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1 Abstract

Isothermal and non-isothermal quiet sun atmospheres are modelled and small perturbations are applied. Acous-
tic wave behaviour is observed and deconstructed both analytically and numerically. Isothermal magnetic
regions are then investigated by considering mode conversions.

2 Introduction - Hyperbolic partial differential equations

In this paper, we investigate Partial Differential Equations (PDE) of the form:

A
∂2u

∂x2
+B

∂2u

∂x∂y
+ C

∂2u

∂y2
+ f

(
x, y, u,

∂u

∂x
,
∂u

∂y

)
= 0 (2.1)

where A, B and C are constants. We describe this PDE as:

(i) hyperbolic if B2 − 4AC > 0

(ii) parabolic if B2 − 4AC = 0

(iii) elliptic if B2 − 4AC < 0

A well-known hyperbolic PDE is the wave equation (2.2):

∂2u

∂t2
− c2∂

2u

∂x2
= 0 (2.2)

Whereas a well-known parabolic PDE is the heat equation (2.3):

∂u

∂t
− α∂

2u

∂x2
= 0 (2.3)

In Section 3, we derive a hyperbolic PDE for acoustic gravity waves in the solar atmosphere (from the surface
of the sun, through the photosphere, to the chromosphere). These are not the only types of waves found in the
solar atmosphere; we also examine magneto-acoustic gravity waves in Section 6. The aim of this paper is to
contribute to solving the Solar Coronal heating problem by providing a methodology which accurately models
wave speeds.

It is not always possible to find an analytic solution to a problem involving PDEs. The most common
numerical techniques used to solve PDEs are finite difference method (FDM), finite element method (FEM),
and finite volume method (FVM). We use FDM to evaluate problems numerically in the following sections.

3 Derivation of the acoustic gravity wave in an isothermal atmosphere

We will derive the governing equations for the acoustic gravity wave in the framework of Magnetohydrodynamics
(MHD). This requires the equation of continuity (3.1), the equation of motion (3.2), and the adiabatic energy
equation (3.3). Additionally we include the magnetic induction equation (3.4) here for completeness as it
will be needed for Section 6. Note that the diffusion term has been omitted from (3.4) as we assume infinite
electrical conductivity. In the following equations, ρ is the fluid density, v(x, y, z, t) is the fluid velocity, p is
the fluid pressure, J is the current density, B is the magnetic field, g is gravity, ν is the coefficient of kinematic
viscosity, γ is the ratio of specific heat capacity, and t is time.

∂ρ

∂t
+ ∇ · (ρv) = 0 (3.1)

ρ
dv

dt
= −∇p+ J ×B + ρg + ρν∇2v (3.2)

∂p

∂t
+ v ·∇p = −γp∇ · v (3.3)

∂B

∂t
= ∇× (v ×B) (3.4)
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We assume that a small perturbation to the equilibrium state is generated and that the equilibrium terms
have no time dependence. Thus:

B = B0 + B1 where B1 � B0 (3.5)

v = v0 + v1 where v1 � v0 (3.6)

ρ = ρ0 + ρ1 where ρ1 � ρ0 (3.7)

p = p0 + p1 where p1 � p0 (3.8)

In this section we consider the plasma to be inviscid (ν = 0) and non-magnetic (B = 0), simulating a quiet
sun atmosphere. We assume that gravity is a constant and acts in the negative z-direction, hence:

g =

 0
0
−g

 (3.9)

We assume that the equilibrium state of the plasma is at rest (v0 = 0). Additionally, we are only interested
in the fluid velocity in the z direction, hence we assume the only non-zero velocity is vz = v. Thus we obtain
the following simplified MHD equations:

∂ρ

∂t
+

∂

∂z
(ρv) = 0 (3.10)

ρ
∂v

∂t
= −∂p

∂z
+ ρ(−g) (3.11)

∂p

∂t
+ v

∂p

∂z
= −γp∂v

∂z
(3.12)

We begin by examining the equation of motion (3.11) at equilibrium. We find that:

∂p0
∂z

= ρ0(−g) (3.13)

Note that sound speed is related to pressure and density via (3.14) [1]:

c2s =
γp

ρ
(3.14)

In this section we assume cs is constant. Using (3.14) to eliminate ρ0 from equation (3.13) gives:

∂p0
∂z

= −γg
c2s
p0 (3.15)

Solving (3.15) yields:

p0 = A exp

(
−γg
c2s
z

)
(3.16)

Therefore:

ρ0 =
Aγ

c2s
exp

(
−γg
c2s
z

)
(3.17)

In Appendix A.1 we linearise (3.10), (3.11) and (3.12) and the results follow:

∂ρ1
∂t

= −ρ0
∂v1
∂z
− v1

∂ρ0
∂z

(3.18)

ρ0
∂v1
∂t

= −∂p1
∂z

+ ρ1(−g) (3.19)

∂p1
∂t

= ρ0v1g − γp0
∂v1
∂z

(3.20)

When the linearised equation of motion (3.19) is differentiated with respect to t we get:

∂

∂t

(
ρ0
∂v1
∂t

)
=

∂

∂t

(
−∂p1
∂z

)
+
∂

∂t

(
ρ1(−g)

)
(3.21)

ρ0
∂2v1
∂t2

= − ∂

∂z

(
∂p1
∂t

)
− g∂ρ1

∂t
(3.22)
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We use (3.18) to eliminate ∂ρ1
∂t from (3.22). This gives:

ρ0
∂2v1
∂t2

= − ∂

∂z

(
∂p1
∂t

)
− g

(
−ρ0

∂v1
∂z
− v1

∂ρ0
∂z

)
(3.23)

= − ∂

∂z

(
∂p1
∂t

)
+ gρ0

∂v1
∂z

+ gv1
∂ρ0
∂z

(3.24)

We use (3.20) to eliminate ∂p1
∂t from (3.24).

ρ0
∂2v1
∂t2

= − ∂

∂z

(
∂p1
∂t

)
+ gρ0

∂v1
∂z

+ gv1
∂ρ0
∂z

(3.25)

= − ∂

∂z

(
gρ0v1 − γp0

∂v1
∂z

)
+ gρ0

∂v1
∂z

+ gv1
∂ρ0
∂z

(3.26)

= −g ∂
∂z

(ρ0v1) + γ
∂

∂z

(
p0
∂v1
∂z

)
+ gρ0

∂v1
∂z

+ gv1
∂ρ0
∂z

(3.27)

= −g
(
∂ρ0
∂z

v1 + ρ0
∂v1
∂z

)
+ γ

(
∂p0
∂z

∂v1
∂z

+ p0
∂2v1
∂z2

)
+ gρ0

∂v1
∂z

+ gv1
∂ρ0
∂z

(3.28)

= γ
∂p0
∂z

∂v1
∂z

+ γp0
∂2v1
∂z2

(3.29)

Using the sound speed relation (3.14) and the derivative with respect to z of (3.16) gives:

γ

c2s
p0
∂2v1
∂t2

= −γ
2g

c2s
p0
∂v1
∂z

+ γp0
∂2v1
∂z2

(3.30)

Then dividing through by γp0 and rearranging yields:

∂2v1
∂z2

− γg

c2s

∂v1
∂z
− 1

c2s

∂2v1
∂t2

= 0 (3.31)

Defining the density scale height H = c2s
γg completes the derivation:

∂2v1
∂z2

− 1

H

∂v1
∂z
− 1

c2s

∂2v1
∂t2

= 0 (3.32)

If we assume that gravity acts in the positive z direction instead, we get:

∂2v1
∂z2

+
1

H

∂v1
∂z
− 1

c2s

∂2v1
∂t2

= 0 (3.33)

3.1 Semi-Analytical Solution - Laplace transform method

In this section we solve (3.34) semi-analytically following Sutmann et al [2]:

∂2u

∂z2
+

1

H

∂u

∂z
− 1

c2s

∂2u

∂t2
= 0 (3.34)

Note we have replaced v1 from (3.33) with u and developed the following initial and boundary conditions from
assumptions made during the derivation:

u(z, 0) = 0 for z 6= 0 (3.35)

∂u

∂t
(z, 0) = 0 for z 6= 0 (3.36)

u(0, t) = u0e
−iωt (3.37)

lim
z→∞

u(z, t) = 0 (3.38)

Note that (3.34) is a hyperbolic partial differential equation and that boundary condition (3.37) creates the
perturbation by driving the system sinusoidally from z = 0, the surface of the sun, where ω is the angular
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frequency of that perturbation. Eventually we will examine the real part of the solution but for now we keep
(3.37) as a complex exponential for simplicity.

We cannot solve this problem by a separation of variables so a Laplace transform method is used instead
and therefore we denote U to be the Laplace transform of u. Applying Laplace transforms to (3.34) yields:

∂2U

∂z2
+

1

H

∂U

∂z
− 1

c2s

(
s2U − su(z, 0)− ∂u

∂t
(z, 0)

)
= 0 (3.39)

Next we Laplace transform the boundary conditions (3.37) and (3.38). It is not necessary to transfer the initial
conditions (3.35) and (3.36). Hence (3.37) and (3.38) become:

U(0, s) =
u0

s+ iω
(3.40)

lim
z→∞

U(z, s) = 0 (3.41)

Applying the initial conditions (3.35) and (3.36) to the transformed equation (3.39) yields:

∂2U

∂z2
+

1

H

∂U

∂z
− s2

c2s
U = 0 (3.42)

Using the method of the characteristic equation to solve (3.42) gives:

m2 +
1

H
m− s2

c2s
= 0 (3.43)

Thus the two solutions are:

m± = − 1

2H
± 1

cs

√
c2s

4H2
+ s2 (3.44)

Hence we find that:

U(z, s) = c1 exp

(
− z

2H
+
z

cs

√
c2s

4H2
+ s2

)
+ c2 exp

(
− z

2H
− z

cs

√
c2s

4H2
+ s2

)
(3.45)

Note that in Appendix B.1 it is shown that m+ > 0 therefore, in conjunction with (3.41), we find:

U(z, s) = c2 exp

(
− z

2H
− z

cs

√
c2s

4H2
+ s2

)
(3.46)

Using (3.40) we get:

U(z, s) =
u0

s+ iω
exp

(
− z

2H
− z

cs

√
c2s

4H2
+ s2

)
(3.47)

Hence:

U(z, s) =
u0

s+ iω
exp

(
− z

2H

)
exp

(
− z
cs

√
c2s

4H2
+ s2

)
(3.48)

In Appendix B.2 it is derived that if α is constant and if we let J1 be a Bessel function of the first kind then:

exp

(
− z
cs

√
α2 + s2

)
= exp

(
−sz
cs

)
− αz

cs

∫ ∞

z
cs

J1

(
α

√
t2 −

(
z
cs

)2)
√
t2 −

(
z
cs

)2 e−stdt (3.49)

Hence, we have:

U(z, s) =
u0

s+ iω
exp

(
− z

2H

)
exp

(
−sz
cs

)
− z

2H

∫ ∞

z
cs

J1

(
cs
2H

√
t2 −

(
z
cs

)2)
√
t2 −

(
z
cs

)2 e−stdt

 (3.50)
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This simplifies to:

U(z, s) =
u0

s+ iω
exp

(
− z

2H

)
exp

(
−sz
cs

)
− u0
s+ iω

(
z

2H

)
exp

(
− z

2H

)∫ ∞

z
cs

J1

(
cs
2H

√
t2 −

(
z
cs

)2)
√
t2 −

(
z
cs

)2 e−stdt

(3.51)
At this stage we focus on the following integral:∫ ∞

z
cs

J1

(
cs
2H

√
t2 −

(
z
cs

)2)
√
t2 −

(
z
cs

)2 e−stdt (3.52)

This is almost a Laplace transform but the lower limit is z
cs

instead of 0. To remedy this we add the Heaviside

Step function H
(
t− z

cs

)
(See Appendix B.3 for definition). Thus we can rewrite the integral in (3.52) as:

∫ ∞

0

J1

(
cs
2H

√
t2 −

(
z
cs

)2)
√
t2 −

(
z
cs

)2 H
(
t− z

cs

)
e−stdt (3.53)

Hence:

U(z, s) =

(
u0

s+ iω
exp

(
− z

2H

))(
exp

(
−sz
cs

))

−

(
u0

s+ iω
exp

(
− z

2H

))(
z

2H

)∫ ∞

0

J1

(
cs
2H

√
t2 −

(
z
cs

)2)
√
t2 −

(
z
cs

)2 H
(
t− z

cs

)
e−stdt (3.54)

We now prepare to inverse Laplace transform U(z, s). We observe that:∫ ∞

0

J1

(
cs
2H

√
t2 −

(
z
cs

)2)
√
t2 −

(
z
cs

)2 H
(
t− z

cs

)
e−stdt = L


J1

(
cs
2H

√
t2 −

(
z
cs

)2)
√
t2 −

(
z
cs

)2 H
(
t− z

cs

)
 (3.55)

Additionally, we let:

L(a0(t)) = A0(s) =
u0

s+ iω
exp

(
− z

2H

)
(3.56)

Consequently:

a0(t) = u0 exp

(
− z

2H

)
e−iωt (3.57)

Thus:

U(z, s) = L(a0(t)) exp

(
−sz
cs

)
− L(a0(t))

(
z

2H

)
L


J1

(
cs
2H

√
t2 −

(
z
cs

)2)
√
t2 −

(
z
cs

)2 H
(
t− z

cs

)
 (3.58)
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We use the Second Shifting theorem (See Appendix B.4 for theorem) to find:

L−1
(
L
(
a0(t)

)
exp

(
−sz
cs

))
= a0

(
t− z

cs

)
H
(
t− z

cs

)
(3.59)

= u0 exp

(
− z

2H

)
exp

(
−iω

(
t− z

cs

))
H
(
t− z

cs

)
(3.60)

Thus the first term of (3.54) has been successfully inverse Laplace transformed. To inverse Laplace transform
the second term of (3.54) we use the Convolution theorem (See Appendix B.4 for theorem). Hence:

L−1

L(a0(t))L


J1

(
cs
2H

√
t2 −

(
z
cs

)2)
√
t2 −

(
z
cs

)2 H
(
t− z

cs

)


 =

∫
t

0

a0(t−τ)

J1

(
cs
2H

√
τ2 −

(
z
cs

)2)
√
τ2 −

(
z
cs

)2 H
(
τ − z

cs

)
dτ

(3.61)
Hence when we inverse Laplace transform (3.58) and then substitute (3.60) and (3.61) into (3.58) we find:

u(z, t) = u0 exp

(
− z

2H

)
H
(
t− z

cs

)
exp

(
−iω

(
t− z

cs

))

−
u0z exp

(
− z

2H

)
e−iωt

2H

∫
t

0

eiωτJ1

(
cs
2H

√
τ2 −

(
z
cs

)2)
√
τ2 −

(
z
cs

)2 H
(
τ − z

cs

)
dτ (3.62)

Consider the integral in (3.62). For integrands involving a dummy function φ(z, τ) and the Heaviside Step

function H
(
τ − z

cs

)
we find, in Appendix B.5, that:∫ t

0
φ(z, τ)H

(
τ − z

cs

)
dτ =

∫ ∞
z
cs

φ(z, τ)H
(
τ − z

cs

)
dτ −

∫ ∞
t

φ(z, τ)H
(
τ − z

cs

)
dτ (3.63)

This presents three cases:

(i) Assuming that z
cs
> t makes the integrand equal zero.

(ii) Assuming that z
cs

= t, gives:∫ t

0
φ(z, τ)H

(
τ − z

cs

)
dτ =

∫ ∞
z
cs

φ(z, τ)H
(
τ − z

cs

)
dτ −

∫ ∞
t

φ(z, τ)H
(
τ − z

cs

)
dτ = 0 (3.64)

(iii) Assuming that z
cs
< t we further simplify to:∫ t

0
φ(z, τ)H

(
τ − z

cs

)
dτ =

∫ ∞
z
cs

φ(z, τ)H
(
τ − z

cs

)
dτ −

∫ ∞
t

φ(z, τ)H
(
τ − z

cs

)
dτ (3.65)

=

∫ t

z
cs

φ(z, τ)H
(
τ − z

cs

)
dτ (3.66)

Hence for z
cs
< t:

u(z, t) = u0 exp

(
− z

2H

)
exp

(
−iω

(
t− z

cs

))
H
(
t− z

cs

)

−
u0z exp

(
− z

2H

)
e−iωt

2H

∫
t

z
cs

eiωτJ1

(
cs
2H

√
τ2 −

(
z
cs

)2)
√
τ2 −

(
z
cs

)2 H
(
τ − z

cs

)
dτ (3.67)
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However H
(
τ − z

cs

)
= 1 for τ ∈

(
z
cs
, t
)

and therefore:

u(z, t) = u0 exp

(
− z

2H

)
exp

(
−iω

(
t− z

cs

))
−
u0z exp

(
− z

2H

)
e−iωt

2H

∫
t

z
cs

eiωτJ1

(
cs
2H

√
τ2 −

(
z
cs

)2)
√
τ2 −

(
z
cs

)2 dτ

(3.68)
Consider the real part of u(z, t), Re(u(z, t)). Hence:

Re(u(z, t)) = u0 exp

(
− z

2H

)
cos

(
ω

(
t− z

cs

))

−


u0z exp

(
− z

2H

)
2H

cos (ωt)

∫
t

z
cs

cos (ωτ)

J1

(
cs
2H

√
τ2 −

(
z
cs

)2)
√
τ2 −

(
z
cs

)2 dτ

+
u0z exp

(
− z

2H

)
2H

sin (ωt)

∫
t

z
cs

sin (ωτ)

J1

(
cs
2H

√
τ2 −

(
z
cs

)2)
√
τ2 −

(
z
cs

)2 dτ

 (3.69)

Thus we must evaluate:∫
t

z
cs

cos (ωτ)

J1

(
cs
2H

√
τ2 −

(
z
cs

)2)
√
τ2 −

(
z
cs

)2 dτ and

∫
t

z
cs

sin (ωτ)

J1

(
cs
2H

√
τ2 −

(
z
cs

)2)
√
τ2 −

(
z
cs

)2 dτ (3.70)

We compute these integrals using Composite Simpson’s rule [3].

Definition 3.1 (Composite Simpson’s Rule). Composite Simpson’s rule states that:

∫ b

a
f (τ) dτ ≈ b− a

3n

f(τ0) + 4

n
2∑
i=1

f(τ2i−1) + 2

n−2
2∑
i=1

f(τ2i) + f(τn)

 (3.71)

where τi = a+ (b−a)i
n and n is the number of subintervals.

This allows us to solve (3.70) semi-analytically (See Appendix B.6 for the calculation) in Fortran and we
plot Re(u(z, t)) in Section 3.2.

3.2 Semi-analytic Results

Here we show the results for the semi-analytic method from two different perspectives, the left is a 3D image
of the entire solution space while a top-down solution with a colour map is shown on the right. We have
chosen realistic values for cs and the other parameters have been chosen for mathematical simplicity. It is
important to note that the solar atmosphere is represented by the positive z direction. The plots are coloured
to indicate wave speed so here green represents positive wave speed and dark blue represents negative wave
speed. Plotting Re(u(z, t)) lets us obtain Figures 3.1, 3.2 and 3.3.
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Figure 3.1: Re(u(z, t)) with cs = 6.0 km s−1, ω = 0.4 s−1, u0 = 2.0 km s−1

Here we can see the system being driven sinusoidally from the surface of the sun. We see the system start
at equilibrium and then the wave evolves over time and decays in the stratified medium.

Figure 3.2: Re(u(z, t)) with cs = 10.0 km s−1, ω = 0.4 s−1, u0 = 2.0 km s−1
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Figure 3.3: Re(u(z, t)) with cs = 13.0 km s−1, ω = 0.4 s−1, u0 = 2.0 km s−1

Figures 3.1, 3.2, and 3.3 show the effect that changing sound speed, cs, has on the system. We see the wave
propagating further with larger amplitudes at greater wave speeds. These results are expected and bolster
confidence in the method used.

3.3 Numerical Solution - Finite difference method

In this section we solve (3.34) using numerical techniques. We will use finite difference method (FDM) to
transform the problem from a partial differential equation into a system of simultaneous equations. We begin
by introducing FDM for first derivatives and then proceed to second derivatives. Here we will state the tools
we need to use, but a detailed derivation of the central difference approximation can be found in Appendix
C.1.

Definition 3.2 (Central difference approximation). Let h be the step size. Then let zi+1 = zi + h and
zi−1 = zi − h then:

f ′(zi) ≈
f(zi+1)− f(zi−1)

2h
(3.72)

Equation (3.72) is called the central difference approximation.

Finite Difference Method enables us to estimate the value of a derivative at a point using surrounding
function values.

Note 3.3 (Step size selection). Step size selection can be problematic for more sophisticated functions. If
the step size is too small the computation becomes too slow; if the step size is too large then not enough
information is gathered.

Definition 3.4 is rewording the conclusion of Definition 3.2 in more appropriate language for solving differ-
ential equations numerically.

Definition 3.4 (Central finite difference formula for 1-D first derivative). Let u be a function u(z), 4z be the
step size and let ui be u(z) evaluated at zi = i4z. The central second order finite difference for du

dz is:

du

dz

∣∣∣∣
i

=
ui+1 − ui−1

24z
(3.73)

Definition 3.5 (Finite difference formula for 2-D first derivatives). Let u be a function u(z, t). The central
first order finite difference approximations for ∂u

∂z and ∂u
∂t are:

∂u

∂z

∣∣∣∣
i,j

=
ui+1,j − ui−1,j

24z
(3.74)

and
∂u

∂t

∣∣∣∣
i,j

=
ui,j+1 − ui,j−1

24t
(3.75)
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Definition 3.6 (Finite difference formula for 2-D second derivatives). Let u be a function u(z, t). The central

second order finite difference approximations for ∂2u
∂z2

and ∂2u
∂t2

are:

∂2u

∂z2

∣∣∣∣∣
i,j

=
ui+1,j − 2ui,j + ui−1,j

4z2
(3.76)

and
∂2u

∂t2

∣∣∣∣∣
i,j

=
ui,j+1 − 2ui,j + ui,j−1

4t2
(3.77)

The non-dimensionalised form of (3.34) (where Z = z
H and T = cs

H t) is:

∂2u

∂Z2
+
∂u

∂Z
− ∂2u

∂T 2
= 0 (3.78)

We find the numerical scheme by substituting (3.76), (3.74) and (3.77) into (3.78). This leaves:(
ui+1,j − 2ui,j + ui−1,j

4Z2

)
+

(
ui+1,j − ui−1,j

24Z

)
−
(
ui,j+1 − 2ui,j + ui,j−1

4T 2

)
= 0 (3.79)

Expanding, simplifying, and making ui,j+1 the subject, gives:

ui,j+1 = 2ui,j − ui,j−1 +

(
4T 2

4Z2

)
(ui+1,j − 2ui,j + ui−1,j) +

(
4T 2

24Z

)
(ui+1,j − ui−1,j) (3.80)

We make ui,j+1 the subject now because we will find that the initial and boundary conditions let us know
everything on the right hand side of (3.80). Recall (3.35) to (3.38). Assuming imax steps in the Z direction
and jmax steps in the T direction, then the initial and boundary conditions become:

ui,0 = 0 for all i 6= 0 (3.81)

∂u

∂T

∣∣∣∣
i,0

= 0 for all i 6= 0 (3.82)

u0,j = u0 exp

(
−i
(
ωH

cs
T − π

2

))
(3.83)

uimax,j = 0 for all j (3.84)

It is important to note that boundary condition (3.84) has been modified so it can be implemented in a finite
domain. The Neumann initial condition, (3.82), with j = 0 yields:

∂u

∂T

∣∣∣∣
i,0

=
ui,1 − ui,−1

24T
(3.85)

Thus from (3.82) we have:
ui,j+1 − ui,j−1

24T
= 0 for all i 6= imax (3.86)

Hence:
ui,1 = ui,−1 for all i 6= imax (3.87)

We examine this statement for i ∈ {1, 2 . . . imax− 1}. Begin by recalling (3.80) with j = 0:

ui,1 = 2ui,0 − ui,−1 +

(
4T 2

4Z2

)
(ui+1,0 − 2ui,0 + ui−1,0) +

(
4T 2

24Z

)
(ui+1,0 − ui−1,0) (3.88)

Now let i = 1:

u1,1 = 2u1,0 − u1,−1 +

(
4T 2

4Z2

)
(u2,0 − 2u1,0 + u0,0) +

(
4T 2

24Z

)
(u2,0 − u0,0) (3.89)
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Substituting (3.87) into this gives:

u1,1 = 2u1,0 − u1,1 +

(
4T 2

4Z2

)
(u2,0 − 2u1,0 + u0,0) +

(
4T 2

24Z

)
(u2,0 − u0,0) (3.90)

Recall that u1,0 = u2,0 = 0 from the Dirichlet initial condition (3.81) and that u0,0 6= 0 from the first boundary
condition (3.83). Hence:

u1,1 =
4T 2

2

(
1

4Z2
− 1

24Z

)
u0,0 (3.91)

Next consider i = 2:

u2,1 = 2u2,0 − u2,−1 +

(
4T 2

4Z2

)
(u3,0 − 2u2,0 + u1,0) +

(
4T 2

24Z

)
(u3,0 − u1,0) (3.92)

Applying the Dirichlet initial condition (3.81) we find:

u2,1 = 0 (3.93)

This process can be repeated for i ∈ {3, 4 . . . imax− 1} and the result is the same. Hence:

ui,1 = 0 for all i ∈ {2, 3 . . . imax− 1} (3.94)

We now have all the tools we need to iterate (3.80). This is because we know every ui,0 and ui,1, hence we can
use (3.80) to find ui,2 and so on. We choose the range of z to be the solar chromosphere and imax and jmax
to be as small as possible within the confines of the program. The first results are shown in Figure 3.4.

Figure 3.4: Numeric solution with cs = 10 000 m s−1, ω = 0.4 s−1 and u0 = 2000 m s−1

We see the system starting at equilibrium with the wave generated at z = 0, the surface of the sun,
propagating upwards through the atmosphere as time passes. We see amplitude fall due to pressure and
density decreasing with height and energy dissipating. These results appear reasonable for the model we have
examined.

4 Parametric study and a comparison of methods

In this section we examine how changing the parameters cs and ω affects the system and then compare the
semi-analytic and numeric solutions. We begin by varying cs.

12



4.1 Varying the wave speed, cs

(a) cs = 6000 m s−1 (b) cs = 10 000 m s−1 (c) cs = 13 000 m s−1

Figure 4.1: A collection of numeric solutions with variable cs where ω = 0.4 s−1 and u0 = 2000 m s−1

We can see that varying cs affects the angle that the wave makes with the z axis. We expect to see this as
increasing the wave speed, cs, will increase the distance the wave propagates in a set period of time.

4.2 Varying the angular frequency, ω

(a) ω = 0.2 s−1 (b) ω = 0.4 s−1 (c) ω = 0.6 s−1

Figure 4.2: A collection of numeric solutions with variable ω where cs = 10 000 m s−1 and u0 = 2000 m s−1

Here we see ω controlling the rate of input oscillation and therefore the wavelength.

4.3 Comparing semi-analytic and numeric solutions

Here we compare the semi-analytic (Figures 3.1, 3.2, and 3.3) and numeric solutions (Figure 4.1) to ensure that
the results are realistic and consistent. It is important to compare these solutions as in the following sections
the problem will become more complex due to the addition of a magnetic field.
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(a) From the semi-analytic method (b) From the numeric method

Figure 4.3: Solutions with cs = 13 000 m s−1, ω = 1.0 s−1 and u0 = 2000 m s−1

Figure 4.3 demonstrates that the numeric method provides an accurate alternative to the semi-analytic
method; this on the condition that values such as imax and jmax are sufficiently large. This conclusion is
supported by the solutions when they are subtracted from one another.

5 Modelling a non-isothermal atmosphere

In this section we enhance the model by assuming that cs in (3.34) varies with z. We use data collected by
Harvard Skylab [4] to create a polynomial approximation (using the method of least squares) for cs(z) to find
that, for constants A, B, and C:

cs(z) = Az2 +Bz + C (5.1)

Here:

A = 3.179× 10−9 (5.2)

B = −3.886× 10−3 (5.3)

C = 8.457× 103 (5.4)

Figure 5.1 shows the polynomial approximation in relation to the raw data.
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Figure 5.1: The raw sound speed data is shown in green, with a quadratic polynomial of best fit shown in
blue

Solving (3.34) numerically, using the polynomial approximation for cs(z), yields:
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Figure 5.2: Numeric solution u with variable cs and u0 = 2000 m s−1. Here ω = 1.0 s−1 has be chosen to
highlight the curvature for large values of z

Figure 5.2 shows that as the wave propagates and travels further from the surface of the sun, it disperses.
This is due to the sound speed profile and is shown by the curved nature of the plot for large z.
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(a) Variable cs (b) cs = 8000 m s−1

Figure 5.3: Numeric solutions for u with and u0 = 2000 m s−1. Here ω = 0.5 s−1 has be chosen to highlight
the curvature for large values of z

Figure 5.3 highlights the difference that a non-isothermal atmosphere makes. Here the curvature in the
variable cs figure is obvious when compared with the linear nature shown in the constant cs figure. We conclude
that for the z between the surface of the sun, z = 0 and z = 2000 km, an isothermal model will be sufficient
to expect realistic results.

This concludes the investigation into acoustic waves for the quiet sun. In the following chapters we study
regions with significant magnetic activity.

6 Derivation of magneto-acoustic gravity waves

In this section we explore the addition of a fixed magnetic field B. This is more realistic for modelling the
photosphere and chromosphere. We begin by deriving the governing equations. To do this, we require the
equation of continuity (3.1), the equation of motion (3.2), the adiabatic energy equation (3.3), and the magnetic
induction equation (3.4). We make the same assumptions as made in Section 3 except we consider each velocity
component of v to be non-zero and assume that a constant magnetic field acts as follows:

B0 =

 0
0
B0

 (6.1)

We get the following set of equations:

∂ρ

∂t
+ ∇ · (ρv) = 0 (6.2)

ρ
∂v

∂t
+ ∇p− J ×B − ρg = 0 (6.3)

∂p

∂t
+ v ·∇p+ γp(∇ · v) = 0 (6.4)

∂B

∂t
−∇× (v ×B) = 0 (6.5)
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In Appendix D.3 we linearise these equations. The results are shown below:

∂ρ1
∂t

+ ∇ · (ρ0v1) = 0 (6.6)

ρ0
∂v1
∂t

+ ∇p0 + ∇p1 −
1

µ0
((∇×B1)×B0)− ρ0g − ρ1g = 0 (6.7)

∂p1
∂t

+ v1 ·∇p0 + c2sρ0(∇ · v1) = 0 (6.8)

∂B1

∂t
−∇× (v1 ×B0) = 0 (6.9)

Next we differentiate (6.7) with respect to t:

ρ0
∂2v1
∂t2

+ ∇
(
∂p1
∂t

)
− 1

µ0

((
∇× ∂B1

∂t

)
×B0

)
− ∂ρ1

∂t
g = 0 (6.10)

Using (6.6) to eliminate ∂ρ1
∂t , (6.8) to eliminate ∂p1

∂t , and (6.9) to eliminate ∂B1
∂t we find:

ρ0
∂2v1
∂t2

−∇
(
v1 ·∇p0 + c2sρ0(∇ · v1)

)
− 1

µ0

((
∇×

(
∇× (v1 ×B0)

))
×B0

)
+ (∇ · (ρ0v1))g = 0 (6.11)

In Appendix D.4 we see that:

((
∇×

(
∇× (v1 ×B0)

))
×B0

)
= B2

0


∂v2x
∂x2

+
∂v2y
∂x∂y + ∂v2x

∂z2

∂v2y
∂y2

+ ∂v2x
∂x∂y +

∂v2y
∂z2

0

 (6.12)

Both the x-direction and the y-direction are unaffected by g and they exhibit similar behaviour, hence we can
simplify the problem to a 2D problem by only considering vx and vz. This modifies (6.11) to the following:

ρ0
∂2v1
∂t2

−∇
(
v1 ·∇p0 + c2sρ0(∇ · v1)

)
− 1

µ0

B2
0

(
∂v2x
∂x2

+ ∂v2x
∂z2

0

)+ (∇ · (ρ0v1))g = 0 (6.13)

Hence we expand and simplify to:

ρ0
∂2v1
∂t2

−∇
(
vz
∂p0
∂z

+ c2sρ0

(
∂vx
∂x

+
∂vz
∂z

))
− B2

0

µ0

(
∂2vx
∂x2

+ ∂2vx
∂z2

0

)
+

(
ρ0
∂vx
∂x

+
∂

∂z
(ρ0vz)

)
g = 0 (6.14)

Consider the x component of (6.14):

ρ0
∂2vx
∂t2

− ∂

∂x

(
vz
∂p0
∂z

+ c2sρ0

(
∂vx
∂x

+
∂vz
∂z

))
− B2

0

µ0

(
∂2vx
∂x2

+
∂2vx
∂z2

)
= 0 (6.15)

This simplifies to:

∂2vx
∂t2

−

(
c2s +

B2
0

µ0ρ0

)
∂2vx
∂x2

− B2
0

µ0ρ0

∂2vx
∂z2

= c2s
∂2vz
∂x∂z

+
1

ρ0

∂p0
∂z

∂vz
∂x

(6.16)

Note that this problem has the same equilibrium conditions as in Section 3 (thus equations (3.13) and (3.15)

hold). We define Alfvén speed, vA, by v2A =
B2

0
µ0ρ0

[5]. Thus (6.16) is transformed into:(
v2A

∂2

∂z2
+
(
c2s + v2A

) ∂2

∂x2
− ∂2

∂t2

)
vx = − ∂

∂x

(
c2s
∂

∂z
− g
)
vz (6.17)

Next consider the z component of (6.14):

ρ0
∂2vz
∂t2
− ∂

∂z

(
vz
∂p0
∂z

+ c2sρ0

(
∂vx
∂x

+
∂vz
∂z

))
− g

(
ρ0
∂vx
∂x

+
∂

∂z
(ρ0vz)

)
= 0 (6.18)
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After manipulation (See Appendix D.5), this simplifies to:(
c2s
∂2

∂z2
− γg ∂

∂z
− ∂2

∂t2

)
vz = − ∂

∂x

(
c2s
∂

∂z
+ (1− γ)g

)
vx (6.19)

Hence we have found a coupled system of partial differential equations. We simplify by assuming that both vx
and vz are periodic in x and t as follows:

v =

(
vx
vz

)
=

(
vx(z) sin(kxx)e−iωt

vz(z) cos(kxx)e−iωt

)
(6.20)

This assumption simplifies (6.17) and (6.19) to:(
v2A

d2

dz2
−
(
c2s + v2A

)
k2x + ω2

)
vx = kx

(
c2s
d

dz
− g
)
vz (6.21)

(
c2s
d2

dz2
− γg d

dz
+ ω2

)
vz = −kxc2s

(
d

dz
+

(1− γ)g

c2s

)
vx (6.22)

We have now simplified to a coupled system of second order differential equations. The goal is to solve this

system to find vx and vz in terms of z. We first non-dimensionalise (6.21) and (6.22). Recall that H = c2s
γg ,

then set:

z = HzH , kx =
λ

H
, ω2 =

c2s
H2

ν2 (6.23)

We also define plasma-β as the ratio of plasma pressure to magnetic pressure:

β =
p

pmag
=

2c2s
γv2A

=
2cρµ0c

2
s

γB2
0

exp (−zH) (6.24)

Note that cρ is a constant and µ0 is the permeability of free space. Therefore we see that plasma-β has an
exponential relationship with zH and consequently we transform (6.21) and (6.22) into:(

d2

dz2H
+
γβ

2

(
ν2 − λ2

)
− λ2

)
vx =

λβ

2

(
γ
d

dzH
− 1

)
vz (6.25)

(
d2

dz2H
− d

dzH
+ ν2

)
vz = −λ

(
d

dzH
+

1− γ
γ

)
vx (6.26)

6.1 Asymptotic solutions for the weak and strong fields

In the subsequent sections we solve the coupled equations (6.21) and (6.22). Recall the definition of plasma-β.
We split z into two distinct regions: the weak field (β ≫ 1) and the strong field (β ≪ 1). There are two modes
to consider for each field, the fast mode and the slow mode, both of which appear in magnetic environments.
Before we investigate the weak and strong fields, we set β = 1 at z = 0. This makes the region for the weak
field z < 0 (the solar interior) and the region for the strong field z > 0. We assume that vz = 0 for the strong
field fast mode and vx = 0 for the strong field slow mode. Additionally, for sections 6.2, 6.3, 6.4, and 6.5 we
take:

cs = 8515.9m s−1 (6.27)

ν = 0.2 (6.28)

λ = 0.07 (6.29)

γ =
5

3
(6.30)

B0 = 0.1kg s−2 A−1 (6.31)

µ0 = 1.2566370× 10−6kg m s−2 A−2 (6.32)

g = 277.0m s−2 (6.33)
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6.2 Weak field fast mode

Assuming that β ≫ 1, thus vA ≪ cs, we simplify (6.21) to:(
ω2 − k2xc2s

)
vx = kx

(
c2s
d

dz
− g
)
vz (6.34)

By rearranging we find that:

vx =
kxc

2
s(

ω2 − k2xc2s
) dvz
dz
− gkx(

ω2 − k2xc2s
)vz (6.35)

Differentiating (6.35) with respect to z yields:

dvx
dz

=
kxc

2
s(

ω2 − k2xc2s
) d2vz
dz2

− gkx(
ω2 − k2xc2s

) dvz
dz

(6.36)

Substituting (6.35) and (6.36) into (6.22), and then rearranging gives:(
c2s +

k2xc
4
s(

ω2 − k2xc2s
)) d2vz

dz2
− 1

H

(
c2s +

k2xc
4
s(

ω2 − k2xc2s
)) dvz

dz
+

(
ω2 − (1− γ)g2k2x(

ω2 − k2xc2s
)) vz = 0 (6.37)

We non-dimensionalise (6.37) in Appendix D.6. Hence we transform (6.37) into:

d2vz
dz2H

− dvz
dzH

+

(
ν2 − λ2 − (1− γ)λ2

γ2ν2

)
vz = 0 (6.38)

This is a linear second order differential equation so we can solve for vz. Doing so gives us:

vz = c1e
m+zH + c2e

m−zH (6.39)

Here c1 and c2 are arbitrary constants. m+,− is represented as follows:

m+,− =

1±
√

1− 4
(
ν2 − λ2 − (1−γ)λ2

γ2ν2

)
2

(6.40)

Using the non-dimensional version of (6.35) allows a solution for vx to be found:

vx =
λ(

ν2 − λ2
) (c1(m+ −

1

γ

)
em+zH + c2

(
m− −

1

γ

)
em−zH

)
(6.41)

We plot these solutions in Figures 6.1 and 6.2.

Figure 6.1: vx weak field fast mode Figure 6.2: vz weak field fast mode

Here we see vx decreasing as zH increases and then at zH ≈ 3, vx grows quickly. This is in contrast to vz
which is increasing throughout.
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6.3 Weak field slow mode

The assumption that β ≫ 1, thus vA ≪ cs, holds here as in Section 6.2, but in this case we cannot cancel the
d
dz or d2

dz2
terms as they could be non-negligible. It is known that the slow mode propagates at approximately

Alfvén speed [6], vA, and we have found that vA → 0 as z → −∞. Therefore the wavelength of the slow
mode is proportional to the Alfvén speed and so is small when compared with other length scales, therefore
terms involving H and g are insignificant. We also omit the ω2vz term because Alfvén waves (a type of
magnetohydrodynamic wave found in solar mediums) are transverse [7]. These assertions simplify (6.21) and
(6.22) to: (

v2A
d2

dz2
− k2xc2s + ω2

)
vx = kxc

2
s

dvz
dz

(6.42)

c2s
d2vz
dz2

= −kxc2s
dvx
dz

(6.43)

From (6.43), by integrating with respect to z, we calculate:

dvz
dz

= −kxvx (6.44)

Using (6.44) to simplify (6.42) yields:

v2A
d2vx
dz2

+ ω2vx = 0 (6.45)

We non-dimensionalise (6.45) in Appendix D.6. It follows that:

2

γβ

d2vx
dz2H

+ ν2vx = 0 (6.46)

The solutions to (6.46) come in the form of Bessel functions. Here we need two types of Bessel function, those
of the first type, Jα, and those of the second type, Yα. Thus:

vx = c1J0

(
ν
√

2γβ
)

+ c2Y0

(
ν
√

2γβ
)

(6.47)

It is shown in Appendix D.7 that (6.47) is a solution for (6.46). Using the non-dimensional version of (6.44)
found below, we find a numerical solution for vz using Simpson’s rule.

dvz
dzH

= −λvx (6.48)

We plot the solutions in Figures 6.3 and 6.4.

Figure 6.3: vx weak field slow mode
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Figure 6.4: vz weak field slow mode

Here both vx and vz exhibit sinusoidal behaviour. We see both oscillating quickly for small zH and this is
in contrast to the high amplitude oscillations as zH approaches 0.

6.4 Strong field fast mode

For the strong field, the fast mode is primarily driven by magnetic pressure and tension [8], hence vx ≈ vA.
Due to Alfvén waves being transverse, we assume that wave propagation in the z direction is negligible, hence
vz = 0. Therefore by assuming that β ≪ 1, thus vA ≫ cs, we find:

d2vx
dz2

+

(
ω2

v2A
− k2x

)
vx = 0 (6.49)

We non-dimensionalise (6.49) in Appendix D.9. It follows that:

d2vx
dz2H

+

(
γν2β

2
− λ2

)
vx = 0 (6.50)

Recall that plasma-β is an exponential function in zH , hence the solution for vx involves Bessel functions:

vx = c1J−2λ

(
ν
√

2γβ
)

+ c2Y−2λ

(
ν
√

2γβ
)

(6.51)

We plot the solution in Figure 6.5.
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Figure 6.5: vx strong field fast mode

Here we can see that as zH increases vx decreases in a uniform manner. When the same assumptions
are made and applied to (6.22) (the other coupled equation), we see that the solution obtained for vx (See
Appendix D.8) is negligible when compared with (6.51), therefore we omit the analysis.

6.5 Strong field slow mode

For the strong field, the slow mode is largely acoustic in nature [8], hence vz ≈ cs. Due to acoustic waves being
longitudinal and so travelling along field lines we assume that vx = 0. Therefore by assuming that β ≪ 1,
thus vA ≫ cs, we find:

d2vz
dz2

− 1

H

dvz
dz

+
ω2

c2s
vz = 0 (6.52)

We non-dimensionalise (6.52) in Appendix D.9. It follows that:

d2vz
dz2H

− dvz
dzH

+ ν2vz = 0 (6.53)

This is a linear second order differential equation. We solve for vz to find:

vz = c1 exp

(
1 +
√

1− 4ν2

2
zH

)
+ c2 exp

(
1−
√

1− 4ν2

2
zH

)
(6.54)

We plot this solution in Figure 6.6.
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Figure 6.6: vz strong field slow mode

Similar to Figure 6.5 we see vz increase as zH increases. Again, when the same assumptions are applied to
(6.21), the solution produced (See Appendix D.8) is negligible when compared with (6.54), therefore we omit
the analysis from this section.

6.6 Energy densities and mode conversions

Here we plot 1
2ρ0v

2
x and 1

2ρ0v
2
z for both the strong and weak fields, fast and slow modes. This gives us the

energy densities for vx and vz.

Figure 6.7: 1
2ρ0v

2
x weak field fast mode Figure 6.8: 1

2ρ0v
2
z weak field fast mode

Figure 6.9: 1
2ρ0v

2
x weak field slow mode Figure 6.10: 1

2ρ0v
2
z weak field slow mode
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Figure 6.11: 1
2ρ0v

2
x strong field fast mode Figure 6.12: 1

2ρ0v
2
z strong field slow mode

Finally we plot the weak and strong solutions together. We solve for the constants to ensure the solutions
meet at zH = 0.

Figure 6.13: vx (blue) and vz (red) as they transition from fast to slow

Here the mode conversion, from fast to slow, is most evident when looking at vz. We also see the vx weak
solution minimalised by the strong solution.
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Figure 6.14: vx (blue) and vz (red) as they transition from slow to fast

Here we see the mode conversion, from slow to fast, from a sinusoidal oscillation in the solar interior to a
linear relationship.

For more about mode conversions please see “Magneto-acoustic-gravity waves on the Sun. I - Exact solution
for an oblique magnetic field” by Zhugzhda and Dzhalilov [6]

7 Conclusion

We have successfully modelled both isothermal and non-isothermal quiet sun scenarios. We used analytic and
numeric methods to accurately uncover wave propagation behaviours in the photosphere and the chromosphere.
We have observed the dampening of acoustic waves in the stratified medium for several different sound speeds.
Additionally, we perceived the contrast in the dispersive nature of acoustic waves in isothermal and non-
isothermal environments. This enables a much deeper understanding of the quiet sun structure.

We have also investigated magneto-acoustic waves and have attempted to model these waves as they undergo
mode conversions. This has yielded interesting results as we have seen wave speeds oscillate as they travel
through the stratified magnetic plasma.

Additional research could extend this magnetic model to a non-stratified medium or a non-isothermal
scenario which may help further our understanding of magnetohydrodynamic waves in solar plasmas.
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A Appendix for derivation of equation (3.34)

A.1 Linearisation of the equation of continuity, motion and energy

Recall that:
∂p0
∂z

= ρ0(−g) (A.1)

Start by linearising the equation of continuity (3.10):

∂ρ

∂t
+

∂

∂z
(ρv) = 0 (A.2)

∂(ρ0 + ρ1)

∂t
+

∂

∂z
((ρ0 + ρ1)v1) = 0 (A.3)

∂ρ0
∂t

+
∂ρ1
∂t

+
∂

∂z
(ρ0v1) +

∂

∂z
(ρ1v1) = 0 (A.4)

Note that:

(i) ρ0 has no time dependence so ∂ρ0
∂t = 0.

(ii) ∂
∂z (ρ1v1) is small so we ignore it.

Thus:
∂ρ1
∂t

= −ρ0
∂v1
∂z
− v1

∂ρ0
∂z

(A.5)

Next we linearise the equation of motion (3.11):

ρ
∂v

∂t
= −∂p

∂z
+ ρ(−g) (A.6)

(ρ0 + ρ1)
∂v1
∂t

= −∂(p0 + p1)

∂z
+ (ρ0 + ρ1)(−g) (A.7)

ρ0
∂v1
∂t

+ ρ1
∂v1
∂t

= −∂p0
∂z
− ∂p1

∂z
− ρ0g − ρ1g (A.8)

Using (A.1) this simplifies to:

ρ0
∂v1
∂t

+ ρ1
∂v1
∂t

= −∂p1
∂z
− ρ1g (A.9)

Note that ρ1
∂v1
∂t is small therefore we disregard it. Hence:

ρ0
∂v1
∂t

= −∂p1
∂z
− ρ1g (A.10)

Finally we linearise the energy equation (3.12):

∂p

∂t
+ v

∂p

∂z
= −γp∂v

∂z
(A.11)

∂(p0 + p1)

∂t
+ v1

∂(p0 + p1)

∂z
= −γ(p0 + p1)

∂v1
∂z

(A.12)

∂p0
∂t

+
∂p1
∂t

+ v1
∂p0
∂z

+ v1
∂p1
∂z

= −γp0
∂v1
∂z
− γp1

∂v1
∂z

(A.13)

(A.14)

Note that:

(i) p0 has no time dependence so ∂p0
∂t = 0.

(ii) v1
∂p1
∂t is small so we ignore it.

(iii) p1
∂v1
∂t is small so we ignore it.

Hence:
∂p1
∂t

= −v1
∂p0
∂z
− γp0

∂v1
∂z

(A.15)

Using (A.1) we get:

∂p1
∂t

= −v1(−ρ0g)− γp0
∂v1
∂z

(A.16)

= ρ0v1g − γp0
∂v1
∂z

(A.17)
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B Appendix for derivation of analytical solution to equation (3.34)

B.1 Proof that m+ > 0

Assume m+ < 0. Hence:

− 1

2H
+

1

cs

√
c2s

4H2
+ s2 < 0 (B.1)

1

cs

√
c2s

4H2
+ s2 <

1

2H
(B.2)√

c2s
4H2

+ s2 <
cs

2H
(B.3)

c2s
4H2

+ s2 <
c2s

4H2
(B.4)

s2 < 0. (B.5)

Therefore s is imaginary. This is a contradiction, so the assumption that m+ < 0 is incorrect. So m+ ≥ 0.

B.2 Integral manipulation

We begin by noting that:

I =

∫ ∞
0

zJ0(λz)√
z2 + a2

eik
√
z2+a2dz =

e−a
√
λ2−k2

√
λ2 − k2

(B.6)

for λ2 > k2 and a > 0 [9]. We now introduce a substitution. Let:

t =
√
z2 + a2 and s = −ik (B.7)

We begin by changing the limits of the integration. When:

z = 0⇒ t = a (B.8)

z =∞⇒ t =∞ (B.9)

Next we find dz in terms of dt:

dz

dt
=

t√
t2 − a2

(B.10)

dz =
t√

t2 − a2
dt (B.11)

Lastly we transform the integrand as follows:

zJ0 (λz)√
z2 + a2

eik
√
z2−a2 =

√
t2 − a2J0

(
λ
√
t2 − a2

)
t

e−st (B.12)

Combining the previous results yields:

I =

∫ ∞

a

√
t2 − a2J0

(
λ
√
t2 − a2

)
t

e−st
t√

t2 − a2
dt (B.13)

Hence:

I =

∫ ∞

a

J0

(
λ
√
t2 − a2

)
e−stdt =

e−a
√
λ2+s2

√
λ2 + s2

(B.14)

We now differentiate with respect to a. This requires us to know the following rule about differentiation under
an integral sign [10]:

d

dz

(∫ b(z)

a(z)
f(z, t)dt

)
= f(z, b(z))

db

dz
− f(z, a(z))

da

dz
+

∫ b(z)

a(z)

df

dz
(z, t)dt (B.15)
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Thus when we differentiate (B.14) with respect to a we obtain:

dI

da
=

d

da

∫ ∞
a

J0

(
λ
√
t2 − a2

)
e−stdt (B.16)

= 0− J0(0)e−sa +

∫ ∞
a

d

da
J0

(
λ
√
t2 − a2

)
e−stdt (B.17)

Using chain rule and the Bessel manipulations J ′0(z) = −J1(z) and J0(0) = 1 gives:

dI

da
= −e−sa +

∫ ∞

a

λaJ1

(
λ
√
t2 − a2

)
√
t2 − a2

e−stdt = −e−a
√
λ2+s2 (B.18)

Now let a = z
cs

, λ = α. When rearranged it is found that:

exp

(
−sz
cs

)
− αz

cs

∫ ∞

z
cs

J1

(
α

√
t2 −

(
z
cs

)2)
√
t2 −

(
z
cs

)2 e−stdt = exp

(
− z
cs

√
α2 + s2

)
(B.19)

This is the desired substitution.

B.3 Definition of a step function

A step function H
(
t− z

cs

)
is defined as follows:

H
(
t− z

cs

)
=

{
0 if t ≤ z

cs

1 if t > z
cs

(B.20)

B.4 Second Shifting theorem and Convolution theorem

Theorem B.1 (Second Shifting theorem). Let F (s) be the Laplace transform of f(t) and let H(t) be a step
function. Then:

L
(
f(t− a)H(t− a)

)
= e−asF (s) (B.21)

Hence:
L−1

(
e−asF (s)

)
= f(t− a)H(t− a) (B.22)

Theorem B.2 (Convolution theorem). Let F (s) be the Laplace transform of f(t) (likewise for G(s) and g(t))
and let H(t) be a step function. Then:

F (s)G(s) = L

(∫ t

0
f(t− τ)g(τ)dτ

)
(B.23)

Hence:

L−1
(
F (s)G(s)

)
=

∫ t

0
f(t− τ)g(τ)dτ (B.24)

B.5 Manipulation of integrals

We begin by splitting an integral into two parts then introduce a dummy function, φ(z, τ) and a step function

H
(
τ − z

cs

)
. We can split the following integral like so:

∫ ∞
0

φ(z, τ)H
(
τ − z

cs

)
dτ =

∫ t

0
φ(z, τ)H

(
τ − z

cs

)
dτ +

∫ ∞
t

φ(z, τ)H
(
τ − z

cs

)
dτ (B.25)

Hence: ∫ t

0
φ(z, τ)H

(
τ − z

cs

)
dτ =

∫ ∞
0

φ(z, τ)H
(
τ − z

cs

)
dτ −

∫ ∞
t

φ(z, τ)H
(
τ − z

cs

)
dτ (B.26)
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Now let’s split this
∫∞
0 integral on the right hand side of (B.26):∫ ∞

0
φ(z, τ)H

(
τ − z

cs

)
dτ =

∫ z
cs

0
φ(z, τ)H

(
τ − z

cs

)
dτ +

∫ ∞
z
cs

φ(z, τ)H
(
τ − z

cs

)
dτ (B.27)

Let’s substitute (B.27) into (B.26) to get:

∫ t

0
φ(z, τ)H

(
τ − z

cs

)
dτ =

∫ z
cs

0
φ(z, τ)H

(
τ − z

cs

)
dτ +

∫ ∞
z
cs

φ(z, τ)H
(
τ − z

cs

)
dτ


−
∫ ∞
t

φ(z, τ)H
(
τ − z

cs

)
dτ (B.28)

Consider the
∫ z

cs
0 integral. We know from Definition B.3 that:

H
(
τ − z

cs

)
= 0 for all τ <

z

cs
(B.29)

Therefore: ∫ z
cs

0
φ(z, τ)H

(
τ − z

cs

)
dτ = 0 (B.30)

Hence: ∫ z
cs

0

eiωτJ1

(
cs
2H

√
τ2 −

(
z
cs

)2)
√
τ2 −

(
z
cs

)2 H
(
τ − z

cs

)
dτ = 0 (B.31)

This leaves us with:∫ t

0
φ(z, τ)H

(
τ − z

cs

)
dτ =

∫ ∞
z
cs

φ(z, τ)H
(
τ − z

cs

)
dτ −

∫ ∞
t

φ(z, τ)H
(
τ − z

cs

)
dτ (B.32)

B.6 Using Simpson’s rule

Before we begin using Definition 3.1 we change some notation for the sake of clarity. Let:

f(τ, z) =

cos (ωτ) J1

(
cs
2H

√
τ2 −

(
z
cs

)2)
√
τ2 −

(
z
cs

)2 (B.33)

and let i be an integer then define τi as follows:

τi =
z

cs
−

(
z
cs
− t
)
i

n
(B.34)

Hence (3.70) becomes: ∫ t

z
cs

f (τ, z) dτ (B.35)

Using Definition 3.1 equates to finding f (τi, z) for i = 0 . . . n:

f (τi, z) =

cos (ωτi) J1

(
cs
2H

√
τ2i −

(
z
cs

)2)
√
τ2i −

(
z
cs

)2 (B.36)

It is a case of computation to calculate f (τi, z) for i = 1 . . . n. We choose a sufficiently large n by calculating
f (τi, z) for many pairs of specific τi’s and z’s and several large n values and calculate the difference. Once
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this difference becomes arbitrarily small (several decimal places), the largest n value is chosen and used for the
simulation.

More care must be taken when i = 0. We need to evaluate f(τ, z) as τ → z
cs

, or equivalently as τ2−
(
z
cs

)2
→

0. Let:

ψ2 = τ2 −
(
z

cs

)2

(B.37)

Therefore τ2 −
(
z
cs

)2
→ 0 is equivalent to ψ → 0. We substitute (B.37) into (B.33) to find:

f(ψ, z) =

cos

(
ω
√
ψ2 + z2

c2s

)
J1
(
cs
2Hψ

)
ψ

(B.38)

We note that when α is fixed and x→ 0 [11]:

Jα(x) ∼
1

Γ (α+ 1)

(
x

2

)α
(B.39)

Therefore when ψ is small we find:

f(ψ, z) ∼
cos

(
ω
√
ψ2 + z2

c2s

)
csψ
4H

ψ
(B.40)

=
cs

4H
cos

ω√ψ2 +
z2

c2s

 (B.41)

Hence:

lim
τ→ z

cs

f(τ, z) = lim
ψ→0

f(ψ, z) (B.42)

= lim
ψ→0

 cs
4H

cos

ω√ψ2 +
z2

c2s


 (B.43)

=
cs

4H
cos

(
ωz

cs

)
(B.44)

We have now successfully calculated all of the necessary components required to use Theorem 3.1.

Lemma B.3 (Derivative of a Bessel function [12]). Let Jν(z) be a Bessel function of the first kind or the
second kind. Then:

d

dz

(
zνJν(z)

)
= zνJν−1(z) (B.45)

Lemma B.4 (Derivative of a Bessel function [13]). Let Jν(z) be a Bessel function of the first kind or the
second kind. Then:

J ′ν(z) = Jν−1(z)−
ν

z
Jν(z) (B.46)

Lemma B.5 (Bessel function property [14]). Let Jν(z) be a Bessel function of the first kind and ν be a
non-negative integer. Then:

J−ν(z) = (−1)νJν(z) (B.47)

C Appendix for numeric methods

C.1 Derivation of Finite Difference Method central difference approximation

Definition C.1 (Forward difference approximation). The Taylor Series expansion for a continuous function
f(z) at the point z = z0 + h is:

f(z0 + h) = f(z0) + hf ′(z0) + h2
f ′′(z0)

2!
+ . . . (C.1)
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Thus, for small h:

f ′(z0) ≈
f(z0 + h)− f(z0)

h
(C.2)

Let zi+1 = zi + h. Then generalising gives:

f ′(zi) ≈
f(zi+1)− f(zi)

h
(C.3)

Equation (C.3) is called the forward difference approximation.

Definition C.2 (Backwards difference approximation). We use the same machinery as in Definition C.1.
Construct the Taylor Series expansion for f(z) at the point z = z0 − h:

f(z0 − h) = f(z0)− hf ′(z0) + h2
f ′′(z0)

2!
− . . . (C.4)

We rearrange to find that:

f ′(z0) =
f(z0)− f(z0 − h)

h
+ h

f ′′(z0)

2!
− . . . (C.5)

Thus:

f ′(z0) ≈
f(z0)− f(z0 − h)

h
(C.6)

Let zi−1 = zi − h. Then generalising gives:

f ′(zi) ≈
f(zi)− f(zi−1)

h
(C.7)

Equation (C.7) is called the backwards difference approximation.

Definition C.3 (Central difference approximation). We use the same machinery as in Definition C.1 and
Definition C.2. Construct multiple Taylor Series expansion for f(z) at the points z = z0 + h and z = z0 − h:

f(z0 + h) = f(z0) + hf ′(z0) + h2
f ′′(z0)

2!
+ h3

f ′′′(z0)

3!
+ . . . (C.8)

f(z0 − h) = f(z0)− hf ′(z0) + h2
f ′′(z0)

2!
− h3 f

′′′(z0)

3!
+ . . . (C.9)

We now subtract (C.9) from (C.8) to get:

f(z0 + h)− f(z0 − h) = 2hf ′(z0) + 2h3
f ′′′(z0)

3!
+ . . . (C.10)

Thus:

f ′(z0) =
f(z0 + h)− f(z0 − h)

2h
− h2 f

′′′(z0)

3!
− . . . (C.11)

So:

f ′(z0) ≈
f(z0 + h)− f(z0 − h)

2h
(C.12)

Let zi+1 = zi + h and zi−1 = zi − h. Then generalising gives:

f ′(zi) ≈
f(zi+1)− f(zi−1)

2h
(C.13)

Equation (C.13) is called the central difference approximation.

D Derivations involving magnetic fields

D.1 Manipulating (6.3) [5]

Begin with:

ρ
∂v

∂t
+ ∇p− J ×B − ρg = 0 (D.1)

We note that:

J =
1

µ0
(∇×B) (D.2)

Substituting this into (D.1) gives:

ρ
∂v

∂t
+ ∇p− 1

µ0
((∇×B)×B)− ρg = 0 (D.3)
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D.2 Manipulating (6.4) [5]

Begin with:
∂p

∂t
+ v ·∇p+ γp(∇ · v) = 0 (D.4)

Recall (3.14):

c2s =
γp

ρ
(D.5)

Hence:
c2sρ = γp (D.6)

Therefore:
γp(∇ · v) = c2sρ(∇ · v) (D.7)

Hence (D.4) becomes:
∂p

∂t
+ v ·∇p+ c2sρ(∇ · v) = 0 (D.8)

D.3 Linearising equations (6.2), modified (6.3), modified (6.4) and (6.5)

We linearise the following equations:

∂ρ

∂t
+ ∇ · (ρv) = 0 (D.9)

ρ
∂v

∂t
+ ∇p− 1

µ0
((∇×B)×B)− ρg = 0 (D.10)

∂p

∂t
+ v ·∇p+ c2sρ(∇ · v) = 0 (D.11)

∂B

∂t
−∇× (v ×B) = 0 (D.12)

Linearising (D.9), (D.11), and (D.12) is straightforward and requires only two facts, that terms such as v0 and
∂p0
∂t are equal to zero as the system is begins at rest, and that when two small values are multiplied together,

such as ρ1v1, the result is too small and is ignored. The linearisation of (D.10) is requires more work and is
shown below:

ρ0
∂v1
∂t

+ ∇p0 + ∇p1 −
1

µ0

[(
∇× (B0 + B1)

)
× (B0 + B1)

]
− ρ0g − ρ1g = 0 (D.13)

ρ0
∂v1
∂t

+ ∇p0 + ∇p1 −
1

µ0

[
(∇×B0)×B0 + (∇×B0)×B1 + (∇×B1)×B0

]
− ρ0g − ρ1g = 0 (D.14)

ρ0
∂v1
∂t

+ ∇p0 + ∇p1 −
1

µ0

[
(∇×B1)×B0

]
− ρ0g − ρ1g = 0 (D.15)

This simplifies because ∇×B0 = 0. Hence the system of linear equations are as follows:

∂ρ1
∂t

+ ∇ · (ρ0v1) = 0 (D.16)

ρ0
∂v1
∂t

+ ∇p0 + ∇p1 −
1

µ0
((∇×B1)×B0)− ρ0g − ρ1g = 0 (D.17)

∂p1
∂t

+ v1 ·∇p0 + c2sρ0(∇ · v1) = 0 (D.18)

∂B1

∂t
−∇× (v1 ×B0) = 0 (D.19)

D.4 Simplifying (6.11)

We simplify the following: ((
∇×

(
∇× (v1 ×B0)

))
×B0

)
(D.20)
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Begin with:

v1 ×B0 =

vxvy
vz

×
 0

0
B0

 (D.21)

=

 vyB0

−vxB0

0

 (D.22)

∇× (v1 ×B0) =

 ∂
∂x
∂
∂y
∂
∂z

×
 vyB0

−vxB0

0

 (D.23)

=

 ∂
∂z (vxB0)
∂
∂z (vyB0)

− ∂
∂x(vxB0)− ∂

∂y (vyB0)

 (D.24)

∇× (∇× (v1 ×B0)) =

 ∂
∂x
∂
∂y
∂
∂z

×
 ∂

∂z (vxB0)
∂
∂z (vyB0)

− ∂
∂x(vxB0)− ∂

∂y (vyB0)

 (D.25)

=


∂
∂y

(
− ∂
∂x(vxB0)− ∂

∂y (vyB0)
)
− ∂2

∂2z
(vyB0)

− ∂
∂x

(
− ∂
∂x(vxB0)− ∂

∂y (vyB0)
)

+ ∂2

∂2z
(vzB0)

∂
∂x

(
∂
∂z (vyB0)

)
− ∂

∂y

(
∂
∂z (vxB0)

)
 (D.26)

=


−B0

∂2vx
∂x∂y −B0

∂2vy
∂y2
−B0

∂2vy
∂z2

B0
∂2vx
∂x2

+B0
∂2vy
∂x∂y +B0

∂2vx
∂z2

−B0
∂2vx
∂y∂z +B0

∂2vy
∂x∂z

 (D.27)

(∇× (∇× (v1 ×B0)))×B0 = B2
0


∂2vx
∂x2

+
∂2vy
∂x∂y + ∂2vx

∂z2

∂2vx
∂x∂y +

∂2vy
∂y2

+
∂2vy
∂z2

0

 (D.28)

D.5 Simplifying (6.18)

Start with:

ρ0
∂2vz
∂t2
− ∂

∂z

(
vz
∂p0
∂z

+ c2sρ0

(
∂vx
∂x

+
∂vz
∂z

))
− g

(
ρ0
∂vx
∂x

+
∂

∂z
(ρ0vz)

)
= 0 (D.29)

We expand:

ρ0
∂2vz
∂t2
− ∂

∂z

(
vz
∂p0
∂z

)
− c2s

∂

∂z

(
ρ0
∂vx
∂x

)
− c2s

∂

∂z

(
ρ0
∂vz
∂z

)
− gρ0

∂vx
∂x
− g ∂

∂z
(ρ0vz) = 0 (D.30)

Next, expand the product rules:

ρ0
∂2vz
∂t2
−

(
∂vz
∂z

∂p0
∂z

+ vz
∂2p0
∂z2

)
− c2s

(
∂ρ0
∂z

∂vx
∂x

+ ρ0
∂2vx
∂x∂z

)

− c2s

(
∂ρ0
∂z

∂vz
∂z

+ ρ0
∂2vz
∂z2

)
− gρ0

∂vx
∂x
− g

(
∂ρ0
∂z

vz + ρ0
∂vz
∂z

)
= 0 (D.31)

Simplify using (3.13), (3.15) and their derivatives. Then eliminate ρ0 to get:

∂2vz
∂t2

+ g
∂vz
∂z
− γg2

c2s
vz + γg

∂vx
∂x
− c2s

∂2vx
∂x∂z

+ γg
∂vz
∂z
− c2s

∂2vz
∂z2

− g∂vx
∂x

+
γg2

c2s
vz − g

∂vz
∂z

= 0 (D.32)
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Cancelling gives:
∂2vz
∂t2

+ γg
∂vx
∂x
− c2s

∂2vx
∂x∂z

+ γg
∂vz
∂z
− c2s

∂2vz
∂z2

− g∂vx
∂x

= 0 (D.33)(
∂2

∂t2
+ γg

∂

∂z
− c2s

∂2

∂z2

)
vz =

(
c2s

∂2

∂x∂z
− γg ∂

∂x
+ g

∂

∂x

)
vx (D.34)

(
c2s
∂2

∂z2
− γg ∂

∂z
− ∂2

∂t2

)
vz = − ∂

∂x

(
c2s
∂

∂z
+ (1− γ)g

)
vx (D.35)

D.6 Non-dimensionalising (6.37) and (6.45)

Here we non-dimensionalise (6.37) using the definitions found in (6.23). Recall that:(
c2s +

k2xc
4
s(

ω2 − k2xc2s
)) d2vz

dz2
− 1

H

(
c2s +

k2xc
4
s(

ω2 − k2xc2s
)) dvz

dz
+

(
ω2 − (1− γ)g2k2x(

ω2 − k2xc2s
)) vz = 0 (D.36)

Therefore:

1

H2

c2s +
λ2

H2 c
4
s(

ν2c2s
H2 − c2s λ

2

H2

)
 d2vz
dz2H

− 1

H2

c2s +
λ2

H2 c
4
s(

ν2c2s
H2 − c2s λ

2

H2

)
 dvz
dzH

+

ν2c2s
H2
−

(1− γ) c4s
γ2H2

λ2

H2(
ν2c2s
H2 − c2s λ

2

H2

)
 vz = 0

(D.37)

1

H2

(
c2s +

λ2c2s(
ν2 − λ2

)) d2vz
dz2H

− 1

H2

(
c2s +

λ2c2s(
ν2 − λ2

)) dvz
dzH

+

(
ν2c2s
H2
− (1− γ)λ2c2s
γ2H2(ν2 − λ2)

)
vz = 0 (D.38)

c2s
H2

(
1 +

λ2(
ν2 − λ2

)) d2vz
dz2H

− c2s
H2

(
1 +

λ2(
ν2 − λ2

)) dvz
dzH

+
c2s
H2

(
ν2 − (1− γ)λ2

γ2(ν2 − λ2)

)
vz = 0 (D.39)

Thus:

d2vz
dz2H

− dvz
dzH

+

(
ν2 − (1−γ)λ2

γ2(ν2−λ2)

)
(

1 + λ2

(ν2−λ2)

) vz = 0 (D.40)

d2vz
dz2H

− dvz
dzH

+

(
γ2ν2(ν2−λ2)
γ2(ν2−λ2) −

(1−γ)λ2
γ2(ν2−λ2)

)
(
ν2−λ2
ν2−λ2 + λ2

(ν2−λ2)

) vz = 0 (D.41)

d2vz
dz2H

− dvz
dzH

+

(
γ2ν2(ν2 − λ2)− (1− γ)λ2

)
γ2ν2

vz = 0 (D.42)

Therefore we have:
d2vz
dz2H

− dvz
dzH

+

(
ν2 − λ2 − (1− γ)λ2

γ2ν2

)
vz = 0 (D.43)

We non-dimensionalise (6.45) next. Recall that:

v2A
d2vx
dz2

+ ω2vx = 0 (D.44)

We non-dimensionalise here dividing through by c2s and using plasma-β to find that:

2

γβ

d2vx
dz2H

+ ν2vx = 0 (D.45)
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D.7 Proving that (6.47) is a solution of (6.46)

Begin with the solution:

vx = c1J0

(
ν
√

2γβ
)

+ c2Y0

(
ν
√

2γβ
)

(D.46)

We rewrite (D.46) as:

vx = c1J0

(
A exp

(
−z

2

))
+ c2Y0

(
A exp

(
−z

2

))
(D.47)

Here:

A = 2ν

√
cρµ0c2s
B2

0

(D.48)

Differentiating (D.47) with respect to z requires chain rule and common knowledge of how Bessel functions
differentiate. The results follows:

dvx
dz

=
A exp

(
− z

2

)
2

c1J1(A exp

(
−z

2

))
+ c2Y1

(
A exp

(
−z

2

)) (D.49)

We differentiate again with respect to z. This time we also require product rule. For clarity let:

u = exp

(
−z

2

)
(D.50)

This substitution transforms (D.49) into:

dvx
dz

=
Au

2

(
c1J1 (Au) + c2Y1 (Au)

)
(D.51)

=
Ac1

2

(
uJ1 (Au)

)
+
Ac2

2

(
uY1 (Au)

)
(D.52)

Differentiating with respect to u and using another Bessel differentiation rule gives:

d

du

(
dvx
dz

)
=
Ac1

2

(
J1 (Au) + u

(
AJ0 (Au)− 1

u
J1(Au)

))
+
Ac2

2

(
Y1 (Au) + u

(
AY0 (Au)− 1

u
Y1(Au)

))
(D.53)

=
Ac1

2

(
AuJ0 (Au)

)
+
Ac2

2

(
AuY0 (Au)

)
(D.54)

=
A2c1u

2
J0 (Au) +

A2c2u

2
Y0 (Au) (D.55)

Multiplying by du
dz gives:

d2vx
dz2

= −1

2
exp

(
−z

2

)A2c1 exp
(
− z

2

)
2

J0

(
A exp

(
−z

2

))
+
A2c2 exp

(
− z

2

)
2

Y0

(
A exp

(
−z

2

)) (D.56)

= −A
2

4
exp (−z)

c1J0(A exp

(
−z

2

))
+ c2Y0

(
A exp

(
−z

2

)) (D.57)

Multiplying by 2
γβ requires some algebra but yields:

2

γβ

d2vx
dz2

= −ν2
c1J0(A exp

(
−z

2

))
+ c2Y0

(
A exp

(
−z

2

)) (D.58)

Examining the second term of (6.46) reveals that:

ν2vx = ν2

c1J0(A exp

(
−z

2

))
+ c2Y0

(
A exp

(
−z

2

)) (D.59)

Therefore:
2

γβ

d2vx
dz2

+ ν2vx = 0 (D.60)

Thus (6.47) is a solution of (6.46).
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D.8 Solving (6.22) for the strong field fast mode and (6.21) for the strong field slow mode

Begin by considering (6.22) under the assumptions made for the strong field fast mode. These assumptions in
conjunction with the non-dimensionalisations given in (6.23) yield:

dvx
dzH

+
1− γ
γ

vx = 0 (D.61)

Solving this gives the following solution:

vx = A1 exp

(
γ − 1

γ
zH

)
(D.62)

Next consider (6.21) under the assumptions made for the strong field slow mode. Again, these assumptions in
conjunction with the non-dimensionalisations given in (6.23) yield:

dvz
dzH

− 1

γ
vz = 0 (D.63)

Solving that gives the following solution:

vz = A2 exp

(
zH
γ

)
(D.64)

Both of these solutions are positive exponentials so when we calculate the energy densities (by multiplying
by ρ0) we find that they are insignificant in the region we are considering to be the strong field. As such
these solutions do not contradict the assumptions made when examining their respective modes. Additionally
these solutions are omitted from the analysis due to their triviality, even though they are inconsistent with the
primary solutions shown in Sections 6.4 and 6.5.

D.9 Non-dimensionalising (6.49) and (6.52)

Here we non-dimensionalise (6.49) using the definitions found in (6.23). Recall that:

d2vx
dz2

+

(
ω2

v2A
− k2x

)
vx = 0 (D.65)

Therefore:

1

H2

d2vx
dz2H

+

 ν2c2s
H2

v2A
− λ2

H2

 vx = 0 (D.66)

d2vx
dz2H

+

(
ν2c2s
v2A
− λ2

)
vx = 0 (D.67)

d2vx
dz2H

+

(
γν2β

2
− λ2

)
vx = 0 (D.68)

We non-dimensionalise (6.52) next. Recall that:

d2vz
dz2

− 1

H

dvz
dz

+
ω2

c2s
vz = 0 (D.69)

Multiplying through by c2s and using plasma-β yields:

d2vz
dz2H

− dvz
dzH

+ ν2vz = 0 (D.70)
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