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Abstract

Edge Localised Modes (ELMs), a repetitive MHD instability, present a risk to ITER

machine components and scientific objectives, necessitating a robust ELM mitigation

strategy. The application of Resonant Magnetic Perturbations (RMPs) is an effective

means of suppressing or mitigating ELMs, and a set of RMP coils will be installed on

ITER. Although there are several working theories, a robust predictive theory of ELM

control by RMPs is currently lacking. In previous assessments of the efficacy of the ITER

RMP system, the response of the plasma to the applied RMP was typically overlooked;

however it is well known that the plasma response constitutes a significant correction to

the total plasma perturbation. In this thesis, the MARS-F code (Liu et al 2000 Phys.

Plasmas 7 3681) is used to study the linear plasma response to applied RMPs using

realistic geometry and experimental parameters. The pitch aligned components and the

amplified peeling response components of the RMP, both previously implicated in the

ELM mitigation and suppression mechanisms, are studied. It is shown that although

the pitch aligned components are strongly screened by the plasma response, they may

be finite near the plasma edge, and may be driven by the amplified peeling response

via poloidal harmonic coupling. RMPs can be tuned by adjusting the phase ∆φUL be-

tween the toroidal waveforms in the upper and lower rows of RMP coils. A scheme for

optimising the coil phase to maximise ELM mitigation for a given plasma equilibrium

is devised for ASDEX Upgrade plasmas. A database of ASDEX Upgrade RMP exper-

iments is assembled and used to benchmark the scheme against MARS computations,

and validate it against experimental measurements. The scheme is then extended to the

ITER RMP coil system.
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Chapter 1

Introduction

1.1 Energy for Human Development

We live an interesting age. After the devastation of the first half of the last century,

through technology, cooperation and economic development, humanity has made huge

Figure 1.1: The More the Merrier a) Data from [1]. Until very recently there were
precariously few humans. It took tens of millennia for the human population to reach
200 million, and another 1000 years to add another 80 million. b) It now takes a single
year to add 80 million. While intuition warns that such a huge population boom must
inevitably lead to scarcity and misery, a brief examination of the data tells a different
story. c,d) Data from [2]. Even while the population increases, the global poverty and
child mortality rates have consistently dropped, and the global average life expectancy

and education rate consistently risen.
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strides in prosperity and quality of living, as illustrated in figure 1.1. Between 1960 and

2014, the global average life expectancy rose from 52 to 71 years[3]. The global primary

education completion rate has risen from 74% to 90% since 1970[4], the global rate

of extreme poverty has dropped from 42.2% to 10.7% since 1981[5], and by historical

standards inter-state warfare has virtually vanished from the Earth[6]. In the aggregate,

humanity has never before been so healthy, prosperous, and peaceful, which is especially

remarkable in the context of unprecedented population growth. Having taken tens of

thousands of years to reach 1.8 billion in 1915, the population then reached 7.35 billion

a mere 100 years later, and is projected to reach 11 billion by 2100[7].

Sufficient per capita energy consumption is fundamentally essential to a high quality of

life[8], and so the continuation of the progress of the past century of human development

will necessarily entail a large increase in global energy production. It is projected that

between 2012 and 2040, total global energy production and electricity production will

rise by 48% and 69% respectively[9]. However, faced with the finite availability of fossil

fuels and looming threat of anthropogenic climate change, it is becoming ever more

apparent that a radical transition in energy production methods will be required.

1.2 Fossil Fuels

In 2014, 81.1% of primary energy consumed globally and 66.7% of electricity generated

was produced by burning fossil fuels[11]. Using the ratio of current proven fossil fuel

reserves to yearly production, we may crudely estimate how many more years we may

safely rely on fossil fuels to provide the bulk of our energy needs. As of 2015, these

ratios are 51 years for oil, 53 years for natural gas, and 114 years for coal[12]. These

figures are of course underestimates, since proven reserves are regularly revised upwards

by hydrocarbon exploration and advances in resource recovery technology[13]. However

large the reserves are eventually found to be, fossil fuels are a finite and non-renewable

resource which cannot be relied on indefinitely.

Perhaps a more pressing concern than their availability, are the effects of burning fossil

fuels on human health. Studies by the World Health Organisation have found that

exposure to fossil fuel air pollution increases the risk of numerous debilitating diseases,

most notably stroke, heart disease and lung cancer[14]. Because the most polluted areas

tend also to be the most densely populated, in 2014 92% of the world’s population lived

in areas where the air pollution was above WHO recommended limits, and exposure to

ambient air pollution currently causes 3.7 million premature deaths per year[15].
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Figure 1.2: Figure reproduced from Figure SPM.1 on page 3 of [10]. a) Average global
ocean and land surface temperature change relative to 1986-2005 mean. Datasets are
HadCRUT4 version 4.1.1.0 (Black), NASA GISS (Blue), and NCDC MLOST version
3.5.2 (Orange). b) Average global change in sea level relative to 1986-2005 mean,
aligned to have the same value in 1993. Black dataset reported in Church and White
(2011), yellow dataset reported in Jevrejeva et al (2008), green dataset reported in
Ray and Douglas (2011), all using tide gauge reconstruction. Red dataset reported
in Nerem at al (2010) produced with satellite altimetry. c) Concentrations of various
greenhouse gasses in the atmosphere, determined from ice core measurements (dots)
and direct measurements of atmospheric gas (lines). d) Global CO2 emissions due to

human activity, and cumulative CO2 emissions since the industrial revolution.
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A further side effect of excessive use of fossil fuels is modification of the Earth’s at-

mospheric composition, and consequently the Earth’s climate. Numerous independent

datasets show a steady increase in global surface temperatures and globally averaged sea

levels, since the beginning of the industrial age[10] (see fig 1.2a),b)). This is attributed

with high confidence to increasing concentrations of atmospheric CO2 and other green-

house gases which are now at an 800,000 year high and still increasing rapidly, caused

by the burning of vast quantities of fossil fuels[10] (see 1.2c),d)). In some instances,

the effects of anthropogenic climate change can be benign, such as the opening of new

shipping lanes through the Arctic ocean by declining Arctic ice[16]. However, these

are fairly feeble consolation for the negative effects. These are expected to include an

increase in the spread of malaria by increasing the range of mosquitoes[17], a loss of bio-

diversity due to rapid habitat destruction[18], damage to marine ecosystems caused by

ocean acidification[19], and an increase in extreme weather events such as droughts[20],

cyclones[21] and wildfires[22].

Considering the finite nature of fossil fuels, their impact on human health and effects on

our environment, it seems prudent to research and develop alternative energy sources to

reduce our dependence on them, and ultimately to phase out their use when feasible. It is

probably impossible to do this quickly; despite non fossil fuel energy sources expanding at

a faster rate than fossil fuel sources, it is projected that fossil fuels will still provide 78%

of energy in 2040[9]. The largest contributors to fossil fuel consumption are transport,

industry and electricity generation. Electrification may contribute significantly towards

decarbonising transport and heavy industry; the recent increase in adoption of electric

vehicles provides an encouraging example (from a few hundred in 2005 to 1.26 million

in 2015[23]). However, electrification does not significantly reduce energy consumption,

but merely shifts the onus of decarbonisation to electricity generation.

1.3 Carbon Free Electricity Generation

Of the carbon free generating technologies currently available, solar, wind and nuclear

fission are the only methods which have the potential to scale to the very large generating

capacities needed to replace fossil fuels[24]. However, these still have significant barriers

which are inhibiting their ability to meaningfully replace fossil fuel generation. Since

solar and wind provide intermittent and variable power output, they are currently unable

to follow the daily demand curve and therefore require conventional fossil fuel sources as

backup. Nuclear fission provides a reliable and constant output and can follow demand

curves. However, in a scenario in which current nuclear technology were scaled up to

provide all the world’s electricity, uranium reserves would last at most 185 years[24],
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and also nuclear fuel enrichment technology would have to be widely distributed to all

states, increasing the likelihood of uncontrollable nuclear weapons proliferation.

Energy technology is currently advancing so rapidly that the above discussion may well

be irrelevant at time of reading. The issue of finite uranium fuel may be mitigated or

overcome by the development of breeder reactors which would vastly increase viable fis-

sion fuel reserves[25], and the development of cheap and scalable energy storage solutions

would negate the intermittency of solar and wind. Research is proceeding in these and

many other directions, but unfortunately predicting the development and deployment

of new technologies is notoriously difficult (although the solutions will of course seem

obvious in hindsight). Since we cannot tell today which of the many research branches

will bear fruit, we must continue to explore all options.

We live an interesting age. Prosperity, security and progress are not fate, but we may

hope that by our best efforts and new technologies we may accomplish and safeguard

them.

1.4 Nuclear Fusion

Nuclear fusion is the joining together of light atomic nuclei into heavier nuclei. In an

exothermic fusion reaction (one that releases energy), the total mass of the reactants (the

’ingredients’ of the reaction) is greater than the total mass of the products. The mass

which has apparently gone missing in the reaction, ∆m, is released as energy according

to Einstein’s relation E = ∆mc2. A ready example of a fusion reactor is our own Sun,

which every second burns (in the nuclear sense) 620 million tonnes of hydrogen into 616

million tonnes of helium, with the ’missing’ 4 million tonnes of mass released as 3.8×1026

Joules of energy[26]. The proton-proton fusion chain which takes place in the Sun is in

fact an extremely slow reaction, but the Sun compensates with its astronomically large

mass. For terrestrial fusion we require a faster reaction, and of the available candidates,

the reaction between Deuterium (2
1D) and Tritium (3

1T ) has by far the highest reaction

rate at achievable temperatures[27], and so this is the primary reaction of interest to

fusion research.

2
1D +3

1 T →4
2 He(3.5MeV ) + n(14.1MeV ) (1.1)

The products of the reaction are an α particle (ie, a Helium nucleus 4
2He), a neutron n,

and 17.6MeV of energy. The α particle carries 3.5MeV of energy which heats the fuel

to maintain the reaction, and 14.1MeV of energy is carried out of the reactor by the
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neutron to boil water, which turns a turbine and generates electrical power. Deuterium is

abundant in seawater (approximately 1 part in 6400), and so the supply of this reactant

is essentially unlimited. Tritium however is radioactive with a short half-life of 12.3

years, and so does not occur in nature and must be bred from Lithium. The two most

abundant isotopes of Lithium in nature are 7
3Li and 6

3Li (92.4% and 7.6% respectively

of naturally occurring Lithium), which react to neutron bombardment as shown below

n+7
3 Li→3

1 T +4
2 He+ n− 2.46MeV (1.2)

n+6
3 Li→3

1 T (2.7MeV ) +4
2 He(2.1MeV ) (1.3)

Using the above reactions, Lithium is bombarded by the fusion neutrons which breeds

Tritium, which is then burnt in the fusion reaction, to produce neutrons which breed

more Tritium. So for practical purposes the fuel for early fusion reactors is Lithium, of

which there are readily available and widely distributed reserves sufficient for millennia

of total world energy consumption, which can be extended to tens of millions of years

by extracting Lithium from seawater [28, 29]1.

A fusion power plant would share all the advantages of conventional nuclear fission:

supplying reliable continuous power, requiring very little land compared with solar and

wind, would be scalable to meet world demand and would use a negligible quantity of fuel

compared with fossil fuels. Unfortunately it would likely also share the disadvantage of

high construction costs relative to fossil fuel plants, but this does not preclude fusion from

being cost competitive with fission and other low carbon sources[32]. However, fusion

has a number of additional crucial advantages over conventional fission. Although the

quantities involved are generally small, some products of nuclear fission have long decay

chains, which necessitates continually produced spent fission fuel to be safely stored

for millennia[33]. The products of the fusion reaction conversely, are radiologically and

chemically inert, so there is no continuous production of radioactive waste. Over the

course of the fusion reactor lifetime some components will be made radioactive by the

neutron bombardment, which must be handled when the reactor is decommissioned.

However by careful choice of reactor materials, this small amount of waste will become

1While D-T is clearly the most practical fusion reaction to use at the current technological level, at
sufficiently high temperatures Deuterium will also fuse with other Deuterium nuclei, releasing similar
amounts of energy to a D-T reaction. Conditions for D-D fusion are far more technically challenging
than D-T fusion, but not prohibitively so[30], and it is possible that once D-T fusion is mastered,
later generations of reactors will burn only Deuterium. Hydrogen, which contains concentrations of
Deuterium of around 25 ppm[31], is by a wide margin the most abundant and widely available element
in the Universe. With an abundance of fuel so incomprehensibly vast, once developed D-D fusion would
be the last power source humanity would ever need, capable of providing the energy to remove all other
resource limits, and sustaining human civilisations long after the last embers of the last stars.
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safe to recycle and reuse on the order of decades, rather than millennia[34]. Furthermore,

since fusion reactors have no need of uranium mining, weapon relevant materials or

enrichment facilities, the use of a fusion power program to covertly develop nuclear

weapons is highly implausible, alleviating concerns of proliferation[35]. Since the fission

reaction can take place without active human involvement, and the core of a fission

reactor contains many months or years of fuel at any given time, the potential for an

uncontrolled or runaway reaction is inherent to fission reactors. Put simply, fission is too

easy2. In contrast, a terrestrial fusion reaction is incredibly fragile and requires constant

intervention to maintain; the loss of any reactor system or containment breach would

introduce impurities to the fusion fuel which immediately extinguishes the reaction.

Furthermore, at any time the reactor never contains more than a few seconds of fuel.

Fusion is therefore inherently safe, as uncontrolled or runaway nuclear fusion reactions

are fundamentally impossible. The small quantities of fuel needed and extreme difficulty

of using it to create a fusion reaction, also alleviate terrorism concerns relative to fission

power.

In summary, a power plant based on nuclear fusion would supply continuous power,

would be scalable to meet world demand, would require far less land than conventional

renewables, would produce no long lived radioactive waste, would use a universally acces-

sible and practically inexhaustible fuel, would not raise the risk of weapons proliferation,

and would be inherently safe from runaway reactions.

1.5 Achieving Terrestrial Fusion

For a reaction to occur, reactants must collide with each other with sufficient kinetic

energy to overcome the activation energy of the reaction, which means having a high

enough temperature. Atomic nuclei are all positively charged, meaning that for two

nuclei to collide they must overcome the strong electrostatic repulsion of ’like’ charges.

For this reason, nuclear fusion reactions require extreme temperatures to occur (this is

not required in fission, since fission reactions are typically initiated by a neutron, which

is not subject to the Coulomb force). The number of reactions per unit volume between

two reactants A and B is given by nAnB<σv>AB, where nA and nB are the number

densities of reactants A and B, and <σv>AB is the reaction rate between reactants A

and B at a given temperature. Figure 1.3 shows the reaction cross section of D-T and

other possible candidate reactions as a function of incident particle energy. The plot

2So easy in fact, that in an Oklo uranium mine in Gabon, a natural fission reactor was discovered
which had been assembled by an accident of geology around 1.7 billion years ago, and produced on the
order of 100kW for hundreds of millennia[36].



8

Figure 1.3: Cross sections of various fusion reactions with kinetic energy. Figure
reproduced from [27]

Figure 1.4: Motion of ions (red) and electrons (green) in a magnetic field (blue).
Charged particles in a magnetic field follow a helical trajectory through space, moving

along magnetic field lines while gyrating around them.

shows that temperatures of at least 10 keV (≈120 million ◦K) are required for non-

negligible chance of reaction, and also shows why the D-T reaction is chosen: it has the

largest cross section (reaction rate) at lowest temperature.

The requirement of these extreme temperatures means that conventional methods of

confinement – a material container – clearly could not work, so we must look for meth-

ods of confining the fuel without touching it. There are broadly two approaches to

fusion fuel confinement: inertial and magnetic. In the inertial confinement approach,

small frozen capsules of D-T fuel mix are fired into a vacuum chamber, compressed and
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Figure 1.5: A simplified sketch of the power balance of a conceptual fusion reactor,
from which a criterion for a viable reactor may be derived.

ignited, typically with a powerful laser, launching a thermonuclear burn wave from the

pellet centre which consumes the fuel before it disassembles. This process lasts mere

microseconds, and the fuel is held in place only by its own inertia, hence the name.

Magnetic confinement schemes use strong magnetic fields to confine the fusion fuel, tak-

ing advantage of the fact that at fusion relevant temperatures of 10 keV, the fuel is

completely ionised. All electrons are stripped from their atoms, and the gaseous fuel

becomes a plasma; a mix of ions and electrons. Ionized particles in a magnetic field are

subject to the Lorentz force, which strongly restricts their movement perpendicular to

magnetic field lines. As sketched in figure 1.4, ions and electrons in a strong magnetic

field are free to move parallel to the field, but can only follow circles perpendicular to

it. From here we will restrict our discussion to magnetic approaches.

1.5.1 The Lawson Criterion

By considering simple power balance (as sketched in 1.5), we can derive a rough approx-

imation for the conditions which must be satisfied inside a fusion reaction volume in

order to extract energy from it. Some power Pin must be put into it to heat the plasma

to fusion temperatures, power Pout leaves the reaction volume through radiation, parti-

cle loss and other mechanisms, and some power will be generated by fusion reactions,

Pfus. Of the fusion power Pfus, Pα is carried by the α particles and Pn is carried by the

neutrons. Since the D-T reaction has only two products, the energy of each reaction is

distributed between the products according to their mass, so Pα = Pfus/5. The fusion

born neutrons have no charge, so Pn immediately leaves the reaction volume. However

the α particles are charged and therefore magnetically confined, so they remain in the

reaction volume and add their heat Pα to it. Assuming steady state, balancing power

entering and leaving the reaction volume gives Pin + Pα = Pout. The ratio of fusion

power generated to input power is called the power amplification factor Q = Pfus/Pin.

When Q > 1, the reactor is producing more fusion power than is required to heat the

plasma, a condition known as break-even. When the fusion power begins to dominate
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over the input power, Q becomes large and the plasma is then said to be burning. When

the fusion power becomes sufficient that the input power may be switched off entirely

so Pα = Pout, Q → ∞ and the plasma is then said to be ignited. Although a burning

plasma with moderate Q ≈ 20− 40 would be sufficient for a power plant[27], in the fol-

lowing derivation we will set ignition as a minimum condition for a viable fusion reactor,

ie, Pα > Pout.

Fusion α power is the integral over the plasma volume of the reaction rate multiplied by

the energy per reaction

Pα =

∫
V
nDnT<σv>EαdV (1.4)

where Eα is the energy of the fusion born α particle. The optimal mix of D-T for fusion

is 50:50, ie, nD = nT = n/2. Substituting this into the above yields

Pα =

∫
V

1

4
n2<σv>EαdV (1.5)

The power leaving the reactor Pout = W/τE , where we define W as the total internal en-

ergy, and τE as the energy confinement time. The total internal energy can be expressed

as

W =

∫
V

3

2
(neTe + nDTD + nTTT )dV (1.6)

Assuming thermal equilibrium gives us Te = TT = TD, and assuming 50:50 D-T mix

gives us nD = nT = n/2. We may also assume that the plasma is quasi-neutral, ie,

the number of positive charges in the plasma is approximately equal to the number

of negative charges, since if this were not the case the resulting electric field would

immediately correct it. Assuming quasi-neutrality yields ne = n, where n is both the

electron number density and ion number density. Making these substitutions above

yields

W =

∫
V

3nTdV (1.7)

Applying the ignition condition Pα > Pout yields∫
V

1/4n2<σv>EαdV > 1/τE

∫
V

3nTdV (1.8)

Since this is only an approximate calculation, we will restrict the analysis to a small

unit of volume, in which density and temperature are approximately constant in space.

This allows us to drop the volume integrals to yield

n<σv>Eα > 12T/τE (1.9)
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Figure 1.6: Sketch of the principles of the tokamak plasma confinement device. The
toroidal field (blue arrow) is generated by the large D-shaped toroidal field coils (blue
coils). A large changing current is driven through the central solenoid (green coils),
which drives the plasma current through the plasma which generates the poloidal field.
The toroidal and poloidal magnetic fields add together to create a helical field. Figure

from [39]

Now in the temperature range of interest, <σv> = CT 2m3s−1 with T in keV and

constant C ≈ 1.1× 10−24keV −1 [37]. Using this substitution the above rearranges to

nτET > 3× 1021keV m−3s (1.10)

Slightly different figures are found in the literature depending on what assumptions are

made, but all are within roughly a factor of 2 of this[27, 37, 38]. This is the Lawson

criterion, which gives us a useful measure of how close a particular confinement scheme

comes to being an energy producing fusion reactor, via the ’triple product’ metric nτET .

1.6 The Tokamak

Early investigations into magnetically confined fusion produced a diverse zoo of magnetic

field configurations, but none showed the potential to scale to a viable power plant
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Figure 1.7: The fusion triple product of successive tokamaks has increased at a faster
rate than Moore’s law, and now is within sight of reactor conditions. Figure from [40]

reactor[27, 41]. That is until results from the T-3 tokamak were presented in 1968[42],

showing far superior performance to other contemporary confinement schemes, resulting

in the tokamak becoming the main focus of magnetic fusion energy research globally.

While magnetic fields strongly restrict particle motion perpendicular to the field, parti-

cles are not constrained in the direction parallel to the field as shown in figure 1.4. To

prevent particles from leaving confinement by streaming freely along field lines, toroidal

magnetic confinement schemes adopt a ’doughnut shaped’ configuration in which field

lines form closed loops, so particles freely streaming along field lines do not leave con-

finement, but loop around the machine like cars on a race track. A purely toroidal

field would cause particles to drift out of confinement, and so is insufficient to confine a

plasma on its own. However by adding a ’twist’ to the field with a magnetic field in the

poloidal direction, this drift is negated[37]. Thus a toroidal confinement scheme requires

both a toroidal and a smaller poloidal field.

A tokamak consists primarily of a toroidal vacuum chamber with set of magnetic coils

arranged around it (the word tokamak derives from the Russian words for ”toroidal

chamber with magnetic coils”), and a large solenoid filling the hole in the centre of the

torus, see figure 1.6. In operation, first the magnetic coils are activated to generate the
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Figure 1.8: It is unavoidable that at some point the plasma must touch some part of
the machine; the component which is used for this is the exhaust system. On the left
is a sketch of the original limiter exhaust system used in early tokamaks, a protruding
carbon block extended from the vessel wall for the plasma to terminate against. This
was effective at the time, but it later became apparent that the limiter was causing
too many impurities to enter the plasma, and limiting performance. On the right is a
sketch of the divertor exhaust system, so called because the exhaust is ’diverted’ away
from the main plasma. The use of a divertor decreased the usable plasma volume, but
greatly reduced impurity build up, allowing for greatly improved plasma performance.

toroidal magnetic field, and the gaseous D-T fuel is pumped into the vacuum chamber.

A continuously ramping current is driven through the central solenoid, inducing an

electric field around the torus, which both ionises the fuel into a plasma and drives a

large plasma current in the toroidal direction. The induced plasma current produces the

poloidal magnetic field required to negate outward particle drifts. The plasma is heated

to fusion temperatures by a combination of ohmic dissipation from the plasma current

(as in a kettle filament), radio frequency resonance heating (as in a microwave oven),

and injection of high energy neutral particles which heat the plasma by collisions.

Since the early success of T-3, the fusion triple product of successive tokamaks has

doubled roughly every 1.8 years, exceeding the growth rate over the same period of

the famous Moore’s Law for the number of transistors in new microprocessors[43], as

summarised in figure 1.7. Over this period many crucial advances were made in mag-

netic fusion technology. To extend pulse lengths, copper magnetic coils which rapidly

overheated were replaced with superconducting coils, and the ’limiter’ plasma exhaust

system was replaced with the divertor system sketched in figure 1.8, which allowed ac-

cess to improved plasma regimes. By the 1990s tokamaks were approaching the regime

of break-even and ignition. In 1996 JT-60U, although not operating with D-T fuel,

achieved a fusion triple product of niTiτE = 1.5× 1021keV m3s (where ni, Ti are the ion
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density and temperature in the core of the tokamak)[44]. The next year, experiments

using D-T fuel on the Joint European Torus produced a peak fusion power of 16.1MW

for 25.7MW of input power, achieving a triple product of 8.7 × 1020keV m−3s and a

measured fusion amplification factor of Q=0.63[45].

Tokamaks are on the brink of proving themselves capable of generating net power, but

to cross the threshold into the reactor relevant burning plasma regime, a larger machine

is needed: the ITER tokamak. The purpose of ITER, currently under construction in

France, is to ’demonstrate the scientific and technological feasibility of fusion energy

for peaceful purposes’[46]. Specifically, ITER is designed to produce ≈500MW of fu-

sion power with ≈50MW of input heating power (a fusion gain of Q ≥ 10) for 300-500

seconds, and to operate in steady state (≈ 3000s) with Q ≥ 5[47]. To spread the cost

and distribute fusion expertise widely, the ITER project is an international scientific

collaboration on a scale never before attempted. The ITER members are China, In-

dia, the European Union, Russia, Japan, Korea and the United States, between them

representing over half of the world population and 85% of global GDP. The scientific

knowledge gained from ITER will be used to design and operate the first demonstration

fusion power plant, DEMO, which will demonstrate tritium self sufficiency, reliability,

and send power to the grid.

On the success of ITER depends the fulfilment of over 70 years of fusion research and

development, the aspiration of humanity for a clean, safe and unlimited energy source,

and the means to forever consign energy scarcity to history.

1.7 Edge Localised Modes

In 1982 experiments on the ASDEX tokamak in Garching yielded a surprising breakthrough[48].

Following the installation of the divertor exhaust system, it was found that once a cer-

tain input power was exceeded the plasma would spontaneously enter a regime of much

higher confinement, now known as H-mode. In H-mode, a transport barrier forms at the

plasma edge which suppresses turbulent transport in that region, resulting in approx-

imately a doubling of the confinement time. It also creates a region of steep pressure

gradient called ’the pedestal’, which raises the plasma pressure globally as sketched in

figure 1.9. Although the current theory is not firmly established, it is thought that

the transport barrier is caused by the appearance of highly sheared ’zonal flows’ at the

plasma edge, which stretch and shred the turbulent eddies which constitute the dom-

inant transport mechanism[49]. H-mode has now been replicated on all other major
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Figure 1.9: H-mode (high confinement), which tokamak plasmas enter spontaneously
once an input power threshold is exceeded, is characterised by a steep pressure gradient
at the edge caused by the appearance of an edge transport barrier. The pedestal boosts

the pressure globally, resulting in improved performance relative to L-mode.

tokamaks, and forms the baseline scenario for ITER. While H-mode certainly gives su-

perior performance, it also causes a new plasma instability to appear at the plasma edge,

the Edge Localised Mode (ELM).

ELMs occur in a repetitive cycle in H-mode plasmas at rates of 10-100Hz[50], consisting

of a steady increase of the pressure pedestal height until a stability boundary is exceeded,

followed by a collapse of the pedestal back to a stable state. By collapsing the edge

pressure pedestal, the ELM causes the rapid ejection of particles and stored energy

∆WELM from the plasma. This degrades confinement slightly, but ELMs also perform

the useful functions of expelling impurities from the plasma and preventing undesirable

density build up, which allows ELMy H-mode to remain in time averaged steady state.

The ELM energy ∆WELM is deposited at the divertor over a very short timescale (≈100

µs) which results in a high transient heat load at the divertor. Although the ELMs of

current tokamaks are not large enough to cause any material damage, extrapolations

from current machines to ITER indicate that in ELMy H-mode each ELM may contain

up to 20MJ of energy, far larger than the ∆WELM ≤0.66MJ limit for material damage

at the divertor[51]. Material damage caused by uncontrolled ELMs on ITER would

significantly reduce the lifetime of the plasma facing components, impair the endurance

and performance of the machine, and possibly threaten the ITER scientific objectives[52,

53]. To avoid this risk, strategies must be developed which either eliminate ELMs, or

reduce them in size (energy content) by a factor of at least 30 (≈20MJ/0.66MJ).

Techniques for controlling ELMs can be divided into passive and active techniques. Pas-

sive techniques comprise developing plasma regimes which retain the high confinement

of H-mode but without ELMs, and which also have some continuous particle transport
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mechanism to prevent density and impurity accumulation. Several such regimes have

been identified (I mode[54] and (quiescent) QH mode[55, 56] for example). Currently

however these regimes are inflexible and require far more study before it can be de-

termined whether they may be extrapolated to ITER[51], so the standard operating

scenario for ITER remains ELMy H-mode[57], which will require active techniques to

control ELMs. Active ELM control consists of actively intervening in an ELMy H-

mode plasma, in order to prevent ELMs from triggering or reduce their size. During

the recovery phase of the ELM cycle as the pressure pedestal height increases, the

available stored plasma energy increases accordingly. From this it follows, and is con-

firmed by experiment[58], that the ELM energy ∆WELM is roughly proportional to the

time since the previous ELM, and so is inversely proportional to the ELM frequency.

Specifically[51],
∆WELM × fELM

Pout
= 0.2− 0.4 (1.11)

where fELM is the ELM frequency. This relation shows that the size of individual ELMs

may be decreased by intentionally triggering ELMs at a faster rate than their natural

frequency, fnat. A factor of 30 increase in the ELM frequency would in principle lead

to the factor of 30 decrease in ELM size required to avoid material damage. Two active

ELM control systems are to be installed on ITER, a pellet pacing system, and a set of

resonant magnetic perturbation (RMP) coils[59].

Pellet Pacing

Injecting pellets of frozen Deuterium was originally developed as a method for fuelling

the plasma, but it has been also demonstrated that injecting fuel pellets into ELMy

H-mode plasmas can trigger ELMs prematurely, and that the ELM frequency can be

synchronised to the pellet launch frequency[60]. Increasing the pellet launch frequency

thus increases the ELM frequency, decreasing the ELM size. Pellet pacing has been

demonstrated robustly on several tokamaks[61], and on the DIII-D tokamak ELM fre-

quency increases by a factor of over 10 have been achieved with a corresponding 10 fold

decrease in the ELM energy[62]. However, uncertainties remain in the effectiveness of

the ITER pellet pacing system. Firstly it is not known with certainty whether the rela-

tion described in equation 1.11 on which ELM pacing relies, will hold at the ITER scale.

Secondly, it has been observed that the area of the divertor over which the ELM energy

is distributed, AELM , increases with ELM energy ∆WELM [51]. This is advantageous

for natural uncontrolled ELMs as it reduces the peak heat flux for large ELMs, however

by the same token, it also increases the peak heat flux for small ELMs. If this effect

is stronger than expected in ITER, it may reduce the effectiveness of ELM pacing[51].
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Most importantly though, ELM pellet pacing has not demonstrated the factor of 30

reduction in ELM size which ITER will require.

Resonant Magnetic Perturbations

It has also been demonstrated that the application of small resonant magnetic perturba-

tions (RMPs) at the plasma edge can increase the frequency of ELMs above the natural

frequency, known as ELM mitigation, or even cause ELMs to disappear entirely, known

as ELM suppression. While mitigation suffers the same uncertainties in extrapolation

to ITER as pellet pacing, these particular uncertainties are not relevant for ELM sup-

pression, which more than satisfies the required factor of 30 reduction in ELM size.

ELM suppression by RMPs therefore currently appears the most attractive option for

ITER baseline operation, and as such, a flexible set of RMP coils has been added to the

ITER design. However, while numerous working theories exist, a robust, predictive and

machine independent theory of ELM suppression or mitigation which may be used to

assess the ITER ELM coils, is currently lacking.

1.8 Outline

The work presented in this thesis focuses on using simulations of the plasma response

to applied RMPs, to further develop current working theories of ELM mitigation and

suppression. Simulation results are combined with experimental data to optimise the

RMP configuration, this optimisation is tested rigorously on ASDEX Upgrade, and

extended to the ITER RMP set.

Chapter 2 introduces and explains background theories and concepts referred to in sub-

sequent chapters, in particular the magnetohydrodynamic description of a plasma, and

the fundamentals of plasma equilibrium and stability. Observations of ELM control by

RMPs and other RMP effects are summarised, and current prevailing theories of RMP

ELM control are explained. The linearised MHD model of MARS-F, used throughout

this work, is introduced.

In Chapter 3, the results of an investigation of the plasma response to applied RMPs

in an ASDEX Upgrade plasma are presented. The vacuum field is carefully bench-

marked against the ERGOS code, and the plasma response to an applied n = 2 RMP

and n = 6 sideband is computed and analysed, with particular emphasis on the pitch

aligned components of the field, and the amplified peeling response. Using a contrived

single poloidal harmonic boundary condition, it is demonstrated that the pitch aligned
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components may be driven by the peeling response via poloidal harmonic coupling. In

collaboration with researchers at IPP Garching and Consorzio RFX, the MARS-F com-

puted plasma response is partially validated against experimental measurements of the

magnetic perturbation and plasma displacement on ASDEX Upgrade plasmas.

Chapter 4 presents the development and testing of a coil phase optimisation scheme,

designed to maximise ELM mitigation for a given plasma equilibrium. By scaling a

reference equilibrium in pressure and current, a set of equilibria is produced which

spans the ASDEX Upgrade experimental parameter space of edge safety factor and

pressure. Using MARS-F, the optimal coil phase at each point is computed, and the

optimal coil phase is then parametrised as a function of edge safety factor, pressure and

dominant toroidal harmonic of the RMP. This parametrisation is then benchmarked

against rigorous MARS-F computations of the optimal coil phase, and validated against

experimental measurements of the optimal coil phase from ASDEX Upgrade coil phase

scan experiments. The same process is then used to derive a parametrisation of the

optimal coil phase for the ITER coil set.

Chapter 5 summarises the results of this thesis in context, and discusses their relevance

and potential impact.



Chapter 2

Background

2.1 Magnetohydrodynamics

Many models are used to describe a magnetised plasma. The first principles descrip-

tion of a magnetised plasma is known as the kinetic description, which deals with the

evolution of the particle distribution function of particle species j, fj(x,v, t). The dis-

tribution function fj(x,v, t) describes the particle density in a 6 dimensional space of

position x = (x, y, z) and velocity v = (vx, vy, vz), such that the number of particles in a

dxdv sized box of phase space is fj(x,v, t)dxdv. Calling the change in fj due to particle

collisions C(fj) (ie,
Dfj
Dt = C(fj)), the Boltzmann equation may be quickly derived (see

below) which describes the time evolution of the distribution function

Dfj
Dt

=
∂fj
∂t

+
∂x

∂t
· ∂fj
∂x

+
∂v

∂t
· ∂fj
∂v

=
∂fj
∂t

+ v · ∂fj
∂x

+ a · ∂fj
∂v

(2.1)

=
∂fj
∂t

+ v · ∂fj
∂x

+
q

m
(E + v×B) · ∂fj

∂v
= C(fj) (2.2)

where the chain rule was used to expand the derivative D
Dt , and the Lorentz force substi-

tuted for the acceleration a = F
m . While physically accurate, we don’t necessarily need

all the information contained in fj , and fj being a function of 7 variables makes this

description very difficult to solve for macroscopic plasma behaviour. In order to make

progress towards a simple macroscropic description, we will use the kinetic model as a

basis to derive a more appropriate model.

Single fluid Magnetohydrodynamics (MHD) combines Maxwell’s equations of electro-

magnetism with the equations of fluid dynamics, to describe the plasma as an electrically

19
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conducting fluid evolving in response to self-generated and externally applied magnetic

and electric fields.

The equations of MHD can be derived from the kinetic description by taking ’moments’

of equation 2.2, where taking an nth order moment of arbitrary operator Q is defined

as
∫
vnQdv. The zeroth, first and second moments lead to fluid equations expressing

conservation of mass, momentum and energy respectively. However, the resulting fluid

equation from each moment contains a term which depends on the next highest moment,

so we may never produce a closed system of equations with this approach. Therefore

after taking the three lowest moments we add an approximation to relate pressure and

density, the ’adiabatic approximation’, which assumes that the entropy convected with

the plasma is conserved. Completing this procedure for both ions and electrons yields

separate fluid equations for each, which may be summed to form single fluid equations.

The resulting set of single fluid MHD equations is

dρ

dt
+ ρ∇ · v = 0 (2.3)

dp

dt
+ γp∇ · v = 0 (2.4)

dB

dt
= (B · ∇)v − (∇ · v)B −∇× (ηJ) (2.5)

ρ
dv

dt
= −∇p+ J ×B (2.6)

µ0J = ∇×B (2.7)

where we have used the Lagrangian derivative d
dt = ∂

∂t + v · ∇

In the above, B is the magnetic field, p is the plasma pressure, v is the fluid velocity, ρ

is the mass density, γ is the ratio of specific heats, η is the plasma resistivity, and J is

the current density. Equation 2.3 is the continuity equation, describing that the rate of

change of mass in a volume element is equal to the difference between the mass entering

and leaving the element. Equation 2.4 is the adiabatic equation of state, which describes

that the entropy convected with the fluid is constant (ie, d
dt

(
p
ργ

)
= 0). Equation 2.5 is

Faraday’s law of electromagnetic induction dB
dt = −∇×E, combined with Ohm’s law for

a conducting fluid E = ηJ−v×B. Equation 2.6 is the equation of motion for a volume

element, expressing the acceleration of a volume element due to a pressure gradient, and

the Lorentz electromagnetic force on moving charges. Finally equation 2.7 is Amperes

law describing the magnetic field induced by a flowing current. Single fluid MHD is

widely used to derive and investigate the stability properties of macroscopic magnetised

plasma equilibria, which makes it the workhorse model with which plasma geometries

and instabilities are described and studied. Plasma confinement schemes which do not
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Figure 2.1: The flux label ψp of a flux surface is defined as the integrated magnetic flux
intersecting with the surface S (sketched above in red), which is the toroidal revolution
of a curve connecting the magnetic axis with the flux surface. Because lines of B lie in
flux surfaces, the poloidal flux intersecting the surface S is independent of the path the
curve takes from the magnetic axis to the flux surface. Therefore ψp uniquely labels

each flux surface.

form stable MHD equilibria will typically only persist for a matter of microseconds

before being terminated by some instability, and so are generally considered unsuitable

for magnetic fusion.

2.2 MHD Equilibrium

Starting with the equations of MHD 2.3–2.7, and specifying that we search for steady

state (∂/∂t = 0) equilibria with no plasma flow (v = 0), the momentum equation

2.6 immediately reduces to the equation of MHD equilibrium, which is general for any

plasma geometry.

J×B = ∇p (2.8)

Note that with equation 2.7, J is eliminated from 2.8, so the equation describes how a

pressure gradient can be balanced by a magnetic field, which is the basis of magnetic

confinement of plasmas. From the above trivially follows J · ∇p = 0 and B · ∇p = 0,

which tells us that in MHD equilibria, lines of magnetic field and current must lie on
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Figure 2.2: The ’safety factor’ q is the number of toroidal rotations a magnetic field
line completes for each poloidal rotation. The above sketches two field lines on two flux
surfaces. The blue field line on the blue (inner) surface rotates once toroidally for each
rotation poloidally, so q = 1. The red field line on the orange (outer) surface rotates 4

times toroidally for each poloidal rotation, so q = 4.

surfaces of constant pressure. In tokamaks, we call these surfaces of constant pressure

flux surfaces1.

Since the plasma cross section is not necessarily circular, simply using the minor radius

as a radial coordinate is not sufficient. However since the pressure and numerous other

quantities are constant on flux surfaces, it makes more sense to use some label of each

flux surface as our radial coordinate. By convention, the poloidal magnetic flux ψp is

usually used to label these flux surfaces, defined as

1It is interesting to note, that according to equation 2.8, in order for the pressure gradient to be
balanced by the magnetic field, both B and J, which lie on flux surfaces, must be non-zero everywhere
on each flux surface. According to the amusingly named ’hairy ball theorem’ of topology, the only smooth
surface for which this is possible is a torus. All other shapes of magnetic flux surface will somewhere
have a point where the confining field is zero, for the same reason that if you try to comb the hair on
a tennis ball flat, there will always be a point where it sticks up. Therefore only toroidal flux surfaces
may balance the pressure everywhere with no ’leaky points’.
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ψp =

∫
B · dS (2.9)

The flux label ψp is the total poloidal flux intersecting a surface S, where S is comprised

of a curve connecting the flux surface to the magnetic axis, and a curve which undergoes

one toroidal rotation, as sketched in figure 2.1. Therefore, ψp serves as a generalised

coordinate for the minor radius. Some conventions (and this work) also use s as the

generalised coordinate, defined as s =
√
ψN where ψN = (ψp − ψ0)/(ψa − ψ0) is the

normalised poloidal magnetic flux, in which ψ0 and ψa are the poloidal magnetic flux

ψp evaluated at the magnetic axis and plasma edge respectively. This definition is

convenient, since it ensures that s = 0 at the magnetic axis, and s = 1 at the plasma

edge. Variables which are constant on flux surfaces are called flux functions, since they

depend only on ψp. The plasma pressure and safety factor q are both flux functions,

where the safety factor q is defined as

q =
1

2π

∮
1

R

Bφ
Bp

ds ≈ r

R0

Bφ
Bp

(2.10)

and describes how ’twisted’ the magnetic field lines are, or their pitch relative to the

toroidal direction, as sketched in figure 2.2. The safety factor q is an important concept

for understanding plasma stability and interactions of RMPs with plasma equilibria, and

will be referred to frequently in this work.

2.3 Plasma Stability

Having defined the plasma equilibrium, we may now investigate its stability; an MHD

unstable plasma equilibrium will not last long. Generally to do this the energy principle

is invoked, ie, asking for an small arbitrary perturbation to the equilibrium, does the

equilibrium lose or gain energy? If it gains energy, then the perturbation has added en-

ergy to the equilibrium, and therefore the perturbation shrinks and is stable. However if

the equilibrium loses energy, then energy is transferred from the equilibrium to the per-

turbation, and therefore the perturbation grows. If this is the case for any perturbation,

then the equilibrium is unstable.

Starting at the MHD equations, the following equation can be derived for the change in

plasma internal energy δWp (ie, change in energy of the equilibrium) due to an arbitrary

perturbation ξ.
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Figure 2.3: This sketch shows the stability space of the peeling-ballooning modes
which drive ELMs, and a typical ELM cycle which the edge plasma undergoes in
ELMy H-mode[50]. P-B modes have a triangular stability space in terms of the nor-
malised edge current density jp = Rqsj||/B, and normalised edge pressure gradient
α = −(2Rq2µ0/B

2)(dp/dr). Starting in the stable region, the edge transport barrier
causes the pressure pedestal to increase as more heating energy is injected. The pres-
sure gradient driven bootstrap current then rises until the stability limit is exceeded,
precipitating an ELM which rapidly collapses the pressure pedestal until the plasma

re-enters the stable region, and the cycle begins again.

δWp =
1

2

∫
p

|B1|2
µ0

Field-line bending

+B2

µ0
|∇ · ξ⊥ + 2ξ⊥ · κ|2 Magnetic compression

+γp0|∇ · ξ|2 Plasma compression (2.11)

−2(ξ⊥ · ∇p)(κ · ξ∗⊥) Pressure term

−B1 · (ξ⊥ × b)j‖dV Parallel current term

In the above, B1 is the perturbed magnetic field, B the equilibrium magnetic field,

κ is the field line curvature, p0 is the pressure, γ is the ratio of specific heats, and

j|| is the component of the perturbed current parallel to the magnetic field. For any

perturbation ξ, if the associated change of potential energy δWp is negative (ie, some

energy has been transferred from the equilibrium to the perturbation), then that system

is unstable. Conversely if δWp is positive, then the system is stable. It can be seen in

equation 2.11, that the first 3 terms are always positive, and so are always stabilising.

It always requires energy to bend magnetic field lines, to compress magnetic field lines,

or to compress plasma.

However, the last 2 terms, the pressure term and parallel current term, can be either

stabilising or destabilising. The pressure term, which contains a factor of ∇p, expresses
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how strong pressure gradients such as those found at the edge of an H-mode plasma, can

drive the plasma unstable. A ballooning instability is a pressure driven instability, so

called because the plasma ’balloons’ outwards on the outboard side. Neoclassical effects

can also cause large pressure gradients to drive currents, namely, the bootstrap current.

The parallel current term, which contains a factor of j||, expresses how high current

densities can also drive the plasma unstable. This term can also be large at the edge of

an H-mode plasma, where the steep pressure gradients drive large bootstrap currents.

These currents can drive peeling instabilities, so called because the outer plasma surface

’peels off’ and is ejected.

Peeling and ballooning modes can couple together as ’peeling-ballooning’ (P-B) modes.

It is thought that peeling-ballooning modes are the MHD instability responsible for trig-

gering explosive ELMs, as evidenced by numerous observations of ELMs occurring near

the computed stability boundary for peeling-ballooning modes[50]. In an ELM cycle,

the pressure pedestal height slowly builds up, which also increases the edge currents

which are driven by strong pressure gradients. With reference to the P-B stability plot

in figure 2.3, this moves the plasma equilibrium towards the peeling-ballooning stability

boundary, where the destabilising influence of the current and pressure gradient exceeds

the stabilising factors, and an ELM is precipitated. This results in a paritial collapse of

the edge pressure pedestal, moving the plasma back within the P-B stability boundary

for the cycle to begin again.

2.4 RMP ELM Control Observations

Since the first observation of ELM suppression by RMPs over a decade ago on DIII-

D[64], ELM suppression and mitigation has been replicated on numerous other machines.

ELMs are commonly observed as spikes in Dα light emission and divertor current, as in

figure 2.4 which shows parameter traces and divertor current traces from ASDEX Up-

grade experiments in which mitigation and suppression were achieved. The operational

space in which ELM mitigation and suppression are achieved is conventionally expressed

in terms of pedestal density ne normalised to the Greenwald density neGW , and electron

pedestal collisionality ν∗e which is calculated as

ν∗e = 6.921× 10−18RqneZefflnΛe

ε3/2T 2
e

(2.12)

where the Coulomb logarithm lnΛe = 31.3− ln(
√
ne/Te), R is the plasma major radius

in meters, q is the safety factor at the top of the pedestal, ε is the inverse aspect ratio

(a/R, where a is the plasma minor radius), Zeff is the effective ion charge (ie, including
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Figure 2.4: a,b) Experimental traces of edge safety factor (blue), normalised pressure
(green), toroidal magnetic field (red) and plasma current (cyan), from two ASDEX Up-
grade plasma discharges. c,d) Currents of the two power supply units of the RMP coils.
e,f) The divertor current trace, showing ELM mitigation and suppression respectively,

which occur after the RMP coils are energised.

Figure 2.5: Parameter space map showing the regions where ELM suppression and
mitigation have been achieved, and also the space in which ITER will operate. The
mitigation space is far wider than the suppression space, indicating that mitigation is

easier to achieve. Figure reproduced from [63].
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higher Z impurities), ne is the electron density at the top of the pedestal, and Te is the

electron temperature at the top of the pedestal. The collisionality and normalised den-

sity concisely express the major differences in plasma pedestal regimes between current

machines and ITER. Figure 2.5 shows the parameter space of collisionality and density

in which ELMs have been suppressed or mitigated on various machines, and the region

of operational space which the ITER baseline will occupy. ELM suppression has been

achieved within limited operational windows on KSTAR[65], DIII-D[64, 66], EAST[67]

and ASDEX Upgrade[68], while ELM mitigation has been achieved in a much wider

parameter space on the previously listed machines and also MAST[69].

In addition to collisionality and density, other variables have been identified which in-

fluence mitigation and suppression and frame the access windows. Some are equilibrium

parameters, such as the edge safety factor q95 and the plasma boundary shape, while

others are RMP parameters, such as coil current amplitude, dominant toroidal mode

number and poloidal spectrum. The degree of ELM mitigation is sensitive to these pa-

rameters, while ELM suppression is observed only within particular windows of these

parameter spaces. Furthermore, applied RMPs are often seen to induce secondary effects

in tokamak plasmas, which may either play a role in the ELM mitigation or suppres-

sion mechanisms, or may merely be unintended side effects. Observed secondary effects

include a significant drop in the pedestal density known as density pump-out[70], dis-

tortions to the plasma boundary shape[71], braking of the plasma rotation[72], and lobe

structures appearing around the X point[73] and associated splitting of the divertor

strike point.

While mitigation does not reduce the divertor heat load as much as suppression, it is far

easier to achieve in a much wider parameter space, and the uncertainty about achieving

some degree of mitigation on ITER is far lower than achieving full suppression[63].

2.5 RMP ELM Control Theories

There are currently several working theories of ELM suppression and mitigation, none

of which is yet supported by a preponderance of evidence. The initial interpretation of

the observation of ELM suppression on DIII-D is here called stochastic edge theory. In

general the safety factor increases from the plasma centre to the edge, and so at some

flux surfaces q will have values which can be expressed as a rational number q = m/n,

called rational surfaces, at which the field lines complete exactly m poloidal rotations

and n toroidal rotations before joining up on themselves. The poloidal spectrum of the

applied RMP includes a component b1res, which is aligned to the pitch of the equilibrium

field lines such that q = m/n, where here m is the poloidal harmonic number of the
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Figure 2.6: Poincare plots show the points where a traced field line intersects with the
poloidal plane. These are poincare plots of an ASDEX Upgrade plasma equilibrium. In
a), the magnetic equilibrium is undisturbed so field lines stay on flux surfaces. However
in b), an applied RMP has caused islands to open at rational surfaces. At the edge
where the rational surfaces are densely packed, the islands have overlapped resulting in

a stochastic region, in which field lines may wander away from their flux surface.

Figure 2.7: Magnetic field lines connect one side of magnetic islands to the other,
so the pressure across the magnetic island is constant. Therefore the presence of an
island causes a localised flattening of the pressure profile (flattening exaggerated for
illustrative purposes). If an island is present at the top of the pressure pedestal, it can

inhibit the growth of the pedestal, possibly preventing ELMs from destabilizing.
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RMP and n the toroidal harmonic number. The pitch aligned component b1res, drives

the formation of chains of magnetic islands at rational surfaces with width w, which in

cylindrical coordinates is

w = 4

√∣∣∣∣Rrsnh

b1res
B

∣∣∣∣ (2.13)

where R is the major radius of the plasma, rs is the minor radius of the rational surface,

n is the toroidal mode number, h = d(log q)/d(log r) is the normalised shear, and B is

the equilibrium magnetic field on axis. If these island chains become wide enough and

are close enough together, they can begin to overlap. In regions where adjacent island

chains overlap, the ordered flux surfaces are destroyed and replaced with a disordered

’stochastic’ magnetic field, which has degraded confinement relative to flux surfaces[64].

Figure 2.6 explains this theory visually. The region of degraded confinement at the

plasma edge prevents the pedestal pressure from increasing above the MHD P-B bound-

ary, thereby preventing ELMs from occurring. For adjacent island chains of widths w1

and w2 a radial distance ∆12 apart, the chains overlap if w1+w2
∆12

> 1, where σchir = w1+w2
∆12

is known as the Chirikov parameter, and the radial width of the region within which

σchir > 1 is ∆σchir .

A correlation between ∆σchir and the appearance of mitigation and suppression has

been established on DIII-D[74], and therefore ∆σchir is used as the guiding figure of

merit in designing and assessing the ITER ELM coils[75]. However, stochastic edge

theory has some significant deficiencies in its current form. In previous studies[75], the

island widths were computed assuming that the total field is simply the linear sum of the

equilibrium field and the applied RMP; however it is well known that the plasma response

significantly modifies the applied field[76]. The RMP can be amplified by coupling to

marginally stable MHD modes, a process known as resonant field amplification[77, 78].

Furthermore, currents are driven at rational surfaces in response to the RMP which act

to reduce the pitch aligned component, and in the limit of zero resistivity exactly cancel

it. Plasma resistivity is given by the expression[38]

η ≈ πe2m
1/2
e ZefflnΛ

(4πε0)2(kBTe)3/2
(2.14)

where e is the charge on an electron, me the mass of an electron, ε0 the vacuum permit-

tivity, kB Boltzmann’s constant, and Te the electron temperature (in Kelvin). Due to

the high temperatures and T
−3/2
e dependence, resistivity in tokamak plasmas is typically

negligible, so we would expect the plasma response to greatly reduce the size of islands

and hence, the width of the stochastic region ∆σchir . However, towards the bottom of
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the plasma pedestal where the temperature is much lower, there is the potential for

sufficient resistivity for islands to form[79].

A variant of this theory implicates the rotation zero crossing as a key requirement

for ELM suppression. MHD simulations[80–82] have indicated that large islands may

form in regions where a rational surface coincides with a zero crossing of the electron

perpendicular flow ωe. This mechanism forms the basis of an alternate theory of ELM

suppression. By connecting field lines of inner flux surfaces to outer flux surfaces as

shown in figure 2.7, magnetic islands cause a local partial flattening of the pressure

gradient. If the ωe zero crossing coincides with a rational surface at the pedestal top,

the island may inhibit the growth in the pedestal width, preventing it from becoming

wide enough to trigger an ELM, and thereby suppressing ELMs [83–85].

Another theory implicates RMP induced plasma boundary distortions in the ELM mit-

igation mechanism. In an undisturbed ELM cycle, following an ELM crash the pressure

pedestal gradient and height build up until the P-B stability boundary is again reached,

precipitating the next ELM crash. Applied RMPs cause a sinusoidal distortion of the

plasma boundary, and the appearance of ’lobe-like’ structures near the plasma X point.

Stability analyses of the resulting 3D equilibria indicate that these changes to the plasma

boundary lower the threshold of P-B stability, so the threshold is reached sooner in each

ELM cycle which increases the ELM frequency[86]. An expansion of this theory explains

that the edge deformations may also be the cause of the observed RMP induced reduc-

tion in density[87], and that the deformations to the plasma boundary may be strongly

driven by the coupling of the applied RMP to marginally stable MHD modes near the

plasma edge, called edge peeling modes[88]. The amplification of these edge peeling

modes was also seen to correlate with the reappearance of ELMs during ELM suppres-

sion on DIII-D[89], suggesting that the edge peeling response has a role in driving ELMs

prematurely unstable.

Figures of Merit

Despite recent theoretical and experimental progress in understanding of effects of RMPs

on ELMs, no theory is yet supported by a preponderance of evidence, and precise condi-

tions required to achieve ELM suppression or a high degree of mitigation are not known.

However, by comparing experimental observations with particular aspects of the com-

puted plasma response, here called figures of merit, correlations have been established

which may potentially be used for assessing and optimising the ITER ELM suppression

and mitigation strategy, even in the absence of a rigorous theoretical understanding of

ELM suppression and mitigation.
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There are 4 figures of merit in common use. The pitch aligned component b1res refers to

the component of the total field, including plasma response, aligned to the equilibrium

field at the outermost rational surface2. The X point displacement ξX refers to the

maximum absolute value of the distortion of the plasma surface in the vicinity of the

plasma X point . The high field side response refers to the amplitude of the total field

(including the plasma response) measured at the outboard side midplane, just outside

the plasma. The peeling response refers to the maximum amplitude of marginally stable

MHD modes near the edge, amplified by the applied RMP.

The figures of merit are of interest to RMP ELM control, because correlations have

been established between them and RMP induced effects. b1res was shown to correlate

with the frequency of mitigated ELMs on ASDEX Upgrade and MAST[70, 72]. ξX was

shown to correlate with mitigated ELM frequency on ASDEX Upgrade[70], as well as

with RMP induced density pump out on MAST[69, 87]. On DIII-D, the high field side

response was shown to correlate with density pump out and ELM suppression[90, 91].

The high field side response here refers to the measured or computed total magnetic

field including plasma response, at the location of a magnetic probe on the inboard

(high field) side, at the tokamak midplane. Finally the peeling response has been shown

to correlate with ELM suppression on DIII-D[92, 93], density pump out on MAST[87],

and ELM mitigation on ASDEX Upgrade[70, 94]. Modelling works have recently begun

to impose some order on these observations, by explaining that the different figures of

merit are correlated with each other in certain circumstances[79, 87, 88, 93–96].

The figures of merit may be optimised computationally, and may thereby be used to

guide ELM mitigation and suppression experiments on current machines, or to design

and assess ELM control systems on future machines. Unfortunately, the set of figures of

merit also has some serious deficiencies. Observed correlations between figures of merit

and RMP effects are currently not robust or consistent across machines, and many are

based on quite limited datasets. Furthermore, the correlations between figures of merit

implies at least some level of redundancy in the set. These deficiencies may be addressed

by expanding the dataset on which they are based to wider parameter spaces and more

machines, and by theoretical investigations of the relationships between different figures

of merit.

2At the edge of a diverted plasma q goes to infinity, resulting in an infinite sequence of densely
packed rational surfaces. However, as discussed later, for numerical investigations q must be truncated
to some finite value, which for fixed n makes the sequence of rational surfaces finite, and determines the
m number which defines the outermost rational surface. All results presented in this work are tested for
robustness against truncation of the q profile, and found to be insensitive to it.
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2.6 Plasma Response Model - MARS-F

In light of the previous discussions, it is clear that methods of computing the plasma

response to applied RMPs are required. The varied approaches to simulating the plasma

response to RMPs are reviewed and compared in [88, 97]. The general approach to

computing the plasma response to applied RMPs used in this work reduces the model

to a driven stationary eigenvector problem, with the equilibrium and plasma response

as a stationary solution and the applied RMP as the drive force. In this approach, the

equations of MHD are first linearised, meaning all quantities are set to be the sum of

an equilibrium component and a small perturbation. For example the magnetic field

B is taken to be B = B0 + b, where B0 is the equilibrium magnetic field, and b is

the perturbed magnetic field with |b| << |B0|. Derivation of the linearised equations

of MHD are common in textbooks [98], but the MARS model also includes plasma

equilibrium flow, which is usually excluded in simple derivations. Derivations of the

linearised equations of MHD which include plasma flow can be found in [99, 100]. We

now add the assumption that all quantities oscillate in the lab frame at the driving

frequency of the applied magnetic field, ΩRMP . With these assumptions, following [100]

the linearised equations of resistive MHD including toroidal flow are found as

i(ΩRMP + nΩ)ξ = v + (ξ · ∇Ω)Rφ̂ (2.15)

iρ(ΩRMP + nΩ)v = −∇p+ j ×B + J × b

− ρ[2ΩẐ × v + (v · ∇Ω)Rφ̂]− ρκ|k||vth,i|[v + (ξ · ∇)V 0]|| (2.16)

i(ΩRMP + nΩ)b = ∇× (v ×B) + (b · ∇Ω)Rφ̂−∇× (ηj) (2.17)

i(ΩRMP + nΩ)p = −v · ∇P − γP∇ · v (2.18)

In the above, R is the major radius of the plasma, φ the toroidal angle with unit vector

φ̂, Ẑ the vertical unit vector. V0 = ΩRφ̂ is the equilibrium rotation velocity, Ω is the

plasma rotation frequency, ΩRMP is the frequency of the applied RMP (zero for static

RMP fields), η is the plasma resistivity, and n is the (chosen) toroidal mode number.

The final term of equation 2.16 describes landau damping of the ion acoustic wave. κ is a

constant numerical coefficient, used to vary the strength of parallel sound wave damping,

where k|| is the parallel wave number of the sound wave (essentially a geometric factor),

and vth,i is the ion thermal velocity. B, J , P and ρ are the equilibrium magnetic field,

current, pressure and density, which are all known and given as input. The unknown

state vector to be calculated is (ξ, b, j, p), the plasma displacement, perturbed magnetic
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field, perturbed current, and perturbed pressure. The RMP current jRMP is known and

given as input, and the RMP field is calculated from the following relation.

∇× b = jRMP (2.19)

∇ · jRMP = 0 (2.20)

The above equations of linearised MHD including toroidal flow, constitute the MARS-F

model formulation [101].

In order to solve for the perturbation quantities, the system of equations 2.15) - 2.20) is

discretized, replacing the continuous quantities with their discrete counterparts. MARS

uses finite element discretization in the radial direction, and fourier discretization in the

poloidal direction, ie, as the sum of a finite number of poloidal modes e(imχ) where m

is the poloidal harmonic number, and χ is the generalised poloidal angle. All quantities

in the toroidal direction have a prescribed e(inφ) dependence, where n is the single

toroidal mode number of the applied RMP and φ the toroidal angle. By linearisation

and then discretization, all time and space derivative operators are replaced by linear

multiplicative terms, and so the system of coupled partial differential equations of MHD

has been simplified to a linear algebraic problem. The discretized equations can be

expressed in matrix form

λAX = BX +X0 (2.21)

where λ = ΩRMP + nΩ, and X is the discretized version of the perturbation vector (ξ,

b, j, p), X0 is the discretised version of the source (forcing) term (equation 2.19), and

A and B are linear operators consisting only of known equilibrium quantities. X is the

unknown to be solved for, which can be done by a matrix inversion.

X = (λA−B)−1X0 (2.22)

For a driven steady state system, which is how stable RMP experiments are modelled,

inverting the (very large) matrix (λA − B) is the main computational process of the

MARS code. The solution X is the state vector (ξ, b, j, p) at all points of the compu-

tational domain: the plasma response.
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Figure 2.8: a) Geometric coordinate system. Poloidal resolution is evenly distributed,
allowing good resolution near the RMP coils on the outboard side. b) Straight Field
Line (SFL) coordinate system. Poloidal resolution is concentrated near the X point,
and is poor near the RMP coils. Both grids show lines of χ in 20 degree increments.

Magnetic Geometry

In this work, two grids with different coordinate systems are usually required: a geomet-

ric, and straight field line (SFL) coordinate system. Both use cylindrical coordinates

(s,φ,χ), with s the radial coordinate, φ the toroidal angle coordinate, and a χ the

poloidal angle coordinate, but differ in their definitions of χ. Examples of the two grids

for the same equilibrium are plotted in figure 2.8. The blue lines trace flux surfaces at

increments of s from 0 to 1 in steps of 0.2, while the green lines trace lines of constant

χ from 0◦ to 360◦ in increments of 20◦. In the geometric coordinate system, χ is simply

the intuitive real space poloidal angle, anti-clockwise from the outboard midplane. In

the SFL coordinate system however, χ is defined such that field lines in the (φ,χ) plane

are straight. It is only in SFL coordinates that poloidal fourier harmonics are physically

meaningful, and correspond to observable MHD modes in real space, and so poloidal

harmonics may only be interpreted in SFL coordinates. However, as demonstrated in

figure 2.8, on the outboard side where the RMP field is applied, poloidal resolution is

very poor in an SFL coordinate system, making it difficult to properly resolve the applied

RMP field. Therefore, MARS plasma response computations are generally performed in

geometric coordinates, and interpolated onto a matching SFL grid for interpretation in

post process. Both the geometric and SFL grids used in this work are computed for given

experimental equilibria using the CHEASE fixed boundary equilibrium solver [106].



Chapter 3

Coupling between peeling

response and pitch aligned

component

3.1 Resonant Field Amplification

Many systems which support oscillatory behaviour, whether mechanical (swings and

bridges), electrical (radios), or magnetohydrodynamic (a toroidal plasma), have reso-

nances: particular frequencies and/or wavelengths at which the system oscillates partic-

ularly readily. When a force is applied to these systems at or near a resonant frequency,

the corresponding resonant mode is excited to a large amplitude. In this case, the sys-

tem is a rotating tokamak plasma equilibrium, the modes are marginally stable MHD

modes, and the driving force is the applied RMP. It may seem counter-intuitive that a

static applied field could illicit this response, but of course since the plasma is rotating,

in the frame of the plasma the applied field is not static. Marginally stable MHD modes

being coupled to and driven by an applied RMP (or error field) is known as Resonant

Field Amplification[77].

3.2 Amplified Peeling Response

One set of modes has received particular attention in the context of applied RMPs.

These modes have low toroidal mode numbers, are spatially localised near the plasma

edge, and have a peeling mode structure, and are therefore called low n edge peeling

modes (hereafter just the edge peeling response). The edge peeling response has been

35
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Figure 3.1: Example spectrogram of the field including the plasma response. The
spectral regions (ie, regions inm, s space) referred to as ’Kink’, ’Core Kink’ and ’Peeling’
are labelled. More rigorously, the designations ’kink’ and ’peeling’ refer to specific
radial profiles of the plasma displacement. It should be emphasised that m is a discrete
quantity; smoothing is applied to the m axis to make modes more easily discernible.

implicated by several studies as having a role in ELM mitigation[70, 94]. Furthermore,

a correlation between the computed peeling response and ELM suppression has been

detected on DIII-D[92]. It has been suggested that the peeling response may be driving

the pitch aligned components by poloidal harmonic coupling[93], thereby increasing the

width of the stochastic region which may be necessary for ELM suppression. This

motivates the following numerical study into the peeling response, to examine whether

the peeling response may drive the pitch aligned components by poloidal harmonic

coupling.

At this point is is useful to clarify some nomenclature, illustrated in figure 3.1. The term

’harmonic’ refers to a single poloidal fourier harmonic m having poloidal dependence

e(imχ) (where χ is the the straight field line coordinate system poloidal angle). The

term ’mode’ refers to a particular type of plasma instability, generally comprised of

many poloidal harmonics, characterised by its radial displacement profile. The ’kink

response’ generally refers to the amplification of harmonics just above pitch resonance

(ie, m > qn). The kink response is further divided into ’core kink’ and ’edge peeling’
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response, referring respectively to the kink response in the plasma core and near the

edge.

This chapter details work previously presented in part in [79]. In this section, the

plasma response to an n = 2 RMP field including n = 6 sidebands applied to an

ASDEX-Upgrade plasma equilibrium is computed using the MARS-F code. The sensi-

tivity of the plasma response to the geometry near the X point is also investigated by

varying the plasma boundary shape. To investigate the general behaviour of poloidal

harmonic coupling in a realistic toroidal geometry, a single poloidal harmonic magnetic

perturbation is applied at the plasma edge as a boundary condition. The pitch aligned

components resulting from this applied boundary condition were then computed, to in-

vestigate whether they could be driven by poloidal harmonic coupling. This chapter also

describes work previously presented in [102–104], in which MARS-F simulations of the

plasma response are compared with experimental measurements of the resulting mag-

netic perturbation and plasma displacement, made with external magnetic Bp probes,

and plasma emission diagnostics.

This section is organised as follows. Section 3.3 describes the experimental equilibrium

used for this study. Section 3.4 describes benchmarking of the applied perturbation

against Biot-Savart code ERGOS. Section 3.5 describes the computed plasma response

to this applied perturbation, as well as its dependence on the plasma boundary X point

truncation. Section 3.6 describes the plasma response to contrived single m applied per-

turbations in order to investigate poloidal harmonic coupling between the pitch aligned

components and the peeling response. In section 3.7 MARS-F predictions of the mag-

netic and displacement perturbations are compared with experimental measurements of

the displacement and magnetic field. Section 3.8 then summarises and discusses these

results.

3.3 Equilibrium

The 2D plasma equilibrium used in this study was reconstructed from ASDEX-Upgrade

discharge 30835: a low collisionality ELM mitigation experiment. Table 3.1 lists es-

sential information of the plasma equilibrium. The initial equilibrium was constructed

using the free boundary equilibrium code CLISTE [105], provided as part of a stan-

dardised modelling kit at IPP Garching. Magnetic measurements, the q = 1 surface

location from measurements of sawtooth instabilities, and the scrape-off layer current

were used as constraints on the equilibrium. Using the fixed boundary equilibrium solver

CHEASE [106], the equilibrium was then refined and mapped to the MARS-F straight



38

field line coordinate system. Figure 3.2 a)-c) shows curves fitted to experimentally mea-

sured radial profiles of plasma parameters: a) the electron and ion temperature, b) the

electron density, and c) the toroidal angular velocity. Plots d)-f) are equilibrium profiles

of parameters output from the CHEASE equilibrium code: d) the safety factor profile,

e) the plasma pressure, and f) the plasma current density. s is the radial coordinate, de-

fined as s =
√
ψN where ψN = (ψpol−ψ0)/(ψa−ψ0) is the normalised poloidal magnetic

flux, in which ψ0 and ψa are the poloidal magnetic flux ψpol evaluated at the magnetic

axis and plasma edge respectively.

ASDEX Upgrade is equipped with 16 ELM control coils, arranged in two toroidal rings

of 8 coils each above and below the midplane. Having 8 coils toroidally allows toroidal

mode numbers of n = 1, 2, 3 or 4 (although the n = 3 inevitably contains a significant

n = 5 sideband). The coils are powered by 4 independent power supply units, allowing

rectangular or sinusoidal toroidal waveforms, and also allowing waveforms to be rotated

in the upper and lower rows independently. Figure 3.3 shows the ASDEX Upgrade coil

set relative to a typical plasma shape, as well as examples of toroidal current waveforms

which may be applied in the upper or lower coil rows for a rectangular n = 2 and

sinusoidal n = 1 applied field.

B0 (T) Ip (MA) q0 q95 β % li ν∗e S

1.7 0.77 0.8 3.8 2.04 1.01 0.08 3.5× 108

Table 3.1: Parameters of the plasma equilibrium used for this numerical study: AS-
DEX Upgrade discharge 30835 at 3200ms. B0 is the vacuum equilibrium field strength
at the magnetic axis, Ip is the total plasma current, q0 and q95 are the safety factor
at the core and the ΨN = 0.95 flux surface respectively. β = (2µ0 < P >)/(B2

0) is
the ratio of volume averaged plasma pressure to magnetic pressure on axis, li is the
normalised plasma internal inductance (see [106] for full definition), ν∗e is the plasma
collisionality evaluated at the pedestal top (following the formula in [107]), and S is

the Lundquist number evaluated at the magnetic axis.

3.4 Benchmark

To provide an independent benchmark of the vacuum magnetic perturbation, the vac-

uum field was computed using MARS-F and also with the Biot-Savart based code

ERGOS[108]. Although the toroidal spectrum of the applied perturbation is dominated

by a single mode number ndom, it will also inevitably contain sidebands of a finite size.

A perturbation with dominant mode number ndom applied using N coils will typically

contain large sidebands at mode numbers (jN ±ndom) where j is an integer. Figure 3.4

shows the toroidal waveform and spectrum of the RMP coil currents, applied in 30835

at 3.2s, showing the expected large ndom component and N ± ndom sidebands. MARS
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Figure 3.2: Ion and electron temperature, electron density, rotational velocity, safety
factor, plasma pressure and current density profiles, from ASDEX-Upgrade discharge

30835, taken at 3200ms into the plasma shot.

computations are limited here to low n, so only the low n (.10) sidebands can be stud-

ied. Not shown in the figure are the negative toroidal harmonics, which by symmetry

are the same as the positive harmonics (this is not the case with the poloidal spectrum).

In MARS, the symmetry of the toroidal spectrum across n = 0 is used to compute both

the n and −n response. The lower coil set has a slightly higher ndom component and

lower sidebands, due to the slightly smaller toroidal inter coil spacing of the lower coils.

Figure 3.5 shows the n = 2 pitch aligned components due to the vacuum field, computed

both with ERGOS and MARS-F. The figure shows that the pitch aligned components

largely agree, so we may be confident that the n = 2 components of the MARS and ER-

GOS fields are in agreement. However, this only examines the ndom component of the

field. Figure 3.6a-d) shows a detailed global benchmark between MARS and ERGOS.

Previous studies [93] have investigated the largest sideband and found it to be small

compared with the dominant n component, and have therefore neglected it. However,

the figure shows that the MARS single n global field differs noticeably from the ERGOS

full toroidal spectrum field. Since MARS-F is a linear code, and toroidal harmonics

do not exhibit the complex coupling behaviour of poloidal harmonics (since they are
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Figure 3.3: a,b) Sketch of the ASDEX Upgrade coil set. The coil set consists of an up-
per and lower row of 8 coils each, and apply non-axisymmetric magnetic perturbations
close to the plasma edge. c,d) Example toroidal current waveforms available for use in
experiments in the upper or lower row of coils. c) An n = 2 rectangular waveform. d)

An n = 1 sinusoidal waveform.

Figure 3.4: The toroidal waveform of a) upper and b) lower coil currents applied
to ASDEX Upgrade 30835. This toroidal waveform results in the toroidal spectrum
plotted in c), where blue is the upper coil toroidal spectrum and green is the lower
coil toroidal spectrum. The dominant component is n = 2, with a significant n = 6

sideband.
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Figure 3.5: Vacuum benchmark of the pitch aligned components of the vacuum field,
computed with MARS-F and ERGOS. The MARS-F computation has been converted

to match the slightly different ERGOS normalisation.

defined on a circle around which all equilibrium quantities are constant), the field due

to sidebands can be computed separately and added to the dominant mode number in

post process. Figure 3.6e-h) shows the same benchmark, with the inclusion of the n = 6

sideband in the MARS computation. The figure shows a good agreement between the

MARS vacuum field using n = 2 and n = 6 with the ERGOS field. This shows that the

global field including detailed geometry is well approximated using only the dominant

toroidal mode number and largest sideband, therefore, the n = 2 and n = 6 toroidal

harmonics will be considered in this study. The small difference is primarily due to

the different representation of the coil currents between the two codes - ERGOS uses a

detailed real space description of the coil geometry, and so includes the whole toroidal

spectrum. Nevertheless the ERGOS vacuum field provides a useful benchmark for the

applied perturbation computed by MARS-F.

3.5 Plasma Response to Applied Perturbation

ASDEX Upgrade has an upper and lower set of RMP coils, allowing the poloidal spec-

trum to be tuned by varying the toroidal phase difference between the upper and lower

coils, ∆φul. It should be noted that the toroidal phase difference ∆φul refers to the

difference in phase between the upper and lower coil sets, rather than the offset between

the upper and lower coil current waveforms in real space toroidal angle, ∆φreal. Rather,

the toroidal phase difference ∆φul is related to the real space offset ∆φreal by the rela-

tion ∆φul = n∆φreal, as illustrated in figure 3.7. Using MARS-F, the n = 2 and n = 6
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Figure 3.6: A benchmark of the global vacuum field between MARS-F and ERGOS.
a,b) Vacuum field computed with ERGOS (solid) and MARS n = 2 (dashed) with
toroidal angle, near to a) and far from b) coils. R,Z locations indicated by the red and
blue circles in plot i). c,d) Vacuum field computed with ERGOS (solid) and MARS
n = 2 (dashed) with height Z c) and major radius R d). Locations of the lineouts are
plotted in their corresponding colour in figure i). e,f,g,h) Same results with ERGOS
(solid) and MARS n = 2 summed with the n = 6 component (dashed). i) Contour plot
of the ERGOS field in a poloidal (R,Z) plane. j) Contour plot of the MARS n=2 field
in the poloidal plane. k) Contour plot of the MARS n=2 and n=6 fields in the poloidal
plane. The match with the ERGOS field is greatly improved by the inclusion of the

n=6 sideband.
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Figure 3.7: The above sketch demonstrates how the phase difference ∆φul is achieved
in practice, by applying a toroidal angle offset between the lower and upper coils of
∆φul/n. The blue (green) rectangles depict the upper (lower) RMP coils, while the
blue (green) sinusoid depicts the toroidal current waveform these coils are applying.

plasma response to an applied ndom = 2 perturbation with experimental values of the

coil currents was computed. MARS-F is a linear model, which allows the response due to

the upper and lower coils to be computed separately, and then summed in post process

using the principle of superposition. The plasma response due to both coils is computed

in post-process for arbitrary ∆φul using the relation b∆φul = bupper + blower × e(−i∆φul),

as in previous plasma response studies [93]. In the plasma bulk and most of the edge re-

gion where the electron temperature is high, the Spitzer model for resistivity is sufficient.

However, in the limit approaching the plasma edge where the electron temperature can

tend to zero, the Spitzer resistivity would tend towards infinity. Therefore to avoid a nu-

merical singularity, the maximum value of the resistivity is fixed for numerical stability;

in this study the maximum value of resistivity was fixed at 204 nOhm m (correspond-

ing to 370eV), its value at s = 0.99. Figure 3.8 shows the vacuum perturbation, and

the total magnetic perturbation including plasma response, ie, btotal = bvac + bresponse,

both for n = 2 and n = 6 fields. In this work, ’total’ is taken to mean ’including

the plasma response’. The figure plots the absolute value of the normal component of

the perturbed magnetic field, in the dimensionless unit defined as |b1| = | b·∇ψ
Beq·∇φ

q
R2

0B0
|.

There are several noteworthy features. Firstly, for both n = 2 and n = 6 the total

pitch aligned components (b1m=qn) at the inner rational surfaces are close to zero. Due

to the high temperature in the plasma bulk, the resistivity is negligibly small, so the

plasma response is close to ideal. This causes the pitch aligned components to be almost

perfectly screened by induced current sheets at rational surfaces. Closer to the plasma

edge however, the temperature is lower and the resistivity is higher, which allows the

pitch aligned components near the plasma edge to be finite. Secondly, there are some

regions of the spectrogram (ie, in m,s space) which are amplified above their vacuum

values by resonant field amplification. As figure 3.8 shows, the n = 2 core kink mode

is moderately amplified, but the dominant response for both n = 2 and n = 6 is the

edge localised low n peeling mode. There is no core kink response apparent in the n = 6

response. Thirdly, both the applied and total fields of the n = 6 sideband are much

smaller than the dominant n = 2 component, since the n = 6 component of the toroidal
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current waveform is far smaller than the n = 2. The amplified peeling response of the

n = 6 field also has a much smaller radial extent than the n = 2, and is also confined to

fewer poloidal harmonics.

Figure 3.8: a) The n=2 poloidal spectrum of the applied vacuum magnetic pertur-
bation, with ∆φul = 180◦. The pitch aligned components are highlighted with white
circles, and the white dashed line follows the m = nq(s) contour. b) The n=2 poloidal
spectrum of the magnetic perturbation including the plasma response (ie, the total
field). While there is moderate amplification of the core kink, the edge localised peel-
ing response is more appreciable. The pitch aligned components far from the edge are
totally screened by the plasma response, but the components close to the edge can

remain finite. c),d) n=6 vacuum and total poloidal spectra.
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To quantify how the n = 2 and n = 6 peeling response varies with ∆φul, the field

amplitude at a representative spectral point (ie, a point in m, s space) is computed while

∆φul is scanned. Figure 3.9 shows the total and vacuum magnetic field perturbation

|b1| at spectral location (m, s) = (11, 0.99) for the n = 2 field, and (m, s) = (26, 0.99)

for the n = 6 field. The figure shows that the field in this spectral region is amplified

above its vacuum value, and that the amplification is strongly dependent on the coil

phase shift ∆φul. These results agree qualitatively with a similar study of a DIII-D

plasma, which also predicted amplification of the edge peeling response with strong

∆φul dependence [93]. The figure also shows that the amplification effect (size of the

total field relative to the vacuum field) appears greater for n = 6, although the total

field is still small compared to the n = 2 component.

Figure 3.9: The magnitude of the perturbation at spectral location (m, s) = (11, 0.99),
which is representative of the edge peeling response, with a numerical scan of ∆φul. The
dashed line shows the vacuum perturbation, and the solid line is the total perturbation.
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3.5.1 Pitch Aligned Components

The white circles in figure 3.1 mark the pitch aligned field components: the spectral

points (in m, s space) where m = nq(s). In the straight field line coordinate system, at

these spectral points the magnetic perturbation is aligned with the equilibrium magnetic

field. The pitch aligned field components are of particular interest to RMP studies,

because they determine the widths of islands which are driven at rational surfaces,

and thereby the widths of any stochastic regions which may form in response to the

RMPs. Figure 3.10 shows the absolute value of the n = 2 and n = 6 vacuum and total

pitch aligned field components, at a coil phase difference of ∆φul = 80◦ for n = 2, and

∆φul = −110◦ for n = 6. In Ideal MHD, applied RMPs drive current sheets at rational

surfaces which completely screen the magnetic pitch aligned components. Therefore in

the bulk plasma, where the resistivity is low and the plasma is approximately ideal, the

pitch aligned components of the total field are negligibly small. However, as the figure

shows, outside the temperature pedestal close to the plasma edge (roughly s > 0.95) the

resistivity is much higher, so the pitch aligned components are not completely screened

but remain finite. The figure also shows that the n = 6 pitch aligned components are far

smaller than the n = 2. As before, this is primarily due to the smaller size of the n = 6

sideband of the toroidal current waveform, but it is also due to the m = nq spectral

line being separated from the main spectral lobes of the applied RMP when n = 6.

Specifically, near the edge the applied RMP has poloidal harmonics mostly m < 10,

while the n = 6 spectral line in the edge region is above m = 20.

Figure 3.10: The pitch aligned components of the applied vacuum perturbation and
total perturbation including plasma response. In the plasma bulk far from the edge the
pitch aligned components are well screened, but in the edge region can be finite as the

resistivity is higher.
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Figure 3.11: Absolute values of the outermost 3 pitch aligned components, in the
vacuum approximation (dashed lines) and the total field (solid lines). The maximum
pitch aligned component including the plasma response is offset 60◦ from its vacuum
value. This provides further evidence that vacuum modelling alone is insufficient to

predict the coil phase for optimum pitch alignment.

Figure 3.12: a,b) Experimentally applied coil currents in the a) and b) lower coils at
an instant of time during a scan of the coil phase ∆φul, are represented by the cyan
bars. To generate the phase scan, the upper coil currents form a travelling wave which
rotates the n = 2 field (blue line) toroidally. However, the n = 6 component (green
line) travels at the same rate in the opposite direction. c) ∆φul of the n = 2 and n = 6
components of the applied RMP. For the case of an ndom = 2 field, ∆φul for the n = 6

is simply the negative of ∆φul for the n = 2.
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Figure 3.11 plots the absolute values of the outermost 3 pitch aligned components (at

the m = 7, 8, and 9 rational surfaces for n = 2, or the m = 26, 27, and 28 rational

surfaces for n = 6) as a function of ndom coil phase difference ∆φul. The solid lines

show the pitched aligned components of the total field, while the dashed lines show the

vacuum field. The maximum value of the n = 2 vacuum pitch aligned components (ie,

vacuum alignment) occurs at ∆φul = 30◦, whereas the maximum value of the n = 2 total

pitch aligned components occurs at ∆φul = 90◦. It is apparent that the coil phase which

maximises the total pitch aligned components is offset from its vacuum value by 60◦.

This offset is also apparent in the n = 6 pitch aligned components. This demonstrates

that a vacuum field aligned applied field does not maximise the total pitch aligned

components, and therefore to optimise the coil configuration to maximise total pitch

aligned components, the plasma response must be accounted for. It should be noted

that this phase shift is not exclusive to the pitch aligned components; other spectral

regions also experience a shift in their dependence on ∆φul (see figure 3.9), but this will

not be examined here. The ∆φul dependence of the total and vacuum fields is robust

with respect to changes in qa caused by changes in plasma shape (of the type discussed

in section 3.5.2), and therefore the 60◦ offset of the total field from the vacuum is also

robust to these changes. The magnitudes of the outermost pitch aligned components,

however, were found to be slightly sensitive to qa. This may be caused by changes to the

rotation and resistivity at outermost rational surfaces, which results from movement of

the rational surfaces caused by changes to qa. The sensitivity of the plasma response to

plasma rotation and resistivity is described in previous studies [76].

A noteworthy feature of figure 3.11 is that for certain ranges of ∆φul, the total pitch

aligned components are of the same order or larger than their vacuum value. This is

unexpected, given the strong screening effects which act to reduce the pitch aligned

components. This is particularly evident for the outermost n = 6 pitch aligned compo-

nents, possibly due to their higher n number allowing them to be packed more closely

to the plasma edge in the region of relatively high resistivity. In the context of this

linear single fluid resistive MHD model, resonant field amplification is the sole method

by which parts of the total perturbation spectrum could exceed their vacuum values. It

was previously suggested [92], that since the amplified edge localised peeling response is

spectrally close to the outermost pitch aligned components, poloidal harmonics of the

amplified peeling response may couple to and drive the pitch aligned components by

poloidal harmonic coupling. This possibility motivated the investigation into poloidal

harmonic coupling on ASDEX-Upgrade, described in section 3.6.

Experimental scans of ∆φul are typically performed by rotating the upper toroidal wave-

form of currents relative to the lower. An example of this is plotted in figure 3.12, using

the coil currents of discharge number 33143 (since 30835 had a static ∆φul). It is useful
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to note that, for the case of ndom = 2 discharges, which with 8 coils toroidally will always

have a significant n = 6 component, the phase difference of the n = 2 component ∆φul

is simply the negative of the phase difference of the n = 6 component ∆φn=6. With

reference to figure 3.11, which plots the outermost pitch aligned components with exper-

imentally applied ∆φul, applying ∆φn=6 = −∆φul the figure shows that pitch aligned

components of the n = 2 and n = 6 fields are maximised at roughly the same experimen-

tal coil phase difference. It has been suggested[109] that stochasticity may be enhanced

by sidebands, which ’fill in’ the gaps between islands of the dominant harmonic. The

observation that the n = 2 and n = 6 islands are maximised at the same ∆φul supports

this theory.

3.5.2 Robustness of Peeling Response to X Point Truncation

In tokamaks with divertor exhaust systems, the plasma boundary has at least one ’X

point’ where the poloidal field becomes zero. At an X point, the safety factor q tends

to infinity and so is undefined. In the MARS-F flux-based coordinate system this cor-

responds to a numerical singularity, and so the X point must be excluded by truncation

of the plasma boundary. Truncation effectively imposes a finite q at the plasma edge qa,

by approximating the divertor configuration as a limiter configuration with an otherwise

similar shape. Previous works [93] suggest that the predicted amplification of the low n

edge localised peeling response may be dependent on the truncation around the X point

and the value of the edge safety factor qa.

To test how robust the predicted peeling response is with respect to changes in X point

plasma boundary shape, the plasma response was recomputed as the plasma boundary

shape was incrementally changed towards including an X point. Figure 3.13 shows the

plasma boundaries resulting edge q profiles of 5 equilibria. The equilibria are indistin-

guishable apart from their differing levels of truncation around the X point, and resulting

different edge q profiles. Figure 3.14 shows the edge spectrograms computed for different

levels of X point truncation and consequent values of qa. The spectrograms show a radial

distortion of the spectrum, but the amplitude of the peeling response does not appear

to change. Varying the edge q profile shifts the m = nq(s) curve, and the spectrogram

is radially distorted to follow its movement. This suggests that although the response

at a particular radial position s may change when the extent of truncation is varied, the

response at a particular value of q does not. Figure 3.15 shows the edge radial profile

of the m = 12 harmonic of the total magnetic perturbation, for the 5 values of qa used

in the study. The figure shows that when q(s) is used as the radial coordinate, varying

the edge truncation has no effect on the amplified peeling response. This suggests that

altering the edge q profile does not affect the amplitude of the peeling response, but only
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radially distorts its spectral structure. This suggests that the amplified peeling response

would not disappear in the limit of including the X point. It is emphasised that this is a

study of the resonant field amplification of stable edge peeling modes, not the stability

of these modes. Therefore this finding is not in conflict with previous works [110] which

find that the stability of edge peeling modes can be sensitive to the inclusion or exclusion

of an X point.

Figure 3.13: Variation of plasma boundaries and edge q profiles while incrementally
sharpening the X point, approaching a separatrix. A sharper (ie, less truncated) X

point results in higher values of qa in the equilibrium construction.
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Figure 3.14: Edge regions of spectrograms from the 5 geometries, corresponding to
5 values of qa. Increasing qa shifts the m = nq line, not altering the peeling response

amplitude, but ’compressing’ it radially.
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Figure 3.15: a) The radial profile near the edge of the m = 12 harmonic of the total
magnetic perturbation, using q as radial coordinate. b) The radial profile near the edge
of the m = 12 harmonic of the total magnetic perturbation, using s as radial coordinate.
These plots demonstrate that when s is used as a radial coordinate, the peeling response
appears sensitive to the extent of X point truncation. Conversely when safety factor q

is used as the radial coordinate, the edge profiles coincide up to each value of qa.
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3.6 Poloidal Harmonic Coupling on ASDEX-Upgrade

Analytic theory indicates 3 primary sources of poloidal harmonic coupling in tokamak

plasmas[111]: toroidicity causes coupling of adjacent poloidal harmonics with ∆m =

|m − m′| = 1, ellipticity couples harmonics with ∆m = 2, and triangularity couples

harmonics with ∆m = 3. In the Straight Field Line (SFL) coordinate system which

MARS and other spectral codes use, which is necessary for a meaningful definition of a

poloidal harmonic, geometrical and physical quantities are not meaningfully separable,

so poloidal coupling can in principle occur between any pair of poloidal harmonics.

Poloidal coupling manifests both in the vacuum field, and the plasma response.

To investigate the generic behaviour of poloidal coupling, MARS-F was used in an

atypical manner. Instead of the applied perturbation being due to RMP coils, the

perturbation was applied with a prescribed magnetic perturbation b1BC , applied at the

plasma boundary. This is a valid procedure, because the perturbation at any closed

surface (eg, the plasma boundary) completely determines the perturbation inside that

surface, subject to the same physics as a conventional RMP coil calculation. A magnetic

perturbation consisting of single poloidal harmonic mBC with unit amplitude (b1BC = 1.0

for m = mBC) with toroidal mode number n = 2, was applied at the plasma boundary,

and the resulting vacuum and total magnetic fields in the plasma bulk were computed.

Figure 3.16 shows spectrograms of a vacuum field and total field, produced by applying

unit amplitude mBC = 7 and mBC = 13 magnetic perturbations to the plasma edge.

The perturbation is purely single m at the plasma edge; however, in the plasma bulk, the

poloidal spectrum is broadened by poloidal harmonic coupling, and also shifted to lower

|m|. This behaviour appears to be general for any applied mBC . Figure 3.17 shows the

absolute values of the pitch aligned components, which resulted from applied boundary

perturbations with mBC = 11, 12 and 13. For these applied perturbations, mBC were

chosen to have no corresponding rational surface in the plasma (ie, mBC > n ∗ qa).
Therefore, the pitch aligned components can be non-zero only by poloidal harmonic

coupling. These results show that a single m perturbation of unit amplitude applied at

the plasma boundary, can drive the pitch aligned components to be appreciable relative

to the size of the applied perturbation (in this work, up to |b1m=nq|/|b1BC | = 0.2). This

result suggests that poloidal harmonic coupling is a viable mechanism by which the

amplified peeling response may drive the pitch aligned components.
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Figure 3.16: Spectrograms showing the perturbation which results from the applica-
tion of a unit amplitude single harmonic perturbation, with mBC = 7 and mBC = 13, as
a boundary condition at the plasma edge. Both the total and vacuum fields are shown.
At the edge the perturbation is prescribed to be single m, but in the plasma bulk the
spectrum broadens and shifts towards lower |m| by poloidal harmonic coupling. Note

that the colormap in these plots is reversed with respect to previous spectrograms.

Figure 3.17: The pitch aligned components of the total fields resulting from applied
mBC = 11, 12, and 13 unit amplitude perturbations at the plasma boundary. The
toroidal mode number used was n = 2. The absolute value of the pitch aligned compo-
nents is up to 20% of the applied field in this case. Since there are no m = 11, 12 or 13
rational surfaces in the plasma, these pitch aligned components may only be non-zero

due to poloidal harmonic coupling.
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3.7 Experimental Validation of MARS Simulations

Figure 3.18: Figure reproduced with permission from [102]. Sketch of the locations of
which various diagnostics on ASDEX Upgrade may measure the plasma displacement

and magnetic perturbation in response to applied RMPs.

The work detailed in this section was previously presented in [102–104], where the back-

ground and implications of these results are discussed in detail. This section focuses only

on the results as further benchmarking and a partial experimental validation of simula-

tion results from the MARS-F code. My contribution to these works was all MARS-F

simulations, and investigations of the effects of equilibrium uncertainty on the predicted

plasma displacement. All results from other codes such as VMEC and M3D-C1, as well

as experimental procedures, analysis and results, were the work of collaborators.

The plasma response manifests both as a displacement of plasma surfaces (ξ), and

as a magnetic perturbation (b), both of which may be measured in experiments. The

magnetic plasma response is measured using arrays of magnetic pickup coils, as sketched

in figure 3.18. Since pickup coils measure the rate of change of magnetic field enclosed in

the loop, which must then be integrated, the signal of the RMPs and the plasma response

is optimised when the applied RMPs are rotated rigidly in the toroidal direction, which

is achieved by sinusoidal variation of the RMP coil currents. Toroidal rotation of the

RMP also allows the toroidal structure of the plasma response to be measured with

other static diagnostics. However, requiring a rigid rotation can be disadvantageous,

because the requirement of sinusoidal toroidal waveform reduces the maximum value

which can be applied to the coils, and also the rotation causes significant attenuation by

the passive stabilisation loops installed on ASDEX Upgrade. Pickup coils measure the

magnetic field outside the plasma edge, but the magnetic perturbation inside the plasma

bulk cannot be directly measured. However, by collecting radiation emitted from the

plasma bulk, the plasma displacement may be measured globally. If the displacement is

known then the magnetic perturbation may be deduced from it (neglecting resistivity),

via the ideal linearised induction equation below.
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b = ∇× (ξ ×B) (3.1)

The plasma displacement is measured using the electron cyclotron emission (ECE) di-

agnostic, soft x-ray (SXR) diagnostic, and charge exchange recombination spectroscopy

(CXRS) diagnostic. The ECE, SXR and CXRS lines of sight and locations are sketched

in figure 3.18. These diagnostics are used to make fine measurements of the plasma

temperature profiles, and from these measurements small movements of flux surfaces

are deduced, based on the approximation that temperatures are constant on flux sur-

faces. The displacement may be computed as ξr =
(
∂Trad0
∂r

)−1
δTrad, where δTrad is

the perturbation of the radiation temperature due to the plasma response, and ∂Trad0
∂r is

the slope of the average radiation temperature profile, both measured by the ECE (for

electrons) and CXRS (for ions) diagnostics[104]. Accurate determinations of the plasma

displacement from the ECE, CXRS and SXR measurements are generally non-trivial

and are not reported here, but are described in [102, 104] and references therein. The

MARS-F model has been extensively validated against experiments by previous works.

In [112, 113], MARS-F predictions of the total magnetic field and plasma displacement

in response to applied RMPs, are compared with measurements on DIII-D. Good agree-

ment was found with MARS-F until the pressure approached or exceeded the no-wall

limit, at which point the kinetic MARS-K was required to recover the experimental mea-

surements. Continued experimental validation of MARS-F on other machines is vital to

build and maintain confidence in its predictions.

Plasma Response Measurement Experiments

Shot n q95 βN ne × 1019m−3

30839 2 5.46 1.5 7.2
31021 1 4.33 1.6 10.0
32138 1 5.12 2.1 5.9
31034 1 4.17 2.5 9.3

Table 3.2: Equilibrium parameters of the discharges used for experimental measure-
ments of the plasma response.

In [102], a rigidly rotating n = 2 RMP is applied to ASDEX Upgrade discharge num-

ber 30839, while in [103, 104] a rigidly rotating n = 1 RMP is applied to discharge

numbers 31021 and 32138. To investigate experimentally the dependence of the n = 1

plasma response on the poloidal spectrum, a scan of coil phase ∆φul was performed in

discharge 31034, which was otherwise a repeat of 31021. Global plasma parameters of

these discharges are found in table 3.2. The plasma displacement in response to the
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applied RMP is predicted using MARS-F, VMEC and M3D-C1, and from these simu-

lation results synthetic diagnostic data are produced. In [102], synthetic ECE data are

compared with experimental ECE measurements of the plasma displacement in the edge

region. Both the predicted and measured displacements exceed vacuum computations,

which indicates an amplification of the displacement by the plasma response, and sup-

ports the existence of the edge peeling response. In [103, 104], ECE, CXRS and SXR

measurements are combined for a global measurement of the plasma displacement as

described in section 3.7. Magnetic probes around the plasma edge also detect a strong

amplification of the applied RMP, further evidencing a strongly amplified edge peeling

response.

Figure 3.19: Figure reproduced with permission from [102]. Poloidal spectra of the
n = 2 magnetic and displacement plasma response for ASDEX Upgrade discharge
30839, computed with MARS-F and VMEC. a,d) The applied vacuum magnetic per-
turbation. b,e) The total magnetic perturbation including the plasma response. The
expected magnetic edge peeling response is clearly visible in the m > nq region. c,f)
Plasma displacement due to the applied RMP. The displacement is also concentrated

near the edge, but unlike the magnetic response is mostly resonant (m = nq).

Computational predictions of the plasma response to the applied n = 2 RMP in discharge

30839 are plotted in figure 3.19. The figure shows the radial profiles of the poloidal

harmonics of the predicted vacuum magnetic field, total magnetic field including plasma

response and plasma displacement, computed with VMEC and separately with MARS-

F. The figure shows reasonable agreement in the magnetic perturbation between the

two codes, and a close quantitative agreement in displacement. Some difference in

predicted magnetic field between the two codes is expected, given the radical differences

in approach of the two codes. Originally designed to solve for stellarator equilibria,

VMEC[114] solves for a 3D equilibrium by minimising the potential energy of the plasma.

Conversely, MARS-F applies a magnetic perturbation to a given 2D equilibrium, and
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Figure 3.20: Poloidal spectra of the n = 1 magnetic and displacement plasma response
for ASDEX Upgrade discharge 31021, computed with MARS-F. a) Applied vacuum
field. b) Total field including plasma response. There is an edge peeling response, but
also a core kink response is apparent. c) The plasma displacement is resonant, and

significant core modes are apparent.

Figure 3.21: Real space (R,Z) structure of the magnetic and displacement response
to applied n = 1 and n = 2 RMPs. For 30839 the applied field was an n = 2, whereas
for 31021 the field was n = 1. a,d) Vacuum fields applied to discharges 30839 and
31021. b,e) Total field including plasma response of the n = 1 and n = 2 experiments.
c,f) Plasma displacement of the n = 1 and n = 2 experiments. The n = 2 displacement
is mostly concentrated close to the edge, while the n = 1 displacement is more global.
Because the displacement is resonant it is concentrated on rational surfaces, which are

apparent in the figure.
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solves the linearised equations of MHD for the total perturbation. Furthermore, VMEC

does not include resistivity or toroidal plasma rotation, while MARS-F does.

Figure 3.20 shows the radial profiles of the poloidal harmonics of the computed vacuum

and total magnetic fields and plasma displacement for n = 1 RMP experiments 31021.

The magnetic vacuum field and plasma response appear qualitatively quite similar in

the n = 1 and n = 2 experiments, the main differences being that the resonant condition

m = nq follows a different spectral curve, and that the amplification effect is larger in

the n = 1 case. In the displacement spectrograms, both the n = 1 and n = 2 have

large peaks close to the plasma edge; however, the n = 1 also features a prominent core

response which is absent in the n = 2 displacement spectrogram. This is because the

q profile of the n = 1 discharge is close to 1 and quite flat in the core, so the resonant

condition q ≈ m/n (discussed below) is approximately satisfied over a larger radius.

Both figures 3.19 and 3.20 show the non-resonant (m > nq) edge peeling response in

the magnetic spectrogram, and a strongly resonant response (m = nq) of the plasma

displacement. To reveal the cause of the differences in poloidal structure between the

magnetic field and plasma displacement, we may take the linearised ideal induction

equation 3.1, and apply it to the case of a general tokamak plasma. The result (a

complete derivation is included in Appendix A) is a relation between b1 and ξ1, the

magnetic and displacement quantities plotted in figure 3.19.

ξ1 ≈ b1/(m− nq) (3.2)

It can be seen from the above relation that the displacement ξ1 is expected to be domi-

nated by the resonant components, where m = nq. Figure 3.21 shows the bulk vacuum

and total magnetic fields and plasma displacement of the n = 1 and n = 2 experiments,

computed with MARS-F. Comparing the n = 1 and n = 2 magnetic perturbations shows

that the n = 1 plasma response has a larger amplification effect, and is more global, due

to the slightly higher plasma pressure, and having a flat core q profile where the above

resonance is close to satisfied.

Poloidal Mode Number Measurement

In [102] using spatially resolved Electron Cyclotron Emission Imaging (ECE-I) measure-

ments, the poloidal structure of the displacement at the s = 0.97 flux surface was ex-

perimentally measured, and also predicted using VMEC and MARS-F modelling. Using

an approximate Fourier representation of the displacement (approximating the displace-

ment at a flux surface to be dominated by a single poloidal harmonic), ξ = ξae
i(mχ−nφ)
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Figure 3.22: Figure reproduced with permission from [102]. Generalised straight
field line poloidal angle χ of ECE-I channels on a single flux surface (q = 5.35), plotted
against the phase of the measured displacement perturbation, derived from the toroidal
rotation of the perturbation by angle φ. Blue and green points are the measured data
from the ECE-I diagnostic, which demonstrate close agreement with synthetic data
produced using VMEC. Linear fit lines are used to determine the dominant poloidal

harmonic, which matches expectations within uncertainties.

Figure 3.23: Figure reproduced with permission from [104]. a) Generalised straight
field line poloidal angle χ of intersections of SXR lines of sight with the plasma edge,
plotted against the relative phase of the n = 1 plasma displacement. b) Poloidal angle
χ of Bp magnetic probes, plotted against the relative phase of the n = 1 measured
magnetic field, which includes both the vacuum field and plasma response. In both
plots the phase of the n = 1 displacement and total magnetic field at the corresponding
SFL poloidal angle is also plotted, showing good agreement with experimental mea-

surements.
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where φ is the toroidal angle and χ the SFL poloidal angle, it is apparent that the

dominant poloidal mode number of the perturbation at a particular flux surface may be

found as m = ∆φ/∆χ, where ∆φ is an increment in toroidal phase corresponding to an

increment in poloidal angle of ∆χ. Several channels of the ECE-I diagnostic localised

around the s = 0.97 surface (q ≈ 5.35) at different poloidal locations allow the displace-

ment to be measured at varying χ with approximately constant s and q, which provides

the ∆χ. The rotation of the applied RMP induces the resulting displacement to rotate

toroidally in synchrony, allowing the perturbation to be measured at varying φ. In fig-

ure 3.22, the toroidal phase shift of the displacement from some fixed toroidal offset ∆φ

measured at distinct ECE-I channels, is plotted against the generalised poloidal angle

χ of each ECE-I channel. The plot includes measured data from the ECE-I diagnos-

tic, as well as synthetic data based on the predictions of the displacement made with

VMEC and MARS-F plotted in figure 3.19. The plot shows a roughly constant ∆φ/∆χ,

indicating a single dominant poloidal harmonic at the q ≈ 5.35 surface. A resonant

poloidal harmonic of an n = 2 perturbation at the q ≈ 5.35 surface, leads us to expect

m = nq ≈ 10.7. The synthetic ECE-I data produced using a VMEC simulation of the

plasma displacement predicts m = 10.72 ± 0.63, and the measured ECE-I data shows

m = 9.83± 0.98, in agreement within uncertainties.

In [103, 104], the poloidal structure at the plasma edge of both the n = 1 plasma dis-

placement and total magnetic field are measured, using poloidal arrays of Bp probes and

SXR channels with lines of sight tangent to the plasma edge at varying poloidal loca-

tions. Two Bp arrays separated toroidally by 180 degrees were used for clean extraction

of the n = 1 component of the magnetic perturbation. Figure 3.23 a) shows the toroidal

phase delay of the experimentally measured magnetic field against poloidal location of

the Bp probes in SFL coordinates. As previously, the gradient of the trend line indicates

the dominant poloidal mode number of the perturbation near the plasma edge. The

measured dominant mode numbers for both shots closely match the dominant poloidal

mode numbers predicted by MARS-F simulations. Figure 3.23 b) plots the experimen-

tally measured phase of the displacement at the plasma edge as a function of poloidal

angle in SFL coordinates, and a linear fit to the data. The solid lines are equivalent

measurements from synthetic diagnostics generated using MARS-F computed displace-

ment profiles. The figure shows that the experimentally measured dominant poloidal

harmonic closely matches the MARS-F computed dominant poloidal harmonic in both

the magnetic and displacement perturbations, and for two distinct discharges.
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Figure 3.24: Figure reproduced with permission from [104], showing the radial profile
of the plasma displacement in discharge 32138. a,d) Amplitude and phase of the electron
temperature perturbation δTe caused by the plasma displacement ξr. Black circles
show directly measured δTe, while the red line shows δTe resulting from the MARS-F
predicted displacement. b,e) Amplitude and phase of the ion temperature perturbation
δTi with MARS-F prediction. c,f) Plasma displacement profiles measured using ion

(CXRS) and electron (ECE) perturbations.

Displacement Radial Profile Validation

Figure 3.24 shows the experimentally measured profiles of the radiation temperature

perturbation δTrad, measured with spatially resolved ECE and CXRS channels. The

ECE diagnostic measures the electron temperature profile and perturbation, while the

CXRS measures the ion temperature profile and perturbation. Measurements shown in

the figure are taken during discharge 32138 between 2.2-3.6s. Using MARS-F the dis-

placement profile of the perturbation ξr is computed, and the simulated ion and electron

temperature perturbations are computed using δTrad = ξr

(
∂Trad0
∂r

)
. The synthetic δTe,i

data derived from MARS-F predicted displacements agree qualitatively for both the ion

and electron temperatures, and match quite well quantitatively outside the core, with

the exception of the phase of δTe which deviates significantly from the measured phase.

In the core region, the large measured displacement peak is not reproduced by synthetic

data.

Displacement Coil Phase Dependence Validation

In discharge 31034, the poloidal spectrum of the applied n = 1 RMP is varied by scanning

the coil phase difference between the upper and lower rows ∆φul. Figure 3.25 shows the
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Figure 3.25: Figure reproduced with permission from [104]. Variation of the n = 1
plasma displacement with ∆φul at a) the plasma core and b) the plasma edge. Also
plotted are predictions from MARS-F and M3D-C1. The experimental result and two
codes agree fairly well in coil phase dependence. Predictions of the two codes are
not drastically dissimilar in amplitude, but they both overestimate the experimental
measurements. This may be a fault with the comparison, since the experimental mea-
surements are both line averaged quantities, while the numerical predictions are made

locally.

measured amplitude of the core (s=0.2) and edge (s=0.95) plasma displacement as ∆φul

is experimentally scanned, measured using the SXR diagnostic as reported in [103]. The

experimental measurement is averaged over several scans of ∆φul. These scans are also

performed using codes MARS-F and M3D-C1[115]. Both codes MARS-F and M3D-C1

closely match each other in amplitude and ∆φul dependence, as well as matching the

∆φul dependence of the experimental measurement. The amplitude of the experimental

measurement is not recovered however. It is suggested in [104] that this may be because

the experimental measurement is a line averaged measurement, while the numerical

predictions are for the displacement local to a flux surface, making a direct comparison

not fully rigorous.

Computed Displacement Uncertainty

Figure 3.24 demonstrates a significant underestimate of the core displacement perturba-

tion by MARS-F. In this section, it will be investigated whether this discrepancy may

be caused by uncertainty in the equilibrium reconstruction. Two of the distinguishing

features of these n = 1 discharges is a q profile which is close to 1 and quite flat in the

core, and also relatively high plasma pressure, with βN generally a large fraction of the

no-wall limit. The plasma response and resonant field amplification are known to be

sensitive to the q profile and plasma pressure[112, 116, 117], but the core safety factor

and core pressure profile shape are determined rather vaguely. Due to the resonance
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Figure 3.26: Profiles of a) plasma pressure, b) current density and c) safety factor, as
the core safety factor was scanned using CLISTE, keeping other quantities fixed. All the
resulting equilibria met the constraints imposed by the edge magnetic measurements,

and so are all plausible equilibrium profiles.

Figure 3.27: Figure reproduced with permission from [104]. The core safety factor
was scanned within its uncertainty, and the pressure scanned through the range of
values it took during the discharge. The core response is shown to be sensitive to both
parameters. The above plots demonstrate a scan in core safety factor q0 with constant
βN . Although not shown here, the plasma βN was also scanned by raising the pressure

profile and adjusting the other parameters self consistently.
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condition expressed in equation 3.2, the displacement is expected to be especially sen-

sitive to small changes in q in this instance, where q is only slightly above 1 for large

regions of the plasma bulk. The uncertainty in the core q and pressure is not wholly

due to measurement uncertainty, but also because for a given set of magnetic measure-

ments (which comprise the primary constraints for equilibrium reconstruction) there is

no unique solution for the equilibrium near the core. Further uncertainty is added to the

core pressure by lack of data of the fast ion population, which even in current tokamaks

may constitute a non-negligible correction to the core plasma pressure.

In order to quantify the effect of the uncertainty in equilibrium reconstruction on the

computed plasma displacement, the core safety factor and pressure of equilibrium 32138

were varied within plausible uncertainties (q0=1.0-1.2, βN=2.08-2.45), and the plasma

displacement recomputed. Figure 3.26 summarises the scaling of the equilibrium, which

was performed using the CLISTE equilibrium code for scaling q0, and CHEASE for

βN . Figure 3.27 shows the variation in computed plasma displacement resulting from

the changes to the equilibrium. As expected, the maximum core displacement increases

as q0 approaches 1, and also increases with βN . It appears that uncertainty in q0

alone is insufficient to explain the discrepancy between the computed and observed core

displacement. By increasing βN however, the computed core displacement can be made

to approach the experimentally observed value. In figure 3.24 the computed temperature

perturbation for βN = 2.45 (blue line) is shown, demonstrating an improvement in

regions which match poorly when the experimental value of βN = 2.08 (red line) is

used. However, since the pressure profile is scaled self-similarly in this study, the edge

localised displacement harmonics are also amplified resulting in the loss of agreement

between simulation and experiment at the edge. It is suggested in [104] that global

agreement may be improved with localised modifications to the plasma pressure profile,

such as an increase in only the core pressure rather than a global pressure increase.

However, quantifying and reducing the uncertainties in core pressure and safety factor,

for example by including MSE constraints in the equilibrium reconstruction[118], would

be more rigorous.

3.8 Chapter Results Summary

The single fluid resistive plasma response to a static ndom = 2 applied RMP field on

ASDEX-Upgrade was investigated using the MARS-F code. A benchmark of the vacuum

field was first performed by comparing the n = 2 vacuum field computed by MARS

with the full toroidal spectrum vacuum field computed by ERGOS. It was found that

while the n = 2 components agree, the bulk field showed that the global full spectrum
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ERGOS field differed significantly from the single n MARS field. This was remedied by

computing the largest toroidal sideband of the field - the n = 6 sideband - and summing

the n = 2 and n = 6 fields. The resulting MARS field compared well with the ERGOS

field globally, except in the very close vicinity of the coils. The MARS-F code was used

to compute the plasma response to the applied ndom = 2 field, and a strongly amplified

low n edge peeling response is predicted, localised near the edge in the s > 0.7, m > qn

region of the magnetic spectrum. It is worth clarifying that the designation of ’low n

peeling response’ is used to identify this classification of plasma response with previous

works [92, 93, 119], not to imply that these results are general for all low n numbers. Both

the n = 2 and n = 6 response were computed, and both show an edge localised peeling

response, although the n = 2 response also comprises an amplified core kink mode which

is not present in the n = 6 response. Consistent with previous findings[93], the n = 6

response was also much smaller than the n = 2, primarily due to the smaller size of

the n = 6 sideband of the applied field. It is also observed that when finite resistivity

is included, resistive dissipation prevents the outermost pitch aligned components near

the plasma edge from being completely screened, and therefore they can be finite and

even comparable to their vacuum values. Both the amplified peeling response and pitch

aligned components have a strong dependence on the phase difference between the upper

and lower coil sets ∆φul. Furthermore, the value of ∆φul which maximises the total pitch

aligned components is offset from optimum vacuum pitch alignment by 60◦. This result

reaffirms the necessity of including the plasma response when calculating the optimum

coil phase for stochasticity in RMP experiments; a vacuum prediction would result

in a 60◦ misalignment. It is also noted that the coil phase difference for the n = 6

component only was in practise merely the negative of the phase difference for the n = 2

component, ie, ∆φn=6 = −∆φul. When accounting for this, it is apparent that the n = 2

and n = 6 components are maximised at roughly the same values of ∆φul, supporting

a recent proposal that sidebands enhance stochasticity induced by RMPs by filling in

gaps between the islands of the dominant harmonic[109].

Reducing the plasma boundary truncation such that the boundary shape approached an

X point, and thereby increasing qa, showed no tendency to reduce the amplified peeling

response. The peeling response was observed to be distorted radially, following the

movement of the spectral line m = nq(s) which is moved by changes to qa. To rephrase,

when q is used as the radial coordinate rather than s, the amplified peeling response is

insensitive to numerical truncation of the X point.

A study of poloidal harmonic coupling was undertaken in realistic tokamak geometry,

to investigate the suggestion that the amplified peeling response could drive the pitch

aligned components by poloidal harmonic coupling. Single m perturbations were applied
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at the plasma edge as boundary conditions, and the resulting bulk perturbation com-

puted using MARS-F. The resulting magnetic spectrograms demonstrated that even

when perturbations have only a single poloidal mode number at the plasma surface,

poloidal harmonic coupling causes the spectrum to broaden in the plasma bulk, and

also shift towards lower |m|. It is also demonstrated computationally that perturbations

spectrally above pitch alignment (m > nq(s)) can drive the pitch aligned components

by poloidal harmonic coupling, suggesting that the amplified peeling response may drive

the outermost pitch aligned components.

The plasma displacement induced by applied n = 1 and n = 2 RMPs was measured

experimentally using ECE, CXRS and SXR diagnostics, and the magnetic perturba-

tion measured using a poloidal array of magnetic probes. The experimentally measured

poloidal structure of the total magnetic field and plasma displacement, the radial pro-

file of the displacement, and the dependence of the displacement on ∆φul, are all well

recovered by MARS-F simulations, providing partial validation of the MARS-F code.

However the amplitude is not, possibly due to uncertainties in equilibrium reconstruc-

tion. Using constraints on the core q profile from MSE measurements may reduce this

in the future. Furthermore, as part of this study, MARS-F is successfully benchmarked

against VMEC and M3D-C1.



Chapter 4

Coil Phase Optimisation

A robust correlation exists between the mitigated ELM frequency and outermost pitch

aligned component b1res[70]. As previously described, it is crucial that the ITER ELM

control strategy be able to robustly reduce ELM sizes below material damage thresholds.

These considerations motivate a study into the coil phase for optimal b1res and hence ELM

mitigation, on ASDEX Upgrade and ITER. The purpose is to develop and test a robust

yet simple parametrisation for the optimum coil phase ∆φopt, which may form the basis

of a feedback optimisation scheme to maximise the mitigated ELM frequency throughout

ITER plasma discharges, particularly during ramp-up and termination during which the

plasma parameters, and so possibly the optimum alignment, vary rapidly.

In this chapter, the dependence of ∆φopt on global plasma parameters normalised beta

βN and q95, is investigated and quantified numerically for general ASDEX Upgrade and

ITER plasmas, in order to derive and test a simple parametrisation for the optimal

coil phase for best ELM mitigation. Normalised beta βN is here defined as βN =

β(%)a(m)B0(T )/Ip(MA), where B0 is the equilibrium magnetic field at the magnetic

axis, Ip is the total plasma current, a is the plasma minor radius, and β is the normalised

plasma pressure β = 2µ0<p>/<B
2>, where <..> denotes an average over the plasma

volume.

This chapter is organised as follows. In section 4.1, by scaling the pressure and plasma

current of a reference equilibrium of the ASDEX Upgrade tokamak, a set of equilibria

spanning a wide parameter space in (βN , q95) is created, covering the typical ASDEX

Upgrade parameter space. It is explained and demonstrated how alignment is affected

by both βN and q95. In section 4.2, at each point in the set of (βN , q95) points, the

plasma response to applied n = 1 − 4 perturbations is computed using MARS-F, and

the optimal coil phasing ∆φopt derived from these results. Consistent with previous

studies [91, 93, 120], it is found that ∆φopt increases smoothly with q95. However, this

68
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work also finds a weak decrease in ∆φopt with βN , in contrast with a previous exper-

imental and computational study which found that ∆φopt did not vary with βN [91].

The dependence of ∆φopt on (βN , q95) is parametrised with a simple 2D quadratic func-

tion, the coefficients of which are computed by linear regression and included here for

researchers to use for RMP experiment planning on ASDEX Upgrade. In section 4.3,

the efficacy of the 2D quadratic parametrisation of ∆φopt is evaluated, by comparing the

predictions of the 2D quadratic parametrisation with rigorous MARS-F computations

for several ’benchmarking points’. A benchmarking point consists of a plasma equi-

librium reconstruction, kinetic profiles fitted to experimental data, and applied RMP

coil currents, all from ASDEX Upgrade experiments. The set of benchmarking points

contained significant variation in βN and q95, as well as plasma shape, rotation and

kinetic profiles. For each benchmarking point, the plasma response and optimal coil

phase are computed using MARS-F, and by comparing the MARS-F results with the

2D quadratic parametrisation, it is shown that the 2D quadratic parametrisation pre-

dicts ∆φopt accurately relative to a MARS-F computation to within 34.2 degrees of a

plasma response computation for n = 1 RMPs, and within 21.3 degrees for n = 2 RMPs,

for typical experimental (βN , q95) values. The benchmarking procedure for n = 3, 4 is

left for future work due to limited experimental data with these n numbers. In sec-

tion 4.4, possible sources of uncertainty in the 2D quadratic parametrisation are then

investigated. By computing ∆φopt for scans of the pedestal width and amplitude of

toroidal rotation, it is found that ∆φopt is insensitive to these parameters. The plasma

shape is therefore suggested as the primary source of uncertainty in the 2D quadratic

parametrisation of ∆φopt. In section 4.5, the optimal coil phase was derived from exper-

imental measurements of the ELM frequency during experimental scans of ∆φopt, and

compared to predictions of the (βN , q95) parametrisation and rigorous MARS-F compu-

tations. The measured optimum coil phase agreed with the quadratic parametrisation

to within 40 degrees, and with MARS-F computations to within 35 degrees. In section

4.6, having thoroughly benchmarked and validated the optimal coil phase parametri-

sation, the procedure for deriving it is repeated for an ITER equilibrium and coil set,

and the coefficients of the resulting parametrisation left to form the basis of a feed-

back coil optimisation system. In section 4.7, the set of aforementioned benchmarking

points is statistically analysed, to search for relationships between figures of merit and

equilibrium quantities. A correlation is found between b1res, and peeling response and

ξX , supporting previously developed theory[88], however no correlations were detected

between figures of merit and equilibrium quantities. Section 4.8 consists of a short study

of the optimisation of the RMP field by judicious choice of toroidal waveform. Section

4.9 summarises and discusses the results of the chapter.
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4.1 Alignment of Applied Field with Equilibrium Field

4.1.1 Extracting ∆φopt from Plasma Response Computation

As in the previous chapter, the linearity of the MARS model is exploited and the

plasma response due to the upper and lower coils (bu and bl respectively) are com-

puted separately, then the field due to both coils is reconstructed in post process as

bt = bu + ble(−i∆φul). From this prescription of the field due to both coils, an analytic

formula for the optimal coil phase may be derived from simple geometrical arguments in

the complex plane. Let the outermost pitch aligned component due to the lower coils be

b1,lres, and the outermost pitch aligned component due to the upper coils be b1,ures, then the

total outermost pitch aligned component is |b1res| = |b
1,u
res + b1,lrese(−i∆φul)|. Since b1,lres and

b1,ures are simply complex valued scalars, |b1res| is maximised when b1,ures and b1,lres are parallel

in the complex plane. Therefore the optimal coil phase is simply the angle between b1,ures

and b1,lres in the complex plane, given by equation 4.1 below.

∆φopt = ±arccos

(
b1,lres · b1,ures
|b1,lres||b1,ures|

)
(4.1)

Figure 4.1: b1,lres and b1,ures are complex scalars, so the pitch aligned component |b1res|
is maximised when b1,ures and b1,lres are parallel in the complex plane.

This concept is depicted in figure 4.1. A numerical scan of ∆φul to determine ∆φopt as

used in previous works [95] is therefore redundant. There is sign uncertainty in Equation

4.1 however, so the sign of ∆φopt is determined by comparing |b1,ures + b1,lrese(−i∆φopt)| and

|b1,ures + b1,lrese(+i∆φopt)|, and choosing the larger. Figure 4.2 shows that computing ∆φopt

using a scan of ∆φul, yields the same result as Equation 4.1.
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Figure 4.2: This figure shows ∆φopt computed using Equation 4.1 and a ∆φul scan of
|b1res|, as used in previous works [79, 95, 120]. It shows that the Equation 4.1 matches
the ∆φopt predicted using a scan of ∆φul, which is a more time consuming approach

which also limits the precision of ∆φopt to the scan step size.

4.1.2 Effect on Alignment of Equilibrium Parameters βN and q95

The parameters q95, βN and n are the chosen variables for this dependence study, be-

cause the spectral alignment of the applied perturbation with the equilibrium field, and

therefore optimum coil phase ∆φopt, is expected to be altered by changes to these pa-

rameters. Spectral alignment in this context refers to the extent to which the applied

perturbation aligns with the m = nq line in (m,s) space, where s = ψ
1/2
N is the ra-

dial coordinate and m is the poloidal harmonic number. Figure 4.3 shows the effect of

changing plasma βN and q95 on the applied vacuum spectrum and equilibrium resonance

line (which satisfies m = nq). Figure 4.3a) and b) show that increasing q95 or n (with

constant βN ) shifts the m = nq line in (m, s) space towards higher m, thereby moving

the resonant component relative to the applied spectrum. Figure 4.3c) and d) show that

changing βN (for constant q95) distorts the spectrum of the applied field relative to the

m = nq line as further explained below. These plots demonstrate why q95 and βN are

used as independent variables for this study.

Figure 4.4 explains the dependence of field alignment on βN . It is only possible to define

physically relevant poloidal harmonics in a straight field line (SFL) coordinate system,

in which the poloidal angle is not the geometric poloidal angle θ, but the generalised

poloidal angle χ. Generalised poloidal angle χ is defined such that field lines are straight

in the (χ,φ) plane, where φ is the toroidal angle. Therefore, the poloidal coordinate χ

and poloidal harmonic number m are defined relative to the magnetic equilibrium. In

figure 4.4a,b) the SFL based grid is plotted for low and high βN cases. In the high βN
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Figure 4.3: In a) and b) the nq(s) = m line is plotted relative to the applied vacuum
magnetic spectrum for a low (a) and high (b) q95 case, with the same value of βN ,
demonstrating that changing q95 or n shifts the nq(s) = m line relative to the spectrum
of the applied perturbation, which changes the RMP alignment. In c) and d) the
nq(s) = m line is plotted relative to the vacuum spectrum for a low (a) and high (b)
βN case, with the same q95. The plots show that increasing the plasma pressure βN
distorts the equilibrium magnetic geometry such that the vacuum spectrum is shifted

to higher m.

case Shrafanov shift causes the magnetic axis to be shifted outwards. Lines of χ = ±15

degrees and the plasma boundary enclosed by this angular range are highlighted in

black solid lines. They show that in the high βN case a given range of χ encloses a

larger arclength of the low field side plasma boundary than in the low βN case. Since

the mapping from geometric angle θ to SFL angle χ changes with βN , the field in SFL

coordinates is also distorted by the change in βN , even though the applied fields in real

(R,Z) space are identical in both cases. Figure 4.4c) plots the geometric angle θ̂ (where

θ̂ is measured from an origin common to both the high and low βN cases) against the

generalised poloidal angle χ. The figure shows that increasing βN changes the mapping

of θ̂ to χ. Figure 4.4d) shows the resulting effect on the vacuum magnetic perturbation

at the plasma edge in terms of χ. The figure shows that in the high βN case, the main

features of the applied perturbation are compressed into a smaller range of χ, and the
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Figure 4.4: a,b) Grids of the straight field line coordinate systems based on the
equilibrium for low (0.51) and high (4.86) βN cases. The solid black lines are lines
of χ = ±15. In the high βN case, the magnetic axis is Shrafanov shifted outwards
distorting the magnetic geometry on the outboard side, and the lines of χ = ±15
encompass a larger arclength of the plasma boundary. c) The generalised poloidal

angle χ is plotted against real space geometric angle θ̂. In the high βN case there is a
lower dχ/dθ on the low field side, therefore a smaller extent of χ represents the same
geometric features. d) The normal component of the applied vacuum perturbation
evaluated at the plasma edge for a low and high βN case, plotted against geometric
coordinate θ̂ which shows that in real space both applied fields are the same, and plotted
against generalised poloidal angle χ which shows that in SFL coordinates the low and
high βN fields differ, due to the redistribution of χ with changing βN . In particular,
in the high βN case the main peaks of the applied field (close to the RMP coils) are
compressed into a narrower range of χ. As a result the poloidal spectrum shifts towards

higher m in the high βN case.
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perturbation is therefore shifted towards higher poloidal mode numbers with increasing

βN , as is apparent in figure 4.3c,d).

The plasma boundary shape also strongly influences the equilibrium geometry near the

edge, and should therefore also have a significant impact on alignment, as explored

in [120]. However this is not included in this study, since treating it rigorously would

substantially increase the dimensionality of the problem, obstructing the original objec-

tive of a simple parametrisation.

4.2 ASDEX Upgrade Optimal Coil Phase

4.2.1 Scaled Equilibrium Set

A dense set of equilibria spanning a wide range of βN and q95 was produced by scaling a

reference equilibrium using the CHEASE fixed boundary equilibrium solver [106]. The

reference equilibrium was produced using CLISTE from ASDEX Upgrade experiment

30835 at 3.2s, which is used as a standard equilibrium in many works [79, 95]. To avoid

a numerical singularity, the plasma boundary was manually smoothed to exclude the

X point. The smoothed boundary was held constant in the equilibrium scaling. In

order to scan q95, the q profile was rigidly shifted including the edge safety factor qa,

and βN was scanned by scaling the pressure profile. The current and pressure were

adjusted self consistently to maintain valid equilibria. Figure 4.5a) shows the (βN , q95)

grid of the scaled equilibrium set relative to the reference equilibrium, as well as three

illustrative cases for which profiles are plotted in figure 4.6. To assess the ASDEX

Upgrade experimental parameter space, 20 samples of experimental q95 and βN were

taken from 4600 ASDEX Upgrade plasma discharges. Figure 4.5b,c) shows histograms

of these samples, demonstrating that the range of values in the scaled equilibrium set is

sufficient to encompass typical ASDEX Upgrade global plasma parameters. In Figure

4.6, profiles of q, plasma pressure and current are plotted for 3 of the scaled equilibria,

which are annotated in Figure 4.5a), to demonstrate the scaling of the equilibrium

profiles.

4.2.2 MARS-F Computed ∆φopt Across (βN , q95) Domain

For each equilibrium in the set of (βN , q95) points, the vacuum field and plasma response

to the applied RMP field were computed for n = 1−4 perturbations using the MARS-F

code, specifically the outermost resonant field component due to the upper coil set b1,ures,

and lower coil set b1,lres. Using these results, the optimal coil phase was computed with
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Figure 4.5: a) The scaled equilibrium set (black dots) was produced by scaling the
reference equilibrium (cyan pentagon) in plasma current and pressure. The coloured
squares denote the 3 illustrative cases plotted in Figure 4.6. b) Histogram of experimen-
tal βN values and c) Histogram of experimental q95 values. Values are sampled from
20 timepoints from the flattops of 4600 recent ASDEX Upgrade plasma discharges. It

should be noted that q95 is here defined as being always positive.

Figure 4.6: a) q95 was scanned by rigidly shifting the q profile. b) βN was scaled
by scaling the pressure profile self similarly. c) The current density varies to remain
consistent with the safety factor and plasma pressure. The designations Case 1,2,3 refer

to the coloured points in Figure 4.5a).
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Equation 4.1. Figure 4.8 shows computed ∆φopt for n = 1−4 as a function of equilibrium

parameters (βN , q95), both excluding and including the plasma response. In general,

∆φopt is shown to increase with q95, and decrease with βN . The strongest dependence is

on q95, consistent with previous works [93, 95, 120]. Since phase wraps do not represent

physics and merely obscure results, phase wraps have been manually removed in this

study, which is why in figure 4.8 the range of ∆φopt can exceed 360 degrees. This is

done by adding or subtracting integer multiples of 360 to the value of ∆φopt computed

with equation 4.1, as sketched in figure 4.7.

However, in contrast with a previous numerical and experimental coil phase scan on

DIII-D [91] which found no effect of βN on ∆φopt, this work also finds a weak βN

dependence of ∆φopt. The difference in results may be partially explained by different

approaches to computational equilibrium scaling. In [91], the core pressure profile is

modified to vary βN , while the pressure pedestal is left approximately constant. In this

work however, the entire pressure profile including the pedestal is scaled by a constant

factor as shown in Figure 4.6b). Holding the pressure pedestal constant in the βN scan

as in [91], should in principle also keep the equilibrium geometry in the edge region

constant, so the modification to alignment with βN as explained in Figure 4.3 would not

occur as it does in this work. In summary, whether or not a dependence of ∆φopt on

βN is detected, may depend on whether the pedestal pressure is allowed to scale with

βN . However, the result reported in [91] is also derived from experimental observations,

significantly strengthening the evidence against a βN dependence of ∆φopt. Further

experimental studies may shed further light on this issue.

Figure 4.7: Since equation 4.1 may only output values between 0 and 360 degrees, the
output inevitably contains phase wraps. These would introduce a sharp discontinuity
into the scan data, complicating the fitting procedure to derive the parametrisation.
Therefore, they are removed manually by adding integer multiples of 360, to smooth

the scan result.



77

Figure 4.8: ∆φopt computed for each equilibrium in the scaled set. MARS-F was used
to compute b1,ures and b1,lres, and Equation 4.1 for ∆φopt. a,c,e,g) Optimal alignment of
the vacuum field for n = 1, 2, 3, 4 respectively. b,d,f,h) Optimal alignment of the total
field for n = 1, 2, 3, 4 respectively. In all cases ∆φopt is seen to vary smoothly with βN

and q95, with minor perturbations caused by RFA peaks.
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RMSEpoly Linear Quadratic Cubic

n=1 vacuum 6.65 0.86 0.55
n=1 total 11.80 6.09 5.14
n=2 vacuum 12.80 1.58 0.90
n=2 total 12.99 4.73 4.50
n=3 vacuum 19.74 2.61 1.53
n=3 total 20.41 3.80 2.93
n=4 vacuum 26.25 4.45 3.19
n=4 total 25.73 6.49 4.67

Table 4.1: RMSEpoly for each scaled equilibrium set, for a linear, quadratic and cubic
fit.

coeff a b c d e f g h i

n=1 vacuum 0.13898 0.15842 -1.6741 -0.51686 -7.6899 18.737 -1.2555 65.15 -312.19
n=1 total 0.43305 -5.7 17.097 -2.7405 29.94 -99.267 -0.45866 49.966 -210.18
n=2 vacuum 0.14571 1.7142 -6.3854 -0.2497 -23.719 56.206 -3.1508 127.83 -327.38
n=2 total 0.14047 1.7732 -8.5336 -0.33719 -22.025 63.892 -3.1757 129.07 -286.34
n=3 vacuum 0.28269 1.6533 -6.7085 -0.33683 -34.041 76.084 -4.6137 180.18 -676.44
n=3 total 0.21942 1.8076 -7.1436 -0.56169 -28.501 67.55 -3.9637 171.31 -604.86
n=4 vacuum 0.36048 2.047 -8.1855 -0.50638 -42.161 91.007 -5.1487 219.78 -646.41
n=4 total 0.50969 0.78126 -6.1876 -1.1285 -35.518 85.061 -4.1725 208.44 -572.3

Table 4.2: Coefficients of the 2D quadratic parametrisation of ∆φopt.

4.2.3 Parametrisation of ∆φopt

Figure 4.8 shows that ∆φopt is a smoothly varying function of (βN , q95) for each n.

Therefore the results may be parametrised using a simple analytic function to provide

researchers with an estimate ∆φopt, which may be used for planning future experiments

and interpreting experimental data. A 2D polynomial function in (βN , q95) is chosen as

a compromise between ease of use and providing sufficient degrees of freedom to closely

fit the scan results in Figure 4.8. Linear, quadratic and cubic 2D polynomials were fitted

to the data in Figure 4.8 by linear regression. An RMSE between the scaled equilibrium

data and the polynomial is defined below, to quantify the fit of each polynomial to the

scaled equilibrium data.

RMSEpoly =

(
N∑
i

(∆φiopt,set −∆φiopt,poly)
2/N

) 1
2

(4.2)

In the above, N is the number of points in the scaled equilibrium set, ∆φiopt,poly are the

optimum coil phases predicted by the 2D polynomials, and ∆φiopt,set are the MARS-F
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computed optimum coil phases for each point in the scaled equilibrium set. For the

linear, quadratic and cubic polynomials, the values of RMSEpoly for all 8 datasets are

listed in table 4.1. The table shows that the linear fit does not closely fit the data,

while the cubic fit is not significantly better at representing the data than the quadratic.

Therefore the quadratic fit is used as a compromise between accuracy and accessibility.

The form of the 2D quadratic parametrisation is described in Equation 4.3, and table

4.2 lists its coefficient values. In the following, let ∆φopt,quad be ∆φopt predicted by the

2D quadratic parametrisation, x = βN and y = q95

∆φopt,quad = a(x2y2) + b(x2y) + c(x2) + d(xy2) + e(xy) + f(x) + g(y2) + h(y) + i (4.3)

The 2D quadratic parametrisation fits the results of the computed scan to within 6

degrees in all datasets. When the plasma response is included however, small horizontal

’stripes’ in the (βN , q95) domain are apparent. These stripes are caused by sharp peaks

in the amplified kink-peeling response as computed by MARS-F, previously detected and

discussed in [93, 120], which occur when nqa is immediately below an integer. These

peaks cause a localised upward shift of up to 20 degrees from the underlying trend, but

do not significantly affect the 2D quadratic fit, which is dominated by the bulk of the

(βN , q95) domain.

4.3 Parametrisation Benchmarking

4.3.1 Benchmarking Database

In order to quantify the extent to which the 2D quadratic parametrisation reproduced

a thorough MARS-F computation, a set of benchmarking points was collected from the

ASDEX Upgrade experimental database, consisting of 85 distinct time points from 31

distinct plasma discharges (49 time points from 17 n = 1 discharges, 36 timepoints

from 14 n = 2 discharges). Each benchmarking point consisted of a plasma equilibrium,

and set of experimental coil currents and kinetic profiles. Equilibrium reconstructions

are routinely performed after each ASDEX Upgrade experiment using the CLISTE [105]

code, and these were used as the source of the benchmark equilibria. In order to produce

the kinetic profiles for each benchmarking point, the AUGPED tool was used to fit ana-

lytic mtanh functions to experimental measurements aggregated over 20ms, of electron

temperature Te, electron density ne, and ion temperature Ti, and a spline to toroidal

bulk plasma rotation vt. Figure 4.9 shows the resulting kinetic profiles for an example
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Figure 4.9: Curves fitted to kinetic experimental data from ASDEX Upgrade dis-
charge number 30641 at 4.0s, here serving as an example kinetic profile fit for a bench-
marking point. The significant scatter is typical for experimental measurements of
kinetic profiles. a) Electron temperature data from the Thompson Scattering diag-
nostic [121] and Electron Cyclotron Emission diagnostic [122], with a fitted mtanh
function. b) Ion temperature data from the Charge Exchange Recombination Spec-
troscopy diagnostic [123], with a fitted mtanh function. c) Electron density data, from
the Thompson Scattering diagnostic, the Lithium Beam diagnostic [124] and interfer-
ometers, also with a fitted mtanh function. d) Toroidal bulk rotation data from the
Charge Exchange Recombination Spectroscopy diagnostics, fitted with a cubic spline.

Figure 4.10: Values of (βN , q95) of the benchmarking points, used to benchmark
the 2D quadratic parametrisation. Each benchmarking point consists of a distinct

equilibrium, plasma boundary, set of kinetic profiles and RMP coil currents.
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Figure 4.11: Plasma boundaries of the reference equilibrium (discharge 30835 at 3.2s)
and the benchmarking points. The boundary shapes of the benchmarking points vary

significantly.

benchmarking point. Figure 4.10 plots the global plasma parameters (βN , q95) for the

set of benchmarking points, and 4.11 shows the plasma boundary shapes for the refer-

ence and benchmarking equilibria. Each benchmarking point consists of kinetic profiles

of Te, ne, Ti and vt, a plasma equilibrium and plasma boundary, and the experimentally

applied RMP coil currents.

The vacuum field and plasma response were computed for each benchmarking point us-

ing MARS-F in order to compute the pitch aligned components, and Equation 4.1 was

then used to compute ∆φopt. For the set of benchmarking points, the values of ∆φopt

predicted by the 2D quadratic parametrisation were compared with values computed

using a MARS-F plasma response computation in Figure 4.12, for both n = 1 and n = 2

applied RMPs. Insufficient n = 3, 4 RMP experiments could be found to repeat this

benchmarking for the n = 3, 4 scan. An RMSE between the 2D quadratic parametrisa-

tion and the MARS-F computations is defined below, to quantify the agreement between

them, where N is now the number of benchmarking points

RMSEbench =

(
N∑
i

(∆φiopt,bench −∆φiopt,quad)
2/N

) 1
2

(4.4)

RMSEbench is found to be 14.1 for n = 2 vacuum predictions, 21.3 for n = 2 total

predictions, 6.9 for n = 1 vacuum predictions, and 34.2 for n = 1 total predictions. The
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predictions of the 2D quadratic parametrisation are plotted against the MARS-F pre-

dictions in Figure 4.12. Referring to Figure 4.2, it is apparent that the gradient of |b1res|
is flat in the region of ∆φopt, so small misalignments on the order of RMSEbench have a

very small effect on |b1res|. Therefore the uncertainty in the 2D quadratic parametrisation

is low enough for it to be useful in experimental planning. However, some significant

deviations between the 2D quadratic parametrisation and the MARS-F computation are

apparent in Figure 4.12, possible causes for which will now be discussed.

Figure 4.12: At each benchmarking point, ∆φopt as predicted by the 2D quadratic
parametrisation is plotted against ∆φopt as predicted by a full MARS-F computa-
tion. The quadratic parametrisation requires only βN , q95 and n as input, whereas
the MARS-F computation requires a plasma equilibrium, plasma boundary shape, coil
currents and set of kinetic profiles as input. The x = y line is annotated on in solid
black, while the dashed black lines are RMSEbench degrees from the 1:1. While the
MARS-F computation is the more rigorous approach, but the 2D quadratic parametri-
sation requires no specialist software, HPC hardware or expertise and far less input

information, and is far simpler and quicker.
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4.4 Sources of Uncertainty for ∆φopt,quad

Rotation

The set of benchmarking points has significant variation in rotation profiles, but in the

(βN , q95) scan the rotation profile was held constant. To determine the extent to which

rotation contributes to the scatter in Figure 4.12, the rotation profile of the reference

equilibrium was scaled from 10 times to 1/10th of its experimental value while ∆φopt

was computed. The computed values of ∆φopt with varying rotation speed are plotted

in Figure 4.13. The results indicate that ∆φopt is robust to scaling of the rotation profile

to within 10 degrees.

Figure 4.13: The rotation profile is scaled while ∆φopt of the reference equilibrium
computed by MARS-F. ∆φopt appears to be robust to scaling of the rotation profile.

Kinetic Pedestal

As shown in Figure 4.9, the kinetic profiles used as input for the MARS-F computation

are produced by manually fitting curves to aggregated experimental data. It is possible

that uncertainty in the profile fitting may propagate to the equilibrium computation or

plasma response computations, which may increase the uncertainty in the vacuum or

total field values of ∆φopt. To investigate this possibility, the kinetic pedestal width is

scanned within its uncertainty, and for each pedestal width the equilibrium is recomputed

for a self consistent equilibrium, and ∆φopt is recomputed using MARS-F. The pedestal

profiles used in the scan are plotted in Figure 4.14. The pedestal width is scanned

from −2σ to +2σ, where σ is the uncertainty in pedestal width of the mtanh fit to the

kinetic data. Repeating the equilibrium reconstruction for each pedestal width resulted
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Figure 4.14: The fitting parameters of the mtanh fits to kinetic profiles, specifically
the pedestal width, has an associated uncertainty σ. The pedestal width was scanned

from −2σ to 2σ resulting in the above profiles.

Figure 4.15: The equilibrium was recomputed using CLISTE for each profile in the
uncertainty scan, resulting in self consistent modifications to the equilibrium. Figure
a) shows the edge safety factor, b) equilibrium current profile and c) the equilibrium
pressure profile. d) shows optimum coil phase ∆φopt computed with MARS-F for each
equilibrium in the scan. The results indicate that ∆φopt is also not sensitive to pedestal

width within ±2σ of the fit uncertainty.
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in slight changes to the current, pressure and q profiles, as shown in Figure 4.15 a), b)

and c). Figure 4.15 d) shows ∆φopt as computed with MARS-F including the plasma

response, as the pedestal width is scanned. The plot indicates that ∆φopt is quite robust

to uncertainties in the kinetic pedestal width.

Plasma Boundary

The plasma boundaries of the benchmarking points have significant deviation from the

reference equilibrium used to derive the 2D quadratic parametrisation, as evidenced in

Figure 4.11. A recent work also using MARS-F and the same reference equilibrium,

found that a change in the upper triangularity ∆δu of 0.08 can cause ∆φopt to change by

60 degrees[96]. Therefore it seems plausible that much of the deviations between the 2D

quadratic parametrisation and rigorous MARS-F computations observed in Figure 4.12

may be caused by variations in plasma boundary shape. Closer examination of Figure

4.12b) shows an apparent systematic deviation between the 2D quadratic parametrisa-

tion and MARS-F predictions for the n = 1 discharges, which may be the result of a

systematic deviation in the plasma shapes between the reference equilibrium and the

n = 1 benchmark points. Figure 4.16 plots the plasma horizontal minor radius ahor

and outermost major radius extent Raus, for the n = 1, 2 benchmarking points and the

reference equilibrium. The figure shows that for the n = 2 points the shape parameters

are randomly scattered around the reference equilibrium, whereas the n = 1 points are

systematically shifted from it. This further motivates a study of the dependence of ∆φopt

on plasma boundary shape, which is left for future work. The uncertainties in the 2D

quadratic parametrisation may also be reduced by recomputing the coefficients in table

4.2, using a more representative plasma equilibrium.

4.5 Parametrisation Experimental Validation

Comparing the 2D quadratic parametrisation to MARS-F computations of ∆φopt is

useful for benchmarking; however, to increase confidence in the parametrisation, a val-

idation against direct experimental observations is required. In this section, a study

is carried out to provide experimental validation of the 2D quadratic parametrisation

and MARS-F optimal coil phase predictions. The optimum coil phases for ELM mitiga-

tion and density pump out are extracted from coil phase scan experiments on ASDEX

Upgrade, and these coil phases are then compared with predictions of full MARS-F

modelling, and the 2D quadratic parametrisation.
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Figure 4.16: Variation in plasma shape of the benchmarking points, shown using
horizontal minor radius and maximum major radius. The n = 2 points are scattered
around the reference equilibrium, while the n = 1 points are systematically shifted from

it.

4.5.1 Coil Phase Scan Experiments

The ASDEX Upgrade experiments used for this study are summarised in table 4.3.

ASDEX Upgrade has two independent power supply units for the ELM coils, which

allows the coil phase to be scanned by applying sinusoidally varying currents such that

the toroidal waveform of the current in the upper coil set moves relative to the waveform

in the lower set. Figure 4.17 shows an example discharge (number 33143) in which the

coil phase is scanned through several complete 2π cycles, and fELM and ne are modulated

by the changing coil phase.

Extracting Experimental ∆φopt

Since density pump out is reduction in density, pump out is characterised here using

−1 × ne. In order to extract the optimal coil phase for fELM and density pump out,

the time domains are first divided into complete cycles of ∆φul from 0→ 2π. fELM and

−1 × ne are normalised to between 0 → 1 using their maximum and minimum values

within each cycle. Using the trace of ∆φul(t), fELM (t) and −1 × ne(t) are mapped

from the time domain to the ∆φul domain. A function |(1 + ei(∆φul+∆φopt))|/2 is then

fitted to each normalised ˆfELM (∆φul) and n̂e(∆φul) to determine ∆φopt from fELM

and ne measurements. This fitting function is chosen because it matches the form of

|b1res|(∆φul). Figure 4.18 shows an example of this procedure, using shot number 33143.

Figure 4.19 demonstrates the same procedure using shot 30680, which contains a larger
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Figure 4.17: a) A sinusoidally varying current is used to create a travelling toroidal
waveform in the upper coils, while the lower coils are held fixed. b) The motion of the
upper toroidal waveform relative to the stationary lower waveform causes a continuously
varying phase difference ∆φul between the upper and lower coils. c) ELMs are diagnosed
as spikes in the divertor current trace (grey trace). Counting these spikes yields the
ELM frequency (red trace), which varies with ∆φul. d) The line averaged density also

varies with ∆φul.

scatter in the measured values of ∆φopt. For each shot ∆φopt is approximated as constant,

so ∆φul cycles may be treated as repeated measurements, and used to compute the mean

and variance for each shot. Since the measured data is directional (an angle), the mean

angular direction and circular standard deviation are used, as explained in [125].

To aid vertical plasma stability, ASDEX Upgrade has two large copper rings installed

above and below the midplane inside the vacuum vessel, directly in front of the two

rows of ELM coils. These Passive Stabilisation Loops (PSLs) have no effect on static

magnetic fields from the ELM coils, but if the ELM coil currents are time varying then

eddy currents in the PSLs are induced which act to reduce and delay the field which

reaches the plasma. When extracting ∆φopt from the experimental measurement, it
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n Shot ∆φul cycles Bt Ip q95 ne × 1019m−3

1 31023 4 2.58 1.00 4.36 7.12
1 31034 3 2.59 1.00 4.31 7.66
1 32100 4 2.49 0.80 5.27 4.82
1 32116 5 2.48 0.80 5.26 5.11
2 30680 5 2.48 0.80 5.24 8.44
2 30681 6 2.47 0.80 5.43 6.34
2 30682 2 1.77 0.80 3.66 5.20
2 30684 5 2.47 0.80 5.17 6.31
2 30824 2 2.49 0.80 5.41 5.95
2 30826 2 1.79 0.80 3.67 5.65
2 31542 2 2.43 0.80 4.99 5.34
2 31543 2 2.44 0.80 4.99 5.40
2 31545 2 2.43 0.80 4.99 5.51
2 33143 3 1.82 0.80 3.84 5.02

Table 4.3: ASDEX Upgrade discharges used to measure the experimental optimal
coil phase. ∆φul cycles refers to the number of complete rotations of coil phase which
are used in this study (in general, a small subset of the total number of complete ∆φul

rotations)

is necessary to account for the lag in ∆φul seen by the plasma, caused by PSL eddy

currents. A finite element modelling code has been developed for this purpose (see

[102], and references therein), which is used here. For each shot studied here, the PSL

induced lag is calculated. Figure 4.20 shows the computed ∆φul both with and without

the effect of the PSLs. It is found that for ∆φul scans of 2Hz or higher the PSL induced

phase lag was 32 degrees, while a scan at 1Hz corresponded to a lag of 25 degrees. The

lag is either added to or subtracted from the measured ∆φopt, depending on whether

∆φul is scanned ’upwards’ or ’downwards’.

For all cycles and shots studied, the measured optimal phases for both ELM mitigation

and density pump out, corrected for PSL lag, are shown in figure 4.21. The n = 1

discharges studied here did not exhibit a measurable modulation in ne with the ∆φul

scan, and are therefore not included in the plot. For the n = 2 discharges, it is observed

that there tends to be a significant offset between the optima for fELM and ne. On

average the optimum coil phase for ELM mitigation is 59.0±60.6 degrees lower than for

maximum density pump out. In the context of the observed correlation between density

pump out and ξX [87], this result is interesting given that recent computational works[96]

have found that b1res and ξX are synchronised as a function of ∆φul (ie, no offset between

the figures of merit associated with fELM and pump out). However, it is noted that

the size of the shift in the time domain is of the same order as the particle confinement

time, and that the density is measured close to the plasma core. Therefore it is quite

possible that the shift is due to a time lag between the density and ELM frequency

response, caused by the relatively slow transport timescale compared with the much
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faster timescale at which the ELM frequency responds. We may therefore not expect

to see this shift for static fields, and is consistent with current theoretical expectations.

Accounting for this lag is beyond the scope of this work. Since the focus of this work is

on ELM mitigation, mitigated ELM frequency fELM and not density pump out is used

to determine the ∆φopt experimental value for comparison with predictions of the 2D

quadratic parametrisation.

Figure 4.18: a) ∆φul is divided into 0 → 2π cycles. b) The density is multiplied
by -1, so the plot now shows density pump-out. For each cycle the density pump out
and mitigation are mapped from the time domain to ∆φul. c) Each cycle of fELM
is normalised to its maximum and minimum value in that cycle, and the optimum
extracted by fitting a |(1 + ei(∆φul+∆φopt))|/2 function. d) Each cycle of density pump
out is normalised to its maximum and minimum value in that cycle, and the optimum

extracted by fitting a |(1 + ei(∆φul+∆φopt))|/2 function.
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Figure 4.19: A repeat of figure 4.18 using shot 30680, which demonstrates scatter in
the ∆φopt measurements. To quantify uncertainties, each cycle in a shot is treated as

a repeat measurement, to define an average and standard deviation for that shot.

Figure 4.20: Eddy currents in the Passive Stabilisation Loops cause the value of ∆φul
as seen by the plasma to lag behind the value at the ELM coils.
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Figure 4.21: a) ∆φopt measured using the ne trace against ∆φopt measured using
the fELM trace. Only n = 2 shots included. b) Histogram of shift in ∆φopt as mea-
sured with the two methods. Although the scatter is wide, it is clear that the optimal
coil phase for density pump out is shifted upwards relative to the optimum for ELM

mitigation.
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4.5.2 Comparison of measured ∆φopt with predictions

For each cycle studied, the midpoint of the cycle is chosen as a representative point in the

cycle. At these representative points, CLISTE based equilibria were downloaded from

the AUG database, and profiles are fitted to measurements of Te, Ti, ne, vt. These are

used as input for a plasma response computation using the MARS-F code, from which

∆φopt defined using b1res is extracted. Also, using the values of βN and q95 at these rep-

resentative points as input, ∆φopt is computed using the 2D quadratic parametrisation

derived in section 4.2.3. Furthermore, using a numerical scan of ∆φul, the dependence of

ξX on ∆φul was computed, in order to compare it with the dependence of ne on ∆φul. It

was found, as in previous studies [96], that b1res and ξX were maximised at the same coil

phase. A correlation has previously been observed between density pump out and ξX ,

which implies that we would expect the density pump out to be maximised at maximal

ξX , which coincides with maximal b1res. This expectation is contrary to the observed

shift in optimal coil phase for fELM and density pump out apparent in figure 4.21.

Figure 4.22 shows ∆φopt measured using fELM and corrected for PSL lag, against ∆φopt

predicted by MARS-F computations and the 2D quadratic parametrisation. The figure

shows that the predictions of MARS-F and the 2D quadratic parametrisation are both

within the uncertainty of the measurement, but in all cases the uncertainty in the ex-

perimentally measured ∆φopt is quite high: typically around 40 degrees but as high as

90. The primary cause for the large uncertainty is the low number of cycles used in each

shot, since angular standard deviations are rather sensitive to small sample sizes.

For comparison with the previous benchmarking of the 2D quadratic parametrisation, an

RMSE between the experimental measurements and MARS-F or 2D quadratic parametri-

sation predictions is defined as

RMSEquad =

(
N∑
i

(∆φiopt,quad −∆φiopt,exp)
2/N

) 1
2

(4.5)

RMSEmars =

(
N∑
i

(∆φiopt,mars −∆φiopt,exp)
2/N

) 1
2

(4.6)

In the above, ∆φopt,quad is the cycle averaged optimal coil phase for each shot predicted

by the 2D quadratic parametrisation, ∆φopt,mars is the cycle averaged optimal coil phase

for each shot predicted by MARS-F, and ∆φopt,exp is the cycle averaged experimentally

measured optimal coil phase for ELM mitigation for each shot. Note these RMSEs do

not represent or take account of the uncertainty in the measurement, and do not replace
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a thorough statistical analysis. They are primarily used for a self consistent comparison

with the previous result, or the benchmark between the 2D quadratic parametrisation

and MARS-F. The values are found to be RMSEmars = 35.0 and RMSEquad = 40.3.

Figure 4.22: a) ∆φopt measured from the fELM trace compared with ∆φopt predicted
with the 2D quadratic parametrisation. b) ∆φopt measured from the fELM trace com-

pared with ∆φopt predicted with a MARS-F plasma response computation.

4.6 ITER Coil Phase Parametrisation

ITER will need active ELM mitigation even during the current and pressure ramp,

when the edge safety factor q95 and βN change drastically before settling at their flattop

values. Therefore during the ramp, the optimal coil alignment will vary considerably,

and it may be necessary to actively track the optimal alignment to sustain sufficient ELM

mitigation. This motivates the optimal coil phase for ITER to be parametrised using the

previously developed technique, which is benchmarked against MARS-F computations

and validated against experimental measurements on ASDEX Upgrade.

In addition to the upper and lower rows of ELM coils, ITER will also have a third

middle row which rings the outboard midplane, as sketched in figure 4.23. The principle

of superposition is again used, with the minor change that the field is now the linear

sum of three sets of coils instead of two. The mid plane coil set is held fixed and the

upper and lower sets rotated, such that the field due to all three coils bUML is

bUML = bM + bUe(−i∆φUM ) + bLe(−i∆φLM ) (4.7)

where bM , bU and bL are the fields due to the midplane, upper and lower coil sets

respectively, and ∆φUM ,∆φLM are the coil phase differences between the midplane coil

set and the upper and lower coils respectively. The coil phase differences are defined as
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∆φUM = ∆φM−∆φU , ∆φLM = ∆φM−∆φL, where ∆φU , ∆φM , ∆φL, are the phases of

the coil current toroidal waveforms of the upper, midplane and lower coils. We also here

define the optimal upper and lower coil phases ∆φopt,UM and ∆φopt,LM as the upper

and lower coil phases which maximise b1res.

Applying the same reasoning to computing ∆φUM,opt and ∆φLM,opt as previously used

for ∆φUL,opt for ASDEX Upgrade, it is clear that the pitch aligned component due

to all three coils is optimised when both b1res,U and b1res,L are parallel to b1res,M in the

complex plane. Therefore, ∆φUM,opt and ∆φLM,opt both have unique values for a given

equilibrium and perturbation, given by

∆φUM,opt =± arccos

(
b1,mres · b1,ures
|b1,mres ||b1,ures|

)
(4.8)

∆φLM,opt =± arccos

(
b1,mres · b1,lres
|b1,mres ||b1,lres|

)
(4.9)

where b1,ures,b
1,m
res and b1,lres are the outermost pitch aligned components due to the upper,

midplane and lower coils. Figure 4.24 plots b1res as both ∆φUM and ∆φLM are scanned,

as well as the values of ∆φUM,opt and ∆φLM,opt are predicted by equations 4.9. The

figure shows that the formulae match the scan results, which makes 2D scans in (∆φUM ,

∆φLM ) space unnecessary. It also demonstrates that the optimal phases are independent

of the amplitudes of b1,ures,b
1,m
res and b1,lres, and therefore independent of the absolute currents

in the coil rows. As before, the sign uncertainty is resolved by simply choosing the sign

which results in the larger amplitude of b1res. Since the optimal coil phase is independent

of the amplitude of the applied coil currents, the toroidal current waveforms applied in

the upper, lower and middle coil rows are assumed to be perfect sinusoids with amplitude

of 1kAt. As with the ASDEX Upgrade study, four cases of toroidal mode number are

considered: n = 1, 2, 3 and 4. The phase differences ∆φUL,LM,UM may be converted to

the real space toroidal angle offsets by multiplying by n, as explained in figure 3.7.

4.6.1 ITER reference equilibrium and scaled equilibrium set

The reference equilibrium used here is the product of a CORSICA simulation [126], as

used in previous works [75, 127, 128], which is intended to be the standard ELMy H-

mode scenario for 15MA Q=10 ITER discharges[129]. Plasma profiles of the equilibrium

are plotted in figure 4.25. In the original plasma rotation profile, the rotation sharply

decreases in the pedestal and reaches zero at the plasma edge. It has been found recently

that points in which the plasma rotation crosses zero can drastically alter the plasma
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Figure 4.23: When completed, ITER will have 3 rows of 9 coils each, an upper,
lower and midplane row. Therefore both the phase between the middle and upper coils

∆φUM , and between the middle and lower coils ∆φLM , may be varied.

Figure 4.24: b1res plotted as a function of ∆φUM and ∆φLM , as well as the location
of (∆φUM,opt,∆φLM,opt) predicted using formulae 4.9.

response locally[130]. Since this zero crossing would coincide with the outermost pitch

aligned components, and therefore interfere with this study, the rotation profile was

modified to exclude the zero crossing and instead remain finite everywhere.

Using the CHEASE code, this reference equilibrium was scaled in current and pressure

to produce a set of self consistent plasma equilibria, which are plotted in figure 4.26.

The figure also plots 3 example cases of the scaled equilibria which demonstrates how

the scaling was performed.
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Figure 4.25: Profiles of the synthetic ITER reference equilibrium used for this study.
a) Electron and Ion temperatures. b) Electron number density. c) Plasma bulk rotation

velocity. d) Safety factor profile. e) Plasma pressure. f) Plasma current.

4.6.2 Parametrisation of ITER coil phase

For each point in the equilibrium set plotted in figure 4.26, the vacuum and total fields

due to applied RMPs with the upper, midplane and lower coil sets were computed using

MARS-F for n = 1 − 4. From these results, the optimal coil phases ∆φUM,opt and

∆φLM,opt are computed using equations 4.9. Figure 4.27 shows the resulting ∆φUM,opt

and ∆φLM,opt as a function of (βN ,q95), for the case of n = 2. The figure shows the same

behaviour as the ASDEX Upgrade coil phase: ∆φLM,opt and ∆φUL,opt decreasing with

q95 and increasing with βN . ∆φUM,opt displays the opposite behaviour, which can be

understood by considering that in the case of ∆φUL and ∆φLM , the coil which is static

is above the coil which is rotated, whereas this is reversed for ∆φUM , explaining the

opposite behaviour with (βN ,q95). The behaviour described is general for all n studied

here.

For each n = 1−4 and for the vacuum and total fields, a 2D quadratic parametrisation of

the form in equation 4.3 is fitted to the scan for ∆φUM,opt, ∆φLM,opt and ∆φUL,opt. The
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Figure 4.26: Equilibrium scaling is performed in the same way as section 4.2.1. a)
The set of scaled equilibria, and three example equilibrium points used to demonstrate
the variation of the profiles. For these example points the figure plots b) the plasma

current density, c) the plasma pressure and d) the safety factor profile.

coefficients of the 2D quadratic parametrisation for ∆φUM,opt, ∆φLM,opt and ∆φUL,opt

are listed in tables 4.4, 4.5 and 4.6 respectively. The RMSE values between the 2D

quadratic parametrisation and the scan, as defined in equation 4.4, are listed in table

4.7, which demonstrates that the 2D quadratic parametrisation closely fits the scan data.

The RMSEs between the scan data and fitted 2D quadratic parametrisation are lower

than for the ASDEX Upgrade scan data, due to the ITER scan being courser (fewer

points for similar range of q95 and βN ) and therefore excluding the sharp RFA peaks

evident in the ASDEX Upgrade (q95,βN ) scan. Since there is not yet any experimental

ITER data to use, the previous benchmarking and validation will not be possible. How-

ever, since the derivation procedure will be the same, the previous benchmarking and

validation increases confidence in the ITER 2D quadratic parametrisation.
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Figure 4.27: ∆φUM,opt, ∆φLM,opt and ∆φUM,opt as a function of (βN ,q95) for n = 2.
As found previously, the optimum coil phase is a smoothly varying function of (βN ,q95).

coeff a b c d e f g h i

n=1 vacuum -0.093339 0.65196 -1.7561 0.56293 -2.6838 9.1661 -0.32757 -11.609 -31.172
n=1 total -0.030495 0.0022716 0.75543 0.42393 -1.6034 -3.3731 -0.23629 -13.996 -41.55
n=2 vacuum -0.015844 -0.44548 0.70874 0.20367 4.4907 -6.2807 0.77959 -38.327 355.25
n=2 total 0.015959 -0.48245 1.4953 0.23243 2.7549 -11.035 0.53742 -37.057 333.41
n=3 vacuum -0.099686 -0.16439 0.71514 0.57838 4.7165 -7.6413 0.88612 -53.879 354.39
n=3 total -0.080711 0.081354 0.89951 0.71276 1.1883 -9.4082 0.90171 -54.174 334.55
n=4 vacuum 0.42932 -4.239 6.8794 -2.0015 25.825 -38.641 4.4783 -93.381 388.34
n=4 total 0.56781 -4.2563 5.9856 -2.1775 21.225 -33.297 4.5186 -91.101 360.36

Table 4.4: Coefficients of 2D quadratic parametrisation of ∆φopt,UM for the ITER
ELM coils.
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coeff a b c d e f g h i

n=1 vacuum -0.0040945 0.23158 -0.16038 0.041565 -3.228 4.0099 -1.0093 26.254 -1.4536
n=1 total -0.13202 1.8511 -6.1309 0.21643 -5.7448 24.184 -0.45666 22.314 23.664
n=2 vacuum 0.0073706 0.70125 -1.4941 -0.18402 -5.5805 9.2475 -0.67467 38.524 9.2087
n=2 total 0.13834 -0.67627 0.18032 -0.74705 0.64012 7.4795 -0.082304 35.022 32.787
n=3 vacuum 0.14185 0.076632 -0.82116 -0.81665 -4.3284 7.9093 -0.56298 54.108 9.3993
n=3 total -0.11585 1.9406 -5.2864 -0.21655 -7.001 22.22 -0.83178 57.457 22.492
n=4 vacuum 0.45059 -1.6385 1.908 -2.3938 3.0733 -4.9654 0.94217 59.418 28.866
n=4 total 0.18459 -1.6625 3.042 -1.9643 7.9322 -9.5015 0.33647 63.183 43.615

Table 4.5: Coefficients of 2D quadratic parametrisation of ∆φopt,LM for the ITER
ELM coils.

coeff a b c d e f g h i

n=1 vacuum 0.089244 -0.42037 1.5958 -0.52136 -0.54417 -5.1562 -0.68175 37.863 29.719
n=1 total -0.10153 1.8488 -6.8863 -0.2075 -4.1414 27.557 -0.22037 36.311 -294.79
n=2 vacuum 0.023215 1.1467 -2.2028 -0.38769 -10.071 15.528 -1.4543 76.851 13.963
n=2 total 0.12238 -0.19382 -1.3149 -0.97948 -2.1147 18.514 -0.61972 72.079 -300.62
n=3 vacuum 0.24153 0.24102 -1.5363 -1.395 -9.0449 15.551 -1.4491 107.99 15.012
n=3 total -0.035142 1.8592 -6.1859 -0.92931 -8.1893 31.628 -1.7335 111.63 -312.06
n=4 vacuum 0.021267 2.6004 -4.9714 -0.39234 -22.751 33.675 -3.5361 152.8 -359.47
n=4 total -0.38322 2.5938 -2.9437 0.2132 -13.293 23.796 -4.1822 154.28 -316.74

Table 4.6: Coefficients of 2D quadratic parametrisation of ∆φopt,UL for the ITER
ELM coils.

rmse n=1 vac n=1 tot n=2 vac n=2 tot n=3 vac n=3 tot n=4 vac n=4 tot

UM 1.0421 0.50941 1.0409 1.0989 1.1638 1.7153 2.1527 4.8985
LM 1.741 0.86585 0.88217 1.5932 1.288 2.2488 3.4603 4.5708
UL 1.1213 1.1899 1.8665 2.3799 2.4254 3.7072 4.1296 4.3279

Table 4.7: RMSEs of 2D quadratic parametrisation of ∆φopt,UL for the ITER ELM
coils.

4.7 Database Regression Analysis

In previous studies[70, 87], it was established that b1res is associated with ELM mitigation,

while ξX is associated with density pump out, and it is observed that b1res and ξX have

common optima in computational scans of ∆φul[96], implying that a coil configuration

optimised for ELM mitigation will also maximise density pump out, with negative impli-

cations for plasma performance. Furthermore, in chapter 3 it was demonstrated that the

pitch aligned components may be driven by the amplified peeling response via poloidal

harmonic coupling. Having collected a large number of experimental data points and

their plasma response computations affords the opportunity to apply statistical methods

to search for dependencies between variables in the dataset.
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Figure 4.28: Normalised X point displacement ξ̂X against normalised pitch aligned

component b̂1res for a) n = 1 and d) n = 2 benchmarking points. Normalised peeling

response b̂1peel against normalised pitch aligned component for b) n = 1 and e) n = 2
points. Normalised X point displacement against normalised peeling response for c)

n = 1 and f) n = 2 benchmarking points.

Figure 4.28 plots the outermost pitch aligned component b1res against the local maximum

plasma displacement at the X point ξX , as well as the peeling response measured as

the maximum total field in the m > nq region, against b1res and ξX , for each of the

benchmarking points described in section 4.3. Each point is normalised with the n = 1, 2

component of the applied coil currents. Since the optimum coil phase ∆φopt varies

between the benchmarking points, using a constant value of ∆φul would cause the result

to be convoluted with the previously observed[96] correlation between b1res and ξX as

coil phase is varied. Therefore in order to remove ∆φul dependence from the study, each

point is plotted using its computed value of ∆φopt. For the n = 1 results, the figure

shows a weak correlation between ξX and b1res, and no discernible correlations between

the peeling response and ξX or b1res. The n = 2 results however appear to show weak

correlations between the peeling response and ξX and b1res, and between b1res and ξX ,

consistent with theory[88] and previous numerical observations[96].

In section 4.2.2, the question was raised as to whether the equilibrium pressure scal-

ing should scale the pressure pedestal. This was investigated using the benchmarking

dataset. For each of the benchmarking points, the pedestal pressure is approximated
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by the pressure at the ψN = 0.95 flux surface, which is then normalised to the mag-

netic field. The approximate pedestal β values, defined as 2µ0Pped/B0 where Pped is

the plasma pressure at the 95% flux surface, and B0 is the magnetic field strength at

the magnetic axis, are plotted in figure 4.29 against normalised total pressure βN . The

results support the intuitive expectation that there should be a correlation between βN

and the pedestal pressure, given that the pedestal acts to raise the pressure globally,

which supports the approach used to scale the pressure in section 4.2.1.

Figure 4.29: Plasma pressure βN against approximate pedestal beta βped, defined
as 2µ0Pped/B0 where Pped is the plasma pressure at the 95% flux surface, and B0 is
the magnetic field strength at the magnetic axis. The strong correlation vindicates the

approach to pressure scaling used in section 4.2.1.

To search for relationships between sets of variables, applying multivariate analysis is

often a useful preliminary step. Previous studies have shown that the amplification of

the plasma response increases with parallel current[89, 116], plasma pressure[116, 131],

and plasma triangularity[116]. In this case, we may expect to see in the benchmarking

dataset some (unspecified) relationship between equilibrium and pedestal properties,

the amplified peeling response, and eventual RMP figures of merit. In this instance, the

plasma parameters used as independent variables are (βN , q95, edge current peak and

pedestal pressure), while the dependent variables are the peeling response, b1res, and ξX .

The pedestal pressure is approximated as described earlier, while the edge current peak

is defined as the maximum parallel current density in the region of ψ > 0.92, which is

expected to be dominated by the bootstrap current.

Since the relationship is not specified before the study, we know from the start that

no conclusions may be drawn from the results, only preliminary indications to guide

future studies. This is because it is not valid to test a hypothesis using the same

data which is used to form the hypothesis, but rather a separate and distinct dataset

must be used. However to provide insight from which some hypotheses may be formed

(though not tested), multivariate (’brute force’) linear regression was applied to the
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benchmarking dataset. Applying this method to the benchmarking dataset detected no

correlations between equilibrium quantities, and eventual figures of merit (normalised

to the applied field). Since the equilibrium quantities are solutions of the same equation

(Grad-Shrafanov), they are not independent. Interdependence of equilibrium quantities

may be obscuring the expected correlations by partially compensating them. Further

investigation of correlations between equilibrium and pedestal properties and the plasma

response, is left for future work.

4.8 Choice of Toroidal Waveform

Figure 4.30: The choice of toroidal waveform - sinusoidal or rectangular - presents a
trade off between flexibility and amplitude.

Figure 4.31: b̂1 represents the maximum penalty which may be incurred to b1res due
to coil phase misalignment. Since the function is flat around zero, small misalignments

do not result in serious penalties, which makes rectangular waveforms viable.
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The previous discussion focussed on optimisation of b1res by tuning the coil phase differ-

ence ∆φul. Precise alignment of the coil phase requires sinusoidal waveform which can

take any arbitrary phase. However, when producing a sinusoidal waveform, most of the

RMP coils are at less than maximum capacity. Figure 4.30 demonstrates this, compar-

ing the toroidal waveform of a rectangular RMP toroidal waveform with an equivalent

sinusoidal waveform, for n = 1 and n = 2 RMPs. Since the sinusoidal toroidal waveform

more closely adheres to a true n = 1, 2 sinusoid, it has much lower sidebands than the

rectangular waveform. However, because its coils are not all at maximum capacity, it

also has a lower dominant toroidal component ndom than the rectangular waveform. In

this case, the dominant n component of the sinusoidal waveform ndom,sin is approxi-

mately 77% of the dominant n component of the rectangular waveform, ndom,rec. This

is also approximately true for n = 2 perturbations by symmetry, as figure 4.30 demon-

strates. In the linear MARS model the ndom component of the total field increases

linearly with the ndom component of the applied current, and therefore a reduction in

ndom causes a corresponding reduction in b1res. When a square waveform is used, all

the coils may be run at full capacity, but can only be tuned to certain discrete values

of coil phase depending on number of coils toroidally and the toroidal mode number n.

Namely, ∆φul may take values j(360n/N) where j = 0, 1, 2, (N/n) − 1. For example

with 8 coils, an n = 2 RMP field may have ∆φul = 0, 90, 180, .., and an n = 1 may have

∆φul = 0, 45, 90, ... Therefore, assuming the rectangular waveform is tuned to the near-

est available phase to ∆φopt, the maximum misalignment due to the use of a rectangular

instead of sinusoidal waveform will be (360 ∗ n/N)/2, ie, 22.5 degrees for N=8,n = 1, or

45 degrees for N=8,n = 2.

In order to quantify the maximum penalty to b1res which may be caused by misalignment,

a normalised b̂1 is defined such that b̂1(∆φopt) = 1 and b̂1(∆φopt+180) = 0 (ie, maximum

misalignment). Figure 4.31 plots b̂1(∆φul). The figure shows that the worst case penalty

(factor by which misalignment reduces b1res) of a 22.5 and 45 degree misalignment are

0.97 and 0.91 respectively. However in the general case the penalty will be less severe,

as the minimum of |b1res(∆φul)| is generally not zero. Taking the case of n = 2, we

now let bopt,sin be b1res for an optimally aligned sinsusoidal waveform, bopt,rect be b1res

for an optimally aligned rectangular waveform, and bmis,rect be b1res for a 45 degree

misaligned rectangular waveform. The previous discussion established that bopt,sin =

0.77bopt,rect, and from figure 4.31 we see that bmis,rect = 0.91bopt,rect. Therefore, bopt,sin =

0.85bmis,rect. That is to say, a 45 degree misaligned rectangular waveform leads to a

larger b1res than an optimally aligned sinusoidal waveform. The advantage of sinusoidal

waveforms is that they may be precisely aligned so ∆φul = ∆φopt, but this is more

than compensated for by the required reduction in total coil current compared with a

’minimally misaligned’ rectangular waveform.
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4.9 Chapter Results Summary

It is demonstrated that βN , q95 and n are key parameters for determining RMP coil

alignment and hence ∆φopt. The variation of optimal RMP coil phase ∆φopt with plasma

equilibrium parameters βN and q95 is quantified for n = 1 − 4 RMP perturbations

and ASDEX Upgrade plasmas. A reference ASDEX Upgrade equilibrium was scaled in

plasma pressure and current to produce a set of equilibria spanning the typical (βN , q95)

parameter space of ASDEX Upgrade. For each point in the set, ∆φopt was computed

using MARS-F in the vacuum approximation and including the plasma response, for

n = 1 − 4, which found that for a given n, ∆φopt varies smoothly with βN and q95. A

2D quadratic function is used to parametrize ∆φopt(βN , q95, n), for experimentalists to

use in the planning of future experiments.

In order to assess the uncertainty in the 2D quadratic parametrization, a set of bench-

marking points was assembled, each consisting of a free boundary equilibrium recon-

structed from magnetic measurements using CLISTE, a set of kinetic profiles fitted to

experimental data, and the experimentally applied RMP coils currents. For each bench-

marking point ∆φopt was computed both with the 2D quadratic parametrisation and a

rigorous MARS-F calculation, which showed that the 2D quadratic parametrisation is

accurate relative to a MARS-F computation to within 6.9 degrees for n = 1 vacuum

predictions, 34.2 degrees for n = 1 total predictions, 14.1 degrees for n = 2 vacuum

predictions, and 21.3 degrees for n = 2 total predictions. Using previously conducted

coil phase scans from the ASDEX Upgrade database, the coil phase for optimal ELM

mitigation was experimentally measured for a range of discharges with varying exper-

imental conditions. The optimum coil phase was also predicted using MARS-F and

the previously derived 2D parametrisation. It was found that the MARS-F predictions

matched the experimental predictions to within 35 degrees, while the 2D quadratic

parametrisation matched the experimental measurements to within 40 degrees. Since

the 2D quadratic parametrisation is lightweight and simple, it may be used to compute

∆φopt rapidly for large datasets, or as part of a feedback control mechanism for auto-

matic coil phase optimisation, such that the coil phase may be optimised throughout a

plasma discharge. This may be useful in ITER, which will require reliable RMP miti-

gation even during the current ramp up phase when q95 and βN are varying. Further

work is required to refine this approach however. The benchmarking procedure must

be repeated for n = 3, 4 RMPs, and the quadratic parametrisation should be refined

by recomputing it using a more representative plasma discharge, as well as for other

tokamaks. Further study is also required to ascertain whether the primary source of

uncertainty is the boundary shape, and if so, to incorporate shaping parameters into the

parametrisation.
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Using a predicted equilibrium of the ITER tokamak, the above procedure was repeated

to parametrise the optimum upper and lower coil phase of the ITER ELM coils, and

the coefficients of the resulting parametrisation are provided as a basis for a coil phase

optimisation system for ITER.

With the benchmarking points collected for benchmarking the 2D parametrisation, a re-

gression analysis was performed to test for correlations between equilibrium and plasma

parameters and the eventual figures of merit relevant for ELM control. No significant

relationships were found. However, a weak correlation was found between the ampli-

tude of the n = 2 peeling response and the outermost pitch aligned component. This

is consistent with the premise that the pitch aligned components may be driven by the

amplified peeling response via poloidal harmonic coupling. A correlation between the

pitch aligned component and the X point displacement was also found. This is consistent

with previous theoretical works[88], which explain that the peeling response also drives

X point displacement, which explains the correlation between the X point displacement

and pitch aligned component.

By comparing the penalty (in terms of reduction in maximum b1res) of using a sinusoidal

waveform and precisely aligning the RMP coils, to the penalty of using a rectangu-

lar waveform and imprecisely aligning the coils, it was shown that using a rectangular

toroidal current waveform which may only be approximately aligned, produces a greater

pitch aligned component than a precisely aligned sinusoidal waveform. This result re-

laxes the condition on the accuracy to which the optimal coil phase must be known, to

the phase precision of a rectangular waveform. For a set of 8 toroidal RMP coils, this

precision is 22.5 and 45 degrees respectively for an n = 1 and n = 2 RMP.



Chapter 5

Conclusion

5.1 Summary and Discussion

Chapter 1

Controlled nuclear fusion offers a clean, safe and permanent solution to energy scarcity,

and the most promising route to a viable fusion reactor so far developed is the tokamak.

The ITER tokamak, currently under construction, is designed to produce and sustain the

world’s first burning plasma. However, to ensure the success of the ITER experiment,

robust ELM control techniques must be developed to avoid rapid erosion of the plasma

facing components. ELMs may be mitigated (reduced in size) or suppressed entirely by

the application of resonant magnetic perturbation fields at the plasma edge, and a set

of ELM coils will be installed on ITER for this purpose. However, a robust predictive

theory of ELM control with which an ELM control strategy may be developed is currently

lacking.

The broad aim of this work was to study the plasma response to applied RMPs, in

order to gain insight into the ELM suppression and mitigation mechanisms, as well as

to develop and optimise the ITER ELM mitigation strategy.

Chapter 2

In chapter 2, the theory of Magnetohydrodynamics (MHD) is introduced, which com-

bines Maxwells equations of electromagnetism with the equations of fluid dynamics, to

model the plasma as an electrically conducting fluid, moving in response to external and

self generated electric and magnetic fields. Models of plasma equilibrium and plasma
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stability derived from the MHD model, which are central to tokamak science, are ex-

plained. It is explained that ELMs are driven by steep pressure gradients at the plasma

edge and the resulting high plasma currents, and are triggered when the plasma exceeds

the Peeling-Ballooning stability boundary.

Current working theories of RMP ELM mitigation and suppression are outlined. The

original theory of ELM suppression on which the ITER ELM coil design is based[75],

proposes that RMPs drive islands to form at rational surfaces, which may overlap to

create a region of stochastic field at the plasma edge. This region has enhanced transport

relative to unperturbed flux surfaces, and so prevents the pressure pedestal from building

too high and crossing the P-B stability threshold, suppressing ELMs[64]. Another theory

proposes that ELM suppression requires a zero crossing of the electron rotation to be

co-located with a rational surface at the top of the pedestal. MHD simulations predict

that this condition would cause a large island to form at the pedestal top, which would

limit the pedestal growth such that it does not cross the P-B stability threshold[80–

84]. A distinct theory proposes that ELM mitigation by RMPs may be explained by

considering the stability properties of the 3D equilibria which result from RMP induced

plasma boundary distortions. These 3D equilibria have been shown to be more unstable

to P-B modes and therefore ELMs are triggered earlier in the ELM cycle, causing them

to be more frequent and smaller[86].

Even in the absence of a robust theoretical understanding of ELM mitigation or suppres-

sion, ELM control strategies can be developed using figures of merit which are correlated

with ELM effects. Three figures of merit derived from the plasma response are of par-

ticular interest. The pitch aligned component b1res which drives island formation at the

plasma edge, is correlated with mitigated ELM frequency[70, 72]. The X point displace-

ment ξX is the maximum plasma displacement around the X point, and has previously

been correlated with mitigated ELM frequency[70], and RMP induced density pump

out[87]. The edge peeling response, referring to an amplified MHD mode localised at

the plasma edge, is correlated with ELM suppression[92, 93], density pump-out[87], and

ELM mitigation[70, 94]. Computing these figures of merit and the plasma response

more generally, necessitates the use of the MARS-F single fluid spectral code, which

computes the resistive linear plasma response to a magnetic perturbation applied to a

given tokamak equilibrium, in realistic geometry and including toroidal plasma rotation.

Chapter 3

In chapter 3, the MARS-F code is used to compute the plasma response to an n = 2 RMP

with a substantial n = 6 sideband, applied to an ASDEX Upgrade plasma discharge in
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which significant ELM mitigation was observed. Using the Biot-Savart code ERGOS,

the vacuum magnetic field was carefully benchmarked. The benchmark demonstrated

that although the ndom component of the field matched closely, using only the single

largest toroidal harmonic results in a poor representation of the field in real space.

However, when the largest sideband was also included, the ERGOS vacuum field was

well recovered globally by the fourier based MARS-F vacuum field. This indicates that

if an accurate representation of the global field is required (such as for particle tracing

for example), the sidebands must be included. This may be accomplished by computing

the fields for different toroidal harmonics separately, and summing them in post process.

However, for many applications such as coil phase optimisation, the single n approach

is sufficient.

The computed plasma response is dominated by two distinct mode structures; a core

kink type mode which is apparent in the n = 2 response, and an edge localised peeling

type mode which is apparent in both the n = 2 and n = 6 responses. The peeling mode

has previously been predicted on DIII-D[93] where it is correlated with observed ELM

suppression[92], and on MAST where it is correlated with density pump out[87]. In this

instance - an ASDEX Upgrade discharge with significant ELM mitigation - the peeling

response is predicted to be the dominant response.

At the X point of a divertor plasma is a null in the poloidal field, which in MARS-F

would cause a numerical singularity. To avoid this, the X point is smoothed in MARS

simulations to resemble a limiter plasma with an otherwise identical shape. In order to

test the robustness of the predicted peeling response to the truncation of the X point

geometry, a scan of the ’smoothness’ of the X point is carried out and the resulting

peeling response recomputed. The scan showed that the peeling response was robust

in amplitude to the edge truncation, and the edge poloidal structure was radially dis-

torted following the movement of the resonant curve m = nq. This indicated that the

predicted peeling response was not merely a consequence of the X point truncation, as

has previously been suggested[93].

It is shown that although the pitch aligned components are strongly screened by the

plasma response, when finite resistivity is included they are not screened to zero in

the edge region, where resistivity is larger than the plasma bulk. This implies that

the strong screening of the pitch aligned components does not entirely preclude the

formation of islands, but it does reduce their size and make them far less likely in regions

of very low resistivity. Whereas ideal MHD would predict exact screening of all pitch

aligned components, the resistive results indicate a stochastic region at the plasma edge,

although a much thinner one than would be predicted excluding the plasma response.
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By scanning the phase difference between the upper and lower toroidal waveforms ∆φul,

it was shown that both the peeling response and the pitch aligned components are

strongly dependant on the poloidal spectrum of the RMP, which may be tuned using

∆φul. It was also shown that the plasma response shifts the ∆φul at which b1res is max-

imised by 60 degrees from its vacuum value. This indicates the importance of including

the plasma response in interpreting RMP experiments. As well as greatly overestimating

the size of induced islands and the extent of stochasticity, a vacuum prediction would

fail to predict the optimal coil phase for outermost island width. Current best estimates

for the efficacy of the ITER RMP system and the ELM control strategy rely on vacuum

computations of stochasticity[75], based on a correlation observed on DIII-D between

vacuum stochasticity and ELM suppression. Although the correlation is not in dispute,

the underlying physical assumptions are clearly flawed, and therefore extrapolating this

result to ITER may not be sound. A plasma response based assessment of the ITER

ELM coils is required. It was also shown that the n = 6 pitch aligned components were

strongly dependent on the n = 6 coil phase, which in the case of this ndom = 2 applied

field was shown to be the inverse of the ndom coil phase, ie, ∆φn=6 = −∆φul. When

this was accounted for, it became apparent that the n = 2 and n = 6 pitch aligned

components were maximised at similar values of ∆φul. A previous work showed that

the vacuum island overlap (ie, stochasticity neglecting the plasma response) may be

enhanced significantly by the pitched aligned components of side bands, which fill in

the gaps between islands of the dominant toroidal mode number[109]. It may be that

the n = 2 and n = 6 components being maximised at the same ∆φul, explains why

single n plasma response studies are sufficient for finding correlations between the ELM

frequency and pitch aligned component, at least for ndom = 2 fields, since the n = 2

and n = 6 share the same ∆φul dependence. The alternative explanation is simply that

the n = 6 component has a negligible effect on the ELM frequency. Examining the coil

phase dependence of the sidebands of ndom = 1, 3 fields may be a useful step to deter-

mine whether this behaviour is general, and whether it has any bearing on the ITER

ELM control strategy.

By applying single m perturbations as a boundary condition at the plasma edge, it was

shown that the pitch aligned components may be driven by poloidal harmonic coupling.

This result, suggesting that a strongly amplified peeling response can also drive the

pitch aligned components, has some interesting implications for ELM control theories.

Some works suggest[64] that RMP induced stochasticity or a single large island[80, 81] is

the cause of ELM suppression, while other theories propose that the edge perturbation

due to the peeling response is responsible for ELM mitigation[86, 132]. The result here

suggests that these two may be very difficult to decouple in experiments, since it implies

a strong correlation between the peeling response, pitch aligned components and plasma
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displacement. It may be then, that works which report a connection between the peeling

response and ELM suppression or mitigation, also imply a connection between the pitch

aligned components and these effects. It may also imply that the mechanisms of ELM

suppression and mitigation mechanisms may interfere with and inhibit each other. If it

were the case that the peeling response drove both the pitch aligned components and

edge displacement, then the effect of the peeling response would be both stabilising (pitch

aligned components driving islands to keep the plasma below the P-B stability boundary,

causing ELM suppression), and simultaneously destabilising (edge displacement lowering

the P-B stability boundary making ELMs more frequent, causing ELM mitigation).

Therefore the ELM suppression and mitigation mechanisms may inhibit each other to

some extent. It may also explain why suppression and mitigation are often seen to

have overlapping parameter spaces[63], if both were driven by the peeling response.

Although understanding is still obscured, from a practical perspective the correlations

between numerous figures of merit associated with ELM suppression and mitigation

may be useful for ELM control. For example, if a strategy aimed at inducing ELM

suppression is not entirely successful, it may at least achieve significant mitigation by

merit of the two effects occupying similar parameter spaces. That is, a strategy designed

to achieve one, if unsuccessful may at least achieve the other.

In order to provide some experimental validation of the MARS-F predictions, the MARS-

F code was used to compute magnetic and displacement perturbations for n = 1 and

n = 2 applied RMPs, which were compared with direct measurements of the magnetic

and displacement perturbations provided by collaborators. The magnetic measurements

were made with arrays of Bp probes arranged around the machine, while the displace-

ment was measured with ECE, ECE-I, CXRS and SXR diagnostics which measured

displacement within the plasma. The MARS-F simulations predict correctly the mag-

netic and displacement poloidal structure of the edge, as well as the amplitude and

phase of the displacement perturbation at the edge and for most of the plasma bulk.

However, the measurements show a significant core kink response, which is not recov-

ered in the MARS predictions. This result compliments validation of MARS performed

on DIII-D[131], and of particular importance to this work is the validation of the ∆φul

dependence, which improves confidence in the other ∆φul scans performed herein. How-

ever, the lack of a robust match in the amplitude, particularly in the core, remains a

concern. Further investigation implicated the uncertainty in the equilibrium reconstruc-

tion as a possible cause. The safety factor profile and core plasma pressure are crucial

parameters for the plasma response, and are highly uncertain in the core. This raises

the issue of equilibrium uncertainty, not just for plasma response computations, but

also for stability computations and global mode growth rates, which are of crucial im-

portance for predicting the stability and performance of tokamak experiments[133]. In
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order for uncertainties in plasma response and stability to be rigorously quantified, the

uncertainties in the equilibrium reconstruction must be known. This is left for future

work.

Chapter 4

Chapter 4 was focussed on developing and testing an optimisation scheme for ELM

mitigation, based on tuning the coil phase ∆φul to maximise b1res. It is explained that

varying q95 or n modifies the alignment of the RMP (and therefore ∆φopt), by shifting

the resonance curve relative to the applied spectrum. Varying βN also modifies align-

ment, by distorting the magnetic geometry by Shrafanov shift and thereby distorting

the representation of the applied field in SFL coordinates. A previous result conversely

found no dependence of ∆φopt on βN . It is suggested that this is due to differences

in the approach to pressure scaling. This work scales the pressure profile self similarly

including the pedestal, whereas in [91] the pressure pedestal is left constant.

An ASDEX Upgrade reference equilibrium is scaled in βN and q95 to span the experi-

mentally accessible range of (βN ,q95), and the optimal coil phase ∆φopt was computed

for each point using MARS-F. Experimentalists often need to know the optimal coil

phase in advance of experiments, but using a plasma response computation this is often

impractical due to the detailed input data required. The optimal coil phase is therefore

parametrised with a simple 2D quadratic function of (βN ,q95, n), for use as a guide

for future experiments. This 2D quadratic parametrisation is also envisaged to have a

use in a feedback control system, which may control the RMP coil phase for optimum

ELM mitigation throughout a discharge. This would be an especially useful feature for

ITER, which requires ELMs to be well controlled even during the initial current ramp

up, during which βN and q95 and hence ∆φopt vary considerably.

In order to benchmark the 2D quadratic parametrisation against rigorous MARS-F

computations, a set of benchmarking points is gathered from the ASDEX Upgrade

experimental database. Each point contsists of an experimental ASDEX Upgrade re-

constructed equilibria, experimentally measured kinetic profiles, and experimentally ap-

plied coil currents. For each benchmarking point, ∆φopt is computed both using the 2D

quadratic parametrisation (requiring only βN ,q95 and n as inputs), and using a rigor-

ous MARS-F computation (which requires a equilibrium, set of kinetic profiles and coil

currents as input). The parametrisation is found to be accurate relative to MARS-F to

within 6.9 degrees for n = 1 vacuum predictions, 34.2 degrees for n = 1 total predictions,

14.1 degrees for n = 2 vacuum predictions, and 21.3 degrees for n = 2 total predictions.

Sources of uncertainty are assessed and discussed. Having ruled out the likely sources,
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the plasma shape is suggested as the primary source of error. This is further supported

by an apparent systematic error in the n = 1 ∆φul predictions, and a corresponding

systematic deviation of the n = 1 shapes from the reference equilibrium, while the n = 2

shapes show only random scatter around the reference equilibrium.

In order to experimentally validate the 2D quadratic parametrisation, the optimum

coil phase is measured experimentally by measuring the ELM frequency and density

during experimental scans of ∆φul. These measurements are then compared with op-

timal coil phase as predicted by with MARS-F and the 2D parametrisation. The 2D

parametrisation agrees with the experimental measurement to within 40.3 degrees, while

the MARS-F computation agrees to within 35.0 degrees. It is interesting to note that

the modelling used to achieve this agreement with experiment was purely single n. From

this we may deduce that the effect of sidebands on ELM frequency is either small, or

acts in synchrony with the dominant n component of the field. For each of the experi-

mental scans, the dependence of ξX on ∆φul was also computed using numerical scans,

and it was found that the optimum coil phase for ξX coincided with the optimum coil

phase for b1res, in agreement with a previous study[96]. Since ξX has previously been

correlated with density pump out, and b1res with ELM mitigation, this suggests that an

RMP optimised for ELM mitigation will also necessarily cause the maximum reduction

in density and associated confinement degradation. However, when the optimum coil

phases for density pump out and ELM mitigation were measured experimentally, it was

observed that the coil phase at which ELM mitigation was maximised was on average

59.0±60.6 degrees lower than the coil phase at which density pump out was maximised,

which suggests that mitigation and pump out may be decoupled, and that it may be

possible to optimise ELM mitigation without also maximising confinement degradation.

However, this may also be due to a time lag between the ELM frequency and density

response, caused by the relatively slow particle transport timescale. It may be possible

to distinguish between these possibilities using either a very slow coil phase scan, or a

scan in which the coil phase was ramped in long flat steps.

In order that this coil phase parametrisation approach may be applied to ITER, the

derivation process is repeated using a synthetic ITER equilibrium as the reference equi-

librium and the ITER ELM coils. The coefficients of the 2D quadratic parametrisations

for the upper and lower coil phases (relative to the middle row) are given as a starting

point for future research, and as the basis for an automatic ELM mitigation optimi-

sation system, which may be used to maintain good coil alignment even while plasma

parameters vary.

To test a proposal that the amplified peeling response may be sensitive to edge pressure

and current[116], the database of validation points is mined for correlations between
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figures of merit and plasma equilibrium parameters. No significant correlations are dis-

covered. This may be due to oversimplified approximations for the edge current and

pedestal pressure. However, the database does show correlations between the peeling

response and pitch aligned components, the peeling response and the X point displace-

ment, and the pitch aligned components and X point displacement. Previous studies

have reported these correlations for single discharges during which ∆φul was scanned,

however correlations reported here are found in distinct discharges all at their respective

values of ∆φopt. This further supports the theory that the amplified peeling response

may drive the pitch aligned components via poloidal harmonic coupling.

The trade off between coil amplitude and coil phase flexibility was examined, by compar-

ing the penalty to the pitch aligned components due to the minimum misalignment of a

rectangular waveform, to the penalty due to using a sinusoidal waveform which does not

use the RMP coils to full capacity. It was shown that the penalty was less severe for a

minimally misaligned rectangular toroidal waveform than a precisely aligned sinusoidal

waveform, and therefore the optimal strategy for maximising b1res would be to apply

a rectangular waveform, with a coil phase as close to ∆φopt as the n and N numbers

allow. However, it has been shown that strike point splitting caused by applied RMPs

may cause localised regions of high heat flux at the divertor, which may be mitigated by

rotating the RMP in order to distribute the heat flux over a larger area[134]. If a rigid

rotation of the RMP is required to avoid material damage, rectangular waveforms will

not be possible and therefore the precise alignment of a rotating sinusoidal RMP would

be the best remaining strategy for maximising ELM mitigation.

5.2 Outlook

Preparing for successful ITER operation is a core objective of the UK Tokamak Science

Programme and EFDA Fusion Roadmap. The motivation and objective of this and

similar works, is to provide a robust prediction of the expected efficacy of the ITER

ELM control system, and optimise the ITER ELM control strategy. Despite recent

advances by other authors and the incremental contribution of this work, much more

research in this field is required to achieve this.

Currently several ELM control theories exist, with varying amounts of experimental ev-

idential support. However the evidence bases of these theories are mostly disparate, and

are solely drawn from experiments on a single machine. In order to distinguish which

theory is supported by a preponderance of the evidence, a multi-machine database ap-

proach is required, in which any theory may be tested against a comprehensive database

from many tokamaks.
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While MARS-F was shown in this work to be quite successful at recovering experimental

measurements, further validation of the MARS-F code against experiment is required,

particularly at high plasma pressures.

In order to expand the database of experimental observations and plasma response

computations, against which theories of ELM control may be tested, the process of com-

puting the plasma response for a given plasma equilibrium and set of kinetic profiles

should be automated. This would allow plasma response computations to be performed

for entire discharges, in a similar manner as is currently performed for equilibrium recon-

struction. An automated plasma response code would be able to generate databases of

plasma response computations of statistically significant size, spanning wide parameter

space, which would be useful for finding correlations which may lead to further theory

developments. Furthermore, since many RMPs contain significant sidebands, MARS-F

computations should be multi-n as standard.

The 2D parametrisation of the optimal coil phase developed in this work, should be fur-

ther refined using a more representative ASDEX Upgrade equilibrium and incorporating

variations in plasma boundary shape. It may be used to form the basis of an automated

feedback control of the ITER coil phase, to maintain optimal ELM mitigation during

ramp up, and during systematic scans of plasma shape and safety factor. If a figure of

merit is identified for ELM suppression which is also controllable by RMP coil phase,

then this method could be applied to it also. The method should also be extended

and tested thoroughly using n = 3, since ITER will use primarily n = 3 perturbations.

DIII-D habitually uses n = 3 RMPs, making it an ideal test bed for this work.

The uncertainties inherent to equilibrium reconstruction should be thoroughly investi-

gated, so that these errors may be propagated forward into the plasma response com-

putations and the plasma response and stability uncertainty may therefore be assessed

rigorously.

Currently the ITER ELM control strategies and assessments of the ELM coils are based

only on vacuum predictions, which while a useful first step, have some serious deficiencies.

It was shown in this work that the plasma response both drastically reduces the extent

of the expected stochastic region at the edge, and also shifts the coil phase at which

maximum ELM mitigation is expected by 60◦. In light of this, assessment of the ITER

ELM coils should be enhanced by considering the plasma response to the applied RMPs.

It is vitally important that progress in this field continues with urgency, in order to settle

the question of how to prevent material damage by ELMs before the commencement of

ITER operations.



Appendix A

Derivation of displacement

resonance condition

We begin with the linearised ideal induction equation

b = ∇× (ξ ×B) (A.1)

We then choose a cylindrical coordinate system (s,χ,φ), and consider only the component

in the ŝ direction, by taking J∇s· of the above equation, where J is the (arbitrary)

Jacobian.

J∇s · b = J∇s · [∇× (ξ ×B)]

= −J∇ · [∇s× (ξ ×B)

= −J∇ · [(∇s ·B)− (∇s · ξ)B)] (A.2)

In the above the vector identities A · (B × C) = −B · (A × C), and A × (B × C) =

(A ·C)B− (A ·B)C are used. We now define b1 = J∇s · b, and in the above we use that

(∇s ·B) = 0 since B has no radial component. The above then becomes

b1 = J∇ · [(∇s · ξ)B]

= J [(∇s · ξ)(∇ ·B) +B · ∇(∇s · ξ)] (A.3)
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In the above, the identity ∇ · (fA) = f∇ · A+ A · ∇f is used (where A is an arbitrary

vector and f an arbitrary scalar function). We now apply the non-existence of magnetic

monopoles ∇ ·B = 0 to the above, and define ξ1 = ∇s · ξ, to yield

b1 = JB · ∇(∇s · ξ)

b1 = JB · ∇ξ1 (A.4)

Now ξ1(s, χ, φ), so we may expand out the dot product applying the chain rule to arrive

at

b1 = J
∂ξ1

∂χ
B · ∇χ+ J

∂ξ1

∂φ
B · ∇φ+ J

∂ξ1

∂s
B · ∇s

b1 = J
∂ξ1

∂χ
B · ∇χ+ J

∂ξ1

∂φ
B · ∇φ (A.5)

where we have used that B · ∇s = 0 since B has no radial component. We now choose

to represent the equilibrium field B as

B = ∇φ×∇ψ + F∇φ

=
dψ

ds
∇φ×∇s+

JF

R2
∇s×∇χ (A.6)

Using this representation also gives us B · ∇χ = dψ
ds

1
J = ψ′

J and B · ∇φ = F
R2 , and from

these we find also
B·∇φ
B·∇χ = q = JF

ψ′R2 . Applying these the above becomes

b1 =

(
ψ′

∂

∂χ
+
JF

R2

∂

∂φ

)
ξ1 (A.7)

Now we choose a straight field line coordinate system so all quantities may be fourier

decomposed into poloidal and toroidal harmonics, such that ∂
∂χ → im and ∂

∂φ → −in.

Applying these to the above we arrive at

b1 = (ψ′im− JF

ψ′R2
inψ′)ξ1

b1 = iψ′(m− qn)ξ1 (A.8)
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rearranging the above we find the displacement resonance condition, which explains that

ξ1 will always be maximised around q = m/n

ξ1 =
b1

iψ′(m− nq)
(A.9)
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