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Abstract

It is widely believed that quantum physics is a fundamental theory de-

scribing the Universe. As such, one would expect to be able to see how

classical physics that is observed in the macroscopic world emerges

from quantum theory. This has so far largely eluded physicists, due

to the inherent linear nature of quantum physics and the non-linear

behaviour of classical physics. One of the principle differences between

classical and quantum physics is the statistical, probabilistic nature

of quantum theory. It is from this property that non-classical states

can arise, such as entangled states. These states possess maximal

correlations. However, they are not the only way in which correla-

tions are created in quantum systems. This thesis aims to show how

open quantum systems naturally contain correlations from their quan-

tum nature. Moreover, even seemingly simple open quantum systems

can behave far more complexly than expected upon the introduction

of quantum feedback. Using this effect, the dynamics may become

non-linear and as such behave non-trivially. Furthermore, it is shown

how these effects may be exploited for a variety of tasks, including

a computational application in hidden quantum Markov models and

a quantum metrology scheme that does not require the use of exotic

quantum states. This results in the design of systems that benefit

from the use of quantum mechanics, but are not constrained by the

use of experimentally difficulties such as entanglement.
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Chapter 1

Introduction

The proceeding work analyses open quantum systems with quantum feedback

for quantum technological applications. In this chapter, we shall provide some

general background and motivation to the following chapters.

1.1 Motivation

The emergence of quantum physics in the early 1900s initiated one of the biggest

scientific revolutions in history. Many of the fundamental aspects of nature were

now able to be explained with this new physics. Moreover, as well as better

explaining the observed world, new phenomena were discovered. In particular,

this includes the introduction of quantum information. One such development of

quantum physics is the quantum theory of light. The focus of this thesis is all

around the quantum behaviour of light, in particular by manipulating light at the

quantum level. In doing so, there is a wide range of technological applications.

Most successfully, quantum optical systems have found uses in quantum metrol-

ogy [1] and quantum communication [2], as well as having potential for quantum

computing [3].

However, most implementations of the above mentioned applications rely on

difficult experimental procedures. For example, controlled entanglement for in-

formation processing tasks is difficult to efficiently generate on a large scale, par-

ticularly in optical systems, which is required for gaining a useful enhancement

on classical systems. Particularly in optical systems, large-scale entanglement is

1



1.2 Open quantum systems

hard to achieve due to the difficulties involved in creating interactions between

photons. As such, entanglement is often made only probabilistically. This is

the main limitation of implementing quantum technologies. Fortunately, there

are other ways to create quantum effects. One such way of generating quan-

tum effects is by manipulating open quantum systems and analysing the photon

statistics emitted from the system. In particular, this thesis will analyse how

an optical cavity can be manipulated and monitored in order to produce novel

quantum effects amongst other results.

As an example, quantum metrology is an area that has been studied exten-

sively recently. A typical example of how a parameter can be measured is with an

interferometer to measure a phase shift ϕ, as shown in Fig. 1.1. Classically, this

is straightforward, as light can be sent into the input ports and measured at the

outputs. Depending on the intensity measured at the outputs, information can be

gained about ϕ. At a quantum level, the same can be done. If a single photon is

inserted into the interferometer, the same procedure can be conducted. This can

be repeated with many photons and reproduces the classical results. However, if

an entangled state is used as an input, the non-classical correlations present can

result in more information obtained per-photon than in a single photon case.

A typical state used for this purpose is the N00N state, which is defined as

|N00N〉 =
1√
2

(|Na 0b〉+ |0aNb〉) , (1.1)

where the subscripts a and b describe the photons in path a and b respectively.

As with many entangled states like this, it is hard to produce for large N . This

is similar for a large number of implementations of quantum metrology schemes,

as can be seen in Ref. [1]. This problem is analysed in more detail later in Ch. 5,

but for now we consider this as motivation for the development of simpler novel

techniques.

1.2 Open quantum systems

The main focus of this thesis is on the behaviour of light trapped within an optical

cavity. Like most quantum optical systems, this must be treated as open in order

2



1.2 Open quantum systems

Figure 1.1: Typical Mach-Zehnder interferometric setup for a metrology scheme.

Light is input into the interferometer and allowed to experience a phase shift

in one arm. Then, upon measurement at the end, the interference of the two

pathways of light reveals information about the phase shift parameter ϕ.

to be accurately modelled and to track photon emissions. By this, we mean that

the system to be analysed should be allowed to interact with its environment.

A closed quantum system is one that simply evolves in time according to the

Schrödinger equation. Specifically, this means a state |ψ〉 evolves according to

|ψ̇〉 = − i

~
H |ψ〉 , (1.2)

where H is the Hamiltonian operator describing the system. However, the evo-

lution of an open quantum system is more complex. Suppose a system interacts

with some other external system that has infinitely many degrees of freedom,

which is essentially a classical system. This system is known as a bath or envi-

ronment. In this case, as we shall see in Chapter 2, the system no longer evolves

according to a Schrödinger equation. Instead, we now use a density matrix ρ to

3



1.3 Background

describe the system and its evolution is given by a master equation. Assuming

Markovianity, the master equation is Lindbladian [4] and is of the form

ρ̇ = − i

~
[H, ρ] +

N2−1∑

m,n=1

Γm,n

(
LmρL

†
n −

1

2

[
L†mLn, ρ

]
+

)
. (1.3)

In Chapter 2 we shall derive this equation for an open quantum system with

a single decay channel. This means all Γm,n = 0 except one. An important

feature of open quantum systems is the ability to alter these decay channels with

feedback. This will be used extensively in this work and is introduced in Chapter

2.

1.3 Background

Despite theoretical success in developing a variety of schemes for quantum metro-

logical applications, experimental implementations are still difficult to achieve.

This is largely due to requirement of entanglement in most proposed schemes.

For example, there is a wealth of literature on quantum metrology, where a vari-

ety of schemes are proposed [1]. Unfortunately, most have not been implemented

due to experimental difficulty in generating the quantum features required such

as large scale entanglement.

Recent work has been conducted on investigating how open quantum systems

can be used for quantum metrology applications [5, 6, 7]. These methods pro-

vide a novel technique in achieving enhanced measurements without the need to

build large-scale entanglement. The results of these papers shows that quantum

metrology can be achieved by using time as a resource. This is not possible in

interferometric setups, as there the system is closed and ends upon measuring the

output light; it cannot be left to run for an arbitrary time. These new methods

of using time as a resource in open quantum systems therefore offer a potential

advantage over standard interferometric methods.

Furthermore, there has been recent interest in the use of open quantum sys-

tems for computer science applications. In particular, quantum neural networks

and quantum machine learning systems are being investigated [8, 9]. Open quan-

tum systems may find applications within this field also. As a stepping stone to
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this, part of the work in this thesis will investigate a computer science applica-

tion in the form of Hidden Quantum Markov Models (HQMMs). These machines

were recently introduced [10] and have found interest in some adaptations [11, 12].

However, there is still little work conducted on alternative computer science ap-

plications for quantum systems.

The theory behind open quantum systems has been studied extensively al-

ready in the literature [13]. In particular, quantum optical systems are well

understood in a variety of scenarios. Typical quantum optical systems, such as

optical cavities and two-level atoms can be modelled with relative ease due to

their simple Markovian dynamics and hence their dynamics are well known. A

way of making these systems more complex is to introduce quantum feedback.

This process has been used for a variety of tasks [14]. Most notably in the liter-

ature, feedback is used for the stabilisation [15, 16] and control [17] of quantum

systems, usually for quantum information purposes. In this work, we shall see

feedback used for a different purpose. In effect, the feedback used in the work in

this thesis acts to destabilise the system, inducing far more complex behaviour

in previously simple quantum optical systems.

1.4 Outline

This thesis can effectively be split into three parts. The first part in Chapter 2

provides a theoretical background on the modelling of open quantum systems.

The first step here is deriving a master equation for a general Markovian open

quantum system. After this, we look at two concrete systems that will be of

interest in the proceeding chapters. Specifically, we derive the master equation

for an optical cavity and a two level atom. We also consider the unravelling of

these master equations, allowing for the study of individual quantum trajectories.

The second part consists of Chapter 3. In this chapter, we present a study of

the effect of quantum feedback on open quantum systems in the form of strong

laser pulses upon photon emission. In particular, we shall compare and analyse

the ergodicity of an optical cavity that is subject to continuous laser driving and

one that is inside a quantum feedback loop. This provides an insight into the
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1.4 Outline

complex dynamics that can be achieved by introducing quantum feedback into

an open quantum system.

Finally, in the third part of the thesis, we look at quantum technological

applications of the behaviour studied in Chapter 3. Firstly, in Chapter 4, we

look at a computer science application in the form of Hidden Quantum Markov

Models. We first provide a mathematical model for describing both classical

Hidden Markov Models and their quantum analogue, Hidden Quantum Markov

Models. We then provide an example of how such a scheme may be implemented

and compare classical and quantum machines statistical properties with a simple

example.

We then consider a further quantum technological application in Chapter 5.

Here, we study quantum metrology. We begin by reviewing the Fisher information

and parameter estimation theory, before the applying it to a simple two-level

system. By introducing feedback appropriately, we find we may make a quantum-

enhanced measurement. We then apply similar ideas to an optical cavity inside a

quantum feedback loop. Finally, in Chapter 6, we summarise the work presented

and consider potential future work and its applications.
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Part I

Theoretical Background
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Chapter 2

Open quantum systems with

quantum feedback

The aim of this chapter is to give a brief introduction to the modelling of open

quantum systems [13, 18], thereby providing a theoretical background to the pro-

ceeding chapters. To do so, we first consider a general quantum system that

interacts with a surrounding bath. This bath is assumed to also interact with

an external environment, which causes it to thermalise continuously. More con-

cretely, the environment constantly resets the bath into its environmentally pre-

ferred state – its so-called pointer state [19]. Hence, the resulting effective time

evolution of the open quantum system is approximately Markovian and its density

matrix ρS obeys a master equation in Lindblad form [4]. When the bath surround-

ing the quantum system is continuously monitored by the environment for the

detection of spontaneously emitted photons [20, 21, 22], this master equation can

be unravelled into an infinite set of physically-meaningful quantum trajectories.

An unravelling involves splitting the overall average evolution into its individual

components and looking at a possible evolution along such a path. Considering

such an unravelling and assuming that any instantaneous quantum feedback is

triggered by sudden changes of the state of the quantum system, it becomes clear

how to incorporate instantaneous feedback into the master equation [7, 11, 14].

This shall be seen more precisely later in this chapter.

In this chapter we first review what is meant by an open quantum system,

before deriving the master equation governing a general Markovian open quantum

8



2.1 General derivation of the master equation

system’s time evolution evolution with quantum feedback. We then derive this

equation for an optical cavity inside an instantaneous quantum feedback loop,

which is extensively studied in the rest of this thesis. Finally, we present an

analysis of a two-level atom with instantaneous quantum feedback and provide a

simple example of how feedback can alter the dynamics of such a system.

2.1 General derivation of the master equation

To describe the evolution of a closed quantum system, the Schrödinger equation

is used. This means that a closed quantum system |ψ〉 evolves according to

|ψ̇〉 = − i

~
H |ψ〉 , (2.1)

where H is the Hamiltonian describing the system of interest. This equation

applies when there is no loss of energy or correlations to an external environment.

However, realistically this is never the case, as a system will always couple to its

surroundings in some form. If this is to be incorporated into the dynamics, the

system must be considered open. To analyse the behaviour of such systems, we

must introduce the quantum master equation [4, 18]. The standard quantum

optical master equation is given by

ρ̇ = Lρ , (2.2)

where ρ is the density matrix describing the system and L is a superoperator of

the general form

Lρ = − i

~
[H, ρ]

+
1

2

N∑

m=0

N∑

n=0

Γm,n

(
2LnρL

†
m −

[
L†mLn, ρ

]
+

)
. (2.3)

Here, Γm,n describes the decay rate of the channel m,n and Ln is known as a

Lindblad operator. Most quantum optical systems have a master equation of the

form

ρ̇ = − i

~
[H, ρ] +

1

2
Γ
(

2LρL† −
[
L†L, ρ

]
+

)
, (2.4)
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2.1 General derivation of the master equation

where there is just a single decay channel. Solving Eq. (2.3), it is found that

ρ(t+ ∆t) = exp (L∆t) ρ(t) (2.5)

is always the solution. Although the time evolution of an open quantum system

is more complex than that of a closed system, they are both characterised by

linear differential equations. In the next subsection, we will present a derivation

of the general quantum optical master equation and show how feedback can be

incorporated.

2.1.1 Master equations without feedback

Let us first have a closer look at an open quantum system without feedback. The

Hamiltonian H of such a system and its surrounding bath can be split into two

parts,

H = H0 +H1 , (2.6)

with H0 denoting the free energy of the quantum system HS and its bath or

environment HB, meaning

H0 = HS +HB , (2.7)

and with H1 consisting of two terms,

H1 = Hint +HSB . (2.8)

Here HSB describes system-environment interactions and Hint describes the inter-

nal system interactions. Typically for quantum optical systems, HSB describes a

linear coupling between the system and bath. Moving into the interaction picture

with respect to H0, the Hamiltonian simplifies to the interaction Hamiltonian

HI(t) = U †0(t, 0)H1 U0(t, 0) , (2.9)

which is of the general form

HI(t) = Hint I +HSB I , (2.10)

10



2.1 General derivation of the master equation

Figure 2.1: Overview of total system with corresponding Hamiltonians.

and where U0 is the time evolution operator with respect to the Hamiltonian H0,

U0(t+ ∆t, t) = e
− i

~

t+∆t∫
t

dt′H0(t′)
, (2.11)

which can be found by solving Eq. (2.1). Typically, H0 is time independent and

the calculation of the time evolution operator is determined trivially.

Now, suppose the state of the quantum system at time t is given by the density

matrix ρS(t). Moreover, adopting the ideas of Refs. [18, 19, 20, 21, 22], we assume

in the following that the bath surrounding the quantum system is in general in its

environmentally preferred state – the so-called einselected state or pointer state

– which we denote by |0〉. Hence the general density matrix of system and bath

at some time t can be written as

ρSB(t) = |0〉 ρS(t) 〈0| . (2.12)

As argued in Ref. [19], the pointer state |0〉 is environmentally preferred because

it minimises the entropy of the bath. Hence, the bath only evolves due to system-

bath interactions, but is invariant with respect to its own internal dynamics.

Next, we assume that system-bath interactions perturb the state of the bath

on a time scale ∆t, which is short compared to the time scale given by the effective

internal dynamics of the quantum system. During this time interval, the density

matrix ρSB(t) evolves via the time evolution operator UI(t + ∆t, t) into a new

density matrix ρSB(t+ ∆t) given by

ρSB(t+ ∆t) = UI(t+ ∆t, t) |0〉 ρS(t) 〈0|U †I (t+ ∆t, t) . (2.13)
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2.1 General derivation of the master equation

Following the discussion in Refs. [18, 19, 20], we now assume that environmental

interactions subsequently relax the reservoir very rapidly back into its environ-

mentally preferred state. If the environment acts only locally and does not affect

the expectation values of the quantum system, the result of this thermalisation

is a new system-bath density matrix

ρSB(t+ ∆t) = |0〉 ρS(t+ ∆t) 〈0| , (2.14)

with the state of the system given by

ρS(t+ ∆t) = TrB (ρSB(t+ ∆t)) , (2.15)

where we have performed a trace over the environmental modes. Importantly,

the trace is a local operation, meaning that acting it upon the environment does

not (non-locally) alter any of the system’s expectation values. Effectively, only

ρS(t) has evolved over the interval ∆t, and its dynamics can be summarised by

the master equation

ρ̇S(t) =
1

∆t
[ρS (t+ ∆t)− ρS (t)] . (2.16)

Given a clear time scale separation between the effective inner dynamics of the

quantum system and the relevant system-bath interactions, the right-hand-side

of Eq. (2.16) can be evaluated using second-order perturbation theory. To do so,

we write the time evolution operator UI(t+ ∆t, t) as

UI(t+ ∆t, t) ' 1− i

~

∫ t+∆t

t

dt′HI(t
′)− 1

~2

∫ t+∆t

t

dt′
∫ t′

t

dt′′HI(t
′)HI(t

′′) .

(2.17)

Substituting this equation into Eq. (2.13) and combining the result with Eqs. (2.15)

and (2.16), we find that

ρ̇S(t) = − i

~
[
Hint I(t), ρS(t)

]

− 1

∆t

1

~2

∫ t+∆t

t

dt′
∫ t′

t

dt′′
(
〈0|HSB I(t

′)HSB I(t
′′)|0〉 ρS(t) + H.c.

)

+
1

∆t

1

~2
TrB

(∫ t+∆t

t

dt′
∫ t+∆t

t

dt′′HSB I(t
′) |0〉 ρS(t) 〈0|HSB I (t′′)

)

(2.18)
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2.1 General derivation of the master equation

up to zeroth order in ∆t. When deriving this equation, it has been taken into

account that ∆t is relatively small and that a typical bath has infinitely many

degrees of freedom. Therefore, the double integrals in Eq. (2.18) scale in general

as ∆t and not as ∆t2, due to the Markov approximation that will be introduced

shortly. This will become clearer when a real system is considered later in this

chapter and is in fact a consequence of the Markov approximation.

2.1.2 Unravelling into quantum trajectories

To incorporate instantaneous quantum feedback [11, 14] into the above master

equation, we notice that the application of feedback requires monitoring the bath

for triggering signals. Assuming the presence of such measurements on the above

introduced time scale ∆t allows us to unravel the above master equation into

physically meaningful quantum trajectories [20, 21, 22]. The master equation

describes the evolution of the ensemble average of the system. This means it

tells us how a system will behave on average. However, an actual individual

quantum system may evolve differently to this. Such an evolution is what is

known as a quantum trajectory. A quantum trajectory is a stochastic process and

must be analysed accordingly. One such way of modelling a quantum trajectory

is with the quantum jump approach, which shall be introduced later in this

chapter and used throughout this thesis. Quantum trajectories may be obtained

by stochastically evolving a state through a set of possible evolutionary paths.

These paths may be obtained by looking at the unravelled form of the master

equation, where the evolution is split into (phyiscally meaningful) parts. These

individual evolutions may then be stochastically applied to a state in order to

obtain a quantum trajectory.

Denoting the (unnormalised) density matrix of the subensemble of quantum

systems for which the bath remains in its environmentally preferred state |0〉 by

ρ0
S(t), and the (unnormalised) density matrix of the subensemble for which the

bath changes due to non-zero (photon) excitations in the environment by ρ 6=S (t),

one can show that

ρ̇S(t) = ρ̇0
S(t) + ρ̇ 6=S (t) , (2.19)
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2.1 General derivation of the master equation

with

ρ̇0
S(t) = − i

~
[
Hint I(t

′), ρS(t)
]

− 1

∆t

1

~2

∫ t+∆t

t

dt′
∫ t′

t

dt′′
(
〈0|HSB I(t

′)HSB I(t
′′)|0〉 ρS(t) + H.c.

)

(2.20)

and

ρ̇ 6=S (t) =
1

∆t

1

~2
TrB

(∫ t+∆t

t

dt′
∫ t+∆t

t

dt′′HSB I(t
′) |0〉 ρS(t) 〈0|HSB I (t′′)

)
.

(2.21)

Notice that the trace operation in Eq. (2.15) is independent of the basis in which

it is performed. Consequently, the dynamics of ρS does not depend on how the

bath is actually measured. Comparing to the master equation in Eq. (2.2), we in

fact see that

ρ̇0
S(t) = − i

~
[Hint I, ρS]− 1

2
Γ
[
L†L, ρS

]
+

ρ̇ 6= = ΓLρSL
† (2.22)

For very small ∆t, Eq. (2.20) can be written in the more compact form of

ρ̇0
S(t) = − i

~
[
Hcond I(t) ρS(t)− ρS(t)H†cond I(t)

]
, (2.23)

with Hcond I(t) being the (non-Hermitian) conditional Hamiltonian of the open

quantum system defined as

Hcond I = Hint I −
1

∆t

1

~2

∫ t+∆t

t

dt′
∫ t′

t

dt′′〈0|HSB I(t
′)HSB I(t

′′)|0〉 . (2.24)

This means, ρ0
S(t) evolves effectively according to a Schrödinger equation. If the

quantum system is initially in a pure state |ψS(t)〉, it remains pure as long as the

state of the bath does not change due to system-bath interactions [18, 20]. The

probability for the bath to remain in its preferred state |0〉 for a time ∆t equals

P0(∆t) = ‖Ucond(t+ ∆t, t) |ψS(t)〉 ‖2

= Tr
(
ρ0

S(t+ ∆t)
)
, (2.25)
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2.1 General derivation of the master equation

where Ucond(t+∆t, t) denotes the time evolution operator corresponding toHcond(t).

Finally, it should be noted that this unravelling provides the Kraus operators

describing the system’s evolution [23]. Kraus operators are generalised measure-

ments that describe how the system evolves given a certain measurement. The

set of Kraus operators describing a system provides a completely positive trace

preserving map (CPTP map). In this case, we have seen that the system can be

decomposed into two subensembles. Hence, there are two Kraus operators that

describe the evolution of our system. Over a short time interval (t, t + ∆t), the

Kraus operators describing the system’s evolution may be defined as

K0(∆t) = Ucond(t+ ∆t, t) K1(∆t) =
√

Γ∆tL , (2.26)

where K0(∆t) describes the no-photon evolution, while K1(∆t) describes the

evolution under photon emission. Applying these operators to a quantum state

returns the unnormalised state describing the system at a later time, the size of

which corresponds to the probability of the transition. Using these equations,

identifying the relevant Kraus operators for a specific open quantum system is

now straightforward. The Kraus operators should form a complete set to ensure

probabilities are properly defined, meaning

∑

i

K†iKi = 1 . (2.27)

This condition is approximately fulfilled so long as ∆t is sufficiently small.

2.1.3 Master equations with instantaneous feedback

Repeating the above derivation of Eq. (2.18) while assuming that the quantum

system experiences a unitary feedback operation, Rm, with probability ηm when-

ever the state of the bath is found in |m〉 and m 6= 0, we arrive again at Eqs. (2.20)
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2.1 General derivation of the master equation

and (2.23) but with Eq. (2.21) replaced by

ρ̇S
6=(t) =

1

∆t

1

~2

∑

m 6=0

(1− ηm)

∫ t+∆t

t

dt′
∫ t+∆t

t

dt′′

×〈m|HSB I(t
′) |0〉 ρS(t) 〈0|HSB I (t′′) |m〉

+
1

∆t

1

~2

∑

m6=0

ηm

∫ t+∆t

t

dt′
∫ t+∆t

t

dt′′

×Rm 〈m|HSB I(t
′) |0〉 ρS(t) 〈0|HSB I (t′′) |m〉R†m . (2.28)

The kind of feedback described in this work is often referred to as instantaneous

feedback, since it acts on the time scale ∆t that is much shorter than the time scale

given by the internal system dynamics [14]. If the feedback was not considered to

be instantaneous, it would make the evolution non-Markovian. An alternate way

to introduce feedback is to consider the change in the Hamiltonian HSB. As the

introduction of the feedback described above only alters the dissipation terms it

must be present in HSB and not in Hint. We will now look at a general quantum

optical system to see how the above can be applied to derive a master equation.

2.1.4 General derivation of master equations for quantum

optical system

In the following, we show how master equations can be used to model the time

evolution of open quantum systems with linear couplings between the quantum

system and its surrounding bath. In this section, we shall consider a very general

quantum optical system that will be required later in Chapter 4.

Our starting point is the Hamiltonian H for system and bath, which can be

split into four parts as usual. These are

H = HS +Hint +HB +HSB , (2.29)

where the Hamiltonians represent the same as described above. When denoting

the energy eigenstates of system and bath by |n〉S and |m〉B, respectively, and

assuming a linear coupling between system and environment, HS, HB, and HSB
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2.1 General derivation of the master equation

can be written as

HS =
N∑

n=1

~ωn|n〉SS〈n| ,

HB =
∞∑

m=0

~ωm|m〉BB〈m| ,

HSB =
∞∑

m,m′=0

N∑

n,n′=1

~gnm,n′m′ |n′m′〉SB SB〈nm|+ H.c. , (2.30)

without loss of generality. Because of being a bath, an infinite number of highly

degenerate energy levels ~ωm may occur. Finally, the g’s are system-bath coupling

constants. Here, we assume for simplicity that these are time independent, though

this is not always the case.

Since we are interested in identifying the relatively slow, effective internal

dynamics of the open quantum system, we now move into the interaction picture

with respect to the free system H0 = HB +HS, giving the interaction Hamiltonian

HI (t) =
∞∑

m,m′=0

N∑

n,n′=1

~gnm,n′m′|n′m′〉SB SB〈nm| e−i(ωm−ωm′+ωn−ωn′ )t

+H.c. +Hint I (t) , (2.31)

with Hint I (t) describing the internal dynamics of the system in the interaction

picture.

Next, if we assume the environment is now a continuum of modes, we may use

the arguments presented in above to derive the master equation of this system.

Hence, we find that the master equation is given by

ρ̇S = − i
~

[Hint I, ρS]− 1

2

N∑

n,n′,n′′,n′′′=1

ξnn′ξ
∗
n′′n′′′

[
L†n′′n′′′Lnn′ , ρS

]
+

+
N∑

n,n′,n′′,n′′′=1

ξnn′ξ
∗
n′′n′′′ Lnn′ ρS L

†
n′′n′′′ . (2.32)

The L’s in this equation are operators that act on the internal states of the open

quantum system and the ξ’s are constants. In addition, one can show that the

above equation is of Lindblad form [4].
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2.2 Optical cavity in a quantum feedback loop

Eq. (2.32) describes open quantum systems without feedback. These are quan-

tum systems where the environment does nothing else but reset the bath that

surrounds the system back into its pointer state. However, this does not neces-

sarily have to be the case. As we have already seen in previous chapters, open

quantum systems can be designed such that the transfer of energy into the en-

vironment triggers a back action, which changes the density matrix ρS(t) by a

unitary operation. This is achieved by introducing feedback. Using the same

arguments as above, one can show that the open quantum system evolves in this

case according to a master equation of the general form

ρ̇S = − i
~

[Hint I, ρS]

−1

2

∞∑

m=1

N∑

n,n′,n′′,n′′′=1

ξnn′,mξ
∗
n′′n′′′,m

[
L†n′′n′′′,mLnn′,m, ρS

]
+

+
∞∑

m=1

N∑

n,n′,n′′,n′′′=1

ξnn′,mξ
∗
n′′n′′′,m Lnn′,m ρS L

†
n′′n′′′,m , (2.33)

with the Lnn′,m operators defined such that

Lnn′,m = Rm Lnn′ . (2.34)

Here, the Lnn′ operators are the standard Lindblad operators for the system and

the Rm are unitary operations applied depending on the measured state of the

environment |m〉. This equation is of exactly the same form as the master equa-

tion for open quantum systems with instantaneous feedback in Eq. (2.28) and

others already encountered. Here, |m〉B is the state that became excited by the

system-bath interaction and the Rm is a unitary operator, which acts condition-

ally on the internal state of the quantum system and describes the respectively

applied feedback operation.

2.2 Optical cavity in a quantum feedback loop

We shall now consider a more specific example. An open quantum system that we

will analyse more thoroughly later in this work is that of an optical cavity inside

an instantaneous quantum feedback loop. In this section, we shall discuss the
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2.2 Optical cavity in a quantum feedback loop

theoretical background needed to study this system. Applying the ideas intro-

duced in Section 2.1 to a specific Hamiltonian is now straightforward. Here, we

derive the master equation of a laser-driven optical cavity inside an instantaneous

quantum feedback loop in its most basic form. In later sections, this derivation

will be recalled and adapted to highlight specific additional features.

2.2.1 Master equation for an optical cavity without feed-

back

Using the notation introduced in Section 2.1 and in Refs. [7, 11, 13, 18], we split

our Hamiltonian into four parts as shown in Eqs. (2.6)-(2.10). For this system,

these terms are given by

HS = ~ωcavc
†c

HB =
∑

λ=1,2

∞∫

0

dω ~ωa†λ(ω)aλ(ω)

Hint =
1

2
~Ω
(
eiωLtc+ H.c.

)

HSB =
∑

λ=1,2

∞∫

0

dω ~g(ω)aλ(ω)c† + H.c. , (2.35)

where aλ(ω)(a†λ(ω))/c(c†) are the annihilation (creation) operators for the field/cavity

and obey bosonic commutation rules of
[
aλ(ω), a†λ′(ω

′)
]

= δλλ′δ(ω − ω′) and
[
c, c†

]
= 1. Furthermore, the ω terms are frequencies and Ω is the laser Rabi

frequency. From here on, only one polarisation is considered, which remains con-

stant throughout all work here and we shall set ωL = ωcav for simplicity. As in

Eq. (2.8), we can split the Hamiltonian H into two parts, H0 and H1. In doing

so and moving into an interaction Hamiltonian with respect to H0 = HS + HB,

we obtain a Hamiltonian HI(t) as in Eq. (2.10). Explicitly, this Hamiltonian is

now given by

HI(t) =
~Ω

2

(
c+ c†

)
+

∞∫

0

dω
(
~g(ω)e−i(ω−ωcav)ta(ω)c† + H.c.

)
. (2.36)
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2.2 Optical cavity in a quantum feedback loop

Perturbative expansion

As highlighted in Section 2.1, we now perform second order perturbation theory in

order to generate the master equation. The ultimate aim of this process is to find

the coarse-grained time evolution between two close time intervals. Up to second

order, the time evolution operator describing the evolution between t and t+∆t is

given by Eq. (2.17). When considering the first term of Eq. (2.36), we notice that

it is time-independent. As such, moving to higher orders of perturbation theory

increases the scaling in ∆t. For example, the time evolution for this Hamiltonian

is U(t + ∆t, t) = exp
(
− i

~Hint∆t
)
. Applying perturbation theory to this time

evolution operator up to second order in ∆t, we find

U(t+ ∆t, t) = 1−Hint I∆t−
1

2
H2

int I∆t
2 . (2.37)

However, as ∆t is required to be extremely small, higher order terms become

negligible. When evaluating Eq. (2.16) we only consider terms linear in ∆t. In

fact, upon taking the limit ∆t → 0 when calculating the master equation and

mapping onto the continuous time evolution, the terms of order ∆t2 and above

naturally tend to zero. Hence, this term simply gives the von Neumann term

in the master equation, as second order and above perturbations are vanishingly

small. However, when evaluating the perturbative expansion for the system-

environment Hamiltonian HSE I, it can be shown that the first order terms do not

contribute. This is because of the trace over the environment, as first order terms

will always create an imbalance in the environmental density matrix. As such,

we must consider second order terms in order to get a contribution.

Hence, considering up to second order in perturbation theory, we can evaluate

the time evolution of the density matrix describing the cavity. Following the pro-

cedure highlighted in Section 2.1, we may now evaluate the terms in perturbation

theory by using the specific Hamiltonians. Using the properties of Hint I and HSE I
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2.2 Optical cavity in a quantum feedback loop

described above, we may write ρ(t+ ∆t) as

ρI(t+ ∆t) = ρI(t)−
i

~

t+∆t∫

t

dt′ [Hint I, ρI(t
′)]

+
1

~2
〈0E|

t+∆t∫

t

dt′
t+∆t∫

t

dt′′HSE I(t
′) |0E〉 ρI 〈0E|HSE I(t

′′) |0E〉

− 1

~2
〈0E|

t+∆t∫

t

dt′
t′∫

t

dt′′ [HSE I(t
′′)HSE I(t

′), ρI(t)]+ |0E〉 . (2.38)

We shall begin by reviewing Eq. (2.37) and seeing that the first line of Eq. (2.38)

simplifies to

ρI(t)−
i

~

t+∆t∫

t

[Hint I, ρI(t)] = ρI(t)−
i

~
[Hint I, ρI(t)] ∆t . (2.39)

Next, we shall consider the second and third lines of Eq. (2.38). For ease of

writing, we shall label the co-efficient of the second line A and of the third line

B for this section. In the second term, A, the application of the trace creates

a delta-function. Specifically, when substituting in the expression HSE, we find

that

A = TrE

( ∞∫

0

dω

∞∫

0

dω′
t+∆t∫

t

dt′
t+∆t∫

t

dt′′e−i[(ω−ωcav)t′−(ω′−ωcav)t′′]

×g∗(ω)g(ω′)a†(ω)c |0E〉 ρI(t) 〈0E| a(ω′)c†

)

= TrE

( ∞∫

0

dω

∞∫

0

dω′
t+∆t∫

t

dt′
t+∆t∫

t

dt′′e−i[(ω−ωcav)t′−(ω′−ωcav)t′′]

×g∗(ω)g(ω′)c |1E(ω)〉 ρI(t) 〈1E(ω′)| c†
)
. (2.40)

21



2.2 Optical cavity in a quantum feedback loop

We now evaluate the trace, giving

A =

∞∫

0

dω

∞∫

0

dω′
t+∆t∫

t

dt′
t+∆t∫

t

dt′′e−i[(ω−ωcav)t′−(ω′−ωcav)t′′]

×g∗(ω)g(ω′)cρI(t)c
†δ (ω − ω′) . (2.41)

Finally, performing the integral over ω′, we find that

A =

∞∫

0

dω

t+∆t∫

t

dt′
t+∆t∫

t

dt′′e−i(ω−ωcav)(t′−t′′) |g(ω′)|2 cρI(t)c
† . (2.42)

Similarly for B, we have

B = TrE

( ∞∫

0

dω

∞∫

0

dω′
t+∆t∫

t

dt′
t+∆t∫

t

dt′′e−i[(ω−ωcav)t′−(ω′−ωcav)t′′]

×g∗(ω)g(ω′)
[
a(ω)c†a†(ω)c, |0E〉 ρS(t) 〈0E|

]
+

= TrE

( ∞∫

0

dω

∞∫

0

dω′
t+∆t∫

t

dt′
t+∆t∫

t

dt′′e−i[(ω−ωcav)t′−(ω′−ωcav)t′′]

×g∗(ω)g(ω′)
[
δ (ω − ω′) c†c, |0E〉 ρI(t) 〈0E|

]
+

)

=

∞∫

0

dω

t+∆t∫

t

dt′
t+∆t∫

t

dt′′e−i(ω−ωcav)(t′−t′′) |g(ω)|2
[
c†c, ρI(t)

]
+
. (2.43)

The trace enforces frequency matching on the photons emitted by the cavity field

and those detected in the environment. This takes care of one of the integrals

in a straightforward way. Now, we shall consider how to further simplify these

expressions by evaluating the remaining integrals. Let us consider B initially.

The first step in simplifying this expression is to impose Markovianity. In doing

so, we make the so-called Markov approximation. This means in effect we replace

the lower limit of the t′′ integral with −∞, meaning

t′∫

t

dt′′ →
t′∫

−∞

dt′′ . (2.44)
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2.2 Optical cavity in a quantum feedback loop

This applies very well when t� t + ∆t. We next notice that this integral has a

singularity for ω = ωcav that we must be careful of when evaluating it. To do so,

we shall use a form of the Cauchy principle value theorem. Firstly, we introduce

an infinitesimal term η to the exponential to help us evaluate it. Starting from

Eq. (2.43), considering only the t′′ initially and using Eq. (2.44), we have

t′∫

−∞

dt′′ |g(ω)|2 e−i(ω−ωcav)(t′−t′′)

= lim
η→0+

t′∫

−∞

dt′′ |g(ω)|2 e−i(ω−ωcav)(t′−t′′)+ηt′′

= lim
η→0+

|g(ω)|2 eηt
′

η + i (ω − ωcav)

= lim
η→0+

|g(ω)|2 eηt
′
(

η

η2 + (ω − ωcav)2 −
i (ω − ωcav)

η2 + (ω − ωcav)2

)

= lim
η→0+

|g(ω)|2 η eηt
′

η2 + (ω − ωcav)2 −
i

ω − ωcav

. (2.45)

The limit in the first term can be evaluated by noticing it is of the form of a

Lorentzian or Cauchy-distribution, L(x), which is defined as

L(x) =
1

π

γ

x2 + γ2
. (2.46)

This function is normalised such that
∞∫

−∞

L(x)dx = 1 . (2.47)

It can also be used as a way of defining the δ-function due to its unit area.

By taking the limit of γ → 0, the curve becomes infinitely narrow and tall but

maintains its normalisation and is hence a δ-function. Thus,

lim
γ→0

1

π

γ

x2 + γ2
= δ (x) . (2.48)

Hence, using Eq. (2.48), we can evaluate the limit in Eq. (2.45) and thus find

t′∫

−∞

dt′′ |g(ω)|2 e−i(ω−ωcav)(t′−t′′) = |g(ω)|2 πδ (ω − ωcav)− i |g(ω)|2 1

(ω − ωcav)
.

(2.49)
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2.2 Optical cavity in a quantum feedback loop

The first term of this equation is the decay rate of the cavity, while the second

represents a level shift. The level shift has the effect of modifying the energy of a

mode. Its exact form is not important for the work presented here, as it can be

absorbed into the free energy of the system. Hence, it shall be ignored from here

on. Now, without considering the level shift, substituting the result of Eq. (2.49)

into Eq. (2.43), we now have

B =

∞∫

0

dω

t+∆t∫

t

dt′κδ (ω − ωcav) , (2.50)

where κ = 2π |g(ω)|2 and is the cavity decay rate. Applying the final two integrals,

we finally arrive at

B = κ∆t . (2.51)

By using the properties of integrals, one can show that A = 2 Re(B) (and is hence

independent of the level shift). Alternatively, it the integral in A transforms as

t+∆t∫

t

dt′′ →
∞∫

−∞

dt′′ , (2.52)

by the Markov approximation. Using this property with Eq. (2.51) and recalling

Eq. (2.39), we can substitute back into Eq. (2.38) to find

ρI(t+ ∆t) = ρI(t)−
i

~
[Hint I, ρI(t)] ∆t+ κ

(
cρI(t)c

† − 1

2

[
c†c, ρI(t)

]
+

)
∆t .

(2.53)

Substituting this into Eq. (2.16), we finally arrive at

ρ̇I = − i

~
[Hint I, ρI] + κ

(
cρIc

† − 1

2

[
c†c, ρI

]
+

)
, (2.54)

which is the master equation in Lindblad form. Here, the time argument of the

density matrix ρI has been dropped for simplicity.
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2.2 Optical cavity in a quantum feedback loop

2.2.2 Master equation for an optical cavity with instanta-

neous quantum feedback

As highlighted in Section 2.1.3, incorporating instantaneous feedback into the

master equation is straightforward. Effectively, we transform the Lindblad terms.

The feedback that we wish to consider here is in the form of a displacement

operator. Details on displacement operators and coherent states can be found in

Appendix A. In order to do this, we simply make the change

c → D(β)c . (2.55)

This means Eq. (2.54) is transformed into

ρ̇I = − i

~
[Hint I, ρI] + κ

(
D(β)cρIc

†D†(β)− 1

2

[
c†c, ρI

]
+

)
. (2.56)

Notice the final term
[
c†c, ρI

]
+

is unchanged, as c†D†(β)D(β)c = c†c due to the

unitarity of D(β). This equation is still of Lindblad form, as we could introduce

a new operator L = D(β)c, meaning we can write the master equation as

ρ̇I = − i

~
[Hint I, ρI] + κ

(
LρIL

† − 1

2

[
L†L, ρI

]
+

)
. (2.57)

This equation is of the same form as Eq. (2.54).

2.2.3 Unravelling of the master equation for an optical

cavity inside a quantum feedback loop

We will now introduce the theoretical tools needed to analyse the dynamics of

an optical cavity with continuous laser driving and an optical cavity inside an

instantaneous quantum feedback loop. The master equation that we have derived

here describes the evolution of an ensemble of quantum systems. However, we

shall later need to consider individual quantum trajectories of this system. Hence,

in order to effectively study these systems, particularly in the case of feedback,

we need to consider the unravelled dynamics. We will now introduce this for the

specific example of an optical cavity inside an instantaneous quantum feedback

loop. This shall follow the ideas introduced in Section 2.1.2
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2.2 Optical cavity in a quantum feedback loop

The no-photon time evolution of the cavity field

Following the ideas of Refs. [20, 21, 22], Section 2.1.2 and the above calculations

from this section, we assume in the following that the free radiation field sur-

rounding the cavity is in general in its so-called environmentally preferred state,

the vacuum state. Denoting the vacuum state by |0〉 and the state of the cavity

at time t by |ψS(t)〉, the total state of the system equals

|ψSB(t)〉 = |0〉 |ψS(t)〉 . (2.58)

Using the results of Section 2.1.2 and the preceeding work in this section we

find that the state |ψ0
S(t)〉 evolves effectively with the non-Hermitian conditional

Hamiltonian

Hcond I = Hint I −
i

2
~κ c†c , (2.59)

under the condition of no photon emission in (t, t + ∆t) and in the interaction

picture. As it should, this Hamiltonian is of the same form as the conditional

Hamiltonian in Eq. (2.24). Comparing both equations with the master equation,

we see that the Lindblad operator L of an optical cavity is given by L = c,

while the spontaneous decay rate Γ = κ. Finally, using Eq. (2.25), we may

calculate the probability of the cavity not emitting a photon in a time interval

(t, t + ∆t), i.e. P0(∆t). Trivially, this also tells us the probability of the cavity

emitting a photon in this time period (P1(∆t) = 1− P0(∆t)). This is important

for simulating the dynamics of an open quantum system, as we will see later.

Spontaneous photon emission and quantum feedback

Analogously, proceeding as suggested in Refs. [20, 21, 22] and evaluating the

density matrix ρ 6=(t + ∆t) of an optical cavity under the condition of a photon

detection in (t, t + ∆t) using second order perturbation theory, we find that the

state of the resonator immediately after an emission equals [7]

|ψ 6=S (t+ ∆t)〉 =
√
κ∆t c |ψS(t)〉 , (2.60)
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2.2 Optical cavity in a quantum feedback loop

up to normalisation. The absolute value of the normalisation constant of this

state squared equals the probability for the emission of a photon in (t, t + ∆t).

Hence

I(t) = κ 〈c†c〉t (2.61)

is the probability density for the emission of a photon at time t. Here 〈c†c〉t =

〈ψS(t)|c†c |ψS(t)〉 denotes the mean number of photons inside the resonator at a

time t, when prepared in the state |ψS(t)〉.
If the emission of a photon successfully triggers a feedback pulse, up to nor-

malisation, the state |ψ 6=S (t+ ∆t)〉 of the cavity becomes [7, 14]

|ψ 6=S (t+ ∆t)〉 =
√
κRc |ψS(t)〉 (2.62)

in case of an emission, where R is the unitary operator that describes the effect

of the feedback on the resonator field.

The relevant master equations

To obtain the density matrix ρ(t) of the cavity field, we need to add the density

matrix ρ0
S(t) of the subensemble of cavities with no photon emission in (t, t+ ∆t)

and the density matrix ρ 6=S (t) of the subensemble of cavities with a photon emission

in (t, t+∆t). If ∆t is sufficiently small, contributions with more than one emission

remain negligible and

ρ̇S(t) = ρ̇0
S(t) + ρ̇ 6=S (t) . (2.63)

For this equation to apply, both density matrices ρ0
S(t) and ρ 6=S (t) need to be

normalised such that their relative size coincides with the probability density for

an emission or no emission at time t. Taking this into account and using the

results of the previous two subsections, we obtain the time derivative ρ̇S of an

optical cavity with continuous laser driving. It equals

ρ̇I = − i

2
Ω
[
c+ c†, ρI

]
+

1

2
κ
(

2cρIc
† −
[
c†c, ρI

]
+

)
(2.64)

in the interaction picture with respect to the free energy of the resonator field.
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2.2 Optical cavity in a quantum feedback loop

Now suppose the continuous laser driving is turned off and a detector monitors

the spontaneous leakage of photons through one of its mirrors, as illustrated in

Fig. 3.4. Moreover suppose an instantaneous quantum feedback loop is activated

whenever a photon is detected. Proceeding as described above, we find that the

master equation of the resonator equals

ρ̇I =
1

2
ηκ
(

2RIcρIc
†R†I −

[
c†c, ρI

]
+

)
+

1

2
(1− η)κ

(
2cρIc

† −
[
c†c, ρI

]
+

)

(2.65)

in this case, where Hcond is now of the form

Hcond = −i~κc†c . (2.66)

The first term in Eq. (2.65) effectively describes resonators that experience feed-

back, while the second term takes undetected photon emission events into ac-

count. As usual, η denotes the detector efficiency. Moreover, RI denotes the

unitary operator R in Eq. (2.62) after transformation into the interaction picture

with respect to H0 = HS. In this section, we consider quantum feedback in the

form of very short and strong resonant laser pulses. This means that RI is the

unitary time evolution operator associated with a laser Hamiltonian with a time-

independent Rabi frequency. Hence RI too is time-independent and is chosen to

be equal to a displacement operator as before. Simplifying Eq. (2.65) eventually

yields

ρ̇I =
1

2
κ
(

2cρIc
† −
[
c†c, ρI

]
+

)
+ ηκ

(
RIcρIc

†R†I − cρIc
†
)
. (2.67)

As a final step, we may now consider the general case of an optical cavity subject

to continuous laser driving and also quantum feedback. In this case we add the

complete solutions from Eq. (2.62) and Eq. (2.59) with the appropriate choices

for Hint I and R into Eq. (2.63), which gives exactly Eq. (2.56). Hence, this gives

the same master equaiton that was previously obtained in Section 2.2. However,

the unravelled dynamics will be important in future chapters when the system

needs to be analysed in more detail.
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2.3 Two-level atom with feedback

Numerical simulation of master equation

In some cases, solving the master equation analytically is difficult. In such a case,

a useful way of studying the dynamics of an open quantum system is by use of the

quantum jump approach. This utilises the unravelling of the master equation.

This method can be summarised as follows:

1. Apply the no-photon time evolution operator Ucond(t + ∆t, t). It is impor-

tant ∆t is chosen to be small compared to the emission rate of the cavity(
∆t�

(
Γ
〈
c†c
〉)−1

)
, so as to insure photon emissions are not overlooked.

2. Calculate the probability of emission P1 using Eq. (2.25).

3. Call a random number. If the random number is less than or equal to P1,

record a photon emission. Reset the system accordingly (apply the Lindblad

operator L to the system and renormalise).

4. Repeat for desired amount of time.

For coherent states |α〉 this is particularly straightforward, as only the parameter

α describing the coherent state needs to be kept track of in terms of the state of

the system.

2.3 Two-level atom with feedback

We shall now consider another specific simple example of a system that is subject

to quantum feedback. Specifically, we will examine the behaviour of a two-level

atom subject to a rotation on the Bloch sphere (corresponding to some excitaiton

put into the system) upon emission and resonant laser driving. The basic Hamil-

tonian of this system is given by H = H0 + H1, where similarly to the previous

case we have

H0 = Hatom +Hfield

= ~ω0σ
+σ− +

∑

λ=1,2

∞∫

0

dω ~ωa†λ(ω)aλ(ω)

H1 = Hatom−field +Hlaser , (2.68)
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2.3 Two-level atom with feedback

where ω is the frequency of the field modes described by the bosonic annihila-

tion/creation operators aλ(ω)/a†λ(ω) obeying the same bosonic commutation rules

as before and the λ are the two respective polarisations of light. Furthermore, ω0

is the frequency of the atomic system described by the raising/lowering operators

σ+/σ−. The interaction terms in H1 are of similar form to those in the previous

subsection. The atom-field coupling can be calculated in the exact same way as

in the previous case. Once again, the polarisation may be neglected from here

on as it will not affect the dynamics of our system. The laser-driving term in

Hlaser now comes from the coupling of the applied laser field to the atom. As

is standard for such quantum optical systems, we assume dipole coupling of the

form

Hlaser = ed · E , (2.69)

where d is the atomic dipole moment and E is the electric field being applied

by the laser. As is standard, we shall use a semi-classical approximation here.

Specifically, we take the definitions of D and E to be

d = ex = Dσ− + D∗σ+

E = E0e−iω0t + c.c. , (2.70)

where x is the position operator and we have chosen the laser field to be resonant

with the atom, meaning it too has frequency ω0. The expression for d comes

from expanding it in terms of the identity and then simplifying. Specifically,

d = 1 x 1

= 〈0|x |0〉 |0〉 〈0|+ 〈0|x |1〉 |0〉 〈1|+ 〈1|x |0〉 |1〉 〈0|+ 〈1|x |1〉 |1〉 〈1| .
(2.71)

Now, we notice that the diagonal elements 〈0|x |0〉 and 〈1|x |1〉 must equal zero

due to the symmetric/anti-symmetric properties of the wavefunction. Further-

more, we identify D = e 〈0|x |1〉, leaving us with the expression for d in Eq. (2.70).

Now, combining these equations, we can evaluate Hlaser, giving

Hlaser = e
(
e−iω0tE0 ·Dσ− + eiω0tE∗0 ·Dσ− + e−iω0tE0 ·D∗σ+ + eiω0tE∗0 ·D∗σ+

)
.

(2.72)
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2.3 Two-level atom with feedback

The final step is to move into an interaction picture with respect to the free

energy Hamiltonian H0. In doing so, we find that

Hlaser I = e
(
e−2iω0tE0 ·Dσ− + E∗0 ·Dσ− + E0 ·D∗σ+ + e2iω0tE∗0 ·D∗σ+

)
.

(2.73)

We now apply what is known as the rotating wave approximation (RWA), where

terms involving fast oscillating complex exponential terms are removed from the

dynamics. This is well known to be a valid approximation in the weak cou-

pling regime that we are concerned with here, as these terms contribute little to

the evolution of the system. In removing these terms, and identifying the Rabi

frequency Ω as

Ω =
2eE0 ·D∗

~
, (2.74)

we arrive at the final form of Hlaser I, given by

Hlaser I =
~
2

(
Ω∗σ− + Ωσ+

)

=
~Ω

2

(
eiϕσ− + e−iϕσ+

)
, (2.75)

where in the last line we have now taken Ω to be real and expressed any complex

phase in terms of ϕ. Without loss of generality, we may absorb this complex

phase into the definition of the excited state, for example. However, in Chapter

5 we will choose to explicitly consider this phase and hence keep it within the

dynamics.

Following the derivation in Section 2.1 and Section 2.2 and proceeding in the

exact same way, one can show that the master equation describing this system is

given by

ρ̇I = − i

~
[Hlaser I, ρI] + Γ

(
σ−ρIσ

+ − 1

2

[
σ+σ−, ρI

]
+

)
, (2.76)

with the dynamics being in an interaction picture with respect to the free energy

Hamiltonian H0. The Hamiltonian Hatom−field behaves exactly as HSB and Hlaser I

replaces Hint I. Here, Γ is the atom’s spontaneous decay rate. Incorporating
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2.3 Two-level atom with feedback

quantum feedback as outlined above, this master equation is modified to be of

the form

ρ̇I = − i

~
[Hint,I, ρI]

+Γ

(
ηR(θ)σ−ρIσ

+R†(θ) + (1− η)σ−ρIσ
+ − 1

2

[
σ+σ−, ρI

]
+

)
,(2.77)

with R(θ) being chosen to be a rotation operator here defined as

R(θ) =

(
cos(θ) −i sin(θ)
−i sin(θ) cos(θ)

)
, (2.78)

for θ ∈ [0, π]. Such an operation could be achieved by applying a strong laser

pulse over a short time period (consider a strong Rabi oscillation over a short

time period). Using this master equation, we may obtain a set of rate equations

describing the dynamics of the system. Using the properties of a density matrix,

we notice that there are only three real parameters needed to describe all the

dynamics of a two level system. If we introduce the notation

x = Re (ρ01)

y = Im (ρ01)

z = ρ11 , (2.79)

we may write the density matrix describing the system as

ρ =

(
ρ00 ρ01

ρ10 ρ11

)
=

(
1− z x+ iy
x− iy z

)
. (2.80)

Using this notation and Eq. (2.77), we find that

ẋ = −Γ

2
x

ẏ =
1

2
(Ω (1− 2z)− Γy + Γη sin(2θ)z)

ż = Ωy + Γz
(
η sin2(θ)− 1

)
. (2.81)

This set of differential equations can be solved in order to analyse the behaviour

of the system. This can be used to plot the population of the excited state of

the atom as a function of time (z(t)). The results for a variety of parameters are

shown in Fig. 2.2.
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2.3 Two-level atom with feedback
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Figure 2.2: Plots of the population of the excited state of a two-level system

subject to laser driving and instantaneous quantum feedback, where the feedback

parameter is varied for each plot. These plots are created with η = 1 and Ω = 10Γ.

When looking at Fig. 2.2, we see that the dynamics tend towards a station-

ary state. However, this stationary state changes depending on the value of θ.

Explicitly, the stationary state values are given by

xss = 0

yss =
ΓΩ
(
1− η sin2(θ)

)

Γ2 + 2Ω2 − Γη
(
Γ sin2(θ)− Ω sin(2θ)

)

zss =
Ω2

Γ2 + 2Ω2 − Γη
(
Γ sin2(θ)− Ω sin(2θ)

) . (2.82)

By plotting zss as a function of θ for a variety of values of Ω, we find that we

may drive the atom into a desired stationary state by controlling the feedback

and laser parameters, as shown in Fig. 2.3. This shows a simple example of how

feedback can be used to control the dynamics of a system. However, there are

more exotic uses that shall be explored in more detail later. This example is

simply used to present how instantaneous quantum feedback can be implemented

in an open quantum system.
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Figure 2.3: Plots of zss as a function of θ and for a variety of values of Ω. The

stationary state value can be manipulated by changing the parameters. These

plots are created by setting η = 1.

2.4 Summary

In this chapter, we have introduced the theoretical background needed to study

open quantum systems with instantaneous quantum feedback. In particular, we

have derived the Lindbladian master equation for an optical cavity with instan-

taneous feedback in the form of a displacement operator. As we shall see in

Chapter 3, the introduction of quantum feedback in this form can vastly alter

the dynamics of the system. This enhanced behaviour will then be studied for

applications in the proceeding chapters.

Furthermore, we then introduced a two-level atom that is subject to quantum

feedback in the form of a rotation on the Bloch sphere. As this is a relatively

simple system, we showed how this system evolves in time and how altering the

feedback parameters changes its evolution. For example, by choosing appropriate

parameters for the feedback and laser-driving, a desired stationary state can be

chosen. This is in line with many traditional uses of feedback, which focus on

applications such as stabilisation [14]. However, as we shall see in Chapter 5,
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2.4 Summary

even a relatively simple system like this can have uses for quantum technological

applications.
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Part II

Physical Behaviour
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Chapter 3

Non-ergodic dynamics in an open

quantum system with quantum

feedback

Open quantum systems usually reach a unique stationary state with ergodic dy-

namics. In other words, the ensemble averages and the time averages of the

expectation values of open quantum systems are usually the same for most quan-

tum trajectories. Although open quantum systems are in general ergodic, many

classical stochastic processes are not. Hence if classical physics emerges from

microscopic quantum models, there have to be mechanisms which induce non-

ergodicity in open quantum systems. In this chapter, we identify such a mecha-

nism by showing that quantum feedback dramatically alters the dynamics of open

quantum systems, thereby possibly inducing non-ergodicity and a persistent de-

pendence of ensemble averages on initial conditions. As a concrete example we

study an optical cavity inside an instantaneous quantum feedback loop.

Suppose a large number of identical physical systems generate time-dependent

stochastic signals. The dynamics of these systems is called ergodic when any

single, sufficiently long sample of the process has the same statistical properties

as the entire process. By this, we mean that a single sample may yield the same

information as a large number of repeats of the same process. More concretely,

suppose we consider N identical systems with stochastic dynamics, where N is
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large, and

E(A) = lim
T→∞

lim
N→∞

1

N

N∑

n=1

En(A, T ) (3.1)

denotes the ensemble average of the expectation values En(A, T ) of an observable

A after a long time T . Then the system dynamics are ergodic when also

E(A) = lim
T→∞

1

T

∫ T

0

dt En(A, t) (3.2)

for all observables A and for all systems n. In other words, the system dynam-

ics are ergodic when ensemble averages and time averages are the same for all

observables and for all possible realisations of the process [24].

A completely generalised definition of ergodicity does not exist currently and

can vary depending on the type of system being considered. In statistical pro-

cesses, the definition provided here is often used. However, in other types of

systems/processes alternatives may be used. For example, in condensed matter

physics in particular, a phase space representation is considered [25]. Here, we

shall adopt the definition given above for the purposes of this study, though it

should be noted that there is equivalence amongst definitions. They differ only

in representations.

Standard examples of physical systems with ergodic dynamics are systems

that eventually lose any information about their initial state. This applies, for

example, to systems whose dynamics result in a unique stationary state [24]. In

this case, the right hand sides of Eqs. (3.1) and (3.2) both sum over stationary

state expectation values and are hence equal. In statistical physics, systems

usually reach a unique thermal equilibrium that is independent of their initial

state. Ergodic systems therefore lie at the heart of statistical physics [26, 27].

Nevertheless, an ergodic hypothesis remains hard to deduce from microscopic

equations of motion [28, 29, 30]. Moreover, physical systems whose dynamics

depend forever on their initial state are in general non-ergodic. A particular

class of non-ergodic systems that receive a lot of attention in the literature are

physical systems with chaotic trajectories (see e.g. Refs. [31, 32]). For these, the

right hand sides of Eqs. (3.1) and (3.2) are in general different.
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In this chapter, we are especially interested in the ergodicity of open quantum

systems with Markovian dynamics [33]. The ensemble averages of the expectation

values of these systems can be deduced from their density matrix ρ, which evolves

according to a master equation in Lindblad form [4, 18] as we saw in Chapter 2.

However, to decide whether an open quantum system is ergodic or not, we also

need to have a closer look at its individual quantum trajectories [20, 21, 22]. To do

so, we need to unravel the above master equation in a physically meaningful way

into equations that predict the dynamics of the individual quantum trajectories.

In the case of spontaneous photon emission by a quantum optical system, a

physically meaningful unravelling of Eq. (2.2) is obtained when writing L(ρ) in

Eq. (2.3) as

L(ρ) = − i

~
[Hcond, ρ] + ΓLρL† , (3.3)

with the non-Hermitian conditional Hamiltonian Hcond as given in Eq. (2.59).

There are now two main terms contributing to the time evolution of ρ. The

first term in Eq. (3.3) describes the dynamics of the open quantum system under

the condition of no photon emission. In this case, it evolves according to a

Schrödinger equation but with the system Hamiltonian H replaced by Hcond.

This Hamiltonian no longer describes the total energy of the system but of only

a subensemble. The second term describes the effect of a photon emission. Up

to normalisation, the state vector changes from |ψn(t)〉 into L |ψn(t)〉 in this case.

Furthermore, as we saw in Eq. (2.61), the probability density for an emission to

occur equals I(t) = Γ 〈L†L〉t, where 〈L†L〉t denotes a time-dependent expectation

value. KnowingH, Γ and L of a quantum optical system with spontaneous photon

emission allows us to generate all its possible quantum trajectories.

Although it is widely believed that open quantum systems with Markovian

dynamics are almost always ergodic, a general proof of their ergodic dynamics

cannot be found in the literature [34] and they must be tested individually. What

has been shown, for example, is that the dynamics of an open Markovian quan-

tum system are ergodic if the system reaches a steady state that is independent

of its initial state [33]. Non-ergodicity seems to require the existence of multiple

stationary states (see e.g. Refs. [6, 35, 36]), which occur only in specially designed

circumstances, such as engineering supplementary decay channels or manipulating
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them to behave differently. This is usually not the case in nature. However, many

classical stochastic processes are non-ergodic and exhibit complex dynamics. Ex-

actly how the complex dynamics of classical systems, including non-ergodicity

and chaos, may arise in open quantum systems and in closed many-body quan-

tum systems is the subject of extensive research [19, 29, 30, 31, 37, 38, 39]. While

in the field of interacting systems this is being extensively studied, including for

open quantum systems [40], it remains an open question for quantum optical

systems.

In this chapter, we identify a mechanism with the ability to induce such com-

plex dynamics in open quantum systems and thereby provide a counter-example

to claims that open quantum systems with a single decay channel exhibit er-

godic behaviour. It is shown that quantum feedback [11, 14, 41, 42] can induce

non-ergodicity even when the quantum system possesses only a single unique sta-

tionary state. As we shall see below, the stationary state of an open quantum

system inside a quantum feedback loop can become a repulsive fixed point of

the system dynamics. When this applies, a system in its stationary state drifts

away, even in the case of only tiny fluctuations. Instead of losing any informa-

tion about the initial state, there can be a persistent dependence of the ensemble

averages of expectation values on initial conditions. To show that this is indeed

the case, we study a concrete example, namely the dynamics of an optical cav-

ity with spontaneous photon emission inside an instantaneous quantum feedback

loop. The quantum feedback-induced non-ergodicity of such cavities has already

been shown to have applications in quantum-enhanced metrology [7].

There are three sections in this chapter. In Section 3.1, we review the dy-

namics of an optical cavity when subject to continuous laser driving to provide a

reference point for later discussions. As we shall see below, the dynamics of the

resonator is linear and ergodic in this case. Afterwards, in Section 3.2, we re-

place the continuous laser driving by instantaneous quantum feedback and show

that this relatively simple change results in significant changes of the system’s

dynamics. Finally, in Section 3.3 we review our findings.
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3.1 An optical cavity with continuous laser driving

Figure 3.1: Schematic view of an optical cavity with continuous laser driving and

spontaneous photon emission. A detector observes the field outside the resonator

and registers the arrival of single photons at random times.

3.1 An optical cavity with continuous laser driv-

ing

For benchmarking and to later get a better feeling of how quantum feedback alters

the dynamics of an open quantum system with spontaneous photon emission, this

section analyses the dynamics of an optical cavity with continuous laser-driving

from an open systems perspective. After looking at the individual quantum

trajectories of the resonator, we derive its stationary state and show that its

dynamics are indeed ergodic. We especially emphasise that if the cavity is initially

in a coherent state, it remains always coherent.

3.1.1 Individual quantum trajectories

First, we have a closer look at the dynamics of the cavity field under the condition

of no photon emission. In the interaction picture with respect to H0 = HS, the

resonator evolves with the conditional time evolution operator

Ucond I (t+ ∆t, t) = exp

(
− i

~
Hcond I∆t

)
(3.4)

between photon emissions. Using Eq. (2.59) and applying the Baker-Campbell-

Hausdorff formula, one can show that

Ucond I (t+ ∆t, t) = e−
i
2

Ω(c+c†)∆t e−
1
2
κ c†c∆t , (3.5)

up to terms of second order in ∆t. Now suppose the cavity is initially in a coherent

state |αI(t)〉. In this case, calculating the effect of the second exponential on
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3.1 An optical cavity with continuous laser driving

|αI(t)〉 is best done using the Fock basis. To apply the first exponential, we use

the general properties of displacement operators with respect to coherent states.

Doing so, we find that the state of the cavity at a time t+ ∆t is again a coherent

state, which we denote |αI(t+ ∆t)〉. To a very good approximation, we find that

αI(t+ ∆t) = e−
1
2
κ∆t αI(t)−

i

2
Ω ∆t . (3.6)

This equation tells us that

α̇I(t) = −1

2
καI(t)−

i

2
Ω , (3.7)

without any approximations. Solving this differential equation for an initial co-

herent state |αI(0)〉, we obtain a general solution for the state |αI(t)〉 of the cavity

field under the condition of no photon emission in an arbitrarily long time interval

(0, t),

αI(t) = e−
1
2
κt αI(0)− iΩ

κ

(
1− e−

1
2
κt
)
. (3.8)

Returning to the Schrödinger picture, the state of the cavity becomes the coherent

state |αS(t)〉, with αS(t) given by

αS(t) =

[
e−

1
2
κt αS(0)− iΩ

κ

(
1− e−

1
2
κt
)]

e−iωcavt (3.9)

with αS(0) = αI(0). Using Eq. (2.25), the calculation that lead to Eq. (3.6)

moreover reveals that

P0(∆t) = exp
[
−|αS(t)|2

(
1− e−κ∆t

)]
(3.10)

is the probability for no photon emission in a short time interval (t, t+ ∆t).

Finally, we have a closer look at the effect of a photon emission on the state

of the resonator field. Using Eq. (2.60), we immediately see that the spontaneous

emission of a photon does not change the field inside the resonator, if the cavity

is initially in a coherent state, since coherent states are the eigenstates of the

photon annihilation operator c. Hence, Eq. (3.9) not only describes the state of

the cavity field under the condition of no photon emission in the time interval

(0, t), but also describes the state of the resonator in case of emissions.
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−10

0

10

−10 0 10

Im
(α

S
)

Re (αS)

Figure 3.2: Phase space diagram illustrating the dynamics of a laser-driven optical

cavity with spontaneous cavity decay in the Schrödinger picture. The cavity is

initially in its vacuum state |0〉 and Ω = 8κ. The field inside the resonator

remains always in the coherent state |αS(t)〉 given in Eq. (3.9). The state of the

cavity follows an outwards spiral until it eventually reaches the stable circular

orbit described by Eq. (3.11).

3.1.2 Long-term dynamics

Fig. 3.2 visualises the trajectory of an optical cavity with continuous laser driving

with the help of a phase diagram. This is possible since the resonator remains

always in a coherent state |αS〉, which can be represented by a point in the complex

plane. The x-co-ordinate of this point equals the real part of αS, while the y-co-

ordinate coincides with its imaginary part. Suppose the resonator is initially in

its vacuum state with αS(0) = 0. Then αS(t) in the Schrödinger picture describes

an outwards spiral, which starts at the origin and eventually reaches a stable

circular orbit. Eventually, the distance of the complex numbers αS(t) from the

origin remains constant in time. Eq. (3.9) shows that

αS(t) = − iΩ

κ
e−iωcavt (3.11)
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3.1 An optical cavity with continuous laser driving

to a very good approximation, when t is sufficiently large. In the interaction

picture (c.f. Eq. (3.8)), αI(t) assumes the stationary state value αss I,

αss I = − iΩ

κ
. (3.12)

This state is invariant under the no-photon time evolution of the system as well

as being immune to the spontaneous emission of a photon.

Moreover, Eq. (2.61) in the previous chapter allows us to calculate the prob-

ability density I(t) for the emission of a photon at any time t. If the system is

initially prepared in a coherent state |αS(0)〉, it remains coherent and I(t) simply

equals

I(t) = κ |αS(t)|2 . (3.13)

Substituting Eq. (3.9) into this equation yields

I(t) = κ e−κt |αS(0)|2 +
Ω2

κ

(
1− e−

1
2
κt
)2

− 2Ω e−
1
2
κt
(

1− e−
1
2
κt
)

Im(αS(0)) .

(3.14)

Fig. 3.3 shows I(t) for the case where the cavity is initially in its vacuum state

and I(0) = 0. Eventually, I(t) assumes the constant value Iss,

Iss =
Ω2

κ
, (3.15)

which is the stationary state photon emission rate of the laser-driven optical

cavity. To obtain numerical results, we determine the mean number of photon

emissions within short time intervals (t, t+ ∆t) by averaging over a large number

of quantum trajectories using the numerical method outlined in Section 2.2.3.

We observe relatively good agreement between analytical and numerical results.

This agreement increases when more individual quantum trajectories are taken

into account as the statistical random noise is suppressed.

3.1.3 Ergodicity

To decide whether the dynamics of the cavity field are ergodic or non-ergodic,

we need to check whether we can deduce all statistical properties of this physical
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Figure 3.3: Time dependence of the photon emission rate I(t) of a laser-driven

optical cavity. As in Fig. 3.2, the resonator is initially in its vacuum state and Ω =

8κ. The emission rate I(t) soon reaches its stationary state value Iss in Eq. (3.15).

A comparison between the analytical result in Eq. (3.14) and a quantum jump

simulation of I(t), which averages over 106 individual quantum trajectories, shows

relatively good agreement.

system from a single, sufficiently long quantum trajectory. In the previous two

subsections, we have seen that the state of the resonator |αI(t)〉 at any time t

is the same for all possible quantum trajectories with a fixed initial state, no

matter when photon emissions occur. Moreover, we have seen that αI(t) reaches

its stationary state value αss in Eq. (3.12) relatively rapidly. It is therefore not

surprising to find that the experimental setup in Fig. 3.1 is indeed ergodic. The

time and ensemble averages of a laser driven optical cavity with spontaneous

photon emission are the same. This is due to each individual quantum trajectory

tending towards the same fixed point in the dynamics, leading them to equivalence

in the large time limit, independent of their initial state. More precisely, the

unique fixed point in the dyanmics is attractive for all values of α. Indeed, as

is suggested in Ref. [33], a system like the one here with a unique stationary
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3.2 An optical cavity inside an instantaneous quantum feedback loop

Figure 3.4: Schematic view of an optical cavity inside an instantaneous quantum

feedback loop. Now the continuous laser driving is replaced by a random sequence

of pulses. These are triggered by the detection of a single photon at the detector

and displace the field inside the resonator in a well defined way.

state and a single decay channel should be ergodic. Hence in order to obtain

non-ergodic dynamics we must add more complexity to the dynamics.

3.2 An optical cavity inside an instantaneous

quantum feedback loop

In this section, we replace the continuous laser-driving of the resonator with

instantaneous quantum feedback. As illustrated in Fig. 3.4, we assume that the

spontaneous emission of a photon triggers a short, strong, resonant laser pulse,

which can be modelled as a displacement operator. For simplicity, we assume that

the effect of the laser is instantaneous, which applies to a very good approximation

if its length is short compared to the inverse of the cavity decay rate κ. In the

following, we see that changing the way in which energy is fed into the system

alters the system dynamics dramatically.

3.2.1 Analytical solutions for an optical cavity inside an

instantaneous quantum feedback loop

In this subsection, we look at finding a solution for the dynamics of the optical

cavity inside a quantum feedback loop. In particular, we shall consider the case
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3.2 An optical cavity inside an instantaneous quantum feedback loop

highlighted in Fig. 3.4 where the continuous laser driving is removed and the only

driving is of the form of instantaneous quantum feedback. The master equation

for this system is given by Eq. (2.67).

Let us first take a closer look at the photon emission term of the unravelled

quantum evolution of our system. Recalling Eq. (2.60), we know that the state

of the system under photon-emission is given by |ψ 6=S (t+ ∆t)〉 =
√
κ∆t L |ψS(t)〉.

In the case of having continuous laser driving and no feedback, we have L = c

and |ψS(t)〉 = |α(t)〉, meaning the unnormalised state after photon emission is

|ψ 6=S (t+ ∆t)〉 =
√
κ∆t c |ψS(t)〉

=
√
κ∆t α(t) |α(t)〉 . (3.16)

Hence, a photon emission does not alter the state of the optical cavity and there

is no quantum jump in dynamics. However, in the case that we now wish to

consider, the Lindblad operator is given by L = D(β)c. Therefore, we now have

|ψ 6=S (t+ ∆t)〉 =
√
κ∆tD(β)c |ψS(t)〉

=
√
κ∆t α(t) |α(t) + β〉 . (3.17)

It is no longer the case that |ψ 6=S (t+ ∆t)〉 = |ψS(t)〉 anymore, meaning a quantum

jump has occured in the system’s dynamics. Because of this, it is no longer enough

to merely track the system’s no-photon evolution to give a complete analysis of

the quantum system’s evolution. The time of photon emissions is now significant.

However, if we want to consider ensemble averages, we should still be able

to use the master equation to provide rate equations for expectation values, as

the master equation still describes the ensemble average evolution of the system.

Suppose we wish to consider the expectation value of some general operator A.

Then, its time derivative is given by

〈
Ȧ
〉

= − i

~
〈[A,H]〉+ κ

〈
ηc†D†(β)AcD(β)c+ (1− η) c†Ac− 1

2

[
A, c†c

]
+

〉
,

(3.18)

for a master equation with instantaneous quantum feedback in the form of a

strong laser pulse. Let us now look to find the time evolution of the photon
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3.2 An optical cavity inside an instantaneous quantum feedback loop

number operator n =
〈
c†c
〉
. Furthermore, in our case here the continuous laser-

driving has been turned off, meaning H = 0 here. Then we find that

ṅ = κ
(
ηβ
〈
c†c†c

〉
+ ηβ∗

〈
c†cc

〉
+
(
η |β|2 − 1

) 〈
c†c
〉)

(3.19)

The rate equations unfortunately do not form a closed set, as the displacement

operator in the feedback always creates a new operator that is a function of c and

c† that had previously not been introduced. We therefore get an infinite set of

linear differential equations, which is a characteristic of non-linear systems. This

means that in order to study this system’s behaviour we should use quantum jump

simulations to obtain a numerical solution to the system’s dynamics. Moreover,

we can easily see that by removing the feedback (setting β or η to zero) returns

the rate equation to the typically expected value, which is

ṅ = −κn , (3.20)

which describes an exponential decay in the population of photons inside the

cavity. However, we see in Eq. (3.19) that this is suppressed by the feedback

and may even become an exponential growth, as well as the introduction of the

further new terms. Hence, we see a qualitatively difference between the cases

with and without the feedback.

3.2.2 Non-linear dynamics of ensemble averages

In this subsection, we have a closer look at the time-dependence of expectation

values averaged over a large ensemble of individual quantum trajectories. Since

the cavity field remains always in a coherent state, the density matrix ρI(t), which

allows us to calculate the expectation value 〈A〉t = Tr (AρI(t)) of an observable A

at any time t, needs to be a statistical mixture of coherent states. Hence, without

restrictions we can assume that

ρI(t) =

∫

C
dαP (α, t) |α〉〈α| , (3.21)

where the P (α, t) denote time-dependent probabilities. Taking this into account,

using Eqs. (A.4) and (2.67) and calculating the density matrix ρI with ρ̇I = 0, we
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3.2 An optical cavity inside an instantaneous quantum feedback loop

find that the cavity possesses a unique stationary state ρss. As one would expect,

this state is the vacuum state of the resonator,

ρss = |0〉〈0| . (3.22)

Clearly, when reaching this state the dynamics of the resonator come to a hold,

as the only driving acting upon the system is the feedback, which is dependent

on photon emissions. If the system is in the vacuum, it cannot emit photons

and therefore cannot be driven away from the vacuum. However, Fig. 3.5 shows

that often the cavity does not reach this state. For a wide range of initial states

|αS(0)〉, there is a significant probability for the mean number of photons inside

the cavity to continue to grow in time. Moreover, Eq. (3.10) is now exact for all

times ∆t. Hence, we see that for all |α(t)| > 0, there is always a finite probability

for the cavity to emit a photon. Upon emission of a photon, the feedback may

increase the size of α(t), thereby increasing the probability of emission.

To calculate the probability density I(t) for the emission of a photon at time

t averaged over a large ensemble of individual quantum trajectories, we now have

a closer look at the dynamics of the photon number operator. Using Eq. (3.18)

and setting A = c†c and taking into account that I(t) = κ 〈c†c〉t and [c, c†] = 1,

the differential equation yields

İ(t) = −κ2

∫

C
dα
[
1− η

(
|α + β|2 − |α|2

)]
P (α, t) |α|2 (3.23)

for the density matrix ρI(t) in Eq. (3.21). In the absence of any feedback, i.e. for

η = 0, Eq. (3.23) simplifies to the simple linear differential equation İ(t) =

−κ I(t). However, in the presence of sufficiently strong feedback, the η-term

dominates the dynamics of I(t) and makes it non-linear. For relatively large

values of η and β, İ(t) even becomes positive and the mean number of photons

inside the resonator grows in time. As we have seen in Ref. [7], the phase space

volume occupied by the resonator grows in time in case of sufficiently strong

instantaneous quantum feedback, which is often the case for non-ergodic systems.

3.2.3 Instability of the stationary state

The aforementioned dynamics are in stark contrast to other quantum optical

systems with spontaneous photon emission. Like the experimental setup that
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Figure 3.5: Heat-plot showing the dependence of the probability χ on the initial

coherent state |αI(0)〉 of the resonator. Here χ denotes the probability that

coherent state |αI(t)〉 of the cavity is such that |αI(t)| < 0.1 after a time t = 10κ−1.

Hence it equals the probability that the cavity eventually reaches its vacuum

state to a very good approximation. The plot is the result of a quantum jump

simulation which averages over 104 quantum trajectories for 25000 different initial

states uniformly separated. In this simulation we have set β = 2 and η = 0.5.

we studied in Section 3.1, quantum optical systems usually occupy a constantly

shrinking or fixed phase space volume. Eventually they reach a stationary state

that is independent of their initial state. In other words, the stationary state of

a quantum optical system is usually an attractive fixed point of its dynamics. In

contrast to this, as we shall see below, the stationary state of an optical cavity

inside a quantum feedback loop becomes repulsive if the feedback is sufficiently

strong.

Suppose the cavity is initially in its vacuum state and a small perturbation

moves the resonator into a coherent state |αI(t)〉 with |αI(t)|2 � |β|2. When this

applies, Eq. (3.23) simplifies to

İ(t) = −κ2
(
1− η|β|2

)
|αI(t)|2 . (3.24)

The right hand side of this equations becomes positive when

η |β|2 > 1 . (3.25)
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3.2 An optical cavity inside an instantaneous quantum feedback loop

This shows that the ensemble average of the mean number of photons inside the

resonator increases further in time in case of sufficiently strong feedback. The

stationary state of the resonator is no longer an attractor of the system dynamics

but a repulsive fixed point. This behaviour is illustrated in Fig. 3.6, which shows

the time dependence of the mean cavity photon emission rate I(t) for quantum

feedback pulses of different strength, i.e. for different values of β. As expected,

the photon emission rate I(t) only converges to zero when β is relatively small.

In fact, for any given initial state, we can determine İ(0), as at this point

the coherent state is unique and known. Following from the experimental setup

shown in Fig. 3.4, if we take β = |α|, we may re-write Eq. (3.23) as

İ(0) = −κ2|α|2
[
1− η

(
|α|2 + 2Re(α)|α|

)]
. (3.26)

For this, we can gain a lot of information about the future behaviour of the

system. Firstly, we see that there exists a threshold where İ(0) is either positive

or negative. This is found by setting Eq. (3.26) equal to zero, which yields

η|α| (|α|+ 2Re(α))− 1 = 0 or |α| = 0 (3.27)

Choosing feasible values for the parameters in Eq. (3.27) we may identify if the

intensity initially increases or decreases. Furthermore, we know that the intensity

is proportional to |α|2. Hence, we know that if İ(t) > 0, |α| is also increasing

initially. Therefore, it seems clear the ensemble average intensity will always

increase. For the cases with an initially decreasing ensemble average, it is not

as clear whether it will always decreases or whether in a long enough amount of

time it will begin to increase again.

3.2.4 Persistent dependence of ensemble averages on ini-

tial states

Perhaps even more surprising than the instability of the stationary state is the

fact that the dynamics of the ensemble averages of expectation values depend

strongly on the initial coherent state |αS(0)〉 of the cavity, even after long periods

of time. In contrast to many other quantum optical systems, information about

the initial state of the quantum system is never lost. This behaviour is illustrated
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Figure 3.6: Time dependence of the photon emission rate I(t) for different feed-

back parameters β. As in previous figures, we assume αI(0) = 2 and η = 0.5. The

figure is again the result of a quantum jump simulation, which averages over 106

individual quantum trajectories. For relatively small values of β, I(t) tends to

zero. However, as β increases, the dynamics of the cavity change and the mean

number of photons inside the resonator continues to grow in time.

in Fig. 3.7, which shows the time-dependence of the photon emission rate I(t)

of the resonator for different initial states |αS(0)〉 with αS(0) = |αS(0)| eiϕ. The

amplitude of |αS(0)| and the feedback parameter β are the same in each case, but

the considered phases ϕ differ for different curves. The figure clearly illustrates

that information about ϕ is not lost. The emission rate I(t) does not converge

to a single value. On the contrary, the distance between curves that correspond

to different values of ϕ even increases in time.

This interesting and highly unusual feature of open quantum systems opens

the way to novel applications. For example, we recently showed that an optical

cavity inside an instantaneous quantum feedback loop can be used to measure

the phase shift between two pathways of light with an accuracy that exceeds the

standard quantum limit [7].
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Figure 3.7: Time dependence of the photon emission rate I(t) for different initial

states |αS(0)〉 with varying phase ϕ. Here |αS(0)| = 2, β = 2 and η = 0.5. The

figure is again the result of a quantum jump simulation which averages over 106

possible trajectories. The figure illustrates that there is a strong dependence of

the dynamics of ensemble averages on the initial state of the resonator.

3.2.5 Individual quantum trajectories

As in Section 3.1, we may also have a closer look at the individual quantum

trajectories of the resonator. As before, we model the time evolution between

photon emissions by a non-Hermitian conditional Hamiltonian. Without laser

driving, Ω = 0 and Hcond is now of the form as in Eq. (2.66), where there is only

a damping term. From Eq. (3.8) we see that the cavity evolves in the interaction

picture into the state |αI(t)〉 with

αI(t) = e−
1
2
κt αI(0) , (3.28)

in this case, if it is initially prepared in the coherent state |αI(0)〉. The probabil-

ity P0(∆t) for no photon emission in a time interval (t, t + ∆t) is still given by

Eq. (3.10), which is later taken into account when we simulate quantum trajec-

tories.
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3.2 An optical cavity inside an instantaneous quantum feedback loop

Next we have a closer look at the effect of a spontaneous photon emission.

Again the state of the cavity remains unchanged, if the emission of a photon

goes unnoticed. However, if the emission of a photon is detected and successfully

triggers a feedback pulse, the state of the cavity changes from |αI(t)〉 into |αI(t+

∆t)〉 = RI |αI(t)〉, with RI being the displacement operator given in given in

Eq. (A.4). Using the properties of displacement operators (see App. A for more

details), we find

|αI(t+ ∆t)〉 = |αI(t) + β〉 , (3.29)

under photon emission given that a feedback pulse is applied at a time t. The

state of the resonator is no longer invariant under photon emission. Furthermore,

even when all parameters are kept the same, every realisation of the described

process now results in a different quantum trajectory. This leads to quantum

jumps in the dynamics.

3.2.6 Non-ergodicity

The phase space diagrams in Fig. 3.8 show random samples of individual quan-

tum trajectories in the Schrödinger picture. Figs. 3.8(a)–(c) and Figs. 3.8(d)–

(f), respectively, depict the same ten runs of an experimental simulation. In

Fig. 3.8(a)–(c) we have αS(0) = 2 and in Fig. 3.8(d)–(f) we have αS(0) = −2,

while the feedback pulse in both cases is given by β = 2. There is a gradual

zoom from (a) to (c) and from (d) to (f) to clearly show the difference between

the dynamics of the resonator field for relatively large and for relatively small

mean photon numbers. Most importantly, there are now two different types of

dynamics. Many of the shown quantum trajectories move further and further

away from the vacuum state. Once the amount of excitation inside the cavity

reaches a certain threshold, the mean number of photons inside the resonator is

likely to keep increasing. For other trajectories, the mean number of photons

inside the resonator remains relatively small. Those trajectories are extremely

likely to eventually reach the vacuum state, where the cavity cannot emit another

photon and the dynamics of the system comes to a hold.
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Figure 3.8: Phase space diagrams illustrating the dynamics of a random sample

of ten possible quantum trajectories of an optical cavity inside an instantaneous

quantum feedback loop with β = 2 and η = 0.5. All trajectories are the result of

a quantum jump simulation of length t = 10κ−1. In (a)–(c), we consider an initial

state |αS(0)〉 with αS(0) = 2. One trajectory eventually reaches the vacuum state,

while all others move further and further away from the origin. In (d)–(f), we

have αS(0) = −2. Now we see that only five of the ten trajectories diverge, while

the other five appear to be converging. The diagrams in every row only differ by

the size of the phase space volume, which is shown.

Moreover, Fig. 3.9 shows the time-dependence of the amplitude of αS(t) for

the same runs of the experiment as in Fig. 3.8. Now the existence of two different

types of dynamics becomes even more evident. We see that either the amount

of excitation inside the resonator grows very rapidly in time or the cavity field

approaches its vacuum state with |αS| → 0. This should not be surprising when

considering the effect of the feedback on the two parameter regimes. On one

hand, photon emissions at a relatively high rate attract more feedback pulses,

thereby further increasing the amount of excitation inside the resonator. On the
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Figure 3.9: Explicit time dependence of the amplitude |αS(t)| of the states |αS(t)〉
of the individual quantum trajectories shown in Fig. 3.8. These diagrams illus-

trate even more clearly than Fig. 3.8 that there are two types of dynamics. Ei-

ther the mean number of photons inside the cavity increases in time and keeps

on growing or the electric field amplitudes |αS(t)| eventually becomes relatively

small.

other hand, in the absence of any photon emissions the no-photon time evolution

with the conditional Hamiltonian Hcond continuously reduces the field amplitude

|αS(t)| (c.f. Eq. (3.28)). This is due to the fact that not emitting a photon

gradually reveals information about the quantum state of the resonator, which

then needs to be updated accordingly [20]. Because of the fact that the cavity

randomly exhibits two different types of dynamics, the statistical properties of

the resonator field can no longer be deduced from a single, sufficiently long run

of a single experiment. Consequently, the dynamics of an optical cavity inside an

instantaneous quantum feedback loop are non-ergodic. The system now does not

have a unique stationary state.

How likely it is for a single quantum trajectory to exhibit a certain type of
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behaviour depends strongly on the initial state of the resonator. This is illustrated

in Fig. 3.5, which shows the probability for an individual quantum trajectory to

eventually reach the vacuum state as a function of the initial state |αS(0)〉. For

example, if the cavity is initially in |0〉, Fig. 3.5 shows that it remains there with

unit probability. However, when moving the initial state of the cavity field away

from the vacuum, it becomes more and more likely that the resonator keeps on

accumulating photon excitations. For sufficiently large values of αS(0), effectively

all the possible trajectories of the cavity field diverge. As we shall see below, the

vacuum can become a repulsive fixed point of the system dynamics, even when

averaged over a large number of repetitions of the same experiment.

3.3 Conclusions

This chapter addresses the question of how the often relatively complex dynamics

of classical systems might arise in open quantum systems. For example, individ-

ual trajectories of open quantum systems with Markovian dynamics are usually

ergodic and rapidly lose their dependence on their respective initial state [33].

In contrast to this, classical systems often evolve according to a set of non-linear

differential equations. Classical stochastic processes are often non-ergodic and

even chaotic, whereas classical systems usually maintain a dependence on initial

conditions [24, 31, 32]. Nevertheless, it is widely believed that classical dynamics

emerges from the behaviour of microscopic quantum systems. Quantum physics

is believed to underly all other less complex physical theories. However, less

is known about the mechanisms which induce classicality. The search for such

mechanisms is an active area of research [19, 29, 30, 37, 38, 39].

This chapter identifies quantum feedback as a tool that dramatically alters

the dynamics of open quantum systems. As an example, we study the stochastic

dynamics of the electromagnetic field of an optical cavity inside an instantaneous

quantum feedback loop. It is shown that the dynamics of ensemble averages, like

the mean number of photons inside the resonator, can become non-linear even in

the absence of non-linear interactions. In the presence of sufficiently strong feed-

back, the only fixed point of the dynamics of the cavity, i.e. its unique stationary

state, can become repulsive. Moreover, it is no longer possible to deduce the the
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dynamics of ensemble averages from individual quantum trajectories, which im-

plies non-ergodicity. The dynamics of ensemble averages can depend strongly on

the initial state of the cavity field. This feature can be employed, for example, in

quantum-enhanced metrology [7], which we will later see in Chapter 5. In sum-

mary, the dynamics of even relatively simple quantum systems can become much

more complex in the presence of back actions from the surrounding environment.

We have thus provided a counter example to the idea that a Markovian quantum

optical system with a single decay channel is ergodic in general.
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Part III

Applications
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Chapter 4

Comparing hidden Markov

Models and hidden quantum

Markov models

Hidden Markov Models are widely used in classical computer science to model

stochastic processes with a wide range of applications. This chapter concerns

the quantum analogues of these machines – so-called Hidden Quantum Markov

Models (HQMMs) [10, 11]. Using the properties of Quantum Physics, HQMMs

are able to generate more complex random output sequences than their classi-

cal counterparts, even when using the same number of internal states. They

are therefore expected to find applications as quantum simulators of stochastic

processes. Here, we emphasise that open quantum systems with instantaneous

feedback are examples of HQMMs, thereby identifying a novel application of

quantum feedback control.

In classical computer science, a Markov chain is a memoryless stochastic ma-

chine, which progresses from one state to another on a discrete time scale. Since

their introduction in 1906 by Andrey Markov, the properties of Markov chains

have been studied in great detail by mathematicians, computer scientists and

physicists alike [43]. In the meantime, more complex versions of stochastic ma-

chines, like Hidden Markov Models (HMMs) [44], have been introduced. These

progress randomly from one internal state to another, which remains unobserved

(hidden), while producing a stochastic output sequence. HMMs are widely used
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for the simulation of stochastic processes [44, 45, 46]. Applications include speech

recognition, image analysis and the modelling of biological systems.

Over recent years, several attempts have been made to extend the definition of

HMMs into the quantum world and to utilise the properties of quantum systems

to generate more complex stochastic output sequences [10, 47, 48, 49, 50]. For

example, in 2011, Monras et al. [10] introduced HQMMs. These are machines that

progress from one quantum state to another, while generating classical output

symbols. To produce an output symbol, a so-called generalised measurement or

Kraus operation [23] is performed on the internal state of the machine. One

way of implementing a Kraus operation is to use an auxiliary quantum system.

In every time step, the internal state of the HQMM interacts with its ancilla,

which is then read out by a projective measurement. After every measurement,

the ancilla is reset into its initial state, while the internal state of the HQMM

remains hidden.

A Kraus operation is the most general operation that a quantum system can

experience, which is why Kraus operations are a vital part of the definition of a

HQMM given by Monras et al. [10]. In a previous attempt to introduce quantum

analogues of HMMs, Wiesner and Crutchfield [47] defined so-called quantum

finite-state generators, which only involved unitary operations and projective

measurements. In this way, they only obtained a subset of HQMMs, which are

less powerful than their classical analogues. In contrast to this, HQMMs are able

to produce more complex output sequences than HMMs of the same dimensional

size.

Several ways of implementing HQMMs have already been identified. Firstly,

as pointed out in Ref. [10], one way of implementing HQMMs is the successive,

non-adaptive read-out of entangled many-body states. Another example of a

HQMM is the time evolution of an open quantum system on a coarse grained

time scale ∆t, which produces a random sequence of classical output symbols.

Already in Ref. [50], Sweke, Sinayskiy, and Petruccione use the language of HMMs

to model open quantum systems. The purpose of this chapter is to highlight

the connection between HQMMs and open quantum systems with instantaneous

quantum feedback [14]. In this way, we identify a way of implementing an even

wider set of HQMMs.
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Like HQMMs, open quantum systems evolve randomly in time. Taking this

perspective, the open quantum system itself provides the internal states of a

HQMM, while its surrounding bath plays the role of the ancilla, which is con-

stantly reset into an environmentally preferred state [19]. The continuous in-

teraction between the internal states and the bath moves the bath away from

its preferred (einselected) state, thereby producing a measurable response that

manifests itself as a random classical symbol. The effective dynamics of such

a machine when averaged over all possible trajectories can be described by a

Markovian master equation [20, 21, 22]. When describing an open quantum sys-

tem in this way, its accompanying output sequence is ignored. Here we suggest

not to do so and to use the output sequences of open quantum systems to simu-

late stochastic processes. Like HMMs, we expect HQMMs to find a wide range

of applications [10, 51, 52].

Quantum feedback is a process in which the classical output symbols produced

by an open quantum system are used to change its internal dynamics. current

applications of quantum feedback control can be found, for example, in Quantum

Information Processing [14], where it is especially used to control state prepara-

tion [53] and quantum transport [17], as well as the applications presented in this

thesis. In these applications, the feedback is used to guide the internal dynamics

of a quantum system. In contrast to this, this chapter proposes to use quantum

feedback to manipulate the classical output sequences of open quantum systems.

We have already seen in the previous chapter that quantum feedback can sig-

nificantly enhance the dynamics of an optical cavity. Hence, it is reasonable to

assume that the same can be done for the purpose of a HQMM, as an optical

cavity with quantum feedback can be used to model a HQMM.

There are four sections in this chapter. Section 4.1 discusses the mathematical

treatment of HMMs and defines HQMMs. Afterwards, using the theoretical back-

ground of open quantum systems described in Section 2.1.4, we show how open

quantum systems with instantaneous quantum feedback are examples of HQMMs

in Section 4.2. In Section 4.3 we consider a numerical example to compare HMMs

and HQMMs. Finally, we summarise our findings in Section 4.4.
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4.1 Hidden Quantum Markov Models

In this section, we discuss Hidden Markov Models and provide some examples of

their behaviour and dynamics. We will then introduce quantum versions of these

machines.

4.1.1 Hidden Markov Models

The simplest Markovian machine is the Markov chain (MC). These are machines

that stochastically evolve in time, where the evolution to a certain state depends

only on its current state. More complex versions of these machines are HMMs.

These are machines that evolve randomly from one internal state to another too.

Now though, in every time step, an output symbol is produced. Only the output

symbol is detected externally, while the internal state of the machine remains

hidden (hence the hidden part of the name). We define the set of all possible

internal states as S = {Xs}2n−1
0 , where n is the number of bits the internal state

of the machine consists of. Similarly, we also define a set of all possible outputs

for the machine as A = {is}2m−1
0 , where m is the number of bits the output

contains.

In order to describe the evolution of these machines on a coarse-grained time-

scale, we introduce the transition matrix T . A transition matrix is an evolutionary

map of the form

T : S→ S . (4.1)

Transition matrices linearly transform one state or probability distribution of

states to another. The transition matrix is normalised so as to preserve the nor-

malisation of a probability distribution of states. The key difference between the

MC and the HMM is that the internal state of the HMM remains hidden; we

never actually know what state it is in. Hence, the information obtained comes

only from the output states. This may reveal some information about the inter-

nal state depending on the specific properties of the system. Consequently, the

time evolution of a HMM is characterised through a set of transition matrices Tx,

where x denotes the output symbol generated during the respective time step.
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In the case of an n-bit machine with m different output symbols, the system is

characterised by m transition matrices of size 2n × 2n. An individual transition

matrix Tx is not normalised like T and hence does not preserve normalisation.

The magnitude of the state after the application of Tx is the probability of ob-

taining the symbol x after the respective evolutionary map. Consequentially, the

individual transition matrices relate to the total transition matrix by

T =
m∑

x=0

Tx , (4.2)

which describes the evolution of the internal state averaged over all possible

output symbols or when the output is unknown. As such, this is in fact the

transition matrix for a MC.

The probability of a specific output sequence can be calculated now using

the transition matrices. For example, if the initial probability distribution of the

internal states of the HMM is given by a column-vector ~p0, then the probability

to obtain the outputs abc . . . def , where a is the first symbol produced and f is

the last, is given by (see eg. Ref. [10])

p(abc . . . def) = ~η TfTeTd . . . TcTbTa ~p0 . (4.3)

Here, ~η is a row-vector with all of its components equal to 1, the purpose of which

is solely to provide a scalar probability. In this study, we shall just consider 1-bit

machines where m = n = 1. By this, we mean the internal state can be one of

two states (A and B). Furthermore, the output can also be one of two states (0

and 1). This is shown pictorially in Fig. 4.1, where all possible transitions are

shown for the 1-bit machine.

The conditional probabilities are now defined as p(is+1, Xs+1|Xs), where Xs

is the internal state at time s, Xs+1 is the internal state at time s + 1 (the

state immediately after Xs) and is+1 is the output made during the evolution

Xs → Xs+1. We may define the transition matrices for a specific measurement

(output), T0 and T1. These are given by

T0 =

(
p(0, A|A) p(0, A|B)
p(0, B|A) p(0, B|B)

)
and T1 =

(
p(1, A|A) p(1, A|B)
p(1, B|A) p(1, B|B)

)
. (4.4)
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Figure 4.1: Diagram showing all possible transitions a 1-bit state ({A,B}) and

1-bit output ({0, 1}) a Hidden Markov Model may make. A solid line represents

an output of ’0’ and a dashed line an output of ‘1’ and the associated probabilites

with each transition are shown.

From Eq. (4.2), we know that the total transition matrix is therefore

T = T0 + T1 . (4.5)

Hence,

T =

(
p(A|A) p(A|B)
p(B|A) p(B|B)

)
, (4.6)

where we have used that p(0, A|A) + p(1, A|A) = p(A|A). Imposing that the

conditional probabilities are normalised in the correct way, we can now impose

two constraints on the system. These are simply

p(0, A|A) + p(1, A|A) + p(0, B|A) + p(1, B|A) = p(A|A) + p(B|A) = 1

p(0, A|B) + p(1, A|B) + p(0, B|B) + p(1, B|B) = p(A|B) + p(B|B) = 1 .

(4.7)

Hence, we have eight variables and two constraints, meaning we have six free
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parameters. We define our six free parameters as

p = p(A|A) = p(0, A|A) + p(1, A|A) ,

q = p(B|B) = p(0, B|B) + p(1, B|B) ,

p1 = p(1, A|A) ,

p′1 = p(1, B|A) ,

q1 = p(1, B|B) ,

q′1 = p(1, A|B) . (4.8)

In order to make sure all probabilities are properly normalised, we must also

impose that

0 ≤ p1 ≤ p

0 ≤ q1 ≤ q

0 ≤ p′1 ≤ 1− p
0 ≤ q′1 ≤ 1− q . (4.9)

Hence, we may now express the transition matrices as

T0 =

(
p− p1 1− q − q′1

1− p− p′1 q − q1

)
,

T1 =

(
p1 q′1
p′1 q1

)
,

T = T0 + T1 =

(
p 1− q

1− p q

)
. (4.10)

These matrices can be used to find the probability of a certain sequence. For

example, the sequence 1010 can be found by evaluating

p(1010) = ~η T0T1T0T1~p0 . (4.11)

If we only care about the output at certain points, we can use the total transition

matrix to evaluate in-between points. So, if we wanted the probability to get a

’1‘ at the first and fourth points say, we could find this by evaluating

p(1t=1, 1t=4) = ~η T1T
2T1~p0 , (4.12)
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where 1t=T indicates the probability of obtaining a ‘1’ at time step T .

In general, a HMM will also have a well-defined stationary state. If we apply

the total transition matrix to generate a probability distribution and it is un-

changed, we must be in the stationary state. In doing so, it can be shown that

this stationary state, ~pss is given by

~pss =
1

2− p− q

(
1− q
1− p

)
. (4.13)

It can be checked straightforwardly that indeed T~pss = ~pss. This property is in

part what makes these machines ergodic. In the same way that we considered

ergodicity in Chapter 3, we require that a time average of the systems dynamics

is equivalent to an ensemble average after a long enough time. In this case, we

specifically require that a time average of the output sequence of a machine is

equivalent to an ensemble average. As the machine has a well-defined unique

stationary state in general, it will be ergodic. There are extreme cases that do

not provide ergodicity however, such as p = q = 1. In this case, the stationary

state is not defined and the output sequence depends entirely on how it is initially

prepared and so does not satisfy the requirements for ergodicity.

4.1.2 Hidden Quantum Markov Models

Analogously, a HQMM with a certain probability distribution of its internal state

populations can be described by a density matrix, ρS. This system can be thought

of as being composed of some number of qubits, N . In order to produce an output,

we may couple these internal qubits with some ancilla qubits. The Stinespring

theorem [54] tells us that for a general evolution we require as many ancilla qubits

as there are internal ones. We may of course have extra ancilla qubits, but this

should not necessarily create any increase in complexity. In every time step, the

system evolves and produces an output symbol. Again, only the output symbol

is detected externally, while the internal state of the machine remains hidden. In

contrast to HMMs, the time evolution of a HQMM is governed by a set of Kraus

operators Km, where the subscripts m coincide again with the output symbols

of the machine. Using the same example as above, the probability of the output
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4.2 Open quantum systems as HQMMs

abc . . . def occurring is now given by

p(abc . . . def) = Tr
(
KfKeKd . . . KcKbKa ρSK

†
aK
†
bK
†
c . . . K

†
dK
†
eK
†
f

)
.

(4.14)

The Kraus operators evolve the system in time, but are different from the transi-

tion matrices for HMMs. This is due to the quantum system’s evolution being able

to produce quantum coherences, which do not have a classical analogue, rather

than just producing a statistical mixture. Ultimately, this is what differentiates

the two machines.

If the output symbol is ignored, then the density matrix ρS(t) of a HQMM

evolves within a time step (t, t+ ∆t) such that

ρS(t+ ∆t) =
∞∑

m=0

Km ρS(t)K†m . (4.15)

The above Kraus operators Km should form a complete set to allow for simulta-

neous measurements. This means they need to obey the condition in Eq. (2.27)

for the density matrix ρS(t+ ∆t) to be normalised. More details can be found in

Ref. [10].

Kraus operators are more complex than the transition matrices described for

HMMs, as briefly mentioned above. This also results in the Kraus operators being

complex in general. As such, their parametrisation is less straightforward than

that of transition matrices. Therefore, rather than consider a general analysis

of HQMMs, we shall consider a specific implementation. Specifically, we shall

consider an open quantum system with feedback and show how it can be used

to implement a HQMM. For completeness the full parametrisation through real

parameters of a HQMM can be found in Appendix B, though it will not be used

for the numerical comparison of HMMs and HQMMs in Section 4.3.

4.2 Open quantum systems as HQMMs

Comparing the description of open quantum systems in Section 2.1.4 with the

definition of the HQMM in Section 4.1, it is relatively straightforward to see

that open quantum systems with instantaneous quantum feedback are concrete
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4.2 Open quantum systems as HQMMs

examples of HQMMs. For example, the system studied in Chapter 3 could be

used as an implementation of a HQMM. Though they are examples of HQMMs,

they are not necessarily the most general examples. To show that they are indeed

examples of HQMMs, we will now distinguish two cases of their dynamics.

4.2.1 Subensemble with energy transfer into the environ-

ment

We now recall the work from Section 2.1 to describe the two subensembles of

the dynamics of the system. The first case is the one where the bath has been

reset into its pointer state, |0〉B, within (t, t+ ∆t) after having evolved into |m〉B.

As shown in Section 2.1.4, ρS(t + ∆t) is a statistical mixture of subensembles.

The equations in that section and their given interpretation also tell us how ρS(t)

evolved in ∆t in case the state of the m-th bath mode changed due to the system-

bath interaction Hamiltonian, which is followed by a feedback operation Rm by

a Kraus decomposition. More precisely, we find that the density matrix of the

corresponding subensemble equals

ρS(t+ ∆t|m ≥ 1) = Km ρS(t)K†m (4.16)

in this case, with the operator Km given by

Km =
N∑

n,n′=1

ξnn′,m Lnn′m
√

∆t (4.17)

for m ≥ 1, as suggested by Eq. (2.26). As we shall see below, Km is a Kraus

operator which acts on the internal state of the open quantum system.

4.2.2 Subensemble without energy transfer into the envi-

ronment

The remaining terms in the above master equation describe the time evolution of

the open quantum system under the condition that the surrounding bath remains

in its preferred state |0〉B. In this case, ρS(t) evolves within ∆t into

ρS(t+ ∆t|m = 0) = K0 ρS(t)K†0 . (4.18)
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Up to first order in ∆t and using Eq. (2.26), the corresponding operator K0 can

be written as

K0 = exp

(
− i

~
Hcond∆t

)
(4.19)

with the non-Hermitian Hamiltonian Hcond given by

Hcond = Hint I −
i

2
~
∞∑

m=1

N∑

n,n′,n′′,n′′′=1

ξnn′,mξ
∗
n′′n′′′,m L

†
n′′n′′′,mLnn′,m . (4.20)

The last term in this equation is crucial for the density matrix ρS(t + ∆t) in

Eq. (2.33) to remain normalised.

4.2.3 Comparison of Kraus operators

To show that open quantum systems with instantaneous feedback are examples of

HQMMs, we now only need to identify the operators Km in Eqs. (4.17) and (4.19)

with the Kraus operators in Eq. (4.15). Summing over all of the above described

subensembles with their respective output symbols given by m = 0, 1, ... , we

immediately see that Eq. (4.15) applies. Since a density matrix ρS(t), which

evolves according to the master equation of an open quantum system in Lindblad

form remains normalised, we moreover have

Tr

(
∞∑

m=0

Km ρSK
†
m

)
= Tr

(
∞∑

m=0

K†mKm ρS

)
= 1 . (4.21)

This means Eq. (2.27) too is satisfied. Open quantum systems with instantaneous

feedback are indeed examples of HQMMs.

4.3 Numerical Comparison

We now present a more quantitative comparison of HMMs and HQMMs. Our aim

is to demonstrate that HQMMs can produce more complex dynamics than those

of HMMs. There are many different statistical tests that can be conducted to

determine the performance of these machines with respect to their output symbol

sequences. In both cases, this is classical data, which can be analysed by classical
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statistical measures. In this particular case, we shall use a two-point correlation

function and the overall probability of detecting a ‘1’. The two-point correlation

function will be defined as

Corr(1t+1, 1t) =
p (1t+1|1t)
p (1t+1)

. (4.22)

This function describes the likelihood of a ‘1’ at a time t + 1 given there was a

‘1’ at time t. It is also renormalised by the overall probability of obtaining a ‘1’

at the time t + 1. Here, we shall choose t to be sufficiently large such that it is

the stationary state. Hence, we may redefine the correlation as

Corr(1t+1, 1t) =
p (1t+1|1t)
p (1ss)

. (4.23)

As the system is assumed to be in its stationary state, the term p(1t+1) becomes

p(1ss as in the stationary state all single point probabilities are independent of

the past. In order to obtain values for this function, we numerically evaluate it

for a large number of combinations of the free parameters. For the HMM, we

randomly choose sets of parameters for the transition matrices that satisfy the

requirements upon them. For the HQMMs, we randomly choose parameters that

satisfy the requirements of being a Kraus operator for the specific system that we

have analysed, which is an open quantum system with instantaneous quantum

feedback. In doing so, we may run numerical simulations of these machines for

long time periods such that we may assume that they reach their stationary state.

We then calculate the value of p(1ss) and the correlation. The results of this are

shown in Fig. 4.2.

Comparing the two graphs, we see that the HQMM covers a larger area than

that of the HMM. This tells us that for machines with comparable resources, the

quantum machine may be capable of more complex statistics than its classical

counterpart. Despite this, the difference between the two is not large. This is

to be expected though, as any significant quantum advantage would come from

allowing quantum correlations to be generated between the qubits, which cannot

exist classically. Therefore, we expect this difference to grow drastically for a

larger number of resources.
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Figure 4.2: A statistical representation of the output of (a) a HMM and (b) a

HQMM. We see both graphs appear to have the same funcitonal shape, but (b)

seems to cover a larger area than (a), indicating that the HQMM is capable of

more complex behaviour with a comparable amount of resources. In each figure

106 points are shown.

4.4 Conclusions

Motivated by the popularity of Hidden Markov Models (HMMs) in classical com-

puter science, this chapter has a closer look at the quantum analogues of these

machines – Hidden Quantum Markov Models [10]. Section 4.1 defines HQMMs

in terms of Kraus operators. When comparing Section 4.1 and 2.1.4 in Section

4.2, it becomes obvious that open quantum systems with random classical output

sequences are examples of HQMMs. As an example to show the superiority of

HQMMs over HMMs, a numerical comparison was conducted in Section 4.3. In-

deed, we found that the HQMMs do exhibit more complex behaviour than their

classical counterparts. This chapter has proposed not to ignore the random clas-

sical output sequences of open quantum systems, since they could find interesting

applications as quantum simulators of stochastic processes.

We have seen that HQMMs are capable of greater statistical power than of

HMMs. However, the results presented here do not show a significant difference,

as the region occupied in Fig. 4.2 is only slightly larger for the HQMMs compared

with the HMMs. As highlighted, this is to be expected due to only using one
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(qu)bit. When using more resources, we expect to see a more significant differ-

ence. A difficulty in doing this is the computational time required to simulate

such a system. Particularly in the quantum case, the number of free parameters

will vastly grow in moving up to a larger number of (qu)bits. Despite this, it

would be possible to obtain results by using more sophisticated computing sys-

tems. This would be an interesting extension to this work. One way of achieving

superior complexity may be to use the optical cavity scheme described in the

previous two chapters, which occupies a larger state space than that of a single

qubit. This would provide a continuous set of internal states rather than a dis-

crete system like that of a qubit, which may offer significantly enriched dynamics

in possible output sequences.

Finally, it might be worth noting that the above analysis of open quantum

systems with instantaneous quantum feedback only allows for an environmental

back action when the system-bath interaction changes the bath into a state that is

different from its environmentally preferred state, |0〉B. This need not be the case.

Physically, it is possible to design open quantum systems that experience feedback

also or only when no exchange of energy occurs between system and bath. In this

case, the open quantum system can no longer be modelled by a master equation.

However, the effective system dynamics would remain Markovian and could be

described using the language of HQMMs.

A further extension to this study may be to look for a true quantum-classical

boundary. The Clauser-Horne-Shimony-H olt (CHSH) Bell inequality is often

used to determine whether a process is quantum or classical [55, 56]. In Fig. 4.2,

by comparing the areas occupied by the classical and quantum machines, it may

be possible to identify a boundary between the two regimes. However in order

to do so, a much more thorough analysis would need to be performed. Also,

as already commented upon, the difference between the two cases appears to

be minimal for the single (qu)bit case. However, when using a larger number of

resources, this distinction is expected to grow. At this point, knowing the location

of the boundary would be useful as it would allow us to determine whether a

process is likely quantum or classical solely by analysing its output statistics.
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Chapter 5

Quantum jump metrology

We have already seen one example of how the dynamics of an open quantum

system can be used to enhance the dynamics of a quantum system with quantum

feedback, namely the Hidden Quantum Markov Model described in Chapter 4.

We now consider another. This example is a quantum metrology scheme, based

in part on the work published in Ref. [7]. We begin in Section 5.1 by providing

a brief overview of (quantum) metrology. We then proceed in Section 5.2 to

introduce parameter estimation theory and the Fisher information, which are

important tools in assessing how well a physical system can perform measuring

a parameter. Afterwards in Section 5.3, we use these techniques to analyse a

new approach, which we call quantum jump metrology. Finally in Section 5.4, we

analyse a practical setup that could be implemented in a lab setting, based on the

techniques introduced in Section 5.3. We then conclude in Section 5.6, where we

discuss the implications of this work and potential further advancements based

upon the results in this chapter.

5.1 Quantum metrology

The ability to measure a quantity is fundamentally important for many appli-

cations, not just in physics. Therefore, developing novel methods of conducting

measurements with enhanced precision is of significant interest. One way of do-

ing this is by exploiting the properties of quantum physics. Quantum metrology

has been extensively studied in the literature [1]. Nevertheless, new schemes are
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still being developed. In particular, these schemes typically involve measuring

the phase difference between two pathways of light. Later, in Section 5.4, we will

consider a novel example of such a setup.

In general, there are two main strategies for reducing the uncertainty in an

experimentally measured quantity. One method is to repeat the experiment many

times. Another is to use more of an appropriate resource N , in every run of the

experiment. However, increasing N is not always possible. Suppose we want to

measure the phase shift ϕ caused by a delicate material with the help of a standard

light interference experiment. Increasing the number of photons passing through

can increase the accuracy of every phase measurement but also limits the lifetime

of the sample [57, 58, 59]. In this case, it is important that every run of the

experiment is as accurate as possible. To allow for a fair comparison of different

measurement schemes, the error propagation formula

∆ϕ =
∆M(ϕ)∣∣∣∂M(ϕ)

∂ϕ

∣∣∣
(5.1)

can be used to calculate the accuracy ∆ϕ of a given signal M(ϕ) [1]. Here

∆M(ϕ) is the standard deviation of a signal M(ϕ) and denotes the uncertainty

(or resolution) of M(ϕ), while the visibility, |∂M(ϕ)/∂ϕ|, tells us how sensitive

M(ϕ) is to changes in ϕ. We see here that it is not enough to find a signal

that is highly sensitive, as it must also have a low uncertainty itself to deduce

information about the parameter to be measured.

Using N independent photons, the scaling of the lower bound of the uncer-

tainty of the phase measurement between two pathways of light, ∆ϕclass, is given

by the standard quantum limit (SQL),

∆ϕclass ∝ N−0.5 . (5.2)

There are different ways in which this scaling can be improved. One way is to

expose the incoming photons to a non-linear or interacting Hamiltonian [60]. In

this case, the uncertainty of a single phase measurement, ∆ϕnon−lin, scales as

∆ϕnon−lin ∝ N−0.5 k , (5.3)
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where k denotes the order of the present non-linearity or interaction. However,

highly-efficient optical non-linearities are hard to implement in general. Another

way to obtain an enhancement is to replace the incoming independent photons by

entangled or correlated ones [61, 62, 63, 64]. Using entangled states as probes, the

measurement uncertainty ∆ϕquant can be as low as the Heisenberg limit, which is

∆ϕquant ∝ N−1 . (5.4)

To extract information from highly non-classical photon states [65, 66, 67, 68,

69, 70, 71, 72, 73, 74], quantum metrology schemes may use techniques such as

quantum feedback, photon parity measurements, probes with fluctuating number

states and photon subtraction [75, 76, 77, 78, 79]. Although it is possible to

realise multi-photon entanglement in the laboratory [80], quantum metrology has

not yet become readily-available for a wide range of applications. This is largely

due to the experimental difficulty associated with producing large-scale entangled

states, which are usually generated probabilistically.

In the next section, we review parameter estimation theory and establish

where bounds such as the SQL and Heisenberg limit come from. This analysis is

important as it allows us to calculate the ultimate precision bound for a system

and hence tells us if it is possible to achieve a quantum enhancement.

5.2 Parameter estimation theory and the Fisher

information

In order to see the need for quantum metrology, we shall consider a brief math-

ematical analysis of parameter estimation theory and give an overview of the

Fisher information and Cramér-Rao bound. The classical Fisher information is

useful in determining the precision of an estimator ϕ̂(x) of some parameter ϕ.

The estimator ϕ̂(x) is assumed to depend on the value x ∈ RN for some N ∈ N, of

a real random vector X defined over a Kolmogorov probability space. The vector

x is the data to be used to determine ϕ. The Fisher information associated with

the probability density ρϕ is defined by

F (ρϕ) =

∫
dNxρϕ(x)[∂ϕ ln ρϕ(x)]2 =

∫
dNx

[∂ϕρϕ(x)]2

ρϕ(x)
, (5.5)

76



5.2 Parameter estimation theory and the Fisher information

where the second equality follows from carrying out the differentiation using the

chain rule. The Fisher information is additive for independent sources of knowl-

edge; F (ρ) = F (ρ1) + F (ρ2) whenever ρ(x1, x2) = ρ1(x1)ρ2(x2). This in part

justifies its identification as an information.

The Cramér-Rao bound gives a lower bound on the precision of an estimate

ϕ̂ using the Fisher information. The bound is

〈∆ϕ̂2〉ρϕ ≥
1

F (ρϕ)
+ 〈∆ϕ̂〉2ρϕ ≥

1

F (ρϕ)
, (5.6)

where for an unbiased estimate 〈∆ϕ̂〉2ρϕ = 0. The proof of Eq. (5.6) involves a

straightforward application of the Cauchy-Schwarz inequality ‖x‖‖y‖ ≥ |〈x, y〉|2
applied to the inner-product defined over the function space [81, 82].

In practice one gathers information about a physical system in the form of a

list of numbers obtained by querying the system. The values xN can be viewed

as the result of querying a physical system N times, which would be equivalent

to having an ensemble of N identically prepared independent systems that have

the same state ρ̃ϕ = ρϕ(xi), ∀i = 1, ..., N . More generally, systems that are

independent but not necessarily identically prepared, are described by a product

distribution ρϕ(x) =
∏N

i=1 ρ
i
ϕ(xi). For such a distribution the Cramér-Rao bound

and the additvity of the Fisher information yield the bound

〈∆ϕ̂2〉ρϕ ≥
1

NFmax
, (5.7)

where Fmax = maxxi F (ρiϕ(xi)). The number N is called the resource and is what

was discussed in the previous section in terms of the limits. It is the number

of times one has queried the system to gather information in the form of a list

of numbers x. The bound from Eq. (5.6) yields the so-called standard quantum

limit (SQL) scaling of 1/
√
N for the lower bound of

√
〈∆ϕ̂2〉ρϕ .

In quantum metrology one considers a quantum system whose density ma-

trix ρϕ depends on an unknown parameter ϕ. According to quantum theory,

a measurement of the physical system yields an outcome x with probability

ρϕ(x) = tr(Exρϕ), where Ex is a positive operator-valued measure (POVM)

describing the measurement process. The quantum Fisher information can be
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defined as

FQ(ρϕ) = max
Ex

F (ρϕ(x)) . (5.8)

The quantum Cramér-Rao bound

〈∆ϕ̂2〉ρϕ ≥
1

FQ(ρϕ)
(5.9)

then follows from the Cramér-Rao bound (5.6). The Quantum Fisher information

is additive in that FQ(ρ1
ϕ⊗ ρ2

ϕ) = FQ(ρ1
ϕ) +FQ(ρ2

ϕ) whenever the composite state

ρϕ = ρ1
ϕ ⊗ ρ2

ϕ varies with ϕ according to ∂ϕρϕ = i[ρϕ, h
1
ϕ ⊗ I2 + I1 ⊗ h2

ϕ] with

h1,2
ϕ being a Hermitian operator. In this case, for an uncorrelated N -part state

ρϕ =
⊗N

i=1 ρ
i
ϕ the quantum Cramér-Rao bound yields

〈∆ϕ̂2〉ρϕ ≥
1

NFmax
Q

, (5.10)

where Fmax
Q = maxi FQ(ρiϕ). The above bound gives the standard quantum limit

scaling for the precision. Since each system making up the N -part composite sys-

tem is queried once in a measurement, the number N coincides with the number

of queries made.

One way to obtain an enhancement over the SQL-scaling of 1/N given in

Eq. (5.10) is to consider an N -part system which is prepared in an entangled

state. This is since for an entangled state the Fisher information is not addi-

tive the bound in Eq. (5.10) does not follow from the Cramér-Rao bound. It is

then possible to improve upon the SQL-scaling to obtain the Heisenberg scaling

〈∆ϕ̂2〉ρϕ ∼ 1/N2 [81, 82]. The crucial ingredient in obtaining this enhancement is

the breakdown of additivity of the quantum Fisher information due to the pres-

ence of correlations within the N -part system. Then, although not always, it is

possible that the Fisher information will scale greater than linearly.

5.3 Quantum jump metrology

We will now introduce a method of creating non-additive Fisher information that

can produce a non-linear scaling with the resource without the need for preparing
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an entangled state. There exist already some alternative schemes that do not

require entanglement [5, 6]. Here, we present a theoretical analysis of one such

approach, by calculating the Fisher information for a simple toy model in the

form of a two-level atom. The scheme can easily be extended to a larger system

size and therefore has scalability. Unlike schemes that require entanglement, this

scheme could easily be scaled up in an experiment. We demonstrate here that

in order to obtain an enhancement in the uncertainty scaling, all that is required

are correlations. Entanglement is one special example of such a correlation, but

in general it is not unique. In this chapter, we show that the temporal correlation

generated by the photon emission statistics of an open quantum system may also

provide an enhanced scaling in precision. As such, we introduce a novel method of

quantum metrology that could enrich the field and find use in many technological

applications.

Although quantum metrology schemes without entanglement have already

been proposed in the literature [5, 6, 7], it is not necessarily clear exactly where

the enhancement comes from. In this section, we present a thorough analysis of

the Fisher information to study where the necessary correlations are introduced.

In particular, we shall study open quantum systems with instantaneous quantum

feedback. As we saw already in Chapter 3, these systems may have highly com-

plex and non-linear behaviour. These systems may therefore be able to facilitate

quantum-enhanced measurements. Furthermore, we then see when these correla-

tions are sufficient to generate an enhancement and therefore identify the type of

process that may be useful for quantum metrology. The ideology presented here

can potentially be implemented in real schemes in order to develop novel schemes

for practical applications.

5.3.1 Correlated distributions yield non-additivite Fisher

information

Temporal quantum correlations [83, 84] and sequential measurements [85, 86, 87]

in open quantum systems are known to constitute an interesting resource for

technological applications. To illustrate this, we show in the following that sub-

sequent measurements on a single quantum system are in general equivalent to
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single-shot measurements on an entangled state of several systems. Suppose a

two-dimensional quantum system is in an initial state |ψ〉 and subsequent gener-

alised measurements are performed, which can be described by two Kraus oper-

ators K0 and K1 of the form

Ki = |ξ̃i〉〈ξi| . (5.11)

Here |ξ0〉 and |ξ1〉 are two orthogonal states with 〈ξ0|ξ1〉 = 0. However no such

constraint is imposed on the tilde-states |ξ̃0〉 and |ξ̃1〉 [23]. In case of two mea-

surements, the initial state of the system changes according to

|ψ〉 →





K0 |ψ〉 →
{
K0K0 |ψ〉
K1K0 |ψ〉

K1 |ψ〉 →
{
K0K1 |ψ〉
K1K1 |ψ〉

, (5.12)

up to normalisation factors, which we neglect here for simplicity. Moreover sup-

pose we perform a single-shot measurement ofK0 andK1 on two quantum systems

prepared in an effective state |ψeff〉,

|ψeff〉 =
√
p00 |ξ0〉 ⊗ |ξ0〉+

√
p01 |ξ0〉 ⊗ |ξ1〉

+
√
p10 |ξ1〉 ⊗ |ξ0〉+

√
p11 |ξ1〉 ⊗ |ξ1〉 , (5.13)

with the coefficients pij equal to

pij = ‖KjKi |ψ〉‖2 . (5.14)

It is easy to see that both measurements yield the outcome “ij” with exactly the

same probability. This means the states |ψ〉 and |ψeff〉 effectively describe the

same process. However, |ψeff〉 is in general an entangled state. For example, if

K0 = |ξ1〉〈ξ0| and K1 = |ξ0〉〈ξ1|, then |ψeff〉 =
√
p01 |ξ0〉 ⊗ |ξ1〉 +

√
p10 |ξ1〉 ⊗ |ξ0〉,

which can be maximally entangled. Taking this into account, one can show thatN

successive measurements on a single system are in general equivalent to a single-

shot measurement of N entangled quantum systems. This fact can be exploited

for quantum metrology when using Kraus operators that depend on the unknown

parameter.

80



5.3 Quantum jump metrology

The analysis of the previous section shows that enhancement over the SQL-

scaling can be obtained when additivity of the quantum Fisher information fails

to hold. The quantum Fisher information is simply a specific type of classical

Fisher information having the form of Eq. (5.8). Of course one can consider

the precision of parameter estimates without restricting one’s attention to the

quantum Fisher information. The SQL-scaling seen in Eq. (5.7) follows from

the Cramér-Rao bound in Eq. (5.6) when the Fisher information is additive, i.e.,

when the probability density ρϕ(x) is uncorrelated; ρϕ(x) =
∏N

i=1 ρϕ(xi). When

there are correlations present within ρϕ(x) the SQL-scaling does not follow from

the Cramér-Rao bound, which allows for the possibility of obtaining enhanced

precision. One way to achieve such enhancement is to consider a distribution of

the form ρϕ(x;Ex) = tr(Exρϕ) in which ρϕ is an entangled quantum state and

Ex is a POVM. However, this is by no means the only way to obtain a correlated

distribution ρϕ(x). The use of entanglement is not the only means by which to

obtain enhanced precision [60].

5.3.2 Producing temporal correlations

In the context of non-linear optics it is well-known that 1/Nk scalings can be

achieved when there are k-body interactions within the N quantum systems

[60]. Indeed, super-Heisenberg enhancements can be obtained even with an initial

product state. Therefore Ref. [60] provides an example of an enhancement that

does not rely on entanglement. Another example can be seen in considering the

time evolution of open quantum systems. In a variety of examples [5, 6, 7], an

enhancement can be obtained without having to utilise an entangled state.

In this section we consider a different approach. Our aim is to determine

precision bounds on parameter estimates when the queries of a system are rep-

resented by parameter-dependent POVMs. For example, on short timescales a

photon number measurement of the radiation field surrounding an atom yields

outcome 0 corresponding to no photons or 1 corresponding to one photon. If

the measurement’s back-action on the atom is parameter dependent their effect

on the atom can be described by parameter-dependent Kraus operators K0,1(ϕ).

These operators describe quantum jumps of the atom based on the outcomes of
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measurements made on the environment and they must satisfy the completeness

relation given in Eq. (2.27). The operator K0 describes the effect on the atom if

there are no photons detected, whereas K1 describes the resetting of the atomic

state after a photon is detected. A sequence of such jumps specifies a quantum

trajectory within the atomic Hilbert space. See Chapter 2 for a more details.

Such parameter-dependent queries could be realised physically by connecting

the photodetectors that monitor the radiation field around the atom to a laser

directed toward the atom. The laser applies a pulse with unknown phase ϕ

whenever a photon is detected by the photodetectors. In this case only the

Kraus operator K1 would be ϕ-dependent. Of course, this is merely one example,

and there may be many other ways to implement sequential POVM queries that

depend on an unknown parameter of interest. We could also consider a qubit

that interacts with an ancilla, which is measured and reset after every discrete

time step of the evolution of the system. The evolution of the internal system

and the measurements of the ancilla may also be described by Kraus operators.

Our goal is to find a scheme that is capable of quantum-enhanced measurements

without the need for entanglement.

Firstly, we shall demonstrate that the output of an open quantum system

does indeed possess correlations in general. To illustrate this, we shall consider a

system for which there are two possible queries with corresponding Kraus opera-

tors K0 and K1 as an example. The distribution of outcomes after N sequential

queries is given by

ρϕ(x) = tr(KxNKxN−1
...Kx1ρK

†
x1
...K†xN−1

K†xN ) , (5.15)

where ρ is the initial state of the system and xi = 0, 1 is the outcome of the

i′th measurement. In general the distribution ρϕ(x) is correlated, i.e., is not of

the product form
∏N

i=1 ρ̃ϕ(xi). Even when the reduced dynamics of the system

are Markovian, the distribution ρϕ(x) does not result from a Markov chain of

outcome events. To see this note that at each step i = 1, ..., N the operators

K0,1 respectively select subensembles of systems for which outcomes 0, 1 were

obtained. The complete ensemble at step i is therefore represented by a density
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matrix

ρϕ(i) = T(ρϕ(i− 1))

:= K0ρϕ(i− 1)K†0 +K1ρϕ(i− 1)K†1 , (5.16)

where T denotes the Markovian evolution map that propagates the system’s state

to the next step. Consider the example N = 3. We have

ρϕ(x3|x2, x1) =
tr(Kx3Kx2Kx1ρK

†
x1
K†x2

K†x3
)

tr(Kx2Kx1ρK
†
x1K

†
x2)

, (5.17)

whereas

ρϕ(x3|x2) :=
tr(Kx3Kx2T(ρ)K†x2

K†x3
)

tr(Kx2T(ρ)K†x2)
. (5.18)

In general the right-hand-side of Eq. (5.18) is not equal to the right-hand-side

of Eq. (5.17), therefore the random variable sequence X1 → X2 → X3 is not a

Markov chain. Since the state of the system after each measurement depends on

the outcome obtained, the probability density ρϕ(x) can become highly correlated

throughout the course of the N -measurements. The presence of correlations in

the distribution in Eq. (5.15) means that the SQL-scaling does not necessarily

follow from the Cramér-Rao bound for the associated Fisher information.

5.3.3 Implementations

To illustrate the idea of determining precision bounds within the context de-

scribed above we consider some simple examples involving just a single qubit. All

of the examples considered could be constructed using a qubit and ancilla setup

and applying simple operations to these. In the first cases, we shall examine a

system that does not produce an enhancement, even when the Fisher informa-

tion is constructed to be non-additive. After this, we shall consider a single atom

allowed to decay freely, but is subject to parameter-dependent back-action upon

photon emission.
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Simple examples without enhanced precision

Our first example turns out to produce the usual SQL scaling and allows us to

identify sufficient conditions for obtaining the SQL scaling. In this example we

assume a qubit system with two Kraus operators chosen as

K0 =

(
cos(ϕ) 0

0 cos(ϕ)

)
, K1 =

(
0 sin(ϕ)

sin(ϕ) 0

)
. (5.19)

This evolution could be generated by taking an ancilla initially prepared in |0〉
and performing a Pauli operation σx = |1〉 〈0| + |0〉 〈1| on the system qubit and

ancilla with probability sin2(ϕ). By then measuring the ancilla in either state |0〉
or |1〉, we obtain the above Kraus operators, which satisfy

K0,1 = K†0,1, K2
0 +K2

1 = 1, [K0, K1] = 0 . (5.20)

The second property together with the first ensures that the Kx are indeed Kraus

operators. Since K0 = cos(ϕ)1, the Kx commute, which makes them amenable

to analytic calculations. Moreover K1 = sin(ϕ)σx so that K2
0 = cos2(ϕ)1 and

K2
1 = sin2(ϕ) 1. For this choice of Kraus operators and for fixed ϕ the number

of different values of ρϕ(x) is only N + 1, because if x and x′ contain the same

number of zeros and ones then ρϕ(x) = ρϕ(x′). Since tr(ρ) = 1 for any initial

state ρ, if x contains kx zeros we get

ρϕ(x) = tr(K2kx
0 K

2(N−kx)
1 ρ)

= cos2kx(ϕ) sin2(N−kx)(ϕ) , (5.21)

where we have used the cyclicity of the trace and the first and third properties in

Eq. (5.20). The x are binomially distributed in that the number of x’s with kx

zeros and N−kx ones is
(
N
kx

)
. We can calculate the Fisher information (Eq. (5.5))

associated with ρϕ as

F =
∑

x

[∂ϕρϕ(x)]2

ρϕ(x)

=
N∑

kx=0

(
N

kx

)
(N − 2kx +N cos(2ϕ))2 cos2(kx−1)(ϕ) sin2(N−kx−1)(ϕ)

= 4N . (5.22)
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Thus, for the choices in Eq. (5.19) we get the standard quantum limit scaling

from the Cramér-Rao bound in Eq. (5.6);

〈(∆ϕ)2〉 ≥ 1

4N
. (5.23)

This result is due to the nature of the distribution ρϕ(x), which can in fact be

written as a product distribution
∏N

i=1 ρϕ(xi). To see this, note that in this par-

ticular example ρiϕ(xi) = ρjϕ(xj) whenever xi = xj, so ρiϕ is actually independent

of i. Over all steps i = 1, . . . , N there are only two possible probabilities;

ρiϕ(0) = ρϕ(0) = tr(K2
0ρ) = cos2(ϕ) ,

ρiϕ(1) = ρϕ(1) = tr(K2
1ρ) = sin2(ϕ) . (5.24)

We therefore have

ρϕ(x) = cos2kx(ϕ) sin2(N−kx)(ϕ) = ρϕ(0)kxρϕ(1)N−kx

=
N∏

i=1

ρϕ(xi) . (5.25)

We can define the single-shot distribution ρsϕ as the pair ρsϕ = (ρϕ(0), ρϕ(1)). The

associated single-shot Fisher information is

Fs := F (ρsϕ) =
∑

x=0,1

[∂ϕρϕ(x)]2

ρϕ(x)

=
4 cos2(ϕ) sin2(ϕ)

cos2(ϕ)
+

4 cos2(ϕ) sin2(ϕ)

sin2(ϕ)

= 4 (5.26)

and since the Fisher information is additive for a product distribution we obtain

F (ρϕ) =
N∑

i=1

F (ρsϕ) = 4
N∑

i=1

= 4N , (5.27)

as expected.

This SQL scaling follows from the use of the product distribution described

in Eq. (5.25). Sufficient conditions for obtaining a product distribution appear

to be that the Kx are Hermitian and share an orthonormal eigenbasis {|b1,2〉},
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and that the initial state ρ is one of the corresponding spectral projections, i.e.,

ρ = |b1〉 〈b1| or ρ = |b2〉 〈b2|. In the example above the first and third conditions

in Eq. (5.20) imply that the Kx are Hermitian and share a common orthonormal

eigenbasis that may or may not depend on ϕ. We have in this case that

Kx(ϕ) =
∑

n=1,2

λnx(ϕ) |bn〉 〈bn| , (5.28)

where in general the eigenvalues depend on ϕ. If ρ = |b1〉 〈b1| say, then for x = 0, 1

ρϕ(x) = tr(Kx(ϕ)2ρ) = λ1
x(ϕ)2,

ρϕ(x) = ρϕ(0)kxρϕ(1)N−kx =
N∏

i=1

ρϕ(xi) , (5.29)

where kx is the number of xi = 0, and N − kx is the number of xi = 1, in the

string x. In order to get a ϕ-dependent result the eigenvalues λnx must depend

on ϕ. Alternatively if the (λnx)2 are independent of n as in the example from

Eq. (5.19) above, then ρ can be a completely arbitrary density matrix and the

same result will follow. In this case both K2
0,1 are proportional to the identity

K2
x = λ2

x 1, so that ρϕ(x) = tr(K2
xρ) = λ2

x for any normalised ρ.

The most straightforward way to obtain a correlated distribution ρϕ(x) ana-

lytically is to consider an initially correlated state, i.e., a mixture ρ = p |b1〉 〈b1|+
(1− p) |b2〉 〈b2| (the off-diagonal elements can be arbitrary). We then obtain

ρϕ(x) =(λ1
0)2kx(1− (λ1

0)2)N−kxp

+ (λ2
0)2kx(1− (λ2

0)2)N−kx(1− p) , (5.30)

where we have used the completeness of the Kraus operators (λn0 )2 + (λn1 )2 =

1, n = 1, 2. If p = 0, 1 in Eq. (5.30) then ρ is one of the eigenprojectors of the

Kx and only one component of the sum survives. Similarly if

(λ1
x)

2 = (λ2
x)

2 =: (λx)
2 , (5.31)

with x = 0, 1, then the p-dependent components in Eq. (5.30) cancel and one

obtains a product distribution ρϕ(x) = (λ0)2kx(1 − (λ0)2)N−kx , as in the exam-

ple from Eq. (5.19). Another example of a set of Hermitian commuting Kraus
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operators is

K0 =

(
cos(ϕ) 0

0 sin(ϕ)

)
, K1 =

(
sin(ϕ) 0

0 cos(ϕ)

)
, (5.32)

which are such that λ1
0 = cos(ϕ) = λ2

1 and λ2
0 = sin(ϕ) = λ1

1. Note however that

(λ1
0)2 = 1− (λ2

0)2 6= (λ2
0)2 and (λ1

1)2 = 1− (λ2
1)2 6= (λ2

1)2, so that Eq. (5.31) does

not hold. We therefore obtain from Eq. (5.32) the distribution

ρϕ(x) =p cos2kx(ϕ) sin2(N−kx)(ϕ)

+ (1− p) sin2kx(ϕ) cos2(N−kx)(ϕ) . (5.33)

This is not generally a product distribution. However, the associated Fisher in-

formation is extremely close (oscillates around) to 4N for all values of p and ϕ.

This result indicates that having a correlated distribution is necessary but not

generally sufficient to improve upon the SQL scaling. It remains to identify a cor-

related distribution that achieves the latter and hence provides an enhancement.

An alternative approach to those above would be to take inspiration from the

dynamics of open quantum systems. Specifically, when an open quantum system

interacts and creates an excitation within its environment, the system is reset.

We shall call such an event an emission. Typically, such systems are reset to the

ground state. However, they may be reset to any state in general. An example

of such a system could be described by the Kraus operators K0 and K1 given by

K0 = |0〉 〈0|+ e−
1
2

Γ∆t |1〉 〈1| , K1 =
√

Γ∆t |1〉 〈1| .
(5.34)

Here, ∆t is the time iteration between measurements and Γ is the decay rate of

the system. Now, we reset the system to the excited state, |1〉, in the case of

emission. This can be related to the two-level atom system studied in Section

2.3. We may now calculate the Fisher information once again, where we take Γ

to be the parameter to be probed. Calculating the Fisher information, we find

F (N) ∼
{
N for Γ > 0
N2 for Γ = 0

. (5.35)

Again therefore, we find that we obtain no improvement beyond linear scaling

for all Γ > 0. Hence, we find that even having non-additive Fisher information,
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we are not necessarily able to surpass linear scaling. This is in agreement with

previous work showing that there cannot be an enhancement in measuring the

decay rate of a system [88].

Example giving enhanced precision: A two-level system with parame-

ter dependent resetting

Let us now finally consider a different scheme, with Kraus operators given by

K0 = |0〉 〈0|+ e−
1
2
γ∆t |1〉 〈1|

K1 = sin(ϕ)
√
γ∆t |0〉 〈1|+ cos(ϕ)

√
γ∆t |1〉 〈1| . (5.36)

Here, we reset into a state that is a function of a parameter ϕ. This is the system

introduced in Section 2.3. Such feedback could be made by two short laser pulses

applied t oeither side of a two-level atom, where completely in phase (ϕ = 0)

the state would be reset to |1〉. These Kraus operators satisfy the completeness

relation from Eq. (2.27) so long as ∆t is sufficiently small. In this scheme, we

calculate the Fisher information with respect to ϕ and in doing so we find

F (N) ∼
(
N2 −N + c

)
, (5.37)

where c is a small constant.

For large N , this function should scale according to N2. Hence, we find that

we may achieve scaling in line with the Heisenberg limit using this system. We

find again that the Fisher information of this system varies with ϕ as well. A

good fit for this variation is given by

F (N,ϕ) = sin2(ϕ)
(
N2 −N + c

)
, (5.38)

where c is a small correction made for the fit. This is shown in Fig. 5.1, where

a fixed value of ϕ has been chosen and the Fisher information has been plotted.

Furthermore, in Fig. 5.2, we see a plot of the Fisher information over a range

of values of ϕ. We see clearly a non-linear growth. There are also points where

the Fisher information appears to diverge. We find such cases at ϕ = (2n−1)π
2

.

These singularities have been neglected to allow for a smooth plot in Fig. 5.2, as
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Figure 5.1: Fitted plot of the Fisher information for the Kraus operators given in

Eq. (5.36) for ϕ = 499π
500

and with ∆t = 10−4Γ−1. The trend is clearly not linear

and is therefore beyond the standard linear scaling of classical systems.

they are artefacts of the simulation process where probabilites of events become

vanishingly small.

As well as varying the Fisher information with the phase, we may also vary

other parameters. The above constructed example is highly physically motivated.

However, the Kraus operators may be constructed in a more artificial way that

doesn’t necessarily reflect a physically motivated system, but still models an

allowed implementation. Suppose in general our Kraus operators are of the form

K0 =

(
1 0
0 A

)
, K1 =

(
0 sin(ϕ)

√
1− A2

0 cos(ϕ)
√

1− A2

)
, (5.39)

where 0 ≤ A ≤ 1. Furthermore, we may choose an initial state given by the

density matrix

ρ = b |0〉 〈0|+ (1− b) |1〉 〈1| , (5.40)

where 0 ≤ b ≤ 1.

For most cases, the Fisher information is highly non-linear initially, but be-

comes linear very quickly. For the cases where the Fisher information is non-linear
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Figure 5.2: Fitted function of the Fisher information for the scheme described

by the Kraus operators in Eq. (5.36), again taking ∆t = 10−4Γ−1. We see that

the Fisher information is maximised around π
2
/3π

2
and also appears to grow non-

linearly at these points.

for longer, its absolute size is significantly smaller. This parameter regime corre-

sponds to the physically motivated scheme above (i.e. A ' 1 ). However, these

results show a proof-of-principle that enhanced scaling can be generated in an

open quantum system with no entanglement. It is highly possible that a system

occupying a larger Hilbert space would persist with enhanced scaling for longer.

It is also not clear how long the systems with enhanced scaling would continue as

such at this point. As an example, we consider A = 0.9 and b = 0.1. The results

of such parameters are shown in Fig. 5.3. Here, we see that the behaviour is very

complex and does not follow a simple trend and could be investiagted further as

an extenstion. However, for the purpsoe of this study we are only interested in a

proof-of-principle that enhanced scaling can be obtained in this scenario.
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Figure 5.3: Fisher information as a function of the parameter ϕ. Each curve

shows a different number of time steps N , as illustrated by the key. Here the

free parameters are chosen to be A = 0.9 and b = 0.1. We see a steady increase

in the Fisher information for all values of ϕ. However, the peak value seems to

(neglecting the singularities) moves further from π
2
/3π

2
as N increases.

5.3.4 Application to a two-level atom with controlled re-

setting

To give an example of a concrete system where this advantage in scaling can be

found, we again consider a two-level atom with parameter dependent resetting.

Following the dynamics described in Eq. (5.36), this corresponds to resetting the

system into the state

|ψph〉 = cos(ϕ) |0〉 − i sin(ϕ) |1〉 , (5.41)

after photon emission. For these dynamics, the probability of the system prepared

in the state |ψph〉 not emitting a photon in a time T , P0(T ), is given by

P0(T ) = cos2(ϕ) + e−ΓT sin2(ϕ) . (5.42)
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In such a case, the probability of the system emitting a photon in that time period

can be written in general as

P1(T ) =

T∫

0

dt w(t) (5.43)

with

w(t) = − d

dt
P0(t) = Γ sin2(ϕ)e−Γt . (5.44)

The measurement that we are interested in making for this scheme will be the

average number of photons emitted in a time T , N̄(T ). For simplicity, we will

assume the state at time t = 0 has the form of |ψph〉. Hence, N̄(T ) can be

calculated by expressing it as a sum of the form

N̄(T ) =
∞∑

n=1

np(n, T ) , (5.45)

where p(n, T ) is the probability of the system emitting n photons in a time T .

This probability can be expressed as

p(n, T ) =




n∏

i=1

T∫

ti−1

dtiw(ti)


P0(T − tn) , (5.46)

where we take t0 = 0. If we consider the case where we wait for a large amount

of time such that we may take T → ∞, we find these integrals factorise nicely,

meaning

lim
T→∞

T∫

tn−1

dtnw(tn − tn−1) = sin2(ϕ) ,

lim
T→∞

P0(T − tn) = cos2(ϕ) . (5.47)

Hence, we find that the probability for n photons is given by

p(n) = sin2n(ϕ) cos2(ϕ) (5.48)
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The average number of photons emitted for T → ∞ can now be calculated by

substituting Eq. (5.48) into Eq. (5.45), giving

N̄(∞) =
∞∑

n=1

n sin2n(ϕ) cos2(ϕ) . (5.49)

This is nearly a geometric series. After appropriately modifying it, it can be

shown that

∞∑

n=1

nrn =
r

(1− r)2 . (5.50)

Taking r = sin2(ϕ), we hence find

N̄(∞) = tan2(ϕ) . (5.51)

This function matches expectations, as we see that for the case where the system

is reset to the excited state, we see an infinite number of photons, whereas when

it is reset to the ground state we see no photons. This is shown in Fig. 5.4.

For the purposes of metrology, we want a signal we can scale with time. As

such, we can calculate how this signal scales for finite T . By not imposing T →∞,

the integrals no longer factorise nicely. Nevertheless, a solution can still be found

for p(n, T ), which is given by

p(n, T ) = sin2n(ϕ) cos2(ϕ) +
e−ΓT sin2n(ϕ)

n!

×
(

(ΓT )n − cos2(ϕ)
n∑

m=0

n!

m!
(ΓT )m

)
. (5.52)

Summing up to the limit where n→∞ is now more difficult to resolve. Although

the limit is well defined, it is not straightforward to explicitly calculate analyti-

cally. Hence, for simplicity, all results involving this term will be approximated

by choosing a large finite value for n. In doing so, N̄(T ) can be calculated to

a very good approximation. In Fig. 5.5, we see how this function behaves as a

function of ϕ at a variety of times T .

This signal clearly displays dependence on the parameter ϕ that grows in

time. Hence it should be possible to use this signal to extract information about
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Figure 5.4: Plot of N̄ for T → ∞ for the two-level atom as a function of the

feedback rotation parameter ϕ. As expected, if the atom is reset exactly into the

excited state after emission there will be an infinite number of photon emissions

for T →∞.

ϕ. In order to calculate the uncertainty in ϕ, we use the error propagation

formula in Eq. (5.1). Specifically for this example, we shall use the variance for a

more direct comparison with the Fisher information, where we take the square of

Eq. (5.1). Plotting as a function of ϕ for a variety of times T , we see in Fig. 5.6

how the uncertainty in ϕ changes in time. In particular, the error decreases in

time. However, the uncertainty appears to reach a fixed point that depends on

the value of ϕ being considered for large T , which is reached faster the further ϕ

is from π
2

in the range ϕ ∈ [0, π]. Also, the error is able to reach a lower value

for a large amount of time the closer it is to π
2
. Hence, to maximise the scaling it

appears that we should choose a value of ϕ is close to π
2
. Taking ϕ = 1.5, we now

plot (∆ϕ)2 as a function of time T . This is shown in Fig. 5.7. Here, we see the

scaling is surpassing that of the standard quantum limit. In fact, the scaling of

the error is better than the Heisenberg limit at its steepest point. However, this

doesn’t necessarily mean that the error has gone beyond the overall Heisenberg

limit.

Crucially, we see that there is an enhanced scaling present for this measure-
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Figure 5.5: The plot of N̄ now does not go to infinity, as a finite amount of time

is considered. The curve has a similar functional shape to the case of infinite time

and hence demonstrates the validity of the calculations. Here, the sum is taken

up to n = 1000.

ment scheme. Although this measurement is not necessarily an optimum measure-

ment, it serves as a proof-of-principle that an enhanced time-dependent scaling

can be found for a relatively simple system with quantum feedback. Indeed, there

are many ways in which this system can be developed further, including going to

a larger system size or performing a more complex measurement, such as using

photon correlations. In Fig. 5.7, we see that the uncertainty in ϕ seems to be

levelling off to a fixed value. This is also suggested in Fig. 5.6 for other values of

ϕ. If we move to a larger system size, the overall uncertainty should be reduced

further. This is because in a larger system size two initially close together points

in the relevant space can move further away from each other and hence become

more distinguishable. In the next section, we consider another more complex

system that cannot be solved analytically that also produces enhanced scaling

without requiring exotic quantum states and hence offers relative experimental

simplicity. In particular, this system occupies a large state space that allows for

more persistent scaling.
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Figure 5.6: Uncertainty (∆ϕ)2 plotted as a function of ϕ. Initially, the uncertainty

is minimised at multiples of π. However, these uncertainties do not decrease in

time. As T increases, the optimum value of ϕ for measurement moves closer to
π
2
. This result is again produced with a sum up to n = 1000.

5.3.5 The estimator

In order to use the results presented here for a metrological application, the

estimator ϕ̂ needs to be found. This can be done by interverting the measurement

signal in order to make ϕ the subject, givng an equation of the form

ϕ = . . . . (5.53)

For a simple interferometric setup, this is straight forward. For example, if N

photons are inserted into one arm of an interferometer with a phase shift of ϕ in

one arm (like that in Fig. 1.1), the number detected in the two output arms (A

and B) will be

NA =
1

2
(1 + cos(ϕ))N , NB =

1

2
(1− cos(ϕ))N , (5.54)

with NA +NB = N as required. Hence, rearranging we may write

ϕ = cos−1

(
2NA

NA +NB

− 1

)
. (5.55)

96



5.3 Quantum jump metrology

10−6

10−4

10−2

1

102

104

0.1 1 10 100

(∆
ϕ
)2

T

Heisenberg Scaling
SQL scaling

ϕ = 99π
100

Figure 5.7: Considering the uncertainty (∆ϕ)2 as a function of T for fixed value

of ϕ (ϕ = 99π
100

). For illustrative purposes, scaling according to the SQL (∼ 1
T

) and

the Heisenberg limit (∼ 1
T 2 ) are shown. We see that the scaling of our system lies

between these two. At its steepest point, the scaling of the two level atom goes

beyond that of the Heisenberg limit. However, this does not mean the uncertainty

is beyond the absolute value of the Heisenberg limit. The results are produced

with a sum up to n = 1000 again.

This provides the estimator for the system in terms of the experimentally mea-

sured quantities NA and NB.

For the system we describe here, inverting our measurement signal to give ϕ

in the form of Eq. (5.53) is not straightforward. In general, this is something that

may be obtained (at the least by some numerical method) but is not determined

here explicitly. Here, we shall accept the enhanced scaling calculated by the error

propogation formula given in Eq. (5.1) and accept that the estimator could be

determined for use in a real experiment.
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Figure 5.8: The proposed quantum-enhanced metrology scheme involves two main

stages. (a) During the preparation stage, a laser experiences an unknown phase

ϕ before entering the resonator, thereby preparing the cavity in a coherent state

|α〉 with α as in Eq. (5.56). (b) During the measurement stage, the continuous

laser driving is replaced by an instantaneous feedback loop. Whenever a photon

is detected, with a finite detector efficiency η, the feedback laser displaces the

resonator field with a fixed phase that can be set to zero without loss of generality.

Whether or not the feedback pulse increases the energy inside the cavity and how

often it is triggered depends strongly on ϕ.

5.4 A quantum-enhanced metrology scheme with

the single mode coherent states of an optical

cavity inside a quantum feedback loop

As a concrete example of a scheme that achieves quantum-enhanced metrology

without entanglement, we now present analysis of the scheme proposed in Ref. [7].

This scheme involves the use of a laser-driven optical cavity inside a quantum

feedback loop, as described previously in Sections 2.2. As we have seen already,

quantum feedback can perturb the system in a way that generates non-linear

behaviour and complex correlations.

In this section, we propose to measure the unknown phase shift ϕ between two
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pathways of light using a leaky optical resonator inside an instantaneous quan-

tum feedback loop. As illustrated in Fig. 5.8, the quantum-enhanced metrology

scheme that we propose here consists of two main stages. Firstly, the preparation

stage prepares the cavity field in a coherent state |α〉 with

α = |α| eiϕ . (5.56)

Afterwards, during the measurement stage, the cavity is placed inside a quantum

feedback loop. Whenever a photon is detected, a laser pulse is applied, which

does not experience the unknown phase ϕ. The pulse displaces the field inside

the resonator in a certain direction, thereby providing the reference frame for

the proposed phase measurement. For the feedback pulse to be approximately

instantaneous, it needs to be short compared to the average cavity photon life

time 1/κ. In the following we extract information about the unknown phase ϕ

from the temporal quantum correlations in the spontaneous photon emissions of

the optical resonator. The measurement of these correlations does not require

highly-efficient single photon detectors. Hence realising the experimental setup

in Fig. 5.8 is feasible with current technology [89, 90, 91].

As we shall see below, the only density matrix ρ of the cavity field with a

vanishing time derivative ρ̇ = 0 is the vacuum state. When starting in this state,

the system remains there and never experiences a feedback pulse. However, in

general, the cavity field remains in a single-mode coherent state |α〉 with α 6= 0.

In many cases, α increases rapidly in time. Unlike most quantum optical sys-

tems with spontaneous photon emission, the ensemble average of the resonator

never reaches a stationary state [41, 92], as we saw in Chapter 3. The final state

of the cavity depends very strongly on the phase ϕ, which has initially been

imprinted onto the resonator (c.f. Eq. (5.56)). Moreover, the temporal quan-

tum correlations of the single trajectories of the cavity field cannot be expressed

as first-order expectation values and do not evolve according to a set of linear

differential equations. Their non-linear dynamics is what allows us to perform

better-than-classical phase estimation. Using the dissipative dynamics of open

quantum systems [11, 13, 14, 18], Refs. [5, 6] already designed quantum metrol-

ogy schemes that exceed the standard quantum limit. The main advantage of the

scheme that we discuss here is that it is relatively easy to realise experimentally.
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Our quantum-enhanced metrology scheme should be of practical interest until

highly-entangled many-photon states become more readily available.

The quantum-enhanced metrology scheme that we propose here extracts in-

formation about the unknown phase ϕ of the initial state in Eq. (5.56) by per-

forming N successive measurements on a single quantum system. This means,

our scheme is equivalent to performing single-shot measurements on a combina-

tion of N entangled quantum systems. Instead of multi-partite entanglement, we

use temporal quantum correlations [93, 94]. The main resource of our quantum

metrology scheme, i.e. the number of queries posed during each run of the experi-

ment, hence equals the number of successive measurements on the cavity field. In

other words, it essentially equals the number of time steps in which the cavity ei-

ther emits a photon or not, which is proportional to the duration of the proposed

experiment. As long as the behaviour of the cavity field generates temporal quan-

tum correlations with non-linear dynamics, actual physical entanglement does not

need to be present [60]. We are therefore not in contradiction with previous work

that claims entanglement is required to go beyond standard scaling, as in such

cases only linear generators of change in the unknown parameter are considered

[61, 62].

Before presenting the exact metrology scheme, we briefly review some of the

physical behaviour of the optical cavity with quantum feedback. In particular,

we highlight the key long term behaviour that allows an enhanced measurement

to be performed.

5.4.1 Long term behaviour

Before presenting the metrology scheme, we briefly review the work done in Chap-

ter 3. In particular, we remind ourselves of the long-term behaviour of an optical

cavity inside a quantum feedback loop.

Convergence without feedback

Previously in Chapter 3, we have seen that the coherent state |αss〉 in Eq. (3.12)

is invariant under the no-photon time evolution of a laser-driven optical cavity.

Furthermore, we know that this state is also invariant under the emission of a
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Figure 5.9: (a) Phase diagram illustrating the dynamics of the single-mode co-

herent states |α〉 of the cavity field during the measurement stage. The initial

states of the resonator form a circle centred about the origin. The lines show the

occupied state space of the states corresponding to ϕ ∈ [π
2
, 3π

2
] at a later time

t. As time elapses, the circle turns into an increasingly stretched ellipse. States

that correspond to different phases ϕ move further and further away from each

other. (b) Dynamics of the cavity field under the condition of a photon emission

at t = 0, which triggered an instantaneous feedback pulse. Both graphs are the

result of a quantum jump simulation based on the calculations in Section 2.2.3,

where we assume a detector efficiency of η = 0.5 and consider 106 repetitions of

the experiment. Here the feedback pulse is given by β = |α| with α = 2. The

dash-triple dot lines extended from the original semi-circle represent the trend of

the evolution of the states corresponding to ϕ = π
2

and ϕ = 3π
2

.
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photon due to it being a coherent state (see Appendix A). Consequently, |αss〉
is the stationary state of a laser-driven optical cavity without feedback. Once

the cavity reaches this state, it no longer evolves in time. Indeed, one can easily

check that the corresponding density matrix ρss = |αss〉〈αss| solves ρ̇ = 0.

Divergence with feedback

Combining the stationary state condition ρ̇ = 0 with the master equation in

Eq. (2.67), we can calculate the stationary state of the laser-driven optical cavity

inside an instantaneous feedback loop. From the discussion in Section 3.2.2, we

know that the field inside the resonator in this case too remains always in a

coherent state, if initially coherent. This implies that the stationary state, if it

is ever reached, has to be of the form of Eq. (3.21), i.e. a statistical mixture of

coherent states |α〉 with weighting P (α). However, the master equation (2.67)

does not possess a stationary state of this form except for α = 0, where the

dynamics become trivial. However, from what we have seen in Chapter 3, we

know that this stationary state is a repulsive fixed point in the dynamics and

many quantum trajectories diverge away from this point in general. From this

we conclude that the laser-driven cavity with instantaneous quantum feedback

that we consider in this chapter does not reach a stationary state in general

[41, 92]. It exhibits a much richer dynamics than what was previously assumed

[95, 96]. This even applies if the continuous laser driving is turned off, unless the

cavity is initially empty.

Fig. 5.9 illustrates the non-linear dynamics of an optical cavity inside an in-

stantaneous quantum feedback loop with the help of a so-called phase diagram.

This diagram represents coherent states |α〉 as points by using the real part and

the imaginary part of α as coordinates. It is the result of a numerical simulation

which averages α(t) over a large number of quantum trajectories. Different times

t and a wide range of initial states |α〉 with ϕ ∈ [π
2
, 3π

2
] and with α as in Eq. (5.56)

are considered. As one can see, the half circle representing these initial states de-

forms rapidly into an increasingly stretched ellipse, thereby constantly increasing

the phase space volume occupied by the cavity field. In Fig. 5.9(b), the cavity

field is initially in the same state as in Fig. 5.9(a) but experiences a feedback
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pulse at t = 0 with β = |α|. In this case, the constant growth and stretching of

the phase space volume of the cavity field is even more pronounced. For example,

a cavity in an initial coherent state with ϕ = π and a photon detection at t = 0

never emits another photon and never experiences another feedback pulse. On

the contrary, a cavity with ϕ 6= π is likely to emit many photons, thereby at-

tracting an exponentially-increasing number of feedback pulses. As a result, the

distance between two coherent states |α1(t)〉 and |α2(t)〉 corresponding to two

different phases ϕ1 and ϕ2 increases rapidly in time.

5.4.2 Quantum-enhanced metrology scheme

Now we have all the tools needed to analyse the quantum metrology scheme

illustrated in Fig. 5.8. It consists of two main stages:

1. The preparation stage. A continuous laser field experiences an unknown

phase shift ϕ before entering an optical cavity, as illustrated in Fig. 5.8(a).

The main purpose of this stage is to prepare the field inside the resonator

in a coherent state, which depends on ϕ. For simplicity, we assume that

the cavity is driven for a time which is relatively long compared to the time

scale given by the laser Rabi frequency and the cavity decay rate. This

approach prepares the resonator in its stationary coherent state |αss〉 in

Eq. (3.12) with the phase ϕ encoded into the phase of αss.

2. The measurement stage. Here the continuous laser driving is turned off.

Instead the optical cavity evolves freely, while experiencing instantaneous

feedback pulses, as illustrated in Fig. 5.8(b). These are triggered by the

observation of a spontaneously emitted photon with a finite detector effi-

ciency η. We assume that every feedback pulse displaces the field inside the

cavity by an amount β given by

β = |αss| (5.57)

which is independent of ϕ. This means the feedback laser provides a refer-

ence frame. The measured phase is indeed the relative phase between the

phase of the driving laser used during the preparation stage and the phase
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of the feedback laser (with respect to the interaction picture). All photon

detection times should be registered.

As we shall see below, temporal quantum correlations reveal information about

ϕ with an accuracy above the standard quantum limit.

Resource counting

To identify the main resource, N , of our metrology scheme, we take inspiration

from the approach by Zwierz et al. [63] and assume that N equals the query

complexity of our scheme. Each time the phase ϕ is probed, a resource is used.

In every time step, we perform a (conditional) phase dependent operation on

the system. Continuously observing the leakage of photons through the cavity

mirrors means a continuous probing of the unknown phase ϕ. As illustrated in

Fig. 5.10, every time step can be seen as one query posed and hence provides

one resource count. The amount of time T , which the system spends within

the measurement stage during each repetition of the experiment, is therefore the

most relevant resource of our quantum metrology scheme. To calculate ∆ϕ as a

function of T , we now simulate a relatively large number of quantum trajectories

of the experimental setup in Fig. 5.8 using the methodology which we introduced

in the previous section and then use the error propagation formula in Eq. (5.1) to

analyse the precision of the proposed experiment. For completeness and to allow

for a comparison with other quantum metrology schemes, we also consider the

mean number of photons passing through the unknown phase ϕ as a resource N .

In our scheme, this number is essentially given by the mean number of photons

|αss|2 inside the resonator at the end of the preparation stage.

Accuracy of intensity measurements

Let us first have a closer look at the average photon emission rate I(T ) of the

cavity at a time T after the preparation of the initial coherent state |αss〉 in

Eq. (3.12), which depends on the unknown phase ϕ. To calculate I(T ) numeri-

cally, we divide the time interval [0, T ] into relatively short time intervals ∆t. We

then use the quantum jump approach [20, 21, 22] described in Section 2.2.3 to

simulate a relatively large number of possible quantum trajectories of the cavity
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Figure 5.10: Circuit diagram of the time evolution of the experimental setup in

Fig. 5.8 during the measurement stage. The black dots indicate that the bath

is measured in every time step, n = 1, . . . , N , and when a photon emission is

detected triggers the operator U(ϕ) to act on the cavity. This process provides

information about the state of the cavity and the unknown phase, ϕ.

and average over the respective number of photon emissions in (T, T + ∆t). The

result of this simulation is shown in Figs. 5.11 and 5.12. While Fig. 5.11 shows

the average photon emission rate I(T ) as a function of T for different phases ϕ,

Fig. 5.12 shows the I(T ) as a function ϕ for different times T . Both logarith-

mic plots illustrate that the dynamics of the mean number of photons inside the

resonator depends indeed very strongly on the initial coherent state |αss〉 of the

cavity field.

Next we investigate the accuracy of a measurement, which uses the strong

dependence of I(T ) on ϕ to deduce information about ϕ. Figs. 5.11 and 5.12 show

that this dependence is maximised for ϕ around 0.3 π. We therefore consider in

the following the signal M = I(T ) and ϕ = 0.3 π as an example and calculate

the accuracy of the proposed quantum metrology scheme ∆ϕ using the error

propagation formula in Eq. (5.1) as a function of T . The standard deviation

in this equation is obtained through statistical analysis of the simulation data

created by many quantum jump simulations described in Section 2.2.3, while

the sensitivity is found by finding the gradient between two very close phases.

Again we average over a large number of quantum trajectories. The result of this
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numerical simulation is shown in Fig. 5.13. To a very good approximation, we

find that

∆ϕ(T ) ∝ T−0.49 for ϕ = 0.3π . (5.58)

This means, using only intensity measurements, the experimental setup in Fig. 5.8

does not allow us to beat the standard quantum limit in Eq. (5.2). In fact, we

almost saturate this limit. This is to be expected as the dynamics of the mean

number of photons inside the cavity obeys a master equation, which represents a

set of linear differential equations. Moreover, intensity measurements are essen-

tially classical measurements. Finally, it should be noted that the fit In Eq. (5.58)

is an approximation, as the data appears to be showing a more complex depen-

dence whose exact functional form will not be investiagted here. However, it

seems safe to conclude that the scaling of ∆ϕ(T ) does not exceed the standard

quantum limit.
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Figure 5.11: Average intensity I(T ) plotted on a Log10 scale, as a function of

the time, T , after the preparation of the initial coherent state, |αss〉, for various

unknown phases, ϕ. This simulation assumes |αss|2 = 4, η = 0.5 and averages

over 106 trajectories and is generated by the quantum jump method.
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Figure 5.12: Average intensity I(T ) plotted on a Log10 scale, as a function of the

unknown phase, ϕ, for different times, T . As in Fig. 5.11, we have |αss|2 = 4,

η = 0.5 and average over 106 trajectories and is generated by the quantum jump

method.

Accuracy of second-order correlation function measurements

A comparison between Figs. 5.9(a) and (b) suggests that measurements of the

joint probability to detect a photon at a time t and at a time t′ should be able

to reveal information about ϕ more efficiently than measurements of the average

photon intensity I(T ). This joint probability is known to quantum opticians

as the second-order photon correlation function G(2)(t, t′). Hence, according to

probability theory, G(2)(t, t′) equals

G(2)(t, t′) ≡ I(t|t′)I(t′) , (5.59)

where I(t|t′) denotes the probability for the detection of a photon at a time t

conditional on the detection of a photon at t′. Second-order correlation functions

are usually normalised by the product of the photon emission rate at t′ and at

t. Taking this into account and dividing Eq. (5.59) by I(t′)I(t), we define the

107



5.4 A quantum-enhanced metrology scheme with the single mode
coherent states of an optical cavity inside a quantum feedback loop

10−3

10−2

10−1

10−2 10−1 1

∆
ϕ

T (units of κ−1)

Figure 5.13: Dependence of the accuracy, ∆ϕ, on the length of the measurements

stage, T , in the case of intensity measurements. Here, ϕ = 0.3 π, |αss|2 = 4,

η = 0.5 and we averaged over 106 trajectories. The black line illustrates the

approximate fit given in Eq. (5.58).

renormalised second-order correlation function, g(2)(t, t′), by

g(2)(t, t′) ≡ I(t|t′)
I(t)

. (5.60)

This correlation function describes correlations between photon emission events

without depending on the detector efficiency η with which these events are reg-

istered. It can therefore be measured accurately, even when using imperfect

detectors with η < 1.

In the following, we assume that M = g(2)(T, 0) is the actual measurement

signal used to obtain information about the unknown phase ϕ. As we shall see,

this measurement signal also contains a dependence in the unknown parameter

ϕ. Hence, using the same techniques as before, we may test how well we can

determine ϕ from this signal. To determine the accuracy ∆ϕ of this approach

as a function of the length T of the measurement stage, we again simulate a

relatively large number of quantum trajectories and average over all of them. The
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Figure 5.14: Second-order correlation function g(2)(T, 0), as a function of the

duration of the measurement stage, T , for various phases ϕ. Again we assume

|αss|2 = 4, η = 0.5 and averages over 106 trajectories and is generated by the

quantum jump method.

results of this simulation are shown in Figs. 5.14 and 5.15, which are analogous

to Figs. 5.11 and 5.12 in the previous subsection. As expected, the correlation

function g(2)(T, 0) too exhibits a very strong ϕ-dependence. This dependence is

most pronounced when ϕ = π. As suggested by Fig. 5.9, we have g(2)(T, 0) = 0

for sufficiently large detector efficiencies η and ϕ = π, while g(2)(T, 0) rapidly

tends to unity for all other angles. Indeed Fig. 5.14 shows very large differences

between neighbouring curves, when ϕ is close to π, even when ϕ is varied only by

a relatively small amount. Moreover Fig. 5.15 shows a distinct spike at ϕ = π as

a function of ϕ. This spike in the second-order correlation function is what allows

us to distinguish this phase with a very high accuracy ∆ϕ from other close-by

values of ϕ due to a very high visibility |∂M/∂ϕ|.
This is confirmed by Fig. 5.16 which shows the dependence of ∆ϕ on the

resource T for phase measurements based on the second-order correlation function

for the optimal case of ϕ = π. To calculate this quantity we use again the error
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Figure 5.15: Second-order correlation function g(2)(T, 0) as a function of the

unknown phase, ϕ for various times, T , with |αss|2 = 4 and η = 0.5 averaged over

106 trajectories and is generated by the quantum jump method.

propagation formula in Eq. (5.1) and average over a relatively large number of

quantum trajectories. We now find that

∆ϕ(T ) ∝ T−0.71 for ϕ = π (5.61)

to a very good approximation. This accuracy clearly beats the standard quantum

limit. In other words, measurements of the second-order photon correlation func-

tion of the photon statistics of an optical cavity inside an instantaneous quantum

feedback loop can be very sensitive to phase fluctuations.

This is not surprising, since measurements of the second-order photon corre-

lation function g(2)(T, 0) require the detection of single photons. This is different

from intensity measurements which are essentially classic measurements. These

can be done without high-resolution single-photon detection. Moreover, second-

order photon correlations are an intrinsic property of the individual quantum

trajectories of the cavity field. They cannot be calculated with the help of a lin-

ear master equations but require the quantum jump approach [20, 21, 22], which
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Figure 5.16: Accuracy ∆ϕ of the proposed metrology scheme as a function of

the duration of the measurement stage, T , for measurements of the second-order

correlation function g(2)(T, 0) around ϕ = π to maximise the sensitivity of the

proposed scheme. As before, we assume |αss|2 = 4, η = 0.5 and average over 106

trajectories. The black line shows the approximate solution in Eq. (5.61).

we introduced in Section 2.2.3. The conditional dynamics of the individual tra-

jectories of the cavity field is in general non-linear. For example, between photon

emission, the cavity field evolves in a non-linear fashion with the non-Hermitian

conditional Hamiltonian Hcond in Eq. (2.59), which requires a constant renormal-

isation of the state vector of the quantum system. In summary, it is the mea-

surement of the temporal quantum correlations in an open quantum system that

allows us to exceed the standard quantum limit. This observation is consistent

with analogous observations by other authors [5, 6, 83, 84, 85, 86, 87].

A more standard method of resource counting in quantum metrology is to

consider the average number of photons that passed through the unknown phase

ϕ as the resource N . This approach can also be applied to the quantum-enhanced

metrology scheme which we propose here. Performing quantum jump simulations,

averaging over many quantum trajectories and using again the error propagation

111



5.4 A quantum-enhanced metrology scheme with the single mode
coherent states of an optical cavity inside a quantum feedback loop

10−5

10−4

10−3

1 10 100

∆
ϕ

|αss|2

Figure 5.17: Accuracy, ∆ϕ, of the proposed metrology scheme as a function of

the initial mean photon number, |αss|2, for measurements of the second-order

correlation function g(2)(T, 0) and ϕ = π. Here, η = 0.5 and we average over 106

trajectories generated by the quantum jump method. To remove noisy fluctua-

tions in the signal in time, we take a sample of uncertainties over a fixed period of

time, find the average uncertainty in that period and compare this average to the

same time average for other initial states. The black line shows the approximate

solution in Eq. (5.62).

formula in Eq. (5.1) with M = g(2)(T, 0), we now calculate the dependence of ∆ϕ

on the average population of the initial coherent state inside the cavity, which

is given by |αss|2. The result is shown in Fig. 5.17. For the parameters that we

consider here, we find that

∆ϕ(|αss|2) ∝
(
|αss|2

)−0.65
for ϕ = π (5.62)

to a very good approximation. Eq. (5.62) too clearly beats the standard quantum

limit. In practical applications, it might be best to consider both the duration

of the measurement stage and the number of photons that passed through the

sample as a resource. Numerical results for such an experiment are shown in
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Figure 5.18: Accuracy ∆ϕ plotted on a Log10-Log10 scale, when both the duration

of the measurement stage, T , and the initial mean number of photons, |αss|2, is

taken into account and the second-order correlation function g(2)(T, 0) is analysed.

Here we have η = 0.5 and we consider 106 repetitions of the experiment.

Fig. 5.18. When we have two scalable resources, our scheme allows more freedom

in gaining information about the phase ϕ with high accuracy, even when one of

the resources is constrained. More precisely, if the number of photons that can be

used is limited for example, a coherent state with a smaller average phton number

|α|2 can be used and allowed to run for longer instead of running an experiment

with a larger number of photons for a shorter amount of time to obtain the same

precision.

Once again, in order to use this scheme for a real experimental application,

the estimator should be obtained. As the results presented in this section are

completely numerically generated, the estimator cannot be analytically obtained.

However, the estimator could be approximated by fitting a curve to the mea-

surement signal in Fig. 5.15 and inverting it as described in Section 5.3.5. This

has not been done here as the goal was to demonstrate the scaling, but could be
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5.5 Comment on ultimate limits of scaling for metrological systems

obtained if required as described.

5.5 Comment on ultimate limits of scaling for

metrological systems

While a lot of theoretical work predicts enhanced scalings in the uncertainty of

an unknown parameter ϕ, it is often assumed that the system conducting the

probing is completely noiseless. However, if noise is incorporated into the phase

estimation calculations, the results can be extremely damaging to the resulting

scaling. As described in some recent studies [97, 98], the introduction of nose

into the measurement process can reduce the optimum scaling to that of the

standard quantum limit, but enhanced with a constant factor. Depending on the

magnitude of the noise or loss (whatever form it may take), the scaling gradually

reduces towards this standard quantum limit scaling for increasing number N at

a rate determined by this.

In the work presented here, no such random noise or loss is considered explic-

itly. Despite this, there are two points that should be noted. Firstly, in the scheme

presented in Section 5.3, we have seen scalings in the Fisher information that grow

at an enhanced rate. However, for certain parametric choices, the Fisher infor-

mation eventually changes to growth at the standard linear rate. In this work

this has not been investigated, as the goal was to present a proof-of-principle

in generating enhanced scalings by beens of quantum feedback. Furthermore, in

the case of a solid example where we considered the average number of photons

emitted by an atom N̄ in a time T , we also found the enhancement wore off after

a large amount of time T (or resources N). Whether this is due to intrinisic

noise in the system, perhaps due to the random nature in which the parameter

is encoded into the system, or something else is not known.

Secondly, in the case of an optical cavity as discussed in this section, we did

not see a decline in scaling for larger values of T . Whether this is due to not

taking T to a large enough size to properly see this effect or whether it is simply

because we have not inserted any noisey effects into the system is not known at

this stage. However, because of the experimental setup presented here (i.e. the
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use of coherent states), we would expect this system to be rather robust to most

forms of noise. Hence, we should expect that any decline in scaling enhancements

would be highly suppressed.

A final difference with this work from the general scaling results discussed

in Refs. [97, 98] is that in our analysis and proposed schemes we only probe the

output sequence generated by a quantum system. Essentially, the internal system

is never directly measured. This differs from previous work where the focus is

on either measuring a system (with or without its environment also measured)

directly. Instead, we take advantage of the temporally correlated output signals

produced by an open quantum system.

5.6 Conclusions

In this chapter, we have presented an analysis of a novel approach to quantum

metrology, using the temporal correlations generated in open quantum systems.

To do this, we have calculated the Fisher information of the dynamics of a quan-

tum jump analysis of an open quantum system. This has led to an identification

of how useful correlations may be induced that allow a better-than-classical pa-

rameter estimation scheme.

Our scheme highlights that by making the resetting of the system after emis-

sion into the environment dependant upon the unknown parameter, the Fisher

information may scale non-linearly and hence offer an enhancement. However,

this is not the case for all parameter regimes. In particular, when the scaling

is non-linear, the absolute size of the Fisher information is small. However, we

believe this may be combated in a more sophisticated scheme away from our toy

model approach, either with a larger Hilbert space or allowed to run for a longer

time. Because of this, our scheme should be of particular interest for technolog-

ical applications, as it offers a feasible method of obtaining enhanced scaling in

the laboratory without extreme experimental difficulty.

Furthermore, we then proposed a quantum metrology scheme to measure an

unknown phase ϕ between two pathways of light with an accuracy above the

standard quantum limit. Our scheme is based on a laser-driven optical cavity

inside an instantaneous quantum feedback loop, as illustrated in Fig. 5.8. The
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measurement process includes two main steps. Firstly, during the preparation

stage, a continuous laser experiences the phase shift, ϕ, before entering the cavity

field. Its purpose is to prepare the cavity in a coherent stationary state which

depends strongly on this phase. Secondly, during the measurement phase, the

cavity experiences only the quantum feedback loop. Whenever the spontaneous

emission of a photon is detected, a laser pulse, which does not experience ϕ and

provides the reference frame for the proposed phase measurement, is activated

and displaces the resonator field in a controlled way.

In the scheme with an optical cavity inside a quantum feedback loop, we

have assumed that the detector that monitors the cavity during the measurement

stage determines its second-order photon correlation function g(2)(T, 0). This

means, it essentially measures the joint probability for the detection of a photon

at the very beginning (at t = 0) and at the end (at t = T ) of the measurement

stage. As shown in Section 5.4.2, this second-order correlation function can be

used to determine ϕ with an accuracy ∆ϕ that scales better than what can be

achieved classically according to the standard quantum limit in Eq. (5.2). For

the parameters that we consider in this chapter, we find that ∆ϕ scales as T−0.71

(c.f. Eq. (5.61)). If we consider instead the mean number of photons seen by

the unknown phase ϕ during the preparation stage as the main resource of our

quantum metrology scheme, we find that ∆ϕ scales as (|αss|2)
−0.65

(c.f. Eq. (5.62)).

To achieve this quantum enhancement, our metrology scheme uses the tem-

poral correlations of an individual quantum system instead of using multi-partite

entanglement. It is worth noticing that subsequent measurements on a single

quantum system are in general equivalent to single-shot measurements on multi-

partite entangled states. Temporal quantum correlations, which cannot be pre-

dicted by a linear master equation, constitute an interesting approach for tech-

nological applications [83, 84, 85, 86, 87]. As shown in Chapter 3, the dynamics

of the individual quantum trajectories of the cavity field inside an instantaneous

feedback loop is indeed non-linear and depends very strongly on the initial state

of the resonator, which encodes the unknown phase ϕ [41, 92]. As illustrated in

Fig. 5.9, there is constant stretching and growths of the initially occupied phase

space volume. The distance between two different states |α1〉 and |α2〉 which

correspond to different ϕ1 and ϕ2 increases rapidly in time.
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The main advantage of the quantum metrology scheme which we propose

here is that its experimental realisation is relatively straightforward. As men-

tioned already above, we do not require highly-entangled many-photon states.

Although the proposed scheme requires a relatively good optical cavity, it does

not require highly efficient single photon detectors. This is due to the definition

of the correlation function g(2)(t1, t2) being independent of a detectpor efficiency

η. High-quality optical cavities and relatively fast photon detectors are already

available in many laboratories worldwide (see for example Refs. [89, 90, 91]).

We therefore believe that our quantum metrology scheme will be of significant

practical interest until highly-entangled many-photon states become more readily

available.

It should be possible to generalise the results described in this chapter to

larger and more sophisticated systems. In particular, it is possible to generalise

the scheme described in Section 5.4 by interfering the emitted light by multiple

cavities in a linear optics network. In doing so, it is possible to create multiple

fixed points in the dynamics. These fixed points should be able to take advantage

of the enriched dynamics to gain a quantum-enhanced measurement scheme. This

system should not only be more sensitive than the previous, but also capable of

measuring multiple phases with persistent enhanced precision. This could find

potential applications in quantum neural networks and quantum machine learn-

ing, as well as in quantum metrology. Also, a further method in which the phase

estimation could be improved may be to use higher order correlation functions

than the second-order ones considered in this work. Already in quantum imaging

it has been shown that the use of higher order correlation functions can improve

resolution [99]. It is reasonable to speculate that this may also be true for the

system under consideration here, though it has not been explicitly investigated

at this stage. In particular, it may be the case that the achievable scaling ap-

proaches the Heisenberg-limited value for higher order correlation measurments.
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Chapter 6

Conclusions

This thesis has presented a novel approach to understanding open quantum sys-

tems with instantaneous quantum feedback. We began in Chapter 2 by presenting

a theoretical model to analyse these types of quantum systems. This involved

a general derivation of the quantum optical master equation before applying to

two concrete systems: a laser-driven optical cavity and a laser-driven two level

atom, both of which had quantum feedback incorporated. The former of these

two systems is the main focus of all the proceeding work in the following chapters.

In Chapter 3 we presented work that shows the behaviour of a relatively simple

system like a laser-driven optical cavity can become significantly enriched by the

presence of quantum feedback. In particular, we found that the dynamics are no

longer ergodic and do not always reach a well-defined stationary state.

Building upon this knowledge, we then considered two applications. Firstly,

in Chapter 4, we considered a computer science based application in Hidden

Quantum Markov Models. In that study, we found that even in the most primitive

of systems a quantum-enhancement is present. If this is scaled up to a larger and

more general system, the enhancement should become even more pronounced,

as in other quantum systems. The other application considered was a quantum

metrology scheme. In Chapter 5 we demonstrated how a quantum enhancement

can be achieved without the need to prepare highly complex states. This presents

a significant advantage over standard methods, as the experimental difficulty is

reduced. This is due to both the ability to control an open quantum system with

quantum feedback requiring relatively simple techniques and also the appropriate
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resource being time allows for measurements with the resource number being high

with relative ease.

There are of course still some difficulties in implementing the ideas presented

within this thesis. For instance, in implementing the proposed metrology schemes,

the feedback is analysed as if it is exact. An imperfect implementation of this

scheme could result in errors reducing the accuracy of the measurements being

made, which could propagate errors through the measurements. The exact effect

of this could be investigated further to determine how robust the system is to these

errors. However, the potential advantages of this method should still outweigh the

possible experimental imperfections in potential implementation. Furthermore,

the systems considered are rather primitive. In the case of the two-level atom, a

larger number of qubits could be used for example. This may lead to even better

scaling in the uncertainty.

Furthermore, the investigation into Hidden Quantum Markov Models found

only a minimal enhancement over the classical Hidden Markov Model so far.

As already stated though, this should not be too surprising as the more exotic

behaviour typical of quantum systems usually requires more than a single qubit.

Advancing to larger systems should show further enhancements that are expected

to be much more significant. As Hidden Markov Models have many applications

in classical computer science (see Refs. [44, 45, 46] for some examples), Hidden

Quantum Markov Models should be expected to also have many applications

in the future as computer science begins investigating quantum speed-up. The

potential implementation using open quantum systems and quantum feedback

offers a feasible implementation that could be conducted with currently available

technology.

Moreover, the architecture described in this thesis may also be able to be

used as the building blocks for a quantum neural network or quantum machine

learning. As we have shown, open quantum systems with quantum feedback offer

a speed-up in determining a parameter. This is essentially the aim of neural

networks: how quickly can we resolve if a given input is a specific symbol/value?

By combining many of the systems considered here together (e.g. in the form of a

network of cavities), it may be possible to develop a neural network architecture.

Quantum neural networks and quantum machine learning are rapidly growing
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fields with many exciting potential applications [8, 9]. As such, the work done

here has scope to provide novel insights into this new field in the future, as well

as extensions to the applications already considered.
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Appendix A

Coherent states

Coherent states are often called the “most classical” quantum states. The reason

for this is that they have a minimum uncertainty. Despite this though, they

are still capable of exhibiting interesting quantum behaviour if treated in an

appropriate way, as is shown throughout this thesis. Here, coherent states are

formally introduced and their basic properties analysed.

A.1 Definition

The Glauber formalism is the most commonly used form used to describe a co-

herent state [100] and is what shall be used here. A coherent state |α〉 is defined

as the eigenstate of the photon annihilation operator a, meaning

a |α〉 = α |α〉 , (A.1)

where α is a complex number with |α|2 being the average number of photons in

the coherent state |α〉. This has an interesting physical corollary, as the emis-

sion/detection of a photon from a coherent state does not change its state. This

is because of the statistical nature of coherent states. Specifically, the reason for

this and that we must consider an average number of photons for a coherent state

is that it is an infinite superposition over the Fock space that obeys Poissonian

statistics. Specifically, in the Fock space it has the form

|α〉 = e−
|α|2

2

∞∑

n=0

αn√
n!
|n〉 . (A.2)
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A.2 The displacement operator

Fairly straightforwardly, it can be shown that applying the annihilation operator

to the definition in Eq. (A.2) does indeed reproduce Eq. (A.1). Interestingly, al-

though coherent states are eigenstates of the annihilation operator, the creation

operator acting upon them is non trivial. It creates so-called photon added co-

herent states, which now behave like displaced excited Fock states (i.e. non-zero

Fock states). In fact, the creation operator does not have an eigenstate. These

states are not used in this thesis and so shall not be analysed further.

A.2 The displacement operator

An important operator that is commonly used with coherent states and that

is used as the form of the feedback discussed in this thesis is the displacement

operator. This operator displaces a coherent state in phase space by a complex

parameter. It is defined as

D(β) = exp
(
β c† − β∗ c

)
, (A.3)

where β is the complex number parametrising the displacement. Applying this

operator to a coherent state |α〉 gives

D(β) |α〉 = |α + β〉 . (A.4)

Hence, the displacement operator simply adds its parameter to that of the coher-

ent state, giving another coherent state.

An interesting case of the coherent state is when α is set to zero. In this case,

Eq. (A.2) gives exactly the vacuum state, i.e. |α = 0〉 = |0〉. Hence, all coherent

states may be considered as displaced vacuum states, as

|α〉 = D(α) |0〉 . (A.5)

This is why coherent states have minimum uncertainty, as they are fundamentally

ground states displaced in phase space rather than true quantum excitations

created by a creation operator.
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0

Im(β)

0 Re(β)

Im
(α

)

Re(α)

D(β)

Figure A.1: Phase space diagram of a coherent state initially prepared in the

vacuum. A displacement of β is made onto this coherent state, translating it in

phase space to a new position without altering any of its other properties.

A.3 Displaced creation and annihilation opera-

tors

Rather than acting on a state, the displacement operator can also be acted upon

operators. In particular, we shall consider the effect of applying it to the creation

and annihilation operators. Let us consider D†(β)cD(β) first. It can be shown

that

eXY e−X = Y + [X, Y ] +
1

2!
[X, [X, Y ]] + . . . , (A.6)

by an extension of the Baker-Campbell-Hausdorff forumula. Now, choosing X =

β∗c− βc† where D(β) = e−X and Y = c, we may evaluate D†(β)cD(β). Noticing

that here [X, Y ] = β and all higher order commutators equal zero, we find that

D†(β)cD(β) = c+ β . (A.7)

Similarly, one can show that

D†(β)c†D(β) = c+ β∗ . (A.8)
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A.3 Displaced creation and annihilation operators

These relations become important when attempting to solve rate equations for

quantum systems with feedback in the form of a displacement operator.
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Appendix B

Parametrisation and stationary

state of a HQMM

Using the properties of quantum systems, we can place some restrictions on the

allowed values of the Kraus operators. This is much more complicated than that

of the classical machines however, as would be expected. Hence for simplicity and

to be able to efficiently study these machines, this study shall instead just consider

numerical simulations of the above described implementation of a HQMM. For

completeness, we shall present an overview of the parametrisation process, though

this will not be used for the numerical comparison in the next section.

B.1 Matrix Elements of the Internal Density

Matrix

It is important that we are able to calculate the elements of the density matrix

representing our system, otherwise we have no way to simulate all possible ma-

chines numerically. Let ρt+1 be the density matrix of the internal state at time

t + 1, and ρt be the density matrix at the iteration before, time t. Then the

element ρab can be picked out by

〈a|ρt+1|b〉 =
1∑

i,j,k=0

〈a|R(θk, δk)〈µk|ξi〉〈ei| (|0A〉ρt〈0A|) |ej〉〈ξj|µk〉R†(θkδk)|b〉
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B.1 Matrix Elements of the Internal Density Matrix

⇒ 〈a|ρt+1|b〉 =
1∑

i,j,k=0

〈a|R(θk, δk)〈µk|ξi〉〈ẽi|ρt|ẽj〉〈ξj|µk〉R†(θk, δk)|b〉, (B.1)

where |ẽi〉 = 〈0A|ei〉 = {|0I〉, |1I〉}, with the subscripts A and I corresponding to

ancilla and internal respectively. It now becomes useful to express the |ξi〉 terms

of the measurement basis. We write

|ξ0〉 = ξ
(0)
00 |0µ0〉+ ξ

(0)
01 |0µ1〉+ ξ

(0)
10 |1µ0〉+ ξ

(0)
11 |1µ1〉, (B.2)

|ξ1〉 = ξ
(1)
00 |0µ0〉+ ξ

(1)
01 |0µ1〉+ ξ

(1)
10 |1µ0〉+ ξ

(1)
11 |1µ1〉. (B.3)

It is possible to write the components of the density matrix in vector form, namely

~ρt+1 =




ρt+1
00

ρt+1
01

ρt+1
10

ρt+1
11


 =




A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44







ρt00

ρt01

ρt10

ρt11


 = A~ρt, (B.4)

where

Aij =
1∑

k=0

〈x|R(θk, δk)〈µk|ξm〉〈ξn|µk〉R†(θk, δk)|y〉, (B.5)

with

m =

{
0 for j = 1, 2
1 for j = 3, 4

, (B.6)

n =

{
0 for j = 1, 3
1 for j = 2, 4

, (B.7)

x =

{
0 for i = 1, 2
1 for i = 3, 4

, (B.8)

y =

{
0 for i = 1, 3
1 for i = 2, 4

. (B.9)

In order to look for conditions on the matrix A, we may write the |ξi〉 terms in

the basis given above. The components of matrix A can then be expanded as

below.

A11 =
1∑

k=0

(
ξ

(0)
0k ξ

(0)∗
0k cos2 (θk) + ξ

(0)
0k ξ

(0)∗
1k e−iδk cos (θk) sin (θk)

+ ξ
(0)
1k ξ

(0)∗
0k eiδk cos (θk) sin (θk) + ξ

(0)
1k ξ

(0)∗
1k sin2 (θk)

)
,
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A12 =
1∑

k=0

(
ξ

(0)
0k ξ

(1)∗
0k cos2 (θk) + ξ

(0)
0k ξ

(1)∗
1k e−iδk cos (θk) sin (θk)

+ ξ
(0)
1k ξ

(1)∗
0k eiδk cos (θk) sin (θk) + ξ

(0)
1k ξ

(1)∗
1k sin2 (θk)

)
,

A13 =
1∑

k=0

(
ξ

(1)
0k ξ

(0)∗
0k cos2 (θk) + ξ

(1)
0k ξ

(0)∗
1k e−iδk cos (θk) sin (θk)

+ ξ
(1)
1k ξ

(0)∗
0k eiδk cos (θk) sin (θk) + ξ

(1)
1k ξ

(0)∗
1k sin2 (θk)

)
,

A14 =
1∑

k=0

(
ξ

(1)
0k ξ

(1)∗
0k cos2 (θk) + ξ

(1)
0k ξ

(1)∗
1k e−iδk cos (θk) sin (θk)

+ ξ
(1)
1k ξ

(1)∗
0k eiδk cos (θk) sin (θk) + ξ

(1)
1k ξ

(1)∗
1k sin2 (θk)

)
,

A21 =
1∑

k=0

(
− ξ(0)

0k ξ
(0)∗
0k eiδk cos (θk) sin (θk) + ξ

(0)
0k ξ

(0)∗
1k cos2 (θk)

− ξ(0)
1k ξ

(0)∗
0k e2iδk sin2 (θk) + ξ

(0)
1k ξ

(0)∗
1k eiδk cos (θk) sin (θk)

)
,

A22 =
1∑

k=0

(
− ξ(0)

0k ξ
(1)∗
0k eiδk cos (θk) sin (θk) + ξ

(0)
0k ξ

(1)∗
1k cos2 (θk)

− ξ(0)
1k ξ

(1)∗
0k e2iδk sin2 (θk) + ξ

(0)
1k ξ

(1)∗
1k eiδk cos (θk) sin (θk)

)
,

A23 =
1∑

k=0

(
− ξ(1)

0k ξ
(0)∗
0k eiδk cos (θk) sin (θk) + ξ

(1)
0k ξ

(0)∗
1k cos2 (θk)

− ξ(1)
1k ξ

(0)∗
0k e2iδk sin2 (θk) + ξ

(1)
1k ξ

(0)∗
1k eiδk cos (θk) sin (θk)

)
,

A24 =
1∑

k=0

(
− ξ(1)

0k ξ
(1)∗
0k eiδk cos (θk) sin (θk) + ξ

(1)
0k ξ

(1)∗
1k cos2 (θk)

− ξ(1)
1k ξ

(1)∗
0k e2iδk sin2 (θk) + ξ

(1)
1k ξ

(1)∗
1k eiδk cos (θk) sin (θk)

)
,

A31 =
1∑

k=0

(
− ξ(0)

0k ξ
(0)∗
0k e−iδk cos (θk) sin (θk)− ξ(0)

0k ξ
(0)∗
1k e−2iδk sin2 (θk)

+ ξ
(0)
1k ξ

(0)∗
0k cos2 (θk) + ξ

(0)
1k ξ

(0)∗
1k e−iδk cos (θk) sin (θk)

)
,

A32 =
1∑

k=0

(
− ξ(0)

0k ξ
(1)∗
0k e−iδk cos (θk) sin (θk)− ξ(0)

0k ξ
(1)∗
1k e−2iδk sin2 (θk)

+ ξ
(0)
1k ξ

(1)∗
0k cos2 (θk) + ξ

(0)
1k ξ

(1)∗
1k e−iδk cos (θk) sin (θk)

)
,
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A33 =
1∑

k=0

(
− ξ(1)

0k ξ
(0)∗
0k e−iδk cos (θk) sin (θk)− ξ(1)

0k ξ
(0)∗
1k e−2iδk sin2 (θk)

+ ξ
(1)
1k ξ

(0)∗
0k cos2 (θk) + ξ

(1)
1k ξ

(0)∗
1k e−iδk cos (θk) sin (θk)

)
,

A34 =
1∑

k=0

(
− ξ(1)

0k ξ
(1)∗
0k e−iδk cos (θk) sin (θk)− ξ(1)

0k ξ
(1)∗
1k e−2iδk sin2 (θk)

+ ξ
(1)
1k ξ

(1)∗
0k cos2 (θk) + ξ

(1)
1k ξ

(1)∗
1k e−iδk cos (θk) sin (θk)

)
,

A41 =
1∑

k=0

(
ξ

(0)
0k ξ

(0)∗
0k sin2 (θk)− ξ(0)

0k ξ
(0)∗
1k e−iδk cos (θk) sin (θk)

− ξ(0)
1k ξ

(0)∗
0k eiδk cos (θk) sin (θk) + ξ

(0)
1k ξ

(0)∗
1k cos2 (θk)

)
,

A42 =
1∑

k=0

(
ξ

(0)
0k ξ

(1)∗
0k sin2 (θk)− ξ(0)

0k ξ
(1)∗
1k e−iδk cos (θk) sin (θk)

− ξ(0)
1k ξ

(1)∗
0k eiδk cos (θk) sin (θk) + ξ

(0)
1k ξ

(1)∗
1k cos2 (θk)

)
,

A43 =
1∑

k=0

(
ξ

(1)
0k ξ

(0)∗
0k sin2 (θk)− ξ(1)

0k ξ
(0)∗
1k e−iδk cos (θk) sin (θk)

− ξ(1)
1k ξ

(0)∗
0k eiδk cos (θk) sin (θk) + ξ

(1)
1k ξ

(0)∗
1k cos2 (θk)

)
,

A44 =
1∑

k=0

(
ξ

(1)
0k ξ

(1)∗
0k sin2 (θk)− ξ(1)

0k ξ
(1)∗
1k e−iδk cos (θk) sin (θk)

− ξ(1)
1k ξ

(1)∗
0k eiδk cos (θk) sin (θk) + ξ

(1)
1k ξ

(1)∗
1k cos2 (θk)

)
. (B.10)

It is now clearer to see where some of these conditions occur. Namely, these

are A12 = A∗13, A42 = A∗43, A21 = A∗31, A24 = A∗34, A22 = A∗33 and A23 = A∗32.

Furthermore, it must be true that

∣∣∣α(0)
11

∣∣∣
2

= 1−
∣∣∣α(0)

00

∣∣∣
2

−
∣∣∣α(0)

01

∣∣∣
2

−
∣∣∣α(0)

10

∣∣∣
2

and (B.11)
∣∣∣α(1)

11

∣∣∣
2

= 1−
∣∣∣α(1)

00

∣∣∣
2

−
∣∣∣α(1)

01

∣∣∣
2

−
∣∣∣α(1)

10

∣∣∣
2

, (B.12)
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meaning we also have that A41 = 1 − A11 and A44 = 1 − A14. Hence, we may

write A as

A =




A11 A12 A∗12 A14

A21 A22 A23 A24

A∗21 A∗23 A∗22 A∗24

1− A11 A42 A∗42 1− A14


 . (B.13)

B.2 Stationary State

As with all the machines we consider, it is vital that they form a stationary state

for our analysis of them. Using the notation defined in eq. (B.4), for a stationary

state ρss, we must have

~ρss =




ρss
00

ρss
01

ρss
10

ρss
11


 =




A11 A12 A∗12 A14

A21 A22 A23 A24

A∗21 A∗23 A∗22 A∗24

1− A11 A42 A∗42 1− A14







ρss
00

ρss
01

ρss
10

ρss
11


 = A ~ρss, (B.14)

This is an eigenvalue problem, where the stationary state is the eigenvector cor-

responding to the eigenvalue 1, i.e. A ~ρss = (1)ρss. Using eq. (B.14), with the

fact that for a density matrix we must have ρ00 +ρ11 = 1 and ρ01 = ρ∗10, the com-

ponents of the stationary state density matrix can be found from the equations

below.

ρ00 = A11ρ00 + A12ρ01 + (A12ρ01)∗ + A14 (1− ρ00) (B.15)

ρ01 = A21ρ00 + A22ρ01 + A23ρ
∗
01 + A24 (1− ρ00) (B.16)

ρ10 = A∗21ρ00 + A∗23ρ01 + (A22ρ01)∗ + A∗24 (1− ρ00) (B.17)

ρ11 = (1− A11) ρ00 + A42ρ01 + (A42ρ01)∗ + (1− A14) (1− ρ00) (B.18)

where the ”ss” notation for stationary state has been dropped for convenience. It

is clear to see from the above equations that ρ01 = ρ∗10 as required. To satisfy ρ00+

ρ11 = 1, we must have Re (A12ρ01) = −Re (A42ρ01). This is true automatically

due to the orthogonality constraint of the states. The simultaneous equations

above can be solved to give the density matrix components in terms of the Aij

terms or the ξ
(i)
jk terms.

129



B.3 Specific Outputs and Probabilities

B.3 Specific Outputs and Probabilities

In a similar way to what was done for the HMM, we can create sub-transition

operators for the HQMM, namely A = A(0) +A(1). This can be done quite simply

for the HQMM from the way we have defined it, specifically the A(0) terms come

from the |µ0〉measurements and the A(1) terms come from the |µ1〉measurements.

The matrices A(0) and A(1) are analogous to the matrices T0 and T1 that were

used for the HMM. Then, we can write

A = A(0) + A(1)

=




A
(0)
11 A

(0)
12 A

(0)
13 A

(0)
14

A
(0)
21 A

(0)
22 A

(0)
23 A

(0)
24

A
(0)
31 A

(0)
32 A

(0)
33 A

(0)
34

A
(0)
41 A

(0)
42 A

(0)
43 A

(0)
44


+




A
(1)
11 A

(1)
12 A

(1)
13 A

(1)
14

A
(1)
21 A

(1)
22 A

(1)
23 A

(1)
24

A
(1)
31 A

(1)
32 A

(1)
33 A

(1)
34

A
(1)
41 A

(1)
42 A

(1)
43 A

(1)
44


 , (B.19)

with,

A
(k)
11 =

(
ξ

(0)
0k ξ

(0)∗
0k cos2 (θk) + ξ

(0)
0k ξ

(0)∗
1k e−iδk cos (θk) sin (θk)

+ξ
(0)
1k ξ

(0)∗
0k eiδk cos (θk) sin (θk) + ξ

(0)
1k ξ

(0)∗
1k sin2 (θk)

)
,

A
(k)
12 =

(
ξ

(0)
0k ξ

(1)∗
0k cos2 (θk) + ξ

(0)
0k ξ

(1)∗
1k e−iδk cos (θk) sin (θk)

+ξ
(0)
1k ξ

(1)∗
0k eiδk cos (θk) sin (θk) + ξ

(0)
1k ξ

(1)∗
1k sin2 (θk)

)
,

A
(k)
13 =

(
ξ

(1)
0k ξ

(0)∗
0k cos2 (θk) + ξ

(1)
0k ξ

(0)∗
1k e−iδk cos (θk) sin (θk)

+ξ
(1)
1k ξ

(0)∗
0k eiδk cos (θk) sin (θk) + ξ

(1)
1k ξ

(0)∗
1k sin2 (θk)

)
,

A
(k)
14 =

(
ξ

(1)
0k ξ

(1)∗
0k cos2 (θk) + ξ

(1)
0k ξ

(1)∗
1k e−iδk cos (θk) sin (θk)

+ξ
(1)
1k ξ

(1)∗
0k eiδk cos (θk) sin (θk) + ξ

(1)
1k ξ

(1)∗
1k sin2 (θk)

)
,

A
(k)
21 =

(
− ξ(0)

0k ξ
(0)∗
0k eiδk cos (θk) sin (θk) + ξ

(0)
0k ξ

(0)∗
1k cos2 (θk)

−ξ(0)
1k ξ

(0)∗
0k e2iδk sin2 (θk) + ξ

(0)
1k ξ

(0)∗
1k eiδk cos (θk) sin (θk)

)
,

A
(k)
22 =

(
− ξ(0)

0k ξ
(1)∗
0k eiδk cos (θk) sin (θk) + ξ

(0)
0k ξ

(1)∗
1k cos2 (θk)

−ξ(0)
1k ξ

(1)∗
0k e2iδk sin2 (θk) + ξ

(0)
1k ξ

(1)∗
1k eiδk cos (θk) sin (θk)

)
,

130



B.3 Specific Outputs and Probabilities

A
(k)
23 =

(
− ξ(1)

0k ξ
(0)∗
0k eiδk cos (θk) sin (θk) + ξ

(1)
0k ξ

(0)∗
1k cos2 (θk)

−ξ(1)
1k ξ

(0)∗
0k e2iδk sin2 (θk) + ξ

(1)
1k ξ

(0)∗
1k eiδk cos (θk) sin (θk)

)
,

A
(k)
24 =

(
− ξ(1)

0k ξ
(1)∗
0k eiδk cos (θk) sin (θk) + ξ

(1)
0k ξ

(1)∗
1k cos2 (θk)

−ξ(1)
1k ξ

(1)∗
0k e2iδk sin2 (θk) + ξ

(1)
1k ξ

(1)∗
1k eiδk cos (θk) sin (θk)

)
,

A
(k)
31 =

(
− ξ(0)

0k ξ
(0)∗
0k e−iδk cos (θk) sin (θk)− ξ(0)

0k ξ
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1k e−2iδk sin2 (θk)

+ξ
(0)
1k ξ

(0)∗
0k cos2 (θk) + ξ

(0)
1k ξ
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1k e−iδk cos (θk) sin (θk)

)
,

A
(k)
32 =

(
− ξ(0)

0k ξ
(1)∗
0k e−iδk cos (θk) sin (θk)− ξ(0)

0k ξ
(1)∗
1k e−2iδk sin2 (θk)

+ξ
(0)
1k ξ

(1)∗
0k cos2 (θk) + ξ

(0)
1k ξ

(1)∗
1k e−iδk cos (θk) sin (θk)

)
,

A
(k)
33 =

(
− ξ(1)

0k ξ
(0)∗
0k e−iδk cos (θk) sin (θk)− ξ(1)

0k ξ
(0)∗
1k e−2iδk sin2 (θk)

+ξ
(1)
1k ξ

(0)∗
0k cos2 (θk) + ξ

(1)
1k ξ

(0)∗
1k e−iδk cos (θk) sin (θk)

)
,

A
(k)
34 =

(
− ξ(1)

0k ξ
(1)∗
0k e−iδk cos (θk) sin (θk)− ξ(1)

0k ξ
(1)∗
1k e−2iδk sin2 (θk)

+ξ
(1)
1k ξ

(1)∗
0k cos2 (θk) + ξ

(1)
1k ξ

(1)∗
1k e−iδk cos (θk) sin (θk)

)
,

A
(k)
41 =

(
ξ

(0)
0k ξ

(0)∗
0k sin2 (θk)− ξ(0)

0k ξ
(0)∗
1k e−iδk cos (θk) sin (θk)

−ξ(0)
1k ξ

(0)∗
0k eiδk cos (θk) sin (θk) + ξ

(0)
1k ξ

(0)∗
1k cos2 (θk)

)
,

A
(k)
42 =

(
ξ

(0)
0k ξ

(1)∗
0k sin2 (θk)− ξ(0)

0k ξ
(1)∗
1k e−iδk cos (θk) sin (θk)

−ξ(0)
1k ξ

(1)∗
0k eiδk cos (θk) sin (θk) + ξ

(0)
1k ξ

(1)∗
1k cos2 (θk)

)
,

A
(k)
43 =

(
ξ

(1)
0k ξ

(0)∗
0k sin2 (θk)− ξ(1)

0k ξ
(0)∗
1k e−iδk cos (θk) sin (θk)

−ξ(1)
1k ξ

(0)∗
0k eiδk cos (θk) sin (θk) + ξ

(1)
1k ξ

(0)∗
1k cos2 (θk)

)
,

A
(k)
44 =

(
ξ

(1)
0k ξ

(1)∗
0k sin2 (θk)− ξ(1)

0k ξ
(1)∗
1k e−iδk cos (θk) sin (θk)

−ξ(1)
1k ξ

(1)∗
0k eiδk cos (θk) sin (θk) + ξ

(1)
1k ξ

(1)∗
1k cos2 (θk)

)
. (B.20)

These parametrisations can be used to describe a general HQMM. However, they

are clearly computationally difficult to implement. Hence, we shall use the specific

example of an open quantum system with instantaneous quantum feedback as a

concrete example to study the behaviour of a HQMM.
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