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Abstract 

 

BACKGROUND: Photodynamic therapy (PDT) is a treatment modality 

involving a dye that is activated by exposure to light of a specific wavelength 

in the presence of oxygen to form oxygen species causing localised damage 

to microorganisms. 

 

AIM: To determine the most effective bactericidal incubation and irradiation 

times of erythrosine-based PDT, using a tungsten filament lamp, on in vivo-

formed dental plaque biofilms. 

 

MATERIALS AND METHODS:  The study was a two-phase randomised 

controlled study consisting of in-vitro and in-situ phases. Phase-1 aimed to 

determine the most appropriate incubation-time using erythrosine(220μM) 

based-PDT on lactobacillus species grown in-vitro. Phase-2 was conducted 

on 18-healthy adult participants wearing intraoral appliances with human 

enamel slabs to collect dental plaque samples in two separate periods for 

use in arm-1 and arm-2. 

For phase-2, accumulated dental plaque samples were tested under 

different experimental conditions; a) Control-1 (No erythrosine, no light); b) 

Control-2 (+Erythrosine, no light); c) Treatment-1 (+Erythrosine, +15min 

continuous light); d) Treatment-2 (+Erythrosine, +30sec light pulses for 5-

times separated by 1min dark periods). Incubation-times of 15min and 2min 

were used in arm-1 and arm-2, respectively; as adapted from the previous 

pilot study and phase-1. 

Following treatment, percentage reduction of total bacterial counts were 

compared between the different groups. Additionally, Confocal Laser 

Scanning Microscopy(CLSM) was used to investigate the effect of PDT on in 

vivo-formed plaque biofilms. 

 



- v - 

RESULTS: Significant reductions in the percentage of total bacterial counts 

(~93-95%) of in vivo-formed biofilms were found when using either 2min or 

15min incubation-times and applying 15min continuous light. Whereas, 

when applying fractionated light, there was more cell death when 15min 

incubation-time was used (~91%) compared with the 2min incubation-time 

(~64%). CLSM results supported these findings. 

 

CONCLUSION: Improving the clinical usefulness of PDT by reducing its 

overall treatment time seems to be promising and effective in killing in vivo-

formed dental plaque biofilms. 
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Chapter 1 

Introduction and Literature review 

1.1  Dental plaque 

The microbial communities in humans are highly regulated; structurally and 

functionally organised communities attached to surfaces as biofilms (Li and 

Tian, 2012). The composition of these microbial communities is significantly 

different between and within individuals; however, the overall functions are 

quite similar (Gillings et al., 2015). The oral cavity has one of the most 

diverse bacterial populations as it offers several distinct habitats for microbial 

colonisation, such as teeth and the soft tissues of the oral mucosa (Dewhirst 

et al., 2010). Teeth are the only natural non-shedding surfaces in the human 

body and it provides unique opportunities for biofilm formation and microbial 

persistence (Marsh and Devine, 2011). Dental plaque is a typical biofilm. It 

has been defined By Marsh and Martin (1992) as “the diverse microbial 

community found on the tooth surface embedded in a matrix of polymers of 

bacterial and salivary origin”. Formation of this dental plaque is a multistep 

process; it involves adhesion of initial bacterial colonisers to the enamel 

salivary (acquired) pellicle, that is formed on tooth surface, followed by 

attachment of secondary colonisers to the already attached initial colonisers 

(co-aggregation) through molecular interactions, such as protein-protein 

interactions (Marsh and Bradshaw, 1995). As the plaque layers build up, 

provided that no disturbance of biofilm is achieved, new environmental 

conditions are established, favouring the colonisation and adaptation of 

different colonisers with different requirements, including oxygen level, to 

grow (Marsh and Bradshaw, 1995). 

 

Oral microflora acts as part of the host’s defences by prevention of 

colonisation of exogenous and pathogenic microorganisms by, for instance, 

producing inhibitory compounds and developing an environment that is not 

favourable for the invading microorganisms (Marsh et al., 2011). However, if 
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the balance of the composition and function of this oral microflora is 

disturbed by biological or physiological changes, such as hormonal changes, 

then disease can occur (Kilian et al., 2016; Marsh et al., 2011; Marsh and 

Bradshaw, 1995). Other factors that can contribute to unbalanced oral 

microflora include salivary gland dysfunction, poor oral hygiene, dietary 

habits, stress and smoking (Cho and Blaser, 2012). Therefore, it is essential 

to understand the relationship between the oral microflora and the host, and 

the importance of keeping the oral microflora at levels that is compatible with 

health (Marsh et al., 2011). 

 

1.1.1 Dental plaque structure 

 

Dental plaque consists of dense, mushroom-like clumps of bacteria that arise 

from the enamel surface, scattered with bacteria-free channels filled with 

extracellular polysaccharide secreted by the bacteria that can serve as 

diffusion channels (Figure 1) (Nizet and Esko, 2009). It was examined under 

confocal laser scanning microscopy where it revealed a highly 

heterogeneous architecture in terms of distribution of cells, matrix and fluid 

filled spaces (Auschill et al., 2001; Wood et al., 2000). These fluid filled pores 

and channels found to extend through the whole thickness of the biofilm 

sample, providing a link between the oral environment and the tooth surface 

(Auschill et al., 2001; Wood et al., 2000). When using live/dead stains to 

visualise bacterial viability in a dental plaque sample, a high percentage of 

viable bacteria were found in the central part of the biofilm sample and 

surrounding the pores and channels (Auschill et al., 2001).  This structure of 

plaque biofilms is considered a significant factor in relation to the penetration 

and distribution of molecules, including antimicrobial agents. The biofilm 

matrix, which contains polysaccharides, proteins and other metabolites, is 

seen to protect the microorganisms from the environment and could prevent 

diffusion of these molecules in the biofilm (Marsh, 2005; Marcotte et al., 

2004; Robinson et al., 1997). 
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Figure 1 Structure of Dental plaque biofilm (Nizet and Esko, 2009) 

 

 

1.1.2 Bacterial composition of dental plaque 

 

There are over 700 bacterial species that have been discovered in the oral 

cavity, however, many of them cannot be cultivated in pure culture in the 

laboratory (Kilian et al., 2016). Approximately 80-90% of the weight of plaque 

is water (Marsh and Bradshaw, 1995). While 70% of the dry weight is 

bacteria (Gram-positive and Gram-negative species), the remaining 30% 

consists of a matrix of polysaccharides and salivary proteins and 

glycoproteins (Marsh and Bradshaw, 1995). As stated earlier, the resident 

oral microflora contribute to the individual’s health and the imbalance of its 

composition will lead to disease. 

The composition of plaque differs at different sites of the tooth (Marsh and 

Bradshaw, 1995). This variation is due to the differences in the tooth-site 

biological properties (Marsh and Bradshaw, 1995). For instance, the plaque 

microflora at approximal surfaces of the tooth is more diverse, with high 

numbers of obligately anaerobic Gram-negative species, than that of 

occlusal fissures due to a lower redox potential (Marsh and Bradshaw, 1995; 

Marsh et al., 1989b). Whereas the gingival crevice plaque consists of higher 

levels of obligately anaerobic species than that of former sites as their 

nutrients are provided by gingival crevicular fluid (Marsh and Bradshaw, 

1995; Slots, 1977).  



- 4 - 
 
 
 

Furthermore, the bacterial composition in the dental plaque varies at different 

stages of its formation (Marsh and Bradshaw, 1995). The following are the 

types of bacterial species that can be observed under microscopy at different 

stages of dental plaque development:   

 Early biofilm (after 2-4 hours of plaque formation): Gram-positive 

coccoid microorganisms (Streptococci spp) and few rods 

microorganisms (Actinomyces spp) (Marsh and Bradshaw, 1995). 

 After 1-2 days: Gram-positive rods and filaments (Marsh and 

Bradshaw, 1995). 

 Older biofilm (after several days): more diverse and complex 

microflora. High numbers of rod-shaped species (Actinomyces spp) 

and increased numbers of obligately anaerobic species (Marsh and 

Bradshaw, 1995; Nyvad, 1992). 

 After 2-3 weeks (undisturbed): depth of biofilm is approximately 50-

100μm on exposed surfaces and thicker on protected surfaces such 

as occlusal fissures (Nyvad, 1992). 

 

1.1.3 Properties of Dental plaque 

 

Microorganisms in a biofilm have different properties from when they are in 

isolation (Table 1) (Marsh et al., 2011). These properties are not just the 

summation of the properties of the resident population (Marsh et al., 2011). 

Bacteria within a plaque biofilm can communicate with each other by 

generating, perceiving, and reacting to small diffusible signal molecules 

(quorum sensing process). They act as a community, which facilitated their 

colonisation on the host, as well as resisting their opponents and adaptation 

with environment’s changes (Li and Tian, 2012). Additionally, this 

communication has enhanced the virulence and pathogenic potential of 

these bacteria (Li and Tian, 2012). Therefore, it is important to understand 

the properties of bacteria grown in a biofilm, including physiological 

properties, susceptibility to antimicrobial agents and interaction with the host, 
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to be able to control dental plaque related diseases (Li and Tian, 2012; 

Marsh, 2005, 2004).  

Table 1 General properties of biofilms and dental plaque 

(Marsh et al., 2009) 

General property Dental plaque example 

Open architecture Presence of channel and voids 

Microbial protection Production of extracellular polymers to form a 

functional matrix; physical protection from 

phagocytosis 

Host protection Colonization; resistance 

Enhanced tolerance to 

antimicrobials 

Reduced sensitivity to chlorhexidine and 

antibiotics; gene transfer 

Neutralization of 

inhibitors 

β lactamase production by neighboring cells to 

protect sensitive organisms 

Novel gene expression Synthesis of novel proteins on attachment or on 

binding to host molecules; up-regulation of 

gtfBC in mature biofilms  

Coordinated gene 

responses 

Production of bacterial cell-to-cell signaling 

molecules (e.g. CSP, AI-2)  

Communication with 

host 

Down-regulation of pro-inflammatory responses 

by resident oral bacteria; remodeling of the 

cytoskeleton of epithelial cells   

Spatial and environment 

heterogeneity 

pH and O2 gradients; co-adhesion  

Broader habitat range Obligate anaerobes in an overtly aerobic 

environment  

More efficient 

metabolism 

Complete catabolism of complex host 

macromolecules (e.g. mucins) by microbial 

consortia (food chains and food webs)  

Enhanced virulence Pathogenic synergism in periodontal diseases  
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1.1.4 Dental plaque related diseases 

 

The oral cavity provides environments for a wide range of microorganisms, 

including bacteria, yeasts and viruses (Allaker and Douglas, 2015). These 

microorganisms are associated with numerous oral infections as a 

consequence of imbalances in the normal oral microflora (Marsh et al., 

2011). Dental caries and periodontal disease are one of the most prevalent 

bacterial diseases occurring in man worldwide. According to the World 

Health Organization, dental caries continues to be a major oral health 

problem in most industrialised countries, affecting 60-90% of schoolchildren 

and the majority of adults (Petersen et al., 2005). Whereas periodontal 

disease affects 30-50% of the adults, 10% of them have the severe form 

(Meisel and Kocher, 2005). 

 

Dental caries is the demineralisation of dental hard tissues by acidogenic 

plaque bacteria colonizing the tooth surface, including Streptococcus 

mutans, Streptococcus sobrinus and Lactobacillus species (Marsh et al., 

2011; Marsh et al., 2009). It forms through a complex interaction over time 

between the acidogenic bacteria, fermentable carbohydrate and host factors 

such as teeth and saliva (Figure 2) (Marsh et al., 2009). Individuals with high 

numbers of these cariogenic bacteria, low salivary flow, poor oral hygiene, 

inadequate fluoride exposure, high in amount and frequency of sugar 

consumption, low socioeconomic status, and medical or physical disability 

are all at risk of developing caries (Scottish Intercollegiate Guidelines 

Network, 2014).  

 

Whereas in periodontal disease the host mounts an inappropriate and 

uncontrolled inflammatory response to an increased microbial load, due to 

plaque accumulation that is either confined to the gingiva (gingivitis) or 

extending to the deeper supporting tissues, resulting in damage to the 

periodontal ligament and alveolar bone that supports the teeth (periodontitis) 

(Allaker and Douglas, 2015). The predominant pathogens in advanced 
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periodontal disease are mainly Porphyromonas gingivalis, Prevotella 

intermedia and Aggregatibacter actinomycetemcomitans (Marsh et al., 2009; 

Marsh and Bradshaw, 1995). Similar to dental caries, periodontal disease is 

multifactorial; It results from interaction of environmental triggers, such as 

resident microflora, poor oral hygiene, exposure to antimicrobial drugs, and 

the host susceptibility (Figure 2) (Marsh et al., 2009). Although plaque 

accumulation is the crucial aetiological factor in periodontal disease, the 

progression from gingivitis to periodontitis can only occur if the individual has 

impaired immunological defences (Kilian et al., 2016). Systemic diseases, 

such as diabetes mellitus and Down syndrome, smoking and emotional 

stress can modify the host response and enhance the destructive effects of 

the microbiota (Clerehugh and Tugnait, 2001). 

 

Figure 2 Interactions of factors involved in oral disease 

(Marsh et al., 2009) 

 

 

These dental diseases and their sequelae can cause significant pain and are 

affecting the individuals’ quality of life (Scottish Intercollegiate Guidelines 

Network, 2014). It has been reported that there is an association between 

periodontal disease and systemic conditions, such as cardiovascular disease 

and complications during pregnancy (Kim and Amar, 2006; Xiong et al., 
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2006). It is also very expensive to treat dental disease; the NHS, for 

instance, spends approximately £2.25 billion per year on dental treatment 

(The British Dental Health Foundation, 2016). In addition, the burden of 

dental disease lasts a lifetime as once the tooth structure is destroyed it will 

require restorative treatment and regular maintenance throughout lifetime 

(Selwitz et al., 2007). Therefore, It is essential to understand the relationship 

between the above-mentioned risk factors and also to develop strategies and 

approaches in oral disease prevention and health promotion.  

 

1.1.5 Approaches to control dental plaque 

 

The current most common practices for controlling dental plaque are 

mechanical removal, such as tooth brushing and flossing, and using 

antimicrobial mouth rinses (Allaker and Douglas, 2015). These approaches 

should ideally prevent dental plaque accumulation without disturbing the 

microflora’s balance in the oral cavity (Allaker and Douglas, 2015). However, 

such practices are not always effective or practical (Tahmassebi et al., 

2015). Mechanical removal requires patients’ compliance and, also, good 

manual dexterity which is usually absent in patients with, for example, 

physical or mental disabilities (Baker, 1992; Ciancio, 1988) and younger 

children (Tahmassebi et al., 2015). 

In addition, there is an increased tolerance to antimicrobial agents by 

bacteria grown in a biofilm; this is due to the fact that properties of bacteria 

grown in a biofilm are significantly different compared with planktonic growth 

(Table 1) (Marsh et al., 2011). For instance, the concentration of Amine 

fluoride and chlorhexidine required to kill Streptococcus sobrinus growing in 

a biofilm is around 100 times greater than the concentration required to kill 

the same amount of planktonic bacterial cells (Shani et al., 2000). One of the 

reasons that explains this increased tolerance of biofilms to antimicrobial 

agents compared to planktonic cells is that these biofilm bacteria are slow 

growing cells, as they divide slowly, which makes them less sensitive to 

antimicrobial agents (Marsh et al., 2011). The age of the biofilm is also 
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considered as a significant factor in restricting the penetration of the 

antimicrobial agent as had been reported by Millward and Wilson (1988); 

Older biofilms of Streptococcus sangius were more resistant to chlorhexidine 

than younger biofilms (Millward and Wilson, 1988).  

Other than the growth rate and biofilm’s age, it is well established in the 

literature that biofilm-associated bacterial infections have several 

mechanisms in resisting antibiotics, as a consequence of a high antibiotic 

consumption that has contributed to the emergence of multidrug-resistant 

strains that has become a public health problem (Pozo and Patel, 2007; 

Sharma et al., 2005; Wilson, 1996). One of these mechanisms is that 

antibiotics can be inactivated by enzymes within the biofilm matrix (Pozo and 

Patel, 2007). An example of this is the inactivation of penicillin and 

cephalosporin antibiotics by β-lactamase enzyme produced by gram-positive 

bacteria in oral biofilm (Soares et al., 2012). Alteration of the channels 

located in the bacterial cell wall also will reduce the uptake of antibiotic into 

the bacterium (Soares et al., 2012). The genetic information that encodes for 

these mechanisms may arise by a random spontaneous mutation or by 

interspecies gene transfer (Soares et al., 2012; Barker, 1999).  

Furthermore, there are other limitations associated with the use of these 

antimicrobial agents, such as disruption of the oral microflora and the 

difficulty of maintaining therapeutic concentrations in the oral cavity (Wilson, 

2004). Therefore, alternative approaches to control dental plaque are 

needed. One such alternative is photodynamic therapy (Allaker and Douglas, 

2015; Mang et al., 2012). 

 

1.2 Photodynamic therapy (PDT) 

1.2.1 History 

 

PDT basically involves three nontoxic components: visible light; a 

photosensitizer; and oxygen (Takasaki et al., 2009). It is a treatment modality 

where the photosensitizer (photoactive dye) binds to the target cells and can 
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be activated by light of a wavelength that corresponds to an absorption 

maximum of the photosensitizer. Following activation of the photosensitizer 

by the application of light, in the presence of oxygen, reactive oxygen 

species (singlet oxygen and free radicals) are produced that are toxic to 

eukaryotic cells and microorganisms (Figure 3) (Soukos and Goodson, 

2011).  

 

 

Figure 3 PDT mechanism of action 

 

 

PDT has been widely applied in the medical field (Takasaki et al., 2009). 

Historically, It has been more prominent in cancer treatment as an alternative 

method to traditional treatments such as chemotherapy, radiotherapy or 

surgery. It has been shown to kill cancerous cells by necrosis or apoptosis 

(Carrera et al., 2016). It has been approved for clinical treatment of certain 

tumours in the Unites States (US), the European Union, Canada, Russia, 

and Japan (Konopka and Goslinski, 2007). The US Food and Drug 

Administration (FDA) has also recently approved PDT for the treatment of 

selected skin problems (Salva, 2002). Furthermore, PDT is being used either 

clinically or in experimental studies in different medical fields such as 

ophthalmology, gastroenterology, cardiology, and dermatology (Meisel and 

Kocher, 2005). However, It is only recently being considered as an 

antimicrobial treatment, even though it was discovered more than 100 years 
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ago that microorganisms can be killed by light in the presence of a 

photosensitizing agent by Oscar Raab in 1900 (Soukos and Goodson, 2011). 

This late consideration is due to the current increase in drug resistance 

bacteria (Meisel and Kocher, 2005; Wainwright and Crossley, 2004). The 

science behind antimicrobial PDT follows the same principles to PDT of 

tumour cells (Gursoy et al., 2013). 

 

PDT is also known as photo-chemotherapy, photo-radiation therapy, 

photodynamic antimicrobial chemotherapy, photodynamic inactivation and 

antimicrobial PDT (Gursoy et al., 2013; Nagata et al., 2012; Konopka and 

Goslinski, 2007).  

 

1.2.2 Mechanism of action of PDT 

 

Again, PDT is a treatment involving a photosensitizer, which absorbs light 

and can be taken up by microorganisms, that in the presence of oxygen is 

activated by exposure to light of a specific wavelength (Soukos and 

Goodson, 2011). The result of the irradiation is that the photosensitizer 

molecule moves from its low-energy ground state to an excited singlet state 

that receives the light energy (Soukos and Goodson, 2011). The lifetime of 

this excited singlet state is very short (nanosecond range) to permit 

significant interactions with the surrounding molecules (Konan et al., 2002; 

Dougherty et al., 1998), therefore, it may either return to its ground state by 

emitting light (fluorescence), or may move to a higher-energy triplet state 

(Soukos and Goodson, 2011; Konopka and Goslinski, 2007). The key role of 

the singlet state in the photosensitization process is to act as precursor of 

the triplet state (Konan et al., 2002). This triplet state (photoactive state), with 

a lifetime in the microsecond-millisecond range, interacts with cell 

components to generate cytotoxic species that causes a rapid and selective 

destruction of the target bacterial cells by undergoing one or both of the 

following two reactions (Figure 4) (Soukos and Goodson, 2011; Konopka 

and Goslinski, 2007; Ochsner, 1997): 
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1. Type 1 reaction: involves electron/hydrogen transfer directly from the 

photosensitizer triplet state with the involvement of a substrate to 

produce radical ions, or electron/hydrogen removal from the substrate 

molecule to form free radicals. These radicals can react rapidly with 

oxygen to produce highly reactive oxygen species, such as 

superoxide and hydroxyl radicals. 

 

2. Type 2 reaction (interaction between the photosensitizer triplet state 

and oxygen): involves energy transfer from the photosensitizer triplet 

state to oxygen to produce excited state singlet oxygen, which can 

oxidize many biological molecules, such as proteins, nucleic acids 

and lipids, and lead to bacterial cell death. 

 

 

 

Figure 4 Type 1 and Type 2 reactions in PDT  

(Soukos and Goodson, 2011) 

 

 

These reactive oxygen species (ROS) are responsible for the photo-

destruction to cell components such as cytoplasmic membrane of bacteria 

and DNA, causing cell death (Gursoy et al., 2013; Konan et al., 2002). Of 
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these ROS, singlet oxygen is thought to be the major damaging species in 

PDT, which has a half-life of <0.04μs (Soukos and Goodson, 2011; Moan 

and BERG, 1991). It has been reported that distinguishing between these 

two reactions is difficult in PDT, and if both Types 1 and 2 reactions were 

involved in PDT, this implies that the mechanism of photo-damage is 

dependent on both oxygen tension and photosensitizer concentration 

(Konopka and Goslinski, 2007). However, there are numerous factors 

influencing the photo-damage, including the type, dose, incubation time and 

localisation of the photosensitizer, the availability of oxygen, the wavelength 

of light (nm), the light power density (mW/cm2) and the light energy fluence 

(J/cm2) (Soukos and Goodson, 2011; Konan et al., 2002).  

 

1.2.3 Advantages of PDT 

 

There are several advantages of PDT including topical application of the 

photosensitizing chemical agent on the target tissue and then followed by 

selective irradiation of the target tissue with visible light (dual selectivity) 

(Gursoy et al., 2013; Hamblin and Hasan, 2004; Salva, 2002). This means 

that only cells with selective application of photosensitizer and also receiving 

light exposure are killed (Pfitzner et al., 2004). Therefore, damage to the 

surrounding normal tissue is limited (Salva, 2002). In addition, it has been 

reported that bacterial resistance to the cytotoxic action of singlet oxygen or 

free radicals is unlikely to develop, since these reactive species interact with 

several microbial cell structures and different metabolic pathways (Konopka 

and Goslinski, 2007). The primary target of the photo-destruction in microbial 

cells is the cytoplasmic membrane, followed by DNA damage. However, this 

is dependent on the photosensitizer dose and the irradiation time (Bertoloni 

et al., 2000). This disruption of biofilms may inhibit plasmid exchange 

involved in the transfer of antibiotic resistance, and disrupt colonization 

(Konopka and Goslinski, 2007). 
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Moreover, PDT has the advantage of being equally effective against 

antibiotic-resistant and antibiotic-sensitive bacteria and, in addition, repeated 

applications do not result in the selection of resistant organisms as with 

antimicrobial agents, where drug resistance involves drug inactivation or 

target alteration as mentioned earlier (Konopka and Goslinski, 2007; 

Wainwright and Crossley, 2004). But, singlet oxygen was not involved in 

these mechanisms of drug resistance. It has been reported that singlet 

oxygen is highly reactive and difficult to defend against as it can inactivate 

the antioxidant enzymes such as superoxide dismutase and catalase 

(Wainwright and Crossley, 2004; Kim et al., 2001).  

 

The clinical advantages of PDT are that it is non-invasive and it can be 

carried out in outpatient settings (Gursoy et al., 2013; Konopka and 

Goslinski, 2007). Furthermore, studies of PDT for periodontal diseases have 

reported some advantages of PDT over conventional mechanical therapy 

(i.e. scaling and root planning), such as reducing treatment time and no need 

for anaesthesia, suggesting using it as an adjunct therapy to the 

conventional methods (Qin et al., 2008; de Oliveira et al., 2007). 

 

1.2.4 Application of PDT in dentistry 

 

Dental applications of PDT are rising rapidly (Gursoy et al., 2013). It has 

been used to treat oral cancer, bacterial and fungal infections, and the 

photodynamic diagnosis of the malignant transformation of oral lesions 

(Konopka and Goslinski, 2007). Recently, it has been used to target dental 

plaque microorganisms in planktonic phase and in biofilms (Fontana et al., 

2009), periodontal diseases (Raghavendra et al., 2009; Qin et al., 2008; de 

Oliveira et al., 2007; Meisel and Kocher, 2005), necrotic pulps (Pinheiro et 

al., 2009; Garcez et al., 2008), peri-implantitis (Dörtbudak et al., 2001) and 

oral candidiasis (Dovigo et al., 2011; Donnelly et al., 2007) either in vitro or in 

vivo. 
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These PDT studies that target periodontal and endodontic diseases, for 

example, have suggested the potential of PDT as an adjunctive therapy to 

the conventional therapies, scaling and root planing in the case of 

periodontal disease, and endodontic chemo-mechanical debridement in the 

case of treatment of necrotic pulps (Soukos and Goodson, 2011). Lately, 

treatment kits for clinical PDT are available in some countries, such as 

Canada and the UK, for the treatment of periodontal diseases. This kit 

consists of a laser system with a custom-designed hand-piece and a 

photosensitizer (methylene blue or toluidine blue O) (Soukos and Goodson, 

2011). 

In terms of dental plaque microorganisms, several PDT studies have shown 

that oral bacteria in planktonic cultures (Rolim et al., 2012; Chibebe Junior et 

al., 2010; Bevilacqua et al., 2007; Paulino et al., 2005; Soukos et al., 1998; 

Wilson et al., 1992), plaque scrapings (Williams et al., 2003; Sarkar and 

Wilson, 1993), growing in vitro as a biofilm (Pereira et al., 2013; Teixeira et 

al., 2012; Metcalf et al., 2006; Wood et al., 2006; Zanin et al., 2006; Zanin et 

al., 2005; Dobson and Wilson, 1992), and in vivo biofilm generation 

(Tahmassebi et al., 2015; Teixeira et al., 2012; Lima et al., 2009; Wood et 

al., 1999) are susceptible to PDT. However, it has been reported that oral 

bacteria in biofilms were less affected by PDT than the bacteria in the 

planktonic phase and this may be related to biofilms’ distinct characteristics 

(Fontana et al., 2009). Despite this reduced efficacy, it is thought that its 

antibacterial effect is greater than that which had been reported for treatment 

with antibiotics (Fontana et al., 2009). 

 

Therefore, PDT seems to be a promising therapeutic approach in the 

management of dental biofilms. However, the FDA has not yet approved it 

for dentistry use. In clinical studies, the treatment procedure of the patients 

should be conducted according to FDA and local institutional review board 

approval (Gursoy et al., 2013; Konopka and Goslinski, 2007). 
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1.2.5 Safety of PDT  

 

As stated earlier, PDT is a two-step procedure that involves the topical 

application of a photosensitizing chemical agent and selective illumination of 

the target lesion with visible light (Salva, 2002). It combines two non-toxic 

compounds, drug and light, to destroy the target cells (Salva, 2002). Due to 

the topical application of the photosensitizer on the target lesion and then 

followed by selective illumination of the lesion with visible light, the damage 

to the surrounding normal tissue is unlikely (Salva, 2002). 

However, it is important to determine the safety of PDT and the therapeutic 

window where bacteria would be affected but not the host tissues (Xu et al., 

2009; Soukos et al., 1996). Therefore, a team of researchers has 

investigated the PDT effects on human gingival keratinocytes and fibroblasts 

and they have revealed no evidence of cytotoxic effect on these cells in vitro 

when using a low dose of PDT (Toluidine blue O and HeNe laser) that still 

resulted in sufficient killing of Streptococcus sanguis, which is one of the 

most common species found in dental plaque (Soukos et al., 1996).  

Similarly, Zeina et al. (2002) have demonstrated minimal cytotoxic effect on 

keratinocytes in vitro when using a dose of PDT (Methylene blue and white 

light) that resulted in sufficient killing of cutaneous bacterial species by seven 

log cycles. The kill rates of the keratinocytes were up to 200-fold lower and 

slower than the kill rates of cutaneous bacterial cells using the same dosage 

of PDT (Zeina et al., 2002; Zeina et al., 2001). The reasons for this killing 

difference have been thought to be due to the existence of a nuclear 

membrane in keratinocytes that acted as an additional barrier to the 

photosensitizer or it might be due to the difference in the size of the bacterial 

cell and keratinocytes, where the keratinocytes are about 25-50 times larger 

than bacterial cells and may thus enclose a higher number of targets per cell 

(Zeina et al., 2002). Therefore, the cytotoxic effects of PDT to host tissues is 

considered to be dose-dependent, where a higher dose is required to cause 

damage to mammalian cells compared to bacterial calls (Soukos et al., 

1996).   
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Furthermore, a study by Xu et al. (2009) have compared the cytotoxic effects 

of PDT and sodium hypochlorite on human gingival fibroblasts and 

osteoblasts in vitro and they have found that sodium hypochlorite has greater 

cytotoxic effects on these cells, suggesting PDT as a safe adjunctive therapy 

for endodontic disinfection.  

The genotoxic effects of PDT have also been investigated on keratinocytes 

in vitro using comet assay to detect any DNA damage to these cells following 

PDT (Zeina et al., 2003). The assay was not able to detect any DNA 

damage, indicating that PDT has a wide safety margin between bacterial 

killing and keratinocyte damage (Zeina et al., 2003). 

 

Therefore, PDT seems to provide a rapid, noninvasive, confined bacterial 

killing without harming host tissues (Soukos and Goodson, 2011). 

 

1.2.6 Light Sources 

 

A light source is required to activate the photosensitizer (Konopka and 

Goslinski, 2007). It should have a specific wavelength that corresponds to 

the activation absorption spectrum of the photosensitizer and also it should 

provide an adequate dose of energy to the photosensitizer to be enable 

transition to the higher-energy triplet state (Wilson and Patterson, 2008). 

 

Visible light, which is a form of electromagnetic radiation (Figure 5), is most 

applicable to photodynamic therapy (Soukos and Goodson, 2011). It is 

defined as the wavelengths that are detected by the human eyes. It falls in 

the range of the electromagnetic radiation spectrum between infrared and 

ultraviolet and it has wavelengths of about 400-700nm (Figure 5). These 

waves are seen as the colours of the rainbow. Each colour has a different 

wavelength. Violet has the shortest wavelength and red has the longest 

wavelength. White light is seen when all the colours are combined, whereas, 
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black is a total absence of light (National Aeronautics and Space 

Adminstration, 2014). 

 

 

Figure 5 Electromagnetic radiation spectrums: Visible light wavelength 
(http://www.cyberphysics.co.uk/topics/radioact/Radio/EMSpectrumc

olor.jpg) 

 

 

With regards to PDT, red light at wavelengths of 630nm penetrate the 

superficial layers of human tissues up to 5mm (Salva, 2002), while deeper 

penetration is reached at longer wavelengths (Konopka and Goslinski, 

2007). The benefits of using a visible light source is to visualize the target 

area and localisation of the PDT effect without harming adjacent host tissue 

(Wilson, 1994).  

 

Several light factors need to be considered in order to activate the 

photosensitizer, including the total light dose required, the dose rates, the 

light penetration depth and the localisation of target area (Raghavendra et 

al., 2009).  

 

http://www.cyberphysics.co.uk/topics/radioact/Radio/EMSpectrumcolor.jpg
http://www.cyberphysics.co.uk/topics/radioact/Radio/EMSpectrumcolor.jpg
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Different sources of light delivery are available depending on the location 

and morphology of the target lesion (Raghavendra et al., 2009). The main 

light sources used in PDT are lasers, light-emitting diodes (LEDs) and 

filtered lamps (Wilson and Patterson, 2008). The superiority of one light 

source over the other has not been established; therefore the use of either 

one depends on the specific application (Brancaleon and Moseley, 2002). 

 

 Lasers- Coherent light sources 

 

The laser (light amplification by stimulated emission of radiation) is defined 

as “a device capable of producing a beam of light that consists of parallel 

waves, all of which have the same frequency and are coherent” (Wilson, 

1993). The power output of the laser light beam is greater than that produced 

by a non-laser light source (Wilson, 1993). Lasers with specific wavelengths 

are being used recently in PDT, such as helium–neon lasers (633nm), 

gallium–aluminum–arsenide diode lasers (630–690, 830, or 906nm), and 

argon lasers (488–514nm) (Gursoy et al., 2013).  

High efficiency (greater than 90%), precise application and monochromaticity  

that gives maximum efficiency of photo-activation, are the main advantages 

of lasers (Wilson and Patterson, 2008; Salva, 2002). However, lasers are 

single-wavelength devices, this means that each photosensitizer with 

different absorption spectrum will require a different laser unit, and they are 

also expensive (Wilson and Patterson, 2008).  

 

 Incoherent light sources 

 

Most natural and artificial light sources are incoherent, which means that the 

waves of the light beam are not in phase, polychromatic and divergent 

(Wilson, 1993). Lately, these non-laser sources, such as LEDs (440-636nm) 

(Bevilacqua et al., 2007; Zanin et al., 2005), tungsten filament lamp (400-

1100nm) (Tahmassebi et al., 2015; Metcalf et al., 2006; Wood et al., 2006; 
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Wood et al., 1999), quartz halogen lamps (620-640nm) (Lee et al., 2013) and 

xenon arc lamps (300-1200nm) have been used widely in PDT of oral 

biofilms, since these devices are lighter, inexpensive, and portable compared 

with the traditional lasers (Gursoy et al., 2013; Takasaki et al., 2009; 

Wainwright and Crossley, 2004). In addition, they are flexible in configuring 

arrays into different irradiation geometries to compensate for difficult 

anatomic areas; for example, a U-shaped tube arrays that is used for 

irradiation of the entire face and scalp for dermatological problems (Wilson 

and Patterson, 2008; Brancaleon and Moseley, 2002). They also can be 

spectrally filtered to match any photosensitizer (Wilson and Patterson, 2008). 

Lamps can be used direct or coupled to liquid light guides of between 5-

10mm in diameter, therefore, they are suitable for accessible lesions 

(Brancaleon and Moseley, 2002). 

 

Furthermore, the energy required from the light source is determined by the 

molecular structure of the photosensitizer; for instance, acridines have a 

chromophoric structure with a light excitation range of 400-450nm, which is 

different than phenothiazinium (600-690nm) (Wainwright and Crossley, 

2004). Therefore, it is important to understand the photo-properties of the 

photosensitizer and the target tissue (Wainwright and Crossley, 2004). 

 

The light source used in this study was a 400W tungsten filament lamp 

(white light). These lamps can deliver light over a wide spectrum (400-

1100nm) and can be spectrally filtered to match any photosensitizer (Wilson 

and Patterson, 2008). This light source was used to assess killing of in vitro 

and in vivo dental plaque biofilms in combination with erythrosine dye in the 

wavelength range 500-550nm, which corresponds to the region of maximal 

absorption by erythrosine (Tahmassebi et al., 2015; Metcalf et al., 2006; 

Wood et al., 2006). It was chosen due to its wide availability and low cost. 
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1.2.7 Photosensitizers 

 

It is important to carefully choose a suitable and effective photosensitising 

agent that is able to highly absorb the light wavelength used (Gursoy et al., 

2013). These are usually coloured substances that absorb visible light 

(Wainwright and Crossley, 2004). Many natural and synthetic compounds, 

such as dyes, cosmetics, chemicals and natural elements, possess 

photosensitising properties (Meisel and Kocher, 2005). It has been 

suggested that the photosensitizer should have certain favourable properties 

to be used in antimicrobial PDT. These properties include: a broad spectrum 

of action; high absorption in the spectral region of the excitation light; high 

binding affinity for microorganisms; low binding affinity for mammalian cells 

to avoid the risk of photo-destruction of host tissues; lack of selection of 

resistant strains after multiple treatments; a minimal risk of promoting 

mutagenic processes; low chemical toxicity; a high quantum yield of triplet 

state and singlet oxygen to obtain large concentrations of the activated drug 

(Gursoy et al., 2013; Soukos and Goodson, 2011; Wilson and Patterson, 

2008; Jori et al., 2006). 

 

The main photosensitizers that have been used in dentistry are listed in 

Table 2. 
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Table 2 Examples of the main photosensitizers used in dentistry 
(Carrera et al., 2016; Soukos and Goodson, 2011; Wainwright and 

Crossley, 2004) 

 

Photosensitizers 

(Dyes) 

 

Absorption 

wavelength 

 

Antimicrobial 

activity by PDT 

Examples of Studies 

 

Phenothiazine 

- Methylene blue 

- Toluidine blue 

600-660nm 

Against dental 

biofilm and 

planktonic cells 

(Fontana et al., 2009; 

Bevilacqua et al., 2007) 

 

Phthalocyanines 660-700nm 

Against in vivo 

biofilm 
(Wood et al., 1999) 

 

Porphyrins 600-690nm 
  

 

Chlorines 652nm 
 (Pfitzner et al., 2004) 

Curcumin 300-500nm 

Against biofilms and 

planktonic forms 

Candida spp. 

(Andrade et al., 2013; 

Dovigo et al., 2011) 

Xanthene dyes 

- Rose Bengal 

- Erythrosine 

 

450-600nm 

500-550nm 

Against in vitro or in 

vivo biofilms 

(Tahmassebi et al., 

2015; Shrestha et al., 

2014; Metcalf et al., 

2006; Wood et al., 

2006) 

 

 

The susceptibility of bacteria to destruction by PDT seems to be associated 

to the charge of the photosensitizer (Konopka and Goslinski, 2007). Some 

photosensitizers, for example, toluidine blue O and methylene blue, carry a 

positive charge, and it is reported that these cationic photosensitizers can 

target both Gram-positive and Gram-negative bacteria. In contrast, neutral or 
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anionic (negatively charged) photosensitizers bind efficiently to Gram-

positive bacteria but to some extent to Gram-negative bacteria (Soukos and 

Goodson, 2011; Wainwright and Crossley, 2004). This is due to the 

structural difference in their cell wall (Figure 6). Gram-positive bacteria have 

a relatively porous layer of peptidoglycan and lipoteichoic acid outside the 

cytoplasmic membrane, which allows the negatively charged photosensitizer 

to bind efficiently and diffuse into sensitive sites (Konopka and Goslinski, 

2007). Whereas in Gram-negative bacteria the outer membrane structure is 

more complex, forming a physical and functional barrier between the 

bacterial cell and its environment (Raghavendra et al., 2009; Konopka and 

Goslinski, 2007). However, the permeability of the Gram-negative bacteria to 

photosensitizers can be modified by several mechanisms, such as linking the 

photosensitizer to a cationic molecule (poly-L-lysine-chlorine e6) or 

conjugating the photosensitizer with a monoclonal antibody that binds to cell-

surface-specific antigens (Raghavendra et al., 2009; Hamblin and Hasan, 

2004).  

 

Therefore, in terms of bacteria-photosensitizer interaction, the effectiveness 

of PDT is mostly associated with three points: the photosensitizer ability to 

bind and interact with the bacterial membrane; photosensitizer ability to 

diffuse into the cell, and reactive oxygen species formation around bacterial 

cell by irradiation of the photosensitizer (Nagata et al., 2012). In addition, it is 

essential to put in mind that the effect of PDT on dental biofilms is different 

than on planktonic cells due to these structural variation in the bacterial cell 

membranes, in addition to the presence of other components, such as 

extracellular matrix and quorum-sensing factors, rendering the 

photosensitizer-microorganism interaction (Huang et al., 2012). 
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Figure 6 Morphological structure of Gram-positive and Gram-negative 
bacteria (https://www.khanacademy.org/science/biology/bacteria-

archaea/prokaryote-structure/a/prokaryote-structure) 

 

 

As we investigated the PDT effect using erythrosine as the photosensitizer in 

this study, it is discussed in more detail in the following section. 

 

 Erythrosine 

 

Erythrosine is a cherry-pink synthetic food colouring dye with a poly- 

iodinated xanthene structure (Figure 7) (Chequer et al., 2012). It is also 

known as Erythrosine B, FD & C Red No. 3, C.I. Acid Red 51, E127, and 

tetraiodofluorescein (Ganesan et al., 2011). It belongs to a group of cyclic 

compounds called xanthenes, which has been reported to have the ability to  

absorb light in the visible region (500-550nm) and initiate photochemical 

reactions (Wood et al., 2006). In addition, Its antimicrobial activity against 

Gram-positive and Gram-negative oral bacteria is well documented in the 

literature (Marsh et al., 1989a; Baab et al., 1983; Caldwell and Hunt, 1969; 

Begue et al., 1966). Its main application in dentistry is staining and 

visualising dental plaque to facilitate oral hygiene practice (Wood et al., 

2006). In plaque disclosing solutions, it is used at concentrations of 9-25mM 

https://www.khanacademy.org/science/biology/bacteria-archaea/prokaryote-structure/a/prokaryote-structure
https://www.khanacademy.org/science/biology/bacteria-archaea/prokaryote-structure/a/prokaryote-structure
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(0.72-2% weight/volume) (Marsh et al., 1989a), which is much higher than 

that used in several PDT studies (Tahmassebi et al., 2015; Metcalf et al., 

2006; Wood et al., 2006).  

 

 

Figure 7 Chemical structure of Erythrosine 

 

Erythrosine presents advantages over other dyes for use in PDT, because it 

is already been approved for use in dentistry by the US Food and Drug 

Administration (FDA) to visualise dental plaque and, in addition, does not 

show direct toxicity to the host tissue (Carrera et al., 2016; Ganesan et al., 

2011; Allaker and Douglas, 2009; Wood et al., 2006; Arnim, 1963). However, 

safety concerns of erythrosine were raised by the FDA in 1990 following 

publication of a report showing that, under experimental conditions, 

erythrosine at high dose levels (4% in the diet) can induce thyroid 

carcinogenicity in rats (EFSA Panel on Food Additives and Nutrient Sources 

Added to Food, 2011). Therefore, their response to this was to withdraw 

erythrosine permission to use in cosmetics and externally applied drugs, but 

it can be used in coloured foods and ingested drugs without any restrictions 

(EFSA Panel on Food Additives and Nutrient Sources Added to Food, 2011). 

In the EU, erythrosine is commonly used in pharmaceuticals and cosmetics 

and, in addition, it is permitted as a food colouring substance for certain uses 

such as cocktail cherries (EFSA Panel on Food Additives and Nutrient 

Sources Added to Food, 2011). The established Acceptable Daily Intake 
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(ADI) of erythrosine by the Joint FAO/WHO Expert committee on Food 

Additives (JECFA) in 1990 and the EU Scientific Committee for Food (SCF) 

in 1989 is 0-0.1mg/kg bodyweight per day. The EFSA Panel on Food 

Additives and Nutrient Sources Added to Food (2011) has re-evaluated the 

evidence of erythrosine from available studies and concluded that it is 

neither genotoxic nor mutagenic, which is consistent with previous evaluation 

of erythrosine by JECFA and SCF. Therefore, erythrosine is still being used 

in dentistry as a measure of dental plaque in either a disclosing solution form 

or as tablets. 

 

 As stated earlier, several studies have demonstrated erythrosine’s 

antimicrobial property as well as its light absorbing property and the ability to 

initiate photochemical reactions. This is discussed in more details in the 

following section. 

 

Erythrosine antimicrobial property 

 

Numerous in vitro studies had been conducted to demonstrate the 

antimicrobial activity of erythrosine. Baab et al. (1983) found that erythrosine 

has a bactericidal effect and it inhibits the growth of both Gram-positive and 

Gram-negative oral bacteria when using different standard laboratory tests 

such as disc-diffusion susceptibility, agar-dilution susceptibility, and 

bactericidal testing. Similarly, Marsh et al. (1989a) also reported that 

erythrosine has a marked antimicrobial activity against a number of Gram-

positive and Gram-negative oral bacteria. Whereas, Begue et al. (1966) and 

Caldwell and Hunt (1969) found that erythrosine inhibits only the Gram-

positive bacteria and, additionally, Begue et al. (1966) suggested that the 

effect was bacteriostatic rather than bactericidal, which means that 

erythrosine inhibits the growth of bacteria rather than killing them. However, 

these studies determined the antimicrobial activity of erythrosine using only 

the disc-diffusion susceptibility test, and many of the bacteria tested were not 

representative of dental plaque.  
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These studies demonstrated only the antimicrobial property of erythrosine.  

However, erythrosine also has the property of absorbing light, and the ability 

to initiate photochemical reactions.  

 

Erythrosine light absorbing property and PDT  

 

Wood et al. (2006) compared the cell killing efficacy of three 

photosensitizers- erythrosine, photofrin, and methylene blue (MB) in 

S.mutans biofilms formed in vitro with application of 15min continuous light 

using a white light source. The study found that erythrosine was more 

effective at killing biofilm bacteria than the other two photosensitizers. 

Similarly, Lee et al. (2013) have evaluated PDT effect on in vitro formed 

S.mutans biofilms as well, when using the combination of erythrosine (20µM) 

and a standard dental halogen curing light. The results revealed a significant 

cell death of the bacteria. 

 

In de Carvalho Goulart et al. (2010) PDT study, methylene blue and 

erythrosine’s cell-killing efficacy were compared on planktonic and biofilm 

cultures of Aggregatibacter actinomycetemcomitans (A.a) in vitro using a 

resin photopolymeriser as a light source. Their results showed that 

erythrosine is more efficient at killing these bacteria in both cultures 

compared to methylene blue.  

 

Moreover, a recent review of 18 articles (Nagata et al., 2012) that were 

published between 1992 and 2010, related to PDT and dental caries 

concluded that erythrosine is the most suitable photosensitizer in killing 

Gram-positive bacteria ( S.mutans group), since it has a hydrophilic property 

that makes it permeable to the bacterial cell wall and also it has a 

photodynamic effect even at very low concentrations.  
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a) Erythrosine concentration 

 

As previously stated, there are several factors that influence the photo-

damage, including the type, dose, incubation time and localisation of the 

photosensitizer, the availability of oxygen, the wavelength of light (nm), the 

light power density (mW/cm2) and the light energy fluence (J/cm2) (Soukos 

and Goodson, 2011; Konan et al., 2002). Therefore, in terms of the 

photosensitizer properties, it is important to test and select a 

dose/concentration that is effective in bacterial killing and at the same time 

non-toxic to host cells.  

 

For plaque disclosure, erythrosine is used at concentrations of 9-25mM 

(0.72-2%), which is much higher than that used in several PDT studies 

(Metcalf et al., 2006; Wood et al., 2006; Marsh et al., 1989a). Different 

studies have used different concentrations of erythrosine ranging from 2-

220μM (Table 3). Tahmassebi et al. (2015) found that the most effective 

erythrosine concentration, among 11, 22, 88, 220μM, was 220μM, resulting 

in a 98% reduction of the total bacterial counts on a 14-days in vivo formed 

biofilms. This confirmed the fact that PDT’s cytotoxic effect is dose-

dependent, where the higher the concentration of photosensitizer used, the 

more the damage to target tissues is expected (Tahmassebi et al., 2015; 

Konopka and Goslinski, 2007). Therefore, in the present study, 220μM 

erythrosine concentration was used.  

 

b) Incubation time with photosensitizer prior to irradiation (pre-
irradiation time) 

 

Various PDT studies have used different protocols including varying the pre-

irradiation time with the photosensitizer. Some protocols that have used 

erythrosine as a photosensitizer, have used either 5min (Pereira et al., 2013; 

Rolim et al., 2012; Chibebe Junior et al., 2010) or 15min incubation times 
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(Tahmassebi et al., 2015; Metcalf et al., 2006; Wood et al., 2006) where the 

bacterial solutions were left in the dark.  

 

Pereira et al. (2013) and Chibebe Junior et al. (2010) evaluated the effects of 

PDT, using erythrosine and LED, on the viability of S.mutans and 

S.sanguinis biofilms, in the former study, and planktonic cultures of 

S.mutans, in the latter study. Both studies found significant reduction in 

bacterial count. Similarly, Rolim et al. (2012) noted a significant reduction in 

planktonic cultures of S.mutans count using erythrosine and 

photopolymerizer light.  

 

Likewise, the studies that have used 15min incubation time have also 

reported a significant reduction in bacterial counts that are either formed in 

vivo or in vitro using erythrosine and a tungsten filament lamp (Table 3) 

(Tahmassebi et al., 2015; Metcalf et al., 2006; Wood et al., 2006). 

 

c) Continuous light vs. fractionated light 
 

Metcalf et al. (2006) revealed that application of fractionated light to 

S.mutans biofilms grown in vitro has an increased cell-killing efficacy 

compared with continuous irradiation at the same overall light dose, when 

using erythrosine as a photosensitizer . The authors demonstrated that most 

of the cell killing occurs in the first 5min of irradiation, and for time periods 

longer than 5min the amount of killing is slowly increased, which they 

thought was probably due to photo-bleaching of erythrosine. Therefore, they 

fractionated the 5min irradiation period by two regimes. The first regime was 

five times 1-minute light pulses with 5min recovery periods between pulses, 

giving a total treatment time of 30min. The second regime was ten times 30-

seconds light pulses with 2min recovery periods, giving a total treatment time 

of 25min. Both regimes were superior, in bacterial count reduction, to 

continuous irradiation times of up to 30min. The authors thought that the 

reason for this was the re-oxygenation for the excited photosensitizer or due 
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to the general replenishment and rearrangement of the erythrosine during 

the dark periods. 

 

Additionally, Tahmassebi et al. (2015) have compared various irradiation 

regimes on erythrosine treated biofilms formed in vivo. In their study, 

continuous light of 2, 5 and 15min and fractionated light of five times 1-min 

pulses separated by dark periods of 2min (total treatment time=15min) were 

applied. Among these, both the 15min continuous light and the fractionated 

regime were most effective in bacterial killing. 
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Table 3 PDT studies on dental bacteria using erythrosine 

 

 

Author/s Microorganism Photosensitizer Light source 

 

Metcalf et al. 
(2006) 

In vitro formed 
S.mutans biofilms 

Erythrosine 

(22μM) 

Tungsten filament lamp 
(white light) 500-550nm 

Wood et al. 
(2006) 

In vitro formed 
S.mutans biofilms 

 

Erythrosine, 

Photofrin, MB 

(22μM) 

 Tungsten filament 
lamp (white light) 500-

550/600-650nm 

 

de Carvalho 
Goulart et al. 

(2010) 

 

In vitro A.a 
(planktonic and 
biofilm cultures) 

 

Erythrosine, MB 
(0.5 & 1μM) 

 

Photopolymeriser 

 

Chibebe Junior 
et al. (2010) 

 

In vitro S.mutans 
planktonic cultures 

 

Erythrosine, Rose 
Bengal (2μM) 

 

LED 440-460nm 

 

Rolim et al. 
(2012) 

 

In vitro S.mutans 

Planktonic cultures 

 

Erythrosine, eosin 

Rose Bengal, 

Malachite green, 

MB, TBO 
(163.5μM) 

 

Photopolymeriser 
570nm 

LED 636nm 

 

Lee et al. 
(2013) 

 

In vitro formed S. 
mutans biofilms 

 

Erythrosine 
(20μmol/L) 

 

Dental halogen curing 
light 

 

Pereira et al. 
(2013) 

 

In vitro formed 
S.mutans and 

S.sanguinis biofilms 

 

Erythrosine 

Rose Bengal(5μM) 

 

 

LED (455±20nm) 

 

 

Tahmassebi et 
al. (2015) 

 

In vivo formed dental 
plaque biofilm 

 

Erythrosine (11, 
22, 88 & 220μM) 

 

Tungsten filament lamp 
(white light) 500-550nm 
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1.2.8 Investigating the effect of PDT on dental plaque biofilms 

 

A number of research techniques have been used to study the effect of PDT 

on dental plaque biofilms, such as: 

 

 Microbiological culture analysis 

 

As stated earlier, several studies have investigated the effect of PDT on 

either in vitro growing oral bacteria in planktonic and/or biofilm cultures or on 

natural undisturbed oral plaque biofilms formed in vivo.  In order to do so, 

oral bacteria require specific growth media, defined atmospheric conditions 

and incubation times (Kilian et al., 2016). Therefore, bacterial viability was 

investigated by plating the serially diluted biofilm samples on different types 

of media for aerobic and anaerobic bacteria, such as Colombia blood agars 

(CBA), following incubation of these bacterial samples with various 

concentrations of the photosensitizer and then irradiated with light. After this, 

the agar plates are incubated at 370C for 48 hours to count the surviving 

cells. 

These cultural analysis have been the gold standard for microbiology as it 

provided an understanding on the properties and ability of an organism, 

however, the knowledge of the diversity and architecture of the oral 

microbiome has been provided by culture-independent approaches, such as 

microscopy techniques (Kilian et al., 2016).  

 

 Microscopy techniques 

 

Various microscopy techniques have been used to investigate the 

architecture, composition, physiology and viability of dental biofilms (Surman 

et al., 1996). Transmission electron microscopy (TEM) and Scanning 

electron microscopy (SEM) have been widely used to image biofilms as they 

provide high resolution and magnification images (Lawrence et al., 2003). In 
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addition, TEM provides detailed information in bacterial structure in terms of 

its cell wall and intracellular material (Dige et al., 2007). However, these 

techniques require dehydration and fixation of samples prior to observation, 

leading to sample distortion and artefacts (Wood et al., 2000).  On the other 

hand, when using CLSM, samples can be visualised in their natural intact 

hydrated state, which means that samples are  free from preparation artefact 

(Marsh et al., 2011; Wood et al., 1999). CLSM provides detailed 

compositional information such as differentiating between different morph-

types of bacteria, like cocci, rods and filaments, especially when used in 

combination with fluorescent probes (Dige et al., 2007; Lawrence et al., 

2003). Moreover, CLSM has the advantage of scanning very thin sections 

throughout the depth of the plaque biofilm without out-of-focus blurring and, 

also, the digitalized data can be reconstructed to provide three-dimensional 

images of the biofilm sample (Wood et al., 2000). For example, when using 

CLSM to visualise dental plaque formed in vivo on enamel slabs (Leeds in 

situ device- see section1.3.1) over a 4-day period it had showed that plaque 

samples exist with heterogeneous architecture in terms of cells, matrix, and 

fluid-filled pores and channels that extended throughout the entire thickness 

of the biofilm sample (Wood et al., 2000). Thus, CLSM has improved our 

insight  into the architecture of the oral biofilms (Marsh et al., 2011). 

 

Moreover, CLSM has been used to determine the effect of antimicrobial 

agents on bacterial viability in dental biofilms by using fluorescent dyes to 

distinguish live and dead bacteria depending on their cytoplasmic membrane 

permeability. In addition, CLSM provides an insight on the spatial distribution 

of bacterial populations in a dental biofilm (Netuschil et al., 1998). 

 

It has been shown that no single microscopic technique  has comprehensive 

application, but used in combination they can supplement each other to 

achieve a realistic representation of biofilm structure and dynamics (Surman 

et al., 1996). Wood et al. (1999) used both TEM and CLSM to visualise the 

effect of PDT on in vivo formed plaque biofilms for 7-days. TEM showed 

marked damage to bacterial cells following PDT and the most evident 
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damage was the vacuolation and condensation of the cytoplasm and 

membrane damage. While CLSM showed that biofilm samples were around 

half the thickness of the controls and this has been reported to be due to 

damage of bacterial membranes, as evident in TEM, which lead to reduced 

cell-to-cell or cell-to-matrix binding and subsequent loss of bulk of biofilm. 

 

1.3 Dental plaque collection techniques 

 

The great knowledge about the dental plaque biofilm structure and 

characteristics was obtained by development of in vitro biofilm models and 

by collection and examination of biofilm samples. There are several plaque-

sampling techniques that have been used in different studies, including 

simple plaque scraping off the tooth surfaces using sterile dental instruments 

(Fontana et al., 2009; Arweiler et al., 2006; Petersson et al., 2002) and paper 

points (Charles et al., 1999; Sjögren et al., 1996). However, these 

mechanical techniques disturb the biofilm structure, as these biofilms are 

very delicate and fragile (Wood et al., 2000). Similarly, in vitro formed 

biofilms also have limitations, such as having a limited number of species 

and having a composition as well as a structure that is not comparable to 

those in vivo (Watson et al., 2005). Therefore, there was a need to develop 

models to collect dental plaque with no distortion to overcome these 

limitations (Wood et al., 2000), as this analysis of undisturbed human dental 

plaque biofilms has been considered as the best method for studying the 

architecture and physiology of biofilm formation on dental materials and, also 

the effect of antimicrobial therapies on the biofilm structure (Tomás et al., 

2010). This can be achieved through the use of in situ plaque generator 

devices.  

 

Several designs of in situ plaque generator devices have been used in 

different studies on dental biofilm, such as buccal (Tahmassebi et al., 2015; 

Arweiler et al., 2004; Wood et al., 2000), lingual (Re et al., 2010) or palatal 
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(Teixeira et al., 2012; Lima et al., 2009; Auschill et al., 2005) devices (Table 

4). Among these, buccal devices were the most commonly used for the study 

of in situ biofilm, since other devices had some design drawbacks (Prada-

López et al., 2016); The collected biofilm on these devices was disturbed as 

it was exposed to contact with the tongue (Prada-López et al., 2016), even 

though some authors have designed protections, such as applying a plastic 

mesh in the palatal devices (Cury et al., 2001). 

 

In general, buccal devices can be classified to either fixed or removable 

devices. 

 

1.3.1 Fixed devices 

 

Fixed devices such as the Leeds in situ device, which was developed at the 

University of Leeds, has been used in many studies (Robinson et al., 2006; 

Wood et al., 2000; Wood et al., 1999; Robinson et al., 1997). It consists of a 

nylon ring attached to human enamel slab and then bonded to the tooth 

surface by composite resin, allowing the accumulation of plaque in vivo 

(Table 4) (Wood et al., 1999; Robinson et al., 1997). The device was placed 

at buccal surfaces of posterior teeth and left in situ, and then removed after a 

specified period of time without disturbing the bacterial plaque and also 

without the need to stop oral hygiene (Robinson et al., 1997). However, care 

must be taken when brushing to ensure that the accumulated biofilm remains 

undisturbed (Wood et al., 2000). In addition, careful de-bonding of the 

appliance and removal of the composite resin from the tooth surface was 

required to avoid damaging the enamel of the tooth (Prada-López et al., 

2016). Another example of a fixed device is the sub-gingival plaque carrier, 

which was developed by Wecke et al. (2000). It consists of a gold foil or  

polytetrafluoroethylene (e-PTFE) membranes that were attached to a plastic 

carrier for placement at the bottom of the periodontal pocket. The carrier was 

fixed sub-gingivally to the tooth surface by using cyanoacrylic glue (Table 4). 
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The carrier was left in situ for 3-6 days and then was removed for the 

purpose of sub-gingival plaque biofilm sampling.  

 

1.3.2 Removable devices/appliances 

 

Various designs and materials of removable appliances have been used in 

different studies of oral biofilms (Table 4). For example, acrylic appliances 

(Nascimento et al., 2014; Diaz et al., 2006), acrylic and metal appliances 

(Tahmassebi et al., 2015; Arweiler et al., 2014; Auschill et al., 2005), metal 

appliances (Simion et al., 1997), thermoplastic appliances (Hannig et al., 

2013), and disk-holding splints (Prada-López et al., 2016; Quintas et al., 

2015). In the literature, specific limitations of the above mentioned 

appliances have been demonstrated, such as bulky acrylic appliances that 

may affect the phonetics and aesthetics of the volunteers, costly and 

complex laboratory fabrication of metal appliances, and inability to chew with 

the thermoplastic and disc-holding appliances as they cover the occlusal 

surfaces of the teeth (Table 4) (Prada-López et al., 2016). However, 

removable appliances, in contrast to fixed appliances, has the advantage of 

allowing the volunteers’ to perform their daily oral hygiene measure without 

disturbing the growth of plaque biofilms (Prada-López et al., 2016). 

 

Furthermore, different substrates, which are attached to the removable 

appliances, for the accumulation of in situ oral biofilm have been used in 

different studies, including human enamel slabs (Tahmassebi et al., 2015; 

Teixeira et al., 2012; Diaz et al., 2006; Cury et al., 2001; Palmer et al., 2001), 

bovine enamel slabs (Arweiler et al., 2014; Hannig et al., 2013) and glass 

slabs (Tomás et al., 2010; Auschill et al., 2005; Arweiler et al., 2004). From 

these, the most commonly used substrate was the human enamel slabs, as 

it is similar to the natural tooth surface (Prada-López et al., 2016). This is 

probably be due to the fact that artificial slabs compromises bacterial 

adhesion and colonisation, which is associated to surface roughness and 

free energy (Robinson et al., 1997). However, Netuschil et al. (1998) found 
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no great difference, when using enamel or glass slabs, in the 48-hour biofilm 

thickness. 

These slabs are placed internally of each buccal flange of the appliance, in 

such a way that biofilm growth is protected and not disturbed by the tongue 

and the cheeks, depending on the design of a specific framework (Prada-

López et al., 2016).  

 

In terms of the location of the appliance in the oral cavity (maxillary buccal 

region versus mandibular buccal region) or the position of the slabs in the 

appliance (right versus left; distal versus mesial), researchers have reported 

that there was no significant difference in the mean thickness of the 

accumulated biofilm nor the mean bacterial viability values or their pattern in 

48-hour biofilm (Arweiler et al., 2004; Auschill et al., 2004) and 14-days 

biofilm (unpublished data-Tahmassebi et al. (2015)). 

 

An example of the removable appliance is the one developed by Koulourides 

and Volker (1964), which was introduced to study dental caries on enamel 

slabs in situ. It consists of a labial arch wire, two acrylic buccal flanges 

extending from first premolar to first permanent molar area, and two U metal 

clasps attached to the first permanent molars. The slabs are placed in wells 

of the buccal acrylic flanges at the same level with that of the acrylic, and are 

covered with gauze to encourage plaque formation (Koulourides and Chien, 

1992). Later studies have modified this appliance by eliminating the need to 

use gauze to allow more comprehensive study of plaque architecture 

(Robinson et al., 1997).  
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Table 4 Examples of in situ devices  

 Palatal acrylic and metal 

device 

(Prada-López et al., 2016) 

 

 Lingual acrylic device 

(Prada-López et al., 2016) 

 

 Buccal devices: 

 

- Fixed Leeds in situ device 

(Pessan et al., 2008) 
 

- Fixed sub-gingival plaque 

carrier 

(Wecke et al., 2000) 

 

- Removable acrylic device 

(Prada-López et al., 2016) 
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- Removable acrylic and 

metal device 

(Prada-López et al., 2016) 

 

 

- Removable metal device 

(Simion et al., 1997) 

 

- Removable thermoplastic 

and polysiloxane splint 

(Prada-López et al., 2016) 

 
 

- Removable Disc-holding 
splint 

         (Prada-López et al., 2016) 

 

 

1.4 Conclusion of literature review 

From the preceding literature, the in vitro use of erythrosine-based PDT in 

the management of oral plaque bacteria, growing in planktonic and/or biofilm 

cultures in vitro, as well as on in vivo formed biofilms seems to be 

encouraging (Tahmassebi et al., 2015; Metcalf et al., 2006; Wood et al., 

2006). However, to our knowledge there were no reports in the literature that 

have compared the efficacy of different incubation times with photosensitizer 

prior to irradiation. Therefore, in order to further study the bactericidal effect 

of erythrosine-based PDT, this study was conducted aiming to reduce the 

overall treatment time for PDT by investigating the efficacy of different 

incubation times and irradiation times in bacteria killing to enhance its clinical 
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usefulness. In addition, CLSM was used to visualise the PDT effect on in 

vivo formed biofilms. 

 

1.5 Aims and objectives 

 

The aim of the present study was two-fold. Firstly, to investigate, in vitro, the 

PDT effect on Lactobacilli casei spp. in planktonic form using different 

incubation times, including 2, 5 and 15min, and determine, among these, the 

most effective bactericidal incubation time . Secondly, to investigate the PDT 

effect on in vivo formed biofilms using different incubation and irradiation 

times. In addition, to investigate and visualise the bacterial viability 

(Live/dead cells) of in vivo formed biofilms using CLSM for both control and 

PDT treated groups. 

 

The objective of the in vitro study is: 

 Determine the most effective bactericidal incubation time of 

erythrosine-based PDT (220μM), using a tungsten filament lamp 

(white light), on L.casei spp. in planktonic form. 

 

The objectives of the in situ study are: 

 Determine the most effective in vitro bactericidal incubation time and 

irradiation time of erythrosine-based PDT (220μM), using tungsten 

filament lamp (white light), on in vivo formed dental plaque biofilms.  

 

 Investigate and visualise the bacterial viability (Live/dead cells) of in 

vivo formed dental plaque biofilms using CLSM for both control and 

PDT treated groups. 
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1.6 Null hypothesis 

 

 There is no significant difference in the total viable bacterial counts 

among different incubation and irradiation times. 
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Chapter 2 

Materials and methods 

2.1 Study design 

 

This study has two-phases, an in vitro phase and in situ phase (Figure 8). 

 

2.1.1 In vitro phase:  

The aim of this phase was to determine the most effective incubation time (2, 

5 or 15min) for erythrosine-based PDT (220μM), using a 400W tungsten 

filament lamp, that would significantly reduce L.casei. viable counts. Different 

incubation times were compared to investigate whether there was any 

difference in the bacterial viability among them; attempting to reduce the 

overall treatment time for PDT. The amount of bacterial killing obtained 

would then allow us to identify the best incubation time to use for the 2nd arm 

of the following in situ phase of the study.  

 

2.1.2 In situ phase:  

The in situ phase was a single centre, randomised with two arms design 

(Figure 8). The aim of this phase was to determine the most effective 

incubation time between a 15min time (Arm-1) that was based on the pilot 

study by Tahmassebi et al. (2015) and an incubation time (Arm-2) that was 

based on the initial in vitro part, for erythrosine-based PDT, using tungsten 

filament lamp, that would significantly reduce total viable bacterial counts of 

in vivo formed dental plaque biofilms among control and treatment groups. 

To determine also the most effective irradiation time, among 15min 

continuous light and fractionated light of 30sec light pulses for 5 times 

separated by 1min dark periods, for erythrosine-based PDT (220μM), using 

the tungsten filament lamp, that would significantly reduce total viable 

bacterial counts of in vivo formed dental plaque biofilms among control and 
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treatment groups. In addition, to investigate bacterial viability (Live/dead 

cells) of in vivo formed dental plaque biofilms using CLSM for both control 

and PDT treated groups. 

 

2.2 Ethical approval 

 

This study was based on a previous pilot study entitled “A pilot in situ study 

of a new method for the control of plaque biofilms via a photoactive solution” 

by Drogkari, E. as a part of her MDentSci dissertation, University of Leeds, 

2011 (Tahmassebi et al., 2015). 

 

Ethical approval was sought and obtained from the National Research Ethics 

Service (NRES) committee of South Central – Berkshire B (REC reference 

number: 14/SC/1226 – Appendix A). Following this, the study received 

approval from the Leeds Research and Innovation (R&I) committee in order 

for it to be conducted at the Leeds Teaching Hospitals NHS Trust  (LTHT 

R&I number: DT14/11310 (149271/WY)- Appendix B).  

 

Summary of this study was registered online in a publicly accessible 

database (NHS Health Research Authority) before subject recruitment. The 

study investigator (AA) ensured that this study was conducted in full 

conformance with the laws and regulations of the country in which the 

research was conducted and as per the World Medical Association 

Declaration of Helsinki. 
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Figure 8 Study design 
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2.3 Training and calibration 

 

The study investigator (AA) was trained and calibrated for the use of aseptic 

microbiological procedures in microorganisms’ cultures, preparation of study 

solutions and dilution series, making CBA plate, counting bacterial colonies, 

using microscopy and CLSM, preparation of enamel slabs and making in situ 

appliances prior to commencement of the study and prior the usage of these 

facilities or materials. 

 

2.4 Materials 

2.4.1 Materials used in the clinic 

 

 Dental examination kit 

 High and low-speed hand-pieces 

 Straight hand-piece  

 Diamond, Acrylic, and Polishing burs 

 Rubber cups 

 Air-scaler and tips 

 Prophy-paste (3M ESPE Clinpro™, USA) 

 Graduated saliva sample tubes (Corning, Sigma-Aldrich, Germany) 

 Digital Timer (TruLab®, Philippines) 

 Alginate impression (Xantalgin®- Heraeus Kulzer, Germany) 

 Impression trays (Ash polytrays - DENTSPLY, UK) 

 Pressure indicator paste (Mizzy paste- Keystone, USA) 

 Fix-tray adhesive (DENTSPLY, UK) 

 Sterile gauze 

 Ortho retainer box (Henry Schein, USA) 

 Sticky wax (Bredent, Germany) 
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2.4.2 Materials used in the laboratory 

 

 Enamel slabs from intact human premolars and permanent molars, 

inserted in experimental acrylic and metal removable appliances 

 Lactobacillus casei (2104A) 

 Sterile Pipette tips (Star lab, UK) 

 Sterile loops (5μl), spreaders (Star lab, UK) 

 Sterile Stripette (Costar, Sigma-Aldrich, Germany) 

 Sterile Glass beads (3mm) (Sigma-Aldrich, Germany) 

 Sterile Universal 30 ml (Thermo Scientific, USA) 

 Sterile plastic vials, Bejou tubes (Sterilin, UK) 

 Universal racks 

 Cuvettes (Sarstedt, Germany) 

 6-well plates (Costar, Sigma-Aldrich, Germany) 

 12-well plates (Costar, Sigma-Aldrich, Germany) 

 48-well plates (Corning, Sigma-Aldrich, Germany) 

 Gilson & electric pipettes 

 Petri Dish 90mm (Thermo Scientific, USA) 

 Brain Heart Infusion (BHI)- (Oxoid, UK) 

 Columbia Blood Agar (CBA)- (Oxoid, Basingstoke, UK) 

 Horse Blood oxalated (Oxoid, UK) 

 Reduced Transport Fluid (RTF) 

 Erythrosine B (Sigma-Aldrich, Germany) 

 Frosted glass slides (VWR, UK) 

 Gram staining kit (Sigma-Aldrich, Germany) 

 Petroleum jelly (Vaseline) 

 Foil 

 Paraffin film (Parafilm®, Sigma-Aldrich, Germany) 

 Sterile wax knife 

 Sterile excavator 

 Sterile tweezers 

 Bunsen burner 
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 Vortex Genie-2 (scientific industries, Inc., USA) 

 400W Tungsten filament lamp (Aurora, USA) 

 Diamond Wire Saw cutting machine (Well®
 
Walter EBNER, CH-2400 

Le Loche, Germany) 

 Autoclave (Prestige medical, UK) 

 Water bath (Stuart, SBS40, UK) 

 CO2 incubator (Forma Direct Heat, Thermo Scientific, USA) 

 Colony counter (Stuart R, SC6, UK) 

 Balance (Mettler™, Thermo Scientific, USA) 

 Spectrophotometer (Jenway 6305, UK) 

 LIVE/DEAD® BacLight™ Bacterial Viability Kit (L7012) (Molecular 

Probes, USA) 

 CLSM (Leica TCS SP2, Leica Microsystems GmbH, Wetzlar, 

Germany) 

 

2.4.3 Microorganism 

 

Lactobacillus casei strain (2104A) was obtained from the Microbiology 

laboratory stock collection, School of Dentistry, University of Leeds. It was 

maintained in a freezer at -80°C and it was used for the in vitro phase of the 

study. It is one of the most commonly isolated species from oral sample and 

it belongs to the Lactobacillus genus (Bagg et al., 2006). These species are 

highly acidogenic and acid tolerant, and are associated with advanced caries 

lesions and carious dentine (Marsh et al., 2009). It is a mesophilic bacterium 

(grows in moderate temperature 20-45°C) that is Gram-positive (Figure 9), 

rod shaped, non-sporing, non-motile, facultative anaerobe (Holzapfel et al., 

2001).  
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Figure 9 Gram stain of Lactobacillus spp. 
(http://www.chsr.mmu.ac.uk/microbiology/education_and_communication/reso

urces/images.asp#/microbiology/images/free/rev/gram_stain.jpg) 

 

 

2.4.4 Erythrosine solution and Reduced Transport Fluid  

 

Erythrosine (Molecular weight- 879.86g/mol) was prepared as a filter-

sterilised 1mg/ml stock solution in Reduced Transport fluid (RTF) and stored 

in the dark at 4°C. This solution was then diluted to the required 220μM 

concentration (the concentration that was found, by the previous pilot study 

(Tahmassebi et al., 2015), to be the most effective bactericidal concentration 

for PDT on in vivo formed oral biofilms). This diluted solution was used for all 

treatment groups, with PDT, in this study. 

 

RTF consisted of 0.45gm K2HPO4, 0.45gm KH2PO4, 0.9gm NaCl, 0.1875gm 

(NH4)2SO4, 0.4gm Na2CO3, 0.2gm dithiothreitol, 10ml of 0.1M EDTA and 

1000ml of distilled water. This solution was adjusted to pH 8, filter sterilised 

into sterile containers and kept in the fridge until required. Ms Shabnum 

Rashid, Oral biology laboratory technician, University of Leeds, was 

responsible for its preparation. This solution was used for all the control 

groups in this study. 
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2.4.5 Light source 

 

The tungsten filament lamp, white light source, was used to activate 

erythrosine (Figure 10). The lamp emitted 22.7mW/cm2 of light intensity, in 

the presence of a heat-dissipating water bath, in the wavelength range 500-

550nm (corresponding to the region of maximal absorption by erythrosine) 

(see section 1.2.6.2). Bacterial samples were placed at 30cm from the lamp 

and the heat-dissipating water bath was positioned between the bacterial 

samples and the lamp to prevent hyper-thermic effects. 

 

Figure 10 Light source: (A) Tungsten filament lamp (B) Heat-dissipating 
water bath (C) Bacterial samples in 6-well plates 

A 

B 

C 

30cm 
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2.5 In vitro phase 

2.5.1 PDT on planktonic cultures of L.casei 

 

The aim of this phase of the study was to determine the most effective 

bactericidal incubation time of erythrosine-based PDT by comparing the 

reduction of L.casei viable counts (CFU) among four different control and 

treatment groups. These four groups were as follows; a) Control 1: No 

erythrosine, no light (-E-L); b) control 2: +Erythrosine, no light (+E-L); c) 

control 3: No erythrosine, +light (-E+L); d) treatment group: +Erythrosine, 

+light (+E+L). The procedure of the microbiological analysis is explained in 

the following section.  

 

Planktonic L.casei were spread on Petri dishes containing Colombia blood 

agar (CBA) and were incubated overnight at 37°C in a 10% CO2 incubator. 

After this, gram staining was performed to check the strain purity. Following 

this, a loopful of the bacteria was inoculated into 20ml of Brain Heart Infusion 

(BHI) growth media and grown overnight at 37°C, in a 10% CO2 incubator. 

Later, this overnight bacterial suspension was spectrophotometrically 

standardised, using a wavelength of 600nm and an optical density (OD) of 

~0.5. Spectrophotometer measures the turbidity (OD), which is the measure 

of the amount of light absorbed by a bacterial suspension (Figure 11). The 

degree of turbidity is directly related to the number of microorganisms 

present, which indicates the cell growth rate of the organism. L casei  growth 

rate at OD ~0.5 indicated that cells are in a rapidly growing and dividing state 

(mid log phase), therefore, all bacterial suspensions, used in following 

experiments, were treated with PDT once this was reached.  

 

Next, 1ml aliquots of the bacterial standardised suspension were individually 

transferred to separate wells of two 6-well plates. Then, 1ml of diluted 

erythrosine solution (220μM) was added to the appropriate wells (+E-L and 

+E+L). While in the control wells (-E-L and -E+L), 1ml of RTF solution was 

added. Both 6-well plates were covered with foil and incubated at room 
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temperature for 2, 5, or 15min. After the dark incubation, the samples were 

irradiated under the tungsten filament lamp for 15min (+E+L) (Figure 13). To 

determine the effect of erythrosine alone on bacterial cells viability, some 

samples were covered with foil (+E-L). Additionally, to determine whether 

irradiation alone had any effect on bacterial cell viability, some samples were 

irradiated without erythrosine (-E+L). The samples that were not exposed to 

both light (covered with foil) and erythrosine acted as control (-E-L). To 

emphasize, the samples with no irradiation (-E-L and +E-L) were kept in dark 

by covering them with foil in the same duration as the light exposure time 

(15min). Ten-fold serial dilutions (10-1, 10-2, 10-3, 10-4, 10-5, 10-6) were then 

produced from the bacterial suspensions of the control and treatment 

groups. To determine the number of bacteria in each sample, each dilution 

(100μl) was plated in triplicate on CBA growth medium. The plates were then 

incubated for 48hr at 37°C in a humidified 10% CO2 incubator. After 

incubation, bacterial counts of each plate were performed, using a colony 

counter (Figure 12), and then the number of colony-forming units per millilitre 

(CFU/ml) was calculated from the mean count of each triplicate. Percentage 

reduction of bacterial counts was obtained from the different groups with 

different incubation times (Figure 13).  

 

All experiments, with 2, 5, or 15min incubation times, were performed three 

times at different time points and, in addition, in triplicate samples. This is to 

minimize the bias related to microbiological procedures and also to validate 

and increase the reliability of the results. 
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Figure 11 Spectrophotometer (Jenway 6305, UK) 

 

 

 

 

Figure 12 Colony Counter (Stuart R, SC6, UK) 
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Figure 13 Protocol of in vitro PDT on planktonic cultures of L. casei 
bacteria 
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2.6 In situ phase 

The in situ phase was a single centre, randomised with two arms design. 

The study was designed, conducted and reported according to GDC 

guidelines for good clinical practice. 

 

2.6.1 Recruitment and selection of participants 

 

In total, 18 healthy participants were recruited at the Leeds School of 

Dentistry. The sample size was determined with the statistician’s help with 

performing the power calculation (see section 2.6.4). Recruitment was 

through poster advertisement at the University of Leeds (Appendix D). The 

chief investigator (AA) was the person responsible for the recruitment of the 

participants. An informed consent (Appendix E) was obtained from each 

participant prior to the commencement of the study. An explanatory 

information sheet (Appendix F) was also provided to each participant. 

Participants recruited in the study had to fulfil the following inclusion and 

exclusion criteria: 

 

2.6.1.1 Inclusion criteria 

 

 18 years old and older. 

 Both males and females. 

 Medically fit and healthy. 

 Dental examination:  

 Presence of at least 20 natural teeth. 

 Free from visual signs of untreated caries, periodontal disease, 

or any other dental/oral health conditions that could be 

exacerbated by the study interventions. 

 DMFT ≥ 1. 

 Salivary flow rate ≥ 0.25ml/min. 
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 Able to fully understand the procedures and restrictions and willing 

and likely to comply, as evidenced by voluntary written informed 

consent. 

 

2.6.1.2 Exclusion criteria 

 

 Disease: 

 Disease or recurrent disease that could affect the oral cavity or 

interfere with the dental examination and/or wearing of oral 

appliance. 

 Severe psychiatric, physical and medical disorders requiring 

treatment or making the participant unlikely to give informed consent 

or to cope with the procedures required by the study protocol. 

 Medication: 

 Antimicrobial therapy within 14-days prior to screening or during the 

study. 

 Antibiotic treatment within 28-days prior to screening or during the 

study. 

 Use of medication affecting salivary flow. 

 Dental history and examination: 

 Dental disease requiring treatment in the short or long term. 

 Oral surgery or extraction 6-weeks prior to screening of the study or 

during the study.  

 Wearing of prostheses or orthodontic appliances that could affect the 

study procedures. 

 Others: 

 Pregnant women or intending to become pregnant or lactating 

 Smokers. 

 Known or suspected intolerance/ hypersensitivity to study materials 

closely related to compounds or ingredients that will be used in the 

study. 
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 Participation in another clinical study within 30-days of screening and 

during the study. 

 

2.6.2 Pre-operative screening and visits record 

 

After participants were consented to take part in the study, the chief 

investigator (AA) screened the participants for fulfilment of the inclusion and 

exclusion criteria. The screening included medical and dental history, dental 

examination, and measurement of the salivary flow rate. A referenced 

salivary flow rate (a whole un-stimulated saliva ≥ 0.25ml/min) was measured, 

by passive drooling into graduated test tube for 5min, to ensure that a 

standard remineralisation effect of the saliva of all participants was achieved.  

After that, dental scaling and polishing was performed for the participants, 

when required, by the chief investigator, prior to taking impressions to 

construct a lower removable appliance. The participants were instructed to 

wear their appliances at all times for two separate periods of two weeks each 

(total of four weeks), except when eating, drinking, and tooth brushing.  At 

these times, participants had to place the appliance in damp gauze inside a 

plastic case that was provided to them, to prevent any drying of the 

accumulated plaque. Additionally, instructions and restrictions form was 

provided to all participants at appliance fitting visit (Appendix G). A case 

record form (Appendix H) was used to record the visits, clinical findings and 

side effects of each participant. 

 

2.6.3 Participants’ withdrawal criteria 

 

Participants had the right to withdraw from the study at any time and for any 

reason. The investigator also had the right to withdraw subjects from the 

study in the event of inter-current illness, adverse events after a prescribed 

procedure, protocol deviations, administrative reasons or other reasons. It 

was understood by all concerned that an excessive rate of withdrawal of 
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subjects could render the study underpowered; therefore, unnecessary 

withdrawal of subjects was avoided.  

 

2.6.4 Sample size determination 

 

Statistical advice was sought from Leeds university statistician (Dr Jing 

Kang) and the sample size was calculated by using data from the previous 

pilot study (Tahmassebi et al., 2015). Assuming a standard deviation of 1.11, 

effect size 1.8, significance level 0.05 and power 80%, it was found that the 

study requires at least 3-slabs per group. After adjusting for multiple 

comparisons by lowering the significance level (alpha=0.003), the power 

calculation resulted in a sample size of at least 5-slabs per group. 

However, 18 participants were screened to ensure a sufficient sample size 

that would successfully complete the study. Among these, samples from 3 

subjects were used for CLSM analysis and the rest for the microbiological 

analysis. Each participant were provided with a lower removable appliance 

containing 6 enamel slabs. The study consisted of two arms and each arm 

lasted 2-weeks.  

 

 

2.6.5 Laboratory methods 

2.6.5.1 Teeth selection 

 

Approval from the Leeds Dental Institute Tissue Bank was obtained 

(reference number 270314/AA/128 – Appendix C) for collection of teeth 

fulfilling the following inclusion and exclusion criteria: 

Inclusion criteria 

 

 Sound (i.e. free from signs of decay and restorations) upper and lower 

premolars and permanent molars. 
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Exclusion criteria 

 

 Carious upper and lower premolars and permanent molars. 

 Upper and lower premolars and permanent molars with signs of trauma, 

erosion, restorations and malformations. 

 

 

2.6.5.2 Enamel slabs 

 

Enamel slabs were prepared from teeth fulfilling the inclusion and exclusion 

criteria mentioned above. 

 

2.6.5.2.1 Preparation of enamel slabs  

 

Enamel slabs were cut from human premolars and permanent molars 

extracted for orthodontic or periodontal reasons at school of Dentistry and 

were stored in a solution of distilled water and 0.1% thymol (Sigma Aldrich, 

Germany) at room temperature. Before their sectioning, teeth were cleaned 

using a spoon excavator and a toothbrush with pumice powder and stone to 

remove any soft tissue. Additionally, they were visually checked for cracks, 

caries or other malformations. 

 

Following this, each tooth was mounted in “greenstick” impression 

compound (Kerr, UK) on cutting discs (Figure 14) and sectioned using a 

water cooled, Diamond Wire Saw, cutting machine (Well®
 
Walter EBNER, 

CH-2400 Le Loche, Germany- Figure 15). The crowns and the roots of each 

tooth were separated first, followed by the buccal and lingual surfaces of 

each crown. Three enamel slabs of about 3mmx 2mmx 2mm were produced 

from the buccal section, and another three slabs of exactly the same 

dimensions were produced from the lingual section of each tooth. A total of 

18 teeth and 108 slabs were used in this study. 
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Figure 14 Illustration of tooth sectioning 

 

 

 

Figure 15 Well® Diamond wire Saw cutting machine 

 

 

2.6.5.2.2 Sterilisation of enamel slabs 

 

Once the enamel slabs were prepared, they were kept moist in distilled water 

with thymol, in micro-centrifuge tubes sealed with sealing film (Parafilm®, 

Sigma-Aldrich, Germany) to prevent leakage of the thymol solution and 

dehydration of the enamel. Later, they were immersed overnight in sodium 
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hypochlorite (12%), followed by thorough rinsing with deionized water and, 

again, immersed overnight in phosphate buffered saline (pH 7.4), then sent 

to the Department of Immunology of the University of Liverpool, where they 

were exposed to gamma radiation (4080Gy). This level of exposure provides 

sterilisation without altering the structural integrity of the enamel slabs 

(Amaechi et al., 1999) and, in addition, the use of hypochlorite to treat 

enamel does not affect biofilm development (Watson et al., 2004). This 

sterilisation procedure was according to University of Leeds sterilisation 

protocol of human slabs used in situ appliances.  

Enamel slabs were sterilised twice prior to each arm of the in situ study. 

 

2.6.5.3 In situ appliance framework 

 

The appliance used in the study was the mandibular removable appliance, 

introduced by Koulourides and Volker (1964). It consisted of a labial arch 

wire, acrylic flanges buccally on premolars and first permanent molars, and a 

U clasp attached to each of the first permanent molars (Figure 16). Three 

enamel slabs were inserted in the right buccal flange, and another three in 

the left buccal flange of each appliance (Figure 17). 

 

 

Figure 16 Occlusal view of in situ appliance 
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Figure 17 Right and left lateral views of in situ appliance 

 

 

The following modifications to this original appliance were made in order to 

place the enamel slabs and collect the undisturbed layer of plaque (Figure 

18): 

 A 3mm deep space was made for each enamel slab to be placed in 

the appliance, leaving a 1mm depth for plaque accumulation on the 

surface of the slab. In the original appliance, the surfaces of the 

enamel slabs were placed at the same level with that of the acrylic 

without leaving a 1mm depression. 

 No gauze was placed on the surface of the enamel slabs, which was 

placed for plaque accumulation in the original device. 

 A 1mm space was left on the sides of each slab and filled with sticky 

wax to accommodate the removal of the slab with a dental wax knife 

without disturbing the accumulated plaque after collection of the 

appliance. 

 

Figure 18 Enamel slab in in situ appliance 
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All slabs were secured in position with sticky wax (Bredent, Germany). Care 

was taken to not cover the exposed surface of enamel. The distance 

between every two slabs in sequence varied from 2 to 5mm, as it was 

dependent on the different thickness of the appliance at different areas and 

the presence of the metallic wire extending partially to the right and left 

flanges of the appliance.  

 

2.6.5.4 Randomisation of enamel slabs 

 

Randomisation of enamel slabs was applied in order to allocate them to: 

 The in situ appliance 

 The control and treatment groups 

 

2.6.5.4.1 Randomisation of enamel slabs in the in situ appliance 

 

All enamel slabs were coded based on random table of numbers, according 

to a computer programme of random allocation 

(http://stattrek.com/statistics/random-number-generator) and every 6-slabs 

were randomly assigned to each appliance for all the participants taking part 

in the study. All participants were allocated the same appliance with the 

same slabs for the second arm of the study. 

 

2.6.5.4.2 Randomisation of enamel slabs in the control and treatment 

groups 

 

Following removal of the enamel slabs from the appliance, enamel slabs 

were coded again, based on random table of numbers as mentioned above, 

and randomly allocated to the control and treatment groups by using sealed 

envelope. The list of the codes were kept with a member of staff (GD) and 

the chief investigator (AA) were given an envelope at each visit of appliance 

http://stattrek.com/statistics/random-number-generator
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collection. The same method of random allocation was performed in the 

second arm of the study. 

 

2.6.5.5 Removal of enamel slabs from appliances 

 

All six enamel slabs were removed in the laboratory using sterile instruments 

after collection of the appliance from the participant. Each one of the six 

slabs with its accumulated plaque was transferred to a separate well of a 12-

well tissue culture plate. Petroleum jelly was used to prevent the slabs 

floating in the control and treatment solutions. Care was taken that the area 

of the slab with the accumulated plaque was uppermost in the well.  

 

Figure 19 shows a summary of the laboratory protocol of the in situ phase 

following removal of enamel slabs from appliances. 
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Figure 19 Protocol of the in situ phase of the study 
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2.6.5.6 Microbiological killing assays 

2.6.5.6.1 Investigation of variation in one participant 

 

Prior to the investigation of PDT effect on in vivo formed biofilm, an 

investigation on the variation of bacterial viability values among six enamel 

slabs in an appliance was undertaken. This was to ensure that the baseline 

measurement of accumulated plaque in all six slabs was comparable. 

Despite the fact that the previous pilot study (Tahmassebi et al., 2015)-

unpublished data- had already investigated this and found that there was no 

significant difference in the bacterial viability values among the six slabs.  

Therefore, following removal of enamel slabs from the appliance of the first 

participant, the six enamel slabs were individually transferred to separate 

wells of a 12-well tissue culture plate. Petroleum jelly was used to prevent 

the slabs floating in the solution. Care was taken that the area of the slab 

with accumulated plaque was the uppermost in the well. Then, slabs were 

covered with 1.5ml of RTF and incubated at room temperature for 15min. No 

light was applied, as these were the control groups. Ten-fold serial dilutions 

were produced and plated on CBA plates in triplicates (total= 18 plates). The 

plates were then incubated for 37°C in a 10% CO2 incubator for 48h. After 

incubation, bacterial counts of each plate were quantified, using colony 

counter, and then CFU/ml was calculated from the mean count of each 

triplicate.  

 

2.6.5.6.2 PDT on in vivo formed plaque biofilms 

 

As stated earlier, this in situ phase of the study consisted of two arms. 

Participants were requested to wear the appliances for a period of two 

weeks, on these two separate arms of the study, and at the end of each arm 

the slabs with the accumulated plaque were removed from the appliance and 

treated under the different experimental conditions. The experimental 

conditions were the same for the two arms of the study, except that the 
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incubation time of the plaque biofilm was different, attempting to reduce the 

overall PDT time. In the 1st arm, the incubation time was 15min, a duration of 

time that was used in the previous pilot study (Tahmassebi et al., 2015), 

whereas, in the 2nd arm, the incubation time that was used was determined 

from the findings of the in vitro phase of the study. This was carried out in 

order to test whether this finding was also applicable on the in vivo formed 

biofilms and not only in planktonic cultures, attempting to reduce the overall 

PDT time. Figure 19 shows the protocol of the in situ phase. 

 

As 18 participants were recruited, samples from15-participants were used for 

the microbiological killing assay to determine the bacterial viability values 

between the control and treatment groups. While the remainder of the 

samples of 3 participants were used for viewing under CLSM. 

 

Arm-1 

 

This part of the in situ phase involved 15 participants, where they had to 

wear the appliances for 2-weeks as already stated. At the end of this arm, 

the six slabs with accumulated plaque were removed from the appliance and 

treated under four different conditions, as follows; control one group-C1 (No 

erythrosine, no light) represented by 1 slab; control two group-C2 

(Erythrosine, no light) represented by 1 slab; treatment one group-T1 

(Erythrosine, +15min continuous light) represented by 2 slabs (T1A and 

T1B); treatment two group-T2 (Erythrosine, +30sec light pulses for 5 times, 

separated by dark periods of 1min) represented by 2 slabs (T2A and T2B). 

The reason for treating duplicate slabs, in treatment 1 and 2 groups, was to 

assess the variation of the outcome measurement, bacterial viability values, 

between the duplicates of the same group with a view to validate and 

increase the reliability of the results. 
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To enumerate the procedure, following collection of the appliance from the 

participant, randomisation of the slabs to control and treatment groups have 

had occur at this stage by opening a sealed envelope included the 

randomisation numbers (see section2.6.5.4.2). Next, the six slabs, with its 

accumulated plaque, were removed from the appliance and individually 

transferred to separate wells of 12-well tissue culture plates (Figure 20) and, 

then, were completely covered with either 1.5ml of RTF (C1) or 1.5ml 

(220μM) erythrosine  (C2, T1A, T1B, T2A and T2B). Later, the 12-well plates 

were covered with foil and incubated for 15min at room temperature. After 

dark incubation, foil was removed from the treatment groups (T1A, T1B, 

T2A, and T2B) wells and all plates were placed under the tungsten filament 

lamp. Treatment groups (T1A and T1B) were irradiated for continuous 

15min, while, treatment groups (T2A and T2B) were irradiated for 30sec light 

pulses for 5 times, separated by dark periods of 1min, using foil to cover 

these wells during the dark periods (total treatment time= 7.5min). To 

determine the effect of erythrosine alone on bacterial cells viability, control 2 

group was covered with foil (Erythrosine, no light). Although the control 

groups (C1 and C2) were placed under the lamp, they were kept in dark by 

covering them with foil, attempting to treat all groups under same conditions 

as much as possible. Following completion of the irradiation regime, the 

bacterial solution from each well, with the enamel slab and the accumulated 

plaque, were individually transferred to plastic vials, using sterile 

instruments, and then mixed for ~30-60sec, using vortex mixer, with 5-6 

sterile glass beads of 3mm diameter each, to disaggregate the plaque 

biofilms. Ten-fold serial dilutions (10-1, 10-2, 10-3, 10-4, 10-5, 10-6), 50μl on 

450μl of RTF using 48-well plates, were produced from the bacterial 

suspensions of the control and treatment groups, to be able to determine the 

number of bacteria in a sample, and each dilution (100μl) was plated on CBA 

in triplicates (Total=108 plates for each appliance). The plates were then 

incubated at 37°C in a 10% CO2 incubator for 48h. After incubation, bacterial 

counts of each plate were quantified, using colony counter, and then colony-

forming unit per millilitre (CFU/ml) was calculated from the mean count of 

each triplicate. Percentage reduction of bacterial counts was obtained from 
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the different groups with the aim to determine any significant difference in the 

bacterial viability counts among the different control and treatment groups. 

 

 

Arm-2 

 

The protocol regime for the 2nd arm was exactly the same as the 1st arm, 

except; the incubation time of samples was different (Figure 20). The 

incubation time was determined from the initial in vitro study on planktonic 

cultures of L.casei bacteria (see section 2.5.1) where different incubation 

times of 2, 5 and 15min were used and, then, the bacterial viability were 

compared between the different control and treatment groups. As it was 

found, from the in vitro study, no significant difference in the bacterial viability 

counts using either incubation time, it was decided to use 2min incubation 

time in this part, to investigate whether it has any effect on the bacterial 

viability of the in vivo formed plaque biofilms and, also, to compare this arm’s 

results with the 1st arm, attempting to reduce the overall PDT time. 
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Figure 20 Laboratory protocol for the in situ phase of the study 
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Intra-examiner reproducibility 

 

To determine the intra-examiner reproducibility, the study investigator (AA) 

randomly re-counted the total bacterial counts of 10% of the total number of 

CBA plates used in both arms of the in situ phase of the study. They were re-

counted 5-7days following the initial counting. The plates were kept in 

microbiology fridge during this time. This was performed to establish and 

quantify reproducibility, and thus provide an indication of the reliability of the 

measurements, which was assessed using the Bland Altman plot. 

 

 

2.6.5.7 CLSM observations 

 

Plaque samples from 3 participants were treated under different conditions 

including; a) control (No erythrosine, no light); b) treatment-1 (Erythrosine, 

+15min continuous light); c) treatment-2 (Erythrosine, +30sec light pulses for 

5-times, separated by dark periods of 1min). Following treatment, these 

samples were viewed immediately under CLSM in order to investigate PDT 

effect on the in vivo formed plaque biofilms.  

 

The LIVE/DEAD® BacLight™ Bacterial Viability Kit (L7012) (Molecular 

Probes, Eugene, OR, USA) was used in this study to determine the viability 

of bacteria within the biofilm, before and after PDT (Figure 22). This kit 

consists of two fluorescent nucleic acid-binding stains: SYTO 9 and 

Propidium iodide. SYTO 9 stains all viable bacteria in green, while Propidium 

iodide stains in red the bacteria whose membranes were damaged (non-

viable bacteria).  

 

Therefore, following treatment, samples were placed into a small Petri dish 

and then RTF was carefully added, covering the sample, to gently wash off 

the samples. Next, LIVE/DEAD® stains were mixed according to the 
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manufacturer’s instructions and applied directly to the surface of each 

sample. The Petri dish was mixed gently and, then, covered with foil and 

incubated for 15min at room temperature. After the dark incubation, the slab, 

with accumulated plaque, was transferred to another Petri dish, with RTF, for 

wash off and then observed using a Leica SP2 CLSM (Figure 21). It was 

examined with an argon (488nm) and HeNe (543nm) laser with x10 and x63 

water-dipping objective lenses. For confocal optical sectioning, sequences of 

images were taken along the horizontal x-y plane at 5μm (x10 lens) and 

0.5μm (x63) increments from the bottom of the biofilm that was contact with 

the enamel slab to the top (z-axis). Images were collected at x1 

magnification, x2 and x4 electronic zoom. Live bacteria with intact 

membranes were stained fluorescent green, while dead bacteria with 

damaged membranes were stained fluorescent red. 

 

 

 

Figure 21 CLSM (Leica TCS SP2, Leica Microsystems GmbH, Wetzlar, 
Germany) 
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Figure 22 LIVE/DEAD® BacLight™ Bacterial Viability Kit (L7012) 
(Molecular Probes, Eugene, OR, USA) 
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2.7 Data analysis 

2.7.1 Variables collected 

 

Microbial counts were expressed as the number of colony forming units 

(CFU) per ml. Each CFU value represented the mean count from triplicate 

samples. Logarithmic transformation (log10) was applied to the original 

observations (CFU/ml) to make the distribution more symmetric. Percentage 

reduction in bacterial counts in each group was calculated by dividing the 

difference in CFU between control and treatment groups with the number of 

CFU from the control group from the same subject (see the following 

calculation- Equation 1): 

 

𝑷𝒆𝒓𝒄𝒆𝒏𝒕𝒂𝒈𝒆 (%) 𝒓𝒆𝒅𝒖𝒄𝒕𝒊𝒐𝒏 

=
𝑪𝑭𝑼 (𝒄𝒐𝒏𝒕𝒓𝒐𝒍) −  𝑪𝑭𝑼 (𝒕𝒓𝒆𝒂𝒕𝒎𝒆𝒏𝒕)

𝑪𝑭𝑼 (𝒄𝒐𝒏𝒕𝒓𝒐𝒍)
×  𝟏𝟎𝟎 

 

Equation 1 Calculation of percentage reduction in viable counts 

 

 

2.7.2 Statistical analysis 

 

All the collected data were entered into Microsoft office Excel 2010 spread 

sheets. Differences between controlled and treated samples were 

statistically tested. All tests were performed using IBM® SPSS® Statistics 

Version 23. A significance level of α < 0.05 was implemented. 

 

All continuous data were checked for normality by comparing means and 

medians. Descriptive statistics such as mean, median, and standard 

deviation were used to summarise the  data. The parametric ANOVA test 

was used for the normally distributed continuous data and the non-
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parametric Friedman test was used for all the skewed continuous data to 

compare means, for the former test, and medians, for the latter test,  

between the control and treatment groups. Additionally, a series of Wilcoxon 

tests were conducted to identify where the specific difference lay, but with 

adjustments for multiple comparisons to control for inflation of type 1 error. In 

order to avoid this error, the statistical significance level (α) was adjusted 

according the following equation: α = 0.05/number of comparisons. 

 

Intra-examiner reproducibility was evaluated in both arms of the in situ phase 

of the study by using the Bland Altman plot. Total bacterial counts of 10% of 

the total number of CBA plates used in both arms were re-counted. 
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Chapter 3 Results 

 

3.1 In vitro phase 

3.1.1 PDT on planktonic cultures of L.casei 

 

L.casei bacterial suspensions used in all experiments were 

spectrophotometrically standardised, using a wavelength of 600nm and an 

optical density (OD) of ~0.5 (see section 2.5.1).  Figure 23 shows an L.casei 

growth curve, which indicates that cells were in log phase at OD ~0.5. All 

bacterial suspensions used in all experiments were treated with PDT once 

this phase was reached. 

 

Figure 23 L.casei growth curve 

 

L.casei bacteria were treated with PDT using different incubation times with 

photosensitizer to determine the most bactericidal incubation time. The times 

that were used were 2min, 5min and 15min, where the bacteria were 

incubated with erythrosine (220µM) in the dark. For each incubation time, 

three experiments were performed to increase the reliability of the results. In 
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addition to this, in each of these experiments, the bacteria were 

experimented under different conditions in triplicates to increase the 

reliability of the results. The experimental conditions were: a) Control-1 (No 

erythrosine, no light irradiation); b) Control-2 (+Erythrosine, no light 

irradiation); c) Control-3 (No erythrosine, +Light irradiation); d) Treatment 

group (+Erythrosine, +Light). Following this, total bacterial counts (CFU/ml) 

were measured, and the percentage reduction of bacterial counts were 

calculated and compared between the different experimental conditions and 

different incubation times to assess the bactericidal effect of PDT. 

 

 Total bacterial counts (CFU/ml) measurements 

 

The CFU values were slightly decreased in samples exposed to erythrosine 

alone (Control-2) compared with groups of Control-1 (No erythrosine, no light 

irradiation) and Control-3 (No erythrosine, +Light irradiation). However, the 

combined treatment of light irradiation in the presence of erythrosine (E+L+) 

resulted in significant reduction in CFU counts at all incubation times (Table 

5) (Figure 24).  

Table 5 Mean count CFU/ml, mean log10 CFU/ml and standard deviation 
(SD) for the different experimental conditions using different incubation 
times. 

Treatment 

conditions 

2min 
incubation-time 

5min 
incubation-time 

15min 
incubation-time 

Control-1: 

E-L- 

2.18E+08 

8.26 (±0.32) 

1.59E+08 

8.20 (±0.06) 

3.17E+09 

8.81 (±1.01) 

Control-2: 

E+L- 

1.02E+08 

7.98 (±0.22) 

8.63E+07 

7.93 (±0.10) 

9.37E+07 

7.97 (±0.09) 

Control-3: 

E-L+ 

2.41E+08 

8.35 (±0.20) 

1.80E+08 

8.25 (±0.07) 

2.74E+09 

8.68 (±1.08) 

Treatment: 

E+L+ 

0.00 

0.00 (±0.00) 

0.00 

0.00 (±0.00) 

0.00 

0.00 (±0.00) 
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Figure 24 Total L.casei viable counts (mean log10 CFU/ml ± SD) 
obtained for the different experimental conditions when using 
incubation times of 2, 5 and 15min. 

 

 

 Percentage reduction in total bacterial counts (cell death)  

 

Figure 25 shows that there was a variation in percentage reduction of 

bacterial counts between the different control groups, (E+L-) and (E-L+), 

when using 2, 5, and 15min incubation times, whereas in the treatment group 

(E+L+), there was a 100% reduction in bacterial counts among the three 

incubation times. This indicated that there was no difference in percentage 

reduction in bacterial counts of the treatment group (E+L+) in the three 

different incubation times. Additionally, as data were normally distributed, 

Univariate analysis of variance test (ANOVA) was carried out. It showed that 

there was a statistically significant difference in the percentage reduction of 

the bacterial counts between the different control and treatment groups 

(p=0.000, <0.05). However, there was no significant difference in the 

percentage reduction of bacterial counts between the three different 

incubation times in all the experimental conditions (p=0.266, >0.05). 

Therefore, two minutes incubation time was used in the 2nd arm of the 

following in situ study. 
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Figure 25 Percentage (%) reduction in L.casei viable count for the 
different experimental conditions using different incubation times.  

 

3.2 In situ phase 

3.2.1 Demographic data 

 

In total 18 healthy adults participants who had to fulfil the inclusion and 

exclusion criteria for this study (see section 2.6.1.1 and 2.6.1.2), were 

recruited from the NHS Trust and University of Leeds. Their mean age was 

34 years old, mean DMFT 5.94, and mean salivary flow rate 0.95 ml/min 

(Table 6). 

 

Table 6 Description of the study sample 

 N Range Minimum Maximum Mean SD 

Age 18 37 21 58 34.00 10.27 

DMFT 18 16 1 17 5.94 4.33 

Salivary flow 

rate (ml/min) 
18 0.90 0.60 1.50 0.95 0.22 
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The accumulated plaque samples from 15 participants were used to 

investigate PDT effect by microbiological cultures and bacterial killing assay. 

While the accumulated plaque samples from the remaining three participants 

were used to view the PDT effect under CLSM. 

 

3.2.2 PDT on in vivo formed biofilms 

 

 Baseline measurement- Investigation of variation in one 

appliance 

 

Assessment of the degree of variation in the total bacterial counts (log10 

CFU/ml) among six control groups (six enamel slabs with the accumulated 

plaque) was carried out by using a Coefficient of variation (CV) test. It 

represents the ratio of the standard deviation (SD) to the mean. CV value 

was 0.01 which is close to zero. This means there was no variation between 

the six samples. In addition, the small variation in the confidence interval (CI) 

indicated a significant and precise result (Table 7). 

 

Table 7 Descriptive statistics of log10 CFU/ml among six control groups 

Mean of log10 CFU/ml SD 95% CI for mean 

6.17 0.04 6.13, 6.22 

 

 

 Arm-1 

 

The aim of this arm was to determine the most effective irradiation time that 

would significantly reduce the total viable bacterial counts among the control 

and treatment groups when using 15min incubation time in 220µM 

erythrosine. Two irradiation regimes were used: a) 15min continuous light; b) 

30sec light pulses for 5-times separated by 1min dark periods (fractionated 

irradiation). Duplicate slabs were used for each of the previous light regimes, 
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aiming to increase the reliability of the results. Following PDT, total bacterial 

counts (CFU/ml) were measured and percentage reduction of total bacterial 

counts (cell death) were calculated from the different experimental groups 

with the aim to assess the bactericidal effect of PDT and to determine any 

significant difference in the bacterial viability counts among the different 

treatment and control groups. 

 

3.2.2.2.1 Total bacterial counts (CFU/ml) measurements 

 
Table 8 shows a direct comparison of the mean log10 of the total bacterial 

counts (CFU/ml) of the different control and treatment groups when 15min 

incubation time with 220µM erythrosine was used.  

The bacterial reduction observed in the positive control group (C2), treated 

with erythrosine alone, was 0.26 log10 compared with the negative control 

group (C1). Whereas, the groups treated with erythrosine and irradiated with 

15min continuous light (T1A and T1B) resulted in a bacterial reduction by 

1.33-1.36 log10 when compared with C1. When looking at the bacterial 

reduction in the groups treated with erythrosine and irradiated with 

fractionated light (T2A and T2B), there was a 1.02-1.13 log10 reduction 

compared with C1.  

 

Table 8 Mean log10 CFU/ml and standard deviation (SD) obtained for the 
different experimental conditions when using incubation time of 15min 
(Arm-1) 

Treatment conditions Mean log10 CFU/ml (SD) 

(C1): E-L- 6.08 (±0.79) 

(C2): E+L- 5.82 (±0.76) 

(T1A): E+(15min)L+ 4.72 (±0.80) 

(T1B): E+(15min)L+ 4.75 (±0.81) 

(T2A): E+(5*30s)L+ 5.06 (±0.86) 

(T2B): E+(5*30s)L+ 4.95 (±0.90) 
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3.2.2.2.2 Percentage reduction in total bacterial counts (cell death) 

 

Table 9 shows the descriptive statistics for the percentage reduction in total 

bacterial counts (cell death) in the six control and treatment groups when 

compared with the control 1 (No erythrosine, no light) in 13 subjects. 

Analysis of the accumulated plaque samples from one participant were 

excluded as there were spillage of samples during microbiological testing. 

 

Table 9 Descriptive statistics- Percentage reduction in total bacterial 
counts (cell death) in the six groups with duplicate slabs (A) & (B). 

Treatment 

conditions 
N 

Mean 

(%) 
SD 

Min. 

(%) 

Max. 

(%) 

Percentiles (%) 

25th 
50th 

Median 
75th 

(C1): E-L- 13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

(C2): E+L- 13 42.14 18.76 17.08 74.66 26.45 32.46 57.68 

(T1A): 

E+(15min)L+ 
13 89.13 13.35 64.03 99.82 78.14 94.27 98.88 

(T1B): 

E+(15min)L+ 
13 87.45 16.33 55.40 99.68 74.81 95.73 98.79 

(T2A): 

E+(5*30s)L+ 
13 83.15 17.50 46.39 99.47 78.30 88.15 96.01 

(T2B): 

E+(5*30s)L+ 
13 85.10 16.92 47.48 99.71 79.84 91.37 95.86 

 

 

As can be seen from Figure 26 a small percentage reduction was seen in the 

positive control group E+L- (C2) compared with the negative control group 

(C1). On the other hand, the percentage reductions of the total bacterial 

counts following both 15min continuous light (T1A and T1B) and 30sec*5 

fractionated light separated by 1min dark periods (T2A and T2B) were much 

higher than the control groups.  
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Figure 26 Arm-1: Percentage (%) reduction in viable counts in in vivo 
formed biofilm between the 6 groups. 

 

 

As the data were not normally distributed (mean and median were not equal) 

in the six groups (Table 9), the non-parametric Friedman test was used. The 

results of the Friedman test indicated that there was a statistically significant 

difference in percentage of total bacterial counts between the six different 

groups in all subjects (p=0.000; <0.05). Inspection of median (Md) values 

showed an increase in percentage reduction of bacterial counts from C1 

group (Md= 0.000) to C2 (Md=32.46) and a further increase in the four 

treatment groups (Md= 88.15 to 95.73) (Table 9). 

 

As overall the Friedman test was significant, a series of Wilcoxon tests were 

conducted to identify where the specific differences lay, but with corrections 

to control for inflation of type 1 error. Bonferroni correction α= 0.05/15 = 

0.003 (where 0.05 was the previous alpha (α) and 15 the number of 

comparisons). The test revealed statistically significant differences of the 

percentage reduction of bacterial counts between the negative E-L- (C1) and 

the positive E+L- (C2) control groups with a p value of 0.001, and, also 

between the control groups (C1 and C2) with the four treatment groups in all 
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subjects (n=13), p=0.001 (<0.003). All the four treatment groups had 

significantly higher percentage reduction in their bacterial counts than C1 

and C2 groups. In addition, the test revealed non-statistically significant 

differences of the percentage reduction of bacterial counts between the four 

treatment groups (p>0.003). Therefore, both irradiation regimes, 15min 

continuous light and 30sec*5 fractionated light separated by 1min dark 

periods, were found to be effective for bacterial killing when 15min incubation 

time with 220μM erythrosine was used.  

 

 Arm-2 

 

The aim of this arm was to determine the most effective irradiation time that 

would significantly reduce the total viable bacterial counts among the control 

and treatment groups when using 2min incubation time in 220µM 

erythrosine. Two irradiation regimes were used, similar to arm-1: a) 15min 

continuous light; b) 30sec light pulses for 5-times separated by 1min dark 

periods (fractionated irradiation). Duplicate slabs were used for each of the 

previous light regimes, aiming to increase the reliability of the results. 

Following PDT, total bacterial counts (CFU/ml) were measured and 

percentage reduction of bacterial counts (cell death) were calculated from 

the different experimental groups with the aim to assess the bactericidal 

effect of PDT and to determine any significant difference in the bacterial 

viability values among the different treatment and control groups. 

 

3.2.2.3.1 Total bacterial counts (CFU/ml) measurements 

 

Table 10 shows a direct comparison of the mean log10 of the total bacterial 

counts (CFU/ml) of the different control and treatment groups when 2min 

incubation time with 220µM erythrosine was used.  

The bacterial reduction observed in the positive control group (C2), treated 

with erythrosine alone, was 0.1 log10 compared with the negative control 
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group (C1). Whereas, the groups treated with erythrosine and irradiated with 

15min continuous light (T1A and T1B) resulted in a bacterial reduction by 

1.14-1.24 log10 when compared to C1. When looking at the bacterial 

reduction in the groups treated with erythrosine and irradiated with 

fractionated light (T2A and T2B), there was a 0.63-0.81 log10 reduction 

compared with C1.  

 

Table 10 Mean log10 CFU/ml and standard deviation (SD) obtained for 
the different experimental conditions when using incubation time of 
2min (Arm-2) 

Treatment conditions Mean log10 CFU/ml (SD) 

(C1): E-L- 5.76 (±0.72) 

(C2): E+L- 5.66 (±0.70) 

(T1A): E+(15min)L+ 4.52 (±0.72) 

(T1B): E+(15min)L+ 4.62 (±0.65) 

(T2A): E+(5*30s)L+ 5.13 (±0.64) 

(T2B): E+(5*30s)L+ 4.95 (±0.83) 

 

 

3.2.2.3.2 Percentage reduction in total bacterial counts (cell death) 

 

Table 11 shows the descriptive statistics for the percentage reduction in total 

bacterial counts (cell death) in the six control and treatment groups when 

compared to control 1 (No erythrosine, no light) in 15 subjects. 

 

 

 

 

 

 



- 85 - 
 
 
 

Table 11 Descriptive statistics- Percentage reduction in total bacterial 
counts (cell death) in the six groups with duplicate slabs (A) & (B). 

Treatment 

conditions 
N 

Mean 

(%) 
SD 

Min. 

(%) 

Max. 

(%) 

Percentiles (%) 

25th 
50th 

Median 
75th 

(C1): E-L- 15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

(C2): E+L- 15 20.21 13.99 3.31 46.13 9.18 19.26 28.47 

(T1A): 

E+(15min)L+ 
15 85.05 17.25 52.31 99.30 70.66 93.22 99.04 

(T1B): 

E+(15min)L+ 
15 85.75 14.92 56.52 99.35 80.03 89.92 97.45 

(T2A): 

E+(5*30s)L+ 
15 63.50 27.10 25.41 98.89 36.65 62.34 90.23 

(T2B): 

E+(5*30s)L+ 
15 68.77 26.32 18.86 99.20 45.65 64.09 95.94 

 

 

As can be seen from Figure 27 a small percentage reduction was seen in the 

positive control group E+L- (C2) compared with the negative control group E-

L- (C1). On the other hand, the percentage reductions of the total bacterial 

counts following both 15min continuous light (T1A and T1B) or 30sec*5 

fractionated light separated by 1min dark periods (T2A and T2B) were much 

higher than the control groups.  
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Figure 27 Arm-2: Percentage (%) reduction in viable counts in in vivo 
formed biofilm between the 6 groups. 

 

As the data were not normally distributed (mean and median were not equal) 

in the six groups (Table 11), the non-parametric Friedman test was used. 

The results of the Friedman test indicated that there was a statistically 

significant difference in percentage of total bacterial counts between the six 

different groups in all subjects (p=0.000; <0.05). Inspection of median (Md) 

values showed an increase in percentage reduction of bacterial counts from 

C1 group (Md= 0.000) to C2 (Md= 19.26) and a further increase in the four 

treatment groups (Md= 62.34 to 93.22) (Table 11). 

 

As overall the Friedman test was significant, a series of Wilcoxon tests were 

conducted to identify where the specific differences lay, but with corrections 

to control for inflation of type 1 error. Bonferroni correction α= 0.05/15 = 

0.003 (where 0.05 was the previous alpha (α) and 15 the number of 

comparisons). The test revealed statistically significant differences of the 

percentage reduction of total bacterial counts between the negative E-L- 

(C1) and the positive E+L- (C2) control groups with a p value of 0.001, and, 

also between the control groups (C1 and C2) with the four treatment groups 
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in all subjects (n=15), p=0.001 (<0.003). All the four treatment groups had 

significantly higher percentage reduction in their bacterial counts than C1 

and C2 groups. Surprisingly, there was statistically significant differences of 

the percentage reduction of bacterial counts between the treatment groups 

irradiated with 15min continuous light (T1A and T1B) and the treatment 

groups with 30sec*5 fractionated light separated by 1min dark periods with a 

p value of 0.001 (T2A vs.T1A and T1B) and 0.002 (T2B vs. T1A and T1B) 

(p<0.003) with higher percentage reduction of bacterial counts (up to ≈93%) 

seen in the 15min continuous light groups (T1A and T1B). This finding was 

not observed in arm-1 of the study where 15min incubation time was used. 

Therefore, 15min continuous light was found to be the most effective for 

bacterial killing when 2min incubation time with 220μM erythrosine was used.  

 

 

 Comparison of cell death percentage in in vivo formed 

biofilms between Arm-1 (15min incubation time) and Arm-2 

(2min incubation time) 

 

As can be seen from Figure 28 the combination of light irradiation, 

continuous or fractionated, in the presence of erythrosine (T1 or T2) resulted 

in a significant effect on the viability of the bacteria when using either 15min 

or 2min incubation times when compared to the control groups (Arm-1 & 

Arm-2).  

However, when comparing the effect of 15min continuous light (T1) and 

30sec*5 fractionated light separated by 1min dark periods (T2) regimes on 

the viability of bacteria, there was no significant difference in the percentage 

reduction of bacterial counts when they were incubated for 15min with 

erythrosine (Arm-1) with a percentage of cell death up to 95.73 with 

continuous light and up to 91.37 with the fractionated light. On the other 

hand, there was a significant difference in the percentage reduction of 

bacterial counts when the samples were incubated for 2min with erythrosine 

(Arm-2) and exposed to 15min continuous light (T1) and fractionated light 
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(T2) with a higher percentage of cell death (up to 93.22) noted when 

samples were irradiated with continuous  light (T1). 

 

 

Figure 28 Comparison of percentage (%) reduction of viable counts in 
in vivo formed biofilms between Arm-1 (15min incubation time) and 
Arm-2 (2min incubation time). 

 

 

3.2.3 Intra-examiner reproducibility 

 

A comparison of reliability measures from one examiner (AA) were 

performed on two occasions to establish and quantify reproducibility, and 

thus provide an indication of the reliability of  measurement.  The investigator 

(AA) re-counted the total viable counts of 10% of the total number of blood 

agar plates used in both arms of the in situ phase. This means a total of 

≈300 randomly selected blood agar plates were recounted. They were re-

counted 5-7 days following the initial counting. The plates were kept in the 

microbiology fridge during this time.  

 

One sample t-test was performed to investigate if there was a statistically 

significant difference between the two measurements. The test showed a 
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non-statistically significant difference between them (p=0.220, >0.05). As a 

result, the Bland Altman plot (Figure 29) was produced to assess the level of 

agreement between the two measurements. It shows that most of the values 

were close to the zero line (red line) and within the 95% confidence interval 

limits (-1.24, 1.34; green lines), suggesting a high level of agreement in the 

measurements. In addition, a Regression test was performed to assess if 

there was any potential proportional bias from the bland Altman plot. As the 

coefficient significant =0.282 (>0.05), this meant that there was no 

proportional bias.  

 

 

 

Figure 29 Bland Altman plot 
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3.2.4 CLSM observations 

 

The effect of PDT on in vivo formed biofilms were visualised with CLSM. 

Images of the control and treated biofilms were captured following staining 

with LIVE/DEAD® BacLight™ Bacterial Viability Kit (Molecular Probes, 

USA). 

 

Figure 30 shows a CLSM image of a 14-days in vivo formed biofilm samples 

(untreated samples). It demonstrates a biofilm structure with a 

heterogeneous architecture in terms of types of cells present, such as cocci, 

rods and filaments, and also in terms of the overall structure where clumps of 

bacteria were surrounded by extracellular matrix and separated by fluid filled 

voids (black holes-red arrow). In addition, the majority of the cells showed 

green fluorescence in the absence of light irradiation and erythrosine 

(control), indicating a high level of cell viability (intact membranes). However, 

biofilm samples incubated with 220μM erythrosine for either 15min (Figure 

31 and Figure 32) or 2min (Figure 33 and Figure 34) and then irradiated with 

either continuous 15min light (Figure 31 and Figure 33) or 30sec*5 

fractionated light (Figure 32 and Figure 34), showed an increase in 

red/yellow fluorescence, indicating increased numbers of dead cells 

(damaged membranes).  
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Figure 30 CLSM images showing the architecture of untreated (control) 
14-days in vivo formed biofilm samples. Aggregates of bacteria were 
separated by fluid filled voids (black holes-red arrow). Images taken 
with x63 lens. 
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Figure 31 CLSM images of in vivo dental plaque biofilm samples 
incubated with erythrosine (220μM) for 15min (Arm-1) and irradiated for 
continuous 15min. Images taken with x63 lens. 
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Figure 32 CLSM images of in vivo dental plaque biofilm samples 
incubated with erythrosine (220μM) for 15min (Arm-1) and irradiated for 
fractionated 5*30sec with 1min dark recovery periods. Images taken 
with x63 lens. 
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Figure 33 CLSM Images of in vivo dental plaque biofilm samples 
incubated with erythrosine (220μM) for 2min (Arm-2) and irradiated for 
continuous 15min. Images taken with x63 lens. 
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Figure 34 CLSM images of in vivo dental plaque biofilm samples 
incubated with erythrosine (220μM) for 2min (Arm-2) and irradiated for 
fractionated 5*30sec with 1min dark recovery periods. Images taken 
with x63 lens.   
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          Figure 35 Confocal optical sections of 14-days-old dental plaque biofilm on an enamel slab worn in situ 
and treated with PDT. Sequence of 102 horizontal (x-y) sections at 0.5μm increments, from the enamel 
slab (top left) to the outer layers (bottom right). 



 
 
 
 

 

- 97 - 

In the studied samples, as shown in Figure 35, the proportion of vital cells 

were lower adjacent to the enamel surface (top left), increased in the z-axis 

towards the central parts, and decreased again towards the outer layers 

(bottom right). The thickness of the in vivo formed biofilms for 14-days as 

assessed by CLSM ranged from 395μm to 610μm (control samples) 

depending on the individual. Even with one sample, the plaque height varied. 

While the biofilm thickness following PDT ranged from 51μm to 491μm. 
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Chapter 4 Discussion 

 

In the present study, the antimicrobial effect of PDT on in vivo formed plaque 

biofilms was investigated using erythrosine and a tungsten filament lamp 

(white light). This was based on the previous studies by Tahmassebi et al. 

(2015), Wood et al. (2006) and Metcalf et al. (2006). 

 

Clinical treatment time is an important factor in delivering care to patients. 

This is particularly necessary for special needs patients and children with 

short attention span. PDT effect on bacterial killing is well documented in the 

literature. However, it might involve a long treatment time. Therefore, 

investigating a more clinically acceptable treatment time is required, while 

still ensuring effective killing of bacteria.  

As mentioned earlier in the introduction, different irradiation regimes 

including continuous and fractionated irradiations with different lengths have 

been used and compared in the previous PDT studies. For example, Metcalf 

et al. (2006) study revealed that application of fractionated light (1min light 

pulses for 5 times separated by 5min dark periods or 30sec light pulses for 

10 times separated by 2min dark periods) to S.mutans biofilms grown in vitro 

has an increased cell-killing efficacy compared with continuous irradiation at 

the same overall light dose (5min) and, also, compared to longer periods of 

continuous light (10, 15, and 30 min). Whereas, Tahmassebi et al. (2015) 

reported that both 15min continuous light and fractionated light of similar 

overall treatment dose were equally effective in bacterial killing and both 

were more effective than continuous irradiation of 2 and 5min lengths.  

However, an irradiation time of 15min or more would not be realistic in a 

clinical setting. As a comparison with previous work (Tahmassebi et al., 

2015) in the present study we looked at bacterial killing following 15min 

continuous irradiation and, also, following a fractionated regime of 30sec 

light pulses for 5 times separated by 1min dark periods (Total light treatment 
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length= 7.5min), which is half the previous time, in an attempt to reduce the 

overall PDT treatment time to enhance its clinical usefulness. 

Additionally, among other factors, the effectiveness of antimicrobial PDT has 

been reported to be dependent on the incubation time, which is the period 

required by the photosensitizer to remain in contact with the microorganisms 

before irradiation (Andrade et al., 2013). Various erythrosine-mediated PDT 

studies have used different incubation times prior to irradiation. However, 

there were no reports in the literature that have compared the efficacy of 

different incubation times on in vivo formed biofilms. Therefore, in the current 

study, bacterial killing following different incubation times, including 2, 5, and 

15min, were looked at, attempting to further reduce the overall treatment 

time for PDT. 

 

Thus, in the first phase of the study, PDT effect on L.casei spp. in planktonic 

form was investigated using different incubation times to determine the most 

effective bactericidal time. Once this was determined, this finding was tested 

on in vivo formed plaque biofilms to investigate whether it has any effect on 

its bacterial viability, and then the results were compared with the results of 

the 1st arm of the in situ study, where 15min incubation time was used, 

attempting to reduce the overall PDT time. 

 

4.1 In vitro study 

4.1.1 PDT on planktonic cultures of L.casei 

 

L.casei bacteria was chosen to be tested under PDT as it is one of the most 

commonly isolated species from oral samples (Bagg et al., 2006) and at the 

same time they are associated with advanced caries lesions and carious 

dentine (Marsh et al., 2009). As shown in the results section (3.1.1.2), 

different incubation times (2, 5 and 15min) of these bacteria with erythrosine 

presented no statistical differences in their bacterial viability counts. 
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Additionally, the samples that were exposed to erythrosine alone and no 

irradiation found to have some effect on their bacterial viability counts. This 

confirmed the antimicrobial property of erythrosine that is well documented in 

the literature against Gram-positive and Gram-negative oral bacteria (Marsh 

et al., 1989a; Baab et al., 1983; Caldwell and Hunt, 1969; Begue et al., 

1966). However, the combined treatment of light irradiation in the presence 

of erythrosine caused complete death of these bacterial cells. These results 

were in agreement with Andrade et al. (2013) whose study reported that a 

long incubation time is not required for Curcumin-based PDT on planktonic 

cultures of Candida spp. In their study, 5, 10, and 20min incubation times 

with Curcumin were used. However, there were no reports in the literature 

that have compared different incubation times with erythrosine to compare 

our results with.   

 

As a result of these findings, it was important to test if this finding was also 

applicable on the in vivo formed biofilms. Therefore, 2min incubation time 

was used in the 2nd arm of the in situ study to investigate whether it has any 

effect on bacterial viability and then compare the results with the 1st arm of 

the in situ study, where 15min incubation time was used, attempting to 

reduce the overall PDT time. 

 

4.2 In situ study 

4.2.1 Sample size  

 

The sample size of this study was based on the previous pilot study 

(Tahmassebi et al., 2015) and it was determined following statistical advice 

by a qualified biostatistician, University of Leeds. Fifteen participants were 

recruited in the previous pilot study where their plaque samples were treated 

with erythrosine-based PDT and, then, the total bacterial counts were 

measured. Whereas the sample size used in other PDT studies on in vivo 

formed biofilms, using different types of photosensitizer and/or light source, 
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were 8, 20 and 21 participants (Teixeira et al., 2012; Lima et al., 2009; Wood 

et al., 1999). Therefore, based on the previous literature and the time 

available for patient recruitment, 18 participants were recruited to ensure a 

sufficient sample size that would successfully complete the study.  

 

4.2.2 In situ appliance 

 

A mandibular removable appliance, which was introduced by Koulourides 

and Volker (1964) was used in this present study with some modifications to 

collect the undisturbed layer of plaque. Similar design was used in the 

previous pilot study (Tahmassebi et al., 2015) without causing severe 

problems or discomfort to participants. This appliance did not interfere with 

the participants’ daily oral hygiene procedures, allowing them to remove it 

during tooth brushing as well as during eating and drinking. This is also 

allowed the accumulation of dental plaque with no disruption, since the 

analysis of undisturbed human dental plaque biofilms has been considered 

as the best method for studying the architecture and physiology of biofilm 

formation on dental materials and, also the effect of antimicrobial therapies 

on the biofilm structure (Tomás et al., 2010).  

The appliance used in the current study contained three enamel slabs 

inserted in the right buccal flange, and another three in the left buccal flange 

in a way that biofilm growth is protected and not disturbed by the tongue and 

the cheeks (Figure 18). In order to ensure that the baseline measurements of 

the accumulated plaque in all the six slabs were comparable, we 

investigated whether there was a variation of bacterial viability counts among 

these slabs in one appliance. No difference in the total bacterial counts 

(CFU/ml) was found among the six in vivo formed biofilm samples for 14-

days. This was in agreement with studies carried out by Tahmassebi et al. 

(2015) and Arweiler et al. (2004). 
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4.2.3 Results of Arm-1- Irradiation time 

 

The aim of this arm of the in situ study was to determine the most effective 

irradiation time that would significantly reduce the total viable bacterial 

counts among the control and treatment groups when using 15min 

incubation time in 220µM erythrosine. Two irradiation regimes were used: a) 

15min continuous light; b) 30sec light pulses for five times separated by 1min 

dark periods (fractionated irradiation), aiming to reduce the overall PDT 

clinical time. 

The results demonstrated that incubation of the biofilm samples with 

erythrosine alone and no irradiation had a small effect on the CFU values 

compared with the control group (0.26 log10). Whereas, in the treatment 

groups that were treated with erythrosine and irradiation resulted in a 

bacterial reduction of 1.33-1.36 log10 when the 15min continuous light was 

applied and 1.02-1.13 log10 reduction when the fractionated light was 

applied.  

In terms of the percentage reduction of total bacterial counts, both irradiation 

regimes, 15min continuous light and 30sec*5 fractionated light separated by 

1min dark periods, were found to be statistically significantly different than 

the control groups. In addition, the bacterial killing following these two 

irradiation regimes were found to be not statistically significantly different, up 

to 95% and 91% bacterial killing, respectively. Therefore, both these 

irradiation regimes were found to be equally effective in bacterial killing when 

15min incubation time with 220μM erythrosine was used.  

 

These findings agreed with the previous studies of Tahmassebi et al. (2015); 

Wood et al. (2006) and Metcalf et al. (2006). Tahmassebi et al. (2015) 

evaluated the photodynamic activity of erythrosine (220μM), irradiated with a 

tungsten filament lamp on a 14-days in vivo formed biofilms. Irradiation 

regimes of 15min continuous light and fractionation regime of 1min light 

pulses for 5 times separated by dark periods of 2min were both found to be 

superior in bacterial killing compared to 2min and 5min continuous irradiation 
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when 15min incubation time with erythrosine was used. Both of these 

irradiation regimes were also equally effective in bacterial killing (≈ 96% and 

93%, respectively). Their results suggested that bactericidal effect of PDT 

was dose-dependent, in which the higher the concentration of 

photosensitizer and the longer the duration of the light that is used, the more 

the damage to the target tissues is expected (Tahmassebi et al., 2015; 

Konopka and Goslinski, 2007; Metcalf et al., 2006). Whereas, Metcalf et al. 

(2006) demonstrated that fractionation of light (1min light pulses for 5 times 

separated by 5min dark periods and 30sec light pulses for 10 times 

separated by 2min dark periods) during irradiation of S.mutans biofilms 

grown in vitro, treated with 15min incubation with 22μM erythrosine, resulted 

in a significantly increased bacterial killing by 1 to 1.7 log
10 when compared 

to 5, 10, 15 or 30min continuous light regimes. 

Interestingly, in the current study, when the irradiation time was reduced to 

2.5min, which was applied in 30sec light pulses for 5 times separated by 

1min dark periods, the bacterial killing was effective and equal to the 

bacterial killing obtained from the 15min continuous irradiation. This can be 

due to the replenishment of oxygen during the dark periods for erythrosine to 

initiate more photochemical reactions or maybe due to the 

replenishment/redistribution of the erythrosine itself within the biofilm during 

these dark periods as the photodynamic activity results to lessen erythrosine 

levels due to photo-bleaching (Metcalf et al., 2006; Wood et al., 2006).  

Furthermore, Wood et al. (2006) evaluated the effectiveness of erythrosine, 

irradiated with tungsten filament lamp on S.mutans biofilms grown in vitro. 

Different photosensitizers were compared, including 22μM erythrosine, 

methylene blue and photophrin. Biofilms were incubated for 15min in their 

solutions then irradiated for continuous 15min. Erythrosine was found to be 

the most effective photosensitizer, resulting in a 2.2 log10 reduction of 

bacterial counts for 24h biofilms and a 3.0 log10 reduction for 288h biofilms. 

The possible explanation for this finding was that S.mutans are photo-

inactivated mainly by membrane damage that resulted from lipid 

peroxidation, which is the likely mechanism of action of erythrosine, 
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whereas, methylene blue causes damage to bacterial cell DNA and to a 

lesser extent the outer cell membrane (Wood et al., 2006).  

Overall, the bactericidal effect of 15min incubation time with erythrosine and 

irradiation with either 15min continuous light or different regimes of 

fractionated light resulted in a significant reduction of total bacterial counts in 

both in vitro and in vivo formed biofilms. However, the bacterial reductions 

observed in the previous studies on S.mutans biofilms grown in vitro were 

higher (3-3.7 log10) (Metcalf et al., 2006; Wood et al., 2006) than those found 

in the current study on in vivo formed biofilms (1-1.36 log10). This can be 

explained by the fact that in vitro formed biofilms have a limited number of 

species and have a composition and structure that is different to those in in 

vivo formed biofilms (Watson et al., 2005). As a result the analysis of 

undisturbed human dental plaque biofilms has been considered as the best 

method for studying the effect of antimicrobial therapies on the biofilm 

structure (Tomás et al., 2010). 

 

4.2.4 Results of Arm-2- Incubation time 

 

The aim and the protocol for the 2nd arm was exactly the same as the 1st 

arm, except; the incubation time of samples was different (2min), which was 

determined from the initial in vitro study on planktonic cultures of L.casei 

bacteria, aiming to investigate whether this shorter incubation time has any 

effect on bacterial viability of in vivo formed biofilms and then compare the 

results with the 1st arm of the in situ study, where 15min incubation time was 

used, attempting to reduce the overall PDT time. 

 

The results of this arm showed that incubation of the biofilm samples with 

erythrosine alone and no irradiation had a minor effect on the CFU values 

compared with the control group (0.1 log10). Whereas, in the treatment 

groups that were treated with erythrosine and irradiation resulted in a 

bacterial reduction of 1.14-1.24 log10 when the 15min continuous light was 
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applied and 0.63-0.81 log10 reduction when the fractionated light was 

applied.  

 

In terms of the percentage reduction of total bacterial counts, both irradiation 

regimes, 15min continuous light and 30sec*5 fractionated light separated by 

1min dark periods, were found to be statistically significantly different than 

the control groups. But, when comparing the bacterial killing following these 

two irradiation regimes, they were statistically significantly different, up to 

93% and 64% bacterial killing respectively. This finding was not observed in 

arm-1 of the study where 15min incubation time was used. Therefore, 15min 

continuous light was found to be the most effective for bacterial killing when 

2min incubation time with 220μM erythrosine was used.  

 

4.2.5 Comparison of cell death percentage in in vivo formed 

biofilms between Arm-1 (15min incubation time) and Arm-2 

(2min incubation time) 

 

Surprisingly, when applying continuous light with either incubation time, 2 or 

15min, there was no significant difference in the viability of bacteria. 

Whereas, when applying fractionated light, there was more cell death when 

the 15min incubation time was used, which was up to 91% compared to 64% 

with the 2min incubation time. As stated earlier, there were no reports in the 

literature that have compared the efficacy of different incubation times on in 

vivo formed biofilms to compare our findings with. Instead, some erythrosine-

based PDT studies have used 5min incubation time (Pereira et al., 2013; 

Rolim et al., 2012; Chibebe Junior et al., 2010) while others have used 

15min incubation time (Tahmassebi et al., 2015; Metcalf et al., 2006; Wood 

et al., 2006) and both times showed significant reduction in the bacterial 

viability. However, the reasons for this difference in the present study are 

unclear, but may be the less contact time with the photosensitizer could have 

limited the uptake of its molecules into the bacterial cells and as a 

consequence less cell death have occurred. Therefore, it would be good to 
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look at the uptake of the photosensitizer into the bacterial cells in future 

work. 

Moreover, these findings definitely have supported the fact that the 

bactericidal effect of PDT works in a dose-dependent manner. However, 

even though there was a statistical difference in the percentage reduction of 

total bacterial counts between the two irradiation regimes, there was a 64% 

reduction compared to the control, which still means that PDT was not 

unsuccessful but was less effective.  

 

This outcome partly contradicted the results found in the in vitro phase of the 

current study, where the different incubation times (2, 5 and 15min) 

presented no statistical differences on the percentage reduction of L.casei 

counts. Therefore, this showed and supported the fact that the effect of PDT 

on dental biofilms is different than on planktonic cells. This is either due to 

the structural variation in the bacterial cell membranes or the presence of 

other components, such as extracellular matrix and quorum-sensing factors 

in dental biofilms, rendering the photosensitizer-microorganism interaction 

(Huang et al., 2012).  

 

4.2.6 Assessment of bactericidal effects of PDT by CLSM 

 

In the present study, CLSM was used to visualize PDT effects on in vivo 

formed biofilms. Numerous researchers have also used CLSM to study 

biofilm architecture and PDT effects on dental plaque biofilms (Wood et al., 

2006; Wood et al., 1999; Netuschil et al., 1998). It provides detailed 

compositional information such as differentiating between different morph-

types of bacteria, like cocci, rods and filaments, especially when used in 

combination with fluorescent probes (Dige et al., 2007; Lawrence et al., 

2003). The present CLSM analysis on in vivo formed biofilm sample (Figure 

30) agreed with previous studies’ findings on biofilm structure as it showed a 

heterogeneous architecture in terms of types of cells present, such as cocci, 
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rods and filaments, and also in terms of the overall structure where clumps of 

bacteria were surrounded by extracellular matrix and separated by 

voids/channels (black holes). These voids were thought to be filled with 

biological substances, such as extracellular polymeric substances (EPS) and 

glycoproteins and act as a circulatory system where oxygen and nutrients 

were available in the biofilm (Wood et al., 2000). It extended through the 

whole thickness of the biofilm sample providing a link between the oral 

environment and the tooth surface (Auschill et al., 2001; Wood et al., 2000). 

 

In terms of visualizing PDT effects on bacterial viability, CLSM provides 

images for instantaneous observation of surviving bacteria and affected 

bacteria. Few previous studies evaluated the antibacterial effect of PDT 

using erythrosine by CLSM analysis. However, these studies evaluated the 

effect of PDT against in vitro formed S.mutans biofilms (Lee et al., 2013; 

Wood et al., 2006). The antibacterial effect of erythrosine and a white light 

source (tungsten filament lamp) against in vivo formed dental plaque biofilm 

had never been tested under CLSM. In the present investigation, CLSM 

images showed that there was a marked difference in the bacterial viability 

between the control and the treated samples with PDT against in vivo formed 

biofilm. In the control samples (Figure 30) almost all cells were stained 

green, indicating viable bacteria with undamaged cell membranes. Whereas 

in the treated samples, either with continuous light or fractionated light, there 

was uneven spatial distribution of vital and dead cells with higher proportion 

of dead cells that were stained red/yellow. These findings corresponded with 

the findings of Lee et al. (2013) when PDT effects was investigated against 

in vitro formed biofilms using erythrosine and dental halogen curing light. 

However, in our investigation, we couldn’t determine which treatment group 

was superior in terms of bacterial killing as no quantitative technique was 

performed. Nevertheless, there are several explanations for the uneven 

distribution of these vital and dead cells throughout the biofilms such as the 

availability of oxygen for PDT to have an effect or may be due to having 

diverse populations of cells that have different susceptibility to PDT because 

of their different structures. Interestingly, this was seen in the plaque samples 
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in Figure 31 and Figure 33, where the rod shaped bacteria is seem to be less 

susceptible to PDT than the cocci shaped bacteria as evidenced by the 

green fluorescence (undamaged membranes). 

 

Moreover, in the studied sample (Figure 35) the proportion of vital cells were 

increased in the z-axis towards the central parts. This was in agreement with 

previous studies’ findings by Auschill et al. (2001). This high proportion of 

viable bacteria found in the central part of the biofilm sample and 

surrounding the pores and channels has been explained to be due to having 

a direct access to nutrients diffusing through these voids (Auschill et al., 

2001). These voids also has been considered as a significant factor in 

relation to the penetration and distribution of molecules, including 

antimicrobial agents. However, on the other hand, biofilm matrix, which 

contains polysaccharides, proteins and other metabolites, is thought to 

protect the microorganisms from the environment and could prevent diffusion 

of these antimicrobial agents in the biofilm (Marsh, 2005; Marcotte et al., 

2004; Robinson et al., 1997). This also may explain the high proportion of 

viable bacterial surrounding the pores and channels. As a result, 

microorganisms in dental plaque biofilms are much more resistant to 

antimicrobial agents than planktonic bacteria, which require less 

antimicrobial agent to be killed than that is needed to destroy dental biofilms 

(Marsh et al., 2011; Auschill et al., 2001). 

 

In terms of the thickness of the plaque biofilm formed for 14-days in the 

present investigation, as assessed by CLSM, this ranged from 395μm to 

610μm depending on the individual. Even with one sample, the plaque 

height varied. However, the plaque thickness following PDT was less, 

ranging from 51μm to 491μm. This was in agreement with findings published 

by Wood et al. (1999) where the thickness of in vivo formed biofilm samples 

for 7-days following PDT, using phthalocyanine photosensitizer, were around 

half the thickness of the controls under their CLSM analysis. The 

researchers used both TEM and CLSM in their study. They reported that the 
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reason for the reduced thickness of plaque in the treated samples was due 

to damage of bacterial membranes, as evident in TEM, which lead to reduce 

cell-to-cell or cell-to-matrix binding and subsequent loss of bulk of biofilm. 

 

In summary, the bactericidal effects of PDT as seen by CLSM has 

corresponded with our findings when using the microbiological analysis of 

viable bacterial count, indicating that a combination of microbiological 

techniques and microscopic techniques can help to achieve a realistic 

representation of PDT effect on in vivo formed dental plaque biofilms.  

 

4.3 Future research 

Evidently erythrosine-based PDT can cause significant reduction of in vivo 

formed plaque biofilms and might be useful for controlling dental plaque 

related diseases such as caries and periodontal disease. In addition, we 

have shown that improving the clinical usefulness of PDT by reducing the 

incubation time with erythrosine form 15min to 2min resulted in an equally 

effective bactericidal killing with 15min of continuous irradiation (≈95% and 

93%, respectively). However, when we attempted to reduce the irradiation 

time further by fractionating the light dose, the results showed less 

effectiveness in total bacterial killing (≈64%) when a 2min incubation time 

was used. However, in order to determine the true effectiveness of PDT, we 

need to identify which bacteria within the plaque are most affected by the 

treatment.  

 

Therefore, future work should investigate the bactericidal effect of PDT on 

specific bacteria, which have been identified as playing a major role in dental 

caries, such as S.mutans. Targeting of disease-causing bacteria would also 

be beneficial as it would not be appropriate to kill the entire oral microflora, 

as this would leave the patient open to opportunistic infections. This specific 

targeting can be achieved by coupling the photosensitizers with antibodies 
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specific for bacterial cell wall components (Soukos and Goodson, 2011; 

Meisel and Kocher, 2005). 

 

Further work is now being undertaken to test the combined effect of 220μM 

erythrosine and white light on epithelial cells in order to minimize any 

possible normal tissue damage in the patient. Following this, well conducted 

in situ studies/trials are required to assess the effect of PDT clinically if they 

exist and compare it with the current best practice. This can be done by 

running a randomised controlled clinical trial investigating, for example, the 

effect of PDT as an adjunct to non-surgical treatment of deep periodontal 

pockets, comparing the periodontal clinical parameters such as plaque 

index, bleeding index, probing depths and clinical attachment levels at 

baseline and post-treatment in monthly intervals to assess for improvements. 

Additionally, the PDT effect, in situ, on the number of bacteria causing dental 

caries in patients with high caries risk, can be assessed by measuring the 

salivary levels of these bacteria before and after the PDT intervention on 

dental plaque biofilms. However, prior to the transition to clinical trials, the 

mode of delivery of PDT in oral cavity needs to established. 

 

Although the tungsten filament lamp showed to be effective in the past and 

the current investigations using erythrosine-based PDT, the drawback of this 

light source is that it is bulky and, also, generates heat that might cause 

burning sensation in vivo, especially if applied for long times. Therefore, for 

clinical relevance, tungsten filament lamp might not be convenient for clinical 

use in patients, especially in a small area as the oral cavity and alternatives 

need to be considered to improve the delivery of light. One such alternative 

is the LED light source. It is already been used in dentistry as a curing light 

for restorative materials and, also, it is available in the market as in a chair-

side bleaching light trays. It is small, portable and safe. In addition, it doesn’t 

generate heat as the tungsten filament lamp. Several erythrosine-based PDT 

studies have used LED on the in vitro dental plaque biofilms and planktonic 

cultures and it showed a successful outcome (Pereira et al., 2013; Rolim et 
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al., 2012; Chibebe Junior et al., 2010). Therefore, the combination of the 

LED and erythrosine varnish should be considered and studied for PDT 

clinical trials in near future, especially that LED has a wavelength close to 

the wavelength that corresponds to the maximum absorption of erythrosine. 

Again, as both erythrosine and LED are commonly used in dental clinics, 

PDT will be available without additional cost. However, its cost effectiveness 

should be measured against the current best practice. 
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Chapter 5 Conclusions 

 

From the results of this study on the antimicrobial effect of PDT on in vivo 

formed dental plaque biofilms using 220μM erythrosine and a tungsten 

filament lamp (white light), it can be concluded that: 

 

1. There was no significant difference in the percentage reduction of total 

bacterial counts when using either 2min or 15min incubation times, plus 

an irradiation regime of continuous light (15min). 

 

2. There was no significant difference in the percentage reduction of total 

bacterial counts when using either 15min continuous light (~95%) or 

30sec*5 fractionated light separated by dark periods of 1min (~91%) 

when using a 15min incubation time with erythrosine. 

 

3. There was a significant difference in the percentage reduction of total 

bacterial counts when using either 15min continuous light (~93%) or 

30sec*5 fractionated light separated by dark periods of 1min (~64%) 

when using a 2min incubation time with erythrosine.  

 

Therefore, improving the clinical usefulness of PDT by reducing its overall 

treatment time seems to be promising and effective in killing in vivo formed 

dental plaque biofilms. 
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