different definitions for the concept,

they also have different views: for example, Health and Safety department personnel

view risk as a bad thing or a negative force; thus, any risk to the health and safety of

company employees or to the public is to be avoided, or the probability and

consequence of that risk are to be reduced to the greatest extent possible. On the

other hand, finance personnel might hold different views, owing to the fact that one

aspect of their job is to conduct a risk/reward evaluation. In this regard, greater risk

usually yields greater returns, and so they view risk as a positive force [8].

Generally, risk is associated with the uncertainty of a future event, or a hazard,

which might have a potentially negative impact on an asset by depreciating some of

its attribute value. The uncertainty can be modelled in terms of probability provided

sufficient information is known. In this sense, the probability is only considered as

the occurrence of an event without any consideration to the consequences or the

impacts of such an event; therefore, the word ‗risk‘ is used to combine the

probability of events with the impact or the expected losses of those events.

In order to make sound business decisions—such as outsourcing computing

infrastructure—users need assurance that the Grid provider is able to guarantee their

requirements. Moreover, they need to assess the risk of an unsatisfactory outcome

and to thereby compare different Grid providers. The Grid provider needs to provide

guarantees to users based on the current infrastructure. Furthermore, the provider

needs to understand the capacity of the infrastructure and plan future investment.

In order to address the risk of Grid resources failures, methods to identify the

events causing failures are needed, as well as estimations regarding the probability

or frequency, and measurement of the expected losses of those events. A risk

assessment model for estimating the risk of Grid resource failures provides a

Chapter 1 4 Introduction

solution to the risk problem, and would increase the chances of Grid commercial

take-up, as well as helping in building trust in the Grid.

Consider the following scenario. A user submits an application execution

request, as a Service Level Agreement (SLA), to the Grid resource provider, which

is to be executed in-line with QoS requirements, such as timely execution. The

provider is then required to estimate the risk of failure for each available resource

owing to the fact that the resource risk of failure significantly influences the price of

the resource and the penalty fee; presumably, a resource with low risk of failure is

more expensive than the one with high risk of failure. The provider will then

allocate resources to the user‘s application based on the user requirements and the

estimated risk of failure; this will help the provider to decide whether the user

application should be accepted or rejected. Furthermore, it will inform the user of

the rate of not getting the desired QoS, and accordingly provide the opportunity to

select the desired level of realistic guarantees. The work presented in this thesis

proposes a number of mechanisms for estimating the Grid resources risk of failure,

which will meet the requirements of such a scenario.

1.2 Thesis Objectives

The aim of this research is to study resources failure in the context of Grid

computing. This is to estimate the risk of a resource failure, allowing users to

compare different Grid resources and providers, and to thereby select the resources

with the most acceptable level of risk. Furthermore, Grid resource providers use the

resources risk as measures to guarantee users requirements.

With this in mind, the objectives of this thesis are:

 To develop a mathematical model which estimates the Grid resource risk

of failure. Notably, moving from the best-effort approach in managing

resources to a risk-aware approach which assists the Grid provider in

offering a high-quality service. This will increase provider‘s revenue and

demand for resources, whilst decreasing penalty fees to be paid in the

event of user requirements violation. Furthermore, the reputation of the

provider will improve so that additional users become motivated to

outsource part of their computing activities to the provider.

Chapter 1 5 Introduction

 To consider resources risk of failure in the development of a scheduling

algorithm for minimising the cost of executing applications on the Grid

whilst simultaneously ensuring the application owners‘ constraints are

fulfilled.

1.3 Methodology

The aim of this thesis is twofold: to develop a mathematical model to estimate

the Grid resource risk of failure and to develop a scheduling algorithm for

minimising the cost of executing application on the Grid. The research methodology

to achieve these objectives is described below (Figure 1).

1. Gather historical failures

data.

2. Analyse failure data.

3. Fit distribution to failure

data.

4. Design a model for

predicting Grid resources

risk of failure.

5. Evaluate the proposed risk

model.

6. Study scheduling

algorithm literature.

7. Design and develop a

scheduling algorithm for

execution cost optimization.

8. Evaluate the proposed

algorithm through

simulation.

Figure 1: Research Methodology Diagram.

Chapter 1 6 Introduction

1. Gather historical failures data. The failure data is collected from seven

Grid resources from two Grid sites. The behaviour of these data will be

analysed to support the prediction of the Grid resources probability of

failure.

2. Analyse failure data. The failure data is analysed with respect to three

important properties of system failures: root cause, time to repair and

time between failures.

3. Fit distribution to failure data. This is to interpret failure data for a

variable in order to drive a distribution that realistically models its true

variability. The empirical cumulative distribution function for the time

between failures in the failure data is fitted with four standard

distributions: Exponential, Weibull, Gamma and Lognormal.

4. Design a model for predicting Grid resources risk of failure. The

Markov models techniques [177] are utilised to develop the risk of

failure model.

5. Evaluate the proposed risk model. The collected failure data are used to

compute the observed risk of failure and the risk model is evaluated by

comparing the observed risk of failure with the risk of failure predicted

by the proposed model. The two-sample t test is used to validate the

comparison.

6. Study scheduling algorithm literature. This study is to identify the Grid

users‘ requirements. These are heavily influenced by business

objectives which rely on execution of Grid applications in a timely and

cost-effective manner.

7. Design and develop a scheduling algorithm for execution cost

optimization. The algorithm examines if including risk of failure as a

scheduling requirement will improve current scheduling algorithms.

8. Evaluate the proposed algorithm through simulation. The purpose of

the simulation is to test the allocation of Grid jobs with the use of the

proposed scheduling algorithm, and to accordingly compare it with the

optimal allocation of the jobs. Two criteria are used in the evaluation

Chapter 1 7 Introduction

the difference in the number of jobs allocated and the difference in the

execution cost.

1.4 Major Contributions

The major contributions of this thesis include:

 A mathematical model to predict the Grid resources risk of failure. The

model is also used to rank Grid resources, and shows the effects of future

investments. The model is developed after detailed analysis of Grid

resource failures using failure data collected from different Grid resources

and spanning for three years. The analysis focuses on the statistical

properties of the failure data, including the root cause of failures, the mean

time between failures, and the mean time to repair.

 The development of an efficient algorithm—known as Deadline and Risk

of Failure Constraints (DRFC) algorithm—. The algorithm determine a

near-optimal execution cost for the mathematical model for minimising

the costs associated with executing Bag of Tasks applications whilst

ensuring the applications owners‘ constraints are fulfilled. The

performance evaluation of the DRFC algorithm compared to the cost-

minimising mathematical model optimal solution is conducted using

simulation.

1.5 Thesis Overview

 Chapter 2 reviews background material, which helps to scope the area of

research, followed by Grid resource management techniques and their

challenges. A review of current scheduling approaches is provided.

Finally, a survey of scheduling algorithms for the Bag of Tasks application

is provided.

 Chapter 3 presents the risk theory and the various different approaches for

risk assessment. A review of risk identification and assessment methods

for Grid-based systems is presented, along with possible risk treatments.

Chapter 1 8 Introduction

 Chapter 4 begins by identifying the events causing resource failures. The

method adapted to measuring the risk of resource failure is presented.

Subsequently, before the analysis of Grid resource failures is presented, an

overview of Grid resources failures data is provided along with the data-

collection process. The models for Grid resources failures and repairs are

provided.

 Chapter 5 presents the mathematical model to predict the risk of failure of

a Grid resource using a discrete time analytical model driven by reliability

functions fitted to observed failures data. The model evaluation and its

uses to rank resources and direct future investments are showcased.

 Chapter 6 begins by providing a mathematical model for scheduling Bag

of Tasks application on the Grid, and an efficient algorithm for solving the

mathematical model is presented. The design of the simulation

experiments is highlighted, along with the resource model and the

workload model. Finally, the evaluation of the algorithm through

simulation is discussed.

 Chapter 7 summarises the work on a chapter-by-chapter basis and outline

some future work.

9

2 Chapter 2

Resource Allocation in Grid Systems

This chapter examines the definition and background of Grid computing in

Section 2.1. Section 2.2 lists various types of application and Grid systems, as well

outlining various Grid projects. Section 2.3 presents the Grid architecture. Section

2.4 provides a description of Grid middleware. Section 2.5 provides a description of

Service Level Agreements and technologies which exist so as to facilitate their

usage in Grid environments. Section 2.6 discusses Grid resource management

technique and their challenges, and also comprises a survey of scheduling

algorithms. Finally section 2.7 summaries the chapter.

2.1 Grid Computing

Computer scientists in the mid-1990s began to explore a new technology

known as metacomputing. The interest was to link supercomputing sites [11]. The I-

WAY project—which was introduced in the ACM/IEEE conference on

Supercomputing 1995 (SC 95) and aims to unifying the resources of large US

supercomputing sites—was the first step in the field [12]. The I-WAY project was

essential to the understanding and progress of the emerging new technology [13].

The evolution from metacomputing through to Grid computing occurred with the

introduction of middleware, which was designed in order to function as a wide-area

infrastructure to support data-intensive applications and diverse online processing

[14]. Currently, the Grid is defined as the coordinated sharing of resources and

solving problems in dynamic, multi-institutional virtual organisations. This sharing

must be controlled with clear boundaries regarding what will be shared, who are

permitted to share, and the conditions under which sharing occurs, as well as

whether the resources are hardware, software, or users [14, 15]. The sharing should

also be carried out with the use of standard, open, and general-purpose protocols and

interfaces, and should deliver nontrivial quality of services (QoS) [12, 15, 16].

Chapter 2 10 Resource Allocation on Grid Systems

2.2 Grid Applications

The interest in Grids is motivated by the novel uses of computers to solve

complex applications. These applications provide the useful information and

services for the reality of Grids.

2.2.1 Type of Applications

A survey of four general classes of applications that runs on Grid systems is

given in [17]. It is summarised as follows:

 Distributed supercomputing: (also known as metacomputing): these

systems solve very large and intensive problems with the use of multiple

computers to achieve greater processing power. Many of the existing Grid

systems and their applications are based on this class.

 Real-time widely distributed instrumentation systems: these systems

involve real-time data sources. These systems rely on distributed-storage,

network-based caches, agent-based monitoring, and generalized access

control.

 Data-intensive computing: these systems are both data and compute

intensive. These applications focus on processing and analysing

information and require terabytes or petabytes of data to be processed and

stored.

 Teleimmersion: these systems combine advance display technologies,

computers, and networks to create shared virtual environments for

collaborative design, education, and entertainments.

These are the general types of Grid application, and some applications may be

of more than one type. A list of applications, their motivations for using Grid

technologies and the architectures and approaches adopted in implementations are

available in [18].

2.2.2 Types of Grid Systems

Notably, the types of Grid system are not identical; essentially, they vary

widely in terms of both function and purpose. Krauter et al. [19] classify Grid

systems into three categories:

Chapter 2 11 Resource Allocation on Grid Systems

 Computational Grids [20]: denotes systems which have higher total

computational capacity available for single applications than the capacity of

any constituent machine in the system. Computational Grids are amongst

the first type of Grid systems. An important objective of Computational

Grids is to benefit from the under-utilised computational resources through

sharing.

 Data Grid [21]: denotes systems which provide an infrastructure for

synthesising new information from data repositories, such as data

warehouses or digital libraries, which are distributed in a wide area

network. Many scientific applications require access to a large amount of

data; therefore, data Grids are important when striving to increase the

performance and to thereby achieve high throughput.

 Service Grid [22]: denotes systems which provide services that are not

provided by any single machine. This category is further subdivided as on-

demand, collaborative, and multimedia Grid Systems. An on-demand Grid

category dynamically aggregates different resources so as to provide new

services, e.g. allocating new machines to a simulation. A collaborative Grid

connects users and applications into collaborative workgroups. A

multimedia Grid provides an infrastructure for real-time multimedia

applications.

Other types of Grid systems include.

 eScience Grids: denotes system devoted primarily to the solution of

problems from science and engineering. Such Grids support the access to

computational and data resources required in order to solve complex

problem arising in the science communities. Enabling Grids for E-sciencE

(EGEE) [23], Grid 5000 [24], and National Grid Service (NGS) [25] are

some examples of e-Science Grids.

 Enterprise Grids: Grid computing is becoming an important component of

business in the modern world. E-business must be able to adjust

dynamically and efficiently to increases in demands or market shifts. The

Grid offers a large potential to solving business problems by enabling

Chapter 2 12 Resource Allocation on Grid Systems

active projects within one large enterprise to share resources in a

transparent way.

 Desktop Grids: this is the use of idle cycles of desktop Personal

Computers (PCs). Desktop Grids are a new form of Enterprise Grids. Small

enterprises are usually equipped with hundreds of desktops which can be

utilised for setting up a Grid system.

2.2.3 Grid Projects

Grid technology is being used in many different areas of research and industry,

and there are currently numerous projects utilising them. The following shortlist is

to highlight the scale and diversity of projects being developed currently in Europe:

 Enabling Grids for E-sciencE (EGEE) [23]: is a project which brings

together experts from more than 50 countries for developing a service Grid

infrastructure, which is available to scientists 24 hours a day. The project

encourages researchers in academia and business to collaborate and provide

them with access to a production-level Grid infrastructure, independent of

their geographic location. The EGEE infrastructure is the largest

collaborative production Grid infrastructure in the world for e-science.

Through EGEE, scientists are able to do more science and on a larger scale,

and to therefore gather results in a shorter timeframe, which would not been

possible without Grid technologies. EGEE closed in April, 2010, and the

infrastructure is now supported by the new organisation EGI.eu [26], which

is being developed to coordinate the European Grid Infrastructure (EGI).

 Integrated Sustainable Pan-European Infrastructure for Researchers

in Europe (EGI-InSPIRE) [27]: this is a project to provide a sustainable

and reliable European Grid Infrastructure (EGI) for European scientists and

their international partners. Importantly, this integrates new Distributed

Computing Infrastructures, such as clouds, supercomputing networks and

desktop Grids. EGI-InSPIRE project focuses on application areas of high-

energy physics, computational chemistry and life sciences.

 A worldwide e-infrastructure for computational neuroscientists

(outGRID) [28]: this is a project concerned with igniting the process of

converting the three active e-infrastructures for computational neuroscience

Chapter 2 13 Resource Allocation on Grid Systems

into one unique worldwide facility. The three e-infrastructures are

neuGRID project [29], which provides large sets of brain images paired

with grid-based computationally intensive algorithms for studies of

neurodegenerative diseases, CBRAIN Project [30] and LONI [31], which

offer computational resources and algorithm pipelines.

 Desktop Grids for International Scientific Collaboration (DEGISCO)

[32]: this is a project which connects the European Distributed Computing

Infrastructure (DCI) to International Cooperation Partner Countries (ICPC).

The European DCI is already interconnected by EDGeS [33], and

DEGISCO will further extend the infrastructure to ICPC countries. The

DEGISCO project will support the creation of new Desktop Grids in ICPC

countries, and the connection of these Grids to European DCIs.

Note that this list is by no means exhaustive. Grid projects the School of

Computing at the University of Leeds has been involved with include Distributed

Aircraft Maintenance Environment (DAME) [34], Business Resource Optimisation

for Aftermarket & Design on Engineering Networks (BROADEN) [35], Advanced

Risk Assessment & Management for Trustable Grids (AssessGrid) [36, 37],

Integration Broker for Heterogeneous Information Sources (IBHIS) [38] and A

Demand-Led Service-Based Architecture for Dependable e-Science Applications (e-

Demand) [39].

2.3 Grid Architecture

2.3.1 Early Architecture

Grid architecture organizes components into layers. Components within each

layer share common characteristics. Figure 2 is taken from [15], and describes a

high level view of the Grid architecture. The architecture contains five layers and the

following is a brief description of each one [1, 15, 16, 40].

Chapter 2 14 Resource Allocation on Grid Systems

Figure 2: Layered Grid Architecture [15].

2.3.1.1 Grid Fabric Layer

The Grid fabric layer provides access to shared resources; these resources can

be physical or logical. Notably, there is tight interdependence between functions

implemented on the fabric and the supported sharing operations, which means richer

fabric functionality enables sophisticated sharing operation. On the other hand, light

fabric simplifies the development of the Grid. At a minimum, resources should

implement introspection mechanisms that allow discovery of their structure, state,

and capability, on the one hand, and resource management mechanisms that provide

control of delivered QoS, on the other.

The shared resources can be divided into three main types of resources.

 Computational Resources, these are the physical machines that do the

processing. Four types of computational resources are suggested in [17],

and are summarised her.

o End user systems: These are common computer machines;

they have a single-functional entry and are homogeneous.

o Clusters: These are a group of linked computers, working

together closely and are most often highly homogeneous.

Clusters are usually deployed in order to improve performance

and/or availability over that of a single computer, whilst

typically being much more cost-effective than single computers

of comparable speed or availability.

Chapter 2 15 Resource Allocation on Grid Systems

o Intranets: These are large local networks of resources within a

single organisation; they are diverse and heterogeneous by

nature, and different parts of the network may be under

different administration, which results in less global knowledge

regarding the resources.

o Extranets: These are networks of Intranets. They span multiple

organisations and are more heterogeneous than Intranets and

have less global knowledge available.

 Storage Resources: These are dedicated storage machines which can hold

very large amounts of data. This may be a simple file system or a large and

complex database.

 Network Resources: These are the cable switches and routers that make

the physical network. The network is measured by capacity (bandwidth)

and latency.

2.3.1.2 Grid Connectivity Layer

This layer defines core communication and authentication protocols. The

communication protocols are to enable the exchange of data between resources.

Authentication protocols, which are built on the communication protocols, are

required to provide secure mechanisms for checking users and resources. The most

important requirements for security include:

 Single sign-on: the user should sign on only once and use as many remote

resources as desired, if permitted, without the need to sign on to each

resource.

 Delegation: the user must be able to give a program the ability to run on

her/his behalf, so that the program can access resources the user has access

to. Furthermore, the program itself could delegate a subset of its permission

to a subprogram.

 Integration with local security solution: each resource on the Grid has it

own security solutions, and provides different users with different

solutions. A Grid security solution must interoperate with these solutions

without the need for amendments.

Chapter 2 16 Resource Allocation on Grid Systems

 User-based trust relation: the user should be able to use different sites

without requiring interaction between these sites.

2.3.1.3 Grid Resource Layer

This layer is built on the protocols of the connectivity layer, and defines

protocols for secure negotiation, initiation, monitoring, control, accounting, and

payment of sharing resources. The two primary protocols on this layer are

information protocols, and management protocols.

2.3.1.4 Grid Collective Layer

This layer contains protocols and services not linked with a specific resource

but instead containing interaction across collection of resources. This can enable the

implementation of a wide variety of sharing behaviours without placing new

requirements on the resources being shared.

2.3.1.5 Grid Application Layer

This layer contains the user applications. The applications are implemented by

calling services defined at any layer.

2.3.2 Open Grid Services Architecture and Web Service Resource

Framework

The Open Grid Forum (OGF) [41] —previously known as the Global Grid

Forum (GGF)—is leading the global standardisation effort for grid computing. The

OGF is a very large community of users, developers and vendors from industry and

research, representing over 400 organisations in more than 50 countries.

Open Grid Services Architecture (OGSA) [42] was a key proposal from OGF.

OGSA defines the architecture in terms of Grid Services, aligning it with Web

Services (WS) technologies [43]. From the set of technologies in WS, the OGSA

exploits the Simple Object Access Protocol (SOAP) [44], Web Service Description

Language (WSDL) [45] and Web Service Introspection Language (WSIL) [46]. The

OGSA underlying infrastructure—the Open Grid Service Infrastructure (OGSI) [47]

—defines an extension on the use of WSDL so as to enable stateful Web services. It

defines approaches for:

 creating, naming, and managing the lifetime of instances of services;

 declaring and inspecting service state data;

Chapter 2 17 Resource Allocation on Grid Systems

 the asynchronous notification of service state change;

 representing and managing collections of service instances; and

 common handling of service invocation faults.

OGSI has attracted criticism from the WS community, stating that the OGSI is

too large and did not have separation (factoring) between functions to support

incremental adoption. It also does not work well with existing WS and Extensible

Mark-up Language (XML) [48] tooling. Furthermore, it is too object-oriented and

encapsulates the resource state in the WS to model a resource [49].

The Web Service Resource Framework (WSRF) [50] was proposed in order to

tackle the limitations of OGSI. It can be viewed as a straightforward refactoring of

functionality within the OGSI in a manner that exploits development in WS

technologies. The following are the components of WSRF specification: WS-

Resource, WS-Addressing, WS-ResourceLifetime, WS-ResourceProprieties, WS-

RenewableReferences, WS-ServiceGroup, WS-BaseFaults and WS-Notification.

2.4 Grid Middleware

Grid Middleware is a software layer that enables a seamless access to

heterogeneous environments, such that the differences between platforms, network

protocols, and administrative boundaries become completely transparent [51]. The

main requirements for Grid middleware include:

 Communication Services: Grid applications‘ communication requirements

are diverse, and the need to support network protocols and QoS parameters

is essential. The communication services role is to provide such protocols.

 Information Services: A Grid is a dynamic enticement where the location

and availability of Grid services changes rapidly. The monitoring and

discovery of resources and services is vital for effectively utilising the

resources. The information services enable the monitoring and discovery of

resources and services.

 Data Management: Data in the Grid environment is stored in a distributed

file system or distributed database. Data management services

Chapter 2 18 Resource Allocation on Grid Systems

responsibilities provide data replication and reliable file transfers so as to

enable file redundancy, indexing and transfer between sites.

 Security: Enables the delegation of credential and authentication, which

subsequently enables Grid users to invoke several Grid services from

different sites without the need for authentication at each individual site

(single sign-on).

 Resource Allocation and Management: Enables an efficient and effective

application scheduling and execution on the Grid resources. Methods for

locating, executing and terminating Grid services are provided.

Furthermore, it is important for resource management services to have an

interface with a local resource manager and a network batch queuing

system so as to enable the local usage policies.

There has been a remarkable amount of effort in the design and

implementation of middleware software for Grid computing. The following are two

of the most successful and widely used middleware.

2.4.1 Globus Toolkit

The Globus Toolkit (GT) [3, 15, 16] has emerged as the de facto standard for

Grid infrastructures. It was developed by the Argonne National Laboratory in the

late 1990s with the objective to support the development of service-oriented

distributed computing applications and infrastructures. Globus provides services and

protocols to overcome the Grid problem. With this in mind, it is up to developers to

deploy these services so as to support a range of different applications.

GT5 [52] is the most recent release, and has a set of service implementation,

three containers to host the developer code, and a set of client libraries. The most

important service is the Grid Resource Allocation and Management (GRAM), which

provides a web interface for initiating, monitoring, and managing the execution of

the application on the Grid [3, 15, 16, 53]. Other important services include data

access and movement, e.g. Grid File Transfer Protocol (GridFTP) [54], Reliable File

Transfer (RTF) [55], and Open Grid Service Architecture—Database Access and

Integration (OGSA-DAI) [56], security and credential management, e.g. MyProxy,

Delegation, and SimpleCA. The current version of GT is compliant with the OGSA

and WSRF.

Chapter 2 19 Resource Allocation on Grid Systems

2.4.2 UNICORE

UNICORE [57, 58] —Uniform Interface to Computing Resources—is a Java-

based middleware implementing a three-tier architecture comprising client, server

and target system. The client tier supports the creation, manipulation and control of

complex jobs, which can be executed on different sites running the UNICORE

middleware; the server tier is the secure entry point into a UNICORE site, which is

known as the Gateway, the role of which is to authenticate requests from the client

tier and forward them to a Network Job Supervisor (NJS) for mapping into concrete

jobs or actions which are performed by the target system; and the target system tier

provides the Target System Interface (TSI), which resides on the host to interface

with the local batch system on behalf of the user. In order to increase performance,

multiple TSIs may be started on a single host.

2.4.3 Other Middleware

Other Middleware software applied in Grid systems includes gLite [59, 60],

which was developed as part of the EDEE Middleware Re-engineering and

Integration Research Activity. China Research and the development environment

Over Wide-area Networks (CROWN) [61]. OMII-UK [62] —previously known as

Open Middleware Infrastructure Institute (OMII)—is an open-source repository of

Grid middleware components, services and tools.

2.5 Grid Service Level Agreements

Grid computing has relied on ‗best effort‘ as the guiding principal of operation

[63]. Although this approach is acceptable for non-commercial Grid environments, it

is not the case for commercial Grid environments. Commercial Grid users require

some form of commitment and assurance on top of the allocated resources, such as

performance, security, availability, latency, etc., sometimes referred to as QoS.

Commitment and assurances are specified in terms of Service Level Agreements

(SLAs). SLAs either provide some measurable capability or perform a specific task,

and thereby allow Grid users to know what is expected from a service without

requiring detailed knowledge of the service providers‘ policies [64, 65].

Service Level Agreements is outside the scope of this thesis, yet in Chapter 6

the focus is on the resource provider being able to schedule users‘ application and

Chapter 2 20 Resource Allocation on Grid Systems

accordingly guarantee their requirements and constraints. In that chapter the users‘

requirements and constraints are assumed to be known, in the real world this is

achieved through the use of SLAs. Therefore, the remainder of this section is

dedicated to SLAs.

Importantly, there are various differences between commercial and non-

commercial Grid users and providers. The distinction between the users and

providers in non-commercial Grids is difficult because, most of the time, the group

contributing resources to the Grid are also its users. On the other hand, however,

commercial Grids have a strong differentiation between providers and users.

Furthermore, commercial Grid users pay for the services, and so the expectations are

high; with this in mind, users won‘t tolerate being denied service or being

rescheduled to a different time slot.

Importantly, there have been a number of attempts to define SLAs architecture

for Grid environments. Sahai et al. [63] propose a language for unambiguous and

precise specification of SLAs, and a monitoring architecture for their evaluation.

Moreover, Leff et al. [66] propose an architecture which utilises a dynamic offload

mechanism so as to balance load on a commercial Grid provider‘s resources in order

to efficiently meet SLAs requirements. Furthermore, Ludwig et al. [67] propose a

novel SLA language for Web services. Standardising the way of establishing

agreements between a recourse provider and a resource user is crucial for the wide

adaption of SLAs. Accordingly, the following provides a description of two of the

standardisation efforts.

2.5.1 Web Service Level Agreement (WSLA)

The Web Service Level Agreement (WSLA) [68] is an SLA language to

support the specifying and monitoring of QoS guarantees within Web Services

Framework. WSLA is based on XML, and comprises flexible and extendable XML

Schema and a runtime architecture containing several SLA monitoring services.

WSLA enables service users and service providers to unambiguously define an

SLA, specify the SLA parameters and metrics, as well as the way in which the

metrics are to be measured, and accordingly relate them to managed resource

instrumentations. The elements of WSLA are Parties, Service Description, and

Obligation. Notably, the parties section consists of a description of the parties

involved in an SLA. The service description section specifies the characteristics of

Chapter 2 21 Resource Allocation on Grid Systems

the service and its observable parameters. Finally, the obligation section defines

various guarantees and constraints that may be imposed on the SLA parameters.

2.5.2 WS-Agreement

The Grid Resource Allocation and Agreement Protocol Working Group

(GRAAP-WG) [69] —which is a part of OGF—proposed the Web Services

Agreement specification (WS-Agreement) [70] in order to establish an agreement

between two parties using an extendable XML language. The specification includes

three parts: a schema for specifying an agreement, a schema for specifying an

agreement template, and a set of port types and operations for managing agreement

lifecycle. For compatibility and complexity, the WS-Agreement only defines the

general structure of the agreement, which makes the implementation of WS-

Agreement open; this allows the defining of domain-specific extensions or specific

languages for expressing conditions [71]. Owing to the fact that the implementation

of WS-Agreement is open, the Creation and Monitoring of Agreements (Cremona)

[72] provides a layered agreement management architecture, which defines

mechanisms to implement WS-Agreement interactions and connects them to the

service provider system and the user system. It also implements the WS-Agreement

interfaces, and provides management functionality for both the agreement templates

and instances.

2.6 Resource Management

Grid resources are distributed on the globe with different administrative

domains and geographic locations. In order for the Grid to provide coordinate-access

to resources, regardless of the heterogeneous nature of the resources or their

geographic locations, a number of challenging problems must be countered [53], as

listed below:

 Site autonomy: refers to the fact that resources are owned and operated by

different organisations, in different administrative domains.

 Heterogeneous substrate: derived from the site autonomy problem, and

refers to the fact that different sites can use different local resource

management systems. Notably, even if the same resource management is

Chapter 2 22 Resource Allocation on Grid Systems

used on more than one site, a different configuration leads to different

functionality.

 Policy extensibility: as Grid resources are drawn from a wide range of

domains—each with its own requirements—a resource management system

must support the regular development of new domain-specific management

structures.

 Co-allocation: some Grid jobs have resource requirements which cannot

be satisfied using a single site. These requirements might be satisfied using

resources, simultaneously, at several different sites. Owing to site

autonomy and the possibility of resource failure during allocation, there is

the need for specialised mechanisms which are able to collect resources

information and submit jobs to multiple resources to guarantee the jobs

requirements.

 Online control: a type of negotiation might be required in order to adapt

application requirements to resource availability—especially when

requirements and resource characteristics change during run time.

Resource management systems for distributed computing can be divided into

two classes [53]:

 Network batch queuing systems (NBQS): These systems focus on

resource management issues for computers in a network; they do not

address policy extensibility or provide limited support for online control

and co-allocation; and

 Wide-area scheduling systems: Resource management on these systems is

performed through mapping application components to resources and

scheduling their execution. These systems do not support heterogeneous

substrates, site autonomy or co-allocation.

NBQS handles jobs by allocating resources from a networked pool of

computers. Some examples of these systems include Load-Sharing Facility (LSF)

[73], Portable Batch System (PBS) [74], and LoadLeveler [75]. The user of these

systems characterises the requirements of the job to run either explicitly through a

kind of job control language or implicitly through selecting which queue to submit

the job to. Network batch queuing systems are designed for single administrative

Chapter 2 23 Resource Allocation on Grid Systems

domains, therefore making the site autonomy difficult to achieve. Furthermore, these

systems assume they are the only resource management system in use, consequently

further complicating the heterogeneous substrate problem. Policy extensibility is

limited in these systems, and the end user has little control regarding how his/her

requirement is interpreted.

Wide-area scheduling systems are usually distributed over several sites, and

are more adoptable than NBQS system. Two popular wide-area scheduling systems

are Legion [76, 77], which become Avaki commercial product, and Condor [78, 79].

Grid resource management systems do not have full control over resources.

Resources exist in different administrative domains; they are heterogeneous and

operate under different policies. As a result, the aforementioned systems, whilst

addressing some of the difficulties in Grid resource management, do not cover all

the issues [14]. The Grid Resource Allocation and Management (GRAM)

implemented within Globus Toolkit provides a basic solution to the resource

management problem. Moreover, GRAM resides on top of the local resource

manager systems (LRM), and consists of several different components, which work

together to authenticate users, manage jobs, interface with the LRM, and stage files.

These components are described below.

 Gatekeeper: the gatekeeper service is responsible for the authentication

and authorisation of the user‘s request, and also for starting up the job

manager service. One instance of this daemon is created for each job

submission.

 Job Manager: the job manager service is responsible for processing job

requests and coordinating file transfers. One long-lived instance of this

daemon is created for each LRM and one short-lived instance for each job.

 Job Manager Script: the job manager script process is responsible for

interacting with LRM via the LRM adaptor.

 Job Manager LRM Adaptor: the LRM adaptor interacts directly with

LRM, and is loaded into the job manager script component upon start-up.

 Scheduler Event Generator: the responsibility of the scheduler event

generator process is parsing the LRM-specific data related to the job start-

Chapter 2 24 Resource Allocation on Grid Systems

up, execution, and termination into a general format independent from the

LRM.

 Scheduler Event Generator LRM Module: the scheduler event generator

LRM module process the LRM state to produce the event which the

scheduler event generator writes into event log.

 GRAM Audit Database: the job manager can be configured to write audit

into files, and the GRAM audit database program loads these file into a

database.

Three stages are required in the process of Grid resource management, namely

resource discovery, resource scheduling, and job execution and monitoring [80]. The

Grid resource management system must be able to first discover available resources.

Subsequently, it will select candidate resources for the job to be executed on. This

selection is depending on the job requirements and the information gathered by the

resource manager. Finally, the job is submitted to the local resource manager for

execution and monitoring [81]. A taxonomy of Grid Resource Management Systems

(RMS) can be found in [19].

In this thesis the focus is on scheduling (chapter 6), yet scheduling hugely

depends on information gathered by the other stages of resource management,

namely resource discovery and monitoring. Therefore, section 2.6.1 presents an

overview of resource discovery. Section 2.6.2 provides a detailed overview of Grid

scheduling. The 2.6.2 section is further divided into three subsections, type of

scheduling in Grid systems, predicting execution time and scheduling algorithms.

The algorithm developed in this thesis (Section 6.4) assumes the knowledge of

execution time. Therefore, methods for predicting execution time are showcased.

Also a survey of scheduling algorithms and their limitation is provided. Section

2.6.3 presents monitoring as a requirement for job scheduling within Grid systems.

2.6.1 Resource Discovery

The discovery of Grid resources is a very challenging problem owing to the

diversity, large number, and dynamic behaviour of resources in the Grid. Grid

information services [82] provide a mechanism for the discovery of distributed

resources. The Monitoring and Discovery System (MDS) [83]—which is a part of

the Globus Toolkit—is a classic example of information services. Notably, MDS has

Chapter 2 25 Resource Allocation on Grid Systems

undergone several major changes since it was first introduced. The latest MDS

release is a suite of web services concerned with monitoring and discovering

resources and services on Grids. It has two WSRF-based services: an index service

and a trigger service. The former collects information from various sources and

publishes that data as resource properties. In this instance, Grid users utilise the

standard WSRF resource property query and subscription/notification interfaces in

order to retrieve the resources information, so as to aid them in selecting suitable

resources. Moreover, resource property entries in the index have a limited life-span,

and will be removed if it is not renewed again before it expires. The design of

indexes facilitates a hierarchical model, and thereby enables indexes to register with

each other to aggregate data at several levels.

Information services mainly use centralised or static hierarchical models to

discover resources. Other research works considered decentralised service discovery

mechanisms—especially peer-to-peer (P2P) techniques [84, 85]. The benefits

associated with using P2P systems include load-balancing, self-organisation,

adaptation, and fault-tolerance, although P2P systems also have their own

limitations. Essentially, they offer limited data management facilities, usually focus

only on a single functionality, and offer different levels of reliability for individual

peers.

2.6.2 Scheduling

Scheduling is assigning appropriate resources to incoming jobs. The

assignment of resources can be carried out in a blind way; however, it is more

profitable to use more advance scheduling technique. Thus, a Grid scheduler must

automatically and efficiently find the most appropriate assignment of resources.

The scheduling problem is not limited to Grid systems. In fact, it is one of the

most studied problems in the operation and optimisation research communities.

However, in the case of Grid systems, the scheduling problem is different and more

challenging. According to Xhafa & Abraham [86], the characteristics that make the

Grid scheduling problem challenging are the following:

 Dynamic structure of the Grid: Resources in a Grid system cross

different administrative domains, which makes the resources control very

difficult. Furthermore, the resources join or leave the Grid system in an

Chapter 2 26 Resource Allocation on Grid Systems

unpredictable way; this could be owing to losing connection or the

resources administrator switching off the resources, disconnecting the

resources from the Grid system in order to carry out other important

internal work, or even updating the resources operating system, etc.

 High heterogeneity of resources: In Grid systems, the resources are very

heterogeneous and diverse, ranging from personal digital assistants PDAs,

desktops, laptops, clusters, supercomputers and even special computational

devices.

 High heterogeneity of jobs: Jobs arriving to any Grid system are

heterogeneous, and could adopt computing-intensive or data-intensive

application.

 High heterogeneity of interconnecting networks: Grid resources are

connected together with different interconnection networks. Network

performance (e.g. transmission speed, cost, latency, etc.) are all very

important in the overall performance of Grid systems.

 Existence of local scheduler: Grid systems cross different administrative

domains (e.g. universities, enterprises, research institutions, etc.), and most

of these administrative domains have a local scheduler to run the Grid and

local application. Therefore, a Grid scheduler must have the ability to

interact with and accordingly use the available local schedulers.

 Existence of local policies on resources: Again, owing to the different

administrative domains in the Grid, one cannot assume full control over the

resources. Each administrative domain has it own set of policies that must

be taken into account.

 Jobs resource requirements: Current schedulers assume full availability

and compatibility of resources; however, this is not the case in real

situations, as many restrictions and incompatibilities can arise from job and

resource specifications.

 The large scale of the Grid system: One of the benefits of the Grid

systems is the scalability and the ability to tackle large computational

problems which cannot be solved using local resources. Therefore, Grid

Chapter 2 27 Resource Allocation on Grid Systems

schedulers are required to effectively manage resources in order to achieve

scalability.

 Security: Security is fundamental in the case of Grid scheduling. This may

refer to either the job or application security requirements, or the Grid

resource security requirements. This characteristic is non-existing in

classical scheduling.

2.6.2.1 Type of Scheduling in Grid Systems

Scheduling in Grid systems depends on two factors: the job requirements and

the Grid environment characteristics. Different jobs could have different scheduling

needs, such as batch or immediate scheduling. Furthermore, the Grid environments

impose restrictions, such as the use of local scheduler. With this in mind, the

following are the main types of scheduling in Grid environments and a scheduler

might fit into more than one type.

 Independent Scheduling: Although much computer-science research has

been carried out in direct relation to parallel processing, sequential jobs are

still predominant in the real world of Grid Computing, and a large fraction

of the jobs in the workloads imposed on such systems is owing to

sequential applications—often submitted in the form of Bags of Tasks

(BoT) [87]. The reasons behind this observable fact include the relatively

high network latencies, the complexities of parallel programming models,

and the nature of the computational work. BoT jobs are composed of

sequential independent tasks where there is no communication or

dependency amongst tasks. Examples of Bag of Tasks applications include

Monte Carlo simulations, massive searches (such as key-breaking), image

manipulation applications, data-mining algorithms, and parameter-sweep

applications. Tasks in theses applications are scheduled independently.

 Workflows Scheduling: Solving many complex problems—especially e-

Science applications—requires the combination and orchestration of Grid

resources, such as computational devices, data, applications and scientific

instruments. This arises owing to the control and data dependencies; these

jobs are known as Grid workflows. The Grid workflows have many

advantages, such as building dynamic applications which orchestrate and

Chapter 2 28 Resource Allocation on Grid Systems

utilise distributed resources, spanning the execution through multiple

administrative domains so as to increase the processing capacity, and

integrating different teams involved in managing different parts of the

workflow [88].

 Centralised and Decentralised Scheduling: the difference between

centralised and decentralised scheduling is in the control and the knowledge

of the overall Grid resources. In the case of centralised scheduling, the

scheduler has full control over resources, and the knowledge of the system

is available by monitoring the resources state; thus, it is relatively easy to

achieve efficient scheduling. The drawbacks of the centralised approach

include limited scalability, which makes it inappropriate for very large-

scale Grids, and the single point of failure. On the other hand, however, the

decentralised scheduler has less control over the resources and much less

knowledge, and therefore relies on local scheduler. The decentralised

scheduler overcomes the drawbacks of the centralised scheduler, yet the

decentralised scheduler could be less efficient than the centralised

scheduler because the decentralised scheduler has less resources

knowledge.

 Immediate and Batch Mode Scheduling: In immediate mode scheduling,

the job is scheduled immediately after it arrives at the system. In batch

mode scheduling, jobs are grouped together in batches and accordingly

scheduled as a group. Importantly, batch mode scheduling takes better

advantage of jobs and resources characteristics; therefore, batch mode

scheduling achieves better resource utilisation by scheduling a batch of jobs

rather than a single job. Immediate mode scheduling advantages can be

seen in commercial Grid systems, when the Grid user requires an

immediate answer to his/her SLA request.

 Queuing and Planning Base Scheduling In queuing-based scheduling,

jobs are queued according to the scheduler policies, and the job begins

executing when it arrives at the head of the queue and sufficient resources

become available. Examples of queuing-based scheduling include LSF,

PBS and Oracle Grid Engine [89] —previously known as Sun Grid Engine

(SGE). On the other hand, planning-based scheduling requires the advanced

Chapter 2 29 Resource Allocation on Grid Systems

knowledge of the job execution time, and keeps track of the resources

available, accordingly allocating a precise resource timeslot to every job.

Examples of planning-based scheduler include Cluster Computing Software

(CCS) [90]. Queuing-based schedulers follow the best-effort approach, and

so there are no guarantees when a job will begin to execute. Planning-based

schedulers do not suffer from this drawback as a job will be executed

within a reserved slot, i.e. independent from other jobs. Queuing-based

approaches are effective and easy to implement, although they produce less

efficient scheduling than the planning-based approach, and they are also not

suitable for immediate scheduling, which makes them inappropriate for

commercial Grid systems. For a queuing-based scheduler to overcome

these drawbacks, advance resource reservation is required. By using

resource reservation, the queuing-based scheduler works as a planning-

based one. One of the first attempts made in resource reservation was that

of Maui [91], which is an external local resource manager, meaning it

works in conjunction with a site‘s existing resource manager. It operates

with all major local resource managers, such as PBS, LFS and

LoadLeveller to extend their capabilities and subsequently enhance their

scheduling effectiveness. Today, most of the queuing-based schedulers

have advanced reservation capabilities, such as PBS and Oracle Grid

Engine.

 System-Centric and User-Centric Scheduling: System-centric is a

traditional scheduling approach which is commonly applied in single

administrative domains by attempts to optimise system-wide measures of

performance. System-centric Grid resource management systems, such as

Legion [77] and Condor [78], adopt a conventional strategy where

scheduling algorithms decide which jobs are to be executed at which

resources based on functions driven by system-centric parameters. They

aim to enhance the system throughput and utilisation, and to thereby

complete execution at the earliest possible time. Notably, they do not take

resource costs into consideration, which therefore means that the value of

processing applications at any time is treated the same [92]. On the other

hand, user-centric approaches concentrate on users‘ requirements by

delivering maximum utility to the users of the system based on their QoS

Chapter 2 30 Resource Allocation on Grid Systems

requirements. For example, a guarantee of certain QoS based on the

attributes that the user finds important, such as the deadline by which the

job has to be completed. Enforcing the desired QoS requires a system of

rewards and penalties; thus, it is common to find user-centric approaches

driven by economic principles [92].

2.6.2.2 Predicting Execution Time

In the previous section, both planning-based scheduling and queuing-based

scheduling with reservation assume the knowledge of all computational activities,

such as required resources and execution time. This knowledge is assumed to be

available from the resource user. This assumption is invalid, owing to the fact that

most users do not have the time and experience to establish the required

computational activities or otherwise make an accurate prediction about the required

execution time. When users are asked to predict their application execution time,

they tend to overestimate, which subsequently lowers the utilisation of the Grid

resources. Systems which automate the prediction of the execution time will help the

scheduling of jobs and the utilisation of Grid resources. Importantly, predicting

execution time is an appealing subject which has been pursued by several studies

[35, 93-101]. The approaches applied in such studies fall into two categories:

learning-based approach or code-based approach.

The learning-based approach for predicting executing time assumes that

applications with similar characteristics have similar runtimes; therefore, historical

information from previous application runs are used in order to predict the execution

time of future applications. Moreover, different learning algorithms can be applied

on the historical information in order to predict the execution time. Kapadia et al.

[94] evaluate the use of three local learning algorithms: nearest-neighbour,

weighted-average and locally-weighted polynomial regression; they subsequently

found that the simple nearest-neighbour algorithm outperforms the more complex

algorithms. Furthermore, Dushay et al. [95] evaluate the use of three algorithms:

running average, single last observation, and low-pass filter; they accordingly

reached the same conclusion that simple prediction methods performed as well as

more complex methods, and that prediction accuracy was closely related to data

consistency. Djemame and Haji [35] evaluate the use of the three prediction

algorithms presented in [95] so as to predict future run-time for the BROADEN

Chapter 2 31 Resource Allocation on Grid Systems

system. The low-pass filter algorithm outperforms the other two with the last

observation algorithm being slightly less accurate. A recent study by Matsunaga and

Fortes [98] evaluate six different learning algorithms: k-nearest neighbour, linear

regression, decision table, Radial Basis Function network, Predicting Query

Runtime and Support Vector Machine. They established that different algorithms

perform better in different scenarios, and considering different configurations and

algorithms is key to improving the quality of the prediction.

The code-based approach uses performance models reflecting application

source code to provide performance estimates. An example of code-based prediction

is available in the Performance Analysis and Characterisation Environment (PACE)

[93]. PACE provides predictive information regarding execution time, system

design and sizing, scalability and parallelisation strategies. Moreover, PACE

analyses performance models, constructed from a performance language known as

CHIP
3
S, in order to achieve time-prediction. Other works include that by Brandolese

et al. [96], which presents a methodology for the prediction of application execution

time utilising a mathematical model derived from the source code.

Both learning and code-based approaches have advantages and disadvantages.

The advantages of one provide the disadvantages of the other, and vice versa. In the

case of the learning-based approach, predictions can only be made if historical

information is available. Furthermore, historical information is crucial for the

prediction process, and without consistence data, the execution time prediction will

not be accurate. Another issue concerns the long time it takes to predict the

execution time. On the other hand, code-based approaches do not depend on

historical information, and the time that it takes to predict the execution time is

minimal. However, there is the need to access the application source code, which is

not always available, for example, because of copy writes. Moreover, application

source code might need to be reengineered in order to be modelled.

2.6.2.3 Scheduling Algorithms

There exist many scheduling algorithms, and considering all of them will be a

very long process; therefore, in this thesis, we consider only algorithms which

address either BoT scheduling or scheduling with constraints. The reason for

selecting BoT is that BoT jobs account for up to 96% of the CPU time consumed in

Grid systems [87].

Chapter 2 32 Resource Allocation on Grid Systems

Maheswaran et al. [102] studied five immediate scheduling algorithms and

three batch-scheduling algorithms for allocating BoT jobs to heterogeneous

resources. The main objective of the algorithms is the maximisation of the

throughput, with no requirements attached to BoT jobs, such as deadlines or costs.

Casanova et al. [103] considered three heuristic algorithms from [102, 104] for

scheduling parameter sweep applications, also known as BoT applications (see

Independent Scheduling in 2.6.2.1), and accordingly proposed an extension to one of

the algorithms. The objective of the research is to take advantage of file-sharing so

as to improve the performance of the algorithms. The aim of the algorithms is also to

maximise the throughput and, as per the prior work, job constraints are not

addressed.

Berman et al. [105] considered scheduling algorithms used in the Application

Level Scheduling (AppLeS) project [106]. The main objective of the algorithms is to

enhance the system throughput and utilisation; thus, job constraints are also not

addressed.

Cirne et al. [107] propose the Workqueue with Replication (WQR) algorithm

for BoT-scheduling. The algorithm is the same as a standard queuing-based

scheduling algorithm; the only difference is that, when there are no BoT jobs in the

queue, idle resources begin to execute a replica of an unfinished BoT job. The first

replica to complete is the valid execution, whilst the other replicas are cancelled.

The WQR was introduced in order to improve performance when information

relating to the resources and BoT are not available. Job constraints are not addressed

in the algorithm.

Lee and Zomaya [108] proposed the Multiple Queues with Duplication (MQD)

algorithm for scheduling BoT jobs. The algorithm takes into account the recent

workload pattern of resources in order to minimise the BoT makespan and to

thereby maximise resource utilisation. Lee and Zomaya [109] also propose the

Shared-Input-data-based Listing (SIL) algorithm, the main objective of which is to

minimise data transfer, which will result in shortening the makespan of the BoT.

Moreover, job constraints are not considered in both algorithms.

OurGrid is a middleware which facilitates the creation of P2P computational

Grids [110]. Its aim is to speed-up the execution of BoT jobs. Notably, two different

scheduling algorithms are proposed, namely Transparent Allocation Strategy [111],

Chapter 2 33 Resource Allocation on Grid Systems

which assigns jobs to idle resources, and Explicit Allocation Strategy [112], which

assigns jobs to resources in order to reduce the turnaround time. Both algorithms do

not take the job constraints into account, but merely focus on increasing resource

utilisation. The algorithms have a simple approach for resource failure, which is re-

executing the tasks affected by such failure.

The above algorithms are mainly system-centric. Their objectives are

maximum throughput and utilisation. User-centric algorithms will address job

constraints through the use of execution time-prediction. The benefits achieved in

using user-centric rather than system-centric algorithms include the ability to

address QoS, to optimise jobs requirements, to increase the performance, and to

better utilise Grid resources so as to achieve QoS requirements.

Buyya et al. [113] consider scheduling parameter-sweep applications. Whilst

the scheduling of these applications seems simple, complexities arise when users

apply various constraints, such as deadline, total cost and quality of services. Four

scheduling algorithms are proposed in an attempt to address only two constraints—

deadline and budget. The scheduling algorithms are:

1. Time minimisation with limited budget (time-optimisation),

2. Time minimisation with unlimited budget,

3. Cost minimisation limited by a deadline (cost-optimisation), and

4. No minimisation, limited by a deadline and budget (no-optimisation).

It can be seen that Algorithm 2 is the same as Algorithm 1, but with very large

budget and the algorithms became three. These algorithms were implemented in the

Nimrod-G [114, 115] Grid resource broker and evaluated in [116]. The scheduling

algorithms proposed—even with minimisation as a name—attempted to find a

schedule which satisfies user constraints; however, it did not find a good

minimisation—optimal or near-optimal—to better utilise the resources. Another

limitation for such algorithms is that the minimisation only takes one constraint at a

time and therefore cannot, for example, minimise time whilst simultaneously

keeping costs at a minimum. Therefore, such scheduling algorithms are not

sufficient enough, and better optimisation algorithms are required for this problem.

Buyya et al. [117] extended the aforementioned work by proposing a new

scheduling algorithm for cost-time optimisation. This algorithm builds on the cost-

Chapter 2 34 Resource Allocation on Grid Systems

optimisation and time-optimisation scheduling algorithms, and takes into account

the two constraints of time and budget. The cost-time optimisation algorithm is

implemented within a simulator using GridSim toolkit [118]. Importantly, this

algorithm has several limitations: firstly, the algorithm was only evaluated through a

comparison with the cost-optimisation algorithm, which has its limitations;

secondly, the algorithm does not consider the quality of the minimisation since it

does not seek to establish an optimal or near-optimal solution; and finally, in

arranging the resources, the algorithm takes into account only the cost of the

resources—and only if two resources have the same cost is the resource performance

considered.

Kumar et al. [119] mathematically modelled the cost-optimisation scheduling

problem and state that it is not only strongly NP-hard, but is also non-approximable.

A batch-scheduling algorithm is proposed for assigning BoT jobs to resources,

minimising the cost and satisfying the user deadline constraint. A batch is made of

BoT jobs, each with a deadline constraint and a penalty fee to be paid if it is not

scheduled. The scheduling algorithm job is required to minimise the cost of

allocating jobs to resources by maximising the number of jobs scheduled and

minimising the penalty fee whilst also satisfying the deadline constraint. An optimal

solution for this problem is feasible yet, for large problem instances, it will fail to

provide a solution in a reasonable amount of time. Therefore, Kumar et al. [119]

propose an efficient heuristic, known as Highest Rank Earliest Deadline (HRED),

which is able to establish a near-optimal solution for a wide variety of problem

instances very quickly. This algorithm has several limitations: firstly, the algorithm

only considers optimising the costs, and it takes the deadline as the only constraint.

Moreover, it does not address other problems, such as deadline optimisation.

Secondly, it is a batch-scheduling algorithm which limits its use in the commercial

Grid environments since commercial Grid users‘ require immediate response to their

SLA, and an immediate scheduling algorithm is preferable. Finally, it is not a

realistic scenario for a Grid resource provider to: (1) commit to all jobs; (2) run the

batch-scheduling algorithm; and (3) pay the penalty fee for non-scheduled jobs. A

more realistic scenario is: the Grid resource provider only commits to jobs that can

be fulfilled and rejects the others without any penalty fee.

Chapter 2 35 Resource Allocation on Grid Systems

Macías et al. [120] propose an Economically Enhanced Resource Manager

(EERM) for resource-provisioning based on economic models. The EERM is part of

the Self-Organising ICT Resource Management (SORMA) project [121], which

addresses the development of methods and tools for an efficient market-based

allocation of resources through a self-organising resource management system. The

overall aim of EERM is to isolate the SORMA economic layer from the Grid

technical layer and thereby achieve maximum economic profit and resource

utilisation by orchestrating and managing both economic and technical goals. EERM

exists at each resource provider‘s site, and is designed to interact with a range of

execution platforms (e.g. Condor, Oracle Grid Engine, or Globus GRAM). The

scheduling algorithm in EERM merely focuses on enforcing the SLA requirements

without any degree of optimisation. The current core SLA requirements include:

9. The number of CPUs, architecture and speed;

10. The type of Operating System, kernel version and shared libraries;

11. The Total free memory physical or virtual;

12. The total free local/network disk.

The EERM scheduling algorithm only enforces the SAL requirements, and

does not have the ability to decide which jobs to accept or reject. A possible

enhancement to the scheduling algorithm is to be able to optimise user constraints,

such as cost or time, whilst enforcing the SLA requirements.

Menascé and Casalicchio [122] propose a simple QoS model for Grid-

scheduling. Two constraints are time and budget, and three scheduling algorithms

are proposed. The first scheduling algorithm minimises the job makespan without

any consideration to cost; the second algorithm minimises the job makespan and

satisfies the cost constraint; and the final algorithm minimises the cost and satisfies

the time constraint. A limitation of this work is that it cannot be applied in real Grid

environments owing to the assumption about the tasks: the work assumes a task can

be divided and executed on more than one resource without any overhead, which is

not the case in the real world. Another limitation is that the algorithms do not find an

optimal solution—even though, under the previous assumption, finding an optimal

solution in a reasonable amount of time is feasible.

Chapter 2 36 Resource Allocation on Grid Systems

Kurowski et al. [123] propose a new method for multiuser, multi-criteria job-

scheduling in Grid environments. The work considers two constraints—time and

cost—and users are able to express these as soft constraints as opposed to hard

constraints. A batch-scheduling algorithm is used to establish a fair schedule of jobs

submitted by multiple users; notably, schedule fairness is measured by user

satisfaction. In a single-user scenario, the scheduler finds the solution that

maximises the user satisfaction. In a multi-user scenario, the scheduler must find one

solution which ensures a high satisfaction level for all users. Thus, the scheduling

algorithm is more focused on modelling users‘ preferences and the evaluation of the

extent to which a given schedule is satisfactory for each user, rather than optimising

user constraints, such as minimising the cost or the makespan.

The user-centric scheduling algorithms above only consider the time and cost,

and assume the resource price is a function of performance. A more expensive

resource is always faster than a less expensive one; in the real world, this

assumption is invalid. Ultimately, the reliability of the resource play a central part in

the price: a more reliable resource is more expensive than a less reliable, even if the

latter is faster. The reliability of a resource can be expressed as the resource risk of

failure, and should be considered when scheduling. Unlike the above algorithms, the

algorithm proposed in this thesis (Section 6.4) considers cost, time and risk of

failure. Efficient heuristic is proposed in order to establish near-optimal solution in a

reasonable amount of time.

2.6.3 Monitoring

Grid information services play a central role in Grid resources discovery (see

 2.6.1). In order to fulfil this role, information services must collect information

regarding the past and current status of Grid resources, which is known as

monitoring. Data monitoring is also used in scheduling, performance analysis,

performance tuning, performance prediction, optimisation of Grid systems, and

many more; therefore, monitoring systems are of great importance since incorrect or

out-dated resources information will hinder the Grid usage. Monitoring systems,

according to Tierney et al. [124], should satisfy five requirements: low latency data

transmission, high data rate, minimal measurement overhead, security, and scalable.

The MDS is not only used to discover resources in the Grid, but also to

monitor these resources. It provides standard interfaces to query WSRF services for

Chapter 2 37 Resource Allocation on Grid Systems

resource property information. The MDS is not a monitoring system on its own, but

rather provides interface connections to local monitoring systems and publishes

summary data using standard interfaces. The Network Weather Services (NWS)

[125] is a monitoring system that provides a short-term performance forecast based

on historical information. NetLogger [126, 127] is another monitoring system that

provides tools for generating event logs that capture resource and application

information, as well as a Java interface to manage the large amount of logged data,

and tools to visualise the data. NetLogger has four main monitoring components: the

application instrumentation, the monitoring activation service, the monitoring event

receiver, and the archive feeder. Ganglia [128] is a distributed monitoring system

which can be used to monitor a single cluster or a federation of clusters through the

use of point-to-point connection amongst different clusters. Ganglia was proposed

with the objective to achieve low-node overheads, high concurrency and high

scalability. Autopilot [129, 130] is an adaptive resource management system for

dynamic application rather than a monitoring system, yet it uses sensors which

capture application and system performance data. Autopilot sensors act as a

monitoring system, recording data in a buffer before transmitting it. The data

transmit can be on-demand, periodic, event-driven or conditional. For more

information on Grid monitoring see [131].

2.7 Summary

This chapter has considered Grid computing and discussed the various types of

Grid systems and applications running on them. The architecture facilitating the

creation of such systems is presented, in addition to examples of projects which are

implemented as Grid systems are given. Grid Resource Management activities—

namely resource discovery, resource scheduling, and job execution and

monitoring—are presented with a focus on resource scheduling. A survey of

scheduling algorithms has been discussed alongside their benefits and limitations.

Resource discovery, monitoring and job execution time prediction are also presented

as requirements for job scheduling within Grid systems.

38

3 Chapter 3

Risk Assessment and Management

This chapter examines the definition of ‗risk‘ in Section 3.1. Section 3.2

introduces risk analysis and approaches used. Section 3.3 defines risk management

in general, and lists the three steps required, namely risk identification, risk

assessment and risk response or treatment. Section 3.4 defines risk management in

Grid computing, and provides a survey of models and techniques adopted in order to

identify and assess risk. Finally, Section 3.5 summaries the chapter.

3.1 Definitions of Risk

There are several definitions of risk: for example, ‗the probability and

magnitude of a loss, disaster, or other undesirable event‘ [132] or ‗a measure of the

potential loss occurring due to natural or human activities‘ [9]. Regardless of the

wording used to define the term, risk is nevertheless related to future events and

their consequences. Notably, there is uncertainty associated with events and their

consequences. The events uncertainty can be expressed by means of probability or

likelihood, based on background knowledge [133]. It is important to distinguish

between risk and opportunity:

 Risk is associated with events that, if occur, would have a negative

consequences such as financial loss;

 Opportunity is associated with events that, if they occur, will have

positive consequences.

Another important term linked to risk is ‗hazard‘. Hazard typically refers to the

source of the risk, i.e. risk is created by a hazard. For example, a toxic gas that is a

hazard to human health does not represent a risk unless humans are exposed to it.

Chapter 3 39 Risk Assessment and Management

3.2 Risk Analysis

Risk analysis is the process of characterising and managing the potential

events which may lead to negative consequences or losses. As with the definition of

risk, different disciplines often categorise risk differently. Such categorisation can be

carried out based on the events causing the risk or the consequences of such events.

However, Modarres [9] categorises the risk into five broad categories: health,

security, safety, financial and environmental.

Generally, there are three types of risk analysis: quantitative, qualitative and a

combination of the two.

3.2.1 Quantitative Risk Analysis

The quantitative risk analysis attempts to estimate the risk in the form of the

frequency of events and the magnitude of the losses or consequences. In this

context, the ‗uncertainty‘ associated with the estimation of the frequency of the

occurrence of events and their consequences are characterised by using the

probability concept.

Quantitative risk analysis is the preferred method when sufficient filed data,

test data or other evidences exist so as to estimate the probability of events and

magnitude of losses; however, quantitative risk analysis is complicated, time-

consuming and expensive to conduct [9, 134, 135].

 Quantitative risk analysis techniques includes: discriminate function analysis,

Bayesian analysis, decision tree analysis, factor analysis, neural nets, risk matrix,

risk register, and Mont Carlo analysis [8, 136, 137].

3.2.2 Qualitative Risk Analysis

Qualitative risk analysis is the most widely applied method, simply because it

is simple and quick to perform. In this regard, the risk is estimated using a linguistic

scale, such as low, medium and high. The frequency of events is measured by the

likelihood of occurrence. In this type of analysis, a matrix is formed, which

characterises the risk in the form of the likelihood of events versus the potential

magnitude of losses in qualitative scale. This type of analysis does not rely on actual

data and probability treatment of such data; accordingly, it is far simpler to use and

Chapter 3 40 Risk Assessment and Management

understand than the quantitative risk analysis, although it is extremely subjective [9,

134, 135].

Qualitative risk analysis techniques include brainstorming, assumption

analysis, interviews, hazard and operability studies, and risk mapping. For a

complete list, see [138].

3.2.3 Mixed Risk Analysis

Mixed risk analysis adopts a combination of qualitative and quantitative

analyses. This mix can occur in two ways: either the frequency of an event is

measured qualitatively, but the consequences are measured quantitatively or vice

versa; or both the frequency of an event and the consequences are measured using

quantitative methods, but the policy setting and decision-making are reliant on

qualitative methods [9].

Figure 3: Risk Management Steps [139].

3.3 Risk Management

Risk management is the process that enables the identification, assessment,

planning and control of risk [138]. Thus, the risk management process aim is

Chapter 3 41 Risk Assessment and Management

threefold: it must identify the source of uncertainty, assess the frequency of events

occurrence and the consequences of those events, and respond to the risk in an

appropriate and effective manner. The risk management is an iterative process and

the identified risks are monitored throughout the lifecycle. Figure 3 shows the steps

of the risk management process.

3.3.1 Risk Identification

The purpose of risk identification is to identify which risks are likely to occur,

where risks may arise, what may be done in response to such risks, and what may go

wrong with the responses. Both historical and current information are fundamental

in the risk identification phase, and therefore should be analysed first. The

identification of risk starts by analysing either the source of the problem or the

problem itself. Importantly, sources could be internal, such as stakeholders or

employees, or external, such as cultural differences or natural disasters. Problem

analysis, on the other hand, identifies events or threats, such as losing money or

damage repetitions which are not specific for one source but which ultimately arise

from one or more sources. Essentially, there are a number of different methods for

risk identification. The most commonly used risk identification methods are [138]:

 Objective-Based Risk Identification: Organisations and project teams

have well defined objectives. They define risk as an event that may

endanger achieving—partly or completely—one of their objectives.

 Scenario-Based Risk Identification: Different scenarios are created to

represent alternative ways to achieve objective, and to accordingly analyse

the interaction of forces in the environment. Any event that triggers an

undesired scenario is considered a risk.

 Taxonomy-Based Risk Identification: This method presents a breakdown

of possible risk sources according to certain criteria, and their degrees of

importance. Based on the taxonomy and knowledge of best practices, a

questionnaire is issued and the results are compiled [140].

 Checklists: In several industries, there are lists available with known risks.

Each item in the list represents a threat, which can then be checked as to

whether or not it applies in a particular situation. The lists take the form of

either questions to be answered or a list of topics to be considered.

Chapter 3 42 Risk Assessment and Management

 Risk Registers: A risk register is a document or database that records each

risk related to a project or assets. Risk registers from previous projects can

be used to identify risk in the same way checklists are used.

3.3.2 Risk Assessment

Risk assessment is a set of techniques applied in order to investigate the

probability of an event, and to thereby assess the effects/consequences of such [136].

Risk assessment is the most important phase in risk management: if the risk

assessment method is not conducted appropriately, the risk management will then

fail to achieve its objectives.

Selecting an assessment technique is not a straightforward task. According to

the authors of [134, 135, 138], the selection of a technique viewed as most suitable

for application on a process should be determined after considering the following:

 The availability of resources for analysis,

 the size and complexity of the process which will be analysed,

 the phase in which the risk assessment will be considered in the

process lifecycle, and

 the availability of information.

The authors also emphasise the importance of the data considered in the risk

assessment. The data considered should be accurate, adequate, relevant, coherent,

unbiased and valid.

Regardless of the analytical techniques applied in the risk assessment, in order

for the risk assessment process to be effective, various characteristics must be taken

into account. According to Freeman et al. [141], the risk analysis must be:

 Timely: The process produces the best available data in an accepted time

range.

 Cost-Effective: The cost of accomplishing a risk assessment is lower than

the benefit gained from the results.

 Complete: The risk assessment must address all aspects of the process

without taking anything for granted.

Chapter 3 43 Risk Assessment and Management

 Consistent: The methods used for evaluating risk and reporting threats

must be consistent throughout the process.

 Understandable: The results must be communicated to the appropriate

authority with clear terms.

3.3.3 Risk Response

Risk response is mainly concerned with what can be done in a situation after it

has been assessed [142]. Once risks have been identified and assessed, some action

must be considered in order to address each individual risk. The response usually

falls into one of the following:

 Risk Avoidance: Risk avoidance involves the removal of the threat—either

by eliminating the resource by redesign, more detailed design, or alternative

development methods, or by otherwise avoiding any process which have

exposure to risk. The later solution has a negative impact in terms of

financial gain.

 Risk Reduction: Since risk combines the probability of events with the

impact or the expected losses of those events, lowering the probability of an

event, the consequence of the event, or both will ultimately result in risk

reduction.

 Risk Transfer: Risk transfer is the process of transferring the risk to

another party, who is able to bare the risk. Risk transfer does not eliminate

or reduce the risk, but rather transfers the risk to another party to deal with

the consequences. Insurance is a popular technique for risk transfer.

 Risk Retention: Risk may be retained intentionally or unintentionally. The

latter occurs as a result of a failure, either in the risk identification phase or

the risk assessment phase. Essentially, risk retention is a very good strategy

when the risk is small, and the cost of responding to it is greater than the

impact or the losses of it. All risks which are not avoided or transferred are

retained by default.

Chapter 3 44 Risk Assessment and Management

3.4 Risk Management in Grid

The computer industry has expanded rapidly, and is one of the fastest growing

industries at present. Computer systems are used in almost every aspect of life, such

as industry, business, education, entertainment, health, defence, etc. As computer

technologies continue to evolve, the risk of use similarly develops. Computer

systems used in critical environments—such as nuclear power plants, air travel

monitoring systems, medical devices, manufacturing processes, defence systems and

stock exchange systems—need to be almost fault-free; a malfunction of such

systems could be disastrous and might result in loss to devices, money or, even

worse, life [143]. Therefore, risk management in such instances is of paramount

importance. Other computer systems are less or non-critical, such as web servers or

email servers, and the risk of faults of such systems is also lower than the risk of

faults in critical systems. Nevertheless, a malfunction of non-critical systems might

still result in losses of devices or money; therefore, risk management on such

systems needs to balance between the cost of the risk management process and the

expected loss as a result of faults. The risk management process cost should always

be lower than the expected loss, otherwise it is more profitable not to implement

such a process. Grid systems fall into the arena of non-critical systems (see Grid

Applications 1.1).

Risk management can be carried out at various phases during the lifetime of a

Grid system, i.e. from the development of a Grid infrastructure, through to the

deployment and testing phase, right up to the operational phase. The rest of this

section is devoted to review approaches adopted for risk management in computer

systems in general, and Grid systems in particular.

3.4.1 Risk Identification

There are different sources of risks in Grid systems, depending on the systems

phases: for example, in the development phase, there is a risk of software

development failure; in the operational phase, there is a risk of hardware failure,

information security breaches, etc. Each phase has various different risks associated

with it, and events causing those risks need to be identified.

Software development projects suffer from a high failure rate [144, 145]. A

number of risks identification checklists have been proposed [146-152]. Boehm

Chapter 3 45 Risk Assessment and Management

[146] identifies the top 10 risk items based on a survey of several experienced

project managers. Schmidt et al. [147] identifies 53 risk items, and organises the list

into 14 groups based on the source of the risk. The identification process was based

on a three-phase Delphi survey the participants were made up of 41 experienced

project managers from three different countries—USA, Finland and Hong Kong.

Keil et al. [151] propose a framework for identifying software project risks whereby,

instead of focusing on individual risk items, the framework provides four distinct

types of software project risk, namely Customer Mandate, Scope & Requirements,

Execution and Environment. All computer systems—not just Grid systems—suffer

from risks related to software development.

The European Network and Information Security Agency (ENISA) [153] aims

to be the European hub for the exchange of information, best practices and

knowledge in the field of Information Security. In the context of ENISA‘s Emerging

and Future Risk programme, 35 security risks of Cloud computing1 [154] have been

identified [155]. The identification process was based on the opinions of 22 experts

from academia, industry and government. The risk items are organised into 4

groups: Policy and organisational risks, Technical risks, Legal risks, and risks not

specific to the Cloud. The risks identified by ENISA are only related to information

security.

The context-aware data-centric information sharing (Consequence) project

[156] aims to deliver a data-centric information protection framework based on data-

sharing agreements. A scenario where a group of organisations share data with each

other but want to retain control over the usage of that data is used to identify the

risks imposed on the security goals of confidentiality, integrity, and availability.

Four critical security goals are identified: authentication, usage control decision,

enforcement, and availability. Moreover, an attack tree is proposed in order to

recognise sub-goals that must be achieved in order to accomplish any of the security

goals. The consequence project only considers the risks of compromising the

security of data shared in a distributed environment.

1 Cloud computing refers to both the software delivered as services over the Internet as well

as the hardware and systems software that provide those services. The services themselves

have long been referred to as Software as a Service (SaaS), Infrastructure as a Service

(IaaS) and Platform as a Service (PaaS).

Chapter 3 46 Risk Assessment and Management

The SLA@SOI project [157] is to develop an SLA-aware service-oriented

infrastructure, empowering the service economy in a flexible and dependable way.

The project does not address risk specifically, although it does identify three factors

relevant for reliability: software failures, hardware availability, and network failures

[158]. Software failures and network failures are modelled in a probabilistic way,

whilst hardware availability is modelled as the Mean Time To Failure (MTTF),

divided by the sum of MTTF and Mean Time To Repair (MTTR). Other factors

relevant for reliability are ignored in this project.

The main objective of the AssessGrid project [36] is to address obstacles of a

wide adoption of Grid computing by bringing risk management and assessment to

this field, thereby enabling the use of Grid technologies in business and society. In

this scope, AssessGrid delivers generic, customisable, trustworthy, and interoperable

open-source software for risk assessment, risk management, and decision-support in

Grids. The AssessGrid project applies a scenario-based risk identification approach

[159], and identifies two risk items: the risk to the resource provider, and the risk to

the broker. The risk to the resource provider is the violation of users‘ SLAs, which is

influenced significantly by resources failure. A source analysis is used to identify

the resource failure, which can be internal, such as hardware failure, problems in

software components, version problems in used software systems, power supply

problems, etc., or external, such as no delivery on external contracts, natural

disasters, etc. The risk to the broker is the unreliable methods used by the resource

provider to assess the risk of failure. The broker plays a mediator role between Grid

providers and users: its primary task includes the assignment of the user jobs to

certain resource providers in order to minimise the overall possibility of failure in

carrying out those jobs. Importantly, the broker aims to minimise the aggregate risk

of failure of all tasks under its management.

3.4.2 Risk Assessment

A fundamental concept in risk assessment is the concept of Risk Exposure

(RE), sometimes referred to as risk impact [160]. RE is defined as:

RE = Prob (UO) * Loss (UO)

Chapter 3 47 Risk Assessment and Management

where Prob (UO) is the probability of an unsatisfactory outcome and Loss (UO) is

the loss to the parties affected if the unsatisfactory outcome occurs. RE is then used

to produce a ranked ordering of the risk items identified.

In consideration of software development projects, the probability and the loss

of an unsatisfactory outcome are assessed via application of the qualitative risk

analysis technique. Boehm [146] proposes the use of a scale 0–10 in order to assess

the probabilities and losses of unsatisfactory outcomes; such assessments are often

the result of surveying several domain experts and are frequently subjective.

Furthermore, there is some uncertainty in terms of estimating the probability or loss

associated with an unsatisfactory outcome, which is, itself, a major source of risk.

Keil et al. [151] adopts a three-phase Delphi survey in order to immediately identify

the most important risk items, rather than simply identifying probability or loss

associated with an unsatisfactory outcome. The survey identified 11 risk items as the

most important.

The aim of this survey is to serve as a checklist of the most important risks for

project managers to focus on. Wallace and Keil [150] map the 53 risk items

identified in [147] into the four risk categories proposed in namely Customer

Mandate, Scope & Requirements, Execution and Environment. A survey of 507

project managers, representing multiple industries, indicated the extent to which

each risk item was present during their most recently completed projects. A scale

from 1–7 is utilised so as to represent the presence of a risk item; higher numbers

represent a higher presence and lower numbers a lower presence. The result

identifies the risk associated with the Scope & Requirements and Execution

categories to be the most critical, and that the Environment category is not of great

importance.

The qualitative assessment of the 35 security risk items identified by ENISA in

[155] is based on three scenarios: Small and Medium Enterprises (SME) migration

to cloud computing services, the impact of cloud computing on service resilience

and cloud computing in e-Government. The risk assessment is based on the ISO/IEC

27005:2008 information security risk management [161]; the risk is estimated on the

basis of the likelihood of an incident scenario and the negative impact of that

scenario; and the likelihood and the negative impact of a scenario are estimated

using the following scale:

Chapter 3 48 Risk Assessment and Management

 0, or Very Low,

 1, or Low.

 2, or Medium,

 3, or High,

 4, or Very High

 The likelihood and the negative impact are determined by several domain

experts. The risk is measured as the sum of the likelihood and the impact.

Risk = likelihood + impact

The risk is mapped to a simple risk rating Low Risk 0-2, Medium Risk 3-5 and

High Risk 6-8. This qualitative risk assessment is based on surveying several

domain experts and might be subjective. Furthermore, there is some degree of

uncertainty in terms of estimating the likelihood or the negative impact, which is,

itself, a major source of risk.

The objective of the Consequence project [156] is to provide an information

protection framework and to thereby identify the security risk in sharing data in a

distributed environment. The risk items are used as a checklist of items to be

addressed in the Consequence architecture, without any assessment of the

probability and the negative impact of a risk item.

The SLA@SOI project [157] does not explicitly address risk assessment,

although it does propose the utilisation of a prediction service for estimating the

probability of software failure, hardware availability and network failure in an

attempt to evaluate the QoS. The work on the prediction service is in its early stage,

and results are expected later in 2011 [158]. Notably, even in this early stage, a

number of limitations can be identified. The hardware availability is defined as:

Hardware Availability = MTTF / (MTTF + MTTR)

This availability is for the entire lifecycle of the hardware, and it is not the

probability that a hardware resource is available just at the point in time when it is

required by service execution as assumed in the prediction service [158]. Another

shortcoming is that the hardware might be unavailable owing to software failure or

network failure; this means a single failure is considered twice in the analysis.

Finally, the prediction service is not able to aggregate the probability of software

Chapter 3 49 Risk Assessment and Management

and network failure to predict the probability of system failure as other components

affecting the system failure are not addressed, i.e. hardware failure, electricity

outage, air conditioning failure, etc.

The AssessGrid project [36] determines the probability of an SLA failure as:

Probability of (n nodes will fail for the scheduled duration of a task) × 1 - (the

probability of (m reserve nodes are available for the scheduled duration of a

task)).

The probability of node failure is calculated by assuming that the node failures

represent a Poisson process1, which is non-homogenous in time and has a rate

function λ(t), t > 0 [162]. Many studies assume that the failure rate follows a

Poisson process [163-165], although there is strong evidence to support that this is

not the case [163, 166, 167]. Another limitation of the Poisson process assumption is

that the repair time is either neglected completely or otherwise follows a Poisson

process. The determination of the distribution for λ(t) in AssessGrid is based on the

Possibility theory, as initiated by Zadeh in [168]. It assumes that Grid failure data

are rarely available, and recording such failures is infrequent; therefore, probability

theory models cannot be used. With this in mind, possibility theory is based on new

concepts: possibility measure, necessity measure, possibilistic distributions, etc. The

parameter estimates are based on Gamma distributions and builds on a family of

Bayesian models. The subjective selection of the prior distribution in Bayes

Theorem might violate the objectivity of failure analysis.

The AssessGrid broker provides information that supports the end-user in

terms of evaluating the reliability of providers‘ risk assessments. For each accepted

SLA, the broker stores the details in a database, including the final status (Success or

1 A Poisson process is a continuous-time counting process (N(t), t ≥ 0) that possesses the

following properties:

 N(0) = 0

 Independent increments (the numbers of occurrences counted in disjoint intervals

are independent from each other)

 Stationary increments (the probability distribution of the number of

occurrences counted in any time interval only depends on the length of the

interval)

 No counted occurrences are simultaneous.

Chapter 3 50 Risk Assessment and Management

Fail) and the offered Probability of failure PoF. The reliability of the providers‘ risk

assessment is computed by comparing the number of observed failures with the

number of failures predicted by the provider‘s offered PoFs normalised by the

predicted failures standard deviation [169].

Resources failure plays a fundamental role in assessing risk in the Grid

operational phase. Estimating the frequencies of failures must be through

quantitative methods, as:

 resources failure data are available, and

 experts have no means to specify the likelihood of such failures.

Therefore, the next subsection is dedicated to grid resource failures.

3.4.2.1 Grid Resources Failures

A large number of studies that look at resource failure are found in the

literature, including [170-176]. Schroeder and Gibson [170] analyse failure data

collected over 9 years at Los Alamos National Laboratory (LANL), and includes

23,000 failures recorded on more than 20 different systems—mostly large clusters of

Symmetric-Multi-Processing (SMP) and Non-Uniform-Memory-Access (NUMA)

nodes. The source of a failure falls in one of the following: human errors and

environments, such as power outages, hardware failure, software failure, network

failure and unknown failures. They find that the time between failure at individual

nodes—as well as at an entire system—is fit well by a gamma or Weibull

distribution with decreasing hazard rate (Weibull shape parameter of 0.7–0.8). The

observation that the time between failures is best fitted by a Weibull distribution

with decreasing hazard rate is evidence in the studies [171-175]. Iosup et al. [176]

consider the availability of CPUs in a Grid environment and analyse availability

traces recorded from all the clusters. The finding is that the best fit distribution is

Weibull with a shape parameter > 1. The reason for that is that many of today‘s

Grids comprise computing resources grouped in clusters, the owners of which may

share them only for limited periods of time. Often, many of a Grid‘s resources are

removed by their owner from the system—either individually or as complete

clusters—in order to serve other tasks and projects; thus, the unavailability of CPUs

is not owing to a system failure but rather their unavailability by their owner. Most

of the previous studies considered only short-term availability data [173, 174]. Other

Chapter 3 51 Risk Assessment and Management

studies used statistical modelling to predict failure at Grid level not resources level

[175]. Importantly, these studies only consider distribution fitting to the failure data.

This approach does not take into account the effect of system repairs, and also only

assigns the probability of first failure at time t.

Another approach for predicting the probability of resource failure without

assuming that the resource failures represent a Poisson process is by computing the

resource availability. The availability function A(t) of a resource is the probability

that the resource is operational at the instant of time t. Therefore, the probability of

resource failure at time t is 1 – A(t). On the other hand, the reliability function R(t)

of a resource is the conditional probability that the resource has survived the interval

[0,t], given that the resource was operational at time t= 0. Availability differs from

reliability in that any number of resource failures can have occurred before time t.

Reliability is used to describe resources in which repairs cannot take place, as in

satellite systems, resources that provide critical functionality and cannot be down

even for repairs as in aircraft systems or resources in which the repair is extremely

expensive. Generally, it is more difficult to build a highly reliable resource than a

highly available one [177].

 Nadeem, Prodan & Fahringer [175] propose a model to predict the

availability of three different Grid resources: dedicated resources which are always

available to Grid users, temporal resources which are available to Grid users as long

as they are switched on, and on-demand resources which are only available to Grid

users by demand. The models proposed are building on Bayes Theorem, and predict

the availability as a function of day-of-the-week and hour-of-the-day. This approach

has a number of limitations: for example, it does not differentiate between the

unavailability as a result of node failure and the unavailability as a result of

scheduled maintenance or repair; secondly, the models only consider the hour-of-

the-day, and so a 1-minute unavailability and 1-hour unavailability are treated the

same—even worse if the unavailability falls at the end of an hour and into the

beginning of the next, and the unavailability subsequently becomes 2 hours.

Another approach to model system availability and reliability in computing is

through the use of Markov models. Hacker, Romero & Carothers [178] investigated

the use of Semi- Markov models to model node reliability in relation to large

supercomputing systems. Platis et al. [179] adopt a two-phase cyclic non-

Chapter 3 52 Risk Assessment and Management

homogeneous Markov chain with the objective to evaluate the performance of a

replicated database. Koutras, Platis & Gravvanis [180] explored the use of

homogeneous continuous time Markov chain with the amount of free memory to

model the resource degradation of a computer system. Furthermore, Koutras, Platis

& Gravvanis [181] studied the use of a cyclic non-homogeneous continuous time

Markov chain in terms of driving an optimal software rejuvenation model.

The probability of resource failure plays a central role in the risk assessment

process. The above models to compute this probability have some limitations: the

unrealistic assumption that the resource failures represent a Poisson process, the

subjective prior distribution selection in the Bayesian model or ignoring resource

unavailability due to scheduled maintenance. Therefore, this thesis proves that the

resource failures does not represent a Poisson process (Section 4.4), fit distributions

to observed resource failures data (Section 5.2), and model the resource using the

Markov model technique to represent all the resource states and address the

scheduled maintenance (Section 5.3).

3.4.3 Grid Risk Response

Risk response is outside the scope of this thesis, since this thesis focuses on the

most important step in the risk analysis which is risk assessment (chapter 4 & 5).

Yet in this section an overview of the risk response is presented to increase the

reader‘s knowledge.

The risk to software development projects—as well as the risk to information

security—is usually treated at the design phase. The aim is to lower both the

likelihood and the impact of an undesired event. The Software Engineering for

Service-Oriented Overlay Computers (SENSORIA) project [182] provides tools to

enable developers to model their Grid applications at a very high level of abstraction

with the use of service-oriented extensions of the standard UML, or domain-specific

service-oriented modelling languages to translate into hidden formal representations

by automated model transformations. Furthermore, such tools are able to perform

early performance analysis, check the functional correctness of services, and

accordingly predict the bottlenecks in collaborating services.

The responses to the risk of resources failure are to lower the probability of the

failure or to lower the impact. The probability of failure can be lowered by investing

Chapter 3 53 Risk Assessment and Management

in new infrastructures, advanced monitoring services, and experienced system

administrators, etc. Importantly, the impact of a failure can be lowered through the

use of fault-tolerance mechanisms, such as reserve idle resources and checkpointing.

Checkpointing is the process of periodically saving sufficient information about

application or resource state to avoid having to restart the application from the

beginning [183]. The advantage of combining the checkpointing with PoF is that

checkpointing will be carried out frequently in relation to those resources with high

PoF, and less frequently concerning those resources with low PoF. This will lower

the overheads on reliable resources. The benefit of checkpointing exactly before the

point of failure are presented in [184].

3.5 Summary

This chapter has considered risk management and discussed the types of

methods for risk identification, assessment and response. Examples of risk items

identified are provided. A survey of the risk assessment methods for software

development projects, information security and resource failure have been discussed

alongside their benefits and limitations. Finally, the response to risk is presented.

54

4 Chapter 4

Analysis of Failures in Grid Environments

In this chapter, the motivation scenario for introducing risk assessment method

in order to improve the commercial uptake of Grid computing is showcased. The

events causing risk have been identified, and the measurement of risk is introduced.

The analysis of Grid resource failures is presented in detail, following the data

collection. The statistical proprieties of the data—including the root cause of

failures, the mean time to repair and time between failures—are also analysed.

Finally, the resource failures are tested against well-known probabilistic failure

models in order to verify whether they can be used to model the Grid resources.

4.1 Motivation Scenario

 Over the recent years, the use of Grid computing has become the alternative to

the traditional tightly coupled computer systems. Grids provide cost-effective and

easily scalable resources, although the commercial uptake of Grid computing has

remained slow. Current Grid middleware (e.g. Globus Toolkit) still follows the best-

effort approach; there is a risk that users do not get any guarantee that their SLA will

be fulfilled. Furthermore, Grid resource providers are not attracted either: for a

resource provider, agreeing on an SLA without enough information about the state

of resources and the availability of devices introduces a chance of violating the SLA,

which can then result in a penalty fee. Furthermore, there is a risk attached to system

failure, service unavailability, insufficient resources, etc., which might lead to SLA

violation. Importantly, without a method for assessing the risk of accepting an SLA,

providers are only able to make uncertain decisions regarding suitable SLA offers.

Furthermore, users would like to evaluate the risk of a provider violating an SLA so

that they are able to make decisions concerning which Grid resource provider to

select and the acceptable cost/penalty fee associated with the SLA.

Chapter 4 55 Analysis of Failures in Grid Environments

Figure 4 illustrates the motivation scenario, and demonstrates how risk

assessment fits in the use of Grid systems. The user submits an SLA request to the

resource provider. The SLA includes the user‘s requirements, such as deadline or

cost. When the resource provider receives the SLA request, it contacts the resource

reservation component to reserve the end user required resources within the deadline

requested. If resources are not available, the SLA is rejected; otherwise, for each

resource, the time t in which the reservation starts and the duration d are sent to the

risk assessor.

Figure 4: Flow Chart of the Motivation Scenario.

Provider create resources reservation

Provider compute risk for the reserved resources

Start

User fill in the SLA with job specific requirements and

send it to the resource provider

Provider schedule the job into the resources reserved

Does the resulted scheduler satisfy the user

requirements

No

Does the reservation guarantee the SLA

deadline

Yes

Provider sends the SLA back to the user and pre-

commit

The user commit

Yes

SLA acceptedSLA rejected

No

YesNo

End

Chapter 4 56 Analysis of Failures in Grid Environments

The provider computes the risk for each resource and subsequently allocates the

resources to the user job. If the resulted allocation fails to satisfy the user

requirements, resource reservation is revisited; if it does satisfy the user

requirements, the provider then sends back the SLA, updated with cost and penalty

fee and pre-commit. The user either commits to the SLA or rejects it. Figure 5

provides an overview of components in the resource provider infrastructure. The

user sends an SLA request to the provider with the job requirements (1). The

provider‘s Resource Manager requests the Reservation & Allocation component to

reserve the required resources (2). The Reservation & Allocation component

reserves the physical resources (3) and forward for each reserved resource the time

and duration of the reservation to the Risk Assessor (4). The Risk Assessor

computes for each resource the risk of failure based on the resource historical

information stored in a database (5). The Monitoring component is responsible for

updating the information in the database. The Risk Assessor returns the risk of

failure information to the Resource Manager (6). Finally, the Resource Manager

sends the SLA response back to the user (7), either accepting or rejecting the SLA.

Figure 5: Overview of Components in Resource Provider.

The scenario highlights two components in the field of Grid computing which

is currently suffering from limitations: a risk assessment method (see 3.4.2) and a

risk aware resource allocation (see 2.6.2.3). The rest of this chapter is dedicated to

the risk assessment methods, while the risk aware resource allocation is discussed in

chapter 6.

Resource Provider
Resources

DB

Monitoring

Resource Manager Reservation & Allocation

Risk Assessor

End User

(5)

(3) (4)

(2)

(6) (1)

(7)

Chapter 4 57 Analysis of Failures in Grid Environments

4.2 Risk Identification

The definition and representation of risk can vary between different fields, as

highlighted in Chapter 3, and so it is therefore very important to define risk in the

context of Grid computing. In Grid computing, the assets are the Grid resources, the

risk failures of which is of great concern. This thesis, investigate the risk of Grid

resources failures (ROF). In order to correctly specify the ROF the probability of the

resource failures and the impact of the failures need to be identified.

In order to compute the probability of resource failures, the events which cause

a resource to fail first need to be specified. Grid resources can fail as a result of a

failure of one or more of the resource components, such as CPU or memory; this is

known as hardware failure. Another event which can result in a resource failure is

the failure of the operating system or programs installed on the resource; this type is

known as software failures. The third event is the failure of communication with the

resource; this is referred to as network failures. Finally, the last event to cause a

resource failure is the disturbance to the building hosting the resource, such as a

power cut or an air conditioning failure; this type is known as environment failures.

Sometimes, it is difficult to pinpoint the exact cause of the failure, i.e. whether it is

hardware, software or network failure; this is therefore referred to as unknown

failures.

4.2.1 Probability of Resource Failure

A set EH is used to denote the events which cause hardware failures, and P(EH)

is the probability of such hardware failures, where ES denotes the events that cause

software failures and P(ES) is the probability of software failures. Notably, EN

denote events that cause network failures and P(EN) is the probability of network

failures, EE denotes events that cause environment failures, and P(EE) is the

probability of environment failures. Finally, EU denotes events which cause

unknown failures whilst P(EU) is the probability of unknown failures. These sets of

events represent the complete events, denoted as E, that cause a resource failure.

Thus:

E = (EH U ES U EN U EE U EU)

The probability of resource failure is:

Chapter 4 58 Analysis of Failures in Grid Environments

P(E) = P(EH U ES U EN U EE U EU)

Recall that an important consequence from the probability axioms is [185]:

P(A U B) = P(A) + P(B) – P(A ∩ B)

The sets EH, ES, EN, EE and EU are disjointed (or mutually exclusive), i.e. if the

resource fails at a given time t, then only one event from the set could have caused

this failure. In an extreme case, two events from different sets might take place at

one time, yet the person responsible for repairs will only identify a single event.

Therefore:

 {H, S, N, E, U} & I ≠ J

EI ∩ EJ = Ø

From the probability axioms:

P(Ø) = 0

Therefore the probability of resource failure is defined as:

P(E) = P(EH) + P(ES) + P(EN) + P(EE) + P(EU)

4.2.2 Impact of Resource Failure

The impact of resource failures is not as straightforward as the probability of

failures as both resource providers and resource users have competing needs. For

resource providers, resource failures have a financial impact in the form of penalty

fee and, if the resource provider has a reputation system1 [186], a reputation impact

in the form of negative review or feedback from the unsatisfied user. Even in the

absence of a reputation system, unsatisfied users might put forward their negative

experiences to friends or co-workers, write about them in blogs or internet forums,

or review the provider services on review sites, such as www.epinions.com.

The impact of resource failures on users is very hard to compute. Different

users have various different requirements. For example, after a resource failure, User

A might use another available resource to redo the work without any impact, whilst

1 A reputation system collects, distributes, and aggregates ratings and opinions about

participants‘ past behaviour and dynamically compute the reputation scores.

Chapter 4 59 Analysis of Failures in Grid Environments

User B has a deadline to meet, and the resource failure would mean User B misses

it. Even with the payment of the penalty fee, the financial loss owing to the missed

deadline might be greater than the penalty fee.

4.2.3 Risk Measures

It has been pointed out in Chapter 3 that the word ‗risk‘ is used to combine the

probability of events with the impact of those events. Whilst computing the

probability of the resource failures is feasible, computing the impact of failures is

difficult, problematic and complicated—even if only the financial impact of failures

is considered. The reason for this is that resource providers and resource users have

competing needs; thus, a resource provider would need to set a low penalty fee in

case of a resource failure, and the user would require that the penalty fee be high.

Another problem is that resource providers and users have different views of risk.

To illustrate this point, an example is provided below.

Assume that a user requests a resource to use from a resource provider for a

period of time, starting from 12:00 o‘clock. The provider computes the probability

of failure for the resource for the period [12:00, (12:00 + t)] as X. The impact of the

failure is linked with the penalty fee; thus, the provider can lower the impact by

lowering the penalty fee. Consider that the risk is lessened by either reducing the

probability of the event, the impact of the event, or both (see 3.3.3). Therefore, the

provider can reduce the risk by lowering the impact—despite the probability X

remaining unchanged. For the user, lowering the penalty fee increases the impact,

and so the risk to the user is increased rather than decreased when the penalty fee is

lowered. The actions that reduce the risk to the resource provider increase the risk to

the resource user and vice versa. On the other hand, however, decreasing the

probability X will reduce the risk for both the provider and the user.

The above example shows that the impact of failure has an opposite effect on

the provider and the user, whilst the effect of the probability of failure is the same

for both parties; therefore, it is more appropriate to measure risk to both parties only

in terms of the probability of failure. This type of measurement is consistent, since

resource providers and users have the same view on the probability of failure. As a

result, in this thesis the ROF is defined as:

ROF = P(E)

Chapter 4 60 Analysis of Failures in Grid Environments

The ROF formula above is limited to only the probability of resource failure.

Even though there are qualitative approaches to compute the impact on both the user

and the provider, the impact is neglected. This is because the qualitative approaches

are outside the scope of this thesis.

4.3 Grid Resource Failures

Analysing the Grid resources failures and understanding the performance of

those resources with time is a key requirement for their modelling. Therefore, in this

section, the need for resource failure data and the collection process is presented

along with the methodology used to analyse the data. Three metrics are studied: the

root cause of failure, the repair time, and the time between failures.

4.3.1 Failures Data Collection

Gathering information relating to the past and current status of Grid

resources—known as monitoring—is an essential activity. Monitoring data is used

in the case of scheduling, performance analysis, performance tuning, performance

prediction, the optimisation of Grid systems, and many more (see 2.6.3 for

information about monitoring and monitoring tools). Monitoring resource failures is

crucial in the design of reliable systems, e.g. the knowledge of failure characteristics

can be used in resource management to improve cluster availability [172]. Creating

realistic benchmarks and test-beds for reliability testing requires the knowledge of

failure characteristics [170]. Furthermore, calculating the probability of failure of a

resource depends on the past failures of a resource; therefore, access to resource

failures data is very important.

Importantly, the resource failures data should be complete in the sense that all

failures are reported, and also consistent in the sense that the reporting procedure is

the same and span for a long time. These factors should be ensured for two reasons:

 A large number of failures observed will smooth out random variations

and will result in a reasonably good probability estimation; and

 Long time observation reflects the true behaviour of resources.

Resource failures data that satisfy the above requirements are not easily

available, and data collected in academic institutes might be incomplete or

Chapter 4 61 Analysis of Failures in Grid Environments

inconsistent. Furthermore, commercial institutes are usually reluctant to share their

data..

The Grid Operations Centre Data Base1 (GOCDB) [187] is the official

repository for storing and presenting European Grid Infrastructure (EGI) [26]

topology and resources information. GOCDB stores information for all sites within

the Enabling Grids for E-science (EGEE) [23], the National Grid Service (NGS)

[25] and Worldwide LHC Computing Grid (WLCG) [188]. The stored information

can be classified into six main groups: Users, Sites, Nodes, Services, Groups and

Downtimes. GOCDB is publicly available and accessed following registration.

A user in GOCDB either has read-only access to all the public features or has a

role to add, delete or edit information. A role is assigned to a user following a

registration, and a single user may have one or more roles assigned. Roles fall into

three categories: site level roles, regional level roles, and project level roles. For a

complete list of roles and permissions associated to them, see [189].

A site is a physical location—such as the European Organisation for Nuclear

Research (CERN) [190] or the Grille de Recherche d'Ile de France (GRIF) [191]—

containing Grid resources. Thus, a Grid provider is represented as a site in GOCDB.

The site‘s information stored in GOCDB are identification (ID), short name, official

name, domain name, home web URL, contact email and telephone number, security

contact email and telephone number, hours of operation, time zone, site‘s Grid

Information Index Server (GIIS) URL, whether or not the site a primary site,

description, the latitude and longitude, country in which the site is located, firewall

IP address and the ID of the user who created the site and the creation date.

A node is a computer providing Grid services. Therefore, a Grid resource is

represented as a node in GOCDB. In this thesis, the words ‗Grid node‘ and ‗Grid

resource‘ are interchangeable. The nodes information stored in GOCDB are ID,

hostname, IP address, host certificate Distinguished Name (DN), description,

whether or not the node is a core node and a list of services running on the node.

1 The selection of the failures data source was based on emails exchange with NGS

support.

Chapter 4 62 Analysis of Failures in Grid Environments

A service represents Grid software that provides a Grid service to the

infrastructure, such as storage or processing capacity. Each node provides one or

more services, and the service type must fall into a predefined set of services, e.g.

Storage Resource Manager (SRM) or gLite Workload Management Service (WMS).

For a complete services list see [192].

A group is a collection of sites grouped together. GOCDB stores the group

name, a description of the group, type of the group and a contact email. Unlike other

information, groups cannot be added to GOCDB through the input system web

interface, but requires the involvement of a GOCDB administrator. For group

registration procedure, see [193].

A downtime is a period of time for which a grid node is declared to be

inoperable. A downtime record contains unique downtime ID, downtime

classification (scheduled or unscheduled), the severity of the downtime, the user

who recorded the downtime, the date at which the downtime was added to GOCDB,

the start and end of the downtime period, the description of the downtime, and the

entity affected by the downtime. (For a downtime sample see Appendix A).

Scheduled downtimes are planned and agreed in advance, whilst unscheduled

downtimes are unplanned and are usually triggered by an unexpected failure. EGEE

defines specific rules [194] concerning what should be classified as scheduled

downtime and what should be classified as unscheduled downtime. The rules are

based on the length of the intervention, the impact severity, and how long in advance

the downtime is declared. These rules were later relaxed to one rule: a scheduled

downtime needs to be declared 24 hours in advance, otherwise it is automatically

declared as unscheduled downtime. Unscheduled downtimes should be declared as

soon as they are detected; however, they can be reported up to 48 hours following

the downtime [195].

The severity of the downtime is either ‗at risk‘ (whereupon the resource will

probably be working as normal, but may experience problems) or ‗outage‘

(whereupon the resource will be completely unavailable).

The user whom has permission to make downtime updates can add, edit, or

delete downtime information; this is done manually, and there are no rules or

protocols to make such updates. Accordingly, it might be possible that the resource

encounters a failure, and that there is no record on the GOCDB for such failure.

Chapter 4 63 Analysis of Failures in Grid Environments

The description of the downtime is left to the Grid administrator; it is a short

description of the cause of the downtime. Importantly, there are no rules or protocols

to follow when writing the description; thus, descriptions are mostly incomplete and

are very ambiguous, with some possibly having only one very brief word description

(e.g. Test).

The downtime data collected in GOCDB is different compared with the data in

error-logs. Error-logs are generated automatically, and treat every unexpected event

the same—whether or not it resulted in a system failure. Also, error-logs might

contain multiple entries for the same event; on the other hand, however, downtime

data in GOCDB are created manually by system administrators. Human created

failure data have two potential problems: underreporting of failure events and

misdiagnosing the cause of the downtime. Although it is possible for a failure not to

be reported at all, in this thesis, we are assuming that this is not the case;

misdiagnosing the cause of the downtime is feasible. GOCDB dose not have

classification of the root cause (e.g. Hardware, Software, etc) it has only a

description of what might cause the downtime. The diagnosis and description

depend hugely on the administrators‘ skills.

In this thesis, we take into account the downtime data for seven Grid resources

(or nodes) from two different Grid sites. Four resources are from Site 1, and three

resources are from Site 2. We name Site 1 resources A, B, C, and D, and Site 2

resources A, B and C. The reasons for selecting these resources are:

 Different resources and sites are used to generalise the findings; otherwise,

the finding will be limited to a specific resource or site;

 The resources considered join GOCDB in its early stage and frequently

record downtime data;

 Since the description of the downtime is left to the Grid administrator, some

descriptions are ambiguous or incomplete. Therefore, the selected resources

have comprehensive downtimes description.

 Resources frequently join and leave the Grid; therefore, the selected

resources never leaved the Grid;

 The selected resources offer different Grid services; and

Chapter 4 64 Analysis of Failures in Grid Environments

 The downtime data for all resources span for three years from the start of

2008 till the end of 2010.

The downtime data have scheduled and unscheduled downtime, but we only

consider unscheduled failures. The reason for this is that the uses of advance

reservation takes into account scheduled downtimes.

4.3.2 Methodology for Failure Analysis

A resource is considered to be a failed resource when it is not performing as

normal. Therefore, a resource declared in GOCDB as ‗at risk‘ or ‗outage‘ is

considered to be a failed resource.

In the next sections, we will analyse resource failure data with respect to three

important properties of system failures: root cause (4.3.3), time to repair (4.3.4.),

and time between failures (4.3.5). Moreover, the sequence of failure events are

studied using stochastic process [196] and the distribution of its time between

failures is also considered. Notably, we characterise repair times for each resource

using the mean, median and standard deviation. We also consider the empirical

cumulative distribution function (cdf) of repair time for each resource, as well as

how well it fits four probability distributions commonly used in reliability theory:

Exponential, Weibull, Gamma and Lognormal distributions. These distributions fit

the data well, and so there are no reasons for using other distributions or more

degree of freedom e.g. a phase-type distribution. Notably, we utilise the Maximum

Likelihood Estimation (MLE) to parameterise the distributions and thereby evaluate

the goodness of fit by visual inspection, and the negative log-likelihood test. The

MLE—unlike moment estimation—is consistent, unbiased and efficient [10]. The

cdf for the time between failures for each resource is analysed also using MLE and

the negative log-likelihood test.

4.3.3 Root Cause Breakdown

The first question to ask when studying failures in computer systems is ―what

caused them?‖ In GOCDB data, there is a description of the cause of failure;

however, there is no classification for such causes. We are therefore required to map

the description of the failure into five different categories: Environment, Network,

Software, Hardware and Unknown. Figure 6 shows the percentage of failure in each

category for Site 1. The right-most bar highlights the breakdown of all the failure

Chapter 4 65 Analysis of Failures in Grid Environments

recorded in Site 1, whilst the first four bars are for resources A, B, C and D

respectively. Figure 7 shows the percentage of failure in each category for Site 2.

The right-most bar shows the breakdown of all the failure recorded in Site 2, whilst

the first three bars are for resources A, B and C respectively.

We can see that software and hardware failures are the largest contributors to

failures. In the case of Site 1, the actual percentage for software ranges from 28.21%

to 35.29%; the actual percentage for hardware ranges from 41.18% to 43.59%.

Overall, in Site 1, the two categories are responsible for 73.55% of all the failures

recorded for the site.

Figure 6: Breakdown of Failures into Root Causes for Resources from Site 1.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Resource A Resource B Resource C Resource D All Resources

Environment

Network

Unknown

Hardware

Software

Chapter 4 66 Analysis of Failures in Grid Environments

Figure 7: Breakdown of Failures into Root Causes for Resources from Site 2.

Figure 8: Breakdown of Downtime into Root Causes for Resources from Site 1.

Figure 9: Breakdown of Downtime into Root Causes for Resources from Site 2.

0%

20%

40%

60%

80%

100%

Resource A Resource B Resource C Resource D All Resources

Environment

Network

Unknown

Hardware

Software

0%

20%

40%

60%

80%

100%

Resource A Resource B Resource C All Resources

Environment

Network

Unknown

Hardware

Software

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Resource A Resource B Resource C All Resources

Environment

Network

Unknown

Hardware

Software

Chapter 4 67 Analysis of Failures in Grid Environments

In Site 2, the actual percentage for software ranges from 37.21% to 45.24%.

The actual percentage for hardware ranges from 41.46% to 46.51%. Overall, in

relation to Site 2, the two categories are responsible for 84.92% of all the failures

recorded for the site.

The total downtime has been studied for each category. Figure 8 shows the

percentage of downtime for each category in Site 1. The right-most bar emphasises

the breakdown of all the downtime recorded in the four resources, whilst the first

four bars are for resources A, B, C and D respectively.

We can see that software and hardware failures contribute hugely to the

downtime. Downtimes owing to software failures contribute from 28.82% to

37.86%, whilst downtimes due to hardware failures contribute from 39.26% to

41.14%. Overall, in Site 1, the two categories are responsible for 73.14% of all the

downtimes recorded in the database. In Site 1, downtime due to environment failures

is high, ranging from 14.80% to 27.21%; the reason for this is that the site had an air

conditioning failure, which required a long maintenance work.

Figure 9 shows the percentage of downtime for each category in Site 2. The

right-most bar shows the breakdown of all the downtime recorded in the three

resources, whilst the first four bars are for resources A, B and C respectively.

We can see that software and hardware failures contribute hugely to the

downtime. Downtimes owing to software failures contribute from 20.48% up to

45.35%, whilst downtimes due to hardware failures contribute from 46.40% to

75.27%. Overall, in Site 2, the two categories are responsible for 93.94% of all the

downtimes recorded in the database.

4.3.4 Repair Time Analysis

The second important metric in studying failures is the time to repair the system. We

start by considering how the repair time varies between resources. Next, the

statistical proprieties of repair time for each resource are taken into account—

including their distributions. Finally, how the root cause affects the repair time is

taken into account.

Tables 1 & 2 show, in minutes, the mean, median and standard deviation for

the time to repair resources in Site 1 and Site 2 respectively. The mean time to repair

in all resources is very high, especially resources in Site 1. The first reason is that

Chapter 4 68 Analysis of Failures in Grid Environments

the repair time depends hugely on the availability of the Grid administrator, and both

sites do not have 24-hour user support. Thus, any resource failure occurring after

normal working hours is not resolved until the next working day; this is also true for

weekends and public holidays. The second reason is that there is no automatic

monitoring which will report a resource failure when it occurs. Finally, both sites are

mainly used for research—not commercial use. In order to improve the mean repair

time, the sites should increase the availability of administrators and deploy

automatic monitoring agents.

Table 1: Repair Mean Median and Standard Deviation for Resources in Site 1 in Minutes.

 Resource A Resource B Resource C Resource D

Mean 1922.50 1611.96 1658.85 1829.35

Median 945.50 433.50 1116.00 865.00

Standard Deviation 2496.19 2341.05 2089.17 2346.35

Table 2: Repair Mean Median and Standard Deviation for Resources in Site 2 in Minutes.

 Resource A Resource B Resource C

Mean 397.69 868.40 537.54

Median 200.50 240 240

Standard Deviation 472.77 2179.69 917.89

Another observation is that the time to repair a resource is highly variable

owing to the difference between the mean and the median. This observation

indicates that the exponential distribution is not conventional to express repair time

in Grid resources. With this in mind, it should be noted that an Exponential

distribution with failure rate = λ the mean = 1/λ and median = ln(2)/λ = 0.6931/λ

[10]; thus, the mean and median should not have a huge difference. To confirm this

observation, the empirical Cumulative Distribution Function (cdf) for repair time in

each resource is fitted with four standard distributions: Exponential, Weibull,

Gamma and Lognormal. The cdf—referred to as F(x)—describes the probability

distribution of a real-valued random variable X to be less than x.

F(x) = P{X < x}

Chapter 4 69 Analysis of Failures in Grid Environments

That is, for a given value x, F(x) is the probability that the observed value of X will

be at most x.

Figure 10: Repair Time Resource A Site 1. Figure 11: Repair Time Resource B Site 1.

 Figure 10 shows the cdf of repair time for Resource A, Site 1. Visual

inspection indicates both Lognormal and Weibull have a good fit, but that

Lognormal fit the data slightly better when tested using the negative log-likelihood.

The Exponential distribution is the worst fit, as expected, and it is not accurate for

the purpose of modelling the repair time of this resource. The Lognormal or the

Weibull is a better model for the repair time.

Figure 11 shows the cdf of repair time for Resource B, Site 1. Weibull and

Lognormal distributions have a good visual fit with Weibull having the best fit when

measured by the negative log-likelihood. Figure 12 shows the cdf of repair time for

Resource C, Site 1. Both Weibull and Lognormal distributions have a good visual

fit, yet Lognormal fit the data slightly better when tested using the negative log-

likelihood. Figure 13 shows the cdf of repair time for Resource D, Site 1. Both

Weibull and Lognormal distributions create an equally good visual fit, and the same

negative log-likelihood.

Figure 12: Repair Time Resource C Site 1. Figure 13: Repair Time Resource D Site 1.

Chapter 4 70 Analysis of Failures in Grid Environments

Figure 14: Repair Time Resource A Site 2. Figure 15: Repair Time Resource B Site 2.

Figure 14 shows the cdf of repair time for Resource A, Site 2. Both Weibull

and Lognormal distributions create an equally good visual fit, yet Lognormal fit the

data slightly better when tested using the negative log-likelihood.

Figure 16: Repair Time Resource C Site 2.

Figure 15 shows the cdf of repair time for Resource B, Site 2. Both Weibull

and Lognormal distributions have a good visual fit, with Lognormal having the best

fit when measured by the negative log-likelihood.

Finally Figure 16 shows the cdf of repair time for resource C site 2. Lognormal

distributions have the best visual fit and the best fit when measured by the negative

log-likelihood.

From the above results, two observations can be made: firstly, it is clear that

time to repair a Grid resource does not follow an Exponential distribution; and

secondly, it is better to describe the repair time in the form of the Lognormal

distribution, with the Weibull distribution slightly the second best.

Chapter 4 71 Analysis of Failures in Grid Environments

Table 3: Mean Median and standard Deviation of Time to Repair Resource A Site 1

Breakdown by Root Causes in Minutes.

 Software Hardware Network Environment Unknown

Mean 1900 1887 432 4185 1120

Median 1120 961 120 5444 1120

Standard

Deviation
2136.72 2710.19 593.12 3451.25 Undefined

Table 4: Mean Median and standard Deviation of Time to Repair Resource B Site 1

Breakdown by Root Causes in Minutes.

 Software Hardware Network Environment Unknown

Mean 1830.88 1589.90 432 2862.50 1120

Median 374.50 597.50 120 2862.50 1120

Standard

Deviation
2360.94 2688.80 593.12 3650.79 Undefined

Now we consider how the root cause of failure affects the repair time. Tables

3, 4 , 5 & 6 show for Site 1 in minute the mean, median and standard deviation of

time to repair as a function of root causes for resources A, B, C and D respectively:

the mean repair time in Resource A ranges from around 7 hours in network errors to

around 70 hours in environment errors; in Resource B, the mean repair time ranges

from around 7 hours in network errors to around 48 hours in environment errors; in

Resource C, the mean repair time ranges from around 8 hours in network errors to

around 47 hours in environment errors; and finally, in Resource D, the mean repair

time ranges from around 8 hours in network errors to around 72 hours in

environment errors.

The second observation from Site 1 is that the time to repair is highly variable

in all resources. For example, the median of network repair times is approximately 4

times lower than the mean in Resource A; the median of software repair times is

about 5 times lower than the mean in Resource B; the median of hardware repair

times is about 2 times lower than the mean in Resource C; and the median of

hardware repair times is about 2 times lower than the mean in Resource D.

Chapter 4 72 Analysis of Failures in Grid Environments

Table 5: Mean Median and standard Deviation of Time to Repair Resource C Site 1

Breakdown by Root Causes in Minutes.

 Software Hardware Network Environment Unknown

Mean 1788.18 1494.18 460.75 2776.83 1120

Median 971.00 775.00 333.50 1483 1120

Standard

Deviation
1994.51 2168.25 487.68 2681.96 Undefined

Table 6: Mean Median and standard Deviation of Time to Repair Resource D Site 1

Breakdown by Root Causes in Minutes.

 Software Hardware Network Environment Unknown

Mean 1790 1827.86 440.60 4308.33 Null

Median 1263.50 865 360 5444 Null

Standard

Deviation
1888.89 2597.92 424.74 3596.59 Undefined

In Site 1, there was only one unknown error in resources A, B and C;

therefore, the standard deviation is undefined for these resources. In Resource D,

there were no unknown errors, and so the mean, median and standard deviation are

undefined.

Finally, in Site 1, software and hardware failure effects are on individual

resources, whilst a network or an environment failure may affect more than one

resource—or even the entire Grid site. For example, a power cut in the Grid site will

result in the failure of all resources in that site.

Table 7: Mean Median and standard Deviation of Time to Repair Resource A Site 2

Breakdown by Root Causes in Minutes.

 Software Hardware Network Environment Unknown

Mean 398.63 430.54 92 260 675

Median 303.00 157.90 92 260 675

Standard

Deviation
323.95 636.13 98.99 98.99 Undefined

For Site 2, Tables 7, 8 & 9 show in minutes the mean, median and standard

deviation the time to repair as a function of root causes for resources A, B and C

respectively: the mean repair time in Resource A ranges from around 1.5 hours in

network errors to around 7 hours in hardware errors; in Resource B, the mean repair

time ranges from around 1.5 hours in network errors to around 23 hours in

Chapter 4 73 Analysis of Failures in Grid Environments

environment errors; and finally, in Resource C, the mean repair time ranges from

around 1 hour in network errors to around 14 hours in environment errors.

The second observation from Site 2 is, like Site 1, the time to repair, which is

highly variable in all resources. For example, the median of hardware repair times is

about 3 times lower than the mean in Resource A; the median of hardware repair

times is about 6 times lower than the mean in Resource B; and the median of

hardware repair times is about 5 times lower than the mean in Resource C.

In Site 2, there was only one unknown error in Resource A; therefore, the

standard deviation is undefined for the resource.

Table 8: Mean Median and standard Deviation of Time to Repair Resource B Site 2

Breakdown by Root Causes in Minutes.

 Software Hardware Network Environment Unknown

Mean 479.25 1385.05 92 260 364

Median 302 220 92 260 364

Standard

Deviation
576.14 3112.18 98.99 98.99 439.82

Table 9: Mean Median and standard Deviation of Time to Repair Resource C Site 2

Breakdown by Root Causes in Minutes.

 Software Hardware Network Environment Unknown

Mean 366.53 826.06 73 260 513

Median 301 158 35 260 513

Standard

Deviation
312.78 1354.32 77.35 98.99 229.10

Finally, like in Site 1, software and hardware failures in Site 2 effects are on

individual resources, whilst a network or an environment failure may affect more

than one resource—or even the entire Grid site.

4.3.5 Time between Failures Analysis

In this section, the sequence of failure events are viewed as a stochastic

process, and we study the time between unscheduled failures, inter-arrival times, for

each resource. The cdf for the time between failures in each resource is fitted with

four standard distributions: Exponential, Weibull, Gamma and Lognormal.

Figures 17, 18, 19 & 20 show, for Site 1, the cdf of time between failures for

resources A, B, C and D respectively. In the case of Resource A, the distribution

between failures is well modelled by a Weibull distribution, which creates a good

Chapter 4 74 Analysis of Failures in Grid Environments

visual fit and the best fit when tested using the negative log-likelihood. The Gamma

distribution is the second best fit.

Figure 17: Time between Failures for

Resource A Site 1.

Figure 18: Time between Failures for

Resource B Site 1.

In Resource B, the distribution between failures is well modelled by a Weibull

distribution, which creates a good visual fit and the best fit when tested using the

negative log-likelihood. The Gamma or the Lognormal distributions are the second

best fit.

In Resource C, the distribution between failures is well modelled by a Weibull

distribution, which creates a good visual fit and the best fit when tested using the

negative log-likelihood. The Gamma distribution is the second best fit.

Finally, in Resource D, the distribution between failures is well modelled by a

Weibull or Gamma distribution. Both distributions create an equally good visual fit

and the same negative log-likelihood.

Figure 19: Time between Failures for

Resource C Site 1.

Figure 20: Time between Failures for

Resource D Site 1.

For Site 2, Figures 21, 22 & 23 show the cdf of time between failures for

resources A, B and C respectively.

Chapter 4 75 Analysis of Failures in Grid Environments

Figure 21: Time between Failures for

Resource A Site 2.

Figure 22: Time between Failures for

Resource B Site 2.

In Resource A, the distribution between failures is well modelled by a Weibull

or Gamma distribution. Both distributions create an equally good visual fit and the

same negative log-likelihood.

In Resource B, the distribution between failures is well modelled by a Weibull

distribution, which creates a good visual fit and the best fit when tested using the

negative log-likelihood. The Gamma distribution is the second best fit.

Finally, in Resource C, the distribution between failures is well modelled by a

Weibull or Gamma distribution. Both distributions create an equally good visual fit

and the same negative log-likelihood.

Figure 23: Time between Failures for Resource C Site 2.

From the above, we can state that the Weibull distribution is the best

distribution to model distribution between failures in Grid resources where as the

Gamma distribution is the second best fit. The Weibull distribution is the most

popular and widely used method of analysing and predicting failures and

malfunctions of all types, offers flexibility in modelling failure rates, and is easy to

calculate [197-200].

Chapter 4 76 Analysis of Failures in Grid Environments

The Weibull distribution mathematically characterizes the probability of

system failures as a function of time. The two parameters Weibull function is used

in this thesis and the probability density function pdf is defined as:

The cumulative density function cdf is defined as:

Where α is the shape parameter (or slop), λ is the scale parameter and t is time.

Recalling that the reliability function of a distribution is simply one minus the cdf,

the reliability function for the Weibull distribution is given by:

From the above, we can calculate the Weibull failure rate (or hazard rate) function

as follow:

The shape parameter α directly influences the hazard function as follows:

If α < 1, the hazard function is decreasing with time;

If α = 1, the hazard function is constant with time, i.e., the exponential distribution;

If α > 1, the hazard function is increasing with time.

It is useful to determine how the time since the last failure influences the

expected time until the next failure; this notion is captured by a distribution‘s hazard

rate function. An increasing hazard rate function predicts that the probability of

failure increases with time. A decreasing hazard rate function predicts the reverse.

The shape parameter of less than 1 indicates that the hazard rate function is

decreasing, i.e. not seeing a failure for a long time decreases the chance of seeing

one in the near future.

In this thesis, we use the maximum likelihood estimation to predict the

parameters and we find decreasing hazard rates a Weibull shape parameter less than

1; this means not seeing a failure for long time decreases the risk of seeing one

within a short period of time. Table 10 shows the values of the Weibull shape

parameter for the resources.

Chapter 4 77 Analysis of Failures in Grid Environments

Table 10: The Weibull Shape Parameter.

Site One Resource A Resource B Resource C Resource D

 0.63618 0.609953 0.673741 0.569431

Site Two Resource A Resource B Resource C

 0.623174 0.607578 0.564124

4.4 Probabilistic Failure Models for Grid Resources

The Weibull failure rate function provides the probability of resource failure

up to a point in time, without considering what happens if the resource fails during

that time and is then repaired. Grid resources are repairable systems and receive

maintenance actions when they fail. The maintenance actions might change the

overall makeup of the resource, and must be taken into consideration when assessing

the probability of failure of the resource as the age of the resource components is no

longer identical and the time of operation is not continuous.

In the previous sections, the focus has been directed onto describing the

behaviour of Grid resources in statistical terms. The distribution failure rate

functions focus on the first time to failure, or first time to failure in a given

interval—but not whether the resource is functioning or not functioning at a given

time. The resource availability function capture the notation of resource functioning

[177]. Point availability at time t is the probability of the resource functioning at

time t and is denoted by A(t). The average proportion a resource is functioning

during an interval (t1, t2) is denoted by Av(t1, t2), and can be obtained by the

following formula:

In order to compute the Grid resource availability, a model for the resource

needs to be driven. Models from reliability engineering can be used to represent a

Grid resource and to thereby predict the probability of failure. The problem in this

regard is which model to use. Random processes are widely used as probabilistic

models for the failure process [9]; the following is a list of random processes and a

discussion on their ability to model Grid resources failure.

Chapter 4 78 Analysis of Failures in Grid Environments

 Renewal Process and Homogeneous Poisson Process: A renewal process

assumes that, upon failure, the system is instantaneously repaired to an ‗as

good as new‘ state. It also assumes that the distribution of the time between

failures is identical and independent (IID). The homogeneous Poisson

process (HPP) is a special case of the renewal process, in which the time

between failures follows the exponential distribution. Grid resources cannot

be modelled as HPP as the distribution of the time between failures for

these resources is Weibull and not exponential (see 4.3.5). Furthermore,

Grid resources cannot be modelled as a renewal process for two reasons:

first, the repair of a resource will not return it to an ‗as good as new‘ state.

Second, a resource changes during repairs and assuming identical

distribution is inadequate.

 Modified Renewal Process: A modified renewal process is a process with

the distribution of the first failure differs from the distribution of the time of

the second, third or subsequent failures. Grid resources cannot be modelled

as a modified renewal process as the distribution of the time between

failures does not change between subsequent failures.

 Alternating Renewal Process: An alternating renewal process does not

assume an instantaneous repair, and takes into account the time to repair a

failed system. Grid resources cannot be modelled as an alternating renewal

process as the alternating renewal process assumes an IID failures and Grid

resources change during repairs.

 Non-Homogeneous Poisson Process: A non- homogeneous Poisson

process (NHPP) is an extension on HPP whereby the rate of failure, as

given by the rate of occurrence of failures (ROCOF), is assumed to vary

with time. The ROCOF function is also referred to as the peril rate. The

NHPP is widely assumed in modelling computer systems as the rate of

failures varies with time and the distribution of the time between failures is

not assumed to be identical. Two NHPP models are widely used in

reliability engineering: the NHPP following a Power Low and the NHPP

Following an Exponential Low [196].

Chapter 4 79 Analysis of Failures in Grid Environments

4.4.1 NHPP Following a Power Low

The power low model—also known as Crow‘s model or Weibull process—

because the time to the first failure has a Weibull distribution, has the following

ROCOF [201]:

where λ is the scale parameter, β is the growth parameter and t is the time.

In 1964, Duane [202] introduced the technique of plotting the cumulative

failure rate against t on a log-log paper. If the system generating the failures follows

a power-low model then, subject to sampling variability, a liner plot will be obtained

on the log-log paper. The cumulative failure rate is N(ti)/ti where N(t) is a counting

function which keeps track of the cumulative number of failures the system has had

from time zero to time t, where ti is the time of the ith failure.

Figures 24, 25, 26, 27, 28, 29 & 30 show the Duane plots of failures for

resources A, B, C, D from Site 1, A, B and C from Site 2 respectively. The X Axis

represents ln(t) and the Y Axis represents ln(t/N(t))1. From the figures, it can be seen

that the points in the plots are scattered and do not form a roughly linear plot.

Therefore, Grid resources, most likely, cannot be modelled as a power low NHPP.

Furthermore, the resources repair time is not modelled as a power-low NHPP (see

Appendix A for the Duane plots of repair time).

1 The implementation of Duane plot that‘s put ti/N(ti) on the vertical axis is used.

Chapter 4 80 Analysis of Failures in Grid Environments

Figure 24: The Dune Plot for Failures of Resource A Site 1.

Figure 25: The Dune Plot for Failures of Resource B Site 1.

Figure 26: The Dune Plot for Failures of Resource C Site 1.

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10 12

ln(t)

ln
(t

/N
(t

))

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12

ln(t)

ln
(t

/N
(t

))

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10 12

ln(t)

ln
(t

/N
(t

))

Chapter 4 81 Analysis of Failures in Grid Environments

Figure 27: The Dune Plot for Failures of Resource D Site 1.

Figure 28: The Dune Plot for Failures of Resource A Site 2.

Figure 29: The Dune Plot for Failures of Resource B Site 2.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5 6 7 8

ln(t)

ln
(t

/N
(t

))

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12

ln(t)

ln
(t

/N
(t

))

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12

ln(t)

ln
(t

/N
(t

))

Chapter 4 82 Analysis of Failures in Grid Environments

Figure 30: The Dune Plot for Failures of Resource C Site 2.

4.4.2 NHPP Following an Exponential Low

The exponential low model—also known as Cox and Lewis‘s model—has the

following ROCOF [196]:

where a0 is the scale parameter, a1 is the growth parameter and t is the time.

Plotting the cumulative failure rate against t on a log-linear paper should

roughly follow a straight line if the system generating the failures follows an

exponential low NHPP.

Figures 31, 32, 33, 34, 35, 36 & 37 show the plots of the cumulative failure

rate against t on a log-linear paper for resources A, B, C, D from Site 1, A, B and C

from Site 2 respectively. The X Axis represents the time t in hours, whilst the Y

Axis represents ln(t/N(t)). The figures show that the points on the plots do not form a

roughly linear plot; therefore, Grid resources cannot be modelled as an exponential

low NHPP. Moreover, the resources repair time is not modelled as an exponential

low NHPP (see Appendix A for the plot of the cumulative repair rate against t on a

log-linear paper).

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12

ln(t)

ln
(t

/N
(t

))

Chapter 4 83 Analysis of Failures in Grid Environments

Figure 31: Cumulative Failure Rate against t on a log-linear Paper for Failures of Resource A Site 1.

Figure 32: Cumulative Failure Rate against t on a log-linear Paper for Failures of Resource B Site 1.

Figure 33: Cumulative Failure Rate against t on a log-linear Paper for Failures of Resource C Site 1.

4

4.5

5

5.5

6

6.5

7

7.5

8

0 5000 10000 15000 20000 25000 30000

Time in Hours

ln
(t

/N
(t

))

4

4.5

5

5.5

6

6.5

7

7.5

8

0 5000 10000 15000 20000 25000 30000

Time in Hours

ln
(t

/N
(t

))

4

4.5

5

5.5

6

6.5

7

7.5

8

0 5000 10000 15000 20000 25000 30000

Time in Hours

ln
(t

/N
(t

))

Chapter 4 84 Analysis of Failures in Grid Environments

Figure 34: Cumulative Failure Rate against t on a log-linear Paper for Failures of Resource D Site 1.

Figure 35: Cumulative Failure Rate against t on a log-linear Paper for Failures of Resource A Site 2.

Figure 36: Cumulative Failure Rate against t on a log-linear Paper for Failures of Resource B Site 2.

4

4.5

5

5.5

6

6.5

7

7.5

8

0 5000 10000 15000 20000 25000 30000

Time in Hours

ln
(t

/N
(t

))

4

4.5

5

5.5

6

6.5

7

0 5000 10000 15000 20000 25000 30000

Time in Hours

ln
(t

/N
(t

))

4

4.5

5

5.5

6

6.5

7

7.5

0 5000 10000 15000 20000 25000 30000

Time in Hours

ln
(t

/N
(t

))

Chapter 4 85 Analysis of Failures in Grid Environments

Figure 37: Cumulative Failure Rate against t on a log-linear Paper for Failures of Resource C Site 2.

4.4.3 Results Analysis

In this section the random processes are tested as probabilistic models for the

Grid resources failure. The results show that random processes are not suitable for

modelling Grid resources failure. The HPP assumes that the time between failures

follows the exponential distribution, yet the time between failures in grid

environments follows a Weibull distribution. The renewal process assumes that the

repair of failed component return it to ―as good as new‖ state, yet in Grid

environments repairs do not return the resources to as good as new state. The

modified renewal process assumes that the distribution of the first failure differs

from the distribution of the time of the second, third or subsequent failures. This

assumption is not valid in Grid environments since the distribution of the time

between failures follows the Weibull distribution and does not change between

subsequent failures. The alternating renewal process assumes that the distribution of

the time between failures is identical and independent. In Grid environments a

resource changes during repairs, thus assuming identical distribution is inadequate.

Finally the NHPP, which is widely assumed in modelling computer systems, is not

fitting for modelling Grid resources failure. From the Dune plot it is highly unlikely

that Grid resource failures are modelled by a NHPP following a power low. The

same conclusion for the NHPP following an exponential low is driven from the log-

linear plot.

4

4.5

5

5.5

6

6.5

7

7.5

0 5000 10000 15000 20000 25000 30000

Time in Hours

ln
(t

/N
(t

))

Chapter 4 86 Analysis of Failures in Grid Environments

4.5 Summary

The motivation scenario is used to demonstrate the need for risk assessment

methods in order to improve the commercial uptake of Grid computing. The events

that cause resource failures are identified as hardware failures, software failures,

network failures, environment failures and unknown failures. The risk of failure

measure is presented to be the resource probability of failure. Analysing failures

records for seven different resources shows that software and hardware failures are

the largest contributors to failures: the actual percentage for software ranges from

28.21% to 45.24%; the actual percentage for hardware ranges from 41.18% to

46.51%. Importantly, software and hardware failures contribute hugely to the

downtime. Another observation is that the mean time to repair—in all resources—is

very high, and that the time to repair a resource is highly variable owing to the

difference between the mean and the median. The mean repair times vary widely

depending on the root cause, and are extremely variable. The time to repair a

resource is well-fitted by a lognormal distribution, with Weibull distribution as the

second best. The time between failures are best fitted with a Weibull distribution

with decreasing hazard rate. Finally, the assumption that failures in Grid resources

are modelled by a NHPP is invalid, and the Duane plot—along with the log-linear

plot—confirms this. In the next chapter, new models to estimate the resources risk

of failures are introduced.

87

5 Chapter 5

Modelling Risk of Failure in Grid Environments

In the previous chapter, it has been highlighted that the Grid resource failures

cannot be modelled using probabilistic failure models, such as HPP or NHPP. More

advanced modelling techniques are required. These techniques are based on

availability models—also known as reliability models for non-repairable systems.

With this in mind, this chapter introduces a mathematical model for the prediction of

the risk of failure of a Grid resource with the use of a discrete-time analytical model

driven by availability functions fitted to observed data. Moreover, the model

selected and the reasons for selection are presented. In addition, the different

distribution of the failure data are analysed and, based on these, the risk assessment

model is developed. The model is validated by comparing the proposed ROF

generated by the model with the observed ROF. Finally, the use of the model to rank

resources and plan future investments is studied.

5.1 Availability Models

Recall that the resource ROF at time t is the probability of the resource not

functioning at time t. This can be defined as one minus the probability of the

resource functioning at t. By computing the probability of the resource functioning

at t, known as availability A(t), the resource ROF becomes:

ROF(t) = 1 – A(t)

An availability model is an abstract mathematical and graphical representation

of the system availability characteristics. The model can be evaluated so as to obtain

a prediction of the system availability at a given time [203]. The taxonomy of

modelling techniques for system reliability and availability is found in [177]. Two

techniques are widely applied for availability: Combinatorial Models and Markov

Models.

Chapter 5 88 Modelling Risk of Failure in Grid Environments

Combinatorial modelling is an approach in which the system is divided into

overlapping modules. Each module is assigned a probability of working Pl, the goal

of which is to drive the probability of the correct system operation. Combinatorial

models have various limitations owing to the fact that they cannot be used to model

system repairs or dynamic reconfiguration of the system; hence, some non-standard

extensions have been added to the models so as to increase their expressiveness.

Furthermore, Combinatorial Models include Reliability Block Diagram (RBD)

Models, Network Models and Fault Tree Models. A serious limitation of these

models is that they can only represent two states per module, i.e. operational and

failed [203]. Regardless of their limitations, however, Combinatorial Models are

used when the system under study is divided into modules, yet in this thesis, the

Grid resource is modelled as a black-box; therefore, Combinatorial Models are not

applied in this work.

Markov Models address the limitations associated with Combinatorial Models.

The two central concepts of Markov models are ‗state‘ and ‗state transitions‘. Recall

that, from the data collected in GOCDB, Grid resources have three states.

 ‗Up‘ the resource is fully functional, represented as State 0;

 ‗At Risk‘ the resource will probably be working as normal, but may

experience problems, represented as State 1; and

 ‗Outage‘ the resources will be completely unavailable, represented as

State 2.

As time passes, the resource moves from state to state as a result of failures and

repairs. These changes in-state are known as state transitions. Markov models can be

further divided into two categories: discrete-time and continuous-time models. The

former, discrete-time models, require all state transitions to occur at fixed intervals,

with each possible transition assigned a probability. Continuous-time models allow

state transitions to occur at varying intervals, and each possible transition is assigned

with a transition rate. Markov models are represented in graphs, and the information

expressed by the model graph is often summarised in a square matrix P, whose

elements Pi,j are the probability of a transition from state i to state j. The

probabilistic character of the matrix requires that all elements of the matrix are non-

negative, and that each row of the matrix sums one.

Chapter 5 89 Modelling Risk of Failure in Grid Environments

The basic assumption in the case of Markov models is that the resource has no

memory, which implies that the transition probabilities between states are

determined only by the present state and not by the history. For continuous-time

models, the length of time already spent in a state does not influence either the

transition rate of the next state or the remaining time in the same state before the

next transition. This general assumption implies that the waiting time spent in any

state is exponentially distributed in the continuous-time case or geometrically

distributed in the discrete-time case. Thus, Markov models assume that failure rates

are constant, thereby leading to exponentially distributed inter-arrival time of

failures and Poisson arrival of failures [204]. A useful generalisation of Markov

Models is the Time-Varying Markov Models, which allow state transition

probability to change over time; thus, the failure rate is no longer assumed as

constant [177]. With this relaxed assumption, the Grid resources can be modelled

with the use of the time-varying Markov model. Since Grid resources failures and

repairs occur at varying intervals, a continuous time-varying Markov model is used

for Grid resource availability (see Figure 38). The transition matrix for the

continuous time-varying Markov model is:

The resource will start at State 0 and operate until either: (i) the performance

degrades and the resource transits to State 1; or (ii) the resource stops working and

transits to State 2. Importantly, ZW(t) is the rate of events that causes a resource to

transition from State 0 to State 1, whilst ZR(t) is the rate of recovery events that

result in the resource returning to State 0. Moreover, ZF(t) is the rate of events that

leads to resource failure, whereas ZG(t) is the rate of repair events resulting in the

resource returning to State 0.

In order to predict the Grid resource availability, the continuous time-varying

Markov model is developed by applying transition functions ZW(t), ZR(t), ZF(t), and

ZG(t) derived from the distributions fitted to failure data. Therefore, Section 5.2

deals with establishing distributions for the transition functions, whilst Section 5.3

presents the analysis of the model.

Chapter 5 90 Modelling Risk of Failure in Grid Environments

Figure 38: Continuous Time-Varying Markov Model for Resource Availability.

5.2 Fitting Distributions to Failure Data

Recall that, in Chapter 4, the downtime data for seven Grid resources from two

different Grid sites are collected. Four resources are from Site 1, whilst three

resources are from Site 2. We name Site 1 resources A, B, C, and D, whilst Site 2

resources are A, B and C. The downtime data for these resources will be used to

drive the transition functions.

In order to determine the time-varying functions ZW(t), ZR(t), ZF(t), and ZG(t)

for the continuous time-varying Markov model shown above, the sequence of

unscheduled events are analysed for each resource. There are two types of events:

the first is At Risk, which represents a transition from State 0 to State 1; the second

is complete failure, which represents the transition from State 0 to State 2. For each

event, the time to repair the resource is recorded and represents the time to return the

resource to State 0 from State 1 or 2. Each resource has four functions to be

modelled: ZW(t), ZR(t), ZF(t), and ZG(t).

1. The time between transition from ‗UP‘ to ‗AT RISK‘ or State 0 to State

1 denoted as ZW(t).

2. The time between transition from ‗AT RISK‘ to ‗UP‘ or State 1 to State

0 denoted as ZR(t).

ZG(t)

UP

State 0 ZW(t)

ZR(t)

DOWN

State 2

AT RISK

State 1

ZF(t)

ZF(t)

Chapter 5 91 Modelling Risk of Failure in Grid Environments

3. The time between transition from ‗UP‘ to ‗DOWN‘ or State 0 to State 2

denoted as ZF(t).

4. The time between transition from ‗DOWN‘ to ‗UP‘ or State 2 to State 1

denoted as ZG(t).

 The cdf of the four functions for each resource is fitted with four standard

distributions: Exponential, Weibull, Gamma and Lognormal; this helps to determine

the best fit for each function. The MLE is used to parameterise the distributions, and

the goodness of fit is evaluated by visual inspection and the negative log-likelihood

test.

Chapter 5 92 Modelling Risk of Failure in Grid Environments

5.2.1 Summary of Results

Resource A Site One:

 From Figure 39, visual inspection shows that the time between transitions

from State 0 to 1, ZW(t), is well modelled by Weibull or Lognormal distribution, yet

the Weibull is a better fit when tested with the use of a negative log-likelihood. The

time between transitions from State 0 to 2, ZF(t), is well modelled by Weibull or

Gamma; both distributions create an equally good visual fit and the same negative

log-likelihood. The repair time is the time to return the resource to State 0 from State

1 or State 2. Moreover, the time between the transitions from State 1 to State 0,

ZR(t), is well modelled through Weibull or Lognormal distribution, yet the

Lognormal is a better fit when tested with the use of a negative log-likelihood. The

time between transitions from State 2 to State 0, ZG(t), is well modelled by Weibull

or Lognormal distribution, yet the Weibull is a better fit when tested using the

negative log-likelihood.

Figure 39: The Time-Varying Functions ZW(t), ZR(t), ZF(t), and ZG(t) for Resource A Site 1.

(a) ZW(t) (b) ZF(t)

(c) ZR(t) (d) ZG(t)

Chapter 5 93 Modelling Risk of Failure in Grid Environments

Resource B Site One:

 As can be seen from Figure 40, visual inspection shows that the time between

transitions from State 0 to 1, ZW(t), is well modelled by Weibull or Gamma

distribution, yet the Weibull is a better fit when tested using negative log-likelihood.

The time between transitions from State 0 to 2 is, ZF(t), well modelled by Weibull or

Gamma, yet the Weibull is a better fit when tested using the negative log-likelihood.

Moreover, the time between transitions from State 1 to State 0, ZR(t), is well

modelled by Lognormal distribution; both the visual inspection and the negative log-

likelihood test confirm this. The time between transitions from State 2 to State 0,

ZG(t), is well modelled by Weibull or Lognormal distribution, although the Weibull

is a better fit when tested using negative log-likelihood.

Figure 40: The Time-Varying Functions ZW(t), ZR(t), ZF(t), and ZG(t) for Resource B Site 1.

(a) ZW(t) (b) ZF(t)

(c) ZR(t) (d) ZG(t)

Chapter 5 94 Modelling Risk of Failure in Grid Environments

Resource C Site One:

 From Figure 41, visual inspection shows that the time between transitions

from State 0 to 1, ZW(t), is well modelled by Weibull or Lognormal distribution,

although the Weibull is a better fit when tested using negative log-likelihood. The

time between transitions from State 0 to 2, ZF(t), is well modelled by Weibull or

Gamma, yet the Weibull is a better fit when tested using the negative log-likelihood.

Furthermore, the time between transitions from State 1 to State 0, ZR(t), is well

modelled Lognormal or Weibull distribution, yet the Weibull is a better fit when

tested using the negative log-likelihood. The time between transitions from State 2

to State 0, ZG(t), is well modelled through Weibull or Lognormal distribution, yet

the Lognormal is a better fit when tested using negative log-likelihood.

Figure 41: The Time-Varying Functions ZW(t), ZR(t), ZF(t), and ZG(t) for Resource C Site 1.

(a) ZW(t) (b) ZF(t)

(c) ZR(t) (d) ZG(t)

Chapter 5 95 Modelling Risk of Failure in Grid Environments

Resource D Site One:

Figure 42 shows that the time between transitions from State 0 to 1, ZW(t), is

well modelled by Weibull or Gamma; both distributions create an equally good

visual fit and the same negative log-likelihood. The time between transitions from

State 0 to 2, ZF(t), is also well modelled by Weibull or Gamma, although the Gamma

is a better fit when tested using the negative log-likelihood. The time between

transitions from State 1 to State 0, ZR(t), is well modelled Lognormal or Weibull

distribution, yet the Lognormal is a better fit when tested using the negative log-

likelihood. The time between transitions from State 2 to State 0, ZG(t), is well

modelled by Weibull or Lognormal distribution, though the Weibull is a better fit

when tested using negative log-likelihood.

Figure 42: The Time-Varying Functions ZW(t), ZR(t), ZF(t), and ZG(t) for Resource D Site 1.

(a) ZW(t) (b) ZF(t)

(c) ZR(t) (d) ZG(t)

Chapter 5 96 Modelling Risk of Failure in Grid Environments

Resource A Site Two:

Figure 43 shows that the time between transitions from State 0 to 1, ZW(t), is

well modelled by Weibull or Exponential, although the Weibull is a better fit when

tested using negative log-likelihood. The time between transitions from State 0 to 2,

ZF(t), is also well modelled by Weibull or Gamma; both distributions create an

equally good visual fit and the same negative log-likelihood. The time between

transitions from State 1 to State 0, ZR(t), is well modelled Gamma or Weibull

distribution, although the Weibull is a better fit when tested using the negative log-

likelihood. The time between transitions from State 2 to State 0, ZG(t), is well

modelled by Weibull or Lognormal distribution, yet the Lognormal is a better fit

when tested using negative log-likelihood.

Figure 43: The Time-Varying Functions ZW(t), ZR(t), ZF(t), and ZG(t) for Resource A Site 2.

(a) ZW(t) (b) ZF(t)

(c) ZR(t) (d) ZG(t)

Chapter 5 97 Modelling Risk of Failure in Grid Environments

Resource B Site Two:

Figure 44 illustrates that the time between transitions from State 0 to 1 is well

modelled by Weibull or Exponential, although the Weibull is considered to be a

better fit when tested using negative log-likelihood. The time between transitions

from State 0 to 2 is well modelled by Weibull or Gamma, although the Gamma is a

better fit when tested using the negative log-likelihood. The time between transitions

from State 1 to State 0 is well modelled Lognormal or Weibull distribution, but the

Weibull is a better fit when tested using the negative log-likelihood. The time

between transitions from State 2 to State 0 is well modelled by Weibull or

Lognormal distribution, yet the Lognormal is a better fit when tested using negative

log-likelihood.

Figure 44: The Time-Varying Functions ZW(t), ZR(t), ZF(t), and ZG(t) for Resource B Site 2.

(a) ZW(t) (b) ZF(t)

(c) ZR(t) (d) ZG(t)

Chapter 5 98 Modelling Risk of Failure in Grid Environments

Resource C Site Two:

Figure 45 shows that the time between transitions from State 0 to 1, ZW(t), is

well modelled by Weibull or Gamma; both distributions create an equally good

visual fit and the same negative log-likelihood. The time between transitions from

State 0 to 2, ZF(t), is well modelled by Weibull or Gamma, although the Gamma is a

better fit when tested using the negative log-likelihood. The time between transitions

from State 1 to State 0, ZR(t), is well modelled Lognormal or Weibull distribution,

but the Weibull is a better fit when tested using the negative log-likelihood. The

time between transitions from State 2 to State 0, ZG(t), is well modelled by Weibull

or Lognormal distribution, although the Lognormal is a better fit when tested using

negative log-likelihood.

Figure 45: The Time-Varying Functions ZW(t), ZR(t), ZF(t), and ZG(t) for Resource C Site 2.

(a) ZW(t) (b) ZF(t)

(c) ZR(t) (d) ZG(t)

Chapter 5 99 Modelling Risk of Failure in Grid Environments

As can be seen from the above results, the function ZW(t) is modelled by a

Weibull distribution since the transition from State 0 to State 1 in all seven resources

is best fitted by the Weibull distribution. The function ZF(t) is similarly modelled by

a Weibull distribution, owing to the fact that the transition from State 0 to State 2 in

four out of the seven resources achieves best fit through a Weibull distribution,

whilst for the remaining three the Gamma distribution fit the data slightly better than

the Weibull distribution, but still provides a good fit. The function ZR(t) is also

modelled by a Weibull distribution since the transition from State 1 to State 0 in four

out of the seven resources achieves a best fit from a Weibull distribution, whilst for

the other three, the Lognormal distribution fit the data slightly better than the

Weibull distribution. Finally, the function ZG(t) is also modelled by a Weibull

distribution, although the transition from State 2 to State 0 in three out of the seven

resources achieves best fit through Weibull distribution. The reason for this is that,

in the case of the other four resources, the Lognormal distribution was only a

slightly better fit than the Weibull distribution.

Table 11 shows the individual resources along with the best distribution fit for

the four transition functions.

Table 11: The Best Fit Distribution for the Transition Functions.

 ZW(t) ZF(t) ZR(t) ZG(t)

Site One Resource A Weibull Weibull Lognormal Weibull

Resource B Weibull Weibull Lognormal Weibull

Resource C Weibull Weibull Weibull Lognormal

Resource D Weibull Gamma Lognormal Weibull

Site Two Resource A Weibull Weibull Weibull Lognormal

Resource B Weibull Gamma Weibull Lognormal

Resource C Weibull Gamma Weibull Lognormal

5.3 Developing the Risk Assessment Model

In the previous section, the time between events was found to follow a Weibull

distribution; therefore, the time-varying functions ZW(t), ZR(t), ZF(t), and ZG(t) are

Chapter 5 100 Modelling Risk of Failure in Grid

Environments

based on a Weibull probability density function (pdf), with unique shape α and scale

λ values for each function.

ZW(t) =

ZR(t) =

ZF(t) =

ZG(t) =

Continuous time-varying Markov models are difficult and complex to solve.

The numerical integration technique is one method for solving the model, whilst an

alternative method involves approximating the continuous-time process with

discrete-time equivalents [205]. The latter will be used as numerical integration

involves some degree of approximation.

Figure 46 shows the resulting discrete-time Markov model for time step ∆t.

Since more than one transition may occur during a time step, the model must take

into account the joint probability of state transition.

The state transition probabilities for the discrete-time Markov model changes

over time; therefore, we need to drive an expression for A(n), B(n), C(n), D(n), and

E(n). The model we drive is based on models developed by Howard [204] and

Siewiorek and Swarz [205].

Chapter 5 101 Modelling Risk of Failure in Grid Environments

Figure 46: Discrete-time Markov Model for Resource Availability.

The interest is in calculating the probability transition equations, in which qij (m,

n) is the probability that the system is in state j at time n given that it was in state i at

time m (m ≤ n). With this notation, in matrix form the Chapman-Kolmogorov

equation [204] is:

Q(m, n) = Q(m, k) Q(k, n) m ≤ k ≤ n

Letting k = n – 1,

Q(m, n) = Q(m, n – 1) Q(n – 1, n)

Defining P(n) = Q(n, n + 1),

Q(m, n) = Q(m, n – 1)P(n – 1)

Expanding the equation recursively

Q(m, n) = Q(m, n – 2) P(n – 2) P(n – 1)

 = Q(m, n – 3) P(n – 3) P(n -2) P(n – 1)

Yielding the final solution

1- E(n) 1- [C(n) + D(n)]

1- [A(n) + B(n)]

E(n)

UP

State 0 A(n)

C(n)

DOWN

State 2

AT RISK

State 1

B(n)

D(n)

Chapter 5 102 Modelling Risk of Failure in Grid Environments

In order to convert from continuous-time probability functions to discrete-time

probability function, a discrete-time probability distribution must be established that

corresponds to the continuous-time distribution. The corresponding parameters can

then be calculated for the desired time-step ∆t. Furthermore, a discrete-time

approximation has to consider the probability of two failures during the same

interval; the time-varying reliability functions ZW(t), ZR(t), ZF(t), and ZG(t) are based

on a Weibull probability density function.

pdf = f(t) = αλ(λt)
α-1

The corresponding discrete Weibull function, probability mass function, is:

pmf = f(k) =
 –

Given that f(k) is defined as the probability of an event occurring between time ∆t

and time (k + 1) ∆t for some chosen interval size ∆t, the probability mass function

can be expressed as:

f(k) = P[no event by k∆t] – P[no event by (k + 1)∆t]

f(k) = R(k) – R(k+1)

R(k) is the reliability function. By substituting the continuous-time equivalents

yields:

f(k) = R(k∆t) – R[(k + 1) ∆t]

f(k) = –

By rearranging terms, we can find that:

q =

The probability mass functions ZW(n), ZR(n), ZF(n), and ZG(n) provides the

reliability for a discrete time step n = tn/∆t. The time-varying functions are:

qW =

ZW(n) = 1 –

qR =

ZR(n) = 1 –

qF =

Chapter 5 103 Modelling Risk of Failure in Grid Environments

ZF(n) = 1 –

qG =

ZG(n) = 1 –

The transition probability functions in Figure 46, which represent the probability of

transition from one state to another state, are:

A(n) = [1 – ZF(n)] ZW(n)

B(n) = [1 – ZW(n)] ZF(n)

C(n) = [1 – ZF(n)] ZR(n)

D(n) = [1 – ZR(n)] ZF(n)

E(n) = ZG(n)

The transition probability matrix

 A(n) is the probability of not transiting to Down and the probability of

transiting from Up to At Risk,

 B(n) is the probability of not transiting to At Risk and the probability of

transiting from Up to Down,

 C(n) is the probability of not failing and transiting from At Risk to Up,

 D(n) is the probability of not been recovered and transiting Down,

 E(n) is the probability of repairing the system and transiting from

Down to Up.

Taking into account that Pi,j is the probability of a transition from state i to

state j, it can then be stated that the probability of transition P0,0 is the probability of

remaining in State 0, which is 1 – the probability of leaving State 0, hence 1 – [A(n)

+ B(n)]. The same can then be applied for the probability of transition P1,1 and P2,2.

P(n) can be used to compute instantaneous or the point risk of failure, which is

the probability that the system will not be operational at any random time t.

However, the most important is the duration risk of failure, which is the probability

Chapter 5 104 Modelling Risk of Failure in Grid Environments

that the system will not be operational for the entire duration (e.g. job execution

time). Computing duration risk of failure is an iterative process. Accordingly,

applying the appropriate values for α and λ, starting at T = start time, P(n) is

computed forward for successive values of n until the desired finish time t = n ∆t is

reached.

5.4 Experimental Results and Validation

 Adopting the technique described in the previous section, the transition matrix

P(n) is computed for each resource using the data from GOCDB with ∆t = 1 hour.

Since Grid jobs usually require long execution times, ∆t should be selected

accordingly. However, very long ∆t lowers the accuracy of the model, since a state

transition is not promptly recorded. On the other hand, short ∆t has the overhead of

calculating P(n) multiple times, despite the probability of transition not changing.

Therefore, ∆t was selected to be 1 hour.

The observed risk of failure was calculated using the data from the last 6

months of 2010. There are two reasons for selecting 6 months as the time-span:

1. The resources failure data used to calculate the model span for three

years; and

2. The Weibull shape parameter for resource failures is less than 1, which

means that, following a failure, the risk of seeing one soon increases;

therefore, a short time-span does not reflect the true behaviour of the

resource failures.

Table 12 shows, for the resources considered, the values of the Weibull shape α and

scale λ parameters for the reliability functions ZW(t), ZR(t), ZF(t), and ZG(t). The

MLE was used to estimate the parameters. The risk of failure is calculated as the

sum of the probability of transitioning from Up to At Risk and the probability of

transitioning from Up to Down.

The data from GOCDB is used to validate the predicted risk of failure. The

observed risk of failure is defined as:

Chapter 5 105 Modelling Risk of Failure in Grid Environments

The observed risk of failure was calculated using the data from the last 6

months of 2010. There are two reasons for selecting 6 months as the time-span:

3. The resources failure data used to calculate the model span for three

years; and

4. The Weibull shape parameter for resource failures is less than 1, which

means that, following a failure, the risk of seeing one soon increases;

therefore, a short time-span does not reflect the true behaviour of the

resource failures.

Table 12: The Shape α and Scale λ Parameters for the Functions ZW(t), ZR(t), ZF(t), and ZG(t).

 ZW(t) ZF(t) ZR(t) ZG(t)

 α λ α λ Α λ Α λ

Site

One A 0.6741 1124.29 0.6002 1818 0.665 15.784 0.899 40.08

B 0.8616 376.63 0.6409 1385.26 0.7385 10.454 0.5779 47.05

C 0.7154 691.27 0.6384 1113.28 0.8022 17.387 0.8708 32.37

D 0.8326 1138.13 0.6236 974.053 0.7565 12.936 0.8610 37.80

Site

Two A 0.5930 4160.27 0.8959 866.254 0.8715 11.014 0.7814 6.676

B 1.0563 398.589 0.6806 613.096 0.7679 7.8319 0.6767 9.946

C 0.8937 321.602 0.6930 657.811 0.9098 10.984 0.7593 7.392

Figures 47, 48, 49, & 50 show the predicted one-day duration risk of failure

over a number of days, as well as the observed risk of failure for resources A, B, C

and D from Site 1 correspondingly. Visual inspection indicates that the observed and

predicted risks of failure are comparable. Figures 51, 52 & 53 show the predicted

one-day duration risk of failure over a number of days, as well as the observed risk

of failure for resources A, B and C from Site 2 correspondingly. Visual inspection

indicates that the observed and predicted risks of failure are also comparable.

Chapter 5 106 Modelling Risk of Failure in Grid Environments

Figure 47: Predicted & Observed Risk of Failure for Resource A Site 1.

Figure 48: Predicted & Observed Risk of Failure for Resource B Site 1.

Figure 49: Predicted & Observed Risk of Failure for Resource C Site 1.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126

Days

R
is

k
 o

f
F

a
il

u
re

Predicted Risk of Failure Observed Risk of Failure

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126

Days

R
is

k
 o

f
F

a
il

u
re

Predicted Risk of Failure Observed Risk of Failure

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126

Days

R
is

k
 o

f
F

a
il

u
re

Predicted Risk of Failure Observed Risk of Failure

Chapter 5 107 Modelling Risk of Failure in Grid Environments

Figure 50: Predicted & Observed Risk of Failure for Resource D Site 1.

Figure 51: Predicted & Observed Risk of Failure for Resource A Site 2.

Figure 52: Predicted & Observed Risk of Failure for Resource B Site 2.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126

Days

R
is

k
 o

f
F

a
il

u
re

Predicted Risk of Failure Observed Risk of Failure

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126

Days

R
is

k
 o

f
fa

il
u

re

Predicted Risk of Failure Observed Risk of Failure

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126

Days

R
is

k
 o

f
F

a
il

u
re

Predicted Risk of Failure Observed Risk of Failure

Chapter 5 108 Modelling Risk of Failure in Grid Environments

Figure 53: Predicted & Observed Risk of Failure for Resource C Site 2.

In order to validate that the predicted risk of failure is a true projection of the

resource risk of failure (observed risk of failure), the two-sample t test—also known

as Independent-Samples T Test—is used to compare the means of the two groups

(observed and predicted risk of failure). The t test is used to compare exactly two

groups, but differs to the Analysis of Variance (ANOVA) test, which compares three

or more groups at one time [206].

The interest is to show that there is no difference between the predicted risk of

failure and the observed risk of failure; however, it is impossible statistically to

demonstrate that a statement is true. In actual fact, statistical techniques are much

better at indicating that a statement is not true. Let the null hypothesis be there is no

difference between the predicted and observed risk of failure. The alternative

hypothesis is that there is a difference between the two.

The t test shows that the difference between the predicted and observed risk of

failure is considered to be not statistically significant with P= 0.1636, P= 0.3491, P=

0.0935, and P= 0.0564, for site one resources, and P= 0.0556, P= 0.3827 and P=

0.0909 for site two resources (see Appendix B for the t test tables). Therefore, the

null hypothesis is not rejected and, by default, the alternative hypothesis that there is

a difference between the predicted and observed risk of failure is not supported.

Thus, the conclusion is that there is no difference between the predicted and

observed risk of failure.

From the above figures and the results of the t test, the conclusion is that the

risk assessment model predicts accurately the resources risk of failure. Therefore,

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126

Days

R
is

k
 o

f
F

a
il

u
re

Predicted Risk of Failure Observed Risk of Failure

Chapter 5 109 Modelling Risk of Failure in Grid Environments

the Grid resource provider can integrate the risk assessment model in order to

compute the risk of resources failure.

5.5 Ranking Grid Resources and Planning Future Investments

The Grid resources ROF is unavoidable and, as such, ranking the resources

with respect to their ROF is one of the most important outcomes of the risk

assessment process. Ranking is simply arranging the resources based on their

increasing or decreasing ROF. For Grid resources, the ranking is based on increasing

ROF since resources with low ROF are better than resources with higher ROF. With

this in mind, Figure 54 shows the predicted ROF of the seven resources over a

duration of months. The ROF was computed, assuming all resources became

available at exactly the same time t = 0. The X Axis represents the number of days,

starting from Day 0, and the Y Axis represents the ROF. Moreover, Figure 55

illustrates the resources ROF from two randomly selected days—Day 30 and Day

90. On Day 30, Resource C, Site 2 has the lowest ROF, and therefore ranked first.

On Day 90, Resource A, Site 2 has the lowest ROF, and thus ranked first. An

important observation from Figures 54 & 55 is that Site 1 resources‘ ROF is almost

always higher than Site 2 resources‘ ROF. The primary cause for this may be the

time to repair a failed resource at each site. In the case of Site 1, for example, the

time to repair resources A, B C and D, on average, takes approximately 32 hours, 27

hours, 28 hours and 31 hours respectively. In the case of Site 2, the time to repair

resources A, B and C, on average, takes approximately 7 hours, 15 hours and 9

hours respectively (see 4.3.4 Repair Time Analysis).

Table 13 shows the complete list of ranked resources.

Table 13: The Complete List of Resources Ranked Based on Resource ROF, for Day 30 and

Day 90.

Rank Day 30 Day 90

1 Resource C, Site Two Resource A, Site Two

2 Resource A, Site Two Resource C, Site Two

3 Resource B, Site Two Resource B, Site Two

Chapter 5 110 Modelling Risk of Failure in Grid Environments

4 Resource B, Site One Resource B, Site One

5 Resource C, Site One Resource C, Site One

6 Resource A, Site One Resource A, Site One

7 Resource D, Site One Resource D, Site One

 Figure 54: Resources Predicted ROF Over Days.

Figure 55: Resources Predicted ROF on Day 30 & Day 90.

In addition to ranking resources, the ROF model can be used to measure the

significance of the effect of changes in the Grid resources and environment. The

changes could be new or updated hardware, software, or even experience system

administrators in order to lower resources‘ repair time. There are various techniques

0%

5%

10%

15%

20%

25%

30%

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141 148 155 162 169 176

Days

R
is

k
 o

f
F

a
il

u
re

Site One Resource A Site One Resource B Site One Resource C Site One Resource D

Site Two Resource A Site Two Resource B Site Two Resource C

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

R
is

k
 O

f
F

a
il

u
re

Day 30 Day 90

Site One Resource A Site One Resource B Site One Resource C Site One Resource D

Site Two Resource A Site Two Resource B Site Two Resource C

Chapter 5 111 Modelling Risk of Failure in Grid Environments

for measuring this significance, the most commonly used of which is the ‗one-at-a-

time‘ method [9]. In this case, the assumptions and parameters are changed

individually so as to measure the change in output.

The one-at-a-time methods, along with the ROF model, are very powerful

tools for Grid providers to understand the limitations of current infrastructures and

plan future investments. These tools are explained in the following example.

Assume a Grid resources provider would like to invest some money to

improve the resources ROF. If the investment is on hardware, the provider then

expects the time between hardware failures to increase by 50%. Similarly, the time

between software failures is expected to increase by 50% if the investment is on

software; if it was on experienced system administrators, the resources repair time

would then decrease by 50%. The question is, which investment is the best? In other

words, which results in lowering the resources ROF to the greatest extent. (The

hardware and software failures were selected as they are the largest contributors to

failures. See 4.3.3 Root Cause Breakdown.)

The procedure to answer this question for each resource is as follows:

1. Compute the ROF for the resource using the technique introduced in

Section 5.3.

2. Decrease the time to repair the resource by 50%, and then compute the

ROF after the change.

3. Return the time to repair to its original value and increase the time

between hardware failures by 50%, and compute the ROF.

4. Return time between hardware failures to its original value, and

increase the time between software failures by 50%, and then compute

the ROF.

Figures 56, 57, 58, 59, 60, 61 & 62 show the original ROF, the ROF if the

repair time is decreased by 50%, the ROF if the time between hardware failures is

increased by 50% and the ROF if the time between hardware failures is increased by

50% over a number of days for Site 1, resource A, B, C, D, and Site 2, resource A, B

and C correspondingly. The X Axis represents the number of days, starting from

Day 0, whilst the Y Axis represents the ROF. Day 0 is the time when the resource

became available—either after a scheduled maintenance or unscheduled failure.

Chapter 5 112 Modelling Risk of Failure in Grid Environments

 Figure 56: Investments effect on Resource A Site 1.

 Figure 57: Investments effect on Resource B Site 1.

 Figure 58: Investments effect on Resource C Site 1.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141 148 155 162 169 176

Days

R
is

k
 o

f
F

a
il

u
re

s

Original Resource 50% Decrease in Repair Time

50% Increase in the Time between Hardware Failures 50% Increase in the Time between Software Failures

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141 148 155 162 169 176

Days

R
is

k
 o

f
F

a
il

u
re

s

Original Resource 50% Decrease in Repair Time

50% Increase in the Time between Hardware Failures 50% Increase in the Time between Software Failures

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141 148 155 162 169 176

Days

R
is

k
 o

f
F

a
il

u
re

s

Original Resource 50% Decrease in Repair Time

50% Increase in the Time between Hardware Failures 50% Increase in the Time between Software Failures

Chapter 5 113 Modelling Risk of Failure in Grid Environments

 Figure 59: Investments effect on Resource D Site 1.

 Figure 60: Investments effect on Resource A Site 2.

 Figure 61: Investments effect on Resource B Site 2.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141 148 155 162 169 176

Days

R
is

k
 o

f
F

a
il

u
re

s

Original Resource 50% Decrease in Repair Time

50% Increase in the Time between Hardware Failures 50% Increase in the Time between Software Failures

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141 148 155 162 169 176

Days

R
is

k
 o

f
F

a
il

u
re

Original Resource 50% Decrease in Repair Time

50% Increase in the Time between Hardware Failures 50% Increase in the Time between Software Failures

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141 148 155 162 169 176

Days

R
is

k
 o

f
F

a
il

u
re

s

Original Resource 50% Decrease in Repair Time

50% Increase in the Time between Hardware Failures 50% Increase in the Time between Software Failures

Chapter 5 114 Modelling Risk of Failure in Grid Environments

Figure 62: Investments effect on Resource C Site 2.

From the above figures, it can be observed that the investment in lowering the

repair time is the most rewarding; this is because the repair time—in the case of all

resources—is very high, even after the 50% decrease. Investment in hardware or

software, at this stage, is not much rewarding as the benefit on lowering the ROF is

limited.

5.6 Summary

In this chapter, a mathematical model for the prediction of the risk of failure,

with the use of a discrete-time analytical model driven by distribution functions

fitted to observed data, is presented.

The chapter begins by introducing availability models as a means for

calculating the probability of failures or ROF. Two techniques for availability are

discussed, namely Combinatorial Models and Markov Models. Grid resource

availability is modelled by a three-state continuous time-varying Markov model.

The state transition functions are driven from the distributions fitted to failure data.

The transition functions were found to follow a Weibull distribution. The chapter

then describes the method for solving the Markov model, which is to approximate

the continuous-time process with discrete-time equivalents. The discrete time-

varying Markov model is validated by comparing the predicted ROF with the

observed ROF. Notably, both graphical and statistical evaluations are presented. The

validation indicates that the difference between the observed ROF and the predicted

ROF is not statistically significant. Finally, the chapter presents the use of the risk

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141 148 155 162 169 176

Days

R
is

k
 o

f
F

a
il

u
re

Original Resource 50% Decrease in Repair Time

50% Increase in the Time between Hardware Failures 50% Increase in the Time between Software Failures

Chapter 5 115 Modelling Risk of Failure in Grid Environments

assessment model to rank Grid resources and to measure the significance of the

effect of changes in the Grid resources and environment.

116

6 Chapter 6

Using Resource ROF to Improve Scheduling

Grid environments provide computing platforms for solving large-scale

computational and data-intensive problems in science, engineering, and commerce.

They can be very cost-effective and easily scalable yet, owing to resource

heterogeneity and to the lack of accurate resource information, scheduling jobs in

such systems can be challenging. In this chapter, the problem of scheduling Bag of

Tasks (BoT) application on Grid resources is modelled using Mixed Integer

programming. An efficient algorithm for solving the scheduling problem is

presented. The algorithm is evaluated with the use of a simulation, allowing a wide

range of possible scenarios to be considered.

This chapter is organised as follows: Section 6.1 presents an overview of the

scheduling problem and presents the Grid application model, as well as limitations

of current scheduling algorithms. Section 6.2 provides the use of resources ROF to

overcome the current algorithms limitations, and suggests a model to minimise the

cost of executing a BoT job whilst guaranteeing the user‘s requirements. Section 6.3

presents the formal mathematical model and methods to compute the model optimal

solution. A new scheduling algorithm, along with the algorithm pseudocode, is

described in Section 6.4. Section 6.5 presents the evaluation of the algorithm

through simulation. The simulation experiments‘ design, the resource model, the

workload model, the experimental results, and sensitivity to the user constraints are

presented and discussed in this section. Finally, Section 6.6 ends the chapter with a

summary.

6.1 Overview

 In the motivation scenario 4.1—as indeed in the real world—Grid users submit

their application to resource providers through the use of SLAs. The SLA has the

user application information, as well as the user requirements and constraints.

Chapter 6 117 Using Resources ROF to Improve Scheduling

Notably, requirements can include the type of hardware, the type of operating

system, or even a business objective, such as minimising the costs associated with

executing the application. Moreover, a constraint could be the deadline by which the

application results should be delivered. Once the resource provider receive an SLA,

it is translated into an allocation problem whereby the application is allocated to

resources for executing, ensuring that, during the execution time, the user

requirements and constraints are being fulfilled.

The focus in this chapter is not directed on SLAs and their uses, but rather on

the resource provider being able to schedule users‘ applications and accordingly

guarantee their requirements and constraints. Therefore, in the remainder of this

chapter, the assumption is that the resource provider‘s unit responsible for resource

allocation—known as the scheduler—receives the user application, requirements

and constraints in the required format for resources allocation.

6.1.1 Application Model and Scheduling

 The type of applications which are executed on Grid systems can vary from

long running computationally intensive simulations to high demand and high

priority time critical transaction based executions, to real-time interactive

visualisations (see 2.2 Grid Applications). Notably, the majority of these

applications are sequential applications, often submitted in the form of Bags of

Tasks (BoT). According to Iosup et al. [87] BoT jobs account for up to 96% of the

CPU time consumed in Grid environments. BoT jobs are composed of sequential,

independent tasks where there is no communication or dependencies amongst tasks.

Examples of BoT jobs include Monte Carlo simulations, massive searches (such as

key-breaking), image manipulation applications, data mining algorithms, and

parameter-sweep applications [207]. Therefore, the type of applications which this

thesis is targeting is BoT jobs.

Executing BoT jobs involves processing N independent tasks on M distributed

resources where N is, typically, much larger than M. For each task n Є N its

computation time is known. Scheduling the tasks to resources appears simple, but

complexities arise when users place their desired constraints. The job owners submit

their BoT jobs and requirements in real time (in the reset of the chapter the job

owners are referred to as users); therefore, the scheduler must find the tasks

assignment efficiently and effectively for each user. The scheduling is carried out in

Chapter 6 118 Using Resources ROF to Improve Scheduling

real-time, and the users‘ BoT are assigned as first in, first out (FIFO). If an

assignment is found which has satisfied the user requirements, the user BoT job is

then accepted; otherwise, the job is rejected.

Scheduling BoT jobs in Grid environments whilst guaranteeing the user

constraints is an NP-hard problem [119]. A number of algorithms have been

suggested for solving this problem (for more information about the algorithms see

 2.6.2.3 Scheduling Algorithms). The available algorithms have a number of

limitations, such as:

1. the algorithms only consider the deadline and cost constraints;

2. the algorithms assume the resource price is a function of performance.

A more expensive resource is always faster, in term of processing

speed, than a less expensive one. In the real world this assumption is

invalid, because resources failures do occur;

3. the BoT jobs are assumed to be of the same level; accordingly, there is

no distinction between critical and non-critical BoT jobs. What is

meant by critical BoT jobs are the jobs that must be completed before a

strict deadline; after this deadline, the results might be insignificant.

Examples of critical BoT jobs include a researcher who needs the

results of his/her BoT job before the submission deadline of a research

conference or an organisation employee who needs the results of the

BoT job before an important meeting. Presumably, users with critical

BoT jobs are willing to pay more to ensure the jobs finish on time.

Results of non-critical BoT jobs do not lose their significance after the

deadline; therefore, the owners of such jobs would like to execute the

jobs as inexpensively as possible rather than paying extra to ensure the

deadlines are met; and finally,

4. the algorithms do not take into account the resource ROF. As a result,

do not distinguish between resources with high ROF and low ROF.

6.2 Improving the Scheduling Algorithms

In Chapter 5, a mathematical model for estimating resources ROF was

presented. The resource ROF is an important characteristic of the resource, and

Chapter 6 119 Using Resources ROF to Improve Scheduling

should be considered when scheduling. Including the ROF in scheduling will

address most of the limitations associated with the current BoT scheduling

algorithms. The following points are the impacts of considering resources ROF on

the limitations of current algorithms:

 current algorithms assume that resources are only identified by

processing abilities and cost; the resources exhibit high availability

and there are no resource failures. These are unrealistic assumptions as

computer resources are prone to failures, with some failing more than

others. Therefore, including resources ROF as part of the scheduling

algorithms reflects the real world;

 current algorithms assume that the resource price per time unit is a

function of processing ability. In the real world, however, ability is not

the seldom function for pricing; this can be seen easily in the

commercial world. For example, consider the ability to travel by air

between two cities. If the price is a function of ability, then all flights

should cost the same; unfortunately, however, they do not. Therefore,

other factors for pricing Grid resources should be considered—one of

which is the resource ROF. If two resources have the same processing

ability but different ROF then, in theory, the resource with lower ROF

is more expensive;

 current algorithms assume that there are no distinctions between the

BoT jobs. Including the resources ROF enable the user to request the

desired resources based on the job requirements. For example for a

critical job the user request only resources with low ROF to ensure that

the job requirements are fulfilled—even if these resources are more

expensive. For non-critical jobs the user, might, request cheaper

resources with higher ROF to minimize the cost of executing the jobs.

In this chapter, we present a new model for scheduling BoT jobs. The model

objective is to minimise the cost of executing a BoT job. Two user constraints are

considered to be the job deadline, and the resources ROF, i.e. which the user desires

to use. The model considers the task‘s execution time on different resources, the

resources prices, and the resources ROF. Moreover, the model takes into account

that the resources are limited and some BoT jobs may be rejected.

Chapter 6 120 Using Resources ROF to Improve Scheduling

To the best of our knowledge, none of the current scheduling algorithms

address the issue of resources ROF. However we adopt some ideas from Buyya et

al. [117] and Kumar et al. [119] algorithms to design the proposed algorithm.

6.3 Model Description

Scheduling BoT jobs to minimize the cost of execution while guaranteeing the

user‘s requirements represent an optimization problem. Optimization refers to

choosing the best elements from some set of available alternatives. Mathematical

programming has long been recognized as a vital modelling approach to solve

optimization problems [208]. Other approaches for solving optimization problems

focus on finding an acceptable, rather than an optimal, solution. This is because for

complex optimization problems finding the optimal solution is time-consuming.

Examples for these methods include Genetic Algorithms, Memetic Algorithms and

Ant Colony Optimization [209].

In this section, the formal mathematical model for minimising the cost of

executing BoT jobs whilst ensuring that the users‘ constraints are satisfied is

presented. Mixed Integer Programming (MIP) problems, which are a class of liner

programming problems, is used for the modelling.

A linear programming problem (LP) is a mathematical method for determining

a way of finding a set of values for continues variables (x1, x2, …, xn) which

maximise or minimise a linear objection function z, whilst satisfying a set of

constraints. An integer programming problem is a linear programming problem

whereby at least one of the variables is restricted to an integer value. If all the

variables are restricted to integer values, the model is then known as pure integer

programming problem, otherwise it is called mixed integer programming problem

[210].

The MIP is a good way of modelling BoT jobs scheduling. The problem is to

minimise the costs of executing the BoT job; this can be expressed as the objective

function in the MIP. The user constraints, along with the resources available, can be

expressed as the constraints functions in the MIP. The scheduling of BoT jobs in the

Grid environments is an MIP rather than an LP as a single task within a BoT job is

not permitted to be divided into smaller tasks and subsequently allocated to different

Chapter 6 121 Using Resources ROF to Improve Scheduling

resources without any overhead; therefore, a task is only allocated to a single

resource for the execution.

The first stage is to define the parameters of the problem and the variables

used in the model. We therefore assume we have a BoT job, which has e tasks, and a

resource provider with n resources. The BoT job and the resources parameter are as

follows:

tjk total execution time for the kth task if assigned to the jth resource;

cj the price per time unit for the jth resource;

Aj the time where the jth resource is available;

Uj the time where the jth resource is unavailable;

Rj ROF of the jth resource;

O arrival time of the BoT job;

D user deadline constraint which is a time and date in the future; and

JR user ROF constraint which is the desired ROF level.

The processing time of a task on a resource (i.e. tjk) is assumed to be known.

This assumption is a widespread assumption when developing scheduling

algorithms in the Grid environments, and this approach is already used by [116, 117,

119, 122, 211]. The reason behind this assumption is the existence of techniques to

estimate the task execution time on a given resource. (For more information see

 2.6.2.2 Predicting Execution Time).

The resource provider is responsible for setting the price per time unit for the

resources. Setting the price of resources is complicated, and some models have been

suggested, such as auction or community based models. (The pricing of resources is

outside the scope of this thesis and for more information on the subject the reader is

referred to [92, 212, 213]). It is noteworthy to highlight that there is no need for the

pricing model to be visible to the Grid user [214].

In this chapter, the resources prices are assumed to be a function of

performance and ROF, where the higher the resource performance (in terms of

processing ability), the higher the resource price per time unit; on the other hand, the

higher the resource ROF, the lower the resource price per time unit.

Chapter 6 122 Using Resources ROF to Improve Scheduling

Resources available (unavailable) times are known to the scheduler through

the use of advance reservation. The resources ROF are computed with the use of the

technique proposed in the previous chapter. The BoT job arrival time is the time at

which the job is submitted to the scheduler. The deadline and ROF constraints are

the user requirements specified in the SLA.

The variables used in the model are as follows:

xjk = 1 if the kth task is assigned to the jth resource, otherwise 0 j, k

sk start time of the kth task k

yjkl = 1 if the lth assignment on the jth resource is the kth task, otherwise 0 j, k

fjl the start time of the lth assignment on the jth resource j, l

As stated earlier, the allocation of tasks, within a BoT job, to the suitable

resources at the appropriate time should be achieved so that the cost of executing the

BoT job is minimised and the user requirements are satisfied. This minimisation

problem is modelled by the following MIP:

Chapter 6 123 Using Resources ROF to Improve Scheduling

 Equation (1) represents the objective function that will be minimized,

which is the cost of executing the BoT job. The cost is computed as

the sum of the cost of executing the tasks within the BoT job. The

expression (tjk × cj × xjk) represents the cost of executing the task only

if the kth task is assigned to the jth resource, hence xjk = 1. Otherwise,

the expression = 0 since xjk = 0;

 Equation (2) is the deadline constraint, which all the tasks must finish

executing on or before it passes. This constraint ensures that all the

tasks assigned to an individual resource J finish executing on or before

the deadline. This is computed by adding the BoT arrival time and the

tasks execution time;

 Equation 3 is the ROF constraint in which the tasks are only assigned

to resources with ROF which is less than or equal to the user desired

ROF. This constraint ensures that, if a resource is used to execute a

task, the resource ROF then does not violate the user ROF

requirement;

 Equation 4 ensures that a task is only assigned to one resource, and

that all tasks are assigned to resources; this is achieved by ensuring

that, for any task, the variable ‗xjk = 1‘ is obtained for one resource

only;

 Equation 5 ensures that the execution of a task on a resource starts

only after the resource is available. This is achieved by ensuring that,

if a task is assigned to a resource, the time the task starts executing is

then after the resource becomes available;

 Equation 6, on the other hand, ensures that the execution of a task is

completed before the resource becomes unavailable;

 Equation (7) ensures that the execution of a BoT job only starts after

the arrival of the job;

Chapter 6 124 Using Resources ROF to Improve Scheduling

 Equation 8 ensures that there is, at most, one task assigned to a

resource at any given time; and

 Equation 9 ensures that a task is assigned to a resource as soon as

possible.

6.3.1 Optimal Solution

 Solving a LP problem (or MIP) to optimality is complicated. Various different

methods have been proposed in the past for solving such problems; these methods

include—but are not limited to—the simplex method with its variations, the primal

simplex method, the dual simplex method, the interior point method, and the branch

and cut method [210, 215, 216]. Importantly, LP is a powerful modelling technique

which is used to describe a large number of problems in a number of different fields.

For example, LP are used in modelling most of the problems in the operations

research community; network and multi-commodity flow problems; the

microeconomics and company management, such as planning, production,

transportation and likewise; commercial organisations, especially in the current

economic climate, which are seeking to maximise profits and minimise costs with

limited resources. Owing to the widespread uses of LP, the solving methods

aforementioned have been implemented as off-the-shelf software tools, commonly

known as solvers. Solvers functionalities differ between different solvers; some only

implement a single method and are limited to solving LP problems, whereas others

are capable of solving LP and MIP problems. Examples of solvers capable of

solving LP and MIP problems include IBM ILOG CPLEX Optimiser [217], Gurobi

optimizer [218] and GNU Linear Programming Kit (GLPK) [219]. Another off-the-

shelf software tool for LP is the Modelling Language for Mathematical

Programming (AMPL) [220]. AMPL is a comprehensive and powerful algebraic

modelling language which attains a very high level of readability, since a model

written in AMPL resembles the algebraic notation used to formulate LP or MIP

problems. Moreover, AMPL is not a solver in itself but rather communicates with

different solvers (such as CPLEX or Gurobi) in order to establish a solution for the

model.

In order to determine the optimal solution for minimising the costs of

executing BoT jobs whilst ensuring that user constraints are satisfied, the MIP is

solved using a MIP solver. However, because the scheduling problem is strongly

Chapter 6 125 Using Resources ROF to Improve Scheduling

NP-hard, the solver will not determine the optimal solution in a reasonable amount

of time—especially when the size of the BoT job is large or the number of resources

available is high. Therefore, an efficient scheduling algorithm for the cost

minimisation problem is proposed, known as Deadline and Risk of Failure

Constraints algorithm (DRFC).

6.4 The DRFC Algorithm

 In the DRFC algorithm, the interest is directed to striking a balance between

the objective function and the constraints in order to reduce the BoT execution costs.

Therefore, tasks should be allocated to the cheapest suitable resources whenever

possible. The cost per time unit does not reflect the true cost of processing,

especially when resources have different processing abilities; therefore, the DRFC

algorithm will start by calculating the true processing cost for each resource. This is

defined as the resource processing ability, and is measured in million instructions

per second (MIPS) and divided by the resource price/time unit.

The DRFC algorithm sorts the resources in decreasing order, based on the true

cost of processing. It is clear that tasks cannot be assigned to resources with ROF

higher than the user desired ROF level; therefore, such resources are removed from

the sorted list.

The next step in the DRFC algorithm is to arrange the tasks, within a single

BoT job, in decreasing order, based on executing time, to be assigned to resources.

Starting from the first task in the sorted tasks list, the task needs to be assigned to the

first resource in the resources list, if feasible, based on the values of tjk, Aj, Uj and D.

Subsequently, the task is then removed from the tasks list and the resource variables

are updated accordingly. If the task cannot be assigned to the resource, it can be kept

within the list, at which point the next task can be considered and the assignment

repeated. Once the DRFC goes through the entire tasks list, if there are tasks in the

tasks list, then go to the next resource in the resources list, start from the beginning,

and repeat the process. This is repeated until the tasks list is empty and a schedule is

found or the resources list is empty, before the tasks list, and the BoT job is rejected.

Chapter 6 126 Using Resources ROF to Improve Scheduling

Figure 63 shows the pseudocode for the DRFC algorithm.

// The number of tasks in the BoT job is e

// The number of resources in the resource provider domain is n

// The MIP parameters are used in the pseudocode

Step 1: // Compute the true processing cost (TPC) for each resource

 for (Resource1 to Resourcen)

Step 2: // Sort the resources in decreasing order based on TPC

Step 3: Remove all Resources with ROF > JR

Step 4: // Sort the tasks in decreasing order based on execution time

Step 5: // Assign the tasks to resources

Start from the first Resource in the Resources list (j = 1)

Start from the first Task in the Tasks list (k = 1)

Total cost = 0

While (the Resources list is in not empty)

 {

 While (the Tasks list is not empty)

 {

 if (tjk + Aj <= D) then

 {

 Assign the task to the resource

 Remove the task from the Tasks list

 Update Aj & Uj

 Total cost += tjk * cj

 Move to the next task

 }

 else

 Move to the next task in the Tasks list

 }

 if (the Tasks list is empty) then

 Break

 else

 Move to the next Resource in the Resource list

 }

Chapter 6 127 Using Resources ROF to Improve Scheduling

if (the Resource list is empty) then

 The BoT job cannot be assigned and therefore rejected

else

 {

 The assignment for the BoT job is found

 The cost of executing the BoT job is Total cost

 }

Figure 63: The DRFC Algorithm.

The approach applied to assign tasks to resources—known as the greedy

approach—has a number of advantages over other approaches. For example, the

algorithms in [117, 211] assign the tasks to resources in the order in which they

appear in the BoT job. This approach is not efficient for two reasons: firstly, it is

inconsistent and a BoT job—scheduled on the same resources—will have different

assignments if the order of tasks in the BoT job is changed; and secondly, it does not

fully utilise the resources, and a BoT job might be rejected, although an assignment

is feasible. In order to illustrate these limitations, a simple example is given.

Assume there are two resources with the same processing ability, and a BoT

job is submitted for processing with 100 time units as a deadline. Both resources are

suitable for executing the tasks; Resource A is available from the time the BoT job

is submitted, whilst Resource B is available after 50 time units. Resource A is

cheaper than Resource B; thus, tasks will be assigned to Resource A first. Let‘s

assume that the time the BoT job was submitted is 0. The BoT job has three tasks,

which are to be carried out in the following order:

1. Task 1 execution time is 30 time unit.

2. Task 2 execution time is 40 time unit.

3. Task 3 execution time is 70 time unit.

Assigning the tasks to resources in the order in which they appear will result in

the rejection of the BoT job. Figure 64 shows that, after Task 1 and 2 are assigned,

Resource A‘s available time is 30 time units and Resource B‘s available time is 50

time units. Both resources are not able to execute Task 3, which requires 70 time

units.

The above assignment approach rejects the BoT job, despite there being two

possible schedules. Accordingly, Task 1 and 3 should be assigned to Resource A,

Chapter 6 128 Using Resources ROF to Improve Scheduling

and Task 2 to Resource B (Figure 65); otherwise, Task 2 and 3 should be assigned to

Resource A and Task 1 to Resource B (Figure 66). The latter is better as the cheaper

resource is used for a longer period. Essentially, using the greedy approach will

result in the latter assignment, and will always be consistent regardless of the tasks

order.

Chapter 6 129 Using Resources ROF to Improve Scheduling

Figure 64: Assignment of Task 1 & 2 to Resource A.

Figure 65: Assignment of Task 1 & 3 to Resource A and Task 2 to Resource B.

Figure 66: Assignment of Task 2 & 3 to Resource A and Task 1 to Resource B.

0 10 20 30 40 50 60 70 80 90 100

Time Units

Resource A

Resource B

Not Available

Task 1

Task 2

Task 3

Available Time

0 10 20 30 40 50 60 70 80 90 100

Time Units

Resource A

Resource B

Not Available

Task 1

Task 3

Task 2

Available Time

0 10 20 30 40 50 60 70 80 90 100

Time Units

Resource A

Resource B

Not Available

Task 1

Task 2

Task 3

Available Time

Chapter 6 130 Using Resources ROF to Improve Scheduling

6.5 Simulation-Based Performance Analysis

A variety of methods exist for carrying out performance evaluation of resource

scheduling algorithms. Some evaluation methods include: analytical, simulation,

emulation and empirical. Yet the DRFC algorithm is evaluated using simulation.

This is because simulation has a number of advantages

 the ability to conduct experiments in controlled environments;

 the potential to obtain insight concerning the interaction of the

experiment variables;

 the potential to obtain insight regarding the effect of changing a single

variable whilst others are fixed; and

 no limits to experimental scenarios, which makes it possible to

reproduce the results [221].

The purpose of the simulation is to test the allocation of tasks in a BoT job

with the use of the DRFC algorithm, and to accordingly compare it with the optimal

allocation obtained by solving the MIP problem using the Gurobi optimiser 4.0

[218]. The simulation environment and variables should be identical to the MIP

solver environment; thus, the differences in experiments results are not owing to the

environment.

There are a number of tools for simulating Grid computing environments such

as GridSim [118], SimGrid [222] and Optorsim [223]. However, these tools do not

have a method to represent the resource ROF and they do not interact with MIP

solvers. Therefore, the discrete event simulation tool used in the experiments has

been developed form scratch. Both the DRFC algorithm simulator and the solver for

the MIP are written in C++ VisualStudio 2008. The event scheduling approach is

used in the simulation were the events, arrival of BoT job, might change the status

of resources if an allocation is found. In the remainder of this section the

experiments design is presented along with resource modelling and workload

modelling. This is followed by the experiments results and the sensitivity analysis of

the deadline and the ROF constraints.

Chapter 6 131 Using Resources ROF to Improve Scheduling

6.5.1 Experiments Design

In order to test the DRFC algorithm in different settings, different resource

providers and different workloads, three resource providers are considered:

1. Resource provider 1 with 10 resources.

2. Resource provider 2 with 50 resources.

3. Resource provider 3 with 100 resources.

For each resource provider three scenarios are considered.

1. The BoT jobs submitted have less than 50 tasks.

2. The BoT jobs submitted have less than 100 tasks.

3. The BoT jobs submitted have less than 200 tasks.

The number of resources in the resource provider was selected from 10 to 100

so as to enable the Gurobi optimiser to determine a solution for the MIP problem,

considering hundreds or thousands of resources make finding a solution for the MIP

problem unfeasible. The average BoT size—submitted to the Grid systems in the

real world—is between 5 and 50 tasks [224], hence the selection of 50 and 100 tasks

for the BoT size. The 200 tasks size was selected to investigate the performance of

the DRFC algorithm when the BoT Job is large.

In the rest of this chapter, Resource Provider 1 is referred to as a small

provider, Provider 2 as a medium provider, and Provider 3 as large provider.

Furthermore, the BoT Job 1 is referred to as small size job; BoT Job 2 as a medium

job, and BoT Job 3 as a large job. This naming is only used in order to simplify the

writing and to facilitate reader understanding in relation to the resource providers

and BoT jobs.

In order to carry out the simulation, the resource providers and the workloads

need to be modelled. The following two subsections represent the modelling of

resource providers and BoT jobs workload.

6.5.1.1 Resource Provider Modelling

 Resources within a resource provider domain are not identical; they have

different characteristics, configurations and capabilities. For these experiments the

Chapter 6 132 Using Resources ROF to Improve Scheduling

resources are modelled using three metrics: the processing ability measured in

million instructions per second (MIPS), price per time unit, and ROF.

In this simulation the processing ability of resources is assumed to be between

4000 MIPS and 8000 MIPS in steps of 1000. The price of a resource per time unit is

assumed to be from 0.6 to 1.8 units. The ROF of a resource is < 0.05, ≤ 0.1 or > 0.1.

Table 14 shows the exact parameters used for resources in the experiments.

Table 14: Resources Used for the Simulation.

MIPS ROF Price ROF Price ROF Price

4000 < 0.05 1 ≤ 0.1 0.8 > 0.1 0.6

5000 < 0.05 1.2 ≤ 0.1 1 > 0.1 0.8

6000 < 0.05 1.4 ≤ 0.1 1.2 > 0.1 1

7000 < 0.05 1.6 ≤ 0.1 1.4 > 0.1 1.2

8000 < 0.05 1.8 ≤ 0.1 1.6 > 0.1 1.4

 The resource price per time unit was randomly assigned, yet two conditions

were considered.

1. If two resources have the same ROF, then the resource with the lower

processing ability is always cheaper; and

2. Two resources with different processing abilities might have the same

price if they have a different ROF.

In the real world, the resource ROF changes with time; however, in this

simulation, it is assumed to remain constant in order to make the resources identical

throughout the simulation. Another note regarding the ROF is that it is not limited to

the three values assumed, but it is the responsibility of the resource provider to

explicitly specify the type of resources available, the ROF of those resources, and

the price per time unit.

The processing ability is assumed to be in the range 4000 to 8000 MIPS. The

grounds for this assumption is taken from Buyya et al. [211] who, in 2002, provided

different MIPS for different resources and the average MIPS was around 400 MIPS.

In 2010, using Moore‘s Law [225], the average should be around 6400. Therefore,

6000 MIPS is considered to be the average processing ability in the simulation.

Chapter 6 133 Using Resources ROF to Improve Scheduling

Another reason for this assumption is that resources processing ability is used in

modelling BoT jobs. Thus the change of resources MIPS don‘t change the

processing time of jobs and simulation results will be similar in both cases. This will

be clarified in the next subsection.

6.5.1.2 Workload Modelling

The BoT workload can be either a real workload (trace) or a workload driven

from a model. Both have advantages and disadvantages. The advantage of using a

trace directly is that it is the most ‗real‘ test of the Grid system under study, and the

workload reflects a real workload precisely, with all its complexities. The drawback

is that the trace reflects a specific workload, and there is always the question of

whether or not the results can be generalised to other Grid systems or load

conditions. Workload models have a number of advantages over traces [226].

 It is easy to know which workload parameters are correlated with each

other because this information is part of the model;

 It is possible to change model parameters one at a time in order to

investigate the influence of each one, whilst keeping other parameters

constant;

 A model is not affected by policies and constraints which are

particular to the Grid site where a trace was recorded; and

 Traces may be polluted by bogus data.

The BoT workload used for these experiments is based on the realistic

workload model for BoT jobs introduced in [224]. Seven Grid workload traces from

the Grid Workloads Archive (GWA) [227] were used to validate the model.

In these experiments, the interest are on three aspects: the BoT jobs arrival

rate, the BoT jobs sizes (i.e. the number of tasks in the job), and the task

characteristics. The BoT jobs arrival rate during peak hours is modelled with a

Weibull distribution. The Weibull distribution is also used to model the BoT jobs

sizes. The tasks characteristics are the average task run time and the variance of run

times of the tasks in a single BoT job. The average run time is modelled with a

normal distribution, and the variance of run times is modelled by a Weibull

distribution. Table 15 shows the exact parameter values for the workload model.

Chapter 6 134 Using Resources ROF to Improve Scheduling

Table 15: The Parameter Values for the Workload Model. W stand for Weibull and N for

Normal distribution [224].

BoT Arrival BoT Size Task Average Run Time Task Variance

W(4.25, 789) W(1.79,24.16) N(2.73,6.1) W(2.05, 12.25)

The Matlab environment [228] was used to generate the workload values based

on the distributions. For each BoT job in the workload, the arrival time is recorded.

The average task runs time with the tasks run time variance and size, for each BoT

job, is used to compute the individual tasks run time. The task length in machine

instruction (MI) is computed using the formula:

Task Length = Task Run Time × Resource Processing ability (MIPS)

Where the resource processing ability is assumed to be the average MIPS for

the simulation. Recall, in the last subsection, it was indicated that the selection of

resources processing abilities will not affect the simulation as the workload is based

on the task run time—regardless of the processing ability.

6.5.2 Simulation Results

There are, in total, nine experiments: small, medium and large resource

providers each has three scenarios to consider in which small, medium or large BoT

jobs are submitted to be scheduled into resources. Each experiment is evaluated

using two criteria. The first criterion is the percentage of the number of BoT jobs

scheduled using the DRFC algorithm and the optimal schedule using Gurobi

optimizer. Since finding the optimal schedule is a memory-intensive process it is

common that the resource executing the allocation algorithm run out of memory

before the BoT jobs are scheduled. The number of BoT jobs scheduled using DRFC

algorithm is the base for calculating the percentage; less than 100% indicate that the

Gurobi optimiser run out of memory and stop working before finishing the

workload, higher than 100% indicate that the Gurobi optimiser scheduled more BoT

jobs than the DRFC algorithm and 100% indicate that both scheduled the same

number of jobs. The second evaluation criterion is the average difference between

the costs of executing a BoT job when scheduled with the DRFC algorithm and the

optimal costs of executing the BoT job when scheduled using Gurobi optimizer.

Chapter 6 135 Using Resources ROF to Improve Scheduling

Only the jobs that have been scheduled using DRFC algorithm and Gurobi optimizer

are considered in the difference the rest are discarded.

Since different workloads scheduled on different resources provide different

results. Each experiment is repeated 10 times with different workloads and different

resources and the results shown here are the averages of the 10 experiments. The

number of BoT jobs in a workload is set to 100 jobs.

For small workloads the deadline constraint is varied in simulation time

between 1000 and 5000 in steps of 1000, for medium workload the deadline

constraint is varied between 2000 and 10000 in steps of 2000 and for the large

workloads the deadline constraint is varied between 5000 and 25000 in steps of

5000. The deadline is considered from the BoT job arrival time. The ROF constraint

is similar to resources ROF (i.e. ROF < 0.05, ROF ≤ 0.1 and ROF > 0.1).

For all the experiments DRFC is coded in C++ Visual Studio 2008 and Gurobi

optimizer 4.0 was used with the C++ interface. The machine used on these

experiments is Intel core 2 quad CPU Q9300 2.5 GHz and 3 GB RAM. (See

Appendix C for the code validation).

Chapter 6 136 Using Resources ROF to Improve Scheduling

6.5.2.1 Summary of Results

Experiment 1- Small Resource Provider Running Small BoT Jobs:

Figure 67 shows that finding the optimal schedule is not effective since there is

a high possibility that the resource executing the optimal allocation algorithm ran

out of memory. The Gurobi solver, on one instant, assigns slightly more BoT jobs,

which is when the deadline constraint is 1000 and the ROF constraint is < 0.05.

However, in the rest of the simulation, the DRFC outperforms the Gurobi solver.

Figure 68 shows that the average difference in cost between the DRFC and the

optimal cost is minimal and in most cases less than 0.8%.

Figure 67: Percentage Difference in Number of Jobs assigned with DRFC & Gurobi Experiment 1.

Figure 68: Percentage Difference between DRFC Execution Cost and Optimal Cost Experiment 1.

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

1.60%

C
o

s
t

D
if

fe
re

n
c
e

1000 2000 3000 4000 5000

Deadline

ROF < 0.05

ROF <= 0.10

ROF > 0.10

0%

20%

40%

60%

80%

100%

120%

1000 2000 3000 4000 5000

Deadline

ROF < 0.05

ROF <= 0.10

ROF > 0.10

Chapter 6 137 Using Resources ROF to Improve Scheduling

Experiment 2- Small Resource Provider Running Medium BoT Jobs:

Figure 69 shows that the optimal allocation algorithm performs badly,

particularly when the ROF > 0.01. The reason is that, with ROF > 0.01, all resources

in the resource provider domain are considered, which increases the size of the

allocation problem, thus requiring more computational time and memory. Figure 70

shows that the average difference in cost between the DRFC and the optimal cost is

minimal, with most cases being less than 1%.

Figure 69: Percentage Difference in Number of Jobs assigned with DRFC & Gurobi Experiment 2.

Figure 70: Percentage Difference between DRFC Execution Cost and Optimal Cost Experiment 2.

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

1.60%

C
o

s
t

D
if

fe
re

n
c
e

2000 4000 6000 8000 10000

Deadline

ROF < 0.05

ROF <= 0.10

ROF > 0.10

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

2000 4000 6000 8000 10000

Deadline

ROF < 0.05

ROF <= 0.10

ROF > 0.10

Chapter 6 138 Using Resources ROF to Improve Scheduling

Experiment 3- Small Resource Provider Running Large BoT Jobs:

Figure 71 shows that the optimal allocation algorithm performs badly in a

similar way to Experiment 2. Figure 72 shows that the average difference in cost

between the DRFC and the optimal cost is minimal, with most cases being less than

1.5%.

Figure 71: Percentage Difference in Number of Jobs assigned with DRFC & Gurobi Experiment 3.

Figure 72: Percentage Difference between DRFC Execution Cost and Optimal Cost Experiment 3.

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

C
o

s
t

D
if

fe
re

n
c
e

5000 10000 15000 20000 25000

Deadline

ROF < 0.05

ROF <= 0.10

ROF > 0.10

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5000 10000 15000 20000 25000

Deadline

ROF < 0.05

ROF <= 0.10

ROF > 0.10

Chapter 6 139 Using Resources ROF to Improve Scheduling

Experiment 4- Medium Resource Provider Running Small BoT Jobs:

Figure 73 shows that the optimal allocation algorithm performs badly,

especially with short deadline constraint. Figure 74 shows that the average

difference in cost is minimal, with most cases being less than 0.6%.

Figure 73: Percentage Difference in Number of Jobs assigned with DRFC & Gurobi Experiment 4.

Figure 74: Percentage Difference between DRFC Execution Cost and Optimal Cost Experiment 4.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1000 2000 3000 4000 5000

Deadline

ROF < 0.05

ROF <= 0.10

ROF > 0.10

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

C
o

s
t

D
if

fe
re

n
c
e

1000 2000 3000 4000 5000

Deadline

ROF < 0.05

ROF <= 0.10

ROF > 0.10

Chapter 6 140 Using Resources ROF to Improve Scheduling

Experiment 5- Medium Resource Provider Running Medium BoT Jobs:

Figure 75 shows that the optimal allocation algorithm performs badly in all

instances, regardless of the exact constraints. Figure 76 shows that the average

difference in cost is minimal, with most cases being less than 1%.

Figure 75: Percentage Difference in Number of Jobs assigned with DRFC & Gurobi Experiment 5.

Figure 76: Percentage Difference between DRFC Execution Cost and Optimal Cost Experiment 5.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

2000 4000 6000 8000 10000

Deadline

ROF < 0.05

ROF <= 0.10

ROF > 0.10

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

C
o

s
t

D
if

fe
re

n
c
e

2000 4000 6000 8000 10000

Deadline

ROF < 0.05

ROF <= 0.10

ROF > 0.10

Chapter 6 141 Using Resources ROF to Improve Scheduling

Experiment 6- Medium Resource Provider Running Large BoT Jobs:

Figure 77 shows that the optimal allocation algorithm performs extremely

badly. The reason for this is that, with large BoT jobs, the allocation problem size

increases; hence requiring more computational time and memory. Figure 78 shows

that the average difference in cost is minimal, with most cases being less than 0.8%.

Figure 77: Percentage Difference in Number of Jobs assigned with DRFC & Gurobi Experiment 6.

Figure 78: Percentage Difference between DRFC Execution Cost and Optimal Cost Experiment 6.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

5000 10000 15000 20000 25000

Deadline

ROF < 0.05

ROF <= 0.10

ROF > 0.10

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

C
o

s
t

D
if

fe
re

n
c
e

5000 10000 15000 20000 25000

Deadline

ROF < 0.05

ROF <= 0.10

ROF > 0.10

Chapter 6 142 Using Resources ROF to Improve Scheduling

Experiment 7- Large Resource Provider Running Small BoT Jobs:

Figure 79 shows that the optimal allocation algorithm performs badly in a

similar way as experiment 2. Figure 80 shows that the average difference in cost is

minimal, with most cases being less than 0.4%.

Figure 79: Percentage Difference in Number of Jobs assigned with DRFC & Gurobi Experiment 7.

Figure 80: Percentage Difference between DRFC Execution Cost and Optimal Cost Experiment 7.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1000 2000 3000 4000 5000

Deadline

ROF < 0.05

ROF <= 0.10

ROF > 0.10

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

C
o

s
t

D
if

fe
re

n
c
e

1000 2000 3000 4000 5000

Deadline

ROF < 0.05

ROF <= 0.10

ROF > 0.10

Chapter 6 143 Using Resources ROF to Improve Scheduling

Experiment 8- Large Resource Provider Running Medium BoT Jobs:

Figure 81 shows that the optimal allocation algorithm performs badly in a

similar way as experiment 2. Figure 82 shows that the average difference in cost is

minimal, with most cases being less than 0.6%.

Figure 81: Percentage Difference in Number of Jobs assigned with DRFC & Gurobi Experiment 8.

Figure 82: Percentage Difference between DRFC Execution Cost and Optimal Cost Experiment 8.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

2000 4000 6000 8000 10000

Deadline

ROF < 0.05

ROF <= 0.10

ROF > 0.10

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

C
o

s
t

D
if

fe
re

n
c
e

2000 4000 6000 8000 10000

Deadline

ROF < 0.05

ROF <= 0.10

ROF > 0.10

Chapter 6 144 Using Resources ROF to Improve Scheduling

Experiment 9- Large Resource Provider Running Large BoT Jobs:

Figure 83 shows that the optimal allocation algorithm performs badly in a

similar way as experiment 2. Figure 84 shows that the average difference in cost is

minimal, with most cases being less than 0.6%.

Figure 83: Percentage Difference in Number of Jobs assigned with DRFC & Gurobi Experiment 9.

Figure 84: Percentage Difference between DRFC Execution Cost and Optimal Cost Experiment 9.

The experiments show that finding the optimal allocation of tasks is an

intensive process, which requires a powerful computer to compute with a huge

internal memory; thus, it is inefficient to use this method for real-time scheduling.

The DRFC algorithm proposed provides a good solution for a wide variety of

resource providers and workloads. The difference in the execution cost between the

optimal solution and the solution found using DRFC algorithm is minimal and in

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

5000 10000 15000 20000 25000

Deadline

ROF < 0.05

ROF <= 0.10

ROF > 0.10

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

C
o

s
t

D
if

fe
re

n
c
e

5000 10000 15000 20000 25000

Deadline

ROF < 0.05

ROF <= 0.10

ROF > 0.10

Chapter 6 145 Using Resources ROF to Improve Scheduling

most of the cases less than 1%. Another important feature of the DRFC algorithm is

that it takes a short amount of time to determine a scheduler for the BoT job—on

average, totalling approximately 1 millisecond—whilst the optimal solution, most of

the time, is not found in a reasonable amount of time.

From the above, it can be stated that the DRFC algorithm performs better than

the optimal scheduler—especially for large BoT jobs and large resource providers.

The cost of executing a BoT job scheduled using the DRFC algorithm is near-

optimal. Finally, the time to find a scheduler with DRFC algorithm is minimal; this

makes the DRFC algorithm a superior choice for the real-time scheduling of BoT

jobs in Grid environments.

6.5.2.2 Sensitivity to The Deadline and The ROF

The effect of the deadline and ROF constraints differ between different

resource providers and BoT jobs sizes. When the resources available are not capable

of executing all the BoT jobs submitted, either because the number of resources

available is small or the size of the BoT jobs is large, the deadline and ROF

constraints are responsible for the number of BoT jobs accepted for scheduling and

the number of BoT jobs rejected. When the resources available are capable of

executing all the BoT jobs submitted, and there aren‘t any rejections, the deadline

and ROF constraints affect the price of executing the BoT jobs. This is further

explained below using the results of the DRFC algorithm, since the DRFC algorithm

only reject a BoT job if no schedule was found unlike the Gurobi optimiser where it

might stop working before the workload is finish.

Figures 85, 86 & 87 show the number of jobs accepted for different deadline

and ROF for a small resource provider running small BoT jobs, medium BoT jobs

and large BoT jobs respectively. As expected, the number of jobs accepted increase

when the deadline is increased and the number also increase when the ROF is

increased, even if the deadline is not change. This is because when the ROF

increased resources that were available but have higher ROF can be used.

For the BoT job owner (resources user), increasing the deadline and/or the

ROF constraints increases the chances that his/her BOT job is accepted by the

resource provider. This is especially true when the BoT job is large.

Chapter 6 146 Using Resources ROF to Improve Scheduling

Figure 85: Number of BoT Jobs Accepted, Small Provider Running Small BoT Jobs.

Figure 86: Number of BoT Jobs Accepted, Small Provider Running Medium BoT Jobs.

Figures 88, 89 & 90 show the total cost for executing an entire workload with

different deadline and ROF for a large resource provider running small BoT jobs,

medium BoT jobs, and large BoT jobs respectively. As expected, executing the BoT

jobs on resources with ROF < 0.05 is the most expensive. The cost is decreased

when the ROF constraints are relaxed; this is because resources with a higher ROF

are cheaper. Increasing the deadline will decrease the total cost, although the drop

off is small and after a threshold the total cost will remain constant—even if the

deadline is increased. The threshold is when the entire workload is executed only on

the cheapest resources.

5000
4000

3000
2000

1000

ROF < 0.05

ROF <= 0.10

ROF > 0.10

0

10

20

30

40

50

60

70

80

90

100

N
u

m
b

e
r

o
f

A
c
c
e
p

te
d

 J
o

b
s

Deadline

10000
8000

6000
4000

2000

ROF < 0.05

ROF <= 0.10

ROF > 0.10

0

10

20

30

40

50

60

70

80

90

100

N
u

m
b

e
r

o
f

A
c
c
e
p

te
d

 J
o

b
s

Deadline

Chapter 6 147 Using Resources ROF to Improve Scheduling

Figure 87: Number of BoT Jobs Accepted, Small Provider Running Large BoT Jobs.

Figure 88: Total Execution Cost, Large Provider Running Small BoT Jobs.

Figure 89: Total Execution Cost, Large Provider Running Medium BoT Jobs.

5000
4000

3000
2000

1000

ROF > 0.10

ROF <= 0.10

ROF < 0.05

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

T
o

ta
l

C
o

s
t

fo
r

E
x
e
c
u

ti
n

g
 t

h
e
 E

n
ti

re
 W

o
rk

lo
a
d

Deadline

10000
8000

6000
4000

2000

ROF > 0.10

ROF <= 0.10

ROF < 0.05

0

500000

1000000

1500000

2000000

2500000

3000000

T
o

ta
l

C
o

s
t

fo
r

E
x
e
c
u

ti
n

g
 t

h
e
 E

n
ti

re

W
o

rk
lo

a
d

Deadline

25000
20000

15000
10000

5000

ROF < 0.05

ROF <= 0.10

ROF > 0.10

0

10

20

30

40

50

60

70

80

90

100

N
u

m
b

e
r

o
f

A
c
c
e
p

te
d

 J
o

b
s

Deadline

Chapter 6 148 Using Resources ROF to Improve Scheduling

Figure 90: Total Execution Cost, Large Provider Running Large BoT Jobs.

For the BoT job owner, increasing the deadline and/or the ROF constraints

decreases the cost of executing his/her BOT job, which is especially true when the

ROF is increased; however, the decrease of the cost is limited and after a threshold

the cost of executing the BoT job does not change, since the tasks are always

assigned to the cheapest resource. Therefore, the BoT job owner does not gain any

advantages by increasing the deadline and/or the ROF beyond the threshold.

6.6 Summary

 In this chapter, the problem of scheduling Bag of Tasks application on Grid

resources is modelled using Mixed Integer Programming (MIP) and an efficient

algorithm, known as DRFC, is proposed and evaluated with simulation. Using

simulation enabled the flexibility to investigate the DRFC algorithm under different

scenarios.

The chapter began by looking at the Bag of Tasks application model, which

dominated most of the Grid workload. This is followed by the limitations of current

BoT scheduling algorithms. The use of the resources ROF is proposed in order to

overcome most of the limitations. The chapter then described a model for

minimizing the cost of executing BoT jobs whilst ensuring that the users‘ constraints

are satisfied. This is followed by the formal mathematical model using the Mixed

Integer Programming method. The MIP is NP-hard and finding an optimal solution

in a reasonable amount of time is unfeasible; therefore, the DRFC algorithm is

proposed to find a near-optimal solution in an acceptable time frame. The DRFC

25000
20000

15000
10000

5000

ROF > 0.10

ROF <= 0.10

ROF < 0.05

0

1000000

2000000

3000000

4000000

5000000

6000000

T
o

ta
l

C
o

s
t

fo
r

E
x
e
c
u

ti
n

g
 t

h
e
 E

n
ti

re

W
o

rk
lo

a
d

Deadline

Chapter 6 149 Using Resources ROF to Improve Scheduling

algorithm is evaluated through simulation. The chapter provided a description of the

simulation and presented the experiments design. This is followed by the resources

model and the workload model, along with the exact parameters used. The chapter

then presented the experiments and results. Notably, there were nine experiments to

ensure that the DRFC performs as intended for a wide variety of problem instances.

The experiments were evaluated by two criteria: the number of jobs scheduled

and the difference in the cost of executing a job when scheduled by DRFC and the

optimal execution cost. The DRFC algorithm provided a near-optimal solution for

all the experiments considered. Furthermore, the DRFC performance did not

degraded with the use of large resource provider and large BoT jobs, which

therefore makes the DRFC algorithm suitable for real-time scheduling. Finally, the

effect of the user‘s constraints is analysed: by relaxing the constraints, the chance

that the BoT job is scheduled increased, which is especially true if the resources

available are limited or the BoT job submitted is large. Another observation is that,

by relaxing the constraints, the cost of execution is reduced, which continues until, a

threshold after that, the relaxation of the constraints does not provide any advantages

to the user.

Chapter 7 150 Conclusion

7 Chapter 7

Conclusion and Future Work

7.1 Summary of Work

 The work presented in this thesis demonstrates a mathematical model to

predict the risk of failure of a Grid resource using a discrete-time analytical model

driven by reliability functions fitted to observed data. The model is also used to

improve scheduling applications on the Grid.

 Chapter 2 introduces Grid computing as the broad area in which this

research is conducted. Architectural philosophies—including OGSA and

WSRF—are defined. Grid Middleware systems which enable access to

heterogeneous resources are discussed. Furthermore, Service Level

Agreements are presented as languages which formalise QoS

requirements, and a discussion on a number of specifications actively used

within the Grid research domain is presented. A discussion of Grid

resource management identifies a number of limitations in Grid resources

scheduling. In order to highlight these limitations, a number of scheduling

algorithms are described. Finally, the prediction of application execution

times and resources monitoring are also discussed as technologies required

supporting scheduling in Grid environments.

 Chapter 3 introduces the definition of risk and its application in the real

world. Methods for risk assessments—including qualitative and

quantitative—are defined. A discussion of risks affecting Grid systems

narrows the research to assessing the Grid resources risk of failures. In

order to highlight risk assessment in Grid computing, a number of

assessment methods applied in the field are described.

 Chapter 4 presents the motivation scenario for the Grid resources risk of

failure model. The events causing resource failures are determined, and

the method for measuring the risk of these events is presented. The need

Chapter 7 151 Conclusion

for historical failure data is showcased, along with the data collection

process. The statistical proprieties of the data—including the root cause of

failures, the mean time to repair and time between failures—are analysed.

Models to describe the time between failures and repair time are provided.

Finally, the resource failures are tested against well-known probabilistic

failure models in order to verify whether they can be used to model the

Grid resources.

 Chapter 5 presents the mathematical model to predict the risk of failure of

a Grid resource. The model selection and the modelling method are

described. The model is then developed based on the different

distributions of the failure data. The model is validated by comparing the

model ROF with the observed ROF. Finally, the use of the model to rank

resources and plan future investments is presented.

 Chapter 6 provides an overview of the Grid scheduling problem, and

presents the Grid application model, as well as limitation of current

scheduling algorithms. The use of resources ROF to overcome the current

algorithms limitations and the Mixed Integer Programming model to

minimise the cost of executing a BoT job whilst guaranteeing the user‘s

requirements are presented. An algorithm to determine a near-optimal

solution in an acceptable time frame is described. Moreover, the

evaluation of the algorithm is carried out via simulation. The design of the

experiments is showcased, along with the resource model and the

workload model used in the experiments. The experiments compare the

algorithm with the optimal scheduler, and were evaluated by two criteria:

the number of jobs scheduled and difference in the cost of executing a job

when scheduled by algorithm and the optimal execution cost.

7.2 Thesis Contribution

 The aim of the work presented in this thesis is to increase the chances of Grid

commercial take-up and to help building trust in the Grid. The main contributions of

this thesis are summarised in the following points:

Chapter 7 152 Conclusion

 The development of a mathematical model to predict the Grid resources

risk of failure. A continuous time-varying Markov Model described the

Grid resource availability. In order to solve the Markov model, there is the

need to approximate the continuous-time process with discrete-time

equivalents. The resulting discrete time-varying Markov Model is used to

predict the resources risk of failure. The failure data collected from

GOCDB are used to conduct the mathematical model and to compute the

observed—or actual—ROF. The mathematical model is then evaluated by

comparing the model-predicted ROF with the observed ROF. The two-

sample t test—also known as Independent-Samples T Test—is used to

compare the means of the two groups (observed and predicted risk of

failure). The test showed that the difference between the predicted and

observed risk of failure was statistically not significant. The mathematical

model was developed after a detailed analysis of Grid resource failures

using failure data collected from different Grid resources and spanning for

three years. The analysis focused on the statistical properties of the failure

data, including the root cause of failures, the mean time between failures,

and the mean time to repair. The best model for the time between failures

is the Weibull distribution, with decreasing hazard function rate. Repair

times are much better modelled by a lognormal distribution than an

exponential distribution.

 The development of an efficient algorithm—known as DRFC algorithm—

was carried out in order to find a near-optimal execution cost for the cost

minimising mathematical model. A greedy approach was considered to

make the resulting resources allocation consistence and to ensure the

resources were fully utilised. A simulation is used to evaluate the

performance of the DRFC algorithm compared to the cost-minimising

mathematical model optimal solution. There were two evaluation criteria:

the first criterion is the percentage of the number of BoT jobs scheduled

using the DRFC algorithm and the optimal schedule using Gurobi

optimiser; whilst the second criterion is the average difference between the

costs of executing a BoT job when scheduled with the DRFC algorithm,

and the optimal costs of executing the BoT job when scheduled using

Gurobi optimiser. The evaluation shows that finding the optimal allocation

Chapter 7 153 Conclusion

of tasks is an intensive process requiring a long period of time and a

powerful computer to compute with a huge internal memory. Thus, it is

inefficient to use this method for real-time scheduling. The DRFC

algorithm provided a good solution for a wide variety of resource

providers and workloads. The difference in the execution cost between the

optimal solution and the solution found using DRFC algorithm is minimal

and, in most cases, was less than 1%. This therefore suggests that the

DRFC algorithm is a superior choice for real-time scheduling of BoT jobs

in Grid environments.

7.3 Future Work

 There are many ways to further extend the work presented in this thesis. The

most appealing ones are listed below:

 The risk assessment model presented in this work only considered the

resources historical data. An extension to this model is to consider

dynamic data, such as the current resource load or the availability of

administrators to enhance the model, since the mean time to repair a

resource is hugely influenced by the availability of administrators.

 Another extension to the risk model is to consider the internal components

of a resource rather than considering a resource as a black-box. This

extension model has different components failures, such as CPU, memory,

hard drive, etc., and drives the resource risk of failure through

campaigning all the components models.

 The risk assessment model did not consider the type and intensity of the

workload running on a resource. However, there is evidence of a

correlation between the type and intensity of the workload and the failure

rate of the resource [170]. Importantly, extending the model to cater for

this information will provide a more accurate prediction.

 The data used to develop the model were from research institutes;

therefore, the mean time to repair all resources is very high as the sites do

not have 24-hour support and there is no automatic monitoring which will

report a resource failure when it occurs. It would be ideal to use data from

Chapter 7 154 Conclusion

commercial Grid provider, if available, to further validate the risk

assessment model.

 The risk assessment model was developed and evaluated analytically.

Therefore, it would be beneficial to implement the model on a production

Grid in order to evaluate the performance.

 The BoT scheduling algorithm did not take into account the time to stage

input files and output files, the cost of the staging, or the reliability of the

network. An extension to the algorithm could provide better cost-

optimisation, such as executing the BoT job in a Grid system close to the

input files in order to reduce the cost of data transfer.

 Other scheduling algorithms—such as minimising the BoT execution time

without exceeding the user budget and ROF—would enable the Grid user

to specify different constraints based on the job requirements.

 The scheduling algorithm was evaluated using simulation; accordingly, it

would be ideal to implement the algorithm on a production Grid so as to

evaluate the performance of the algorithm in a real environment.

155

8 Appendix A

Table 16 shows a sample downtime record from GOCDB.

Table 16: A Sample Downtime Record.

Classification Severity From To Description

UNSCHEDULED OUTAGE 17/02/2011

04:00

17/02/2011

17:00

Deploying kdump after kernel

panics

UNSCHEDULED OUTAGE 07-FEB-11

13:00:00

07-FEB-11

16:00:00

disk server crashed

SCHEDULED AT_RISK 12-JAN-11

20:00:00

13-JAN-11

08:00:00

NREN network maintenance

pssoible perturbation

UNSCHEDULED OUTAGE 07-JAN-11

00:30:00

07-JAN-11

05:00:00

DNS failure

UNSCHEDULED AT_RISK 01-JAN-11

01:00:00

03-JAN-11

13:00:00

CRAC failure

UNSCHEDULED OUTAGE 15-DEC-10

19:45:00

16-DEC-10

08:40:00

Router down, top BDII

unavailable

SCHEDULED OUTAGE 03-DEC-10

05:00:00

03-DEC-10

07:00:00

Network maintenance

UNSCHEDULED OUTAGE 02-OCT-10

17:53:00

02-OCT-10

21:25:00

CRAC failure

UNSCHEDULED OUTAGE 17-SEP-10

13:30:00

22-SEP-10

15:45:00

Security stop

UNSCHEDULED OUTAGE 26-AUG-10

22:00:00

27-AUG-10

16:05:00

CRAC failure

UNSCHEDULED AT_RISK 19-AUG-10

10:00:00

19-AUG-10

10:30:00

Network maintenance

UNSCHEDULED AT_RISK 19-JUL-10

09:14:00

26-JUL-10

12:30:00

Server room UPS batteries not

charging

UNSCHEDULED OUTAGE 16-JUL-10

09:14:00

20-JUL-10

09:14:00

Site down ! moving to a new

comuter room.

UNSCHEDULED OUTAGE 16-JUL-10

00:00:00

16-JUL-10

09:14:00

All hardware being relocated

to new server room

SCHEDULED OUTAGE 09-JUL-10

00:00:00

16-JUL-10

00:00:00

All hardware being relocated

to new server room

156

Figures 91, 92, 93 & 94 show for the Duane plot and log-linear plot for the

resources repair time. From the figures it is most likely that the Grid resources repair

time cannot be modelled as NHPP.

Figure 91: The Duane Plot for Resources Repairs time, Site 1.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5 6 7

ln(t)

ln
(t

/N
(t

))

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5 6 7

ln(t)

ln
(t

/N
(t

))

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5 6 7 8

ln(t)

ln
(t

/N
(t

))

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5 6 7 8

ln(t)

ln
(t

/N
(t

))

(a) Resource A (b) Resource B

(c) Resource C (d) Resource D

157

Figure 92: The Duane Plot for Resources Repairs time, Site 2.

Figure 93: log-linear Paper for Resources Repairs time, Site 1.

(a) Resource A (b) Resource B

(c) Resource C

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7

ln(t)

ln
(t

/N
(t

))

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6

ln(t)

ln
(t

/n
(t

))

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

-1 0 1 2 3 4 5 6 7

ln(t)

ln
(t

/N
(t

))

(b) Resource B

(c) Resource C (d) Resource D

0

0.5

1

1.5

2

2.5

3

3.5

4

0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00 800.00 900.00

Time in Houres

ln
(t

/N
(t

))

(a) Resource A

0

0.5

1

1.5

2

2.5

3

3.5

4

0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00

Time in Hours

ln
(t

/N
(t

))

0

0.5

1

1.5

2

2.5

3

3.5

4

0.00 200.00 400.00 600.00 800.00 1000.00 1200.00

Time in Hours

ln
(t

/N
(t

))

0

0.5

1

1.5

2

2.5

3

3.5

4

0.00 200.00 400.00 600.00 800.00 1000.00 1200.00

Time in Hours

ln
(t

/N
(t

))

158

0

0.5

1

1.5

2

2.5

3

0.00 50.00 100.00 150.00 200.00 250.00 300.00

Time in Hours

ln
(t

/N
(t

))

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00

Time in Hours

ln
(t

/N
(t

))

Figure 94: log-linear Paper for Resources Repairs time, Site 2.

(a) Resource A (b) Resource B

0

0.5

1

1.5

2

2.5

3

0.00 50.00 100.00 150.00 200.00 250.00 300.00 350.00 400.00

Time in Hours

ln
(t

/N
(t

))

(c) Resource C

159

9 Appendix B

The following table are the results of the t-test.

Independent Samples Test For Observed and Predicted ROF Resource A Site 1.

Levene's Test for
Equality of Variances t-test for Equality of Means

F Sig. t Df Sig. (2-tailed)
Mean

Difference
Std. Error
Difference

95% Confidence Interval of the
Difference

Lower Upper

 Equal variances assumed 1.526 .218 1.397 258 .164 .01110 .00794 -.00455 .02674

Equal variances not assumed 1.397 254.904 .164 .01110 .00794 -.00455 .02674

Independent Samples Test For Observed and Predicted ROF Resource B Site 1.

Levene's Test for

Equality of Variances t-test for Equality of Means

F Sig. t Df Sig. (2-tailed)

Mean

Difference

Std. Error

Difference

95% Confidence Interval of the

Difference

Lower Upper

 Equal variances assumed 3.062 .081 .938 258 .349 .00566 .00603 -.00622 .01753

Equal variances not assumed .938 254.222 .349 .00566 .00603 -.00622 .01753

160

Independent Samples Test For Observed and Predicted ROF Resource C Site 1.

Levene's Test for

Equality of Variances t-test for Equality of Means

F Sig. t Df Sig. (2-tailed)

Mean

Difference

Std. Error

Difference

95% Confidence Interval of the

Difference

Lower Upper

 Equal variances assumed 4.011 .046 1.683 258 .093 .01213 .00720 -.00206 .02631

Equal variances not assumed 1.683 251.506 .094 .01213 .00720 -.00206 .02631

Independent Samples Test For Observed and Predicted ROF Resource D Site 1.

Levene's Test for

Equality of Variances t-test for Equality of Means

F Sig. t Df Sig. (2-tailed)

Mean

Difference

Std. Error

Difference

95% Confidence Interval of the

Difference

Lower Upper

 Equal variances assumed 17.894 .000 1.916 258 .056 .01545 .00806 -.00043 .03132

Equal variances not assumed 1.916 232.665 .057 .01545 .00806 -.00044 .03133

161

Independent Samples Test For Observed and Predicted ROF Resource A Site 2.

Levene's Test for

Equality of Variances t-test for Equality of Means

F Sig. t Df Sig. (2-tailed)

Mean

Difference

Std. Error

Difference

95% Confidence Interval of the

Difference

Lower Upper

 Equal variances assumed 11.505 .001 1.923 258 .056 .00607 .00316 -.00015 .01229

Equal variances not assumed 1.923 245.188 .056 .00607 .00316 -.00015 .01229

Independent Samples Test For Observed and Predicted ROF Resource B Site 2.

Levene's Test for

Equality of Variances t-test for Equality of Means

F Sig. t Df Sig. (2-tailed)

Mean

Difference

Std. Error

Difference

95% Confidence Interval of the

Difference

Lower Upper

 Equal variances assumed 18.329 .000 .875 258 .383 .00288 .00329 -.00360 .00936

Equal variances not assumed .875 237.853 .383 .00288 .00329 -.00361 .00937

162

Independent Samples Test For Observed and Predicted ROF Resource C Site 2.

Levene's Test for

Equality of Variances t-test for Equality of Means

F Sig. T Df Sig. (2-tailed)

Mean

Difference

Std. Error

Difference

95% Confidence Interval of the

Difference

Lower Upper

 Equal variances assumed 16.255 .000 1.697 258 .091 .00552 .00325 -.00088 .01192

Equal variances not assumed 1.697 240.073 .091 .00552 .00325 -.00089 .01193

163

10 Appendix C

The following experiments are carried out to ensure that the DRFC algorithm

and the MIP solver have been implemented correctly in the simulations. These were

carried out prior to the experiments described in chapter 6.

In all tests the values for the following parameters will be obtained manually

and using simulation:

1. The assignment of tasks to resources.

2. Total execution cost.

For the DRFC algorithm; if the expected schedule and the simulation results

agree, then this gives confidence that the algorithm is being applied correctly.

For the Gurobi optimizer; if the optimal schedule and the solver results agree,

then this gives confidence that the MIP solver is implemented correctly.

Furthermore, the MIP was also implemented using AMPL with CPLEX solver. The

Gurobi optimizer results were compared with the AMPL results. Figure 95

illustrates a snippet of the AMPL code responsible for scheduling a single BoT

job.

set Tasks;

set Resources;

 param P {Tasks} > 0;

 param I {Tasks} > 0;

param cost {Resources} > 0;

param speed {Resources} > 0;

param risk {Resources} > 0;

param A {Resources} >= 0;

param T = ; # The User Deadline

param R = ; # The User desire ROF

param time{Resources};

param x;

param y;

164

param total;

var In {Tasks,Resources} binary;

minimize Total_Value:

 sum {i in Tasks, j in Resources} (ceil(P[i]/speed[j])*cost[j]) * In[i,j];

subject to Weight_Limit { j in Resources}:

 sum {i in Tasks} ceil(P[i]/speed[j]) * In[i,j] <= T - A[j];

subject to Only_One {i in Tasks}:

 sum {j in Resources} In [i,j] = I[i];

subject to Risk {i in Tasks, j in Resources}:

 risk[j] * In[i,j] <= R;

Figure 95: Snippet of the AMPL responsible for scheduling a single BoT job.

Test 1

Consider 4 identical resources and 3 BoT jobs. Tables 17 & 18 show the exact

values used in the test.

Table 17: Resources Used for Test 1.

Number of Resources 4

MIPS 6000

Price per Time Unit 1

ROF < 0.05

Table 18: BoT Jobs Used for Test 1.

BoT job 1 2 3

Arrival Time 0 50 100

Deadline 500 600 800

Number of Tasks 5 5 5

Desire ROF < 0.05

Execution time/task* 200

* Execution time is based on a resource with 6000 MIPS

Test 2

Consider 4 resources and 3 BoT jobs. Tables 19 & 20 show the resources and

the BoT jobs values.

165

Table 19: Resources Used for Test 2.

Resources 1 2 3 4

MIPS 6000 7000 8000 8000

Price per Time Unit 1 1 2 3

ROF < 0.05 > 0.1 ≤ 0.1 < 0.05

Table 20: BoT Jobs Used for Test 2.

BoT job 1 2 3

Arrival Time 0 200 400

Deadline 1000 1200 1600

Number of Tasks 5 5 5

Desire ROF < 0.05 > 0.1 ≤ 0.1

Execution time/task* Between 200 and 600 in steps of 100

* Execution time is based on a resource with 6000 MIPS

Test 3

Consider 5 resources and 4 BoT jobs. Tables 21 & 22 show the resources and

the BoT jobs values.

Table 21: BoT Jobs Used for Test 3.

Resources 1 2 3 4 5

MIPS 6000 7000 7000 8000 8000

Price per Time Unit 1 2 3 4 5

ROF ≤ 0.1 > 0.1 < 0.05 ≤ 0.1 < 0.05

Table 22: BoT Jobs Used for Test 3.

BoT job 1 2 3 4

Arrival Time 0 200 400 600

Deadline 1000 1200 1400 1600

Number of Tasks 5 5 5 5

Desire ROF < 0.05 > 0.1 ≤ 0.1 > 0.1

Execution time/task* Between 200 and 600 in steps of 100

* Execution time is based on a resource with 6000 MIPS

166

Result for Test 1

In this test the optimal schedule and the DRFC algorithm schedule are

identical. Figure 96 shows the Gantt chart for the resulted schedule. The DRFC

algorithm, the Gurobi optimizer, the AMPL solver and the manual solutions are all

identical. The total execution cost for all the BoT jobs is 3000.

Figure 96: The Gantt chart for Test 1 Schedule.

Results Test 2

In this test also the optimal schedule and the DRFC schedule are identical. The

total execution cost is 8544. Figure 97 shows the resulted Gantt chart scheduler.

Figure 97: The Gantt chart for Test 2 Schedule.

0 100 200 300 400 500 600 700 800

Time Units

Resource 1

Resource 2

Resource 3

Resource 4

BoT Job 1

BoT Job 2

BoT Job 3

Task 1 Task 2 Task 1 Task 1

Task 3 Task 4 Task 2 Task 2

Task 5 Task 3 Task 4 Task 3

Task 5 Task 4 Task 5

0 200 400 600 800 1000 1200 1400 1600

Time Units

Resource 1

Resource 2

Resource 3

Resource 4

BoT Job 1

BoT Job 2

BoT Job 3

Task 3 Task 5

T 1 Task 2 Task 4

Task 1

Task 5 Task 4

Task 3 Task 2

Task 3

Task 5 Task 2

T 1 Task 4

167

Results Test 3

In this test also the optimal schedule and the DRFC schedule are identical. The

total execution cost is 19934. Figure 98 shows the resulted Gantt chart scheduler.

Figure 98: The Gantt chart for Test 3 Schedule.

0 200 400 600 800 1000 1200 1400 1600

Resource 1

Resource 2

Resource 3

Resource 4

Resource 5

BoT Job 1

BoT Job 2

BoT Job 3

BoT Job 4

Task 5 Task 3 Task 1 Task 1

Task 1 Task 4 Task 2 Task 5

Task 5 Task 4 Task 3

Task 5 Task 4 Task 4

T 1 Task 3 Task 2 Task 2 Task 3 Task 2

168

References

1. Foster, I., The Grid: A New Infrastructure for 21st Century Science, in Grid

Computing : Making the Global Infrastructure a Reality, F. Berman, G. Fox,

and A.J.G. Hey, Editors. 2003, J. Wiley,: New York. p. 51-63.

2. Plaszczak, P. and R. Wellner, Grid Computing : The Savvy Manager's Guide.

2005, San Francisco: Elsevier/Morgan Kaufmann.

3. Foster, I. Globus Toolkit Version 4: Software for Service-Oriented Systems. in

FIP International Conference on Network and Parallel Computing. 2005:

Springer-Verlag LNCS 3779.

4. Misev, A. and E. Atanassov, User Level Grid Quality of Service, in Large-

Scale Scientific Computing, I. Lirkov, S. Margenov, and J. Wasniewski,

Editors. 2010, Springer Berlin / Heidelberg. p. 507-514.

5. Al-Ali, R., et al. QoS Support for High-Performance Scientific Grid

Applications. in IEEE International Symposium on Cluster Computing and

the Grid, CCGrid. 2004.

6. Lee, H., et al., A Resource Management and Fault Tolerance Services in Grid

Computing. Journal of Parallel and Distributed Computing, 2005. 65(11): p.

1305-1317.

7. Oxford English Dictionary. Available from: http://dictionary.oed.com.

8. Koller, G.R., Risk Assessment and Decision Making in Business and Industry:

a Practical Guide. 2nd ed. 2005, Boca Raton, FL: Chapman & Hall/CRC.

9. Modarres, M., Risk Analysis In Engineering: Techniques, Tools, and Trends.

2006, Boca Raton: Taylor & Francis.

10. Blischke, W.R. and D.N.P. Murthy, Reliability: Modeling, Prediction, and

Optimization. Wiley Series In Probability And Statistics. 2000, New York:

Wiley.

11. Abbas, A., Grid computing: A Practical Guide to Technology and

Applications. 2004, Hingham, Mass: Charles River Media.

12. Roure, D.D., et al., The Evolution of the Grid, in Grid Computing : Making the

Global Infrastructure a Reality, F. Berman, G. Fox, and A.J.G. Hey, Editors.

2003, J. Wiley: New York. p. 65-100.

13. Foster, I., et al., Software Infrastructure for the I-WAY High-Performance

Distributed Computing Experiment, in Grid Computing : Making the Global

Infrastructure a Reality, F. Berman, G. Fox, and A.J.G. Hey, Editors. 2003,

J. Wiley,: New York. p. 101-115.

14. Foster, I. and C. Kesselman, The Grid in a Nutshell, in Grid resource

management : state of the art and future trends, J. Nabrzyski, J.M. Schopf,

and J. Weglarz, Editors. 2004, Kluwer Academic Publishers: Boston. p. 3-

13.

http://dictionary.oed.com/

169

15. Foster, I., C. Kesselman, and S. Tuecke, The Anatomy of the Grid, in Grid

Computing : Making the Global Infrastructure a Reality, F. Berman, G. Fox,

and A.J.G. Hey, Editors. 2003, J. Wiley,: New York. p. 169-197.

16. Foster, I. and C. Kesselman, Concepts and Architecture, in The grid : blueprint

for a new computing infrastructure, I. Foster and C. Kesselman, Editors.

2004, Morgan Kaufmann: Amsterdam ; Boston. p. 37-64.

17. The grid : blueprint for a new computing infrastructure, ed. I. Foster and C.

Kesselman. 1999, San Francisco: Morgan Kaufmann Publishers.

18. The grid : blueprint for a new computing infrastructure. 2nd ed, ed. I. Foster

and C. Kesselman. 2004, Amsterdam ; Boston: Morgan Kaufmann.

19. Krauter, K., R. Buyya, and M. Maheswaran, A Taxonomy and Survey of Grid

Resource Management Systems for Distributed Computing. Software:

Practice and Experience, 2002. 32(2): p. 135-164.

20. Foster, I. and C. Kesselman, Chapter 2: Computational Grid, in The grid :

blueprint for a new computing infrastructure. 1999, Morgan Kaufmann

Publishers: San Francisco. p. 15-53.

21. Chervenak, A., et al., The Data Grid: Towards an Architecture for the

Distributed Management and Analysis of Large Scientific Datasets Journal

of Network and Computer Applications, July 2000. 23(3): p. 187-200.

22. Foster, I., et al., The Physiology of the Grid, in Grid Computing : Making the

Global Infrastructure a Reality, F. Berman, G. Fox, and A.J.G. Hey, Editors.

2003, J. Wiley,: New York. p. 217-249.

23. Enabling Grids for E-sciencE. Available from: http://www.eu-egee.org/.

24. Grid 5000. Available from: https://www.grid5000.fr.

25. National Grid Service. Available from: http://www.grid-support.ac.uk/.

26. European Grid Infrastructure EGI.eu. Available from: http://www.egi.eu/.

27. Integrated Sustainable Pan-European Infrastructure for Researchers in

Europe. Available from: http://www.egi.eu/projects/egi-inspire/.

28. A worldwide e-infrastructure for computational neuroscientists. Available

from: http://www.outgrid.eu.

29. A Grid-Based e-Infrastructure for data archiving/ communication and

computationally intensive applications in the medical sciences. Available

from: http://www.neugrid.eu.

30. CBRAIN Project. Available from: http://www.cbrain.mcgill.ca.

31. LONI - Laboratory of Neuro Imaging at UCLA. Available from:

http://www.loni.ucla.edu/.

32. Desktop Grids for International Scientific Collaboration. Available from:

http://degisco.eu/.

33. EDGeS: Enabling Desktop Grids for e-Science. Available from:

http://www.edges-grid.eu/.

34. Austin, J., et al., Predictive Maintenance: Distributed Aircraft Engine

Diagnostics, in The grid : blueprint for a new computing infrastructure, I.

http://www.eu-egee.org/
http://www.grid5000.fr/
http://www.grid-support.ac.uk/
http://www.egi.eu/
http://www.egi.eu/projects/egi-inspire/
http://www.outgrid.eu/
http://www.neugrid.eu/
http://www.cbrain.mcgill.ca/
http://www.loni.ucla.edu/
http://degisco.eu/
http://www.edges-grid.eu/

170

Foster and C. Kesselman, Editors. 2004, Morgan Kaufmann: Amsterdam ;

Boston. p. 69-79.

35. Djemame, K. and M. Haji. Grid Application Performance Prediction: a Case

Study in BROADEN. in In Proceedings of the 1st International Workshop On

Verification and Evaluation of Computer and Communication Systems

(VECoS'2007). 2007. Algiers, Algeria.

36. The AssessGrid Project. Available from: http://www.assessgrid.eu.

37. Djemame, K., et al., Introducing Risk Management into the Grid, in

Proceedings of the Second IEEE International Conference on e-Science and

Grid Computing. 2006, IEEE Computer Society.

38. Ioannis, K., et al., IBHIS: Integration Broker for Heterogeneous Information

Sources, in Proceedings of the 27th Annual International Conference on

Computer Software and Applications. 2003, IEEE Computer Society: Dallas,

Texas, USA.

39. Townend, P., et al., The e-Demand project: A Summary in 4th UK e-Science

All-hands Conference AHM 2005. 2005: Nottingham, UK.

40. Berman, F., G. Fox, and T. Hey, The Grid: Past, Present, Future, in Grid

Computing : Making the Global Infrastructure a Reality, F. Berman, G. Fox,

and A.J.G. Hey, Editors. 2003, J. Wiley,: New York. p. 9-50.

41. Open Grid Forum (OGF). Available from: http://www.ogf.org.

42. Foster, I., C. Kesselman, and S. Tuecke, The Open Grid Services Architecture,

in The grid : blueprint for a new computing infrastructure, I. Foster and C.

Kesselman, Editors. 2004, Morgan Kaufmann: Amsterdam ; Boston. p. 215-

258.

43. Web Services Architecture. World Wide Web Consortium:[Available from:

http://www.w3.org/TR/ws-arch/.

44. World Wide Web Consortium. SOAP Version 1.2. Available from:

http://www.w3.org/TR/soap/.

45. Christensen, E., et al. Web Services Description Language (WSDL) 1.1. 2001

Available from: http://www.w3.org/TR/wsdl

46. Brittenham, P. An overview of the Web Services Inspection Language. 1 Jun

2002 Available from:

https://www.ibm.com/developerworks/webservices/library/ws-wsilover/.

47. Tuecke, S., et al. Open Grid Services Infrastructure (OGSI) Version 1.0.

Available from: http://www.globus.org/toolkit/draft-ggf-ogsi-gridservice-

33_2003-06-27.pdf.

48. Extensible Markup Language (XML) 1.0 (Fifth Edition). Available from:

http://www.w3.org/TR/REC-xml/.

49. Czajkowski, K., et al. From Open Grid Services Infrastructure to WS-

Resource Framework: Refactoring & Evolution. 2004 Available from:

http://www.globus.org/wsrf/specs/ogsi_to_wsrf_1.0.pdf.

50. Czajkowski, K., et al. The WS-Resource Framework. 2004 Available from:

http://www.globus.org/wsrf/specs/ws-wsrf.pdf.

http://www.assessgrid.eu/
http://www.ogf.org/
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/wsdl
http://www.ibm.com/developerworks/webservices/library/ws-wsilover/
http://www.globus.org/toolkit/draft-ggf-ogsi-gridservice-33_2003-06-27.pdf
http://www.globus.org/toolkit/draft-ggf-ogsi-gridservice-33_2003-06-27.pdf
http://www.w3.org/TR/REC-xml/
http://www.globus.org/wsrf/specs/ogsi_to_wsrf_1.0.pdf
http://www.globus.org/wsrf/specs/ws-wsrf.pdf

171

51. Baker, M., R. Buyya, and D. Laforenza, Grids and Grid Technologies for

Wide-Area Distributed Computing. Software: Practice and Experience, 2002.

32: p. 1437 - 1466.

52. The Globus Project. Available from: http://www.globus.org/.

53. Czajkowski, K., et al. A Resource Management Architecture for

Metacomputing Systems. in Proceedings of Job Scheduling Strategies for

Parallel Processing: IPPS/SPDP'98 Workshop 1998. Orlando, Florida,

USA.

54. Allcock, W., et al. The Globus Striped GridFTP Framework and Server. in

Proceedings of the 2005 ACM/IEEE conference on Supercomputing 2005.

Los Alamitos, CA, USA: IEEE Computer Society.

55. Madduri, R.K., C.S. Hood, and W.E. Allcock. Reliable File Transfer in Grid

Environments. in Proceedings of the 27th Annual IEEE Conference on Local

Computer Networks. 2002.

56. Konstantinos, K., et al., Introduction to OGSA-DAI Services. Lecture Notes in

Computer Science : Scientific Applications of Grid Computing. 2005.

57. UNICORE. Available from: http://www.unicore.eu/.

58. Sakellariou, R., et al., UNICORE: A Grid Computing Environment, in Euro-

Par 2001 Parallel Processing. 2001, Springer Berlin / Heidelberg. p. 825-

834.

59. Laure, E., et al., Middleware for the Next Generation Grid Infrastructure, in

Computing in High Energy and Nuclear Physics (CHEP). 2004: Interlaken,

Switzerland.

60. Laure, E., et al., Programming the Grid Using gLite. Computational Methods

in Science and Technology 2006. 12(1): p. 33-45.

61. Wu, Y., et al., Grid Middleware in China. International Journal of Web and

Grid Services 2007. 3(4): p. 371 - 402.

62. OMII-UK. Available from: http://www.omii.ac.uk.

63. Sahai, A., et al. Specifying and Monitoring Guarantees in Commercial Grids

through SLA. in Cluster Computing and the Grid, 2003. Proceedings.

CCGrid 2003. 3rd IEEE/ACM International Symposium on. 2003.

64. Czajkowski, K., et al., Grid Service Level Agreements: Grid resource

management with intermediaries in Grid resource management : state of the

art and future trends, J. Nabrzyski, J.M. Schopf, and J. Weglarz, Editors.

2004, Kluwer Academic Publishers: Boston. p. 119-134.

65. Czajkowski, K., et al., SNAP: A Protocol for Negotiating Service Level

Agreements and Coordinating Resource Management in Distributed

Systems. Lecture Notes in Computer Science. 2002. 153-183.

66. Leff, A., J.T. Rayfield, and D.M. Dias, Service-Level Agreements and

Commercial Grids. Internet Computing, IEEE, 2003. 7(4): p. 44-50.

67. Ludwig, H., et al., A Service Level Agreement Language for Dynamic

Electronic Services. Electronic Commerce Research, 2003. 3(1): p. 43-59.

http://www.globus.org/
http://www.unicore.eu/
http://www.omii.ac.uk/

172

68. Keller, A. and H. Ludwig, The WSLA Framework: Specifying and Monitoring

Service Level Agreements for Web Services. Journal of Network and Systems

Management, 2003. 11(1): p. 57-81.

69. Grid Resource Allocation and Agreement Protocol Working Group (GRAAP-

WG). Available from: http://forge.ggf.org/sf/projects/graap-wg.

70. Andrieux, A., et al., Web Services Agreement Specification (WS-Agreement).

2007, Open Grid Forum.

71. Krämer, B., et al., Improving Temporal-Awareness of WS-Agreement, in

Service-Oriented Computing – ICSOC 2007, Springer Berlin / Heidelberg. p.

193-206.

72. Heiko, L., D. Asit, and K. Robert, Cremona: an Architecture and Library for

Creation and Monitoring of WS-Agreents, in Proceedings of the 2nd

international conference on Service oriented computing. 2004, ACM: New

York, NY, USA.

73. Lumb, I. and C. Smith, Scheduling Attributes and Platform LSF, in Grid

resource management : state of the art and future trends, J. Nabrzyski, J.M.

Schopf, and J. Weglarz, Editors. 2004, Kluwer Academic Publishers:

Boston. p. 171-182.

74. Nitzberg, B., J.M. Schopf, and J.P. Jones, PBS PRO: Grid Computing and

Scheduling Attributes, in Grid resource management : state of the art and

future trends, J. Nabrzyski, J.M. Schopf, and J. Weglarz, Editors. 2004,

Kluwer Academic Publishers: Boston. p. 183-190.

75. Kannan, S., et al., Workload Management with LoadLeveler. IBM RedBookes.

2001.

76. Grimshaw, A.S., et al., From Legion to Avaki: the Persistence of Vision, in

Grid Computing : Making the Global Infrastructure a Reality, F. Berman, G.

Fox, and A.J.G. Hey, Editors. 2003, J. Wiley,: New York. p. 265-298.

77. Natrajan, A., M.A. Humphrey, and A.S. Grimshaw, Grid Resourcs

Management in Legion, in Grid resource management : state of the art and

future trends, J. Nabrzyski, J.M. Schopf, and J. Weglarz, Editors. 2004,

Kluwer Academic Publishers: Boston. p. 145-160.

78. Roy, A. and L. Miron, Condor and Preemptive Resume Scheduling, in Grid

resource management : state of the art and future trends, J. Nabrzyski, J.M.

Schopf, and J. Weglarz, Editors. 2004, Kluwer Academic Publishers:

Boston. p. 135-144.

79. Thain, D., T. Tannenbaum, and M. Livny, Condor and the Grid, in Grid

Computing : Making the Global Infrastructure a Reality, F. Berman, G. Fox,

and A.J.G. Hey, Editors. 2003, J. Wiley,: New York. p. 299-335.

80. Schopf, J.M., Ten Action When Grid Scheduling, in Grid resource

management : state of the art and future trends, J. Nabrzyski, J.M. Schopf,

and J. Weglarz, Editors. 2004, Kluwer Academic Publishers: Boston. p. 15-

23.

81. Schwiegelshohn, U. and R. Yahyapour, Attributes for Communication Between

Grid Scheduling Instances, in Grid resource management : state of the art

http://forge.ggf.org/sf/projects/graap-wg

173

and future trends, J. Nabrzyski, J.M. Schopf, and J. Weglarz, Editors. 2004,

Kluwer Academic Publishers: Boston. p. 41-52.

82. Czajkowski, K., et al. Grid Information Services for Distributed Resource

Sharing. in Proceedings 10th IEEE International Symposium on High

Performance Distributed Computing. 2001.

83. Information Services (MDS) : Key Concepts. Available from:

http://www.globus.org/toolkit/docs/4.0/info/key-index.html.

84. Iamnitchi, A. and I. Foster, On Fully Decentralized Resource Discovery in

Grid Environments, in Grid Computing — GRID 2001. 2001, Springer

Berlin / Heidelberg. p. 51-62.

85. Cai, M., et al. MAAN: a Multi-Attribute Addressable Network for Grid

Information Services. in Proceedings Fourth International Workshop on

Grid Computing. 2003.

86. Xhafa, F. and A. Abraham, Computational Models and Heuristic Methods for

Grid Scheduling Problems. Future Gener. Comput. Syst., 2010. 26(4): p.

608-621.

87. Iosup, A., et al., The Characteristics and Performance of Groups of Jobs in

Grids, in Euro-Par 2007 Parallel Processing. 2007, Springer Berlin /

Heidelberg. p. 382-393.

88. Jia, Y. and B. Rajkumar, A Taxonomy of Scientific Workflow Systems for Grid

Computing. SIGMOD Rec., 2005. 34(3): p. 44-49.

89. Oracle Grid Engine. Available from:

http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html.

90. Keller, A. and A. Reinefeld. CCS Resource Management in Networked HPC

Systems. in Proceedings of Heterogeneous Computing Workshop. 1998.

Orlando, FL , USA

91. Jackson, D.B., Grid Scheduling with Maui/Silver, in Grid resource

management : state of the art and future trends, J. Nabrzyski, J.M. Schopf,

and J. Weglarz, Editors. 2004, Kluwer Academic Publishers: Boston. p. 161-

170.

92. Buyya, R., D. Abramson, and S. Venugopal, The Grid Economy. Proceedings

of the IEEE, 2005. 93(3): p. 698.

93. Nudd, G.R., et al., Pace--A Toolset for the Performance Prediction of Parallel

and Distributed Systems. International Journal of High Performance

Computing Applications, 2000. 14(3): p. 228-251.

94. Kapadia, N.H., J.A.B. Fortes, and C.E. Brodley, Predictive Application-

Performance Modeling in a Computational Grid Environment, in

Proceedings of the 8th IEEE International Symposium on High Performance

Distributed Computing. 1999, IEEE Computer Society: Redondo Beach,

California, USA.

95. Dushay, N., J. French, and C. Lagoze, Predicting Indexer Performance in a

Distributed Digital Library, in Research and Advanced Technology for

Digital Libraries. 1999, Springer Berlin / Heidelberg. p. 852-852.

http://www.globus.org/toolkit/docs/4.0/info/key-index.html
http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html

174

96. Brandolese, C., et al., Source-level Execution Time Estimation of C Programs,

in Proceedings of the ninth international symposium on Hardware/software

codesign. 2001, ACM: Copenhagen, Denmark.

97. Krishnaswamy, S., S.W. Loke, and A. Zaslavsky, Estimating Computation

Times of Data-Intensive Applications. IEEE Distributed Systems Online,

2004. 5(4).

98. Matsunaga, A. and J. Fortes. On the Use of Machine Learning to Predict the

Time and Resources Consumed by Applications. in Proceedings of the 2010

10th IEEE/ACM International Conference on Cluster, Cloud and Grid

Computing. 2010. Melbourne, Australia: IEEE Computer Society.

99. Minh, T.N. and L. Wolters. Using Historical Data to Predict Application

Runtimes on Backfilling Parallel Systems. in 18th Euromicro International

Conference on Parallel, Distributed and Network-Based Processing (PDP).

2010. Pisa, Italy.

100. Nadeem, F., M.M. Yousaf, and M. Ali. Grid Performance Prediction:

Requirements, Framework, and Models. in International Conference on

Emerging Technologies, 2006. ICET. 2006. Peshawar, Pakistan.

101. Faerman, M., et al. Adaptive Performance Prediction for Distributed Data-

Intensive Applications. in Proceedings of the 1999 ACM/IEEE conference on

Supercomputing. 1999. Portland, Oregon, United States: ACM.

102. Maheswaran, M., et al., Dynamic Matching and Scheduling of a Class of

Independent Tasks onto Heterogeneous Computing Systems, in Proceedings

of the Eighth Heterogeneous Computing Workshop. 1999, IEEE Computer

Society: San Juan , Puerto Rico

103. Casanova, H., et al. Heuristics for Scheduling Parameter Sweep Applications

in Grid Environments. in Proceedings of the 9th Heterogeneous Computing

Workshop. 2000. Cancun , Mexico IEEE Computer Society.

104. Oscar, H.I. and E.K. Chul, Heuristic Algorithms for Scheduling Independent

Tasks on Nonidentical Processors. Journal of the ACM, 1977. 24(2): p. 280-

289.

105. Berman, F., et al., Adaptive Computing on the Grid Using AppLeS. IEEE

Transactions on Parallel and Distributed Systems, 2003. 14(4): p. 369.

106. Francine, D.B., et al., Application-Level Scheduling on Distributed

Heterogeneous Networks, in Proceedings of the 1996 ACM/IEEE conference

on Supercomputing. 1996, IEEE Computer Society: Pittsburgh,

Pennsylvania, United States.

107. Cirne, W., et al. Running Bag-of-Tasks Applications on Computational Grids:

the MyGrid Approach. in Proceedings of the International Conference on

Parallel Processing. 2003. Kaohsiung, Taiwan.

108. Lee, Y.C. and A.Y. Zomaya, A Grid Scheduling Algorithm for Bag-of-Tasks

Applications Using Multiple Queues with Duplication, in Proceedings of the

5th IEEE/ACIS International Conference on Computer and Information

Science and 1st IEEE/ACIS International Workshop on Component-Based

Software Engineering,Software Architecture and Reuse. 2006, IEEE

Computer Society: Honolulu, HI USA.

175

109. Lee, Y.C. and A.Y. Zomaya, Practical Scheduling of Bag-of-Tasks

Applications on Grids with Dynamic Resilience. IEEE Trans. Comput., 2007.

56(6): p. 815-825.

110. OurGrid. Available from: http://www.ourgrid.org/.

111. Marco, A.S.N., et al., Transparent Resource Allocation to Exploit Idle Cluster

Nodes in Computational Grids, in Proceedings of the First International

Conference on e-Science and Grid Computing. 2005, IEEE Computer

Society: Melbourne, Australia.

112. De Rose, C.A.F., et al., Allocation Strategies for Utilization of Space-Shared

Resources in Bag of Tasks Grids. Future Generation Computer Systems,

2008. 24(5): p. 331-341.

113. Buyya, R., D. Abramson, and J. Giddy. An Evaluation of Economy-Based

Resource Trading and Scheduling on Computational Power Grids for

Parameter Sweep Applications in the 2nd International Workshop on Active

Middleware Services (AMS 2000). 2000. Pittsburgh, USA: Kluwer Press.

114. Buyya, R., D. Abramson, and J. Giddy. Nimrod/G: An Architecture for a

Resource Management and Scheduling System in a Global Computational

Grid. in Proceedings of the 4th International Conference on High

Performance Computing in Asia-Pacific Region 2000. Beijing, China.

115. Abramson, D., R. Buyya, and J. Giddy, A Computational Economy for Grid

Computing and Its Implementation in the Nimrod-G Resource Broker. Future

Generation Computer Systems, 2002. 18(8): p. 1061-1074.

116. Buyya, R., et al., Economic Models for Resource Management and Scheduling

in Grid Computing. Concurrency and Computation: Practice and Experience,

2002. 14(13-15): p. 1507-1542.

117. Buyya, R., et al., Scheduling Parameter Sweep Applications on Global Grids:

a Deadline and Budget Constrained Cost-Time Optimization Algorithm.

Software—Practice & Experience, 2005. 35(5): p. 491-512.

118. Buyya, R. and M. Murshed, GridSim: a Toolkit for the Modeling and

Simulation of Distributed Resource Management and Scheduling for Grid

Computing. The Journal of Concurrency and Computation: Practice and

Experience, 2002. 14(13-15): p. 1175-1220.

119. Kumar, S., K. Dutta, and V. Mookerjee, Maximizing Business Value by

Optimal Assignment of Jobs to Resources in Grid Computing European

Journal of Operational Research, 2009. 194(3): p. 856 - 872

120. Macías, M., et al., Enforcing Service Level Agreements Using an Economically

Enhanced Resource Manager, in Economic Models and Algorithms for

Distributed Systems, D. Neumann, et al., Editors. 2010, Birkhäuser: Basel. p.

109-127.

121. SORMA - Self-Organizing ICT Resource Management. Available from:

http://www.im.uni-karlsruhe.de/sorma/.

122. Menascé, D.A. and E. Casalicchio, QoS in Grid Computing. IEEE Internet

Computing, 2004. 8(4): p. 85-87.

http://www.ourgrid.org/
http://www.im.uni-karlsruhe.de/sorma/

176

123. Kurowski, K., A. Oleksiak, and J. Weglarz, Multicriteria, Multi-User

Scheduling in Grids with Advance Reservation. Journal of Scheduling 2010.

13(5): p. 493-508.

124. Tierney, B., et al. A Grid Monitoring Architecture. 2002 Available from:

http://www-didc.lbl.gov/GGF-PERF/GMA-WG/papers/GWD-GP-16-3.pdf.

125. Rich, W., T.S. Neil, and H. Jim, The Network Weather Service: a Distributed

Resource Performance Forecasting Service for Metacomputing. Future

Gener. Comput. Syst., 1999. 15(5-6): p. 757-768.

126. Brian, T., et al., The NetLogger Methodology for High Performance

Distributed Systems Performance Analysis, in Proceedings of the 7th IEEE

International Symposium on High Performance Distributed Computing.

1998, IEEE Computer Society.

127. Dan, G., et al., Dynamic Monitoring of High-Performance Distributed

Applications, in Proceedings of the 11th IEEE International Symposium on

High Performance Distributed Computing. 2002, IEEE Computer Society.

128. Massie, M.L., B.N. Chun, and D.E. Culler, The Ganglia Distributed

Monitoring System: Design, Implementation, and Experience. Parallel

Computing, 2004. 30(7): p. 817-840.

129. Ribler, R.L., et al. Autopilot: Adaptive Control of Distributed Applications. in

Proceedings. The Seventh International Symposium on High Performance

Distributed Computing. 1998. Chicago, IL , USA: IEEE Computer Society

Press.

130. Randy, L.R., S. Huseyin, and A.R. Daniel, The Autopilot Performance-

Directed Adaptive Control System. Future Generation Computer Systems,

2001. 18(1): p. 175-187.

131. Serafeim, Z. and S. Rizos, A Taxonomy of Grid Monitoring Systems. Future

Gener. Comput. Syst., 2005. 21(1): p. 163-188.

132. Hubbard, D.W., The Failure Of Risk Management : Why It's Broken And How

To Fix It. 2009, Hoboken, N.J.: Wiley.

133. Aven, T., Risk Analysis: Assessing Uncertainties Beyond Expected Values and

Probabilities. 2008, Chichester, England ; Hoboken, NJ: Wiley.

134. Bartlett, J., et al., Project Risk Analysis and Management Guide. 2nd ed. 2004,

High Wycombe: Association for Project Management.

135. Simon, P., D. Hillson, and K. Newland, PRAM: Project Risk Analysis and

Management Guide. 1997, Norwich: Association for Project Management.

136. Bennett, J.C., et al., Risk Analysis Techniques and Their Application to

Software Development. European Journal of Operational Research, 1996.

95(3): p. 467-475.

137. White, D., Application of Systems Thinking to Risk Management: a Review of

the Literature. Management Decision, 1995. 33(10): p. 35-45.

138. Merna, T. and F.F. Al-Thani, Corporate Risk Management. 2nd ed. 2008,

Chichester, England ; Hoboken, NJ: Wiley.

139. Security Research. Available from: http://www.securityresearch.at/en/is-

services/risk-management/.

http://www-didc.lbl.gov/GGF-PERF/GMA-WG/papers/GWD-GP-16-3.pdf
http://www.securityresearch.at/en/is-services/risk-management/
http://www.securityresearch.at/en/is-services/risk-management/

177

140. Carr, M., et al., Taxonomy-Based Risk Identification. SEI Technical Report

SEI-93-TR-006, Pittsburgh, Pennsylvania: Software Engineering Institute,

1993.

141. Freeman, J.W., T.C. Darr, and R.B. Neely. Risk Assessment for Large

Heterogeneous Systems. in Computer Security Applications Conference.

1997.

142. Haimes, Y.Y., Total Risk Management. Risk Analysis, 1991. 11(2): p. 169-

171.

143. Neumann, P.G., Some Computer-Related Disasters and Other Egregious

Horrors. Aerospace and Electronic Systems Magazine, IEEE, 1986. 1(10): p.

18-19.

144. Ewusi-Mensah, K., Software Development Failures: Anatomy of Abandoned

Projects. 2003, Cambridge, MA: MIT Press.

145. Glass, R.L., Software runaways. 1998, Upper Saddle River, N.J.: Prentice Hall

PTR ; London : Prentice-Hall International (UK).

146. Boehm, B.W., Software Risk Management: Principles and Practices. IEEE

Software, 1991. 8(1): p. 32-41.

147. Schmidt, R., et al., Identifying Software Project Risks: An International Delphi

Study. Journal of Management Information Systems, 2001. 17(4): p. 5-36.

148. Barki, H., S. Rivard, and J. Talbot, Toward an Assessment of Software

Development Risk. Journal of Management Information Systems, 1993.

10(2): p. 203-225.

149. Moynihan, T., How Experienced Project Managers Assess Risk. IEEE

Software, 1997. 14(3): p. 35-41.

150. Wallace, L. and M. Keil, Software Project Risks and their Effect on Outcomes.

Communications of the ACM - Human-computer etiquette, 2004. 47(4): p.

68-73.

151. Keil, M., et al., A Framework for Identifying Software Project Risks.

Communications of the ACM, 1998. 41(11): p. 76-83.

152. Verdon, D. and G. McGraw, Risk Analysis in Software Design. IEEE Security

& Privacy, 2004. 2(4): p. 79-84.

153. The European Network and Information Security Agency (ENISA). Available

from: http://www.enisa.europa.eu/.

154. Armbrust, M., et al., A view of cloud computing. Communications of the ACM

April 2010 53(4): p. 50-58.

155. Cloud Computing Benefits, risks and recommendations for information

security. November, 2009 Available from:

http://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-

assessment/at_download/fullReport.

156. The context-aware data-centric information sharing (Consequence). Available

from: http://www.consequence-project.eu.

157. SLA@SOI. Available from: http://sla-at-soi.eu/.

http://www.enisa.europa.eu/
http://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment/at_download/fullReport
http://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment/at_download/fullReport
http://www.consequence-project.eu/
http://sla-at-soi.eu/

178

158. D.A6a Predictable / Manageable Service Engineering Methodology and

Prediction Services. September 2010 Available from: http://sla-at-

soi.eu/wp-content/uploads/2009/07/D.A6a-M26-

PredictableServiceEngineeringMethodology.pdf.

159. Risk Management Evaluation. 31/10/2006 Available from:

http://www.assessgrid.eu/fileadmin/AssessGrid/usermounts/publications/deli

verables/AssessGrid_D.1.2_Risk_Management_Evaluation.pdf.

160. Boehm, B. Software Risk Management. in Proceedings of the 2nd European

Software Engineering Conference. 1989. Coventry, UK: Springer Berlin /

Heidelberg.

161. ISO/IEC 27005:2008 Information technology -- Security techniques --

Information security risk management. 2008 Available from:

http://www.iso.org/iso/catalogue_detail?csnumber=42107.

162. D 3.1 Consultant Service and Dynamic Risk Assessment. March 2008

Available from:

http://www.assessgrid.eu/fileadmin/AssessGrid/usermounts/publications/deli

verables/ASSESSGRID_D3.1_DYNAMIC_RISK.pdf.

163. Plank, J.S. and W.R. Elwasif. Experimental Assessment of Workstation

Failures and Their Impact on Checkpointing Systems. in Twenty-Eighth

Annual International Symposium on Fault-Tolerant Computing, Digest of

Papers. 1998. Munich , Germany

164. Nitin, H.V., A Case for Two-Level Distributed Recovery Schemes. ACM

SIGMETRICS Performance Evaluation Review, 1995. 23(1): p. 64-73.

165. Kavanaugh, G.P. and W.H. Sanders. Performance Analysis of Two Time-Based

Coordinated Checkpointing Protocols. in Proceedings Pacific Rim

International Symposium on Fault-Tolerant Systems. 1997. Taipei , Taiwan.

166. Long, D., A. Muir, and R. Golding. A Longitudinal Survey of Internet Host

Reliability. in Proceedings 14th Symposium on Reliable Distributed Systems.

1995. Bad Neuenahr , Germany.

167. Crow, L.H. and N.D. Singpurwalla, An Empirically Developed Fourier Series

Model for Describing Software Failures. IEEE Transactions on Reliability,

1984. R-33(2): p. 176-183.

168. Zadeh, L.A., Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and

Systems, 1999. 100(Supplement 1): p. 9-34.

169. D 4.1 Advanced Risk Assessment. September 2008 Available from:

http://www.assessgrid.eu/fileadmin/AssessGrid/usermounts/publications/deli

verables/ASSESSGRID_D4.1_Advanced_Risk_Assessment.pdf.

170. Schroeder, B. and G.A. Gibson. A large-scale study of failures in high-

performance computing systems. in International Conference on Dependable

Systems and Networks, 2006. DSN 2006. 2006.

171. Lin, T.T.Y. and D.P. Siewiorek, Error log analysis: statistical modeling and

heuristic trend analysis. Transactions on Reliability, IEEE, 1990. 39(4): p.

419.

http://sla-at-soi.eu/wp-content/uploads/2009/07/D.A6a-M26-PredictableServiceEngineeringMethodology.pdf
http://sla-at-soi.eu/wp-content/uploads/2009/07/D.A6a-M26-PredictableServiceEngineeringMethodology.pdf
http://sla-at-soi.eu/wp-content/uploads/2009/07/D.A6a-M26-PredictableServiceEngineeringMethodology.pdf
http://www.assessgrid.eu/fileadmin/AssessGrid/usermounts/publications/deliverables/AssessGrid_D.1.2_Risk_Management_Evaluation.pdf
http://www.assessgrid.eu/fileadmin/AssessGrid/usermounts/publications/deliverables/AssessGrid_D.1.2_Risk_Management_Evaluation.pdf
http://www.iso.org/iso/catalogue_detail?csnumber=42107
http://www.assessgrid.eu/fileadmin/AssessGrid/usermounts/publications/deliverables/ASSESSGRID_D3.1_DYNAMIC_RISK.pdf
http://www.assessgrid.eu/fileadmin/AssessGrid/usermounts/publications/deliverables/ASSESSGRID_D3.1_DYNAMIC_RISK.pdf
http://www.assessgrid.eu/fileadmin/AssessGrid/usermounts/publications/deliverables/ASSESSGRID_D4.1_Advanced_Risk_Assessment.pdf
http://www.assessgrid.eu/fileadmin/AssessGrid/usermounts/publications/deliverables/ASSESSGRID_D4.1_Advanced_Risk_Assessment.pdf

179

172. Taliver, H., P.M. Richard, and D.N. Thu, Improving cluster availability using

workstation validation. SIGMETRICS Perform. Eval. Rev., 2002. 30(1): p.

217-227.

173. Jun, X., Z. Kalbarczyk, and R.K. Iyer. Networked Windows NT system field

failure data analysis. in Proceedings. 1999 Pacific Rim International

Symposium on Dependable Computing, 1999. 1999.

174. Nurmi, D., J. Brevik, and R. Wolski, Modeling Machine Availability in

Enterprise and Wide-Area Distributed Computing Environments in Euro-Par

2005 Parallel Processing. 2005, Springer Berlin / Heidelberg.

175. Nadeem, F., R. Prodan, and T. Fahringer. Characterizing, Modeling and

Predicting Dynamic Resource Availability in a Large Scale Multi-purpose

Grid. in 8th IEEE International Symposium on Cluster Computing and the

Grid, CCGRID '08. 2008. Lyon, France.

176. Iosup, A., et al. On the dynamic resource availability in grids. in Grid

Computing, 2007 8th IEEE/ACM International Conference on. 2007.

177. Siewiorek, D.P. and R.S. Swarz, Reliable Computer Systems: Design and

Evaluation. 3rd ed. 1998, Natick, Mass.: A K Peters.

178. Hacker, T.J., F. Romero, and C.D. Carothers, An Analysis of Clustered

Failures on Large Supercomputing Systems. Journal of Parallel and

Distributed Computing, 2009. 69(7): p. 652-665.

179. Platis, A., et al., A Two-Phase Cyclic Nonhomogeneous Markov Chain

Performability Evaluation by Explicit Approximate Inverses Applied to a

Replicated Database System. Journal of Mathematical Modelling and

Algorithms, 2003. 2(3): p. 235-249.

180. Koutras, V.P., A.N. Platis, and G.A. Gravvanis, Software Rejuvenation for

Resource Optimization Based on Explicit Approximate Inverse

Preconditioning. Applied Mathematics and Computation, 2007. 189(1): p.

163-177.

181. Koutras, V.P., A.N. Platis, and G.A. Gravvanis, On the Optimization of Free

Resources Using Non-Homogeneous Markov Chain Software Rejuvenation

Model. Reliability Engineering & System Safety, 2007. 92(12): p. 1724-

1732.

182. Software Engineering for Service-Oriented Overlay Computers (SENSORIA).

Available from: http://www.sensoria-ist.eu.

183. Young, J.W., A First Order Approximation to the Optimum Checkpoint

Interval. Communications of the ACM, 1974. 17(9): p. 530-531.

184. Zhang, Y., et al., Performance Implications of Failures in Large-Scale Cluster

Scheduling, in Job Scheduling Strategies for Parallel Processing, D.

Feitelson, L. Rudolph, and U. Schwiegelshohn, Editors. 2005, Springer

Berlin / Heidelberg. p. 233-252.

185. Grinstead, C.M. and J.L. Snell, Introduction to Probability. Second Revised

ed. 1997, Providence, Rhode Island: American Mathematical Society.

186. Resnick, P., et al., Reputation Systems. Communications of the ACM 2000.

43(12): p. 45-48.

http://www.sensoria-ist.eu/

180

187. Grid Operations Centre DataBase. [cited 2008 01/09]; Available from:

https://goc.gridops.org/.

188. Worldwide LHC Computing Grid Available from:

http://lcg.web.cern.ch/LCG/.

189. GOCDB/Input System User Documentation. Available from:

https://wiki.egi.eu/wiki/GOCDB/Input_System_User_Documentation.

190. European Organization for Nuclear Research (CERN). Available from:

http://public.web.cern.ch/public/.

191. Grille de Recherche d'Ile de France (GRIF). Available from:

http://www.grif.fr/.

192. GOCDB User Documentation. Available from:

http://goc.grid.sinica.edu.tw/gocwiki/GOCDB_User_Documentation.

193. Operations:NewNGIs creation. 26/10/2010 Available from:

https://wiki.egi.eu/wiki/Operations:NewNGIs_creation.

194. EGEE production infrastructure: intervention procedures. 15/05/2007

Available from: https://edms.cern.ch/document/829986.

195. EGEE Intervention Procedures. 08/10/2009 Available from:

https://edms.cern.ch/document/1032984.

196. Rausand, M. and A. Høyland, System Reliability Theory: Models, Statistical

Methods, and Applications. 2nd ed. 2004, Hoboken, NJ ; [Chichester]:

Wiley-Interscience.

197. Bedford, T. and R. Cooke, Probabilistic risk analysis. 2001, Cambridge:

Cambridge University Press,

198. Abernethy, R.B., The new Weibull handbook: reliability & statistical analysis

for predicting life, safety, risk, support costs, failures, and forecasting

warranty claims, substantiation and accelerated testing, using Weibull, Log

normal, Crow-AMSAA, Probit, and Kaplan-Meier models. 5th ed. 2006,

North Palm Beach, Fla.: R.B. Abernethy.

199. Murthy, D.N.P., M. Xie, and R. Jiang, Weibull models. Wiley series in

probability and statistics. 2004, Hoboken, N.J. ; [Great Britain]: Wiley

Interscience.

200. Lawless, J.F., Statistical models and methods for lifetime data. 2nd ed. ed.

Wiley series in probability and statistics. 2003, Hoboken, N.J. ; [Great

Britain]: Wiley-Interscience.

201. Rigdon, S.E. and A.P. Basu, Statistical Methods for the Reliability of

Repairable Systems. 2000, New York ; Chichester: Wiley.

202. Duane, J.T., Learning Curve Approach to Reliability Monitoring. IEEE

Transactions on Aerospace, 1964. 2(2): p. 563-566.

203. Pukite, J. and P. Pukite, Modeling for Reliability Analysis: Markov Modeling

for Reliability, Maintainability, Safety, and Supportability Analyses of

Complex Systems. 1998: Wiley-IEEE Press

204. Howard, R.A., Dynamic probabilistic systems. Vol. 1. 1971, New York ;

London: Wiley.

http://lcg.web.cern.ch/LCG/
http://public.web.cern.ch/public/
http://www.grif.fr/
http://goc.grid.sinica.edu.tw/gocwiki/GOCDB_User_Documentation

181

205. Siewiorek, D.P. and R.S. Swarz, Reliable computer systems : design and

evaluation. 3rd ed. 1998, Natick, Mass.: A K Peters.

206. Jackson, S.L., Research Methods And Statistics: A Critical Thinking

Approach. 3rd ed. 2008, Australia: Heinle Cengage Learning.

207. Silva, F.A.B.d. and H. Senger, Improving Scalability of Bag-of-Tasks

Applications Running on Master-Slave Platforms. Parallel Comput., 2009.

35(2): p. 57-71.

208. Neogy, S.K., et al., Mathematical Programming and Game Theory for

Decision Making. Statistical Science and Interdisciplinary Research, ed. S.K.

Pal. 2008, Singapore; Hackensack, NJ: World Scientific.

209. Onwubolu, G.C. and B.V. Babu, New Optimization Techniques in

Engineering. Studies in fuzziness and soft computing. 2004, Berlin; New

York: Springer.

210. Chen, D.-S., R.G. Batson, and Y. Dang, Applied Integer Programming:

Modeling and Solution. 2010, Hoboken, N. J.: John Wiley & Sons.

211. Buyya, R., M. Murshed, and D. Abramson. A Deadline and Budget

Constrained Cost-Time Optimization Algorithm for Scheduling Task

Farming Applications on Global Grids. in Proceedings of the 2002

International Conference on Parallel and Distributed Processing Techniques

and Applications (PDPTA'02). 2002. Las Vegas, USA.

212. Allenotor, D. and R.K. Thulasiram. Evaluation of a Financial Option Based

Pricing Model for Grid Resources Management: Simulation vs. Real Data.

in 12th IEEE International Conference on High Performance Computing

and Communications (HPCC). 2010. Melbourne, VIC.

213. Stuer, G., K. Vanmechelen, and J. Broeckhove, A Commodity Market

Algorithm for Pricing Substitutable Grid Resources. Future Generation

Computer Systems, 2007. 23(5): p. 688-701.

214. Cheliotis, G., C. Kenyon, and R. Buyya, 10 Lessons from Finance for

Commercial Sharing of IT Resources, in Peer-to-peer computing : the

evolution of a disruptive technology, R. Subramanian and B.D. Goodman,

Editors. 2005, Idea Group Publishiing: Hershey, PA.

215. Beasley, J.E., Advances in Linear and Integer Programming. Oxford lecture

series in mathematics and its applications. 1996, New York; Oxford:

Clarendon Press; Oxford University Press.

216. Schrijver, A., Theory of Linear and Integer Programming. 1998, Chichester:

John Wiley.

217. IBM ILOG CPLEX Optimizer. Available from:

http://www.ibm.com/software/integration/optimization/cplex-optimizer/.

218. Gurobi Optimization. Available from: http://www.gurobi.com/.

219. GNU Linear Programming Kit. Available from:

http://www.gnu.org/software/glpk/.

220. Fourer, R., D.M. Gay, and B.W. Kernighan, AMPL: A Modeling Language for

Mathematical Programming. 2nd ed. 2003, Pacific Grove, CA:

Thomson/Brooks/Cole.

http://www.ibm.com/software/integration/optimization/cplex-optimizer/
http://www.gurobi.com/
http://www.gnu.org/software/glpk/

182

221. Banks, J., et al., Discrete-Event System Simulation. 5th ed, Upper Saddle

River: Prentice Hall.

222. Casanova, H. Simgrid: a Toolkit for the Simulation of Application Scheduling.

in The First IEEE/ACM International Symposium on Cluster Computing and

the Grid. 2001. Brisbane, Australia.

223. Bell, W.H., et al., Optorsim: A Grid Simulator for Studying Dynamic Data

Replication Strategies. International Journal of High Performance

Computing Applications, 2003. 17(4): p. 403-416.

224. Iosup, A., et al., The Performance of Bags-of-Tasks in Large-Scale Distributed

Systems, in Proceedings of the 17th international symposium on High

performance distributed computing. 2008, ACM: Boston, MA, USA.

225. Moore, G.E., Cramming More Components onto Integrated Circuits.

Electronics, 1965. 38(8): p. 114-117.

226. Lublin, U. and D.G. Feitelson, The Workload on Parallel Supercomputers:

Modeling the Characteristics of Rigid Jobs. Journal of Parallel and

Distributed Computing, 2003. 63(11): p. 1105-1122.

227. The Grid Workloads Archive. Available from: http://gwa.ewi.tudelft.nl.

228. MathWorks. Available from: http://www.mathworks.co.uk/.

http://gwa.ewi.tudelft.nl/
http://www.mathworks.co.uk/

