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Abstract

Synthetic turbulence refers to stochastic fields having characteristics of real hydro-
dynamic turbulent flows, which has been useful in the modelling and simulation of
turbulence, and for further understanding fundamental properties of turbulent mo-
tion. Synthetic turbulence aims to construct the field variables (such as velocity
distributions) by simpler processes to reproduce characteristic features of turbulent
fluctuations with a reduced computational cost in comparison with a formal numeri-
cal solution of the Navier-Stokes equations. A new approach of synthetic turbulence
has been recently proposed, which showed that realistic synthetic isotropic turbulent
fields could be generated using the Multi-scale turnover Lagrangian map (MTLM).

The initial focus of this thesis is on studying the MTLM synthetic fields using the
filtering approach. This approach, which has not been pursued so far, sheds new
light on the potential applications of the synthetic fields in large eddy simulations
and subgrid-scale (SGS) modelling. Our investigation includes SGS stresses, and
SGS dissipations and related statistics, SGS scalar variance, and its relations with
other quantities (such as the filtered molecular scalar dissipation). It is well-known
that, even if a synthetic field had reproduced faithfully the multi-fractal statistics, it
may not be able to produce the energy flux across the energy spectrum. Therefore,
from the LES and/or SGS modelling perspective, many questions remain unclear,
such as the PDF of the SGS dissipation, the amount of back-scattering, among
others. They are addressed in this work. It demonstrates that using the MTLM is
able to build a synthetic SGS model with a number of good features which many
current SGS models (including those for the scalar flux) do not have. We also show
that it has advantages in representing the filtered molecular scalar dissipation. In
addition, we generalize the formulation of MTLM to include the effects of a mean
scalar gradient on the scalar field. Our numerical tests provide the necessary proof
that the effects of the mean gradient can be captured by MTLM. Furthermore, we
investigate the effects of the input spectra on the statistics of the MTLM fields.
We study the effects of the shape of the spectra by using truncated spectra and a
model spectra (the Kovasznay spectra) as the input. The additional case, and the
additional quantities we examine, have shedded light on how to apply the MTLM
technique in simulations, as well as the robustness of the technique.

The Constrained MTLM is a new technique generalizing the MTLM procedure to
generate anisotropic synthetic turbulence in order to model inhomogeneous turbu-
lence by using the adjoint formulation. Li and Rosales [107] derived the optimality
system corresponding to the MTLM map and applied this method to synthesize
two Kolmogorov flows. In this thesis, we derive a new optimality system to gen-
erate anisotropic synthetic turbulence according to the CMTLM approach in order
to include the effects of solid wall boundaries, which were not taken into account in
the last study. We consider the difference introduced by the solid wall, under the
impermeable boundary conditions, where the normal components velocity field are
zero, while the tangent components may be non-zero. To accomplish this task, we
have modified the CMTLM procedure to generate a reflectionally symmetric syn-
thetic field which serves as a model of the velocity field in a fully developed channel
flow. That the MTLM procedure preserves the reflectional symmetries is proved, the
adjoint optimality system with reflectional symmetry are derived.



We aim to obtain accurate turbulent statistics, and compare our results with com-
puted and experimental results.

CMTLM procedure formulates MTLM procedure as an optimization problem with
the initial Gaussian random field as the control and some known velocity field as the
target. Thus, with the purpose to quantify the contributions of the adjoint operator
in the modelling process, the effects of the control variable on the cost function
gradient and the corresponding adjoint field is examined. Contours of the mean of
the gradients of the cost functions and adjoint fields for three cases with data taken
from synthetics CMTLM Kolmogorov flows and from CMTLM synthetics velocity
field generated with DNS data as the target are computed.

Finally, in order to define a new SGS model to simulate interactions between different
length scales in turbulence, we will combine DNS data with Constrained MTLM
method. Three data sets are truncated from DNS data with different degrees of
resolution, filtered with the cutoff filter with large filter scale, which are then used
as target fields to synthesize three CMTLM fields. The CMTLM fields are merged
with these target fields. Data from the merged fields are used to predict the SGS
quantities, and are compared with exact SGS quantities which have been computed
from DNS field. In addition, the statistical geometry between the SGS and filtered
quantities for real and predicted data are also investigated.
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Chapter 1

Introduction

1.1 Turbulence

Fluid turbulence is a typical phenomenon in nonlinear classical physics. Beginning perhaps with
Reynolds’ work, statistical approach has been used to capture the complex and multiscale nature
of turbulent velocity fluctuations. Unsteady chaotic motion of each eddy is unpredictable, which
is an important aspect of turbulence. This property is in contrast to the smooth, laminar state,
which is observable when the length scale of the flow is sufficiently small. The fluid turbulent
velocity field varies essentially and irregularly in space and time simultaneously; it is a time-
dependent random vector field which may be denoted by u(x, t) where x refers to the position
and t refers to the time [145]. Reynolds [151] first established a non-dimensional number, to
characterise the transition between two flow regimes, which is given by

Re =
UL

ν
, (1.1)

where U indicates the characteristic velocity and L refers to the length scale of the flow field,
respectively, and ν refers to the kinematic viscosity of the fluid. A turbulent regime exists
when the Reynolds number is above a critical value so that small perturbations that happen
in the flow are amplified and developed to multiscale coherent structures. Below this value,
small perturbations are damped by the viscous stress and the flow remains laminar [104]. These
coherent structures in turbulence are generally correlated with rotating motions of the fluid flow,
which are referred to as eddies or vortices.

A more complete picture could be given by considering Richardson’s concept of energy cascade,
which suggests that turbulence might be represented by a formation of eddies of various sizes.
The existence of these eddies is usually connected with regions of shear. The width of the shear
layer determines their characteristic size. The large scale eddies ultimately turn unstable and
split into smaller eddies. In other words, the large scale coherent eddies are unsteadily split-up,
conceding their energy to a slightly smaller coherent eddies. These smaller eddies are subject to
a similar split-up operation transporting their energy to yet smaller eddies. This process carries
on until the local Reynolds number is small enough at which the molecular viscosity dissipates
the kinetic energy effectively [154]. This picture is important because it locates the dissipation
at the end of the sequence of processes. Consequently, at high Reynolds numbers the rate of
dissipation ε is controlled by large scales, and is given by
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ε ∼ u3
0

`0
, (1.2)

regardless of molecular viscosity ν, in which the `0 refers to the characteristic velocity and
lengthscale, respectively, of the largest eddies. `0 is comparable with the flow scale L.

1.2 Modelling and Simulation of Turbulence

In this section, we provide a summary of the leading modelling methods utilized in the numerical
simulation of turbulence. Direct Numerical Simulation (DNS), Reynolds-averaged Navier-Stokes
(RANS), Large-Eddy Simulation (LES), and hybrid RANS-LES techniques are compared in
terms of their governing equations, computational mechanisms used, modelling assumptions,
computational cost and current applications. In order to illustrate how simulation and modelling
can complement each other in supplying a good description of the physical systems that have
been simulated.

1.2.1 Governing Equations

The Navier-Stokes equations (NSEs) describe the movement of fluids, which govern an incom-
pressible flows, with density and dynamic viscosity being constant; in other words, the flow of
constant-property Newtonion fluids. For comprehensive review, one can refer to the texts of
Batchelor [11], Panton [135], and Tritton [190]. The mass-conservation equation is defined as

dρ

dt
+ ρ

∂ui
∂xi

= 0. (1.3)

where ρ refers to the density of the fluid, and ui represents the velocity components. The
operator d

dt in the first term represents the material time derivative which has the form:

d

dt
=

∂

∂t
+ u · ∇. (1.4)

The flow is presume to be incompressible (i.e., ρ in the flow is regardless of x and of t), thus the
velocity field becomes solenoidal or divergence-free

∂ui
∂xi

= 0. (1.5)

The momentum equation, depending on Newton’s second law, reads

dui
dt

= −ρ−1 ∂p

∂xi
+ ν

∂2ui
∂xj∂xj

. (1.6)

where ν ≡ µ
ρ and p is the pressure. Precisely, the Navier-Stokes equations Eq. 1.6 and the

solenoidal condition Eq. 1.5 govern the flow of constant-property Newtonion fluids.
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The passive scalar equation for incompressible flow is

∂θ

∂t
+

∂

∂xi
(uiθ) = κ

∂2θ

∂xi∂xi
. (1.7)

where θ indicates the passive scalar and κ refers to diffusion coefficient.

The mathematical description of the fluids motion like air or water is of central interest both
in academics and in industry. However, the Navier-Stokes equations are analytically unsolvable
in most situations. For this reason, the flow is subject to numerical simulation methods aiming
to understand the conduct of the flow in a particular situation. However, the direct numerical
simulation (DNS) of the above Navier-Stokes equations, Eqs. 1.5 and 1.6, was computationally
quite costly due to the turbulent behaviours of the flow, since eddies a wide spectrum of length
scales and time scales need to be captured. Solving all these scales needs a very fine mesh
resolution and that needs too demanding computations for most cases. Consequently, modelling
the NSEs has been used as an alternative, which attempts to minimize the complication of the
system to be simulated. In such ways, in a sensible amount of time computers are capable to
solve the equations.

The Reynolds Averaged Navier-Stokes (RANS), Large-Eddy Simulation (LES), and Hybrid
RANS-LES are the prime modelling techniques utilized in the numerical simulation of tur-
bulence. In RANS, only the mean motion is considered in the governing equations and models
are implemented in order to describe turbulence. In the large eddy simulation (LES), a filtering
procedure is used to decompose the velocity and scalar turbulent fields into the large scales,
and the subgrid-scale (SGS). The large scales are resolved directly, whereas the effects of the
subgrid-scales (SGS) are modelled (see Refs. [103], [125], [142] and [116] for reviews)

RANS models tend to do well for a thin boundary layer. However, its empirical modelling
assumptions limit its reliability in new complex cases. Finely resolved LES supplies quite precise
predictions in comparison with RANS models for complex three-dimensional non-equilibrium
flows away from walls. In fact, RANS has been used a log-law approximation in order to mimic
wall flows, this log-law approximation is invalid for non-equilibrium flows with acceleration,
separation or rotation [201]. In addition, a potential restriction of RANS is that it just produces
an averaged sight of the flow. Furthermore, in the industry RANS models has inexpensive
computational cost due to homogeneity in the mean flow which reduces resolution requirements.
On the other hand, LES simulation of wall-bounded flows at high Reynolds numbers would be
prohibitively costly.

For sake of LES with minimum computational requirements and to modify the achievement
and the application range of RANS models simultaneously. Hybrid RANS-LES methods are
proposed with the target to address the gap between them via the combination of RANS and
LES strategies in one approach. For more details about the reconciliation between the RANS and
LES representations of turbulence, where these two representations overlap at the interface, see
the Semi-Deterministic Model (SDM) of Kourta and Minh [122], the Two-Layer wall function
approach of Balaras et al. [8], the Detached Eddy Simulation (DES) of Spalart et al. [172],
Very-Large Eddy Simulation (VLES) of Speziale [176], the Limited-Numerical Scales (LNS) of
Batten et al. [12], the Partially Integrated Transport Model (PITM) of Chaouat and Schiestel
[20], the Two-Velocities hybrid method of Uribe et al. [192] among others.
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1.2.2 Direct Numerical Simulation (DNS)

The NSEs result in a complex behaviour of turbulence. Nonetheless, analytical solutions for
these equations do not exist. But, numerical solutions of NSEs can provide a full characterization
of turbulent motion. Those solutions are named as direct numerical simulations (DNS). DNS
represents a research tool that simulates the NSEs, such that it precisely and entirely resolves
all ranges of length and time scales for turbulence, with suitable initial and boundary conditions
to an examined flow via a numerical grid which is applied in the absence of any modelling
assumption.

A precise reproduction of turbulence evolution over a wide range of length and time scales
demands numerical solutions in the direct simulation of turbulence. The scope of these scales
that should be precisely simulated in the calculation is determined by physics. For example,
the smallest length in homogeneous turbulence is the Kolmogorov length scale η ≡ (ν3/ε)1/4.
It was shown by Yeung and Pope [208] that the valid resolution of the smallest scales requires
κmaxη ≥ 1.5, and the comparable grid spacing in physical space is ∆x

η ≈ 2.1. The solution
domain should have the size of the same order of the largest eddies. Since turbulence is three-
dimensional, the required number of grid points to resolve this cube corresponds to Re9/4 for
homogeneous turbulence. The requisited number of grid points to discretize wall turbulence
is in proportion to Re3

τ , since smallest structures are characterized by the viscous length scale
δν = ν

uτ
within a near wall layer, in which uτ refers to friction velocity , whereas the geometrical

length scale δ determines the size of large eddies of the flow. δ represents the channel half-height
or boundary layer thickness and Reτ ≡ uτ δ

ν = δ
δν

is the friction Reynolds number .

The error in Direct Numerical Simulation (DNS) results from the utilized numerical method. In
fact, aliasing is the more critical source of error. Kim et al. [87] demonstrated how aliasing error
can cause turbulence decay in the computation of turbulent flows. Further, numerical instability
can ensue from aliasing error as found by Zang [210], Kravchenko and Moin [2], and Blaisdell et
al [15]. In DNS, a wide range of time scales are handled by using time advancement algorithms
with a small time step. Time accuracy in DNS requires small time step ∆t. The courant number
condition restricts the time step ∆t; the solution should advanced over just a portion of the grid
spacing ∆x within ∆t. The Fourier representation of functions means the representation of such
functions in terms of Fourier modes (e.g. finite number of basis functions), which implies that
the artificial periodic boundary conditions must be imposed on the solution over statistically
homogeneous directions. This approach works very well for incompressible flow [87].

In spite of DNS contributions in supplying dependable databases to confirm the hypothesises
which are applied in turbulent models [100], providing knowledge which is intractable via experi-
ments [3], and in examining suggested control strategies [34], from a computer power requirement
point of view, the actual complex engineering applications are unavailable by DNS in the remote
future.
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1.2.3 Large-Eddy Simulation (LES)

In LES approach, at large energy-containing scales the detailed space and time reliance of the
flow are simulated, while the impacts of transferring the momentum and energy to the small
scales must be modelled. For review see Lesieur and Metais [103] and Moin [125]. It is obvious
that the LES approach is introduced based on two related justifications. First, in terms of
computational cost, just the large-scale of motions are resolved. A large majority of modes
are in the dissipative range in a fully resolved DNS for instance. Consequently, the resolution
requirements in the dissipation range are reduced in LES. From a modelling point of view,
second justification stems from the Kolmogorov hypothesis which proposes that the large scales
are anisotropic and influenced by the boundary conditions generating the turbulence, while, in
the inertial and dissipative range the small scales display a quasi-universal behaviour with weak
control by the large scales. Hence, it can be parametrized by the rate of energy transfer inside
the cascade [145].

The contributions of LES to turbulence research over the past 40 years have been spectacular,
for instance, in modelling the unresolved processes, precise numerical techniques on structured
and unstructured grids, detailed comparison of LES calculations with DNS and empirical data
in canonical flows [146]. Numerous developments have been made starting with early works of
Smagorinsky [169], Lilly [109], Deardorff [39], Schumann [163], among others. Precise results
have been gained about mass, momentum and energy transport issues in shear-free boundary
layers at high Reynolds numbers since these quantities and the rate-controlling procedures are
decided by the resolved large scales [146]. On the other hand, in wall-bounded turbulent flows
the LES predictions can be expected to have a first-order reliance on those rate-controlling
models [21].

In LES, the turbulent field decomposes to large (resolved) and small (unresolved) scales fields of
turbulence, which are explicitly calculated and modelled, respectively, by filtering the equations
of motion. The small scales are coarse grained via a filtering process, so that degrees of freedom
in the system are minimized. In fact, the numerical modelling of turbulence needs a large number
of degrees of freedom to resolve up to the subgrid scales which holds the molecular dissipation
for the turbulent energy. Modelling the small scales/ subgrid scales (SGS), in the case of very
large Reynolds numbers, commonly depend on the proposition that an inertial subrange of scales
exists in which the energy is transported locally from scale to scale in wavenumber space, and
regardless of the viscous dissipation. Consequently, LES simulates the large energy containing
motions. Meanwhile the dissipative motions are modelled.

The spatial low-pass filtering operation with ∆ as a characteristic width is given as

f̃(x) =

∫
G∆(x− y)f(y)dy, (1.8)

where G∆ is a filter kernel at a length scale ∆. Then in LES u, θ and p are decomposed to the
large and small scale variables

u = ũ + u′, θ = θ̃ + θ′, (1.9)

and

p = p+ p′. (1.10)
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where the tilde indicates the filtered (or large-scale/ resolved ) part and the prime indicates
the residual (or subgrid-scale/ unresolved, SGS) part of the flow field variables. Applying this
filter to Eqs. 1.5, 1.6 and 1.7 results in new sets of equations named as filtered NSEs or
momentum equations, and scalar transport equations which describe the evolution of the large
scales motions:

∂tũi + ũj∂j ũi = −∂ip̃+ ν∂2
jj ũi − ∂jτij , (1.11)

∂tθ̃ + ũi∂iθ̃ = κ∂2
iiθ̃ − ∂iτ θi , (1.12)

∂iũi = 0. (1.13)

Filtering results in unclosed terms which are unable to get from filtered NSEs, and thus mod-
elling as a function of resolved quantities is needed. These unclosed terms are the unresolved
momentum and scalar fluxes terms, named subgrid-scale (SGS) stress, or residual stress τij and
the subgrid-scale scalar flux τ θi . These quantities are defined by

τij = ũiuj − ũiũj , (1.14)

τ θi = ũiθ − ũiθ̃. (1.15)

See, e.g. Piomelli et al. [140] and Meneveau & Katz [116] for recent reviews of LES.

These terms reflect the influence of the SGS scales on the dynamic of the resolved ones, which
indicates the correlations of SGS motions. The effects of SGS stress model on the resolved scales
could be studied by looking into the transport equation for the resolved energy ϑ̃2 = ũiũi,

∂tϑ̃
2 + ∂jϑ̃

2ũj = ∂j

(
−2p̃ũj − 2ũiτij + ν∂jϑ̃

2
)
− 2ν∂j ũj∂j ũj + 2τijS̃ij , (1.16)

in which S̃ij is the resolved strain-rate tensor

S̃ij = 1/2(∂j ũi + ∂iũj). (1.17)

The τijS̃ij term in Eq. 1.16 represents the cascade (flux) of kinetic energy from resolved towards
unresolved motions. When it is negative, forward cascade is implied, whereas if it is positive,
energy releases to the resolved ones (backscattering). The term is known as the SGS dissipation
rate. Meneveau and Katz [116] showed that the most significant statistical feature of τij and
τ θi is their influence on the mean kinetic energy and scalar-variance budgets of the large scale
motions, in which their main impact is via the kinetic energy and scalar-variance dissipations
that grows from interactions between large and small motions. The SGS dissipation is of major
importance for it can be employed to investigate the hypothesis of specific LES models. The
predicted subgrid scale dissipation and the empirically measured value are used to evaluate
the existing model coefficients (see O’Neil and Meneveau [132], Kang and Meneveau [79] for
reviews).
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In LES of turbulence, the subgrid-scale models that are generally applied are classified into three
sets: first, the eddy viscosity models or eddy diffusivity models, second, the similarity models,
and, third, the eddy viscosity/ diffusivity model combined with similarity model expressions
which are referred to as mixed models. In LES for turbulence, the parametrization in subgrid-
scale models must be in terms of the resolved variables, for instance, in terms of large-scale
velocity gradient tensor, the filtered vorticity vector ω̃i (ω̃i = εijk∂ũk/∂xj), and the filtered

strain-rate tensor S̃ij . Eq. 1.14 shows that, we may define

kr =
1

2
τii, (1.18)

where kr is the SGS kinetic energy , and define

τ rij = τij −
2

3
krδij , (1.19)

as the anisotropic SGS-stress tensor . Smagorinsky [169] achieved closure by modelling τ rij , in
which the eddy viscosity coefficient model is utilized. According to eddy-viscosity model the
deviatoric part of the SGS stress tensor is proportional to the rate of strain tensor S̃ij by
establishing a turbulent viscosity of the SGS motions, νr, which works as a proportionality
coefficient,

τij −
1

3
τkkδij = −2νrS̃ij . (1.20)

Turbulent viscosity νr is modelled as

νr = (CS∆)2|S̃|. (1.21)

where CS is the Smagorinsky constant, and |S̃| is the characteristic filtered rate of strain, which
could be written as

|S̃| = (2S̃ijS̃ij)
1/2. (1.22)

Here, ∆ is the characteristic SGS length scale (LES mesh size). The SGS stress and filtered rate
of strain are related through the linear eddy-viscosity model based on the assumption that they
are completely aligned. However, Tao, Katz and Meneveau [185] showed that the eigenvectors
for SGS stress tensors and the strain-rate cannot be parallel to each other, where an assessment
of the alignment was done via holographic particle image velocimetry used to quantify the three-
dimensional velocity distributions. In addition, Clark, Ferziger and Reynolds [30] have shown
that the correlation coefficient between the exact and the modelled SGS stress tensor τij using
the Smagorinsky model in general is low, being approximately 0.2. CS values that have been
used are in the range 0.1 − 0.2. For instance CS ≈ 0.18 has been derived in Lilly [109] as a
hypothetical value of the Smagorinsky constant for the case of freely decaying isotropic turbulent
flow. Because νr > 0, all eddy-viscosity models including Smagorinsky model [169] have yielded
unconditionally dissipative models. Consequently, they fail to account for backscattering of
energy from SGS scales to resolved scales which is locally seen in the Kolmogorov cascade. That
results in imprecise prediction of the turbulent evolution (see Piomelli [140] for review).
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A more intricate issue with assuming CS to be constant in laminar and wall-bounded flows is
that the SGS viscosity predominates the molecular viscosity, i.e., the eddy viscosity does not
disappear, so the model always dissipates small fluctuations. The necessary asymptotic near-wall
decay of νr ∝ y+3

is not reproduced with a constant value of CS in the case of wall-bounded flows,
where y+ = uτy

ν refers to the distance to the wall in wall units. This problem was circumvented
by using the damping function to reduce Smagorinsky constant value as it is closer to the wall
[193]. For the purpose of employing an established constant in the Smagorinsky model, in the
dynamic model introduced by Germano et al. [58], the SGS stresses are assessed at two filter
scales. The filter width and the grid size in the LES filter are equivalent, while the width of test
filter is twice of the first filter width. Both SGS stresses tensors at the two scales are represented
using same model. As such, the Smagorinsky constant is adaptively computed as the simulation
advances in time. Dynamic models reproduce the behaviour in which CS tends towards zero
as it is close to the wall. Also it addressed the backscattering in the Kolmogorov cascade by
allowing negative values of CS , although it causes more unstable simulations. Averaging and
limiters have been proposed so the Smagorinsky constant do not vary too unpredictably (see
e.g. Piomelli and Liu [141] and Meneveau et al. [115] for reviews).

On employing the large-scale velocities, ũi, the SGS primitive velocities are directly modelled in
the scale-similarity model of Bardina [10], such that modelled SGS stress tensor reads

τij ' ˜̃uiũj − ˜̃ui ˜̃uj . (1.23)

This model showed a very large correlation with the real SGS stress τij compared with the SGS
eddy viscosity model (see e.g. Clark et al. [30] and Piomelli [142]). The Smagorinsky model has
a low correlation coefficient (with a value being approximately 0.2) when DNS data were used
in order to assess its accuracy [30]. However, the SGS eddy viscosity model has a much better
agreement when the correlation of the SGS production term P = −τijS̃ij was calculated with
correlation coefficient being 0.6, as it was confirmed by Clark et al. [30]; Liu, Meneveau and
Katz [111]; Piomelli [142] and others.

In the nonlinear model the Taylor’s expansion was used such that the scale-similarity SGS stress
tensor in Eq. 1.23 becomes

τij '
∆2

12
∂kũi∂kũj . (1.24)

This model gives an excellent prediction of the SGS stresses compared with the Smagorinsky
model (see Clark et al. [30] and Liu et al. [111] for reviews). Preferential alignment between the
stress eigenvectors of the nonlinear model in the same orientation as those for measured ones
has been reported by Tao et al. [186].

The subgrid-scale flux τ θi is modelled by investing an the eddy diffusivity approach (see Moin
et al. [124] and Pierce et al. [139]) as follows:

τ θi = −∆2C2
SSc

−1
sgs|S̃|∂iθ̃. (1.25)

Here, CS is the Smagorinsky constant which can be specified a priori or obtained dynamically by
Germano identity, and C2

SSc
−1
sgs refers to the lumped coefficient that involves CS with the SGS

Schmidt number Scsgs (see Germano [58], Lilly [110] and [179] for reviews). Improved results
were obtained with dynamic determination of CS in comparison with using constant values of
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CS . Chumakov [27] displayed that the main fault in this model is supposing that the SGS
scalar flux aligns well with the gradient of the resolved scalar based on the molecular analogy.
However, dynamic determination of CS does not remove such fault. Corrsin et al. [31] criticized
this assumption, among others.

The scale-similarity model for Bardina et al. [9] reads

τ θi ≈ −CSSLθi , Lθi =
̂̃
uiθ̃ − ˆ̃ui

ˆ̃
θ, (1.26)

which shows a much better prediction, where Lθi is the Leonard term and it is acquired via a
test filter, in which the LES base-filtered flow subject to such filter with a characteristic length
∆̂ > ∆. CSS is the scaling constant provided by the user. The Clark model has been carried
out as the first term in the Taylor series expansion for τ θi as follows:

τ θi ≈ CC∆2∂j ũi∂j θ̃. (1.27)

In a priori tests it has a perfect prediction [30]. Leonard [102] proved that it blows up in
computations. This could be attributed to the fact that it produces efficient negative diffusion.
The blow-up issue is addressed by adding eddy viscosity term Eq. 1.25 to the model which
results in a mixed model [68]

τ θi ≈ CC∆2∂j ũi∂j θ̃ − (CS∆)2|S̃|∂iθ̃. (1.28)

where the value of CC is assumed to be 1/12, and CS is determined via Germano identity. The
dynamic structure (DS) model has been derived by Chumakov [22] and Rutland [26] as follows:

τ θi ≈
φ

Φ
Lθi , (1.29)

where φ = θ̃θ − θ̃θ̃ represents the SGS scalar variance, Φ =
̂̃
θθ̃ − ˆ̃

θ
ˆ̃
θ, and Lθi is the Leonard

term. The model might be considered as a scale-similarity model accompanied by special scaling
coefficient or it be could derived from dynamic technique by means of Germano identity.

For further details about additional formulations to the SGS stress model see e.g. the scale
similarity model by Bardina et al. [9], the mixed scale model by Sagaut [159], the approximate
deconvolution model by Stolz and Adams [180], and models including the resolution of a trans-
port equation for the SGS energy by Schumann [163] or Yoshizawa [209] among others. Note
that the dynamic technique of Germano et al. [58] has been connected with some of such models
to calculate the constants engaged in them. Improvement in measuring methods with increasing
in the computational power has encouraged a priori testing to the SGS models. Especially, the
promise of SGS models is often based on the model capability to match the topological aspects
of the modelled quantities, for instance, the eigenvalue configuration [26], alignment trends in
terms of resolved flow structures like vorticity, scalar gradient, and principal strain directions.
For some of the insights into the scale and geometry relationships in the filtered turbulence
see e.g. Tsinober et al. [191], Vincent and Meneguzzi [197], Lund & Rogers, and Tao et al.
[184] & [185] among others. The relevant data to explore and to demonstrate the misalignment

of principal axes to the SGS stresses τij and the strain rate tensor S̃ij have been reviewed by
Horiuti [70] via using DNS, and through experimental data by Tao et al. [186] and by Kang and
Meneveau [81].
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1.2.4 Reynolds Averaged Navier-Stokes (RANS)

Reynolds [152] first derived the govern equation of the mean velocity field ū, in which the
full velocity u was decomposed according to Reynolds decomposition into its fluctuating and
mean components u = u′ + ū, where u′ indicates fluctuating component and ū indicates the
mean/averaged component. Labourasse and Sagaut [97] defined the RANS averaging operator
by

ū =
1

N

∑
j∈Ω

u(j). (1.30)

The operator is a ensemble average on a samples set Ω, which is named as Reynolds averaging,
in which N represents the samples number in the set Ω and u(j) refers to realization j of the
sample [72]. The exact solution u of the NSEs has been subjected to such an averaging operator
in order to simulate only averaged quantities with the aim to minimize the complication of the
system to be simulated. In RANS, the dominant equations on the evolution of the averaged
quantities ū and p̄, are resulted from applying the RANS separation operator to the NSEs 1.5
and 1.6, so the mean momentum equation or Reynolds equations reads

∂tūi + ūj∂j ūi = −∂ip̄+ ν∂2
jj ūi − ∂ju′iu′j = −∂ip̄+ ν∂2

jj ūi + ∂jτij , (1.31)

∂iūi = 0, (1.32)

where τij = −u′iu′j = −(uiuj − ūiūj). It is the Reynolds stresses tensor in the RANS approach,
in which the impact of the fluctuating velocities is represented. Such a set of unclosed equations
are unable to solve except if the Reynolds stresses u′iu

′
j could be modelled. In turbulent-viscosity

models, the anisotropic part of the Reynolds stresses is often assumed to be proportional to the
mean rate of strain tensor S̄ij via a simple eddy/turbulent viscosity νt

u′iu
′
j −

1

3
u′ku

′
kδij = −2νtS̄ij . (1.33)

The specification of turbulent viscosity νt solves the closure problem in Eq. 1.31. This means
the length and time turbulent scales for the turbulent mixing operation must be calculated. The
eddy viscosity models include one equation models, where usually the turbulent kinetic energy is
solved (see Prandtl’s one-equation model [61], Baldwin-Barth model [203], and Spalart-Allmaras
model [33] for reviews), and two equation models, where the turbulent kinetic energy k is the
most often transported variables, whereas the second transported variable could be the turbulent
dissipation, ε, or the specific turbulence dissipation rate, ω based on the type of two-equation
model. The k-ε and the k-ω models have commonly applied in industrial frameworks and in
engineering issues (see Refs. [18], [202], and [44] among other). In general, the supposition
that the Reynolds stresses are locally specified by the mean rate of strain tensor has been
proved invalid [145]. In fact, turbulent structures are generated by the history of straining
they experience, among others. Therefore the Reynolds stress has also been modelled [99] by
solving modelled transport equations. As there is no need to use the eddy viscosity, in Eq. 1.33,
therefore the empiricism that are present in eddy viscosity models is not present (see e.g. Refs.
[204], [47], [120], [119] and [147] for reviews).
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Note that usually, the goal of RANS models is to simulate the flow outside the viscous sublayer
in which the viscous impacts are negligible in comparison with inertial impacts. So it coupled
with the wall function technique to simulate wall-bounded flows, where a log-law approximation
is used to predict the velocity within a near-wall region with the assumption that the flow is
at equilibrium. Practically, for non-equilibrium flows with acceleration, separation or rotation,
the log-law approximation is invalid [201]. Thus, the existing high-Reynolds number models are
modified to consider the near-wall impacts in a better way; low-Reynolds number versions of
such modes have been derived. For instance, the Launder and Sharma model [98], where the
Van Driest damping function [193] has been used in order to solve the equations down to the
wall via an adaptation of the original model of Jones and Launder [75]. In 1991 Durbin obtained
the Elliptic relaxation models [43], in order to take into account the wall impacts via modelling
the non-local influences caused by walls.

RANS and LES models must have a grid spacing comparable to the integral length scale in
order to get isotropic small scales ([5] and [153]), which means they have identical resolution
requirements theoretically. Practically, RANS has a cheapest computation cost. Consequently,
these models have been shown to be very successful in industry. However, the empirical principle
of the RANS models results in inaccurate models to predict a real new complex flows, while a
finely resolved LES could supply very correct predictions for complex three-dimensional non-
equilibrium flows apart from walls. For a review of RANS engineering applications and its future
contribution in CFD techniques see e.g. [136] and [66], respectively.

1.2.5 Hybrid RANS-LES

Hybrid RANS-LES is a more recent alternative strategy incorporated RANS and LES. The
justification for Hybrid RANS-LES arise from the earlier outlined limitations, which were firstly
an excessively high cost of LES for simulated wall-bounded flows at large Reynolds numbers,
while the thin attached boundary layer flows is well simulated by RANS models. Secondly, in
contrast to RANS empirical modelling hypotheses which restraint its precision in complex cases,
the preferable scheme for complex non-equilibrium flows away from walls is LES models. The
main aim of Hybrid RANS-LES is to build a bridge over the gap between them by decreasing
computational cost of LES models and increasing the accuracy and applicability range of RANS
models at the same time.

A big body of Hybrid RANS-LES techniques have been introduced since 1990s. Over the past two
decades, in tracing the Hybrid RANS-LES methods progression, the complication of reconciling
the RANS and the LES representations of turbulence has been confirmed by the continuous
efforts (see e.g. Semi-Deterministic Model (SDM ) of Kourta and Minh [122], the Two-Layer
wall function approach of Balaras et al. [8], the Detached Eddy Simulation (DES) of Spalart
et al. [172], the Partially Integrated Transport Model (PITM) of Chaouat and Schiestel [20] or
the Two-Velocities hybrid method of Uribe et al. [192] for reviews among many others). The
DES of Spalart et al. [172] has proven to be the easiest method to be used and execute. It is
the most common model used among CFD users. This method is centred on the strategies that
RANS and LES have to use a single grid, and that one solves the same group of equations on
the full flow. The model was actually proposed for separated flows where the quick formation
of turbulent eddies is due to intense instabilities. However, the enhancement of the formation
of turbulent eddies needs a robust instability. In the thick boundary layers or comparatively
low Reynolds number flows this factor is unavailable in comparison with the separated flows.
This in turn generates a grey area around the interface between the RANS and the LES modes,
where there is a low assistance from the RANS model to the Reynolds stresses and large eddies
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are not either produced [130]. The conversion of the modelled turbulent kinetic energy of the
RANS area into resolvable fluctuations for the LES area via using synthetic turbulence has been
used to deal with this challenge (see Refs. [143], [36] and [85] for reviews)

In addition, synthetic turbulence could be used to handle the problem that arises from using the
grid refinement to enhance LES mode within boundary layer in order, for example, to predict
separation in the DES and the hybrid techniques [173]. It minimizes the empirical effects in
the RANS area. The reduction of the grey area among the RANS and the LES modes requires
generation of LES content prior reaching the separation, and after, as brief a growth length as
possible. In the forcing technique of Keating et al. (2006) [85] an upstream RANS simulation
and a downstream LES are coupled in order to supply a precise interface conditions for the
hybrid simulation of turbulent boundary layer flows. It was found that the valid flow statistics
are retrieved using synthetic turbulence [85].

1.3 Generation of Inflow Boundary Conditions

The specification of immediate turbulent inlet boundary conditions (BCs) is of great significance
in a spatially developing flows simulation since the flow behaviour inside the domain is affected
by the inflow data. Consistent inflow data at the inlet with the chosen turbulence model to be
simulated are required. Generally, it is easy to force an analytical or empirical mean velocities
and turbulent variables profiles in RANS simulations. However, the inflow should be turbulence
in LES and DNS, so its design is not easy, which is in general restricted by available statistical
information like the mean velocity or turbulent kinetic energy profile and the mean mass flow
rate. In fact, a genuine inlet condition to the primary simulation should be prepared via the
simulation of the upstream flow coming in the calculation range. But infinite extension for
upstream calculation is unavailable. Consequently, it can not be applied to generate inflow
conditions. For the sake of reducing the computational cost of LES and DNS of spatially
evolving flows, and to minimize the impact of the approximate conditions on the flow within the
domain, artificial inflow conditions should be as precise as possible. Accordingly, the transition
region length should be as short as possible. In addition, for different flows under consideration,
the inlet boundary conditions have different impacts on the downstream flow. Li et al. [106]
mentioned that for free shear flows the role of inlet boundary conditions in downstream of the
inlet is small in comparison with the inviscid instability that intensifies exponentially the small
perturbations, in contrast to attached flows where the prescription of precise inflow conditions
is required to quickly approach a turbulent situation in the downstream flow. The generation of
the inflow boundary conditions for the DNS and LES has been done via a considerable variety
of methods which would fall into two main groups: precursor simulation approaches where at
the inlet some shape of turbulence are prior calculated and inserted to the domain, synthesis
approaches where at the inlet some shape of random fluctuation is produced and incorporated
with the mean flow. In addition controlling the evolution of the flow towards a pre-specified
condition via combination of precursor simulation, synthesis and forcing methods has been
examined by Keating et al. [84] and Tabor et al. [182].
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1.3.1 Recycling Methods

One approach to obtain an appropriate inlet condition is to determine inflow data from a pre-
cursor simulation or rescaling of a database produced from it. For example, periodic boundary
conditions in the mean flow direction could be used in the precursor simulation of a fully de-
veloped turbulence at the inlet of the master simulation like ducts, channels or pipes flows.
Consequently, the flow is recycled at the outflow plane, and at the inlet it is reinserted, which
allows the simulation to produce its inflow data. In a plane at a specific streamwise position of
the precursor simulation, velocity fluctuations are extracted and specified as the inlet condition
of the primary simulation in every time step.

Inflow conditions for LES of a backward-facing step and for LES of a plane diffuser are generated
by such technique (see respectively Arnal [50] and Kaltenbach et al. [77]). Lund et al. [112]
generated inlet conditions for a zero pressure gradient spatially developing boundary layer by
using a more adaptable method where the velocity signal at the inlet plane is evaluated via
using the velocity in a plane placed in the rescaling station. Planes of velocity data from this
simulation are saved used and then used in the primary LES as inflow data. This developed
version has been used to produce inlet data for a hydrofoil upstream of the trailing edge and for
turbulent flow over a backward-facing step by Wang and Moin [198] and by Aider and Danet
[1], respectively. The original technique of Lund et al. [112] has been extended to compressible
turbulence by Sagaut et al. [161], where they added the rescaling and recycling of the pressure
and temperature fluctuations to the process in the original method. However, high sensitivity in
the initialization of the flow field in the Lunds technique was found by Ferrante and Elghobashi
[48] in their DNS of spatially developing turbulent boundary layers. A more robust version was
proposed by them via synthetic turbulence using a specified energy spectrum with the shear
stress profile in order to initialize flow field.

To decrease the storage and the calculation expense from prior running of the precursor simula-
tion ahead of primary simulation, Li et al. [106] suggested a different strategy. They simulated
the spatially evolving turbulent mixing layer, which resulted from the crossing of a low- and
high-speed boundary layer on the edge of a splitter plate. In their procedure, the boundary
layer simulation was used to extract just a time series of instantaneous velocity planes with
period roughly equivalent to the integral time scale of the flow which are stored on disk. Such
strategy is used as an alternative of the precursor boundary layer simulations along with the
mixing layer simulation. However, using this procedure for wall-bounded flows where destabi-
lizing impacts are weak might need a lengthy transition zone in order to lower the periodicity
included by the inflow [106]. Schluter et al. [164] proposed another technique to generate inflow
data from a precursor simulation for LES or DNS, in which periodic boundary conditions or the
recycling and rescaling method of Lund et al. [112] was used to create a database including in-
stantaneous planes of velocity from a precursor LES. Then the database was used to extract the
turbulent velocity fluctuations which are rescaled to have the desired statistics. Each database
is particular for one geometry so it is not general, which represents the main obstacle in the
methods depending on rescaling of databases.
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1.3.2 Synthetic Turbulence

The need for suitable inlet data in order to use DNS or LES models has been discussed in the
preceding section. This section highlights the usage of synthetic turbulence to produce inflow
boundary conditions. Synthetic turbulence uses a stochastic procedure to synthesize inflow
conditions, where a random velocity signal matched to turbulence is constructed.

1.3.2.1 Algebraic methods

In algebraic methods, synthetic fluctuations were obtained from a sets of random numbers.
Transformation are applied to the numbers in order to match the desired statistics. Following
the most simple style to generate synthetic fluctuations using this strategy, the inflow signal
may be written in the form

ui = Ui + ri

√
2

3
k, (1.34)

where ri is a random number, different for every velocity component at every point and at
every time step, given by a normal distribution N (µ = 1, σ2 = 0). ri is rescaled therefore the
fluctuations possess turbulent kinetic energy k correctly. It is then gathered with a mean velocity
profile U. As a result, the target mean velocity and kinetic energy profiles are reproduced.
However, it should be noted that the two-point and two-time correlations are equal to zero,
also a cross-correlations among the velocity components are zero as well. When the Reynolds
stress tensor exists, a signal would be reconstructed via the Cholesky decomposition aij of the
Reynolds stress tensor Rij [112], and we have

ui = Ui + rjaij , (1.35)

which reproduces the desired cross-correlations although the two-point and two-time correla-
tions are still unavailable [72]. The absence of large-scale predominance in the inflow data that
are produced by the random technique is another drawback. In fact, more drawbacks were
reported while using the above random procedures to generate the inlet conditions (see e.g.
Refs. [112], [89], [60], [164] and [1]). More sophisticated methods have been proposed includ-
ing Digital-filtering methods, Proper orthogonal decomposition methods (POD), and Synthetic
Eddy Methods (SEM). We give a brief review below.

A very dynamic technique to create such turbulence is desired. A digital-filter-based production
of pseudo turbulent inflow conditions is presented in Klein et al. (2003) [89] based on the fact
that the shapes of correlation functions of typical turbulent shear flows are somewhat similar
to the decaying exponentials. The specified integral length scales and Reynolds-stress-tensor
are reached by an artificially produced turbulent inflows, in which the specified first and second
order (one point) statistic and the autocorrelation functions are captured via inverse Fourier
Transform. Klein et al. [89] have been used a digital filtering technique to address the last
mentioned drawback. Supposing that the one dimension velocity signal u′(i) at the point i is
determined through a digital linear non-recursive filter

u′(i) =

N∑
j=−N

bjr(i+ j), (1.36)

25



where bj represents the filter coefficients, r(i+ j) is the random number created at point (i+ j)
according to the a normal distribution N (µ = 1, σ2 = 0) and N is linked to the support of the
filter. Consequently, the two-point correlation among points i and (i+ k) is given by

〈u′(i)u′(i+ k)〉 =
N∑

j=−N+k

bjbj−k. (1.37)

Choosing the filter coefficients bj in accordance to the last equation would ensure the fluctuations
produce precisely the required two-point correlations. In addition, due to a lack of the data of
two-point autocorrelation tensor, Klein et al. [89] supposed that the Gaussian form of the filter
coefficients relied on the lengthscale L, one single parameter. Thus the filter coefficients bj would
be analytically calculated without inverting Eq. 1.37. Such procedure allowed them to examine
the impact of the length and time scales on the evolution of a plane jet and the primary break-up
of a liquid jet. The digital filtering method of Klein et al. [89] with a periodically repeating
construction have been used in [194] in order to produce inlet conditions for a channel flow.
Due to that the different length-scales in the filtering process are allowed, the best agreement
between reference LES and periodic boundary conditions was found.

Klein et al. [89] proposed a new method to examine the effects of the inflow conditions and
the turbulence inside the nozzle on jet breakup, using the fact that the correlation function
has a Gaussian shape for last-stage homogeneous turbulence. A two-dimensional slices of data
organized at the axial direction with proper spatial correlations are achieved using a three-
dimensional digital filter. In addition, it maintains the temporal correlations. Further, there is an
equivalent between solving suitable diffusion equation for a set of three-dimensional random data
by the procedure and applying a Gaussian function based filter for the same random data [86]. A
digital filter depending on an arbitrary correlation function has been structured by di Mare et al.
[113], in which such correlation function might take a Gaussian or an exponential forms, or even
a forms obtained from experiments or precursor numerical simulation. An array of equations
of the unknown filter and correlation coefficients are solved in this method. However, some
drawbacks are outlined in [113]. The equations are conflicting; the solution is not unique and
the guarantee that the equations could be solved for each correlation coefficient is unavailable. In
order to handle these issues, locally defined spatio-temperal correlation functions are produced
to satisfy the equations in a least squares, i.e., to minimize the residual.

The influence of using spatially various turbulence scales in the generation of inflow data is
investigated by Veloudis et al. [195] using three-dimensional digital filter method. According to
the mean and turbulent flow profiles, applying spatially varying scales results in better prediction
for a channel flow, where the turbulence scale profile is divided into several regions in which
they are constant. An inflow technique based on a particular inner- and outer-layer turbulence
with related phase data is improved by Sandham et al. [162]. However, it could be applied
only for high-resolution LES for the reason that it focuses on modelling the strips in the inner
layer. The original Klein’ s method [89] has been modified by Xie and Castro [206] in order
to handle issues like Reynolds number dependence, among others. The modified version of Xie
and Castro is more effective because it used an exponential correlation function to correlate the
velocity on the two-dimensional inlet plane at current and previous time steps. In addition,
correlation scales in all three directions are modelled. It should be noted that very important
quantities like length scale, spectra, mean velocity and Reynolds stresses are estimated more
or less satisfactorily in all digital filter depend techniques produce an artificial turbulence, so
further progresses are needed.
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The proper orthogonal decomposition method (POD) has also been used to generate inflow
conditions, such as [The flow downstream of a half cylinder in terms of passive control [32],
in-cylinder engine flow [42], the generation inlet conditions for channel flow [74], and turbulent
jet in cross flow [121] among many others].

Another development is the construction of a synthetic velocity signal as a sum a limited num-
ber of eddies with random intensities and locations. The method is called Synthetic Eddy
Method (SEM). In other words, the stochastic velocity signal is constructed depending on the
decomposition of a turbulent flow field into stochastic coherent structures. The SEM technique
was instituted to generate synthetic velocity fluctuations in such a way [71], that the mean
velocity Ui, the Reynolds stress tensor Rij , and the length scales σi are defined and computed
as input data to the method. Next it should define a box that includes synthetic eddies as
B = [(−σi, σi), i = 1, 2, 3], σi represents the length scale in the ith direction. Then velocity
signal generated by N eddies can be written as:

u′i(x) =
1√
N

N∑
h=1

aijε
h
j fσ(x)(x− xh). (1.38)

where xh and εhj indicate the random position and a randomly produced intensity for each eddy

in which εhj ∈ {−1, 1}, respectively. The Cholesky decomposition of the Reynolds stress tensor

is represented by aij . x refers to the location in the mesh and xh refers to location of the eddy h,
respectively. The velocity distribution of the eddy situated at xh is given by the shape function
fσ(x)(x− xh)

fσ(x)(x− xh) =
3
√
VB

σx1σx2σx3

3∏
i=1

f(
xi − xhi
σxi

), (1.39)

where VB represents the volume of the box B [72]. Assuming that eddies are convected over
the box with a reference velocity scale U0, and the mean flow is caused by the advection of
turbulence past a fixed point in accordance to the Taylor’s frozen turbulence assumption, the
new position for the eddy reads

xhi (t+ dt) = xhi (t) + U0dt. (1.40)

Note that, when the eddy comes to the end of the box (xi > σ), with a new random intensity
the eddy at xi = −σ is regenerated at a random location in the two other direction. Sergent
(2002) [167] suggested creation of ghost vortices at the boundaries in the specified region for
applying periodic boundary conditions with the aim to correct the non-periodicity of the SEM
signal, which could result from errors between the calculated and theoretical spectra. However,
Keating et al. [84] mentioned that the periodic inflow data in the spanwise direction result in
evolved turbulence without variation at the channel downstream of the inlet. On the other hand,
the technique could be less transferable and difficult to implement if it is subject to a particular
handling at the boundaries.
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1.3.2.2 Spectral methods

The decomposition of the turbulent velocity signal in to Fourier modes in order to generate
a synthetic flow field has been first used by Kraichnan [94] in order to examine the diffusion
of a passive scalar, where the homogeneous and isotropic synthetic velocity field with three
dimensions has been employed to initialize the flow domain. It is a well known fact that each
periodic function,f , has a period of 2L could be written in terms of Fourier series as follows:

f(x) =
a0

2
+

∞∑
n=1

(an cos(knx) + bn sin(knx)), (1.41)

x refers to the spatial coordinate, and kn refer to wavenumber which is defined as

kn =
nπ

L
. (1.42)

The Fourier coefficients are defined by

an =
1

L

∫ L

−L
f(x) cos(knx)dx, (1.43)

bn =
1

L

∫ L

−L
f(x) sin(knx)dx. (1.44)

Generation a synthetic turbulence with using Fourier decomposition has been modified by Batten
et al. [12], in which the input parameters, mean velocity, Reynolds stress tensor, and dissipation
rate have been used to specify the velocity signal. The fluctuations has been written as:

u′k(xj , t) = aki

√
2

N

N∑
n=1

[αni cos(γ̂nj x̂j + ωnt̂) + βni sin(γ̂nj x̂j + ωnt̂)], (1.45)

aki represents the the Cholesky decomposition of the Reynold stress tensor, which works to
guarantee turbulence anisotropy [112]. The full number of modes is referred to by N ; αni and
βni are amplitudes, the modified wave numbers is γnj , the frequency is ωn, and the spectral

coordinates x̂j and t̂ are defined as:

x̂j =
2πxj
Lt

, t̂ =
2πt

τt
, (1.46)

where Lt = k3/2

ε and τt = k
ε represent the local turbulent length and time scales, respectively.

k refers to the turbulent kinetic energy, and ε is the dissipation rate. The correlation in space
and time is ensured via translation of the spatial and temporal variables. The frequency ωn is
taken from a Normal distribution N(µ, σ2) = N(1, 1), while the wavenumbers γ̂nj is generated

from the N(µ, σ2) = N(0, 1/2). αni and βni amplitudes are calculated as:

αni = εijkη
n
j γ̂

n
k , βni = εijkξ

n
j γ̂

n
k , (1.47)

where εijk represents the cross product named as Levi-Civita tensor, and the ηnj and ξnj values

are obtained from N(µ, σ2) = N(1, 1). In addition, the modified wavenumbers γ̂nj is given by
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γ̂nj = γnj
Vt
Cn

, (1.48)

here Vt = Lt
τt

is referred to the turbulent velocity scale also Cn coefficient is calculated as:

Cn =

√
3

2
Rlm

γnl γ
n
m

γnk γ
n
k

(1.49)

where Rlm refer to the Reynolds stress tensor. Note that, the Cholesky decomposition of the
Reynolds stress tensor, aki, is locally calculated in all cells because the Reynolds stress tensor
is locally calculated in all cells. At all modes the variables are calculated, and at all modes at
each time step the synthesised turbulent velocities are calculated.

In 1997, Le et al. [100] generalized the spectral method which has been suggested by Lee et al.
(1992) [101] to generate the velocity fluctuations in which the reconstructed fluctuations capture
the prescribed Reynolds stress tensor by rescaling the velocity fluctuations in accordance to Eq.
1.35. An inlet condition has been produced via this technique for a turbulent boundary layer
upstream of a backward facing step. This synthetic procedure is also employed to determine inlet
data to the LES domain, in which the precursor simulation uses to achieve the desired Reynolds
shear stress profiles via a recycling technique of Lund et al. [112]. It was found that the friction
coefficient has a best convergence in comparison with the case when synthetic turbulence was
specified at the inlet without forcing.

The main issue with this method is that the inlet mesh is not homogeneous, so it is not possible
to use a fast Fourier transform in the wall normal-direction, which results in a three-dimensional
inverse Fourier transform with a high cost calculation in comparison with an initial suggestion
of Lee et al. (1992) [101]. Nevertheless, it gives a considerably better results than those resulted
from the random technique by Lund et al. [112], since the right statistics of the boundary layer
can be recuperated via just 12 boundary layer thickness downstream of the inlet.

Furthermore, it must be mentioned that the structure and dynamics of turbulence rely on the
phases of the Fourier modes in the Fourier representation. Consequently, Le et al. [100] needed
an extended transition region in order to retrieve turbulence statistics because of the absence
of structural information of the random phases. More advanced methods have been explored
using phase randomization or amplitude randomization with the aim to minimize the length of
this transition region, where the Fourier decomposition is calculated by precursor simulation (see
Refs. [128], [65] and [29] for reviews). Despite that the signal is produced with correct turbulence
statistics via phase randomization in the above mentioned methods, flow turbulent structures
were badly regenerated. To decrease the transition length, the Taylor’s hypothesis has been
used by Na and Moin [128] in order to convect a frozen DNS field within the inlet plane of their
simulation. In such way, amplitude factors of the Fourier coefficients were subjected to amplitude
randomization, whereas their phase angles have been kept the same. Next to only three boundary
layer thicknesses, right levels of friction coefficient are recovered. Same results have been found
with similar approaches used by Chung and Sung [29] to generate inlet conditions for LES.
Note that the computation of Fourier decomposition of the flow demands a precursor simulation
in these approaches. If such simulation is unavailable such phase randomization or amplitude
randomization ideas could be used to modify generation of synthetic turbulence methods [100]
via new models which able to correlate phase angles between Fourier modes (see e.g. Le et al.
[100], Sandham et al. [162], Terracol [188], Eggers and Grossmann [46] and Fung et al. [53] for
reviews).
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In a general industrial framework, Smirnov et al. [170] improved the technique of Le et al. [100]
to synthesize a non-homogeneous turbulence. This method demands an explicit diagonalization
of the Reynolds stress tensor Rij instead of Cholesky decomposition in Eq. 1.35. Depending on
local turbulent time and length scales, various spectra at various positions over the flow have
been employed to calculate the Fourier coefficients with Fourier decomposition. In addition, a
restricted number of modes have been taken randomly from the normal distribution. In 2004,
Smirnov’s formulation [170] has been adjusted by Batten et al. [12], in which it could explicitly
define the velocity signal in terms of input parameters like a mean velocity Ui, Reynolds stress
tensor Rij and dissipation rate ε. Ultimately, the fluctuations are reconstructed in accordance
to Eq. 1.35. Results show a reduced computational cost because a restricted number of modes
have to be simulated. Also a non-homogeneous turbulence might be obtained via rescaling the
spatial coordinate with local length scale and an interim coordinate with time scale.

1.3.2.3 Mixed methods

Most techniques designed for production of synthetic turbulence are already reviewed in terms
of their performed processes in Fourier space or in physical space. In fact, some methods have
performed operations in both spaces at the same time. These methods are termed as mixed
methods. In this method, the isotropic turbulent fluctuations are produced at each time step
following the same way in the premier method of Kraichnan [94], also does not based on the
formerly produced signals. In this case, it was shown by Davidson [38] that the technique de-
pending on the Fourier decomposition and digital filters to produce inlet conditions for LES and
DNS can accomplished the Fourier transform using just two dimensions without randomization
of the phase angles in order to breach the cyclicity of the signal as in the method of Le et al.
[100].

However, similar to the method in [100], the synthesized turbulent field is homogeneous. Since
correlations generated in the non-homogeneous directions could be destroyed via scaling of the
fluctuations, so this scaling is not implemented. Consequently, the fluctuations are multiplied
by a blending function thus the fluctuations adjacent to the wall also in the free stream are
minimized. The hybrid RANS-LES method of Davidson and Billson [35] has been used with
this method to generate inlet conditions for a diffuser flow and the flow over a curved wall in a
square duct [38], and for a flow over a three-dimensional hill.

An additional mixed configuration has been proposed in order to mimic physical loadings re-
garding to an earthquakes, atmospheric turbulence or ocean waves. Glaze and Frankel (2003)
[60] have used a spectral representation method which is depending on weighted amplitude
wave (WAWS) where it is efficient to imitate a non-homogeneous, multidimensional, multivari-
ate stochastic fields. They produced the inlet boundary conditions for the case of fully turbulent
jet. Also spatial decay of isotropic turbulence was simulated using the same method by Kondo
et al. (1997) [92]. For the reason to calculate the signal at all grid point, the summation through
all inlet mesh nodes and simulated frequencies are included. The WAWS method has an iden-
tical computational cost in comparison with the digital filtering method of Klein et al. (2003)
[89]. Furthermore, it uses a filtering process in physical space while in the frequency domain it
uses a Fourier decomposition so it is addressed as a mixed method.
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In 2006 [156], Rosales and Meneveau introduced a simple method to generate synthetic vector
fields as representatives for turbulent velocity fields, the multiscale minimal Lagrangian map
(MMLM) method applies the minimal Lagrangian map to deform an initial Gaussian field pro-
duced using random-phase Fourier modes. Fluid parcels moves with their constant velocity,
in which the inter-parcel interactions are disregard, over a series of low-pass filtered fields for
some scale-dependent time-interval. It is found that the non-Gaussian synthetic field displays a
set of turbulence-like statistics and realistic geometric features, including skewnesses of velocity
derivatives and longitudinal velocity increments at different scales, stretched exponential tails
in the PDFs of the longitudinal and transverse velocity increments, the vortex stretching and
the predominant self-amplification of the strain rate, and the alignment of the vorticity and
the intermediate strain-rate eigenvector. From the point of view of inflow boundary conditions
generation, the MMLM approach can be applied to produce a precomputed data base from
which sequential planes are taken to supply the inlet velocities. Even though it might still re-
quire an adjustment zone, the zone is expected to be shorter than those requested by techniques
employing synthetic turbulence in the absence of right phase information [156].

In a recently proposed Multiscale Turnover Lagrangian Map (MTLM) method [157], an initial
random field is converted into a synthetic field after a series of simple mappings, with mod-
erate computational cost. The procedure is based on the multiscale minimal Lagrangian map
[156], in which the advection Lagrangian map time scale is considered but with the appropriate
Kolmogorov inertial-range turnover time scale instead of the sweeping time scale used in the
MMLM approach in order to produce anomalous exponents scaling properties. The resultant
non-Gaussian synthetic field from the modified MTLM method captured realistic anomalous
scaling exponents features like the intermittency and multifractal nature of the energy dissipa-
tion. Also it has proven that the derived pressure field from the MTLM velocity field has quite
realistic features.

A new method, the constrained multi-scale turnover Lagrangian map (CMTLM) approach, was
previously introduced by Li and Rosales [107]. They attempted to generalize the MTLM method
to anisotropic turbulence, which is more relevant to practical applications. CMTLM procedure
formulates the problem as an optimization problem using the adjoint formulation, in which the
initial random field is taken as the control variable, and the additional features presented in
inhomogeneous turbulence are taken as a target function to be matched by the synthetic fields.
Two Kolmogorov flows were synthesized using the constrained MTLM approach, where, by
Kolmogorov flows, we mean turbulent flows generated by constant large scale sinusoidal forces
in a periodic box.

In comparison with the DNS data, the results show that mean flow statistics like the Reynolds
stress distribution and mean turbulent kinetic energy balance are closely reproduced. Further-
more, distributions of mean SGS energy dissipation, and the alignment among the SGS stress
tensor and the filtered strain rate tensor display the ability of the CMTLM method to repro-
duce the impacts s of inhomogeneity on small scale structures. In LES or in RANS equations,
modelling the SGS stress or Reynolds stress is a main task. Such turbulent stress (Reynolds
stress) tends to evolve towards a rod-like axisymmetric configuration as in the SGS stress, and
it tends to be universal as well. These observations have been proven by Li (2015) [108]. In this
work the CMTLM method has been used in order to generate realistic initial turbulent fields
with any specified anisotropic Reynolds stress tensor to investigate the decaying process from
initial turbulent fields with the aim to prove the universality.
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1.3.3 Forcing Techniques

A recent progress has been using control methods to speed up evolution towards equilibrium
turbulence, because a transition area downstream of the inlet is present from approximate in-
let conditions before the equilibrium. In the control method of Spille and Kaltenbach [177],
capturing a desired profile for the Reynolds shear stress via amplifying the wall-normal veloc-
ity fluctuations for a some number of control planes downstream of the inlet is an aim of the
method. In this controlled-forcing approach, the momentum governing equation for RANS and
LES of an incompressible reads

∂tūi + ūj∂j ūi = −∂ip̄+ ν∂2
jj ūi − ∂ju′iu′j + fi = −∂ip̄+ ν∂2

jj ūi + ∂jτij + fi. (1.50)

where the body force fi dominate the flow at the wall-normal direction in the control zone.
This term is appended to the wall-normal momentum equation in order to amplify the velocity
fluctuations v′ in this direction, so the production term in the shear-stress budget is enhanced.
In fact, its aim is to enhance or damp local flow states like bursts and sweeps which contribute
to the Reynolds shear stress 〈u′v′〉. The forcing amplitude is specified by a controller depending
on the error in the Reynolds shear-stress as follows:

e(y, t) = 〈u′v′〉∗(xo, y)− 〈u′v′〉z,t(xo, y, t), (1.51)

where 〈u′v′〉∗(xo, y) refers to the target Reynolds shear stress at the control plane x = xo, also
〈u′v′〉z,t(xo, y, t) refers to the current Reynolds shear stress which is averaged over the spanwise
direction and time. The force magnitude is given by

f(xo, y, z, t) = r(y, t)[u(xo, y, z, t)− 〈u〉z,t(xo, y)], (1.52)

where f is connected to the error via

r(y, t) = αe(y, t) + β

∫ t

0
e(y, t′)dt′. (1.53)

in which the integral part of the controller works to reduce the force response to very acute
variation which might leads to unstable system. The constants α and β have been chosen to
minimize the error quickly, without leading to unsteadiness (see Res. [177], [84] and [85] for
reviews).

The matching of the target profile of Reynolds shear stress is done in forcing method by enhanc-
ing the wall-normal velocity fluctuations in a number of control planes downstream of the inlet
[177]. The friction coefficient has a best convergence in comparison with the synthetic turbulence
is specified at the inlet without forcing in the synthetic technique of Le et al. [100], where a
precursor simulation was used to obtain target Reynolds shear stress profiles based on recycling
procedure [112]. In a plane channel flow case, Keating et al. [84] utilized the forcing method
of Spille and Kaltenbach [177] together with the inlet conditions produced from a technique of
Batten et al. [12]. The shear stress profiles are somewhat quicker recapture when continuous
forcing with two and four control planes are used. A precise interface conditions are achieved to
couple between an upstream RANS and a downstream LES simulations in the hybrid simulation
of turbulent boundary layer flows in zero, favourable and adverse pressure gradients. The RANS
simulation is used to extract the desired shear stress profiles, so there is no need to use precursor
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simulation. However, in comparison with the recycling method of Lund et al. [112], results for
adverse pressure gradient case show some differences. The RANS solution and the LES inlet
location affected the technique’s precision significantly.

1.4 The Motivation, Objectives and the Outline of the Thesis

Synthetic turbulence has been helpful in supplying an appropriate structure for numerical ex-
periments, different techniques have been modelled different features of turbulence in order to
understand its mechanisms, for examples, modelling small-scale intermittency , SGS dissipation
and interscale interactions and temporal correlation properties (see e. g. Refs. [76], [4], [165],
[166], [53] and [54] for reviews). In addition, LES applications for more complex flows demads
more advanced techniques of prescribing the turbulent features of the flow at inlet boundaries,
the generation initial and inlet boundary conditions for numerical simulations has been done
via synthetic turbulence. The generation of an artificial inflow velocity profiles that must catch
the fundamental aspects of the flow is useful in the cases with non-periodic boundary conditions
due to flow geometry or when subsidiary simulation is unavailable. One advantage of synthetic
turbulence generation methods is that it handled both a lack of generality and a heavy com-
putational cost in the same time, which is in contrary to other methods. However only simple
estimation of real turbulence has been represented via synthesized turbulence so far. The mech-
anism demonstrated above still do not reproduced any higher order statistics, for instance, the
dissipation rate and the pressure-strain terms in the Reynolds stresses budget. Actually, it built
on the implicit hypothesis that the creation of low order statistics like turbulent kinetic energy,
mean velocity, Reynolds stresses also the two-point and two-time correlations might leads to
good approximations of the turbulent flow including higher order statistics.

When current synthetic turbulence models are used as inlet conditions [[105, 16, 170, 12, 37,
101, 100, 78, 89, 113, 88]], a significant transition region within the the computational domain
is needed. Therefore further refinement is needed. Realistic synthetic isotropic turbulent fields
have been generated using novel methods based on MMLM and MTLM maps [156] and [157].
Multi-scaling characteristics of small scale turbulence, characteristics regarding to small-scale
geometrical structures, and pressure statistics are accurately reproduced. In time evolving prob-
lems, more realistic time evolution is found when non-Gaussian fields are employed as initial
conditions in DNS and LES. For stationary problems, the initial adjustment period would be
remarkably shortened [156]. MTLM synthetic scalar field has high-order statistics consistent
with the ones noted in real hydrodynamic turbulence. It is found that the MTLM procedure
can produce the anomalous scaling for several type of structure functions of real turbulence.
The spatial structure and the kinetic energy of the scalar field are quite realistic, also the dissi-
pation fields for the scalar variance have several quite realistic features, as well as the geometric
statistics [158]. In addition, investigation about the pressure field related with the velocity field
have been done [25]. As a consequence, this thesis has focused on investigating the properties
of the synthetic field generated by MTLM and constrained MTLM.

The overarching good of this thesis is to investigate the applications of MTLM and CMTLM
in more realistic flows. Specifically, we consider the MTLM and/or CMTLM models for scalar
fields with a linear mean profile, velocity in channel flows, and SGS motions, which are discussed
in chapter 2, chapter 3, and chapter 5, respectively. In the process, we recognize that a better
understanding of the MTLM and CMTLM maps is required, which leads to the investigation
summarized in chapter 4.
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The thesis is organized as follows:

In chapter 2, our target is to study the MTLM synthetic velocity and scalar fields using the
filtering approach. This approach, which has not been pursued so far, provides insights on
the potential applications of the synthetic fields in large eddy simulations and subgrid-scale
(SGS) modelling. The MTLM method is first generalized to model scalar fields produced by an
imposed linear mean profile. We then calculate the subgrid-scale stress, SGS scalar flux, SGS
scalar variance, as well as related quantities from the synthetic fields. Comparison has been
done with DNS data. In addition, the sensitivity of the synthetic fields on the input spectra is
assessed by using truncated spectra or model spectra as the input.

Li and Rosales [107] produced a novel technique to generate anisotropic synthetic turbulence,
which is generalized from the MTLM procedure to model inhomogeneous turbulence and called
CMTLM. Li and Rosales formulate the problem as an optimization problem. In this procedure
the aim is to adjust the random input to the map so that the output contains the large scale
anisotropic structure. It was applied to synthesize two Kolmogorov flows in which nontrivial
mean flow statistics and local anisotropy in small scales are produced via persistent large scale
structures. Comparing CMTLM synthetic fields with DNS data shows that the mean flow
statistics like Reynolds stress distribution and mean turbulent kinetic energy balance are closely
reproduced. Furthermore, the influences of inhomogeneity on small scale structures are also
reproduced by the CMTLM synthetic fields.

The next step to generalize this method is to include the effects of the solid wall boundaries.
In chapter 3, our aim is to derive a new optimality system in order to generate anisotropic
synthetic turbulence by using the CMTLM approach to include such effects. We will consider
the difference introduced by the solid wall, imposing the impermeable boundary condition where
the normal components velocity field are zero, while the tangent components may be non-zero.
Our purpose is to find the optimal control variable which minimizes the difference between the
target function and the synthetic field where the desirable features presented in anisotropic
turbulence field are taken as a target function. To accomplish this task, we will modify the
CMTLM procedure. Then in accordance to the modified CMTLM procedure we will generate
a reflectionally symmetric synthetic field in which that the symmetric field is a model of the
velocity field in a fully developed channel flow. We prove that each operator of the MTLM
procedure preserves the reflectional symmetries, derived the adjoint optimality system with
reflectional symmetry. We finally consider the mean statistics of the CMTLM synthetic fields
in comparison with the computed and experimental results data.

As the CMTLM method has been proposed only very recently, there are still many questions
about the inner mechanism of the method. Therefore, in chapter 4, we take a step back, and
look into some of the basic properties of CMTLM applied to simple flow field. Specifically,
we aim to study the gradients of cost function and the adjoint field of the Constrained MTLM
procedure which have not be fully examined in preceding works. We want to quantify the relative
importance of the adjoint operator and to investigate the influences of the control variable on
the cost function gradient. In other words, our goal is to find out how imposing a different cost
function could affect the results, particularly with target from DNS data. So we consider again
the CMTLM synthesized Kolmogorov flows that have been investigated in Li and Rosales [107],
then we consider an arbitrary cost function and the corresponding synthetic fields. We compute
contours of the mean gradients of the cost functions and the adjoint fields for the above three
cases, as well as other statistical properties. The analysis sheds light on the how the CMTLM
method works, and provides useful information for the further improvements of the method.
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In chapter 5, we explore a new SGS modelling approach via incorporation between the LES
of turbulence and the CMTLM method. As a first step to do that, we investigate a priori
the viability of using CMTLM synthetic fields as SGS Models. To do so, we merge between
the DNS data and CMTLM field. The SGS quantities are predicted using these merged fields,
then compared with real SGS quantities computed from DNS field. A number of characteristics
regarding the statistical geometry between the SGS and filtered quantities for real and predicted
data are studied.

In chapter 6, conclusions, perspectives, and recommendations for future work are summarized.

In the appendix A, we reported the details of the transformation property of the MTLM pro-
cedure and the derivation of the adjoint system with reflectional symmetry of the CMTLM
procedure. In addition, we review the pseudo-code for the numerical implementation of the
CMTLM map in the appendix B.
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Chapter 2

Subgrid-Scale Stresses and Scalar
Fluxes Constructed by the
Multi-Scale Turnover Lagrangian
Map
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2.1 Introduction

The transport and mixing of passive scalars by turbulent flows is a phenomenon of both practical
and fundamental interests due to its wide applications[168, 199, 40]. The subject has attracted
continuous interests; to name a few, we note recent efforts that have led to new insights into its
scaling properties [63], its role in cloud formation [13], and its modelling. [150] One approach
to understand and model the mechanisms of turbulent mixing is to use synthetic turbulence
models.[53, 76, 88, 207, 196, 46, 69, 95, 23, 57, 51] Synthetic turbulence refers to stochastic
fields that have characteristics of real hydrodynamic turbulent flows. This methodology aims to
construct the field variables (such as velocity and scalar fields) by simpler processes, while repro-
ducing the remarkable characteristics of turbulent fields. Synthetic fields can be generated with
little computational cost. Yet, various synthetic models, with different levels of sophistication,
have found a wide range of applications.

Many models have been proposed with the applications in large eddy simulations (LES) in mind.
In LES, artificial field data are usually needed to initialize the calculation and/or provide the
inflow boundary condition. Synthetic turbulence is one of the main methods used to meet this
need[71, 73, 88, 207, 183, 84, 96]. These models have found wide applications in conjunction with
LES. Nevertheless, the main aim of these methods has been matching the mean velocity profiles,
the second order moments and the integral length scales. No significant effort has been devoted
to modelling the nonlinear interactions in real turbulence in an efficient way, even though the
latter has been identified as an important factor to make further improvement [84]. In one of
the most popular methods, the synthetic eddy method (SEM), the synthetic field is composed
of localized velocity fluctuations (the eddies). Arguably, the nonlinear interaction could be
captured to some extent, since the eddies are allowed to evolve over a short time. Nevertheless,
no systematic research has been reported on this aspect of the method, and results shown in
[71] suggest that key nonlinear features of real turbulence are missing in SEM fields. Finally,
it is worth noting that, apart from the above applications, synthetic models have also been
used directly as a subgrid-scale (SGS) model in some simulations (see, e.g., [49]and [166] and
references therein).

Other synthetic models have been proposed as a vehicle to study the fundamental mechanisms
of real turbulence. For instance, particle dispersion has been studied by means of kinematic
simulations [53, 133, 129], and multi-fractal models [76, 196, 46, 14, 137, 24] have been proposed
to understand some aspects of real turbulence, in particular small scale intermittency. How-
ever, going beyond Gaussian models, it has proven no easy task to synthetic three-dimensional
(3D) velocity fields with realistic statistical and structural characteristics of turbulence. A new
procedure based on the multi-scale turnover Lagrangian map (MTLM) is proposed in [156] and
[157]. The MTLM procedure builds a velocity field by distorting an initially random field via a
non-linear map over a hierarchy of spatial scales. Results show that the procedure allows both
the statistical and the structural properties of the velocity field as well as the pressure field in
real turbulence are faithfully reproduced [157, 156, 25].

The MTLM procedure has been generalized to turbulent mixing[158] in the convective-inertial
regime[187, 145, 199], in which the fluid particles carry a passive scalar. The mapping thus
also distorts the scalar field recursively in a multi-scale fashion. Results show that the MTLM
procedure allows the synthetic velocity field to establish the coherence among the particles
transporting the scalar, leading to correct level of decorrelation over separation [158]. Numeri-
cal results show that the synthetic scalar fields have stronger intermittency in the dissipative and
inertial ranges than its advecting velocity field, as is observed in real turbulent fields. Quantita-
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tive agreement was found for high-order statistics, the scaling exponents for structure functions,
and the characteristics of the dissipation fields. Finally, the spatial structure of the scalar field
are also close to experimental results. As a result, the statistical geometry at dissipative scales
that results from the conjunction of velocity and scalar gradients behaves in agreement with a
real scalar turbulence[158].

The MTLM method has been used to investigate the closure for the pressure Hessian in the
Lagrangian models for the velocity gradient [25], to synthesizing magnetic fields [181], and
to study particle clustering [131]. Applications to inhomogeneous turbulence have also been
explored[107, 108]. What is missing is the perspective of subgrid-scale (SGS) modelling. Such
a perspective is crucial given the potential applications of the MTLM fields in LES, either as
SGS models or initial/boundary conditions, in particular in the LES of, e.g., particle dispersion
in atmospheric boundary layer, particulate flows and combustion. Thus, we present in this
paper an a priori analysis of the filtered synthetic MTLM velocity and scalar fields, and the
corresponding SGS stresses and SGS scalar fluxes. Specifically, we have three objectives. Firstly,
to model a more realistic scalar field, we generalize the MTLM to the mixing of a passive scalar
with a linear mean profile, following the suggestion in [158]. Secondly, we examine the statistics
related to the SGS stresses, the SGS scalar flux, and related quantities. We aim to find out
if the synthetic fields are able to capture the SGS energy and scalar dissipation correctly, and
if they are able to capture the geometrical statistics of the SGS motions. We also examine if
the synthetic scalar field captures the effects of the mean scalar profile, as documented in DNS
studies by, e. g., [149]. Thirdly, we note that the MTLM procedure requires the energy spectrum
(and, for MTLM with scalar advection, the scalar spectrum) as part of the input. A question is
how the synthetic fields depend on the input spectra. We thus also perform analysis of MTLM
fields obtained using modified spectra. The results of the above three objectives provide useful
insights to the ability and robustness of the MTLM fields to model the SGS stress and flux, and
other SGS processes.

In Section 2.2, we explain briefly the advection of a passive scalar by turbulent velocity fields.
The proposed MTLM procedure is described in detail in Section 2.4. Section 2.6 reviews the
key concepts in LES and SGS modelling. In Section 2.7, we consider the statistics of the filtered
MTLM scalar and velocity fields, and those of the SGS stresses and fluxes, where the geometric
alignment statistics of real and modelled stress tensors are also examined. The effects of modified
spectra are also presented in Section 2.7. Conclusions are summarized in Section 2.8.

2.2 The advection of a passive scalar

The mixing of a passive scalar Θ is governed by the linear advection-diffusion equation

∂tΘ + (u · ∇)Θ = κ∇2Θ + S(x, t). (2.1)

In the above equation, the passive scalar Θ is mixed by a turbulent velocity field u(x, t), in the
presence of a constant molecular diffusivity κ, and a source term S(x, t). Θ could represent,
e.g., the temperature perturbation in a flow field where the buoyancy force can be neglected.

The velocity field u is governed by the forced Navier-Stokes (NS) equation

∂tu + u · ∇u = −∇p+ ν∇2u + f , (2.2)

and the continuity equation
∇ · u = 0. (2.3)
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In Eq. 2.2, p is the pressure field, ν is the kinematic viscosity, and f is the external forcing term.
ρ = 1 has been assumed.

The scalar field is advected by the velocity field, which squeezes and stretches the former. As
a consequence, the characteristic length scale of a parcel of the scalar decreases and a scalar
variance cascade is generated, accompanying the turbulent kinetic energy cascade. In the inertial
range of homogeneous turbulence, the energy spectrum E(k) is, according to the Kolmogorov
phenomenology,

E(k) = CK〈ε〉2/3k−5/3, (2.4)

where k ≡ |k| is the magnitude of the wavenumber k, and CK is the Kolmogorov constant. The
scalar cascade at a particular length scale is governed by the relevant straining time scale of
the velocity field. Depending on the Schmidt number Sc = ν/κ, three regimes can be identified
[187, 145]. We consider only the case where Sc ∼ 1. In this so-called inertial-convective regime,
the dominant straining time scale for the scalar field is the local eddy turnover time scale, and
the spectrum of scalar variance Eθ(k) is given by

Eθ(k) = COC〈ε〉−1/3〈εθ〉k−5/3, (2.5)

where 〈εθ〉 = κ〈|∇θ|2〉 is the mean dissipation of scalar variance, and COC is the Obukhov-
Corrsin constant.

Scalar fluctuations have to be maintained by a source S(x, t). In this paper we consider fluctu-
ations generated by a linear mean variation with respect to space. Thus, we may write

Θ(x, t) = G · x + θ(x, t), (2.6)

where θ(x, t) is the scalar fluctuation, and G indicates the imposed uniform mean scalar gradient.
As a result, the equation for θ is given by

∂tθ + (u · ∇)θ = κ∇2θ −G · u(x, t). (2.7)

2.3 The MTLM map for the velocity field

Before we consider the MTLM map for a scalar field driven by a linear mean profile, we briefly
summarize the MLTM map that was proposed in [156] and [157], which has been applied to
synthesize turbulent velocity fields.

The MTLM map is motivated by the fact that the non-linear advection term in the NS equation
captures the key physical mechanism by which the non-Gaussian statistics in real turbulence
is generated. In the MTLM map, the effects of this term is modelled as an advection map.
The advection map is then applied to a Gaussian field in a multi-scale fashion to model the
multi-scale interactions in real turbulence.

Mathematically, the advection map is the solution of the Riemann equation

∂tu + (u · ∇)u = 0, (2.8)

which describes the evolution of non-interacting fluid particles. Eq. 2.8 is an approximation for
high Re flows of rarefied gases [156]. The solution of the equation can be written as

u(X(t), t) = u(y), (2.9)
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where X(t) is the position of a fluid particle whose initial location is at point y. Eq. 2.8 shows
that X(t) is given by

X(t) = y + tu(y), (2.10)

in which u(y) represents the initial velocity field. In deriving Eq. 2.10, we have used the fact
that, according to Eq. 2.8, the velocity of a Lagrangian fluid particle is constant along the
particle’s path.

It is observed in [107] that the above solution can be written as an integral operator applied to
the initial velocity field u(y). We will call it the advection operator or the advection map, and
denote it by Au:

ut(x) = Auu =

∫
W (x− y − tu(y))u(y)d3y, (2.11)

where we use ut(x) to denote the velocity at location x and time t, and W (x) is a weighting
function. In MTLM, time t is chosen as a parameter of the operator.

The solution given by Eqs. 2.9 and 2.10 can be recovered from Eq. 2.11 when W (x) = δ(x),
where the latter represents the Dirac-δ function. In our numerical implementation, W (x) =
C/|x| is used to approximate the Dirac-δ function, where C is a normalization factor.

As mentioned earlier, the advection operator is applied recursively to the initial velocity field.
To explain the idea in details, we introduce several other operators, in a way similar to [107].
Note, however, that some of the notations used here are different. A filtering operator G will be
used to separate the large scales of a velocity field from the small scales. G is defined as follows:
for an arbitrary velocity field u(x), we have

Gu(x) =

∫
G(x− y)u(y)d3y, (2.12)

where G represents the cut-off filter with a given filter scale. To remove the divergence of a
vector field, we apply the projection operator P. In the Fourier space, P is defined by

Pû(k) = [I − k̂⊗ k̂]û(k) (2.13)

where û(k) is the Fourier transform of an arbitrary velocity field u(x), k is the wavenumber and
k̂ = k/|k|. Finally, we also use the rescaling operator R, defined by

Ruû(k) =

(
Eup (k)

Eu(k)

)1/2

û(k), (2.14)

in which Eu(k) is the energy spectrum of û(k), and Eup (k) is a prescribed energy spectrum. The
output of Ru is a velocity field with energy spectrum given by Eup (k), while the Fourier modes
of the velocity field have the same phases as those of the input velocity field.

We are now ready to give a brief summary of the MTLM map. We will adopt the explanation in
[107] with notations modified slightly for the problems we are considering here. First of all, the
input to the map includes a random divergence-free velocity field u(x), the prescribed energy
spectrum Eup (k), and a hierarchy of M chosen length scales `n = 2−nL (n = 1, 2, ...,M) where
L is a reference length at the order of the integral length scale and M is determined by the
number of grids in the simulation. The MTLM map has M iterations, corresponding to length
scales `n (n = 1, 2, ...,M), respectively. Each iteration takes the velocity field generated from
the previous iteration as the input, and generate a new velocity field.
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The outcome of the iterations is an isotropic synthetic velocity field with Eup (k) as its energy
spectrum, which we denote as ue. Let u10, u20, ..., and uM0 be the input to the ith iteration,
where i = 1, 2, ...,M , respectively, where u10 ≡ u. Obviously un0 is also the output of the
(n − 1)th iteration. In each iteration, the advection operator, the projection operator and the
rescaling operator are applied successively to the input velocity field. Let us consider the nth
iteration, where the input is un0. The operators are applied in the following order:

1. un0 is low-pass filtered; the resulted velocity field is denoted as un1 ≡ Gnun0, where Gn
represents the filtering operation with length scale `n. Meanwhile, the high wavenumber
components of un0 are kept unchanged.

2. Let Aun represent the advection operator associated with `n. Aun and the projection op-
erator P are then applied to un1 mn times. Let the resulted velocity field be un2, i.e.
un2 ≡ (PAun)mnun1. The advection time tn and mn are specified below.

3. un2 is rescaled, giving un3 = Runun2, where Run denotes the rescaling operator associated
with un2.

4. un3 is then merged with the high wavenumber components of un0 to generate the final
velocity field of this iteration. As the resulted velocity field is also the initial field for the
next iteration, i.e., u(n+1)0, we have

u(n+1)0 = un3 + Gcnun0 = [Run(PAun)mnGn + Gcn]un0,

where Gcn = 1− Gn.

Repeating the above procedure for each n for n = 1, 2, ...,M , we obtain the final velocity field
ue. Mathematically, we have

ue =Muu (2.15)

where

Mu =

M∏
n=1

[Run(PAun)mnGn + Gcn]P (2.16)

is the MTLM map for the synthetic velocity field. The product in the right hand side of the
above equation is ordered such that from left to right n decreases from M to 1.

The advection time scale tn for operator Aun is chosen as follows:

tn = `n/u
′
n (2.17)

with u′n being the root-mean-square velocity of the filtered velocity field. u′n can be calculated
from Eup (k) as follows:

u′n =

(
2

3

∫ kc,n

0
Eup (k)dk

)1/2

, (2.18)

where kc,n ≡ π/`n is the cut-off wavenumber corresponding to `n. tn is the time scale needed for
a fluid particle to travel over the local length scale `n, and it is only over this time period that
the interactions of the particles can be reasonably neglected, as implied in the advection maps.

On the other hand, energy cascade in turbulence takes place over the eddy-turnover time scale.
In order to capture the effects of energy cascade, it is necessary to iterate the advection maps
so that the total advection time is at the order of the eddy-turnover time scale. Intuitively
speaking, doing so is would ensure eddies are broken down sufficiently.
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Let 〈ε〉 be the energy dissipation rate corresponding to the prescribed energy spectrum, then
the eddy turnover time scale τn at scale `n is given by

τn =
`
2/3
n

〈ε〉1/3 . (2.19)

Thus, the advection map is iterated mn times, where mn = τn/tn. A consequence of this,
however, is that the interaction between fluid particles can no longer be completely ignored.
The MTLM model thus applies the projection operator P after each application of Aun. The
purpose is to recover incompressibility, which captures the first and most important effect of the
interaction between fluid particles.

With the parameters tn and mn chosen as above, the definition of the MTLM map is complete.
The map has been implemented numerically in [157]. It is evident that the numerical imple-
mentation of the operators Gn, P and Run is straightforward. A few comments are made here
regarding the choice of M and the implementation of the advection operator Aun, among others.
To simplify the numerical implementation, the geometrical domain is chosen as [0, 2π]3, which
is discretized into N3 grid points. M and L are chosen in such a way that the smallest scale
`M is the same as the grid size 2π/N . We take N = 128 as an example. In this case, we have
chosen L = π/2 and M = 5, so that `n = 2−(n+1)π, i.e., `1 = π/4, `2 = π/8, ..., `M = π/64.
As a consequence, the filtered velocity fields at the nth iteration (i.e., un0, un1, un2 and un3)
can be represented on a set of (2n+2)3 grid points with grid size `n. In the Fourier space, the
cut-off wavenumber corresponding to `n is kc,n = 2n+1, and the filtered velocity fields simply
correspond to the Fourier modes of the full velocity fields with wavenumbers −2n+1 ≤ ki ≤ 2n+1

(i = 1, 2, 3). The integration in the advection operator Aun, on the discrete grid points, becomes
a weighted interpolation, which can be calculated easily. For more details, see [156].

2.4 The multi-scale turnover Lagrangian map for advected scalar
with linear mean profile

For the scalar field, if we focus on the fluctuations over a length scale which is much larger
than the Kolmogorov length scale (such as in high Re flows), the effects of molecular diffusion
is negligible. The advection-diffusion equation thus becomes:

∂tθ + (u · ∇)θ = −G · u(x, t). (2.20)

The equation can be formally integrated by using Lagrangian coordinates, which gives

θ(X(t), t) = θ(x, 0)−G ·
∫ t

0
u(X(t′), t′)dt′. (2.21)

With the approximation to the velocity field given by Eq. 2.9, the solution for θ becomes

θ(X(t), t) = θ(y)− tG · u(y), (2.22)

In other words, u has been frozen at its value at t = 0. The solution can be represented by an
integral operator As as follows:

θt(x) = Asθ =

∫
W (x− y − tu(y))

(θ(y)− tG · u(y))d3y, (2.23)
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where we have used θt(x) to represent the scalar fluctuation field at x and time t. The operator
As is the advection operator for the scalar field. Its expression is a new contribution of this
article.

As a first step in the application of the MTLM to the fluctuation scalar field θ, the fluctuation
scalar field θ is decomposed into low-pass and high-pass filtered parts for each length scale `n
as follows:

Gnθ(x) =

∫
G(x− y)θ(y)d3y, (2.24)

Then the low-pass filtered scalar field, Gnθ, subject to the advection operatorsAs, while the high-
pass filtered scalar field is saved unchanged. Note that the applying of the MTLM procedure
to the fluctuation scalar θ do not demand any projection in Fourier space. Consequently, the
advection operator applied to low-pass filtered scalar field at scale `n is (Asn)mn .

As a last step, to maintain the prescribed scalar variance spectra Esp(k), the resulted scalar fields
is rescaled using rescaling operator Rsn as follows:

Rsnθ̂(k) =

(
Esp(k)

Es(k)

)1/2

θ̂(k), (2.25)

where Es(k) is the scalar variance spectra of the synthetic scalar field at k = |k|. As mentioned
before for the velocity case, the above operators have been applied to the low-pass filtered fields
Gnθ. The resulted scalar fields is then merged with the high wavenumber components to form
the full field, which is then filtered with Gn+1 at the next length scale `n+1 and subject to
similar operations again. The procedure starts from n = 1 and is iterated until n = M . After
M iterations, The final scalar field is given by

θe =Msθ, (2.26)

with

Ms =
M∏
n=1

[Rsn(Asn)mnGn + Gcn]. (2.27)

Ms is the MTLM map for the scalar fields.

We use the MTLM method to generate samples of the synthetic field on a periodic cubic do-
main [0, 2π]3 which, in most cases, is discretized with 2563 grid points. The 3D energy and
scalar variance spectra, Eup (k) and Esp(k), are taken from DNS data, and are used as the input
parameters. The spectra are shown in Fig. 2.1. Note that, due to the limit of resolution, no
clearly visible inertial range is observed. Fifty synthetic fields are generated and in most cases
the statistics presented are averaged over these 50 fields; some are calculated with a subset of
the samples. The number of iteration levels M is chosen as 6. For more discussion of how to
choose M see [158].

In what follows, we will use the Gaussian filter[145]. Unless stated otherwise, the filter scale ∆
is always chosen as ∆ = 8δx, which gives approximately ∆ ≈ 9η. We have checked that the
results for ∆ = 16δx ≈ 18η are qualitatively the same, although occasionally we also plot the
results for ∆ = 16δx as a comparison. The two filter scales are indicated in Fig. 2.1 by the
vertical lines.
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Figure 2.1: Spectra for the DNS fields. Blue squares: the energy spectra Ep(k). Red circles:
the scalar variance spectra Epθ (k). Green dashed line: the Kolmogorov −5/3 spectrum. The two
vertical dash-dotted lines indicate filter scales ∆ = 8δx and ∆ = 16δx.

2.5 The DNS data and their Parameters

We will compare the statistics calculated from the MTLM fields with those calculated from
DNS. To obtain the DNS dataset, the incompressible Navier-Stokes equation (Eq. 2.2) along
with the advection-diffusion equations (Eq. 2.7) are solved by a pseudo-spectral method. The
computation box is a [0, 2π]3 cubic box with periodic boundary conditions for the velocity and
for the fluctuating part of the scalar θ in three directions. The spatial resolution is 2563. Full
dealiasing is achieved through truncation according to the 2/3 rule. Energy is injected into the
velocity field at a constant rate 〈ε〉 = 0.1 by the forcing term, which is non-zero only for Fourier
modes with wavenumber |k| ≤ 2. Statistical stationary of scalar fluctuations is achieved by the
mean gradient through the source term −G · u where G = −ey has been chosen. In other
words, the mean scalar gradient is in the negative y-direction.

Our study has been limited to the inertial-convective regime (Sc = 1). The viscosity is ν = 0.003,
which is the same as the diffusivity κ. Therefore, we have kmaxη ≈ 2.9 where η is the Kolmogorov
length scale. The simulation is thus very well resolved. Computation shows that urms = 0.7 in
the steady state, hence the Taylor Reynolds number Reλ ≈ 109.
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2.6 Analysis of subgrid-scale processes

In LES, the relevant field variables are decomposed into large- and small-scale components.
This decomposition is achieved by applying spatial filtering to the field variables. Then the
large scales of the flow are explicitly computed from the filtered NS equation, while the effect
of the unresolved, or subgrid scales (SGS) is modelled [145, 117, 160] . Applying the filtering
procedure to the NS equation leads to the filtered NS equation

∂tũi + ũj∂j ũi = −∂ip̃+ ν∇2ũi − ∂jτij + f̃i, (2.28)

with
∇ · ũ = 0. (2.29)

In the above equation, tilde denotes low-pass filtering, and ũi is the ith component of the filtered
velocity vector, defined as

ũi(x) =

∫
G∆(x− y)ui(y)dy. (2.30)

with G∆ being the filter with length scale ∆.

The effect of the subgrid scales on the resolved scales is contained in the SGS stress tensor
τij ≡ ũiuj − ũiũj . τij represents the effects of the small scales, and has to be modelled. Many
models have been proposed, which have been reviewed in, e.g., [117], [160], and [145]. Usually τij
is calculated explicitly as a function of certain resolved variables, such as the resolved vorticity
vector ω̃i = εijk∂j ũk, the resolved strain-rate tensor S̃ij = (∂iũj + ∂j ũi)/2, or the test-filtered
resolved velocity field as in the so-called dynamical models. Some of the parameters may have
to be found from additional transport equations. This methodology includes the eddy-viscosity-
type models, similarity models, among others, with or without using the dynamic procedure. In
another approach, the SGS velocity field is reconstructed by explicit estimation or approximate
de-convolution (see, e.g., [41] and more recently [19]). From this reconstructed velocity field,
one may calculate the approximate τij , although its expression is not derived explicitly. The
MTLM method potentially provides a new method to reconstruct the SGS velocity and scalar
fields. In either case, it is important to examine the relations between the resolved quantities
and the SGS stress, in order to either develop or validate the SGS models.

The SGS energy dissipation is defined as

Π ≡ −τijS̃ij . (2.31)

The SGS energy dissipation describes the rate of kinetic energy being transferred from the
resolved to the SGS motions, and is the most important parameter that characterizes the effects
of τij [140, 145, 117, 160]. The behavior of Π is correlated with the relative alignment between

the eigenframes of SGS stress tensor τij and filtered strain-rate tensor S̃ij . To see this more
clearly, we denote the eigenvalues of −τij , in decreasing order, as α−τ ≥ β−τ ≥ γ−τ , and the
corresponding eigenvectors α−τ , β−τ , and γ−τ .
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The eigenvalues of S̃ij are denoted by αs ≥ βs ≥ γs, which are referred to as the extensive, inter-
mediate and contracting eigenvalues, respectively. The corresponding eigenvectors are denoted
by αs, βs and γs, With these definitions, the SGS kinetic energy dissipation can be written as

Π =α−ταs(α−τ ,αs)
2 + α−τβs(α−τ ,βs)

2

+ α−τγs(α−τ ,γs)
2 + β−ταs(β−τ ,αs)

2

+ β−τβs(β−τ ,βs)
2 + β−τγs(β−τ ,γs)

2

+ γ−ταs(γ−τ ,αs)
2 + γ−τβs(γ−τ ,βs)

2

+ γ−τγs(γ−τ ,γs)
2, (2.32)

where (α−τ ,αs) is the cosine of the angle between the vectors α−τ and αs, and similarly
for others. The expression shows that the relative alignment between the eigenvectors is an
important factor controlling the magnitude of Π.

For the passive scalar, we may also write down the filtered scalar transport equation

∂tθ̃ + ũi∂iθ̃ = κ∇2θ̃ − ∂iτ θi −G · ũ, (2.33)

where θ̃ is the filtered fluctuation of passive scalar θ defined in a way similar to ũi. The SGS
scalar flux, τ θi , is defined as

τ θi = ũiθ − ũiθ̃ (2.34)

Πθ will be used to denote the SGS scalar variance dissipation that characterizes the effects of
τ θi . The definition of Πθ is

Πθ = −τ θi ∂iθ̃. (2.35)

Similar to the SGS energy dissipation Π, Πθ plays a central role in the SGS modelling of the
SGS flux vector τ θi . Its definition also shows the importance of the relative orientation between
τ θi and the gradient of the filtered scalar fluctuation.

In many applications, the SGS stresses τij and the SGS fluxes τ θi are the only quantities needed
to be modelled. However, in some other applications, notably the LES of turbulent reactive
flows [138, 144], it is also necessary to model the SGS scalar variance Zv defined as

Zv ≡ θ̃ θ − θ̃ θ̃, (2.36)

and the filtered (molecular) scalar dissipation

ε̃θ ≡ 2κ[∂̃iθ∂iθ − ∂iθ̃∂iθ̃ ]. (2.37)

These two quantities are important because they are the key parameters needed to model the
chemical reaction rates of the species in a turbulent reactive flow, and the latter are crucial for
the LES of such flows (for recent discussions, see, e.g., [6], [7], [90] and [56]). We will examine
the statistics of Zv in what follows. On the other hand, the statistics of ε̃θ can be inferred from
those of ∂iθ, thus will not be discussed in details.
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The quantities listed above (τij , τ
θ
i , Π, Πθ, Zv and related quantities) provide a comprehensive

description of the SGS processes, and their interactions with the resolved ones. Once an MTLM
field has been constructed, these quantities can all be calculated. We will calculate the statistics
of these quantities and examine the results against DNS data. In doing so, we show that the
synthetic MTLM fields capture the inter-scale interactions with good accuracy, hence potentially
can be useful in SGS modelling.

2.7 Results and analysis

2.7.1 Anisotropic scalar statistics due to the mean scalar gradient
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Figure 2.2: The co-spectra between θ and v-velocity component. Blue squares: MTLM fields.
Red circles: DNS fields.

We first present some basic scalar statistics with emphasis on the anisotropic statistics due to the
mean gradient. The co-spectra between the scalar θ and the v-velocity component are presented
in Fig. 2.2. The spectrum from MTLM fields under-predicts the DNS result slightly at the
low wavenumber end. The agreement nevertheless is very good. We note that the co-spectrum
for the synthetic field is not part of the input to the MTLM procedure; it is generated by the
non-linear mapping embedded in procedure, although undoubtedly, it depends crucially on the
input energy and scalar spectra.

The PDF distributions of scalar gradients ∂iθ in the synthetic MTLM fields are shown in Figs.
2.4 and 2.3. Due to statistical symmetry, the PDFs for ∂θ/∂x and ∂θ/∂z are expected to be
the same. Fig. 2.4 shows indeed that the two PDFs are close to each other. There are some
discrepancies at the ends of the tails, which may be attributed to statistical fluctuations. For all
PDFs in these two figures, strong deviation from a Gaussian distribution is observed, displaying
the characteristic flaring tails seen in scalar turbulence [200, 189, 127, 178]. The PDF for ∂θ/∂y
(Fig. 2.3) has a strong negative skewness, which means that it is skewed in the direction of the
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Figure 2.3: PDFs for ∂θ/∂y. Blue squares: MTLM fields. Red circles: DNS fields.

mean scalar gradient (the negative y-direction). Overall, the MTLM fields underestimate the
PDFs for large fluctuations to some extent. However, all results are close to those obtained from
DNS fields, as is shown by these figures (see also [149]).
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Figure 2.4: PDFs for scalar gradients. Blue squares: ∂θ/∂x from MTLM fields. Red circles:
∂θ/∂x from DNS fields. Green triangles: ∂θ/∂z from MTLM fields. Cyan diamonds: ∂θ/∂z
from DNS.
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The skewness is an indication of small scale anisotropy due to the negative mean gradient. It
has been correlated to the observation that the cliffs in the scalar distribution sit on the edges
of the vortices in the velocity field [69, 149]. We may also understand it qualitatively from the
equation for gy ≡ ∂θ/∂y, which is

∂tgy + u · ∇gy = −(∂yu) · ∇θ + κ∇2gy + ∂yv (2.38)

where v is the y component of the velocity field, and we have used the fact that the mean scalar
gradient G = −ey. The last term on the right hand side represents the direct contribution
from the mean scalar gradient. Note that ∂yv is the longitudinal gradient of v. It is well-known
that, in real turbulence, the longitudinal gradient of the velocity has a negative skewness. The
same has been observed in MTLM velocity fields too [156]. As such, the last term on the right
hand side of Eq. (2.38) is more likely to be negative, which tends to reduce gy. This term thus
provides a driving mechanism for the negative skewness in the PDF of gy that is absent from
other components of the gradient. Fig. 2.3 shows that the same mechanism is captured by the
MTLM procedure, although results for the MTLM fields appear to somewhat underestimate the
probabilities for large fluctuations.
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Figure 2.5: The PDFs of the normalized fluctuating flux rθ. Blue squares: MTLM fields. Red
circles: DNS fields.

The source term in the equation of θ is −G · u = v, according to Eq. 2.33. By writing
down the equation for 〈θ2〉 (not shown), we can see that, to provide a positive source for the
scalar fluctuations, a positive correlation must exist between v and scalar θ. The PDFs of the
normalized product rθ ≡ vθ, from both DNS and MTLM fields, are presented in Fig. 2.5. As
expected, both PDFs displays a positive skewness. The positive skewness is consistent with
the co-spectrum shown in Fig. 2.2, both indicating a positive correlation between v and θ. A
physical explanation for the positive correlation is given in Ref. [62] using a Lagrangian closure.
Intuitively, positive fluctuation of θ at a point is generated when a parcel of fluid carrying a
larger value of the scalar moves to the point. Given that the mean gradient of the scalar is in
the negative y direction, this parcel is more likely to come from the negative y direction. Thus,
on average, this parcel will have a positive v on its path to this point. Given the positive spatial
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correlation of v, it is also more likely that v is positive at the given point. Thus we observe
positive v together with positive θ, hence positive correlation between the two. Fig. 2.5 shows
that the mechanism is captured very well by the MTLM fields.

2.7.2 SGS energy dissipation, scalar variance dissipation and scalar variance
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Figure 2.6: Mean SGS energy dissipation rate 〈Π〉 as a function of filter scale ∆ (δx is the grid
size of the simulation): Blue squares: MTLM fields. Red circles: DNS fields.

The mean SGS energy dissipation rate 〈Π〉 as a function of the filter scale ∆ is shown in Fig. 2.6,
while the mean SGS scalar variance dissipation rate 〈Πθ〉 is shown in Fig. 2.7. For the scalar
dissipation, the agreement between MTLM results and DNS results is rather good with some
small over-prediction (at about 3%). For the velocity fields, the MTLM results underestimate
the DNS values by a small amount, which measures at about 10% at the largest filter scales. The
fact that the prediction for SGS scalar dissipation is better may be explained by the following
observation. The synthesized velocity field is missing both viscous diffusion and the nonlocal
effect of the pressure. The synthesized scalar field, on the other hand, is missing only the
diffusion effect. Though these effects are partially compensated for by imposing the energy and
scalar spectra, the approximation to the velocity fields is still stronger.
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Figure 2.7: Mean SGS scalar variance dissipation rate 〈Πθ〉 as a function of filter scale ∆ (δx is
the grid size): Blue squares: MTLM fields. Red circles: DNS fields.
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Figure 2.8: The PDFs of the normalized SGS energy dissipation Π+ = (Π− 〈Π〉)/σΠ and the
normalized SGS scalar variance dissipation Πθ

+ = (Πθ − 〈Πθ〉)/σΠθ . Blue squares: PDF of Π+

for MTLM fields. Red circles: PDF of Π+ for DNS fields. Cyan diamonds: PDF of Πθ
+ for

MTLM fields. Green triangles: PDF of Πθ
+ for DNS fields.

The PDFs for both the SGS energy and SGS scalar variance dissipations are shown in Fig. 2.8.
We use Π+ = (Π− 〈Π〉)/σΠ to represent the normalized SGS energy dissipation, where 〈Π〉 is
the mean and σΠ is the r.m.s. of Π. A similar notation Πθ

+ denotes the normalized SGS scalar
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dissipation. The PDFs from MTLM fields are shown with blue squares and cyan diamonds,
whereas DNS fields are shown with red circles and green triangles. The strong positive skewness
observed in the curves indicates the dominance of forward energy and scalar variance cascade.
A significant probability for negative fluctuations is also observed (flaring up left tail), which
indicates a backscattering from small scales to large ones. The PDF of Πθ

+ has a slightly wider
positive tail than that of Π+ from the same data set (either MTLM or DNS). The MTLM fields
capture all these behaviours. Quantitatively, the positive tail for Π+ agrees rather well with
DNS result, though the negative tail is somewhat underestimated for both the scalar variance
and energy dissipations.
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Figure 2.9: The PDFs of the normalized SGS energy dissipation Π+ = (Π− 〈Π〉)/σΠ. Blue
squares: PDF of Π+ for MTLM fields with filter scale ∆ = 8δx. Blue circles: PDF of Π+ for
MTLM fields with filter scale ∆ = 16δx. Red squares: PDF of Π+ for DNS fields with filter
scale ∆ = 8δx. Red circles: PDF of Π+ for DNS fields with filter scale ∆ = 16δx.

Fig. 2.9 presents the PDFs for the normalized SGS energy dissipation Π+, where these PDFs
are evaluated using the Gaussian filter [145] with with two different filter scales ∆ = 8δx and
∆ = 16δx, which are referenced in Fig. 2.1. The PDFs from MTLM fields are displayed with
blue squares and circles at ∆ = 8δx and ∆ = 16δx respectively, while the The PDFs from DNS
fields are displayed with red squares and circles at ∆ = 8δx and ∆ = 16δx respectively.

As analysis of these PDFs, it can be seen that the larger the filter scale is, the more wider the
tail is, the positive tails for MTLM and DNS results agrees rather well with those have same
filter scale than with those have same data set, although the negative tails for MTLM results
is slightly underestimated for both filter scales. Moreover, those PDFs show some differences
between two filter scales for same data set at large fluctuations.
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Figure 2.10: The PDFs of the normalized SGS scalar variance dissipation Πθ
+ =

(Πθ − 〈Πθ〉)/σΠθ . Blue squares: PDF of Πθ
+ for MTLM fields with filter scale ∆ = 8δx. Blue

circles: PDF of Πθ
+ for MTLM fields with filter scale ∆ = 16δx. Red squares: PDF of Πθ

+ for
DNS fields with filter scale ∆ = 8δx. Red circles: PDF of Πθ

+ for DNS fields with filter scale
∆ = 16δx.

The PDFs for the normalized SGS scalar variance dissipation Πθ
+ for MTLM and DNS data set

with ∆ = 8δx and ∆ = 16δx filter scales are shown in Fig. 2.10. As argued recently, the PDFs
behaviour is similar to that in Fig. 2.9 except that in this case the PDFs for MTLM data set at
two different filter scales are agreed rather well with each other than with those for the DNS data
set. Also the PDFs for MTLM data set at two different filter scales are both underestimated.

To quantify the backscattering, we calculate separately the mean of the negative SGS dissipation
(denoted by Π<0) and the mean of positive SGS dissipation (denoted by Π>0), and look into
their relative magnitudes, given by ratio

〈|Π<0|〉
〈|Π<0|〉+ 〈|Π>0|〉 . (2.39)

We calculate the ratio for both velocity and scalar fields from both MTLM and DNS data. Fig.
2.11, shows a plot of the ratio as a function of ∆. One can observe from the figure that MTLM
fields indeed generate significant backscattering, as in DNS fields. For the velocity fields, the
ratio tends to 0.20 for both MTLM and DNS fields when ∆ increases, although for smaller
∆ MTLM results somewhat underestimate the value. For the scalar fields, the ratio tends to
around 0.18 for MTLM fields and 0.17 for DNS fields, i.e., it is overestimate slightly in the
MTLM fields.
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Figure 2.11: The proportion of backscattering defined by 〈|Π<0|〉/〈|Π<0|〉+ 〈|Π>0|〉 as a function
of filter scale ∆ (δx is the grid size). Blue squares and red circles: SGS energy dissipation for
MTLM and DNS fields, respectively. Cyan diamonds and medium-orchid squares: SGS scalar
variance dissipation for MTLM and DNS fields, respectively.
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Figure 2.12: Definitions of θα and φα for the two-dimensional joint PDF characterizing the
alignment of the vector α−τ with the eigenvectors of tensor S̃ij .

The above results regarding the SGS energy dissipation rates can be complemented by the
statistics of the alignment between the eigenvectors of the tensors, as is indicated by Eq. 2.32.
We will present the results in terms of the orientations of the eigenvectors of the SGS stress
tensor −τij in the eigenframe of the filtered strain rate tensor S̃ij . To describe the orientation
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Figure 2.13: Joint PDF of (cos θα, φα) from DNS fields.

of the eigenvector α−τ in the eigenframe of S̃ij , we need two angles φα and θα[185, 186, 70], as
can be seen in Fig. 2.12. Note that three dimensional joint PDFs of the three angles describing
the relative orientation of the two eigenframes have also been used (see, e.g.,[185]). The 3D
joint PDFs have the advantage of providing a direct picture of the relative orientation of the
frames. Nevertheless, quantitative details are sometimes obscured by the 2D projection of a 3D
distribution. We thus choose to use 2D joint PDFs in what follows.
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Figure 2.14: Joint PDF of (cos θα, φα) for MTLM fields.
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Figure 2.15: Joint PDF of (cos θβ,φβ) for DNS fields.

To observe the preferential alignment configurations between α−τ and the eigenframe of S̃ij ,
Fig. 2.13 shows the two-dimensional joint PDF of cos θα and φα for DNS fields. It displays a
bi-modal distribution with two peaks at (θα, φα) = (90◦, 0◦) and (50◦, 48◦), with approximate
peak value 2.5 at both. As a comparison, the MTLM result, given in Fig. 2.14, shows only one
peak at approximately (50◦, 48◦), which locates at about the same location of the peak in DNS
result. The peak value for the MTLM result is stronger than the one for DNS, reaching about
3.5, as is illustrated by Fig 2.14. This discrepancy is most likely due to the fact that MTLM
fields produce insufficient vortex tubes[157].

We now consider the orientation of the eigenvector β−τ in the eigenframe of S̃ij , which is
characterised by angles θβ and φβ. The two angles are defined in the same way as those shown
in Fig. 2.12. Two peaks at (θβ, φβ) = (90◦, 0◦) and (45◦, 90◦) are seen in Fig. 2.15 for the DNS
fields, with peak values 1.6 and 2.0, respectively. The joint PDF for the MTLM fields shows two
peaks at about the same locations (see Fig. 2.16). However, the peak values are approximately
2.4 and 1.6, i.e., the strengths of the two peaks are reversed.
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Figure 2.16: Joint PDF of (cos θβ,φβ) for MTLM fields.
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Figure 2.17: joint PDFs of (cos θγ ,φγ) for 2563 DNS fields.

Finally, we briefly summarize the results about the joint PDFs of the orientation of the eigen-
vector γ−τ for the DNS and MTLM fields which are shown in Figs 2.17 and 2.18, respectively.
The main observation is that, for both DNS and MTLM fields, the peaks of the joint PDFs are
found at the same location φγ ≈ 90◦ and θγ ≈ 42◦, with peak values 9.0 and 10.5 respectively.
Angles θγ and φγ are defined again in the same way as before.
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Figure 2.18: joint PDFs of (cos θγ ,φγ) for 2563 MTLM fields.
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Figure 2.19: PDFs of the cosine of the angle between τ θi and ∂iθ̃, Λθ. Blue squares: MTLM
fields. Red circles: DNS fields.

Similar analysis can be conducted for the scalar SGS dissipation. The PDFs of the cosine of the
angle between the SGS scalar flux vector τ θi and the gradient of the filtered scalar ∂iθ̃ are shown
in Fig. 2.19, where we have used Λθ to denote the angle. The PDFs for both MTLM and DNS
data display the same preferred alignment at cos Λθ ≈ 0.3, corresponding roughly to Λθ = 72◦.
Thus the SGS scalar flux vector does not align perfectly with the resolved scalar gradient, in
contradiction with what is implied in an eddy diffusivity model. On the other hand, the peak
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value of the PDF from MTLM fields is somewhat higher than the DNS value.

To briefly summarize, the above results for the relative orientation of the eigenvectors calculated
from the MTLM fields bear close resemblance to those from DNS fields. Some discrepancies exist
in terms of the alignment results, which are consistent with previously known features of the
MTLM fields. Nevertheless, the discrepancy has only small effects on the SGS dissipation rates.
These results reveal the ability of the MTLM procedure to reproduce SGS dissipations and the
geometrical structures of the SGS stress and scalar flux.
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Figure 2.20: PDFs of Zv/〈Zv〉 for ∆ = 8δx. Blue squares: MTLM fields. Red circles: DNS
fields. The inset is the two-point correlation coefficient for Zv. Blue squares: MTLM. Red
circles: DNS. Filled and empty symbols are for ∆ = 8δx and 16δx, respectively.

We now present results related to Zv. Note that the mean of Zv is determined by the scalar
spectrum. Therefore by design, the mean of Zv for the MTLM fields is the same as that of
the DNS fields. However, it is interesting to examine statistics beyond the mean. Fig. 2.20
compares the PDFs for Zv calculated from the MTLM fields (blue squares) and DNS data (red
circles). It shows that the MTLM fields underestimate the probability of large values. This
mild discrepancy seems to be consistent with some of the results show previously where MTLM
fields have also been found to under-estimate large fluctuations to some degree. The MTLM
fields also show a low probability for Zv very close to zero, whereas in the DNS fields, the most
probable value is Zv = 0. The inset shows the correlation coefficient for Zv, defined as

Rzz(r) =
〈(Zv(x)− 〈Zv〉)(Zv(x + re)− 〈Zv〉)〉

〈(Zv(x)− 〈Zv〉)2〉 , (2.40)

plotted against the displacement r normalized by δx, where in the definition e is a fixed given
direction. Results for both ∆ = 8δx and 16δx are shown. It is expected that the correlation
is stronger for larger filter scales. The correlation for MTLM fields decays somewhat quicker
than that for the DNS fields, i.e., the MTLM fields somewhat underestimate the long range
correlations in the scalar fields.
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Figure 2.21: Conditional averages for ∆ = 8δx. Filled symbols: 〈Πθ|Zv〉. Empty symbols:
〈ε̃θ|Zv〉. Blue squares: MTLM fields. Red circles: DNS fields. Green diamonds: reference
models (see text).

The evolution of Zv is dominantly controlled by the SGS scalar dissipation Πθ and the filtered
(molecular) scalar dissipation ε̃θ, which provide the source and the sink terms for Zv, respectively.
To predict the PDF of Zv correctly, the conditional averages 〈Πθ|Zv〉 and 〈ε̃θ|Zv〉 need to be
correctly parametrized. The conditional averages are shown in Fig. 2.21. To put the results
from the MTLM fields in context, the results from two other models are also presented. For
〈Πθ|Zv〉, an eddy-diffusivity-type model

τ θi = cτ∆2|S̃|∂iθ̃ (2.41)

is used as a reference, where |S̃| ≡ (2S̃ijS̃ij)
1/2 is the modulus of S̃ij . The result from this model

is shown with solid green diamonds. In SGS modelling, the coefficient cτ is usually calculated
from the dynamic procedure. Here, we choose cτ empirically, so that the model result matches
the DNS result (shown with red circles) at Zv/〈Zv〉 = 1. This simple choice is sufficient to show
that the model does not provide consistent prediction for 〈Πθ|Zv〉, because it underestimates
the latter, and the discrepancy increases with Zv. Meanwhile, the result from MTLM fields
over-estimates 〈Πθ|Zv〉 by a rather significant amount, although, at large Zv, the discrepancy is
smaller than that of the reference model.

For 〈ε̃θ|Zv〉, we choose

ε̃θ = cε
Zv
τε

(2.42)

as the reference model, where the time scale τε is taken as |S̃|−1 (see, e.g., [144] and [7]). cε is
chosen in the same way as cτ above. In this case, the MTLM result (empty blue squares) follows
quite closely with the DNS result, whereas the result from the reference model (empty green
diamonds) is off by large amount.
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2.7.3 Geometrical statistics of SGS stresses and fluxess

In this subsection, we examine how the geometrical statistics related to the SGS stresses and
fluxes are captured by the synthetic MTLM fields. Overall, we find that the MTLM fields
reproduce the alignment statistics accurately, including τ θi − ω̃i, τ θi − S̃ij , τ θi − τij , ω̃i − τij , and

ω̃i− S̃ij alignment. In what follows, we present only the first three results as an illustration. The
PDFs of the cosine of the angle Λθ between SGS scalar flux vector τ θi and the filtered vorticity
vector ω̃i is given in Fig. 2.22. The PDFs have a sharp peaks at zero, which means that the
SGS scalar flux vector tends to be perpendicular to the filtered vorticity. The MTLM results
show a good quantitative agreement with the DNS results.
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Figure 2.22: PDFs of the cosine of the angle between τ θi and ω̃i, Λθ. Blue squares: MTLM
fields. Red circles: DNS fields.

Fig. 2.23 shows the PDFs of the cosines of the angles between the SGS scalar flux τ θi and the

three eigenvectors αs, βs and γs of the filtered strain-rate tensor S̃ij , denoted by Λα, Λβ and
Λγ , respectively. Both DNS and MTLM results are plotted. The comparison shows that the
results of MTLM fields are nearly the same as the DNS results. It is observed that τ θi tends to
make a 53◦ angle with αs, and a 37◦ angle with γs, whereas τ θi tends to be perpendicular to βs.
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Figure 2.23: PDFs of the cosine of the angles between τ θi and the eigenvectors of S̃ij from DNS
fields (empty symbols) and MTLM fields (filled symbols). Red circles: P (cos Λα). Blue squares:
P (cos Λβ). Green squares: P (cos Λγ).
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Figure 2.24: PDFs of the cosine of the angles between τ θi and the eigenvectors of −τij for DNS
fields (empty symbols) and MTLM fields (filled symbols). Red circles: P (cos Λα). Blue squares:
P (cos Λβ). Green squares: P (cos Λγ).

The preferential alignment between the SGS scalar flux vector τ θi and the eigenvectors of the
SGS stress tensor τij is presented in Fig. 2.24. Note that, for simplicity, we have used same
notation for the angles as in previous figure. Here, the PDFs from MTLM fields nearly overlap
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with those from DNS fields, except that the peaks are slightly underestimated by MTLM (the
peaks have been truncated hence are not shown in the figures). τ θi tends to align with γ−τ with
very high probability. On the other hand, τ θi tends to be perpendicular to both α−τ and β−τ ,
but with a higher probability for the former.

The high peak probabilities suggest a near deterministic alignment. This trend has been observed
previously, and has motivated a strategy to model τ θi in terms of τij [28].
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Figure 2.25: PDFs of the cosine of the angles between ω̃i and the eigenvectors of −τij for DNS
fields (empty symbols) and MTLM fields (filled symbols). Red circles: P (cos Λα). Blue squares:
P (cos Λβ). Green squares: P (cos Λγ).

Fig. 2.25 shows the distributions of the PDFs for the cosines of the angles between the filtered
vorticity vector ω̃i and the eigenvectors of τij tensor. The angles are again denoted by Λα, Λβ
and Λγ . These distributions display a good agreement between DNS and MTLM results, also
it is consistent with the previous studies [70]. It shows that, ω̃i tends to be aligned with an
extensive and intermediate eigendirections α−τ and β−τ , respectively. While, ω̃i tends to be
perpendicular to a contracting eigendirection γ−τ .

2.7.4 Effects of input energy and scalar spectra

In previous subsections, we have used the energy and scalar spectra from the 2563 DNS data set
as the input for the MTLM procedure. When MTLM is applied in a more practical setting, the
input spectra may have to be estimated, hence contain errors. It is thus important to understand
the effects of the input spectra. To achieve this, we now examine the MTLM fields with input
spectra modified in two different ways. In one case, we consider MTLM fields generated from
only parts of the spectra from the 2563 DNS data shown in Fig. 2.1. Specifically, we generate
MTLM fields with 643 grid points using the spectra in Fig. 2.1 in the range k ∈ [1, 32] as the
input, as well as MTLM fields with 1283 grid points using the spectra in the range k ∈ [1, 64]
as the input.
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Figure 2.26: The Kovasznay energy (blue squares) and scalar variance (red circles) spectra. The
lines are the DNS spectra. Solid line: energy spectrum. Dashed line: scalar variance spectrum.

These fields are missing most of the dissipation range due to the truncations. In another case,
we consider an analytical spectrum with a model for the dissipation range as the input. For the
velocity field, we use the Kovasznay spectrum [93], whose expression can be written as [134]:

E(k) = Ck〈ε〉2/3k−5/3

(
1− Ck

2
ν〈ε〉−1/3k4/3

)2

. (2.43)

In other words, the spectrum is the Kolmogorov spectrum corrected for viscous dissipation by the
factor in the parentheses. For scalar, we assume the spectrum is given by Eq. 2.5 multiplied by
the correction factor in Eq. 2.43. In order to ensure this case is comparable with previous results,
an empirical modification is applied. Namely, we use Eq. 2.43 (and the scalar equivalence) for
k ≥ 8 only. The spectrum for k ≤ 8 is still taken from DNS data. The dissipation rates in the
Kovasznay spectra are chosen in such a way that the two segments joins smoothly. The spectra
constructed this way are plotted in Fig. 2.26.

We use the model spectra to generate 2563 MTLM fields. The Kovasznay spectrum is reasonably
realistic but still deviates significantly from the observed turbulent energy spectrum. Therefore
it is a relevant yet stringent test. To help with exposition, we summarize all the data sets used
in this subsection in Table 2.1, along with their names.
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Dataset Description

M64 643 MTLM fields with trun-
cated DNS spectra as input

M128 1283 MTLM fields with trun-
cated DNS spectra as input

M256 2563 MTLM fields with full
DNS spectra as input

MKov 2563 MTLM fields with Ko-
vasznay spectra as input

DNS 2563 DNS fields

Table 2.1: Datasets and descriptions.

We show in Fig. 2.27 the co-spectra between the scalar θ and the y-velocity component. It
can be seen that the agreement between the three resolutions is very good, all agreeing closely
with the DNS result. The spectra of M64 and M128 are slightly lower than that of M256, but
overall the effects of truncation is very small. Since the M64 and M128 fields, with 643 and
1283 grid points, are obtained with few iterations than the M256 fields, this shows that number
of iterations is not essential for the development of the proper correlation between the scalar
field and the advecting velocity. Such correlation must come basically from the strong coupling
between the scalar and velocity mappings, rather than from the mimicked cascade process. This
is corroborated by the result from MKov data. Here the co-spectrum at the high wavenumber
end displays similar features as the Kovasznay energy and scalar spectra, where it bulges upward
before dropping off sharply.
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Figure 2.27: The co-spectra between θ and y-velocity component. Black solid line: 2563 MTLM
fields. Black dashed line: 2563 DNS. Red circles: 644 MTLM fields. Blue squares: 1283 MTLM
fields. Green diamonds: from Kovasznay spectra.
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Figure 2.28: The averaged SGS energy dissipation as a function of filter scale ∆. Symbols and
colors are the same as in Fig. 2.27. The inset shows 〈Π〉 normalized by ∆2〈|S̃|〉3.
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Figure 2.29: Same as Fig. 2.28 but for the SGS scalar variance dissipation.

The mean SGS energy dissipation as a function of the filter scales is shown in Fig. 2.28.
The truncation has little effects on energy dissipation 〈Π〉, since the results for M64, M128
and M256 all collapse on the same curve. On the other hand, the result from MKov fields
deviates significantly from the one from M256, and the difference is observed over all ∆ values.
To understand the significance of this observation, the inset plots 〈Π〉 from MKov, M256 and
DNS, normalized by ∆2〈|S̃|〉3. Now the results for MKov and M256 become very close to each
other. Therefore, the deviation in 〈Π〉 comes mainly from the difference between the Kovasznay
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spectrum and the DNS spectrum, hence can be removed by suitable normalization. Since the
normalization factor can be calculated from the energy spectrum, the remain question is how
to find a good approximation for the spectrum. Though it is in no way easy, this question is a
standard one with much previous research can be drawn upon. Therefore the observation from
this figure is encouraging.

Fig. 2.29 shows that truncation has stronger effects on scalar SGS dissipation 〈Πθ〉. In particular,
the M64 fields produce slightly smaller values. The result from MKov fields is close to the M256
results, with slight over-estimation for approximately 10 ≤ ∆/δx ≤ 30. This observation is not
surprising, since the scalar Kovasznay spectrum is not very much different from the DNS scalar
spectrum (cf. Fig. 2.26).
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Figure 2.30: The PDFs of the normalized SGS energy dissipation: Π+ = (Π− 〈Π〉)/σΠ. Blue
squares: 2563 MTLM fields. Cyan diamonds: 1283 MTLM fields. Medium-orchid squares: 643

MTLM fields. Green triangles: from the Kovasznay spectra.

The PDFs of the normalized SGS energy dissipation Π+ are given in Fig. 2.30. These results
show that the strong positive skewness remains mostly unchanged by the change in input energy
spectrum. The PDF from MKov fields agrees particular well with the PDF from M64. Some
differences can be discerned for the probabilities of large negative fluctuations; they seem to
decrease with increasing resolutions.

Note that the difference between M256 data and M64 (or M128) is that, in the latter, the
small scales in the dissipation range are decimated or absent. Thus the above observation is
consistent with the notion that the scales much smaller than the filter scale can be modelled by an
eddy-viscosity-type model, since their overall effects are dissipative and reducing backscattering.
Nevertheless, we caution against drawing definite conclusions because statistical fluctuations are
relatively large at the tails of the PDFs. In any case, the effects are rather small. The PDFs for
the normalized SGS scalar variance dissipation, Πθ

+, show again little difference for the different
data sets, therefore the figure has been omitted.
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Figure 2.31: Conditional average 〈ε̃θ|Zv〉 with ∆ = 8δx (main figure) and 16δx (inset). Red
circles: 643 MTLM fields. Blue squares: 1283 MTLM fields. Green diamonds: from Kovasznay
spectra. Solid line: 2563 MTLM fields with DNS spectra. Dashed line: DNS result. Dash-dotted
line: reference model (Eq. 2.42) calculated from DNS data.

The results for conditional average 〈ε̃θ|Zv〉 is shown in Fig. 2.31. Since the dominant contribution
to ε̃θ comes from dissipation range, one would expect the changes in the input spectra have
stronger effect. Indeed, the result from M64 shows significant deviation from the M256 and DNS
results. The result from M128 stays close to that of M256, arguably because the truncation is
less severe and part of the dissipation range is retained. The result from MKov is not much
changed from that of M256 either. The inset shows the same results with ∆ = 16δx. Same
trends are observed, but MTLM fields results are closer to the DNS results in relative terms.
The results shown in this figure suggest that a reasonably accurate model spectrum can provide
good approximation to 〈ε̃θ|Zv〉.

Finally, we note that we have also looked into the geometrical statistics for these new datasets
as in previous subsections. The general observation is that all data sets reproduce the preferred
alignment configurations in DNS, although the probabilities for the preferred configurations
become weaker when the resolution is decreased (from 2563 to 643). We present only Figs. 2.32
and 2.33 to illustrate the above observation. Fig. 2.32 shows the PDFs of cos Λα = (α−τ , τ

θ
i )

from M256, M128 and M64 fields. All three PDFs show the same preferred alignment at cos Λα =
0, the two vectors being perpendicular to each other. The PDFs of cos Λα = (α−τ , ω̃i) from
same data sets are showen in Fig. 2.33. The same can be said about the preferred alignment
for three PDFs, but with peak values at cos Λα = 1, which means that the ω̃i vector tends to
align with the eigenvector α−τ . However, the peak probability decreases with the resolution, as
we mention above.
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Figure 2.32: PDFs of the cosine of the angles between τ θi and the eigenvector of α−τ . Blue
squares: 2563 MTLM fields. Cyan diamonds: 1283 MTLM fields. Medium-orchid squares: 643

MTLM fields.
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Figure 2.33: PDFs of the cosine of the angles between ω̃i and eigenvector α−τ . Blue squares:
2563 MTLM fields. Cyan diamonds: 1283 MTLM fields. Medium-orchid squares: 643 MTLM
fields.
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2.8 Conclusions

In this chapter, the multi-scale turnover Lagrangian map is generalized to synthesize passive
scalar fields driven by a uniform mean scalar gradient. The synthetic velocity and scalar fields
are then investigated from the perspective of SGS modelling. We calculate the statistics related
to the SGS stress, the SGS scalar flux, and the SGS scalar variance obtained by filtering the
synthetic MTLM fields. We also look into how the synthetic fields are affected by the input
spectra.

Comparisons with DNS data show that the resultant non-Gaussian MTLM fields display many
properties commonly observed in DNS data, including the skewed and intermittent probability
density distributions for the SGS dissipation rates, the preferential alignment between different
objects, the scalar-velocity correlations, and the skewness of the scalar gradient in the direction of
mean gradient. The results obtained from fields with different spectra as the input demonstrate
the robustness of the MTLM procedure. Most of the statistics are unchanged by the spectra.
Some statistics, such as the mean SGS energy dissipation, depend rather strongly on the energy
spectrum. However, the dependence may be parametrized in a simple way.

We show that the linear mean scalar profile can be modelled by the MTLM procedure easily
with little additional computation cost. It shows that the MTLM can be generalized to include
other linear effects without difficulties. This study complements previous discussions (see [156],
[157], and [158] for discussions on other properties) on this technique, and provides solid basis
for its applications in LES and SGS modelling. Future research will focus on technical challenges
such as, among others, the modelling of inhomogeneous flows, where no complete information
regarding the spectra is available. In such cases, one may have to estimate the spectra from the
resolved the scales, and make use of the physics of the flows. How to implement such as scheme
is a topic of our on-going research.
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Chapter 3

Synthesizing Turbulence Using a
Constrained Multi-Scale Turnover
Lagrangian Map

.
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3.1 Introduction

Synthetic turbulence models are based on a combination of Fourier modes, [105, 16, 170, 12, 37]
which are rescaled to comply with a target spectrum. Then, according to a given Reynolds
stress distribution the turbulent fluctuations are rescaled at each point in order to produce the
required anisotropic turbulent Reynolds stress [145]. Most of the rescaling techniques that have
been proposed [170, 101, 100, 78, 89, 113] are based on certain matrix decomposition (such as
the Cholesky decomposition) of the Reynolds stress tensor. A digital-filter-based generation of
turbulent inflow conditions for large eddy simulations is presented as a very efficient method of
generation a small-scale urban canopy flows [88]. As is mentioned, the synthetic fields can be
used to combine between the weather scale flows and the street scale computations to provide the
dynamic large-scale inlet boundary conditions. The generation of the three-dimensional, vector
valued, divergence-free functions that reproduces the non-Gaussian statistics, intermittency, and
non-trivial skewness remains, however, a challenge. As a consequence, there is a serious need
for improvement in the computation of turbulence.

Rosales and Meneveau [157] proposed MTLM to generate non-Gaussian synthetic field. In pre-
vious chapter MTLM has been reviewed. A new method, the constrained multi-scale turnover
Lagrangian map (CMTLM) approach has been introduced by Li and Rosales [107]. They at-
tempted to generalize the MTLM method to anisotropic turbulence, which is more relevant to
practical applications. CMTLM procedure formulates the problem as an optimization problem
using the adjoint formulation, in which the initial random field is taken as the control variable,
and the additional features presented in inhomogeneous turbulence are taken as a target func-
tion to be matched by the synthetic fields. In Li [108] the CMTLM method has been used in
order to generate realistic initial turbulent fields with any specified anisotropic Reynolds stress
tensor to investigate the decaying process from initial turbulent fields with the aim to prove the
universality.

In general, optimization and control problems are made up of the following ingredients [64]:

1. State variables: In the fluid mechanics setting , the sate variable could be one or more of the
velocity vector, velocity potential, pressure, density, temperature and internal energy—in
short, the mechanical and dynamical variable that describe the flow.

2. Control variables or design parameters: The control or design variables could be the heat
flux or temperature at a wall, an inflow mass, or parameters that determine the shape of
the boundary— in short, one or more of the data specified that serve to determine the
state variables.

3. An objective, or cost, or performance functional: There are many possibilities for a objec-
tive functional, it may measure, e.g., how close the velocity field is to a given field, or the
size of the drag or lift, or temperature variations, etc.

4. Constraints that candidate state and control variables are required to satisfy: The con-
straints are of two types, the main constraints are the governing flow equations, e.g., the
Navier Stokes , or Euler, or potential flow equation. In addition, one can encounter sides
such as minimum lift, or minimum volume, or maximum power requirements.
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The optimization problem is then to find the state and control variables that minimize(or maxi-
mize, as the case may be) the objective functional subject to the requirement that the constraints
are satisfied. The solution of the optimal control and optimization problems can be approaches
by one-shot, or adjoint, or co-state, or Lagrangian multiplier methods through introduce the
Lagrange multiplier or adjoint variable or co-state variable [107].

In this work, we derive a new optimality system generalizing the CMTLM technique in order to
model anisotropic turbulence on the solid wall. We modify CMTLM procedure to formulate the
problem as an optimization problem using the adjoint formulation where the control variable is
constrained to generate anisotropic synthetic turbulence with the impermeable boundary con-
ditions. Practically, synthesizing the turbulent channel flow according to the modified CMTLM
approach to implement the effects of the solid walls. Our purpose is to find the optimal control
variable which minimizes the difference between the target function and the synthetic field where
the desirable features presented in anisotropic turbulence field are taken as a target function.

As we consider a fully developed channel flow as an example. We now briefly review some basics.
Shapes of mean velocity profiles and the frictions laws describe the shear stress exerted by the
fluid on the wall are the most important features in this flow. In examining fully developed
channel flow, we have looked into the flow among a rectangular channel of height h = 2δ, y = 0
and y = 2δ refer to the bottom and top walls, respectively, whereas y = δ refers to the mid-
plane. In the axial direction (x = x1), a mean flow is prevalent, while at the cross-stream
direction (y = x2) the mean velocity is essentially changed. The flow is statistically independent
of z. (U, V,W ) = (U1, U2, U3) refers to velocities in the three coordinate directions, and their
fluctuations are represented by (u, v, w) = (u1, u2, u3).

The flow is statistically one-dimensional because statistics are regardless of x3, also it is statisti-
cally unchanged under reflections of the x2 coordinate axis. Consequently, these two conditions
result in

∂f

∂x3
= 0

f(V1, V2, V3;x1, x2, x3, t) = f(V1,−V2, V3;x1,−x2, x3, t).

where f(V ;x, t) represents the PDF of velocity. Then the second equation means 〈W 〉 = −〈W 〉
at x3 = 0, in other words, the mean of the span-wise velocity 〈W 〉 = 0, 〈u1u3〉 = 0 and
〈u2u3〉 = 0. Also the turbulent channel flow is statistically symmetric about the plane x2 = 0,
which implies that 〈U2〉 and 〈u1u2〉 are odd functions of x2, whereas 〈U1〉 and the normal stresses
are even functions.

The near-wall turbulent behaviours at a large scope are universal. The idea that all wall turbu-
lence at high Reynolds numbers are described by a thin region close to the wall (y/δ � 1), in
which δ represents the characteristic flow width is firstly preposed by Prandtl (1925)[148]. This
region is called the an inner layer and the viscous scales specifies the mean velocity profile via
the viscosity ν.

The total shear stress τ(y) is

τ = ρν
d〈U〉
dy
− ρ〈uv〉. (3.1)
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where ρν d〈U〉dy and ρ〈uv〉 represents the viscous stress and the Reynolds stress respectively. At
the wall Reynolds stresses are zero. As a consequence, viscosity ν is completely responsible for
producing the wall shear stress τw. In other words,

τw ≡ ρν
(
d〈U〉
dy

)
y=0

. (3.2)

Evidently, these parameters play a crucial roles adjacent to the wall. Consequently, some viscous
scales can be defined from dimensional analysis:

uτ ≡
√
τw
ρ
, (3.3)

δν =
ν

uτ
. (3.4)

uτ and δν are the friction velocity and viscous length scales, respectively. The viscous length
scale δν is the suitable lengthscale at a viscous wall region, whereas δ is the suitable lengthscale
at a outer layer region. We define

Reτ ≡
uτδ

ν
=

δ

δν
. (3.5)

where Reτ is the friction Reynolds number .

The viscous scales are used as wall units to non-dimensionalize y and u:

y+ ≡ y

δν
=
uτy

ν
, (3.6)

u+ ≡ 〈U〉
uτ

. (3.7)

where y represents the distance from the wall. There is a very thin region closed the wall with
y+ < 5, termed viscous sublayer , where the inertial effects and the Reynolds shear stress can
be ignored. In this region, the mean velocity profile has a universal shape given by the linear
relation of the wall law U+ = y+. On the other hand, in outer layer region where y+ > 50,
the effect of molecular viscosity on shear stress is trivial and the size of the large eddies are
measured by the characteristic geometrical length scale δ. This region does not have a universal
velocity profile and it varies for various flows, in opposition to the universal wall law U+ = y+.

Supposing that a local equilibrium within production and dissipation of energy processes at an
overlap area between viscous sublayer and outer layer regions which is for y/δ � 1 and y+ � 1,
von Karman (1930) [82] derived the logarithmic wall law for a mean velocity profile

u+ =
1

K
log y+ +A, (3.8)

with K ≈ 0.4 is called the von Karman constant with A ≈ 5.2. Experiments [145] demonstrated
that the log-law is standing for y+ > 30 and y/δ < 0.3.

This chapter is organized as follow. In Section 3.2 , we illustrate briefly the MTLM procedure.
The optimality system of the modified CMTLM with reflectionally symmetric is derived in
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Section 3.3. Section 3.4 shows the solution of the optimality system with the adjoint of the
discretized advection operator. In Section 3.5, we look into the computational domain and
numerical requirements. Statistical analysis of the CMTLM synthetic fields are given in Section
3.6. Conclusions are outlined in Section 3.7.

3.2 The MTLM procedure

As explained in the second chapter Sec. 2.4, after the MTLM procedure, the final field ue is
given by

ue =Mϕ, (3.9)

where

M =

M∏
n=1

[Rn(PAn)mnGn + Gcn]P, (3.10)

where Rn is the notation we will use here for rescaling operator in the nth iteration. In general,

Rû(k) =

(
Ep(k)

E(k)

)1/2

û(k). (3.11)

The rescaling operator is applied in order to impose the prescribed energy spectrum Ep(k).
Therefore, the amplitudes of the Fourier modes û(k) are scaled proportional to

√
E(k) in order

to match the desired spectrum, in which E(k) is the energy spectrum of û(k) at k = |k|, and
Ep(k) is a prescribed kinetic energy spectrum. A, G and P are defined in the same way as
previously in Sec. 2.4. Note that, we have changed the input to the map u(x) to ϕ(x) to make
it consistent with the notation used in [107], however, we have also used u(x) in some notations
for more clarifications.

3.3 The optimality system of the modified CMTLM with reflec-
tionally symmetric controls

We now explain how to synthesize the turbulent channel flow with a prescribed energy spectrum
Ep(k) using the modified CMTLM procedure. We assume that velocity field w(x) is known, and
our aim is to model some of its features with a modified CMTLM synthetic velocity field. Then
the optimization problem is to find the controls ϕ, state ue, and co-state ξ variable that minimize
J over all possible ϕ(x) subject to the constraint equation. The solution of the optimal control
and optimization problems can capture by Lagrangian multiplier methods through introducing
the adjoint variable ξ [107].

In the CMTLM procedure, the Lagrangian functional is defined as

L(ϕ,ue, ξ) = J(ue) +

∫
ξ.(ue −Mϕ)d3x, (3.12)

where the cost function

J(ue) =
1

2
‖F [ue(x)−w(x)]‖2, (3.13)

where F is the filtering operator that extracts some particular features of the velocity field. We
suppose that velocity field w(x) is known.
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The constraint equation is defined as

f(ue,ϕ) = ue −Mϕ = 0. (3.14)

The first order necessary conditions that yield an optimality system from which optimal states
and design parameters may be determined to be

limε→0

(
L(ξ+εξ̃)−L(ξ)

ε

)
= 0⇒ state− equation, for arbitrary ξ̃.

limε→0

(
L(ue+εũe)−L(ue)

ε

)
= 0⇒ adjoint− equation, for arbitrary ũe.

limε→0

(
L(ψ+εψ̃)−L(ψ)

ε

)
= 0⇒ optimality − condition, for arbitrary ψ̃.

Given the many desirable properties of the modified CMTLM synthetic fields, our goal is to
use this procedure in order to model anisotropic turbulence near the wall. We want to consider
impermeable boundary conditions, i.e., un = 0 where the normal components of velocity field
are zero but tangent components may be non-zero. The aim is to model w(x) with a modified
CMTLM synthetic velocity field and take into account the effects of the impermeable boundary
conditions.

We assume that x2 = 0 is where the solid wall is. Thus we need to force ue2 = 0 at x2 = 0.
Our idea is in some way to make sure ue2 is an odd function with respect to x2. To achieve
this we limit the initial velocity field ϕ to ones that have the following properties: ϕ1 is an even
function of x2, ϕ2 is an odd function of x2 and ϕ3 is an even function of x2. To enforce these
properties we let

ϕ(x) =
1

2
[ψ(x) +Hψ(Hx)], (3.15)

where H is defined as

H =

 1 0 0
0 −1 0
0 0 1

 ,

and

Hx =

 x1

−x2

x3

 = x∗.

Then for arbitrary ψ, ϕ is guaranteed to have the above reflectional symmetries. We will thus
use ψ as the control to find the optimal solution. Note that this way is simpler then imposing
these symmetries directly on ue. However, we do need to show ue has the same symmetries. It
means we need to prove that the MTLM procedure conserves the symmetries, which is done in
Appendix A.

With ψ introduced, we have a new map, which is

ue =M
[

1

2
[ψ(x) +Hψ(Hx)]

]
. (3.16)

Therefore, the next step is to derive the optimality system for this new map. The details are
given in the Appendix A, we only summarize the results below.
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The optimal solution for ψ can be found as part of the solution of the coupled optimality system,
which includes the constraint Eq. 3.16, the adjoint equation and the optimality condition [107].
Setting the first variation of L with respect to the Lagrange multiplier ξ equal to zero, following
the standard technique [64], would recover the state equation ue =Mϕ, where

ϕ(x) =
1

2
[ψ(x) +Hψ(Hx)]. (3.17)

The adjoint equation is given through that the functional derivative of L with respect to the
state variable ue equal to zero, which is resulting in

ξ(x) = −F [ue(x)−w(x)], (3.18)

when F is a cut-off filter operator.

The optimality condition is achieved by setting the first variation of the L with respect to the
control variable ψ equal to zero, which is equivalent to the condition

lim
ε→0

(
L(ψ + εψ̃)− L(ψ)

ε

)
= −

∫
1

2
[(M+ξ)(x) +H(M+ξ)(Hx)].ψ̃(x)d3x = 0

= 〈ψ̃(x),
−1

2
[(M+ξ)(x) +H(M+ξ)(Hx)〉. (3.19)

Thus, the Gateaux derivative of L with respect to ψ is

δL
δψ
|ue,ξ=

−1

2
{(M+ξ)(x) +H(M+ξ)(Hx)}. (3.20)

Since the adjoint equation and the state equation are solved exactly [107], we have

DJ
Dψ =

δL
δψ
|ue,ξ=

−1

2
{(M+ξ)(x) +H(M+ξ)(Hx)}. (3.21)

It can be calculated from the ξ and the operator M+. The optimality condition becomes

{(M+ξ)(x) +H(M+ξ)(Hx)} = 0, (3.22)

where formally M+ is the adjoint operator of the tangent operator of M defined as

M+ = P
M∏
n=1

(Bn + Gcn) = P
M∑
i=1

Gci−1

M∏
n=i

Bn. (3.23)

where the operators in the products are ordered such that n increases from left to right. Gc0
denotes the identity operator, and Bn is defined by

Bn = GnDA+
n DR+

n . (3.24)

Where DR+
n and DA+

n are the adjoint of the the tangent operators of the ofRn and the composite
(PAn)mn , respectively. Following same ideas presented in [107], we now give the expressions
of the above adjoint operators for clarification. Starting with Ru, to find the DR+

u , we use the
definition of R, Eq. 3.11, when it is acting on a generic velocity field u. The operation of DR+

u

on a test function η(x) is given by
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DR+
u η̂(k) = Ruη̂(k)− Ep(k)1/2

E(k)3/2
ζuη(k)û(k), (3.25)

where η̂ is the Fourier transform of η and ζuη(k) is the co-spectrum between u and η, defined
as

ζuη(k)û(k) =
1

2

∮
Sk
η̂∗.ûdS. (3.26)

The integration is conducted over the surface Sk = {k : |k| = k} in the Fourier space, and the
asterisk refers to the complex conjugate. The next step is to illustrate DA+

n , in which it may
write

DA+
n = DA+

n0 DA+
n1 ...DA+

n(mn−1), (3.27)

Therefore, we need to find DA+
ni in order to find DA+

n . We consider DA+
u , namely the adjoint of

PA when it is applied to a generic velocity field u. By use of test function η(x), the expression
for DA+

u acting on this function is given as follows:

DA+
u η(x) =

∫
dyW (y − x− u(y)t)Pη(y)

+

∫
dyW (y − x− u(y)t)[∇yPη(y)].u(y)t, (3.28)

where W(.) is the weight function and t is the advection time parameter for the advection
operator A. ∇y denotes the gradient operator with respect to y. Note that DA+

u is the same as
DA+
ni with vni replaced by u, in which vni can be formed as:

vni = (PAn)iun1, (3.29)

for i = 0, 1, ...,mn−1, where vn0 ≡ un1 and (PAn)mnun1 = un2 Thus, vni for i = 0, 1, ...,mn−1,
and un2 are found and stored during the solution of the state equation Eq. 3.16 in order to
evaluate M+ξ.

Equations 3.16, 3.18 and 3.22 are the optimality system for the optimization problem, which
provides an optimal initial field ψ(x), so that the modified CMTLM procedure produces the
synthetic field that matches the desired features in the target flow field and at the same time
satisfies the impermeable boundary conditions.

3.4 Solution of the optimality system with the adjoint of the
discretized advection operator

In the CMTLM technique, Li and Rosales [107] have solved the optimization problem using
numerical implementation. So to find ψ that minimize the difference between ue and w, we will
solve the state equation which is given by Eq. 3.16, adjoint equation given by Eq. 3.18, and the
gradient of the cost function which is given by Eq. 3.21 using the iteration procedure as follows:
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1. The state equation Eq. 3.16 can be solved by applying the MTLM procedure on ψi which
is resulting in uie, and saved the intermediate velocity field.

2. Obtaining the cost function J i ≡ J(uie). Exit if J i < e, otherwise continue to the next
step.

3. The adjoint variable can be calculated ξi from the adjoint equation Eq. 3.18.

4. Using the ξi and the velocity field saved in the first step to evaluate the gradient of the
cost function J i with respect to the control ψi, to perform steepest descent iterations. The
gradient is given by

DJ i
Dψi

=
−1

2
{(M+ξi)(x) +H(M+ξi)(Hx)}. (3.30)

5. Update the approximate solution i.e., the control ψi depending on steepest descent method
with back tracking [108].

ψi − λDJ
i

Dψi
→ ψi, (3.31)

where λ is the stepsize. It increased by a fraction if the cost function is successfully reduced
during the current iteration. Otherwise , we reduce λ and retry the iteration. In this algorithm,
starting with that ψ0, as the initial guess for ψ and a tolerance e, we repeat the above steps for
i= 0, 1, 2, . . . :

As is illustrated in Ref. [107], DJ
i

Dψi is computed in accordance to Eq. 3.30 depending on the set

of nested operations for the adjoint operator M+ in Eq. 3.23, which can be written as

P{{[...]BM−2 + GcM−2}BM−1 + GcM−1}BM , (3.32)

In other words, operators in the products have been ordered such that from right to left n de-
crease from M to 1. Consequently, in the wavenumber space at length scale `M−1 the evaluated
BMξi subject to the filter GM−1 in order to decompose it into low wavenumber components
BM−1BMξi and high wavenumber components BMξic. Then at length scale `M−2, BM−1BMξi
subject to filter GM−2 in order to decompose it into BM−2BM−1BMξi and BM−1BMξic, while
BM−1BMξic are kept unchanged. This procedure will repeat until B1B2...BMξi is merged with
all high wavenumber components which are kept unchanged. Note that in the numerical imple-
mentation of the MTLM map, the operations are applied recursively over a set of finer and finer
grids defined by the length scales, whereas CMTLM procedure is started from the finest grid
and iterates on coarser and coarser ones.

Due to the nature of numerical methods, the continuous versions of the adjoint equation and
gradient of the cost function are discretization when they are solved numerically. Li and Ros-
ales [107] used a “differentiate-then-discretize” method in the numerical implementation. The
numerical implementations of the CMTLM map are given in more details in the Appendix A.
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3.5 Computational domain and numerical requirements

Our computation is carried out over a cubic domain of size [0, 2π]3, discretized in a regular mesh
of a N3

M = 128 nodes, with periodic boundary conditions in all three X, Y and Z directions.
The prescribed energy spectrum is given by [80], [156].

E(k) = Ckε
2/3k−5/3

[
kl

((kl)α2 + α1)1/α2

]5/3+α3

× exp(−α4kη)

with a value Ck = 1.613 for the Kolmogorov constant, and the parameters α1 = 0.39, α2 = 1.2,
α3 = 4.0, α4 = 2.1. The imposed mean energy dissipation rate ε = 0.1, ν = 0.0018 and the
imposed r.m.s. velocity is urms = 0.2π and it is prescribed such that these combinations of
parameters results in a Reynolds number of Reλ ≈ 140 for the 1283 mesh. We let tolerance
e = 2%. The number of grids points is 1283, so we have grid size δx = π/64. Hence, for a given
parameters δx is about three times the Kolmogorov length scale η = (ν3/ε). The results shown
were obtained with M = 5 scale levels, on grids of 43, 83, 163, 323, and 643 nodes.

The modified CMTLM optimality system are solved iteratively through the implementation of
modified CMTLM procedure in a modified code, 500 of the realizations synthetic velocity fields
are generated. All solutions are found to within 2% tolerance in less than 10 iterations. Given
that the fully developed channel flow fields are homogeneous in the streamwise and spanwise
directions, so that the statistical values presented here have, unless otherwise stated, been time
averaged over all the realizations and also averaged over x and z planes.

As we explained above, the effects of the wall are modelled by imposing reflection symmetry
around the mid-plane of the periodic box Y = π, where Y is the distance to the bottom of the
box. Due to periodicity of the domain, the plane at Y = 3π is also a symmetric plane. As a
result, the velocity fields between Y = π and Y = 3π is the model for the velocity field in the
channel. The field is symmetric with respect to Y = 2π. Therefore, in what follows, we show
the results from Y = π to 2π only, which corresponds to y = 0 to π as y is the distance to the
wall.

3.6 Statistical Analysis of the CMTLM Synthetic Fields

3.6.1 Mean velocities

The profiles of the turbulent mean velocities fluctuations 〈vx〉, 〈vy〉 and 〈vz〉 are shown in Fig.
3.1, where 〈·〉 denotes the average which is taken over different realizations and the x and z
directions, and 〈vx〉, 〈vy〉 and 〈vz〉 are functions of y.

The general character of the 〈vx〉 velocity curve is quite similar to that from the DNS of Kim et
al. (1987) [87]. It is evident that, the viscous stress is dominated at the wall. For example, the
viscous contribution to the total shear stress accordingly to [145], drops from 92% at the wall
(y = 0) to 42% at y ≈ 0.6, and to less than 2% by (y ≈ 2.0). However, the negative velocity
indicates that there is a background flow adjusted to the wall, which means more works are
needed to get more an accurate results.
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Figure 3.1: The mean velocity profiles. Blue squares: the averaged streamwise velocity, 〈vx〉.
Red line: the averaged wall-normal velocity, 〈vy〉. Green squares: the averaged spanwise velocity,
〈vz〉.
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Figure 3.2: Cross correlation

3.6.2 Turbulence intensities and shear stresses

We look now at the result of cross correlation between u and v velocity components which is
plotted against y, and averaged over all realizations and over x and z directions as shown in Fig.
3.2. It is evident that close to the wall y = 0, the viscous stress ρν d〈U〉dy dominates at the wall
since 〈uv〉 close to zero. The negative value of the cross correlation for y in the range [0, 1] is an
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indication of the Reynolds shear stress is negligible compared with the viscous stress, and their
contribution to total shear stress Eq. 3.1 in this region is zero. However, the two correlation
behaviour has been a subject of some disagreement for y ≥ 0.25, in which the profile should be
a straight line when the flow reaches an equilibrium state [87].

Turbulence intensities for the three velocities fluctuations components urms,vrms and wrms are
presented in Fig. 3.3, where urms =

√
〈u2〉 and u = vx − 〈vx〉 is the fluctuation of the x-

component of the velocity. 〈u2〉, 〈v2〉 and 〈w2〉 are averaged over different realizations and the
x and z directions and as functions of y, where v = vy − 〈vy〉 and w = vz − 〈vz〉 are the y
and z-components of the velocity field. We may qualitatively compared with those at Reynolds
number of 3300 from DNS data of Kim et al. (1986) [87]. The general shape of the profiles is in
good agreement, in which the level of the normal component of intensity is the lowest. Also the
location of maximum streamwise fluctuation is at y ≈ 0.3, which corresponds to the location of
the maximum production. Note that the maximum urms is about 1.35, where the streamwise
turbulence intensity at y = 0 is as high as about 1.12, mainly due to the non-zero turbulence
production there. There is a considerable discrepancy in turbulence intensity in the near-wall
region, which possible could be ascribed to Reynolds number effects. It can be seen that there
are considerable overlap between urms and wrms, in which urms reaches the distinct minimum
value of about 1.12, whereas wrms has the distinct maximum at this region. Note, however, urms
and wrms are constant close to the wall. Although the normal component vrms in our simulation
is increasing towards a maximum in the wall-region, for obtaining accurate quantitative data
for channel flow, it should decrease to zero at the wall, this is an overprediction. A similar
discrepancy is noticeable for turbulence intensity for the experimental data of Hanratty el al.
(1977)[67], and for DNS of Kim et al. (1986)[87].
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Figure 3.3: Root-mean-square velocity fluctuations. Blue squares: urms. Red circles: vrms.
Green squares: wrms.
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3.7 Conclusions

The objectives of this chapter is to provide a background about the Constrained MTLM tech-
nique, modify the CMTLM procedure to include the effects of solid wall boundaries, and syn-
thesize the turbulent channel flow according to the modified CMTLM approach. The modified
CMTLM procedure outlined in this chapter generates a reflectionally symmetric synthetic field.
The symmetric field is a model of the velocity field in a fully developed channel flow. We prove
that each operator of the MTLM procedure preserves the reflectional symmetries, derived the
new adjoint optimality system with reflectional symmetry depending on the new map of the
modified CMTLM procedure. We finally consider the mean statistics of the modified CMTLM
synthetic fields in comparison with the computed and experimental results.

Our work has presented a new method for generating anisotropic synthetic turbulence with
the impermeable boundary conditions and taking into account the technical difference for the
turbulence on the solid wall. We set the mean channel flow profile as the target field for the
modified CMTLM fields. The mean velocity generated by the modified CMTLM procedure
reproduces the target field we have specified. Qualitative agreement was found in some detail
for mean velocity profiles, turbulence intensities and cross correlation, in comparisons with
experimental and DNS data. The fully developed channel flow is an ideal environment for
testing the modelling of the anisotropic turbulence. However, further work is needed to obtain
more reliable results.
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Chapter 4

The Cost Function and the Adjoint
Field of the Constrained Multiscale
Turnover Lagrangian Map
(CMTLM) method
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4.1 Introduction

In this section, we study the relative importance of theM+ operator in the CMTLM procedure,
and quantify the effects of control variable ϕ on a cost function gradient evolution. In accordance
to Eqs. 4.6, 4.7 and 4.9, we restrict our investigations to study the structure and the behaviour
of the gradient of cost function with respect to the control variable, DJDϕ , and those of the adjoint
field ξ(x), which are built up by CMTLM procedure. In particular, we investigate the effects
of imposing a different cost function , and how it affects the results, especially, when the target
field is taken from DNS data. Equipped with this knowledge, we could modify CMTLM and
make it more flexible to synthesize more complex turbulent flows. To do so, we look into the
CMTLM synthesized two Kolmogorov flows, which have been reported in Li and Rosales [107],
and we also consider an arbitrary cost function J as follows:

J(ue) = ue(x) ·w(x), (4.1)

in order to produce an arbitrary adjoint field ξ, defined as

ξ(x) = −w(x). (4.2)

Then, we use this arbitrary cost function and their adjoint field to analyse the CMTLM proce-
dure. The target flow field w(x) is taken from DNS which is reported in Sec. 2.5.

The two Kolmogorov flows are synthesized using the Constrained MTLM procedure [107]. Using
the adjoint formulation, Li and Rosales formulated the problem as an optimization problem. The
initial random field was taken as the control variable, and it is adjusted using an adjoint-based
optimization technique. Minimization of the difference between the target field and the synthetic
field by an appropriate optimal control variable is the goal.

The Constrained MTLM method is a generalization of the MTLM method [156]. This method
requires a known velocity field w(x) in order to formulate the problem. The aim is to model
some aspects of this known velocity field via CMTLM method. To do so, we adjust the initial
random Gaussian field ϕ(x) hence adjust the non-Gaussian final field ue. At the optimum, ue
matches the desirable features of w(x).

We quickly summarize the notations. Introducing a generic cost function enables us to find such
an initial field by means of an optimization procedure:

J(ue) =
1

2
‖F [ue(x)−w(x)]‖2, (4.3)

where F is a filtering operator that extracts some specific features of a velocity field. Usually,
F is a cut-off filter with a large filter scale to ensure that the optimization procedure will only
improved the large scale structures of ue. The purpose of this technique is to minimize J over
all possible ϕ(x), subject to the constraint or the state equation:

ue =Mϕ. (4.4)

where

M =
M∏
n=1

[Rn(PAn)mnGn + Gcn]P. (4.5)
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In terms of optimal flow terminologies, ϕ is the control variable, ue is the state variable [64].

An important step for finding the optimal solution for ϕ is introducing the Lagrangian of the
system L(ϕ,ue, ξ) in accordance to Eq. 3.12, where ξ is a Lagrangian multiplier or the adjoint
variable. Then depending on the the standard technique [64], adjoint equation was obtained
by following the condition that functional derivative of L with respect to the state variable ue
equals zero, so that the generic adjoint equation reads

ξ(x) = −F [ue(x)−w(x)], (4.6)

Next, using Eqs. 4.4 and 4.6 with the optimality condition that the partial functional derivative
of L with respect to the control variable ϕ is zero at the optimum resulting in

δL
δϕ
|ue,ξ=M+ξ, (4.7)

where M+ is the adjoint of the tangent operator of M, which is defined as

M+ = P
M∏
n=1

(Bn + Gcn) = P
M∑
i=1

Gci−1

M∏
n=i

Bn, (4.8)

The adjoint equation and the state equation have been solved exactly [64]. Hence, the gradient
of the cost function is given by [107]

DJ
Dϕ =

δL
δϕ
|ue,ξ. (4.9)

According to above results the optimality condition becomes

M+ξ = 0. (4.10)

The optimal synthetic field ue is the solution of the optimality system which consists of the
constraint Eq.4.4, the adjoint equation Eq.4.6, and the optimality condition Eq.4.10 [64]. In
Li and Rosales [107], both flows exhibit anisotropic large scale circulations structures which
leads to non-trivial mean flow statistics and local anisotropy in small scales. It is found that
the anisotropic distribution in subgrid-scale dissipation and alignment between the subgrid-
scale stress and the filtered strain rate tensor are revealed how well they reproduce anisotropic
inhomogeneity effects.

Section 4.2 presents results from the first Kolmogorov flow, i.e., the analysis of contours of the
mean of the gradients of the cost function and the adjoint field. In Section 4.3, the results of the
gradients of the cost function with its adjoint field for the second Kolmogorov flow are analyzed.
We consider the DNS data as the target field to synthesize turbulent flow field via CMTLM
method in Section 4.4. In addition, the dependence of an arbitrary cost function gradient upon
the control variable are illustrated via the mean statistics of the such cost function and adjoint
fields. Section 4.5 summarizes the conclusions and perspectives.
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4.2 The first Kolmogorov flow

The first Kolmogorov flow was produced by choosing

w(x) = A[sin kfy, sin kfx, 0], (4.11)

where A is the forcing amplitude, chosen to match the desired spectrum Ep(k). Kolmogorov flow
is a three-dimensional turbulent flow driven by a deterministic sinusoidal forcing in a periodic
box [0, 2π]3, which usually contains continuous anisotropic large scale circulations. We choose
kf = 1 and define the set of wavenumbers: Ω = {(1, 0, 0), (0, 1, 0), (−1, 0, 0), (0,−1, 0)}, so that
w is non-zero only on the set Ω [17].

The adjoint variable in terms of Fourier modes reads

ξ̂(k) = −[ûe(k)− ŵ(k)], (4.12)

for k ∈ Ω, and ξ̂(k) = 0 otherwise. Only the difference between ue(x) and w(x) over Ω is
measured by the cost function. In other words, the operator F is defined to be 1 on Ω, and 0
otherwise.

The data were generated by using the energy spectrum Ep(k) from the DNS of stationary
turbulence flow (with 2563 grid points), in a periodic box of size L = 2π, at a Taylor micro-scale
Reynolds number Reλ ≈ 140 with the mean dissipation rate of ε = 0.1. And the viscosity was
selected according to ν = [η4ε]1/3 = 0.0015.

The CMTLM velocity fields are synthesized using the CMTLM procedure. The results shown
were obtained with M = 6 decomposition scale levels, on grids of 83, 163, 323, 643, 1283, 2563

nodes, with grid size δx = π/128 and tolerance e = 3% (see Ref. [107]).

4.2.1 Results and analysis

With substitution from Eq. 4.11, Eq. 4.3 becomes

J(ue) =
1

2
‖F [uex(x)− wx(x)]‖22 +

1

2
‖F [uey(x)− wy(x)]‖22. (4.13)

Using this cost function with the corresponding adjoint variable fields Eq.4.12

ξx(x) = −[uex(x)− wx(x)], (4.14)

and
ξy(x) = −[uey(x)− wy(x)]. (4.15)

The initial Gaussian random velocity field ϕ to the CMTLM procedure is homogeneous in the
z-direction. The gradient components of cost function DJ

Dϕx , DJDϕy and DJ
Dϕz are computed at the

first iteration so we could see the effects of the adjoint operator M+.
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Figure 4.1: Spectra for 2563 gradient of the cost function fields. Blue squares: the energy spectra
for DJ

Dϕx . Red circles: the energy spectra for DJ
Dϕy . Cyan diamonds: the energy spectra for DJDϕz .

Fig. 4.1 shows the 3D energy spectra for the gradient of the cost function components with
respect to control variable ϕ in x,y and z-directions DJDϕx , DJDϕy and DJ

Dϕz . We generated about 99
realizations for each component, then each energy spectral component is averaged over all these
realizations. All spectral components almost agree with each others at the high wavenumber
end. It showed an expected differences between them at the low wavenumber end, where the
third component is the smallest one.

Note that the target field w is scaled by kf = 1, and is non-zero only on a set of four wavenum-
bers: Ω = {(1, 0, 0), (0, 1, 0), (−1, 0, 0), (0,−1, 0)}. Thus, the cost function J depends only on ue
at ‖k‖ = 1, which means that the cost function J just depending on the Fourier modes of the
control ϕ at the lowest wavenumber end. However, Fig. 4.1 shows that even at high wavenumber
k, DJDϕ 6= 0, which indicates that the high wavenumber Fourier modes of ϕ could still effect the
cost J in the first range. This behaviour is justified by the nonlinearity of CMTLM procedure
in which the state variable ue is depending on all Fourier modes of ϕ as it appears from Eq. 4.4.

We now look closer into the mean values for those gradient components, in which the data are
averaged in the spanwise direction at each realization, and then over all 99 realizations. Fig.
4.2, shows a contour of the mean of the gradient for the cost function DJ

Dϕx , with respect to the
control variable ϕ in the x-direction. It can be seen that the very large stretching structures
mimic the target flow field. The peak value of the gradient occurs at upper half of the mean flow
field which varies with y-direction and it elongates with x-direction. This can be interpreted
as that increasing x-component of the control variable ϕx in that range would increase J . In
contrast, increasing x-component of the control variable ϕx in the lower half of the flow field
would decrease J .
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Figure 4.2: Mean of the gradient for the cost function fields DJ
Dϕx , with respect to the control

variable ϕ on the x-direction.
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Figure 4.3: Mean of the gradient for the cost function fields DJ
Dϕy , with respect to the control

variable ϕ on the y-direction.

As is shown in Fig. 4.3, the mean of y-component for gradient of the cost function DJDϕy
displays

same behaviour as in Fig. 4.2. The only difference is that the anisotropic large scale structures
expand along y-direction and varies with x-direction, which is compatible with y-target field
component wy = sinx. There is a peak value of the gradient at the right half of the mean flow
field, whereas the lower values are found at the left half of the mean flow field. Such anisotropic
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large scale structures show the dependence of uey and J on ϕy as discussed above.
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Figure 4.4: Mean of the gradient for the cost function fields DJ
Dϕz , with respect to the control

variable ϕ on the z-direction.
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Figure 4.5: Mean of the x-component of the adjoint field ξx(x).
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Figure 4.6: Mean of the y-component of the adjoint field ξy(x).

The z-component of the mean of the gradient of the cost function DJ
Dϕz

is shown in Fig. 4.4.
Despite a few number of very lower values, the contours show clearly that the gradient tends to
take a larger values in centre of the mean flow field, whereas lower values are observed on the
boundaries. This is consistent with the imposed target flow field Eq. 4.11 since the flow field is
statistically isotropic following from the homogeneity of the target vector field in the z-direction.

In what follows, in order to study the adjoint field we compute the mean of the ξx and ξy
components of the adjoint field, which are saved at the first iteration and averaged over the
homogeneous direction of the flow field for just one realization. The contour of the mean for
ξx-component of the adjoint field is plotted in Fig. 4.5, which is given by Eq. 4.14. It displays a
uniform distribution which is due to calculate it just for non-zero Fourier modes of uex and wx on
the set Ω = {(0, 1, 0), (0,−1, 0)}, varies with respect to y-direction within values range (−1,+1).
Fig. 4.6 shows the contour of the mean for ξy-component of the adjoint field Eq. 4.15, at which
the uniform distribution displays the difference between uey and wy over Ω = {(1, 0, 0), (−1, 0, 0)},
and such difference elongates with y-direction and varies with x-direction.

4.3 The second Kolmogorov flow

The second Kolmogorov flow corresponds to a flow simulated by Borue and Orszag [17]. In
this case a anisotropic three-dimensional large-scale flow fields are generated with large-scale
constant force fy = F cos(kfx), where F = 0.16 with kf = 1 in the wavenumber space. The
resolution is 1283 grid points in a periodic box of size L = 2π. Consequently, the synthetic
velocity fields were generated using the CMTLM procedure on a periodic cubic domain [0, 2π]3,
discretized with 1283 grid points [107].
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The mean velocity profile is resulted from DNS of Borue and Orszag [17], which is taken as a
target field for the CMTLM procedure, defined as follows:

w(x) = A[0, cos(kfx), 0], (4.16)

where A = 0.4 with kf = 1. F = 1 on Ω = {(1, 0, 0)} and 0 otherwise. Using tolerance e = 10%,
we synthesize about 100 CMTLM fields. The mean statistics are averaged over z-direction in
each realization and then over all realizations.

4.3.1 Results and analysis

The cost function equation in accordance to Eqs. 4.3 and 4.16, could be written as

J(ue) =
1

2
‖F [uey(x)− wy(x)]‖22. (4.17)

The adjoint field just reads

ξy(x) = −[uey(x)− wy(x)]. (4.18)

The distributions of 3D energy spectra for the gradient of the cost function components with
respect to control variable ϕ in x,y and z-directions DJ

Dϕx , DJDϕy and DJ
Dϕz are shown in Fig. 4.7.

All energy spectral components are averaged over 99 realizations. DJDϕy has the maximum energy

spectra which is consistent with Eq. 4.17. The results for DJ
Dϕx and DJ

Dϕz show the dependence
of the cost J on the high wavenumber Fourier modes of ϕ in the first range, which agrees with
observations in Fig. 4.1.
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Figure 4.7: Spectra for 1283 gradient of the cost function fields. Blue squares: the energy spectra
for DJ

Dϕx . Red circles: the energy spectra for DJ
Dϕy . Cyan diamonds: the energy spectra for DJDϕz .
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Figure 4.8: Mean of the gradient for the cost function fields DJ
Dϕx , with respect to the control

variable ϕ on the x-direction.
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Figure 4.9: Mean of the gradient for the cost function fields DJ
Dϕy , with respect to the control

variable ϕ on the y-direction.

The contour of the mean value of the x-component for DJDϕ is sketched in Fig. 4.8. We remark
that the peak and lower values of anisotropic large-scale flow fields are extended along the x-
direction and it varies with y-direction which mimics the target flow field Eq. 4.16, with high
probability to increase J by an increasing uey via increases ϕx at the high values area in the mean
flow field. In the low values area of the mean field, an increasing ϕx could leads to decrease J .
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On the other hand, in Fig. 4.10 of the z-component for DJDϕ , large elongated structures are
almost aligned in the y-direction, which shows the influence of the z-component of the control
ϕz on the evolution of the gradient of the cost function J .
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Figure 4.10: Mean of the gradient for the cost function fields DJ
Dϕz , with respect to the control

variable ϕ on the z-direction.
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Figure 4.11: Mean of the y-component of the adjoint field ξy(x)
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Eq. 4.2 expresses the adjoint field in Fourier space with limited number of non-zero components.
However, we have only non-zero y-component of the adjoint field Eq. 4.15 for the second
Kolmogorov flow. The overall behaviour of ξy is on the whole quite similar to the y-components
of DJDϕ , as can be seen from Figs. 4.9 and 4.11. They show a uniform distribution, with one
difference, which is the reversed peak and lower values locations. The peak values are located
on the lift and right boundaries, and the lower values are located at the middle of the mean
field for ξy, while it is reversed for the y-components of DJDϕ . In addition, in both cases different
levels of contours are found in the x-direction which extend in y-direction, but with bigger range
(−1,+1) for ξy(x).

4.4 Using DNS data as the target

In the Kolmogorov flows a specific cost function has been used, in which it measured the dif-
ference between the state variable ue and the target field w over a limited set Ω. In this case
we introduce another cost function in order to get more general results. The cost function and
their adjoint field have been given in Eqs. 4.1 and 4.2:

J(ue) = uex(x) · wx(x) + uey(x) · wy(x) + uez(x) · wz(x), (4.19)

with
ξx(x) = −wx(x), (4.20)

ξy(x) = −wy(x), (4.21)

and
ξz(x) = −wz(x). (4.22)

These equations now are employed to synthesize CMTLM velocity field using DNS data for w,
in order to study the adjoint operator properties M+. We recalculate the mean statistics for
the above equations following the same way as in Sec. 4.2.1.

4.4.1 Results and analysis

The results for the 3D energy spectra for the gradient of the cost function components with
respect to control variable ϕ in x, y, and z-directions DJ

Dϕx , DJDϕy and DJ
Dϕz are plotted in Fig.

4.12. It is averaged over 99 realizations. It displays same behaviour as in Fig. 2.1 for the first
Kolmogorov flow except that it has lower values at the anisotropic low wavenumber end, and
the x-component agrees with z-component rather than with y-component. Overall it confirms
again the nonlinearity of CMTLM procedure.
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Figure 4.12: Spectra for 2563 gradient of the cost function fields. Blue squares: the energy
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Figure 4.13: Mean of the gradient for the cost function fields DJ
Dϕx , with respect to the control

variable ϕ on the x-direction.

Figs. 4.13, 4.14 and 4.15 presented the contours of the mean of DJDϕx , DJDϕy and DJ
Dϕz , respectively.

Despite that the contours for DJDϕx , DJDϕy show that the gradient tends to take larger values in the
medial of mean flow field, the mean gradient distributions show a close correlation with those
in Figs. 4.2, 4.3 and 4.4. In addition, the same can be said about the dependence of the cost
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Figure 4.14: Mean of the gradient for the cost function fields DJ
Dϕy , with respect to the control

variable ϕ on the y-direction.
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Figure 4.15: Mean of the gradient for the cost function fields DJ
Dϕz , with respect to the control

variable ϕ on the z-direction.

function J on the control variable ϕ via the the state variable ue.
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Figure 4.16: Mean of the x-component of the adjoint field ξx(x).

Contours of the mean of ξx, ξy, and ξz-components of the adjoint fields as expressed in Eqs.
4.20, 4.21 and 4.22 are shown in Figs. 4.16, 4.17 and 4.18, respectively. As previously observed
in Figs. 4.5 and 4.6 for first Kolmogorov flow, and for second Kolmogorov flow Figs. 4.9 and
4.11, it also present the same behaviour for the gradient of the cost function but with opposed
peaks locations as can be seen from Figs. 4.13, 4.14 and 4.15.

50 100 150 200 250

X

50

100

150

200

250

Y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 4.17: Mean of the y-component of the adjoint field ξy(x).

98



50 100 150 200 250

X

50

100

150

200

250

Y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 4.18: Mean of the z-component of the adjoint field ξz(x).
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4.5 Conclusions

The Constrained Multiscale Turnover Lagrangian Map method [107] has been used to produce
anisotropic synthetic turbulence, where it generalized the MTLM method [156] In previous
works, the adjoint fields and the gradients of the cost function have not be thoroughly investi-
gated. Consequently, one is curious about the effects that could occur by using different cost
functions. Therefore, we quantify in this chapter how the cost function gradient depends upon
the control variable ϕ, thus highlight the contributions of the adjoint operatorM+ in the mod-
elling process. This study focuses on the cost function gradient and adjoint calculated from two
CMTLM Kolmogorov flows. Also we use the CMTLM procedure to synthesize a flow with a tar-
get taken from DNS data, a new cost function and corresponding adjoint field. From 3D spectra
of the gradient of the cost function fields, we can see the nonlinearity of CMTLM procedure
through spectral behaviour on the anisotropic low wavenumber end, which shows contributions
of all Fourier modes of the control variable ϕ to the state variable ue.

The contours of the mean of the gradient of J , with respect to the control variable ϕ, for the
Kolmogorov flows, are quite correlated to the target flow field w. In addition, the z-component
of the mean of the gradient for all cases emphasized the homogeneity of the target flow field in
z-direction.

We conclude that the target field has considerable impacts on the adjoint field and the gradient
of the cost function, which has been demonstrated by the above results. More insights can
be obtained by considering other statistics, which include the correlation between the flow
structures in the target fields and the adjoint field or the gradient of the cost function, and
related conditional statistics. These analyses are topics for future investigations.
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Chapter 5

The Constrained Multiscale
Turnover Lagrangian Map Synthetic
Fields as Sub-gridscale Models
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5.1 Introduction

Turbulence has a wide range of length and time scales, which requires enormous computer
resources. The complication and strong sensitivity to initial conditions of turbulent flow fields
makes it hard to be simulated. Consequently, turbulence models are used in order to minimize
the level of characterization of the flow field. In LES, the models are called SGS models.

A SGS model supplies an evaluation of the unresolved velocity and temperature fields, which
are captured in the SGS stress tensor and heat flux. There are several models used in LES as
SGS models, for instance, the eddy viscosity models, the similarity models , mixed models and
dynamic models (see e.g. [103] , [55] , [58] and [59] for a review). In spite of the major advances
in SGS modelling, model performance for various flows and for higher Reynolds numbers still
requires further work.

We seek for a new SGS model to simulate turbulence interaction via a combination of LES and
CMTLM method. As a first step to do that, we will merge a DNS field and a CMTLM field,
then assess its achievement in modelling the interactions between large and small scales. We
examine geometrical alignment aspects of the filtered vorticity vector, filtered strain-rate and
the SGS stresses tensors, compared with relevance results of DNS data.

Section 5.2 reviews the truncation of the 2563 DNS data into three truncated DNS data sets
with 1283, 643 and 323 grid resolutions, then these truncated DNS data sets are filtered with
cutoff wavenumber filter with large filter scale ∆ = 32δx to obtain the target field. CMTLM
data sets with 1283, 643 and 323 grid resolutions are generated using CMTLM approach with
those DNS data sets as target. We describe the combination between the truncated DNS and the
CMTLM synthetics fields at cutoff wavenumber kc = π/4. The merged fields are called TDNS-
CMT fields. The properties of the SGS energy dissipation in the merged fields are examined in
comparison with DNS fields in Section 5.2 as well. The geometric alignment statistics of real
(DNS) and modelled (TDNS-CMT fields) SGS energy stress tensor are investigated in Section
5.3. We present our conclusions in Section 5.4.
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5.2 TDNS-CMT merged velocity field structure and relevance
importance statistics

We demonstrate in this section how to merge between the DNS data and CMTLM field, that is,
how to build up a new merged velocity field from the truncated DNS and the CMTLM data in
order to investigate the ability of the CMTLM method to reconstruct the turbulent fluctuations
for LES. In this case, we will explicitly reconstruct the turbulent velocity fluctuations. We
conduct three a priori tests, examining the ability of the TDNS-CMT fields to reproduce the
alignments of the SGS stress eigenvectors with the filtered vorticity and filtered strain-rate
eigenvectors in filtered DNS data, and the statistics of the SGS energy dissipation.

5.2.1 The filtered DNS data sets description

In the actual formation of the new TDNS-CMT merged field, the DNS parameters are summa-
rized in Sec. 2.5 (Eq. 2.2). Three different truncated DNS velocity fields are extracted from
2563 DNS velocity field. These fields have 1283, 643 and 323 grid points, respectively. We will
indicate these three truncated DNS fields by 1283 TDNS, 643 TDNS and 323 TDNS fields. Then
these three truncated DNS fields are spatially filtered via a cut-off filter with a large filter scale
∆ = 32δx and these filtered truncated DNS fields are used as the target fields in the generation
of the CMTLM synthetic fields, and as part of the construction of the new TDNS-CMT merged
velocity fields.
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Figure 5.1: The contours of the x, y and z velocity and vorticity components for 2563 DNS field
on a two dimensional cut.

To illustrate the structure of the 2563 DNS fields, Fig 5.1 shows the contours of the three
components of the velocity and vorticity fields on a two dimensional cut of the DNS fields.
Overall velocities distributions show an anisotropic large scale structure, straining and rotation
almost dominate in the middle of the square and centres of the counter rotating velocities
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on the left and bottom boundaries for ux and uy, respectively. It is observed that the large
scale circulation where the straining is the strongest [107](i.e., where the strain-rate magnitude
becomes maximum) is elongated along the elongation directions of the gradient. The contours
of the three components of vorticity ωx, ωy and ωz follow closely what one would find from
the vorticity definition ∇ × u, and the distributions of vorticity components display a close
correlation with the distributions of relevance velocity components shown in same figure.

Fig. 5.2 displays the prescribed energy spectra Ep(k) used in CMTLM which are taken from
the 1283, 643 and 323 truncated DNS fields, respectively.

100 101 102

k

10-6

10-5

10-4

10-3

10-2

10-1

100

E
(k

)

Figure 5.2: The energy spectra for a truncated DNS velocity fields. Blue squares: 1283 truncated
DNS field. Cyan diamonds: 643 truncated DNS field. Medium-orchid triangles: 323 truncated
DNS field.

5.2.2 CMTLM data sets description

We will construct the TDNS-CMT merged velocity fields from the above outlined filtered DNS
fields with those calculated from CMTLM method. To obtain the CMTLM data sets, we use
the CMTLM method to generate 10 realizations of the synthetic fields in periodic box [0, 2π]3,
with grid points N3 = 1283, N3 = 643, and N3 = 323 with tolerance e = 2% for all grid sizes.
Thus the corresponding grid size are δx = π/64, δx = π/32, and δx = π/16, respectively. The
3D input energy spectra Ep(k) for these cases are taken from the previously described 1283, 643

and 323 truncated DNS data sets. The spectra are shown in Fig 5.2. The number of iteration
levels M is given as 6, 5, and 4 for 1283, 643, and 323 grid points, respectively.
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5.2.3 TDNS-CMT data sets description and their SGS energy dissipation

The TDNS-CMT merged velocity field can be constructed by applying a cut-off wavemunber
filter with a large filter scale ∆ = 32δx in the wavenumber space to the DNS velocity fields
generated in Sec. 5.2.1 as a first step, in which we employ a cutoff filter at wavenumber kc = 4.
Then, the DNS velocity field truncated at the wavenumber |k| ≤ kc would be merged with the
high wavenumber components of 1283, 643 and 323 CMTLM velocity fields at the wavenumber
|k| > kc, respectively. We will indicate the cases Case A, with 1283 grid size, Case B, with 643

grid size, and Case C, with 323 grid size, respectively.
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Figure 5.3: The energy spectra for a TDNS-CMT merged velocity field. Blue squares: 1283

TDNS-CMT field. Cyan diamonds: 643 TDNS-CMT field. Medium-orchid triangles: 323 TDNS-
CMT field.

Fig. 5.3 shows energy spectra through 1283, 643 and 323 grid sizes for the TDNS-CMT merged
velocity fields. It is seen from the figure the expected behaviours at the low wavenumber parts
of the spectra due to filtered DNS data sets contributions in TDNS-CMT velocity fields. We
produced 10 realizations of the merged DNS-CMT velocity fields.
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Figure 5.4: The PDFs of the normalized SGS energy dissipation using the Gaussian filter with
filter scale ∆ = π/4: Π+ = (Π− 〈Π〉)/σΠ. Blue squares: 1283 TDNS-CMT merged velocity
field. Cyan diamonds: 643 TDNS-CMT merged velocity field. Medium-orchid triangles: 323

TDNS-CMT merged velocity field. Red circles: 2563 DNS velocity field.

The PDFs of the normalized SGS energy dissipation Π+ = (Π− 〈Π〉)/σΠ among different grid
sizes for 1283, 643 and 323 TDNS-CMT merged velocity fields and for 2563 DNS field are shown
in Fig. 5.4. These PDFs are obtained via using the Gaussian filter[145] with filter scale ∆. In
all three cases the filter scale ∆ is chosen as ∆ = 32δx in accordance to 2563 grid resolution,
which yields ∆ ≈ 100η. Therefore, for the low resolution 1283, 643 and 323 results, the filter
scales are taken as 16 times, 8 times, and 4 times of the respective grid sizes. Therefore, that
the present filter scales keep the same as the one applied in the analysis of the 2563 data. The
PDFs are averaged over all 10 realizations of the TDNS-CMT fields in each case.

We note that the PDFs show a modest positive skewness with a weak probability for negative
fluctuations, especially for 643 which indicates a weak backscattering from small to large scales.
Also these PDFs agree well with each other except some differences specially at large positive
tails, and between the PDFs of 323 TDNS-CMT fields and DNS data, and the PDFs between
1283 and 643 TDNS-CMT fields at negative fluctuations tails. Comparing with 2563 DNS, we
observe that the TDNS-CMT field have very good quantitative agreement, except that TDNS-
CMT results have a somewhat longer tails than the 2563 DNS ones.

The PDFs of Π+ in Fig 5.5 are computed for the same data sets, i.e., the 2563 DNS field and
Case A, Case B and Case C that have been used in Fig. 5.4, but it is computed with filter scale
∆ = 16δx (kc = 8, δx = 2π/256). As expected, it displayed a stronger positive skewness (wider
tails) in comparison with ones for the larger filter scale. However, it also display weak negative
fluctuations but with longer tails. In addition, it also shows a better agreement with the PDF
of 2563 DNS field.

106



20 15 10 5 0 5 10 15 20

Π +

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

P
D
F

Figure 5.5: The PDFs of the normalized SGS energy dissipation using the Gaussian filter with
filter scale ∆ = π/8: Π+ = (Π− 〈Π〉)/σΠ. Blue squares: 1283 TDNS-CMT merged velocity
field. Cyan diamonds: 643 TDNS-CMT merged velocity field. Medium-orchid triangles: 323

TDNS-CMT merged velocity field. Red circles: 2563 DNS velocity field.

5.3 The Geometrical alignment statistics for TDNS-CMT merged
velocity fields

From a statistical geometry point of view, we will look at the SGS stress tensor −τij alignment
trends with respect to the filtered flow structures like vorticity and principal strain directions.
In this task we use 2D joint PDFs to describe the orientations of the eigenvectors of the SGS
stress tensor −τij in the eigenframe of the filtered strain rate tensor S̃ij . This basis assigned by

eigenvectors of filtered strain-rate tensor S̃ij is shown in Fig. 2.12.

The alignment of α−τ gives one peak at approximately (θα, φα) = (50◦, 43◦) with peak value 1.5,
as can be seen from Fig. 5.6 (a) for the alignment trends between the eigenvector α−τ and the
eigenframes of S̃ij for the 2563 DNS data. For comparison, the two-dimensional joint PDFs of
cos θα and φα for 1283 (Case A), 643 (Case B) and 323 (Case C) TDNS-CMT merged velocity
fields, given in Fig. 5.6 (b), (c) and (d), respectively, display as well one peak at approximately
(50◦, 43◦), which is the same as the ones for DNS result, but with higher peak values for Case
B and Case C.

In Fig. 5.7, we introduced the orientation of the eigenvector β−τ in the eigenframe of S̃ij using
the same method. At angles (θβ, φβ) = (90◦, 0◦), there is one peak in the joint PDFs for 2563

DNS data and for cases A, B and C, with peak values 1.2, 1.5, 1.7 and 1.5, as shown in Fig. 5.7
(a), (b), (c) and (d), respectively.
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Figure 5.6: Joint PDFs of (cos θα, φα). (a): 2563 DNS velocity field. (b): 1283 TDNS-CMT
merged velocity field. (c): 643 TDNS-CMT merged velocity field. (d): 323 TDNS-CMT merged
velocity field.
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Figure 5.7: Joint PDFs of (cos θβ,φβ). (a): 2563 DNS velocity field. (b): 1283 TDNS-CMT
merged velocity field. (c): 643 TDNS-CMT merged velocity field. (d): 323 TDNS-CMT merged
velocity field.

The joint PDFs of the orientation for the eigenvector γ−τ is shown in Fig. 5.8. θγ and φγ are
defined using Fig. 2.12 as well.
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Figure 5.8: Joint PDFs of (cos θγ ,φγ). (a): 2563 DNS velocity field. (b): 1283 TDNS-CMT
merged velocity field. (c): 643 TDNS-CMT merged velocity field. (d): 323 TDNS-CMT merged
velocity field.

Peak values for DNS data and for cases A, B, and C as well are approximately located at
φγ ≈ 90◦ and θγ ≈ 44◦, with peak values 4.8, 5.6, 6.0 and 5.6, as given in Fig. 5.8 (a), (b),
(c), and (d), respectively. Overall, the agreement between DNS and merged fields is very good.
Also we note that statistical fluctuations increase with decreasing resolution in all cases.

The PDFs of cos(Λα), cos(Λβ) and cos(Λγ) of the geometrical alignment trends between the
filtered vorticity vector ω̃i and the SGS stress −τij tensor for 2563 DNS field is given in Fig. 5.9,
and for cases A, B, and C are given in Figs. 5.10- 5.12, respectively. The blue, cyan and medium
orchid curves represent the PDFs of the cosines of the angles Λα, Λβ and Λγ , respectively. Note
that, we utilized same notations for the angles in Sec. 2.7.3.
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Figure 5.9: PDFs of the cosine of the angles between ω̃i and the eigenvectors of −τij . Blue
squares: P (cos Λα). Cyan diamonds: P (cos Λβ). Medium-orchid triangles: P (cos Λγ) for 2563

DNS velocity field.
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Figure 5.10: PDFs of the cosine of the angles between ω̃i and the eigenvectors of −τij . Blue
squares: P (cos Λα). Cyan diamonds: P (cos Λβ). Medium-orchid triangles: P (cos Λγ) for 1283

TDNS-CMT merged velocity field.

As analysis of the current trends, we remark that the direction of ω̃i tends to align with the
directions of the most extensive and intermediate eigenvectors α−τ and β−τ of SGS stress −τij .
The PDF of cos(Λγ) shows ω̃i tends to be perpendicular with the direction of the contracting
eigenvector γ−τ . These results are found to be consistent with the observation of Horiuti [70]. In
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general, all merged data sets reproduce the preferred alignment configurations in DNS, in spite
of showing higher probability for cos Λβ = (β−τ , ω̃i) than for cos Λα = (α−τ , ω̃i) in all cases.
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Figure 5.11: PDFs of the cosine of the angles between ω̃i and the eigenvectors of −τij . Blue
squares: P (cos Λα). Cyan diamonds: P (cos Λβ). Medium-orchid triangles: P (cos Λγ) for 643

TDNS-CMT merged velocity field.

0.0 0.2 0.4 0.6 0.8 1.0

cos(Λi)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

P
(c

os
Λ
i)

Figure 5.12: PDFs of the cosine of the angles between ω̃i and the eigenvectors of −τij . Blue
squares: P (cos Λα). Cyan diamonds: P (cos Λβ). Medium-orchid triangles: P (cos Λγ) for 323

TDNS-CMT merged velocity field.
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Figure 5.13: PDFs of the cosine of the angles between ω̃i and the eigenvectors of S̃ij . Blue
squares: P (cos Λα). Cyan diamonds: P (cos Λβ). Medium-orchid triangles: P (cos Λγ) for 2563

DNS velocity field.
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Figure 5.14: PDFs of the cosine of the angles between ω̃i and the eigenvectors of S̃ij . Blue
squares: P (cos Λα). Cyan diamonds: P (cos Λβ). Medium-orchid triangles: P (cos Λγ) for 1283

TDNS-CMT merged velocity field.

The preferential alignments between the filtered vorticity vector ω̃i and the eigenvectors αs, βs
and γs of the filtered strain-rate tensor S̃ij for 2563 DNS field are plotted in Fig. 5.13 and for
cases A, B and C are presented in Fig. 5.14-5.16, respectively. Also the blue, cyan and medium
orchid curves represent the PDFs of the cosines of the angles Λα, Λβ and Λγ , respectively. As
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Figure 5.15: PDFs of the cosine of the angles between ω̃i and the eigenvectors of S̃ij . Blue
squares: P (cos Λα). Cyan diamonds: P (cos Λβ). Medium-orchid triangles: P (cos Λγ) for 643

TDNS-CMT merged velocity field.
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Figure 5.16: PDFs of the cosine of the angles between ω̃i and the eigenvectors of S̃ij . Blue
squares: P (cos Λα). Cyan diamonds: P (cos Λβ). Medium-orchid triangles: P (cos Λγ) for 323

TDNS-CMT merged velocity field.

in the prior discussion, the same could be concluded about the alignment trends, i.e., all PDFs
show the same preferred alignment at cos Λα = 1, cos Λβ = 1, and cos Λγ = 0. In addition,
results from merged fields agree very well with the DNS results, even though the statistical
fluctuations increase with decreasing resolution in all PDFs.
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5.4 Conclusions

The geometrical alignment statistics among the SGS stress τij tensor and the the large-scale
velocity gradient parameters, for instance, the filtered vorticity ω̃i vector and the filtered strain-
rate S̃ij tensor dominates the SGS dissipation Π, which grows from the dynamical interaction
between resolved and SGS scales. These dynamical interactions should be parametrized in
LES. Therefore, in the present chapter we check that the merged fields could capture important
statistical trends of three-dimensional SGS interactions.

We investigate the properties of the combination between the DNS and CMTLM data before
combining LES and CMTLM data. We performed a priori tests with 1283, 643 and 323 grid
resolutions for TDNS-CMT velocity fields, in which the respective vector and tensor alignment
trends of significant turbulence quantities are described.

The SGS quantities are predicted using TDNS-CMT data, and then compared with the real
subgrid-scale quantities which have been computed from DNS field. It can be seen that in all
cases predicted SGS quantities display good agreement with the exact ones. The TDNS-CMT
model SGS dissipation displays good agreement with the real SGS dissipation (from DNS). The
results of geometrical alignment statistics are in very good agreement with the DNS results too.
Consequently, we could conclude that the TDNS-CMT model preserves right levels of the SGS
dissipation in the actual DNS. For the investigation of the effects of the degree of resolution
in resolving the inertial-range statistical geometry orientations, it was found that 1283 grid
resolution more sufficient than the lower ones. However, lower resolution data also provide
accurate results, and can be obtained more efficiently. Therefore, using low resolution might be
a better approach in practice. In the next step, we will extend this investigation to scalar field,
i.e., generalized the TDNS-CMT model to predict the SGS scalar fluxes. Also, a posteriori tests
have to be calculated to demonstrate the feasibility of the method in industrial applications.
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

This thesis is a study of Multi-Scale Turnover Lagrangian Map applied to synthesize turbulence.
The motivations of this research is the major contribution of the turbulence in a wide range of
engineering applications due to most flows are turbulence, and its main role in transferring and
combining between the matter, momentum, and heat in flows. Synthetic turbulence generates
stochastic fields which have features of real hydrodynamic turbulent flows using methods much
cheaper in contrast to solving Navier-Stokes equations. The growing interest in synthetic tur-
bulence was motivated by the rising interest for employing Large-Eddy simulation in industrial
applications, which requires cost effective and advanced approaches for generating initial and
inflow boundary conditions. In addition, different and observable characteristics of real turbu-
lence have been efficiently modelled by synthetic turbulence methods. By doing so, essential
aspects of turbulent motion are understood through detecting the lowest set of processes which
could capture the fundamental properties of turbulence. Consequently, in recent years advances
in the modelling and simulation of turbulent flows and in understanding the dynamics of real
hydrodynamic turbulence were made using the synthetic turbulence methods.

In a recently proposed method to generate synthetic three-dimensional turbulent vector fields
based on the multiscale turnover Lagrangian (MTLM) map, the advection of fluid particles in
a random Gaussian field frequently through a set of increasingly refined grids generates the
synthetic field. The MTLM generates a highly non-Gaussian velocity field which has highly
realistic statistics of isotropic hydrodynamic turbulence. Also it has been generalized to the
synthesis of scalar fields and anisotropic turbulence. From the LES and/or SGS modelling
perspective, capturing the nonlinear interactions in real turbulence in an efficient way remains a
challenge. The MTLM synthetic fields has been studied in this work using the filtering approach,
which has not been pursued so far, in order to understand their ability to model the nonlinear
interactions in real turbulence. The multi-scale turnover Lagrangian method is generalized to
model scalar fields produced by an imposed linear mean profile. The subgrid-scale stress, SGS
scalar flux, SGS scalar variance, SGS energy and scalar variance dissipations, as well as related
quantities from the scalar and velocity synthetic fields are calculated.
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Comparison with DNSs shows that the synthetic fields reproduce the probability distributions
of the SGS energy and scalar dissipation rather well. Related geometrical statistics also display
close agreement with DNS results. The synthetic fields slightly under-estimate the mean SGS
energy dissipation and slightly over-predict the mean SGS scalar variance dissipation. In gen-
eral, the synthetic fields tend to slightly under-estimate the probability of large fluctuations for
most quantities we have examined. Small scale anisotropy in the scalar field originated from the
imposed mean gradient is captured. The sensitivity of the synthetic fields on the input spectra
is assessed by using truncated spectra or model spectra as the input. Analyses show that most
of the SGS statistics agree well with those from MTLM fields with DNS spectra as the input.
Besides, the ability of MTLM to produce the energy flux across the energy spectrum is proved
in this work. For the mean SGS energy dissipation, some significant deviation is observed.
However, it is shown that the deviation can be parametrized by the input energy spectrum,
which demonstrates the robustness of the MTLM procedure. These results shed new light on
the potential applications of the synthetic fields in large eddy simulations and SGS modelling.
In order to model an anisotropic turbulence that is more applicable, MTLM is formulated as an

optimization problem where the Gaussian random input is taken as a control variable and some
specific velocity field is taken as the target field. This new technique is named as CMTLM. As
such, CMTLM is a possible method for generation anisotropic synthetic incompressible turbu-
lence with maintaining the realistic small scale statistics in MTLM. Therefore, as a second goal
of this work, we modified the CMTLM method to include the effects of solid wall boundaries and
to synthesize the turbulent channel flow. The reflectionally symmetric synthetic field is gener-
ated using modified CMTLM procedure, in which the symmetric field is a model of the velocity
field in a fully developed channel flow. The adjoint optimally system with reflectional symmetry
is derived in accordance to the new modified CMTLM map. All of MTLM procedure operators
were proved to conserve the reflectional symmetries. Mean statistics of the modified CMTLM
synthetic fields were computed and were compared with those of computed and experimental
results data. The results show an agreement to some extents in some details in comparison with
DNS and experimental results, further work is needed to obtain more reliable results statistics.

In the Constrained MTLM method, the optimality system for the optimization problem is
constituted from state equation, adjoint equation, and the optimality condition. It is derived
using the adjoint formulation. Solving the adjoint equation and the optimality condition leads to
the optimal solution for control variable that reduces the difference between the target function
and the synthetic field, measured using cost function. In other words, the goal is to reduce
the cost function for all possible control variable, subject to the state equation. In order to
quantify the contributions of the adjoint operator in the modelling process, the adjoint fields
and the gradients of the cost function were studied, which have not been inspected. Two
constrained MTLM Kolmogorov flows were considered, and we synthesized a new flow field using
the CMTLM method with the target field taken from the DNS data. Contours of the mean of
the gradients of the cost functions and the adjoint fields for the above three cases are computed.
It was found that the non-linearity of CMTLM procedure has considerable contributions in the
cost function gradient evolution. In addition, the target field has considerable impacts on the
adjoint field and the gradient of the cost function.

Finally, we investigated the ability of using the CMTLM synthetics fields as SGS models. As a
first step, we combine between truncated DNS of turbulence and CMTLM synthetic fields. To
do so, truncated DNS data sets are extracted from 2563 DNS data. Three CMTLM synthetics
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velocity fields are generated using these truncated DNS data as target fields with different reso-
lutions. The large scale truncated DNS data are merged with CMTLM synthetics velocity fields
to obtain new merged TDNS-CMT velocity fields. SGS quantities obtained using the merged
TDNS-CMT velocity fields displayed high correlations with the exact DNS results in priori tests.
In addition, the three-dimensional geometrical alignments between the SGS stress tensors and
the filtered velocity gradient tensor, such as the vorticity and the strain-rate, show very good
agreement between DNS and TDNS-CMT velocity fields results. Our investigation about the
effects of different degrees of resolution in resolving the inertial-range statistical geometry ori-
entations shows that 1283 grid resolution is more sufficient than the lower ones. However, lower
resolution data also provide accurate results, and can be obtained more efficiently. Therefore,
using low resolution might be a better approach in practice.

6.2 Future Works

Our work demonstrates that using the MTLM is able to build a synthetic SGS model with a
number of good features which many currently SGS models (including those for the scalar flux)
do not have. So it supplies a solid basis for its applications in LES and SGS modelling. Future
research will focus on technical challenges such as, among others, the modelling of inhomogeneous
flows, where no complete information regarding the spectra is available. In such cases, one may
have to estimate the spectra from the resolved the scales and make use of the physics of the
flows. How to implement such a scheme and assess the performance of MTLM in these flows
are some of the challenges among others.

The robustness of the CMTLM technique has already been tested and validated in synthetics
anisotropic turbulence. More work, however, is needed in the future to improve the results
of synthetics fully developed channel flow using CMTLM method. Further applications could
include generalization of the CMTLM procedure to synthetic scalar fields, and it can implement
the method with a simulation code to confirm its capabilities a posteriori. Because the process of
nonlinear energy is captured by CMTLM, the merged TDNS-CMT velocity fields in our combine
technique reproduce a wide range of SGS statistics with very good agreement with DNS. A plan
is to use MTLM as a downscaling method to develop localized models for atmospheric boundary
layer flows, to use the idea of constrained MTLM to couple the resolved and sub-grid scales.
In the next step, we will extend this investigation to scalar field, i.e., generalized the TDNS-
CMT model to predict the SGS scalar fluxes. Also, a posterior tests have to be calculated to
demonstrate the feasibility of the method in industrial applications.
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Appendix A

A.1 Transformation property of the MTLM procedure

We let ϕ2(x) be an odd function of x2 in order to generate anisotropic synthetic turbulence
with the impermeable boundary conditions such that the normal components of the velocity
field are zero. Thus we need to show, applying the constraint equation ue =Mϕ where ϕ(x) =
1
2 [ψ(x) +Hψ(Hx)], leads to ue(x1, x2 = 0, x3) = 0. That is, we need to show that the CMTLM
procedure preserves the reflectional symmetries. In what follows, we will show separately that
each operator of the MTLM procedure maintains this property, such that ue has the same
symmetries of ϕ.

A.1.1 Filtering operator G

Following Eq. 2.12, we can define

uGi (x) =

∫
G(x− y)ui(y)d3y. (A.1)

Supposing that
u1(x) = u1(x∗), u2(x) = −u2(x∗), u3(x) = u3(x∗), (A.2)

where, x∗ = (x1,−x2, x3). We need to prove that uG(x) = [Gu](x) has the reflectional symmetric

property. i.e.,
uG1 (x) = uG1 (x∗), uG2 (x) = −uG2 (x∗), uG3 (x) = uG3 (x∗). (A.3)

Now we will prove that uG1 (x) = uG1 (x∗). Firstly,

uG1 (x) =

∫
G(x− y)u1(y)d3y (A.4)

=

∫
G[x1 − y1, x2 − y2, x3 − y3]u1(y1, y2, y3)dy1dy2dy3. (A.5)

We have

uG1 (x∗) =

∫
G(x∗ − y)u1(y)d3y (A.6)

=

∫
G[x1 − y1,−x2 − y2, x3 − y3]u1(y1, y2, y3)dy1dy2dy3. (A.7)
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And we have G(x1,−x2, x3) = G(x1, x2, x3). Thus,

uG1 (x∗) =

∫
G[x1 − y1, x2 + y2, x3 − y3]u1(y1, y2, y3)dy1dy2dy3. (A.8)

Using variable substitution such that y2 → −y2, leads to

uG1 (x∗) =

∫
G[x1 − y1, x2 − y2, x3 − y3]u1(y1,−y2, y3)dy1dy2dy3. (A.9)

According Eq. A.2, we may write

uG1 (x∗) =

∫
G[x1 − y1, x2 − y2, x3 − y3]u1(y1, y2, y3)dy1dy2dy3. (A.10)

Comparing between Eqs A.5 and A.10 , we have

uG1 (x) = uG1 (x∗). (A.11)

Now we will prove that uG2 (x) = −uG2 (x∗). We have

uG2 (x) =

∫
G(x− y)u2(y)d3y (A.12)

=

∫
G[x1 − y1, x2 − y2, x3 − y3]u2(y1, y2, y3)dy1dy2dy3. (A.13)

−uG2 (x∗) = −
∫
G(x∗ − y)u2(y)d3y (A.14)

= −
∫
G[x1 − y1,−x2 − y2, x3 − y3]u2(y1, y2, y3)dy1dy2dy3. (A.15)

Again, we have G(x1,−x2, x3) = G(x1, x2, x3). Thus,

− uG2 (x∗) = −
∫
G[x1 − y1, x2 + y2, x3 − y3]u2(y1, y2, y3)dy1dy2dy3. (A.16)

Using variable substitution such that y2 → −y2. Then,

− uG2 (x∗) = −
∫
G[x1 − y1, x2 − y2, x3 − y3]u2(y1,−y2, y3)dy1dy2dy3. (A.17)

Using Eq. A.2, the last equation becomes

− uG2 (x∗) =

∫
G[x1 − y1, x2 − y2, x3 − y3]u2(y1, y2, y3)dy1dy2dy3. (A.18)

Comparison between A.13 and A.18 results in

uG2 (x) = −uG2 (x∗). (A.19)

For third part, we can prove it as above, so that

uG3 (x) = uG3 (x∗). (A.20)

Eqs. A.11 A.19 and A.20 (2.11), Eq. (2.19) and Eq. (2.20) indicates that the uG(x) = [Gu](x)
maintains the reflectional symmetric property.
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A.1.2 Advection operator A

Using Eq. 2.11, we have

uAi (x) =

∫
W (x− y − uj(y)t)ui(y)d3y. (A.21)

Let us assume that

u1(x) = u1(x∗), u2(x) = −u2(x∗), u3(x) = u3(x∗) (A.22)

where x∗ = (x1,−x2, x3). In order to show that uA(x) = [Au](x) can transfer the reflectional
symmetric property, we need to prove

uA1 (x) = uA1 (x∗), uA2 (x) = −uA2 (x∗), uA3 (x) = uA3 (x∗) (A.23)

Now we first prove that uA1 (x) = uA1 (x∗). Following A.21, we find

uA1 (x) =

∫
W (x− y − uj(y)t)u1(y)d3y (A.24)

=

∫
W [x1 − y1 − u1(y)t, x2 − y2 − u2(y)t, x3 − y3 − u3(y)t]u1(y)dy1dy2dy3. (A.25)

uA1 (x∗) =

∫
W (x∗ − y − uj(y)t)u1(y)d3y (A.26)

=

∫
W [x1 − y1 − u1(y)t,−x2 − y2 − u2(y)t, x3 − y3 − u3(y)t]u1(y)dy1dy2dy3. (A.27)

We have W (x) = 1/|x|. Thus, W (x1,−x2, x3) = W (x1, x2, x3). Hence,

uA1 (x∗) =

∫
W [(x)− (y∗)− (u1(y),−u2(y), u3(y)) t]u1(y)dy1dy2dy3, (A.28)

where y∗ = (y1,−y2, y3). After applying Eq. A.22, Eq. A.28 becomes,

uA1 (x∗) =

∫
W [x1 − y1 − u1(y)t, x2 + y2 − u2(y∗)t, x3 − y3 − u3(y)t]u1(y)dy1dy2dy3. (A.29)

Using variable substitution such that y2 → −y2 leads to

uA1 (x∗) =

∫
W [x1 − y1 − u1(y∗)t, x2 − y2 − u2(y)t, x3 − y3 − u3(y∗)t]u1(y∗)dy1dy2dy3.

(A.30)

According to Eq. A.22, last equation would be

uA1 (x∗) =

∫
W [x1 − y1 − u1(y)t, x2 − y2 − u2(y)t, x3 − y3 − u3(y)t]u1(y)dy1dy2dy3. (A.31)

Comparison between Eqs. A.25 and A.31 shows

uA1 (x) = uA1 (x∗). (A.32)
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Now we prove uA2 (x) = −uA2 (x∗).

uA2 (x) =

∫
W (x− y − uj(y)t)u2(y)d3y (A.33)

=

∫
W [x1 − y1 − u1(y)t, x2 − y2 − u2(y)t, x3 − y3 − u3(y)t]u2(y)dy1dy2dy3. (A.34)

−uA2 (x∗) = −
∫
W (x∗ − y − uj(y)t)u2(y)d3y (A.35)

=

∫
W [x1 − y1 − u1(y)t,−x2 − y2 − u2(y)t, x3 − y3 − u3(y)t]− u2(y)dy1dy2dy3.

(A.36)

Appling Eq. A.22, last one becomes

−uA2 (x∗) =

∫
W [x1 − y1 − u1(y)t,−x2 − y2 − u2(y)t, x3 − y3 − u3(y)t]u2(y∗)dy1dy2dy3.

(A.37)

We have W (x1,−x2, x3) = W (x1, x2, x3). Then,

−uA2 (x∗) =

∫
W [x1 − y1 − u1(y)t, x2 + y2 + u2(y)t, x3 − y3 − u3(y)t]u2(y∗)dy1dy2dy3. (A.38)

Using Eq. A.22, Eq. A.38 would be

−uA2 (x∗) =

∫
W [x1 − y1 − u1(y)t, x2 + y2 − u2(y∗)t, x3 − y3 − u3(y)t]u2(y∗)dy1dy2dy3.

(A.39)

Using variable substitution such that y2 → −y2 leads to

−uA2 (x∗) =

∫
W [x1 − y1 − u1(y∗)t, x2 − y2 − u2(y)t, x3 − y3 − u3(y∗)t]u2(y)dy1dy2dy3.

(A.40)

Using Eq. A.22, Eq. A.40 becomes

−uA2 (x∗) =

∫
W [x1 − y1 − u1(y)t, x2 − y2 − u2(y)t, x3 − y3 − u3(y)t]u2(y)dy1dy2dy3. (A.41)

Comparing between Eq. A.34 and Eq. A.41 leads to

uA2 (x) = −uA2 (x∗). (A.42)

Now we need to prove uA3 (x) = uA3 (x∗). For this part of proof, we can prove it similarly to the
first part. Thus we have

uA3 (x) = uA3 (x∗). (A.43)

Eqs. A.32, A.42 and A.43 shows that uA(x) = [Au](x) has the reflectional symmetric property.
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A.1.3 Projection operator P

According to Eq. 2.13, we can write this projection operator as follows

uPi (x) =
1

(2π)3

∞∫∫
−∞

d3x′d3kPij(k)uj(x
′)eik.x

′
e−ik.x, (A.44)

where Pij(k) = δij − kikj
k2

and x′ = (x′1, x
′
2, x
′
3). We want to prove

uP1 (x) = uP1 (x∗), uP2 (x) = −uP2 (x∗), uP3 (x) = uP3 (x∗). (A.45)

Now we will prove that uP1 (x) = uP1 (x∗). Using Eq. A.44, we find

uP1 (x) =
1

(2π)3

∞∫∫
−∞

d3x′d3kP1j(k)uj(x
′)eik.x

′
e−ik.x (A.46)

=
1

(2π)3

∞∫∫
−∞

d3x′d3kP1j(k)uj(x
′)eik.(x

′
1,x
′
2,x
′
3)e−ik(x1,x2,x3). (A.47)

uP1 (x∗) =
1

(2π)3

∞∫∫
−∞

d3x′d3kP1j(k)uj(x
′)eik.x

′
e−ik.x

∗
(A.48)

=
1

(2π)3

∞∫∫
−∞

d3x′d3kP1j(k)uj(x
′)eik.(x

′
1,x
′
2,x
′
3)e−ik.(x1,−x2,x3) (A.49)

=
1

(2π)3

∞∫∫
−∞

d3x′d3k
[
(δ11 −

k1k1

k2
)u1(x′) + (δ12 −

k1k2

k2
)u2(x′) + (δ13 −

k1k3

k2
)u3(x′)

]
eik.x

′
e−ik.x

∗
. (A.50)

We use variable substitution k→ k′ = (k1,−k2, k3), such that k.x∗ = k.(x1,−x2, x3) = k1x1 −

k2x2 + k3x3 = k′1x1 + k′2x2 + k′3x3 = k′.x and k.x′ = k.(x′1, x
′
2, x
′
3) = k1x

′
1 + k2x

′
2 + k3x

′
3 =

k′1x
′
1 − k′2x′2 + k′3x

′
3 = k′.x′∗. Then we find

uP1 (x∗) =
1

(2π)3

∞∫∫
−∞

d3x′d3k′
[
(δ11 −

k′1k
′
1

k′2
)u1(x′) + (δ12 +

k′1k
′
2

k′2
)u2(x′) + (δ13 −

k′1k
′
3

k′2
)u3(x′)

]
eik
′.(x′1,−x′2,x′3)e−ik

′.(x1,x2,x3). (A.51)

We then use variable substitution x′ → x′′ = (x′1,−x′2, x′3), such that

u1(x′) = u1(x′′∗) = u1(x′′), (A.52)

u2(x′) = u2(x′′∗) = −u2(x′′), (A.53)
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u3(x′) = u3(x′′∗) = u3(x′′), (A.54)

where x′′∗ = (x′′1,−x′′2, x′′3). Then, we have

uP1 (x∗) =
1

(2π)3

∞∫∫
−∞

d3x′′d3k′
[
(δ11 −

k′1k
′
1

k′2
)u1(x′′1,−x′′2, x′′3) + (−δ12 +

k′1k
′
2

k′2
)u2(x′′1,−x′′2, x′′3)

+ (δ13 −
k′1k
′
3

k′2
)u3(x′′1,−x′′2, x′′3)

]
eik
′.(x′′1 ,x

′′
2 ,x
′′
3 )e−ik

′.(x1,x2,x3) (A.55)

=
1

(2π)3

∞∫∫
−∞

d3x′′d3k′
[
(δ11 −

k′1k
′
1

k′2
)u1(x′′1, x

′′
2, x
′′
3) + (δ12 −

k′1k
′
2

k′2
)u2(x′′1, x

′′
2, x
′′
3)

+ (δ13 −
k′1k
′
3

k′2
)u3(x′′1, x

′′
2, x
′′
3)
]
eik
′.(x′′1 ,x

′′
2 ,x
′′
3 )e−ik

′.(x1,x2,x3) (A.56)

=
1

(2π)3

∞∫∫
−∞

d3x′′d3k′P1j(k
′)uj(x

′′)eik
′.x′′e−ik

′.x, (A.57)

where k′.x′∗ = k′1x
′
1 − k′2x′2 + k′3x

′
3 = k′1x

′′
1 + k′2x

′′
2 + k′3x

′′
3 = k′.x′′. Comparison between Eqs.

A.47 and A.57 shows
uP1 (x) = uP1 (x∗). (A.58)

Now we need to prove uP2 (x) = −uP2 (x∗).

uP2 (x) =
1

(2π)3

∞∫∫
−∞

d3x′d3kP2j(k)uj(x
′)eik.x

′
e−ik.x (A.59)

=
1

(2π)3

∞∫∫
−∞

d3x′d3kP1j(k)uj(x
′)eik.(x

′
1,x
′
2,x
′
3)e−ik.(x1,x2,x3) (A.60)

−uP2 (x∗) =
−1

(2π)3

∞∫∫
−∞

d3x′d3kP2j(k)uj(x
′)eik.x

′
e−ik.x

∗
(A.61)

=
−1

(2π)3

∞∫∫
−∞

d3x′d3kP2j(k)uj(x
′)eik.(x

′
1,x
′
2,x
′
3)e−ik.(x1,−x2,x3) (A.62)

=
−1

(2π)3

∞∫∫
−∞

d3x′d3k
[
(δ21 −

k2k1

k2
)u1(x′) + (δ22 −

k2k2

k2
)u2(x′) + (δ23 −

k2k3

k2
)u3(x′)

]
(A.63)

eik.x
′
e−ik.x

∗
.

Using variable substitution k→ k′ = (k1,−k2, k3) we have

−uP2 (x∗) =
−1

(2π)3

∞∫∫
−∞

d3x′d3k′
[
(δ21 +

k′2k
′
1

k′2
)u1(x′) + (δ22 −

k′2k
′
2

k′2
)u2(x′) + (δ23 +

k′2k
′
3

k′2
)u3(x′)

]
eik
′.(x′1,−x′2,x′3)e−ik

′.(x1,x2,x3). (A.64)
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Using variable substitution x′ → x′′ = (x′1,−x′2, x′3) results in

−uP2 (x∗) =
−1

(2π)3

∞∫∫
−∞

d3x′′d3k′
[
(δ21 +

k′2k
′
1

k′2
)u1(x′′∗) + (δ22 −

k′2k
′
2

k′2
)u2(x′′∗)

+ (δ23 +
k′2k
′
3

k′2
)u3(x′′∗)

]
eik
′.(x′′1 ,x

′′
2 ,x
′′
3 )e−ik

′.(x1,x2,x3). (A.65)

According to Eqs. A.52, A.53 and A.54, we find

−uP2 (x∗) =
−1

(2π)3

∞∫∫
−∞

d3x′′d3k′
[
(δ21 +

k′2k
′
1

k′2
)u1(x′′) + (−δ22 +

k′2k
′
2

k′2
)u2(x′′)

+ (δ23 +
k′2k
′
3

k′2
)u3(x′′)

]
eik
′.(x′′1 ,x

′′
2 ,x
′′
3 )e−ik

′.(x1,x2,x3) (A.66)

=
1

(2π)3

∞∫∫
−∞

d3x′′d3k′
[
(−δ21 −

k′2k
′
1

k′2
)u1(x′′) + (δ22 −

k′2k
′
2

k′2
)u2(x′′)

+ (−δ23 −
k′2k
′
3

k′2
)u3(x′′)

]
eik
′.(x′′1 ,x

′′
2 ,x
′′
3 )e−ik

′.(x1,x2,x3) (A.67)

=
1

(2π)3

∞∫∫
−∞

d3x′′d3k′P2j(k
′)uj(x

′′)eik
′.x′′e−ik

′.x. (A.68)

Comparison between Eqs. A.60 and A.68, shows

uP2 (x) = −uP2 (x∗). (A.69)

Now we will prove that uP3 (x) = uP3 (x∗).

uP3 (x) =
1

(2π)3

∞∫∫
−∞

d3x′d3kP3j(k)uj(x
′)eik.x

′
e−ik.x (A.70)

=
1

(2π)3

∞∫∫
−∞

d3x′d3kP3j(k)uj(x
′)eik.(x

′
1,x
′
2,x
′
3)e−ik.(x1,x2,x3). (A.71)

uP3 (x∗) =
1

(2π)3

∞∫∫
−∞

d3x′d3kP3j(k)uj(x
′)eik.x

′
e−ik.x

∗
(A.72)

=
1

(2π)3

∞∫∫
−∞

d3x′d3kP3j(k)uj(x
′)eik.(x

′
1,x
′
2,x
′
3)e−ik.(x1,−x2,x3) (A.73)

=
1

(2π)3

∞∫∫
−∞

d3x′d3k
[
(δ31 −

k3k1

k2
)u1(x′) + (δ32 −

k3k2

k2
)u2(x′) + (δ33 −

k3k3

k2
)u3(x′)

]
eik.x

′
e−ik.x

∗
. (A.74)
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Using variable substitution k→ k′ = (k1,−k2, k3), we have

uP3 (x∗) =
1

(2π)3

∞∫∫
−∞

d3x′d3k′
[
(δ31 −

k′3k
′
1

k′2
)u1(x′) + (δ32 +

k′3k
′
2

k′2
)u2(x′) + (δ33 −

k′3k
′
3

k′2
)u3(x′)

]
eik
′.(x′1,−x′2,x′3)e−ik

′.(x1,x2,x3). (A.75)

Using variable substitution such that x′ → x′′ = (x′1,−x′2, x′3), with Eqs. A.52, A.53 and A.54.

uP3 (x∗) =
1

(2π)3

∞∫∫
−∞

d3x′′d3k′
[
(δ31 −

k′3k
′
1

k′2
)u1(x′′1,−x′′2, x′′3) + (−δ32 +

k′3k
′
2

k′2
)u2(x′′1,−x′′2, x′′3)

+ (δ33 −
k′3k
′
3

k′2
)u3(x′′1,−x′′2, x′′3)

]
eik
′.(x′′1 ,x

′′
2 ,x
′′
3 )e−ik

′.(x1,x2,x3) (A.76)

=
1

(2π)3

∞∫∫
−∞

d3x′′d3k′
[
(δ31 −

k′3k
′
1

k′2
)u1(x′′1, x

′′
2, x
′′
3) + (δ32 −

k′3k
′
2

k′2
)u2(x′′1, x

′′
2, x
′′
3)

+ (δ33 −
k′3k
′
3

k′2
)u3(x′′1, x

′′
2, x
′′
3)
]
eik
′.(x′′1 ,x

′′
2 ,x
′′
3 )e−ik

′.(x1,x2,x3) (A.77)

=
1

(2π)3

∞∫∫
−∞

d3x′′d3k′P3j(k
′)uj(x

′′)eik
′.x′′e−ik

′.x. (A.78)

Comparison between Eqs. A.71 and A.78 leads to

uP3 (x) = uP3 (x∗). (A.79)

Eqs. A.58, A.69 and A.79 showS that uP(x) = [Pu](x) preserves the reflectional symmetric
property.

A.1.4 Rescaling operator R

Eq. 3.11, leads to

uRj (x) =
1

(2π)3

∞∫∫
−∞

d3x′d3k
(Ep(k)

Eu(k)

)1/2
uj(x

′)eik.x
′
e−ik.x (A.80)

Aiming to prove uR1 (x) = uR1 (x∗), uR2 (x) = −uR2 (x∗), uR3 (x) = uR3 (x∗), we first prove that
uR1 (x) = uR1 (x∗). We have

uR1 (x) =
1

(2π)3

∞∫∫
−∞

d3x′d3k
(Ep(k)

Eu(k)

)1/2
u1(x′)eik.x

′
e−ik.x (A.81)

=
1

(2π)3

∞∫∫
−∞

d3x′d3k
(Ep(k)

Eu(k)

)1/2
u1(x′)eik.x

′
e−ik.(x1,x2,x3) (A.82)

126



uR1 (x∗) =
1

(2π)3

∞∫∫
−∞

d3x′d3k
(Ep(k)

Eu(k)

)1/2
u1(x′)eik.x

′
e−ik.(x1,−x2,x3). (A.83)

Applying variable substitution k→ k′ = (k1,−k2, k3), we have

uR1 (x∗) =
1

(2π)3

∞∫∫
−∞

d3x′d3k′
(Ep(k′)
Eu(k′)

)1/2
u1(x′)eik

′.(x′1,−x′2,x′3)e−ik
′.(x1,x2,x3). (A.84)

Using variable substitution x′ → x′′ = (x′1,−x′2, x′3), we find

uR1 (x∗) =
1

(2π)3

∞∫∫
−∞

d3x′′d3k′
(Ep(k′)
Eu(k′)

)1/2
u1(x′′1,−x′′2, x′′3)eik

′.(x′′1 ,x
′′
2 ,x
′′
3 )e−ik

′.(x1,x2,x3), (A.85)

where k′ = |k′|. Using Eq. A.52, gives

uR1 (x∗) =
1

(2π)3

∞∫∫
−∞

d3x′′d3k′
(Ep(k′)
Eu(k′)

)1/2
u1(x′′1, x

′′
2, x
′′
3)eik

′.(x′′1 ,x
′′
2 ,x
′′
3 )e−ik

′.(x1,x2,x3) (A.86)

=
1

(2π)3

∞∫∫
−∞

d3x′′d3k′
(Ep(k′)
Eu(k′)

)1/2
u1(x′′)eik

′.x′′e−ik
′.x (A.87)

Comparison between Eqs. Eqs. A.82 and A.87 results in

uR1 (x) = uR1 (x∗). (A.88)

To prove uR2 (x) = −uR2 (x∗), we have

uR2 (x) =
1

(2π)3

∞∫∫
−∞

d3x′d3k
(Ep(k)

Eu(k)

)1/2
u2(x′)eik.x

′
e−ik.x (A.89)

=
1

(2π)3

∞∫∫
−∞

d3x′d3k
(Ep(k)

Eu(k)

)1/2
u2(x′)eik.x

′
e−ik.(x1,x2,x3) (A.90)

−uR2 (x∗) =
−1

(2π)3

∞∫∫
−∞

d3x′d3k
(Ep(k)

Eu(k)

)1/2
u2(x′)eik.x

′
e−ik.(x1,−x2,x3). (A.91)

Using variable substitution k→ k′ = (k1,−k2, k3), we have

−uR2 (x∗) =
−1

(2π)3

∞∫∫
−∞

d3x′d3k′
(Ep(k′)
Eu(k′)

)1/2
u2(x′)eik

′.(x′1,−x′2,x′3)e−ik
′.(x1,x2,x3) (A.92)

Applying x′ → x′′ = (x′1,−x′2, x′3), we find

−uR2 (x∗) =
−1

(2π)3

∞∫∫
−∞

d3x′′d3k′
(Ep(k′)
Eu(k′)

)1/2
u2(x′′1,−x′′2, x′′3)eik

′.(x′′1 ,x
′′
2 ,x
′′
3 )e−ik

′.(x1,x2,x3). (A.93)
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Using Eq. A.53, gives

uR2 (x∗) =
−1

(2π)3

∞∫∫
−∞

d3x′′d3k′
(Ep(k′)
Eu(k′)

)1/2
− u2(x′′1, x

′′
2, x
′′
3)eik

′.(x′′1 ,x
′′
2 ,x
′′
3 )e−ik

′.(x1,x2,x3) (A.94)

=
1

(2π)3

∞∫∫
−∞

d3x′′d3k′
(Ep(k′)
Eu(k′)

)1/2
u2(x′′)eik

′.x′′e−ik
′.x (A.95)

Comparing between Eqs. A.90 and A.95, we find

uR2 (x) = −uR2 (x∗). (A.96)

The third equation can be proved as before so that

uR3 (x) = uR3 (x∗). (A.97)

Eqs.A.88, A.96 and A.97, shows uR(x) = [Ru](x) is maintaining the reflectional symmetry.

A.2 Derivation of the adjoint system with reflectional symmetry

In order to form the adjoint system with reflectional symmetry, we have assumed that

ϕ(x) =
1

2
[ψ(x) +Hψ(Hx)],

where H is defined as

H =

 1 0 0
0 −1 0
0 0 1

 ,

and

Hx =

 x1

−x2

x3

 = x∗,

for arbitrary ψ, ensuring the velocity feild ϕ has the reflectional symmetry such that ϕ2(x)
be an odd function of x2. The optimal solution for ψ can be found as part of the solution
of the coupled optimality system, which includes the constraint, the adjoint equation and the
optimality condition [107]. Setting the first variation of L with respect to the Lagrange multiplier
ξ equal to zero, following the standard technique [64], we have

lim
ε→0

(
L(ξ + εξ̃)− L(ξ)

ε

)
= lim

ε→0

1

ε

[
{J(ue) +

∫
(ξ + εξ̃).(ue −Mϕ)d3x} − {J(ue)

+

∫
ξ.(ue −Mϕ)d3x}

]
(A.98)

= lim
ε→0

1

ε

∫
εξ̃.(ue −Mϕ)d3x (A.99)

=

∫
ξ̃.(ue −Mϕ)d3x = 0. (A.100)
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Since the variation ξ̃ in the Lagrange multiplier ξ is arbitrary, we obtain the state equation, i.e.,

ue =Mϕ. (A.101)

The adjoint equation is given by the condition

lim
ε→0

(L(ue + εũe)− L(ue)

ε

)
= lim

ε→0

1

ε

[
{J(ue + εũe) +

∫
ξ.((ue + εũe)−Mϕ)d3x} − {J(ue)

+

∫
ξ.(ue −Mϕ)d3x}

]
= 0 (A.102)

= lim
ε→0

1

ε

[
J(ue + εũe)− J(ue) +

∫
ξ.εũed

3x

]
. (A.103)

Using Eq. 3.13, we find

lim
ε→0

(L(ue + εũe)− L(ue)

ε

)
= lim

ε→0

1

ε

[
1

2
‖F [ue + εũe −w]‖2 − 1

2
‖F [ue −w]‖2 +

∫
ξ.εũed

3x

]
(A.104)

= lim
ε→0

1

ε

[
1

2

∫
{F [ue + εũe −w]}.{F [ue + εũe −w]}d3x

− 1

2

∫
{F [ue −w]}.{F [ue −w]}d3x +

∫
ξ.εũed

3x

]
. (A.105)

lim
ε→0

(L(ue + εũe)− L(ue)

ε

)
= lim

ε→0

1

ε

[
1

2

∫
{F [ue −w] + εF [ũe]}.{F [ue −w] + εF [ũe]}d3x

− 1

2

∫
{F [ue −w]}.{F [ue −w]}d3x +

∫
ξ.εũed

3x

]
(A.106)

= lim
ε→0

1

ε

[
1

2

∫
{F [ue −w].F [ue −w] + 2ε(F [ue −w].F [ũe])

+O(ε2)}d3x− 1

2

∫
{F [ue −w]}.{F [ue −w]}d3x +

∫
ξ.εũed

3x

]
.

(A.107)

lim
ε→0

(L(ue + εũe)− L(ue)

ε

)
= lim

ε→0

1

ε

[
1

2

∫
{F [ue −w].F [ue −w] + 2εF [ue −w].F [ũe] +O(ε2)}d3x

− 1

2

∫
{F [ue −w]}.{F [ue −w]}d3x +

∫
ξ.εũed

3x

]
= 0 (A.108)

=

∫
{F [ue −w].F [ũe]}d3x +

∫
ξ.ũed

3x (A.109)

=

∫
{F+F [ue −w].ũe}d3x +

∫
ξ.ũed

3x (A.110)

=

∫
{F+F [ue −w].ũe + ξ.ũe}d3x (A.111)

=

∫
{F+F [ue −w] + ξ}.ũed3x. (A.112)

We have used F+F = F+ = F , where F+ is the adjoint operator of the linear operator F .
Since the variation ũe in the state variable ue is arbitrary, we have

ξ(x) = −F [ue(x)−w(x)]. (A.113)
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The optimality condition is achieved by setting the first variation of the L with respect to the
control variable ψ equal to zero, which is equivalent to

lim
ε→0

(
L(ψ + εψ̃)− L(ψ)

ε

)
= lim

ε→0

1

ε

[
(J(ue(x)) +

∫
ξ(x).(ue(x)−M(ϕ(x) + δϕ(x))d3x− (J(ue(x))

+

∫
ξ(x).(ue(x)−M(ϕ(x)))d3x

]
= 0. (A.114)

where δϕ is the variation corresponding to εψ̃, which is defined by

δϕ(x) =
1

2
[ψ + εψ̃ +H[ψ(Hx) + εψ̃(Hx)]− 1

2
[ψ(x) +Hψ(Hx) =

ε

2
[ψ̃ +Hψ̃(Hx)].

Thus

lim
ε→0

(
L(ψ + εψ̃)− L(ψ)

ε

)
= lim

ε→0

1

ε

[ ∫
ξ(x).[ue(x)−M(ϕ(x) + δϕ(x))]d3x−

∫
ξ(x)

.[ue −M(ϕ(x))]d3x

]
(A.115)

= lim
ε→0

−1

ε

∫
ξ(x).[M(ϕ(x) + δϕ(x))−M(ϕ(x))]d3x. (A.116)

Using Eq. A.101, which is resulting in ue(x) =M(ϕ(x)). Then,

δue(x) = [M(ϕ(x) + δϕ(x))−M(ϕ(x))]. (A.117)

We have M+1 fields after M iteration: u10,u20, ...,uM0 and ue, where the control variable ϕ(x)
is projected onto the divergence-free subspace, giving u10 ≡ Pϕ(x) and ue is the final velocity
field. un0 is the output of the (n− 1)th iteration and the input of the nth iteration [107], such
that

un0(x) = u(n−1)3(x) + Gc(n−1)u(n−1)0(x). (A.118)

Thus, we have
u(n+1)0(x) = un3(x) + Gcnun0(x) (A.119)

For n = 1, 2, ...,M . Then,

ue(x) = RM (PAM )mM (GM (uM0(x))) + GcMuM0(x) (A.120)

= RM (PAM )mM (GM (uM0(x))) + GcMuM0(x) (A.121)

= [RM (PAM )mMGM + GcM ]uM0(x). (A.122)

Hence, the final field ue(x) is given by

u(M+1)0(x) = ue(x). (A.123)

ue(x) =Mϕ(x), (A.124)

130



where

M =
M∏
n=1

[Rn(PAn)mnGn + Gcn]P. (A.125)

According to Eq. A.117, where δue(x) represent the variation of ue(x) corresponding to δϕ.
using Eqs. A.122 and A.123, we find

δue(x) = δu(M+1)0(x) (A.126)

= (DRMDAMGM + GcM )δuM0(x) (A.127)

= (DRMDAMGM + GcM )(DRM−1DAM−1GM−1 + GcM−1)δu(M−1)0(x) (A.128)

=
M∏
n=1

[DRnDAn Gn + Gcn]δu10(x). (A.129)

Where DRn and DAn are the tangent operator of Rn and PAn operators, respectively. Given

that u10 ≡ Pϕ(x) with Eq. 3.15. Thus,

u10 = P
[

1

2
[ψ(x) +Hψ(Hx)]

]
. (A.130)

δu10 =
ε

2
P
[
ψ̃(x) +Hψ̃(Hx)

]
. (A.131)

Eq. A.129 gives the linearization of the Rn and PAn operators, which are also the tangent
operator of the operators. We thus find

δue(x) = {
M∏
n=1

[DRnDAn Gn + Gcn]} ε
2
P
[
ψ̃(x) +Hψ̃(Hx)

]
(A.132)

=
ε

2
{
M∏
n=1

[DRnDAn Gn + Gcn]P[ψ̃(x)] +
M∏
n=1

[DRnDAn Gn + Gcn]P[Hψ̃(Hx)]}. (A.133)

Following last equation, Eq. A.116 becomes

lim
ε→0

(
L(ψ + εψ̃)− L(ψ)

ε

)
= lim

ε→0

−1

ε

∫
ξ(x).

[
ε

2
{
M∏
n=1

[DRnDAn Gn + Gcn]P[ψ̃(x)]

+

M∏
n=1

[DRnDAn Gn + Gcn]P[Hψ̃(Hx)]d3x (A.134)

=
−1

2

[ ∫
ξ(x).

M∏
n=1

[DRnDAn Gn + Gcn]P[ψ̃(x)]d3x

+

∫
ξ(x).

M∏
n=1

[DRnDAn Gn + Gcn]P[Hψ̃(Hx)]d3x] (A.135)

=
−1

2

[ ∫
P

M∏
n=1

[GnDA+
n DR+

n + Gcn]ξ(x).ψ̃(x)d3x

+

∫
P

M∏
n=1

[GnDA+
n DR+

n + Gcn]ξ(x).Hψ̃(Hx)d3x]. (A.136)
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DR+
n and DA+

n are the adjoint operators of the the linearizion of the of Rn and (PAn)mn ,
respectively. Which are defined the adjoint operator of the operator M as follows:

M+ = P
M∏
n=1

[GnDA+
n DR+

n + Gcn]. (A.137)

Therefore

lim
ε→0

(
L(ψ + εψ̃)− L(ψ)

ε

)
=
−1

2

[∫
(M+ξ)(x).ψ̃(x)d3x +

∫
(M+ξ)(x).Hψ̃(Hx)d3x

]
.

(A.138)
Using variable substitution Hx = x′, such that Hx = (x1,−x2, x3) = (x′1, x

′
2, x
′
3) = x′. which

is resulting in

lim
ε→0

(
L(ψ + εψ̃)− L(ψ)

ε

)
=
−1

2

[ ∫
(M+ξ)(x).ψ̃(x)d3x +

∫
H(M+ξ)(Hx′).ψ̃(x′)d3x′

]
,

(A.139)
where

Hx′ = (x′1,−x′2, x′3). (A.140)

Then

lim
ε→0

(
L(ψ + ψ̃)− L(ψ)

ε

)
= −

∫
1

2
[(M+ξ)(x) +H(M+ξ)(Hx)].ψ̃(x)d3x (A.141)

Thus,
δL
δψ
|ue,ξ=

−1

2
{(M+ξ)(x) +H(M+ξ)(Hx)}. (A.142)

Since the adjoint equation and the state equation are solved exactly [107], we have

DJ
Dψ =

δL
δψ
|ue,ξ=

−1

2
{(M+ξ)(x) +H(M+ξ)(Hx)}. (A.143)

It can be calculated by Knowing the ξ and the operator M+. Thus following Eq. A.114, we
find

δL
δψ
|ue,ξ=

−1

2
{(M+ξ)(x) +H(M+ξ)(Hx)} = 0. (A.144)

Eqs. A.101, A.113 and A.144, forms the optimality system for the optimization problem.
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Appendix B

B.1 The pseudo-code for the numerical implementation of the
CMTLM map

In this appendix, the pseudo-code for some key parts of the numerical algorithm is given.

B.1.1 The algorithm for the CMTLM map

It is assumed that a tolerance e > 0 and a step size λ > 0 have been given. The pseodu-code
for the outer iteration in the CMTLM map is given below. Those of the inner iterations will be
given in the next subsection.

For k = 0, 1, 2, ..., do:

1. Mϕ(k) → u
(k)
e ;

2. Find J from Eq. (3.13)

If J < e then: exit;

Else continue;

3. Find ξ(k) from Eq. (3.18)

4. Find DJ/Dϕ(k) from Eq. (3.21)

5. Update ϕ, i.e.:

ϕ(k) − λ DJDϕ(k)
→ ϕ(k+1). (B.1)

The iteration exits when the cost function is smaller than the given tolerance e. The last value
for ue is the CMTLM synthetic velocity field.

B.1.2 The iterations in the MTLM map (inner iterations)

It is assumed that M is given, and we have chosen L = π/2 so that `n = 2−(n+1)π and kc,n =
2n+2. The pseudo-code for the MTLM map is as follows:

1. Define a (N/2) × N × N three dimensional complex array ϕ; initialize ϕ with Gaussian
random number.

2. For: n = 1, 2, ...,M , do:
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(a) Define a Nn/2×Nn ×Nn three dimensional complex array un where Nn = 2n+2;

(b) Copy the first Nn/2×Nn ×Nn Fourier modes in ϕ to un;

(c) For: i = 1, 2, ...,mn, do:

i. Inverse FFT un;

ii. Apply operator An on un, i.e.: Define real Nn × Nn × Nn arrays F and s and
a temporary three dimensional Nn × Nn × Nn real array vn; let s = 0, F = 0,
vn = 0;

For i = 1 to Nn, j = 1 to Nn, k = 1 to Nn, Do:

A. Find the location X(tn) for the fluid particle on grid point (i, j, k);

B. For the 8 grid points xp (p = 1, 2, ..., 8) around the fluid particle, find the
weight W (xp −X(tn))→ F (xp);

C. vn(xp) + F (xp)un(i, j, k)→ vn(xp); s(xp) + F (xp)→ s(xp);

iii. vn/s→ un

iv. FFT un;

v. Apply operator P on un;

(d) Apply Rn to un;

(e) Copy un back into the first Nn/2×Nn ×Nn Fourier modes in ϕ.

The final result in ϕ is the MTLM synthetic velocity field.

B.1.3 The algorithm for the calculation of the gradient of the cost function

We consider only a generic cost function J = ||F(ue −w)||22/2 where w is the target function
and ue is the synthetic field constructed using the MTLM map. When CMTLM is applied to
construct a synthetic model for the velocity field in a channel, the pseudo-code for the calculation
of the gradient of J with respect to the control ψ (i.e., DJ/Dψ) is given as follows:

1. Define a (N/2)×N ×N three dimensional complex array ξ;

2. Calculate the adjoint, i.e.: −F(ue −w)→ ξ;

3. For: n = M,M − 1, ..., 2, 1, do:

(a) Define a Nn/2×Nn ×Nn three dimensional complex array ξn where Nn = 2n+2;

(b) Copy the first Nn/2×Nn ×Nn Fourier modes in ξ to ξn;

(c) Apply DR+
n to ξn;

(d) For: i = mn,mn − 1, ..., 2, 1, Do:

i. Apply operator P on ξn;

ii. Apply operator DA+
n on ξn;

(e) Copy ξn back into the first Nn/2×Nn ×Nn Fourier modes in ξ.

4. Find the antisymmetric part of ξ according to Eq. (3.21)

The final result in ξ is DJ/Dψ.
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