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Summary

In this thesis we explore the structure of the Fulton-Macpherson operads Fy by providing
two new models for them. It is shown in [22] that these operads are cofibrant by claiming the
existence of an isomorphism of operads W Fy — Fy. Here, W is a functor which, for a large
class of topological operads, produces cofibrant replacements. It would be satisfying to be
able to write down explicitly what these isomorphisms are. Our new models are an attempt
to move towards this.

The building blocks of the first model appeared in [23] but they were not assembled into
an operad here. This model has a more algebraic feel than others in the literature which gives
it technical advantages. We use this to demonstrate many of the well-known properties of the
Fulton-Macpherson operads. In particular, we are able to write down explicit isomorphisms
between I} and the Stasheff operad which we have not seen previously in the literature. This
model is isomorphic to other models of the Fulton-Macpherson operads.

The second model is a realisation of an operad in posets. This poset operad is built from
combinatorial objects called chains of preorders. These objects encode maps from a finite set
A to some Euclidean space RY. In particular, we can impose restrictions to encode injective
maps of this type. This model is equivalent up to homotopy to the Fulton-Macpherson
operads in a way which we define. It is also homotopy equivalent to the Smith operads,
another example of topological operads defined combinatorially. The main advantage of this
model is that it has an obvious spine which may pave the way to writing down the desired
isomorphisms W Fy — Fy.
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Introduction

An Introduction to Operads

An operad is an object in a symmetric monoidal category, C, that encodes algebraic structure.
It comprises of a functor P from the category of finite sets and bijections to C, as well as
maps 7, in C indexed by maps of finite sets p : A — B. More precisely, if A is a finite set,
then the object P(A) should encode all of the algebraic operations with inputs labelled by
A. The maps v, tell us how to compose such operations, with this composition satisfying
associativity conditions that one would expect. One can draw analogy with the way groups
encode symmetries, as in much the same way, an operad in C can act upon objects of C. This
action equips the object with the particular algebraic structure associated with the operad.
Arguably, the easiest and most tractable examples of operads arise in the category of vector
spaces. Here, we have operads that encode the structure of associative, commutative and Lie
algebras which are all classical examples and easy to understand. We can even encode more
complicated algebraic structures such as the Poisson algebra, which has two binary operations
and a distributive law. It should be noted though that the operad is not an all powerful object.
For example, it is impossible to create an operad encoding the Jordan algebra structure due
to the inhomogeneous nature of its defining identities.

Operads were in fact first defined in the category of topological spaces by May in [19].
(Whenever we say topological spaces in this thesis, we will always mean the category of
compactly generated topological spaces that one would normally do algebraic topology in.)
Here, May describes the little N-cubes operads which encode operations in a much more
abstract way than the operads of the algebras in the previous paragraph. Indeed, for a
natural number N, a little N-cube is defined to be a parallel linear embedding of the N-cube
(0,1)" to itself. Then, the spaces of operations Cy(A) are the sets of little cubes labelled by A
with pairwise disjoint images. Composition of these operations is simply given by composing
the respective embeddings. For a much more detailed description, see section 1.2. It turns out
that this encodes a commutative algebra structure that is satisfied up to N levels of coherent
homotopies.

The most famous example of such a structure is the N-fold loop space Q¥ X of some based
space X. Specifically, we may concatenate loops f,g € QX to form a new loop f * g. This
operation is not quite commutative, but we do have a homotopy between f x g and g * f, as
long as N > 1. (N =1 is a special case as here we only really have the associative part of a
commutative algebra structure.) There are then homotopies between these homotopies and
so on, all the way up the N** level. So QX is an algebra over the little N-cubes operad
and then May’s famous recognition principle tells us that in fact the converse is also true;
any path-connected algebra over the little N-cubes operad actually has the homotopy type
of an N-fold loop space for some topological space X. Another interesting fact is that one
can make a link between the little N-cubes operads and the algebraic operads in the previous
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paragraph. Indeed, the homology functor preserves operads, and if one applies it to the little
N-cubes operad, we in fact retrieve the operad of degree-N Poisson algebras [7], [8].

The importance of the little N-cubes operads leads to them being used to define a whole
family of operads, namely the Ex operads for N € NU {oco}. An Ex operad is one that is
weakly equivalent to the little N-cubes operad. We can define the infinite little cubes operad
as the direct limit of inclusions Cn(A) < Cn+1(A). Then an Ey operad can be defined as
one that is equivalent to this, although there is a simpler definition, see 1.2.14. There have
been many realisations of E operads, each with their own features. Instead of considering
embeddings of cubes, one may consider embeddings of disks to form the little /N-disks operads
Dy. These have the property that there is a compatible action of the orthogonal group O(V)
on the spaces Dy(A). There are also the Steiner operads described in [27]. These have
the technical advantages of both the little cubes and little disks operads but the spaces of
operations are infinite dimensional. Another example is the Fulton-Macpherson operads, the
main object of study in this thesis.

The Fulton-Macpherson Operads

It is not difficult to show that the spaces Cn(A) in the little cubes operads are homotopy
equivalent to Euclidean configuration spaces Inj(A, RN ). It is therefore natural to ask whether
we can form an E operad from these spaces. If we attempt to do this, then we find that the
operad composition will be given by embedding configurations into some base configuration,
as shown in the diagram below.

One issue is that the points in the base configuration can be arbitrarily close to one another.
Therefore we must find a way to scale our embedded configurations in order to avoid collisions
between the points. One finds though that there is no way of doing this that will be compatible
with the operad composition. However, we can provide an alternative that is very close to
our originally desired result. In [10], the authors create a compactification of configuration
spaces using geometric blowups. Getzler and Jones slightly modify this in [12] to put operad
structures on these compactifications which are now known as the Fulton-Macpherson operads.
In [18], Markl provides another definition of the Fulton-Macpherson operads as an operadic
completion of some quotient of the configuration spaces. This means that in some sense, the
Fulton-Macpherson operads are the smallest operads that contain the configuration spaces,
(modulo the aforementioned quotient).

These operads have proven to be a useful example of En operads. In [16] they are used in
a zig-zag of weak equivalences to show that for N # 2, the little N-disks operads, (and hence
all Fn-operads), are formal. This result then has applications in areas such as deformation
quantization and knot theory. The interested reader may refer to [15] and [17] respectively
for further details. The Fulton-Macpherson operads are also interesting objects of study in
their own right. The spaces involved are compact, smooth manifolds with corners. The
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interiors of these manifolds are homotopy equivalent to Inj(A, RY) which as we shall see in
the thesis, quite easily implies that the spaces of the operad are also homotopy equivalent
to the configuration spaces. However, arguably the most useful property for these operads
is found in [22]. Here, the author proves that the Fulton-Macpherson operads are cofibrant
objects for the usual Quillen model structure on the category of operads, (corollary 4.8).

To show that the Fulton-Macpherson operads are cofibrant, Salvatore makes use of the W-
construction. This is a functor that produces cofibrant replacements for topological operads
satisfying some mild conditions. If one applies the W-construction to the Fulton-Macpherson
operads, then intuitively, it adds a block collar to the manifolds with corners. More precisely,
it glues a d-dimensional cube to each point in a d-codimensional face of the boundary of the
manifold. The addition of this collar will not change the diffeomorphism type of the manifolds
and so it is claimed that there exists an isomorphism between the Fulton-Macpherson operads
and their cofibrant replacements, (proposition 4.7). However, no detail is given as to how these
diffeomorphisms are compatible with the operad structure and so the proof is unsatisfying.
The research that led to this thesis was an attempt to find explicit maps that definitively
prove this result.

Outline of the Thesis

In chapter 1, we begin by introducing the basic definitions and constructions that will be
used in the thesis, mainly to set notation but also to refresh the reader’s memory. We give
two definitions for an operad but show they are equivalent. We also define morphisms of
operads and algebras over operads. We then go on to define several examples of operads,
most of which will play a role later on in the thesis. Notable inclusions are the little cubes
operads, the operads of trees and the Stasheff operad. Next, we define the reduced free
operad in the category of sets as well as the related notion of a well-labelled operad. The
latter gives us a way of saying when an operad which has an underlying operad in sets is in
fact set-theoretically free. Finally we define the W-construction, although only for reduced
topological operads. A much more general version can be found in [4]. This construction
produces cofibrant replacements for topological operads P that are well-pointed and such
that P(A) is cofibrant for all A. For all of the operads that we will consider, these conditions
will be satisfied. At the end, we show that the Stasheff operad K is cofibrant by producing
an isomorphism WK — K. We do it this way as it will be useful for our study of the
Fulton-Macpherson operads later in the thesis.

The next chapter focuses on what we call the Singh model for the Fulton-Macpherson
operads. The spaces for the operad use an analogous construction from [23] although the
author never assembled these into operads. Before we begin describing them, we first analyse
the homotopy type of the configuration spaces Inj(A4,R"Y) for some finite set A and natural
number N. This is classical work but it will be useful to have explicit generators for the
integral cohomology H*(Inj(A4,RY)). We then proceed to define the spaces Fi(A) that will
make up our operad as well as give a stratification by trees on A. This definition has a much
more algebraic feel than some others and so it makes calculation reasonably tractable. With
this in mind, we go on to give elementary proofs of some of the well-known properties of
the Fulton-Macpherson compactifications, paying particular attention to the manifold with
corners structure. We define the operad structure on the collection Fy = {Fx(A)} and show
that this is well-labelled. Once we have an operad in spaces, we can apply the homology
functor to acquire an operad in graded abelian groups. We show that if one does this, then
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we acquire the same operad as when we apply homology to the little cubes operads, i.e. the
operad of graded Poisson algebras. Obviously this is not surprising if we believe that the
Fulton-Macpherson operads are En operads, but it is still nice to see. Finally, we restrict our
attention to the case N = 1 and show that F} is isomorphic to the Stasheff operad. From our
work in chapter 1, this means that we have our first explicit isomorphism WF — F.

In the relatively short chapter 3, we compare the Singh model for the Fulton-Macpherson
operads with the one proposed by Sinha. The spaces for Sinha’s operad are described and
studied in [24] and the operad structure appears in [16]. It turns out that the Singh and the
Sinha model are isomorphic and have compatible stratification by trees. This means that we
can justify calling the Singh model the Fulton-Macpherson operads.

In the final chapter we introduce another model for the Fulton-Macpherson operads which
arises as the realisation of operads in posets. To begin with we recall some basic facts about
finite posets. As well as this, we outline how one can actually put a topology on a finite poset.
This then allows us to apply a theorem of McCord from [20] to prove a statement concerning
the homotopy type of the realisation of a poset. In particular, if we have a map X — P from
a space to a finite poset with contractible open fibers, then this induces a weak equivalence
X — |P|. We also prove a corollary to this theorem which makes similar statements for
operads. Once we have all of this machinery in place, we define the main combinatorial
objects that we will use, chains of preorders. These objects encode maps from a finite set
A to a Euclidean space RY and can be modified to specifically encode injective maps. This
means that when we take realisations, we are able to prove that we have combinatorial models
for many of the spaces of maps we have seen previously in the thesis. We study the model
for injective maps in particular and show that it has the same homological dimension as
Inj(A,RY). This means that it can be thought of as a spine for Inj(A,R") and all of the
other homotopy equivalent spaces we have seen, in particular, Fiy(A). Finally, we introduce
what we call the Fulton-Macpherson posets Fy(A). These are defined analogously to the
spaces Fy(A). We show that they have much of the same structure and can be assembled
into an operad. Our final results use the theorems we proved earlier in the chapter to conclude
that | F| is equivalent, up to homotopy, as an operad to Fyy. We also compare Fy with other
well-known combinatorial operads.

To define the homeomorphisms W Fy(A) — Fy(A) needed for our desired isomorphism
of operads WFy — Fy, it would be useful to be able to embed the spine of Fy(A) in a
way compatible with the operad structure. However, it is not immediately clear how the
combinatorial spine we define above interacts with the operad composition. The motivation
for defining the Fulton-Macpherson posets is that their realisations contain the previously
mentioned spine in an easy to see way. It was expected that the dimension of the Fulton-
Macpherson posets would be the same as the manifolds Fiy(A). Therefore, it would have been
likely that their realisations would have in fact been isomorphic and so collaring one would
collar the other. However, in general the two spaces do not have the same dimension. We
include a brief discussion of why this is the case and explain why we believe one can refine
the posets to in fact have these desired properties.
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Chapter 1

Operads - Definitions and Examples

In this first chapter, we introduce the main objects and constructions that we will use through-
out the thesis. This is as much to set notation as to refresh the reader’s memory of these
concepts. We begin by defining an operad in a symmetric monoidal category and the related
notion of an algebra over an operad. We then give many examples of operads and elaborate on
those that will play a large role in the thesis. Towards the end of the chapter we will introduce
some more advanced concepts, namely well-labelled operads and the W-construction. The
latter gives us a way of recognising cofibrant operads as we demonstrate using the Stasheff
operad.

1.1 Definitions

In this first section, we begin by defining an operad. We in fact give two definitions of an
operad and then show that they are in fact equivalent. The idea of an operad is that it
encodes a collection of operations, satisfying certain composition axioms, that turn an object
into an algebra. This is best understood by defining the endomorphism operad before then
seeing the definition of an algebra over an operad.

Definition 1.1.1. Let C = (C,®,1) be a symmetric monoidal category and FSET=~ be the
category of finite sets with arrows the bijections between them. An operad is a functor
P : FSET~ — C, equipped with maps in C called composition and unit maps. Let p: A — B
be a map of finite sets and define A, = p~1(b) for all b € B. Then for each such p, there is a
composition map 7, of the form

W : P(B) @ Q) P(Ay) — P(A).
beB

These maps should be natural for commutative squares of the form

and satisfy an associativity condition: if ¢ : B — C is another map of finite sets, B. = ¢~ (c)
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and A, = (gp)~!(c), then the following diagram must commute:

P(C) ® (Quee P(Be)) @ (®per P(As)) 27 P(C) @ o P(Ae)

Yq®1 Yap

P(B) ® Qyep P(Ab) * P(A)

where p. : A. — B, is the restriction of p. The unit map is n: 1 — P({*}) and the following
diagram must also commute where cy4 is the unique map c4 : A — {*} and p: A — B is any
bijection:

N1 18Qyep

1@ P(A) ————P{*}) @ P(4) P(B) @ Qpep P({*}) P(B) ® Qpep 1

Tea Tp

P(A) P(A)

Most of the time, we will not be overly concerned with defining a unit in our operads as it
will be obvious as to which element it should be. We refer to this definition as the traditional
definition of an operad.

Definition 1.1.2. Let C = (C, x, 1) have a symmetric monoidal structure given by cartesian
product. Assume that C has an initial object 0 such that 0 x X = 0 for all X € C, and
terminal object 1. We call an operad P reduced if P(0) = 0 and P({x}) = 1.

Remark 1.1.3. Many of the operads we will consider in this thesis will be reduced. In the
case of some category C whose objects have an underlying set, to define composition maps,
we only need to consider surjective maps of finite sets p : A — B. This is because if we have
Ay = 0 for some b € B, then the domain of v, will also be empty.

We now give an alternative definition for an operad but prove that they are in fact equiv-
alent. However, some situations make one definition more convenient than the other. First
we set some notation.

Definition 1.1.4. Let A be a finite set and B C A. We then define A/B = (A \ B) II {x},
i.e. we collapse the subset B to a single point. Notice that if B = () then A/ = ATl {*}. If
B, By C A are disjoint subsets of A then we define

A/(B1, By) = ((A\ B1) \ Bz) I {1, %2}

i.e. we collapse By and By to distinct points. This definition is independent of the implied
ordering of the subsets By and Bs.

Definition 1.1.5. An operad is a functor P : FSET~ — C, equipped with maps in C called
composition and unit maps. The unit map is defined exactly as before. For the composition
maps, consider finite sets B C A. For each such pair we have maps

vg : P(A/B) @ P(B) — P(A)
such that the following hold for By, Bs C A:
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i) If By N By = () then the following diagram should commute:

72/31
P(A/(B1, Bs)) ® 73(31) ® P(Bg) %1 P(A/Bl) ® P(Br)
VE{BQ@H Wé1
P(A/B)) @ P(By) P(4)

Note that we have omitted the necessary twist map to make the top map well-defined.

ii) If By C By then the following diagram should commute:

B

P(A/By) @ P(Ba/By) ® P(By) " P(A4)By) & P(By)

’Ygé]/Bflﬁ@l 7§2
A
B,
P(A/B) ® P(By) P(A)

We refer to this definition as the combinatorial definition of an operad.

Proposition 1.1.6. The traditional and combinatorial definitions of an operad create equiv-
alent objects.

Proof. Since the only difference in the definitions is how we define the composition maps, the
only thing we need to check is that we have a traditional composition if and only if we have
a combinatorial composition. First assume we have an operad by the traditional definition.
If B C A then we can define a map p: A — A/B by the obvious projection. This means we
have an operad composition map 7, : P(4/B) ® @Qpea/p P(As) — P(A) and therefore we
define
v# : P(A/B) @ P(B) — P(A)

by setting v5(z,y) = (z, (y,m(1),...,n(1))sea/p)- We can do this since if a ¢ B then
|Aq| = 1 and so (1) € P(A,). To check that 4 satisfies the necessary conditions, first let
B1, By € A with By N By = () and notice that we have a commutative diagram

A—2 5 A/B

pQJ |

A/BQ T A/(Bl, BQ)

where each map is the obvious projection. Our strategy is to apply the operad associativity
axiom to this diagram:

A
Vi (P @), 2) = i (@ (L), 0(1)ee /By By)s 2)

= Y (Vo (@ (¥, m(1), - s0(1))eenyBy,B2)s (2,m(1)s -+, n(1))beaym,)

= Yapn (@, ('7p51 (y, (n(1),....n(1))een,), TpB, (z,(n(1),...,n(1))eeB,),
n(1)s - n(1))eeasB,B,)

= Yap (@ (Y, 2,0(1), ... .n(1))cen;B,,B,)

18



. A/B
Symmetrically, 7§2(731/ *(2,2),9) = Vaop (%, (Y5 2,m(1), - -, 10(1))ecasBy,B,) DUt 1p1 = gap2

and so this is equal to 'ygl (722/ B (z,y), ) as required.

Now let By C Bs C A and again notice that we have a commutative diagram

AL A/By

RN

A/Bs

where each map is the projection map. If we let r : By — Ba/Bj denote the projection then
on the one hand we have

7§2 (iL‘, 7512 (y7 Z)) = ’Ygg ('7}7 PVT(yv (Z, 77(1)7 cee 777(1))CEB2/B1))
= qu(x7 (%‘(y? (27 77(1)7 s 777(1>)CGBQ/B1)7 77(1)7 s 777(1))b€A/B2)'

On the other hand, if we apply the operad associativity to the first diagram we see that

A
Vi, OVl @), 2) = 8, (e, (1,01, (1)) eeasn,) 2)

= Y, (y,nQ), - ..n(1)ecas,)s (z,n(1),- - .n(1))seasB,)
= ’YQP(‘T7 (’YT(% (27 77(1)7 ce 77](1))CGBQ/B1)7 77(1)7 R n(l))beA/Bg)
= V5, (2,752 (4, 2))
since p|p, = 7.
Now assume that we have an operad by the combinatorial definition. Let p: A — B be

a map of finite sets and X = {zo,...,2,,} C B a subset. We then introduce the following
notation

A(an) :Xﬂpil(B\X) :A/(Axoa"'qum)

P(p. X) = P(A(p, X)) © ) P(A,).

zeX

Notice that we have A(p,0) = A and A(p, B) = B. If b ¢ X then A, identifies with a subset
of A(p, X) and we have

A(p, X TL{b}) = A(p, X)/Ap.
Our combinatorial operad therefore gives us a map
Y, P(Ap. X TL{B)) © P(A) = P(A(p, X))
and so by tensoring with appropriate identity maps we get a map
P(p, X TT{b}) = P(p, X).
By composing maps of this type we then get a map

P(p, B) = P(B) ® R P(A) = P(A) = P(p,0)

beB
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and we set this to be our operad composition in the traditional sense. It is implicit in this
definition that we have chosen an ordering on B. However, if we take b1,bo ¢ X then the
diagram

P(p, X I {b1,b2}) — P(p, X L {b:})

l J

P(p, X I {by}) ———— P(p, X)
commutes by axiom i) in definition 1.1.5. Therefore our definition of the composition is
independent of this implicit ordering.

Now we check that our defined composition is associative. Let A 2 B—15C be maps
of finite sets. One side of the associativity diagram for composition using our definitions will
looks as follows

C) @ QP(A) = -+ —= P(q,0) @ QP(Ap) = P(p, B) = --- = P(p,0).
beB beB
The other side will have the following form:
C) @ R P(pe, Be) = - = P(C) ® Q) Plpe, ) = Plqp,C) — -+ = P(gqp, D).
ceC ceC

We analyse a specific piece of this sequence. Choose some ¢y € C' and then a by € B.,. We
then have inclusions Ay, € Ay € A(gp, C'\ {co}). The piece of the sequence we are interested
in looks as follows:

® X PA)@Ppebo) »PC)e Q) P(A) @ P(As) = Plgp,C \ o).
ceC\{eo} ceC\{eo}

However, by axiom ii) of definition 1.1.5, this composition is equal to the composition

P(r{c}) @P(Ay) @ (R P(A) — PlidLipla, . {bo})® &) P(Ac) = Plap,C\{co})
ceC\{co} ceC\{co}

where 7 : C'\ {co} I Ac, /Ap, — C' is defined to be the identity on C'\ {cp} and sends A.,/Ap,
to cg. If we repeatedly use this and the commutative diagram above, we can show that the
two sides of the associativity diagram are equal as required. We will not spell out the details
however. O

The collection of operads in a symmetric monoidal category is itself a category. The
morphisms in this category are defined as follows.

Definition 1.1.7. A morphism of operads f : (P,n,v) — (Q, H,T') is a natural transforma-
tion that is compatible with the composition and unit maps. That is to say that the following
diagrams should commute:

1—" s P({x}) P(B) © Qyep P(Ay) ———— P(A)
I fia fE®Qyep fa, fa
Q({+}) Q(B) @ ®yep Q(Ay) — " Q(A)

for every map of finite sets p: A — B.
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We will now give our first example of an operad.

Example 1.1.8. Let C be a symmetric monoidal category and C' € C an object. We define
Endc : FSET~ — C by setting Endc(A) = Home(C®4,C). We can turn this into an
operad as follows. Define 7 : 1 — End¢c({*}) to be the map that selects the identity map in
Home(C,C). For p: A— B, define 7, : Endo(B) ® @y g Endc(Ay) by setting

o fs (gp)ven) = fo <® 96) :

beB
We call this operad the endomorphism operad for C.
Remark 1.1.9. This is the canonical example of an operad and the example that one should
keep in mind when thinking about an operad conceptually. The idea of an operad is that
each object P(A) should encode the A-ary operations C®4 — C on some object C. In the
case above, we have simply set this to be all of the morphisms from C®4 to C. The unit

map in the operad is supposed to select an identity operation and the composition maps are
supposed to mimic the behaviour we have when we select an element in

Home(C®B,0) ® ®H0mC(C®Ab7 0),
beB

and compose the elements according to some map p: A — B.

With this idea of operads encoding operations in mind, we now define an algebra over an
operad P. We will see some examples of algebras over operads in the next section.

Definition 1.1.10. Let C' € C be an object in C. For an operad P in C, C' is a P-algebra if
there exist maps 04 : P(A) ® C®4 — C that commute with the unit and composition maps
in P. More precisely, we should have that

0*
C—10C- 25 p({s)eC—2C

is the identity. Then, for any map of finite sets p : A — B, the diagram

P(B) ® ®pep P(Ap) @ CA — 220 p(4) @ 024
19Qypep b4, 0a
P(B) @ C®B i ceA

should commute. If C is a category with a tensor-hom adjunction, then we can simplify this
to say an algebra C € C over an operad P is a morphism of operads 6 : P — Endc.

1.2 Some Useful Examples

In this section we will give some examples of operads. We begin by giving some very simple
examples that will reinforce the intuition behind an operad. We then define as well as elaborate
on three important examples that will be used throughout the thesis: the little cubes operads,
the operad of trees and the Stasheff operad.
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Example 1.2.1. The simplest example of an operad is one such that P(A) = {x} for |A| =1
and P(A) = 0 otherwise. Algebras over this operad are trivial in the sense that the only
operation we have is an identity operation.

Example 1.2.2. A slightly less trivial example of an operad is the commutative operad
denoted by Com. Here Com(A) = {x} for every finite set A and therefore the composition
is completely determined. Algebras over this operad are commutative, (and associative),
monoids.

Example 1.2.3. Denote by Ass(A) the set of all linear orders on a finite set A. For clarity, one
should note that there is a unique linear order on the empty set, () C ()2, and so Ass()) = {x}.
We define composition for maps p : A — B as follows. If R € Ass(B) and S, € Ass(A4y) for
b € B then set
’Yp(Rﬂ (Sb)) =T

where for a,a’ € A, a <r a’ if and only if p(a) <g p(a’) or p(a) = p(a’) and a <g,, a’. One
can check that this defines an operad that we call the associative operad. Its algebras are
associative monoids.

The Little Cubes Operads

We introduce the little N-cubes operads which encode the operations on N-fold loop spaces.
This leads to the little N-cubes operads being used to define an entire class of operads, namely
the En operads.

Definition 1.2.4. Let N be a natural number. Set J = (0,1) and J = [0,1]. Say u < v in
JN if u; < v; for all 4 and then define f,, : JV — JY for such u and v by setting

Jun ()i = (1 — t)u; + ;.

Notice that image(fuy) = (u,v) which is the N-dimensional cube with opposite corners u and
v. Denote by Cx(1) the set of all maps of the form f,, for u,v € JV and u < v. We call the
image of such a map a little N-cube.

Definition 1.2.5. Let A be a finite set. Given any map f : A x JY — JV, for a € A define
f(a): JN — JN by setting f(a)(t) = f(a,t). Then let Cy(A) be the set of all injective maps
f:AxJN — JN such that f(a) € Cy(1) for all @ € A. This is a topological space by
considering it to be a subspace of JI4I2N,

Remark 1.2.6. If A = () then ) x JV = () and so Cx(0)) will be a single point, namely the
empty embedding into JV.

Lemma 1.2.7. The space Cn(A) is homotopy equivalent to Inj(A, RY), the space of injective
maps from A to RN,

Proof. Obviously, we have a homeomorphism Inj(A, RY) = Inj(A, JV). Nowlet m = (3,...,1)
be the centre of JV. We then define an embedding ¢ : A — A x JV by setting ¢(a) = (a,m),
and this in turn defines a map

D=

*: Cn(A) — Inj(A, JY)

given by t*(f)(a) = (f o¢)(a). One sees that this is a homotopy equivalence by considering
a homotopy inverse that we will not spell out the details for. One takes an element g €
Inj(A, JV) and sends it to the element f € Cn(A) such that image(f(a)) is centred at g(a)
and each little N-cube f(a) is the same size and maximal such that f is injective. O
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Definition 1.2.8. Let p : A — B be a map of finite sets. We then define a map -, :
Cn(B) x [Ipep Cn(A4p) = Cn(A) by setting

([, (9)veB) = H (f(b)ogy).

beB
It is a simple check to see that [[,c5 (f(b) 0 g5) € Cn(A).

Proposition 1.2.9. Definition 1.2.8 makes Cny = {Cn(A)} into an operad which we call the
little N -cubes operad.

Proof. We set the unit to be the identity map in Cy(A) for |A| = 1. It is easy to see that
this behaves as required. We then just need to check that the composition map is associative.
However this is almost immediate as the definition can be realised as a composition of maps

(pvgp(a) ) f

Ax JN BxJN —+ L JN.

O]

Remark 1.2.10. The composition for the little N-cubes operad is best understood diagram-
matically with an example. Set N =2, A = {ag,...,a4}, B ={bo,b1} and p: A — B defined
by p(ag) = p(a1) = p(az) = by and p(az) = p(as) = b1. We choose elements f € Cy(B) and
g, € Cn(Ap,) represented by the following diagrams:

Image of f Image of gy, Image of gy,
v, (a2)
f(b1) 9, (as)
gbo (‘GO)
f(bo) | Ive (1) G, (a4)

The image of each component of the maps is marked with the appropriate label. The tuple
(f, Gby» gv, ) 1s then sent to the following configuration of little cubes in Cy(A) by the operad
composition h = v, (f, gby» 9b, ):

Image of h
h(as)
h(as3)

h(az)
[;] ——h(a1)
h(ao)




Definition 1.2.11. Let (X, *) be a based topological space and denote by
OVX ={1:5N = X},

the set of based N-fold loops in X. Let ¢ : JN — SN be the well-known quotient map that
identifies the boundary of .J N to the basepoint of SV. Notice that this map is a bijection on
JN c JN. We can therefore define maps

04:Cn(A) x (VXA 5 VX

04(f, (l)aca) =1: 8N = X

where

o) {za<q<u>> it ' (v) = fla)(u)

* otherwise
One can easily check that this makes QV X an algebra over the little N-cubes operad.

The following classical theorem is due to May, ([19], theorem 1.3), and demonstrates the
usefulness of the little cubes operads.

Theorem 1.2.12. A path connected, based topological space X is an algebra over the little
N-cubes operad Cy if and only if it has the homotopy type of an N-fold loop space QY for
some based space Y .

This importance of the little cubes operads leads to definition 1.2.14 below. First though
we define a particular type of equivalence between topological operads.

Definition 1.2.13. A map of topological operads f : P — Q is a weak equivalence if each
map f4 : P(A) = Q(A) is a weak equivalence. Two topological operads are said to be weakly
equivalent if there exists a zig-zag of weak equivalences between them.

Definition 1.2.14. An Ey operad is one that is weakly equivalent to Cn. An FE,, operad
is one such that each space E(A) is contractible and has a free action of the permutation
group Y 4. It is possible to define this in terms of a related “infinite” little cubes operad Cq
but we will not explore this here.

We also have the following interesting result if we consider the operad induced by taking
the homology of the little N-cubes operad. We will elaborate on this construction in section
2.3.

Definition 1.2.15. An degree-N Poisson algebra is a graded abelian group P, together with
an associative product P; ® P; — P;y; that is commutative in the graded sense, i.e.

and a bracket operation [, | : P, ® P; — P,y n—1 satisfying

b [:U7y] + (_1);?@[?/733] =0,

o [wy-2]=lzyl- 2+ (-1)y - [z,7]
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where Z = |z| + N — 1. These are sometimes called Gerstenhaber algebras although more
often this means the specific case when N = 2.

Theorem 1.2.16. The operad H.(Cy) is that whose algebras are unital degree-N Poisson
algebras.

It appears to be hard to properly attribute a reference to this theorem. Certainly the
original description of the groups H,(Cx(A)) are in the classical work [7]. However there is
no mention of operads here. The same author describes Poisson structures arising from these
groups in [8]. The case N = 2 was done by Getzler in [11]. Although it is not the original
source, an elementary treatment of theorem 1.2.16 can be found in [25].

Trees

The set of trees on a finite set A, which we define below, has an operad structure. We also
highlight some of the features of a tree which we will use extensively throughout the thesis.

Definition 1.2.17. Let A be a finite set and P*(A) denote the set of nonempty subsets of A.
A tree on A is a subset 7 C P*(A) such that

e If U € T then either TCU,UCT or TNU = 0.
e The minimal sets in 7 form a partition of A.

We will write Trees(A) for the set of all trees on A. This can be regarded as a poset by setting
T < T"if and only if T DO T".

Remark 1.2.18. Given a tree T € Trees(A), we can identify this with a connected graph
that has no bivalent vertices or cycles, in other words a tree in the more traditional sense. To
do this, first notice that 7 is a poset as it is a subset of P*(A) which is ordered by inclusion
of sets. Now adjoin a maximal element * to 7, i.e. T < % for all T € T. Then we define the
vertex set of our graph to be 7 U {x} and we connect vertices T, U € T U {x} with an edge if
T < U and there does not exist V € T U {x} such that T'< V < U. The vertex x will be the
root and the minimal sets of 7 the leaves. As an example, let A = {a,b,c,d, e, f} and

T = {{a,b,¢,d}, {a,b, ¢}, {e, f},{a}, {b,c}, {d}, {e}, {f}}-

Then the associated graph will be

{a} {b, ¢} {d} {e} {f}



One should note that this associated graph is the same as the Hasse diagram for the poset
T U {x}. Conversely, if one has a graph I' that is a rooted tree, (root denoted #), with set
of leaves isomorphic to A, one can associate to it a tree as in definition 1.2.17. For a vertex
v € vert(T"), we define T, to be the set of a € A such that the shortest path from the leaf
associated to a to x goes through v. Then 7 = {T), | v € vert(I')} will be a tree.

Definition 1.2.19. We say that 7 € Trees(A) is separated if every singleton set lies in 7
and full if in addition A € T. Denote by FTrees(A) the set of full trees on A. This set has a
maximal element corresponding to C4 = {A} U {all singleton sets} which we call the corolla
on A.

Remark 1.2.20. Any tree can be thought of as being separated in the correct context. If
T € Trees(A) then the minimal sets in 7, denote them by B, partition A and every T' € T
is formed by taking a union of some of the elements of B. Therefore T can be thought of as
coming from a separated tree 7 € Trees(B).

Definition 1.2.21. Let T € Trees(A) be a separated tree. We highlight the following features
of T:

e We define 7" ={T € T | |T| > 1}. We call this the set of internal vertices of T.

e For T € T, we define a child of T to be a maximal element in the set {U € T | U C T'}.
(Note that for us, the symbol C denotes a proper subset). Denote by 71 the set of
children of T" and notice that this actually forms a partition of T. Most of the time we

will only write dT as the tree 7 will be understood from context. We define a grown
child of T to be an element in the set §'T = T NT".

e We say that a tree T is binary if |07 = 2 for all T' € T such that 7" is not minimal.

e For T € T, we define the parent of T, denoted by ((7T'), to be the minimal element in
theset {U T |UDT}.

e Finally, if 7 is a full tree on A and B C A then denote by 7 (B) the smallest set in T
that contains B.

Definition 1.2.22. Let p : A — B be a map of finite sets. Then for Tp € Trees(B) and
Ty, € Trees(Ap), b € B, we define a map vy, : Trees(B) X [ [, g Trees(Ap) — Trees(A) by setting

(s, (Tohen) =T =p ' Tau |J T,

beB
where p~ 175 = {p~Y(T) | T € T} \ {0}.
Proposition 1.2.23. Definition 1.2.22 makes Trees = {Trees(A)} into an operad.

Proof. Since for |A| =1, Trees(A) contains only one element, there is only one choice for the
unit map. It is a simple check to see that this behaves as a unit with respect to composition.
Therefore we only need to check that the map in definition 1.2.22 lands in the specified
codomain and is associative. The former is a simple check of cases. Let U,T € T.

o If U,T € p~'Tp such that U = p~}(U’) and T = p~'(T") then we will have either
T CU,U CT or U'NT" =0 since U', T € Tg. It is then clear that this is preserved
by taking preimages.

26



e If U € p~!7p such that U = p(U’) and T € Ty then either b € U’ in which case T C U
or b ¢ U’ which implies that U N T = (.

o If U € Ty and T € Ty such that b # b then UNT = 0.

o If U, T € T, then the check is trivial since 7 is a tree on Ay.

Now to check associativity, assume we have surjective maps of finite sets A RN ; P NS
and elements 7¢ € Trees(C), T. € Trees(B,) for ¢ € C and Ty, € Trees(A4y) for b € B. Then

Ww(a(Tes (Te)eee)s (To)ven) = p (q_lTC ulJ 72) ulJ 7.

ceC beB
Similarly
PYQP(TCW (’Yp(,ﬁ? (ﬁ)bEBc))CEC’) = (qp)iler U U p7172 U U Tv s
ceC beB,.
and 50 v, (74(Te, (Te)eec)s (To)veB) = Yap(To, (Ve (Te, (To)beB.))cec) as required. O

Remark 1.2.24. The operad composition we have described above corresponds to the well-
known grafting of trees as graphs. This is best illustrated with an example. Let A =
{a,b,c,d,e, f}, B ={a,p} and define p : A — B by setting p(a) = p(b) = p(c) = p(d) = «
and p(e) = p(f) = B. Then let

TB = {Bv {05}7 {ﬁ}}

To = {{a, b, C}, {bv 0}7 {a}, {d}}
Ts = {Ap, {e}, {f}}.

Then the operad composition produces the following:

_|_
/3\
{a} {8}
X n = {a,b,c,d}
{a,b,%\ 4 {a,b,c} {e, f}
8
{a} {b.c} {d} {e}  {f} {a} {b,c} {d} {e} {f}

Remark 1.2.25. It is not hard to check that if 7y is a full tree on A, for all b € B, and Tp
is a full tree on B, then ~,(75, (Tp)ven) € FTrees(A). Therefore FTrees = {FTrees(A)} is a
suboperad of Trees.

Remark 1.2.26. It is worth noting that Trees()) = Trees({*}) = FTrees({*}) = {x} but
FTrees()) = (. Therefore Trees is not a reduced operad but FTrees is.

Lemma 1.2.27. The composition map v, : FTrees(B) x [],c5 FTrees(A4;) — FTrees(A) is
injective for any surjective p: A — B.
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Proof. Let
Y (T8, (To)veB) =V = 1p(Up, (Up)beB)-

For b € B define V, = {V € V| V C A,}. By the definition of v, it is easy to see that
To = Vo = Uy,

Now let pV = {p(V) |V € V}. If V € T, = Uy, for some b € B then p(V) = b. Therefore we
see that
TB = pV =Up

S0 7, is injective as required. O

The Stasheff Operad

One could argue that the Stasheff operad is the very first example of an operad, although
it was not formulated in this way. However, the definition of the spaces involved and their
application to A, algebras predates May’s original definition of an operad. We present one
of many ways to define this operad.

Definition 1.2.28. Let A be a finite totally ordered set. A Stasheff tree on A is a full tree
T such that each T' € T is an interval in A, i.e. if a,c€ T then be T foralla < b <ec.

Definition 1.2.29. Let A be a finite set equipped with a total order R. Denote by J (A, R)
the set of intervals J C A with respect to the ordering R. Then we define K (A, R) to be the
set of maps ¢ : J(A, R) — [0,1] such that

o supp(t) ={J € J(A,R) | t(J) > 0} is a Stasheff tree on A.
e t(A) =1and t({a}) =1 for all a € A.
We then define K(A) = [[georaca) K (4, R).
Lemma 1.2.30. The space K(A, R) is contractible for any finite set A and total order R.
Proof. Consider t* € K(A, R) defined by
LR
We can then produce a deformation retraction on to this point by defining
h:[0,1] x K(A,R) — K(A, R),
h(A\,t)(J) = At(J) + (1 — N)t*(J)
which is equivalent to saying

1 if J=AorJ={a}
A-t(J) otherwise '

h(At)(J) = {

O]

Definition 1.2.31. Let p: A — B be a surjective map of finite sets. We then define a map
Yp o K(B) x [[eg K(Ap) — K(A) by setting v,((r, R), (56, Sp)een) = (t,T) where
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e a <7 d if and only if (p(a) <g p(da’)) or (p(a) =p(a’) =b and a <g, ).

so(J) i p(J) = {b}
o t(J)=qr(p(])) if J=p'p(]).
0 otherwise

The map t is well-defined since if p(.J) = {b} and J = p~!p(J) simultaneously, then 7(p(J)) =
r({b}) =1 and J = p~1{b} = A s0 sp(J) = sp(Ap) = 1 also.

Proposition 1.2.32. Definition 1.2.31 makes the collection K = {K(A)} into an operad
which we call the Stasheff operad.

Proof. We need to check that the composition map v, satisfies the associativity rule. On
the second component, the total order on A, this is clear since the map acts in exactly the
same way as the composition for the associative operad Ass. Therefore we only need to check

on the first component. Let A —-—+ B—2—C be maps between finite sets and r € K(C),
sc € K(Be) and t, € K(Ayp). We need to check that

!/

u = '7p('7q(r7 (SC)CEC)a (tb)bEB) = VQP(’F’ (’ch(sm (tb)bEBc))CEC) =Uu.

One can check by considering cases that

ty(J) if p(J) = {b}

se(p(J)) if J =p~'p(J) and gp(J) = {c}
r(gp(J)) if J = (gp) " qp(J)

0 otherwise

u(J) =u'(J) =

as required. O

Definition 1.2.33. An A, operad is an operad that is weakly equivalent to the associative
operad Ass and is cofibrant. Equivalently, an A, operad is a cofibrant F; operad, as defined
in 1.2.14.

Proposition 1.2.34. The Stasheff operad is an Ao, operad.

Proof. Since K(A, R) is contractible, the projection maps 04 : K(A) — Ass(A) defined by
04(r,R) = R are homotopy equivalences. It is then immediate from the definitions that the
collection 6 = {64} is a map of operads 6 : K — Ass. We will see in theorem 1.4.10 that the
Stasheff operad is cofibrant. O

Remark 1.2.35. We have presented just one formulation of the Stasheff operad of which
there are many. However, the one we demonstrate here will be more appropriate for our uses
later on in the thesis.

1.3 Free Operads and Well-Labelled Operads

For now, let C be the category of sets. In this section we briefly outline the free operad con-
struction for reduced operads in this category. We then introduce the notion of a well-labelled
operad which allows us to give explicit conditions for when an operad is set-theoretically free.
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Definition 1.3.1. A Y-module M in C is a functor from FSET~ to C. Similar to operads, a
Y-module is called reduced if M(0) = () and M ({*}) = {x}.

Definition 1.3.2. Let M be a reduced ¥-module. For any finite set A define
OM(A) ={(T,(mr)rer’) | T € FTrees(A), mp € M(6T)}.

Since FTrees(()) = 0 we have ®M (@) = (). Also, if A has only one point, then FTrees(A)
contains only one tree that has no internal vertices, and so ®PM(A) = {x}. If f: A - Bisa
map in FSET~ then define ®(f) to be the map:

(T, (m7)rer) = (f(T), (M fr(mr)reT)

where f(T) = {f(T) | T € T} and fr : 6T — &f(T) is the obvious map that identifies
children. Therefore, ®M is a reduced X-module which we call the module of decorated trees
in M.

Definition 1.3.3. Let p: A — B be a surjective map of finite sets. We then define a map

W ®M(B) x [ @M(Ay) — @M (A)
beB
by setting
Ww((Tes (m7)rers), (To, (No1) 17 IbeB) = (T, (01)TET7)

where
o T=p 17U Usen 7o and so is simply the grafting of trees.

eor=mrif T CA IfT= p~ LU for some U € T% then we have a bijection f : 6U —
Sp~ LU and so we set op = M f(my) € M(6p~1U).

Proposition 1.3.4. Definition 1.5.3 makes ®M into an operad.

Proof. Since ®M(A) is a single point when |A| = 1, there is no choice for the unit map and it
is easy to see that it behaves as expected with regards to 7,. We have proved in proposition
1.2.23 that the grafting of trees is an associative composition and so it is easily seen that -,
is associative as the new decorations are trivially defined. O

Definition 1.3.5. We define a morphism of ¥-modules ¢ : M — &M by setting, for any finite
set A,

LA(m) = (CAam)’
i.e. the corolla on A decorated by m € M(A).
We have the following universal property for the construction ® and as such it is a left-

adjoint to the forgetful functor from reduced operads to reduced »-modules. First though,
we define an iterated composition for a general operad that we shall use in the proof.

Definition 1.3.6. Let P be an operad in C and 7T a full tree on A. We can then define an
iterated composition map

v+ Q) P(6T) — P(A)
TeT!
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as follows. Firstly, if |77| = 1 then we simply let y7 be the identity on P(0A) = P(A). Now
for each U € 0 A, we define Ty = {T' € T | T C U} which is a full tree on U. Since |T/;| < [T,
by an inductive hypothesis we have a definition for y7;,. Let p : A — 0A be the obvious
projection map. We then set

17 (@) rer) =W (xA’ <7TU <(xT)TETl/J)>Ue6A> '

Proposition 1.3.7. Let P be a reduced operad in C and f : M — P a morphism of X-
modules. Then there is a unique morphism of operads f : ®M — P such that the following
diagram commutes:

M—r M
; b
P

Proof. Define ®oM to be the image of ¢, i.e. ®oM(A) = {(Ca,m) | m € M(A)}. It is then
not difficult to show that every element in ® M can be described uniquely, up to composition
with the identity, as the image of an iterated composition map on elements in ®oM (A). The
rest of the proof is then a standard free object argument. O

Now we present the notion of a well-labelled operad. We can define this for operads in any
category for which the objects have an underlying set. It turns out that this gives a precise
way of deciding when an operad is set-theoretically free.

Definition 1.3.8. Let I be a finite set. An I-labelled set is a set X along with subsets

L; X C X for every i € I. If J C I then we define L;X = ﬂjeJLjX.

Definition 1.3.9. Let P be a reduced operad and A a non-empty finite set. Then for all
non-empty B C A, we have a composition map 75 : P(A/B) ® P(B) — P(A). We define

LpP(A) = image('yg)

which makes P(A) into a P*(A)-labelled set where P*(A) is the set of non-empty subsets of
A.

Remark 1.3.10. One should notice that LsP(A) = L, P(A) = P(A) for any reduced
operad P and a € A. Therefore, if J C P*(A) and J' = JUCy then L;yP(A) = Ly P(A).

Remark 1.3.11. It is easy to see, by the associativity of the composition, that the iterated
composition map 7 from definition 1.3.6 factors through 774 for all T' € T and therefore

image(yr) € () LrP(A) = LTP(A).
TeT

This allows us to make definition 1.3.12 below.

Definition 1.3.12. An operad P is well-labelled if for every non-empty finite set A and
J C P*(A) we have the following:

o If J € Trees(A) then 7 is injective and image(vy) = L;P(A).
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e If J is not a tree on A then L;P(A) is empty.

Proposition 1.3.13. Let P be a well-labelled operad. Then it is (set-theoretically) isomorphic
to ®M where the X-module M is defined by

MA) =P\ |J LsP(A).
1<|B|<|A|
Proof. Clearly we have a map of ¥-modules f : M — P simply defined by inclusion. Then
by proposition 1.3.7, there is a unique map of operads f : ®(M) — P. We claim that fA isa
bijection for every finite set A.

Firstly, if |A| < 2 then M (A) = P(A) and ®M(A) = M(A) since FTrees(A) only contains
the corolla on A. So then f4 must be a bijection. We now proceed by induction on |A|. Let
x € LgP(A) for some B C A with |B| > 1. Then because P is well-labelled, z = v4(y4, y5)
for unique ya € P(A/B) and yp € P(B). Since 1 < |A/B| < |A]|, by induction ya4 =
fay(Ta; (mr)rer;) and yp = fB(Ts, (n1)reTs) for unique (Ta, (mr)rer;) € ®M(A/B)
and (7, (nr)reT;,) € M (B). Therefore, because f is a map of operads, we must have

o= Fa (o (Tas tmrhrers) « (T (nrdrery ) )

so f is surjective. It is also injective by the injectivity of ~1 for every T € FTrees(A) since
intersections of LgpP(A)’s are only non-empty if the collection of B’s forms a tree. O]

Example 1.3.14. The following operads are well-labelled:
e The operad of full trees, FTrees.

e The Stasheff operad K, (this will be immediate from the work in section 1.4).

e ®M for any reduced ¥-module M, by proposition 1.3.13.

We will see other examples of well-labelled operads in later parts of the thesis. We end
this section by giving an alternative viewpoint to a well-labelled operad.

Proposition 1.3.15. P is a well-labelled operad if and only if there is a map of operads
7 : P — FTrees such that every square of type

Tp

P(B) x [1yen P(As) P(A)

(TB:(TAb)beB)l JTA

FTrees(B) x [[,cp FTrees(Ap) — FTrees(A)

is a pullback.

Proof. First assume that P is well-labelled. Then by proposition 1.3.13 it is isomorphic to
®M for some X-module M. Define 7 : M — FTrees by setting 74(7T, (mr)re7s) = T. This
is clearly a map of operads. To see that the square in the hypothesis is a pullback, we compare
OM(B) x [[cg M (Ap) with the pullback of the diagram

DM (A)

|-

FTrees(B) x [[,cp FTrees(4s) — FTrees(A)
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This is equal to

{((7—37 (7;))563) ) <7j47 (mT)TETA)> ’ pr(TB, (TB)beB) = 7?4} .
On the other hand ®M (B) x [[,c g M (Ap) contains all elements of the form

((Ts, (n1)7reTy): (To, (08,7) Ty )0 B)

with ng, o7 € M(6T). When we compose these elements, these decorations simply become
the decorations mp € M (0T') of the tree Ta = v,(7TB, (TB)rer) and so it is easy to see that
these two sets are isomorphic.

Conversely, assume we have a map of operads 7 : P — F'Trees such that every commutative
diagram of compositions is a pullback. In particular, one can deduce that the combinatorial
compositions:

P(A/B) x P(B) 5 P(A)

TA/BXTBJ( J(TA

FTrees(A/B) x FTrees(B) ————— FTrees(A)
B

are also pullbacks. Recall that v factors through 774 for all T' € T. We can therefore use the
pasting lemma for pullbacks to show that

[Trer P(ST) = P(A)

(TT)TGT/J( JTA

HTET’ FT‘I‘GGS((ST) T FT‘I‘GGS(A)

is also a pullback square. By a repeated use of lemma 1.2.27, we see that 7, (bottom arrow),
is injective and therefore v, (top arrow), is also injective.
Now define
TA (T C)={peP(A)|1alp) 2 T}

First we claim that 7' (7 C) = image(y7) if T is not the corolla, (since this case is trivial
anyway). Let p € 7, (7 C). Then there exists (77)re7’ € [[res FTrees(6T) such that
vr(Tr) = 7a(p). Therefore ((77)re7,p) is in the pullback and so corresponds to some
(p7)rer € [l7er P(6T). Then because the composition square is a pullback, this means
Yr((pr)re7) = p and so p € image(~yr). On the other hand, let p € image(vy7) so that
p =7((pr)reT) for some (pr)rer: € [Ireq P(6T). Then 7a(p) = 7 ((rr(pr))). (Pr)TeT
corresponds to some ((77)re7,p) in the pullback and so 74(p) = v ((7r)). But each Tr
contains 7" and so T C y7((7r)) = 7a(p) as required.

Next we claim that 7,'(7 C) = LTP(A) = Npeq LTP(A) where T is not the corolla.
We will then have an equality image(yr) = LrP(A). Firstly we see that 7,'(T C) =
image(y7) € L7P(A). Therefore take p € L7P(A) which implies that for all T € 7'\ A
there exists (pr) € P(A/T) x P(T) such that y(pr) = p. Therefore p € image(v4) and so
T € 1a(p).

Finally, assume that we have some J C [P*(A) that is not a tree on A and such that L;P(A)
is non-empty. By the above argument, this would mean that J C 74(p) for all p € L;P(A)
which cannot happen. Therefore L ;P(A) must be empty and so P is well-labelled. O
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1.4 The W-construction

In this final section we describe the W-construction originally due to Boardman and Vogt in
[5]. We only do this for reduced topological operads although the original definition caters
for all topological operads. For all cases that we will consider, this construction creates a
cofibrant replacement for a topological operad and so it encodes the up to homotopy algebras
of that operad.

Definition 1.4.1. Let P be a reduced operad in the category of topological spaces. For every
finite set A we define a new set WP(A). This is the set of triples (T, (x7)re7, (Ar)reT) such
that

e T is a full tree on A.
e For T € T', xp € P(6T) which we refer to as the decoration of T'.

e For T € T, Ar € [0,1] such that Ay = 1 and A4y = 1 for all a € A. We refer to this as
the edge length of T'.

Now we define WP(A) = WP(A) / ~ where the equivalence relation removes edges with
length 0. More precisely, let V' € T \ {A} such that Ay = 0. Then set 7 = 7 \ {V} and
Ar = Ap for T € T. Let U = ((T) € T be the parent of V' and denote by =T the set of

children of T € T. Now, for T € T \ {U} we have 071" = 67T and so in this case we set
T = x7. Next we see that
(57-U = (67U \{V}) UrV.

Therefore 67U = 6zU /07V and so we have an operad composition map
0=U
’yéz:v : P(5TU) X P((STV) — P((Sf-U).

~ 6=U . .
Set 7y = 76;V (zy,zv) and define the equivalence relation to be generated by

(T.@r)rer Onrer) ~ (T2 @) e Codper ).

This can be summarised pictorially as

ITO P [I,'Tk ,’L‘VO P I’Vl ’IT(J P :ETk J,‘VO PR ‘T‘/L
Remark 1.4.2. Using the equivalence relation above, one sees that WP (A) maps bijectively

to the set of (T, (x1)rer, (Ar)TeT) € WP(A) such that Ay > 0 for all T € 7. However, it is
much harder to describe the topology with this definition, hence our original definition 1.4.1.
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Definition 1.4.3. Let p : A — B be a surjective map of finite sets. We then define a
composition map
W WP(B) x [[ WP(Ay) - WP(A)
beB
by setting

(T, (1) 1y, (Ar)TeTs), (To, (Yo,1)7eT), (Mo,7)TET) beB) = (T, (21) 1T, (WT)TET)
where
o T=p'"TeUUpep Tr-

o zr =y if T C Ap. If T =p~tU for some U € Tp then we have a bijection f : §U —
dp~ U and so we set zp = Pflzy) € 73(51971[])-

ppr T C Ay
wr = :
g Ay if T =p(U) for some U € Tp

This construction is well defined since the edge lengths of A and the singleton sets are equal
to 1. In particular this means that where we have overlap in the definition of T, i.e. when
p~1{b} = Ay, then there is no contradiction in the definition of wy,. Also, edges of length 0
are contained in either p~!7p or T for some b € B so it is automatic that vp respects the
equivalence relations.

Proposition 1.4.4. Definition 1.4.3 makes WP into an operad. Moreover W is an end-
ofunctor for operads in topological spaces. We henceforth refer to this functor as the W-
construction.

Proof. 1f |A| = 1 then WP(A) will be a single point, i.e. the unique full tree on A, with no
decorations since it has no vertices of size greater than 1. Therefore there is no choice for the
unit map and it is easy to see that it behaves as expected with regards to 7,. One easily sees
that the composition is associative as we have already proved in proposition 1.2.23 that the
grafting of full trees is associative, and then everything else is trivially defined.

If f:P — Q is a morphism of operads then we can define a morphism

fiWP—->WQ

by setting f(T, (x1)rer, Ar)rer) = (T, (f(27))7e7, (Ar)TeT). This is well-defined since f
commutes with the compositions in P and Q. It is then obvious by inspecting the definition
that this will be functorial. d

It should be clear from the definitions that there is a connection between the W-construction
and the free operad in sets. Indeed, we have the following easy result.

Proposition 1.4.5. WP is a well-labelled operad for any operad P in topological spaces.

Proof. Clearly we have a map of operads 7 : WP — FTrees which is simply defined by
projection,

TA(T, (@r)reT, Ar)reT) =T
Then, we can apply proposition 1.3.15 by showing that WP(B) x [ [,c g WP(Ay) is isomorphic
to the appropriate pullback. But this is easy to see since the operad of full trees is well-labelled
and the decorations in the W-construction are trivially defined. O
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Remark 1.4.6. On the other hand, if we consider P as an operad in the category of sets,
then there is an evident map s
WP(A) - dP(A)

given by forgetting the edge lengths in WP(A). By the universal property of the free operad
construction ®, we also have a map ®P(A) — P(A) which comes from completing the diagram
in proposition 1.3.7 when considering the identity map P(A) — P(A). These maps fit together
into a commutative diagram

WP(A) —» WP(A)

|

PP(A) —— P(A).

The right hand arrow is forced and is described in lemma 1.4.7 below. This is basically the
same as the bottom arrow in the diagram above. The key point to remember is that points
that are equivalent in W/P(A) have the same image in P(A).

Lemma 1.4.7. The operad WP is homotopy equivalent to P. More specifically, there is a
map of operads WP — P such that each map WP(A) — P(A) is a homotopy equivalence.

Proof. For every (T, (xr)rer, (Ar)TeT) € WP(A), Wwe Wish to assign an element z € P(A).
To begin with let (Ca, 4, (1)) € WP(A). We then simply send (Ca, 4, (1)) toza € P(0A) =
P(A). Now we perform induction on |T|. Let (T, (z7)rer, (AMr)reT) € WP(A) and for each
U € 6A define an element (Tu, (zr)rery,, (Ar)Tem\(v}, 1)) Here

To={TeT|TCU}

and is a full tree on U. Notice that |Ty| < |T| for all U € §A and so by our inductive
hypothesis we have assigned an element z;; € P(U). We have a surjective map p : A — 0A
which sends a € A to the unique child that contains it. Therefore we may assign

(T (@r)rer, Ar)reT) = 2 = (T4, (20)U€5A)-

This gives us a continuous map €4 : WP(A) — P(A) which is in fact homotopic to the
identity on WP(A) via the homotopy that linearly collapses edge lengths to 0, and therefore
a homotopy equivalence. It is easy to see that the collection € = {e4} comes together to form
a morphism of operads. O

For symmetric monoidal categories C satisfying certain conditions, one can transfer a
model structure from C to the category of operads in C. This requires a certain amount of
categorical machinery which we will not go through here. A full account can be found in
[3]. However, we wish to highlight the following point. The cofibrant objects in the category
of operads are those operads that encode algebras that satisfy conditions up to all coherent
homotopies. The classic demonstrative example of such an algebra is the space of loops QX
on some based space X. This is an algebra where the associativity conditions are satisfied up
to all coherent homotopies and as such it is an A, algebra. With this in mind, the following
theorem, ([28], theorem 4.1), highlights the usefulness of the W-construction.

Theorem 1.4.8. Let P be a well-pointed operad such that P(A) is cofibrant for all A. Then
WP is a cofibrant replacement for P with respect to the model structure introduced in [28].

36



Note that an operad is well-pointed if the inclusion of the identity operation is a cofibration
in topological spaces, (with the usual Quillen model structure). So in other words, the theorem
says that the W-construction produces an operad WP that encodes up to homotopy P-
algebras. We can apply this to some of our previous examples.

Example 1.4.9. Consider the reduced commutative operad Com and recall that Com(A)
is a single point for any non-empty A. If we apply the W-construction, then for some
(T, (x7)re, Ar)TeT) € W Com(A), the decorations (z7)re7 are trivial and so we might
as well omit them. We call the space W Com(A) the space of metric trees on A, as it is
essentially the set of full trees on A where the edges are assigned a length.

It is easy to see that W Com(A) is contractible for any A since we can take (7, (Ar)rer)
and shrink all of the internal edge lengths to 0, (except the one for A). The equivalence
relation on W Com(A) then specifies that the element we are left with is (Ca, (1)7ec,). The
action of ¥4 is not free however as the corolla in W Com(A) is fixed by all elements of ¥ 4.
The point is though that E., operads are supposed to encode algebras that are commutative
up to all coherent homotopies and the operations have a free action of the symmetric group.
Therefore, showing that our application of the W-construction to Com is “almost” an F.
operad is a nod in the right direction.

Theorem 1.4.10. There exists an isomorphism of operads ® : WK — K. In particular, this
means that the Stasheff operad is cofibrant.

Proof. Fix a finite non-empty set A. We then define a map Dy WK(A) — K(A) by setting
&)A(Ta (tTv RT)TGTU (AT)TGT) = (tv R) S K(A)

where we define (¢, R) as follows. For T € T' let wp : T — §T be the obvious projection map.
Firstly for a # o’ in A, if T = T ({a,d’}) then mp(a) # mr(a’) in §T. We have a total order
Ry on 6T and so we set

a<pd &  wr(a) <g, mr(d).

It should be clear from this definition that each T € T is then an interval in A with respect
to R. Furthermore, for any T € T, Tr;l(J) will be an interval for any J € J (6T, Ry). We
can then define t : J(A, R) — [0, 1] by setting

(A +1) if JeT
t(J) = sty (mr(J) ifJ ¢ T and w;éj)wT(J)(J) =J.
0 otherwise

The map ¢ is well-defined since A € 7 with Ay = 1 and {a} € T for all a € A also with
Aay = 1. Therefore t(A) = 1(1+1)=1and t({a}) = 3(1 +1) = 1. Also

supp(t) = |_J 77" supp(ir)
TeT!

and it is an easy check to see that this is a full tree on A, and necessarily a Stasheff tree.

It is easy to see that ® is a continuous map. We then claim that this in fact factors through
the quotient map WK (A) — WK(A) by showing that equivalent elements have the same
image. Indeed let (T, (tr, Rr)rer, (Ar)rer) € WK(A) such that Ay = 0 for some V € T7. If

37



OA(T, (tr, Rr)rerr, Ar)rer) = (1, R) then t(V) = 3. Now let (T, (b1, Rr)peqr, (A1) pei) €
WK (A) be the equivalent element with V removed and set ® (7T, (i1, ET)TG’T” (XT)T c7)
(t', R'). Firstly, a simple inspection of the definition of composition in the Stasheff operad will
reveal that R = R'. If U = ((V) is the parent of V then one can calculate that ty (7 (V)) = 1
and so t'(V) = % Everything else remains the same and so ¢t = ¢’ as required. This defines a
map ¢4 : WK(A) — K(A) which is continuous because W K (A) has the quotient topology.
Next, we show that ®4 is bijective by defining an inverse. This is sufficient to show ® 4
is a homeomorphism since it will be a continuous bijective map from a compact space to a

Hausdorff space. We define © 4 : K(A) — WK(A) by setting

Oa(t, R) = (T, (tr, Rr)ret, (Ar)TeT) € WK(A).
Here
o T ={J esupp(t) | t(J) > 3}.
e For T € T’ set
J(A;T)={J € J(AR)|JCT and J = JU; for some U; € 6T}.

It is easy to see that J (0T, Rls7) = J(A;T) and so we can define t7 = 2t| 7 4.7y A 1.
Also, because each U € 0T is an interval with respect to R, it induces a total order on
6T which we set to be Rp.

o For T'e T set Ay = 2t(T") — 1.

It is an elementary check to see that this is indeed an inverse for ®4, so long as it is well-
defined. This is not immediate only for checking that tp € K(6T, Ry). First we see that
tr(T) = 1 since 2¢(T) > 1 and similarly tp(U) = 1 for all U € §T. To see that supp(ir)
is a tree first notice that supp(t) € Upe J(A;T) because supp(t) is itself a tree. Then
supp(tr) =2 J(A; T) Nsupp(t) and so is itself a tree.

Finally, we show that the collection ® = {®4} is a map of operads. The preservation of
the unit is trivial as WK (A) = K(A) when |A| = 1 and is a single point. Therefore we only
need to show that ®4 preserves composition. For a surjective map of finite sets p : A — B,
let 7, denote the composition in W K and I';, the composition in K. Let

((Ts (a7, @) rery,, A)TeTs ) (Toy (o, Rov)rerss (o) et JheB) € WK (B)x [ [ WK (4b),
beB

(T, (s1, St)reT, (Wr)TeT) =
Ww((Ts, (a7, QT)reTs, (AT)TETs)s (Tos (6,7, Roy7) 77> (,7) TET, )b B)

((¢,Q), (v, Ro)ven) =
(®5, (24, )beB)(TB, (a7, Qr)reTs, A)TeTs): (To) (ro,1, Ror) ey, (Ho,7)T€T; )b B)

(Sa S) = (I)A(Ta (STa ST)TET’7 (WT)TGT)a
(s,8") = Tp((¢,Q); (75, Rp)beB)-
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Therefore, we need to show that (s,S) = (s, 5’). Firstly, one should notice that S is the
result of a nested composition of (S7)re7 when considered as elements in the associative
operad Ass. This clearly commutes with composing the orderings in the Stasheff operad and
so §=5". Now

3(wy+1) if JeT
s(J) = { g5y (mry (D)) it J & T and 7w () = J
0 otherwise
and even more explicitly
(4 (v +1) it JeT
s +1) if J =p }(U) for some U € Tp
s(J) = < s m) (@ (1) if p(J) =b, J & Ty and 7y (J) = J

2970 (T (U)) i T =p~H(U), U & Tp and 7 iy 77,0 (U) = U

0 otherwise

On the other hand
r(J)  ifp(J)=0b

s'(J) =4 qlp(J)) if J=p~'p(J),
0 otherwise

which we can again write out more explicitly as

(L(m,5+1) itJeT;
%Tb,'ﬁ,(J)(ﬂ'ﬁ,(J)(J)) if p(J) = b, J € 7;, and 7T7_7)1(J)7T7-(J)(J) =J
gy =20+ 1 i =pp(J) and p(J) € T
2975 () (T ) () it J=p~p(J), p(J) &€ T(B)
and W;—Bl(p(J))WTB(p(]))(p(J)) =p(J)
0 otherwise
and therefore s = s’ as required. O

Remark 1.4.11. We could in fact prove theorem 1.4.10 by instead showing that there is an
isomorphism of operads ® : W Ass, — K. However, the statement we choose to prove is more
appropriate for work later in the thesis. Here, Ass, is the reduced associative operad where
Ass, (0) = 0 and Ass,(A) = Ass(A) otherwise. The composition is defined in exactly the same
way as for Ass.
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Chapter 2

The Singh Model

In this chapter, we present an alternative definition for the Fulton-Macpherson operads. The
Ph.D. thesis of Daniel Singh, [23], introduces some complex projective varieties which give
new models for moduli spaces of stable n-pointed curves of genus zero. These spaces can be
assembled into an operad but this was not considered by Singh. Here we introduce our model
for the Fulton-Macpherson operads which is constructed in an analogous way. This approach
has a more algebraic feel than others and as such makes calculation more tractable. Along the
way we will give elementary proofs for useful properties of the Fulton-Macpherson operads as
well as detail an explicit isomorphism of operads between K and F;. Although this is a well
known equivalence, I have not seen such an explicit map anywhere in the literature previously.

2.1 Configuration Spaces

The spaces in the Fulton-Macpherson operads are canonical compactifications of Euclidean
configuration spaces. We will see later in this chapter that these compactifications have the
same homotopy type as their respective configuration spaces. The aim of this section is to
give an explicit description of the homology of the configuration spaces, which will be useful
when we come to consider the homology of the Fulton-Macpherson operads.

Definition 2.1.1. Let A be a finite set and N a natural number. Denote by Inj(A4, RY) the
space of injective maps from A to RY. We can define an equivalence relation on this space
by setting for f,g € Inj(A, RY)

f~9g e f=X+v,
where A > 0 and v € R represents the constant map v : A — RY taking the value v. Denote
by Fy(A) the space Inj(A4,RY)/ ~.

Remark 2.1.2. Tt is not hard to see that Inj(A, RY) is homeomorphic to RY x (0, 00) x Fiv(A)
and so in particular Fiy(A) is homotopy equivalent to Inj(A, RY).

Remark 2.1.3. If |A| > 1 and we require explicit representatives for elements in Fy(A) then
it will be natural to consider the space

> f@) =0, If(a))? = 1} .

acA a€A

Fn(A) = {f € Inj(4,R"Y)

Of course, this is not the only set of representatives that one can consider and sometimes we
will specify alternatives.
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We will now explore the homotopy type further by giving a description of the (integral)
cohomology H*(Fn(A)). Although this is classical work, it will be useful later on to have an
explicit description of this ring.

Remark 2.1.4. If N = 1 then it is not difficult to show that Inj(A, RY) is simply the disjoint
union of |A|! contractible components. Each of these components is labelled by an element
R € Ass(A) and is equal to

{F € (A, RY) | f(a) < f(b) & a <p b}
Therefore we can say easily what the cohomology of Fx(A) is in this case.

In light of remark 2.1.4, we assume for now that N > 1.

Definition 2.1.5. Let a,b € A with a # b and denote by SV~! the (N — 1)-dimensional
sphere. We then define a map m, : Fy(A) — SV~1 by setting

z(a) — z(b)
Tap(w) = oD L0
‘ [z(a) — z(b)]]
This definition requires a choice of representative but it is easy to see that it is independent
of this choice. Now let u be the canonical generator of HY~1(SV~1) and set uq, = 7% (u) €

HN=Y(Fy(A)).
Lemma 2.1.6. up, = (—1)V"luy, and qu =0.
Proof. mpg is g composed with N — 1 reflections, each having degree —1 which demonstrates

the first relation. The second is clear because H2V=2(SN=1) = 0. O

If |[A| = 1 then Fy(A) is a single point and so H*(Fy(A)) = Z. Also, if |A] = 2 then
Tap : Fn(A) — SV~1is in fact a homeomorphism and so

7 [uab7 uba]

HUEN A = G )M g, )

Now for |A| > 2, we consider one final relation.

Definition 2.1.7. Let A = {a, b, c} and then define
Tabe = UabUbe T UbcUca + Ucallab-

Notice that r4pe = Theq and rpge = (—1)N Ly pe S0 that 4. only depends on the set {a,b,c}
up to sign.

For the next part we work with Inj(A, RY) as opposed to Fi(A). However what we
discover in cohomology will still be valid for both since they are homotopy equivalent spaces.

Definition 2.1.8. Let A = {a,b,c}. We define several maps:
T = (Tab, The, Tea) Inj(A,]RN) — (SN_l)3

as well as A 1 S0 (Y12, £ f o (SY2 o Ij(ARY) and go,g- ¢ (SY)?
S(N —1)3 given by
A(’U) - (Ua U):

fr(v,w) = (a— —v,b