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Abstract

Archaeological investigations are designed to acquire information without damaging the
archaeological site. Magnetometry is one of the important techniques for producing a
surface grid of readings, which can be used to infer underground features. The inversion
of this data, to give a fitted model, is an inverse problem. This type of problem can be
ill-posed or ill-conditioned, making the estimation of model parameters less stable or even
impossible. More precisely, the relationship between archaeological data and parameters
is expressed by a likelihood. It is not possible to use the standard regression estimate ob-
tained through the likelihood, which means that no maximum likelihood estimate exists.
Instead, various constraints can be added through a prior distribution with an estimate
produced using the posterior distribution. Current approaches incorporate prior infor-
mation describing smoothness, which is not always appropriate. The biggest challenge is
that the reconstruction of an archaeological site as a single layer requires various physical
features such as depth and extent to be assumed. By applying a smoothing prior in the
analysis of stratigraphy data, however, these features are not easily estimated. Wavelet
analysis has proved to be highly efficient at eliciting information from noisy data. Ad-
ditionally, complicated signals can be explained by interpreting only a small number of
wavelet coefficients. It is possible that a modelling approach, which attempts to describe
an underlying function in terms of a multi-level wavelet representation will be an im-
provement on standard techniques. Further, a new method proposed uses an elastic-net
based distribution as the prior. Two methods are used to solve the problem, one is based
on one-stage estimation and the other is based on two stages. The one-stage consid-
ers two approaches a single prior for all wavelet resolution levels and a level-dependent
prior, with separate priors at each resolution level. In a simulation study and a real data
analysis, all these techniques are compared to several existing methods. It is shown that
the methodology using a single prior provides good reconstruction, comparable even to
several established wavelet methods that use mixture priors.
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Chapter 1

Introduction and outline

This chapter has two purposes: (i) to introduce the main problem with a brief explanation,

and (ii) to outline the thesis.

The principle aim of this thesis is to promote fundamental understanding of parameter

estimation, inverse problems and wavelet transforms, regarding such key issues as ill-

posedness, ill-conditioning, regularisation and reconstruction. This thesis contributes to

the investigation of Bayesian modelling and shrinkage in the wavelet domain.

The focus is on the inverse problem of finding parameters given observed data. Estimat-

ing parameters might involve solving ordinary least squares (OLS) or maximum likelihood

(ML). It is known that these methods often perform poorly in both estimation and inter-

pretation for such problems (Zou and Hastie, 2005).

Wavelets are a tool used in mathematics for non-parametric function estimation, which has

been of great interest in various statistical applications. There are three main reasons for

using wavelets. The first is that wavelets often offer a sparse and localized decomposition

appropriate for non-parametric functions with various degrees of smoothness (Reményi,

2012). The second is that it is often possible to interpret a complicated signal using

only a few wavelet coefficients, instead of the full data. Finally, the use of the Haar

wavelet might help to produce a step function reconstruction, which is appropriate for
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2 Introduction and outline

many archaeological data analysis problems.

Markov chain Monte Carlo (MCMC) algorithms have attracted much attention over the

last two decades. Moreover, statisticians have been increasingly drawn to the MCMC

approach to simulate from complex or nonstandard multivariate distributions (Chib and

Greenberg, 1995). In particular, it can be a powerful computational tool in Bayesian

inference due to its conceptual simplicity and relative ease of implementation. The major

limitation of Bayesian approaches is that finding the posterior distribution often requires

high-dimensional integration in situations too complex for an analytical solution. The

basic idea of the MCMC method is to construct a Markov chain to generate pseudo-

random samples whose stationary distribution follows the target posterior distribution.

Then the sample is used for parameter estimation.

In this thesis, a new method is proposed using an elastic-net based distribution to model

wavelet coefficients. This includes the popular Laplace and Gaussian distributions as

special cases. The prior parameters in the model are described by prior distributions.

The posterior mean (PM) and maximum a posteriori (MAP) estimates are obtained and

provide a reconstruction from archaeological data corrupted by levels of noise and blur.

The proposed methodology is compared to several established wavelet methods through

extensive simulations.

This thesis is structured as follows. Chapter 2 provides background to the archaeologi-

cal problems, inverse problems and wavelets. Three methods of inverse problem solution

namely ridge regression, Lasso and smooth regularization are considered. Some applica-

tions of shrinkage methods, such as SURE and cross-validation, are discussed. Inversion

and thresholding algorithms are studied using simulation.

Chapter 3 provides an introduction to multi-resolution analysis and defines different

wavelet transforms, such as non-decimated and unbalanced Haar transforms. Addition-

ally, illustrative examples are discussed.

In Chapter 4, the unbalanced Haar and SureBlock thresholding rule are presented. Also,

different wavelet transforms described in the previous Chapter are applied to data using
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classical thresholding rules. Additionally, extensive simulations on standard test functions

are used to find the best wavelet transformation method.

Chapter 5 discusses traditional Bayesian thresholding using single priors. Then Chapter

6 describes traditional mixture priors. Many existing methods are presented, such as

adaptive Bayesian wavelet shrinkage and Bayesian adaptive multi-resolution shrinkage.

In Chapter 7, a two-stage wavelet-based estimation method is proposed. Additionally,

wavelet-vaguelette and vaguelette-wavelet approaches are studied. Several established

wavelet methods are demonstrated and compared using extensive simulations.

Chapter 8 presents a one-stage wavelet-based estimation method using different priors,

such as the Laplace, the Gaussian, the elastic-net and the double Weibull distributions.

A detailed simulation comparison is presented.

Chapter 9 contains an application to a real-world data set from archaeological stratig-

raphy. The features of earth cores are estimated using different priors, with the prior

parameters also estimated.

In Chapter 10, a new method is proposed for wavelet coefficients in two dimensions. The

prior parameters in the model are estimated using prior distributions. The posterior mean

and the maximum a posteriori estimates are obtained for an extensive real archaeological

problem.

The final summary and conclusions of the thesis are given in Chapter 11. The thesis is

concluded by an Appendix and References.



Chapter 2

Background: Inverse Problems and

Wavelets

2.1 Overview

This chapter is divided into four parts: the first part, containing only Section 2.2 gives

background to archaeological prospecting, the second part, containing Sections 2.3 to 2.7,

considers inverse problems, the third part, containing Sections 2.8 to 2.12 provides an

introduction to wavelet methods. Finally, the fourth part, containing Sections 2.13 and

2.14, shows a comparison simulation and presents conclusions.

2.2 Archaeological prospecting

Archaeological prospecting aims to identify features buried at archaeological sites. Addi-

tionally, it refers to the discovery of cultural information from materials such as wood or

ditches that have been covered by earth or sand. One of the key problems archaeologists

face is how to collect all possible information about past human activity or habitation

that is available at archaeological sites without destroying any evidence, and how to do

4
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so in an efficient and accurate manner. Surface surveying is the chief modern methodol-

ogy for collecting information (Ammerman and Feldman, 1978), compared to the older

method of excavation, which involved digging one hole or many small holes. This strategy

varies according to the way that archaeologists imagine the past and visualise what lies

under the ground (Renfrew and Bahn, 2013). However, excavation is a simple method

and a rudimentary technique for discovering past human activity. Nowadays, modern

archaeological techniques are designed to minimise damage to the archaeological site. In

particular, some of these methods rely on the indirect detection of magnetic susceptibility.

During recent decades, magnetic prospecting has become an important tool for under-

standing, describing and classifying a wide range of features. Magnetic susceptibility plays

a key role in understanding the subsurface and may also provide important information

on soil composition (Le Borgne, 1955; Mullins, 1977). Magnetic susceptibility S is defined

as the ratio

S =
M

F
,

where M and F are the induced magnetization and magnetic field respectively. Since

M and F have the same SI (International System of Units) units, S is a dimensionless

number (Evans and Heller, 2003). Usually, its magnitude is of the order of 10−6 to 10−5.

Magnetic susceptibility is essentially controlled by a small group of iron-bearing minerals

(Hanesch and Scholger, 2002; Karimi et al., 2011; Leslie-Pelecky and Rieke, 1996). Just

as materials and objects can be explained by their size, colour or chemical composition,

they may also be defined by their magnetic properties (Dearing, 1994).

Magnetic surveying is one of a number of methods used in archaeological geophysics

and it is a fast and dependable prospecting technique for detecting and mapping the

distribution in the shallow subsurface (Scollar et al., 1990). The Earth can be described as

a large magnet with the north pole pointing south. The intensity of the Earth’s magnetic

field ranges from 30,000 to 60,000 nanoTesla, whereas local anomalies are around 10

nanoTesla (Caruso and Withanawasam, 1999; Le Borgne, 1955). The typical targets of

magnetic surveys are the buried remnants of settlements and towns ranging in age from
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Neolithic to medieval (Needham, 1985). Farming settlements and towns become the most

frequent features in the landscape. These early settlements consist of groups of houses and

other objects usually set amid fields enclosed by earth banks or stone walls (Lewis et al.,

1997). The spatial variation of magnetic surveying is impressive and complex patterns

can be revealed from measurements, which are simple, fast and cheap, non-destructive

and possible both in the laboratory and in the field. Furthermore, it can be combined

with other physical quantities to allow reliable interpretation (Girault et al., 2011).

There are different kinds of tools suitable for magnetic surveying, which have been con-

structed and used in the past. Examples include the free proton magnetometer, the

fluxgate gradiometer, the alkali-vapour magnetometer, and the optically pumped magne-

tometer. The fluxgate gradiometer was the first electric magnetometer, which was used

for military and geophysical exploration in the 1930s (Scollar et al., 1990) but it remains

the most popular piece of electronic equipment. It is made by aligning two fluxgate mag-

netometers above each other, and hence measures the vertical component of the earth’s

magnetic field, producing a zero reading in a constant field. It is carried vertically with

the lower sensor at a height above the ground between 20-30 cm, whereas the distance

between the two sensors is between 50-125 cm. It can be used to cover a single grid in

15-20 minutes. Figure 2.1 shows the magnetometer data from the Park, Guiting Power.

In particular, this shows a diagonal linear ditch towards the top, a rectangular boundary

ditch surrounding various collections of circular pits and post-holes (Allum, 1997).

The external flux of a magnet opposes the polarity induced in it by the earth’s magnetic

field. Figure 2.2 shows the inducing magnetic field; every positive anomaly is therefore

accompanied by a negative one of lesser magnitude. In the northern hemisphere, where

the angle of inclination is positive, that is a downward dip, the negative anomaly is

greater to the northern side of the feature than to the south; the effect is reversed for

negative inclinations in southern latitudes (Allum, 1997). Also, as the distance between

the magnetometer and an object decreases then the magnetic readings move closer to

zero.
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Figure 2.1: Data collected in 1994 from “The Park”, at Guiting Power in Gloucestershire,

using a fluxgate gradiometer (Allum et al., 1999).

Figure 2.2: Diagram of the inducing magnetic field: the distinctive shape of a positive

and a negative region occurs as a result of the magnetic susceptibility behaving as a bar

magnet.
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Type of soil Magnetic susceptibility
(10−6 emu)

Limestone, unbaked clays 10

Subsoils 10-100

Topsoils 100-100

Heated soils, fired clays, volcanic rocks 1000-5000

Table 2.1: Magnetic susceptibility of different kinds of soil where emu means electromag-

netic unit (Tite and Linington, 1975).

Some minerals, such as iron oxide magnetite, are highly magnetic and are attracted to a

nearby magnet, with some materials containing more magnetic minerals than others. For

example, rocks with relatively high concentrations of magnetite, i.e. heated soils, fired

clays and volcanic rocks, have much higher magnetic susceptibility values than limestone,

some unbaked clays and sand, which do not show any visible attraction to a magnet.

There are many results from studying English soils (Mullins, 1977; Tite and Linington,

1975), which are consistent with the above observations. Table 2.1 shows some typical

values of the magnetic susceptibility of different soil types taken from archaeological sites

across England. The term emu is short for “electromagnetic unit” and is not a unit in

the conventional sense (Renfrew and Bahn, 2013).

Several methods are available for reconstruction of a true signal by inversion, such as reg-

ularization methods and Wiener Fourier method. For low-rank problems however, these

prove to be unsatisfactory, since high frequency elements in the signal are smoothed but

almost certainly exist in the recorded data due to noise (Allum et al., 1999). Additionally,

although these methods may reduce the broad spread of the peak, the reconstruction is

still very smooth and it is therefore difficult to provide a sharp division between regions

of different susceptibility.
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2.3 Introduction to inverse problems

Inverse problems are universal in science and engineering, and have received a great deal of

attention from scientists in areas such as geophysics, engineering and medicine. Moreover,

inverse problems are a challenge in statistics and a number of methods have previously

been proposed. There are two main types of inverse problems, linear inverse problems

defined by

y = Hf + ε, (2.1)

and non-linear inverse problems

y = φ(H, f) + ε, (2.2)

depending on the type of relationship between response variable yn×1 = {yi : i =

1, 2, . . . , n} and independent variables Hn×m = {hi,j : i = 1, 2, . . . , n, j = 1, 2, . . . ,m}.

Also, ε = {εi : i = 1, 2, . . . , n} are the measurement errors, and f = {fj : j = 1, 2, . . . ,m}

are the unknown model parameters. Note that our aim is not only to fit a model to allow

the prediction of y, but to interpret the estimates of f . In each type of inverse problem

estimation of the unknown parameter vector fm×1 = {fj : j = 1, 2, . . . ,m} is not straight

forward as either: (i) no solution exists; (ii) there are multiple solutions, or; (iii) the

solution does not depend smoothly on the data, as small changes in the noise can lead

to wildly different estimates – these properties define an ill-posed or ill-conditioned in-

verse problem (Hadamard, 2014). In the usual maximum likelihood approach for a linear

problem, with normally distributed errors, the estimator of f is given by

f̂ = (HTH)−1HTy.

With an inverse problem there are two possible reasons why the inverse cannot be found:

the first reason is that m is greater than n, that is the number of parameters is larger

than the number of observations – this is an ill-posed problem; the second reason is that

even when m is less than n, there are still problems, due to collinearity, which is the

condition where the independent variables are strongly correlated with each other – this

is an ill-conditioned problem.
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2.4 Inverse problems in archaeology

As motivation for this work, consider the following inverse problem, which occurs in

archaeological geophysics; for an example, see Aykroyd and Al-Gezeri (2014). Consider

an archaeological site, where all features above ground have been removed and it is no

longer possible to see the location of buildings and ditches. However, the concentration

of magnetic oxides of iron in the topsoil has been increased by human occupation of the

site. Over time, and after the site has been abandoned, the topsoil fills ditches, post

holes and wall trenches, creating an iron concentration contrast, which can be detected

by magnetometer readings. In archaeological stratigraphy, a core sample of the ground is

taken using a soil borer, which can penetrate over 1 metre deep; then a plastic cylinder is

pushed into the soil and sealed on site to prevent the sample from drying out (Al-Gezeri,

2003).

On most occasions, no variation is observed between the layers in the core with regards to

colour or texture. Nevertheless, the depth and vertical extent of occupation layers can still

be estimated by measuring the magnetic properties of slices of the core at varying depths.

An increase in the magnetic oxide concentration of the core slices leads to an increase in

the magnetic susceptibility. Using a piece of equipment called a coil magnetometer, the

local variation in susceptibility can be detected along the full length of the core. The

plastic cylinder is positioned a small distance from one end of the coil; then it is moved

in small steps of equal size, pausing between movements for readings to be made. Let the

output readings be denoted by y = {yi : i = 1, 2, . . . , n}. The first few measurements are

recorded well before the core enters the coil and the last few well after it has emerged.

Therefore, it may be assumed that initially and finally, the core has a negligible effect

on the coil and hence the first few and last few readings are zero. Let the true magnetic

susceptibilities be denoted by f = {fj : j = 1, 2, . . . ,m}. We might imagine that the core

can be divided into parts, each part can be described by fj where j = 1, . . . ,m. It is

assumed that the first element, f1, is at the centre of the coil when the first reading, y1,

is taken, and the last element, fm, is there when the last reading, yn, is taken.
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(i) (ii)

Figure 2.3: Diagram showing removal of the core (i), and the geometry of core and coil

(ii).

The susceptibility is indirectly measured by detecting small changes in the inductance of

the coil as the core passes through. Although the detector coil is sensitive to the magnetic

susceptibility along the full length of the core, it is much more sensitive to the part within

the coil. Allum et al. (1999) show that a suitable approximation for the change in the

inductance is

h =
1

4w

[
d+ w√

(r − a)2 + (d+ w)2
− d− w√

(r − a)2 + (d− w)2

]
, (2.3)

where a is the radius of the core, and r and 2w are the radius and the length of the coil

respectively. With an extended core made of many elements, d, is replaced by dij in (2.3),

and likewise h by hij, where dij is the distance along the coil axis, from the centre of the

coil to the position of core element j at step i. The observed measurement, yi, is then

given by

yi =
m∑
j=1

hijfj + εi, for i = 1, . . . , n, (2.4)

where ε ∼ Nn(0, σ2In), with εi and εj (i 6= j) independent. Scollar (1970) states that

the reason for including errors is to describe internal noise in the surveying instrument,

machine-rounding errors and disturbance by superficial features such as small stones in
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Figure 2.4: Simulated core: the true susceptibility (a) is made from blocks with known

susceptibility; (b) shows the noise-free data corrupted by the matrix defined by (2.3), with

parameters r = 22, a = 18, and w = 17.5; and (c) shows the observed data with noise.

the soil. This model can also be written

y = Hf + ε, (2.5)

where H is known as the blur or kernel matrix with element hij and i = 1, 2, . . . , n,

j = 1, 2, . . . ,m.

As an illustration consider simulated data generated from a core, which is made from

blocks of known susceptibility. Figure 2.4 (a) shows such a true magnetic susceptibility

profile, (b) shows noise-free data, and (c) shows data with noise. Although the approxi-

mate location of the two main features can still be seen, the detail has been completely

lost and it is no longer possible to see the start and end of each layer. From the data alone

it would not be possible for the archaeologists to reliably determine the likely occupation

of the site, nor to provide information to direct physical excavation.

2.5 Test functions

In this section two test functions will be described, which will be used as magnetic suscep-

tibility profiles to generate simulated data. These will be used in later sections to illustrate

various data analysis methods. The Blocks and the Bumps test functions (Donoho and
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Figure 2.5: Plots of the Blocks (a) and the Bumps (b) test functions at m = 1024 equally

spaced points.

Johnstone, 1994) are shown in Figure 2.5. The reason for choosing these functions is that

we believe the magnetic susceptibility can be well described as piecewise constant blocks

and we expect isolated highly magnetic objects to be well described by isolated Bumps.

To investigate the effect of blurring, a simple alternative to Equation (2.3) to build the

kernel matrix, can be defined as

hij = C exp
(
− |i− j|

k

)
, i = 1, . . . , n, j = 1, . . . ,m, (2.6)

where C and k are positive parameters. Here, |i − j| is the distance along the x-axis,

from the centre at step i to the position of element j. Changing one parameter value k,

leads to a different point spread function and hence the amount of blurring is more easily

controlled. From Chapter 2 to Chapter 8, the form of blur which is given in (2.6) will be

used to produce simulated data.

Let f = {f(j/m) : j = 1, 2, . . . ,m} represent the value of the unknown magnetic suscep-

tibility at a set of m equally spaced points. Suppose a set of noisy data y = {yi : i =

1, 2, . . . , n} are recorded at the same locations, hence m = n, then the model is given by

y = f + ε, (2.7)

where the error ε is a vector of random variables, such that ε ∼ Nn(0, σ2In). Similarly,
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Figure 2.6: Plots of Blocks test function with different levels of blur as defined in (2.6),

where k = 0, 0.005, 0.07 (rows), and noise, σ = 0, 0.5, 1 (columns), at m = 1024 equally

spaced points.
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Figure 2.7: Plots of the Bumps test function with different levels of blur as defined in

(2.6), where k = 0, 0.005, 0.07 (rows), and noise, σ = 0, 0.5, 1 (columns), at m = 1024

equally spaced points.
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if the model is corrupted by noise and blur then the model is given by

y = Hf + ε

= g + ε, (2.8)

where Hn×m is a given blur matrix and gn×1 is blurred noise-free data.

To investigate the effect of blur and noise, consider Figures 2.6 and 2.7, in particular

k = 0, 0.005, 0.07 (rows) and σ = 0, 0.5, 1 (columns). For the Blocks test function, Figure

2.6, as the blur increases detail is lost and eventually only the vague appearance of general

structure can be seen. Similarly, as the noise level is increased detail is hidden by the

random variability. For the Bumps test function, Figure 2.7, as the blur increases the

clusters of spikes merge and as the noise increases the remaining spikes become harder to

distinguish from the random variability.

2.6 Inverse estimation

Considering the linear model (2.8), the log-likelihood is

`(f) = − 1

2σ2
(y −Hf)T (y −Hf) + C, (2.9)

and the maximum likelihood estimate of f , is given by

f̂
ML

= (HTH)−1HTy. (2.10)

In many inverse problems, however, it is not possible to calculate the inverse (HTH)−1,

as the system has fewer equations than unknowns, that is m > n, or is ill-conditioned

being nearly multicollinear. To solve this problem, additional constraints are introduced

leading to a penalised log-likelihood

`m(f , α) = − 1

2σ2
(y −Hf)T (y −Hf)− 1

2
κR(f) + C, κ > 0, (2.11)

where R(f) is a penalty function with small values of R(f) indicating preferred choices

of f . The parameter κ is chosen to balance the relative weight given to the likelihood



17 Background: Inverse Problems and Wavelets

and penalty. Before moving on, it is worth noting that the penalised log-likelihood can

be interpreted in a Bayesian setting as log-likelihood plus log-prior, hence the penalty

function can be used to define a prior distribution and vice versa. Some examples of

penalised likelihood will now be considered.

In ridge regression (Hoerl and Kennard, 1970) R(f) = fT f =
∑m

j f
2
j leading to the

estimate

f̂
Ridge

= (HTH + ΛIm)−1HTy, (2.12)

where Λ = σ2κ and Im is the m×m identity matrix, which can also be written as

f̂Ridge
i =

f̂ML
i

1 + Λ
, (2.13)

where f̂ML
i is defined in (2.10), when the matrix H is orthonormal (Filzmoser and Croux,

2002). To find the mean and variance of f̂
Ridge

, let K = HTH so

f̂
Ridge

= (HTH + ΛIm)−1HTy

= (K + ΛIm)−1ImHTy

= (K(Im + ΛK−1))−1KK−1HTy

= (Im + ΛK−1)−1K−1K(K−1HTy)

= (Im + ΛK−1)−1Im((HTH)−1HTy)

= (Im + ΛK−1)−1((HTH)−1HTy), (2.14)

then the expectation of f̂ is

E{f̂
Ridge
} = E{(Im + ΛK−1)−1((HTH)−1HTy)}

= E{(Im + ΛK−1)−1((HTH)−1HTHf + ε)}

= (Im + Λ(HTH)−1)−1f . (2.15)

Notice that

E{f̂
Ridge
} 6= f , (2.16)
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and so the estimator f̂
Ridge

is biased with bias given by

E{f̂
Ridge
} − f = (Im + Λ(HTH)−1)−1f − f

= ((Im + Λ(HTH)−1)−1 − Im)f . (2.17)

The variance of the ridge regression estimator is

var(f̂
Ridge

) = var{(HTH + ΛIm)−1HTy}

= (HTH + ΛIm)−1HTvar(y)((HTH + ΛIm)−1HT )T

= (HTH + ΛIm)−1HTσ2InH((HTH + ΛIm)−1)T

= σ2(HTH + ΛIm)−1HTH((HTH + ΛIm)−1)T . (2.18)

A second example of penalised likelihood is the Lasso with R(f) = ||f ||1 =
∑
|fj|, which

was proposed by Tibshirani (1996). Although, in general, no closed form solution exists

(Filzmoser and Croux, 2002), if the maximum likelihood solution, f̂
ML

, exists and the

matrix H is orthonormal, then it is possible to write

f̂Lasso
i =


f̂ML
i − Λ, if f̂ML

i > Λ

f̂ML
i + Λ, if f̂ML

i < −Λ

0, otherwise,

(2.19)

where f̂ML
i is defined in (2.10), and Λ = σ2κ is a parameter of the inversion method.

Clearly, any maximum likelihood estimate smaller than Λ in magnitude will be set to

zero and as Λ is increased, more and more values will be set to zero. From this it is clear

that Lasso is related to thresholding, which will be described for wavelet coefficients in

Chapter 4.

In a more general penalised likelihood approach R(f) = ||Rf ||22 is proposed (Levineet al.,

1979), where the matrix R can take different definitions, leading to the estimate

f̂ = (HTH + ΛRTR)−1HTy,

where Λ = σ2κ. Two common choices of R, which can be derived, are based on a priori

assumptions about the smoothness of the true function. If we believe that the function is
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not different from a constant, then

R(f) =
m−1∑
i=1

(fi − fi+1)2. (2.20)

Equation (2.20) equals zero only when f is constant. Then, matrix R1 can be defined as

R1 =



1 −1 0 0 . . . 0 0 0

0 −1 1 0 . . . 0 0 0

0 0 −1 1 . . . 0 0 0
...

...
...

... . . .
...

...
...

0 0 0 0 . . . −1 1 0

0 0 0 0 . . . 0 −1 1


.

(m−1)×m

This leads to what is called first-order smoothing. If we believe that the function is linear,

then

R(f) =
m−2∑
i=1

(fi − 2fi+1 + fi+2)2. (2.21)

Then, matrix R2 can be defined as

R2 =


1 −2 1 0 . . . 0 0 0

0 1 −2 1 . . . 0 0 0
...

...
...

... . . .
...

...
...

0 0 0 0 . . . 1 −2 1

 ,

(m−2)×m

which leads to second-order smoothing. A similar approach can lead to higher order

smoothing and corresponding definitions of R. Hence, ridge regression is a special case

of regularization, when R = I.

2.7 A simulation comparison of inversion methods

All penalised likelihood estimators will now be evaluated and investigated. Here three

methods for finding the inverse solution are considered: ridge regression, first order, and
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second order smoothing. More precisely, the whole simulation and estimation procedure

will be replicated R = 1000 times and the average mean squared-error (AMSE) calculated

with

AMSE =
1

Rm

R∑
i=1

m∑
j=1

(f̂ ij − fj)2, (2.22)

where {f̂ ij , j = 1, . . . ,m} is the estimate of the true function from the ith replicate. It is

important to know that m is the length of f and R is the number of replicates. Algorithm 1

shows the main idea of the simulation. The simulated datasets consist of the standard test

signals Blocks and Bumps (Donoho and Johnstone, 1994; Nason and Silverman, 1994) at

m = 128 equally spaced points, multiplied by a blur matrix, and the value of blur defined

in (2.6) by taking in turn k equal to 0.001, 0.005, and 0.01. Furthermore, datasets were

corrupted by independent Gaussian noise with mean zero and standard deviation σ taken

in turn as 0, 0.5, and 1. A range of smoothing parameter values Λ in the interval [0, 3] were

tested and results are presented. Figure 2.8 shows the boxplots of the mean squared-error

(MSE), for the Blocks test function, with the minimum AMSE marked.

Algorithm 1: AMSE algorithm

Result: AMSE.

1 Let Λ ⊂ R+.

2 for i=1 to length(Λ) do

3 for j=1 to R do

4 Generate ε ∼ Nn(0, σ2In)

5 y = Hf + ε

6 Compute f̂ = I∗(y,H,Λi), I∗(·) is an inverse method

7 Compute MSE

8 end

9 Compute the AMSE

10 end

Let Λ̂MAMSE be the value of Λ leading to the minimum AMSE. By studying the behaviour



21 Background: Inverse Problems and Wavelets

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Λ̂MAMSE = 0,MAMSE = 0

k=0

(a)

MSE

σ=0

Λ
0

1

2

3

0 0.03 0.06 0.09

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Λ̂MAMSE = 0.005,MAMSE = 0.25
(b)

MSE

Λ
0

1

2

3

0 0.03 0.06 0.09

σ=0.5

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Λ̂MAMSE = 0.01,MAMSE = 0.989
(c)

MSE

Λ
0

1

2

3

0 0.03 0.06 0.09

σ=1

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Λ̂MAMSE = 0,MAMSE = 0

k=0.005

(d)

MSE

Λ
0

1

2

3

4

0 0.03 0.06 0.09

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Λ̂MAMSE = 0.015,MAMSE = 0.697
(e)

MSE

Λ
0

1

2

3

4

0 0.03 0.06 0.09

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Λ̂MAMSE = 0.05,MAMSE = 2.411
(f)

MSE

Λ
0

1

2

3

4

0 0.03 0.06 0.09

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Λ̂MAMSE = 0,MAMSE = 0

k=0.01

(g)

MSE

Λ
0

10

20

30

0 0.03 0.06 0.09

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Λ̂MAMSE = 0.035,MAMSE = 2.254
(h)

MSE

Λ
0

10

20

30

0 0.03 0.06 0.09

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Λ̂MAMSE = 0.075,MAMSE = 4.661
(i)

MSE

Λ
0

10

20

30

0 0.03 0.06 0.09

Figure 2.8: Boxplots of MSE as function of Λ for ridge regression using the Blocks test

function with different blur, which is given in (2.6), and noise levels.
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Figure 2.9: Boxplots of MSE results as function of Λ for ridge regression using the Bumps

test function with different blur, which is given in (2.6), and noise levels.
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Figure 2.10: Boxplots of MSE results as function of Λ of first-order smoothing using the

Blocks test function with different blur, which is given in (2.6), and noise levels.
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Figure 2.11: Boxplots of MSE results as function of Λ of first-order smoothing using the

Bumps test function with different blur, which is given in (2.6), and noise levels.



23 Background: Inverse Problems and Wavelets

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Λ̂MAMSE = 0,MAMSE = 0

k=0

(a)

MSE

Λ
0

1

2

3

0 0.03 0.06 0.09

σ=0

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Λ̂MAMSE = 0.005,MAMSE = 0.244
(b)

MSE

Λ
0

1

2

3

0 0.03 0.06 0.09

σ=0.5

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Λ̂MAMSE = 0.025,MAMSE = 0.899
(c)

MSE

Λ
0

1

2

3

0 0.03 0.06 0.09

σ=1

● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Λ̂MAMSE = 0,MAMSE = 0

k=0.005

(d)

MSE

Λ
0

1

2

3

4

0 0.03 0.06 0.09

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Λ̂MAMSE = 0.005,MAMSE = 0.627
(e)

MSE

Λ
0

1

2

3

4

0 0.03 0.06 0.09

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Λ̂MAMSE = 0.02,MAMSE = 1.818
(f)

MSE

Λ
0

1

2

3

4

0 0.03 0.06 0.09

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Λ̂MAMSE = 0,MAMSE = 0

k=0.01

(g)

MSE

Λ
0

10

20

30

0 0.03 0.06 0.09

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Λ̂MAMSE = 0.005,MAMSE = 2.025
(h)

MSE

Λ
0

10

20

30

0 0.03 0.06 0.09

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Λ̂MAMSE = 0.04,MAMSE = 3.666
(i)

MSE

Λ
0

10

20

30

0 0.03 0.06 0.09

Figure 2.12: Boxplots of MSE results as function of Λ of second-order smoothing using

the Blocks test function with different blur, which is given in (2.6), and noise levels.
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Figure 2.13: Boxplots of MSE results as function of Λ of second-order smoothing using

the Bumps test function with different blur, which is given in (2.6), and noise levels.
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of Λ̂MAMSE, it can be seen that as the noise level σ increases so does the corresponding

Λ̂MAMSE and generally Λ̂MAMSE increases slightly when the value of k increases.

Figures 2.8 and 2.9 show the MSE results using ridge regression estimates of the Blocks

test function and the Bumps test function, based on data with different levels of blur and

noise. The parameter Λ̂MAMSE and the MAMSE values increase as the level of noise and

blur increase. Moreover, from Figures 2.8, 2.9, 2.10 2.11, 2.12 and 2.13, it is clear that

ridge regression and first-order smoothing improve the MSE results slightly for σ = 0.5

and σ = 1, respectively. Also, Figures 2.10 and 2.12 show that MSE results seem to

be similar in the case of the Blocks and Bumps test functions. For small levels of noise

σ = 0.5 and blur k = 0.005, Λ̂MAMSE equals zero, so the underlying function, f , can be

estimated using ML.

2.8 Introduction to wavelets

Wavelets may be seen as “small waves”. The term “wavelets” itself was coined in the

geophysics literature by Morlet et al. (1982); see Daubechies (1992) and Nason (2010a).

The underlying ideas behind the theory and application of wavelets can be found back in

the early twentieth century. More recently, wavelets were re-introduced in the geophysics

literature by Morlet et al. (1982).

Wavelet methods can be applied in many fields and applications, such as image analysis,

radar, air acoustics, and endless other signal processing areas (Young, 1993). The wavelet

transform can be thought of as a version of the Fourier transform (Sifuzzaman et al., 2009).

However, wavelets provide a sparse and localized decomposition appropriate for many

non-parametric modelling situations. It can be explained in simple terms as describing a

signal by a few large wavelet coefficients, which can be analysed, manipulated, or stored,

and then used to transmit images or reconstruct the original signal (Hubbard, 1996).

There are many types of wavelets to choose from including smooth wavelets, compactly

supported wavelets, wavelets with simple mathematical expressions and wavelets with



25 Background: Inverse Problems and Wavelets

(a)

φ

t

−1.6
−1.2
−0.8
−0.4

0
0.4
0.8
1.2
1.6

0 0.2 0.4 0.6 0.8 1

(b)

ψ

t

−1.6
−1.2
−0.8
−0.4

0
0.4
0.8
1.2
1.6

0 0.2 0.4 0.6 0.8 1

(c)

φ

t

−1.6
−1.2
−0.8
−0.4

0
0.4
0.8
1.2
1.6

0 0.2 0.4 0.6 0.8 1

(d)

ψ

t

−1.6
−1.2
−0.8
−0.4

0
0.4
0.8
1.2
1.6

0 0.2 0.4 0.6 0.8 1

Figure 2.14: Wavelets from the Daubechies family: (a) the scaling function with the

number of vanishing moments being N = 2; (b) the wavelet function with the number

of vanishing moments being N = 2; (c) the scaling function with the number of vanish-

ing moments being N = 3; and (d) the wavelet function with the number of vanishing

moments being N = 3 of extremal phase wavelet family.

simple associated filters. However, the Haar wavelet will be the focus of study in this

thesis. This provides a piecewise constant approximation of a function that is a represen-

tation of the function at different resolutions (Liu et al., 2002).

By design the wavelet’s usefulness rests on its ability to localize a process in time-frequency

space. At high resolution levels, the wavelet is narrow, while at low resolutions the wavelet

is stretched out. By moving from high to low resolution levels the wavelet is able to zoom

in on process behaviour at a point in time or alternatively zoom out and reveal the general

features of a signal (Jensen, 1995). Sobolu and Pusta (2010) summarized the structure,

as “small bursts of high frequency wavelets followed by lower frequency waves or vice

versa”. As a result, the use of wavelet reconstruction helps to localize and identify such

accumulations of small waves and thus leads to a better understanding of the reasons for

these phenomena.

One approach to the wavelet method is to start with a set of orthonormal basis func-
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tions generated by dilation and translation of a compactly supported scaling function (or

father wavelet), φ, and a wavelet function (or mother wavelet), ψ, associated with an r-

regular multiresolution analysis of L2(R). The notation L2(R) represents the space for all

functions with well defined integral of the square of modulus of the function, where “L”

signifies a Lebesque integral, “2” denotes the integral of the square of the modulus of the

function, and “R” states that the integration is over the set of real numbers. A variety of

different wavelet families now exist that combine compact support with various degrees of

smoothness and numbers of vanishing moments (Daubechies, 1992). The scaling function,

φj,l(t), can be written as

φj,l(t) = 2j/2φ(2jt− l), j ≥ 0, 0 ≤ l ≤ 2j − 1; (2.23)

a corresponding wavelet function, ψj,l(t), is given by

ψj,l(t) = 2j/2ψ(2jt− l), j ≥ 0, 0 ≤ l ≤ 2j − 1, (2.24)

where the integer variable j represents dilation, scale, level or resolution, and the integer

variable l indicates translation, location in time or shift. A dilation, meaning a unit in-

crease in j causes double the number of oscillations to occur within a set width. Whereas,

a translation, meaning a unit increase in l, shifts ψ(t)j,l by 2−j, and φ(t)j,l by 2−j. There

are many possible choices for these father and mother wavelets, which from a suitable

basis for L2(R) (Abramovich et al., 2000).

The function ψ(t), defined over the real axis must satisfy the two conditions∫ ∞
−∞

ψ(t)dt = 0 (2.25)

and ∫ ∞
−∞

ψ2(t)dt = 1. (2.26)

Hence, the non-zero values of ψ(t) can be considered as being limited to a relatively small

interval of time. While Equations (2.25) and (2.26) state that the function must vary away



27 Background: Inverse Problems and Wavelets

from zero, they also state that any positive variations are matched by negative variations.

Consequently, the function must resemble a wave or wavelet (Percival and Walden, 2006).

Daubechies (1988) designed two families of orthogonal wavelet bases, which combine the

ideas of vanishing moments and compact support to produce wavelets with different de-

grees of smoothness. Function ψ is said to have N vanishing moments if
∫
xnψ(x)dx = 0

for n = 0, 1, . . . , N − 1. If the number of vanishing moments increases then the smooth-

ness of the corresponding wavelet increases. The two wavelet families are known as the

Least-Asymmetric and the Extremal-Phase and both are indexed in terms of the number

of vanishing moments and hence smoothness (Vidakovic, 1999). Figure 2.14 shows the

father and mother wavelets of the extremal phase wavelet family, with the number of van-

ishing moments being N = 2 and N = 3. As the number of vanishing moments increases,

so does the smoothing of the corresponding wavelet.

A simple wavelet basis for L2(R) can be found from the Haar father wavelet φ(t). This was

proposed by Alfred Haar in 1910 (Abramovich et al., 2000; Haar, 1910) and is conveniently

defined to have non-zero value on the interval [0, 1] as

φ(t) =

 1, if t ∈ [0, 1]

0, otherwise.
(2.27)

The Haar wavelet has only the “zeroth” vanishing moment resulting in a discontinuous

wavelet function (Vidakovic, 1999). In general, the Haar scaling function can be written

as

φj,l(t) =

 2
j
2 , if t ∈ [2−jl, 2−j(l + 1)]

0, otherwise.
(2.28)

Examples of the Haar scaling function, for the dilations j = 0, 1, 2 and translations l =

0, 0, 3 (black, red and green respectively) are shown in Figure 2.15 (a). More precisely, the

value of j controls the width of the scaling function; as j increases the plot of φ(t) becomes

narrower and the value increases significantly at the peak. Additionally, l controls the

position; as l changes between 0 and 2j−1 the location of the function moves left or right.
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Figure 2.15: The Haar scaling and wavelet functions for various dilations and translations.

Nason (2010a) defined the father wavelet coefficients to be

cf j,l(t) =

∫ 1

0

f(t)φj,l(t)dt = < f, φj,l(t) >, (2.29)

where < · > represents the inner product. The Haar mother wavelet function can be

written on the interval [0, 1) as

ψ(t) =


1, if t ∈ [0, 1

2
)

−1, if t ∈ [1
2
, 1)

0, otherwise.

(2.30)

This is a step function taking values 1 and −1 on [0, 1
2
) and [1

2
, 1), respectively. The Haar

wavelet function is defined as

ψj,l(t) =


2j/2, if t ∈ [ l

2j
,
l+ 1

2

2j
)

−2j/2, if t ∈ [
l+ 1

2

2j
, l+1

2j
)

0, otherwise.

(2.31)

The Haar wavelet functions, for the dilations j = 0, 1, 2 and translations l = 0, 0, 3 (black,

red and green respectively) are shown in Figure 2.15 (b). Again, j controls the width

and l the position in the same way as for the scaling function. Abramovich et al. (1998)

defined the wavelet coefficients to be

df j,l(t) =

∫ 1

0

f(t)ψj,l(t)dt = < f, ψj,l(t) > . (2.32)
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The Equations (2.29) and (2.32) will be explained in Chapter 3.

2.9 Discrete wavelet transform

The purpose of this section is to briefly explain the discrete wavelet transform (DWT).

More details on the DWT and other wavelet transforms will be given later, in Chapter

3. Consider an unknown signal f = {f(ti) : i = 1, 2, . . . ,m} at a set of m equally spaced

data points ti = i/m. Suppose a set of noisy data y = {yi : i = 1, 2, . . . ,m} are recorded

at the same locations, then the model is given by

y = f + ε, (2.33)

where the error ε = {εi : i = 1, 2, . . . ,m} are assumed independently ε ∼ Nm(0, σ2Im)

distributed and m = 2J , for some integer J . The unknown vector f , can equivalently be

described by its DWT

df = Wf = {cf 0,0, df j,l : j = 0, . . . , J − 1, l = 0, . . . , 2j − 1}, (2.34)

where dfm×1 is a vector of wavelet coefficients containing both scaling coefficient (average)

cf 0,0 at level 0 and wavelet coefficients df j,l from level 0 to level J − 1 (Nason, 2010a).

Suppose W is an orthogonal m×m matrix. For example, with the Haar basis and when

m = 23 the matrix W, is given by

W =
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Since W is an orthogonal matrix WTW = I, it follows that

||dy||22 = dy
Tdy = (Wy)TWy = yT (WTW)y = yTy = ||y||22,

where ||.||2 is the L2 norm, and the length of the vector dy is the same as that of the

vector y (Nason, 2010a). The wavelet decomposition of y, can be written as

dy = Wy = W(f + ε) = Wf + Wε = df + η, (2.35)

where dym×1 and dfm×1 are vectors of the wavelet coefficients of y and f respectively.

Thus, the model in (2.33) can be written equivalently as

dy = df + η. (2.36)

The orthogonality of matrix W and normality of the noise vector ε implies the noise

vector η is also normal (Johnstone and Silverman, 1997) and the noise becomes spread

across wavelet coefficients.

Similarly, if the model is corrupted with blurring then the model is given by

y = Hf + ε, (2.37)

where H is a given n ×m blur matrix and ε is a vector of random variables, such that

ε ∼ Nn(0, σ2In). Then

dy = Wy = W(Hf + ε) = WHf + Wε = dg + η, (2.38)

where dgn×1 is a vector of wavelet coefficients containing the wavelet coefficients of g = Hf

and fm×1 is our signal of interest. Thus, the model in (2.38) can be written equivalently

as

dy = dg + η. (2.39)

The main advantage of the DWT is that it is possible at express a signal at different levels

of approximation as described in the next section.
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2.10 Wavelet approximations

One extremely useful aspect of wavelets is that a given signal, f(t), can be expressed at dif-

ferent levels of approximations in terms of a sum of wavelet coefficients and corresponding

scaling and wavelet functions (Antoniadis et al., 2001).

In particular, the p-level approximation of the function over the interval [0, 1] can be

written as

fp(t) = cf 0,0φ0,0(t) +

p∑
j=0

2j−1∑
l=0

df j,lψj,l(t), t ∈ [0, 1]. (2.40)

Alternatively, let the jth component of the approximation be defined as

fj(t) =

 cf 0,0φ0,0(t) + df 0,0ψ0,0(t), j = 0∑2j−1
l=0 df j,lψj,l(t), j = 1, 2, . . . , J − 1,

(2.41)

and the cumulative approximation up to resolution level p, defined as

fp(t) =

p∑
j=0

fj(t). (2.42)

Figure 2.16 shows cumulative approximations of the Blocks test function with different

numbers of wavelet functions. It can be seen that approximations contain information

about the signal and as more components are added, the approximation becomes closer

to the true function.

Figure 2.17 shows wavelet coefficients for the Blocks test function sampled at m = 32

equally spaced points. The black spikes represent the wavelet coefficients of the true

function, the green spikes represent the wavelet coefficients of noise-free data, and the red

spikes indicate the wavelet coefficients of the observed data with noise.

The important wavelet coefficients can typically be found in the lower resolution levels

shown in Figure 2.17. As the blur increases the non-zero wavelet coefficients approach

zero. In addition, as the level of noise increases, the number of non-zero wavelet coefficients

in the lowest level increases.
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Figure 2.16: Cumulative approximations of Blocks and Bumps test functions, at m = 32

equally spaced points, at successive levels p = 0, 1, 2, 3, 4, with the data shown as points.
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Figure 2.17: Wavelet tableaux of Blocks test function, for k = 0, 0.005, 0.07 (rows) and

σ = 0, 0.5, 1 (columns) at m = 32 equally spaced points: the black spikes represent the

wavelet coefficients of the true Blocks test function, the green spikes represent the wavelet

coefficients of noise-free data, and the red spikes indicate the wavelet coefficients of the

observed data with noise.
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The main goal of wavelet methods is to keep important information about a signal by

applying a shrinkage method to remove noise and then reconstructing the signal using

the inverse transform as described in the next section.

2.11 Classical thresholding

Shrinkage can be summarised as a method for estimating signals from data corrupted by

noise. It is a non-parametric technique used to estimate a function. Wavelet methods

are orthogonal series based methods that use the concept of sparseness. Consequently,

shrinkage of the empirical wavelet coefficients works best in problems where the under-

lying set of true coefficients is sparse. It is assumed that the majority of the wavelet

coefficients are small, which are shrunk, and the remaining few are large, which are kept.

By shrinking the empirical wavelet coefficients towards zero, the smaller ones may be

reduced to negligible levels.

Flandrin (1992), Vidakovic and Ruggeri (2001) and Barber and Nason (2004) suggested

that the coefficients dyj,l can be considered independently and they omit the double index

j, l and work with a “typical” wavelet coefficient, dy, the same approach is followed here.

One natural way to obtain shrinkage estimates of the true coefficients is to use threshold-

ing methods (Nason, 1995). The principle of a thresholding rule is to shrink or threshold

wavelet coefficients towards zero. More precisely, those below a threshold are “killed”

while the others are “kept”, providing the effect of both reducing the noise and com-

pressing the original data, whilst keeping a good quality of approximation. The biggest

challenge in wavelet thresholding is finding a suitable threshold value (Raimondo, 2002).

The hard and soft thresholding rules are given respectively by

TH(dy, λ) =

 0, if |dy| ≤ λ

dy, if |dy| > λ,
(2.43)
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and

TS(dy, λ) =


0, if |dy| ≤ λ

dy − λ, if dy > λ

dy + λ, if dy < −λ.

(2.44)

Hard thresholding is a “kept” or “killed” method, while soft thresholding is a “shrunk” or

“killed”. Hard thresholding is a discontinuous function while soft is a continuous function.

Hence, an estimate of the function g, using estimates of dg, is defined as

ĝ = WTT∗(dy, λ), (2.45)

where T∗(·) is a thresholding rule applied to its argument element by element, hence, in

model (2.36), ĝ is equivalent to f̂ . Also, in the case of the model in (2.38), the resulting

estimate of f , is given

f̂ = I∗(W
TT∗(dy, λ),H,Λ), (2.46)

where I∗(·) is an inversion method. If regularised inversion and a hard thresholding rule

are used then

f̂ = I∗(W
TT∗(dy, λ),H,Λ)

= (HTH + ΛRTR)−1HTWTTH(dy, λ). (2.47)

Gao and Bruce (1997) introduced a thresholding rule to amend the drawbacks of both

hard and soft thresholding. The thresholding rule is called firm thresholding, with rule

TF(dy, λ1, λ2) =


0, if |dy| ≤ λ1

sign(dy)λ2(|dy|−λ1)

λ2−λ1
, if λ1 < |dy| ≤ λ2

dy, if |dy| > λ2,

(2.48)

which is a “kept”, “shrunk” or “killed”. The rule is continuous, which means no jump.

Note that if λ2 = λ1 then TF(dy, λ1, λ2) −→ TH(dy, λ) and if λ2 −→∞ then TF(dy, λ1,

λ2) −→ TS(dy, λ).
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The firm thresholding rule requires two threshold values, this makes the procedure more

computationally expensive. To remedy this, Gao (1998) considered a thresholding rule

called non-negative garrote (G) thresholding with rule

TG(dy, λ) =

 0, if |dy| ≤ λ

dy − λ2

dy
, if |dy| > λ,

(2.49)

which is a “shrunk” or “killed” rule. The G thresholding rule is a continuous function. Gao

(1998) and Antoniadis and Fan (2001) suggested the smoothly clipped absolute deviation

(SCAD) thresholding rule

TSCAD(dy, λ) =


sign(dy)max(0, |dy| − λ), if |dy| ≤ 2λ

(c−1)|dy|−c λ sign(dy)

c−2
, if 2λ < |dy| ≤ cλ

dy, if |dy| > cλ,

(2.50)

which is a piecewise linear function and is also a “kept”, “shrunk” or “killed” rule. An-

toniadis and Fan (2001) suggested using the value c = 3.7.

Bruce and Gao (1996b) derived the bias, variance and risk of hard and soft thresholding as

follows. Let X ∼ N(θ, 1), where X represents a wavelet coefficient. The mean, variance

and the risk function of the shrinkage estimator T(X) of θ, are defined as

Mλ(θ) = ETλ(X), (2.51)

Vλ(θ) = VarTλ(X), (2.52)

Rλ(θ) = Vλ(X) + Mλ(X)2. (2.53)

For more details see Bruce and Gao (1996b). The means for the hard and soft shrinkage

rules are given by

MH
λ (θ) = θ + θ

(
1− Φ(λ− θ)− Φ(λ+ θ)

)
+ φ(λ− θ)− φ(λ+ θ), (2.54)

MS
λ(θ) = MH

λ (θ)− λ
(

Φ(λ+ θ)− Φ(λ− θ)
)
, (2.55)
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variances by

VH
λ (θ) = (θ2 + 1)

(
2− φ(λ− θ)− Φ(λ+ θ)

)
+ (λ+ θ) (2.56)

× φ(λ− θ) + (λ− θ)φ(λ+ θ)−MH
λ (θ)2,

VS
λ(θ) = VH

λ (θ)− λv1(λ, θ) + v1(λ,−θ), (2.57)

where Φ is the cumulative distribution function of the standard Gaussian probability

distribution, φ is the standard Gaussian probability density function, and

v1(λ, θ) =

(
1 + Φ(λ− θ)− Φ(λ+ θ)

)(
(2θ − λ)(1− Φ(λ− θ) + 2φ(λ− θ))

)
, (2.58)

and finally the risk is given by

RH
λ (θ) = 1 + (θ2 − 1)

(
Φ(λ− θ)− Φ(−λ− θ)

)
+ (λ+ θ)φ(λ+ θ) (2.59)

+ (λ− θ)φ(λ− θ),

RS
λ(θ) = 1 + θ2 + (θ2 − λ2 − 1)

(
Φ(λ− θ)− Φ(−λ− θ)

)
(2.60)

− (λ− θ)φ(λ+ θ)− (λ+ θ)φ(λ− θ).

The G, F and SCAD thresholding rules are more complicated, thus numerical methods

have been proposed to compute mean, variance and the risk. Figures 2.18 shows the

result of numerical methods for computing mean, variance and the risk. Panels (u) and

(v) show the risk of hard and soft thresholding. It can be seen that the risk of soft is

larger than the risk of hard thresholding.

2.12 Optimal choice of λ

In the classical thresholding rules, the biggest challenge is to find an appropriate threshold

value λ. Note that when λ = 0 all the coefficient are kept, while λ = ∞ means that all

the coefficients are shrunk. The thresholding rule works better if the thresholding value is
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Figure 2.18: Plots of the rules, mean, bias, variance and risk for different classical thresh-

olding rules.



39 Background: Inverse Problems and Wavelets

well defined. In addition, different resolution levels might favour different values. Thus,

Stein (1981) and Donoho and Johnstone (1994) considered several different methods of

choosing the value of λ. In some rules, each individual wavelet coefficient is compared with

a thresholding value, which is adaptive through term-by-term thresholding. A wavelet

coefficient is retained if its magnitude is above the threshold level, and is thresholded, if

its magnitude is under the thresholding level, which implies that no small coefficients will

be let through the threshold (Cai, 1999).

In this chapter, three methods for choosing λ are studied and applied. Donoho and

Johnstone (1994) introduced the universal threshold, which uses a threshold given by

λUniv = σ̂
√

2 log(n), (2.61)

where n is the number of data points. Nason (2010a) estimated the noise level using the

finest-scale wavelet coefficients, as

σ̂ = MAD[dy
J−1] =

MEDIAN(|dy
J−1 −MEDIAN(dy

J−1)|)
0.6745

. (2.62)

Hence, σ is estimated using only the finest-scale wavelet coefficients dy
J−1. Even when

there are a few large signal wavelet coefficients at that level then there is no significant

effect on the MAD estimator (Nason, 2010a). An alternative method for estimating σ is

to use the sample standard deviation of the finest-scale of wavelet coefficients (Cai and

Zhou, 2009)

σ̂ = sd[dy
J−1] =

√√√√ 1
n−2

2

2J−1∑
l=1

[dy
J−1
l − d̄y

J−1

l ]2, (2.63)

where sd denotes the standard deviation. A small simulation study involving 100 replica-

tions was carried out with results presented in Table 2.2 to show the difference between

the estimators in (2.62) and (2.63) for an inverse problem.
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Estimator True σ
k

0.001 0.010 0.070

MAD[dy
J−1] 0.5 0.6701 0.9063 0.3704

sd[dy
J−1] 0.5 6.2741 1.6918 0.4273

Table 2.2: The results of using Equations in (2.62) and (2.63) for computing σ̂, where the

true variance of noise is σ2 = 0.25 and different blur k.

The method of universal thresholding can be described by a five step procedure.

1. Transform the data into the wavelet domain using the DWT by calculating dy =

Wy.

2. Estimate the variance using the wavelet coefficients at finest-scale using Equation

(2.62).

3. Estimate the value of the threshold using Equation (2.61).

4. Estimate the true wavelet coefficients using the thresholding rule.

5. Estimate the function using the inverse transform of the denoised wavelet coeffi-

cients.

The universal threshold, with high probability, ensures that every value for the wavelet

transform, for which the underlying coefficient is exactly zero, will be estimated as zero.

This is because, if X1, . . . , Xn are normally distributed random variables with means 0

and variances σ2
1, . . . , σ

2
n, then

P

(
max
1≤i≤n

|Xi/σi| >
√

2 log2 n

)
→ 0 as n→∞, (2.64)

whether or not the variables are independent. The probability of Xi/σi exceeding the

threshold
√

2 log2 n tends to zero (Johnstone and Silverman, 1997). However, the univer-

sal threshold causes over shrinkage, which means that too many true wavelet coefficients

are deleted (Nason, 2010a).
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The second method for estimating λ is Stein’s Unbiased Risk Estimate (SURE), which

was developed by Donoho and Johnstone (1995) and can be defined as level-dependent

thresholding. This means that at each resolution level the estimated wavelet coefficients

are compared to a separate threshold (Donoho and Johnstone, 1994). The value of the

threshold λj is chosen to provide small risk, which means however that there is no explicit

equation to compute λ directly. Stein (1981) gave the main idea to minimize the risk,

which can be applied to each resolution level j, and is given by

SURE(dy, λ) = n− 2#{i : |dyi| ≤ λ}+
n∑
i=1

min(|dyi|, λ), (2.65)

where # denotes the number of elements in the set. Figure 2.19 shows that the SURE

threshold is based on the number of wavelet coefficients, the magnitude of the coeffi-

cient and the value of the threshold. Figure 2.19 also shows that, for this example, the

thresholding value λ is small and seems to be equal at each level. Thus

λS = arg min
λ

SURE(dy, λ). (2.66)

The notation λS represents the value of the threshold at a particular resolution level using

the SURE thresholding procedure. Donoho and Johnstone (1995) demonstrated that

SURE thresholding can be found in O(n log2(n)) computational operations. However,

the main problem with SURE thresholding is that the value of the threshold is always

small.

The method of SURE thresholding can be described by a three step procedure:

1. Transform the data into the wavelet domain using the DWT by computing dy =

Wy.

2. Estimate the threshold for each resolution level using Equation (2.66), then estimate

the wavelet coefficients using the thresholding rule.

3. Estimate the function using the inverse transform of the denoised wavelet coeffi-

cients.

The third method for choosing a value of threshold, λ, is called cross-validation, which

aims to minimize the mean integrated squared-errorNason (1996). He suggested dropping
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Figure 2.19: Illustrating the procedure of SURE threshold using the Block test function:

the black lines in the left-hand columns denote the ordered wavelet coefficients, while; the

red lines indicate the value of threshold, λj, at level j.
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half the points of the data set, hence the length is still a power of two.

Given data, y = {y1, . . . , yn}T , from the model in Equation (2.8), where n is of dyadic

length (power of two), the first step is to remove all the odd-indexed values, which gives

yE = {y2, y4, . . . , yn
2
}T , of length n

2
, which is re-indexed from i = 1, . . . , n

2
. The estimate

of the underlying signal is obtained using wavelet denoising on the even indexed sequence

resulting in f̂λ(y
E)i. By assuming the dataset is periodic, then it can be written as

f̄λ(y
E)i =


1
2

(
f̂λ(y

E)i+1 + f̂λ(y
E)i

)
, if i = 1, . . . , n

2
− 1

1
2

(
f̂λ(y

E)i + f̂λ(y
E)1

)
, if i = n

2
.

(2.67)

The estimate f̂λ(y
O)i is computed for the odd indexed points and the procedure above is

repeated for f̄λ(y
O)i. The estimate of the MISE, M̂(λ), is then given by

M̂(λ) =

n
2∑
i=1

{
1

2

(
f̄λ(y

E)i − y2i−1

)2

+
1

2

(
f̄λ(y

O)i − y2i

)2}
. (2.68)

Nason (2010a) showed that when DWT is used M̂(λ) can be found in O(n) computational

operations. Then, the threshold is given by

λCV

(
n

2

)
= arg min

λ
M̂(λ). (2.69)

Nason (1996) also showed that the universal threshold for n data points is given by

λUniv(n) = σ̂
√

2 log2 n, hence the cross-validation threshold for n data points will be

given by

λCV(n) =

(
1− log2 2

log2 n

)− 1
2

λCV

(
n

2

)
. (2.70)

The correction in Equation (2.70) is applied to obtain the final stage of the cross-validation

threshold estimate. The correction can be derived as follows.
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√
2 log2 n =

√
2 log2 n

√
2 log2

n
2√

2 log2
n
2

=

(
2 log2 n

2 log2 n− 2 log2 2

) 1
2
√

2 log2

n

2

=

(
2 log2 n− 2 log2 2

2 log2 n

)− 1
2
√

2 log2

n

2

=

(
1− 2 log2 2

2 log2 n

)− 1
2
√

2 log2

n

2

=

(
1− log2 2

log2 n

)− 1
2
√

2 log2

n

2
. (2.71)

The result in Equation (2.70) can be used to fix the value of the threshold for the whole

set of wavelet coefficients. The method of cross-validation, can also be described by the

following stepwise procedure:

1. Divide the data into two groups, even and odd.

2. For each group, transform the elements to the wavelet domain using the DWT by

calculating dEy = WyE and dOy = WyO.

3. Estimate the true wavelet coefficients using a threshold parameter λ, and with

a particular thresholding rule to give T∗(dEy , λ) and T∗(dOy , λ), where T∗(.) is a

thresholding rule.

4. Estimate f̂λ,yE and f̂λ,yO using the inverse transform, by calculating f̂λ,yE = WTT∗(dEy , λ)

and f̂λ,yO = WTT∗(dOy , λ).

5. Compute the pairwise averages for each group, in Equation (2.67).

6. Compute the value of the MISE using (2.68).

7. Repeat the third, fourth, fifth and sixth steps for different values of the threshold.

8. Compute the value of the threshold using (2.69).

9. Correct the value of the threshold using (2.70).
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Figure 2.20: Average of λ over 1000 replications of universal compared to cross-validation

and SURE methods: (a), (b), (c) and (d) show different levels of blur, which is given in

(2.6), k = 0, 0.005, 0.01, 0.07, the black lines represent the value of λ̂Univ, the red lines

represent the value of λ̂CV using hard thresholding rule, and the green lines represent the

value of λ̂S, where Block test function datasets using m = 32, 64, 128, 256, 512, 1024 and

2048 equally spaced points.

A small simulation study of 1000 replications was carried out with the results in Figure

2.20. The simulated data sets consisted of the standard test signal Blocks, corrupted by

independent Gaussian noise with σ = 2 and the values of blur k, which is given in (2.6),

were taken as 0, 0.005, 0.01 and 0.07. In this simulation, the cross-validation algorithm

uses the hard thresholding rule.

Figure 2.20 shows the average estimated value of threshold λ, using universal thresh-

old, cross-validation and SURE, with different numbers of equally spaced points m =

32, 64, 128, 256, 512, 1024 and 2048, and different levels of blur, which is given in (2.6).

For each replication the value of λ is computed, and the average of the values taken at the

end of the process. In general, the average of 1000 replications for computing the value

of threshold using universal threshold is always larger than the value of threshold using

cross-validation with the hard thresholding rule and SURE thresholding, that is
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λ̂S < λ̂CV < λ̂Univ, (2.72)

here λ̂S is only computed for the finest resolution level.

There are numerous other methods for specifying a value for the threshold λ. One of

them is known as the false-discovery rate. This multiple hypothesis testing approach was

proposed by Benjamini and Hochberg (1995) and adapted by Abramovich and Benjamini

(1996). For example, consider a single hypothesis

H0 : θ = 0 verus H1 : θ 6= 0,

and suppose a statistical test is performed at the significance level of p(Reject H0|H0

is true) = 0.05. If, say, the number of wavelet coefficients equals 127, which are to

be independently tested at significance level of q = 0.05, then there are an expected

127 × 0.05 ≈ 7 coefficients, which are not equal to zero. Abramovich and Benjamini

(1996) suggested a situation where there are n hypotheses to be tested, where each null

hypothesis is of the form H0 : θ = 0. Also, there are n1 null hypotheses, which are false.

This means the corresponding coefficients should be included in the reconstruction. The

other n0 = n − n1 coefficients are zero and then all the noisy versions should be set to

zero. Also, define R to be the number of coefficients that are not set to zero by a given

thresholding procedure. Of these R coefficients, S are kept, and V are kept in by mistake,

such that R = S + V . The error is written as Q = V/R and it represents the proportion

of coefficients that should have been set to zero and therefore, the false Discovery Rate

of Coefficients (FDRC) is defined to be the expectation of Q. Benjamini and Hochberg

(1995) suggested maximising the number of included coefficients subject to controlling

the FDRC to some level q. The method of FDRC thresholding can be described by a four

step procedure:

• For each dy
∗ calculate the two-sided p-value, p, testing H0 : dy = 0

p = 2(1− φ(|dy|/σ)).
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• Order the p’s according to their size.

• Let i0 be the largest i for which p(i) ≤ (i/m)q and calculate

λi0 = σφ−1(1− pi0/2).

• Threshold all coefficients using threshold λi0 .

Benjamini and Hochberg (1995) proved that for the independent Gaussian noise model,

assumed in Equation (2.33), the above procedure controls the FDRC at an (unknown)

level (mo/m)q ≤ q, where mo is the number of coefficients that are exactly zero and m is

the number of tested hypotheses. Thus, using the above procedure will control the FDRC

at a rate conservatively less than q.

An alternative approach to choosing a threshold was proposed by Ogden (1994) to develop

two methods for thresholding, selection thresholding and data-analytic thresholding. Selec-

tion thresholding depends on hypothesis testing of coefficients level-by-level and provides

a test statistic, that if large will encourage the user to include the largest (in absolute

terms) coefficients into the reconstruction. Then the remainder of the wavelet coefficients

continue to be tested. If the test statistic is not large enough (when compared to some

critical value) then the threshold is set to be the absolute value of the largest remaining

coefficient. Data-analytic thresholding depends on looking at plots of cumulative sums of

the squares of the coefficients at a particular level. Wavelet coefficients are removed from

the level if some test, based on Brownian bridge sampling, is significant. It continues by

testing the remainder of the wavelet coefficients. The test tries to ascertain if the remain-

ing coefficients are just white noise, by successively removing the larger coefficients until

the test decides that the coefficients are indistinguishable from white noise.

An excellent critical overview and simulation study comparing different shrinkage meth-

ods, which gives results about optimality of classical thresholding, can be found in Fan

and Li (2001), Antoniadis et al. (2001) and Katayama and Fujisawa (2016). For articles
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focusing on SURE and cross-validation thresholding see Nason (1995), Nason (1996) and

Altaher and Ismail (2010). This is mainly in the case of normal independent noise. Nason

(1995) claimed that when correlated noise is used the cross-validation methods do not

perform as well. Nason (1995) also stated that the universal threshold only detects the

“large discontinuities” compared to the SURE and cross-validation methods. Abramovich

et al. (1998) showed that the cross-validation method provides a good reconstruction for

the Blocks test function. Furthermore, Katayama and Fujisawa (2016) studied classi-

cal thresholding rules and mentioned that soft thresholding performed worse than hard,

SCAD and non-negative garrote thresholding.

There are several papers on classical thresholding estimation in the signal and image

processing community. These papers usually use hard and soft thresholding rules with

universal, SURE and cross-validation to specify the value of threshold λ.

2.13 Minimum mean squared-error for computing λ̂MMSE

and Λ̂MMSE

In this section, four procedures are applied to estimate f in model (2.8). All these ap-

proaches have two parameters, Λ for the inversion part and λ for the threshold value.

These will be estimated by minimum mean squared-error (MMSE). Thus, let λ̂MMSE and

Λ̂MMSE be the values of λ and Λ leading to the minimum MSE. In all cases coefficients in

the lowest three resolution levels are left unchanged, that is λj = 0 for j = 0, 1, 2.

There are two approaches for estimating the value of threshold, one has a single parameter

but uses λj = 2−j/2λ, and j = 3, 4, . . . , J − 1 (Abramovich et al., 1998) and the other is

level-dependent, where λ = {λ3, λ4, . . . , λJ−1}.

There are two fitting approaches, one is to compute Λ̂MMSE and λ̂MMSE separately (SE), the

other is to compute the parameters together (TO). Furthermore, there are two modelling
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methods used, one is to invert then threshold (IT) and the other is to threshold then

inversion method is applied (TI). These can be defined as follows

f̂
IT-SE

Reg = arg min
λ

WTT∗(Warg min
Λ

I∗(H,y,Λ),λ), (2.73)

f̂
IT-TO

Reg = arg min
λ,Λ

WTT∗(WI∗(H,y,Λ),λ), (2.74)

f̂
TI-SE

Reg = arg min
Λ

I∗(arg min
λ

WTT∗(Wy,λ),H,Λ), (2.75)

f̂
TI-TO

Reg = arg min
Λ,λ

I∗(W
TT∗(Wy,λ),H,Λ), (2.76)

where I∗(·) is an inversion method and T∗(·) is a thresholding rule. Equation (2.73)

indicates that the first step is to compute the value of Λ̂MMSE and then the second step

is to compute the value of λ̂MMSE by using the IT method separately. Equation (2.74)

computes both values of Λ̂MMSE and λ̂MMSE together by using the IT method together.

Similarly, Equation (2.75) indicates that the first step is to compute the value of λ̂MMSE

and then the second step is to compute the value of Λ̂MMSE by using the TI method

separately. Equation (2.76) gives the estimate of the values of Λ̂MMSE and λ̂MMSE together

by using the TI method together.

The method of MMSE, in Algorithm 2, can be described as; the first step is to start with

the initial value of Λ0 ∈ R+ and λ0 ⊂ R+, and the second step is to compute f̂ using

f̂
IT-TO

Reg = WTT∗(WI∗(H,y,Λ0),λ0),

where I∗(·) is an inverse method and T∗(·) is a thresholding rule. Then MSE =
∑m

i=1(f̂ IT-TO
i −

fi)
2 is computed. At iteration k, propose a new parameter for Λ∗ = Λk + ε, with spread

parameter, τ1, chosen to achieve an acceptable convergence rate. If Λ∗ > 0, then f̂ is

computed using

f̂
IT-TO*

Reg = WTT∗(WI∗(H,y,Λ∗),λk−1).

Then MSEnew =
∑m

i=1(f̂ IT-TO*
i − fi)2 is computed. If MSEnew < MSE then the proposal

is accepted Λk = Λ∗ and MSE = MSEnew. Otherwise the value is reset with Λk = Λk−1.

Again, propose new parameters for λ∗3 = λk3 + ε, λ∗4 = λk4 + ε, . . . , λ∗J−1 = λkJ−1 + ε, with

spread parameter, τ2, chosen to achieve an acceptable convergence rate. if λ∗j > 0. Then
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Algorithm 2: MMSE algorithms

Result: MMSE, Λ̂MMSE, λ̂MMSE

1 Starting with initial value Λ0 = 0.01,λ = {λ10, λ20, . . . , λJ−10}, τ1 = 0.01 and

τ2 = {0.01, 0.01, . . . , 0.01, 0.01}.

2 Compute f̂ = WT TH(W(HTH + Λ0R
TR)−1HTy,λ) and MSE=

∑m
i (f̂i − fitrue)2/M .

3 for i=1 to R do

4 for k=1 to M do

5 Generate ε from a Gaussian distribution N(0, τ1)

6 Λ∗ = Λk + ε

7 if(Λ∗ > 0){

8 Compute f̂
∗

= WT TH(W(HTH + Λ∗RTR)−1HTy,λ) and MSE∗

9 if (MSE∗ <MSEk−1) then

10 Λk=Λ∗,

11 MSEk =MSE∗

12 else

13 Λk=Λk−1

14 end

15 }

16 Generate ε3 from a Gaussian distribution N(0, τ2,1)

17 λ3
∗ = λ3

k + ε3

18 Generate ε4 from a Gaussian distribution N(0, τ2,2)

19 λ4
∗ = λ4

k + ε4, . . .

20 for j=3 to J-1 do

21 if(λ∗j > 0){

22 Compute f̂
∗

= WT TH(W(HTH + Λk−1RTR)−1HTy, {λk−1
3 , . . . , λ∗j , . . . , λ

k−1
J−1}) and

MSE∗

23 if (MSE∗ <MSEk−1) then

24 λkj = λ∗j ,

25 MSEk =MSE∗

26 else

27 λkj = λk−1
j

28 end

29 }

30 end

31 end

32 Update τ1 and τ2

33 end
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Figure 2.21: Plots of the monitoring minimum MSE algorithm using the IT method

with the hard thresholding rule where λ and Λ are estimated together. The Blocks test

function, at m = 128 equally spaced points is used and corrupted by level of noise and

blur, which is given in (2.6), equal to 0.5 and 0.001, respectively: (a) the red line represents

the true Blocks test function and the black line represents the result of the estimate at

transient period of 6000 iterations; (b) minimum MSE is acceptable for the new value in

each iteration; (c) acceptable Λ; (d) acceptable λ3; (e) acceptable λ4; (f) acceptable λ5,

and (d) acceptable λ6.
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for each level, f̂ is computed using

f̂
IT-TO*

Reg = WTT∗(WI∗(H,y,Λk−1), {λk−1
3 , λk−1

4 , . . . , λ∗j . . . , λ
k−1
J−1}).

Similarly, MSEnew =
∑m

i=1(f̂ IT-TO*
i − fi)

2 is computed. If MSEnew < MSE then the

proposal is accepted λkj = λ∗j and MSE = MSEnew. Otherwise the value is reset with

λkj = λk−1
j .

The number of replications is equal toR = 60 and the number of iteration equalsM = 100.

This means that the total number of runs is equal to 6000. The same datasets are used

for simulation and comparison. In other words, Λ and λ are chosen to minimise the mean

squared-error, this is

θ̂MMSE = argmin
θ

||f − f̂ θ||22,

(2.77)

where θ̂MMSE is computed by two approaches the first is for level-dependent θ = {Λ,λ},

and the second is to use λ = {2−j/2λ : j = 3, 4, . . . , J − 1, J = log2(n)}.

Figure 2.21 shows an example of monitoring the progress of Algorithm 2 using the IT

method with the hard thresholding rule where λ and Λ are proposed together.

2.14 Comparison simulation

The purpose of this section is to evaluate and investigate whether universal, SURE or

cross-validation methods are suitable for estimating the value of the threshold λ. First

of all, one of the methods in (2.73), (2.74), (2.75) and (2.76) is chosen. The reason for

choosing the MMSE approach is that, in practice, the true function f in (2.33) is unknown.

However, simulated data, that is an artificial data set, can be used to reflect correct belief

about the real data. The MMSE, described in Section 2.13, will be used to determine the

optimal parameters Λ and λ and then these parameter values will be used to produce a

reconstruction of the original function f .
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The simulated data sets consisted of the standard test signals Blocks and Bumps at

m = 128 equally spaced points (Donoho and Johnstone, 1994; Nason and Silverman,

1994), multiplied by a blur matrix, which is given in (2.6), with k taken as 0.001, 0.005,

and 0.01. Also, the dataset was corrupted by independent Gaussian noise with mean zero,

and variance was taken as 0.5. Moreover, no thresholding was done below level 3. The

first-order method in Section 2.6 is used to estimate f .

Figures 2.22 (i) and (ii) show the plots of MMSEs for different thresholding rules to recover

the Blocks test function. In each plot the vertical axis is MMSE, and the horizontal axis

is the blur k. In general, the method of IT in (2.74) provides a smaller MSE result than

others in (2.73), (2.75) and (2.76). Also, the use of level-dependent method, λj, improves

the MSE compared to use λj = 2−j/2λ, see the plots 2.22 (i).

Similarly, Figures 2.23 (i) and 2.23 (ii) show the plots of MMSEs for different thresholding

rules to recover the Bumps test function. In general, the IT methods in (2.74) provides a

small MSE and level-dependent, λj, improves the MSE compared to use λj = 2−j/2λ.

The second simulation is to evaluate and investigate whether universal threshold, SURE

and cross-validation method are suitable for estimating an unknown function, where the

IT methods and AMSE were used, as described in section 2.7. Figures 2.24 and 2.25 show

the boxplots of MSE for different thresholding rules for estimating Blocks and Bumps test

function. The plots of the boxplots depend on the minimum AMSE in (2.22).

Figure 2.24 shows the boxplots of MSE for different thresholding rules for estimating

Blocks test function using the IT method; the first row represents the universal thresh-

olding method, the second row represents the cross-validation method and the third row

represents the SURE method. For k = 0.001, the cross-validation method with the hard

thresholding rule provides a smaller MSE than the universal and SURE methods. For

k = 0.005 and 0.01, the cross-validation and universal thresholds with the hard rule

improve the MSE.

Similarly, Figure 2.25 shows the boxplots of MSE for different thresholding rules for

estimating Bumps using the IT method. For k = 0.001 the universal, SURE and cross-
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Figure 2.22: Simulated Blocks test function at m = 128 equally spaced points: plots of

minimum MSE with first-order smoothing with different values of blur, which is given in

(2.6); (i) estimate λj for each resolution level j = 3, 4, 5, 6, and (ii) estimate λj for each

resolution level j = 3, 4, 5, 6, where λj = 2−j/2λ.
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Figure 2.23: Simulated Bumps test function at m = 128 equally spaced points: plots of

minimum MSE with first-order smoothing with different values of blur, which is given in

(2.6); (i) estimate λj for each resolution level j = 3, 4, 5, 6, and (ii) estimate λj for each

resolution level j = 3, 4, 5, 6, where λj = 2−j/2λ.
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Figure 2.24: Boxplots of MSE results with first-order smoothing for estimating Blocks

test function at m = 128 equally spaced points. Each column represents different blur,

which is given in (2.6), k = 0.001, 0.005, 0.01 and each row represents different methods

using the IT method.
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Figure 2.25: Boxplots of MSE results with first-order smoothing for estimating Bumps

test function at m = 128 equally spaced points. Each column represents different blur,

which is given in (2.6), k = 0.001, 0.005, 0.01 and each row represents different methods

using the IT method.

validation methods with the hard rule, provide a small MSE. Finally, for k = 0.005 and

0.01 the cross-validation and the universal thresholding improve MSE.

2.15 Conclusions

This chapter has introduced different inversion and wavelet methods for deblurring and

denoising. The inversion methods are used for estimating the underlying function f . The

main result is that for small noise with σ = 0.5 and small level of blur k = 0.001, 0.005

and 0.01 there is no need to use inversion. Which means that Λ = 0 and the underlying

function can be estimated by ML in Equation (2.10). However, for large levels of noise

σ = 1 and blur k = 0.07, the smoothing parameter Λ becomes bigger than 0. In general,

ridge regression gives better result when σ = 0.5 and Λ = 0.001, 0.005 and 0.01. Also, for

σ = 1 and level of blur k = 0.001, 0.005 and 0.01, first-order smoothing provides a small

MSE.
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We extended the classical thresholding rule with different methods for the choice of the

value of λ. An investigation into applying a thresholding rule, with an inversion method,

finds that the MSE improves. For example, the IT method with the cross-validation

thresholding gives better results than is achieved by using only an inversion method.

Extensive simulation studies were presented using MSE to compute Λ̂MMSE and λ̂MMSE

with different approaches, such as separately and together, with different thresholding

rules for estimating f . It can be concluded that, the IT method works well and gives

slightly better results than the TI method.



Chapter 3

Decimated and non-decimated

wavelet transforms

3.1 Overview

This chapter is organized as follows: Section 3.2 gives an introduction, Section 3.3 ex-

plains multi-resolution analysis, Sections 3.4 to 3.6 consider the discrete wavelet transform,

whilst Section 3.7 describes the non-decimated wavelet transform, and finally Section 3.9

gives conclusions.

3.2 Introduction

Recall from Equation (2.38), the model

y = Hf + ε, (3.1)

where H is a given n×m blur matrix, y is an n× 1 vector of data, fm×1 is our signal of

interest and ε is a vector of random variables, such that ε ∼ Nn(0, σ2In) then

dy = Wy = W(Hf + ε) = WHf + Wε = dg + η, (3.2)

58



59 Decimated and non-decimated wavelet transforms

where dg is an n× 1 vector, containing the wavelet coefficients of g = Hf . Thus, the

model in (3.1) can be written equivalently as

dy = dg + η, (3.3)

where dy = Wy and dg = Wg.

In order to understand how a wavelet decomposition can be computed and constructed,

the principle of a multi-resolution analysis should be introduced and studied. The purpose

of the multi-resolution analysis is to provide a “window” to look at the wavelet coefficients

at a particular level. Mallat (1989) introduced the fast filtering algorithm, known as the

cascade algorithm, which involves a recursive formula to produce wavelet coefficients. This

process allows the computation of higher level coefficients from lower level coefficients and

vice versa (Hubbard, 1996). An excellent critical overview and introduction to the discrete

wavelet transform can be found in Mallat (1989), Vidakovic (1999), Nason (2010a) and

Jerri (2011).

Several authors have considered the non-decimated wavelet transform, which have in-

cluded many points of view and many problems. See, for example, Nason and Silverman

(1995), Coifman and Donoho (1995), Pesquet et al. (1996) and Silverman (1999). Some

recent results about theoretical properties and comparisons of the discrete wavelet trans-

form and the non-decimated wavelet transform can be found in Gyaourova et al. (2002),

Starck et al. (2007) and Vidya (2008).

The usual approach for wavelet thresholding is to choose a wavelet basis, compute the

wavelet coefficients using either the (decimated) discrete wavelet transform or the non-

decimated wavelet transform, and then use a thresholding rule. The reconstruction is

typically found using the inverse transform. Extensions to the discrete wavelet transform

or non-decimated wavelet transform, have been considered in several articles. Wavelet

packets are proposed by Coifman and Wickerhauser (1992), which are a richer family

that are more flexible in representing different types of signals than the standard wavelet

transformation.
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Full, introductory and mathematical accounts can be found in several texts such as Mal-

lat (1989), Daubechies (1992), Meyer (1995),Wickerhauser (1994), Nason and Silverman

(1995), Coifman and Donoho (1995), Silverman (1999) and Vidakovic (1999). In the next

section, multi-resolution analysis is described and an example is included.

3.3 Multi-resolution analysis (MRA)

The main idea of wavelets is to adapt automatically to the different components of a

signal or image, using a large window to look at long-lived components of low frequency

and small windows to look at short-lived components of high frequency. This procedure

is known as Multi-resolution Analysis (Hubbard, 1996). The concept of MRA is useful

as it provides a natural framework for the understanding of wavelet bases (Mallat, 1989).

Recall from Chapter 2, two functions are structured by Abramovich et al. (2000) follow

the concept of wavelet which was adopted by Daubechies (1992), are given by

φj0,l(t) = 2j0/2φ(2j0t− l), j0 ∈ Z, 0 ≤ l ≤ 2j0 − 1; (3.4)

and

ψj,l(t) = 2j/2ψ(2jt− l), j = j0, j0 + 1, . . . . (3.5)

Daubechies (1992) defined the MRA as a sequence of closed subspaces vj of L2(R), j ∈ Z.

These subspaces satisfy the following properties:

1. . . .v−1 ⊂ v0 ⊂ v1 . . . ,

2.
⋃+∞
j=−∞ vj = L2(R), and

3.
⋂+∞
j=−∞ vj = {0}.

The requirements (2) and (3) mean that the intersection of these subspaces is trivial and

the union is dense in L2(R). The structure of the spaces in (1) is constructed so that all

of the spaces are simply scaled versions of the central space, v0, more precisely,

f(2jt) ∈ vj iff f(t) ∈ v0. (3.6)
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The structure of (1) is also constructed such that there exists a scaling function, φ ∈ v0,

whose integer translates span, v0 (Vidakovic, 1999),

v0 = {f ∈ L2(R)|f(t) =
∑
l

clφ(t− l)}, (3.7)

for some coefficients, cl. Invariance of v0 under integer translations is also required,

consequently

f ∈ v0 ⇔ f(· − l) ∈ v0, ∀l ∈ Z. (3.8)

Hence, (3.6) and (3.8) imply that

f ∈ vj ⇔ f(· − 2jl) ∈ vj, ∀l ∈ Z, (3.9)

also, it is required that there exists φ ∈ v0, such that

{φ0,l, l ∈ Z} is an orthonormal basis in v0, (3.10)

where the scaling function, φj,l(t), has been dilated and translated, as previously defined

in (2.23).

These requirements for an MRA can be used to construct a mother wavelet, ψ. The

wavelet space, wj, is defined to denote the difference in space between vj+1 and vj. This

means for every j ∈ Z, there is an orthonormal space complementing vj in vj+1, which

can be written as

vj+1 = vj ⊕wj.

As all of these subspaces are orthogonal by the requirements (2) and (3), this then implies

that ⊕
j

wj = L2(R),

which is a decomposition of L2(R) into mutually orthogonal subspaces. Consequently, the

spaces, wj, inherit the scaling property, which means,

f ∈ w0 ⇔ f(2j·) ∈ wj. (3.11)
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If it is now supposed that there is a MRA with scaling function, φ ∈ v0, from (3.10) it

is known that the integer translates φ(t − l) form is an orthogonal basis for v0 and it is

true, from (3.9), that the half-integer translates, φ(2t − l), all lie in the space, v1, and

are orthogonal (Broughton and Bryan, 2011). Also, by utilizing the fact that v0 ⊂ v1

the scaling function, φ(t), can be represented as a linear combination of functions from

v1 (Vidakovic, 1999). From this, φ(t), can be defined by

φ(t) =
∑
l∈Z

hl
√

2φ(2t− l), (3.12)

where h = {hl : l ∈ Z} is a vector. Within the signal processing literature this is referred

to as the normalization property (Vidakovic, 1999). The normalization property is∑
l∈Z

hl =
√

2.

This property can be proven by considering the following∫
φ(t)dt =

∑
l∈Z

hl
√

2

∫
φ(2t− l)dt

=
∑
l∈Z

hl

√
2

2

∫
φ(2t− l)d(2t− l)

=
∑
l∈Z

hl

√
2

2

∫
φ(t)dt, (3.13)

as, by assumption,
∫
φ(t)dt 6= 0. The result follows as∑

l∈Z

hl =
√

2. (3.14)

Moreover, the orthogonality property is, for any n ∈ Z,∑
l∈Z

hlhl−2n = δn, (3.15)

where δn =
∫
ψ(t)ψ(t− n). The result (3.15) is proven by Vidakovic (1999), first noting

the scaling function (3.12), it follows that

ψ(t)ψ(t− n) =
√

2
∑
l

hlψ(2t− l)ψ(t− n)

=
√

2
∑
l

hlψ(2t− l)
∑
m

hmψ(2(t− n)−m). (3.16)
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Integrating both sides in (3.16) shows that

δn = 2
∑
l

hl

[∑
m

hm
1

2

∫
ψ(2t− l)ψ(2t− 2n−m)d(2t)

]
=
∑
l

hl
∑
m

hmδl,2n+m

=
∑
l

hlhl−2n. (3.17)

The last line is obtained by taking m = l − 2n as δl,2n+m = δl,l =
∑

l hlhl = 1 when

l = 2n + m and 0 otherwise. An important special case is that when n = 0, (3.15)

becomes ∑
l

hlhl−0 =
∑
l

h2
l = 1. (3.18)

In order to better explore the properties of MRA subspaces and their corresponding bases,

Vidakovic (1999) is followed where a move into the Fourier domain is undertaken. Initially,

a function m0(ω), is defined as

m0(ω) =
1√
2

∑
l∈Z

hle
−ilω =

1√
2
H(ω),

where this function is referred to as the transfer function and it describes the behavior

of the associated h filter in the Fourier domain. Note that m0 is a 2π periodic function

and that {hl : l ∈ Z} are the Fourier coefficients of the function H(ω) =
√

2m0(ω) =∑
l∈Z hle

−ilω. Hence m0(0) = 1. Thus, in the Fourier domain, (3.12) becomes

Φ(w) = m0

(
ω

2

)
Φ

(
ω

2

)
,

where Φ(w) is the Fourier transform of φ(t). Vidakovic (1999) proved that

Φ(ω) =

∫ ∞
−∞

φ(t)e−iwtdt

=
∑
l

√
2hk

∫ ∞
−∞

φ(2t− l)e−iwtdt

=
∑
l

hl√
2
e−ilw/2

∫ ∞
−∞

φ(2t− l)e−iw(2t−l)/2d(2t− l)

=
∑
l

hl√
2
e−ilw/2Φ

(
ω

2

)
= m0

(
ω

2

)
Φ

(
ω

2

)
. (3.19)
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Note that the scaling function can be written in the Fourier domain. In general, wherever

a sequence of subspace exists satisfying the criteria for MRA, there exists, (though not

unique), an orthonormal basis for L2(R),

{ψj,l(t) = 2j/2ψ(2jt− l), j, l ∈ Z}, (3.20)

such that {ψj,l(t) : j − fixed, l ∈ Z} is an orthogonal basis of the difference space,

wj = vj+1 	 vj. Since ψ(t) ∈ v1, and due to the containment of w0 ⊂ v1, Vidakovic

(1999) showed that the wavelet function, ψ(t), in (2.24) can be represented by

ψ(t) =
∑
l∈Z

gl
√

2ψ(2t− l), (3.21)

for some coefficients, gl, where l ∈ Z and g = {gl : l ∈ Z} is a vector. Moreover, it

becomes convenient to define a function, m1(ω), to be the wavelet function in the Fourier

domain:

m1(ω) =
1√
2

∑
l∈Z

gle
−ilω. (3.22)

Then the Fourier transform of ψ(t), is given by

Ψ(w) = m0

(
ω

2

)
Ψ

(
ω

2

)
, (3.23)

by virtue of the fact that v0 and w0 are orthogonal via construction. Through computa-

tion of Fourier series, Vidakovic (1999) defined

m1(ω) = −e−iωm0(ω + π). (3.24)

A detailed proof of Equation (3.4) and this subsequent definition can be found in Härdle

et al. (1998). This definition also leads to a standard relation between h and g. By

comparing this definition of m1(ω) in (3.24) with that given in Equation (3.4), this gives

m1(ω) =
−e−iω√

2

∑
l

hle
−i(ω+π)l

=
1√
2

∑
l

hl(−1)1−le−iω(1−l)

=
1√
2

∑
l

h1−n(−1)ne−iωn, (3.25)



65 Decimated and non-decimated wavelet transforms

since, the second line is obtained from the Fourier properties, F(ω) = −F(ω + π) and

F(ω) is 2π-periodic. Thus, the standard relation between h and g, is given by

gl = (−1)lh1−l. (3.26)

In the literature related to signal processing, this relation is known as the quadrature

mirror relation, with filters h and g subsequently referred to as the quadrature mirror

filters.

As an example, consider the Haar scaling function given in (3.12). By inspection of simple

graphs of two scaled Haar wavelets, φ(2t) and φ(2t+ 1), which stuck to each other, it can

be concluded that the scaling equation is given by

φ(t) = φ(2t) + φ(2t− 1) (3.27)

=
√

2h0φ(2t) +
√

2h1φ(2t− 1)

= φ(t) + φ(2t− 1).

Hence, the quadrature mirror relation is

h0 = h1 =
1√
2
.

The Haar scaling function can be written in the Fourier domain as

m0(ω) =
1√
2

∑
l∈Z

hle
−ilω

=
1√
2

(
1√
2
e−iω0

)
+

1√
2

(
1√
2
e−iω1

)
=

1√
2

(
1√
2
e0

)
+

1√
2

(
1√
2
e−iω1

)
=

1 + e−iω

2
,

and

m1(ω) = e−iωm0(ω + π) = e−iω
(

1

2
− 1

2
eiω
)

=
1− e−iω

2
.

Further

Ψ(w) =
1− e−iω/2

2
Φ

(
ω

2

)
=

1

2
Φ

(
ω

2

)
− 1

2
Φ

(
ω

2

)
e−iω/2.
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Applying the inverse Fourier transformation, Vidakovic (1999) proved that

ψ(t) = φ(2t)− φ(2t− l),

in the time domain. Using the transfer function in the Fourier domain, it can then be

shown that

g0 = −g−1 =
1√
2
.

Note that h0 + h1 =
√

2 and h2
0 + h2

1 = 1.

3.4 The cascade algorithm

The cascade algorithm process is known alternatively as the pyramid algorithm when using

a recursive formula. This formula allows the computation of higher level coefficients from

lower level coefficients and vice versa (Härdle et al., 1998).

Mallat (1989) was the first to connect together wavelets, multi-resolution analyses and cas-

cade algorithms in a formal way. The wavelet scaling and detail coefficients are estimated

by filtering with h and g, which are defined in Section 3.3. The following explanation of

the cascade algorithm can be found in Vidakovic (1999). Upon considering the problem

of the wavelet decomposition, it is convenient to link the original signal with the coeffi-

cients from the space, vJ , for some J . Suppose the two subspaces vj and wj are available

at resolution level j, j − 1 and so on. When the index in v-spaces is decreased, this is

equivalent to coarsening the approximation to the data. Through simple substitution of

indices in the scaling for φ(t) and ψ(t) given in (3.12) and (3.21) respectively, one obtains

φj−1,l(t) =
∑
n∈Z

hn−2lφj,l(t) and ψj−1,l(t) =
∑
n∈Z

gn−2lφj,l(t). (3.28)

The relationships in (3.28) are fundamental to the procedure of the cascade algorithm.

In order to start with this procedure one must first consider a multi-resolution analysis,

which is explained in Section 3.3. It is usual to denote the wavelet coefficients associated

with φj,l(t) and ψj,l(t) by cf j,l and df j,l, which were defined in Chapter 2. Now, let vj ∈ vj
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and wj ∈ wj, then vj(t), can be expressed by

vj(t) =
∑
l

cf j,lφ(t)j,l

=
∑
l

cf j−1,lφ(t)j−1,l +
∑
l

df j−1,lψ(t)j−1,l

= vj−1(t) + wj−1(t), (3.29)

using the general scaling and wavelet function in (3.28). It can also be shown that

cf j−1,l =< vj, φj−1,l >

=< vj,
∑
l

hl−2nφ(t)j,l >

=
∑
l

hl−2n < vj, φ(t)j,l >

=
∑
l

hl−2ncf j,l. (3.30)

Similarly, df j−1,l =
∑

l gl−2ncf j,l. Coefficients in the next finer scale corresponding to

vj can be obtained from the coefficients corresponding to vj−1 and wj−1. This can be

mathematically expressed by

cf j,l =< vj, φj,l >

=
∑
l

cf j−1,l < φj−1,l, φj,l > +
∑
l

df j−1,l < ψj−1,l, φj,l >

=
∑
l

cf j−1,lhl−2n +
∑
l

df j−1,lgl−2n. (3.31)

The relation in (3.31) describes a single step in the reconstruction algorithm. Nason

(2010a) and Vidakovic (1999) described the DWT of a signal f in (2.33), of size n = 2j.

Thus, the vector of wavelet coefficients, df , of the form

df = Wf

=

(
cf 00, df j−1,0, . . . , df j−1,2j−1−1, df j−2,0, . . . , df j−2,2j−2−1, . . . , df 1,0, df 1,1, df 0,0

)T
,

(3.32)

where cf 0,0 =< v0, φ0,0 > and df 0,0 =< w0, ψ0,0 >. The computational effort required to

compute the DWT is O(n) time, where n is the number of data points (Nason, 2010a).

Figure 3.1 shows a pictorial example of the cascade algorithm decomposition for m = 8.
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Figure 3.1: Schematic representation of the cascade algorithm decomposition for m = 8.
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3.5 Numerical example

The purpose of this section is to provide a simple example of how the cascade algorithm

works, as explained in Figure 3.1, taking a vector input, f = (1, 0, 0, 3, 2, 1, 8, 6)T . The

Haar wavelet is applied to this data where an 8× 8 matrix W is formed using the h and

g filters of the Haar wavelet and is of the form

W =


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

,

and produces a set of output coefficients that can be represented as

df = Wf

=

(
cf 00, df j−1,0, . . . , df j−1,2j−1−1, df j−2,0, . . . , df j−2,2j−2−1, . . . , df 1,0, df 1,1, df 0,0

)T
=

(
21

2
√

2
,

1√
2
,− 3√

2
,

1√
2
,

2√
2
,−2

2
,−11

2
,− 13

2
√

2

)T
.

3.6 Inverse discrete wavelet transform

The inverse discrete wavelet transform (IDWT) is defined to recover a signal, f , in (2.33)

from the vector of the discrete wavelet coefficients, df . The IDWT is computed using the

matrix multiplication, as given in Section 3.5, this is

f = WTdf .



70 Decimated and non-decimated wavelet transforms

Nason (2010a) showed how to obtain scaling and detail coefficients at the next finer scale

as

cf j−1,l = (cf j,2l + cf j,2l+1)/
√

2, (3.33)

df j−1,l = (cf j,2l − cf j,2l+1)/
√

2. (3.34)

One can obtain cf j,2l and cf j,2l+1 by solving the Equations (3.33) and (3.34) to obtain the

following formula

cf j,2l = (cf j−1,l + df j−1,1)/
√

2, (3.35)

df j,2l+1 = (cf j−1,l − df j−1,1)/
√

2. (3.36)

For general wavelet coefficients, Mallat (1989) showed that the inversion relation is given

by

cf j,l =
∑
n

hl−2ncf j−1,n +
∑
n

gl−2ndf j−1,n, (3.37)

where h and g are again the quadrature mirror filters defined by (3.12) and (3.26), which

are exactly the same as those used for computing the forward cascade algorithm (Nason,

2010a).

3.7 The non-decimated wavelet transform

The non-decimated (or stationary) wavelet transform (NDWT) was discussed by Pesquet

et al. (1996) and is concerned with an extension of the standard discrete wavelet transform

(Nason and Silverman, 1995). The basic idea of the non-decimated wavelet transform is to

“fill in the gaps” between the coefficients in the standard wavelet transform. The NDWT

is sometimes referred to as cycle-spinning or the maximum overlap wavelet transform

within the literature. The NDWT leads to an “over-determined” or redundant represen-

tation of the original data (Nason and Silverman, 1995). However, the redundant basis

provides a shift invariant denoising method, which simultaneously provide improvements

in smoothness, in reconstruction and in squared-error performance (Coifman and Donoho,
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1995). Moreover, the NDWT is obtained from the standard DWT by repeatedly padding

out the h and g filters with alternate zeroes to double their length. This means that

no decimation takes place and the non-decimated wavelet transform includes all the co-

efficients of the decimated wavelet transform. The general effect, depending on certain

boundary conditions, is to yield an overdetermined transform with n coefficients at each

of log2 n levels of the transform. Contained within the NDWT is the result of the standard

DWT for every choice of origin (Silverman, 1999).

As illustration, the Blocks test function is plotted in Figure 2.17, in Chapter 2. It can be

seen that the data set has a large discontinuity. Also, the discontinuity can be identified

clearly from the non-decimated wavelet coefficients, see Figure 3.2. The black spikes rep-

resent the wavelet coefficients of the true Blocks test function, the green spikes represent

the wavelet coefficients of noise-free data corrupted by the matrix in (2.6), and the red

spikes indicate the wavelet coefficients of the observed data with noise.

Again, the standard wavelet transform of the Blocks test function in Figure 2.17, does

not describe the feature, of the Blocks test function, very clearly. This means that the

discrete wavelet transform has a sampling rate that is essentially too low to give any clear

picture of the data. On the other hand, the non-decimated wavelet transform, in Figure

3.2, shows the wavelet coefficients of Blocks test function where the point of discontinuity

can be clearly identified. Also that, the amplitude of the oscillation, within any particular

frequency level, increases and then dies, and that the region of high amplitude becomes

closer to the singularity as the frequency band increases (Nason and Silverman, 1995).

Note that each panel contains 32× log2 32 = 160 wavelet coefficients, in Figure 3.2, where

n = 32 is the length of data.

The main reason for considering the NDWT is that the standard wavelet transform some-

times displays visual artifacts. For example, the so-called pseudo-Gibbs phenomena can

be created by wavelet denoising. The size of the artifacts are connected with the location

of any discontinuities and these artifacts are all connected, in some way, with the accu-

rate alignments between features in the original signal and basis elements. This can be
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Figure 3.2: Wavelet tableaux of the Blocks test function, for k = 0, 0.005, 0.07 (rows),

which is given in (2.6), and σ = 0, 0.5, 1 (columns), using the non-decimated wavelet

transform: the black spikes represent the wavelet coefficients of the true Blocks test

function; the green spikes represent the wavelet coefficients of noise-free data, and the red

spikes indicate the wavelet coefficients of the observed data with noise.
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attributed to the lack of the translation invariance of the wavelet basis. One approach to

correcting these mis-alignments, between features in the signal and features in the basis,

is to forcibly shift the signals so that features change position.

Coifman and Donoho (1995) proposed a method to deal with the lack of scale invariance,

which is known as cycle-spinning, and acts to “average out” the translation dependence.

The procedure of this method is to shift the data either right or left, for a range of

different shifts. This shifted data is then denoised and the denoised data is then unshifted,

producing results that are averaged to obtain a single reconstruction of the original data.

This reconstruction is subject to far weaker Gibbs phenomena than the thresholding based

on denoising using the standard DWT. Cycle-spinning over the range of all circulant shifts

require O(n log2(n)) time.

It may well be that a given signal can be re-aligned to minimize artifacts, although there

is no guarantee that this will always be the case, especially when a signal contains several

discontinuities. These may also interfere with each other, that is, the best shift for one

discontinuity in the signal may also be the worst shift for another discontinuity. Con-

sequently, it becomes necessary to attempt to apply a range of shifts, and then average

over several results (Coifman and Donoho, 1995). Inversion of the NDWT is more compli-

cated than for the standard DWT because the NDWT algorithm is no longer a one-to-one

transform. Hence, the DWT needs to be modified to yield the average basis inverse, pro-

viding the average of the DWT reconstructions overall choices of time origin. Both the

NDWT and the average basis reconstruction are O(n log2 n) time, where n is the number

of data points. Thus, each algorithm takes the order, n, at each resolution level, and these

computations take place at the order of log2 n levels (Silverman, 1999).

3.8 Numerical example

The purpose of this section is to provide an example of the NDWT, taking a vector input,

f = {1, 1, 7, 9, 2, 8, 8, 6}T . The Haar wavelet is applied to the data using the h and g filters,
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defined by (3.12) and (3.26). The first set of the scaling functions can be computed

cf 20 =

(
1√
2
,

1√
2

)
.(f1, f2) =

2√
2

cf 21 =
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2
,
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Similarly, the first set of detail coefficients can be computed

df 20 =
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From these, the scaling coefficients at the first level are
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Similarly, from these scaling coefficients at the first level, the detail coefficients obtained
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with, the scaling coefficients at the lowest level
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Finally, the detail coefficients at the lowest level given by
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3.9 Conclusions

This chapter gives a detailed description of the decimated and non-decimated wavelet

transforms, including multi-resolution analysis and the cascade algorithm, with illustrative

examples. For some of these bases the calculations are fast and for others they are slow.

For example, the non-decimated wavelet transform (NDWT) basis requires O(n log2 n)

operations, whereas the standard discrete wavelet transform (DWT) basis requires only

O(n) operations. Comparison between the plots of the wavelet coefficients for DWT and

NDWT was made. These show that the NDWT transform produces a better explanation

of non-smooth functions because the NDWT is a richer family, more flexible and captures

more information than the DWT when representing different types of signals. On the

other hand, the DWT is easier to implement than the NDWT for estimating unknown

functions.



Chapter 4

Wavelet transformation and

Non-Bayesian thresholding

4.1 Overview

The chapter is organized as follows: Section 4.2 gives an introduction, Section 4.3 provides

a description of wavelet packets, Section 4.4 gives a brief introduction to the methodol-

ogy of complex-valued wavelet bases, whilst Sections 4.5 to 4.7 discusses the unbalanced

Haar technique. Section 4.8 discusses SureBlock thresholding and Section 4.9 discusses a

comparison simulation with Section 4.10 providing conclusions.

4.2 Introduction

In previous work, the methods mentioned involve term by term thresholding, which means

to “kill” or “keep” the wavelet coefficients on the basis of their individual magnitudes.

Hall et al. (1999) and Cai and Silverman (2001) provided a new thresholding rule by

studying groups of wavelet coefficients.

77
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Consider the model

y = Hf + ε, (4.1)

where H is a given n ×m blur matrix and ε is a vector of random variables, such that

ε ∼ Nn(0, σ2In). Then

dy = Wy = W(Hf + ε) = WHf + Wε = dg + η, (4.2)

where dgn×1 is a vector containing the wavelet coefficients of g = Hf , and fm×1 is our

signal of interest. Thus, the model in (4.1) can be written equivalently as

dy = dg + η, (4.3)

where dy = Wy and dg = Wg. The aim is to estimate the unknown function using the

best method from Sections 2.14 and 2.15, IT-TO which is defined by

f̂
IT-TO

Regλ,Λ
= WTT∗(WI∗(H,y,Λ),λ),

where I∗(·) is an inversion method, such as I∗(H,y,Λ) = (HTH + ΛRTR)−1HTy, with

Λ = σ2κ, the result of the inversion are transformed to wavelet coefficients followed

by applying a thresholding rule, such as hard or soft. Finally, the unknown function

is estimated using the inverse wavelet transform. The key point is to transform the

observed data to wavelet coefficients. Three transformations will be introduced; wavelet

packets, complex-valued and unbalanced Haar transforms, and block thresholding will be

considered.

There is a wide range of articles considering complex wavelet bases, which includes Barber

and Nason (2004). They modified the modulus of complex wavelet coefficients by a bivari-

ate shrinkage rule leaving the phase undamaged. The authors showed that after taking the

complex wavelet transform, the real and imaginary parts of the transformed noise become

correlated. Also, multiple wavelet bases are used with more than one mother and father

wavelet. Fryzlewicz (2007) has developed a new approach to wavelet methods, which

involves using an unbalanced Haar transform, thresholding of the wavelet decomposition

and then applying the inverse unbalanced Haar transform.
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Early work by Hall et al. (1997) and Hall et al. (1999) used block thresholding by dividing

the wavelet coefficients into groups, rather than individually, by noticing what wavelet

coefficients say about the size of their nearby neighbours. The block thresholding method

computes a near unbiased estimate of the sum of squares of the true wavelet coefficients

in a group. Then, all of the wavelet coefficients within the group are kept or set to zero

depending on the thresholding rule. There are several articles on block thresholding in the

signal processing community, including Cai (1999), Abramovich et al. (2002), De Can-

ditiis and Vidakovic (2004) and Cai and Zhou (2009). Cai and Zhou (2009) proposed

the Bayesian block shrinkage (BBS) method and a data-driven approach to block thresh-

olding. De Canditiis and Vidakovic (2004) defined the block thresholding by grouping

wavelet coefficients at each resolution level in a block of a given size. A Bayesian model

is defined on each block, by taking into account both the sparseness of the wavelet repre-

sentations of a noiseless signal and the magnitude of the error affecting the sample.

4.3 The wavelet packet transform

Wavelet packets can be considerd as a generalization of wavelets and can also be expanded

to produce a non-decimated version. In wavelet theory there are many such bases, and

some of them are organized as basis libraries such as the wavelet packet library, which

is described by Wickerhauser (1994). The wavelet packet basis is a rich family that is

more flexible in representing different types of signals. This also means, however, that it

provides a large number of wavelet coefficients.

In order to better explore the basis of the wavelet packet, Coifman and Wickerhauser

(1992) started with the scaling φ and wavelet ψ functions and define W0(t) = φ(t) and

W1(t) = ψ(t). Then define the sequence of functions {Wk(t)}∞k=0 by

W2n(t) =
√

2
∑
l

hl
√

2Wn(2t− l),
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Figure 4.1: Schematic of the wavelet packet transforms on m = 8 points.

W2n+1(t) =
√

2
∑
l

gl
√

2Wn(2t− l).

They define a library of wavelet packets to be the collection of orthonormal bases com-

prised of dilated and translated versions of Wn, producing functions of the form Wn(2jt−

l), where n ∈ N is the number of oscillations and j, l ∈ Z are the scale and translation

numbers. Wavelet packet coefficients can be computed in only O(n log2 n) operations

(Nason, 2010a). Figure 4.1 shows schematically the wavelet packet transform applied to

8 data points. The h and g filters carry out the smooth and detail operations as in the

regular wavelet transform. The regular scaling function coefficients are labeled “c” and
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the regular wavelet function coefficients are labeled “d” (Nason, 2010a).

4.4 Complex-valued wavelets

Shrinkage methods using Daubechies families of compactly supported real valued wavelets

are explained by Daubechies (1988), where a function has compact support if it is zero out-

side a compact set. Lawton (1993) and Lina and Mayrand (1995) described the complex-

valued Daubechies wavelets, known as cDWs. There are several articles on complex-

valued Daubechies wavelets in the signal and image processing community, including,

Lawton (1993), Lina and MacGibbon (1997), Lina (1997) and Lina et al. (1999). Sardy

(2000), proposed an extension called “Waveshrink” to denoising signals, using the complex

wavelet transform. Another article discussing complex wavelets is Clonda et al. (2004)

who denoised images using complex-valued wavelets and a hierarchical Markov graphi-

cal model. Selesnick et al. (2005) proposed an alternative shrinkage method for complex

wavelet known as the dual-tree complex wavelet transform. This approach utilises two real

DWTs, the first gives the real part and the second gives the imaginary part of the trans-

form. Barber and Nason (2004) proposed a method for denoising univariate functions

using complex-valued wavelets.

Daubechies (1988) showed that when a wavelet has N vanishing moments, this means that

all coefficients of any polynomial of degree N or less, will be exactly zero. Note that, when

f is quite smooth but in some parts is interrupted by a discontinuity, then the wavelet

coefficient “on the smooth part” will be small or even zero. Also, Daubechies (1988)

showed that real-valued Daubechies wavelets are indexed by the number of vanishing

moments. For a given N , there are 2N−1 solutions to the defining equations of Daubechies’

wavelets. For example, in the case of N = 3, then there are 4 possible solutions. Two

solutions are real and the other two are a complex-valued conjugate pair. Figure 4.2 shows

the real and imaginary components of the wavelet coefficients for the Blocks test function

sampled at m = 32 equally spaced points. The black spikes represent the real-valued

component of the wavelet coefficients and the red spikes indicate the imaginary component
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Figure 4.2: Plots of the wavelet tableaux of Blocks test function at m = 32 equally spaced

points, for k = 0, 0.005, 0.07 (rows), which is given in (2.6), and σ = 0, 0.5, 1 (columns):

the black spikes represent the real component of the wavelet coefficients, and the red

spikes indicate the imaginary component of the wavelet coefficients (multiplied by 105) of

the observed data.
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of the wavelet coefficients (multiplied by 105) of the observed data with different levels

of noise, σ = 0, 0.5, 1 and blur, k = 0, 0.005, 0.07. The wavelet tableaux shows that the

wavelet coefficients are not purely real-valued. Figure 4.2 shows that as the blur increases

the real-valued component of the wavelet coefficients and the imaginary component of

the wavelet coefficients become closer to zero. Non-zero wavelet coefficients appeared

dramatically for both in the highest resolution levels. In addition, as the level of noise

increases, the number of non-zero wavelet coefficients for both in the lowest level increases.

Now, considering the inverse problem model in section 2.10, the discrete wavelet transform

is given by

dy = Wy = W(Hf + ε) = WHf + Wε = dg + η,

where dgn×1 is a vector containing the wavelet coefficients of g = Hf , fm×1 is our signal of

interest and the DWT may represented by an n× n unitary matrix W, constructed from

ψ(t), such that dy = Wy. Barber and Nason (2004) noted that a unitary matrix is one

where W̄
T
W = WW̄

T
= In, the over bar ·̄ denotes complex conjugation and In is the

n× n identity matrix. The authors show that if the wavelet used is only real-valued then

η = Wε where ε ∼ Nn(0, σ2In), because W is orthogonal. The individual components of

η, considered as complex-valued random variables, are uncorrelated. However, the authors

also note that after taking the complex wavelet transform, the real and imaginary parts

of the transform noise are normal real-valued random variables in their own right and can

be strongly correlated. The authors demonstrate that

cov{Re(η), Im(η)} = −σ2Im(WWT )/2 (4.4)

cov{Re(η),Re(η)} = σ2{In + Re(WWT )}/2 (4.5)

cov{Im(η), Im(η)} = σ2{In −Re(WWT )}/2. (4.6)

The authors proved the above equations, that by letting Re(η) = 1
2
(η+ η̄) and Im(η) =
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1
2i

(η − η̄), where η̄ denotes the complex conjugate of η. Hence,

var(η) = var(Wε)

= Wvar(ε)W̄
T

= Wσ2InW̄
T
. (4.7)

A similar computation can then be used to find var(η̄) and to simplify the assumption

Re(η) and Im(η), which are defined above

Re(WWT ) =
WWT + W̄W̄

T

2
, Im(WWT ) =

WWT − W̄W̄
T

2i
.

Hence, WW̄
T

= W̄WT = In, so

cov{Re(η), Im(η)} = cov

{
1

2
(η + η̄),

1

2i
(η − η̄)

}
=

1

4i

[
cov{η,η} − cov{η, η̄}+ cov{η̄,η} − cov{η̄, η̄}

]
=

1

4i

[
var{η} − cov{η, η̄}+ cov{η̄,η} − var{η̄, η̄}

]
=
σ2

4i

[
WW̄

T −WWT + W̄W̄
T − W̄WT

]
=
σ2

4i

[
In −WWT + W̄W̄

T − In

]
=
σ2

4i

[
− 2iIm(WWT )

]
= −σ

2

2
Im(WWT ). (4.8)

A similar calculation can be used to prove (4.5) and (4.6), see Barber and Nason (2004).

Barber and Nason (2004) mentioned that any given element, ηj,l, of the vector η, has

a complex normal distribution equivalent to a bivariate normal with a mean vector zero

and covariance matrix
∑

j,l. As periodic transforms are being used, all the covariance

matrices for a given resolution level are equal and the subscript “j” on the covariance
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matrices can be omitted. Thus, the covariance matrix is given by

∑
j

=

cov{Re(η),Re(η)} cov{Re(η), Im(η)}

cov{Re(η), Im(η)} cov{Im(η), Im(η)}


=

σ2{In + Re(WjW
T
j )}/2 −σ2Im(WjW

T
j )/2

−σ2Im(WjW
T
j )/2 σ2{In −Re(WjW

T
j )}/2

 ,
where the noise level of σ is assumed known. However, Barber and Nason (2004) estimated

σ using the sum of the squared median absolute deviation of the finest level of the real

part and the squared median absolute derivation of the finest level of the imaginary part.

Barber and Nason (2004) used an approach similar to the so-called “multiwavelet” scheme

(DMWT), which was introduced by Downie and Silverman (1998), that has a basis with

more than one mother and father wavelet. A discrete multiwavelet transform is actually

similar to the DWT except that at each time-scale location there are L coefficients. For

example, if L = 2 then the multiwavelet transform has two coefficients at each time-scale

location, similar to the complex-wavelet transform. The main difference between two

dimensional multiwavelets and complex-wavelets is that the two mother wavelets used in

a multiwavelets transform are orthogonal, whereas the same is not true for the real and

imaginary parts of the complex mother wavelets. In contrast to a multiwavelet transform,

the inputs to the complex-wavelet transform are univariate and require no prefilter (Barber

and Nason, 2004). Writing the complex-valued empirical wavelet coefficients, dy
∗, as a

column vector, recall that dy
∗ ∼ N2(dy,

∑
j). For each dy

∗, let a “thresholding statistic”

be computed; dyc = dy
∗T∑−1

j dy
∗, where if this value exceeds the threshold, λ = 2 log n,

then the coefficient is retained, otherwise it is set to zero. This defines a hard-thresholding

estimation rule

T̂
MH

(dyc, λ) = dycl(dyc > λ),

where l(.) is the indicator function. The soft thresholding rule is also possible,

T̂
MS

(dyc, λ) =
dy
∗

|dy
∗|

max{dyc − λ, 0},

where “M” means that multiwavelet transform and thresholding is done on the dyc scale.

The estimate of g is then formed in the usual way, by inverting the DWT using the
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estimated wavelet coefficients of the result of T̂
MH

(dyc, λ) or T̂
MS

(dyc, λ). Barber and

Nason (2004) stated that, in general, the resulting signal estimate will not always be purely

real-valued. The method of Barber and Nason (2004) focused solely upon recovering real-

valued signals, so that any imaginary component in the estimate was considered to be an

artifact and discarded. In practice, the imaginary part of the signal estimate was found

to be negligible.

The approach using complex-valued wavelets was formulated, though this will not be fur-

ther investigated in this thesis because it requires a wavelet basis with N ≥ 3 vanishing

moments. As the number of vanishing moments increase, so does the degree of smoothing

of the corresponding wavelets basis – this leads to the magnitude of non-zero detail coef-

ficients at the finest level increasing as well. On the other hand, the Haar wavelet has one

vanishing moment, since any constant function when integrated against it will be zero,

which provides detail coefficients close to zero at the finest level (Cohen and Wallace,

2012; Vidakovic, 1999).

4.5 The unbalanced Haar approach

The discrete unbalanced Haar (DUHT) method was proposed by Girardi and Sweldens

(1997) and discussed by Fryzlewicz (2007). Fryzlewicz (2007) stated that the jumps in

the technique do not necessarily occur in the middle of their support.

Fryzlewicz (2007) favoured the use of non-linear estimators, which are well known to

offer superior theoretical and practical performance to linear estimators when the orig-

inal function is uniformally smooth. There are numerous articles related to non-linear

methods that produce piecewise constant reconstructions, such as those by Polzehl and

Spokoiny (2000) and Davies and Kovac (2001). The former uses local averaging, where

the local neighbourhood is chosen in a data-driven way, while the latter considers the

problem of nonparametric regression, with emphasis on controlling the number of local

extremes. Here, two methods are applied; the run method and the taut-string-multi-
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resolution method. Fryzlewicz (2007) proposed an unbalanced Haar wavelet thresholding

estimator with respect to any choice of an unbalanced Haar basis, and showed its mean-

square consistency over a large class of function spaces. The estimator is mean-square

consistent for a large class of functions, and its computational procedure is of the order

of O(n log2 n) operations. The following explanation of the DUH procedure can be found

in Baek and Pipiras (2009).

The DUHT wavelet basis vectors were first studied in Girardi and Sweldens (1997) as

an extended version of the classical Haar wavelet. The extension being that the break-

point was permitted to occur anywhere within the support (Cho and Fryzlewicz, 2011).

Fryzlewicz (2007) gave a description of the construction of the DUHT. Suppose that the

domain of an observed data is indexed by i = 1, . . . , n, where n ≥ 2. Let ψ0,1 be a

vector, which is constructed from two vectors; the first is constant and positive for index

i = 1, . . . , b0,1, provided b0,1 ≥ 2; and the second is constant and negative for index

i = b0,1 +1, . . . , n, where b0,1 < n and n−b0,1 ≥ 2. The constants are chosen such that the

vector, ψ0,1, satisfies the conditions that (a) the sum of the elements of ψ0,1, equals zero

and (b) the square of the sum of the elements of ψ0,1, equals 1. Thus, the UH function

satisfies ∑
t

ψ0,1(t) = 0 and
∑
t

(ψ0,1(t))2 = 1.

The UH vector on the interval, [s, e], is given by

ψs,b,e(t) =

(
1

b− s+ 1
− 1

e− s+ 1

)1/2

ls≤t≤b −
(

1

e− b
− 1

e− s+ 1

)1/2

lb+1≤t≤e, (4.9)

for s ≤ b ≤ e, where s denotes the starting-point, b denotes the break-point, e denotes

the end-point and t = {ti : i = 1, . . . , N}. The function, ψs,b,e(t), generalises the usual

Haar wavelet, where e− s+ 1 is a power of 2, and b corresponds to a midpoint. Let y be

a set with size N and

< y, ψs,b,e >=

(
1

b− s+ 1
− 1

e− s+ 1

)1/2 b∑
i=s

yi −
(

1

e− b
− 1

e− s+ 1

)1/2 e∑
i=s+1

yi,

(4.10)
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where < ·, · > is the inner product. The first break-point can be defined as

b0,1 = arg max
b

< y, ψ1,b,N >, (4.11)

where the first starting-point is s0,1 = 1 and the first end-point is e0,1 = N .

The process then repeats on the two vectors of the domain determined by ψ0,1. So, a

vector, ψ1,1, is constructed and supported on i = 1, . . . , b0,1, with break-point, b1,1, which

is defined as

b1,1 = arg max
b

< y, ψ1,b,b0,1 >, (4.12)

where the starting-point is s1,1 = 1 and the end-point is e1,1 = b0,1, and a vector, ψ1,2, is

constructed and supported on i = b0,1 + 1, . . . , n, with break-point, b1,2, which is defined

as

b1,2 = arg max
b

< y, ψb0,1+1,b,N >, (4.13)

where the starting-point is s1,2 = b0,1 + 1 and the end-point is e1,2 = N . The procedure

then continues in the same manner. Each vector, ψj,l, having two subvectors, ψj+1,2l−1

and ψj+1,2l. Hence, each vector, ψj,l, has a starting-point, a break-point and an end-

point. Let sj,l, bj,l and ej,l donate starting-point, break-point and end-point, respectively.

Then, for j ≥ 0 and l ∈ {1, . . . , 2j}, proceed recursively as follows: If bj,l − sj,l ≥ 1, set

sj+1,2l−1 = sj,l and ej,1,2l−1 = bj,l; If ej,l − bj,l ≥ 2, set sj+1,2l = bj,l + 1, ej+1,2l = ej,l. Thus,

the break-point r = 2l − 1, or r = 2l, is given by

bj+1,r =arg max
b
| < y, ψsj+1,r,b,ej+1,r

> |. (4.14)

This procedure can be continued as long as possible. In particular, for fixed j, some of

sj,l, bj,l and ej,l may not be defined. Let also

ψj,l =ψsj,1,bj,1,ej,1 , (4.15)

dj,1 = < y, ψj,l > . (4.16)

The above procedure is known as an unbalanced Haar transform, with a particular choice

of break-points (4.14). If there is no break-point then UHT detail coefficients are set to
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zero. Fryzlewicz (2007) proposed a backward stage-wise basis selection algorithm, which

proceeds from the finest level to the coarsest level, attempting to concentrate as little

power as possible at fine scales, which provides a similar impact: it concentrates the

bulk of the power of the signal at the coarse level. The algorithm of the DUHT will be

illustrated with calculations using the R package, unbalhaar, in Section 4.8. Baek and

Pipiras (2009) outlined the estimation algorithm as follows:

Let y be a set with size n, dy be the set of wavelet coefficients in the DUHT (in literature

this is referred to DUHT(y)). A few of the wavelet coefficients can be disregarded in

several ways. For example,

TH(dy, λ) =

 0, if |dy| ≤ λ

dy, if |dy| > λ,
(4.17)

corresponding to a hard thresholding rule. Then, the denoised vector f̂ is obtained by

taking the inverse DUHT of the coefficient, TH(dy, λ). The total computational load of

the algorithm is of the order of O(n log2 n) operations. This procedure can be used with

other thresholding rules, such as soft, non-negative garrote, or SCAD thresholding. The

method of unbalanced Haar thresholding can also be described by the following stepwise

procedure:

• Use best.unbal.haar in the R package unbalhaar to transform y.

• Each matrix is 5× number of DUHT coefficients at given a scale. Each column

has a length of 5, which contains an unbalanced Haar coefficient in the following

format: (1) an index of the coefficient; (2) the value of the wavelet coefficient; (3)

a time-point where the corresponding DUHT vector starts; (4) the last time-point

before the break-point of the DUHT vector; (5) the end-point of the DUHT vector.

• Estimate the scaling coefficient at level 0, cy0, by calculating the average
∑n
i=1 yi
n

,

where n is the length of y.

• Use thresholding rules to thresh the wavelet coefficients in the second row for each

tree.
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• Estimate the function using the inverse transform of the denoised wavelet coefficients

using reconstr in the R package unbalhaar.

4.6 SureBlock thresholding

The main idea of block thresholding involves specifying the length of the block, L, and

the value of the threshold, λ. In particular, using the blockwise James-Stein estimator

with block size L, and a threshold level chosen empirically by minimizing the SURE

criterion in (2.66). Consider each possible block length, 1 ≤ L ≤
√
n starting from L = 1,

which means that the coefficients are thresholded individually. Also, let m = n/L be the

number of blocks, where n is the number of data values and L is size of the block. Let

dyb = (dy(b−1)L+1, . . . ,dybL) represent observations in the b-th block, and S2
b = ||dyb||

2
2

for b = 1, 2, . . . ,m, then

SURE(dy, λ, L) =
m∑
b=1

SURE(dyb, λ, L), (4.18)

where

SURE(dyb, λ, L) = L+
λ2 − 2λ(L− 2)

S2
b

l(S2
b > λ) + (S2

b − 2L)l(S2
b ≤ λ), (4.19)

where l(.) is the indicator function. From this, (λ∗, L∗) represent the minimizer of SURE,

defined as

(λ∗, L∗) = arg min
max(L−2,0)≤λ≤λF ,1≤L≤nv

SURE(dy, λ, L),

for a fixed 0 ≤ v < 1. Then, the SureBlock thresholding rule, if C2J > γ2J , is given by

T(dyb, λ
∗, L∗) =

(
1− λ∗

S2
b

)
dyb, (4.20)

and if C2J ≤ γ2J

T(dy) =

(
1− 2 log2 2J

(dy)2

)
+

dy, (4.21)
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where λ ≥ 0 is the threshold and a+ = max(a, 0). The hybrid method works as follows:

Set

λF = 2L log 2J , C2J =
1

2J

2J∑
i=1

(dyi − 1), γ2J =
1√
2J

(J)3/2.

This is called the “SureBlock” estimator and if C2J ≤ γ2J , the estimator becomes similar

to the block James-Stein estimator, with block size L = 1. In this case, the estimator

is also called the non-negative garrote estimator. The procedure involves the following

steps:

• Transform the data to the wavelet domain using the DWT.

• For each resolution level j, select the block size L∗j and threshold level, λ∗j , using

(λ∗, L∗) = arg min
max(L−2,0)≤λ≤λF ,1≤L≤nv

SURE

(√
2J

σ
dyj, λ, L

)
,

where dyj is the empirical wavelet coefficient vector, at resolution level j.

• The SureBlock estimator in (4.20) and (4.21) is used,

σ√
2J

T

(√
2J

σ
dyb, λ

∗, L∗
)

or
σ√
2J

T

(√
2J

σ
dy

)
,

where 2J is the length of the data.

• The function at the sample points is estimated by the inverse transform of the

denoised wavelet coefficients.

The value of the variance of the noise σ2 is assumed to be unknown and computed using

the estimator given in (2.62) and (2.63). However, instead it can be estimated using the

maximum likelihood estimator for σ2 from the data (Cai and Zhou, 2009).

4.7 Comparison simulation

The purpose of this section is to evaluate and investigate whether the standard discrete

wavelet transform (DWT), the non-decimated wavelet transform (NDWT), the wavelet
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packet transforms (WPT), and discrete unbalanced Haar (DUHT) method, are suitable

for estimating an unknown vector f .

The simulated data sets consist of the standard test signals, at m = 128 equally spaced

points, Blocks and Bumps (Donoho and Johnstone, 1994; Nason and Silverman, 1994),

multiplied by different values of blur matrix, which is given in (2.6). The signal was

corrupted by independent Gaussian noise, with mean zero, and variance taken as 0.5 at

m = 128 equally spaced points. Also, thresholding was applied below level 3, the IT-TO

method was used, as the best method from Chapter 2, and the value of the parameter

λ is estimated at each level using the MMSE approach, as described in Section 2.13.

Moreover, the first-order method in Section 2.6 is included, f . The aim is to estimate an

unknown vector f using the IT-TO, which is defined by

f̂
IT-TO

Regλ,Λ
= WTT∗(WI∗(H,y,Λ),λ),

where I∗(·) is the result of an inversion method, such that I∗(H,y,Λ) = (HTH+ΛRTR)−1

HTy, Λ∗ = σ2κ, R was defined in Section 2.6 and W was defined in Section 2.9. The

result of inversion are transformed to wavelet coefficients and then a thresholding rule is

applied such as hard or soft. The total number of replications is equal to 6000.

Figure 4.3 shows the plots of MMSE, which is described in Section 2.13, using different

wavelet transformations with different thresholding rules. In general, the NDWT and

DUHT transform provide smaller MSE than the DWT and WPT transforms. More

precisely, Figure 4.3 (i) shows the plots of MMSE for the DWT, NDWT, WPT, DUHT

with different thresholding rules for estimating Blocks using the IT-TO method. The

DUHT and NDWT improve the MSE. Similarly, Figure 4.3 (ii) shows the plots of MMSE

for DWT, NDWT, WPT, DUHT with different thresholding rules for estimating Bumps

using the IT-TO method. The NDWT improves MSE, which provides a smaller MSE

than the DWT, WPT and DUHT.

Figure 4.4 shows the plots of the reconstruction using different bases, where the obser-

vations come from the Blocks test function at m = 128 equally spaced points, corrupted

by the level of noise, σ = 0.5, and multiplied by the level of blur, which is given in
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Figure 4.3: Simulated Bumps and Blocks test function: plots of minimum MSE results,

which is described in Section 2.13, with the first-order method for estimating the original

Blocks and Bumps test function with different values of blur.

(2.6), k = 0.005. No thresholding was done below level 3, the IT-TO method and hard

thresholding rule were used.

The results are summarized in Tables 4.1 and 4.2, where bold numbers indicate the

smallest MSE result for the Blocks test function, where the level of noise equals 0.5 and

the level of blur equals k = 0.005.

The result can be summarized as follows: the DUHT method provides sharp edges and

flat topped reconstructions, when MMSE equals 0.01. There is also a slight difference

between the DWT and the NDWT for estimating unknown vector f . Further, the NDWT

provides a smaller MSE than the DWT.
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Figure 4.4: Plots of the reconstructions of hard thresholding with different transforms:

(a) black line is made from Blocks test function at m = 128 equally spaced points, green

line is made by multiplying the blocks by the blur, which is given in (2.6), k = 0.005 and

red line shows the observed data with noise σ = 0.5, the other panels show reconstruction

using; (b) DWT; (c) NDWT; (d) WPT; and (e) DUHT, where the parameters θ = {Λ,λ}

are taken from Tables 4.1 and 4.2.
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MMSE Λ̂MMSE

λ̂MMSE

Level 3 Level 4 Level 5 Level 6

DWT 0.107 0.002 2.7431 1.6065 1.8422 3.9842

NDWT 0.09 0.003 1.3011 3.6458 1.8356 2.5558

WPT 0.119 0.003 1.5769 6.5079 1.9297 3.8277

Table 4.1: The results of minimum MSE for different transforms with the hard threshold-

ing rule to estimate parameters Λ and λ, where λ is estimated for each resolution level,

j = 3, 4, 5, 6.

MMSE Λ̂MMSE

λ̂MMSE

Matrix 1 Matrix 2 Matrix 3 Matrix 4 Matrix 5 Matrix 6 Matrix 7

DUHT 0.014 0.017

4.7167 5.5578 1.9846 3.1861 2.1646 4.1942 3.640

Matrix 8 Matrix 9 Matrix 10 Matrix 11 Matrix 12 Matrix 13 Matrix 14

4.4360 2.8838 2.9616 1.4343 1.3420 2.0731 2.2791

Table 4.2: The results of minimum MSE for the DUHT transform with the hard thresh-

olding rule to estimate parameters Λ and λ, where λ is estimated for each resolution

matrix.
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4.8 Conclusions

This chapter gives a detailed description of the wavelet packet transforms (WPT), complex-

valued wavelets and the unbalanced Haar technique (DUHT), including non-Bayesian

methods, such as SureBlock thresholding, with illustrative examples. Extensive simula-

tion studies use the MMSE, which is described in Chapter 2, to study the standard discrete

wavelet transform (DWT), the non-decimated wavelet transform (NDWT), WPT, DUHT,

with different thresholding rules such as, hard, soft, non-negative garrote (G), and the

smoothly clipped absolute deviation (SCAD) to estimate Λ̂MMSE, and λ̂MMSE. It can be

concluded that for small noise, σ = 0.5, and small level of blur k < 0.01, the DUHT and

NDWT algorithms work well applying to the Blocks test function.



Chapter 5

Bayesian thresholding using

non-mixture priors

5.1 Overview

In this chapter, Section 5.2 gives an introduction to non-mixture priors. Section 5.3

applies the double Weibull distribution as a wavelet coefficient prior, then Section 5.4 is

about the Gaussian distribution, Sections 5.5 and 5.6 consider the Laplace and elastic-net

distributions as priors. Section 5.7 gives the larger posterior mode for different models

and finally, Section 5.8 gives conclusions.

5.2 Introduction to non-mixture priors

Over the last two decades shrinkage techniques have been found to be an efficient tool,

with several approaches being proposed to estimate an underlying function in the wavelet

domain from a noisy sample. It is well known that maximum likelihood (ML) often does

poorly in terms of both prediction and interpretation due to the maximum occurring when

y = g. Penalization techniques have been proposed to improve ML, such as ridge regres-

97
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sion and Lasso. In order to produce a reconstruction in the presence of noise, different

prior models can be used to describe the wavelet coefficients of the underlying function.

Empirical distributions of detail wavelet coefficients for most signals encountered in prac-

tical application are notably centered around and peaked at zero (Mallat, 1989). There

are several available priors, such as Laplace, also known as the double exponential (DE),

Gaussian (N), elastic-net and double Weibull (DW) distributions. Bayesian approaches

can be constructed to mimic thresholding rules, where the large coefficients are slightly

shrunk and the small coefficients are heavily shrunk (Ruggeri and Vidakovic, 2005). Re-

views on early Bayesian approaches can be found in Vidakovic (1998a), Vidakovic (1998b)

and Clyde and George (1999). The idea was developed substantially by Abramovich et al.

(2000) and Ruggeri and Vidakovic (2005).

Considering the model

y = Hf + ε, (5.1)

where H is a given n ×m blur matrix, yn×1 and ε is a vector of random variables, such

that ε ∼ Nn(0, σ2In) then

dy = Wy = W(Hf + ε) = WHf + Wε = dg + η, (5.2)

where dgn×1 is a vector of wavelet coefficients containing the wavelet coefficients of g =

Hf , and fm×1 is our signal of interest. Thus, the model in (5.1) can be written equivalently

as

dy = dg + η, (5.3)

where dy = Wy and dg = Wg.

The procedure of estimating dg from dy is now considered. The posterior, including a

prior distribution on the wavelet coefficient dg, is given by

p(dg|dy) =
p(dy|dg)p(dg)

p(dy)
, (5.4)
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where dg is the vector of model parameters, p(dy|dg) is the likelihood function, and p(dg)

is the prior distribution. The posterior can be written as

p(dg|dy) ∝ p(dy|dg)p(dg),

because the normalising constant has no information about the unknown parameters.

In this chapter, the best method in Chapter 2, which was the IT-TO method, is used, the

posterior estimate, df , is computed and then the unknown is estimated by

f̂
IT-TO

Regκ,Λ
= WTp(df |d̂g)

= WTp(df |(HTH + ΛRTR)−1HTy), (5.5)

where d̂g = (HTH + ΛRTR)−1HTy, where Λ = σ2κ, R was defined in Section 2.6 and

W was defined in Section 2.9.

There are several papers on Bayesian wavelet estimation in the signal and image processing

community. These papers usually specify a non-mixture prior on the wavelet coefficients

and provide a Bayes estimator. The posterior mode is a popular choice, which is used

for example by Huerta (2005) who used a multivariate Gaussian distribution, with vector

mean, 0, and a covariance matrix, τ 2
∑

, to model wavelet coefficients. Cutillo et al.

(2008) also proposed a hierarchical model with a Gaussian distribution as a prior to

model wavelet coefficients.

The double Weibull distribution is discussed by Balakrishnan and Kocherlakota (1985),

but it was Reményi and Vidakovic (2015) who first applied the double Weibull as a prior.

They simulated from standard test functions and compared it with numerous existing

methods. They showed that the double Weibull gives excellent results, even compared

to different methods that use mixture priors (these will be introduced in Chapter 6).

The reason behind using the double Weibull is that, in practice, the distribution for the

wavelet coefficients has heavier tails than the Gaussian distribution.

The early work of Laplace has received some attention in recent literature, for example

by Vidakovic and Ruggeri (2001), Meinshausen and Bühlmann (2006), and Zhao et al.



100 Bayesian thresholding using non-mixture priors

(2012), who explored a wavelet-based procedure with a Laplace penalty in functional

linear regression. The reason for choosing Laplace is that this distribution has a heavier

tails and is more peaked than the Gaussian density. A new method is proposed using an

elastic-net distribution as a prior, which was first applied as a penalty (Zou and Hastie,

2005). The reason for introducing this prior is to balance the limitations of the Laplace

and Gaussian distributions.

In this chapter, the aim is to test a simple model, and propose that a carefully selected

non-mixture prior can compete with the performance of more complex mixture priors.

The best non-mixture prior will then be compared with mixture models, this comparison

will be discussed in Chapter 6.

5.3 The Double Weibull distribution

Cutillo et al. (2008) considered thresholding rules through the “larger posterior mode”

principle. The main idea is to pick the mode of the posterior, which is the larger in

absolute value. This approach is also discussed by Reményi and Vidakovic (2015), where

two estimators are applied; the first is the posterior mean, which is a common choice in

Bayesian methods, and the second is the larger posterior mode. Assuming an additive

Gaussian error model, then the conditional distribution of the data given the truth, that

is, the distribution for a single wavelet coefficient dy given the corresponding wavelet

coefficient dg, is given by

p(dy|dg, σ
2) =

1√
2πσ2

exp

{
− 1

2σ2
(dy − dg)2

}
, dy, dg ∈ R;σ > 0, (5.6)

where σ2 is the noise variance. A Double Weibull distribution is assumed as the prior on

the wavelet coefficients dg, and is defined as

p(dg) =
c

2b
|dg|c−1 exp

{
− 1

b
|dg|c

}
, dg ∈ R; c > 0, b > 0, (5.7)

where b and c are the scale and shape parameters. The parameters b, c and σ2 are assumed

to be known; Reményi and Vidakovic (2015) suggested the value of c takes 0 < c < 1,
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because the double Weibull density approaches infinity as |dg| approaches zero, which is

in agreement with the summary of Mallat (1989), regarding the shape of the empirical

distribution for wavelet coefficients. According to Balakrishnan and Kocherlakota (1985)

a normal distribution as likelihood and double Weibull distribution as prior is integrable

and finite.

The posterior mean (PM) of the single wavelet coefficient dg given dy, can be written

generally as

PM(z|dy) =

∫∞
−∞ z1/c exp

{
− 1

b
|z|
}

exp

{
− 1

2σ2 (dy − z1/c)2

}
dz

∫∞
−∞ exp

{
− 1

b
|z|
}

exp

{
− 1

2σ2 (dy − z1/c)2

}
dz

, (5.8)

where z = |dg|c (Reményi and Vidakovic, 2015). This is the so-called double Weibull

wavelet shrinkage (DWWS) estimator. The posterior distribution for the wavelet coeffi-

cients dg given dy, is

p(dg|dy) ∝ |dg|c−1 exp

{
− 1

b
|dg|c

}
exp

{
− 1

2σ2
(dy − dg)2

}
. (5.9)

Figure 5.1 shows the posterior, defined in (5.9), for different observed wavelet coefficients,

in particular for the wavelet coefficients dy = (−3,−2,−1, 1, 2, 3). Clearly, the posterior

is not symmetrical. If |dy| ≤ σ2, the posterior is unimodal with an (infinite) mode at

zero. For |dy| > σ2, the posterior is bimodal with a non-zero mode, which has the same

sign as the coefficient dy (Reményi and Vidakovic, 2015).

Now, the log-posterior is given by

log p(dg|dy) ∝ − 1

2σ2
(dy − dg)2 + (c− 1) log |dg| −

1

b
|dg|c, (5.10)

with the maximum given as the solution of

− 1

σ2
dg

2 +
1

σ2
dydg −

c

b
|dg|c + c− 1 = 0. (5.11)

Reményi and Vidakovic (2015) gave a numerical algorithm to compute the larger posterior

mode for the double Weibull wavelet shrinkage (DWWS-LPM)
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Figure 5.1: Posterior distribution in (5.9) for c = 1/3, σ = 1, and dy =

(−3,−2,−1, 1, 2, 3).
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Figure 5.2: Plots of the shape of the larger posterior mode (a), Equation (5.14), and the

exact risk (b), for Equation (5.14), using different values of the constant, c, with σ = 1

and b = 10.
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• Let z = |dg|c and for the fixed parameter 0 < c < 1, Equation (5.11) can be modified.

Thus, the solution is equivalent to the solution of a polynomial equation of the order

2
c
.

• Find the roots of the equation − 1
σ2 z2/c + 1

σ2 |dy|z1/c − c
b
z + c− 1 = 0.

• Let the real roots be zr.

• Let the complex roots be zc.

• If all the roots are complex, T(dy) = 0

• If there is more than one real root, take the largest.

• If real roots exist, T(dy) = sign(dy)[max(zr)]1/c.

The larger posterior mode depends on three parameters, which have to be specified σ2, c

and bj, where bj is estimated for each level. The approach for estimating these parameters

can be summarized as

• The prior parameter σ2 represents the variance of the noise, which can be estimated

using (2.62) or (2.63).

• The second parameter is the scale parameter, bj, which represents the variance of

the prior distribution at resolution level j. Since the model assumes independence

of signal and error parts, we have

σ̂2
dyj

=

[
b̂2
jΓ

(
1 +

2

c

)]1/c

+ σ̂2, (5.12)

where σ̂2
dyj

is the variance of the wavelet coefficients, dy, at the jth level and σ̂2 is

the variance of noise. Therefore, a reasonable estimator for bj, is given by

b̂j = max

[
0,
σ̂2
dyj
− σ̂2

Γ
(
1 + 2

c

)] c2 , j0 < j < J − 1. (5.13)

where j0 ∈ Z and Antoniadis et al. (2001) suggested that j0 = 3. In the case

σ̂2
dyj

< σ̂2, the parameter b̂j can be set to zero.
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• The parameter c controls the shape of the prior distribution. Reményi and Vidakovic

(2015) suggested the value of c is chosen from the interval 0 < c < 1. Then the

double Weibull density approaches infinity as |dg| approaches zero. Figure 5.2 (b)

displays the exact risk for different values of c, the prior variance for each resolution

level was b = 10, and variance of noise was σ2 = 1. It is apparent that the area

under the curve is small as c decreases. It can also be seen that when c = 1/3 and

c = 1/5 the risk is smaller than c = 1/9. Reményi and Vidakovic (2015) suggested

that c = 1/3. It provides a small risk for large wavelet coefficients.

For c = 1/3, Equation (5.11) can be written as

− 1

σ2
dg

2 +
1

σ2
dydg −

1

3b
|dg|1/3 −

2

3
= 0,

and the larger posterior mode estimator becomes equivalent to solving the equation

− 1

σ2
z6 + sign(dy)

1

σ2
dyz3 − 1

3b
z− 2

3
= 0. (5.14)

Figure 5.2 (a) shows that for |dy| ≤ σ2, the posterior mode is unique and equal to 0.

On the other hand, for large values of |dy| > σ2 there are two modes (Reményi and

Vidakovic, 2015). Figure 5.2 (a) also shows the LPM rule for different values of the

constant c with σ = 1 and b = 10 and it is apparent that the rule is thresholding because

the rule is described as a heavily thresholding small coefficient in magnitude. The form in

(5.14) will be used later to estimate f . The next section, however, is about the Gaussian

distribution, which is a common choice of prior on wavelet coefficients.

5.4 Gaussian distribution

The purpose of this section is to investigate and apply the Gaussian distribution as a

prior. Previously, Cutillo et al. (2008) used a model with Gaussian distribution as a

prior on wavelet coefficients. Assuming an additive Gaussian error model, the conditional

distribution of the data given the truth, or equivalently, the distribution of the wavelet
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coefficient dy given the corresponding wavelet coefficient dg, is given by

p(dy|dg, σ
2) =

1√
2πσ2

exp

{
− 1

2σ2
(dy − dg)2

}
, dy, dg ∈ R;σ > 0, (5.15)

where σ2 is the noise variance, with the prior on the wavelet coefficients dg, defined as

p(dg|κ) =

√
κ√
π

exp

{
− κdg

2

}
, dg ∈ R;κ > 0, (5.16)

where N(0, 1
2κ

) denotes the Gaussian with mean zero and variance 1
2κ

(Gribble, 2001).

Hence, the variances of the signal and noise 1/2κ and σ2 are assumed known. The

posterior density of the wavelet coefficients dg given dy, can be written

p(dg|dy) ∝ exp

{
− κdg

2

}
exp

{
− 1

2σ2
(dy − dg)2

}
, (5.17)

and the logarithm

log p(dg|dy) ∝ −κdg
2 − 1

2σ2
(dy − dg)2, (5.18)

with the maximum given as the solution of

− 2κdg +
1

σ2
dy −

1

σ2
dg = 0, (5.19)

and hence the maximum a posteriori estimator (NNWS-MAP) using a normal distribution

as the likelihood and the normal as a prior is given by

d̂g =
1

(1 + 2σ2κ)
dy. (5.20)

The rule in (5.20) is shrinkage by a factor of 1/(1+2σ2κ) and the posterior mean of dg|dy,

is given by

PM(dy) =
1

(1 + 2σ2κ)
dy. (5.21)

For more details, see Appendix (A).
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The joint distribution of dy and dg is then

p(dy, dg) = p(dy|dg)p(dg)

=

(
1√

2πσ2

)
exp

{
− 1

2σ2
(dy − dg)2

}(√
κ

π

)
exp

{
− κdg

2

}
=

( √
κ√

2πσ

)
exp

{
− 1

2σ2
(dy − dg)2

}
exp

{
− κdg

2

}
=

( √
κ√

2πσ

)
exp

{
− 1

2σ2
dy

2

}
exp

{
− 1

2σ2
(dg

2 − 2dydg)

}
exp

{
− κdg

2

}
=

( √
κ√

2πσ

)
exp

{
− 1

2σ2
dy

2

}
exp

{
− 1

2σ2
(dg

2(1 + 2κσ2)− 2dydg)

}
=

( √
κ√

2πσ

)
exp

{
− 1

2σ2
dy

2

}
exp

{
− 1

2σ2
(1 + 2κσ2)(dg

2 − dg
2dy

1 + 2κσ2
)

}
=

( √
κ√

2πσ

)
exp

{
− 1

2σ2
dy

2

}
exp

{
− 1

2σ2
(1 + 2κσ2)(dg −

dy

(1 + 2κσ2)
)2

}
× exp

{
1

2σ2(1 + 2κσ2)
dy

2

}
, (5.22)

where κ and σ2 are assumed known. The marginal distribution of dy becomes

m(dy) =

∫
p(dy, dg)ddg

=

( √
κ√

2πσ

)
exp

{
− 1

2σ2
dy

2

}
exp

{
1

2σ2(1 + 2κσ2)
dy

2

}
×
∫

exp

{
− (1 + 2κσ2)

2σ2
(dg − (

dy

2(1 + 2κσ2)
))2

}
ddg

=

( √
κ√

2πσ

)
exp

{
− 1

2σ2
dy

2

}
exp

{
1

2σ2(1 + 2κσ2)
dy

2

}
σ
√

2π√
1 + 2κσ2

=

( √
κ√

2πσ

)
σ
√

2π√
1 + 2κσ2

exp

{
− 1

2σ2
dy

2

}
exp

{
1

2σ2(1 + 2κσ2)
dy

2

}
.

(5.23)

The distribution of dg, can be written as

p(dg|dy) =
p(dy, dg)

m(dy)

=

√
1 + 2κσ2

σ
√

2π
exp

{
− (1 + 2κσ2)

2σ2
(dg −

dy

2(1 + 2κσ2)
)2

}
. (5.24)

The given model depends on two prior parameters, σ2 and κ, which have to be specified.

The approach for estimating the parameters can be summarized as:
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• σ2 represents the variance of the noise level, which can be estimated using (2.62) or

(2.63), to give σ̂.

• κj represents the variance of the prior distribution at resolution level j, which de-

pends on the spread of the normal prior distribution and the error, so

σ̂2
dyj

=
1

2κj
+ σ̂2, (5.25)

where σ̂2
dyj

is the variance of the wavelet coefficient at the jth level in the likelihood

and 1
2κj

is the variance of the signal. Then

κ̂j =
1

2(σ̂2
dyj
− σ̂2)

, j0 < j < log2(n)− 1, (5.26)

where j0 ∈ Z and Antoniadis et al. (2001) suggested that j0 = 3. In the case

σ̂2
dyj

< σ̂2, the parameter κ̂j = 0 can be set. So, the formula for κ̂j, can be written

as

κ̂j = max

[
0,

1

2(σ̂2
dyj
− σ̂2)

]
, j0 < j < log2(n)− 1. (5.27)

5.5 Laplace distribution

The Laplace prior was first used as a regularisation penalty by Tibshirani (1996) and is

discussed by Vidakovic and Ruggeri (2001) and Johnstone and Silverman (2005a,b) in

the wavelet domain. Considering an additive Gaussian error model for the conditional

distribution of the data given the truth, or equivalently, the distribution of the wavelet

coefficient dy given the corresponding wavelet coefficient dg, is given by

p(dy|dg, σ
2) =

1√
2πσ2

exp

{
− 1

2σ2
(dy − dg)2

}
, dy, dg ∈ R;σ > 0, (5.28)

with the prior on the wavelet coefficients dg, defined as

p(dg) =
κ

2
exp

{
− κ|dg|

}
, dg ∈ R;κ > 0, (5.29)
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where p(dg|κ) denotes the Laplace distribution with mean zero and variance 2/κ2. Hence,

the variances of the signal and noise 2/κ2 and σ are known. The prior distribution of dg

includes prior parameter κ. Hence, for κ = 1, the Laplace density function tends to 0.5

as t approaches zero and is strictly decreasing as |dg| increases. As κ increases, the value

of the peak of the density function increases at t = 0.

The PM of the wavelet coefficients dg given dy, can be written as

PM(dg|dy) =

(
(dy + σ2κ) exp

{
1

2σ2
(dy + σ2κ)2

}
Φ̄

(
1

σ
(dy + σ2κ)

)
+ (dy − σ2κ) exp

{
1

2σ2
(dy − σ2κ)2

}
Φ

(
1

σ
(dy − σ2κ)

))
/(

exp

{
1

2σ2
(dy + σ2κ)2

}
Φ̄

(
1

σ
(dy + σ2κ)

)
− exp

{
1

2σ2
(dy − σ2κ)2

}
Φ

(
1

σ
(dy − σ2κ)

))
,

(5.30)

where Φ is the standard Gaussian probability distribution function. In addition, consider

that Φ

(
− 1

σ
(κσ2 + dy)

)
= Φ̄

(
1
σ
(κσ2 + dy)

)
, where Φ̄ is the complement of the standard

Gaussian probability distribution function, that is Φ(−t) = Φ̄(t).

Consider the posterior density of the wavelet coefficients dg given dy, written as

p(dg|dy) ∝ exp

{
− 1

2σ2
(dy − dg)2

}
exp

{
− κ|dg|

}
, (5.31)

then the maximum is given by the solution of

1

σ2
(dy − dg)− κ 1

|dg|
dg = 0, (5.32)

which is equivalent to the equation

− 1

σ2
dg − κdg +

1

σ2
dy|dg| = 0. (5.33)

That is

− 1

σ2
dg − (κ+

dy

σ2
)dg = 0, if dg < 0

− 1

σ2
dg

2 − (κ− d

σ2
)dg = 0, if dg > 0. (5.34)
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So, the solution of (5.34) is

d̂g =


dy + κσ2, if dg < 0

dy − κσ2, if dg > 0

0, otherwise.

(5.35)

The maximum a posteriori estimator has three solutions; if the wavelet coefficient |dy| ≤

κσ2, then the solution is zero; when dy < −κσ2, the solution is dy + κσ2, and when

dy > κσ2 the solution is dy − κσ2. So, the maximum a posteriori estimator (NDEWS-

MAP) using the Gaussian distribution as the likelihood and the Laplace as the prior can

be re-written as

d̂g =


dy + κσ2, if dy < −σ2κ

dy − κσ2, if dy > σ2κ

0, otherwise.

(5.36)

The results in (5.36) show that the maximum a posteriori estimator keeps all the infor-

mation if κ = 0, which means that only the likelihood is used and there is no shrinkage;

for more detail see Hastie et al. (2009). Hence, there is no difference between Equations

(2.19) and (5.36). The mean of the MAP is given by

Eκ(d̂g) = −σφ(
1

σ
(κσ2 + dy)) + dyΦ̄(

1

σ
(κσ2 + dy))− σ2κΦ(

1

σ
(κσ2 + dy))

+ σφ(
1

σ
(κσ2 − dy)) + dyΦ̄(

1

σ
(κσ2 − dy)) + σ2κΦ(

1

σ
(κσ2 − dy)). (5.37)

Then

Eκ(d̂g)2

= −σ(
1

σ
(κσ2 + dy))φ(

1

σ
(κσ2 + dy)) + (σ − 2(dy + σ2κ) + (dy + σ2κ)2)Φ̄(

1

σ
(κσ2 + dy))

+ σ(
1

σ
(κσ2 − dy))φ(

1

σ
(κσ2 − dy)) + (σ + 2(dy − σ2κ) + (dy − σ2κ)2)Φ̄(

1

σ
(κσ2 − dy)),

(5.38)

and, hence, the variance is

Vκ(d̂g) = Eκ(d̂g)2 − (Eκ(d̂g))2. (5.39)
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For more details, see Appendix (B).

The joint distribution for dy and dg is then

p(dy, dg) = p(dy|dg)p(dg)

=

(
κ

2
√

2πσ2

)
exp

{
− 1

2σ2
(dy − dg)2

}
exp{−κ|dg|}

=

(
κ

2
√

2πσ2

)
exp

{
− 1

2σ2
(dg

2 − 2dg(−sign(dg)σ2κ+ dy) + dy
2)

}
=

(
κ

2
√

2πσ2

)
exp

{
− 1

2σ2
(dg − (dy − sign(dg)σ2κ)2)

}
− exp

{
− 1

2σ2
(−(dy − sign(dg)σ2κ)2 + dy

2)

}
=

(
κ

2
√

2πσ2

)
exp

{
1

2
σ2κ

}
exp{−sign(dg)dyκ} × exp

{
− 1

2σ2
(dg − (dy − sign(dg)σ2κ))2

}

=



κ exp

{
1
2
σ2κ

}
exp{−dyκ}

(2
√

2πσ2)
exp

{
− 1

2σ2 (dg − (dy − σ2κ))2

}
, if dg ≥ 0

κ exp

{
1
2
σ2κ

}
exp{dyκ}

(2
√

2πσ2)
exp

{
− 1

2σ2 (dg − (dy + σ2κ))2

}
, if dg < 0.

(5.40)

The marginal distribution for dy, is given by

m(dy) =

∫
p(dy, dg|σ2, κ)ddg

=

(
κ

2
√

2πσ2

)
exp

{
1

2
σ2κ

}(
exp{dyκ}

∫ 0

−∞
exp

{
− 1

2σ2
(dg − (dy + σ2κ))2

}
ddg

+ exp{−dyκ}
∫ ∞

0

exp{− 1

2σ2
(dg − (dy − σ2κ))2}ddg

)
=

(
κ

2
√

2πσ2

)√
2πσ2 exp

{
1

2
σ2κ

}(
exp{dyκ}Φ(

−dy − σ2κ

σ
) + exp{−dyκ}Φ(

dy − σ2κ

σ
)

)
,

(5.41)
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and the conditional distribution for dg given dy, can be written as

p(dg|dy) =
p(dy, dg)

m(dy)

=



exp{−dyκ}

exp{−dyκ}Φ(
dy−σ2κ

σ
) exp{dyκ}Φ(

−dy−σ2κ

σ
)

1√
2πσ2

exp

{
− 1

2σ2 (dg − (dy − σ2κ))2

}
,

if dg ≥ 0

exp{dyκ}

exp(−dyκ)Φ(
dy−σ2κ

σ
) exp{dyκ}Φ(

−dy−σ2κ

σ
)

1√
2πσ2

exp

{
− 1

2σ2 (dg − (dy + σ2κ))2

}
,

if dg < 0,

(5.42)

where these results were derived by Pericchi and Smith (1992). The posterior distribution

for the wavelet coefficients in (5.31) is shown in Figure (5.3) for κ = 1, σ2 = 1, and

dy = {−0.1,−2, 0.1, 2}. It is apparent that the shape of the posterior depends on the

wavelet coefficient dy, κ and σ2. If |dy| ≤ κσ2, the posterior distribution is unimodal and

the maximum of the posterior equals 0. In contrast, there are two values for posterior

mode when |dy| > κσ2.

Figure 5.3 shows the posterior density for different values of the wavelet coefficients.

For |dy| ≤ κσ2, the posterior is symmetric and the solution for estimating the wavelet

coefficients is zero, but for |dy| > κσ2, the posterior is not symmetric and the solution for

estimating the wavelet coefficient is dy ± κσ2, that is non-unique.

The model depends on two prior parameters, which are σ2 and κ. The parameter κ

represents the variance of the prior distribution, with the variance of the signal part

being 2/κ2. The variance of the wavelet coefficients at the jth level is σ2
dyj

, which depends

on the variance of the prior distribution and the error, then

κ̂j = max

[
0,

√
2

(σ2
dyj
− σ̂2)

]
, J0 < j < J − 1. (5.43)

In the case of σ2
dyj

< σ̂2, the parameter κ̂j can be set to zero – this is equivalent to no

thresholding.
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Figure 5.3: Plots of the posterior (5.31) and maximum a posteriori estimate (5.36) for

different values of dy; the red triangles are the maximum, when |dy| ≤ κσ2; and the green

triangles are the maximum, when |dy| > κσ2.
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5.6 Elastic-net distribution

The purpose of this section is to introduce a new elastic-net distribution which combines

the Laplace and Gaussian distributions to overcome the limitations of each.

The model for the conditional distribution of the data given the truth, or equivalently,

the distribution of the wavelet coefficient dy given the corresponding wavelet coefficient

dg, is given by

p(dy|dg, σ
2) =

1√
2πσ2

exp

{
− 1

2σ2
(dy − dg)2

}
, dy, dg ∈ R;σ > 0, (5.44)

where p(dy|dg, σ
2) is the likelihood and σ2 is the noise variance, which is assumed known.

The elastic-net prior of the wavelet coefficients dg, is defined as

p(dg) =

(
1

Z(κ, γ)

)
exp

{
− κ(γdg

2 + (1− γ)|dg|)
}
,

dg ∈ R;κ > 0, 0 < γ < 1, (5.45)

where

Z(κ, γ) =


2/κ, γ = 0√

4π
κγ

exp

{
1

4γ
κ(1− γ)2

}(
1− Φ(κ(1−γ)√

2κγ
)

)
, 0 < γ < 1√

π/κ, γ = 1.

(5.46)

In this section, the parameters, κ and γ of elastic-net will be assumed known. Note that

for the limit values of γ, this reduces to the Gaussian case (γ = 1) and the Laplace case

(γ = 0). The reason for finding the constant Z(κ, γ), is to allow the prior parameters, κ

and γ, to be estimated.

To prove the constant in the above distribution, consider the integrated,

Z(κ, γ) =

∫
exp

{
−(κγdg

2 + κ(1− γ)|dg|)
}
ddg, (5.47)
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then suppose A = κγ and B = κ(1− γ), giving

∫
exp

{
−(Adg

2 +B|dg|)
}
ddg

=

∫ 0

−∞
exp

{
−(Adg

2 −Bdg)

}
ddg +

∫ ∞
0

exp

{
−(Adg

2 +Bdg)

}
ddg

=

∫ 0

−∞
exp

{
−A(dg

2 − B

A
dg)

}
ddg +

∫ ∞
0

exp

{
−A(dg

2 +
B

A
dg)

}
ddg

= exp

{
1

4A
B2

}∫ 0

−∞
exp

{
−A(dg −

B

2A
)2

}
ddg + exp

{
1

4A
B2

}∫ ∞
0

exp

{
−A(dg +

B

2A
)2

}
ddg.

(5.48)

Now, let v =
√

2A(dg − B
2A

) and u =
√

2A(dg + B
2A

), hence

∫
exp

{
−(Adg

2 +B|dg|)
}
ddg

=
1√
2A

exp

{
A(

B

2A
)2

}(∫ −√2A B
2A

−∞
exp

{
−1

2
v2

}
dv +

∫ ∞
√

2A B
2A

exp

{
−1

2
u2

}
du

)
=

√
π√
A

exp

{
1

4A
B2

}(
Φ(−
√

2A
B

2A
) + (1− Φ(

√
2A

B

2A
))

)
=

√
4π√
A

exp

{
1

4A
B2

}(
1− Φ(

√
2A

B

2A
)

)
. (5.49)

So, that

p(dg) =
1

√
4π√
κγ

exp

{
(κ(1−γ))2

4κγ

}(
1− Φ(κ(1−γ)√

2κγ
)

) exp

{
−κ(γdg

2 + (1− γ)|dg|)
}
,

dg ∈ R;κ > 0, 0 < γ < 1. (5.50)

Consider the model, with likelihood in (5.44) and (5.50), the joint distribution of dy and
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dg is then

p(dy, dg)

=



1

2
√

2πσ√
κγ

exp

{
(κ(1−γ))2

4κγ

}(
1−Φ(

κ(1−γ)√
2κγ

)

) exp

{
− 1

2σ2 dy
2

}
exp

{(
1+2σ2κγ

2σ2

)(
dy−2σ2κ(1−γ)

1+2σ2κγ

)2}

× exp

{
−
(

(1+2σ2κγ)
2σ2

)(
dg − dy−2σ2κ(1−γ)

1+2σ2κγ

)2}
, if dg ≥ 0

1

2
√

2πσ√
κγ

exp

{
(κ(1−γ))2

4κγ

}(
1−Φ(

κ(1−γ)√
2κγ

)

) exp

{
− 1

2σ2 dy
2

}
exp

{(
1+2σ2κγ

2σ2

)(
dy+2σ2κ(1−γ)

1+2σ2κγ

)2}

× exp

{
−
(

(1+2σ2κγ)
2σ2

)(
dg − dy+2σ2κ(1−γ)

1+2σ2κγ

)2}
, if dg < 0,

(5.51)

the marginal distribution is given by

m(dy) =
1√

8π2σ2

κγ
exp

{
(κ(1−γ))2

4κγ

}(
1− Φ(κ(1−γ)√

2κγ
)

) exp

{
− 1

2σ2
dy

2

}

×
(

exp

{(
1 + 2σ2κγ

2σ2

)(
dy + 2σ2κ(1− γ)

1 + 2σ2κγ

)2}
×

√
2πσ2

1 + 2σ2κγ

(
1− Φ(

√
1 + 2σ2κγ

σ2

dy + 2σ2κ(1− γ)

1 + 2σ2κγ
)

)
+ exp

{(
1 + 2σ2κγ

2σ2

)(
dy − 2σ2κ(1− γ)

1 + 2σ2κγ

)2}
×

√
2πσ2

1 + 2σ2κγ

(
Φ(

√
1 + 2σ2κγ

σ2

dy − 2σ2κ(1− γ)

1 + 2σ2κγ
)

))
,

(5.52)
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and the condition distribution of dg given dy, can be written as

p(dg|dy) =
p(dy, dg)

m(dy)

=



exp

{(
dy−2σ2κ(1−γ)

1+2σ2κγ

)2}
exp

{
−

(
1+2σ2κγ)

2σ2

}(
dg−

dy−2σ2κ(1−γ)

1+2σ2κγ

)2)
√

2πσ2

1+2σ2κγ

(
exp

{(
dy+2σ2κ(1−γ)

1+2σ2κγ

)2}(
1−Φ(

√
1+2σ2κγ

σ2
dy+2σ2κ(1−γ)

1+2σ2κγ
)

)
+exp

{(
dy−2σ2κ(1−γ)

1+2σ2κγ

)2}(
Φ(

√
1+2σ2κγ

σ2
dy−2σ2κ(1−γ)

1+2σ2κγ
)

)) ,
if dg ≥ 0

exp

{(
dy+2σ2κ(1−γ)

1+2σ2κγ

)2}
exp

{
−

(
1+2σ2κγ)

2σ2

}(
dg−

dy+2σ2κ(1−γ)

1+2σ2κγ

)2)
√

2πσ2

1+2σ2κγ

(
exp

{(
dy+2σ2κ(1−γ)

1+2σ2κγ

)2}(
1−Φ(

√
1+2σ2κγ

σ2
dy+2σ2κ(1−γ)

1+2σ2κγ
)

)
+exp

{(
dy−2σ2κ(1−γ)

1+2σ2κγ

)2}(
Φ(

√
1+2σ2κγ

σ2
dy−2σ2κ(1−γ)

1+2σ2κγ
)

)) ,
if dg < 0.

(5.53)

Now, the posterior mean and the maximum a posteriori will be computed for the elastic-

net prior. Suppose the posterior is given by

p(dg|dy) ∝ exp

{
−(dy − dg)2

2σ2

}
exp

{
− (κγdg

2 + κ(1− γ)|dg|
}
, (5.54)

then the maximum is the solution of

(dy − dg)

σ2
− κ(1− γ)

dg

|dg|
− 2κγdg = 0, (5.55)

which is equivalent to the equation

−
(

1

σ2
+ 2κγ

)
dg

2 − κ(1− γ)dg +
dy

σ2
|dg| = 0, (5.56)

that is

−
(

1

σ2
+ 2κγ

)
dg

2 −
(
κ(1− γ) +

dy

σ2

)
dg = 0, if dg < 0

−
(

1

σ2
+ 2κγ

)
dg

2 −
(
κ(1− γ)− dy

σ2

)
dg = 0, if dg > 0. (5.57)

So, the solution of (5.57) is

d̂g =


(

dy

σ2 +κ(1−γ))

( 1
σ2 +2κγ)

, if dg < 0

(
dy

σ2−κ(1−γ))

( 1
σ2 +2κγ)

, if dg > 0

0, otherwise.

(5.58)
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So, there are three cases: when the wavelet coefficient |dy| ≤ σ2κ(1−γ), then the solution

is zero, and when |dy| > σ2κ(1 − γ), there are two solutions. In this case, the threshold

is equal to σ2κ(1− γ). Then the solution in (5.58) can be re-written as

d̂g = T̂(dy, κ, γ) =


dy+σ2κ(1−γ)

1+2κγσ2 , if dy < −σ2κ(1− γ)

dy−σ2κ(1−γ)

1+2κγσ2 , if dy > σ2κ(1− γ)

0, otherwise.

(5.59)

Hence, if γ = 1 then the maximum a posteriori is given by

d̂g = T̂(dy, κ) =


dy

1+2κσ2 , if dy < 0

dy

1+2κσ2 , if dy > 0

0, otherwise.

(5.60)

Similarly, if γ = 0 then the maximum a posteriori is given by

d̂g = T̂(dy, κ) =


dy + σ2κ, if dy < −σ2κ

dy − σ2κ, if dy > σ2κ

0, otherwise.

(5.61)

The posterior mean can be written as

PM(dg|dy) =

(
exp

{(
dy+2σ2κ(1−γ)

1+2σ2κγ

)2}(
−
√

2π
2
φ

(√
2 (dy+2σ2κ(1−γ))

1+2σ2κγ

)
+
√

2π
2

(
dy+2σ2κ(1−γ)

1+2σ2κγ

)(
1 + Φ

(
dy+2σ2κ(1−γ)

1+2σ2κγ

)))
+ exp

{(
dy−2σ2κ(1−γ)

1+2σ2κγ

)2}(√
2π
2
φ

(√
2 (dy−2σ2κ(1−γ))

1+2σ2κγ

)
+
√

2π
2

(
dy−2σ2κ(1−γ)

1+2σ2κγ

)
Φ

(
dy−2σ2κ(1−γ)

1+2σ2κγ

)))
/

(
exp

{(
1+2σ2κγ

2σ2

)(
dy+2σ2κ(1−γ)

1+2σ2κγ

)2}
×
√

2πσ2

1+2σ2κγ

(
1− Φ(

√
1+2σ2κγ

σ2

dy+2σ2κ(1−γ)

1+2σ2κγ
)

)
+ exp

{(
1+2σ2κγ

2σ2

)(
dy−2σ2κ(1−γ)

1+2σ2κγ

)2}
×
√

2πσ2

1+2σ2κγ

(
Φ(
√

1+2σ2κγ
σ2

dy−2σ2κ(1−γ)

1+2σ2κγ
)

))
.

(5.62)
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Figure 5.4: Plots of the elastic-net: (a) probability density function, Equation (5.50); (b)

posterior mean, Equation (5.62) with σ = 1, κ = 3 and γ = 0.5; and (c) maximum a

posteriori, Equation (5.59); as the parameter γ, in (c), decreases, the rule can be explained

as thresholding rule.
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The proof of (5.62) can be found in Appendix (C). Figure (5.4) shows; (a) the probability

density function for different values of κ and γ; (b) the posterior in (5.62) for different

wavelet coefficients, in particular for the wavelet coefficients dy = {−3,−2,−1, 1, 2, 3};

and (c) maximum a posteriori of (5.59) for different values of κ and γ. The maximum a

posteriori estimator depends on three prior parameters, that is σ2, κ and γ. The param-

eter σ2 is the noise variance, which is estimated by the usual median absolute deviation

proposed by Nason and Silverman (1994). The parameters κ and γ will be calculated

using the MMSE approach, as described in Section 2.13. Figure 5.5 shows the plot of

monitoring the MMSE in Algorithm 2 using the IT-TO methods with a MAP estimator

using the elastic-net prior where κ, γ and Λ are estimated, whereas the parameters κ and

γ are estimated for each resolution level. We denote this by

f̂
IT-TO

Regλ,γ,Λ
= WT d̂f , (5.63)

where d̂f = T̂(d̂g, κ, γ) is computed from (5.59) and d̂g = W(HTH + ΛRTR)−1HTy,

hence, the same MMSE approach, as described in Section 2.13 and R is defined in Section

2.6, will be used.

5.7 “Larger posterior mode” method

Cutillo et al. (2008) proposed a thresholding rule, which always picks the mode of the

posterior, which is the larger mode in absolute value. They assumed that the variance of

the noise is known. Then for the model of a two normal distributions given by

p(dy|dg, σ
2) =

1√
2πσ2

exp

{
− 1

2σ2
(dy − dg)2

}
, dy, dg ∈ R;σ > 0, (5.64)

with the prior on the wavelet coefficients dg, defined as

p(dg|τ 2) =
1√

2πτ 2
exp

{
− 1

2τ 2
dg

2

}
, dg ∈ R; τ > 0, (5.65)

and prior parameter on the prior variance given by

p(τ 2) = (τ 2)−c, c > 0. (5.66)
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Figure 5.5: Plots of monitoring the minimum MSE algorithm, described in Section 2.13,

using the IT-TO method with MAP rule in (5.59), where κ and γ are proposed for each

level above 2. The Blocks test function, at m = 128 equally spaced points, is used and

corrupted by levels of noise and blur, which is given in (2.6), that are equal to 0.5 and

0.005, respectively: (a) the red line represents the true Blocks test function and the black

line represents the result of the estimate at a transient period of 6000 iterations; (b) the

new value of MMSE is acceptable; (c) acceptable Λ; (d)-(g) acceptable of κ and (e)-(k)

acceptable of γ at resolution levels j = 3, 4, 5, 6, respectively.
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Figure 5.6: Plots of the posterior distribution in (5.68) for dy = {−3,−2,−1, 1, 2, 3},

c = 3/4 and σ = 1.

The joint distribution of dy and dg, is given by

p(dg, dy) =

∫ ∞
0

p(dy|dg)p(dg|τ 2)p(τ 2)dτ 2 (5.67)

=
1

2πσ
exp

{
− 1

2σ2
(dy − dg)2

}∫ ∞
0

τ 2−(c+1/2)
exp

{
− 1

2τ 2
dg

2

}
dτ 2

=
1

2πσ
exp

{
− 1

2σ2
(dy − dg)2

}
21/2−c

(dg
2)c−1/2

Γ

(
c− 1

2

)
, c >

1

2
.

Then the posterior density of the wavelet coefficients dg given dy, is given by

p(dg|dy) ∝ exp

{
− 1

2σ2
(dy − dg)2

}
|dg|−2c+1. (5.68)

Figure 5.6 displays the posterior distribution with c = 3/4 and σ = 1, for different values

of the wavelet coefficient. For large absolute values of the wavelet coefficient, the posterior

is bimodal with a non-zero mode, which has the same sign as the coefficient dy. For small

absolute values of the wavelet coefficient, the posterior is unimodal with an infinite mode

at zero (Cutillo et al., 2008).
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Then, the logarithm of the posterior density is

log p(dg|dy) ∝ 1

2σ2
(dy − dg)2 + (1− 2c) log dg, (5.69)

with derivative

dg
2 − dydg + σ2(2c− 1) = 0.

The solution of this quadratic equation is given by

dg =
dy ±

√
dy

2 − 4σ2(2c− 1)

2
.

The roots exist if and only if dy
2 ≥ 4σ2(2c − 1), then |dy| ≥ 2σ

√
2c− 1 = κ. If this

condition is not satisfied, then the likelihood is decreasing in |dg|. So, the two normal

wavelet shrinking rule (NNBWS-MAP) is given by

d̂g =


dy+
√

dy
2−4σ2(2c−1)

2
, if dy > κ

dy−
√

dy
2−4σ2(2c−1)

2
, if dy < −κ

0, otherwise.

(5.70)

The second model assumes that the variance of the noise σ2 is unknown. Cutillo et al.

(2008) suggested that the variance of noise σ2 is assigned an exponential prior by following

Zellner (1996), leading to a double exponential marginal likelihood. The exponential

distribution is the entropy maximizer among all distributions supported on (0, 1) with a

fixed first moment (Vidakovic, 1998a). Then the marginal likelihood is given by

p(dy|dg, µ) =

√
2µ

2
exp

{
−
√

2µ|dy − dg|
}
, dy, dg ∈ R;µ > 0; (5.71)

this form will be proven in Chapter 6. The prior on the wavelet coefficients dg, can be

defined as

p(dg|τ 2) =
1√

2πτ 2
exp

{
− dg

2

2τ 2

}
, dg ∈ R; τ > 0, (5.72)
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and the prior parameter on the prior variance given by

p(τ 2|c) = (τ 2)−c, c > 0. (5.73)

Similarly, the resulting MAP rule, for the Laplace as likelihood and the normal as prior

(DENWS-MAP), turns out to be hard thresholding (Cutillo et al., 2008), with

d̂g =

 dy, if |dy| > κ

0, otherwise,
(5.74)

where κ = 2c−1√
2µ

, with c = 0.75. If |dy| ≤ κ, there is only one solution 0, and when |dy| > κ,

the solution is dy.

5.8 Comparison simulation

The purpose of this section is to evaluate and investigate whether the maximum a pos-

teriori using normal distribution as likelihood and elastic-net as prior (elastic-net-MAP),

the maximum a posteriori using double exponential distribution as likelihood and normal

distribution as prior with parameter, which is described by prior parameter (DENWS-

MAP), the maximum a posteriori of using normal distribution as likelihood and normal

distribution as prior with parameter, which is described by prior parameter (NNBWS-

MAP), the maximum a posteriori of using normal distribution as likelihood and normal

distribution as prior (NNWS-MAP), the maximum a posteriori of using normal distri-

bution as likelihood and double exponential distribution as prior (NDEWS-MAP) and

the maximum a posteriori of using normal distribution as likelihood and double Weibull

distribution as prior (DWWS-LPM), are suitable for estimating an unknown vector f .

The simulated data sets consisted of the standard test signal Blocks (Donoho and John-

stone, 1994; Nason and Silverman, 1994), multiplied the blur matrix, which is given in

(2.6), with k = 0.005. Also, it is corrupted by independent Gaussian noise, with mean zero

and variance taken as 0.5, no thresholding was done below level 3, the IT-TO method

was used, and the value of the parameter κ for level-dependent priors are considered.
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MMSE Λ̂MMSE

κ̂MMSE

Level 3 Level 4 Level 5 Level 6

NDEWS-MAP 0.21 0.0002 0.1541 1.0016 0.7426 0.9625

NNWS-MAP 0.539 0.0113 0.0114 0.1239 0.2193 0.0436

DWWS-MAP 0.19 0.007 2.9314 5.0406 6.7344 7.3927

DENWS-MAP 0.13 0.006 1.1875 7.5869 1.6186 2.1219

NNBWS-MAP 0.133 0.0121 1.5769 6.5079 1.9297 3.8277

Table 5.1: The results of minimum MSE for estimating the Blocks test function using

different priors with hard thresholding rule, where the parameter κ is estimated for each

resolution level, j = 3, 4, 5, 6.

MMSE Λ̂MMSE

κ̂MMSE γ̂MMSE

Level 3 Level 4 Level 5 Level 6 Level 3 Level 4 Level 5 Level 6

Elastic-net-MAP 0.096 0.006 0.0319 4.1626 3.92528 11.3981 0.0596 0.0141 0.1313 0.1313

Table 5.2: The results of minimum MSE for estimating the Blocks test function using

elastic-net prior with hard thresholding rule, where the parameters κ and γ are estimated

for each resolution level, j = 3, 4, 5, 6.

Moreover, the first-order method in Section 2.6 is used to estimate f . The number of

replications is equal to 60 and the number of iterations equals 100. The MMSE approach,

as described in Section 2.13, is used to obtain the prior parameters.

The results are summarized in Tables 5.1 and 5.2, where bold numbers indicate the

smallest MSE result for the Blocks test function, where the level of noise is equal to

σ2 = 0.5 and the level of blur equals k = 0.005. It can be see that DENWS-MAP and

elastic-net-MAP provide a smaller MSE than NDEWS-MAP, NNWS-MAP, DWWS-LPM

and DENWS-MAP.

Figure 5.7 shows the plots of reconstructions using different methods. Figure 5.7 (b)

displays the reconstruction obtained from the NDEWS-MAP defined in (5.36). Figure

5.7 (c) displays the result of the reconstruction for the maximum a posteriori estimator

defined in (5.20). The Gaussian prior provides a reconstruction, which does not fully

recover from noise. However, the sharp edges can be identified. Figure 5.7 (d) displays a
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Figure 5.7: Plots of the reconstruction for estimating the unknown vector f , where the

parameter κ is estimated for each level, j = 3, 4, 5, 6: (a) the black line is the Blocks test

function atm = 128 equally spaced points, the green line is made by multiplying the blocks

by the blur, which is given in (2.6), k = 0.005 and the red line shows the observed data with

noise σ = 0.5, the other panels show reconstruction using; (b) NDEWS-MAP; (c) NNWS-

MAP; (d) elastic-net-MAP; (e) DWWS-LPM; (f) DENWS-MAP and (g) NNBWS-MAP.
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reconstructed profile using the maximum a posteriori estimator and the elastic-net as the

prior. It provides sharp edges and flat topped reconstructions. Additionally, it provides a

smaller MSE than DENWS-MAP, NDEWS-MAP, NNWS-MAP and DWWS-LPM. Fig-

ure 5.7 (e) displays a reconstructed profile using DW as the prior, with the features of the

reconstruction identified. Figure 5.7 (f) displays the result of the reconstruction for the

maximum a posteriori estimator in (5.74), with the shape of the blocks are resolved. Note

that Cutillo et al. (2008) showed that there are no differences between the hard thresh-

olding rule and DENWS-MAP. Figure 5.7 (g) displays the result of the reconstruction

for the maximum a posteriori estimator in (5.70). Also, the NNBWS-MAP thresholding

provides sharp edges and flat topped reconstructions and the shape of the blocks are more

clear than DWWS-MAP and NNWS-MAP and NDEWS-MAP.

5.9 Conclusions

Within this chapter, Bayesian thresholding, using non-mixture priors, was investigated

and applied in the wavelet domain. Different priors were investigated, such as the Laplace,

the Gaussian, the double Weibull and the elastic-net distributions. The variance of the

noise σ2 is assumed as unknown and assigned an exponential prior, leading to a double

exponential marginal likelihood. So, there are two types of likelihoods that are considered.

The first is the Gaussian when the variance of noise is known and the second is the double

exponential when the variance of noise is unknown and assigned an exponential prior.

Bayesian thresholding was applied to estimate an underlying function, f . The choice of

the elastic-net provides sharp edges and flat topped reconstructions. The elastic-net-MAP,

DENWS-MAP and NNBWS-MAP methods provide better block shapes than the NNWS-

MAP, NDEWS-MAP and the DWWS-LPM. It can be concluded that elastic-net-MAP

gives an excellent reconstruction.



Chapter 6

Bayesian thresholding using mixture

priors

6.1 Overview

Within this chapter, Section 6.2 gives an introduction, while Section 6.3 provides detail

about adaptive Bayesian wavelet shrinkage, and Section 6.4 is about Bayesian adaptive

multi-resolution shrinkage. Section 6.5 then discusses the BayesThresh method, Section

6.6 gives an empirical Bayes method, and finally Section 6.7 presents conclusions.

6.2 Introduction

There are many wavelet-based mixture priors suggested for wavelet coefficients. For ex-

ample, Chipman et al. (1997) proposed Bayesian adaptive multi-resolution shrinkage and

Vidakovic and Ruggeri (2001) introduced adaptive Bayesian wavelet shrinkage. The tra-

ditional Bayesian models consider a prior distribution on the wavelet coefficient dg, is

given by

π(dg) = γδ(dg = 0) + (1− γ)ζ(dg), (6.1)

127
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where δ is a point mass at zero, and ζ represents a heavy-tailed density, which is symmetric

about zero. This type of model was considered by Mallat (1989), Abramovich et al. (1998),

Vidakovic and Ruggeri (2001), Barber et al. (2002) and among others. Their reason can

be summarized as thus: “For most of the signals and images encountered in practice,

the empirical distribution of a typical detail wavelet coefficient is notably centered about

zero and peaked at it.” In other words, the above prior distribution was designed to

capture the sparseness of the wavelet transform due to the empirical distribution for

wavelet coefficients being centered on zero and peaked at it (Abramovich et al., 1998).

In addition, the parameter, γ (0 < γ < 1), represents the probability of the wavelet

coefficient dg being exactly zero. This means that if γ is large then the wavelet coefficient

is likely to be zero. For example, the finest-scale level should have γ ≈ 1 so that most

of the wavelet coefficients in that level are zero. More precisely, if the wavelet coefficient,

dg, equals zero then it is modelled by the first part, δ(dg = 0) in (6.1), whilst non-zero

wavelet coefficients are described by the second part. Each wavelet coefficient is either 0

with probability γ, or probability 1− γ distributed as ζ.

Now, considering the model

y = Hf + ε, (6.2)

where H is a given n×m blur matrix, yn×1 and ε, is a vector of random variables, such

that ε ∼ Nn(0, σ2In). Then

dy = Wy = W(Hf + ε) = WHf + Wε = dg + η, (6.3)

where dgn×1 is a vector of wavelet coefficients containing the wavelet coefficients of g = Hf

and fm×1 is our signal of interest. Thus, the model in (6.2) can be written equivalently as

dy = dg + η, (6.4)

where dy = Wy and dg = Wg.

The procedure of estimating dg from dy is now considered. The posterior, including a

prior distribution on the wavelet coefficient dg, is given by

p(dg|dy) =
p(dy|dg)p(dg)

p(dy)
, (6.5)
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where dg is the vector of model parameters, p(dy|dg) is the likelihood function and p(dg)

is the prior distribution. The posterior can be written as

p(dg|dy) ∝ p(dy|dg)p(dg),

because the normalising constant has no information about the unknown parameters.

In this chapter, the best method in Chapter 2, which was the IT-TO method, will be

used, the posterior of estimate, df , is computed then the estimate of f , is given by

f̂
IT-TO

RegΛ
= WTp(df |d̂g)

= WTp(df |(HTH + ΛRTR)−1HTy), (6.6)

where d̂g = (HTH + ΛRTR)−1HTy, where Λ = σ2κ, R was defined in Section 2.6 and

W was defined in Section 2.9. Posterior mean and posterior median will be applied to

estimate an unknown vector f .

In this chapter, the posterior mean using adaptive Bayesian wavelet shrinkage of Vidakovic

and Ruggeri (2001) and the Bayesian adaptive multi-resolution shrinkage of Chipman

et al. (1997) are used to shrink the wavelet coefficients of dg. Also the posterior median

using BayesThresh from Abramovich et al. (1998) and the empirical Bayes approach of

Johnstone and Silverman (2005a) are used to threshold the wavelet coefficients of dg. All

these methods will be studied and investigated to estimate an underlying function and

then the best method will used to build a reconstruction from the real data in Chapter 9.

Chipman et al. (1997) used a prior with two normal distributions. The first term is normal

with small variance, N(0, τ 2
j ), and it can replace a point mass at zero. The second term,

N(0, c2τ 2
j ), is a spread distribution that models wavelet coefficients with large values. So,

the factor c � 1 determines whether the wavelet coefficients are non-zero, arising from

the N(0, c2τ 2
j ) distribution, or close to zero, arising from the N(0, τ 2

j ) distribution. Also,

the part N(0, c2τ 2
j ) is intended to describe a large wavelet coefficient, while N(0, τ 2

j ) is

intended to depict a small coefficient. This prior is discussed by Clyde et al. (1998) and

Vidakovic (1998a).
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The Bayesian adaptive multi-resolution shrinkage is proposed by Vidakovic and Ruggeri

(2001). The author assumed the likelihood as an additive Gaussian error model, so that

the wavelet coefficients from data, dy, are conditionally independent given the wavelet

coefficients of the truth, dg, i.e. dy|dg, σ
2 ∼ N(dg, σ

2). The variance of noise σ2 is

assigned an exponential prior, so that the marginal likelihood of the wavelet coefficient is

a double exponential distribution, DE , with parameter
√

2µ. The choice of the exponential

prior can be additionally justified by its maxent property. The exponential distribution

was first proposed by Zellner (1996) and is the entropy maximiser in the class of all

distributions supported on (0,∞) with a fixed first moment (Ruggeri and Vidakovic,

2005). In this method, the DE is used as prior on the wavelet coefficients of dg; this choice

of DE for the wavelet coefficients is a realistic model, because it describes the behavior

of wavelet coefficients around zero, and it will account for heavy tails encountered in

empirical distributions of wavelet coefficients (Cutillo et al., 2008).

Abramovich et al. (1998) summarized that the traditional Bayes rule (posterior mean)

corresponds to an L2-loss based on the wavelet coefficients. However, such a rule is not

a thresholding rule but a shrinkage. For a rule to be a thresholding rule, it must not

only shrink the wavelet coefficient towards zero but must also map actually to zero all

the wavelet coefficients falling into an interval around zero. Thus, they suggest to use

the posterior median in the context of wavelet shrinkage. Their method is known as

BayesThresh and could be a thresholding rule, which is preferable to smooth shrinkage

rules in many applications, such as model selection and data compression. The idea was

developed, simulated and studied by Barber (2001) and Barber et al. (2002).

For other early examples of the Bayesian approach to wavelet regression see papers, such

as Johnstone and Silverman (2005a,b) who presented the empirical Bayes methods for

wavelet shrinkage. The parameters of the model are estimated by marginal maximum

likelihood; therefore, the authors use the data to estimate parameters. Different level-

dependent priors are considered, all of which are a mixture of point mass at zero and a

heavy-tailed density. The two choices for the heavy-tailed density are the Cauchy and the

Laplace priors.
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6.3 Adaptive Bayesian wavelet shrinkage

Adaptive Bayesian wavelet shrinkage (ABWS) was proposed by Chipman et al. (1997).

Consider an additive Gaussian error model for the conditional distribution of the data

given the truth, so that, the distribution of the wavelet coefficient dy given the corre-

sponding wavelet coefficient dg, is given by

p(dy|dg, σ
2) ∼ N(dg, σ

2), (6.7)

where σ2 is noise variance, which is estimated by the usual median absolute deviation by

Nason and Silverman (1994). Independent prior distributions on wavelet coefficients dg

are each defined as a mixture of two normal distributions

p(dg|γ, c2, τ 2
j ) ∼ γN(0, c2τ 2

j ) + (1− γ)N(0, τ 2
j ), (6.8)

with

p(γ = 1) = 1− p(γ = 1) ≡ pj. (6.9)

The pj, c and τj are prior parameters to be chosen. Hence, the prior parameters pj and

τj depend on the resolution level j. Chipman et al. (1997) showed that each wavelet

coefficient in resolution level j either follows the normal distribution, with mean zero and

variance c2τ 2
j or with probability 1 − γ follows the normal distribution, with mean zero

and variance τ 2
j . So, the factor c determines the variance of the first part, which means

that c makes the normal distribution either narrow or wide. The parameter γj is the

proportion of wavelet coefficients which are expected to be non-negligible at resolution

level j (Ruggeri and Vidakovic, 2005). The posterior mean of wavelet coefficient dg given

the corresponding wavelet coefficient dy, is given by minimisation of the squared-error

loss and has an explicit form,

PM(dg|dy) =

[
p(γ = 1|dy)

c2τ 2
j

σ2 + c2τ 2
j

+ p(γ = 0|dy)
τ 2
j

σ2 + τ 2
j

]
dy, (6.10)
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Figure 6.1: Plots of the posterior mean in (6.10) with different values of p, τ and c.

where,

p(γ = 1|dy) =

pjp(dy|γ=1)

(1−pj)p(dy|γ=0)

pjp(dy|γj=1)

(1−pj)p(dy|γ=0)
+ 1

,

(6.11)

and,

p(γ = 0|dy) =
1

pjp(dy|γ=1)

(1−pj)p(dy|γ=0)
+ 1

,

(6.12)

where p(dy|γ = 1) ∼ N(0, σ2 + c2τ 2
j ) and p(dy|γ = 0) ∼ N(0, σ2 + τ 2

j ). The posterior

mean of ABWS in (6.10) is plotted in Figure 6.1 for different values of γ, τ and c. The

rule is described as heavily shrinking small coefficients in magnitude. Thus, the rule is a

shrinkage rule. The first term in (6.8) is intended to explain the large wavelet coefficients,

while N(0, τ 2
j ) is intended to depict the small coefficients. The probability, pj, gives the

proportion of non-zero wavelet coefficients at resolution level j. More precisely, when the

wavelet coefficient is small, this suggests that dg is small and p(γ = 0|dy) is large. Thus,

the shrinkage approximately follows a straight line with the intercept at zero and the
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slope
τ2
j

σ2+τ2
j
. So, relatively small values of τj give the flat portion of the shrinkage function

around zero. On the other hand, if the wavelet coefficient is large, this suggests that dg is

large and p(γ = 1|dy) is large. Thus, the shrinkage approximately follows a straight line

with the intercept at zero and the slope
c2τ2

j

σ2+c2τ2
j
. The parameters c and τj determine the

slopes of the two lines. Small values of pj will increase the width of the interval about

zero, where the shrinkage function clings to the line with the smaller slope. Given τj and

pj, increasing c will shorten the interval, in which the shrinkage function climbs from the

line with the smaller slope up to the line with the larger slope. This is because c controls

the two alternative components of the mixture (Chipman et al., 1997).

6.4 Bayesian adaptive multi-resolution shrinkage

The Bayesian adaptive multi-resolution shrinkage (BAMS) method was introduced by

Vidakovic and Ruggeri (2001). The variance of noise σ2 is assigned an exponential prior

σ2 ∼ E(µ), µ > 0, to estimate the variance in the likelihood. This means that they

assumed the variance of the noise is unknown and will be modelled by an exponential

prior, leading to a Laplace marginal likelihood. Using an exponential distribution was

first proposed by Zellner (1996) and is the entropy maximiser in the class of all distri-

butions supported on (0,∞) with a fixed first moment (Ruggeri and Vidakovic, 2005).

The reason for choosing a Laplace marginal likelihood is that it is a realistic model for

wavelet coefficients. Indeed, if a histogram of wavelet coefficients for a signal is plotted,

it resembles the Laplace distribution (Cutillo et al., 2008). Thus, the marginal likelihood

is given by

p(dy|dg, µ) =

√
2µ

2
exp

{
−
√

2µ|dy − dg|
}
, dy, dg ∈ R;µ > 0, (6.13)
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where the result in (6.13) was proven by Andrews and Mallows (1974) and Jeffrey and

Zwillinger (2007); let b = (dy−dg)2

2
, then

p(dy|dg) =

∫ ∞
0

p(dy|dg, σ
2)p(σ2)dσ2

=

∫ ∞
0

µ√
2πσ2

× exp

{
− 1

2σ2
(dy − dg)2

}
× exp

{
− µσ2

}
dσ2

=
µ√
2π

∫ ∞
0

1

σ
× exp

{
− (

b

σ2
+ µσ2)

}
dσ2 =

√
2µ√
π

∫ ∞
0

exp

{
− (

b

σ2
+ µσ2)

}
dσ2

=

√
2µ

2
exp

{
−

2
√

(dy − dg)2
√
µ

√
2

}
=

√
2µ

2
exp

{
−
√

2µ|d− dg|
}
. (6.14)

The posterior mean under the prior ζ(dg), is given by

PMζ(dg|dy) =

∫
dgp(dy|dg)ζ(dg)ddg∫
p(dy|dg)ζ(dg)ddg

. (6.15)

Vidakovic and Ruggeri (2001) showed that the posterior mean of the marginal distribution

for wavelet coefficients under the prior ζ(dg), is given by

mζ(dy) =

∫
DE(dg,

1√
2µ

)DE(0, τ)ddg

=

τ exp

{
− |dy|

τ

}
− 1√

2µ
exp

{
− |dy|

√
2µ

}
2τ 2 − 1

µ

, τ 6= 1√
2µ
, (6.16)

where µ is the reciprocal of the mean for the prior (exponential) distribution on the

variance, σ2 (Vidakovic and Ruggeri, 2001). The marginal distribution corresponding to

the model in (6.16) exhibits heavier tails, and is more peaked than the normal density.

Vidakovic and Ruggeri (2001) proved that the posterior mean is given by

PMζ(dg|dy) =

τdy(τ 2 − 1
2µ

) exp

{
− |dy|

τ

}
−

τ2

(
exp

{
−|dy|

√
2µ

}
−exp

{
− |dy|

τ

})
µ

(τ 2 − 1
2µ

)

(
τ exp

{
− |dy|

τ

}
− ( 1√

2µ
) exp

{
− |dy|

√
2µ

}) . (6.17)

The marginal distribution under the prior in (6.1) is

mπ(dy) = γ

∫
DE(0,

1√
2µ

)ddg + (1− γ)

∫
DE(dg,

1√
2µ

)DE(0, τ)ddg, (6.18)
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Figure 6.2: Plots of the posterior mean in (6.20) with different values of γ, τ and µ.

where the component ζ(dg) reflects the belief that the non-zero wavelet coefficients are ex-

ponentially distributed. The prior in (6.1) leads to a rule which is a smooth approximation

to a thresholding (Ruggeri and Vidakovic, 2005). Thus,

mπ(dg) = γDE(0,
1√
2µ

) + (1− γ)mζ(dy). (6.19)

So, the posterior mean under the prior in (6.1) is given by

PMπ(dg|dy) =
(1− γ)mζ(dy)PMζ(dg|dy)

mπ(dy)
, τ 6= 1√

2µ
. (6.20)

The posterior mean of BAMS in (6.20) is plotted in Figure 6.3 with different values of

γ, τ and c. The rule is a shrinkage rule. Also, the rule is described as heavily shrinking

small coefficients. The proof of (6.20) can be found in Appendix (D).

The posterior mean in (6.20) contains three parameters, which are clearly defined. For

more detail see Vidakovic and Ruggeri (2001).
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Figure 6.3: Plot of the posterior median in (6.24) with values of β = 1 and α = 0.5.

6.5 BayesThresh

A common prior for wavelet coefficients dg is proposed by Abramovich et al. (1998). The

traditional Bayesian models as the prior distribution on the wavelet coefficient dg, is given

by

dg ∼ pjN(0, τ 2
j ) + (1− pj)δ(0), (6.21)

where pj ∈ {0, 1}and δ(0) is point mass at zero. The binary random variable, pj, deter-

mines whether the relevant coefficient is zero. When pj = 0, this implies that the wavelet

coefficient arises from a point mass at zero. When pj = 1, this implies that the wavelet

coefficient comes from N(0, τ 2
j ). This prior is a limiting case of the ABMS prior (6.8).

The parameters in the prior are defined to be τ 2
j = 2−αjC1 and pj = min{1, 2−βjC2},

where C1 and C2 are non-negative constants chosen empirically from the data, α and β

being selected by the user (Abramovich et al., 1998). The authors showed that the de-

fault choice α = 0.5 and β = 1 is robust to varying degrees of smoothness. The posterior

cumulative distribution for dg, given the observed value of dy, is given by

p(dg|dy) =
1

1 + ω
Φ

{
dg − dyτ

2
j /(σ

2 + τ 2
j )

στj/
√

(σ2 + τ 2
j )

}
+

ω

1− ω
l(dg ≥ 0), (6.22)
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where l(.) is the indicator function and Φ is the standard normal cumulative distribution,

and

ω =
1− pj

pj

√
τ 2
j + σ2

σ
exp

{
−

τ 2
j dy

2σ2(τ 2
j + σ2)

}
. (6.23)

Abramovich et al. (1998) used the posterior median of (6.22) as the point estimate for

dg. The posterior cumulative distribution function in (6.22) and (6.23), has a jump at 0.

The posterior median is 0 if ω ≥ 1 and also if ω < 1 and

0.5(1− ω) ≤ Φ

{
− dyτj

σ
√
σ2 + τ 2

j

}
≤ 0.5(1 + ω).

It is non-zero otherwise. The thresholding procedure can be written as

Med(dg|dy) = sgn(dy)max(0, o), (6.24)

where

o =
τ 2
j

σ2 + τ 2
j

|dy| −
τjσ

(σ2 + τ 2
j )1/2

Φ−1

{
1 + min(ω, 1)

2

}
, (6.25)

and Φ is the cumulative distribution function of a standard normal distribution. If the

quantity o in (6.25) is negative, then Med(dg|dy) is zero. More precisely, if a wavelet

coefficient dy falls in the interval [−λj, λj], where λj is the value of threshold, which is

described in (2.61), the estimate of the wavelet coefficient can be set to zero, Med(dg|dy) =

0. For large wavelet coefficients, the BayesThresh method asymptotes to linear shrinkage

by a factor of
τ2
j

σ2+τ2
j
, because the second part in form (6.25) become negligible as |dy| → ∞

(Abramovich et al., 1998). Thus, Figure (6.3) shows that the BayesThresh method in

(6.24) may be described as slightly shrinking large coefficients and heavily thresholding

small coefficients. The posterior median is therefore a level-dependent “kill” or shrinkage.

The BayesThresh method is implemented in the WaveThresh package for R (Nason,

2010b).
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6.6 Empirical Bayes approach

Johnstone and Silverman (2005a) proposed a class of empirical Bayes (EB) methods for

wavelet shrinkage. The parameters of the model are estimated by marginal maximum

likelihood and the name “empirical Bayes” means that the parameters are estimated

using the data, no prior information being used. They consider different level-dependent

priors, all of which are mixtures of a point mass at zero and a heavy-tailed density. There

are two choices for the heavy-tailed density considered, which are the Laplace and the

Cauchy distributions. The model is given by

dy = dg + η. (6.26)

The orthogonality of the matrix of W and the normality of the noise vector ε implies the

noise vector η is also normal, as described in Section 2.9. The prior distribution of the

parameter dg is an independent prior distribution given by the mixture

π(dg) = (1− ω)δ0(dg = 0) + ωζ(dg), (6.27)

where δ(0) is point mass at zero and the non-zero part of the prior, ζ, is assumed to

be a fixed unimodal symmetric density. The first term in (6.27) is intended to explain

the small wavelet coefficients, while the second is intended to depict the large wavelet

coefficients. By using the Laplace distribution, γa(dg) = a
2

exp{−a|dg|}, with the scale

parameter a > 0, the marginal distribution for the wavelet coefficients dy, is given by

mπ(dy) = (1− ω)ϕ(dy) + ωg(dy), (6.28)

where ϕ denotes the standard normal density and

g(dy) =

∫ ∞
−∞

γ(dg)aϕ(dy)ddg

=
a

2
exp{a

2

2
}
[

exp{−ady}Φ(dy − a) + exp{ady}Φ̄(dy + a)

]
. (6.29)

In the above equation Φ(·) denotes the cumulative distribution of the standard normal

and Φ̄(·) = 1− Φ(·). The posterior distribution of dg, is given by

p(dg|dy) = (1− ωpost)δ0(dg) + ωpostp1(dg|dy), (6.30)
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where the posterior probability ωpost, is given by

ωpost(dy) =
ωg(dy)

[ωg(dy) + (1− ω)φ(dy)]
, (6.31)

and

p1(dg|dy) =


exp{ady}φ(dg−dy−a)

exp{−ady}Φ(dy−a)+exp{ady}Φ̄(dy+a)
, dg ≤ 0

exp{−ady}φ(dg−dy+a)

exp{−ady}Φ(dy−a)+exp{ady}Φ̄(dy+a)
, dg > 0,

(6.32)

which is the weighted sum of truncated normal distributions. Detailed derivations of g(dy)

and p1(dg|dy) are provided by Pericchi and Smith (1992). The posterior mean is given by

PM(dg|dy) = ωpost(dy)

[
dy −

a[exp{−ady}Φ(dy − a)− exp{ady}Φ̄(dy + a)]

exp{−ady}Φ(dy − a) + exp{ady}Φ̄(dy + a)

]
. (6.33)

For dg ≥ 0, we have

F̄1(dg|dy) = 1− F1(dg|dy) =

∫ ∞
dg

p1(dg|dy)ddg

=
exp{−ady}Φ̄(dg − dy + a)

exp{−ady}Φ(dy − a) + exp{ady}Φ̄(dy + a)
. (6.34)

The result in (6.34) can be written as

exp{−ady}Φ̄(dg − dy + a)

exp{−ady}Φ(dy − a) + exp{ady}Φ̄(dy + a)

=
ωg(dy) + (1− ω)φ(dy)

2ωg(dy)

= a−1ω−1 exp{−1

2
a2}φ(dy)

1 + ωβ(dy)

exp{−ady}Φ(dy − a) + exp{ady}Φ̄(dy + a)
, (6.35)

where β(dy, a) = 1
2
a{Φ(dy−a)

φ(dy−a)
+ Φ̂(dy+a)

φ(dy+a)
} − 1. This leads to

Φ̄(d̂g − dy + a) = a−1ω−1φ(dy − a){1 + ωβ(dy)}.

For dg > 0 the posterior median of d̂g(dy;ω) of dg given dy, can be found from the

properties

d̂g(dy;ω) = 0 if ωpost(dy)F̄1(0|dy) ≤ 1

2
(6.36)

F̄1(d̂g(dy;ω)|dy) = {2ωpost(dy)}−1 otherwise.
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Figure 6.4: Plots of the posterior mean (a) and posterior median (b) using EB with the

Laplace prior for ω = 0.02 and a = 0.5.

Hence, if ωpost(dy) ≤ 1
2

then the median is zero, and it is unnecessary to evaluate F̄1(0|dy).

If dg < 0, the properties −d̂g(dy;ω) = d̂g(−dy;ω) and Φ̄−1(dy) = −Φ−1(dy) are used, and

then

d̂g = dy − a− Φ−1(z), (6.37)

where

z = a−1φ(dy − a){ω−1βdy}. (6.38)

As dy → ∞, the limiting value of z is 1
2
, and it is useful to use the approximation that

φ(dy − a) is zero when dy is large and β(dy) is infinite. If dy is small, so that the value of

z given by (6.38) is greater than 1, or dy − a−Φ−1(z), then the posterior median will be

equal to zero. Thus, the posterior median is given by

d̂g = max[0, dy − a− Φ−1{min(1, z)}]. (6.39)

The posterior mean and the posterior median in (6.33) and (6.39) are plotted in Figure 6.4

(a) and (b). The rule of the posterior mean can be described as slightly shrinking large and

heavily shrinking small coefficients, and the posterior median can be described as slightly
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shrinking large and heavily thresholding small coefficients (Reményi, 2012). Hence, as

ω becomes close to 1, the posterior mean becomes smooth and the small coefficients

slightly shrink. For more details and related theoretical results, the reader is referred to

Johnstone and Silverman (2005b), and for more examples using the method, see Johnstone

and Silverman (2005a). Calculations use the R package EbayesThresh of the empirical

Bayes methods.

6.7 Comparison simulation

The purpose of this section is to evaluate and investigate whether Empirical Bayes (EB)

and BayesThresh methods provide better block shapes than adaptive Bayesian wavelet

shrinkage (ABWS) and Bayesian adaptive multi-resolution shrinkage (BAMS) when esti-

mating an unknown vector f .

The simulated datasets consisted of the standard test signal Blocks (Donoho and John-

stone, 1994; Nason and Silverman, 1994) at m = 128 equally spaced points, multiplied

by the blur matrix, which is given in (2.6), with k = 0.005. Also, it was corrupted by

independent Gaussian noise with the mean zero and the variance of noise taken as 0.5. No

thresholding was done below level 3, the IT-TO method was used and the same datasets

were used to simulate these methods. Moreover, the first-order method in Section 2.6 was

used to estimate f . The number of replications is equal to 60 and the number of iteration

equals 100. Hence, MMSE is used to estimate the parameters, the approach of MMSE

being described in Section 2.13.

Figure 6.5 shows the plots of reconstructions using different methods. Figure 6.5 (b)

displays the reconstruction obtained from ABWS with MMSE=0.216, where it can be

seen that the rule provides a reconstruction which does not fully recover the function from

noise. Figure 6.5 (c) displays the result of the reconstruction obtained from BAMS, where

it can be seen that the function is not fully recovered from the noise, although the MSE

is slightly improved. Figure 6.5 (d) displays a reconstructed profile using BayesThresh,
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Figure 6.5: Plots of the reconstruction for estimating the unknown vector f : (a) the black

line is made from Blocks test function, the green line is made by multiplying the blocks by

the blur, which is given in (2.6), k = 0.005 and the red line shows the observed data with

noise σ = 0.5, the other panels show reconstruction using;(b) ABWS with ΛMMSE = 0.002

and MMSE=0.216; (c) BAMS with ΛMMSE = 0.0002 and MMSE= 0.15; (d) BayesThresh

with ΛMMSE = 0.033 and MMSE= 0.2; and (e) EB with ΛMMSE = 0.005 and MMSE=

0.13.
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providing sharp edges and flat topped reconstructions.

Figure 6.5 (e) displays the result of the reconstruction using the posterior median from

the empirical Bayes method. It can be seen that the rule provides sharp edges and flat

topped reconstructions. The MMSE equals 0.13.

6.8 Conclusions

In this chapter, Bayesian thresholding was investigated and a brief review of wavelet

shrinkage provided. A range of shrinkage functions, by approaching the standard context

from a Bayesian point of view, are studied and two estimation procedures are compared;

the posterior mean, and the posterior median. An automatic technique has been stud-

ied whereby a set of level-dependent shrinkage functions may be chosen adaptively for a

given dataset. In addition, the methods were illustrated on a dataset from the Blocks test

function. It can be concluded that the Empirical Bayes (EB) and BayesThresh methods

provided better block shapes than the adaptive Bayesian wavelet shrinkage (ABWS) and

Bayesian adaptive multi-resolution shrinkage (BAMS) methods. Additionally, the empiri-

cal Bayes method performed well at both denoising and preserving the important features

of the Blocks test function.



Chapter 7

Wavelet-based two-stage

reconstruction

7.1 Overview

Within this Chapter, Section 7.2 gives an introduction, while 7.3 considers the wavelet-

vaguelette decomposition, then Section 7.4 looks at vaguelette-wavelet decomposition.

Section 7.5 discusses the procedure of wavelet-based two-stage method. Section 7.6

presents the results from a simulation study, and Section 7.7 provides the conclusions.

7.2 Introduction

Consider the aim of recovering an underlying vector f from the linear model

y = Hf + ε, (7.1)

with data vector yn×1, known blur matrix Hn×m and a vector of random variables ε ∼

Nn(0, σ2In). Furthermore, this type of problem is referred to as ill-posed, as even when

n = m the somewhat naive estimate of f̂ = H−1y often fails to yield a reasonable solution

144



145 Wavelet-based two-stage reconstruction

since H−1 is an unbounded linear operator. This means that even small amounts of noise

in the data “blow up” when the straightforward inversion estimate is used. Such problems

arise in a wide variety of practical scientific settings with different types of transformation

H, and are often referred to as linear inverse problems (Abramovich et al., 2000).

Abramovich and Silverman (1998) stated that there are two methods which can be used

to solve inverse problems. The first is to use a wavelet method, that was first introduced

by Donoho (1995). The second is to use a properly chosen truncated singular-value de-

composition (SVD) method. The level of approximation of a Fourier series depends on the

number of terms in the sum of sines and cosines; it will not be appropriate if the function

is not uniformly smooth. This means that if the function is of uniform smoothness, the

reconstruction of f , using the eigenfunctions of H∗H, where H∗ is the adjoint of H, is in-

efficient and the estimator does not perform well (Cai, 2002). To overcome this limitation

wavelet-vaguelette and vaguelette-wavelet methods were proposed (Abramovich et al.,

2000). We first briefly review the wavelet-vaguelette decomposition approach and the

vaguelette-wavelet decomposition approach of Abramovich and Silverman (1998). Then

the problem of estimating the Blocks test function is used to illustrate the estimation

procedure. The resulting MSE is plotted for different methods of inversion with different

thresholding rules.

7.3 The wavelet-vaguelette decomposition

Kane et al. (2002) gave details of how the wavelet-vaguelette decomposition (WVD) can

be applied to the inverse problem and Donoho (1995) and Kane et al. (2002) proposed an

alternative methodology for solving linear inverse problems. The procedure is described

as follows: define an orthogonal wavelet transform matrix W, where each row is a discrete

wavelet. The matrix H then operates on each individual wavelet to produce what is called

a vaguelette

HWT = VTΓ, (7.2)
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where each row of V is a discrete vaguelette, which has been normalized to unit en-

ergy. Each normalization factor has been put on the diagonal of the diagonal matrix Γ.

Abramovich and Silverman (1998) stated that the method can be applied to inverse prob-

lems to provide an estimate of the vector f . Kane et al. (2002) stated that the matrices

W and Γ are always invertible, but VT is invertible only if H is invertible, so consider

H−1 =WTΓ−1(VT )−1. (7.3)

Hence, (VT )−1 = ΓWH−1 and thus,

f̂ = H−1y

= WTΓ−1(VT )−1y

= WTΓ−1(ΓWH−1y). (7.4)

Consequently, Equation (7.4) can be explained as inversion, the vector, f , estimated using

the inverse transform of the wavelet coefficients of Γ−1(ΓWH−1y). If the matrix, H, is

not square, then H−1 is replaced by (HTH)−1HT and the ordinary least squares (OLS)

estimator can be considered

f̂
WVD

OLSλ
= WTΓ−1T(ΓW(HTH)−1HTy), (7.5)

where T(·) is a thresholding rule, and λ is the value of the threshold. If HTH is not

invertible then the ridge regression estimator can be considered

f̂
WVD

Ridgeλ,Λ
= WTΓ−1T(ΓW(HTH− ΛI)−1HTy), (7.6)

where Λ = σ2κ denotes a parameter of the inversion method, and λ indicates the value of

the threshold (Kane et al., 2002). Where ridge regression is a special case of regularization,

when R = I. So, for other regularization methods the estimate is given by

f̂
WVD

Regλ,Λ
= WTΓ−1T(ΓW(HTH− ΛRTR)−1HTy),

(7.7)

where Λ = σ2κ, R can have different definitions, such as the three common choices

considered earlier in Section 2.6, and W was defined in Section 2.9.
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Wavelet-vaguelettes tend to isolate the signal into a few large values, whilst the noise tends

to be spread around equally. The result of thresholding of the small wavelet coefficients

will be to remove the noise and leave the more interesting coherent features untouched.

7.4 The vaguelette-wavelet decomposition

Abramovich and Silverman (1998) introduced the vaguelette-wavelet decomposition (VWD)

method, which can be viewed as a natural alternative to the previous use of the WVD.

Consider the form in (7.3), which can be expressed as

WH =ΓV,

for some operator matrix, H, with

H−1 =V−1Γ−1W.

Hence, V−1 = H−1WΓ, so,

f = H−1y

= V−1Γ−1Wy

= H−1WTΓ(Γ−1Wy), (7.8)

and then the OLS estimator is given by

f̂
VWD

OLSλ
= (HTH)−1HTWTΓT(Γ−1Wy). (7.9)

But, if HTH is not invertible then ridge regression can be used

f̂
VWD

Ridgeλ,Λ
= (HTH− ΛI)−1HTWTΓT(Γ−1Wy), (7.10)

where Λ = σ2κ. Other regularization methods are given by

f̂
VWD

Regλ,Λ
= (HTH− ΛRTR)−1HTWTΓT(Γ−1Wy), (7.11)
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where Λ = σ2κ, R was defined in Section 2.6 and W was defined in Section 2.9.

Abramovich and Silverman (1998) summarized the procedure of the VWD, as f is un-

known itself, rather than Hf . The main idea of VWD is to find the corresponding em-

pirical vaguelette coefficients and then apply a suitable thresholding rule, such as hard

thresholding, with the aim of deriving a vaguelette estimator of Γ−1Wy, the function f is

estimated using the inverse transform of WTΓT(Γ−1Wy) and then an inversion method

is applied, such as ridge regression.

7.5 The procedure of wavelet-based two-stage method

The simulation procedure can be summarised as follows.

1. The first method is IT-TO, which can be explained as inversion and then the wavelet

coefficients are thresholded. More precisely, the unknown vector f , can be estimated

by

f̂
IT-TO

Regλ,Λ
= WTT(W(HTH− ΛRTR)−1HTy),

where Λ = σ2κ, R and W were defined in Sections 2.6 and 2.9, T(·) is the thresh-

olding rule, and the parameters λ and Λ are estimated together using MMSE, as

described in Section 2.13. There are many different choices of thresholding rule:

(a) T(·) can be chosen to be classical thresholding such as

TH(W(HTH− ΛRTR)−1HTy),

where TH(·) represents the result of the hard thresholding rule.

(b) T(·) can be chosen as Bayesian thresholding using single or a mixture priors

and then the IT-TO method will be applied, which can be assumed as d̂g =

WI∗(H,y,Λ), with, for example, I∗(H,y,Λ) = (HTH+ΛRTR)−1HTy, where

Λ = σ2κ, and then the result of filtering, d̂g = W(HTH + ΛRTR)−1HTy, is

used to estimate df and the estimate of f , is given by

f̂
IT-TO

Reg,Λ = WTp(df |d̂g).
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Note that, the values of the wavelet coefficients of df is assumed to follow the

same distribution and are conditionally independent given the wavelet coeffi-

cients of d̂g.

(c) The wavelet coefficients of (HTH−ΛRTR)−1HTy can be calculated using the

unbalanced Haar transform, then

f̂
IT-TO

Regλ,Λ
= IDUHT (T (DUHT((HTH− ΛRTR)−1HTy))),

where Λ = σ2κ, IDUHT is the inversion of the unbalanced Haar transform and

T (DUHT((HTH−ΛRTR)−1HTy)) represents the result of thresholding, such

as the hard thresholding rule.

2. The second method is TI-TO, which can be explained as thresholding the wavelet

coefficients and then applying an inversion method. More precisely, the unknown

vector f , can be estimated by

f̂
TI-TO

Regλ,Λ
= (HTH− ΛRTR)−1HTWTT(Wy),

where Λ = σ2κ, R and W were defined in Sections 2.6 and 2.9, T(·) is the thresh-

olding rule, and the parameters λ and Λ are estimated together using MMSE, as

described in Section 2.13. There are many different choices of thresholding rule:

(a) T(·) can be chosen to be classical thresholding such as

TH(Wy),

where TH(·) represents the result of hard thresholding rule.

(b) T(·) can be chosen as Bayesian thresholding using a single or mixture priors

and then the TI-TO method will be applied, so it is assumed that dy = Wy

and then the result of thresholding, dy = Wy is used to estimate dg and the

estimation of f , is given by

f̂
TI-TO

Reg,Λ = (HTH− ΛRTR)−1HTWTp(dg|dy).
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Note that, the values of the wavelet coefficients of dg is assumed to follow the

same distribution and are conditionally independent given the wavelet coeffi-

cients of dy.

(c) The wavelet coefficients of dy can be calculated using the unbalanced Haar

transform, then

f̂
TI-TO

Regλ,Λ
= (HTH− ΛRTR)−1HT IDUHT (T (DUHT(y))),

where IDUHT is the inversion of the unbalanced Haar transform and T (DUHT(y))

represents the result of the hard thresholding rule.

3. The third method is WVD-TO, which can be explained as inversion and then thresh-

olding. More precisely, the unknown vector f , can be estimated by

f̂
WVD-TO

Regλ,Λ
= WTΓ−1T(ΓW(HTH− ΛRTR)−1HTy),

where Λ = σ2κ, R and W were defined in Sections 2.6 and 2.9, T(·) is the thresh-

olding rule, and the parameters λ and Λ are estimated together using MMSE, as

described in Section 2.13. There are many different choices of thresholding rule:

(a) T(·) can be chosen to be classical thresholding such as

TH(ΓW(HTH− ΛRTR)−1HTy),

where TH(·) represents the result of hard thresholding rule.

(b) T(·) can be chosen as Bayesian thresholding using a single or mixture of priors

and then the WVD-TO method will be applied, so it is assumed that d̂g =

ΓWI∗(H,y,Λ), such as d̂g = ΓW(HTH + ΛRTR)−1HTy, where Λ = σ2κ,

and then the result of filtering, d̂g = ΓW(HTH + ΛRTR)−1HTy, is used to

estimate d̂g, and the estimation of f , is given by

f̂
WVD-TO

RegΛ
= WTΓ−1p(df |ΓW(HTH− ΛRTR)−1HTy).

Note that, the values of the wavelet coefficients of df is assumed to follow the

same distribution and are conditionally independent given the wavelet coeffi-

cients of ΓW(HTH− ΛRTR)−1HTy.
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(c) The wavelet coefficients of (HTH−ΛRTR)−1HTy can be calculated using the

unbalanced Haar transform, then

f̂
WVD-TO

Regλ,Λ
= IDUHT Γ−1(T (ΓDUHT(HTH− ΛRTR)−1HTy)),

where IDUHT is the inversion of the unbalanced Haar transform and T (Γ DUHT

(HTH− ΛRTR)−1HTy) represents the result of the hard thresholding rule.

4. The fourth method is VWD-TO, which can be explained as thresholded the wavelet

coefficients of Γ−1Wy and then applying an inversion method. More precisely, the

unknown vector f , can be estimated by

f̂
VWD-TO

Regλ,Λ
= (HTH− ΛRTR)−1HTWTΓT(Γ−1Wy),

where Λ = σ2κ, R and W were defined in Sections 2.6 and 2.9, T(·) is thresholding

rule, and the parameters λ and Λ are estimated together using MMSE, as described

in Section 2.13. There are many different choices of thresholding rule:

(a) T(·) can be chosen to be classical thresholding such as

TH(Γ−1Wy),

where TH(·) represents the result of hard thresholding rule.

(b) T(·) can be chosen as Bayesian thresholding using single or mixture of priors

and then the VWD-TO method will be applied, so it is assumed that dy =

Γ−1Wy and then the result of threshold, dy = Γ−1Wy, is used to estimate

dg and the estimation of f , is given by

f̂
VWD-TO

Regλ,Λ
= (HTH− ΛRTR)−1HTWTΓp(dg|dy).

Note that, the values of the wavelet coefficients of dg is assumed to follow the

same distribution and are conditionally independent given the wavelet coeffi-

cients of d̂y.

(c) The wavelet coefficients of dy can be calculated using the unbalanced Haar

transform, then

f̂
VWD-TO

Regλ,Λ
= (HTH− ΛRTR)−1HT IDUHT Γ (T (Γ−1DUHT(y))),
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where IDUHT is the inversion of the unbalanced Haar transform and T (Γ−1DUHT(y))

represents the result of the hard thresholding rule.

7.6 Simulation and comparisons

This section is concerned with evaluating and investigating whether the IT-TO, TI-TO,

VWD-TO and WVD-TO algorithms are suitable for estimating the vector f in (2.33).

To examine the accuracy of the proposed methods, these algorithms were applied to the

Blocks and Bumps test functions corrupted by noise and blur, which is given in (2.6),

with σ = 0.5, k = 0.005 and the methods were combined with a variety of thresholding

methods.

For each simulation 1000 independent runs were used to estimate the unknown vector f .

The estimation at each run was compared with the true values of f and the result was

used to compute the MMSE using the approach described in Section 2.13.

The results of the MMSE are computed using the TI-TO, IT-TO, VWD-TO and WVD-

TO methods for estimating the original Blocks test function and are shown in Figure 7.1,

with the first-order method involved for estimating the unknown vector f . In general,

Figure 7.1 shows the WVD-TO method for estimating the original Blocks test function

provides a smaller MSE than TI-TO, IT-TO or VWD-TO methods. More precisely, the

hard thresholding rule, UH transform, NNBWS-MAP and DWWS-LPM with WVD-TO

algorithms all improve the MSE compared to using the TI-TO, IT-TO or VWD-TO

methods.

Similarly, the MMSE obtained using the TI-TO, IT-TO, VWD-TO and WVD-TO al-

gorithms for estimating the original Bumps test function is shown in Figure 7.2, with

the first-order method used for estimating f . In general, Figure 7.2 shows the WVD-TO

method for estimating the original Bumps test function provides a smaller MSE than

TI-TO, IT-TO or VWD-TO methods. More precisely, the UH transform with hard,

DENWS-MAP, NNBWS-MAP, DWWS-LPM and EB algorithms all improve the MSE
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Figure 7.1: Plots of the MMSE results for all reconstructions of the Blocks test function

using the first-order smoothing for various shrinking procedures: (1) SURE with hard;

(2) cross-validation with hard; (3) hard; (4) BlockSure; (5) Unbalanced Haar transform

with hard; (6) DENWS-MAP; (7) NNBWS-MAP; (8) NDEWS-MAP; (9) NNWS-MAP;

(10) DWWS-LPM; (11) EB; (12) BayesThresh; (13) BAMS; and (14) ABWS.
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Figure 7.2: Plots of the MMSE results for all reconstructions of the Bumps test function

using the first-order smoothing for various shrinking procedures: (1) SURE with hard;

(2) cross-validation with hard; (3) hard; (4) BlockSure; (5) Unbalanced Haar transform

with hard; (6) DENWS-MAP; (7) NNBWS-MAP; (8) NDEWS-MAP; (9) NNWS-MAP;

(10) DWWS-LPM; (11) EB; (12) BayesThresh; (13) BAMS; and (14) ABWS.
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compared to using TI-TO, IT-TO and VWD-TO methods.

7.7 Conclusions

In this chapter, TI-TO, IT-TO, VWD-TO and WVD-TO algorithms involving differ-

ent thresholding rules of wavelet thresholding have been introduced and extended. The

methodology of WVD-TO and VWD-TO algorithms are considered in Sections 7.3 and

7.4 for different inversion methods. The simulations considered in Section 7.6 show that

the WVD-TO algorithm is comparable to or even slightly better than VWD-TO.

An investigation was carried out into how applying a thresholding rule affects the inversion

method with the TI-TO, IT-TO, VWD-TO and WVD-TO methods. Extensive simula-

tions have shown that MSE can be used to compare different methods. In general, the

simulation shows that WVD-TO and IT-TO methods work well across two signal types,

with the IT-TO method gives slightly better result than the TI-TO method, because the

true signal is a step. It can be concluded that the WVD-TO and IT-TO methods improve

the MSE compared to using TI-TO or VWD-TO methods.



Chapter 8

Wavelet-based one-stage

reconstruction

8.1 Overview

Within this chapter, Section 8.2 contains an introduction, whilst Section 8.3 describes

Bayesian modelling, thereafter Section 8.4 provides the numerical methods, and Section

8.5 gives the results from a simulation study. Finally, Section 8.6 presents the conclusions.

8.2 Introduction

Within this chapter a new model is considered, which depends on a statistical approach

and uses a stochastic algorithm for the estimation of an underlying vector f . In partic-

ular, the new method describes a curve in terms of wavelet coefficients. The vector is

estimated, in a Bayesian framework, using a Markov chain Monte Carlo (MCMC) algo-

rithm. Mathematically there are many different types of inverse problems, whereas in

this thesis, inverse problems are divided into two types. In the case of the first type, the

signal is only corrupted by white noise. In the case of the second, the signal is corrupted

156
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by noise and there is also blurring. If there is enough information about the model then

the relationships between the data and the parameters will be well defined. There are

two relationships, which can be defined; the first relationship, between observations and

parameters, is explained by the likelihood; and the second is the relationship between

parameters, which is described by a prior (Aykroyd, 2015). Priors with a single com-

ponent are commonly chosen, for example by Hoerl and Kennard (1970), who used the

Gaussian prior, and Tibshirani (1996), who used the Laplace prior. For Bayesian wavelet-

based modelling, Figueiredo and Nowak (2001) proposed the scale invariant term-by-term

“Bayesian ABE” method, whereas Huerta (2005) proposed a multivariate Bayes wavelet

shrinkage method that allows for correlations among wavelet coefficients corresponding to

the same level of detail. Cutillo et al. (2008) proposed a list of shrinkage rules, which al-

ways pick the mode of the posterior that is “larger mode”, in absolute value, and Reményi

and Vidakovic (2015) proposed the double Weibull prior on the locations of wavelet co-

efficients. Some of these models are complicated and with prior parameters, that must

also be modelled, which is called hierarchical modelling. Related ideas of hierarchical

modelling have been used in wavelet methods, for example, Clyde et al. (1998), Cutillo

et al. (2008), Clyde and George (1999), Clyde and George (2000), Aykroyd and Mardia

(2003) and Reményi and Vidakovic (2015).

The resulting wavelet reconstruction problem is now more complicated, because the in-

tegration or summation required is too difficult, with numerical and MCMC methods

often being used. Thus, the MCMC approach is an important tool for solving difficult

computational problems and then the flexibility of the MCMC method allows estimation

in complex cases. Moreover, this approach allows general investigation of the posterior

distribution. The MCMC approach has been used for some wavelet-based problems, for

example by Aykroyd and Mardia (2003) and Reményi (2012).

The MCMC approach has attracted much attention over the last three decades. Statis-

ticians have been increasingly drawn to MCMC approach to simulate from complex and

complicated distributions (Chib and Greenberg, 1995). It can be a powerful computa-

tional tool owing to its conceptual simplicity and relative ease of implementation. The
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biggest challenge of the implementation of the Bayesian approach is that finding the pos-

terior distribution often requires high-dimensional integration, which is too complex for

an analytical solution. In general, the basic idea of the MCMC approach is to construct

a Markov chain to generate pseudo-random samples, such that its stationary distribution

follows the target posterior distribution. The use of the MCMC approach dates back

to the early ’50s (Metropolis et al., 1953), and was extended and generalised by Hast-

ings (1970). The ideas of the MCMC approach were developed by Geman and Geman

(1984), who proposed the simulated annealing method, which is a stochastic optimization

method. Besag et al. (1995) gave a good review of the theory and application, whereas

Chib and Greenberg (1995) provided a tutorial exposition of the Metropolis-Hastings al-

gorithm. Gelman (1996) improved the convergence monitoring process in various ways to

more effectively use the information in the Markov chain simulation and Roberts et al.

(1997) considered the problem of scaling the proposal distribution of a multidimensional

random walk Metropolis-Hastings algorithm, in order to maximize the efficiency of the

algorithm.

In Section 8.4, the Metropolis-Hastings (M-H) algorithm will be explained and used to

recover the unknown vector f from noisy and blurred data on the wavelet domain, based

on a Bayesian model using different prior distributions. There are two types of model

proposed; one is based on only a single prior parameter for all wavelet coefficients; and the

other is based on a level-dependent prior, which means that there are different smoothing

parameters that depend on the resolution level.

8.3 Bayesian modelling

This section is divided into seven parts; the first part gives a general introduction about

the Bayesian approach; the second part introduces the likelihood using wavelet coefficients;

the third part explains a prior for the noise variance; the fourth part introduces the single

priors of wavelet coefficients; the fifth part models κ, γ and b; the sixth part introduces the

multiple priors of wavelet coefficients; the final part models κ, γ and b for each resolution
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level.

General

The key elements in the Bayesian approach are the likelihood function and the prior dis-

tribution, and hence the resulting posterior distribution. The likelihood is the conditional

distribution of the data given the unknown parameters, denoted as p(y|θ), where θ is a

vector of model parameter and y is a set of noisy data. The prior distribution, denoted

p(θ), quantifies detailed expert knowledge or general beliefs prior to data collection.

For estimation, evidence from the data and from prior beliefs are brought together by com-

bining the likelihood and prior distribution, using Bayes’s Theorem, to form the posterior

distribution, defined as

p(θ|y) =
p(y|θ)p(θ)

p(y)
,

where p(y) is a normalizing constant. Note that since this usually involves a high-

dimensional integral it will be unacceptably time-consuming to perform the calculation.

Fortunately, the normalising constant contains no information about the unknowns and

hence can be dropped, giving the key statement

p(θ|y) ∝ p(y|θ)p(θ),

meaning that “posterior” is proportional to “likelihood” multiplied by “prior”. This

distribution incorporates evidence from the data and knowledge from the prior distribution

allowing an estimation process which balances the two types of information.

When there are multiple groups of parameters, these parameters will be assumed to be

independent and modelled separately. Hence, if θ is made-up of two sub-sets, say, with

θ = (θ1,θ2), then the previous equation becomes

p(θ|y) = p(θ1, θ2|y) ∝ p(y|θ1, θ2)p(θ1)p(θ2).
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In the Bayesian setting, the posterior distribution is the basis for estimation and hence

a point estimate can be found, for example, using the value that corresponds to the

maximum of the posterior distribution, called the maximum a posteriori estimator (MAP)

θ̂MAP = argmin
θ

p(θ|y).

Other point estimates can also be used, such as the posterior mean or the posterior

median. In addition, the joint posterior distribution can be examined, for example to

construct marginal posterior distributions, or to calculate Bayesian credible intervals.

Likelihood using wavelet coefficients

Consider the model

y = f + ε,

where the error ε is a vector of random variables, such that ε ∼ Nn(0, σ2In), f = {f(i/m) :

i = 1, 2, . . . ,m} is a vector of values of some unknown function at a set of m equally-

spaced locations, and y = {yi : i = 1, 2, . . . ,m} are observed data values recorded at the

same locations.

Wavelets are a common choice for this type of non-parametric regression problem when

noise removal or a multi-resolution analysis is required. Let W be an orthogonal ma-

trix holding an appropriate (decimated) discrete wavelet basis, with Haar wavelets. The

wavelet decomposition of the data y, can be written as

dy = Wy = W(f + ε) = Wf + Wε = df + η,

where dy and df are vectors of the wavelet coefficients of y and f respectively. Also,

orthogonality of W and normality of the noise vector ε implies that the noise vector η is

also normal. This shows that noise in the measurements results in corresponding noise in

the wavelet coefficients.

It is a common approach to say that fine level coefficients are the result of noise, with the

signal being represented in a small number of low-level coefficient values. The method of
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wavelet thresholding can then be used to set the small coefficients to zero, or shrinkage can

be used to shrink the coefficient values closer to zero. A set of modified coefficient values,

d∗
y, after thresholding or shrinkage can be used as an estimate of the wavelet coefficients

of f , that is d̂f = d∗
y, with the resulting estimate of f , defined as

f̂ = WTd∗
y.

This denoising method can also be given an interpretation in a Bayesian setting, which is

the approach followed later.

The overall aim in a general linear inverse problem is also to estimate an unknown function

from a finite set of measurements but these quantities are related through a convolution

equation, such as

y = g + ε = Hf + ε, (8.1)

where Hn×m is a given matrix, with elements hi,j, and i = 1, 2, . . . , n, j = 1, 2, . . . ,m, and

ε is some error vector as above. The matrix, H, can be defined as a spread or transfer

function. If the matrix, H, is square and invertible then the solution is

f̂ = H−1y.

Assuming an additive Gaussian error model, then the conditional distribution of the data

given the truth is

y|f , σ2 ∼ N(Hf , σ2In),

with likelihood

p(y|f , σ2) =
1

(2πσ2)n/2
exp

{
− 1

2σ2
||y −Hf ||22

}
, y ⊂ Rn, f ⊂ Rm;σ > 0, (8.2)

where ||.||2 is the L2 norm and f = {fj : j = 1, 2, . . . ,m}. It is often not possible

to reliably estimate f using the likelihood alone and so previous approaches have used

Bayesian modelling with smoothing prior distributions directly on the unknown f , such

as Allum et al. (1999).
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The corresponding form of the likelihood, using wavelet coefficients, is given by

p(y|df , σ
2) =

1

(2πσ2)n/2
exp

{
− 1

2σ2
||y −HWTdf ||22

}
, y ⊂ Rn,df ⊂ Rm;σ > 0,

(8.3)

where ||.||2 is the L2 norm, df is a vector of values of wavelet coefficients of the unknown

and hence g = HWTdf .

A prior model for the noise variance

In applications, the variance of the noise σ2 is estimated from the finest level of detail

coefficients in the wavelet decomposition and plugged into the shrinkage rule. Here, the

methodology is generalised by specifying a prior distribution on the unknown variance.

The variance will be modelled by an inverse gamma distribution with parameters a0 and

b0, σ2 ∼ inverse− gamma(a0, b0), with density

p(σ2) =
1

Γ(a0)

ba0
0

(σ2)(a0+1)
exp

{
− b0

σ2

}
, σ2 ≥ 0; a0, b0 > 0. (8.4)

This approach follows that of Gelman (2006) and Cutillo et al. (2008) for modelling a

noise variance. The marginal likelihood of the wavelet coefficients is t, which models

heavy tails of the empirical distributions of wavelet coefficients (Cutillo et al., 2008).

The parameters a0 and b0 can be fixed based on knowledge or information from separate

calibration experiments. In particular, an expert might provide a mean, σ2
0, and variance,

τ 2
0 , for σ2, which correspond to a0 =

(σ2
0)2

τ2
0

+2 and b0 = σ2
0(a0−1). Although this approach

is general, in this thesis a value for σ2
0 computed from Equation (2.62) and τ 2

0 = 1 have

been used.

A single component prior for wavelet coefficients

In this section four prior distributions, p(df ), on the wavelet coefficients, df , will be

applied; the first is the Gaussian prior; this prior is used by Hoerl and Kennard (1970)
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and Cutillo et al. (2008); the second is the Laplace prior, which was first used as a

regularisation penally by Tibshirani (1996); the third is elastic-net, which was first used

as a regularisation penally by Zou and Hastie (2005); finally, the double Weibull prior is

suggested by Reményi and Vidakovic (2015). As prior distributions for κj, γj and bj, we

chose a gamma prior on κj describing the strength of shrinkage of a wavelet coefficient.

Mixing weight, γj, is described by a beta prior and an inverse gamma prior on the bj

describes the variance of the double Weibull distribution.

Gaussian distribution

An obvious choice of prior is the Gaussian distribution, df ∼ N(0, 1
2κ

), with density

p(df |κ) =

(√
κ

π

)m
exp

{
− κ||df ||22

}
, df ⊂ Rm;κ > 0, (8.5)

where ||.||2 is the L2 norm and κ is the shrinkage parameter. This approach follows that

of Hoerl and Kennard (1970), and Cutillo et al. (2008) for modelling wavelet coefficients.

The reason for this assumption is to create a shrinkage rule, which keeps the important

information (Zou and Hastie, 2005).

Laplace distribution

The second choice is the Laplace distribution, which was introduced by Laplace (1774)

and is used as a regularisation penalty by Tibshirani (1996), df ∼ DE(0, 1
κ
), with density

p(df |κ) =

(
κ

2

)m
exp

{
− κ||df ||1

}
, df ⊂ Rm;κ > 0, (8.6)

where ||.||1 is the L1 norm. Moreover, this prior was used by Vidakovic and Ruggeri

(2001) and Johnstone and Silverman (2005a) in the wavelet domain. The reason behind

the choice of Laplace is that in practice, wavelet coefficients have heavier tails than a

Gaussian distribution (Donoho and Johnstone, 1994).
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Elastic-net distribution

As a convex combination of the Laplace and the Gaussian, a density based on the elastic-

net function might be suitable. The main benefit of the elastic-net is that it might provide

a better representation when the number of parameters, m, is bigger than the number of

observations, n, (Zou and Hastie, 2005). Thus, the elastic-net is an automatic variable

selection and a continuous shrinkage rule, (Zou and Hastie, 2005). The elastic-net has a

parameter γ and for the limiting values of γ, this reduces to the Gaussian case (γ = 1)

and the Laplace case (γ = 0). So, we believe that at the highest resolution level the value

of γ should be close to zero and close to 1 for the lowest resolution level.

The elastic-net distribution for the wavelet coefficients df given λ and γ, can be defined

as

p(df |κ, γ) =

(
1

Z(κ, γ)

)m
exp

{
− κ(γ||df ||22 + (1− γ)||df ||1)

}
,

df ∈ R;κ > 0, 0 < γ < 1, (8.7)

where

Z(κ, γ) =


2/κ, γ = 0√

4π
κγ

exp

{
1

4γ
κ(1− γ)2

}(
1− Φ(κ(1−γ)√

2κγ
)

)
, 0 < γ < 1√

π/κ, γ = 1.

(8.8)

Double Weibull distribution

The fourth choice is the double Weibull distribution, which is chosen for its ability to

mimic the features of a prior consisting of a point mass at zero and heavy tailed part.

The double Weibull distribution can be defined as

p(df |b, c) =
m∏
1

c

2b
|df |c−1 exp

{
− 1

b
|df |c

}
, df ⊂ Rm; b > 0, c > 0. (8.9)

Reményi and Vidakovic (2015) suggested that the constant c should be equal to 1/3, since

this value gives a small risk.
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Prior parameters κ, γ and b

There are different ways to estimate the parameters of the Gaussian, the Laplace and the

elastic-net priors. The first is to use minimum mean squared-error (MMSE) approach,

which will be explained in Section 8.4, if the true f is known. For some problems there

might be realistic simulated data that can be used to estimate the parameters κ and γ.

Clearly, the simulated data should reflect correct belief about the true f otherwise an

appropriate estimate will be produced.

The second method is to estimate the parameters along with the wavelet coefficients.

Hence, each of the prior distributions has introduced additional parameters that must

also be modelled, which will also be explained in Section 8.4. In all cases, the parameter

κ will follow the gamma distribution, κ ∼ gamma(a1, b1), with density

p(κ) =
1

Γ(a1)
ba1

1 κ
a1−1 exp

{
− b1κ

}
, κ ≥ 0; a1, b1 > 0. (8.10)

This approach follows that of Park and Casella (2008) and Kyung et al. (2010). As with

σ2, the parameters a1 and b1 can be fixed based on knowledge or information from separate

calibration experiments. In particular, an expert might provide a mean, κ1, and variance,

τ 2
1 , for κ, which correspond to a1 = κ1

2

τ2
1

and b1 = κ1

τ2
1
. Although this approach is general,

in this thesis a value for κ1 computed from Equation (2.61) and τ 2
1 = 1 has been used.

Finally, given that γ can only take values within the range [0, 1], the beta distribution is

a sensible choice for a prior model, γ ∼ Beta(a2, b2), with density

p(γ) =
Γ(a2 + b2)

Γ(a2)Γ(b2)
γa2−1(1− γ)b2−1, 0 < γ < 1; a2, b2 > 0, (8.11)

the parameters a2 and b2 fixed based on knowledge or information from separate calibra-

tion experiments. In particular, an expert might provide a mean, γ2, and variance, τ 2
2 , for

γ, which correspond to a2 = b2 γ2

1−γ2
and b2 =

(1−γ2)2γ2−τ2
2 (1−γ2)

τ2
2

. Although this approach is

general, in this thesis γ2 = 0.5 and τ 2
2 = 0.01 have been used, giving a1 = 12 and b1 = 12.

In the case of the double Weibull distribution, the parameter b will follow an inverse
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gamma distribution, b ∼ inverse− gamma(a3, b3), with density

p(b) =
1

Γ(a3)

ba3
3

b(a3+1)
exp

{
− b3

b

}
, b ≥ 0; a3, b3 > 0, (8.12)

As with σ2, the parameters a3 and b3 can be fixed based on knowledge or information from

separate calibration experiments. In particular, an expert might provide a mean, b0, and

variance, τ 3
0 , for b, which correspond to a3 = b0

2

τ2
3

+ 2 and b3 = b0(a0 − 1). Although this

approach is general, in this thesis τ 2
3 = 1 has been used and b0 is computed from Equation

(5.13) as described in Chapter 5, unless σ̂2 > σ̂2
d when we set b0 = 0.5 (Gelman, 2006).

Here σ̂2 and σ̂2
d are the variances of noise and wavelet coefficient at finest resolution level,

respectively.

Hence, there are multiple parameters, which are assumed independent and which have

been modelled separately. So, the posterior distribution with Gaussian prior for the

wavelet coefficients df , σ
2 and κ given y, is given by

p(df , σ
2, κ|y) ∝ p(y|df , σ

2)p(df |κ)p(σ2)p(κ), (8.13)

and the posterior distribution for the wavelet coefficients dg, σ2 and κ given dy, is given

by

p(dg, σ
2, κ|dy) ∝ p(dy|dg, σ

2)p(dg|κ)p(σ2)p(κ). (8.14)

In the following equations, individual wavelet coefficients will be denoted dg and dy,

omitting the double index j, l to simplify notation.

If the wavelet coefficient dg, are assumed independently N(0, 1
2κ

) distributed, then the

distribution of the wavelet coefficient dg given the corresponding wavelet coefficient dy,

becomes

p(dg|dy) ∝
∫ ∞

0

∫ ∞
0

(
1√

2πσ2

)
exp

{
− 1

2σ2
(dy − dg)2

}(√
κ

π

)
exp

{
− κdg

2

}
× 1

Γ(a0)

ba0
0

(σ2)(a0+1)
exp

{
− b0

σ2

}
1

Γ(a1)
ba1

1 κ
a1−1 exp

{
− b1κ

}
d(σ2)dκ

∝ 1

[1 + 1
2b0

(dy − dg)2]a0+ 1
2 [dg

2

b1
+ 1]a1+ 1

2

. (8.15)
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If the wavelet coefficients, dg, are assumed independently DE(0, 1
κ
) distributed, then the

posterior of wavelet coefficient dg given the corresponding wavelet coefficient dy, becomes

p(dg|dy) ∝
∫ ∞

0

∫ ∞
0

(
1√

2πσ2

)
exp

{
− 1

2σ2
(dy − dg)2

}(
κ

2

)
exp

{
− κ|dg|

}
× 1

Γ(a0)

ba0
0

(σ2)(a0+1)
exp

{
− b0

σ2

}
1

Γ(a1)
ba1

1 κ
a1−1 exp

{
− b1κ

}
d(σ2)dκ

∝ 1

[1 + 1
2b0

(dy − dg)2]a0+ 1
2 [ |dg|

b1
+ 1]a1+1

. (8.16)

If the wavelet coefficients, dg, are assumed independently DW(b, c) distributed, then the

posterior of wavelet coefficient dg given the corresponding wavelet coefficient dy, becomes

p(dg|dy) ∝
∫ ∞

0

∫ ∞
0

(
1√

2πσ2

)
exp

{
− 1

2σ2
(dy − dg)2

}
c

2b
|dg|c−1 exp

{
− 1

b
|dg|c

}
× 1

Γ(a0)

ba0
0

(σ2)(a0+1)
exp

{
− b0

σ2

}
1

Γ(a3)

ba3
3

b(a3+1)
exp

{
− b3

b

}
d(σ2)d(b)

∝ |dg|c−1

[1 + 1
2b0

(dy − dg)2]a0+ 1
2 [ |dg|c

b3
+ 1]a3+1

. (8.17)

The model with elastic-net distribution (8.17) is more complex so that the integration

required is too complicated. The resulting wavelet reconstruction problem is also more

complex, with numerical methods and the Metropolis-Hastings algorithm often being

used.

Multiple-component priors for wavelet coefficients

As an extension, the various coefficients are grouped by wavelet resolution level with

the obvious extensions to the definitions given in the previous section. For the wavelet

coefficients df j, at level j, the Gaussian prior density function becomes

p(df j|κj) =

(
κj
π

)(2j−1)/2

exp

{
− κj

2j−1∑
l=0

df
2
j,l

}
, df j ⊂ R2j−1

;κj > 0, (8.18)
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where κ = {κj : j = 0, 1, . . . , J − 1} with J = log2(m) and df j is a vector of values of

wavelet coefficients at level j. The Laplace prior density function becomes

p(df j|κj) =

(
κj
2

)2j−1

exp

{
− κj

2j−1∑
l=0

|df j,l|
}
, df j ⊂ R2j−1

;κj > 0. (8.19)

The model based on the elastic-net has density function given by

p(df j|κj, γj) =

(
1

Z(κj, γj)

)2j−1

exp

{
− κj

2j−1∑
l=0

(
γjdf

2
j,l + (1− γj)|df j,l|

)}
,

df j ⊂ R2j−1

;κj > 0, 0 < γj < 1, (8.20)

where

Z(κj, γj) =


2/κj, γj = 0√

4π
κjγj

exp

{
κj(1−γj)2

4γj

}(
1− Φ(

κj(1−γj)√
2κjγj

)

)
, 0 < γj < 1√

π/κj, γj = 1.

(8.21)

Finally, for the double Weibull distribution, the density function becomes

p(df j|bj, c) =
2j−1∏

0

c

2bj
|df j|c−1 exp

{
− 1

bj
|df j|c

}
, df j ⊂ R2j−1

; bj > 0, c > 0. (8.22)

Prior parameters κj, γj and bj

The prior densities become

p(κj) =
1

Γ(a1)
ba1

1 κj
a1−1 exp

{
− b1κj

}
, κj ≥ 0, j = 0, 1, . . . , J − 1; a1, b1 > 0, (8.23)

p(γj) =
Γ(a2 + b2)

Γ(a2)Γ(b2)
γj
a2−1(1− γj)b2−1, 0 < γj < 1, j = 0, 1, . . . , J − 1; a2, b2 > 0, (8.24)

and

p(bj) =
1

Γ(a3)

ba3
3

bj
(a3+1)

exp

{
− b3

bj

}
, bj ≥ 0, j = 0, 1, . . . , J − 1; a3, b3 > 0. (8.25)
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The hyper parameters a1, b1, a2, b2, a3 and b3 can be fixed for all levels at the same values

as chosen in the single component prior.

There are multiple parameters, which are assumed independent and have been modelled

separately. So, the posterior distribution with prior Gaussian for the wavelet coefficients

df , σ
2 and κ given y, is given by

p(df , σ
2,κ|y) ∝ p(y|df , σ

2)p(df 0|κ0)p(df 1|κ1) . . . p(df J−1|κJ−1)p(σ2)p(κ0)p(κ0) . . . p(κJ−1),

(8.26)

where df j are the wavelet coefficients at resolution level j, j = 0, 1, . . . , J − 1.

8.4 Numerical methods

In this section, three estimation approaches will be explained; the first is the PM estimate;

the second is MAP estimate and the third MAP estimation using prior parameter chosen

by MMSE.

Metropolis-Hastings sampling

In this thesis, the estimation of the underlying f is based on the approximate posterior

distribution computations using a standard Metropolis-Hastings (M-H) algorithm. This is

a special case of the Markov chain Monte Carlo (MCMC) approach, whose use has become

widespread in the general statistical literature. The M-H algorithm is the first example of

a MCMC approach used for parameter estimation and was proposed by Metropolis et al.

(1953) and subsequently generalized by Hastings (1970).

The use of such methods for parameter estimation, and general density exploration, is

widespread; a review can be found in Robert and Casella (2011), and for theoretical

details see Gamerman and Lopes (2006), Liu (2001) and Brooks et al. (2011). For general

practical examples see the collection by Gilks et al. (1996).
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Based on the various model definitions in the previous section the parameter vector will

simply be referred to as θ, which will represent (df , σ
2, κ), (df , σ

2,κ), (df , σ
2, κ, γ) and

(df , σ
2,κ,γ), with m simply counting the total number of parameters.

The Markov chain can start at any feasible point in the parameter space, let this arbitrary

value be denoted as θ0. From this starting value a discrete time Markov chain is simulated

to produce values θ1,θ2, . . . ,θK . The algorithm will now be defined, and is also sum-

marised in Figure 8.1. Also, the algorithm of the MCMC approach is shown in Algorithm

(3). Consider the Markov chain transition from state θk−1 at time k − 1, to state θk at

Set an initial value for θ, call this θ0

Repeat the following steps for k = 1, . . . , K

Repeat the following steps for i = 1, . . . ,m

Generate from a Gaussian distribution N(0, τ 2)

Generate a propose new value θ∗ = θki + ε

Evaluate

α = α(θk|(θ)∗) = min
{

1,
p(θk1 , . . . , θ

k
i−1, θ

∗
i , θ

k−1
i+1 , . . . , θ

k−1
m |y)

p(θk1 , . . . , θ
k
i−1, θ

k−1
i , θk−1

i+1 , . . . , θ
k−1
m |y)

}
Generate u from a uniform distribution, U(0, 1)

If α > u then accept the proposal and set θki = θ∗i , else θki = θk−1
i

End repeat
End repeat

Discard initial values and use remainder to make inference.

Figure 8.1: Single-variable random walk MCMC Algorithm (Aykroyd, 2015).

time k. This is one of the simplest schemes, which works well for many applications based

on a random walk and uses separate single variable updates. That is, at each step only

the value of a single variable is proposed and the proposal is a perturbation of the current

value with spread parameters chosen to achieve an acceptable convergence rate. Suppose

that a new value for θi is being proposed, then θki = θk−1
i + ε, and an obvious choice is

ε ∼ N(0, τ 2). This proposal is accepted, with probability

min

{
1,

p(θk|y)

p(θk−1|y)

}
,
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otherwise the value is reset with θk = θk−1.

The components of θ are of the different types, df , σ
2, κ and γ, each allowing different

simplifications of the above acceptance probability. To explain this, each type will be

considered separately.

df updates: Let the current set of wavelet coefficients be df . A proposed new value for

one of the wavelet coefficients df
′, is drawn from a proposal distribution, q(df

′|df), where

df
′ is the set of wavelet coefficients including the proposed new value df

′. Moreover, q is

a normal distribution centred on the current coefficient value, with the spread parameter,

τ 2
1 , chosen to achieve acceptable convergence rates. The proposal is accepted, and the

parameter values are updated accordingly, with probability

min

{
1,

p(df
′, σ2, κ, γ|y)q(df

′|df )

p(df , σ2, κ, γ|y)q(df |df
′)

}
,

otherwise it is rejected and no change is made. Note that in our case the proposal

distribution is symmetric, that is q(df
′|df ) = q(df |df

′), hence the ratio of these terms

remove in the above expression. Then the acceptance probability can be written as

min

{
1,

p(y|df
′, σ2)p(df

′|κ, γ)

p(y|df , σ2)p(df |κ, γ)

}
,

where each of the wavelet coefficients df , considered in the same way.

σ2 updates: A proposed new value of the variance of noise σ′2 is drawn from normal

distribution, centred on the current parameter value, with the spread parameter, τ 2
2 ,

chosen to achieve an acceptable convergence rate. Here negative proposals are rejected

and, if positive, the proposal is accepted, with probability

min

{
1,

p(y|df , σ
′2)p(σ′2)

p(y|df , σ2)p(σ2)

}
,

otherwise it is rejected and no change is made.
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κ updates: A proposed new value of the elastic-net parameter κ′ for κ is drawn from

normal distribution centred on the current parameter value, with spread parameter, τ 2
3 ,

chosen to achieve an acceptable convergence rate. Here negative proposals are rejected

and, if positive the proposal is accepted, with probability

min

{
1,

p(df |κ′, γ)p(κ′)

p(df |κ, γ)p(κ)

}
,

otherwise it is rejected and no change is made.

γ updates: A proposed new value of the elastic-net weight γ′ for γ is drawn from

uniform distribution on the interval [0,1] centred on the current parameter value, with the

spread parameter, τ 2
4 , chosen to achieve an acceptable convergence rate, with probability

min

{
1,

p(df |κ, γ′)p(γ′)

p(df |κ, γ)p(γ)

}
,

otherwise it is rejected and no change is made.

It is important to realise that both low and high values of τ 2
1 , τ 2

2 , τ 2
3 and τ 2

4 , lead to

long transient periods and highly correlated samples and hence unreliable estimations

(Aykroyd, 2015). A reasonable proposal variance can be chosen adaptively during the

early burn-in period, and it has been proven theoretically that for a wide variety of high-

dimensional problems an acceptance rate of 23.4% is optimal (Roberts et al., 1997).

Although, the theoretical derivation is complicated, the statement and implementation

of the algorithm is usually straightforward. If the algorithm is designed carefully, then

as the iterations progress, the current parameter set does not depend on the starting

values, and the subsequent values can be treated as a correlated sample from the posterior

distribution. Key issues then become how to judge, when the initial transient behaviour

has ended, when the chain is in equilibrium, and how many iterations to perform to have

a sufficiently large sample for a reliable estimation. Aykroyd (2015) showed that checking
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Markov chain paths and calculating sample autocorrelation functions might provide good

estimation, where the paths should look “random” and the autocorrelation functions

should be close to zero for all except small lags. Aykroyd and Mardia (2003) stated that

the estimates produced will have an asymptotic variance var(dj,l )=%σ2/M , according to

dependence within the Markov chain, where M is the sample size, σ2 is the sampling

variance of dj,l, % the integrated autocorrelation time is given by % =
∑∞

t=−∞ ρ(t) and

ρ(t) is the autocorrelation function of the process. This variance is a factor % times

greater than would be the case with an independent sample. The sample size, M , will be

chosen so that the Monte Carlo variance is less than 1% of the sampling variance of the

estimator, that is choose M to satisfy var(dj,l)/σ
2 = %/M < 1/100. The value of % can

be estimated using the truncated periodogram estimator k̂ =
∑
|t|≤T ρ̂(t), with window

width T chosen as the minimum integer such that T ≥ 3%̂. A variety of more formal

convergence diagnostics are available, see for example Raftery and Lewis (1995), Cowles

and Carlin (1996) and Geyer (2011).

Once the sample has been generated from the posterior distribution, a number of possible

estimators are available. Let θ1,θ2, . . . ,θN be the MCMC sample collected after the

equilibrium of the Markov chain has been declared, then the posterior mean and variances

can be estimated by the sample mean and variance.

θ̂i =
1

k

K∑
k=1

θki , σ̂2 =
1

K − 1

K∑
k=1

(θki − θ̄i)2 i = 1, 2, . . . ,m.

Alternatively, the posterior summaries can be computed using the median and the 95%

credible interval

d̂f i = median{df
k
i : k = 1, 2, . . . , K} = df

(50)
i and (df

(2.5)
i ,df

(97.5)
i ) for i = 1, 2, . . . ,m,

(8.27)

where df
(P) indicates the P-percentile of the sample {df

k : k = 1, 2, . . . , K} (see for

example Aykroyd and Mardia, 2003, and Aykroyd, 2015).
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To calculate an approximate MAP estimate, the MCMC algorithm can be converted into

a simulated annealing algorithm (Geman and Geman, 1984). In particular a temperature,

Tk, is included, which decreases as the iterations progress, with Tk = 2/ log(1 + k) being

one choice of annealing schedule. Hence, the acceptance ratio, α, is replaced by αTk . Note

that, the MAP estimate is taken as the final iteration, θ̂MAP = θ̂
k
. The advantage of

simulated annealing is that it provides an answer more quickly than a sampling algorithm.

On the other hand, the disadvantage is that it does not produce a posterior sample for

further investigation (Aykroyd, 2015). Algorithm 4, in this chapter, shows the main idea

of the MAP estimation algorithm.

Minimum mean squared-error estimation (MMSE)

There are several different ways to estimate the prior parameters, one of which is MMSE.

This process is recommended if a set of true training functions are available, which can

be used to estimate the parameters κ, γ and σ2. In archaeological problems, there are

five simulated cores, that can be used to estimate the prior parameters, which will be

explained in Chapter 9. The reason for choosing the MMSE is that, in practice, it is

difficult to estimate the prior parameters. However, training on realistic simulated data

can be used to assess beliefs about real data and the MMSE will be employed to determine

the optimal parameters, from which these parameters can be used to reconstruct f from

real data. Hence, there are no prior distributions for the prior parameters in the MMSE

algorithm.

The idea of the MMSE algorithm is shown in Figure 8.2. The prior parameters κ, b or κ

and γ are chosen to minimise the mean squared-error, this is

θ̂MMSE = argmin
θ

||f − f̂ θ||22,

(8.28)

where f̂ θ is the MAP estimate of f using parameters θ̂MMSE with θ = κ, θ = (κ, γ) or
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Figure 8.2: Diagram of the main idea for minimum MSE algorithm.
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θ = b. Also, for level-dependent prior θ = {κ}, θ = {κ,γ} or θ = {b}. Hence, the true

f is assumed to be known and at each run to estimate the function, which is computed

using MAP estimate, the prior parameters are fixed, where the aim is to find the best

prior parameters to estimate the function f .

The MMSE algorithm is an alternative stochastic minimization method where, at each

iteration, a random perturbation, θ′, of the current best prior parameters θk−1 is consid-

ered. The MAP estimate of the wavelet coefficient is found using θ′ and the corresponding

MSE is calculated. If the new MSE is less than that at the previous iteration then θk = θ′

otherwise θk = θk−1. Iteration continues until convergence.



177 Wavelet-based one-stage reconstruction

Algorithm 3: MCMC sampling algorithm for level-dependent prior distributions
Result: Sample from posterior (MCMC)

1 Initialization f = 0, θ0 = {θ1, θ2, . . . , θJ−1}, τ 11×(J−1) = {0.01, 0.01 . . . , 0.01},

τ 21×(J−1) = {0.01, 0.01 . . . , 0.01} and C = {c1, c2, . . . , cJ−1}, c1 = {a01, b01} c2 = {a02, b02} . . . .

2 Compute log p(df ,θ|y), log p(θ1|df j) = log p(df j |θ1) + log p(θ1|C[1]) . . .

3 for k=1 to R do

4 for j=0 to J-1 do

5 M = length(df )

6 for i=1 to M do

7 Compute log p(df , θ[j]|y) = log p(y|df ) + log p(df j |θ[j])

8 Generate εi from a Gaussian distribution N(0, τ 1[r])

9 df
∗ = df

k
i + εi

10 Compute log p(df , θ[j]|y)∗ = log p(y|df )
∗ + log p(df j |θ[j])∗

11 Generate u from a uniform distribution, U(0,1)

12 if (log p(df , θ[j]|y)∗ − log p(df , θ[j]|y)) > u then

13 df
k
i =df

∗
i

14 else

15 df
k
i =df

k−1
i

16 end

17 end

18 end

19 for j=0 to J-1 do

20 Compute log p(θ[j]|df j)
k

21 Generate εj from a Gaussian distribution N(0, τ 2[j])

22 θ[j]∗ = θ[j]k + εkj

23 if(θ[j]∗ > 0){

24 Compute log p(θ[j]|df j)
∗

25 Generate u from a uniform distribution, U(0,1)

26 if (log p(θ[j]|df j)
∗ − log p(θ[j]|df j)

k) > u then

27 θ[j]k=θ[j]∗

28 else

29 θ[j]k=θ[j]k−1

30 end

31 end

32 }

33 Update τ 1 and τ 2

34 end
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Algorithm 4: MAP algorithm for level-dependent prior distributions
Result: Sample from posterior (MCMC)

1 Initialization f = 0, θ0 = {θ1, θ2, . . . , θJ−1}, τ 11×(J−1) = {0.01, 0.01 . . . , 0.01},

τ 21×(J−1) = {0.01, 0.01 . . . , 0.01} and C = {c1, c2, . . . , cJ−1}, c1 = {a01, b01} c2 = {a02, b02} . . . .

2 Compute log p(df ,θ|y), log p(θ1|df j) = log p(df j |θ1) + log p(θ1|C[1]) . . .

3 for k=1 to R do

4 Tk = 2/ log(1 + k)

5 for j=0 to J-1 do

6 M = length(df )

7 for i=1 to M do

8 Compute log p(df , θ[j]|y) = log p(y|df ) + log p(df j |θ[j])

9 Generate εi from a Gaussian distribution N(0, τ 1[r])

10 df
∗ = df

k
i + εi

11 Compute log p(df , θ[j]|y)∗ = log p(y|df )
∗ + log p(df j |θ[j])∗

12 Generate u from a uniform distribution, U(0,1)

13 if (log p(df , θ[j]|y)∗ − log p(df , θ[j]|y))/Tk > u then

14 df
k
i =df

∗
i

15 else

16 df
k
i =df

k−1
i

17 end

18 end

19 end

20 for j=0 to J-1 do

21 Compute log p(θ[j]|df j)
k

22 Generate εj from a Gaussian distribution N(0, τ 2[j])

23 θ[j]∗ = θ[j]k + εkj

24 if(θ[j]∗ > 0){

25 Compute log p(θ[j]|df j)
∗

26 Generate u from a uniform distribution, U(0,1)

27 if (log p(θ[j]|df j)
∗ − log p(θ[j]|df j)

k)/Tk > u then

28 θ[j]k=θ[j]∗

29 else

30 θ[j]k=θ[j]k−1

31 end

32 end

33 }

34 Update τ 1 and τ 2

35 end
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Algorithm 5: MMSE algorithm for level-dependent prior distributions; step 7 to 27

represent MAP estimation of df for given θ.

Result: d̂f , θMMSE.

1 Initialization d̂f

K
, θK = {θK1 , θK2 , . . . , θKJ−1} are the results of MAP, τ 11×(J−1) = {0.01, 0.01 . . . , 0.01},

τ 21×(J−1) = {0.01, 0.01 . . . , 0.01} and Compute log p(df
K |y,θ[j]K), f̂

K
= WT d̂f

K
,

MSE=
∑m

i (f̂Ki − fi
true)2/M

2 for s=1 to N do

3 for j=0 to J-1 do

4 Generate εj from a Gaussian distribution N(0, τ 1[j])

5 θ[j]∗ = θ[j]s + εsj

6 end

7 if(θ∗ > 0){
8 for k=1 to R do

9 Tk = 2/ log(1 + k)

10 for j=0 to J − 1 do

11 M = length(df )

12 for i=1 to M do

13 for i=1 to M do

14 df
∗ = df

k
i + ε

15 Generate εj from a Gaussian distribution N(0, τ 2[j])

16 Compute log p(df |y, θ∗1)∗

17 Generate u from a uniform distribution, U(0,1)

18 if (log p(df |y,θ[j]∗)∗ − log p(df |y,θ[j]s))/Tk > u then

19 df
s(k)
i =df

∗
i

20 else

21 df
s(k)
i =df

s(k−1)
i

22 end

23 end

24 end

25 end

26 Update τ 2

27 end

28 Compute f̂
s

= WT d̂f

s
, MSEs =

∑m
i (f̂si − fi

true)2/M

29 if (MSEs < MSE) then

30 θs=θ∗, MSE= MSEs

31 else

32 θs=θs−1

33 end

34 Update τ 1 }

35 end
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8.5 Experiments

The purpose of this section is to evaluate and investigate whether the Gaussian, the

Laplace, the elastic-net and the double Weibull priors are suitable for estimating the

unknown f . The proposed method is applied to the Blocks test function at m = 128

equally spaced points, and with the level of blur, which is given in (2.6), taken as k = 0.005,

0.01 and 0.07, and with level of noise taken as σ = 0.5. In addition, wavelet coefficients are

computed using the (decimated) discrete wavelet basis with Haar wavelets. The benefit

of using simulated data is that the quality of the solution can be investigated and any

error attributed to the inversion procedure and not to mismodelling.

There are two methods applied to estimate the unknown f ; the first is to use the minimum

mean squared-error; the second is to use a hierarchical Bayesian approach with prior

distributions for σ2, κ, γ and b, with inverse gamma, gamma, beta and inverse gamma

distributions respectively. The hierarchical Bayesian approach is applied for the whole

set of wavelet coefficients, or for level-dependent wavelet coefficients.

The total number of replications is R = 10, 000 and the elastic-net prior is implemented

to obtain the MAP estimates of the simulated data. The elastic-net with a single prior for

whole data requires approximately 11.89 seconds, and 11.21 seconds for level-dependent

priors, to process 1000 iterative updates of approximately 128 wavelet coefficients. In

addition, the Gaussian, the Laplace and the double Weibull priors are implemented to

obtain the MAP estimates of the simulated data. A single prior for whole data requires

approximately 7.37 seconds, and 8.72 seconds for level-dependent priors, to process 1000

iterative updates of approximately 128 wavelet coefficients.

To investigate the proposed methods, three different techniques are used to obtain a

reconstruction from observed data. The first is MMSE, which is described in Section 8.4,

where the true function is assumed to be known. Each of the four priors, the Gaussian,

the Laplace, the elastic-net and the double Weibull, are applied, for a range of parameter

values where applicable. The parameters are altered heuristically by small increments
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Prior σ
MAP

k

0.005 0.010 0.070

Laplace 0.5
MMSE 0.0043 0.0205 5.2906

κ̂MMSE 0.0255 0.2588 3.0136

Elastic-net
0.5

MMSE 0.004 0.0119 4.7830

κ̂MMSE 1.0052 1.9014 3.0179

γ̂MMSE 0.1221 0.1630 0.3084

Gaussian 0.5
MMSE 0.0084 0.0371 5.1853

κ̂MMSE 0.0077 1.0863 2.0620

DW 0.5
MMSE 0.0048 0.0301 5.0823

b̂MMSE 0.8112 1.0540 3.9015

Table 8.1: Minimum MSE results to compare different priors for estimating the unknown

vector f . The Blocks test function, at m = 128 equally spaced points is used with different

levels of blur, which is given in (2.6), k, and σ2 =0.5

until the optimum, minimising the MSE, is located. The optimum parameter values for

each of the priors and the resultant MSE are listed in Tables 8.1 and 8.2 with the minimum

error highlighted in bold. Table 8.1 shows the results of MMSE by using MAP estimates

where the prior parameters κ̂, γ̂ and b̂ are computed for whole data. Table 8.2 shows

the results of MMSE where the prior parameters κ̂j, γ̂j and b̂j are level-dependent. At

each point in the trace the estimated value of the differential was compared with the true

function f , and the results were used to find the MSE over the whole signal, and then the

set of prior parameters leading to the MMSE is collected. These results of estimating the

prior parameters can be used to obtain a reconstruction using the corresponding Gaussian,

Laplace, double Weibull or elastic-net priors.

Overall, for each of the blur levels tested, the elastic-net method outperformed all other

methods and improves the estimation. The double Weibull prior performed well and this

was the most computationally efficient of the single component priors models. Addi-

tionally, the double Weibull distribution provides better results than the Gaussian and

Laplace, reducing the mean squared-error.
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Prior σ
k

0.005 0.010 0.070

Laplace 0.5

MMSE 0.0040 0.0136 3.2402

κ̂jMMSE

(0.0573)6 (0.0301)5 (0.0621)6 (0.0496)5 (0.1070)6 (0.0823)5

(0.0154)4 (0.0288)3 (0.0314)4 (0.0169)3 (0.0536)4 (0.0492)3

(0.0143)2 (0.0101)1 (0.0124)2 (0.0087)1 (0.0267)2 (0.0189)1

(0.0071)0 (0.0025)c0 (0.0062)0 (0.0024)c0 (0.0133)0 (0.0151)c0

Elastic-net 0.5

MMSE 0.0030 0.0105 2.9570

κ̂jMMSE

(0.4133)6 (0.2071)5 (0.4785)6 (0.3730)5 (0.1549)6 (0.0957)5

(0.0603)4 (0.0239)3 (0.0781)4 (0.0318)3 (0.0546)4 (0.0177)3

(0.1033)2 (0.0730)1 (0.1196)2 (0.0845)1 (0.0387)2 (0.0273)1

(0.0516)0 (0.0181)c0 (0.0598)0 (0.0265)c0 (0.0193)0 (0.0125)c0

γ̂jMMSE

(0.0717)6 (0.0556)5 (0.0345)6 (0.0862)5 (0.0505)6 (0.0448)5

(0.4012)4 (0.5238)3 (0.6703)4 (0.5751)3 (0.7758)4 (0.7241)3

(0.0179)2 (0.0126)1 (0.0086)2 (0.0060)1 (0.0126)2 (0.0089)1

(0.0089)0 (0.0189)c0 (0.0043)0 (0.0076)c0 (0.0063)0 (0.0072)c0

Gaussian 0.5

MMSE 0.0032 0.0153 3.8037

κ̂jMMSE

(0.0316)6 (0.0158)5 (0.0417)6 (0.0282)5 (0.0561)6 (0.0493)5

(0.0045)4 (0.0032)3 (0.0050)4 (0.0016)3 (0.0132)4 (0.0085)3

(0.0079)2 (0.0055)1 (0.0104)2 (0.0073)1 (0.0140)2 (0.0099)1

(0.0039)0 (0.0061)c0 (0.0052)0 (0.0071)c0 (0.0070)0 (0.0017)c0

DW 0.5

MMSE 0.0035 0.0131 3.8501

b̂jMMSE

(1.0940)6 (1.7413)5 (1.7801)6 (1.4767)5 (2.1910)6 (2.9084)5

(1.8792)4 (1.2885)3 (1.6889)4 (1.3267)3 (2.2647)4 (2.2492)3

(1.2735)2 (1.1933)1 (1.4450)2 (1.3146)1 (2.5477)2 (2.3873)1

(1.1367)0 (1.0393)c0 (1.2225)0 (1.0680)c0 (2.2738)0 (2.0831)c0

Table 8.2: Minimum MSE result of simulation to compare the thresholding methods for

estimating the unknown vector f . Prior parameters are estimated at each level j. The

Blocks test function, at m = 128 equally spaced points, is used with different levels of k

and with σ2 equal to 0.5.
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The second technique, to obtain a reconstruction, is to use the MCMC algorithm 3,

which is described in this chapter, to obtain the posterior mean (PM) estimator. In this

procedure, prior parameters are assigned prior distributions. The procedure is described

in Section 8.4. However, it is difficult to apply the prior simulation parameter estimation

method without any real information about the true susceptibility. In general, the basic

idea of MCMC approach is to apply a Markov Chain to generate pseudo-random samples

such that its stationary distribution to follow a target probability distribution to provide

the desired posterior distribution. So, MCMC result for df is a matrix, where the numbers

of columns represents length of data and the number of rows represents the number of

replications after equilibrium. Suppose the number of replications after equilibrium is

equal to 1000. The MCMC results after equilibrium for prior parameters κ, γ and σ2 are

vectors of length 1000. Then the average of the samples can be calculated to compute d̂f ,

κ̂, γ̂ and σ̂2. Figure 8.3 shows the results of using the average of MCMC estimates. Also,

quantiles are used to obtain the credible intervals from the sample of MCMC.

The third technique, to obtain a reconstruction, is to use MAP by annealing the MCMC

algorithm, see Section 8.4. In this procedure, the prior parameters are described by the

prior distributions. However, the reconstruction was made by taking the result of the

final iteration. Figure 8.4 shows the reconstructions of MAP estimates and the credible

intervals of these reconstructions were obtained from MCMC results.

Figure 8.4 and 8.3 show the reconstruction for the Blocks test function using MAP and

PM, respectively. Overall, for each of the blur levels tested, the elastic-net and the double

Weibull priors outperformed all other priors considered, including the Laplace and the

Gaussian priors. Also, it can be seen that the reconstructions using a single prior for whole

data fluctuate slightly. That is because there is one value of the threshold for the whole

set of wavelet coefficients. The main interest is that MAP and PM using the elastic-net

and the double Weibull priors give excellent reconstructions.
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Figure 8.3: Plots of the reconstructions using the PM estimate to estimate the unknown

vector f . Blocks test function at m = 128 equally spaced points is used as the true

function, plotted using a black line, green line is made by multiplying the blocks by

the blur, which is given in (2.6), k = 0.005 and the red line shows the observed data

with noise σ2 = 0.5: (a) true Blocks test function, noise-free data and observations with

large measurement error; (b) Single Laplace prior; (c) level-dependent Laplace priors; (d)

Single elastic-net prior; (e) level-dependent elastic-net priors; (f) Single Gaussian prior; (g)

level-dependent Gaussian priors; (h) Single double Weibull prior; and (i) level-dependent

double Weibull priors.
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Figure 8.4: Plots of the reconstructions using the MAP estimate to estimate the unknown

vector f . Blocks test function at m = 128 equally spaced points is used as the true

function, plotted as a black line, the green line is made by multiplying the blocks by

the blur, which is given in (2.6), k = 0.005 and the red line shows the observed data

with noise σ2 = 0.5: (a) true Blocks test function, noise-free data and observations with

large measurement error; (b) Single Laplace prior; (c) level-dependent Laplace priors; (d)

Single elastic-net prior; (e) level-dependent elastic-net priors; (f) Single Gaussian prior; (g)

level-dependent Gaussian priors; (h) Single double Weibull prior; and (i) level-dependent

double Weibull priors.
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8.6 Conclusions

Within this chapter the Gaussian, the Laplace, the elastic-net and the double Weibull dis-

tributions were introduced and used as prior models for wavelet coefficients. The approach

has also been successfully applied to the Blocks test function, including parameter estima-

tion using prior distributions for the whole wavelet coefficient vector and level-dependent

priors. Two estimators were used, the PM estimate extracted from the MCMC sample;

and the MAP estimate. In addition, the parameters σ, κ, γ and b are estimated by the

minimum mean squared-error method.

Comparing the different priors, the elastic-net prior requires approximately 2 minutes to

process 10,000 iterations of 128 wavelet coefficients. Also, the Gaussian, the Laplace and

the double Weibull priors require approximately 11
3

minutes. The MAP estimates of the

Blocks test function provides excellent reconstruction. The method is successfully applied

to produce good reconstructions of the true feature profiles.

Overall, it was found that the level-dependent prior provides better reconstruction results

than when using a single value of the parameters κ, γ and b for the whole wavelet coefficient

vector. Also, the elastic-net prior distribution gives good reconstructions, which are close

to the true feature profile, even when estimating the prior parameters.

A major limitation of performing a two-stage inversion and noise reduction, as described

in Chapter 7, is that it is not possible to estimate standard errors, and hence it cannot

be used to compute credible intervals, as well as being difficult to estimate the prior

parameters. Furthermore, a single step reconstruction using the MCMC algorithm is

more reliable than a two-stage reconstruction as it is possible to test many candidate

priors in the estimation, and credible intervals can be computed.

In conclusion the best estimates are generated by a prior distribution incorporating the

elastic-net prior. This is, not just merely in terms of MSE but because it gives recon-

structions of the shape of the vector f .



Chapter 9

Application to 1D archaeological

stratigraphy

9.1 Overview

This chapter is organised as follows: Section 9.2 provides an introduction to estimation

from simulated core data, whereas Section 9.3 describes the estimation of prior parameters,

whilst Section 9.4 defines an application to real data, and then Section 9.5 gives the

estimation of the susceptibility of real data. Finally, Section 9.6 provides conclusions.

9.2 Introduction to real and simulated core data

Real data

The cores were extracted from the ‘Park’, Guiting Power, which is a late iron-age farm-

stead. The experiment consisted of burning to the ground a wooden funeral pyre con-

taining the corpse of a sheep followed by covering the burnt area with topsoil. Five cores

were removed from the pyre region of the site, four from the main area of burning and one

187
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from the periphery, and then taken to the laboratory for analysis, where each core was

passed through the detector coil and the observed data recorded as described by Allum

et al. (1999) and Aykroyd and Al-Gezeri (2014).
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Figure 9.1: Plots of the real data from the ‘Park’, Guiting Power, where (I) shows data

taken from the periphery around main area and (II)-(V) show data removed from the

main area of burning (Allum et al., 1999).

From Figure 9.1 it can be seen that the data from the periphery (I) has low magnetic

susceptibility and there is no peak to be seen. It can also be seen that dataset (II) is

similar to dataset (III) and dataset (IV) is similar to dataset (V). Additionally, it can be

seen that the cores removed from the main area of burning (II)-(V) have higher magnetic

susceptibility than the data taken from the periphery (I). Thus, the main area of burning

has much higher magnetic susceptibility than the periphery.

Simulated data

Within this section, parameters are estimated from five simulated cores created by Aykroyd

and Al-Gezeri (2014). In the real data, the features of the truth are usually not avail-

able. Instead it is reasonable to use simulated datasets, where the properties and features

are known. Therefore five simulated cores will be studied and analysed and the simu-
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lated datasets will be used to estimate the parameters Λ, κ, λ and γ using minimum

mean squared-error (MMSE), which will be used in reconstruction from the real data,

where MMSE is described in Sections 2.13 and 8.4. Since the true susceptibility profiles

of simulated data are known, the accuracy of the statistical estimation process can be

assessed.

Before starting the analysis, consider the following data collection method, as described in

Section 2.4; the plastic cylinder, containing the core, is positioned a small distance from

one end of the detector coil; then it is moved in small steps, pausing between movements

for readings to be made. Therefore, it may be assumed that, initially and finally, the core

produces no effect and hence the first few and last few readings are zero. However, as the

core draws near the electrical coil, the magnetic readings increase.

Let the output readings be the data y = {yi, i = 1, 2, . . . , n}. The data represents obser-

vations of the susceptibility over the length of the core. Let the magnetic susceptibilities

be f = {fj, j = 1, 2, . . . ,m}. Also, we believe that the true values of f are larger than

zero or equal to zero. The observed measurement yi is then given by the convolution

yi =
m∑
j=1

hijfj + εi, for i = 1, . . . , n, −∞ < yi <∞, fi ≥ 0, (9.1)

where εi ∼ N(0, σ2), with εi, εj (i 6= j) independent and hij as defined in Equation (2.3).

Figure 9.2 shows a diagram of a simple core along with a corresponding susceptibility

profile. Assume that the archaeology occupies a single layer, and that the site surface is

at the top of the diagram. In practice, all the features of the core, such as depth, extent

and susceptibility are unknown. The value d1 represents the distance before the core

enters the coil and the susceptibility over d1 is assumed to be exactly zero. The value d2

is assumed to be the first part of the core which enters the coil; it has susceptibility, xB,

which represents a background susceptibility. As the core passes through, the second part

of the core, of length d3, represents an archaeological feature with susceptibility xF . There

is a second background part, which is of length d4 and has susceptibility xB. Finally, d5

represents the last distance after the core has emerged, and has zero susceptibility before

the data recording stops; for more detail see Aykroyd and Al-Gezeri (2014).
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Figure 9.2: Diagram of the extracted core and corresponding susceptibility profile, where

xB represents a background susceptibility, xF represents archaeological feature suscepti-

bility, d1 and d5 represent the distance before and after the core enters and emerges respec-

tively, d2 and d4 represent the distances when the magnetic susceptibility of background

is recorded and d3 represents the distance when magnetic susceptibility of archaeological

feature is recorded (Aykroyd and Al-Gezeri, 2014).

Distances
Susceptibility

Feature Background

Core d1 d2 d3 d4 d5 xF xB

(cm) (cm) (cm) (cm) (cm) SI x10−3 SI x10−3

1 80 30 70 140 80 1.1 0.2

2 80 30 70 140 80 1.5 0.2

3 80 30 80 130 80 1.8 0.2

4 80 30 160 50 80 1.1 0.2

5 80 30 150 60 80 1.0 0.2

Table 9.1: True values of length of core and feature susceptibility for five simulated cores

(Aykroyd and Al-Gezeri, 2014).
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Table 9.1 shows the features of the five simulated cores generated by Aykroyd and Al-

Gezeri (2014). They assume that the overall length of the data is 4.0 m, with a soil core

length of 2.4 m, with the background susceptibility fixed at 0.2 (SI x10−3), and the depth

fixed at 30 cm, corresponding to the modern topsoil deposited after the archaeology was

leveled to the prevailing ground level.

It can be seen, from Table 9.1, that the first three cores have a small extent, whilst the

fourth and fifth cores have a large extent. The parameters d1 and d5 correspond to the

readings when no core is in the detector, meaning before the core enters and after it

emerges. All cores (1)-(5) have a similar distance, d1 and d5, of zero susceptibility, equal

to 80 cm. The value d2 represents the depth of the feature layer, whereas d3 represents the

extent of the feature, and d4 represents the depth of background below the feature layer.

The feature and background susceptibility are the parameters xF and xB respectively. The

key parameters are d2, d3 and xF , whereas d1 and d2 can be measured with high reliability,

the background susceptibility, xB, can be measured by taking a separate sample, and d4

can be calculated by subtraction, given d2, d3 and the overall length of the core (Aykroyd

and Al-Gezeri, 2014).

Figure 9.3 shows the plots of the five simulated cores represented in Table 9.1. It also

shows the observations; the black lines show the true values and the red lines show the

observations. These observations represent the true data corrupted by noise, and there is

also blurring. In addition, it can be seen that the observations follow smooth curves and

the features cannot be detected well from these datasets. This means that it is difficult

to accurately compute the features, background susceptibility, and the depth and extent.

It is believed that the real susceptibility profile is a step function. Hence the simulated

cores reflect this belief, and therefore can be used to estimate the prior parameters Λ, κ,

λ, γ.
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Figure 9.3: Plots of the five simulated cores: the black lines show the true susceptibility;

and the red lines show the observations (Aykroyd and Al-Gezeri, 2014).

9.3 Minimum mean squared-error prior parameter

estimation

General

In this section, two methods, one-stage and two-stage, will be used to estimate θ or θ, using

MMSE. More precisely, different approaches will be applied for estimating parameters such

as θ = {Λ}, θ = {κ}, θ = {Λ, λ}, θ = {κ, γ}, or θ = {Λ, κ}, and for level-dependent

priors θ = {κ}, θ = {Λ,λ}, θ = {Λ,κ} or θ = {κ,γ}. The first is to use the two-stage

method to estimate θ, where the parameter λ denotes the value of the threshold and the

parameter Λ represents the value of the smoothing parameter in the inversion method.

The second process involves using the one-stage method to estimate θ, the parameters κ

and γ represent prior knowledge. All explanations related to the main idea of two-stage

estimation were provided in Section 7.5 and Algorithm 2, in Section 2.13, was used to

build a reconstruction using the two-stage process. Algorithm 5 in Section 8.4 explains

the one-stage process.
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Two-stage estimation

The purpose of this subsection is to estimate parameters from simulated cores using

the two-stage methods, such as IT-TO and WVD-TO with classical thresholding rules,

DWWS-LPM, DUHT, BlockSure and EB (posterior median).

First-order method

Rule Min
Core

1 2 3 4 5

BlockSure (IT-TO)
MMSE 0.016 0.036 0.040 0.017 0.013

Λ̂MMSE 0.160 0.074 0.076 0.377 0.127

EB (IT-TO)
MMSE 0.015 0.035 0.039 0.017 0.012

Λ̂MMSE 0.145 0.062 0.064 0.343 0.120

Table 9.2: The IT-TO results for minimum MSE, described in Section 2.13, using Block-

Sure and EB methods to estimate parameter Λ for different core samples. The bold font

represents the smallest MSE.

First-order method

Rule Min
Core

1 2 3 4 5

Hard (IT-TO)

MMSE 0.012 0.026 0.031 0.016 0.011

Λ̂MMSE 0.066 0.017 0.018 0.313 0.074

λ̂MMSE

(0.0828)7 (3.1084)6 (0.1564)5 (0.0853)7 (0.6735)6 (0.2377)5 (0.7956)7 (0.1940)6 (0.4896)5 (0.3377)7 (0.0652)6 (0.1556)5 (0.1339)7 (3.1359)6 (0.2207)5

(0.3649)4 (1.1324)3 (0.6943)4 (1.2433)3 (0.9767)4 (0.7154)3 (0.2475)4 (0.2679)3 (0.3073)4 (1.1083)3

Soft (IT-TO)

MMSE 0.0150 0.033 0.037 0.015 0.011

Λ̂MMSE 0.0816 0.012 0.052 0.201 0.083

λ̂MMSE

(0.1910)7 (0.7457)6 (0.0367)5 (0.0826)7 (0.0483)6 (0.2377)5 (0.5077)7 (0.0023)6 (0.0977)5 (0.1164)7 (0.0002)6 (0.0547)5 (0.1325)7 (0.1278)6 (0.0352)5

(0.2776)4 (0.0937)3 (0.2270)4 (0.5618)3 (0.0553)4 (0.3712)3 (0.0021)4 (0.3106)3 (0.0709)4 (0.3712)3

G (IT-TO)

MMSE 0.013 0.031 0.033 0.015 0.011

Λ̂MMSE 0.073 0.014 0.0440 0.179 0.097

λ̂MMSE

(0.2150)7 (0.0405)6 (0.0950)5 (1.2662)7 (0.3365)6 (0.1550)5 (0.2930)7 (0.0446)6 (0.1768)5 (0.1177)7 (0.0180)6 (0.0973)5 (0.1987)7 (0.0323)6 (0.0888)5

(0.7285)4 (0.2311)3 (0.4034)4 (0.7708)3 (0.3204)4 (0.8998)3 (0.1432)4 (0.6818)3 (0.1563)4 (0.6380)3

SCAD (IT-TO)

MMSE 0.014 0.030 0.030 0.016 0.010

Λ̂MMSE 0.092 0.021 0.031 0.188 0.086

λ̂MMSE

(0.1980)7 (0.0208)6 (0.0780)5 (0.2031)7 (0.5807)6 (0.1187)5 (1.2376)7 (0.0486)6 (0.1515)5 (0.1938)7 (0.0186)6 (0.0653)5 (0.5024)7 (0.5547)6 (0.0934)5

(0.1674)4 (0.1610)3 (0.2269)4 (0.5364)3 (0.3656)4 (0.8242)3 (0.1506)4 (0.1559)3 (0.1455)4 (0.5222)3

DWWS-LPM (IT-TO)

MMSE 0.016 0.036 0.040 0.017 0.013

Λ̂MMSE 0.153 0.073 0.068 0.378 0.127

κ̂MMSE

(0.0398)7 (3.5852)6 (3.0636)5 (0.0191)7 (0.0165)6 (2.1915)5 (0.9249)7 (1.0565)6 (0.0021)5 (0.0299)7 (1.1329)6 (2.6393)5 (0.0217)7 (0.0100)6 (2.1673)5

(2.0229)4 (3.4294)3 (2.3145)4 (1.9441)3 (1.3797)4 (1.6046)3 (1.7428)4 (1.6564)3 (1.9383)4 (1.3538)3

Table 9.3: The IT-TO results for minimum MSE, described in Section 2.13, of the dif-

ferent rules to estimate parameters Λ, κ and λ for different core samples. The bold font

represents the smallest MSE.

For each core, the parameters θ or θ are estimated using the MMSE method, explained in
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First-order method-DUHT

Core MMSE Λ̂MMSE λ̂MMSE

1 0.016 0.179
(0.0117)1 (0.0005)2 (0.0403)3 (0.0563)4 (0.0083)5 (0.0176)6 (0.0542)7 (0.0791)8 (0.0109)9 (0.0237)10 (0.0044)11

(0.0377)12 (0.0141)13 (0.0058)14 (0.0065)15 (0.0121)16 (0.0097)17 (0.0004)18 (0.0100)19 (0.0028)20 (0.0039)21 -

2 0.036 0.074
(0.0004)1 (0.0090)2 (0.0179)3 (0.0356)4 (0.0116)5 (0.0298)6 (0.0435)7 (0.0009)8 (0.0344)9 (0.0003)10 (0.0180)11

(0.0245)12 (0.0045)13 (0.0257)14 (0.0298)15 (0.0415)16 (0.0217)17 (0.0254)18 (0.0037)19 (0.0484)20 (0.0034)21 -

3 0.040 0.077
(0.0157)1 (0.0043)2 (0.0291)3 (0.0150)4 (0.0055)5 (0.0273)6 (0.0106)7 (0.0143)8 (0.0230)9 (0.0375)10 (0.0053)11

(0.0074)12 (0.0257)13 (0.0062)14 (0.0144)15 (0.0222)16 (0.0051)17 (0.0019)18 (0.0101)19 (0.0079)20 (0.0117)21 -

4 0.017 0.399
(0.0275)1 (0.0164)2 (0.0187)3 (0.0142)4 (0.0371)5 (0.0161)6 (0.0359)7 (0.0256)8 (0.0104)9 (0.0110)10 (0.0108)11

(0.0454)12 (0.0511)13 (0.0696)14 (0.0103)15 (0.0203)16 (0.0773)17 (0.0382)18 (0.0127)19 (0.0533)20 (0.0239)21 -

5 0.013 0.123
(0.0418)1 (0.0119)2 (0.0416)3 (0.0082)4 (0.0310)5 (0.0177)6 (0.0218)7 (0.0124)8 (0.0508)9 (0.0328)10 (0.0185)11

(0.0358)12 (0.0476)13 (0.0799)14 (0.0045)15 (0.0431)16 (0.0891)17 (0.0318)18 (0.0165)19 (0.0454)20 (0.0049)21 -

Table 9.4: The IT-TO results for minimum MSE, described in Section 2.13, using DUHT

method to estimate parameters Λ and λ for different core samples.

First-order method

Rule Min
Core

1 2 3 4 5

BlockSure (WVD-TO)
MMSE 0.016 0.036 0.040 0.017 0.013

Λ̂MMSE 0.164 0.074 0.078 0.331 0.130

EB (WVD-TO)
MMSE 0.016 0.036 0.040 0.017 0.013

Λ̂MMSE 0.159 0.073 0.075 0.375 0.123

Table 9.5: The WVD-TO results for minimum MSE, described in Section 2.13, using the

BlockSure and the EB (posterior median) methods to estimate parameter Λ for different

core samples. The bold font represents the smallest MSE.

Algorithm 2 and described in Section 2.13. However, in some methods only Λ is estimated,

such as the EB (posterior median) and the BlockSure methods, which are applied as plug-

in methods. Moreover, the first-order method, that is defined in Section 2.6, is involved

to estimate unknown vector f . The procedure is shown in Algorithm 2, which described

in Section 2.13. The total number of iterations equals 6000, where for each iteration, θ

or θ are proposed.

The results of the IT-TO method are summarised in Tables 9.3, 9.2 and 9.4, where bold

numbers indicate the smallest MSE result for each core. It can be concluded that classical,

EB (posterior median), DWWS-MAP and DUHT methods improve MMSE.

Tables 9.6, 9.5 and 9.7 shows the WVD-TO results for minimum MSE. In practice, the
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First-order method

Rule Min
Core

1 2 3 4 5

Hard (WVD-TO)

MMSE 0.015 0.034 0.041 0.017 0.014

Λ̂MMSE 0.136 0.015 0.020 0.254 0.115

λ̂MMSE

(0.0010)7 (0.0002)6 (0.0001)5 (0.0034)7 (0.0265)6 (0.0091)5 (0.4676)7 (0.0923)6 (0.1449)5 (0.0027)7 (0.0009)6 (0.0001)5 (0.0185)7 (0.0459)6 (0.0184)5

(0.0005)4 (0.0028)3 (0.0006)4 (0.0084)3 (0.0045)4 (0.0809)3 (0.0029)4 (0.0042)3 (0.0013)4 (0.0109)3

Soft (WVD-TO)

MMSE 0.017 0.039 0.044 0.017 0.012

Λ̂MMSE 0.080 0.031 0.053 0.190 0.092

λ̂MMSE

(0.0027)7 (0.0109)6 (0.0311)5 (0.0018)7 (0.0037)6 (0.0027)5 (0.0065)7 (0.0100)6 (0.0681)5 (0.0108)7 (0.0353)6 (0.0676)5 (0.0102)7 (0.0067)6 (0.0208)5

(0.0004)4 (0.0096)3 (0.0001)4 (0.0023)3 (0.0003)4 (0.0154)3 (0.0001)4 (0.0138)3 (0.0003)4 (0.0159)3

G (WVD-TO)

MMSE 0.015 0.037 0.042 0.016 0.011

Λ̂MMSE 0.069 0.023 0.048 0.142 0.093

λ̂MMSE

(0.0443)7 (0.0676)6 (0.4312)5 (0.0214)7 (0.0082)6 (0.0099)5 (0.0545)7 (0.1302)6 (0.4709)5 (0.0383)7 (0.0440)6 (0.4587)5 (0.0432)7 (0.0797)6 (0.4042)5

(0.0012)4 (0.0243)3 (0.0004)4 (0.0042)3 (0.0014)4 (0.0258)3 0.0007)4 (0.0237)3 (0.0008)4 (0.0225)3

SCAD (WVD-TO)

MMSE 0.011 0.036 0.040 0.016 0.011

Λ̂MMSE 0.084 0.032 0.029 0.1316 0.084

λ̂MMSE

(0.0105)7 (0.0036)6 (0.0130)5 (0.1233)7 (0.0233)6 (0.1750)5 (0.0450)7 (0.0562)6 (0.0390)5 (0.0163)7 (0.0098)6 (0.0281)5 (0.0105)7 (0.0036)6 (0.0130)5

(0.0007)4 (0.0180)3 (0.0002)4 (0.0040)3 (0.0019)4 (0.0277)3 (0.0009)4 (0.0172)3 (0.0007)4 (0.0180)3

DWWS-LPM (WVD-TO)

MMSE 0.023 0.052 0.077 0.026 0.019

Λ̂MMSE 0.014 0.148 0.015 0.978 0.858

κ̂MMSE

(0.1739)7 (0.8747)6 (0.7507)5 (0.0987)7 (0.0936)6 (0.0753)5 (0.4269)7 (3.0793)6 (0.8431)5 (1.3801)7 (2.6195)6 (1.0560)5 (1.1256)7 (2.1688)6 (0.7714)5

(1.3664)4 (0.7532)3 (0.0768)4 (0.0504)3 (1.0637)4 (0.0985)3 (0.9831)4 (0.0148)3 (0.39324 (0.0086)3

Table 9.6: The WVD-TO results for minimum MSE, described in Section 2.13, of the

different rules to estimate parameters Λ, κ and λ for different core samples. The bold

font represents the smallest MSE.

First-order method-DUHT

Core MMSE Λ̂MMSE λ̂MMSE

1 0.013 0.047
(0.0005)1 (0.0001)2 (0.0008)3 (0.0010)4 (0.0004)5 (0.0015)6 (0.0013)7 (0.0007)8 (0.0007)9 (0.0014)10 (0.0607)11

(0.0439)12 (0.0072)13 (0.0070)14 (0.0009)15 (0.0566)16 (0.0209)17 (0.0614)18 (0.0079)19 (0.0146)20 (0.0504)21 -

2 0.021 0.0072
(0.0016)1 (0.0005)2 (0.0001)3 (0.0008)4 (0.0010)5 (0.0004)6 (0.0015)7 (0.0013)8 (0.0007)9 (0.0007)10 (0.0745)11

(0.1548)12 (0.1021)13 (0.0224)14 (0.0027)15 (0.0003)16 (0.1654)17 (0.0394)18 (0.1071)19 (0.0358)20 (0.0313)21 -

3 0.037 0.042
(6× 10−5)1 (2× 10−5)2 (2× 10−5)3 (1× 10−6)4 (1× 10−5)5 (4× 10−6)6 (1× 10−5)7 (4× 10−5)8 (9× 10−6)9 (1× 10−5)10 (7× 10−6)11

(8× 10−6)12 (4× 10−6)13 (2× 10−5)14 (3× 10−6)15 (1× 10−5)16 (1× 10−6)17 (1× 10−5)18 (1× 10−5)19 (7× 10−6)20 (5× 10−6)21 -

4 0.002 0.063
(0.0002)1 (0.0006)2 (0.0012)3 (0.0011)4 (0.0007)5 (0.0001)6 (0.0011)7 (1× 10−5)8 (0.0003)9 (0.0008)10 (0.0030)11

(0.0075)12 (0.0099)13 (0.0024)14 (0.0035)15 (0.0158)16 (0.0022)17 (0.0069)18 (0.0110)19 (0.0003)20 (0.0069)21 -

5 0.005 0.727
(4× 10−5)1 (2× 10−5)2 (1× 10−5)3 (6× 10−6)4 (2× 10−5)5 (1× 10−5)6 (3× 10−5)7 (2× 10−6)8 (1× 10−5)9 (8× 10−6)10 (1× 10−5)11

(3× 10−6)12 (4× 10−7)13 (1× 10−5)14 (1× 10−5)15 (2× 10−5)16 (1× 10−5)17 (1× 10−5)18 (4× 10−6)19 (4× 10−6)20 (3× 10−6)21 -

Table 9.7: The WVD-TO results for minimum MSE, described in Section 2.13, using the

DUHT method to estimate parameters Λ and λ for different core samples.
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WVD-TO as the DUHT method provides a smaller MSE than the other thresholding

rules, which are shown in Tables (9.6) and (9.5).

One-stage approach

The purpose of this subsection is to apply the method of MMSE that is described in

Section 8.4 and estimate the parameters, θ or θ, using five datasets obtained from five

simulated cores. The minimum mean squared-error approach, based on the MAP esti-

mate, is applied to produce estimates of the prior parameters, θ or θ. Algorithm in 5,

described in Chapter 8, explains the one-stage procedure used to obtain the prior param-

eters from simulated data. The total number of runs equals 256×6000×500 = 7.68×108,

where the parameters θ or θ are proposed 500 times and the estimated susceptibilities

were compared with the true susceptibilities of the five cores. The number of iterations

and replications equal 256 and 6000, respectively. The results are summarised in Table

9.8, where bold numbers indicate the smallest MSE, and θ and θ, are estimated using a

single prior for different core samples.

Prior
Core

1 2 3 4 5

Laplace
MMSE 0.0119 0.0189 0.0227 0.0129 0.0095

κ̂MMSE 17.1029 14.1360 12.8202 13.0016 15.2445

Elastic-net

MMSE 0.0033 0.0069 0.0114 0.0032 0.0027

κ̂MMSE 14.1230 15.6785 14.0001 14.9020 17.3445

γ̂MMSE 0.9295 0.9238 0.9189 0.9091 0.9057

Gaussian
MMSE 0.0036 0.0075 0.0118 0.0035 0.0028

κ̂MMSE 12.0093 11.8091 13.1721 15.1775 14.1102

Table 9.8: The results for minimum MSE of the different priors used to estimate param-

eters κ and γ for different core samples, where MMSE is described in Section 8.4. The

bold font represents the smallest MSE.
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Prior
Core

1 2 3 4 5

Laplace

MMSE 0.0057 0.0121 0.0157 0.0051 0.0050

κ̂jMMSE

(14.3925)7 (10.1719)6 (14.3285)7 (10.1864)6 (14.3830)7 (10.1049)6 (14.3157)7 (10.1060)6 (14.3739)7 (10.1281)6

(7.0751)5 (5.0374)4 (7.07533)5 (5.0285)4 (7.0740)5 (5.0121)4 (7.0755)5 (5.0361)4 (7.0735)5 (5.0116)4

(3.5290)3 (2.4741)2 (3.5280)3 (2.4461)2 (3.5530)3 (2.4514)2 (3.5417)3 (2.4812)2 (3.5458)3 (2.4974)2

(1.7704)1 (0.8995)0 (1.7221)1 (0.8955)0 (1.7160)1 (0.8989)0 (1.7143)1 (0.8947)0 (1.7601)1 (0.8983)0

(0.8313)c0 (0.8313)c0 (0.8375)c0 (0.8312)c0 (0.8688)c0

Elastic-net

MMSE 0.0042 0.0116 0.0124 0.0058 0.0043

κ̂jMMSE

(14.1014)7 (9.9034)6 (14.3630)7 (10.1241)6 (11.5352)7 (8.1523)6 (21.3526)7 (15.2704)6 (14.3477)7 (10.1168)6

(7.0549)5 (4.9340)4 (7.1497)5 (5.0158)4 (5.7756)5 (3.9917)4 (10.6840)5 (7.4735)4 (7.1175)5 (5.0162)4

(3.4456)3 (2.3920)2 (3.4892)3 (2.2505)2 (2.7549)3 (1.8531)2 (5.4285)3 (3.6669)2 (3.5476)3 (2.4377)2

(1.7235)1 (0.8813)0 (1.6943)1 (0.8989)0 (1.3051)1 (0.7209)0 (2.4289)1 (0.3345)0 (1.6494)1 (0.8961)0

(0.8375)c0 (0.8375)c0 (0.7875)c0 (0.3537)c0 (0.8062)c0

γ̂jMMSE

(0.1686)7 (0.2593)6 (0.0246)7 (0.1381)6 (0.0938)7 (0.1036)6 (0.0983)7 (0.1315)6 (0.1462)7 (0.1727)6

(0.4047)5 (0.6713)4 (0.3915)5 (0.5125)4 (0.3224)5 (0.6186)4 (0.2674)5 (0.4534)4 (0.58427)5 (0.7218)4

(0.7253)3 (0.8212)2 (0.9246)3 (0.8001)2 (0.4274)3 (0.6194)2 (0.7041)3 (0.6709)2 (0.5312)3 (0.5568)2

(0.9218)1 (0.0105)0 (0.8992)1 (0.0015)0 (0.9452)1 (0.0058)0 (0.9802)1 (0.0061)0 (0.8719)1 (0.0091)0

(0.0103)c0 (0.0017)c0 (0.0052)c0 (0.0064)c0 (0.0097)c0

Gaussian

MMSE 0.0087 0.0212 0.0220 0.0066 0.0050

κ̂jMMSE

(12.8746)7 (9.0687)6 (10.7532)7 (7.5573)6 (14.2840)7 (10.0657)6 (14.2870)7 (10.0624)6 (14.2201)7 (10.4309)6

(6.3501)5 (4.5513)4 (5.3519)5 (3.7564)4 (7.0562)5 (4.9908)4 (7.0751)5 (5.0512)4 (7.0741)5 (5.0153)4

(3.1504)3 (2.1523)2 (2.6509)3 (1.6519)2 (3.4408)3 (2.2274)2 (3.5387)3 (2.4063)2 (3.5331)3 (2.4325)2

(1.5532)1 (0.8046)0 (1.2501)1 (0.6720)0 (1.6214)1 (0.8927)0 (1.5237)1 (0.8929)0 (1.5025)1 (0.8887)0

(0.8625)c0 (0.6275)c0 (0.8271)c0 (0.89375)c0 (0.8563)c0

Table 9.9: The results for minimum MSE of the different priors using level-dependent prior

procedure to estimate parameters θ for different core samples, where minimum MSE is

described in Section 8.4. The bold font represents the smallest MSE.

There are three priors considered corresponding to the elastic-net with different values

of γ, the Laplace and the Gaussian prior. The elastic-net provides excellent results and

a smaller MMSE than Gaussian and Laplace. The Gaussian prior provides results, in

the MSE sense, similar to the elastic-net, whereas the Laplace prior provides a larger

MSE than the elastic-net and the Gaussian priors. Overall, for each of the simulated

cores considered, the elastic-net prior outperformed each of the other priors (Gaussian

and Laplace). Additionally, the elastic-net prior performed optimally and this was the

most computationally efficient of the single component priors.

Table 9.9 shows that the results of the MMSE calculations for level-dependent priors.
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Overall, the elastic-net prior provides a reconstruction which is close to the true sus-

ceptibility profile of the simulated core. It can be concluded that the one-stage method

provides a somewhat better performance for estimating the underlying test signals than

the two-stage method.

9.4 Reconstruction for the real data

General

In this chapter, there are three procedures to estimate the true susceptibility profiles. The

first is based on two-stage estimation using the values of parameters θ or θ taken from

column (2) of Tables 9.3, 9.2, 9.4, 9.6, 9.5 and 9.7. See Figures 9.4 and 9.5 for results.

The second procedure is based on the one-stage approach where the values of parameters

θ or θ are fixed and taken from column (4) in Tables 9.8 and 9.9 and used to obtain PM

and MAP reconstructions. See Figures 9.8, 9.9, 9.6 and 9.7. In the one-stage procedure, a

value for the variance of the noise σ2 is estimated from the finest level of detail coefficients

in the wavelet decomposition as shown in Equation (2.63).

The third approach is based on the hierarchical model where the parameters θ or θ and the

variance of the noise σ2 are described by prior distributions. Figures 9.10, 9.12, 9.11 and

9.13 show the reconstructions from real data. It can be concluded that the hierarchical

model with elastic-net provide excellent results.

IT-TO and WVD-TO reconstructions from MMSE results

In the case of the two-stage method, the values of parameters θ or θ are obtained from

column (2) in Tables 9.3, 9.2, 9.4, 9.6, 9.5 and 9.7. Using the values in the other columns

created smoothing and undesirable reconstructions. The results using the parameter

values from core (2) are shown as they give better reconstructions.



199 Application to 1D archaeological stratigraphy

(I)

−50
0

200

−0.001 0 0.004

Estimated susceptibility

mm

(II)

−50

0

200

−0.001 0 0.004

Estimated susceptibility

mm

(III)

−50

0

200

−0.001 0 0.004

Estimated susceptibility

mm

(IV)

−50
0

200

−0.001 0 0.004

Estimated susceptibility

mm

(V)

−50
0

200

−0.001 0 0.004

Estimated susceptibility

mm

(I)

−50
0

200

−0.001 0 0.004

Estimated susceptibility

mm

(II)

−50

0

200

−0.001 0 0.004

Estimated susceptibility

mm

(III)

−50

0

200

−0.001 0 0.004

Estimated susceptibility

mm

(IV)

−50
0

200

−0.001 0 0.004

Estimated susceptibility

mm

(V)

−50
0

200

−0.001 0 0.004

Estimated susceptibility

mm

(I)

−50
0

200

−0.001 0 0.004

Estimated susceptibility

mm

(II)

−50

0

200

−0.001 0 0.004

Estimated susceptibility

mm

(III)

−50

0

200

−0.001 0 0.004

Estimated susceptibility

mm

(IV)

−50
0

200

−0.001 0 0.004

Estimated susceptibility

mm

(V)

−50
0

200

−0.001 0 0.004

Estimated susceptibility

mm

(I)

−50
0

200

−0.001 0 0.004

Estimated susceptibility

mm

(II)

−50

0

200

−0.001 0 0.004

Estimated susceptibility

mm

(III)

−50

0

200

−0.001 0 0.004

Estimated susceptibility

mm

(IV)

−50
0

200

−0.001 0 0.004

Estimated susceptibility

mm

(V)

−50
0

200

−0.001 0 0.004

Estimated susceptibility

mm

Figure 9.4: Plots of the reconstructions using the IT-TO method for estimating pyre

cores: the first row represents the reconstruction using the hard rule; the second row

represents the reconstruction using the DWWS-LPM method; the third row represents

the reconstruction using the EB (posterior median) method; and the fourth row represents

reconstruction using the DUHT method, where first-order method is used.

Four techniques of thresholding are chosen: the hard, the DWWS-LPM, the EB and the

DUHT methods. The reason for choosing these thresholding methods is that they have

been shown to provide a step function reconstruction and improved MSE. Also, different

types of transform are chosen, such as the DWT and the DUHT. Additionally, different

priors are involved such as single prior (DWWS-LPM) and mixture prior (EB).

Figures 9.4 and 9.5 show reconstructions of the five cores using the two-stage method

with the IT-TO and the WVD-TO procedures, respectively. The panels are organised as

follows; the first row shows the reconstructions using the hard rule; the second row shows

the reconstructions using the DWWS-LPM; the third row shows the reconstruction using
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Figure 9.5: Plots of the reconstructions using the WVD-TO method for estimating pyre

cores: the first row represents the reconstruction using the hard rule; the second row

represents the reconstruction using the DWWS-LPM; the third row represents the recon-

struction using the EB; and the fourth row represents reconstruction using the DUHT

with first-order smoothing method.

the EB; and the fourth row shows reconstructions using the DUHT with the first-order

method. And the columns represent the reconstructions of different real data, which are

taken from the ‘Park’, Guiting Power.

It can be seen from Figure 9.4 that the hard thresholding rule provides sharp edges and

flat topped reconstructions, and the features of the cores can be seen clearly. Figure

9.5 shows reconstructions of the cores using the two-stage method with the WVD-TO

procedure, where it can be seen that the hard and the DWWS-LPM rules provide sharp

edges and flat topped reconstructions except the hard reconstruction of pyre (V).
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In general, the IT-TO involving the hard thresholding rule, the WVD-TO with the hard

thresholding rule and the DWWS-LPM method, provide good shape to the reconstruction.

Moreover, reconstruction with the WVD-TO involving the hard thresholding rule, and the

DWWS-LPM method gives the main blocks clearly. A major limitation of the two-stage

algorithm is that it is not possible to estimate the standard errors and then to compute

the credible interval.

PM and MAP reconstruction using MMSE parameters

The aim of this subsection is to show the reconstructions obtained from the PM and the

MAP estimates where the prior parameters are taken from columns (4) in Tables 9.8 and

9.9 and the total number of runs are equal to 256× 6000 = 15.36× 105.

In the case of the one-stage method, the procedure of MMSE, which is described in

Section 8.4, provides 60 reconstructions for each pyre, with total of 300 reconstructions for

estimating five pyre cores, where the values of parameters θ = {κ}, θ = {κ, γ}, θ = {κ} or

θ = {κ,γ} are obtained from the MMSE approach. Additionally, these prior parameters

are applied in the one-stage estimation to produce a reconstruction. The results using the

parameter values from core (4) are shown, as they give better reconstructions.

Figures 9.6, 9.7, 9.8 and 9.9 show the PM and the MAP estimates. The panels are organ-

ised as follows: the first row represents reconstruction using the Laplace prior, the second

row represents reconstruction using the elastic-net prior, while the third row represents

reconstruction using the Gaussian prior.

Figure 9.6 and 9.7 show PM reconstructions with single parameters κ and γ from column

(4) in Table 9.8, whereas the level-dependent parameter values are taken from column (4)

in Table 9.9.

In general, the Laplace prior provides a step reconstruction, but it also suggests that

pyre (I) has three peaks and the middle block is clearer than the elastic-net prior and

than the Gaussian reconstructions. For estimating pyre (II), the shape of the block is
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Figure 9.6: Plots of the reconstructions using the PM procedure, which is described in

Section 8.4, for estimating pyre cores: parameters κ and γ are fixed; the first row represents

the reconstruction using the Laplace; the second row represents the reconstruction using

the elastic-net; and the third row represents the reconstruction using the Gaussian prior.
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Figure 9.7: Plots of the reconstructions using the PM procedure, which is described in

Section 8.4, for estimating pyre cores: level-dependent prior is used and parameters κ

and γ are fixed; the first row represents the reconstruction using the Laplace; the second

row represents the reconstruction using the elastic-net; and the third row represents the

reconstruction using the Gaussian.
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Figure 9.8: Plots of the reconstructions using the MAP procedure, which is described

in Section 8.4, for estimating pyre cores: a parameters κ and γ are fixed; the first row

represents the reconstruction using Laplace; the second row represents the reconstruction

using elastic-net; and the third row represents the reconstruction using Gaussian.
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Figure 9.9: Plots of the reconstructions using the MAP procedure, which is described

in Section 8.4, for estimating pyre cores: level-dependent prior is used and parameters

κ and γ are fixed; the first row represents the reconstruction using Laplace; the sec-

ond row represents the reconstruction using elastic-net; and the third row represents the

reconstruction using Gaussian.
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not fully resolved from the Laplace prior, and the results of the elastic-net prior and the

Gaussian prior reconstructions are less satisfactory than the reconstruction obtained from

the Laplace prior. The PM estimates with the Laplace prior for estimating pyre (III),

(IV) and (V) provide excellent results and the features can be clearly identified.

Figure 9.8 shows the MAP reconstructions with single parameters, κ and γ. These param-

eters are chosen from column (4) in Table 9.8. Similarly, the Laplace prior provides sharp

edges and flat top reconstructions. Additionally, it suggests that pyre (I) has three peaks

and the middle block is clearer than the elastic-net prior and the Gaussian reconstructions.

For estimating pyre (II) the shape of the block is not fully resolved from Laplace prior

and the results are less satisfactory than the elastic-net and the Gaussian reconstructions.

The MAP estimation with the Gaussian prior creates sloping sides around the peak and

the features cannot be identified.

Figure 9.9 shows the MAP reconstructions using a level-dependent prior with parameters

from column (4) in Table 9.9. The shape of the reconstruction is a step function and

the features of the reconstruction with the Gaussian prior can be identified. The recon-

structions with the elastic-net and the Laplace are better than with the Gaussian prior

when using single prior parameters for all wavelet coefficients. The reconstructions with

the elastic-net and the Laplace also suggest that pyre (I) has three peaks and the middle

block is clearer than the Gaussian reconstruction. When estimating pyre (II) the shape

of the block is not fully resolved and the results are again less satisfactory with the Gaus-

sian prior, although for all reconstructions the start and the end point can be detected.

Finally, the MAP estimators for estimating pyre (III), (IV) and (V) provide excellent

results and the features can be identified. The Gaussian prior with level-dependent prior

provides a step reconstruction. On the other hand, the Gaussian prior with single prior

parameters for κ and γ provide a smooth reconstruction. Overall, the MAP estimates

with a level-dependent prior provide a good shape and flat top for the reconstructions.

It can be concluded that Laplace and elastic-net priors provide a step reconstruction and

the features can be identified and it is difficult to detect the feature of pyre from the
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reconstructions of Gaussian prior. Additionally, it is not necessary to use parameters

estimated from datasets to obtain a good reconstruction.

9.5 PM and MAP reconstruction with simultaneous

prior parameter estimation

Estimation using single prior for all wavelet coefficients

The purpose of this subsection is to apply the proposed method, introduced in Section

8.3, to real data. The wavelet coefficients and the prior parameters are estimated using

(i) a single prior distribution for all wavelet coefficients and (ii) level-dependent prior

distributions. The total number of runs is equal to 256× 6000 = 15.36× 105, where the

number of iterations equals 256 and the number of replications equals 6000.

In general, the PM estimates provide a good shape and flat topped reconstructions. The

main features of the reconstructions with all priors can be seen clearly. Also, the recon-

structions with the elastic-net and the Laplace suggest that pyre (I) has three peaks and

the middle block is more clear than the Gaussian prior reconstruction. For pyre (II) the

shape of the blocks is fully resolved and the start and end points are identical. The MAP

estimates for pyre (III), (IV) and (V) provide excellent results and the features can be

identified well.

Figure 9.10 shows the PM reconstructions including estimation of the parameters κ and

γ. The panels are organised as follows: the first row shows the reconstructions using the

Laplace prior, the second row shows the reconstructions using the elastic-net while the

third row shows the reconstructions using the Gaussian prior. The credible intervals are

also plotted using the sample quantiles, as explained in Chapter 8.

Similarly, Figure 9.12 shows the PM reconstructions using a level-dependent wavelet co-

efficients prior. PM estimates provide a good shape and flat top for the reconstructions.
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Figure 9.10: Plots of the reconstructions using the PM procedure, which is described in

Section 8.4, for estimating pyre cores: parameters κ and γ are estimated; the first row rep-

resents the reconstruction using the Laplace; the second row represents the reconstruction

using the elastic-net; and the third row represents the reconstruction using the Gaussian.
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Figure 9.11: Plots of the reconstructions using the MAP procedure, which is described

in Section 8.4, for estimating pyre cores: parameters κ and γ are estimated; the first

row represents the reconstruction using the Laplace; the second row represents the recon-

struction using the elastic-net; and the third row represents the reconstruction using the

Gaussian.
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The main features of the reconstructions of elastic-net, Laplace and Gaussian can be

identified.

Figure 9.11 shows the MAP reconstructions where the parameters κ and γ are estimated

using a single prior and the credible intervals are plotted by using the sample quantiles.

The MAP estimates provide a good shape for the reconstructions, and it can be seen that

the shape of the reconstruction obtained from the estimated single prior parameters is a

step function.

Also, the reconstruction with the Gaussian prior is smoother than with the elastic-net

and the Laplace prior. However, the reconstruction is smooth due to the jumps being

estimated by a series of small steps and, as a result, the shape of the block is not fully

resolved. The main features of the reconstructions with the elastic-net and the Laplace

prior can be identified.

The reconstructions of the elastic-net and the Laplace also suggest that pyre (I) has three

peaks with the middle block clearer than the Gaussian reconstructions. For pyre (II) the

shape of the block is fully resolved and for all reconstructions the start and end point can

be identified. Finally, the MAP estimates for pyre (III), (IV) and (V) provide excellent

results and the main features can be identified.

Estimation using level-dependent coefficient priors

Figure 9.13 shows the MAP reconstructions using level-dependent priors where there

is a separate prior for each wavelet coefficient level. The MAP estimates give better

performance, where the shapes of the reconstructions obtained are step functions, even,

when the reconstructions use the Gaussian prior.

The main features of the reconstructions using the elastic-net prior, the Laplace and

the Gaussian priors can also be detected. The reconstructions of the elastic-net and

Laplace also suggest that pyre (I) has three peaks, with the middle block clearer than the

Gaussian reconstructions. For pyre (II) the shape of the block is fully resolved. For all
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Figure 9.12: Plots of the reconstructions using the PM procedure, which is described in

Section 8.4, for estimating pyre cores: level-dependent priors are used; the first row repre-

sents the reconstruction using the Laplace; the second row represents the reconstruction

using the elastic-net; and the third row represents the reconstruction using the Gaussian.
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Figure 9.13: Plots of the reconstructions using the MAP procedure, which is described in

Section 8.4, for estimating pyre cores: level-dependent priors are used; the first row repre-

sents the reconstruction using the Laplace; the second row represents the reconstruction

using the elastic-net; and the third row represents the reconstruction using the Gaussian.
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reconstructions the start and end point can also be identified. Finally, MAP estimates for

pyre (III), (IV) and (V), which is described in Section 8.4, provide excellent results and

the features can be identified.

9.6 Summary of main features from real data

The individual reconstructed profiles were inspected to identity the main features nu-

merically. Results are summarized in Tables 9.10, 9.11, 9.12, 9.13 and 9.14 showing the

main features of pyre cores (I), (II), (III), (IV) and (V) based on the MAP results for the

elastic-net, with a level-dependent wavelet coefficient prior. It can be seen that the length

of all pyre cores, except (II), are equal to 144 mm the main area of burning has magnetic

susceptibility between 0.3 (SI x10−3) and 0.632 (SI x10−3), and magnetic susceptibility

of the region of the site has magnetic susceptibility between 0.133 (SI x10−3) and 2.57

(SI x10−3). The distance d1, which represents the recordings before the plastic cylinder

enters the detector, is 65 mm < d1 < 69 mm. The distance d̃, that represents the last

distance after the core has emerged, is 34 mm < d̃ < 82 mm. It can be seen that all pyre

cores have the same extent.

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 length of pyre variance

(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) SI x10−3

65 16 32 16 16 16 16 16 16 82

magnetic xF SI x10−3 - 0.688 - - 0.845 0.768 0.624 0.944 1.07 - 144 0.0305

susceptibility xB SI x10−3 - - 0.553 0.543 - - - - - -

SI x10−3 0 - - - - - - - - 0

Table 9.10: Estimating length parameters of the core and feature susceptibility for pyre

(I): d1 represents the recording start, before the plastic cylinder enters. The distances

d3 and d4 represent the second and third parts of the core and they have susceptibility,

which represents a background susceptibility xB. The distances d2, d5, d6, d7, d8 and d9

represent the first, fourth, fifth, sixth, seventh and eighth parts of the core respectively

and they have susceptibility which represents an archaeological feature with susceptibility

xF , and d10 represents the last distance after the core has emerged.
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d1 d2 d3 d4 d5 d6 d7 d8 length of pyre variance

(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) SI x10−3

66 16 16 32 32 32 32 34

magnetic xF SI x10−3 - - - - 2.57 0.666 - -

susceptibility xB SI x10−3 - 0.571 0.548 0.548 - - - - 128 0.723

SI x10−3 0 - - - - - 0 0

Table 9.11: Estimating length parameters of the core and feature susceptibility for pyre

(II): in d7, it is difficult to judge magnetic susceptibility as a background susceptibility

or negligible magnetic susceptibility; d1 represents the recording start, before the plastic

cylinder enters. The distances d2, d3 and d4 represent the first, second, third and eighth

parts of the core respectively and they have susceptibility which represents a background

susceptibility. The distances d5 and d6 represent the fourth and fifth parts of core and

they have susceptibility which represents an archaeological feature with susceptibility xF ,

and d8 represents the last distance after the core has emerged.

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 length of pyre variance

(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) SI x10−3

67 8 8 16 16 16 16 16 16 16 16 52

magnetic xF SI x10−3 - - - - 0.716 0.946 3.22 1.49 - 0.695 0.636 -

susceptibility xB SI x10−3 - 0.416 0.597 0.587 - - - - 0.520 - - - 144 0.0532

SI x10−3 0 - - - - - - - - - - 0

Table 9.12: Estimating length parameters of the core and feature susceptibility for pyre

(III): d1 represents the recording start, before the plastic cylinder enters. The distances d2,

d3, d4 and d9 represent the first, second, third and eighth parts of the core respectively and

they have susceptibility which represents a background susceptibility xB. The distances

d5, d6, d7, d8, d10 and d11 represent the fourth, fifth, sixth, seventh, ninth and tenth

parts of core and they have susceptibility which represents an archaeological feature with

susceptibility xF , and d12 represents the last distance after the core has emerged.
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d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 length of pyre variance

(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) SI x10−3

69 32 16 16 8 8 16 16 16 16 60

magnetic xF SI x10−3 - 0.628 - 1.82 1.30 1.07 - 0.538 1.00 - -

susceptibility xB SI x10−3 - - 0.438 - - - 0.353 - - 0.300 - 144 0.0786

SI x10−3 0 - - - - - - - - - 0

Table 9.13: Estimating length parameters of the core and feature susceptibility for pyre

(IV): d1 represents the recording start, before the plastic cylinder enters. The distances

d3, d7 and d10 represent the second, sixth and ninth parts of the core respectively and they

have susceptibility, which represent a background susceptibility xB. The distances d2, d4,

d5, d6, d8 and d9 represent the first, third, fourth, fifth, seventh and eighth parts of the

core respectively and they have susceptibility which represents an archaeological feature

with susceptibility xF , and d11 represents the last distance after the core has emerged.

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 length of pyre variance

(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) SI x10−3

69 16 16 32 16 16 16 16 16 65

magnetic xF SI x10−3 - - 0.628 - 2.30 1.03 - 0.853 - -

susceptibility xB SI x10−3 - 0.462 - 0.547 - - 0.600 - 0.632 - 144 0.0725

SI x10−3 0 - - - - - - - - 0

Table 9.14: Estimating length parameters of the core and feature susceptibility for pyre

(V): d1 represents the recording start, before the plastic cylinder enters. The distances d2,

d4, d7 and d9 represent the first, third, sixth and eighth parts of the core respectively and

they have susceptibility, which represent a background susceptibility xB. The distances d3,

d5, d6 and d8 represent the second, fourth, fifth and seventh parts of the core respectively

and they have susceptibility which represent an archaeological feature with susceptibility

xF , and d10 represents the last distance after the core has emerged.

Cores (I), (III), (IV) and (V) show a length of core equal to 144 mm, whereas pyre (II)

shows length equal to 128 mm.

The magnetic susceptibility of pyre (II), before the plastic cylinder has emerged, is lower

than pyre cores (I), (III), (IV) and (V). Note that, it is possible that core (II) shrank due

to drying out after collection or that there was a problem while recording the sample.
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9.7 Conclusions

An observation of the susceptibility profile alone cannot uniquely define the various phys-

ical features of the true susceptibility. It is not easy to estimate the parameters from

highly correlated data and using simple methods might provide an overestimate or under-

estimate that depends on the type of method and the level of the smoothing occurring at

sharp changes in the susceptibility profile. This impact cannot be overcome by tuning the

value of the smoothing parameter Λ and changing the method, instead it is a property of

the problem being considered.

One-stage and two-stage estimates clearly provide better estimation than using only an

inversion method, due to producing sharp edges and flat-topped reconstructions. In con-

trast, inversion methods involving smoothing create sloping sides around the peak rather

than the sharp vertical edge that are expected by archaeologists. Although a variety of

methods exist, two-stage approaches are widely used for filtering and thresholding. The

locations of clearly separated blocks of susceptibility are then predicted quite well, but

their shapes are smooth with no sharp edges. Furthermore, decreasing the level of the

smoothing parameter Λ does not help as the reconstruction is affected by noise. An alter-

native solution to the problem of smoothing would be to consider the one-stage estimators,

which improve the sharpness of the edges. In particular, the one-stage method provides

excellent results where the main features can be identified clearly.

The procedures for estimation can be divided into three types. Firstly, those where the

parameters θ or θ are estimated from simulated data and the resulting estimates are

used for estimating the susceptibility from real data, where the two-stage method is used.

The second is similar, except one-stage reconstruction is used. The third, is to use a

fully Bayesian approach, where the prior distributions are included and estimation and

reconstruction are preformed simultaneously.

In this chapter, the prior is chosen as the elastic-net, the Gaussian and the Laplace. In

addition, the method developed provides a general framework for reconstruction where



213 Application to 1D archaeological stratigraphy

sharp edges are believed to be important.

Finally, the method was illustrated on real data from an experiment to investigate the

effect of burning on magnetic susceptibility. The method was also extended to the elastic-

net, the Laplace and the Gaussian with one prior and level-dependent priors for the

wavelet coefficients, which involved a hierarchical model. By using these methods, the

local changes in susceptibility can be more clearly distinguished.



Chapter 10

Application to 2D magnetometry

data

10.1 Overview

This chapter is organised as follows: Section 10.2 provides an introduction, Section 10.3

explains wavelet methods for two dimensional data, Section 10.4 discusses estimation of σ2,

Section 10.5 gives an introduction to point spread function, whilst Section 10.6 describes

archaeological images, Section 10.7 considers Bayesian modelling of images, Sections 10.8

and 10.9 give the experimental results on simulated images, and apply the methods to 2D

real data. Finally, Section 10.10 gives the conclusions.

10.2 Introduction

Within this chapter, a new model is considered that depends on a statistical approach

and uses a stochastic algorithm for estimation of an image corrupted by noise and blur.

In particular, the proposed method describes an image in terms of matrices of wavelet

coefficients. The true image is estimated, in a Bayesian framework, using a Markov chain

214
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Monte Carlo algorithm (MCMC).

There are a wide range of articles applying MCMC algorithms to images. To name a few,

Besag (1983), who made the first recommendations for the use of prior information in

image processing, Geman and Geman (1984) set out the idea for pixel-prior distributions

and Qian and Titterington (1991) used the multidimensional Markov chain as a model for

texture and two types of stochastic models for texture to describe an image Markov mesh

(MM) and the Markov random field (MRF). Aykroyd (1998) used the multidimensional

Markov chain as a model for texture and investigated homogeneous and inhomogeneous

Gaussian random fields. Cross and Jain (1983) also used Markov random fields as texture

models, with binomial model taken as the basic model for the analysis. Each point in the

texture image has a binomial distribution with the probability parameters controlled by

the values of its neighbors.

There are several books and papers on the use of 2D-dimensional wavelets in the image

processing community. Denoising is a popular area of study, for example Bruce and Gao

(1996a) presented four wavelet applications: digital image compression; noise removal,

time-frequency analysis and the speeding up and improvement of classification algorithms.

Nason (2010a) explained the procedure of thresholding and gives an example of denoising

an image. Other articles in image processing using wavelet coefficients, include Antonini

et al. (1992), who used two procedures to process an image; one is based on a wavelet

transform and the other based on Shannon’s rate distortion theory.

In the remainder of this chapter, a two dimensional inverse problem is considered. Sec-

tion 10.3 explains wavelet methods for two dimensional data, this section also defines

an orthogonal matrix for two dimensional data. Section 10.4 discusses estimation of the

variance of noise for an image. In Section 10.5, the point spread function will be ex-

plained. Section 10.6 describes archaeological data. Section 10.7 shows that there are

two types of prior model proposed. The first depends on only a single prior parameter

for all wavelet coefficients, and the other is based on level-dependent priors. Different

probability distributions will also be applied. The proposed methodology is compared in
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extensive simulations and application to real data. Sections 10.8 and 10.9 give simple

examples of experimental result on simulated images to investigate and discover any error

attributed to the inversion procedure and not by mismodelling.

10.3 Wavelet coefficients for 2D images

As the results in Chapter 9 showed, the proposed techniques provide sharp edges and flat

topped reconstructions. These methods will now be adapted for use on two dimensional

magnetometry data. In this chapter only the PM and the MAP estimates, using the

MCMC approach, will also be used to provide reconstructions.

Two dimensional wavelets are used in applications involving images, matrices, and other

two dimensional data. The properties which make wavelets attractive for analysis of one

dimensional functions hold for two dimensional functions as well. In particular, the two

dimensional wavelets are constructed by taking the tensor product of a horizontal 1-D

wavelet and a vertical 1-D wavelet. This procedure leads to four different types of 2-D

wavelets

Φ(x, y) = φh(x)× φv(y), (10.1)

Ψv(x, y) = ψh(x)× φv(y), (10.2)

Ψh(x, y) = φh(x)× ψv(y), (10.3)

Ψd(x, y) = ψh(x)× ψv(y), (10.4)

where (x, y) is a point in the unit square, φh(x) is the horizontal scaling, φv(y) is the ver-

tical scaling, ψh(x) is the horizontal wavelets and ψv(y) is the vertical wavelets functions.

Hence, the 2-D wavelet family has one father function Φ(x, y) and three mother wavelet

functions Ψv(x, y),Ψh(x, y), and Ψd(x, y). These capture the detail in the vertical, hor-

izontal, and diagonal directions, respectively, whereas Φ(x, y) captures the smooth part

of the image. This can be simplified by stating that two dimensional wavelets have one

scaling function and three wavelet functions. A two dimensional function, F (x, y), can
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be expressed as a series expansion in terms of three wavelet functions and one scaling

function. In particular, the j-level approximation for a M × N discrete image, FM×N ,

can be written as

F (x, y) ≈
2j∑
m=1

2j∑
n=1

sj,m,nΦj,m,n(x, y)

+
J∑
j

2j∑
m=1

2j∑
n=1

dvj,m,nΨv
j,m,n(x, y)

+
J∑
j

2j∑
m=1

2j∑
n=1

dhj,m,nΨh
j,m,n(x, y)

+
J∑
j

2j∑
m=1

2j∑
n=1

ddj,m,nΨd
j,m,n(x, y). (10.5)

Hence, F (x, y) can be expressed in terms of a sum of wavelet coefficients and corresponding

scaling and wavelet functions. Furthermore, Bruce and Gao (1996a) showed that two

dimensional basis functions are generated from one father wavelet Φ and three mother

wavelets Ψh, Ψv, and Ψd, by the scaling and translation as follows:

Φj,m,n(x, y) =2−jΦ(2−jx−m, 2−jy − n), 1 ≤ m < 2j, 1 ≤ n < 2j, 1 ≤ j ≤ J,

Ψv
j,m,n(x, y) =2−jΦv(2−jx−m, 2−jy − n), 1 ≤ m < 2j, 1 ≤ n < 2j, 1 ≤ j ≤ J,

Φh
j,m,n(x, y) =2−jΦh(2−jx−m, 2−jy − n), 1 ≤ m < 2j, 1 ≤ n < 2j, 1 ≤ j ≤ J, and

Φd
j,m,n(x, y) =2−jΦd(2−jx−m, 2−jy − n), 1 ≤ m < 2j, 1 ≤ n < 2j, 1 ≤ j ≤ J,

where j represents the resolution, j = 0, 1, . . . , J−1, m = 1, 2, . . . ,M , and n = 1, 2, . . . , N .
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Moreover, the 2D wavelet transform coefficient is given approximately by the integrals

sj,m,n ≈
∫ ∫

φj,m,n(x, y)F (x, y)dxdy,

dvj,m,n ≈
∫ ∫

ψvj,m,n(x, y)F (x, y)dxdy,

dhj,m,n ≈
∫ ∫

ψhj,m,n(x, y)F (x, y)dxdy,

ddj,m,n ≈
∫ ∫

ψdj,m,n(x, y)F (x, y)dxdy,

Figure 10.1 shows the main idea of the computation of the wavelet transform of a 2D

image. In one dimension, we scale the coefficients with 1√
2
, which is shown in Chapter 3.

In this chapter, the normalization factors become integer powers of two. The procedure

of computing the wavelet transform of a 2D image can be summarised as follows

• To calculate the wavelet coefficients at level J − 1

– Let P denote a 4× 4 matrix, given by

P =
1

2


1 −1 1 −1

1 −1 −1 1

1 1 −1 −1

1 1 1 1

 .

– Let vJ−1,1 denotes a vector with a set of elements a1,1, a2,1, a1,2, a2,2, from the

original image and then the wavelet coefficients dhJ−1,1,1, d
d
J−1,1,1, d

v
J−1,1,1 and

sJ−1,1,1, are given by

{dhJ−1,1,1, d
d
J−1,1,1, d

v
J−1,1,1, sJ−1,1,1} = PvJ−1,1.

– Next take v1,2 = {a1,3, a2,3, a1,4, a2,4} taken from the original image to compute

the wavelet coefficients dhJ−1,1,2, d
d
J−1,1,2, d

v
J−1,1,2 and sJ−1,1,2, by

{dhJ−1,1,2, d
d
J−1,1,2, d

v
J−1,1,2, sJ−1,1,2} = PvJ−1,2.
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Figure 10.1: Diagram of the 2D Haar wavelet transform: a11, a12, a21 and a22 are a

set of elements taken from the original image, and dh11, dd11, dv11 and s11 are the wavelet

coefficients at level J − 1.
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To calculate the wavelet coefficients at level J − 2, the same procedure is used for the

average of wavelet coefficients. For example, let vJ−2,1 = {sJ−1,1,3, sJ−1,2,3, sJ−1,1,4, sJ−1,2,4}

from the original image to compute the wavelet coefficients dhJ−2,1,2, d
d
J−2,1,2, d

v
J−2,1,2 and

sJ−2,1,2, by

{dhJ−2,1,2, d
d
J−2,1,2, d

v
J−2,1,2, sJ−2,1,2} = PvJ−2,1.

Finally, let the wavelet coefficients DJ−1 at resolution level J − 1, be defined as

DJ−1 =



dh1,1 dh1,2 . . . dh
1,(M

2
−1)

dh
1,M

2
...

...
...

...
...

dhM
2
,1

dhM
2
,2

. . . dhM
2
,(M

2
−1)

dhM
2
,M

2

dd
1,(M

2
+1)

dd
1,(M

2
+2)

. . . dd1,(M−1) dd1,M
...

...
...

...
...

ddM
2
,(M

2
+1)

ddM
2
,(M

2
+2)

. . . ddM
2
,(M−1)

ddM
2
,M

dv
(M

2
+1),(M

2
+1)

dv
(M

2
+1),(M

2
+2)

. . . dv
(M

2
+1),(M−1)

dv1,M
...

...
...

...
...

dv
M,(M

2
+1)

dv
M,(M

2
+2)

. . . dvM,(M−1) dvM,M



, (10.6)

where N = M and DJ−1 contains all the detail wavelet coefficients at level resolution

J − 1. Similarly,

DJ−2 =



dh
(M

2
+1),1

dh
(M

2
+1),2

. . . dh
(M

2
+1),(M

4
−1)

dh
(M

2
+1),M

4
...

...
...

...
...

dh3M
4
,1

dh3M
4
,2

. . . dh3M
4
,(M

4
−1)

dh3M
4
,M

4

dd
(M

2
+1),(M

4
+1)

dd
(M

2
+1),(M

4
+2)

. . . dd
(M

2
+1),(M

2
−1)

dd
(M

2
+1),M

2
...

...
...

...
...

dd3M
4
,(M

4
+1)

dd3M
4
,(M

4
+2)

. . . dd3M
4
,(M

2
−1)

dd3M
4
,M

2

dv
( 3M

4
+1),(M

4
+1)

dv
( 3M

4
+1),(M

4
+2)

. . . dv
( 3M

4
+1),(M

2
−1)

dv
( 3M

4
+1),M

2
...

...
...

...
...

dv
M,( 3M

4
+1)

dv
M,( 3M

4
+2)

. . . dv
M,(M

2
−1)

dv
M,M

2



. (10.7)

Finally, D0 contains three elements dhM−1,1, dvM,2 and ddM−1,2 at level 1. Figure 10.2

illustrates the multi-resolution scheme with several levels of wavelet transform.
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Figure 10.2: Diagram of the multi-resolution scheme with several levels of wavelet trans-

form.

10.4 Estimation of σ2

Nason (2010a) estimated the noise level in one dimension using the finest-scale wavelet

coefficients. Now, the noise level in two dimensions, using the finest-scale wavelet coeffi-

cients, can be defined as

σ̂ = sd[DJ−1] =

√
1

3M2−4
4

∑
M

∑
M

[dij − d̄]2, (10.8)

DJ−1 is defined in (10.6), with elements dij and d̄ is the mean of the wavelet coefficients

in DJ−1. This form suggests that the noise level σ is computed using the sample standard

deviation of the finest-scale of wavelet coefficients, for more information see Nason (2010a).

As an alternative, it is assumed that the variance of the noise is unknown and is modelled

by an inverse gamma distribution with parameters, a0 and b0, that is σ2 ∼ inverse− gam

ma(a0, b0), with density

p(σ2) =
ba0

0

Γ(a0)
σ2(−a0−1)

exp

{
− b0

σ2

}
, σ2 ≥ 0; a0, b0 > 0. (10.9)

This approach follows that of Gelman (2006) and Cutillo et al. (2008) for modelling

a variance parameter. The parameters a0 and b0 can be fixed based on knowledge or
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information from separate calibration experiments. In particular, an expert might provide

a mean, σ2
0, and variance, τ 2

0 , for σ2, that correspond to a0 =
σ2

0
2

τ2
0

+ 2 and b0 = σ2
0(a0− 1).

Although this approach is general, in this thesis a value for σ2
0 computed from Equation

(10.8) and τ 2
0 = 1 has been used.

10.5 Point spread function

The following is a summary of the derivation and explanation that appears in Aykroyd

et al. (2001). Consider the effect of a small rectangular block in the earth’s magnetic

field called an anomaly in archaeology. Suppose that the opposite corners of the block are

situated at points with co-ordinates (x1, y1, z1) and (x2, y2, z2), where the x-axis points

north, y-axis east and z-axis points vertically downwards. Then the vertical component of

the anomaly due to the block, expressed in SI units, at a point with co-ordinates (x, y, z)

is

4Z(x, y, z) =
µ0KH

4π

{
[4Z(1) −4Z(2) −4Z(3)]ζ=z−z1ζ=z−z2

}
where µ0 is the magnetic permeability of a vacuum (4π × 10−7 Henrys per metre), K is

the susceptibility of the prism and H is the magnitude of the earth’s magnetic field. The

three separate contributions are

4Z(1) =

[
− sin I tan−1

(
ζη

ζ(ξ2 + η2 + ζ2)1/2

)]ξ=x−x1,η=y−y1

ξ=x−x2,η=y−y2

4Z(2) =

[
1

2
cos I cos θIn

(
(ξ2 + η2 + ζ2)1/2 + η

(ξ2 + η2 + ζ2)1/2 − η

)]ξ=x−x1,η=y−y1

ξ=x−x2,η=y−y2

4Z(3) =

[
1

2
cos I sin θIn

(
(ξ2 + η2 + ζ2)1/2 + ξ

(ξ2 + η2 + ζ2)1/2 − ξ

)]ξ=x−x1,η=y−y1

ξ=x−x2,η=y−y2

where I is the inclination of the earth’s magnetic field and θ is the angle between the

direction of magnetic north and the x-axis of the survey co-ordinate system.

Since the anomaly is smaller by several orders of magnitude than the local magnetic field,

it is standard practice to record the difference between simultaneous readings from two

sensors. Usually, one sensor is mounted vertically above the other, typically at a distance
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(a)

N

(b)

N

Figure 10.3: Plots of the spread function for depths: (a) 1 m and (b) 0.5 m, below the

ground surface for a block with a vertical extent of 0.5 m.

of one half-metre or one metre. A magnetometer with two sensors used in this manner is

known as a gradiometer. The recorded reading due to the block is then:

h(x, y) = 4Z(x, y, zA)−4Z(x, y, zB) (10.10)

where zA is the vertical co-ordinate of the upper sensor and zB is that of the lower sensor.

Both vertical heights are normally held constant throughout the survey.

Clearly, the form of magnetic anomaly defined in Equation (10.10) is considerably more

complicated than the point spread function usually encountered in imaging applications.

Its precise form depends on the latitude and longitude of the archaeological site on the

earth’s surface, on the geometry of the gradiometer, and on the physical properties of

the sensors. The spread function, or magnetic anomaly, for a single 1 m3 prism with a

susceptibility of 10−3SI, buried 1 m below the surface at a typical location in the British

Isles is shown in Figure 10.3. Each plot has longitudinal symmetry and the distance of

the peak from the centre increases as the depth increases. The value and the shape of the

point spread function depends on the values of its parameters. Using different parameter

value leads to a different point spread function.

Figure 10.4 shows curves representing sections in north-south direction across the centre
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Figure 10.4: Plots of cross-sections through the centre for different depths in the north-

south direction.

for different depths. Also, it shows an inverse relationship between the curve peak and

depth. In the north-south direction a larger proportion of the curve is positive compared

to the cross-section in the east-west direction, which is always positive. Furthermore, the

curve is symmetrical in the east-west direction.

10.6 Archaeological images

Suppose that readings are recorded across a site at co-ordinates (as, ar), where s =

1, 2, . . . ,M , r = 1, 2, . . . , N and a is the sampling interval. Also, suppose that the subsur-

face features are divided into a rectangular grid of blocks, and that fs′,r′ is the suscepti-

bility of the block whose centre is located at co-ordinate (bs′ , br′), where s′ = 1, 2, . . . ,M ′,

r′ = 1, 2, . . . , N ′ and b is the width of each block. Then, the influence of the block (s′, r′)

at location (s, r), is

hs′r′,sr = h(as− bs′ , ar − br′),
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where h(x, y) is the spread function defined in Equation 10.10, with the edges of the block

aligned to co-ordinate axes. The observed value ys,r at location (s, r) is the superposition

of the influences of all the prisms, leading to the model

E[ys,r] =
M ′∑
s′=1

N ′∑
r′=1

hs′r′,srfs′,r′ , s = 1, 2, . . . ,M, r = 1, 2, . . . , N, (10.11)

where hs′r′,sr is the point spread function for the susceptibility due to a block centered

at (s′, r′), observed on the site surface at location (s, r). Then, these are corrupted by

Gaussian error with mean 0 and variance σ2. Consequently, the observations can be

described by a Gaussian distribution with mean E[ys,r] and variance σ2 (Allum, 1997;

Aykroyd and Al-Gezeri, 2014).

10.7 Bayesian modelling of images

In Chapter 8 and 9, the proposed methods have been studied, a generalisation of the

original one dimensional approach to a two dimensional image will now be considered.

Consider F = {fs′,r′ : s′ = 1, 2, . . . ,M ′, r′ = 1, 2, . . . , N ′} that is a square matrix of values

of some unknown function, and that Y = {ys,r : s = 1, 2, . . . ,M, r = 1, 2, . . . , N, } is a

matrix of values of observed data in two dimensions. Also, let G = HF = {gs,r : s =

1, 2, 3, . . . ,M, r = 1, 2, . . . , N}, where H is the point spread function. If necessary, extra

columns and rows of zero can be added so that M and N are powers of 2, to allow the

following wavelet-based approach. Let W be an orthogonal matrix holding an appropriate

discrete wavelet basis. The wavelet decomposition of the data Y, F and G, can be written

as

DY = WY, DF = WF, DG = WHF,

where DY, DF and DG are matrices of the wavelet coefficients of Y, F and G respectively.
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The corresponding form of the likelihood, using wavelet coefficients, is given by

p(Y|DF) =
1

(2πσ2)M2/2
exp

{
− 1

2σ2

M∑
s

M∑
r

(ys,r − gs,r)2

}
, ys,r, gs,r ∈ R, ;σ2 > 0,

(10.12)

where G = HWTDF = {gs,r : s, r = 1, 2, . . . ,M}.

A single component prior for wavelet coefficients

Three choices for the prior distribution p(DF) on the wavelet coefficients DF, will be

considered. The most usual prior in the literature is the Gaussian distribution, with

density

p(DF|κ) =

(√
κ

π

)M2

exp

{
− κ

J−1∑
j

M∑
s′

M∑
r′

dF
2
j,s′,r′

}
, dF j,s′,r′ ∈ R;κ > 0. (10.13)

This approach follows that of Gribble (2001) for the modelling of wavelet coefficients.

The second choice for the prior distribution p(DF) on the wavelet coefficients DF, that

might be a better choice is the Laplace distribution, with density

p(DF|κ) =

(
κ

2

)M2

exp

{
− κ

J−1∑
j

M∑
s′

M∑
r′

|dF j,s′,r′|
}
, dF j,s′,r′ ∈ R;κ > 0, (10.14)

where |.| is the absolute value. This approach follows that of Vidakovic and Ruggeri

(2001) and others for the modelling of wavelet coefficients.

The third choice is the elastic-net (Hastie et al., 2009; Zou and Hastie, 2005), which is

a compromise between these two prior distributions. The corresponding prior can be

written as

p(DF|κ, γ) =

(
1

Z(κ, γ)

)M2

exp

{
− κ

J−1∑
j

M∑
s′

M∑
r′

(γdF
2
j,s′,r′ + (1− γ)|dF j,s′,r′|)

}
,

dF j,s′,r′ ∈ R;κ > 0, 0 < γ < 1, (10.15)
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where

Z(κ, γ) =


2/κ, γ = 0√

4π
κγ

exp

{
κ(1−γ)2

4γ

}(
1− Φ(κ(1−γ)√

2κγ
)

)
, 0 < γ < 1√

π/κ, γ = 1.

(10.16)

Note that each of these priors has introduced additional parameters, κ or κ and γ, which

will also be modelled. In all cases, the parameter κ will also be modelled by a gamma

distribution, κ ∼ gamma(a1, b1), with density

p(κ) =
1

Γ(a1)
ba1

1 κ
(a1−1) exp

{
− b1κ

}
, κ ≥ 0; a1, b1 > 0, (10.17)

As with σ2, the parameters a1 and b1 can also be fixed based on knowledge or information

from separate calibration experiments. In Chapter 8, examples were given of one approach

to the choice of prior parameter value for the various prior distributions.

Finally, the parameter γ takes value within the range [0, 1], hence a beta distribution is a

sensible choice of prior model, γ ∼ Beta(a2, b2), with density

p(γ) =
Γ(a2 + b2)

Γ(a2)Γ(b2)
γa2−1(1− γ)b2−1, 0 < γ < 1; a2, b2 > 0. (10.18)

As with κ, the parameters a2 and b2 can also be fixed, based on knowledge or information

from separate calibration experiments. In Chapter 8, examples were given one approach

to the choice of prior parameter value for the various prior distributions.

Multiple prior models for wavelet coefficients

As an extension, the parameters κ and γ are to be grouped by wavelet resolution level with

the obvious extensions to the definitions given in the previous section. For the wavelet

coefficients at level j, DFj, the Gaussian prior density function becomes

p(DFj|κj) =

(√
κj
π

)3(22j)

exp

{
− κj

2j∑
s′

2j∑
r′

dF
2
j,s′,r′

}
, dF j,s′,r′ ∈ R;κj > 0, (10.19)
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where, κ = {κj : j = 0, 1, . . . , J − 1}, with J = log2(m) and dF j are the level j wavelet

coefficients. The power 3 appears because there are three sets of wavelet coefficients for

horizontal, vertical and diagonal directions. The Laplace prior density function becomes

p(DFj|κj) =

(
κj
2

)3(22j)

exp

{
− κj

2j∑
s′

2j∑
r′

|dF j,s′,r′ |
}
, dF j,s′,r′ ∈ R;κj > 0, (10.20)

and finally, the elastic-net based model, with density

p(DFj|κj) =

(
1

Z(κj, γj)

)3(22j)

exp

{
− κj

2j∑
s′

2j∑
r′

(γjdF
2
j,s′,r′ + (1− γj)|dF j,s′,r′ |)

}
,

dF j,s′,r′ ∈ R;κj > 0, 0 < γj < 1,

(10.21)

where,

Z(κj, γj) =


2/κj, γj = 0√

4π
κjγj

exp

{
κj(1−γj)2

4γj

}(
1− Φ(

κj(1−γj)√
2κjγj

)

)
, 0 < γj < 1√

π/κj, γj = 1,

(10.22)

for j = 0, 1, . . . , J − 1 with J = log2(m). The prior densities become

p(κj) =
1

Γ(a1)
ba1

1 (κj)
(a1+1) exp

{
− b1κj

}
, κj ≥ 0, j = 0, 1, . . . , J − 1; a1, b1 > 0,

(10.23)

and

p(γj) =
Γ(a2 + b2)

Γ(a2)Γ(b2)
(γj)

a2−1(1− γj)b2−1, 0 < γj < 1, j = 0, 1, . . . , J − 1; a2, b2 > 0.

(10.24)

Similarly, the hyper parameters a1, b1, a2, b2, a3 and b3 can be fixed for all levels at the

same values as chosen in the single component prior (see section 8.3.5).

10.8 Simulation experiments

The purpose of this section is to apply the proposed methods, introduced in Section 10.7,

to simulated datasets. The benefit of using simulated datasets is that the properties and



229 Application to 2D magnetometry data

features of artificial data are known. Then, the proposed methods are studied and assessed

for their suitability. More precisely, the quality of the solution can be investigated and any

error attributed to the inversion procedure and not mismodelling. In this chapter, PM

and MAP estimation calculations similar to those in Algorithm 4 and 3, will be applied.

Two simulated datasets are chosen as representative examples. The calculated spread

function models correspond to a fluxgate gradiometer with its sensors at a separation of

0.7 m and the lower sensor positioned 0.2 m above the ground. The simulated datasets

have a uniform feature susceptibility of 2.6× 10−3SI and zero background susceptibility.

Furthermore, the depth of the archaeological layer beneath the surface and the vertical

extent are both fixed at 0.5 m. The magnetic flux density of the Earth’s field is nT=48000.

In the calculations, the blur function is truncated to produce a spread matrix of 19× 19.

The additive Gaussian noise has a standard deviation, σ = 1. The true location of a block

feature is shown in Figure 10.5 (a) displayed on a 10 m ×10 m grid with 1 m ×1 m blocks.

The response of the magnetometer to this feature is calculated over the same area at 1

m intervals as shown in Figure 10.5 (b). The magnitudes of the true features in 10.5 (a)

are equal to 2.6× 10−3SI and zero for background. Hence, the impact of spread function

shifts the apparent location of the feature. This means that the feature in the simulated

data seems to be located further south than it actually is and a slight negative anomaly

occurs to its north side. However, there is no shift in the east-west direction because the

spread function has longitudinal symmetry (Allum, 1997).

The MCMC approach through the Metropolis-Hastings algorithm can be applied to esti-

mate the features from these simulated data. The wavelet coefficients of a true function is

estimated with the Haar basis. The total run length is equal to 16×16×4000 = 1024000.

The observed image, Y, is extended by zero elements to use the wavelet transform and the

number of update iterations is equal to 4000. The parameters σ2, κ and γ are described

by the prior distributions, as discussed in Sections 10.6 and 10.7. Two estimators are used

to estimate the true features of the susceptibility profile on a 10 m ×10 m reconstruction

grid with 1 m spacing. One is based on the MAP estimate and the other is based on the
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Figure 10.5: Plots of the box image: (a) true image on a 1 m ×1 m blocks; and (b)

simulated data on a 1 m ×1 m blocks.

PM estimate.

The reconstruction of a single Laplace prior, using the MAP estimate is shown in Figure

10.6 (a) on a 10 m ×10 m reconstruction grid with 1 m spacing. The general shapes

and edges are close to the true susceptibility surface. It is also of interest to see the

reconstruction of the Laplace for a level-dependent prior. The MAP estimate is shown in

Figure 10.6 (b) on a 10 m ×10 m reconstruction grid with 1 m spacing. It is clear that the

features on the left-hand side of the reconstructions, of the single and multiple-component

priors, are not fully resolved.

The reconstructions using the elastic-net prior for single and multiple prior parameters

are shown in Figure 10.6 (c) and (d) on a 10 m ×10 m reconstruction grid with 1 m

spacing. The reconstruction for a level-dependent prior is close to the true susceptibility

surface.

The reconstructions with a single component Gaussian prior and a level-dependent prior

are shown in Figures 10.6 (e) and 10.6 (f), respectively. The general of using the Laplace

and the elastic-net priors, the shapes and edges of the reconstructions are much better

than using the Gaussian prior. This is because the reconstructions show a slight variation

in the background intensity. In general, the shape and location of the feature are very

accurate. The edges of the feature have a well defined step for its entire boundary.
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The MSE results using the MAP estimates are summarized in Table 10.1, where bold

numbers indicate the smallest MSE result for each case. The definition of the mean

squared-error in two dimensions is given by

MSE =
1

M2

M∑
s′

M∑
r′

(fs′r′ − f̂s′r′)2.

The single component Gaussian prior provides a smaller MSE than the Laplace and the

elastic-net priors, whereas the elastic-net for the level-dependent model provides a smaller

MSE than the Laplace and the Gaussian. The MAP parameters for single component and

level-dependent prior are summarized in Tables 10.2 and 10.3. It is worth noting that the

values of κ̂ for two dimensional data are larger than those for one dimensional data.

The reconstructions of the PM estimates are shown in Figure (10.7), on a 10 m ×10 m

reconstruction grid with 1 m spacing. The reconstructions clearly show the edges and

shapes, although it can be seen that there is a lack of contrast between the edges of the

reconstructed feature and the background. Additionally, the reconstruction of Gaussian

prior using the PM estimate shows that the background intensity is less variable.

The MSE results, using the PM estimates, are summarized in Table 10.4, where bold

numbers indicate the smallest MSE result for each case. It can also be seen that the

single component Laplace prior gives a smaller MSE than elastic-net and Gaussian priors,

whereas the elastic-net for level-dependent prior provides a smaller MSE than the Laplace

and the Gaussian priors.

Table 10.2 shows estimates of parameters using the elastic-net prior. The variance esti-

mate is σ̂2 = 0.8518, where the true variance is equal to 1. The value of κ̂ ≈ 899 and

the value of γ̂ = 0.2106. Table 10.3 shows the parameter estimates for the elastic-net

level-dependent prior: κ̂3 ≈ 960, κ̂2 ≈ 240, κ̂1 = 240, κ̂0 ≈ 169 and κ̂s0 = 120. Also,

γ̂3 = 0.0981, γ̂2 = 0.3997, γ̂1 = 0.0245, γ̂0 = 0.0173 and γ̂s0 = 0.0122.

Another example is shown in Figure 10.8 (a), on a 20 m ×20 m reconstruction grid with

0.5 m spacing. The response of the magnetometer to this feature is shown in Figure

10.8 (b). The additive Gaussian noise has a standard deviation, σ2 = 1, hence the data

is very noisy and it is not easy to see the feature. The parameters σ2, κ and γ are
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Figure 10.6: Plots of the MAP reconstruction for different priors: (a) single Laplace; (b)

level-dependent Laplace; (c) single elastic-net; (d) level-dependent elastic-net; (e) single

Gaussian; and (f) level-dependent Gaussian.
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Figure 10.7: Plots of the PM reconstruction for different priors: (a) single Laplace; (b)

level-dependent Laplace; (c) single elastic-net; (d) level-dependent elastic-net; (e) single

Gaussian; and (f) level-dependent Gaussian.
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Prior
MSE

Single component Level-dependent

×10−8 ×10−8

Laplace 3.07 3.12

Elastic-net 2.61 3.08

Gaussian 2.28 9.11

Table 10.1: MSE results using the MAP estimates for susceptibility. The bold font

represents the smallest MSE.

Prior γ̂ κ̂ σ̂2

Laplace 0 831.90 0.8252

Elastic-net 0.2106 899.90 0.8518

Gaussian 1 883.90 0.8708

Table 10.2: MAP parameter estimates for single priors.

Prior γ̂ κ̂ σ̂2

Laplace

(639.87)3 (160.03)2

0 (113.11)1 (97.18)0 0.8719

(56.55)s0

Elastic-net

(0.0981)3 (0.3997)2 (960.01)3 (240.02)2

(0.0245)1 (0.0173)0 (240.00)1 (169.70)0 0.8638

(0.0122)s0 (120.00)s0

Gaussian

(639.90)3 (160.01)2

1 (159.97)1 (113.11)0 0.7621

(79.98)s0

Table 10.3: MAP parameter estimates for level-dependent priors.
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Prior
MSE

Single component Level-dependent

×10−8 ×10−8

Laplace 3.15 3.78

Elastic-net 3.84 3.77

Gaussian 6.68 7.33

Table 10.4: MSE results using the PM estimates for susceptibility. The bold font repre-

sents the smallest MSE.

Prior γ̂ κ̂ σ̂2

Laplace 0 901.90 0.8782

Elastic-net 0.2196 979.90 0.7893

Gaussian 1 841.90 0.8843

Table 10.5: PM parameter estimates for single priors.

Prior γ̂ κ̂ σ̂2

Laplace

(959.50)3 (240.02)2

0 (139.87)1 (119.61)0 0.8455

(119.93)s0

Elastic-net

(0.06705)3 (0.5722)2 (1079.6)3 (820)2

(0.0467)1 (0.0418)0 (869.90)1 (490.84)0 0.8644

(0.0080)s0 (131.91)s0

Gaussian

(960.01)3 (240.05)2

1 (240.01)1 (169.70)0 0.8074

(90.00)s0

Table 10.6: PM parameter estimates for level-dependent priors.
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estimated using the prior distributions. The reconstructions with MAP estimation are

shown in Figure 10.9, it can also be seen that the location and general shape of the fea-

ture estimated well. However, the reconstructions with the Gaussian prior show that the

background intensity is less variable, whereas the reconstructions with the Laplace prior

shows that the edge between the feature and the background is not fully resolved. The

general shape of the feature has been reproduced fairly accurately but the susceptibility is

slightly underestimated over some of the reconstructions and a slight variation is also ev-

ident in the background intensity. Additionally, it can be seen that extra features appear

in the reconstruction with the Gaussian prior, although the overall shape and location of

the feature corresponds very well to the true feature. The total run length is equal to

32× 32× 5000 = 512× 104 and the number of update iterations is equal to 5000.

The MSE results using the MAP estimates are summarized in Table 10.7, where bold

numbers indicate the smallest MSE result for each case. It can be seen that the single

component elastic-net prior provides a smaller MSE than the Laplace and the Gaussian

for single component and level-dependent priors.

The PM estimates are shown in Figure 10.10. The location and general shape of the

feature are well estimated, although the reconstructions with the Gaussian prior show

that the background intensity is variable. The reconstructions with the single and the

level-dependent for Laplace and the elastic-net priors show that the edges between the

feature and the background are not fully resolved, although the general shape of the

feature has been reproduced fairly accurately.

The MSE results using the PM estimates are summarized in Table 10.10, where bold

numbers indicate the smallest MSE result for each case. It can be seen that the single

elastic-net prior provides a smaller MSE than the Laplace and the Gaussian for single

component and level-dependent prior Laplace provides a smaller MSE than elastic-net

and the Gaussian priors.

The MAP and the PM parameter estimates for the reconstruction on a 20 m ×20 m

reconstruction grid with 0.5 m spacing, using single component and level-dependent prior,
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Figure 10.8: Plots of image: (a) true image; and (b) simulated data.

are summarized in Tables 10.8, 10.9, 10.11 and 10.12. The MAP estimates using the single

elastic-net prior shows that the value of κ̂ ≈ 960 and γ̂ = 0.2106. The value of the variance

is σ̂2 = 0.6638. For the level-dependent prior, it can be seen that the values of κ̂4 ≈ 1238,

κ3 ≈ 958, κ2 ≈ 240, κ1 ≈ 379, κ0 ≈ 218 and κs0 ≈ 154. The values of γ̂4 = 0.0532,

γ̂3 = 0.1438, γ̂2 = 0.2566, γ̂1 = 0.0133, γ̂0 = 0.0094 and γ̂s0 = 0.0065.

Prior
MSE

Single component Level-dependent

×10−3 ×10−3

Laplace 5.40 5.6

Elastic-net 5.10 5.90

Gaussian 6.30 6.00

Table 10.7: MSE results MAP estimates for susceptibility. The bold font represents the

smallest MSE.



238 Application to 2D magnetometry data

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

m

m

(a)

γ=
0

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

m

m

(b)

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

m

m

(c)

0<
γ<

1

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

m

m

(d)

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

m

m

(e)

γ=
1

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

m

m

(f)

Figure 10.9: Plots of the MAP reconstruction using different prior models: (a) single

Laplace; (b) level-dependent Laplace; (c) single elastic-net; (d) level-dependent elastic-

net; (e) single Gaussian; and (f) level-dependent Gaussian.
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Figure 10.10: Plots of the PM reconstruction using different prior models: (a) single

Laplace; (b) level-dependent Laplace; (c) single elastic-net; (d) level-dependent elastic-

net; (e) single Gaussian; and (f) level-dependent Gaussian.
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Prior γ̂ κ̂ σ̂

Laplace 0 839.99 0.7725

Elastic-net 0.2106 960.00 0.6638

Gaussian 1 845.01 0.6318

Table 10.8: MAP parameter estimates for single priors.

Prior γ̂ κ̂ σ̂

Laplace 0 (1024.03)4 (256.01)3 (63.94)2 0.7222

(55.51)1 (64.19)0 (65.25)s0

Elastic-net (0.0532)4 (0.1438)3 (0.2566)2 (1238.81)4 (958.21)3 (240.13)2 0.6763

(0.0133)1 (0.0094)0 (0.0065)s0 (379.70)1 (218.99)0 (154.85)s0

Gaussian 1 (1312.00)4 (927.99)3 (231.99)2 0.7116

(228.01)1 (131.93)0 (164.81)s0

Table 10.9: MAP parameter estimates for level-dependent priors.

Prior
MSE

Single component Level-dependent

×10−8 ×10−8

Laplace 8.53 22.00

Elastic-net 4.30 38.00

Gaussian 37.00 35.00

Table 10.10: MSE results using the PM estimates for susceptibility. The bold font repre-

sents the smallest MSE.
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Prior γ̂ κ̂ σ̂

Laplace 0 839.98 0.7529

Elastic-net 0.2104 960.00 0.6353

Gaussian 1 959.99 0.5116

Table 10.11: PM parameter estimates for single priors.

Prior γ̂ κ̂ σ̂

Laplace 0 (841.12)4 (676.07)3 (209.66)2 0.7123

(269.01)1 (119.51)0 (84.50)s0

Elastic-net (0.0434)4 (0.0289)3 (0.1941)2 (839.85)4 (660.18)3(239.66)2 0.7008

(0.0072)1 (0.0051)0 (0.0036)s0 (105.04)1 (116.70)0(82.52)s0

Gaussian 1 (1312.00)4 (928.00)3(231.99)2 0.6799

(115.95)1 (112.02)0(82.28)s0

Table 10.12: PM parameter estimates for level-dependent priors.

In keeping with the conclusions of the previous experiments, the best reconstruction are

obtained when the Laplace prior and the elastic-net prior are used. This is because the

shape and location of the estimated feature corresponds very well to those of the true

feature. However, it can be seen that the edges, when using the Laplace prior, are not

resolved and the reconstruction of the elastic-net shows slight variation in the background

intensity. In this case the Gaussian prior and level-dependent Laplace prior provide a good

reconstruction.

10.9 Real data application

The estimation procedure is used to analyse the magnetometer data from the Park, Gui-

ting Power as shown in Figure 10.11. In particular, this shows a diagonal linear ditch

towards the top, and a rectangular boundary ditch surrounding various collections of
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circular pits and post-holes. It is usually assumed that the features are buried at the

same depth from the modern site surface, but that they have different susceptibilities and

extents. The assumption of constant depth is not unreasonable, as ancient structures are

often levelled to the prevailing ground level and any pits or ditches are in-filled to the

same level. At later stages the whole site is uniformly covered with topsoil, leading to the

common modern surface level. The strength of the surface magnetic readings depend on

the depth of the features.

There are three different priors considered, elastic-net, Laplace and Gaussian. The esti-

mated wavelet coefficients, using Haar wavelet, are shown in Figure 10.12. The wavelet

coefficients are very sparse compared with the magnetometer data. Figure 10.12 (a)

shows that most of the wavelet coefficients are close to zero and the range of the plot of

the wavelet coefficients is between −2 and 6nT . The darkness of the pixels correspond

to the magnitude of the wavelet coefficients (Bruce and Gao, 1996a). It can be seen that

the large wavelet coefficients tend to represent the important features in the image such

as walls, pits and ditches.

Two estimators are applied to estimate the true features of the susceptibility profile on

a 20 m ×20 m reconstruction grid with 0.5 m spacing. The calculated spread function

models correspond to a fluxgate gradiometer with its sensors at a separation of 0.7 m

and the lower sensor positioned 0.2 m above the ground. Further, the depth of the

archaeological layer beneath the surface and the vertical extent are both fixed at 0.5 m.

The magnetic flux density of the Earth’s field is nT = 48000. The total run length is

equal to 32 × 32 × 8000 = 8192 × 103 and the number of update iterations is equal to

8000. The MAP estimates of whole area are shown in Figures 10.13, 10.14 and 10.15.

The MAP estimates, using the single Laplace prior and the level-dependent prior, shown in

Figure 10.13, reveal the main pits and ditches, although, some features have disappeared.

The MAP estimates using single elastic-net prior and level-dependent prior, shown in

Figure 10.14, also reveal the main pits and ditches, although again, some features have

disappeared.
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Figure 10.11: Data from “The Park”, Guiting Power in Gloucestershire, collected using

a fluxgate gradiometer, in 1994, at 0.5 m intervals, where I, J, K, L, M, 5, 6, 7, 8 and 9

are row and column labels to use as region references (Allum, 1997).
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Figure 10.12: Plots of the wavelet transform with four resolution levels: plot of the wavelet

coefficients in intervals (a) (-2, 3); and (b) (0.02, 0.03).
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Feature Vertical Average Description

Number Type extent susceptibility

(m) (SI× 10−3)

1 pit 1.60 1.1 relatively low organic content

2 pit 1.50 1.0 relatively low organic content

3 pit 0.70 2.2 not overtly organic yet high sus

4 pit 1.05 2.4 enriched with organic material

5 pit 0.45 2.4 highly organic in lower half

6 pit 0.80 1.8 organic

7 pit 0.70 1.5 generally non-organic

8 pit 0.95 2.6 moderately organic

9 ditch 0.70 1.1 highly organic in upper third

10 ditch 1.00 1.3 highly organic in upper half

11 ditch 0.50 0.4 distinctly non-organic

12 gully 0.60 0.8 distinctly non-organic

13 ditch 0.70 1.5 highly organic in upper third

14 post hole ? 1.3 not recorded

15 post hole ? 0.8 not recorded

16 post hole ? 08 not recorded

17 post hole ? 0.7 not recorded

Table 10.13: Summary of Guiting Power excavation (Allum, 1997).
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Data grid J6 J7 J8 K6 K7 K6

σ̂2 2.7377 2.4494 2.4905 2.6010 2.7493 1.4852

Table 10.14: Estimation of σ from different grids.

The MAP estimates, using the single Gaussian prior and the level-dependent prior, shown

in Figure 10.15. The reconstructions show that the features are not fully defined. In

general, the reconstruction shows variation in the background intensity and the excavation

shows that the pits are distributed across 8L and 9L grids. The reconstruction of the

Guiting Power shows that J5 and K5 regions are not clear, but more complex, see Figure

10.21. Also, there are some grids with high levels of magnetic susceptibility, such as J5,

J7, J8, K5, K6, K7 and L7.

The PM estimates are shown in Figures 10.16, 10.17 and 10.18. The location and general

shape of the features are estimated well, although the reconstructions with the Gaus-

sian prior show that the background intensity is variable. The reconstructions with the

single Laplace prior, the single and level-dependent elastic-net priors show that the fea-

tures of susceptibility are clearly defined and the general shape of the features have been

reproduced fairly accurately.

The main area of interest is that enclosed by the dotted line, which was also excavated

in 1994 enabling a qualitative assessment of the estimation. An archaeologists impression

of this is shown in Figure 10.19. The vertical extent of each of the excavated features is

listed in Table 10.16. The range of susceptibility varies from 0.4× 10−3SI to 2.4× 10−3SI

for organic and non-organic material. The selected grid contains a part from grid J7, J8,

K7, K8 and a part from grid K9. The features of the selected grids are buried at the same

distance from the site surface but have different susceptibilities and extents. The MAP

estimates of the area of interest are obtained with the new technique and the features are

now evident (see Figure 10.20). It is easy to see the cluster of post holes in grid J7, using

the elastic-net prior (see Figure 10.20). The cluster of post holes in grid J7, incorporating

features 14 to 17, have disappeared for several reasons, one reason being that these holes

have low magnetic susceptibility values between 0.7×10−3SI to and 1.3×10−3SI. Another
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Figure 10.13: Reconstruction of the Park, Guiting Power using MAP estimation: (a)

single Laplace; and (b) level-dependent Laplace priors.
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Figure 10.14: Reconstruction of the Park, Guiting Power using MAP estimation: (a)

single elastic-net; and (b) level-dependent elastic-net priors.
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Figure 10.15: Reconstruction of the Park, Guiting Power using MAP estimation: (a)

single Gaussian; and (b) level-dependent Gaussian priors.
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Figure 10.16: Reconstruction of the Park, Guiting Power using the PM estimate: (a)

single Laplace; and (b) level-dependent Laplace priors.
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Figure 10.17: Reconstruction of the Park, Guiting Power using the PM estimate: (a)

single elastic-net; and (b) level-dependent elastic-net priors.
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Figure 10.18: Reconstruction of the Park, Guiting Power using the PM estimate: (a)

single Gaussian; and (b) level-dependent Gaussian priors.
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Grid Prior γ̂ κ̂ σ̂

J5

Laplace 0 1023 2.5056

Elastic-net 0.2195 1024 2.5070

Gaussian 1 1280 2.5290

J8

Laplace 0 1023 2.4841

Elastic-net 0.2195 1024 2.4915

Gaussian 1 1280 2.4975

K9

Laplace 0 1023 0.5104

Elastic-net 0.2194 1023 0.5110

Gaussian 1 1279 1.4968

Table 10.15: MAP parameter estimates for single priors.

is that they are very small and placed in the grid of between two to six pixels (Allum,

1997).

Figure 10.21 shows a complex site with overlapping features, including some pits and a

part of a ditch, whereas it can also be seen to have different susceptibilities and extents.

Some of the data grids contain both strong and weak anomalies covering the range of high

negative and high positive data values, such as J5, J8, K5 and L7. Additionally, it is not

easy to estimate the true susceptibility, when the features are close.

The parameter values are listed in Table 10.15. It can be seen that some features having

disappeared, when the elastic-net for single prior is used, the features of the selected grid

are clearly defined. Finally, the feature in the eastern half of data from grid J5 is joined

with the western half of data from grid K5. The variance σ2 is estimated for different

grids, which summarised in Table 10.14.
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Grid Prior γ̂j κ̂j σ̂

J5

Laplace 0 (865.78)4 (480.94)3 (381.85)2 2.5456

(210.29)1 (129.89)0 (86.61)s0

Elastic-net (0.0630)4 (0.0578)3 (0.0440)2 (1023)4 (255.99)3 (163.98)2 2.5433

(0.0461)1 (0.0077)0 (0.0020)s0 (115.99)1 (61.739)0 (58.12)s0

Gaussian 1 (565.68)4 (399.99)3 (282.84)2 2.5455

(200)1 (65.24)0 (66.82)s0

J8

Laplace 0 (565.68)4 (400)3 (282.84)2 2.5151

(200)1 (65.18)0 (61.11)s0

Elastic-net (0.0565)4 (0.0669)3 (0.0513)2 (1023)4 (256)3 (163.99)2 2.5090

(0.0471)1 (0.0338)0 (0.0166)s0 (114.98)1 (61.66)0 (57.07)s0

Gaussian 1 (771.01)4 (361.95)3 (390.18)2 2.5145

(181.69)1 (55.88)0 (51.22)s0

K9

Laplace 0 (767.18)4 (419)3 (279.04)2 1.5426

(205.40)1 (63.25)0 (57)s0

Elastic-net (0.0635)4 (0.0547)3 (0.0526)2 (1023)4 (255.99)3 (164)2 0.5405

(0.0513)1 (0.0109)0 (0.0382)s0 (115.9)1 (81.61)0 (60.49)s0

Gaussian 1 (565.68)4 (401)3 (268.10)2 0.5426

(191.79)1 (55.54)0 (60.93)s0

Table 10.16: MAP parameter estimates for level-dependent priors.

Figure 10.19: Archaeologists impression of the 1994 excavation of the Park, Guiting Power

(Allum, 1997).
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Figure 10.20: Reconstruction of the Park, Guiting Power using MAP estimation: (a)

single elastic-net; and (b) level-dependent elastic-net priors, where the red circles and

lines represent the features identified by comparing with Figure 10.19.
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Figure 10.21: Reconstruction of the Park, Guiting Power using MAP estimation: (a) single

elastic-net; and (b) level-dependent elastic-net priors, where the red circles represent the

features that have much higher magnetic susceptibility than other features in regions in

J5 and K5.
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10.10 Conclusions

The Bayesian approach to estimate magnetic susceptibility has been successfully adapted

for different priors, whereby a hierarchical model, using MCMC through the Metropolis-

Hastings algorithm, was formulated.

Wavelet analysis was used to represent the real data, whereby wavelet coefficients were

estimated using different priors for applications in one dimensional data and two dimen-

sional magnetometer data. This thesis shows that the magnetic susceptibilities are well

estimated.

The reconstruction of magnetic susceptibility and location of the feature using different

priors are excellent, except with the Gaussian prior. The features are estimated by re-

moving the noise and blur. Although single and level-dependent priors show that the

features are clearly defined, some features disappear when a single prior is used because

there is only one value of the threshold for the whole set of wavelet coefficients.

Experiments on simulated datasets show that the main aspects of the feature are well

produced. However, reconstructions using the single Gaussian prior show greater variation

in the background intensity.

Finally, the estimated features of the Guiting Power site show that the proposed method is

capable of correctly locating features on a real site. Most features are well estimated and

can easily be identified. However, in some subregions the variances are large, which suggest

that it can be difficult to estimate susceptibility and prior parameters simultaneously.



Chapter 11

Final Summary and Conclusions

11.1 Overview

The purpose of this study was to review and develop statistical techniques for the estima-

tion and analysis of inverse problems, with particular application to two types of archae-

ological magnetometry data. The proposed methods work well and give reconstructions

of the archaeological site, which are in agreement with archaeologists’ expectations. The

magnetic susceptibility is modelled using a hierarchical model. The proposed inversion

method determines the magnetic susceptibility profile, or surface, given the recorded data

by estimating underlying wavelet coefficients. This thesis is divided into four parts: The

first part gives background (Chapter 2); the second part investigates a two-stage method

(Chapter 3 to 7); the third part presents a one-stage method (Chapter 8); in the final part,

applications to real archaeological magnetometry data analysis are considered (Chapter 9

and 10). This chapter will now give the main conclusions and recommendations for future

work.

253
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11.2 Summary

This section presents a summary and discusses the main results obtained by applying

different methods to simulated and real data.

The thesis begins with a brief introduction to the magnetic prospecting methods. The

data collection is explained briefly, and a discussion on the levels of noise and blur in the

modelling process is included. The methodology was motivated by an assumption that the

Blocks and Bumps test functions described the underlying susceptibility profile well. We

start by introducing wavelet methods and expressing a function as an approximation in

terms of wavelet coefficients. The inversion and thresholding methods are then explained,

with an emphasis on their specific application to the given experiment.

Several established wavelet denoising methods are discussed and explained, such as classi-

cal thresholding rules. The minimum mean squared-error (MMSE) method for estimating

the prior parameters, which described in Section 2.13, is applied to different cases and is

demonstrated by extensive simulation. We evaluate and investigate the estimation of prior

parameters, assuming a single parameter for all wavelet levels and for the level-dependent

case. Two types of estimation of the prior parameters are considered based on two-stage,

or one-stage approaches. Different wavelet transforms are discussed and applied with

different thresholding rules, which are also demonstrated using extensive simulation.

Other Bayesian methods are considered in Chapters 5 and 6. Generalised wavelet meth-

ods are introduced in Chapter 7, which are the vaguelette-wavelet decomposition (VWD)

and the wavelet-vaguelette decomposition (WVD). It is shown that, WVD with the dis-

crete unbalanced Haar transform (DUHT), the “Larger” posterior mode of double Weibull

wavelet shrinkage, the empirical Bayes approach, with posterior median, and the Block-

Sure methods work well for denoising, but not for high levels of blurring.

The MCMC algorithms are described in Chapter 8. They are used to estimate the wavelet

coefficient of magnetic susceptibility, given the recorded data and prior information. The

method proves able to estimate susceptibility values for the one dimensional stratigraphy
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problem. It is then applied to a two dimensional magnetometry problem and is again able

to produce good reconstructions of the susceptibility surfaces.

The elastic-net prior was applied as a new prior distribution, and was developed specif-

ically to encourage regions of constant susceptibility, which separately sharp discontinu-

ities. Using simulated data, it was shown that the benefit of using the elastic-net prior,

compared to the Laplace and Gaussian distributions, is that substantial changes in the

estimated susceptibility profile were made by one large step rather than a series of small

ones and that constant regions appear with low variability in the estimate.

The final two chapters describe an introduction to archaeological magnetometry data for

one dimensional and two dimensional data. The proposed methods are then applied to

real archaeological data, which show the new model to be an improvement on the exist-

ing model, reducing the mean squared-error (MMSE), in particular with level-dependent

priors. The new prior distribution produced regions with flat tops and sharp edges. As

well as susceptibility, three prior parameters (σ2, κ, γ) were also modelled and estimated

for both stratigraphy and magnetometry data.

Using simulated data, the maximum a posteriori estimate was shown to be a more practical

choice than the posterior mean estimate. As a result, that was the method proposed for

estimation from real magnetometry data. It was also demonstrated that it produces good

reconstructions of the susceptibility profiles, while direct inversion methods, such as ML

estimates, are unsuitable for many reasons, such as the level of the noise and blur.

It is important to note that the proposed methods are not restricted to archaeological

magnetometry data but can be applied to observed data obtained from other types of

inverse problem.

11.3 Further work

There is a lot of possible future work. The following are some suggestions.
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A new method has been identified, which has many applications in imaging. The model is

especially relevant to medical images resulting from tomographic investigations that were

the original motivation for the Bayesian approach to be applied to the archaeological

problems.

There are many problems in the statistical field. For example, the multi-resolution struc-

ture of the wavelet coefficients can be used to improve the MCMC algorithm. Suppose the

first 500 iterations are used to estimate the wavelet coefficients at resolution level j = 3,

then the next 500 to estimate the wavelet coefficients at resolution level j = 4, etc. This

type of construction should make the MCMC algorithm faster.

Within Chapter 3, we applied different thresholding rules with different wavelet transforms

and demonstrated that the DUHT algorithm and the non-decimated wavelet transform

(NDWT) improve the MSE for estimating the underlying function. Also, MCMC algo-

rithms with DWT was applied and the method developed to provide a general framework

for reconstruction where sharp edges are believed to be important. So, the question

is: How can the MCMC algorithm, with unbalanced Haar and non-decimated wavelet

transforms, be applied to provide a reconstruction in one-stage?

Within Chapter 5, the Laplace prior and the Gaussian prior were discussed with plug-in

methods for prior parameters. The reason for using a plug-in method is that it is easy and

quicker to apply. Thus, the question is: How can Gaussian distribution as a likelihood

and elastic-net distribution as a prior be written as a plug-in method?

Finally, within Chapter 10, a promising topic for future research would be to apply seg-

mentation to the reconstruction of 2D magnetometry data and it would be interesting to

apply the same approaches to produce a reconstruction from other type of data, such as

single-photon emission computed tomography (SPECT) data.



Appendix

A
In this part, the PM for Gaussian distribution will computing, as given the result in

Section 5.4. Vidakovic and Ruggeri (2001) suggested that the coefficients dyj,k can be

considered independently, since the wavelet transformations are decorrelating and they

omit the double index j, k and work with a “typical” wavelet coefficient dy. Additionally

the wavelet coefficients, dy, are modelled via a density p(dy|dg) where dg is the single

part.

The posterior mean, as an estimator of dg, has the following form

PM(dg|dy) =

∫
dgp(dy|dg)π(dg)ddg

m(dy)
=

∫
dgp(dy|dg)π(dg)ddg∫
p(dy|dg)π(dg)ddg

, (1)

where PM(dg|dy) is the posterior mean of dg|dy, p(dy|dg)π(dg) is the likelihood, π is the

prior and m(dy) is the marginal distribution. Assuming dy > 0. The expectation of the
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marginal of dy, is given by
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∫
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where y =
dg−
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. Assuming dy > 0. The marginal distribution of dy, can be written

as

m(dy) =

∫
N(dg, σ

2)N(0,
1

2λ
)ddg

=

√
2λ

2πσ

∫
dg exp

{
− (dy − dg)2

2σ2

}
exp

{
− λdg

2

}
ddg

=

√
2λ exp

{
− 1

2σ2 dy
2 + 2σ2dy

2

(1+2λσ2)

}
2πσ

∫ ∞
−∞

exp

{
−

(dg − dy

1+2λσ2 )2

2σ2

(1+2λσ2)

}
ddg

=

√
2λ

2π
√

1 + 2λσ2
exp

{
− 1

2σ2
dy

2 +
1

(1 + 2λσ2)
2σ2dy

2

}∫ ∞
−∞

exp

{
− 1

2
y2

}
dy

=

√
πλ

π
√

1 + 2λσ2
exp

{
− 1

2σ2
dy

2 +
1

(1 + 2λσ2)
2σ2dy

2

}
. (3)

Then, the posterior mean of dg|dy, is given by

PM(dy) =

(
dy

1 + 2λσ2

)
. (4)
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B
In this part, the PM for Laplace distribution will computing, as given in section 5.5.

Additionally the wavelet coefficients, dy, are modelled via a density p(dy|dg) where dg is

the single part.

The posterior mean is given by

PM(dg|dy) =

∫
dgp(dy|dg)π(dg)ddg

m(dy)
=

∫
dgp(dy|dg)π(dg)ddg∫
p(dy|dg)π(dg)ddg

, (5)

where PM(dg|dy) is the posterior mean of dg|dy, p(dy|dg)π(dg) is the likelihood, π is the

prior and m(dy) is the marginal distribution. Assuming dy > 0. The expectation of the

marginal of dy

E(m(dy)) =

∫
dgp(dy|dg)π(dg)ddg

=

∫
λdg

2
√

2πσ2
exp

{
− (dy − dg)2

2σ2

}
exp

{
− λ|dg|

}
ddg

=

λ exp

{
− 1

2σ2 dy
2

}
2
√

2πσ2

[
exp

{
(dy + σ2λ)2

2σ2

}
×
∫ 0

−∞
dg exp

{
− (dg − (dy + σ2λ))2

2σ2

}
ddg + exp

{
(dy − σ2λ)2

2σ2

}
×
∫ ∞

0

dg exp

{
− (dg − (dy − σ2λ))2

2σ2

}
ddg

]
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=

λ exp

{
− 1

2σ2 dy
2

}
2
√

2π

[
exp

{
(dy + σ2λ)2

2σ2

}∫ − (dy+σ2λ)

σ

−∞
(σy + (dy + σ2λ)) exp

{
− 1

2
y2

}
dy

+ exp

{
(dy − σ2λ)2

2σ2

}∫ ∞
− (dy−σ2λ)

σ

(σy + (dy − σ2λ)) exp

{
− 1

2
y2

}
dy

]

=

λ exp

{
− 1

2σ2 dy
2

}
2

[
(dy + σ2λ) exp

{
(dy + σ2λ)2

2σ2

}
Φ̄(

dy + σ2λ

σ
)

+ (dy − σ2λ) exp

{
(dy − σ2λ)2

2σ2

}
Φ(

dy − σ2λ

σ
)

]
, (6)

where y = (dy−σ2λ)

σ
. The marginal of dy, is given by

m(dy) =

∫
N(dg, σ

2)DE(0, λ)ddg

=

∫
λ

2
√

2πσ2
exp

{
− (dy − dg)2

2σ2

}
exp

{
− λ|dg|

}
ddg

=

λ exp

{
− 1

2σ2 dy
2

}
2
√

2πσ2

[
exp

{
(dy + σ2λ)2

2σ2

}
×
∫ 0

−∞
exp

{
− (dg − (dy + σ2λ))2

2σ2

}
ddg + exp

{
(dy − σ2λ)2

2σ2

}
×
∫ ∞

0

exp

{
− (dg − (dy − σ2λ))2

2σ2

}
ddg

]

=

σλ exp

{
− 1

2σ2 dy
2

}
2
√

2πσ2

[
exp

{
(dy + σ2λ)2

2σ2

}

×
∫ − (dy+σ2λ)

σ

−∞
exp

{
− 1

2
y2

}
dy + exp

{
(dy − σ2λ)2

2σ2

}
×
∫ ∞
− (dy−σ2λ)

σ

exp

{
− 1

2
y2

}
dy

]

=

λ exp

{
− 1

2σ2 dy
2

}
2

[
exp

{
(dy + σ2λ)2

2σ2

}
Φ

(
− (dy + σ2λ)

σ

)
+ exp

{
(dy − σ2λ)2

2σ2

}
Φ̃

(
− (dy − σ2λ)
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=

λ exp

{
− 1

2σ2 dy
2

}
2

[
exp

{
(dy + σ2λ)2

2σ2

}
Φ̂

(
− (dy + σ2λ)

σ

)
− exp

{
(dy − σ2λ)2

2σ2

}
Φ

(
(d− σ2λ)

σ

)]
, (7)

where Φ is the cumulative standard normal. The posterior mean of dg|dy, is given by

PM(dg|dy) =

∫
dgp(dy|dg)π(dg)ddg∫
p(dy|dg)π(dg)ddg

=

[
(dy + σ2λ) exp

{
(dy + σ2λ)2

2σ2

}
Φ̄(

dy + σ2λ

σ
)

+ (dy − σ2λ) exp

{
(dy − σ2λ)2

2σ2

}
Φ(

dy − σ2λ

σ
)

]
/[

exp

{
(dy + σ2λ)2

2σ2

}
Φ̄

(
− (dy + σ2λ)

σ

)
− exp

{
(dy − σ2λ)2

2σ2

}
Φ

(
(dy − σ2λ)

σ

)]
. (8)

In this part, the mean and variance of soft will prove, as given in Section 2.11. Let

dy ∼ N(dg, σ
2), where dy represents the wavelet coefficients and dg represents the mean

of normal. The mean, variance and the risk function of the shrinkage estimator of dg can

be written under shrinkage function Tλ(dy) and threshold λ = ±λσ2 by following Chib

and Greenberg (1995):

Eλ(dg) = E(Tλ(dy)), (9)

Vλ(dg) = V(Tλ(dy)), (10)

Rλ(dg) = E(Tλ(dy)− dg)2 = Vλ(dg) + (Eλ(dg))2. (11)

First of all the mean of soft is given by

Eλ(dg) =

∫ −λσ2

−∞

(dy + λσ2)√
2πσ2

exp

{
−(dy − dg)2

2σ2

}
ddy +

∫ ∞
λσ2

(dy − λσ2)√
2πσ2

exp

{
−(dy − dg)2

2σ2

}
ddy.

(12)
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Then setting x = dy−dg

σ
this implies that σx + dg = dy and σdx = ddy and

Eλ(dg) =

∫ −λσ2−dg
σ

−∞
(σx + dg + λσ2)

exp

{
− x2

2

}
√

2π
dx

+

∫ ∞
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σ
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{
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2

}
√

2π
dx
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√
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{
− x2

2

}
√
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dx−

∫ ∞
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σ
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{
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}
√
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dx
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−∞ + dgΦ(
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σ
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σ
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σ

)
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(
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σ

)
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σ

)
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(
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σ

)
+ σ2λΦ

(
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σ
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σ
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σ

)
− σ2λΦ

(
λσ2 + dg

σ

)
+ σφ

(
λσ2 − dg

σ

)
+ dgΦ̄

(
λσ2 − dg

σ

)
+ σ2λΦ

(
λσ2 − dg

σ

)
. (13)

Note that Φ

(
−λσ2−dg

σ

)
= Φ

(
λσ2+dg

σ

)
. Then, the Eλ(dg)2, is given by

Eλ(dg)2 =

∫ −λσ2

−∞

(dy + λσ2)2

√
2πσ2

exp

{
−(dy − dg)2

2σ2

}
ddy +

∫ ∞
λσ2

(Y − λσ2)2

√
2πσ2

exp

{
−(dy − dg)2

2σ2

}
ddy.

(14)
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Eλ(dg)2 =

∫ −λσ2−dg
σ

−∞
(σx + σdg + λσ2)2

exp

{
− x2

2

}
√

2π
dx (15)

+

∫ ∞
λσ2−dg

σ

(σx + dg − λσ2)2

exp

{
− x2

2

}
√

2π
dx

=
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σ
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{
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σ
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σ
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σ
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(16)
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Then, the variance is given by

Vλ(dg) = E(Tλ(dy))2 − (E(Tλ(dy)))2

= −σ
(
λσ2 + dg

σ

)
φ

(
λσ2 + dg
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C
In this part, the mean and variance of the elastic-net density, which is mentioned in

Section 5.6, will be computed and the mean is given by

E(df) =

∫
dfp(df |κ, γ)ddf

=

∫ ∞
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df
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=
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=
1

2
√
π√
A

exp

{
1

4A
B2

}(
1− Φ(

√
2A B

2A
)

) 1√
2A

exp

{
1

4A
B2

}

×
[(∫ −√2A B

2A

−∞

y√
2A

exp

{
−1

2
y2

}
dy +

B

2A

∫ −√2A B
2A

−∞
exp

{
−1

2
y2

}
dy

)
+

(∫ ∞
√

2A B
2A

y√
2A

exp

{
−1

2
y2

}
dy − B

2A

∫ ∞
√

2A B
2A

exp

{
−1

2
y2

}
dy

)]
=

1(
1− Φ(κ(1−γ)√

2κγ
)

)( −1√
2κγ

φ(
κ(1− γ)√

2κγ
) +

(1− γ)

2γ

(
1− Φ(

κ(1− γ)√
2κγ

)

)

+
1√
2κγ

φ(
κ(1− γ)√

2κγ
)− (1− γ)

2γ

(
1− Φ(

κ(1− γ)√
2κγ

)

))
= 0, (18)

and the E(df
2), is given by
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(19)

So, the variance is given by

V(df) = E(df
2)− (E(df))

2
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√
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The joint distribution of p(dy, dg), is given by

p(dy, dg) =
1
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1 + 2σ2κγ

)2)

=



1

2π
√

2σ√
κγ

exp

{
(κ(1−γ))2

4κγ

}(
1−Φ

(
κ(1−γ)√

2κγ

)) exp

{
− 1

2σ2 dy
2

}
exp

{(
1+2σ2κγ

2σ2

)(
dy−2σ2κ(1−γ)

1+2σ2κγ

)2}

× exp

{
−
(

(1+2σ2κγ)
2σ2

)(
dg − dy−2σ2κ(1−γ)

1+2σ2κγ

)2}
, if dg ≥ 0

1

2π
√

2σ√
κγ

exp

{
(κ(1−γ))2

4κγ

}(
1−Φ

(
κ(1−γ)√

2κγ

)) exp

{
− 1

2σ2 dy
2

}
exp

{(
1+2σ2κγ

2σ2

)(
dy+2σ2κ(1−γ)

1+2σ2κγ

)2}

× exp

{
−
(

(1+2σ2κγ)
2σ2

)(
dg − dy+2σ2κ(1−γ)

1+2σ2κγ

)2}
, if dg < 0,

(21)

the marginal distribution is given by

m(dy) =

∫
p(dy, dg)ddg

=
1

2π
√

2σ√
κγ

exp

{
(κ(1−γ))2

4κγ

}(
1− Φ(κ(1−γ)√

2κγ
)

) exp

{
− 1

2σ2
dy

2

}
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×
(

exp

{(
1 + 2σ2κγ

2σ2

)(
dy + 2σ2κ(1− γ)

1 + 2σ2κγ

)2}
×
∫ 0

−∞
exp

{
−
(

1 + 2σ2κγ

2σ2

)(
dg −

dy + 2σ2κ(1− γ)

1 + 2σ2κγ

)2}
ddg

+ exp

{(
1 + 2σ2κγ

2σ2

)(
dy − 2σ2κ(1− γ)

1 + 2σ2κγ

)2}
×
∫ ∞

0

exp

{
−
(

1 + 2σ2κγ

2σ2

)(
dg −

dy − 2σ2κ(1− γ)

1 + 2σ2κγ

)2}
ddg

)

=
1

2π
√

2σ√
κγ

exp

{
(κ(1−γ))2

4κγ

}(
1− Φ

(
κ(1−γ)√

2κγ

)) exp

{
− 1

2σ2
dy

2

}

×
(

exp

{(
1 + 2σ2κγ

2σ2

)(
dy + 2σ2κ(1− γ)

1 + 2σ2κγ

)2}
×

√
2πσ2

1 + 2σ2κγ

(
1− Φ(

√
1 + 2σ2κγ

σ2

dy + 2σ2κ(1− γ)

1 + 2σ2κγ
)

)
+ exp

{(
1 + 2σ2κγ

2σ2

)(
dy − 2σ2κ(1− γ)

1 + 2σ2κγ

)2}
×

√
2πσ2

1 + 2σ2κγ

(
Φ

(√
1 + 2σ2κγ

σ2

dy − 2σ2κ(1− γ)

1 + 2σ2κγ

)))
,

(22)

and the distribution of dg, can be written as

p(dg|dy) =
p(dy, dg)

m(dy)

=



exp

{(
dy−2σ2κ(1−γ)

1+2σ2κγ

)2}
exp

{
−

(
1+2σ2κγ)

2σ2

}(
dg−

dy−2σ2κ(1−γ)

1+2σ2κγ

)2)
√

2πσ2

1+2σ2κγ

(
exp

{(
dy+2σ2κ(1−γ)

1+2σ2κγ

)2}(
1−Φ(

√
1+2σ2κγ

σ2
dy+2σ2κ(1−γ)

1+2σ2κγ
)

)
+exp

{(
dy−2σ2κ(1−γ)

1+2σ2κγ

)2}(
Φ(

√
1+2σ2κγ

σ2
dy−2σ2κ(1−γ)

1+2σ2κγ
)

)) ,
if dg ≥ 0

exp

{(
dy+2σ2κ(1−γ)

1+2σ2κγ

)2}
exp

{
−

(
1+2σ2κγ)

2σ2

}(
dg−

dy+2σ2κ(1−γ)

1+2σ2κγ

)2)
√

2πσ2

1+2σ2κγ

(
exp

{(
dy+2σ2κ(1−γ)

1+2σ2κγ

)2}(
1−Φ(

√
1+2σ2κγ

σ2
dy+2σ2κ(1−γ)

1+2σ2κγ
)

)
+exp

{(
dy−2σ2κ(1−γ)

1+2σ2κγ

)2}(
Φ(

√
1+2σ2κγ

σ2
dy−2σ2κ(1−γ)

1+2σ2κγ
)

)) ,
if dg < 0.

(23)
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Now, the posterior mean PM can be computed as∫
dgp(dg|dy)ddg =

1

2π
√

2σ√
κγ

exp

{
(κ(1−γ))2

4κγ

}(
1− Φ

(
κ(1−γ)√

2κγ

)) exp

{
− 1

2σ2
dy

2

}

×
(

exp

{(
1 + 2σ2κγ

2σ2

)(
dy + 2σ2κ(1− γ)

1 + 2σ2κγ

)2}
×
∫ 0

−∞
dg exp

{
−
(

1 + 2σ2κγ

2σ2

)
×
(

dg −
dy + 2σ2κ(1− γ)

1 + 2σ2κγ

)2}
ddg

+ exp

{(
1 + 2σ2κγ

2σ2

)(
dy − 2σ2κ(1− γ)

1 + 2σ2κγ

)2}
×
∫ ∞

0

dg exp

{
−
(

1 + 2σ2κγ

2σ2

)
×
(

dg −
dy − 2σ2κ(1− γ)

1 + 2σ2κγ

)2}
ddg

)

=
1

2π
√

2σ√
κγ

exp

{
(κ(1−γ))2

4κγ

}(
1− Φ

(
κ(1−γ)√

2κγ

)) exp

{
− 1

2σ2
dy

2

}

× exp

{
1 + 2σ2κγ

2σ2

}(
exp

{(
dy + 2σ2κ(1− γ)

1 + 2σ2κγ

)2}
×
∫ 0

−∞
dg exp

{
−
(

dg −
dy + 2σ2κ(1− γ)

1 + 2σ2κγ

)2}
ddg

+ exp

{(
dy − 2σ2κ(1− γ)

1 + 2σ2κγ

)2}
×
∫ ∞

0

dg exp

{
−
(

dg −
dy − 2σ2κ(1− γ)

1 + 2σ2κγ

)2}
ddg

)
.

Then let y =
√

2 (dy+2σ2κ(1−γ))

1+2σ2κγ
, given∫

dgp(dg|dy)ddg

=
1

2π
√

2σ√
κγ

exp

{
(κ(1−γ))2

4κγ

}(
1− Φ

(
κ(1−γ)√

2κγ

)) exp

{
− 1

2σ2
dy

2

}
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× exp

{
1 + 2σ2κγ

2σ2

}(
exp

{(
dy + 2σ2κ(1− γ)

1 + 2σ2κγ

)2}

×
∫ −√2

(dy+2σ2κ(1−γ))

1+2σ2κγ

−∞

1√
2

(
y√
2

+
dy + 2σ2κ(1− γ)

1 + 2σ2κγ

)
× exp

{
− 1

2
y2

}
dy + exp

{(
dy − 2σ2κ(1− γ)

1 + 2σ2κγ

)2}
×
∫ ∞
−
√

2
(dy−2σ2κ(1−γ))

1+2σ2κγ

1√
2

(
y√
2

+
dy − 2σ2κ(1− γ)

1 + 2σ2κγ

)

× exp

{
− 1

2
y2

}
dy

)

=
1

2π
√

2σ√
κγ

exp

{
(κ(1−γ))2

4κγ

}(
1− Φ(κ(1−γ)√

2κγ
)

) exp

{
− 1

2σ2
dy

2

}
exp

{
1 + 2σ2κγ

2σ2

}

×
(

exp

{(
dy + 2σ2κ(1− γ)

1 + 2σ2κγ

)2}(
−
√

2π

2
φ

(√
2

(dy + 2σ2κ(1− γ))

1 + 2σ2κγ

)
+

√
2π

2

(
dy + 2σ2κ(1− γ)

1 + 2σ2κγ

)(
1 + Φ

(
dy + 2σ2κ(1− γ)

1 + 2σ2κγ

)))
+ exp

{(
dy − 2σ2κ(1− γ)

1 + 2σ2κγ

)2}(√
2π

2
φ

(√
2

(dy − 2σ2κ(1− γ))

1 + 2σ2κγ

)
+

√
2π

2

(
dy − 2σ2κ(1− γ)

1 + 2σ2κγ

)
Φ

(
dy − 2σ2κ(1− γ)

1 + 2σ2κγ

)))
. (24)

Thus, the posterior mean can be computed using (22) and (24), as

PM(dg|dy) =

∫
dgp(dg|dy)ddg∫
p(dg|dy)ddg

=

(
exp

{(
dy + 2σ2κ(1− γ)

1 + 2σ2κγ

)2}(
−
√

2π

2
φ

(√
2

(dy + 2σ2κ(1− γ))

1 + 2σ2κγ

)
+

√
2π

2

(
dy + 2σ2κ(1− γ)

1 + 2σ2κγ

)(
1 + Φ

(
dy + 2σ2κ(1− γ)

1 + 2σ2κγ

)))
+ exp

{(
dy − 2σ2κ(1− γ)

1 + 2σ2κγ

)2}(√
2π

2
φ

(√
2

(dy − 2σ2κ(1− γ))

1 + 2σ2κγ

)
+

√
2π

2

(
dy − 2σ2κ(1− γ)

1 + 2σ2κγ

)
Φ

(
dy − 2σ2κ(1− γ)

1 + 2σ2κγ

)))
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/
(

exp

{(
1 + 2σ2κγ

2σ2

)(
dy + 2σ2κ(1− γ)

1 + 2σ2κγ

)2}
×

√
2πσ2

1 + 2σ2κγ

(
1− Φ

(√
1 + 2σ2κγ

σ2

dy + 2σ2κ(1− γ)

1 + 2σ2κγ

))
+ exp

{(
1 + 2σ2κγ

2σ2

)(
dy − 2σ2κ(1− γ)

1 + 2σ2κγ

)2}
×

√
2πσ2

1 + 2σ2κγ

(
Φ

(√
1 + 2σ2κγ

σ2

dy − 2σ2κ(1− γ)

1 + 2σ2κγ

)))
. (25)
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D
The posterior mean PM of the Bayesian adaptive multi-resolution shrinkage (BAMS)

method will be computed, Vidakovic and Ruggeri, (2001) state that the marginal distri-

bution for dy is

m(dy) =

∫
p(dy|dg)ζ(dg)ddg

=

∫
DE(dg,

1√
2µ

)DE(0, τ)ddg

=

√
2µ

4τ
[

∫ 0

−∞
exp{−

√
2µ(dy − dg) + dg/τ}ddg

+

∫ d

0

exp{−
√

2µ(dy − dg)− dg/τ}ddg

+

∫ ∞
0

exp{
√

2µ(dy − dg)− dg/τ}ddg]

=

√
2µ

4τ
[exp{−

√
2µdy}

∫ 0

−∞
exp{

√
2µdg + dg/τ}ddg + exp{−

√
2µdy}

×
∫ dy

0

exp{
√

2µdg − dg/τ}ddg

+ exp{
√

2µdy}
∫ ∞

0

exp{−
√

2µdg − dg/τ}ddg]

=
t exp{−|dy|/τ} − 1√

2µ
exp{−|dy|

√
2µ}

2τ 2 − 1/µ
, τ 6= 1√

2µ
. (26)

To prove that step by step

m(dy) =

∫
P(dy|dg)ζ(dg)ddg

=

∫
DE(dg,

1√
2µ

)DE(0, τ 2)ddg
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=

√
2µ

4τ

[ ∫ 0

−∞
exp{−

√
2µ(dy − dg) + dg/τ}ddg +

∫ dy

0

exp{−
√

2µ(dy − dg)− dg/τ}ddg

+

∫ ∞
0

exp{
√

2µ(dy − dg)− dg/τ}ddg

]
=

√
2µ

4τ

[
exp{−

√
2µdy}

×
∫ 0

−∞
exp{

√
2µdg + dg/τ}ddg + exp{−

√
2µdy}

∫ dy

0

exp{
√

2µdg − dg/τ}ddg

+ exp{
√

2µdy}
∫ ∞

0

exp{−
√

2µdg − dg/τ}ddg

]
=

√
2µ

4τ

[
exp{−

√
2µdy}√

2µ+ 1/τ
exp{dg(

√
2µ+ 1/τ)}|0−∞ +

exp{−
√

2µdy}√
2µ− 1/τ

exp{dg(
√

2µ− 1/τ)}|dy

0

+
− exp{

√
2µdy}√

2µ+ 1/τ
exp{−dg(

√
2µ+ 1/τ)}|∞dy

]
=

√
2µ

4τ

[
exp{−

√
2µdy}√

2µ+ 1/τ
+

exp{−
√

2µdy}√
2µ− 1/τ

(exp{dy(
√

2µ− 1/τ)} − 1)

+
exp{
√

2µdy}√
2µ+ 1/τ

exp{−dy(
√

2µ+ 1/τ)}
]

=

√
2µ

4τ

[
exp{−dy

√
2µ}( 1√

2µ+ 1/τ
− 1√

2µ− 1/τ
)

+ exp{−dy/τ}(
1√

2µ− 1/τ
+

1√
2µ+ 1/τ

)

]
=

√
2µ

4τ

[
2
√

2µ exp{−dy/τ} − 2/τ exp{−dy

√
2µ}

2µ+ 1/τ 2

]
=

4µ exp{−dy/τ} − 2
√

2µ
τ

exp{−dy

√
2µ}

8τµ+ 4
τ

=
t exp{−|dy|/τ} − 1√

2µ
exp{−|dy|

√
2µ}

2τ 2 − 1/µ
, τ 6= 1√

2µ
.

The posterior mean of dg|dy, is given by

PM(dg|dy) =

∫
dgp(dy|dg)π(dg)ddg∫
p(dy|dg)π(dg)ddg

=

∫
dgp(dy|dg)π(dg)ddg

m(dg)
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=

√
2µ

4τ

[ ∫ 0

−∞ dg exp{−
√

2µ(dy − dg) + dg/τ}ddg

t exp{−|dy|/τ}− 1√
2µ

exp{−|dy|
√

2µ}
2τ2−1/µ

(27)

+

∫ dy

0
dg exp{−

√
2µ(dy − dg)− dg/τ}ddg +

∫∞
dg

dg exp{
√

2µ(dy − dg)− dg/τ}ddg

]
t exp{−|dy|/τ}− 1√

2µ
exp{−|dy|

√
2µ}

2τ2−1/µ

=
τ(τ 2 − 1/(2µ))dy exp{−|dy|/τ} − τ 2(exp{−|dy|

√
2µ} − exp{−|dy|/τ})/µ

(τ 2 − 1/2µ)(τ exp{−|dy|/τ} − (1/
√

2µ) exp{−|dy|
√

2µ})
, τ 6= 1√

2µ
.

(28)

To prove this step by step

PM(dg|dy) =

∫
dgp(dy|dg)π(dg)ddg∫
p(dy|dg)π(dg)ddg

=

∫
dgp(dy|dg)π(dg)ddg

m(dg)

=

√
2µ

4τ
[
∫ 0

−∞ dg exp{−
√

2µ(dy − dg) + dg/τ}ddg

t exp{−|dg|/τ}− 1√
2µ

exp{−|dy|
√

2µ}
2τ2−1/µ

+

∫ dy

0
dg exp{−

√
2µ(dy − dg)− dg/τ}ddg +

∫∞
dy

dg exp{
√

2µ(dy − dg)− dg/τ}ddg]

t exp{−|dg|/τ}− 1√
2µ

exp{−|dy|
√

2µ}
2τ2−1/µ

=

√
2µ

4τ
[exp{−

√
2µdy}

∫ 0

−∞ dg exp{
√

2µdg + dg/τ}ddg

t exp{−|dy|/τ}− 1√
2µ

exp{−|dy|
√

2µ}
2τ2−1/µ

+
exp{−

√
2µdy}

∫ dg

0
dg exp{

√
2µdg − dg

τ
}ddg + exp{

√
2µdy}

∫∞
dy

dg exp{−
√

2µdg − dg

τ
}ddg]

t exp{−|dy|/τ}− 1√
2µ

exp{−|dy|
√

2µ}
2τ2−1/µ

=

√
2µ

4τ
[− exp{−

√
2µdy}

∫ 0

−∞
1√

2µ+1/τ
exp{
√

2µdg + dg/τ}ddg

t exp{−|dy|/τ}− 1√
2µ

exp{−|dy|
√

2µ}
2τ2−1/µ

+

exp{−
√

2µdy}√
2µ−1/τ

(dy exp{
√

2µdy − dy/τ} −
∫ dy

0
exp{
√

2µdg − dg/τ}ddg)]

t exp{−|dy|/τ}− 1√
2µ

exp{−|dy|
√

2µ}
2τ2−1/µ

+

√
2µ

4τ

exp{
√

2µdy}√
2µ+1/τ

(dy exp{−
√

2µdy − dy/τ}+
∫∞

dy
exp{−

√
2µdg − dg/τ}ddg)

t exp{−|dy|/τ}− 1√
2µ

exp{−|dy|
√

2µ}
2τ2−1/µ
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=

√
2µ

4τ
[− exp{−dy

√
2µ}

(
√

2µ+1/τ)2 + dy exp{−dy/τ}√
2µ−1/τ

− exp{−dy/τ}
(
√

2µ−1/τ)2 + exp{−dy
√

2µ}
(
√

2µ−1/τ)2 + d exp{−dy/τ}
(
√

2µ+1/τ)
+ exp{−dy/τ}

(
√

2µ+1/τ)2 ]

t exp{−|dy|/τ}− 1√
2µ

exp{−|dy|
√

2µ}
2τ2−1/µ

=
(2τ 2 − 1

µ
)[2µ exp{−dy

√
2µ}+ µτ(2µ− 1

τ2 )dy exp{−dy/τ} − 2µ exp{−dy/τ}]
τ 2(2µ− 1

τ2 )2(t exp{−|dy|/τ} − 1√
2µ

exp{−|dy|
√

2µ})

=

τ2

µ
(2µ− 1

τ2 )[2µ exp{−d
√

2µ}+ µτ(2µ− 1
τ2 )dy exp{−dy/τ} − 2µ exp{−dy/τ}]

τ 2(2µ− 1
τ2 )2(t exp{−|dy|/τ} − 1√

2µ
exp{−|dy|

√
2µ})

=
2 exp{−dy

√
2µ}+ τ(2µ− 1

τ2 )dy exp{−dy/τ} − 2 exp{−dy/τ}
(2µ− 1

τ2 )(t exp{−|dy|/τ} − 1√
2µ

exp{−|dy|
√

2µ})

=
2 exp{−dy

√
2µ}+ 2τµ

τ2 (τ 2 − 1
2µ

)dy exp{−dy/τ} − 2 exp{−dy/τ}
2µ
τ2 (τ 2 − 1

2µ
)(t exp{−|dy|/τ} − 1√

2µ
exp{−|dy|

√
2µ})

=

2µ
τ

(τ 2 − 1
2µ

)dy exp{−dy/τ}+ 2 exp{−dy

√
2µ} − 2 exp{−dy/τ}

2µ
τ2 (τ 2 − 1

2µ
)(t exp{−|dy|/τ} − 1√

2µ
exp{−|dy|

√
2µ})

=
2µτ 2(τ 2 − 1

2µ
)dy exp{−dy/τ}+ 2 exp{−dy

√
2µ} − 2 exp{−dy/τ}

2µτ(τ 2 − 1
2µ

)(t exp{−|dy|/τ} − 1√
2µ

exp{−|dy|
√

2µ})

=
τ(τ 2 − 1

2µ
)dy exp{−dy/τ}+ τ

µ
exp{−dy

√
2µ} − τ

µ
exp{−dy/τ}

(τ 2 − 1
2µ

)(τ exp{−|dy|/τ} − 1√
2µ

exp{−|dy|
√

2µ})

=
τ(τ 2 − 1/(2µ))dy exp{−|dy|/τ}+ τ 2(exp{−|dy|

√
2µ} − exp{−|dy|/τ})/µ

(τ 2 − 1/2µ)(τ exp{−|dy|/τ} − (1/
√

2µ) exp{−|dy|
√

2µ})
, τ 6= 1√

2µ
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Géophysique, Elsevier Science, pp.399–419.

Leslie-Pelecky, D. L. and Rieke, R. D. (1996). Magnetic properties of nanostructured

materials. Chemistry of Materials, ACS Publications, 8(8), pp.1770–1783.

Levine, H. A.et al. (1979). Review: AN Tikhonov and VY Arsenin, solutions of ill-posed

problems. Bulletin of the American Mathematical Society, 1(3), pp.521–524.

Lewis, C., Mitchell-Fox, P., and Dyer, C. (1997). Village, hamlet and field: Changing

medieval settlements in central England. United Kingdom: Windgather Press.

Lina, J.-M. (1997). Image processing with complex daubechies wavelets. Journal of

Mathematical Imaging and Vision, 7(3), pp.211–223.

Lina, J.-M. and MacGibbon, B. (1997). Nonlinear shrinkage estimation with complex

Daubechies wavelets. In: Proceedings of SPIE Wavelet applications in signal and image

orocessing, 3169, pp.67–79.

Lina, J.-M. and Mayrand, M. (1995). Complex Daubechies wavelets. Applied and Com-

putational Harmonic Analysis, 2(3), pp.219–229.



287 Bibliography

Lina, J.-M., Turcotte, P., and Goulard, B. (1999). Complex dyadic multiresolution anal-

yses. Advances in Imaging and Electron Physics, 109, pp.163–197.

Liu, J., Billings, S. A., Zhu, Z. Q., and Shen, J. (2002). Enhanced frequency analysis

using wavelets. International Journal of Control, 75(15), pp.1145–1158.

Liu, J. S. (2001). Monte Carlo strategies in scientific computing. United Kingdom:

Springer Science and Business Media.

Mallat, S. G. (1989). A theory for multiresolution signal decomposition: The wavelet rep-

resentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7),

pp.674–693.

Meinshausen, N. and Bühlmann, P. (2006). High-dimensional graphs and variable selec-

tion with the Lasso. The Annals of Statistics, 34(3), pp.1436–1462.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953).

Equation of state calculations by fast computing machines. The Journal of Chemical

Physics, 21(6), pp.1087–1092.

Meyer, Y. (1995). Wavelets and operators. United Kingdom: Cambridge University Press.

Morlet, J., Arens, G., Fourgeau, E., and Glard, D. (1982). Wave propagation and sampling

theory-Part I: Complex signal and scattering in multilayered media. Geophysics, Society

of Exploration Geophysicists, 47(2), pp.203–221.

Mullins, C. E. (1977). Magnetic susceptibility of the soil and its significance in soil

science–a review. Journal of Soil Science, 28(2), pp.223–246.

Nason, G. P. (1995). Choice of the threshold parameter in wavelet function estimation. In:

Antoniadis, A. and Oppenheim, G. eds. Wavelets and statistics. New York: Springer-

Verlag. 103, pp.261–280.

Nason, G. P. (1996). Wavelet shrinkage using cross-validation. Journal of the Royal

Statistical Society, Series B, 58(2), 463–479.

Nason, G. P. (2010a). Wavelet methods in statistics with R. New York: Springer.



288 Bibliography

Nason, G. P. (2010b). Wavethresh 4.5. Software. Department of Mathe-

matics, United Kingdom: University of Bristol. [2014]. Available from

http://www.stats.bris.ac.uk/ wavethresh.

Nason, G. P. and Silverman, B. W. (1994). The discrete wavelet transform in S. Journal

of Computational and Graphical Statistics, 3(2), pp.163–191.

Nason, G. P. and Silverman, B. W. (1995). The stationary wavelet transform and some

statistical applications In: Antoniadis, A. and Oppenheim, G. eds. Wavelets and statis-

tics: lecture notes in statistics. New York: Springer-Verlag. 103, pp.281–299.

Needham, S. P. (1985). Neolithic and Bronze Age settlement on the buried floodplains of

Runnymede. Oxford Journal of Archaeology, 4(2), pp.125–137.

Ogden, R. T. (1994). Wavelet thresholding in nonparametric regression with change-point

applications. PhD thesis, M University, Texas A.

Park, T. and Casella, G. (2008). The bayesian Lasso. Journal of the American Statistical

Association, 103(482), pp.681–686.

Percival, D. B. and Walden, A. T. (2006). Wavelet methods for time series analysis. New

York: Cambridge University Press.

Pericchi, L. R. and Smith, A. F. M. (1992). Exact and approximate posterior moments for

a normal location parameter. Journal of the Royal Statistical Society, Series B, 54(3),

pp.793–804.

Pesquet, J.-C., Krim, H., and Carfantan, H. (1996). Time-invariant orthonormal wavelet

representations. IEEE Transactions on Signal Processing, 44(8), pp.1964–1970.

Polzehl, J. and Spokoiny, V. G. (2000). Adaptive weights smoothing with applications to

image restoration. Journal of the Royal Statistical Society, Series B, 62(2), pp.335–354.

Qian, W. and Titterington, D. M. (1991). Multidimensional Markov Chain models for

image textures. Journal of the Royal Statistical Society, Series B, 53(3), pp.661–674.

Raftery, A. E. and Lewis, A. E. (1995). The number of iterations, convergence diagnostics



289 Bibliography

and generic Metroplis algorithms. In: Gilks, W. R., Richardson, S. and Spiegelhalter,

D. J. eds. Practical Markov Chain Monte Carlo. Chapman and Hall.

Raimondo, M. (2002). Wavelet shrinkage via peaks over threshold. Inter-Stat, 5(1),

pp.1–19.
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