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Abstract 

Pollution from metal mining has led to severe environmental damage. The 

assessment of metals is very complex as they interact with a broad spectrum of 

biotic and abiotic components depending on physicochemical conditions. 

Worldwide, discharges from ancient mines are considered one of the major 

causes of point and diffuse pollution. This thesis investigated the sources and 

mobility of metal pollution associated with historical mining in a carboniferous 

upland catchment, located in the Northern Pennines in the UK. From chemical 

analysis and geochemical modelling I identified metal sulphates and metal 

carbonates as the main mineral sources of metals. I also demonstrated that metal 

carbonates are controlling metal mobility, while seasonality is also producing 

changes in flow and pH conditions, affecting metal concentrations and behaviour. 

By using speciation modelling, ecotoxicological assessment tools and in situ 

macroinvertebrate survey I highlighted the dynamics of metals occurring in 

neutral mine drainage; and suggested the application of environmental quality 

standards based on bioavailability data within a realistic context relating response 

of aquatic organisms to river water chemistry and metals. I also evaluated the 

effects of episodic rainfall on aqueous metal mobility and toxicity to address some 

knowledge gaps. I found that rainfall conditions did not alter the circumneutral 

conditions of the catchment, although metal mobility and speciation were affected 

by the abundance of carbonate and bicarbonate minerals derived from bedrock 

weathering. I showed that metal toxicity occurred at circumneutral pH, and mainly 

attributable to zinc. Moreover, I assessed the effects of episodic rainfall in metal 

toxicity and calculations revealed that short-term fluctuations of metal 

concentrations are not reflected in the predicted acute toxicity risk to aquatic 

organisms, underlining the complexity of chemical speciation especially during 

episodic events. Likewise, I provided a baseline for future mitigation strategies 

for catchments under risk of metal pollution. Finally, I stressed the importance of 

the public perception and community involvement in a holistic management of 

catchments for protecting riverine ecosystems and improving their water quality. 

Overall, this thesis provides the evidence that a comprehensive metal 
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assessment requires a great understanding of processes and reactions occurring 

from metal sources to potential endpoint environments (e.g. water, sediments, 

and biota). For regulatory purposes, technical knowledge needs to be sensibly 

transferred to the community for achieving an effective integrated catchment 

management.  Findings from this thesis are suitable for the assessment of 

streams draining spoil waste areas with similar geochemical conditions and 

inform future management strategies.
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Chapter 1: General Introduction 

Worldwide, rivers have been the centre of anthropogenic activities. From 

prehistoric times through to the present day these natural resources have been 

greatly polluted with significant impacts on its hydrology, ecology and sediment 

dynamics (Hudson-Edwards et al., 1999a; Horowitz et al., 1993; Macklin, 1996; 

Nagorski et al., 2002; Miller et al., 2004; Fernandes et al., 2016). Historical metal 

mining that has produced severe damage to riverine ecosystems and discharged 

water from ancient mines is considered one of the major causes of point and 

diffuse pollution in many catchments (Hering et al., 2010). 

In the United Kingdom (UK), particularly in the North Pennines, metal mine 

drainage has been transported as dissolved and associated forms, affecting 

water and sediment quality (Byrne et al., 2012; Jones et al., 2013; Tame et al., 

2017). Ecological and global public health concern has increased as metals can 

be transferred, bioaccumulated and magnified through to higher trophic levels, 

producing important risks for human health (Solà et al., 2004). Most efforts have 

been focused in mitigating effects of abandoned coal mines but little attention has 

been paid to non-coal mines (metal mines) (Jarvis, 2014). An important number 

of non-coal mine waters remain untreated in the UK, precluding their compliance 

with national water quality standards (Han et al., 2013; Potter et al., 2004; Mayes 

et al., 2008; 2009b; 2010). 

A correct understanding of hydro-chemical processes, post-mining metal 

dispersion and speciation variability is important for river management plans and 

to formulate site remediation strategies in polluted areas affected by historical 

mining (Hudson-Edwards et al., 1998). In the last few decades, a variety of 

analytical techniques and models have been developed to understand 

concentrations, distributions and chemical behaviour of metals in aquatic 

environments (Hudson-Edwards et al., 1999b; Paquin et al., 2002; Zhang and 

Davison, 2015). However, within rivers metal assessment is very complex due to 

the dynamic of metals in response to certain water chemistry conditions, their 
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mobilisation through sediments, and the presence of metal mixtures influencing 

bioavailability and toxicity in aquatic organisms (Gozzard, 2008; Butler, 2009). 

This study focuses on Hebden Beck, a river affected by historical lead mining in 

the United Kingdom. In this area lead production reached its peak around 1861-

1862; metals released from ore processing have been dispersed to soils, stream 

and groundwater due to processes like weathering, erosion and leaching, 

affecting the surrounding watercourses. Hebden Beck is a sub-catchment (~12 

km long) of the River Wharfe located in the northern Pennines region (site 

description in Chapter 2, section 2.2). Previous studies on metal pollution in 

Hebden Beck have shown a metal enrichment of dissolved Zn (2003 g/L), Ba 

(971 g/L), Pb (183 g/L) and Cd (12 g/L) reducing water quality (Jones et al., 

2013). 

The size and accessibility of Hebden Beck catchment, the presence of point and 

diffuse sources of metals, and the limited influence of other sources of pollution, 

provided a good scenario for a comprehensive catchment-scale assessment of 

metal speciation, transportation, bioavailability and potential ecotoxicity. Thus, 

the overall aim of this research was to assess metal contamination derived from 

historical mining by evaluating sources, mobility and toxicity in river water to 

support strategies for improving water quality and ecological conditions. 

This chapter provides an overview of metal contamination from historical mining 

in the UK, particularly in the North Pennines. Section one describes historical 

mining in the UK, geological characteristics of the Pennines, mining techniques 

and their socioeconomic legacy in Wharfedale. Section two compiles information 

about metal contamination of rivers and environmental legacy of historical mining 

in Wharfedale. Section three includes a brief description of the environmental 

services of the Wharfe catchment. Section four gives an overview of UK 

Environmental Directives, including the Water Framework Directive. Section five 

describes the most relevant water quality monitoring programmes in the UK. 

Section six refers to the traditional and current methods applied in the study of 

metal sources, behaviour and bioavailability. Section seven provides a brief 

introduction to remediation techniques in freshwater (particularly in neutral mine 
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drainage). Section eight details the site selection process and the map/tables of 

site locations. Section nine introduces the aim and specific objectives of the 

thesis and section ten provides the thesis outline.   
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1.1. Historical Mining in the United Kingdom  

Mining has been carried out in the UK since the early Romano-British period (1st 

century AD) and represented a key feature in the Industrial Revolution of this 

nation in the eighteen century.  Historically, mineral deposits have been mined in 

Cornwall, Devon, the Mendips Hills, North and Central Wales, Shropshire, the 

Northern and Southern Pennine Orefields, the Lake District and the Southern 

Uplands of Scotland (Scott, 2001).  The main minerals exploited in the country 

were Pb, Zn, gold (Au), silver (Ag), iron (Fe), manganese (Mn), copper (Cu), tin 

(Sn), tungsten (W), arsenic (As) and antimony (Sb). The transition of 

manufacturing processes at this time transformed lead (Pb) mining from a small 

subsidiary enterprise into a major industry as it was used for public constructions 

including farmhouses and cottages, reservoirs for water storage and piping. In 

the eighteenth and nineteenth centuries the lead industry was fully established 

allowing the development of large companies and mining communities. However, 

the industry gradually declined as result of the development of large mines in 

Spain and United States of America (Gill and Burt, 2003). 

The methods used for mining in the UK evolved progressively. Early activities 

were opencast with ore extraction being performed on the soil surface where 

galena (lead sulphite) veins were uncovered by physical events such as rainfall 

(Raistrick and Jennings, 1965). As superficial deposits were exhausted, 

underground methods were adopted for mineral removal from vertical veins. 

Accordingly, during the early years of mining it was common to crack the rock by 

heating and cooling processes using flaming torches and water or vinegar, 

respectively. The auxiliary tools for this method of ore extraction included the 

pick, the hammer and the wedge. During the seventeenth century, the 

introduction of gunpowder enabled the construction of deeper adits and levels to 

remove the ores, to drain the mines and to sink shafts. Those shafts provided 

access, ventilation and ore removal pathways through interconnected 

underground tunnels.  Earlier shafts were dug on the mineral vein, but later were 

sunk in barren wall rock. This later system was known as Bell Pits, and allowed 

the minerals extraction from the vein without affecting the shaft’s stability 

(Waltham, 2007). The haulage of minerals within the mine and to the surface was 
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done initially using horses; later the activity was performed successively with 

hydraulic power and steam powered machines.  

With regard to hydraulic methods, a technique called “hushing” was used to scour 

away the soil by erosion and separate lead minerals from lighter rock. 

Waterwheels were used as multi-purposes machines for pumping water and 

crushing and winding the ores. The use of water in mining required the 

construction of reservoirs to store water that was released through artificial 

channels known as “leats” (Fairbairn, 2002). Once lead ores were extracted they 

were transported to the dressing floors. In this area the ores were sorted, 

crushed, separated and bagged for the smelt mill (Raistrick and Jennings, 1965). 

In the mill, minerals were melted to remove impurities. The smelting process 

could be accomplished through two techniques: the ore-hearth or the 

reverberatory furnace. The selection of these techniques was based on the 

amount of ore, fuel availability and type of impurities in the mineral. The ore-

hearth was a flue where the ore and fuel (peat) were mixed; for its efficient 

operation a blast of air was supplied by waterwheels. The reverberatory furnace 

was generally much larger, where fuel (coal) and ores were kept separately, and 

the heat was transmitted by gasses for melting the minerals (Burt, 1984). Beside 

the economic benefits of mining, one of the major problems from this activity was 

the metal pollution of the areas where the activity was developed (Potter et al., 

2004). 

1.1.1. Historical metal mining in the Pennines: Wharfedale 

The Pennines comprise a range of hills with a total length of approximately 250 

miles (400 km) that divide North West and North East England. Their landscape 

consists of upland and lowland areas, and several rivers that drain the main 

watersheds in northern England. The fluvial complex includes the Rivers Eden, 

Ribble, Irwell and Mersey that flow westwards towards the Irish Sea, and the 

rivers Tyne, Tees, Wear, Ure, Nidd, Calder, Wharfe, Aire, Don and Trent that flow 

eastwards to the North Sea. The Pennines are part of three National Parks (The 

Peak District, The Yorkshire Dales and Northumberland) and Areas of 

Outstanding Natural Beauty-AONB (the North Pennines, Nidderdale), therefore 
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this region is widely considered to be one of the most scenic areas of the United 

Kingdom (North Pennines AONB Partnership, 2013). 

The North Pennines were designated as AONB in 1988 and UNESCO Global 

Geopark in 2004, due to their particular moorland scenery which is the product of 

centuries of farming and lead-mining (Dunham, 1988; Zouros and McKeever, 

2004). The North Pennines are bordered by the Tyne valley to the north, by the 

Yorkshire Dales to the south, by the Durham lowlands to the east and by the 

Eden Valley to the west (Lawson et al., 2011).  The special character of the North 

Pennines landscape has its foundation in the underlying rocks and the geological 

processes which have shaped it over hundreds of millions of years of Earth 

history. Tropical seas, deltas, rainforests, molten rock, deserts and ice sheets 

have all played a part in creating the bare bones of the landscape. The deep roots 

of the North Pennines are slates and volcanic rocks (Weardale Granite- 400 

million years ago) and together with abundant mineral veins and deposits are 

known as the Northern Pennine Orefield (North Pennines AONB Partnership, 

2013).  

In the Carboniferous period (350-300 million years ago) the lime sediments 

(skeletal fragments of marine organisms) became limestone, the mud and sand 

became shale and sandstone, and the forests turned to coal. Periodically, the 

sea flooded in, drowning the deltas and depositing limestone again. This cycle 

happened many times, building up repeating layers of limestone, shale, 

sandstone and thin coal seams, known as ‘cyclothems’. About 295 million years 

ago the Whin Sill was formed by molten rock, injected between layers of 

sandstone, limestone and shale. The molten rock cooled and solidified producing 

vertical cracks seen in cliffs and quarry faces (Figure 1.1). The veins of minerals 

formed about 290 million years ago when mineral-rich waters, warmed by heat 

from the buried Weardale Granite, flowed through underground fractures. Once 

the fluids cooled, dissolved minerals crystallized within the fractures, forming 

mineral veins. Sometimes the fluids reacted with limestone on the sides of the 

fractures, altering the rock and forming mineral deposits known as ‘flats’ (North 

Pennines AONB Partnership, 2013). The foundation of the area’s economy 

during the eighteenth and nineteenth centuries derived from the abundance of 
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mineral deposits. Galena (lead-sulphide ore) mining was the most important 

activity in this area, although commercially mined minerals also included, 

sphalerite (zinc-sulphide ore), iron ore, fluorite/fluorspar (calcium fluoride) and 

barium as barite (barium sulphate) and witherite (barium carbonate).  

 

Figure 1. 1. Schematic diagram of the North Pennine escarpment showing the underlying geology 
and its influence on the landscape. From Elizabeth Pickett © NERC. 
 

In the North Pennines, intensive lead mining was developed in the Swaledale and 

the Wharfedale valleys. In Swaledale one of the main mining activities was 

concentrated near Gunnerside Beck and Barney Beck tributaries of the River 

Swale (Dunham and Wilson, 1985), whilst in Wharfedale one of the main ore 

extractions was performed around Hebden Beck, a tributary of the River Wharfe 

(Figure 1.2). Hebden Beck rises from Grassington Moor and drains an area of 26 

km2 until its confluence with the River Wharfe. Several towns and villages are 

located in Whaferdale including Wetherby, Ilkley and Otley as the most 

populated, between others with lower population like Grassington, Hebden, and 

Conistone. The River Wharfe flows into the Ouse which further downstream joins 

the Trent to form the Humber Estuary, and is the largest catchment of the English 

east coast which discharges into the North Sea. 
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Figure 1. 2. The River Wharfe showing Hebden Beck as tributary. Ordnance Survey Map (Grid 
Ref: SE 0295563316). Contains OS data © Crown copyright and database rights 2017. 
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The earliest mining in Wharferdale and around Grassington comprised two areas 

named Yarnbury and New Rake, and later many other areas were also highly 

exploited (Figure 1.3). In Hebden, levels were designed to give natural drainage 

for Grassington mines (e.g. Lanshaw, Duke, and Charter). Table 1.1 shows a list 

of mines located in this area which are usually referred to collectively as 

Grassington mines (Gill, 1993).  

During the medieval period, as in other rural communities of the UK, mining on 

the Wharfedale was performed at relatively small scale. Local families leased 

small blocks of ground along mineral veins known as Meers which were under 

the Customary Mining Law and were owned by the British Crown (Gill, 1994). 

Within the Wharfedale region, some mining villages were considered as the 

King’s field; other villages like Kettlewell, Conistone and Hebden were under local 

holders (Barmaster) supervision. In the sixteenth century, lead extraction 

increased in the area, so the development of efficient mining methods was 

required. In 1640, mining experts from Derbyshire, Swaledale and Cornwall 

moved into the villages of Grassington and Hebden. Important innovations were 

introduced, for example extensive integrated water management system and the 

use of wire as ropeway power for pumping and winding (Gill, 1993).  

Table 1. 1. Mines in Grassington (Gill, 1993). 

Area Mines 

Old Pasture Blackhil, Blew Level, Cockbur, Ellerbeck, Loss Gill Bank, New Rake, North 
Rake, Yarnbury 

New Pasture Frankland Fold,  Pikehaw, Hecklar Rake, Grime Grooves, Chelsea,Cricket, 
Fiddler Plet, Folly, Green Plet, Greenwich, Plet Head,Stool, Three Footed 
Stool, Sword and Pistol, Smiling Fancy,Pawfrey, Green Bycliffe 

Out Moor Brown Bycliffe,  Burnt Ling,  Bycliffe, Castaway, 
Coalgrovebeck,Coalgrovehead, Fourteen Meers, Glory, Gregory, Legerins, 
NewRipon, Pipper Plet, Pit Moss, Ridley Old Work, Ripley Vein,Rippon, 
Rushbob, Six Meers, Three Meers, Turf Pits, Wash Vein, Wilkinson Pits 
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Figure 1. 3. Geology and mineral veins from Grassington and Hebden area. Mineral veins are 
shown as gold lines, faults as white lines and uncertain faults and boundaries as broken lines. 
Red dots show some mining structures (e.g. Yarnbury mine and Cupola smelting mills). 
Geological Survey of England and Wales 1:63,360 geological map series [Old Series]. 
Reproduced with the permission of the British Geological Survey ©NERC. All rights Reserved. 
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From 1758 the Grassington mines were restructured under the administration of 

the Duke of Devonshire. Better ventilation and more efficient ore and waste 

transportation were achieved through the excavation of a long adit (2.5 km) 

known as The Duke’s Level. A number of reservoirs called The Blea Beck Dams 

were built to minimize water supply problems during dry weather. An 

extraordinary smelting mill was also built in 1792 to serve the lead mines. This 

structure, called The Cupola Mill, had a flue length of around 1.7 km, including a 

network of flue systems, condenser chambers and a chimney. In addition, it had 

two reverberatory furnaces (cupolas) that isolated the processed mineral from 

contact with fuel. The cupola smelt mill supported the lead ore processing by 

using coal instead of the traditional peat or wood (Gill, 1993; Raistrick and 

Jennings, 1965).  

During the eighteen century, Yorkshire lead mines played an important role in the 

UK lead production. Between 1845 and 1865 this region provided an average of 

10 per cent of the national production (Table 1.2) with Grassington mines 

producing around 20,000 tons (~20,300 metric tonnes) (Gill and Burt, 2003). After 

this period, lead production declined dramatically, as it became more difficult and 

expensive to extract. At the same time, new, shallow and metal rich mines from 

the United States of America, South America, Africa, Australia, the Middle East 

and Europe (Spain), provided higher amounts of ore with cheaper costs. As a 

result, Yorkshire mines stopped underground activity around 1870 and only the 

smelt mills continued working (Flynn, 1999).  
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Table 1. 2. Data regarding Yorkshire and U.K. lead metal production from 1845 to 1913 (Gill and 
Burt, 2003).  

Year Yorkshire Metal (tons) U.K. Metal 
(tons) 

% of U.K. Lead 
production 

1845-1854 5,213 59,040 10 

1855-1864 6,905 67,380 10 

1865-1874 4,976 66,340 7 

1875-1884 3,341 52,230 6 

1885-1894 1,518 34,300 4 

1895-1904 490 23,730 2 

1905-1913 92 20,866 0.4 

 

The principal smelt companies functioning in this area were the Grassington Lead 

Mines Ltd, the Hebden Moor Mining Co., and the Dales Chemicals Ltd. The 

London Company, famous as the largest and best equipped in the UK, also had 

affiliates in the area. Since 1880, mines have been closed with no attempt to 

reopen again. However, between 1916-1920 and 1956-1963 the Grassington 

Lead Mines Ltd and the Dales Chemical Company carried out some spoil 

reprocessing campaigns where barytes and fluorspar were primarily recovered 

(Gill, 1993; 1994).  

Nowadays some of the ancient buildings associated with mining activities in 

Wharfedale have become structures of archaeological and cultural importance 

for the region.  Many abandoned mines represent important heritage sites which 

have been classified as Scheduled Ancient Monuments (White, 1998). 

Specifically around Grassington and Hebden, a large number of mining structures 

have been identified which have become the central attention for tourists 

(Yorkshire Dales National Park, 2006; North Pennines AONB Partnership, 2013).  

1.1.2. Socioeconomic influence of mining in rural communities: 

Wharfedale 

In the eighteenth century the Industrial Revolution in the United Kingdom 

produced a drastic transformation in living conditions. Changes from a rural 

economy based on agriculture and farming to industrialized practices produced 

a massive effect on the economy and social facets in the population (Landes, 
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1969). In the North Pennines mining industry had a multiplier effect in rural 

communities (Hallas, 1999). In fact, mining changed the work patterns by 

transforming farming communities into communities of miners. Labour priorities 

changed as farmers spent less time on fields and more in mining jobs (Table 1.3). 

In the mining industry miners were divided in three main roles: i) deadmen who 

drove levels and sank shafts, ii) pickmen who extracted the ores and iii) dressers 

who washed the minerals. Other occupations were level-wallers, machinemen 

and those involved in moving material out of the levels. The smelters, refiners 

and craftsmen made up the rest of the mining workforce (Hunt, 1970).  

Table 1.3. Male mine workers in Grassington and Hebden from 1841 to 1871 (Hallas, 1999).  

 

Villages Year No. of Lead 
miners 

Total male 
population 

% of lead 
miners 

Grassington 1841 146 544 27 

1851 103 563 18 

1861 128 492 25 

1871 63 401 16 

Hebden 
 

1841 27 248 11 

1851 46 236 19 

1861 85 225 38 

1871 56 195 29 

 

Economic inequality was also an important effect of mining (Hunt, 1970). Despite 

the miner’s expertise their economical remuneration was not based on their 

working hours and health risks. The agreed wages resulted from a deal 

depending on the mine difficulty and the distance from veins to shafts. Moreover, 

miners frequently paid for their own working materials such as candles and 

gunpowder, and services such as transporting and dressing the ore (Raistrick 

and Jennings, 1965). Statistical evidence of lead-miner’s wages is scarce, 

fragmented and difficult to interpret due to the varied payment system from each 

company. Generally, wages were provided in monthly, quarterly or half-yearly 

intervals. This system kept mineworkers constantly in debts as they need 

anticipated payments for their daily living costs (Sigworth, 1992).  

Cotton and linen textiles manufacturing was another form of industry in the area 

providing an income independent from lead mining wages. Until 1871 those 
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activities existed together with small scale agriculture, and house holders 

recruited a significant workforce (Table 1.4). This business diversification helped 

rural communities to face the losses caused by closing of mining industry (Hallas, 

1999). For instance, in Grassington current industries are related to 

accommodation, food services, leisure and human health (Office for National 

Statistics-UK).  

Table 1. 4. Percentages of the working population in three main occupations in Grassington 
(1851-1891) (Sigworth, 1992; Gill, 1993).  

Occupation  Census Year 

1851 1861 1871 1881 1891 

Lead mining 23% 31% 21% 10% 3% 
Textiles 29% 12% 16% 6% 5% 
Agriculture 14% 17% 23% 32% 36% 
Other 34% 40% 40% 52% 56% 

 

The health of miners was drastically affected by mining activities (Oliver, 1893). 

Respiratory diseases were accentuated when gunpowder was discovered. Boys 

and women developed severe disorders as result of overtiredness and heavy 

works. Medical reports from Grassington have mentioned retarded puberty, 

digestive problems, and distortions in legs, spinal column and pelvis (Raistrick 

and Jennings, 1965). These conditions reduced worker’s lifetime compared with 

other contemporaries from different occupations. Overcrowding in local farms or 

cottages provided to miners to live near to mining fields was another factor 

impairing the health condition of miners (Raistrick, 1953).  

From the eighteenth century some mining companies became concerned about 

their worker’s well-being and provided notable support to social and health 

services (Raistrick, 1973). For example, the London Lead Company helped in the 

foundation of the Greenhow Hill village for the accommodation of miner’s families. 

It also created a wide number of policies to improve the quality of life from the 

miners and their families. Through these policies a monthly minimum wage was 

guaranteed, food supplies were subsidized, likewise free medical care and social 

security funds were provided. Furthermore, in 1842 the Parliament of the United 

Kingdom also introduced important working reforms, for example they created 

the Mines Act which prohibits any girl or woman to work underground in metal 
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mines, boys were allowed to work on dressing floors according with the company 

policies (Raistrick and Jennings, 1965).  

The closing of mining activities was an important factor for population emigration. 

Even though lead mining was not the only industry in Grassington and Hebden, 

between 1851 and 1881 the population of Grassington’s village declined about 

400 people (Gill, 1994; Sigworth, 1992).  

1.2. Metal contamination of rivers and Environmental Legacy of 

historical mining in Wharfedale 

1.2.1. Metal contamination of rivers  

River systems surrounded by mining areas can become contaminated through 

diverse metal behaviours. One source of river contamination by metals is in situ 

chemical weathering of contaminated soils, alluvium and mining wastes caused, 

by flooding and fluctuation of water levels in floodplains. These processes may 

be accelerated by changes in the pH and redox potential (oxidation or reduction) 

(Luoma and Rainbow, 2008). In mine drainage waters the concentration of metals 

and pH depends on the oxygen supply, grain size, composition of metal 

sulphides, iron-sulphur oxidising bacteria, temperature and acid solutions 

neutralisation (Rose and Cravotta III, 1998). Acid mine drainage (acidic pH) can 

cause dissolution of metals carrying silicate, carbonate, sulphide and oxide 

minerals by releasing their metals to the solute phase. Oxidising conditions cause 

breakdown of metal-carrying sulphide minerals (Hudson-Edwards, 2003). 

Conversely, reducing conditions in river sediments can encourage the formation 

of insoluble metal sulphides (Cd, Cu, Pb, and Zn) decreasing their bioavailability 

and toxicity to aquatic life (Hudson-Edwards et al., 1998). Mine drainage flowing 

through limestone host bedrock produces neutral mine drainage where major ion 

concentrations reflect the mineralogy of the bedrock, generating metal-rich 

effluents but with circumneutral pH (Byrne et al., 2012; Jones et al., 2013). Hence, 

the importance of studying the geologic setting, local water chemistry, kinetic 

rates and permeability of ore and gangue minerals (Navarro et al., 2015; Plumlee 

et al., 1999).  
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Sediments are extremely important in the transport and cycling of metals within 

the fluvial system (Salomons and Förstner, 2012; Horowitz, 1991). Metal 

concentrations in sediments are usually considerably higher than those observed 

in the dissolved phase because metals are likely accumulated by fine-grained 

material. Therefore, riverine metal fluxes can be dominated by fluvially 

transported sediments (Horowitz, 1991; Macklin and Klimek, 1992). Between 30 

and 98 % of the total metal load of a river can be transported in a sediment-

associated form (Gibbs, 1973; Salomons and Förstner, 2012). Sediment-

associated metals are not static within the fluvial environment. Instead, they are 

influenced by a range of physical and chemical processes that control their 

behaviour, mobility and concentrations in the environment.  

Another input of river contamination by metals is high flow events at abandoned 

mines where spoil wastes and tailings are commonly deposited next to rivers. 

These highly contaminated materials can be mobilised during rainfall and erosion 

by high river flows through the discharge of particulate metals into the water 

column. In addition, when floodplain alluvium is eroded, superficial contaminated 

sediments are in contact with water causing metal desorption from sediment to 

the aqueous phase. Nagorski et al. (2002); Macklin (1996); Miller (1997) have 

documented that metal dispersal and storage is controlled by physical and 

chemical factors such as hydrological and attenuation processes (Chapter 4). 

Additionally, some studies have outlined that mining waste drives significant 

impacts on fluvial geomorphology such as gradient and channel width, controlling 

the ability of the river to transport sediments (Hudson-Edwards et al., 1999c; 

2001; Miller et al., 2004; Low et al., 2005).  

1.2.2. Environmental legacy of historical mining in Wharfedale 

The ancient mining activities in the United Kingdom are the main drivers for metal 

pollution in water and flood plain soil (Johnston et al., 2008). Abandoned mines, 

particularly, represent a major diffuse source of metal pollutants (aqueous or 

particulate forms) as metals spread through groundwater and surface water 

across dozens of kilometres (Macklin, 1997; Macklin et al., 1997; Miller, 1997; 

Hudson-Edwards et al., 1999b; Mayes et al., 2015). According to a report from 
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the Environment Agency (2005) England and Wales have the most affected rivers 

for metal contamination. Those rivers included the Tyne, Wear (Northumbria 

River Basin District or RBD), Swale, Ouse (Humber RBD), Rheidol, Ystwyth, 

Conwy, Afon Goch Dulas (Western Wales RBD), Clywedog (Dee RBD), Wye, 

Yeo, Axe (Severn RBD), Fal, Fowey, Tamar (South West RBD), Newlands Beck 

(North West RBD) and Glenridding Beck (Solway-Tweed RBD). 

Metal contamination of river sediments has been extensively studied in the United 

Kingdom (Byrne et al., 2010; Shepherd et al., 2009; Hudson-Edwards et al., 

1998; Owens et al., 1999; Hudson-Edwards et al., 1999b; Miller et al., 2004; Low 

et al., 2005; Tame et al., 2017). High concentrations of bismuth (Bi), cobalt (Co), 

gallium (Ga), lithium (Li), molybdenum (Mo), niobium (Nb), antimony (Sb), tin 

(Sn), vanadium (V), Yttrium (Y), zinc (Zn) and zirconium (Zr) have been reported 

in the uppermost zones of the River Swale. Similarly, high concentrations of Ag, 

Ba, cadmium (Cd), manganese (Mn), nickel (Ni), Pb, strontium (Sr) and Zn have 

been also found in the downstream tributaries of this river (Dennis, 2005). 

Likewise, elevated concentrations of calcium (Ca) and copper (Cu) were 

observed in the area of Richmond a town located on the River Swale while high 

levels of Ca and magnesium (Mg) were also found in the Vale of York located in 

Yorkshire (Stanley, 1998).  

It is known that the pollution of rivers by metals include a variety of negative 

impacts on sedimentological and hydrological processes that in turn could 

influence the ecology and biology of certain species (Byrne et al., 2012). The 

River Swale is an example of these impacts. In this area, native plants species 

have been reduced in population number and animals such as sheep have 

suffered health impairment due to the ingestion of toxic metals accumulated in 

plants (Allcroft, 1956; Brewer et al., 2005). Despite this finding, studies 

concerning metal uptake in this zone are still scarce (Dennis, 2005).  

In relation to mining pollution in the river Wharfe, Neal et al. (1997) reported 

concentrations of dissolved Pb (1.51 g/l) and Zn (16.7 g/l). In one of the 

tributaries of Hebden Beck, elevated metal concentrations of dissolved Zn (2,003 

g/L), Ba (971 g/L), Pb (183 g/L) and Cd (12 g/L) have been reported in the 
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area in recent years (Jones et al., 2013).  As a consequence, the status of surface 

water in Hebden Beck has been reported as moderate regarding ecological and 

biological criteria based on the assessment of chemical and physicochemical 

parameters, and the status of macroinvertebrates and algae communities; while 

for ground water the overall chemical status was poor (Barber, 2014). Thus, 

strategies for the systematic identification and prioritisation of polluting sites for 

remediation based on robust scientific evidence are essential for the effective, 

defensible deployment of public funds. 

1.3. Environmental services of the Wharfe catchment 

The Wharfe catchment is generally rural with small, scattered settlements. The 

Upper Wharfedale is similar to other areas at the Pennine uplands and the 

Yorkshire Dales National Park where agriculture is primarily sheep grazing. It is 

extensively used for public water supply and irrigation, both from reservoirs and 

by river abstraction. At the same time, this catchment offers a number of 

recreation opportunities including water-based activities like coarse fishing, 

canoeing and boating. In addition, bankside recreation is also common such as 

bird watching, riverside walking, cycling and trekking (North Pennines AONB 

Partnership, 2013).  

The Wharfe catchment has 50 natural water bodies and 24 that are artificial or 

heavily modified. In 2009, 17% of its rivers achieved good or better ecological 

status/potential.  For biological status, 24% of rivers reached good/better status, 

24% presented poor status and 9% bad. Water quality failures are mainly 

attributed to diffuse pollution (e.g. agriculture, mining) and point source 

discharges (e.g. water industry sewage works). Physical modification of water 

bodies for storage, supply and flood protection also play an important role in the 

status of this catchment (North Pennines AONB Partnership, 2013; UK-

Environment Agency, 2015).  

1.4. Overview of UK environmental directives  

Legislation governing the mining industry has grown over the years. This has 

often followed a major event or disaster which has led to calls for specific 

legislation to control or eliminate certain operations within the industry (Hering et 
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al., 2010). In Britain, legislation is ratified by Acts of Parliament; these are further 

refined by Regulations, which explain, extend or amend the parameters to which 

the relevant Act will apply. Early environmental protection legislation in the United 

Kingdom included the Rivers Pollution Prevention Acts of 1876 and 1893, which 

were introduced to control the discharge of metals from mining activities into the 

fluvial environment (Haworth, 1906). 

As the mining industry flourished in different places of the country, additional 

legislation was created to ensure planning for abandoned mines (e.g. The Coal 

Mines Regulation Act and Metalliferous Mines Regulation Act in 1872). 

Regulations to deal with a variety of environmental issues related to abandoned 

mines, water and atmospheric pollution were promoted by the Control of Pollution 

Act (COPA) in 1974.  Later, the Water Law was consolidated in 1989 and updated 

to create the Water Industry Act in 1991, Water Industry Act in 1999, and the 

Water Act in 2003 (Hallett et al., 1991). The Environment Agency was created in 

1996 according with the Environment Act from 1995 for protecting and improving 

the condition of the environment in England. 

Between 1990 and 2010, several improvements were promoted within the 

European environmental legislation. The creation of Regulatory Bodies and 

Directives e.g. the integration of many European directives, including: the Water 

Framework Directive (2000/60/EC), Marine Directive (2008/56/EC), Groundwater 

Directive (2006/118/EC), Nitrate Directive (91/676/EEC), and Pesticide Directive 

(2009/128/EC) helped to ensure the responsible use of natural resources and 

contribute to the basis for UK regulations (Hering et al., 2010). 

1.4.1. UK Water Framework Directive  

The European Water Framework Directive (WFD) came into force in December 

2000 and became part of UK law in December 2003 (European Commission, 

2003a).  This legislation promotes the achievement of a good ecological and 

chemical status in all inland, estuarine and coastal waters by 2015. It also 

provides the basis to improve the water environment through the implementation 

of River Basin Management Plans (RBMPs) within the administration of the River 

Basin Districts (RBD) (UK-Environment Agency, 2015).  
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In this context, water quality status is described in the RBMPs (UK-Environment 

Agency, 2015). For the RBMPs, the characteristics of water bodies are measured 

by using biological, chemical and physical standards (UK-TAG, 2009). For 

surface water status two criteria are considered, the ecological and the chemical 

status. The ecological status is assessed according to: i) biological quality (e.g. 

fish, benthic invertebrates, and aquatic flora), ii) general chemical and physico-

chemicals quality (e.g.  specific pollutants, temperature, oxygenation, nutrients) 

and iii) hydromorphological quality (e.g. river bank structure). The chemical status 

is defined by Environmental Quality Standards (EQS) which are based on 

laboratory toxicity tests from a “priority list of substances”, providing scientific 

criteria for chemical regulations (e.g. heavy metals) (Figure 1.4).  

For groundwater bodies, the classification approach is different from surface 

water bodies. Each groundwater body requires the classification for its chemical 

and its quantitative status. Both have to be classed as either 'good' or 'poor'. 

Chemical status indicates the effects of pollutants in groundwater while 

quantitative status indicates the impacts from human activities like changes in the 

groundwater flows for water abstraction to other water bodies (UK-TAG, 2008). 

In addition, the ecological quality in rivers is assessed by the River Invertebrate 

Prediction and Classification System (RIVPACS) using data from invertebrate 

samples. RIVPACS predicts the river invertebrate community that would be found 

at a site by reference to a database of river sites considered to be the best 

available of their type. 

Assessing the ecological quality as part of water management has inherent 

difficulties. This is because the value of ecological quality (assumed as the ways 

in which the natural environment supports human well-being), is often not fully 

understood or measured to the extent that supports environmental regulations 

(e.g. WFD implementation) (Vlachopoulou et al., 2014). Thus, better 

demonstration and communication of the benefits of water-related regulations 

and the impact of good ecological quality on people's lives is greatly needed 

(European Commission, 2003b). This becomes a very challenging task that will 

require appropriate strategies, often time-consuming but essential for an 

integrated assessment, monitoring and remediation of water bodies (particularly 
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catchments polluted by point and diffuse sources of metal pollution) for the 

genuine achievement of WFD goals. 
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Figure 1. 4. Schematic representation of how results for different quality elements are combined 
to classify ecological status, chemical status and surface water status as required by the WFD. 
Key: "H" means high; "G" means good; "GH" means good or better; "M" means moderate; "P" 
means poor; "B" means bad; and "F" means failing to achieve good surface water chemical status. 
Surface water status is determined by the poorer of ecological and chemical status; thus if 
ecological status is good but chemical status is failing to achieve good, then overall surface water 
status class is "moderate" (UK-TAG, 2009).  
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1.5. Water quality monitoring programmes 

In the United Kingdom the national responsibility for the control of pollution in all 

inland and coastal waters is divided into three regions: England and Wales, 

Scotland and Northern Ireland. For the case of England and Wales, the National 

Rivers Authority (NRA) formed in 1989 was responsible for maintaining and 

improving water quality and for pollution control, water resources, flood defence 

and fisheries, navigation, conservation and recreation. In July 1992, the UK 

Government announced the formation of a single Environment Agency by 

amalgamating the duties of the NRA with the regulation of solid waste and the 

on-site control of polluting industrial processes (Davies and Gee, 1993). The 

Environment Agency is sponsored the Department of Environment, Food and 

Rural Affairs (DEFRA), that amongst other activities supports a national database 

of chemical and biological water quality monitoring from around 7,000 sites 

across England and Wales (UK-Environment Agency and Water UK, 2013). 

The monitoring of water bodies in the United Kingdom, particularly within England 

and Wales has a long history and has typically been divided into three aspects of 

management: quality, quantity and physical structure. One of the long term 

monitoring programmes is the Harmonised Monitoring Scheme (HMS), 

established in 1974 to provide an archive of water quality data, including long-

term trends of some determinands (e.g. nutrients and heavy metal) entering the 

river environment. The HMS is administered by the Environment Agency in 

England and Wales, and in Scotland by the Scottish Environment Protection 

Agency (SEPA). It includes 230 sites located at tidal limits of major rivers or at 

the confluence points of important tributaries.  

In 1980, studies about the impact of acid waters on the biology of rivers promoted 

the establishment of the Acid Water Monitoring Network (AWMN). Since 1988, a 

database of chemical, physical and biological parameters had being developed 

at twenty two sites in the UK. This network provides a long-term, high-quality 

chemical and biological record to assess surface water acidity and their aquatic 

associated effects (Patrick et al., 1996). In addition, the Land Ocean Interaction 

Study (LOIS) was designated for water quality monitoring and provided the 
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opportunity to consider the relationships between land use and water quality 

(Leeks and Jarvie, 1998; Neal and Davies, 2003). Considering that water quality 

encompasses many different parameters, including nutrient levels, acid-base 

chemistry, organic pollutants, pathogens, pesticides, industrial and 

pharmaceutical products, suspended sediments, colour and temperature, it is 

difficult to generalise about either the overall direction of change in water quality, 

or the role of ecosystems in regulating it. Thus, historic data about river quality 

can be used to demonstrate significant changes within these ecosystems (Brown 

et al., 1982; Hurley et al., 1996; Beven et al., 2008). 

Monitoring programs have identified approximately 3,525 sites as abandoned 

metal mines with relevant information about their working history and ore 

mineralogy. These valuable bodies of data have been used to inform the 

management of abandoned mines which are considered as the most significant 

pollution threats in the UK. Despite these efforts there are still substantial gaps in 

some regions. Thus, the Coal Authority was established in 1994 to manage the 

effects of past coal mining and non-coal mining, like water pollution and other 

mining legacy issues.  In addition, they are also responsible for managing 

remediation trials such as passive systems (e.g. Force Crag in the Lake District 

National Park) where metals are removed without the need for added energy or 

chemicals. Mine water passes through a compost mixture where microbial activity 

binds the metals as sulphides, before discharging through a small wetland. 

1.6. Methods applied to study metal sources, behaviour and 

bioavailability  

The study of metal contamination in rivers requires the measurement of different 

parameters in situ and ex situ and the use of multiple techniques. To understand 

the underlying conditions determining behaviour and fate of metals, the in situ 

parameters to be measured should include pH, water temperature, dissolved 

oxygen, water conductivity, turbidity, flow, major ions, dissolved organic carbon  

and free metal ions (Nieto et al., 2007; Mohiuddin et al., 2010). 

With regard to free metal ions they typically represent a minor component of total 

metal species. These ions form complexes with inorganic and organic ligands 
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showing different physical properties, such as charge, size, and diffusion 

coefficient. The formation of these ion-complexes in natural waters can have a 

major effect on the rates of redox processes, mineral solubility and biochemical 

availability (Li et al., 2005). These forms of metal can be measured using in situ 

devices such as ion-selective electrodes (ISE) consisting of a reference 

electrode, ion-selective membrane and voltmeter for determining the 

concentrations of various cations and anions in aqueous solutions, and the 

Donnan membrane techniques (DMT) that use an exchange membrane to 

measure free ion concentrations based on the principle of the Donnan membrane 

equilibrium (Temminghoff et al., 2000; Di Toro et al., 2001). In the 1990s a novel 

technique was developed called Diffusive Gradient in Thin films (DGT) which has 

been applied to measure the contaminant levels in several river ecosystems. 

DGT has the advantages of being a multi-element method and providing a time-

averaged concentration (Han et al., 2013). This method is considered a robust in 

situ monitoring tool for labile metal species. It provides information of solute 

concentrations and their dynamics (mobility and kinetics) in sediments, soils and 

water (Davison and Zhang, 1994; Zhang et al., 1998; Zhang, 2004; Zhang and 

Davison, 2015).  For accumulating metals DGT employs a three-layer system 

consisting of: i) a Chelex resin-impregnated hydrogel layer; ii) a polyacrylamide 

hydrogel diffusion-layer; and iii) a filter membrane. The Chelex resin is selective 

for inorganic metal species and provides a labile fraction of pre-concentrated 

metals in solution (Zhang and Davison, 1995) (Figure 1.5).  

Water passes through the filter membrane (pore size = 0.45 m) which protects 

the fragile polyacrylamide layers and isolates them from particulate matter. Metal 

species in water are transported through the diffusion boundary layer (DBL) and 

the diffusive gel. Finally, the Chelex resin gel (a strong metal complexing agent) 

serves as a sink for labile inorganic metal species (Zhang and Davison, 2000). 

After retrieval this resin is removed for mass analysis of metals. Metal 

concentrations can be calculated using the equation shown in figure 1.6.  

In relation to ex situ parameters one of the most important is the measurement of 

chemical metal forms (total, dissolved and particulate). This measurement is 

frequently performed using a Thermal Ionization Mass Spectrometry (TIMS) or 
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Inductively-Coupled Plasma Mass Spectrometry (ICP-MS) both of which identify 

major trace metals (Becker and Dietze, 1998). 

Inductively-Coupled Plasma Mass Spectrometry (ICP-MS) has been widely used 

over the years in a number of different fields including analyses of drinking water, 

of wastewater, of natural water systems, in hydrogeology, geology and soil 

science, mining/metallurgy, food sciences, and medicine (Montaser, 1998; 

Moens, 1997; Panday et al., 1996; Pröfrock and Prange, 2012). This technique 

has the ability to carry out rapid multi-element determinations at ultra-trace level 

for a wide variety of elements (Brown and Milton, 2005). It separates ions 

according to their mass and from their charge ratio calculates ion concentrations. 

All elements can be simultaneously analysed quickly (seconds) and low limits can 

be detected (Greenfield et al., 1992). The system comprises five basic steps: i) 

generation of an aerosol from the sample, ii) ionization of the sample in the 

inductively couple plasma source, iii) extraction of ions from the sampling 

interface, iv) separation of ions according their mass, and v) detection of ions and 

calculating  metal concentrations (Figure 1.7). 

In addition, other chemical measurements are applied for the better 

understanding of metal mobility and toxicity. For example, the analysis of 

dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) provide 

the amount of carbon species in solution by using the Total Carbon Analyzer. 

Cation-anion analysis is commonly performed by Ion Chromatography which has 

been approved by many standard or regulatory organizations in numerous 

countries for testing environmental samples (EPA, 1997).  
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Figure 1. 5. Schematic representation of a DGT device: (a) parts of a device and (b) sections 
through the device: i) Resin: Chelex resin, ii) Diffusive layer: polyacrylamide hydrogel, and iii) 
Filter membrane (Zhang and Davison, 1995). 

 

Equation(1) 

CDGT = mΔg/DAt  

 

 

Figure 1. 6. Equation for quantification of metal concentrations. Where m is the mass on the resin 
gel, Δg is the thickness of the diffusion gel, D is the diffusivity of metal ions through the gel, A is 
the surface area of the gel, and t is the total time deployed. From Zhang and Davison (1995). 
 

 

Figure 1. 7. Scheme of the analytical phases in ICP-MS (Source: http://www.thermo.com ). 
 

a)    b) 

http://www.thermo.com/
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The growing interest in the ability to anticipate pollution scenarios and design 

management strategies for the minimisation of environmental impact have 

resulted in the development of several models (e.g. PHREEQC, BLM, WHAM). 

For instance, PHREEQC (Parkhurst and Appelo, 1999) is a geochemical model 

that simulates a variety of geochemical processes including equilibrium between 

water and minerals, ion exchangers, surface complexes, solid solutions, and 

gases. The general formulation allows modelling of non-equilibrium mineral 

dissolution and precipitation, microbial reactions, decomposition of organic 

compounds, and other kinetic reactions (Charlton and Parkhurst, 2011). This 

geochemical modelling has been applied in several fields, including 

environmental protection and remediation (Caruso et al., 2008; Obiri-Nyarko et 

al., 2015). Speciation models estimate element distributions on the basis of 

known or postulated chemical reactions (Turner, 1995). The Biotic Ligand Model 

(BLM) postulates a single binding site of toxic action (the biotic ligand).  BLM 

depends on the site-specific water quality including parameters such as pH, 

temperature and organic-inorganic complexes with other abiotic factors such as 

cationic competition (e.g., Na+, K+, Ca2+, Mg2+) (Di Toro et al., 2001; Heijerick et 

al., 2002) (Figure 1.8). 

Over the last years, BLM has been focus of extensive technical reviews and 

laboratory tests due to its applicability in the regulatory framework (Santore et al., 

2001; Niyogi and Wood, 2004). The BLM has contributed to the improvement of 

metal Environmental Quality Standards (EQS) estimated from total metal 

concentrations and laboratory toxicity data (when field situations are poorly 

representative) for chemical and ecological assessment. The BLM provided 

relevant measurements of metal risk, reducing background concentrations, 

toxicity of metal forms and the specific metal response to water quality (e.g. The 

Netherlands 2004, Denmark 2007). The US Environmental Protection Agency 

has used this model to outline Ambient Water Quality Criteria (AWQC) in surface 

water and to revise freshwater acute criterion (e.g. Cu BLM) (EPA, 2007). 

Equally, the UK Environment Agency has tested the use of BLMs within a 

regulatory framework, offering a practical approach for assessing metal 

bioavailability (e.g. metal bioavailability assessment tools, M-BATs). Moreover, 
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groups from the metal industry have also adopted this tool to accompany existing 

substances regulations (793/93/EEC) (Johnston et al., 2008).  

Many analytical techniques are available but rarely can determine a complete 

metal species distribution. Over the years, speciation models have been 

improved to estimate the metal forms that are bioavailable in freshwaters and 

soils (Lofts and Tipping, 2011; Pérez-Esteban et al., 2014; Farley et al., 2015). 

Furthermore, humic substances are recognized to have an important role in metal 

speciation (Tipping, 1994). These substances are produced by biodegradation of 

organic matter and they can be divided into three main fractions: humic acids 

(HA), fulvic acids (FA), and humin (Hessen and Tranvik, 2013). Generally, they 

have the ability to form chelate complexes with ions such as Mg2+, Ca2+, Fe2+ and 

Fe3+. Chelate complexes are important factors for regulating metal ion 

bioavailability. 

Geochemical speciation models have been upgraded for aquatic environments 

dominated by humic substances. In this respect, the Non-Ideal Competitive 

Adsorption (NICA) coupled with a Donnan electrostatic sub-model uses a 

continuous distribution approach to describe metal and proton bindings to organic 

matter (Benedetti et al., 1995; Kalis et al., 2006). Additionally, the programme 

called Windermere Humic Aqueous Model (WHAM) is based on two components: 

i) the Humic Ion-Binding Model established by interactions of protons and metals 

with natural organic matter and ii) other models based on mineral oxides, 

inorganic solution chemistry, cation-exchange and fulvic acid reactions (Tipping 

and Hurley, 1992). To calculate metal speciation WHAM assumes 

thermodynamic and chemical equilibrium and uses a number of water chemistry 

parameters (e.g. pH, dissolved organic carbon-DOC, cation concentrations, and 

anion concentrations) (Tipping, 1994). 

The original version of WHAM has been improved in recent years. The latest was 

the inclusion of a wider range of parameterised data obtained from studies on 

metal binding to humic and fulvic acid isolations into the Humic Ion-Binding Model 

section (Tipping, 2005; Tipping et al., 1998; Tipping and Carter, 2011). From this 

advanced dataset, WHAM offers the possibility to close the gap between 

laboratory experiments, field observations and the long-term reactions (i.e. 
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months or years) for predicting chemical speciation and key interactions in field 

situations, and optimising remediation efforts.  In this context, the WHAM model 

has been widely used on studies related to soil solution, ground and surface water 

acidification, trace metal behaviour, lake sediment diagenesis, rare earth 

geochemistry, organic matter solubility, catchment modelling, metal interactions 

with biota, ecotoxicology and critical loads (Hamilton-Taylor et al., 1997; Ferreira 

et al., 1997; Cheng et al., 2005; Tipping et al., 2006a; 2006b). 

Furthermore, the suitability of WHAM offers a relevant approach in research and 

regulatory areas. In the UK, previous versions of WHAM have been critical in the 

development of BLMs for predicting the toxicity of metals to aquatic organisms 

(e.g.  BLM for Copper, Zinc, Nickel and Manganese) (Merrington and Peters, 

2013). However, BLMs have limitations for assessing metal mixtures effects as 

BLMs are based on specific metal-organism interactions, without including all 

dissolved forms of metals. To tackle this restriction, WHAM-FTOX is an alternative 

bioavailability-based model for quantifying mixture toxicity and potential effects 

on aquatic organisms (Stockdale et al., 2010) (Figure 1.9). WHAM-FTOX has been 

applied in several studies for predicting metal toxicity to aquatic biota (e.g. 

freshwater macroinvertebrates and zooplankton species) (Tipping and Lofts, 

2013; 2015; Stockdale et al., 2010; 2014; Qiu et al., 2015). 
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Figure 1. 8. Schematic of BLM presenting chemistry, physiology and toxicology. Modified from 
Paquin et al. (2002). 

 

 

Figure 1. 9.  Principles used by BLM, WHAM and WHAM-FTOX. Modified from Di Toro et al. (2001). 
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1.7. Metal remediation in freshwater 

Metal remediation depends on site characteristics such as: concentration, 

pollutants forms, contaminated medium and resource end use (Mulligan et al., 

2001). Mine water treatment technologies have been reviewed extensively 

(Brown et al., 2002; Lottermoser, 2010; Younger, 2000). Remediation 

methodologies for mine water can be categorized generally into active and 

passive treatment. Active technologies use electrical energy and mechanized 

procedures requiring constant monitoring and maintenance (Jarvis et al., 2007). 

Passive systems use natural energy such as topographical gradient, metabolic 

energy and photosynthesis to drive remediation processes, reducing operation 

and maintenance costs (Pulles and Heath, 2009). Thus, passive techniques such 

as ion-exchange, adsorption, precipitation and membrane filtration are frequently 

used for the removal of heavy metal from wastewater (Barakat, 2011; Younger, 

1998).  

Metal contaminants released from mining and processing operations and 

entering river systems have given rise to remediation problems. Long-term metal 

contamination of bed and floodplain sediments affect the river water quality over 

extensive distances (Ciszewski et al., 2012). Thus, in recent years, methods for 

heavy metal remediation have been performed based on water quality 

understanding and by integrating ecological processes. Ultimately, the selection 

of the most suitable techniques depends on availability of capital investment, 

functioning costs, design flexibility, reliability and environmental impacts (Fu and 

Wang, 2011; Birch, 2011). 

In the UK, various remedial technologies have been trialled for circumneutral 

metal mine drainage (pH from 5.5 to 7.4) (Nuttall and Younger, 2000; Younger, 

2000; Mayes et al., 2009a; Jarvis, 2014). However, remediation measures in 

historical mining areas are still a challenge. One full-scale mine water treatment 

plant has been built at the Wheal Jane tin mine in Cornwall which was abandoned 

in 1992. Additionally, in the Lake District experts have designed a vertical flow 

pond, which uses compost and limestone to treat metal-rich water from an ancient 

mine called Force Crag. Other pilot-scale treatments have been built in Wales, 
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Cornwall and the North Pennines to assess the feasibility of treatment by different 

methods (Johnson and Hallberg, 2005; Johnston et al., 2008). 

In Hebden Beck, the presence of extensive tailings turns the diffuse metal 

pollution in a major issue particularly under higher flow (Jones et al., 2013). 

Passive remediation has been suggested as a potential approach for this 

catchment (Baxter, 2015). However, in conservation areas, remediation systems 

fail the challenge of how to achieve a balance between water quality 

improvements, the protection of endemic metal-tolerant species and the 

conservation of historic structures with archaeological significance (Potter et al., 

2004; Rolston et al., 2017). Thus, mining remediation schemes offer the 

opportunity to involve technical experts and the community. Through this 

integration, local engagement will be encouraged by understanding basic metal 

mitigation approaches and will motivate the protection of remediation structures 

(Tindale, 2014; Hu, 2011; DEFRA, 2013).  

1.8. Site selection process  

Sites were selected from the most mining impacted area, covering approximately 

5 km2 of Hebden catchment (12 km long) including point and diffuse sources 

flowing downstream from mine sites (Figure 1.10). Sixteen sampling sites were 

chosen for water sampling representing the main channel, minor and major 

tributaries, and a source pool feeding a tributary. Eight of these sites (about 3.3 

km) were part of a water quality monitoring programme conducted by the 

Environment Agency (Barber, 2014). The other eleven sites were selected based 

on their proximity to mine wastes (e.g. tailings and spoils) (Table 1.5). Monthly 

sampling campaigns were carried out from November 2013 to December 2014. 
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Figure 1. 10. Main catchment features. Panel a, represents diffuse source of metal pollution 
(ephemeral tributary). Panel b, corresponds to a point source. Panel c represents the main 
channel.
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Table 1. 5. Sampling sites along Hebden Beck. Table indicates type of sample, site elevation, coordinates, and distance from River Wharfe. Sites are 
listed from upstream to downstream. Locations adopted from the Environment Agency monitoring programme are indicated with (*). 

Site ID Site Description Type of sample Elev. 

(m) 

Coordinates From R. 
Wharfe (m) 

East North 

H15 Head water reservoir (Next-smelt mill) Water 368 402798 466766 4970 

GM Grassington moor, spoil wastes Spoil 380 403014 466663  

H14 Perennial tributary (Coalgrove Beck) water, sediment 294 402413 466106 4207 

H13 Ephemeral tributary Water 287 402443 465931 4030 

B1 Beaver, spoil wastes (from heap) Spoil 320 402087 465660  

B2 Beaver, spoil wastes (silt runoff) Spoil 317 402163 465630  

H12 Ephemeral tributary (downstream-Yarnbury mine-Beaver spoil) water, sediment 285 402451 465822 3921 

H11 Perennial tributary (Loss Gill Dike) Water 278 402597 465578 3637 

H10* Main channel water, sediment 267 402656 465324 3377 

H9* Perennial tributary (Bolton Gill) Water 266 402661 465285 3338 

H8* Ephemeral tributary (from-Yarnbury mine) Water 268 402632 465176 3226 

H7* Perennial tributary (Adit) – Bolton Haw Water 266 402648 465164 3206 

H6* Main channel Water 257 402630 464916 2958 

H5* Perennial tributary (Duke’s adit) Water 256 402638 464793 2836 

H4 Ephemeral tributary (Waterfall) Water 254 402668 464604 2645 

H3* Perennial tributary (Laneshaw adit) Water 246 402632 464550 2580 

H2* Main channel at gauging station Water 235 402488 464275 2271 

H1P Perennial tributary water 233 402382 464104 2071 

H1 Main channel - Confluence R. Wharfe water, sediment 152 402695 462400 140 
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1.9. Aim and specific objectives 

The overall aim of this research is to assess metal contamination derived from 

historical mining by evaluating sources, mobility and toxicity in river to support 

management strategies for improving water quality status. Specific objectives are 

formulated below. 

 Understand how geochemical processes control the concentration and 

mobility of dissolved metals in neutral-rich drainage.  

 Evaluate metal speciation and potential bioavailability to determine 

ecotoxicological risk. 

 Examine the effects of episodic rainfall events on metal fluxes and any 

consequential effects on ecotoxicity. 

 Assess the public perception about water quality of Hebden Beck. 

1.10. Thesis Outline 

In Chapter 2, I have characterized the metal pollution of the Hebden catchment. 

Using mineralogical analysis and geochemical modelling, mineral sources 

controlling weathering reactions and metal mobility were identified. Key chemical 

relationships in neutral mine drainage were identified. Furthermore, the effect of 

seasonal trends in metal concentrations were evaluated.  

In Chapter 3, I assessed the distribution of different metal forms and interactions 

with organic and inorganic compounds, including toxic effects to organisms. In 

addition, I evaluated current metal assessment techniques using water chemistry, 

together with speciation and toxicological predictions for assessing river water 

quality and ecotoxicological effects. This appraisal supported the use of 

bioavailability-based approaches and their applicability for future metal risk 

assessments.  

In Chapter 4, I evaluated the effects of episodic rainfall in catchments with 

historical metal mining areas. These events might produce metal-rich runoff 

having greater impacts on river water quality than base flow. Here I provide a 

timely analysis of the water chemistry and processes associated with deposition 

and remobilisation of metals during episodic rainfall events. These findings could 
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be applied in the assessment of streams draining other spoil waste areas with 

similar geochemical conditions and inform future management strategies. 

In Chapter 5, I appraised the public perception (residents, visitors and 

stakeholders-regulator) of the river water quality of Hebden Beck. In addition, I 

explored public views about potential remediation techniques. The results 

reflected the deficient translation of technical knowledge from regulators to the 

public. Regarding remediation approaches, this study was focused on public 

perceptions rather than operational aspects, thus outcomes could provide an 

insight into preferred remediation techniques and a local involvement in the 

protection of the river ecosystem. 

In Chapter 6, the main findings from chapters 2–5 are drawn together and 

discussed. This section contains further in-depth critical analysis of the results 

and places them in the context of the literature. Finally, the overall conclusions 

from the thesis are summarised.
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Abstract  

Point and diffuse pollution from metal mining has led to severe environmental 

damage worldwide. Mine drainage is a significant problem for riverine 

ecosystems, it is commonly acidic (AMD), but neutral mine drainage (NMD) can 

also occur. A representative environment for studying metal pollution from NMD 

is provided by Carboniferous catchments characterised by a circumneutral pH 

and high concentrations of carbonates, supporting the formation of secondary 

metal-minerals as potential sinks of metals. The present study focuses on 

understanding the mobility of metal pollution associated with historical mining in 

a Carboniferous upland catchment. In the uplands of the UK, river water, 

sediments and spoil wastes were collected over a period of fourteen months, 

samples were chemically analysed to identify the main metal sources and their 

relationships with geological and hydrological factors. Correlation tests and 

principal component analysis suggest that the underlying limestone bedrock 

controls pH and weathering reactions. Significant metal concentrations from 

mining activities were measured for zinc (4.3 mg/l), and lead (0.3 mg/l), attributed 

to processes such as oxidation of mined ores (e.g. sphalerite, galena) or 

dissolution of precipitated secondary metal-minerals (e.g. cerussite, smithsonite). 
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Zinc and lead mobility indicated strong dependence on biogeochemistry and 

hydrological conditions (e.g. pH and flow) at specific locations in the catchment. 

Annual loads of zinc and lead (2.9 and 0.2 tonnes/year) demonstrate a significant 

source of both metals to downstream river reaches. Metal pollution results in a 

large area of catchment having a depleted chemical status with likely effects on 

the aquatic ecology. This study provides an improved understanding of geological 

and hydrological processes controlling water chemistry, which is critical to 

assessing metal sources and mobilization, especially in neutral mine drainage 

areas.  

2.1. Introduction  

Anthropogenic activities have become an important driver of the global 

biogeochemical cycling of metals. Present day and historical mining have caused 

the release of heavy metals into fluvial environments. Globally, pollution from 

metal mining has led to severe damage to riverine ecosystems in many 

catchments (Horowitz et al., 1993; Macklin, 1996; Hudson-Edwards et al., 1999; 

Nagorski et al., 2002; Miller et al., 2004; Fernandes et al., 2016). In the United 

Kingdom, old mines from the 18th and 19th centuries represent the major diffuse 

source of metals having an adverse effect on aquatic ecosystems (Macklin, 1997; 

Hudson-Edwards, 2003; Olıás et al., 2004; Oulton et al., 2014). Rivers draining 

these mining areas are heavily affected by metal pollution as mineral veins 

present elevated concentrations of lead and zinc ores with variable 

concentrations of cadmium, barium and fluorine (Hudson-Edwards et al., 1997).  

Water chemistry in surface waters are particularly vulnerable to biogeochemical 

and hydrological processes which are controlled by seasonality (Warren and 

Haack, 2001; Byrne et al., 2012; Jones et al., 2013). In this context, knowledge 

about metal mobility in natural water systems is extremely complex (Luoma, 

2008). Biogeochemical partitioning of metals results in a diversity of forms. Within 

the dissolved phase metals are present as hydrated free ions, and associated 

with organic and inorganic complexes. Within the suspended particulate phase, 

metals may be complexed with inorganic or organic particles and biota or be 

present as discrete metal minerals. Adsorption and desorption of metals depend 
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on a number of factors including pH, redox conditions, mineral ore sources and 

the composition of suspended particulate matter. For this reason, developing an 

improved understanding of the mechanisms determining the mobility and toxicity 

of metals within aquatic ecosystems is a key issue, which can in turn support 

efforts to manage or mitigate pollution (Elder, 1988).  

Several countries have developed guidelines to obtain good ecological and 

chemical status of and ground waters (Apitz et al., 2006). In the European Union 

(EU), the implementation of the Water Framework Directive (WFD) obliges 

member states to assess surface waters through improved catchment scale 

management (River Basin Management Plans, RBMPs). However, surface water 

bodies such as headwater streams have been excluded from early RBMPs due 

to their small size. Studies from Freeman et al. (2007), Dodds and Oakes (2008), 

and Meyer et al. (2007) have shown the importance of these waterbodies as 

biodiversity richness, migration corridors, origin of stream networks and diffuse 

source of chemicals. Consequently, sound management is crucial for maintaining 

ecosystem health in higher order streams that are targeted by the WFD aims. 

A serious environmental hazard caused by mining is the generation of acid mine 

drainage (AMD). Mine drainages, spoil wastes run-off and spoil erosion 

constantly discharge large amounts of dissolved and particulate metals through 

AMD, representing a persistent and acute pollution source and reducing water 

and sediment quality (Mayes et al., 2009; Byrne et al., 2012; Jones et al., 2013). 

Studies of mine wastes chemistry have identified two types of mine effluents, acid 

mine drainage (low pH and high concentration of dissolved sulphate) and 

circumneutral mine drainage (major ion concentrations reflect the mineralogy of 

the catchment bedrock) (Banks et al., 2002; Akcil and Koldas, 2006). Thus, mine 

drainage is dependent on the geologic setting, local water chemistry, kinetic 

rates, and permeability of ore and gangue minerals (Navarro et al., 2015; Plumlee 

et al., 1999; Cravotta Iii, 2008a; Cravotta Iii, 2008b; Sánchez España et al., 2005). 

Mine drainage flowing through Carboniferous limestone host rock is consequently 

metal-rich but with a circumneutral pH (Byrne et al., 2012; Jones et al., 2013). 

Research from Lindsay et al. (2009) and Desbarats and Dirom (2007) indicates 

that circumneutral mine drainage might support natural attenuation of some 
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metal-sulphides (e.g. ZnS, PbS) through the precipitation of secondary minerals. 

Consequently, catchments under these conditions may be more vulnerable to 

environmental harm due to changes in geochemical or hydrological conditions, 

producing high pulses of dissolved metal concentrations or long leaching 

processes in response to decades of chemical weathering (Heikkinen et al., 

2009; Lottermoser, 2010).  

Another long-standing metal pollution problem is physical and chemical 

mobilisation of metals through the passive dispersal and active transformation of 

abandoned tailings, spoil heaps, bed sediments and contaminated floodplains. 

Studies on metal transportation from mine wastes have reported the mobility of 

metals over long distances as free ions and complexed forms within rivers. In 

addition, solid phases can be stored within floodplain deposits for decades to 

millennia (Miller, 1997; Gosar et al., 1997; Hudson-Edwards, 2003; Hudson-

Edwards et al., 2005; Cave et al., 2005; Taylor and Hudson-Edwards, 2008). In 

an area of the UK with Carboniferous bedrock, the north Pennines, historical 

metal mining has directly affected surface and subsurface floodplain soils with 

heavy metal concentrations above background levels (Johnston et al., 2008). 

Specifically, the Yorkshire Ouse basin which drains the Pennine Orefield is 

estimated to contain 620 million tonnes of lead and 640 million tonnes of zinc 

stored within its floodplains (Hudson-Edwards et al., 1999). Given the large 

differences in chemistry between acid and circumneutral mine drainage, 

particularly in the concentrations of protons and of Fe and Al whose solubility is 

controlled by pH, there will be significant differences in the degree of availability 

of metal forms that can interact with aquatic organisms. This necessitates 

dedicated studies of such Carboniferous catchments. 

This study aims to understand metal occurrence and mobilisation in a 

Carboniferous limestone upland catchment impacted by former lead and zinc 

mining. Comprehensive water monitoring and analysis of sediment and spoil 

samples are used to describe the effects of historical mining on a whole small 

river catchment in the northern Pennines region of North Yorkshire, UK. We 

sought to provide a better understanding of how geochemical processes control 

the concentration and mobility of dissolved metals in neutral metal-rich drainage. 
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The results have wider implications for management strategies of potential 

environmental harm in such catchments. 

2.2. Site characteristics of Hebden Beck 

2.2.1. Lithology and geology  

Hebden Beck is a sub-catchment of the River Wharfe located in the northern 

Pennines region of the United Kingdom and within the Yorkshire Dales National 

Park. Hebden Beck rises from Grassington Moor and is joined by multiple 

tributaries including Coalgrove Beck, Bolton Gill and Loss Gill before the 

confluence with the Wharfe.  It is approximately 12 km long, with the upper reach 

(6.4 km) of the main channel being the most heavily impacted by historic mine 

working. It drains an area of 26 km2 and subsequently flows into the River Wharfe 

which drains the Wharfedale valley. The Wharfe flows into the River Ouse and 

ultimately reaches the sea at the Humber Estuary which is one of the largest in 

the UK (24,750 km2). The geology of Hebden Beck is dominated by Millstone Grit 

sandstone (approx. 20 km2) but crucially also contains bands of Carboniferous 

limestone (approx. 6 km2) (Figure 2.1). The catchment cover comprises 46% 

peatlands, predominantly in the upstream areas, 35% Carboniferous limestone, 

mainly in the south and 19% glacial sediment, predominantly in the west (Barber, 

2014). 

2.2.2. Ore processing and mine wastes 

Hebden’s orefield comprised coal and lead-zinc mineral deposits, where galena 

(PbS) is the most common mineral, but with associated sphalerite (ZnS), 

chalcopyrite (CuFeS2), barite (BaSO4), fluorite (CaF2) calcite (CaCO3) and 

witherite (BaCO3) (Barber, 2014). These minerals occur mostly in vertical veins 

along fault planes. Early mine workings were open cuts and shafts to extract 

deeper layers of lead ore. In later years until around 1850, the hushing method 

was used to scour away the soil using the erosive power of water to expose 

mineral veins. This method required the construction of dams to control streams, 

and manmade channels to divert water. Horizontal drainage levels (adits) were 
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driven from the valley bottoms to enable deeper working and easier removal of 

minerals. Lead ores were crushed, classified and bagged at the dressing floors 

located at the surface close to the mines, then transported to the smelting mills 

to be processed. Water power was also applied at the dressing floors and smelt 

mills, therefore spoil tips or mine wastes are located next to rivers. Approximately, 

124 mining features exist in the Hebden Beck catchment area, however main 

features are 5 lead-zinc mines, 15 adits, 7 spoil tips and 4 smelters. From 1700-

1900, 1686.5 tonnes of lead were extracted from these mines (Gill, 1993).  

 

Figure 2. 1. Hebden Beck with sampling sites and mine structures located in the Millstone grit and 
Liddesdale-Yoredale bedrock. Blue arrows indicate the direction of flow. 
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2.3. Methods 

2.3.1. Sampling strategy 

Sites were selected from the most impacted area, covering an area of 5 km2 

including point and diffuse sources flowing downstream from mine sites. A total 

of sixteen sites were chosen for water sampling including the main channel, minor 

and major tributaries, together with  a source pool feeding a tributary (Table 2.1). 

Eight of these sites (about 3.3 km) were part of a water quality monitoring 

programme performed by the Environment Agency (Barber, 2014). The other 

eleven sites were selected based on their proximity to mine wastes (e.g. tailings, 

spoils). Monthly sampling campaigns were carried out from November 2013 to 

December 2014.  

2.3.2. Water sampling  

Samples were taken from downstream to upstream (H1 to H15) in order to 

minimise contamination of other sites by disturbance (APHA, 1995). At each site, 

a sample was taken with a pre acid washed (10% HNO3, Nitric acid-Sigma Aldrich 

69% and Milli-Q water) 750 ml polypropylene bottle attached to a plastic pole. 

Four subsamples were then extracted from this bottle. For total metals, unfiltered 

samples were placed individually into a pre-weighted 50 ml tube (polypropylene) 

containing 1 ml of preservation solution (10% HNO3) to reach 1% v/v of the final 

volume and pH ≤ 2 (Apha, 1995; US Environmental Protection Agency and Office 

of Research and Development, 1982).  For dissolved metals analysis, samples 

filtered through syringe filters (0.45 m, polyethersulfone-hydrophillic, Sartorius) 

were placed individually into a pre-weighted 50 ml tube (polypropylene). Then 

preservation solution (10% HNO3) was added as used for total metals. For 

quantifying major anions, the sample was filtered (Sartorius syringe filters 0.45 

m, polyethersulfone-hidrophillic) and placed into polypropylene tubes.  For 

inorganic and organic carbon analysis the samples were passed through syringe 

filters (0.45 m, nylon-polypropylene, Avonchem) and placed into polypropylene 

tubes. All samples were kept in a cool box during sampling and transported the 

same day to the laboratory for storage. Samples for major anions analysis were 
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stored frozen at -20C, while samples for all other analyses were refrigerated at 

4C. 

A carbon Analyser (Analytik Jena Multi N/C2100) was used for measuring carbon 

compounds (dissolved inorganic carbon-DIC and dissolved organic carbon-DOC), Ion 

Chromatographer for major cations (Ca, Mg) and anions (Cl-, NO3
-, SO4

2-) (Dionex ICS-

3000), and SEAL Analytical AA3 was used for orthophosphate quantification. For metal 

analysis, nine elements were measured (Pb, Ba, Cd, Sr, Zn, Cu, Fe, Mn, Al), using 

inductively coupled plasma mass spectrometry (ICP-MS; Thermo Fisher iCAPQc) with 

specific limits of detection (Pb: 0.01 g/l, Ba: 0.06 g/l, Cd: 0.01 g/l, Sr: 0.08 g/l, Zn: 

67 g/l, Cu: 0.05 g/l, Fe: 0.11 g/l, Mn: 0.04 g/l, Al: 0.16 g/l). Field blanks (n= 3) and 

replicates (n= 3) were collected at each sampling campaign. 

2.3.3. Sediment and spoil sampling 

Most sites were dominated by large rocks and coarse sediment. Sediment 

samples were collected during a single campaign at specific sites (H14, H12, H10 

and H1) to assess the evolution of mineral composition. Plastic scoops were used 

for their collection by wading along a cross-section of the stream. Sediments were 

sieved through a <250 m stainless steel mesh and transferred into 50ml 

polypropylene tubes. Spoil sampling was carried out at single spoil heaps at 

Grassington Moor (GM) and the Beaver spoil area (B1), in addition a further 

sample was collected at the Beaver spoil area that represented material that had 

been subjected to movement and size sorting by the actions of rainfall events 

(B2). 

In the laboratory, sediment samples were centrifuged at 3200 rpm for 10 mins to 

allow removal of the supernatant. The supernatant was decanted and the 

resulting slurries were placed in a petri dish to air dry. After drying, sediments 

were placed into zip log bags for disaggregation. Spoil samples (B1, B2, and GM) 

were dried to calculate percentage water composition. The surface area was also 

measured to estimate the mineral area available for dissolution reactions. This 

was performed using the Brunauer, Emmett and Teller method (BET; 

Micromeritics Gemini VII 2390a) on 2 g of sample dried overnight under N2 gas 

at 75 °C. In addition, both sediment and spoil samples were analysed by X-ray 
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Diffraction (XRD, Bruker D8-Discover instrument) for determining mineralogy of 

the major constituents and X-ray Fluorescence (XRF, Innovex X-5000) for 

chemical composition. The minimum mineral fractions required for detection on 

this instrument is 2-3%. The standard reference material STSD-3 (stream 

sediment) was used as XRF quality control. 

2.3.4. In situ measurements  

Pre-calibrated multiple sensor probes (Model HQ30d flexi 1032) were used in the 

field to measure pH, dissolved oxygen (DO: mg/l) and conductivity (EC: S/cm). 

Flow rate (m3/s) was calculated from in situ flow velocity measurements (m/s) 

(flow meter: Global 800-876) together with data from river depth (m) and width 

(m). Flow data from the UK Environment Agency gauging station (H2) was also 

obtained from their continuous monitoring records. This flow data together with 

metal concentrations were used for the calculation of annual metal loading and 

comparison with Environmental quality standards (EQS) for freshwater in the UK 

(Barber, 2014). 

 



60 

  

Table 2. 1. Sampling sites along Hebden Beck. Table indicates type of sample, site elevation, coordinates, and distance from River Wharfe. Sites are 
listed from upstream to downstream. Locations adopted from the Environment Agency monitoring programme are indicated with (*). 

Site ID 
Site Description 

Type of sample 

Elev. 

(m) 

Coordinates From R. 

Wharfe (m) East North 

H15 Head water reservoir (Next-smelt mill) Water 368 402798 466766 4970 

GM Grassington moor, spoil wastes Spoil 380 403014 466663  

H14 Perennial tributary (Coalgrove Beck) water, sediment 294 402413 466106 4207 

H13 Ephemeral tributary Water 287 402443 465931 4030 

B1 Beaver, spoil wastes (from heap) Spoil 320 402087 465660  

B2 Beaver, spoil wastes (silt runoff) Spoil 317 402163 465630  

H12 Ephemeral tributary (downstream-Yarnbury mine-Beaver 

spoil) 

water, sediment 285 402451 465822 3921 

H11 Perennial tributary (Loss Gill Dike) Water 278 402597 465578 3637 

H10* Main channel water, sediment 267 402656 465324 3377 

H9* Perennial tributary (Bolton Gill) Water 266 402661 465285 3338 

H8* Ephemeral tributary (from-Yarnbury mine) Water 268 402632 465176 3226 

H7* Perennial tributary (Adit) – Bolton Haw Water 266 402648 465164 3206 

H6* Main channel Water 257 402630 464916 2958 

H5* Perennial tributary (Duke’s adit) Water 256 402638 464793 2836 

H4 Ephemeral tributary (Waterfall) Water 254 402668 464604 2645 

H3* Perennial tributary (Laneshaw adit) Water 246 402632 464550 2580 

H2* Main channel at gauging station Water 235 402488 464275 2271 

H1P Perennial tributary water 233 402382 464104 2071 

H1 Main channel - Confluence R. Wharfe water, sediment 152 402695 462400 140 
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2.3.5. Data analysis  

Geochemical modelling 

The PHREEQC code (version 3) (U.S. Geological Survey (USGS); Parkhurst and 

Appelo, 1999) was used for modelling main geochemical reactions occurring in 

aqueous solutions. This software allows the prediction of mineral precipitation 

that potentially controls the composition of the aqueous phase. Equilibrium 

reactions and thermodynamic constants were retrieved from the built-in 

WATEQ4F database (Nordstrom et al., 1990; Ball and Nordstrom, 1991; Drever, 

1997). Mineral saturation indices and metal free ion activities for hydroxide, 

carbonate and sulphate minerals were calculated for the pH range 3.5-9 and 

based on mean values across our field sites and all sampling dates: temperature 

10 C,  SO4
2- ( : 13592 g/l) and Cl- ( : 7730 g/l). With calculations for carbonate 

minerals the pCO2 was fixed at three times the atmospheric concentration 

(0.0012 atm), consistent with typical supersaturation of this gas in streams. These 

model predictions are compared with metal free ion activities calculated for each 

sampling site and date to investigate the controlling mineral phases. 

 Principal Component Analysis 

Principal component analysis (PCA) was conducted to identify the main factors 

influencing metal distribution. Linear correlation analysis was applied to evaluate the 

relationships among the studied metals, other compounds and in situ parameters.  

Results of Pearson and Spearman tests showed no significant difference between them. 

As such, we report the Pearson correlation, as this test is more sensitive for the 

identification of outliers. Both test were performed using Rstudio (version 3.1.0). 

2.4. Results  

2.4.1. Characterising metal pollution in the catchment 

In water samples, metal concentrations occurred in the following order for total: 

Zn>Fe>Sr>Ba>Pb>Al>Mn>Cd>Cu and dissolved forms: 

Zn>Fe>Sr>Ba>Al>Pb>Mn>Cd>Cu (Appendix 2.1). Two metals, Zn and Pb were 

chosen as the focus for this study based on their significant concentrations 
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derived from mining activities (Table 2.2). Annual pH averages reflected the 

considerable contribution of the underlying limestone bedrock showing a 

dominant circumneutral pH (mean= 6.8) in 80% of the studied sites.  Some sites 

(e.g. H4 and H13) represent moorland runoff with little interaction with underlying 

rock, thus pH is lower (<6.3) due to high DOC and no carbonate buffering. 



63 

  

Table 2. 2. Mean, maxima and minima from water chemical analysis. Metal forms are denoted as 
total (T) and dissolved (D). Description of sites are indicated as main channel (MC), ephemeral 

tributaries (ET) and perennial tributaries (PT). Units are in g/l. Values below the detection limit 
are represented by (b/d).  

Site Description  PbT PbD ZnT ZnD 

H15 

 

Reservoir Ave 316.7 279.6 2058.8 2028.0 

 Max 411.9 423.6 2542.4 2759.5 

 Min 96.3 103.6 722.4 1080.7 

H14 

 

PT Ave 178.3 157.6 1318.6 1397.9 

 Max 292.3 375.5 1778.9 2193.1 

 Min 106.9 75.7 864.7 900.3 

H13 

 

ET Ave 227.1 205.9 260.4 207.4 

 Max 331.3 283.4 1619.8 1435.5 

 Min 141.2 138.0 b/d  b/d  

H12 

 

ET Ave 686.4 284.2 5168.8 4252.3 

 Max 2701.2 439.9 12619.3 7438.4 

 Min 261.8 184.1 66.5 73.6 

H11 

 

PT Ave 64.0 31.6 295.7 410.5 

 Max 765.6 355.2 3493.9 5276.2 

 Min 3.7 b/d b/d  b/d  

H10 

 

MC Ave 108.1 80.7 468.8 444.4 

 Max 268.1 145.2 787.4 777.0 

 Min 11.8 3.1 b/d  b/d 33.5 

H9 

 

PT Ave 28.5 20.8 125.2 95.7 

 Max 171.9 94.3 572.2 518.6 

 Min 12.7 2.0 b/d  b/d  

H8 ET Ave 38.1 19.0 318.5 269.0 

  Max 123.5 28.2 438.3 435.2 

  Min 12.2 5.3 b/d  b/d  

H7 PT Ave 7.7 4.3 3440.2 3220.5 

 Max 21.1 47.7 5425.8 4312.3 

 Min 0.8 b/d  2062.0 1936.7 

H6 

 

MC Ave 60.4 49.4 537.6 510.2 

 Max 102.0 85.6 664.1 674.1 

 Min 20.5 13.8 468.3 390.2 

H5 

 

PT Ave 60.4 54.3 883.5 867.2 

 Max 132.3 157.8 1216.5 1206.0 

 Min 17.1 10.0 688.0 613.5 
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Table 2.2 (continued). Mean, maxima and minima from water chemical analysis. Metal forms are 
denoted as total (T) and dissolved (D). Description of sites are indicated as main channel (MC), 

ephemeral tributaries (ET) and perennial tributaries (PT). Units are in g/l. Values below the 
detection limit are represented by (b/d).  

Site Description  PbT PbD ZnT ZnD 

H4 

 

ET Ave 8.3 4.4 b/d  b/d  

 Max 26.7 6.6 68.6 68.6 

 Min 3.2  b/d b/d  b/d  

H3 

 

PT Ave 2.8 0.2 b/d  b/d  

 Max 10.6 0.7 98.6 84.7 

 Min 0.05 b/d  b/d  b/d  

H2 

 

MC Ave 46.7 39.4 515.0 485.9 

 Max 93.5 87.4 765.4 606.9 

 Min 17.0 4.2 194.5 360.5 

H1P 

 

PT Ave 3.0 1.9 b/d  b/d  

 Max 5.2 8.3 68.6 68.5 

 Min 0.8 b/d  b/d  b/d  

H1 

 

MC Ave 31.1 16.6 217.5 158.9 

 Max 146.8 43.7 375.9 302.9 

 Min 5.1 b/d  77.9 67.8 

 

Across the catchment, ZnD was the most abundant pollutant with concentrations 

ranging from 95.7 to 3220.5 g/l in perennial tributaries. Ephemeral tributaries 

also showed high concentrations up to 4252.3 g/l while sites along the main 

channel had ZnD concentrations from 158.9 to 510.2 g/l. The second toxic 

pollutant of concern was PbD, where main contributions were observed in 

ephemeral tributaries with ranges from 4.4 to 284.2 g/l, and perennial tributaries 

ranged from 1.9 to 157.6 g/l. The main river channel showed concentrations of 

Pb from 16.6 to 80.7 g/l.  Major cations were dominated by calcium, with 

concentrations from 2.6-54.9 mg/l, and major anions comprised sulphate (3-24.9 

mg/l), nitrate (1-17.8 mg/l), phosphate (0.002 to 0.1 mg/l) and chloride (7.2-10.5 

mg/l). Dissolved inorganic carbon concentrations ranged from 0.9 to 42.7 mg/l 

and dissolved organic carbon from 1.2 to 16.8 mg/l (Appendix 2.2). Field blank 

measurements showed concentrations below limit for all the elements and 
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replicates with a standard deviation of ≤ ±0.5 g/l (Cd and Cu), ≤ ±3.6 g/l (Mn 

and Sr), ≤ ±12 g/l (Pb, Al, Ba).  

From mineralogical analysis of spoil and sediment samples, the most abundant 

minerals were quartz (SiO2) and fluorite (CaF2). Spoil samples (B1, B2 and GM) 

included barite (BaSO4) as an additional dominant mineral. Other secondary 

minerals like muscovite (KAl2(Si3AlO10)(OH)2) and kaolinite (Al2Si2O5(OH)4) were 

present at B1 and GM. Furthermore, the mineral cerussite (PbCO3) was detected 

at B1.  In sediments (H14, H12, H10, H1), the mineralogy of H14 was similar to 

B2 (principally the presence of quartz, fluorite and barite) whereas H12 and H10 

contained calcite (CaCO3), and H1 (140 m from the confluence with the River 

Wharfe) presented mainly quartz and calcite. Chemical composition analysis 

detected significant fractions of Pb in spoils B1 (35.1 g/kg) and Zn in GM (34.2 

g/kg), while for sediments, major Pb concentrations were present in H12 (15.3 

g/kg) and Zn in H14 (11.9 g/kg). Total Pb plus Zn in the sediment samples 

showed a decrease the further downstream the sample origin (Figure 2.2). 

Analysis of water composition and surface area in spoil samples showed higher 

percentages of water composition in GM (34.29%) followed by B2 (18.77%) and 

B1 (18.6%), while  surface area values were: GM (20.6 m2/g), B1 (5.82 m2/g), B2 

(1.34 m2/g). 

 

Figure 2. 2. Lead and zinc composition in spoils and sediments.  
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2.4.2. Mineral phases controlling dissolved metal 

concentrations 

The metals Zn and Pb are the most significant toxic pollutants derived from 

mining activities. However, we modelled the geochemical behaviour of the 

additional metals Al, Fe, Ba and Sr as they are present in significant 

concentrations in the catchment. Geochemical modelling predicted that kaolinite 

(Al₂Si₂O₅(OH)₄) may account for the Al source with the solubility being controlled 

mainly by amorphous Al oxide phases (Al(OH)3). Concentrations of Fe are more 

likely derived from secondary minerals. Iron solubility is controlled by amorphous 

phases such as ferrihydrite (Fe(OH)3). The supersaturation of the Al and Fe 

phases may suggest the presence of some colloidal metal measured as part of 

the dissolved fraction. Barium concentrations are controlled by barite (BaSO4), 

while Sr activity was too low to infer a controlling phase, perhaps being controlled 

by a mineral where it is present as a secondary metal.  Lead and Zn 

concentrations are largely regulated by secondary minerals as metal-carbonates, 

cerussite (PbCO3) and smithsonite (ZnCO3), respectively (Figure 2.3).  
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Figure 2. 3. Aluminium, Fe, Ba, Sr, Pb and Zn activity as a function of pH, SO4
2- (13592 g/l), Cl- 

(7730 g/l) and pCO2 = 0.0012 atm.  Theoretical saturation of mineral forms are represented by 
solid lines and calculated metal free ion activity of experimental data by dots.  
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2.4.3. Key chemical relationships  

Table 2.3 summarises correlation analysis of metals derived from mining 

activities (Pb, Zn) and bedrock weathering (Ca) with major water chemistry 

parameters (pH, SO4
2-, DIC and DOC) (Appendix 2.3). Zinc presented good 

correlation with SO4
2- (r= 0.6), Ca showed very strong association with DIC (r= 

0.9), while Pb presented poor correlations (r≤ 0.3). Principal component analysis 

(PCA) shows key geochemical processes in influencing the water chemistry of 

Hebden Beck (Figure 2.4). The first component (PC1) with a 32% of variance 

indicates strong correlations between dissolved and particulate forms of calcium, 

magnesium, with DIC, EC and pH, reflecting weathering of the bedrock, while 

moderate correlation between iron and DOC refers to the transport of metals 

through colloidal matter in aquatic systems. Furthermore, the second component 

(PC2) with 21% of variance shows good correlations between strontium, zinc and 

cadmium with SO4
2-, reflecting the oxidation of sulphide minerals. Other in situ 

parameters like temperature, DO, flow and anions (NO3
- and Cl-) were not 

significantly associated with metals when considering all sites. 

Table 2. 3. Relationships between metals (Pb, Zn, and Ca) with pH, SO42-, DIC and DOC. 
Pearson correlation coefficient is denoted as r, p-value as p and confidence interval (95%) as CI.  

Metals Stats  pH  SO42- DIC  DOC 

PbD 

 

r  -0.1  -0.1  -0.4  0.3 

p 0.084 0.194   <0.001   <0.001 

CI  [-0.257 0.016]  [-0.228 0.047]  [-0.517 -0.284]  [0.135 0.393] 

ZnD r 0.2  0.6 0.04 -0.2 

p 0.008  <0.001 0.588 0.022 

CI  [0.051 0.319]  [0.517 0.692]  [-0.101 0.176]  [-0.295 -0.024] 

CaD 

 

r 0.6 0.7  0.9  -0.6 

p  <0.001   <0.001   <0.001  <0.001 

CI  [0.526 0.698]  [0.571 0.730]  [0.963 0.978]  [-0.701 -0.529] 
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Figure 2. 4. Scree plot from PCA analysis, horizontal axis shows projections of the first principal 
component PC1 which represents 32% of the total variance and the vertical axis the second 
component PC2 representing the 21% of variance. 

Complementary linear regression analysis was carried out at sites with highest 

concentrations of ZnD and PbD (H15, H14, H12 and H7) for evaluating their 

relationships with DIC and SO4
2-. Since H15 is a reservoir with lower variance in 

chemical concentrations, it was not considered for this and subsequent analyses. 

Strong correlations between ZnD and DIC (R2= 0.95) and SO4
2- (R2= 0.93) were 

identified at H7. Moderate correlations between ZnD and SO4
2- (R2= 0.4) and 

between Pb and DIC (R2= 0.5) were present at site H12 (Figure 2.5 and 2.6). No 

significant correlation was evident at site H14, therefore results are not shown.  
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Figure 2. 5. Relationships in tributary H7 between ZnD and DIC (left panel) and SO4
2- (right panel). 

 

 

 

Figure 2. 6. Relationships in tributary H12 between ZnD with SO4
2- and PbD with DIC. 
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2.4.4. Seasonality and trends  

Across the sampling campaigns, water temperature ranged from 3.6 to 15.6 C, 

with higher values in summer (July) and lowest in winter (February). Consistent 

with temperature, low monthly average of EC values were recorded in winter (78 

S/cm) and high average values during summer (209 S/cm). Dissolved oxygen 

levels showed similar values, ranging from 10.2-14.0 mg/l, with lower 

concentrations recorded in winter (December) and highest levels in autumn 

(September). For flow, highest annual rates were recorded in November (2666.1 

l/s) and lowest rates in July (54.0 l/s) (Appendix 2.4).  

Fluctuations were also dependent on the type of tributaries (e.g. perennial and 

ephemeral) (Appendix 2.5). Flow values in perennial tributaries ranged from 3.0 

to 192.7 l/s and in ephemeral from 9.0 to 57.0 l/s when flow was measurable, as 

some tributaries were dry for 5 or 6 months. Across all tributaries, two significant 

sites were identified as metal contributors of ZnD (H12: 4252.3 g/l and H7: 

3220.5 g/l) and PbD (H12: 284.2 g/l) (Table 2.1). Across all sites, mean values 

of pH were highest in September (7.1) and lowest in November 2013 (5.6) 

(Appendix 2.4). In individual sites, pH means ranged from 3.9 to 7.5, showing 

large monthly variations (SD≥ ±0.7) in sites H15, H11, H9, and H1P. Despite 

these variances a circumneutral pH (6.2-7.4) was predominant in the catchment. 

Trends of flow and pH were considered to analyse their influence on metals 

concentration. Regression analysis was performed using all sampling sites. 

However, the results demonstrate the site specific nature of trends, with no 

catchment wide trends were revealed (Appendix 2.6). We investigate further the 

trends for H2, as the chemistry is representative of a significant distance of the 

downstream reach and it has limited dilution before entering the River Wharfe. 

Strong positive relationships were present for PbD-flow (R2= 0.51) and ZnD-pH 

(R2= 0.58) and no clear relationships for PbD-pH (R2= 0.06) and ZnD-flow (R2= 

0.02) (Figure 2.7). 
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Figure 2. 7. Trends of metals in function of flow and pH in H2. Panel a and b show trends of Pb 
and panel c and d indicate Zn trends. Solid lines represent regression lines. 
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2.4.5. Annual metal load  

The contribution of PbD and ZnD in the catchment was estimated through the annual 

metal load (tonne/year).  Only site H2 was considered for this calculation due to the 

availability of flow data and the lack of significant additional mine runoff downstream. 

Table 2.4 shows the average annual load of Pb is 0.2 tonne/year and for Zn 2.9 

tonne/year. These values were compared with well-established EQS metals and showed 

maximum exceedances of 12-fold for Pb and Zn. 

Table 2. 4. Estimation of annual Pb and Zn load by using flow records from Environment Agency 
(EA) gauging station at H2 (main channel).  

Stats   H2-Flow (l/s) 
from EA 
station 

PbD 

(g/l) 

PbD 

(tonne/year) 

ZnD 

(g/l) 

ZnD 

(tonne/year) 

Average 189 39.4 0.2 485.9 2.9 

Maximum(a) 556 87.4 1.5 606.9 10.0 

Minimum(b) 36 4.2 <0.1 360.5 <0.9 

EQS-Hardness based 7.2  50.0 
 

a) Maximum values recorded in February 2014. 
b) Minimum values recorded in July 2014. 

2.5. Discussion  

In the catchment, biogeochemical actions such as weathering and erosion are 

significant processes in the generation of dissolved metals, which are likely 

derived from bedrock weathering and oxidation or dissolution of mineral ores. 

Carboniferous limestone bedrock, mainly composed of calcite (CaCO3) is 

weathered, releasing significant amounts of calcium and carbonate, and creating 

a neutralizing capacity and circumneutral pH in environments surrounded by 

sulphide ore wastes. The influence of the geology in the catchment was shown 

by strong relationships between CaD with DIC (r= 0.9, p<0.001) and pH (r= 0.6, 

p<0.001). For metals derived from mining activities, a potential primary source of 

ZnD is the oxidation of sphalerite (ZnS) as a good correlation was observed 

between ZnD and SO4
2- (r= 0.6, p<0.001) (Table 2.3). However, additional ZnD 

concentrations may be attributed to the presence of secondary zinc minerals (e.g. 

smithsonite) (Tame et al., 2017). Contributions of PbD are associated with 

dissolution of metal-carbonate compounds (cerussite) rather than oxidation of 

metal-sulphide as no correlation between PbD with SO4
2- was identified (r≤ -0.1, 
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p<0.001) (Table 2.3). The presence of secondary minerals such as metal-

carbonate might affect the solubility and mobility of metals as they present slower 

dissolution kinetics than primary minerals (Nuttall and Younger, 2002; Carroll et 

al., 1998; Carmona et al., 2009; Jamieson, 2011). 

Geochemical modelling has revealed the importance of secondary minerals such 

as carbonates, sulphates and hydroxides in the control of dissolved metals 

(Figure 2.3). For instance, Pb and Zn concentrations are greatly influenced by 

the dissolution of metal-carbonate forms (e.g. cerussite and smithsonite) (Li and 

Thornton, 2001; Nuttall and Younger, 2002). Carbonates released from the 

dissolution of metal-carbonate also contribute to the river alkalinity, enhancing 

the buffering capacity of the system. In addition, the source of Al can be 

associated with the presence of kaolinite, which was identified by the XRD 

analysis in most of the spoils/sediments. The presence of Fe concentrations can 

be associated with jarosite, and although this mineral was not detected by XRD 

analysis, it is a common secondary Fe mineral in mining areas (Cravotta Iii, 

2008b; Sánchez España et al., 2005). Figure 2.3 shows that  Fe activity follows 

closely the prediction for jarosite, which at pH > 3 tends to dissolve and release 

sulphate ions and Fe3+ (Ettler et al., 2003). In alkaline environments the activity 

of Fe3+ is likely controlled by hydrous ferrous oxides, the presence of colloids in 

the dissolved fraction may explain the supersaturation. Aluminium and Fe 

solubility are controlled by amorphous phases, specifically Al(OH)3 and Fe(OH)3 

(known as ferrihydrite). The presence of hydroxide compounds in the catchment 

could affect metal mobility, as they might sorb or co-precipitate with metals like 

Pb and Zn, acting as natural scavengers of these toxic elements (Balistrieri et al., 

1999). Nordstrom (2011) indicated that hydrology is another factor influencing 

metal mobility as concentrations of constituents in natural waters depend to a 

large extent on the rate of dissolution relative to flow rate. This condition was 

observed in the upper site of the catchment (a pond) as concentrations of metals 

were closer to saturation due to longer residence time of the water than under 

stream flow conditions (Appendix 2.6). Clustered sites with high metal free ion 

activities were identified and associated with sites with low pH values (<5), 

possibly caused by high DOC concentrations (>8 mg/l), which are not considered 
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in the modelling. The presence of metal-organic complexes will reduce the 

activities of metal free ions.  

Analysis of sediments and spoils were consistent with water chemistry results 

showing Zn (11.9 and 34.2 g/kg) and Pb (15.3 and 35.1 g/kg) as major metals 

present in spoils due to lower extraction efficiency methods common in historical 

mining (Gill, 1993). Preliminary sequential batch leaching experiments of spoil 

samples into deionised water showed consistent Zn and Pb concentrations of at 

least one order of magnitude above other metals across several leaching cycles 

(except Pb in GM where it is not present in significant concentrations). For 

leaching with acid (0.1 M HCl) most Zn was solubilised in the first two batches. 

Similar concentrations of Pb and Ca were leached but over five acid addition 

cycles, suggesting different dissociation kinetics of Pb and Zn minerals (Osbourn 

and Stockdale, 2016). Future work will further explore the kinetics of leaching 

from the mineral forms in the spoils and sediments. Mineralogical results revealed 

the presence of secondary minerals such as cerussite (PbCO3) as a source of 

Pb. Current chemical characterisation is in agreement with previous studies of 

water quality, metal composition and flux in the Yorkshire Pennine Orefield 

(Jones et al., 2013). 

The impact of former metal mining on water quality has been evidenced by Pb, 

Zn and Cd pollution in the Yorkshire Pennine region, particularly in Hebden Beck 

(Jones et al., 2013; Barber, 2014).  In expanding the range of Hebden Beck 

tributaries from earlier works, we have included sites close to mine wastes (e.g. 

tailings, spoils) for the identification of principal sources of metals. Major 

contributions of ZnD and PbD were identified from mine water discharges (H7) and 

spoil wastes (H12) (Jones et al., 2013). For these two sites there are statistically 

significant relationships between Zn and Pb with SO4
2- and DIC inferring the 

composition of their respective mineral sources. At site H12, an extended area 

covered by spoil wastes from Yarnbury mines, moderate correlations were 

identified between ZnD with SO4
2- (R2= 0.37), and PbD with DIC (R2= 0.45) 

reflecting the ZnD contribution from the oxidation of sphalerite and PbD 

contribution from the dissolution of cerussite (Figure 2.6). These correlations 
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revealed the type and grade of ores mined during the eighteen and nineteenth 

centuries, producing spoils with different particle sizes and permeabilities, 

influencing their capacity to form secondary minerals (Palumbo-Roe et al., 2013). 

At site H7, a mine channel from Bolton Haw, strong correlations were observed 

between Zn and SO4
2- (R2= 0.93) and Zn and DIC (R2= 0.95) (Figure 2.5). Both 

correlations suggest the oxidation of sphalerite as the main Zn source, however, 

if all sulphate was from ZnS the expected molar ratio between ZnD and SO4
2- 

should be 1:1 instead of the observed value of 5:1.  Furthermore, the 

mineralogical and geochemical results did not show extensive evidence of pyrite 

mixed in mineral veins (correlation of Fe/SO4
2- r= -0.5; p= 0.076). Likewise, 

Dunham and Wilson (1985) have reported that although pyrite, marcasite (FeS2) 

and bravoite ((Fe, Ni, Co)S2) are abundant in the orefield, they are found in minor 

amounts in veins, representing small quantities in relation with adjacent deposits 

rich in Fe discharges. Thus, secondary zinc minerals such as smithsonite 

(ZnCO3), hydrozincite (5ZnO.2CO2.3H2O) and hermimorphite 

(Zn4[Si2O7](OH)2.H2O), should be considered as possible sinks (Nuttall and 

Younger, 2002). No correlation for Pb was observed in this site, probably due to 

the presence of low concentrations (4.3 g/l) as a consequence of aging (Iavazzo 

et al., 2012) or the sorption effect of biofilms, becoming a significant sink for Pb 

(Templeton et al., 2001). 

In Hebden Beck, flow events can alter the river water chemistry and metal 

concentrations (Jones et al., 2013). During base flow conditions, the circumneutal 

pH and buffering capacity are maintained by groundwater rather than surface 

water. This condition contributes to the presence of secondary zinc minerals and 

other carbonate minerals that sequester zinc, also influences the complexation 

of Pb with carbonate and organic matter, and affects its transformation to other 

forms like hydroxide, oxyhydroxide, hydroxysulfate minerals, limiting solubility 

and further weathering (Nuttall and Younger, 2002; Nordstrom, 1982; Nordstrom, 

2011; Jamieson, 2011). Flow fluctuations caused by drought or heavy rainfall 

allowed the identification of major point and diffuse sources (H7 and H12) and 

their metal contributions under different flow events. At the point source H7 (mine 

adit-Bolton Haw), metal concentrations were generally constant at both flow 
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conditions, therefore this site can be considered as a continuous source of metals 

(particularly for Zn: 3220.5 g/l). At the diffuse source H12 (ephemeral tributary-

draining spoil wastes from Yarnbury mine), metal concentrations become more 

significant during high flow, but greater contributions were also observed after dry 

periods (e.g. July [0 l/s, ZnD and PbD below detection limits], August [8.4 l/s, 

5709.0 g ZnD/l, 419.2 g PbD/l]). This might be explained by the capacity of 

soluble sulphate minerals to store metals (e.g. Zn) during dry seasons and 

release them into the environment during wet seasons (Jamieson et al., 2005). 

In addition, Byrne et al. (2009) and Cánovas et al. (2008) have indicated the 

influence of runoff produced by storms in increasing  metals dissolved from 

weathered metal salts (smithsonite, cerussite) located in superficial mine spoils. 

Rothwell et al. (2007) showed differences in metal concentrations not only 

between base and high flow conditions but also within and between storm events. 

Thus, further studies of metal concentrations and fluxes under a range of 

hydrological conditions are pertinent since the frequency and magnitude of floods 

are increasing the transport of dissolved and particulate metal forms from sources 

to river channels and floodplain soils, which are often used for agriculture (Lynch 

et al., 2014). 

Seasonal variations of pH and flow were considered to assess metal mobility. In 

the main channel (H2) strong correspondence occurred between pH-ZnD (r= 0.7) 

and flow- PbD (r= 0.6) while relationships for PbD-pH and ZnD-flow were unclear. 

The absence of a relationship of Zn with flow suggests that dissolution of zinc 

minerals is not kinetically limited (Figure 2.7), although solubility has been shown 

to depend on mineral composition in some cases (Palumbo-Roe et al., 2013). 

The Pb relationship with flow may be related to greater flushing of areas where 

minerals have had longer to leach Pb into waters (e.g. H15 or the ephemeral 

pond feeding H12) (Appendix 2.7). Sims et al. (2013) have also reported the role 

of flow in the generation of suspended matter, affecting the transport Pb forms. 

Once they enter into the aquatic system they tend to be adsorbed to suspended 

matter, while for the case of carbonate minerals they are likely to break down in 

acid waters, liberating significant quantities of Pb to sediments further down the 
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river (Hudson-Edwards et al., 1996). Thus, understanding the chemical 

tendencies of Zn and Pb under local pH and flow conditions is extremely 

important for estimating the potential fate and extent of polluters. 

Metal contributions from point and diffuse sources decreased downstream (H2) 

(ZnD: 479.4 g/l, PbD: 35.1 g/l), indicating a dilution effect from non-mine 

affected tributaries. Two dilution behaviours were observed in the main river, an 

abrupt reduction of ZnD after high concentrations were converged with relatively 

clean tributaries (from 3220.5g/l (H7) and 4252.3g/l (H12) to 444.4g/l (H10)), 

and a gradual decrease of PbD (284.2g/l (H12) to 80.7g/l (H10)) as dilution is 

likely to be related to the distribution of particulate matter from sediments 

(Douben, 1989). Pb forms showed a higher fraction present as particulate (≥50%) 

in certain tributaries (e.g. H12, H11, H8, H3, H1) where dissolved organic carbon 

(H12 and H11>16 mg/l) and other complexing compounds like bicarbonates (DIC 

in H8, H3 and H1>22 mg/l) or hydroxides (e.g. Fe(OH)3 and Al(OH)3) may bind 

Pb. Thus, knowing solubility and speciation properties of Zn and Pb could help in 

the explanation of their mobility. Low solubility of Pb conceals high concentrations 

released at diffuse sources, due to binding to particulates (Langmuir, 1997). In 

addition, sorption properties also affect metal dynamics, for instance, Pb has a 

greater affinity for binding to dissolved organic matter and surface reactive 

mineral complexes, as reflected in higher fractions present as particulate forms. 

These mechanisms are fundamentally associated with metal speciation, 

bioavailability and toxicity. The bioavailability of Zn and Pb in Hebden Beck has 

been assessed, revealing quality standard failures of Pb and Zn throughout the 

catchment at all monitoring sites (Barber, 2014).  

Calculations of the dissolved Zn and Pb being transported downstream to the 

River Wharfe indicate annual loads of 0.2 tonnes/year of Pb and 2.9 tonnes/year 

of Zn. Although, these loads might increase depending on physical or chemical 

conditions caused by seasonal variations or particular flow conditions. Several 

studies in river systems have reported that metals associated with suspended 

sediments can make a major contribution to the total load of metals (Foster and 

Charlesworth, 1996; Horowitz et al., 1995). Horowitz (1991) compared and 
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contrasted metal concentrations in suspended and bottom sediments versus 

dissolved levels, results indicated that bottom sediment concentrations were 

more than 100,000 (5 orders of magnitude) times higher than dissolved levels. 

Applying this approach in a downstream site (H1), higher results were observed 

for Pb (>430,000) and to a lesser extent for Zn (>17,000). Considering the 

importance of sediments in the transport and cycling of metals further work is 

needed in Hebden Beck. Comparisons between maximum measured 

concentrations of total dissolved metal concentrations in the main channel (site 

H2) with established regulatory limits for metals indicated that maximum annual 

concentrations of AlD (188 g/l), FeD (657 g/l), BaD (306 g/l) and SrD (356.4 

g/l) were within established regulatory limits (e.g. Al: 200 g/l; Fe: 1000 g/l; Ba: 

1000 g/l; Sr: 1500 g/l). Conversely, maximum annual concentrations of PbD 

(87 g/l) and ZnD (607 g/l), when compared with environmental quality standards 

(EQS) showed maximum exceedances of 1200% with likely ecological effects 

(UK-Environment Agency, 2011; Department of Environmental Protection and 

State of New Jersey, 2017) (Table 2.4).  

Metal toxicity and bioavailability are mainly controlled by metal concentrations, 

pH conditions and concentration of organic matter. Although the last two factors 

might have a stronger effect on biotic communities. For example, Ramsey (2006) 

reported that soil acidity and organic matter concentration exerted stronger 

effects on plant and microbial community than metals. Thus, discriminating the 

influence of these key factors in biological processes is important from the 

perspective of dealing ecotoxicological effects of metals and potential restoration 

efforts (Miller et al., 2004; Dennis et al., 2009). In this context, environmentally 

friendly and cost-effective techniques such as bioremediation have been 

developed for heavy metal removal/recovery where microbial remediation is 

particularly used in mine drainages due to the ability of microorganisms to 

generate alkalinity and immobilise metals (Mulligan et al., 2001). For instance, in 

the UK the sulphur-reducing bacteria (e.g. Desulfovibrio vulgaris) has been used 

in the treatment of mine drainage due to its diverse metabolic strategies to reduce 

sulphate (SO4
2-) to hydrogen sulphide (H2S), other elements like iron (Fe(III)), 
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oxygen and compounds like nitrate and nitrite and fumarate (Jarvis et al., 2015). 

Aquatic organisms such as diatoms and invertebrates have an important role as 

biomonitors and bioindicators for assessing the impact of metal pollution. These 

organisms together with established EU-WFD classification tools and diversity 

indices (e.g. ASPT, N-TAXA) were used in a preliminary assessment of this 

catchment, however the effects of elevated metal levels were unclear 

(Environment Agency, 2014). Studies in neutral mine drainage carried out by 

Byrne et al. (2013) indicated that the use of standard macroinvertebrate biotic 

and diversity indices (EU-WFD tools) could lead to erroneous classifications of 

aquatic ecosystem health. These results revealed that failure in the interpretation 

of biogeochemical interactions could lead to inaccurate analysis of organisms at 

risk of exposure, hence ineffective management decisions. Thus, the assessment 

of metal effects on living organisms is complex since biota might have different 

responses according to physiological processes, and because metals are subject 

to a range of factors affecting their level of reactivity, toxicity and bioavailability 

(Luoma, 2008). Considering WFD goals, more nuanced approaches are needed 

for assessing metals and their ecological effects. In this context, current 

chemistry data and updated chemical speciation tools will be used in future work 

to assess metal availability and toxicity and advising improvements to river basin 

management plans. 

2.6. Conclusions  

 Underlying limestone bedrock controls pH and weathering reactions, and 

therefore metal mobility within such catchments. 

 Mobilisation of Zn and Pb have a strong dependence on site specific 

biogeochemistry and hydrological conditions. No dependence of Zn with flow 

suggests that ZnD has no kinetic limitations on Zn mineral dissolution, whereas 

PbD varied according with flow variations, reflecting its tendency to be 

complexed with colloidal or particulate forms.  
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 Point sources are regular contributors of ZnD despite flow fluctuations, while 

diffuse sources like spoil wastes produced higher contribution of ZnD and PbD 

in overflow conditions after dry periods.  

 Not all contributions of ZnD and PbD are derived directly from oxidation of 

sphalerite and galena. Mineralogical and geochemical analysis revealed the 

contribution of secondary minerals such as smithsonite and cerussite, which 

are continuously leaching into the river and represent an added complexity for 

future remediation.   

 Metal pollution results in a large area of catchment having a depleted chemical 

status with likely effects on the aquatic ecology.  
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Abstract 

Point and diffuse sources associated with historical metal ore mining are major 

causes of metal pollution. The understanding of metal behaviour and fate has 

been improved by the integration of water chemistry, metal availability and 

toxicity. Efforts have been devoted to the development of efficient methods of 

assessing and managing the risk posed by metals to aquatic life and meeting 

national water quality standards. This study, focuses on the evaluation of current 

water quality and ecotoxicology techniques for the metal assessment of an 

upland limestone catchment located within a historical metal (lead ore) mining 

area in northern England. Within this catchment, metal toxicity occurs at 

circumneutral pH (6.2-7.5). Environmental Quality Standards (EQSs) based on a 

simple single concentration approach like hardness based EQS (EQS-H) are 

more overprotective, from sixteen sites monitored in this study more than twelve 

sites (>75%) failed the EQSs for Zn and Pb. By increasing the complexity of 

assessment tools (e.g. bioavailability-based (EQS-B) and WHAM-FTOX), less 

conservative limits were provided, decreasing the number of sites with predicted 

ecological risk to seven (44%). Thus, this research supports the use of 

bioavailability-based approaches and their applicability for future metal risk 

assessments.  
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3.1. Introduction  

Humans have impacted upland catchments for centuries through the process of 

mining. Exposure of metal-bearing minerals to oxygen and water, both 

subsurface and through dumping of mine wastes above the surface, can result in 

increased dissolved concentrations of metals in water bodies. Once metals have 

entered aquatic ecosystems, they interact with a broad spectrum of biotic and 

abiotic components via dynamic interrelated processes, resulting in a large 

variety of compounds (Luoma, 2008).  

In natural waters, the behaviour of metals depends on their speciation. Such 

species include free ions, inorganic complexes, organic complexes, and metal 

sorbed to or incorporated within colloids or particulate matter. The formation of 

metal complexes depends on the concentration of all dissolved components, pH, 

and ionic strength (Namieśnik and Rabajczyk, 2010). Free metal ions can bind to 

dissolved organic matter (DOM; particularly humic acids), forming complexes that 

regulate the concentrations of metals available for interaction with organisms 

(Tipping, 2002). The complexity of these interactions in aquatic environments 

makes it difficult to measure the distribution of chemical forms. Knowledge of 

chemical speciation is important because the relative distribution of different 

forms controls metal interactions with organisms, including toxic effects. For 

instance, dissolved metals, particularly free metal ions, have been related to 

freshwater ecotoxicity (Campbell, 1995; De Schamphelaere and Janssen, 2002). 

More recently, the concentration predicted to be bound to humic acid has been 

found to be a good proxy for organism body burdens (Stockdale et al., 2010; He 

and Van Gestel, 2015).  

In the last few decades, a variety of in situ analytical approaches have been 

developed to understand the dynamics of metals in natural waters (Buffle, 2000). 

One such technique is the Diffusive Gradients in Thin-films (DGT) for assessing 

a range of active species, depending upon their mobility (diffusion coefficients) 

and kinetics (dissociation rates) across a thin film of polyacrylamide gel (Zhang 

and Davison, 2015). This technique has been used as a monitoring tool for 

providing kinetic information on labile metal species in rivers, soil or sediment 

impacted by mines and coastal waters (Unsworth et al., 2006; Warnken et al., 
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2009). In addition, DGT has been applied to investigate potential metal availability 

in freshwater ecosystems, for instance the accumulation of cadmium in 

communities of algae (periphyton) has been evaluated by Bradac et al. (2009).  

In view of the importance of DOM in complexing metals, comprehensive 

speciation models have been developed for predicting the distribution of chemical 

species accounting for complexation with inorganic and organic ligands as well 

as competition for organic binding sites between different metals, and between 

metals and protons. The Non-Ideal Competitive Adsorption (NICA) coupled with 

a Donnan electrostatic sub-model uses a continuous distribution approach to 

describe metal and proton bindings to organic matter (Benedetti et al., 1995; Kalis 

et al., 2006). A discrete site approach is used in the Humic Ion Binding Model VII 

(Tipping et al., 2011). This is coupled with an inorganic thermodynamic code, the 

Windermere Humic Aqueous Model (WHAM) (Tipping, 1994). The WHAM code 

has been successfully applied in a variety of research and regulatory areas 

related to water quality criteria for zinc and copper in the United States and 

Europe (Hamilton-Taylor et al., 2011; Balistrieri and Blank, 2008; 2014; Cheng et 

al., 2005). In addition, it has been used across Europe as part of the Critical Loads 

approach related to atmospheric deposition and soil pollution by cadmium, lead, 

mercury and copper (de Vries et al., 2007; Hall et al., 2006; Tipping et al., 2003). 

Over recent decades, WHAM/Model V was incorporated into the Biotic Ligand 

Model approach to improve prediction of metal toxicity to aquatic organisms and 

support the implementation of Environmental Quality Standards (EQS). 

Metal bioavailability and toxicity have long been recognized to be a function of 

water chemistry (Paquin et al., 2002). Until recently environmental regulations 

considered only hardness-based conditions to derive EQS (Beane et al., 2016).  

However, latest research has increased understanding of the influence of 

physicochemical variables in metal speciation, and ecotoxicological studies have 

extended our knowledge of metal effects on biota.  Consequently, bioavailability-

based approaches such as the Biotic ligand models (BLMs) have been 

implemented within EQS for chemical and ecological assessment, to evaluate 

the overall quality of a given waterbody (Niyogi and Wood, 2004). In the UK, the 

BLMs have been simplified to create a user-friendly method known as metal 
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bioavailability assessment tool (M-BAT), which use pH, DOC and calcium as 

input data to account for toxicity of single metals in freshwaters within a regulatory 

context (e.g. Zn-BLM, Cu-BLM, Mn-BLM and Ni-BLM) (De Schamphelaere and 

Janssen, 2002; Steenbergen et al., 2005; Lock et al., 2007). The M-BAT tools 

parameterised to date include those for Zn, Cu, Mn, Ni and Pb. Some of these 

tools have been incorporated into a tiered-approach monitoring scheme to 

implement the bioavailability-based water quality guidelines. However, they have 

limitations for assessing metal mixtures effects since they are based on BLMs for 

specific metal-organism, and they do not include all dissolved chemical species. 

To overcome this issue, an alternative bioavailability-based model (WHAM-FTOX) 

developed by Stockdale et al. (2010) offers a plausible option for quantifying 

mixture toxicity and its potential effects on aquatic organisms. WHAM-FTOX in 

common with the BLM uses organisms as reactants. However, WHAM-FTOX 

assumes that toxicity is related to non-specific binding to organism surfaces 

rather than specific biotic ligands (Stockdale et al., 2010). Several studies have 

applied WHAM-FTOX for predicting metal toxicity to aquatic biota in laboratory 

experiments and linking the effects of chemical speciation of metals and protons 

to species richness of freshwater macroinvertebrates (e.g. Ephemeroptera, 

Plecoptera and Trichoptera (SREPT)) and zooplankton species diversity (Tipping 

and Lofts, 2013; 2015; Stockdale et al., 2010; 2014; Qiu et al., 2015).  

Despite the scientific and regulatory improvements for the establishment of 

EQSs, achieving good ecological and chemical status of water bodies according 

to the Water Framework Directive (WFD) (European Commission, 2000) is still a 

significant challenge (UK-Environment Agency, 2008a). In the UK, the major 

impediment to meet this aim is related to diffuse pollution, including metal 

contamination generated by abandoned mines and mined wastes (Jarvis and 

Younger, 2000). At national scale, comprehensive data exist for certain areas but 

there are substantial gaps for other regions, therefore the assessment of the 

extent and severity of metal pollution from mining activities is partial (Mayes et 

al., 2009). As a consequence, the prioritisation of threatened sites to address 

remediation of metal pollution in a logical and cost-effective manner is a difficult 

task. River basin management plans (RBMP) provide a good framework for the 
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implementation of mitigation measures. But the application of bioavailability-

based standards (EQS-B) offers a great support in the selection of sites at real 

ecological risk, reducing the burden of remediation targets for efficiently achieving 

a better quality of water bodies (UK-Environment Agency, 2008b; Harmsen and 

Naidu, 2013).  

This study aims to evaluate different approaches used to assess water quality. 

Focusing on an upland limestone catchment affected by historical mining, we 

compare hardness based EQS with approaches that consider more detailed 

water chemistry such as BLM based EQS and WHAM-FTOX. Data from a single 

biological survey were used to give context to the results from the chemical 

approaches. Additionally, we evaluate the ability of the DGT technique to yield 

dynamic dissolved concentrations that could be applied to EQS as the WFD 

allows for water quality criteria to be set based upon dynamic methods 

incorporating chemical speciation. This contribution complements a companion 

paper (Valencia-Avellan et al., 2017), which provided an assessment of the 

geochemical and hydrological processes controlling the main sources of metal 

pollution. 

3.2. Methods  

3.2.1. Site description 

The study area is located within the Yorkshire Dales National Park, northern 

England (Figure 3.1). Hebden Beck is a headwater catchment containing 

extensive historical lead and zinc mining operations, which flows through 

limestone bedrock surrounded by sheep pasture and peat-rich moorland (Jones 

et al., 2013). Evidence of mining and smelting exists along the length of the river 

system, from mine tailings and slag to mine adits and abandoned buildings. A 

detailed description of the study area is provided in (Valencia-Avellan et al., 

2017).  
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Figure 3. 1. Map showing location of Hebden Beck. Black dots represent sampling stations, they 
are ordered from upper to lower catchment, therefore from H15 to H1.  
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3.2.2. Water sampling  

Monthly field surveys were conducted from November 2013 to December 2014 

at sixteen sampling sites. Sampling locations (Figure 3.1) include a source pool, 

tributaries and the main river channel, covering an area of 5 km2. The detailed 

sampling strategy and analytical procedures are described in Valencia-Avellan et 

al. (2017). Parameters recorded in situ such as temperature, pH, dissolved 

oxygen and conductivity, together with measured concentrations of dissolved 

metals (defined as filterable with a 0.45 m filter) (Zn2+, Pb2+ Cd2+, and Cu2+), 

major anions (SO4
2-, Cl-, NO3

-, PO4
3-) and dissolved carbons (DIC, DOC) were 

considered as model input parameters for metal speciation assessment. 

Concentrations of dissolved metals were also used to evaluate their association 

with the presence of labile-inorganic species in the river water. Detection limits 

for metals in water samples were Zn: 5.1 × 10-7 mol/l and Pb: 2.4 × 10-13 mol/l. 

For statistical analysis, annual average concentrations were calculated for each 

site.  

3.2.3. Determination of CDGT in river water 

Diffusive Gradients in Thin-films (DGT) devices (DGT Research Ltd, Lancaster, 

UK) incorporated a Chelex metal binding layer, a 0.8 mm thick diffusive hydrogel 

(polyacrylamide gel crossed by agarose cross-linker) and a polyethersulphone 

filter membrane. DGT devices were subject to minimal handling and transported 

to and from the site in acid cleaned zip-lock bags. A total of 121 DGT 

measurements were performed bimonthly from December 2013 to November 

2014 across the sampling sites as part of the water sampling surveys. 

Deployment time averaged approximately one month but varied from 18 days to 

43 days. Duplicate devices were deployed at two of the sixteen sites and a field 

blank was processed in the field once per visit. All DGTs were processed in the 

laboratory within 24 hours: this involved separating the layers of the probe using 

acid-washed Teflon tweezers. Each resin gel (Chelex) layer was placed in a 2 ml 

polypropylene tube with 0.7 ml of 1 M HNO3 (ARISTAR) then stored at 4C. 

Immediately before ICPMS analysis, the eluent was diluted 10x with Milli-Q water 

(18.2 Mcm).   
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Labile metal concentrations were determined following the method of Zhang and 

Davison (1995). First, the mass of metal (M) in the Chelex resin is calculated (Eq. 

1), where Ce is the concentration of metals in the 1 M HNO3 elution solution (in 

g/l) provided by the ICPMS analysis, Vgel is the volume of the resin gel, VHNO3 is 

the volume of HNO3 added to the resin gel, and fe is the elution factor for each 

metal, typically 0.8. Once mass is determined, the concentration of labile metals 

(CDGT) can be calculated as per Zhang and Davison (1995) (Eq. 2), where, M is 

the mass of metal in the Chelex resin, ∆g is the thickness of the diffusive gel (0.8 

mm) plus the thickness of the filter membrane (0.13 mm), D is the diffusion 

coefficient of metal in the gel established by http://www.dgtresearch.com/, t is 

deployment time and A is the exposure area (3.14 cm2). 

M= (Ce (Vgel+VHNO3)/fe)/1000            (1) 

CDGT = (M∆g/(DtA))/1000            (2) 

3.2.4. Speciation modelling using Windermere Humic Aqueous 

Model (WHAM/Model VII) 

WHAM/Model VII calculates the chemical speciation of metals using humic (HA) 

and fulvic acids (FA) as active DOM components. In this study, default model 

parameters were used together with the measurements for the following  inputs; 

temperature, pH, dissolved anions (Cl-, SO4
2-, NO3

- and PO4
3-), dissolved metals 

(Zn2+, Pb2+, Cu2+, Cd2+, Fe3+, and Al3+), dissolved inorganic carbon (DIC; input as 

carbonate) and DOC. For the modelling DOM was assumed to be composed of 

50% carbon and the active fraction considered to be 65% fulvic acid, and hence 

was calculated from DOC values (FA = DOC × 1.3) (Tipping et al., 2008). The 

activity of both Al and Fe was calculated from the measured total filtered 

concentration and from the equations derived for Al by Tipping (2005) and for Fe 

by Lofts and Tipping (2011), with the lower of the two values being adopted. This 

avoids over-estimation of Al or Fe activity in filtrates containing colloidal forms of 

the metals. Two different scenarios were considered for modelling. Firstly, Al and 

Fe oxide precipitates were not considered to be active with respect to surface 

chemistry. In a second scenario it was considered that the oxides contain active 

http://www.dgtresearch.com/
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binding sites and that one mole of oxide has 90 g/mol for Fe (Dzombak and Morel, 

1990), and 61 g/mol for Al (Lofts, 2012) of active phase. Concentrations of metals 

bound to oxides were calculated from the output data. These scenarios were 

applied to allow comparison with the DGT results. 

3.2.5. Estimating metal mixture toxicity using WHAM-FTOX 

WHAM-FTOX, a parameterised version of WHAM established by Stockdale et al. 

(2010) was applied to evaluate the combined impact of protons (H+) and metals 

(Al3+, Zn2+, Pb2+ and Cu2+). In WHAM-FTOX, the metal toxicity function (FTOX) is 

considered a product of toxic cation-bound concentrations (,mmol/g) and the 

toxicity coefficient of each analyte () and i refers to each toxic cation (Eq. 3).  

FTOX = Ʃ i i      (3) 

Concentrations of i were obtained from the WHAM/Model VII modelling as 

described above without active oxides and with the addition of 10-6 g of colloidal 

humic acid. Toxicity coefficients for aluminium (Al: 2.24), zinc (Zn: 2.69), lead 

(Pb= 2.51) and hydrogen (H:1) were adopted from Stockdale et al. (2010). The 

Pb toxicity coefficient (Pb= 2.51, p-value= 0.91) was used in absence of an 

alternative published value (Stockdale et al., 2010). We suggest the application 

of Pb with caution as it may be conservative compared with others Pb toxicity 

coefficients reported for trout species (cutthroat trout, Pb=6.7; rainbow trout, 

Pb=4.6) (Tipping and Lofts, 2015). 

3.2.6. Water quality assessment tools  

Tools with different level of complexity were applied to assess the potential harm 

from dissolved metals to aquatic organisms. Firstly, water hardness was 

calculated at each sampling point for applying established metal limits under 

hardness-based standards (http://evidence.environment-agency.gov.uk/). A risk 

characterization ratio (RCR) was estimated dividing the dissolved metal 

concentrations or Predicted Effect Concentration (PEC) by the calculated 

hardness-based limits or No Predicted Effect Concentrations (PNEC). Water 

quality standards were exceeded (i.e., over accepted limits) if RCR≥1 

http://evidence.environment-agency.gov.uk/
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(RCR=PEC/PNEC). Secondly, the bioavailability assessment tools (BATs) based 

on the BLM were applied (http://www.wfduk.org/). An alternate risk 

characterisation ratio (RCR) was calculated, where PEC values are the dissolved 

metal concentrations, and PNEC are the site-specific values obtained from Biotic 

ligand models (Zn-BLM and the Pb-BLM-Species Sensitivity Distribution-

normalization tool), if RCR≥1 water quality standards were exceeded (Merrington 

G., 2009; WFD-UKTAG, 2014). For these calculations, Zn-BAT considered 

dissolved concentrations and water chemical parameters such as Ca2+, pH and 

DOC as input data. In the case of the Pb-SSD-normalization tool, it required 

additional parameters like Mg2+, Na+, K+, SO4
2-, Cl-, CO3

2-. Thirdly, the model 

WHAM-FTOX derived from WHAM/Model VII was applied to predict the effect of 

water chemistry on the maximum species richness (SREPT-max). For these 

calculations, the following conditions were applied: i) if FTOX is lower than 2.33 

(FTOX-LT) the maximum SREPT will be 23 and no toxicity occurs (Eq. 4), ii) a graded 

linear toxic response occurs as FTOX increases (Eq. 5), and iii) if FTOX is higher 

than 5.20 (FTOX-UT) no species are predicted to be present (Eq. 6). Obtained 

values were converted to a percentage of the maximum SREPT (90% percentile). 

A detailed description of these calculations is provided by Stockdale et al. (2010).  

If FTOX ≤ FTOX-LT, then SREPT = SREPT-max       (4) 

      

If FTOX > FTOX-LT, then SREPT= SREPT-max – SREPT-max   x  FTOX – FTOX-LT (5)

                                                                            FTOX-UT – FTOX-LT  

        

If FTOX > FTOX-UT, then SREPT= 0       (6)

        

3.2.7. Biological survey 

A macroinvertebrate survey was carried out at all sites in August 2014. Samples 

were collected using a standard kick sampling technique and modified from the 

Water Framework Directive compliant methodologies (EU-STAR project, 2004). 

Given the small size of watercourses in the survey, one-minute kick samples were 

taken at thirteen sites, 30 second was taken at 2 narrow sites and one sweep 

http://www.wfduk.org/
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sample was taken in a pond at the top of the catchment. Kick samples were 

followed by a stone search to collect organisms attached to the substrate. 

Specimens were analysed live at each site. Several were preserved and taken 

back to the lab for identification confirmation. Invertebrates were analysed to 

family level. All relevant families within the sample were scored on a presence or 

absence basis and frequency scale, using the Biological Monitoring Working 

Party (BMWP) index which rates invertebrates based on their tolerance to organic 

pollution. BMWPs greater than 100 are associated with unpolluted streams, while 

the scores of heavily polluted streams are less than 10. In addition, the average 

sensitivity of the macroinvertebrate families known as the Average Score Per 

Taxon (ASPT) was determined by dividing the BMWP scores by the number of 

taxa present. Scores for ASPT  are considered from 0 to 10, where 10 indicates 

an unpolluted site containing large numbers of high scoring taxa (Armitage et al., 

1983) (Table 3.1). 

Table 3. 1. Scale of water quality categories based on BMWP and ASPT scores. 

BMWP score  ASPT score Water Category  Interpretation  

0-10  Very poor Heavily polluted 

11-40 <4 Poor Polluted or impacted 

41-70 >4 Moderate Moderately impacted 

71-100 >5 Good Clean but slightly impacted 

>100 >6 Very good Unpolluted, un-impacted 

3.3. Results  

General water chemistry for Hebden Beck has been reported in detail by 

Valencia-Avellan et al. (2017). It is dominated by the underlying geology of the 

catchment (i.e. buffered with high Ca and circumneutral pH values), whilst metal 

levels are associated with the weathering and erosion of Pb and Zn minerals 

exposed by past mining. Mine-impacted water is characterised by circumneutral 

pH (6.3-7.5) and elevated metal concentrations. Maximum concentrations of Pb, 

Cd, Zn, and Cu were detected in site H12 (1.4×10-6, 4.18×10-7, 6.5×10-5, 3.12×10-

7 mol/l, respectively). Considering the significantly higher concentrations of Zn 

and Pb, we focus primarily on these metals. Associations between DIC/DOC, 

sulphate and metals were identified. DIC was strongly correlated with Ca and Mg 

(r= 0.9; p < 0.001), whilst DOC was more closely correlated with levels of Fe, Al, 
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Pb and Cu (0.1 ≥ r ≤ 0.7; p < 0.003). Sulphate correlated strongly with zinc and 

cadmium (r = 0.6, 0.7; p < 0.001), possibly associated with the dissolution of 

sulphide minerals (Appendix 2.3).  

3.3.1. Dynamic metal (CDGT) concentrations 

From DGT measurements at each site, annual average Zn-CDGT concentrations 

ranged from 2.8×10-5 to  4.8×10-9 mol/l and for Pb-CDGT from 1.1×10-7 to 1.1×10-

10 mol/l. Highest Zn-CDGT was identified in perennial tributary H7 (2.8×10-5 Zn 

mol/l). Maximum Pb-CDGT (1.1×10-7 Pb mol/l) was detected in ephemeral 

tributaries (H13 and H12) while in the main channel highest concentrations were 

observed in H6 (7.5×10-6 Zn mol/l) and H10 (2.3×10-8 Pb mol/l) (Table 3.2). 



102 

 

Table 3. 2. Annual averages and standard deviation (±SD) of dissolved metals (MD)in water samples (mol/l), metal concentrations from DGT devices-CDGT 
(mol/l) and exceedances of Environmental Quality Standards (EQS) by comparing different tools EQS-H (a), EQS-B and WHAM-FTOX (%SREPT) for assessing 
effects of Zn and Pb pollution RCR: Risk Characterisation Ratio, PEC: Predicted Effect Concentration/ PNEC: Predicted No Effect Concentration. 
 

Sites Description 
ZnD-measured 

(mol/l) 
Zn-CDGT 

 (mol/) 

Zn RCR PbD-measured 
(mol/l) 

Pb-CDGT  
(mol/l) 

Pb RCR 
WHAM-

FTOX 

EQS-H EQS-B EQS-H EQS-B %SREPT 

H15 Reservoir 3.1×10-5 (±7.2×10-6) 1.2×10-5 (±6.9×10-6) 253.5 54.0 1.3×10-6 (±4.0×10-7) 5.7×10-8 (±5.2×10-8) 38.8 8.5 43 

H14 PT 2.1×10-5 (±5.2×10-6) 1.5×10-5 (±4.4×10-6) 174.7 45.9 7.6×10-7 (±3.6×10-7) 6.1×10-8 (±1.9×10-8) 21.9 6.8 55 

H13 ET 3.2×10-6 (±6.3×10-6) 6.1×10-7 (±3.2×10-7) 25.9 4.1 (b) 9.9×10-7 (±2.6×10-7) 1.1×10-7 (±6.6×10-8) 28.6 1.1 (d) 52 

H12 ET 6.5×10-5 (±3.0×10-5) 2.7×10-5 (±4.0×10-6) 85.0 117.6 1.4×10-6 (±4.4×10-7) 1.1×10-7 (±4.0×10-8) 39.5 17.1 66 

H11 PT 6.3×10-6 (±2.1×10-5) 3.3×10-6 (±7.6×10-6) 51.3 8.7 1.5×10-7 (±4.5×10-7) 9.2×10-9 (±1.8×10-8) 4.4 0.8 85 

H10 MC 6.8×10-6 (±2.8×10-6) 5.2×10-6 (±2.5×10-6) 55.6 11.1 3.8×10-7 (±2.0×10-7) 2.3×10-8 (±1.5×10-8) 11.2 2.9 82 

H9 PT 1.5×10-6 (±1.9×10-6) 1.3×10-6 (±5.5×10-7) 12.0 2.1 (b) 1.0×10-7 (±1.1×10-7) 4.6×10-9 (±4.4×10-9) 2.9 0.5 77 

H8 PT 4.1×10-6 (±1.5×10-6) 3.9×10-6 (±2.3×10-6) 3.6 7.4 9.2×10-8 (±3.2×10-8) 1.1×10-8 (±1.1×10-8) 2.6 1.1 100 

H7 PT 4.9×10-5 (±1.3×10-5) 2.8×10-5 (±8.5×10-6) 42.9 209.2 2.1×10-8 (±6.1×10-8) 1.2×10-9 (±1.1×10-9) 0.6 1.7 76 

H6 MC 7.8×10-6 (±1.5×10-6) 7.5×10-6(±1.0×10-6) 10.2 12.8 2.4×10-7 (±9.9×10-8) 8.5×10-9 (±4.4×10-9) 6.9 1.7 88 

H5 PT 1.3×10-5 (±2.9×10-6) 1.3×10-5 (±1.5×10-6) 11.6 43.9 2.6×10-7 (±2.2×10-7) 4.9×10-8 (±1.8×10-8) 7.5 8.7 100 

H4 ET 5.5×10-7 (±1.4×10-7) 2.6×10-7 (±8.9×10-8) 4.5 2.5 (b,c) 2.1×10-8 (±8.2×10-9) 3.7×10-9 (±5.4×10-10) 0.6 0.02 (d) 35 

H3 PT <5.1×10-7 1.2×10-6 (±5.1×10-8) 0.2 0.8 8.0×10-10 (±9.5×10-10) 5.4×10-10 (±4.1×10-10) 0.02 0.1 100 

H2 MC 7.4×10-6 (±1.1×10-6) 7.0×10-6 (±1.0×10-6) 9.7 17.7 1.9×10-7 (±1.4×10-7) 1.3×10-8 (±3.9×10-9) 5.5 2.3 97 

H1P PT 5.6×10-7 (±1.1×10-6) 4.8×10-9 (±4.5×10-9) 0.7 2.4 3.5×10-9 (±3.1×10-9) 1.1×10-10 (±3.0×10-11) 0.3 0.1 100 

H1 MC 2.4×10-6 (±1.1×10-6) 2.5×10-6 (±6.6×10-7) 2.1 4.2 8.0×10-8 (±6.6×10-8) 3.7×10-9 (±3.3×10-9) 2.3 1.0 100 

(a) Limits of EQS based on site-specific hardness, Zn.EQS-H= 1.3×10-7 (for sites H15, H14, H13, H11, H10, H9, H4); 7.6×10-7 (for sites H12, H6, H2, H1P) and 
1.2×10-6 (for sites H8, H7, H5, H3, H1). Pb.EQS-H= 3.5×10-8 for all sites. 
(b) pH values were outside the limits of Zn-BAT tool. Default limit (pH=6) was applied for Zn.EQS-B calculations. 
(c) Ca concentrations were outside the limits of Zn-BAT tool. Default limit (Ca=3 mg/l) was applied for Zn.EQS-B calculations.  
(d) pH values were outside the limits of Pb-SDD tool (pH=6=8.5). Pb-PNEC should be interpreted with care. 
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3.3.2. Comparison between dissolved metal concentrations and 

CDGT measurements 

DGT measurements were compared with the mean of metal concentrations in 

water samples calculated from deployment and retrieving dates (Appendix 3.1). 

Figure 3.2 shows the linear correlations between measured dissolved metals in 

water samples and metals measured by DGT (M-CDGT). A strong relationship 

exists between Zn measured dissolved species and Zn-CDGT (R2=0.75, p<0.001). 

For Pb, a moderate relationship was observed between dissolved concentrations 

and CDGT (R2=0.59, p<0.001). Whilst there is correlation between CDGT and 

dissolved concentrations there is a lesser degree of agreement, as indicated by 

the slopes of 0.46 (Zn) and 0.07 (Pb) (Figure 3.2).  

 

 

Figure 3. 2. Measured dissolved metals versus DGT concentrations (CDGT). Panel a, shows the 
correlation between ZnD and Zn-CDGT. Panel b, shows the correlation of PbD with Pb-CDGT.  Dotted 
lines represent a regression line, solid lines represent the ideal 1:1 line. 
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3.3.3. Metal speciation calculated by WHAM/Model VII 

Modelling where oxide precipitates are not surface active 

Concentrations of predicted organic and inorganic species of Zn, and Pb are 

shown in Figure 3.3. Average concentrations of metal-organic complexes (i.e. 

metal-fulvic acid complexes) were higher for Zn than Pb, although as a function 

of total dissolved metal, Pb had a greater relative amount present as organic 

complexes than Zn. Values ranged for Zn from 2.9×10-8 to 1.2×10-5 mol/l and for 

Pb from 2.0×10-10 to 1.1×10-6 mol/l, highest values were in sites H11 and H15 

respectively. Similar pattern was observed for inorganic species; higher average 

concentrations occurred for Zn (3.6×10-7 to 5.8×10-5 mol/l), and lower for Pb 

(6.0×10-10 to 7.2×10-7 mol/l), with the highest concentrations in sites H12 and 

H13. Figures 3.4a and 3.4c show linear correlation between dissolved inorganic 

metal species predicted by WHAM and CDGT measurements of Zn and Pb. Good 

correspondence was observed for Zn (R2= 0.81, p<0.001) and moderate 

relationship for Pb (R2=0.54, p<0.001).  

Modelling where oxide precipitates are surface reactive 

Precipitation of Fe and Al oxides (with reactive surface) were simulated by using 

the concentration of precipitated metal to the mass of active phase (Figures 3.4b-

3.4d). Similar correlations were obtained when oxides were not surface reactive 

Zn (R2= 0.81, p<0.001) and Pb (R2= 0.51, p<0.001). The presence of colloidal Pb 

was estimated showing more affinity to FeOx than AlOx. Concentrations of Pb-

FeOx complexes ranged from 5.7×10-11 to 2.5×10-7 mol/l, while Pb-AlOx 

complexes from 6.8×10-12 to 2.5×10-8 mol/l. For both complexes highest 

concentrations were identified in H12 (Figure 3.5).  
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Figure 3. 3. Calculated concentrations of metal species in the absence of surface active oxide 
precipitates using WHAM/Model VII.  
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Figure 3. 4. Relationship between inorganic metal concentrations (mol/l) calculated by WHAM 
and metal concentrations from CDGT measurements (mol/l) for Zn (panels a and b) and Pb (panels 
c and d). Inorganic concentrations were predicted in WHAM in the absence (panels a and c) and 
presence (panels b and d) of active oxides. Dotted lines represent a regression line and solid 
lines represent the ideal 1:1 line. The inset graphs show the agreement at concentrations below 
2 × 10-7 (mol/l) between inorganic metal concentrations calculated by WHAM and metal 
concentrations from CDGT measurements. 
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Figure 3. 5. Calculated concentrations of Pb species in the presence of surface active oxide 
precipitates using WHAM/Model VII. 

3.3.4. Water quality and ecotoxicological assessment  

Environmental Quality Standards: EQS-H and EQS-B  

Annual average concentrations were used for assessing EQS-H and EQS-B. The 

EQS-H standards were exceeded for Zn from 0.2 to 253.5-fold and for Pb from 

0.02 to 39.5-fold (Table 3.2). Highest Zn exceedances (>60-fold) occurred in sites 

H15, H14 and H12; these sites and H13, also presented highest Pb exceedances 

(>20-fold). The EQS-B standards were exceeded for Zn from 0.8 to 209.2-fold 

and for Pb from 0.02 to 17.1-fold. Highest Zn exceedances (>50-fold) appeared 

in sites H7>H12>H15. For Pb, highest levels (>6-fold) were presented in 

H12>H5, H15>H14 (Table 3.2). 

3.3.5. Toxicity function: WHAM-FTOX  

Concentrations of metals bound to humic acid are shown in Figure 3.6. 

Concentrations of metals bound to humic acid ranged for Zn (0.0013 to 0.9 

mmol/g) and Pb (0.0001 to 0.09 mmol/g) (Figure 3.6). Sites H15, H14, H12, and 
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H7 were characterised by high Zn concentrations (≥0.5 mmol/g), the same sites 

(except for H7) presented high Pb concentrations (≥0.05 mmol/g). 

 

Figure 3. 6. Calculated concentrations of Zn and Pb bound to humic acids (mmol/g). 

Toxicity contributions (FTOX-M) for each element (Zn, Pb, H and Al) were 

calculated from Equation 3 (Methods section) and summed to produce a total 

toxicity function value (Total_FTOX). Equations 4 and 6 were applied to convert 

Total_FTOX to a prediction of the maximum species richness that could be 

expected based on the chemistry of each stream. Effects of metal mixtures on 

predicted species richness are shown in Table 3.3. Reduction of predicted 

species richness (SREPT <23) was identified at several sites. In sites H11, H10, 

H6 and H2 a slight decrease was presented (SREPT: 22 to 19) associated with the 

combined moderate toxicity of H, Zn and Al, a major decrease (SREPT: 18 to 10)  

was shown  in sites H15, H14, H13, H12, H9 and H7 due to higher contributions 

from  Zn, contributions of H and Al and additionally small contributions from Pb; 

while the lowest value (SREPT: 8) occurred in site H4 related to the influence of H 

and Al and not metals.  
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Table 3. 3. Predicted species richness of macroinvertebrates orders (Epemeroptera, Plecoptera 
and Trichoptera) (SREPT). Toxicity values (FTOX) obtained by WHAM-FTOX were calculated from 
monthly data. Values are expressed as mean and standard deviation (±SD).  

Sites SR(EPT) Total_FTOX FTOX-Zn FTOX- Pb FTOX-H FTOX-Al 

H15 10 4.0 1.7(±0.7) 0.2(±0.1) 1.4(±0.4) 0.4(±0.5) 

H14 13 3.6 1.6(±0.5) 0.1(±0.0) 1.2(±0.3) 0.3(±0.5) 

H13 9 4.1 0.0(±0.1) 0.0(±0.0) 2.6(±0.3) 1.4(±0.3) 

H12 15 3.3 2.3(±0.9) 0.2(±0.1) 1.0(±0.3) 0.2(±0.5) 

H11 20 2.8 0.1(±0.3) 0.0(±0.0) 1.8(±0.6) 0.3(±0.2) 

H10 19 2.8 0.7(±0.3) 0.1(±0.0) 1.2(±0.4) 0.1(±0.1) 

H9 18 3.0 0.1(±0.1) 0.0(±0.0) 2.0(±0.7) 0.4(±0.2) 

H8 23 1.7 0.5(±0.2) 0.0(±0.0) 0.9(±0.3) 0.1(±0.1) 

H7 18 3.0 2.0(±0.3) 0.0(±0.0) 1.0(±0.2) 0.0(±0.1) 

H6 20 2.7 0.8(±0.2) 0.0(±0.0) 1.2(±0.3) 0.2(±0.3) 

H5 23 2.3 0.9(±0.2) 0.1(±0.1) 1.1(±0.2) 0.1(±0.2) 

H4 8 4.2 0.0(±0.0) 0.0(±0.0) 3.3(±0.4) 0.9(±0.3) 

H3 23 1.2 0.1(±0.0) 0.0(±0.0) 1.0(±0.3) 0.0(±0.1) 

H2 22 2.4 0.6(±0.2) 0.0(±0.0) 1.3(±0.4) 0.2(±0.3) 

H1P 23 1.9 0.1(±0.0) 0.0(±0.0) 1.5(±0.6) 0.2(±0.1) 

H1 23 1.5 0.3(±0.0) 0.0(±0.1) 0.8(±0.2) 0.0(±0.1) 

  

Contributions of metal toxic effects (FTOX) at different pH conditions were 

predicted by WHAM-FTOX (Figure 3.7). Figure 3.7a demonstrates the effects of 

heavy metals at spoil runoff or adit sites, higher toxicity (>2.3) is related to acidic 

waters (H4 and H13), while adits or water draining through spoil sites are rich in 

Zn and Pb (H15, H14, H12, H7). Figure 3.7b highlights the lack of metal 

contribution of metals at the lower pH sites (pH<5) due low metal-humic binding 

as a result of enhanced competition for binding sites from the elevated 

concentrations of H+ and Al (likely present as oxides) or possible lower metal too.  
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Figure 3. 7. Variations of toxicity function (FTOX) with pH. Panel a shows total FTOX, which includes 
the effect of metals derived from mine-affected areas and acid contribution from peat soils. Panel 
b shows the contribution of only H and Al to FTOX. The horizontal dashed line represents the FTOX 
threshold (2.3), above which toxic effect are predicted to occur. The upper limit of the plot 
represents the upper threshold (5.2). 

3.3.6. Evaluation of metal assessment tools 

EQS-H, EQS-B and WHAM-FTOX were compared to evaluate their levels of 

protection with respect to metal toxicity in aquatic ecosystems (Table 3.2). From 

the comparison, EQS-H are more conservative than EQS-B. EQS-H showed 

wider ranges of exceedance for Zn (0.2 to 253.5-fold) and for Pb (0.02 to 39.5-

fold), while EQS-B showed narrow ranges for Zn (0.8 to 209.2-fold) and Pb (0.02-

17.1-fold). For both tools, sites H15, H14, H12 and H7 showed the highest Zn 

failures. For Pb same sites, except H7 showed major failures, in addition, H13 

showed exceedance by using EQS-H and H5 with EQS-B. Calculations from 

WHAM-FTOX showed that at eleven sites the water chemistry may reduce the 

maximum species diversity of macroinvertebrates by between 65 and 3%. Sites 

H12, H13, H14, H15 and H4 showed the largest predictions for reductions in 

species richness, with reductions from 65 to 34%. 

3.3.7. In situ macroinvertebrate survey 

A total of twenty four macroinvertebrate families were identified across all of the 

sites. The BMWP scores based on the presence and absence of 

macroinvertebrates families indicated a moderately impacted water quality 
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(BMWP>50) for sites H14, H10, H9, H6, H5, H3, H2, H1P and H1, while lower 

scores (BMWP<25) in sites H15, H13, H12, H11, H8, H7 and H4 indicated 

pollution deriving poor water quality (Appendix 3.2), while ASTP scores (<2) 

showed sites H13 and H12 as the most polluted (Appendix 3.3). In addition, four 

macroinvertebrate orders were predominant in the catchment (Appendix 3.4). 

Based on numbers of individuals, the order Diptera showed 39.5% represented 

by the families Psychodidae and Simuliidae (Appendix 3.5), followed by the 

orders Ephemeroptera (mayfly) with 28.1% where Baetidae was the most 

prevalent (Appendix 3.6), Trichoptera (caddisfly) presented 17.9% with 

Hydropsychidae as the dominant family (Appendix 3.7), and the order Plecoptera 

(stonefly) with 11% represented by the family Perlodidae (Appendix  3.8).  

3.4. Discussion  

For aquatic environments, metal assessment has evolved as bioavailability is 

increasingly considered a critical measure for improving water quality, e.g. under 

the EU Water Framework Directive. A preliminary water quality assessment was 

carried out where dissolved concentrations of Zn and Pb were assumed to be 

bioavailable depending on ranges of water hardness conditions, and 

exceedances were calculated from previous-established EQS-H. Concentrations 

of Zn and Pb exceeded the limits by 174.7-fold and 39.5-fold respectively, 

however the implications for their bioavailability were unclear. Merrington (2016) 

has indicated that hardness limits have been derived from ecotoxicological tests 

mainly from crustaceans and fish, where water chemical parameters do not 

necessarily reflect field conditions. Thus, the use of hardness-based standards 

may be overly conservative as they might under-represent other important taxa. 

In addition, they fail to consider chemical speciation in distinguishing sites with 

potential environmental risk associated with metals.  

In complex environments such as freshwaters, understanding of the underlying 

conditions controlling the dynamics and speciation of metals is critical for 

assessing and managing the risk they pose to aquatic life (Han et al., 2013). This 

study evaluated the utility of DGT for yielding both time averaged and dynamic 

Zn and Pb concentrations (potentially a proxy for organism availability) (Diviš et 
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al., 2007; Degryse et al., 2009; Amato et al., 2014; Søndergaard et al., 2011; 

2014; Omanović et al., 2015). By comparing DGT measurements (CDGT) with 

direct water measurements (M-measured), results indicated that CDGT 

concentrations were generally lower than the directly measured values.  For Zn-

CDGT and Zn-measured a strong linear correlation (R2=0.75) was present 

suggesting the presence of Zn mainly as free ions and readily labile complexes, 

a slope of 0.47 revealed  that DGT measurements at higher concentrations failed 

to reflect dissolved measured concentrations. This might be caused by the kinetic 

rate of Zn forms, which will determine its accumulation into the resin layer 

(Warnken et al., 2007). Free Zn2+ seems to be rapidly absorbed by the resin layer, 

while the supply of labile complexed forms will depended on their degree of lability 

(Puy et al., 2012). Zhang and Davison (2015) indicated that fully labile complexes 

might not be completely dissociated within the diffusion layer, thus their uptake 

in the resin could be reduced or not occur.  Correlation between Pb-CDGT and Pb-

measured was moderate (R2=0.59), with a slope of 0.07, possibly attributable to 

the presence of less labile Pb forms (e.g. Pb-FeOx, Pb-DOM) that need more 

time for diffusion or presence of bigger particles that could be excluded from DGT 

membranes (Han et al., 2013). Considering correlations from both metals, CDGT 

measurements can be affected by the amount of total metal dissolved 

concentrations present as free ions and their complexation with inorganic or 

organic substances (Zhang and Davison, 2015). Furthermore, long deployments 

(>15 days) might expose DGTs to biological factors like biofouling, and flow 

fluctuations that might decrease the stirring rates, reducing DGT’s performance 

(Davison and Zhang, 1994; Webb and Keough, 2002; Turner et al., 2014). 

Metals speciation and bioavailability are controlled by a range of different factors 

such as pH, ionic strength, DOC, hardness, pH and inorganic or organic colloids. 

Given these factors, the quantity of metal available for organism uptake is not 

reflected by the total dissolved concentration (Hart, 1981; Luoma, 2008). This 

study correlated M-CDGT measurements with inorganic metal complexes 

predicted from dissolved measured concentrations under the absence and 

presence of active inorganic colloids (e.g. FeOx and AlOx) as they can compete 

with Zn and Pb for binding with DOM. By excluding active oxide colloids in the 
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modelling, Zn is largely present as inorganic rather than organic complexes, and 

highest predicted inorganic concentration was at site H12 (5.8×10-5 mol/l). 

Conversely Pb had a greater affinity for organic binding, with highest organic 

concentration at H15 (1×10-6 mol/l) (Figure 3.5). Both metals showed good linear 

correlations between inorganic complexes and CDGT for Zn (R2=0.81), and Pb 

(R2=0.54), reflecting an improved correlation of Zn-CDGT with predicted Zn 

inorganic complexes than previous correlation between Zn-CDGT with Zn-

measured, which can be attributable to the fact that dissolved Zn is present 

primarily as inorganic and free ions. Outcomes from modelling conditions where 

oxide precipitates are surface reactive showed similar behaviours for Zn 

(R2=0.81) and Pb (R2=0.51) than obtained in the absence of surface activity. The 

agreement observed for Zn confirms that the total dissolved Zn (mainly inorganic) 

is approximately equivalent to the dynamic Zn-CDGT (except at high Zn loading, 

as previously discussed). For Pb, there is a discrepancy between Pb-CDGT and 

dissolved Pb due to larger fractions in other less labile phases (Pb-organic 

complexes) (Warnken et al., 2008; Han et al., 2013). The lack of improved 

agreement to the inorganic-Pb in presence of oxides with the Pb-CDGT (dynamic) 

concentration implies that the model may be under-predicting the binding to these 

forms. However, low concentrations of Pb-inorganic can be associated to the 

absence of precipitated iron and aluminium oxides, for instance, site H4 showed 

no precipitation of aluminium oxides and low precipitation of iron oxides, while 

other sites like H3 and H7 presented very low concentrations of FeOx (<6.9×10-

7 mol/l) and AlOx (<3.3×10-7 mol/l). From these results, DGT provides useful 

information about metal dynamics and speciation which is valuable for 

understanding metal uptake mechanisms, however current results indicated its 

inadequacy as a substitute for water measurements due to poor uptake kinetics 

at higher metal concentrations, limiting an accurate assessment of metal 

bioavailability. Zhang and Davison (2015) have indicated that given the 

complexity of biological systems and chemistry of environmental media, the 

ability of DGT to mimic metal uptake and predict bioavailability is variable. Further 

research based on the comparison of field data and laboratory experiments under 
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controlled temperature, deployment time and flow rates are suggested for 

evaluating the applicability of DGTs regarding metal bioavailability in freshwaters.  

Outcomes from EQS-H, EQS-B and WHAM-FTOX provided different levels of 

prediction regarding metal bioavailability and toxicity. In comparing EQS-H and 

EQS-B, the simpler approach (EQS-H) is more conservative than the standard 

that considered more water chemistry parameters and metal-organism 

interactions (EQS-B) (Merrington, 2016). However, by contrasting EQS-B and 

WHAM-FTOX, results suggest that the latter approach is the least conservative of 

the three approaches. This was clearly identified in sites with exceeded EQS-B 

like H7 (Zn: 209.2-fold and Pb: 1.7-fold) and H5 (Zn: 43.9-fold and Pb: 8.7-fold), 

but with FTox-SR showing 100% for predicted species richness for both sites. 

WHAM-FTOX also revealed that major toxic effects can occur at circumneutral pH 

mostly due to Zn and Pb. 

Moreover, a biological survey agreed with this chemical assessment. The most 

impoverished sites presented low predicted macroinvertebrate richness 

(SREPT=35%) correlating with high concentrations of metals (H12, H13 and H14) 

or low-pH values (H4) (Table 3.2). Overall, the orders Diptera and Trichoptera 

were dominant (39.5% and 28.1%) with Chironomidae and Hydropsychidae as 

the more abundant families. Responses of macroinvertebrates and diatoms to 

different metal levels in Hebden Beck have been previously evaluated by the UK-

Environment Agency (2014). The ecological assessment revealed a direct 

relationship between increasing Zn concentrations and reduced biodiversity, 

likewise invertebrate data showed that responses of species composition could 

be related to the influence of complex interactions between metals and acid 

scenarios. 

In early and current assessment, the family Baetidae (O: Ephemeroptera) was 

dominant, possibly due to its tolerance to different levels of pollution. A study of 

Mebane et al. (2015), indicated that the most sensitive species to pollution are 

the last to re-colonise after recovery from Cu contamination. In our study less 

sensitive families (Perlodidae, Nemouridae, Baetidae) are widespread 

throughout the catchment. More sensitive families like Glossomidae, 
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Ephemerellidae and Heptageniidae are mainly confined to main channel sites 

(H2, H6, H10), although Heptageniidae was also present in a metal impacted site 

H14 (predicted species richness of 55% of the theoretical maximum). Another 

metal sensitive family, Psychodidae was present in less metal impacted sites, 

such as H1P, showing a predicted species richness of 100%. These results are 

consistent with the FTOX species predictions, however current interpretations are 

generalised as we only identified macroinvertebrates to family level, and species 

sensitivity is complex with differences in pollution tolerance occur within different 

taxa (Clements et al., 2013). 

From a regulatory perspective, bioavailability based standards (EQS-B) offer a 

better ecologically approach to address water quality failures than traditional 

hardness corrections (EQS-H) (Peters et al., 2016). In this study, both standards 

facilitated the screening of sites with potential metal risk, however, EQS-B 

identified sites where dissolved metal concentrations and speciation mechanisms 

(M-CDGT) were related. 

Although bioavailability-based models have been developed on field data and 

applied in the establishment of water quality standards for metals, their 

pertinence to routine regulatory purposes need to be extensively verified, 

especially for sites where physicochemical conditions (e.g. pH, hardness, DOC) 

are near or outside of the boundaries of the model (Rüdel et al., 2015; WFD-

UKTAG, 2009a). This is the case of EQS-B for zinc. Some of the studied sites 

presented pH and Ca values below Zn-BLM limits, thus default limits of this tool 

(pH= 6 and Ca= 3mg/l) were used in Zn assessment, consequently the use of 

complementary models like WHAM and WHAM-FTOX can offer more complete 

toxicity predictions under original physico-chemical conditions. 

Precisely because WHAM-FTOX considers protons within its formulation, it can be 

applied to any combination of water chemistry and metal mixtures. For a practical 

implementation of these tools a compliance scheme has been suggested by the 

UK Technical Advisory Group which includes: i) comparison of metal 

concentrations with EQS-H, ii) application of BLM tools (e.g. Zn-BLM, Pb-BLM) 

to predict site-specific bioavailability (EQS-B), and iii) local refinement  using 



116 

 

models that require a larger number of input parameters (e.g. full M-BLM or 

WHAM-VII) (Bio-met, 2015; WFD-UKTAG, 2009b). Further research is desirable, 

especially in the generation of toxicity data to improve the significance of toxicity 

coefficients (e.g. Pb). Nevertheless, the combination of EQS-B and WHAM-FTOX 

could provide a rational assessment which is essential for the purposes of 

considering remediation activities. Vulnerable sites can be prioritised under a 

holistic scenario (water chemistry, metal concentrations and interactions between 

metal and organism) where remedial actions can be focused on reducing metal 

bioavailability for the purpose of improving ecological endpoints. 

This study has evaluated different methods for the assessment of the chemical 

and ecological status of Hebden catchment regarding metal pollution. The first 

method (EQS-H) was a simple and well-established technique, which provided a 

very conservative regulatory limit that may be overprotective as seen when 

calculations are performed with tools designed specifically to account for 

speciation and organisms interactions. The second (EQS-B) and third (WHAM-

FTOX) method based on more rigorous bioavailability tools (e.g. Zn-BLM and Pb-

SSD), provided  less conservative limits but supported by the normalisation of the 

ecotoxicity data to the site specific water chemistry. Through the evaluation of 

these approaches a better understanding of metal speciation and dynamics was 

possible, supporting the prediction of toxic effects from metal mixtures and the 

identification of sites with potential biological risks. Furthermore, the biological 

survey provided a context for relating the response of aquatic organisms to river 

water chemistry and pollutants, which are useful for future ecological 

assessments. 

3.5. Conclusions  

The use of bioavailability-based standards is needed to fully assess the impacts 

of metal pollution and implement regulatory actions for delivering good ecological 

status.  

 In carboniferous catchments, metal toxic effects occur at circumneutral pH. 

Zn is mainly present as free ions and readily labile complexes while Pb is 

present as less labile forms (e.g. organic complexes and colloids). 
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 Metal assessment through the EQS-H approach is more conservative than 

EQS-B and WHAM-FTOX. The incorporation of bioavailability will better 

address some of the processes that control toxic metals effects. In addition, 

catchment management will be improved as the bioavailability approach will 

aid in the identification of key reaches where remediation may be required.  

 Metal concentrations estimated from DGT provided useful information for 

the assessment of Zn and Pb speciation and for understanding metal uptake 

mechanisms. However, discrepancies between M-measured and M-CDGT 

suggest that further research is required for evaluating the applicability of 

this tool in the assessment of metal bioavailability under field conditions. 
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Abstract  

The increasing frequency and magnitude of episodic rainfall events may affect 

metal mining areas by remobilisation and deposition of metal-rich sediments and 

enhancing metal-rich run off, impacting river water quality. This study assesses 

the effects of episodic rainfall in a Carboniferous headwater catchment 

contaminated by historical Pb and Zn mining. Results suggest that episodic 

rainfall increases concentrations of dissolved metals, with greater impact on Pb 

than Zn concentrations, but without altering typical circumneutral conditions of 

the river. During episodic flow, an ephemeral tributary draining through extensive 

spoil tips was the major contributor of dissolved metals. Runoff affected the 

dissolution of secondary metal-carbonate minerals, particularly constraining the 

dissolution of smithsonite (ZnCO3) due to the abundance of carbonate and 

bicarbonate derived from bedrock weathering. Toxicity estimations showed that 

metal concentrations derived from episodic rainfall do not directly correspond to 

a parallel increase in predicted toxicity, highlighting the complexity in chemical 

speciation changes during episodic rainfall events. 



126 

 

4.1. Introduction  

Changes in climate impact the hydrological cycle. Extreme events like droughts 

and floods may have significant impacts on the quantity and quality of 

waterbodies, with direct or indirect effects on ecosystems (Hrdinka et al., 2012; 

Park et al., 2011; Foulds et al., 2014). In river systems, headwaters streams, 

ephemeral ponds and ditches are most sensitive to climatic changes since severe 

alterations in temperature and precipitation could affect evapotranspiration, flow, 

soil moisture and groundwater recharge (Whitehead et al., 2009; Ayers et al., 

1994; Chapman et al., 1993). Floods can be effective agents of contaminant 

dispersal by triggering primary pollution or remobilisation of deposited material 

(Miller et al., 1998). Primary pulses are produced by major rainstorms after 

periods of extended drought, when soluble salts concentrated on the surface of 

mine wastes and spoils are quickly dissolved and flushed into receiving surface 

waters (Nordstrom, 2011). Runoff from watersheds draining metal mining areas 

is considered an acute problem as exposed tailings produce metal-rich overflow 

that is often redistributed downstream (Myers et al., 1985; Förstner and 

Wittmann, 2012). Once in sediments, metals can remain in floodplains for 

decades to centuries until their remobilisation by erosion, creating a long-lived 

contamination problem (Ciszewski and Grygar, 2016). 

In the UK, the floods of autumn 2000 provided clear evidence of the potential 

effects of climate change on diffuse pollution in formerly mined river catchments 

(Dennis et al., 2003; Macklin et al., 2006). The excessive flux of metals generated 

by the legacy of metal mining has significantly increased the levels of metal 

pollution in many catchments (Mayes et al., 2010). Consequently, these 

catchments represent a challenge in achieving “good ecological and chemical 

status” as required by the EU Water Framework Directive (WFD) or other national 

legislation. In addition to climate influenced factors, the dispersal of metals 

depends on the dynamics of each catchment (Miller, 1997). For example, where 

rivers flow over limestone bedrock the pH is buffered, exerting controls over 

mineral solubility, metal transport and bioavailability (Valencia-Avellan et al., 

2017). However, this buffering capacity can be slowly consumed by rainfall (e.g. 

acid rain) producing shifts in the pH, allowing desorption of metals from sediments 
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or soils (Salomons, 1995). Mitigating the impact of metals on water quality 

requires knowledge of the biogeochemistry of metal in solid and solution phases, 

as well as a local understanding of major sources of pollutant metals (Lambing et 

al., 2004; Wirt et al., 1999; Sandén et al., 1997; Nieto et al., 2007; Park et al., 

2011). 

The limited primary data about episodic high rainfall make difficult the 

understanding of their effects on metal dynamics. This study seeks to address 

this knowledge gap by assessing the mobilisation and potential toxicity of 

dissolved metals under flow conditions induced by episodic high rainfall. 

Identifying key episodic rainfall-induced processes in the behaviour of pollutant 

metals can support future risk mitigation strategies in catchments. 

4.2. Methods  

This study focusses on the Hebden Beck catchment in northern England, where 

the underlying geology consists of a succession of sandstone and mudstone 

(Millstone Grit) and carboniferous limestone (Appendix 4.1). This headwater 

stream is affected by metal contamination derived from historical lead mining, 

where galena (PbS), sphalerite (ZnS) and barite (BaSO4) were the profitable 

minerals. The catchment chemistry has previously been characterised (Valencia-

Avellan et al., 2017) and assessed with respect to water quality and ecotoxicology 

under seasonal conditions (Valencia-Avellan et al., 2018). Three sampling 

stations were selected for this study: an ephemeral tributary (ET) located in the 

most upstream zone, draining an area of mine spoil wastes; a perennial tributary 

(PT) of an underground mine channel located in middle of the stream; and a site 

located downstream on the main channel (MC), 2.27 km from the River Wharfe 

confluence and adjacent to a flow gauging station (Appendix 4.2). 

UK Meteorological Office daily rainfall data (UK Meteorological Office) were 

obtained for Pateley Bridge Ravens Nest (54°04'01.2"N 1°46'01.2"W) in order to 

present local seasonal drought and rainfall events for the month of August 2016 

(> 12 mm during high rainfall days) (Appendix 4.3). The sampling campaign 

began at 1230h on 19 August and ended after a maximum of 96 hours at 1250h 

on 23 August 2016. Automated water samplers (Teledyne-ISCO, model 6712) 
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were set to collect at one or two hour intervals in each site. Automated samples 

were retrieved at the end of the sampling period (24-48 hours) and subsamples 

for each time interval were filtered in the field using syringe filters for metal and 

major ions (0.45 µm, polyethersulfone-hydrophillic, Sartorious) and for dissolved 

organic and inorganic carbon (0.45 µm nylon-polypropylene, Avonchem). Sample 

handling and in situ water quality measurements (pH, pH, SO4
2-, DIC and DOC) 

followed previously used methods (Valencia-Avellan et al., 2017). Hourly rainfall 

data from Grimwith reservoir (code: 62046; 54°04'16.4"N 1°54'47.7"W; 3 km east 

of Hebden Beck) and flow data from a gauging station in the main river channel 

(code: F1960; 54°04'27.8"N 1°57'48.5"W) were obtained from the UK 

Environment Agency for the dates 18th to 23rd of August (Appendix 4.4). Several 

flow stages were identified; low-flow (LF), base-flow (BF), peak-flow (PF) and 

post peak-flow (PPF). Full details are in the Appendices section (Appendix 4.4).  

In ET, the first measurements were under stagnant conditions with the sampler 

positioned in a small pool near the confluence with the main channel. In PT and 

MC, data was collected from well-mixed areas with continuous flow. Metal 

analysis was conducted via ICP-MS (Thermo Fisher iCAPQc) using Certified 

Reference Material (SLRS-5) as a quality control and with specific limits of 

detection (Pb: 0.47 g/l, Ba: 1.45 g/l, Cd: 0.03 g/l, Sr: 1.09 g/l, As: 0.02 g/l, 

Zn: 2.28 g/l, Cu: 0.05 g/l, Co: 0.014 g/l, Ni: 0.06 g/l, Fe: 1.43 g/l, Mn: 0.15 

g/l, Al: 1.77 g/l). In addition, two replicates per site and four field blanks were 

taken for procedural quality control. Activity of metals and solubility of relevant 

mineral phases were calculated using PHREEQC code (version 3) (Parkhurst 

and Appelo, 1999) and the WATEQ4F database (Ball and Nordstrom, 1991) 

where site-specific chemical data and major physico-chemical parameters were 

considered as input data. Changes in DOC concentrations during episodic events 

may influence the concentration of metal-organic complexes, therefore the 

Windermere Humic Aqueous Model (WHAM/Model VII) (Tipping et al., 2011) was 

applied to investigate chemical speciation of metals. Toxicity of metal mixtures 

including protons (H+) and metals (Al3+, Zn2+, Pb2+ and Cu2+) was estimated using 

WHAM-FTOX (Stockdale et al., 2010). Procedures for WHAM/Model VII and 
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WHAM-FTOX   were followed the as described in Valencia-Avellan et al. (2018), 

detailed in Chapter 3.   

4.3. Results and Discussion  

The catchment hydrology responded rapidly to rainfall. Flow levels started to 

increase within two hours after the first period of rain (5 mm/h), indicating that 

runoff processes are likely occurring at the surface (overland flow) and 

subsurface (interflow) (Appendix 4.4). This rapid response has been reported 

when rainfall exceeds the infiltration capacity of the soil, especially in peat soils 

where the water infiltration is low (Holden and Burt, 2002). 

Contrasting responses were identified for Pb and Zn under increasing flow 

conditions. Concentrations of Pb are directly influenced by flow variations 

showing a peak concentration (690.3 g/l) corresponding with peak flow, 

principally in ET. Contrary to ET, a slow rise in concentrations was evident in PT 

with maximum values (211.7 g/l) reached at post peak flow. This delayed 

response to episodic rainfall could be due to the subsurface runoff (interflow) 

percolating through mine channels (Seiler and Gat, 2007). High Pb 

concentrations in MC (153.7 g/l) showed similar responses to ET but lower in 

magnitude (Figure 4.1a). Zinc concentrations showed an inverse relationship with 

episodic rainfall and flow variations (Figure 4.1b), although concentrations in ET 

showed mixed patterns. For instance, in ET at peak flow, concentrations 

immediately decreased (55%) but increased at post peak flow (194%). This can 

be associated with large masses of mine wastes exposed to water, producing 

abundant concentrations of dissolved Zn (Hudson-Edwards, 2003). Less marked 

dilutions (47% and 35%) and more stable concentrations were identified in sites 

PT and MC, perhaps due to discrete rainwater inflow in PT and MC having the 

lowest concentrations of the three sites. Maximum Zn concentrations were 

measured in ET (5016.8 g/l), followed by lower concentrations in PT (1069.1 

g/l) and MC (693.6 g/l). The observed trends suggest that episodic rainfall 

increases concentrations of dissolved Pb and has a lesser impact on Zn 

concentrations.  
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Figure 4. 1. Trends of metal concentrations (g/l) at different sites during three rainfall periods. 
Panel a shows trends of Pb concentrations and Zn concentrations are indicated in panel b. The 
secondary Y axis shows flow data collected at the gauging station in main channel. Solid lines 
represent sampling sites and shaded area flow data. Perpendicular dotted lines indicate the flow 
stages at different rainfall periods. 

Runoff has not altered the typical circumneutral conditions of the catchment. 

Thus, geochemical signatures of each tributary are controlling their major ion 

chemistries (e.g. SO4
2-, DIC and DOC) (Appendix 4.5) (Jones et al., 2013; 
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Valencia-Avellan et al., 2017). Correlation analysis showed diverse relationships 

at different flow conditions. Generally, stronger positive correlations were present 

in ET between Pb and Zn with SO4
2-, likewise in PT, where positive correlations 

were identified mainly between Zn with DIC and SO4
2-, whereas in MC, Pb 

showed strong correlations with DOC (Appendix 4.6). 

Runoff has an enhancing effect on weathering processes such as hydrolysis, 

oxidation and erosion. Geochemical processes under episodic rainfall are 

controlled by cerussite (PbCO3) and smithsonite (ZnCO3). Moreover, Pb is closer 

to saturation than Zn, with Pb activities close to saturation observed in ET and 

MC (Figure 4.2). This may be due to the slower kinetics of the smithsonite 

dissolution versus cerussite (Pokrovsky and Schott, 2002). These results agree 

with prior studies (Tame et al., 2017; Valencia-Avellan et al., 2017; Valencia-

Avellan et al., 2018) and emphasize the importance of smithsonite and cerussite 

in controlling metal kinetics and transport (Hammarstrom and Smith, 2002). 
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Figure 4. 2. Lead and Zn activity as a function of pH and site specific conditions of spoil wastes 
areas. Theoretical saturation of mineral forms represented by solid lines were obtained using 

pCO2 = 0.0012 atm or by site specific averaging of SO4
2- (ET: 13090 g/l, PT: 10970 g/l, MC: 

6280 g/l), Cl- (ET: 3600 g/l, PT: 5960 g/l, MC: 5080 g/l) and temperature (ET: 16.9 C, PT: 

9.5 C, MC: 14.0 C).  The variability between sites was a maximum of 0.05, thus lines correspond 
to median values. The calculated activity of Zn from equilibrium with ZnSO4 was > 1 mol/L. Note 
that the Y axis have different scale. 

The ET data highlight the significance of extensive open spoil as a metal source 

during episodic flow (especially for Pb). An approximately linear increase 

occurred for Pb and Zn concentrations, but they are reduced at flow > 0.5 m3/s 

(Figure 4.3). This suggests a bi-modal response of metals to flow, possible 

related to the exponential fall in DIC with flow (Appendix 4.7) influencing the 

saturation of the secondary minerals cerussite and smithsonite. Further evidence 

for this is given in Appendices, Appendix 4.8 and 4.9 as saturation index (SI) 

showed an immediate decrease when flow increases. Studies from Pokrovsky 

and Schott (2002) regarding geochemical processes under circumneutral 

conditions indicated that high flow may increase the concentrations of carbonate 

and bicarbonate ions, which act as inhibitors of smithsonite dissolution, reducing 

the equilibrium activity for Zn. Another research from Carroll et al. (1998) also 

mentioned the relevance of carbonate minerals in the sorption of metals as they 

function as long-term sinks, competing with other reactive minerals such as iron 

oxyhydroxides. Previous research in this catchment has identified that Pb is 

strongly associated with both particulate and colloidal forms, whereas Zn is 
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present mainly in inorganic complexes (Valencia-Avellan et al., 2017; Valencia-

Avellan et al., 2018). Thus, during high flood periods the resuspension of 

sediments may increase the total concentrations of Pb (from particulate forms, 

and thus potentially available for the dissolved phase), whilst this will be a minor 

potential source of Zn (Elder, 1988; Nagorski et al., 2003). 

 

Figure 4. 3. Relationships between metal concentrations (g/l) and flow across all three rainfall 
episodes in the ephemeral tributary.  Note that Y axis have a different scale. 

4.3.1. Effects of episodic rainfall on metal toxicity assessed 

using WHAM and WHAM-FTOX 

At all sites the highest concentrations of Pb-organic complexes and oxide bound 

Pb were calculated to occur at post peak flow. This could be explained by the 

increasing amounts of DOC, and concentrations of Fe and Al as precipitated 

minerals (e.g. hydroxides) at peak and post peak flow (Appendix 4.5). Nordstrom 

(1999) indicated that sorption of metals onto freshly precipitated Fe and Al 

hydroxides at circumneutral pH occurred as follows: Pb > Cu > Zn. This low 

affinity of Zn to surface sorption to oxide minerals was identified by the 

abundance of Zn-inorganic complexes (Figure 4.4). Moreover, estimations in the 

absence and presence of oxides precipitated similar concentrations resulted for 

Zn complexes (inorganic and organic), while Pb has a large tendency to be bound 
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to DOC and oxides principally in the presence of oxides precipitates (Appendix 

4.10). 

The impacts of climatic events on contaminant transport and water quality are 

complex because of localised effects. Current results are consistent with previous 

research on the transport and pollution of Pb occurring through particulate 

material, enhanced by episodic rainfall (Neal et al., 1997). Likewise Gozzard et 

al. (2011) reported the attenuation effect on Zn pollution during peak rainfall. 

Comparison of metal fluxes under episodic rainfall conditions revealed that local 

conditions such as the abundance of secondary mineral sources and 

circumneutral pH are key factors controlling the kinetics of Pb and Zn, whereas 

flow variations could be an enhancing factor. Thus, these results provide insight 

into other catchment where streams drain mine spoil under similar conditions. 

The potential ecological risk of metal pulses was estimated using WHAM-FTOX. 

We considered two conditions for calculating total toxicity values (Total_FTOX): i) 

Total_FTOX ≤ 2.33, no toxic effects occur, and ii) Total_FTOX > 2.33, toxicity reflects 

a risk of diminished macroinvertebrate species diversity, until no species are 

predicted to be present at a value of 5.20. Under flow conditions induced by 

episodic rainfall, toxicity function was calculated in ET showing values from 3-3.8 

but not clearly related to flow induced metal concentration changes, lower toxicity 

values predicted in PT (≤ 2.1) and MC (≤ 1.7) suggest no toxic effects from 

dissolved metals (Appendices,  4.11, 4.12, 4.13). Overall, calculations during 

episodic flow showed that short term fluctuations in metal concentrations are not 

reflected in the predicted acute toxicity risk to aquatic organisms. This may be 

due to a number of factors including changes in concentrations of competing 

species, DOC and other ligands (Namieśnik and Rabajczyk, 2010). Future work 

would be better focused on sites with predicted ecological harmful levels of metal 

and perennial tributaries from spoil runoff areas, including a better understanding 

of variability during seasonal as well as episodic flow conditions. 
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Figure 4. 4. Metal concentrations in presence of surface active oxide precipitates (Fe and Al 
oxides) calculated by WHAM/Model VII at different flow stages in all sampling sites. Left hand 
side panels show average concentrations of Pb. Right hand side panels show average 
concentrations of Zn species. Note Y axis have different scales. 
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Abstract 

Policies within the European Water Framework Directive (EU-WFD) include the 

promotion of an integrated community policy on water. However, public 

participation and engagement initiatives included as part of River Basin 

Management Planning have been inadequate. To tackle this problem, policy-

makers and decision-makers are encouraged to ensure effective transmission of 

new and existing technical knowledge through better communication with the 

public as part of a catchment-scale management approach. Thus, the present 

study focuses on the assessment of public perception (residents, visitors and 

stakeholders) of the water quality of a small upland river, within a protected area 

in northern England that is affected by heavy metal contamination from historical 

mining. Results show that mines are valued for their cultural legacy by residents, 

while visitors were more likely to show concerns related to the environmental 

legacy of mines. Awareness of water quality standards were starkly different 

between specialists and non-specialists, reflecting an insufficient transference of 

knowledge from technical to local community and potentially across stakeholders 

groups. Potential remediation strategies were more accepted by visitors than 

residents, but passive treatments were the preferred approaches to protect the 

village’s landscape and surroundings. Awareness of the increasing frequency of 
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flood events was observed in residents and visitors, although a higher concern 

was observed for visitors, likely associated with individual experiences. Overall, 

results highlight the importance of the integrated involvement of specialist 

(environmental and government agencies), visitors and residents (e.g. villagers, 

farmers) for a holistic management of water resources and natural environments 

(e.g. rivers). In conclusion, a clear translation of scientific and technical 

knowledge to the public is essential for better understanding the environmental 

legacy of mines, in order to promote public awareness for improving the quality 

of this river ecosystem and protecting this conservation area.  

5.1. Introduction 

Freshwater systems provide countless benefits to the environment and human 

populations. The unceasing competition for water resources (e.g. domestic, 

industrial, and agricultural uses) have had a profound effect on many of these 

ecosystems. Furthermore, factors like climate change are having a direct or 

indirect impact in these water bodies, affecting adjacent populations. Sustainable 

development of these habitats is a difficult task for managers. 

Nowadays, the management of freshwater needs to move from traditional 

approaches to more integrated initiatives. In the past, management policies have 

been primarily established by technical and scientific knowledge, leaving the role 

of the society underestimated (Flora, 2004). In the last half century, progress has 

been made in understanding freshwaters as integrated ecological systems. The 

inclusion of technical and social experts as productive partnerships have 

improved the management of natural resources, as engaged communities deliver 

greater ranges of perspectives for developing more effective policies (Tindale, 

2014; Gain et al., 2013; Chirenje et al., 2013). 

Policies within the European Union Water Framework Directive (EU-WFD) 

include the promotion of an integrated community policy on water. This is 

implemented by considering five key components: river basin districts, river basin 

management planning, public participation, economic analysis, and policy 

integration. In England and Wales, pollution from diffuse sources is a long-term 

problem for water bodies due to mine drainage, for example in northern England 
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over 12000 km2 of catchments have been affected by historical mining (Howard 

et al., 2015; Macklin et al., 1997). Thus, for compliance with the WFD, the River 

Basin Management Planning included public participation and engagement 

initiatives, although implementation was inadequate (DEFRA, 2013). In 2017, a 

survey on the current opinion of water management and community engagement 

initiatives in the UK and the Republic of Ireland indicated that more than 80% of 

respondents did not feel included in decisions about their water environment 

(Rolston et al., 2017). Thus, a new catchment-scale management or catchment 

based approach (CaBa) encourages policy-makers and decision-makers to 

ensure the effective transmission of new and existing technical knowledge 

through a better communication with the public (Voulvoulis et al., 2017).  

In understanding people’s general knowledge, awareness, and beliefs about 

water, discovering agreement as well as differing perspectives is the first step for 

creating an effective place-based assessment (Hu, 2011). This information can 

provide a foundation for negotiating differences and building common ground that 

can motivate cooperative environmental planning to improve water quality 

(European Commission, 2003). Thus, the present study focuses on the public 

perception of a small upland river part of the Upper Wharfe catchment, Hebden 

Beck, located in North Yorkshire, UK. This river has been affected by heavy metal 

contamination from the lead mine industry (leading to exceedances of water 

quality standards set by the WFD and implemented in England and Wales by the 

Environment Agency), as well as by flood events (Jones et al., 2013; Valencia-

Avellan et al., 2017). This study aims to identify public awareness of river 

ecosystem services, perceptions of river water quality, opinions about flood 

effects and response to potential metal remediation practices.  

5.2. Methods 

5.2.1. Study area 

The research was undertaken in the parishes of Hebden and Grassington from 

the Craven District of North Yorkshire, UK. Both villages are part of the Yorkshire 

Dales National Park. The study was focused in Hebden, located at an altitude of 

190 meters (above sea level) on the north side of Wharfedale. It sits adjacent to 
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the steep sided valley associated with the fast flowing Hebden Beck, about 3 km 

from its source on Grassington Moor and approximately 750 meters from its 

confluence with the River Wharfe (south). The village’s location is strongly 

influenced by local geography. It sits across an important bridging point, as the 

valley of Hebden Beck narrows slightly at a contour height which is convenient 

for east to west communication.  

In 1791, cotton production began in Hebden with the construction of a large cotton 

mill, becoming a major industry for the village. New steam powered machines 

dominated the rural water powered mills, ceasing the production in 1870. During 

the late 18th and early 19th centuries, lead mining became a major industrial 

activity, although this probably remained as small-scale enterprise in Hebden. In 

1856, the Hebden Moor Mining Company was formed but the extraction only 

continued for 17 years, causing a dramatic effect on the character of the village. 

Hebden is important in terms of its architectural and historic interest. Therefore, 

on 28th March 2006 the village and its surroundings were designated as a 

conservation area by the Yorkshire Dales National Park Authority (Yorkshire 

Dales National Park, 2006).  

Hebden’s orefield comprised coal and lead-zinc mineral deposits, where galena 

is the most common mineral, sphalerite, chalcopyrite, barite, fluorite, calcite and 

witherite are also relevant minerals. Early mining involved the erosive power of 

water to uncover mineral veins, water power was used in dressing floors and 

smelt mills, producing large amounts of mine wastes in close proximity to the 

river, Hebden Beck (Gill, 1993). 

5.2.2. Survey strategy and data analysis 

Three groups of respondents were identified: residents, tourists and 

stakeholders. The resident’s survey was performed only in Hebden. The survey 

was conducted through completion of a questionnaire designed to capture semi-

quantitative responses. The survey methodology involved an in situ questionnaire 

for residents and visitors and an online survey to stakeholders (Table 5.1). 

Questionnaires were prepared using slightly different wording to capture similar 

information and compare perceptions between groups. The questionnaires were 
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divided in four sections: i) awareness of river ecosystem services, ii) perception 

of river water quality and roles of regulators, iii) effects of the mines and flood 

events on river water quality, and iv) socio-demographic information. In addition, 

an information sheet about the purpose of the survey was included.  

 

Table 5. 1. Applied surveys and specific approaches. 

Type of 
survey 

Specific approaches Additional information 

Resident’s 
survey 

(July-August, 
2016) 

 

Survey was performed only in the village of Hebden. 
Census data (Office for National Statistics-UK) was 
used for estimating the population size. The questioner 
knocked on every household door, one person was 
questioned for each household. In case of no response, 
the survey was placed in the mail box with a notification 
indicating the next collection date and the availability of 
the online version. 

Ethical approval 
(Appendix 5.1) 

Resident’s questionnaire 
template  

(Appendix 5.2) 

 

Visitor’s survey 

(July-August, 
2016) 

In parallel with resident’s survey. Public areas like 
walking paths near Hebden Beck and the river Wharfe, 
were used as sampling points. In addition, village 
business (e.g. pub and tea room) were considered for 
distributing flyers and publicising the online version. 

Visitor’s questionnaire 
template  

(Appendix 5.3) 

Stakeholder’s 
surve(April-
June, 2017) 

 

A list of stakeholders was prepared. An invitation email 
was sent to 30 organizations associated with the 
National park authority, environmental protection, water 
management agencies, river organisations, cultural 
heritage groups, mining societies, associations for 
protection of biodiversity and wildlife, and tourism 
companies. Survey was online from 11-04-2017 to 02-
06-2017. 

Ethical approval 

(Appendix 5.4) 

Questionnaire template 

(Appendix  5.5) 

 

The obtained qualitative data were scored and transformed to numerical data 

(Appendix, 5.6). Descriptive statistical tests were performed to obtain frequencies 

and percentages (Appendix 5.7). Responses from a semi-structured interview 

carried out in July 2016 to a local historian were used as complementary 

information for this study. 

5.3. Results 

5.3.1. Public perceptions of Hebden Beck as provider of 

environmental and business services. 

Environmental amenities like wildlife habitat, attractive focus to the village and 

source of drinking water were associated with the importance of Hebden Beck 
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(Figure 5.1). For residents, the first two amenities had a significant value for 

residents (67% and 51%) as well as for visitors (65% and 53%). High scores for 

“provision of wildlife habitat” is likely because, as part of a National Park, Hebden 

Beck supports key environments of international importance such as limestone 

pavements, limestone grasslands, blanket bog, upland heath and upland hay 

meadows, and this will be the reason people visit the area. In addition, Hebden 

Beck as an attractive focus for the village was highly rated since it provides a 

strong sense of tranquillity and remoteness. Despite some visible scarring of the 

landscape related mainly to mining, this river provides many opportunities for 

outdoor recreation activities like walking and cycling, where information boards 

are displayed (e.g. interpretation panels) to enhance understanding and 

appreciation of mines as sites with historic significance, therefore considered 

scheduled monuments  (Yorkshire Dales National Park, 2006; White, 1998).  

Regarding the role of the river as source of drinking water, opinions varied 

reflecting the incomplete knowledge about Hebden Beck in this context. This 

misconception possibly happened because residents experienced a severe 

period of drought during the 60s and 90s, and water authorities used a 

groundwater tributary from mines (e.g. Duke’s level) as a temporary source for 

drinking water (Lakin, 1999).  

In addition, opinions about business amenities derived from the presence of the 

riverine ecosystem were evaluated (Figure 5.2). Responses reflect that farming 

and fisheries are considered by residents as the most important activities (61%) 

for the local economy, followed by the attraction of visitors to the village-tourism 

(23%). This preference is likely associated to the fact that farming has been the 

main and oldest economic activity in Hebden. Conversely, visitors perceived 

tourism as the most important commercial activity (58%), while farming and 

fisheries were considered as the second more relevant (38%). The recognition of 

visitors as important business in the village, shows an opportunity to involve them 

in supporting conservation efforts in Hebden. 
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Figure 5. 1. Opinions about the importance of Hebden Beck in providing environmental services 
in the village. 
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Figure 5. 2. Opinions regarding the relevance of Hebden Beck in supporting business services in 
the village.  
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5.3.2. Respondent’s awareness of river water quality. 

In the UK, the Environment Agency is responsible for assessing the water quality 

of all water bodies. In this section, respondent’s awareness about the 

organisation in charge of the quality of Hebden Beck was assessed. Results 

showed that about 47% of residents and 44% of visitors recognised the 

Environment Agency as the responsible authority, although for more than 50% 

different responses were given (Table 5.2). Likewise, awareness of national 

quality standards for rivers was also assessed. Table 5.3 shows that all groups 

were acquainted with the standards, but levels of awareness were higher for 

stakeholders (80%), followed by residents (54%) and visitors (42%). Additionally, 

respondents were asked for their opinion regarding the overall status of the water 

quality of Hebden Beck. Figure 5.3 shows more than 50% of residents and visitors 

rated the river water within the criteria “High” and “Good”, while 40% of 

stakeholder’s rates were “Bad”. When clustering the responses as groups of non-

specialists (e.g. residents and visitors) and specialists (e.g. stakeholders), results 

suggest that non-specialists considered mostly field observations like colour or 

odour, whereas stakeholders solely expressed their technical knowledge 

outlining the actual status of the river, or not giving an opinion where the facts 

were not known (Figure 5.3). These responses reflect that water‐related 

problems (e.g. pollution) are distanced from public debate and generally defined 

as technical matters to be known and handled by experts in specialised agencies 

(Batterbee et al., 2012).  
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Table 5. 2. Knowledge about responsible organisation for assessing water quality of Hebden 
Beck. 

Organisations Residents Visitors 

Yorkshire Water 29% 
(18/61) 

22% 
(12/55) 

Environment Agency 47% 
(29/61) 

44% 
(24/55) 

National Park Authority - 7% 
(4/55) 

Yorkshire Water/ 

Environment Agency 

- 11% 
(6/55) 

Yorkshire Water/ National 

Park Authority 

- 4% 
(2/55) 

Other. Please state 7% 
(4/61) 

- 

Don't know 16% 
(10/61) 

13% 
(7/55) 

 

 

Table 5. 3. Awareness of national quality standards for rivers. 

 Residents Visitors Stakeholders 

Yes 54%  
(33/61) 

42% 
(23/55) 

80% 
(4/5) 

No 34% 
(21/61) 

47% 
(26/55) 

20% 
(1/5) 

Don't know 11%  
(7/61) 

11% 
(6/55) 

- 
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Figure 5. 3. Public perceptions about Hebden Beck’s water quality. Criteria were matched with 
categories established by the Water Framework Directive (UK-TAG, 2007).  

 

Table 5.4 demonstrates opinions from residents and visitors regarding the 

improvement of Hebden Beck’s water quality. Despite that more than 60% of 

visitors considered the river’s status either high or good quality (Figure 5.3), this 

group had a more flexible attitude than residents in relation to potential 

improvements of the quality of the river using remediation technology. This is 

probably because some visitors (e.g. fly fishers) have a better understanding of 

river quality. 

Table 5. 4. Opinions about the improvement of water quality from Hebden Beck. 

Responses Residents Visitors 

Yes 15% 
(9/61) 

29% 
(16/55) 

No 36% 
(22/61) 

27% 
(15/55) 

Don't know 49% 
(30/61) 

44% 
(15/55) 
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5.3.3. Mining in Hebden: cultural and environmental legacy  

This section provides the perception of residents and visitors regarding the 

cultural and environmental legacy of mining. Results indicate that about 92% of 

residents consider the mines an important part of their cultural legacy. In the case 

of visitors, 55% agreed that the mines form an important part of the areas cultural 

legacy, whereas around 45% knew little or nothing about mines in Hebden 

(Figure 5.4). Nevertheless, both groups agreed that the mines had historic and 

present effects on water quality as shown in Figure 5.5. 

The awareness of metal pollution was assessed based on previous studies 

reporting the significant impact of mining in Hebden Beck (Barber, 2014; Jones 

et al., 2013; Valencia-Avellan et al., 2017; Valencia-Avellan et al., 2018). For a 

better comparison, four statements about possible impacts of mines in the river 

water quality and farming activities were provided. Outcomes showed that greater 

awareness was generally reflected by visitors than residents (Figure 5.6). The 

disagreement of residents about the effect of mines in farming activities were 

unexpected, because since farmers (e.g. fish farmers, sheep farmers) was 

included in the resident’s group a greater awareness might have been expected. 

However, it is possible that farming community was not adequately represented 

within resident’s group. Contrary to residents, visitors showed more awareness 

of the latent effects of mines in farming activities. However, significant 

percentages of uncertainty (≥44%) were provided by both groups in topics 

regarding discharge of metals into the river and the effects of heavy rainfall in 

increasing metal pollution. 
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Figure 5. 4. Perception of the cultural legacy of mining in Hebden Beck. 

 

Figure 5. 5. Perceptions of the environmental legacy of mining, focused in Hebden Beck’s water 
quality. 
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Figure 5. 6. Public awareness about mines as sources of metal pollution. 
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It can be inferred that residents have primarily known mining for the cultural rather 

than its environmental legacy. A reason could be that mining had a visible impact 

in the development of the village (e.g. cultural, economic). Likewise due to the 

national importance of mining infrastructure, mines have been acknowledged as 

Scheduled Monuments (White, 1998). Whilst environmental legacy of mining 

tends to be a passive impact, metals are underestimated in river water as signs 

of pollution are not observable. Greater environmental awareness from visitors 

might be related to some knowledge about presence of mines and their 

archaeological and historical importance for Hebden, as shown in Figure 5.4 and 

Appendix 5.8. 

5.3.4. Perceptions of flood 

Figure 5.7 shows that 20% of residents and visitors have been directly affected 

by flooding. Although both groups showed a great awareness to the increasing 

frequency of these events, possibly associated with recent national flood events 

(e.g. December 2015). Particularly, Figure 5.8 reveals a higher concern from 

visitors, indicating that environmental perceptions of flood are likely related to 

respondent’s physical surroundings and experiences. 
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Figure 5. 7. Percentage of respondents affected by flooding. 

 

 

 

Figure 5. 8. Percentages about the awareness of respondents to increasing river water levels. 
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5.3.5. Opinions regarding metal remediation technologies 

The disposition of residents and visitors to remediation or treatment technologies 

was evaluated (Table 5.5). Results indicate that most of the residents were 

unsure about remediation actions, probably because they have either greater 

concern of the visual impact of remediation or a perception that the problem is 

not serious enough to warrant remediation, or a combination of the two. Visitors 

supported the idea of limestone ponds and artificial wetlands, demonstrating their 

concern about water quality and their preference for passive approaches to 

protect the harmony of the surroundings. These choices are likely correlated with 

the high scores given to landscape and wildlife, and walking and leisure pursuits 

as the most important attractions in Hebden (Appendix 5.8 and 5.9). 

Table 5. 5. Opinions of respondents about metal remediation strategies. 

Remediation/treatment Residents Visitors 

Creation of artificial wetlands 16% (10/61) 16% (9/55) 

Creation of limestone ponds 2% (1/61) 35% (19/55) 

None of the above - continue as is now 21% (13/61) 13% (7/55) 

Don't know 25% (15/61) 13% (7/55) 

Creation of artificial wetlands/ Creation of limestone ponds 16% (10/61) 16% (9/55) 

Creation of artificial wetlands/ Use of water treatment plant 5% (3/61) -  

Creation of artificial wetlands, Don’t know 2% (1/61)             - 

Creation of artificial wetlands/ Creation of limestone ponds/ 
Use of water treatment plant 

13% (8/61) 7% (4/55) 

 

Generally, the preferred remediation options were the creation of artificial 

wetlands and limestone ponds, thus with any future remediation efforts in Hebden 

Beck, these passive treatments should be considered the preferred options. 

Baxter (2015) carried out a research about small-scale remediation technologies 

in Hebden Beck, suggesting the deployment of passive filter media such as 

hydrous ferrous oxide (HFO). Based on these two outcomes, an agenda for 

Hebden beyond mine preservation could be proposed where scientists, 

environmental managers, local business, heritage specialists and general public 

(residents, visitors) consider strategies for river pollution mitigation and 

landscape protection (Howard et al., 2015). 
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5.3.6. Public engagement for Hebden Beck’s management 

The stakeholder group were asked their opinions about public engagement. 

About 60% of respondents agreed that greater public awareness in Hebden 

would be beneficial. Most of them were aware of the benefits of public 

engagement, as an opportunity for sharing different community needs associated 

with the river to reach consensus decisions. 

For a representative assessment of the interaction of regulatory agencies with 

community members from Hebden, responses to a semi-structured interview 

from a local historian were appraised.  The respondent was asked about the local 

awareness of Environment Agency monitoring in Hebden Beck, and the following 

comments were given: 

“I think people are aware of everything [the EA is doing]. But providing it [the 
monitoring and assessment] doesn’t mean that you are involving them [residents] 
directly, well they [residents] would say, it’s happening, it’s not to do with us”. 

“As a local historian. I would be [interested in the EA findings]. Because now it 
[the EA data, has] just disappeared into a black hole as far I’m concerned. It will 
be nice to have a summary about what they are finding and why they are doing 
it. As similar with the parish council, presenting something not in a weekly or 
monthly basis just once a year about what they are finding and how trends are 
changing. That would be very good”. 

“I don't think the Environment Agency is deliberately being secretive. They are 

just getting on with their job but not considering that what they are doing will have 

a local interest”. 

In addition, opinions about pollution solutions involving managing the spoils were 

also explored. 

“I think some of the buildings are historical hugely important (e.g. Bolton Gill level, 
Duke’s level).  But spoil heaps are heaps to spoil”.  

The transcript of the whole interview is in Appendix 5.10. 

Stakeholders provided more ideas for improving the public engagement in 

Hebden Beck. For instance, the application of good practices developed by some 

Rivers Trust as part of catchment partnership and the involvement of all 

interested parties (e.g. residents, landowners, local council, Coal Authority, 

Environment Agency, National Park Archaeologists and English Heritage) to 
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come up with well-meaning proposals to deal with water quality issues.  From 

these opinions, the pollution management dilemma caused by the cultural and 

historical context of mines and their structures in Hebden could be better 

managed with the participation of all the interested groups. This study gives a 

snapshot of potential benefits of supporting a more integrated participation for an 

effective catchment management. 

5.3.7. Demographic information 

People were very cooperative with few of those asked unwilling to take part. A 

high response rate was observed for residents, followed by visitors and 

stakeholders (Table 5.6).  

Table 5. 6. Response rate of the surveyed groups. 

Groups of 
respondents 

Number of 
prepared 
surveys 

Number of 
refusals 

Number of 
completed 

surveys 

Response 
rate 
(%) 

Residents 120 4 61 51 
Visitors 120 6 55 (*) 

Stakeholders 30 0 5 20 
TOTAL 230 10 121 51 

(*) It cannot be calculated as the sample size was unknown. Refusals were recorded only from 
those approached. 
 
 

The nature of the respondents was examined with respect to their socio-

demographic characteristics. A range of social descriptors (age, gender and 

employment status) were examined for residents and visitors (Table 5.7 and 5.8) 

(Figure 5.9). Residents and tourists showed age ranges mainly from 44 to >70 

years old, although residents showed a greater percentage in the range 44-56. 

The largest demographic of the respondents was male and retired. 
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Table 5. 7. Percentages of age ranges from residents and visitors. 

 
 

 

 

 

 

 

 

 

 

 

Table 5. 8. Gender of residents and visitors. 

 

Gender Residents Visitors 

Male 43%  
(26/61) 

51% 
(28/55) 

Female 34% 
(21/61) 

42% 
(23/55) 

Other 23% 
(14/61) 

7% 
(4/55) 

 

 

 

Figure 5. 9. The employment status of residents and visitors. 

 

Age Range Residents Visitors 

18 - 30 
5% 

(3/61) 
5% 

(3/55) 

31 - 43 
2% 

(1/61) 
5% 

(3/55) 

44 - 56 
34% 

(21/61) 
29% 

(16/55) 

57 - 69 
28% 

(17/61) 
29% 

(16/55) 

>70 
28% 

(17/61) 
31% 

(17/55) 

Other 
3% 

(2/61) 
- 
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5.4. Conclusions 

 Hebden Beck supports key environments of international importance such as 

limestone pavements, limestone grasslands, blanket bog, upland heath and 

upland hay meadows. It also contributes with farming and fisheries activities, 

therefore, Hebden Beck is very important for residents, visitors and 

stakeholders.  

 Different perceptions on water quality from specialist and non-specialist 

showed an inadequate transference of knowledge from technical to local 

community and potentially across stakeholders groups.   

 Hebden Beck water quality’s perceptions from non-specialist (residents and 

visitors) are based on field observations (e.g. colour or odour). 

 Mines are for residents an important cultural legacy, while for visitors they are 

more likely to be considered latent pollutants to the riverine ecosystem. 

 Residents and visitors showed a lack of understanding about the influence of 

mines in metal pollution, compared to the findings of prior studies by this author 

and the Environment Agency.  

 Awareness was identified for the non-specialist group about increasing 

frequency of river water levels. 

 Remediation strategies were more acceptable for visitors than residents, both 

groups preferred approaches that protect the landscape of the village and its 

surroundings.
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Chapter 6: Synthesis and conclusions 

6.1. Research Synthesis 

Historical metal ore mining has produced severe damage to riverine ecosystems 

worldwide. Water discharged from mines is considered a major cause of metal 

pollution in many catchments, affecting water and sediment quality (Dennis et al., 

2003; Byrne et al., 2012). Compliance with water quality standards is problematic 

due in part to the high levels of pollution produced from many point and diffuse 

sources but also because local environmental conditions influence metal fate and 

behaviour (Allen and Hansen, 1996; Hering et al., 2010; Valencia-Avellan et al., 

2017; Valencia-Avellan et al., 2018). In the last few decades a variety of in situ 

analytical approaches and models have been developed to improve knowledge 

about the dynamic processes of metals in natural waters (Buffle, 2000; Kalis et 

al., 2006; Tipping et al., 2011). However, a variety of factors make the 

assessment of metal pollution problems a real challenge (Merrington, 2016), 

those include:  

 Low concentrations of metal mixtures;  

 Dynamics of metals in response to water chemistry conditions;  

 Certain form of metals influencing bioavailability and toxicity to aquatic biota;  

 The importance of some metals as essential for the functioning of biological 
processes;  

 Increasing anthropogenic sources with temporal and spatial variations.  

More research and monitoring programmes are needed to understand metal ion 

speciation, mobility, accumulation and bioavailability in river systems. This thesis 

investigated heavy metal contamination from a small catchment (Hebden Beck) 

affected by historical mining in the northern Pennines Region of North Yorkshire, 

UK. A variety of heavy metals (zinc, lead and cadmium) associated with 

sphalerite and galena extraction and processing have been detected in soil, 

stream and groundwater, causing deterioration of water quality in the catchment 

(Jones et al., 2013; Valencia-Avellan et al., 2017). The main aims were to assess 

the sources, mobility and toxicity of metal pollution in Hebden Beck and to 
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evaluate the public perception of mining impacts in riverine ecosystems for better 

management of contaminated rivers and improving water quality status.  

Results presented in this thesis show that high metal concentrations are 

associated with oxidation of sulphide minerals (e.g. sphalerite and galena) and 

secondary minerals like metal carbonates (smithsonite and cerussite), producing 

neutral mine drainage. These findings agree with previous assessments of metal 

pollution from regulatory monitoring programmes and other research in the 

catchment. The study was novel due to the comprehensive monitoring of 

additional sites draining through spoil mine wastes. The deeper understanding of 

geological, biogeochemical and hydrological processes occurring in both point 

and diffuse sources provided relevant information about metal speciation and 

toxicity in the system. This integrated approach permitted an accurate 

assessment of metal pollution, providing evidence that metal carbonates present 

in spoil wastes were the major diffuse sources of pollution. 

By including the assessment of the effect of episodic rainfall on metal mobility 

and toxicity this study has contributed a rich data set to assess water-quality 

trends, ecological risk, toxic effects and potential effectiveness of remediation 

technologies. Consistent with Jones et al. (2013), this study has shown that 

seasonal and episodic events had an increased effect on metal concentrations 

from spoil wastes, becoming a more challenging management problem than point 

source remediation. Based on the results, the most effective solution for 

mitigating metal pollution in Hebden Beck is spoil removal, although this is not a 

practical and cost-effective option. More likely alternatives to prevent diffuse 

pollution from spoil could be capping of the soil or possibly use of interceptor 

drains to divert drainage to a treatment system. Passive treatments have been 

also suggested by Baxter (2015), although remediation techniques need to be 

agreed through public participation (including residents), and should be 

considered alongside storm water management. 

The present study concludes that metal assessment of catchments affected by 

mining is very complex, requiring the incorporation of in situ analytical 

approaches, speciation and toxicity modelling, bioavailability-based criteria and 
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active public participation to deal with appropriate ecological solutions. 

Contamination of water bodies in the UK by abandoned metal mines poses a 

serious barrier to the achievement of WFD objectives.  This study provides useful 

scientific information about metal pollution in neutral mine drainage and suggests 

the incorporation of more rigorous methods based on bioavailable approaches 

(e.g. BLM, WHAM) for the assessment of chemical and ecological quality of 

surface water. In addition, this research offers baseline evidence to support 

current national initiatives for addressing community empowerment in water 

management for achieving the objectives of the WFD. Public perception of 

Hebden Beck’s water quality revealed the necessity for better communication 

between non-specialist and specialist groups. Findings suggest that the 

community’s understanding (especially residents) of existing scientific evidence 

about pollution issues in the catchment will be a crucial step for ensuring public 

engagement in metal mitigation solutions. Further research for understanding 

mechanisms of metal toxicity and bioavailability in neutral mine drainage might 

be beneficial to improve water quality standards and assist decision makers in 

readdressing environmental protection efforts where they are most needed. 

Likewise, social studies are essential for pursuing efficient involvement of the 

community in water-related issues and the achievement of an integrated 

catchment management encouraged by the EU-WFD and national policies. 

In the following paragraphs I summarize the main findings of each analytical 

chapter and how they contributed to achieve the aims of this thesis. 

6.1.1. Sources of metal pollution in Hebden Beck 

Point and diffuse sources of metals were investigated through an extensive 

chemical analysis of river water, sediments and spoil wastes and the modelling 

of geochemical reactions occurring in the aqueous phase (Chapter 2). Chemical 

analysis showed significant Zn and Pb pollution as products of early mining 

activities, where diffuse sources were the major contributors. Geochemical 

modelling revealed the effects of weathering on carboniferous limestone bedrock 

and its influence in controlling pH and weathering reactions. Furthermore, by 

using metal-pH values, solubility of controlling metal-mineral phases were 
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predicted, demonstrating that carbonates and sulphides were the solid phases 

controlling the solubility of Pb and Zn. Moreover, weathering processes like 

dissolution of carbonates and oxidation of sulphides were considered the key 

reactions for producing high concentrations of Zn and Pb. These findings concur 

with other studies in the Yorkshire Pennine Orefield, UK. For instance, Jones et 

al. (2013) showed Zn and Pb as the main contaminants from a upland tributary 

of the River Wharfe, and Tame et al. (2017) indicated the evidence of secondary 

metal sources (particularly smithsonite) in headwater tributary of the River Swale. 

Analysis of sediments and spoils were consistent with water chemistry results 

showing Zn and Pb as significant pollutants present in spoils due to lower 

extraction efficiency methods common in historical mining. Exploring the kinetics 

of leaching from mineral forms in the spoils and sediments is recommended as 

future work.  Overall, the information on sources of metals derived from geological 

and biogeochemical processes occurring in limestone areas gives an important 

understanding about the chemistry of neutral mine drainage in catchments 

affected by mining, which has to date only been partially studied.  

6.1.2. Speciation and mobility of major metal pollutants 

The speciation and mobility of metals were assessed by geochemical modelling 

(Chapter 2) and an in situ analytical approach known as DGT (Chapter 3). 

Geochemical modelling (PHREEQC) revealed the importance of secondary 

minerals such as carbonates, sulphates and hydroxides in the occurrence, hence 

mobility of dissolved metals. This study provides evidence that zinc is 

preferentially partitioned from sulphide dissolution and absorption by carbonate 

and bicarbonate ions derived from calcite weathering to form secondary zinc 

carbonate (smithsonite). For the case of Pb, it was also precipitated into a 

secondary mineral (cerussite) or complexed with Fe oxyhydroxide, becoming 

more insoluble than Zn in circumneutral waters. In addition, weathering of 

cerussite and smithsonite were important regulators for concentrations of Pb and 

Zn. However, Nordstrom (2011), stated that the mobility and speciation of metals 

not only depends on the sources, but also additional factors like biogeochemical 

and hydrological site-specific conditions (e.g. DOM, pH and flow).  Thus, the 
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chemical speciation model (WHAM) was used for predicting the speciation of 

metals in the river water containing organic ligands. Predictions suggested that 

major toxic pollutants were present in different forms. Zn was mainly present as 

free ions and labile inorganic complexes, while Pb was present as less labile 

forms due to its complexation with organic compounds and colloids. Regarding 

pH conditions, circumneutal pH and buffering capacity were maintained by 

groundwater during base flow conditions (Chapter 2). However, Salomons and 

Förstner (2012) have mentioned that these conditions could be altered by rainfall 

(e.g. acid rain) and runoff, producing shifts in pH and allowing desorption of 

metals from spoils, sediments or soils (conditions that were evident in only a 

limited number of our monthly surveys). By using seasonal variations the effects 

of flow and pH in metal concentrations were estimated. In Hebden Beck a strong 

correspondence was identified between flow and Pb (r= 0.6), whereas flow-Zn 

relationship was unclear. Although, good correlation was observed in Zn-pH (r= 

0.7) (Chapter 2). Studies from Byrne et al. (2009) and Cánovas et al. (2008) also 

indicated an effect of storm runoff in weathering metal salts from superficial mine 

spoils. Based on this background, a complementary assessment was performed 

to evaluate the concentrations and mobilisation of dissolved metals under 

different flow conditions such as episodic high rainfall (Chapter 4). Results 

revealed that episodic rainfall increased concentrations of dissolved metals, with 

a greater impact on Pb than Zn, but without altering the circumneutral conditions 

of the river. Similar results were obtained by Jones et al. (2013) and demonstrate 

that limestone-rich bedrock controls pH values in the river water (Chapter 2). 

Furthermore, it was observed that high episodic runoff produces faster 

weathering of calcite and secondary metal-carbonates, increasing the 

concentrations of carbonate and bicarbonate ions, affecting smithsonite 

dissolution (Chapter 4). These results agreed with Pokrovsky and Schott (2002) 

regarding the effects of circumneutral conditions in dissolution kinetics of 

smithsonite. Furthermore, the application of in situ monitoring tools (DGT) 

provided complementary information about the speciation and kinetics of Pb and 

Zn in the catchment (Chapter 3). Results revealed that Pb was likely complexed 

with DOM, forming colloids and reducing Pb mobility (diffusion coefficient), while 



169 

 

Zn was present as free ions or readily labile complexes, confirming previous 

predictions obtained with WHAM. Further research is recommended for DGT 

application under field conditions as discrepancies were observed in 

concentrations between metals measured in water and metals in devices, 

possibly due to a biological factor like biofouling and flow fluctuations decreasing 

the stirring rates, as previously reported by Davison and Zhang (1994) and Turner 

et al. (2014). Thus, it is suggested that the application of DGT under different flow 

regimes in water and sediments is considered, as this tool could provide more 

information about distribution and potential toxicity of metals to assess 

environmental impacts. Accordingly, Zhang and Davison (2015) suggested that 

the application of DGT under different environmental conditions needs more 

detailed studies in order to better resolve the uptake mechanism and kinetics of 

metals. For these reasons, Omanović et al. (2015) and Han et al. (2013) have 

used DGT techniques in combination with modelling approaches, based on data 

from toxicity tests.  

6.1.3. Metal toxicity and bioavailability and their effects on river 

water quality. 

Data from Chapter 2 and Chapter 3 were used to evaluate the river water quality 

by using ecotoxicology assessment techniques and established Environmental 

Quality Standards (EQS) for Pb and Zn. A preliminary assessment was carried 

out through the comparison of annual metal load estimations in the catchment 

with EQS (Chapter 2). Here, both metals showed maximum exceedances of 12-

fold, with contributions of 0.2 tonne of Pb per year and 2.9 tonne of Zn per year. 

But several studies such as Smith et al. (2015) have demonstrated that metal 

toxicity and bioavailability are not just controlled by dissolved metal 

concentrations, but that other factors like pH, hardness, ionic strength, organic 

matter, and inorganic and organic colloids are also relevant. Thus, a secondary 

assessment was performed by including standards based on water hardness 

(EQS-H). Related research has indicated that water quality assessment only 

using standards based on water hardness (EQS-H) may be overly conservative 

as they fail to consider chemical speciation of metals and their environmental risk 
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(Merrington, 2016). Thus, we include a more rigorous approach based on 

bioavailability (EQS-B, WHAM and WHAM-FTOX). Outcomes agreed with 

previous statements, showing that standards based on single metal 

concentrations and hardness conditions (EQS-H) were more conservative than 

tools that take account chemical speciation of metals (EQS-B, WHAM and 

WHAM-FTOX). However, studies from Rüdel et al. (2015) have reported some 

limitations in the application of EQS-B, such as physicochemical parameters near 

or outside the established boundaries. For instance, in this study, EQS-Zn were 

estimated under mentioned limitations as pH and DOC were outside the 

established ranges (pH ≥6 and DOC ≤15 mg/l). Results from WHAM-FTOX showed 

that metal toxic effects occurred at circumneutral pH. However, predicted 

maximum species diversity was reduced from 65% to 3% in eleven out of sixteen 

sites. Total metal toxicity (Zn2+ + Pb2+ + H+ + Al3+) needs to be addressed with 

caution because Pb toxicity was calculated using a coefficient with a large degree 

of uncertainty (Pb= 2.51, p-value= 0.91) reported by Stockdale et al. (2010) in 

absence of an alternative published value. Despite modelling limitations, these 

tools are useful for having a holistic scenario of the water chemistry including 

interactions between metal mixtures and organisms. Finally, this study provided 

a practical context by comparing toxicity predictions from WHAM-FTOX with 

results from an in situ macroinvertebrate survey. This appraisal revealed a 

relationship between increasing Zn concentrations and reduced diversity. 

Likewise invertebrate data showed that responses of species diversity and 

composition could be related to the influence of complex interactions between 

metals and acid scenarios (e.g. H13 and H4). Moreover, neutral mine drainage 

is likely to show different effects on macroinvertebrate communities. For instance, 

Clements et al. (2013) have indicated different tolerances of macroinvertebrate 

communities to pollution. Since the assessment only considered 

macroinvertebrate richness at family level, interpretations about the effect of 

metals on biota cannot be generalised. Hebden Beck has been affected by metal 

discharge for over 200 years and it is possible the ecosystem might have 

developed mechanisms to cope with this environment. However, the hydrological 

cycle is being altered increasingly by changes in climate, affecting the 
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remobilisation and deposition of metal-rich sediments and enhancing metal-rich 

runoff. Therefore, we studied the effects of episodic rainfall on concentrations and 

toxicity of metal fluxes derived from ephemeral and perennial tributaries, and the 

main river (Chapter 4). Calculations from WHAM and WHAM-FTOX indicated that 

short term fluctuations in metal concentrations were not reflecting an acute 

toxicity risk to aquatic organisms. WHAM-FTOX is parameterised only for 

macroinvertebrates (ephemeroptera, plecoptera and trichoptera), hence the 

integration of supplementary tools for assessing toxic effects in other ecological 

groups (e.g. zooplankton, algae and fish) will improve the utility of WHAM-FTOX 

for site selection strategies dedicated for catchment clean-up. This rational 

assessment might support the prioritization of vulnerable sites where remedial 

action can be focused on reducing metal bioavailability for improving ecological 

endpoints. In general, an improved metal assessment requires the consideration 

of tools based on bioavailability. Further appraisals should focus on perennial 

tributaries from spoil runoff areas with potential ecological harmful levels of 

metals and under variable seasonal and episodic flow conditions.  

6.1.4. Awareness of metal pollution in Hebden Beck 

Legal frameworks for management of freshwaters have been established by 

policies based on technical and scientific knowledge, but leaving the role of 

society underestimated. Although all groups are generally keen to contribute to 

the formulation and effective implementation of resource management policies, 

the synergy between them is frequently poor. Thus, the management of 

freshwater needs to move from traditional approaches to more integrated 

initiatives. Chapter 5 looks to provide a foundation for negotiating differences and 

building common ground that can motivate cooperative environmental planning 

to improve Hebden Beck’s water quality and is an example of how this could be 

implemented in other catchments. This last chapter sought to identify public 

awareness (residents, visitors and stakeholders-specialists) of river ecosystem 

services, perceptions of river water quality, opinions about flood effects and 

response to potential metal remediation practices. Outcomes indicated different 

perceptions on water quality between specialists and non-specialists, possibly 
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due to an inadequate transference of knowledge from technical to local 

community and potentially across stakeholder groups. In addition, it was 

observed that perceptions of Hebden Beck water quality from non-specialists 

(residents and visitors) are based on field observations (e.g. colour or odour). 

Regarding perception of mines, residents considered them as an important 

cultural legacy, while visitors were more aware of their latent pollution effects for 

the river, especially during heavy rainfall. Consequently, remediation strategies 

were more acceptable to visitors than residents, although the preferred 

approaches from both groups were passive systems to protect the landscape of 

the village and its surroundings. Based on these findings, Chapter 5 indicated the 

importance of consulting different stakeholder groups to understand their 

potential contribution to, and opinion of, management processes, and how best 

to integrate these contributions to achieve effective outcomes. These inferences 

agree with studies from Hu and Morton (2011) about understanding of people’s 

general knowledge, awareness, and beliefs about water, discovering agreement 

as well as differing perspectives as the first step for creating an effective place-

based assessment. Furthermore, as indicated by Potter et al. (2004) the 

remediation of diffuse pollution requires creative regulation and innovative 

approaches due to the difficulties associated with treatment at source. In Hebden 

Beck, passive remediation has been suggested as a potential approach (Baxter, 

2015). Aside from the technical challenges, a critical factor in the success of 

remediation schemes will be the engagement with the community (especially 

residents). Thus, a clear translation of scientific and technical knowledge to the 

public is essential for a better understanding of chemical processes and potential 

ecological benefits, as well for supporting the protection of remediation structures 

or their regular maintenance (e.g. reporting vandalism, equipment malfunction). 

6.2. Conclusions 

In this thesis I presented a comprehensive study of the sources, mobility, 

speciation, toxicity and bioavailability of metals occurring in neutral mine drainage 

derived from historical mining in a carboniferous catchment. Analysing the river 

water, sediments and spoil revealed that geological, biogeochemical, and 

hydrological processes are controlling the river water chemistry, affecting the 
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mobility and speciation of different metal forms. In addition, the understanding of 

metal interactions with biotic and abiotic components provided a better 

knowledge of chemical speciation, including potential bioavailability and toxic 

effects. Furthermore, the evaluation of water quality assessment techniques 

offered a clearer understanding of the strength and weakness of current methods. 

By including both chemical speciation and ecological predictions this study has 

contributed extensive data, providing a more nuanced approach for toxicity and 

bioavailability assessment, especially for regulatory purposes. In addition, the 

appraisal of potential effects of climate change in producing metal-rich fluxes 

offered important insights for identifying key episodic rainfall-induced processes 

like deposition and remobilisation of metals, potentially reducing water quality.  

This timely analysis contributes considerably to the assessment of streams 

draining spoil waste areas with similar geochemical conditions and support future 

metal mitigation strategies and catchment management.  

Moreover, the assessment of the public perceptions of river water quality outlined 

the role of each group associated with the studied catchment. This preliminary 

assessment provides a basis for conducting integrated water management. In 

addition, the understanding of water chemistry and metal processes under 

different seasonal and flow conditions offers the opportunity to propose efficient 

mining remediation schemes. Tributaries from diffuse (spoil) sources are the 

major contributors of metal pollution in this catchment, thus findings could be 

applied to other polluted catchments where tributaries drain mine spoils under 

similar conditions. In addition, regulatory agencies could use these findings for 

the implementation of a catchment based approach (CaBa) and the achievement 

of “good ecological” and “chemical status” under the EU Water Framework 

Directive or other national legislation. 

6.3. Future directions 

• This investigation has focussed mainly on metal assessment in river water and 

a limited number of spoil and sediments. Further studies including a more 

substantial investigation of solid phases including leaching studies will be 

beneficial for a better understanding of cycling of metals in the catchment. 
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• Further research is needed to compare field data and laboratory experiments 

(e.g. temperature, deployment time, and flow rates) to fully establish the 

applicability of DGTs regarding metal bioavailability in freshwaters.  

• Studies about tolerance of macroinvertebrates to metal pollution in neutral 

mine drainage derived from historical polluted sites may clarify biota responses 

to long-term metal pollution. Likewise, these studies may add useful toxicity 

data (especially for Pb) to be incorporated in speciation and ecotoxicological 

modelling.  

• In this study the assessment of episodic rainfall in metal toxicity was limited by 

hydrological characteristics of the site (ephemeral tributary). Therefore, it is 

suggested an additional assessment in a perennial tributary draining through 

spoil wastes, where ecologically harmful levels are known. 

• Considering the community preference for passive remediation systems, 

projects like the pilot remediation in Cumbria at Force Crag (passive treatment 

system for metal mine drainage rich in Zn) could be explored to assess the 

applicability in Hebden Beck. 

• For implementing an effective catchment management, social studies are 

recommended for identifying appropriate practices in the involvement of all 

interested parties. 
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Appendices 

Appendices-Chapter 2 

Appendix 2. 1. Mean, maxima and minima from water chemical analysis. Sites are indicated as reservoir (RS), main channel (MC), ephemeral tributaries 

(ET) and perennial tributaries (PT). Metal forms are denoted as Total (T) and dissolved (D). Concentrations are expressed in g/l. Values below the 
detection limit are represented by (b/d).  

 
Site   Pb

T
 Pb

D
 Ba

T
 Ba

D
 Cd

T
 Cd

D
 Sr

T
 Sr

D
 Zn

T
 Zn

D
 Cu

T
 Cu

D
 Fe

T
 Fe

D
 Mn

T
 Mn

D
 Al

T
 Al

D
 

H15 

 

RS Ave 316.7 279.6 293.8 288.1 6.4 6.4 25.8 26.9 2058.8 2028.0 12.3 12.4 562.9 406.4 69.3 70.9 383.8 341.1 
 Max 411.9 423.6 570.4 465.5 8.2 8.6 37.8 46.0 2542.4 2759.5 19.6 19.9 2473.1 1622.1 201.7 202.4 522.5 428.7 
 Min 96.3 103.6 165.2 173.5 3.1 4.3 15.9 14.1 722.4 1080.7 3.8 1.3 185.8 94.5 39.5 24.2 132.1 102.2 

H14 

 

PT Ave 178.3 157.6 687.8 651.8 3.6 3.9 63.9 60.1 1318.6 1397.9 6.2 7.7 288.1 203.4 24.0 26.3 270.6 249.9 
 Max 292.3 375.5 1195.3 1135.2 4.5 7.5 103.1 99.0 1778.9 2193.1 10.4 15.0 626.6 337.0 48.5 53.9 574.0 462.1 
 Min 106.9 75.7 408.3 241.4 3.1 2.9 40.5 21.2 864.7 900.3 b/d  1.4 114.2 103.6 9.0 9.5 101.1 123.6 

H13 

 

ET Ave 227.1 205.9 200.2 201.2 0.9 0.9 13.7 13.8 260.4 207.4 2.6 2.3 967.6 833.8 74.3 74.3 613.3 552.2 
 Max 331.3 283.4 501.2 513.5 4.1 3.7 47.2 49.7 1619.8 1435.5 9.0 8.3 1451.9 1515.1 95.5 112.6 972.1 752.5 
 Min 141.2 138.0 139.3 135.2 0.4 0.4 8.1 7.5 b/d  b/d  0.9 b/d  483.4 187.2 36.0 30.0 371.2 284.0 

H12 

 

ET Ave 686.4 284.2 285.5 198.6 29.1 27.7 391.5 340.2 5168.8 4252.3 14.0 9.5 528.4 205.8 73.7 70.5 312.0 147.5 
 Max 2701.2 439.9 419.4 285.4 45.7 47.0 737.3 602.1 12619.3 7438.4 25.9 19.8 1635.4 988.7 171.6 180.0 1277.4 506.2 
 Min 261.8 184.1 183.0 148.1 0.6 0.5 8.9 8.6 66.5 73.6 2.2 2.0 84.6 62.6 22.6 19.1 82.7 55.0 

H11 

 

PT Ave 64.0 31.6 143.9 111.8 1.7 2.6 40.6 52.8 295.7 410.5 2.5 2.0 1282.9 1017.2 100.7 98.2 103.1 91.5 
 Max 765.6 355.2 604.8 181.7 21.7 35.9 207.6 372.5 3493.9 5276.2 18.8 14.6 2894.7 2404.3 613.7 633.3 190.2 181.9 
 Min 3.7 b/d 65.3 68.0 b/d  0.02 9.9 10.5 b/d  b/d  b/d  b/d  258.6 142.3 28.4 24.6 b/d  34.5 

H10 

 

ET Ave 108.1 80.7 441.1 415.0 1.6 1.6 67.0 63.4 468.8 444.4 2.8 2.7 632.3 434.8 54.2 48.4 188.8 147.0 
 Max 268.1 145.2 933.8 956.2 2.2 2.3 123.6 133.8 787.4 777.0 8.3 6.7 1942.8 815.9 116.6 77.5 385.2 249.2 
 Min 11.8 3.1 97.8 79.5 0.1 0.1 17.5 15.2 b/d  b/d b/d  b/d  260.8 163.8 29.2 28.7 63.1 62.0 

H9 

 

PT Ave 28.5 20.8 131.0 122.3 0.7 0.7 32.3 33.0 125.2 95.7 1.1 1.4 1448.8 1097.9 69.0 64.9 158.1 136.9 
 Max 171.9 94.3 412.3 282.7 2.2 1.9 83.0 88.1 572.2 518.6 5.1 5.3 3028.1 2045.1 145.2 155.7 366.7 254.7 
 Min 12.7 2.0 66.7 68.4 0.42 0.5 11.4 10.5 b/d  b/d  b/d  b/d  584.1 379.2 35.5 29.6 44.0 36.7 

H8 

 

ET Ave 38.1 19.0 399.4 398.2 1.0 0.9 108.5 106.1 318.5 269.0 2.1 1.9 369.8 218.8 39.4 33.2 70.4 47.8 
 Max 123.5 28.2 661.3 606.8 1.5 1.6 197.1 222.0 438.3 435.2 4.3 5.5 865.8 614.7 92.9 53.6 165.1 104.0 

 Min 12.2 5.3 195.2 246.8 0.6 0.5 52.2 48.9 b/d  b/d  b/d  b/d  75.7 32.0 18.5 12.2 b/d  14.6 
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Appendix.2.1 (continued). Mean, maxima and minima from water chemical analysis. Sites are indicated as reservoir (RS), main channel (MC), ephemeral 

tributaries (ET) and perennial tributaries (PT). Metal forms are denoted as Total (T) and dissolved (D). Concentrations are expressed in g/l. Values below 
the detection limit are represented by (b/d).  
 

Site   Pb
T
 Pb

D
 Ba

T
 Ba

D
 Cd

T
 Cd

D
 Sr

T
 Sr

D
 Zn

T
 Zn

D
 Cu

T
 Cu

D
 Fe

T
 Fe

D
 Mn

T
 Mn

D
 Al

T
 Al

D
 

H7 

 

PT Ave 7.7 4.3 218.9 220.2 16.6 16.6 834.8 809.4 3440.2 3220.5 5.5 2.5 386.0 40.2 52.6 54.9 21.3 12.4 
 Max 21.1 47.7 258.1 268.8 22.6 23.6 1391.3 1156.0 5425.8 4312.3 11.7 5.6 860.4 189.2 66.6 73.5 39.0 37.0 
 Min 0.8 b/d  179.6 186.3 10.4 11.5 425.5 436.4 2062.0 1936.7 1.3 0.1 49.8 18.3 33.6 31.8 b/d  b/d  

H6 

 

MC Ave 60.4 49.4 307.1 308.7 2.5 2.5 104.8 105.8 537.6 510.2 1.9 2.2 596.2 471.7 44.6 43.0 123.3 113.4 
 Max 102.0 85.6 549.3 557.0 3.6 3.6 283.0 298.5 664.1 674.1 3.5 5.9 914.4 822.4 84.9 90.7 223.9 212.4 
 Min 20.5 13.8 187.4 180.2 1.7 1.7 38.7 36.5 468.3 390.2 b/d  b/d  218.4 142.7 22.4 19.9 33.5 27.6 

H5 

 

PT Ave 60.4 54.3 209.3 213.7 5.0 5.1 223.1 228.3 883.5 867.2 2.5 2.4 82.5 46.3 6.6 6.0 87.0 74.6 
 Max 132.3 157.8 238.4 235.0 6.6 6.8 348.8 370.2 1216.5 1206.0 5.1 6.3 154.1 152.0 9.9 11.7 185.1 223.2 
 Min 17.1 10.0 173.5 176.9 4.0 3.9 146.6 149.3 688.0 613.5 b/d  b/d  43.4 5.4 4.8 3.9 b/d  11.2 

H4 

 

ET Ave 8.3 4.4 91.6 78.0 0.2 0.2 9.4 9.2 b/d  b/d  0.8 1.6 1320.0 635.3 136.9 135.8 416.9 277.2 
 Max 26.7 6.6 228.4 99.4 0.2 0.3 15.0 12.2 68.6 68.6 3.0 10.2 5331.3 1006.0 164.6 179.1 822.2 389.0 
 Min 3.2  b/d 57.4 60.0 0.1 0.1 6.8 6.5 b/d  b/d  b/d  b/d  455.9 336.9 95.4 31.8 248.7 189.7 

H3 

 

PT Ave 2.8 0.2 200.1 200.0 0.6 0.6 373.5 381.4 b/d  b/d  0.2 0.3 37.4 3.7 16.7 5.3 37.7 9.6 
 Max 10.6 0.7 251.6 217.8 0.7 0.6 405.4 420.6 98.6 84.7 1.3 1.6 152.9 18.5 54.3 26.3 153.0 47.0 

 Min 0.05 b/d  157.9 160.7 0.5 0.5 324.6 292.0 b/d  b/d  b/d  b/d  2.4 b/d  1.7 1.5 b/d  b/d  

H2 

 

MC Ave 46.7 39.4 239.6 246.7 2.6 2.7 164.9 169.8 515.0 485.9 2.1 1.6 314.0 248.0 28.3 27.8 101.2 93.5 

 Max 93.5 87.4 318.0 306.1 3.6 3.5 333.0 356.4 765.4 606.9 5.9 4.5 733.6 657.2 62.5 67.6 207.1 187.8 

 Min 17.0 4.2 171.1 180.1 1.2 2.0 70.9 67.9 194.5 360.5 b/d  b/d  103.3 7.6 13.7 5.3 37.9 24.2 

H1P 

 

PT Ave 3.0 1.9 199.7 200.5 0.1 0.09 51.9 53.1 b/d  b/d  1.1 0.7 317.9 205.4 27.9 9.6 85.1 58.6 
 Max 5.2 8.3 285.4 261.5 0.2 0.2 69.9 70.2 68.6 68.5 3.8 3.00 779.1 583.3 57.2 36.0 179.1 140.9 

 Min 0.8 b/d  112.3 120.5 0.1 0.02 30.7 29.5 b/d  b/d  b/d  b/d  134.9 29.3 7.9 2.7 31.4 16.0 

H1 

 

MC Ave 31.1 16.6 221.5 217.4 1.3 1.1 129.1 132.4 217.5 158.9 1.5 1.1 328.6 185.1 39.9 22.0 103.7 70.2 

 Max 146.8 43.7 272.1 267.5 2.1 1.4 209.3 220.3 375.9 302.9 4.5 4.3 1252.7 405.4 169.7 66.6 358.6 137.3 

 Min 5.1 b/d  153.1 145.8 0.8 0.7 62.2 57.7 77.9 67.8 b/d  b/d 122.5 50.1 19.3 10.9 b/d  19.9 
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Appendix 2. 2. Mean, maxima and minima of major ions, dissolved inorganic and organic carbons.  
Description of sites are indicated as reservoir (RS), main channel (MC), ephemeral tributaries (ET) and 
perennial tributaries (PT). Units are in mg/l. 

 

Sites Description  Cations Anions Dissolved 
carbons  

  CaT CaD MgT MgD SO4
2- NO3

- PO4
3- Cl- DIC DOC 

H15 RS Ave 7.9 8.3 0.6 0.6 3.5 1.3 0.003 7.2 3.8 12.4 
 Max 12.0 14.7 0.9 0.9 7.5 2.9 0.01 13.8 9.3 21.2 
 Min 5.0 5.1 0.5 0.5 1.3 0.001 0.0005 3.3 1.3 6.9 

H14 PT Ave 10.4 9.9 0.7 0.7 5.9 1.0 0.003 7.5 3.9 8.3 
 Max 15.7 12.8 0.9 0.8 9.1 1.6 0.007 13.4 6.2 14.7 
 Min 7.1 7.1 0.5 0.5 3.4 0.4 0.0005 4.5 2.1 4.2 

H13 ET Ave 2.9 3.0 0.5 0.5 3.6 1.1 0.02 7.9 0.9 16.8 
 Max 8.7 9.1 0.7 0.7 6.2 2.1 0.03 13.0 2.0 26.5 
 Min 1.8 1.9 0.4 0.3 1.3 0.2 0.0005 2.4 0.2 8.9 

H12 ET Ave 27.2 25.8 1.4 1.3 20.0 1.8 0.007 8.5 12.5 6.8 

 Max 45.9 45.2 2.0 2.0 46.0 3.0 0.013 18.8 24.2 11.0 
 Min 2.0 2.1 0.5 0.5 9.9 0.5 0.0005 3.4 4.9 2.0 

H11 PT Ave 7.4 8.5 1.2 1.2 3.0 1.5 0.02 7.5 4.0 16.3 
 Max 13.7 25.4 2.3 2.2 8.4 6.4 0.05 11.8 10.6 31.2 
 Min 2.3 2.2 0.5 0.6 1.3 0.001 0.01 3.8 0.8 6.4 

H10 MC Ave 13.5 15.0 0.94 1.0 4.9 1.6 0.01 7.8 8.2 10.3 
 Max 28.5 30.1 1.9 1.9 9.6 4.0 0.05 12.9 18.9 20.9 
 Min 4.5 4.2 0.5 0.6 3.1 0.01 0.0005 3.9 3.4 3.6 

H9 PT Ave 7.6 7.8 1.2 1.2 3.8 1.3 0.02 7.9 3.7 16.7 
 Max 18.9 20.0 2.7 2.7 6.2 2.3 0.03 13.4 13.4 33.0 
 Min 2.3 2.3 0.6 0.6 2.7 0.6 0.01 4.7 0.7 7.3 

H8 

 

ET Ave 37.0 38.7 2.0 2.03 10.7 2.5 0.008 8.5 22.3 8.0 
 Max 65.9 64.2 4.0 3.9 20.1 8.0 0.012 16.9 39.3 17.5 
 Min 0.04 19.2 b/d  1.2 5.1 1.0 0.0005 2.9 10.2 3.8 

H7 PT Ave 41.5 41.5 5.4 5.4 24.9 2.3 0.002 7.5 27.2 1.2 
 Max 55.1 55.0 6.9 6.9 31.0 4.6 0.01 11.0 36.1 3.1 
 Min 25.0 24.6 3.6 3.6 16.9 1.0 0.0005 6.0 16.6 0.001 

H6 MC Ave 18.7 18.9 1.5 1.5 6.7 1.9 0.01 7.9 10.5 10.9 
 Max 38.9 38.7 3.3 3.4 10.6 3.5 0.05 13.3 24.1 23.9 
 Min 8.6 8.5 0.8 0.8 3.4 0.3 0.0005 4.8 3.7 3.3 

H5 PT Ave 46.2 45.8 4.1 4.0 12.8 12.3 0.01 7.6 27.8 3.1 
 Max 58.4 57.0 5.3 5.5 18.0 40.2 0.01 9.7 35.1 7.7 
 Min 37.6 36.3 3.1 3.1 7.4 6.3 0.0005 5.9 20.9 0.2 

H4 ET Ave 2.6 2.6 0.7 0.7 4.7 4.9 0.05 8.3 0.9 8.8 
 Max 3.8 3.8 0.9 0.9 9.7 15.2 0.1 12.6 2.3 12.9 
 Min 1.5 1.7 0.6 0.6 2.0 0.8 0.03 4.6 0.1 6.5 

H3 PT Ave 55.1 54.9 9.0 8.9 12.7 5.1 0.005 7.6 42.7 1.2 
 Max 60.2 58.1 9.8 9.8 14.9 9.9 0.01 12.0 46.5 4.7 
 Min 47.3 44.7 7.9 7.6 8.7 2.1 0.0005 5.3 36.3 0.001 

H2 MC Ave 32.0 31.9 3.5 3.4 9.4 9.5 0.007 8.0 18.8 7.5 

 Max 53.6 54.9 6.3 6.6 15.2 17.7 0.01 12.3 33.2 22.3 
 Min 16.2 16.3 1.6 1.6 4.5 1.9 0.0005 5.6 6.3 1.4 

H1P PT Ave 28.1 27.8 1.9 1.9 7.2 17.8 0.1 10.1 13.6 9.2 
 Max 37.8 36.3 2.4 2.4 14.5 36.7 0.1 17.9 19.3 24.6 
 Min 16.7 16.4 1.3 1.3 3.0 0.001 0.05 7.0 5.9 3.1 

H1 MC Ave 32.8 34.5 4.1 4.3 8.3 3.3 0.05 10.5 22.7 7.7 
 Max 48.5 48.4 7.7 8.0 10.7 5.5 0.2 17.2 34.9 19.6 
 Min 20.7 19.9 1.8 1.8 4.5 1.7 0.0005 7.6 11.1 3.1 
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Appendix 2. 3. Correlation coefficients showing positive and negative relationships between metal forms (T: total, D: dissolved) and pH, EC, DIC, SO4
2-, and 

DOC. Pearson correlation coefficient is denoted as r, p-value as p and confidence interval (95%) as CI. 

 
 

pH EC DIC SO4
2- DOC 

PbT r= -0.02 r= -0.2 r= -0.2 r= 0.1 r= 0.1 
 p= .736 p= .003 p= .003 p= .438 p= .145 
 CI [-0.162 0.115] CI [-0.341 -0.076] CI [-0.338 -0.072] CI [-0.084 0.192] CI [-0.035 0.239] 

PbD r= -0.1 r= -0.4 r= -0.4 r= -0.1 r= 0.3 
 p= .084   p< .001   p< .001 p= .194   p< .001 
  CI [-0.257 0.016] CI [-0.523 -0.291] CI [-0.517 -0.284] CI [-0.228 0.047] CI [0.135 0.393] 

BaT r= 0.39 r= -0.01 r= 0.01 r= 0.02 r=-0.06 
   p<0.001 p= 0.915 p= 0.879 p= 0.829 p= 0.439 
  CI [ 0.265  0.502]  CI [-0.146  0.131] CI[ -0.128  0.149] CI[ -0.123  0.154] CI[ -0.192  0.084] 

BaD r= 0.43 r= 0.02 r= 0.05 r= 0.02 r= -0.11 
   p<0.001 p= 0.739 p= 0.460 p= 0.826 p= 0.116 
  CI[ 0.308 0.535] CI[ -0.115  0.162] CI [ -0.087  0.190] CI [ -0.123  0.154]  CI[ -0.247  0.027] 

CdT r= 0.2 r= 0.2 r= 0.1 r= 0.7 r= -0.2 
 p= 0.021 p= 0.037 p= 0.134   p< 0.001 p= 0.016 
 CI [0.025 0.296] CI [0.009 0.281] CI [-0.032 0.242] CI [0.614 0.759] CI [-0.302 -0.032] 

CdD r= 0.2 r= 0.1 r= 0.1 r= 0.7 r= -0.2 
 p= 0.015 p= 0.081 p= 0.195   p< 0.001 p= 0.010 
 CI [0.034 0.304] CI [-0.015 0.258] CI [-0.047 0.228] CI [0.561 0.723] CI [-0.312 -0.043] 

SrT r= 0.3 r= 0.6 r= 0.6 r= 0.9 r= -0.5 
   p<0.001   p<0.001   p<0.001   p<0.001   p<0.001 
 CI [0.207 0.454] CI [0.506 0.684] CI [0.531 0.702] CI [0.833 0.901] CI [-0.590 -0.378] 

SrD r= 0.4 r= 0.6 r= 0.7 r= 0.9 r= -0.5 
   p<0.001   p<0.001   p<0.001   p<0.001   p<0.001 
 CI [0.235 0.478] CI [0.547 0.713] CI [0.568 0.728] CI [0.826 0.897] CI [-0.600 -0.391] 

ZnT r= 0.2 r= 0.1 r= 0.04 r= 0.6 r= -0.2 
 p= 0.040 p= 0.405 p= 0.586   p< 0.001 p= 0.039 
 CI [0.006 0.278] CI [-0.080 0.196] CI [-0.100 0.176] CI [0.503 0.682] CI [-0.279 -0.007] 

ZnD r= 0.2 r= 0.1 r=0.04 r= 0.6 r= -0.2 
 p= 0.008 p= 0.381 p= 0.588   p<0.001 p= 0.022 
 CI [0.051 0.319] CI [-0.077 0.199] CI [-0.101 0.176] CI [0.517 0.692] CI [-0.295 -0.024] 

CuT r= 0.03 r= -0.3 r= -0.3 r= 0.2 r= 0.2 
 p= 0.715   p< 0.001   p< 0.001 p= 0.027 p= 0.001 
 CI [-0.113 0.164] CI [-0.389 -0.130] CI [-0.408 -0.152] CI [0.018 0.289] CI [0.105 0.368] 
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 Appendix 2.3 (continued). Correlation coefficients showing positive and negative relationships between metal forms (T: total, D: dissolved) and pH, EC, DIC, 
SO4

2-, and DOC. Pearson correlation coefficient is denoted as r, p-value as p and confidence interval (95%) as CI. 

 
 pH EC DIC SO4

2- DOC 

CuD r= 0.04 r= -0.3 r=-0.3 r=0.04 r= 0.2 
 p=0.622   p<0.001   p<0.001 p=0.602 p=0.003 
 CI [-0.104 0.173] CI [-0.381 -0.121] CI [-0.422 -0.169] CI [-0.102 0.175] CI [0.073 0.339] 

FeT r= -0.3 r= -0.3 r= -0.4 r= -0.3 r= 0.5 
   p<0.001   p<0.001   p<0.001   p<0.001   p<0.001 
 CI [-0.440 -0.189] CI [-0.429 -0.177] CI [-0.549 -0.325] CI [-0.441 -0.191] CI [0.358 0.575] 

FeD r= -0.3 r= -0.5 r= -0.5 r= -0.5 r= 0.7 
   p<0.001   p<0.001   p<0.001   p<0.001   p<0.001 
 CI [-0.432 -0.180] CI [-0.576 -0.360] CI [-0.621 -0.420] CI [-0.574 -0.358] CI [0.638 0.776] 

MnT r= -0.3 r= -0.2 r= -0.3 r= -0.2 r= 0.2 
   p<0.001 p=0.007   p<0.001 p=0.011 p=0.001 
 CI [-0.420 -0.167] CI [-0.319 -0.050] CI [-0.449 -0.201] CI [-0.312 -0.042] CI [0.102 0.365] 

MnD r= -0.3 r= -0.2 r= -0.4 r=-0.2 r= 0.2 
   p<0.001 p=0.003   p<0.001 p=0.028 p=0.001 
 CI [-0.437 -0.187] CI [-0.337 -0.071] CI [-0.464 -0.219] CI [-0.288 -0.016] CI [0.106 0.368] 

CaT r= 0.6 r= 0.9 r= 0.9 r= 0.7 r= -0.6  
  p<0.001 p<0.001   p<0.001   p<0.001 p<0.001  

CI [0.493 0.675] CI [0.838 0.904] CI [0.951 0.972] CI [0.583 0.738] CI [-0.698 -0.525] 

CaD r= 0.6 r= 0.9 r= 0.9 r= 0.7 r= -0.6  
  p<0.001   p<0.001   p<0.001   p<0.001   p<0.001  

CI [0.526 0.698] CI [0.845 0.908] CI [0.963 0.978] CI [0.571 0.730] CI [-0.701 -0.529] 

AlT r= -0.6 r= -0.4 r= -0.6 r=-0.4 r= 0.4 
   p<0.001   p<0.001   p<0.001   p<0.001   p<0.001 
 CI [-0.644 -0.451] CI [-0.545 -0.320] CI [-0.658 -0.470] CI [-0.465 -0.220] CI [0.226 0.470] 

AlD r=-0.6 r= -0.6 r= -0.7 r= -0.4 r= 0.5 
   p<0.001   p<0.001   p<0.001   p<0.001   p<0.001 
 CI [-0.690 -0.515] CI [-0.646 -0.454] CI [-0.731 -0.572] CI [-0.542 -0.316] CI [0.417 0.619 

MgT r= 0.4  r= 0.8 r= 0.9 r= 0.6 r= -0.6  
  p<0.001   p<0.001   p<0.001   p<0.001   p<0.001  

CI [0.315 0.542] CI [0.782 0.869] CI [0.899 0.941] CI [0.472 0.660] CI [-0.657 -0.469] 

MgD r= 0.4 r= 0.8 r= 0.9 r= 0.6 r= -0.6 
  p<0.001   p<0.001   p<0.001   p<0.001   p<0.001 

CI [0.322 0.547] CI [0.787 0.872] CI [0.897 0.939] CI [0.463 0.653] CI [-0.651 -0.461] 
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Appendix 2. 4. Monthly averages of in situ parameters in the catchment. 

 NM: No measured 

 

Months Temp (°C) DO (mg/l) pH EC (s/cm) Flow (l/s) 

Nov.13 7.6 (±0.8) 11.4 (±0.4) 5.6 (±0.8) 94.0 (±58.8) NM 

Dec.13 9.0 (±0.6 10.2 (±0.3) 6.0 (±1.0) 99.9 (±68.8) 310.5 (±638.8) 
Jan.14 5.0 (±1.4) 12.1 (±0.8) 6.1 (±1.1) 87.9 (±57.0) 250.2 (±422.8) 
Feb.14 3.6 (±1.2) 12.5 (±0.9) 5.9 (±1.1) 78.0 (±43.1) 699.4 (±1365.1) 

Mar.14 7.3 (±0.8) 12.3 (±1.1) 6.5 (±0.9) 120.4 (±65.7) 129.4 (±343.0) 
Apr.14 8.5 (±1.7) 11.9 (±1.0) 6.6 (±1.1) 123.5 (±64.3) 62.9 (±146.8) 
May.14 8.9 (±1.3) 12.6 (±0.9) 6.6 (±1.0) 137.3 (±70.8) 79.2 (±206.1) 

Jun.14 13.7 (±2.8) 10.9 (±0.7) 6.6 (±1.1) 138.7 (±75.4) 98.9 (±233.9) 
Jul.14 15.6 (±2.6) 10.3 (±0.6) 7.0 (±1.0) 209.0 (±82.3) 54.0 (±114.3) 
Aug.14 13.0 (±1.8) 11.7 (±0.8) 6.4 (±1.4) 123.8 (±85.0) 389.8 (±954.3) 

Sep.14 12.4 (±1.9) 14.0 (±1.2) 7.1 (±1.0) 154.3 (±71.0) 71.1 (±157.6) 
Oct.14 9.7 (±1.1) 10.4 (±0.5) 6.6 (±1.0) 119.5 (±66.8) 107.3 (±183.4) 
Nov.14 9.2 (±0.4) 10.4 (±0.5) 6.6 (±1.0) 99.9 (±59.0) 2666.1 (±10243.7) 

Dec.14 4.2 (±1.2) 12.6 (±1.1) 6.8 (±0.8) 93.2 (±54.0) 292.1 (±568.8) 
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Appendix 2. 5. Averages, maxima and minima of in situ parameters. Description of sites are indicated 
as reservoir (RS), main channel (MC), ephemeral tributaries (ET) and perennial tributaries (PT).  

 

Sites Description  pH EC 

(s/cm ) 

Temperature 
(°C) 

DO 
(mg/l) 

Flow 
(l/s) 

H15 RS Ave 6.3 52.4 9.7 11.1 NM 
 Max 7.1 95.4 18.5 13.2 NM 
 Min 4.6 35.3 1.4 9.2 NM 

H14 PT Ave 6.6 59.4 10.0 11.5 128.5 
 Max 7.6 99.9 18.3 13.1 761.7 
 Min 5.3 41.1 3.0 9.5 2.6 

H13 ET Ave 4.5 48.9 8.4 11.0 57.0 
 Max 5.0 65.2 15.7 13.1 134.4 
 Min 4.0 35.6 3.7 9.1 0.0 

H12 ET Ave 6.9 123.7 8.9 11.5 9.0 
 Max 7.4 199.7 18.0 13.2 31.9 
 Min 5.6 64.9 2.8 10.0 0.0 

H11 PT Ave 6.2 47.8 6.9 11.8 57.4 
 Max 7.6 100.4 11.0 13.3 123.6 
 Min 5.4 30.0 2.0 9.5 3.1 

H10 MC Ave 6.8 76.0 9.7 12.2 200.2 
 Max 7.7 160.3 18.8 14.2 684.4 
 Min 5.6 46.8 4.1 10.0 5.1 

H9 PT Ave 5.9 52.3 9.2 12.0 118.8 
 Max 7.4 107.5 17.9 14.8 315.0 
 Min 4.4 36.7 3.7 10.0 12.8 

H8 

 

ET Ave 7.4 152.1 9.1 12.1 51.3 
 Max 8.2 303.0 16.9 15.7 149.3 
 Min 6.2 75.8 2.2 9.8 0.0 

H7 PT Ave 6.9 192.4 9.1 10.9 3.0 
 Max 7.3 292.0 11.9 13.9 7.3 
 Min 6.0 112.0 5.1 9.5 0.6 

H6 MC Ave 6.9 94.7 8.7 12.4 265.0 
 Max 7.4 253.0 16.9 15.4 1087.3 
 Min 5.9 48.4 3.6 10.4 36.3 

H5 PT Ave 6.8 185.1 8.5 10.7 83.1 
 Max 7.2 269.0 12.8 13.9 243.2 
 Min 5.9 138.4 4.8 9.5 10.3 

H4 ET Ave 3.9 121.1 8.0 12.2 14.3 
 Max 5.0 342.0 14.5 14.6 54.3 
 Min 3.3 50.8 2.1 10.2 0.0 

H3 PT Ave 7.0 248.2 8.6 10.9 12.4 
 Max 7.5 295.0 11.5 14.0 20.1 
 Min 5.5 186.9 5.7 9.6 6.9 

H2 MC Ave 6.6 146.2 8.1 12.2 386.1 
 Max 7.2 288.0 12.8 15.1 1147.0 
 Min 5.4 76.0 3.2 10.0 106.6 

H1P PT Ave 6.3 133.0 8.8 12.2 192.7 
 Max 6.8 218.3 14.5 14.2 1162.2 
 Min 4.3 71.9 3.5 10.0 3.8 

H1 MC Ave 7.5 159.8 10.6 11.5 4804.9 
 Max 8.0 264.0 16.9 12.8 41076.0 

 Min 6.2 90.9 4.5 10.1 432.0 

           NM: No measured 
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Appendix 2. 6. Lead and Zn activity as a function of pH, SO4
2- (13592 g/l), Cl (7730 g/l) and pCO2 = 

0.0012 atm.  Theoretical saturation of mineral forms are represented by solid lines and calculated metal 
free ion activity of experimental data by dots. Data from a source pond (H15) is shown separately as 
an example of how longer water residence times may result in free ion activities closer to saturation. 
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Appendix 2. 7. Trends of metals in function of flow and pH in all sampling sites. Panel a and b show 
trends of Pb and panel c and d indicate Zn trends. Flow data from H15 (reservoir) were not measured. 
Solid lines represent regression lines.
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Appendices-Chapter 3 

Appendix 3. 1. Annual averages and standard deviation (±SD) of metal-CDGT concentrations at each 
sampling site. Units are in mol/l.   

 
Sites ZnD_ 

measured 
(mol/l) 

Zn_CDGT 
(mol/l) 

PbD_ 
measured 

(mol/l) 

Pb_CDGT 
(mol/l) 

CuD_ 
measured 

(mol/l) 

Cu_CDGT 
(mol/l) 

CdD_ 
measured 

(mol/l) 

Cd_CDGT 
(mol/l) 

H15 3.1x10-5 1.2x10-5 1.3x10-6 1.3x10-6 1.9x10-7 1.5x10-8 2.4x10-6 2.2x10-9  
±7.2×10-6 ±6.9x10-6 ±2.9x10-7 ±4.0x10-7 ±5.9x10-8 ±3.2x10-9 ±5.3x10-7 ±3.8x10-9 

H14 2.1x10-5 1.5x10-5 6.5x10-7 7.6x10-7 1.1x10-7 1.8x10-8 1.2x10-6 1.2x10-9  
±5.2x10-6 ±4.4x10-6 ±1.3x10-7 ±3.6x10-7 ±2.8x10-8 ±9.8x10-9 ±2.4x10-7 ±9.4x10-10 

H13 3.2x10-6 6.1x10-7 1.0x10-6 9.9x10-7 3.0x10-8 6.5x10-9 1.9x10-6 2.0x10-9  
±6.3x10-6 ±3.2x10-7 ±2.7x10-7 ±2.6x10-7 ±1.9x10-8 ±7.3x10-9 ±5.0x10-7 ±1.3x10-9 

H12 6.5x10-5 2.7x10-5 1.6x10-6 1.4x10-6 1.9x10-7 2.5x10-8 2.9x10-6 1.3x10-10  
±3.0x10-5 ±4.0x10-6 ±4.0x10-7 ±4.4x10-7 ±9.1x10-8 ±1.1x10-8 ±7.4x10-7 ±1.1x10-10 

H11 6.3x10-6 3.3x10-6 3.2x10-8 1.5x10-7 1.4x10-8 1.1x10-8 6.0x10-8 1.4x10-9  
±2.1x10-5 ±7.6x10-6 ±2.1x10-8 ±4.5x10-7 ±1.4x10-8 ±1.4x10-8 ±4.0x10-8 ±8.8x10-10 

H10 6.8x10-6 5.2x10-6 4.0x10-7 3.8x10-7 4.4x10-8 6.8x10-9 7.5x10-7 2.0x10-9  
±2.8x10-6 ±2.5x10-6 ±1.4x10-7 ±2.0x10-7 ±2.0x10-8 ±6.3x10-9 ±2.7x10-7 ±1.6x10-9 

H9 1.5x10-6 1.3x10-6 7.1x10-8 1.0x10-7 1.6x10-8 6.2x10-9 1.3x10-7 1.7x10-9  
±1.9x10-6 ±5.5x10-7 ±2.1x10-8 ±1.1x10-7 ±1.1x10-8 ±8.4x10-9 ±3.8x10-8 ±1.1x10-9 

H8 4.1x10-6 3.9x10-6 9.2x10-8 9.2x10-8 2.8x10-8 7.1x10-9 1.7x10-7 7.6x10-10  
±1.5x10-6 ±2.3x10-6 ±2.1x10-8 ±3.2x10-8 ±1.9x10-8 ±3.4x10-9 ±3.8x10-8 ±5.1x10-10 

H7 4.9x10-5 2.8x10-5 2.2x10-8 2.1x10-8 3.9x10-8 1.6x10-8 4.2x10-8 1.2x10-10  
±1.3x10-5 ±8.5x10-6 ±4.5x10-8 ±6.1x10-8 ±1.7x10-8 ±2.9x10-9 ±8.3x10-8 ±7.3x10-11 

H6 7.8x10-6 7.5x10-6 2.2x10-7 2.4x10-7 3.3x10-8 6.0x10-9 4.2x10-7 1.3x10-9  
±1.5x10-6 ±1.0x10-6 ±9.7x10-8 ±9.9x10-8 ±2.4x10-8 ±2.7x10-9 ±1.8x10-7 ±1.0x10-9 

H5 1.3x10-5 1.3x10-5 2.2x10-7 2.6x10-7 3.7x10-8 8.0x10-9 3.3x10-7 1.8x10-10  
±2.9x10-6 ±1.5x10-6 ±1.5x10-7 ±2.2x10-7 ±2.9x10-8 ±4.4x10-9 ±2.7x10-7 ±1.2x10-10 

H4 5.5 x10-7 2.6x10-7 2.0x10-8 2.1x10-8 2.5x10-8 2.1x10-9 3.7x10-8 9.6x10-9  
±1.4×10-7 ±8.9x10-8 ±6.3x10-9 ±8.2x10-9 ±3.3x10-8 ±1.1x10-9 ±1.1x10-8 ±1.1x10-8 

H3 <5.1×10-7 1.2x10-6 6.3x10-10 8.0x10-10 4.5x10-9 2.3x10-9 1.1x10-9 2.2x10-10  
- ±5.1x10-8 ±3.9x10-10 ±9.5x10-10 ±5.4x10-9 ±1.0x10-9 ±7.1x10-10 ±2.6x10-10 

H2 7.4x10-6 7.0x10-6 1.7x10-7 1.9x10-7 2.8x10-8 4.2x10-9 3.2x10-7 9.8x10-10  
±1.1x10-6 ±1.0x10-6 ±1.0x10-7 ±1.4x10-7 ±1.5x10-8 ±1.9x10-9 ±2.0x10-7 ±7.6x10-10 

H1P 5.6×10-7 4.8x10-9 3.5x10-9 3.5x10-9 1.3x10-8 3.8x10-9 6.4x10-9 8.9x10-11  
±1.1×10-6 ±4.5x10-9 ±3.1x10-9 ±3.1x10-9 ±1.2x10-8 ±2.6x10-9 ±5.8x10-9 ±9.0x10-11 

H1 2.4x10-6 2.5x10-6 6.4x10-8 8.0x10-8 1.9x10-8 3.8x10-9 1.1x10-7 8.1x10-7  
±1.1x10-6 ±6.6x10-7 ±4.9x10-8 ±6.6x10-8 ±1.4x10-8 ±2.2x10-9 ±9.2x10-8 ±9.4x10-10 



188 

 

 
Appendix 3. 2. Biological Monitoring Working Party (BMWP) scores based on macroinvertebrate 
presence at each sampling site. 

 

 

Appendix 3. 3. Average scores per taxon (ASPT) at each sampling site. 
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Appendix 3. 4. Percentages of each macroinvertebrate order based on number of individuals.  
 

 

Appendix 3. 5. Percentages of macroinvertebrate families from the Orders Hemiptera, Coleoptera and 
Diptera.  



190 

 

 

Appendix 3. 6. Percentages of macroinvertebrate families from the Order Ephemeroptera (mayfly).  

 

 

Appendix 3. 7. Percentages of macroinvertebrate families from the Order Trichoptera (caddisfly).  
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Appendix 3. 8. Percentages of macroinvertebrate families from the Order Plecoptera (stonefly).  
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Appendices-Chapter 4 

Methods-Study area 

 

Appendix 4. 1. Sampling sites at Hebden Beck showing the underlying geology comprised by the 
Millstone grit and Liddesdale-Yoredale bedrock. Hydrological and Geological base maps contain OS 
data © Crown copyright and database right (2016). 
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Appendix 4. 2. Sampling sites along Hebden Beck. Three locations were adopted from Valencia-Avellan 
et al. (2017).Table indicates site elevation, coordinates, and distance from River Wharfe. Sites are listed 
from upstream to downstream.  
 

Sites ID Sites ID from 
Valencia-
Avellan et al. 
(2017) 

Sites description Elev. 

(m) 

Coordinates From R. 
Wharfe 

(m) 
East North 

ET H12 Ephemeral tributary running 
through Beaver spoil wastes 

(Yarnbury mine) 

285 402451 465822 3921 

PT H5 Perennial tributary flowing 
through mine channels (Duke’s 

adit) 

256 402638 464793 2836 

MC H2(*) Main river channel 235 402488 464275 2271 

(*) Gauging station (F1960) from the UK-Environment Agency. 

 

Methods: Characterization of local seasonal conditions and episodic rainfall 

for August 2016. 

Daily rainfall data were obtained for Pateley Bridge Ravens Nest (54°04'01.2"N 

1°46'01.2"W) in order to present local seasonal drought and rainfall events for the 

month of August 2016 (> 12 mm during high rainfall days). 

 

Appendix 4. 3. Daily rainfall records from Pateley Bridge Ravens Nest (54°04'01.2"N 1°46'01.2"W) 
during August 2016. 
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Three rainfall events (≥ 5 mm/hour) occurred during the sampling campaigns 

(Appendix 4.4). A low flow period (LF: 0.05 m3/s) was measured for 0-6 hours. The 

first rainfall episode (5 mm/hour) produced little change in flow (0.07 m3/s), insufficient 

to identify flow stages. Subsequent episodes (>5 mm/hour) allowed the 

characterisation of three stages; base flow (BF), peak flow (PF) and post peak flow 

(PPF). The second event (9 mm/hour), BF corresponded to 7-28 hours, with flow 

values ranging from 0.07 to 0.14 m3/s, PF corresponded to 29-34 hours, with flow 

ranging from 0.22 to 1.45 m3/s, and PPF was between 35-52 hours, with flow ranging 

from 1.33 to 0.30 m3/s. In the third event (5.8 mm/hour), unexpected problems 

(sampler malfunctioned or swept-away) restricted the sampling duration in sites PT 

and MC. During this last event, flow stages were characterised as BF from 54-66 hours 

(flow 0.23 to 0.40 m3/s), PF from 68-72 hours (flow 1.41 to 2.12 m3/s), and PPF from 

74-96 hours (flow 1.64 to 0.34 m3/s).  

 

Appendix 4. 4. Hourly rainfall (mm) at Grimwith reservoir (station code: 62046; 54°04'16.4"N 
1°54'47.7"W) and main channel flow at gauging station-F1960 (54°04'27.8"N 1°57'48.5"W) from 18th 
to 23nd of August.  
 

Methods: Distribution of metal chemical species 

Measurements of temperature and dissolved water chemistry were used as input data 

in the Windermere Humic Aqueous Model (WHAM/Model VII). Concentrations of 

dissolved organic carbon were converted to fulvic acid assuming DOM to be 
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composed of 50% carbon and the active fraction considered to be 65% fulvic acid 

(FA= DOC x 1.3) (Tipping et al., 2008). We considered the presence of oxides as being 

either active or inactive with respect to surface sorption as described in Valencia-

Avellan et al., (2018). Activity of Al and Fe oxides was calculated from the dissolved 

metal data and the equations derived by Tipping (2005), and Lofts and Tipping (2011) 

respectively, with the lower of the two values being adopted, in order to exclude the 

likelihood of colloidal material being included in the dissolved fraction. 

Results: Concentrations of major anions 

Different concentrations were measured for SO4
2-, DIC and DOC possible due to 

overland flow or interflow have been identified. From LF to PPF, a 2300% increase in 

SO4
2- concentrations occurred in ET, which are likely to be related to the degree of 

erosion and oxidation of mine wastes. In MC, a significant increase (6960%) was 

observed for DOC concentrations as result of overland flow running through peat 

moorland areas (Tranvik and Jansson, 2002) while DIC concentrations decreased 

(212%) due to interflow, attenuating rich-limestone groundwater (Jarvie et al., 1997) 

(Appendices 4.1 and 4.2). Ranges of SO4
2- and DIC concentrations were higher in ET 

(0.4 to 23.5 mg/l SO4
2-, 5.5 to 35.7 mg/l DIC) and PT (7.8 to 12.5 mg/l SO4

2-, 17.0 to 

31.7 mg/l DIC), while DOC concentrations showed the greatest variation in MC (3.0 to 

32.0 mg/l) (Appendix 4.5).  
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Appendix 4. 5. Water quality parameters and metal concentrations at different flow stages in ephemeral 
tributaries (ET), perennial tributaries (PT) and main channel (MC). 
 

Sites Rainfall 
periods 

Flow 
stages 

 
pH SO4

2- 
mg/l 

DIC 
mg/l 

DOC 
mg/l 

Pb 

g/l 

Zn 

g/l 

Fe 

g/l 

Al 

g/l 

ET 1st period LF Ave 7.2 6.1 27.4 8.5 55.1 2973.7 469.7 9.8 

(5mm/hour) Max 7.6 23.5 35.7 9.3 128.2 3578.3 2154.5 23.3  
Min 7.0 0.4 11.1 6.8 2.2 1728.5 138.7 1.8 

 BF Ave 7.5 15.6 16.4 8.4 150.4 3298.9 331.2 36.9 

 Max 7.7 20.9 20.0 16.7 233.5 3823.0 500.5 54.4  
Min 7.2 12.7 11.3 6.3 106.5 2461.1 167.7 25.3 

2nd period 

(9mm/hour) 

PF Ave 7.6 9.2 8.0 12.0 335.3 2414.0 192.6 66.8  
Max 7.6 12.9 12.9 15.3 457.3 2883.9 234.9 106.2  
Min 7.6 7.7 6.4 7.3 206.7 1708.0 158.2 26.3  

PPF Ave 7.4 13.9 8.3 16.6 467.7 3819.3 245.7 126.5   
Max 7.5 15.2 9.7 18.3 559.1 5016.8 309.0 160.7   
Min 7.2 9.8 6.5 13.8 323.6 3013.0 206.1 70.5  

BF Ave 7.3 15.0 10.6 12.8 342.7 3807.5 263.7 66.1   
Max 7.4 15.8 11.8 14.6 394.8 4166.9 327.8 77.1   
Min 7.3 13.3 9.4 10.9 284.9 3332.4 221.9 54.8 

3rd period 

(5.8mm/hour) 

PF Ave 7.5 7.2 5.8 15.8 571.8 2538.1 190.3 131.1  
Max 7.5 8.0 6.1 16.9 649.2 2616.5 196.4 163.3  
Min 7.4 6.9 5.5 13.7 499.9 2437.2 187.1 98.3  

PPF Ave 7.4 14.0 8.4 14.7 575.6 3884.9 264.9 125.4 

  Max 7.4 16.0 9.7 17.2 690.3 4687.8 309.3 147.2   
Min 7.4 10.1 6.3 12.7 479.1 2914.5 189.7 99.4 

PT 1st period LF Ave 7.4 11.8 30.9 3.1 50.3 988.4 75.4 42.6 

(5mm/hour) 
 

Max 7.4 12.2 31.1 3.8 63.6 1069.1 80.0 45.6   
Min 7.3 11.5 30.6 2.2 39.9 933.1 70.6 37.4  

BF Ave 7.5 12.3 31.2 2.7 36.3 932.1 65.4 32.6 

  Max 7.6 12.5 31.7 3.8 63.6 1069.1 80.0 57.3   
Min 7.4 11.6 30.8 1.6 31.2 868.2 58.9 27.4 

2nd period PF Ave 7.5 11.3 28.4 5.1 30.9 789.0 79.8 42.6 

(9mm/hour) 
 

Max 7.6 12.1 30.8 7.6 35.6 918.2 98.5 52.0   
Min 7.5 10.4 25.6 3.0 23.2 622.8 60.3 28.7  

PPF Ave 7.4 9.5 24.0 6.3 87.6 659.4 110.6 91.6   
Max 7.5 11.2 29.7 15.1 211.7 771.7 178.6 159.2   
Min 7.3 7.8 17.0 3.3 33.2 567.2 71.0 41.6 

MC 1st period LF Ave 8.1 10.2 30.1 4.0 27.6 467.4 164.3 39.7 

(5mm/hour) 
 

Max 8.1 10.7 31.5 5.0 38.5 495.5 253.6 51.2   
Min 7.8 9.4 27.7 3.0 23.3 449.5 129.3 34.1  

BF Ave 8.0 6.4 19.2 16.2 71.1 622.8 940.3 104.0 

  Max 8.1 8.7 26.0 19.3 79.8 693.6 1168.2 133.9   
Min 8.0 5.5 17.1 6.5 47.4 493.4 362.1 50.6 

2nd period PF Ave 7.4 3.3 7.2 27.9 124.9 512.0 1146.1 214.3 

 (9mm/hour) 
 

Max 7.6 4.9 13.6 30.2 153.7 574.7 1326.1 250.7   
Min 7.3 2.3 3.8 24.8 110.6 447.2 1052.4 154.9  

PPF Ave 7.3 3.2 6.4 27.7 127.8 507.1 1136.2 258.2   
Max 7.6 4.3 10.0 32.0 140.7 536.3 1314.3 293.6   
Min 7.2 2.2 3.7 22.6 116.4 489.3 933.1 230.2 
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Appendix 4. 6. Pearson correlation coefficient showing relationships between flow, water quality 
parameters and with metal concentrations at different flow stages. NC: no correlation as pH values were 
constant (standard deviation= 0), ND= no data available.  
   

ET PT MC   
Pb Zn Fe Ca Al Pb Zn Fe Ca Al Pb Zn Fe Ca Al 

LF pH 0.9 -0.9 0.3 -0.9 1.0 -0.8 0.4 -0.01 -0.6 -0.4 0.2 0.2 0.3 -0.4 0.2 

flow 0.9 -0.8 0.1 -1.0 0.9 -0.8 0.04 -0.4 -0.8 -0.6 0.9 0.9 1.0 -1.0 0.9 

SO4
2- 0.8 -0.8 -0.1 -1.0 0.9 -0.3 0.2 -0.04 -0.7 -0.2 -0.9 -0.9 -1.0 1.0 -0.9 

DIC -0.9 0.9 -0.1 1.0 -1.0 0.9 0.4 0.7 0.6 0.8 -1.0 -0.9 -1.0 1.0 -0.9 

DOC -0.8 0.5 -0.4 0.8 -0.8 0.6 -0.5 -0.2 0.2 -0.1 -0.1 -0.2 -0.1 0.3 -0.3 

BF pH -0.1 0.3 0.4 0.5 0.03 -0.2 -0.03 -0.2 -0.2 -0.1 -0.6 -0.6 -0.6 0.1 -0.8 

flow 0.8 -0.2 -0.03 -0.5 0.7 -0.4 -0.1 -0.3 -0.4 -0.2 0.6 0.3 0.5 -0.3 0.6 

SO4
2- -0.3 -0.5 -0.9 -0.7 -0.3 0.04 0.2 0.1 -0.2 0.1 -0.8 -0.7 -0.8 0.1 -0.9 

DIC -0.2 0.7 0.8 1.0 -0.1 0.1 -0.1 0.01 -0.2 0.2 -0.8 -0.7 -0.8 0.2 -1.0 

DOC 0.6 -0.4 -0.01 -0.3 0.5 0.04 -0.02 0.03 -0.2 -0.2 0.8 0.8 0.8 -0.2 0.9 

PF pH NC NC NC NC NC -0.3 0.1 -0.4 0.4 -0.6 0.4 0.4 0.9 0.8 -0.8 

flow 1.0 0.3 -0.3 -0.8 0.9 0.01 -0.5 0.8 -0.7 0.9 0.1 -0.6 -0.4 -0.9 0.9 

SO4
2- -0.8 0.01 0.6 0.9 -0.6 0.3 0.9 -1.0 1.0 -0.9 -0.02 0.6 0.7 1.0 -1.0 

DIC -0.7 0.2 0.7 1.0 -0.5 0.4 0.9 -1.0 0.9 -0.9 0.1 0.7 0.7 1.0 -1.0 

DOC 0.8 0.8 0.4 -0.3 1.0 -0.4 -0.9 0.9 -1.0 0.9 -0.3 -0.7 -0.8 -0.9 0.9 

PPF pH 0.7 0.1 0.04 -0.6 0.6 -0.7 -0.4 -0.7 0.8 -0.8 -0.9 0.2 -1.0 1.0 -0.9 

flow 0.6 -0.5 -0.6 -1.0 0.7 -0.8 0.03 -0.8 0.9 -0.9 0.9 0.3 0.7 -0.9 0.8 

SO4
2- -0.5 0.6 0.6 0.9 -0.6 -0.9 -0.3 -0.9 1.0 -0.9 -1.0 -0.1 -0.9 1.0 -0.9 

DIC -0.7 0.4 0.5 1.0 -0.8 -0.9 -0.3 -1.0 1.0 -1.0 -1.0 -0.02 -0.9 1.0 -0.9 

DOC 0.7 -0.3 -0.5 -0.8 0.7 0.9 0.5 0.9 -0.8 0.8 0.9 -0.01 0.9 -1.0 0.8 

BF pH 0.8 -0.7 -0.3 -0.7 -0.6 ND ND ND ND ND ND ND ND ND ND 

flow 0.7 -0.5 -0.4 -0.7 0.4 ND ND ND ND ND ND ND ND ND ND 

SO4
2- -0.7 0.8 0.6 0.9 -0.1 ND ND ND ND ND ND ND ND ND ND 

DIC -0.7 0.9 0.7 1.0 -0.1 ND ND ND ND ND ND ND ND ND ND 

DOC -0.1 0.4 0.4 0.3 0.6 ND ND ND ND ND ND ND ND ND ND 

PF pH -0.6 -1.0 0.04 -1.0 -0.6 ND ND ND ND ND ND ND ND ND ND 

flow 0.8 -0.3 -1.0 0.3 0.8 ND ND ND ND ND ND ND ND ND ND 

SO4
2- 0.9 0.7 -0.5 1.0 0.9 ND ND ND ND ND ND ND ND ND ND 

DIC 0.4 1.0 0.2 0.9 0.4 ND ND ND ND ND ND ND ND ND ND 

DOC 0.9 -0.2 -1.0 0.4 0.9 ND ND ND ND ND ND ND ND ND ND 

PPF pH -0.6 -0.4 0.2 0.4 -0.6 ND ND ND ND ND ND ND ND ND ND 

flow 0.8 -0.7 -0.9 -1.0 0.7 ND ND ND ND ND ND ND ND ND ND 

SO4
2- -0.9 0.6 0.9 1.0 -0.8 ND ND ND ND ND ND ND ND ND ND 

DIC -0.9 0.6 0.9 1.0 -0.8 ND ND ND ND ND ND ND ND ND ND 

DOC 0.8 -0.4 -0.7 -0.8 0.7 ND ND ND ND ND ND ND ND ND ND 
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Appendix 4. 7. Effects of episodic flow in concentrations of SO4
2-, DIC and DOC in the three sampling 

sites. 
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Appendix 4. 8. Relationships between saturation indexes for cerussite (PbCO3) and smithsonite 
(ZnCO3) with episodic flow in ET. Indexes were computed with PHREEQC model. Note Y axis have 
different scales. 

 

 

Appendix 4. 9. Effect of peak flow in the kinetics of smithsonite (ZnCO3).  
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Appendix 4. 10. Inorganic and organic metal concentrations in absence of active oxide precipitates 
calculated by WHAM/Model VII at different flow stages in all sampling sites. Left hand side panels show 
average concentrations of Pb species. Right hand side panels show average concentrations of Zn 
species. 
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Appendix 4. 11. Variations in FTOX in ephemeral tributary at different flow stages.  

 

 

Appendix 4. 12. Variations in FTOX in perennial tributary at different flow stages.  

 



202 

 

 

Appendix 4. 13. Variations in FTOX in main channel at different flow stages.  
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Appendices-Chapter 5 

Appendix 5. 1. Ethical approval for residents and visitors survey. 

 

Performance, Governance and Operations 
Research & Innovation Service 
Charles Thackrah Building 
101 Clarendon Road 
Leeds LS2 9LJ  Tel: 0113 343 4873 
Email: ResearchEthics@leeds.ac.uk 

 
 

Magaly Valencia Avellan  
School of Geography 
University of Leeds 
Leeds, LS2 9JT 
 

ESSL, Environment and LUBS (AREA) Faculty Research Ethics Committee 
University of Leeds 

 
Dear Magaly 

Title of study: Assessing public perceptions of river water quality 

Ethics reference: LTGEOG-024 

 
I am pleased to inform you that the above research application has been reviewed by a 
representative of the ESSL, Environment and LUBS (AREA) Faculty Research Ethics 
Committee and I can confirm a favourable ethical opinion as of the date of this letter. The 
following documentation was considered: 
 

Document    Version Date 

LTGEOG-024 LightTouchEthicsForm_MValencia.doc 1 01/04/16 

LTGEOG-024 Information sheet for residents_v2.0.doc 1 01/04/16 

LTGEOG-024 Information Sheet for Tourists v2.0.docx 1 01/04/16 

LTGEOG-024 Questionnaires v2.0.xlsx 1 01/04/16 

 
Please notify the committee if you intend to make any amendments to the original research 
as submitted at date of this approval, including changes to recruitment methodology. All 
changes must receive ethical approval prior to implementation. The amendment form is 
available at http://ris.leeds.ac.uk/EthicsAmendment.    
 
Please note: You are expected to keep a record of all your approved documentation, as well 
as documents such as sample consent forms, and other documents relating to the study. This 
should be kept in your study file, which should be readily available for audit purposes. You will 
be given a two week notice period if your project is to be audited. There is a checklist listing 
examples of documents to be kept which is available at http://ris.leeds.ac.uk/EthicsAudits.  
 
We welcome feedback on your experience of the ethical review process and suggestions for 
improvement. Please email any comments to ResearchEthics@leeds.ac.uk.  
Yours sincerely 
Jennifer Blaikie 
Senior Research Ethics Administrator, Research & Innovation Service 
On behalf of Dr Andrew Evans, Chair, AREA Faculty Research Ethics Committee  
CC: Student’s supervisor  
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Appendix 5. 2. Resident’s survey 

 

 

 

School of Geography 

University of Leeds 

Leeds LS2 9JT 

0113 343 3373 

http://www.geog.leeds.ac.uk/ 
July 2016 

Dear Hebden Resident  

We would like to invite you to complete a short questionnaire about Hebden Beck. The questionnaire 

forms part of a PhD project in the School of Geography at the University of Leeds and seeks to 

understand how important the beck is to the village and village life. The PhD project is looking at a 

range of catchment-scale water quality and quantity issues, from water chemistry to flow data, and 

we would like to find out what you think about these topics as residents of Hebden. 

The questionnaire should take around 10 minutes to complete and should be completed by one 

member of your household: if more people in your household would like to complete a questionnaire, 

an online version is available (https://leeds.onlinesurveys.ac.uk/hebdenvillage) and additional paper 

copies can be obtained from The Old School Tea Room.  

Your participation is completely voluntary, although you must be 18 years or older to complete this 

survey. You do not have to answer every question or complete all the survey, but we would greatly 

benefit from your full participation. Once we have collected the survey, you will not be contacted 

again unless you request further contact in the ‘Additional Feedback’ section of the questionnaire.  

The questionnaire is completely anonymous and we will not ask for any personal data which will 

identify you. Furthermore, individual responses will remain confidential and only accessible to the 

research team named below. Once the data from each questionnaire has been extracted into a 

database, each questionnaire will be destroyed. The aim is to create a short report describing the 

combined data which will be available in the public domain and will be shared with local authorities, 

conservation bodies and other organisations with responsibility for rivers so offers you the 

opportunity to comment on the Beck and any changes you feel could improve the village and other 

areas associated with the river system. 

If you are happy to take part, please complete the consent clause below before turning the page to 

start the survey. If you have queries about this work please contact the research team: Magaly 

Valencia (gymgv@leeds.ac.uk) or Rebecca Slack (r.slack@leeds.ac.uk; 0113 343 3373). We will be 

visiting Hebden TOMORROW (Saturday 2nd July) to collect completed questionnaires so if you are 

unlikely to be in, please leave your completed questionnaire on your doorstep or other 

visible/accessible place in the clear plastic bag provided. If we miss you, you can take your completed 

questionnaire to The Old School Tea Room on Main Street. 

We hope you enjoy completing the questionnaire, and thank you very much for your participation. 

Yours faithfully, 

Magaly and Rebecca 

Consent clause 
Please tick these boxes to confirm that: 

 You have read and understood the information above.  

 You are willing to contribute to this research.   
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School of Geography 
University of Leeds 

Leeds LS2 9JT 
0113 343 3373 

If you complete the online version of this questionnaire instead, please tick this box and place the 
questionnaire on your doorstep for collection tomorrow (Saturday 2nd July).   
  

Hebden Beck and You 

Please take a few minutes to fill out this survey. We welcome your feedback and your answers will 

be kept confidential. Thank you for your participation. 

Water levels 

1. Have you personally been affected by the flooding of last winter? This might be at home, 

at work, commuting/travelling etc. Please tick. 

 Yes  No 

2. Have you ever experienced flooding of Hebden Beck? Please tick and expand if 

required. 

 Yes. Please provide approx. location: 

 No – not of Hebden Beck but of other local rivers. Please state: 

 No – no experience 

3. Do you think water levels in Hebden Beck are increasing generally? 

 Yes  No  Note sure/Don’t 

know 

Hebden village 

4. How important are the following to the village? Please tick. 

 

 
Agree 
strongly 

Agree 
slightly 

Neither 
agree nor 
disagree 

Disagree 
slightly 

Disagree 
strongly 

Tourists and visitors      

Farming and fisheries      

Other local businesses      

Commuting distance to other 
towns/cities 

     

Varied community structure      

Other (please specify): 
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5. What do you like about Hebden? Please tick. 

 

 
Like 
strongly 

Like 
slightly 

Neither 
like nor 
dislike 

Dislike 
slightly 

Dislike 
strongly 

Landscape and wildlife      

Community and local facilities      

Location in National Park      

Accessibility to towns/cities      

Archaeology and history      

Walking and leisure pursuits      

Attractiveness to visitors      

Other (please specify): 
 

     

 

6. How important is Hebden Beck to the village of Hebden? Please tick. 

 

 
Extremely 
important 

Very 
important 

Neither 
important 
nor 
unimportant 

Not very 
important 

Unimportant  

Provides a wildlife habitat      

Provides an attractive 
focus for the village 

     

Supports farming & 
fisheries  

     

Supports other business 
sectors 

     

Source of drinking water      

Attracts visitors to the 
village 

     

Other (please specify): 
 

     

Hebden Beck 

7. How would you rate the water quality in Hebden Beck? Please tick.  

 Very good  Good  Average  Poor  Bad  Don’t know  

8. Do you think that the water quality in Hebden Beck should be improved? Please tick.  

 Yes  No  Don’t know 

9. Are you aware of national water quality standards for rivers/streams? Please tick. 

 Yes  No  Don’t know 
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10.  Do you know who has responsibility for assessing the water quality of Hebden Beck? 

Please tick.  

 Yorkshire Water  Environment Agency  National Park 

Authority 

 Craven Council  Other. Please state: 

11.  Have you ever contacted anyone/any organisation with regard to Hebden Beck? 

Please tick. 

 Yes. Please state: 

 No 

Beyond the village 

12.  Are you aware of the lead mines around Hebden and their part in the local history of 

the area? Please tick. 

 Yes – I am aware of the mines and they are an important part of the cultural legacy and 

landscape. 

 Yes – I am aware of the mines and they are an unfortunate legacy that detract from the 

landscape. 

 Yes – I am aware of the mines but don’t know much about them/have not considered them 

before. 

 No – I had not heard about the mines before.  

13. Do you think the mines have had any effect on the water quality of Hebden Beck? 

Please tick one. 

 Yes – but only in the past  Yes – but only now                             Yes – now and in the 

past 

 Not really thought about it before but suppose they do  Yes but only if it 

rains heavily 

 Don’t know                                                                       No 

14. Please tick the box which best corresponds to your opinion for each of the statements 

below.  

 

 
Agree Disagree Don’t 

know 

The mines discolour the water in Hebden Beck    

The moorland above the village discolours the water in Hebden Beck    

The mines discharge heavy metals into Hebden Beck     

Water from the mines only enters Hebden Beck after heavy rainfall    

Farming activities are affected by the mines    
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Improving Hebden Beck 

15. If there was an issue with Hebden Beck (either linked to poor water quality or 

increased flood potential), would you support interventions to improve the situation? Please 

tick all that apply. 

 Yes - if there was a flooding risk  Yes – to improve water quality  No   

Don’t know 

16. If a continuing water quality problem was identified, would you support any of the 

following remediation/treatment interventions? Please tick all that apply. 

   
 Creation of artificial wetlands   Creation of limestone ponds  Use of water treatment 

plant* 

 None of the above –continue as is now  Don’t know  

 
 Other – please state: 

 
*Water treatment plant usually seen at sewage treatment works e.g. settlement tanks, activated sludge etc. 

About you 

17. As the person completing this questionnaire, please indicate your age range and 

gender.  

 18-30  31-43  44-56  57-

69  >70 

 Male  

Female  Other 

18. How many adults and children live in your household? Please write a number. 

Adults (>18 years):  Children (<18 years): 

http://www.chfourenergy.com/call.html
http://www.chfourenergy.com/call.html
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19.  How would you describe the working status of your household? Please tick all that 

apply. 

 Retired  Work in Hebden  Work locally (<10miles)  Commute to work 

(>10 miles) 

 Not working  Student  Other: 

20.  How long has your household lived in Hebden? Please tick one.  

 Less than 5 years  5-10 years  10-20 years  More than 20 years

  Visitor 

Additional Feedback 

Please comment. 

 

 

Thank you for taking the time to complete this questionnaire. We will be collecting completed 

questionnaires on Saturday 2nd July, 10am-12pm. If you would prefer not to be disturbed, please 

leave on your doorstep in the bag provided or take to The Old School Tea Room. 
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Appendix 5. 3. Visitor’s survey 

Perceptions of Hebden Beck 

What is this about? 
We would like to invite you to complete a short questionnaire about Hebden Beck. The questionnaire 
forms part of a PhD project in the School of Geography at the University of Leeds and seeks to 
understand how important the beck is to both the village and those who visit the village. The PhD 
project is looking at a range of catchment-scale water quality and quantity issues, from water 
chemistry to flow data, and we would like to find out what you think about these issues as visitors to 
Hebden. 
Who is involved in this project? 
The research team from the University of Leeds consists of Magaly Valencia (PhD student: 
gymgv@leeds.ac.uk) and her supervisor Dr Rebecca Slack (r.slack@leeds.ac.uk; 0113 343 3373). They 
will be responsible for collecting, analysing, and reporting the results. The project has support from 
the Yorkshire Dales National Park Authority, Environment Agency and Yorkshire Dales Rivers Trust. 
How will the questionnaire be used?The questionnaire should take no more than 10 minutes to 
complete, is completely anonymous and we will not ask for any personal data which will identify you. 
Your responses will remain confidential and once the data from each questionnaire has been extracted 
into a database, each questionnaire will be destroyed. The data will be used to prepare a short 
research report which will be publically available. 
Why is the questionnaire important? 
We can analyse environmental data about the river water e.g. water chemistry, flow, etc., but it is 
equally important to understand how important the river is to people who live in Hebden and who 
visit the village. We want to find out what is important to you as this will help to inform how the beck 
is managed or how matters relating to the beck are better communicated.  
How can you contribute to the success of this project? 
If you are 18 years or over and would like to participate, please do complete the questionnaire. You 
do not have to answer every question and you can withdraw at any time, but we would greatly benefit 
from your full participation. If you do not have the time to complete it now, you can complete it online: 
https://leeds.onlinesurveys.ac.uk/hebdenvisit. The success of this project truly depends on your 
contribution so thank you very much for your time – and interest. If you would like access to the short 
report, please do visit www.wateratleeds.org later this year.  
For more information, please contact us: 

Magaly Valencia Dr Rebecca Slack 
PhD student at University of Leeds  water@leeds Coordinator  
gymgv@leeds.ac.uk 0113 3433373 
 r.slack@leeds.ac.uk 

Please tick here that you are happy to proceed with the questionnaire on the basis of the information 

provided above           ☐ 

 

 

 
 

School of Geography 
University of Leeds 

Leeds LS2 9JT 
0113 343 3373 

http://www.geog.leeds.ac.uk/ 

mailto:gymgv@leeds.ac.uk
mailto:r.slack@leeds.ac.uk
https://leeds.onlinesurveys.ac.uk/hebdenvisit
http://www.wateratleeds.org/
mailto:gymgv@leeds.ac.uk
mailto:r.slack@leeds.ac.uk
http://www.geog.leeds.ac.uk/
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School of Geography 
University of Leeds 

Leeds LS2 9JT 
0113 343 3373 

Hebden Beck and You 

Please take a few minutes to fill out this survey: by completing the survey, you are indicating your 

consent to participate in this research. We welcome your feedback and your answers will be kept 

anonymous and confidential. Thank you for your participation. 

Interview code:    Date/time:   Location: 

Water levels 

1. Have you personally been affected by the flooding of last winter? This might be at home, 

at work, commuting/travelling etc. Please tick. 

 Yes  No  

2. Have recent national flood events made you more aware of rivers? 

 Yes  No  Don’t know 

3. Do you think flooding is generally becoming more frequent? 

 Yes  No  Note sure/Don’t 

know 

 

Hebden village and environs 

4. Why are you visiting Hebden (and/or Hebden environs) today? Please tick. 

 

 
Agree 
strongly 

Agree 
slightly 

Neither 
agree nor 
disagree 

Disagree 
slightly 

Disagree 
strongly 

Ease of access from where I live      

Good walking routes      

Local facilities e.g. pub/tea 
shop 

     

Wildlife and landscape      

Archaeology and history      

Location in the National Park      

Other (please specify): 
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5. Do you think Hebden Beck is important to the village? Please tick. 

 Yes  No  Note sure/Don’t 

know 
 

6. If YES to Q5, why do you think Hebden Beck is important to the village? Please tick. 

 

 
 
 

Hebden Beck 

7. How would you rate the water quality in Hebden Beck? Please tick.  

 Very good  Good  Average  Poor  Bad  Don’t know  

8. Do you think that the water quality in Hebden Beck should be improved? Please tick.  

 Yes  No  Don’t know 

9. Are you aware of national water quality standards for rivers/streams? Please tick. 

 Yes  No  Don’t know 

10.  Do you know who has responsibility for assessing the water quality of Hebden Beck? 

Please tick.  

 Yorkshire Water  Environment Agency  National Park 

Authority 

 Craven Council  Other. Please state: 

 

 

 

 
Extremely 
important 

Very 
important 

Neither 
important 
nor 
unimportant 

Not very 
important 

Unimportant  

Provides a wildlife habitat      

Provides an attractive 
focus for the village 

     

Supports farming & 
fisheries  

     

Supports other business 
sectors 

     

Source of drinking water      

Attracts visitors to the 
village 

     

Other (please specify): 
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Beyond the village 

11.  Are you aware of the lead mines around Hebden and their part in the local history of 

the area? Please tick. 

 Yes – I am aware of the mines and they are an important part of the cultural legacy and 

landscape. 

 Yes – I am aware of the mines and they are an unfortunate legacy that detract from the 

landscape. 

 Yes – I am aware of the mines but don’t know much about them/have not considered them 

before. 

 No – I had not heard about the mines before.  

12. Do you think the mines have had any effect on the water quality of Hebden Beck? 

Please tick one. 

 Yes – but only in the past  Yes – but only now  Yes – now and in 

the past 

 Not really thought about it before but suppose they do  Yes but only if it 

rains heavily 

 Don’t know    No 

13. Please tick the box which best corresponds to your opinion for each of the statements 

below.  

 

 
Agree Disagree 

The mines discolour the water in Hebden Beck   

The moorland above the village discolours the water in Hebden Beck   

The mines discharge heavy metals into Hebden Beck    

Water from the mines only enters Hebden Beck after heavy rainfall   

Farming activities are affected by the mines   
 

14. Do you think that recent flooding events can affect the water quality of Hebden Beck? 

Please tick. 

 Yes  No   Don’t 

know 

Why? 
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Improving Hebden Beck 

15. If there was an issue with Hebden Beck (either linked to poor water quality or 

increased flood potential), would you support any of the following remediation/treatment 

interventions? Please tick all that apply. 

   

 Creation of artificial wetlands   Creation of limestone ponds  Use of water treatment 

plant* 

 None of the above –continue as is now  Don’t know  

 
 Other – please state: 

 
*Water treatment plant usually seen at sewage treatment works e.g. settlement tanks, activated sludge etc. 

About you 

16. As the person completing this questionnaire, please indicate your age range and 

gender. Please tick. 

 18-30  31-43  44-56  57-

69  >70 

 

 Male  

Female  Other 

17. Why are you here today? 

 Work here  Visiting/tourist  Other (please specify): 

18.  Where do you live? Please state first part of postcode or town: 

 

19.  How would you describe your employment status? Pleas tick. 

http://www.chfourenergy.com/call.html
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 Retired  Private sector  Public sector  Self-employed 

 Not working  Student  Other: 

20. How often do you visit Hebden? Please tick. 

 At least once a week  More than once a month  About once a 

month 

 2+ times per year  Annually  First visit 

 

 

Additional Feedback 

Please comment. 

 

 

 

 

 

Thank you for taking the time to complete this survey. 
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Appendix 5. 4. Ethical approval for stakeholder’s survey. 
Research and Innovation Service 
Level 11, Worsley Building 
University of Leeds 
Leeds, LS2 9NL Tel: 0113 343 4873 
Email: ResearchEthics@leeds.ac.uk 

 
 

Magaly Valencia Avellan 
School of Geography  
10.11, Garstang building 
University of Leeds 
Leeds, LS2 9JT 
 

ESSL, Environment and LUBS (AREA) Faculty Research Ethics Committee 
University of Leeds 

 
Dear Magaly 
 
Title of study: Assessing public perceptions of river water quality 

Ethics reference: LTGEOG-028 

 
I am pleased to inform you that the above research application has been reviewed by a representative 
of the ESSL, Environment and LUBS (AREA) Faculty Research Ethics Committee I can confirm a 
favourable ethical opinion as of the date of this letter. The following documentation was considered: 
 

Document    
Versio

n 
Date 

LTGEOG-028 further information.txt 1 
13/09/1

6 

LTGEOG-028 12 09 2016 
LightTouchEthicsForm_MValencia_expertsurvey_AS.doc 

2 
13/09/1

6 

 
Please notify the committee if you intend to make any amendments to the original research as submitted 
at date of this approval, including changes to recruitment methodology. All changes must receive ethical 
approval prior to implementation. The amendment form is available at 
http://ris.leeds.ac.uk/EthicsAmendment.    
 
Please note: You are expected to keep a record of all your approved documentation, as well as 
documents such as sample consent forms, and other documents relating to the study. This should be 
kept in your study file, which should be readily available for audit purposes. You will be given a two 
week notice period if your project is to be audited. There is a checklist listing examples of documents 
to be kept which is available at http://ris.leeds.ac.uk/EthicsAudits.  
 
We welcome feedback on your experience of the ethical review process and suggestions for 
improvement. Please email any comments to ResearchEthics@leeds.ac.uk.  
 
Yours sincerely 
 
Jennifer Blaikie 
Senior Research Ethics Administrator, Research & Innovation Service 
On behalf of Dr Kahryn Hughes, Chair, AREA Faculty Research Ethics Committee  
 
CC: Student’s supervisor(s) 
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Appendix 5. 5. Stakeholder’s survey. 
 

Dear <organisation/institution/company> 
 
I am a PhD student at the School of Geography, University of Leeds and I’m completing a 
project looking at a range of water quality and quantity variables at catchment-scale, from 
water chemistry to flood events. As part of this project, I am looking at opinions to rivers in 
North Yorkshire, particularly focusing on my test catchment of Hebden Beck near Grassington. 
To this end, I have created a number of questionnaires which have been distributed to 
residents of the village of Hebden as well as visitors to the area – the response rate has been 
fantastic! I am also keen to obtain the opinions of people and organisations whose interest in 
the area, or more generally around rivers and the aquatic environment, might be more 
specialised or focused. Hence this email to you. 
 
I would like to invite you to take part in a short online survey: 
https://leeds.onlinesurveys.ac.uk/hebden_stakeholders. The survey, which should take no 
more than 10-15 minutes to complete, asks a range of questions about your and/or your 
organisations interest in and opinion of rivers generally but Hebden Beck more specifically. 
Even if you don’t think you know Hebden Beck very well, your feedback will still be very useful 
to me. Your participation is invaluable for this project; for this reason I hope you can spare a 
few minutes to complete this survey. 
 
The survey can be completed anonymously but if you would be willing to talk in more detail, 
please do leave your contact details at the end of the survey to take part in a short telephone 
interview. Any contact details you provide will not be used for any purpose other than the 
telephone interview and will be stored separately to the interview responses. All data 
collected will be kept confidential and used for research purposes only. It is hoped that a 
research paper will be developed from the outcomes of the survey (combined with responses 
from residents and visitors) but your identity and that of your organisation will be 
anonymised.  
 
I would like to take this opportunity of thanking you for taking part in the survey 
https://leeds.onlinesurveys.ac.uk/hebden_stakeholders and for contributing to my PhD 
studies. If you have any questions, please do not hesitate to contact me. 
 
Kind regards 
 
Magaly Valencia Avellan 
PhD Student 
 
gymgv@leeds.ac.uk   
School of Geography, Garstang building 
http://www.geog.leeds.ac.uk/people/m.valencia  
University of Leeds 
Woodhouse Lane 
LEEDS 
LS2 9JT 
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   School of Geography 

University of Leeds 
Leeds JS2 9JT 

0113 343 3373 
 

Questionnaire 

 

Name of organisation: 

Completed by: 

Date: 

About the organisation you work for and your role 

1) How would you describe your organisation* and its role? 

 

 

* Organisation can be a local authority, a government agency, a limited or public limited company, LLP, sole trader, not for 

profit/third sector etc.  

You are invited to take part in this questionnaire which explores opinions and attitudes to river 

water quality in North Yorkshire. This survey forms part of a PhD project in the School of 

Geography at the University of Leeds.  

 

The PhD project is looking at a range of catchment-scale water quality and quantity issues, from 

water chemistry to flood events. The project has been carried out in a small catchment called 

Hebden Beck (near Grassington). 

 

Participation in this survey is totally voluntary. All data collected will be kept confidential and 

used for research purposes only. There are no right or wrong answers in this questionnaire – we 

only want your opinion. Your name or any identifying characteristics will not be available to 

anyone, other than my supervisor and me, at any point. 

 

Thank you for your participation, if you have any questions you may contact Magaly Valencia 

gymgv@leeds.ac.uk (PhD student) or Dr Rebecca Slack r.slack@leeds.ac.uk (Supervisor). 

 

Please tick here that you are happy to proceed with the questionnaire on the basis of the 

information provided above  ☐ 
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2) Would you describe your organisation as one of the following?  Please, tick all that apply. 

 local 

 regional 

 national 

 global 

 Others, please specify: 

3) What is your role within your organisation? Please describe briefly, including your job title, 

key tasks and/or role objectives as applicable. 

 

 

4) How long have you worked for this organisation? 

 

 

 <1 year   ≥1-<3 years  ≥3-<5 years 

 ≥5-<10 years  ≥10 years  

5) Drawing on your experience in your current role, what do you think are the priority areas for 

the management of rivers and waterways? Please rank the following options: 1 is most 

important, 5 or 6 least important. 

 Protection of water resources.  

 Protection of aquatic ecosystems. 

 Abstraction of water. 

 Improving water quality (surface and groundwater). 

 Fluvial flood management. 

 Other (Please specify): 

 

Opinions of Hebden Beck 

6) Have you heard of the village of Hebden, near Grassington in North Yorkshire, and its river? 

 Yes – go to Q7 

 No – go to Q8 

 

7) If YES to Q6, how important do you think Hebden Beck is to the village of Hebden? 

 Extremely 

important 

Very 

important 

Neither 

important nor 

unimportant 

Not very 

important 

Unimportant 

Provides a wildlife habitat      

Provides an attractive focus for the 

village 

     

Supports farming and fisheries      

Supports other business sectors      

Source of drinking water      

Attracts visitors to the village      
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Other (please specify):      
 

8) Have you ever worked with/on Hebden Beck on issues related to water quality/quantity? 

 

 

Water Quality  

9) Are you familiar with the national water quality standards for rivers/streams?  

 Yes  

 No  

 Don’t know 

10) If YES to Q9, how would you rate the water quality in Hebden Beck? 

 

 Very good  Good  Averag

e 

 Poor  Bad  Don’t know 

 

11) What factors do you think affect the water quality in Hebden Beck? 

 

 

Mining 

12) Are you aware of the historical lead mines around Hebden? Please tick 

 

 Yes – I am aware of the mines and they are an important part of the cultural legacy and 

landscape. 

 Yes – I am aware of the mines and they are an unfortunate legacy that detract from the 

landscape. 

 Yes – I am aware of the mines but don’t know much about them/have not considered them 

before. 

 No - I had no heard about the mines before. 

13) Do you think there is an environmental legacy of the lead mines in the area? If yes, please 

explain why you think this. 

 Yes  

 No  

 Don’t know 

 

14) Do you think the mines have or are influencing the water quality of the river? If yes, please 

explain why you think this. 

 Yes  

 No  

 Don’t know 
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15) Do you think intense rainfall events may alter the influence of mine/mining wastes on the 

water quality of Hebden Beck?  If yes, please explain why you think this. 

 Yes  

 No  

 Don’t know 

 

16) Do you think water quality in Hebden Beck can be improved without detracting from 

landscape/heritage?  

 Yes  

 No  

 Don’t know 
 

17) If YES to Q16, would you support any of the following remediation/treatment 

interventions? Please explain why? 

 Creation of artificial wetlands 

 Creation of limestone ponds 

 Use of water treatment plant* 

 Removal or remediation of spoil heaps? 

 No need (or something similar) 

 Other… 

 

 

*Water treatment plant usually seen at sewage treatment works e.g. settlement tanks, activated sludge, etc. 

 

Improving river management 

18) What aspects of river management should be improved, across England? Please state one 

opportunity, policy intervention or technique. 

 

 

 

19) What can be improved on or around Hebden Beck? Please state one opportunity, policy 

intervention or technique. 
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20) What do you think of public engagement as a mechanism for river management? Please tick 

all that apply. 

 

 Allows different stakeholders to discuss different needs associated with the river to reach a 

consensus decision. 

 Permits open and transparent decisions about the river to be made by appropriate 

organisation. 

 Information can be shared, developed and then integrated into management strategies. 

 Useful to bring river users on-side with difficult decisions. 

 Beneficial to present decisions to river users to reduce later enquiries. 

 A tick-box exercise with limited usefulness. 

 Other reasons, please explain. 

 

21) Are there initiatives related to river management that organisations might be doing/planning 

(irrespective of community engagement) that might be applicable to Hebden Beck? 

 

 

 

Additional Feedback  

Would you like to provide any further comment(s) to the issues addressed in this questionnaire? 

 

 

Is there anyone in your organisation you think we need to speak to about these issues? Please tell 

us who to contact and provide contact details. We are interested in speaking to individuals in 

more detail about their opinions of Hebden Beck in particular. 

 

 

If you would like to have a further discussion about these issues. Please provide your contact 

details to arrange a telephone interview. 
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Appendix 5. 6. Selected questions for statistical descriptive analysis. 

Analysed questions  Alternative answers and ranks 

Have you personally been affected by the flooding of last winter? Yes= 1, No= 2, Don't know/ Not answered= 0 

Do you think water levels in Hebden Beck are increasing generally? Yes= 1, No= 2, Don't know/ Not answered= 0 

 Why do you like/visit Hebden? Residents Visitors 

1. Landscape and wildlife Like strongly= 1 Agree strongly= 1 

2. Community and local facilities Like slightly= 2 Agree slightly= 2 

3. Location in National Park Neither like nor dislike= 3 Neither agree nor disagree= 3 

4. Accessibility to towns/cities Dislike slightly= 4 Disagree slightly= 4 

5. Archaeology and history Dislike strongly= 5 Disagree strongly= 5 

6. Walking and leisure pursuits 

How important is Hebden Beck to the village of Hebden? Extremely important= 1, Very important= 2, Neither important or unimportant= 3, Not 
very important= 4, Unimportant= 5, Don't know/ Not answered= 0 1. Provides a wildlife habitat 

2. Provides an attractive focus for the village 
3. Supports farming & fisheries 
4. Supports other business sectors 
5. Source of drinking water 
6. Attracts visitors to the village 

How would you rate the water quality in Hebden Beck? Very good= 1, Good= 2, Average= 3, Poor= 4, Bad= 5, Don't know/ Not answered= 0 

Do you think that the water quality in Hebden Beck should be improved? Yes= 1, No= 2, Don't know/ Not answered= 0 

Are you aware of national water quality standards for rivers/streams? Yes= 1, No= 2, Don't know/ Not answered= 0 

Are you aware of the lead mines around Hebden and their part in the local 
history of the area? 

Yes-I am aware of the mines and they are an important part of the cultural legacy and 
landscape= 1, 

Yes-I am aware of the mines and they are an unfortunate legacy that detract from the 
landscape= 2, 

Yes-I am aware of the mines but don't know much about them/have not considered 
them before= 3, 

No-I has not heard about the mines before= 4 
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Appendix 5.6 (continued). Selected questions for statistical descriptive analysis. 

Analysed questions Alternative answers and ranks 

Do you think the mines have had any effect on the water quality of 
Hebden Beck? 

Yes-but only in the past= 1 

Yes-but only now= 2 

Yes-now and in the past= 3 

Yes but only if rains heavily= 4 

No really thought about it before but suppose they do= 5 

No= 6 

Don't know/  Not answered= 0 
 

    
 

  

Please select your opinion for each of the following statements: Agree= 1 

1. The mines discolour the water in Hebden Beck Disagree= 2 

2. The moorland above the village discolours the water in Hebden Beck Don't know= 0 

3. The mines discharge heavy metals into Hebden Beck   

4. Water from the mines only enters Hebden Beck after heavy rainfall   

5. Farming activities are affected by the mines   

If a continuing water quality problem was identified, would you support any 
of the following remediation/treatment interventions? 

Creation of artificial wetlands= 1 

Creation of limestone ponds= 2 

Use of water treatment plant= 3 

None of the above-continue as is now= 4 

Don't know= 5 

Other, please state= 6 

Creation of artificial wetlands + Creation of limestone ponds= 7 

Creation of artificial wetlands + Creation of limestone ponds + Use of water treatment 
plant= 8 

As the person completing this questionnaire, please indicate your age 
range: 

Male= 1, Female= 2, Other= 3 

As the person completing this questionnaire, please indicate your gender: 18-30= 1 

31-43= 2 

44-56= 3 

57-69= 4 

>70= 5 
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 Appendix 5.6 (continued). Selected questions for statistical descriptive analysis. 

Analysed questions Alternative answers and ranks 

How would you describe the working status of your household? Residents Visitors 

Reitred= 1 Retired= 1 

Work in Hebden= 2 Private sector= 2 

Work locally (<10 miles)= 3 Public sector= 3 

Commute to work (>10 
miles)= 4 

Self-employed= 4 

Not working= 5 Not working= 5 

Student= 6 Student= 6 

Other= 7 Other= 7 

Time in Hebden Residents Visitors 

How long has your 
household lived in Hebden? 

How often do you visit Hebden? 

Less than 5 years= 1 At least once a week= 1 

5-10 years= 2 More than once a month= 2 

10-20 years= 3 About once a month= 3 

>20 years= 4 2+ times per year= 4 

Visitor= 5 Annually= 5 

  First visit= 6 
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Appendix 5. 7. Outputs from statistical descriptive analysis in SPSS. 
 

Residents  N Mean Std. 
Error 
of 
Mean 

Median Mode Std. 
Deviation 

Variance Skewness Std. Error 
of 
Skewness 

Kurtosis Std. 
Error of 
Kurtosis 

Range Min Max Sum 

Have you personally been 
affected by the flooding of last 
winter? 

61 1.8 0.1 1.80a 2 0.4 0.2 -0.9 0.3 0.5 0.6 2.0 1 3 110 

Do you think water levels in 
Hebden Beck are increasing 
generally? 

61 2.1 0.1 2.17a 2 0.6 0.4 -0.1 0.3 -0.5 0.6 2.0 1 3 131 

How important are the 
following to the village? 

                              

a. Tourists and visitors - 
Relative importance 

61 1.9 0.1 1.69a 1 1.1 1.1 1.8 0.3 3.8 0.6 5.0 1 6 114 

b. Farming and fisheries - 
Relative importance 

61 1.1 0.1 1.13a 1 0.4 0.2 2.8 0.3 7.8 0.6 2.0 1 3 70 

c. Other local businesses - 
Relative importance 

61 1.4 0.1 1.25a 1 0.8 0.7 3.5 0.3 15.4 0.6 5.0 1 6 83 

d. Commuting distance to 
other towns/cities - Relative 
importance 

61 2.0 0.1 1.86a 1 1.0 1.1 1.2 0.3 2.1 0.6 5.0 1 6 122 

e. Varied community structure 
- Relative importance 

61 1.8 0.1 1.56a 1 1.1 1.2 2.1 0.3 5.5 0.6 5.0 1 6 107 

What do you like about 
Hebden? 

 
                            

a. Landscape and wildlife 61 1.0 0.0 .a 1 0.0 0.0   0.3   0.6 0.0 1 1 61 

b. Community and local 
facilities 

61 1.6 0.2 1.39a 1 1.3 1.6 2.9 0.3 7.8 0.6 5.0 1 6 99 

c. Location in National Park 61 1.8 0.2 1.46a 1 1.3 1.6 1.9 0.3 3.2 0.6 5.0 1 6 107 

d. Accessibility to towns/cities 61 2.6 0.2 2.40a 1 1.5 2.2 0.6 0.3 -0.5 0.6 5.0 1 6 158 

e. Archaeology and history 61 1.5 0.1 1.40a 1 0.8 0.7 3.0 0.3 13.7 0.6 5.0 1 6 91 

f. Walking and leisure pursuits 61 1.4 0.1 1.25a 1 1.0 0.9 3.1 0.3 10.6 0.6 5.0 1 6 86 

g. Attractiveness to visitors 61 2.4 0.2 2.04a 1 1.5 2.3 1.1 0.3 0.5 0.6 5.0 1 6 146 
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 Appendix 5.7 (continued). Outputs from statistical descriptive analysis in SPSS. 

 

Residents N Mean Std. 
Error 
of 
Mean 

Median Mode Std. 
Deviation 

Variance Skewness Std. Error 
of 
Skewness 

Kurtosis Std. Error 
of 
Kurtosis 

Range Min Max Sum 

How important is 
Hebden Beck to the 
village of Hebden? 

a. Provides a wildlife 
habitat 

61 1.4 0.1 1.34a 1 0.5 0.3 1.2 0.3 0.5 0.6 2.0 1 3 83 

b. Provides an 
attractive focus for 
the village 

61 1.7 0.1 1.59a 1 1.0 0.9 1.9 0.3 5.7 0.6 5.0 1 6 105 

c. Supports farming & 
fisheries 

61 1.5 0.1 1.43a 1 0.7 0.5 1.4 0.3 1.8 0.6 3.0 1 4 91 

d. Supports other 
business sectors 

61 3.1 0.2 2.94a 3 1.5 2.1 0.4 0.3 -0.5 0.6 5.0 1 6 189 

e. Source of drinking 
water 

61 3.9 0.2 4.23a 5 1.7 2.9 -0.5 0.3 -1.0 0.6 5.0 1 6 235 

f. Attracts visitors to 
the village 

61 2.5 0.2 2.36a 2 1.2 1.6 0.8 0.3 0.6 0.6 5.0 1 6 152 

How would you rate 
the water quality in 
Hebden Beck? 

61 3.0 0.2 2.50a 2 1.8 3.4 0.7 0.3 -0.9 0.6 5.0 1 6 183 

Do you think that the 
water quality in 
Hebden Beck should 
be improved? 

61 2.3 0.1 2.40a 3 0.7 0.5 -0.6 0.3 -0.8 0.6 2.0 1 3 143 

Are you aware of 
national water quality 
standards for 
rivers/streams? 

61 1.6 0.1 1.52a 1 0.7 0.5 0.8 0.3 -0.5 0.6 2.0 1 3 96 

Are you aware of the 
lead mines around 
Hebden and their part 
in the local history of 
the area? 

61 1.1 0.1 1.09a 1 0.5 0.3 3.3 0.3 9.7 0.6 2.0 1 3 70 
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Appendix 5.7 (continued). Outputs from statistical descriptive analysis in SPSS. 

 

Residents N Mean Std. 
Error 

of 
Mean 

Median Mode Std. 
Deviation 

Variance Skewness Std. Error 
of 

Skewness 

Kurtosis Std. Error 
of 

Kurtosis 

Range Min Max Sum 

Do you think the 
mines have had any 
effect on the water 
quality of Hebden 
Beck? 

61 3.5 0.3 3.09a 3 2.2 4.7 0.5 0.3 -1.1 0.6 6.0 1 7 212 

Please tick the box 
which best 
corresponds to your 
opinion for each of 
the statements below. 

                              

a. The mines 
discolour the water in 
Hebden Beck 

61 2.2 0.1 2.27a 2 0.6 0.4 -0.2 0.3 -0.5 0.6 2.0 1 3 137 

b. The moorland 
above the village 
discolours the water 
in Hebden Beck 

61 1.5 0.1 1.40a 1 0.8 0.6 1.1 0.3 -0.4 0.6 2.0 1 3 92 

c. The mines 
discharge heavy 
metals into Hebden 
Beck 

61 2.3 0.1 2.40a 3 0.8 0.7 -0.6 0.3 -1.2 0.6 2.0 1 3 141 

d. Water from the 
mines only enters 
Hebden Beck after 
heavy rainfall 

61 2.2 0.1 2.27a 3 0.8 0.7 -0.4 0.3 -1.5 0.6 2.0 1 3 134 

e. Farming activities 
are affected by the 
mines 

61 2.2 0.1 2.26a 2 0.7 0.5 -0.4 0.3 -1.0 0.6 2.0 1 3 135 
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Appendix 5.7 (continued). Outputs from statistical descriptive analysis in SPSS. 

 

Residents N Mean Std. 
Error 

of 
Mean 

Median Mode Std. 
Deviation 

Variance Skewness Std. Error 
of 

Skewness 

Kurtosis Std. Error 
of 

Kurtosis 

Range Min Max Sum 

As the person 
completing this 
questionnaire, please 
indicate your age 
range: 

61 3.8 0.1 3.84a 3 1.1 1.3 -0.4 0.3 0.2 0.6 5.0 1 6 233 

As the person 
completing this 
questionnaire, please 
indicate your gender: 

61 1.8 0.1 1.74a 1 0.8 0.6 0.4 0.3 -1.3 0.6 2.0 1 3 110 

How would you 
describe the working 
status of your 
household? 

61 2.1 0.2 1.73a 1 1.6 2.6 1.9 0.3 3.3 0.6 6.0 1 7 131 

How long has your 
household lived in 
Hebden? 

61 3.0 0.1 3.26a 4 1.1 1.3 -0.7 0.3 -1.0 0.6 3.0 1 4 184 

Visitors  N Mean Std. 
Error 
of 
Mean 

Median Mode Std. 
Deviation 

Variance Skewness Std. Error 
of 
Skewness 

Kurtosis Std. Error 
of 
Kurtosis 

Range Min Max Sum 

Have you personally 
been affected by the 
flooding of last 
winter? 

55 1.8 0.1 1.76a 2 0.4 0.2 -1.3 0.3 -0.4 0.6 1.0 1 2 97 

Do you think flooding 
is generally becoming 
more frequent? 

55 1.2 0.1 1.12a 1 0.5 0.3 3.1 0.3 8.6 0.6 2.0 1 3 64 

4. Why are you 
visiting Hebden 
(and/or Hebden 
environs) today? 

                              

a. Ease of access 
from where I live 

55 2.5 0.2 2.22a 1 1.5 2.3 1.0 0.3 0.2 0.6 5.0 1 6 138 

b. Good walking 
routes 

55 1.5 0.1 1.23a 1 1.1 1.2 3.0 0.3 9.3 0.6 5.0 1 6 80 
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Appendix 5.7 (continued). Outputs from statistical descriptive analysis in SPSS. 

 

Visitors N Mean Std. 
Error 

of 
Mean 

Median Mode Std. 
Deviation 

Variance Skewness Std. Error 
of 

Skewness 

Kurtosis Std. Error 
of 

Kurtosis 

Range Min Max Sum 

4.3.a. Local facilities 
e.g. pub/tea shop 

55 2.2 0.2 2.03a 1d 1.3 1.7 1.4 0.3 2.2 0.6 5.0 1 6 123 

c. Wildlife and 
landscape 

55 1.8 0.2 1.53a 1 1.2 1.5 1.8 0.3 3.5 0.6 5.0 1 6 98 

d. Archaeology and 
history 

55 2.7 0.2 2.55a 3 1.2 1.5 1.2 0.3 2.4 0.6 5.0 1 6 146 

e. Location in the 
National Park 

55 2.7 0.2 2.50a 3 1.5 2.1 1.2 0.3 0.9 0.6 5.0 1 6 150 

Do you think Hebden 
Beck is important to 
the village? 

55 1.3 0.1 1.16a 1 0.6 0.4 2.3 0.3 3.6 0.6 2.0 1 3 69 

Why do you think 
Hebden Beck is 
important to the 
village of Hebden? 

                              

a. Provides a wildlife 
habitat 

55 1.9 0.2 1.40a 1 1.6 2.7 2.0 0.3 2.7 0.6 5.0 1 6 102 

b. Provides an 
attractive focus for 
the village 

55 2.0 0.2 1.57a 1 1.5 2.4 2.0 0.3 2.8 0.6 5.0 1 6 108 

c. Supports farming & 
fisheries 

55 2.3 0.2 1.79a 2 1.7 2.8 1.6 0.3 1.2 0.6 5.0 1 6 125 

d. Supports other 
business sectors 

55 2.7 0.2 2.27a 2 1.7 2.8 1.1 0.3 0.0 0.6 5.0 1 6 147 

e. Source of drinking 
water 

55 3.3 0.2 3.08a 3 1.6 2.6 0.5 0.3 -0.8 0.6 5.0 1 6 184 

f. Attracts visitors to 
the village 

55 2.0 0.2 1.50a 1 1.6 2.6 1.8 0.3 2.0 0.6 5.0 1 6 108 

How would you rate 
the water quality in 
Hebden Beck? 

55 2.7 0.2 2.24a 2 1.7 3.0 1.0 0.3 -0.3 0.6 5.0 1 6 150 
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Appendix 5.7 (continued). Outputs from statistical descriptive analysis in SPSS. 

 

Visitors N Mean Std. 
Error 

of 
Mean 

Median Mode Std. 
Deviation 

Variance Skewness Std. Error 
of 

Skewness 

Kurtosis Std. Error 
of 

Kurtosis 

Range Min Max Sum 

Do you think that the 
water quality in 
Hebden Beck should 
be improved? 

55 2.1 0.1 2.21a 3 0.8 0.7 -0.3 0.3 -1.6 0.6 2.0 1 3 118 

Are you aware of 
national water quality 
standards for 
rivers/streams? 

55 1.7 0.1 1.65a 2 0.7 0.4 0.4 0.3 -0.7 0.6 2.0 1 3 93 

Are you aware of the 
lead mines around 
Hebden and their part 
in the local history of 
the area? 

55 2.3 0.2 2.47a 1 1.4 2.1 0.3 0.3 -1.9 0.6 3.0 1 4 126 

Do you think the 
mines have had any 
effect on the water 
quality of Hebden 
Beck? 

55 3.6 0.3 3.37a 3 2.1 4.5 0.3 0.3 -1.1 0.6 6.0 1 7 198 

Please tick the box 
which best 
corresponds to your 
opinion for each of 
the statements below. 

                              

a. The mines 
discolour the water in 
Hebden Beck 

55 2.3 0.1 2.36a 3 0.8 0.7 -0.6 0.3 -1.3 0.6 2.0 1 3 125 

b. The moorland 
above the village 
discolours the water 
in Hebden Beck 

55 1.4 0.1 1.28a 1 0.7 0.5 1.6 0.3 0.9 0.6 2.0 1 3 76 

c. The mines 
discharge heavy 
metals into Hebden 
Beck 

55 2.2 0.1 2.25a 3 0.9 0.8 -0.3 0.3 -1.8 0.6 2.0 1 3 119 
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Appendix 5.7 (continued). Outputs from statistical descriptive analysis in SPSS. 

 

Visitors N Mean Std. 
Error 

of 
Mean 

Median Mode Std. 
Deviation 

Variance Skewness Std. Error 
of 

Skewness 

Kurtosis Std. Error 
of 

Kurtosis 

Range Min Max Sum 

d. Water from the 
mines only enters 
Hebden Beck after 
heavy rainfall 

55 2.2 0.1 2.26a 3 1.0 0.9 -0.3 0.3 -1.9 0.6 2.0 1 3 119 

e. Farming activities 
are affected by the 
mines 

55 2.2 0.1 2.33a 3 0.9 0.8 -0.5 0.3 -1.6 0.6 2.0 1 3 123 

Do you think that 
recent flooding events 
can affect the water 
quality of Hebden 
Beck? 

55 1.3 0.1 1.17a 1 0.7 0.5 2.2 0.3 2.9 0.6 2.0 1 3 70 

As the person 
completing this 
questionnaire, please 
indicate your age 
range: 

55 3.7 0.2 3.84a 5 1.1 1.3 -0.7 0.3 0.0 0.6 4.0 1 5 206 

As the person 
completing this 
questionnaire, please 
indicate your gender: 

55 1.6 0.1 1.53a 1 0.6 0.4 0.7 0.3 -0.5 0.6 2.0 1 3 86 

How would you 
describe the working 
status of your 
household? 

55 2.0 0.2 1.68a 1 1.5 2.2 2.2 0.3 5.0 0.6 6.0 1 7 111 

How often do you visit 
Hebden? 

55 4.1 0.2 4.22a 4 1.4 2.0 -0.6 0.3 0.4 0.6 6.0 1 7 227 
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Appendix 5.7 (continued). Outputs from statistical descriptive analysis in SPSS. 

 

Stakeholders N Mean Std. 
Error 

of 
Mean 

Median Mode Std. 
Deviation 

Variance Skewness Std. Error 
of 

Skewness 

Kurtosis Std. Error 
of 

Kurtosis 

Range Min Max Sum 

How important do you 
think Hebden Beck is 
to the village of 
Hebden? 

                              

a. Provides a wildlife 
habitat 

5 1.8 0.2 1.80a 2 0.4 0.2 -2.2 0.9 5.0 2.0 1 1 2 9 

b. Provides an 
attractive focus for 
the village 

5 1.8 0.2 1.80a 2 0.4 0.2 -2.2 0.9 5.0 2.0 1 1 2 9 

c. Supports farming & 
fisheries 

5 1.8 0.2 1.80a 2 0.4 0.2 -2.2 0.9 5.0 2.0 1 1 2 9 

d. Supports other 
business sectors 

5 3.4 0.7 3.00a 3 1.5 2.3 1.7 0.9 3.7 2.0 4 2 6 17 

e. Source of drinking 
water 

5 4.0 0.6 4.00a 3 1.4 2.0 0.9 0.9 -1.8 2.0 3 3 6 20 

f. Attracts visitors to 
the village 

5 1.8 0.2 1.80a 2 0.4 0.2 -2.2 0.9 5.0 2.0 1 1 2 9 

Are you familiar with 
the national water 
quality standards for 
rivers/streams? 

5 1.2 0.2 1.20a 1 0.4 0.2 2.2 0.9 5.0 2.0 1 1 2 6 

How would you rate 
the water quality in 
Hebden Beck? 

5 5.6 0.2 5.6000a 6 0.5 0.3 -0.6 0.9 -3.3 2.0 1.0 5.0 6.0 28.0 

Are you aware of the 
historical lead mines 
around Hebden? 

5 1.4 0.4 1.40a 1 0.9 0.8 2.2 0.9 5.0 2.0 2 1 3 7 

Do you think there is 
an environmental 
legacy of the lead 
mines in the area? 

5 1.0 0.0 .a 1 0.0 0.0   0.9   2.0 0 1 1 5 
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Appendix 5.7 (continued). Outputs from statistical descriptive analysis in SPSS. 

 

Stakeholders N Mean Std. 
Error 

of 
Mean 

Median Mode Std. 
Deviation 

Variance Skewness Std. Error 
of 

Skewness 

Kurtosis Std. Error 
of 

Kurtosis 

Range Min Max Sum 

Do you think the 
mines have or are 
influencing the water 
quality of the river? 

5 1.4 0.4 1.40a 1 0.9 0.8 2.2 0.9 5.0 2.0 2 1 3 7 

Do you think intense 
rainfall events may 
alter the influence of 
mine/mining wastes 
on the water quality of 
Hebden Beck? 

5 1.4 0.4 1.40a 1 0.9 0.8 2.2 0.9 5.0 2.0 2 1 3 7 

Do you think water 
quality in Hebden 
Beck can be 
improved without 
detracting from 
landscape/heritage? 

5 1.8 0.5 1.8000a 1.00 1.1 1.200 0.6 0.9 -3.3 2.0 2.0 1.0 3.0 9.0 

a. Calculated from grouped data. 
d. Multiple modes exist. The smallest value is shown. 
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Appendix 5. 8. Perceptions from residents and visitors about the Hebden’s main attractions. 
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Appendix 5. 9. Perceptions from residents and visitors about the Hebden’s main attractions. 
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Appendix 5. 10. Interview transcript 

 
Duration: 00:40:00 
Date: 29/07/2016 

Interviewer: Thank you for taking time to talk to us today. 

Respondent:   It’s fine. 

Interviewer:  If any of my questions are unclear, please let me know. 

Interviewer: How long have you live in the village [Hebden] roughly?  

Respondent: I live just outside the village of Hebden Gill which is half a mile to the north and the 
family have been there about 300 years. But I’ve live here full time since 1967. 

Interviewer:  So, it is a considerable time. 

Respondent: I'm almost local, yes. 

Interviewer: So are you interested as well in the mining history? 

Respondent: Yes, very much so. 

Interviewer: Have you always had that interest?  

Respondent: Yes, I think because my family, if you go way back, were farmer miners. They 
combined farming with mining, and I’m most into writing as my main occupation, 
writing and publishing and hence a strong interest in mining in particular in this 
valley and on Grassington Moor which is closely related. 

Interviewer: Okay, so you know a great deal about the history of mining. 

Respondent: Yes, a reasonable amount, I do. 

Interviewer: So we were a bit confused over the two mines, you know the Yarnbury or Beaver, 
(someone else told us it is call Beaver) and then there is Grassington and then is 
Hebden. 

Interviewer: So where Hebden mines are? 

Respondent: Hebden mines are virtually alongside the beck, about three quarter of miles of the 
valley.  

Interviewer: Okay, right so it is around Bolton Gill?  

Respondent: Yes indeed, Bolton Gill was the heart of the Hebden mines. 

Interviewer: OK. 

Interviewer: Then beyond that you come into the Grassington fields which is far longer 
established, going way back to the early 1600, while Hebden was the 1850 towards 
the end of lead mine. It was a lead vein. Very profitable. Most of these villages in 
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particular the main street was re-built from the proceeds of lead mining of Hebden 
mines 

Interviewer: Oh ok, so from the 1850 onwards? 

Respondent: Yes, they only had a short live of about 10 years. 

Interviewer: Oh ok… 

Respondent: So it was not so much mining in getting everything out, take the profits and 
suddenly fails, because lead was the most unpredictable industry in terms of 
extracting it. 

Interviewer: Yes you have to find the right vein, haven't you? 

Respondent: Yes, it’s luck, it's luck. 

Interviewer: Have you went into them [mines], how is it?  

Respondent: Yes, it’s dark, dank, and gloomy. 

Interviewer: Has it changed since then? Has it changed considerably, I mean is it safer? 

Respondent: Not a lot. They were ruins then, there has been gradually declined in recently years. 
The other side of the coin it has been quite a lot of restoration, particularly on 
Grassington Moor where there is now a good visitor trail. In Hebden, this year has 
been some restoration of the buildings.  

Interviewer: Ok, is that to make them safe? 

Respondent: Yes, indeed to conserve them. Conservation that is all, which is good.  

Interviewer: Did you say you were here in the 60s. So, they did re-processing of the Grassington 
spoils? 

Respondent: They did, yes. 

Interviewer: Did they built some extra buildings. 

Respondent: Yes they built extra buildings, they took mains of electricity out there which in fact 
brought electricity to the outline farms on its way.  That might have been the case 
but did cause some severe pollution problems to the extent that one year, the 
processing facilities broke down and all the fish in the beck were poisoned, well 
over a thousand of them, it was amazing. We've no idea there were some many 
trout. 

Interviewer: So there are many trout in the river now? 

Respondent: Yes, but you never see them. You can see them in a deep pool if you look down, 
but that [event] was a revelation as to just how many were in this beck and they 
had a significant size of about 30 cm. 

Respondent:  Well, I suspect you know all about the history of lead as a pollutant and it being 
very long term. Indeed there was deaths of cattle once at that stage in the 1950. I 
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think that again it was related to the re-processing of the mining slag heaps, stirring 
up the pollution of it. 

Interviewer: OK  

Respondent:  It is interesting if you walk up the valley you will see slag heaps, spoils heaps. The 
last work was 30 years ago and not a blade of graze has grown on them yet. 

Interviewer:  Yes 

Respondent:  That is very noticeable. Lead is very serious. 

Respondent:  Going back to the 19th century lead is a very slow poison, proved by the death of 
people on the Franklin expedition to the North West Passage which is got down to 
lead poisoning in the food. I always feel that using lead for all the plumbing and 
pipes, in the village must made us rather a peculiar lot, probably it did. 

Interviewer:  But it was not just in the village with the lead pipes, it was wholesale in Victorian 
properties. 

Respondent:  We have a big local use of lead pipes, lead was also invaluable for roofing. 

Interviewer:  All the local lead probably still on the rooves. 

Respondent:  Yeah. 

Interviewer:  So, given what you just said about the reprocessing took place, do you think there 
is an environmental legacy of the mines even today? 

Respondent:  I don’t think so. I think it has settled down, probably not you want me to tell you… 

Interviewer:  No, no. It's your opinion, that it’s what we want. 

Respondent:  It has settled down, that is on the core, I mean coming into Hebden beck is Duke's 
level, which was the master [drain] for all the Grassington mines and that it's what 
is bringing in a certain amount of lead in it but when there was a severe drought 
was about in 1976 the water authorities were quite happy as temporary measure 
to take water from Duke’s level. 

 Interviewer:  Oh really, for drinking water? 

Respondent:  Yes. You still can see a big blue pipe near the level actually near the entrance of 
the level if you look closely which did they said the crisis there were a very severe 
drought. It helped a lot, they wouldn’t have done that if they still had been 
considered a remote risk or so diluted that where no risk at all. 

Interviewer:  Is there a Lanshaw adit, reservoir? 

Respondent:  Yes, there is Lanshaw level is going into a small reservoir. The history of it again it 
was considered good water it was taken over to a Grassington Sanatorium 
considered a TB hospital (associated with treatment of tuberculosis) between 
Hebden and Grassington where the purity of the water must has been considered 
essential. 
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Interviewer: Right, do you know if that is still in use? 

Interviewer:  No, it’s no used now. 

Respondent:  All the water around here now comes from a great circuit from Grimwith Reservoir 
(biggest reservoir) between here and Pateley Bridge. 

Interviewer:  It [Grimwith Reservoir] was quite low actually. 

Respondent:  The water authority will probably say that it [Grimwith Reservoir] is expected to be 
low. 

Interviewer:  Maybe it is the lowest time of year. Apart from the mines do you think there are 
other major causes of pollution to the river, other than the mines? Maybe farming 
activities? 

Interviewer:  Yes, well excess of uses of nitrates by farming today the usual allegation should I 
say.  But they can be a certain amount runoff from farms including pasture lands 
particularly at the bottom of the valley, bottom of Hebden Gill close to the village 
but in what extent this is a problem I need an expert knowledge which I don't have. 

Interviewer:  Well you have live here and you have seen it over the years? 

 Respondent:  Oh yeah, […], you see all this cycle from the traditional hay meadow, when I was 
a young boy the field were full of the most wonderful flowers but then farmers had 
to be paid to improve them and now they are paid to make them tripled their sizes 
[but also] to conserve them, so the wheel has come full circle. At an initial cost with 
the use of nitrates and so on, but in a way that I suspect that has declined because 
we are now in an environmental sensitive area with all the restrictions that are up 
to now applied, I say up to now because of Brexit (we don't know what is next…) 

Interviewer:  Have you notice a difference of the observable quality of the water, over the years... 

Respondent:  No I can’t say over the years. But I have noticed how the colour of it has changed, 
but that is down particularly after a dry period when certainly get rain and the water 
coming out from moor which are peat so the water simply goes brown because of 
that.  

Another controversial one has been gripping as we call it and that is draining of the 
moors for improving for shooting. Again that have come full circle, because in some 
cases there are now grants to eliminate the gripping, so do go around in circles. 
But certainly that creates more rapid runoff and that is way in my youth the moor 
were as a sponge they absorbed the water in a way they now don't, it comes down 
much more quickly hence the beck has gone down by the time you get here from 
Leeds in some cases. 

Interviewer:  Yes we have noticed that it is incredible responsive, it really is… 

Interviewer:  Flooding as well have you noticed an increase in water heights quantity? 

Respondent:  Yes, yes we do. I mean it is all connected, climate change what extent it is there 
or is not but certainly we are more prone to flash flood that it used to be the case 
we are tend to be getting one about every couple of years now. 

Interviewer:  Ok, but it is in the same place along the beck or is in different places? 
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Respondent:   No it is interesting. They can be extremely local storms. As I said we live half a mile 
from here and you hear the beck when there is an extreme flood. We were mystified 
about 18 months ago when there was an extreme flood where we did not have a 
drop of rain, that was because of the flush from a thunderstorm further up the 
valley. Actually quite enough to cause a ground disturbance. Because if you go 
north from here you have one [hill]side which in my language is 200 or 300 feet 
high and therefore storms can […] against it with spectacular results. 

Then we had normal flow due to moor side spread, certain rainfall that all [running 
off], it is called the valley problem. For example, certainly it is not confined to the 
Calder valley, it just suffers because it is so narrow. 

Interviewer:  So you are getting this massive events, storm events. 

Respondent:  Yes, but nothing to cause damage to buildings and properties in Hebden. Which I 
think the wise builders of those days due to build where they were not at risk 
basically. 

Interviewer:  It seems that they are sensible located, that is reassuring. 

Respondent:   Referring to your questionnaire (no quoting exactly).What influence has the beck 
on the village or how much it is appreciated? Probably rather it is taken for granted 
these days. It is there, attracts the visitors because it is attractive further up. But 
not hugely important in the sense that it used to be if you go a way back in history 
to power water wheels and all that sort of things. 

Interviewer:  and for drinking water extraction? 

Respondent:   Well I presumed so I have never be able to establish that. I just suspect that people 
knowing that lead mining has been going on for 400 years they would not drink 
from the beck. Since certainly in this village there are counts of water laboratories 
been bucketed from the spring across so they are aware not to drink it. Because 
they will be right enough to know some suddenly illness could be related to water. 

Interviewer:  Well, lead has long been recognised as a poison. 

Respondent:   Yes indeed, time was in the 19th century that they got very sensitive for water 
borne illnesses like typhoid and so on they were gradually careful with what they 
did. 

Interviewer:  So now I will ask you some questions as well about the existing management of 
the river, you have mentioned that you have spoken with the EA? 

Respondent:  Yeah, informally when I have seeing them doing the monitoring. 

Interviewer:  Are there any other agency, individuals, or companies that have you spoken about 
water related issues? 

Respondent:   No, the water that is measured by the water authority rather than EA that rated flow 
but that will be related to safeguard angling interests further down, I just don't know 
as a general package but I don't have contact with them. Well, I think in a regular 
basis the EA comes to check pollution levels but that it is about it, otherwise the 
water just flows. 
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Interviewer:  Do you think people in Hebden are aware that the Environment Agency comes and 
does this monitoring? 

Respondent:  I think people are aware of everything [the EA is doing]. But providing it [the 
monitoring and assessment] doesn’t mean that you are involving them [residents] 
directly, well they [residents] would say, it’s happening, it’s not to do with us. 

Interviewer:  I just wonder whether if you would be more interested to know more about their 
results? 

Respondent:  Yeah, I would be [interested in the EA findings]. Because now it [the EA data, has] 
just disappeared into a black hole as far I’m concerned. It will be nice to have a 
summary about what they are finding and why they are doing it. As similar with the 
parish council, presenting something not in a weekly or monthly basis just once a 
year about what they are finding and how trends are changing. That it will be very 
good. 

Interviewer:  Thanks this it is what we want to find, what people do want to know... 

Respondent:  Yeah, I don't think the Environment Agency is deliberately being secretive. They 
are just getting on with their job but not considering that what they are doing will 
have a local interest. 

Interviewer:  Here is where the university could help. 

Respondent: Yes, I’m sure it can. 

Interviewer:  So did you mention the parish council and possible sending information to them, is 
there any another mechanisms that we could maybe engage with the community? 

Respondent:  I’m biased I should say. Because I’m an active member of the Parish council, I 
should say that in fairness to give you a general picture. The parish council does 
really distribute information to the village, there is an annual newsletter on 
everything that is happening in the village, which try to be fairly up to date, and get 
it to people by modern means or traditional means. They have an annual meeting 
with everybody living in the village. Parish council is really the avenue to receive 
information. They can receive it electronically so that would be good if it can be 
done. 

Interviewer:  So this annual meeting involving all the village, is it well attended? 

Respondent:   Well about 15% of the residents. 

Interviewer:  How many people are real residents?   

Respondent:  Well, about 250 residents. Hebden has better percent [of residents] than other 
villages. We are still a working farming community, which is good. But we cannot 
do nothing about secondary homes, it is part of 20th century development. But as 
community Hebden Beck is still here. 

Interviewer:  With your interest in the mines have you find a lot of interest from the local people?  

Respondent:  Yes, local people from Grassington, they were fascinated by the mining characters 
because is something unusual with lead mining been confined to relatively few 
areas in the country. 

Interviewer:  So the lead mines are the reason because Hebden is here?  
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Respondent:  No, most of the villages that have lead mining, farming came first for a 1000 years, 
there are still farmers in the village that have been farming 400 years ago. To find 
mine villages you have to head west up to the hill to Greenhow on the top between 
here and Pateley Bridge.  

Respondent:   Hebden is a farming village that did briefly mining and benefited from it. 

Interviewer:  How would you feel about some management solutions involving doing something 
with the spoils? 

Respondent:  My opinion might be different to that advising about ancient monument. But it is a 
matter of how archaeology it is perceived as a matter of health risk.  

Interviewer:  But do you thing the spoil heaps are important to the area? 

Respondent:  No, but I think some of the buildings are historical hugely important (e.g. Bolton Gill 
level, Duke’s level).  But spoil heaps are heaps to spoil.  

Interviewer:  Thank you so much for your time and important inputs to this research. 

 

 

 



244 

 

References of Appendices 

JARVIE, H.P., NEAL, C., LEACH, D.V., RYLAND, G.P., HOUSE, W.A. and 
ROBSON, A.J. 1997. Major ion concentrations and the inorganic carbon 
chemistry of the Humber rivers. Science of the Total Environment. 194, 
pp.285-302. 

LOFTS, S. and TIPPING, E. 2011. Assessing WHAM/Model VII against field 
measurements of free metal ion concentrations: model performance and 
the role of uncertainty in parameters and inputs. Environmental Chemistry. 
8(5), pp.501-516. 

TIPPING, E. 2005. Modelling Al competition for heavy metal binding by dissolved 
organic matter in soil and surface waters of acid and neutral pH. 
Geoderma. 127(3), pp.293-304. 

TIPPING, E., VINCENT, C.D., LAWLOR, A.J. and LOFTS, S. 2008. Metal 
accumulation by stream bryophytes, related to chemical speciation. 
Environmental Pollution. 156(3), pp.936-943. 

TRANVIK, L.J. and JANSSON, M. 2002. Climate change (Communication 
arising): Terrestrial export of organic carbon. Nature. 415(6874), pp.861-
862. 

VALENCIA-AVELLAN, M., SLACK, R., STOCKDALE, A. and MORTIMER, 
R.J.G. 2017. Understanding the mobilisation of metal pollution associated 
with historical mining in a carboniferous upland catchment. Environmental 
Science: Processes & Impacts. 19(8), pp.1061-1074. 

VALENCIA-AVELLAN, M., SLACK, R., STOCKDALE, A. and MORTIMER, 
R.J.G. 2018. Evaluating water quality and ecotoxicology assessment 
techniques using data from a lead and zinc effected upland limestone 
catchment. Water Research. 128(Supplement C), pp.49-60. 

 

 

 

 

 

 

 

 

 

 

 

 

 


