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Abstract

Recent developments in single cell sequencing allow us to elucidate processes of

individual cells in unprecedented detail. This detail provides new insights into the

progress of cells during cell type differentiation. Cell type heterogeneity shows the

complexity of cells working together to produce organ function on a macro level.

The understanding of single cell transcriptomics promises to lead to the ultimate

goal of understanding the function of individual cells and their contribution to

higher level function in their environment.

Characterizing the transcriptome of single cells requires us to understand and

be able to model the latent processes of cell functions that explain biological vari-

ance and richness of gene expression measurements. In this thesis, we describe

ways of jointly modelling biological function and unwanted technical and biolog-

ical confounding variation using Gaussian process latent variable models. In ad-

dition to mathematical modelling of latent processes, we provide insights into the

understanding of research code and the significance of computer science in devel-

opment of techniques for single cell experiments.

We will describe the process of understanding complex machine learning al-

gorithms and translating them into usable software. We then proceed to applying

these algorithms. We show how proper research software design underlying the

implementation can lead to a large user base in other areas of expertise, such as

single cell gene expression. To show the worth of properly designed software un-

derlying a research project, we show other software packages built upon the soft-

ware developed during this thesis and how they can be applied to single cell gene

expression experiments.
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Understanding the underlying function of cells seems within reach through

these new techniques that allow us to unravel the transcriptome of single cells. We

describe probabilistic techniques of identifying the latent functions of cells, while

focusing on the software and ease-of-use aspects of supplying proper research code

to be applied by other researchers.
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Chapter 1

Introduction

The past decade stood under the banner of data science. Data science is the science
of extracting information from unstructured and, commonly, heterogeneous data.
Many branches of research are increasingly focusing on more unstructured data,
and letting the model resolve its complexity to reveal the underlying signal. This
has led to a significant increase in the number of implementations and software
packages published in many areas of life sciences [14]. In this thesis, we will de-
scribe ways of ensuring implementation quality, reusability and extendability of
software to analyse complex microbiological data and questions. We use proba-
bilistic modelling to incorporate the quantitative measurements taken from bio-
logical systems. We perform pattern recognition to facilitate biologists to extract
insights from the system and incorporate prior knowledge from the biologist to
increase signal discovery.

In biology, the advances in revealing molecular biological quantitative traits
has made data science a big driver of scientific discoveries in molecular biology.
Next generation sequencing [76] technologies facilitate measuring the expression of
all genes in whole tissues. Genes are the basic unit for heritable information in life
[59]. The amount of gene expression in the cell machinery provides a quantitative
measure for the amount of protein present (Sec. 1.2). Proteins are the basic actors in
cell activity and are therefore crucial in identifying cell function. The ability to con-
sider these quantitative measures allows for new and exciting ways of unraveling
the underlying mechanisms and functional relations inside biology on a molecular
basis.

Traditionally, descriptive analytics was used to describe data. Prior to drawing
conclusions, data was carefully filtered and (hand) selected for analysis. Advances
in machine learning techniques allowed data to be used in predictive analytics. That
is, we supply the machine learning technique with ways to reveal which parts of
the data are informative for the prediction of variables of interest. This initiated the
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so-called “big data” trend. The more data an appropriate algorithm sees, the better
it gets at estimating probable outcomes. Not only more data, but also different
sources and heterogeneity of data improve prediction [38; 58; 72].

For example, if the big data comes from molecular measurements of single cells
of a tissue [42], we can extract biological answers about the inter-relationship of
cells within that tissue. The nature of machine learning and data science algorithms
means more data amounts to more predictive power. Thus, the amount of certainty
in biological insight increases with the amount of measurements of cells we extract.
By measuring the gene expression of cells from different tissues, scientists are able
to identify genes, which are active in only one of the tissue types. This gives hints
towards the function of genes in tissues overall, by assigning the tissue function to
the identified genes. In a tissue, cells work together to perform the function of this
part of the body. However, recent studies show evidence for more heterogeneity
between cells than previously assumed [42]. Even within previously assumed to
be homogeneous cell types, new sub types arise [79]. Separating single cells and
individually measuring their gene expression enables us to distinguish cell types
on an unprecedented level of detail. And with this level of detail new challenges
arise for the handling of new types of confounding variation in collected measure-
ments. The low amounts of molecules within one cell require amplification. A fail-
ure of amplification results in a so called dropout event and the particular gene is
wrongly assigned not to be expressed. This is not the only new source of variation:
heterogeneity between individual cells, experimental circumstances and biological
variation have a large impact on the function of a cells genes [79]. In the process of
measuring this gene expression, many technical steps need to be performed [42].
This means there is a high probability for experimental influences to generate ef-
fects not associated to the variable of interest. Also, biological variability between
subjects (or cells) can influence the outcome in a non expected manner. For that,
confounder correction is required to reveal the real effect of the variable of interest
[52].

The most commonly measured tissue is blood and the information contained
in it. For many diseases blood is the carrier of nutrients and helper cells, which
help at the attacked site. Clinical diagnostics still mostly rely on chemical blood
measurements, not including gene expression as a diagnostic tool. Thus, improv-
ing the analysis and throughput of genetic measurements on a singular cell basis
will ultimately improve diagnostics in a clinical setting, maybe even allowing the
prevention of disease before onset.

2



1.1 Contribution and Roadmap

In this thesis, we describe the full picture of implementing complex (machine learn-
ing) algorithms from a research software design perspective. Additionally, we
show how to apply these techniques and results from machine learning algorithms,
when applied to single cell gene expression experiments. The thesis comprises the
combination of three major parts of research to a fully functional application of ma-
chine learning to biological data: research software engineering, machine learning
and gene expression measurements. The major contributions of this thesis are in
the research software design for a proper foundation of code, proper understand-
ing of the machine learning tools and the application to single cell gene expression
experiments.

In the following sections, we will first introduce the biological background (Sec.
1.2) of gene expression experiments. Second, we will introduce the general idea of
the main probabilistic machine learning algorithm used in this thesis (Sec. 1.3).
Third, we will show general introductory insights into research code and the diffi-
culties which arise during development (Sec. 1.4). During this, we will elucidate
general ways of keeping a code base clean and having testing suites to be confident
about the research code. This is well known in software design and has to be taken
seriously by the machine learning community to produce reproducible results.

The following chapters of this thesis include the methodological chapter (Cha.
2), explaining Gaussian process (GP) based machine learning techniques. The first
chapter explains basic GP regression and following steps to get to the main ma-
chine learning tool used in this thesis, the variational Bayesian Gaussian process
latent variable model. This model is a way of learning the inputs X for a mapping
f(X) = Y with a GP constraint on f . All of these models where implemented dur-
ing the course of this thesis and are supplied in GPy. GPy is the software package
alongside this thesis and a large portion of GPy represents a part of the contribu-
tions of this thesis. We will introduce the basic steps of software engineering and
design in detail in the case study around GPy (Cha. 3), showing the implemen-
tation of Gaussian processes. This chapter also includes and explains the steps for
software to supply a proper extendible code base to be built upon. In Chapter 4, we
show applications of machine learning tools to single cell gene expression. Here,
we also show Topslam (Sec. 4.1), which is a method to unravel the ordering of sin-
gle cells. It makes use of the probabilistic nature of the machine learning technique
and estimates a landscape on which distances may be distorted. Topslam corrects
for these distortions to supply a more stable estimate of the ordering of cells. In the
following sections we will first apply Topslam to a real world experiment of early

3



embryonic development in mice (Sec. 4.2), extracting the ordering of cells in early
development only from snap shot gene expression measurements taken in series.
We then (Sec. 4.3) conclude the results by applying machine learning tools which
were developed in cooperation, or solely, by other researchers on top of GPy. This
chapter shows the expanse of GPy and its usage outside of the scope of this thesis.
It provides supplement to the main point of this thesis: bringing machine learning
to the domain.

In summary, this thesis shows how to apply software engineering in a machine
learning environment, supply the machine learning tools to other areas of expertise
and problems which may arise during such a development. We show the solutions
we found during the course of this thesis and tackle communication and translation
hurdles when working across areas of expertise.

1.2 Biological Background - From DNA to Protein

Most heritable information in life is written in the DNA of an organism. Species
specific information separates the different branches on the tree of life. A gene is
one unit of heritable information. Complex combinations of temporal activation
of sets of genes define the function and differentiation of cells along the life of an
organism. Most prominently shown in the early stages of development, one can
distinguish patterns of cells dividing into the different parts of the body. In this
thesis we focus on revealing these functional features of cells and their intrinsic
signals using machine learning techniques (Sec. 1.3) [98].

1.2.1 Discovery and Structure of DNA

Gregor Mendel first described heritability from breeding experiments with peas.
In 1865 he discovered, that the different phenotypes of pea flowers can be ex-
plained by specific ratio laws [59]. To this date, these laws are called and used
as the “Mendelian laws”. The first isolation of DNA was by Friedrich Miescher
in Tübingen, but at the time he failed to realize the importance of his discovery. In
1909 Wilhelm Johannsen described one unit of heredity with the word gene. In 1953
the double-helix structure of DNA was revealed by Watson and Crick [94]. DNA
consists of four bases, connected by a sugar-phosphate backbone. The atoms are
connected from 5’C atom to 3’C of the base, which gives the DNA strand its direc-
tion (from 5’ to 3’). These bases, called nucleotides, build up two complementary
linearly composed strands, which form a double helix. Two nucleotides respectively
form hydrogen bonds, which stabilize the double helix. The four nucleotides are
Adenine, Thymine, Guanine and Cytosine. A and T can bind to each other by form-
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Figure 1.1: Double helix structure of the DNA. The double helix is built up by linearly
linked nucleotides - connected by a sugar-phosphate backbone. Hydrogen-bonds form
only between A and T and between G and C. U.S. National Library of Medicine [89]

ing two hydrogen bonds. Therefore, A and T are said to be complementary. G and
C are also complementary: they form three hydrogen bonds. This complementary
strand is called complementary DNA (cDNA). When two fitting cDNA strands bind
to each other they form a double helix, mentioned above. The binding of two com-
plementary strands is called hybridisation, where the complementary strands are
also directionally complementary [97]. Inside the cell, DNA is always present in
double helix form. Figure 1.1 depicts the double helix form with its backbone and
nucleotides [98].

Crick et al. [17] describe the transcription from DNA to RNA and the triplet
coded translation from RNA to protein. Sanger et al. [73] described the first DNA
sequencing techniques. This means reading the information written in the DNA
molecules of organisms as the four nucleotides. The next years revealed many
different properties of DNA. The first microarray technologies were developed in the
1980s, enabling gene expression quantification utilising RNA molecule counts. We
use the RNA count as a proxy of protein activity, by assumption. The first full
sequenced human genome was published in 2001 by Lander et al. [46].

In the years since 1865 many more discoveries about DNA and its properties
were made, and describing all of them would go beyond the scope of this thesis.
Here we will focus on the analysis of gene expression as a quantitative trait of cells
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to elucidate function, relation and properties of the building blocks of life [98].

1.2.2 Functional View on DNA – Genes, Expression and Proteins

In all life on earth the DNA holds the heritable information from one generation
to the next. We divide the DNA sequence of nucleotides into regions: coding and
non-coding regions.

The coding regions hold the genes, which are transcribed and translated into
proteins. Non-coding regions take part in secondary processes (see more for exam-
ple in Ahnert et al. [2]; Mercer et al. [60]).

A coding region gets transcribed and translated into protein. It is flanked by
specific start and stop codons (triplets of nucleotides encoding an amino acid).
Flanking this, untranslated regions (UTR, “empty spaces”) can hold enhancers or
structural features to influence the expression of the gene. The coding region con-
sists of introns and exons. DNA is transcribed into pre-messenger ribonucleic acid
(RNA) before splicing takes place. The introns are spliced (“cut”) out during tran-
scription, so that only the exons are left for the protein. This messenger RNA gets
chemically sealed by a 5’ cap and 3’ poly-A tail. Protected against degrading pro-
teins, it now traverses the nucleus membrane into the intracellular space. Here
ribosomes translate the mRNA into the corresponding protein. Figure 1.2 gives an
overview over the expression process of proteins.

The number of RNA molecules measured in a cell is known as gene expression.
We assume relative differences between gene expression of different genes as a
proxy for relative amounts of protein of that gene in the cell. Proteins are the active
component in a cell performing the function of the gene. The functionality of the
gene is to provide the information for the protein it encodes. Interaction with other
genes and non-coding regions or proteins changes the expression of a gene over
time. This enables a cell to respond to differing environmental circumstances in
and around it. Thus, if we measure a gene to be differentially expressed under
certain (changes of) circumstances, we can, with high likelihood, assign this gene
(and its transcript) to respond or take part in the handling of this circumstance.

Not only other genes and proteins can influence gene expression. The non cod-
ing regions of DNA contain so-called biomarkers, which are sequence elements, that
can influence expression. One of which is a mutation at one singular point – a
single nucleotide polymorphism (SNP) – in the genetic code. If the SNP is in and
around a coding region, it can influence its expression. SNPs can occur inside a
gene, so they can directly influence the protein sequence and therefore function-
ality. They can also occur far away from the gene they interact with, supplying
structural changes to the far away region or binding affinities to translation factors,
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Figure 1.2: Prior to the coding region of a gene is its promoter on the DNA. The coding
region is transcribed into mRNA, and introns are spliced away. The exons form the protein
coding sequence (CDS), flanked by untranslated regions and the start and stop codon of
the protein. The resulting mRNA gets chemically sealed by a 5’ cap and a 3’ poly-A tail.
Protected from degrading proteins it passes the nucleus membrane and gets translated
into a protein in the cell cytoplasm (depicted as green folding chain) by ribosomes running
along the mRNA. Taken with author approval from [98]

which then ultimately alter the gene expression from a distance. A SNP can also
influence proteins outside the nucleus through so called microRNA, which can pass
the nucleus membrane and act upon proteins.

As already mentioned, gene expression changes over time. Waddington [92]
describes the differentiation pattern of genes as a ball rolling down a landscape
stochastically deciding at junctions which way to go. The ball rolling represents
time and the landscape represents the environment around the gene, influencing
its expression. The landscape Waddington describes is depicted in Figure 1.3.

In the original of Waddington’s landscape the mechanisms forming the shape
of the landscape (think of strings, pulling the surface down at the right places) are
biomarkers, epigenetic modification and environmental influences, deciding which
differentiation profiles are possible for the cells. This ensures reproducing cells in
specific organs only differentiate into cells of that organ and not other body parts.
To model the gene expression over time, we need to rely on flexible models. Flex-
ible enough to describe the changes over time, caused by the influences described
above. We observe the influences and functionality only indirectly through the ex-
pression value of genes. The model has to take relative expression patterns to other
genes into account and model the underlying tasks arising from those. All of the
above proves modelling gene expression for heterogeneous populations, such as
single cell measurements, a complex task.
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Figure 1.3: Waddington landscape surface. Depicted is the landscape along which cells
differentiate, progressing in time. Time acts like gravity on a ball rolling down a hill. At
junction points, cells decide which way to go. Differentiation mechanisms usually enforce
a distribution on the cells, so that the right fractions of cells is accomplished at the differen-
tiated stage. [Figure reproduced from Waddington [92]]

As an intuition for Waddington’s landscape we like to think of a skiing piste,
on which it is easier to ski down the made paths, as opposed to the rough non
made bits. We will use this idea in the Topslam (Sec. 4.1) algorithm. In Topslam we
reinterpret the deterministic mechanical idea of the landscape to a probabilistic one.
The probabilistic nature of the underlying model used (Sec. 2.5) allows us to extract
a landscape for cells, giving them relative positions on the landscape. By following
the topology of the landscape, we can deduce relative distances and correct for
possible hills between cells. This reduces outliers and unwanted variation.

In this section, we have provided an overview of some aspects of genetics that
are key to understanding this thesis. This is by no means a full description of molec-
ular biology. For a more detailed view on genetics and epigenetics refer to the books
of Hennig [30]; Seyffert and Balling [75]; Zien [97].

1.3 Machine Learning

In the past decade the machine learning method became increasingly popular. In
this kind of algorithm, we try to give the machine as much freedom as necessary
to be able to extract (’learn’) patterns in data. In machine learning it is common
to not give underlying physical or logical models, but learn patterns in form of
parameters and pre-chosen functional forms. Then we provide enough examples
for a particular task for the machine to learn the patterns of the data and memorize
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general functional relationships between inputs and outputs for the seen data. For
a more complete description of machine learning techniques we refer the interested
reader for example to the books of Bishop [9]; MacKay [56]. One limitation of other
approaches is, that they commonly only provide point estimates for predictions.
That is, they only provide one answer, without giving a sense of the uncertainty
of the model. This can lead to difficulties in interpretation, when faced with a
counterintuitive result. For more insights see the books above.

In this thesis, we focus on a probabilistic approach, in which probabilistic in-
terpretations of functions are integrated over to give a functional relation between
data seen. These are called Bayesian non-parametric statistical models [9; 70], in
which all possible latent functions are integrated over and the most likely moments
a posteriori are reported. This gives the opportunity for results to be interpreted in
a coherent way, as the uncertainty of the model can be assessed. This leads to Gaus-
sian processes described in Section 2.1, which this thesis focuses on for machine
learning techniques. In Gaussian processes, we require so called hyper-parameters,
which are optimized using gradient based optimization.

1.3.0.1 Prediction Based Analysis in Gene Expression Experiments

In biology, mechanisms play an important role. As we saw in the genetics Sec-
tion (1.2), biology has developed very complex strategies during evolution. As
evolution builds upon old strategies [21] there is a lot of redundancy associated
with that complexity. This complexity is not easily fully described and makes tak-
ing all mechanisms into account a very hard task. It is useful to model the real
biology by more general, but complex enough machine learning techniques on a
predictive bases. Machine learning techniques learn from seeing data, adjusting
the (hyper-)parameters to fit a general view. This general view, usually does not
include underlying biological mechanisms.

Prediction based analysis is essentially a “black box” based approach. The ma-
chine learning designer design the underlying functional relations inside this black
box. They then supply intuitional insights into the function of the black box for
other researchers (preferably crossing expertise), so that they can apply the algo-
rithm to their problem. It is important to point out, that the design of the internals
of the black box can have big impacts on results and should not be disregarded
completely. However, researchers from other fields of expertise should be able to
apply such complex algorithms to their own data without having to fully know the
exact underlying code and technique. You should essentially be able to provide
the training inputs and output pairs and let the machine learn the patterns in the
data (by fitting parameters). After the learning period, we can ask the black box for

9



likely outcomes of newly seen inputs.

Most prediction based algorithms try to expose some of the mechanisms (pa-
rameters) to the user, so that more insight can be gained into the decision making
of the algorithm. This comes in particularly handy when the underlying method
assigns importance to newly learned features. This can help to decide which fea-
tures the algorithm deems important to solve the prediction from inputs to outputs.

In this thesis, we show how to apply software design ideas to implement a
Gaussian process in a prediction based way, to be able to directly apply it to gene
expression experiments without having to know the exact internals of the underly-
ing technique (Sec. 4.2.1).

In summary, machine learning is to restrain from direct mechanistic modelling
of expected patterns and go closer to giving the machine enough resources to gener-
alize over patterns itself and decide how to use the patterns in the inputs to extrap-
olate on the outputs. This can significantly improve results, as long as the provided
mechanisms are general enough to generalize over patterns, while not being too
general to overfit the training data, over explaining patterns directly.

1.4 Research Code

In this thesis there is a particular focus on implementation and handling of code
produced in research. As described before, we will show details about implemen-
tation and reusability in machine learning research. This section will describe an
overview for common reoccurring problems and solutions we encountered during
the course of this thesis. This is by no means exhaustive and is only meant to give
insights and material for thought when implementing a piece of software during
the development of new machine learning models. Mainly, we present examples of
solutions, which can help in producing reproducible and easy-to-use research code.
“There is a culture that reinforces the idea that producing and publishing code has
no perceived benefit to the researcher” [14]. We believe quite the opposite: the code
published with a transcript (in computational research) is at least as important as,
if not more important than the results presented. If results are not reproducible by
provided code, it is unlikely that others will use the provided model.

Writing reusable research code is a difficult task. It requires rigorous discipline
and planning of progression of the code. When prototyping ideas, a structure in
code “pops out”, which can (and most likely will) introduce unforeseen problems.
Additionally, many researchers do not have an understanding of the difficulties
other researches encounter when trying to replicate results. We often think “if I can
do it, so can others”. This is not always true, especially in terms of time spent to
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apply and understand parameterizations and intuitions of methods. Time becomes
an increasing issue in this result oriented society, where others might not have the
time to set up, especially when crossing expertise.

1.4.1 Tutorials

Writing comprehensive tutorials can be difficult, but they are essential for under-
standing the underlying code. Most of the time it comes down to writing a simple
example of the code used in the paper. It is important to point out the parame-
ters and difficulties here, or supply some methodologies to handle these for the
inexperienced user (default parameters). Most importantly, a platform for help,
discussion and comments should be supplied [18]. Github provides a good plat-
form for this in the issues and commenting section (Sec. 1.4.4). We, as researchers,
should consider more carefully how to speed up the process of others using and
prototyping methods that we develop. Being able to simply run a method of inter-
est on an own dataset and seeing first results gives confidence at first glance and
the will to further investigate. Here again, the discussion platform comes in handy,
to further improve upon the simple results. It helps a lot having the ability to just
download a package, which is easily applicable, but as complex as necessary. Fel-
low researchers do not have the time to re-implement complex algorithms. The
devil often sits in the details of an implementation, such as gradients, numerical
stability and the right handling of parameters.

1.4.2 Codebase & Knowledge of Algorithm

Keeping code clean and simple can be difficult, if only one set of eyes look at the
codebase. Thus, it is important to ask ones group members to use the code and
apply it to a simple dataset. Make them explain the application, without looking
at the source code, just by documentation alone. Some groups might even think of
creating their own group package, so group members need to include their code in
a meaningful way inside this overarching package. Members need to ensure that
newly added code is tested and can be run (Sec. 1.4.5). This can also be done with
the community in mind. Make your code accessible right away and do not wait too
long for a first version of your codebase [67]. The more people use your code and
apply it to their data, the more feedback you can expect and improve practicability
and ease-of-use.

When implementing an algorithm it is easy to fall into the trap of trying to solve
everything at once. Most of the time the algorithm can be broken down into small
interchangeable components. Good code shows itself in clean naming (across the

11



whole package), proper separation of sub modules and reuse of functionality to
increase reliability [95]. One way of ensuring reliability is to test smaller compo-
nents on their supposed logic (so-called unit tests). When tested appropriately, one
can rely on these components to build higher level functions. This means we can
include new features into the system, without having to rewrite the logic around
those components. A highly regarded method of producing a piece of a reliable
framework is to first write the (unit) test before the actual implementation. If this is
not possible or code already exists, retrofitting tests to test the old codebase should
be done before implementing new parts. This ensures the reliability of the old
codebase and give confidence in the function of the newly added piece of software.
The tests will test the supposed outcome from all expected inputs and therefore
ensure the functionality. Usually, discovering the algorithm and writing pieces for
it in code comes hand in hand and greatly improves the understanding of the al-
gorithm from a new perspective. Usually the perspective from the programming
point of view gives a more practical and intuitive view on the algorithm and helps
to explain an algorithm more rigorously.

1.4.3 Making Algorithms Accessible

Algorithms and new ideas are often not accessible to researchers, due to program-
ming language differences, lack of documentation, unclear design, or simply no
download option. Sometimes, the codebase of a researcher is only accessible through
direct contact and the code is not clean. One very simple solution to this, is to “get
code out there”. That is, making the code public to a wider audience and have oth-
ers consider the code within their own use case. In accordance with the institute of
the research, upload the code to an open source storage, where people can down-
load and install the code themselves. This will increase usage of the codebase and
people will apply the algorithms involved to their data, increasing the knowledge
about the algorithm. This spreads the knowledge of the algorithm and may give
others ideas of how to use or improve upon the algorithm, or how to improve the
code itself to make it easier to apply [95].

At times it is also preferable to have colleagues, maybe even of different spe-
cialties, apply and use the code of interest. This is either during development of
the algorithm before publication, or to collaborate on extensions or applications
of itself. Research software should also not go too far in simplifying things. The
danger is, that the code might become “opinionated code” [63], offering solutions,
which are specifically tuned to particular problems. This inhibits extendability and
development for different tasks in the codebase.

In the following, we will describe ways of how to spread code, keeping a clean
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codebase and how to split algorithms apart to allow further development for oth-
ers.

1.4.4 Github

Github is a combination of storage and version control [53]. Storing code on an
open source base is the best way to improve code and get feedback on applicability
and usability. Other interested programmers can participate through cloning the
codebase and putting pull requests for suggested changes onto Github. This means
we can check the changes they made and approve or comment on issues. There are
also tools to automatically check code correctness and coverage of tests (Sec. 1.4.5).
On Github, one pushes and pulls from a repository in order to synchronize to the
cloud. It is a commit based upload, each of which has a history and its own commit
message to record the specific task the commit is to accomplish. These commit
messages are an important tool to check history and fixes. Keeping commits small
and focused on one particular task is the most straight forward way to keeping
the codebase clean. Only if commits do not hold side effects not described in the
commit message, we can revert a commit to undo history.

All communication is open and users can communicate enhancements, ques-
tions and suggestions easily through the Github issues section. This makes appli-
cability of the codebase even more accessible, as users can ask for help at every step
along the process [18].

1.4.5 Automating Code Correctness

There are a lot of interconnected tools to keeping a repository tidy and running be-
sides version control. We need to make sure tests run on all platforms supported by
the software and keep running, even when changes to the codebase are being done
[95]. Travis-ci.org provides a testing suite for package unit tests to be run
on different operating systems and under user specified conditions. This makes
multi-platform code easier to handle and to keep track of problems on platforms,
not easily at hand. Travis (and other so-called continuous integration services) install
the package and dependencies on their server and run the testing suite provided by
the user. Additionally to running tests, they supply the service to run other code
based quality control tools, such as codecov.io. Codecov checks the coverage
of the code, when running the tests. That is each line that has not been hit by the
code, when running the tests is marked as missing. Additionally to running tests, a
continuous integration service usually provides ways to publish (upload the pack-
age to a package provider) packages and make the new “tagged” version available
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for everyone through the program language specific channels. A tag in Github is a
way to mark versions/releases of a package in the history. They make automated
releases of the package accessible, without having to setup the deployment manu-
ally for each new version.

Including all those things may sound a lot, but once set up, it is easy to maintain
a clean codebase and keep the tests running. This way of sharing code also greatly
increases the trust in the codebase and relieves doubts about code not working as
intended.

1.4.6 Summary

As an exemplar of the concepts shown in this section, we show the implementation
of a complex algorithm in section 3. Section 3 describes the process of how to
split algorithms into parts in the GPy framework [27]. Additionally, we show that
the extraction of basic tasks enhances the ability of looking at the important parts
of an algorithm (Sec. 3.12, 3.9). GPy includes all ideas and concepts presented
in this section. Contributions to GPy include continuous integration (including
coverage reports), testing, automatic deployment, user interaction, development of
methodology and handling of contributions from the community.
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Chapter 2

Methods

In this chapter, we will introduce the methodologies which are used to model the
biological systems discussed in the thesis. Describing the complexity of biologi-
cal systems in a mechanistic way, without using machine learning techniques is
challenging, if not impossible. That is, because many biological systems are highly
redundant and introduce many ways of sustaining function. We use general pre-
dictive modelling to model the outcome of the system reacting to certain stimuli.
These stimuli can be anything from chemical substrates, genetic changes, or physi-
cal alterations of the system. The central limit theorem of stochastic variables states
that the sum of independent random variables converge towards a normal distri-
bution. As Gaussian processes are multivariate normal distributions (Sec. 2.1), they
are attractive models for explaining biological systems. Gaussian processes can be
interpreted as stochastic functions with a changing mean and variance along the
input. With these functions, we can model the complexity of biological systems in
a generalized way. Apparently stochastic small changes may be explained by in-
dependent variance. These small variations are assumed to be technical variation
or biological processes that are too low in variance to assign to biological meaning.
Biological variation, however, is assumed to be changing more slowly, and is mod-
elled by changes in the mean of the model. Section 2.1 describes the base version
of Gaussian processes in detail.

With Gaussian processes we are not forced to supply an input to the functions.
It may be that the inputs to a function themselves are unknown. We can model an
observed (high dimensional) output of a system and find the most likely inputs,
as well as the functions mapping from the input to the output. This is known as
the Gaussian process latent variable model (GPLVM, Sec. 2.3). It is commonly known
as dimensionality reduction, where we try to find lower dimensional inputs de-
scribing the observed outputs. This is possible as we know biology is redundant
and can thusly be explained using more dense spaces, encompassing the complex-
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ity in fewer dimensions. Dimensionality reduction is primarily used to make the
complex processes visible for humans to comprehend in fewer dimensions, such
as plotting the first two most explanatory dimensions, which will show the overall
similarity, clustering or trajectory of inputs. Section 2.2 describes principal compo-
nent analysis, a dimensionality reduction technique directly leading up to GPLVM.
GPLVM is described in Section 2.3. In the following sections, we will look at a vari-
ant of Gaussian processes which releases the complexity requirements of Gaussian
processes, called sparse Gaussian processes and the Bayesian GPLVM (Section 2.5).
This makes Gaussian processes applicable on a larger scale.

As the complexity in biological systems comes from combining different sys-
tems in redundant ways, we need to deal with confounded systems, in which the
effect we are looking for might be shadowed by other processes. In such systems,
we need to deal with, and model, the confounding variation and try to focus on the
system we are interested in. Literature calls this confounder correction, though we
model the confounding variation alongside the effect we are looking for, instead of
explaining it away in a multi step analysis. Multi step analyses usually first find
confounding variation and report residuals for the next step, or require confound-
ing variables to be known [24; 51; 66]. This can introduce biases, or explain away
the variable of interest in the residuals without a chance of recovery. In this work,
we try to model both effects jointly [24] and try to find independent dimensions
of the different effects, which explain the overall variation in the data together. We
employ the manifold relevance determination (MRD) method to model genetic subsets
jointly. Section 2.6 explains manifold relevance determination.

Probabilistic modelling of biological systems allows us to describe the topology
of the lower dimensional representation: the so called manifold embedding [87]. We
use this information about the topology of the lower dimensional representation
to model and adjust distances between samples of data, which can be stretched
or condensed by the manifold embedding. Section 4.1 explains the landscape ex-
traction of the manifold of Gaussian processes and how to use that information to
correct for distances between samples.

2.1 Gaussian Process Regression

A Gaussian process (GP) [70] is a generalization of the Gaussian distribution. It is
defined as the distribution over functions f , such that any finite subset y = f(x) is
jointly Gaussian distributed. Loosely speaking, a GP describes the expansion of the
Gaussian distribution to a distribution over functions. The Gaussian distribution
is a distribution over scalars or vectors, whereas a Gaussian process extends this
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finite object to an infinite one.

To make use of this infinite object, we first have to introduce the dataset. In
regression, we observe a dataset ofD = (xi,yi)1≤i≤N ofN input output pairs. In this
definition the data can be higher dimensional xi ∈ RQ and yi ∈ RD, such that the full
dataset can be given in matrix form (X,Y): X ∈ RN×Q, Y ∈ RN×D. The challenge
is to find a predictive function f , which can predict the most probable outputs
Y⋆ = f(X⋆) at any new points X⋆. With GPs, we do not only find a predictive
function for the most probable outputs, but a distribution over functions. This
means the subset of the Gaussian process which corresponds to the prediction is a
joint Gaussian distribution

p(Y⋆∣X⋆) =
D

∏
d=1

N(y⋆d ∣µd,Σd) ,

with mean µd and covariance Σd. Thus, after having observed the dataset, we
will always be talking about finite subsets of the infinite GP in terms of Gaussian
distributions.

We need to assign expected properties to the functions f , as otherwise we are
bound to overfit the dataset and a generalization is not possible. These prop-
erties are given through the so called covariance function k(X,X′). The covari-
ance function defines the covariance between inputs X and X′. A requirement
for any covariance function is that it generates a positive definite covariance matrix
Kij = k(xi,x′j) for the prior belief of the GP (Sec. 2.1.2). With this, we can define
any subset F for a GP prior as

p(F∣X) =
D

∏
d=1

N(fd∣0,K).

Notice, that we assume independence between output dimensions D of the func-
tion values F of the GP prior.

To learn a dataset D, we constrain the GP to the observed data. Loosely speak-
ing, we draw from samples from the prior at the inputs and discard all functions
which generate outputs that do not conform to the observed data. In mathematical
terms, we integrate over the function space, integrating over all possible functions
generated by the GP prior. To consider the data, we define the likelihood of the
data as a factorized Gaussian distribution of noisy observations Y of the function
values F of the GP as

p(Y∣X,F) = N(Y∣F, σ2I )

This leads to the marginal likelihood of the GP, marginalizing out all possible val-
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ues F of the GP functions

p(Y∣X,θ) = ∫ p(Y∣X,F,θ`)p(F∣X,θk) dF ,

where θ = θ` ∪ θk are possible hyper-parameterizations of the likelihood and co-
variance function: θ` are the hyper-parameters for the likelihood ` and θk are the
hyper-parameters for the covariance function k. In the following, we will omit the
hyper-parameters from equations1 to unclutter notation.

We can solve the integral for the marginal likelihood analytically by “complet-
ing the square” [70]

p(Y∣X) =
D

∏
i=d
∫ N(Y⋅d∣F⋅d, σ

2)N(F⋅d∣0,K) dF⋅d

= N(Y∣0,K + σ2I ) .

(2.1)

See Equation (A.1) for a detailed calculation of this marginal likelihood. We can use
Bayes’ theorem to turn around the marginal likelihood to compute the density for
the latent function values p(F∣Y,X)

p(F∣Y,X) = p(Y∣F)p(F∣X)
p(Y∣X)

= N(F∣(K−1 + βI )−1βIY, (K−1 + βI )−1) ,

where we define β = σ−2. See Equation (A.2) for a detailed calculation of the condi-
tional distribution of the latent GP function values F.

In the following we will have a closer look at the gradient computations for
Gaussian processes, leading up to Chapter 3, in which we will describe how to
make use of them in a real world implementation.

2.1.1 Gradients

In mathematical terms, the inference in the GP is integrating over the latent func-
tion f as illustrated in equation (2.1). We can see, that it could be numerically
problematic to optimize the marginal likelihood, as it could be small and it only
ranges positive values. Computers can only perform numerical computations, and
are limited by the precision of the system. The precision of a computer system is
bound by the number of bits of information being able to be stored in one number.
This number is finite for computers.

The most prominent problem is if there is multiple dimensions D > 1, as it
then is a product of potentially small values. In order to relieve this problem, we

1We let p(Y∣X) ≡ p(Y∣X,θ).
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employ the natural logarithm (log). The logarithm is a monotonic transformation,
this means, all optima in the original space, will be optima in log space as well. The
logarithm stretches the space from 0 to 1 into the negative values. Additionally,
what used to be a product of values, becomes a sum in log-space. We sum up
positive and negative values, instead of multiplying.

Additionally, the logarithm reduces complexity in implementation of gradient
based optimization in two ways. First, the products in the original space become
independent parts in the sum. We can compute the partial gradients for each part
and sum the results together to get the overall gradient. Second, the exponential
of the Gaussian distribution gets cancelled out and simplifies the gradient, as the
exponential would remain for gradient computations.

The maximization is done over the hyper-parameters θ, maximizing the log

marginal likelihood L ∶= log p(Y∣X,θ, σ2):

L = log((D ((2π)N ∣K + σ2I ∣)−
1
2 ) exp{−1

2 trY⊺(K + σ2I )−1Y})

= −ND2 log 2π − D
2 log ∣K + σ2I ∣ − trY⊺(K + σ2I )−1Y

θ̂ = arg max
θ

L .

(2.2)

With that, we can compute the gradients of the GP in parts, observing the chain
rule through the parts. Whenever the parameters show up, they show up in the
term

(K + σ2I ) ∶= KGP , (2.3)

which we will call the GP covariance. We will push the gradients through the GP
covariance to compute the gradients in steps. The gradients for each of the parts
(likelihood and prior) split, as they appear as a sum in KGP

2. The GP covariance
is treated as element-wise evaluation of the covariance function and thus is treated
as a collection of scalars. This means, for each parameter θ ∈ θ we simply sum up
all the gradients going through the GP covariance.

∂L
∂θt

=
N

∑
i=1

N

∑
j=1

∂L
∂[KGP]ij

∂[KGP]ij
∂θt

. (2.4)

There is only scalars in this chain rule computation, and thus we can handle all
gradient computations from here on as scalar gradients. We can write the gradients

2Keep in mind, that if there is multiple parameters, we compute the gradient for each parameter,
respectively, so there is no need for tensor based derivations.
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of the log marginal likelihood with respect to the GP covariance KGP as [64]:

∂ log p(Y∣X)
∂KGP

= ∂

∂KGP
( − ND

2 log(2π) − D
2 log ∣K + σ2I∣ − 1

2 tr(Y⊺(K + σ2)−1Y))

= −D2
∂

∂KGP
log ∣K + σ2I ∣ − 1

2

∂

∂KGP
trY⊺ (K + σ2I )−1

Y

= −D2 tr (K + σ2I )−1 + 1
2 tr (K + σ2I )−1

YY⊺ (K + σ2I )−1

= −D2 trK−1
GP + 1

2 trK−1
GPYY⊺K−1

GP .

(2.5)

As discussed in the element-wise computation for the gradient, we can drop the
trace from here and push it one level up into the element-wise sum from eq. (2.4).

The gradients for the GP covariance with respect to its hyper-parameters will
be handled separately for each covariance function, as well as the likelihood.

2.1.2 Gaussian Process Prior (Covariance Function)

A Gaussian process prior consists of a mean and its covariance function. The mean
is often assumed as zero, as empirically we can always zero mean the observed
data. The covariance function k(x,x) is used to model the properties of functions
described by the Gaussian process. It builds the covariance matrix Kij = k(xi⋅,xj⋅),
where xi⋅ is the i-th row of the input matrix X ∈ RN×Q, of N samples and Q dimen-
sions. The covariance function of a GP determines the “shape” of the functions the
GP can take.

Differentiability of the covariance function at zero for example, determines the
“smoothness” of functions generated. The higher the order of differentiability of a
covariance function, the smoother the generative function of the GP gets. See some
examples of functional shapes in Table 2.1.

Stationary covariance functions are independent of shifts to the input locations,
and thus behave the same, “invariant to translation in the input space” [70]. Non-
stationary covariance functions are dependent of shifts to the input location and
behave differently, depending on the location of the inputs.

If covariance functions generate a process, the variance of which collapses at
one point, it is called degenerate. Conversely, covariance function that do not col-
lapse are called non-degenerate.

Again, we have sampled and plotted some covariance functions alongside their
respective expressions in Table 2.1 for more intuition. Here, we will discuss only
a few covariance functions in detail, which will be used in this theses. A more
complete picture for covariance functions can be found in Rasmussen and Williams
[70, Chapter 4].
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Function Expression Statio
nary

Non-D
egenerate

Figure

Bias α ✓✓

y

x

Linear xi⋅Axj⋅
⊺

y

x

Brownian αmin(xi⋅,xj⋅)

y

x

Polynomial α(σ2
f + xj⋅xj⋅

⊺)d

y

x

Exponential α exp(− r` ) ✓✓

y

x

Matérn α21−ν
Γ(ν) (

√
2νr
` )

ν
Kν (

√
2νr
` ) ✓✓

y

x

Rational Quad. α(1 + r2

2d`2
)−d ✓✓

y

x

Exp. Quad. α exp ( − r2

2`2
) ✓✓

y

x

Table 2.1: Some covariance functions with a plot for intuition. All expressions assume
either k(xi⋅,xj⋅) or k(r), where r = ∣xi⋅ − xj⋅∣ as the function definition. A = diag(α), α, `, ν
are positive parameters and Kν is a modified Bessel function [1]. Mean (thick line) and
95% confidence intervals (shaded area) for different covariance functions. Three samples
are plotted alongside the posterior to understand the intuition of the “quality of generative
functions” that a GP produces, depending on its covariance function. (Quad.: Quadratic,
Exp.: Exponentiated)
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2.1.2.1 Linear

The linear covariance function is a non-stationary covariance function leading to a
model of all linear functions:

k(X,X′) = XAX′⊺ , (2.6)

where A is a diagonal matrix, and the diagonal diag A = α contains one parame-
ter αq per dimension of the input. The smaller the parameter αq the less relevant
this dimension is for the GP prior. Here, relevant means that the function appears
constant for the input range with a sufficiently small variance α. This behavior is
called automatic relevance determination and is discussed in more detail in Section
2.1.5.

Gradients The only parameters for the linear covariance function are αq. The
gradients can be written as follows:

∂Kij

∂αq
= ∂

∂αq

Q

∑
k=1

XikαkX
′
jk

=
Q

∑
k=1

Xik
∂αk
∂αq

X′
jk

= XiqX
′
jq

For latent variable models in later sections (Secs. 2.3, 2.5), we will need the gradi-
ents of the covariance function w.r.t. X, which can be written as:

∂Kij

∂Xlq
= ∂

∂Xlq

Q

∑
k=1

XikαkXjk

=
Q

∑
k=1

∂Xik

∂Xlq
αkX

′
jk

= αqX′
jq .

The inner partial gradient ∂Xik

∂Xlq
is only 1 if k = q, i = l.

Note: If X = X′, this gradient has to be multiplied by 2, as the summands will be
squared inside, as then j = l.

2.1.2.2 Exponentiated Quadratic Covariance function

Also known as Radial Basis Function (RBF) or Gaussian covariance function (it has
the form of a non normalized Gaussian distribution) the exponentiated quadratic
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(a) α = 2.0

y

x

(b) α = 1.0

y

x

(c) α = 0.5

Figure 2.1: Three different inverse lengthscales for a GP with an exponentiated quadratic
covariance function. Mean is indicated by thick line, 95% confidence interval is shaded
and three samples are plotted alongside. The samples are restricted to the observed data,
shown as black crosses.

covariance function is defined as

k(Xi⋅,X
′
j⋅) = σ2

f exp

⎧⎪⎪⎨⎪⎪⎩
−1

2

Q

∑
q=1

αq(Xiq −X′
jq)2

⎫⎪⎪⎬⎪⎪⎭
. (2.7)

This covariance function produces non linear, infinitely differentiable functions.
In other words, smooth functions with any shape, where the “wiggliness” is de-
fined by the inverse lengthscale α. See three different inverse-lengthscales GPs in
Figure 2.1 for more intuition. As before, for detailed explanations please refer to
Rasmussen and Williams [70, Section 4].

Gradients Here we want the gradients of the covariance matrix K w.r.t. all pa-
rameters σ2

f and α.

∂Kij

∂σ2
f

= exp

⎧⎪⎪⎨⎪⎪⎩
−1

2

Q

∑
q=1

αq(Xiq −X′
jq)2

⎫⎪⎪⎬⎪⎪⎭
,

and

∂Kij

∂αk
= ∂

∂αk
σ2
f exp

⎧⎪⎪⎨⎪⎪⎩
−1

2

Q

∑
q=1

αq(Xiq −X′
jq)2

⎫⎪⎪⎬⎪⎪⎭

= Kij
∂

∂αk

⎧⎪⎪⎨⎪⎪⎩
−1

2

Q

∑
q=1

αq(Xiq −X′
jq)2

⎫⎪⎪⎬⎪⎪⎭
= −1

2Kij(Xik −X′
jk)

2 .
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For latent variable models in later sections (Secs. 2.3, 2.5), we will also need the
gradients w.r.t. the inputs X

∂Kij

∂Xik
= Kij

∂

Xik

⎧⎪⎪⎨⎪⎪⎩
−1

2

Q

∑
q=1

αq(Xiq −Xjq)2
⎫⎪⎪⎬⎪⎪⎭

= −αkKij(Xik −Xjk) .

2.1.3 Prediction

To make predictions, we need to calculate the probability density p(F∗∣X∗,Y,X)
of the GP function values at newly seen input locations X∗. The function values
F∗ = f(X∗) are the function values of the GP evaluated at the positions X∗. We use
the optimized hyper-parameters to describe the joint distribution over Y and F∗.
This will be a Gaussian distribution as described in Section 2.1 and can be written
as:

p
⎛
⎝

⎡⎢⎢⎢⎢⎣

Y

F∗

⎤⎥⎥⎥⎥⎦

⎞
⎠
= N

⎛
⎝

⎡⎢⎢⎢⎢⎣

Y

F∗

⎤⎥⎥⎥⎥⎦

RRRRRRRRRRR
0,

⎡⎢⎢⎢⎢⎣

KFF + σ2I KFF∗

KF∗F KF∗F∗

⎤⎥⎥⎥⎥⎦

⎞
⎠
.

The covariance matrix describing the covariance between Y and F∗ makes use of
the marginalization property of GPs. Using the definition of GPs and the margina-
liation property in conjunction, we can directly read off the prediction density

p(F∗∣X∗,X,Y) = N (F∗∣M,Σ) (2.8)

with mean prediction

M = KF∗F(KFF + σ2I )−1Y

and covariance of the prediction

Σ = KF∗F∗ −KF∗F(KFF + σ2I )−1KFF∗ .

See Petersen and Pedersen [64]; Rasmussen and Williams [70] for more details.
Usually we are only interested in the variance of the prediction at the input points,
which are the diagonal terms of Σ.

2.1.4 Example and Sample

In Figure 2.2 some samples of a GP are drawn and plotted. From left to right,
we add more and more observations to the GP, constraining possible outcomes
of the samples drawn. You can see the mean as thick line and the 95% confidence
interval as shaded area. Alongside the mean and variance of the posterior, we draw
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Figure 2.2: Plotted are mean (thick line) and 95% confidence interval (shaded area) of a GP.
Thin lines are samples drawn from the posterior. From left to right, adding more and more
observations restricting the posterior to assume observed values. Observe the uncertainty
going down to (almost) zero, when we observe a value and all samples go through it. Here
we assume a likelihood variance of σ2 = 1×10−6, so all variation comes from the underlying
latent functions f .

3 different samples of the GP in thin lines.

Sampling from a GP We want a sample y to have a covariance of cov(y,y) = K.
Multiplying the Cholesky factorization LL⊺ = K with a random draw r ∼ N(0, I )
of a uniform Gaussian distribution achieves exactly this result. Let y = rL, then

cov(rL, rL) = Lcov(r, r)L⊺

= L(I )L⊺

= K ,

where we made use of expected value properties described in [64, Section 8.2].
Multiplying the lower Cholesky decomposition L of a covariance matrix K of any
covariance function k by a random draw r ∼ N(0, I ) of a univariate Gaussian dis-
tribution will give a sample of a GP.

2.1.5 ARD: Automatic Relevance Determination

Gaussian processes are multivariate distributions over observed data Y employing
the covariance matrix K, where Kij = k(Xi⋅,Xj⋅) for each pair of rows of X. The
form of the covariance function determines the nature of the generative process
of the GP [70]. In this thesis, one goal is to select input features (columns of the
latent input matrix X) that correspond to pattern changes in the output data when
learning a lower dimensional representation. This can be achieved using the so-
called automatic relevance determination (ARD) kernels. Some kernels assign a scaling
parameter per dimension, identifying the scaling of each dimension. This means, if
the scaling is low, the output function appears constant over a change in the input
space range. We call this notion “switching off” dimensions in the latent (input)
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X·1
X·2

Y

(a) Both dimensions of the
input X are relevant (“on”).

X·1
X·2

Y

(b) Only dimension 1 of the
input X is relevant.

X·1
X·2

Y

(c) Both dimensions of the
input X are “switched off”.

Figure 2.3: Three examples of a Gaussian process with ARD exponentiated quadratic co-
variance functions to show the effect of the scaling parameter on the input dimension. The
scaling parameters where chosen as 1 for “on” and 1 × 10−10 for “off”.

space.

In this section we will look at the ARD exponentiated quadratic covariance
function (Eq. (2.7))

k(Xi⋅,Xj⋅) = σ2
f exp

⎧⎪⎪⎨⎪⎪⎩
−1

2

Q

∑
q=1

αq(Xiq −Xjq)2
⎫⎪⎪⎬⎪⎪⎭
.

The scaling parameters are α ∈ RD, which create the relevance score for each di-
mension q of the inputs X ∈ RN×Q. A large αq identifies that the dimension X⋅q

is relevant to the covariance. Comparatively, with decreasing αq the relevance of
dimension q goes down and the generative function gets flat (can be linear) in the
generative function space.

Intuitively, we can think of the scaling as the frequency of the functions cross-
ing the origin (moving up and down) within a range of the input x. To gain more
insight, we plot three two dimensional examples of a GP with different scaling pa-
rameters, to show the “switching off” effect in Figure 2.3. In the plot, we see three
two dimensional samples of a GP with differing ARD parameters. It shows that
the ARD parameter αq for dimension q regulates the relevance for each dimension.
With it, the model can decide whether a dimension is relevant by choosing the ap-
propriate parameter. In a GP setting, each parameterisation of a covariance matrix
introduces an implicit penalisation through the interaction between the normal-
ization term −D2 log ∣K + σ2I ∣ and the data fit term − trY⊺(K + σ2I )−1Y of the log

marginal likelihood (Eq. (2.1)). Intuitively speaking, the more ARD parameters are
high valued, the higher the rank the GP covariance will be and thus, the higher
the normalization term will be. On the other hand the connectivity of the preci-
sion (inverse GP covariance) needs to be high enough, to minimize the empirical
covariance of the data as seen through the data term. We depict this interaction in a

26



10 3 10 2 10 1 100 101 102

1

10 3

10 2

10 1

100

101

102
0

-114.400

-113.600

-112.800

-112.000

-111.200

10 3 10 2 10 1 100 101 102

1

-60.000

-58.500
-57.000
-55.500
-54.000
-52.500
-51.000

10 3 10 2 10 1 100 101 102

1

-1
71

.0
00

-169.500
-168.000
-166.500

-165.000

-163.500

Figure 2.4: Simulation of the interaction between the normalization term −D
2

log ∣K + σ2I ∣
and the data fit term − trY⊺(K + σ2I )−1Y of the log marginal likelihood when altering
the ARD parameters α of a two dimensional linear kernel. The left hand plot shows the
normalization term, the middle the data fit term and the right the sum of the two. The plots
shown where generated from a simple two dimensional input set X of which only the first
dimension is used to create the output Y.

simple simulation in Figure 2.4. This implicitly drives the model parameters to be
chosen as complex as necessary and as simple as possible (see Occam’s razor e.g.
Rasmussen and Ghahramani [69]). The linear covariance function (2.6)

k(Xi⋅,Xj⋅) =
Q

∑
q=1

αqXiqXjq ,

with ARD parameters α has also the property of ARD, similar to the above. The
ARD parameters here describe the variance of the slope for the linear embedding
of the generative function of the GP. This means, the smaller the ARD parameter in
a linear covariance function model, the less the slope can vary and is close to the
prior, which is defined as zero. In summary, each covariance function has its own
interpretation of ARD parameters and have to be taken with care, when interpret-
ing results.

In this thesis, we mostly rely on the exponentiated quadratic ARD covariance
function. This means, the ARD parameters tell us about the amount of non-linearity
in the respective dimension. Any linear relationships in the latent space are ex-
plained by smaller ARD parameters and act like a residual regression of PCA be-
fore doing non-linear analysis.

2.2 Principal Component Analysis

One main tool for analysis in this thesis is dimensionality reduction. We make
use of the Gaussian process latent variable model described in Section 2.3 to iden-
tify patterns in high dimensional data. The GPLVM is a generalization of the well
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Figure 2.5: Principal component analysis on example feature set Y. The rows of Y repre-
sent the samples and the columns are the two features measured. (a) shows a scatter plot
of the features in the original data space. In principal component space (b) original space
has been rotated, so that the variance of the PCs are ordered by their magnitude. (c) shows
that the first principal component explains most of the variance of the data, and the second
is almost negligible. We make use of that, by only using the first principal component as a
lower dimensional approximation of the data. [98, p.13]

known method, Principal component analysis (PCA, [41]), which is why we will
describe PCA briefly here.

PCA is a way of reducing the dimensionality of a dataset by basis rotation. The
goal is to find a combination of a rotation and sorting of dimensions of the observed
data Y, so that the resulting lower dimensional view X has the highest variance in
the first dimension, second highest in the second dimension and so on. We then
choose to ignore dimensions of the rotated view X at a cutoff value, which has to
be chosen. PCA is not really a dimensionality reduction technique itself, but by
ignoring dimensions of low variance, we effectively reduce the dimensionality.

Suppose we have an observed dataset Y ∈ RN×D of N = 300 samples over
D = 2 features correlated as depicted in Figure 2.5a ([98, p.13]). PCA finds the new
orthogonal basis to maximize the variance explained in order. For this observed
dataset, the basis is shown in red, annotated as PC{1,2}. This basis corresponds to
the direction of the eigenvectors V ∈ RD×D = (vd)1≤d≤D of the empirical covariance
Y⊺Y of the phenotype. Then, the fraction of variance explained is the fraction of
eigenvalues of this covariance. We keep both matrices sorted descending according
to the eigenvalue fractions. As we can clearly see, the second principal component
does not explain much variance and can be cut off to reduce dimensionality. We
can use PCA to find Q dimensional latent factors in the phenotype. As already
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mentioned, the direction of highest variance of the phenotype corresponds to the
direction of the eigenvector with the highest eigenvalue. To transform the observed
dataset Y into the full principal component space XPCA = (PCd)1≤d≤D, we have to
multiply it by the eigenvectors V ∈ RD×D of the covariance matrix Y⊺Y

XPCA = YV .

Here, we can see the connection to the generative model, which can be recovered
by right-multiplying the inverse of the eigenvector matrix V to the PCA solution

Y = XV−1 .

Figure 2.5b ([98, p.13]) shows PC1 against PC2, which corresponds to the columns
of XPCA. To reduce the dimensionality to a value Q < D, we take only the first Q
eigenvectors VQ, instead of the full eigenvector matrix. This corresponds to the Q
highest eigenvalues of the covariance and we get a lower dimensional representa-
tion

X = YVQ .

In this toy example, we can easily see how many dimensions to use for the down-
stream analysis (Fig. 2.5c [98, p.13]). Namely, the first principal component, as it
describes the majority of variance for the given data. Choosing a lower dimension-
ality, however, can become a hard choice when dealing with millions of features
and requires expert knowledge and repeated experiments. Also, some heuristics
exist to find the number of dimensions. One way, is to plot the eigenvalue fractions
in order and see if there are “kinks” in the connected lines between eigenvalue
fractions. It is then the norm to keep only the dimensions directly before the most
prominent kink. Another way is to only keep a chosen percentage of variance ex-
plained (say keep 95% of variance explained).

One way of tackling the problem of finding the right dimensionality is to build
a Bayesian probabilistic model. The Bayesian probabilistic view on functions is
to consider all possible functions and weighting by their probability of explaining
data observed. Or in other words, we sample from the prior and reject all samples
not in accordance with the observed data. By modelling the PCA in a Bayesian
probabilistic setting

p(Y) = ∫ p(Y∣X)p(X)dX , (2.9)

we can determine the number of dimensions by making use of the probabilistic
nature of the model and applying the ARD (Sec. 2.1.5) parameters to select relevant
dimensions.
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There have been many approaches on probabilistic modelling of gene expres-
sion data [16; 24; 37; 78; 96] and my master thesis [98]. In this thesis, we focus on
the Gaussian process latent variable model [47] to analyse high dimensional bio-
logical data (i.e. gene expression data). In the next section, we will have a closer
look at the Gaussian process latent variable model and some extensions to further
facilitate dimensionality reduction and propagation of uncertainty.

2.3 Gaussian Process Latent Variable Model (GPLVM)

In this section, we will have a detailed look at the core dimensionality reduction
technique of this thesis, the Gaussian process latent variable model (GPLVM, [98])
developed by Lawrence [47, 48].

In dimensionality reduction, we want to assign a lower dimensional input space
X ∈ RN×Q and latent function f(X) generating the higher dimensional observed
variables f(X) = Y. We will start with the linear mapping Y = XV with weights
V ∈ RQ×D, weighting the individual influences of latent features and release that
assumption later. As opposed to the method used in this thesis, there is another
Bayesian probabilistic principal component analysis [84], which puts a prior on the
latent inputs X and integrates them out. This means, they learn the weights for
a given X to create the data observed and find an optimal X for given weights in
an alternating manner, see Tipping and Bishop [84] for a detailed description of
probabilistic PCA. In the method of this thesis, we will integrate over the weights
using a GP prior to eliminate the need for a parametric solution entirely.

In GPLVM - the method used in this thesis - we put the prior on the mapping
from X to Y (which in the linear case corresponds to the weights V), and integrate
over the inputs. We learn the most probable input X for a given output Y explained
by the generative model Y = XV. (This turns out to be equivalent to principal
component analysis solution when considering the linear mapping in GPLVM [8;
83], the GPLVM allows for a probabilistic non-linear extension of PCA).

We assume independence across dimensions of the weights and thus, the prior
for the weights take the form

p(V) =
D

∏
d=1

N(V⋅d∣0, IQ) , (2.10)

where V⋅d is the dth column (i.e. weighting dimension d) of V. By integrating over
V the likelihood for the phenotype Y, given an input X can be written as (Eq. (2.1))

p(Y∣X) =
D

∏
d=1

p(Y⋅d∣X) , (2.11)
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where
p(Y⋅d∣X) = N(Y⋅d∣0,K + β−1IN) . (2.12)

Here, K is the covariance matrix created by the covariance function k(Xßcdot,X
′
i⋅),

evaluated at every sample (i.e. row) Xi⋅ and X′
i⋅ of the inputs X and β = σ−2. In the

linear case this corresponds to

K = XAX⊺ , (2.13)

where A ∈ RQ×Q is a diagonal matrix with parameters θ = diag(A). We can now
estimate the distribution of the data (2.9) by maximum a posteriori (MAP) estimate
of both the parameters of the model and the latent inputs jointly. This estimate
can be found by maximising the log marginal likelihood of the model given the
parameters and X (Eq. (2.2))

lnp(Y∣X) = −DN2 ln(2π) − D
2 ln ∣KGP ∣ − 1

2 tr(K−1
GPYY⊺) , (2.14)

where KGP = K + β−1IN . The set of parameters

{X̂, θ̂, β̂}MAP = arg max
{X,θ,β}

lnp(Y∣X,θ, β) , (2.15)

which maximizes the log-likelihood (2.14) contains the (a posteriori) most probable
inputs for the given phenotype Y. Here, we intentionally added the parameters θ
of the covariance function and the precision parameter β of each Gaussian process
(Eq. 2.12). This set also contains the most probable set of inputs X, generating the
phenotype under the generative model Y = XV. This model is generated by the
covariance function one chooses to use (which we assumed to be linear).

To find the most probable set of parameters (2.15) we apply gradient based opti-
misation, because in most cases there is no fixed point solution to maximize (2.14).
However, in the linear case, the fixed point solution can be written as the well
known PCA (Section 2.2). The gradient of (2.14) w. r. t. X can be written as

∂ lnp(Y∣X)
∂X

= K−1
GPYY⊺K−1

GPX −DK−1
GPX ,

where α is the noise parameter for the prior over V (2.10). Finding the fixed point
solution and solving for X leads to

1
DYY⊺K−1

GPX = X . (2.16)

With some algebraic manipulation this solution can further be simplified (see de-
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tails in [48]) to
X = UQLΣ⊺ , (2.17)

where UQ is a N ×Q matrix, whose columns are eigenvectors of YY⊺, L is a diag-

onal Q×Q matrix, whose diagonal entries ` = (lq)1≤q≤Q are lq = ( λq
αD − 1

βα)
− 1

2 , while
λq is the qth eigenvalue of YY⊺, and Σ is aQ×Q orthogonal matrix. This is the PCA
(Section 2.2) solution to the problem [48]. In Section 2.2, we used the eigenvectors
VQ of the covariance matrix Y⊺Y. These can be transformed to the eigenvectors
U of the matrix YY⊺. (see e.g. Bishop [9]; Tipping [83]). This transformation and a
corresponding normalisation leads to the solution above.

2.3.1 Inferring Subspace Dimensionality

PCA can be seen as a special case of the GPLVM model, assuming a linear map-
ping f between input and output. Now let us relax the linearity assumption in
the GPLVM case. We can see that Eq. (2.11) is a product of D independent Gaus-
sian processes with linear covariance function k(X,X′). It is natural to extend this
model to non-linear mappings between latent inputs X and measured outputs Y

by introducing any non-linear covariance function k, for example the ARD expo-
nentiated quadratic (Sec. 2.1.5). With that, we are able to find non-linear input
spaces, generating observed data. As described in the ARD section (Sec. 2.1.5),
we can use the ARD parameters of the linear or exponentiated quadratic kernel
to identify dimensions of interest. Thus, we only have to supply enough dimen-
sions initially for the model to fit the data. The GPLVM can tell us how many
dimensions of the initial ones it needed to find the optimal solution. This means
we have reduced the problem of how many dimensions to pick to a problem of
supplying enough dimensions initially. The number of dimensions of the latent
space is not expensive in terms of runtime requirements, but the gradients need to
be computed, so it is a tradeoff to be aware of, when running GPLVM.

Leading up to the next section, we still have a problem with applying this model
to high dimensional and big data, as we have to compute the inverse K−1 of theN×
N covariance matrix K. In the next section, we will see how to introduce M ≪ N

inducing inputs Z for K, such that we can approximate K with a rank M form. As
we will discover, the underlying Gaussian process prior still is able to approximate
the true non parametric posterior of the likelihood, and the complexity of the GP
computation can be brought down from O(N3) to O(NM2).
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2.4 Sparse Gaussian Process Regression

Gaussian processes are flexible tools for non-parametric regression. One disadvan-
tage is the computational cost of O(N3), where N is the number of samples to
regress over. The cost comes from the inversion of the covariance matrix K−1

GP nec-
essary to compute the log-marginal likelihood of the GP (Eq. 2.1). One proposed
solution to this cost, is to approximate the covariance matrix KGP of the GP. In
the following, we will separate the noise variance hyper parameter σ2 from the GP
covariance KGP = K + σ2I and handle the likelihood hyper parameter separately
from the covariance matrix.

The sparse GP approximation is done by introducing inducing inputs Z ∈ RM×Q

(surrogate variables, that live in the same space as the inputs X), where M << N .
They are used to compute a secondary covariance of lower rank than the original
covariance of the GP

K ≈ KFUK−1
UUKUF ,

[KFU]ij = k(Xi⋅,Zj⋅) [KUU]ij = k(Zi⋅,Zj⋅) .

To introduce the inducing inputs, we follow the approach of Titsias [85]. In Section
2.1, we have observed that the distribution over latent function values F for the
inputs X can be written as p(F∣X) (Eq. (2.1)). Parallel to this, we observe the
latent values of the GP at the inducing inputs Z to be the inducing outputs U, with
their prior distribution defined over the same covariance evaluated at the inducing
inputs KUU:

p(U∣Z) = N(U∣0,KUU) .

The cross covariance between inducing inputs Z and inputs X is KFU.

This gives us the opportunity to upper bound the original marginal likelihood
of the GP, which only requires us to compute the inverse of the secondary covari-
ance. Using Sparse GPs, we can speed up computation from O(N3) to O(NM2),
as the cross covariance from inputs to inducing inputs has to be computed.

Following along the definition of GPs, we can observe the conditional distribu-
tion over the latent functions F given the inducing outputs

p(F∣U) = N (F∣KFUK−1
UUU,Λ)

Λ = KFF −KFUK−1
UUKUF .

Let β = σ−2 in the following for uncluttered notation. With the above we can
observe, that the log marginal likelihood of the GP can be written including the
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inducing inputs

log p(Y∣X,Z) = ∫ ∫ p(Y∣F)p(F∣U,X,Z)p(U∣Z) dU dF .

Following Titsias [85], we perform variational integration of U by introducing Jensen’s
bound on the log marginal likelihood. We will first integrate out the latent function
F as

log p(Y∣U,X,Z) = log ⟨p(Y∣F)⟩p(F∣U,X,Z)
≥ ⟨log p(Y∣F)⟩p(F∣U,X,Z) Jensen’s bound

=D log c − 1
2 tr ⟨(Y −F)βI(Y −F)⟩p(F∣U,X,Z) Matr.cookbook p.42

=D log c − 1
2 tr ((Y −KFUK−1

UUU)⊺βI(Y −KFUK−1
UUU) + βΛ)

= logN (Y∣ML1 , β
−1I) − 1

2β trΛ

=∶ L1 ,with

ML1 ∶= KFUK−1
UUU .

Here, c = (2π)−
N
2 ∣σ2I ∣−

1
2 is the normalizer for p(Y∣F) . This gives us the log

marginal likelihood in terms of the inducing outputs U. It comes to show, that
the distribution p(Y∣X) can be fully explained by the inducing inputs, if we were
to actually apply the integral over F. This would not lead to additional insight, as
it would just be a switch of variables from F to U (and respective inputs X to Z).
Hence, we perform the variational approximation using Jensen’s bound.

From here, we can now integrate out the latent GP function values U by taking
the expectation under the inducing output distribution:

log p(Y∣X,Z) = log ⟨p(Y∣U,X,Z)⟩p(U)
≥ log ⟨expL1⟩p(U)

= log(exp{−1
2β trΛ}∫ N (Y∣ML1 , β

−1I)N (U∣0,KUU) dU)

=D log c − 1
2 tr (Y⊺(βI −KFUβI (KUU + βKUFKFU)−1βIKUF)Y) − 1

2β trΛ

= logN (Y∣0,KFUK−1
UUKUF + β−1I ) − 1

2β trΛ

=∶ L2(Y) ,

(2.18)

with the normalizer factor c = (2π)−
N
2 ∣KFUK−1

UUKUF + β−1I ∣−
1
2 .
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2.4.1 Optimization and Complexity

Compared to the original maximization of the log marginal likelihood of the GP
(Eq. (2.2)), we now have to optimize the inducing input locations in addition to the
hyper parameters of the covariance and likelihood:

{Ẑ, θ̂} = arg max
Z,θ

L2} .

Thus, we can optimize the sparse GP bound L2 with respect to the positions of
the inducing inputs Z ∈ RM×Q in O(NM2). This computation is dominated by the
computation of KFUK−1

UUKUF, where the inversion of the inducing inputs covari-
ance matrix K−1

UU can be computed inO(M3). This is dominated by the product be-
tween KFUK−1

UU. This results in the overall complexity of this variant of the sparse
GP algorithm to be O(NM2).

2.4.2 Implementation

The implementation of sparse GPs can be seen analogous to standard GPs. The
inducing inputs Z are variational parameters and are optimized jointly with the
prior parameters θ. The gradients of the inducing inputs can be gotten by using the
chain rule and computing the gradients of K w.r.t. X (or more precisely Z).

∂L2

∂Z
= ∂L2

∂KUU

∂KUU

∂Z
+ ∂L2

∂KUF

∂KUF

∂Z
.

If we want to handle uncertain inputs, all equations can be explained using the
Bayesian GPLVM expressions. Please see expressions used in 2.5 for further details.

2.4.3 Prediction

To perform (approximate) predictions for new values Y∗ at new (given) input loca-
tions X∗, we need to compute the conditional distribution over Y∗ given the new
inputs X∗ and seen data

p(Y∗∣X∗,X,Y) = ∫ p(Y∗∣U,X∗)p(U∣Y,X,Z) dU .

We first begin to find the conditional distribution of the inducing inputs when seen
the data using Bayes’ rule

p(U∣Y,X,Z) = p(Y∣U,X,Z)p(U∣Z)
⟨p(Y∣U,X,Z)⟩p(U∣Z)

.

35



As we are using variational approximations for the computations of the bounds, we
use the approximated probability to compute the posterior prediction as follows:

p̃(U∣Y,X,Z) = exp(L1)p(U∣Z)
⟨exp(L1)⟩p(U∣Z)

=
N (Y∣ML1 , β

−1I )N(U∣0,K−1
UU)

∫ N (Y∣ML1 , β
−1I )N(U∣0,K−1

UU) dU

exp(1
2β trΛ)

exp(1
2β trΛ)

= N(U∣MU,SU) , where

SU = (K−1
UUKUFβIKFUK−1

UU +K−1
UU)−1

= KUUΣ−1KUU , where Σ = KUU + βKUFKFU

MU = S−1K−1
UUKUFβIY

= βKUUΣ−1KUFY .

See A.3 for detailed derivation of the above. With that, we can now make predic-
tions using

p(Y∗∣X∗,X,Y) = ∫ p(Y∗∣U,X∗)p(U∣Y,X,Z) dU

= N(Y∗∣βKF∗UΣ−1KUFY, β−1I +KF∗UΣ−1KUF∗) ,

Σ = KUU + βKUFKFU .

Note the posterior prediction is non-parametric and therefore will not collapse if
there are no inducing inputs. Only when fitting the model, the inducing inputs
are the necessary statistics for the bound. As the computation of the bound, the
computation of the prediction only includes the inversion of KUU and benefits from
the speedup itself.

2.4.4 Intuition

As the prediction of a sparse GP is non parametric, samples of the prior behave
the same as in a full GP. The variance outside the defined input range expands
to the prior variance and the mean goes back to the prior mean. The difference
is when fitting to data (X,Y) (and that it is an approximate covariance structure
KFF ≈ KFUK−1

UUKUF + β−1I ). Only the inducing outputs U∣Z will act as anchor
points for the GP fit, replacing the original latent function values F. The data can
only be seen through the induced statistics by U, and will have to be learnt to
closely resemble the inputs most influential areas. To see this in a more intuitive
way, we have plotted three different states of a sparse GP fit with differing states of
inducing input locations in Figure 2.6.

36



y

x

(a)

y

x

(b)

y

x

Full GP Sparse GP

(c)

Figure 2.6: Sparse GP plots. The inducing input locations Z (red arrows at the bottom)
differ to show the effect of their position on the underlying GP. The full GP fit is shown as
dashed lines, whereas the sparse GP is shown as solid line. (a): Too few inducing inputs,
so they are not able to fully explain a full GP fit. (b): There are enough inducing inputs,
but in sub optimal positions. (c): Shows an optimal fit of inducing inputs, showing there is
almost no difference to a full GP.

2.5 Variational Bayesian GPLVM

In the next step, we want to integrate out the inputs X, to provide a latent variable
model, where the latent space X is learnt as the solution to the mapping f(X) = Y

[19; 86]. f(X) has a GP prior p(X), which we approximate by a variational Gaus-
sian prior q(X⋅d) = N(M⋅d,S⋅dI ) =∶ N(M,S), where S contains the diagonals S⋅d

for each dimension as columns, such that the corresponding variance for the mean
dimension M⋅d is S⋅d ⋅ I . This implies that there is no cross covariance between
latent dimensions, the latent points Gaussian variance is aligned to their respec-
tive dimensions. In the following, we will omit the inducing inputs Z as much as
possible, as it will clutter expressions.

We want to integrate over the latent space X and from the standard GP bound
(Eq. (2.1)). This is intractable and we need an approximation. Here, we make use of
another variational approximation on top of the sparse GP approximation to have
the speedup from the sparse GP bound as well as be able to learn the latent space
X:

log p(Y) = log∫ p(Y∣X)p(X) dX

= log∫ p(Y∣X)p(X)q(X)
q(X)

dX

= log ⟨p(Y∣X)p(X)
q(X)

⟩
q(X)

≥ ⟨log p(Y∣X) − log
q(X)
p(X)

⟩
q(X)

≥ ⟨L2(Y)⟩q(X) −KL (q(X)∣∣p(X))

=∶ L3(Y) .

(2.19)
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When maximizing the above bound L3, we will minimize the (KL) divergence be-
tween p and q, while maximizing the sparse GP bound, which will try to find a
suitable fit for the latent function F to fit the seen data Y, at the same time as find-
ing the right input locations X to provide the most likely latent space under the
current function F. This can be confusing in the beginning, we will see the differ-
ent contributions for the latent space later on.

Let us focus on the left side of the expression. We will use (2.18) to extract
the variational bound for Bayesian treatment of the latent space X. Let, in the
following, ⟨⋅⟩ = ⟨⋅⟩q(X)

⟨L2⟩ = ⟨D log c − 1
2 trY⊺(βI −KFUβI (KUU + βKUFKFU)−1βIKUF)Y − 1

2β trΛ⟩

= − ND
2 log 2π + ND

2 logβ + D
2 log ∣KUU∣ + 1

2 log ∣KUU + β ⟨KUFKFU⟩ ∣

− 1
2 trY⊺(βI − β2 ⟨KFU⟩ (KUU + β ⟨KUFKFU⟩)−1 ⟨KUF⟩)Y

− β
2 ⟨tr(KFF)⟩ + β

2 tr(K−1
UU ⟨KUFKFU⟩)

= − ND
2 log 2π + ND

2 logβ + D
2 log ∣KUU∣ + 1

2 log ∣KUU + βΨ2∣

− 1
2 trY⊺(βI − β2Ψ1(KUU + βΨ2)−1Ψ⊺

1)Y

− β
2ψ0 +

β
2 tr(K−1

UUΨ2) ,

with the normalizing factor c = (2π)−
N
2 ∣KFUK−1

UUKUF + β−1I ∣−
1
2 . Here, we defined

the ψ statistics, which have to be computed depending on the covariance function
used:

[ψ0]i = ⟨k(xi⋅,xi⋅)⟩q(X) ∈ RN

[Ψ1]ij = ⟨k(xi⋅,zj⋅)⟩q(X) ∈ RN×M

[Ψ2]ijk = ⟨k(zj⋅,xi⋅, )k(xi⋅,zk⋅)⟩q(X) ∈ RN×M×M .

With this, the bound (2.19) for the variational Bayesian GPLVM (called Bayesian
GPLVM in the following) is fully defined.

2.5.1 On ARD Parameterization in Bayesian GPLVM

The ARD parameters of the covariance function, as described in Section 2.1.5 are
used for feature selection in the input space, identifying relevant dimensions. Usu-
ally, feature selection is driven by penalisation (see e.g. lasso [55]) of the parameters
α. Here, we do not have explicit penalisation as we have a Bayesian model. We in-
troduce implicit penalisation by applying Bayesian treatment of the latent space X,
so that the latent space can be uncertain and therefore the ARD parameter can get
very small. This is called Bayesian model selection [70].
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2.5.2 Implementation

To implement this bound we need to implement the different gradients. We will use
the concept of the chain rule in order to make the gradients generally applicable.
For any kernel hyper parameter α the following holds for the Bayesian GPLVM
bound:

∂L3

∂α
= ∂L3

∂KUU

∂KUU

∂α
+ ∂L3

∂Ψ0

∂Ψ0

∂α
+ ∂L3

∂Ψ⊺
1Y

∂Ψ⊺
1Y

∂α
+ ∂L3

∂Ψ2

∂Ψ2

∂α
.

Thus, we need to find the partial derivatives of the bound w.r.t. KUU and the Ψ

statistics and then the partial derivatives of the kernel of KUU and the Ψ statistics
w.r.t. to specific parameters α.

This helps immensely to reduce complexity in the implementation, as the imple-
mentation of the kernel only has to implement their respective partial derivatives,
and the model implementation can implement their respective partials for the Ψ

statistics in general. Note, that we do also need the gradients for the inducing in-
puts Z and variational parameters (M,S) for the variational distribution over the
latent space q(X) = N(M,S). Remember, that S contains the diagonals for each
dimension as columns, such that the corresponding variance for M⋅i is S⋅iI , which
simplifies computations.

For β the above is not useful, as β is the only hyper parameter not depending on
the prior covariance function. We need to derive the direct derivative of the bound
L3 w.r.t. β.

With that, we are able to implement the Bayesian GPLVM algorithm fully and
the latent space X for observed measurements Y can be learnt in a complexity
of O(NM2). The Bayesian GPLVM algorithm was implemented and optimized
during the course of this thesis and previous work [98].

2.5.3 Factorization and Parallelization

To speed up the computation of Bayesian GPLVM even further (on top of the sparse
GP approximation), we can employ parallel computation of tasks in modern multi
core computational units. In this section, we will have a look at how the Bayesian
GPLVM bound can be factorized in a simple view. The factorization of the Bound
across dimensions D has been implemented during the course of this thesis and is
available through GPy (Sec. 3).

We can then take advantage of that and distribute the calculations of partial
sums on different cores and collect the sums in a master node. The bound described
in this section has useful factorization properties in both, N and D. Here, we will
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describe in short how these factorizations come to be and can be used to compute
in parallel to speed up computation.

2.5.3.1 Factorization in Dimensions D

To factorize the Bayesian GPLVM bound, we need to find a way of writing the
bound as a sum across divisible parts of the data. In this section we look at the fac-
torization across dimensions, so that each dimension can be handled individually
by individual cores. When looking at the Bayesian GPLVM bound

L3 = ⟨L2(Y)⟩q(X) −KL (q(X)∣∣p(X))

⟨L2(Y)⟩q(X) = −
ND

2 log 2π + ND
2 logβ + D

2 log ∣KUU∣ + 1
2 log ∣KUU + βΨ2∣

− 1
2 trY⊺(βI − β2Ψ1(KUU + βΨ2)−1Ψ⊺

1)Y

− β
2ψ0 +

β
2 tr(K−1

UUΨ2) ,

we can see that only the second term of the expectation of L2 under qX includes the
data. Additionally, we can see, that the data is included inside a trace, and as such
is a sum across dimensions

− 1
2 trY⊺(βI − β2Ψ1(KUU + βΨ2)−1Ψ⊺

1)Y

= − 1
2

D

∑
d=1

Y⊺
⋅d(βI − β2Ψ1(KUU + βΨ2)−1Ψ⊺

1)Y⋅d .

This means, parallelization over the dimensions D of the bound can be done
trivially, by computing these individual sums for each dimension individually across
multiple cores. The master node for the parallel computation sums the parts to-
gether and computes the KL term as well as other non data dependent terms in
each iteration. In fact, we can use this fact when computing the bound for the
sparse GP itself.

In high dimensional problems, as for example in gene expression experiments,
we can now perform stochastic gradient descent [9, p.240] along the genes to fur-
ther simplify computational costs. Stochastic gradient descent is an approximation
to full gradient descent, in which we update the gradients for all parameters data-
point by datapoint. Let θ be the hyper parameters for Bayesian GPLVM, then the
update rule for stochastic gradient descent can be written as

θ(i+1) = θ(i) − η ∂

∂θ(i)
L3(Y⋅d) ,

with η being an optimization parameter, controlling the step size of the optimiza-
tion and d being the current dimension of the optimization. We perform the opti-
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mization either by cycling through dimensions D, selection d at random from all
dimensions D or taking dimensions as batches of smaller size than D, summing
gradients before updating the parameters. The advantage of this procedure is, that
we can do distributed computations of the bound and do online learning. As the
gradient is not computed exact, it is more likely to circumvent local optima during
optimization, and parallelization can be done, distributing gradient updates across
multiple workers and updating the global parameters online [49].

This factorization and parallelization is implemented in GPy, such that stochas-
tic gradient descent and parallel computing can be taken advantage of in a real
world setting.

2.5.3.2 Factorization in N

Factorization inN is a little harder to see, but we can make use of the trace operators
to see a factorization in N in the bound [25]. We need to rewrite some terms in the
bound in order to see the factorization in N :

Ψ0 = tr ⟨KFF⟩ = ∑
i

⟨k(Xi⋅,Xi⋅)⟩

Ψ⊺
1Y =

N

∑
i=1

⟨k(Xi,Z)⊺⟩yi⋅ ∈ RM×D

Ψ2 =
N

∑
i=1

⟨k(Z,Xi⋅)k(Xi⋅,Z)⊺⟩ ∈ RM×M

KL (q(X)∣∣p(X)) =
N

∑
i=1

KL (q(Xi⋅)∣∣p(Xi⋅)) .(if q(Xi⋅) factorizes)

This makes the four parts above that factorize in N . We can implement workers
to work on sub parts of the data in N . The workers return partial sums of the
four parts. The master will then sum those parts together and calculate the partial
derivatives for ∂L3

∂Ψ⊺
1Y

and ∂L3

∂Ψ2
. The workers can then calculate the full derivatives

for the kernel parameters θ, likelihood precision β and inducing inputs Z. Here, the
partial gradients w.r.t. Z factorize in N again and can be computed on the worker
nodes. The partial gradients get sent back to the master and the master sums them
up, updating the gradients of the global parameters. While the master sums the
gradients for the global parameters, the workers can update the gradients for their
local parameters M and S, if in a Bayesian GPLVM setting.

2.5.4 Large Scale Bayesian GPLVM

These two factorization properties can now be used to factorize both in D and in
N . We will factorize first in D, distributing for each batch in D the worker load in
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batches in N . All workers in D need a full copy of the global and local parameters,
where the sub workers in N will only have the global and their local parameters.
This makes Bayesian GPLVM widely applicable to datasets with millions of data
points, assuming a big enough cluster to fit the model into memory. At the time
of thesis writing, there is no implementations known (or public) that implement
both factorizations at the same time. Only the factorization across dimensions D is
implemented and accessible through GPy. Additionally, applying the idea of fac-
torization across dimensions D GPy has the capability of handling missing data
at random by the GP marginalization property, which allows us to ignore missing
data points in a high dimensional setting. This, however, adds the number of di-
mensions to the complexity, raising from O(NM2) to O(NM2D) when allowing
for missing data at random.

The implementation of Bayesian GPLVM, factorization across dimensions, stochas-
tic gradient descent and missing data is part of this thesis contribution, supplied
through GPy.

2.6 MRD: Manifold Relevance Determination

As already seen in Section 2.5, the Bayesian GPLVM bound factorizes across di-
mensions D of the observed data Y ∈ RN×D. Manifold Relevance Determination
(MRD) [20] makes use of that fact to handle multiple subsets of dimensions or mul-
tiple datasets, which are taken from the same samples independently. Each dataset
Yi (or subset of data across dimensions) gets its own functional relation Fi(X)
assigned to it, while learning a shared latent representation X for all observed
datasets sets jointly. Based on biological knowledge about the analyzed data, we
can split the extracted data into subsets of functional groups. For example, we can
select the genes associated to cell cycle activity as confounding factor subset and
find independent dimensions in the latent space X for those. A non-Bayesian two-
step approach for this idea of separating non-wanted variation from the signal of
interest was proposed by Buettner et al. [12] in 2015.

To explain the MRD approach, we will define the MRD bound for C indepen-
dent datasets Yi, 1 ≤ i ≤ C. Importantly, these datasets need to be sample aligned,
that is, all datasets have to be taken from the same samples across N , but could be
different measurements in the dimensions. As an example, the original authors in
[20] relate two dimensional shadows of three dimensional positions of stick men.
The idea is to be able to predict the position of a stick man in three dimensions
given a two dimensional shadow of the same man. In gene expression measure-
ments, we can think of functional groups of genes as different datasets, which we
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want to model jointly. By doing the MRD approach we can find independent di-
mensions in the latent space X for each subset of genes, as we assign independent
GP priors to each dataset (datasets are independent given the latent space X).

We assign each subset of genes a different covariance function to jointly model
the datasets Yi with one latent space q(X). The different datasets have each a
function

f i(X + εX) + εY = Yi

relating the input space q(X) to the observed sets Yi.
To define the MRD bound, we will make the kernel a parameter of the Bayesian

GPLVM, as the kernel is the only parameter defining the GP prior for each of the
datasets. With this in mind, the Bayesian GPLVM bound can be written as follows

L3(Yi,Ki) ∶= ⟨L2(Yi,Ki)⟩
q(X) −KL (q(X)∣∣p(X)) ,

so that the covariance function Ki corresponds to the observed dataset Yi. With
this, we can assign one kernel for each of the datasets and sum the bound together
to make up the full MRD bound. The MRD bound sums across datasets inside the
expectation of L2 and computes the KL divergence outside:

L4(
C

⋃
i=1

Yi) ∶= (
C

∑
i=1

⟨L2(Yi,Ki)⟩
q(X)) −KL (q(X)∣∣p(X)) .

Each covariance function ki retains its hyper parameters θi, so that the functions
explaining the observed subsets of data can differ.

Now each of the datasets Y i (or subsets of dimensions) have their own latent
function f i mapping each dataset Yi to a common latent space q(X). To assign
dimensions of the common latent space to datasets, we make use of the ARD pa-
rameters of the kernel. If two (or more) ARD parameters of kernels Ki overlap
(are “switched on”, compare Sec. 2.1.5), the corresponding dimensions of q(X) are
shared across the datasets Yi. Thus, we can unravel the dependance structure of
the latent space on the subsets Yi of the observed data.

As the partition across datasets is inside the sum in the normal Bayesian GPLVM,
we preserve all properties of the normal Bayesian GPLVM while introducing addi-
tional insight into the observed data.

2.6.1 Intuition and Simulation

To gain some intuitional insight into MRD, we will show a simulation to explain
the model. We now want to simulate three different subsets of observed data
{Yi ∶ 1 ≤ i ≤ 3}, by mixing different latent functions linearly. This means, we take
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only some of the input functions to simulate a dataset Yi. After mixing, we push
the datasets to higher dimensions for each dataset set Yi to have different dimen-
sionality from each other. We perform the increase in dimensionality by multiply-
ing with a matrix Ai ∈ Rqi×Di of high dimensional noise Ai

jk = N(0, αi). Each
output data set Yi has its own noise variance, input dimensionality qi and output
dimensionality Di assigned to it. This means, with this simulation, we will show
several aspects of the strengths of MRD:

• Ability to handle differing signal to noise ratios for each dataset Yi by differ-
ing noise variances in Ai.

• Learn differing mappings f i for each dataset Yi by allowing different kernel
structures Ki.

• Identify independency (and dependency) structures from different input di-
mensions q of the input X⋅q to the observed datasets by ARD parameteriza-
tion of the covariance functions Ki.

2.6.1.1 Simulation of Datasets

To simulate the different datasets, we first generate the different latent functions.
We simulate three different latent functions on an ordering (underlying time) t.
Time is used for visualization purposes to give an order to the latent function. It
is not needed to learn the latent representation. The first latent function is a cosine
`1 = cos(t) of the underlying time t. The second latent input is a sine `2 = sin(t) of
the underlying time ordering t. Finally, the last latent input is a negative exponen-
tial negative cosine `3 = − exp{− cos(2t)} with doubled frequency. Note, here ` are
generating the input matrix X ∶= [`i]1≤i≤4 for the simulation.

We simulate three different datasets Yi from mixtures of the above defined
functions `:

• The first simulated dataset Y1 = [`1, `2] ⋅As1 , is generated using the first two
input functions [`1, `2]. It has α1 = 0.3 noise variance added to it.

• The second simulated dataset Y2 contains only the first simulated latent input
`1 with an added noise variance of α2 = 0.2.

• And Y3 is generated from all three latent inputs combined [`1, `2, `3] with
αs3 = 0.25.

See Table 2.2 for a clear representation of which combination of input functions
`i generates which dataset Yi. Additionally, we show an illustration of the three
simulated datasets in Figure 2.7.
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Input Function
Dataset `1 = cos(t) `2 = sin(t) `3 = − exp{− cos(2t)} α

Y1 ✓ ✓ 0.3
Y2 ✓ 0.2
Y3 ✓ ✓ ✓ 0.25

Table 2.2: Simulation of three datasets Yi to explain MRD dependence structure deduction.
The table shows which latent inputs `i where used to generate each dataset and how much
noise variance αi was added.

Y1 Y2 Y3

Figure 2.7: Simulation of three datasets to illustrate MRD. The three simulated functions
`i are shown at the top as lines, the combinations are shown as arrows pointing to the 3
resulting datasets Yi, shown as grey scale images with samples in rows and dimensions in
columns. Note the differing number of dimensions across simulated datasets. The rows for
each of the datasets have to match, so that each row of all datasets Yi

j⋅ corresponds to the
same time point tj .

2.6.1.2 MRD Model Learning and Results

The MRD only gets the three simulated datasets Yi as inputs. Everything else is
being deduced by the model and making use of the model structure. We learn
the model allowing for 4 latent dimensions q(X) ∈ RN×4, to show that one latent
dimension is being learnt as non informative. In Figure 2.8, we summarize the
results from the MRD learning. We plot the mean M⋅i and 95% confidence interval
2
√

S⋅i of the learnt latent space q(X) = N(M,S) for each of the dimensions on
the left side of the plot as lines and shaded areas. The confidence intervals for the
three first learnt dimensions are too small to see the shaded areas. The samples
are plotted from left to right for visibility. As you can see, the three input signals `
get learnt with high confidence. Additionally, the last learnt dimension has mean
M⋅4 = 0 and a variance of S⋅4 = 1, which indicates a non informative dimension.
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Y1 Y2 Y3

Y1 Y2 Y3

Y1 Y2 Y3

Y1 Y2 Y3

Figure 2.8: MRD simulation with three different subsets of observed data. We plot the
mean M⋅i as thick line and 95% confidence interval 2

√
S⋅i as shaded area of the learnt latent

space q(X) = N(M,S) for each of the dimensions i on the left. On the right, we plot the
ARD parameters (height of the grey vertical bars) corresponding to the latent dimensions
X⋅q (rows), respectively for each dataset Ysi . We can see, that the MRD model conforms to
the simulation as shown in Figure 2.7). Note also, the non-informative last dimension (last
row).

This part can be learnt using a simple GPLVM model on the concatenation of all
datasets across dimensions (or even PCA as we simulated a linear relationship in
the data).

MRD, however, gives us additional insight on top of the input signals recov-
ered. It tells us which dimensions come from which dataset provided. We recover
this information through the ARD parameters of each covariance function ki for
each dataset Yi. Each covariance function supplies one ARD parameter per dimen-
sion of the latent space. Here, this was q = 4. So we have 3 × 4 ARD parameters. To
show the dependence structure of the datasets on the learnt latent spaces, we plot
these ARD parameters to the right hand side of the dimensions (Fig. 2.8). Thus,
each dimension gets 3 ARD parameter bars, indicating which dataset includes the
signals. The ARD parameters show either “switched on” or “switched off” signals,
indicated by either visible bars, or a “switched off” state indicated by a line. For
example, we can deduce that the input signal corresponding to the first latent di-
mension (the first row in the plot) is active in all three datasets. And we can see,
that the last non informative dimension is not active in either of the datasets.

In summary, the MRD model is able to find the latent inputs for all of the subsets
jointly, while selecting which of the latent input dimensions correspond to which
subset. We make use of this to assign latent dimensions to different subsets of
genes. For example, we can subset an observed gene expression matrix into cell cy-
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cle related genes and other genes. Usually in gene expression experiments, we are
not interested in cell cycle related activity. Cell cycle activity is basic functionality
and usually not associated with tissue function. We can then find the shared latent
space for those genes and assign latent dimension to either cell cycle related or not.
This jointly corrects for cell cycle related variation, as in the private dimensions for
the other genes the cell cycle related activity is not contained. This means, we can
use the non cell cycle dimensions for further analyses, minimizing confounding
cell cycle related activity.

The MRD model provides a powerful tool of modelling subsets of genes jointly,
while learning a shared lower dimensional representation. The ARD parameters on
the covariance function for each subset give insights into the composition of latent
dimensions explaining the observed data.

The MRD model was implemented and added to GPy during the course of this
thesis and presents another contribution of this thesis.
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Chapter 3

Case Study GPy

In this chapter, we will discuss the implementation of a complex machine learning
algorithm and what thoughts go into the process of undertaking a software im-
plementation for research software design. This project is a collaboration of many
people and researchers and part of the contributions where done as part of this
thesis.

GPy is an open source Gaussian process framework implementing the algo-
rithms described before in a single combined framework. We will start showing
how to decompose a Gaussian process into its primary components and collect-
ing and combining these components for a good flow and interchangeability. This
particular implementation uses Python (Sec. B.1) as the primary programming lan-
guage, but all thoughts in this manuscript can be transferred to other program-
ming languages. In this chapter, we will show our chosen path of successfully
implementing a general framework around an algorithm to allow extendability by
encapsulation, whilst also considering numerical stability issues and separation of
code. This means, we will show some parts of real code interlaced with mathemat-
ical and algorithm challenges and thoughts behind the implementation. To make
this process as easy as possible, we will start with a simple implementation and
extend it towards the numerically stable, fully interchangeable solution for a stable
framework. This example is extendable to other algorithms and is to show how
to think about an algorithm and the maths involved in order to translate it into
a stable framework. This allows for easy extendability and new development of
features, potentially not thought of previously.

Gaussian processes are non parametric tools for regression as described in Sec-
tion 2.1. With modifications they can be extended to classification (e.g. Bishop
[9]; Hensman et al. [34]) and dimensionality reduction (e.g. Lawrence [48]; Titsias
and Lawrence [86]). All of these modifications have been implemented into GPy
by fellow researchers and are accessible through the framework.
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First, we will introduce the implementation for a Gaussian process and the parts
which go into it. We will discuss how to split the algorithm and make sure ex-
tendability is preserved, and a general exchangeable codebase is maintained. This
presents a part of this thesis contributions. We will start with a simple implemen-
tation of a GP and extend it piece by piece increasing generality and stability (Sec.
3.1ff).

Section 3.10 will discuss and compare GPy to existing implementations. The
focus is on the foundational work, extendability, employability and limitations of
all implementations.

In the latter part of this Chapter (Sec. 3.12ff), we will discuss the foundation
of GPy, handling the front end for the user, as well as providing a sophisticated
parameter handling framework for the developer called paramz. This underlying
package handling parameters and other basic functionality has been a big focus
during the course of this thesis and is part of the contributions of this thesis.

3.1 Splitting the Algorithm into Parts

As described in Section 2.1, Gaussian process regression is based on integrating
out latent function values F from the product between likelihood p(Y∣F) and prior
p(F∣X). This is the first separation we can find. There is a likelihood and a prior.
The likelihood (in the vanilla regression case) is a simple Gaussian distribution,
which explains the independent variance from the observed variable Y to the latent
function F. The prior p(F∣X,θ) is a multivariate normal with covariance matrix K,
which is built up by the covariance function Kij = k(Xi⋅,Xj⋅,θ).

We use this split to make it explicit in the implementation. We have three parts
composing the end result of the Gaussian process: likelihood, prior and the infer-
ence around it. The inference computes the marginal likelihood p(Y∣X). It is called
the marginal likelihood because it marginalizes over the latent function values F:

p(Y∣X) =
D

∏
i=1

inference
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
∫ p(Y⋅i∣F⋅i)

likelihood
p(F⋅i∣X)

prior
dF⋅i . (3.1)

The implementation in GPy follows this structure to make each part interchange-
able. In the regression case, the likelihood is usually Gaussian (for non-Gaussian
likelihoods in regression the Laplace approximation can be used [9; 70]). The prior
is a multivariate normal, solely based on the covariance matrix K. We make use of
this fact to implement different kinds of kernels in GPy.
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3.2 Likelihood & Prior

We can extract the kernel from the likelihood, by separating the sum of the covari-
ance of the likelihood K + σ2I and treating both separately.

To begin with, the likelihood will be assumed to be Gaussian. For now it is
enough to assume the likelihood has a variable called variance, which holds the
likelihood variance σ2.

1 class Gaussian(Likelihood):
2 def __init__(self, variance):
3 self.variance = 1.
4 def Gaussian_variance():
5 return self.variance

In the inference, we can access this variance independently from the specific likeli-
hood implementation:

1 variance = likelihood.Gaussian_variance()

This enables different likelihoods (such as non-Gaussian likelihood approxima-
tions) to handle the approximations internally necessary for inference approxima-
tions, such as expectation propagation or the Laplace approximation [9].

Second, we assume the kernel class to implement a function to retrieve the ker-
nel matrix K for a given input X. In particular, the kernel takes an arbitrary X and
translates it into the covariance matrix Kij = k(Xi,Xj) of pairwise covariances in
X. Optionally, it can also compute pairwise covariances between X and another
X′.

1 class Linear(Covariance):
2 def __init__(self, variance):
3 self.variance = 1.
4 def K(X, X2):
5 return self.variance * X.dot(X2.T)

For later use in the inference step, we can retrieve the covariance matrix for the
kernel by calling the kernel matrix function:

1 K = kernel.K(X, X2)

3.3 Inference

As discussed in Section 2.1.1, we optimize the negative log marginal likelihood. For
the implementation this means we need a likelihood, a prior and data to perform
the inference.

Remember that the covariance function is evaluated at all pairs of rows Xi⋅ of
X to create the covariance matrix Kij = k(Xi⋅,Xj⋅,θ). The log marginal likelihood
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of the inference can be written as (Eq. (2.1))

log p(Y∣X,θ, σ2) = log((D ((2π)N ∣K + σ2I ∣)−
1
2 ) exp{−1

2 trY⊺(K + σ2I )−1Y})

= −1

2
(ND log 2π +D log ∣K + σ2I ∣ + trY⊺(K + σ2I )−1Y)

= −1

2
(ND log 2π +D log ∣KGP ∣ + trY⊺K−1

GPY) .

This equation at first glance looks cluttered and difficult to cut into exchangeable
parts, but at a closer look we can do just that. We want to perform inference over
the hyper-parameters θ of the kernel function (see 2.1.2) and the likelihood variance
σ2 by maximizing the log marginal likelihood

{θ̂, σ̂2} = arg max
θ,σ2

log p(Y∣X,θ, σ2) .

Now we can start the implementation of the exact Gaussian process inference pro-
cedure. The data is given as X and Y, so that data point pairs match up as (Xi⋅,Yi⋅)Ni=1 ∈
(X,Y).

1 def inference(kernel, X, likelihood, Y):
2 K = kernel.K(X) # Kernel matrix for pairs in X
3 sigma2 = likelihood.Gaussian_variance() # Gaussian variance of

likelihood
4 Sigma = K + np.eye(K.shape[0])*sigma2 # Covariance of GP
5 Sigma_i = np.linalg.inv(Sigma) # Inverse of Sigma
6 alpha = Sigma_i.dot(Y)
7 data_fit = np.trace(Y.T.dot(alpha)) # trace over dimensions in Y
8 const = np.log(2*np.pi) # normalisation constant
9 complexity = np.log(np.linalg.det(Sigma)) # normalisation for

covariance
10

11 log_marginal_likelihood = -.5 * (const + complexity + data_fit)
12

13 return log_marginal_likelihood

3.4 Numerical Stability

In this section, we will use insights into numerical stability to improve the stabil-
ity of the inference for GPs. Numerical stability is an important issue and has to
be accounted for when implementing a framework to be used by a wide range of
users. There is often a trade-off between generality of implementation and the nu-
merical stability of the application itself. In GPy, we chose to split the algorithm at a
convenient point, where implementation of new algorithms and ideas is promoted,
while keeping numerical improvements and implementation freedom as clear cut
as possible.
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The inference of GPs relies on the inverse of the covariance matrix Kij = k(Xi⋅,Xj⋅)
of the covariance function k of the prior p(F∣X). In a general framework implemen-
tation of GPs, we need to make sure, the inference is numerically stable for a wide
range of covariance matrices. Numerical stability in algebra is a wide field and we
will only explain specific parts necessary for the explanation of the implementa-
tion shown in this thesis. See Higham [36] for a detailed description of numerical
stability and possible solutions. One aspect of the implementation in which the
numerical stability can provide erroneous results is the inverse of the covariance
matrix, and determinant of a covariance matrix. For both of these tasks, numerical
stability can be improved by using the Cholesky decomposition

A = LL⊺ ,

where L is a lower triangular matrix with positive diagonal entries. The Cholesky
decomposition requires matrix A to be positive semi-definite [36, Chapter 10], which
is also the requirement for kernel functions [70].

We take the log-likelihood of a GP and turn it into a numerically stable equation
for use in the actual implementation in a programming language. Now we can have
a closer look at the summands. The first summand log 2π can be precomputed as
a constant. The second summand can be stabilized numerically by the Cholesky
factorization LL⊺ = K.

log ∣K∣ = log ∣LL⊺∣

= log(∣L∣ ⋅ ∣L∣) = 2 log(∣L∣)

= 2 log(
N

∏
i=1

Lii) L is triangular

= 2
N

∑
i=1

log Lii .

The last summand trY⊺K−1
GPY involves the inverse of the GP covariance matrix,

which is being stabilized by making use of a special matrix solve – dpotrs – solving
the system Sx = B using the lower triangular Cholesky decomposition LS of S.
It first solves LSy = S and using that solution solves LTSx = y. Both these opera-
tions can be done in quadratic time, as the cholesky decomposition LS is already
triangular.

1 def inference(self, kern, X, likelihood, Y):
2 K = kern.K(X).copy()
3 Sigma = K + np.eye(K.shape[0])*(likelihood.variance+1e-8)
4 # add constant jitter for numerical stability
5 # Get Cholesky decomposition and computations
6 Si, LS, LSi, S_logdet = GPy.util.linalg.pdinv(Sigma)
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7 # Si: Sigma^{-1}
8 # LS: Lower traingular Cholesky decomposition
9 # LSi: Inverse of the above

10 # S_logdet: \log\det(Sigma)
11 alpha, _ = GPy.util.linalg.dpotrs(LS, Y, lower=1)
12 # dpotrs solves Sx = Y using lower triangular
13 # Cholesky decomposition LS of S
14 # log marginal likelihood parts
15 data_fit = np.trace(alpha.T.dot(Y))
16 # Trace is for more than one dimension in Y
17 const = Y.size*np.log(2*np.pi)
18 complexity = Y.shape[1]*S_logdet
19 # marginal likelihood
20 log_marginal_likelihood = -.5 * (const + complexity + data_fit)
21 return log_marginal_likelihood

3.5 Posterior Prediction

The posterior of the GP is the fitted predictive distribution given the data and pa-
rameters of the likelihood and kernel. To predict at arbitrary (new) points X∗ we
need to evaluate the posterior distribution p(F∗∣X∗,X,Y,θ) (Eq. 2.8). For this, we
employ another close look at the mathematical expression. We can see, that we can
divide the prediction into two parts: training data partD and prediction covariance
part K∗. The following equation shows the two parts for mean and covariance pre-
diction at new points X∗ by over setting the specific parts:

p(F∗∣X∗,X,Y) = N (F∗∣M,Σ)

M =
K∗

KF∗F

D
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(KFF + σ2I )−1Y

Σ =
K∗

KF∗F∗ −
K∗

KF∗F

D
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(KFF + σ2I )−1

K∗
KFF∗ .

The training data part is the only part we need to store to predict at new data points
on demand (by the user). We will store these matrices for later usage.

M = KF∗F

alpha
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(KFF + σ2I )−1Y

Σ = KF∗F∗ −KF∗F

Si
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(KFF + σ2I )−1 KFF∗ .

In the code, alpha can be computed using the Cholesky decomposition of the GP
covariance. Using the insights into numerical stability from above (Sec. 3.4), we
can additionally employ the Cholesky factorization lower triangular matrix LS to
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solve the linear system with respect to Y.

This allows us to only store the two data parts in a posterior object and then
predict on demand by the user at new points X∗ by evaluating the respective pre-
diction covariance parts. We also define the inference method to be a class, so it
is exchangeable with a different inference method. This is being used for the dif-
ferent methods of inference, for example sparse GP, Bayesian GPLVM, Expectation
propagation and others available in GPy.

The exact Gaussian process posterior class and inference class are defined as
follows:

1 class Posterior(object):
2 def __init__(self, alpha, LS):
3 self.alpha = alpha
4 self.LS = LS
5 def predict(self, kern, Xstar, X):
6 Kstar = kern.K(Xstar, X)
7 mu = Kstar.dot(self.alpha)
8 Kss = kern.K(Xstar, Xstar)
9 tmp = GPy.util.linalg.dtrtrs(self.LS, Kx)[0]

10 # dtrtrs: solve system S x = B,
11 # using lower triangular Cholesky LS of S
12 var = Kss - GPy.util.linalg.tdot(tmp.T)
13 # tdot(X) = X.T.dot(X)
14 return mu, var
15

16 class ExactGaussianInference(Inference):
17 def inference(self, kernel, X, likelihood, Y):
18 ...
19 posterior = Posterior(K, alpha, LS)
20 ...
21 return posterior, log_marginal_likelihood

3.6 Gradients

As described in Section 2.1.1, we use the concept of the chain rule to aid computa-
tion of gradients and maintain separability between components. Specifically, the
gradient of the above w.r.t. an arbitrary parameter α can be seen as scalar gradients
(remember L ∶= log p(Y∣X))

∂L
∂θt

=
N

∑
i=1

N

∑
j=1

∂L
∂[KGP]ij

∂[KGP]ij
∂θt

,

as each value in the matrix is a singular call to the covariance function k.

To implement a Gaussian process in a general setting, we just need to imple-
ment the general gradients of the posterior p(Y∣X) with respect to to the GP covari-
ance matrix KGP and then chain rule it with the implementation of the gradients
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of the specific kernels we want to use. This allows any type of kernel to be imple-
mented without the need for the model to know specifics about the kernel and vice
versa. One caveat of this separation can be if the specific kernel in combination
with the specific inference could allow for faster computations of the gradients or
marginal likelihood by harnessing the specific mathematics.

As we can see from Equation 2.5, the gradient of the log marginal likelihood
with respect to the GP covariance can be written as

K−1
GPYY⊺K−1

GP − D
2 K−1

GP .

In code this looks like the following:

1 def inference(self, kern, X, likelihood, Y):
2 ...
3 alpha, _ = GPy.util.linalg.dpotrs(LS, Y, lower=1)
4 ...
5 dL_dK = .5 * (alpha.dot(alpha.T) - Y.shape[1]*Sigma_i)
6 ...
7 return posterior, log_marginal_likelihood, dict(dL_dK=dL_dK)

3.7 Optimization

To learn an optimal model for the data seen, we need to maximize the log marginal
likelihood with respect to the hyper-parameters θ, which in the case of linear is α
and in the case of exponentiated quadratic {σ2

f ,α}. For most optimization prob-
lems minimizing is well described, so we will minimize the negative log marginal
likelihood in order to achieve a best fit for the data seen.

There are several different optimization algorithms and we recommend Limited-
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS-B) from personal experience. L-BFGS-
B is a limited memory version of the original BFGS algorithm, which saves an ap-
proximation to the Hessian of the optimization problem to compute the directions
of subsequent steps more accurately. The limited memory version requires only lin-
ear machine space [13]. In the years of working with Gaussian Processes L-BFGS-B
has proven to be an invaluable algorithm to solve large scale optimization problems
(with thousands of parameters).

The ability for the GP to explain the data using only the likelihood variance (i.e.
has the option to explain all data as noise) makes initialization a crucial step in opti-
mizing Gaussian process models. We want to initialize the prior hyper-parameters,
such that the GP sees signal, and will try to explain the variance in the data using
the prior K, as opposed to the likelihood variance σ2. This is due to the variance
parameter having a higher influence on the GP fit, than the covariance function
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parameters, as the variance is directly added as independent noise to the diago-
nal of the GP. Thus, the GP fit of explaining everything by noise variance is a local
optimum, which when reached can be hard to get out of.

3.8 Mean Function

The separation of the log marginal likelihood into parts enables us to also add in
a mean function into the equations. The mean µ is subtracted from the observed
outputs Y in the data_fit. As we have the separation of components, we can
easily introduce a mean function of the inputs by evaluating it at X and subtracting
it from the observed data before doing the inference.

p(y∣x,θ, σ2) = log ((2π∣K + σ2I ∣−
1
2) exp{(y −µ)⊺(K + σ2I )−1(y −µ)}) (3.2)

= −1

2
(log 2π + log ∣K + σ2I ∣ + (y −µ)⊺(K + σ2I )−1(y −µ)) . (3.3)

The implementation can be modified by adjusting the observed values Y by sub-
tracting the mean function µ evaluated at the inputs X.

1 def inference(self, kern, X, likelihood, Y, mean_function=None):
2 m = mean_function.m(X)
3 Y_residual = Y-m
4 # replace Y with Y_residual from now:
5 ...
6 alpha, _ = GPy.util.linalg.dpotrs(LS, Y_residual, lower=1)
7 ...

3.8.1 Gradients

The gradients for the mean function can be pushed through the evaluated mean µ.
As we handle multidimensional Y, we fill a matrix M with one column mean M⋅i =
µi per dimension of observed values. With that, we can compute the gradients of
the log marginal likelihood with respect to the evaluated mean matrix M.

∂ log p(Y∣X)
∂M

= ∂

∂M
( − 1

2 tr((Y −M)⊺(K + σ2)−1(Y −M)))

= −1
2

∂

∂M
M⊺ (K + σ2I )−1

M + 1
2

∂

∂M
2M⊺ (K + σ2I )−1

Y

= −1
22 (K + σ2I )−1

M + 1
22 (K + σ2I )−1

Y

= (K + σ2I )−1 (Y −M) ,

which is available and computed already in the form of alpha.

1 def inference(self, kern, X, likelihood, Y, mean_function=None):
2 m = mean_function.m(X)
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3 Y_residual = Y-m # replace Y with Y_residual from now:
4 ...
5 alpha, _ = GPy.util.linalg.dpotrs(LS, Y_residual, lower=1)
6 ...
7 return posterior, log_marginal_likelihood, dict(..., dL_dm=alpha)

3.9 Bringing it all Together

For now, we have not described how to actually pull all the parts together to allow
for the optimization. Most off-the-shelf optimizers (minimizers) accept an objective
function f(x) and gradient evaluation df(x). Thus, we need to transform the
parameters, which are currently simple variables, into known parameters for the
optimization and have an effective and simple way to pulling them together.

In GPy, we use the package called paramz [99], which handles parameterized
optimization in an efficient manner. Paramz is part of the contributions of this
thesis and will be discussed in detail in Section 3.12. It provides routines for pa-
rameter constraining, printing, getting and setting and automatic model updates.
One optimization step (iteration) is a cycle through all parameters, updating each
part individually and calling the inference on the updated parameters. It keeps pa-
rameters in memory in one place (collated together into one array), so that getting
and setting parameters individually, automatically updates the variable x of the
objective function. This reduces overload in getting and setting parameters, as well
as minimizes memory requirements of the model.

The paramz package also provides that gradients of variables are stored directly
on the parameters themselves (also memory controlled), so that each of the parts
can control their respective gradients, allowing for separation of code. One opti-
mization cycle (iteration) goes as follows:

1. Update parameters x from optimizer.

2. Call inference with new parameters.

3. Update all gradients for the parameters.

4. Return to optimizer for next step (1).

In paramz, this is being done by the dependency injection pattern, linking the op-
timization cycle to a function called parameters_changed(). In GPy, the GP
implementation class holds the likelihood, kernel and inference method in local
variables self.likelihood, self.kern and self.inference_method. In
the implementation of a GP itself, the parameters_changed method could look
like this:
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1 def parameters_changed(self):
2 # do inference:
3 tmp = self.inference_method.inference(
4 self.kern, self.X, self.likelihood, self.Y, self.mean_function
5 )
6 # extract inference
7 self.posterior, self._log_marginal_likelihood, self.grad_dict = tmp
8 # Update the gradients for parameters:
9 self.likelihood.update_gradients(self.grad_dict[’dL_dK’])

10 self.kern.update_gradients(self.grad_dict[’dL_dK’], self.X)
11 if self.mean_function is not None:
12 self.mean_function.update_gradients(self.grad_dict[’dL_dm’], self.X)

We carefully understood the maths and identified parts, which might be inter-
changed in future. This allowed us to implement a Gaussian process efficiently and
still introduce all necessary stability to the algorithm. The process of unraveling
the structure of the Gaussian process also helped understanding Gaussian process
regression in more detail. We made sure, that all parts can be independently im-
plemented and changed for future changes in covariance functions, likelihoods or
newly added mean functions. This gives a full overview of a way of implementing
a full Gaussian process inference method using the open source paramz framework
that forms one of the contributions of this thesis. The implementation of Gaussian
processes can be found in the GPy package [27]. Some parts may differ, as the GPy
implementation has more modular parts and more algorithmic considerations. The
implementation presented here is fully functioning and can be used to do Gaussian
process regression.

3.10 Comparison to other implementations

GPy is a package to make it easy to run Gaussian process based models. We fo-
cus on ease-of-use for the user, while allowing freedom to implement new models
into the existing framework. We welcome any contribution from researchers, who
develop GP based applications. Separation of parts in implementation, as shown
above, allows for researchers to focus on their part, when contributing. Any opti-
mization of runtime and memory efficiency can be achieved through the structure
given in the framework.

In this section we compare GPy to two other frameworks providing Gaussian
process based applications, to show the focus and difference in philosophies.

3.10.1 GPFlow

GPFlow is a similar implementation to Gaussian process regression as explained
above. The main difference of GPFlow to GPy is, that GPFlow makes use of the
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Dataset Model GPy [s] GPflow [s] sklearn [s]

Oil BayesianGPLVM 5.41±0.17 54.11±1.54 N/A
Oil GPLVM 64.85±10.00 161.87±1.68 N/A
Simulated 1D GPR 0.13±0.05 13.35±10.14 0.20±0.09

Table 3.1: Comparison of GPy versus GPflow and scikit-learn (sklearn). Two different
datasets were generated: first, "Oil" is taken from Bishop [9, p. 678] with 1000 data points,
ran for 200 iterations, respectively. Second, "Simulated 1D" is a one dimensional dataset
with 50 training data points and 100 test data points. It was generated from a multivari-
ate normal distribution with an exponentiated quadratic covariance function. As the im-
plementations differ significantly, we compare all steps of fitting a GP: Model generation,
optimizing hyper-parameters until convergence and predicting with the model. As men-
tioned in the text, scikit-learn does not provide Gaussian process latent variable models.

Google TensorFlow auto-differentiation and distributed computing package to com-
pute gradients and distribute the computational workload. This greatly reduces the
amount of code necessary when prototyping new ideas of algorithms. One down-
side of automated gradient computation could be, when partial gradients, substan-
tial to the model of interest are missing. TensorFlow is an open source project and
partial gradients can be submitted as pull requests (Sec. 1.4.4). This has been done
before for automatic gradients of the Cholesky decomposition (personal correspon-
dence, https://github.com/tensorflow/tensorflow/pull/1465). This
is being mentioned to show how open source research software engineering can
make research quicker and easier for all participants, one of the main points of this
thesis.

Another downside can be speed of computation. Though, recent publications
have shown that these are being addressed by the developers in fast turnarounds
[68]. Manual computation of gradients provides an opportunity to optimize speed
of and efficiency of computation in both memory and time. To show the difference
in computation, we compare GPy against GPflow on different models and datasets
in Table 3.1. As can be seen, GPFlow is in general slower than GPy. Tensorflow pro-
vides an interface to GPU optimized computation, which can alleviate the problem
by making use of the speed of the GPU in modern computers. This, however can
not replace manual mathematical optimization for production code.

3.10.2 scikit-learn

Scikit-learn is a machine learning toolbox for “simple and efficient tools for data
mining and data analysis” [62] implemented in Python. The toolbox is designed
around a simple principle of creating an instance of an algorithm (creating the class
with specific parameter settings), fitting it to data (fit(X, Y)) and then predict-
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ing on new data (predict(X)). The implementation in scikit-learn follows similar
steps as taken in the implementation here for the gradient computation of covari-
ance function (kernel) gradients. The main difference is, that scikit-learn does not
take different likelihoods into account, that means the kernel has to define indepen-
dent noise for regression with variance on the outputs Y. Additionally, scikit-learn
does not allow for parametric mean functions to be added into the regression.

The implementation of algorithms in scikit-learn is focused on usability and
implementing a wide spectrum of established algorithms. In GPy, we focus on the
in-depth implementation of GP specific algorithms and explore the whole spec-
trum of Gaussian process based applications. Scikit-learn is a good tool of “trying
out” different machine learning algorithms on a dataset. In particular, comparing
a new development against standard algorithms of the literature. GPy is meant for
optimized development and efficient application of GP based data analysis.

Scikit-learn provides only the basic GP regression for use, but focuses on pro-
viding a variety of different machine learning algorithms, not based on GPs. The
overlap between GPy and scikit-learn is minimal. The philosophy of scikit-learn
is to provide a wide range of well established data analysis algorithms, while GPy
provides a more focused framework for “cutting-edge” algorithms involving GPs.

3.11 Plotting and Visualization

GPy provides automated convenience functions for plotting with different plotting
frameworks for Python. As of the submission of this thesis, the supported plotting
libraries are matplotlib [39] and plotly [65]. Plotting is an important part in under-
standing a Gaussian process model. In GPy, we focus on providing a simple and
intuitive way of plotting different aspects of the GP models to understand the in-
volved processes. For example, the kernels provide functions to plot the covariance
function along the inputs. The GPRegression models provide functions to plot
the fit and prediction of the model, allowing for sub-selection of which kernels to
plot, independently. To illustrate the plotting capabilities, we fitted a model to the
Mauna-Loa data [43] with a covariance function as described by Rasmussen and
Williams [70, p. 118]. The data contains atmospheric CO2 readings in Mauna-Loa,
Hawaii. We can plot the prediction in the future with all components of the covari-
ance function, as well as the parts, individually. The full process of creating the GP
regression model including the covariance function is shown in the following:

1 import GPy
2 from sklearn.datasets import fetch_mldata
3

4 data = fetch_mldata(’mauna-loa-atmospheric-co2’).data
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5 X = data[:, [1]]
6 y = data[:, [0]]
7

8 k1 = GPy.kern.RBF(1, variance=1, lengthscale=100, name=’Long term’)
9 k2 = GPy.kern.RBF(1, 1, 90) * GPy.kern.StdPeriodic(1, variance=1,

lengthscale=1.3, period=1)
10 k2.std_periodic.period.fix()
11 k2.name = ’Seasonal’
12 k3 = GPy.kern.RatQuad(1, variance=1, lengthscale=1.2, power=.78, name=’

Medium term irregularities’)
13 k4 = GPy.kern.RBF(1, variance=1, lengthscale=1, name=’Noise’)
14 kernel = GPy.kern.Add([k1, k2, k3, k4])
15

16 m = GPy.models.GPRegression(X, y, kernel=kernel, normalizer=True)
17 m.optimize(messages=1)

With that, we show the plotting capabilities of GPy in Figure 3.1, showing the dif-
ferent plots with the respective calls to the GPy framework.

3.12 Parameterization with the Paramz Framework

As already shown above, the paramz framework [99] handles parameterization
of the model and relieves the requirement for the developer to implement model
optimization. Paramz is part of this thesis’ contributions. It provides not only
optimization routines, but also provides parameter constraints, parameter fixing,
pretty printing, parameter getting and setting with automatic updates to the model,
and caching of function calls in a memento pattern. In this section, we will elucidate
these features.

Parameter Constraints Sometimes parameters in a model are only allowed to re-
alize certain ranges of values. For example, a parameter α specifying the variance
of a normal distribution N(0, α) is bound to be positive. In paramz, constraining
parameters is as simple as calling the constrain_<how> function on the parameter
itself. For example, if we have the normal distribution as a class Normal defined as
follows:

1 import paramz
2 class Normal(paramz.Parameterized):
3 def __init__(self, variance=1, name=’Normal’):
4 super(Normal, self).__init__(name=name)
5 self.variance = paramz.Param("variance", variance)
6 self.link_parameter(self.variance)
7 n = Normal(.5)
8 print(n)
9 # Normal. | value | constraints

10 # variance | 0.5 |
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we can make sure, that the parameter variance only allows positive values, con-
straining it positive:

1 n.variance.constrain_positive()
2 print(n)
3 # Normal. | value | constraints
4 # variance | 0.5 | +ve

Parameter Fixing Parameter fixing is just a special case of constraining param-
eters. A parameter can be fixed by calling the fix() method on the parameter.
One can also constrain complete (parts of) models to constrain the whole model (or
part): n.fix() will cause all children (and their children) of n to be fixed. Unfixing
is just as simple, by just calling the unfix() method on the part to unfix. Impor-
tantly, fixing and unfixing will not alter the constraint state of a parameter, so after
unfixing, it will still be constrained positive:

1 n.variance.fix() # direct selection of parameter
2 print(n)
3 # Normal. | value | constraints
4 # variance | 0.5 | +ve fixed
5 n.unfix() # indirect unfixing of the whole parameterized Normal
6 print(n)
7 # Normal. | value | constraints
8 # variance | 0.5 | +ve

Pretty Printing As already shown at a glance above, the paramz framework pro-
vides all parameterized objects (models and parameters) with a nice printing be-
haviour. Each parameterized object has a name associated with it, given at creation
time. The printing will include the name of each object and create a hierarchy
showing the connection of the parameters inside the model. To print the values of
parameters of bigger models, paramz tries to keep the output clean and simple. If
a parameter has multiple entries, it will only display the dimensions of the vector
or matrix. If it is only one element, it will display the value of the element itself
(see above). We extend the definition of the Normal to be a multivariate normal
distribution with mean mu and covariance matrix cov:

1 import paramz, numpy as np
2 class MultivariateNormal(paramz.Parameterized):
3 def __init__(self, mu, cov, name=’MultivariateNormal’):
4 super(MultivariateNormal, self).__init__(name=name)
5 self.mu = paramz.Param("mean", mu)
6 self.cov = paramz.Param("covariance", cov,
7 default_constraint=paramz.constraints.Logexp()
8 # Set the constraint directly on the parameter at creation time
9 )

10 self.link_parameters(self.mu, self.cov)
11 n = MultivariateNormal(np.random.normal(0,1,(3,1)),
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12 np.cov(np.random.normal(0,1,(3,3))))
13 n.mean[2].constrain_bounded(-1,2)
14 print(n)
15 # MultivariateNormal. | value | constraints
16 # mean | (3, 1) | {-1.0,2.0}
17 # covariance | (3, 3) | +ve

Note, that we put the positive constraint programmatically on the covariance pa-
rameter at creation time. Additionally, we show the curly brackets around the
bound constraint of the third entry of the mean to signify that only parts of the full
mean are constrained. You can see that the two parameters, mean and covariance,
are displayed with their dimensions as value. If we want to show all values and
details of a parameter, we can print them by printing the specific parameter (leaf)
of the model directly:

1 print(n.mean)
2 # index | MultivariateNormal.mean | constraints
3 # [0 0] | -0.52004708 |
4 # [1 0] | -0.11452660 |
5 # [2 0] | 0.10037635 | -1.0,2.0

Parameter Getting and Setting Getting and setting parameters is the same as get-
ting and setting the underlying numpy (Sec. B.1.1) array. The advantage of paramz
is, that it will register the changes and call the parameters_changed() method of
the changed part of the model. It will also traverse the hierarchy upwards to up-
date the higher part of the model. This makes sure, that no changes to the model
will leave it in an inconsistent state, and update routines do not have to be done
manually. To show the behaviour of the paramz framework, we will override the
parameters_changed() method to sum the mean parameter into a self.mean_sum

variable:

1 class MultivariateNormal(paramz.Parameterized):
2 ...
3 def parameters_changed(self):
4 self.mean_sum = self.mean.sum()
5 np.random.seed(1234)
6 n = MultivariateNormal(np.random.normal(0,1,(3,1)),
7 np.cov(np.random.normal(0,1,(3,3))))
8 print(n.mean_sum)
9 # 0.713166437452

10 print(n.mean.sum())
11 # 0.713166437452
12 n[:] = 2 # change all parameters under n to be equal to 2
13 print(n.mean_sum) # observe the update from parameters_changed:
14 # 6.0
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3.13 Summary

GPy is a collaboration of many researchers and a community effort. This thesis
adds to the success of GPy by providing the foundational package paramz. Ad-
ditionally, coordination and correction of additions and the oversight of directions
for the GPy package are contributed during the course of this thesis.

We have shown, that by careful consideration of mathematical components of
the algorithm, we can implement a complex algorithm in an extendable and stable
manner. Breaking the algorithm down into its components allows developers to
develop new parts easily, while users can make use of an ever growing feature set
of the framework.
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1 m.plot(plot_limits=[1950, 2050],
2 predict_kw=dict(kern=m.kern.Long_term)
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3 plot_data=True, legend=False)
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1 m.plot(plot_limits=[2010, 2020],
2 predict_kw=dict(kern=m.kern.Seasonal),
3 plot_data=False, legend=False)

2010 2012 2014 2016 2018 2020
Year

300

350

400

450

C
O

2 
[p

pm
v]

1 m.plot(plot_limits=[1950, 2030],
2 predict_kw=dict(kern=m.kern.

Medium_term_irregularities),
3 plot_data=False, legend=False)

1950 1960 1970 1980 1990 2000 2010 2020
Year

300

350

400

450

C
O

2 
[p

pm
v]

1 m.plot(plot_limits=[2010, 2020],
2 predict_kw=dict(kern=m.kern.Noise),
3 plot_data=False, legend=False)
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Figure 3.1: Illustration of GPy plotting capabilities. Let m be a GPy GPRegression model
fitted to the Mauna-Loa [43] data.
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Chapter 4

Applications in Gene Expression
Experiments

In this chapter, we will look at applications of the methods described in Section
2 to real world single cell gene expression experiments. Hereby, we want to not
only focus on the results in the classical sense, but also elucidate the ease of use
of GPy. As mentioned in Section 3, GPy is the underlying package holding a large
proportion of work during this thesis. It provides a package to apply Gaussian
process (Sec. 2.1) based machine learning to datasets. We will first present the new
developed method of Topslam, a method of extracting ordering information from
high dimensional datasets. In the next section, we will show the application of
Topslam to a single cell gene expression experiment. To show the ease of use of
GPy, we will show the optimization process of Bayesian GPLVM using GPy first
and show the results of the novel Topslam on this experiment.

Secondly, we will show the impact of GPy to biology research community. Pack-
ages have been built on GPy, because of its ease of use and attention to extendabil-
ity. We will apply software packages provided by us and others to another single
cell gene expression experiment. The second dataset is more difficult because of
confounding variation and a label mixup at data creation. The time labels for the
experiment where mixed up when the dataset was created, so we can only make
use of marker genes to show the performance of extracted patterns applying ma-
chine learning. This section is to show how packages based on GPy supplied by
their respective researchers can work together to provide a sophisticated toolbox
for single cell gene expression analyses.
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4.1 Topslam: Topographical Simultaneous Localization and
Mapping

In this section, we present a new way of extracting pseudo ordering information for
high dimensional datasets. This method is part of the contribution for this thesis
and is in pre-print Zwiessele and Lawrence [100]. It has been submitted to the BMC
Bioinformatics journal for publication.

Extracting pseudo time ordering is a way of ordering samples of a high dimen-
sional experiment by supplying pseudo time stamps to each sample according to
their intrinsic ordering. In single cell gene experiments, we usually have a rough es-
timate of time for each extracted cell, as we can keep track of the days at which the
cells where fixed (stopped from their respective differentiation or development).
Each cell, however, might have their own intrinsic time at which it divides or de-
velops, and thus the rough estimates of extraction time might be misleading. Addi-
tionally, in many downstream analyses, such as Gaussian processes, it is preferable
to have a more high resolution of time. This lead to the methodology of extracting
pseudo time ordering for single cell experiments. Note, that pseudo time ordering
can be applied to any high dimensional extraction of information of samples.

In this section, we will first describe the predominant way of extracting pseudo
time orderings as presented in the literature. Then we will show the newly de-
veloped method of Topslam as part of this thesis and last apply it to a real world
dataset to show its performance of extracting the ordering information for a com-
plex differentiation pattern. Third, we will show that we can overlay Topslam on
top of other dimensionality reduction techniques and correct distances using the
manifold embedding metric (Sec. 4.1.2.1) for those. We will show, that correcting
for distances using Topslam is not detrimental to pseudo time ordering extraction
and can lead to significant improvements in performance. And in contrast, we will
compare extracting the pseudo time ordering with correction using the manifold
embedding metric against extracting the pseudo time ordering without correcting
for distorted distances.

4.1.1 State-of-the-Art Pseudo Time Ordering Extraction

In pseudo time ordering, we make one assumption from which everything follows.
The assumption is, that similar looking patterns by a defined metric are close in
time. This is a smoothness assumption for high dimensionality. Thus, when two
patterns for a sample match up, their respective time ordering is assumed to be
equal. From this, we can describe the predominant way of extracting pseudo time
orderings from datasets in the literature:
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• First, we extract a lower dimensional representation X ∈ RN×Q of the high
dimensional dataset Y ∈ RN×D, where in generalQ <<D. UsuallyQ is chosen
to be Q = 2, to be able to visualize the newly found representation as a scatter
plot. As mentioned above, we assume the data points which are close in this
representation to be close in pseudo time ordering.

• Second, usually the experimenter supplies a known starting cell, from which
we want the pseudo time ordering to originate. This cell can be chosen from
the lower dimensional representation. One way, is to overlay the extraction
time as colour labelling to the scatter plot and choose a starting cell by visual
inspection.

• Third, we assign the ordering of the cells by following a smallest distances
graph extracted from the lower dimensional representation. Usually this is
done by using either a minimal spanning tree or k-nearest-neighbour graph.
A minimal spanning tree is a graph, where each node has maximally three
edges connected to it, spanning all nodes. The minimal spanning tree min-
imizes distances of edges across all nodes. A k-nearest-neighbour (KNN)
graph is a graph in which all nodes are connected to the k nearest nodes to
it. This can lead to more smooth connection of dense graphs and prevents
unwanted structural effects, which can occur using a minimal spanning tree.
To extract the pseudo time, we create the cumulative sum form the starting
node across edges. We then assign this cumulative sum to each node, and
thus, acquire an ordering according to the lower dimensional representation
following the graph structure.

• Last, in many pseudo time ordering methods, there is a post processing step
of cleaning up possible mistakes during pseudo time assignment. This could
include smoothing of trajectories, branch detection, shortcut prevention and
more.

In this thesis, we will compare to two methods: Monocle [88] and Wishbone
[74]. Here, we will describe the way these methods extract the pseudo time in light
of the above described general method of pseudo time extraction.

Monocle Monocle uses ICA (Sec. 4.1.3.1) as underlying dimensionality reduction
technique. The ordering is extracted using a minimal spanning tree, after which
some identification steps are undertaken to find the backbone (“main stem” for the
differentiation) and branches of differentiation by a majority vote. In this thesis, we
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will implement Monocle by applying the MST extraction technique directly on top
of ICA.

Wishbone Wishbone uses diffusion maps [15] as underlying dimensionality re-
duction technique. It then extracts cell distances using multiple k-nearest-neighbour
graphs. The ultimate ordering is a weighted average over those extracted graphs
starting from so called waypoint cells, sampled across the trajectory. This decreases
short-circuits, introduced by noise. After extraction of the ordering branch identi-
fication is done. Wishbone is meant for identifying only one branching point, i.e. is
not meant to be applied for cell type differentiations into more than two cell types.
In this thesis, we use the python implementation of wishbone [74] provided by the
authors.

Topslam For comparison, we will summarize topslam here. The details hinted
at here, will be elucidated in the following. Topslam uses Bayesian GPLVM 2.5
or MRD 2.6 as underlying dimensionality reduction technique. It then corrects
distances along the extracted lower dimensional representation using the manifold
embedding metric extracted from the probabilistic nature of the embedding. This
decreases shortcuts and prevents erroneous branching along the trajectory. The
non specificity of the dimensionality reduction technique and distance correction
allows for any type of branching as shown by the simulations.

In the following, we will go into the details of Topslam and its intrinsic cor-
rection techniques, allowing for a more principled extraction of pseudo time ac-
cording to probabilistic modelling. This will show the distance correction done by
the manifold embedding metric. The general way of extracting pseudo time or-
derings opens itself to test different dimensionality reduction techniques and see
how the preserve time orderings on simulated differentiation profiles. We will ap-
ply and compare different dimensionality reduction techniques to simulations and
show their resemblance of extracted pseudo time to simulated time. We will then
compare Monocle, Whishbone and Topslam using the same simulated datasets to
assess their corrections and post processing.

4.1.2 Topslam

As explained in Section 2.5 and Section 2.6, we can extract a probabilistic lower di-
mensional representation for a high dimensional dataset. We call this lower dimen-
sional representation the latent space, and the function mapping the latent space
to the high dimensional space is called the manifold embedding. In this section,
we describe a new algorithm combining Bayesian GPLVM with manifold distance
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corrections to extract ordering information for data samples. In particular, we are
interested in cell orderings by gene expression profiles.

The probabilistic nature of GPLVM, and by extension Bayesian GPLVM, allows
us to extract a metric tensor for the latent space [87]. A metric tensor in this con-
text is a high dimensional object, describing the topology (steepness, direction of
slope) of the latent space at every point. We use this metric tensor to correct locally
for pairwise distances in the latent space in a linear manner. In addition, the met-
ric tensor can be visualized as landscape and gives useful insight about the latent
embedding for cell orderings.

Correcting the distances for distortions in the latent embedding allows the ex-
traction of ordering information more robust to outliers and noisy observations
(additional to noise correction of the Bayesian GPLVM itself). To extract the or-
dering from the distances we employ a minimal spanning tree [44]. A minimal
spanning tree is a graph spanning all nodes of a graph, minimizing the cumulative
sum of edge weights. The nodes of the tree represent cells in the latent space, and
edges represent corrected distances along the manifold. The cumulative sum of
distances along the tree from a given starting node is then reported as ordering of
the cells and can be used for downstream analysis as pseudo time ordering.

The method in this section will aid the extraction of manifold information, the
reporting of underlying ordering and show simulation results, comparing GPLVM
to other dimensionality reduction techniques. Additionally, we will compare this
full extraction technique to others from the literature.

4.1.2.1 Extraction of Ordering Information using Topslam

Let Y ∈ RN×D be the extracted gene expression matrix and X ∈ RN×Q the learnt
latent space by GPLVM, Bayesian GPLVM or MRD (Secs. 2.6, 2.5, 2.3). To extract
ordering information from the samples, we need to make an assumption about the
representation of cells in the latent space. We assume two cells to be in a similar
differentiation state, if their gene expression pattern is similar. If two cells are close
in the latent space, we can assign them close in the extracted ordering. One im-
portant assumption here is, that the dimensionality reduction technique preserves
similarities, so that the ordering in original space will be represented in the latent
space.

To extract an ordering, we make use of the distance matrix between all pairs
(i, j) of cell latent positions Xi⋅ and Xj⋅

Dlatent
ij =

√
(Xi⋅ −Xj⋅)⊺(Xi⋅ −Xj⋅) . (4.1)
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These distances are corrected using the Wishart embedding metric tensor as de-
scribed by Tosi et al. [87]. By defining a Wishart distributionW(p,Σ,µ⊺

µ) on the
Jacobian ∂p(Y∣X)

∂X = J of posterior distribution p(Y∣X) of the GP w.r.t. X we com-
pute the expected manifold metric tensor

M ∶= ⟨J
⊺
J⟩ = ⟨J⟩

⊺
⟨J⟩ +Dcov(J,J)

= µ
⊺
µ +DΣ ,

of the latent embedding. Here, µ is the mean of the gradient of the posterior distri-
bution of the GP, and Σ is its covariance. This metric tensor describes distortions of
the latent space functional embedding. Consider a sphere, where we can describe
every point on its surface with two coordinates, but itself lives in a three dimen-
sional space. To correct for the latent space distortions (curvature of the sphere),
we would need to follow the geodesics of the latent space embedding (lines with
shortest distance between points along the manifold/sphere), which is expensive
to compute in the Bayesian GPLVM embedding. Therefore, we use a heuristic ap-
proach to correct for the embedding distortions. We correct locally for distortions of
pairs of latent embeddings of cells (Fig. 4.10), such that local distances are corrected
linearly

Dcorrected
ij =

√
(Xi⋅ −Xj⋅)⊺

Mi⋅ +M⋅j

2
(Xi⋅ −Xj⋅) .

We now use these corrected distances to construct a minimal spanning tree and
compute distances along this tree, using for example Dijkstras [23] algorithm for
shortest paths along a graph. With that, the distances computed follow approxi-
mately the geodesics and can be used to extract pseudo time orderings for the cells
(Fig. 4.3a). We show the process in a simulation application to a manifold embed-
ding in Section 4.1.3.

4.1.2.2 Waddington’s Landscape

As described in Section 1.2.2, Waddington envisioned a (epigenetic) landscape (Fig.
1.3) that considers cell differentiation as a surface. Cells would follow the surfaces
defined gravity wells to decide on the cell fate at each step of differentiation. We
propose a probabilistic representation of Waddington’s landscape, which is defined by
the underlying manifold density, described by the magnification factor [10]

Wi ∶=
√

detMi ∀1 ≤ i ≤ N (4.2)

of the expected manifold metric tensor. The magnification factor describes the den-
sity of the space given by the manifold metric tensor at every point in the latent
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Figure 4.1: Differentiation simulation for cell progression. Each simulation has its unique
seed. (Figure taken from the pre-print [100])

space. This representation assigns each position Xi⋅ one density value, describing
the density of the manifold at that position. This density is similar to Waddington’s
original idea of a landscape, but has clear distinctions. Here, the landscape is a
representation of the underlying manifold for the dimensionality reduction tech-
nique. It quantitates the accessibility of areas in the latent space. We do not acquire
a mechanistic representation of the underlying processes of cells, but a probabilistic
lower dimensional generative mapping to the gene expression patterns observed.

4.1.3 Comparison of Dimensionality Reduction Techniques using Dif-
ferentiation Profile Simulations

To show the advantage of Topslam over other methodologies, we will compare
other dimensionality reduction techniques to Topslam as an underlying algorithm
for the pseudo time ordering extraction. The comparison is done on simulated la-
tent spaces. We simulate cell differentiation profiles from 1 to 64 cell stages, shown
in Figure 4.1. The simulation is done by creating a two dimensional tree splitting
structure, of which the nodes are cell stages and the edges are differentiation fates.
By simulating technical variance – progressively increasing noise variance of Gaus-
sian distributed noise – we obtain a differentiation profile for cells in two dimen-
sional space. We then use these simulated latent spaces X to generate high dimen-
sional gene expression measurements, by applying non-linear functions Y = f(X),
where f are non-parametric Gaussian process samples, generated with an expo-
nentiated quadratic covariance (Sec. 2.1.2.2).

Figure 4.2 visualizes the distribution of pairwise distances in gene expression
space. This is to ensure, that the generated distribution over distances is represen-
tative for real world gene expression measurements. We will look at one of the
experiments more closely in Section 4.2.

The code for the simulation can be found in the Python package developed
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time.

Figure 4.3: Extracted landscape and correlation to simulated time for one simulated
dataset.

as part of this thesis provided on Github https://github.com/mzwiessele/

topslam.

4.1.3.1 Extraction and Comparison of Landscapes

To make the comparison, we first extract a latent space from 30 different genera-
tions of gene expression profiles of all 5 simulated differentiation profiles. We then
apply different dimensionality reduction techniques to the gene expression profiles
to extract latent spaces, from which we can extract pseudo time orderings using the
MST approach (Sec. 4.1.2.1). An example extraction of the simulated differentiation
profile “SLS5001” using Topslam is shown in Figure 4.3a, as well as the direct com-
parison of simulated time vs. the extracted pseudo time ordering (Fig. 4.3b).

We extract the ordering information using the MST approach, building a MST
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SLS8971 SLS3551 SLS3279 SLS5001 SLS5081

topslam 0.88±0.11 0.96±0.01 0.87±0.04 0.85±0.05 0.94±0.02
BGPLVM 0.83±0.19 0.83±0.06 0.84±0.07 0.79±0.08 0.92±0.05
Isomap 0.93±0.02 0.94±0.08 0.86±0.09 0.77±0.11 0.93±0.03
t-SNE 0.82±0.13 0.76±0.26 0.63±0.21 0.79±0.07 0.82±0.13
PCA 0.88±0.05 0.94±0.02 0.81±0.08 0.76±0.11 0.91±0.04
ICA 0.88±0.05 0.92±0.05 0.82±0.07 0.75±0.09 0.92±0.02
Spectral 0.68±0.09 0.77±0.09 0.71±0.11 0.57±0.09 0.81±0.06

Table 4.1: Comparison of topslam and Bayesian GPLVM (BGPLVM) to other standard di-
mensionality reduction techniques. Shown are mean and standard deviation of Pearson
correlation coefficients between simulated and extracted times.

and follow its shortest paths to order the cells seen along it. Results for all dimen-
sionality reduction techniques are shown in table 4.2.

To show the performance of Bayesian GPLVM from another point of view, we
will compare to the extracted timelines of other dimensionality reduction tech-
niques (Tab. 4.1). The compared dimensionality reduction techniques are

• Isomap: Extract quasi-isometric low dimensional embedding [82]. This method
has shown to be non-unique and has stability issues, which requires careful
normalization of the original data [5].

• t-SNE: extract t-distributed Stochastic Neighbourhood Embedding from data
[90] for visualization. This method is meant for visualization and clustering
and does not retain global distances of samples. This means it is not suitable
for pseudo-time ordering of clusters, as the ordering could be distorted.

• Principal Component Analysis (PCA): Extract rotated linear bases to maxi-
mize variance in orthogonal components. By extracting components explain-
ing a given amount of variance, we can decrease dimensionality [41].

• Independent Component Analysis (ICA): Extract the maximally non-Gaussian
components under a linear factorization of the data [40].

• Spectral Embedding (Spectral): Extract lower dimensional representation us-
ing laplacian eigenmaps of connectivity graph of the samples [6].

This comparison shows the advantage of correcting for the latent embedding and
non-linear dimensionality reduction in topslam. Notice the high performance of
Isomap. This suggests a good point of study to use as fast dimensionality reduction
technique underlying a pseudo-time extraction method.
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4.1.4 Comparison of Pseudo Time Extraction Techniques using Differ-
entiation Profile Simulations

We compare the three methods described in Section 4.1.1 to each other by using the
simulated experiments from the previous Section 4.1.3. Table 4.2 shows the results
from the comparison. Shown are the Pearson correlation coefficients between ex-
tracted and simulated timelines, averaged over the 30 simulation runs. To show
the advantage of distance corrections using the manifold metric tensor of Topslam,
we also show the pure Bayesian GPLVM extracted pseudo time orderings.

SLS8971 SLS3551 SLS3279 SLS5001 SLS5081

Monocle 0.88±0.05 0.92±0.05 0.82±0.07 0.75±0.09 0.92±0.02
Wishbone 0.60±0.11 0.13±0.16 0.78±0.21 0.66±0.08 0.64±0.11
BGPLVM 0.83±0.19 0.83±0.06 0.84±0.07 0.79±0.08 0.92±0.05
Topslam 0.88±0.11 0.96±0.01 0.87±0.04 0.85±0.05 0.94±0.02

Table 4.2: Comparison Table for the tree extracted pseudo time simulations, showing re-
sults as mean and standard deviations for Pearson correlation coefficients ρ.

4.1.5 Probabilistic Waddington’s Landscape for other Dimensionality Re-
duction Techniques

The correction and extraction of the landscape can be seen as overlaying the prob-
abilistic Waddington landscape on top of (Bayesian) GPLVM. This means, we take
the lower dimensional representation of the underlying dimensionality reduction
technique and overlay the landscape on top of it using the methodology described
before.

Our method is not restricted to overlaying the landscape over (Bayesian) GPLVM.
It can use other dimensionality reduction techniques as bases and overlay a prob-
abilistic Waddington’s landscape over those. We first show that overlaying prob-
abilistic Waddington’s landscapes over existing methods does not decrease per-
formance. Second, we will show how to improve existing methods by learning a
representation using the Bayesian GPLVM optimization on top of existing methods.

4.1.5.1 Overlaying a Landscape on top of other Techniques

To extract a probabilistic Waddington’s landscape for other methods, we will over-
lay the landscape on top of other dimensionality reduction techniques. This means,
we take the probabilistic corrections to extend other non probabilistic techniques.
In technical terms, we extract the landscape from a Bayesian GPLVM (Sec. 2.5)
model, initialized and fixed to the underlying dimensionality reduction technique.
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Figure 4.4: Comparison of correlation between pseudotimes extracted from other dimen-
sionality reduction techniques landscapes and a correction of those techniques with our
metric derived from the probabilistic Waddington’s landscape. To the left of each subplot
we see the pure landscape (alone) and to the right is our corrected landscape. (Taken with
author approval from [100])

We compare the pseudo time orderings extracted using the overlay landscapes
to the original landscapes extracted from other methods. In Figure 4.4 we show the
correlation comparison. Note, that overlaying the probabilistic landscape never
decreases performance and in some cases significantly increases performance of
the respective methods.

4.1.5.2 Re-learn Bayesian GPLVM Landscape on top of other Techniques

Additionally to just fixing the underlying dimensionality reduction, we can also op-
timize the Bayesian GPLVM using the other method as initialization. The Bayesian
GPLVM bound has local optima and a non global optimization technique, such as
gradient descent can get stuck in those. Here, we want to show, that optimizing the
bound will only increase performance and does not end up in worse places than
the original method.

In Figure 4.5, we show that this approach results in significant improvements
over just using the original method. Performance is increased significantly in terms
of the mean and consistency is increased, as the variance over all results goes down.
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Figure 4.5: Compare correlation between pseudotimes extracted from other dimensional-
ity reduction techniques landscapes and learning of probabilistic Waddington’s landscape
from those landscapes. This corrects the landscapes of the other techniques and uses them
as a starting point (initialization). (Taken with author approval from [100])

Note that difficult latent spaces such as SLS5001 (compare Fig. 4.1) get improved
for many techniques. And the variance of correlations for simple simulated latent
spaces such as SLS3551 goes down.

Overall, using other methods as initialization for Bayesian GPLVM is viable in
general and performance is improved overall using topslam.

4.1.6 Runtime & Complexity

Topslam is meant for complex differentiation profiles and noise disturbed datasets
with confounding components of single cell gene expression experiments. In the
application Chapter 4, we will show how to apply these techniques in practice.
It can be used for simpler trajectories just as well, but the runtime requirements
will be more expensive than for other pseudo time ordering extraction techniques
found in the literature.

The runtime is a compound between Bayesian GPLVM and shortest distance
extraction from the MST. Bayesian GPLVM has a runtime of O(MN2) (Sec. 2.4),
whereN is the number of cells andM is an arbitrary approximation number, which
is usually chosen to be in the tens. This dominates the upper bound for the com-
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Figure 4.6: Runtimes of Topslam on all five simulated differentiation profiles (Fig. 4.1).
Runtimes include model learning, distance correction and pseudo time ordering.
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Figure 4.7: Bare Bayesian GPLVM vs Topslam. Visualization of the effect of taking the man-
ifold embedding distortion into account. For each simulated latent space and repetition of
simulation, we plot one line. The line connects the Pearson correlation coefficient between
simulated and extracted time of bare Bayesian GPLVM on the left and Topslam on the right.
p-values shown are for significance level between means differing.

plexity requirement of Dijkstra’s algorithm ofO(N2). In summary, the overall run-
time for the algorithm is the complexity of Bayesian GPLVM.

We show the runtimes on the simulated datasets of approximately 500 cells
and 48 genes in Figure 4.6. This includes all steps, from optimizing the Bayesian
GPLVM, over distance corrections using the manifold metric tensor and extraction
of pseudo time ordering along the extracted MST.

4.1.7 Bayesian GPLVM vs. Topslam

Topslam is an overlay on top of Bayesian GPLVM. To show the effect of taking the
manifold topography into account, we plot the results of not correcting alongside
the same result, with correction in Figure 4.7. The figure shows, that taking the
manifold topography into account increases accuracy of pseudo time extraction
significantly.

Using our method significantly improves the performance for recovery of sim-
ulated pseudotimes over existing techniques. This comes from the probabilistic
modelling of the landscape and correction for topographical distortions. In sum-
mary, we are able to conclude that taking the landscapes topography into account
is not detrimental to pseudo time ordering and at times improves recovery of in-
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trinsic signals significantly.

4.2 Mouse Embryonic Development Landscape

Parts of this section’s methodology is in pre-print Zwiessele and Lawrence [100]
and submitted to the BMC BioInformatics journal for publication.

Guo et al. [29] conducted a qPCR [28; 42] gene expression experiment over 437
cells and 48 genes of mouse embryonic stem cells. The experiment comprises up
to 64 cell stage of early development in mice. It showed the differentiation of early
stem cells, by means of manual application of linear dimensionality reduction. That
is, the analysis is a series of PCA applications on sub selections of cells to elucidate
their respective relation to each other.

Using Topslam (Sec. 4.1), we learn a landscape for the cells progression along
time, capturing the differentiation process as a whole. The landscape provides the
progression of time by following the valleys of the topography, depicted in Fig-
ure 4.9. The combination of non-linear dimensionality reduction using Bayesian
GPLVM (Sec. 2.5) with the pseudo time ordering from Topslam, we are able to ex-
tract a more fine grained view on the differentiation of early embryonic stem cells.

4.2.1 Model Optimization using GPy

GPy is meant to be an easy to use tool to optimize Gaussian process based mod-
els. Additionally to optimizing and handling the model, we provide the data in
the https://github.com/sods/ods repository under pods.datasets.singlecell().
With this, we can optimize the model in a few simple steps, including initialization
of the model. Initially, we want the model to learn the latent space and not explain
everything by noise. That is, the noise variance of the model is β−1 = 1 (Sec. 2.5).
We set the noise variance to be equal to 1

100 of the data variance. As we standardize
the data gene wise, the noise variance will be set to 0.01. Additionally, GPy takes
care of the initialization of the latent space m.X. It will set the mean of the latent
space to PCA space and the variance equal to the fractions of eigenvalues for each
dimension (compare Sec. 2.2). As a last step, GPy will set the lengthscale ` to the
inverse of the of the eigenvalue fractions of PCA, to ensure the relevance of the
dimensions is visible to the model initially.

1 import pods, GPy
2 data = pods.datasets.singlecell()
3 expr = data[’Y’] # Extract expression matrix
4 labels = data[’labels’].values # Extract cell stage labels (Guo et al.)
5

6 # Y is already standardized:
7 expr.mean(0)
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Figure 4.8: Plotting the magnification factor with GPy. Shown are the latent positions of
cells as scatter plot and the magnification factor as grayscale from white (distances appear
farther) and black (distances appear closer). This plot is generated by the simple call m.
plot_magnification(labels=labels) to the GPy framework.

8 # Actb 2.089245e-08
9 # ...

10 # Tspan8 2.606407e-08
11 expr.var(0)
12 # Actb 1.002294
13 # ...
14 # Tspan8 1.002294
15

16 # Create BayesianGPLVM model:
17 from GPy.models import BayesianGPLVM
18 m = BayesianGPLVM(expr.values, input_dim=5, num_inducing=40)
19 m.likelihood.variance = 0.01 # Set the likelihood variance to 0.01
20 m.optimize(messages=1, max_iters=3000)

This gives us the optimized model in m. We can now plot the magnification
factor on the latent space directly, using a colour gradient from black (distances
are bigger than shown) to white (distances are closer than shown) by calling m.

plot_magnification(labels=labels). The resulting plot is shown in Figure 4.8.

Here, we have shown the optimization of a complex model such as Bayesian
GPLVM using GPy. Note the simplicity of the optimization routine is a bit mislead-
ing. Here, the provided dataset is already cleaned and standardized. The initial-
ization of the noise variance and the number of inducing inputs is already known
and does not have to be found out anymore.

In the following section, we will extract the differential gene expression infor-
mation along the time line and extract marker genes for the different cell stages.
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4.2.2 Differential Expression in Time

The main advantage of a joint modelling of all cells, is that we have a continuous
time line along all cells. This means, we can infer differing progression of gene
expression along the time line. Here, the cells differentiate into three cell stages at
the 64 cell stage:

• Trophectoderm (TE).

• Epiblast (EPI).

• Primitive Endoderm (PE).

We use the same labelling of Guo et al. [29], which introduces some systematic er-
rors. This labelling is produced by doing a staggered PCA approach. First extract-
ing a global categorization and then fine tune in the categories. See Guo et al. [29]
for a detailed description. With Topslam, we extract the latent positions of the cells
using a non-linear embedding, so that differences between cells can be elucidated
in more detail by the algorithm. In Figure 4.9, we show different dimensionality
reduction techniques applied globally to the data. It is clearly visible, that the sep-
aration in other dimensionality reduction misses at least one essential component,
respectively. t-SNE separates the components, but does not retain the ordering in-
formation, Isomap does not separate the components clearly and PCA does not
separate either of the two on the full data (without the staggered approach). The
figure also shows the probabilistic manifold embedding (magnification factor of the
expected manifold metric tensor, Sec. 4.1.2.2). Here, we can see, that the distances
get corrected, so that no shortcuts will be possible between say for example the 8
cell stage and the 64 PE cell stage. See the correction of the distances elucidated in
Figure 4.10.

The pseudo time line allows us now to do inference on the differentiation pro-
cess over time. As described in Section 1.2.2, we are interested in what makes the
cells differentiate. The genes involved in differentiation along time will be differ-
entially expressed between states. First, we need to identify the different differenti-
ation branches along time to the terminal cell stages. This is done by making use of
the tree structure underlying the pseudo time extraction. We can extract all edges
and cells along the tree leading directly to a randomly selected terminal cell for each
cell type (Fig. 4.11a). We can now perform differential gene expression detection in
time series experiments [77]. This is a Gaussian process (Sec. 2.1) based differential
gene expression algorithm. It compares two hypotheses by a Bayes factor to each
other. The first hypothesis is that the compared timelines are shared, that is, they
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Figure 4.9: Comparison of dimensionality reduction techniques on Guo et al. [29] dataset.
Topslam includes the extracted probabilistic Waddington landscape representation as con-
tour shapes. The lighter the background colour, the easier it is to move (the closer the points
to each other).

0 1 2 3 4 5 6 7 8

TE EPI Id2 Fgf4 Bmp4 Pecam1 Sox2 DppaI Fn1 Klf4 Fgfr2
PE EPI Fgf4 Runx1 Fgfr2 Gata6 Pdgfra Klf2 Bmp4 Gata4 Nanog
TE PE Pdgfra Id2 Gata4 DppaI Tspan8 Atp12a Pecam1 Fn1 Creb312

Table 4.3: Differential gene expression between terminal cell stages of mouse embryonic
stem cells. Shown are the top 8 differentially expressed genes between stages. If one stage
is differentially expressed to the others, it is highly likely to be a marker for this particular
stage. See e.g. Id2 for trophectoderm (TE), which is a known marker [29].

come from one shared function. The second hypothesis is, that the compared time-
lines are independent and come from two independent functions. The Bayes factor
is used as a scoring directly proportional to significance of differential expression.

Taking the differential expression scores between each stage and sorting them
descending by their Bayes score will show marker genes for the differentiation be-
tween stages (Tab. 4.3). If a gene is differentially expressed from one stage to both
of the others, it is a marker for this particular stage (see e.g. for TE Id2, Tspan8).
The differentiation takes place over the timeline and there may be differing times
at which differential expression kicks in. Having the time series as differential ex-
pressed marker genes, we can plot the exact time line of when genes get differen-
tially expressed along pseudo time (Fig. 4.11b).

Using the probabilistic interpretation of Waddington’s landscape as a correc-
tion for the embedding and extraction techniques, we can extract pseudo time in-
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Figure 4.10: Distance corrections from manifold embedding. Some regions are highlighted
with red arrows to see the correction of distances. Note the clearly visible miss classifica-
tions of cells from the label extraction method by Guo et al. [29] (green arrow).

formation more clearly and without additional information to ensure the time line
extracted corresponds to the cell stages as seen in Guo et al. [29].

4.3 T Helper Cell Differentiation

This section will show, that the combination and application of tools based on a
framework gives rise to complex analyses in single cell gene expression experi-
ments. We will show the principled cooperation of MRD (Sec. 2.6) with Topslam.
Importantly, we show the incorporation of prior knowledge into single cell gene
expression experiments. In single cell experiments the element of unwanted varia-
tion in measurements becomes highly significant and has to be taken into account
[12; 24].

We have a single cell gene expression measurement of differentiation of naive
T cells to Th1 and Th2 differentiation cell states1. T cells are the precursor cells to
the immune system T helper cells. When the T cell receptor get presented antigen

1The dataset was kindly provided by Aleksandra Kolodziejczyk and Sarah Teichmann for use in
this thesis. The corresponding publication is pending.
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Figure 4.11: (a): Differentiation process along the time graph (endpoints randomly chosen
within respective cell type). These differentiation paths are used for differential gene ex-
pression for marker gene detection. (b): Example time progression of marker genes. In
green individual fits of two GPs, sharing one prior. In blue the shared fit of one GP to both
stages. Differential expression is decided on which of those two models (green or blue) fits
the data more likely. E.g. Gata6 is a known marker for TE, compare Table 4.3.

from macrophages, they start to differentiate toward the T helper stages [7]. In this
experiment we focus on Th1 and Th2 differentiation.

First, we show the data cleanup and subset selection. Second, we apply MRD
for jointly modelling signal and confounding factors. Third, we will show the ap-
plication of Topslam to the data and how to extract a pseudo time ordering. Finally,
we will apply a mixture of Gaussian processes to find the split in the T helper cells
and assign differentially expressed genes between T helper end stages.

4.3.1 Data Description and Cleanup

The dataset for this section was generated by Aleksandra Kolodziejczyk and a col-
laboration publication of partial results of the presented results is under consider-
ation. The results shown in this section are shown with agreement by Aleksandra
Kolodziejczyk by personal correspondence.

T cells were collected from two mouse strains, B6CAST and CASTB6. We col-
lected 783 cells with 38,561 measured transcripts (genes). Whole transcriptome
analysis was conducted by RNAseq [28; 42] single cell gene expression measure-
ment.

The experiment was conducted in vitro. T cell differentiation was induced by T
cell receptor activation and differentiation was guided by addition of Th1 and Th2
cells, respectively. The differentiation was tracked by 5 extractions of cells over 72

hours, though the time labels where lost during gene expression identification in
the lab. This is one reason why we need to employ pseudo time extraction, but also
a pseudo time assignment can further enhance the time for each cell, as cells might
develop at different paces.

A filtering step was done before analysis with MRD (Sec. 2.6). We filtered for
cd4+ cells, marking for T cells [7].
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Figure 4.12: Relevance parameters for gene subsets of T cell differentiation.

Data was filtered before usage to limit noise variance in the following way. Only
cells with at least 1,000 genes detected and only genes with at least 3 cells detected
are kept.

At hour 72, batch gene expression measurements were conducted for subset
selection. We computed differential gene expression between Th1 and Th2 cells
in batch. This differential gene expression did no elude significant results after
correction for multiple hypothesis testing. Therefore, we use the p-values of this
experiment as guidance for subset selection for the MRD application (Sec. 4.3.2).

Additionally, a gene set associated with cell cycle activity was collected from
Macosko et al. [57] for mouse.

4.3.2 MRD Application

We apply MRD (Sec. 2.6) to the data after normalization. The different subsets for
MRD were selected to include cell cycle activity associated genes (subset taken from
Macosko et al. [57]), genes differentially expressed between Th1 and Th2 stages in
bulk data, and all other genes. This allows us to clearly identify each dimension
of the lower dimensional representation. We can see the learnt ARD (Sec. 2.1.5)
parameters in Figure 4.12. Each dimension of the learnt landscape (x-axis) has one
score assigned, for each subset of genes. We can now deduce what information
the dimensions hold for further analysis. First, we can see, that several dimensions
are completely “switched off”, such as 0, 3 or 17. Those dimensions can be disre-
garded. We can also see, that the cell cycle genes subset has the lone influence on
dimensions 1 and 11. This makes those two dimensions confounding variation, as
we are not interested in cell cycle activity. We are interested in the differentiation
between Th1 and Th2 cell stages, which is dominantly in dimension 6. So, dimen-
sion 6 is most likely the splitting dimension. Finally, dimension 14 is shared across
all gene sets and is therefore most likely the progression in time. All cells are differ-
entiating in the experiment and have to have a natural progression, which should
be reflected in all gene patterns.

Having identified the relevant dimensions for further analysis, we can see if
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Figure 4.13: Marker gene progression in extracted landscape for T helper progression.
Empty black circles are genes with a gene expression of 0 and likely missing.

they actually represent what we expect. We plot marker gene progression for
known Th1 and Th2 markers [28; 42] in Figure 4.13. Note the low signal in Th2
marker genes. In the figure we can conclude, that the splitting dimension correlates
with T helper differentiation in the following way. The left hand side (towards neg-
ative values) of the dimension encodes the Th1 cell state and the right hand side
(towards positive values) represents the Th2 cell state. In combination with the
time dimension, we can see the progression of cells.

4.3.3 Pseudo Time Ordering

We have identified the potential T helper splitting and time progression dimension.
We can now extract the Topslam (Sec. 4.1) pseudo time ordering to extract a more
accurate picture of the progression of cells. The amount of cells in this dataset gives
a nice twist to the extraction. If we would use a minimal spanning tree to extract
the ordering, we would add artificial branches into the picture, as the progression
is not as clear cut as for example in the Guo et al. [29] case (Sec. 4.2). We will use
a k-nearest-neighbour graph approach to extract the time progression information,
replacing the minimal spanning tree, as described in 4.1.5. A k-nearest-neighbour
graph is a graph constructed by connecting the k nearest nodes of a graph with
edges, for all nodes. We choose a k = 5 nearest neighbour graph to extract the
pseudo time ordering. See Figure 4.14 for a comparison between the two extraction
techniques. The k nearest neighbour graph technique yields a continuous progres-
sion over time, whereas the minimal spanning tree introduces artificial structure
into the timeline.

4.3.4 Split Detection

To unravel the split between Th1 and Th2, we employ a similar approach as shown
in Lönnberg et al. [54]. They extract a split using a mixture model of Gaussian pro-
cesses called overlapping mixture of Gaussian processes (OMGP, [31; 50]) to assign
cells to the respective differentiation time lines. It is a variational approximation to
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Figure 4.14: Pseudo time ordering extraction for T helper differentiation progression. On
the left, we see the extraction using the k = 5 nearest neighbour graph and on the right using
a minimal spanning tree. The colouring represents the pseudo time ordering assigned to
the graph.

the weighted sum of Gaussian processes. A Dirichlet process prior on the weights
ensures that the weights correspond to an assignment probability for each of the
overlapping Gaussian processes [11; 45; 81].

We use an implementation of OMGP in the python package GPclust [32]. The
python package is based on GPy (Sec. 3) and extends the functionality of GPy to
mixtures of Gaussians, OMGPs and mixtures of hierarchical Gaussian processes
[33; 35]. Thus, this section shows the usage of GPy beyond the scope of this thesis
and how an implementation focused on extendability and ease of use can help
improve the collaboration and usage of a package. The nature of GPy allowed the
respective researchers used in this section to focus on their implementation of their
part, while paramz supplied the backend for the ease of use of the end user.

The OMGP model uses the inferred pseudo time ordering of cells as input and
the extracted time and split dimension as two dimensional output. Two Gaus-
sian processes encode either of the two differentiation states. The priors over the
weights of the OMGP model assign each cell a probability to come from one or the
other overlapping Gaussian processes [54]. See Figure 4.15 for a plot of the split
and time dimensions identified earlier, showing the assignment of each cell to the
respective Th1 and Th2 differentiation states. It also shows the two underlying
Gaussian processes, which explain the differentiation along time.

4.3.5 Differential Gene Expression

OMGPs are variational approximations to Bayesian models, supplying a lower
bound to the marginal likelihood of the underlying Dirichlet mixture model. We
make use of that to identify differentially expressed genes between the two states,
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Figure 4.15: Overlapping mixture of Gaussians for T helper cell differentiation assignment.
The left shows an overlay of the assignment probability and Gaussian processes for the
split and time dimension identified using MRD. The right shows the extracted pseudo time
ordering against the assignment probability of each cell to belong to Th1.

by comparing a null model of ambiguous assignments of cells (i.e. the assignment
probability for each cell to either Th1 or Th2 is p = 0.5) to the observed model by a
Bayes factor [9]. The Bayes factor provides us with a scoring for differential expres-
sion between Th1 and Th2 cell states for each gene. We make use of the GPfates
package [54] based on GPy (Sec. 3) to extract the differential expression Bayes fac-
tor. To identify marker genes for T helper differentiation to Th1 and Th2 cell states,
we plot the correlation of the (log) gene expression with the assignment probability
for Th1 against the correlation of gene expression with pseudo time ordering. As
significance score, we will use the log Bayes factor for differential expression. We
plot the scatter plot for correlations in figure 4.16, highlighting the top ten marker
genes and showing the potential of differential expression for all other genes. We
can see, that known marker genes are identified as differentially expressed, such as
Infg, Gata3 and Tanc [7].

4.3.6 Summary

We were able to show, that the combination of multiple Gaussian process based
techniques can alleviate the identification of marker genes in a single cell gene ex-
pression experiment. MRD helped us identify a lower dimensional representation
most likely to contain time and split information in the data. Topslam extracted the
according pseudo time ordering of the cells according to the underlying topogra-
phy of the MRD model. OMGP was then able to assign each cell a probability to be
Th1 or Th2 differentiated, or still in the progress of differentiation. As a last step,
we showed, that a Bayes factor between an ambiguous and the observed OMGP
model can identify differentially expressed genes in the data, helping to identify
marker genes in T helper cell differentiation.
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Figure 4.16: Differential expression between Th1 and Th2 cell states for each gene. X-axis
is correlation with Th1 assignment probability and y-axis is correlation with pseudo time
ordering. Colouring is log Bayes factor for differential detection as identified by OMGP.

In summary, we were able to develop a detailed picture of the T helper tran-
scriptome along differentiation from a single cell gene expression experiment, with-
out having to know the extraction times of the cells. This was done by employing
packages based on GPy as a framework for Gaussian process based applications.
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Chapter 5

Discussion and Conclusions

In this thesis, we have looked at the current issues in machine learning research
involving Gaussian processes. In particular, we revealed new problems arising for
the distribution of supplementary code. Most solutions to the problems are already
known, and have to be taken into consideration by the research community around
machine learning. We use code distribution platforms to make code publicly avail-
able and automated testing to make sure the codebase is in a working state at all
times (Sec. 1.4). We have introduced and explained the philosophy behind GPy
in making complex machine learning algorithms available to domain experts of
different fields of expertise. While making algorithms available, we also want the
codebase to be expandable by fellow machine learners, so that the framework can
be constantly developed and extended (Sec. 3). At the time of writing, there is
an active community of 38 contributors (https://github.com/SheffieldML/
GPy/graphs/contributors) on Github, contributing through 130 closed pull
requests to GPy. GPy has been starred by over 500 data scientists, and forked 187

times, indicating an active community contributing to this framework for making
complex algorithms accessible.

5.1 Packages Based on GPy

The problem of bringing machine learning to other domains is by no means solved,
but we have made a big leap towards the ultimate goal of popularizing machine
learning and statistics usage in the non-machine learning community. There are
several packages relying on GPy as an underlying framework to perform other
tasks relying on Gaussian processes. Packages include

• GPclust (Sec. 4.3.4), a toolbox for mixtures of Gaussian processes.

• GPflow (Sec. 3.10.1), a toolbox based on automated differentiation imple-
menting Gaussian process based tools.
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• GPyOpt [4], a Bayesian optimization toolbox for global optimization of pa-
rameters.

• GPy and GPyOpt are used in the NASA for their “Statistical Emulator for
Expensive Classification Simulators” [71].

• GPfates [54], a toolbox for computing Bayes factors between ambiguous and
observed OMGP models, as described in Section 4.3.5.

This shows that GPy is being actively used by fellow machine learners and other
domains alike.

First, we thought of trying to fix the problems of another domain through ma-
chine learning. We soon came to grasp, that what we really should be doing is to
bring machine learning to the domain. We think GPy is a good step towards this
goal and shows that others have faced similar issues and challenges. GPy is also
in the 97th impact percentile of research software packages, listed on depsy.org

[14]. This is based on relative downloads, software re-use, and citation of the soft-
ware.

This shows, that laying the foundation with an extendable and reusable piece of
research software, we have paved the path for fellow researchers to focus on their
research. It not only helps the fellow researchers to implement stable versions of
their work, but also helps the user by consistency as they recognise the usage of the
package. Paramz is to GPy what GPy is to the above packages.

5.2 "Bridging the Gap"

A challenge in machine learning is bridging the gap between methodologies and
application domains. Machine learning algorithms are flexible tools capable of fit-
ting all kinds of data. This means that machine learners work together with re-
searchers of other fields to apply and analyse their data. This is the challenge of
data science. In many cases, data to be analyzed is bound to the institute of ques-
tion and cannot be shared with the machine learner off campus. Machine learning
research needs to enable the institutes’ researchers to apply the machine learning
techniques in an easy to use manner. Fully understanding the algorithm (with all
its details) might be out of the scope of the data collecting colleague.

The ideas in this thesis are driven by personal experience. During secondments
at the MPI for Psychology and Siemens (both) in Munich, I was mainly implement-
ing algorithms for use of their internal researchers. This involved explaining how
to use and what to expect from the resulting plots and analysis. I was, however,
not able to use their data in the thesis, as it is bound to the institutes. This means
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a lot of my research was about learning of how to implement complex algorithms
to be used in an easy to use way. The implementation then, is to provide analysis
tools for the domain experts to understand the results. The premise of this thesis is
that I am not alone in having faced those challenges.

In the course of learning how to implement complex algorithms, we imple-
mented the GPy (Sec. 3) package in the context of ease-of-use. The paramz package
(Sec. 3.12) is a result of this progress, enabling parameterized model implemen-
tation. It aims at enabling both developers as well as users to design and apply
complex models with parameters for gradient based optimization.

These experiences led to a more thorough understanding of the algorithms
(Bayesian GPLVM, MRD, see methods 2 section) and how to apply them in differ-
ent fields to gain insights into data. For example, applying MRD as a confounder
correction technique, without having to make use of residual data sets. In single cell
experiments the latent space dimensions play the important role for identifying the
biological processes of interest. Incorporating subsets of genes of interest identifies
the right latent space dimensions to look at and helps to identify the meaning that
latent space dimensions carry (Sec. 4.3).

5.3 Understanding and Intuition

Applying Bayesian methods in machine learning has many advantages over other
deterministic approaches, though predictive performance of, for example, neural
networks is not to be undermined. Deterministic approaches lack the estimation of
uncertainty in prediction, which Bayesian methods supply. In this thesis, we rely
on the estimation of uncertainty, not only for the output predictions, but also for
the input latent space. Additionally, we use the probabilistic nature of the map-
ping, that maps the inputs to the outputs to find the manifold density of the latent
space (Sec. 4.1). Using this knowledge, we can correct for distortions in the latent
space and improve upon ordering techniques by providing the correct distances to
the extraction methods. Naturally, this part is to be done by the machine learning
researcher.

It is difficult to communicate an understanding of an algorithm for practical use.
In most cases, the practical use of machine learning comes down to knowing how
to optimize (“fit”) the algorithm. This can be alleviated in providing the algorithm
as a framework, such as GPy. There is still, however, the intuition missing. The
algorithm can be implement nicely and coherent, and still in practical use, problems
arise.
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5.3.1 Example: Initialization

It is difficult to communicate ideas such as initialization, parameter choice, prior
knowledge and latent variables to fellow researchers who are not machine learn-
ers by training. It helps if colleagues are trained mathematicians or physicists, but
intuitions for distinct machine learning methods can differ substantially. The intu-
itions about initialization are usually not acquired easily. GPy and paramz are great
tools that make initialization and optimization strategy accessible, but still require
the researcher to apply the intuition manually.

Some possible solutions to initialization of models could be either Bayesian
global optimization [4; 61] or Markov Chain Monte–Carlo sampling [3; 26] for a
few iterations. This could lead the parameters into the right direction for the gradi-
ent based optimization to take over from there. Bayesian optimization is not well
adjusted to large numbers of parameters as of yet, sampling requires a lot of func-
tion executions to find good estimates for parameters. Heuristics can be applied to
initialize parameters as well, but this can lead to difficulties explaining why model
learning fails for some data. Current implementations usually require the intuition
of the user to do the initialization and only do the rare heuristic choice for parame-
ters. In GPy, we provide normalization of the data for the inference hidden from the
user. The inference sees the normalized data, wheres all output functionality (such
as plotting, prediction etc.) de-normalizes before reporting (GPy.util.normalizer).

It is unclear what the ultimate solution to this communication problem might
be, automatization or training, but it is an open issue remaining to be solved.

5.3.2 Example: Optimization

For Bayesian methods, it often comes down to initialization of hyper parameters
and correct fixing of parameters during optimization to restrain the dimensionality
of the optimization problem and overcome local optima of the optimization land-
scape. A big advantage of Bayesian methods is the interpretation of hyper param-
eters and prior choice. Bayesian methods usually integrate over direct paramet-
ric (linear, polynomial, sigmoids etc.) solutions to find higher level prior choices.
This leads to parameters and priors to encompass terms like “smoothness” ver-
sus “roughness”, “periodic” versus “chaotic”, “stationary” versus “shifting” and
more. Here, we need to think about which prior choice to make and how initial
parameters reflect our belief about the specific data at hand.

In machine learning fields there needs to be experts trained to understand the
terms of the underlying technique. First comes the ability to apply the algorithm
(such as the framework GPy), then there is the ability to understand outcomes and
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difficulties (data scientist). In this thesis, we provided a framework for giving the
data scientist the ability to apply the algorithm to their data. In parts, we also
solved the issue of understanding, by running an actively used email list (https:
//lists.shef.ac.uk/sympa/subscribe/gpy-users) for questions regard-
ing GPy applications and having an active community in the issues section of
Github. It is still not fully solved, though, as in many cases, data scientists are
not at liberty to discuss their data specific problems with the public and need train-
ing in understanding the algorithm from a different source. This is out of the scope
of this thesis and must be addressed in future.

We have seen in both examples, that we can identify the problem in the com-
munication of intuition. One big step towards this communication is to bring both
sides on the same level, by providing the tools necessary to apply the machine
learning tools. We have shown one way of solving this first step. Next steps in-
volve communication of intuition through machine learners to domain expert data
scientists, as well as automatization. We have showed the computer how to learn,
now we have to show the human how to ask the right questions and interpret the
results.

5.4 Conclusions

Overall, we are able to show, that supplying a codebase to other domains is a dif-
ficult task. Automation tools for testing and deploying code substantially decrease
deployment turnarounds, but require a careful setup. Writing tests (Sec. 1.4) and
splitting the algorithm for extendability and understandability greatly improve the
ease-of-use for developers and users alike.

Keeping an active community through the issues section and email lists helps
not only the domain experts to apply the algorithm to their data, but helps to im-
prove the codebase itself. The open-source spirit helps to distribute tasks to other
machine learning experts, who are willing to help to improve the codebase itself.
We have had over 100 pull requests to GPy, suggesting and incorporating fixes,
enhancements and bug fixes.

We are able to apply complex machine learning algorithms based on Gaussian
processes in other domains by careful implementation and modularization of the
codebase (Sec. 1.4). GPy provides the necessary underlying framework for several
packages in machine learning, biology and astrology (Sec. 5.1). It is a step towards
bringing Gaussian process models to the domain. Machine learning is not only to
make the computer learn tasks, it is also to provide the (easy-to-use) tool for the
domain expert to apply to their data.
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Appendix A

Mathematical Details

A.1 GP Posterior Inference

In Section 2.1 we explain the Gaussian process inference method. Here we show
the detailed derivation of the GP posterior. We marginalize out the latent function
observations F to create the posterior distribution p(Y∣X) of the outputs X given
the inputs Y:

p(Y∣X) = ∫ (2π)−
ND
2 ∣σ2I ∣−

D
2 exp [−1

2 tr((Y −F)⊺σ−2I (Y −F))]

(2π)−
ND
2 ∣K∣−

D
2 exp [−1

2 tr(F⊺K−1F)] dF

= (2π)ND ∣Kσ2I ∣−
N
2 ∣ exp [−1

2 tr(Y⊺σ−2IY)]

∫ exp [tr(Y⊺σ−2IF) − 1
2 tr(F⊺(K−1 + σ−2)−1F)] dF

= (2π)−ND ∣Kσ2I ∣−
D
2 ∣ exp [−1

2tr(Y⊺σ−2IY)]

(2π)
ND
2 ∣K−1 + σ−2I ∣

−D
2 exp [1

2 tr(Y⊺σ−2I (K−1σ−2I )−1σ−2Y)]

= (2π)−
ND
2 ∣Kσ2I (K−1 + σ−2I )∣−

D
2

exp [−1
2 tr(Y⊺(σ−2I − σ−2I (K−1 + σ−2I )−1σ−2I )Y)]

= (2π)−
ND
2 ∣K + σ2I ∣−

D
2 exp [−1

2 tr(Y⊺(K + σ2)−1Y)]

= N(Y∣0,K + σ2I ) .

(A.1)

A.2 Latent Function Posterior

In Section 2.1.3, we show the posterior distribution p(F∣Y,X) of the latent func-
tions F given the observed data X,Y. The detailed derivation for this computation
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is shown here:

p(F∣Y,X) = p(Y∣F)p(F∣X)
p(Y∣X)

= `1`2
`3

exp ( − 1
2 tr [F⊺(K−1 + βI )F − 2F⊺βIY +Y⊺(βI − (K + β−1I )−1)Y] )

= `1`2
`3

exp (−1
2 tr [F − (K−1 + βI )−1βIY)⊺(K−1 + βI )(F − (K−1 + βI )−1βIY])

= N(F∣(K−1 + βI )−1βIY, (K−1 + βI )−1)

= N(F∣K(K + β−1I )−1Y,K(K + β−1I )−1β−1I ) ,

(A.2)
where `x are the respective constants and log determinants which resolve in a sim-
ilar way as can be seen in (A.1).

A.3 Sparse GP: Conditional of Inducing Outputs given Ob-
served Data

The derivation of sparse GPs (Sec. 2.4) in this thesis relies on the conditional dis-
tribution p̃(U∣Y) of the inducing outputs U given the observed outputs Y. The
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detailed derivation can be done as follows:

p̃(U∣Y) = exp(L1)p(U)
⟨exp(L1)⟩p(U)

=
N (Y∣ML1 , β

−1I )N(U∣0,K−1
UU)

∫ N (Y∣ML1 , β
−1I )N(U∣0,K−1

UU) dU

exp(1
2β trΛ)

exp(1
2β trΛ)

= c1c2

c3
exp{−1

2 tr((Y −KFUK−1
UUU)⊺βI (Y −KFUK−1

UUU) +U⊺K−1
UUU

−Y⊺(KFUK−1
UUKUF + β−1I )−1Y)}

= c1c2

c3
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2 tr((U −

M
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UU +K−1
UU)−1

= KUUΣ−1KUU , where Σ = KUU + βKUFKFU

MU = S−1
U K−1

UUKUFβIY

= βKUUΣ−1KUFY .
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Appendix B

Software

B.1 Python

Python is an object oriented interpreted programming language [http://python.
org/]. All scripts and packages mentioned in this thesis are written with Python
and packages provided for it. All mathematics in this thesis make use of the NumPy
package of SciPy (see below) for fast array-based computation. Plotting is done us-
ing Matplotlib and Seaborn (see below). Models are implemented using the Paramz
[99] and GPy [27] packages.

B.1.1 SciPy

For scientific computations in this thesis, we make use of the SciPy package for
Python. SciPy is a “open-source softare [package] for mathematics, science, and en-
gineering” [91]. It has underlying sub packages providing tools for different tasks
in scientific computing. The packages are best described by their words, which are
as follows (taken from [91]):

• Python, a general purpose programming language. It is interpreted and dynami-
cally typed and is very suited for interactive work and quick prototyping, while being
powerful enough to write large applications in.

• NumPy, the fundamental package for numerical computation. It defines the numeri-
cal array and matrix types and basic operations on them.

• The SciPy library, a collection of numerical algorithms and domain-specific toolboxes,
including signal processing, optimization, statistics and much more.

• Matplotlib, a mature and popular plotting package, that provides publication-quality
2D plotting as well as rudimentary 3D plotting.

• pandas, providing high-performance, easy to use data structures.
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• SymPy, for symbolic mathematics and computer algebra. IPython, a rich interac-
tive interface, letting you quickly process data and test ideas. The IPython notebook
works in your web browser, allowing you to document your computation in an easily
reproducible form.

• nose, a framework for testing Python code.

B.1.2 Seaborn

Seaborn [93] is an extension to Matplotlib (see above), providing an interface for
drawing statistical graphs. It provides additional functionality for colour palettes
and simple layout options (e.g. Figs. 4.4, 4.5, 4.7) when working with pandas (see
above).
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