The
University
Of
Sheffield.

ON THE FUZZY CONCEPT COMPLEX

Jonathan Arthur Elliott

A thesis submitted for the degree of
Doctor of Philosophy

University of Sheffield
Faculty of Science
School of Mathematics and Statistics

September 2017



Abstract

Every relation between posets gives rise to an adjunction, known as a Galois con-
nection, between the corresponding power sets. Formal concept analysis (FCA)
studies the fixed points of these adjunctions, which can be interpreted as latent
“concepts” [20], [19]. In [47] Pavlovic defines a generalisation of posets he calls
proximity sets (or proxets), which are equivalent to the generalised metric spaces
of Lawvere [37], and introduces a form of quantitative concept analysis (QCA)
which provides a different viewpoint from other approaches to fuzzy concept
analysis (for a survey see [4]).

The nucleus of a fuzzy relation between proxets is defined in terms of the fixed
points of a naturally arising adjunction based on the given relation, generalising
the Galois connections of formal concept analysis. By giving the unit interval
[0,1] an appropriate category structure it can be shown that proxets are simply
[0,1]-enriched categories and the nuclues of a proximity relation between proxets
is a generalisation of the notion of the Isbell completion of an enriched category.

We prove that the sets of fixed points of an adjunction arising from a fuzzy
relation can be given the structure of complete idempotent semimodules and
show that they are isomorphic to tropical convex hulls of point configurations in
tropical projective space, in which addition and scalar multiplication are replaced
with pointwise minima and addition, respectively. We show that some the results
of Develin and Sturmfels on tropical convex sets [13] can be applied to give the
nucleus of a proximity relation the structure of a cell complex, which we term
the fuzzy concept complex. We provide a formula for counting cells of a given
dimension in generic situations.

We conclude with some thoughts on computing the fuzzy concept complex
using ideas from Ardila and Develin’s work on tropical oriented matroids [1].
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Chapter1

Introduction

One aim of this thesis is to provide some additional tools for studying concepts
in quantitative (or “fuzzy”) concept analysis. This is a generalisation of the study
of formal concept analysis, which we now briefly describe.

1.1 Formal concept analysis

The aim of Formal Concept Analysis (FCA) is to extract latent concepts, in the
form of a concept lattice, from a formal context that describes the relationship
between two collections. A formal context is a triple K = (X,Y, M), where X
and Y are sets, normally interpreted as a collection of objects and a collection of
attributes that these objects may satisfy, respectively,and M: X xY — {0,1} isa
relation encoding information about which attributes are satisfied by each object
and, conversely, which objects satisfy each attribute. That is, given an object
x € X and an attribute y € Y we have

1 if x has the attribute y,
M(xy) = { 0 otherwise.
IfX = {x;,x2...,x}andY = {y1, ¥, ..., yn} are finite sets, such a relation can
be written as an (r x n)-matrix, whose (i, j)th entry is equal to M (x;, y;) for all
ief{l,...,r}andj € {1,..., n}. We will abuse notation and call this matrix M
too, so that m;; = M(x;,y;).

There are obvious functions M*: X — P(Y)and M,: Y — P(X). Each
object x € X gives rise to a subset M*(x) < Y consisting of those attributes
satisfied by x. Similarly, each y € Y gives rise to a subset M, (x) < Y consisting of
those objects satisfying x.

This correspondence extends to a Galois connection between the powersets of
X and Y. Given any subset of objects A C X one can find theset AT = M*(A) € Y



male English beard retired
Albert v v
Betty v
Charles | v v v
Doris v
Eric v 4 v

Table 1.1: Some people and their attributes

consisting of those attributes satisfied by all a € A and given subset of attributes
B C Y one can find the set B* = M, (B) < X consisting of those objects satisfying
all b € B. These subsets are the intersections of the subsets corresponding to
individual elements:

M*(A) = (|M*(a) and  M.(B) = ()| Md(b). (L)
acA beB

On the one hand, M *(A) can be viewed as the intersection of the subsets M*(a)
corresponding to the elements a € A. From a slightly more sophisticated per-
spective, which will be useful later, it can be viewed as the intersections of all the
subsets M *(x) corresponding to each element x € X, where only those for which
x € Aare counted; in other words, the inclusion of M *(x) in the intersection is
“weighted” by the truth value of the statement “x € A”.

Given a formal context as above, a formal concept is a pair (A, B), consisting
of subsets A € X and B € Y, such that A" = Band A = B!. Each concept can
be looked at in two ways: extrinsically in terms of its objects, i.e. the subset A, or
intrinsically in terms of its attributes, i.e. the subset B. This is best illustrated in
an example.

Example 1.1.1. For this example let X be the set of people
{Albert, Betty, Charles, Doris, Eric}
and letY be the set
{being male, being English, having a beard, being retired}

consisting of some of the possible attributes they may have. Which people have
which attributes is shown in Table 1.1.

The fact that the powersets (X ) and (Y) are in fact partially ordered sets
(with respect to inclusion) allows formal concepts to be organised into a formal
concept lattice. Given concepts C = (A, B) and C' = (A’, B'), we say that C < C’



whenever A € A’ and B = B. (Note the opposite ordering on P (Y); this is
due to the Galois connection M* — M, being antitone.) Such lattices can be
conveniently illustrated as graphs, the vertices of which are simply the formal
concepts; the edges do not have any direct meaning other than to indicate the
ordering of the concepts.

Here is the concept lattice for the relation defined by the table. Each concept
is indicated by a node marked with the corresponding subsets of X and Y that de-
scribe the concept extrinsically or intrinsically, respectively. For instance, the node
on the far left of the diagram, labelled “{C, D}{R}” corresponds to the concept
consisting of (from an extrinsic perspective) Charles and Doris, or equivalently
(from an intrinsic perspective) those people who are retired.

{ABCDE}
&

{ABE}
{E}

{C.D}
{R}

4]
{MEBR}

In this thesis we study the structure that arises when we consider relations
between sets that are not restricted to Boolean values, but instead can describe
the relationship between objects in a “fuzzier” way.

1.2 Outline of contents

This thesis is inspired predominantly by two research papers. The first of these
is Pavlovic’s “Quantitative Concept Analysis” [47], which generalises the idea of
formal concept analysis to a quantitative setting. The nucleus of a relation is
defined as a quantitative alternative to traditional qualitative concept lattices.
The second paper is Develin and Sturmfels’ “Tropical Convexity” [13] in which
it is shown that the tropical convex hull of a set of points in tropical projective
space admits a natural cell complex structure. A third paper, Cohen, Gaubert, and



Quadrat’s “Duality and Separation Theorems in Idempotent Semimodules” [9]
was also influential.

By adapting the definitions of tropical geometry we are able to show that the
nucleus of the first paper can be treating in a similar way to the tropical convex
hulls of the second paper and that the nucleus admits a cell complex structure.
This may have applications in fuzzy concept analysis and it allows one to classify
fuzzy concepts in terms of their type, dimension and neighbouring cells.

In Chapter 2 we provide relevant background material on proxets, as intro-
duced in [47], and explain how they can be thought of as enriched categories.
We also provide further background material on profunctors and the Isbell com-
pletion of an enriched category in preparation for defining proximity relations
between proxets (which are a special case of profunctors) and the nucleus of
such a proximity relation (which is a special case of a more genereal construction
related to the Isbell completion).

In Chapter 3 we define the nucleus of a proximity relation between proxets.
We restrict our attention to finite discrete proxets so that proximity relations can
be thought of as matrices. We show that [0, 1]* obtains a natural semimodule
structure and show that the nucleus of a proximity relation is isomorphic to a
submodule of this semimodule. Using this we show that the nucleus of a proximity
relation can be expressed geometrically as a span of its rows or columns.

In Chapter 4 we provide a brief introduction to some key ideas from tropical
geometry and describe a correspondence between the aforementioned spans
and tropical convex hulls of point configurations in tropical projective space. We
translate some definitions and results from [13] into the context of these spans.
We show that points in the nucleus can be classified according to their “type”
and that this classification provides a cell complex structure for the nucleus. We
provide a formula for counting k-cells in this cell complex by translating another
result from [13].

In Chapter 5 we briefly describe how to compute certain cells in the nucleus
of a fuzzy relation and discuss tropical oriented matroids with reference to [1]
(see also [23, 24]).

Appendix A provides some background on enriched category theory which
may be of particular use in relation to the material on general profunctors and
Isbell completions in Chapter 2.
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Chapter 2

Background

This chapter is roughly divided into three parts. In the first part we provide some
of the background material needed to define fuzzy relations between proxets and
the nuclei of such relations. We have assumed a basic knowledge of category
theory, but some definitions and results from the theory of enriched categories
can be found in Appendix A, which we will refer to throughout this chapter.

We then move on to talk about profunctors in general enriched categories.
Profunctors are a powerful generalisation of functors, relations, and bimodules,
amongst other things. Indeed, fuzzy relations between proxets are enriched
profunctors.

In the final part we discuss the Isbell completion (also known as the “reflexive
completion” [2]). The nucleus of a fuzzy relation is a special case of a generalisation
of the Isbell completion of an enriched category.

2.1 Proximity sets

In his paper “Quantitative Concept Analysis” [47], Pavlovic introduced objects he
calls proximity sets (also called proxets), to provide a natural setting for studying
fuzzy concepts. Although there are many ways to extend formal concept analysis
to a fuzzy (i.e. quantitative) setting — surveys can be found in [3, 4] — proxets are
particularly effective. They turn out to be equivalent to the generalised metric
spaces introduced by Lawvere [37] and have many nice properties. Definitions
and results about proxets can equivalently be stated in terms of generalised metric
spaces. See, for example, [48].

Proxets can be seen as categories enriched over the closed interval [0, 1] with
an appropriate monoidal category structure. We will explain in some detail how
this is done. However, the approach we take is to state the basic definitions re-
garding proxets initially in elementary terms, with no direct reference to enriched



categories, before showing that proxets are [0, 1]-categories. In a number of cases
our conventions and notation differ from that of the original.

Definition 2.1.1. A proximity set (or proxet for short) is a set X together with a

function (—, —)x: X x X — [0,1], so that any two elements x,y € X have a
proximity (x,y)x € [0,1], such that the following conditions are satisfied for all
x,y,z € X:
(x) x)X = 17
(xx¥)x - (1 2)x < (x,2)x.

We typically abuse notation and refer to a proxet simply by the name of its under-
lying set, leaving its proximity operation implicit.

Definition 2.1.2. A proxet X is said to be extensional if it satisfies the additional

property
(x,y)x =land (y,x)x =1 = x =y, 2.1)

for all x, y € X. Otherwise we say that X is intensional.
Definition 2.1.3. A proxet X is discreteif (x,y)x = Oforallx,y € X with x # y.
Here are some examples of proxets.

Example 2.1.4 (Discrete proxets).

Any set X can be thought of as a discrete proxet by setting, for x, y € X,

1 ifx=y,
(%, y)x = { 0 otherwise.

It is trivial to check that the conditions of Definition 2.1.1 are satisfied.

Example 2.1.5 (Preorders).

More generally, the above extends to any preorder (P, <), by setting

1 ifx <y,
(6, y)p = { 0 otherwise.

The conditions of Definition 2.1.1 follow immediately from the fact that < is
reflexive and transitive.

Example 2.1.6.

10



The set [0, 1] itself can be given the structure of a proxet by defining

y/x ify <x,
(Yo = x\y = { / (2.2)

1 otherwise.

This operation, called truncated division, will be extremely important in later
chapters. Note that y\z is equal to the largest number in [0, 1] that, when multi-
plied by x, is no larger than y, i.e.

x\y =sup{w e [0,1] | x - w < y}. (2.3)
This gives us the defining condition

x-y <z ifandonlyif x <y\z (2.4)

forallx,y,z € [0,1].

This means that truncated division is a residuation in the sense of [9], as
discussed in Section 3.2, where further properties of residuations, and truncated
division in particular, are given. One such property is that

x(x\y) <y

for all x,y € [0,1]. This follows by straightforward application of (2.4) to the
statement x\y < x\y. Another particularly useful property is the following.

Lemma 2.1.7. Letx,y, z € [0,1]. Then

x\(Y\2) = (x - y)\z = y\(x\2). (2.5)

Proof. Using (2.3) we have

X\(¥\z) = sup{w € [0,1] | x - w < y\z}
=sup{we[0,1] |x - w-y <z} (by (2.4))
— suplwe [0,1]] (x-y)-w < 2}

= (x-y)\z.

The second equation follows from commutativity of multiplicationin [0,1]. O

The above result will be proved more generally in the context of residuations
in idempotent semimodules in the next chapter. More properties will be given
when they are needed.

We still need to check that this definition satisfies the conditions of Definition
2.1.1. For any x € [0,1] it is clear that x\x = 1, since x > x. For the second
condition, let x, y, z € [0,1]. Then, by the above-stated property of truncated
division,

x-(x\y)-(N\2) <y-(V\2) <z
and then applying (2.4) gives the required condition.

11



Definition 2.1.8. A morphism of proximity sets (or proximity map) is a function
f: X — Y between the underlying sets of two proxets, such that forall x,y € X

(6, y)x < (F(x), F (7))
Proximity maps can be composed to produce proximity maps.

Lemma2.1.9. LetX,Y,Z beproxetsandletf: X — Y andg:Y — Z beproximity
maps. Then g o f: X — Z is a proximity map.

Proof. Letx,y € X. Then

((gof)x), (gof)y)z = (g(f(x)), g(f(¥)))z

< (f(x), f(y))y (since g is a proximity map)
< (x,¥)x- (since f is a proximity map)
Hence g o f is a proximity map. O

The category of proxets and proximity maps is denoted Prox.

Definition 2.1.10. Let X and Y be proximity sets. A proximity map f: X — Y is
an isomorphism of proximity sets (or a proximity isomorphism) if there exists a
proximitymap g: Y — X suchthatg o f = idxy and f o g = idy.

Corollary 2.1.11. Letf: X — Y bea proximity isomorphism. Then forallx, x' € X
we have (x,x")x = (f(x), f(x'))y.

Proof. Letx,x’ € X. Then

(x,x")x

<
< (8(f(x)), 8(f(x")))x

so (x,x")x = (f(x), f(x'))y as required. o

2.1.1 Proxets as enriched categories

We now provide an interpretation of proxets as enriched categories. We refer the
reader to Appendix A for an introduction to enriched categories, including the
definitions of enriched categories, enriched functors, enriched natural transform-
ations, and enriched functor categories, which are mathematical objects that can
be thought of as representing the collection of all enriched natural transforma-
tions between enriched functors. We will attempt to explain many relevant points
in the main text, only referring to Appendix A when necessary.
We must first provide the category to enrich over.

12



Proposition 2.1.12. The closed unit interval [0, 1] can be given the structure of a
closed symmetric monoidal category.

Proof. Firstly, the objects of [0, 1] are, unsurprisingly, the elements of the closed
unit interval, i.e. Ob[0,1] = [0,1]. There is a morphism in [0, 1] from x to y
precisely when x < y. In particular, this guarantees a morphism 1, : x — x for all
x € X. It is easy to see that this gives [0, 1] the structure of a category; transitivity
of < guarantees that composition is associative, while for each x € [0, 1] the
morphism 1, acts as an identity.

The monoidal product on [O, 1] is defined to be ordinary multiplication, i.e.
x®y = x-yforallx,y € [0,1]. The unit 1 for this product is the object1 € [0, 1],
sincex -1 =1-x = x forall x € [0,1]. The monoidal product thus defined is
clearly symmetric, sincex - y = y - x for all x € [0, 1].

To see that [0,1] is a closed monoidal category, we must show that for each
y € [0,1] the order-preserving map x — x - y has a right adjoint. By (2.4), this
adjoint is easily seen to the map z — x\z, where \ is the truncated division
operation defined in (2.2). O

It is then easy to see that proxets are equivalent to [0, 1]-categories. Each
proxet X has an underlying set, corresponding to the objects of a [0, 1]-category
X and vice versa. For each x,y € X, the proximity (x, y)x is the hom-object
X(x,y) € [0,1]. The reflexivity and transitivity axioms of X are precisely the
identity and associativity axioms for composition in X.

We will now therefore consider proxets as if they were defined as [0, 1]-cat-
egories, we will think of proximity maps as [0, 1]-functors, and so on. This will
allow to apply results from Appendix A to proxets.

Extensional proxets are [0, 1]-categories in which no two distinct objects are
isomorphic. In other words, extensional proxets are skeletal [0, 1]-categ0ries.

Before making any further definitions, we highlight another important equi-
valence of categories. This provides a slightly different way to think of proxets.

Proposition 2.1.13. The setR, := [0, 0] can be given the structure of a closed
symmetric monoidal category.

Proof. The objects of the category R are non-negative real numbers together
with infinity, and there is a morphism x — y precisely when x > y (note that this
is the other way round to how we defined morphisms in [0, 1]). Addition acts as
the monoidal product and 0 is the monoidal unit. The monoidal product is clearly
symmetric. The right adjoint to x — x + y isgivenby z — z —y = max{z — y, 0}.
This is called truncated subtraction. i

A category X enriched in R has, for each pair of objects x and y, a number
X(x,y), which can be thought of as the distance from x to y. For x,y,z € X,

13



composition is, by the definition of morphisms in R, , the inequality
X(y,2)+X(x,y) = X(x,2), (2.6)

i.e. the familiar triangle inequality from the classical study of metric spaces; the
‘identity morphism’ for x € X is the inequality

0> X(x,x), 2.7)

which, since the right-hand side is always non-negative, means that X (x, x) = 0
forevery x € X.

Definition 2.1.14. An R -category X is called a generalised metric space, after
Lawvere introduced the notion in his excellent paper [37]. There are a number of
differences between such spaces and classical metric spaces:

e distances in X may be infinite;
* X may be non-symmetric, i.e. it is possible that X (x, y) # X(y, x);

» distinct points in X may be zero distance apart, i.e. having X (x, y) = 0 does
not necessarily imply thatx = y.

Definition 2.1.15. If X and Y are generalised metric spaces, we define an R -
functor f: X — Y to be a map of sets such that, for x;, x» € X,

X(x1,x2) = Y (f(x), f(x2))-

Such a map is called a distance non-increasing map, or a short map for short.
The category of generalised metric spaces and distance non-increasing maps
is denoted GMet.

Proposition 2.1.16. The category GMet is equivalent to the category Prox.

Proof. Any generalised metric space X gives rise to a proxet ®X. Given such a
space X and points x, y € X, let dx(x,y) denote the distance from x to y in X.
Given any b > 1, we can then define the proximity from x to y as

(x,¥)ox = p— (oY)

In particular, if X allows infinite distances and dx (x, y) = oo then (x, y)px = 0.
Conversely, any proxet X gives rise to a generalised metric space WX by defin-
ing
dx (x,y) := —log, ((x,y)x),

where we use the convention thatlog, 0 = —co0.

14



If f: X — Y is a distance non-increasing map between generalised metric
spaces, i.e. such that

dx (x,x") = dy (f (x), f (x'))

for all x,x" € X, then ®f: ®X — @Y, defined simply as ®f (x) := f(x) is a
proximity map, since

(x,xl)(DX _ b*dx(x,x/) < b*dY(f(x)’f(xl)) — ((Df(X),(Df(x/))CDY;

so @: GMet — Prox is a functor. We can show that ¥: Prox — GMet is a functor
in the same way and it is clear that ® o ¥ = idp,ox and ¥ o @ = idgmet, S0 © and
Y constitute an equivalence (in fact an isomorphism) of categories. O

Since proxets are simply [0, 1]-categories, the following definitions can be
arrived at by specialising the general definitions for enriched categories.

Definition 2.1.17. Let X be a proxet. A subproxet of X is a sub-[0, 1]-category of
X, i.e. a proxet whose underlying set is a subset Y < X, with proximities given by

(x,y)y == (%, y)x
forallx,y e?.

Definition 2.1.18. Let X be a proxet. The opposite proxet of X is the opposite
[0,1]-category of X, i.e. the proxet X °P whose underlying set is equal to that of X,
but with proximities given by

(x,y)xor 2= (¥, %)x,
forallx,y € X.

To define products of proxets in the same way — directly from the definition
for general enriched categories — we first need to see what the categorical product
of two objects in Prox is.

Proposition 2.1.19. Let X andY be objects of Prox. The categorical product of X
andy is the proxet X x Y whose underlying set is the set of pairs (x, y) withx € X
andy €Y, with proximities given by

((x, ), (&, ¥"))x ey == min{(x, x)x, (v, ¥ )y},

forallx,x' € X andy,y €Y.

15



Proof. The proxet X x Y as defined clearly has projections nrx: X x Y — X and
ny: X x Y — Y, defined by nx(x, y) = x and 7y (x, y) = y. These can be seen to
be proximity maps, since if x, x’ € X and y, y’ € Y we see

((x, ), (X', ¥"))xxy = min{(x, x')x, (v, ¥ )y}
< (x,x')x
= (nx(x,y), mx (x',¥"))x

and, similarly,

((x,3), (£, ¥")xxy = min{(x, x')x, (v, ¥y }
<0y
= (ny (%, y), v (2, y))y
Given any other proxet Z with projections f: Z — X and g: Z — Y we can

define a proximity map h: Z — X x Y by h(z) = (f(z), g(z)) for z € Z so that
nx oh = fand ny o h = g. This is a proximity map: for all z, z' € Z,

(2,2")z < (f(2), f(2)x,

since f is a proximity map, and

(2,2")z < (8(2), 8(2))y,

since g is a proximity map, hence

(z.2")z < min{(f (2), f('))x, (§(2), 8(2'))v} = (h(2), h(2"))xxv

and £ is clearly the unique map with this property. This shows that X x Y is the
categorical product of X and Y. |

Definition 2.1.20. Let X and Y be proxets. The product of X and Y is the proxet
X x Y, defined in Proposition 2.1.19

The definition of the power of a proxet, which can be thought of as the proxet
of all proximity maps between two proxets, can also be read off from the general
definition of an enriched functor category. See Section A.2 for information about
enriched functor categories and ends and coends in general. In the case of proxets
ends in [0, 1] appear as infima (see Example A.2.4), so we obtain the following
definition:

Definition 2.1.21. Let X and Y be proxets. The power proxet Y¥ is the proxet
whose underlying set is the set Prox(X,Y) of proximity maps from X to Y, with
proximities given by

(f, &)yx := Inf{(f(x), g(x))v},

xeX

where f, g: X — Y are proximity maps.
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Let = be the unique proxet with a single point. The existence of products and
powers suggests the following statement.

Proposition 2.1.22. (Prox, x, *) is a closed monoidal category.

Proof. Ttis clear that (Prox, x, %) is a monoidal category. To see that it is closed,
we show that there are natural correspondences of proximity maps

Prox(X,Y) x Prox(X, Z) = Prox(X,Y x Z). (2.8)
Prox(X x Y, Z) = Prox(X,z"). (2.9)

In the first isomorphism, a pair of proximitymaps f: X - Yand g: X — Zis
sent to the proximity map (f, g): X — Y x Z given by (f, g)(x) = (f(x), g(x))
for x € X. Conversely a proximity map h: X — Y x Z is sent to the pair of
proximity maps iy o h: X — Y and iz o h: X — Z, where ny and 7, are the
projections from the productY x Z.

Since f and g are proximity maps, we have

(x, x")x < (f(x), f(x))y  and  (x,x")x < (g(x), g(x))z,

for all x, x’ € X. Thus,

(x, x")x < min{(f (x), f(x'))y (g (x), 8(x") 2}
= ((f(x), g(x)), (f (=), 8(")))xxr

so (f, g) is a proximity map. If & is a proximity map, we see that 7y o hand iz o h
are proximity maps, since compositions of proximity maps are proximity maps.
In the second isomorphism, f: X x ¥ — Z to the proximity map f: X — 2"
defined by f(x)(y) = f(x,y) for x € X and y € Y. Conversely, a proximity map
F: X — 7Y is send to the proximity map F: X x Y — Z defined by F(x,y) =
F(x)(y)forxe Xandy €Y.
This shows that — x Y is left adjoint to (—)¥, which proves the result. O

2.1.2 Fuzzy subsets

In Proposition 2.1.12 we showed that the category [0, 1] is a closed monoidal cat-
egory. This is what allowed us to define a proxet structure on [0, 1] itself in a
natural way, as we did in Example 2.1.6. We can therefore consider [0, 1]-functors,
i.e. proximity maps, out of or into [0, 1] itself.

For a general closed monoidal category V), a V-functor P: C°? — Vs called
a V-presheaf (or simply a presheaf), while a V-functor Q: C — V is called a
V-copresheaf (or just a copresheaf). See Appendix A for more details. (Note that
the terminology “copresheaf” is not entirely standard. Many authors use the
terms “covariant presheaf” or simply “functor” instead.)
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In the context of proxets, when )V = [0, 1], this leads us to the following
definition.

Definition 2.1.23. Let X be a proxet. A lower subset of X is a proximity map
A: X°P — [0,1],i.e. afunction A: X — [0,1] such thatforallx,y € X

(x,¥)x - Aly) < A(x). (2.10)

An upper subset of X is a proximitymap B: X — [0,1],i.e.afunctionB: X — [0,1]
such thatforall x,y € X
B(x) - (x,y)x < B(y). (2.11)

Itis clear from Definition 2.1.21 that the sets XV = [0,1]*" and X = ([0,1]%)" of
all lower subsets of X and of all upper subsets of X form proxets with proximities
given by

(A, A)xs = Inf{AG)\A' (x)}

(B,B)x+ 1= inf {B'(x)\B(x)},

whenever A, A’ € XV and B, B € x".

Lower subsets and upper subsets are collectively referred to as fuzzy subsets.
In some contexts, particularly when X or Y are finite sets, we may sometimes refer
lower and upper subsets as lower and upper vectors, respectively. Lower subsets
are [0, 1]-presheaves, while upper subsets are [0, 1]-copresheaves. Fuzzy subsets
generalise the downward- and upward-closed subsets of preorders discussed in
Example A.1.15

Fuzzy subsets are useful in the study of fuzzy concept analysis as they will
represent the fuzzy concepts appearing in the fuzzy concept complex generated
by a fuzzy relation between proxets. Fuzzy relations between proxets are a specific
example of enriched profunctors, so before defining them we take a brief excursion
to discuss profunctors in general V-categories.

2.2 Profunctors

Ordinary (unenriched) profunctors can be thought of as relations between cat-
egories. The notion of a profunctor is a generalisation of the notion of a functor.
This follows from the fact that the Yoneda embedding y: C — C = [C°P, Set] is
full and faithful. In an enriched setting, profunctors turn out to provide various
generalised notions of relations, including, as we shall see, an appropriate notion
of a fuzzy relation between proxets.
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2.2.1 Definition and examples

In the following, V is always taken to be a closed symmetric monoidal category,
unless otherwise stated.

Definition 2.2.1. Let C and D be V-categories. A profunctor from C to D, written
F:C~ D,isaV-functor F: D?PR®C — V.

There are differing conventions regarding the definition. There are essentially
two choices to be made: firstly, which “variable” should be contravariant and
which covariant; secondly, which order should they be written in? Taking a pro-
functor C ~ D to be contravariant in its codomain 9 and with that argument
written first is most consistent with the usual notation for hom-functors.

Note, however, that when we define fuzzy relations between proxets as [0, 1]-
profunctors we will use a slightly different convention, in order to be more con-
sistent with [47].

Lawvere [37] gives an alternative definition in terms of “actions”:

Definition 2.2.2 (Alternative definition). Let C and D be V-categories. A pro-
functor F: C ~ D consists of a family of objects F(D, C) in V, indexed by the
objects of D and C, together with morphisms

1: OD(D',D)® F(D,C) — F(D',C)
p: F(D,C)®C(C,C’) — F(D,C")

that behave as actions in the sense that the obvious associativity and unitality
axioms (including mixed associativity) hold.

Remark. The two definitions given are equivalent. To see this, recall that V-
functoriality for F: D°P? @ C — V yields morphisms

D(D',D)®cC(C,C’) — [F(D,C),F(D',C")]

forall C,C’ € C and D, D’ € D. The actions A and p are the adjuncts, under the
hom-tensor adjunction, of the composites

(id@lc)or_l

D(D', D) D(D',D)®C(C,C)—~[F(D,C),F(D,C)]

(1p®id)ol~!

c(c,c) D(D,D)®C(C,C") L= [F(D,C),F(D,C")]

Example 2.2.3. Profunctors generalise }V-functors. Since the Yoneda embedding
is full and faithful, a V-functor C — D = [D°P, V] is a generalisation of a V-
functor C — D. The hom-tensor adjunction gives a natural correspondence
between V-functors F: D @ C — V and V-functors F: C — D.
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Given any V-functor F: C — 9D, there are two canonical ways to produce a
profunctor from F.

F.:C~ D: (D,C) — D(D,FC) (2.12)
F*: D ~ C: (C,D) — D(FC, D). (2.13)

The profunctor F, is sometimes referred to as “F considered as a profunctor” and
F* is its “right adjoint profunctor” (see 2.2.12 below), for example in [6].

We now give some examples of how profunctors manifest themselves in some
of the enriched categories defined in Appendix A.

Example 2.2.4 (Hom-functors). For a V-category C, the hom-functor Hom¢ =
C(—,—): C°? ® C — Vs a profunctor from C to itself. When V is Set, Hom¢
sends a pair of objects X and Y to the set C(X,Y) of morphisms X — Y and
sends a pairs of morphisms f: X’ — X and g: Y — Y’ to the function g o — o
f:C(X,Y) - C(X",Y') whichmapsh: X > Ytogohof.

In fact, as we will see, Hom¢ acts as an identity under profunctor composition
and is thus the identity on C in the category V-Prof defined below. When it
clear that we are referring to this profunctor, and not to the identity V-functor
id¢: C — C, we will sometimes use the notation id¢.

Example 2.2.5 (Bimodules). Let R and S be rings, i.e. one-object Ab-categories.
A profunctor M : R ~» S is an Ab-functor S°? ® R — Ab. This gives an Abelian
group M := M (%, x) and a morphism S°°? ® R — End(M) which, under the
hom-tensor adjunction corresponds to a morphism S°® @ M ® R — M that
sends s ® m ® r to s - m - r. Functoriality says that this acts as an action:

Sp-(s1-m-m)-r2=(s28) -m-(nra)

Thus M is an R-S-bimodule (i.e. simultaneously a left R-module and a right
S-module).

Example 2.2.6 (“Categorified matrices”). Let X and Y be sets, considered as
discrete categories. A profunctor F: X ~» Y isafunctor F: Y°P x X — Set. Since
there are no non-identity arrows in Y°P x X, this is just a function assigning to
each pair (y, x) a set F(y, x). In other words, F is just a bundle of sets over the
productY x X. Such an object can be thought of as a sort of “categorified matrix”
where each entry is now a set, rather than simply a number.

Example 2.2.7 (Relations). Let X and Y be posets, i.e. 2-categories. A profunctor
R: X ~» Yisa2-functor Y°P x X — 2, which assigns to each pair (y, x) € Y°P x X
a “truth value” indicating whether or not x and y are related by R. Such maps
correspond torelations R < Y x X with the following transitivity property ensured
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by functoriality: if x < x” and R(y, x) is true (x is R-related to y) then also R(y, x’),
and similarly in the other variable. In particular, if X and Y are sets, i.e. posets
with trivial ordering, a profunctor X ~» Y is just an ordinary relation between X
andY.

The previous example allows us to think of profunctors as “relations between
V-categories” where the “truth values” of R-relatedness are objects of V. This is
particularly relevant when considering fuzzy relations as we shall see in the next
chapter.

2.2.2 The Bicategory V-Prof

As seen in Example 2.2.3, V-profunctors can be seen as generalised V-functors.
However, because the domains and codomains of profunctors F: C ~ 9 and
G: D ~ & do not match up (when considered as V-functors), composing them
is not as straightforward as it is for V-functors. In this subsection we will show
how composition of V-profunctors can nonetheless be defined and how this can
be used to define a bicategory of V-profunctors.

Definition 2.2.8 (Composition of profunctors). Let C, D and & be V-categories
andletF: C ~ Dand G: D ~» & be profunctors. The composite GoF: C ~ &
is defined, for C € C and E € &, via the following coend:

DeD
(G o F)(E,C) := f G(E,D)® F(D,C). (2.14)

Analogously to (A.3), (G o F)(E, C) can be written as the coequaliser of the
two morphisms

[] G(E D) ®D(Dy,Ds) ®F(Do,C) — | | G(E,D) ® F(D,C),
Dy, DD DeD
(2.15)

the top arrow being induced by the action
id® p: G(E, D)) ® D (D1, Dy) ® F(D,,C) — G(E, D;) ® F(Dy, C)

and the bottom arrow induced similarly by A ®id. This is a many-object analogue
of the quotienting out by the equality of two actions that takes place when we
form the tensor product of bimodules, as we describe in more detail below. See
also [51].

Example 2.2.9 (Tensor product of bimodules). Consider an R-S-bimodule M and
an S-T-bimodule N over S. We form the tensor product M ®gs N by quotienting
out M ® N by the equivalence relation generated by (m - s) @ n ~ m® (s - n).
This is the one object specialisation of the vastly more general definition 2.2.8.
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Example 2.2.10. If X, Y and Z are posetsand R: X ~» Yand S: Y ~» Z are
relations, the composite S o R corresponds to the subset

{(z,x) € Z x X | dy € Y suchthat R(y,x) A S(z,y)},
which agrees with the usual definition of composition of relations.
We refer to [33] for a proof of the following important result

Proposition 2.2.11. V-categories, enriched profunctors and natural transforma-
tions form a bicategory V-Prof.

As in any 2-category, we can now talk about adjunctions in V-Prof.

Definition 2.2.12. Let C and D be V-categoriesandletP: C ~ DandQ: D ~»
C be profunctors. We say that P is left adjoint to Q (and, conversely, that Q is
right adjoint to P) if there are natural transformations n: id¢ = Q o P and
g: PoQ = idp. We write P - Q, as for an any adjunction. Here, Qo Pand P o Q
are, of course, composites as defined in 2.2.8 and id¢ and idp are the identity
profunctors.

2.2.3 Fuzzy relations between proxets

Fuzzy relations between proxets can now be defined as [0, 1]-profunctors. The
following definition is of fundamental importance in this thesis.

Fuzzy relations, as the name suggests, provide a way of describing how data
in two proxets is related in a looser way than that of Formal Concept Analysis
as described in the introduction, since they essentially allow for two objects to
be only partially related. In this setting, instead of a concept lattice arising from
a relation between sets we study a certain proxet arising from a fuzzy relation
between proxets which we call the nucleus, which is a specific example of the
generalised Isbell completion of a profunctor, to be defined in the next section.
We will later show that for a fuzzy relation between finite discrete proxets (i.e.
ordinary sets) the nucleus can be given the structure of a cell complex.

Definition 2.2.13. Let X and Y be proxets. A fuzzy relation (or proximity relation)
M: X ~ Ybetween X andY isa [0, 1]-profunctor from X to Y. In other words, a
fuzzy relation M : X ~» Y is a proximitymap M: X°°? x Y — [0, 1], i.e. a function
M:X xY — [0,1] such thatforallx,x' € X,y,y €Y

(', )x - M(x,y) - (¥ )y < M(x,y"),

where M (x, y) denotes the image of (x, y) under M.
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As stated below Definition 2.2.1, note that we are using a slightly different
convention to that given for general V-profunctors in order to be more consistent
with [47]. Using a different convention doesn’t change any important properties
of profunctors.

Proximityrelations can be composed in the following way, following Definition
2.2.8 (and noting the change in convention).

Definition 2.2.14. Let X, Y, and Z be proxetsandlet M: X ~» Yand N: Y ~»
Z be proximity relations. The composite of M and N is the proximity relation
N o M: X ~» Z defined by

(NoM)(x,z):= Sylelg{M(x,y) N(y,2)},

forxe Xandz e Z.

More information about fuzzy relations can be found in [47], in which they are
referred to as “proximity matrices”. For example, Pavlovic defines the notions of
the “dual” of a proximity matrix and a “connection” between proximity matrices
and shows that every proximity matrix forms a connection with its dual.

2.3 The Isbell completion

The Isbell completion of a V-category C simultaneously generalises two superfi-
cially non-categorical constructions, namely the Dedekind—-MacNeille comple-
tion of a poset and the tight span of a metric space. We will describe each of these
in detail before introducing the general definition of the Isbell completion of a
V-category and showing that this reduces to the motivating examples in the cases
where Vis2orR, respectively.

Example 2.3.1 (Dedekind-MacNeille completion of a poset). Let (X, <) be a
poset. Recall that a subset D < X is called downward-closed or descending if,
whenever x € X and x” < x, then x’ € X and similarly, a subset U < X is called
upward-closed or ascending if, whenever x € X and x < x/, then x’ € X.
Given a downward-closed subset D = X, we can form an upward-closed
subset
D":={xe X |x' <xforallx’ € D};

conversely, given an upward-closed subset U < X, we can form a downward-
closed subset
Uli={xeX|x<x'forallx’ e U}.

Note that, by definition, D € (D*)4 and U < (U4)“.
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The Dedekind-MacNeille completion of X, written DM(X), is defined to be
the set of downward-closed subsets D € X such that D = (D*)¢; equivalently,
DM(X) is the set of upward-closed subsets U < X such that U = (U%)“. An
alternative, but equivalent, definition is

DM(X) := {(D,U) | D* = Uand D = U“}.

This set has a natural ordering given by setting (D;, U;) < (D, U,) if and only if
D, € D, (or, equivalently, if U; 2 U»).

As an example, let X be the set Q of rational numbers with the usual order-
ing. For each real number x € R there is a downward-closed subset D, :=
{x" € R | x’ < x} and every downward-closed subset is of this form. It is straight-
forward to check that (D%)4 = Dy, so we have a bijection DM(Q) = R. Moreover,
this is an order-isomorphism: x < y if and only if (Dy, DY) < (Dy, D) for all
x,y € R. This example is known as the completion of Q by Dedekind cuts. Fur-
thermore, there is a full and faithful embedding Q < DM(Q) given by sending
each x € Q to the downward-closed subset D, as defined above.

Note that not every downward-closed subset D — X satisfies (D*)¢ = D.
For example, if X is the real line and D = {x € R | x < 0}, then we find that
(D*)4 = {x € R | x < 0}, which is a proper superset of D.

Example 2.3.2 (Tight span of a metric space). Let X be a generalised metric
space, i.e. a category enriched in R as defined in Definition 2.1.14. A presheaf on
X is an enriched functor f: X°? — R, i.e. a function f: X — [0, 0] satisfying

X(x1,x2) = f(xa) — f(x2)

for all x;, x, € X. Write L(X) for the space of all such functions, with distances
given by the sup metric. It follows that f(x) > sup..x(f(x) — X(x/,x)) for
all x € X for each f € L(X). This is in fact an equality, since the supremum is
attained when x’ = x.
On the other hand, given such a function f we can define
1(f)(x) := sup(X(x', x) — f(x')).
x'eX
The function I(f) satisfies
1(f)(x2) = 1(f)(x1) = sup(X (x', x2) — f(x')) — sup(X (x', 1) — f(x"))
x'eX x'eX

< sup(X(x', x2) — f(x') = X (&', 1) + f(x"))
x'eX

< sup(X(x/, x2) — X(x/, x1))
x'eX

< sup(X (x1, x2))

x'eX

< X(xl, X2),
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and is thus a copresheaf. Define the tight span of X to be the subspace of L(X)
consisting of those functions for which this is an equality, i.e. for which

1) = sup(X(x',x) — £(+')).
x'eX
In [60], Willerton has shown that Isbell completions of generalised metric
spaces are complete if and only if they admit a certain type of “semi-tropical”
module structure.

We now turn to the general case. Let V be a symmetric monoidal closed
category and let C be a V-category. There is a V-adjunction between the V-
category of presheaves on C and the opposite of the V-category of copresheaves

onC
L

[Co, V] L [C, V]
R

where the V-functors L and R are given by

L(P): C — [C®?,V](P,C(~,C))
R(Q): C —[C,V](Q,C(C,—))

This is known as the Isbell adjunction. The Isbell completion of C, denoted
I(C), is defined to be the full sub-V-category of [C°P, V] consisting of those pre-
sheaves that are Isbell self-dual, i.e. those presheaves for which the unit of the
Isbell adjunction is an isomorphism:

ObI(C):={P:C®? >V |np:1— [C® V](P,RL(P))isaniso}.

Another way of saying this is to say that I(C) consists of the fixed points of the
monad RL induced by the adjunction. Equivalently, I(C) can be defined as the
fixed points of the induced comonad LR. Fullness simply means that the hom-
object for two presheaves in the Isbell completion is the same as the hom-object
when these presheaves are interpreted as objects of [C°P, V].

There is also a third way to describe the Isbell completion. Define the ob-
jects of a V-category Dual(L, R) to be quadruples (P, Q, a, B), with P: C°P — V),
Q:C—V,a: 1= [CPV](P,RQ), B: 1= [C,V](LP,Q) such that @ and S
are isomorphisms and are mutually adjoint under the adjunction L — R. In the
case when V = Set, the hom-objects are pairs of morphisms (f, g) such that the
squares

p—1 . p p . pr 2.16)
al la/ BL jﬁ'
RQ T RQ’ Q—%— Q’
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commute. In the enriched case, this can be written as an equaliser.

Given an object (P, Q, @, B) in Dual(L, R), one finds that P is an object of
Fix(RL). Conversely, each P in Fix(RL) corresponds to the tuple (P, LP,np,id.p)
in Dual(L, R).

Any profunctor between V-categories gives rise to a }V-category which gener-
alises the Isbell completion.

Definition 2.3.3. Let )V be a complete and cocomplete monoidal category and
let C and D be V-categories. Let M : C ~ D be a V-profunctor. The generalised
Isbell completion is the sub-V-category Nuc M < [C°P, V] x [D, V]°P consisting
of the objects

{(P,Q,a,B) | a: P =~ M,Q,B: M*P =~ Q, @ and B natural, mutually adjoint},

where M* - M, are defined as follows:

M*P(D) = e V(P(C),M(C, D)),

M,Q(C) = Le@ V(Q(D), M(C, D)).

In the next chapter we will study a special case of the generalised Isbell com-
pletion for a profunctor, namely the nucleus of a fuzzy relation between proxets.
Since proxets can be thought of [0, 1]-categories and fuzzy relations as [0, 1]-pro-
functors, the nucleus of a fuzzy relation between proxets will turn out to be a
sub-[0, 1]-category, i.e. a subproxet, of Xt x v,

The nucleus of a fuzzy relation between proxets can be thought of as a gener-
alisation of the concept lattice generated by a relation between sets, as described
in the introduction. Elements of the nucleus can be thought of as fuzzy concepts.
In Chapter 4 we will show that for a fuzzy relation between finite discrete proxets
(i.e. ordinary finite sets) the nucleus actually has the structure of a cell complex
and these concepts can be classified in ways which are not found in classical
concept analysis.
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Chapter 3

The nucleus of a fuzzy relation

In the previous chapter we introduced proxets, upper and lower subsets, and
fuzzy relations. These ideas were introduced in [47] and are specific examples of
enriched categories. In this chapter we move on to define the nucleus of a fuzzy
relation, focusing particularly on fuzzy relations between finite sets.

After introducing some of the theory of idempotent semirings and their se-
mimodules, following Cohen et al. [9], we show that the nucleus of a fuzzy relation
M is in bijection with certain sets, denoted Fix! (M) and Fix" (M), that can be
regarded as submodules of a complete idempotent semimodule over [0, 1] and
study the structure of these submodules. Because of their smaller dimensions,
these submodules are easier to deal with than the nucleus.

Much of what is done in this chapter can be done in considerably more gen-
erality. See, for example, [52, 55-58]. We restrict our attention to fuzzy relations
between finite sets as it is in this case that we can adapt ideas and results from
tropical geometry over the idempotent semiring T = (R U {co}, min, +) to show
that the sets Fix! (M) and Fix" (M) can be naturally given the structure of a cell
complex in addition to their structure as proxets and [0, 1]-semimodules as we will
do in the next chapter. While nucleus-like structures have been studied in various
contexts — as proxets, as more general enriched categories, as semimodules —
this restricted definition allows us to study several structures at once.

3.1 Basic definitions

Recall from Definition 2.1.23 that X ¥ is the proxet of lower subsets of X and Y1 is
the proxet of upper subsets of Y, i.e.

XV ={a: X - [0,1] | (x,x)x - A(x)
v ={B:Y - [0,1]| B(y)- (y,¥)r
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Definition 3.1.1. Let X and Y be proxets and let M : X ~» Y be a fuzzy relation.
Then the proximity maps

M*: x¥ >yv" and M,:Y" > x!

are defined by setting, for A € X! and Be Y1,

(M*4)(y) = inf {A(0)\M(x,)}, 5
(M.B)(x) = inf {B(y)\M(x,7)} (32)

When it is clear which proximity relation M we are using, we will sometimes use
the shorthand notation A" and B! to indicate the upper and lower subsets M*A
and M, B, respectively.

Proposition 3.1.2. Given M : X ~» Y as above, the proximity maps M* and M,
form an adjunction M* - M,, in the sense that

(M*A, B)yt = (A, MyB)xy, (3.3)
whenever A e X' andB e Y1.

Proof. Let Ae X' and B € Y. Then we can simply compute
(M*A,B)yy = in; {B(y)\(M*A)(y)}  (by definition of proximities in YT
NS
= inf {B(y)\ inf {A(x)\M(x,y) }} (by definition of M*A)
yeY xeX

= inf inf {B(y)\(A(x)\M (x,y))}

xeX yeY

= inf inf {(A(x) - B(y))\M(x,y)} (by (2.5))

xeX yeYy

= inf inf {A(x)\(B(y)\M(x,y))} (by (2.5) again)

XEX yeY

i { A inf (80r)\ M ()

xeX

in}f( {A(x)\(MsB)(x)} (by definition of M, B)
XE

The above results hold for all proxets X and Y. However, in order to prove
the main results of the next section we must restrict our attention to extensional
proxets (cf. Definition 2.1.2)

Lemma3.1.3. LetX andY beextensional proxetsandletf: X — Y andg:Y — X
be proximity maps such that f is left adjoint to g, in the sense of Proposition 3.1.2,
i.e. such that (f(x),y)y = (x,f(y))x forallx € X andy €Y. Then

ref=r and  gfg=2g.
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Proof. We prove only the first equation in the first statement as the second is
entirely analogous. For y € Y it follows from the fact that (g(y), g(y))x = 1that
(fg(¥),y)r = 1, via the adjunction. So, in particular, when y = f(x) for some
x € X we have

(f&f(x), f(x))y = 1.

Similarly, for each x € X it follows from the fact that (f(x), f(x))y = 1 that
(x, gf(x))x = L By applying the proximity map f: X — Y we see that

(f(x), fef(x))y =L

Since Y was assumed to be extensional, it follows that f(x) = fgf(x) for each
x € X and hence f = fgf. |

Proposition 3.1.2 and Lemma 3.1.3 immediately give the following result.

Corollary 3.1.4. Let X andY be extensional proxets. Given any fuzzy relation
M: X ~» Y, the proximity maps M* and M, satisfy

M*M.M* = M* and M M*M, = M,. (3.4)

Definition 3.1.5. Let X and Y be extensional proxets andlet M: X ~ Y be a
fuzzy relation between X and Y. Define the following subproxets of X¥ and YT,
respectively:

Fix! (M) = {Ae xV | M.M*A = A} c X¥, (3.5)
Fix"(M) = {Bey" | M*M,B = B} c Y. (3.6)

Proposition 3.1.6. Let X andY be extensional proxets and let M: X ~ Y bea
fuzzy relation between X andY . Then

Fix! (M) = im M, and Fix"(M) = im M*.

Proof. Let A € Fix!(M). Then A = M,M*A, so clearly A € im M,. Conversely,
suppose A € im M,,, i.e. A = M,.B for some B € Y. Then

M M*A = M.M*M,B = M.B = A,

by Lemma 3.1.3. Hence A € Fix! (M).
The second statement is proved in the same way. O

The following definition is very important.
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Definition 3.1.7. Let X and Y be extensional proxets and let M: X ~» Y be a
fuzzy relation between X and Y. We define the nucleus of M to be the proxet
whose underlying set is

Nuc(M) = {(A,B) e X" x Y" | M*A = B,A = M,.B}, 3.7)
with proximities given by
((4,B), (A/'B/))NUC(M) = (A, A)xs = (B, B )y,
where the last equality follows immediately from Proposition 3.1.2.

The nucleus of a fuzzy relation M: X ~» Y between proxets is the general-
ised Isbell completion of M regarded as a [0, 1]-profunctor. In this sense it is a
generalisation of the Dedekind—-MacNeille completion of a poset.

Proposition 3.1.8. There are isomorphisms of proxets
Nuc(M) = Fix¥ (M) = Fix"(M).

Proof. Let (A, B) € Nuc(M). Then it is immediate that A € Fix!(M) and B €
Fix"(M). Conversely, given A € Fix!(M), we find that (A, AT) € Nuc(M) and,
similarly, given B € Fix"(M), we find that (B, B) € Nuc(M). Moreover, by
Definition 3.1.7, the maps (A, B) — A, (A, B) — B, A — (A, A"),and B — (B*, B)
are all easily seen to be proximity maps, giving the desired result. O

3.1.1 Nuclei of finite discrete proxets

In this section we restrict our attention to fuzzy relations between finite discrete
proxets, i.e. ordinary finite sets. See Definitions 2.1.2 and 2.1.3. Since the prox-
imities of elements in a discrete proxet are only non-zero for identical elements,
such proxets are automatically extensional. Under this assumption we are able to
provide a geometric description of the sets Fix' (M), Fix! (M), and Nuc(M) for a
fuzzy relation M: X ~ Y.

LetX = {x,...,x,}andY = {y, ..., y,} be finite sets considered as discrete
proxets. Since non-equal elements in a discrete proxet must have zero proximity,
it is clear that upper and lower subsets of such a proxet can both be represented
simply as tuples, since the conditions of equations (2.10) and (2.11) hold vacuously.

Nonetheless, it will be helpful to distinguish between lower and upper subsets
in our notation. Lower subsets of X will be represented by column vectors
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while upper subsets of Y will be represented by row vectors

w = (wl wy - wn)’

where all entries are in [0, 1].
That is, for finite discrete proxets X and Y with |X| = r and |Y| = n we have:

x4 =01, (3.8)
vy =1[o,1]"". (3.9)

A fuzzy relation M : X ~» Y can be written as an (r x n)-matrix

map -+ Mgy

all of whose entries are in [0, 1].
The proximity morphisms M*: X! — Y and M,.: YT — XV reduce in this
context to the definitions

* L — : . . n
M*(v); = min {v;\m;;} € [0,1]", (3.10)
M*(w), = 1I<I}'i<nn{wj\mij} € [0, l]r, (3.11)

where v € [0,1]" and w € [0,1]".

Conversely, any matrix in [0, 1]"" can be regarded as a fuzzy relation between
finite sets. Given such a matrix M, the underlying sets of the proxets Fix! (M)
and Fix" (M) will be subsets of [0,1]" and [0, 1]", respectively. We will show that
Col(M) < Fix!(M) < [0,1]" and Row(M) < Fix" (M) < [0,1]". The nucleus,
Nuc(M), is naturally a subset of [0,1]" x [0, 1]".

Lemma 3.1.9. Let X andY be finite discrete proxets with |X| = r and |Y| = n and
let M: X ~ Y bea fuzzy relation. The nucleus of M is given by

Vi (v; = min {w;\m;;})

Nuc(M) = < (v,w) € [0,1]"! x [0,1]*" | . Isjsn . (312)

Proof. By Definition 3.1.1, v = M, (w) if and only if v; = min<j<,{w;\m;;} for
all i € [r]. Similarly, w = M*(v) if and only if w; = min<;<,{v;\m;;} for all
j € [n]. The result follows by consideration of Definition 3.1.7. i
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3.2 Complete idempotent semirings and semimodules

In [9], Cohen et al. consider semimodules over complete idempotent semirings.
We show that [0, 1] can be given the structure of a complete idempotent semiring
and that the spaces [0, 1]" and [0, 1] can be considered as complete semimodules
over the semiring [0, 1] and that for a given fuzzy relation M between finite sets,
the sets Fix! (M) and Fix" (M) can be considered as (finitely-generated) sub-semi-
modules of these semimodules.

First, for convenience we given some fundamental definitions here. The
interested reader should consult [9] for further details about idempotent semi-
modules.

Definition 3.2.1. A semiring R = (R,®,,0,1) is a set R equipped with two
binary operations @: R x R — R (called addition) and ©: R x R — R (called
multiplication) such that:

1. (R,®,0)is a commutative monoid, i.e.

a®(b®c)=(ad®b)Dc,
a®0=a,
a®b=b®Pa,

foralla, b, c € R and 0 € R is called the additive identity for R;

2. (R,®,1) is amonoid, i.e.

a®boc)=(adOb)Oc,
a®1=a,
1®a=a,

foralla, b, c € Rand 1 e R is called the multiplicative identity for R;

3. multiplication distributes over addition on both sides, i.e.

a®b®c)=a@bdalec,
(a®b)Oc=aGc®bOec,

foralla, b, c € R;
4. multiplication by 0 annihilates elements of R, i.e.
a®0=00a=0, (3.13)

forall a € R.
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Note that although condition in (3.13) is automatically true for rings, it does
not follow from the other semiring axioms, so it is necessary to include it in the
definition.

Homomorphisms of semirings are defined in the obvious way.

Definition 3.2.2. A homomorphism of semirings f: R — S is a function that is
simultaneously a monoid homomorphism from (R, @, Og) to (S, ®s, 0s) and a
monoid homomorphism from (R, ®g, 1z) to (S, ®s, Lg), i.e.

fla®r b) = f(a)®s f(b), (3.14)
fla®rb) = f(a) Os f(b), (3.15)
f(0g) = 0s, (3.16)
f(r) =15, (3.17)

foralla,b € R.

We are primarily interested in semirings with the following additional proper-
ties. We follow the presentation of Cohen et al. [9] fairly closely, although we work
in less generality and omit some details.

Definition 3.2.3. A semiring (R, ®, ®) is commutative if (R, ®) is a commutative
monoid, i.e.ifa®b =b O aforalla,b € R.

Definition 3.2.4. A semiring (R, ®, ®) is idempotentifa ® a = aforalla € R.

Recall that an ordered set X is said to be complete if any subset Y < X has
a supremum supY € X. Note that the existence of suprema guarantees the
existence of infima, since for any subset Y € X, we have

infY =sup{xeX |x<yVyeY} (3.18)

Any idempotent commutative monoid (X, ®, 0) — in particular, any idem-
potent semiring— can be given a natural order, by definingx <y < x®@y =y
for x,y € X. With respect to this order x ® y = sup{x, y} forall x,y € X and
0 € X is the bottom element.

This allows us to make the following definition.

Definition 3.2.5. A semiring R = (R,®,®) is complete if it is complete with
respect to the natural order on R (i.e. if each subset S < R has a supremum
supS € R) and forall S € R and b € R we have

sup{a©b |be S} =a® (supS).

Our primary example of a complete commutative idempotent semiring will be
[0,1] together with the operations of taking maxima and ordinary multiplication.
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Proposition 3.2.6. The set [0, 1], together with the operations
a®b = max{a,b} and a®b=a-b, (3.19)

fora, b € [0,1], is a complete commutative idempotent semiring with additive and
multiplicative identities given by 0 and 1, respectively.

Proof. The axioms for a semiring can be easily checked. Let a, b, ¢ € [0,1].

1. Itis clear that max{a, max{b, c}} = max{max{a, b}, c}, that max{a, 0} =
a and that max{a, b} = max{b, a}, so ([0,1], max, 0) is a commutative

monoid.

2. That ([0,1],-,1) is a monoid follows immediately from the associativity and
unitality of ordinary multiplication of real numbers.

3. To demonstrate distributivity of © over ®, we check

a®(b@c)=a- -max{b,c}
=max{a-b,a-c} (since a > 0)

=(aOb)®(a®c)
and

(a®b)®c =max{a, b} c
=max{a-c,b-c} (since ¢ > 0)

=(a@c)@®(bOc)

4. Finally,a - 0 = 0- a = 0, so the annihilation property is satisfied.

The additive identity is 0, since max {a, 0} = a for all a € [0, 1], while the multi-
plicative identity is 1. Since @ - b = b - a and max{a, a} = a for all real numbers
a, b itis clear that [0, 1] is commutative and idempotent.

The natural order on [0,1] givenbya < b <= max{a, b} = b is simply
the standard order on R. As a closed bounded subset of R, [0, 1] is complete
with respect to this order and for all S < [0,1] and a € [0,1] we clearly have
sup{a-b |be S} =a-(supS). ]

Note that [0, 1] is only a semiring and not a ring, since given a € [0, 1] there
does not, in general, exist any b € [0, 1] for which max {a, b} = 0, unless a = 0.
Nor is [0, 1] a semifield, since unless a = 1thereisno b € [0,1] witha - b = 1.

The semiring structure defined above is not the only complete commutative
idempotent semiring structure that can be defined on [0, 1]. Alternatively we
could take, for example, a ® b = min{a,b} anda ® b = a - b.
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Definition 3.2.7. Let R be a commutative idempotent semiring. An R-semi-
module is a commutative monoid X = (X, ®yx, 0x) equipped with an action
R x X — X, where the image of (a, x) € R x X is written a - x, such that:

(a®b)-x=a-(b-x), (3.20)
a- (x®y)=(a-x)®(a-y), 3.21)
(a®b)-x=(a-x)®(b-x), (3.22)
Ogr - x = Oy, (3.23)
g - x = x, (3.24)

foralla,b € Rand x,y € X.

Definition 3.2.8. An R-semimodule (X, ®x, 0x) is idempotent if the monoid
operation @y is idempotent, i.e. if for all x, y € X we have x ®x x = x.

When R is a non-commutative semiring, one must define left R-semimodules
and right R-semimodules separately. An R-bisemimodule is then a set equipped
with both a left R-semimodule structure and a right R-semimodule structure,
such that the left and right actions commute. However, since the particular semi-
ring that we will be principally dealing with happens to be commutative, left and
right semimodules coincide, i.e. all our semimodules are bisemimodules.

The following two observations are straightforward.

Lemma 3.2.9. IfR is a commutative idempotent semiring and X is an R-semi-
module, then X is idempotent.

Proof. Letx € X. Then, since R is idempotent,
x=1g - x=1rPlg) x=(1g - x)D(lg-x) =xDx. |

Lemma 3.2.10. IfR is a commutative semiring and X is an R-semimodule, then
a-0x = 0x foralla € R.

Proof. Leta € Rand x € X. Then
a-0x=a-(0ROx)=(a®0g) x=0g x=0x. O

Definition 3.2.11. If R is a complete commutative idempotent semiring, an R-
semimodule X is said to be complete if it is complete with respect to the natural
order (i.e. if each subset Y € X has a supremum supY € X) and if whenever
acR xeX,SSRY < X,wehave

sup{a-y|yeY}=a-(supY), (3.25)
sup{a-x |a€ S} = (sup$) - x. (3.26)
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Definition 3.2.12. Let R be a complete commutative idempotent semiring, and
let X be an R-semimodule. A submonoid Y € X is an R-subsemimodule of X if
a-yeYforallae RandyeY.

For brevity, we also refer to R-subsemimodules as R-submodules.

Definition 3.2.13. Let R be a commutative complete idempotent semiring. A free
complete R-semimodule is of the form R’ for some set I: the elements of R are
functions f: I — R, with addition and action defined pointwise as (f @ g)(i) :=
fli)®g(i)and (a- f)(i):=a- f(i)forallf,g e Rl,ac R,andi € I.

If I is a finite set, say I = [r] for some r € N, we use the notation R" for R’
and write elements of R” as vectors v = (vy, . .., vy ), where v; = v(i).

Example 3.2.14. Consider the complete commutative idempotent semiring [0, 1]
= ([0,1], max, ). Let r € N. The set [0,1]" can be given the structure of a free
complete [0, 1]-semimodule, with

(v@v'); = max {v;, v} }, (3.27)

and
(A-v);=2A-v. (3.28)

forall v, v’ € [0,1]" and A € [0,1]. Note that the natural order on [0, 1]" is defined

/

asv < v <= max{r,v'} = v/,sov < v'ifandonlyifv; < v!foralli € [r].

Thus [0,1]" is only partially ordered; v and v’ will not necessarily be comparable.

The following definition will ultimately allow us to think of the spaces [0, 1]"!
and [0, 1]"" as complete idempotent [0, 1]-semimodules in the appropriate way.

Definition 3.2.15. Amap f: X — Y between ordered sets is residuated if there
existsamap g: Y — X such that

f(x) <y ifandonlyif x < g(y), (3.29)
forallx € X and y € Y. The map g is called the residuation of f.

For more information on residuation theory, see [7, 25].
If R is a complete commutative idempotent semiring, the residuation of the
map b — a ® b (multiplication by a) is the map ¢ — ¢ @ a, where

ca:=sup{beR|a®b <c}, (3.30)
which is guaranteed to exist, since R is complete. Therefore, by definition,
a®b<c ifandonlyif b<cQa (3.31)

foralla, b, c € R.
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Example 3.2.16. When R = ([0, 1], max, -), this operation is simply the truncated
division operated defined earlier in (2.2), since for a, b € [0,1]:

c@a=sup{be[0,1]|a-b<c}
B {sup{be [01] |b< £} ifa+#0,

1 ifa =0,
_ % ifa > c,

1 otherwise,
=a\c.

This definition can also be extended to complete idempotent semimodules.
If R is a complete commutative idempotent semiring and X is a complete idem-
potent R-semimodule we can define fora € R and x € X:

xQa:=sup{yeX |a- -y <x} (3.32)
Thus, by definition,
a-y<x ifandonlyif y<xQ@a. (3.33)
Some useful properties follow from (3.33).

Lemma 3.2.17. Let R be a complete commutative idempotent semiring and let X
be a complete idempotent R-semimodule. Leta,b € R, x € X. Then

a-(x@a) <x, (3.34)
(a-x)@a=>x, (3.35)
(x@a)ob=x0(a®b)=(x0b)Qa. (3.36)

Proof. Equations (3.34) and (3.35) are immediate from (3.33). To prove the first
equation in (3.36),leta, b € R, x € X. Then
xQ@a®Ob)< (x@a)Ob < b-(xQ(a®b))<xQa (by (3.33))
<~ a-(b-(x@(a®b))) <x
> (a®b) - (x@(a®b)) <x (by(3.20)
<~ xQa®b)<x@(a®Db),

but the last statement is a tautology. Similarly,

(xQa)ob<x@Q(a®b) < (a®b) - (x©a)@b)<x (by(3.33)
< a- (b (x@a)Ob))<x (by (3.20))
— b - (x©Qa)Ob)<xQa
= (xQa)Qb<(xQa)Qb,
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where, again, the last statement is a tautology. Hence (x @ a) @ b = x @ (a © b).
The second equation in (3.36) is proved in exactly the same way. |

Example 3.2.18. When R is the complete idempotent semiring ([0, 1], max, -)
and X is the complete free idempotent semimodule [0, 1]" we have

vAd=Av=sup{we|0,1] |1 -w <}

where v € [0,1]" and A € [0,1].

Recall that the natural order on [0,1]" is defined so that v < v’ if and only if
max{v,v'} = v/,i.e.v < v'ifand onlyifv; < v} foralli € [r]. This means that
A\v is such that for each i € [r] we have (1\v); = sup{w; € [0,1] | 2 - w; < v;}.
Thatis, 2\v € [0,1]" has coordinates A\v; for each i € [r].

Given any ordered set X, one can consider the set X°P with the same elements
as X but the opposite order, i.e. x <°° yin X°P ifand onlyif y < x,forallx, y € X.
If (X, ®, 0x ) is amonoid then (X°P, [, Oxop ) is a monoid, where xfHy = min{x, y}
(with respect to X) and Oxop is the top element of X°P.

Definition 3.2.19. Let R be a complete commutative idempotent semiring and
let X be a complete R-semimodule. The opposite semimodule of X is the R-
semimodule X°P with the same underlying set but with addition

xHy = min{x, y}, (3.37)
where min is with respect to the natural order < on X (not <°P), and with action
alllx =xQa, (3.38)

forx,y €e Xand a € R.
It is straightforward to check that X°P really is a semimodule. Crucially, it
follows from (3.36) that for all x € X°P and a, b € [0, 1]

(a®Db)Ex =al1(b[x).
For x,y € X°P and a, b € [0, 1] we can apply (3.32) to see

al[l(x@y) = min{x,y} @ a
=sup{z € X | a-z < min{x, y}}
=min{sup{z € X |a-z < x},sup{ze€ X |a-z < y}}
=min{xQa,yQa}

(aBx)EH (ay)
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and, similarly,

(a®Db)[[1x = x @max{a, b}
= sup{z € X | max{a, b} -z < x}
=min{sup{z € X |a-z < x},sup{ze€ X | b-z < x}}
= min{x @ a,x Q b}
=(a@x)H(b[x).

Recalling that the additive and multiplicative identities for the semiring [0, 1] are
0 and 1, respectively, and remembering that the additive identity for X°P is 1, we
also check that

0x=xQ0=sup{zeX |0-z2<x}=1

and
Idx=xQ@l=sup{zeX|l-z<x}=x

for all x € X°P.
Moreover, it follows from the properties of residuation that X°P is a complete
R-semimodule. See [9] for a proof.

Note that (3.37) defines addition in the opposite semimodule of a general
semimodule X in terms of the natural order on X. It is not an analogue of (3.27);
that role is filled by (3.39).

The next example is of fundamental importance to this thesis.

Example 3.2.20. When R is the complete commutative idempotent semiring
([0,1], max, -), the opposite semimodule of the free complete semimodule [0, 1]"
(for some r € N) is the semimodule with underlying set [0, 1]", with addition

(vEV'); = min{v;, v}}, (3.39)

and action
(AEv); = A\v;, (3.40)

forv,v’ € [0,1]", 1 € [0,1],and i € [r].

Note that the vector1 = (1,...,1) € [0,1]" is the additive identity element in
this semimodule: v 1 = 1 v = v forallv € [0,1]".

This complete idempotent [0, 1]-semimodule and its submodules will be of
primary importance in later chapters. For convenience we may refer to this
semimodule as the fuzzy semimodule [0, l]r, due to its importance of its submod-
ules Fix! (M) and Fix (M) for a fuzzy relation M. More often, however, when we
simply refer to “the semimodule [0, 1]"”, we mean this semimodule.
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Note that, by (3.36),

AR (uEv) = (Ap) Hv, (3.41)

forall A, u € [0,1] and v € [0,1]".

For vectors v, v’ € [0, l]k we refer to the vector v [ v’ as the fuzzy sum of v
and v’ and we refer to the vector A [[]v as the A-scale of v. We will sometimes refer
to the operations [H and [-] as the box operations.

3.3 Fuzzy spans

In this section we make some observations about the structure of the semimodule
[0, 1]" with the structure defined in Example 3.2.20. This section will serve as a
prelude to the discussion of tropical polytopes in the next chapter.

Definition 3.3.1. Let V be a finite subset of [0, 1]’, where r € N. A fuzzy linear
combination of elements of V is a vector

A, Hv = min{1,\v}
eV VeV
where A, € [0,1] forallv e V.

Note that0[Jv = (1,...,1) forany v € [0,1]", where (1, .. .,1) is the identity
of the semimodule [0, 1]" defined above.

Definition 3.3.2. LetV be a finite subset of [0, 1]", where r € N. The fuzzy span
of V is the set of all fuzzy linear combinations of elements of V:

spang(V) = { A, Hv | A4, €[0,1]forallv € V} (3.42)

vev

Fuzzy spans are [0, 1]-submodules of the [0, 1]-semimodule [0, 1]" defined in
Example 3.2.20.

Proposition 3.3.3. LetV be a finite subset of[O, 1]’, wherer is a natural num-
ber. Then spang;(V) < [0,1]" is a complete [0, 1]-submodule of [0,1]" with the
operations H and[-].

Proof. We need to check that spang;(V) is a submonoid of [0,1]" and that for
alla € [0,1] and all x € spang(V) we have a []x € spang(V). It is clear
that spang;(V) is a monoid. To see that it is a submonoid of [0, 1]", consider
X,y € spang;(V). Writing

x=[H O, y = wm v,

VeV VeV
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Figure 3.1: Fuzzy spans are not convex in general. The area in grey, consisting of a
closed region and a line segment, is the fuzzy span of the two green points. The
two red points are contained in the fuzzy span of the green points but the affine
line segment connecting them is not.

we see that
xHy = (xll, Hu) v € spanD(V).

vev
Similarly,

a[Hx = [H](edy) Dv € spang (V).

VeV
Thus spang;(V) is a submodule of [0, 1]".

To see that spang;(V) is complete, note that for any subset X < spang;(V),
the point [,y x is in span;(V) (if X = ¢F, the empty sum is interpreted as
the point 1 € [0,1]" while if X is infinite we can interpret this sum as the point
whose ith coordinate is given by inf,cx {x;} for each i). Since the natural order on
spang(V) (inherited from [0,1]") is such that x < y (in spang;(V)) if and only
ifx; > y; (in the usual sense, in [0,1]) for all i € [r], this point is a supremum for
X. It is easy to check that the conditions in (3.25) also hold. |

It is clear that the fuzzy span of a finite set of points in [0, 1]" is not generally
convex in the ordinary (affine) sense, i.e. given a finite set V < [0, 1] it is easy to
find points x, y € spang;(V) such that the affine straight line connecting x and
y is not contained in spang;(V'). See Figure 3.1.

Instead, we make the following definition.

Definition 3.3.4. Let V be a finite subset of [0,1]", where r € N. Letx,y €
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Figure 3.2: Examples of fuzzy line segments between pairs of points in [0, 1]%. In
two dimensions every fuzzy line segment is of one of these forms.

Figure 3.3: The fuzzy line segment between two points in [0, 1]°.

spang(V). The fuzzy line segment between x and y is the set

[ ylem = {(ABx)By [ [01]} v {x@(rEy) [pelo1]}. 643

The fuzzy line segments between some pairs of points in [0,1]? and [0, 1]3
are shown in Figures 3.2 and 3.3. We will see in the next chapter that fuzzy line
segments look like projectivisations of tropical line segments. We will study 1-
scales of points, which are related to fuzzy line segments, in Chapter 4.

Definition 3.3.5. A subset X < [0,1]" is fuzzy convex if it contains the fuzzy
line segment between every pair of its points, i.e. if for all x,y € X we have
[x,¥]gm < X. The smallest fuzzy convex set containing X is called the fuzzy
convex hull of X and is written convg(X).

It seems clear from Definition 3.3.2 that foraset V < [0,1]", the fuzzy span of
V, spang(V), is fuzzy convex. Here is the proof.
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Figure 3.4: The diagram on the left shows the fuzzy convex hull of the four green
points. The diagram on the right show the fuzzy span of the same points. The
fuzzy span is a fuzzy convex set and contains the fuzzy convex hull.

Lemma 3.3.6. LetV be a finite subset of [0,1]" forr € N. Then the fuzzy span
spang(V) is fuzzy convex.

Proof. Let x and y be two fuzzy linear combinations in spang(V), given by

xz/l,,mv, yzyvmv.

vev vev

Then for @, 8 € [0, 1],

(e[Hx)Hy = (oz/l,,) v (y,,) v e span(V)

vev vev
and
xH(BEY) = [H(edy) DvBH|(Bu) D € spang(V),
VeV VeV
s0 [X, ¥]mm S spang; (V). Hence spang; (V) is fuzzy convex. |

In general, the fuzzy span is not equal to the fuzzy convex hull of V, since, for
example,1 = (1,...,1) € spang;(V) foranyset V < [0,1]", even if1 ¢ V. This is
because 0[[]Jv = 1forany v € V. If1 ¢ V, it cannot lie on the fuzzy line segment
between any two points in spang(V ). Figure 3.4 shows the fuzzy convex hull of
a finite set V — [0, 1]" next to its fuzzy span.

The proof of the following proposition is similar to [13, Proposition 4].

Proposition 3.3.7. LetV be a finite subset of [0,1]", wherer is any natural number
andletl = (1,...,1) € [0,1]" be the point with every coordinate equal to1. Then

spang(V) = convg(V U {1}).
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Figure 3.5: The fuzzy span of a set of points in [0, 1]*> need not be connected. In

particular, no point with second coordinate y for 0 < y < 2 is contained in

3
spanm({vl, v2}).

Proof. Lemma 3.3.6 shows that the fuzzy span of V, spang;(V), contains the
fuzzy convex hull of V, convg(V). If x € spang(V) each fuzzy line segment
from x to 1 consists of points of the form A [-] x for A € [0, 1] and these are clearly
in spang(V). Hence convg(V U {1}) S spang;(V).

To show the converse, we proceed by induction on the number of points in
V. IfV has just one point, say x, it is clear that spanz({x}) and convg({x} U
{1}) coincide, both consisting solely of the fuzzy line segment [x, l|g=. IfV =
{v1,...,v,} with n > 1, consider x = 7:1 A; [Jv; € spang;(V). Then we can
writex = ;[ (]’-’:2 ;[ vj> , where the bracketed term is in convg(V U
{1}) by the induction hypothesis. But this means that x lies on the fuzzy line

segment between this bracketed point and v; and is therefore contained in the
convex hull convg(V U {1}). Thus spang(V) S convg(V U {1}). ]

Example 3.3.8. Whenever any vectors in V have entries equal to 0, it is possible
for spang;(V') to be disconnected. For example, consider

o= {(2).(B)} <t

The fuzzy span of V, spang(V), is illustrated in Figure 3.5.
Note that spanz7(V) is not connected, since for all 1 # 0 we have A [-]

<1é2) = <A\%/ 2)) and so it is impossible to obtain any point with non-zero

second coordinate by scaling ( 1{)2) unless A = 0, in which case A [-] < 1{]2> = (1.

Thus the set {(;) | 0 < y < 1} is not contained in spang(V) as one might
naively expect by merely extrapolating from examples of more familiar connected
fuzzy spans.
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3.3.1 The nucleus of a fuzzy relation as a fuzzy span
We are now in a position to link all of this back to the nucleus of a fuzzy relation.

Theorem 3.3.9. Let M € [0, 1]"” be a matrix, considered as a fuzzy relation
between finite sets. Let Row(M ) and Col(M ) denote the sets of rows and columns
of M, respectively. Then

Fix! (M) = spanE(Col(M)), (3.44)
Fix" (M) = spang;(Row(M)). (3.45)
Proof. We prove the first equation; the second is analogous. Write m,; for the
jth column of M, i.e. (m,j); := mjj, so that Col(M) = {m.; | j € [n]}. By
Proposition 3.1.6, Fix! (M) = im M,. Therefore, let v € im M, and letw € Y' be
such that v = M, (w). Then for each i € [r]
vi = My (w);

= lg}gln{wj\mij}

( w; [] (m-j)>

i

o)
n
v = || w; []ms; € spang(Col(M)).
j=1
Conversely, any x = [HJ_, 4; [] (m.;) can be obtained as M(1), where
A= (A,...,4,) € [0,1]". i

The following corollary to Theorem 3.3.9 is then immediate from Proposition
3.1.8.

Corollary 3.3.10. Let M € [0,1|"" be a matrix, considered as a fuzzy relation
between finite sets. Then there are proxet isomorphisms

Nuc(M) = spang(Col(M)) = spang;(Row(M)).

An explicit isomorphism between the second and third proxets is provided by the
proximity maps M*: spang;(Col(M)) — spang(Row(M)) and
M, : spang(Row(M)) — spang(Col(M)).

We illustrate these results with some examples.

Example 3.3.11. Consider the matrix

. (1/8 1/3 1/2>,

1/7 2/3 1/4
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Figure 3.6: The set Fix! (M) is equal to the fuzzy span of three points in [0, 1]?
corresponding to the columns of M, while Fix" (M) is equal to the fuzzy span of
two points in [0, 1]3 corresponding to the rows of M. The spanning points are
highlighted in green. The points highlighted in red correspond to each other via
the bijection in Corollary 3.3.10.

thought of as a fuzzy relation between finite sets. The fuzzy spans of the columns
and rows of M are illustrated in Figure 3.6. By Theorem 3.3.9, these sets are equal
to Fix! (M) and Fix" (M), respectively.

Any point v € Fix} (M) corresponds to a unique point in Fix" (M), given by
w = M*(v). One such example is given by the (column) vector v = (}g) €
Fix! (M), which corresponds to the (row) vector w = (1/42/31/2) € Fix" (M).

Example 3.3.12. The bijection between spang(Row(M)) and spang(Col(M))
can be seen most clearly when M is a square matrix, i.e. when r = n. We give
a particularly simple 2-dimensional example, which hints at the fact that the
correspondence between Fix! (M) and Fix" (M) is actually an isomorphism of
cell complexes, as we will see in Theorem 4.4.23.

1/4 1/2
M= (1/8 1/2) '

The fuzzy spans of the columns and rows of M, i.e. the sets Fix! (M) and Fix" (M),

Consider the matrix

are shown in Figure 3.7.

Note that the disconnectedness of the fuzzy span in Example 3.3.8 is consistent
with Theorem 3.3.9, in particular the fact that Fix! (M) = spang(Col(M)). It
is easy to check that for 0 < y < 1, we have M, () = (01/3) but M* (01/3) =
(1) # (3),s0 () ¢ Fix¥ (M), as required.
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1/2
(1/2> (1/81/2) (varjz)

(vs)

1/41/2 ))

1/81/2
i.e. the sets Fix! (M) and Fix" (M). Points that correspond to each other under
the bijections M* and M, are marked in the same colour.

Figure 3.7: The fuzzy spans of the columns and rows of the matrix M = (

The discontinuity inherent in the operation of truncated division, as illus-
trated in Example 3.3.8, means that we focus mainly on fuzzy relations whose
matrices contain only non-zero components. We will be able to prove further
results related to the nuclei of fuzzy relations, under such conditions, by drawing
analogies with tropical linear algebra, which we consider in the next chapter.
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Chapter 4

The nucleus as a cell complex

In the previous chapter we showed that the nucleus of a fuzzy relation between
finite sets (i.e. finite discrete proxets) is isomorphic to the span of its columns (or
rows) with respect to the operations of “fuzzy addition” (pointwise minimum) and
“fuzzy scalar multiplication” (truncated division of each coordinate by a constant):

(x#Hy); = min{x;,y;} and (A[x); = A\x;,

forx,y € Col(M) and A € [0,1].

In this chapter we will show that, under certain conditions, these spans can
in fact be seen as tropical convex hulls of certain related (finite) sets of points in
tropical projective space, i.e. as tropical polytopes. As tropical polytopes have a
natural cell decomposition [13, Theorem 15], we are therefore able to describe a
cell decomposition of the nucleus of a fuzzy relation between finite sets.

We begin with a summary of the important definitions and results from trop-
ical linear algebra, focusing on the definition of the tropical convex hull of a
finite point configuration in tropical projective space. We then prove that the sets
Fix! (M) and Fix" (M) of downward- and upward-fixed vectors of a fuzzy relation
between finite sets are isomorphic to the tropical convex hulls of certain points
in tropical projective space.

Knowing that Fix¥ (M) and Fix (M) are tropical polytopes allows us to trans-
fer many definitions and results from tropical mathematics into the context of
nuclei of fuzzy relations. In particular, we are able to define the type of a fuzzy
concept (v, w) € Nuc(M). The tropical convex hull of a finite set of points in
tropical projective space inherits a natural cell complex structure where cells
are labelled by these types. Develin and Sturmfels [13, Theorem 1] showed that,
up to combinatorial type, tropical complexes arising from an arrangement of r
points in (n — 1)-dimensional tropical projective space are in natural bijection
with regular subdivisions of the product of simplices A, _; x A,_;.
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Notation. In this thesis we frequently consider finite sets of points in finite-dim-
ensional spaces. Dimensions will usually be indexed by a variable i € {1,...,r},
while points will usually be indexed by a variable j € {1, ..., n}. This is different
to the conventions of some other authors. When working in tropical projective
space, we label the additional coordinate with a zero, so that i € {0, ..., r}. Later,
when we add an additional point to a configuration of n points, we also label
it with a zero, so that the j € {0,...,n}. It is convenient to make use of the
shorthand notations [k] = {1,...,k} and [k] = {0,..., k}.

4.1 Tropical mathematics

In this section we introduce the basics of tropical mathematics. Our primary
reference is the seminal paper [13] of Develin and Sturmfels. Other introductions
can be found in [42, 50, 54].

We begin with an important definition.

Definition 4.1.1. The tropical semiring T = (R u {00}, ®, ®) consists of the set
of real numbers together with the operations of tropical addition and tropical
multiplication, given by

x@y:=min{x,y} and xQy:=x+y, 4.1)
respectively, for x, y € R.

Some authors define tropical addition in terms of maxima, i.e. for x, y € T,
x @y = max{x,y}. Since max{x,y} = —min{—x, —y} forallx,y € R, geo-
metry over the semiring (R, max, +) is equivalent to geometry over the semiring
(R, min, 4 ). Nonetheless, this is the first of several varying conventions within
the tropical literature that a reader should be aware of.

It is not difficult to show that T is a commutative semiring. The additive
identity for T is oo and the multiplicative identity is 0, since min{x, oo} = x and
x+0=xforallx e R U {oo}.

Tropical addition and tropical multiplication can be extended pointwise to R”
in the obvious way. For x = (x1,...,%,),¥ = (),...,¥) € R, 2 € R we define

Xy =x®n, ..., xxDyr) A0x=(10x,...,10x).

Tropical operations arise naturally in the context of addition and multiplica-
tion of power series under the map that sends each power series P = Y a;t’ €
R[[]] to its degree, i.e. the exponent of its leading term. Provided the lead-
ing terms do not cancel, deg(P + Q) = max{degP,degQ} and deg(P - Q) =
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(0,6,

(9,4

Figure 4.1: Tropical line segments in R? and R3. The (unprojectivised) tropical line
segment between two points in RZ2 consists of two (infinite) lines and the (infinite)
planar section bounded by them (shaded in grey). In R3 the (unprojectivised)
tropical line segment between two points consists of two such (infinite) planar
sections intersecting in an (infinite) line as well as the (infinite) lines bounding
each of these planar sections.

deg P + deg Q. In fact there are strong connections between tropical geometry
and generalised power series known as Puiseux series, which have the form

P = Z a,-ti/"
ik
for some fixed k € Z and n € N. See, for example, [14, 32, 44].

Definition 4.1.2. The tropical line segment between two points x,y € R’ is
defined to be the set of all tropical linear combinations of x and y:

[, ¥]eo :={10x®udy| A, ueR}. 4.2)

Note that there is no restriction on the parameters A and y in Definition 4.1.2;
in particular, we do not require A + u = 1as in the affine case.

Examples of tropical line segments in R? and R? are illustrated in Figure 4.1.
In this form, tropical line segments do not look very much like what one might
expect line segments to look like.

Definition 4.1.3. A set X < R’ is said to be tropically convex if contains the
tropical line segment [x, y g between each pair of points x, y € X.

It is easy to see that tropically convex sets are closed under tropical multiplic-
ation by scalars, i.e. if X < R’ is tropically convex and x € X, then 1 ® x € X for
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all 1 € R. We can therefore simplify things by identifying each x with all of its
tropical scalings A © x.

Definition 4.1.4. For r a natural number, r-dimensional tropical projective space
TP" is defined to be the quotient space R’ ™!/ ~, where ~ is the equivalence
relation (xo, ..., x;) ~ 1 ® (xg,...,x,) forall A € R.

Note that points in TP" have r + 1 coordinates, which we index from zero.
Some authors, e.g. Joswig in [31], call this space tropical affine space and use the
notation TA".

For each point in x € TP' there is a unique vector c(x) € R"*! with non-
negative coordinates such that at least one coordinate is zero. The coordinates of
this vector are sometimes called the canonical coordinates of x. However, since
there is a unique representative of the coset R © x with zeroth coordinate zero,
it is often more useful to consider the image of a point in TP" under the natural
projection ¢g: TP" — R’ given by eliminating the zeroth coordinate, i.e.

co: (X0, .., %) — (X1 — Xg, ..., Xr — Xg).

This projection is easily seen to be a bijection. We call the image of this projection
the projectivisation of x.

Note that instead of eliminating the zeroth coordinate, some authors choose
to eliminate a different coordinate, typically the last. This is another varying
convention to be aware of.

Example 4.1.5. The point x = (—2,1,—3) € TP? has canonical coordinates
(1,4,0). We can also represent x by the vector ¢y(x) = (3, —1) € R?. This is shown,
together with the (projectivisation of the) tropical line segment between (0, 1, 2)
and (0, 8, 6) in TP?, in Figure 4.2.

Note that projectivised tropical line segments in TP? look a lot like the fuzzy
line segments we defined in the previous chapter. To see why this is, consider
two points x = (xg, X1, x2) and y = (yo, y1, ¥2) in TP2. Without loss of generality
we may assume xp = ¥ = 0. The tropical line segment between x and y is the
set of points of the form

A0x0uQy=QAepup 100U A0 ®udy:)

_JO0x@E-)0nn®(H-10y) ifl<p
0,A=p)OXx®y, (A —u)Ox®y,) ifd>p,

so, eliminating the zeroth coordinate using the projection ¢y defined above, we
see

[, ¥]leo =2 {(A—p)Ox®y | L, pueR}U{x®(u—2)Oy| A4 ueR} c R
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Figure 4.2: A (projectivised) tropical line segment in TP?. Tropical line segments
in TP" are equal to the concatenation of at most r ordinary line segments, each
of which is parallel to a vector with coordinates in {0, 1} (see [13, Proposition 3]).

where the symbol =~ indicates the projectivisation bijection. Comparing this
formula with (3.43):

[ ylem = {(ABx)By [ A€ [01]} v {xB (1Ey) | pe[01]}

makes the correspondence clear.

The relationship between projectivised tropical line segments and fuzzy line
segments is harder to see in higher dimensions.

Given a set of points in TP” we can find the smallest tropically convex set
containing them.

Definition 4.1.6. The tropical convex hull of a set of points V = {vy,...,v,} S
TP” is defined to be the smallest tropically convex set containing V and is denoted
convge (V). Asubset X < TP" is called a tropical polytope if it is the tropical
convex hull of a finite set of points.

In [13, Proposition 4], the tropical convex hull of V is shown to be equal to the
set of all tropical linear combinations of points in V.

Example 4.1.7. An example of a tropical polytope in TP? is shown in Figure 4.3.
This example, which is the tropical convex hull of the points (0, 0, 2), (0, 2,0),
(0,1,—2) € TP? is taken from [13]. As with all tropical polytopes, it is a finite union
of closed, bounded, (classically) convex polyhedra (in this case polygons), namely
the pentagon and the closed line segment from (0, 0, 0) to (0, 0, 2).

The tropical analogues of hyperplanes are particularly useful examples of
tropically convex sets [13, Proposition 6].
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Figure 4.3: A tropical polytope in TP?. This is the tropical convex hull of the points
highlighted in red. It is the finite union of closed, bounded, convex polygons.

Definition 4.1.8. A tropical hyperplane H, in TP’ is the set of points for which a
tropical linear form

PacOxk =aOx® - @a Ox (4.3)

k=0

is attained at least twice, i.e. x € H, if and only there exist distinct coordinates
i # j for which
a; ; = a; +x; = min {a .
i X it o<k<r{ e

The point (—ag, —a, . . ., —a,) for which this minimum is attained in every co-
ordinate is called the apex of H,.
Each tropical hyperplane divides TP" into r + 1 sectors. We write

. P
H[i] = {x e TP" | a; + x; olélklgr{“’“ + xi }}

for the closed sector consisting of those points x € TP" for which the minimum
in (4.3) is attained by a; + x;. All tropical hyperplanes are translates of each other.

Example 4.1.9. The tropical hyperplane corresponding the the tropical linear
form 1O xo @ (—2) © x1 ® 0 ® x; is the set of points (xg, X1, x2) € R3 such that

1+x0=(—2)+x <0+ x,
or 14+x9=0+x < (=2)+ xy,
or (=2)4+x =0+ x2 <1+ xo.
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Figure 4.4: The (projectivisation of the) tropical hyperplane in TP? defined by the
tropical linear form 1 ® xp @ (—2) ® x1 @ 0 ® x,. The three lines are the sets of
points for which the minimum encoded in the tropical linear form is attained
twice, with the apex —a = (-1, 2, 0) (represented by the point (3,1) € R?) being
the point at which the minimum is attained three times. The sectors H[0], H[1],
H|2] are indicated.

In its unprojectivised form, this hyperplane consists of three sections of or-
dinary planes in R® meeting in a line. The projectivised form of this hyperplane
in TP? is illustrated in Figure 4.4.

It will be particularly useful to work with “inverted” tropical hyperplanes,
defined in terms of maxima rather than minima. Explicitly, given a tropical linear
formayOxo D - - D ar © x, apoint x € TP” is contained in the inverted tropical
hyperplane H™ if and only if there exist distinct coordinates i # j for which

ai+x; =aj +xj = oglkai( {ar + xi}.
SKKT

It is clear that x € H™ if and only if —x € H_,. The ith sector of an inverted
tropical hyperplane HI™ is the closed set

invp.1 _ r . -
HM[i] ={xeTP" | a; + x; Oréllgé(r{ak + Xk}

Much work has been done on tropical convex hulls and their natural cell
complex structures. See, for example, [14,15, 28, 30, 31]. We aim to show that under
certain conditions nuclei of fuzzy relations between finite sets are in one-to-one
correspondence with tropical convex hulls of point configurations in tropical
projective space and thus inherit a natural cell complex structure.
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4.2 The nucleus as a tropical convex hull

In this section we provide a bijection between the set Fix! (M) of lower vectors of
a fuzzy relation given by an (r x n)-matrix with entries in (0, 1] and to the set of
points of a certain tropical convex hull of n + 1 vectors in TP". Similarly, there is a
bijection between the set Fix" (M) of upper vectors of M and a certain tropical
convex hull of r + 1 points in TP”. It is important that all the entries of M are
strictly positive, in which case we say that such a fuzzy relation M is non-vanishing.
These bijections respect the semimodule structure in a manageable way, so it is
easy to move between fuzzy spans of vectors in [0, 1]-space and tropical convex
hulls in tropical projective space.

Definitions and results about tropical polytopes can then be translated directly
to corresponding statements about fuzzy spans. In particular, since each tropical
polytope has a natural cell decomposition [13, Theorem 15] we are able to show
that Fix! (M) and Fix" (M) also have such a structure, allowing us to classify
concepts in Fix! (M) or Fix" (M) according to their type, a piece of combinatorial
data from which the dimension of the cell in which a concept lies can be read off.
Concepts in a classical concept lattice can all be thought of as constituting cells
of dimension zero. The ability to classify fuzzy concepts may have applications
to fuzzy concept analysis as it allows different fuzzy concepts to be thought of in
qualitatively different ways.

We begin by describing a way to move between [0, 1]-space and tropical pro-
jective space. Write R for the set of strictly positive real numbers. For any base
b > 0, the function x — log,(x): R; — Ris a bijection, with inverse given by
y — exp,(y) := b’. When we do not wish to specify the base we abbreviate these
functions to log and exp. This should be taken to mean that the base b can be
taken as desired, not that we are necessarily using natural logarithms and expo-
nentials (i.e. with b = e). For any b > 1, both log and exp are order-preserving
functions, i.e. if x < y thenlog(x) < log(y) and exp(x) < exp(y).

Since log and exp interchange addition and multiplication, i.e.

log(xy) = log(x) + log(y) and exp(x +y) = exp(x) exp(y),

these functions are obvious candidates for moving from the essentially multiplic-
ative realm of fuzzy spans to the additive realm of tropical mathematics, which
has been widely studied. To this end, define a map ¢: (0, 1]’ — TP as follows.
For x € (0,1]" define ¢(x) to be the equivalence class in TP" of the point with
coordinates (0,log(x), . .., log(x;)), i.e.

b= {0 IO m
X); = .
log(x;) ifi > 0.
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Note that (0,1]" is a [0, 1]-submodule of the [0, 1]-semimodule [0, 1]" from which
it inherits the operations [ and [-] defined in (3.39) and (3.40): for x, x” € (0,1]"
and A € [0,1]

(x @ x"); = min{x;,x;} and (1[HDx); = A\x; (4.5)

for each i € [r], where \ is the truncated division operation defined in (2.2). We
can see that (0,1]" really is a submodule as for any A € [0,1] and x € (0,1]" we
have A [[]x € (0,1]" since A\x; > x; for each i by definition.

When X is a subset of (0,1]", write ¢(X) = {¢(x) | x € X}. Points in the
image of ¢ are those points (yo, y1, - .., ¥r) € TP" for which y; — yo < 0 for all
i € [r], and this property is invariant under tropical scalar mutliplication. Write
TP, for this set, a subspace of TP". Restricting to TP, is not limiting; because
TP" is homogeneous, every configuration of points in TP" that does not have this
property can be seen to be equivalent to one that does by simply changing the
zeroth coordinate of each point, and vice versa. This equivalence is analagous to
the equivalence of geometry in the whole Cartesian plane and its first quadrant.

Lemma 4.2.1. The map ¢ defined in (4.4) is a bijection onto its image, with inverse
given by y: TP, — (0,1]", where we define y(y); := exp(y; — yo) fory =
(Yo, 0, - - -, yr) € TP". Moreover, ¢ respects the semimodule structure of (0,1]" and
TP" in the following way: for all x, x" € (0,1] and A € (0,1],

¢(xHx) = ¢(x) ®o(x") and ¢(A[x) = (—log(1)) O ¢(x) DO, (4.6)
whereQ € TP" is the point with all coordinates equal to zero.

Proof. We first check that the map ¥ is well-defined. If y and y’ represent the
same point in TP" there is some A € R such thaty! = A + y; foreach i € m
Then foralli € [rJwehavey! —y; = A +y; — (A + ) = ¥i — Yo, S0 Y is
well-defined. Note also that since y € TP we have y/(y) € (0,1]" as required. It
is then easy to see that ¢ and  are mutually inverse. For x € (0,1]" and i € [r]
we see that (¢ (x)); = exp(log(x;) — 0) = x;. Fory € TP" we have ¢((y)); =
log(exp(y; — y0)) = yi — yo foralli € [r]. Adding y, to each coordinate shows
that this is in the same equivalence class of TP" as y.
For x,x’ € (0,1]" and i € [r], we see

¢(x@x); = log((x M x');)
= log(min{x;, x})
= min{log(x;), log(x})}
= ¢(x); ® $(x);
= (¢(x) ® p(x"))s,
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since log is order-preserving. For i = 0 both sides are equal to 0.
Given a constant A € (0,1] and i € [r], we see

#(A0x); =log((A[Hx);)
= log(min{x;/A,1})
= min{log(x;/1), 0}
= min{—log(1) + log(x;), 0}
= min{(—log(1)) ® ¢(x);, 0}
= ((=log(1)) © ¢(x) ®0);
For i = 0, both sides are again equal to 0. o

We are now able to prove the most important result in this section.

Theorem 4.2.2. LetV < (0,1]" be a finite set of vectors. The map ¢ defined in
(4.4) restricts to a bijection of sets (respecting the semimodule structures of (0,1]"
and TP" as descried in (4.6))

¢: spang;(V) = spang (¢(V) U {0}), 4.7
whereQ € TP" is the point with all coordinates equal to zero.

Proof. Let x € spang(V ). Then we can write

x =1, v (4.8)

veVv

for some constants 1, € (0,1] depending on v. By Lemma 4.2.1, we see that

¢(x) = P(—1loga,) ©¢(v) DO.

VeV

Hence ¢(x) € spang,(¢(V) U {0}).
Conversely, let y € spang(¢(V) U {0}). Then y can be written as

V=Pmw o) ®u OO0,

veVv

for some constants g, u, € (0,1]. Let pmin = min{min,ecy{#y}, 4o}, S0 Yo = Lmin
and for each i € [r],

yi = min{min{z, + log(v:), po}}. (4.9)

We claim that y lies in the same equivalence class of TP" as ¢(z), where z is the
fuzzy linear combination

2 — [ exp(jtmin — 1) E0.

VeV
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Lemma 4.2.1 gives

¢(Z) = @(_ log(exp(ﬂmin - ﬂv))) O] ¢(U) @0

VeV

= D4y — pmin) © 6 (v) DO

vev

Hence

Hmin © 6(2) = @ o © (V) @ pmin © 0

vev

=P (1 O¢V) DUy ©0) @ 1o OO,

veVv

by definition of umin. But since, for each v € V, ¢(v); < Oforalli € [r], we have
Uy ©d(v) D 1y ©®0 = u, ® ¢(v) for each v and so the right-hand side is equal to
y.Thus y = pmin © ¢(z),s0y ~ ¢(z) in TP". ]

Theorem 4.2.2 shows that ¢ preserves the convexity of sets in (0,1]". The
following is essentially a restatement of the previous theorem.

Corollary 4.2.3. The bijection ¢: (0,1 — TP" defined in (4.4) sends fuzzy spans
in (0,1]" to tropical convex hulls in TP". More precisely, the fuzzy span of n points
{vy,...,v,} in(0,1]" is in bijective correspondence with the tropical convex hull of
n +1points{¢(v1),...,d(vy), 0} in TP".

This correspondence is illustrated in Figure 4.5.

4.3 Tropical hyperplane arrangements and types

In the previous section we showed that the fuzzy span of n vectors in (0,1]" is
in bijective correspondence with the tropical convex hull of # + 1 points in TP”.
This allows us to translate many definitions and results into statements about the
nuclei of fuzzy relations between finite sets.

We begin with the definition of the type of a point with respect to a configura-
tion of points. The definition we give is actually the transpose of the definition
given in [13], although the two are equivalent. Our definition is closer to that given
by Ardila and Develin in [1].

Definition 4.3.1. LetV = {vy, ..., v,} be afinite set of points in TP" and let x be
any point in TP". The fype of x € TP" with respect to V, denoted type,, (x), is the
ordered (n + 1)-tuple S = (Sy, ..., S,) of subsets S; < [r] such that i € S; if and
only if

Vij — X; = min {vjx — X
Ji i O<k<r{ Jjk k}r

where vj; is the ith coordinate of the vector v;.
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b o

Figure 4.5: The bijective correspondence between fuzzy spans and tropical poly-
topes. Note that the fuzzy span on the left only has two generating vertices, while
the tropical polytope on the right is the tropical convex hull of three points, namely
the images under ¢ of the generating vertices of the left-hand diagram and the

Z€ero vector.

Definition 4.3.2. LetV = {vy, ..., v,} beafinite set of points in TP". A candidate

(r,n)-typeis any (n + 1)-tuple S = (S, ..., S,) of subsets S; < [r]. A candidate
type S is a type if there exists x € TP” such that type, (x) = S.

The transpose of Definition 4.3.1 defines a type to be an (r + 1)-tuple ST =
(Sg,---,S]) of subsets S; = [n] such that j € S| ifand onlyif i € S;. Whether to
use S or S’ is another varying convention between authors to be aware of.

Note that for a genuine type S, each minimum must be attained at least once
so each set S; must be non-empty. In general, however, it is not necessary that

each i € [r] appears in some S;. When this holds we make the following definition.

Definition 4.3.3. Atype S = (So,...,Sn) of a point x € TP" is full if, for each
i € [r], there exists some j € [n] such thati € ;.

Abusing notation slightly, a type S can be conveniently represented as a matrix
S € {0,1} 2"+ ‘where S;; = lifand only if i € S;. By definition a type S is full if
and only if every row of this matrix is non-zero or, equivalently, if every column
of the matrix corresponding to the transpose type S ' is non-zero. For types of
points with respect to configurations of points in tropical projective space we do
not need distinct notions of “row full” and “column full”.

It is also sometimes useful to represent S by the undirected bipartite graph
for which this matrix is the adjacency matrix.

59



Example 4.3.4. The type S = ({0,1}, {1}, {2, 3}) can be represented by the matrix

el el
o o = O
==

or by the undirected bipartite graph

Vo U1 U2 U3

a4

Wo w w2

or by the marked graph

U1 U2 U3

7

wr w»

where a vertex v; is marked if i € Sy and w; is marked if 0 € S;.

Remark. Here is a convenient way to compute the type of a point x € TP" with
respect to a point configuration V = {vy, ..., v,} < TP". The type of x encodes
the position of x relative to the n inverted tropical hyperplanes centred at the
vertices v;. Translating Definition 4.3.1, if S = type,, (x) then i € S; ifand only x
lies in the ith sector of the jth inverted hyperplane H}“", whose apex is v;. This is
illustrated in Figure 4.6

We now make an important definition.

Definition 4.3.5. LetV = {vy, ..., v,} be a finite set of points in TP". Let S be a
candidate (r, n)-type and define Cy (S) to be the set

Cy(S) = {x e TP" | S < typey (x)}, (4.10)

where a candidate (r, n)-type A is contained in another candidate (r, n)-type B if
and only if A; < B; for each j € [n]. For reasons we will explain shortly, we refer
to Cy (8) as the closed cell corresponding to the candidate type S.

The set Cy (S) is shown to be an ordinary convex polyhedron in [13, Lemma
10] and that it is bounded precisely when S is full, in the sense of Definition
4.3.3,in [13, Corollary 12]. (Note that the second of these results is stated slightly
differently in [13] due because their definition of “type” is the transpose of ours.)
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Figure 4.6: Three inverted tropical hyperplanes in TP?. Moving anticlockwise
from the bottom left, the three sectors of each inverted tropical hyperplane are
oriented in the order 0, 1, 2. The lines indicate the boundaries between these
sectors; a point lying on such a boundary is considered to lie in all of the sectors
it bounds. The type of x can be seen to be ({0, 1}, {1}, {2}), since x lies in sectors
0and 1 of H", in sector 1 of H"Y, and in sector 2 of Hi". Note that every point
must lie in one or more sectors for each inverted tropical hyperplane.
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It is then shown in [13, Theorem 15] that the set of all cells Cy (S), where S
ranges over all possible types, provides a cell decomposition of TP" and that the
tropical convex hull of the points {vy, . .., v, } consists of the bounded cells, i.e.
the cells Cy (S) for those types S that are full.

Write Cy for the collection of all sets Cy (S) for candidate (r, n)-types S. What
it means for Cy to be a “cell decomposition” of TP can be summed up by the
following results, for which full proofs can be found in [13, Lemma 10-Theorem
15]:

1. Every point x € TP" lies in some cell Cy (S);
2. Each cell Cy(S) is a convex polyhedron;
3. The faces of Cy (S) are precisely those cells Cy (T') for which S < T;

4. Every cell Cy (S) for a candidate (r, n)-type S is equal to Cy (T) for some
actual (r, n)-type T, i.e. with T such that T = type, (x) for some x € TP";

5. The intersection of two cells Cy (S) and Cy (T ) in Cy isacell in Cy and is a
face of both Cy (S) and Cy (T).

The dimension of each polyhedron Cy (S) can be calculated using the follow-
ing definition.
Definition 4.3.6. Given a candidate (r, n)-type S = (S, . .., Sy) (not necessarily
the type of any point x € TP"), let Gs be the undirected graph with vertex set m,
where for i, ir € m, there is an edge in Gs between i; and i, if and only if there
exists j € msuch thati € Sjand i; € S;.

A proof of the following result can be found in (13, Proposition 17].

Proposition 4.3.7. Let S be a candidate (r, n)-type. The dimension of Cy(S) is
equal to one less than the number of connected components of Gs.

If Cy (S) has dimension k we call the relative interior of Cy (S) a k-cell. Thus,
0-cells are points, 1-cells are open line segments, 2-cells are the relative interiors
of closed convex polygons, etc.

Example 4.3.8. Consider the point x in Figure 4.6. The type of x with respect to
the given arrangement of tropical hyperplanes can be represented as the matrix

S =

O = =
o = O
- o O

Since r = 2, the graph Gg has 3 vertices. There is an (undirected) edge between 0
and 1 since Sgp = S0 = 1, as shown
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0 *2

Hence Gg has two connected components and x lies in a cell of dimension 1, i.e. a
line segment.

4.4 The cell complex structure of the nucleus

In this section we apply the results of the previous section to the specific case
of point configurations obtained from fuzzy relations between finite sets. It was
shown in the previous chapter that the nucleus of a fuzzy relation M: X ~» Y
between finite sets is isomorphic as a proxet to its projections into [0,1]" or [0, 1]",
ie.
Nuc(M) = Fix! (M) =~ Fix" (M),

and the underlying sets of these proxets are equal to fuzzy spans of the columns
and rows of M, respectively. It follows from Theorem 4.2.2 that when M is such
that M(x,y) # Oforallx € X, y €Y, i.e. if the matrix of M contains no zeros,
then Fix! (M) is isomorphic (as a set) to a tropical convex hull of 7 + 1 points in
TP", namely the images of the n columns of M under the map ¢ (defined in (4.4)),
together with the zero vector 0 € TP'; similarly, Fix" (M) is isomorphic (as a set)
to the tropical convex hull of the images of the r rows of M under ¢, together with
0e TP".

The upshot of this is that if M is a fuzzy relation whose matrix contains no
zeros, there is a natural cell complex structure on Fix! (M) and Fix" (M). Since
we are only concerned with such fuzzy relations, we give them a name.

Definition 4.4.1. A fuzzy relation M: X ~» Y is said to be non-vanishing if
M(x,y) # Oforallx € X and all y € Y, i.e. if the matrix of M has no zero entries.

Imposing a non-vanishing condition on a fuzzy relation may appear to be
quite a limiting restriction, but in practice it is not. It is clear that from any fuzzy
relation M : X ~»> Y we can define a non-vanishing fuzzy relation M : X ~» Y by
picking ¢ > 0 sufficiently small and setting

g ifM(x,y) =0,
M(x,y) otherwise.

M(x,y)={

forall x € X, y € Y. Although there is a clear qualitative difference between the
nuclei of M and M, from the perspective of fuzzy concept analysis this modifica-
tion can be justified in practice by arguing that no statement is ever completely
false, i.e. there will be some context in which it could be considered true.
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Figure 4.7: The diagram on the left is Fix¥ (M) for a fuzzy relation that is not
non-vanishing. The diagram on the right is Fix! (M), where M is a non-vanishing
fuzzy relation obtained from M by changing all zeros in the matrix of M.

Example 4.4.2. Let M be the fuzzy relation with matrix

v (V412
~\2/3 0 )

Since my, = 0, M is clearly not non-vanishing. Let M be the non-vanishing fuzzy
relation with matrix
1/4 1/2
wo (Ve 2\
2/3 ¢

where & > 0is small. The Fix¥ (M) and Fix% (M) are shown in Figure 4.7. Note
that these are qualitatively very different; Fix! (M) is not connected and consists
only of 0- and 1-cells, while Fix! (M), whose points are in bijection with those
of a tropical polytope, is necessarily connected and includes a 2-cell, as well as
additional 1-cells.

Given sets X and Y with |X| = r and |Y| = n and a fuzzy relation M : X ~ Y
we have seen that the nucleus of M is the proxet with underlying set

Nuc(M) = {(v,w) € [0,1]" x [0,1]" | M*(v) = w and v = M, (w)}. (4.11)

If M is non-vanishing it is possible to express the set on the right-hand side
of (4.11) in a different way. First, we note that the nuclei of non-vanishing fuzzy
relations cannot contain any points with any zero coordinates.

Lemma 4.4.3. LetM: X ~ Y be a fuzzy relation between finite sets with |X| = r
and|Y| = n and let (v, w) € Nuc(M). If M is non-vanishing thenv; > 0 for all
i €[r]andw; > 0 forallj € [n], ie (v,w) € (0,1]" x (0,1]".
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Proof. If (v,w) € Nuc(M) then v € Fix}(M) = spang;Col(M) and w €
Fix" (M) = spang; Row(M). Since M is non-vanishing, Col(M) and Row(M)
both contain no elements with any coordinates equal to zero, and hence neither
can their fuzzy spans, since (1 [-]x); = A\x; > x; forall A € [0,1]. Hence v; > 0
and w; > Oforalli € [r] andall j € [n]. |

From this we obtain the following characterisation of points in the nucleus of
a non-vanishing relation between finite sets.

Lemma 4.4.4. Let (v, w) € (0,1]" x (0,1]" and let M € (0,1]"" be the matrix of a
non-vanishing fuzzy relation between finite sets. Thenv = M, (w) and M* (v) = w
if and only if:

Vi Vj Vi - Wj < myj,
Viv,-:lorﬂj: vi - wj = mij,
Vjwj=1lordi: v; w; =m;.

Proof. Suppose v = M, (w). By the definition of M,, this means that, for all
i € [r], we have v; = mimg;<,{w;\m;;}, which means that for each j € [n]
we have v; < wj\mij and hence v;w; < m;;. By finiteness, there must exist
I € [n] such that v; = w;\my;. f w; < m;; then v; = 1; otherwise v; = my;/wy, so
viw; = m;;. In the same way, w = M*(v) implies that, for all j € [n], we have
w; = 1or there exists k € [r] such that viw; = my;.

Conversely, suppose (v, w) € (0,1]" x (0,1]" satisfies the displayed conditions.
Fix i € [r]. Firstly, by the definition of truncated division, v;w; < m;; implies
v; < wj\m;j for each j € [n]. Hence v; < mimj<,{w;\m;;}. Now, either v; = 1
or there exists some ! € [n] such that v;w; = my;. In the first case we clearly
have v; > mincj<,{w;\m;;}; otherwise suppose v; < mini<j<,{w;\m;;}. In
that case, for each j € [n] we must have v; < w;\m;;, and since w; > 0, by
the previous lemma, mutliplying by w; gives v;w; < w;(w;\m;;) < m;; for all
j € [n], contradicting the fact that there exists some j with v;w; = m;;. Hence
v; > minigj<,{w;\m;;} and thus v = M, (w).

The equality w = M*(v) is proved similarly. ]

Thus, for a non-vanishing fuzzy relation, Nuc(M ) is equal to the set

Vi V] Vi - Wj < mij

(l/, lU) € (0, l]r X (0, 1]" Vi Vi = 1or El] LV w]' = ml-j . (412)

ijjzlorﬂi: Vi - Wj = Mmij

Remark. Note that it is necessary that M be non-vanishing for Nuc(M) to be
written as the set in (4.12). Consider the fuzzy relation with matrix

. (1/4 1/2) |
2/3 0
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1/2
1/2

(142) # v,50 (v, w) ¢ Nuc(M), even though vyw, = my and vow, = my).

as in Example 4.4.2, letv = < ) andletw = M*(v) = (1/20). Then My (w) =

We can introduce some notation to simplify the set in (4.12).

Forv € [0,1]", let v € [0,1]"™ be the vector defined by setting v; = 1 if
i = 0and v; = v; otherwise. For w € [0,1]", define w € [0,1]"*! similarly. Note
that we index these “extended” vectors from zero. For a matrix M € [0,1]"", let
M € [0,1]" 1"+ pe the matrix with m;; = 1ifi = Oor j = 0 and m;; = m;;
otherwise. With this notation, the set in (4.12) becomes

ViVjv;-w; < mjj
Nuc(M) =< (v,w) € (0,1]" x (0,1]" | Vidj: v;-w; =m;; ;. (413)

V] di: El' ~Ej =ml~j
Definition 4.4.5. Let M: X ~» Y be a non-vanishing fuzzy relation between
finite sets, where |X| = r and |Y| = n. Let v € Fix!(M). Define the type of v with

respect to M, written type,, (v), to be the type of ¢(v) with respect to the tropical
hyperplane arrangement given by ¢(Col(M)) = ¢(Col(M)) U {0}, i.e.

tyPey (v) = tyPey(coi(iry ($(0)- (4.14)
The following proposition is essentially a translation of Definition 4.4.5.

Proposition 4.4.6. Let M : X ~» Y be a non-vanishing fuzzy relation between
finite sets, where |X| = r and |Y| = n. Letv € (0,1]", letw = M™*v, and let
S = typey, (v). Theni € S; ifand only ifv; - w; = m;;.

Proof. For j € [n], write m.,; for the jth column of M, whose ith coordinate is

m;;. Note that forany v € (0,1]" and i € [r], we have ¢(v); = log(v;). It therefore
follows from Definition 4.3.1 that i € S; if and only if

log(m;;) — log(vi) = min {log(7iy;) — log(vi)}.

Using the properties of logarithms, it follows that i € S; if and only if

s e

log <_—”> = min {log <_—k]>} (4.15)
Vi 0<k<r Vi
m .

= log ( min {_—'”D . (4.16)
0<k<r Vi

Note that v} # 0 for all k € [r] because of the condition that the matrix of M has
no zero entries, so division by vy is safe.
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Exponentiating both sides of (4.15) gives i € S; if and only if

mij [ Mg
_—J = min {—J}

Vi osk<r | Vg

. . My
min<{ min { — ;,1
1<k<r 1%

. . Mg
= min { min<{ —-,1
1<k<r Vi

= i, e

1 ifj=0
min<r<r{vk\mij} otherwise
= wj,
hence i € S; ifand only if v; - w; = m;;. m]
We can define the type of w € Fix (M) in a similar way.

Proposition 4.4.7. Let M: X ~» Y be a non-vanishing fuzzy relation, where
|X| = rand|Y| = n. Letw € (0,1]" and let S = type,,(v), wherev = M, (w).
Then

typey pow (i) ($(w)) = sT.

Proof. Following exactly the same steps as in Proposition 4.4.6, we find that if
T = type,pow(ir)) (#(w)) then j € T; ifand only if v; - w; = m;;. But this is true
ifandonlyifi € S;. Thus T = sT. O

Proposition 4.4.7 shows that if (v, w) € Nuc(M), the types of v and w are trans-
poses of each other. In other words, they contain exactly the same information.
We therefore make the following definition.

Definition 4.4.8. Let M: X ~» Y be a non-vanishing fuzzy relation between
finite sets, where |X| = r and |Y| = n. Let p = (v, w) € Nuc(M). The type of p
(with respect to M) is the ((r +1) x (n + 1))-matrix S with S;; = 1if and only if
v w]' = mij.

One way to think about types is as solution sets to systems of equations and
inequalities. It is clear from (4.13) that points in Nuc(M ) satisfy v; - w; < m;; for
alli e m andj € m, while a certain number of these must be equalities. The
types of points in Nuc(M ) encode which inequalities are strict and which are in
fact equalities.

If M: X ~» Y is a non-vanishing fuzzy relation between finite sets with | X| =
rand [Y| = n we know that Fix! (M) and Fix"(M) are in bijection with the
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underlying sets of tropical polytopes in TP" and TP", respectively. Since the
spanning vertices of Fix! (M) and Fix" (M) are mapped to spanning vertices of
these tropical polytopes (cf. Theorem 4.2.2) we can use Definition 4.4.5 to define
natural cell decompositions of (0,1]" and (0, 1]". The following definitions will
allow us to make this explicit.

Definition 4.4.9. Let M: X ~» Y be a non-vanishing fuzzy relation between
finite sets, where |X| = r and |Y| = n. Let S be a candidate (r, n)-type. Define
the following sets.

CsPU(S) = {v € (0,1]"" | S < typey, (v)}, (4.17)
Ci™(S) = {we (0,1]"" | ST < typey, (w)}. (4.18)

Remark. Note that CiP(S) = ¥(Cy(coian)(S)) and Ci2¥(S) = ¥(Cypownn) (),
where ¢ and its inverse y are defined in Theorem 4.2.2. That is, cells in (0,1]" and
(0,1]" can be defined in terms of cells in TP" and TP” and many results from [13]
can be carried over.

We can compute the dimension of these sets using Proposition 4.3.7.

Proposition 4.4.10. Let M: X ~» Y be a non-vanishing fuzzy relation between
finite sets, where |X| = r and |Y| = n. LetS be a candidate (r, n)-type. The
dimension of the cell C?(S) is equal to the dimension of the cell Ci (S) and this
is one less than the number of connected components of Gs (cf. Definition 4.3.6).

This means that the dimension of cells is entirely determined by its type. The
following result is adapted from [13, Lemma 10].

Proposition 4.4.11. LetS beacandidate (r, n)-typeand let CS%(S) and C9" (S) be
defined as above. Then C$%\(S) and Ci9™ (S) can be expressed in terms of inequalities
as

= o
col(s) = {,, e (01 | 2 < =Y foralli, k € [r] such that S;; = 1}, (4.19)
Vi mijj
Cy(S) = {w € (0,1]" < @forallj,l e [n] such thatS;j = 1} .
Wi mi;

(4.20)

Proof. Letv € (0,1]" andletw = M*(v) € (0,1]". Let T = type,,(v). It follows
from Proposition 4.4.7 that type,, (w) = T . L o
Suppose v € C(S). Then S < T. So, forall i,k € [r], j € [n] such that
Sij = 1we have Tij = 1,50 ;- w]' = m,-j, which implies that
T _

< — (4.21)

J— )
Vi mij
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since all components of v and m are positive. Hence v is in the right-hand side of
cel(s).

Conversely, suppose that for all i € [r] and j € [n] with S;; = 1 and for all
ke m the inequality (4.21) holds. Then 72;; /v; < my;/vi for all such i, j, k. This
implies v; - w; = m;j, since w; = mkj/vk (cf. the proof of Proposition 4.4.6) so
T;j = 1. Hence S € T and v € CY(S).

The proof of the second equation is almost the same. Note that SjTl. = lifand

onlyif §;; = 1. |
Proposition 4.4.11 implies the following.

Corollary 4.4.12. The sets CS%'(S) and CI9¥(S) are closed bounded polyhedra in
(0,1]" and (0,1]", respectively, that are convex in the ordinary sense.

We give an example of how these inequalities pick out such a polyhedron in
(0,1]".

Example 4.4.13. Once again, consider the matrix

1/2 1/3
M= (1/4 2/3) ’

thought of as a fuzzy relation between finite sets. Consider the candidate type

1
1
0

o = O

By Proposition 4.4.11, we find that C{?(S) is defined as

v S Mo V2 _mxo U1 _ M vy  mg

cel(s) = {v e (0,1

~ —_
Vo Mmoo Vo Mmoo Vo mo Vo mo

v m v m v m v m
__0 o Mo V2 _ M2 0 _02 __2 < _22 }
U1 my my 0 mp U miz

Rearranging gives
CNS)={ve (01’ |n<L <l v <1/2 v, <1/4,
n=1/2, v <n/2, v =1/3, va <201}

The cell C&(S) is shown in Figure 4.8. Note that this cell does not lie in
Fix! (M). In fact, we will see that whether or not a cell lies in Fix! (M) can be read
off from its type.
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Figure 4.8: A cell C£%'(S) bounded by inequalities. The cell is highlighted in blue.
Note that it is not contained in the set Fix! (M), shaded in grey.

In order to state a later result we need to make the following distinction.

Definition 4.4.14. Let S be a candidate (r, n)-type. We say that S is column full
if § is full in the sense of Definition 4.3.3, i.e. if foreach i € m there exists j € m
such thati € S;. We say that S is row full if ST isfull, i.e. if for each j € m there
exists i € m such that j SiT or, equivalently, such that i € §;.

For types of points in the nucleus of a fuzzy relation we have the following
result.

Lemma 4.4.15. LetS = type,,(v) for somev € Fix!(M). Then S is column full
and row full.

Proof. Since S is a type, we must have S; # (J foreach j € [n],i.e.foreach € [n]

there exists i € [r] such that i € S;. Hence S is row fulland S T is column full. But

by Proposition 4.4.7, ST isthe type of w = M*(v), and we must therefore have
1 T T

foreachi € [r] some j € [n] such that j € S|, ie. ST mustbe row full. Hence S is

column full. m]

An exactly similar result holds for types of points in Fix" (M ). We simply say
that the type of a point in Fix¥ (M) or Fix" (M) is full since such a type is both
column full and row full.

Itis shown in [13, Corollary 12] that in the tropical setting a polyhedron Cy (S) is
bounded if and only if S is full, i.e. if for each i € m there exists j € m withi € §;.
Since (0,1]" is a bounded subset of R", every subset X < (0,1]" is necessarily
bounded, so we need a slightly subtler notion.
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Definition 4.4.16. Let X — (0,1]". We say that X is well-bounded if it does not
contain any points with any coordinate arbitrarily close to 0, i.e. if there exists
€ > OsuchthatX c (g,1]".

It is easy to see that a subset X < (0,1]" is well-bounded if and only if the set
#(X) < TP is bounded. The following result follows from [13, Corollary 12].

Corollary 4.4.17. A cell CS%Y(S) or C19¥(S) is well-bounded if and only if S is full.

As mentioned in the remark above, the fact that C£%!(S) and Ci9"(S) can be
defined in terms of cells in tropical projecive space means that results from [13]
can easily be carried over. The most important of these are summed up the
following theorem.

Theorem 4.4.18. Let M : X ~» Y be a non-vanishing fuzzy relation between finite
sets, with |X| = r and |Y| = n. The collection of convex polyhedra CX}I’I(S), where
S ranges over all types, defines a cell decomposition of (0,1]". That is

1. Everyv € (0,1]" lies in some cell C°(S);
2. Each cell CX(S) is a convex polyhedron;
3. The faces of CS%\(S) are precisely those cells CS'(T) for which S < T;

4. Every cell C%X(S) for a candidate (r, n)-type S is equal to CS%(T) for some
actual (r, n)-typeT;

5. The intersection of CS°Y(S) and CP\(T) is a face of both CSP(S) and CS%\(T).

The set Fix¥ (M) is equal to the union of all well-bounded cells C°\(S), i.e.
those CSY(S) for which S is (column) full. This gives Fix¥ (M) the structure of a cell
complex.

Corresponding results hold for the sets Cy" (S), giving a cell decomposition of
(0,1]" and a cell complex structure on Fix" (M).

Definition 4.4.19. As for general tropical hyperplane arrangements, for a can-
didate (r, n)-type S we can define the set of points in (0,1]" x (0,1]” whose type
contains S as

Cu(S) ={(v,w) € (0,1]" x (0,1]" | S < typey, (v, w)}, (4.22)

where we say that a matrix A € {0,1}" ™" is contained in B € {0,1}" "1 if
a;j < b;jforalli e mandj € m

A direct cell complex structure on Nuc M can also be obtained by adapting
the unbounded polyhedron #y described in the proof of [13, Lemma 22].
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Figure 4.9: The cell decomposition of the set Fix! (M) for the matrix ( i?g ig ?ﬁ)

in [0,1]". Types are shown in the form of marked bipartite graphs (cf. Example
4.3.4). The three spanning vectors appear as 0-cells, marked in red.

The next example illustrates the cell complex structure of Fix¥ (M).

Example 4.4.20. Consider the matrix
1/4 1/2 3/4
TR ERETAY
1/5 1/3 1/4
regarded as a fuzzy relation between finite sets. The set Fix! (M) is shown in Figure

4.9. The types are labelled with their corresponding marked bipartite graphs (cf.
Example 4.3.4).

As another example to help illustrate the additional structure that the cell
decomposition provides, consider the sets Fix! (M) and Fix (M) of Figure 3.6,
depicted in Figure 4.10 with their cell complex structure.

Definition 4.4.21. Two fuzzy relations are said to have the same combinatorial
type if their nuclei have the same types up to relabelling.
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Figure 4.10: The sets Fix¥ (M) and Fix" (M) of Figure 3.6 as cell complexes. 0-cells
are represented by dots (the green dots are the spanning 0-cells), 1-cells by thick
line segments, and 2-cells by shaded grey regions.

We can combine Theorem 4.4.18 with [13, Theorem 1] to get the following
result.

Theorem 4.4.22. There is a natural bijection between combinatorial types of non-
vanishing fuzzy relations M : X ~» Y, where |X| = r and |Y| = n and regular
subdivisions of the product of simplices A, x A,,.

Applying Proposition 4.4.7 and Theorem 4.4.18 together with [13, Theorem 23]
then gives an explicit correspondence between Fix! (M) and Fix" (M) in which
each cell CS(S) is sent to the cell CI9¥(S) and vice versa. This correspondence is
an isomorphism of cell complexes in the sense that k-cell are mapped to k-cells
and the faces of a given cell are mapped to faces of the image of that cell.

Theorem 4.4.23. Let M : X ~» Y be a non-vanishing fuzzy relation between finite
sets, where |X| = r and |Y| = n. Then the restrictions of the maps M*: (0,1]" —
(0,1)" and My : (0,1]"* — (0,1]" provide an explicit isomorphism of cell complexes
between Fix¥ (M) and Fix" (M).

4.4.1 Generic nuclei

In order to transfer some further results, we need to translate what it means for
the columns or rows of a fuzzy relation to be in “general position”.
In the tropical setting we have the following definition:

Definition 4.4.24. The tropical determinant of a (k x k)-matrix M is the tropical
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polynomial
det@@( @ @ Mig(i) | »
oeSym; \ i=1
where Sym, is the symmetric group of permutations of k elements. A matrix M
is said to be tropically singular if this minimum is attained at least twice.

For more information on the tropical determinant, see [11, 53].

Definition 4.4.25. A matrix M € (0,1]"" considered as a fuzzy relation between
finite sets is said to be genericifno (k x k)-submatrix of ¢ (M) is tropically singular.
We say that a fuzzy relation between finite sets is generic if its matrix is generic. If
M is generic we say that the rows and columns of M are in general position.

0 0 0

).Then¢(M)= 0 -1 —log,3 | so
0 —2 1-1log,3

1/2 1/3

Example 4.4.26. Let M =
P <1/4 2/3

®
d(m)i3 © ¢(m)2 © ¢p(m)a1) @ (¢(m)n © ¢p(m)23 O ¢p(m)s2)
(M)12© ¢(m)23 © p(m)31) @ (¢(m)13 © $p(M)21 © $(m)32)

detep(¢(M)) = (¢(m)n © ¢(m)22 © ¢(m)s3) @ (p(M)12 © ¢(m)21 © ¢(m)s3)
)
=(00-101-10g,3) ®(0O0O1—-10g,3) D (0O -1G0)
(
)

@ (

@ (¢
®00O—10g,30 —-2)®
(—log,3) @ (1 —log, 3

@ (—log,3) ® (-2)
2 —log, 3.

00—10g,300)@ (0000 —2)
@ (-1)®(-2—log,3)

Since this minimum is attained only once (for the transposition o~ = (23)), the
matrix M is not singular. Thus the vectors ( lﬁ ) and ( Zz > are in general position
in [0,1]%

It can be shown that a matrix M is generic if none of its columns can be ob-
tained from the others via the box operations. This follows from a corresponding
statement about tropical determinants; see [53].

The main result of [13] is the theorem that there is a bijection between trop-
ical complexes generated by r points in TP" ! and regular triangulations of the
product of simplices A" x A". By the same argument it can be shown that nuclear
complexes of (r x n)-matrices in [0,1]" x [0,1]" are in bijection with regular
triangulations of the higher-dimensional product of simplices A’ ! x A"*!, The
extra dimensions arise from the variables vy and w.

The next result is a translation of [13, Corollary 25]. We spell out some points
in the proof which were only very briefly explained in the original.
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Theorem 4.4.27. Let M: X ~» Y be a non-vanishing fuzzy relation between
finite sets, where |X| = r and |Y| = n. Then the number of k-cells in the cell
decomposition of Nuc(M) is equal to the multinomial coefficient

r+n—k _ (r+n—k)!
r—k,n—k k)  (r—k)! (n—Fk)!- k!
Proof. This follows from [13, Corollary 25]. By Theorem 4.4.18 and the results

leading up to it, the cell complex structure on Nuc(M) is equivalent to the cell
complex structure on a tropical complex of n + 1 points in TP". The number of

k-cells can then be counted for a specific example, since all generic tropical com-
plexes of n + 1 points in TP" have the same number of k-cells. This is essentially
because tropical complexes correspond to triangulations of A, x A, with the
k-cells of the tropical complex corresponding to interior faces of codimension k
in the triangulation. The polytope A, x A, is known to be equidecomposable,
meaning every triangulation has the same number of cells of each dimension,
i.e. every triangulation has the same f-vector (a sequence of integers listing the
number of faces of each dimension). See the original proof for further details on
this point.

All of this holds for the spaces Fix! (M) and Fix" (M), since these are iso-
morphic to tropical convex hulls. In other words, we can pick any generic fuzzy
span X = spang;{x, ..., X,} of n points in (0,1]" and compute the number of
k-cells in X, knowing by the argument above that it doesn’t matter which fuzzy
span we pick.

We therefore choose the fuzzy span of the columns of the (r x n)-matrix

EEe-1 LN Pl Y
. gl»—o’_ﬂ»—‘%h—‘
|>—t°_;|>—too|>—t

a
D
)

where each entry is given by m;; = 27/, This is depicted in Figure 4.11. M is
generic, since it is not possible to obtain any column of M from the others via the
box operations.

Let v € spang;(Col(M)). Let j < I. We claim that the sets S; and S; are
intervals and intersect in at most one point, in which case the intersection is the
largest element of S; and the smallest element of S;. To see this, let i € S; and
k € S;. The first of these statements means that v; - w; = m;;, which implies,
since all components are positive, that
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Figure 4.11: A generic fuzzy span.

Similarly, k € S; implies
M _ My

~

Uk Vi
Multiplying these two inequalities together and then multiplying through by v;v;
implies
mij - My < My - My

Since m;; = 2~ " foralli € [r]and j € [n] and j < [ this implies i < k. Each S;
is non-empty and, since the types of points in spang(Col(M)) are full, each i
lies in some j. This means that the sets S; must be intervals. It follows that the
number of types with k degrees of freedom is equal to the number of ways of
covering n + 1 points with r + 1intervals such that S; n S;4; # O for exactly k
values of [.

Such a covering can be represented compactly by duplicating those points
that are contained in two or more intervals, marking overlapping intervals with
horizontal lines, and disjoint intervals with vertical lines. For example, the type

el el
o oo = O
==

has o = {0,1}, $; = {1}, S2 = {2, 3} and corresponds to the following covering of
{0,1,2,3}:

In general, there are r + n — k spaces between points in such a diagram, k
of which must be filled with vertical lines and r — k of which must be filled with
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horizontal lines, so it is clear that the number of possible diagrams is equal to the
stated multinomial coefficient. (In the example above, r =2, n = 3,and k =1,
so by hypothesis S is one 1-cell out of % = 12in total.)

To prove the theorem, we must show that not only does every point in
spang(Col(M)) have a type of this form, but that every type of this form is in
fact the type of a point in spang(Col(M)).

Given atype S = (Sy, .. ., S,) with these properties, which for convenience

we will refer to as the covering properties, i.e. such that
1. each §; is an interval,
2. ifieSj,keSandj <ltheni <k,

3. maX(S]) < min(SjH),

4. eachi € [r]isinsome S;,

we define a vector that lies in spang;(Col(M)) and has the desired type.
Let co = O and for each i € [r], let ¢; = (max(S," ) + min(S;")). Then for

eachi € [r] set
v =275, (4.23)

where ST is the transpose of S and Cy, is the kth partial sum of the ¢;, i.e. Cx =
¢o + -+ + c¢. Note that by the third covering property above, the sequence
o, C1, C, - . . is increasing and each ¢; > 1. This means the partial sums are also
increasing.

We claim that type,,(v) = S. To prove this we must show that when w =
M*(v) we have v; - w; = m;; precisely when i € S;.

Substituting in (4.23) we see that w = M*(v) has coordinates

uﬁ:=ogggjvk\"%j}

= min {27C\27k]}

o<k<r
= min {26k~k/}
0<k<r

and so it follows that we need to show that
261 = min {2%7%} ifand onlyifi € S;.
oglklgr{ } ifand onlyifi € §;
This further reduces to showing that
Ci—ij= Or\<nku<1r{ck — kj} ifandonlyifi € S;.

The result follows from the following lemma. O
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Lemma 4.4.28. LetS = (Sy, ..., S,) be a type satisfying the covering properties

listed above and define cy = 0, ¢; := 3(max(S," |) + min(S;")) fori € [r]. Then

i k
ch_”:oﬁlgr{Z”_k}} (4.24)
1=0 1=0

ifand only ifi € ;.

Proof. Write T = S'. It is straightforward to check that if S = (S,...,S,)
satisfies the covering properties above, then so does T', once subscripts have been

changed appropriately.
Suppose that i € Sj, so j € T;. It follows that min(7;) < j and max(T;) > j,
hence
min(S;) < min(T;) < j foralll < i,
max(S;) = max(T;) > j foralll > i.

First, let k < i. Then

i i
ZCZZZCI-I- Z C]
=0

i k
Z c] = Z c + Z C]
=0 =0 I=i+1

i k—1

since ¢;41 > max(T;) > jforalll > i. Hence, for k > i,

i
c—ij < e —kj.
0

I= =0
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This completes the proof thatif i € S; then

i k
¢ —ij = min Zc—k' .
Z J 0<k<r ! J
=0 =0

To prove the converse, assume that equation (4.24) holds. We will show that
j € T;. Since T; is an interval, it is sufficient to prove that min(7;) < j and
max(T;) > j.

Ifi = 0then min(7;) = 0 < j. Otherwise it follows immediately from
equation (4.24) that for k < i

i

D a<(i-k)j.
I=k+1
1(max(T;—;) + min(T3)) < j.
By the third and fourth covering properties of T, either max(7;_;) = min(7;), in

In particular, for k = i —1thisreducestoc; < j,i.e.

which case min(T;) < j as required, or max(7;_;) = min(7;) — 1, in which case
min(7;) < j + 3, but this also implies min(7;) < j since min(7;) must be an
integer.

Ifi = r thenmax(7;) = n > j. Otherwise, in a similar way to above, for k > i
we have, again from equation (4.24), that

For k = i + 1this reduces to ¢;4; = 3(max(T;) + min(T;41)) = j. By a similar
argument to the above it follows that max(7;) > j. Hence j € T;,i.e.i € S;. O
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Chapter 5

Computing the nucleus

In this chapter we discuss some methods for computing the fuzzy concept com-
plex. We use some ideas from [1] and [29].

We have seen that the nucleus of a non-vanishing fuzzy relation between finite
sets is equal to the union of closed cells of the form Cy, (S), where S ranges over all
(r, n)-types that are full. Therefore, one approach to computing the nucleus of a
fuzzy relation between finite sets would be the brute force approach of attempting
to solve the systems of equations and inequalities described by each full candidate
(r, n)-type. Unsurprisingly, this is not an effective method of computation.

We can be much more efficient with our search if we know some cells that are
guaranteed to appear. In the first section of this chapter we prove the existence of
certain 0-cells that must lie in Fix! (M) for a given non-vanishing fuzzy relation
between finite sets.

5.1 Fuzzy sums and fuzzy scales

In this section we introduce some fundamental operations on points in the fuzzy
concept complex and prove the existence of certain guaranteed 0-cells.

Definition 5.1.1. In Chapter 2 we saw how the space [0, 1]"! can be considered as
amodule over the semiring ([0, 1], min, -), where for v, v’ € [0,1]"! and A € [0, 1]
the operations [ and [-] are given by

(vEY"); = min {v;, v} } 5.1
(A ): = A\ (5.2)

for i € [r]. We refer to the vector v [ v’ as the sum of v and v” and we refer to the
vector A [] v as the A-scale of v.

The sum and scaling operations are illustrated in Figure 5.1.
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Figure 5.1: The fuzzy sum of two points and the A-scale of a point (here A = 4/9).
The line segments are for illustrative purposes only.

For a given fuzzy relation M, Theorem 3.3.9 shows that the spaces Fix! (M) =
Fix"(M) =~ Nuc(M) are closed under these operations. However, taking sums
and scales of points does not generally preserve the dimension of the cells they
lie in. For example, if v, v’ € Fix! (M) are 0-cells it is not generally the case that
v @ v’ or A [[]v are 0-cells. The next very simple example illustrates this point.

Example 5.1.2. Consider the matrix

1
v (V2 A
1/4 2/3
It is easy to check that v = (1}2) and v/ = (3{8) are both 0-cells in Fix'(M).

However, their sum v {Hv' = G?g) lies in a 2-cell. See Figure 5.2.

Lemma 5.1.3. Let M € (0,1]"" be the matrix of a fuzzy relation between finite sets.
Letv € Fix! (M) and letS = type,,(v). Thenv is a O-cell ifand only if, for all i, i’
m thereexist jy, jo, ..., N € m (not necessarily distinct) and ky, ky, . . ., kn—1 € m
(also not necessarily distinct) such that i, k, € Sj,, ki, k2 € Sj,, ..., kn—1, i’ e Sjx-

Proof. Recall that the dimension of an (r, n)-type S is equal to one less than the

number of connected components of the graph Gg, where Gg has vertex set [r]
and an edge between i and i’ if and only if there exists j € [n] such thati € S;
and i’ € §;. The stated condition is satisfied precisely when Gg is connected, in

which case dim(S) =1—1=0. ]

First we show that columns of M are 0-cells.
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Figure 5.2: The fuzzy sum of two 0-cells in Fix! (M) is not necessarily a 0-cell.
The cell complex illustrated is the generated by the two vectors marked in green,
corresponding to the columns of a fuzzy relation. This cell complex consists of
six 0-cells, six 1-cells and one 2-cell (shaded in grey). The fuzzy sum of the two
black 0-cells, marked in red, is not a 0-cell, but instead lies in the 2-cell.

Proposition 5.1.4. Let M € (0,1]"" be the matrix of a fuzzy relation between finite
sets. Forl € [n], let ¢! = mq; € Col(M) be the Lth column of M. Then c! is a 0-cell.

Proof. First, note that for j € [n] we have (M*(c")); = mim<;<,{mi\m;;} so, in

particular, (M*(c')); = 1. Sofor all i € [r] we have (c!); - M*(c!), = (c!); = M.
If S = type,,(c'), we therefore have i € S; for all i € [r]. In other words, the Ith
column of the matrix representation of S consists entirely of 1s.

The result follows from Lemma 5.1.3. m]

More generally, fuzzy sums of columns of M are 0-cells.

Proposition 5.1.5. Let M € (0,1]"" be the matrix of a fuzzy relation between

finite sets. Let L < [n] be a (finite) subset of the column indices of M, and let
ct = [He; ¢! Thenct isa 0-cell.

Proof. Foreach € L, by definition ¢* < ¢! = my; foralli € [r]. Thusforalll € L,

(M* (")) = lgliigr{cf\mil} =L
Hence (cl), - M*(ct), = 1 = Mgy, s00 € S;foralll € L. In other words, if
S = type,(ct), the top row of the matrix representation of S has a 1 in each
columnin L.
Now, as L is finite, foreach i € [r], there exists [ € L such that ciL = cf = my
and so cl.L -M*(ct); = my;, soi € S;. It follows from Lemma 5.1.3 that ¢t is a 0-cell.
O
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Definition 5.1.6. Let v, v’ € (0,1]" be such that v; < v} foralli € [r]. Let

v’
A = min {—’} (5.3)

1<isr | v;

and let k be a value of i for which this minimum is attained, i.e. k is such that
A= 1/]’c /vk. Note that there is not necessarily a unique k with this property. The
(1-)scale of v towards v’ is the vector Sc(v, v’ ) with coordinates

Uk

v/
Sc(v, v’)i = y; = <—k> v; (5.4)

fori € [r]. When v’ is the unique vector with v/ = 1for all i € [r], we abbreviate
Sc(v, V') to Sc(v), and simply call it the (1-)scale of v.

Scaling v towards v’ once results in a vector whose coordinates agree with
v’ in coordinate k, i.e. Sc(v, v’)x = v;.. Note, however, that if this is already the
case, i.e. if there is any i € [r] for which v; = v}, then A = 1and Sc(v,v’) = v.
Because of this fact, in order to continue scaling v towards v’ we cannot simply
define the 2-scale of v towards v’ recursively as Sc*(v, v’) = Sc(Sc(v, v'), v’), since
Sc(v,v')x = v, by construction. Instead, we wish to ignore those coordinates
which have already been fully scaled up.

Define A;,...,4, and k, . . ., k, such that

/ !
v v
k .
A= — = min {2
Vi I<isr (v;

1

v [y
Ay = — = min { —

Uk, I<i<sr | v;

i¢ {kl,...,k,_l}}.

This gives an ordering of [r] based on how close v is to v’ in each coordinate. We
have 1; < 1, < - -+ < A, by construction. To repeatedly scale one vector towards
another we keep scaling in this order, keeping coordinates fixed once they have
been scaled fully.

We can now make the following definition.

Definition 5.1.7. Let v,v’ € [0,1]" be such that v; < v} foralli € [r] and let
R € [r]. The R-scale of v towards v’ is the vector Sc¥ (v, v’) € [0,1]" with
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Sc(v,v') = v,

{v; ifi e {ky,... kp}

Sch(v,v); =

ur Sc®Y(v,v'); otherwise

where

/
. v; .
e = min {ﬁ ¢ {’“1"“”““}}' 59

Again, when v’ is the unique vector with v = 1forall i € [r], we abbreviate

Sck(v,v’) to ScR(v), and simply call it the R-scale of v.

Lemma 5.1.8. LetR € [r]. The R-scale of v towards v’ has coordinates

! ifi k..., k
Sch(v,v'); = {vl ifie ik n (5.6)

Arv; otherwise,

forie|[r].

Proof. For R = 1, we have, by Definition 5.1.7, that Sc!(v, v')y, = v,’Cl and that
Scl(v, v"); = mv = v for i # k as required. Again by Definition 5.1.7, we find
that Sc® (v, v"); = v} fori € {ky, ..., kr}. Suppose that Sc® ! (v, v’) satisfies (5.6).
By (5.5),

. v;
HR = MIN § —F———
1<isr | S (v, v');

l¢ {kl,.. -ka—l}}

/
. V; . . . .
= 1212 { P i¢{hk,..., kR_l}} (by the induction hypothesis)

L
AR—1 Uiy
Ar—1’
S0
R(, 1 R—1(, 1 AR
Sc*(v,v'); = ur Sc" (v, v'); = p AR—1Vk, = ARV;,
R-1

foralli ¢ {ki,..., kr}, as required.
The result follows by induction. O

Proposition 5.1.9. LerM € (0,1]"" be the matrix of a fuzzy relation between finite

sets and let1,1' € [n] be column indices such that m;; < m;y foralli € [r]. Then

SckR(cl, c") is a O-cell for all R € [r].
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Figure 5.3: Scaling one 0-cell towards another. The line segments are for illustrative
purposes only.

Proof. First note that, by Lemma 5.1.8,
ScR(ch, ¢y = c,lcl = Mgy

forallk € {ki, ..., kg}and

ll
C
/ k Mg
sch(c!, c")i = Agef = | 5% | ¢f = ( 2 ) mi;
Chn Myl

otherwise. The condition that m;; < m;y together with the fact that 4 < 1implies
that Agm;; < myp foralli € [r], so (Agmy;) \m;p = 1foralli € [r]. Thus, by
definition of M*,

M*(sch(c!, e"))y = min {(Arma) \mr} = 1.

I<i<r

Hence
ScR(cl, el")y - M*(ScR(ch, ¢!))p =1 = gy

so0€ Sy and, fork € {ky, ..., kg},
scR(c!, ¢ - M (SR (et "))y = myr

so k € Sy foreach k € {ki, ..., kr}, where S = type,,(Sci(c!, c")).
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Because 1 < 1we also have m;; < Agm;; foralli € [r], so looking at the /th
coordinate we see

M*(Sch(c!,¢")); = min {(Army) \mi}

1<i<r

m:
= min { il } (by definition of truncated division)
1<i<r | A RIM;]

1
A
Mgl
M
Hence
ScR(ch, MYy - MF(SCR(c, €)1 = My - Zle = My,
krl’

and, fori € [r)\{ky, ..., kr},

’ ’ Mmp,. m
ScR(c!, ¢!y - M*(ScR(c!, ) = my ( knl > ( le) = m

Micp1

sokg € S;andi € S, foralli € [r|\{ky,..., kr}.
Taking N = 2, j; = I, jo = I'’and k = kg in Lemma 5.1.3 it follows that
ScR(c!, ¢! is a 0-cell. O

Proposition 5.1.10. Let M € (0,1]"" be the matrix of a fuzzy relation between
finite sets and let1, ' € [n] be column indices of M. Then Sc?(c! ¢, ¢') is a 0-cell
forallR € [r].

Proof. Foreach i € [r], either (¢! @ c!); = my or (¢! Ec!); = myp, depending
on whether m;; < m;y or vice versa. For a given i € [r] we find, via Lemma 5.1.8,
that

SCR(CI cll,cl)i =my < myp

in the first case, and

’ My,
SCR<ClCl,Cl)i: R

mipy < mjy
M1

in the second case. It follows that
M*(ScR ("B, ")) = min {mi\m} =1
1<i<r

and

m m
M*(SCR(Clcll,cl))l/ = min {( kel m”/> \mil,} _ kel

Iisr (\ Mgy Myl
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So, if m;; < m;p, then
ScR(c! cl/,cl)i - M*(ScR(c! cl,,cl))l =my-1=my,

and if m;p < my, then

Miplr  Migl

sch(c'mct, )i - M*(ScR(ctm et ) = may
Miprr Mgl

Hence, if S = type,,(Sc®(c! A c", ¢!)), we have shown that for all i € [r], either
i € S;ori € Sy (possibly both).
Next, note that Sc¥® (cl et cl)kR = my, by definition. Hence,

scR ('@, i, - M* (SR (P A Y, )i = Mg - 1= My
and

m
scR(c'@mc’, e, - MF(SSR(' B, )y = muy - fnl

= My -
kr!
This means that kr € S; and kg € Sp.
Finally, we note that Sc?(c! @ c”, ), - M*(ScR(c! B ', ch)); = 1 = mgo, s0
0esS;.
Taking N = 2,j; = [, jo = I'and k = kg in Lemma 5.1.3 it follows that
SCR(CI e, cl) is a 0-cell. m]

Example 5.1.11. Note that if L < [n] and I’ € L it is generally not the case that
the point Sc” ([, ¢/, ¢*') is a 0-cell if |L| > 2. For example, consider the matrix

1/4 1/2 2/3
4/5 1/3 1/5
3/4 1/4 2/3
1 1/2 5/6

M =

The sum of all three columns of M is the column vector

1/4
15
1/4
1/2

and the first non-trivial scale of this towards c' € Col(M) is obtained by multiply-
ing all but the first coordinate by 1 = 2:

1/4

2/5

1/2
1

Scl(c, c!) =
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This vector has dual

Mr(sel(e.e)) = (1 172 1/2);

its type matrix can then be seen to be

- o o o ~
—_ O O
—_ - o o o
o o~ o o

from which it is clear that Sc!(c, ¢!) is not a 0-cell. (In fact, in this case this is a
1-cell.)

Based on numerical experimentation, the correct generalisation of Proposi-
tion 5.1.10 appears to be the following.

Conjecture 5.1.12. Let M € (0,1]"" be the matrix of a fuzzy relation between sets.

Let L < [n] be column indices and letl' € L. Then for all R € [r], the vector
Sch ( cl, cl>
leL  lel\{I'}

isa 0-cell.

Since the cell complex structure of Fix" (M) is isomorphic to the cell complex
structure of Fix¥ (M) and Row(M) = Col(M "), all of the above statements are
true for row vectors in Fix" (M). This also allows us to compute additional 0-cells
in Fix% (M) using M. Note that Fix (M) = Fix"(M ") and Fix} (M ") = Fix"(Mm).

Lemma 5.1.13. Ifw € (0,1]" is a 0-cell in Fix" (M) then M,.(w) € (0,1]" is a 0-cell
in Fix" (M).

Proof. This follows directly from Theorem 4.4.23. O

Lemma 5.1.14. Ifv € Fix¥ (M), then the dimension of the cell in Fix¥ (M) contain-
ingv is equal to the dimension of the cell in Fix" (M) containing M*(v).

Proof. Since type,,(v) = type,,;(M*(v))" and the dimension of a cell is entirely
determined by the type data, it follows immediately that the dimensions agree. O

We have the following corollaries. We prove the first of these explicitly; the
others can be proved in exactly the same way.
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Corollary 5.1.15. LetM € (0,1]"" be the matrix of a fuzzy relation between finite
sets. Fork € [r], letd* = M. € Row(M) be the kth row of M. Then M, (d*) isa
0-cell in Fix (M).

Proof. Since Row(M) = Col(M "), we have d* e Col(m). Thus, by Proposition
5.1.4, d* is a 0-cell in Fix* (M ") = Fix"(M). Then, by Lemma 5.1.13, M, (d*) is a
0-cell in Fix¥ (M). m|

Corollary 5.1.16. Let M € (0,1]"" be the matrix of a fuzzy relation between finite
sets. Let K < [r] bea (finite) subset of the row indices of M, and let dX = [y d.
Then M, (dX) is a 0-cell in Fix" (M).

Corollary 5.1.17. LetM € (0,1]"" be the matrix of a fuzzy relation between finite
sets and letk, k' € [r] be row indices such that my; < my; forallj € [n]. Then
M,.(ScN (d¥, a*")) e Fixt (M) is a 0-cell for all N € [n].

Corollary 5.1.18. Let M € (0,1]"" be the matrix of a fuzzy relation between finite
sets and let k, k' € [r] be row indices of M. Then M, (ScN (¢! @ c”, ¢)) e Fix¥ (M)

isa O-cell for all N € [n].

5.2 A heuristic for computing the skeleton of Fix! (M)

The author has produced a Sage program for computing the 1-skeleton of the
nucleus, based on a heuristic whereby we start with certain 0-cells that are known
to lie in the nucleus, and then calculate a list of potential types of neighbouring 1-
cells. We can use some of the guaranteed 0-cells described in the previous section,
for instance. This provides a much smaller list of candidate types for which to
then attempt to find a solution to the corresponding system of equations and
inequalities. Once we have determined which of these candidate types are actually
types of 1-cells, by successfully solving the system of equations and inequalities
they describe, we calculate a list of potential neighbouring 0-cells, which we then
attempt to solve. We repeat this process until we reach an iteration in which no
new cells are discovered. Since the nucleus of a non-vanishing fuzzy relation is
always connected, it is therefore reasonable to assume that all 0- and 1-cells in
the nucleus have been found.

We refrain from referring to this approach as an algorithm as it has not been
proven to be successful in every case, although its effectiveness, at least in low
dimensions, is backed up by empirical evidence.

The program can be used to produce graphical representations of the nucleus,
as in Figure 5.4.

The difficulty with the heuristic described above is computing the neighbour-
ing cells. One way to do this is to try adding or removing equations until the rank
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Figure 5.4: The 1-skeleton of the fuzzy concept complex of a fuzzy relation. The
points corresponding to the columns of the matrix of the relation are highlighted
in green.
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of the system changes in the appropriate direction, but this is in inefficient. Trop-
ical oriented matroids allow a much more direct computation of neighbouring
types, as described in the next section.

5.3 Tropical oriented matroids

Matroids were introduced by Whitney [59] as a way of unifying and generalising
ideas about linear independence arising in linear algebra and graph theory. A
brief introduction can be found in [46].

Oriented matroids allow one to describe arrangements of ordinary hyper-
planes. They consist of covectors which encode which side of each hyperplane
a given point lies, in much the same way that the type of a point in tropical
space encodes in which sector of each tropical hyperplane the point lies. The
correspondence between oriented matroids and hyperplane arrangements is not
one-to-one: every arrangement of hyperplanes gives rise to an oriented matroid,
but not every oriented matroid is obtained from an arrangement of hyperplanes.
However, every oriented matroid does correspond to an arrangement of pseudo-
hyperplanes. Oriented matroids have been used in a wide range of areas, including
linear programming.

In [1], Ardila and Develin introduced tropical oriented matroids to describe
arrangements of tropical hyperplanes. Again, tropical oriented matroids do not
correspond bijectively with tropical hyperplane arrangements, but they do cor-
respond bijectively with tropical pseudohyperplane arrangements. Topological
representation theorems to that effect have been proved in [23, 24].

We restate some definitions from [1], translated to use our own conventions.

Definition 5.3.1. A fype with parameters (r, n), or an (r, n)-type is an n-tuple of
subsets of [r].

Note that this is different to how we defined an (r, n)-type in the previous

chapter, where it was an (n + 1)-tuple of subsets of [r].

Definition 5.3.2. Let A and B be (r, n)-types. The comparability graph CG, g
has vertex set [r] with an edge between #; and i, whenever i, € Aj and i; € B;j for
some j € [n]. The edge {i}, i} is undirected if i1, i, € A; N B; and directed iy — i»
otherwise.

The comparability graph of two types is a mathematical object called a semi-

directed graph, or semidigraph. This just means it has some directed edges and
some undirected edges.

Definition 5.3.3. An ordered partition of a finite set X is an ordered tuple P =
(Py, ..., Pg) of subsets of X such that for each x € X there is exactly one index
k € [d] such that x € Py.
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Definition 5.3.4. Givenan (r, n)-type A = (4, ..., A;) and an ordered partition
P = (Py,...,Py)of [r], the refinement of A with respect to P is the (r, n)-type Ap
with

(Ap)j = Aj N Pyj), (5.7)

where m(j) is the largest index in [d] for which A; N P,,(;) # . A refinement Ap
is total if each of its entries is a singleton set.

Example 5.3.5. Letr = n = 3. Let A = ({1,2}, {1}, {3}) be a type and let
P = ({2,3}, {1}) be an ordered partition of [n] = {1, 2, 3}. Then we find

Alﬁplz{Z}#@, Alﬁpgz{l}#@ =>m(1):2,
Ay P =, Ay Py = {1} # S = m(2) =2,
A3ﬂP1={3}?é®, A30P2=@ 27)’1(3):1

SoAp = (AinPy, Ao Py, A3n P1) = ({1}, {1}, {3}). Since each entry is a singleton,
Ap is a total refinement.

Each ordered partition of [r] determines a vector in R”. Given an ordered
partition P = (Py,...,P,;) define f: [r] — [n] by taking f (i) to be the unique
k € [d] such that i € Px. Write f(P) for the vector (f(1),...,f(r)) € R". By
applying the usual isomorphism R¢ =~ TP4~! this also gives a vector in TP4~!,

Example 5.3.6. Consider the oriented partition P = ({2, 3}, {1}) of the previ-
ous example. It is easy to see that f(1) = 2, while f(2) = f(3) = 1. Hence P
corresponds to the vector f(P) = (2,1,1) € R3. This projectivises to the vector
(0,-1,-1) € TP?, which can be represented by the vector (-1,-1) e R2.

The upshot of this is that given any type we can immediately compute all
neighbouring types of higher dimension by simply evaluating the refinement of
our type with respect to each possible ordered partition. This essentially tells us,
for each ordered partition P, what type we hit next if we move infinitessimally in
the direction of the vector f(P) described above.

Definition 5.3.7. A tropical oriented matroid M with parameters (r, n) consists
of a set of (r, n)-types subject to the following four conditions.

* Boundary. Foreach i € [r], the typei = ({i},..., {i})isin M.

* Elimination. If A and B are types in M and j € [n], then there is a type C
in M with Cj = Aj U Bj and Cy € {Ak,Bk,Ak U Bk} forall k € [n]

e Comparability. If A and B are types in M, the comparability graph CG4 p
is acyclic.
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Figure 5.5: The skeleta of two fuzzy spans with the same underlying set but differ-
ent cell complex structures.

* Surrounding. If A is a type in M and P is any ordered partition of [r], then
the refinement Ap is also in M.

Ardila and Develin prove the following fundamental, if unsurprising, result
in [1, Theorem 3.8].

Theorem 5.3.8. The collection of types in a tropical hyperplane arrangement
constitutes a tropical oriented matroid.

They also showed the following.

Theorem 5.3.9. A tropical oriented matroid with parameters (n, d) is determined
by its vertices.

This means that for a fuzzy relation M between finite sets, the fuzzy spans
Fix! (M) and Fix" (M) are also determined by their vertices. It is clear that just
the underlying set is not sufficient to distinguish two fuzzy spans. An example is
shown in Figure 5.5.

Figure 5.6 shows two skeleta of fuzzy spans with the same underlying set and
the same 0-cells, but different cell complex structures. However, this does not
contradict Theorem 5.3.9, since the parameters of these two spans are not the
same: the left-hand diagram has an additional generating 0-cell, i.e. it corresponds
to a fuzzy relation whose matrix representation has an additional column. If we
were to look at Fix" (M) rather than Fix! (M) the underlying sets may not even
agree.

It may be possible to use these ideas to turn the heuristic described in Section
5.2 into an algorithm. This is an area for future research. .
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Figure 5.6: Two skeleta of fuzzy spans with the same 0-cells and the same underly-
ing set but different cell complex structures overall.
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Appendix A

Basic enriched category theory

A.l1 Enriched categories

The theory of enriched categories is motivated by the observation that in many
applications of ordinary category theory the hom-sets are not simply sets, but
more complex objects. For instance, many categories used in homological algebra,
such as categories of modules, have extra structure: one is able to add morphisms
as well as compose them. In linear algebra the definition of the dual space of a
vector space W as the space of linear functionals from W into the base field relies
on the fact that the collection of linear maps between two vector spaces is itself a
vector space.

The general idea of enriched category theory is to modify the definition of a
category by replacing the hom-sets with objects of some other ‘enriching category’
V. We stress at this point that we do not start with an underlying category and
‘enrich’ it; instead, an ‘enriched category’ is a distinct concept, which generalises
many of the properties of an ordinary category.

Naturally, the first examples of possible enriching categories that come to
mind are concrete categories of ‘sets with structure’, such as modules over some
ring. In a category enriched in Banach spaces, for example, the hom-sets are
Banach spaces and one is able to talk about the limit of a sequence of morph-
isms between two objects. It is important, however, to note that non-concrete
enrichment is also possible. We will find that objects such as metric spaces and
posets can be described as V-categories for suitable (non-concrete) choice of V.
All we require is that V has enough structure that the result of our ‘enrichment’
still looks something like a category. In particular, we must still be able to define
composition of morphisms.

In an ordinary category C, composition of two morphisms is defined if the
domain of the first is the codomain of the second: given morphisms f: A — B
and g: B — C we can form the composite morphism g o f: A — C. In other
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words, composition constitutes a function on hom-sets,
C(B,C) x C(A,B) - C(A,C),

sending the pair (g, f) to its composite g o f. One key property of the category
of sets that makes this definition of composition possible is the existence of a
product for any two objects. In defining the identity morphism on an object X
we also use the fact that a morphism from the terminal set to C(X, X) specifies a
morphism from X to itself.

In general we will take our enriching category to be a monoidal category. This
is a category V) with a monoidal product ®: Vy x Vy — )V, and a unit object 1,
satisfying associativity and identity axioms. We write )V = (1, ®, 1) for a general
monoidal category and we say that V is symmetricif X @ Y 2 Y ® X forall X, Y
in V. Note that, in particular, any category with finite products is monoidal under
its categorical product with the terminal object as unit.

We are now ready to define an enriched category, first defined by Eilenberg and
Kelly in [16], though we give a slightly more general definition. The definition is
entirely analogous to the definition of an ordinary category, but with all references
to the category of sets replaced by references to V. The standard reference for
enriched category theory is Kelly’s book [33], where most of these results can be
found. Another good source is [8].

Definition A.1.1. LetV = ()}, ®, 1) be a symmetric monoidal category. A cat-
egory enriched inV, called a V-category for short, consists of the following data:

* aset Ob C of objects;

forall X,Y € ObC, an object C(X,Y) in V, called the hom-object of morph-
isms from X to Y;

e forall X,Y,Z € Ob C, amorphism in V
uxyz: C(Y,Z)®C(X,Y) - C(X,Z),
called composition;
 foreach X € ObC, amorphism1x: 1 — C(X, X), the identity on X;
such that the following conditions hold:

* composition is associative, i.e., for all W, X,Y,Z € Ob(, the following
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diagram commutes:

(C(Y,Z)@C(X,Y)) @C(W,X) —=C(Y,Z) ® (C(X,Y) ® C(W, X))

jid@)ﬂw,x,y
px v,z ®id ClY,Z)®@C(W,Y)
CX,Z)®C(W,X) cw,2z);

Hw X,z

* the identities act as units for composition, i.e., for all X,Y € Ob(C, the
following diagram commutes:

id®1x
_—

C(X,Y) ———=C(X,Y)®1 C(X,Y)®C(X,X)

—~

1® C(X, Y) XX, Y
1Y®idl
C(Y,Y) ®C(X,Y)

T C(X,Y).

The associativity and unitality conditions above are direct analogues of the
associativity and unitality conditions for an ordinary category. Normally these
are phrased as certain equalities between composites of morphisms. However,
if our enriching category is non-concrete there may not be any morphisms, i.e.
the hom-objects may not have elements, and so in general everything must be
phrased in terms of the hom-objects themselves and the composition morphisms.

A.l.1 Examples of enriched categories

Defintion A.1.1is quite general; choosing a different enriching category can signi-
ficantly affect what a V-category looks like. In some cases the result is a category
with some extra structure, such as the facility to add morphisms to each other; in
other cases it might be something that, on the surface, does not look much like a
category at all. We give a range of examples below.

First of all, the following should not be a surprise.

Example A.1.2 (Ordinary categories). An ordinary (locally small) category is a Set-
category. The Cartesian product x plays the role of the monoidal product with any
terminal set {*} acting as the monoidal unit. The functions 1x : {*} — C(X, X)
pick out the identity morphisms idy € C(X, X).
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This example makes it clear that the concept of an enriched category gen-
eralises the concept of an ordinary category. Our first real example is a useful
concrete enrichment.

Example A.1.3 (Pre-additive categories and linear categories). For aring R, the
category R-Mod of R-modules and R-linear transformations forms a monoidal
category whose monoidal product is the usual tensor product of modules and
whose monoidal unit is R. In particular, (Ab, ®z,Z) and (Vect, ®, k), where
k is any field, are monoidal categories; Ab- and Vect-categories are called, re-
spectively, pre-additive categories and linear categories. Pre-additive categories
that satisfy some particular further axioms are called Abelian categories and are
especially useful in homological algebra; see [17].

Another example, well known to category theorists, is the following.

Example A.1.4 (2-categories). The category Cat of small categories is a monoidal
category with respect to the Cartesian product. The terminal category 1 is the
monoidal unit. A category C enriched in Cat is called a strict 2-category. Such an
object has, for each pair of objects X and Y, a category of morphisms C(X,Y);
in other words, the hom-objects themselves have objects and morphisms. Thus
a strict 2-category has three types of component: objects (0-cells), morphisms
(I-cells) between objects, and 2-cells between 1-cells.

The prototypical example of a strict 2-category is Cat itself, with categories,
functors, and natural transformations taking the roles of 0-cells, 1-cells, and 2-
cells, respectively. The functoriality of composition amounts to what is sometimes
known as the middle four interchange law for natural transformations: given
functors F, F', F": C — D and G,G',G”: D — & and natural transformations
a:F=F,a:F =F' B:G= G, B:G = G"wehave

(B'oa) - (Boa)=(B"-B)o(a" a)

where - indicates vertical composition of natural transformations.

In fact, for each enriching category V, the collection of V-categories, V-func-
tors and V-natural transformations (to be defined presently) forms a (strict) 2-
category, which we denote V-Cat.

Weaker than a strict 2-category is the notion of a bicategory, introduced by
Bénabou in [5]. In a bicategory, composition is not associative ‘on the nose’, but
only up to (coherent) isomorphism. Similarly, the identities are only weakly unital
with respect to composition. In practice, bicategories arise much more frequently
than strict 2-categories and in many contexts the term ‘2-category’ will mean
a bicategory rather than a strict one. A key example of a bicategory is V-Prof,
the bicategory of V-categories, V- profunctors, and V-natural transformations
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between V-profunctors, which we define in section 2.2. we omit any further
details of bicategories, instead referring the reader to [5], [36] or [39].

Example A.1.5 (Preorders). The category 2 with just two objects {true, false} and
one non-identity arrow false — true is a category of truth values, where morph-
isms correspond to entailment of propositions. Logical conjunction (‘and’) gives
2 a monoidal structure. The monoidal unit is true, since p A true = p for any
proposition p. Thus a 2-category A (not to be confused with a 2-category above)
has, for each pair of objects a and b, an object A(a, b) in 2, either true or false,
specifying whether or not a and b are related.

The final example we give of a }V-category is one that will particularly useful
later on when we discuss completions of enriched categories.

Definition A.1.6. For any symmetric monoidal category V, the trivial or unit
V-category, denoted 7, has just one object * with 7 (x,%) = 1. Composition
and identities are given by the canonical isomorphisms 1 ® 1 ~ 1 and 1 = 1,
respectively.

When V is Set, the trivial V-category is the terminal category, with one object
and a single identity morphism. When V is 2 it can be thought of the one-element
poset.

We introduce V-functors and V-natural transformations as the appropriate
generalisations of functors and natural transformations to an enriched setting.

A.1.2 Enriched functors and enriched natural transformations

The notions of functor and natural transformation generalise straightforwardly
to an enriched setting.

Definition A.1.7. Let C and D be V-categories. A V-functor F: C — D consists
of a function F: ObC — Ob D together with, for all X,Y € Ob C, morphisms in
1%

Fxy: C(X,Y) — D(FX, FY),

such that the following diagrams commute:

CY,2)®C(X,Y) 25 D(FY, FZ) ® D(FX, FY) 1 IX\T(X, X)
C(X,Z) - D(FX,FZ), D(FX, FX)

When V is concrete, these diagrams correspond to the ordinary functoriality
conditions that F(g o f) = Fg o Ff and F(idy) = idgx.
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It is obvious that Set-functors are ordinary functors, so we turn our attention
to enriched functors for the other examples of enriched categories given in the
previous section.

Example A.1.8 (Additive functors and linear functors). An Ab-functor between
pre-additive categories C and D is a functor F between the underlying categories
satisfying

F(f+8)=F(f)+F(g)

for all morphisms f, g € C(X,Y). Such a functor is called additive. Similarly, a
Vect-functor is called a linear functor.

Example A.1.9 (Strict 2-functors). Enriched functors between strict 2-categories,
called strict 2-functors, send 0-cells to 0-cells, 1-cells to 1-cells and 2-cells to 2-cells
in a way that is compatible with the structure of the 2-categories involved and
are, by themselves, rather unremarkable. More interestingly, however, strict 2-
categories and strict 2-functors form a monoidal category 2-Cat, so it is possible
to define a strict 3-category as a 2-Cat-category and, more generally, a strict n-
category as an (n — 1)-Cat-category.

Example A.1.10 (Order-preserving maps). Let A and B be preorders, i.e. 2-cate-
gories. A 2-functor f: A — B is a map of sets such that, for a, a’ € A,

A(a,a’) - B(f(a), f(a)).

In other words,
a<pd = f(a) <p f(a),

so f is an order-preserving map.

We now turn to enriched natural transformations. In ordinary category theory,
a natural transformation between two functors consists of a family of morphisms
in the codomain category that satisfy a ‘naturality condition, which just amounts
to the commutativity of certain squares for every possible morphism in the do-
main. In a general enriched setting we cannot necessarily talk about individual
morphisms, since general hom-objects might not have elements, so as usual we
rephrase the definition in terms of hom-objects and composition.

Definition A.1.11. Let F,G: C — D be V-functors between V-categories. A V-
natural transformation 6: F = G consists of a collection of morphisms 6x: 1 —
D(FX,GX) in V, indexed by the objects of C, such that for all X,Y € C the
following diagram commutes, where r: C(X,Y) ® 1 — C(X,Y)and : 1 ®
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C(X,Y) — C(X,Y) are canonical isomorphisms:

C(X,Y)®1 2% p(GX,6Y) ® D(FX,GX)

> \

C(X,Y) D(FX,GY).

1t /

1®C(X,Y) 5—= D(FY,GY) ® D(FX, FY)

When V is concrete, V-natural transformations are not significantly differ-
ent to ordinary natural transformations. For preorders we get something quite
different.

Example A.1.12. If f,g: A — B are order-preserving maps, a 2-natural trans-
formation from f to g consists of an A-indexed family of morphisms in 2

true - B(/(a), g(a)),
i.e. the statement f(a) < g(a), for each a € A.

Enriched natural transformations allow us to talk about the category of V-
functors between V-categories C and 9. What we really want, though, is to make
this a V-category. This will have to wait until Section A.2 when we introduce ends.

A.1.3 Closed categories

One interesting property of the category of sets is that there is a one-to-one
correspondence between two-variable functions f: X x Y — Z and functions
f: X — ZY into the ‘function set’ of functions from Y to Z. Given such an f we
can define, for each x, a function f(x) = f;: Y — Z by setting f;(y) := f(x, ), a
process known as ‘currying’; conversely, we can piece together such functions f;
to define f. Thus there is a bijection

Hom(X x Y,Z) =~ Hom(X, Z");

furthermore, this is natural in X and Z. In other words, for each set Y, the functor
— x Y: Set — Set is left adjoint to the functor (—)¥ : Set — Set.

In general we say that a symmetric monoidal category V is closed if, for every
Y € ObV, the V-functor — ® Y: V — V has a right adjoint, which we denote
by [Y,—]: V — V. Wecall [Y, Z] the internal hom from Y to Z. In particular, if
a category is closed with respect to its categorical product we say it is Cartesian
closed.

We have already discussed the closedness of Set. It turns out that the monoidal
category 2 is also closed.
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Example A.1.13. Given propositions p, g, r, it is a theorem of logic that
(pAg)r ifandonlyif p+ (g=r).
Thus the internal hom in 2 is given by implication.

For any closed monoidal category V, the adjunction —®Y — [V, —] is known
as the hom—tensor adjunction. Its unit and counit have components

nx: X - [V, X®Y], ex: [V, X]®Y — X,

the latter being known as evaluation and sometimes denoted ev. The adjunction
also gives an internal composition functor [Y, Z]®[X, Y] — [X, Z] as the adjunct
of the composite
[V, 2] ® [X, Y] @ XLy, 2] @ Y —2> 7. (A1)

When V is closed it is possible to ‘think of V itself as a V-category’. More
precisely, we can define a V-category V withOb V := Ob Vand V(X,Y) := [X,Y].
For brevity we will often refer to } simply as V. This allows us to talk about V-
functors into V.

A V-functor P: C°? — Vs called a presheaf on C, while a V-functorQ: C —
V is called a copresheaf. Here C°P is the V-category whose objects are the same
as those of C, with C°P(X,Y) := C(Y, X).

Example A.1.14. A one-object Ab-category R is a ring. A presheaf M : R°? — Ab
turns out to be a right R-module, while a copresheafis a left R-module. Similarly a
one-object Vect-category is an algebra and a presheaf is an algebra representation.

Example A.1.15 (Upward-closed and downward-closed sets). A copresheaf on
a preorder 4, i.e. a 2-functor U: A — 2, gives a truth value U(a) for each a € A,
which can be interpreted as the statement “x € U”, together with the entailment

Ala,d') + (U(a) = U(d")),

which meansifa € U and a < @’ thena’ € U. Thus U is an upward-closed or
ascending set.
Similarly, a presheaf on A is a downward-closed or descending subset.

A.2 Ends and coends

An end is a special type of limit for V-functors of mixed variance. We will restrict
our attention to V-functors of the form C°°’QC — D. Recall that an ordinary limit
of an ordinary functor F: C — D consists of an object lim F in D together with
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a universal natural transformation from Alim F to F. In order to define ends in a
similar way, we first need to introduce a special type of naturality between functors
of mixed variance, which we call extraordinary naturality or extranaturality. In
fact, we only describe extranatural transformations to or from a constant functor.
This is just one specific instance of the more general concept of dinaturality, but
we do not need the full generality here.

Definition A.2.1. Let F: C°? ® C — D be a bifunctor and let K € D. An ex-
tranatural transformation a: K = F consists of a family of maps ax: 1 —
D(K, F(X, X)), indexed by the objects of C, such that each diagram of the follow-
ing form commutes:

C(X,Y) Fx) D(F(X,X),F(X,Y)) (A.2)
F(—,Y)j l@(ax,id)
D(E(,Y), F(X,Y)) e D(K, F(X,Y))

Such a transformation is called a wedge from K to F. An extranatural transforma-
tion B: F = K is defined dually and is called a cowedge.

The V-functor D(ay, id) is the composite
po(id®ax)or™: D(F(X,X),F(X,Y)) —» D(K,F(X,Y)),

corresponding, in the case of ordinary Set-categories, to the functor “precom-
pose with ax”. Thus, in this unenriched setting, diagram (A.2) reduces to the
commutativity of each diagram

K—2 - F(X,X)
(YYL LF(va)

F(Y,Y)——=F(X,Y).

(V,¥) 70 FX,Y)
We can now define ends of functors valued in our enriching category V. Ends

of arbitrary functors can be defined in terms of weighted limits.

Definition A.2.2. Let F: C°? ® C — V be a V-functor. An end of F consists
of an object K = SCeC F(C,C) of V together with a wedge A: K = F that s
universal in the sense that, whenever @: K’ = F is another wedge, there is a
unique f: K’ — K such that ax = Ax o f forevery X € C.

Dually, a coend of F consists of an object L = SCEC F(C,C) and a universal
cowedge from F to L.
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It turns out that the extranaturality condition of (A.2) reduces, in the case of
V-valued functors, to the equality of certain composites obtained as adjuncts of
F(X,—)and F(—,Y), indicated by p and o respectively. For brevity the details
are omitted but can be found in [33]. The upshot is that we can write the end of F
as the following equaliser

foc F(C€) —= Towe FIC,0) T [eyelCOLT) FEL YL (A3)

The maps p and o can be thought of as ‘actions’. With this interpretation
the end is the subobject of the product consisting of those objects for which the
actions coincide.

In a similar way, the coend of F can be written as a coequaliser of morphisms
between coproducts

[xyec CXY)®F(X,Y) —_~[leec F(C,C) —(CF(C,C), (A4)

and represents the ‘quotienting out’ of the coproduct by identifying the results of
the actions.

Example A.2.3. Given a preorder A and an order-preservingmap f: A°°QA — 2,
the end of f is given by the universal quantification (Va € A)f(a, a), since, for
eacha’ € A,

(Vae A)f(a,a) = f(a',a)

and this is optimum. Similarly, coends in 2 correspond to existential quantifica-
tion.

Example A.2.4. Given a proxet X and a proximity map f: X°° ® X — [0,1], the
end of f is given by infimum inf,cy f(x, x), since, for each x’ € X,

inf f(x,x) < f(x,x),

i.e.itis alower bound for f, and, by definition, it is the greatest such lower bound
and thus constitutes a universal wedge. Similarly, coends in [0, 1] correspond to
suprema.

A.2.1 Enriched functor categories

In section A.1.2 we defined V-functors and V-natural transformations for a given
symmetric monoidal closed category V and observed that together with V-cat-
egories these form a 2-category V-Cat. We now show that, in keeping with the
general enriched feel of our discussion, we can define a V-object of V-natural
transformations between two V-functors. The following observation is useful.
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Lemma A.2.5. A family of morphismsay: 1 — D(FX, GX) constitutes the com-
ponents of a V-natural transformation a: F = G precisely when it forms an
extranatural transformationa: 1 — D(F—,G—).

By definition, a morphism 1: 1 — {._. D(FC, GC) corresponds to an ex-
tranatural transformation A: 1 = D(F—, G—), i.e,, by the lemma, a V-natural
transformation A: F = G. Thus the set of elements of the end, i.e. the image
of the end under the forgetful functor V.= (1, —): V — Set, consists of the
V-natural transformations from F to G. We make the following definition.

Definition A.2.6. Let C and D be V-categories with C small. The enriched functor
category [C, D] is the V-category whose objects are V-functors from C to D and,
given V-functors F,G: C — D, whose hom-objects are

[C, D](F,G) := D(FC,GC). (A.5)
CeC

Details of the composition and identities in [C, D] are given in [33].

For more information about enriched functor categories, see also [10].
We also have an enriched version of the Yoneda Lemma.

LemmaA.2.7 (Yoneda). Let C bea)V-categoryandletF: C°° — V bea)V -functor
Then there is an isomorphism in}/

[CP,V](F,C(—,C)) = F(C), (A.6)

natural in C.
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