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Abstract 

 

It has become vital to identify antibacterial drug candidates with novel modes of action to 

address the growing problem of antibiotic resistance. One way of rapidly accessing novel 

antibiotics is to revisit natural product classes that have previously been shown to possess 

antibacterial activity, but have never been clinically exploited. The recent introduction of 

the antibiotics daptomycin, retapamulin, and fidaxomicin to the clinic is a proof of concept 

that revisiting known of novel natural product scaffolds could achieve clinical benefit. In 

this thesis, the benzoisochromanequinone (BIQ) and dithiolopyrrolone (DTP) classes of 

natural products were revisited. 

In chapter three, the BIQ class actinorhodin was subject to a detailed biological 

characterization. γ-actinorhodin was found to possess several requisite properties of a 

useful antibacterial drug candidate; it possessed potent bactericidal anti-Gram-positive 

activity, which included activity against MRSA and VISA strains (MIC90 of 2 μg/ml), was 

found to exhibit selective toxicity against prokaryotes, and displayed low resistance 

potential in vitro.  Mode of action studies showed that γ-actinorhodin acts on the bacterial 

membrane in a manner distinct from other membrane-perturbing agents in clinical use. 

Preliminary studies of safety and efficacy of γ-actinorhodin in vivo showed potential 

promise for treatment staphylococcal infection.  

In chapter four of this thesis, the DPT thiolutin was studied, with an emphasis on 

understanding its mode of antibacterial action. In E. coli, thiolutin demonstrated 

preferential inhibition of RNA synthesis in agreement with earlier studies.  In S. aureus 
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however, while potent bacteriostatic activity was noted, thiolutin showed an unusual 

profile in radiolabel incorporation experiments with no inhibitory effect on any 

macromolecular biosynthetic pathway. Genetic analysis of mutants resistant to thiolutin 

revealed mutations in the S.aureus thioredoxin and in E. coli glutaredoxin redox systems 

components suggesting the involvement of these systems in the reductive activation of 

thiolutin. Inhibition of E. coli transcription and translation could not be detected in vitro, 

even in the presence of reducing agent suggested that RNA polymerase is not the primary 

target of thiolutin. The finding from this study and recent publication (Chan et al. 2017) 

suggest that DTPs exerts their antibacterial activity via a novel mode of action. 

In summary, the findings of this study with thiolutin and γ-actinorhodin underscore the 

utility of revisiting unexploited natural product in the search for antibacterials with novel 

mode of action. 
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Chapter one 

Introduction 

 

1.1. The impact of antibiotic discovery and the problem of antibiotic 

resistance  

Antibiotics are one of the most successful forms of chemotherapy in the history of 

medicine. Following their initial discovery in the early twentieth century, it was widely 

believed that antibiotic use would lead to the eventual eradication of bacterial diseases 

(Aminov 2010). Antibiotics have contributed to an increase of 30 years in average life 

expectancy in developed countries, both as a direct consequence of treating infection and 

indirectly in their prophylactic use to prevent infection following invasive surgeries (Ventola 

2015). However, the widespread use of antibiotics in the treatment of infectious diseases 

has provided the selection pressure necessary to drive the spread of antibiotic resistance 

(Davies and Davies 2010; Ventola 2015).  

The increasing frequency of multidrug-resistant (MDR) and pan-resistant strains like those 

of the ESKAPE pathogen group (Enterococcus faecium, Staphylococcus aureus, Klebsiella 

pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) is 

now a major cause of concern which requires immediate action (CDC 2013). A recent report 

estimated that by 2050, 10 million lives a year and the cumulative of US $100 trillion of 

economic output are at risk due to the rise of antibacterial resistant infections (O’Neill 

2016).  The problem has intensified  following the emergence of resistance to the antibiotic 
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colistin, heralding a disturbing breach of the last group of antibiotics and an end to the last 

line of defense against multidrug-resistant Gram-negative bacterial infections (Cannatelli et 

al. 2016; Elnahriry et al. 2016; Liu et al. 2016; Yu et al. 2016; Zeng et al. 2016). The recent 

death of a patient in Nevada from an infection resistant to all available antibiotics in the US- 

including colistin has gained media attention, and led to public awareness about the 

current threat of bacterial resistance to antibiotics (Chen et al. 2017). This single case 

became a stark reminder of what a post-antibiotic era could look like, and highlighted the 

current complex problem of antibiotic resistance and the catastrophic consequences of 

failing to act. 

It is crucial to identify new antibiotic classes which have a novel mode of action and exhibit 

antibacterial activity against pathogens which are resistant to the current arsenal of 

antibiotics. However, many of the pharmaceutical companies have abandoned their 

antibacterial and infectious disease discovery programs (Fischbach and Walsh 2009; Wenzel 

2004; Silver 2011). Confronted with the scientific, economic, and regulatory challenges, the 

pharmaceutical sector seems incapable of responding to the threat of antibacterial 

resistance. The fact remains that better returns can be made in other areas of therapeutics 

(Silver 2011). Undoubtedly, discovering and developing new antibacterials is an expensive 

and lengthy process even with the right economic incentives in place (Projan and 

Youngman 2002). It is estimated that the research and development cost of a new 

antibiotic is approximately US $1.8 billion, and the time commitment is more than a decade 

(FDA 2004; Wenzel 2004). Additionally, bacterial resistance to antibiotics renders these 

compounds ineffective after a relatively short period of clinical use compared to other 

pharmaceuticals. The field of antibiotic discovery is suffering from 30 years ‘Discovery Void’ 

in which no new classes of antibiotics have successfully progressed from discovery to the 
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clinic (Silver 2011; Ooi and O'Neill 2017). The following section will briefly review the 

methods and strategies employed in the early stages of antibiotic discovery and the reasons 

to support a shift in strategies to find novel antibiotics to address the growing public health 

threat of antibiotic-resistant infections. 

 

1.2. A brief history of antibacterial drug discovery- past and current 

trends  

The earliest recorded antibacterial drug discovery programs, which involved screening of 

hundreds of chemicals and dyes for inhibitory activity, were effective. Prontosil 

(sulfanilamide) one of the first synthetic antibiotics, was discovered by such methods (Silver 

2011). The serendipitous discovery of the first natural product, penicillin, in a laboratory in 

St. Mary's Hospital in London, UK, after a Penicillium rubens (later confirmed to be 

Penicillium chrysogenum) spore landed on a partially opened Petri dish (Fleming 1929). The 

introduction of penicillin to the clinic in the 1940s was soon followed by the discovery of a 

vast number of antibiotics from microbes, in particular from members of the Actinomycetes 

and fungi (Pelaez 2006; Lewis 2013) (Figure 1.1). The majority of antibacterial agents were 

discovered by systematic screening (an approach introduced by Selman Waksman) for 

antibacterial activity from soil-derived streptomycetes against a susceptible indicator 

microorganisms. This period (1940s-1960s) is now referred to as the ˝Golden Age ̏ of 

antibiotic discovery (Lewis 2013; Schatz, Bugie and Waksman 1944). Numerous antibiotics 

discovered until the early 1970s reached the market, and were further improved by 

chemical modifications to increase their activity, lower their toxicity and overcome bacterial 

resistance mechanisms. 
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*Linezolid introduced (2000)  

Cefditoren introduced (2002) 

Daptomycin introduced (2003) 

Telithromycin introduced (2004) 

Tigecycline introduced (2005) 

Retapamulin introduced (2007) 

Fidaxomicin introduced (2012) 

Bedaquiline introduced (2012) 

Oritavancin introduced (2014) 

Teixobactin discovered (2015) 

 

 

 

Methicillin introduced (1960) 

Ampicillin introduced (1961) 

Spectinomycin reported (1961) 

*Nalidixic acid discovered (1962) 

*Trimethoprim introduced (1962) 

Gentamicin discovered (1963) 

Streptogramins discovered (1964) 

Cephalosporins introduced (1964) 

Vancomycin introduced (1964) 

Doxycycline introduced (1966) 

Clindamycin reported (1967) 

 

Penicillin introduced (1942) 

Streptomycin discovered (1943) 

Bacitracin discovered (1943) 

Cephalosporin discovered (1945) 

Chloramphenicol discovered (1947) 

Chlortetracycline discovered (1947) 

Neomycin discovered (1949) 

Colistin discovered (1949) 

Cefditoren discovered (1948) 

* Ciprofloxacin discovered (1981) 

Amoxicillin-calvulanate introduced (1984) 

Daptomycin discovered (1986) 

Imipinem/cilastin introduced (1987) 

*Ciprofloxacin introduced (1987) 

Azithromycin introduced (1993) 

*Linezolid discovered (1996) 

Tobramycin introduced (1997) 

Quinupristin/dalfopristin introduced (1999) 

 

Oxytetracycline discovered (1950) 

Pleuromutilin reported (1951) 

Erythromycin discovered (1952) 

Vancomycin discovered (1956) 

Kanamycin discovered (1957) 

Rifamycin reported (1957) 

Colistine introduced (1959) 

 

1940-1949 2000 onwared1990-19991980-19891970-19791960-19691950-19591930-1939
Before 

1930

*Sulphonamides discovered (1932) 

*Sulphonamides introduced (1936) 

Gramicidin discovered (1939) 

Salvarasan discovered (1909) 

Penicillin discovered (1928) 

Rifampicin introduced (1971) 

Tobramycin reported (1971) 

Cephamycins discovered (1972) 

Minocycline introduced (1972) 

Cotrimoxazole introduced (1974) 

Amikacin introduced (1976) 

 

 

 

 

 

 

 

 

 
Figure 1.1.  Antibiotic drug discovery timeline (adapted from (Lewis 2013; Walsh 2003b; Walsh 2003a; Fischbach and Walsh 2009)) 

* Synthetic compounds 
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By the late 1970s, antibiotic discovery had slowed significantly. In 1977, a new platform for 

antimicrobial and antiviral drug discovery was proposed by Cohen, involving screening for 

inhibitors of specific enzymes involved in bacterial metabolism in a cell-free assay (Cohen 

1977). This approach aimed to identify specific biochemical targets that were essential to 

bacterial survival and absent in humans to overcome issues such as host toxicity (Cohen 

1977). At the time, competition amongst pharmaceutical companies towards introducing 

novel classes of antibiotics stimulated them to find a way to accelerate the drug discovery 

process. The advent of the high-throughput screening (HTS) approach in the 1980s, 

combined with the introduction of combinatorial chemistry, was a breakthrough (Payne et 

al. 2007; Silver 2011). At that point, major pharmaceutical companies abandoned natural 

products in favor of screening large libraries of synthetic molecules for antibacterial 

activity. This is mainly because of the lack of compatibility of traditional natural product 

extract libraries with HTS assays. Although many molecules discovered through HTS 

exhibited potent activity against specific cellular targets, they were often unable to 

penetrate the bacterial membrane or were inactivated in vivo (Payne et al. 2007; Silver 

2011). Consequently, they lacked antibacterial activity.   

The introduction of genomics in the mid-1990s also failed to herald a new era of 

antibacterial discovery as hoped for, even though the products of more than 160 genes 

were determined as essential for bacterial growth and therefore offered potential novel 

targets for new antibiotics. Between 1995 and 2001, 70 HTS campaigns on antibacterial 

targets run against the GlaxoSmithKline (GSK) compound collection resulted in very few 

hits. Most of these hits turned out to be equally toxic to both mammalian and bacterial 

cells, usually as a consequence of the indiscriminate cell membrane disruption, leading to 

disappointment with this approach (Payne et al. 2007; Lam 2007).  
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The rarity of novel antimicrobial scaffolds reaching the clinic has become evident over the 

last 40 years. Only the streptogramin mixture, dalfopristin/quinupristin (Manfredi 2005), 

the oxazolidone linezolid (Ford, Zurenko and Barbachyn 2001), the lipopeptide daptomycin 

(Carpenter and Chambers 2004), the ketolide telithromycin (Shi, Montay and Bhargava 

2005), the pleuromutilin retapamulin (Parish and Parish 2008), and the macrocycle 

fidaxomicin (Cornely et al. 2012), can be considered new antibiotic classes. However, 

almost all of these classes are narrow spectrum, and potent antibacterial scaffolds active 

against Gram-negative pathogens have not been introduced. Through history, it can be 

concluded that the current absence of antibiotic productivity is mainly attributed to the 

poor choice of approaches to address the discovery of new antibiotics. The transition from 

screening natural products to combinatorial chemistry during the 1980s, combined with the 

switch from traditional screening to target based HTS may have led to the current lack of 

new scaffolds in drug development pipelines (Harvey, Edrada-Ebel and Quinn 2015). The 

answer to the current dilemma might be to return to the natural product whole cell 

screening platform.  

It is a well-known fact that microbial natural products have been the source of almost all 

antibiotic scaffolds currently used in the clinical setting (Clardy, Fischbach and Walsh 2006; 

Walsh 2003a; Newman and Cragg 2016). To date, antibacterial discovery has yielded over a 

dozen distinct and clinically relevant chemical scaffolds, all of which are naturally derived 

excluding the oxazolidinones, quinolones, sulfonamides, and trimethoprim (Figure 1.2). Re-

establishing natural products as the primary source of leads, coupled with using the current 

advanced screening strategies would offer a better opportunity to obtain novel and useful 

therapeutic agents (Berdy 2012; Milshteyn, Schneider and Brady 2014; Rutledge and Challis 

2015). Although the larger pharmaceutical companies terminated their natural product 
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Figure 1.2. Representative classes of antibacterial agents of (A) natural product origin and (B) synthetic origin 

A 

B 



 
 

8 

 

 

programs in the 1990s, efforts from academic universities and start-up companies have 

continued in the area. However, owing to insufficient sources of suitable compounds to 

screen together with poorly validated discovery methodologies, repeated rediscovery of 

previously known compounds with limited antibiotic lead potential, dominates most efforts 

(Baltz 2006).  

To address the challenges of discovering novel chemical scaffolds with desirable 

antibacterial properties from nature, process miniaturization is required to increase the 

throughput by a considerable measure over traditional screening. In addition,  methods 

that can be monitored and improved over time are needed, to minimize the rediscovery of 

known antibiotics (Lok 2015; Baltz 2006). Two approaches can be employed for new classes 

of antibiotics to be introduced. The first is to search for new scaffolds in nature using new 

assays, and new cultivation methods and, in new niches to maximize the chance of finding 

novel compounds. The second approach, which is the scope of this research, is to revisit 

clinically unexploited natural products that showed some antibacterial promise and 

ascertain if the reasons for failure can be overcome. Each approach has its opportunities 

and challenges that will be briefly discussed in the following sections. 

 

1.3. Approaches for developing new antibacterial agents 

1.3.1. New antibiotic from under- and unexploited microbial sources 

Most clinically useful antibiotics are produced by soil-dwelling microorganisms that form 

spores or resting structures; the actinomycetes, primarily Streptomyces spp., account for 

the production of more than 60% of the known antibiotics (Pelaez 2006; Demain and 

Sanchez 2009). In view of the fact that a vast number of bioactive metabolites from 
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Streptomyces spp. have already been identified, the likelihood of finding novel 

antimicrobial leads among conventional actinomycetes have substantially diminished owing 

to the rediscovery of known compounds (Singh 2014). Therefore, more current efforts are 

concentrated on less exploited genera in soil ecology, mostly non-streptomycetes 

actinomycetes or rare actinomycetes such as Actinomadura, Actinoplanes, Amycolatopsis, 

Microbispora, Micromonospora, Streptosporangium and Saccharopolyspora  (Lazzarini et al. 

2000). Rare actinomycetes are strains of actinomycetes whose isolation frequency by 

conventional methods is much lower than that of streptomycete strains (Jose and 

Jebakumar 2013). these strains are considered a source of promising natural products since 

they produced many useful antibiotics including the rifamycins (produced by Amycolatopsis 

mediterranei), erythromycin (produced by Saccharopolyspora erythraea), teicoplanin 

(produced by Actinoplanes teichomyceticus), vancomycin (produced by Amycolatopsis 

orientalis), and gentamicin (produced by Micromonopsora purpurea) (Tiwari and Gupta 

2012). A literature survey conducted by Lazzarini and others has revealed that out of more 

than 8,000 antimicrobial products described in the database, 16% of bioactive microbial 

products are produced by strains considered rare actinomycetes, increasing the relevance 

of this group as a source of new antibiotics (Lazzarini et al. 2001). 

It has been established that the isolation of rare actinomycetes in the laboratory 

environment can be stimulated by pre-treatment of soil by drying and heating or adding 

antibiotics that inhibit the growth of competing bacteria, including fast-

growing Actinomycetes (Subramani and Aalbersberg 2013). Additionally, developing 

methods such as ultrasonic treatments and high-frequency irradiation, have also supported 

selectivity for rare actinomycetes, allowing more fruitful screening (Subramani and 

Aalbersberg 2013). Past and present efforts in the isolation of rare actinomycetes have 
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generated a strain collection with more than 20,000 strains, showing that when selective 

isolation methods are established and comprehensively applied, some genera, such as 

Actinomadura, Actinoplanes, Micromonospora, Microtetraspora, are not, in fact, rare but 

can be recovered from many soil samples (Suzuki, Okuda and Komatsubara 1999; 

Hayakawa et al. 1996; Lazzarini et al. 2001). One chemical lead discovered in Biosearch 

Italia is the antibiotic GE2270 that selectively targets elongation factor Tu in bacterial 

protein synthesis, from the producing organism Planobispora rosea (Selva et al. 1991). 

Currently, an amide derivative of GE2270 (CB-06-01) is undergoing Phase II dose ranging 

clinical trial as a topical antibiotic for the treatment of mild to moderate acne (Cassiopea 

2017). 

Another approach to access and expand the chemical diversity of microbial secondary 

metabolite involves isolation of new microbial species (Singh and Pelaez 2008). 

Uncultivable microorganisms isolated from exploited habitats (Piddock 2015) and 

underexploited species found in extreme environments have been shown to produce a 

range of complex natural products with high biological activity (Mohammadipanah and 

Wink 2016). Growing bacteria that have previously not been cultured is a successful 

approach to finding unexploited microbial genera, and methods for this have been 

established (Kaeberlein, Lewis and Epstein 2002; Nichols et al. 2010). The principle of this 

approach is to grow microorganisms in their natural environment. This is done by 

introducing a marine sediment or soil sample diluted with agar between two 

semipermeable membranes and placing this diffusion chamber back into the natural 

environment. Compounds diffuse freely through the chamber, and microorganisms 

perceive it as their natural environment (D'Onofrio et al. 2010). Repeated re-inoculation 

from chamber to chamber results in the domestication of a considerable proportion of 
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uncultured microorganisms, which enables their subsequent growth in standard laboratory 

conditions (Bollmann, Lewis and Epstein 2007). NovoBiotic Pharmaceuticals (Cambridge, 

MA, USA) in collaboration with the University of Bonn in Germany and Northeastern 

University in USA has been using in situ cultivation for antibiotic discovery and recently 

reported the discovery of new antibiotic, teixobactin, from the newly discovered Gram-

negative bacterium Eleftheria terrae with properties that minimize the development of 

bacterial resistance (Ling et al. 2015).  

Of several alternative habitats than soil, the marine environment stand for a promising 

source of for new bioactive molecules (Ziemert et al. 2014; Zhao 2011). In contrast to 

terrestrial habitats, marine environment is a rich source of novel chemical classes, in which 

many marine natural products are characterized by the marine factors such as halogens 

(Wietz et al. 2013; Fenical 1993). Exploring the oceans has led to the discovery of new 

secondary metabolites isolated from algae, sponges or corals (Mehbub et al. 2014). 

However, recent studies have credited the production of many of these compounds to 

microbes, associated with the eukaryotic organism presumably thought to be the producer 

(Wilson et al. 2014). However, toxicity has to date been problematic for secondary 

metabolites derived from the sea, which has so far precluded their development as 

antibiotics (Buchanan et al. 2005).  

Despite all the potentials of the approaches above, isolation of new natural product 

scaffolds remains a lengthy process that requires particular expertise (Shore and Coukell 

2016). The task of identifying the main active components in microbial filtrates can be 

complicated even with advanced technology at hand (Lim and Hai-Meng 2013). Besides, it 

appears that the problem is more complicated than simply a need for more innovative 

screening. Most natural product scaffolds exhibit a range of challenges that often include 
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cytotoxicity, lack of solubility, high protein binding, and a lack of activity against Gram-

negative bacteria (Silver 2011). Finding those rare novel natural products that are effective 

and nontoxic will require sustained and focused effort (Silver 2011; Lim and Hai-Meng 

2013). 

 

1.3.2. Revisiting abandoned natural product scaffolds   

To evade some of the drawbacks of past and current attempts to identify novel 

antibacterial agents, re-evaluation of previously discarded natural products which have 

been reported previously to possess antibacterial activity may offer some potential 

(Chopra, Hesse and O'Neill 2002; Zahner and Fiedler 1995).  Although a proportion of such 

compounds might have been assessed and excluded for development as they display 

unfavorable properties, it is also feasible that many might not have been carefully 

evaluated as antibacterial drug candidates by scientists with appropriate drug discovery, 

natural products, and medicinal chemistry expertise. The introduction of the antibiotics 

linezolid, daptomycin, retapamulin, and fidaxomicin to the clinic represents a proof of 

concept of that innovative revisiting of antimicrobial chemical matter with fresh eyes could 

achieve clinical benefit (Wright 2012; Silver 2011). None of these antibiotics represent truly 

novel classes of drugs, given that they have been discovered in decades past and either 

repurposed for human use or revived from shelved projects (Wright 2012).  

The antimicrobial properties of the oxazolidinone scaffold were first discovered by 

researchers at DuPont in the 1970s and shown to be effective in the treatment of bacterial 

and fungal plant diseases (Robert B. Fugitt 1978), and for treating bacterial infections in 

mammals (Slee et al. 1987).  In the 1990s, the scaffold was modified by researchers at 
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Pharmacia and Upjohn, (now part of Pfizer), using traditional medicinal chemistry efforts 

into the first-in-class drug Zyvox, which received FDA-approval in 2000 (Barbachyn and Ford 

2003; Ford, Zurenko and Barbachyn 2001). Similarly, daptomycin was first isolated in 1987 

from the soil actinomycete, Streptomyces roseosporus, by scientists at Eli Lilly from a soil 

sample from Mount Ararat (Turkey) (Debono et al. 1987).  Phase I and II clinical trials were 

conducted in the late 1980s, and early 1990s, and resulted in the termination of the 

intravenous (IV) daptomycin clinical programs because of toxicological concerns 

(Woodworth et al. 1992). Daptomycin was then acquired by Cubist in the mid-1990s, who 

focused their efforts on developing formulation for oral and topical clinical indications to 

limit the systemic exposure and re-deployed with alternate dosing for the IV treatment, and 

received FDA approval in 2003 for the treatment of skin and skin structure infections 

caused by Gram-positive pathogens (Baltz, Miao and Wrigley 2005; Carpenter and 

Chambers 2004; Eisenstein, Oleson and Baltz 2010). The pleuromutilins were first 

discovered in 1951 (Kavanagh, Hervey and Robbins 1951), and used for years in veterinary 

medicine, but revisited by GlaxoSmithKline (GSK) and presented as semisynthetic 

retapamulin for topical human use, gaining FDA approval in 2007 (Parish and Parish 2008). 

Fidaxomicin has a similar history, identified by groups at Lepetit in 1975 as a poorly 

absorbed antibiotic. Optimer took advantage of the poor solubility of fidaxomicin to 

selectively target infections caused by the serious intestinal pathogen Clostridium difficile, 

and eventually brought to market (Poxton 2010). 

It seems this approach is more likely to yield more rapid results and a greater number of 

new classes to the antibiotic pipeline to address the current antibiotic resistance crisis. 

However, antibiotic discovery has a long history and much of the published research is 

buried in old journal issues or out of print books, and other research (especially industrial) 
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never makes it to publication (Shore and Coukell 2016). Thousands of different natural 

products have been isolated from cultures of Gram-positive and Gram-negative bacteria 

and of filamentous fungi. However, only a small proportion of these have been used 

commercially as therapeutics (Kumar, Duraipandiyan and Ignacimuthu 2014). Shaping this 

body of research and making it accessible to investigators who need it is critical for 

advancing discovery. Valuable knowledge may include assemblies of screens that have 

been run before and information on past research programs. While plenty of these 

materials are widely available, what may be most beneficial is a justification of what made 

these projects unsuccessful, and why. 

 

1.4. Preclinical evaluation of novel antibacterial agents 

The development of novel antibacterial agents requires extensive preclinical evaluation to 

ensure that antibacterial activity is correlated with inhibition of a specific bacterial target 

with low, or no activity against eukaryotic homologues, before it will be approved for entry 

into the prolonged and costly process of clinical trials (O'Neill and Chopra 2004; Silver 

2011). In addition, preclinical evaluation includes determining the antimicrobial spectrum 

of activity in vitro, and the level of selective bacterial inhibition. These studies provide a 

preliminary evaluation of therapeutic potential (O'Neill and Chopra 2004). One important 

consideration when characterizing the biological properties of a novel antibiotic is the 

necessity for the use of standardized methodology for susceptibility testing. Using 

standardized method (such as CLSI) will allow for susceptibility data to be reproducible and 

the efficacy of novel antibiotic to be assessed properly (Andrews 2001; CLSI 2012). 

Determination of MIC of an antibiotic should be done. For therapeutic concentrations, the 
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MIC of an antibiotic at the site of infection should be three to four times the MIC. 

Concentrations greater than this generally do not improve the therapeutic effect and tends 

to increase the likelihood of toxicity (Leekha et al., 2011).  

Defining the mode of action of a novel compound is also an important phase of pre-clinical 

evaluation (O'Neill and Chopra 2004). The mode of action is the biochemical event by which 

the growth of a sensitive microorganism is inhibited as a result of the antibiotic 

interference with a target molecule essential for the survival of the host bacteria (Walsh 

2003a). To date, the antibacterial therapeutic field is a target-poor environment. Despite 

thousands of molecules exhibiting antibiotic properties, there are essentially five major 

clinically validated antibacterial targets/pathways (Walsh 2003b; Hancock 2005; O'Neill and 

Chopra 2004). As shown in Figure 1.3, these include bacterial peptidoglycan/cell wall 

biosynthesis, bacterial protein synthesis, nucleic acid synthesis, folate biosynthetic 

pathway, and the most recent target of bacterial membrane integrity. 

However, understanding many of the bacterial responses that occur as a consequence of 

the primary drug-target interactions remain incomplete. When the target identification of 

novel agents could not be addressed, the prospects for the development of these 

compounds will rely on elucidating their selectivity for prokaryotic organisms (O'Neill and 

Chopra 2004). The selective toxicity of antibiotics against bacteria is usually a consequence 

of the absence of their cellular targets in eukaryotes, are sufficiently different structure to 

an equivalent eukaryotic homologue, or are non-accessible. 
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Figure 1.3. Schematic of the cellular targets of established antibacterial agents, grouped by target site (adapted from (Walsh 2003b)) 

*Synthetic compounds 
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There are a large number of established methods available to gain a full understanding of 

the mode of action, and the experiments described in Chapter 3 and Chapter 4 of this 

thesis, have been successfully used in earlier studies (Oliva et al. 2003; Oliva et al. 2004; 

Randall et al. 2013b; Ooi et al. 2013). Initial mode of action studies might include 

measurements of the effect of compounds on an essential bacterial macromolecular 

synthetic process through incorporation of radiolabelled precursors. This assay rapidly 

identifies the most sensitive biosynthetic pathway to inhibition by compounds and 

consequently provide a focus for more detailed experiments to be carried out (O'Neill and 

Chopra 2004). Compounds that damage the bacterial membrane simultaneously inhibit all 

biosynthetic pathways and membrane perturbation can be confirmed by measuring the 

ingress and egress of fluorescent dye and leakage of intracellular components (O'Neill et al. 

2004). Before the introduction of daptomycin and telavancin for clinical use, membrane-

based activities had been considered an undesirable property of a novel inhibitor, as some 

compounds may have promiscuous interaction with both prokaryotic and eukaryotic 

membranes (Hurdle et al. 2011).  Agents with novel targets or those that affect essential 

bacterial components are desirable as resistance to these agents is less likely to arise by 

minor alterations to either existing resistance mechanisms or conserved structures. The 

development of resistance should be assessed during preclinical evaluation, as resistant 

mutants can provide insight into the cellular target of the compound. 

 

1.5. Objective of the study 

Due to the increasing prevalence of infections caused by multidrug-resistant bacteria and 

the lack of novel antibiotics in development, this research aimed to identify potential 
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candidates for use in the treatment of resistant bacterial infections. The lessons in bringing 

the most recent classes of antibiotics to market are substantial and exemplify the 

significance of revisiting old scaffolds from natural products. To avoid some of the 

drawbacks of past and current attempts to identify novel antibacterial compounds, studies 

were conducted with compounds that were already shown to have activity against whole- 

bacterial cells: the benzoisochromanequinone (BIQ) and dithiolopyrrolone (DTP) classes of 

natural products were revisited. Representative compounds from these classes would be 

isolated and purified from producing microorganisms unless commercially available. 

Compounds would be screened for activity against laboratory and clinically relevant Gram-

positive and Gram-negative cultures.  

Characterization of the mode of action is a critical aspect of novel drug development 

(O'Neill and Chopra 2004). Therefore, the time-kill kinetics and mode of action studies of 

compounds under investigation would be carried out. The development of resistance to 

agents would be explored, in order to estimate the chance of resistant developing in the 

clinic. Subsequently, the genetic basis of resistant mutants would be studied via genome 

sequencing and the contribution of any identified mutations will be confirmed. Additionally, 

the resistant mutants would be subjected to cross-resistance examination to provide 

further information regarding the cellular target of the compound. Finally, compounds with 

useful antibacterial activity would be assessed for bacterial specificity, effects on 

mammalian cells in vitro, and in vivo safety and efficacy in an experimental animal model.  
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Chapter two 

Materials and methods   

 

 

2.1. Strains and growth conditions 

Laboratory strains of bacteria and yeast used in this study are listed in Table 2.1.  Clinical 

isolates of S. aureus used for susceptibility testing were part of a culture collection 

belonging to the Antimicrobial Research Centre, University of Leeds. The actinorhodin 

overproducer strain Streptomyces coelicolor, L646 (kindly provided by K. McDowall, 

University of Leeds), was used as the source of γ-actinorhodin and was propagated on ISP 

medium 2 (Difco) containing 50 µg/ml apramycin at 30°C. 

Bacteria (with the exception of S. coelicolor L646) were routinely cultured in Mueller-

Hinton broth (MHB) and on Mueller-Hinton agar (MHA) (Oxoid Ltd, Cambridge, UK) for 24 

h at 37°C, whilst Candida albicans was grown in Lysogeny broth (LB) and on Lysogeny agar 

(LA) (Oxoid) for 48 hours at 35°C. 
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Table 2.1: Strains used in this study   

Strain Genotype or description Reference/ Source 

Staphylococcus aureus 

SH1000 

 

Laboratory strain derivative of strain 8325-4, containing functional rsbU 

 

(Horsburgh et al. 2002) 

KS100 SH1000 deficient in catalase KatA (katA::Tn917 (ery)) (Cosgrove et al. 2007) 

KC043 SH1000 deficient in catalase KatA and alkyl hydroperoxide reductase AhpC (ahpC::tet katA::Tn917 (ery)) (Cosgrove et al. 2007) 

MHKA SH1000 deficient in superoxide dismutase SodA (sodA::Tn917) (Karavolos et al. 2003) 

MHKM SH1000 deficient in superoxide dismutase SodM (sodM::tet) (Karavolos et al. 2003) 

MHKAM SH1000 deficient in superoxide dismutase SodA and SodM (soda::Tn917 sodM::tet) (Karavolos et al. 2003) 

Escherichia coli 

BW25113 

 

Derivative of E.coli K12 strain BD792 (lacIq rrnBT14ΔlacZWJ16hsdR514 ΔaraBADAH33ΔrhaBADLD78) 

 

(Baba et al. 2006) 

ΔacrAB Derivative of BW25113 deficient in AcrAB efflux pump (acrAB::kan) (Baba et al. 2006) 

Δtolc Derivative of BW25113 deficient in TolC efflux pump (tolC:: kan) (Baba et al. 2006) 

ΔtrxA Derivative of BW25113 deficient in thioredoxin 1 (trxA::kan) (Baba et al. 2006) 

ΔtrxB Derivative of BW25113 deficient in thioredoxin reductase (trxB::kan) (Baba et al. 2006) 

ΔtrxCA Derivative of BW25113 deficient in thioredoxin 2 (trxC::kan) (Baba et al. 2006) 

ΔgshA Derivative of BW25113 deficient in glutamate-cysteine ligase (gshA::kan) (Baba et al. 2006) 

ΔgshB Derivative of BW25113 deficient in glutathione synthase (gshB::kan)  (Baba et al. 2006) 

ΔgrxA Derivative of BW25113 deficient in glutaredoxin 1 (grxA::kan) (Baba et al. 2006) 

ΔgrxB Derivative of BW25113 deficient in glutaredoxin reductase (grxB::kan) (Baba et al. 2006) 

ΔgrxC Derivative of BW25113 deficient in glutaredoxin 2 (grxC::kan) (Baba et al. 2006) 
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Table 2.1: Continued 

Strain Genotype or description Reference/ source 

S. epidermidis ATCC 14990 Control strain for Staphylococcus epidermidis isolated from nose ATCC 

S. haemolyticus ATCC 29970 Control strain for Staphylococcus haemolyticus isolated from human skin ATCC 

Streptococcus pyogenes ATCC 
19615  

Control strain for Streptococcus Group A isolated from pharynx of child following episode of sore throat ATCC 

S. pneumoniae ATCC BAA-255 Non-virulent strain ATCC 

Enterococcus faecalis  ATCC 
29212 

Control strain for Enterococcus faecalis isolated from urine ATCC 

E. faecium 7634337 Vancomycin resistant enterococci (VRE) strain Leeds General 
Infirmary 

Klebsiella pneumoniae NCTC 
9145 (K25) 

Unencapsulated wild-type strain isolated from clinical specimen NCTC 

Acinetobacter baumannii 
ATCC 19606 

Control strain for Acinetobacter baumannii isolated from urine ATCC 

Pseudomonas aeruginosa 
ATCC 15692 (PAO1)  

Opportunistic strain of Pseudomonas isolated from infected wound ATCC 

   

Yeast   

Candida  albicans CA-6 Azole-sensitive strain with normal sterol profile (Martel et al. 2010) 

Streptomyces coelicolor    

S. coelicolor L646 S. coelicolor M145 containing an integrating plasmid overexpressing wild-type atrA, which leads to hyper-
production of actinorhodin 

(Towle 2007) 
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2.2. Extraction and purification of γ-actinorhodin 

The method for extraction and purification was optimized in close cooperation with 

Sannia Farooque (School of Chemistry, University of Leeds, UK) to target the extraction of 

pure γ-actinorhodin (Figure 2.1.). S. coelicolor L646 was grown on ISP2 agar at 30°C for six 

days, at which point the medium turned deep blue in colour owing to secretion of 

actinorhodins. The agar was manually fragmented and the pigment extracted twice with 

ethyl acetate at 30°C for an hour with shaking (200 rpm). The resulting red extract was 

then concentrated on a rotary evaporator in vacuo, dissolved in chloroform, and washed 

with aqueous sodium carbonate solution (pH 10.8, 60 mL ×3). The blue aqueous layer was 

acidified with hydrochloric acid (6 M), and the crude red pigment was obtained by 

filtration. -Actinorhodin was then triturated from methanol (red precipitate, 125 mg, 

19%). RF 0.29 (1% MeOH in dichloromethane). All NMR experiments, interpretation of 

signals, and purity determination of -actinorhodin were performed by Sannia Farooq 

(School of Chemistry, University of Leeds).  The identity and purity (95%) of -

actinorhodin was assessed using mass spectrometry, 1-D NMR, 2-D NMR and infrared 

spectroscopy and analytical HPLC. 

 

 

 

 

 

 



 
23 

 

 

 

 

Figure 2.1. Overview of γ-actinorhodin extraction and purification 

 

• Extracted	twice	with	ethyl	acetate,	filtered	
concentrated	in	vacuo,	and	dissolved	in	
chloroform.		

• Crude	extract	was	subjected	to	alkyne	wash,	
acidified	and	then	recrystallized	

Produc on	of	dark	blue	
diffusible	pigment	into	
ISP2	agar	plates	(4-6	

days)	
(3	L)	

650	mg	of	dried	crude	
extract	

Iden fied	by	1H	NMR	
and	characterised		by	
1-D	,2-D	NMR,	and	MS	

γ-ac norhodin	



 
24 

 

 

2.3. Antibacterial agents, chemicals, and kits 

Antibacterial agents were from Sigma-Aldrich (Saint Louis, Missouri, USA) unless 

otherwise stated.  Thiolutin (LKT Laboratories, Inc, Saint Paul, Minnesota, USA), 

holomycin (Santa Cruz Biotechnology, Inc, Heidelberg, Germany), vancomycin (LEK 

Pharmaceuticals, Ljublijana, Slovenia), cetyltrimethylammonium bromide (CTAB) (BDH 

Laboratory Supplies, Poole, UK), linezolid (Pfizer, Kalamazoo, Michigan, USA), 

ciprofloxacin (Bayer, Leverkusen, Germany), nisin (NBS Biologicals Ltd, Huntingdon, UK), 

daptomycin (Cubist Pharmaceuticals, Massachusetts, USA), and nisin (Duchefa Biochemie, 

Haarlem, Netherlands). 

Radiolabelled chemicals were from PerkinElmer (Waltham, Massachusetts, USA), whilst 

3,3′-dipropylthiadicarbocyanine iodide [DiSC3(5)], the Live/Dead BacLightTM kit, and SYBR 

safe gel stain were from Invitrogen (Carlsbad, California, USA); unless otherwise stated, all 

other chemicals were from Sigma-Aldrich.   

The PureEluteTM bacterial genomic kit was from EdgeBio (Gaithersburg, MD, USA), 

Phusion® High-Fidelity PCR Kit was from New England Biolabs (Hitchin, UK), QlAquick PCR 

purification kit was from Qiagen (Manchester, UK). The E. coli S30 Extract System for 

Circular DNA kit, CytoTox-ONETM Homogeneous Membrane Integrity Assay, and the PCR 

nucleotide mix were from Promega Corporation (Madison, USA).  Unless otherwise 

stated, all other kits were from Sigma-Aldrich. 
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2.4. In vitro antimicrobial activity 

2.4.1. Standard susceptibility testing  

The Minimum Inhibitory Concentrations (MICs) of antibiotics against bacterial isolates 

was determined by broth microdilution according to Clinical and Laboratory Standards 

Institute (CLSI) guidelines (CLSI 2012). Antifungal activity was assessed in essentially the 

same way, though used LB in place of MHB, and MICs were read after 48 hours’ 

incubation at 35°C. Media was supplemented with 4 µg/ml polymyxin B nonapeptide 

(PMBN) to test the role of membrane permeability on antibiotic delivery against Gram-

negative bacteria (Vaara 1992).  

Following incubation, the MIC was defined as the lowest concentration of antibiotic that 

inhibited all visible growth. MIC determination with appropriate comparator antibiotics 

was undertaken to permit comparison of the antibacterial activity of the investigated 

natural products with existing clinical agents against the tester strains. Positive control 

(growth control) and solvent control were included in each experiment. Susceptibility 

testing was conducted on a minimum of three independent occasions to ensure 

reproducibility.  

 

2.4.2. Time –dependent killing (time-kill) studies 

Studies to determine the bactericidal activity were carried out on exponential-phase 

cultures using a method described elsewhere (Ooi et al. 2013). Briefly, bacteria were 

cultured to early exponential phase and diluted to a final density of 105-106 CFU/ml in 

MHB and challenged with antibacterial agents at 4x MIC. Time-kill experiments were also 
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performed with bacterial cells in non-growing states. Overnight cultures of SH1000 were 

harvested by centrifugation and cells were re-suspended in the spent supernatant to 105-

106 CFU/ml before exposure to antibacterial agents. 

Following antibiotic challenge, bacterial viability was monitored by plating cultures onto 

MHA, and enumerating colonies after incubation at 37°C for 18–24 h to allow plotting of 

log10 CFU/ml versus time. Bactericidal activity was defined as a reduction of ≥3 log10 

CFU/ml relative to the initial inoculum (Petersen, Jones and Bradford 2007; CLSI 1999). All 

experiments were performed in three independent cultures and values are expressed as 

mean ± standard deviation (SD). 

 

2.5. Mode of action studies   

2.5.1. Macromolecular synthesis (MMS) assay  

MMS assays were performed in 96-well microtiter plates with an assay volume of 200 μl 

per well. The effect of the investigated compounds and control agents was monitored in 

early exponential phase cultures (108 CFU/mL in LBB) of S. aureus and E. coli by following 

the incorporation of radiolabeled precursors into TCA-precipitable material (Greenwood 

and Gentry 2002). The radioactive precursors [methyl-3H] thymidine (70–95 Ci/mmol), [5, 

6-3H] uridine (31–56 Ci/mmol),  [3,4-3H(N)] glutamine (20–50 Ci/mmol), [1,2-14C] acetic 

acid (45-60 mCi/mmol), and 14C (U)-glycine (>80 mCi/mmol) were used to monitor the 

synthesis of DNA, RNA, protein, fatty acid and peptidoglycan, respectively. 

 Cultures were grown to early exponential phase (OD600 of 0.2) in LB. Culturs were labled 

by the addition of radiolabel precursors at 1μCi/ml for 10 minutes at 37 °C.. Samples were 

incubated for 10 minutes, and incorporation was terminated by the addition of (1:1) of 
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TCA and cooling on ice for 60 minutes to allow for the precipitation of macromolecules 

(these cultures correspond to experimental time zero). The remainder of each culture was 

then treated with test compounds at 4x their respective MIC. After 10 min of incubation, 

100 µl of the treated culturs was mixed with an equal amount of 10% TCA and kept on ice 

for 60 min. TCA precipitates were collected on MultiScreen Filter Plates using a 

MultiScreen Vacuum Manifold (Millipore), washed twice with TCA and acetic acid, dried, 

and radioactivity counted in a Plate CHAMELEON™V scintillation counter after adding 25 

µl of MicroScint 20 scintillation fluid (Perkin Elmer, Waltham, MA) to each well of the 

filter plates. For each set of experiments, antibiotics known to inhibit all pathways were 

included. The data were expressed as a percentage of incorporation into a drug-free 

control as described previously (Hilliard et al. 1999). All experiments were performed in  

at least three independent cultures. Statistical significance of data was detemined by 

applying a student’s t-test using GraphPad Prism virsion 5 (GraphPad Software, USA). 

Differences were considered significant if *p ≤0.05. 

 

2.5.2. In vitro transcription/translation assays  

The E. coli S30 extract system for circular DNA (Promega) was used according to the 

manufacturer’s instructions with some modification. An optimized quantity of S30 extract 

was used. Briefly, 8 µL of S30 extract, 8 µL of S30 pre-mix, 2.5 µL of mixture of amino 

acids, and 1 μg/µL pBESTlucTM DNA were added in a total volume of 25 µL reaction. 

Antibiotics (1 µL) were pre-incubated with or without pBESTlucTM DNA for 10 minutes in 

accordance with assay requirements. Reactions were incubated at 37°C for 1 hour, and 

the level of transcription/translation was quantified by the addition of a saturating 
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concentration of luciferase assay reagent and subsequent measurement of luminescence 

using a Flustar Optima plate reader (BMG labtech, Ortenberg, Germany). 

  

2.5.3. Membrane perturbation assays 

2.5.3.1. Assessment of bacterial membrane integrity using BacLightTM  

The LIVE/DEAD BacLight bacterial viability kit was used to assess membrane integrity of 

bacteria re-suspended in water following exposure to antibacterial agents at 4× MIC for 

10 minutes (Hilliard et al. 1999). S. aureus SH1000 was grown to OD600 0.5-0.6. Volumes of 

cultures were washed in sterile deionized water and re-suspended to twice the volume. 

Cells were incubated with 5% SDS or test compounds at 4x MIC for 10 minutes at 37°C 

with aeration and then washed and re-suspended in water. A volume of 50 μl of the 

bacterial suspension was added to the corresponding wells of the 96-well plate containing 

150 μl of a 1:1 (v/v) mixture of two dyes; SYTO® 9 (green fluorescent) and propidium 

iodide (PI) (red fluorescent), was diluted 300-fold from a stock solution provided by the 

manufacturer and mixed into sterile dH2O in diminished light. The content of each well 

was mixed thoroughly and incubated in the dark for 15 minutes at room temperature. 

Fluorescence was then measured in a Multidetection Microplate Reader (FLUOstar 

Omega, BMG LABTECH, and Offenburg, Germany) at an excitation of 485 nm and 

emission of 520 nm or 620 nm.  The ratio of green to red fluorescence was determined 

and normalized against a drug-free control. Percentage membrane integrity of antibiotic/ 

inhibitor- treated SH1000 was expressed as the ratio of the green: red relative to cultures 

treated with 5% SDS. Compounds were considered membrane damaging if they caused > 
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30% loss of membrane integrity. All experiments were performed in three independent 

cultures and values were expressed as mean ± standard deviation (SD).  

 

2.5.3.2. Measurement of cytoplasmic membrane potential using DiSC3(5) 

The membrane potential of bacterial cells following exposure to antibacterial agents over 

a 3 hour period at 4 x MIC was monitored using the fluorescent dye DiSC3(5), as previously 

described (Higgins et al. 2005). Briefly, cultures of S. aureus SH1000 were grown to 

exponential phase (OD600 of 0.2), washed twice and re-suspended in 5 mM HEPES/glucose 

buffer. For membrane potential measurements, cells were incubated with 0.1 M KCl and 2 

µM DiSC3(5) for 30 minutes at 37°C to allow uptake of dye. Subsequently, cultures were 

exposed to compounds at 4x MIC and samples removed at appropriate time points. Cells 

were pelleted, and 1 ml of supernatant was mixed with 1 ml of DMSO. The pellet was 

lysed in DMSO for 10 minutes and was then added to an equal volume of HEPES/glucose 

buffer. Extracellular and intracellular fluorescence was measured on a LS 45 luminescence 

spectrometer (ParkenElmer) at an excitation of 622 nm and an emission of 670 nm. 

Membrane potential was calculated using the Nernst equation 

∆𝛹 = −
𝑅𝑇

𝐹
 In (

Intracellular DiSC3(5)

Extracellular DiSC3(5)
) 

and was expressed as a percentage of the initial value. ΔΨ is the membrane potential in 

mV, R is the universal gas constant, T is the absolute temperature, and F is the Faraday 

constant. All experiments were performed in three independent cultures and values are 

expressed as mean ± standard deviation (SD). 
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2.5.3.3. Measurement of potassium (K+) leakage 

For ionic leakage experiments, cells resuspended in HEPES and glucose buffer were 

exposed to compounds at 4x MIC at 37°C with aeration for 3 hours. Samples (5 mL) were 

removed at regular intervals, filtered through a sterile 0.2 μm filter and stored at -20°C 

until they could be analyzed by flame atomic absorption spectroscopy. The positive 

controls for potassium leakage experiments were cells that had been boiled for 10 

minutes prior to filtration. Potassium standards (0.05, 0.1, 0.2, 0.5, 1, 1.5, 2, 2.5, and 3 

μg/mL) were made in HEPES and glucose buffer, and a PerkinElmer A Analyst 100 

spectrometer was used to generate standard curves from which ionic contents of samples 

were calculated (Hobbs et al. 2008). All experiments were performed in three 

independent cultures and values are expressed as mean ± standard deviation (SD). 

 

2.6. Resistance studies 

2.6.1. Generation of spontaneous antibiotic resistant mutants and mutation 

frequencies 

S. aureus SH1000 and E. coli BW25113 were used in the selection for antibiotic-resistant 

mutants. Bacterial cultures were grown aerobically at 37°C in until they reached the late 

logarithmic phase of growth (OD600nm~ 1). The cultures were serially diluted in PBS, and 

aliquots spread onto selective MHA containing the tested antibiotic at 4xMIC, and onto 

non-selective MHA plates, and both sets of plates incubated at 37°C. Colony counts were 

made after 24 hours incubation on non-selective media and after 48 hours on selective 

plates. The frequency of mutation was expressed as the number of resistant mutants 
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recovered as a fraction of the viable count (O'Neill, Cove and Chopra 2001). Resistant 

mutant MICs was determined and then stored in aliquots in 8% glycerol at -80oC.  

 

2.6.2. Selection of resistance by repeated exposure method 

For compounds where mutants were not identified in mutation frequency 

determinations, attempts were made to select resistant mutants using the extended 

spectrum MIC method (Friedman, Alder and Silverman 2006). Cultures of S. aureus 

SH1000 were challenged with antibacterial agents using broth MIC methodology with the 

exception that the dilution series had smaller increments between concentrations. 

Following 24 hour incubation at 37°C, the MIC was recorded, and cells from the well 

containing the highest concentration of drug that permitted growth were used as the 

inoculum for the next MIC. The process was repeated for up to 20 passages, during which 

cells were continually exposed to selective compounds. Putative resistance was 

confirmed by standard broth MIC methodology. 

 

2.7. Cytotoxicity assays  

2.7.1. In vitro human cell cytotoxicity assay 

For cytotoxicity testing, HK-2 cells, a human proximal tubular cell line from healthy kidney 

tissue (ATCC CRL-2190), were obtained from the American Type Culture Collection and 

maintained in high-glucose Dulbecco’s Modified Eagle’s medium (DMEM) supplemented 

with 1% of Penicillin-Streptomycin combo solution and 10% fetal bovine serum. Cells 

were cultured at 37°C in 5% CO2 saturated air. Culture media were replaced every two 
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days. Cells were passaged when they reached 80% confluency.  HK-2 cells were seeded in 

96-well flat bottom plates at a density of 1.2 x 104 cells/well with 200 μl of DMEM 

medium without serum (37°C, 5% CO2 atmosphere). After 24 hours of culturing, cells 

were exposed to antibiotics for 6 hours. The cytotoxicity effects of antibiotics on HK-2 

cells were evaluated by measuring the release of lactate dehydrogenase (LDH) enzyme 

and determination of the adenosine 5’ triphosphate (ATP) released from a suspension of 

viable somatic cells.  Using the CytoTox-ONETM Homogenous Membrane Integrity Assay 

(Promega, USA) and bioluminescent somatic cell assay kit (Sigma-Aldrich, UK), activity was 

measured according to the manufacturer’s protocol. 

 

2.7.2. In vivo Galleria mellonella killing assay 

Wax moth larvae (G. mellonella) were purchased from Livefood UJ Ltd (Rooks Bridge, 

Somerset, UK) and were maintained on wood chips in the dark at 14°C. They were stored 

for no longer than two weeks. Bacterial infection of G. mellonella is as essentially 

described elsewhere (Wand et al. 2011), with antibiotic treatment of G. mellonella was as 

described by Peleg (Peleg et al. 2009). Concentrations of antibiotic injected into Galleria 

were based on the average weight and volume calculations, and took into account the 

increase in volume caused by bacterial and antibiotic injections. Data were analyzed using 

the Mantel-Cox method using Prism Software Version 6 (GraphPad, San Diego, CA, USA). 

All experiments and data analysis were performed by Matthew Wand and Charlotte Hind 

(Public Health England, Salisbury, UK).  
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2.8. Molecular genetic analysis 

2.8.1. Preparation of genomic DNA 

Genomic DNA was prepared from E. coli BW25113 and S. aureus SH1000 using the 

PurEluteTM bacterial genomic kit (EdgeBio, Gaithersburg, MD, USA) in accordance with 

manufacturer's instructions, with the exception that for S. aureus, following resuspension 

in spheroplast buffer, cells were exposed to lysostaphin (40 µg/ml) and incubated at 37oC 

for 1 hr, before continuing with the manufacturer's protocol. Purified DNA samples were 

resuspended in 100 µl of TE buffer. The DNA purity and concentration was determined 

using a NanoPhotometer™ Pearl nano spectrophotometer (Implen GmbH, Munich, 

Germany).  

 

2.8.2. Amplification of DNA by polymerase chain reaction (PCR)  

Oligonucleotides primers for PCR were designed using Oligo software (Molecular Biology 

Insight Inc., West Cascade, Colorado, USA) and ordered from Eurofins MWG operon 

(Ebersberg, Germany).  PCR reactions were carried out in a Techne Thermal Cycler (TC-

3000) (Bibby Scientific Ltd, Staffordshire, UK) using Phusion® High-Fidelity PCR Kit, 

according to the manufacturer's protocol. Thermal cycling conditions consisted of initial 

denaturation at 98°C for 30 seconds followed by 30 cycles of denaturation at 98°C for 10 

seconds, annealing for 30 seconds, and extension at 72°C for 30 seconds/kb. A final 

extension cycle at 72°C for 7 minutes and reactions then held at 4°C until required. The 

annealing temperature was optimized for each reaction based on the primer’s melting 

temperature using Phusion Tm calculator. Approximate DNA concentrations were 
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determined from measurements of absorbance at OD260 nm using NanoPhotometer™Pearl 

(Implen GmbH, Munich, Germany). The resultant amplicons were visualized using agarose 

gel electrophoresis (section 2.8.3), purified and their DNA sequence determined. 

 

2.8.3. Agarose gel electrophoresis and DNA purification 

Agarose gel electrophoresis was performed in a Bio-Rad electrophoresis cell (Bio-Rad, 

Hemel Hempstead, UK) to determine the presence and size of PCR products alongside a 1 

kb molecular weight ladder marker (Promega).  Gels contained 0.8% agarose (Geneflow 

LTD, Fradley, UK) in TAE buffer: 40 mM Tris-acetate, 1 mM EDTA, pH 8.0, and were 

stained with SYBR safe stain (Molecular Probes, Invitrogen; Paisley, UK). DNA samples 

containing 1/5 volume 5x loading buffer were run at 90 volts for 30 minutes. The gel 

images were captured by the Gene-Genius Bio-Imaging-System (Syngene, Frederick, MD) 

using the GeneSnap Program (Syngene). DNA fragments required for further applications 

were extracted from gels and purified using MinElute gel extraction kit from Qiagen 

according to the manufacturer's protocol. 

 

2.8.4. Sanger sequencing 

The DNA sequence of purified PCR fragments was determined by Beckman Coulter 

Genomics (Beckman Coulter, Inc, Buckinghamshire, UK) using appropriate oligonucleotide 

primers. Sequence data were aligned with reference sequence using Sequencher 4.8 

software (Gene Codes, Michigan, USA).  
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2.8.5. Next generation DNA sequence determination  

Samples of total chromosomal DNA from two spontaneous thiolutin resistant mutants 

(ThioR1 and ThioR2) were sent to the Leeds Clinical Molecular Genetics Centre (St, James’ 

Hospital, University of Leeds) and nucleotide sequences determined using the Illumina 

sequencing-by-synthesis method (2x250 paired-end reactions) on a MiSeq platform. 

Mutations within the chromosome of the resistant mutants were identified using 

probability based variant detection software in CLC genomics workbench, version 6 (CLC 

Bio, Cambridge, Massachusetts, USA), using the nucleotide sequence of S. aureus SH1000 

as the reference.  
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Chapter three  

Biological characterization of γ-
actinorhodin 
 

 

3.1. Abstract  

The dimictic BIQ, actinorhodin, was not pursued as an antibacterial drug candidate at the 

time of its discovery and remains poorly characterized. Work reported in this chapter was 

undertaken to evaluate comprehensively the potential of actinorhodin as antibacterial 

drug candidate. Here, γ-actinorhodin, a member of the actinorhodin class was studied. A 

novel method was developed to isolate and purify γ-actinorhodin and the antibacterial 

properties, mode of action, and the potential of γ-actinorhodin, as an antistaphylococcal 

agent were evaluated. γ-actinorhodin demonstrated potent anti-Gram-positive activity 

with an MIC90 of 2 μg/ml against methicillin-resistant S. aureus (MRSA) and vancomycin-

intermediate S. aureus (VISA), but lacked activity against Gram-negative pathogens. γ-

actinorhodin at a concentration of 4x MIC was bactericidal and caused a rapid decrease in 

the cellular incorporation of RNA, DNA, and protein precursors in whole cells, as a 

consequence of perturbation of the cytoplasmic membrane. Evidence was also obtained 

that γ-actinorhodin stimulates the production of ROS, which appears to contribute to the 

compound’s antibacterial effect. γ-actinorhodin was found to exhibit selective toxicity; it 

lacked activity against yeast and displayed a high selective index in studies using 

mammalian cells. γ-actinorhodin did not cause overt toxicity in an animal model (Galleria 
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melonella), and demonstrated modest degree of protection following administration to 

animals infected with S. aureus USA300. With the low resistance potential, in addition to 

the evidence for in vivo efficacy, γ-actinorhodin could potentially be useful for treating 

drug-resistant strains like MRSA and VISA and this compound warrant further 

investigation as candidate antistaphylococcal agent. 
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3.2. Introduction 

The benzoisochromanequinones (BIQs)- also referred to in the literature as 

pyranonaphthoquinones or isochromanequinones-, represent a large class of aromatic 

polyketide natural products mainly isolated from bacteria and fungi (Brimble, Duncalf and 

Nairn 1999; Donner 2013). The common structural framework of these molecules consists 

of a bis-tricyclic system incorporating pyran, quinone, and benzene rings in a core scaffold 

(Figure 3.1). Their carbon skeletons are biosynthesized by polyketide synthases (PKS), 

ketoreductases, aromatases and cyclases through sequential biosynthetic reactions. 

Subsequently, these carbon skeletons undergo structural modifications steps including 

oxygenation, dimerization, glycosylation, and methylation resulting in a substantial 

diversity in the structure and biological activity for members of this class (Moore and 

Hertweck 2002).  

 

 

Figure 3.1. The basic structure of the BIQ natural products  

 

Many members of the BIQ class have been found to exhibit a variety of pharmacological 

activities such as antibacterial, antifungal, antimalarial, antiviral, and anticancer 

properties (Brimble, Duncalf and Nairn 1999). However, to date, none of these 

compounds has advanced to clinical application. 

Pyran 

Quinone 

Benzene 
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3.3. The actinorhodin family 

Actinorhodin is a dimeric BIQ that was first described by Brockmann and Pini in the late 

1940s (Brockmann and Pini 1947). Actinorhodin isolation was followed by the detection 

of closely related symmetrical and asymmetrical congeners (α, ß, γ, δ, and ε-

actinorhodins) (Bystrykh et al. 1996), all isolated from Streptomyces (Figure 3.2). Because 

of the symmetrical structure of actinorhodin in which two BIQ units are coupled via a C–C 

bond, its regulation, and biosynthesis has drawn considerable attention (Taguchi et al. 

2015; Gorstallman et al. 1981; Rudd and Hopwood 1979) and its characteristic blue 

pigment has been widely employed as a phenotypic marker for the functional 

replacement in pathway-specific regulation in streptomycete research (Khosla, 

Ebertkhosla and Hopwood 1992; Khosla et al. 1993; Sherman et al. 1992).  

 

Figure 3.2. Actinorhodin and structurally related pigments produced by various strains of 
Streptomyces. 
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It was not until the late 1970s when the inhibitory effect of actinorhodin at high 

concentrations against some Gram-positive bacteria including S. aureus was recognized 

(Wright and Hopwood 1976). The reported weak activity of actinorhodin (estimated MIC 

of 25-30 µg/ml against S. aureus) in contrast with antibiotics in use may be responsible for 

the termination of interest of this novel compound as an antibiotic candidate at the time.  

Apart from this reported antibacterial activity, its antibacterial properties have not been 

followed up, and its mode of antibacterial action remains unknown. A recent study 

proposed that actinorhodin acts as an organocatalyst, catalyzing the conversion of L-

ascorbic acid and L-cysteine with the concomitant production of hydrogen peroxide 

(H2O2), and suggested that it might kill bacteria by catalyzing the production of toxic levels 

of H2O2 (Nishiyama et al. 2014). However, further studies will be required to confirm this 

idea.  

 

3.4. Aims and objectives 

Here we revisited the BIQ scaffold to comprehensively evaluate its potential to form a 

basis for a new antibacterial class. For this purpose, the purification and full 

characterization of a single, active extracellular form of actinorhodin were attempted in 

close cooperation with chemists. Using the existing structural information of the 

actinorhodin family, a simplified method for purification was developed. The spectrum of 

activity of the pure compound was assessed, with a particular emphasis on its anti-

staphylococcal activity against a number of clinical isolates. Killing kinetics were also 

determined, and the mechanism of its antibacterial activity and any detrimental effects of 

the compound on eukaryotic cells was investigated. Finally, to assess the potential for the 

compound to be used clinically, the rate of resistance development was also explored. To 
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determine the bacterial specificity of γ-actinorhodin using C. albicans as a model 

eukaryote, followed by evaluating the activity against human cell line and in vivo infection 

model.  

 

3.5. Results and discussion 

3.5.1. Isolation and purification of γ-actinorhodin 

We attempted to isolate and purify a single active species of actinorhodin from S. 

coelicolor to explore the biological properties of this family of antibiotics. S. coelicolor 

L646 strain was used for this purpose. This strain contains an integrated plasmid that 

overexpresses wild-type atrA, leading to hyperproduction of actinorhodins relative to the 

wild-type strain (M145) (Uguru et al. 2005). In initial studies, several different media (YM 

broth, ISP2 agar, and R5 broth/agar) were tested to identify the most suitable for the 

growth of S. coelicolor L646 and the production of the blue pigments. ISP2 agar was found 

to best support the growth of S. coelicolor L646 and the production of diffusible blue 

pigments (Figure 3.3), and was therefore used in subsequent studies. 

 

Figure 3.3. Streptomyces coelicolor L646 colonies on ISP2 agar medium. After 4-6 days at 30°, dark 
blue diffusing pigment developed around the colonies and blue droplets appeared on the colony 
surface.  
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Experiments to isolate actinorhodin following published methods (Bystrykh et al. 1996; 

Wright and Hopwood 1976) was unsuccessful. Poor solubility and the lack of antibacterial 

activity were the major issues experienced during purification. According to the structure 

of actinorhodin, the dicarboxylic acid moiety should render the molecule polar (Sannia 

Farooq, personal communication). However, when the blue pigment was extracted from 

agar with water followed by acidification and extraction with ethyl acetate, actinorhodin 

could not be detected by LC-MS and NMR. Additionally, no antibacterial activity of the 

crude ethyl acetate extract was noticed. Mass-directed and UV-directed fractionation by 

HPLC under several conditions was attempted, though proved unsuccessful. Each 

condition tested to purify actinorhodin revealed that the extract is more complex than 

initially thought, judging from the number of bands observed on TLC chromatograms 

(data not shown), indicating several pigmented compounds with actinorhodin-like 

characteristics (e.g. pH-responsive colour changes). After more than a year of trial and 

error to isolate actinorhodin, we came to the conclusion that the HPLC approach for 

purification of actinorhodin was not suitable. I failed to attain material with sufficient 

purity to perform chemical characterization and biological evaluation. 

Hence, we pursued a collaboration with a skilled chemist specialized in natural products 

to develop a method for actinorhodin purification. Since HPLC failed to provide a pure 

compound, it was suggested to take advantage of the pigmentation of the compound and 

attempt to separate a single form using TLC. When the crude ethyl acetate extract was 

chromatographed on TLC [solvent: Dichloromethane-Methanol 9:1 (v/v)], a major, well-

separated purple band with Rf 0.29 was collected and found to be γ- actinorhodin by LC-

MS and 1H NMR (Figure 3.4). This presumptive γ-actinorhodin showed good activity 

against S. aureus SH1000, with MIC of 1 μg/ml. To generate sufficient amount of material 

for biological evaluation, a modification of the extraction method to target the isolation 
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Figure 3.4.  Initial identification of γ-actinorhodin by (A) 1H NMR and (B) mass spectrometry (MS) 
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of γ-actinorhodin was established. γ-actinorhodin is significantly less polar than 

actinorhodin due to the presence of lactone substituent (Sannia Farooq, personal 

communication).  It was expected that extracting the blue pigment directly from the agar 

using an organic solvent of moderate polarity (such as ethyl acetate) would recover -

actinorhodin, while more polar contamination would remain associated with agar. 1H 

NMR analysis of the crude ethyl acetate extract confirmed the presence of -actinorhodin 

(ca. 20%) alongside unknown impurities.  

Subsequent purification was facilitated by exploiting the key functional group (lactone 

ring).  It was expected that at high pH (>10), -actinorhodin would ring-open to afford 

hydroxycarboxylate (the salt of actinorhodinic acid), which would have high water 

solubility (Sannia Farooq, personal communication). Hence, the crude extract then 

washed with aqueous sodium carbonate (pH 10.9) and resulted in a blue aqueous 

solution. This was then acidified with hydrochloric acid (6 M) to reform the lactone 

(Figure 3.5), and to neutralize any salts formed. The red precipitate was then washed with 

methanol to afford -actinorhodin as red solid in 19% yield. 

 

 
Figure 3.5. Proposed acid-base catalyzed interconversion of the cyclized and ring-opened form of 

-actinorhodin 

 

 

1-D and 2-D NMR spectroscopy were utilized to confirm the structure of -actinorhodin.  

All NMR experiments, interpretation of signals, and purity determination were performed 
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by Sannia Farooq (School of Chemistry, University of Leeds).  The identity and purity 

(95%) of -actinorhodin was assessed using mass spectrometry, 1-D NMR, 2-D NMR and 

infrared spectroscopy and analytical HPLC (Appendix A1-A8).  

 

3.5.2. Antibacterial activity of γ-actinorhodin 

γ-actinorhodin MICs were determined for a number of clinically important Gram-positive 

and Gram-negative bacteria using standard CLSI broth microdilution methods. γ-

actinorhodin exhibited potent antibacterial activity against Gram-positive pathogens, 

exhibiting MIC values of 1-2 µg/ml. However, it lacked useful antibacterial activity against 

Gram-negative pathogens, with MICs of >256 µg/ml against representative 

Enterobacteriaceae and non-fermentative bacilli (Figure 3.6, A).  

The antistaphylococcal activity of γ-actinorhodin was further investigated against a panel 

of clinical S. aureus isolates (70 isolates) including MRSA and VISA strains. The in vitro 

susceptibility results for all the strains tested are in Appendix B. The MIC90 of γ-

actinorhodin was 2 µg/ml, with MIC of γ-actinorhodin ranging from 1-4 µg/ml (Figure 3.6, 

B). γ-actinorhodin therefore possess as potent antibacterial activity that includes two of 

the ESKAPE pathogens (S. aureus and E. faecium), with MIC values against members of 

these species, falling within the comparable range for systemically administrated 

antibacterial drugs in current clinical use. The MIC values for the clinically useful 

antibiotics, rifampicin, and fusidic acid for systemic use is often <1 µg/ml against S. 

aureus. Whereas, vancomycin and linezolid, extremely useful antibacterial agents, display 

higher MIC values (e.g. values of 4 µg/ml) against susceptible S. aureus strains (O'Neill and 

Chopra 2004). 
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Figure 3.6. In vitro antibacterial activity of γ-actinorhodin. (A) MICs of γ-ACT against a panel of Gram-positive and Gram-negative bacteria (B) Distribution of S. aureus 
clinical isolates and MICs for γ-actinorhodin in MSSA, MRSA, and VISA clinical isolates (n = 70). All MICs were determined by broth microdilution method according to CLSI.
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The antistaphylococcal activity of γ-actinorhodin shown here is significantly greater than 

that previously published for actinorhodin. The original study that reported on the 

antibacterial activity of this class estimated an antistaphylococcal MIC of 25-30 µg/ml by 

agar diffusion (Wright and Hopwood 1976). Several explanations could account for this 

apparent discrepancy. In the original study, the MIC value was estimated using agar plug 

diffusion method which involves growing the antibiotic producer strain on its appropriate 

culture medium, and then an agar-plot is cut and placed on the surface of another agar 

plate and then overlaid with the test microorganism (Wright and Hopwood 1976). In this 

study, however, γ-actinorhodin appeared to have significantly reduced activity against 

S.aureus SH1000 (MIC of 16 μg/ml) when incorporated into agar medium. Therefore, it is 

likely that the choice of culture media is responsible for the significant difference in the 

MICs obtained. However, it is also feasible that different actinorhodin analogs may 

demonstrate various levels of antibacterial activity. The weak activity originally reported 

for actinorhodin could be the reason why this class has not been further evaluated in 

respect of its therapeutic potential over the last 40 years. This is interesting, considering 

that other potentially interesting/ useful antibiotic classes might be overlooked due to 

similar points of technicality. 

Insusceptibility to antibiotics in Gram-negative bacteria often results from the 

permeability barrier offered by the outer membrane, or the action of the broad substrate 

range efflux pumps, such as AcrAB-TolC (Poole 2002). It has been demonstrated 

previously in our laboratory that most antistaphylococcal agents are active against Gram-

negative bacteria when allowed to reach their target (Randall et al. 2013a). To explore the 

basis for the poor activity of γ-actinorhodin against Gram-negative bacteria, γ-

actinorhodin susceptibility determinations were conducted against E. coli BW25113 in the 

presence of an outer-membrane permeabilising agent (PMBN), and against derivatives of 

BW25113 deleted for components of the major efflux transporter, AcrAB-TolC. γ-
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actinorhodin appeared more active against E.coli in the presence of PMBN (MIC of 16 

µg/ml), while no change in the activity against E.coli strains lacking AcrAB or TolC (MICs of 

>256 µg/ml). At sub-inhibitory concentrations, PMBN, known to cause disruption and/or 

disorganization of the outer membrane, and enhanced antibiotic penetration (Sahalan 

and Dixon 2008). The results suggest that the limited activity of γ-actinorhodin against 

Gram-negative bacteria is a result of limited ingress across the outer membrane to reach 

its target site.  

 

3.5.3. Evaluation of bacterial killing by γ-actinorhodin 

To characterize the antibacterial activity of γ-actinorhodin further, killing kinetics were 

evaluated beside established antibiotics. The addition of vancomycin (at 4x MIC) to early-

exponential-phase cultures of S. aureus SH1000 caused a reduction in cell viability of 

approximately 3 log10 CFU/ml after 6 hours (bactericidal), while tetracycline showed <1 

log10 drop in cell viability over 24 hours (bacteriostatic) (Figure 3.7). γ-actinorhodin (at 4x 

MIC) demonstrated modest killing activity, causing approximately 1 log10 drop in cell 

viability over 6 hours and 3.3 log10 drop at 24 hours, indicating that it is bactericidal 

(Figure 3.7). 
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Figure 3.7. Evaluation of killing action of γ-actinorhodin and comparator agents at 4x MIC on 
exponential cultures of S. aureus SH1000 over 24 hours in MHB. The dotted line represents 3 log 
reductions. Values shown are the means of at least three independent experiments, each of which 
had two technical replicates. Error bars represent standard deviations from the mean. 

 

During infection, bacteria often encounter unfavorable conditions that lead to periods of 

limited growth in which the organisms enter a quiescent state and persist within the host 

(Kolter, Siegele and Tormo 1993). Slow- or non-growing bacteria often display tolerance 

to antibiotics that are active against rapidly dividing cells, and this contributes to the 

prolonged treatment periods required to resolve persistent infections (Coates et al. 

2002). Consequently, antibacterial drugs that retain bactericidal activity under growth-

arrested conditions may have clinical advantages over those that do not display such 

activities. To determine whether γ-actinorhodin possesses this characteristic, stationary 

phase cultures of S. aureus SH1000 were recovered after 24 hours’ growth, and the 

bacteria recovered by centrifugation and resuspended at 105 CFU/mL in the spent growth 

medium from these cultures. Similar to vancomycin, γ-actinorhodin bactericidal activity 

was abolished against stationary phase S. aureus SH1000 at 4x MIC (Figure 3.8).  
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Figure 3.8. Evaluation of killing action of γ-actinorhodin and comparator agents at 4x MIC on 
stationary-phase cultures of S. aureus SH1000 after 24 hours in nutrient-depleted MHB. The dotted 
line represents 3 log reductions. Values shown are the means of three independent experiments, 
each of which had two technical replicates. Error bars represent standard deviations from the 
mean.  

 

3.5.4. In vitro selective toxicity of γ-actinorhodin  

To provide a preliminary assessment of selective prokaryotic toxicity, the MIC of γ-

actinorhodin was determined against the eukaryotic microorganism, C. albicans. No 

activity was observed, even at the highest concentration tested (256 μg/ml) (Figure 3.9, 

A). Although some BIQs has been reported to possess antifungal activity (Brimble, Duncalf 

and Nairn 1999), this was not the case for γ-actinorhodin, suggesting that γ-actinorhodin 

exhibits prokaryotic selectivity in its action.  

To further explore γ-actinorhodin’s selectivity, the effect of γ-actinorhodin on human 

kidney 2 (HK-2) cells was evaluated by monitoring the release of lactate dehydrogenase 

(LDH) as an indicator of membrane integrity loss and the intracellular ATP levels as an 

indicator of cell viability. No LDH release was detected at any concentration tested (EC50 

of >256 µg/ml) (Figure 3.9, B). However, γ-actinorhodin caused a reduction in ATP content 
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at the higher concentrations tested (EC50 of ~128 µg/ml) (Figure 3.9 C). Thus, whilst some 

cytotoxic effects were observed for γ-actinorhodin, these occurred at concentrations >50-

fold higher than those required to achieve complete inhibition of bacterial growth, 

indicating that γ-actinorhodin does indeed exhibit prokaryotic selectivity. 

 

 

Figure 3.9. Selectivity and in vitro cytotoxicity of γ-actinorhodin. (A) The effect of γ-actinorhodin 
against C. albicans. The in vitro effect of γ-actinorhodin and control antibiotics tetracycline and 
gentamicin on the membrane integrity of the human kidney proximal tubular (HK-2) cells as 
determined by (B) the release of lactate dehydrogenase (LDH) and (C) the cellular ATP levels. 
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3.5.5. Investigation into the antibacterial mechanism of action of γ-

actinorhodin 

3.5.5.1. Effect of γ-actinorhodin on macromolecular biosynthesis  

Monitoring the ability of an antibacterial compound to inhibit biosynthesis of cellular 

macromolecules can provide insight into its mode of action (O'Neill and Chopra 2004).  

Antibacterial agents in clinical use commonly exert their activity through inhibition of 

specific macromolecular biosynthesis pathways (O'Neill and Chopra 2004). To evaluate 

the effects of γ-actinorhodin on macromolecular biosynthesis, incorporation of 

radiolabeled precursors into macromolecules was compared with inhibitors known to 

specifically inhibit DNA, RNA, protein, fatty acid, and cell wall biosynthetic pathways. At 

4x MIC γ-actinorhodin caused substantial and comparable inhibition of all five 

biosynthetic pathways in 10 minutes, with no evidence for preferential inhibition of a 

single biosynthetic process (Figure 3.10). This non-specific inhibition of all 

macromolecular biosynthetic pathways is indicative of disruption to energy producing 

metabolic pathways, and is a characteristic profile observed for compounds that perturb 

the bacterial membrane (O'Neill et al. 2004; Hurdle et al. 2011; Hobbs et al. 2008; Oliva et 

al. 2004). 

Membrane perturbation can be considered an undesirable characteristic in potential 

chemotherapeutic candidates, as compounds that damage the bacterial membrane 

frequently also disrupt the structure of mammalian plasma membranes (Payne et al. 

2007). Since it was demonstrated that γ-actinorhodin is not compromising the integrity of 

mammalian cell (Figure 3.9, B), therefore, it was predicted that the non-specific activity 

observed in MMS experiments is bacteria-specific.  
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Figure 3.10: Effect of γ-actinorhodin and comparator agents on DNA, RNA, protein, fatty acid, and cell wall biosynthesis in S. aureus SH1000, as measured by incorporation 
of radiolabeled precursors. Values represent the percentage incorporation relative to drug-free controls. Values shown are the means of three independent experiments, 
each of which had two technical replicates. Error bars represent standard deviations from the mean. (*P < 0.05; **P < 0.01; ***P < 0.001 compared to untreated control). 
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3.5.5.2. Activity of γ-actinorhodin on the S. aureus membrane 

The non-specific inhibition of macromolecular biosynthetic pathways are characteristic of 

compounds that mediate their antibacterial effects through action on the cytoplasmic 

membrane (Ooi et al. 2010; O'Neill et al. 2004). Therefore, it was sought to examine more 

directly whether γ-actinorhodin exerts effects on the membrane of S. aureus SH1000. 

Using the potentiometric probe molecule DiSC3 (5), γ-actinorhodin was shown to cause a 

substantial (>60%) loss of membrane potential in 10 minutes, an effect comparable to 

that observed for the known membrane-active agents, nisin and CTAB (Figure 3.11 A). In 

order to determine whether membrane perturbation following exposure to γ-

actinorhodin was extensive enough to allow leakage of intracellular ions, leakage of 

potassium ions was measured. In contrast to control agents, however, γ-actinorhodin 

appears to exert relatively subtle effects on the membrane that are insufficient to permit 

leakage of intracellular ions from the cell (Figure 3.11 B). Several antibacterial agents in 

use as drugs (daptomycin, telavancin), antiseptics (CTAB) or food preservatives (nisin) 

possess a mode of action that involves membrane depolarization. However, in contrast to 

γ-actinorhodin, these agents additionally cause gross physical perturbation of the 

membrane, leading to detectable leakage of intracellular contents (O'Neill et al. 2004). 

Thus, the action of γ-actinorhodin on the bacterial membrane is apparently distinct from 

that of other membrane-perturbing agents in use. 
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Figure 3.11.  Effect of γ-actinorhodin and comparator agents on (a) membrane potential of S. aureus SH1000 as measured by DiSC3 (5) and (b) leakage of K+ ions. Values 

shown are the means of three independent experiments, each of which had two technical replicates. Error bars represent standard deviations from the mean.
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The introduction of daptomycin and telavancin into clinical use has regenerated interest 

in developing compounds with membrane-based mode of actions (Higgins et al. 2005). 

Agents which perturb membrane structure, or damage the function of multiple 

membrane-bound respiratory enzymes, have been suggested to be particularly 

efficacious against persistent infections harboring dormant or slow-growing bacterial 

cells. In addition, membrane-damaging agents have a very low potential for resistance 

development, which makes them attractive chemotherapeutic candidates, provided that 

they also display acceptable bacterial specificity and low toxicity (Hurdle et al. 2011). 

 

3.5.5.3. Effect of γ-actinorhodin on reactive oxygen species (ROS) generation 

It has been proposed that some bactericidal agents act via disturbing membrane-

associated electron transport chain, leading to disruption of bacterial metabolism and the 

respiratory chain which causes the formation of lethal ROS (Kohanski et al. 2007). A 

recent study established that actinorhodin is capable of catalyzing oxidation reactions in 

vitro, an observation that directed the authors to suggest that the antibacterial properties 

of actinorhodin might result from the production of toxic levels of H2O2 (Nishiyama et al. 

2014). In potential support of this idea, they observed modest restoration of 

staphylococcal growth in the presence of actinorhodin when cultures were supplemented 

with catalase (Nishiyama et al. 2014).  

To explore a potential role for reactive oxygen species (ROS) in the antibacterial mode of 

action, the effect of γ-actinorhodin on strains of S. aureus defective in the major 

components of the ROS protection response to examine whether they exhibited greater 

susceptibility to the action of the antibiotic (Table 3.2). No change in the MIC of γ-

actinorhodin was observed against an SH1000 derivative (KS100) lacking the major 
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catalase enzyme, KatA, or against a strain (KC043) completely devoid of catalase activity 

as a consequence of lacking both KatA and the enzyme alkyl hydroperoxide reductase 

(AhpC) (Cosgrove et al. 2007). However, a substantial (8-fold) increase in susceptibility to 

γ-actinorhodin was observed for a strain of SH1000 lacking the major superoxide 

dismutase enzyme, SodA (Table 3.2), and a further 2-fold increase in γ-ACT susceptibility 

for a strain concurrently lacking the other staphylococcal SOD, SodM (Table 3.2). By 

contrast, none of these strains exhibited a significant increase in susceptibility (>2-fold) to 

several comparator antibacterial agents, including those whose MOA involves action on 

the membrane (Table 3.2).  

 
Table 3.2: effect of γ-actinorhodin against ROS protection defective mutants 
 

 MIC values (µg/ml) 

γ-act Dap CTAB Clof Van Cip Rif 

SH1000 (wild type) 1 1 1 4 1 0.25 0.016 

SK100 (katA::Tn917 (ery)) 1 1 1 2 1 0.12 0.016 

KC034 (ahpC::tet katA::Tn917 (ery)) 1 1 1 0.5 1 0.25 0.016 

MHKA (sodA::Tn917) 0.12 1 1 1 1 0.12 0.016 

MHKM (sodM::tet) 1 1 1 1 1 0.12 0.016 

MHKAM(sodA::Tn917 sodM::tet) 0.06 0.5 1 0.5 1 0.12 0.007 

γ-act= γ-actinorhodin; Dap= daptomycin; CTAB= cetyltrimethylammonium bromide; Clof= clofazamine; Van= 
vancomycin; Cip= ciprofloxacin; Rif= rifampicin 

 

The dramatic sensitization to γ-actinorhodin observed in S. aureus strains lacking 

superoxide dismutases, enzymes that constitute the major cellular defense against 

superoxide, strongly implicates this radical in the mode of action of γ-actinorhodin.  

Sensitization to γ-actinorhodin was mainly associated with loss of SodA, an enzyme that 

has been linked specifically with protection against internally-generated oxidative stress 

in S. aureus (Clements, Watson and Foster 1999), implying that γ-actinorhodin prompts 

the generation of endogenous, rather than exogenous, superoxide.  
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It seems probable that antibacterial mechanisms observed for γ-actinorhodin (membrane 

depolarization and ROS production) share a common cause, and indeed both effects 

could be explained by γ-actinorhodin-mediated interference with the electron transport 

chain. Based on the findings of this study, we hypothesize that γ-actinorhodin mediates 

oxidative damage to one or more components of the electron transport chain, which in 

turn acts both to comprise the bacterium’s ability to maintain a polarized membrane and 

yields a source of free electrons that drive the generation of superoxide.  

  

3.5.6. Attempts to select resistance to γ-actinorhodin 

To assess the propensity for γ-actinorhodin to select resistance, saturated cultures of S. 

aureus SH1000 were plated onto MHA agar containing γ-actinorhodin at multiples of the 

MIC (4x -128x) as determined by broth microdilution method. Confluent growth was 

observed on agar containing up to 32X MIC γ-actinorhodin, an observation that can be 

explained by the finding that the antibacterial activity of γ-actinorhodin becomes 

substantially attenuated upon incorporation into agar. Although a small number of 

colonies appeared on agar containing 64-128x MIC of γ-actinorhodin after 48 hours’ 

incubation, these colonies retained full susceptibility to γ-actinorhodin upon MIC 

determination.  

Subsequently, we examined whether resistance to γ-actinorhodin could be selected upon 

an extended passage in the presence of the compound. Serial passage of S. aureus 

SH1000 in the presence of sub-MIC levels of γ-ACT over a period of 20 days also produced 

the same negative result (Figure 3.12 and appendix C). The inability to select for γ-

actinorhodin resistance in S. aureus strains over a prolonged period point toward that the 

emergence of γ-actinorhodin resistant by endogenous mechanisms is likely to be rare. 
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Figure 3.12. Resistance acquisition during Serial passage experiments with S. aureus SH1000 in the 
presence of sub-MIC levels of γ-actinorhodin and daptomycin. The data is representative of 3 
independent experiments. 

 

 

3.5.7. In vivo toxicity and antibacterial efficacy of γ-actinorhodin  

For a compound to be developed as a therapeutic agent for systemic administration, it is 

required to evaluate its efficacy in resolving infection (O'Neill and Chopra 2004). Usually, 

this is accomplished using a mammalian model. However, such experiments are 

expensive, time-consuming, and necessitate full ethical consideration. Therefore, 

economically and ethically more acceptable invertebrate models of infection have been 

introduced, including the larvae of the greater wax moth Galleria mellonella. In vivo 

efficacy of γ-actinorhodin in protecting G. mellonella larvae from killing by S. aureus 

(USA300) was tested. To determine the lethal concentrations of γ-actinorhodin, the 

concentrations of 50 mg/kg, 20 mg/kg, 5 mg/kg, and 1 mg/kg were injected in G. 

mellonella larvae, and the percentage survival was recorded over 120 hours. The 

concentration of 50 mg/kg led to the death of 20% (low toxicity) of the population after 

120 hours while 100% survived at concentrations of 20 mg/kg, 5 mg/kg, and 1 mg/kg. The 
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concentrations proving to be nonlethal to the larvae presented the following results when 

injected in G. mellonella infected by S. aureus USA300: 20 mg/kg led to the death of 85% 

after 48 hours, 5 mg/kg led to the death of 97% after 72 hours, and 1 mg/kg led to the 

death of 80% G. mellonella after 120 hours. As shown in Figure 3.13, the control group 

(infected with S. aureus USA300 without any treatment) led to the death of 100% of the 

larvae after 96 hours.  

 

 

Figure 3.13. Single dose treatment (30 min post-infection, ten larvae per group) with 
γ.actinorhodin and vancomycin in G. mellonella protection model using S. aureus USA300.  

 

 

Therefore, γ-actinorhodin appears to possess some therapeutic potential, though further 

studies will be required to understand why the compound not only fails to improve 

survival of infected G. melonella when administered at higher concentrations but beyond 

a certain level, actually acts to reduce it. Potentially, while not clearly cytotoxic on its own 

at the concentrations applied, γ-actinorhodin might compromise the immune response in 

G. melonella, to facilitate the progress of the infection. Whether such a phenomenon is 

also evident in higher organisms remains to be established, but even if that does transpire 
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to be the case, that need not rule γ-actinorhodin from further consideration as a 

candidate topical agent to prevent and treat staphylococcal disease.  

 

3.6. Conclusions 

Given the growing problem of antibiotic resistance, it seems practical to consider drug 

sources that were previously abandoned. One of the most critical challenges in the 

natural product research is to obtain material of sufficient purity to assess its biological 

activity. This study highlights the necessity of strong collaboration between a biologist 

and a chemist to obtain the desired active compounds efficiently. Sufficient quantities of 

the pure γ-actinorhodin were thereby recovered to permit characterization and 

preclinical evaluation. The BIQ γ-actinorhodin demonstrated potent, bactericidal anti-

Gram-positive activity against a number of bacterial species including MRSA and VISA, but 

lacked activity against Gram-negative     pathogens as a result of the permeability barrier 

presented by the outer membrane. This study indicates a complex mode of action for γ-

actinorhodin that is distinct from other antibacterials in clinical use. Our findings suggest 

that the antibacterial mode of action of γ-actinorhodin involves rapid dissipation of 

membrane potential, prompting a complete shutdown of macromolecular biosynthesis, 

and eventually, cell death.  γ-actinorhodin possesses many of the requisite properties of a 

useful antibacterial drug candidate as it showed evidence for in vivo efficacy and γ- 

exhibits extremely low resistance potential. The findings of this study highlight the utility 

of re-visiting unexploited natural product in the search for novel antibacterial drug 

candidates, and a comprehensive re-evaluation of such compounds is now warranted.
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Chapter four 

Investigations into the antibacterial mode 
of action of thiolutin 
 

 

4.1. Abstract  

In the present study, the antibacterial activity of thiolutin was evaluated against a panel 

of clinically relevant bacterial pathogens along with deciphering the mode of action in 

Gram-positive and Gram-negative bacteria. Thiolutin exhibited potent, broad-spectrum 

activity against S. aureus and E. coli and also demonstrated useful antibacterial activities 

against other clinically significant bacterial pathogens tested. Using a combination of 

macromolecular synthesis, membrane integrity assessments, and time-kill assays it was 

shown that S. aureus inhibition by thiolutin was likely due to specific drug target 

interaction rather than nonspecific membrane disruption. However, the establishment of 

target pathway/s in this organism was not yet known. In contrast, inhibition of RNA 

synthesis of E. coli was pronounced after 10 minutes exposure to thiolutin. Spontaneous 

resistance to thiolutin occurred at a frequency of 1.38 (± 1.28) x 10-8 and 8.32 ± (1.02) x 

10-7 in S. aureus and E. coli, respectively. Genetic analysis of isolated mutants revealed 

missense mutations in the S. aureus genes encoding thioredoxin (trxA) and thioredoxin 

reductase (trxB), and nonsense mutations in E. coli γ-Glutamyl cysteine synthetase (gshA) 

gene. Thioredoxin/ glutaredoxin systems are likely to be involved in the intracellular 
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reductive activation of thiolutin and resistance to this class is resulted from inactivation of 

reduction pathways.  

 

4.2. Introduction 

The dithiolopyrrolone (DTP) class of natural products possess a broad spectrum of 

biological activity including antibacterial, antifungal, and anticancer activities (Seneca, 

Kane and Rockenbach 1952; Li et al. 2014). DTPs are characterized by the possession of a 

unique DTP nucleus with two sulfur atoms (Figure 4.1). These compounds were initially 

isolated from Streptomyces sp. and, subsequently have also been found to be produced 

by other organisms (Qin et al. 2013). This group of compounds includes aureothricin, 

thiolutin, holomycin and xenorhabdins (Umezawa H. 1948; Eisenman 1956; Celmer and 

Solomons 1955; Von Daehne et al. 1969; McInerney et al. 1991). The thiomarinols are 

another group of antibiotic with a DTP ring which has the polyketide antibiotic, 

pseudomonic acid, linked to it (Shiozawa, Shimada and Takahashi 1997; Fukuda et al. 

2011). The DTP class of molecules has attracted numerous research groups not only 

because of their biological activities, but also owing to the chemical logic of disulfide bond 

formation and the molecular machinery of their biosynthesis (Li et al. 2014).  
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Figure 4.1.  Some of the naturally occurring DTP antibiotics. 1 thiolutin, 2 holomycin, 3 
aureothricin, 4 xenorhabdin, and thiomarinol 5 

 

Among the DTPs, thiolutin is the most extensively studied member in respect of 

antimicrobial activities. Thiolutin has been shown to possess a broad spectrum of 

biological activity, demonstrating inhibatory action against bacteria (Khachatourians and 

Tipper 1974a), yeast (Tipper 1973), fungi (Gopalkrishnan and Jump 1952; Deb and Dutta 

1984), parasites (Iwatsuki et al. 2010), and insects (Cole and Rolinson 1972) and selective 

anticancer activity (Jia et al. 2010; Minamiguchi et al. 2001). Interestingly, however, the 

activity of the structurally closely related compound, holomycin, appears to be restricted 

to prokaryotes (Oliva et al. 2001).  

 

4.2.1. Mode of action of the DTPs  

It has been widely accepted that DTPs inhibit RNA synthesis, and early studies on the 

mode of action of thiolutin appeared to confirm that it act as an inhibitor of RNA 

synthesis in yeast (Jimenez, Tipper and Davies 1973; Tipper 1973) and bacteria 
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(Khachatourians and Tipper 1974a; Khachatourians and Tipper 1974b). However, the 

mechanism underlying the observed inhibition of RNA biosynthesis by DTPs is yet to be 

clarified. 

In Saccharomyces cerevisiae, rapid preferential inhibition of RNA synthesis in the 

presence of low concentrations of thiolutin was observed following radiolabel 

incorporation experiments (Jimenez, Tipper and Davies 1973) and inhibition of the all 

three RNA polymerases in cell-free assays confirmed the target of thiolutin in yeast 

(Tipper 1973). In a more recent study using DNA microarray (Grigull et al. 2004), it was 

proposed that thiolutin mediated inhibition of RNA synthesis in S. cerevisiae results from 

chelation of ions rather than from direct drug-target interaction. This proposal was based 

on a comparison of global transcript stability profiles following chemical inhibition of 

transcription to rpb1-1 mutants (temperature-sensitive mutant in the catalytic subunit of 

RNA polymerase II) by five inhibitors including thiolutin. It was shown that the effects of 

thiolutin and 1, 10-phenanthroline (metal chelator that most likely inhibits Pol II by 

sequestering magnesium) were most similar to rpb1-1, leading the authors to propose 

that thiolutin may inhibit RNA synthesis in a manner similar to 1,10-phenanthroline 

(Grigull et al. 2004).  

In contrast to the observations in yeast, inhibition of RNA synthesis by thiolutin in E. coli 

could only be demonstrated in whole-cell incorporation experiments and not in a cell-free 

assay (Khachatourians and Tipper 1974b). A study on holomycin revealed a similar 

outcome, shedding doubts on RNA polymerase as the primary target of thiolutin in 

bacteria (Oliva et al. 2001). Other mechanisms of action have also been proposed for the 

DTPs. In one study, glucose utilization and respiration in E. coli were shown to be 

inhibited by thiolutin (Bergmann 1989), while in another study in S. typhimurium, the 

bacterial membrane was implicated as one site of action of thiolutin (Joshi and 



66 

 

 

 

Chakravorty 1977). Potantially, the DTP scaffold might influence multiple pathways that 

contribute to its overall antimicrobial effect. 

It has been suggested that the DTPs are prodrugs that require enzymatic activation to 

exert their action (Oliva et al. 2001) in which the structural characteristics of DTP 

disulfide-bridged heterocycle might offer some justification (Li et al. 2014). By analogy, it 

was proposed that DTPs may inhibit RNA synthesis in bacteria in a manner similar to 

gliotoxin, an inhibitor of poliovirus RNA synthesis that possesses a similar disulfide bridge 

(Figure 4.2). Gliotoxin’s activity requires intracellular reduction of the disulfide bond 

leading to more active dithiol groups which can react with the thiol groups of cellular 

proteins (Scharf et al. 2010; Jones and Hancock 1988).  

 

 

 

Figure 4.2. The structure of the natural product mycotoxin, gliotoxin, containing a disulfide bond  

 

In support of this hypothesis, Li and coworkers has found an accumulation of modified 

intermediates of mono- and di-S-methylation- in a ΔhlmI mutant holomycin producer, 

Streptomyces clavuligerus, in which the gene for disulfide bond formation was deleted (Li 

et al. 2012). This led the authors to suggest that S-methylation is a “backup plan” to 

protect the producer from the toxicity of the reactive dithiol groups in the reduced 

intermediates. 
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4.2.2. Use of staphylococci to investigate DTP mode of action 

E.coli has been used as a model system for almost all studies of the mode of action of 

DTPs and their mechanism of action against Gram-positive bacteria has not been 

explored. Gram-positive bacteria lack the outer membrane of Gram-negative and possess 

a considerably thicker peptidoglycan layer (Silhavy, Kahne and Walker 2010). These 

differences in cell envelope are known to affect antibiotic uptake (Silhavy, Kahne and 

Walker 2010; Pages, James and Winterhalter 2008). Other differences between Gram-

positive and Gram-negative that may influence antibiotic action include stress responses, 

efflux pumps, and biochemical target availability. It would, therefore, be interesting to 

explore the antibacterial activity and mode of action of this class of antibiotics against 

Gram-positive bacteria.  

 

4.2. Aims and objectives 

Work described in this chapter sought to gain a better understanding of DTP antibacterial 

activity and mode of action. The spectrum of antibacterial activity and prokaryotic 

specificity of thiolutin were investigated. Killing kinetics were determined and the 

mechanism of antibacterial activity studied against the Gram-positive pathogen, S. 

aureus. Resistant mutants were selected and characterized to further our understanding 

of the mode of action and resistant mechanisms. Due to the unusual profile observed 

against S. aureus, mode of action and resistance studies were additionally performed 

against the Gram-negative bacteria E. coli for comparison. Although the work in this 

chapter originally intended to use holomycin given the reported greater degree of 

bacterial selectivity (Oliva et al. 2001), thiolutin was used instead due to the unavailability 

of holomycin at the commencement of the study.  
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4.4. Results 

4.4.1. In vivo antibacterial activity of thiolutin 

The activity of thiolutin was determined against a range of Gram-positive and Gram-

negative bacteria by a standard broth microdilution procedure (Table 4.1). Thiolutin 

exhibited potent, broad-spectrum activity against S. aureus and E. coli, in agreement with 

previous reports (Seneca, Kane and Rockenbach 1952; Oliva et al. 2001; Li et al. 2014). 

Thiolutin also showed useful antibacterial activity against clinically relevant non-

fermentative Gram-negative bacilli, A. baumannii, and P. aeruginosa.  

 

 

Table 4.1 In vivo activity of thiolutin against range of pathogens 

Bacterial strain MIC (μg/ml) 

Thiolutin 

S. aureus SH1000 2 

S. epidermidis ATCC 14490 2 

S. haemolyticus 41207  2 

Streptococcus pyogenes ATCC 19615 2 

S. pneumoniae ATCC R6 2 

Enterococcus faecalis ATCC 29212 4 

E. faecium 7634337 4 

E. coli BW25113 1 

BW25113+PMBN (4μg/ml) 0.5 

BW25113-ΔacrAB 0.5 

BW25113-ΔtolC 1 

Klebsiella pneumoniae K25 8 

Acinetobacter baumannii ATCC 19606 64 

Pseudomonas aeruginosa PAO1 64 
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Evaluating the effect of compounds in the presence of an outer membrane permeabilizer 

and efflux pump inactivation on antibacterial resistance bacteria is worthwhile, since the 

results may provide an indication concerning resistance mechanisms employed by Gram-

negative bacteria against the compound under investigation (O'Neill and Chopra 2004). A 

modest increase in susceptibility to both antibiotics was observed for E.coli when their 

intrinsic resistance mechanisms were artificially compromised (Table 4.1).  

  

4.4.2. Evaluation of bacterial killing by thiolutin in S. aureus 

Previous reports demonstrated that the DTPs thiolutin and holomycin exhibit a 

bacteriostatic action against E. coli (Oliva et al. 2001; Khachatourians and Tipper 1974a). 

To characterize the antibacterial activity of thiolutin against Gram-positive bacteria, killing 

kinetics were evaluated beside comparator antibiotics against S.aureus SH1000. The 

addition of vancomycin (at 4x MIC) to early-exponential-phase cultures of S.aureus 

SH1000 caused a reduction in cell viability of approximately 3 log10 CFU/ml after 6 hours 

(bactericidal), while tetracycline showed <1 log10 drop in cell viability over 24 hours 

(bacteriostatic). The addition of 8 μg/ml of thiolutin (equivalent to 4x MIC as determined 

by the microdilution method) resulted in cessation of growth (within 10 minutes), but no 

loss of viability (Figure 4.3). Thus, thiolutin exhibited a bacteriostatic response against S. 

aureus, consistent with the previous report on thiolutin against E. coli (Khachatourians 

and Tipper 1974a). 
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Figure 4.3. Evaluation of killing action of thiolutin and comparator agents at 4x MIC on exponential 
cultures of S. aureus SH1000 over 24 hours in MHB. The dotted line represents 3 log reductions. 
Values shown are the means from at least three independent experiments, each of which had two 
technical replicates. Error bars represent standard deviations from the mean. 

 

 

 

4.4.3. Investigation into the antibacterial mechanism of action of thiolutin 

against S. aureus 

4.4.3.1. Effect of thiolutin on staphylococcal biosynthetic pathways 

The effect of thiolutin on macromolecule biosynthesis in S. aureus SH1000 was explored 

by monitoring the incorporation of radiolabeled precursors into macromolecules. This 

experiment was run over a fixed period of only 10 minutes to reveal direct effects caused 

by antibiotic before secondary effects become prominent. Interestingly, no significant 

inhibition by thiolutin was observed for any of the biosynthetic pathways, whereas 
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control experiments with known antibiotics produced the expected inhibitory effects 

(Figure 4.4). 
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Figure 4.4. Effect of thiolutin and comparator agents on DNA, RNA, protein, fatty acid, and 
peptidoglycan biosynthesis in S. aureus SH1000, as measured by incorporation of radiolabeled 
precursors. Values represent the percentage incorporation relative to drug-free controls. Values 
shown are the means from at least three independent experiments, each of which had two 
technical replicates. (*P < 0.05; **P < 0.01; ***P < 0.001 compared to untreated control) Error bars 
represent standard deviations from the mean. (The control data is the same from figure 3.10) 

 

Studies on the mode of action of thiolutin and holomycin against E. coli have suggested 

that these antibiotics inhibit RNA synthesis (Jimenez, Tipper and Davies 1973; Tipper 

1973; Khachatourians and Tipper 1974a; Oliva et al. 2001). Here, in contrast, only a minor 

effect on staphylococcal RNA biosynthesis was observed (inhibited by ~11% in ten 

minutes) particularly when compared with rifampicin (inhibited by ~80% in ten minutes), 

a known RNA biosynthesis inhibitor. The inability to show inhibition of any staphylococcal 

macromolecular synthetic pathway in the 10 minutes assay window suggested that the 

compound may be slow acting in S. aureus in comparison to E. coli. 
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Given the above results, I examined whether specific inhibition of RNA biosynthesis by 

thiolutin could be demonstrated when the exposure time was extended beyond 10 

minutes. As shown in Figure 4.5, inhibition of staphylococcal RNA biosynthesis increased 

to ~20 % and ~50 % after 20 and 30 minutes’ exposure to thiolutin, respectively. 

However, this seems to be a secondary effect since inhibition of RNA synthesis was also 

observed when S. aureus cultures were exposed to ciprofloxacin and tetracycline, 

antibiotics that are known to specifically inhibit DNA synthesis and protein synthesis, 

respectively. 

 

Figure 4.5. Effect of thiolutin and comparator agents on RNA biosynthesis in S. aureus SH1000, as 
measured by incorporation of radiolabeled precursors uridine [5, 6-H(N)] at different time points. 
Values represent the percentage incorporation relative to drug-free controls. Values shown are the 
means from three independent experiments, each of which had three technical replicates.  Error 
bars represent standard deviations from the mean. 

 

 

4.4.3.2. Effect of thiolutin on the staphylococcal cytoplasmic membrane  

Antibacterial agents usually exert their activity by targeting a single biosynthetic pathway 

or by non-specific action on the membrane. Since MMS experiments failed to show a 

preferential pathway for thiolutin mode of action in S. aureus, I investigated whether 
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thiolutin exerts effects on the staphylococcal membrane. Using the BacLight™ assay, 

thiolutin exhibited no effect on membrane integrity, similar to the negative control 

compound, tetracycline (a protein synthesis inhibitor). By contrast, the known membrane 

damaging agents nisin and CTAB reduced membrane integrity substantially within 10 

minutes (Figure 4.6 A). Since this assay may not detect subtle changes in membrane 

potential or perturbation occurring over longer time periods, the membrane-potential 

sensitive dye DiSC3(5) was also employed. No changes in the staphylococcal membrane 

potential were detected after 1 hour of exposure to thiolutin at 4x MIC (Figure 4.6 B).  

Although the mode of action against S. aureus therefore remains to be established, the 

results of these membrane damaging assays imply that thiolutin does not act on the 

membrane. 
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Figure 4.6. Effect of thiolutin and comparator agents on (a) membrane integrity of S. aureus SH1000 as measured by BaclightTM and (b) membrane potential of S. 
aureus SH1000 as measured by DiSC3 (5). Values shown are the means of three independent experiments, each of which had three technical replicates. Error bars 
represent standard deviations from the mean. 
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4.4.3.3. Resistance studies with thiolutin  

The propensity to select resistance to thiolutin was examined previously in E. coli and S. 

typhimurium (Joshi and Chakravorty 1977; Sivasubramanian and Jayaraman 1976). The aim 

here was to determine the frequency of selection of thiolutin resistance by mutation in S. 

aureus and to attempt to identify the antibacterial target of the compound by identification 

of mutational changes. The resistance potential of thiolutin was evaluated by plating 

saturated cultures of S. aureus SH1000 onto agar containing the compound at 4x MIC; 

spontaneous resistance to thiolutin occurred at a frequency of 1.38 (± 1.28) x 10-8. 

Comparator agents gave mutation frequency measurements in agreement with published 

values; for both rifampicin and fusidic acid, resistant mutants arose with frequency around 

10-8 (O'Neill, Cove and Chopra 2001). Nine spontaneous thiolutin-resistant mutants (named 

SA-TR1 - SA-TR9) were picked at random from selection plates and their MICs determined 

(MICs of 4-8 μg/ml). Subsequent attempts to select higher level thiolutin resistance by 

repeated exposure to escalating, subinhibatory concentrations of thiolutin in S. aureus 

were unsuccessful.  

To explore whether thiolutin resistance affords cross-resistance to other antibacterial 

agents, susceptibility to a range of compounds was determined.  No cross-resistance was 

observed with ampicillin (MIC of 0.5 µg/ml), gentamicin (MIC of 0.25 µg/ml), tetracycline 

(MIC of 0.5 µg/ml), rifampicin (MIC of 0.016 µg/ml), ciprofloxacin (MIC of 1 µg/ml), and 

vancomycin (MIC of 2 µg/ml). This suggests that these antibiotics interact with different 

pathways or components of staphylococci than thiolutin. 

 

4.4.3.4. Genetic characterization of thiolutin resistant strains 

Performing whole genome sequencing is one way to identify the genetic loci participating 

in the observed reduction in thiolutin susceptibility. The complete genome sequence of 
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two thiolutin resistant mutants SA-TR1 (MIC of 4 µg/ml) and SA-TR2 (MIC of 8 µg/ml) were 

determined using the Illumina Miseq platform and compared to the genome of the 

parental strain S. aureus SH1000. Mutations in genes coding for thioredoxin (trxA) 

(SAOUHSC_01100) in strain SA-TR1 and thioredoxin reductase (trxB) in strain SA-TR2 

(SAOUHSC_00785) were detected. Subsequently, PCR was used to search for mutations at 

these loci in the remaining S. aureus mutants. A 654 bp amplicon of trxA and a 1348 bp 

amplicon of trxB were generated by PCR using the primers 5’-GCCAAGCGAAGGTGGATTTG-

3’(forward) and 5’-TCCCACCATTCTCAAGTGGTA-3’ (reverse) and 5’-

TGAGCCATATATCGGTGCGTT-3’ (forward) and 5’-CTGTCCCACTCCCATAAAGTT-3’ (reverse), 

respectively. Sequencing of these amplicons revealed in several cases missense mutations 

associated with thiolutin resistance in either the trxA gene or the trxB of S. aureus (Table 

4.2).  However, as shown in table 4.2, mutations could not be detected in five strains in 

which full reversions in the MICs occurred for three mutants (SA-TR3, SA-TR7, and SA-TR8) 

after plating in the absence of thiolutin. 

 

Table 4.2: Missense mutations associated with thiolutin resistance in S. aureus SH1000 

Mutants MIC 
(μg/ml) 

 trxA                                         
DNA seq/Amino acid change 

trxB                                         
DNA seq/Amino acid change 

SH1000 (WT)  2 - - 

SA-TR1 4 GAT→GGT /Asp68→ Gly68 - 

SA-TR2 8 - GCT→GGT/ Ala289→Val289 

SA-TR3 2 - - 

SA-TR4 8 - GGA→AGA/ Gly128→Arg128 

SA-TR5 4 GAT→GTT/Asp68→Val68 - 

SA-TR6 4 - - 

SA-TR7 2 - - 

SA-TR8 2 - - 

SA-TR9 4 - - 
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Thioredoxin/thioredoxin reductase is one of the major cellular oxidation-reduction (redox) 

control systems found in all species from Archebacteria to man (Arner and Holmgren 2000). 

In S. aureus, thioredoxin, with a dithiol/disulfide active site (CGPC), plays an essential roles 

in maintaining cellular redox homeostasis and cell survival. It also provides reducing power 

for key reductive enzymes such as ribonucleotide reductases, and methionine sulfoxide 

reductases (Arner and Holmgren 2000). According to the usual enzymatic reactions of the 

thioredoxin system (Figure 4.7), it is reasonable to deduce that this system is accountable 

for activating thiolutin via reduction of disulphide bridge resulting in a sulfhydryl reactive 

group that exerts the biological effect by performing a thiol-disulfide exchange with target 

protein/s. 

 

Figure 4.7. The mechanism of disulphide reduction catalyzed by the thioredoxin system. Thioredoxin 
reductase (TrxR) catalyzes the reduction of the active site disulfides in Trx using NADPH. Reduced 
thioredoxin [Trx (SH)2] reduces oxidized proteins and consequently oxidized [Trx (S)2]. Oxidized 
thioredoxin is in turn reduced by thioredoxin reductase (TrxR) with NADPH as a source of reducing 
equivalents. Thioredoxin reductase may have substrates other than thioredoxin (adapted from 
(Arner and Holmgren 2000)) 
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Changes in redox regulation leads to oxidative stress (ROS generation) in the cell that can 

damage essential cellular components (Green and Paget 2004). To explore a potential role 

for ROS in the antibacterial mode of action, the effect of thiolutin on strains of S. aureus 

defective in the main components of the ROS protection response were examined to 

determine whether they exhibited greater susceptibility to the action of the antibiotic. No 

change in the MIC of thiolutin was observed against KS100 (SH1000 derivative lacking the 

major catalase enzyme, KatA), KC043  (SH1000 derivative completely devoid of catalase 

activity as a consequence of lacking both KatA and the enzyme alkyl hydroperoxide 

reductase [AhpC]), MHKA (SH1000 lacking the major superoxide dismutase enzyme, SodA), 

MHKM (SH1000 lacking the SodM), or MHKAM (SH1000 double mutant deficient in both 

SodA and SodM), when compared to S. aureus SH1000.  

 

4.4.4. Investigation into the antibacterial mechanism of action of thiolutin in E. 

coli 

4.4.4.1. Effect of thiolutin on E. coli biosynthetic pathways 

Due to the conflicting results obtained with S. aureus, mode of action studies were 

undertaken in E. coli to resolve this conflict and allow us a better understanding of thiolutin 

antibacterial mode of action. Selecting mutants resistant to thiolutin in E. coli and 

characterizing their properties would also be a useful approach to gain an understanding of 

the possible target. Firstly, the ability of thiolutin to specifically inhibit RNA synthesis in E. 

coli BW25113 was investigated. Thiolutin at 4x MIC was found to preferentially inhibit the 

RNA biosynthesis in E. coli BW25113 in 10 minutes (Figure 4.8). A moderate inhibitory 

effect on DNA and protein biosynthesis was also observed, though this could be an effect 

secondary effect to inhibition of transcription.  
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Figure 4.8. Effect of thiolutin and comparator agents on DNA, RNA, and protein biosynthesis in E. coli 
BW25113, as measured by incorporation of radiolabeled precursors. Values represent the 
percentage incorporation relative to drug-free controls. Values shown are the means from at least 
three independent experiments, each of which had three technical replicates. Error bars represent 
standard deviations from the mean. 

  

 

4.4.4.2. Resistance studies with thiolutin in E. coli 

As indicated previously in this study, the low level of resistance to thiolutin in S. aureus 

mutations were linked to amino acid alterations found in regions in trxA and trxB genes. 

In E. coli, two pathways use NADPH to reduce disulfide bonds that form in some 

cytoplasmic enzymes during catalysis: the thioredoxin system, which consists of 

thioredoxin reductase and thioredoxin, and the glutaredoxin system, composed of 

glutathione reductase, glutathione, and three glutaredoxins (Figure 4.9) (Toledano et al. 

2007).  
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Figure 4.9. Components of E coli thioredoxin and glutaredoxin systems. Adapted from (Toledano et 
al. 2007) 

 

To explore a potential role of the thiol redox system in E. coli, strains of keio knockout 

collection of mutants lacking in the main components of the thiol redox system were 

screened for reduced susceptibility to thiolutin (Table 4.3). It is worth mentioning, 

however, that the existence of the listed mutations was not actually validated. 

 

Table 4.3: Effect of thiolutin on E. coli K12 mutants defective in components of thioredoxin 

and glutaredoxin redox systems 

 

Strain Thiolutin MIC (μg/ml) 

BW25113 1 µg/ml 

BW25113 ΔtrxA 2 µg/ml 

BW25113 ΔtrxB 2 µg/ml 

BW25113 ΔtrxC 2 µg/ml 

BW25113 ΔgshA 4 µg/ml 

BW25113 ΔgshB 2 µg/ml 

BW25113 ΔgrxA 2 µg/ml 

BW25113 ΔgrxB 2 µg/ml 

BW25113 ΔgrxC 2 µg/ml 

 

A four-fold reduction in susceptibility to thiolutin was observed in the strain of BW25113 

lacking gene gshA, which encodes for γ-glutamylcysteine ligase, an enzyme that catalyze 
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the first step of glutathione (GSH) biosynthesis pathway (Masip, Veeravalli and Georgioui 

2006). By contrast, only a two-fold increase in thiolutin MIC was observed against the other 

strains tested (Table 4.3). Subsequently, E. coli BW25113 resistant mutants with low-level 

resistance to thiolutin were generated at a frequency of 8.32 (± 1.02) x 10-7 in an attempt to 

confirm the role of gshA in resistance to thiolutin.  Six resistant colonies were picked and 

confirmed to exhibit 2-4-fold greater resistance to thiolutin than E. coli BW25113.  

A 1997 bp gshA fragment from mutants resistant to thiolutin alongside with the parental 

strain E. coli BW25113 were amplified using the primers 5’-GCTATGGTGCAGTCACGCTAT-3’ 

(forward) and 5’-GGGTATGATCGACTGTGAAGC-3’ (reverse). Sequencing analysis revealed 

that four of the six mutants contained an alteration in gshA. In three strains, gshA 

apparently become inactivated by a nonsense mutation. In another mutant (E-TR2), a 

deletion of 50 nucleotides has occurred (Table 4.4) which could cause a premature 

termination to of translation as a consequence of frameshift mutation.  Another 

consequence of a frameshift mutation to be considered is that the expression of 

downstream genes in the operon (yqaA (inner membrane protein) and yqaB (fructose-1-

phosphatase)) might be altered. Since the operon organization of these genes is yet to be 

identified, we had to consider polar effects on downstream genes by deletion of 50 pb. 

 

Table 4.4: Mutations associated with thiolutin resistance in E.coli BW25113 

Mutants MIC (μg/ml) gshA (γ-glutamylcysteine ligase)                   DNA 
sequence/Amino acid change 

E-TR1 4 TCA→TAA/ Ser6→Stop 

E-TR2 4 Deletion  

E-TR3 2 - 

E-TR4 4 CAA→TAA/ Gln209→Stop 

E-TR5 2 - 

E-TR6 4 CAA→TAA/ Gln209→Stop 
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4.4.4.3. In vitro activity of thiolutin in an E. coli transcription/translation 

system 

The results obtained from both S. aureus and E. coli support the idea that DTPs are 

prodrugs that require activation in the cell to exert their biological activity (Oliva et al. 

2001; Li et al. 2012). To establish whether reducing conditions were required for thiolutin 

to work, I utilized a cell-free, in vitro E. coli transcription/translation system to monitor the 

effect of thiolutin on the inhibition of the enzymes involved in these pathways in the 

presence of reducing agent dithiothreitol (DTT) (section 2.5.2 in material and method 

chapter).  

To the best of my knowledge, only two studies to date have demonstrated an in vitro 

inhibitory effect of thiolutin on yeast RNA polymerases (Jimenez, Tipper and Davies 1973; 

Tipper 1973). In these studies, inhibition of S. cerevisiae RNA polymerases was only 

established following pre-incubation of the enzyme with thiolutin in the absence of DNA. 

That led the authors to propose that the target site on RNA polymerase only accessible to 

thiolutin before interaction with DNA, and that thiolutin mode of inhibition is by interfering 

with functional polymerase-DNA interaction (Tipper 1973; Jimenez, Tipper and Davies 

1973).  

Here, however, no inhibition was observed when 4 μg/ml of thiolutin pre-incubated with 

the enzyme mixture for 10 minutes in the presence of 1mM DTT. This concentration of 

thiolutin is corresponded to the 4xMIC of the antibiotic for E. coli strain BW25113. In 

contrast to the non-observed inhibition displayed by thiolutin, fusidic acid was a potent 

inhibitor of E. coli T/T system in vitro with 90% inhibitory concentrations of approximately 2 

μg/ml. Due to the limited time available, no further investigations were carried out. 
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4.5. Discussion 

Studies on the mechanism of antibacterial action of thiolutin have been limited to 

the Gram-negative bacteria E. coli. Early studies on the thiolutin mode of action 

suggested that it might act as an inhibitor of RNA synthesis based on whole-cell 

experiments and not in a cell-free assay (Jimenez, Tipper and Davies 1973; Tipper 1973; 

Khachatourians and Tipper 1974a). Here, I started the investigation of the mode of thiolutin 

action on the Gram-positive bacteria S. aureus. The inability to show inhibition of any 

staphylococcal macromolecular pathway (Figure 4.4) suggestes a new target in this 

organism. 

At the time of writing this chapter, Bo Li of the University of North Carolina, Chapel Hill, and 

coworkers published their findings on the DTP mode of action (Chan et al. 2017). They 

revealed that holomycin and thiolutin, along with gliotoxin exert their antimicrobial activity 

by interfering with cellular metal homeostasis in E. coli. They used a chemical genomic 

screen in E. coli K-12 to profile global drug–gene interactions. By probing growth profiles of 

a mutant library in the presence of sub-inhibitory concentrations of thiolutin, holomycin, 

and gliotoxin resulted in the detection of genes imparting fitness (Chan et al. 2017; Shiver 

et al. 2016). The clustering of the dataset revealed that gene deletion mutants in the 

uptake of extracellular iron and zinc were sensitized to all three compounds, but not to 

rifampicin or actinomycin D (inhibitors for transcription), compared to the wild type. 

Instead, the sensitivity profiles of these DTPs and gliotoxin were more similar to the metal 

chelator EDTA (Chan et al. 2017). In addition, an observation of less than 20% inhibition of 

purified E. coli RNA polymerase by high concentration of reduced holomycin (~20 μg/ml) in 

comparison to complete inhibition by rifampicin, led the authors to conclude that RNA 

polymerase is unlikely to be the primary antimicrobial target of holomycin in E. coli (Chan 

et al. 2017).  
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Based on the findings of this study, the authors proposed a model for the mode of action of 

DTPs (Figure 4.10). Holomycin is internalized by the target bacterium in the disulfide form, 

and reduced intracellularly to red-holomycin in which disrupt zinc homeostasis in two 

possible ways; (1) the reduced holomycin limits the zinc availability by chelating the free 

zinc and/or (2) the reduced holomycin removes zinc from a subset of zinc-dependent 

enzymes which may consequently impact glucose utilization, RNA synthesis, and 

respiration (Chan et al. 2017).  

 

 

Figure 4.10. A model for the mechanism of action of DTPs as proposed by (Chan et al. 2017) 

 

 

Although it was suggested that DTPs exert their indirect RNA inhibition by chelating metals 

upon their reduction intracellularly in E. coli, this seems not to be the case in S. aureus. 

Based on the findings of this study, the immediate cessation of growth in S. aureus cultures 

upon thiolutin exposure (Figure 4.3) suggests that intracellular reduction of thiolutin is not 

likely to be delayed in comparison with E. coli. Furthermore, if metal chelation is the prime 

mode of DTPs action upon reduction, one would expected to observe inhibition of multiple 

macromolecular synthesis pathways, since zinc-domains are a vital component of several 



85 

 

 

 

proteins including DNA and RNA polymerases, proteases, and ribosomal components 

(Panina, Mironov and Gelfand 2003). Therefore, the failure to demonstrate in vitro 

inhibition of any of the major biosynthesis pathways in S. aureus indicates a different mode 

of DTPs action in Gram-positive bacteria that needs further investigation. 

 

5.4. Conclusions 

Given the growing problem of antibiotic resistance, it is practical to consider antibacterial 

compounds that are yet unexploited. The DTP holomycin demonstrated better activities 

against all bacteria tested and high level of prokaryotic specificity than thiolutin. Thiolutin 

has revealed an unusual mechanism against Gram-positive bacteria that could be linked to 

differences in stress responses in comparison to Gram-negative bacteria. While the mode 

of action against S. aureus remains to be established, it is clear that this antibiotic does not 

directly cause growth inhibition through non-specific action on the membrane. The 

antibacterial activity of thiolutin appears to require reductive activation by the 

predominant redox system/s in the bacterial cell, and low-resistance to this class can 

results from inactivation of their reductive pathways. Further studies are required for 

further clarifying the antibacterial mode of DTPs action.  
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Chapter five 

General conclusions and future works 

5.1. General conclusions 

The increasing trend of infections caused by multi-drug resistant pathogens has led to 

concerns that we are soon to enter a post-antibiotic era. Resistance to the last resort 

antibiotic, colistin, has already been detected in various parts of the world (O’Neill 2016). 

In one recent case, a 70-year-old woman died from septic shock in Nevada, after test 

showed 26 antibiotics-including colistin- could not have treat her bloodstream infiction 

(Chen et al. 2017). It is more vital now than ever to identify new antibiotic classes with a 

novel mode of action to address growing global resistance to antibacterial.  

Nearly all antibiotics introduced into clinical practice are derived from a limited number 

of chemical scaffolds, mostly are natural products that discovered over 40 years ago (Cole 

2014).The most recent introduction of new classes of antibiotics daptomycin (2003), 

retapamulin (2007), and fidaxomicin (2012) into clinic resulted from revisiting known 

scaffolds that failed to be developed as antibiotic candidates beforehand. The concept of 

revisiting of known natural product scaffolds, if carefully applied, could yield rapid results 

and a great number of new classes to the antibiotic pipeline to address the current 

antibiotic resistance crisis. 

This thesis contains the first report of biological characterization of the dimeric BIQ γ-

actinorhodin. The work presented in Chapter Three has made a significant contribution to 

our understanding of the previous report on the level of antibacterial activity of 
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actinorhodin, and suggests that re-evaluation of antibiotic classes that have been 

reported to exhibit weak activity using non-standard methods could potentially identify 

useful antibiotics. γ-actinorhodin’s selective potent activity against MRSA and VISA 

strains, novel mode of action, low resistance potential, and the preliminary evidence of in 

vivo efficacy, suggests that actinorhodin scaffold may have potential as an 

antistaphylococcal drug candidate. 

In addition, this thesis has made a contribution to the understanding of the mode of DTPs 

action (Chapter Four). In particular, it has been shown that the mode of action differs 

between Gram-positive and Gram-negative bacteria. The genetic analysis of mutants 

resistant to thiolutin has revealed genes involved in resistance to DTPs (thioredoxin 

system in S. aureus and glutaredoxin system in E. coli) and suggests their involvement in 

the activation of the DTP antibiotics by reduction in vivo, in agreement with a recent 

report (Chan et al. 2017). In addition, the failure to demonstrate inhibition of E. coli RNA 

polymerase or other enzymes required for transcription/translation in vitro, alongside the 

failure to demonstrate in vivo inhibition of any of the major biosynthesis pathways in S. 

aureus, indicates a novel mode of antibacterial action warrants further investigation. 

This study therefore highlights the utility of revisiting unexploited natural product, and 

will hopefully; this study will encourage renewed efforts in revisiting unexploited natural 

product in the search for novel antibacterial drugs. 

 

5.2. Future works 

Although it was established that γ-actinorhodin at low concentration exerted some 

protection against infection by S. aureus USA3000 in an in vivo model, a progression of 

infection in G. melonella was observed at higher concentrations (Chapter Three). It seems 

that high concentrations of γ-actinorhodin retard the ability of G. melonella’s immune 
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cells (haemocytes), leading to the progression of infection rather than protection. Future 

study could gain insight into this by extracting haemocytes from G. melonella larvae, and 

determining their ability to kill bacteria in vitro following exposure to different 

concentrations of γ-actinorhodin (Fallon et al., 2011). If the killing activity of haemocytes 

vanished/ or weakened after exposure to low concentration of γ-actinorhodin, it can be 

considered as topical agent for use in the treatment of chronic wounds and surgical site 

infections, especially since γ-actinorhodin is not toxic on its own at high concentration. 

The design of this experiment would reflect this situation (in vitro and in vivo infected 

wound model). 

While it has been established that γ-actinorhodin interacts with components of the 

membrane (Chapter Three), the precise nature of this interaction is as of yet undefined. 

To provide further insight into the membrane component that γ-actinorhodin interacts 

with, staphylococcal cell ghosts could be generated, comprising cell envelops produced by 

releasing the cytoplasmic material through a channel in the cell envelope. A simple 

method to generate S. aureus ghosts was established by using the MIC of sodium 

hydroxide (NaOH) and the development of a transmembrane lysis channel in the cell 

envelop, which can be visualized by scanning electron microscopy (Vinod et al., 2015). In 

combination with methodology to reseal bacterial ghosts using membrane vesicles, cell 

ghosts could be infused with fluorescent dye and exposed to γ-actinorhodin. If no leakage 

of dye is induced, this may indicate that an energized membrane is required for the 

interaction. This could distinguish between agents that disrupt the function of 

components embedded within the membrane as opposed to those that simply 

destructure the membrane. 

Interestingly, apart from the reported lethal dose values- (LD50 25 mg/kg, oral) and (LD50 

25 mg/kg subcutaneous)- in mouse, its toxicological properties have not been thoroughly 

investigated (http://www.drugfuture.com/toxic/q51-q357.html ). Only one preliminary 

http://www.drugfuture.com/toxic/q51-q357.html
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short report was found in literature on the antimicrobial effectiveness of thiolutin in the 

treatment of tinea capitis (fungal infection of the scalp) (Franks 1952) in which sixteen 

cases were treated by application twice daily of an ointment containing 0.2% of thiolutin. 

All cases were cured after an average of six weeks, except two cases involving 

Microsporum audouini infections. It was reported in the study that almost all patients 

treated exhibited a strong inflammatory reaction two to three weeks after administration 

of the ointment. However, after the treatment was stopped for seven to ten days, 

thiolutin ointment was reapplied, and no significant adverse effects was observed for the 

reminder of the treatment period. Indeed, the lack of thiolutin specificity may have been 

encountered in the development as an antimicrobial. This single report highlights the 

therapeutic potential of this class of antibiotics in the treatment of difficult to treat 

infections. It is clear that the prospect for development of this class will depend upon 

elucidating their precise mode of action in bacteria and determining whether they are 

truly specific for prokaryotic organisms. Thiolutin and holomycin, both likely share the 

same mode of action. However, some differences between the two include the selectivity 

ratios were observed (Oliva et al. 2001). Judging from this, holomycin should be a better 

choice for future studies and therapeutic use. 

The literature has provided evidence that suggesting the involvement of the polyamines, 

spermidine and putrescine, in the control of RNA synthesis of E. coli in which 90% of 

spermidine exist as polyamine-RNA complexes (Lightfoot and Hall, 2014). Therefore, I 

hypothesize that thiolutin- in a reduced form- may interact with polyamines and inhibit of 

RNA synthesis by indirectly affecting the regulation of RNA synthesis. Further 

investigation of the role of polyamines in the mode of RNA inhibition by DTPs in E. coli is 

therefore warranted. 
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Appendices 

Appendix A1 

 

The accurate mass spectrum for -actinorhodin. 
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Appendix A2 

 

 

1H NMR spectrum for -actinorhodin 
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Appendix A3 

 

13C spectrum for -actinorhodin. 
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Appendix A4 

 
1H-1H COSY spectrum for -actinorhodin. 



94 

 

 

 

Appendix A5 

 
13C-1H HSQC spectrum for -actinorhodin. 
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Appendix A6 

 
13C-1H HMBC spectrum for -actinorhodin 
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Appendix A7 

 

IR spectrum for -actinorhodin. 
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Appendix A8 

 

 

HPLC chromatogram recorded for -actinorhodin in acetone at 520 nm
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Appendix B 

MICs of γ-actinorhodin against a collection of S. aureus clinical isolates 

Strain 
name 

Antibiotic susceptibility MIC (μg/Ml) 

γ-actinorhodin 

G1 MSSA 1 

G2 MSSA 2 

G4 MSSA 1 

G5 MSSA 2 

G6 MSSA 1 

G9 MSSA 1 

G10 MSSA 1 

G11 MSSA 2 

G12 MSSA 1 

G13 MSSA 1 

G15 MSSA 2 

G16 MSSA 2 

G17 MSSA 1 

G18 MSSA 1 

G19 MSSA 2 

G20 MSSA 1 

G22 MSSA 1 

G23 MSSA 1 

G24 MSSA 1 

G25 MSSA 2 

G26 MSSA 1 

G27 MSSA 2 

G28 MSSA 2 

G29 MSSA 1 

G30 MSSA 1 

G31 MSSA 1 

G32 MSSA 2 

G33 MSSA 1 

G34 MSSA 2 

G35 MSSA 2 

Oxford MSSA 2 
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Strain 
name 

Antibiotic susceptibility MIC (μg/Ml) 

γ-actinorhodin 

R24 MRSA 2 

R25 MRSA 1 

R26 MRSA 2 

R27 MRSA 1 

R28 MRSA 2 

R29 MRSA 1 

R30 MRSA 1 

R31 MRSA 1 

R32 MRSA 2 

R33 MRSA 1 

R34 MRSA 1 

R35 MRSA 2 

R36 MRSA 2 

R37 MRSA 2 

R38 MRSA 2 

R39 MRSA 2 

R40 MRSA 2 

12232 MRSA 2 

12233 MRSA 1 

W71 MRSA 1 

W74 MRSA 2 

W80 MRSA 2 

W82 MRSA 1 

W85 MRSA 2 

W96 MRSA 2 

W97 MRSA 1 

W98 MRSA 1 

W99 MRSA 2 

EMRSA 15 MRSA 2 

EMRSA 16 MRSA 2 

EMRSA 17 MRSA 2 
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Strain 
name 

Antibiotic susceptibility MIC (μg/Ml) 

γ-actinorhodin 

VISA 2 VISA 2 

Mu3 VISA 4 

New jersey VISA 2 

Mu50 VISA 4 

V99 VISA 2 

Michigan VISA 2 

VISA 26 VISA 2 
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Appendix C 

 

 

 

 

 

 

 

 

 

Resistance acquisition during Serial passage experiments with S. aureus SH1000 in the presence of 

sub-MIC levels of γ-actinorhodin and daptomycin from two experiments A and B.
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