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Abstract 

This thesis argues that while simplifications are a necessary part of the modelling 

process, there is a lack of empirical research to identify which types of variability 

should be included in our models, and how they should be represented.  This 

research aims to develop methodologies to undertake empirical analyses of 

variability on the road network, focusing specifically on traveller behaviour.  This is 

particularly timely given the emergence of rich new data sources. 

Firstly, a method is proposed for examining predictable differences in daily link flow 

profiles by considering both magnitude and timing.  Unlike previous methods, this 

approach can test for statistically significant differences whilst also comparing the 

shapes of the profiles, by applying Functional Linear Models to transportation data 

for the first time.   

Secondly, a flexible, data-driven method is proposed for classifying road users 

based on their trip frequency and spatial and temporal intrapersonal variability.  

Previous research has proposed methodologies for identifying public transport user 

classes based on repeated trip behaviour, but equivalent methods for data from the 

road network did not exist.  As there was not an established data source to use, 

this research examines the feasibility of using Bluetooth data.  Spatial variability is 

examined using Sequence Alignment which has not previously been applied to 

Bluetooth data from road networks, nor for spatial intrapersonal variability.  The 

time of day variability analysis adapts a technique from smart card research so that 

all observations are classified into travel patterns and, therefore, systematic and 

random variability can be measured.  

These network- and traveller-focused analyses are then brought together using a 

framework which uses them concurrently and interactively to gain additional 

insights into traveller behaviour.  For each of the methods proposed, an application 

to at least one year of real world data is presented. 
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1 Introduction 

1.1 Context 

Aggregate-level transport models seek to provide a representation of a transport 

network which can replicate interactions between traveller choices and congestion 

on the network so that traffic conditions on unmonitored links or under different 

forecasting scenarios can be estimated (Sheffi, 1985).  Any mathematical model is 

a simplified representation of reality (Bender, 1978); for example, ignoring the 

different free flow speeds of different road users is described by Beckmann et al. 

(1956, p47) asa“convenientfiction”.Network models abound with convenient 

fictions, although many are not explicitly discussed. Many of these relate to 

variability.  As in the example from Beckmann et al. (1956), early transport network 

models often used the convenient fiction that all travellers and all days were 

identical,oratleastthattherewassufficient“within-periodstationarity”(Cascetta, 

2009, p10) that any variability in transport characteristics in the modelled period 

wouldbenegligible.Forexample,whenreferringtoWardrop’sUserEquilibrium

(Wardrop, 1952), Daganzo and Sheffi (1977, p254) statethat“implicitintheU-E 

criterionisthatmotoristsareidenticalandinfallibleindividuals”.Dial (1971, p85) 

states that to overcome the shortcomings of modelling approaches, transport 

plannersare“highlyskilledattakingthecomputerizedmodel’soutputwithan

appropriate grain of salt and adjustingitsfigureswithhispencil”.Suchan

approach is not robust or replicable, however, and is unlikely to adequately reflect 

the impact of uncertainty in a non-linear system. 

Models have, therefore, been developed which progressed from assumptions of 

homogeneity by substituting random variables with standard statistical distributions 

for single values in the model.  For example, Stochastic User Equilibrium was 
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developedforprobabilistictrafficassignment,wheretravellers’perceivedtravel

times are random variables with a given distribution and traveller choices are based 

on random utility theory (Daganzo and Sheffi, 1977).  Alternative ways have been 

proposed to introduce heterogeneity into different aspects of assignment models, 

including using multiple road user classes to represent different traveller 

characteristics, and varying demand by the time of day.  

Assumptions regarding stationarity or homogeneity are made on multiple levels and 

in multiple dimensions of network models, and are not always obvious.  

Intrapersonal variability, the variability in an individual’sbehaviourfromdaytoday,

is usually disregarded in equilibrium models.  Such static models are based on 

simplified representations of utility maximisation in trip choices and therefore it is 

irrelevant whether it is the same individuals who are travelling, or different travellers 

making the same choices.  This is consistent with the observation of Ortúzar and 

Willumsen (2011, p2),thatmodelsare“viewpointspecific”,andinthiscasethe

repeated behaviour of individual travellers is not the focus of the model.  Research 

which explored traffic conditions when networks were not at equilibrium, however, 

used the adaptive behaviour of individual travellers to justify the day-to-day 

dynamics in network performance.  While some research implicitly suggested that 

the same people were making the same trip each day with potential route 

switching, for example Smith (1979), Horowitz (1984) make the explicit assumption 

that it is the same people travelling in the same time period on each day.  Much of 

the data collection relating to day-to-day dynamics implicitly strengthened this 

assumption as it involved laboratory-style research where participants were asked 

tomakehypotheticalrouteordeparturetimechoicesonaseriesof‘days’,for

example Mahmassani et al. (1986), Iida et al. (1992) and Bogers et al. (2007).  

More complex information sharing models have been proposed more recently, 

involving sharing between individuals (Xiao and Lo, 2016, Shang et al., 2016) or 
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through automated information systems (Ben-Elia and Shiftan, 2010, Li et al., 

2017).  Such mechanisms do not require the assumption that the same people are 

travelling each day in order to be credible.  Models have not yet been developed, 

however, which include alternative assumptions, for example that a subset of 

travellers only travel on a fixed subset of days of the week.  

Assumptions are also made regarding the variability between travellers.  Examples 

of such assumptions include homogeneity in free flow speeds (as in Beckmann et 

al. (1956)), their preference for different routes, their knowledge of possible routes 

and information availability.  Researchers have long argued that models should not 

assumethatalltravellersareidenticalandmake‘optimal’choices(Dial, 1971, 

Dafermos, 1972).  For example, Stochastic User Equilibrium (SUE) was developed 

to include variation in route choices by assuming that travellers have perceived 

travel times which are represented by a known statistical distribution around the 

actual travel time (Daganzo and Sheffi, 1977).  Although SUE is a well-established 

concept, research continues into the assumptions to use for the random component 

within the route choice model (Prashker and Bekhor, 2004, Shahhoseini et al., 

2015, Paz et al., 2016) and how the principles can be suitably applied to models 

which include within day dynamics (Han, 2003, Wei et al., 2014, Paz et al., 2016).  

Statistical distributions representing heterogeneous values of time have also been 

included in static (Huang and Li, 2007) and dynamic models (Zhang et al., 2013).  

Heterogeneity has also been introduced by applying different parameters to 

discrete“marketsegments”(Cascetta, 2009, p17) known as user classes.  These 

classes could relate to a wide variety of characteristics, although the most obvious 

example, perhaps, relates to vehicle types (Dafermos, 1972).  Multiple user classes 

have also been proposed to deal with different attitudes to risk (Shao et al., 2006, 

Szeto et al., 2011, Sun et al., 2015, Miralinaghi et al., 2016, Liu et al., 2017), level 

of network experience (Han et al., 2016), availability of advanced traveller 
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information systems (Huang and Li, 2007, Lou et al., 2016) and income 

(Shahhoseini et al., 2015).  Recently, vehicle classes have also been used to 

model the effect of mixed fleets including electric vehicles (Agrawal et al., 2016, Xu 

et al., 2017) and autonomous vehicles (Bagloee et al., 2017).  While innumerable 

differentuserclassescouldbedefined,thequestionremains:“whatarethe

fundamentallydifferentuserclasses?”(Peeta and Ziliaskopoulos, 2001, p252). 

Convenient fictions also exist at the aggregate level.  Even where multiple user 

classes are used to describe different subsets of the travelling population, the 

segmentation proportions are assumed to be fixed over time.  The two key inputs to 

network models, namely demand and capacity, were traditionally assumed to be 

fixed over the modelled reference period.  Different fields of research have 

emerged, however, which seek to represent variability in these two inputs.  

Dynamic Traffic Assignment extends static models by specifying demand as a 

function of the time of day and thus the modelled reference periods do not have 

constant, evenly distributed demand.  Peeta and Ziliaskopoulos (2001) provide an 

overviewofthisfield.Incontrasttothis‘within-day’variability,otherresearchers

have considered the demand input to a static equilibrium model as a random 

variable as opposed to a single value.  These random variables have been 

represented by standard statistical distributions such as the Binomial, Poisson, 

Beta-binomial or Negative binomial distribution (Nakayama and Watling, 2014).  

Capacity was also traditionally assumed to be fixed (for the modelled period) but 

particularly due to increased interest in travel time reliability, this assumption has 

been challenged.  Equilibrium models exist which include link capacities as random 

variables representing unpredictable disturbances (Lo and Tung, 2003) or including 

unpredictable as well as predictable disturbances (Lam et al., 2008), for example 

due to adverse weather conditions.  Stochasticity can also be generated 
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endogenously by the model, for example through using route choice probabilities 

(Watling, 2002). 

This thesis argues that while convenient fictions, for example relating to stability or 

a known probability distribution, are necessary and an inevitable part of the 

modelling process, there is a lack of empirical research which seeks to steer the 

research agenda and identify which types of variability should be included in our 

models, and how they should be represented (for example by including systematic 

and random variations, or by identifying the most suitable probability distribution).  

This is particularly timely given the emergence of rich data sources in recent years 

which can provide different kinds of information which we could not have expected 

to obtain in the past from traditional data sources, such as detailed information 

about travel behaviour over long periods of time.  Data sources which have been 

used within transportation research more recently include mobile phone data 

(Calabrese et al., 2011, Iqbal et al., 2014, Gundlegård et al., 2016), Bluetooth data 

(Barceló et al., 2013, Kieu et al., 2015a, Yu et al., 2015) and GPS traces, for 

example from taxis (Liu et al., 2009, Liu et al., 2012, Yang et al., 2017).   

The motivation for this research, and for much of the previous research looking at 

variability in network models (including Clark and Watling (2005), Lo et al. (2006), 

Shao et al. (2006) and Szeto et al. (2011)), is the study of travel time reliability.  

Research into travel time reliability covers a broad range of topics (Taylor, 2013) 

including the measurement and valuation of reliability, risk analysis and types of 

variability.  Understanding the relevant sources of variability is essential, however, 

so that they can be appropriately accounted for in the calculation of measures of 

reliability, appropriately generated by models which seek to do so endogenously 

(i.e. by using mechanisms which replicate underlying relationships) and 

appropriately represented (for example, using the most suitable probability 

distribution).  More generally, Jones and Clarke (1988, p65) alsoarguethat“an
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understanding of variability is central to the modelling of travel behaviour and the 

assessmentofpolicyimpacts”.Asthereismuchdebateregardingthedefinitionof

travel time reliability (Taylor, 2013), it may be prudent to start exploring what we 

meanby‘understanding’byexamining the reliability measures used in practice.  

The Planning Time Index is used to measure travel time reliability on the Strategic 

Road Network in England (Department for Transport, 2017).  The use of this index 

is supported by the U.S. Department of Transportation (Federal Highway 

Administration (FHWA), 2014) and consists of the 95th percentile of travel times 

divided by the free flow travel time.  In England, the free flow travel time is defined 

as the time it would take a vehicle to traverse a stretch of road if travelling at the 

speedlimitonthegivenroad.Asthename‘Planning TimeIndex’suggests,this

measure is supposed to relate to the additional amount of time a traveller should 

allow for travelling along a given link so that the link does not make them late 95% 

of the time.  It does not, however, take into account that travellers’expectationsare

likely to be influenced by experiences of recurrent congestion (Pu, 2011) or, in 

recent times, the availability of real time travel information.  As travel time reliability 

is closely aligned with traveller expectations, it is a dynamic concept which depends 

upon which travellers are on the network at any given time.  Therefore, to 

supplement the information obtained from a measure of travel time reliability such 

as the Planning Time Index, information about systematic and random variations 

between days in terms of who is using the network, what choices they are making 

and the effective network capacity is required.  In Section 1.2, previous research 

using empirical analyses to examine these additional aspects of variability will be 

discussed.    
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1.2 Empirically based research into variability 

Road network performance can vary from day to day due to a range of demand or 

supply-side factors (Carrion and Levinson, 2012).  This research will focus on 

demand-side factors, specifically those aspects related to traveller behaviour; these 

are assumed to be factors which transport planners and policymakers may be able 

to influence, unlike exogenous factors such as the weather.  The impact of supply-

side factors on capacity (assuming a stochastic capacity as in Brilon et al. (2005)) 

cannot be measured directly and, therefore, future work will be required which 

could build upon outputs from the current research. 

Inthisthesis,theterm‘travelbehaviour’isusedtodescribethefollowingcollection

of choices: 

 To travel or not to travel, 

 Mode choice, 

 Origin and destination choices, 

 Departure time choice and 

 Route choice. 

The variability considered in this research is the variability between days as this is 

usually what is measured when assessing travel time reliability.  As travel 

behaviour comprises a complex combination of traveller choices, this variability 

includes both spatial and temporal components.  The spatial aspects include the 

choice of origin and destination, but also the route choice.  When considering day-

to-day variability, the temporal component is the time of day at which a trip is made.  

Variability in travel behaviour can be analysed from different perspectives; this 

research will concentrate on network-focused and traveller-focused analyses.  

Empirical research undertaken from these two different perspectives will now be 

considered in turn.   
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1.2.1 Network-focused analysis 

Network-focused analyses utilise data aggregated across travellers to examine 

network usage and performance.  This could include measuring variability in travel 

times on a link, or volumes of vehicles crossing a bridge.  Bates et al. (2001) 

propose that variability in demand can be separated into a predictable component, 

for example due to seasonal or day of the week effects, and a random component.  

In this research that notion is extended to all types of variability, whether it is 

variabilityinanindividual’sdeparturetimeorinalink’straveltimes.Thisdistinction 

is particularly important for network-focused analyses as the predictable differences 

are more likely to be driven by variability in travel behaviour.  Identifying such 

systematic differences can provide the basis for scenario testing of future policies, 

for example in Kim et al. (2013), and can also inform the development of policies 

which include predictable differences in charges or service frequency by the day of 

the week or season, for example.  

Table 1-1 includes network-focused empirical research which examines predictable 

or systematic variability, for example by the day of the week or due to different 

weather conditions.  The research generally falls into one of three categories.  The 

first category uses descriptive statistics to suggest predictable differences do or do 

not exist, for example Kaltenbrunner et al. (2010) and Tao et al. (2014).  The 

second category uses statistical tests to test whether predictable differences exist, 

for example Watling et al. (2012) and Calvert et al. (2016).  The third category uses 

data driven methods to identify systematic differences between days and then tries 

to explain the different groups identified, for example Weijermars and van Berkum 

(2005) and Guardiola et al. (2014).  The second category has the advantage of 

being able to determine which predictable differences are sufficiently important to 

justify scenario testing or specific policy development, and is also guaranteed to be 
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based on factors known to the analyst, for example the day of the week or the 

amount of precipitation. 

The treatment of the time of day differs among the network-focused analyses 

shown in Table 1-1.  In some cases, the time of day is not, or is assumed not to be, 

relevant, for example when considering the number of trips per day (Arana et al., 

2014) or route choice (Watling et al., 2012).  Other research considers both time of 

the day and systematic differences between days, for example according to the day 

of the week or season, but they do so independently so that systematic differences 

in timings between days are not considered, for example Stathopoulos and Karlaftis 

(2001) and Yeon et al. (2009).  In other research, the analysis is undertaken 

separately for different periods during the day, for example using hourly data in 

Datla and Sharma (2008) and morning, mid-day and evening data in Gao and 

Niemeier (2007).  Only the research which has involved data driven clustering has 

taken the shape of daily flow profiles into account when examining the differences 

between days (Weijermars and van Berkum, 2005, Guardiola et al., 2014).  

1.2.2 Traveller-focused analysis 

In contrast, traveller-focused analyses use data from individual travellers to 

measure how travel behaviour varies for the same person from day to day 

(intrapersonal variability).  By ignoring intrapersonal variability and using the 

convenient fiction of a constant set of travellers who make the same trip every day, 

the assumptions shown in Figure 1-1 are made implicitly.  These assumptions are 

particularly important in any modelling which includes behaviour change, for 

example adaptation to changing circumstances or policies to encourage behaviour 

change.  The explicit and implicit assumptions should, therefore, not be taken for 

granted, but should be tested in a wide range of circumstances. 
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Figure 1-1: Implicit assumptions when assuming high levels of regularity 

 

To test these assumptions, suitable data is required.  The current research 

considers travel behaviour on the road network and therefore the data collected 

should have an explicit connection to the transport network.  Previous research 

relating to smart card data (Ma et al., 2013, Kieu et al., 2015b) and in-vehicle GPS 

trackers (Elango et al., 2007, Venter and Joubert, 2013) are therefore more 

relevant than research using mobile phone data (Järv et al., 2014) or traditional 

travel diaries (Bayarma et al., 2007, Heinen and Chatterjee, 2015).  As described 

for public transportation using smart card data by Pelletier et al. (2011), insights 

from traveller-focused analyses can inform strategic, tactical and operational 

planning by providing information about user types and needs.  Empirical analyses 

have been used to define public transport user classes based on day-to-day trip 

making characteristics (Kieu et al., 2015b, Goulet Langlois et al., 2016), but similar 

analyses have not been undertaken for road users only, perhaps due to a difficulty 

in collecting suitable data. 
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Table 1-2 provides a summary of recent traveller-focused variability research.  

While research traditionally used travel diary data and so focused on all modes, 

more recently research has also included analyses of public transport users, using 

smart card data, and car trips, using GPS surveys.  As can be seen in Table 1-2, 

new technologies such as smart cards or mobile phones result in much larger 

sample sizes and longer study periods than was previously possible.  Smart card 

data has the advantage that it usually has high levels of coverage, for example over 

90% of users in Beijing (Ma et al., 2013) and 80% of ticket sales in Brisbane (Tao 

et al., 2014).  Traveller-focused research into day-to-day variability on the road 

network, however, has generally focused on personal travel as opposed to travel 

for commercial purposes, for example Li et al. (2004), Elango et al. (2007) and 

Spissu et al. (2011).  Personal travel makes up the majority of vehicles on the road 

network, but as shown in a recent report on London, other types of vehicles, 

particularly Light Goods Vehicles are becoming increasingly important (INRIX, 

2016).  There has also been a 12% increase in the number of Private Hire Vehicles 

licenced in England between 2013 and 2015, although this has largely been driven 

by a 26% increase in London, perhaps exacerbated by the congestion charging 

zone.  There is, therefore, a gap in the research relating to day-to-day variability in 

travel behaviour relating to all vehicle types on the road network.       

Table 1-2 also demonstrates the variety of aspects of intrapersonal variability and 

the variety of methods used in previous research.  Spatial measures of variability 

are strongly influenced by the type of data available, for example route choice can 

be considered using GPS data (Spissu et al., 2011), activity spaces using mobile 

phone data (Järv et al., 2014) and origin-destination (OD) comparisons using smart 

card data (Ma et al., 2013).  Therefore, while some researchers have focused on 

OD variability (Buliung et al., 2008, Dill and Broach, 2014) and others on route 

variability (Li et al., 2004, Spissu et al., 2011), there is a gap in research which 
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examines both types of variability together.  Shen et al. (2013) examined both 

spatial and route flexibility, but they only considered commuting trips and they 

defined OD and route choices simply as either the same or different.   

Comparisons of whether a trip is made at the same time of day also vary.  For 

example, the measure of intrapersonal regularity could be based on the percentage 

of trips within 20% of the median departure time (Muthyalagari et al., 2001), the 

percentage of trips deviating from the median departure time by more than 5, 10 or 

30 minutes (Li et al., 2004) or whether trips begin in the same 10 minute interval of 

the day (Minnen et al., 2015).  Other research has maintained the continuous 

nature of time (Chikaraishi et al., 2009, Kieu et al., 2015b).  It is preferable to treat 

the time of day as a continuous variable, as this enables an analysis of variability in 

greater detail, but it only makes sense to do so where the time of day is recorded at 

a high level of precision, for example when using emerging data sources.  Time of 

day variability analysed in continuous time has not been undertaken on data from 

road users only and therefore adaptations to existing approaches would be 

required, depending on the type of data used. 

There is, therefore, very little research examining the repeated travel behaviour of 

road users and a gap in empirical research examining all types of road user (not 

just cars used for non-commercial trips).  As much of the previous research has 

been undertaken on travel diary or smart card data which do not usually contain 

route information, methods do not exist for quantifying spatial variability in both OD 

and route choices together.  Methods for analysing time of day variability in data 

from emerging sources with high levels of temporal resolution exist, but would need 

to be adapted for use on road users.  Despite the recognised advantages of 

analysing data for the purpose of defining network user classes based on multi-day 

travel behaviour, such analyses have yet to be undertaken on data from road users 

only.          



13 
 

1.2.3 Combining perspectives 

Although empirical analyses usually take either the network-focused or the 

traveller-focused perspective, this thesis proposes that both approaches are 

equally valuable and that additional benefits can be obtained by undertaking the 

two processes simultaneously.  These additional insights are obtained for two 

reasons.  Firstly, network-focused analyses can be used to demonstrate whether or 

not any variability observed at the individual traveller level has an impact on 

network performance.  Secondly, undertaking traveller-focused analyses may help 

us to understand why aggregate level systematic variability is occurring, for 

example by identifying that people leave work systematically earlier on certain days 

of the week.  The gaps in the network- and traveller-focused research undertaken 

to date are, therefore, not completely distinct areas of research as a methodology 

could be developed to link the two processes in order to obtain a greater 

understanding of traveller behaviour.  
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Table 1-1: Literature on network-focused empirical analyses of systematic variability 

Paper Focus Data type Systematic 
variability type 

Method for 
comparison 

Relevant findings 

Rakha and 
Van Aerde 
(1995) 

To examine variability 
within and between days 
of the week, and also 
the impact of incidents 

Multiple 
loop 
detectors 

Day of the 
week 

ANOVA 

Regression 
Analysis 

Flows were similar on weekdays but 
different on weekend days 

 

Monday flows were different from core 
weekdays (Tuesday-Thursday), but 
speeds and occupancy were not 
statistically different at 95% confidence 
level 

 

Fridays were statistically  different from 
core weekdays with respect to all three 
measures 

Stathopoulos 
and Karlaftis 
(2001) 

To test for differences in 
flow by year, month, day 
of the week, time of day 
and direction of travel 

Multiple 
loop 
detectors 

Year, month 
and day of the 
week 

Kruskal-Wallis 
test 

Wilcoxon rank-
sum U test 

Flows exhibited little variation between 
days of the week and months (with the 
exception of the summer months) 

Weijermars 
and van 
Berkum 
(2005) 

To cluster days based 
on the shape and height 
of flow profiles 

One loop 
detector 

Day of the 
week and 
holiday periods 

Hierarchical 
clustering 

Working days (non-public holiday 
weekdays) were easier to cluster than 
non-working days 

 

Four clusters of working days were 
identified: Mondays, core weekdays, 
Fridays and days within holiday periods 

Li et al. 
(2006b) 

To examine sources of 
travel time variability on 

Electronic 
toll tag and 

Day of week 
and weather 

Multiple 
regression 

Weather and incidents had more of an 
impact on travel times in the afternoon 
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a toll road video data analysis peak than the morning peak  

Liu and 
Sharma 
(2006) 

To examine the impact 
of different national 
holidays on weekly, daily 
and hourly traffic flows 

Multiple 
traffic 
counters 

Before, during 
and after 
holiday periods 

Wilcoxon 
matched pair 
test, Friedman 
method and Chi 
Square and 
Binomial tests 

Holidays in winter months had a weaker 
effect 

 

Effects varied based on road usage 
type and direction of travel 

Gao and 
Niemeier 
(2007) 

To compare the day of 
the week effect at 
different times of day on 
the volumes and ratios 
of Light and Heavy 
Goods Vehicles 

Multiple 
weigh-in-
motion 
stations 

Day of the 
week 

Nonparametric 
factorial analysis 
of longitudinal 
data 

ANOVA-Type 
Statistic 

Differences were observed by the day 
of the week in all three time of day 
periods 

Zhang et al. 
(2007) 

To compare link and 
path flows by day of the 
week 

Multiple 
loop 
detectors 

Day of the 
week 

ANOVA Path flows differed on Fridays to other 
weekdays, but link flows did not 

Datla and 
Sharma 
(2008) 

To examine the effect of 
snow and cold 
temperatures on traffic 
volumes 

Multiple 
traffic 
counters 

Weather (by 
day of the 
week) 

Regression 
model and t-
tests 

Effects varied by the time of day, day of 
the week and road type 

 

Larger impacts were observed on 
recreational routes and during the off-
peak 

 

Fridays were affected differently by very 
cold weather than Monday-Thursdays 

Billot et al. 
(2009) 

To examine the impact 
of rain on the 
performance of the road 
network at the micro, 
meso and macroscopic 

Multiple 
loop 
detectors 

Weather Descriptive 
statistics 

During adverse weather conditions, 
speeds dropped, headways increased, 
there was more platooning and capacity 
decreased 
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levels  

Jam density was not affected by rain 

Yeon et al. 
(2009) 

To test for differences in 
road capacity by the 
time of day, day of the 
week and road segment 
type 

Multiple 
traffic 
microwave 
sensors 

Day of the 
week 

Levene’stest
and ANOVA  

In most cases, mean capacity flows did 
not differ according to the day of the 
week 

 

Capacity flows differed between 
morning and evening peaks and off-
peak periods 

Kaltenbrunner 
et al. (2010) 

To detect temporal and 
spatial patterns in 
community bicycle 
scheme usage 

Cycle hire 
station 
occupancy 
data 

Day of the 
week 

Descriptive 
statistics 

Demand profiles differed between 
weekdays and weekend days 

 

Weekday profiles also differed between 
station locations 

Miranda-
Moreno and 
Nosal (2011) 

To examine the 
relationship between 
weather and cycle 
usage and also temporal 
trends in cycling 

Multiple 
loop 
detectors 
for bicycles 

Weather and 
day of the 
week 

Descriptive 
statistics 

Regression 
models 

 

Bicycle volumes were affected by rain 
at the time or earlier in the day 

 

Temperature had an effect, but it was 
not a linear effect  

 

Usage was higher on weekdays and 
during the summer months 

Watling et al. 
(2012) 

To assess the impact of 
network capacity 
reductions and to 
examine the 
effectiveness of model 
predictions 

Partial 
licence 
plate data 

With and 
without a 
planned 
capacity 
reduction 

Two-sample, 
unequal 
variance t-test 
for mean flows, 
proportions and 
travel times 

“considerableambientdailyvariationin
flows could easily mask any systematic 
effect”(Watling et al., 2012, p187) 

 

Flow proportions were useful in 
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demonstrating changes in route choices 

Yazici et al. 
(2012) 

To analyse three travel 
time reliability measures 
based on the time of day 
and day of the week 

GPS taxi 
data 

Day of the 
week and time 
of day 

Classification 
and Regression 
Tree 
methodology 

 

The reliability-based categorisations of 
time of day did not conform to the 
typical peak/off-peak periods 

 

The reliability-based categorisations did 
not always combine data from all 
weekdays 

Arana et al. 
(2014) 

To examine the impact 
of weather on the 
number of shopping, 
personal business and 
leisure trips made by 
bus 

Smart card Weather Student’st-test 

Multiple linear 
regression 

Weather did have a significant impact 
on the total number of trips per day 

 

Higher temperatures resulted in higher 
usage on both Saturdays and Sundays, 
but wet or windy weather had more of 
an impact on Saturdays 

Guardiola et 
al. (2014) 

To cluster daily flow 
profiles based on their 
shape and height 

One loop 
detector 

Data 
generated 

Functional 
Principal 
Component 
Analysis 

Three principal components were 
identified which approximately 
correspond to days of the week, years 
and months 

Singhal et al. 
(2014) 

To explore the 
relationship between 
weather conditions and 
subway usage based on 
hourly and daily flows 

Subway 
Automated 
Fare 
Collection 
system 
data 

Weather (by 
day of the 
week) 

 

Regression 
models 

The impact of the weather depended on 
the time of day and the location 

 

More variation in total ridership was 
observed at the weekend, where 
weather had a greater impact 

 

Some differences were observed in the 
weather variables which were 
significant in the hourly versus the daily 
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usage model 

Tao et al. 
(2014) 

To compare usage of 
the Bus Rapid Transit 
system compared to 
other buses in the same 
city based on temporal 
and spatial variations 

Smart card Weekday, 
weekend and 
national 
holidays 

Descriptive 
analyses and 
geo-visualisation 

Spatial analyses of school holiday days 
showed that they were more similar to 
working days than weekends or 
national holidays 

 

Usage was lower on weekends and 
national holidays 

Schmöller et 
al. (2015) 

To examine the 
temporal and spatial 
patterns in usage of a 
car-sharing scheme 

Car share 
scheme 
booking 
data 

Day of the 
week and 
weather 

Descriptive 
statistics 

Principal 
Component 
Analysis 

 

Bookings were highest on Fridays and 
Saturdays 

 

There was a spatial asymmetry 
between supply and demand on 
Mondays 

Calvert et al. 
(2016) 

To test for day type 
specific variations in 
road capacity 

Multiple 
loop 
detectors 

Work days, 
weekend days 
and national 
holidays 

Levene’stest
and the t-test for 
equality of 
means 

Motorway breakdown capacity was 
lower on weekend days than work days 

 

Breakdown capacity was not lower on 
holiday days than on work days 
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Table 1-2: Literature on traveller-focused empirical analyses of variability 

Paper Mode Data type Length of 
time 

Number of 
participants 

Variability 
type 

Method Relevant findings 

Muthyalagari 
et al. (2001) 

Car GPS in cars of 
participants 
plus 
demographic 
and trip 
specific survey 
data 

Approx. 6 
days 

100 cars Trip 
frequency, 
travel time 
and distance, 
first departure 
and final 
departure and 
arrival time 
per day 

Descriptive 
statistics 

All characteristics 
showed relatively low 
levels of repetition 
between days 

 

Higher levels of 
stability were observed 
in the final arrival time 
at home each day 

Schlich and 
Axhausen 
(2003) 

All Travel diary 

(Mobidrive) 

6 weeks 361 people 
from 162 
households 

Combined 
intrapersonal 
variability 

Comparison of 
different 
measures of 
similarity 

“travelisneither totally 
repetitious nor totally 
variable”(Schlich and 
Axhausen, 2003, p13) 

Li et al. 
(2004) 

Car GPS in cars 7 days 56 cars Departure 
time (for 
morning 
commute 
only) and 
route choice 

Descriptive 
statistics  

Chi Square tests 

60% of the commuters 
made at least one stop 
on their way to work 
on at least one survey 
day 

 

Kitamura et 
al. (2006) 

All Travel diary 

(Mobidrive) 

6 weeks 116 people Prism vertex 
location for 
commuters 

Stochastic frontier 
models and least-
squares models  

ANOVA 

Individuals’time-space 
prism origin vertices 
vary more 
systematically, 
whereas their 
departure times vary 
more randomly 
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Suggests that there is 
high levels of flexibility 
in morning commutes 

Bayarma et 
al. (2007) 

All Travel diary  

(a sample from 
Mobidrive) 

6 weeks 
(weekdays 
only) 

317 people 
from 139 
households 

Trip 
frequency, 
duration and 
purpose, time 
expenditure, 
mode, spatial 
and 
situational 
factors 
(including 
group size 
and 
expenditure) 

Principal 
Component 
Analysis to reduce 
the dimensionality 
of the data 

K-means 
clustering to 
identify 
representative 
daily patterns 
across all data 

Markov Chain 
models to 
examine 
transitions 
between daily 
patterns 

Heterogeneity is 
observed in the daily 
patterns utilised by 
each traveller during 
the survey period 

 

The transition 
probabilities between 
daily travel patterns 
also differ greatly 
between individuals 

Elango et al. 
(2007) 

Car GPS in cars of 
participants 
plus 
demographic 
data 

3 years 153 
vehicles in 
98 
households 

Trip 
frequency 

Mann–Whitney U-
test and visual 
comparisons  

Household income and 
the number of people 
and vehicles in the 
household had a 
significant impact on 
the amount of intra-
household variability in 
the number of trips per 
day   

Morency et 
al. (2007) 

Public 
transport 
(bus) 

Smart card 277 days 7,118 smart 
cards 

Spatial, time 
of day and 
trip frequency 

Descriptive 
statistics  

On average, 
approximately 0.7 of a 
new bus stop is used 
by each traveller each 
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week 

 

Zero-boarding days 
are not evenly 
distributed by the day 
of the week.  Adult-
interzone card holders 
rarely use the bus on 
the weekend, whereas 
senior card holders are 
more likely to be 
observed at the 
weekend 

Buliung et al. 
(2008) 

All Panel survey 
including travel 
diary 

7 days 262 
households 
including 
416 adults 

Spatial Descriptive 
statistics and 
visualisation 
(using a Minimum 
Convex Polygon 
metric) 

Trips are less variable 
in terms of destination 
choice than they are 
by time of the day 

 

High levels of spatial 
re-use were observed, 
particularly for public 
transport users 

 

Activities cover a wider 
geographical area on 
weekdays than 
weekend days 

Chikaraishi et 
al. (2009) 

All Travel diary 

(Mobidrive) 

6 weeks 361 people 
from 162 
households 

Departure 
time 

Multi-level 
modelling  

For almost all trip 
purposes, 
intrapersonal 
variations contributed 
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more to the variability 
in departure times than 
inter-individual, inter-
household, spatial 
(OD) variations or 
aggregate level 
temporal variations 

Spissu et al. 
(2011) 

Car GPS on 
smartphones 
of participants, 
together with 
online 
verification and 
augmentation 
of data 

2 weeks 12 people Route choice Descriptive 
statistics  

More intrapersonal 
variability was 
observed in 
discretionary trips 

 

More interpersonal 
variability was 
observed for trips 
to/from work or 
education 

 

93% of trips made by 
the same person 
between the same OD 
pair used the same 
route 

Stopher and 
Zhang (2011) 

All Panel survey 
including GPS 
data from 
personal 
devices 

between 7 
and 15 
days in 
three 
waves 
(2005, 
2006 and 
2007) 

202, 308 
and 197 
households 
for waves 1, 
2 and 3 
respectively 

Travel time, 
distance, 
activity time 
and trip 
timing by trip 
purpose 

Descriptive 
statistics 

Complex series of trips 
are observed in the 
data.  Even fairly 
simple sequences, 
such as home -> work 
-> home, contributed 
to intrapersonal 
variability 
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Ma et al. 
(2013) 

Public 
transport 
(bus, 
subway) 

Smart card 5 days 37,001 
smart cards 

Trip 
frequency, 
timing, route 
and spatial 
(OD) 
variability 

K-means 
clustering of 
travellers  

Rough set theory 
is proposed for 
larger data sets 

The authors suggest 
that travellers in the 
High and Very High 
regularity clusters may 
be regular users, and 
these correspond to 
41% of travellers 

Shen et al. 
(2013) 

All Personal GPS 
tracking 
devices with 
online 
verification of 
data 

7 days 96 people Spatial (OD), 
time (work 
start and end 
times and 
commute 
duration), 
mode and 
route 

Descriptive 
statistics  

Example 3D 
geovisualisations 
for a sample of 
travellers 

The commuting trips 
are flexible and 
complex 

 

More variation in the 
time of the trip is 
observed than in the 
other three aspects  

Venter and 
Joubert 
(2013) 

HGV, 
LGV and 
car 

In-vehicle GPS 
trackers 

3 days 42,000 
trucks and 
light goods 
vehicles 
and 720 
cars 

Vehicle 
kilometres 
travelled 

Descriptive 
statistics 

The lowest income 
group had the highest 
variability in vehicle 
kilometres travelled 
per day 

 

On average, car users 
had higher levels of 
variability than the 
commercial vehicles 

Järv et al. 
(2014) 

All Mobile phone 
(call detail 
records) 

12 months 1310 
phones 

Spatial Multiple Linkage 
Analysis to 
identify activity 
spaces then 
General Linear 
Models to 
examine monthly 

Some seasonality was 
observed in the size of 
activity spaces 

 

‘Outlier’months 
(atypical behaviour for 
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variations  an individual) are 
observed throughout 
the year although 
more occur during the 
summer 

Heinen and 
Chatterjee 
(2015) 

All Travel diary 
and 
demographics 

7 days 14,607 
people  

Mode choice Regression 
analyses  

Of the people who 
made at least one trip, 
69% were multi-modal 
in the week of data 
collected 

 

Females exhibited 
greater modal 
variability 

Kieu et al. 
(2015b) 

Public 
transport 
(bus, 
train and 
ferry) 

Smart card 4 months 
(working 
days only) 

Approx. 1 
million 

Spatial and 
time of day 

Density-based 
clustering 
algorithms to 
identify regular 
origin and alight 
stops and to 
identify habitual 
trip timings 

 

Market 
segmentation 
based on binary 
measures of 
spatial and 
temporal 
variability 

Four passenger 
segments were 
identified: spatially 
regular only, 
temporally regular 
only, spatially and 
temporally regular and 
irregular travellers 

 

64% of the travellers 
were irregular 
passengers and 99% 
of them were 
infrequent users 

 

Many student ticket 
holders were in the 
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spatial regularity only 
group, perhaps due to 
more flexible 
schedules 

Minnen et al. 
(2015) 

All Activity diary 7 days 3,253 
people 

Trip 
recurrence 
(related to 
frequency) 
and timing of 
trips 

ANOVA Only 7.4% of travel 
had regular tempo and 
timing 

 

Work trips varied more 
in terms of recurrence 
(people may always 
travel at the same 
time, but may not 
travel every day), 
whereas discretional 
trips varied more in 
timing 

Raux et al. 
(2016) 

All Travel diary 
and 
demographics 

7 days 707 people Trip 
frequency, 
time per 
activity and 
activity 
sequence 

Descriptive 
statistics  

Socio-demographics 
had very little influence 
on intrapersonal 
variability 

 

Systematic variability 
was only a small 
component of the 
intrapersonal variability 
observed 

Xianyu et al. 
(2017) 

All GPS 
smartphone 
app 

7 day 46 people Activity-travel 
sequences 

Panel effects 
regression models 

Nested F-test to 
compare model 

Thursdays differed 
from other weekdays 

 

Socio-demographics 
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specifications strongly influenced 
individual activity-
travel sequences 

 

Men had lower 
intrapersonal variability 
than women 
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1.3 Research objectives 

The aim of this research is to develop robust methodologies which could be used to 

undertake empirical analyses relating to variability in travel behaviour on the road 

network using emerging data sources.  As described in the previous section, there 

is a gap in the literature for a network-focused method to test for predictable 

differences in traveller-aggregated data which accounts for within day dynamics.  

Suitable methods for analysing spatial intrapersonal variability, taking in to account 

both OD and route variability, and temporal intrapersonal variability on the road 

network specifically do not exist in the literature either.  A method for classifying all 

road users based on their repeated trip making behaviour, for example by 

combining measures of spatial and temporal intrapersonal variability, is also 

lacking.  Previous transportation research has also not explored whether a multiple 

method type approach (Davis et al., 2010) could be used to obtain additional 

insights by undertaking both network-focused and traveller-focused analyses 

concurrently. 

This research aims to fill these gaps by utilising emerging data sources, which, as 

described above, are likely to provide data for longer periods of time and may 

provide new kinds of evidence of variability.  The overarching research question 

defining this thesis is as follows. 

How can emerging data sources be used to gain insights into 

variability in travel behaviour on the road network? 

The underlying research objectives are: 

1) To develop a methodology for identifying statistically significant predictable 

differences in aggregated travel behaviour observed on the network which 

takes into account differences in magnitude and timing. 
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2) To identify methods for measuring spatial and temporal intrapersonal 

variability in travel behaviour on the road network using data from emerging 

data sources. 

3) To develop a methodology for comparing and/or classifying road users 

based on the intrapersonal variability in their travel behaviour. 

4) To develop a framework for using network- and traveller-focused analyses 

together to gain additional insights into variability in travel behaviour.  

5) To apply the methods to real world data in order to demonstrate the insights 

which can be achieved. 

 

1.4 Thesis overview 

The remainder of the thesis is organised as follows.   

In Chapter 2, a network-focused method which tests for predictably different traffic 

flows is presented.  The method utilises data from loop detectors which are 

commonly used to collect data on the road network.  Recent technological 

advances mean that large historical databases, often at low levels of aggregation, 

are now available.  In this methodology, day-to-day variability is measured 

according to both the total daily volume and the distribution of the flows throughout 

the day.  As in Guardiola et al. (2014), a Functional Data Analysis approach is used 

so that flows can be analysed according to the time of day.   

Chapter 3 discusses the feasibility of using Bluetooth data to examine intrapersonal 

variability on the road network.  A significant amount of literature exists relating to 

the measurement of travel times using fixed Bluetooth detectors (Haseman et al., 

2010, Martchouk et al., 2011, Bhaskar and Chung, 2013, Díaz et al., 2016, Mathew 

et al., 2016).  Bluetooth data has also been used to examine route choice (Hainen 

et al., 2011, Carpenter et al., 2012) and in OD matrix estimation (Barceló et al., 

2010, Barceló et al., 2013), but previous analyses have not matched the unique 

identifiers associated with Bluetooth devices (known as MAC addresses) between 
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days.  Data from fixed Bluetooth detectors are an increasingly popular way to 

measure travel times in urban areas due to the low costs involved and their passive 

nature.  There are, therefore, advantages in examining this data source as it could 

provide data on intrapersonal variability at very little additional cost for cities which 

already collect this type of data.  This chapter concludes that Bluetooth data can 

provide valuable insights into intrapersonal variability on the road network, provided 

that suitable techniques are developed to extract meaningful information and the 

appropriate caveats are presented. 

In Chapter 4, a methodology is proposed for analysing the repeated road travel 

behaviour of individuals using point to point sensor data such as Bluetooth data.  

The frequency of travel and both spatial and temporal aspects of trip making are 

considered.  Travellers are then clustered based upon these three characteristics to 

identify road user classes.  Such market segmentation has proved useful in the 

analysis of smart card data for public transport users (Goulet Langlois et al., 2016, 

Kieu et al., 2015b).  By taking a traveller-focused perspective, the methodology 

provides insights into traveller flexibility, levels of exploration and knowledge of the 

network.   

Chapter 5 proposes an approach for undertaking network-focused and traveller-

focused analyses alongside one another.  Using this approach, findings are not 

only triangulated,butthe‘followingathread’technique(Moran-Ellis et al., 2016) 

can be used to identify questions or themes from each type of analysis to explore in 

more detail with the other type.  The case study from Chapter 2 is used, along with 

an application of the methods presented in Chapter 4 to the same road link. 

Chapter 6 discusses the progress which has been made towards achieving the 

objectives listed in Section 1.3.  The original contributions to knowledge of this 

thesis are also described alongside the limitations of the approach taken and the 

data used.  
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2 A statistical method for estimating predictable 

differences between daily traffic flow profiles 

Abstract 

It is well known that traffic flows in road networks may vary not only within the day 

but also between days. Existing models including day-to-day variability usually 

represent all variability as unpredictable fluctuations.  In reality, however, some of 

the differences in flows on a road may be predictable for transport planners with 

access to historical data.  For example, flow profiles may be systematically different 

on Mondays compared to Fridays due to predictable differences in underlying 

activity patterns.  By identifying days of the week or times of year where flows are 

predictably different, models can be developed or model inputs can be amended (in 

the case of day-to-day dynamical models) to test the robustness of proposed 

policies or to inform the development of policies which vary according to these 

predictably different day types.  Such policies could include time-of-day varying 

congestion charges that themselves vary by day of the week or season, or 

targeting public transport provision so that timetables are more responsive to the 

day of the week and seasonal needs of travellers.   A statistical approach is 

presented for identifying systematic variations in daily traffic flow profiles based on 

known explanatory factors such as the day of the week and the season.  In order to 

examine day–to-day variability whilst also considering within-day dynamics, the 

distribution of flows throughout a day are analysed using Functional Linear Models.  

F-type tests for functional data are then used to compare alternative model 

specifications for the predictable variability.  The output of the method is an 

average flow profile for each predictably different day type, which could include day 

of the week or time of year.  An application to real-life traffic flow data for a two-year 
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period is provided.  The shape of the daily profile was found to be significantly 

different for each day of the week, including differences in the timing and width of 

peak flows and also the relationship between peak and inter-peak flows.  Seasonal 

differences in flow profiles were also identified for each day of the week. 

 

2.1 Introduction 

There is now extensive literature analysing and modelling the extent to which traffic 

flows systematically vary within a day, due to time-of-day variations in demand, 

time-of-day variations in capacity (e.g. due to traffic signals), and the temporal and 

spatial interactions of congestion (Ukkusuri et al., 2012, Du et al., 2015, Han et al., 

2015, Long et al., 2016, Ngoduy et al., 2016, Wang and Du, 2016).  A 

corresponding body of work has additionally sought to address the considerable 

variation observed in traffic flows between days, known as day-to-day variability 

(Watling and Cantarella, 2013a, Watling and Cantarella, 2013b, Guo et al., 2015, 

Hazelton and Parry, 2016, Kumar and Peeta, 2015, Xiao et al., 2016). This twin 

focus, on within-day and day-to-day variation, is the topic of the present paper.  

Existing models including day-to-day variability usually represent variability by a 

single probability distribution for each randomly varying component1, for example in 

research on demand (Watling, 2002, Clark and Watling, 2005, Sumalee et al., 

2006, Shao et al., 2006, Nakayama and Watling, 2014), capacity (Lo and Tung, 

2003, Siu and Lo, 2008, Sumalee et al., 2011b) or travel times (Noland and Small, 

1995, Clark and Watling, 2005, Pu, 2011, Guo et al., 2012).  In contrast to existing 

models, this research proposes separating the predictable and unpredictable 

                                                

1
 Whilst Ettema et al. (2005) did develop a day-to-day dynamical model where previously 

experienced travel times were stored in separate categories within memory, they did 

not discuss how the categories could be formed or used in practice.   
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components of variability so that variability could be represented by a set of 

probability distributions alongside a set of rules specifying which distribution relates 

to which day type.Inthispaper‘daytype’relatestoanexhaustiveclassification

based on combining characteristics which would be known far in advance such as 

the day of the week or season. This classification could be anything from a simple 

weekday/weekend day split to a complex combination of days of the week and 

months.  This research develops a stochastic model of within-day profiles that 

includes day types as explanatory factors to identify predictably different day types 

in a dataset.  The functional day type coefficients are estimated, but the 

development of full probability distributions for models with both within-day and 

day-to-day dynamics is left for future work.  The outputs of the method presented 

below are also useful in their own right as they can be used by practitioners to 

better understand travel patterns and perhaps inform day type specific policies in 

order to better utilise resources.  The flow profiles for each day type can also be 

used to test the robustness of policies and, more importantly, as the day types are 

known far in advance plans can be made to mitigate potential problems.  

The seminal work of Hanson and Huff (1988) provided evidence that cyclical 

patterns exist in individual travel behaviour.  These patterns or cycles are often 

based around the days of the week or seasons, as evidenced by multi-day surveys 

(Kitamura and Van Der Hoorn, 1987, Schlich and Axhausen, 2003, Habib and 

Miller, 2008).  More recently, data from emerging data sources have been used to 

examine activity patterns over a longer period of time, for example  Järv et al. 

(2014) who used mobile phone data to examine monthly variations in activity 

spaces.  Whilst in many cases such patterns will disappear once data has been 

aggregated, in some cases exogenous factors can cause systematic patterns in 

travel behaviour which translates into predictably different travel conditions.  This 

could include the widely accepted weekday patterns of peak and off-peak traffic, 
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but also patterns which are more likely to be overlooked, for example lower network 

demand in winter months or variations in daily flow profiles due to differences in 

shop opening hours between weekdays.  Researchers often try to avoid the 

component of variability which is predictable byconsidering“somenominally

‘typical’conditions”(Clark and Watling, 2005, p119),suchasthe‘peak’periodof

thedayon‘non-holidayweekdays’only.  Although some researchers have 

explored the impact of various types of predictable variability when undertaking 

analysis of flow or travel time data (Rakha and Van Aerde, 1995, Stathopoulos and 

Karlaftis, 2001, Zhang et al., 2007, Yazici et al., 2012), few have built on this to 

develop predictive models.   

Two exceptions are Kamga and Yazici (2014) and Guardiola et al. (2014).  Kamga 

and Yazici (2014) used GPS data from taxis to classify average travel times per 

unit distance across the city for each hour of the day and day of the week using 

regression trees.  Guardiola et al. (2014) used Functional Data Analysis on traffic 

flow profiles from a detector set on a freeway for the purpose of classification and 

outlier detection.  They used Functional Principal Component Analysis to identify 

the three principal components.  The first appears to separate working from non-

working days, the second may relate to the year and the third may be a seasonal 

factor.  

The present paper builds on the work of Guardiola et al. (2014) as it also considers 

variability in daily traffic flow profiles, but it differs by considering day types which 

would be known in advance, such as the day of the week, rather than using data-

driven category selection.  Traffic flow data is perhaps the most widely collected 

data on road networks and therefore there are vast amounts of data to analyse, 

even when considering just one day type.  Flow data informs us about what is 

occurring on the road network at any given point in time and therefore is particularly 

of interest to practitioners and those calibrating models.      
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This research proposes a method for identifying scenarios where traffic flow profiles 

differ predictably, as a result of characteristics which would be known in advance, 

such as the day of the week.  Day type explanatory models will be estimated for 

both the magnitude and shape of the daily flow profiles.  Data from one loop 

detector will be considered.  The flow at a single location could vary due to many 

factors, including demand, route choice, departure time and the traffic conditions on 

other parts of the network.  In this research the aim is to identify the day types or 

seasons where flows at this location are systematically different to those on other 

days, regardless of the cause, to inform scenario testing.  For a single location, this 

is relevant for modelling localised policies such as capacity reductions (for example 

due to road works or changes in parking regulations) or congestion charging 

boundaries.  The methodology could also be applied independently to many 

detectors in an area in order to identify days of the week or times of year where 

particular problems arise so that policy solutions to target the causes of these 

problems can be devised.  Examples of such targeted policies might include: time-

of-day varying congestion charges that themselves vary by day of the week or 

season; incentives to influence employers or shopping centres to adjust their 

opening times by day of the week or season; targeting public transport provision so 

that timetables are more responsive to the day of the week and seasonal needs of 

travellers.  

This paper makes an original contribution by presenting: 

1) A method for estimating the effect on daily traffic flow profiles of predictable 

variability due to known explanatory factors, for example the day of the 

week. 

2) A method for comparing alternative model specifications for the predictable 

variability through statistical significance. 

3) An application of these methods to real-life traffic flow data for a two-year 

period. 
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A transferable methodology is presented for identifying predictable variability in 

both total daily flows and standardised daily flow profiles.  The analysis of daily flow 

profiles involves Functional Linear Regression Models which have not been used 

for this purpose previously.  Previous use of Functional Data Analysis in 

transportation (for example Guardiola et al. (2014) and Chiou et al. (2014)) has 

been restricted to Functional Principal Component Analysis, where the components 

that are predictably different can be identified, but a future day cannot be assigned 

(a priori) to a component group.  In this paper we seek to measure the impact of 

known explanatory variables and hence directly examine the effect of the day of the 

week or season.   

The structure of this paper is as follows.  Section 2.2 includes the rationale for 

using the analytical technique adopted in this paper, namely Functional Data 

Analysis.  Section 2.3 provides a detailed methodology, including a description of a 

technique to estimate smooth functions from point data and a method to analyse 

functional data, which in this case will utilise Functional Linear Models.  Section 2.4 

includes an application to real-life traffic flow data from one site on a commuter 

route within a large urban area in northwest England.  Section 2.5 details the 

potential for future work relating to predictable variability and the use of Functional 

Data Analysis in transportation research.  

 

2.2 Variability in daily flow profiles 

2.2.1 Requirements 

The purpose of this research is to identify day types with significantly different flows 

so that relevant transport policies can be identified and tested.  The method used 

should also produce sufficiently detailed traffic flow profiles to use as inputs to 
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within-day dynamical models.  When comparing daily flow profiles, Weijermars and 

van Berkum (2005, p832) stressthat“itisimportanttotakebothdifferencesin

shapeandinheightintoaccount”.Thisisrelevantfortheexplorationofdaytypes

with systematically different flow profiles as the separation of differences in the 

overall volume of traffic (the magnitude) from the shape of the profile could provide 

indirect information about the underlying cause of the variation.  For example, 

differences in the shape of the profile could be due to constraints such as shop 

opening hours or hours of daylight.  Differences in the magnitude of flows, however, 

are more likely to be dictated by the demand for activities, for example the total flow 

on commuter routes may vary based on the time of year.  As well as understanding 

the causes of the systematic differences, exploring whether differences are due to 

the magnitude or the shape of the profiles can also assist in the formation of 

policies.  If the shape of the flow profile differs between day types, it may be 

relevant to consider whether time of day varying congestion charging, car parking 

prices or public transport provision should be tailored to the different day types.  

Different types of policy may be required for day types with higher magnitudes of 

flow, for example working with local employers, public transport providers and 

encouraging changes in route, as was seen for a very short period of time in 

London during the 2012 Olympic Games (Transport for London, 2013).  The overall 

magnitude and shapes of the profiles are, however, inextricably linked and the two 

aspects should be considered together to fully understand the patterns observed.  

A more concentrated peak period, for example, may be a cause for concern if the 

total daily flow is high, but not if it coincides with a low total daily flow.  

Analysis of the magnitude and shape of daily traffic profiles can be undertaken 

using discrete time periods, as demonstrated in Weijermars and van Berkum 

(2005).  However, Habib et al. (2009, p641) statethat“attemptingtoforcetimeinto

a discrete framework is inherently limiting, often requiring unrealistic simplifying 
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assumptions…orhighlycomplexmodels”.Thisisalsotrueforthisanalysis,

where time periods could be assumed to be independent, or a complex model 

including correlations between adjacent and non-adjacent time periods could be 

applied.  Even a complex model using discrete time periods would have limitations, 

however, as the arbitrary borders would still indicate, for example, that 8:14 am is 

more similar to 8:01 than 8:16 when using 15 minute intervals (Habib et al., 2009).    

Treatingthetimeofdayasacontinuousvariablewouldallow“amaximum

exploitationoftherecordeddata”(Guardiola et al., 2014, p133).  This could allow a 

more detailed examination of the timing and widths of peak periods and would also 

provide a more suitable input for a within-day dynamical model.  Information would 

not be lost in an aggregation process but the resulting profile may contain too much 

variation so that overall trends are hard to identify.  As with the choice of interval 

width in discrete time analyses, a suitable technique would need to be identified 

which can retain an appropriate amount of detail.  For the current application it is 

therefore most suitable to represent the time of the day by a continuous variable, 

but days should be treated as discrete observations.    

For use in practice, the method would need to be fairly quick and easy to apply and 

generate outputs which can be easily interpreted.  Also, for scenario testing there 

must be a way of testing whether a day type variable has enough of an impact on 

the flow profiles to warrant an additional model run. 

In summary, then, the key requirements are: 

a) to provide as much indirect evidence as possible on the cause of the 

differences by considering the magnitude and shape of the flow profiles 

separately where possible, 

b) to consider the time of the day as a continuous variable, 

c) to take into account correlations between times of the day, 

d) to have a robust way of identifying key features in the profiles, and  

e) to have a way of testing the statistical significance of day type variables. 
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2.2.2 Choice of technique 

There is not an obvious technique to use to examine the shape of daily flow 

profiles.  The majority of the research aimed at predicting traffic flow profiles 

focuses on short term forecasting for real-time applications (see Vlahogianni et al. 

(2004) and Vlahogianni et al. (2014) for a review of methods applied).  Vlahogianni 

et al. (2014) define short term forecasting as a process using both past and current 

data to estimate the traffic conditions for a time period either seconds or hours in 

the future.  As the current paper is focused on identifying a typical daily flow profile 

on a specific day type using past data only, alternative methods are required.  

More relevant methods relate to the identification of patterns in past daily profiles 

only.  One option would be to represent the flow profiles as time series, i.e. a 

sequential set of data points for each profile, for example the average trend or 

Principal Component Analysis methods described in Li et al. (2015).  Other time 

series based approaches include Jiang and Adeli (2005) who present a‘time-delay 

recurrent wavelet neural network model’whichtheyproposecouldbeusedfor

predicting traffic flow profiles on future days.  In this approach, all past data is 

considered as one long time series and therefore day types would need to be 

identifiable by a fixed lag.  As day types such as public holidays could not be 

considered using this approach and the information provided by neural network 

approaches may not aid explanations, this approach is not suitable for the current 

research.  Tang et al. (2014) use a complex network approach to identify patterns 

in daily traffic flow profiles.  In this method, the day types are constructed through 

an examination of the data and periodicities observed, rather than being specified 

externally.  Whilst all of these methods have their advantages, they are not suitable 

for the current analysis as they do not satisfy requirement b).   

Time of day has been considered as a continuous variable in Functional Data 

Analysis which has been used by Guardiola et al. (2014) and Chiou et al. (2014) to 
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identify patterns and subsequently classify daily flow profiles into groups.  Of the 

methods previously used in transportation research, Functional Data Analysis has 

the most potential for the current research as it does not depend on fixed lags 

between day types, is relatively easy to apply, and provides outputs which are easy 

to interpret.  Also, Li et al. (2015) describe the four main areas in traffic time series 

analysis as detecting abnormalities, data compression, imputation of missing data 

and prediction.  Functional Data Analysis has already been in transportation for 

outlier detection (Guardiola et al., 2014) and for missing data imputation (Chiou et 

al., 2014), and therefore using it for prediction allows us to build on, and perhaps in 

the future integrate with, existing research.   

Functional Data Analysis (FDA) encompasses a broad range of techniques for 

analysing data where each observation is a curve as opposed to a single point.  

FDA techniques have been used in many disciplines, including ergonomics 

(Faraway, 1997), oceanology (Nerini and Ghattas, 2007) and risk response (Lee et 

al., 2009).  Ramsay and Silverman (1997, p8) highlight the use of FDA“tostudythe

importantsourcesofpatternandvariationamongthedata”.Inmanycasesitis

used for the former, to classify curves into groups, for example in Ferraty and Vieu 

(2003), Nerini and Ghattas (2007) and Guardiola et al. (2014).  There is an 

extensive literature surrounding the issues raised by requirement d) and a 

commonly used method, using a roughness penalty, will be described in 

Section 2.3.1.   

By considering each daily flow profile as an observation, correlations between 

times of the day are taken into account and, therefore, requirements b) and c) are 

satisfied.  FDA has the added advantage that the times at which the measurements 

were taken do not need to coincide.  This would be relevant if an alternative data 

source (for example manual count data) was available for a particular day which 

was crucial to include in the analysis, but was aggregated at a higher level than the 
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rest of the data.  Such data could be included in the analysis without having to 

further aggregate the remainder of the data, although care would need to be taken 

in interpreting the results.  The relationship between time periods can be explored 

in greater detail by examining the first derivative (for the rate of change) and higher 

order derivatives of the functions at different points in time.  Another advantage of 

using FDA is the ability to separate timing and intensity, thus making it suitable for 

the exploration of the magnitude, timing and length of the peak periods in daily flow 

profiles.   

FDA has only occasionally been used in transportation research despite the 

abundance of time series data.  Gao and Niemeier (2008) used FDA to examine 

ozone and NOx concentrations throughout the day with the aim of informing 

transport policies, but the Functional Principal Component Analysis (FPCA) did not 

include traffic data.  Chen and Müller (2014) included an application to transport 

data in their paper on conditional distributions for functional data.  The functions in 

their work correspond to speed profiles of individual vehicles over a fixed section of 

road and a method based on FPCA was used to produce prediction regions for the 

average speed in future time periods.  Research using FDA to look at daily traffic 

flow profiles is limited,totheauthor’sknowledge,to Guardiola et al. (2014) and 

Chiou et al. (2014).  Guardiola et al. (2014) used FPCA, applied to daily flow 

profiles for the real-time detection of flows deviating from the expected profile.  

Chiou et al. (2014) used FPCA for the detection of outliers and the imputation of 

missing sections of daily profiles.  FPCA is a useful technique for identifying 

patterns in the data, but Ramsay et al. (2009, p100) highlight that“it tends to 

happen that only the leading eigenfunction has an obvious meaningful 

interpretation”.  While this statement is debateable, particularly since Guardiola et 

al. (2014) had meaningful interpretations for their three principal components, it is 

true that the principal components are not guaranteed to relate to day type 



51 

 

characteristics that are known in advance.  It is therefore not suitable for the current 

research where the aim is to predict the daily profile for any future day where only 

the date is known for certain.   

Therefore, whilst FDA is a promising approach for the examination of daily flow 

profiles, the most commonly used technique, Functional Principal Component 

Analysis, is not suitable for the current research.  This research will therefore use a 

different tool within FDA, namely Functional Linear Models, which is an extension 

to standard linear regression modelling, satisfies requirement e) and will be 

described in detail in Section 2.3.2.  While FDA can account for differences in the 

magnitudes and shapes of profiles, it would provide greater insight into the causes 

of differences, and satisfy requirement a), if these two aspects were analysed 

independently.  ANOVA is an obvious option for examining total daily flow as it 

compares specified groups within the data and determines whether the means 

differ.  In order to apply ANOVA techniques, however, certain assumptions must 

hold and this will be discussed in more detail in Section 2.3).   

 

2.3 Methodology 

Figure 2-1 provides an overview of all of the stages which make up the proposed 

method.  Total daily flows can be analysed using standard ANOVA methods, 

provided certain assumptions hold.  The total daily flow needs to be normally 

distributed within each group and the population variance within each group should 

be equal.  The observations should also be independent.  Data should be tested for 

normality and for homogeneity of variances before ANOVA is undertaken.  Where 

these assumptions do not hold, alternatives exist such as data transformation or 

non-parametric tests (for example the Kruskal-Wallis test used in Section 2.4).  The 

independence assumption is required not just for ANOVA but also for non-
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parametric alternatives.  To examine total daily flows, adjustments may need to be 

applied in order to remove seasonal and longer term trends, assuming a 

multiplicative relationship.  This should provide a more stable basis for the day of 

the week testing.  After applying a suitable test, a plot of the residuals can be 

examined to determine whether the independence assumption appears to be 

reasonable.            

The process for producing a model based on the shapes of flow profiles is not a 

standard technique used in transportation research and therefore is described in 

detail in this section.  The flow data is assumed to be available aggregated into 

time bands, although it should be noted that the narrower the bands, the more 

detailed the corresponding profiles will be.  To remove the magnitude effects from 

the profiles (as these will be analysed separately), the aggregated flows 𝑢𝑖𝑗, for time 

period 𝑗 on day 𝑖, need to be standardised using 𝑦𝑖𝑗
𝑜𝑏𝑠 = 𝑢𝑖𝑗/∑ 𝑢𝑖𝑗𝑗 .  The process 

of converting these points into daily flow profiles, 𝑦𝑖(𝑡) for day 𝑖, will be described in 

Section 2.3.1.  The analysis of these profiles using Functional Linear Models will be 

described in Section 2.3.2.   
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Figure 2-1: Overview of methodology to clean, fit appropriate models and 
apply statistical significance tests to traffic flow data to produce 
representative flow profiles for each significantly different day type 
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2.3.1 Estimating daily flow profiles using B-splines 

Although there are many ways in which time series data can be expressed, for the 

approach used in this paper each daily flow profile needs to be represented by a 

smooth curve.  The success of the functional regression will, to a large extent, 

depend on the quality of this curve estimation process.  The simplest option would 

betoassumethattheprofilesforma‘family’ofdistributionswhoseparametersvary

from day to day (as in Watling et al. (2004, p45 onwards) in relation to travel times).  

In this research it is important to retain key features in the data such as the start 

and end times of peak periods and the gradient of the profile through the peak and 

therefore greater flexibility is required.  A commonly used approach is to represent 

each function as a linear combination of functions, these component functions 

known as basis functions.  Using a linear combination of basis functions is a flexible 

approach with computational advantages (Ramsay and Silverman, 2005).   

The basis function should be chosen so as to best represent the key features of the 

data.   For example, a Fourier series basis would not be an obvious choice in this 

case as it is a periodic function.  Whilst other bases could reasonably be used, for 

example a wavelet basis, in this paper B-splines will be used.  B-splines are often 

used as de Boor (2001, p95) has shown that all polynomials of order p can be 

represented as linear combinations of B-splines of that order.  This is particularly 

important given the distinctive M-shaped nature of daily flow profiles.  B-splines are 

piecewise polynomials which are specifically designed so that they have continuous 

(p-1)th order derivatives (where p is the degree of the polynomial used), even where 

the pieces  join.  This means that cubic B-spline representations of the daily flow 

profiles would have continuous second order derivatives.  Each B-spline is 

piecewise polynomial with compact support, i.e. it is non-zero on one small section 

of the estimation interval only (Ramsay and Silverman, 1997, p49).  This is also an 

attractive property of B-splines, as demonstrated in Figure 2-2, as the overlapping 
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produces functional estimates which are better able to represent local features in 

the data than methods which consider the entire interval at once, for example 

Fourier or polynomial bases (Ramsay and Silverman, 1997, p48).  Using B-splines, 

and cubic B-splines in particular, also makes the curve estimation process 

consistent with the method used on daily traffic flow profiles in Guardiola et al. 

(2014).        

First 
order 

B-splines

Second 
order 

B-splines

Third 
order 

B-splines

08:00 08:05 08:10 08:15 08:20

 

Figure 2-2: B-spline coverage example 

 

The standard process for constructing B-spline basis functions (de Boor, 2001, 

p89) is used in this research.  Knots separate the interval over which 𝑦𝑖(𝑡) is to be 

estimated into subintervals called knot spans, which in Figure 2-2 are five minute 

intervals.  In this paper, only uniform knot spacing with knots coinciding with data 

points has been considered.  This is to ensure consistency across all functions 

estimated and because a roughness penalty will be included in the estimation 

process (see below).  The process starts with the construction of a first order B-

spline for each knot span as shown in equation (1):  



56 

 

 𝐵𝑘,1(𝑡)  =  {
1            𝑖𝑓    𝑡𝑘 ≤ 𝑡 ≤  𝑡𝑘+1 
0                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1) 

 

where 𝐵𝑘,1(𝑡) is the B-spline with knot k as the defining point (on the left hand side) 

and of order 1.  𝑡𝑘 is the time of day relating to the start of the kth subinterval.  The 

first order B-splines, 𝐵𝑘,1(𝑡), are simply step functions taking the value 1 in [tk, tk+1] 

and 0 elsewhere. 

The Cox-de Boor recursion relationship (de Boor, 2001, p90) shown in equation (2) 

can then be used to define B-splines of higher orders.   

 𝐵𝑘,𝑞(𝑡)  = 𝜔𝑘,𝑞𝐵𝑘,𝑞−1(𝑡)  + (1 − 𝜔𝑘+1,𝑞)𝐵𝑘+1,𝑞−1(𝑡) (2) 

where: 

𝜔𝑘,𝑞 =
(𝑡 − 𝑡𝑘)

(𝑡𝑘+𝑞−1 − 𝑡𝑘)
 

 

Once the B-splines have been generated, the coefficients in the linear relationship 

need to be estimated based on the standardised flows, 𝑦𝑖𝑗
𝑜𝑏𝑠, to produce suitable 

estimates of the daily flow profiles.  Even though the daily flow profiles are 

estimated using cubic B-splines which guarantee continuous second order 

derivatives,theymaystillbe“’rough’or‘wiggly’”(Green and Silverman, 1994, p4) if 

estimated using a least squares estimation process.  In order to find the optimal 

balance between capturing local features in the daily profiles and retaining 

excessive noise, a roughness penalty can be added within the least squares 

estimation process used to estimate the daily flow profiles from the count data 

(Ramsay and Silverman, 1997, Chapter 4).  This is Tikhonov Regularization applied 

tofunctionaldata.Theroughnesspenalty,denotedbyλ,can take many forms in 

FDA, but the integrated squared second derivative is commonly used (Silverman, 

1985, Green and Silverman, 1994, Ramsay and Silverman, 1997), resulting in the 

following formula for the penalized residual sum of squares to be minimised: 
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 𝑃𝐸𝑁𝑆𝑆𝐸 =∑{𝑦𝑖𝑗
𝑜𝑏𝑠 − 𝑦𝑖(𝑡𝑗)}

2

𝑗

+ 𝜆∫{𝑦𝑖′′(𝑥)}
2 𝑑𝑥 (3) 

where 𝑦𝑖𝑗
𝑜𝑏𝑠 is the standardised observed flow at time 𝑗 on day 𝑖, and 𝑦𝑖(𝑡𝑗) is the 

estimate of 𝑦𝑖𝑗
𝑜𝑏𝑠 using the estimated flow profile.  Fitting based on PENSSE 

restricts what functions can be fitted. Those functions with large overall second 

derivatives will be penalized (by a factor of lambda).  Lambda is the roughness 

penalty which represents the weight given to the fit to the data relative to the weight 

giventothe‘smoothness’oftheestimate.Figure 2-3 demonstrates different flow 

profiles which could be estimated using the same five minute flow data from one 

day, using different values for the roughness penalty.  The choice of lambda should 

not be made arbitrarily, but should be estimated using the data.  This can be done 

using cross-validation.  As in Ramsay and Silverman (2005, p97), the cross-

validation score for a given value of λis the sum of squared errors based on a large 

sample of estimates of the functional regression coefficients using the leave-one-

out method.  By calculating the cross-validation scores for a range of suitable 

values for λ, the λ with the lowest score can be selected to use in the analysis.  The 

suitability of the λ selected using the cross-validation method will be discussed 

further in Section 2.4.2.2.    
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Figure 2-3: Estimated daily flow profiles for one day for a site in Greater 
Manchester with different roughness penalties applied 

 

2.3.2 Analysing functional data 

Whilst Figure 2-3 demonstrates the standardised flow profiles which could be 

estimated from flow data from one day (using different values of lambda), this 

process needs to be repeated for each day within the dataset.  Figure 2-4 shows 

the 𝑦𝑖𝑗
𝑜𝑏𝑠 (i.e. the fifteen minute aggregated flows) on the left hand side and the 

associated 𝑦𝑖(𝑡) (the estimated flow profiles) on the right hand side, for one month 

of data from the case study site in Greater Manchester.  The value of lambda used 

for every day was 10-6, as determined by a cross-validation procedure.  Although 

the morning weekday flows follow a similar pattern, the heights of the peaks, 

between-peak and evening flows vary greatly.  Figure 2-4 emphasises that despite 

theuseofaroughnesspenalty,thefunctionsontherighthandsideare‘messy’

individual observations which will require additional processes to analyse.  Even 

fromthisonemonthofdata,itisclearthatjustusingan‘average’profileforpolicy
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testing is likely to be insufficient if the policy impact is sensitive to small changes in 

the magnitude or shape of daily flow profiles.   

Figure 2-4: One month of standardised traffic flows represented by point data 
(left side) and by estimated functional observations (right side) 

 

2.3.2.1 Functional linear models with functional responses 

The relationships between day type identifiers, such as the day of the week, and 

daily flow profiles can be explored using an extension to linear modelling where the 

responses are functions, proposed by Ramsay and Silverman (1997).  A Functional 

Linear Model with a functional response has the following structure: 

 𝒚(𝑡) = Z𝜷(𝑡) + 𝜺(t)   𝑡𝜖ℝ (4) 

 

Or in alternative notation: 
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⋮
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 (5) 

 

Here, 𝒚(𝑡) is a vector of functional responses with respect to continuous time, t, 

which in this case would be the daily flow profiles.  Z is a design matrix consisting 
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of entries 𝑧𝑘,𝑙, which are 1 if day 𝑘 is of type 𝑙 and 0 otherwise.  𝜷(𝑡) is, therefore, a 

vector of functional coefficients.  𝜺(𝑡) is a vector of functional residuals which 

represent the unexplained variability after the day type variables have been taken 

into account.  These residuals are assumed to be statistically independent 

(Ramsay et al., 2009, p60). 

As the focus here is on predictable variability, only information which could be 

known far in advance will be used.  The indicators in the design matrix will therefore 

relate to the day of the week and season only.  The day of the week was selected 

as there is a growing body of evidence of the impact on the road network, even 

between different weekdays (Rakha and Van Aerde, 1995, Weijermars and van 

Berkum, 2004, Zhang et al., 2007, Ozbay et al., 2014).  Similarly, there is evidence 

of seasonal trends in traffic flows (May, 1990, Stathopoulos and Karlaftis, 2001).  

The Z matrix is, therefore, easy to construct, but the 𝜷(𝑡) need to be estimated by 

seeking to minimise the residuals (as 𝒚(𝑡) is known).   

2.3.2.2 Fitting the model 

In the current research the aim is not to estimate 𝜷(𝑡) for all possible day types, but 

to identify the most important day type variables to include in the model and then 

estimate the relevant coefficients.  As testing all possible combinations of the 

dummy variables is not viable for larger problems, the standard forward stepwise 

regression process will be used.  In practice this could begin with the structure 

currently used (for example just including a weekend/weekday split) and then test 

whether adding any other indicators would increase the explanatory power of the 

model.   

Techniques for simultaneous variable selection and estimation, such as LASSO 

(Tibshirani, 1996), have been applied in functional analysis contexts (Matsui and 

Konishi, 2011, Lian, 2013, Mingotti et al., 2013).  In the current application, 
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however, a non-automated process has been used so that expert knowledge could 

be used to specify the hierarchy of variables to consider.  In the example presented 

in Section 2.4 the separation of weekdays and weekend days will be considered 

first, then individual days of the week, and then seasons.  The order of the 

hierarchy matters because each stage of testing is undertaken separately for each 

significantly different subset identified in the previous stage.   

In order to fit the models, a functional extension to the least squares approach will 

be used to estimate the day type coefficients, 𝜷(𝑡).  As there is an area between 

the observed and predicted daily flow profiles, the term to be minimised can be 

expressed (Ramsay and Silverman, 1997, p141) as: 

 𝑆𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 =∑∑∫[𝑦𝑖(𝑡) − 𝑍𝑖,𝑗�̂�𝑗(𝑡)]
2
. 𝑑𝑡

𝑚

𝑗=0

𝑛

𝑖=1

 (6) 

 

To be consistent with the least squares approach, F-type tests comparing the fit of 

nested model specifications will be used to determine the most appropriate model 

touse.Thisisequivalenttotestingthenullhypothesisthatthe‘reduced’model,

including fewer predictor variables,ispreferabletothe‘full’modelwhichincludes

one or more additional predictor variables.   Ramsay and Silverman (2005) suggest 

undertaking F-tests at each x-value, to produce point-wise test statistics for 

functional data.  This would not, however, provide information about the statistical 

significance of the functional model, even if all of the point-wise tests are significant 

(Górecki and Smaga, 2015).   

As an alternative to producing point-wise statistics, tests have been proposed to 

measure the overall significance of a functional model (see Górecki and Smaga 

(2015)).  The F-type test proposed by Shen and Faraway (2004) for linear models 

with functional responses will be used as it is relatively easy to apply and Shen and 
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Faraway (2004, p1256) assertthatit“examinesimportantratherthantrivial 

differencesbetweenmodels”.Thetestinvolvescalculatingasinglevalueforeach 

model comparison as follows: 

 

where RSS is the residual sum of squares, df is the degrees of freedom and the 

subscripts show whether the value refers to the reduced or the full model.  The 

residual sum of squares is calculated by laying a fine grid over the profiles as an 

approximation for the area between the two curves.  

The distribution of 𝐹𝑛𝑒𝑠𝑡, the functional F distribution, can be estimated by the 

ordinary F distribution with degrees of freedom 𝜑(𝑑𝑓𝑟𝑒𝑑 − 𝑑𝑓𝑓𝑢𝑙𝑙) and 𝜑 × 𝑑𝑓𝑓𝑢𝑙𝑙, 

where 𝜑 is the degrees of freedom adjustment factor (Shen and Faraway, 2004, 

p1246).  In practice, the method can be easily applied by laying a fine grid over the 

functions, as demonstrated in Yang et al. (2007).  The degrees of freedom 

adjustment factor can then be estimated (Shen and Faraway, 2004, p1246) by: 

 

After laying a fine grid over the functions, it is straightforward to compile E, the 

empirical covariance matrix based on the full model, using the covariances 

between flows at each time of the day corresponding to the fine grid.  This F-type 

test assumes that the residuals are Gaussian stochastic processes.  This 

assumption will be considered further in Section 2.4.2.2.   

 𝐹𝑛𝑒𝑠𝑡 = (
𝑅𝑆𝑆𝑟𝑒𝑑 − 𝑅𝑆𝑆𝑓𝑢𝑙𝑙

𝑅𝑆𝑆𝑓𝑢𝑙𝑙
) × (

𝑑𝑓𝑓𝑢𝑙𝑙

𝑑𝑓𝑟𝑒𝑑 − 𝑑𝑓𝑓𝑢𝑙𝑙
) (7) 

 𝜑 =
[𝑇𝑟𝑎𝑐𝑒(𝑬)]2

𝑇𝑟𝑎𝑐𝑒(𝑬2)
 (8) 



63 

 

2.3.3 Combining the total daily flows and standardised flow 

profiles 

The day types identified using the total daily flows and using the standardised flow 

profiles should then be considered alongside one another in order to observe 

systematic differences and consider the implications.  The standardised flow profile 

for each day type should then be scaled up by the relevant total daily flow or flows 

for use as dynamical model inputs.  This final stage is represented by the box at the 

bottom of Figure 2-1 which combines the outputs from the magnitude and profile 

shape processes.  

 

2.4 Empirical study 

The methodology described in the previous section was applied to data from a loop 

detector on a key arterial route into Manchester.  The road is a single lane urban 

road connecting Stockport (a large town approximately 6 miles south east of 

Manchester) to the city of Manchester.  Two years of data (from 1/05/2013 to 

30/04/2015) was used in the analysis.  Data relating to public holidays was 

removed prior to the analysis as the profiles differed from non-public holiday days 

and yet they were not a homogenous group with sufficient sample size to include in 

the model.  The B-spline estimation and the Functional Data Analysis were 

undertakenusingthe‘fda’packageinR(Ramsay et al., 2014). 

The results will be presented, firstly for the analysis of the total daily flow data and 

then for the analysis of the daily profiles.  Section 2.4.2 then includes a discussion 

of the smoothing parameters used, treatment of outliers and an analysis of the 

residuals from the same analysis. 
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2.4.1 Results 

A non-parametric test was required to assess the impact of the day of the week on 

the total daily flow as there is insufficient evidence to reject the null hypothesis in 

Levene’stestforthehomogeneityofvariances(p=0.40),butthedataisnot

Gaussian distributed (from visual inspection and Shapiro-Wilk test (p<0.001)).  The 

day of the week had a statistically significant impact (Kruskal-Wallis test statistic 

495, p<0.05) on total daily flow for this location, with two exceptions: flows on 

Thursdays and Fridays were not significantly different and neither were flows on 

Tuesdays and Wednesdays.  As monthly adjustment factors have been applied, a 

formal test of seasonal differences in total daily flows has not been undertaken.       

The shape of the daily flow profiles were considered next.  To remove the 

magnitude effect (which was considered above), the flow profiles were transformed 

into the percentage of flows through the day relative to the total flow for that day.  A 

smooth daily profile was then estimated for every day of data.    

The results of the step-wise regression are presented in Figure 2-5.  Each row 

represents a model formulation with the regression coefficients shown.  Green 

arrows indicate statistically significant F-type test results (𝛼 = 0.05), i.e. where the 

full model is preferable to the reduced model.  
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Figure 2-5: Step-wise regression results for the site in Manchester 

 

For the site analysed, all days of the week were identified as having significantly 

different standardised flow profiles.  For this particular site this process is not 

helpful in reducing the potential number of scenarios to test, but the plots of the 

coefficients (shown in Figure 2-6 and Figure 2-7) do demonstrate the ways in which 

the profiles vary.  The more concentrated morning peak on a Monday and the 

variation in the rate of flow decrease in the evening may be of particular interest to 

explore, depending on the potential policies being explored. 
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Figure 2-6: Average flow profiles for Saturdays and Sundays 

 

 

Figure 2-7: Average flow profiles for weekdays 
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There are many similarities between the average profiles for weekdays shown in 

Figure 2-7.  Although the F-type tests have identified statistically significant 

differences between the profiles for each day of the week, this does not necessarily 

mean that all parts of the profiles are significantly different.  To explore the 

differences in more detail, confidence intervals can be plotted around these 

functional coefficients.  The confidence intervals can usually be calculated using 

the‘fda’packageinR,butthecasestudydatasetwastoolargetousethismethod,

even using High Performance Computing, and therefore a suitable approximation 

was required.   

Pointwise confidence intervals were estimated for the average standardised flow at 

five minute intervals throughout the day for each day of the week.  The average 

flows for each day of the week at each time interval are a rough approximation for 

the functional coefficients from the FLM.  Bootstrapping was used and therefore no 

distributional assumptions were made.  The pointwise 95% confidence intervals for 

the average standardised flows on Thursdays and Fridays are shown in Figure 2-8.  

Although the intervals overlap for most of the day, there are times of the day where 

there is no overlap.  The intervals are separate as flows increase before the 

morning peak, as they decrease after the evening peak (see inset) and at times 

between the peaks.  The fact that the confidence intervals for Thursdays and 

Fridays do not always overlap is also a reflection of the relatively large amount of 

data available for this analysis as this has an effect on the interval widths.  Other 

weekday comparisons showed different times of the day at which profiles differ.   
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Figure 2-8: Estimated 95% confidence intervals for the standardised flows at 
each time of day on Thursdays and Fridays 

 

The day of the week may be expected to have an impact on daily flow profiles, but 

the method can also be used to explore less obvious impacts.  Figure 2-9 shows 

the estimated seasonal coefficients when step-wise regression was undertaken on 

data from non-holiday Mondays only.  In this case, winter and summer have a 

significant impact on flow profiles, but the profiles in spring and autumn were not 

statistically significantly different from one another (𝛼 = 0.05).  The winter profile 

includes a smaller proportion of flows in the morning peak and a larger proportion in 

the middle of the day, perhaps indicating a higher proportion of non-commuting 



69 

 

trips during the holiday season.  The seasonal differences are far more pronounced 

during the morning peak and the inter-peak period than during the evening peak.   

 

Figure 2-9: Standardised flow profiles by season for non-holiday Mondays 

 

The total daily flows and the flow profiles estimated under the different day types 

should then be combined to produce a suitable input for within-day dynamical 

models.  Figure 2-10 includes some examples of day types which may be 

considered for further investigation based on the full results from the analysis 

above.  These have been constructed by combining the estimated total daily flow, 

using data from the relevant months and days of the week, and regression 

coefficient (for example �̂�𝑀𝑜𝑛_𝑠𝑢𝑚𝑚𝑒𝑟) for the relevant day type.  In this example, the 

profiles suggest that if the link is close to capacity or a time of day dependent policy 

is being considered, modelling effects just based on average weekday conditions is 

unlikely to be sufficient.     
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Figure 2-10: Example flow profiles 

 

2.4.2 Discussion 

2.4.2.1 Considerations in applying the model 

As discussed in Section 2.3.1,thevalueoftheroughnesspenalty,λ,wasestimated

using cross-validation.  The cross-validationprocessaimstoidentifythe‘best’

valueofλbyminimisingthedifferences between the individual data points and the 

estimated daily profiles using a linear model applied to different subsets of the data.  

It is not clear, however, whether this objective is suitable for all purposes.  In order 

to examine the robustness of the roughness penalty used, the day of the week 

analysis was undertaken separately using lambda values of 10-8, 10-7, 10-6, 10-5 and 

10-4.  Although all seven days of the week were identified as being statistically 

significant under each of these values of lambda, the value of the roughness 

penalty used does affect the ability to interpret possible reasons for the differences 

between coefficients using visual inspection.  Figure 2-11 demonstrates the 
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differentattributesofa‘typical’Saturdayidentifiedunderdifferentvaluesoflambda.

As suggested by Silverman (1985, p5), it may be preferable to use the cross-

validation process as a starting point and then examine alternative values whilst 

considering the purpose of the research.  In this case study, for example, the larger 

values of lambda may be suitable if the profiles are to be used as inputs to a within-

day and day-to-day dynamical model for area-wide forecasting where only an 

approximation of the profiles for each day type are required.  Smaller values of 

lambda could be used for applications requiring very detailed information about 

parts of the profile, for example for modelling the impact of time of day varying 

congestion charges on different day types.    

 

 

Figure 2-11: Saturday coefficients for lambda between 10-8 and 10-4 

 

Another significant decision made in the analysis was to only exclude daily profiles 

where the data was known to be incorrect due to data collection issues.  Other 

individual profiles which visually would appear to be outliers were included in the 

analysis.  Note that the identification of individual outlier profiles is different from the 

exclusion of Bank Holidays which could be done a priori using dates alone and 
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therefore is a well defined day type which is not suitable for inclusion in the 

analysis.Keepingindividual‘outliers’inthedataensured that the full range of flow 

profiles actually observed were included so as not to bias any analysis by only 

including those whichwereperceivedtobenearsome‘expected’profile.  If the 

decision was made to exclude outliers, they could be identified using various 

methods including methods based on Principal Component Analysis (Chiou et al., 

2014), influential observations (Shen and Xu, 2007) or the measurement of the 

‘depth’ofasetoffunctionsasusedinGuardiola et al. (2014).     

 

2.4.2.2 Analysis of residuals 

For the analysis of total daily flows to be valid, the residuals need to be 

independent.  A plot of the residuals after an initial application of the Kruskal-Wallis 

test revealed trends in the data for December and in early January (up to 5th), with 

residuals gradually increasing before and after Christmas.  The data for these 

periods in both years was then removed and the residuals in Figure 2-12 were 

obtained.  There are no obvious patterns which suggest the residuals are 

interdependent.  Although this assumption has been satisfied, using the seasonal 

and trend adjustment process means that it is not reasonable to formally test 

seasonal differences in the data.  An examination of the monthly adjustment factors 

applied may, however, suggest particular months or seasons to model separately. 
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Figure 2-12: Total daily flow residuals after seasonal adjustment, excluding 
December and early January data 

  

The functional residuals arising from the Functional Linear Model (FLM) also need 

to be considered.  Each residual from the day of the week model can be calculated 

using: 

 𝜀�̂�(t) = 𝑦𝑖(𝑡) − 𝒁𝑖
𝑇�̂�(𝑡) (9) 

 

where 𝒁𝑖 is the vector of day type indicators relating to day i.  These are residuals 

from the Functional Linear Model only and therefore only consider the smoothed 

functions and not the underlying point data.  In this research the curve estimation 

process used is well established and therefore the residuals generated by moving 

from the point to the curve data do not require additional investigation.  

As proposed by Faraway (1997), Functional Principal Component Analysis (FPCA) 

of the residuals from the day of the week FLM analysis was undertaken.  In 

contrast to the main analysis, FPCA is appropriate here as the aim is to examine 

the variability not explained by the model to assess the suitability of the model.  The 

first four components are shown in Figure 2-13.  For each residual, the values at 

different times of the day are not independent, which supports the use of FDA 

where this is taken into account.  The percentage of variability explained by each 



74 

 

component (also shown in Figure 2-13) suggests that there may be other 

explanatoryvariablesaffectingthedailyflowprofilewhichhaven’tbeenaccounted

for.  These could include school term times, sporting events or weather conditions.  

The impact of weather conditions on transport choices and travel conditions has 

received a lot of attention (see Böcker et al. (2012) for a summary) and there has 

been progress in modelling such conditions, for example Lam et al. (2008) and 

Sumalee et al. (2011a) which could be utilised for scenario testing.   

 

  

  

Figure 2-13: The first four principal components of the FLM residuals 

 

The F-type test used in Section 2.4.1 relies on the assumption that the functional 

residuals are independent Gaussian stochastic processes (Shen and Faraway, 

2004).  Shen and Xu (2007) proposed visualising the Q-Q plot of studentized 

residuals against a Chi Squared distribution with 𝜑 degrees of freedom.  The plot 

for the data analysed above is shown in Figure 2-14. 
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Figure 2-14: Q-Q plot of studentized residuals and the associated Chi 
Squared distribution 

 

Clearly the plot is not a straight line as expected if the assumption holds.  To test 

whether this was due to outliers in the data, the regression process was repeated 

afterexcludinginfluentialoutlierswhichwereidentifiedusingCook’sDistance

(Shen and Xu, 2007).  The resulting Q-Q plot was not a straight line either.  Further 

testing identified that the distribution of the studentized residuals had a higher 

kurtosis than the associated Chi Squared distribution.  When the Gaussian 

assumption does not hold, permutation tests can be used to estimate the 

distribution of the test statistic rather than using the F distribution (Zhang, 2013).  

Good (1994) is a comprehensive text on permutation tests for point data, and other 

authors have applied these techniques to functional data (Muñoz Maldonado et al., 

2002, Zhang, 2013, Corain et al., 2014).Inapermutationtest,the‘labels’

connecting explanatory variables to observations are rearranged, and the test 

statistic is computed for this new, permuted dataset.  This process is repeated until 

a large enough sample of all possible permutations has been collated.  This sample 

provides information about the distribution of the test statistic under the null 

hypothesisthatthe‘labels’donotprovideanyinformationabouttheobserved
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value.  The test statistic computed using the correct labels is then compared to this 

distribution.  Permutation tests provide a flexible way of testing hypotheses where 

distributional assumptions do not apply, but they are very computationally intensive 

in comparison to the F-type test. 

A sample permutation test was undertaken for the final stage of the weekday 

analysis, namely the hypothesis that Tuesdays and Wednesdays have significantly 

different daily flow profiles.  The Tuesday and Wednesday indicators were shuffled 

5,000 times and the test statistic was computed for each permutation.  This process 

had a running time of approximately 100 hours, but improvements could be made 

to speed up the process, for example by running sets of permutations in parallel.  

The 95th percentile of the distribution, i.e. the critical value, obtained was 1.82 which 

compares to the estimated critical value based on the F distribution above of 1.17.  

The value of the test statistic was 5.06 and therefore the outcome of the test is the 

same under either critical value.  This may not always be the case, however, so 

permutation testing should always be considered if the Gaussian assumption is not 

satisfied.   

 

2.5 Conclusions and future work 

In this paper we present a method for identifying day types, relating to the day of 

the week or time of year, with systematically different daily flow profiles.  The 

method utilises Functional Data Analysis which is not often used in transportation 

research.  This approach has advantages as it can retain the complexity of within-

day flow dynamics whilst having the conceptual simplicity of having one 

observation (in the form of a profile) to represent each day.  This paper describes 

how data can be transformed into functional data and how linear models can be 

developed using the data.  A statistical method is also presented for identifying the 
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preferred model formulation and thus the day type factors which have a statistically 

significant effect on flow profiles.  The example using real-life traffic flow data 

identified that all seven days of the week had distinctive differences in the shape of 

the daily flow profile at this site.  These differences included the timing and intensity 

of peak periods but also differences during the night, which is increasingly of 

interest. 

The methodology could be applied by practitioners to gain a better understanding 

of traffic flows and would not require the purchase of any specialist software as the 

analysis in this paper was undertaken using the free software R.  By applying the 

proposed methodology, days of the week or times of year where particular 

problems arise could be identified and then policy solutions to target the causes of 

these problems could be devised.  Examples of such targeted policies might 

include: time-of-day varying congestion charges that themselves vary by day of the 

week or season; incentives to influence employers or shopping centres to adjust 

their opening times by day of the week or season; targeting public transport 

provision so that timetables are more responsive to the day of the week and 

seasonal needs of travellers.   

The method in this paper could be built upon to analyse multiple sites.  One 

approach could be to analyse sites independently and then develop a classification 

of sites based on the daily flow profile coefficients, or extract ‘global’effects.

Alternatively a more complex model could be developed to account for link 

correlations so that the relative attractiveness of routes under different scenarios 

could be considered.  As well as considering flows, future work could also consider 

systematic differences in capacity, perhaps due to lighting (van Goeverden et al., 

1998, Tenekeci et al., 2010) or/and weather effects (El Faouzi et al., 2010, Calvert 

and Snelder, 2013).  Day-to-day dynamical models (for example from Watling and 

Cantarella (2013b)) could be extended to incorporate predictable differences, both 
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in terms of input variables such as demand, but also by extending the transition 

functions between days to account for day type specific learning.  The models 

including stochastic demand in Watling and Cantarella (2013b, Section 4) could 

also be extended so that the stochastic demand relates to functional data, i.e. 

randomly selected daily profiles as opposed to single values. 
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3 Assessing the feasibility of using Bluetooth data to 

examine the repeated travel behaviour of road users 

Abstract 

Informationabouttravellers’repeatedtripbehaviour,includingmeasuresof

regularity and variability, provides valuable insights into traveller flexibility, habit and 

network experience.  Such data is usually collected using multi-day travel diaries 

but this paper explores whether data from fixed Bluetooth detectors could also be 

used.  Consideration is given to sources of bias, for example non-random sampling 

by traveller demographic, which are relevant when using detector data for this 

purpose as opposed to measuring travel times.  The potential of Bluetooth data 

with respect to spatial and temporal aspects of intrapersonal variability is explored 

using a case study in northern England.  Although the case study includes just 

eight Bluetooth detectors, in one year over 2 million trips were recorded. Despite 

most Bluetooth devices recording very few trips, 1,240 devices were recorded at 

least once per weekday on average, providing a large sample for examining 

intrapersonal variability.  The study highlights potential pitfalls in analysing 

intrapersonal variability in the timing of trips that can be remedied by identifying 

comparable locations or trip types and using a suitable metric to calculate the 

variability.  A suitable approach is presented which exploits the fact that Bluetooth 

data is collected at fixed points on the network and which does not require 

departure time or trip purpose information.  Similarly for spatial analyses, traditional 

approaches for analysing origin-destination pairs are not applicable, but by utilising 

all available spatial information about trips, trajectories can be estimated which can 

provide even more information about spatial variability.  In the case study area the 

detection rates varied greatly between sensors and therefore collecting 
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supplementary data on the detection rates of individual sensors once they have 

been installed is advised.   

 

3.1 Introduction 

In reviewing developments in transportation research, both Schlich and Axhausen 

(2003) and Heinen and Chatterjee (2015) have highlighted the disproportionate 

amount of attention paid to the variability between people, in contrast to the 

variabilityinanindividual’sbehaviour from day-to-day.  The latter, known as 

intrapersonal variability, is important because the regularity (or irregularity) of an 

individual’strips can provide an insight into their transport needs (Schlich and 

Axhausen, 2003).  These insights, which could relate to flexibility in the timing of 

trips or to the number of unique users in the observed situation, could inform 

transport policies.  Measuring the regularity of travel behaviours also matters 

because many transport models implicitly assume that the same individuals travel 

to work at roughly the same time every weekday.  This is particularly relevant for 

transport project appraisal where assumptions about trip regularity could have a 

substantial impact on predictions relating to behavioural response.  Intrapersonal 

variability can also inform the parameter values for day-to-day dynamical models 

whichincludelearningmechanisms,forexamplethe“switchingchoiceprobability”

described in Cantarella and Cascetta (1995) which relates to travellers 

reconsidering, but not necessarily changing, their previous route choice.  In other 

research, such parameters are considered to be measures of habit (Arentze and 

Timmermans, 2005, p16).  Understanding intrapersonal variability can also inform 

the development of user classes, for example based on attitude to risk (Shao et al., 

2006) or information availability (Han et al., 2016), and the corresponding 

parameters for modelling choices.    Another application could be to use a model of 
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intrapersonal variability as the basis for generating daily variations in demand, 

rather than using a standard statistical distribution such as in the models discussed 

in Nakayama and Watling (2014).   

In transportation research, intrapersonal variability has traditionally been explored 

using multi-day travel diary data from an activity pattern perspective (Huff and 

Hanson, 1986, Jones and Clarke, 1988, Bayarma et al., 2007).  More recently such 

surveys have utilised newer data collection tools such as GPS trackers (Elango et 

al., 2007, Stopher and Zhang, 2011) or mobile phone applications (Safi et al., 

2015).  These surveys are relatively expensive to undertake and place a burden on 

participants, so sample sizes and the period of time surveyed are usually small.   Of 

the surveys listed above, for example, some collected data for 15 days or less 

(Jones and Clarke, 1988, Stopher and Zhang, 2011, Safi et al., 2015) and others 

covered longer periods of time (between 35 days and 1 year), but had relatively few 

participants (149 people and 139 and 153 households respectively for Huff and 

Hanson (1986), Bayarma et al. (2007) and Elango et al. (2007)).  The availability of 

data from newly emerging sources, however, provides new opportunities to analyse 

individual travel patterns for greater numbers of people over much longer periods of 

time; behaviour over long periods is likely to be much more variable due to 

seasonal factors and longer term trends.  For example, mobile phone data was 

used by Järv et al. (2014) toanalysechangesinindividuals’activityspacesovera

twelve month period.  While mobile phone data can only provide limited 

geographical information2, other data sources are more closely connected to the 

transport network.  Smart card data, for example, provides opportunities to gain a 

betterunderstandingofindividuals’useofpublictransportation.  The literature on 

repeated trips using smart card data includes descriptions of trip frequency 

                                                

2 The only geographic information provided is the associated network antenna, which in 

Järv et al. (2014, p126) covered 0.8 km
2
 in Tallinn itself and 15.3 km

2
 in the 

surrounding area. 
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(Utsunomiya et al., 2006) and more complex analyses such as the clustering of 

travellers based on their trip characteristics (Morency et al., 2007, Ma et al., 2013, 

Kieu et al., 2015b).  Whilst the usefulness of analysing smart card data for 

strategic, tactical and operational purposes has been recognised (Pelletier et al., 

2011), similar data sources have not been utilised to better understand road users.   

One emerging data source which is particularly relevant for the analysis of road 

users is Bluetooth data.  Fixed Bluetooth sensors can be placed alongside roads 

and then set to continuously scan for any discoverable Bluetooth devices within 

their detection zone (see Bhaskar and Chung (2013) for more details).  Devices 

which use Bluetooth include mobile phones, laptops, hands-free devices and in-car 

audio systems.  For any Bluetooth devices detected by a sensor, the unique 

identifier, known as the MAC address, is recorded along with the time of detection.  

Bluetooth data is becoming increasingly popular for measuring travel times on the 

road network (Haseman et al., 2010, Hainen et al., 2011, Moghaddam and 

Hellinga, 2013), particularly in urban areas, and has also been used in OD 

estimation (Barceló et al., 2010, Carpenter et al., 2012).  Despite this growth in 

usage relating to spatial matching of observations, the day-to-day matching of MAC 

addresses to examine intrapersonal variability (or more correctly intra-device 

variability) has not been addressed, to the knowledge of the authors.   

Bluetooth is therefore an established source of data which has more precise 

location information than mobile phone data and can be used to collect data on a 

large number of travellers over a long period of time relatively cheaply.  There are 

disadvantages, however, and the limitations of Bluetooth data for travel time 

estimation are well documented (see Araghi et al. (2014)).  The requirements of 

data for analysing intrapersonal variability are different, however, and the aim of 

this paper is to explore the feasibility of using Bluetooth data to collect detailed 

information about intrapersonal variability in travel on the road network.  This paper 
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addresses both temporal and spatial variability and Bluetooth data from a case 

study area in Wigan, northern England, is used to demonstrate the types of 

analyses which could be attempted.  These examples then inform discussions on 

the suitability of Bluetooth data for each purpose.   

The structure of the paper will be as follows.  Section 3.2 includes a detailed 

description of the case study area and a more in-depth discussion of Bluetooth 

data.  Section 3.3 discusses potential sources of bias in the data, including missing 

individual trips which is particularly problematic for estimating trip frequencies.  

Intrapersonal variability in the temporal and spatial aspects of trips are considered 

in Sections 3.4 and 3.5 respectively.  Section 3.6 concludes the paper. 

3.2 Bluetooth data in the case study area 

Fixed Bluetooth sensors, also known as detectors, can record the unique identifier 

(MAC address) and corresponding timestamp for discoverable Bluetooth devices 

passing close by.  The Bluetooth devices could be associated with the vehicle, for 

example in-car sound systems or hands-free kits, or with a person in the vehicle, 

for example a mobile phone, tablet or laptop.  It is, however, possible to change the 

settings within these individual devices so that they are not discoverable by such 

sensors (Haghani et al., 2010).   

In most applications Bluetooth data is used for travel time estimation.  This is done 

by selecting two locations, matching the unique MAC addresses and then 

calculating the travel times as the differences between timestamps.  Once 

observations are matched from more than two sensors and across days or weeks, 

however, there is no longer a straightforward rectangular structure to the data.  The 

cleaning of the data needs to consider which observations to chain together and 

which to separate.  The complex data structure arises as a result of retaining all 

observations within a chain so as not to lose data.    
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3.2.1 Case study area 

This paper uses real data provided by Transport for Greater Manchester (TfGM) to 

demonstrate how Bluetooth data could be analysed.  TfGM co-ordinate transport 

across Greater Manchester which is a collection of ten boroughs in northwest 

England.   

Since 2011, TfGM have been installing fixed Bluetooth detectors alongside major 

arterials and orbitals in and around key urban centres such as Manchester, Wigan 

and Rochdale.  They were installed for the purpose of monitoring travel times on 

strategically important routes.  Antennae with 9dBi gain are used, which Bhaskar 

and Chung (2013) found provided a range of approximately 100m.  The developer 

of the detectors state that it can cover up to 6 lanes of traffic travelling at 70mph.  

TfGM adjust the strength of detectors on installation so that each is appropriate for 

the size of the junction.  The equipment uses an algorithm to truncate and encrypt 

MAC addresses prior to storing the data.  The process is, therefore, consistent with 

data protection regulations in relation to this type of data.  As of January 2017, the 

total number of Bluetooth detectors installed within Greater Manchester was over 

750.   

The case study area is around Wigan town centre, which sits within the 

Metropolitan Borough of Wigan and has a population of just over 322,000 (Office 

for National Statistics, 2016).  In 2015, 39% of trips into the centre of Wigan were 

made by car (Transport for Greater Manchester, n.d.) during the morning peak 

period (7:30-9:30).  The majority of vehicles on the roads into Wigan during this 

period were cars (over 80%), although there were also light goods vehicles and 

buses (Transport for Greater Manchester, n.d.).  Although there are relatively few 

Bluetooth detectors in and around Wigan, the detectors in place provide good 

coverage of major roads into the town.  The main focus of this paper will be the 

eight detectors shown in Figure 3-1.      
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Figure 3-1: Map of case study area including Bluetooth detector locations 

 

Data from all eight sites was analysed for one year, from 1/1/15 to 31/12/15.  The 

examples of missed observations in Section 3.3.3 and route choice in Section 3.5.2 

require specific detector characteristics which are not present in this case study 

area, however, and in those cases all available data from suitable sites close to 

Wigan has been used.  An overview of the data processing steps to transform the 

raw data into trips is described in Figure 3-2.     
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3.3 Potential sources of bias when estimating trip frequency 

or intrapersonal variability using Bluetooth data 

One of the most common questions asked about repeated travel behaviour is the 

frequency with which trips are made.  This informs us about the extent to which 

each traveller utilises the road network in their daily lives and how familiar each 

traveller is with the area.  The frequency of trips may also be used to make 

inferences about traveller types, for example whether an individual works full time 

in the area.    

 

Ensure that a maximum of 
one observation is 
retained each time a 
device passes a detector.   

 

Collate observations 
(each consisting of a 
sensor location, denoted 
by s, and a date-time 
stamp, denoted by t) by 
the MAC addresses.  For 
each MAC address order 
the observations by the 
date-time stamp.  

 

Compare adjacent 
observations to see 
whether they can be 
linked as part of the same 
trip.  Consider whether the 
travel time between the 
two sensors is likely to be 
due to a direct journey 
between the two using a 
motorised vehicle 
(considering the distance 
between detectors, speed 
limits and the travel times 
of surrounding devices).   

Figure 3-2: Processing Bluetooth data into trips 
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After cleaning and matching the data from all eight sites, 2.3 million trips remained 

in the dataset for analysis.  These trips were made by 196,557 devices, which 

equates to almost 12 trips per device in the year, on average.  The trips were not 

evenly distributed between the devices, however.  Over 81,000 devices recorded 

just 1 trip.  As the data is highly skewed, the frequency is plotted using a log scale 

in Figure 3-3, which shows trips per device. 

 

Figure 3-3: Number of trips detected in a one year period for each device 

 

In total, 1,240 devices recorded a trip at least 260 times during the year, which 

equates to once per weekday on average.  Although this is less than 1% of the 

devices recorded, the associated trips represent 22% of the trips observed.  The 

number of devices drops to 210 if we consider the devices which were observed at 

least 520 times, which equates to twice each weekday on average. 

Although this shows that in practical terms Bluetooth data can be used to collect 

data on repeated travel behaviour, it would be incorrect to report these basic 

findings as representative of road users in and around Wigan.  The usefulness of 
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the data first needs to be addressed by considering which trips are being recorded 

and what is missing.   

3.3.1 What Bluetooth data is measuring 

When considering trip frequency or intrapersonal variability using Bluetooth data, 

observations relate to devices and not to people.  While in some cases devices are 

likely to remain close to one person, for example mobile phones, other types of 

device may be shared by households or businesses, for example in-car systems.  

Whilst it may seem preferable to have data at the individual level, in some cases 

vehicle level data can be more informative, for example by recording what Zhang et 

al. (2002) call‘allocated’householdactivities,whoeverundertakesthem.

Delafontaine et al. (2012) have demonstrated that additional data collection can be 

undertaken to obtain details of the types of device being recorded by Bluetooth 

detectors, for example whether they are smartphones or laptops.  If required, this 

approach could be used to identify data only relating to personal devices, such as 

smartphones.  Scaling this additional data collection over many sites and long 

periods of time may be challenging as it is not usually part of the standard data 

collected by Bluetooth detectors developed predominantly for measuring travel 

times. 

Bluetooth data will only ever provide information about a sample of trips.  As with 

travel time estimation, the Bluetooth penetration rate will provide a measure for how 

meaningful it would be to make generalisations about the population from the data.  

When estimating travel times between two sensors, the penetration rate can be 

estimated relatively easily using loop detector data or Automatic Number Plate 

Recognition (ANPR) data.  For example, TfGM compared ANPR and Bluetooth 

data for one link over a twelve hour period and calculated hourly penetration rates 

between 16% and 34%.  When analysing broader measures of travel behaviour, 
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however, the sampling rate is harder to calculate as it will depend upon the 

placement of detectors in relation to frequently used routes.   

When estimating travel times, if the Bluetooth penetration rate is sufficiently large, 

any bias in the travellers with Bluetooth devices is assumed to have a minimal 

impact on the estimates.  If the data is being used to examine intrapersonal 

variability, however, a biased sample of travellers may have a significant impact on 

results as aggregation does not occur prior to analysis.    

3.3.2 Potential bias in people travelling with a discoverable 

Bluetooth device 

Obviously, this method of data collection will only provide information about people 

travelling with a discoverable Bluetooth device.  According to Ofcom (2016), 70% of 

UK adults use a smartphone, most of which will be Bluetooth-enabled.  Also, 65% 

of UK adults access the internet through a mobile phone and 45% access the 

internet using a tablet (Ofcom, 2016, p25).  The detectable devices are, however, a 

much smaller subset of devices which are switched on and where Bluetooth is in 

the discoverable mode.  A relatively small survey of 218 business students by 

Jones and Chin (2015, p565) found that 70% of the students in 2014 claimed to 

‘always’disableBluetoothontheirmobilephones,sothatitisnotdiscoverable,

whenit’snotbeingused,downfrom85%in2011.Thisis,ofcourse,self-reported 

data and the sample has an age and education bias.  Phua et al. (2015) found that 

34% of shoppers were carrying a phone with Bluetooth in the discovery mode 

duringasurveyofshoppersinacityinAustralia.Thereisnot,totheauthors’

knowledge, a data source providing information about the wide range of devices 

which may now be Bluetooth-enabled, for example fitness trackers, headphones 

and in-car sound systems, including how often they are switched off and whether 

Bluetooth discoverability settings are ever changed. 
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There is a risk of bias when collecting data based on newer technologies, 

particularly in the age of travellers recorded.  Although 92-93% of 16-34 year olds 

use a smartphone, this percentage decreases for subsequent age categories, down 

to just 8% for those 75 or older (Ofcom, 2016, p42).  Interestingly, although internet 

usage via a smartphone follows a similar pattern, internet usage via tablets, E-Book 

readers and wearable technology does not peak in the lowest age category (16-24 

years old).  A bias in the age of travellers recorded would be problematic as the 

number of car trips per year increases between the ages of 17 and 49 and then 

falls with age (Department for Transport, 2016b).  Also, Minnen et al. (2015) found 

differences in day-to-day variability in travel behaviour by age, where people aged 

25-45 had lower levels of variability perhaps due to a higher number of constraints 

on their time. 

Perhaps driven by legislation banning hand-held mobile phone use while driving in 

many countries, major worldwide car manufacturers offer Bluetooth facilities as 

standard or as an optional extra in most new cars.  Mobile phones can be 

connected to these cars using Bluetooth to play music, for satellite navigation and 

for hands-free communication including calls and texts.  This could introduce a bias 

into the data, as newer cars, particularly those with upgrades, are more likely to be 

driven by people with higher incomes.  This is in addition to the bias in smartphone 

ownership towards people in socio-economic groups AB and C1 (Ofcom, 2016, 

p42).  This would have an impact on results relating to intrapersonal variability as 

there is evidence that socio-economic classification has an impact on the number 

of trips made by car and the distance travelled (Department for Transport, 2016c).  

Also, Elango et al. (2007) found that higher income households have greater 

variability in travel behaviour.  In contrast, however, Minnen et al. (2015) found 

more variability in travel patterns for unemployed people, compared to employed 
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people, perhaps driven by the differences in trip types made, although only five 

days of data were analysed. 

Another potential source of bias is the introduction of randomised MAC addresses 

in iPhones from iOS 8, which in principal may prevent devices from being tracked.  

There is limited evidence exploring the characteristics of iPhone users compared to 

users of other mobile devices, although Gerpott et al. (2013) have identified only 

limited differences in age and gender in a survey in Germany.  They also speculate 

that iPhones may no longer be perceived as a highly innovative product which 

primarily attracts early adopters and therefore any bias in usage may be decreasing 

over time.      

3.3.3 Individual missing trips 

As well as missing people entirely, individual trips may also be missed.  This is not 

particularly problematic when calculating travel times, provided overall penetration 

rates are reasonable, but when examining intrapersonal variability missing trips will 

result in underestimates of trip frequency.  Missing trips could occur when the 

Bluetooth device is not taken on the trip, is not switched on, or Bluetooth is not in 

discovery mode.  Alternatively, a discoverable Bluetooth device may not be 

detected when passing a sensor as it may not have spent enough time within the 

sensor’sdetectionzone,thesensormayhavereacheditsscanningcyclecapacity

for recording MAC addresses at that particular time, or a large vehicle may have 

formed a barrier to the sensor.   

As detections at at least two sensors are required to record a trip, shorter trips are 

at greater risk of being missed altogether, either due to the location of Bluetooth 

detectors or due to not being detected when passing sensors.  The increased 

likelihood of missing short trips is not unique to Bluetooth data, however.  Bricka 

and Bhat (2006) examined under-reporting of trips in telephone travel surveys and 
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reported that trips of under five minutes and discretionary trips were associated 

with under-reporting.  As discussed in Kuwahara and Sullivan (1987), data 

collectedfromroadsidesurveysislikelytosufferfromthe“doublecounting”

problem, where long trips are more likely to pass at least one survey site and 

therefore will be over-represented.  While appropriate adjustments can be made to 

aggregated data to counteract these effects, attributing the adjustments to 

individual travellers would be challenging and perhaps could only be reasonably 

done for estimates of trip frequency.     

To test the consistency of Bluetooth detection when a device passes a sensor, data 

from three sites on a road to the east of Wigan was analysed from February to July 

2015.  Only six consecutive months of data was available for all three sites in 2015.  

MAC addresses were matched between sites A and C (Figure 3-4) and all matches 

which could feasibly relate to a direct trip by a motor vehicle between the two sites 

were retained.  Site B is on the same road as sites A and C and is on the most 

direct route between the two sites.  The proportion of trips between A and C which 

were also detected at site B was then calculated and the results are shown in 

Table 3-1. 
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Figure 3-4: Three site case study for Bluetooth device detection 

 

Table 3-1: Summary of the three site case study 

Direction Number of matches (trips) Proportion observed at B 

Eastbound  (A to C) 108,915 66% 

Westbound (C to A) 142,619 38% 

 

Of the devices detected travelling from A to C, 66% were also detected at B.  This 

is slightly lower than the 80% detection rate found by Araghi et al. (2014), although 

they did report that the detector position could have an effect on the rate.  Although 

this is a relatively large percentage, it will also apply when devices pass both A and 

C.  If we could assume that the likelihood of a Bluetooth device being switched off 

or the discoverability settings being changed while travelling along this road is 

minimal and that the conditional probability of being detected at one site given that 

the device passed it is independent of the conditional probability of being detected 

at the other site given that the device passed it, then only 44% of the discoverable 

Bluetooth devices passing both A and C would have been detected at both sites.  

If, however, some devices have a tendency more than others to be undetected then 
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the conditional probabilities will not be independent, and we would expect to detect 

a higher percentage passing both points. 

Table 3-1 also shows that 38% of devices travelling from C to A (i.e. from east to 

west) were detected at site B.  The most likely explanation for this is the placement 

of the detector.  It is on the north side of the road and therefore due to left hand 

traffic and three lanes of traffic at this location, the detector is much closer to the 

eastbound traffic.  A lane bias effect in Bluetooth data may have been identified by 

Colberg et al. (2014), although the bias may have been due to the speed of 

vehicles rather than their road position.   

To test whether all Bluetooth-enabled devices have an equal probability of being 

detected when passing a sensor, the detection probability at B was also calculated 

for each regular traveller between A and C.  Devices which were observed 

travelling between A and C (in either direction) 25 times or more within the six 

month period were analysed.  In total, 826 devices were detected travelling 

regularly eastbound and 963 devices travelling westbound.  This included 602 

Bluetooth devices which travelled regularly in both directions.  The device-specific 

probabilities of being detected at site B ranged from 0 to 100% and no distinct 

patterns were visible in the data.  Devices could have different probabilities of being 

detected due to differences in the type of device,differencesintheowners’driving

style (including speed and road position) or systematic differences in the placement 

of the devices within cars.    

3.3.4 Scope of data collection 

News stories have highlighted the widespread use of Bluetooth within rental cars 

(for example USA Today (2015)).  Whilst this is not a problem when using 

Bluetooth data for travel time estimation, it could be a problem when considering 

intrapersonal variability.  Millard et al. (2016) found that only 16% of car rentals are 
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for more than a week and therefore Bluetooth devices in these cars are likely to 

demonstrate more variability over longer periods of time as multiple customers 

would be associated with the same unique MAC address.  In Wigan, there are car 

rental establishments in the town centre, to the east and the southwest and there 

are also places which hire out vans.  In this area, therefore, it is not possible to 

isolate Bluetooth sensors which will detect a higher proportion of rental vehicles.  

Rentals are, however, likely to make up a very small percentage of the Bluetooth 

sample in most cases.   

In this research, only trips made by motorised vehicles on the road network are 

included.  This could include car or motorcycle drivers, or alternatively it could be 

passengers in cars, buses or taxis.  Whilst this may be of interest to road 

managers, for more general transportation purposes data covering all modes may 

be required.  Bluetooth data is not limited to the analysis of road transportation 

data, for example it has been used for pedestrian analysis (Delafontaine et al., 

2012, Malinovskiy et al., 2012, Versichele et al., 2012) and cyclist travel times (Mei 

et al., 2012).  The difficulty arises in using Bluetooth to collect data on multiple 

modes.  It is not usually possible to differentiate between a trip made by car with a 

stop en-route, and a trip by a slower mode such as cycling.  A more complex trip 

cleaning procedure would be required, for example a clustering stage as proposed 

by Araghi et al. (2012), to generate trip data together with the most likely mode for 

each trip.   

Another shortcoming of Bluetooth data compared with travel diary data is that 

personal travel cannot be separated from business travel.  The National Travel 

Survey in England, forexample,collectsdataonlyon“travel for private purposes or 

for work or education, provided the main reason for the trip is for the traveller 

himself or herself to reach the destination”(Department for Transport, 2016a) .  

With Bluetooth data, however, this distinction cannot be made.  Although this is 
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unlikely to be problematic for estimating travel times, it will affect estimates of trip 

frequency. 

Elango et al. (2007, p39) identified that vehicles in their survey which were used at 

least occasionally for business purposes showed very different travel patterns to 

vehicles used for personal trips only.  Data which relates to the drivers of buses, 

taxis and delivery vans, or even to the vehicles themselves, can skew results by 

suggesting high trip frequencies, in the first case with great regularity and in the 

latter two cases far less.  The maximum number of trips per device over the year 

within the Wigan area was 2,355.  This is over six trips per day for the entire year 

on average.  This is high for personal travel in England, where the average number 

of trips per year by all modes combined was found in 2016 to be 914 (Department 

for Transport, 2016b).  Although devices with very high trip frequencies could be 

removed from the data depending on the scope of the study, the difficulty is in 

deciding the threshold separating regular travellers from vehicles with at least some 

business use.  Setting this threshold too low risks introducing bias by removing very 

frequent travellers.  An alternative approach could be to retain all devices but to be 

very clear when interpreting the results that the sample includes all types of road 

users, including buses and taxis.  This could provide valuable insights for road 

network managers which are not available from other surveys of personal travel 

only.   

3.3.5 Additional work required 

Bluetooth can, therefore, provide data on a relatively large sample of trips on the 

network over a long period of time for a relatively low cost.  There are unresolved 

issues regarding potential bias in the data collected, particularly due to age and 

socio-economic status, which are likely to have a greater impact on measures of 

intrapersonal variability than travel time estimates.  These are not insurmountable 

problems, however, although more information is required on the characteristics of 



104 

 

people carrying various types of Bluetooth devices and the way they use them.  If 

this information was available, the Bluetooth data could be boosted by alternative 

data collection for under-represented groups.  While it may be relatively easy in 

principle to undertake a GPS travel diary for cars, perhaps using a similar 

methodology to Elango et al. (2007), it would be challenging to collect data which is 

consistent with the Bluetooth data.  Difficulties could arise in deciding on the 

geographicalboundariesforparticipants’homes,onthelengthofthedata

collection period and in recruiting participants from harder to reach groups. 

Research into how people use Bluetooth devices could inform adjustment factors to 

correct under-reporting of trips due to not carrying devices, switching them off or 

not having them in discoverable mode.  Additional data can also be collected 

alongside MAC addresses in order to provide additional information about the 

travellers detected, for example the device type or the brand of device.  While this 

is not practical to do on an ongoing basis, even collecting the data for short periods 

such as a day or a week would be informative.  The proportion of discoverable 

Bluetooth devices on the road network could also be increased through a publicity 

campaign encouraging travellers to do so.  Sharing of data could be encouraged by 

providing incentives, for example tailored real time travel information. 

The number of devices and trips detected could be increased in other ways too.  

Firstly, the roadside position of sensors should be carefully considered so as to 

optimise detections.  Brennan et al. (2010) provide information on the impact of the 

height of placement but also state that with multiple lanes of traffic, sensors on both 

sides of the roads may be required.  The quantity and quality of the trip frequency 

data will increase if additional Bluetooth sensors are installed at more regular 

intervals along links and/or routes of interest.  This differs from the requirements for 

travel time estimation where mid-link detectors will not provide additional 
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information and the benefit gained from increasing sample sizes at existing 

locations can be marginal.  

Alternatively, the antennae strength could be increased, to increase the size of the 

sensor’sdetectionzoneandthustheprobabilityofdetection.  This will decrease 

the spatial and temporal precision of the observations and therefore is not 

advisable where the detector will also be used for travel time estimation.  For 

intrapersonal variability, however, the benefit of getting additional data outweighs 

any small decrease in precision.   

Bluetooth data collects information about personal and commercial travel 

combined.  Although this results in comparability issues with other data sources, for 

example national travel surveys, it could be useful in providing road managers with 

a more holistic view of road users.  

 

3.4 Time of day trips are made 

The time of day at which trips are undertaken is an important aspect of 

intrapersonalvariability.Analysingthevariabilityinthetimingofeachperson’strips

can provide a better understanding of how and when travellers use the transport 

infrastructure.  Further work would be required to identify whether travellers with 

greater variability have greater flexibility in choosing their departure time or whether 

this occurs because they have greater variability in the needs and constraints 

underlying their behaviour.   

The time of day trips are made is not always included in research on overall 

measures of intrapersonal variability.  Sometimes it is included very broadly, for 

example in Bayarma et al. (2007) where the only relevant measure is the proportion 

of trips made between 10pm and 6am.  Where intrapersonal variability in the timing 



106 

 

of trips is considered, it usually involves separating the day into equally sized bins 

and then comparing the activity being undertaken in each, as in Minnen et al. 

(2015) and Goulet Langlois et al. (2016).     

The times which can be measured using fixed Bluetooth detectors differ from 

typical travel diary data in two important respects.  First of all, we cannot measure 

orevenestimateanindividual’sdeparturetime.Whatthedata can tell us, 

however, is the regularity at which a device passes a particular location.  The 

reason for any variability could be differences in departure time and/or differences 

in traffic conditions encountered prior to passing the detector.  This may initially 

seem problematic, but if we consider the viewpoint of local road network managers, 

then it may not be.  Their priorities lie with road users at the point that they enter 

their jurisdiction and on critical links within the network.  The road managers can, 

therefore, design the Bluetooth detector placement in order to collect information on 

the important parts of trips only.  The use of fixed detectors also means that 

analysts can examine the variability in the times of day at which a road user passes 

a fixed point, for example a pinch point such as a bridge or tunnel or a location 

related to an intervention such as a charging cordon.   

The second important aspect in which the recorded times differ, is that unlike travel 

diaries they do not depend upon the traveller accurately recalling and recording 

their times.  Bluetooth detections are made within a zone surrounding a sensor 

rather than at a specific point, however, and the accuracy of the data has been 

considered in detail in relation to estimating travel times (Araghi et al., 2014).  For 

repeated trips, a consistent method for estimating the recorded time at a sensor 

location is required to ensure that observations at this detector are comparable 

across days.  This is because the sensors are continuously scanning for 

discoverable Bluetooth devices within a zone of up to 100m for 9dBi gain antennae 

and therefore each device may be detected several times while passing the sensor, 
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depending on the sensor location, road layout, strength settings and traffic signal 

cycle lengths, if appropriate.  One commonly used approach is to use the first time 

a device is recorded as it passes through the detection zone.  The times will be 

recorded in continuous time, as opposed to times reported by travellers who 

automatically tend to register rounded times only (Minnen et al., 2015).  

The time of day trips are made can only be meaningfully compared where the trips 

themselves are comparable.  For example, Muthyalagari et al. (2001) considered 

the times people first leave home, depart work and arrive home each day and 

Kitamura et al. (2006) considered the first trip per day on all weekdays for workers 

only.  Chikaraishi et al. (2009) went further in their examination of intrapersonal 

variability in departure times by estimating separate multi-level models by trip 

purpose and including variables relating to spatial (origin-destination) and temporal 

(day of the week or season) trip characteristics.  With Bluetooth data, trip purpose 

information is not available and neither is true origin-destination data (see 

Section 3.5).  

One aspect which could be considered is the variability in the time at which each 

device is first detected each day, as used by Muthyalagari et al. (2001) on GPS 

travel diary data.  For the case study area, let us consider the 1,240 devices 

identified in Section 3.3.3 as being regular travellers.  The first detection each day 

does not appear to be particularly meaningful, as Figure 3-5 shows that some 

devices have fairly large standard deviations.  This could be due to the geographic 

limitations of the data as these are only the first trips within the study area each day 

andthereforemaynotbeascomparableasthetravellers’actualfirsttripeachday. 
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Figure 3-5: Histogram of intrapersonal variability in the first detection time 
each day 

 

To obtain more comparable trips, thevariabilityineachtraveller’stripstarttimes

could be calculated within a fixed portion of the day only.  For example 

intrapersonal variability in the start times of trips within the morning peak (between 

7am and 9am) is shown in Figure 3-6.  This could be assumed to relate to trips for 

a similar purpose, for example work or education, but it is not clear how the 

boundaries between different times of the day should be drawn.   
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Figure 3-6: Histogram of intrapersonal variability in the time of all trips 
beginning in the morning peak (7-9am) for regular travellers with 10 or 
more morning peak trips 

 

It could be hypothesised that people who travel more frequently have a more 

regular routine and therefore travel at a similar time each day, resulting in less 

intrapersonal variability.    Figure 3-7, however, does not support this hypothesis in 

thecurrentdata.Thereisnotastrongrelationshipbetweeneachtraveller’stimeof

day variability and the number of days they are observed, during the morning peak 

period.  The associated correlation coefficient is -0.4. 
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Figure 3-7: Scatterplot of intrapersonal variability in morning peak (7-9am) 
trip start times and the number of days observed for each traveller 

    

Rather than separating trips by the time of day, an alternative approach could be to 

compare trips with the same spatial characteristics, i.e. trips with the same start 

and end detectors.  There are two issues with this approach.  Firstly, this is likely to 

result in many time of day variability measures per traveller.  This increases the 

computational burden of the analysis but, perhaps more importantly, it also adds an 

additional level of complexity to the interpretation of the results.  Separating the 

trips from the 1,240 regular travellers in our case study by OD pair results in 24,312 

sets of data to analyse.  Secondly, there needs to be a sufficiently large sample for 

intrapersonal variability in the times to be measured.  Specifying a minimum sample 

size of just 5, reduces the 24,312 subsets to 12,121 in the case study example.  A 

minimumsamplesizeof10resultsin8,114subsetsremaining.Thisisa‘loss’of

data, but it could be assumed that these trips are rarely made by the traveller and 

therefore, in terms of the intrapersonal variability, they are irrelevant.  Such trips 

would, however, still be important for the analysis described in Section 3.5 which 

focuses on the spatial variability of trips.  An alternative option could be to focus on 
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one particular location which is of interest, for example the time of day that 

travellers arrive at a bridge toll station.   

Once subsets of trips for comparison have been specified, a measure of 

intrapersonal variability in the times needs to be calculated.  As the times in 

Bluetooth data are continuously distributed, a very simple example of taking the 

standard deviation of the data was used in Figure 3-5 and Figure 3-6.  It is easy to 

think of common travel patterns where this would not be a sensible approach.  For 

example, some people work half days on some days of the week which would 

result in the histogram of trip start times from work to home having two different 

peaks.  Alternatively, some people may make the same trip multiple times per day, 

for example to take children to and from school.  The analysis could be undertaken 

separately on different times of the day, for example the morning peak used in 

Figure 3-6.  There is no guarantee, however, that the separate peaks in trip timings 

would occur in different time of day categories and the thresholds for splitting up 

days would be relatively arbitrary. 

An alternative option could be to consider data from all times of day together, but to 

assume that the observed times for an individual traveller correspond to a mixture 

distribution where the subpopulations relate to systematically different activity 

patterns and the subpopulation variances tell us about variability in the timing of 

trips relative to each activity pattern.  Model based clustering techniques can be 

used to fit the most appropriate mixture distribution to the data (Fraley and Raftery, 

2002).  This approach has been used in other aspects of transportation research, 

for example flight delays (Tu et al., 2008) and errors in loop detector sensitivity 

(Corey et al., 2011).  The number of clusters and their variances could be 

compared before and after an intervention for each traveller or across all travellers 

for one period of time.   
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Figure 3-8 includes examples of trip timing histograms together with the associated 

Gaussian mixture distribution for two travellers from the case study area.  In each 

case the trips are for a single OD pair and at least 50 trips are included.  For the 

first traveller, the components of the mixture distribution are overlapping which can 

be useful for representing fairly complex patterns.  This traveller has quite a lot of 

variability in the timing of trips during the late afternoon, but the large peak around 

6pm suggests a constraint limiting how late the trip can occur, in most cases.  The 

plot for the second traveller is dominated by a peak in trips in the morning, with only 

a small component representing trips taken later in the day.  While this traveller 

does not appear to have systematic differences in the timing of this trip, the 

variance of the primary component provides information about the random 

variability in the timing of the trip.    
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Figure 3-8: Time of day histograms and estimated mixture distributions for 
trips on one OD pair for two travellers  

 

In summary, Bluetooth data can provide traveller arrival times at specified locations 

on the road network reported on a continuous scale.  These locations are fixed over 

time and donothavetobethetravellers’tripstartorendpoints,thusproviding

road managers with control over the parts of the network they wish to collect data 

about.  As no data is collected on trip purpose, explanations behind variations in 

travel times would need to be explored through additional data collection, for 

example user interviews or focus groups. 
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3.5 Spatial variability 

Traditionally, the spatial dimension of trips is defined by origin-destination and route 

choice information.  Origin-destination information tells us about traveller needs as 

it represents the places they need to be at different times of the day and week.  In 

most cases, these needs are determined exogenously from the transport system 

and therefore to have an impact upon these choices external policies and initiatives 

are often required, including business opening hours and land use policies.  Route 

choices are determined by traveller decisions based on the information available to 

them.  This information could come from many sources including their own 

experiences and preferences, satellite navigation systems or radio alerts.  Due to 

these distinctions, in this section the two aspects of spatial variability will be 

considered separately.  

3.5.1 Origin and destination of trips 

Fixed Bluetooth detectors can inform the construction of OD matrices, as shown by 

Barceló et al. (2010) and Carpenter et al. (2012), although in these two examples 

the data relates to one corridor only.  As the current paper focuses on intrapersonal 

variability, it is the distributionofeachindividual’stripsacrosstheODmatrixwhich

is of interest. 

Similar to departure times discussed in Section 3.4, it is not normally possible to 

identify trip origins or destinations using only data from fixed Bluetooth detectors as 

they only monitor certain links within a network.  It is, however, possible to analyse 

the first and last Bluetooth detector location recorded for each trip.  Given that the 

detector locations are chosen by the relevant road managers in order to monitor 

important links within their jurisdiction, the first and last detection locations for each 

trip give estimates of where the traveller is going from and to, within this specific 

part of the network.  Therefore, as in some of the research on smart card data, for 
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example Goulet Langlois et al. (2016) and Kieu et al. (2015b), the first and last 

detector locations will be referred to as an OD pair in this paper.  In smart card data 

research this is interpreted as the origin and destination stops used on the public 

transport network and in the current paper it should be interpreted as an estimate of 

the origin and destination for the part of the trip undertaken by a motorised vehicle 

within the monitored area.  Ensuring the data has been satisfactorily processed is 

essential as the first and last Bluetooth detections for trips may be sensitive to the 

trip chaining undertaken during the data processing (see Section 3.2.1). 

In this section, the case study sites are considered as 7 separate locations by 

treating the two sites in the centre of Wigan as one location.  This is because 

general locations as opposed to exact routes are of interest in this section.  An OD 

matrix of the trips detected by the Bluetooth sensors can be constructed for each of 

the 1,240 devices which were detected in the case study area at least 260 times in 

the year of data.  These matrices can then be used as inputs to calculate measures 

of spatial intrapersonal variability. 

One measure of spatial intrapersonal variability could be the number of OD pairs 

observed per device over the year.  Figure 3-9 demonstrates the wide range in the 

number of OD pairs observed among the regular travellers over a one year period.  

The mean number of OD pairs observed per device, for these regular travellers, is 

24.  The analysis could be taken further by examining the number of ODs observed 

on weekdays versus weekend days, different days of the week or months of the 

year in order to explore whether some of the variability in ODs observed is due to 

systematic differences in activity patterns. 
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Figure 3-9: Histogram of the number of OD pairs observed per device 

 

The number of OD pairs observed for each traveller is likely to be related to their 

total number of trips.  As shown in Figure 3-10, this is not a linear relationship as 

the total number of trips increases at a greater rate when 40 or more OD pairs are 

observed.  This could be because these travellers with a high degree of spatial 

variability are travelling for work, for example making deliveries, which also causes 

them to make a large number of trips.   
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Figure 3-10: Boxplot of the total number of trips observed for travellers 
grouped by the number of different OD pairs they record 

 

Rather than considering the total number of trips made by each traveller, it may be 

more appropriate to consider how frequently each traveller makes each OD trip.  

OD pairs for each traveller could be categorised based on how frequently they are 

observed.  For example, Figure 3-11 shows the proportion of each traveller’strips

which are made between OD pairs used frequently and the proportion used rarely, 

for the regular travellers identified in the case study area.  While some travellers 

make nearly all of their trips between their frequently used ODs, others do not have 

any OD pairs which they use on a weekly basis.  These measures of traveller OD 

usage could be used to identify clusters of travellers with high or low spatial 

intrapersonal variability   
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Figure 3-11: Scatterplot showing, for each traveller, the proportion of their 
trips relating to ODs used at least once per week and at most once per 
month 

 

For larger and more complex networks, an alternative strategy may be required due 

to the large number of possible OD pairs, for example combining sensor locations 

into zones. 

Analternativetotreatingatraveller’stripsasindependentobservationscouldbeto

consider each day for a traveller as one observation.  By doing so, the complexity 

of each individual’stravelpatternscanbemeasuredandcompared.Figure 3-12 

provides a crude approximation of the complexity of the travel patterns of the 

regular travellers in the case study area.  For each traveller, for every day they are 

observed, the number of trips in that day have been counted.  These counts were 

then aggregated across all travellers.  In the case study area 76% of the traveller 

days with an observed trip included either 1 or 2 trips.  This could be due to the 

small size of the case study area or perhaps due to the more traditional travel 

patterns which might be expected in this town.  Of the days where a traveller made 

two trips, 38% consisted of an outbound and return trip with coinciding start and 

end points.  This comparison is not necessarily meaningful, however, as trips may 
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not match due to differing routes to origins or destinations outside the monitored 

area or missing observations.  Meaningful daily patterns for individual travellers are 

also less likely to be found in Bluetooth data due to the limited network coverage.  

For example, unlike the highly structured weekly patterns observed in smart card 

data by Goulet Langlois et al. (2016), in the case study area in the current paper 

only 37% of travellers had their first detection site matching their last detection on 

that day on at least half of the days they were observed. 

 

 

Figure 3-12: Histogram of trips for each traveller per day 

 

3.5.2 Route Choice 

Carpenter et al. (2012) have demonstrated that with strategic Bluetooth detector 

placement, the data can be used to record route choices.  Whilst in Carpenter et al. 

(2012) theaimwasto‘scaleup’thisdataintoODmatrices, in this paper the focus 

is on measuring intrapersonal variability in those route choices.  

The case study used in the current paper provides good coverage of trips into and 

out of Wigan, but does not present many opportunities for exploring route choice.  

To explore the usefulness of Bluetooth for route choice analysis, therefore, an 
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alternative case study was identified (Figure 3-13).  This may not necessarily be a 

commonly made trip, but it was selected due to the presence of Bluetooth detectors 

on alternative routes.  To drive between detector H and detector D, there are a 

number of possible routes, ranging from 4.2 to 5.5 miles long.  The shortest routes 

all go through a short section of Chapel Lane in the town centre halfway between 

the two locations, but from here there are two possible routes to both H and D.  

Only one of the routes on the eastern branches has a Bluetooth detector, but both 

of the western branches have Bluetooth detectors.   

 

 

Figure 3-13: Route choice case study site 

 

By analysing four months3 of trips matched between D and H, the proportion of 

trips which can be assigned to a particular route can be calculated.  In total, 3,012 

                                                

3 This is the longest period of time in 2015 for which data from all sites was available 
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trips were recorded travelling westward and 3,029 travelling eastward.  Of the 

3,012 travelling in a westerly direction, 1,655 trips (55%) were detected at G.  Due 

to the incomplete nature of Bluetooth data (as discussed in Section 3.3.3), we 

cannot assume that all of the remaining trips were made on the alternative route.  

However, for comparative purposes, for example before and after an intervention, 

the stability of the route choice proportions can be tested, as in Watling et al. (2012, 

p179).   

The westerly branches have better coverage as there are Bluetooth detectors on 

the two most likely routes.  Table 3-2 shows the observations at mid-trip detectors 

relating to trips between D and H.   

Table 3-2: Trips detected at interim Bluetooth sites 

 East to West (H to D) West to East (D to H) 

Detected at E only 428      (14%) 409     (14%) 

Detected at F only 1,415     (47%) 886     (29%) 

Additional trips detected at 
both E and F 

  15      (0.5%)    10      (0.3%) 

Total trips detected 3,012 3,029 

 

Clearly not all devices were detected at either E or F.  This could be because 

another major route between D and H has not been monitored, or it could be 

because of missing data.  Similarly, it is only possible to speculate as to whether 

the difference in proportion of trips detected at one of these sites between the 

eastbound and westbound direction (43% versus 62%) is due to a directional 

difference in route choice or in the probability of being detected at the interim site, 

for example due to detector placement.   

The current analysis includes route choices at all times of the day (and night).  The 

alternative routes do not have a constant relationship with one another, in terms of 

travel times, throughout the day and hence it is reasonable to assume the route 
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choice proportions will change throughout the day.  Future work is required to 

incorporate such factors into analysis of Bluetooth data for route choice. 

Intrapersonal variability in route choice for the travellers observed in the four month 

period can also be examined.  Considering eastbound trips only, 1,866 travellers 

were observed, 352 of whom were observed more than once.  Intrapersonal 

variability in route choice on the branches to the west of the town centre is 

considered in Figure 3-14.  Clearly some travellers prefer to travel via site F and a 

small proportion prefer to travel via site E when driving between sites H and D.  

Almost 29% of the travellers are never observed at either of these interim sites.  

The‘sometimesatonesite’categoryaccountsfor24%ofthetravellersandcould

include travellers who sometimes take a route not covered by Bluetooth detectors 

or it could be due to missing observations.  The travellers who vary their route 

account for 13% of the travellers and this category has the highest average number 

of trips per traveller, at 7.5.  This compares to 2.3 trips for travellers always going 

via E and 3.8 trips for travellers always going via F.  
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Figure 3-14: Traveller route choice for trips from H to D (travellers recording 
just one trip have been excluded) 

 

Depending on the placement of Bluetooth detectors, therefore, the data can be 

used to examine intrapersonal variability in route choice.  As demonstrated by 

Hainen et al. (2011), Bluetooth can be used to monitor traveller response to 

network disruptions such as bridge closures.  In such cases, Bluetooth detectors 

could be installed temporarily on routes of interest to provide insights into 

behavioural response. 

Whether Bluetooth data is being used to measure intrapersonal variability in route 

choice for all travellers or to test for systematic differences in route choice before 

and after an intervention, the same considerations need to be reflected upon.  

Firstly, are the detectors placed in suitable locations to collect the required data?  

This includes coverage of routes and also the more precise positioning of the 

detector, for example the side of the road it is on.  Local road user interviews and 

focus groups could be used to identify whether additional options should be 

monitored.  Secondly, are there sufficient detectors to collect data of the required 

quality?  While mid-link detectors are rarely used for travel time estimation, their 
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inclusion could boost detection rates on key routes of interest for intrapersonal 

variability.   

3.5.3 Overall spatial analysis 

The previous two subsections focus on the two aspects of spatial variability 

traditionally considered in transportation research – ODs and route choices.  Both 

of these approaches are challenging, perhaps because they are not designed 

specifically around the advantages and issues relating to Bluetooth data.  

As discussed in Section 3.3.3, discoverable Bluetooth devices do not have a 100% 

probability of being detected when they pass a sensor.  This raises concerns 

regarding the use of an OD based technique which assumes that the first and last 

sensor detection of each trip corresponds to the first and last sensor passed each 

trip.  It may, therefore, be preferable to undertake a combined spatial analysis of 

the data which incorporates the start, end and also interim detections. 

One option for the combined approach could be to use Sequence Alignment, which 

was originally developed for analysing biological structures but has been used 

more recently in the social sciences (Abbott, 1995).  This has been used in 

geographical research to explore tourist movements (Shoval and Isaacson, 2007) 

and has also been used on Bluetooth detections of trade fair visitors (Delafontaine 

et al., 2012).  Sequence Alignment maintains the order of observations, for 

example of a Bluetooth device moving through a network, and the analyst can 

choose how to compare each pair of sequences to get a measure of similarity.  

Once these similarity measures have been calculated for all pairs in the data, they 

canbeusedtocluster‘similar’sequences.Variousmeasuresofsimilaritycouldbe

used, including local alignment techniques such as Longest Common 

Subsequence which was used by Kim and Mahmassani (2015) on taxi GPS traces, 

or global alignment techniques which compare similarities and differences along 
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the full sequences as in Crawford et al. (Under review-b).  By identifying clusters of 

similar sequences, spatial intrapersonal variability can be calculated based on the 

distribution of trips between clusters for each traveller.   

 

3.6 Conclusions 

In this paper the suitability of data from fixed Bluetooth detectors as a means of 

collecting data on intrapersonal variability has been discussed.  As with any source 

of data, there are limitations and issues to reflect upon, including missing data and 

bias in the sample.  Unlike personal travel diaries, Bluetooth data will not provide 

information about trip purpose, complete trip ODs nor traveller demographics.  The 

combination of a potentially biased sample with respect to age and income and a 

lack of traveller information to measure the characteristics of the travellers detected 

is problematic.  Further research is needed to understand the usage of Bluetooth 

devices other than mobile phones, particularly those related to motor vehicles and 

also on behaviours relating to disabling Bluetooth on devices.  In areas where 

Bluetooth data is being collected, it would be advisable to undertake sample scans 

so that the proportion of MAC addresses from each type of device, for example 

mobile phones, can be estimated.   

Despite the issues discussed above, data from fixed Bluetooth detectors has a vast 

amount of potential for collecting data on repeated trip behaviour on the road 

network.  Large amounts of data can be collected through installing relatively cheap 

detectors and, as with the data used in the case study in this paper, if the detectors 

were installed for the purpose of measuring travel times then the only costs in 

measuring intrapersonal variability relate to the analyses.  The cost of collecting 

alternative types of data is emphasised by the repeated use of a few multi-day 

travel diary datasets in the intrapersonal variability literature.  For example, data 
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from the Mobidrive survey, undertaken on 139 households in Germany in 1999 has 

been used frequently in the academic literature for more than a decade, including 

Schlich and Axhausen (2003), Bhat et al. (2004), Kitamura et al. (2006), Bayarma 

et al. (2007), Habib et al. (2008), Chikaraishi et al. (2009), Tarigan and Kitamura 

(2009), Cherchi and Cirillo (2014), Susilo and Axhausen (2014).  Bluetooth data is 

not a replacement for such surveys, however, but could be used as a 

complementary source of data to examine spatial and temporal variability in more 

detail or changes between survey periods. 

Bluetooth data does not collect all of the information in a travel diary.  When 

analysing the data, however, it is important to focus on what can be measured 

using the data and what the objective of the analysis is.  For example, Section 3.4 

demonstrated how data collected at the same geographic location (chosen by the 

road manager) on different days can be used to measure intrapersonal variability in 

the timing of trips.  Section 3.5 demonstrated how data on entry and exit points to 

the part of the road network which is of most interest, together with route choice 

information on key routes, can be used to explore spatial variability.  This research 

has considered key aspects of intrapersonal variability separately, but to fully 

understand the variability they could be considered collectively.  Such work could 

use similarity indices such as those discussed by Schlich and Axhausen (2003), or 

could use clustering to segment the road user population based on intrapersonal 

variability such as in Crawford et al. (Under review-b). 

Further research is required to understand the optimal number and placement of 

Bluetooth detectors to measure intrapersonal variability in travel on urban road 

networks.  Additional research into the usage and behaviours related to Bluetooth 

devices should also allow correction factors to be developed which could be used 

to scale up findings from Bluetooth data to the population of road users.  
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4 Identifying road user classes based on repeated trip 

behaviour using Bluetooth data  

Abstract 

Analysing the repeated trip behaviour of travellers, including trip frequency and 

intrapersonal variability, can provide insights into traveller needs, flexibility and 

knowledge of the network, as well as inputs for models including learning and/or 

behaviour change.  Data from emerging data sources provide new opportunities to 

examine repeated trip making on the road network.  Point-to-point sensor data, for 

example from Bluetooth detectors, is collected using fixed detectors installed next 

to roads which can record unique identifiers of passing vehicles or travellers which 

can then be matched across space and time.  Such data is used in this research to 

segment road users based on their repeated trip making behaviour, as has been 

done in public transportation research using smart card data to understand different 

categories of users.  Rather than deciding on traveller segmentation based on a 

priori assumptions, the method provides a data driven approach to cluster together 

travellers who have similar trip regularity and variability between days.  Measures 

which account for the strengths and weaknesses of point-to-point sensor data are 

presented for a) spatial variability, using Sequence Alignment, and b) time of day 

variability, using Model Based Clustering.  The proposed method is also applied to 

one year of data from 23 fixed Bluetooth detectors in a town in northwest England.  

The data consists of almost 7.5 million trips made by over 300,000 travellers.  

Applying the proposed methods allows three traveller user classes to be identified: 

infrequent, frequent, and very frequent.  Interestingly, the spatial and time of day 

variability characteristics of each user class are distinct and are not linearly 

correlated with trip frequency.  The frequent travellers are observed 1-5 times per 
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week on average and make up 57% of the trips recorded during the year.  Focusing 

on these frequent travellers, it is shown that these can be further separated into 

those with high spatial and time of day variability and those with low spatial and 

time of day variability. Understanding the distribution of travellers and trips across 

these user classes, as well as the repeated trip characteristics of each, can inform 

the development of policies targeting the needs of specific travellers.   

 

4.1 Introduction 

While considering daily snapshots of transport networks is sufficient for many 

purposes,thebenefitsofconsideringthepatternsandvariabilityineachindividual’s

behaviour over days, months and even years is receiving increasing research 

attention.  It can inform us about traveller habits (Minnen et al., 2015), predictable 

differences in travel patterns (Cherchi et al., 2017) and traveller flexibility (Kitamura 

et al., 2006), all of which are important for developing new policies and modelling 

traveller response to those policies, for example using day-to-day dynamical 

models which include micro-level learning mechanisms (Chen and Mahmassani, 

2004, Liu et al., 2006).  Understand the current behaviour of travellers, not just on a 

single day but over days, weeks and months, also provides information about 

traveller needs and knowledge of the network.   

A common assumption is that urban traffic, particularly the morning peak, consists 

of commuters who drive between home and work at the same time each weekday.  

This assumption is often made implicitly and largely for convenience but is rarely 

challenged despite increases in part time, flexible and home working in recent 

years.  In Great Britain, a 2013 survey (Department for Business, Innovation and 

Skills, 2014) found that 80% of workplaces with at least 5 employees had part time 

staff, and other forms of flexible working such as reduced hours, flexitime and 
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compressed hours had all increased since the first comparable survey in 2000.  

Such an assumption about the regularity of travellers is likely to influence the types 

of policies formulated to reduce morning peak congestion, some of which may 

perform differently based on the repeated trip making behaviour of travellers.  For 

example, if the proportion of frequent travellers is overestimated, then the benefits 

to travellers of switching to public transportation due to savings from weekly or 

monthly tickets would also be overestimated.  Similarly, making an assumption that 

all travellers have very little departure time flexibility would underestimate the 

impact of interventions such as time of day specific congestion charging. 

One of the reasons why behaviour over multiple days is often overlooked may be 

the difficulty in collecting data.  Detailed information about repeated trip making 

behaviour has typically been collected using multi-day travel diaries (Muthyalagari 

et al., 2001, Schlich and Axhausen, 2003, Elango et al., 2007). Such surveys 

provide data of great depth, but at a cost – both financially and in terms of 

respondent burden.  For example, the National Travel Survey in England involves 

face to face interviews and 7 day travel diaries for individuals in 7,000 households 

and costs approximately £2.1 million per year to collect and process (Data.gov.uk, 

2012).  Respondent burden can be decreased by using GPS devices to track 

participants (Muthyalagari et al., 2001), but costs remain high, resulting in surveys 

which are often for short periods of time and/or have small sample sizes.  For 

example, the 7 day travel diaries undertaken annually in England have a relatively 

large sample size, but sample sizes are usually much smaller for longer surveys, 

for example the six week Mobidrive survey collected in 1999 in Karlsruhe and Halle 

in Germany had 317 participants in 139 households (Axhausen et al., 2002).   

More recently, emerging data sources have been explored to determine their 

usefulness with respect to measuring repeated trip making behaviour.  Mobile 

phone data has been used to examine activity spaces, as in Järv et al. (2014), but 
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the spatial precision is relatively low.  In public transportation research, the 

availability of smart card data has resulted in researchers identifying different types 

of user based on their travel behaviour over time (Chu and Chapleau, 2010, Kieu et 

al., 2015b, Goulet Langlois et al., 2016).  Goulet Langlois et al. (2016) analysed 

four weeks of smart card data from London and identified four types of regular 

commuter.  The daily and weekly activity sequences constructed using the smart 

carddatahaddistinctpatternsforeachofthesefourgroups:‘typical’commuters,

commuters who sometimes did not take public transportation home at night, 

commuters who used public transport as their main mode at the weekend and 

commuters who travelled less during school holiday periods.   

The current paper examines data which could be considered the road network 

counterpart to smart card data, namely point-to-point sensor data, which includes 

Bluetooth and Automatic Number Plate Recognition (ANPR) data.  Point-to-point 

‘sensors’or‘detectors’collectuniqueidentifiers,eitherforvehiclesortravellers,at

fixedlocations.Itisthis“re-identificationandtracking”abilitywhichdefinesthis 

type of data (Antoniou et al., 2011, p140) and as the unique identifiers can be 

matched over space and time, the data is ideal for examining repeated trip making.  

Where point-to-point sensors are permanently installed, the amount of data 

collected can quickly become very large.  For example, in Section 4.3 an 

application to one year of data from just 23 detectors is presented, and that data 

contains almost 7.5 million trips.  These trips are obtained from processing 29.7 

million observations, each of which corresponds to a Bluetooth device passing a 

detector.   

Analysing such data with respect to repeated trip behaviour as a whole is not 

straightforward, however.  Previous research on repeated trip making has usually 

focused on a single aspect, for example trip frequency (Elango et al., 2007, Tarigan 

and Kitamura, 2009), spatial variability (Buliung et al., 2008, Järv et al., 2014), time 
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of day variability (Kitamura et al., 2006, Chikaraishi et al., 2009) or mode choice 

(Cherchi and Cirillo, 2014, Heinen and Chatterjee, 2015).  Other research has 

combined different aspects to create a single measure of intrapersonal variability 

(see Schlich and Axhausen (2003) for an overview). Calculating a single Similarity 

Index for travellers can be limiting, however, as it cannot account for travellers 

which differ in terms of different aspects of variability, for example travellers whose 

trips are spatially predictable but unpredictable in terms of the time of day at which 

they occur.  The current paper uses cluster analysis to segment travellers based on 

measures relating to multiple aspects of intrapersonal variability, as has been done 

for public transport users (Goulet Langlois et al., 2016) and with travel diary data 

(Bayarma et al., 2007).  The methods proposed to measure the different aspects 

are distinctive from previous work, however, due to the nature of the data available 

from point-to-point sensors.  Firstly, point-to-point sensor data does not generally 

provide origin or destination information due to limited network coverage and the 

possibility that many trips start and/or end outside the monitored area.  It does not 

provide information about trip purpose either.  This means that existing approaches 

for measuring spatial variability are not suitable.  Existing approaches include 

measuring the distance travelled from home (Bayarma et al., 2007) and comparing 

daily activity sequences (Goulet Langlois et al., 2016).  Secondly, point-to-point 

sensor data can provide some route choice information, depending on sensor 

locations, and it would be preferable to have a methodology which takes this 

additional information into account.  Thirdly, for time of day variability, adjustments 

need to be made since the observations are not departure times.      

There is, therefore, a research gap as user classes based on repeated trip 

behaviourhavenot,totheauthors’knowledge,beenconsideredforroad users.  

Addressing this lack of empirical evidence is not trivial since the methods used to 

measure intrapersonal variability on other modes are not directly transferable. 
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There is therefore a methodological gap in addition to the empirical one; in the 

present paper a methodology is proposed which takes into account the strengths 

and weaknesses of such point-to-point sensor data.  The methodology could be 

applied to any type of point-to-point sensor data, but Bluetooth is probably the most 

relevant currently due to its increasing popularity for measuring travel times on the 

road network.  It is a data driven approach which clusters together travellers who 

have similar trip regularity and variability between days without relying on a priori 

assumptions. The proposed methodology includes using Sequence Alignment to 

examine spatial variability and Model Based Clustering to measure time of day 

variability.  Sequence Alignment has been used to explore the order in which 

pedestrians move between attractions (Delafontaine et al., 2012, Shoval and 

Isaacson, 2007) and on one occasion to classify vehicle trajectories using GPS 

data (Kim and Mahmassani, 2015).Ithasnot,totheauthors’knowledgebeen

used in relation to intrapersonal variability.    

The rest of the paper is structured as follows.  Section 4.2 describes methods to 

calculate measures of trip frequency, spatial variability and time of day variability 

using Bluetooth data.  A method for obtaining user classifications based on the 

measures is also described.  Section 4.3 includes an application to one year of data 

from 23 Bluetooth sensors in and around Wigan in northwest England.  Descriptive 

statistics are presented to demonstrate the distribution of travellers and trips 

between clusters.  Section 0 discusses the limitations of the methodology and the 

sensitivity of the findings in the case study to choices of parameters and the 

clustering algorithm.  Section 4.5 concludes the paper by describing possible policy 

implications of the characteristics identified in the empirical study. 
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4.2 Methodology 

The methods presented in this paper utilise point-to-point sensor data, for example 

Bluetooth, Wi-Fi or ANPR data, where unique identifiers are recorded that can be 

matched over space (i.e. from point-to-point) and time.  Such data can be collected 

passively, over long periods of time and increasingly cheaply due to technological 

advances.Bydefinition,thedataisavailableforfixedlocationsor‘points’and

therefore observations are directly comparable geographically.  This differs from 

GPS trace data, for example, where observations are not made at consistent 

locations.  The locations are, however, limited by the coverage of the sensors and 

therefore do not provide origin-destination (OD) information about trips.  Also, 

depending on the type of detector, there is a likelihood of a vehicle/individual not 

being recorded as it passes a detector.  For example an experiment by Araghi et al. 

(2014) found that discoverable Bluetooth devices passing a sensor were detected 

80% of the time.  Missing data creates ambiguity as to whether the traveller drove 

along a link not monitored by sensors or whether they passed a sensor but were 

not recorded.   

Typically point-to-point sensor data only contains unique device identifiers, for 

example number plates or Bluetooth device identifiers, and the corresponding date-

time stamps for each detector.  The aspects of repeated trip making which can be 

measured, therefore, are trip frequency and spatial and temporal patterns of trips.   

Point-to-point sensor data requires a significant amount of processing before being 

used to identify road user classes, as shown in Figure 4-1.  First, the data from all 

sensors needs to be collated by the unique traveller identifiers.  The observations 

for each traveller then need to be ordered according to the date-time stamps, 

retaining the sensor number (generically referred to by the variable s) and a date-

time stamp (t).  The time lag between consecutive observations is then considered.  
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If the distance between the sensors, speed limits and data from surrounding 

vehicles suggest that the device has travelled directly between the two locations, 

then the observations should be chained together as part of the same trip.  This 

process should filter out observations relating to travellers of other modes, including 

pedestrians and cyclists, as these observations will not be chained together at all 

and therefore they will be dropped from the analysis.  The trips for each traveller, i, 

are then analysed to obtain a traveller specific frequency measure (freqi), spatial 

measure (spati) and time of day measure (todi).  A segmentation of the travellers is 

then obtained using cluster analysis.   

 

 

Figure 4-1: Overview of the process to identify road user classes using 
point-to-point sensor data 
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The proposed techniques for calculating the repeated trip behaviour measures will 

now be discussed. 

4.2.1 Trip frequency 

All types of point-to-point data collection will result in missing observations.  A bias 

in the travellers who can be detected could potentially mean that resulting analyses 

cannot be considered representative of the population of travellers using the roads 

of interest.  This consideration is outside the scope of the current paper.  However, 

missing data may also refer to individual trips which are not detected at all, or an 

individual sensor not recording all possible data.  In the current research, the 

assumption is made that individual trips are missing at random.  This assumption 

means that for each traveller we have an unbiased, random sample of their trips 

and so the measure of trip frequency is comparable between travellers, although it 

will be an underestimate of the actual trip frequency.  Alternative assumptions could 

be made if estimates are available of the bias in the trips recorded, for example by 

type of Bluetooth device or traffic density.  The total number of trips observed per 

traveller is used as the measure of frequency in this paper.   

4.2.2 Spatial variability 

For spatial variability it is particularly important to focus on the nature of the data.  

For example, Järv et al. (2014) used mobile phone data and therefore they focused 

onindividuals’activityspacesovertime,asopposedtotripdata.Bayarma et al. 

(2007) used data from a six week travel diary and for spatial variability focused on 

trip duration and the distance of trip destinations from the individuals’ homes.  

Point-to-point sensor data differs from trip data from other sources as it only 

contains information about the part of the trip within the monitored part of the 

network, but it can contain many observations, depending on the sensor locations.  

Therefore, although OD information is not available, entry and exit points to the part 



143 

 

of the network which is monitored can be captured.  Route choices, in terms of the 

ordered sequence of sensors passed between the entry and exit points, can also 

be captured.  To fully utilise the depth of this spatial information, the methodology in 

the current paper builds on the work of Delafontaine et al. (2012), who examined 

visitor movements through a large trade fair using Bluetooth data.  Pairwise 

Sequence Alignment is used to calculate similarity measures between trips which 

can then be used to cluster similar trips.  The distribution of trips between these 

spatial clusters for each traveller is then used to assess the degree of spatial 

variability.     

Sequence Alignment was originally developed to compare protein sequences, but 

has also been used more recently by social scientists and geographers (Abbott, 

1995, Shoval and Isaacson, 2007).  It is suitable for point-to-point sensor data as it 

uses all of the available spatial data for a trip and does not just focus on start and 

end points.  It also provides a systematic way of analysing the data while 

accounting for missing observations within sequences. Sequence Alignment 

techniques can be separated into global techniques, which try to match entire 

sequences, and local techniques which seek to find parts of the sequences which 

match.  Kim and Mahmassani (2015) used one of the latter techniques to identify 

the Longest Common Subsequences in trace trip data, for example from taxis.  

Whilst this was a suitable technique in their research as they were aiming to identify 

‘representative’subsequencesforclusteringtravelpatterns,itisnotsuitableforthe

current research as it can completely ignore data from the start and ends of 

sequences.  Kim and Mahmassani (2015) also had trajectory data which does not 

have the same problems with missing observations within sequences as point-to-

point data.  As in Delafontaine et al. (2012), who also considered point-to-point 

(Bluetooth) data, global sequence alignment will be applied as it considers the 

similarities and differences across entire sequences. 
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To calculate a pairwise measure of similarity, the optimal global alignment between 

two sequences is identified by adding in gaps, known as indels, to both sequences 

and assessing the similarity of aligned terms.  The optimal alignment minimises the 

pairwise cost which is calculated by aligning sequence x and sequence y and then 

comparing each pair of aligned letters: 

 𝑃𝑎𝑖𝑟𝑤𝑖𝑠𝑒 𝑐𝑜𝑠𝑡 =∑𝑑𝑖𝑠𝑡_𝑥𝑦𝑖
𝑖

 (10) 

where 𝑑𝑖𝑠𝑡_𝑥𝑦𝑖 is some sort of distance between the letters in position i in sequence 

x and y (xi and yi) with a constant distance used between an indel and any letter. 

For example, consider Sequence 1 (ABCEGHIK) and Sequence 2 (BDEFGJK).  

There are thousands of possible alignments, although many can be instantly 

dismissed as suboptimal.  Three possible alignments are shown in Figure 4-2. 

 

 

 

 

 

 

A B C E - G H I K 

- B D E F G J - K 

A B C E G H I K 

- B D E F G J K 

- A B C E - G H I K 

B D - - E F G - J K 

Figure 4-2: Three possible alignments between Sequence 1 and Sequence 2 

 

Rather than calculating all possible alignments, dynamic programming and more 

specifically the Needleman-Wunsch algorithm (Isaev, 2006, p9) can be used to find 

an optimal alignment more efficiently. 
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The specific methodology proposed in this paper for clustering trip sequences is 

shown in Figure 4-3.  When considering point-to-point sensor data, each letter 

within a trip sequence corresponds to an observation at the sensor assigned with 

that letter.  Each sequence corresponds to a trip, i.e. observations which have been 

matched between sensor locations using a unique identifier, for example a number 

plate, and then processed to ensure the traveller drove directly between the sensor 

locations.  Substitution costs are denoted by 𝑑𝑖𝑠𝑡_𝑥𝑦𝑖 and in this paper are 

calculated as the distance by road between each pair of sensors.  Alternatively the 

geodesic distance between sensors could be used, although this would be less 

useful where there are parallel routes with little opportunity for switching.   

An indel in a trip sequences could represent a missing observation, either due to a 

slight difference in route or a genuine missing observation.  They are also required 

when comparing sequences of different lengths.  The cost associated with indels 

should be relatively low so as not to excessively punish missing data, which is 

common in some types of point-to-point sensor data such as Bluetooth.  The indel 

cost should not, however, be less than half of the distance between the two 

sensors which are furthest apart, otherwise the optimal alignment process would 

never align observations from those two sites but would align each observation with 

an indel instead.  As the substitution costs are calculated using an evidence-based 

metric, it is preferable to use this over an indel cost which is chosen more 

subjectively.  Indels could represent devices passing a sensor but not being 

recorded and in this research it is assumed that the probability of this occurring 

does not depend on whether the device was recorded at the previous sensor.  The 

same indel cost is, therefore, applied to gaps irrespective of whether they are 

preceded by gaps or letters (denoting observations). 

Each pairwise cost represents the spatial similarity between two trips, where 

partially overlapping routes and geographical closeness are rewarded.  To account 
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forsequencesofdifferentlengths,Abbot’snormalisationisappliedbydividingeach

pairwise cost by the length of the longer sequence of the pair (Abbott and Tsay, 

2000, p13).      

 

 

 

The TraMineR package in R (Gabadinho et al., 2011) is used in this research to 

identify an optimal pairwise alignment for each pair of sequences in the data.  Due 

to the large amount of data involved, the optimum alignments should be computed 

between all unique sequences to prevent duplicating effort.  The pairwise costs are 

then used as the distance metric for clustering the sequences, with weights used 

based on their frequency in the data as described in Studer (2013).  As the number 

of clusters to use is quite subjective, using hierarchical clustering provides a 

suitable format of data to identify the most appropriate cut-off to use.  After 

identifying the spatial clusters of trips, each traveller is assessed to see how many 

Figure 4-3: Spatial clustering process 
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of the clusters their trips fall into, and what proportion of their trips fall into their 

most common spatial cluster.  Despite performing Sequence Alignment and 

clustering on all trip sequences together, therefore, this process will identify spatial 

variability measures for each traveller.   

4.2.3 Temporal variability 

Measures relating to intrapersonal variability in the time of day trips are made need 

to be comparable across all individuals and should give a meaningful insight into 

the underlying behaviours.  Ideally, temporal variability should be measured based 

on comparable trips, but with point-to-point data this is somewhat ambiguous due 

to the limited coverage of detectors, missing observations and a lack of trip purpose 

information.  For each traveller, trips which are first detected at matching sensor 

location and are also last detected at matching sensor locations could be compared 

but these are not guaranteed to relate to the same trip.  This is because of the 

limited spatial coverage of detectors, i.e. these are not the OD pair of the actual 

trip, and there may be missing data.  Also, for each traveller there may be many 

start and end detector pairs so there would be a confusing array of measures for 

each traveller, most of which would have very small sample sizes.   

The approach proposed in this research is to consider the time of day that an 

individual passes a particular detector.  For each traveller, the detector they pass 

most often will be examined.  This is somewhat similar to the approach taken by 

Muthyalagari et al. (2001) on GPS travel diary data.  They compare departure times 

based on location, but also based on trip purpose and so obtain measures of 

variability for the first departure from home, final departure from work and final 

arrival at home each day.  Using the most common detector location only may be 

more closely linked to spatial variability as the time they pass a particular point may 

vary depending on their ultimate destination.  It does, however, allow travellers who 
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always travel at the same time of day but go to different locations to be identified in 

the data. 

Having decided upon the observations to compare, a suitable measure of temporal 

intrapersonal variability needs to be selected.  Comparison of observations within 

time bands can be useful, for example 10 minute intervals were used by Minnen et 

al. (2015).  The results are usually dependent on the (usually arbitrary) choice of 

time band widths, however, and the relative precision of the time stamps from 

point-to-point sensors would be wasted.  In the current research, therefore, the time 

of day is treated as a continuous variable and clustering is undertaken for each 

traveller separately, as was done for public transport users in Kieu et al. (2015b).  

Kieu et al. (2015b) used a density based clustering algorithm as their aim was to 

identifythepercentageofeachtraveller’stripswhichfallwithinahabitualtime

cluster, as opposed to other trips which were classified as noise by the algorithm.  

This algorithm was not suitable for the current paper for two reasons.  Firstly, the 

distribution of the trips classified as noise by a density based algorithm is of interest 

in this research and therefore a more holistic approach was preferred.  Secondly, 

although the density based clustering algorithm used does not require the 

specification of the number of clusters to use, it does require a minimum points and 

density reach parameters.  These parameters tell the algorithm how close together 

points should be if they are to be in the same cluster.  For example, Kieu et al. 

(2015b) used 5 minutes as their density reach parameter for the time of day of trips 

analysis.  An alternative approach which uses all available data and uses a data 

driven approach to decide on the spread of clusters is Model Based Clustering (see 

Fraley and Raftery (2002)).  This can be used to identify whether there are multiple 

times of day at which an individual passes a given location.   

An outline of how this approach can be used in the current application is shown in 

Figure 4-4.  For regular travellers, the times at which s/he passes their most 
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common location are assumed to have distinct clusters which combine to form a 

Gaussian mixture distribution.  For each traveller with a large enough sample size, 

Maximum Likelihood Estimation is undertaken on the times at which s/he passes a 

particular point to identify the parameters of the Gaussian mixture distribution which 

bestfitsthetimes.Themeasuresofeachtraveller’stemporalvariabilityarethe

number of clusters relating to their most common detector and the variance of the 

clusters.    

 

Figure 4-4: Time of day clustering process 

        

4.2.4 Clustering together 

Once the measures for the three aspects of intrapersonal variability have been 

calculated, namely trip frequency, spatial and temporal variability, all values are 

standardised prior to the clustering process.  A number of different clustering 

methods may be suitable, but in this paper k-means clustering is used as it is 
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relatively computationally fast and k-means was also used by Bayarma et al. (2007) 

to identify subgroups of travellers using travel diary data.  

 

4.3 Application: a case study in northwest England 

In this section the methodology described in Section 4.2 is applied to one year of 

real-life Bluetooth data from the road network in Wigan, a town in Greater 

Manchester in northwest England.  Transport for Greater Manchester has installed 

around 770 fixed Bluetooth detectors next to roads in Greater Manchester.  Such 

detectors are an increasingly popular way to measure travel times on the road 

network (Aliari and Haghani, 2012, Bhaskar and Chung, 2013, Araghi et al., 2014) 

and they have also been used to estimate OD matrices (Barceló et al., 2010, 

Chitturi et al., 2014) and measure pedestrian movements (Bullock et al., 2010, 

Versichele et al., 2012).  Types of Bluetooth-enabled devices include smartphones, 

laptops, hands-free kits and in-car audio systems.  By matching unique identifiers 

for devices between locations, trip data can be generated and filtered to remove 

travel times not associated with motor vehicles, as described in Section 4.2.  As 

only discoverable Bluetooth devices can be detected, the trip data will only be a 

sample of trips undertaken in the area.  The Bluetooth penetration rate has been 

measured by comparing ANPR and Bluetooth data for one link within Greater 

Manchester over a twelve hour period and the hourly penetration rates were 

calculated to be between 16% and 34%.   

Data from 23 fixed Bluetooth detectors in and around Wigan (Figure 4-5) was 

analysed for all of 2015. The data includes 7,480,204 trips and these trips were 

associated with 327,264 unique MAC addresses, which for the purposes of this 

research are assumed to approximately correspond to individual travellers.  Almost 

28% of these MAC addresses only recorded one trip in this area in the year.  Just 
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2% of the MAC addresses recorded greater than or equal to 260 trips in the year 

which is equivalent to at least one trip per day, on average, for someone working 

five out of seven days per week. 

 

 

Figure 4-5: Bluetooth detector locations in and around Wigan 

 

Computational limitations make sequence alignment on all unique sequences 

observed in the year infeasible, but it is possible for a month of data.  To select the 

most appropriate month to use, the unique trip sequences, 𝑠𝑒𝑞𝑘, (where 𝑘 = 1,…𝑛, 

the total number of unique sequences) observed in the year of data need to be 

extracted.  For each of these sequences, the months in which it was observed and 

the total number of occurrences in the year (𝑤𝑘) should be recorded. Equation (11) 

can then be used to calculate the coverage of each month.  The coverage 
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corresponds to the proportion of trips in the year which have a trip sequence which 

matches a trip observed in month l.  The month of data with the highest coverage 

should be selected.  Only sequences observed in the chosen month will undergo 

the pairwise alignment process and therefore choosing the month with the highest 

coverage will maximise the number of trips observed in the year which can be 

assigned to a cluster as others will not be represented in the distance matrix. 

 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑚𝑜𝑛𝑡ℎ 𝑙 =
∑ 𝑤𝑘𝜆𝑘𝑙𝑘

∑ 𝑤𝑘𝑘
   

𝑤ℎ𝑒𝑟𝑒 𝜆𝑘𝑙  = {
1    𝑖𝑓 𝑠𝑒𝑞𝑘  𝑜𝑐𝑐𝑢𝑟𝑠 𝑖𝑛 𝑚𝑜𝑛𝑡ℎ 𝑙
0                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(11) 

In the case study area, March has the highest coverage (0.98).  Pairwise Sequence 

Alignment was undertaken on March data only.  Spatial clusters were then 

estimated using the sequence alignment scores and finally trip sequences in the full 

year of data were assigned to spatial clusters.    

After calculating the pairwise costs relating to the sequences, standard hierarchical 

clusteringusingWard’smethodwasundertaken.Inordertoselectthemost

appropriate number of clusters to use, partition quality measures were calculated, 

following Studer (2013), including Average Silhouette Width and Calinski-Harabasz 

index.  This provided a starting point for testing, but ultimately 150 spatial clusters 

were used as this provided a useful level of aggregation for the overall 

intrapersonal variability clustering.  The choice of 150 spatial clusters will be 

discussed further in Section 4.4.   

Model Based Clustering was undertaken separately on the times of day at which 

each traveller passed their most common sensor location, provided there were at 

least 20 such observations.  Temporal clustering could be performed for 33,375 

travellers, which is approximately 10% of the travellers observed in the data.  As 

the final intrapersonal variability clustering cannot deal with missing values, the 
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remaining travellers were assumed to have one temporal cluster and the average 

cluster variance was calculated as the variance of any observations, or assigned a 

zero if there was only one observation. 

Five variables were retained for each traveller in the final cluster analysis:  

i. the number of trips observed in the year,  

ii. the number of temporal clusters estimated based on the time of day the 

traveller passed their most common location,  

iii. the average variance of their temporal clusters,  

iv. the number of spatial clusters their trips were observed in and  

v. the percentage of their trips which fell into their most common spatial cluster.  

Using the Elbow Method, the number of clusters of travellers to use was set at 12.   

 

4.3.1 Descriptive statistics of the user classes 

Overall,theclusterscanbeseparatedintothesix‘infrequenttraveller’clusters(A

toF),four‘frequenttraveller’clusters(GtoJ)andtwo‘veryfrequenttravellers’(K

and L).   

Table 4-1 shows that the vast majority of travellers assigned to clusters A to F 

recorded very few trips during the year and the average across these six clusters is 

just 5 trips in the year.  Although theterm‘infrequenttravellers’hasbeenused,

these could be people who were visiting Wigan or local people who do not usually 

travel by road.  The low frequency of observations could also be due to the type of 

data collection, for example a frequent traveller may only occasionally use their 

Bluetooth enabled hands-free device and thus appear very infrequently in the data.    

As very little data is available for these travellers, it is not reasonable to try to make 

distinctions based on the spatial and time of day variability in trips.  In the 

remainder of this section, therefore, clusters A to F will be combined into one class 

of road users.  Figure 4-6 demonstrates the uneven distribution of travellers 
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allocated to the clusters, as clusters A to F contain 89% of travellers but they only 

account for 19% of the trips observed.   

Table 4-1: Cluster membership and trip characteristics 

User class Cluster 
Average trips per 
traveller in 2015 

Travellers per 
cluster 

Total trips 

Infrequent 
travellers 

A 1   103,340          153,223  

B 3         991              2,767  

C 4     86,473          344,128  

D 6      4,640            28,127  

E 9     23,987          209,480  

F 10     72,042          720,326  

Frequent 
travellers 

G 69     16,634        1,144,115  

H 100      8,163          820,221  

I 264      3,089          815,504  

J 274      5,809        1,590,437  

Very 
frequent 
travellers 

K 685      1,901        1,302,874  

L 1,790         195          349,002  

 

 

Figure 4-6: Segmentation of trips and travellers into clusters 

 

Within the frequent traveller user class, the four clusters, G to J, have quite different 

characteristics as shown in Table 4-2.  They can be separated into two groups 

based on their trip frequency.  Travellers in clusters I and J are observed almost 

three times as often as travellers in clusters G and H.  Within each pair, one cluster 

A to F 

A to F 

K 

K 

L 

L 

0% 20% 40% 60% 80% 100%

Travellers

Trips
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represents more regular trip makers (H and I) and the other represents less regular 

travellers (G and J). The more regular travellers (H and I) make fewer different 

kinds of trips (represented by different spatial clusters) and make their most 

common trip (spatially) a higher percentage of the time, when compared with their 

pairwise equivalents (G and J respectively).  Despite the difference in trip 

frequency, travellers in both G and J make their most common trip approximately 

24% of the time, based on spatial clustering.   For travellers in H and I this is 

around 35%, thus they are classed as more regular travellers.    Interestingly, the 

clusters with higher spatial regularity also have higher time of day regularity.  

Table 4-2 shows that the clusters described as being less regular (G and J) have 

fewer distinct time of day clusters, with greater variances on average.  This 

suggests higher levels of flexibility and lower levels of predictability.  Figure 4-7 

highlights the connection between the spatial and time of day variability as 

travellers in clusters G and J have a lower percentage of trips in their most common 

spatial cluster and also have fewer time of day clusters when compared with their 

pairwise equivalents (H and I respectively). 

Table 4-2: Characteristics of frequent traveller clusters 

  Spatial variability Time of day variability 

Clust Average 
trip freq. 

Overall  Spatial 
clusters 
used 

% of trips 
in most 
common 
spatial 
cluster 

Overall Time of 
day 
clusters 

Average 
variance 

G 
1-2 per 
week 

Less 
regular 

21 24% 
Less 

regular 
1.4 0.015 

H 
1-2 per 
week 

More 
regular 

17 36% 
More 

regular 
3.5 0.004 

I 
5 per 
week 

More 
regular 

26 34% 
More 

regular 
6.4 0.003 

J 
5 per 
week 

Less 
regular 

41 24% 
Less 

regular 
2.6 0.009 
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Figure 4-7: Boxplots for each frequent traveller cluster by the number of time 

of day clusters4 

 

The final two clusters (K and L) relate to very frequent travellers.  Only 0.64% of 

travellers, a total of 2,096, are allocated to these clusters, but they make 22% of the 

trips observed.  Clusters K and L contain travellers with 2 and 5 trips per day on 

average respectively and cluster L has far fewer travellers allocated to it than any 

other cluster.  The very frequent travellers have time of day variability 

characteristics which are similar to a combination of clusters I and J, i.e. the 

clusters with the next highest trip frequency, separated into more and less regular 

components.  The very frequent travellers are observed in more spatial clusters 

than travellers in I and J, but the amount of spatial variability does not increase at 

the same rate as the trip frequency.  Clusters I and J have 7.6 trips per spatial 

cluster on average, but clusters K and L have 11.7 and 18.7 respectively.  This 

suggests that as well as making more trips than travellers in the frequent user 

class, the very frequent user class also have different characteristics in terms of the 

use they make of different parts of the network.   

 

                                                

4 The stars and accompanying letters represent the average values for both variables for 

each of the four frequent traveller clusters. 
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4.3.2 Predictable differences in user class proportions 

Identifying predictable differences in the proportion of trips in each road user class 

by the day of the week or season could help to identify systematic differences in 

travel behaviour (Crawford et al., 2017).  The proportions are relatively stable 

across days of the week and seasons in this case study area, although some 

patterns are evident.  For example, infrequent travellers are slightly more common 

on weekend days (see Figure 4-8) which is consistent with Wigan being a trip 

attractor for weekend activities such as visiting a park, museum or theatre.  The 

proportion of trips made by very frequent travellers is also higher on weekend days 

than on weekdays.  This is particularly surprising on Sundays when there are likely 

to be fewer buses operating and fewer deliveries being made.   For all three user 

classes, the difference in proportion between weekdays and weekend days is 

statistically significant (p<0.00001).   
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Figure 4-8: Proportion of trips by each road user class in Wigan by the day of 
the week 

 

Frequent travellers contribute a consistent proportion of trips throughout the year.  

The proportion is highest at 59.0% in March but remains relatively stable until there 

is a decrease to 57.1% in December, probably due to the holiday period.  As shown 

in Figure 4-9, the proportions of trips made by infrequent and very frequent 

travellers vary more throughout the year.  For both infrequent and very frequent 

travellers, the difference in the proportions of trips made by the user class in 

January and June are statistically significant (p<0.00001).  For frequent travellers 

the same comparison is also statistically significant at the 0.05 significance level 

(p=0.048), although less convincingly so.  A higher proportion of trips are made by 

infrequent travellers during the winter months.  This could be because the leisure 

trip attractors in the town are more likely to relate to indoor activities, whereas 

during the summer there may be more competition from outdoor activities which 
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are not within the monitored area of Wigan.  It could also be due to an increased 

reliance on cars during months where the weather is colder and wetter.  The 

proportion of trips made by very frequent travellers peaks during the summer 

months.  This, together with the day of the week analysis, suggests that the very 

frequent traveller user class is more closely linked to leisure trips than business 

trips.  The current case study is limited as only one year of data was analysed and 

therefore it is not clear whether the increase in the proportion of trips made by very 

frequent travellers between January and June is part of a longer term trend, for 

example an increasing number of taxis operating in the area, or whether it is truly a 

seasonal pattern.  

 

Figure 4-9: Proportion of trips made by each road user class throughout the 
year in Wigan 

4.4 Discussion 

Although the trip frequency measure was designed to be a comparative value, it is 

inevitable that attempts will be made to interpret the user class characteristics using 

this measure.  As fixed Bluetooth detectors do not have a 100% detection rate for 
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discoverable Bluetooth devices and trips could be missed due to not carrying the 

device or disabling the Bluetooth functionality, the trip frequency data should be 

considered to be a lower bound for the number of trips actually made. There may 

also be a bias due to new technologies, for example iPhones from iOS 8 have 

featureswhichcanrandomiseMACaddresses(the“unique”identifiers)toprevent

the tracking of devices.  As the data analysed in Section 4.3 is from 2015, the 

penetration rate of such devices is assumed to be small.  In the future, analyses 

relating to repeated trip making using Bluetooth data may require additional data 

collection to understand the types of devices being detected and the possible 

implication for trip frequency measures. 

The trip frequency values will be sensitive to the parameters used in cleaning the 

Bluetooth data, particularly those used as part of the process to connect 

observations into trips.  In the application to one year of data in Section 4.3, for 

example, 0.4% of the trips observed were circular routes which included at least 

three observations.  Whilst it is virtually impossible to distinguish a very brief drop-

off on a route from a stop at a pedestrian crossing, for example, further work should 

focus on identifying the optimal parameter values for connecting or splitting trip 

data.       

The Sequence Alignment based method was used to identify 150 spatial clusters 

from the trips observed.  Each spatial cluster contains 173 different sequences on 

average.  The heterogeneity of spatial cluster membership is highlighted by the 

variety in the number of unique sequences assigned to each spatial cluster and the 

variability in sequence lengths and starting sensor location within clusters.  

Figure 4-10 shows the 15 most common sequences, out of 197, in one spatial 

cluster.  These sequences are each observed between 127 and 893 times in the 

year of data.  The sequences go from the west of Wigan to the east via the town 

centre.  The sequences relate to one spatial cluster only and demonstrate the 
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effectiveness of the method in combining trip sequences where intermediate sites 

are not observed and those representing slightly different routes, for example trips 

going past site S or site R. 

 

 

A-B-M-N-R-T-W 

A-B-G-M-N-R-T-W 

A-B-N-R-T-W 

B-G-M-N-R-T-W 

A-B-M-N-R-W 

A-B-G-N-R-T-W 

A-B-R-T-W 

A-B-M-R-T-W 

A-B-R-W 

A-B-N-R-W 

A-B-M-R-W 

A-B-M-N- -W S

A-B-M-N- -T-W S

A-B-G-M-R-T-W 

A-B-G-M-N-R-W 

 

The choice of 150 spatial clusters was made by considering the partition quality 

measures implemented in Studer (2013), including the Average Silhouette Width 

and Calinski-Harabasz index, but also using a more qualitative examination of the 

trip sequences clustered together.  A plot of a range of partition quality measures 

showed apparent step changes at around 150, 800 and 2,000 clusters.  An 

examination was undertaken of 3 clusters randomly selected at the 150 cluster 

level to explore whether the clusters at the 800 cluster level were more intuitive.  In 

one case, 95% of the sequences were assigned to a single cluster at the 800 

Figure 4-10: A map and table showing the 15 most common sequences 
assigned to one of the 150 spatial clusters  
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cluster level.  In another case, 94% of the trip sequences were split between two 

clusters at the 800 level, but the separation was not particularly meaningful.  The 

most common sequences in the two clusters were from site W to site R and from 

site W to site N, which are similar trips but with different sequence lengths.  In the 

third case, the three largest clusters at the 800 cluster level did have meaningful 

differences: one included trips travelling north to P, one included the reverse trips 

(travelling south from P) and the other included trips with at least two sites in 

common with the north-south trips, but which ultimately travelled east-west or 

further north.  This examination was very subjective but it highlights the difficulty in 

selectingthe‘right’levelofaggregationoverall.Inpractice,however,achoicehas

to be made which gives the most meaningful results overall.  The final user class 

clustering was repeated using the spatial variability measures calculated using 150, 

800 and 2,000 spatial clusters and the characteristics of the twelve clusters were 

relatively similar.  For example, if we compare using 150 and 2,000 spatial clusters: 

the percentage of trips by frequent travellers remained fairly constant, the 

percentage of trips by infrequent travellers increased from 19.5% to 20.6% and the 

percentage of trips by very frequent travellers decreased from 22.1% to 21.0%.  

This suggests that the overall methodology is fairly robust with respect to the 

number of spatial clusters selected. 

Approximately 10% of the travellers observed in the data had sufficient data to be 

able to produce a measure of intrapersonal variability for the time of day they pass 

their most common location.  This percentage is determined by the minimum 

sample size specified for the Model Based Clustering.  This parameter has already 

been set quite low in this case study, at 20, and therefore reducing it further was 

not feasible.  For the travellers with sufficient trips passing their most common 

sensor location, the proportion of their total trips that this measure represents 

varies; 29% of these travellers passed their most common location on less than 
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50% of their trips.  Although visual inspections were undertaken for a sample of 

travellers, further work is required to determine whether the Gaussian assumption 

is reasonable, or whether another distribution, perhaps a skewed distribution such 

as the lognormal distribution, would be more appropriate. 

The choice of k-means as the clustering algorithm may have an impact on the final 

clusters identified.  Due to the large number of travellers in Section 4.3, standard 

hierarchical clustering is not possible due to computational limitations.  An 

alternative algorithm which could have been applied is the density-based algorithm 

DBSCAN (Ester et al., 1996).  DBSCAN can identify clusters of arbitrary shape 

using very few initial parameters and was used by Kieu et al. (2015b) to identify 

regular ODs and habitual trip timings for travellers using smart card data.  DBSCAN 

was applied to the year of data analysed in Section 4.3, but the results were less 

satisfactory than those obtained using k-means.  DBSCAN identified one very large 

cluster, which approximately equated to the travellers in the infrequent traveller k-

means clusters combined.  Irrespective of the parameters applied, this technique 

resulted in many very small clusters which would not be useful when defining user 

classes.  Also, although it is considered an advantage that DBSCAN can identify 

noise in the data, it is somewhat problematic in the current application as 4% of 

travellers have not been assigned to a cluster.  DBSCAN does not perform very 

well when clusters have different densities as a Minimum Points parameter which is 

suitable for all clusters cannot be specified.  It was therefore preferable to use k-

means clustering for the case study presented, but alternative algorithms should 

still be explored in future applications. 

The overlap between some of the k-means clusters and the slightly different 

clusters identified by DBSCAN suggest that it may be more appropriate to use 

fuzzy, rather than hard, clustering for travellers.  Non-fuzzy clustering has been 

used in the current paper as it provides results which are more intuitive for policy 
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analyses, in relation to travellers belonging to a single user class, but fuzzy clusters 

could be used in future applications.  

 

4.5 Conclusions 

This study has demonstrated the extent to which road user classes based on 

repeated trip making behaviour can be identified using point-to-point sensor data.  

The purpose of identifying such classes would be to inform policy development and 

to use as inputs for economic or behavioural models.  The methodology was 

designed for a specific type of data, namely point-to-point sensor data, and non-

traditional techniques (from a transportation research perspective) have been used 

to extract as much relevant data as possible.  The Bluetooth data analysed for the 

case study area was collected for the purpose of travel time estimation and 

therefore the marginal costs of using it for this research were minimal.   

The results obtained from the proposed method could be used by policy makers 

and practitioners in several ways.  For example, now that an infrequent traveller 

user class has been defined, road managers may wish to explore whether this user 

class makes up a greater proportion of travellers on specific days where there are 

seasonal sales, sporting events or major incidents on other roads in the region.  

Such insights could inform planning for future special events.  

Although the majority of trips are made by frequent travellers (58%), the vast 

majority are not recorded making two trips per weekday, on average.  For the 

frequent travellers with lower intrapersonal variability, their most common trip 

spatially makes up only 35% of their total trips.  Therefore, while the lower spatial 

and temporal intrapersonal variability may suggest that ride sharing would be a 

suitable option to promote, the ability to make a significant proportion of trips to 
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other locations should also be addressed.  For the frequent travellers with greater 

intrapersonal variability alternative options with more flexibility might be more 

attractive, for example cycling or car clubs.       

For the travellers in the very frequent user class, further research is required to 

examine what sort of trips are being recorded, as the higher proportion of trips at 

the weekend and during the summer suggest that it is not just related to taxis, 

buses and delivery drivers.  If they are predominantly business trips, then policies 

promoting mode change for personal travel will not result in a decrease in the 22% 

of trips made by these very frequent travellers.  To have any impact on the trips 

made by this user class, alternative policies would need to be considered, for 

example changes to bus routes or encouraging deliveries during off-peak periods.   
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5 Examining day-to-day variability by connecting network- 

and traveller-focused analyses of travel behaviour 

Abstract 

The effects of day-to-day variability in travel behaviour are visible on all transport 

networks, for example in the form of travel time unreliability on road networks.  

Understanding variability in travel behaviour matters when allocating resources on 

networks, developing suitable policies and including variability in models.  

Quantitative analyses relating to variability on transport networks usually adopt a 

single perspective, either focusing on individual traveller behaviour or focusing on 

data aggregated for a part of the network such as a road link.   

Complex relationships exist between individual traveller behaviour and aggregate 

level observations on the network.  Travellers are assumed to make travel choices 

based on network level attributes, which in turn result from the aggregated 

decisions of travellers.  Day-to-day patterns on the network can have multiple 

possible behavioural causes, and variability in traveller behaviour may not be 

observed at the network level if masked by counteracting behaviour.  Undertaking 

analysis at only one level, therefore, may not provide a complete picture of traveller 

behaviour.  Emerging data sources are providing new opportunities to examine 

variability from multiple perspectives.  

This paper proposes an inductive three stage approach inspired by mixed methods 

techniques to undertake analyses considering multiple perspectives.  In Stage 1, 

analyses are performed independently on data from each perspective for the same 

geographic area.  Stage 2 compares the data used and triangulates the findings 

fromtheseseparateanalyses.Stage3involvesthe‘followingathread’technique
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from mixed methods research, where questions or themes from the analysis of 

each data type are explored further using the other.  Therefore, hypotheses to 

explain network-level variability are developed then tested using traveller-focused 

analyses, and vice versa.  A real world application is presented consisting of a 

single road link, where loop detector data provides the network perspective and 

Bluetooth sensor data provides the traveller perspective.   

 

5.1 Introduction 

The effects of day-to-day variability in travel behaviour are visible on all transport 

networks, for example in the form of travel time unreliability on road networks.  It is 

important to understand such variability in travel behaviour for three reasons.  

Firstly, it is important for resource allocation.  This is particularly relevant when the 

variations are systematic, for example according to the day of the week or season.  

A common example could be having different bus timetables for different seasons 

of the year or days of the week.  Secondly, understanding the variability in different 

aspects of travel behaviour can inform the development of policies, for example 

Travel Demand Management (TDM) strategies such as those described by Meyer 

(1999), which aim to influence behaviour in order to improve network performance.  

TDM strategies may seek to reduce, re-time, re-mode and/or re-route trips 

(Transport for London, 2013, p18).  It is only by having a good understanding of 

individual’sweeklyormonthlytravelpatternsandthevariabilitywithinthose

patterns that adaptations to their behaviour can be identified which could result in 

meaningful long term changes.  One example could be to encourage employees to 

change to a compressed working schedule so that the same number of hours are 

worked over fewer days, thus resulting in fewer commuting trips.  Thirdly, variability 

can be introduced into models of future scenarios, for example by including variable 
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demand and/or route choice (Nakayama and Watling, 2014).  Such models should 

be based on analyses of real world decisions.  There are multiple benefits, 

therefore, in gaining a better understanding of day-to-day variability in travel 

behaviour.         

One way to gain a greater insight into such variability is by analysing relevant 

quantitative data.  Empirical transportation research can take place from many 

perspectives, for example the focus may be on individual travellers, parts of the 

transport network, such as a single road link or underground line, or geographic 

areas, such as a city or a whole country.  The current research concentrates on 

traveller-focusedanalyses,toexamineindividuals’behaviour,andnetwork-focused 

analyses,wheretheaggregatedeffectsoftheindividuals’behaviourcanbe

examined.   

Day-to-day variability in behaviour at the traveller level requires data which 

traditionally would have been collected using a multi-day travel diary (Huff and 

Hanson, 1986, Jones and Clarke, 1988), although more recently data from 

emerging data sources has also been utilised, for example from mobile phones 

(Järv et al., 2014), GPS trackers (Elango et al., 2007, Spissu et al., 2011, Shen et 

al., 2013) and smart cards (Morency et al., 2007, Ma et al., 2013, Kieu et al., 

2015b).  Some of the research has focused on a single aspect of travel behaviour, 

for example spatial variability (Buliung et al., 2008, Spissu et al., 2011, Järv et al., 

2014), trip frequency (Elango et al., 2007) or departure time variability (Chikaraishi 

et al., 2009).  A separate strand of research has used empirical data to identify 

classes of traveller based on their repeated trip characteristics (Ma et al., 2013, 

Kieu et al., 2015b, Crawford et al., Under review-b).        

In contrast to traveller-focused analyses, network-focused analyses often have 

findings which can inform policy making, for example Singhal et al. (2014) and 

Heinen and Chatterjee (2015).  Network-focused analyses often involve some sort 
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ofcomparisonortheinvestigationofan‘effect’,forexample,researchersmay

focus on the day of the week (Zhang et al., 2007, Kaltenbrunner et al., 2010, Yazici 

et al., 2012) or weather conditions (Datla and Sharma, 2008, Arana et al., 2014, 

Singhal et al., 2014).  They can relate to data from a range of levels, from a single 

loop detector on the road network (Weijermars and van Berkum, 2005, Crawford et 

al., 2017) to smart card data from a city-wide public transport system (Singhal et 

al., 2014, Tao et al., 2014). 

Empirical analyses relating to variability on transport networks usually focus on a 

single type of data and a single level of aggregation, for example the analysis of 

individual traveller behaviour using travel diaries (Schlich and Axhausen, 2003, 

Bayarma et al., 2007, Buliung et al., 2008) or the analysis of link flows using loop 

detector data (Weijermars and van Berkum, 2005, Datla and Sharma, 2008, 

Crawford et al., 2017).  Some research has looked at fusing data from different 

sources (Kusakabe and Asakura, 2014, Bhaskar et al., 2014), but the analysis uses 

just one perspective, either a traveller or a network focus.   

Transport networks involve complex relationships between the behaviour of 

individual travellers and the aggregate level trends observed on the network.  

Travellers are assumed to make travel choices based on network level attributes, 

such as the flow dependent travel times on the road network (Wardrop, 1952).  

Network level data such as demand, flows or travel times are generated by the 

aggregated decisions of all travellers.  Variability at the traveller level may not result 

in variability at the network level, however, if masked by counteracting behaviour.  

Also, a trend observed at the network level could be caused by any one of a range 

of possible explanations at the traveller level.  Undertaking analysis at only one 

level, therefore, may not provide a complete picture of traveller behaviour.  The 

unique contribution of the current research is to propose an inductive approach 

which involves preliminary analyses from both the network and traveller 
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perspective, before making comparisons, then generating hypotheses to test using 

the alternative perspective.  This type of research not only provides insights into 

traveller behaviour, but may also provide details of bias within the data sources 

used.  

The structure of this paper is as follows.  Section 5.2 includes a description of the 

three stages of the general approach proposed in this paper.  In Section 5.3, the 

case study site which will be used is described.  The three stages of the process 

are applied to the case study area in Sections 5.4, 5.5 and 5.6 respectively.  

Section 5.7 discusses other applications of this approach including how it could be 

applied to larger units geographically.  Section 5.8 concludes the paper.       

 

5.2 Methodology 

Every person makes a series of decisions on each day which includes spatial and 

temporal choices.  As discussed in Section 5.1, day-to-day variability in travel 

behaviour can be examined from different perspectives.  For example, Figure 5-1 is 

a diagrammatic representation of how data could be aggregated under the network-

focused and the traveller-focused perspectives for a very simple case where five 

days of data are collected on a link used by just three people.  Each rectangle in 

the diagram contains a complex collection of travel choices for one person on one 

day, which will include the spatial and temporal characteristics of any trips made. 
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Figure 5-1: Simplistic representation of data aggregation for traveller 
behaviour analyses 

 

In network-focused analyses, data is aggregated over all travellers for each day.  If 

variability in the time of day at which trips are made is of interest, then the 

aggregated data should retain some degree of temporal disaggregation.  This type 

of data could include daily flow profiles for a loop detector or hourly counts of 

vehicles crossing a bridge/tunnel. 

Traveller-focused analyses examining day-to-day variability require data which 

contains unique traveller identifiers so that data can be matched between days, 

otherwise the aggregation shown in Figure 5-1 would not be possible.  The data 

may therefore be less well defined spatially, but will still retain data about the timing 

of events during the day.  Such data could include Bluetooth, mobile phone, travel 

diary or smart card data. 

For some transport networks it may be possible to have identifiable traveller data 

for most, if not all, trips, for example for smart card schemes with very high levels of 

user registrations as seen in Ma et al. (2013).  In most cases, however, individual 

traveller data containing unique identifiers are only available for a sample of users.  

It is likely, therefore, that different data sources will be used for the network- and 

traveller-focused analyses, although this is not a requirement.  There can be 
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advantages to using different data sources for the two sets of analyses, as they 

may include a wider range of variables when considered together.  As the aim is to 

make connections between the traveller- and network-focused analyses, they 

should both contain data for the same (or very close) geographic areas.       

As discussed in Section 5.1, further insights may be obtained from connecting the 

analyses undertaken from the two separate perspectives.  The approach proposed 

in the current paper is inspired by mixed methods techniques and involves the 

three stages shown in Figure 5-2.  In mixed methods approaches, qualitative and 

quantitative methods are used in the data collection and analysis stages (Johnson 

et al., 2007).  The current approach only uses quantitative analyses and therefore 

may be considered to be a multiple method approach (Davis et al., 2010) rather 

than a mixed methods approach, as it does not have the philosophical basis that it 

is best to use both qualitative and quantitative analyses to understand behaviour 

(Creswell and Plano Clark, 2011, p5).  Johnson et al. (2007, p123) define mixed 

methodsasbeing“forthebroadpurposesofbreadthanddepthofunderstanding

andcorroboration”,whichcoincideswiththepurposeofthecurrentresearch.

Creswell and Plano Clark (2011, p9) also describe how mixed methods can be 

used to explain or generalise initial results, and more generally enhance a study.  

Given these parallel objectives, it is reasonable to seek inspiration for the approach 

developed in the current paper from mixed methods research. 
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Figure 5-2: Overview of proposed approach for analysing travel behaviour 
using network- and traveller-focused analyses 

 

The first stage involves performing analysis on data from each perspective 

independently.  The initial analysis is performed concurrently, and interaction will 

not occur until Stage 2.  The two sets of analyses should relate to the same time 

period and should have the same (or very similar) spatial coverage.   

Stage 2 aims to bring together the separate analyses from Stage 1 in two ways.  

Firstly, the basis for comparison must be investigated by considering the data used.  

Where the traveller-focused analysis takes place on a sample of travellers, as will 

usually be the case, the proportion of travellers sampled should be examined for 

different day types and at different times of day to check for bias in the sample.  

Secondly, the findings of the two sets of analyses should be compared, in a similar 

waytothe‘triangulationprotocol’(O'Cathain et al., 2010, p1) used in mixed 

methods approaches.  The findings from the two separate analyses should be 

compared to look for both agreement and disagreement but also to consider 

whether the findings provide complementary evidence on the same topic 

(O'Cathain et al., 2010, p2).   
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Stage3isconsistentwiththe‘Followingathread’technique(O'Cathain et al., 2010, 

p2) sometimes used in mixed methods approaches.  This involves identifying a 

question or theme from the analysis of each data type and exploring it in more 

detail using the other data type (Moran-Ellis et al., 2016).  For the current 

application, this means developing hypotheses or questions to explain the network 

level variability which can be tested using traveller-focused analyses, and vice 

versa.   

An application to a road link in northern England will now be presented to show 

how the process works and what kinds of insights can be gained from this 

approach.  The approach is not limited to such small geographic areas or to travel 

behaviour of road users only, however, and further applications will be discussed in 

Section 5.7.  

5.3 Case study description 

The case study area consists of a road link going north from the Manchester Outer 

Ring Road (M60) and connects Stockport with Manchester (see Figure 5-3).  Only 

the northbound direction has been considered.  The purpose of the analysis is to 

examine day-to-day variability in travel behaviour involving this link.  As only one 

location is involved, the definition of travel behaviour will be limited to whether the 

traveller uses this road link and if so, at what time.  Within-day dynamics must, 

therefore, also be examined.  A fully comprehensive analysis of the data available 

will not be provided as the aim is to demonstrate the proposed approach in 

practice.  Day of the week effects will be examined in detail, but other variability 

such as seasonal variations or the impact of sporting events will not be considered.   
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Figure 5-3: Stockport case study area 

 

The network-focused analysis will use data from the induction loop detector 

labelled ATC in Figure 5-3.  The traveller-focused analysis utilises data from fixed 

Bluetooth detectors.  Bluetooth detectors collect unique identifiers of discoverable 

Bluetooth devices which pass within the communication zone of the detector 

(Bhaskar and Chung, 2013).  The types of Bluetooth devices currently available 

include mobile phones, fitness trackers, hands-free devices and in-car audio 

systems.   The ability to match the unique identifiers over time and space has 

resulted in Bluetooth data being used for travel time estimation (Quayle et al., 2010, 

Moghaddam and Hellinga, 2014, Mathew et al., 2016), OD estimation (Barceló et 

al., 2010, Carpenter et al., 2012) and for classifying road users based on repeated 

travel behaviour (Crawford et al., Under review-b).  In the current research, data 

from the two Bluetooth detectors shown in Figure 5-3 are used.  After matching 

observations between the two detectors and cleaning the matched data, only trips 

travelling from BT1 to BT2, i.e. northbound, were retained.  There is assumed to be 

limited traffic joining or leaving the link between ATC and BT2.  Data for the same 

period of time was used for both types of data, namely 1/5/2013 to 30/4/2015. 
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5.4 Stage 1: Separate analyses 

Firstly, network-focused and traveller-focused analyses are undertaken separately 

using methods which are appropriate for the data available. 

5.4.1 Network-focused analysis of loop detector data 

In Crawford et al. (2017), data from the loop detector in this case study was 

examined for the same period of time (1/5/2013 to 30/4/2015), to test for 

statistically significant differences in daily flow profiles according to the day of the 

week or season.  Crawford et al. (2017) examined day of the week effects in the 

loop detector data by separately analysing the magnitude of flows and the within-

day distribution.  Testing was undertaken for statistically significant differences in 

magnitudes, using ANOVA, and in the standardised daily flow profiles, using 

functional ANOVA and permutation tests.   

The total counts and average flow profiles by the day of the week are shown in 

Figure 5-4.  Using the Kruskal-Wallis test, the total daily flows were found to differ 

significantly according to the day of the week, with two exceptions: Thursdays and 

Fridays were not significantly different, and neither were Tuesdays and 

Wednesdays.  The standardised daily flow profiles were assessed using Functional 

Linear Models and functional ANOVA and the average profile for each day of the 

week was found to be significantly different.    
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Figure 5-4: Day of the week flow patterns observed at one loop detector site by Crawford et al. (2017) 
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5.4.2 Traveller-focused analysis of Bluetooth data 

The initial traveller-focused analysis was undertaken using the methodology 

proposed by Crawford et al. (Under review-b).  Their method involved calculating 

trip frequency, spatial and temporal variability measures for each traveller and then 

using these to cluster travellers into user classes with similar trip characteristics.  In 

the current application, data from only one pair of Bluetooth detectors is used, 

unlike in Crawford et al. (Under review-b) where 23 Bluetooth detectors were 

included, and therefore as there is no spatial variability, only the trip frequency and 

temporal variability measures were included.  

The trip frequency measure is simply the number of observations in the two year 

period.  The time of day variability measure is based on the assumption that the 

times of day a person passes the sensors will form clusters.  These clusters could 

be due to different trip purposes or different daily routines, for example according to 

the day of the week.  As in Crawford et al. (Under review-b), Model Based 

Clustering (Fraley and Raftery, 2002) is performed separately for each traveller.  

For each traveller the measures of time of day variability are the number of time of 

day clusters their trips form and their average variance.  The trip frequency and two 

time of day variability measures are then standardised and used to identify user 

classes of travellers using k-means clustering. 

The 1.1 million trips observed travelling from BT1 to BT2 were made by 197,474 

different MAC addresses, which will be referred to as travellers in this research.  

Four user classes were identified: travellers observed approximately once or twice, 

a few times per year, a few times per month and a few times per week.  Within the 

first three user classes there are subclasses defined by different degrees of time of 

day variability, as shown in Table 5-1.  
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Table 5-1: Road user classes and their characteristics 

User class User 
subclass 

Average 
trip 
frequency 

Average 
number 
of time of 
day 
clusters 

Average 
variance 
of time of 
day 
clusters 

Number 
of 
travellers 

Total 
number 
of trips 

A 

Annually 

A1 1.8 1 0.001 152,690 277,917 

A2 2.3 1 0.330 462 1,060 

B 

Three 
times per 
year 

B1 5.3 1 0.162 2,338 12,299 

B2 5.4 1 0.073 6,666 36,231 

B3 8.4 1 0.024 27,524 230,247 

C 

Fortnightly 

C1 51.5 2 0.008 5,993 308,792 

C2 62.1 5 0.003 1,316 81,713 

D 

Three 
times per 
week 

D1 298.3 4 0.006 485 144,683 

 

Figure 5-5 shows that while the least frequent user class (A) makes up 78% of the 

travellers observed, it only accounts for around a quarter of the trips observed.  

Another quarter of the trips are made by those observed a few times per year (user 

class B), and the remaining 49% of trips are made by travellers observed 

approximately once per fortnight or more.  One possible explanation is that these 

observations represent all trips made by those travellers which pass these 

detectors.  Another possible explanation is that due to disabling of Bluetooth 

devices and incomplete detection of enabled devices, these frequencies only relate 

toasmallproportionofeachtraveller’stripspassingthesensors.Thetruth will lie 

somewhere between these two extremes.  There are over seven and a half 

thousand travellers in user classes C and D, however, which provides a fairly large 

dataset within which to examine intrapersonal variability in travel behaviour.  For 

example, of the travellers in user class C, who are observed approximately once a 

fortnight, the majority (82%) are in the subclass with more variability in the times of 

day they pass this site.   
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Figure 5-5: Splits of travellers and trips by user subclasses 

 

Figure 5-6 demonstrates that the distribution of trips between user classes is 

relatively constant by the day of the week.  The difference in the proportion of trips 

made on weekdays compared with weekend days is statistically significant for each 

of the subclasses (|𝑧| range from 9 to 55).  Weekend days include a slightly lower 

proportion of trips by members of the two most frequent user classes, but the 

proportion of trips made by travellers who pass the site every three or four months 

on average is higher.  As will be seen in Section 5.5, fewer trips are recorded by 

the Bluetooth detectors on Saturdays and Sundays than on weekdays, but the 

absolute number of trips for user subclasses A2, B1 and B2 are actually higher at 

the weekend.  These are the three subclasses generating the fewest trips, 

however, so the number of travellers involved is relatively low.  
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Figure 5-6: User classes by the day of the week 

 

Examining the time of day trips are made by each user class may provide 

additional insights into what the classes represent.  Figure 5-7 includes the total 

count for each hour of the day according to user classes.  The more frequent user 

classes (D1, C1 and to some extent C2) exhibit a daily profile consistent with the 

double peak weekday profile observed on many roads used for commuting.  This 

pattern is not present for travellers observed less frequently.  For example, the two 

largest user subclasses (in terms of trips) after C1 are A1 and B3, and both of 

these have a unimodal daily profile with the most trips observed in the middle of the 

day.  As observed in Figure 5-6, these subclasses are not observed more often 

during the weekend, but it is likely that more of the trips made by these travellers 

will be non-commuting trips, compared to travellers in other classes.  
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Figure 5-7: Total number of observations of travellers from each user class 
by the hour of the day 

 

The proportion of trips made by each user class in each hour of the day was also 

examined (Figure 5-8).  The most interesting observation is that the proportion of 

trips made by user class B is relatively stable throughout the day, with the 

exception of the morning peak period (approximately 5-9am).  The distribution 

amongst the three user subclasses, B1, B2 and B3, however, differs according to 

the time of day.  The travellers with lower trip frequencies and higher time of day 

variability, namely B1 and B2, are more common during the evening, night and 

early hours (from 6pm to 7am).    
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Figure 5-8: Percentage of trips by each user class by the hour of the day 

 

In summary, when clustering the Bluetooth observations according to frequency 

and time of day variability, four user classes were identified.  Almost half of the 

observations relate to travellers observed at least once a fortnight over the two year 

period, on average.  The user classes can be described based on trip frequency, 

but the three least frequent traveller user classes are split into subclasses based on 

the time of day variability in trips.  The user class proportions are fairly stable over 

the days of the week, although on weekend days a smaller proportion of trips are 

made by the most and the least frequent traveller subclasses.  The user classes 

differ in terms of the times of day that trips are observed.  The more frequent 

traveller classes are more likely to be observed during the typical weekday morning 

and evening peaks.  The less frequent traveller classes are more likely to be 

observed during the inter-peak period.  The proportion of trips made by each 

subclass varies according to the time of day for each user class.   
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5.5 Stage 2: Comparisons 

5.5.1 Data comparison 

The extent to which Bluetooth data can be used to explain differences in loop 

detector data, and vice versa, will depend upon the combined Bluetooth penetration 

and capture rates and the positioning of the detectors.  The total number of trips 

detected in each day in the two year period (excluding public holidays) was 

compared.  The Bluetooth detectors capture approximately 16% of the trips passing 

this location.  Given that this equates to almost 1.1 million trips travelling 

northbound in the two year period, this is a relatively large amount of data to use to 

explore traveller behaviour.  Bias in the trips detected should also be considered, 

however.  Prior to comparing the findings of the analyses in Sections 5.4.1 

and 5.4.2, therefore, the Bluetooth sample sizes will be compared to the loop 

detector counts by the two main groupings used in this research, namely the day of 

the week and the time of day. 

The total counts by the day of the week from the loop detector and the Bluetooth 

detectors over the same period of time are shown in Figure 5-9.  The Bluetooth 

sample is between 16.2% and 16.5% of the loop detector counts across the 

weekdays, but it is slightly lower at the weekend (Saturday 15.3%, Sunday 15.0%).  

This could be because there are likely to be more commercial vehicles on the road 

on weekdays, and due to the longer periods of time drivers spend in such vehicles, 

they may be more likely to contain a Bluetooth-enabled device such as a hands-

free kit. 
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Figure 5-9: Total two year counts by day of the week for a) the loop detector and b) the Bluetooth detector 
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Figure 5-10 shows how the observations from the loop detector and the Bluetooth 

sensors are distributed according to the time of day.  A two-sided two sample 

Kolmogorov-Smirnov test was applied, to test whether the Bluetooth and loop 

detector observations are likely to have the same underlying probability distribution.  

Bootstrapping was used to calculate the relevant p value as the data contained 

many ties as the observations had been rounded to the nearest second.  The null 

hypothesis was rejected at the 0.05 significance level (D = 0.030979, p-value < 

0.00001).  Despite capturing a lower percentage of trips on weekend days, the 

hourly Bluetooth detections profile is unimodal and peaks between midday and 

1pm.  The percentage of the loop detector trips which are captured by the 

Bluetooth detectors is higher than average during two periods of the day.  Firstly, it 

is slightly higher between 1-5am, peaking at 20% between 2-3am.  This could be 

caused by a higher proportion of commercial vehicles where Bluetooth devices may 

be more prevalent, for example taxis and long distance trucks.  The second period 

of the day with higher than average sampling rates for the Bluetooth detectors is 

the inter-peak period, from 9am-4pm.  After this, sampling rates remain low for the 

rest of the day, with the minimum value of 13.5% in 10-11pm.   

 

 

Figure 5-10: Standardised daily profile counts for the loop detector (green) 
and the Bluetooth detector (blue) 

 



191 

 

The lower Bluetooth sampling rates during the peak period could be caused by 

limitations in the capacity of Bluetooth sensors to store sufficient MAC addresses 

(the unique identifiers for Bluetooth devices) during each scanning cycle to be able 

to detect the same proportion of devices during very busy periods.  An examination 

of individual days of data supports this theory.  Figure 5-11, for example, includes 

histograms of the Bluetooth and loop detector observations for a randomly selected 

weekday and demonstrates that although there is a relationship between the 

magnitudes of the two sets of observations, the Bluetooth histogram is much flatter, 

which is consistent with there being caps on the number of possible observations 

during busy periods.   

 

 

Figure 5-11: Histogram of counts from a randomly selected weekday 
(23/9/2014) for the loop detector (green) and the Bluetooth detector 
(blue) 

 

Alternatively, the higher Bluetooth sampling rate during the inter-peak period could 

be due to a higher sampling rate for subclasses A1 and B3, as this is consistent 

with the daily distribution of such trips as shown in Figure 5-7.  These are the 

second and third largest subclasses in terms of the number of trips.  These are 

travellers detected quarterly or less frequently, on average, per year and therefore 
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may relate to people who are less familiar with the area and therefore are using 

satellite navigation systems which may be Bluetooth-enabled. 

The sampling rates suggest that the day of the week and the time of day have an 

impact on the collection of Bluetooth data.  This is, of course, assuming that there 

are very few travellers joining or leaving this link between the loop detector and the 

most northerly Bluetooth detector.  The varying sampling rate could indicate a bias 

in either the type of travellers and/or the type of trips which are detected using the 

Bluetooth sensors.  Methods for collecting additional data to explore such issues 

are described in Crawford et al. (Under review-a). 

5.5.2 Comparison of findings 

Bearing in mind these possible limitations, the findings from Sections 5.4.1 

and 5.4.2 will now be compared and contrasted.  Despite the statistically significant 

differences in daily flow profiles between days of the week, the general shape of 

the weekday profiles from the loop detector data were very similar (Figure 5-4).  

The Bluetooth data does not suggest that this relative stability is the result of the 

same people making the same trips each day, however.  Half of the trips observed 

are made by people observed less than once per fortnight, on average.  The 

estimatesoftravellers’tripfrequencyfromtheBluetoothdatadonottakeinto

account travellers who vary their route so as not to pass this location, and will be an 

undercount due to devices being switched off, not carried, Bluetooth disabled or 

simply not being detected.  Without further investigation into each of these factors, 

it is unclear how many of the times a traveller passes the sensor will actually be 

recorded by the Bluetooth detector.  Also, the estimate of trip frequency is only 

based on travellers with a detectable Bluetooth device and this may not be a 

random sample from the wider travelling population.   
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The network-focused analysis highlighted that each day of the week had a daily 

flow profile with a different shape and total counts differed between Saturdays, 

Sundays and three weekday groups.  The traveller-focused analysis identified user 

classes based on frequency and time of day variability of observations, but the 

proportion of each user class was relatively similar across the days of the week, 

particularly weekdays.  The differences between days of the week are, therefore, 

relatively subtle as they must be caused by differences in behaviour of the same 

travellers, or different travellers within the same user class. 

While the user classes identified in the traveller-focused analysis provide some 

insight into the behaviour of travellers passing this location, they are insufficient to 

explain the variability in trip timings and volumes observed at the link level.  Stage 3 

of the process is therefore required to gain further insights. 

5.6 Stage 3: Following the thread 

The third stage uses the findings from the network-focused analysis to identify 

questions to explore using traveller-focused analyses and vice versa. 

5.6.1 From network-focused to traveller-focused analysis 

In Section 5.4.1, systematic differences were observed in total daily flows and the 

shape of the daily flow profiles between days of the week.  It is not clear, however, 

what underlying traveller behaviour is causing these differences.  Two key 

questions which arise are: 

 Do different people travel on systematically different days of the week? 

 Do individual people travel at systematically different times of the day on 

different days of the week? 
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5.6.1.1 Days of week travelled 

One explanation for the systematically different volumes and daily profile shapes by 

the day of the week is that different people are travelling on different days of the 

week, and those people may have different travel behaviour.  The traveller-focused 

analysis in Section 5.4.2 indicated that user class proportions were consistent 

between weekdays, but the network-focused analysis showed systematic 

differences.  A more detailed examination is required, therefore, and so individual 

traveller behaviour will be examined.  The null hypothesis to be tested is that each 

traveller’sweekdaytripsoverthetwoyearperiodareevenlydistributedfrom

Monday to Friday.   

In this section, weekdays only will be considered as these are usually assumed to 

have a fairly constant set of travellers.  A similar analysis can be undertaken to 

compare all days, or weekend days only.  To ensure sufficient data is available for 

testing, only the travellers in user classes C and D, namely travellers observed at 

least once a fortnight on average, will be analysed.  For weekdays only, therefore, 

eachtraveller’sobservedcountsbydayoftheweek(overthetwoyearperiod)

were compared to the expected counts under the null hypothesis of evenly 

distributed weekday trips as shown in Table 5-2.   

 

Table 5-2: Format of observed and expected day of the week counts for each 
traveller 

 Monday Tuesday Wednesday Thursday Friday Total weekday 

Observed 
counts 

𝑥𝑀 𝑥𝑇𝑢 𝑥𝑊 𝑥𝑇ℎ 𝑥𝐹 

𝑥𝐴
= 𝑥𝑀 + 𝑥𝑇𝑢
+ 𝑥𝑊 + 𝑥𝑇ℎ
+ 𝑥𝐹 

Expected 
counts 

𝑥𝐴
5

 
𝑥𝐴
5

 
𝑥𝐴
5

 
𝑥𝐴
5

 
𝑥𝐴
5

 𝑥𝐴 

   



195 

 

The comparison was undertaking using a chi squared test.  This required the 

assumption that the observations are independent.  This was considered 

reasonable given that the probability of being detected by a Bluetooth sensor is 

independent between days, and the probability of making a trip which passes the 

detector was assumed to depend upon the day of the week, but not on whether the 

detector was passed on previous or subsequent days.  Any reduction in sampling 

rates when volumes of traffic are high is assumed to be a fairly mild effect, 

particularly as the test is examining observations for each traveller separately.   The 

chi squared tests could only be applied to travellers with at least 25 weekday trips, 

so that the chi squared criteria of expected values being at least 5 is satisfied.  Of 

the 7,794 travellers who are in the two most frequent user classes, 5,125 travellers 

satisfied this criterion. 

For 20% of the travellers assessed, the null hypothesis, that weekday trips were 

evenly distributed over Monday to Friday, was rejected at the 95% level.  

Therefore, while the majority of travellers are likely to travel equally on all weekdays 

over the two year period, there are travellers who do not.  These travellers, who will 

be referred to as uneven weekday travellers, make 19% of the trips made by the 

travellers in user classes C and D.  The null hypothesis was rejected for a slightly 

higher percentage of travellers in user class D (26%) than in the less frequent user 

class, C.  For user subclass C2, the subclass with lower time of day variability, 

uneven weekday travellers make up a higher percentage of the travellers (24%) 

than in user subclass C1 (19%).  

There are more differences between the uneven weekday and the even weekday 

travellers than just the distribution of their trips over the days of the week.  As 

shown in Figure 5-12, the uneven weekday travellers have lower variability in the 

time of day their trips are made.  Therefore, although they do not necessarily travel 
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on all weekdays, these travellers pass the sensors at more regular times of day 

when they do travel.    

 

 

Figure 5-12: Histograms of traveller time of day variance for travellers where 
there was insufficient evidence to reject the null hypothesis of evenly 
distributed weekday trips, and for travellers where the hypothesis was 
rejected 

 

Among the 1,050 travellers where the null hypothesis was rejected there are 30 

different combinations of days of the week with higher and lower than expected 

observed counts.  If the observed count exceeded the expected count on only one 

day, this was most likely to have been a Friday.  For two days, they were most 

likely to be Thursday and Friday, and for three days it was Wednesday, Thursday 

and Friday.   

Therefore, whilst the majority of travellers who are observed approximately once a 

fortnight or more, on average, distribute their weekday trips evenly over Monday-

Fridays, approximately 20% of travellers do not.  This figure rises to 26% for the 
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most frequent traveller class.  The uneven weekday travellers had different time of 

day regularity characteristics compared to the even weekday travellers.  There 

were also systematic differences in the days of the week which had a higher 

percentageofatraveller’strips,with a bias towards days later in the week. 

5.6.1.2 Times of day travelled 

An alternative explanation for systematic differences in daily flow profiles could be 

that individuals travel at systematically different times of day on different days of the 

week due to different activity patterns.  This can be explored using the outputs from 

the Model Based Clustering of times of day used in Section 5.4.2.   

To determine whether these time of day clusters relate to different days of the 

week, chi squared tests were applied.  As shown in Table 5-3, the observed values 

for each traveller are the counts of trips in each time of day cluster, separated by 

the day of the week.  As in all of this section, only weekdays are considered.  The 

observed values are then compared with the expected values using a chi squared 

test.  As shown in Table 5-4, the expected value for each cell is calculated based 

ontheproportionofthetraveller’stripsinthattimeofdayclusterandthatdayof

the week.  The test, therefore, accounts for differences across days of the week 

and tests for differences across the time of day clusters.    
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Table 5-3: Observed counts by time of day cluster and day of the week for 
one traveller 

 Monday Tuesday Wednesday Thursday Friday Total weekday 

Time of 
day 
cluster 
1 

𝑥𝑀,1 𝑥𝑇𝑢,1 𝑥𝑊,1 𝑥𝑇ℎ,1 𝑥𝐹,1 𝑥𝐴,1 

Time of 
day 
cluster 
2 

𝑥𝑀,2 𝑥𝑇𝑢,2 𝑥𝑊,2 𝑥𝑇ℎ,2 𝑥𝐹,2 𝑥𝐴,2 

…. …. …. …. …. …. …. 

Total 
for 
traveller 

𝑥𝑀 𝑥𝑇𝑢 𝑥𝑊 𝑥𝑇ℎ 𝑥𝐹  𝑥𝐴 

 

Table 5-4: Expected counts by time of day cluster and day of the week for one 
traveller 

 Monday Tuesday Wednesday Thursday Friday Total 
weekday 

Time of 
day 
cluster 1 

𝑥𝑀 ∗ 𝑥𝐴,1
𝑥𝐴

 
𝑥𝑇𝑢 ∗ 𝑥𝐴,1

𝑥𝐴
 

𝑥𝑊 ∗ 𝑥𝐴,1
𝑥𝐴

 
𝑥𝑇ℎ ∗ 𝑥𝐴,1

𝑥𝐴
 
𝑥𝐹 ∗ 𝑥𝐴,1
𝑥𝐴

 𝑥𝐴,1 

Time of 
day 
cluster 2 

𝑥𝑀 ∗ 𝑥𝐴,2
𝑥𝐴

 
𝑥𝑇𝑢 ∗ 𝑥𝐴,2

𝑥𝐴
 

𝑥𝑊 ∗ 𝑥𝐴,2
𝑥𝐴

 
𝑥𝑇ℎ ∗ 𝑥𝐴,2

𝑥𝐴
 
𝑥𝐹 ∗ 𝑥𝐴,2
𝑥𝐴

 𝑥𝐴,2 

…. …. …. …. …. …. …. 

Total for 
traveller 

𝑥𝑀 𝑥𝑇𝑢 𝑥𝑊 𝑥𝑇ℎ 𝑥𝐹 𝑥𝐴 

 

In order to apply the chi squared test, no cells should have an expected value of 

zero and no more than 20% of cells should have expected values of less than five.  

To satisfy these criteria, only time of day clusters with at least 25 observations were 

included.  For each traveller, any days of the week with fewer observations than 

five times their number of time of day clusters were excluded from the analysis. 

Of the 7,794 travellers who are in the two most frequent user classes, only 1,077 

travellers had more than one time of day cluster of sufficient size to compare.  It 
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should be noted, therefore, that this test of systematic variability according to the 

day of the week could only be undertaken on 0.5% of travellers accounting for 14% 

of the trips observed in the two year period.  The hypothesis that observations were 

evenly distributed between time of day clusters for each day of the week was 

rejected for 33% of these travellers.  Therefore, for one third of travellers who 

frequently pass this location at more than one time of day on weekdays, the time of 

day that they pass appears to vary systematically by the day of the week.  There 

are many reasons why this may be the case, for example some people may work 

half days on Fridays, or arrive home a little later on Thursday evenings due to 

extended shopping hours.   

In larger datasets, it may be possible to do further examinations.  For example, 

travellers where this hypothesis was rejected could be tested based on more 

specific hypotheses arising from the network-focused analyses.  The analysis in 

Section 5.4.1, for example, may generate the following questions: 

 Do people travel home later on Wednesday evenings? 

 Do people travel home earlier on Friday afternoons? 

In the current case, however, there was insufficient data to perform a statistical 

analysis of these hypotheses.  Of the 352 travellers where the hypothesis of evenly 

distributed day of the week counts by time of day cluster was rejected, only 38 had 

more than one time of day cluster which fell in the evening peak period (defined as 

4-7pm).  

5.6.2 Traveller-focused to network-focused analysis 

In Section 5.4.2, measures of frequency and time of day variability relating to the 

case study location were calculated and a data driven approach was then used to 

identify classes of users.  In order to understand a little more about the nature of 

the user classes, and to examine the relationship between traveller and network 

level variability, the following two questions are proposed: 
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 Do the traveller user classes correspond to vehicle classes? 

 Do times of the day where individuals have more time of day variability 

correspond to times of day with more variability in flows? 

5.6.2.1 Do any of the user classes observed correspond to vehicle 

classes? 

The individual analysis of the Bluetooth data in Section 5.4.2 highlighted the 

presence of different classes of road user, where trip frequency is a key 

differentiating factor for the higher level classes.  It could be hypothesised that the 

most frequently observed vehicles relate to commercial vehicles which make many 

trips, for example buses or delivery vans.  Alternatively, the comparisons in 

Section 5.5 suggested that the higher Bluetooth sampling rates in the early hours of 

the morning, and perhaps also in the inter-peak, could be due to commercial 

vehicles which may be more likely to contain Bluetooth-enabled devices. 

Vehicle class data was not available from the Bluetooth data.  The loop detector 

data used for the network-focused analysis does include vehicle class information, 

however.  The total counts by vehicle class and by the hour of the day could be 

used to examine the theories proposed in the earlier analyses. 

Figure 5-13 includes the distribution of counts for each vehicle class by the hour of 

the day, for the loop detector in the case study area.  It should be noted that the 

upper plot represents cars and is plotted on a different scale as the counts are 

approximately 20 times greater than the counts observed for the other vehicle 

classes.  In fact, cars make up 92% of the vehicles counted by the loop detector 

over the two year period.  At this site, therefore, vehicles other than cars make up 

such a small proportion of trips that they cannot make up a significant proportion of 

the trips in any user class. 

Other than articulated lorries and cars with trailers, both of which represent very 

few counts, only the rigid lorries have a daily profile which does not peak during the 
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typical morning and evening peak periods.  It is possible that the higher proportion 

of these types of vehicle during the inter-peak period is responsible for some of the 

increased Bluetooth sampling rate during that time.   

Although taxis may also contribute to the commercial vehicles which are theorised 

to be more likely to contain a Bluetooth-enabled device, these are not differentiated 

from cars in the loop detector data and no other suitable data was available to 

examine taxi flows at the time of this analysis. 

 

 

 

Figure 5-13: Counts of each vehicle class according to the time of day 
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5.6.2.2 Does individual time of day variability equate to variability in 

flows? 

The method for calculating time of day variability in Section 5.4.2 provides traveller-

focused measures which could be compared to network-focused measures.  One 

comparison which could be made it to examine whether the times of day with 

higher traveller variability in the timing of trips passing the sensors equate to the 

times of day with higher variability in flows.  The variability in times for individual 

travellers comes from two sources: the different daily travel patterns, represented 

by different clusters, and the variability within those clusters.  There are several 

different reasons why a traveller may have multiple time of day clusters.  The 

traveller could pass the sensors more than once per day or the clusters could 

represent trips on different days of the week, for example.  Without further 

investigation, therefore, it is not possible to say whether the between cluster 

variance for each traveller relates to variability in trip timing.  This subsection will, 

therefore, only consider within cluster variations and so the results should 

acknowledge that there is likely to be additional systematic variability in individual 

travel behaviour which has not been taken into account in this analysis.    

Figure 5-14 shows how the average time of day cluster variance changes during 

the day.  The morning peak period has particularly low traveller trip timing 

variability, perhaps reflecting the more rigid schedules which affect morning activity 

patterns.  On average, more variability is observed in individual traveller trip timing 

in the mid-afternoon than at any other time of day.  This may reflect trips to and 

from schools, which vary due to after-school activities and long holiday periods. 

Figure 5-15 shows the variability in flows on the road link, measured using the loop 

detector.  The variability is highest during the morning peak period, with a much 

lower peak during the evening peak.  A similar pattern is observed if 15 or 30 

minute intervals are plotted instead of hourly intervals.  These do not correspond to 
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the times of day where individual travellers have the most variability in the times of 

day that they pass the sensor.  This suggests that the variability in flows is more 

likely to result from the decision to make a trip passing the sensors or not, rather 

than the timing of the trip.  Individual trip timing could also contribute to the 

variability in flows through the systematic variability in travel times which were not 

considered in the analysis in this subsection.    

 

Figure 5-14: Average time of day cluster variance across all travellers by the hourly 
interval containing the cluster mean  

 

 

Figure 5-15: Variance of hourly loop detector data 
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5.7 Discussion 

The proposed approach has very broad applications as it could be used for 

researching any mode of transportation.  Different types of network-focused data 

would be required for different kinds of analyses, for example research into rail 

travel may involve station usage data.  The approach is also not restricted to only 

using data which explicitly describes movements, but could also include factors 

which may affect travel patterns.  For example, if a large shopping centre or 

employer can be isolated on the network, data regarding shop opening hours or 

shift patterns could be examined in conjunction with individual traveller data to 

analyse travel behaviour.  The flexibility of the proposed approach is also a 

disadvantage, however.  A high level framework was developed so that many 

different sorts of data and different types of analyses could be included, but as it 

does not include specific techniques, appropriate methods may not exist to analyse 

the type of data selected.  In the case study application in Sections 5.4, 5.5 

and 5.6, for example, the analyses of day-to-day variability in flows and traveller 

behaviour which take into account within-day dynamics would not have been 

possible without the methods developed in Crawford et al. (2017) and Crawford et 

al. (Under review-b).  The opportunities provided by the proposed approach would 

be greatly limited if only established methodologies were used to analyse traditional 

sources of data.   

The flexibility of the approach also means that it will not (and is not intended to) 

provide a specific output which could be described prior to commencing the 

research.  Whilst the methods used in the analyses in Stage 1 should be justifiable 

based on the data being analysed and the purpose of the study, the choice of 

hypothesestopursueinStage3(‘followingthethread’)aremoresubjective.This

framework should, therefore, be considered as an exploratory tool which is likely to 

result in different findings, even when different analysts use the same data.  This 
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does not necessarily mean that the findings will be contradictory, as they may just 

relate to different kinds of hypotheses.     

The analysis in Section 5.6.1.2 demonstrated that the usefulness of the approach 

could be limited by the amount of data available.  Despite the relatively large 

traveller-focused dataset, there was insufficient data to examine very specific 

hypotheses, for example considering people who might have more than one 

evening travel pattern (in terms of the time of travel).  This is unsurprising, given 

that the Bluetooth data is passively collected for the purpose of travel time 

estimation and therefore is not guaranteed to include a large sample of travellers 

with every possible repeated trip characteristic.  Even if a hypothesis cannot be 

answered using the data available, however, the process of identifying the 

hypothesis may be helpful.  If the hypothesis is deemed to be sufficiently important, 

then more focused data collection could be undertaken, for example by adding 

additional questions into user focus group sessions. 

As well as not having sufficient data, there is also a risk that in Stage 3 the right 

kind of data may not be available.  Although the framework shown in Figure 5-2 

and applied to the case study suggests that the hypotheses raised in Stage 3 need 

to be tested using the types of data analysed in Stages 1 and 2, this need not be 

the case.  Other network- and traveller-focused datasets could be used, provided 

that Stage 2 is repeated in order to examine their comparability with the original 

types of data analysed.  For example, in the case study application, the analyst 

may have hypothesised that the local maxima at mid-afternoon on the weekday 

profiles relate to trips escorting children from school.  The Bluetooth data does not 

include trip purpose data nor vehicle occupancy data.  If travel diary data was 

available for a sample of travellers who use this link, then it may be possible to 

investigate the hypothesis using that data.  Whether using the same or different 
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data to Stages 1 and 2, it is possible that the findings from Stage 3 may themselves 

generate new hypotheses to test. 

The application included in this paper only considers one location, although the 

approach could easily be extended to include multiple locations.  This extension 

could be done in a number of ways.  Firstly, the same type of approach could be 

applied independently to sites close together and on similar routes in order to 

confirm whether consistent findings are identified.  Secondly, Stage 1 of the single 

site approach could be applied independently to many sites across a city.  The 

outputs of those analyses could then be compared and sites could be clustered 

based on the network and traveller characteristics observed.  For example, 

clustering could be undertaken based on the day of the week coefficients estimated 

from the loop detector data.  Hypotheses could then be generated based on those 

clusters of locations, for example: 

 Are the same travellers passing sites within the same cluster? 

 Are the systematic differences between clusters of sites caused by people 

travelling to systematically different parts of the city? 

It may also be possible to pool data within clusters to test more detailed 

hypotheses, although suitable adjustments or aggregations of the time of day would 

need to be considered.  Thirdly, the initial analyses in Stages 1 and 2 could be 

undertaken at an area, as opposed to a single site, level.  These areas could be 

neighbourhoods or cities, or they could be popular transport corridors or bus routes.  

An example relating to the public transport system for a particular town could 

include a network-focused analysis examining the total number of passengers by 

the time of day, day of the week or season, and a traveller-focused analysis 

examining repeated use of the system including spatial and time of day variability.  

The hypotheses generated in Stage 3 could relate to the whole system, or may 

seek to identify more localised patterns.  
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5.8 Conclusions 

In this paper a broad framework has been proposed for undertaking quantitative 

research considering both the network and the traveller perspective.  The inductive 

nature of the approach was highlighted by an application to one site in Greater 

Manchester using two years of loop detector and Bluetooth sensor data.  As well as 

providing more information about the data sources used, the following hypotheses 

were also examined: 

 Areeachtraveller’sweekdaytripsevenlydistributedfromMondayto

Friday? 

 Do people travel at systematically different times of day on different days of 

the week? 

 Are repeated trip user classes for travellers related to vehicle types? 

 Is random variability in the time of day that individuals travel related to 

variability in flows on the network?  

By using an approach which considers multiple perspectives, therefore, we can 

discover more about complex daily, weekly or monthly behaviours and their 

impacts on the road network through interrogating data in greater detail.  Such 

approaches are becoming more feasible due to the availability of new, and often 

large, data sources.  The availability of such datasets also necessitates such 

analytical approaches, since no single source of data provides all of the variables 

required to undertake a comprehensive analysis of travel behaviour at a large 

scale.  In order to make the best use of the data available, therefore, we need to 

consider how we can utilise multiple data sources more effectively and not just 

repeat the sort of analyses undertaken when far less data was available. 
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6 Discussion and conclusions 

Convenient fictions relating to variability are often used in transportation research.  

Simplifying assumptions of this kind include assuming homogeneity amongst 

travellers, vehicles and trips over a fixed period of time, or assuming that variability 

can be represented by a single standard statistical distribution or by forming 

multiple user classes.  Such assumptions are rarely supported by empirical data 

and in many cases methods have not been proposed to do so.  The motivation for 

the research undertaken in this thesis, therefore, was to fill this gap by developing 

methods which could be used to quantify and test for different types of variability in 

travel behaviour on the road network, which could include systematic or predictable 

variability from a network perspective, and also the differences in intrapersonal 

variability between travellers.  Whilst these aspects would have been very difficult, 

if not impossible, to measure in the past, the emergence of new data sources are 

creating new opportunities to do so, and are simultaneously creating a demand for 

new methods to be developed in order to do so.  The overarching research 

question for this thesis was, therefore,:         

How can emerging data sources be used to gain insights into variability in 

travel behaviour on the road network? 

In Section 6.1 below, the five research objectives formulated in Chapter 1 in 

relation to this research question are discussed.  This includes a summary of the 

work undertaken and a critical discussion of the advantages and limitations of the 

approach taken.  In Section 6.2, the contribution to knowledge and practice of the 

research undertaken is described.  In Section 6.3, future work building upon this 

research is discussed.  Section 6.4 concludes the chapter.   
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6.1 Revisiting the research objectives 

Each of the five research objectives identified in Section 1.3 will now be discussed 

in turn to determine the extent to which they have been achieved by the research 

undertaken and what limitations exist in the approach taken. 

6.1.1 Objective 1 

To develop a methodology for identifying statistically significant 

predictable differences in aggregated travel behaviour observed 

on the network which takes into account differences in 

magnitude and timing 

In Chapter 2, a methodology was proposed which tested for statistically significant 

differences in the magnitudes and daily distributions of flows based on predictable 

day types, such as the day of the week.  The daily magnitudes of flows were 

examined using ANOVA and the standardised daily flow profiles were examined 

using the functional equivalent, namely fANOVA.  Systematic differences between 

day types are not just observed, they are tested.  The method identified predictable 

differences in the magnitude and timing of flows at a case study location based on 

the day of the week and also the season.  By examining the average magnitudes of 

flows and average daily flow profiles for each statistically significant day type, broad 

insights into aggregated traveller behaviour were observed.  For example, Fridays 

had the highest daily flows, on average, and the average standardised daily flow 

profile had less prominent peaks than any other weekday in the case study 

application.    

The methodology utilises induction loop detector data, which is not an emerging 

data source as it was established in the early 1960s and is now the most commonly 

used traffic sensor (U.S. Department of Transportation, 2006).  Due to decreasing 
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data storage costs and increasing computational power in recent years, data at a 

higher temporal resolution is being stored for longer periods of time.  There is, 

therefore, a large amount of data available which necessitates the use of 

techniques more similar to those used for emerging data sources.  The success of 

this methodology relies upon having high temporal resolution data for a relatively 

long period of time (two years were used in Chapter 2).   

Flow data was selected to use for examining aggregated travel behaviour.  While a 

loop detector collects data at a point on the network, variability in flows can be 

caused by traveller behaviour or capacity variability on the surrounding network.  

For example, decreased flows could be due to decreased demand for routes 

passing this point, due to congestion on the link (or further downstream) slowing 

down vehicles, or due to congestion at an upstream location which prevents 

vehicles from reaching the observed link.  Flows are suitable for analysing 

predictable differences as only aspects which are systematically different between 

the day types are of interest.  The methodology was designed to be used by road 

management bodies who would have sufficient knowledge of local conditions to be 

able to separate systematic differences in aggregated travel behaviour from factors 

beyondtravellers’control.Suchfactorscouldincludepredictabledifferencesin

signal settings according to the day of the week, or differences in available routes, 

for example due to bus only lanes on some days of the week.   

The average standardised flow profiles for each weekday in the case study 

application were shown in Figure 2-7.  While the fANOVA and the corresponding 

permutation test found that there were statistically significant differences between 

all five weekdays, the plot illustrated that the differences were relatively small.  It 

could be argued, therefore, that when using a large amount of data, such tests 

become too sensitive to differences, although further applications are required to 

verify whether this is the case.  To mitigate the risk of the tests identifying 
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differences which are irrelevant to the practitioner, for example variability during the 

night time, the analysis could be focused on subsets of the day only, such as the 

period shortly before, during and after the morning peak only. 

The methodology is sufficiently general that it could be used for any flow or usage 

data collected at a stationary point on a network in continuous time or in very short 

time intervals.  Although Chapter 2 focused on day types which would be known in 

advance, the methodology could be applied to any dichotomous whole day effects 

where flow and day type data are available, for example school holiday or heavy 

flooding indicators.  The current methodology only relates to the analysis of data 

from a single site, but possible extensions to multiple sites were discussed in 

Section 2.5. 

The methodology assumes stable behaviour over the period of analysis but does 

not account for any long-term trends as this was outside of the scope of the current 

research.  Future research could explore including an independent variable 

specifying the year of the observation or a more detailed temporal variable in the 

model.  

 

6.1.2 Objective 2 

To identify methods for measuring spatial and temporal 

intrapersonal variability in travel behaviour on the road network 

using data from emerging data sources 

As previous research has not looked at intrapersonal variability of all road users, 

there was not an established source of data to develop methods for, to achieve this 

objective.  As the methods should provide insights which apply directly to parts of 

the road network, rather than larger geographic areas, a data source which is 
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closely related to the road network was required.  An emerging data source which 

collects data on the road network for all vehicle types, at a relatively low cost is 

Bluetooth data.  As Bluetooth data has previously been used to match observations 

within days on the road network, Chapter 3 explored the suitability of using this type 

ofdataforexaminingtravellers’behaviourovermultipledays.Chapter3concluded

that it is feasible to use Bluetooth data to examine intrapersonal variability, but as 

with all types of data, there are possible sources of bias and limitations with the 

data.  For the current application there is a risk that Bluetooth data may have a bias 

towards travellers making greater numbers of trips, particularly in commercial 

vehicles, and the sampling rate of trips may differ by Bluetooth device or traveller 

type.  

Chapter 3 highlighted many possible benefits of using Bluetooth data to examine 

intrapersonal variability, but also emphasised that customised methods are 

required to make the best use of the data.  The customised methods would not only 

be suitable for Bluetooth data, however, as they could be used on data from other 

sensorsinthe“point-to-point”category (Antoniou et al., 2011, p140).  Other data 

sources which involve the collection of unique identifiers from vehicles at fixed 

points on the road network, which can be matched across sites and over time, 

include WiFi data, Automatic Number Plate Recognition (ANPR) data and data 

from electronic tags used for paying tolls.  Developing methods to analyse spatial 

and temporal intrapersonal variability using point-to-point data is, therefore, 

applicable more widely than just to Bluetooth data. 

A method for measuring spatial intrapersonal variability using point-to-point sensor 

data was presented in Chapter 4.  The spatial aspects of trips are compared using 

Sequence Alignment and then this information is used to produce a distance matrix 

to cluster trips with similar spatial characteristics.  The method examines 

differences in both origin-destination pairs and routes simultaneously.  In Chapter 
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4, the spatial variability measures for each traveller consisted of the number of 

spatialclusterstheirtripswereassignedto,andtheproportionofthetravellers’

trips which were assigned to their most frequently used spatial cluster.  The core 

Sequence Alignment process could be used in other ways too, however.  For 

example, measures of how different the spatial clusters used are (in terms of 

physical distance) could also be incorporated as traveller characteristics.  

The Sequence Alignment approach takes into account the order in which Bluetooth 

sensors are passed and the distance between sensors.  It therefore works better 

for longer routes, for example in the spatial cluster containing trips from the west to 

the east of Wigan shown in Figure 4-10.  In such cases, there are more 

observations to match (or try to) and sensors are more widely dispersed around the 

first and last observations.  A high concentration of Bluetooth detectors in an urban 

area may allow greater route disaggregation for longer trips and may result in a 

higher proportion of short trips being detected, but future work is required to 

examine the impact of detector placement and concentration on this spatial 

clustering method.  Further work is also required to identify the optimal placement 

of sensors for measuring intrapersonal variability, as discussed in Section 6.3.4. 

A method for measuring temporal intrapersonal variability was also presented in 

Chapter 4.  For each traveller, the method identifies different travel patterns, 

represented by model-based clusters, and estimates the random variability in the 

time of travel within each of these travel patterns.  This method is therefore 

consistent with one of themes in this research which is the separation of systematic 

and random elements of variability.   

As discussed in Chapters 3 and 4, examining temporal intrapersonal variability 

using point-to-point sensor data is challenging as observations do not correspond 

to either departure or arrival times.  Departure times are often analysed in traveller 

behaviourresearchastheyrelatedirectlytothetraveller’schoiceandtheyare
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typically what is recorded in travel diaries.  A more network-focused approach 

would be to concentrate on the variability in the time of day a traveller arrives at a 

specific location which is of interest to the analyst, for example the arrival time at a 

tunnel or other pinch-point, or the time a particular cordon is passed.  This is, 

arguably, more relevant for a network manager, as they are unconcerned whether 

a commuter sometimes leaves home earlier to drop a child at school in an outlying 

area, for example, it is the time at which that traveller enters the congested area 

around the city centre that is of interest.  The method for calculating temporal 

intrapersonal variability proposed could, therefore, be applied specifically to 

different pinch-points on the network.  In Chapter 4, a broader measure of temporal 

variability was required and therefore time of day variability measures were 

calculated based on the Bluetooth sensor which each traveller was detected at 

most often.  In practice, the most common sensor for each traveller could be 

selected from a subset of sensors identified by the road manager as being of 

particular interest (for example pinch-points or congested links).  If required, the 

relationship between departure times and the most common sensor location could 

be examined by collecting GPS tracking data for a small sample of travellers, as in 

Muthyalagari et al. (2001) or Elango et al. (2007), and matching this to a road 

network including Bluetooth detectors.  

 

6.1.3 Objective 3 

To develop a methodology for comparing and/or classifying road 

users based on the intrapersonal variability in their travel 

behaviour 

In Chapter 4, a methodology was presented which can identify road user classes 

based on their repeated trip behaviour.  The methodology utilised the methods 
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discussed in Section 6.1.2 and is flexible in terms of the measures of travel 

behaviour which could be included.  As discussed in Chapter 4, different clustering 

algorithms could be used to identify the user classes, but k-means was deemed to 

be the most useful for the current application.     

The proposed approach is data driven and clustering is used to account for 

possible non-linear relationships between the different measures of variability.  

Using a data driven approach prevents a priori assumptions from shaping the 

resulting user classes, in contrast to some traditional segmentation approaches.   

Theproposedmethodologyseekstodescribeeachtraveller’stripfrequency,

spatial and temporal variability in as few variables as possible so that the user 

classes obtained can be interpreted fairly easily.  The approach used is very 

flexible, however, and therefore additional variables could easily be included in the 

clustering process.  The additional variables could relate to seasonal trends and 

changes over longer periods of time in trip frequency, spatial or time of day 

variability.    

 

6.1.4 Objective 4 

To develop a framework for using network- and traveller-focused 

analyses together to gain additional insights into variability in 

travel behaviour 

In Chapter 5, a high level methodology was proposed as a framework for 

undertaking network- and traveller-focused analyses concurrently and interactively 

in order to gain additional insights.  The process consists of three stages.  Firstly, 

network- and traveller-focused analyses are undertaken independently using 

suitable data and methods for each.  Different data is likely to be required for each 
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type of analysis, but they should relate to the same geographic area.  Secondly, the 

data used and the results obtained from each type of analysis are compared.  

Thirdly, queries arising from the network-focused analysis are explored using 

traveller-focused analyses and vice versa. 

The framework describes how analyses from different perspectives can be brought 

together, but also provides a basis for undertaking exploratory research into 

variability using multiple data sources.  The proposed approach is very general, 

and therefore could be applied in a wide range of situations involving different 

modes of transport and/or types of data.  This generality is also a limitation, 

however, because for some types of data, methods may not have been developed 

to analyse variability and therefore additional work will be required.  The ability to 

test different hypotheses will also be constrained by the type and amount of data 

available, but the identification of an interesting hypothesis could act as a catalyst 

to collect additional relevant data.          

Chapter 5 demonstrates how such multiple method research can be undertaken, 

not just by proposing a methodology, but also by applying it to a small case study 

consisting of one link in Stockport, Greater Manchester.  This application utilises 

the methods proposed in Chapters 2 and 4.  Although the application only relates to 

one link, it provides an insight into the types of hypotheses which could be tested 

using this approach, and the heterogeneity in traveller behaviour which is evident 

when testing hypotheses using real world data.  
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6.1.5 Objective 5 

To apply the methods to real world data in order to demonstrate 

the insights which can be achieved 

The methods described in Sections 6.1.1 to 6.1.4, above, were applied to real world 

data in Chapters 2, 4 and 5.  Chapters 2 and 5 used data from Stockport and 

Chapters 3 and 4 used data from Wigan.  Both of these are towns in Greater 

Manchester and the data was obtained from the same source (Transport for 

Greater Manchester).  The case study areas are expected to be quite different, as 

the link in Stockport is on a popular arterial route into Manchester city centre 

whereas Wigan is a satellite town of Manchester, but closer to the town of Bolton.  

Applying the method using ANOVA and Functional Data Analysis on loop detector 

data in Chapter 2 identified differences in the magnitude of flows on Saturdays, 

Sundays and three categories of weekdays.  Differences in the distribution of flows 

throughout the day (i.e. in the standardised daily profiles) were identified for all 

seven days of the week.  By separating out the magnitude and timing of flows, the 

application to real world data was able to show that while the morning peak on 

Mondays looks similar to other days of the week, it is actually caused by lower 

magnitudes of flows on Mondays which are more highly concentrated in the peak 

periods than on other days of the week.  Also, on the studied link, the flows on 

Fridays are less concentrated in the peak periods than on other days, but this is 

less visible when looking at the daily flow profiles as Fridays have higher flows, on 

average, and therefore the peaks are only slightly lower than on other weekdays.  

In Chapter 2, estimated 95% confidence intervals were used to identify the times of 

day at which two day of the week profiles differ.  Seasonal differences were also 

examined for each day of the week profile.   
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The observation in Section 6.1.1, that the fANOVA may be overly sensitive to 

differences in the standardised profiles, is somewhat premature, as it is not clear 

whether all days of the week would be identified as statistically significantly different 

at a large proportion of sites.  Undertaking real world applications of the method at 

more sites, particularly ones with different characteristics, is therefore required in 

order to gain a better understanding of how this method works in practice. 

The application of the Sequence Alignment process to the real-word data in 

Chapter 4 provided insights into how the technique works in practice.  The freely 

available R package used (Gabadinho et al., 2011) could not be used on all unique 

trip sequences in the year as there were too many of them.  It is possible that 

distance matrices could be computed for such large sets of sequences using other 

more specialised software, but such software may not be available to all 

practitioners. 

The case study in Chapter 4 analysed Bluetooth data and identified three user 

classes based on repeated travel behaviour.  Although the user classes were 

defined based on measures of trip frequency, spatial and time of day variability, 

these three user classes could be defined based on the trip frequency alone.  The 

frequent traveller user class contributed 59% of the trips over the one year period, 

and was separated into four subclasses which did depend on the measures of 

spatial and temporal variability.   

In Chapter 5, an application to real world data was presented for the framework for 

undertaking network- and traveller-focused analyses.  The findings from Stage 1 of 

the case study application provided similar insights to those obtained in Chapters 2 

and 4.  The comparison of Bluetooth sampling rates by the day of the week and 

time of day in Stage 2 raised questions consistent with those raised in Chapter 3 

regarding possible biases in Bluetooth data.  By using the real world application, 

Stage 2 also highlighted the difficulty in making direct comparisons between 
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analyses undertaken at different levels and this supports the need for a third stage 

in the process. 

In Stage 3, the following hypotheses were also examined: 

 Areeachtraveller’sweekdaytripsevenlydistributedfromMondayto

Friday? 

 Do people travel at systematically different times of day on different days of 

the week? 

 Are repeated trip user classes for travellers related to vehicle types? 

 Is random variability in the time of day that individuals travel related to 

variability in flows on the network?  

Chi squared tests were successfully used to test the first two hypotheses 

(generated based on the network-focused analysis).  Despite the relatively large 

number of Bluetooth observations (1.1 million) in the case study, there was 

insufficient data to explore more specific hypotheses in a robust manner, for 

example whether people travel home from work earlier on Friday afternoons than 

on other days of the week.  The method is sufficiently flexible, however, to allow the 

analyst to use any suitable data which is available to them.  For example, the 

comparison of user classes (from the traveller-focused analysis) and vehicle 

classes (from aggregated network data) showed that it is not necessary to use the 

same data in Stage 3 of the process that was used in Stage 1, as the vehicle class 

data had not be examined previously.  The vehicle class data came from the same 

source as the flow data, namely the loop detector, but this need not be the case 

either.  For example, in the case study application, the network-focused analysis 

could have resulted in hypotheses relating to trip purpose which could not be tested 

using the traveller-focused data used in this application, namely the Bluetooth data, 

and so a different type of data, for example travel diary data, would be required.    

The methodologies developed in this thesis have, therefore, all been applied to real 

world data.  By doing so, the benefits which could be achieved by applying each 
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methodology was demonstrated and practical limitations were identified.  The use 

of case studies with relatively large amounts of data provides additional confidence 

that the methodologies could be used by practitioners or other researchers to gain 

a better understanding of variability in travel behaviour on the road network using 

either network- or traveller-focused analyses or both.  All of the case studies in this 

thesis have been undertaken using the free, open-source software R, thus 

providing greater opportunities for the methodologies to be applied by practitioners 

and other researchers as no specialist software is required. 

 

6.2 Contribution to knowledge 

In Section 6.1, the research undertaken was summarised and the significant 

progress made towards satisfying the research objectives was discussed.  In this 

section the contribution which this research makes to the fields of empirical 

research into variability in travel behaviour and modelling of heterogeneity will be 

discussed.   

 

Applied Functional Linear Models to traffic flow data for the first time 

The proposed methodology applied Functional Linear Models to traffic flow data for 

thefirsttime,totheauthor’sknowledge,althoughotherresearchhasused

Functional Principal Component Analysis to undertake unsupervised learning on 

transport data, for example Chiou et al. (2014) and Guardiola et al. (2014).  By 

using known variables within Functional Linear Models, the methodology can be 

applied much more broadly than the example in Chapter 2 relating to the day of the 

week and season, provided suitable data is available.  For example, analyses of 

the effect of weather on traffic volumes, such as in Datla and Sharma (2008), could 
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be undertaken so that more subtle differences in the timing of flows and 

phenomena such as peak spreading can be observed.  The method is also 

applicable to different types of data, for example it could be used to analyse cycle 

counter data, or demand for bike share stations or public transport stops/stations. 

 

Developed a method which tests for predictable variability in both the 

magnitude and timing of daily flow profiles   

The methodology proposed in Chapter 2 can be used to test for statistically 

significant differences between days of the week, but unlike methods previously 

used (for example Rakha and Van Aerde (1995), Stathopoulos and Karlaftis (2001) 

and Liu and Sharma (2006)), this approach takes into account the timing of flows 

during the day.  The methodology can, therefore, be used to identify systematically 

different flow profiles, which provides opportunities for policies and practice to be 

developed to take account of the differences in order to make transport systems 

more efficient.  It also has implications for modelling as it may be more meaningful 

to model each statistically significant day of the week separately rather than 

assumeone‘typical’weekdaymodelcanbeapplied to all days (even if that model 

includes variable demand).  Also, the method could be used within the Scenario 

Manager proposed by Kim et al. (2013), to identify different demand-side scenarios 

and the associated traffic simulation inputs to be able to estimate a travel time 

distribution through aggregating the different scenario outputs.  The scenario-based 

approach for modelling travel time variability proposed by Kim et al. (2013) also 

includes supply-side scenarios, for example traffic crashes and work zones, and 

these would need to be identified separately.   
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Demonstrated that Bluetooth data can be used for a new purpose, namely 

analysing repeated trip behaviour  

Chapter 3 identified new uses for Bluetooth data, which is collected for travel time 

estimation in many cities around the world, for example Brisbane, Australia 

(Tsubota et al., 2011).  Chapter 3 also highlighted additional research which would 

be required in order to make better use of Bluetooth data for repeated trip analyses, 

for example research into carrying, switching on and switching to discoverable 

mode for a wide range of Bluetooth devices.  This would build on small studies 

undertaken by Jones and Chin (2015) and Phua et al. (2015).  By undertaking the 

additional research recommended in Chapter 3, Bluetooth may have the potential 

to validate or even augment travel diary data in the future.  Chapter 3 also 

demonstrated how Bluetooth data has the potential to inform route choice 

parameters, in a similar way to the very small study performed by Spissu et al. 

(2011) using GPS data. 

 

Applied an established technique from Bioinformatics to Bluetooth data from 

a road network for the first time  

In Chapter 4, Sequence Alignment was proposed for comparing the spatial nature 

of trips as part of a methodology for clustering trip data collected from point-to-point 

sensors.  Sequence Alignment has been used previously in conjunction with 

Bluetooth data; Delafontaine et al. (2012) used Sequence Alignment to analyse 

visitor paths through rooms in a major trade fair.  It has also been used in 

transportation research by Kim and Mahmassani (2015) who used it to identify 

common travel patterns using vehicle trajectory data.  The approach proposed in 

Chapter 4, however, uses a different alignment method than the one used by Kim 

and Mahmassani (2015), to take into account the different kind of data being 

analysed, namely observations from fixed sensors as opposed to in-vehicle trace 
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data.  It is, therefore, a new application of Sequence Alignment to Bluetooth data 

ontheroadnetwork,anditisthefirsttime,totheauthor’sknowledge,thatithas

been used in relation to the measurement of intrapersonal variability.  This method 

combines OD and route variability into a single measure, whereas previous 

techniques proposed for analysing spatial intrapersonal variability using other forms 

of data have focused on either the origins and destinations (Buliung et al., 2008, 

Dill and Broach, 2014), or the route taken for a fixed OD pair (Li et al., 2004, Spissu 

et al., 2011).  The methodology presented in Chapter 4 has broader applications as 

it could be used for other types of point-to-point data available now or in the future, 

for example Automatic Number Plate Recognition (ANPR) data. 

 

Applied model-based clustering to separate systematic and random 

intrapersonal variability in timestamps from Bluetooth detectors for the first 

time  

The measures of time of day variability presented in Chapter 4 build on the work of 

Kieu et al. (2015b).  Kieu et al. (2015b) used a density-based clustering algorithm 

to identify habitual (and non-habitual) departure times for public transport users.  In 

the current research, rather than using a density-based clustering algorithm as 

used by Kieu et al. (2015b) to identify clusters and outliers, model-based clustering 

(Fraley and Raftery, 2002) was used so that all observations for each traveller 

would be assigned to clusters.  For each traveller, the number of clusters and their 

means provide information about the systematic variability in travel timing and the 

cluster variances provide information about the random component of their time of 

day variability.  As demonstrated in the case study application in Chapter 5, these 

clusters can be examined to assess whether any of the systematic differences 

correspond to predictable factors such as the day of the week.  The method would 
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also be applicable to other types of data, including smart card data for public 

transport users. 

 

Proposed the first methodology for measuring intrapersonal variability and 

identifying road user classes based on repeated trip behaviour of all 

motorised vehicle users 

Previous research has applied clustering techniques to identify user types for public 

transport users based on their repeated travel behaviour (Kieu et al., 2015b, Goulet 

Langlois et al., 2016),butChapter4isthefirstapplication,totheauthor’s

knowledge, to all road users (including personal and commercial trips).  The 

methodology utilises the methods proposed for estimating spatial and temporal 

intrapersonal variability as well as a measure related to trip frequency.  The 

proposed methodology could be used by practitioners to gain a better 

understanding of road users in their area, or to identify strata of users to collect 

additional data from (for example using focus groups or interviews).  Additional 

research into bias and sampling rates for Bluetooth data (as discussed in Chapter 

3) is required so that the measures of trip frequency from Bluetooth data can be 

adjusted to give estimates of total road trips for each traveller.   

In Chapter 1, some of the typical ways in which variability could be included in 

network models were described.  One of these was the use of multiple user classes 

to represent heterogeneity in traveller or vehicle characteristics.  Building on the 

work of Han et al. (2016), multiple user classes could be defined based on travel 

frequency, but instead of using arbitrary categories, the clustering methodology 

proposed in Chapter 4 could be used to identify the user classes.  Han et al. (2016) 

focus on the difference in knowledge of traffic conditions as a distinguishing factor 

between regular and irregular travellers, but as described in Figure 1.1 in Chapter 

1, different levels of trip regularity between travellers could also have other 
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implications.  Other characteristics which could vary between the user classes 

include the degree of flexibility in trips (for example the width of the departure time 

interval), the number of routes in the choice set and the weighting given to habitual 

travel behaviour.  In all cases, the parameters associated with these characteristics 

could be estimated by examining repeated travel behaviour using Bluetooth data.   

 

Used techniques from mixed methods research to develop a framework for 

undertaking quantitative multi-perspective research on the road network  

The framework presented in Chapter 5 for undertaking network- and traveller-

focused analyses concurrently and then interactively, demonstrates the synergies 

in applying the two methods proposed in Chapters 2 and 4 to the same location.  

The framework is very broad and it could be applied to other modes, for example 

research looking at public transport users, cyclists or pedestrians, and could involve 

a wide range of traveller- or network-focused analysis techniques.  Given the 

constantly growing list of possible data sources for transportation research, this 

general principle of using a mixed method inspired approach to undertake both 

network- and traveller-focused research together provides an alternative to either 

trying to find a single ideal data source or directly fusing together different types of 

data, as in Bachmann et al. (2013) for estimating speeds.  

 

Applied the methods described above to sufficiently large case studies to 

provide insights into travel behaviour at the sites in Greater Manchester 

In Chapters 2, 3, 4 and 5, real world data was used to demonstrate the methods 

and to inform discussions.  Chapter 4 included a case study covering an entire 

town in northwest England for a one year period, analysing almost 7.5 million trips.  

Such a large application may be of interest in its own right for practitioners and 

other researchers focusing on Greater Manchester, or Wigan more specifically.   
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6.3 Future research 

There a number of obvious next steps to take, building on this research.  Firstly, as 

all of the real world applications in this thesis related to towns in Greater 

Manchester, it would be informative to undertake additional applications of all of the 

methodologies in more densely populated urban areas, larger rural areas and 

areas with significantly different vehicle mixes in order to determine how well they 

work under different circumstances.  The user class methodology presented in 

Chapter 4 could also be applied to different towns so that the resulting user classes 

can be compared to those obtained in Wigan.  It would be particularly interesting to 

see whether the higher level user classes are always defined by trip frequency 

alone or whether that was a particular characteristic of the case study location.  The 

flexibility of the methodology should also be explored, for example for towns 

dominated by tourism additional clustering variables may be required such as the 

percentage of trips within the tourist seasons.          

Four more substantial extensions to the current research will now be discussed. 

 

6.3.1 Applying Functional Linear Models to multiple loop 

detector sites 

The methodology proposed for testing for predictable variability in traffic flow 

profiles in Chapter 2 could be extended to data from multiple sites in a number of 

ways. 

One possible option is to use one Functional Linear Model for data from all of the 

sites combined.  The model would include overall global effects, for example a 

Monday effect if days of the week are being assessed, but would also include the 

remaining site specific effects, such as the Monday effect specific to Site A.  This 
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may work for small towns such as Wigan, where there is likely to be a single 

‘global’effect.Forlarger or more varied areas, however, more of the variability is 

likely to be assigned to site specific effects.  The greater the proportion of site 

specific effects relative to global effects, the greater the need to examine the site 

specific effects.  This process would be similar to examining the functional 

coefficients obtained from applying a separate model to each site and therefore 

somewhat negates the point of undertaking a combined analysis.  This approach 

also has the disadvantage that the only insights gained into unmonitored parts of 

the network would relate to the global effects. 

It may be preferable to identify groups of sites which have similar day type effects.  

Capparuccini et al. (2008) discuss three ways that have been proposed to identify 

road groupings in relation to variability in hourly traffic volumes.  Clustering is one 

of the techniques described and although it could be useful in this context, it has 

the disadvantage that it may not be possible to explain the clusters and, therefore, 

unmonitored links could not be assigned to clusters.  It would be preferable to test 

whether known variables could be used to form the groups.  Capparuccini et al. 

(2008) discuss grouping based on geographical or functional characteristics, 

including seasonal patterns and physical properties.  Land use variables, including 

hotel populations or retail employment ratios, may also be helpful in classifying 

different count sites (Li et al., 2006a).   

Further research is required in order to determine in which circumstances there 

may be sufficient site specific effects to warrant the grouping of sites, and what 

variables should be used to do so. 

6.3.2 Variability influencing behaviour 

The current research has focused on traveller behaviour and how this results in 

day-to-day variability from a network or traveller perspective.  This may not be a 
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one-directional relationship, however, as systematic variability at the network level 

(causedbysystematicvariabilityintravelbehaviour)alsoaffectstravellers’

decisions.  For example, if a traveller is aware that traffic volumes in a certain town 

are higher on Fridays then s/he might choose to make their weekly shopping trip on 

a different day of the week.  For this to occur, firstly there needs to be systematic 

differences at the network level, secondly, at least some travellers need to be 

aware of these differences, and thirdly, at least some of those travellers need to 

take this information into account when making their travel decisions.  The current 

research provides a method for testing for systematic differences at the network 

level, but further research is required to investigate whether the second and third 

conditions hold.  Such research cannot be undertaken using passively collected 

data. 

Other research which explicitly collects data on the decision making processes of 

individuals related to repeated travel behaviour could also be used in conjunction 

with the current research.  For example, microsimulation software could be used to 

model different types of behaviour identified during the additional data collection, 

and then simulated Bluetooth and loop detector data from the model runs could be 

examined to see whether patterns observed in real world data are visible. 

6.3.3 Day-to-day dynamical models 

The current research is also relevant for the development of day-to-day dynamical 

models of the type included in Cascetta and Cantarella (1991), which include 

travelleradaptation.Althougha“day”inday-to-day dynamical models could refer 

to a day, week or an even longer time period between which travel choices may be 

reconsidered (Watling and Cantarella, 2013a), the literature tends to focus on days 

specifically, for example in Iryo (2016) and Djavadian and Chow (2017).  Current 

models of days do not take into account cyclical weekly patterns, however.  It is 

natural to assume that an abnormal travel time on a Friday will have far less impact 
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onthefollowingMonday’stravelchoicesthananabnormalTuesdaywouldhaveon

the following Wednesday.  The current research suggests that systematic 

differences between days of the week may go further than weekday/weekend day 

differences.  Depending on traveller awareness of these differences, as discussed 

in Section 6.3.2, it is possible that such models should include day of the week 

specific travel time expectations. 

As alluded to in Chapters 4 and 5, one of the explanations behind systematically 

different flow profiles according to the day of the week (where they occur) could be 

that different people are travelling on different days of the week.  It may be 

necessary, therefore, to build a day-to-day dynamical model which includes 

multiple user classes, each of which includes people travelling in different subsets 

of the week (or with different probabilities of making a trip on each day of the 

week).  Further research is required in order to understand the learning 

mechanisms involved in such a system and what implications this has for the 

stability of the outputs.    

6.3.4 Choice of placement of Bluetooth sensors 

Methods have been proposed for calculating the optimal number and positioning of 

Bluetooth detectors for travel time estimation (Asudegi and Haghani, 2013, Park 

and Haghani, 2015).  If Bluetooth data is to be used for alternative purposes, as 

proposed in this thesis, then a different layout may be required.  Some of the 

criteria will be the same as for travel time estimation (see Asudegi and Haghani 

(2013, p36)), for example ensuring a high coverage of total volumes and of different 

OD pairs.  Rather than assessing links based on the variability in travel times, 

however, the aim will be to collect data at locations which provide a representative 

sample of repeated travel behaviour.  This will involve identifying sites on regular 

commuting routes as well as near to locations which primarily attract less regular, 

discretionary trips.  In order to identify suitable locations, existing Bluetooth data will 
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need to be examined alongside OD matrices, the network topology, land use data 

and residential and employment counts.  By doing so, repeated trip characteristics 

for all links on the network (monitored and unmonitored) can be estimated so that 

the optimal location for Bluetooth detectors can be determined.  

 

6.4 Conclusions 

Methods have, therefore, been proposed in this thesis which could make better use 

of emerging data sources to provide insights into traveller behaviour and perhaps 

challengesomeofthe‘convenientfictions’whichareusedliberallyandoften

without justification in transport modelling.  Additional research is required in order 

to make the methods more widely applicable.  For example, little is known about 

when or if people disable Bluetooth on the full range of products now available.  

The current research has begun to explore how emerging data sources can be 

used to examine variability in travel behaviour, but this is a vast and constantly 

changing area which is increasingly important given growing populations and new 

vehicle technologies.  It has also highlighted frameworks within which multiple data 

sources can be analysed to gain insights into variability from multiple perspectives.  

Despite the progress made in this thesis, there remains much more work to be 

done to understand how we can gain better insights into variability in travel 

behaviour using emerging data sources and how this can inform models in the 

future.  
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