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Abstract 

The differentiation potential of multipotential mesenchymal stromal cells is known to be 

affected by many aspects of the cellular microenvironment, including soluble factors, 

extracellular matrix composition, the Young’s modulus of the substrate, cellular neighbours 

and externally applied forces. Despite this, reasonable understanding of harnessing soluble 

factors only exists. Few studies have investigated mechanotransduction in hMSC, and those 

published to date primarily employ unsuitable substrates, that do not facilitate the cellular 

adhesions known to be active in force transmission. 

In this study, porcine pericardium was decellularised for use as a biologically-relevant, three-

dimensional scaffold for the mechanostimulation of hMSC in a uniaxial strain bioreactor. 

Tissue stocks (n=67) were successfully decellularised and confirm biocompatible, sterile and 

free of contaminating genomic DNA. Histoarchitecture comparable to that of native tissue was 

also maintained. Tencell-specific seeding rings were found to release cytotoxic residue, and an 

alternative, nontoxic seeding approach was developed. 

The Tencell bioreactor was initially unable to maintain cell viability as a culture system, and 

was validated with respect to chamber humidity, culture temperature and arm displacement. 

Temperature maintenance was inadequate prior to re-engineering of the heating apparatus 

and was rectified through the use of an autotunable module. Losses of cell viability were still 

observed following validation as a result of medium pH changes. A Tencell culture regime 

utilising the HEPES buffer was successfully developed for the culture of hMSC. 

No significant differences in gene expression between strained and unstrained samples were 

found, and the greatest effects were observed between unseeded and other sample types. 

Additionally, seeded hMSC did not penetrate the scaffold. 

Overall, this study investigated the differentiation potential of hMSC  cultured in a three-

dimensional scaffold. The Tencell bioreactor was fully validated for use as a uniaxial strain 

mechanostimulation device, and could be used in future studies to investigate the effect of 

different frequencies and magnitudes of cyclic strain. 
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Chapter 1: Introduction 

 

1.1 Background 

The term mechanotransduction is used to describe the conversion of physical forces into 

biochemical responses in cells, and whilst other signalling mechanisms such as hormones are 

now fairly well understood, the mechanobiological processes key to tissue development and 

homeostasis are still being unravelled.  Key aspects of cellular behaviour have now been 

linked to mechanical force, including proliferation, migration and crucially to this project, gene 

expression and differentiation (Orr et al., 2006; Chen, 2008; Hoffman et al., 2011).  

Mesenchymal stem cells (MSC) offer advantages in the field of tissue engineering owing to 

their multipotency, comparatively fewer ethical caveats and relative safety as compared to 

other stem cells, and could be induced to differentiate to achieve tissue repair.  Tissue 

engineering can be defined as the application of scientific principles to the construction, 

growth and maintenance of living tissues that may be used to replace or restore function in 

the body (Yang, 2012b).  MSC are widely differentiated using soluble factors, but physical 

stimuli are not widely utilised.  However, there is growing evidence that mechanical 

stimulation plays a central role in the differentiation of MSC, although this is little-studied.  

There are currently no reports of mechanostimulated MSC differentiation towards a smooth 

muscle lineage using a three-dimensional scaffold, and scarce investigation regarding the 

mechanism of mechanotransduction in MSC.  During this project, the strain-mediated 

differentiation of MSC towards key lineages of interest, including smooth muscle, will be 

investigated using an acellular pericardial scaffold.  It is hoped that a greater understanding of 

mechanotransduction in MSC, and hence more optimal use of mechanical stimuli, will allow 

MSC to be utilised more effectively in tissue engineered therapies. 
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1.2 Stem Cells 

 

Stem cells can be defined as unspecialized cells that can self -renew indefinitely, whilst 

retaining a capacity to differentiate into more mature cells with specialized functions (Brown, 

2004).  Their ability to commit to cell lineages in response to physical, environmental and 

soluble stimuli makes them of great interest in tissue engineering and regenerative medicine, 

and they have been considered for use in the regeneration of a huge range of tissues  (Deasy 

et al., 2004; Chen et al., 2006; Tae et al., 2006; Wu et al., 2006; Rada et al., 2009).  This 

literature review summarises the state of knowledge thus far regarding mechanotransduction 

and MSC. 

 

1.2.1 Major Developments in Stem Cell Research 

Since the late 19th century it has been known that certain cells retain the ability to 

differentiate into a variety of lineages.  The term ‘stem cell’ was proposed for scientific use in 

1909 by the Russian histologist Alexander Maksimov as a result of his studies of lymphocytes 

and hematopoeisis (Maksimov, 2009).  However, stem cells were not the subject of major 

discovery until the 1960s when their involvement in adult neurogenesis was revealed (Altman 

and Das, 1965; Altman, 1966; Altman and Das, 1967; Altman, 1969a; Altman, 1969b)  and self-

renewing cells in mouse bone marrow were found (Siminovitch et al., 1963).  These 

developments resulted in the first stem cell therapy in 1968: a bone marrow transplant 

between two siblings for the treatment of severe combined immunodeficiency disease (Yang, 

2012a).  This was followed by the discovery of hematopoetic stem cells (1978) and the 

simultaneous discovery of ESCs (1981) (Evans and Kaufman, 1981; Martin, 1981). 

MSC  were first isolated by Friedenstein  as an adherent fibroblast-like cell population from 

human bone marrow (Friedenstein et al., 1974) following the earlier derivation of ‘colony-

forming fibroblasts’ from guinea pig marrow capable of undergoing osteogenesis 

(Friedenstein et al., 1966).  MSCs were later described as adherent (Friedenstein et al., 1970), 

non-phagocytic, fibroblastic and clonogenic cells isolated from bone marrow (Friedenstein et 

al., 1987).     

In recent decades controversy surrounding the creation and use of ESCs has piqued interest in 

somatic cell nuclear transfer (SCNT) and induced pluripotent stem (iPS) cells.  SCNT gave rise 

to the well-publicized birth of lambs from enucleated eggs transplanted with adult somatic 
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nuclei (1997) (Wilmut et al., 1997).   Induced pluripotent stem cells were first generated from 

differentiated rat fibroblasts in 2006, and have since been derived from several other 

differentiated cell types (Takahashi and Yamanaka, 2006) including human fibroblasts (Wernig 

et al., 2007), spermatological cells (Stimpfel et al., 2012), and keratinocytes  (Aasen et al., 

2008). Knowledge of stem cell biology is constantly advancing, parti cularly concerning adult 

stem cells and their expansion within scalable bioreactor systems for clinical applications 

(Mack et al., 2013; Rafiq et al., 2013; Huang et al., 2015; Heathman et al., 2016; Schmidt and 

Tranquillo, 2016; Zhao et al., 2016; Eaker et al., 2017; Simmons et al., 2017; Sonnaert et al., 

2017). 

 

1.2.2 Stem Cell Potency 

Stem cells have now been found in a wide range of tissues and with different differentiation 

potentials.  Classified according to their ability to differentiate into different cell types, stem 

cells are described as totipotent, pluripotent, multipotent or unipotent.  Examples of each 

type are given in Table ‎1.1. 

 

Table ‎1.1: The differentiation capacities of different stem cell types 

Stem cell type  Definition Examples 

Totipotent Capable of division into all cell types required 
to generate a complete organism, including 
extra-embryonic tissues 

Cells from very early (1-3 days) 
embryos, or up to and including 
the 8-cell stage 

Pluripotent Differentiates to all  tissues present in an adult 
organism, but cannot form extra-embryonic 
tissues 

ESCs, as isolated from the inner 
cell mass (ICM) of a blastocyst 
(5-14 days post-coitus) 

Multipotent Stem cells able to differentiate towards 
multiple different linages (≥4) 

Stem cells derived from fetal 
tissue, cord blood, peripheral 
blood, bone marrow and fat 

Oligopotent Progenitor cells able to differentiate towards 

2-3 lineages within a tissue 

Lymphoid & myeloid stem cells 

Unipotent Cells give rise to  just one cell type.  Sometimes 
described as precursor cells 

Hepatocytes, keratinocytes 

Adapted from (Choumerianou et al., 2008). 

 

 



5 
 

1.2.3 Decellularised substrates in Tissue Engineering 

The goal of any decellularisation protocol is to remove all cellular and nuclear material from 

source tissue, maintaining the functional characteristics of the ECM (Gilbert et al., 2006; Crapo 

et al., 2011). Both allogeneic and xenogeneic tissue sources are decellularised, providing an 

almost limitless supply of scaffolds for potential clinical use. Although host immune targeting 

of any non-self cellular antigens transplanted can induce serious adverse effects in the clinic, 

such as graft versus host disease, ECM proteins are generally conserved amongst higher 

species and are well tolerated (Gilbert et al., 2006). Additionally, natural matrices contain 

binding sites that facilitate cellular adhesion, as found in vivo, and provide cues that maintain 

cell phenotype.  

The majority of decellularisation protocols utilise chemical reagents, enzymes and physical 

methods to remove cellular material (Crapo et al., 2011). Cells are usually lysed using ionic 

reagents or physical methods, cellular components digested with enzymes and membrane 

structures disrupted with detergents (Table ‎1.2). Tissue washes, often comprising phosphate 

buffered saline (PBS), are performed between application of each active reagent and at the 

end of protocols, to remove reagents that may induce an adverse host tissue response or 

cytotoxicity. Physical  methods used to facilitate decellularisation include agitation, suction 

(Butler et al., 2017), freezing, sonication, and, where the target tissue is not characterised by 

densely organised ECM, application of direct pressure (Gilbert et al., 2006; Badylak et al., 2011;  

Crapo et al., 2011). 

 

Table ‎1.2: The mode of action of common  reagents used in decellularisation protocols. Reagents may be applied 

as supercritical fluids, by perfusion, with a pressure gradient across tissue or with agitation (Crapo et al., 2011). 

Reagent Mode of action References 

Phosphate buffered saline (PBS) 
Rinsing of debris and reagents  from 

tissue 
(Booth et al., 2002) 

Aprotinin Protease inhibition 
(Booth et al., 2002; Gilbert 

et al., 2006) 

EDTA  Inhibition of metalloproteinases 
(Booth et al., 2002; Gilbert 
et al., 2006; Crapo et al., 

2011) 

DNase Catalyse hydrolysis of DNA 

(Booth et al., 2002; Gilbert 
et al., 2006; Gilbert et al., 
2009; Crapo et al., 2011; 

Butler et al., 2017; Lange et 
al., 2017) 
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Reagent Mode of action References 

RNase Catalyse hydrolysis of RNA 

(Booth et al., 2002; Gilbert 
et al., 2006; Crapo et al., 

2011; Butler et al., 2017; 
Lange et al., 2017) 

Hypertonic solution Cell lysis by osmotic shock 
(Booth et al., 2002; Gilbert 
et al., 2006; Crapo et al., 

2011; Butler et al., 2017) 

Hypotonic solution Cell lysis by osmotic shock 
(Booth et al., 2002; Gilbert 
et al., 2006; Crapo et al., 

2011) 

Detergents (e.g. SDS, Triton-X, 
CHAPS, Tween 20, sodium 

deoxycholate) 

Solubilisation of cytoplasmic and 
nuclear membranes, removing 

nuclear remnants and cytoplasmic 
proteins 

(Booth et al., 2002; Gilbert 
et al., 2006; Baptista et al., 

2011; Crapo et al., 2011; 

Baiguera et al., 2012; Butler 
et al., 2017; Lange et al., 

2017) 

Peracetic acid Terminal sterilisation (Crapo et al., 2011) 

 

Since the successful decellularisation of porcine small intestine submucosa by Badylak and 

coworkers (Badylak et al., 1995; Badylak et al., 1998), acellular ECM matrices have been 

prepared from a plethora of tissue sources. These include whole organs (Ott et al., 2008; 

Uygun et al., 2010; Badylak et al., 2011; Baptista et al., 2011), trachea (Seguin et al., 2009; 

Remlinger et al., 2010; Baiguera et al., 2012; Zang et al., 2012; Butler et al., 2017; Lange et al., 

2017), cartilage (Elder et al., 2009; Vindas Bolanos et al., 2017), heart valves (Booth et al., 

2002; Rieder et al., 2004; Ye et al., 2009; Morticelli, 2013), tendon (Deeken et al., 2011; Yin et 

al., 2013; Xu et al., 2017), pericardium (Mirsadraee et al., 2006a; Mirsadraee et al., 2007; 

Mendoza-Novelo et al., 2011; Dong et al., 2013; Vashi et al., 2015), dermis (Barret et al., 1999; 

Hoganson et al., 2010a; Hogg et al., 2015), urinary bladder (Brown et al., 2006; Rosario et al., 

2008), mesothelium (Hoganson et al., 2010b), small intestine (Crowley et al., 2017) and veins 

(Schaner et al., 2004). Numerous products have made use of decellularised xeno- and 

allogeneic matrices as bioactive materials for indications ranging from sports-related trauma, 

bone defects, maxilliofacial and reconstructive surgery and cardiovascular disease (Table ‎1.3), 

and medical innovation in the field is ongoing (Parmaksiz et al., 2016). 
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Table ‎1.3: A selection of products derived from decellularised tissues for clinical applications 

Product  Tissue source Application(s) Reference(s) 

GraftJacket® (Wright 
Medical, USA) 

Allogeneic dermis 

Rotator cuff trauma, 

Achilles tendon 
repair  

(Lee, 2004; 
Furukawa et al., 

2007; Snyder and 

Bond, 2007; Barber 
et al., 2008; Bond et 
al., 2008; Liden and 

Simmons, 2009; 

Snyder et al., 2009) 

DermaMatrix® (Synthes 
Corporation, USA) 

Allogeneic dermis 

Breast 
reconstruction, oral 

cavity repair, bone 
regeneration, root 
coverage, gingival 

and soft tissue ridge 

augmentation 

(Becker et al., 2009; 
Lee et al., 2010; 

Athavale et al., 2012; 
Brooke et al., 2012; 

Parmaksiz et al., 

2016) 

Osteofil® (RTI surgical, 
USA) 

Demineralized allogeneic 
bone, also lacking organic 

compounds 

Repair of bone 
defects 

(Takikawa et al., 
2003; Lee et al., 

2005; Wang et al., 

2007) 

Oasis® wound matrix 
(Smith and Nephew, USA) 

Porcine small intestine 
submucosa 

Citical-sized skin 
defects, such as 

ulcers 

(Mostow et al., 2005; 
Yeh et al., 2017) 

AlloMax™  
Allogeneic  dermal 

collagen 
Ventral hernia repair 

(Chauviere et al., 
2014; Roth et al., 

2015) 

Surgisis® (Cook Biotech. 
Inc., USA) 

Porcine small intestine 
submucosa 

Vaginal wall 
prolapse, fistula 

repair, sport’s 

hernias 

(Edelman and 
Selesnick, 2006; 

Ansaloni et al., 2007) 

CardioCel® (Admedus, 
Australia) 

Bovine pericardium 
Congenital cardiac 

abnormalities  

(Neethling et al., 
2013; Strange et al., 
2015; Sobieraj et al., 

2016) 

 

1.2.4 Multipotential mesenchymal stromal cells 

Following embryonic development orchestrated by ESCs, which form the hundreds of 

different cell types found in an adult organism, the majority of tissues of the body are 

believed to be supported by populations of adult stem cells that facilitate growth and repair.  

These ‘adult stem cells’ may be multi-, oligo- or unipotent, and can be defined as continuously 

self-renewing cells that retain the ability to produce  differentiated progeny (Islam and Alison, 

2009).  Niches, the specific tissue locations in which stem cells are believed to reside, may 
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regulate the stem cell response by integrating various signal types, including physical forces.  

Adult stem cells with multi- or oligopotency have been discovered in most organs and tissues 

including peripheral blood, blood vessels, skeletal muscle, skin, dental pulp, gut, liver, 

placenta, umbilical cord and heart (Godara et al., 2008).  Whilst the focus of this thesis is 

concentrated on MSCs, the use of other multipotent stem cells, including adipose -derived, 

neural and dental pulp stem cells in tissue engineering is acknowledged.   

By definition, MSC differentiate towards the osteogenic, adipogenic and chondrogenic 

lineages, and have great potential for the development of tissue engineered therapies (Islam 

and Alison, 2009). MSC have also been shown to differentiate into hepatocytes (Petersen et 

al., 1999) and towards neuronal phenotypes (Deng et al., 2001; Zheng et al., 2013)  Crucially, 

there are also indications of mechanosensitive behaviour.  Knowledge of the 

mechanoresponsiveness of MSC could inform the design of culture conditions/device 

manufacture for the application  of MSC in tissue engineering. 

 

1.2.5 The Isolation of Multipotent Mesenchymal Stromal Cells 

Bone marrow derived human multipotential mesenchymal stromal cells (hMSC) are typically 

isolated from aspirates harvested from the superior iliac crest of the pelvis  (Tae et al., 2006) 

but may also be isolated from tibial or femoral marrow compartments during surgery (Murphy 

et al., 2002), or the cadaveric thoracic and lumbar spine (D'Ippolito et al., 1999).  However, 

multipotent stem cells have now been found in other tissues, some of which are capable of 

being harvested with minimally invasive techniques.  These include periosteum (Hui et al., 

2005), deciduous and supernumerary teeth (Hara et al., 2011; Gutenberg, 2012), synovium 

(De Bari et al., 2001), adipose tissue (Zuk et al., 2002; Dhanasekaran et al., 2012) umbilical 

cord blood and tissue (Erices et al., 2000; Dalous et al., 2012), brain, liver, spleen, kidney, lung, 

thymus, pancreas, dermis (Godara et al., 2008) and peripheral blood (Roufosse et al., 2004).   

Although MSC constitute a very low fraction of cells extracted from bone marrow (0.001-

0.01%) methods for isolation and ex vivo expansion are efficient.  Bone marrow aspirates are 

first subjected to fractionation on a density gradient solution, such as Percoll, and the light-

density cells seeded (104-106 cells/cm2).  Basal medium containing fetal bovine serum is used 

in primary culture, lasting 12-16 days, during which  nonadherent haematopoetic cells fail to 

persist in culture; since MSC are the only adherent cells present in this fraction, the property 

of plastic adherence in itself is adequate for their isolation (Deans and Moseley, 2000; Barry 
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and Murphy, 2004; Tae et al., 2006). Extracted MSC are not immortalized and exhibit a finite 

lifetime (Deans and Moseley, 2000; Zimmermann et al., 2003).        

 

1.2.6 Ethics and safety of MSCs in tissue engineering 

Ethical and safety considerations that render MSC a preferred choice for tissue engineered 

solutions include their relative lack of tumorogenicity and immunogenicity. Whilst ESC and 

iPSC offer advantages on account of their pluripotency, the issue of teratoma formation must 

be addressed before therapies enter the clinic (Miura et al., 2009; Okano et al., 2013); MSC 

have a lower degree of plasticity (it should be noted, however, that the list of possible MSC 

progeny is constantly increasing) but crucially, do not induce teratoma formation in vivo (Shi 

et al., 2012).  Additionally, culture conditions of therapeutic stem cells must not necessitate 

the use of allo- or xenogeneic products . The majority of basic research studies involving MSC 

are conducted in serum-containing media on account of cost, but where cultured cells may be 

expected to be clinically applied serum- and xeno-free systems can be employed (Mizukami et 

al., 2016; Wu et al., 2016). In contrast successful in vitro culture of ESC has only been reported 

with the use of murine embryonic fibroblast (MEF) feeder layers, or using adsorbed ECM 

proteins to achieve attachment. Xenogeneic feeder layers may transfer xenopathogens or 

confer hyperimmunogenicity to cultured ESC, and ECM substrate coatings comprising a single 

protein do not replicate the heterogeneous three-dimensional in vivo environment (Soteriou 

et al., 2013; Laperle et al., 2015).  

Additionally, MSC research does not require the donation, destruction or creation of embryos.  

MSC may be sourced from a range of adult tissues after obtaining donor consent, presenting 

far fewer ethical concerns regarding their sourcing as compared to ESC (Tuan et al., 2003). 

 

1.3 Current differentiation of MSC in Tissue Engineering 

The defining function of MSC is their multilineage differentiation potential.  In the body the 

MSC population is believed to be both maintained in a quiescent state, and induced to 

differentiate by the local microenvironment, termed the MSC niche.  In vitro this 

differentiation capacity has been exploited to generate cells of the required lineage using 

specific culture conditions.  Current strategies to achieve MSC differentiation in tissue 

engineering mostly disregard the role of mechanical stimuli, and rely on soluble factors.  
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Although MSC may be induced to differentiate towards neurogenic, myogenic and skeletal 

muscle lineages, the ability to differentiate towards mesenchymal lineages is considered their 

defining quality (Dominici et al., 2006).  Hence, this discussion is restricted to the 

differentiation of MSC towards the mesenchymal and smooth muscle lineage, as relevant to 

this project. 

 

1.3.1 Chondrogenic induction 

Cartilage is a connective tissue that, amongst other functions, covers the articulating surfaces 

of bones in joints (Chen et al., 2006).  Articular cartilage is vital to the maintenance of normal 

joint motion, and joint pain is a major cause of disability.  Cartilage damage may occur as a 

result of trauma or degenerative joint diseases such as primary osteoarthritis.  The tissue is 

composed of a single cell type, chondrocytes, sparsely distributed in a highly specialized 

extracellular matrix and is relatively avascular and aneural, severely limiting natural 

regeneration (Chen et al., 2006).  Studies investigating MSC for cartilage tissue engineering 

have included combining MSC with soluble and/or injectable scaffolds (Quintavalla et al., 2002;  

Murphy et al., 2003; Csaki et al., 2008), implantation of MSC after in vitro differentiation to 

chondrocytes, and loading MSC onto three-dimensional scaffolds in vitro (Csaki et al., 2008).  

Chondrogenic differentiation of MSC is induced in vitro through three-dimensional culture, 

often in the form of a cell pellet, with serum-free medium containing a stimulus from the 

transforming growth factor beta (TGF-β) superfamily (Mucsi et al., 1996; Barry and Murphy, 

2004; Alberts et al., 2008; Csaki et al., 2008).   

     

1.3.2 Osteogenic induction  

Bone is formed of osteocytes embedded in a highly mineralized matrix that endows the tissue 

with the mechanical properties necessary for its structural purpose.  There is demand for 

tissue-engineered bone in a wide range of fields including orthopaedic, neuro- and 

craniofacial surgery, periodontics and dentistry (Nassif and El Sabban, 2011).  MSC have been 

used to engineer bone to treat site-specific bone defects, such as non-union fractures (Shang 

et al., 2000), and degenerative conditions such as ostegenesis imperfecta and osteoporosis 

(Mauney et al., 2005).  Research into defect repair and healing has utilised hydroxyapatite, 

tricalcium phosphates (Wang et al., 2005), synthetic and natural polymers (Yoshimoto et al., 

2003) and demineralized bone as scaffolds for MSC (Louis-Ugboo et al., 2004; Meinel et al., 
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2004; Nassif and El Sabban, 2011).  Osteogenic differentiation in MSC requires the use of the 

glucocorticosteroid dexamethasone, organic phosphates such as β-glycerophosphate and fetal 

bovine serum.  Bone morphogenic protein (BMP) family growth factors and other 

supplements such as 1,25-dihydroxyvitamin D3 are also commonly used in osteogenic 

induction (Tuan et al., 2003; Tae et al., 2006).  These soluble factors have been shown to 

encourage osteogenesis from experimental findings that show an increased expression of the 

osteogenic markers octeocalcin, osteopontin and alkaline phosphatase in MSC as a 

consequence of their use (Hanada et al., 1997; Liu et al., 1999; Fujita et al., 2001; Lodish et al., 

2008).  For example phosphates, such as the β-glycerophosphate used in vitro to induce 

osteogenic differentiation, are known to induce the mRNA and protein expression of these 

markers.  Phosphate is transported into osteoblasts via the sodium-dependent type III 

phosphate transporter, and once in the cell, is thought to affect the production and nuclear 

export of core binding factor alpha 1 (Cbfa1) (Fujita et al., 2001; Tuan et al., 2003).  Cbfa1 

binds to the cis-acting element OSE2, which in turn activates the osteocalcin promoter.  OSE2 

has since been found in the promoter regions of all major genes expressed by osteoblasts, so 

Cbfa1 may play an even greater role in ostegenic differentiation of MSC  (Ducy et al., 1997; 

Ducy, 2000). 

  

1.3.3 Adipogenic induction 

Adipose tissue is a loose connective tissue composed of adipocytes and characterized by its 

role in lipid storage and impact absorption.  Fat also secretes a wide variety of hormones and 

proteins, including leptin, oestrogen, resistin, adiponectin, visfatin, omentin and cartonectin, 

and as such is recognized as an endocrine organ (Schäffler and Schölmerich, 2010).  

Adipogenic tissue engineering generally aims to restore the aesthetic function of soft tissue.  

Hence, such research finds applications in reconstructive, cosmetic and correctional 

treatments that may be necessary following tumour resection, carcinoma removal, trauma 

and to correct congenital abnormalities (Godara et al., 2008).  Attempts at adipose tissue 

engineering have typically used soft scaffold materials such as fragmented omentum, 

polyester based absorbables, hyaluronic acid, collagen, polyethylene glycol (PEG) and 

chemically modified alginate in a scaffold only or ‘scaffold plus cells’ approach (Gomillion and 

Burg, 2006).  Although preadipocytes and adipose-derived stem cells have been commonly 

used (Flynn et al., 2007), mesenchymal stem cells can be induced to undergo adipogenic 

differentiation by treatment with supplements such as dexamethasone, 3-isobutyl-1-

methylxanthine and indomethacin in monolayer culture (Pittenger et al., 1999; Tuan et al., 
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2003; Tae et al., 2006).  The use of specific markers to assess the efficacy of adipogenic 

differentiation is not necessary; the presence of large lipid vacuoles in the differentiated cells 

is a suitable lineage determinant, and may be detected by oil red O staining.  The supplements 

used to differentiate MSC towards an adipogenic lineage interact with transcription factors 

such as proliferator-activated receptor gamma (PPAR-γ), C/EBP-α and C/EBP-β (Lehmann et al., 

1997).  Wnt signalling pathways, known to maintain preadipocytes in a naïve state by 

inhibiting C/EBP-α and PPAR-γ, can also be suppressed to enable  adipogenic differentiation 

(Tuan et al., 2003).      

 

1.3.4 Smooth muscle induction of MSC 

Smooth muscle is involuntary, non-striated muscle and is found in blood and lymphatic vessels, 

the urinary bladder, uterus, the reproductive, respiratory and gastrointestinal tracts and the 

iris.  Smooth muscle engineering is of clinical interest for the regeneration/repair of the 

cardiovascular system.  The high and increasing prevalence of cardiovascular disease means 

that demand for tissue-engineered therapies is high, and current treatments, such as the 

replacement of diseased arteries with autologous veins, are dependent on healthy donor sites 

(Gong et al., 2009).  However, there is a relative lack of research into MSC differentiation 

towards the smooth muscle lineage, so accepted protocols are yet to be established.  

Approaches used to induce and quantify differentiation towards a smooth muscle lineage are 

described in  

Table ‎1.4. Crucially, one such approach used to differentiate MSC towards a smooth muscle 

lineage is the application of strain. As summarised in  

Table ‎1.4, Park et al investigated the impact of biaxial and uniaxial strain, applied at a 

frequency of 1 Hz, on the expression of smooth muscle cell (SMC) markers in cultured MSC. 

Interestingly, this work noted a differential effect between uniaxial and biaxial strain; uniaxial 

strain induced upregulation of the markers studied, whereas biaxial promoted their 

downregulation(Park et al., 2004). This may reflect the fact that uniaxial strain, applied in the 

circumferential direction, is the primary physical stimulus experienced by SMC in vivo. The 

signalling pathways that mediate smooth muscle differentiation of MSC are poorly 

understood; however the mitogen-activated protein kinase/extracellular signal-regulated 

protein kinase pathway (MAPK/ERK) pathway activity has been implicated in studies using 

inhibitors such as PD98059 and PD98059 (Tamama et al., 2008; Goerke et al., 2012).  That 
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very little is understood regarding the differentiation of MSC to SMC provides scope for 

studies of the role of physical stimuli in smooth muscle tissue engineering (Park et al., 2004). 
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Table ‎1.4: Summary of approaches to MSC differentiation towards a smooth muscle lineage in selected publications  

Differentiation approach Primary outcome(s) 
 

Findings 
Reference 

Examination of the impact of different medium FBS 
concentrations, and transforming growth factor-β1 
(TGFβ1)on the differentiation of MSC towards SMC 

Calponin, smooth muscle α-actin 
and smooth muscle 22α expression, 
detected by immunohistochemistry 

No change in differentiation potential of MSC 
by [FBS] in the range 2-10% 

Promotion of smooth muscle lineage 
specification by TGFβ1 

 

(Gong et al., 2009) 

Co-culture of MSC with endothelial progenitor cells 

(EPC) or human umbilical vein endothelial cells 
(HUVEC) 

Expression of smooth muscle 
myosin, smooth muscle 22α and 

calponin, detected by 
immunohistochemistry and relative 

quantitative polymerase chain 
reactions (qPCR) 

Smooth muscle lineage specification of MSC 
cultured with EPC, in a time, cell-contact and  

of mitogen-activated protein 
kinase/extracellular signal-regulated kinase 

(MAPK/ERK) pathway-dependent manner  

(Goerke et al., 2012) 

Measurement of the impact of biaxial and uniaxial 
strain on the regulation of SMC markers by MSC 
cultured on elastin- or collagen coated substrates 

Smooth muscle α-actin and smooth 
muscle 22α expression by qPCR, 

immunohistochemistry 

Protein expression by 
immunoblotting 

Downregulation of smooth muscle α-actin by 
40-50 % following application of biaxial 

strain 

Downregulation of smooth muscle 22α by 
~25% following application of biaxial strain  

Transient increase in smooth muscle 22α and 
smooth muscle α-actin following application 

of uniaxial strain 

(Park et al., 2004) 
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Alignment of MSC perpendicular to strain 
direction following application of uniaxial 

strain 

Measurement of the impact of angiotensin II 

treatment on the differentiation of MSC towards 
SMC 

Expression of smooth muscle α-
actin, calponin, l-caldesmon, h-

caldesmon and smooth muscle 
myosin heavy chain (SM-MHC) by 

immunoblotting and  
immunohistochemistry 

Increased expression of smooth muscle 
markers in response to angiotensin II 

treatment 

 

Increased contractility in differentiated cells 

in response to membrane depolarisation 

(Kim et al., 2008) 

Overexpression of micro RNA 145  for the production 
of mature SMC 

Expression of smooth muscle α-
actin, calponin, caldesmon and SM-

MHC, detected by qPCR 

Protein expression of the above, 
detected by immunohistochemistry 

Upregulation of SMC markers in MSC and 
increased marker protein expression 

following the introduction of micro RNA 145 

Contractility in response to vasoactive agents 
in treated MSC 

Production of fully differentiated MSC-
derived SMC using approach tested 

(Pajoohesh et al., 2016) 

Inhibition MAPK/ERK pathway through inhibition of 
mitogen-activated protein kinase kinase (MEK). The 
MAPK/ERK pathway exerts anti-myogenic signals in 

SMC 

Expression of smooth muscle α-
actin, h-caldesmon, SM-MHC and 

myocardin, detected by qPCR 

Protein expression of the above, 
detected by immunohistochemistry 

and immunoblotting 

Upregulation of SMC markers and increased 
marker protein expression following MEK 

inhibition in MSC 

Adoption of SMC-like phenotype by treated 
MSC, including ligand-induced contractility 

(Tamama et al., 2008) 
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1.3.5 The MSC niche 

There is evidence that the role of MSC in the body is regulated by a local microenvironment 

termed the niche.  The stem cell niche is a three-dimensional environment composed of cells, 

soluble factors and ECM (Fuchs et al., 2004; Sun et al., 2012a).  The purpose of MSC in the 

body is to act as a reserve for the maintenance and repair of the mesenchymal tissues, some 

non-mesenchymal lineages, and to support hematopoiesis (Bianco, 2011; Gotts and Matthay, 

2012).  Many studies have now suggested a perivascular location for the MSC niche in almost 

all tissues in which they are found (Kolf et al., 2007; Kuhn and Tuan, 2010), as evidenced by 

the expression of α-smooth muscle actin in extracted MSC (da Silva Meirelles, 2006).  A 

perivascular location for the niche appears logical as it may explain how MSC gain access to a 

wide variety of tissues.  Cell types thought to interact with MSC in the bone marrow niche 

include hematopoietic progenitors and their progeny, fibroblasts, endothelial cells, 

osteoblasts, osteoclasts, adipocytes and cells of the immune system (Yin and Li, 2006).  

Cadherins, transmembrane glycoproteins that form cell-cell adhesions between MSC and 

these supporter cells, have been shown to influence migration, differentiation and polarity in 

MSC through their interaction with the Wnt pathway (section ‎1.8.4.1.1)(Alberts et al., 2008; 

Kuhn and Tuan, 2010).   As well as exerting influence through direct physical contact, these 

supporting cells have been reported to influence MSC fate through the secretion of soluble 

factors such as FGF-2, which maintains MSC growth and differentiation potential in vitro, and 

interleukin-6 (IL6), which acts as an autocrine signalling factor (Kuhn and Tuan, 2010).  

Additionally, hypoxic conditions, comparable to the in vivo bone marrow microenvironment, 

appear to enhance both the proliferative capacity and plasticity of MSC as compared to 

normoxic conditions (Grayson et al., 2006). No specific ECM components have been identified 

that maintain MSC in a naïve state, but changes in the physical properties of the 

microenvironment can modulate cell shape and signalling events, affecting MSC specification.  

It is widely postulated that physical cues, soluble and cellular factors present in the niche all 

mediate MSC quiescence and fate; mechanotransduction studies are  vital to understand the 

potential for MSC differentiation in tissue engineering. 
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1.4 Application of mechanical strain in Tissue Engineering 

Physical cues present in vivo include compressive, uniaxial and biaxial strains, and may 

present in both static and cyclic fashion. Strategies for tissue engineering of many lineages 

now incorporate various stimuli, dependent on the tissue of interest, in biomimetic 

approaches. For example, researchers investigating tenogenic differentiation of MSC 

frequently apply uniaxial strain to seeded substrates (Butler et al., 2008; Chen et al., 2008; 

Morita et al., 2014), and the histoarchitecture of cartilage engineered in the presence of 

compressive or hydrodynamic forces is more comparable to native tissue than constructs 

cultured in their absence (Heath, 2000; Marsano et al., 2006; Huang et al., 2010; Kelly and 

Jacobs, 2010). Additionally, Park at al have previously reported findings, of particular 

relevance to this study, that indicate that the application of uniaxial strain to MSC seeded on a 

flexible substrate promotes differentiation towards a smooth muscle lineage. In this work, 

hMSC were seeded on collagen- or gelatin-coated silicone membranes and strained in a 

custom bioreactor. The expression of genes indicative of lineage specification was measured 

using DNA microarrays; after one day, expression of the smooth muscle α-actin and smooth 

muscle 22α genes was selectively upregulated compared to markers of other lineages, with 

the return of gene expression to basal levels coincident  with cell alignment changes (Park et 

al., 2004). This work, amongst the plethora of other reports highlighting the role of 

mechanical stimuli in MSC differentiation, lends credence to the strategy of mimicking  in vivo 

biomechanics in tissue engineering application. 

Development of bioreactor systems that mimic the mechanical stimuli that help to guide 

tissue development and homeostasis in vivo is extensive (Zhao et al., 2016), and the remit of 

this thesis is limited to the discussion of uniaxial strain apparatus only. Bioreactors are 

developed both commercially and in-house in academic institutions, and may be single or 

multi use. Single use designs may be preferable since they may mitigate sterility concerns, but 

commercially-produced, single-use apparatus are currently limited to stirred tank, rocking and 

perfusion systems (Bose, 2017; GE, 2017). In contrast, uniaxial strain bioreactors, relevant to 

the work presented in this thesis, are normally custom-built multiple use apparatus, with no 

consensus on design as yet established. However, these apparatus invariably involve clamping 

a seeded substrate to a stationary and motile each, and distending as required (Altman et al., 

2002b; Saber et al., 2010; Salazar et al., 2015; Schmidt and Tranquillo, 2016). Validation and 

wide adoption of an effective design style for uniaxial strain bioreactors to be used in 

mechanostimulation investigations is likely to enhance the insight provided by such work.  
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1.5 Evidence of MSC mechanosensitivity 

 

As described in section ‎1.3, most differentiation of MSC in vitro has utilised soluble, chemical 

or cellular factors, and has not considered the physical environment.  Despite this, there is 

increasing evidence that mechanical stimuli affect the differentiation of MSC.  However, very 

little is understood regarding the mode in which physical stimuli elicit biochemical signalling, 

and many studies have failed to replicate the in vivo environment of MSC satisfactorily in the 

laboratory.  The state of current research regarding mechanostimulation during the 

differentiation of MSC is presented here. 

 

1.5.1 Physical stimulation during osteogenic differentiation of MSC 

Mechanical stimuli are required for healthy bone formation and metabolism, and the 

osteogenic differentiation of MSC has been investigated under compression and strain.  MSC 

seeded on non-natural scaffolds and subjected to compression have shown increased 

osteogenic differentiation as compared to controls.  For example, Park et al observed 

increased production of osteogenic matrix components (bone sialoprotein, osteopontin and 

type I collagen), integrin expression and alkaline phosphatase staining when MSC cultured on 

microscale chips were placed under dynamic hydraulic compression (Park et al., 2012b).  

Integrins are heterodimeric receptors that span the cell membrane, forming a link between 

extracellular matrix components to cytoskeletal, adaptor and signalling molecules in the 

cytoplasm (Alberts et al., 2008).   

Additionally, physical stimuli have shown similar efficacy in the osteogenic induction of MSC 

as commonly used soluble factors.  MSC cultured on polyurethane foam and compressed at 5% 

global strain cyclically (1Hz) showed no difference in matrix production as compared to non-

loaded MSC treated with the osteogenic inductor dexamethasone.  This suggested that 

dynamic loading could stimulate the osteogenic induction of MSC in the absence of soluble 

factors, or may contribute additively towards more effective differentiation 

(Sittichokechaiwut et al., 2010).  Cyclic strain has also been found to direct MSC towards an 

osteoblastic lineage, but data reported has highlighted the importance of MSC culture on an 

appropriate matrix (Friedl et al., 2007; Huang and Ogawa, 2010; Ngiam et al., 2010).  Huang et 

al grew MSC on substrates coated with various ECM proteins.  Whilst mechanical stimulation 

(3% elongation at 0.1Hz) increased alkaline phosphatase activity and mineralized matrix 
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deposition in all cases, it appeared that cues from the substrate also drove di fferentiation.  In 

this case, physical stimulus increased phosphorylation of focal adhesion kinase (FAK), which 

interacts with the MAP kinase signalling module to phosphorylate Cbfa 1.  As mentioned 

previously, Cbfa 1 binds promoters of osteoblast-related genes, regulating differentiation 

(Huang et al., 2009).  Significantly, in another study investigators testing the effect of cyclic 

strain (1% at 1Hz) on MSC differentiation with a variety of substrates concluded that the effect 

of the stimulus was dependent on substrate-cell adhesion after obtaining mixed results 

(Ngiam et al., 2010).  This is logical, as adhesion molecules are thought to be responsible for 

mechanotransduction in many cell types, and highlights the needs for substrates that facilitate 

normal MSC adhesions.   

 

1.5.2 Physical stimulation and adipogenic differentiation in MSC 

In contrast to the other work described in this review, there is evidence that physical 

stimulation retards adipogenic differentiation of MSC.  Although very little literature exists 

regarding mechanical stimulation during adipogenesis, separate investigators have reported 

that mechanical stimulation maintains levels of the gene regulatory protein β-catenin  and 

even induces nuclear translocation (Sen et al., 2008; Khayat et al., 2012).  In both cases, 

mechanical strain inhibited PPARγ and adiponectin expression and biased differentiation 

towards an osteogenic lineage. In adipogenesis, β-catenin is normally targeted for 

degradation by the molecule GSK3β, which is inactivated by strain through phosphorylation 

(see section ‎1.8.4.1.1).  Whilst the effect on adipogenesis in MSC is one of retardation, it is a 

strong suggestion that mechanotransduction plays a significant role in these cells as 

adipogenesis of MSC was retarded by physical stimuli even after treatment with adipogenic 

inducers (Sen et al., 2008). 

 

1.5.3   Physical stimuli and tenogenic differentiation in MSC 

Tendon is an obvious target for tissue engineering using physical forces owing to its 

mechanical function, and strain is known to be a crucial factor in tendon and ligament 

remodelling (Kim et al., 2002).  Studies investigating tendon and ligament differentiation in 

MSC typically examine the expression of marker genes, including type I collagen, type III 

collagen, scleraxis, tenascin-C and the mRNA expression of matrix metalloproteinase-3 (MMP-

3), which contributes to matrix remodelling.  Interestingly, whilst mechanical strain has 
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generally been found to increase differentiation of MSC towards a tendon/ligament lineage, 

there is evidence that substrate choice greatly affects the impact of the physical stimulus on 

MSC.  In one study, cyclic strain of MSC on a collagen gel matrix led to tenogenic and 

osteogenic differentiation depending on the level of strain applied.  Higher levels of strain 

(10%) contributed to tenogenic differentiation and lower (3%) to osteogenic differentiation, 

reflecting the higher strain experienced by tendon naturally (Chen et al., 2008).  Another 

study, measuring the marker molecule scleraxis and signalling and ECM molecules (collagens, 

Wnts, and MMP) of MSC undergoing cyclic stretch in a collagen gel also reported increased 

tenogenic differentiation, and found that Wnt signalling was involved.  However, 

investigations of tenogenic differentiation of MSC at a comparable cyclic stretch, but on a 

poly(L-lactide) (PLA) scaffold, found that the stimulus had no effect on MSC differentiation 

(Kreja et al., 2012).  Whilst collagen gels present certain caveats in mechanotransduction 

studies (discussed in more detail in section ‎1.6), collagen I is the major component of tendon 

extracellular matrix and may offer an environment more comparable to natural tissue than 

PLA.  Hence, stretch applied on the macroscale may be more appropriately transduced to the 

cellular level. 

 

1.5.4 Substrate stiffness and mechanotransduction in MSC 

Both externally and internally generated mechanical stimuli can initiate mechanotransduction. 

Mechanotransduction arising from internal forces has been investigated using gels of different 

stiffness, and has been found to influence MSC differentiation.  Stiffer substrates promote 

MSC differentiation towards cell types found in stiff tissues in vivo, such as bone, and 

conversely softer substrates promote differentiation towards cell types normally located in 

softer tissues, such as neurons  (Discher, 2005).  This was confirmed by work in which matrix-

induced lineage specification could not be reprogrammed with soluble induction factors after 

one week of culture on matrices of various elasticities (Engler et al., 2006).  Other workers 

found that in cultures treated with TGF-β, which can stimulate differentiation towards both 

smooth muscle and chondrogenic lineages, matrix elasticity determined cell fate.  It also 

rendered traditional inducers of differentiation more effective (Park et al., 2011a).  The 

cytoskeleton has been strongly implicated as a facilitator of these mechanotransduction 

events, with the use of blebbistain, a myosin II inhibitor, blocking elasticity-induced 

differentiation.  Actin structures are linked to focal adhesions, which provide a pathway for 

force transmission between the cytoskeleton and ECM, and are associated with signalling 

complexes such as protein kinases.  In one of the few studies to date investigating the 
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signalling pathways in mechanotransduction, Shih et al found that inhibition of focal adhesion 

kinase (FAK) and Rho kinase (ROCK) eliminated the osteogenic effect of stiff matrices.   This led 

investigators to conclude that cytoskeletally-generated forces from the cell interior sense 

substrate stiffness through integrins, and subsequently ROCK, FAK and finally the MAPK ERK ½ 

are activated.  Erk is able to enter the nucleus and phosphorylate gene regulatory complexes, 

giving rise to gene expression patterns corresponding to differentiation towards specific 

lineages (Shih et al., 2011).      

 

1.6 Limitations of current approaches to mechanostimulation in MSC 

Despite increasing evidence that MSC are mechanosensitive, there are several caveats 

associated with previous attempts at mechanostimulation of MSC. These are related to 

experimental design, substrate/scaffold choices and the relative lack of investigation into the 

force-mediated differentiation of MSC specifically towards a smooth muscle lineage.  

 

1.6.1 The substrates used in current MSC mechanotransduction studies are 

inadequate 

The substrates used in previous investigations of mechanotransduction in MSC do not 

adequately represent the natural environment.  In vivo all cells, including MSC, exist in a 

three-dimensional environment of ECM proteins and cellular neighbours, to which they are 

attached through integrins and cadherins (Alberts et al., 2008).  These cellular adhesions are 

likely to be involved in transducing physical cues.  If cell-substrate attachments cannot be 

made in three dimensions mechanical stimuli are not effectively transmitted to any associated 

mechanosensitive signalling pathways (see section ‎1.8.4).  Adhesions cannot be made on 

substrates made from non-natural (non-ECM) materials that do not contain the appropriate 

sequences for binding, such as the RGD peptide integrin binding site.  Even when more 

appropriate biomaterials are used, many pre-prepared scaffolds are not readily penetrated by 

cells.  When applied to such a scaffold cells adhere to the surface only, and hence experience 

applied force in a two-dimensional environment.  At the time of writing this review, there are 

few reports of the use of a three-dimensional scaffold for the mechanical stimulation of MSC 

(Chang et al., 2007), and many materials reported are unlikely to encourage cellular adhesion.  

Of the ECM proteins used to coat substrates, collagen I gels are overwhelmingly employed 

(Park et al., 2004; Ku et al., 2006; Chen, 2008; Sen et al., 2008; Huang et al., 2009; Park et al., 
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2011b; Shih et al., 2011; Khayat et al., 2012; Zhou and Niklason, 2012), and a fibronectin 

coating has also been tested (Friedl et al., 2007).  Non-ECM substrates used include 

polyacrylamide  (Engler et al., 2006), microchips (Park et al., 2012b; Zhou and Niklason, 2012), 

polyurethane (Sittichokechaiwut et al., 2010), PLA (Kreja et al., 2012) and silicon (Huang et al., 

2012).  The requirement for three-dimensional substrates for mechanostimulation of MSC 

that facilitate normal cellular adhesions highlights the importance of natural ECM scaffolds in 

this field. 

 

1.6.2 Varying the mode and frequency of force application may optimise 

mechanostimulation of MSC  

In current literature regarding the mechanostimulation of MSC the effect of the magnitude of 

applied forces has formed the primary focus, and varying the frequency and mode of force 

application has been largely neglected.  It is now becoming increasingly clear that forces of 

equal magnitude may elicit distinct cellular responses, depending on whether they are applied 

in a static or cyclic fashion, and that the frequency of application of cyclic forces may also be 

important.   

Mechanotranduction occurs as a result of protein conformational changes that are 

subsequently converted into biochemical signalling.  This may occur directly, as in the case of 

membrane channels, or indirectly, through the subsequent binding of signalling proteins.  

According to the dynamic model of mechanotransduction, any frequency-dependent effect 

can be related to the bond lifetimes within the proteins involved in detecting the force  

(Hoffman et al., 2011).  For example, cellular adhesions may be dynamic (nascent) or stable 

(mature) depending on the rate of adhesion turnover.  Nascent adhesions have a faster 

turnover because the weaker bonds integral to them have shorter lifetimes, and mature 

adhesions vice versa.  It has been theorised that the rate of adhesion turnover may be related 

to the likelihood of mechanotransduction occurring.  For example, cyclic force application may 

not stimulate the stronger mature adhesions, but conformational change is more likely in 

nascent adhesions as their weaker linkages yield, leading to transduction of the force to 

downstream signalling pathways.  Conversely, nascent adhesions may readily adapt under the 

influence of static stretch, averaging the effect of the stimulus and resulting in no long-term 

signalling.  Mature adhesions may be unable to adapt in this way and their conformation, and 

hence signalling, may be changed.   
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Additionally, the frequency of cyclic force application may impact the response generated.  A 

mathematical model has suggested that cells may adopt a parallel or perpendicular alignment 

in response to force according to the relationship between remodelling rates of load bearing 

structures, such as focal adhesions, and the frequency of stimulus application.  According to 

this theory, if the frequency of force application is faster than typical remodelling rates of the 

structures involved, cells may align perpendicularly to the direction of the force to minimize 

stretching on mechanically sensitive elements.  This would be expected to reduce the impact 

of the applied stimulus and reduce or abolish mechanotransduction.  However, if the rate of 

force application is lower than that of remodelling, these load bearing structures may be 

strengthened and cells may align parallel to the stimulus. It has been suggested that cells 

aligned in parallel to mechanical cues experience maximum force and hence are more 

sensitive to applied stimuli (Hoffman et al., 2011).  Hence, the mode and frequency of 

mechanical stimuli should be optimised as rigorously as the magnitude as the force itself if 

mechanotransductive effects are to be properly understood.  Such experiments may also shed 

light on the stability and turnover rates of the subcellular structures involved. 

 

 

1.6.3 There is little literature regarding mechanotransduction and the 

differentiation of MSC towards smooth muscle  

Differentiation of MSC towards a smooth muscle lineage is little-studied in the field of 

mechanotransduction, despite arterial disease being a major cause of mortality worldwide.   

In one key study, Park et al showed that MSC are able to differentiate towards a smooth 

muscle lineage, but the experimental design suffered from the caveats described previously as 

only one duration and frequency of stimulus was investigated (10% strain, 1 Hz)  (Park et al., 

2004).  Interestingly, this work reported that smooth muscle markers (α-actin and SM-22a) 

were transiently upregulated but returned to basal levels after 1 day of stimulation, at which 

point the MSC had aligned perpendicular to the strain direction.  This suggests that the way in 

which force is applied may affect alignment responses, and that perpendicular alignment of 

cells reduces downstream biochemical consequences as theorised by Hoffman et al (2011). 
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1.7 The Basis of Mechanotransduction 

 

1.7.1 The stages of mechanotransduction 

All mechanotransduction is caused by the impingement of force on proteins with 

conformations, and hence biochemical activity, that alter as a consequence of physical 

stimulation.  Applied forces must first be delivered to a force sensitive protein, which may be 

distant from the stimulus, in a process termed mechanotransmission.  On encountering a 

mechanically-gated protein the transmitted force induces conformational change, or 

mechanosensing.  Conformational changes may alter the chemical activities of proteins, which 

in turn impacts upon cellular processes.  The way in which mechanotransduction events 

ultimately influence the cell is termed mechanoresponse, and may involve changes in the cell 

cycle leading to proliferation, protein manufacture and cell alignment (Bao 2010; Hoffman et 

al. 2011).  Crucially, gene expression and differentiation may also be induced as a form of 

mechanoreponse.  The following section focuses on the process of mechanosensing, and 

provides a description of protein structure, conformation and conformational change.                                                                                                                   

 

1.7.2  Protein Structure, Conformation and Force 

Proteins are polymers of amino acids that undergo self-assembly to form perhaps the most 

functionally sophisticated molecules known (Lodish et al. 2008; Alberts et al. 2008; Atkins & 

De Paula 2010).  Whilst the functional properties of most molecules is determined by their 

configuration (the direct connectivity of atoms through chemical bonding), the biochemical 

activity of proteins is chiefly governed by their conformation (Atkins & De Paula 2010).  

Protein conformation, or the spatial arrangement of component residues, is determined by 

non-covalent interactions.  The spatial arrangement of residues also determines the specificity 

and chemical activity of proteins. Thus, it is necessary to discuss protein structure and 

biophysics in order to appreciate the subcellular basis of mechanotransduction.  

 

1.7.2.1 Levels of protein structure 

Proteins are hierarchical and are described in terms of primary, secondary and tertiary 

structure.  The primary structure of a protein is the polypeptide chain: the linear sequence of 

amino acids connected by covalent bonds, as coded for by DNA.  Residues within this 
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polypeptide chain interact with each other to induce bond rotations, altering the spatial 

arrangement of residues and giving rise to secondary structure.  Secondary structures are 

maintained by hydrogen bonding between the amine, carbonyl and R- groups of amino acids 

and principally comprise beta (β) sheets and alpha (α ) helices (Fig. ‎1.1).   

‘Tertiary structure’ is used to describe the overall three-dimensional arrangement of all amino 

acid residues in a polypeptide.  Some proteins also form quaternary structures through the 

aggregation of different polypeptide subunits.  Whilst only hydrogen bonding is involved in 

the folding of secondary structures, additional driving forces, such as hydrophobic interactions 

and disulphide bonding, contribute to tertiary and quaternary structures.  These driving forces, 

and how they combine to engineer the lowest energy conformation of a polypeptide in a 

given environment, will be discussed in section ‎1.7.2.2 (Lodish et al. 2008; Alberts et al. 2008). 

 

 

1.7.2.2 Protein folding and conformation 

A polypeptide chain folds to the conformation, or three-dimensional spatial arrangement, that 

has the lowest energy for its environmental conditions.  Folding occurs as chemical attractions 

and repulsions are satisfied through weak intramolecular bonding that is changeable 

according to the chemical and physical environment.  This typically includes hydrogen bonding, 

Van der Waals forces and the hydrophobic effect.  Satisfying the chemical requirements of a 

A B C 

Fig. 1.1:  The most common secondary structures formed by hydrogen bonding within polypeptide chains.  α-

helices (A) form from interactions between amino acids within the same polypeptide, to give a helical structure, 

whereas β-sheets can  arise from bonding between  β strands originating from the same or a different 

polypepetide,  giving rise to lateral packing (B & C).  β-sheets can be antiparallel (B) or parallel (C), depending on 

the directionality of β strands.  Diagram adapted from Alberts et al. 2008. 
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polypeptide by making favourable interactions reduces the free energy of a protein, and gives 

rise to the three-dimensional structures that determine function.   

Despite the relationship between shape and function, there are in fact a number of 

conformations a polypeptide may adopt, and the favourability of each one is determined by 

the immediate environment.  This is well recognised through the knowledge that changes in 

factors such as pH and temperature can cause denaturation – or the loss of biological function 

of a protein as a result of conformational change (Atkins & De Paula 2010; Boal 2012). 

Mechanotransduction and denaturation in fact occur for strikingly similar reasons: changes in 

the protein environment initiate conformational changes that in turn affect functionality. 

Applied forces may break the intramolecular interactions responsible for protein structure, 

and any conformations that require these broken interactions for stabilisation will be more 

energetically disfavoured (Fig. ‎1.2). 

Proteins that undergo mechanically-gated conformational changes may behave as 

mechanosensors, which impact upon downstream biochemical signalling to influence cellular 

behaviour, as described in section ‎1.8.4.  This may occur directly, as in the case of ion channels, 

or indirectly through interactions with other proteins and biomolecules, as described by 

Fig. ‎1.3. 
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Fig. 1.2:  Simplistic example of conformational change in a theoretical protein that may adopt a ‘kinked’ 

or open conformation, depending on the state of hydrogen bonding between two glycine residues .  In 

the absence of mechanical strain the hydrogen bond is maintained, making the ‘kinked’ conformation 

lower energy than the open (top).  When moderate tensile strain is applied the hydrogen bond is 

lengthened and weakened, making the kinked conformation increasingly difficult to maintain and 

increasing the free energy for this conformation (middle).  However, the protein most likely retains this 

kinked conformation as it is still more energetically favourable than the open conformation.  However, 

higher tensile strains lead to a loss of hydrogen bonding between the glycine residues. This interaction is 

crucial to maintaining the kinked conformation, which is now energetically disfavoured compared to the 

open conformation.  Conformational change is now likely to occur.  Mechanotransduction may occur if this 

conformational change leads to a change in downstream signalling.  Partially adapted from Alberts et al. 

2008. 
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1.7.3 Biophysical theories 

Although mechanotransduction is not currently well understood, theories have been 

developed to explain the relationship between mechanotransmission, mechanosensing and 

mechanoresponse.  Switch-like models suggest an entirely separate, serial progression 

through these stages.  In this view, the frequency of force application does not impact the 

likelihood of mechanotransduction, and only forces strong enough to break the 

intramolecular bonds of mechanically-gated (mechanosensor) proteins elicit a response.  

Additionally, switch-like theories assume that the cellular response to mechanotransduction, 

or mechanoresponse, does not feed back to modify the proteins involved.  This, however, is 

not supported by experimental data: many tissues show clear frequency-dependent tissue 

remodelling, and force-mediated signalling has been reported to modify structures 

Fig. 1.3:  Examples of conformational changes that initiate biochemical signalling in an indirect manner (i.e. 

through interactions with other species).  Ligand binding sites could be exposed or hidden in proteins with 'lids' 

as a result of force (A), or exposed by force-induced unravelling (B).  Non-polar residues may be exposed in 

mechanically-gated proteins which may then interact non-specifically with other biomolecules (C).  Finally, force-

induced conformational change may alter the binding affinity of a mechanosensor protein with its substrate (D).  

Adapted from Bao 2010. 
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responsible for transmission and sensing (Balaban et al. 2001).  To account for this, dynamic 

models have been devised that consider mechanotransduction as a fine balance of biophysical 

equilibria (Hoffman et al. 2011).  

Unlike switch-like models, dynamic models do not consider proteins as indefinitely stable, 

fixed entities.  Transmission of force to mechanosensor proteins can only occur through intact 

structures; these structures are often composed of subunits held together by linkages in 

dynamic equilibrium that may dissociate under applied force.  Dynamic models suggest that 

the relationship between the time taken for the dissociation of mechanotransmitters and the 

frequency of applied force may be important in determining whether physical stimuli are 

actually delivered to mechanosensors, and that the process is not solely reliant on the 

magnitude of force applied (Hoffman et al. 2011).  Subunit dissociation occurs at characteristic 

rates: if force is applied at a higher frequency than this rate mechanotransmitters cannot 

disintegrate before successful transmission occurs, regardless of the strength of binding.  In 

simpler terms, subunits interchanging between a connected and dissociated state cannot 

fluidize, and hence dissipate an applied force, even if it exceeds the strength of bonding within 

the structure, if it is applied faster than the time taken for these bonds to break.   

Finally, unlike switch-like models, dynamic models do not consider the stages of 

mechanotransduction to be separate.  It is recognised that mechanoresponses can feed back 

to subcellular structures and affect how forces are transmitted and sensed.  Examples include 

the regulation of cytoskeletal genes and ECM deposition, and the strengthening of binding 

between adhesions and the cytoskeleton in response to force application (see Fig. ‎3.4). 
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1.8 The Subcellular Processes: Key Players 

Various structures may contribute to the force-mediated differentiation of MSC through 

participation in the processes of mechanotransmission, mechanosensing and 

mechanoresponse.  Many more proteins than can be reasonably covered in this review are 

likely to be involved, but a discussion of the possible roles of proteins identified in 

mechanotransduction in the literature is here presented.  Since there is virtually no work 

regarding the mechanism of mechanotransduction in MSC, the potential involvement of 

proteins is largely inferred from work carried out in other cell types and in theore tical studies.  

Although each protein type is discussed separately in this review, it is likely that 

mechanotransduction initiates feedback that modifies the structures involved, and that these 

are inherently coupled.  

 

 

 

 

 

(b) 

Force induced 
conformational change 

                                                                                                                                

(a) 

Fig. 1.4:  Strengthening of the actin (green) and integrin (blue) linkage by strain-induced conformational 

change of the protein talin (brown).  In the absence of tension, vinculin (red) binding sites on talin are 

inaccessible, preventing talin-vinculin adhesion strengthening (a), but physical stimuli may expose these 

cryptic sites allowing vinculin to form a linkage between in and the actin cytoskeleton, (b) (Geiger et al. 

2009; Hoffman et al. 2011). 
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1.8.1 Holding it all Together: The role of the Cytoskeleton in 

mechanotranduction 

The cell cytoskeleton operates on a subcellular level to perform many of the same functions 

as our skeletons on the macroscale: it maintains and modifies cell shape, resists physical 

forces and allows whole-cell movement (Saxen et al. 2008).  It also participates in organelle 

trafficking.  Additionally, the cytoskeleton is believed to have a signifi cant role in 

mechanotransduction, related to its ability to both transmit and generate force.  

 

1.8.1.1 The structure and function of cytoskeletal filaments 

The cytoskeleton is composed of microtubules, actin and intermediate filaments that span 

large distances and connect the intra- and extracellular environment via discrete adhesions 

with the ECM. It maintains and modifies cell shape, resists physical forces and facilitates 

organelle trafficking (Saxen et al. 2008).  Additionally, cytoplasmic signalling proteins, such as 

glycolytic enzymes, protein and lipid kinases and GTPases can localise to the cytoskeleton 

(Janmey 1998). 

Actin filaments (F-actin) are nucleated at the plasma membrane, aided by focal adhesions, 

and are helical structures composed of globular actin (G-actin) monomers.  Constant 

polymerisation and dissociation creates flexible, dynamic structures that are stable on a 

timescale of minutes to hours. Actin filaments are associated with many accessory proteins, 

including myosin II isoforms, which associate with actin filaments to generate the inherent 

contractility observed in all adherent cells.  Mechanically, actin filaments have high tensile 

strengths in order to maintain contractility; strengths of 600 pN have been reported for a 

single filament (Tsuda et al., 1996; Chen and Ingber, 1999; Pollard and Earnshaw, 2002; 

Alberts et al., 2008; Lodish et al., 2008).   

Microtubules are composed of α- and β-tubulin and are rigid, hollow cylinders that direct the 

intracellular transport of membrane bound organelles.  They normally originate from a 

microtubule organising centre (MTOC).  Microtubules orchestrate mitosis, and in bundled 

arrangements, make up cell surface structures such as cilia and flagella.  The tube -like 

structure of these filaments increases their second moment of inertia and allows them to 

resist bending and twisting.  As a result, they are able to withstand high compressive forces 

(Chen & Ingber 1999; Pollard & Earnshaw 2002; Lodish et al. 2008; Alberts et al. 2008) . 

Interestingly, although many glycolytic proteins and normally colocalised on actin filaments 
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(Murata et al., 1997), some enzymes, such as Phosphofructokinase may also be bound and 

inhibited by microtubules (Vértessy et al., 1997). This highlights the significance of 

microtubules in cellular metabolic processes in addition to their structural function. 

Intermediate filaments are a biochemically heterogeneous protein family organised into rope-

like fibres, with considerably flexibility and resistance to tensile stresses.  Types of 

intermediate filaments include keratins, found in epithelial cells, neurofilaments, involved in 

axon organisation and lamins, which comprise the nuclear lamina.  Whilst subunit exchange 

does occur, intermediate filaments are much more stable than F-actin and microfilaments 

(Pollard & Earnshaw 2002; Alberts et al. 2008; Lodish et al. 2008). 

 

1.8.1.2 The role of the cytoskeleton in mechanotranduction 

Applied mechanical forces are known to initiate biochemical signalling at distinct points in 

cells on millisecond timescales (Na et al., 2008).  This is suggestive that stimuli are not 

transmitted through the cell cytosol via diffusion-limited signalling, but are conducted through 

a solid structure.  There is convincing evidence that the cell cytoskeleton is re sponsible for 

transducing force throughout cells, and also that it does itself generate force through 

actomyosin contractility.  The cytoskeleton is therefore important in the process of 

mechanotransmission, whereby physical stimuli are delivered to sites where they can 

stimulate biochemical signalling.   

It has been suggested (Alberts et al. 2008) that cellular metabolic and signal transduction 

proteins function in the solid state whilst immobilized on the cytoskeletal scaffolds, including 

those that envelop the nucleus (the nuclear lamina).  It is possible that biochemical signalling 

is induced when enzyme and substrate species are brought into close proximity by force-

mediated cytoskeletal rearrangement, initiating biochemical signalling.  However, it is thought 

that force-mediated conformational change is the more likely explanation for the conversion 

of physical stimuli to cellular signalling (Chen & Ingber 1999).  Hence, applied forces may 

travel along cytoskeletal elements until they impinge on force-sensitive proteins. 

In addition to this ‘outside in’ mode of force application, cytoskeletal actomysosin f ilaments 

generate internal traction forces against the ECM.  This has been termed ‘inside -outside-in’ 

mechanotransduction.  In this mode, tension is generated by actomyosin filaments against 

focal adhesions, which mediate cellular adhesion with the microenvironment. Focal adhesions 

then pull against the cell substrate and dictate cytoskeletal tension according to the stiffness, 

and hence deformability, of the cellular substrate.  Wrinkling of soft matrices as a result of 
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these traction forces is well documented (Ingber 1994; Even-Ram et al. 2006; Engler et al. 

2006; Ingber 2010; Hoffman et al. 2011).  The importance of traction forces in MSC 

mechanotransduction has been highlighted by Engler et al in work in which the lineage 

specifity of naїve cells was dictated by substrate stiffness, and hence the magnitude of 

traction forces, in a highly sensitive manner.  In this work hydrogels of various elasticities (0.1 

– 40kPa) comparable to the environment found in brain, muscle and bone ti ssue were found 

to direct MSC towards these lineages, and inhibition of nonmuscle myosin II proteins 

prevented lineage specification (Engler et al. 2006; Shih et al. 2011).  Since internally 

generated forces are sufficient to initiate mechanotransduction in MSC, studies of 

mechanically-stimulated MSC must include a thorough analysis of static controls before 

biochemical effects can be attributed to the applied stimulus and not inherent contractility.  

Additionally, the cell substrates used must have consistent mechanical properties to ensure 

consistent cytoskeletal traction forces within cultured MSC.     

 

1.8.1.3 Cytoskeletal dynamics 

The behaviour of the cytoskeleton lends credence to dynamic theories of 

mechanotransduction.  Switch-like theories, described in section ‎1.7.3, consider the stages of 

mechanotransmission, mechanosensing and mechanoresponse to occur sequentially, and 

describe mechanotransduction as a function of force magnitude only (Hoffman et al. 2011).   

In reality, the viscoelastic nature of the cytoskeleton may mean that the mode of force 

application is equally important in determining the likelihood of mechanotransduction events.  

The cytoskeleton has been described as a viscoelastic material because depending on the 

mode of application, mechanical stimuli can result in either reinforcement (for example, by 

mechanisms such as that described in Fig. ‎3.4) or disruption of its structure.  Viscoelastic 

behaviour is characterized by stress relaxation, which on the molecular level is caused by the 

dissociation of weak protein-protein interactions.  If a force is great enough to break these 

linkages, but is applied at times shorter than the dissociation time, stress relaxation cannot 

occur and the assembly behaves as a force-transmitting elastic solid (Screen et al. 2005; 

Hoffman et al. 2011).  Additionally the cytoskeleton, responsible for force generation and 

transmission, and focal adhesions, involved in mechanosensing, are co-dependent in their 

development.  Focal adhesions, necessary for force transfer to the cytoskeleton in 

mechanotransduction, are transient at the onset of their formation and require actomyosin 

contractility to mature into permanent contacts (Geiger et al. 2009).  Conversely, actin 

filaments, necessary for mechanotransmission, are nucleated at focal adhesions.  Thus, the 
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relationship between focal adhesions and the cytoskeleton suggests that the processes of 

mechanotransmission and mechanosensing are mutually influential, as described by dynamic, 

but not switch-like theories. 

 

1.8.1.4 The cytoskeleton as a tensegrity structure 

The concept of tensegrity describes constructs that self-stabilize through the balancing action 

of opposing tension and compression elements that comprise their structure.  In a tensegrity 

structure these elements are perfectly balanced by creating an internal pre-stress, and 

stability is provided by tensional integrity, not compressional continuity as utilised in most 

non-natural ‘brick upon brick’ structures (Ingber et al. 1994).  The simplest examples of 

tensegrity force balances can be found in sculptures constructed of a tensed network of metal 

cables interconnected with compression struts (Fig. ‎1.5) (Snelson & Heartney 2013).  Some 

investigators have suggested that rather than having entirely separate functions, cytoskeletal 

structures operate in concert as a tensegrity structure.  In this hypothesis, internal pre-stress 

is generated by actomyosin contraction, and tensional forces are supported by the actin and 

intermediate filament networks.  The tensional forces are counterbalanced  by microtubules, 

which are able to withstand compressive forces (Hoffman & Crocker 2009).  If shown to be 

correct, this theory explains the fact that applied physical stimuli often generate 

mechanotransduction events at disparate locations within milliseconds.  Evidence to support a 

cytoskeletal tensegrity structure includes findings showing that microtubules in epithelial cells 

often have a buckled appearance, suggesting that they are in compression (Brangwynne et al. 

2006), that severed actin filaments recoil, as expected of a chord in tension (Kumar et al. 

2006), and that cell stiffness increases linearly with prestress, as is characteristic of tensegrity 

structures. The possibility of the cell cytoskeleton existing as a tensegrity structure may pose 

challenges for investigators of mechanotransduction in MSC hoping to decouple the individual 

roles of filament types.  Whilst there are exceedingly few studies regarding the role of the 

cytoskeleton in mechanotransduction in MSC, those that exist, and those involving other cell 

types, utilise chemicals that disrupt a specific type of cytoskeletal filament (Engler et al. 2006; 

Sarraf et al. 2011; Park et al. 2012; Wang et al. 2013).  This work is conducted on the 

assumption that since the agents used target only one of the three types of filament, any 

changes observed following their use must indicate the role of the target filament in 

mechanotransduction.  In the case of a tensegrity structure, in which all structural elements 

are mutually dependent upon each other for stabilisation, the severing of just one element 

would be expected to cause a gross alteration in the position and mechanical properties of 
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other components.  Thus, this may mean that drugs specific to the disruption of, for example, 

actin filaments, may cause the movement or distortion of organelles/proteins attached to 

microtubules.  Recent work found that the impact of the disruption of intermediate filaments 

and microtubules on cell stiffness (a measure of cytoskeletal integrity) was approximately 

equal and not additive, suggesting disruption of one filament type affected the mechanical 

contribution of the other.  However, the use of actin disrupting drugs in conjuncti on with 

either of those targeting the other filament types was additive.  This may suggest that the 

actin cytoskeleton was less affected by the disruption of other filaments (Wang et al. 2013).  A 

possible explanation for this is the fact that in most cells the actin cytoskeleton is the only 

filament type to form stabilising connections, via focal adhesions, to the ECM.  Hence, it may 

be possible for the actin cytoskeleton to maintain some degree of integrity after the 

disruption of other filament types through anchorage points.  That the entire cytoskeleton 

may be interconnected in a tensegrity structure may also explain why cytochalasin D, specific 

for the disruption of actin filaments, has been observed to disrupt the nuclear lamina, which is 

composed of intermediate filaments and attached to the cell cytoskeleton.  Possible future 

experiments involving the chemical disruption of particular filament types, and observation of 

the knock-on impact on other cytoskeletal structures using immunofluorescence (such as the 

Fig. 1.5:  Tensegrity sculpture entitled 'study for able Charlie,' by Kenneth Snelson.  Stability is achieved 

in this work through a balance between opposing tension elements (steel wires) and compression elements 

(aluminium struts).  It has been postulated that the cell cytoskeleton may behave similarly, with tensional 

forces supported by the actin and intermediate filament network and compressive forces by microtubules.  

Adapted from Snelson & Heartney, 2013. 
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degree of microtubule buckling) could be conducted to qualitatively assess cytoskeletal 

tensegrity (Table ‎1.5).  

 

Table ‎1.5: Drugs used for the disruption of cytoskeletal filaments 

Chemical Cytoskeletal protein disrupted References 

Cytochalasin D Actin (Cooper 1987; Wang et a l . 2013) 

Nocodazole Microtubules (Jordan et a l . 1992; Wang et a l . 2013)  

Acrylamide Intermediate filaments (Oboeuf & Forest 1994; Wang et a l . 

2013) 

Colchicine Microtubules (Lodish et a l . 2008; Hastie 1991)  

Blebbistain Myosin II (Friedland et a l . 2009) 

ML-7 Myosin light-chain kinase (Friedland et a l . 2009) 

2,3-butanediome monoxime Myosin II (Friedland et a l . 2009) 

Latrunculin A Actin (Friedland et a l . 2009) 

 

 

1.8.2 Focal adhesions 

1.8.2.1 Structure and function of focal adhesions 

The primary function of focal adhesions is to provide cellular anchorage, and hence connect 

the cell interior, via the cytoskeleton, to the ECM (Fig. ‎1.6).  The major transmembrane 

receptors in these sites belong to the integrin family.  Integrins comprise two subunits (α & β) 

and have a large extracellular domain responsible for ligand binding, a transmembrane 

domain, and a cytoplasmic domain associated with a variety of other proteins (Zamir & Geiger 

2001; Alberts et al. 2008).  These proteins can be organised into three broad classes: adaptor 

proteins that mediate actin links to integrins, such as talin and vinculin (Fig. ‎3.4), actin 

regulators that regulate the organisation of the attached cytoskeleton and signalling proteins, 

such as kinases, phosphatases, G-proteins and modulators of small GTPases (Zamir & Geiger 

2001; Bershadsky et al. 2006; Geiger et al. 2009).  Kinases catalyse the addition of phosphate 

groups to other proteins, with phosphatases reversing their action.  G-proteins are associated 
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with membrane receptors and serve to couple them to cytosolic signalling enzymes and ion 

channels (Mcallister et al. 1994; Alberts et al. 2008).  

 

1.8.2.2 Focal adhesions: force transmitters and sensors 

Focal adhesions are force sensitive even at the onset of their development, where their 

maturation from integrin clusters to stable, mature adhesions is highly dependent on 

cytoskeletal contractility (Geiger et al. 2009).  Indeed, when internally generated tensional 

forces are abrogated these initial contacts are transient and do not persist (Aspenstro 1999; 

Butler et al. 2006).  Whilst integrins connect the actin cytoskeleton to the ECM, and they must 

therefore transfer forces for cytoskeletal mechanotransmission, focal adhesions themselves 

Fig. 1.6:  Simplistic diagram of a focal adhesion showing interplay with, and regulation of, cytoskeletal proteins.   

Cell-ECM adhesion is provided by integrins, which span the plasma membrane and associate with actin-linking, 

actin-regulating and signalling proteins.  Forces generated externally, or internally from actin polymerisation and 

myosin II contractility, may impinge on mechanosensitive proteins (1).  Actomyosin contractility is determined by 

the stiffness of the ECM, as detected via focal adhesions (2).  Following mechanosensing by signalling proteins, the 

activity of small G-proteins is modulated, which modifies actin polymerisation and contractility through 

cytoskeleton-regulating proteins (3-5).  Hence, the resulting mechanoresponse feeds back to modify force-

generating and mechanotransmission proteins.  Mechanosensing events in signalling proteins may also initiate 

biochemical signalling that regulates other cell processes, such as differentiation.  Adapted from (Geiger et al., 

2009). 
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are composed of force-modulated signalling proteins.  Therefore, focal adhesions may be 

participants in both mechanotransmission and mechanosensing.  It is here postulated that 

focal adhesions contribute to mechanotransduction in three broad ways: by simply 

transferring externally applied forces to actin filaments, where they can be conducted to a 

variety of distal points within a cell for subsequent mechanosensing, mechanosensing of 

internally applied forces, and mechanosensing of externally applied forces.  Externally applied 

forces are transmitted to focal adhesions by the ECM.  It also possible that focal adhesions, 

being composed of multiple proteins, participate in different mechanotransduction events 

simultaneously.  For example, it is theoretically possible that external forces may be 

transferred to actin via attached integrins, and be sensed elsewhere, whilst co-localised 

signalling molecules undergo force-mediated conformational changes that modulate their 

activity. 

The molecular complexity of focal adhesions and their inherent coupling with the cytoskeleton 

presents challenges for their study, and violates switch-like theories, which do not account for 

feed back to structures involved in mechanotransduction.  The intracellular signalling 

molecules found in focal adhesions, such as src, Cas and vinculin, experience force-mediated 

conformational changes that affect kinase activity, the availability of phosphorylation sites 

and intracellular localisation (Friedland et al. 2009).  Kinases, such as focal adhesion kinase 

(FAK), catalyse the addition of phosphate groups to other molecules (Alberts et al. 2008).  The 

role of phosphorylation in mechanotransduction events could be investigated by inhibiting the 

action of kinase proteins, or by chemically blocking cryptic phosphorylation sites exposed by 

mechanical force.  However, there are many proteins that exhibit this behaviour that may be 

involved in mechanotransduction, and it would be necessary to establish the specificity of the 

agents used.  The role of internally generated tension in mechanotransduction events is often 

assessed using myosin II inhibitors (Friedland et al. 2009) (Table ‎1.5) , but a lack of tension in 

the actin cytoskeleton is known to lead to the demise of focal adhesions.  Finally, the role of 

integrins in mechanotransductive processes has been probed by altering the configuration of 

one of their most common binding sequences (Doyle & Yamada 2010).  Integrins often bind to 

ECM proteins via the tripeptide alanine-glycine-aspartate (RGD in single letter nomenclature), 

and a single amino acid substitution of glutamate in place of aspartate prohibits integrin 

binding.  Matrix binding initiates integrin activation, which in turn aids the development of 

focal adhesions.  As discussed previously, focal adhesions are the site of actin nucleation and 

regulation; any method that abrogates focal adhesion formation may also impact on the cell 

cytoskeleton, which may have a significant role in mechanotransduction.  Hence, careful 
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experimental design is necessary to target adhesion proteins of interest, whilst also excluding 

the possibility that observed effects derive from interactions with other cellular structures.  

 Current work regarding the role of focal adhesions in mechanotransduction is scant, and at 

the time of writing, only two studies could be found that analyse the role of focal adhesions in 

the differentiation of MSC.  These studies implicated focal adhesions in the anti-adipogenic 

(Sen et al. 2011) and tenogenic (Xu et al. 2012) differentiation of MSC under cyclic strain. Sen 

et al investigated the impact of focal adhesion formation, instigated by the application of 

biaxial strain to collagen I coated culture substrates, on the amplification of signalling 

pathways that restrict adipogenesis (Sen et al., 2011). Supression of adipogenesis is 

dependent on β-catenin activity, which is inactivated by the inhibitor glycogen synthase kinase 

3β (GSK3β). This inhibitor is in itself inactivated through serine phosphorylation (Sen et al., 

2009). Whether the restriction in MSC adipogenesis observed with mechanostimulation is 

mediated by GSK3β inactivation or β-catenin activation was determined using immunoblotting 

and immunofluorescence for species indicative of focal adhesion formation, markers of 

adipogenesis, phosphorylated GSK3β, and the GSK3β kinase Akt. In one of the few studies to 

date to determine the mechanism involved in a physically mediated effect, the investigators 

reported that focal adhesion maturation, leading to an increase in cell contractility and 

protein recruitment at integrins. One recruited protein, Akt, phosphorylates GSK3β, 

maintaining β-catenin activity and preventing adipogenesis of MSC. 

Investigations conducted by Xu et al concerned the role of strain and focal adhesions in the 

tenogenic differentiation of MSC reported that these structures operate in concert with focal 

adhesion kinase (FAK), the G-protein RhoA and the cytoskeleton (Xu et al., 2012). In this study, 

through the use of the inhibitors specific for each of these elements, the investigators 

demonstrated that the expression of tenogenic markers was increased only when the function 

of all was not impeded.    

Work in cells other than MSC has focussed on the development of an in silico model to study 

the mechanism of focal adhesion mediated mechanotransduction (Cells et al. 2013), and a 

method of manipulating the forces applied to individual  focal adhesions using coated beads 

and optical tweezers.  Used in conjunction with fluorescent imaging, the latter method was 

used to visualise the localisation of signalling proteins at focal adhesions following force 

application (Honarmandi et al. 2011).    
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1.8.3 Opening the Floodgates: The Role of Mechanosensitive Ion Channels in 

Mechanotransduction 

1.8.3.1 Ca2+ channels and cellular signalling  

Calcium channels are transmembrane proteins that are specific for, and facilitate the 

transport of Ca2+ ions.  This transport may be passive, and depend on concentration gradients 

and the shape of the channel pore, or active, and achieve transport by expending energy.  

There are numerous types of mechanosensitive (MS) channels involved in diverse processes, 

including the regulation of gene expression.  For example calmodulin, a multipurpose 

intracellular Ca2+ receptor, undergoes conformational change when bound to Ca2+ that allows 

it to bind and modulate the activity of target proteins, although it may also exist as a 

permanent regulatory enzyme subunit.  These include calmodulin-dependent kinases, which 

amongst other functions, phosphorylate gene regulatory proteins and regulate actomyosin 

contractility as part of their signalling cascades (Bootman et al. 2001; Alberts et al. 2008; 

Doyle & Yamada 2010).  Although there is a lack of literature regarding mechanotransduction 

of MSC via MS channels, ion channels have been implicated in the differentiation of MSC 

towards neuronal (Yu et al. 2011) and osteogenic (Barradas et al. 2012) lineages. The only 

study to date examining the impact of strain mediated ion channels in MSC sought to 

determine their role in influencing the production of GAGs (McMahon et al. 2008); GAG 

production was increased following the application of cyclic tensile strain for a period of 7 

days, and the dependence of this process on stretch-activated ion channels tested using 

inhibitors. Interestingly, although treatment with the strain-activated channel inhibitor GdCl3 

attenuated GAG production significantly, it was not completely ablated, indicating an additive 

effect of other mechanotransduction pathways.  Hence, it has been demonstrated that ion 

channel permeability impacts the differentiation potential of MSC, and that strain-activated 

ion channels mediate other processes within these cells. Research into any link between the 

strain-induced permeability of strain-activated ion channels and the differentiation of MSC 

should be conducted to elucidate their role in mechanotransduction. 

 

1.8.3.2 Mechanosensitive ion channels in mechanotransduction 

MS channels operate within mechanotransduction as mechanosensors, and form perhaps the 

most direct route between force impingement on proteins and biochemical signalling.  Unlike 

most mechanosensors, the force-mediated conformational changes of MS channels do not 

initiate signalling by altering their binding to other protein mediators, but by directly altering 
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membrane permeability to a signalling ion.  Two main mechanisms have been proposed to 

explain MS channel activation: activation through tension development in the lipid bilayer, 

and activation through pulling by cytoskeletal tethers (Arnadóttir & Chalfie 2010).  Force 

transmission to the channels occurs via the lipid bilayer or cytoskeleton respectively, and 

there is evidence for the existence of both types of channel gating.  Studies have shown that 

MS channels in cytoskeleton-free liposomes can be mechanically activated, providing strong 

evidence for force transmission solely through the bilayer (Ingber 2006).  Alternatively, the 

‘tethered’ model  suggests that direct connections  between the channel and cytoskeleton 

displace the channel gate, and hence alter membrane permeability, in response to force 

(Martinac 2004; Hayakawa et al. 2007).  It could be argued that cytoskeletal structures may 

transmit forces more effectively than the fluid-like lipid bilayer  (Hamill & Martinac 2001; 

Byfield et al. 2004).  Additionally, an example of an MS channel that loses mechanosensitivity 

in the absence of a cytoskeleton has been found (Zhang et al. 2000).  Finally, it is possible that 

MS channel conformational changes that alter membrane permeability may occur indirectly 
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as a res ult of interactions with another, mechanosensitive receptor.  In this case, the 

channewould not in fact be a mechanosensor itself, but a participant in biochemical signalling 

with a mechanosensor that has undergone force-mediated conformational change that allows 

it to alter channel permeability.  Such a force-sensitive channel mediator has been reported in 

bovine aortic endothelial cells, which has kinase activity that determines channel permeability 

(Davies 1995). Development of the patch-clamp technique, which allows the measurement of 

individual channel currents, has enabled the discovery of two types of response to force 

application (Hamill et al. 1981; Morris & Sigurdson 1989).  MS channels may be stretch 

inactivated (SI) or stretch activated (SA), which adapt to restrict access to ions, or allow 

greater ease of passage under force respectively.  A simple elastic transduction model, shown 

in Fig. ‎1.7, relates the regime adopted by an MS channel to its shape, membrane tension and 

the membrane-planar area of the open and closed conformations (Morris & Sigurdson 1989). 

 

(a) 

                        

                        

  

                

                

  

 

                        

                        

                

                

 

(b) 

Fig. 1.7:  Suggested mechanism of operation of SA (a) and SI (b) ion channels. A simplistic lipid bilayer (blue) ion 

channel (green) for the transport of Ca
2+

 (red) is shown. It has been postulated that SA channels lack a suitable 

pore in the absence of tension.  Upon force application, the channel is pulled apart, allowing the passage of ions. 

SI channels MAY have folded domains which sit compactly inside the channel pore in the absence of membrane 

tension.  However, application of force may  increase the available membrane-planar area and these domains 

unfold, obstructing the pore (Morris & Sigurdson 1989). 
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1.8.4 Mechanical stimuli and gene expression  

Mechanoresponses can take many forms, but altered gene expression, associated with 

differentiation processes, will form the focus of this section.  Gene expression is thought to be 

influenced either by biochemical signalling initiated in the cytosol by mechanosensing, or by 

direct force transmission to the nuclear structures.  It is not possible to discuss all the 

signalling pathways in MSC, so those that have been implicated in mechanotransduction-

related gene expression in MSC have been selected.  

 

1.8.4.1 Biochemical signalling and gene expression after mechanostimulation of 

MSC 

1.8.4.1.1 Wnt signalling 

Wnts are a family of cysteine-rich glycosylated ligands that bind to membrane receptors and 

induce signalling down at least three different pathways (Fig. ‎1.8).  The most common of these 

is the canonical Wnt pathway, which controls gene expression through the translocation of 

the protein β-catenin to the nucleus.  In the absence of Wnt signalling, β-catenin is 

sequestered by a degradation complex and degraded in proteasomes.  However, when a Wnt 

binds to its corresponding receptor proteins, LDL-receptor-related protein (LRP) and Frizzled, 

the protein dishevelled is recruited, which recruits and inhibits the degradation complex.  

Inhibition of the degradation complex leads to an increase in unphosphorylated, active β-

catenin which migrates to the nucleus and displaces Groucho, a co-repressor protein that 

binds to a gene-regulatory protein of the Wnt responsive gene in question (Alberts et al. 2008).  

Wnt signalling is well recognised for its role in the differentiation of MSC (Kuo & Tuan 2008) 

and investigators have reported a role in gene-regulatory signalling following mechanically-

stimulated differentiation.  As discussed previously (section ‎1.5.2), mechanical strain halts 

adipogenesis of MSC cultured in adipogenic media.  A decrease in active and total β -catenin 

levels is normally observed during adipogenic differentiation; this appears to be reversed by 

mechanical strain, which also encourages translocation of the protein to the nucleus (Sen et al. 

2008).  Thus, the suppression of Wnt-regulated gene expression may be key to adipogenesis in 

MSC.  Additionally, Wnt regulation is reported to be involved in both the initiation and 

retardation of tenogenesis in cyclically strained MSC, through the ligands Wnt4 and Wnt5a 

respectively (Kuo & Tuan 2008).  The mechanism of upregulated Wnt ligand production, or 

enhanced binding between the ligand and MSC in response to physical stimuli is not yet clear.  
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Although there is little literature regarding biochemical signalling in MSC following mechanical 

stimulation, these reports suggest that Wnt signalling in mechanically strained MSC may merit 

further investigation.     

  

1.8.4.1.2 Mitogen-activated protein kinases 

MAPK modules, or ERKs, are a class of three-protein signalling pathways that operate through 

a tiered sequential phosphorylation cascade.  Receptor tyrosine kinases, membrane proteins 

induced to phosphorylate themselves following the binding of an extracellular ligand, activate 

proteins from the Ras superfamily of GTPases.  This signalling is normally short-lived, and Ras 

proteins must interact with the MAPK module to convert the stimulus to long-lived signals 

able to alter the pattern of gene expression.  Ras proteins recruit MEK kinase (MEKK for 

Nucleus 

Cytoplasm 

Fig. 1.8:  Gene-regulatory biochemical signalling initiated by binding of Wnt ligands via the β-catenin pathway.  

Wnt signalling influences gene expression through β-catenin.  In the absence of Wnt ligand binding, β-catenin is 

phosphorylated (yellow circles) and sequestered in a degradation complex (GSK3β).  However, the binding of Wnt 

ligands to their corresponding receptors (LRP and Frizzled, pictured) results in the recruitment of the protein 

dishevelled (labelled) and the degradation complex (green and brown horseshoe).  This inactivates the 

degradation complex and leads to an increase of active, unphosphorylated β-catenin in the cytosol that is able to 

translocate the nucleus.  Once in the nucleus, β-catenin displaces the co-repressor protein groucho and interacts 

with the regulatory protein  of the Wnt responsive gene in question (LEF1 or TCF) to influence gene expression.  

Adapted from Alberts et al (2008). 

Cell exterior 
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simplicity) enzymes to the plasma membrane and activate them by phosphorylation.  The 

MEKK protein in turn phosphorylates, and hence activates, MAP/ERK kinase (MEK), which 

itself phosphorylates MAP kinase.  MAP kinase proteins relay the signal furthe r downstream 

by phosphorylating other proteins, including gene regulatory proteins and other protein 

kinases (Robinson and Cobb, 1997).  MAPK proteins are divided into four main subfamilies 

according to their sequence similarity, upstream regulation and interaction with different 

MEKs.  Erk MAP kinase, for example, is reported to enter the nucleus and phosphorylate one 

or more components of gene regulatory complexes.  This has been implicated in the 

osteogenic differentiation of MSC (Jaiswal 2000; Rhee et al. 2006; Huang et al. 2009; Shih et al. 

2011).  Some reports (Huang et al. 2009; Shih et al. 2011) regarding biochemical signalling in 

mechanostimulated MSC indicate that MAPK module signalling was initiated by FAK, 

suggesting that MAPK signalling may occur downstream of mechanosensing at focal adhesions 

(discussed section ‎1.8.2).  In one study, the inhibition of Erk MAP kinase signalling initiated by 

strain abrogated osteogenic differentiation, and instead caused MSC to progress down an 

adipogenic lineage.  Another MAP kinase pathway, JNK, was reported to be activated 

following mechanical stretch, although it participates at longer time points and appears to 

regulate ECM synthesis (Jaiswal 2000).  Interestingly, MAP kinase module families frequently 

use the same kinases whilst eliciting distinct cellular responses.  Cross-talk between pathways 

is prevented through physical adhesion to scaffold proteins.  Since the cytoskeleton is 

believed to play an important role in force transmission, this raises the possibility that MAPK 

module signalling may be stimulated not only as downstream biochemical signalling from 

other, force sensitive mechanosensors, but that cytoskeletal attachment may mediate 

changes in the chemical activity of the kinases through direct force transfer (Alberts et al. 

2008).  Although force-mediated conformational changes that expose phosphorylation sites or 

affect kinase activity have been established in other proteins it is, however, not known 

whether MAPK signalling molecules are able to perform as mechanosensors.      
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1.8.4.2 Direct force transmission to the nucleoplasm 

It has also been suggested that changes in gene expression may be caused by direct force 

transfer to the nuclear structures.  In such a mechanism, the cell cytoskeleton acts as a 

mechanotransmitter and the nucleus senses the delivered forces.  Evidence for a physical 

connection between the cytoskeleton and the nucleus is abundant; as whole cells elongate in 

response to shear stress, their nuclei do also, in a process dependent on mediators of 

cytoskeletal organisation (Flaherty et al. 1972; Lee et al. 2005; Deguchi & Sato 2010).  

Additionally, investigators have reported nuclear remodelling following force application such 

that shape and stiffness is permanently altered (Deguchi et al. 2005). 

 

MEKKs 

MEKs 

MAPKs 

Fig. 1.9: The activation of MAP kinases following sequential phosphorylation of MEKKs and MEKs.  

The four main subfamilies of this pathway are shown (right), with their component MEKKs, MEK and 

MAP kinases. External stimuli induce tyrosine kinases at the plasma membrane to  phosphory late 

themselves, activating GTPases. These GTPases recruit MEKK proteins (black), such as MEK1/2, MKK4/7, 

MKK3/6 and MEK5, which in turn phosphorylate MEK proteins (green). MEK proteins then 

phosphorylate MAP kinase proteins, which phosphorylate other proteins to relay the signal downstream 
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Hypothetical models have been developed that describe how the mode of DNA packing, and 

hence gene expression, may be influenced by force (Gieni and Hendzel, 2008).  In the nucleus, 

DNA is densely stored in the form of chromatin, along with protein complexes that mediate 

packing.  The packing state of chromatin affects the transcriptional availability of its 

constituent DNA: chromatin in a less condensed state, termed euchromatin, is associated with 

DNA that is transcribed, whereas DNA packaged in denser heterochromatin is normally 

transcriptionally inactive (Meyer 2011).  Physical continuity between the cytoskeleton and 

genetic material is provided by nuclear envelope-lamina spanning complexes (NELSCs) and 

LINCs (links the nucleoskeleton and cytoskeleton).  The nuclear envelope consists of an outer 

membrane that is continuous with the rough endoplasmic reticulum, and an inner membrane 

attached to the nuclear lamina, connected by nuclear pore complexes.  One  possible mode of 

nuclear mechanosensing is that cytoskeletal rearrangement caused by force application to the 

cell distends the nucleus through cytoskeletal attachments, altering nuclear pore permeability 

(Deguchi and Sato, 2010).  Regulatory proteins may then gain access to chromatin and alter 

gene expression.  However, force transmission through the nuclear lamina to chromatin itself, 

which may attach to the membrane in one of two ways, is another suggested mechanism 

(Brown et al., 1997).  

 

One model suggests that mechanical stimulus is transmitted to the genome via attachment 

between the LINC and NELSC proteins and a hypothetical nuclear cytoskeleton termed a 

karyoskeleton.  This karyoskeleton would bind chromatin at discrete sites that would be 

mechanosensitive.  An alternative model theorises that, in the absence of a karyoskeleton, 

force may be transmitted directly through chromatin.  Force would be sensed at the 

chromatin regions attached to the lamina.  The likely result of chromatin mechanosensing 

would be decondensation of chromatin at attachment sites, and transcriptional availability of 

the exposed DNA (Gieni and Hendzel, 2008).  The two scenarios described are shown in 

Fig. ‎1.10.   
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1.9 Concluding remarks 

Mesenchymal stem cells, a promising cell source for tissue engineered therapies, are 

overwhelmingly differentiated using soluble factors.  There is, however, evidence that physical 

stimuli play a role in differentiation, as reported in the differentiation of MSC towards 

osteogenic (Shih et al. 2011) and adipogenic lineages (Sen et al. 2008), and in MSC cultured on 

substrates of varying stiffness (Engler et al. 2006).  There are scant reports regarding the 

mode of mechanotransduction of MSC and the mechanically-gated differentiation of MSC 

towards a smooth muscle lineage.  Studies that do exist frequently present caveats such as 

poor substrate choice and a lack of consideration of the mode of mechanical stimulation. 

Studies of mechanotransduction in other cell types, and the few existing reports in MSC, 

suggest the involvement of the cytoskeleton, focal adhesions, ion channels and biochemical 

signalling pathways, and that these structures may participate in mechanotransduction in 

three main ways.  Structures may transmit, sense or facilitate a response to force.  Physical 

 

(b) (a) 

Fig. 1.10:  Possible modes of attachment of chromatin to the nuclear lamina.  The LINC complex comprises a 

pair of Nespirin proteins (orange) interacting with a pair of SUN proteins (green), connecting the outer and inner 

nuclear membrane.  Chromatin (brown) may be connected to the nuclear lamina via a karyoskeleton, (shown in 

red, a).  In this case, force application may distort the chromatin from the points of attachment.  Alternatively, 

chromatin may be fixed in the nuclear envelope by binding the nuclear lamina (blue) directly and a splicing factor 

compartment, (b).  In this model, force transmission still occurs through the LINC complex but does not involve a 

karyoskeleton.  In both scenarios mechanical stimuli are sensed via chromatin decondensation.  Adapted from 

Gieni & Hendzel 2008. 
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signals are ultimately translated to biochemical responses by instigating conformational 

changes in sensitive proteins that alter their chemical activity. 

In summary, there is a need to understand the force-mediated differentiation of MSC in order 

to inform the manufacture of tissue-engineered MSC therapies.  This project attempts to 

address these deficiencies, by assessing the impact of different magnitudes of strain on the 

differentiation potential of  hMSC cultured in a three-dimensional, pericardial substrate. 

 

 

1.10 Rationale for the study 

Multipotential mesenchymal stromal cells (MSC) were chosen as the subject for this study 

owing to their potential for use in tissue engineered therapies, growing evidence of MSC 

mechanosensitivity and the lack of study of mechanotransduction in MSC.  The differentiation 

of hMSC towards the critical lineages of bone, fat, cartilage, tendon and smooth muscle were 

investigated.  Although this project did not involve the production of a clinical product, it is 

hoped that a greater understanding of mechanotransduction in MSC may contribute to such 

research. 

Porcine pericardial tissue was used owing to its ready availability, suitability as a scaffold for 

MSC and the relative ease of decellularisation of this tissue.  Decellularised pericardium 

comprises a collagenous sheet of ECM containing appropriate cellular binding sites.  Hence, 

MSC can make cellular adhesions comparable to those found in vivo, which may mediate force 

transduction.  Furthermore, MSC seeded on pericardium are able to penetrate throughout the 

tissue, providing cells with a three-dimensional environment (Morticelli, 2013).  Additionally, 

porcine pericardium offers advantages in this study owing to its sheet-like morphology, which 

facilitates its use as a scaffold within bioreactors applying both tensile and biaxial mechanical 

strain. 

 

1.10.1  Hypothesis 

It is hypothesised that optimal bioreactor culture conditions, and a validated culture protocol, 

for the mechanostimulation MSC by uniaxial strain will enable future elucidation of the role of 

physical stimuli in the lineage specification of MSC. 
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1.10.2  Project Aim 

The aim of the project is to validate a three-dimensional uniaxial strain culture system 

(termed Tencell) and qPCR assays for gene expression analyses of mechanostimulated MSC. 

 

1.10.3  Objectives 

The overall project objectives are as follows: 

1. To decellularise and validate a stock of three-dimensional pericardial matrix for use as a 

biologically-relevant substrate 

2. To devise and validate a seeding regime for the application of hMSC to pericardial 

matrices 

3. To re-engineer and validate the Tencell uniaxial strain bioreactor with respect to cell 

viability and arm displacement 

4. To validate a set of primer pairs for genes of interest with respect to their specificity and 

efficiency for qPCR applications 

5. To measure any strain-induced differences in gene expression, and hence hMSC 

differentiation potential, following culture in the Tencell bioreactor at strains of 5, 10 and 

20% 
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Chapter 2: Materials and Methods 

 

2.1 Materials 

 

2.1.1 Microbial species 

Staphylococcus epidermidis, Clostridium perfringens and Candida albicans were used in this 

project as positive controls during tests for the presence of aerobic and anaerobic bacteria 

and yeast respectively.  Microbial aliquots were kindly prepared by Dr Kirsty Owen, and 

originally sourced from the national collection of tissue cultures (NCTC) and the national 

collection of pathogenic fungi (NCPF), although NCTC numbers unfortunately were not 

provided or recorded. 

 

2.1.2 Cells 

Table ‎2.1: The origin of all cell types cultured in this project 

Cell type Origin 

Human MSC (p0) StemCell Technologies (Canada) 

Porcine MSC (p0) Isolated from fresh legs from Leeds University 

farm (UK) 

Human chondrocytes (P2) PromoCell (Germany) 

Human fetal osteoblasts (p1) Supplier not indicated by previous investigator 

Human tenocytes (p6) Supplier not indicated by previous investigator 

Human smooth muscle cells (p1) Supplier not indicated by previous investigator 

Baby hamster kidney cells (resurrected at various 
passages) 

Supplier not indicated by previous investigator 

3T3 cells (resurrected at various passages) Supplier not indicated by previous investigator 
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2.1.3 Nucleic acids 

Table ‎2.2: The origin of nucleic acids used in this project 

Nucleic acid Origin 

Tenocyte RNA Existing human tenocyte stocks (Table ‎2.1) 

SMC RNA   Existing human SMC stocks (Table ‎2.1) 

Osteoblast RNA Existing human osteoblast stocks (Table ‎2.1) 

Fat-derived RNA Human knee tissue 

Cartilage-derived RNA Human cartilage tissue 

 

2.1.4 Tissues 

Table ‎2.3: The origin of tissues used in this project 

Tissue Origin 

Porcine leg M & C meats (Leeds) 

Human knee Leeds General Infirmary  

 

2.1.5 Reagents 

Table ‎2.4: Suppliers of  reagents used in this project 

Reagent Supplier 

α-amylase Sigma-Aldrich (UK) 

Absolute ethanol (for molecular biology) Thermo Fisher scientific (UK) 

Acetone Genta Medical (UK) 

Agarose Sigma-Aldrich (UK) 

Alcian blue 1% (w/v) Biostain Ready Reagents (UK) 

Alizarin red S Sigma-Aldrich (UK) 

Ammonium hydroxide Sigma-Aldrich (UK) 

 Anaerogen oxygen exclusion sachets   Thermo Fisher scientific (UK) 



53 
 

Reagent Supplier 

Ammonium hydroxide Sigma-Aldrich (UK) 

Aprotinin Nordic pharma (UK) 

L-ascorbic acid Sigma-Aldrich (UK) 

ATPlite™ luminescence assay system kit PerkinElmer (UK) 

Β-2-glycerophosphate Acros organics (Belgium) 

Calibration buffer, pH 4.01 Hanna Instruments (UK) 

Calibration buffer, pH 7.01 Hanna Instruments (UK) 

Calibration buffer, pH 10.01 Hanna Instruments (UK) 

Chondrocyte growth medium PromoCell (Germany) 

Cyanoacrylate contact adhesive Tesco (UK) 

DABCO Sigma-Aldrich (UK) 

Dexamethasone Sigma-Aldrich (UK) 

Dimethyl sulfoxide (DMSO) Sigma-Aldrich (UK) 

Disodium hydrogen orthophosphate Sigma-Aldrich (UK) 

DNAse  Sigma-Aldrich (UK) 

DNeasy blood and tissue kit Qiagen (UK) 

DPX mountant VWR international (UK) 

Dulbecco’s modified eagle’s medium (DMEM) Sigma-Aldrich (UK) 

Low-glucose DMEM Sigma-Aldrich (UK) 

 Dulbecco’s phosphate buffered saline (Oxoid) Thermo Fisher scientific (UK) 

EDTA Thermo Fisher Scientific (UK) 

Eosin Thermo Fisher scientific (UK) 

Ethanol, 200 proof (for molecular biology)  Thermo Fisher Scientific (UK) 
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Reagent Supplier 

Ethylenediaminetetraacetic acid (EDTA) Fisher scientific (UK) 

Foetal bovine serum Seralab (UK) 

Gel loading dye (6×; 25 bp) New England Biolabs (USA) 

Gentamyacin sulfate Biochrom AG (Germany) 

Giemsa stain Sigma-Aldrich (UK) 

Glasgow’s minimal essential medium (GMEM) Sigma-Aldrich (UK) 

Glutaraldehyde  

L-glutamine Thermo Fisher Scientific (UK) 

Glycerol Thermo Fisher Scientific (UK) 

Growth medium (Chondrocyte) PromoCell (Germany) 

Haematoxylin Thermo Fisher Scientific (UK) 

Haematoxylin (for alcian blue protocol) Sigma-Aldrich (UK) 

HEPES Melford (UK) 

Hydrochloric acid VWR international (UK) 

Hydrocortisone Acros organics (USA) 

Indomethacin Sigma-Aldrich (UK) 

Isobutylmethylxantine Sigma-Aldrich (UK) 

Isopropanol Bios Europe (UK) 

Live/dead staining kit (contains calcein AM and 

ethidium homodimer-1) 

Invitrogen (USA) 

Loading dye (5×) Bioline (UK) 

Magnesium chloride hexahydrate VWR international (UK) 

Magnesium sulfate anhydrous Sigma-Aldrich (UK) 

Methanol Sigma-Aldrich (UK) 
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Reagent Supplier 

Methylated spirits Atom scientific (UK) 

Neutral buffered formalin (10% v/v) Biostain Ready Reagents (UK) 

Oil red O Sigma-Aldrich (UK) 

Osmium tetroxide  

Penicillin/streptomycin  Thermo Fisher Scientific (UK) 

Peracetic acid (40-44%) Sigma-Aldrich (UK) 

Percoll Sigma-Aldrich (UK) 

Periodic acid Thermo scientific (UK) 

Phosphate buffered saline Oxoid (UK) 

Phosphate buffered saline (without calcium and 
magnesium) 

Lonza (UK) 

Polymyxin B Fluka analytical (Germany) 

Primers (various sequences; see chapter 5) Sigma-Aldrich (UK) 

Proteinase K Qiagen (UK) 

QuantiTect SYBR® Green one-step RT-PCR kit Qiagen (UK) 

RNAse Sigma-Aldrich (UK) 

RNase-free DNase set Qiagen (UK) 

RNeasy Mini Kit Qiagen (UK) 

Schiff’s reagent Sigma-Aldrich (UK) 

Scott’s tap water Atom Scientific (UK) 

  Sodium chloride Fisher scientific (UK) 

Sodium dihydrogen orthophosphate BDH chemicals (USA) 

Sodium dodecyl sulphate  Sigma-Aldrich (UK) 

Sodium hydroxide Fisher scientific (UK) 
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Reagent Supplier 

Sodium pyruvate Sigma-Aldrich (UK) 

SYBR™ green one-step RT-PCR kit Qiagen (UK) 

SYBR™ safe Thermo Fisher Scientific (UK) 

TAE buffer (10×) Fisher scientific (UK) 

Thioglycolate broth Fluka analytical (Germany) 

Tris buffered saline Sigma-Aldrich (UK) 

Trizma base Sigma-Aldrich (UK) 

Trypan blue Sigma-Aldrich (UK) 

Tyrode’s solution Sigma-Aldrich (UK) 

Vancomyacin hydrochloride Sigma-Aldrich (UK) 

Virkon VWR international (UK) 

Water (DNase- and RNase-free) Qiagen (UK) 

Wax (Paraffin; for histology) Raymond A Lamb (UK) 

Xylene Atom scientific (UK) 
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2.2 Methods 

2.2.1 Statistical analyses 

Statistical analyses were performed using Minitab 17 statistical software, at p =0.05. Tests for 

differences between more than two sample groups were performed by one-way analysis of 

variance. Where p ˂ 0.05, Tukey’s post-hoc tests were performed to find the sample groups 

between which significance was indicated. The one sample t-test was used to compare a 

measured mean value with a known ‘true’ mean. The null hypothesis that there is no 

difference between the measured mean and the true mean was tested.  Where appropriate, 

linear regression analysis was performed using Microsoft Excel.  

It is acknowledged that standard deviation (SD) or standard error of the mean (SEM) is often 

reported as measurement error in many of the types of analyses reported in this thesis. 

Experimental error, however, is reported as confidence intervals (CI) in this work.  

Since error bars/measurement error are quoted to approximate the proximity of a sample 

mean (x) to the population, or true, mean (μ) standard deviation, which quantifies the 

dispersion of individual datapoints in a sample, is not appropriate (Dytham, 2011). The 

calculation of SEM does indeed provide an estimation of the accuracy of a calculated sample 

mean, but should not be used for data with sample sizes of n ˂ 30. For data from samples that 

satisfy this criterion, ± 2SEM must be plotted to display the range in which the true or 

population mean would be expected to lie; if only ± SEM is plotted, the probability that the 

range displayed encompasses the true mean is reduced to 66%. 

The author suggests that CI, most frequently used to display the range over which there is a 

95% probability that the population mean lies, should be quoted as the uncertainty of a 

measured value over ±SEM, because the n value of the sample examined must be supplied for 

calculation of the region in which the true mean lies in the latter case. CI values plotted 

graphically also give a clear indication of whether  p˂0.05 or p˃0.05 when subjected to the 

correct statistical test of difference (Eileen Ingham, personal communication). 
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2.2.2  Sterilisation 

2.2.2.1 Moist heat sterilisation 

Moderately heat resistant items (such as glassware) were autoclaved at 121⁰C for 20 minutes 

at a pressure of 15psi.  Solutions were sterilised by loosening container lids prior to 

autoclaving to allow sterilisation of the contents.  Small items were placed in an autoclavable 

bag prior to sterilisation. 

 

2.2.2.2 Dry heat sterilisation 

Metallic items to be sterilised, such as dissection equipment, were heated at 180 ᵒC for 4 

hours. 

2.2.2.3 Filter sterilisation 

Solutions not suitable for autoclaving were sterilised using a filter with a pore size of 0.2 µm.  

Filtering was carried out aseptically in a class II safety cabinet..  

2.2.2.4 Flame sterilisation 

Microbiological instruments, such as application loops, were sterilised between each use by 

heating with a naked flame. 

 

2.2.3  Measurement of pH 

The pH meter used to measure the pH of decellularisation solutions was calibrated using 

solutions of pH 4, 7 and 10. The solutions were gently stirred (120 rpm) during pH 

measurement.  Should pH adjustment be required, hydrochloric acid or sodium hydroxide (1-

12 M) was added drop-wise . 
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2.2.4 Solution preparation 

2.2.4.1 Decellularisation 

Phosphate buffered saline (PBS) 

Five Oxoid Dulbecco’s PBS tablets were dissolved in 500 mL distilled water and  the pH 

adjusted to 7.2-7.4 using NaOH (6 M) and HCl (6 M).  

Disinfection solution 

Vancomyacin hydrochloride (50 mg), polymyxin B (200 mg) and gentamyacin sulfate (775 mg) 

were added to 100 mL of PBS and sterilised by filtration.  The volume was made up to 500 mL 

with sterile PBS. 

PBS with aprotinin (10 KIUmL-1) 

Five Oxoid Dulbecco’s PBS tablets were dissolved in 500 mL distilled water, and the pH 

adjusted to 7.2-7.4 using NaOH (6 M) and HCl (6 M) before autoclaving.  Aprotinin (500 µL; 

10,000 KIU.mL-1) was added immediately prior to use. 

PBS with EDTA (2.7 mM, 0.1 % w/v) and aprotinin (10 KIUmL-1) 

Five Oxoid Dulbecco’s PBS tablets and 0.5 g EDTA were dissolved in 500 mL distilled water, 

and the pH adjusted to 7.2-7.4 using NaOH (6 M) and HCl (6 M) before autoclaving.  Aprotinin 

(500 µL; 10,000 KIU.mL-1) was added immediately prior to use. 

SDS solution (10% w/v) 

Sodium dodecyl sulphate (10 g) was dissolved in 100 mL distilled water and sterilised by 

filtration.  Aliquots (10 mL) were stored aseptically for a maximum of six months at room 

temperature. 

Hypotonic buffer (10 mM tris, 2.7 mM EDTA) with aprotinin (10 KIUmL-1)  

Trizma base (1.21 g) and EDTA (1.0 g) were dissolved in 900 mL distilled water and the pH 

adjusted to 8.0-8.2.  The volume was made up to 1 L and the solution sterilised by autoclaving.  

Aprotinin (1 mL; 10,000 KIU.mL-1) was added prior to use. 

Hypotonic buffer with SDS (0.1% w/v) 

SDS solution (5 mL; 10% w/v) was added aseptically to 495 mL sterile hypotonic buffer.  
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Nuclease solution 

Trizma base (6.1 g) and magnesium chloride (2.0 g) were dissolved in 80 mL distilled water 

and the pH adjusted to 7.5-7.7.  The volume was made up to a total of 990 mL using distilled 

water and the solution autoclaved.  Immediately prior to use, RNAase stock (10 mL; 100 UmL-1) 

and DNAase (5 mL; 10,000 UmL-1) were added. 

Hypertonic solution (50 mM tris, 1.5 M NaCl) 

NaCl (87.66 g) and tris (6.06 g) were dissolved in 900 mL distilled water and the pH adjusted to 

7.5-7.7.  The volume was made up to a total volume of 1 L and the solution autoclaved. 

Peracetic acid solution (0.1% v/v) 

Peracetic acid (5.5 mL; 40-44% v/v) was added to 2 L of sterile PBS and used within one hour 

of preparation. 

2.2.4.2 Histology 

Diastase solution 

0.2 g α-amylase was dissolved in 40 mL distilled water. 

Oil red O (0.3% (w/v)) 

Oil red O (50 mg) was added to isopropanol (10 mL) and stored at room temperature to create 

a stock solution (0.5% (w/v)). Stock solution (3 parts)  was added to dH2O and filtered 

sequentially (filters of pore sizes 0.8 and 0.2 μm respectively) immediately prior to use. 

Ammonium hydroxide (10% (v/v) 

Ammonium hydroxide (30 mL; 28%) was added to dH2O (60 mL). 

Alizarin red (40 mM) 

Add alizarin red (2.0 g) to dH2O (100 mL). Adjust to pH 4.1 by dropwise addition of ammonium 

hydroxide (10% (v/v)). 
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2.2.4.3 Scanning electron microscopy sample preparation 

Phosphate buffer (0.9 M sodium dihydrogen orthophosphate, 0.11 M disodium hydrogen 

orthophosphate) 

Sodium dihydrogen orthophosphate (45 mL) and disodium hydrogen orthophosphate (55 mL) 

were added to 100 mL distilled water. 

 

2.2.4.4 Microbiology 

Thioglycolate broth 

Thioglycolate broth (29 g) was dissolved in 1L distilled water, and the solution sterilised by 

autoclaving. 

2.2.4.5 Cell culture 

Complete DMEM culture medium 

To 174 mL Dulbecco’s modified Eagle’s medium (DMEM) 2 mL L-glutamine (200mM), 4mL 

penicillin/streptomycin (10,000 UmL-1) and 20 mL foetal bovine serum (FBS) was added. 

BHK cell culture medium 

To 164 mL Glasgow’s minimal essential medium (GMEM)  2 mL L-glutamine (200mM), 4 mL 

penicillin/streptomycin (10,000 UmL-1) and 10 mL FBS was added. 

hMSC culture medium 

To 174 mL low-glucose Dulbecco’s modified Eagle’s medium (DMEM) 2 mL L-glutamine 

(200mM), 4mL penicillin/streptomycin (10,000 UmL-1) and 20 mL foetal bovine serum (FBS) 

was added. 

hMSC medium supplemented with HEPES 

HEPES (1.37 mL; 1 M) was added to hMSC culture medium (48.63 mL). 

Positive control culture medium with DMSO (40 % (v/v))(for cytotoxicity testing)  

Culture medium (BHK or complete DMEM;12 mL) was added to DMSO (8 mL). 
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Seeding ring conditioned medium(for seeding ring cytotoxicity testing)  

Tencell seeding rings sterilised by dry heat (n = 5) were placed in BHK and complete DMEM 

culture medium (100 mL) and incubated (37 °C) with agitation (120 rpm) for 3 days. Tencell 

seeding rings were removed from conditioned medium aseptically. 

Percoll gradient preparation 

Percoll (22.05 mL) was added to NaCl (2.45 mL; 1.5 M) and Tyrode’s solution (10.5 mL), 

centrifuged to mix (15 min; 20,000 × g) and stored at 4°C until use. 

Isobutylmethylxantine  (0.5 M) 

Isobutylmethylxantine (200 mg) was added to DMSO (1.8 mL), filtered (0.22 µm pore size) and 

aliquoted (100 µL) for storage at – 20°C. 

Indomethacin (0.6 M) 

Indomethacin (100 mg) was added to DMSO (467 µL), sterilised by filtration (0.22 µm pore 

size) and aliquoted (10 µL) for storage at – 20°C. 

Hydrocortisone (0.1 mM) 

Hydrocortisone (4.85 mg) was added to PBS (100 mL), sterilised by filtration (0.22 µm pore 

size) and aliquoted (550 µL) for storage at – 20°C. 

Ascorbic-2-phosphate (200 mM) 

Ascorbic-2-phosphate (2.57 g) was added to dH2O (50 mL), sterilised by filtration (pore size 

0.22 µm) and aliquoted (of sizes 50 and 75 µL in equal numbers) for storage at – 20°C. 

Sodium pyruvate (200 mM) 

Sodium pyruvate (1.1 g) was added to dH2O (100 mL), sterilised by filtration (pore size 0.22 

µm) and aliquoted (1 mL) for storage at – 20°C. 

Dexamethasone (500 µM) 

Dexamethasone (25 mg) was added to absolute ethanol (1.28 mL; 100%), sterilised by 

filtration (pore size 0.22 µm) and aliquoted (10 µL) for storage at – 20°C. Single aliquots were 

defrosted, added to complete DMEM (1 mL) and refrozen (20 µL aliquots). 

β-2-glycerophosphate (2 M) 

β-2-glycerophosphate (10 g) was added to dH2O (23 mL), sterilised by filtration (0.22 µm pore 

size) and aliquoted (550 µL) for storage at – 20°C 
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Adipogenic medium (isobutylmethylxantine (0.5 mM), indomethacin (60 µM), hydrocortisone 
(0.5 µM)  

Isobutylmethylxantine (100 µL; 0.5M), indomethacin (10 µL; 0.6M) and hydrocortisone (500 

µL; 0.1 mM) were added to complete DMEM (100 mL). 

Chondrogenic medium (ascorbic-2-phosphate (0.15 mM), insulin-transferrin-selenium (0.1 ×), 
sodium pyruvate (20 mM) 

Ascorbic-2-phosphate (75 µL; 200 mM), insulin-transferrin-selenium (100 µL; 100×) and 

sodium pyruvate (1 Ml; 200 mM) were added to complete DMEM (100 mL). 

Osteogenic medium (dexamethasone (0.1 µM), ascorbic-2-phosphate (0.1 mM) 

Dexamethasone (20 µL; 500 μM), ascorbic-2-phosphate (50 µL; 200 mM) and β-2-

glycerophosphate (500 µL; 2M) were added to complete DMEM (100 mL).  

ATPlite™ substrate solution 

Lyophilized substrate (one vial) and substrate buffer solution were allowed to equilibrate to 

room temperature (~ 20 min), and the buffer (5 mL) added to the substrate. 

Sodium chloride (3 M) 

Sodium chloride (87.66 g) was dissolved in dH2O and sterilised by moist heat (section ‎2.2.2.1). 

Tris buffered saline (TBS; 2M) 

Trizma base (2.42 g) was dissolved in dH2O (500 mL), the pH adjusted to 7.6 by adding 

hydrochloric acid (6 M) or sodium hydroxide (6 M) dropwise, and the volume adjusted to 1 L 

with dH2O. The solution was sterilised by moist heat. 

Live/dead staining solution (calcein AM and ethidium homodimer-1; 1 µM) 

Calcein (3.6 µL) and ethidium homodimer-1 (15 µL) were added to PBS (15 mL) immediately 

before use. 

Glycerol with DABCO (1.25% (w/v))  

DABCO (10 mL; 2.5% (w/v)) was added to glycerol (90 mL) and stored at 2-8 °C immediately 

prior to use. 
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2.2.4.6 General molecular biology 

DNase I stock solution 

RNase-free water (550 μL) was directly injected into the DNase I vial provided (1500 Kunitz 

units), mixed by inversion, and stored at – 20°C. 

DNase I digestion solution 

DNase I stock solution (10 μL) was added to buffer RDD (70 μL) immediately before use and 

mixed by inversion. 

Proteinase K digestion solution (17 μg/mL) 

Proteinase K (10 μL; 1 mg/mL) was added to RNase-free water (590 μL). 

Agarose gel (4% (w/v)) 

Agarose (4 g) was added to TBS (100 mL; 1 ×) and heated in a microwave (30 s; 850 W). SYBR™ 

safe (10 μL) was added and the mixture stirred briefly. Gel (33 mL) was added to trays fitted 

with comb inserts. 

Amplicon loading mix 

Bioline loading dye (2 μL; 5 ×) was added to each PCR product (10 μL). 

 

2.2.4.7 Quantitative polymerase chain reaction 

Stock primer solution (100 μM) 

Lyophilized primers, designed according to section ‎2.2.10.1, were diluted to 100 μM by adding 

the appropriate volume of RNAase- and DNase-free water (given by the supplier information 

sheet). 

Working primer solution (10 μM) 

Stock primer solution (10 μL) was added to water (90 μL). 

Working primer solution (1 μM) 

Working primer solution (10 μL; 10 μM) was added to water (90 μL). 

Template RNA (for primer specificity testing; section ‎2.2.10.5) 

The concentration and purity of RNA solutions isolated from differentiated cells was 

measured using a NanoDrop spectrophotometer as described previously (section ‎2.2.9.1), and 

diluted as appropriate to a concentration of 2ng.μL-1.   
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Template RNA(for primer efficiency testing; section ‎2.2.10.4.2) 

Isolated RNA was serially diluted (1:4) to provide a range of concentrations for efficiency 

testing. The concentration and purity of RNA solutions extracted from differentiated cells was 

measured using a NanoDrop spectrophotometer as described previously (section ‎2.2.9.1). 

Briefly, isolated RNA (20 μL) was added to DNAse- and RNAse- free water (80 μL) and mixed 

thoroughly by pipetting. The resulting dilution (20 μL) was added to water (80 μL), and so 

forth using the same method until 7 dilutions were prepared. If required, extracted RNA was 

re-diluted (1:3; 20 μL: 60 μL RNA isolate:water).  

Template RNA (for Tencell gene expression analyses; section ‎2.2.10.7) 

RNA was isolated from Tencell-cultured pericardium and cell pellets as described previously 

(sections ‎2.2.9.4 and ‎0) and stored at – 80 °C until use. 

Reverse transcriptase dilution(1:1; comprised of Ominiscript and Sensiscript recombinant 
reverse transcriptases) 

Reverse transcription mix (25 μL) was diluted with water (25 μL). 

Reverse transcriptase/mastermix mix 

Reverse transcription mix (7.5 μL; 1:1) was added to mastermix (375 μL). 

Assay mastermix (for primer efficiency testing; section ‎2.2.10.4.2) 

Reverse transcriptase/mastermix mix (357 μL) was added to each primer (17.5 μL each; 10 μM) 

and RNAse- and DNAse- free water (238 μL). 

Assay mastermix (for Tencell gene expression analyses; section ‎2.2.10.7) 

Mastermix (1200 μL) was added to reverse transcription mix (24 μL), oligonucleotide primers 

(120 μL.primer-1) and DNase- and RNase-free water (897.6 μL), and mixed thoroughly by 

vortexing (5s). 

 

2.2.5 Preparation of an acellular cell culture substrate 

2.2.5.1 Tissue retrieval 

Attached porcine hearts and lungs were obtained from a local abattoir (M&C Meats, Leeds) 

within 4 hours of slaughter, and the anterior portion of the pericardium removed using 

scissors, avoiding large (˃ 1cm2) fatty deposits.  Excess fat was manually peeled from the 

excised pericardia and smaller deposits removed manually. 
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Pericardia were measured and cut to an asymmetric shape (Fig. ‎2.1), such that the mesothelial 

and fatty surfaces were distinguishable.  Samples were then rinsed in PBS to remove excess 

blood, and stored at -20⁰C in contact with PBS moistened filter paper.  Pots were labelled with 

sample size and the date of dissection. 

 

2.2.5.2 Preparation of acellular pericardium 

Decellularisation was conducted in five batches (n= 7, 12, 12, 12 & 24 pericardia). Samples 

were processed simultaneously in individual vessels.   The volume of solution required was 

dependent on sample size, as detailed below.  The process was carried out under aseptic 

conditions.  The conditions applied during each wash are given in Table ‎2.5. 

 

 

 

  

  

  

A B 

C 

Fig. 2.1:  Dissection of and fat removal from porcine pericardium.  The frontal portion of pericardium was 

removed from each heart (A, indicated by arrow) and the large fat deposits of the fatty layer removed (B, 

fat indicated by arrow).  In order to distinguish between the fatty and mesothelial surfaces the samples 

were cut to an asymmetric shape such that the fatty layer was the upwards surface when the sample was 

arranged as shown (c). 



67 
 

Table ‎2.5:  The conditions used during each wash of the decellularisation of porcine pericardium, unless stated 

otherwise.  Details of equipment used can be found in Appendix II. 

 Wash conditions 

Wash reagent Volume required (mL/cm2) Temperature (ᵒC) Shaker speed  (rpm) Duration 

(hr) 

PBS 4 22 100 0.5 

PBS with EDTA 4 22 100 0.5 

Disinfection solution 1 37 100 0.5 

Hypotonic buffer 2 4 100 16 

Hypotonic buffer with SDS 2 22 100 18-24 

Nuclease solution 2 37 50 3 

Hypertonic solution 2 37 100 18-24 

Peracetic acid solution 2 22 150 3 

 

Frozen pericardia were thawed in PBS (190 mL) at 37 ᵒC and any remaining fat deposits 

removed.  Samples were then incubated with disinfection solution and washed three times in 

PBS with EDTA.  This was followed by treatment with hypotonic buffer and hypotonic buffer 

containing SDS.  After rinsing the pericardia three times with PBS the samples were incubated 

in nuclease solution.  The tissue was washed three times in PBS containing EDTA, and 

hypertonic solution was added to the tissue. Hypertonic solution was removed by washing in 

PBS three times and terminal sterilisation achieved using peracetic acid treatment.  Finally, 

the tissue was rinsed with PBS four times, and stored in approximately 100 mL PBS at 4 ᵒC. 

 

2.2.6 Microbiology 

2.2.6.1 Assessment of the sterility of acellular pericardium 

Bacterial and yeast contamination of scaffolds was assessed by placing tissue and storage 

solution/culture medium samples in conditions ideal for microbial growth, and monitoring for 

the appearance of microbial colonies. Sterility of the scaffolds and storage solution/culture 

medium was examined both immediately post-decellularisation and post-culture in Tencell.  

Three replicates were tested per decellularisation and culture experiment. 
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2.2.6.1.1 Test for contamination by aerobic bacteria 

 The presence of any aerobic bacteria was tested using nutrient broth, fresh blood agar (FBA) 

and nutrient agar (NA) plates.  Tissue samples (5 mm2) were minced and placed in nutrient 

broth, using a broth containing the bacterium Staphylococcus epidermidis as a positive control.  

Additionally, 1 mL tissue storage PBS/well culture medium was removed and applied to both 

FBA and NA plates for each sample using standard techniques.  S. epidermidis was introduced 

to both FBA and NA plates as a positive control, and all cultures incubated at 37 ᵒC.  Cultures 

were examined for bacterial growth after 3, 7 and 21 days. 

 

2.2.6.1.2 Test for contamination by anaerobic bacteria 

Tissue samples and storage solution/well culture medium were tested for contamination by 

anaerobic bacteria using thioglycolate broth, fresh blood agar (FBA) and nutrient agar (NA) 

plates incubated in oxygen-free conditions.  Tissue samples (5 mm2) were minced and placed 

in thioglycolate broth, using a broth containing the bacterium Clostridium perfringens as a 

positive control.  Cultures were incubated at 37 ᵒC for 72 hours, at which point 20 µL broth 

was removed and applied to both FBA and NA plates for each sample.  Plates were placed in a 

sealed tub containing an oxygen exclusion sachet and incubated at 37ᵒC.  All cultures were 

examined for bacterial growth after 3, 7 and 21 days. 

 

2.2.6.1.3 Test for contamination by yeast 

Tissue storage solution/well culture medium was tested for the presence of yeast using 

Sabouraud dextrose agar plates.  Liquid (20 µL) was removed using an application loop and 

applied to the plates aseptically.  Candida albicans was cultured as a positive control.  Plates 

were incubated at 30ᵒC and examined for the presence of yeast colonies after 3, 7 and 21 

days. 

 

2.2.7 Histological techniques 

2.2.7.1 Tissue processing 

Pericardial samples were placed in histocassettes and fixed by immersion in 10% (v/v) neutral 

buffered formalin (NBF) for 90 minutes.  Sequential dehydration of the tissue was performed 
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using an automated tissue processor.  Details of the regimen used are given in Table ‎2.6.  

Cassettes were stored in molten wax prior to embedding. 

 

Table ‎2.6: The dehydration and wax infiltration regimen applied to pericardial samples using a Leica 

TP1020 tissue processor 

Wash number Wash solution
 

Wash duration/hours 

1 NBF (10 % v/v) 1 

2 Ethanol (70 % v/v) 1 

3 Methylated spirits (90 % v/v) 1 

4 Methylated spirits (100 % v/v) 0.5 

5 Methylated spirits (100 % v/v) 0.5 

6 Methylated spirits (100 % v/v) 1 

7 Methylated spirits (100 % v/v) 1 

8 Xylene 1 

9 Xylene 1 

10 Xylene 1 

11 Molten wax 1 

12 Molten wax 1 

 

2.2.7.2 Wax embedding 

For comparison of the histoarchitecture of decellularised tissue, rectangular samples (of 

approx. size 2×1 cm) of each acellular (n=3  per decellularisation batch) and native (n=3) 

pericardium were dissected such that the long axis of each specimen was either parallel or 

perpendicular to the orientation of collagen fibres in the tissue. Collagen fibre orientation was 

visualised using a light box and polarized light filters. Molten wax was added and allowed to 

set for 12-16 hours.  Excess wax was removed from the blocks manually following removal 

from the moulds. 
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For examination of the histoarchitecture of Tencell-cultured seeded substrates, scaffolds were 

removed from the bioreactor and cut in half with a scalpel. The long axis of one half was 

arranged perpendicular to the wax mould base.  Molten wax was added and allowed to set for 

12-16 hours.  Excess wax was removed from the blocks manually following removal from the 

moulds. 

 

2.2.7.3 Sectioning of wax embedded samples 

Wax histology blocks were sectioned at a thickness of 10 µm using a microtome and floated 

on a water bath at 40ᵒC to eliminate creases.  Sections were transferred to SuperFrostTM plus 

microscope slides, and dried using a hot plate set to a temperature of 55 ᵒC.  A minimum of 

two slides for each sample and collagen orientation were produced.  

 

2.2.7.4 Dewaxing of tissue sections 

Sections to be stained were taken through washes of increasing hydrophilicity in order to 

remove wax.  The slides were placed in pots of xylene twice for 10 minutes each, and 

immersed in 100% (v/v) ethanol for 3 minutes.  This was followed by immersion in fresh 100% 

(v/v) ethanol for 2 minutes and 70% (v/v) ethanol for a further 2 minutes.  Dewaxing was 

completed by rinsing the sections in running tap water for 3 minutes.  

 

2.2.7.5 Dehydration and mounting of stained sections 

Sections were dehydrated through treatment with solutions of increasing hydrophobicity.  

Slides were rinsed for 5 seconds with 70% (v/v) ethanol, followed by rinsing with methylated 

spirits three times for periods of 1, 2 and 3 minutes and immersion in xylene twice for 10 

minutes each.  Sections were mounted in DPX and covered with a cover slip.  
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2.2.7.6 Histological staining 

2.2.7.6.1 Haematoxylin and eosin staining of tissue sections 

 Haematoxylin and eosin (H&E) staining is routinely used to visualise general tissue structure 

and was used to assess the cellularity of both fresh and decellularised tissue.  Haematoxylin 

stains nuclei through the binding of its constituent Hemalum with DNA, aiding the 

identification of cells.  Eosin imparts a pink/red colour to intra- or extracellular protein such as 

collagen, and allows visualisation of the structure of the ECM. 

Sections on slides to be stained were placed in haematoxylin for 1 minute and rinsed in 

running tap water until all dye residues were removed.  Slides were placed in the counterstain 

eosin for 3 minutes to visualise tissue structure.  Excess eosin was removed by immersion in 

running tap water. 

 

2.2.7.6.2 Alcian blue staining of tissue sections 

Alcian blue stains acidic polysaccharides a blue/violet colour and allows visual assessment of 

the glycosaminoglycan (GAG) content of tissue.  Alcian blue staining using the method 

described below was used to indicate the impact of decellularisation on the ECM composition 

of porcine pericardium. 

Samples were immersed in 1% (w/v) Alcian blue for 15 minutes and rinsed in running tap 

water until all dye residues were removed.  Diastase treatment was carried out by 

microwaving the slides in diastase solution for 20 seconds using the ‘medium-high’ setting of 

an 800 Watt microwave.  Following diastase treatment, samples were immersed in periodic 

acid for 5 minutes and rinsed in distilled water 3 times.  They were then immersed in Schiff’s 

reagent for 15 minutes.  Schiff’s reagent was removed by rinsing the slides in running tap 

water for 5 minutes, and the slides were counterstained in haematoxylin for 90 seconds.  

Excess haematoxylin was removed by immersion in running tap water until all dye residues 

were removed. 

 

2.2.7.6.3 Alcian blue staining of cultured cells 

Alcian blue (500 μL; 1% (w/v)) was added to formalin fixed cells for 3 min, the dye aspirated 

and cells washed three times with H2O (1 mL). Stained plates were dried in air overnight and 

viewed using an inverted microscope at 10 × magnification.  
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2.2.7.6.4 Oil red O staining of cultured cells 

Cultured cells were stained with oil red o (500 μL; 0.3% (w/v)) for 10 min, the dye aspirated 

and cells rinsed three times with H2O (1 mL). Stained plates were dried in air overnight and 

viewed using an inverted microscope at 10 × magnification. 

 

2.2.7.7 Alizarin red staining of cultured cells 

Alizarin red (500 μL; 40 mM) was added to formalin fixed cells for 20 min, and aspirated 

before rinsing the cells three times with dH2O. Stained plates were dried in air overnight and 

viewed using an inverted microscope at 10 × magnification. 

 

2.2.8 Cell culture techniques 

2.2.8.1 Cell resurrection and maintenance 

Cryovials containing frozen cells and medium containing 10% (v/v) dimethyl sulfoxide (DMSO) 

were warmed to room temperature and the contents transferred to a plastic universal.  

Working quickly to avoid cell shock, pre-warmed medium (10 mL) was added dropwise and 

the suspension centrifuged at 150 g for 10 min.  The supernatant was discarded and the cell 

pellet resuspended in medium (10 mL) and seeded in a T75 tissue culture flask.  

 

2.2.8.2 Cell counting and assessment of cell viability 

Trypan blue was used to distinguish between dead and viable cells during counting.  Trypan 

blue (20 µL) was added to cell suspension (20 µL) and the mixture carefully added underneath 

the cover slip of a hemocytometer.  The viable cells in an engraved square of known volume 

were counted using a microscope and the cell count converted to the density of the cell 

suspension.  The volume of the square was such that the cell count obtained was converted to 

a cell density of cells.mL-1 in the hemocytometer by multiplication by a factor of 104.  The cell 

density of the original cell suspension was calculated by doubling this calculated density to 

account for dilution of the suspension with trypan blue solution.  
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2.2.8.3 Cell passaging 

Cells in culture were passaged upon reaching approx. 80% confluency.  Culture medium was 

removed and the cell layer washed with calcium and magnesium-free PBS (10 mL).  

Trypsin/EDTA (1.5 mL) was added and the flasks incubated at 37 ᵒC for 5 min to detach the 

cells.  Detachment was aided by tapping the flasks, and monitored using a microscope.  After 

detachment culture medium (10 mL) was added and the suspension centrifuged (150 g, 10 

min).  The supernatant was discarded and fresh media added before seeding the cells at a 

1:10 cell suspension:culture medium ratio. 

 

2.2.8.4 Culture of differentiated cells 

Differentiated cells were cultured because they were expected to express the genes of 

interest; RNA was extracted from these cultures for primer pair validation. Tenocyte RNA was 

used to validate pairs specific for scleraxis and collagen I and III, osteoblast RNA for RUNX2, 

smooth muscle cell RNA for calponin, smooth muscle 22α and smooth muscle α-actin and 

chondrocyte RNA for validation of SOX-9 primer pairs. Primer pairs specific for PPAR-ɣ and 

adiponectin were validated using RNA extracted from human knee adipose tissue, kindly 

supplied by Dr Stacy-Paul Wilshaw. 

Cell culture was performed as described in sections ‎2.2.8.1, ‎2.2.8.2 and ‎2.2.8.3. Smooth 

muscle cells, osteoblasts and tenocytes were cultured with complete DMEM culture medium.  

Chondrocytes were cultured using chondrocyte growth medium purchased from PromoCell.  

 

2.2.8.5 Assessment of the in vitro biocompatibility of acellular pericardium 

The growth of baby hamster kidney (BHK) and 3T3 cells in the presence of acellular 

pericardium was compared with that in the presence of known cytotoxic (cyanoacrylate) and 

non-cytotoxic (collagen type I) materials.   

Two samples (5 mm2 ) were dissected from each control pericardium and temporarily stored 

in calcium and magnesium-free PBS (n=3 per decellularisation batch).  One six well plate was 

used for each batch of decellularised pericardia and each cell type (total 10 plates).  Collagen 

gel adhesive was kindly supplied by Dr. Ji Luo (prepared from rat tails using standard 

techniques).  Collagen gel (15 µL) was applied to four wells of each plate.  NaOH (7.5 µL; 0.1 % 

w/v) was added to neutralise the gel, and a tissue sample applied to three of the adhesive-
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containing wells of each plate.  No tissue was adhered in the fourth collagen-containing well 

per plate, which served as a negative control.  Cyanocrylate contact adhesive (15 µL) was 

applied to one well per plate as a positive control, and the final well was left empty in order to 

compare results with cell growth on tissue culture plastic.  Following drying of the collagen gel 

and cyanoacrylate adhesive the wells were washed three times with calcium and magnesium-

free PBS (5 mL.well-1).  Each cell type was passaged, counted (sections ‎2.2.8.1, ‎2.2.8.2 

and ‎2.2.8.3) and resuspended at densities of 2.5 × 105 cells.mL-1.  Cell suspension (2 mL) was 

added to each well and the plates incubated for 48 hours in 5 % (v/v) CO2 in air at 37ᵒC. BHK 

cells were cultured with BHK cell culture medium, and 3T3 cells complete DMEM culture 

medium. After incubation the plates were examined by microscopy, and stained to enable 

further visualisation.  Prior to staining, culture medium was aspirated and the cell layer 

washed with PBS (5 mL.well -1).  The cells were fixed by adding NBF (2 mL; 10% v/v). NBF was 

aspirated after 10 min of incubation and Giemsa stain (2 mL) added to each well.  After a 

further 10 min the stain was aspirated and the plates thoroughly washed with tap water.  The 

plates were dried in air for approx. 16 hours and examined by bright field microscopy.        

 

2.2.8.6 Isolation of Porcine multipotential mesenchymal stromal cells 

Multipotential mesenchymal stromal cells were isolated from porcine femurs for use in 

preliminary seeding experiments with the Tencell seeding rings. 

pMSC were isolated from bone marrow by Percoll density fractionation (Olofsson et al., 1980; 

Rosca and Burlacu, 2010). Briefly, fresh (supplied within ~ 4 hr of slaughter) porcine femurs 

were bisected using a hacksaw under sterile conditions and the bone marrow (~ 5 mL) 

extracted using a sterile spatula. Marrow was added to complete medium (25 mL) and 

dispersed by drawing the mixture into a serological pipette. Excess adipose tissue was 

removed by discarding the supernatant following centrifugation (5 min; 600 × g). The bone 

marrow pellet was made up to a total volume of 4 mL and added dropwise onto a Percoll 

gradient (35 mL). The Percoll-bone marrow mixture was centrifuged (15 min; 460 × g) and the 

upper fraction (coloured pink) aspirated and added to culture medium (35 mL). Remaining 

Percoll solution in this fraction was removed by centrifugation (5 min; 600 × g), the cell pellet 

resuspended in complete culture medium (5 mL) and seeded in a T25 flask. Cells were 

passaged as described in section ‎2.2.8.3 upon reaching 80% confluency. 
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2.2.8.7 Trilineage differentiation of porcine multipotential mesenchymal stromal 

cells 

Porcine MSC (passage 3) were passaged and counted as described previously (section ‎2.2.8.3) 

and seeded at densities of 3 × 103 and 4 × 104 cells.cm-2 in osteogenic and adipogenic medium 

(2 mL) respectively. The remaining cell suspension was centrifuged (150×g; 10 min), counted 

and resuspended at a concentration of 1 × 107 cells.mL-1 in chondrogenic medium and seeded 

in 10 μL droplets for 3 hr (Lavrentieva et al., 2013). Additional culture medium (20 µL) was 

added to cell pellets in the event of visible drying. Pellet cultures were flooded with 

chondrogenic culture medium (2 mL) following seeding. To assess the extent of differentiation, 

pMSC were formalin fixed (2 mL; 10% (v/v)) for 10 minutes, rinsed with PBS (2 mL) twice and 

stained according to the alizarin red, alcian blue and oil red o protocols described in 

section ‎2.2.7.6 for cells differentiated towards the osteogenic, chondrogenic and adipogenic 

lineages respectively. Cells were stained on days 0, 3, 6, 14 and 21. 

 

2.2.8.8 Seeding porcine MSC using the bespoke Tencell seeding rings 

Tissue (of size ~ 2 × 4 cm) was resected from stock acellular porcine pericardium and 

conditioned in complete DMEM culture medium (~ 50 mL) (37 °C; 5% (v/v) CO2 in air) 

overnight. Tissue conditioning is necessary to allow cell culture medium to penetrate the 

thickness of the tissue, to support three-dimensional cell culture. Porcine MSC (passage 5) 

were passaged and resuspended such that a total of 4.80 × 104 cells were applied per scaffold 

(seeding density 1.20 × 105 cells.cm-2). Tencell seeding rings were placed on the mesothelial 

surface of the conditioned matrix and the cell suspension added to their reservoir. To contrast 

cell seeding with and without the use of the Tencell seeding rings, the same volume of cell 

suspension was applied directly to tissue, and small quantities (~50 μL) of culture medium 

added periodically throughout the seeding period to maintain moisture. Note that this direct 

seeding strategy was conducted for comparison purposes only; since the final seeding density 

of cells seeded in this manner cannot be controlled, and i s unlikely to be even, it is not 

appropriate for cell seeding in this project.  Cell-tissue substrates were placed in vented tissue 

culture tubs and incubated (37 °C; 5% (v/v) CO2 in air). Seeding volumes of 150 and 80 μL were 

tested and cell attachment assessed by live/dead® staining after seeding periods of 2 and 4 

hours (Section  ‎2.2.8.10.1). 
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2.2.8.9 Seeding of human MSC using circular seeding rings 

Cell viability of hMSC seeded for 2, 4 and ~ 18 hours on acellular porcine pericardium using 

the circular seeding rings was quantified using the ATPlite™ assay. Model pMSC were not used 

in these experiments as the efficacy of these rings with other tissue and cell types had been 

previously confirmed (Robert Guilliatt, personal communication) and loss of high value hMSC 

was deemed unlikely.  

 

2.2.8.9.1 Preparation of a standard curve of the relationship between hMSC number and 

luminescence counts in the ATP assay 

A standard curve, allowing estimation of the number of hMSC present from the ATPlite™ 

assay from the luminescence counts generated, was prepared. 

Human multipotential mesenchymal stromal cells (passage 5) were passaged and 

resuspended at a concentration of 4.37 × 105 cells.mL-1 (sections ‎2.2.8.1, ‎2.2.8.2 and ‎2.2.8.3).  

Aliquots of 400, 320, 240 160, 80 and 40 μL of cell suspension were added to the appropriate 

volume of culture medium required to adjust the cell suspensions to 400 μL. Each cell 

suspension (100 μL) was added to mammalian cell lysis solution (50 μL) in an opaque 96-well 

plate, and shaken on an orbital shaker in the dark (5 min; 400 rpm). Substrate solution (50 μL) 

was then added to each test well and the mixture shaken on an orbital shaker in the dark (5 

min; 400 rpm), before dark adapting the plate (10 min) and measuring the luminescence using 

a plate reader. 

 

2.2.8.9.2 Seeding of hMSC on pericardial substrates using circular seeding rings 

Tissue (of size ~ 1.5 × 1.5 cm) was resected from stock acellular porcine pericardium and 

conditioned in hMSC culture medium (~ 50 mL) (37 °C; 5% (v/v) CO2 in air) overnight. Human 

MSC (passage 5) were passaged and resuspended at a concentration of 2.73 × 105  cells.mL-1 as 

previously described, and seeded  in circular seeding rings (diameter = 1.1 cm) placed on the 

mesothelial surface of the matrix in 6 well plates (initial seeding volume 465 μL, as advised by 

previous investigator (Andrew Aldridge, personal communication); 1.2 × 105 cells.cm-2 applied). 

Cell seeding using circular seeding rings was examined both with and without a medium 

reservoir (3 mL)in the well plate around the exterior of the seeding ring. Samples were 

incubated (37 °C; 5% (v/v) CO2 in air) and cell viability quantified by the ATPlite™ assay  

(Section ‎2.2.8.11) after seeding periods of 2, 4 and ~ 18 hours (overnight).  
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2.2.8.10 Assessment of cell viability in cell-seeded scaffolds 

2.2.8.10.1 Live/dead® staining of cell-seeded acellular porcine pericardium 

Cell survival in acellular scaffolds seeded using the bespoke Tencell seeding rings was assessed 

by live/dead staining. 

The cell seeded surface was dissected from the matrix samples and washed in PBS (2 mL) 

twice in 6 well plates. Live/dead staining solution (2 mL) was added and the plates incubated 

in the dark (RT; 45 min). Live/dead staining solution was aspirated and stained samples 

washed with TBS (2 mL; 10 min) three times, before being wet mounted using glycerol with 

DABCO on a microscope slide with a glass coverslip. Live/dead staining was examined using a 

Zeiss microscope and photographed using an attached camera.        

                                                                                                          

2.2.8.11 Measurement of luminescence counts of cell-seeded matrix 

Cell survival in acellular scaffolds seeded with cells using the circular seeding rings was 

determined using the ATPlite™ assay, to provide quantitative data pertaining to cell viability. 

The cell-seeded surface of the matrices was resected, cut approximately in half and minced in 

a 24 well plate. Approximately the same quantity of unseeded, medium conditioned tissue 

was similarly prepared as a negative control. Mammalian cell lysis solution (250 µL) was added 

and the plate agitated (400 rpm; 5 min). Technical replicates (50 µL) were added to an opaque 

96 well plate and ATP substrate solution (50 µL) added. The cell lysate-ATP substrate mixture 

was agitated (400 rpm; 5 min) in the dark, dark adapted (10 min) and the luminescence counts 

measured using a plate reader. 

 

2.2.8.12 Tencell culture of hMSC-seeded acellular pericardium scaffolds 

Pericardial substrates seeded according to section ‎2.2.8.9 were cultured in HEPES-containing 

buffer according to section ‎2.2.12.6.1. Samples were subjected to strains of 5, 10 and 20% by 

selecting the arm displacement values shown in Table ‎2.7. 

To optimise the duration of mechanostimulation, pericardium-seeded  hMSC were strained 

for periods of 4 and 24 hours (total culture period 24 hours). Post-culture, each sample (n=6 
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for both static and strain samples) was bisected; three halves per sample type were analysed 

by histology and cell viability each, and six halves were analysed qPCR. 

Table ‎2.7: The displacement selected using the amplifier knob of Tencell to achieve the desired strains for a 

strained region of length 1.0 cm 

Strain (%) Selected displacement (mm) 

5 0.5 

10 1.0 

20 2.0 

 

 

2.2.9 General molecular biology 

2.2.9.1 Nucleic acid spectrometry using the NanoDrop apparatus 

The measurement point of the instrument was wiped with a clean tissue and water ( 2 μL) 

applied to perform a blank measurement. The water was removed using a tissue and nucleic 

acid solution (2 μL) applied for measurement. The concentration and A260/280 was recorded for 

each sample. 

 

2.2.9.2 DNA removal from RNA solutions 

Solutions of RNA were digested with DNase to ensure complete removal of residual DNA 

during the RNA extraction process. 

RNeasy spin (supplied with RNeasy mini kit)columns were  washed with buffer RW1 (350 μL) 

by centrifugation (15s; ≥ 8000 × g) and the eluent discarded. Residual DNA was digested by 

incubation (RT; 15 min) with DNase I digestion solution (80 μL). The digestion mix was 

removed by adding buffer RW1 (350 μL) and removing the eluent by centrifugation (15s; ≥ 

8000 × g). 
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2.2.9.3 Extraction and measurement of RNA content of cell pellets 

Extraction of RNA from cell pellets was performed to measure the amount and purity of RNA 

isolated from a sample of interest , or provide template material for qPCR. 

The quantity of RNA isolated from cell pellets containing different numbers of cells was also 

measured. 

A cell pellet  was obtained by trypsinization/centrifugation as described by section ‎2.2.8.3. 

Pellets were lysed with buffer RLT (350 μL) and disrupted by flicking. The resulting lysate was 

homogenised by drawing it through a blunt needle 5 times (0.9 mm gauge). Ethanol (350 μL)  

was added to the lysate, mixed by repeat pipetting and transferred to an RNeasy spin column 

placed inside a collection tube (of volume 2 mL). The spin column was centrifuged (15s; ≥ 

8000 × g) and the eluent discarded. Digestion of remaining DNA was conducted according to 

section ‎2.2.9.2.. Buffer RPE (500 μL) was added twice to the spin membrane, centrifuged after 

each addition (first addition: 15s; ≥ 8000 × g; second addition: 2 min; ≥ 8000 × g) and the 

eluents discarded. The column was dried by centrifugation in a fresh collection tube (1 min; 

16000 × g) and RNA eluted in RNase-free water (50 μL) by centrifugation (1 min; 8000 × g). 

The concentration of nucleic acid species present and absorbance of the eluent at 260 and 

280 nm was measured using a NanoDrop spectrophotometer. Where applicable, the total 

amount of RNA extracted was calculated by multiplying the concentration of eluted RNA by 

the eluent volume. 

 

2.2.9.4 Comparison of methods of RNA extraction from seeded scaffolds 

The amount of RNA extracted from seeded scaffolds using enzymatic digestion at a high 

temperature (55 °C) was compared with that extracted from undigested, macerated samples 

to determine the optimal method for RNA extraction from Tencell-cultured substrates. One 

half of each experimental replicate was processed by each method for direct comparison. All 

reagents, except proteinase K, described in this method were obtained from the RNeasy Mini 

Kit manufactured by Qiagen. 

2.2.9.4.1 Enzymatic digestion method 

Samples (of mass ≤ 30 mg) were finely macerated (to pieces approx. 1-2 mm2) and lysed with 

buffer RLT (350 μL). Mixing was ensured by drawing the solution through a blunt needle (0.9 

mm gauge) 5 times. Proteinase K digestion solution (600 μL) was added to the lysate and the 

mixture incubated (55 °C) for 10 min. Digested samples were  centrifuged (3 min; 8000 × g) to 
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separate lysate and tissue and the supernatant added to absolute ethanol (450 μL) with 

repeat pipetting to aid mixing. A maximum volume of 700 μL of lysate mixture was applied per 

RNeasy spin column, centrifuged (15 s; 8000 × g) and the eluent discarded. This step was 

repeated with the same spin column where lysate volume was in excess of 700 μL/sample. On 

column DNase digestion was performed as previously described (section 2.2.9.2). Buffer RPE 

(500 μL) was then applied to the column twice and the eluent produced upon centrifugation 

(First wash: 15s; 8000 × g, second wash:1 min; 8000 × g) discarded. The spin column was dried 

by centrifugation in a fresh collection tube (1 min; 8000 × g) before RNA elution with RNase 

free water (50 μL) with centrifugation (1 min; 8000 × g). The concentration of RNA in the 

eluent was measured using a NanoDrop spectrophotometer as previously described.  

 

2.2.9.4.2 Maceration-only method 

RNA extraction was performed as described by section 5.2.1.3, with omission of the 

proteinase K digestion step. 

 

2.2.9.5 Extraction of RNA from Tencell-cultured acellular pericardium scaffolds 

Samples retrieved from Tencell were stored in RNAlater™ (2 mL) for a maximum of 48 hours 

prior to RNA extraction.  Extraction was performed as described in section ‎2.2.9.4.2. 

 

 

2.2.9.6 Extraction and measurement of the DNA content of pericardial tissue 

DNA concentration of tissue extracts were measured by spectrophotometry after processing 

samples using a commercial kit (DNeasy, Quiagen). 

Samples of each decellularised (250 mg) and fresh pericardium (50 mg) to be examined were 

macerated, placed in bijous and freeze-dried for 72 hours, or until the weight of the samples 

remained constant over 12 hours.  The dry weights were measured using an accurate balance 

(sensitivity of 0.1 mg) and recorded.  Dehydrated tissue was processed using sequential 

separation in miniaturised columns.  Buffer ATL (180 µL) and proteinase K (20 µL) were added 

to each sample and mixed by vortexing.  After incubation at 56ᵒC for 3 hours, buffer AL (200 

µL) and ethanol (200 µL) were added with vortexing after addition of each solution.  The 

resulting mixture was added to a DNeasy mini spin column, centrifuged (1 min; 6000 × g) and 
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the eluent discarded.  Buffer AW1 (500 µL) was applied to the column, followed by further 

centrifugation (1 min; 6000 × g).  Finally, buffer AW2 was added and the column centrifuged 

(3 min; 20000 × g) to dry the DNeasy membrane.  DNA was eluted by applying buffer AE (200 

µL) and centrifuging the column (1 min; 6000 × g) twice for maximum DNA yield.  The 

absorbance of the eluent at 260 and 280 nm was measured using a NanoDrop 

spectrophotometer to generate a ratio (termed A260/280) diagnostic of the nucleic acid species 

present.  DNA concentration readings were used to calculate the DNA content of dried tissue 

by volume. 

 

2.2.9.7 Gel electrophoresis of qPCR amplicons 

Combs were removed from fully set agarose gels. Gels were placed in an electrophoresis unit 

and submerged in TBS (1 cm depth above gel surface; 1 ×). A 25 bp DNA ladder (6 μL;leftmost 

well only) and amplicon loading mix (12 μL) for each PCR product was added to the loading 

wells created by the comb and the gel run (40 min; 1170 V). Product bands were visualised by 

UV. 

 

2.2.10 Quantitative polymerase chain reaction 

2.2.10.1 Primer pair selection and design 

Primer pairs of genes of interest were selected for subsequent gene expression analyses of 

Tencell cultured hMSC. Sequences were obtained from published research articles where 

possible, and designed where no pairs meeting the primer design criteria were found. 

 

2.2.10.2 Selection of primer pairs from relevant literature 

A basic literature search was performed using web of science™ for research papers 

investigating gene expression towards the lineages of interest by qPCR. Papers describing 

qPCR assays involving the genes of interest were studied for primer pair sequences. 

Sequences targeting genes of interest to this study (Table ‎5.1) were examined for specificity 

using the BLAST tool provided by NCBI (NCBI, 2014). Briefly, individual primer sequences were 

inputted into the nucleotide BLAST tool and homo sapiens selected as the organism of interest. 

Search data indicated genes with which a significant degree of complementarity was 

predicted. Genes with which 100% complementarity was predicted were examined; if only the 
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gene of interest was targeted, the primer was further analysed in silico for use in qPCR assays, 

but if genes other than the target gene of interest were highly complimentary analysis of the 

primer was discontinued and literature searching resumed. Primers predicted to be specific 

were further examined using the OligoEvaluator™  tool provided by Sigma-Aldrich (Sigma-

Aldrich, 2014). Sequences were inputted into the calculator tool and data concerning the Tm, 

percentage content of guanine and cytosine and likelihood of secondary structure and primer-

dimer formation considered. Primer pairs having Tm values of 55 – 65 °C and within 5°C of 

each other, guanine and cytosine content of 50 – 60 %, low or moderate potential to form 

secondary structures and an enthalpy of primer-dimer formation ≤ 5 kJ.mol -1 were purchased 

from Sigma-Aldrich (UK) and taken forwards for experimental validation.  

 

2.2.10.3 Design of primer pairs 

Genes for which no primer pairs passing in silico validation were found were searched in the 

NCBI database (NCBI, 2014). Coding regions ≥ 500 bp were highlighted using the graphical tool 

and inputted into the primerBLAST primer pair generator. Search parameters were amended 

to generate primer pairs giving rise to amplicons 70 – 250 bp in length, with an optimum Tm of 

60 °C and a minimum of 2 mismatches to unintended targets. Generated primer pairs were 

examined using the BLAST and OligoEvaluator tools according to the criteria described in 

section ‎2.2.10.2, and purchased from Sigma-Aldrich (UK) for experimental validation. 

 

2.2.10.4 Examination of qPCR assay kinetics 

The optimum primer concentration for each primer pair was determined to minimise the 

generation of unwanted amplicons, whilst giving CT values for the amplicon of interest within 

the range suitable for relative quantification (12-30). The efficiency of qPCR assays using 

primer pairs of interest was measured to ensure that only pairs having efficiencies of approx. 

100 %, and hence meeting the assumptions of the relative quantification method, were used 

in gene expression studies. Reaction efficiency investigations were also performed to find the 

working range for the primer pairs studied. 
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2.2.10.4.1 Optimisation of primer concentration in reaction mixtures 

All manipulations of PCR reaction mixes, RNA or primer solutions were performed in a clean 

(nucleic acid contaminant-free) PCR UV cabinet. Individual assay mixes corresponding to final 

concentrations of 100, 250 and 500 nM, and control samples, were prepared using the 

QuantiTect one-step SYBR®Green RT-PCR kit according to Table ‎2.8 and Table ‎2.9. The 

mastermix of this kit contains many of the key components for PCR reactions, including 

HotStarTaq® DNA Polymerase, buffer, deoxynucleotide mix (dNTP), including dUTP, SYBR 

Green I DNA dye, ROX™ passive reference dye, MgCl2 (5 mM). Assays were subjected to the 

thermal cycle described in Table ‎2.10. All reaction mixtures underwent 30 cycles of 

amplification. If the reaction did not reach the plateau phase within 30 cycles, an additional 5 

cycles were added. Fluorescence data was exported to Excel for analysis. 
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Table ‎2.8: Assay mixtures used to examine the reaction kinetics using the primer pairs of interest. Note that both forward and reverse primers were added to assays at the volumes indicated 

 

 

 

 

Table ‎2.9: Reaction mixtures of control samples used in qPCR assays. Note that both forward and reverse primers were added to assays at the volumes indicated 

 

 

 

 

 

 

 Reagent volume added (μL) 

Final reaction [Primer] (nM) RT mix (1:1 dilution) Mastermix Primer (10 µM) Primer (1 µM) RNA solution (2 ng.μL
-1

) H2O 

100 0.50 12.50 0.00 2.50 0.50 9.00 

250 0.50 12.50 0.63 0.00 0.50 10.88 

500 0.50 12.50 1.25 0.00 0.50 10.25 

 Reagent volume added (μL) 

Control type RT mix (1:1 dilution) Mastermix Primer (10 µM) Primer (1 µM) RNA solution (2 ng.μL
-1

) H2O 

No template ([Primer] = 100 nM 0.50 12.5 0.00 2.50 0.00 9.50 

No template ([Primer] = 250 nM) 0.50 12.5 0.63 0.00 0.00 11.37 

No template ([Primer] = 500 nM) 0.50 12.5 1.25 0.00 0.00 10.75 

No primer 0.50 12.5 0.00 0.00 0.50 11.50 

No reverse transcription 0.00 12.5 1.25 0.00 0.50 10.75 

Water only 0.00 0.00 0.00 0.00 0.00 25.00 
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Table ‎2.10: The thermal profile used in qPCR assays. Underlined steps were repeated in the order in which they 

appear. The number of cycles used depended on the kinetics of individual reactions 

Step Duration Temperature (°C) 

Reverse transcription 20 min 50 

Polymerase activation 15 min 95 

Denaturation 15 s 94 

Annealing 30 s Specified annealing temperature (Ta ) (Table ‎5.3) 

Extension 5 s 72 

Melt curve activation 1 min 95 

Melt curve analysis ~ 20 min Through range 55-95 

 

 

2.2.10.4.2 Measurement of reaction efficiency 

All reagents described were purchased as part of the QuantiTect SYBR® Green RT one -step RT-

PCR kit. 

Each RNA dilution (10 μL) was added to assay mastermix (90 μL) and apportioned into 

technical replicates (n=4). Control samples were prepared according to Table ‎2.9, excluding the 

no template controls of [primer] = 100 and 250 nM for irrelevance. Reaction mixtures were 

cycled through the thermal profile detailed in Table ‎2.10, using the appropriate annealing 

temperature (Table ‎5.3). Mean CT values were plotted against the quantity of RNA per rxn and 

the efficiency calculated using equation Eqn. ‎5.1. Data corresponding to the highest or lowest 

dilutions were excluded where results indicated abnormal reaction kinetics.  

 

2.2.10.5 Examination of primer pair specificity 

The specificity of primer pairs found/designed was assessed to ensure pairs producing a single 

amplicon only were used in relative quantification investigations, and that the amplicon is of 

the size predicted by the PrimerBLAST tool. 
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2.2.10.6 Examination of dissociation plots 

Dissociation plots obtained during the melt curve analyses performed during primer 

concentration optimisation (section ‎2.2.10.4.1) were visually examined and the number of 

peaks, and the temperature at which they appeared, recorded. If multiple peaks were present, 

the annealing temperature was raised by 2°C to thermodynamically disfavour nonspecific 

molecular binding events. 

 

2.2.10.7 Gene expression analyses of mechanostmulated hMSC 

Gene expression investigations of strained (5, 10 and 20%), pericardium-seeded hMSC were 

performed and analysed using the comparative CT method. 

2.2.10.7.1 qPCR assay preparation 

All reagents used in this method are supplied as part of the QuantiTect one-step SYBR®Green 

RT-PCR kit. One qPCR assay was performed per gene of interest, per strain condition.  

For the 5 and 20% strain conditions, gene expression analyses were performed on unseeded, 

seeded (prior to sample transfer to the bioreactor), strained and unstrained samples. For the 

10% strain condition, unseeded samples were erroneously omitted. Assay mastermix (98.4 μL) 

was aliquoted for each experimental replicate to be interrogated and the corresponding 

template RNA (1.6 μL) added. Mixtures were homogenised by vortexing (5s). Each mastermix 

aliquot, corresponding to an individual experimental replicate, was aliquoted into technical 

replicates (n=3) into qPCR tube strips. The thermal profile described in Table ‎2.10 was applied. 

2.2.10.7.2 Data analysis 

All gene expression data were analysed using the comparative CT method. Many high quality 

descriptions of the application of this method have been published (Pongers-Willemse et al., 

1998; Huggett et al., 2005; Wong and Medrano, 2005; Jain et al., 2006; Schmittgen and Livak, 

2008). 

Mean threshold fluorescence cycle values for the housekeeping gene (28s ribosome) and 

genes of interest for each experimental replicate were calculated, and used to calculate 

corrected (or normalised) CT values according to Eqn. ‎7.1. The value of 2-ΔCT was found for each 

normalised CT data point and plotted, by sample type, with confidence limits (p=0.05).  
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2.2.11 Microscopy and image processing 

2.2.11.1 Histological sections 

Histological sections were examined by bright field microscopy, using an Olympus BX51 

upright microscope.  Images were captured at 10 or 20 × magnification using an Olympus U-

CMAD3 camera, and processed using Olympus Cell^B image acquisition software.  

 

2.2.11.2 Cultured cells 

Cultured cells were examined by bright field or phase contrast microscopy at 10 × 

magnification using an Olympus IX71 inverted microscope,  images captured using an Olympus 

U-CMAD3 camera and processed using Olympus Cell^B image acquisition software . 

 

2.2.11.3 Examination of pericardium by scanning electron microscopy 

 Higher resolution images of fresh and acellular pericardium were captured using scanning 

electron microscopy (SEM). This allowed the visualization of collagen fibre crimping. 

Selected samples (~ 1 cm2) were dissected from acellular or native pericardial specimens, cut 

to shape to distinguish between the fatty and mesothelial surfaces as previously  described 

(Fig. ‎2.1) and fixed in glutaraldehyde for 2 hours (50 mL; 2.5% v/v). Pericardia were then 

washed in phosphate buffer (0.1 M) twice for 30 minutes each and post fixed in osmium 

tetroxide overnight (50 mL; 1% v/v). This was followed by dehydration using an asce nding 

acetone series (50 mL; 20, 40, 60, 80, 100, 100% v/v) for 30 minutes per wash. To complete 

sample preparation, prepared tissue was critical point dried, mounted on standard (13 mm) 

pin stubs and sputter coated with platinum to a thickness of 5 nm. Specimens were imaged at 

2000 and 20000 × magnification using an field emission gun environmental scanning electron 

microscope (FEGSEM). Selected specimens were also examined at higher magnifications (≥ 

50000 ×) where possible. 
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2.2.12 Bioreactor culture validation 

2.2.12.1 Measurement of medium depth in the bespoke Tencell seeding rings 

A calibration curve showing the relationship between the volume of culture medium added to 

the Tencell seeding rings and the depth above the acellular porcine pericardium substrate was 

prepared to establish the volume of medium required to maintain an optimum depth of 3 

mm. 

Tissue samples (n = 3; approx. 2 × 3 cm) were placed underneath the Tencell seeding rings and 

the total seeding ring depth measured using callipers. Quantities of medium (50 – 200 μL) 

were added to the seeding ring and the medium depth calculated according to Eqn. ‎2.1. The 

distance of culture medium from the top of the well was measured by incrementally 

advancing the calliper probe towards the sample until the liquid meniscus was disturbed and 

medium was visibly in contact with the apparatus. 

𝑴𝒆𝒅𝒊𝒖𝒎 𝒅𝒆𝒑𝒕𝒉 = 𝑺𝒆𝒆𝒅𝒊𝒏𝒈 𝒓𝒊𝒏𝒈 𝒅𝒆𝒑𝒕𝒉 − 𝒎𝒆𝒏𝒊𝒔𝒄𝒖𝒔 𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝒇𝒓𝒐𝒎 𝒘𝒆𝒍𝒍 𝒕𝒐𝒑 

Eqn. ‎2.1: The calculation to find the depth of culture medium above the seeded surface 

 

2.2.12.2 Extract cytotoxicity of Tencell seeding rings 

2.2.12.2.1 Extract cytotoxicity of the Tencell seeding rings with respect to 3T3 and BHK cells 

Conditioned medium was tested for sterility as described in section ‎2.2.5. Baby hamster 

kidney (BHK) and 3T3 cells were passaged and resuspended to concentrations of 1.25 × 105 

and 5.00 × 104 cells.mL-1 respectively. Cell suspension (200 μL) was seeded in an opaque 96 

well plate (n = 4 per condition; conditioned, unconditioned and positive control medium 

conditions tested) in the corresponding unconditioned medium and cultured for 24 hours 

(37 °C; 5 % (v/v) CO2 in air). Following initial culture, medium was aspirated and replaced (200 

μL) by test medium as appropriate and incubated for 24 hr (37 °C; 5 % (v/v) CO2 in air). 

Following extract culture, test culture medium was replaced with the appropriate 

unconditioned culture medium (50 μL)  and measurement of the luminescence counts of 

cultured cells, as quantified by the ATPlite™ assay, performed as described in Section Error! 

eference source not found.. Statistical analyses were conducted using one way ANOVA and 

Tukey’s post-hoc test. 
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2.2.12.2.2 Cytotoxicity of a concentrated Tencell seeding ring extract  

Conditioned medium was tested for microbial contamination as described in section ‎2.2.5. 

Baby hamster kidney (BHK), 3T3 and pMSC were passaged and resuspended at cell densities 

of 1.25 × 105, 5.00 × 104 and 1.65 × 105 cells.mL-1 respectively. Cell suspension (200 μL) was 

seeded in an opaque 96 well plate (n = 4 per condition; conditioned, unconditioned and 

positive control media conditions tested) in the corresponding unconditioned medium and 

cultured for 24 hr (37 °C; 5 % (v/v) CO2 in air). Following initial culture, medium was aspirated 

and replaced (200 μL) by test medium as appropriate and incubated for 24 hr (37 °C; 5 % (v/v) 

CO2 in air). Test culture medium was replaced with the appropriate unconditioned culture 

medium (50 μL) and measurement of the luminescence counts of cultured cells, as quantified 

by the ATPlite™ assay, carried out as described by Section Error! Reference source not found.. 

tatistical analyses were carried out using one-way ANOVA and Tukey’s post-hoc test. 

 

2.2.12.3 Validation of temperature regulation of the Tencell bioreactor 

Temperature regulation was validated to optimise cell culture in the Tencell bioreactor such 

that temperatures compatible with cell culture were maintained comparably and stably 

between different wells. 

 

2.2.12.3.1 Engineering modifications of heating apparatus 

Any initially apparent maintenance needs were addressed prior to conducting any validation. 

Engineering modifications were completed in two phases. In the first instance, the metallic 

clasps and sealant used to secure the perspex lid onto the heating base were replaced. 

Following initial temperature regulation validation (section ‎2.2.12.3.3), the original heating 

controller module (Tempatron dtc410) was replaced by a tunable EZ-zone PM heating 

controller. All engineering modifications of the Tencell bioreactor were performed by Lee 

Wetherill and Rhys Moore (Mechanical Engineering, University of Leeds). 

 

2.2.12.3.2 Autotuning of the EZ-zone PM heating controller 

The EZ-zone PM heating controller was autotuned to optimise the heating strategy employed 

by the apparatus for the conditions in use. In a class II biosafety cabinet, pre -warmed water 

(5.5 mL; appropriate volume found by experiment described in section ‎2.2.12.4.1) was added 
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to each Tencell well (Fig. ‎2.2), and the two heating controller thermocouples affixed in wells 1 

and 9 such that the sensors were immersed in water, but not in contact with metallic parts. 

The Perspex lid was replaced, secured using  clasps, and the heat lamp thermocouple secured 

on its surface by tape. The heat lamp was set to 60°C and lid warming commenced. The 

temperature controller was set to 36°C and the advance key (resembling the symbol 

commonly used to indicate that items are recyclable) was used to select the autotune 

function (displayed as ‘AUT’ on the device display). All components of the Tencell apparatus 

were individually switched off following completion of autotuning (~ 90 min). 

 

2.2.12.3.3 Measurement of temperature regulation in the Tencell bioreactor 

Water was incubated (1 hr; 37 °C) and added to the water bath (50 mL), Tencell well baths 

(wells 1, 8, 9, and 16; 5.5 mL.well -1)  and Tencell culture wells (5.5 mL.well -1; appropriate 

volume found by experiment described in section ‎2.2.12.4.1) in situ in the bioreactor in a class 

II biosafety cabinet (Fig. ‎2.2). The heating controller thermocouples  (n=2) were affixed in 

wells 1 and 9 such that the sensors were immersed in water, but not i n contact with metallic 

parts. Thermocouples (n=4) connected to a handheld temperature probe were fixed in wells 3, 

8, 11 and 14 using tape in a similar fashion. The wells selected reflected the spatial 

arrangement of heating elements inside the base, in order to cover them fully. The Perspex lid 

was secured and heated using a heat lamp as described in section ‎2.2.12.3.2. The temperature 

monitor was programmed to record the temperature of each probe every 5 minutes. The EZ-

zone PM heating controller was set to 36 °C temperature regulation begun.  

Recorded temperatures were printed on receipt roll and manually entered into, and plotted 

using, Microsoft Excel.  
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2.2.12.4 Reduction fluid loss in culture wells of the Tencell bioreactor 

The degree of fluid loss was measured and minimised to maintain a medium osmolality 

conducive to maintaining cell viability during the culture of seeded scaffolds in the Tencell 

bioreactor. 

2.2.12.4.1 Preparation of medium depth calibration graph 

The relationship between medium depth and the volume of culture medium added was 

determined to ascertain the volume of medium that should be used for cell culture in Tencell. 

Fig. 2.2: Photographs of the removable parts of the Tencell bioreactor. A: The water bath, 

used to increase humidity in the cell culture chamber and disfavour evaporation from the 

culture wells; B: Tencell culture well with tissue clamps in situ. The stationary clamp is 

secured to the well using the short well screw (E; first screw); C: Dismantled cell culture well; 

D: Tissue clamps. Tissue is held in place by tightening the screws. The left-hand clamp is 

affixed to displacement arms in strained wells, using a long well screw (E; second left); E: 

Screws/posts used in conjunction with the Tencell wells. Far left: Short well screw used to 

secure tissue clamp (D; right-hand clamp) to Tencell wells; Second left: Long well screw, 

used to attach tissue clamp (D; left-hand clamp) to displacement arms; Second right: Long 

base screw, to secure Tencell wells to the heating base; First left: Steel post, used to secure 

Tencell wells to the heating base. 

A 

B 

C 

D 

E 
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The appropriate volume of culture medium should have a depth of 3 mm above the seeded 

surface, in common with conventional cell culture. 

Acellular pericardium of dimensions approx. 1.1 × 3.3 cm was resected from tissue stocks 

using a Tencell cutting guide of the appropriate dimension, added to hMSC culture medium 

(~5 mL) and incubated (37 °C) overnight. Medium conditioned tissue (n=3) was fixed between 

clamps in Tencell culture wells and culture medium (in the range 3-7 mL) added incrementally 

(Fig. ‎2.2). Prior to medium addition, the tissue depth from the well top was measured using 

callipers. After each addition, the distance between the well top and the fluid level was 

measured by advancing the calliper probe until the liquid meniscus was disturbed. 

Measurements were taken in wells both attached and unattached [to the Tencell 

displacement arms] wells, and were recorded in triplicate.   

The medium depth above the tissue surface was calculated using Eqn. ‎2.2 and plotted against 

the volume of medium added. The resulting straight line graph was interpreted to find the 

optimum medium volume for Tencell cell culture. 

𝐷𝑒𝑝𝑡ℎ 𝑎𝑏𝑜𝑣𝑒  𝑡𝑖𝑠𝑠𝑢𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = 𝑡𝑖𝑠𝑠𝑢𝑒  𝑑𝑒𝑝𝑡ℎ  𝑓𝑟𝑜𝑚 𝑤𝑒𝑙𝑙 𝑡𝑜𝑝 − 𝑓𝑙𝑢𝑖𝑑  𝑙𝑒𝑣𝑒𝑙  𝑓𝑟𝑜𝑚 𝑤𝑒𝑙𝑙 𝑡𝑜𝑝 

Eqn. ‎2.2: The calculation performed to yield the medium depth above the seeded surface from the tissue depth 

from the well top and the level of added medium. 

 

2.2.12.4.2 Measurement of culture well fluid loss 

The Tencell apparatus was set up as described in section ‎2.2.12.3.3, excluding the use of the 

handheld temperature recorder, and the amount of water remaining in Tencell wells after a 

24 hour mock culture period measured using serological pipettes. Fluid loss using this 

procedure was also tested following humidification at the beginning of the experiment. 

Tencell mock culture was prepared as previously described, and water (~ 30 mL) was added to 

a sealed flask and heated using a hotplate set to 300 °C. Once boiling, the flask was connected 

to taps on the Tencell culture chamber Perspex lid using tubing and the chamber humidified 

for  5 minutes (Fig. ‎6.1E). To more accurately replicate cell culture conditions, the chamber 

was gassed via the lid taps for an additional 5 minutes (5% (v/v) CO2 in air; 40 mmHg). Fluid 

loss following Tencell mock culture with chamber humidification was also measured after an 

extended culture period of 72 hours. Water loss not significantly different from that lost due 

to the testing method was considered acceptable (section ‎2.2.12.4.3). 
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2.2.12.4.3 Measurement of fluid loss due to the testing method 

The volume of water not recovered from Tencell wells due to liquid adherence to the metallic 

parts was measured for comparison with the volume lost during mock Tencell culture. Water 

(5.5 mL; appropriate volume found by experiment described in section ‎2.2.12.4.1) was added 

to Tencell wells (n=3) containing clamps, and the amount recovered following removal of the 

clamps measured using serological pipettes (Fig. ‎2.2). Each measurement was taken in 

triplicate and the mean fluid loss and confidence limit (p=0.05) calculated. 

 

2.2.12.5 Validation of displacement of the arms of the Tencell bioreactor 

The actual displacement of the Tencell displacement arms must be validated against that 

selected using the amplifier knob to ensure that the desired level of strain is being applied to 

seeded scaffolds, and to confirm that there are minimal differences in the strain applied 

between experimental replicates. 

2.2.12.5.1 Engineering modifications of displacement arms 

Initial examination by eye prior to displacement validation indicated fixation issues between 

the Tencell displacement arms and a displacement bar to which they were attached inside the 

device casing. Corroded nuts attaching these two items were replaced by Lee Wetherill and 

Rhys Moore (Mechanical Engineering, University of Leeds). 

2.2.12.5.2 Measurement of arm displacement 

Actual displacement of each Tencell arm in the range 0 – 33% strain for a strain area of 1.1 × 

1.0 cm (0.0 – 3.0 mm) was measured using a mounted dial gauge manufactured by Lee 

Wetherill (Mechanical Engineering, University of Leeds). The dial gauge was firmly secured to 

the heating base lightly in contact with the displacement arm under examination using double 

sided tape and the required displacement selected using the displacement module amplifier 

knob (Fig. ‎2.3). Movement of the dial gauge needle was recorded by video using a mobile 

phone. Video recordings were examined by frame using Windows Media Player 10 and the 

needle start and stop positions determined at the moments of inertia of the needle. 

Differences between needle positions, or the actual displacement of the arms, were 

calculated using Microsoft Excel and plotted against the theoretical arm displacement 

selected using the displacement module amplifier knob. 
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Fig. 2.3: Images of the displacement module amplifier knob (A) and the experimental 

setup, using a mounted dial gauge, used to measure the actual displacement of Tencell  

arms (B) . Major increments on the amplifier knob correspond to millimetres, and minor 

increments tenths of millimetres. Selected set displacements in the range  0.1 – 3.0 mm 

were measured. Video recordings of the dial gauge needle were analysed to calculate the 

actual displacement measured for each set displacement. The number label on the 

displacement module indicates the order in which various components of the Tencell 

bioreactor should be switched on to minimise user errors. 

A 

B 
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2.2.12.6 Validation of experimental protocol 

The Tencell cell culture protocol devised according to theoretical criteria designed to 

accurately define optimal cell culture conditions was tested experimentally with hMSC to 

validate its use in subsequent investigations concerning bioreactor-cultured hMSC. 

2.2.12.6.1 Culture of seeded substrates in the Tencell bioreactor 

All manipulations of the bioreactor apparatus and cell seeded tissue were conducted 

aseptically using a class II biosafety cabinet, and using sterile implements. Metallic 

components/implements and tubing were sterilised by dry (section‎2.2.2.2) and moist heat 

(section ‎2.2.2.1) respectively. The Tencell heating base and lid were cleaned three times with 

ethanol (70% (v/v)). Seeded scaffolds were prepared as described previously (section ‎2.2.8.9.2)  

and transferred aseptically to the tissue clamps, keeping the cell seeded surface uppermost. 

Tissue clamps were placed in their corresponding wells and culture medium added (5.5 mL). 

Wells were incubated (37 °C; 5% (v/v) CO2 in air) in vented culture pots prior to transfer to the 

Tencell bioreactor. Tencell culture wells were fitted to the heating base and displacement 

arms using screws and posts (Fig. ‎2.2) and bioreactor setup completed as described in 

section ‎2.2.12.4.2. To end Tencell culture (24 hours), the heating module was shut down 

approx. 30 minutes prior to the heat lamp, to prevent medium condensation on the Perspex 

lid. Cultured scaffolds were removed aseptically, placed in medium (~ 2 mL) and incubated 

(37 °C; 5% (v/v) CO2 in air) immediately prior to analysis. Seeded substrates were cultured in 

the Tencell bioreactor using both normal complete hMSC medium, and that supplemented 

with HEPES. 

2.2.12.6.2 Measurement of luminescence counts of Tencell cultured seeded substrates 

Cultured pericardial substrates removed from the Tencell bioreactor as described in 

section ‎2.2.12.6.1 were assessed for cell viability using the ATPlite™ assay, according to the 

method described in section ‎2.2.8.11. 

2.2.12.6.3 Extract cytotoxicity of Tencell culture wells 

Extract cytotoxicity testing of the Tencell culture wells was performed according to the 

method described for the Tencell seeding rings (section ‎2.2.12.2.2), but conditioning one 

complete culture well per medium type in place of the seeding rings described previously. 
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Chapter 3: Dissection, decellularisation and 

characterisation of porcine pericardium 

 

3.1 Introduction 

 

3.1.1 Substrates for mechanostimulation of hMSC  

This chapter describes the preparation of a stock of acellular porcine pericardia, used in this 

study as a substrate for three-dimensional mechanostimulation of hMSC. Although a general 

consensus as to the exact location of the hMSC niche in vivo is lacking, all cells exist in three-

dimensional environments consisting of ECM components, cellular neighbours and physical 

stimuli. Despite this, research into the mechanostimulation of hMSC has frequently been 

conducted using artificial, two-dimensional substrates that do not themselves facilitate cell 

adhesion, such as polyurethane (Sittichokechaiwut et al., 2010), polyacrylamide (Engler et al., 

2006; Byfield et al., 2009), microchips (Park et al., 2012b; Zhou and Niklason, 2012), polylactic 

acid (PLA) (Kreja et al., 2012) and silicon (Huang et al., 2012). Cell adhesion is often achieved 

using ECM proteins such as collagen I and fibronectin, but three-dimensional penetration of 

such scaffolds by hMSC is unlikely (Park et al., 2004; Ku et al., 2006; Friedl et al., 2007; Chen et 

al., 2008; Sen et al., 2008; Huang et al., 2009; Park et al., 2011b; Shih et al., 2011; Chopra et al., 

2012; Khayat et al., 2012; Zhou and Niklason, 2012). Acellular xenogenic scaffolds avoid the 

caveats of artificial substrates by providing a three-dimensional environment to which cells 

can make appropriate adhesions. Furthermore, components of cell-ECM adhesions, especially 

integrins, are thought to be mechanosensitive. Force transmission through cytoskeletal 

elements is also strongly suspected; logically, the cytoskeleton of hMSC cultured in a three-

dimensional substrate is distinct from that in monolayer culture, potentially eliciting distinct 

mechanoresponses. Although this work is concerned with attaining a fundamental 

understanding of the response of hMSC to strain, and not the manufacture of tissue-

engineered therapies, the knowledge gained is intended to be relevant to such endeavours 

through the use of a biologically-relevant substrate.  

Acellular porcine pericardium has been previously investigated for use as a three-dimensional, 

biologically-relevant scaffold for bone grafting and regeneration (Gardin et al., 2015) and 
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cardiac diseases (Mirsadraee et al., 2007; Mendoza-Novelo et al., 2011; Morticelli, 2013; Vashi 

et al., 2015). Pericardium forms a fluid-filled sac around the mammalian heart to limit its 

motion and prevent overexpansion during the cardiac cycle. A  largely collagenous material, it 

is readily available from porcine sources, and has a sheet-like morphology when dissected that 

can be easily cut to shape. Of critical importance, acellular pericardium has also been shown 

to facilitate infiltration by hMSC (Morticelli, 2013).  

 

3.1.2 Decellularisation of porcine pericardium 

Decellularisation protocols should result in tissue that maintains native histoarchitecture, is 

devoid of cellular debris, non-cytotoxic, and sterile. In research concerning the development 

of tissue engineered therapies, removal of cellular material is essential for reducing the 

immunogenicity of the scaffold and biocompatibility. In the present study, efficacious 

decellularisation of the pericardial tissue, to be used as a substrate for studies of the response 

of hMSC to physical stimuli, was critical for ensuring the validity of qPCR data; since target 

cDNA sequences are amplified approximately 30 billion times during a typical PCR assay, any 

residual porcine DNA in the pericardial matrix could significantly confound gene expression 

analyses.   

 In this work, a patented protocol used in the development of a vascular patch, now marketed 

in Europe (Tissue Regenix Group plc), was used to decellularise porcine pericardia in 5 batches. 

This protocol utilised commonly used reagents for the decellularisation of a wide range of 

tissues (Booth et al., 2002; Mirsadraee et al., 2006a), but uniquely, aprotinin and EDTA were  

added to wash solutions to inhibit native protease activity, which can degrade ECM proteins. 

The purpose of each reagent in the decellularisation process is given in Table ‎1.2. In some 

decellularisation protocols, physical methods such as snap freezing, mechanical forces and 

mechanical agitation may also be used to achieve cell lysis and debris removal (Gilbert et al., 

2006; Crapo et al., 2011); these were not necessary in this study, although fat deposits were 

manually removed during sample preparation. Adipose tissue sequesters sodium dodecyl 

sulfate (SDS) and hence may confound the decellularisation process if present (Booth et al., 

2002; Mirsadraee et al., 2006a). 
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3.2 Aims and objectives 

3.2.1 Aim: 

The aim of the work presented in this chapter was to produce a stock of validated, acellular 

pericardium for future use as a substrate for hMSC. The specific objectives were as follows:  

 

3.2.2 Objectives: 

 To decellularise a stock of  porcine pericardia according to an existing protocol 

developed for the manufacture of a vascular patch 

 

 To validate the acellular pericardium stocks for future use as a substrate for hMSC via 

histological analysis and total DNA content analysis, and by biocompatibility and 

sterility testing 

 

3.3 Experimental approach 

During initial investigations, acellular porcine pericardia were prepared (n=67) according to an 

existing protocol, and validated to determine their suitability as cell scaffolds.   

Decellularisation was carried out to remove porcine cells and cellular debris from the tissue, 

and  the acellular stock validated using selected techniques.  Histology was carried out in 

order to qualitatively assess the histoarchitecture of acellular samples.  The efficacy of 

decellularisation was determined by extraction and quantification of DNA from native and 

acellular pericardial samples.  Sterility testing was conducted to test the decellularised tissue 

for the presence of any microbes, since such contamination would preclude its use as a 

scaffold for tissue culture experiments with hMSC.  Finally, contact cytotoxicity testing was 

performed to assess the biocompatibility of the acellular porcine pericardium prior to use with 

cells.  
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3.4 Results 

A total of 67 fresh pericardia were decellularised in five batches (n=7, 12, 12, 12 & 24 

respectively).  Three control pericardia from each batch were analysed to confirm that the 

decellularisation process had been successful.   The cellularity, ECM composition and structure, 

DNA content and in vitro biocompatibility of the three control acellular pericardia from each 

batch was determined.  This was necessary to assess the suitability of the acellular pericardia 

as the scaffold material for future studies using MSC. 

 

3.4.1 Histoarchitecture of fresh and acellular tissue 

 

3.4.1.1 Haematoxylin and eosin stained tissue sections  

Haematoxylin and eosin staining of tissue sections was performed to compare the cellularity 

and histoarchitecture of native and decellularised tissue.  Native pericardium was found to be 

composed of layers of parallel crimped collagen fibres fully infiltrated by cells, as shown in 

Fig. ‎3.1a.  These layers were arranged orthogonal with respect to each other.  Pericardia 

subjected to the decellularisation protocol do not retain cells and the collagenous structure of 

native tissue was largely maintained (Fig. ‎3.1b-f).  There was an increase in collagen fibre 

separation in the decellularised tissue from  batch one (Fig. ‎3.1b), but this was not observed in 

the decellularised samples from other batches (Fig. ‎3.1c, d, e  & f).  In all batches, fibre 

directionality and crimping was maintained.  The orthogonal layer structure of the collagen 

fibres was also maintained following decellularisation (Fig. ‎3.1d; inset). 
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3.4.1.2 Alcian blue stained tissue sections 

Alcian blue staining of pericardial tissue sections was conducted to determine any changes in 

ECM composition of pericardium following decellularisation, with particular regard to GAGs.  

GAGs were found to be localized at the surfaces of native tissue (Fig. ‎3.2a).  These surface 

GAGs were absent following decellularisation (Fig. ‎3.2b) in samples from all batches.  

B 

D 

A 

C 

Fig. 3.1: Haematoxylin & eosin stained sections of native and decellularised pericardia.  Native 

pericardium (A) showed significant cellular content.  No haematoxylin staining  was observed in 

decellularised tissue, indicating complete removal of cells.   B, C, D, E and F correspond to control samples 

taken from decellularisation batches 1, 2,3 4 and 5 respectively.  Image D (inset) shows that the orthogonal 

layer structure of native pericardium was maintained following decellularisation. Parallel and orthogonal 

collagen layers are separated by a dashed line. Layers of collagen parallel to the plane of the microscopy 

slide can be identified through their visible collagen crimping, whereas layers orthogonal to the plane 

imaged have been bisected and their crimping therefore cannot be seen.   Images were captured at 20 × 

magnification.  Scale bars are 100 µm. 
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Observation of alcian blue stained sections revealed that  the histoarchitecture of ECM 

collagen fibres was maintained following decellularisation, as also indicated in Fig. ‎3.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Alcian blue stained 
GAGs at tissue 

surface 

Fig. 3.2:  The GAG content of porcine pericardium before (a) and after (b) decellularisation. GAGs, 

normally found at the surfaces of native tissue, was absent following decellularisation for all batches. 

Images were captured at 10 × magnification.  Scale bars are 200 µm 

A B 
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3.4.2 Scanning electron microscope images of native and acellular 

pericardium  

SEM imaging of native and decellularised pericardia was performed to examine the 

collagenous extracellular matrix in finer detail. Pericardial tissue retained tight collagen crimps 

following decellularisation, but individual collagen fibrils were more distinct than those of 

native tissue, indicting a loss of surface components (Fig. ‎3.3). The subunit structure of 

collagen fibrils in acellular tissue was distinguished at high magnification (90,000 ×) (Fig. ‎3.4). 
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20,000 × magnification 

 

Fig. 3.3: SEM images of native and acellular pericardium at 2000 and 20,000 × magnification. Scale bars 

are 50 µm and 5 µm respectively. The tight collagen crimping of native pericardium was maintained 

following decellularisation, but the surface of the tissue  appeared smoother in the native tissue compared 

to the decellularised tissues, indicating a loss of surface elements.  
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3.4.3 Sterility of decellularised pericardia 

Sterility testing was performed to test the acellular pericardia for the presence of bacterial 

and yeast contamination.  No growth was observed in broths containing tissue samples, and 

positive controls were cloudy in appearance, indicating microbial growth.  All fresh blood agar, 

nutrient agar and Sabouraud dextrose agar plates corresponding to the acellular samples 

were free of microbial colonies.  Positive control plates and broths showed extensive 

microbial growth in all cases. 

 

3.4.4 DNA content of native and acellular pericardia  

 

The DNA content of native and acellular pericardia was determined following extraction of the 

DNA using the Quiagen DNeasy kit by spectrophotometry in order to quantify the extent of 

decellularisation.  The mean DNA content of native and treated tissue was an average of 

700.31 ng.mg-1 and 3.12 ng.mg-1 respectively, corresponding to a 99.56% reduction of the 

total DNA content (Fig. ‎3.5).  Statistical evaluation using one-way ANOVA and determination of 

the minimum significant difference using the T-method showed that the DNA levels in 

acellular pericardia were significantly less than the DNA levels in native pericardia  (p<0.05) for 

Fig. 3.4: SEM image of an acellular pericardium scaffold at very high magnification (90, 000 ×), 

showing the subunit structure of collagen fibrils (indicated by arrows). Scare bar is 1 µm. 
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all batches that had been decellularised.  An isolated anomalous result was recorded: one 

acellular specimen was found to contain 72.00 ng.mg-1 DNA.  

 

Fig. ‎3.5: DNA content of decellularised pericardia  compared to native tissue pericardia.  Data shown as the mean 

(n=3) for each group ± 95% confidence limits.  Analysis of these data by ANOVA (p=0.05) indicated that 

decellularised tissue from all batches contained significantly less DNA than native tissue. Groups not significantly 

different from each other are denoted by the same asterix symbol, and vice versa. 

 

 

3.4.5 Contact cytotoxicity testing of decellularised pericardial tissue  

BHK and 3T3 cells were incubated with acellular pericardial tissue samples from each 

decellularisation batch, positive and negative controls, and on tissue culture plastic to assess 

the in vitro biocompatibility of decellularised pericardium. Contact cytotoxicity testing was 

performed following completion of decellularisation.  Microscopy images from each condition 

are shown in Figures Fig. ‎3.6 and Fig. ‎3.7. Collagen, with its known ability to support cell 

growth, was used as a negative control with respect to cytotoxicity, and cyanoacrylate, known 

to be cytotoxic, was used as a positive control.  Both cell types exhibited a normal morphology 

following culture with the acellular pericardial tissue and showed similar growth compared to 

those in the presence of collagen and on tissue culture plastic.  Cells grew up to the edge of 

the test samples, but displayed a different morphology and growth pattern in wells in which 
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collagen gel seepage from underneath samples occurred (Fig. ‎3.6a).  Wells containing 

cyanoacrylate contained no cells.   



106 
 

 

A B 

C D 

Fig. 3.6: The effect of decellularised pericardium on the growth of 3T3 cells as compared to known cytotoxic 

(cyanoacrylate adhesive)  and non-cytotoxic (collagen I) materials. The cytotoxicity of decellularised 

pericardium was assessed following completion of the decellularisation protocol .  Images a-e show the growth 

of 3T3 cells in the presence of acellular pericardium from batches 1, 2, 3, 4 and 5 respectively.  The cells grew 

normally in the presence of the tissue and made contact with its surface.  Growth was also extensive in the 

presence of the collagen negative control (f), but was completely absent in the presence of the cyanoacrylate 

positive control (g).  Dense growth was also observed on tissue culture plastic, included tor epresent standard 

cell culture conditions (h).  In some cases, collagen seepage from underneath tissue was evident (a) leading to 

altered growth/behaviour in the immediate vicinity of the sample.  Images were captured at 10 × magnification.  

Scale bars are 200 µm. 
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A B 

C D 

Fig. 3.7: The effect of  decellularised pericardium on the growth of BHK cells as compared to known cytotoxic 

(cyanoacrylate adhesive) and non-cytotoxic (collagen I) materials. The cytotoxicity of decellularised 

pericardium was assessed following completion of the decellularisation protocol.  Images a-e show the growth 

of BHK cells in the presence of acellular pericardium from batches 1, 2, 3, 4 and 5 respectively.  The cells grew 

normally in the presence of the tissue and made contact with its surface, although cells in image E were alrger 

and more granular.  Growth was also extensive in the presence of the collagen negative control (f), but was 

absent in the presence of the cyanoacrylate positive control (g).  Dense growth was also observed on tissue 

culture plastic, included to represent standard cell culture conditions (h). Images were captured at 10 × 

magnification.  Scale bars are 200 µm.   
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3.4.6 Summary of results 

The results of all validation analyses must show that test acellular pericardia meet key 

inclusion criteria for corresponding stocks to be utilised as cell culture substrates. Table ‎3.1 

provides a summary illustrating the suitability of each batch of native pericardium 

decellularised by method of validation. Batches 2-5 satisfy all inclusion criteria, but the 

histoarchitecture of acellular pericardium decellularised in batch 1 (section ‎3.4.1), as 

visualised by haematoxylin and eosin and alcian blue staining, was significantly altered from 

that of native tissue during processing, and hence is inadequate. 

Table ‎3.1: Summary of validation results for each batch of decellularisation performed.  Results that indicate 

suitability of acellular tissue for use as a cell culture scaffold are indicated by ‘Y’, and results indicating poor 

suitability ‘N’. Results of all analyses should indicate suitability for a batch of acellular tissue to be used as a cell 

culture substrate. 

  Suitability of acellular pericardium as a cell culture scaffold by analysis 

Batch number Histological 

staining 

Contact cytotoxicity 

testing 

Sterility 

testing 

DNA content 

analysis 

1 N Y Y Y 

2 Y Y Y Y 

3 Y Y Y Y 

4 Y Y Y Y 

5 Y Y Y Y 

 

  

A 
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3.5 Discussion 

Despite growing evidence of the importance of mechanotransduction in MSC differentiation, 

few studies have been conducted that examine the effect of different modes of strain on the 

smooth muscle differentiation of MSC.  Additionally, many previous studies have utilised 

artificial substrates, which are lacking in cellular binding sites (Park et al., 2004; Engler et al., 

2006; Park et al., 2012a; Zhou and Niklason, 2012).  Decellularised pericardium offers 

potential advantages in that it has been shown to encourage normal cellular adhesion and 

provide a three-dimensional environment for cell adhesion and proliferation (Mirsadraee et 

al., 2006a; Mirsadraee et al., 2007).  Hence, physiologically-relevant stimulus may be applied 

to MSC cultured on an acellular pericardium scaffold.  The goals of this project involved the 

physical stimulation of hMSC cultured in the acellular scaffold using a bioreactor, and 

subsequent examination of gene expression.  During initial investigations, 67 pericardia were 

decellularised and validated for their suitability as scaffolds.  Validation focussed on analysing 

the efficacy of decellularisation and the impact of decellularisation on tissue structure and the 

biocompatibility of the tissue. 

Haematoxylin and eosin staining of tissue sections was used to assess the efficacy of 

decellularisation and to compare the histoarchitecture of native and acellular pericardia.  This 

demonstrated a complete lack of cellular material in all of the samples of decellularised 

pericardia analysed and showed that the collagenous structure of the ECM remained intact for 

most samples. Pericardia decellularised in batch one showed tissue damage in the form of 

increased separation between collagen fibres, and in some cases, obvious and large -scale 

tearing of the tissue.  This was attributed to poor dissection and fat removal technique at 

early stages of the learning curve; layers of collagen may have been removed or disrupted 

during handling.  This was subsequently remedied during preparation of batches 2-5 through 

the use of a light box for greater ease of fat visualisation, and maintaining tissue moisture.  

The ECM of subsequent batches remained undamaged, with densely packed, crimped 

collagen fibres.  Since structurally compromised ECM may not transfer applied forces 

appropriately, tissue batch one tissue was not used as a scaffold for studies described in the 

following chapters.  It is recommended that tissue dissection is practiced a number of times by 

the relevant operative prior to the dissection of tissue to be  used in cell culture investigations. 

Examination of haematoxylin and eosin stained acellular pericardium also revealed that 

attempts to cut the tissue orthogonal or parallel to the collagen fibre direction had limited 
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success.  Macroscopically, collagen fibres in pericardium have been observed in multiple 

directionalities and not uniformly as in tissues such as tendon (Lin et al., 2004).  This may be 

because pericardial ECM is arranged into layers in which the fibres are parallel to one another 

within a layer, but are orthogonal to those within neighbouring layers (Fig. ‎3.1).  Hence, 

collagen fibre visualization using polarised light filters showed collagen from several layers 

with different directionalities.  The layer structure of pericardium has been reported 

previously and was evident in images collected in these investigations (Ishihara et al., 1980).  

Collagen fibres are highly anisotropic and have considerable resistance to tensile strain, but 

are much less resistant to strain applied across their long axis.  Thus, in a tissue in which 

collagen fibres are uniformly arranged, it is important to apply mechanical strains consistently 

with regard to fibre direction.  This may prove less important in future studies involving the 

stimulation of hMSC in acellular pericardium, as the orthogonal, multilayer structure of 

collagen is likely to cancel the anisotropic nature of individual layers. 

DNA content in the acellular pericardia was measured and compared to that in native tissue to 

quantify the extent of decellularisation.  A 99.56% reduction in DNA content was observed, 

with acellular samples containing an average of 3.12 ng.mg -1 DNA per dry weight.  This 

compared favourably to the maximum dry weight DNA content of 50 ng.mg -1 commonly used 

to judge the efficacy of decellularisation (Crapo et al., 2011).  However, many commercially 

available decellularized products, such as Graftjacket™ (Wright medical technology, Inc),  

Zimmer™ collagen repair patch (Zimmer, Ltd.) and Acell™ (Acell, Inc) have been reported to 

contain lower levels of DNA (< 1.25 ng.mg-1) (Gilbert et al., 2009).    

Despite this apparent disparity, the data reported in the literature were obtained using less 

sensitive techniques.  In the experiments reported here a NanoDrop™ spectrophotometer was 

used to measure the absorbance of total DNA extracted from digested tissue at 260 nm.  Such 

measurement is sensitive to all forms of nucleic acids.  The widely accepted maximum DNA 

content of 50 ng.mg-1 refers to double-stranded DNA only, as measured by the PicoGreen™ 

assay (Invitrogen, USA).  The PicoGreen™ assay was used to measure the DNA content of the 

commercially available products described previously and is not able to detect it in its single-

stranded form. Treatment of acellular tissues with SDS alone has been shown to result in 

extremely low DNA content values as measured by the PicoGreen™ assay, despite 100% of the 

component nucleic acids remaining in the tissue without further treatment.  Hence, it is highly 

likely that the content of DNA-derived molecular species of the decellularised pericardia 

produced here was lower than that of commercially available products (Andrew Aldridge, 

personal communication).  In these investigations, the PicoGreen™ assay was not performed 
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because more accurate quantification of the presence of DNA remnants is achieved using the 

NanoDrop™ spectrophotometer. However, it is suggested that in future, similar investigations 

the PicroGreen™ assay be performed in parallel to allow direct comparison with 

commercially-available products and widely-accepted standards. 

An anomalous result was recorded during DNA content analysis: an acellular sample was 

found to have a higher DNA content than 50 ng.mg-1 (72 ng.mg-1), and DNA removal may have 

been hindered by fat remnants on the tissue.   

Ribonucleic acid (RNA) content of acellular pericardial tissues was not measured, despite RNA 

being the intended template for downstream gene expression analyses. This was because RNA 

is not stable at temperatures above - 80°C, and thus the probability of any RNA surviving 

temperatures ≥ 4°C, as used in the decellularisation protocol described, was extremely remote. 

Conversely, DNA will not degrade at room temperature for several months, and so poses a 

threat to the validity of qPCR data (Fabre et al., 2014). 

The lack of cellular material in the decellularised pericardial tissues, as confirmed by 

haematoxylin and eosin staining of tissue sections, and high reduction in DNA content 

demonstrated that decellularisation of the porcine pericardial  stock was successful.  Further 

histological analysis was carried out to investigate the impact of decellularisation on ECM 

composition.  Observations of alcian blue stained tissue sections showed that GAGs, normally 

present at the surfaces of native pericardium, were lost following decellularisation.  GAG loss 

following decellularisation has been  well documented for a variety of tissues  and 

investigators have suggested that acids, bases and SDS may be the cause (Gilbert et al., 2006; 

Lovekamp et al., 2006; Prasertsung et al., 2008; Brown et al., 2009; Reing et al., 2010; 

Mendoza-Novelo et al., 2011).  Hence, GAG loss from the pericardia decellularised in these 

investigations most likely occurred during washing with SDS solution and/or during terminal 

sterilisation with PAA.  

 GAGs are charged, hydrophilic species responsible for maintaining water content within 

tissues.  In vivo, pericardium forms a barrier between internal organs to prevent harmful 

friction, so GAGs on the pericardial surface may enhance fluid-film lubrication between this 

tissue and other organs.  GAG loss in acellular tissues has been shown to affect mechanical 

properties.  Although of huge significance in studies that aim to produce functional tissue 

replacements, in fundamental studies that do not involve comparisons between tissue 

engineered constructs and natural tissue it is of less importance. Acellular pericardium has 

already been demonstrated to support MSC adhesion and proliferation regardless of GAG loss 
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(Lucrezia Morticelli, personal communication). It is of note that reagents suggested as 

alternatives to SDS, such as octy-glucopyranoside (OGP) and Triton X-100, also deplete 

porcine pericardium of GAGs when used in decellularisation protocols (Dong et al., 2013).  

Biocompatibility testing conducted with BHK and 3T3 cells revealed that the acellular 

pericardium was not toxic to cells.  Growth proximal to decellularised pericardium was similar 

to that in the presence of collagen gel and tissue culture plastic.  In contrast, a complete 

absence of living cells was observed in culture wells containing toxic cyanoacrylate.  Some 

images appeared to show a halo of lower cell density immediately around acellular pericardial 

samples, but this may explained by collagen gel seepage from underneath the specimens.  As 

cells encountered the collagen they may have stopped proliferating and begun to remodel the 

collagen gel matrix.  This may have given the false impression that the acellular tissue, also in 

close proximity, was reducing cell numbers.  However, cells were observed to grow up to, and 

onto the surface of the acellular pericardium with normal cellular morphology.  Thus,  contact 

cytotoxicity data strongly suggested that the acellular tissue prepared in these investigations 

was suitable as a scaffold for MSC. 

Sterility testing to detect any microbial contamination showed that processed tissue was 

sterile following decellularisation.  The maintenance of sterility was essential in order to 

determine whether the scaffold could be used in cell culture experiments.   

Scaffold consistency, both between and within decellularisation batches, presents a limitation 

to the use of acellular pericardium, and indeed other tissue-derived matrices, as a cell culture 

scaffold.  In addition to operator error, which may be partially controllable, the tissue is 

inherently variable. On the macroscale, obvious differences between samples include tissue 

size and fat content. Differences in fat content and distribution within and between samples is 

significant since adipose tissue is known to sequester SDS, and so may impact the efficacy of 

decellularisation. The success of manual fat removal is highly dependent on investigator 

judgement and eyesight, and the process may benefit from inclusion of reagents to chemically 

remove this tissue, which to the author’s knowledge, have not been investigated. Additionally, 

the extent to which the genetics of different individuals induces variability in ECM 

composition of pericardium is not known, and would present an uncontrollable variable.  

Variation in tissue culture substrates, which may translate to non-uniform transmission of 

both chemical and physical cues to adhered cells, remains a concern in tissue engineering, 

where the production of consistent products for clinical application and research is 

paramount. One approach to solving this issue is to use artificial substrates (Byfield et al., 
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2009; Sittichokechaiwut et al., 2010; Huang et al., 2012; Kreja et al., 2012), or those 

comprised of a single ECM protein (Arnoczky et al., 2004; Cao et al., 2006; Hankemeier et al., 

2009; Charoenpanich, 2012). Neither substrate type satisfies all the requirements of this study, 

to enable three-dimensional culture of MSC; a substrate capable of facilitating normal cellular 

adhesions with a multiprotein composition comparable to in vivo microenvironments, in 

terms of chemical and physical properties, is needed. Hence, at the present time, 

decellularised natural tissues are most satisfactory for studies of MSC behaviour in three-

dimensional culture, but developments in multiprotein, biomimetic manufactured matrices 

may resolve some associated caveats. 

In conclusion, although inherently variable, acellular pericardium must meet key quality 

criteria with respect to tissue histoarchitecture, DNA content, contact cytotoxicity and sterility 

to be utilised as a cell culture scaffold. During these investigations sufficient acellular stock 

was produced for use as a cell culture substrate for future studies involving the 

mechanostimulation of hMSC. 
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Chapter 4: Culture and Seeding of hMSC on 

an Acellular Pericardium Scaffold 

 

4.1 Introduction 

This chapter describes efforts to devise a method for seeding hMSC on acellular porcine 

pericardium. Previous work by others primarily studied mechanotransduction in cells adhered 

to two-dimensional, artificial substrates (Engler et al., 2006; Sittichokechaiwut et al., 2010; 

Huang et al., 2012; Kreja et al., 2012; Park et al., 2012a; Zhou and Niklason, 2012), or 

encapsulated within hydrogels comprised of one extracellular matrix protein only (Park et al., 

2011b; Charoenpanich, 2012; Steward et al., 2014; Ho et al., 2015). Acellular pericardium 

provides a three-dimensional environment arguably more similar to an in vivo MSC niche, 

facilitating normal cell-substrate adhesions and providing exposure to a heterogeneous ECM 

(Chen, 2010). In addition, data presented in Chapter 3 indicated that the collagenous matrix, 

the major stress-bearing component of pericardial ECM, was retained following 

decellularisation, in agreement with previous reports (Mirsadraee et al., 2006b). Porcine 

pericardium was also previously used to dynamically culture pMSC (Morticelli, 2013). Ease of 

use of the scaffold in the intended system was also a primary concern in its selection; on the 

macro scale, acellular pericardium is a sheet-like tissue, and is readily resected to a desired 

shape and size for bioreactor culture (Fig. ‎2.1). 

Ultimately, the seeding approach developed in these investigations was required to facilitate 

mechanostimulation of the cell-seeded scaffolds in the Tencell bioreactor, and assessment of 

the differentiation potential of cultured hMSC by qPCR. It was decided to use seeding rings to 

seed the cells onto the scaffold. The seeding rings investigated had to cover an area 

approximately equal to the sample strain region in the Tencell bioreactor (1 cm × 1.3 cm). 

Further, sufficient cells had to be seeded on the scaffold to allow reliable measurement of the 

purity and concentration of isolated RNA, to ensure the integrity of relative gene expression 

data. The concentration and purity of nucleic acids can be quantified using UV-vis 

spectrophotometry; the concentration of a given species may be calculated according to the 
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Beer-Lambert Law given its absorbance at a particular wavelength and molar absorption 

coefficient, and purity judged by the ratio of the absorbance at 260 and 280 nm (A260/280) 

(Braude et al., 1950; Atkins and De Paula, 2010) (Eqn. ‎4.1). Solutions having RNA 

concentrations below the limit of detection of conventional nucleic acid spectrophotometers 

(~ 0.4 ng/μL) cannot be reproducibly analysed using this technique. 

A= ε[J]L 

Eqn. ‎4.1: The Beer-Lambert Law. A is the absorbance at a given wavelength, ε a constant known as the molar 

absorption coefficient, [J] the concentration of the measured species and L the sample thickness.  

 

As calculated from the absorption spectrum of RNA, the value of A260/280 of pure RNA is 

expected to be 2.0-2.2. In contrast, typical A260/280 values of DNA are in the range 1.8-2.0.  It is 

of critical importance that the DNA produced and detected in qPCR reactions is derived from 

copy DNA (cDNA) manufactured from isolated mRNA during reverse transcription, and not 

from other DNA present; DNA encoding the full genome of an organism is present in almost 

every cell of eukaryotes, regardless of its application in a given cell, but the presence of mRNA 

corresponding to a particular gene confirms its expression by that cell. Therefore, A 260/280 

values, as measured using a spectrophotometer, should be used to validate the purity of RNA 

prior to its use in PCR, and RNA samples not meeting this minimum acceptance criterion are 

unlikely to generate accurate gene expression data (Glasel, 1995).  

Experiments described in this chapter investigated the seeding of hMSC on an acellular 

pericardium substrate, with respect to the viability of seeded cells and the subsequent 

isolation of verifiable RNA extracts to be used as template material in qPCR assays.   
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4.2 Aims and objectives 

4.2.1 Aim: 

The aim of investigations presented herein was to find the optimum approach, examining the 

cell number, apparatus and incubation time used, for seeding hMSC on acellular pericardium 

for culture in the Tencell bioreactor. 

 

4.2.2 Objectives: 

 To find the minimum number of hMSC from which RNA purity and quantity can be 

reliably ascertained using nucleic acid spectrophotometry 

 

 To isolate and characterise model pMSC by Percol l® fractionation and trilineage 

differentiation and cell morphology respectively 

 

 To investigate, using live/dead staining and the ATPlite™ assay, viability of cells 

seeded using the Tencell seeding rings at different seeding times and medium 

volumes 

 

 To investigate, using ATPlite™, viability of cells seeded using the circular seeding rings 

at different seeding times, and using different methodologies 
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4.3 Experimental approach 

During these investigations, porcine and human MSC were seeded on acellular pericardium 

using different approaches (using both bespoke Tencell seeding rings and circular seeding 

rings) and the viability of the cells seeded onto the matrix was determined.  

The quantity and purity of RNA extracted from cell pellets containing 0.5 – 2.0 × 105 hMSC was 

measured to determine the minimum total number of seeded cells from which sufficient 

quantities of validated RNA could be extracted. This range was examined because is 

corresponds to the range of cell seeding densities previously validated for use on acellular 

pericardium (Morticelli, 2013). Isolation and basic characterisation of pMSC from fresh 

porcine femurs was undertaken to provide a stock of model cells for initial seeding 

investigations. Since the Tencell seeding rings were previously untested for cell culture use, 

less precious pMSC were used to test the efficacy of this equipment, as opposed to more 

precious hMSC. Cell viability of pMSC seeded on acellular porcine pericardium using bespoke 

Tencell seeding rings was examined to ascertain their suitability for use as the seeding 

apparatus prior to Tencell culture. Medium depth in the Tencell seeding rings was measured 

and extract cytotoxicity testing conducted to determine the cause of loss of cell viability 

during the course of these experiments. Cell viability of hMSC seeded on acellular porcine 

pericardium using alternative circular seeding rings was quantified to determine a suitable 

seeding method for subsequent studies. 
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4.4 Results 

4.4.1 RNA measurements by cell number 

Cell pellets containing different numbers of hMSC were tested for purity and total RNA 

quantity to determine the minimum number of cells that could be lysed to produce verifiable 

RNA.  The mean concentration of RNA in assay eluent was 2.6 ± 3.2, 16.7 ± 22.1 and 63.5 ± 

21.6 ng.μL-1 for samples containing 0.5, 1.0 and 2.0 × 105 cells respectively, and the total mean 

amount of RNA extracted for all quantities was sufficient for extensive qPCR analyses (≥ 100 

ng; Fig. ‎4.1). Absorption ratios (A260/A280) of extracted RNA solutions were within the expected 

range of 2.0 – 2.2 for samples containing 1.0 and 2.0 × 105 cells (2.07 – 2.19 and 2.03 – 2.18 

respectively) but did not correspond to typical values for solutions of RNA for samples 

containing 0.5 × 105 cells (-4.12 – 3.98). The large error bars may be accounted for by the fact 

that the amount of ATP produced by individual cells is variable. A standard curve of these data 

would not be expected to be linear as the concentration of the lowest total cell number may 

not have been determined accurately. Additionally, a minimum of five data points must be 

plotted to represent such data as a standard curve in a mathematically acceptable manner.  

From these data, it was determined that a minimum total of 1.0 × 105 cells should be seeded 

onto the acellular pericardium matrix for subsequent qPCR analyses to enable reproducible 

quantity and purity measurement. 
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4.4.2 Characterisation of isolated pMSC 

Multipotential mesenchymal stromal cells were isolated from porcine femurs to provide a 

stock of ‘model’ cells for investigation of the seeding behaviour and sensitivity  of hMSC to 

cytotoxic agents. Isolated cells were characterised with respect to cell morphology and 

differentiation towards the key mesenchymal lineages of fat, bone and cartilage. Isolated 

pMSC had a fibroblastic morphology (Fig. ‎4.2, day 0 images). Positive histological staining of 

cultured cells was apparent after culture periods of 20 (Fig. ‎4.2 & Fig. ‎4.4) and 6 (Fig. ‎4.3) days 

in osteogenic, chondrogenic and adipogenic culture medium respectively. 
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Fig. ‎4.1: Total RNA extracted from from hMSC by cell number. Total RNA values correspond to 

mean concentrations of 2.6 ± 3.2, 16.7 ± 22.1 and 63.5 ± 21.6 ng.μL
-1

 in assay eluent for samples 

containing 0.5, 1.0 and 2.0 × 105 cells respectively. Absorption ratios (A260/ A280) were not within 

the expected range of 2.0 – 2.2 for samples containing the lowest number of cells, but were 

satisfactory for both larger samples. Data presented as means (n=3) ± 95% confidence intervals. 
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Day 20 

Day 6 

Differentiation medium Control medium 

Day 0 

Fig. 4.2: Porcine MSC cultured in osteoinductive (right) and unsupplemented complete DMEM (left) media 

following alizarin red staining.  Staining was only present in cells grown in differentiation medium after 20 days, 

with control cultures remaining unstained throughout. Loss of cell viability/density in control plates analysed 

after 6 and 20 days was observed. This was probably caused by a drying event in the cell culture incubator in 

which they were cultured. Images were taken at 10 × magnification using an Olympus IX70 inverted microscope 

and processed using cell^B imaging software. Scale bars are 100 μm. 
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Day 0 

Differentiation medium Control medium 

Day 6 

Day 20 

Fig. 4.3: Porcine MSC cultured in adipogenic (right) and unsupplemented complete DMEM media following 

oil red O red staining.  Staining was present in cells grown in differentiation medium after 6 days, with 

control cultures remaining unstained throughout.  Images were taken at 10 × magnification using an 

Olympus IX70 inverted microscope and processed using cell^B imaging software.  Scale bars are 100 μm. 
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Fig. 4.4: Porcine MSC cultured in chondrogenic (right) and unsupplemented complete DMEM (left) culture 

media following Alcian blue staining.  Staining was present in cells grown in differentiation medium after 20 

days, with control cultures remaining unstained throughout.  Images were taken at 10 × magnification using an 

Olympus IX70 inverted microscope and processed using cell^B imaging software. Scale bars are 100 μM. 
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4.4.3 Cell survival in bespoke Tencell seeding ring seeded scaffolds 

The survival of porcine multipotential mesenchymal stromal cells following seeding in the 

Tencell seeding rings, as compared to direct seeding, was assessed to ascertain the suitability 

of these rings for use in Tencell culture experiments. Porcine cells were used to model the 

seeding behaviour of human MSC  in the first instance to avoid loss of limited human cell 

stocks that may occur with unsuitable apparatus.  

Seeded acellular pericardia were live/dead stained to assess pMSC survival following seeding 

with Tencell seeding rings and direct seeding. No live cells were observed on Tencell-seeding 

ring seeded scaffolds seeded in initial experiments for any seeding period, but abundant live 

cells were apparent in samples seeded by direct seeding (seeding volume 150 μL; Fig. ‎4.5).  

Fig. 4.5: Image of live/dead stained porcine pericardium following seeding of pMSC using the Tencell 

seeding rings (top) and by direct seeding (bottom) for 4 hr. Dead cells are stained red and live cells green. 

No live cells were observed in the Tencell seeding ring condition. Good cell viability was apparent in scaffold 

seeded by direct seeding. However, this seeding method is not appropriate for subsequent cell seeding as the  

final cell density is not controllable, and was included for comparison only. Image taken at 10 × 

magnification. Scale bars are 100 μm.  
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It was hypothesised that a medium depth greater than 3 mm above the cell culture surface, 

beyond which the partial pressure of oxygen (pO2) may result in hypoxic conditions, may have 

caused loss of cell viability during seeding. Hence, the maximum seeding volume capable of 

maintaining appropriate oxygen diffusion throughout the seeding wells was investigated.  

Medium depth above acellular pericardium substrates increased linearly with increasing 

seeding ring volume (Fig. ‎4.6), and data indicated that a medium depth of 3 mm may be 

achieved by seeding pMSC in a seeding cell suspension of volume 80 μL. However, despite 

seeding medium volume optimisation, no live pMSC were observed in Tencell-seeding ring 

seeded scaffolds following reduced volume seeding, as evidenced by a lack of cytoplasmic 

staining by calcein AM (green; Fig. ‎4.7). However, extensive live cells were apparent in directly 

seeded scaffolds. All Tencell seeding ring experiments were repeated to eliminate investigator 

error; images presented are representative of all repeats.  
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Fig. ‎4.6: Graph showing the relationship between the volume of cell culture medium added to the Tencell seeding 

rings and the depth of medium above the seeding surface. A medium volume of 80 μL was found to give the 

optimum depth of 3 mm above the tissue surface. Data presented as the mean (n=3) ± 95% confidence limits. 
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4.4.4 Cytotoxicity of the Tencell seeding rings 

Cell survival during seeding with the Tencell seeding rings was not improved through the use 

of an optimal seeding volume of culture medium, so an alternative hypothesis, that 

cytotoxicity of the seeding apparatus was causing loss of cell viability, was investigated.  

Extract cytotoxicity of materials is frequently tested using immortalized cell lines exposed to 

medium conditioned with the material of interest. Tencell seeding rings were conditioned in 

BHK and complete DMEM culture medium and the viability of BHK and 3T3 cells cultured in 

treated and untreated medium quantified.  

Fig. 4.7: Image of live/dead stained porcine pericardium following seeding of pMSC using the Tencell seeding 

rings (top), and by direct seeding (bottom) using the optimal volume of cell culture medium and conditioned 

tissue, for 4 hr.  Dead cells are stained red and live cells green. No live cells were observed in the Tencell seeding ring 

condition. Good cell viability was apparent in scaffold seeded by direct seeding. However, this seeding method is not 

appropriate for subsequent cell seeding as the  final cell density is not controllable, and was included for comparison 

only.. Image taken at 10 × magnification. Scale bars are 100 μm. 
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During seeding ring conditioning of culture medium, particulates were visible to the naked eye. 

However, an initial extract cytotoxicity assay performed using 3T3 and BHK cells showed 

statistical significances in cell viability (p ˂ 0.001), quantified using the ATPlite™ assay method,  

between cells grown in positive control medium and all other conditions only; there was no 

significant difference between cells grown in seeding ring conditioned and unconditioned 

medium (Fig 3.7) Using large volumes of culture medium during incubation of the seeding 

rings may result in a more weakly concentrated solution of extract species than would be 

encountered by cells cultured in the Tencell seeding rings, which have a high surface area to 

volume ratio. Hence, a more concentrated extract medium was tested for cytotoxicity. 

Additionally, the concentrated extract cytotoxicity assay was also performed using pMSC, 

included as a model cell type for hMSC, since it is not known whether the sensitivity of 3T3 

and BHK cells to cytotoxic agents is comparable to that of hMSC. Freeze drying of the water-

extract mixture obtained following incubation with Tencell seeding rings yielded an orange-

brown residue (Fig. ‎4.9). Culture with concentrated Tencell seeding ring extract resulted in a 

loss of cell viability in 3T3 cells and pMSC (p ˂ 0.001 for both cell types) as compared to cells in 

unconditioned medium (Fig. ‎4.10 and Fig. ‎4.11), but BHK cells were not affected by the 

presence of the seeding ring extract (p ˂ 0.001; significant difference between luminescence 

counts of BHK cultured in positive control medium and other sample types only).  

No microbial growth was observed on any culture plate or in any culture broth inoculated 

with test media, whereas extensive microbial growth was apparent in positive controls. Hence, 

the null hypothesis that loss of cell viability during Tencell seeding ring culture was not caused 

by cytotoxic effects was rejected and the use of the Tencell seeding rings discontinued.   
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Fig. ‎4.8: Chart showing the luminescence counts of 3T3 and BHK cells grown in the appropriate 

unconditioned complete culture medium and those grown in Tencell seeding ring conditioned medium, as 

measured by the ATPlite™ assay. Positive control medium contained DMSO (40% (v/v)).  Luminescence counts 

of both 3T3 and BHK cells cultured in positive control medium were significantly lower than counts for all other 

culture conditions (p  ˂0.001 in both cases), as measured by ANOVA and Tukey’s post hoc test. There were no 

significant differences in luminescence counts between cells grown in conditioned and unconditioned media 

within the same cell type. Significant differences between samples are indicated by different asterix symbols.  

Data presented as the mean (n=4) ± 95% confidence limits. 
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Fig. 4.9: Tencell seeding ring residue extracted from 6 seeding rings following incubation in deionised 

water for 6 days at 37 °C.   
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Fig. ‎4.10: Chart showing the luminescence counts of 3T3 and BHK cells grown in the appropriate unconditioned 

complete culture medium and those grown in concentrated Tencell seeding ring conditioned medium, as 

measured by the ATPlite™ assay. Positive control media contained DMSO (40% (v/v)).  Luminescence counts of 

BHK cells cultured in positive control media were significantly lower than counts for all other culture conditions (p 

˂ 0.001). Luminescence counts of 3T3 cells showed significant differences between all culture medium groups (p  ˂

0.001). Significant differences between samples are indicated by different asterix symbols Statistical analysis 

done by ANOVA and Tukey’s post-hoc test. Data presented as the mean (n=4) ± 95% confidence limits. 
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4.4.5 Cell survival in circular seeding ring seeded scaffolds 

Since the Tencell seeding rings  were shown to be incompatible with cell culture, cell survival 

in alternative seeding rings of circular shape (diameter = 1.1 cm) was investigated. These 

studies were performed using human MSC and not model pMSC, as other cell types were 

previously successfully cultured using this apparatus (Dr Robert Guilliatt, personal 

communication). Additionally, efficacy of seeding was measured quantitatively using the 

ATPlite™ assay, instead of live/dead® staining. 

 

4.4.5.1 Standard curve of the relationship between luminescence counts and cell 

number 

 

To estimate the number of hMSC present following seeding, a standard curve of the 

relationship between luminescence counts detected by the ATPlite™ assay and the number of 

cells assayed  was prepared (Fig. ‎4.12). These data showed a linear relationship. At low cell 

Fig. ‎4.11: Chart showing the luminescence counts of pMSC grown in unconditioned complete culture medium 

and those grown in concentrated Tencell seeding ring conditioned medium, as measured by the ATPlite™ 

assay. Positive control medium contained DMSO (40% (v/v)).  Luminescence counts were significantly different 

between all sample types (p  ˂0.001). Statistical testing carried out using one way ANOVA and Tukey’s post hoc 

test. Data presented as the mean (n=4) ± 95% confidence limits. 
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numbers (< 5000 cells/rxn) there was a very large degree of error between technical replicates, 

indicating the limit of detection of the assay in this system. Data points corresponding to cell 

numbers below this number were thus excluded from the calibration plot.  

 

4.4.5.2 Survival of hMSC seeded using circular seeding rings 

The viability of hMSC following seeding periods of 2, 4 and 18 hours in circular seeding rings 

was assessed to determine  an optimal seeding time prior to culture in the Tencell bioreactor.  

Cell survival decreased with increasing seeding time in initial investigations (estimated total 

cells seeded ~ 14820, 12320 and 3570 for scaffolds seeded for 2, 4 and 18 hours respectively). 

Scaffolds seeded for 18 hours yielded luminescence counts significantly lower than those 

seeded for 2 or 4 hours, and were comparable to counts of unseeded tissue (p = 0.026). There 

was no statistically significant difference between scaffolds seeded for 2 and 4 hours. 

If cell culture is performed correctly and with compatible materials, the number of adherent 

cells on a scaffold should increase with seeding time. Additionally, previous work by co-

workers, in which other cell types were successfully cultured, did not suggest the release of 

cytotoxic species by these seeding rings (Robert Guilliatt, personal communication).  Hence, 

the seeding method used was interrogated further. In initial investigations using circular 

Fig. ‎4.12: Standard curve showing the relationship between luminescence counts, as detected by the 

ATPlite™ assay, and the number of human MSC assayed. Data are presented as the mean (n=5) ± 95% 

confidence limits  
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seeding rings, the pericardial matrix outside of the centre of the seeding ring was not in 

contact with culture medium. If drying of the unseeded areas of the substrate had occurred, 

the seeded cell suspension may have diffused through the tissue and away from the intended 

seeding area. Lack of moisture in the well plates used to perform seeding may have also 

caused excessive evaporation, and hence concentration of the components of the culture 

medium.  

Cells cultured with circular seeding rings with a reservoir of culture medium around the ring 

showed improved viability, (approximately 36070, 24820 and 44820 hMSC present in scaffolds 

seeded for 2, 4 and 18 hours respectively). Although there was an increase in the estimated 

number of total seeded cells with time, there were no significant differences in luminescence 

counts between seeding periods. Unseeded pericardial matrix gave significantly fewer 

luminescence counts than all of the cell-seeded sample types (p = 0.031). 

 



132 
 

  

 

0.12 

1.13 

0.90 

0.20 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Unseeded  Seeded 2 hr Seeded 4 hr Seeded overnight

M
e

an
 l

u
m

in
e

sc
e

n
ce

 c
o

u
n

ts
 (

× 
1

0
5
 c

p
s)

 

Sample type 

Fig. ‎4.13: Mean luminescence counts by sample type for cells seeded using circular seeding rings (d= 1.1 cm). 

There was a significant difference between unseeded and overnight seeded samples and those seeded for 2 or 4 

hours (p=0.026). Statistical analysis was done by ANOVA and Tukey’s post-hoc test. Data presented as the mean 

(n=4) ± 95% confidence limits. 
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Fig. ‎4.14: Mean luminescence counts by sample type for cells seeded using circular seeding rings (d= 1.1 cm) 

using the reservoir seeding method. There was a significant difference between unseeded and all other samples 

(p=0.031). Statistical analysis was done by ANOVA and Tukey’s post-hoc test. Data presented as the mean (n=4) 

± 95% confidence limits. 
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4.5 Discussion 

The investigations described in this chapter were performed to devise an optimal seeding 

method for hMSC on acellular porcine pericardium substrates. The seeding approach 

developed needed to be suitable for both bioreactor culture and subsequent gene expression 

analyses by qPCR. 

The density at which hMSC are seeded is a significant factor in determining their 

differentiation potential (Hayflick, 1965; Sekiya et al., 2002; Dominici et al., 2006), and 

demand on cell stocks may influence whether a given approach is plausible . Sufficient RNA 

must be extracted from cell-seeded substrates to allow virtually limitless qPCR analyses and 

accurate assessment of its concentration and purity isolates. Additionally, the total number pf 

cells seeded must produce luminescence counts, by ATPlite™ assay, above the limit of 

detection for the assessment of cell viability.  In these studies, the quantity of RNA extracted 

from cell suspensions containing a total of 0.5, 1.0 and 2.0 × 105 hMSC was measured using a 

NanoDrop spectrophotometer.  Nucleic acid spectrophotometry measures the absorbance of 

the species in question at 260 and 280 nm to calculate its concentration and A 260/280. 

Absorbance ratio values for lowest number of cells examined (0.5 × 105 cells) were not reliably 

measured, and frequently did not fall within the expected range for RNA solutions (2.0-2.2). 

Hence, RNA extracted from this quantity of cells cannot be tested for purity reliably and a 

larger number of cells needed to be used. Polymerase chain reaction assays may be affected 

by contaminants and measurement of the purity of template material to be used is thus 

essential  (Edwards et al., 2004; Bustin et al., 2009). 

In contrast, the absorption ratios of cell suspensions containing 1.0 and 2.0 × 105  cells were 

characteristic of RNA solutions, and luminescence counts for these cell numbers are sufficient 

to allow viability assessment (Fig. ‎4.12). Additionally, previous work by co-workers (Morticelli, 

2013) indicated that hMSC seeded on acellular pericardium at densities of 1.0 and 2.0 × 105 

cells.cm-2 retained good cell viability, as assessed by live/dead staining. The lowest cell seeding 

density that satisfied cell viability and RNA quantity and quality requirements needed to be 

used to minimise cell stock demands; hMSC were therefore seeded on acellular pericardium 

at a density of approximately 1.2 × 105 cells.cm-2 in subsequent seeding investigations. 

Porcine multipotential mesenchymal stromal cells extracted from freshly sacrificed animals 

were used as model cells during initial screening of seeding apparatus. To date, no significant 
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differences in morphology or functionality between porcine and human MSC have been 

identified, and pMSC are widely used in tissue engineering, recellularisation and 

mechanotransduction based investigations (Ringe et al., 2002; Lee et al., 2007; Proffen et al., 

2015; Chang et al., 2016; Hu et al., 2016) 

Multipotential mesenchymal stromal cells are typically characterised according to minimal 

criteria proposed by the Mesenchymal and Tissue Stem Cell committee of the International 

Society for Cellular Therapy (Dominici et al., 2006). Specifically, to be described as MSC, cells 

must exhibit plastic adherence and a fibroblastic morphology, differentiate in vitro towards 

adipocytes, chondrocytes and osteoblasts, express CD105, CD73 and CD90, and lack 

expression of CD45, CD34, CD14 or CD11b, HLA-DR and CD79α or CD19. In this project, MSC 

were either isolated from fresh porcine legs or purchased following commercial supplier 

validation. Porcine MSC (pMSC) were used in screening experiments as a model cell type for 

hMSC, and were extracted in a process well-described in the literature using Percoll gradient 

fractionation (Section ‎2.2.8.6) (Olofsson et al., 1980; Ellis et al., 1984; Rosca and Burlacu, 

2010). In this method, pMSC is obtained passively; bone marrow, used for extraction, does not 

contain adherent cell types that persist in culture except MSC. Additionally, any such 

contaminating cells present in early culture are morphologically distinct from MSC, making 

their presence obvious by microscopy. Since experiments utilising pMSC in this study were 

designed to model subsequent investigations with hMSC, in which any discrepancies in 

behaviour between the species would be revealed, only basic characterisation was performed.  

Cell morphology, examined using bright field microscopy, and the results of a tri -lineage 

differentiation assay strongly indicated an MSC phenotype (Fig. ‎4.2, Fig. ‎4.3, Fig. ‎4.4). 

Human MSC used in this project were purchased from a commercial supplier (STEMCELL™ 

Technologies inc.) and were validated according to ISCT criteria for designation as MSC prior 

to sale. Repeat validation may be deemed necessary for cells subjected to extended culture  

due to the limited proliferative capacity of MSC, but since all experiments described herein 

used cells at an early passage this was considered unnecessary (passage 6) (Turinetto et al., 

2016). In common with most normal somatic cells, hMSC are telomerase negative and 

senesce after prolonged culture (Hayflick, 1965; Zimmermann et al., 2003).  The average 

number of population doublings undergone by human MSC prior to senescence was found to 

be 38 ± 4, by Bruder et al (Bruder et al., 1997). 

Model cells were seeded using seeding rings of dimensions and shape compatible with culture 

in the Tencell bioreactor (available culture area ~ 1 cm2) and that allowed a sufficient number 

of cells for subsequent qPCR analyses to be cultured.  Since the poor viability of cells seeded 
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using the Tencell seeding rings was not improved through seeding volume optimisation, and a 

red-brown solid was obtained during incubation of the rings, it was concluded that the 

apparatus itself may be cytotoxic. Such cytotoxicity was confirmed by the loss of cell viability 

detected during extract cytotoxicity testing of the concentrated extract, although the lack of 

toxicity towards BHK cells in the presence of a significant impact on cell viability of 3T3 cells 

and pMSC contraindicated their use in such assays. It is therefore suggested that BHK cell may 

be less sensitive to some cytotoxic agents than MSC. Hence if practicable, possible cytotoxicity 

of apparatus/biomaterials should be tested using the cell type of interest.  

Based on the chemistry of stainless steel, it is suggested that the red-brown substance 

obtained from the Tencell seeding rings during extract cytotoxicity testing, and the cause of 

loss of viability of seeded cells, was probably rust (iron oxide(s)). Self-repairing rust layers are 

known to form on stainless steel products, particularly in the presence of water and salts as 

may be found in cell culture medium, protecting the underlying metal from further corrosion 

(Tamura, 2008). However, the seeding rings were vigorously scrubbed prior to each use to 

remove adhered proteins, removing any protective layer and rendering the steel reactive in 

cell culture medium. The use of Raman spectroscopy to study iron oxides is well established, 

and could be used to confirm the identity of the extract species (Dünnwald and Otto, 1989). 

However, for the purposes of these studies it was sufficient to establish that the materials 

used were  cytotoxic; detailed chemical analyses were beyond the remit of this work.  

Seeding of MSC on acellular pericardium was continued using alternative, circular (d = 1.1 cm) 

seeding rings of similar seeding area as the strained region in Tencell wells (0.95 cm2), and cell 

viability of seeded cells quantified using the ATPlite™ assay. Since these seeding rings were 

previously used successfully with other cell types, hMSC were used in these investigations.  

Live/dead staining was discontinued for the measurement of cell viability owing to its semi-

quantitative nature. Live/dead imaging can be rendered quantitative through cell counting, 

but this method assumes that all cells can be visualised. Pericardium is a three -dimensional 

scaffold, and previous work by co-workers indicated that MSC penetrate the tissue (Morticelli, 

2013). Hence, seeded cells are found at different depths throughout pericardial substrates, 

and are not visualised in a single focal plane. Additionally, dead cells are not accurately 

recorded since they do not adhere to substrates. 

The ATPlite™ calibration curve produced, showing the relationship between the cell number 

and luminescence counts of an individual assay, indicated a limit of detection of ~ 5000 

cells/rxn. In previously published work, Grimsey et al. compared the sensitivity of several 
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methodologies for the quantification of leukocyte migration (Grimsey et al., 2012). In this 

application, the ATPlite™ assay reliably detected 400 cells/rxn. These contrasting findings 

highlight the importance of generating ATPlite™ calibration curves for all applications in which 

it is to be used; ATP content differs by cell type and experimental conditions (Stanley, 1986), 

and hence the lowest number of cells detectable by ATPlite™ may vary. Calibration data 

should be used to inform assay method development to optimise the number of cells lysed 

per reaction with respect to the limit of detection.  

It is essential to maintain a humid environment for successful in vitro cell culture (Ham and 

Puck, 1962). In order to attribute cellular changes such as differentiation to test conditions, 

and not environmental changes, investigators must also be sure that the composition of the 

culture medium remains constant during an experiment. Cell culture medium is designed with  

an osmolarity that renders it isotonic to cells; if concentrated by evaporation, increased salt 

concentration induces osmosis from the cytoplasm to the cell exterior (Waymouth, 1970). The 

cell viability of seeded cells in initial investigations with circular seeding rings decreased with 

increased seeding time, but was improved at longer seeding times through the use of a 

medium reservoir around the ring (Section ‎4.4.5.2). It is likely that in the absence of a 

reservoir around the seeding ring, unseeded areas of the tissue lose moisture by evaporation, 

causing diffusion of the seeding medium away from the seeding area and loss of cell viability. 

Wherever such issues can be mitigated, it is advantageous to use the maximum seeding time 

possible to maximise the proportion of applied cells successfully seeded. Additionally, for 

subsequent Tencell culture investigations, scaffolds were seeded overnight to satisfy time 

constraints. 
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Chapter 5: Quantitative polymerase chain 

reaction assay development 

 

5.1 Introduction 

This chapter describes qPCR assay development for genes suggestive of differentiation of 

hMSC towards the osteogenic, adipogenic, chondrogenic, tenogenic and smooth muscle 

lineages. 

The polymerase chain reaction (PCR), first described by Mullis et al (Mullis et al., 1986),  uses 

thermostable DNA polymerases and specific oligonucleotide primers to produce thousands of 

copies of a defined segment of DNA from a quantity of starting material at levels too low for 

direct detection (Murray et al., 2009). This technique may be utilised in a qualitative fashion, 

where the product(s) of a PCR reaction are identified according to their size by gel 

electrophoresis, or less frequently, by sequencing (Newton et al., 1988), and in quantitative 

investigations in which fluorescent dyes are used to trace the reaction profile in real time 

(Delidow et al., 1989). Quantitative PCR is most commonly used in contemporary molecular 

biology due to the more detailed insight possible with this technique, and is the method 

employed in this chapter. 

To quantify gene expression in cells of interest, mRNA is first extracted using standard 

purchased kits, and reverse transcribed to produce copy DNA (cDNA) of all the sequences 

present, upon which PCR may be performed (Bustin, 2000). In PCR, cDNA is denatured at high 

temperatures (typically 94 °C), separating the strands, and rapidly cooled to the annealing 

temperature, which is primer-pair dependent. During this annealing step, oligonucleotide 

primers hybridize the template at the target sequence; the original strands of cDNA are too 

long and complex to reanneal during this rapid cooling stage. DNA polymerase in the reaction 

mixture targets the template region defined by the primer and synthesises the area of interest 

at 72 °C (McPherson and Møller, 2006). Approximately 30-40 PCR cycles are conducted in a 

typical assay,  and the polymerase used is exposed to very high temperatures during the 
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denaturation step; early attempts at PCR used an E. coli enzyme that was destroyed during a 

single cycle, but modern reactions utilise a  heat-stable form from thermophilic bacteria, such 

as T.  aquaticus (Murray et al., 2009).  

In quantitative PCR, reaction progress is monitored in real time by measuring a fluorescent 

signal generated as a result of amplicon synthesis. This may be achieved using fluorescent 

dyes, such as SYBR Green I, an asymmetric cyanine dye that undergoes a conformational 

change upon binding double stranded DNA, increasing its fluorescence, or by fluorescent 

resonance energy transfer (FRET). This method, used in the popular TaqMan® probes, relies 

on altering the spatial arrangement of photon donor and acceptor molecules, such that 

amplification of a specific DNA sequence causes an increase in fluorescence (Pongers-

Willemse et al., 1998; Edwards et al., 2004). Following qPCR cycling, products are often 

analysed using a further melt curve analysis step; the reaction mixture is taken through a 

range of temperatures (typically 55 – 95 °C) and dissociation of amplicons indicated by 

changes in fluorescence at their dissociation temperatures. The number of amplicons 

produced in a given assay is equivalent to the number of peaks in the resulting dissociation 

plot. 

The kinetics of a functional PCR assay pass through three different phases, and reaction 

profiles of qPCR assays should be examined to confirm normal behaviour. In the early stages 

of an assay, primer pairs search template DNA for their complementary sequences and 

produce small quantities of amplicon. The mid cycles are characterised by exponential 

amplification of the product fragment, and the late stages, or plateau, by suboptimal 

amplification. This reduction in amplicon manufacture is often caused by assay reagents 

reaching limiting concentrations or inhibition of the reaction by the presence of large 

quantities of DNA (McPherson and Møller, 2006). A threshold, the point at which sufficient 

amplicon has been generated to give a fluorescent signal significantly greater than the 

baseline, is set for each qPCR assay and the point at which amplification exceeds this value, 

the threshold cycle number (CT),  reported. This is normally defined as ten times the standard 

deviation of the baseline fluorescence (Wong and Medrano, 2005). The fluorescence of 

background reference dyes that do not bind DNA, such as ROX, is monitored by thermal 

cyclers to allow corrections for factors such as reagent evaporation during cycles. Threshold 

cycle numbers may be converted to actual gene copy numbers using calibration graphs, or 

related to both those of housekeeping genes within the same sample, and those of calibrator 

samples, to determine the relative expression of the gene in question (Schmittgen and Livak, 

2008).  
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The expression of genes indicative of hMSC differentiation towards the tenogenic, smooth 

muscle, adipogenic, osteogenic and chondrogenic lineages was measured. Differentiation 

towards the latter three lineages is a defining characteristic of MSC, and their differentiation 

towards tendon and smooth muscle tissue has previously been reported (Galmiche et al., 

1993; Park et al., 2004; Gong and Niklason, 2008; Gong et al., 2009; Park et al., 2011a; 

Williams et al., 2012) The minimum panel of genes considered necessary and sufficient to 

identify differentiation potential was examined. The genes of interest studied are described in 

Table ‎5.1. 

Table ‎5.1: Function and associated lineage(s) of the characteristic genes of interest 

Lineage Gene of interest Function Reference 

Smooth muscle 

SM-22α (a.k.a. 

transgelin) (TAGLN) 

Codes for actin cross-
linking/gelling protein  

found exclusively in 
fibroblasts and smooth 
muscle 

(Park et al., 2004; van 
Tuyn et al., 2005; Kim 

et al., 2008; NCBI, 
2016l) 

Calponin (CNN1) 

Binds actin to  promote 

and sustain 
polymerisation. Specific 
to differentiated 

smooth muscle cells 

(Kim et al., 2008; NCBI, 
2016c) 

Smooth muscle α-actin 

(ACTA2) 

Structural component 
and major constituent 
of contractile 

apparatus. Indicator of 
myofribroblast 
formation 

(Park et al., 2004; Kim 

et al., 2008; NCBI, 
2016a) 

Tenogenic 

Scleraxis (SCXB) 

Member of the basic 

helix-loop-helix 
superfamily of 
transcription factors 

(Kuo and Tuan, 2008a; 

Peach et al., 2012; Yin 
et al., 2013; NCBI, 

2016j) 

Collagen I (COL1A1) 
Fibril-forming structural 
protein found in skin, 
bone and tendon tissue 

(Omae et al., 2009; Lui 
et al., 2011; Muiznieks 

and Keeley, 2013; Yin et 
al., 2013; NCBI, 2016d) 

Collagen III (COL3A1) 

Fibril-forming structural 
protein found in 
extensible connective 

tissues, often in  
association with  
collagen I, including 
bone, cartilage, tendon, 

dentin and bone 
marrow   

(Omae et al., 2009; Lui 
et al., 2011; Yin et al., 

2013; NCBI, 2016e) 

Osteogenic Runt related 
transcription factor 2 

Member of RUNX 
family of transcription 

(Muruganandan et al., 
2009; Shi et al., 2011; 
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Lineage Gene of interest Function Reference 

(RUNX2) factors. Acts as scaffold  
for nucleic acids and 
regulatory factors 

involved in skeletal 
gene expression 

NCBI, 2016i) 

Adipongenic 

Peroxisome proliferator 

receptor gamma 
(PPARG) 

Nuclear receptor; 

regulator of adipocyte 
differentiation 

(Lehmann et al., 1997; 

NCBI, 2016g) 

Adiponectin, C1Q and 
collagen domain 

containing (ADIPOQ) 

Exclusively expressed in 
adipose tissue, the 

encoded protein  
circulates in plasma 
and is involved in  
metabolic and 

hormonal processes 

(Degawa-Yanauchi et 
al., 2005; Sen et al., 
2008; NCBI, 2016b) 

Chondrogenic SRY-box 9 (SOX9) 

Transcription factor 
that recognises the 

sequence CCTTGAG. 
Acts exclusively during 
chondrocyte 
differentiation 

(Murphy et al., 2002; 

Grad et al., 2011; NCBI, 
2016k) 

Housekeeping (not 

lineage specific) 

Glyceraldehyde-3-
phosphate 

dehydrogenase 

 Glycolytic enzyme 
that catalyses the 

reversible oxidative 

phosphorylation of 
glyceraldehyde-3-
phosphate in 

carbohydrate 
metabolism 

(Schmittgen and 
Zakrajsek, 2000; Kim et 

al., 2002; Huggett et 

al., 2005; NCBI, 2016f) 

β-actin (ACTB) 

Encodes cytoskeletal 
proteins that form a 

major component of 
the contractile 
apparatus 

(Schmittgen and 

Zakrajsek, 2000; 
Huggett et al., 2005; 

NCBI, 2016m) 

S28 ribosomal protein 
(RPS28) 

Encodes a protein  
component of the 40S 
ribosome subunit 

(Xue et al., 2010; NCBI, 
2016h) 

 

Quantitative PCR data can either be reported using absolute or relative expression approaches. 

In absolute gene quantification, the exact copy number of a gene of interest is quoted 

following transformation of the data with a standard curve. This method is utilised when 

finding the precise quantity of amplicon is critical, such as calculation of viral load, but where 

gene copy numbers are not required it is not favoured due to the increased workload 

associated with this method: standard curves must be generated to transform CT values to 

gene copy numbers (Schmittgen and Livak, 2008). Relative gene expression analyses report 



141 
 

fold change or normalised CT values of to illustrate the impact of a given treatment on gene 

expression. In the comparative threshold method, also known as the 2-ΔΔct  method, 

discrepancies in reverse transcription efficiencies and input RNA are corrected through 

normalisation of target gene CT values with a gene expected to be unaffected by the 

treatment in question (known as housekeeping genes). Corrected CT values corresponding to 

treated and untreated samples may then be compared to discern changes in gene expression 

as a result of the treatment  (McPherson and Møller, 2006). In this study, the comparative 

threshold method was used, as it is sufficient to identify changes between gene expression of  

strained and unstrained samples, and no additional insight from gene copy number was 

anticipated.  

To ensure accurate gene expression data, the primer pairs used must anneal only to the target 

sequence, and produce a single amplicon. There are many online tools for primer design that 

incorporate criteria designed to minimise these issues, although further laboratory validation 

is always required (NCBI, 2014; Sigma-Aldrich, 2014). In fact, guidelines published in the 

literature advise reviewers of manuscripts concerning gene expression to seek assurances that 

all primers were validated by both in silico methods and efficiency and specificity assays 

(Bustin et al., 2009). The comparative threshold method depends on the assumption that the 

efficiency of all primer pair assays is approximately 100%, meaning that the amount of 

amplicon present in reactions doubles with each thermal cycle. Hence, primer assays for each 

gene of interest must be validated according to their specificity and efficiency, and the 

identity of the amplicon produced confirmed. 

Primer specificity can be confirmed definitively using melt curve analysis of PCR products. The 

double stranded DNA of PCR products is denatured at a specific temperatures according to 

the amount of energy required to break the hydrogen bonding between strands. Once strands 

separate, the fluorescence of the SYBR Green I reporter dye is altered, producing a peak in a 

fluorescence vs temperature plot (McPherson and Møller, 2006). Although dissociation curves 

can be readily interpreted to find the number of amplicons present, they do not confirm 

amplicon identity. Amplicon identity can only be proven by sequencing, but less expensive 

techniques such as gel electrophoresis are routinely used to validate products beyond 

reasonable doubt. Electropheresis separates molecules by their speed of migration through a 

porous medium when subjected to a strong electric field. Migration speed is related to 

molecular size, and through comparison to a molecular ladder, a mixture of nucleic acids of 

known sizes, the size of test species can be estimated and compared to that predicted by in 

silico methods (Alberts et al., 2008; NCBI, 2014). 
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Primer assay efficiency is found by performing serial dilutions of input material and plotting CT 

values against the log of their corresponding amounts of RNA. The assay efficiency may be 

found from the gradient of this plot according to Eqn. ‎5.1. The assumption that the amount of 

amplicon in the assay mixture doubles with each cycle of PCR can be considered met if the 

efficiency of the assay in question is found to be 90-110 % (McPherson and Møller, 2006). 

Additionally, the coefficient of determination, or R2, obtained from linear regression of 

efficiency data should have a value ≥ 0.98, indicating that ≥ 98 % of the change in CT values in 

response to changes in the value of log(mass RNA) is explained by the line of best fit 

calculated (Edwards et al., 2004; Dytham, 2011). 

𝐴𝑠𝑠𝑎𝑦 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = (10
(−

1
𝑚

)
) − 1 

Eqn. ‎5.1: Calculation of primer assay efficiency from the gradient (m) of a CT vs log(mass RNA) plot. 

 

The inclusion of controls is essential in all PCR assays to exclude, or highlight, the possibility 

that fluorescence data may be confounded by the presence of contamination and unwanted 

amplicons. A description of the utility and indications afforded by each type of control is 

provided in               Table ‎5.2. 

              Table ‎5.2: Recommended controls to be included in qPCR assays 

Control type Indication(s) if amplification present 

No reverse transcriptase 
Presence of genomic contaminating DNA 
from environment/investigator or cells of 
interest 

No template 
Presence of genomic contaminating DNA or 
amplification of primer-dimer/primer 
secondary structure amplicons 

No primer 

Presence of genomic contaminating DNA 

from environment/investigator or cells of 
interest, or faulty/spoiled reagent(s) 

Water only 

Apparatus malfunction(s), contamination of 

ultrapure water supply, contamination of 
equipment/consumables used 
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5.2 Aims and objectives 

5.2.1 Aim: 

The aim of the investigations described in this chapter was to validate primer pairs for the 

genes of interest (Table ‎5.1) with respect to their specificity and efficiency, as determined by 

dissociation plots, gel electrophoresis, reaction profiles and efficiency plots.  

 

5.2.2 Objectives: 

 To design and pre-validate primer pairs for the genes of interest using an in silico 

approach 

 

 To perform specificity validation of primer pairs using melt curve analyses and gel 

electrophoresis 

 

 To examine the reaction kinetics of primer pair assays through efficiency testing and 

amplification plots 

 

 To determine the optimum primer concentration for use in gene expression analyses  
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5.3 Experimental approach 

During qPCR assay validation, primer pairs were either designed using an in silico approach or 

sourced from literature, and validated with respect to their specificity and reaction kinetics.  

The purity and quantity of RNA extracted using enzymatic and maceration-only methods was 

compared to validate an approach for the isolation of sufficient high-quality RNA from Tencell-

cultured substrates for use in gene expression analyses. Primer pairs were designed using the 

primerBLAST tool provided by the NCBI or taken from literature in which the expression of  

gene of interest was investigated. All primer pairs were screened in silico with respect to 

predicted annealing temperatures, primer-dimer or secondary structure forming potential, 

and specificity using the OligoEvaluator™ and BLAST tools to reduce the number of laboratory 

experiments required. Primer pairs were validated with respect to their efficiency to ensure 

that only assays having normal PCR reaction profiles and meeting the assumptions of the 

comparative CT method were used for gene expression analyses. Assay specificity was 

validated using melt curve analysis to examine the number of amplicons produced, and by gel 

electrophoresis to ensure that the amplicon(s) produced were of the size predicted by in silico 

methods. The primer concentration used in assay mixtures was optimised to reduce the 

probability of primer-dimer and secondary structure formation  and hence the amplification 

of unwanted products. The reaction profiles of assays containing different primer 

concentrations were examined to ensure that only primer concentrations giving C T values in 

template-containing reactions significantly lower than any amplification in controls from 

environmental contamination were used. 
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5.4 Results 

 

5.4.1 RNA extracted from seeded scaffolds by different techniques 

The extraction of RNA from seeded acellular pericardium (performed using the method 

described in section ‎2.2.8.9.2, using a seeding volume of 80 μL as validated during chapter 4) 

using enzymatic and enzyme-free methods was investigated. Proteinase K digestion is 

recommended for RNA extraction from tissue, but requires a high temperature incubation 

(55 °C, 10 min). Additionally, acellular pericardium is relatively thin (~ 200 – 500 μM) and 

hence may be more readily penetrated by extraction reagents without prior digestion. The 

null hypothesis that there was no statistically significant difference between the amount of 

RNA extracted from tissue treated with both enzyme and enzyme-free protocols was tested 

by direct comparison of RNA extracted by each approach.  

There was no statistically significant difference between the amount of RNA extracted by each 

method (p=0.151). Although the mean quantity of RNA extracted from tissue that did not 

undergo enzymatic digestion was far greater, the associated confidence limit (p=0.05) was 

very large. Hence, the null hypothesis that there was no significant difference in the  amount 

of RNA extracted by each method was accepted and the enzyme-free approach adopted for 

RNA extraction from seeded acellular pericardium for its simplicity.  
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5.4.2 qPCR primer validation 

In order to quantify relative gene expression by the comparative CT method, underlying model 

assumptions must be met, and qPCR assays must be performed under optimal conditions 

(McPherson and Møller, 2006). In common with all PCR techniques, the primer pairs used 

must be specific; only the desired amplicon should be generated by the PCR assay. 

Additionally, and unique to quantitative PCR, reaction efficiencies must be approximately 

equal and in the range 90-110% for accurate expression data (Edwards et al., 2004). Validation 

of any given pair was discontinued upon failing any of these critical quality attributes.  

 

5.4.2.1 Generated primer sequences 

Primer pair sequences for genes indicative of the lineages of interest were  found either from 

relevant literature or by using the Primer-BLAST online tool provided by the National Center 

for Biotechnology Information (NCBI). Details of the primer sequences generated are in 

Table ‎5.3.  All primers were confirmed specific for their corresponding genes of interest in 

silico using the basic local alignment tool (BLAST) prior to laboratory validation.
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Fig. ‎5.1: Total RNA extracted from hMSC-seeded acellular pericardium treated with two  

different RNA extraction methods. There was no significant difference between the amount of 

RNA extracted from tissue digested by the proteinase K protocol (55 °C, 3 hr) and the enzyme -

free protocol (p=0.151). Data presented as means ± 95% confidence limits. Statistical analysis 

done by paired t-test. 
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Table ‎5.3: Base pair sequences, annealing temperature and expected amplicon size for primer pairs obtained from a review of relevant literature and the primerBLAST and BLAST design tools. 

Associated 
lineage 

Gene of 
interest 

Primer name Forward sequence Reverse sequence Ta (°C) 
Predicted 

amplicon size 
(bp) 

Reference 

Housekeeping  

28s ribosomal 

protein 
h28A ACCTCTACCCTGCCCTAACC CGGGGCCAGAATACAGATCG 58 120 

Designed by 

author 

28s ribosomal 
protein 

h28SB TTGAAAATCCGGGGGAGAG ACATTGTTCCAACATGCCAG 58 100 (Ku et al., 2006)  

β-actin 
β-actinA 

CAGCACAATGAAGATCAAGATCATT GGACAGCGAGGCCAGGAT 54 112 
Designed by 

author 

β-actin β-actinB 
CATGTACGTTGCTATCCAGGC CTCCTTAATGTCACGCACGAT 

60 250 (Yu et al., 2010) 

GAPDH hGAPDHA CTCCAAACAGCCTTGCTTGC AAGTAGTGGTGCCAGCTTCC 55 84 
Designed by 

author 

GAPDH hGAPDHB GAGCCGCACCTTGTCATGTA GTCTCACCTTGACACAAGCC 55 120 
Designed by 

author 

GAPDH 

 

hGAPDHC TCCATGACAACTTTGGTATCG TGTAGCCAAATTCGTTGTCA 
54 226 (Kim et al., 2009) 

GAPDH hGAPDHD AACATCATCCCTGCCTCTACTG CTCCGACGCCTGCTTCAC 59 189 
(Kuo and Tuan, 

2008b) 

Adipogenic 

PPAR-ɣ hPPAR-ɣA GCCGAGAAGGAGAAGCTGTT CTCGCCTTTGCTTTGGTCAG 60 140 
Designed by 

author 

Adiponectin hAdiponA AAGGAGATCCAGGTCTTATTGG ACCTTCAGCCCCGGGTAC 57 68 
(Degawa-

Yanauchi et al., 

2005) 

Chondrogenic SOX-9 hSOX-9B CCCATGTGGAAGGCAGATG GAAGGTTAACTGCTGGTGTTCTGA 60 69 
(Miyanishi et al., 

2006) 

Osteogenic RUNX2 hRUNX2A CAGCGTCAACACCATCATTC CAGACCAGCAGCACTCCATA 59 178 
(Hsu and Huang, 

2013) 

Smooth muscle Calponin hCalponinA GCATGTCCTCTGCTCACTTCAA GGGCCAGCTTGTTCTTAACCT 60 72 
(Kurpinski et al., 

2006) 
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Associated 
lineage 

Gene of 
interest 

Primer name Forward sequence Reverse sequence Ta (°C) 
Predicted 

amplicon size 
(bp) 

Reference 

SM-22α hSM-22αA TGAAGAAAGCGCAGGAGCATA GCCAATGACATGCTTTCC 58 71 
Designed by 

author 

Smooth muscle 
α-actin 

hSM α--actin A TGACTCTTGGGATGGGGGTA GCCTATGTCACGACTGCGTT 55 101 
Designed by 

author 

Smooth muscle 

α-actin 
hSM α--actin B ACCCTGCTCACGGAGGC GTCTCAAACATAATTTGAGTCATTTTCTC 59 71 (Park et al., 2004) 

Tenogenic 

Collagen III hColIIIA GATGTGCAGCTGGCATTCC CCACTGGCCTGATCCATGTAT 61 101 
(Peach et al., 

2012) 

Scleraxis hScleraxisA CAGCGGCACACGGCGAAC CGTTGCCCAGGTGCGAGATG 60 163 
(Kuo and Tuan, 

2008a) 

Scleraxis hSB GAGAAAACGGGGTGGTGGGT 

GGAGGAACTGGGAGGTCGC 

 

60 104 
Designed by 

author 

Scleraxis hSC CGCACCAACAGCGTGAAC GCGTCTCAATCTTGGAGAGCTT 61 91 
(Peach et al., 

2012) 

Collagen I hCol1A GGTTAGCGTCCGCTCATGC GTTCCTCCCTGCTCTCCATCAG 56 132 
Designed by 

author 

Collagen I hCol1B GCCAAGACGAAGACATCCCA CACACGTCTCGGTCATGG 62 70 
Designed by 

author 

Collagen I hCol1C TGGTGCAGCTGGTCTTCCA CACGGACGCCATCTTTGC 63 92 
(Peach et al., 

2012) 
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5.4.2.2 Suitability of  primer pairs for relative gene expression analyses 

Primer pairs described in section ‎5.4.2.1 were used in qPCR analyses with RNA extracted from 

cell types in which the gene of interest was expected to be expressed, and the reaction profile 

and specificity of an assay with a given pair assessed. Efficiency plots, showing the relationship 

between the amount of template added to a PCR reaction and corresponding CT values, were 

prepared to calculate reaction efficiency, or the relative amount of amplicon produced per 

cycle, of assays using the primer pairs tested.  Optimal reaction conditions and summarized 

validation data for primer pairs satisfying all critical quality attributes are summarised in 

Table ‎5.4. 

 

5.4.2.2.1 Reaction kinetics 

Amplification plots of assays with each primer pair were generated at three primer 

concentrations (100, 250 and 500 nM) and the reaction profile and CT values for each 

concentration examined. In a functional qPCR assay the rate of production of amplicon passes 

through lag, exponential, linear and plateau phases (Fig. ‎5.2A), and CT values fall within a 

optimum range (CT ~ 12-30). All primer pairs, except β-actinA (Fig. ‎5.2B), which did not have 

an exponential amplification phase, had normal reaction profiles  (Fig. ‎5.2A), and assays with 

primer concentrations of 500 nM had optimal CT values (CT = 12 - 30). Amplification in no 

template controls, indicating environmental contamination, was frequently present, but at 

very late CT values easily distinguishable from those of template-containing test reactions  (≥ 

31).   
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Fig. ‎5.2: Example amplification plots of primers suitable (A; hCol1C) and unsuitable 

(B; β-actinA) for relative gene expression analyses by qPCR . Amplification plots of 

functional primer pairs show lag, exponential, linear and plateau phases and CT values 

within a reliable range (~12-30). Additionally, controls should not show amplification, 

or if present, should have statistically significantly greater CT values than test samples. 

Assays of the hCol1C primer pair with tenocyte RNA generated amplicon in the manner 

described (A), but the β-actinA primer pair assays did not show an exponential 

amplification phase during the experiment (B). See Table ‎5.3 for annealing 

temperatures used in each assay. 
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Efficiency plots, prepared by measuring CT values of assays of a primer pair with different 

quantities of template, were obtained to measure the rate of amplicon production. In a 

functional qPCR assay, the amount of amplicon generated during the exponential phase 

approximately doubles per cycle, and the reaction efficiency falls in the range 90-110% 

(Eqn. ‎5.1). Additionally, the goodness  of fit of efficiency plots should be very high ( R2 ≥ 0.98).  

Efficiency testing was performed only on primer pairs that had normal amplification plots, 

indicating normal reaction kinetics. However, all primer pairs have a working range that is 

dependent on the copy number of a given gene and the amount of template added to the 

reaction. Hence, some primer pairs found to be inefficient initially showed good efficiencies 

and high R2 values when tested in more appropriate ranges (Fig. ‎5.3A), and the ranges tested 

were thus adjusted accordingly, by adjusting the concentration of RNA in the strongest 

dilution or the dilution ratio. The minimum working range spanned by all primers was 1-70 

ng/rxn. Excessively high amounts of RNA/rxn for a primer pair’s working range were indicated 

by low CT values compared to those that would be extrapolated by the line of best fit, whereas 

excessively low quantities gave rise to late/absent CT values and/or significant background 

noise in dissociation plots (similar in appearance to Fig. ‎5.4B). 
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Fig. ‎5.3: Example efficiency plots of primer pair assays suitable (A; hCol1C) and 

unsuitable (B; PPAR-ɣA , tested with low copy number RNA) for relative gene expression 

analyses by qPCR. Efficiency plots of primer pairs that are efficient, and result in the 

doubling of amplicon with each PCR cycle, have assay efficiencies in the range 90-110%, as 

calculated from the gradient of the efficiency plot (Eqn. ‎5.1). Additionally, the goodness of 

fit of the efficiency plot, assessed by the value of the coefficient of determination, R 2, must 

be very high (R2
 ≥ 0.98). The hCol1C primer pair shows good reaction efficiency (101.5%) 

and a high coefficient of determination (R2
 = 0.985) when assayed with tenocyte RNA in 

the range 0.1 – 75 ng/rxn (A), whereas the PPAR- ɣA primer pair shows poor reaction 

efficiency (59.8%) and a low coefficient of determination (R 2 = 0.975) when assayed with 

human knee fat in the range 0.01- 19 ng/rxn. Data presented as means(n=3) with 95 % 

confidence limits and line of best fit calculated by linear regression. 
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5.4.2.2.2 Primer specificity 

In order to accurately quantify relative expression of genes of interest, primer pairs must 

amplify the target amplicon only. Dissociation plots, indicating amplicon melting temperatures, 

were obtained following each qPCR validation assay to assess the specificity of primer pairs. 

The number of amplicons produced in a PCR assay may also be deduced by electrophoresis of 

PCR products, but the sensitivity of this method is lower than that of fluorescence -based 

techniques. However, gel electrophoresis may also be used to estimate the size of amplicons 

generated for comparison with the amplicon sizes predicted by the primer-BLAST tool.  

Primer pairs that gave rise to one amplicon showed one peak in dissociation plots at 

temperatures ≥ 77 °C (Fig. ‎5.4A), whereas those undergoing nonspecific binding, and hence 

the production of multiple amplicons, had dissociation plots containing multiple peaks 

(Fig. ‎5.4B). All tested primer pairs that were not successfully validated for qPCR, with the 

exception of the β-actinA pair, were excluded due to nonspecific binding apparent in 

dissociation plots. Frequently, dissociation plots of pairs failing to meet specificity criteria 

showed a broad, low intensity peak in the range 72-76 °C. This peak was often present in no 

template controls showing amplification. Raising the annealing temperature did not reduce 

the number of amplicons produced in any case. 
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Gel electrophoresis of primer pairs showing acceptable reaction kinetics and the production of 

one amplicon was performed to estimate amplicon size (for predicted sizes see Table ‎5.3). 

Amplicons of all validated primer pairs were of the size predicted by the primerBLAST design 

and analysis tool, and no other bands indicating the presence of other products were present 

(Fig. ‎5.5, Table ‎5.3). 

 

 

-2

0

2

4

6

8

10

12

55 60 65 70 75 80 85 90 95

Fl
u

o
re

sc
e

n
ce

 (
-R

n
' 

(T
))

 

T (°C) 

1 ng/rxn RNA,
[primer] = 100 nM

1 ng/rxn RNA,
[Primer] = 250 nM

1 ng/rxn RNA,
[Primer] = 500 nM

No template,
[Primer] = 100 nM

No template,
[Primer] = 250 nM

No template,
[Primer] = 500 nM

No primer control

Water only

-2

0

2

4

6

8

10

12

55 60 65 70 75 80 85 90 95

Fl
u

o
re

sc
e

n
ce

 (
-R

n
' 

(T
))

 

T (°C) 

A 

B 

Fig. ‎5.4: Example dissociation plots of primer pairs suitable (A; hCol1C) and unsuitable (B; 

hSB) for relative gene expression analyses by qPCR. Dissociation plots of specific 

(generating the intended amplicon only) primer pairs show one sharp peak at the melting 

temperature (Tm) of the target amplicon. Control samples should not give rise to any 

product peaks. Assays of the hCol1C primer pair with tenocyte RNA showed one sharp peak 

in assay dissociation plots at 82 °C, but hSB assays showed many peaks in corresponding 

dissociation plots, indicating the presence of many amplicons (B). 
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5.4.2.2.3 Summary of primer validation 

Primer pair assays with favourable reaction profiles, specific binding behaviour  and optimal 

reaction efficiencies were validated for relative gene expression analyses of Tencell cultured 

scaffolds. Primer pairs satisfying validation criteria are listed in Table ‎5.4. Primer pairs included 

in Table ‎5.3 but excluded from Table ‎5.4 were found to be unsuitable for qPCR assays with 

respect to the tests described previously. Unsuitable primers, with the exception of β-actinA, 

were excluded from use in gene expression studies because multiple peaks were prese nt in 

dissociation curves present due to nonspecific binding events.

Fig. 5.5: Gel electrophoresis of the amplicons generated by the primer pairs used in relative gene expression 

analyses. All primer pairs assayed generated one amplicon of the expected size. A: H28SB; B: hGAPDHD; C: hβ-

actinB; D: hCalponinA; E: hSM-22αA; F: hSM α-actinB; G: hSOX-9B; H: hPPAR-ɣA; I: hAdiponA; J: hCol1C; K: 

hColIIIA; L: hSC. Bioline 25bp ladder applied in the far left lane of each gel. Gels were run for 40 min at 110 V. 
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Table ‎5.4: Summary of validated primer pairs suitable for use in relative gene expression analyses . Primer pairs detailed in Table ‎5.3 but absent in this list of validated primers were excluded due 

to nonspecific binding, and hence the production of multiple amplicons, with the exception of the β-actinA pair, which was excluded due to its abnormal reaction profile (Error! Reference source not 

ound.). The optimal concentration of each primer in assays was 500 nM in all cases. 

Associated 

lineage 

Gene of 

interest 

Primer 

name 
Forward sequence Reverse sequence Ta (°C) 

Actual 

amplicon 
size (bp) 

Amplicon 

Tm (°C) 

Efficiency 

(%) 

R2 

value 

Working 

range 
(ng/rxn) 

Reference 

Housekeeping 

28S ribosomal 
protein 

h28SB TTGAAAATCCGGGGGAGAG ACATTGTTCCAACATGCCAG 58 100 82.5 91.5 0.997 0.024-15 
(Ku et al., 

2006) 

β-actin hβ-actinB CATGTACGTTGCTATCCAGGC CTCCTTAATGTCACGCACGAT 60 250 86 101.9 0.996 0.0124-8 
Yu et al, 

2010 

GAPDH hGAPDHD AACATCATCCCTGCCTCTACTG CTCCGACGCCTGCTTCAC 59 189 85 92.8 0.993 0.1-200 
Kuo and 

Tuan 2008 

Adipogenic 

PPAR-ɣ hPPAR-ɣA GCCGAGAAGGAGAAGCTGTT CTCGCCTTTGCTTTGGTCAG 60 140 82 99.8 0.997 0.01-19 
Designed 
by author 

Adiponectin hAdiponA AAGGAGATCCAGGTCTTATTGG ACCTTCAGCCCCGGGTAC 57 68 78 98.6 1.00 0.1-35 

(Degawa-
Yanauchi 

et al., 
2005) 

Chondrogenic SOX-9 hSOX-9B CCCATGTGGAAGGCAGATG GAAGGTTAACTGCTGGTGTTCTGA 60 69 80 105.9 0.999 0.0124-39 
Miyanishi 
et al, 2006 

Osteogenic RUNX2 hRUNX2A CAGCGTCAACACCATCATTC CAGACCAGCAGCACTCCATA 59 178 83 110.0 0.989 0.6-70 
Hsu & 
Huang, 

2013 

Smooth 
muscle 

Calponin 
hCalponin

A 
GCATGTCCTCTGCTCACTTCAA GGGCCAGCTTGTTCTTAACCT 60 72 83 92.7 0.998 0.02-55 

(Kurpinski, 
Chu, 

Hashi, & 
Li, 2006) 

SM-22α hSM-22αA TGAAGAAAGCGCAGGAGCATA GCCAATGACATGCTTTCC 58 71 79 104.2 0.994 0.09-55 

(van Tuyn 
et al., 

2005) and 

modified 
by LCP 

Smooth hSM ACCCTGCTCACGGAGGC GTCTCAAACATAATTTGAGTCATTT 59 71 80 99.7 0.996 0.002-55 Park 2004 
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Associated 

lineage 

Gene of 

interest 

Primer 

name 
Forward sequence Reverse sequence Ta (°C) 

Actual 

amplicon 
size (bp) 

Amplicon 

Tm (°C) 

Efficiency 

(%) 

R2 

value 

Working 

range 
(ng/rxn) 

Reference 

muscle α-
actin 

alpha-
actin B 

TCTC 

Tenogenic 

Collagen III hColIIIA GATGTGCAGCTGGCATTCC CCACTGGCCTGATCCATGTAT 61 101 80 97.5 0.996 0.08-50 
Peach 

2013 

Scleraxis hSC CGCACCAACAGCGTGAAC GCGTCTCAATCTTGGAGAGCTT 61 91 85 106.4 0.995 1-100 
Peach 

2014 

Collagen I hCol1C TGGTGCAGCTGGTCTTCCA CACGGACGCCATCTTTGC 63 92 82 101.5 0.980 0.1-75 
Peach 

2012 
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5.5 Discussion 

The investigations described in this chapter were performed to devise validated qPCR assays 

for gene expression analyses of Tencell cultured hMSC. To enable accurate relative 

quantification, primer pairs must be specific to their intended target, approximately double 

the amount of amplicon present in the assay mixture with each cycle and give rise to CT values 

in an appropriate range (CT = 12 – 30). 

Although primer sequences are routinely provided in published investigations (Kim et al., 2009;  

Bai et al., 2010; Kuo et al., 2012; Krishnamurithy et al., 2016) it is necessary to validate all 

primer pairs prior to use. Improper primer pair validation by previous investigators, or 

differing reagents/reaction conditions may mean published sequences are unsuitable for use 

in other studies.  In spite of the previous publication of minimum standards of primer pair 

validation (Bustin et al., 2009), there is little or no evidence available pertaining to the 

suitability of primer pairs used in the plethora of published relative gene expression studies 

(Jung et al., 2016; Zhang et al., 2016), and different reaction conditions used may affect assay 

kinetics. For example, the concentration of magnesium chlorides, which differ in different 

preparations, affects primer annealing, product specificity and enzyme activity (Karsai et al., 

2002). Nath et al found that increasing magnesium chloride concentration in an assay ablated 

the inhibitory effect caused by the inclusion of SYBR® Green I, but reduced reaction specificity 

(Nath et al., 2000). Further highlighting the role of experimental conditions, two of the primer 

pairs obtained from literature searching were found to be unsuitable for use in gene 

expression analyses using the reagents and protocols developed (Table ‎5.3, Table ‎5.4). 

Primer pairs were validated using the QuantiTect® one-step RT-PCR assay kit. In single step 

PCR reactions, reverse transcription of mRNA and target amplification are performed 

sequentially in the same reaction mixture. In this approach, reaction preparation steps are 

reduced and there are fewer opportunities for environmental contamination to be introduced 

(Wong and Medrano, 2005). The reaction profiles of assays with different primer 

concentrations were analysed to ensure primer pairs giving rise to normal reaction kinetics, 

and hence satisfying the assumptions of the comparative CT method of relative quantification, 

were validated for future use (Schmittgen and Livak, 2008). Only one primer pair, β-actin A, 

did not generate the expected exponential reaction profile; assays of this pair did not exhibit 

exponential amplification. This may be explained by the fact that, ironically, excessive 

quantities of DNA are known to inhibit PCR; β-actin is typically expressed in large quantities 
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and corresponding DNA may reach inhibitory levels at early cycles (McPherson and Møller, 

2006).  

Although both the quantity of template material present and the degree of expression of the 

gene of interest influence assay kinetics, CT values at different primer concentrations were 

also examined. If too high a primer concentration is used the formation of primer-dimer or 

secondary structure amplicons may be increasingly favoured, potentially impacting the 

specificity of the reaction, and too low a concentration may not produce amplification that 

exceeds the threshold cycle value. For the majority of primer pairs, all primer concentrations 

tested gave rise to exponential amplification, but the highest concentration (500 nM) was 

most easily distinguished from amplification in no template controls caused by environmental 

contamination (McPherson and Møller, 2006; Bustin et al., 2009). Additionally, CT values of 

some validation assays with RNA from differentiated cells, in which genes of interest are more 

likely to be highly expressed than Tencell cultured hMSC were high; lower primer 

concentrations may render the gene of interest undetectable  in mechanostimulation 

experiments. Validation testing yielded no evidence that lowering the primer concentrations 

used reduced nonspecific binding; all primer pairs giving rise to multiple peaks in dissociation 

plots did so consistently for all conditions tested. Therefore, primer concentrations of 500 nM 

were used in all subsequent gene expression analyses. 

Efficiency testing of primer pairs for genes of interest must be conducted to ensure that the 

assumptions of the comparative CT method, which require that the amount of amplicon 

produced approximately doubles with each cycle, are satisfied (Huggett et al., 2005; 

Schmittgen and Livak, 2008). Any differences in normalised CT values between experimental 

conditions must be caused by changes in gene expression, and not by variable reaction 

kinetics, to ensure validity of gene expression data.  

Primer pair specificity and amplicon identity were validated by examining dissociation plots 

and gel electrophoresis respectively. Both techniques may be used to determine the number 

of amplicons produced in a qPCR assay, but fluorescence detection of products is considerably 

more sensitive than gel electrophoresis. Additionally, amplicons generated in low quantities 

or of small size, such as products arising as a result of nonspecific binding or primer-dimers, 

may not be detected by gel electrophoresis. Primer pairs should be fully complementary to 

only the target sequence, but may bind to other sequences of mRNA more weakly. Further, 

DNA polymerases are known to be active at low levels at annealing temperatures, and extend 

primers as soon as annealing occurs – even if primers are weakly hybridised to the incorrect 

sequence (McPherson and Møller, 2006). In theory, for primer pairs producing multiple 
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amplicons, raised annealing temperatures may disfavour this less complementary binding 

(Edwards et al., 2004; McPherson and Møller, 2006). The fact that the number of amplicons 

generated, and hence the degree of nonspecific binding, was not reduced by raising the 

annealing temperature for any case of primer nonspecificity indicates that for inadequately 

designed primers, nonspecific binding is frequently thermodynamically favoured over 

annealing the target sequence. It is possible that the energetic  barrier for such events is 

frequently smaller than the reduction in potential energy conferred by the more 

numerous/stronger hydrogen bonds formed upon binding a fully complementary sequence 

(Atkins and De Paula, 2010). 

Despite its relative lack of sensitivity compared to fluorescence detection, analysis of assay 

products by gel electrophoresis was performed to validate the identity of amplicons 

generated. For this purpose electrophoresis was used to determine the size of the amplicons 

produced for comparison with those predicted in silico by BLAST. Although amplicon identity 

can be definitively proven only by sequencing (Adams et al., 1991; Cernomaz et al., 2016), the 

production of a different amplicon of the same size as the intended product is highly 

improbable and validation by gel electrophoresis was deemed sufficient for these purposes. 

Several housekeeping genes, coding for GAPDH, β-actin and 28s ribosome, were successfully 

validated as efficient and specific. Only one housekeeping gene is absolutely  necessary for 

normalisation of gene expression, although the inclusion of several is advantageous. By 

definition, housekeeping genes should display highly uniform expression throughout the cell 

cycle and under varying environmental conditions (Jain et al., 2006). Other investigators have 

shown that β-actin and GAPDH expression is not stable with respect to culture conditions in 

every instance, and is altered by factors such as the serum concentration used, and critically, 

mechanical stimuli (Schmittgen and Zakrajsek, 2000; Rauh et al., 2015). Hence, only the 

validated 28s ribosome primer pair was used as the internal control in all subsequent gene 

expression analyses. 

The use of only one reference gene in these investigations must be acknowledged as a major 

limitation, and should be remedied in any future work. Ideally, a selection of housekeeping 

genes should be tested and the pair of genes found to alter the least between conditions used 

for normalisation. For this study, the CT values of potential housekeeping genes from each 

sample type (strained, static, seeded-only and unseeded suspension cells) of each strain 

condition experiment could have been found and checked for variability. This may be analysed 

using software packages such as BestKeeper©, geNorm and NormFinder (Vandesompele et al., 

2002; Andersen et al., 2004), or perhaps more simply, by calculating the coefficient of 
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variation for each candidate (Rauh et al., 2015). Previous reports by Rauh et al and Li et al 

employed these methods to find normalisation genes for studies of MSC cultured on three-

dimensional acellular matrices, and to compare foetal- and bone-marrow derived MSC 

respectively (Li et al., 2015; Rauh et al., 2015). Interestingly, both reported disagreement 

between the different software packages, but peptidylprolyl isomerase A (PPIA) was found to 

be one of the stablest normalisation candidates by both. Since the stability of 28S expression 

with respect to normalisation has, to the author’s knowledge, never been tested, it is 

suggested that it be examined using the techniques described alongside PPIA and other genes 

reported as stable, such as hypoxanthine phosphoribosyltransferase 1 (HPRT1) and TATA box 

binding protein (TBP) (Li et al., 2015; Rauh et al., 2015). This enhanced rigour in the selection 

of housekeeping genes may remove bias from dependent gene expression data.  
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Chapter 6: Validation of the Tencell 

Apparatus for use as a Tensile Strain 

Bioreactor 

6.1 Introduction 

The work described in this chapter focussed on the re-engineering and validation of a uniaxial 

strain bioreactor. Bioreactors are widely used in contemporary tissue engineering for large-

scale mammalian cell expansion, as required to deliver cell therapy products at industrial 

scales (Rafiq et al., 2013; Heathman et al., 2016; Zhao et al., 2016), for the culture of tissue-

engineered constructs or in fundamental studies examining the impact of applying specific 

stimuli (Zhao et al., 2016). Bioreactors may also be used for other applications; the first report 

of bioreactor use concerned the microbial oxidation of hydrocarbons (Einsele and Fiechter, 

1969). 

In tissue engineering, bioreactors are frequently used to impart physical forces to cell-seeded 

substrates. In cartilage tissue engineering shear, perfusion, hydrostatic pressure and 

compression forces may be applied; vascular tissue such as stents, valves and bypass grafts 

may also be manufactured using bioreactors (Morticelli, 2013; Schmidt and Tranquillo, 2016); 

skin may be cultured using expanding bioreactors for skin grafts and rotating culture systems, 

and nerve conduits may be engineered (Zhao et al., 2016). Crucially, bioreactors are also 

frequently used to apply uniaxial or biaxial strain (Morticelli, 2013; Lei and Ferdous, 2016). 

Since many tissues, including heart, heart valves, arteries, muscle, bone, tendon and ligament,  

experience strain as part of their in vivo function(s), it is logical that such bioreactors may be 

necessary to replicate the cellular niche in which these tissues develop and maintain 

homeostasis. 

Bioreactor systems typically comprise an actuating, motion-transforming unit to apply the 

desired stimulus, monitoring and control systems, a sample culture chamber to provide the 

appropriate culture conditions and a nutrient exchange system (Lei and Ferdous, 2016). In 

common with standard cell culture incubators, bioreactors must maintain an appropriate 
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temperature (36- 37 °C), gaseous environment (5 % (v/v) CO2 in air) and humidity to maintain 

cell viability (Ham and Puck, 1962; Hayflick, 1965).  

The Tencell apparatus is a  bespoke, uniaxial strain bioreactor with actuating units comprised 

of displacement arms that may be attached to the tissue clamps to apply strain to substrates. 

The displacement arms are fixed to a single moving bar inside the apparatus casing, which in 

turn is displaced by a piston. The culture chambers consist of open stainless steel culture wells 

affixed to a heating base and enclosed by the latter and a heated perspex lid  (Fig. ‎6.1A, 

Fig. ‎2.2). The medium composition, heating base and corresponding controller, humidifying 

and gassing apparatus must maintain optimal culture conditions. There is no nutrient 

exchange system, so Tencell culture regimes must be carefully designed to avoid or facilitate 

manual medium changes. Note that some of the bioreactor components described in this 

introduction and Fig. ‎6.1 were modified/introduced as a result of the work package described 

in this chapter. 
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Fig. 6.1: Photograph of the Tencell bioreactor, and schematic of the culture chamber from above, of the Tencell 

apparatus following the validation works performed in this chapter. Tencell consists of 16 cell culture wells affixed to 

a heated base (A, schematic). Both static controls (n=6) and strained samples (n=6) are cultured simultaneously. The 

water bath and wells 1, 8, 9 and 16 contain water during operation to maintain chamber humidity. A Perspex lid is 

clamped to the heating base during use and is heated during experiments by the heat lamp (B). Following temperature 

regulator replacement to the EZ-zone PM device, as described in this chapter, the heating base casing contained 4 

ceramic heating elements controlled by the temperature regulation unit (C). The heating elements are located in each 

quadrant of the base, as indicated by dashed lines in the schematic. Displacement of the arms is controlled via the 

displacement module (D), on which the amplifier knob used to select the magnitude of displacement is located. 

Humidifying apparatus, consisting of a flask of sterile water heated by a hot plate and connected to Tencell by sterile 

tubing, was introduced during the works described in this chapter to solve the problem of culture medium evaporation 

(E). The bioreactor is gassed through taps on the perspex lid at the outset of culture only (F).Tencell is operated within 

a class II cabinet to ensure sterility of the culture environment. 

 

F 
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6.2 Aims and objectives 

 

6.2.1 Aim: 

The aim of the investigations described in this chapter was to re-engineer and validate the 

Tencell bioreactor for the culture and mechanostimulation of hMSC-seeded scaffolds, with 

particular regard to the maintenance of appropriate temperatures, medium osmolality and 

accurate arm displacement. 

 

6.2.2 Objectives: 

 

 To measure and optimise the temperature maintained in the Tencell culture wells  

 

 To find the relationship between the actual displacement of the Tencell arms and that 

selected using the amplifier knob on the displacement module 

 

 To measure and reduce fluid loss from the Tencell culture wells due to evaporation 

 

 To validate the cell culture approach devised from the above testing packages with 

respect to cell viability following Tencell culture 
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6.3 Experimental approach 

The Tencell bioreactor was validated with respect to temperature maintenance, arm 

displacement and fluid loss to render it suitable for the culture and mechanostimul ation of 

hMSC-seeded acellular pericardia. 

The temperature maintained in culture wells of the Tencell apparatus using both Tempatron 

dtc410 and EZ-zone PM heating controllers to establish a heating regime that equally 

maintains stable temperatures conducive to cell culture (36 – 37 °C) between all wells. The 

actual arm displacement by arm as compared to that selected using the displacement module 

was measured to assess the accuracy of the strains applied in subsequent 

mechanostimulation investigations, and the variation in strain applied, and hence error, 

between experimental replicates. The degree of fluid loss from Tencell wells was measured, 

both with and without evaporation reduction measures, to devise an experimental protocol 

for hMSC culture in Tencell that maintains the osmolality of cell culture medium. The 

experimental protocol designed according to the validation work packages previously 

described  was tested by measuring the viability of pericardium-seeded hMSC after bioreactor 

culture to validate  its suitability as a cell culture system, and make any adjustments found to 

be necessary. 
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6.4 Results 

 

6.4.1 Temperature regulation in Tencell culture wells 

Validation of temperature regulation in Tencell culture wells was performed to determine 

whether temperatures suitable for cell culture (36 – 38 °C) were maintained within the 

apparatus. 

 

6.4.1.1 Temperature maintenance using the Tempatron dtc410 temperature 

controller 

The temperature maintained in the Tencell apparatus using the Tempatron dtc410 regulator 

was measured as previous investigations by coworkers indicated that overheating of cell 

culture wells may occur (Dr Andrew Aldridge, personal communication). 

The temperature of four cell culture wells, located in each quadrant of the heating base and 

thus heated by different heating elements, was measured overnight (Fig. ‎6.2, Fig. ‎6.1). 

Temperatures in cell culture wells did not equilibrate for the duration of the experiment and 

cycled in the range 34.5 – 39.5 °C. Each heating and cooling cycle lasted ~ 15 minutes. There 

was no apparent difference in temperature maintenance between the wells tested, and hence 

heating behaviour between different  heating elements. 
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6.4.1.2 Temperature maintenance using the EZ-zone PM temperature controller 

The EZ-zone PM heating regulation system, operating with two heating elements housed in 

the heating base, was fitted to the Tencell bioreactor to improve temperature maintenance in 

the apparatus. The temperature maintained by this system was validated with respect to 

optimal cell culture temperatures (36 – 38 °C) before and after heating regime optimisation by 

instrument autotuning. 

The temperature of culture wells regulated by the EZ-zone PM controller prior to autotuning 

was not steadily maintained in the optimal range; there was an initial spike of temperature, 

reaching a maximum of 44 °C, followed by inconsistent heating thereafter (Fig. ‎6.3). However, 

repetitive temperature cycling, as observed with the use of the Tempatron dtc410 controller, 

did not occur. Temperature regulation differed between different wells following the initial 

heating period, with a maximum variation in temperature of ~ 2 °C over the duration of the 

experiment within individual wells not monitored by the EZ-zone PM system (3, 11), but very 

little variation in individual wells fitted with thermocouples for reporting to the controller (8, 

14). 

Fig. ‎6.2: Temperature control in the Tencell apparatus with the Tempatron dtc410 temperature controller.  A 

steady optimal temperature (36 – 38 °C) was not maintained. The temperature inside cell culture wells cycled 

between 34.5 and 39.5 °C for the duration of temperature control. Data shown as measured by each probe.  
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The temperature maintained in culture wells following autotuning of the EZ-zone PM 

controller was satisfactorily maintained; there was an initial spike of temperature, but the 

maximum temperature reached was within limits conducive to cell culture (37.5 °C) (Fig. ‎6.4). 

Following initial heating, the temperature of individual wells was maintained consistently (T 

variation ≤ 1 °C with wells for the duration of monitoring) but differences between individual 

wells were apparent; wells 3 and 11 were maintained at approximately 34.5 – 35.0 °C, 

whereas well 14 and well 8 were maintained at approximately 36 and 37 °C respectively. 
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Fig. ‎6.3: Temperature control in the Tencell apparatus with the autotunable EZ-zone PM temperature 

controller, but prior to heating regime optimisation. A constant optimal temperature was not maintained; 

there was an initial period of very excessive overheating, reaching a maximum temperature of ~ 44 °C, followed 

by inconsistent temperature maintenance thereafter. The temperature maintained within the apparatus did not 

cycle repetitively, as observed when the Tempatron dtc410 heating controller was used (Fig. ‎6.2). 
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6.4.2 Fluid loss in Tencell culture wells 

Fluid loss in Tencell culture wells was measured to find the degree of evaporation over the 

culture period to be used in subsequent gene expression analyses. Fluid loss should be 

minimised to maintain medium osmolality. 

A calibration curve of liquid depth above the tissue surface and the volume of medium added 

was prepared to find the amount of culture medium that should be added to Tencell wells 

(Fig. ‎6.5) to achieve a maximum depth of 3 mm above the seeded surface. Depth calibration 

was originally performed using wells that were not attached to the displacement arms of the 

bioreactor. However, lifting of the tissue clamps was apparent on attachment, meaning that 

original calibration data, indicating an optimal culture medium volume of 4.0 mL in the Tencell 

wells, was not relevant to cell culture conditions in Tencell  (Fig. ‎6.5A). Additionally, the R2 

value of the linear regression fitted to these data was 0.97, below the value of 0.98 generally 

accepted to indicate adequate goodness of fit (Dytham, 2011). Calibration data obtained with 

culture wells fitted in situ indicated that a culture medium volume of 5.5 mL has the optimum 

depth of 3 mm above a seeded pericardial substrate (Fig. ‎6.5B), and the R2 value of the  line of 

best fit produced by linear regression analysis was acceptable (R2=0.99). 
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Fig. ‎6.4: Temperature control in the Tencell apparatus using the EZ-zone PM temperature controller after 

autotuning. There was an initial period of higher, but not excessive (max. T ~ 37.5 °C), heating. The temperature 

maintained thereafter fluctuated within an acceptable range and remained within levels conducive to hMSC 

culture. 
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The total volume of culture medium retained in culture wells following mock Tencell cultures 

was measured to find the percentage fluid loss using the optimal volume of culture medium. 

In order to measure fluid loss, tissue clamps, and a small volume of adherent culture medium 

were removed from culture wells. The proportion of fluid lost due to this method of 

measurement was found to be 11 ± 1 %. Hence, any measured fluid loss from Tencell wells 

following culture ≤ 12% may be deemed negligible and not the result of medium evaporation.  

In previous investigations with the Tencell bioreactor,  coworkers added a larger volume of 

water (120 mL) to the water bath for chamber humidification. To increase the surface area to 
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Fig. ‎6.5: Calibration graph of the relationship between culture medium depth above the empty 

clamp (A) tissue surfaces (B) and the volume of media added. Testing was conducted both without 

(A) and with (B) mock tissue fitted into the Tencell culture wells, and absorption of the medium by the 

tissue was found to impact results. According to (B), which better represents conditions during 

Tencell culture of seeded substrates, approximately 5.5 mL media should be added to Tencell culture 

wells to achieve an optimal depth above the seeded surface of 3 mm. 
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volume ratio, and encourage evaporation of this reservoir in place of fluid loss from culture 

wells, this volume was decreased to 50 mL. Mean fluid loss from Tencell culture wells over 24 

hours in the presence of this lesser volume (50 mL) only was 24 ± 4 %, but anecdotal reports 

suggest that the previous approach resulted in up to 90% culture well fluid loss.  

Culture well fluid loss was further reduced to 12 ± 3 % through the use of humidifying 

apparatus (Fig. ‎6.1), but was 33 ± 1 %. following a longer culture period of 72 hours. Hence, 

culture medium evaporation was reduced to negligible levels by using the humidifying 

apparatus described in section ‎2.2.12.4.2 for cultures of 24 hours but was not sufficient to 

prevent a significantly greater (p ˂0.001) fluid loss from the method of measurement alone 

for 72 hour cultures. 

 

6.4.3 Displacement of Tencell arms 

Actual displacement of uniaxial strain arms was validated with respect to the strain selected 

using the amplifier dial. Trendline equations for all arms were similar and suggest that the 

degree of strain applied to different experimental replicates does not differ significantly, but 

the mean gradient and intercept values of strain arms was significantly different from their 

expected true values of 1.0000 and 0.0000 respectively (p ˂  0.001) (Fig. ‎6.6). 
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Fig. ‎6.6: Calibration graph and trendline equations (table) showing the measured displacement of 

Tencell arms compared to the displacement selected using the amplifier dial. Trendline equations 

were similar between different arms, but the mean gradient and intercept value were significantly 

different from the true values of 1.0000 and 0.0000 respectively (p ˂ 0.001 for both). Statistical 

analysis done by one sample Student’s t test. 
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6.4.4 Viability of Tencell cultured human multipotential mesenchymal 

stromal cells 

The viability of Tencell cultured hMSC was examined to develop an optimal protocol for cell 

culture using this apparatus. During initial investigations, seeded substrates were cultured for 

24 hours with hMSC culture medium following initial humidification and gassing of the culture 

chamber (CO2 in air; 5 % (v/v)). There was a significant loss of cell viability of hMSC cultured in 

the apparatus compared to seeded tissue (p ˂  0.001) (Fig. ‎6.7).  

Loss of cell viability during culture may be caused by issues regarding the cells and/or 

materials used or unsuitable environmental conditions. Tencell parts (clamps and culture 

wells) were tested for cytotoxicity since temperature maintenance, evaporation and cell 

viability of hMSC stocks were previously confirmed acceptable.  
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Fig. ‎6.7: Mean luminescence counts, as detected by the ATPlite™ assay, by sample type comparing the 

survival of Tencell cultured hMSC with those seeded and cultured in a standard cell culture incubator. There 

was a statistically significant difference between the luminescence counts of seeded scaffolds and other sample 

types, but there was no statistically significant difference between unseeded and Tencell scaffolds (p ˂ 0.001). 

Statistical analysis done by ANOVA and Tukey’s post-hoc test. Data presented as means with 95% confidence 

limits. 
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There was a statistically significant difference between luminescence counts of all sample 

types for 3T3 cells but between positive controls and other sample types for BHK cells and 

pMSC only. Hence, although a reduction in cell viability could be discerned, there was no 

statistically significant difference between pMSC cultured in Tencell conditioned and normal 

culture medium. There were no visible particulates following conditioning of Tencell 

components. No microbial growth was observed on any culture plate or in any culture broth 

inoculated with test media, whereas extensive microbial growth was apparent in positive 

controls. 

In addition to evaporation, the pH of culture medium may be affected by the gaseous 

environment of a bioreactor. The effect of the inclusion of HEPES (25 mM), which is more 

robust to changes in atmospheric composition than sodium bicarbonate (Good et al., 1966),  

in culture medium on cell viability was investigated. Cell viability of seeded substrates 

cultured in the Tencell bioreactor, which was gassed only during apparatus setup, and of 

substrates cultured in a standard cell culture incubator were compared. There was no 

significant difference in the luminescence counts of samples cultured in either environment, 
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Fig. ‎6.8: Chart showing the luminescence counts of 3T3, BHK and porcine multipotential mesenchymal stromal 

cells grown in the appropriate unconditioned complete culture medium and those grown in Tencell seeding 

ring conditioned medium, as measured by the ATPlite™ assay. Positive control medium contained DMSO (40% 

(v/v)).There was a statistically significant difference between luminescence counts of all 3T3 sample types (p  ˂

0.001), but only between positive controls and other sample types for BHK and pMSC cultures (p  ˂ 0.001 and = 

0.010 respectively). Data presented as means with 95% confidence limits. 
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but luminescence counts of unseeded tissue were lower that that of all other sample types (p 

= 0.002). 
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Fig. ‎6.9: Mean luminescence counts of hMSC cultured in the Tencell apparatus as compared 

to counts of unseeded and seeded tissue, and seeded scaffolds cultured in a 6 well plate 

and Tencell wells in a cell culture incubator. Cell culture medium was buffered with HEPES 

(25 mM). There was no statistically significant difference between scaffolds cultured in the 

Tencell apparatus and those cultured in 6 well plates and Tencell wells in a cell culture 

incubator, but luminescence counts of unseeded scaffolds were significantly lower than other 

sample types( p = 0.002), indicating that the high luminescence counts recorded can be 

attributed to the presence of live cells on all other sample types, and not interfering reactivity 

of the scaffold. The lack of significant difference in luminescence counts between cells 

cultured in the Tencell bioreactor and those cultured in Tencell wells inside a standard cell 

culture incubator indicates that environmental conditions (temperature, pH, pCO2) inside the 

bioreactor were adequate to maintain cell viability. A lack of significant difference between 

viability of samples cultured in Tencell wells and 6-well plates inside a standard cell culture 

incubator indicates that the Tencell culture well was not cytotoxic to the constructs.  



177 
 

 

6.5 Discussion 

The investigations conducted in this chapter were concerned with re-engineering and 

optimising the Tencell bioreactor to achieve optimal physico-chemical conditions for cell 

culture, and to validate the displacement applied to tissue substrates by the Tencell arms.  

In common with early efforts in in vitro cell culture (Ham and Puck, 1962; Good et al., 1966), 

the temperature, culture medium pH and gaseous environment maintained during operation 

of the Tencell bioreactor must be carefully validated. The cell culture environment must 

support good cell viability and avoid influencing cel l functionality, especially gene expression. 

It was found that the Tencell bioreactor did not stably maintain an appropriate (36 – 37 °C) 

temperature in cell culture wells prior to replacement and autotuning of the heating 

controller. The Tempatron dtc410 temperature regulator maintains culture well temperature 

in an on/off fashion – it is only able to activate and deactivate the associated heating 

elements, unlike the EZ-zone PM device, which adjusts the heating regime used to regulate 

temperature as required. If cell cultures are exposed to unsuitable temperatures, both cell 

viability and differentiation potential of hMSC may be affected. Previous investigators have 

reported significant losses of hMSC viability at raised temperatures (Bronzini et al., 2012; 

Reisiss et al., 2013). Although Reisiss et al reported that MSC survived temperatures of  48 °C 

for up to 150 seconds, temperatures significantly higher than 37 °C are extremely unlikely to 

be tolerated for extended periods of time as employed in this project (Reisiss et al., 2013). 

Moreover, the full effects of suboptimal  temperatures on hMSC viability are not completely 

understood and are frequently studied in the context of transplantation; hMSC tested are 

often in parenteral substances, and are most often examined at temperatures lower than 

37 °C only, so such studies may not accurately model the impact of temperature changes in 

the cell culture environment (Pal et al., 2008). 

It has been  widely reported that the differentiation potential of  hMSC may be affected by a 

multitude of factors, in addition to physical stimuli. Crucially to this project, culture of hMSC at 

different temperatures impacts their differentiation potential, particularly with respect to the 

osteogenic lineage (Chen, 2009; Hee-Hoon, 2015). Additionally, the equilibrium position of the 

weak buffers used in culture media may be altered by temperature changes, in turn changing 

the pH of the culture medium, which must be maintained in the range 7.2-7.4 (Eagle, 1971). 
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In order to attribute cellular changes such as differentiation to applied strains and exclude the 

influence of other factors, investigators must also be sure that the composition of the culture 

medium remains constant for the duration of an experiment in a bioreactor system. Cell 

culture medium is designed with  an osmolarity that renders it an isotonic solution with 

respect to cells; if concentrated by evaporation, increased salt molarity induces osmosis from 

the cytoplasm to the cell exterior (Waymouth, 1970). In fact, treatment with hypertonic 

solution is often a key stage of the decellularisation of fresh tissues as this process readily kills 

cells (Gilbert et al., 2006; Mirsadraee et al., 2006a). In addition, in the case of high levels of 

evaporation, the medium level in culture wells may fall below the level of the substrate 

clamps and result in drying of cell-seeded scaffolds. Hence, culture systems in which medium 

is not constantly replaced must be designed to prevent medium evaporation. 

It is logical that a system comprising open culture wells may be prone to fluid loss from 

evaporation. However, using simple humidification apparatus was sufficient to reduce culture 

well evaporation to minimal levels. It is likely that the internal environment of the bioreactor 

becomes saturated with water vapour, and evaporation of culture medium is consequently 

disfavoured. 

Despite confirming that temperature regulation and fluid loss were within acceptable bounds, 

and that the was no significant cytotoxic effect from the Tencell culture wells, there was a loss 

of cell viability of matrix-seeded hMSC cultured in Tencell. Since all other critical culture 

conditions had been satisfactorily validated the possibility of inadequate pH regulation was 

investigated. Sodium bicarbonate in culture media is able to buffer the pH within acceptable 

bounds only in the presence of sufficient CO2, and is routinely used in cell culture incubators 

that have a constant supply of CO2 (5 % (v/v) in air). In contrast, the Tencell bioreactor was 

gassed with this mixture at the outset of culture only, after which the partial pressure of CO2 

probably decreases significantly. In media buffered with sodium bicarbonate, as is the case in 

this study, a lack of CO2 can raise the pH to approximately 8.0 by altering which of two 

possible buffer reactions of sodium bicarbonate dominates. 

Where a constant supply of CO2 is not feasible, other buffers, such as HEPES, may be used to 

lower the pH of bicarbonate-buffered cultures (pKa = 7.55) (Good et al., 1966; Eagle, 1971). In 

these studies, Tencell cultured scaffolds maintained cell viability comparable to that of 

matrices cultured in traditionally gassed incubators. 

The measured  displacement of Tencell arms was found to be in very good agreement with 

that selected using the amplifier knob. Whilst the values of the gradient and intercept of these 
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graphs differed significantly from  their ‘true’ values of 1.000 and 0.000, it is unlikely that the 

measurement approach used is able to approach this degree of accuracy. For example, the 

amplifier knob (Fig. ‎2.3) has an analogue display and the accuracy of the displacement 

selected was reliant on human judgement. Perfect fixation of the dial gauge during 

measurement is also unlikely; it is possible that some of the kinetic energy imparted by the 

displacement arms was transferred into small movements of the dial gauge apparatus as a 

whole, and not wholly into movement of the measurement needle. Additionally, it was not 

possible to measure the displacement of different arms simultaneously, so apparent 

differences between arms may be the result of minor differences in experiment setup 

between arms. Overall, as compared to the comparatively high degree of variation in 

biological systems, differences between calibration data and true values were considered 

acceptable for the purposes of this project. 

 

 

  



180 
 

 

Chapter 7:  Mechanostimulation and gene 

expression analyses of hMSC-seeded 

pericardial matrices  

7.1 Introduction 

The investigations described in this chapter aimed to devise a mechanostimulation regime for 

hMSC seeded on pericardium matrices that maintained cell viability, and to find any 

differences in gene expression between strained and unstrained samples cultured in the 

Tencell bioreactor. 

Whilst ample evidence of mechanosensitivity of hMSC has been reported (Altman et al., 

2002a; Discher, 2005; Butler et al., 2008; Chen, 2010; Park et al., 2011b; MacQueen et al., 

2013; Haase and Pelling, 2015), no studies have examined the differentiation of hMSC in 

biologically-relevant acellular matrices to date (Friedl et al., 2007; Ren et al., 2008; Sen et al., 

2008), and very few studies have examined hMSC differentiation towards the smooth muscle 

lineage for any approach (Park et al., 2004). Application of strain may affect cell viability if the 

regime is not validated prior to use (Reisiss et al., 2013); cells must be maintained within 

optimal cell culture conditions to prevent changes in gene expression as a result of factors 

other than the treatment applied. 

Gene expression may be quantitated as relative to internal or external standards in relative 

and absolute quantification respectively (Bustin, 2000; Edwards et al., 2004; Huggett et al., 

2005; McPherson and Møller, 2006; Bustin et al., 2009). Absolute quantification involves the 

generation of standards curves to elicit gene copy number information from CT values, and is 

comparatively onerous for investigators. Where exact gene copy numbers are not the metric 

of interest, it is satisfactory to report the change in expression of genes between sample types.  

The comparative CT method of relative quantification of qPCR data relates CT values for genes 

of interest to those of housekeeping genes, also known as internal controls, expected to 

remain constant regardless of culture conditions (Schmittgen and Zakrajsek, 2000; Wong and 
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Medrano, 2005; Schmittgen and Livak, 2008). This normalisation process corrects for 

differences in the overall rate of mRNA synthesis and the quantity of template material added 

to assays (Eqn. ‎7.1). 

∆𝐶𝑇 =  𝐶𝑇(𝑔𝑒𝑛𝑒 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡) −  𝐶𝐼(ℎ𝑜𝑢𝑠𝑒𝑘𝑒𝑒𝑝𝑖𝑛𝑔 𝑔𝑒𝑛𝑒) 

Eqn. ‎7.1: Calculation of corrected CT values, or ΔCT from gene of interest and housekeeping gene threshold 

fluorescence data. 

 

Gene expression data for experimental replicates investigated during the same experiment 

can be plotted by sample type with confidence limits as 2-ΔCT data (Wong and Medrano, 2005; 

Schmittgen and Livak, 2008). To obtain fold change data, calculated as 2-ΔΔCT values,  ΔCT data 

from treated and untreated (or endogenous control) samples are compared mathematically 

as given by Eqn. ‎7.2. 

 

∆∆𝐶𝑇 =  ∆𝐶𝑇 (𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒) − ∆𝐶𝑇(𝑢𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒) 

Eqn. ‎7.2: Mathematical comparison of corrected CT values of treat ed and untreated samples to obtain 

fold change values 

 

In the Tencell experimental setup, there is no scientifically valid justification for the pairing of 

any particular pair of strained and unstrained experimental replicates. Therefore, fold change 

data can be calculated from the mean of all strained and endogenous control samples within 

an experiment, to obtain a single value of 2-ΔΔCT. Therefore, Tencell experiments must be 

performed in triplicate for each strain condition examined. This was not practicable in this 

project due to the time constraints and high workload associated with performing a total of 

nine bioreactor experiments, and fold change data is presented in this chapter for reference 

only. 
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7.2 Aims and objectives 

7.2.1 Aim: 

The aim of the experiments described in this chapter was to validate a suitable 

mechanostimulation regime for pericardium-seeded hMSC cultured in Tencell, and to 

determine whether their differentiation potential towards the adipogenic, osteogenic, 

chondrogenic, tenogenic and smooth muscle lineages is altered by the application of different 

magnitudes of strain. 

 

7.2.2 Objectives: 

 To quantify the viability of hMSC strained for time periods of 24 and 4 hours using the 

ATPlite™ assay, and select a strain duration that maintains good cell viability for 

mechanostimulation studies 

 

 To quantify the viability of hMSC subjected to different magnitudes of strain (5, 10 

and 20%) using the ATPlite™ assay  

 

 To visualise the histoarchitecture of Tencell-cultured seeded pericardium 

 

 To measure and compare the expression of lineage-specific genes in hMSC subjected 

to different magnitudes of strain 
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7.3 Experimental approach  

During the experiments described in this chapter, an optimal straining regime of Tencell-

cultured hMSC-seeded pericardia was devised, and the relative expression of genes indicative 

of differentiation towards the smooth muscle, tenogenic, osteogenic, adipogenic and 

chondrogenic lineages measured. 

Sterility testing of all bioreactor culture runs was performed to validate that all cell viability 

and gene expression analyses were free of bias that may be caused by the presence of 

microbes. The viability of hMSC seeded on pericardial matrix and subjected to different 

magnitudes (5, 10 and 20%) and durations (4 and 24 hours) was measured to validate a 

uniaxial cyclic strain regime that maintained cell viability for the duration of  Tencell culture. 

The magnitudes of strain examined were selected so as to encompass the most commonly 

examined magnitudes reported in literature (Kim et al., 1999; Park et al., 2004; Katsumi et al., 

2005; Friedl et al., 2007; Maier et al., 2008; Qi et al., 2008; Huang et al., 2012; Kreja et al., 

2012; Rathbone et al., 2012). A seeding period of 24 hr was initially tested to investigate the 

viability of cells mechanostimulated for the duration of bioreactor culture, and reduced to 4 

hr as per results to represent straining periods previously reported (Park et al., 2004). The 

histoarchitecture of Tencell-cultured (strained and unstrained) and seeded-only pericardia 

was examined by haematoxylin and eosin staining to discern any differences in cell 

penetration and collagen structure of the tissue between conditions. The relative expression 

of genes of interest was measured to determine whether any of the strain regimes applied 

resulted in changes in lineage specification behaviour of hMSC. 
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7.4 Results 

7.4.1 Sterility of Tencell-cultured samples 

All microbiological plates and broths corresponding to test samples for all Tencell culture 

experiments were free of, and all positive control samples exhibited extensive, microbial 

growth. 

 

7.4.2 Viability of mechanostimulated cells by duration of strain 

Cell viability testing by the ATPlite™ assay at different durations of strain was conducted to 

establish an optimal straining regime for cell seeded substrates.  

Although statistically significant differences in luminescence counts were only found between 

unseeded and seeded samples, there appeared to be a reduction in cell viability between 

strained and unstrained hMSC, when cyclic uniaxial strain (10%; 1 Hz) was applied for 24 hr 

(Fig. ‎7.1). A repeat of this experiment with BHK cells yielded similar results (Fig. ‎7.2). 

Luminescence counts of unseeded tissue in experiments with BHK cells were not measured 

and would be expected to be similar to that of unseeded tissue measured previously.  
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To examine whether shorter durations of strain encourage maintenance of cell viability during 

Tencell culture, the cell viability of BHKs cultured with and without uniaxial strain (10%; 1 Hz) 

applied for 4 hrs was quantified by ATPlite™. There was no significant difference between cell 

viability of strained and unstrained cells for this shorter application of strain, but 

luminescence counts of cells cultured in scaffolds subjected to strain were greater than those 

of other samples (Fig. ‎7.3). Confidence limits (p=0.05) for all ATPlite™ assay-based cell viability 

experiments were large, indicating a high degree of variability between experimental 

replicates. 
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Fig. ‎7.1: Luminescence counts by sample type of hMSC cultured in Tencell, as measured by the 

ATPlite assay. Seeded cells were seeded overnight.  Stimulated scaffolds were seeded overnight 

and cultured in Tencell whilst subjected to cyclic uniaxial strain (10 Hz) for 24 hours. Static 

scaffolds were seeded overnight and cultured in Tencell for 24 hours in the absence of 

mechanostimulation. Luminescence counts of  seeded and unseeded samples were significantly 

different (p=0.033), as measured by ANOVA and a Tukey test. Although there was no significant 

difference between luminescence counts of static and mechanostimulated scaffold, the data 

appear to indicate a loss of cell viability of strained hMSC. Data presented as means ± 95% 

confidence limits. 
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Fig. ‎7.2: Luminescence counts by sample type of BHK cells cultured in Tencell. Seeded cells were seeded 

overnight, as measured by the ATPlite assay . Stimulated scaffolds were seeded overnight and cultured in Tencell 

whilst subjected to cyclic uniaxial strain (10%; 1 Hz) for 24 hours. Static scaffolds were seeded overnight and 

cultured in Tencell for 24 hours in the absence of mechanostimulation. Luminescence counts for static samples 

were significantly greater than other sample types (p=0.005), as measured by ANOVA and a Tukey test.  
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Fig. ‎7.3: Luminescence counts by sample type of BHK cells cultured in Tencell, as measured by 

the ATPlite assay. Seeded cells were seeded overnight. Stimulated scaffolds were seeded 

overnight and cultured in Tencell whilst subjected to cyclic uniaxial strain 10%; (1 Hz) for 4 hours. 

Static scaffolds were seeded overnight and cultured in Tencell for 24 hours in the absence of 

mechanostimulation.  There was no significant difference in luminescence counts between 

sample types (p=0.320), as measured by ANOVA. 
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7.4.3 Viability of mechanostimulated hMSC by magnitude of strain 

Since the relative expression of genes of interest (Table ‎5.3) was measured for hMSC cultured 

with different magnitudes of strain (5, 10 and 20%), the viability of cells under these 

magnitudes of strain was also measured. Any detected changes in relative gene expression for 

cells showing a loss of viability during an experiment cannot be attributed to applied 

mechanical stimuli, and may instead be the result of apoptosis or cell stress. For all 

magnitudes of strain, there was no significant difference in the luminescence counts of 

strained and unstrained samples  (p = 0.002, 0.057 and 0.032 for strains of 5, 10 and 20% 

respectively), but samples cultured in the 5 and 20% experiments had luminescence counts 

that were significantly greater than unseeded tissue (Fig. ‎7.4 & Fig. ‎7.6). 
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Fig. ‎7.4: Luminescence counts by sample type of hMSC cultured in Tencell for downstream 

relative gene expression analyses, as measured by the ATPlite assay. Seeded cells were seeded 

overnight. Stimulated scaffolds were seeded overnight and cultured in Tencell whilst subjected to 

cyclic uniaxial strain (5%; 1 Hz) for 4 hours. Static scaffolds were seeded overnight and cultured in 

Tencell overnight in the absence of mechanostimulation.  There was a significant difference in 

luminescence counts between unseeded and other sample types only (p=0.002), as measured by 

ANOVA and Tukey’s post-hoc test. 
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Fig. ‎7.6: Luminescence counts by sample type of hMSC cultured in Tencell for downstream relative gene 

expression analyses, as measured by the ATPlite assay. Seeded scaffolds were seeded overnight. 

Stimulated scaffolds were seeded overnight and cultured in Tencell whilst subjected to cyclic uniaxial 

strain (10%; 1 Hz) for 4 hours. Static scaffolds were seeded overnight and cultured in Tencell overnight in 

the absence of mechanostimulation.  There was no significant difference in luminescence counts between 

sample types (p=0.057), as measured by ANOVA and Tukey’s post-hoc test. 

Fig. ‎7.5: Luminescence counts by sample type of hMSC cultured in Tencell for downstream relative gene 

expression analyses, as measured by the ATPlite assay. Seeded scaffolds were seeded overnight. 

Stimulated scaffolds were seeded overnight and cultured in Tencell whilst subjected to cyclic uniaxial 

strain (20%; 1 Hz) for 4 hours. Static scaffolds were seeded overnight and cultured in Tencell overnight in 

the absence of mechanostimulation.  There was no significant difference in luminescence counts between 

sample types (p=0.032), as measured by ANOVA and Tukey’s post-hoc test. 
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7.4.4 Histoarchitecture of strained scaffolds 

Haematoxylin and eosin staining of seeded-only, and statically and strained Tencell-cultured 

substrates was performed to assess the penetration of cells in the scaffold for each condition 

(Fig. ‎7.7 & Fig. ‎7.8). The histoarchitecture of Tencell cultured scaffolds was examined in 

experiments in which mechanostimulation was applied for four hours only, since there was a 

loss in cell viability in samples strained for 24 hours. Histology was performed following the 

full 24 hour culture time. 

Seeded hMSC (Fig. ‎7.7) formed a monolayer on the mesothelial surface to which they were 

applied; penetration of cells into the scaffold was not observed for any sample. There was no 

apparent difference in hMSC attachment and penetration into tissue between statically and 

strained Tencell cultured substrates, and seeded cells remained a monolayer on the 

mesothelial surface. During mounting of sectioned tissue, separation of the tissue was 

apparent at higher water bath temperatures, and in some cases,  the cell monolayer was 

removed intact from the bulk tissue (Fig. ‎7.8; 10% strained image). The crimping and 

orthogonal layer structure of the collagenous extracellular matrix, as described in chapter 3, 

was maintained for all sample types. 
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Fig. 7.7: Representative image of haematoxylin and eosin staine d unseeded (top) 

and seeded (bottom) acellular pericardium specimen. Scale bars are 100 μm. 
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7.4.5 Relative gene expression of strained MSC  

Relative expression of genes indicative of differentiation towards the lineages of interest was 

measured by qPCR to determine whether different magnitudes of strain induce distinct 

lineage specification in hMSC using the validated Tencell bioreactor and protocol. 

Static Strained 

5% 

10% 

20% 

Fig. 7.8: Haematoxylin and eosin stained sections of Tencell-cultured seeded substrates. Cells (dark purple) 

remain as a monolayer on the mesothelial surfaces of cultured tissue for both strained and statically 

cultured samples. In some cases, the cell monolayer was prone to detachment from the bulk tissue. There 

were no obvious differences in histoarchitecture between sample types and  magnitudes of strain. Images 

were captured at 10 × magnification. Scale bars are 100 μm. 
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7.4.5.1 Tenogenic genes 

Collagen I gene expression in seeded scaffolds subjected to uniaxial strain was downregulated 

as compared to static controls for the 5 and 20% strain magnitude conditions, but slightly 

upregulated for the 10% strain condition. Collagen III expression did not differ by sample type 

for the 10 and 20% strain conditions. Both collagen I and III were expressed  significantly more 

in the suspension used to seed scaffolds (also described as ‘unseeded’ cells) than for all other 

sample types for the 5% strain conditions (p = 0.005 and 0.031 respectively) (Fig. ‎7.9Fig. ‎7.10). 

There were no statistically significant differences between scleraxis expression between 

sample types for all strain conditions, but strained cells cultured in the 10% strain experiment 

exhibited a larger downregulation than those of other strain conditions (Fig. ‎7.).. 
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Fig. ‎7.9: Normalised collagen I expression of 

hMSC cultured in Tencell culture experiments. 

Strained samples were subjected to uniaxial 

strains of 5, 10 and 20%. There were no significant 

differences in gene expression between sample 

types cultured in the 10 and 20% strain 

experiments (p=0.422 and 0.176 respectively), but 

collagen I expression was significantly greater in 

seeding suspension cells (or unseeded) compared 

to other sample types in the 5% strain experiment 

(p=0.005), as calculated by ANOVA and Tukey’s 

test. Data presented as means ± 95 % confidence 

limits. 
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Fig. ‎7.10: Normalised collagen III expression of 

hMSC cultured in Tencell culture experiments. 

Strained samples were subjected to uniaxial strains 

of 5, 10 and 20%. There were no significant 

differences in gene expression between sample 

types cultured in the 10 % strain experiment 

(p=0.320). Collagen III expression was significantly 

greater in seeding suspension cells (or unseeded) 

compared to all other sample types in the 5% strain 

experiment (p=0.031). Expression in unseeded and 

seeded hMSC was significantly greater than other 

sample types in the 20% strain experiment 

(p=0.004). Statistical analysis done by ANOVA and 

Tukey’s post-hoc test. 
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Fig. ‎7.11: Normalised scleraxis expression of 

hMSC cultured in Tencell culture 

experiments. Strained samples were subjected 

to uniaxial strains of 5, 10 and 20%. There 

were no significant differences in gene 

expression between groups in any experiment 

(p=0.368, 0.126 and 0.483 respectively). 

Statistical analysis was done by ANOVA. 
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7.4.5.2 Adipogenic genes 

There were no statistically significant differences in adiponectin expression between sample 

types for all strain conditions examined, but it was upregulated in cells subjected to 10% strain 

as compared to static controls, in contrast to the 5 and 20% conditions (Fig. ‎7.12). There were 

no significant differences in PPAR-ɣ expression by sample type for the 10 and 20% strain 

experiments (Fig. ‎7.13). No PPAR-ɣ was detectable by qPCR in any sample cultured as part of 

the 5% strain condition experiment.
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Fig. ‎7.12: Normalised adiponectin 

expression of hMSC cultured in Tencell 

culture experiments. Strained samples were 

subjected to uniaxial strains of 5, 10 and 

20%. There were no significant differences in 

gene expression between groups in any 

experiment (p=0.073, 0.300 and 0.670 

respectively). Statistical analysis was done 

by ANOVA. 
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Fig. ‎7.13: Normalised PPAR-ɣ expression of hMSC 

cultured in Tencell culture experiments. Strained 

samples were subjected to uniaxial strains of 5, 10 

and 20%. PPAR-ɣ expression was undetectable by 

qPCR in hMSC cultured in the 5% strain 

experiment. There were no significant differences 

in gene expression between groups in the 10 and 

20% experiments (p=0.622 and 0.733 

respectively). Statistical analysis was done by 

ANOVA. 
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7.4.5.3 SOX-9 

There were no significant differences in SOX-9 expression between sample types for all strain 

conditions examined (Fig. ‎7.14).  

 

 

 



200 
 

 

3.24E-05 7.94E-05 
1.69E-04 

2.07E-04 

9.99E-04 

2.78E-03 

8.24E-03 

2.67E-03 4.50E-03 

9.41E-04 

4.45E-03 

0.000

0.005

0.010

0.015

0.020

0.025

0.030

5 10 20

N
o

rm
al

is
e

d
 g

e
n

e
 e

xp
re

ss
io

n
 (

2
-Δ

C
t )

 

Magnitude dynamic strain (%) 

Unseeded

Seeded

Strained

Static

Fig. ‎7.14: Normalised SOX-9 expression of 

hMSC cultured in Tencell culture experiments. 

Strained samples were subjected to uniaxial 

strains of 5, 10 and 20%. There were no 

significant differences in gene expression 

between groups in any experiment (p=0.394, 

0.388 and 0.335 respectively). Statistical 

analysis was done by ANOVA. 
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7.4.5.4 RUNX2 

There were no significant differences in RUNX2 expression between sample types for all 

conditions examined (Fig. ‎7.15). Expression of RUNX2 was slightly downregulated in cells 

subjected to 5 and 20 % strain as compared to static controls, but was slightly upregulated by 

cells cultured under 10 % strain . 
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Fig. ‎7.15: Normalised RUNX2 expression of 

hMSC cultured in Tencell culture 

experiments. Strained samples were subjected 

to uniaxial strains of 5, 10 and 20%. There 

were no significant differences in gene 

expression between sample types in any 

experiment (p=0.395, 0.264 and 0.635 

respectively). Statistical analysis was done by 

ANOVA. 
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7.4.5.5 Smooth muscle genes 

Expression of smooth muscle 22α was downregulated in strained cells compared to statically 

cultured controls in the 5 and 20 % strain experiments. There were no significant differences 

in expression of smooth muscle 22α between sample types for any condition examined 

(Fig. ‎7.16). Expression of smooth muscle α-actin was unchanged by the application of strain; 

there were no significant differences in its expression in the 5 and 10% experiments, and 

differences in expression in the 20 % experiment were between the seeding suspension cells 

prior to application to the scaffold (unseeded) and seeded and strained samples (p=0.018) 

(Fig. ‎7.17). Calponin was undetectable in RNA isolated from all samples tested. 
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Fig. ‎7.16: Normalised smooth muscle 22α 

expression of hMSC cultured in Tencell 

culture experiments. Strained samples 

were subjected to uniaxial strains of 5, 10 

and 20%. There were no significant 

differences in gene expression between 

groups in any experiment (p=0.071, 0.324 

and 0.054 respectively). Statistical analysis 

was done by ANOVA. 
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Fig. ‎7.17: Normalised smooth muscle α-actin 

expression of hMSC cultured in Tencell culture 

experiments. Strained samples were subjected to 

uniaxial strains of 5, 10 and 20%. There were no 

significant differences in gene expression between 

groups the 5 and 10% strain experiments (p=0.072 

and 0.463 respectively). Seeding suspension hMSC 

cultured as part of the 20% strain experiment 

expressed significantly more smooth muscle α-actin 

than those cultured on strained and seeded samples 

(p=0.018). Statistical analysis done by ANOVA and 

Tukey’s post-hoc test. 
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7.5 Discussion 

The experiments presented in this chapter sought to validate a mechanostimulation regime 

for the application of uniaxial strain to hMSC-seeded pericardial matrices, and to perform 

gene expression analyses on RNA isolated from samples subjected to strains of  5, 10 and 20 %.  

Strain has been shown to increase cell numbers within tissue engineered constructs (Mack et 

al., 2013), but this is likely to be grossly dependent on the cell type used and the stimulation 

regime. In these studies, the luminescence counts of scaffolds cultured under 10% strain for 

24 hours were considerably decreased as compared to controls, but were slightly higher when 

strain was applied for a 4 hour period for scaffolds cultured for the same total period. 

Previous publications reporting the survival of rat MSC following culture for 3-7 days at strains 

of 1-10% reported a loss of cell viability at strains of 10%, but good cell survival at strains ≤ 5% 

(McKayed et al., 2016). It appears that a compromise between the need to apply relevant 

magnitudes of strain for as long as feasible, in order to detect differences in gene expression, 

and the need to maintain cell viability must be found. Strains of magnitude ˂ 5% were not 

considered relevant to future tissue engineered applications, so the duration of cyclic strain 

was reduced. It is likely that strain periods of 24 hours induce cellular apoptosis, but strain 

periods of 4 hours are tolerated.  

Scaffold histoarchitecture and the penetration of the scaffold by cells appears unchanged by 

sample type. Hence, any differences in gene expression by sample type  in these experiments 

can be reliably attributed to he strain applied, and not changes in the immediate 

microenvironment of the cells. However, the seeded substrates examined may not have 

accurately represented three—dimensional conditions since hMSC grew as monolayers on the 

tissue surface. This may be addressed in future by validating an extended seeding period with 

respect to penetration of the scaffold. 

The gene expression data obtained in these investigations was plotted as 2-ΔCT values, and not 

fold change vaues. It is strongly recommended in the literature that investigators wishing to 

plot qPCR data as individual data points for graphical presentation employ this approach 

(Schmittgen and Livak, 2008). Furthermore, it is only possible to calculate confidence limits for 

2-ΔCT data from experimental replicates tested within the same experiment, as in this 

experimental design. To calculate confidence limits and significance levels for fold change data, 
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a minimum of three experiments for each different strain must be performed, which was not 

practical during this project. 

Overall, the majority of the biggest differences in gene expression between strained and 

unstrained samples were detected in samples cultured at 10% strain. However, the only 

statistically significant differences in gene expression found were between the cell suspension 

used for scaffold seeding and other samples, between which the only common difference was 

the cell culture substrate. 

Statistically significant differences in gene expression between seeding suspension cells and 

other samples  were found for the tenogenic and smooth muscle lineages, and there were no 

significant differences by sample type in the differential potential of hMSC towards the 

chondrogenic, osteogenic and adipogenic lineages. Interestingly, although uniaxial strain has 

generally been found to augment hMSC differentiation towards a tenogenic lineage, as may 

be expected given the in vivo role of tendon tissue (Chen, 2008), some investigators have 

obtained mixed results and have hence concluded that substrate identity is critical in 

determining the impact of strain on gene expression in hMSC (Ngiam et al., 2010). Similarly, 

although cyclic strain has been found to direct hMSC towards an osteoblastic lineage, the 

influence of substrate cues in these investigations was also recognised (Huang and Ogawa, 

2010). The lack of significant differences in RUNX2 and SOX-9 expression for any condition 

may reflect the fact that the stimuli applied in this project do not resemble the cues 

experienced by cartilage and bone tissue in vivo. It is also possible that the use of more 

clinically relevant matrices, such as acellular blood vessels for smooth muscle tissue 

engineering, may generate statistically significant effects, and should be investigated in future. 

Other investigators have previously reported that adipogenic differentiation of hMSC is 

ablated by uniaxial strain (Sen et al., 2008; Khayat et al., 2012). In contrast, no statistically 

significant effect on adipogenic gene expression was found for any sample or strain condition 

in this study. However, it is possible that adipogenic markers were virtually absent from hMSC 

derived from all sample types, explaining a lack of change in gene expression; although some 

mRNA for these genes did exist since the reaction kinetics of these assays differed significantly 

from controls in which only background noise was present. Similarly, there were no 

differences between the expression of smooth muscle genes in strained and unstrained 

samples despite prior reports to the contrary (Park et al., 2004), and calponin was 

undetectable in every case. This is logical; calponin is expressed by fully differentiated smooth 

muscle cells only (NCBI, 2016c). Even if the applied stimulus induced differentiation towards 
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the smooth muscle lineage, the cells would not be likely to be specialised at the point of 

testing. 

To summarise, the main trends apparent from gene expression analyses are the lack of 

statistically significant differences in gene expression between strained and unstrained 

samples, the presence of significant differences between unseeded and other sample types 

for some genes and the fact that the largest differences in gene expression between strained 

and unstrained samples (although not significant) were almost always observed in the 10% 

strain condition. In common with other investigators, it seems logical to conclude that in the 

experimental regime used the mechanostimuli applied may not have been sufficient to induce 

significant changes in gene expression. However, also in line with previous reports, it is 

possible that the substrate used exerted a strong effect on the differentiation potential of the 

hMSC, and that for these investigations this effect was far greater than that of the applied 

strain. It has been thoroughly established that substrate composition (Krishnamurithy et al., 

2016), stiffness (Engler et al., 2006; Even-Ram et al., 2006; Tse and Engler, 2011; Young et al., 

2013) and  surface topography (Kuo et al., 2012; Earls et al., 2013; MacQueen et al., 2013; 

Blumenthal et al., 2014; Mohammadi et al., 2014; Macri-Pellizzeri et al., 2015) are 

considerable factors in the differentiation potential of hMSC. Despite not yielding any 

statistically significant differences, the fact that the largest differences in gene expression 

between unseeded and other samples usually occur in the 10% strain condition is suggestive 

that this magnitude of strain is the most physiologically relevant . 

Additionally, natural variation in the pericardial matrix between individuals may contribute to 

differences in gene expression, and obfuscate effects imparted by applied strains. A further 

limitation to this study that should be addressed in any future, similar studies is the lack of 

control During tissue dissection, variation between individuals is apparent on the macroscale 

of this tissue. A further limitation to this study that should be addressed in any future, similar 

studies is the lack of control assays for differentiation markers; such controls would confirm 

the success of individual qPCR runs. However, the probably that primer pairs pre-validated 

with control, differentiated cell RNA will produce a false negative in assays conducted under 

the same conditions is remote. 

 
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Chapter 8: Final discussion, conclusions and 

future work 

In this work, investigations were conducted to devise a three-dimensional, uniaxial strain 

culture system for hMSC. In initial experiments, a stock of acellular porcine pericardium was 

produced for subsequent cell  culture. Histological staining, DNA assay data and 

biocompatibility and sterility testing of this material confirmed the removal of cellular 

components, within widely accepted limits, and its suitability for use as a cell culture substrate. 

Seeding investigations were then conducted to discern an optimal seeding density and 

method for bioreactor culture investigations; with the methodology devised to ensure 

sufficient cell numbers for the assessment of cell viability by the ATPlite™, and sufficient RNA 

in cell  lysate for extensive qPCR analyses. During this work, two seeding rings were tested, 

since the initial choice (the Tencell seeding rings) was found to be cytotoxic, and an hMSC 

seeding density of 1.26 × 105 cellscm-2 was found to correspond to the minimum point at 

which both RNA extract and viability assay criteria were satisfied (namely, sufficient RNA for 

accurate quantification and purity assessment by NanoDrop spectrophotometry, and 

sufficient luminescence counts for reliable detection). Primer design and validation 

investigations determined primer pairs and assay conditions for the relative quantification of 

markers of tenogenic, smooth muscle, adipogenic, osteogenic and chondrogenic 

differentiation. Re-engineering and validation of the Tencell bioreactor and cell culture 

protocol resolved temperature regulation, evaporation,  pH maintenance, cell viability and 

displacement issues. Finally, the Tencell/substrate/hMSC system was trialled at uniaxial 

strains of 5, 10 and 20% for applicability in studies concerned with the impact of 

mechanotransduction on the differentiation potential of hMSC, assessed by the gene 

expression of markers of interest. No statistically significant differences in gene expression 

were found between strained and unstrained Tencell-cultured hMSC. 

Multipotential mesenchymal stromal cells have potential for use in tissue engineered 

therapies targeting a wide range of tissues; they are able to differentiate into the 

mesenchymal lineages of fat, bone and cartilage and an ever-expanding repertoire of other 

cell types,  including smooth muscle (Park et al., 2004), tendon (Butler et al., 2008; Benhardt 

and Cosgriff-Hernandez, 2009), hepatocytes (Petersen et al., 1999) and neuronal phenotypes 
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(Yim et al., 2007). The utility of MSC is not solely based on their differentiation potential, 

however; they also elicit milder immuoresponses than other transplanted allo-/xenogeneic 

cells, reducing the risk of complications in future clinical applications (Dazzi and Horwood, 

2007; Ren et al., 2008; Al Jumah and Abumaree, 2012; Gebler et al., 2012; Soleymaninejadian 

et al., 2012). 

A large body of literature exists describing the differentiation of hMSC using soluble factors 

for potential applications in tissue engineering. Approaches for the chondrogenic (Mucsi et al., 

1996; Barry and Murphy, 2004; Csaki et al., 2008), osteogenic (Hanada et al., 1997; Liu et al., 

1999; Fujita et al., 2001; Tuan et al., 2003; Tae et al., 2006; Lodish et al., 2008), adipogenic 

(Pittenger et al., 1999; Tuan et al., 2003; Tae et al., 2006) and smooth muscle (Gong et al., 

2009; Huang et al., 2012) differentiation of hMSC predominantly using soluble factors have 

been documented, but the in vivo niche of hMSC also comprises cellular, ECM and physical 

stimuli that regulate their differentiation and homeostasis. Indeed, there is myriad evidence 

that mechanotransduction plays a role in the differentiation of hMSC (Altman et al., 2002a; 

Discher, 2005; Engler et al., 2006; Even-Ram et al., 2006; Benhardt and Cosgriff-Hernandez, 

2009; Chowdhury et al., 2010; Lee et al., 2011; Tse and Engler, 2011; Bukoreshtliev et al., 2012;  

Holle et al., 2013; MacQueen et al., 2013; Shin et al., 2013), but protocols to harness physical 

stimuli using carefully validated bioreactors are scant. Hence, although this study may be 

considered more fundamental than translational in nature, basic understanding of the role of 

mechanical stimuli in tissue engineering may prove crucial to the success of future therapies.  

The broad aim of this project was to devise a validated three dimensional, uniaxial strain 

bioreactor and culture protocol for mechanotransduction studies in hMSC. Porcine pericardia 

(n=67) were utilised due to the limited availability of human tissue. Porcine tissue is routinely 

used to model human biology in tissue engineered investigations, and to date no evidence of 

significant morphological differences between human and porcine pericardium is forthcoming 

(Gilbert et al., 2006; Mendoza-Novelo et al., 2011). The pericardia used were shown to retain 

native histoarchitecture and penetration of such scaffolds by MSC was previously reported by 

coworkers (Morticelli, 2013). Additionally, seeded cells are able to make biologically-relevant 

adhesions with naturally-derived matrices (Steward et al., 2014).  

A number of proteins associated with cellular adhesions are known to act as mechanosensors 

in other cell types (Wang and Ingber, 1995; Wang et al., 2001; Tuli et al., 2003; Wang et al., 

2003; Tzima et al., 2005; Wang and Suo, 2005; Vogel, 2006; Uda et al., 2011; Sun et al., 2012b; 

Tabdili et al., 2012; Tsai et al., 2015), and the collagenous histoarchitecture of pericardium 

was found to be unchanged following decellularisation in this study. A previously reported 
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decellularisation protocol was used to prepare the acellular substrates (Mirsadraee et al., 

2006a; Mirsadraee et al., 2007; Mendoza-Novelo et al., 2011; Morticelli, 2013), using many 

reagents in common with protocols reported elsewhere (Gilbert et al., 2006). Although the 

decellularisation protocol for porcine pericardium is comparatively short (4 d), it is a labour 

intensive procedure with low scaffold output per run. Limitations on process scale-up include 

the dimensions of commercially-available laboratory shakers and inevitably high demands on 

incubator space in shared facilities. However, for more extensive studies of 

mechanotransduction or translational research with acellular pericardium, process scale-up 

should be investigated. 

A loss of tissue surface GAGs was observed in acellular tissue as compared to native pericardia, 

as has been widely reported previously. This is probably a consequence of treatment with SDS, 

and is not expected to impact the differentiation potential of seeded hMSC (Lovekamp et al., 

2006; Mendoza-Novelo et al., 2011). Confirmation of tissue biocompatibility and the absence 

of residual DNA was essential prior to its use as a tissue culture substrate; differences in gene 

expression observed must be attributable to the strains applied, and not toxicity or the 

presence of contaminating genomic DNA respectively (McPherson and Møller, 2006).  

Although optimal cell seeding densities for hMSC on acellular pericardium were already 

known (Morticelli, 2013), the amount and purity of RNA isolated from the total number of 

cells to be applied to the scaffold for each prevalidated density was measured to develop a 

seeding strategy compatible with RNA quality checks. Poor quality RNA impacts the efficiency 

of PCR assays; if assay efficiency is not in the range 90-110%, the assumptions of the 

comparative CT method of relative gene expression are not met and accurate data cannot be 

obtained. Accepted minimum guidelines to safeguard the quality of qPCR analyses state that 

investigators should confirm the quality of template material by nucleic acid 

spectrophotometry prior to use in assays (Bustin et al., 2009). Absorbance ratio values are 

unreliable, and hence isolate purity cannot be determined, at RNA concentrations of ˂ 15 

ng.μL-1, and lysates containing ≥ 1 × 105 ells satisfy this requirement. 

The luminescence of seeded/cultured substrates when treated with the ATPlite™ assay was 

measured throughout this project to identify any losses in cell viability during method 

development.  Although a calibration curve of the relationship between luminescence counts 

and the number of cells lysed during ATPlite™ assays was prepared during seeding 

investigations, the amount of ATP produced by cells is not constant throughout the cell cycle, 

nor independent of culture conditions, so attempts at cell enumeration had limited accuracy 

(Lundin et al., 1986; Stanley, 1986). The difference between good and low cell viability is, 
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nevertheless, very apparent using the ATPlite™ assay, and it is suggested that this assay be 

used in a binary fashion to identify seeded substrates as viable or otherwise; luminescence 

counts of ˂ 10000 A.U. can be assumed to indicate a lack of cell survival of hMSC seeded on 

acellular pericardium matrix. In investigations where the number of live cells present 

following a given procedure forms a vital metric, accurate cell numbers could be found from 

the RNA content of substrate isolate or by counting the number of dead cells present by 

medium volume.  

Other, more sensitive assays that enable cell quantification through colorimetry are widely 

reported, such as the Alamar blue (Nakayama et al., 1997), tetrazolium dye (Roehm et al., 

1991) and Neutral red (Repetto et al., 2008) assays. One possible limitation to the use of these 

assays is that, unlike the ATPlite™ procedure  in which cell are lysed, cells must be alive during 

analysis. This may be overcome by devising strategies to detach cells from tissue scaffolds, or 

aid penetration of the reagents into the construct. Achieving highly efficient cell detachment, 

particularly in thicker tissues and where cell penetration is extensive, is unlikely; hence 

validation of appropriate protocols of cells in situ is suggested. Although any new viability 

protocol must be carefully validated against established techniques, acellular pericardium is 

extremely thin (~100 – 200 μM) and is readily penetrated by reagents. Importantly, other 

investigators have already reported successful use of the 3-[4,5-dimethylthiazol-2-yl]-2,5-

diphenyltertrazolium bromide (MTT) on seeded scaffolds;  Zund et al seeded human aortic 

myofibroblasts on PGA  scaffolds and validated calculated cell numbers by manual counting, 

with favourable results (Zund et al., 1999). 

During all phases of these investigations, it was essential to validate cell culture conditions to 

render any subsequent differences in gene expression attributable to mechanotransduction 

using the bioreactor and protocol validated. Optimal in vitro culture conditions have been 

thoroughly validated for standard cell culture incubators, but cannot be assumed to exist 

during the development of novel seeding procedures and bioreactor methodologies (Ham and 

Puck, 1962; Hayflick, 1965; Eagle, 1971). For example, the optimal medium seeding volume to 

be used with any new seeding/culture apparatus should be determined at the outset of use, 

to ensure adequate oxygen differentiation through the depth of culture medium. Changes in 

the partial pressure of oxygen in culture medium in two dimensional  cell seeding/culture and 

in bioreactors is known to affect stem cell differentiation (Grayson et al., 2006; Rafiq et al., 

2013).  

Evaporation of culture medium was apparent during both seeding attempts and bioreactor 

culture during the course of this project. The osmolarity of culture medium is designed to be 
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isotonic to the cell cytoplasm, and increases in medium salt concentration induces osmosis to 

the external environment, causing loss of viability (Waymouth, 1970). Reduced cell viability 

was apparent in seeding investigations as a result of culture medium concentration, and likely 

contributed, amongst other factors, to the absence of viable cells in Tencell-cultured 

substrates prior to inclusion of chamber humidification measures. Similarly, there was a 

significant loss of cell viability in Tencell cultured hMSC prior to the use of HEPES to augment 

sodium bicarbonate medium buffering  – this was probably caused by suboptimal partial 

pressures of carbon dioxide in the culture chamber, and reduced concentrations of carbonic 

acid in the medium as a result. 

Despite successful cell culture of hMSC in Tencell during this project, it is suggested that the 

Tencell apparatus be fully redesigned in light of practical difficulties experienced. To the 

author’s knowledge, there are no commercially available uniaxial strain bioreactors. No 

general consensus on in-house apparatus design has emerged; this proves problematic for 

data comparison between studies (Screen et al., 2005; Jang et al., 2011; Shi et al., 2011; 

Rathbone et al., 2012; Lei and Ferdous, 2016; McKayed et al., 2016). However, most 

bioreactors comprise actuating/motion transforming systems, monitoring and control systems, 

sample culture chamber(s) and nutrition/waste exchange systems (Lei and Ferdous, 2016). 

The Tencell bioreactor utilises a linear actuator coupled to a motor driven clamp, te mperature 

monitoring system and individual culture chambers, but has no nutrient/waste exchange 

system, necessitating manual medium changes. Critically, the apparatus is approximately 1.5 

m in length and cannot be housed in a standard cell culture incubator; after initial flushing of 

the culture chamber, there is no capacity to monitor the gas composition during investigations 

(Fig. ‎6.1). 

Other in-house manufactured uniaxial strain bioreactors reported in the literature may 

provide inspiration for future redesign efforts. In a seminal work, referenced extensively in 

this thesis, Park et al designed, validated and applied a custom-designed system to the study 

of gene expression in hMSC in response to uniaxial strain (Park et al., 2004). Similarly, this 

apparatus comprised  a motor driven clamp, but arm displacement and hence uniaxial strain 

was achieved via a cam-motor system. One major advantage of this design over the Tencell 

system is that culture wells featured individual lids; hence manipulations involving one sample 

did not compromise constructs in proximal wells. Tencell is set up for culture using a large 

number of screws and fixation posts, meaning that there is a large period of time (~ 5 hr) 

during which samples fitted first are exposed to ambient conditions whilst the lid is detached. 

Culture conditions, such as temperature and medium pH, which may be altered as a result of 
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extended exposure to ambient conditions, must be maintained to allow any changes in gene 

expression to be attributed to applied strains (Ham and Puck, 1962; Good et al., 1966; 

Waymouth, 1970). Another study, examining the ultimate tensile strain and elastic modulus of 

reseeded acellular rabbit hindpaw tendons, also reported the use of a single chamber to 

house multiple replicates, but suffered from an additional caveat in that only four samples 

could be cultured simultaneously (Saber et al., 2010). This does not allow the culture of 

sufficient strained and static experimental replicates in the same culture, possibly introducing 

batch-to-batch variability.  

The displacement of the Tencell displacement arms was calibrated using a bespoke dial gauge, 

and the gradient and intercept of the resulting slopes were found to differ significantly. 

However, the amplifier knob used to select the magnitude of displacement is analogue and 

thus depends on human judgement in selecting the strain accurately. The accuracy of actual 

arm displacement with respect to that desired may be improved by incorporating a digital 

display into the displacement module, to allow strain to be selected consistently. Differences 

between displacement arms were considered minor when compared to the large degree of 

variation in tissue samples  typically observed between individuals, but a proportion of the 

measured variation in arm displacement may be eliminated by measuring arm displacement 

simultaneously. Only one dial gauge was manufactured for displacement arm validation; arm 

displacements  were manually selected anew for each arm tested, and the dial gauge moved 

following each validation. Should additional dial gauges be manufactured and calibrated, 

Tencell arm displacement may be found to be more consistent between experimental 

replicates.  

Furthermore, arm displacement in Tencell was validated only in the absence of attached 

tissue substrates and online measurement of the actual strain applied to seeded cells was not 

possible. In contrast, Park et al were able to determine a region of scaffold that experienced 

uniform uniaxial strain, with minimal substrate compression in the perpendicular axis, by 

recording the motion of a printed grid under strain using high-speed photography (Park et al., 

2004). The substrate strained area is very small in Tencell (~ 1 cm2), and cannot be adjusted, 

so it is suggested that any new design incorporate a larger seeded area and be validated with 

respect to strain uniformity across this region. Other methods of less invasive, online 

monitoring, such as laser-based micrometers should be incorporated to provide more 

accurate data (Salazar et al., 2015; Lei and Ferdous, 2016). Such instruments may also provide 

an early indication of faults ofthe displacement components of bioreactors.  
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 Indeed, the only online monitoring system present in Tencell is the temperature control 

module, and unlike contemporary cell culture incubators, the partial pressure of CO 2 is not 

monitored and adjusted in real time (Lei and Ferdous, 2016). Additionally, although culture 

medium evaporation was reduced to negligible levels during this project, and no Tencell 

culture samples tested positive for microbial contamination, the open wells inside the culture 

chamber present an inherent evaporation and contamination risk. It is anticipated that this 

risk could again be dramatically reduced by designing a basic individual well lid, with a space 

to accommodate arm displacement.  

Caveats of the Tencell bioreactor, and solutions/criteria to be considered in the design of a 

newly designed uniaxial strain bioreactor, are summarised in Table ‎8.1. 

Table ‎8.1: Caveats encountered during use of the Tencell bioreactor and solutions/criteria to be 

incorporated into the design  into the design of an alternative uniaxial strain bioreactor 

Issue Solution References 

Single chamber lid, causing 

exposure of all samples fitted to 
ambient conditions and airborne 

bacteria 

Individual chambers/lids for 
each sample 

(Park et al., 2004) 

Chamber lid not autoclavable, 
raising infection risk 

Manufacture sample lids from 
autoclavable, transparent 

material such as 
polydimethylsiloxane (PDMS) 

(Morita et al., 2014; Lei and 
Ferdous, 2016) 

Apparatus dimensions not 
compatible with incubator 

culture 

Reduce configuration to fit 
standard cell culture incubator 

N/A 

Small cell culture area, reducing 

total number cells cultured per 
sample 

Design larger culture 

wells/smaller clamps for greater 
usable area 

N/A 

Analogue device displays, reliant 

on operator judgement 
Utilise digital device displays N/A 

Lack of online gas monitoring 
House bioreactor inside 

standard cell culture incubator, 
and design vented sample lids 

N/A 

Lack of online strain monitoring 
Incorporate non-invasive strain 

monitoring instrumentation, 
such as laser-based micrometer 

(Lei and Ferdous, 2016) 

 

Genes indicative of differentiation towards the lineages of interest were selected based on 

those commonly studied in similar studies in the literature, and typical expression in the 
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human body, as determined by resources provided by the NCBI (Ncbi, 2012a; Ncbi, 2012b; 

NCBI, 2014; NCBI, 2016l; NCBI, 2016c; NCBI, 2016a; NCBI, 2016j; NCBI, 2016d; NCBI, 2016e; 

NCBI, 2016i; NCBI, 2016g; NCBI, 2016b; NCBI, 2016k; NCBI, 2016f; NCBI, 2016m; NCBI, 2016h). 

Primers were validated with respect to their specificity and efficiency to meet the key 

assumptions of the comparative CT method of calculating relative gene expression data: 

briefly, that only one amplicon is generated and the quantity of amplicon doubles with each 

thermal cycle. Performing in silico validation prior to labour-intensive and expensive 

laboratory testing is highly recommended (NCBI, 2014; Sigma-Aldrich, 2014). Primer 

sequences sourced from publications must still be validated with the reagents to be used in 

gene expression analyses; primer activity may differ significantly between laboratories using 

different reaction mixtures, and the exact cycler profile used in qPCR is often not disclosed in 

publications (Banes et al., 1999; Beck et al., 2000; Chen et al., 2001; Kim et al., 2002; Arnoczky 

et al., 2004; Bershadsky et al., 2006; Chen et al., 2008). For example, different qPCR mixtures 

may contain a variety of different concentrations of magnesium chloride. Magnesium ions 

forms complexes with nucleotides and altering their concentration affects polymerase and 

primer/template complex activities under otherwise identical conditions. Other ions released 

during buffer dissociation are also known to exert similar affects (McPherson and Møller, 

2006). 

Seeded pericardium matrices were cultured in the Tencell bioreactor under cyclic uniaxial 

strains of 5, 10 and 20%, but few statistically significant differences in gene expression were 

found, and where apparent, were between seeding cell suspension and other sample types. It 

was concluded that, for the protocol developed, the differences in gene expression between 

hMSC cultured on tissue culture plastic and acellular pericardium were far greater than any 

differences induced by strain. 

In future, similar investigations using Tencell should allow for a minimum of three repeats 

experiments per strain regime tested, to allow fold change values, with associated confidence 

limits, to be quoted. The large error bars associated with 2-Δct data in this project may be due 

to the expected inhomogeneity of the natural substrate. Since any future tissue engineered 

therapies developed harnessing physical stimuli would be implanted in vivo, investigations of 

this nature should be conducted in biologically-relevant substrates to account for the 

influence of variation between individuals. Work conducted with artificial, unrealistically 

homogenous substrates may not accurately model hMSC behaviour in vivo (Engler et al., 2006;  

Park et al., 2012b). However, donor variation of pericardial tissue was apparent by eye. 

Consistent, reproducible three-dimensional matrices are needed for studies of 
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mechanotransduction, if the role of force- and substrate composition/topographical-mediated 

cues are to be decoupled. This may be achieved using genetically engineered animals, or 

perhaps less controversially, the development of ECM protein substrates comprised of more 

than one protein in a biomimetic structure.  

Crucially, the actual applied strain across the scaffold was not measured. Analyses performed 

in this project were based on the assumption that physical stimuli are uniformly distributed 

across the scaffold surface, and that only one gene expression mechanoresponse could result. 

In fact, strain is often nonuniformly distributed across materials, and strained scaffolds may 

experience some compression in the orthogonal direction; a field of heterogeneous stimuli 

across the scaffold surface, and hence variety of mechanoresponses elicited, may explain the 

large error bars and lack of significant differences in gene expression data (Park et al., 2004). 

As discussed in Chapter 5, it is not realistic to determine a universal house keeping gene for 

normalisation of relative gene expression data; most housekeeping genes display some 

variability in gene expression by sample type and conditions. Hence, the use of just one 

housekeeping gene in this work is a major limitation and may also account for the absence of 

significant differences in marker gene expression (Li et al., 2015; Rauh et al., 2015). A three-

step qPCR assay validation approach should be adopted by investigators using this method of 

qPCR: primer pairs should be tested for specificity and reaction efficiency as described in 

Chapter 5, including a selection of potential housekeeping genes (˃5)  pre-screened by 

literature review, followed by housekeeping gene expression variability testing. It is suggested 

that, for simplicity, the coefficient of variation for gene be calculated for comparison (Rauh et 

al., 2015). 

Other factors that may obfuscate a potential impact of tensile strain on hMSC differentiation 

potential include donor variability, cell alignment responses and the degree of penetration of 

the scaffold by cells. The inclusion of cells from only one donor for each strain magnitude is a 

caveat of this study; large differences in the functional characteristics of hMSC between 

donors are widely reported in the literature, including differentiation capacity (Kern et al., 

2006; Bernardo et al., 2007; Kota et al., 2017; Sharma et al., 2017). In future, a minimum of 

three different donors should be examined for each strain regime examined. 

Visualisation of the histoarchitecture of seeded, statically-cultured and strained substrates 

revealed no penetration of the scaffold by hMSC in any instance. Although hMSC seeded on 

pericardium matrices in monolayer experience a culture environment more similar to the in 

vivo niche than those cultured on tissue culture plastic, the applied physical stimuli would be 
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more relevant to the biological environment if cellular adhesions were made in three 

dimensions within the scaffold (Chen, 2010; Sun et al., 2012a). 

Previous work by coworkers indicated that hMSC penetrate acellular pericardium scaffolds 

after seeding periods of 7-14 days (Morticelli, 2013). Future investigation concerning gene 

expression in hMSC cultured in this substrate could test the effect of uniaxial strain in a truly 

three-dimensional environment by employing longer seeding times. Additionally, the 

likelihood of significant changes in marker gene expression after just one four-hour period of 

cyclic strain are low. It is suggested that a culture period of 3d, with daily cyclic strain (4 hr), 

be trialled and changes in gene expression compared with that obtained after only one day of 

culture. The degree of penetration of the scaffold by hMSC can be assessed by haematoxylin 

and eosin staining of seeded tissue sections.  Validation work by colleagues has indicated that 

culture periods of 3d are feasible in Tencell with an appropriate humidification and medium 

replenishment regime to maintain critical culture conditions (Normalina Sandora, personal 

communication).  

Re-orientation of cells following uniaxial strain has been widely reported in the literature (Park 

et al., 2004; Hoffman et al., 2011; Khademolhosseini et al., 2016). In fact, increases in marker 

gene expression of strained constructs have been observed to  disappear following alignment 

responses (Park et al., 2004). Alignment parallel to the direction of force application may 

reduce the detection of strain at force-mediated elements, such as focal adhesions, and 

ablate any intracellular signalling triggered by conformational changes at these sites.  Analysis 

of cytoskeletal characterisation, by staining of F-actin with Phalloidin, is recommended for 

similar studies (Khademolhosseini et al., 2016). In this work, this analysis could have been 

incorporated alongside gene expression, cell viability and histology tests of seeded, strained 

and unstrained samples, to elucidate any differences attributable to strain orientation.  

Directional analyses data may also be rendered quantitative, and hence allow the calculation 

of minimum significant differences between groups, surprisingly simply;  Khademolhosseini et 

al produced a strain assessment tool from off-the-shelf components, and measured the 

coherency of actin filaments using the package OrientationJ (Sage, 2017).  

There is evidence that gene expression of hMSC under different strain regimes are indeed 

distinct. For example, some investigators have suggested that the frequency at which physical 

stimuli are applied may affect the mechanoresponses elicited (Hoffman and Crocker, 2009; 

Hoffman et al., 2011). It would be particularly interesting to determine if gene expression 

profiles of hMSC differ between frequencies of application of 0.5, 1.0 and 2.0 Hz. Further, the 

gene expression of hMSC cultured under different physical stimuli is likely to differ and 
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analyses of cells subjected to biaxial strain in pericardial matrices is suggested. However, since 

the Tencell bioreactor does not facilitate biaxial straining of substrates, a separate device 

would be required, which should be carefully validated to ensure that the environmental 

conditions maintained in the device are comparable with Tencell.  

In this project, an existing, previously non-functional uniaxial strain bioreactor and hMSC 

culture protocol were re-engineered and validated for use in gene expression studies of hMSC. 

Expression of markers of differentiation towards the tenogenic, smooth muscle, osteogenic, 

adipogenic and chondrogenic lineages did not differ between strained and unstrained samples 

at applied strains of 5, 10 ad 20%, and the influence of uniaxial strain may be more effectively 

discerned with a redesigned bioreactor. A greater understanding of the role of uniaxial strain, 

as experienced by many tissues throughout the body, may lead to more efficacious 

differentiation of hMSC in future tissue-engineered therapies. Subsequent investigators in this 

field may wish to examine the role of the frequency of application of cyclic strain,the type of 

strain applied, and the penetration of the scaffold used, to create a fuller understanding of the 

complex interplay between all factors of the hMSC microenvironment in determining their 

differentiation path. 
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Appendix: Suppliers of Equipment, 

Glassware and Consumables 

 

Item Supplier 

Application loop Greiner bio-one 

Cover slips Menzel-Glasef 

Bijous VWR international 

Bunsen burner Flamefas 

Cryovials Sarsedt 

Dissection kit Sanco 

DNeasy kit Quiagen (UK) 

Filter (disposable, 0.2µm) Sarforius stedim biotech 

Filter paper Whatman (UK) 

Fresh blood agar (FBA) plates Sarsedt 

Glass bottles (0.5, 1.0 & 2.0L) Fisherbrand 

Haemocytometer Fuchs Rosenthal 

Histocassettes Simport 

Nutrient agar (NA) plate Sarsedt 

Optiplate-96 PerkinElmer (UK) 

Plastic tub (airtight) Anaeropack 

Polarized light filters RealD® (from 3D cinema glasses) 

Sabouraud plates Sarsedt 



 
 

Item Supplier 

Scalpel blade (disposable, size 10) Swann-morton® 

Scalpel blade (disposable, size 22) Swann-morton® 

Six well plates Thermo scientific 

Sterile pot Sterilin 

SuperFrostTM plus microscope slides Thermo scientific 

Syringe (disposable, 20mL) Terumo 

Tissue culture flask (size T75) Nunc 

Tissue culture flask (size T5) Nunc 

X-Clear PCR tube strips Starlab (Germany) 

 

 

Equipment Supplier 

Autoclave (PACS 2000) Getinge (Sweden) 

Bag sealer Hulme Martin (UK) 

Balance Mettler (UK) 

Balance (four fugure)  AND (UK) 

Biological safety cabinet (class II) Heraeus Instruments (Germany) 

  

Camera (for microscope; U-CMAD3) Olympus (UK) 

Cell culture cabinet (Class II; Hera safe) Heraeus instruments (Germany) 

Centrifuge (Harrier 15/80; for cell culture) Sanyo (Japan) 

Centrifuge (MIKRO 2212; for molecular 

biology) 
Hettich zentrifugen (Germany) 

Critical point drier (Polaron E300) Quorum Technologies (UK) 

Eppendorf heater/shaker (Thermomixer 

comfort) 
Eppendorf (Germany) 



 
 

Equipment Supplier 

Forceps (heated) European Bios (Italy) 

Freeze-drier (Modalyod-230) Thermo Scientific (USA) 

Freezer (-20 °C) Electrolux (Sweden) 

Freezer (-80 °C) Sanyo (Japan) 

Fumehood Safelab (UK) 

Dial Gauge University of Leeds (UK) (custom 

manufactured) 

Quanta 200F FEGSEM FEI (USA) 

Heat-sealer (sealboy) Audion AE electro (Netherlands) 

Image capture software (cell^B) Olympus (UK) 

Incubator (37 °C; MCO-20AIC) Sanyo (Japan) 

Light box (KL003) Kenro Ltd (UK) 

Magnetic stirrer (heated) Stuart (UK) 

Microscope (inverted, IX71) Olympus (UK) 

Microscope (inverted; CK40) Olympus (UK) 

Microscope (upright, BX51) Olympus (UK) 

Microtome (Manual; RM2125RTF) Leica (Germany) 

Microtome (automatic; RM2155)  Leica (Germany) 

Microwave (CD399) Buffalo (USA) 

Mobile phone HTC (UK) (personal property) 

Oven (for dry heat sterilisation) Genlab (UK) 

Paraffin mounting section bath  Electrothermal (UK) 

pH meter (3510) Jenway (USA) 

Electronic pipette (Fastpette) Labnet (USA) 

Plate reader (multiskan spectrum) Thermo electron (USA) 

Refrigerator Indesit (Italy) 

 Nanodrop spectrophotometer (ND-1000) Thermo Scientific (USA) 

Mx3000P™ Real-Time PCR system [Thermal 

cycler] 
Agilent technologies (USA) 



 
 

Equipment Supplier 

  

Shaker (PSU-10i) Grant-bio (UK) 

208HR high resolution sputter coater Cressington (UK) 

Temperature monitor (handheld)  

Temperature controller [for Tencell; EZ-zone 

PM] 
Watlow (USA) 

Tencell bioreactor University of Leeds (UK) (custom 

manufactured) 

Thermomixer (comfort) Eppendorf (Germany) 

Tissue processor (TP1020) Leica (Germany) 

Ultrasonic cleaner bath  VWR international (UK) 

Vortex (whirlimixer) Electrol Ltd (USA) 

Water bath (JB1) Grant Instruments (UK) 

Wax dispenser (E66) Lamb (UK) 

Wax oven (GPWAX-50-HYD) Jim engineering (UK) 



 
 

 


