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Abstract

Autosomal Dominant Polycystic Kidney Disease is the most common inherited renal
disorder caused by germline mutations in PKDI or PKD2. However its phenotype
can be highly variable between individuals suggesting that genetic, epigenetic and
environmental factors can influence disease expression. miRNAs are small non-coding
nucleic acids that post-transcriptionally regulate mRNA and whose role in other human
diseases has been widely studied. We hypothesised that specific miRNAs could similarly
modulate ADPKD pathogenesis and aimed to identify gene targets for these miRNAs,
characterising their role in ADPKD and uncovering the mechanisms underlying their

dysregulation.

This thesis focused on mir-193b-3p and mir-582-5p, identified from a parallel mRNA-
miRNA microarray. Prediction algorithms and bioinformatics tools allowed the selection
of putative mRNA targets for both miRNAs, whose enrichment was validated by RT-PCR
in several ADPKD models and confirmed by Western blotting. Interactions between
miRNAs and their respective targets were analysed using dual-reporter luciferase assays
and RT-PCR post-transfection, while 3-dimensional cyst assays were used to study the

roles of these genes on the disease phenotype.

ERBB4, CALBI and PIK3R1 were found to be targets for mir-193b-3p in vitro. Further-
more, anoctamin-1 and PI3K-p85a were enriched in several models of ADPKD and
their knock-down reduced cyst expansion in vitro. The down-regulation of two other
miRNAs, mir-192-5p and mir-194-5p was confirmed in ADPKD mice, and all showed
gender-related differences in expression. Finally, I found that miRNAs maturation was

altered in disease and associated with a reduced TRBP expression.

These results suggest that dysregulated miRNAs play a likely role in ADPKD by modi-
fying the expressivity of genes regulating several major pathways. An abnormality in
miRNA maturation in particular mediated by TRBP deficiency may be at the centre of
this dysregulation. These new miRNAs and their validated targets represent potential

novel candidates for developing new drug treatments or biomarkers in ADPKD.
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Parallel microarray profiling identifies ErbB4 as a determinant of cyst growth in
ADPKD and a prognostic biomarker for disease progression
Andrew J. Streets, Tajdida A. Magayr, Linghong Huang, Laura Vergoz, Sandro Rossetti,

Roslyn J. Simms, Peter C. Harris, Dorien J. M. Peters, Albert C. M. Ong

Abstract

Autosomal dominant polycystic kidney disease (ADPKD) is the fourth most common
cause of end-stage renal disease. The disease course can be highly variable and treat-
ment options are limited. To identify new therapeutic targets and prognostic biomarkers
of disease, we conducted parallel discovery microarray profiling in normal and diseased
human PKD]1 cystic kidney cells. A total of 1,515 genes and 5 miRNA were differentially
expressed by more than twofold in PKDI cells. Functional enrichment analysis iden-
tified 30 dysregulated signaling pathways including the epidermal growth factor (EGF)
receptor pathway. In this paper, we report that the EGF/ErbB family receptor ErbB4 is a
major factor driving cyst growth in ADPKD. Expression of ErbB4 in vivo was increased
in human ADPKD and Pkd] cystic kidneys, both transcriptionally and posttranscription-
ally by mir-193b-3p. Ligand-induced activation of ErbB4 drives cystic proliferation and
expansion suggesting a pathogenic role in cystogenesis. Our results implicate ErbB4 ac-
tivation as functionally relevant in ADPKD, both as a marker of disease activity and as a

new therapeutic target in this major kidney disease.

American Journal of Physiology - Renal Physiology
Published 1 April 2017 Vol. 312 no. 4, F577-F588 DOI: 10.1152/ajprenal.00607.2016
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A systems biology approach identifies reciprocal changes in mir-193b-3p and
PIK3RI as drivers of cyst growth in ADPKD
L Vergoz, AJ Streets, T Malas, M Lannoy, PA ‘t Hoen, DJM Peters, and ACM Ong

Autosomal dominant polycystic kidney disease (ADPKD) is the most common in-
herited cause of end-stage renal disease worldwide. PKDI and PKDZ2 mutations are
present in most patients with clear genotype-phenotype correlations. However, the intra-
familial phenotypic variability in some pedigrees suggests the influence of non-allelic
factors. Non-coding RNAs e.g. microRNAs are known to play a major role in health
and disease (including PKD) via control of mRNA stability or translation. We recently
conducted a parallel mRNA/miRNA array study which found mir-193b-3p, among
others, downregulated in human ADPKD cells (Streets et al, 2017), associated with
dysregulation of the ErbB4/EGF pathway. To select other relevant genes regulated by
mir-193b-3p, we compared our human mRNA dataset with mRNA expression data from
Pkdl mutant mice (Malas et al., 2017). Dual-reporter luciferase assays with native and
mutant seed sequences and immunoblotting were used to demonstrate functional binding
of mir-193b-3p to the 3’UTR of PIK3RI mRNA. IGF-1 stimulation of human ADPKD
cystic cells in 2D and 3D cultures characterized the role of PIK3RI in Akt or ERK
signaling and on cyst growth. PIK3R1 was selected as a strong candidate gene and shown
to be upregulated ~3-fold in human cells and mouse Pkd! kidney tissue. In parallel, the
catalytic subunit PIK3CA was also overexpressed suggesting the most common PI3K
enzyme combination is upregulated in ADPKD cells. A functional interaction between
PIK3RI and mir-193b-3p was confirmed by luciferase assays and immunoblotting.
Knockdown of PIK3R1 or PI3K chemical inhibitors significantly reduced cyst growth in
ADPKD cells and influenced Akt and ERK activation by IGF-1. We report that PIK3R1
and one of its catalytic subunits are upregulated in ADPKD and confirm that it is a target
for mir-193b-3p. The role of PIK3R1/PIK3CA in driving cyst growth in ADPKD was
functionally linked to hyperactivation of Akt and ERK. The co-regulation of PIK3RI
and ErbB4 by mir-193b-3p supports the development of PI3K and ErbB4 inhibitors or
mir-193b-3p activators for the treatment of ADPKD.

Poster presented at the ASN Kidney Week 2017 (2nd Nov - 5 Nov 2017, New Orleans,
USA)
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Chapter 1. Introduction Laura Vergoz

1.1 The kidney, an essential organ for the cleaning of blood and water

reabsorption, can be affected by Chronic Kidney Disease

The kidneys are major organs responsible for the filtration of waste from the blood and
the production of urine. They are essential to regulate electrolytes concentrations and

maintain acid base homeostasis.
1.1.1 Anatomy and physiology of the kidney

The kidneys are two bean-shaped organs placed on both sides of the posterior abdominal
area. A Danish study reported a median renal length of about 11 cm and a total renal
volume of about 140 cm? (134 cm? for the right side and 146 cm? for the left side). The
kidneys were significantly larger in men than women and significantly thicker and wider
in older subjects (30 year-old vs. 50 year-old, and 50 year-old vs. 70 year-old) (Emamian
et al., 1993). The average kidney weight is 130 g, with a difference between right and left
kidneys (129 g and 137 g on average, respectively) (Molina and DiMaio, 2012).

A cross-section of a kidney (see Figure 1.1) presents the two main vessels arriving (renal
artery) and leaving (renal vein) the organ, as well as the complex network of nephrons
composing the kidney. Nephrons are the functional units of the kidney. They are typically
about 30 to 55 mm long and are closed on one end by the Bowman’s capsule containing
the glomerulus, both structures together forming the renal corpuscle.

Glomeruli are supplied by a network of microscopic capillaries that are the first interme-
diates for the blood filtration function by the kidneys. The glomerular filtration barrier
filtrates proteins based on charge and size (<68 kDa) from the blood of the afferent ar-
teriole through the glomeruli capillaries into the Bowman’s capsule (Kurts et al., 2013).
Glomerular filtrate is then processed first by the proximal convoluted tubule (PCT) lying
in the renal cortex, lined with cuboidal epithelial cells that show irregular outline (Krstic,
1997) giving it a large area for its reabsorption properties. The PCT actively transports
Na* ions (it reabsorbs &~ 70 % of the filtered NaCl), water (typically reabsorbs 70 % of
the filtered water), amino acids (100 %), glucose (100 %) and other carbohydrates, hence
regulating the osmolality of the plasma by multiple regulatory complexes involving pro-
teins such as SGLT?2 or aquaporin 1 (Zhuo and Li, 2013).
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The compounds not reabsorbed by the proximal tubules then pass through the loop of
Henle (LoH) that dives into the renal medulla where ~15-25 % of the total Na* and CI°
ions as well as water are reabsorbed into the interstitial fluid. The descending and ascend-
ing limbs of the loop of Henle perform opposite functions: while the descending section
passively filtrates water, the ascending section actively reabsorbs NaCl into the medullary
interstitium. Therefore, the loop of Henle acts as a counter-current multiplier: the osmotic
gradient generated from the active release of ions from the ascending limb of the LoH will
lead to the passive release of water from the descending limb, hence to the concentration
of urine and the limitation of its volume. The LoH is thus a major actor of the water
reabsorption from the kidney (Mount, 2014).

The tubule then re-enters the cortex and forms the distal convoluted tubule (DCT). The
DCT epithelium is composed of a single layer of cuboidal cells, smaller than those of the
PCT, with no brush border conferring it a larger lumen. These cells are rich in mitochon-
dria that produce enough ATP for the DCT to exert its function of actively transporting
electrolytes, essentially Ca>*, K*, Mg?* and Na* (= 5-10 % of the total sodium originally
filtered from the blood) (Subramanya and Ellison, 2014).

The compounds that have not been reabsorbed into the interstitial fluid, mainly water
and waste products, then enter the collecting duct that leaves the cortex to go into the
medulla and will eventually merge with others to former the ureter from which the urine
will be transported to the bladder for future excretion. The vasopressin hormone (also
called antidiuretic hormone) acts on the collecting tubule’s water permeability and thus
helps adjust the concentration of the excreted urine, through processes mainly involving
adenylate cyclase, increases in cAMP and subsequent phosphorylation of aquaporin 2

channels (Boone and Deen, 2008).
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