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ABSTRACT

Data Mining and Machine Learning for Environmental

Systems Modelling and Analysis

Jose Roberto Ayala Solares

This thesis provides an investigation of environmental systems modelling and

analysis based on system identification techniques. In particular, this work focuses

on adapting and developing a new Nonlinear AutoRegressive with eXogenous inputs

(NARX) framework, and its application to analyse some environmental case studies.

Such a framework has proved to be very convenient to model systems with nonlinear

dynamics because it builds a model using the Orthogonal Forward Regression (OFR)

algorithm by recursively selecting model regressors from a pool of candidate terms.

This selection is performed by means of a dependency metric, which measures the

contribution of a candidate term to explain a signal of interest.

For the first time, this thesis introduces a package in the R programming language

for the construction of NARX models. This includes a set of features for effectively

performing system identification, including model selection, parameter estimation,

model validation, model visualisation and model evaluation. This package is used

extensively throughout this thesis.

This thesis highlights two new components of the original OFR algorithm. The

first one aims to extend the deterministic notion of the NARX methodology by

introducing the distance correlation metric, which can provide interpretability of

nonlinear dependencies, together with the bagging method, which can provide an

uncertainty analysis. This implementation produces a bootstrap distribution not
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only for the parameter estimates, but also for the forecasts. The biggest advantage

is that it does not require the specification of prior distributions, as it is usually

done in Bayesian analysis.

The NARX methodology has been employed with systems where both inputs

and outputs are continuous variables. Nevertheless, in real-life problems, variables

can also appear in categorical form. Of special interest are systems where the output

signal is binary. The second new component of the OFR algorithm is able to deal

with this type of variable by finding relationships with regressors that are continuous

lagged input variables. This improvement helps to identify model terms that have

a key role in a classification process.

Furthermore, this thesis discusses two environmental case studies: the first one on

the analysis of the Atlantic Meridional Overturning Circulation (AMOC) anomaly,

and the second one on the study of global magnetic disturbances in near-Earth

space.

Although the AMOC anomaly has been studied in the past, this thesis analyses

it using NARX models for the first time. The task is challenging given that the

sample size available is small. This requires some preprocessing steps in order to

obtain a feasible model that can forecast future AMOC values, and hindcast back

to January of 1980.

In the second case study, magnetic disturbances in near-Earth space are studied

by means of the Kp index. This index goes from 0 (very quiet) to 9 (very disturbed)

in 28 levels. There is special interest in the forecast of high magnetic disturbances

given their impact on terrestrial technology and astronauts’ safety, but these events

are rare and therefore, difficult to predict. Two approaches are analysed using

the NARX methodology in order to assess the best modelling strategy. Although

this phenomenon has been studied with other techniques providing very promising

results, the NARX models are able to provide an insightful relationship of the Kp

index to solar wind parameters, which can be useful in other geomagnetic analyses.
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Chapter 1

Introduction

1.1 Background

A great amount of physical phenomena around the world can be described through

signals. A signal is defined as a function that contains information about the be-

haviour of a phenomenon. This information is contained within patterns that vary

in time and/or space [1].

Signals interact with systems, which can be described as objects whose compo-

nents synergy results in an observable output within an environment [2]. Therefore,

a system can be seen as a process that receives input signals and produces other out-

put signals [1]. This interaction between signals and systems is important because

it helps us to understand the dynamics of the system. In fact, nature is full of a

large and rich variety of systems that possess certain behaviour that have captured

the attention of humans for centuries.

Traditionally, the scientific approach to understand the dynamics of a system

consists of recording a series of observations from the system, and then generating

a hypothesis that tries to explain the behaviour of such dynamics [3]. Most of

the time, this hypothesis takes the form of a mathematical model that maps input

attributes to output values [4]. Mathematical models are a fundamental notion in

many branches of science and technology [5].

One of the main advantages of the technology of the 21st century is the ability

19



20 1.1. Background

to acquire, store, retrieve and distribute great quantities of data from almost any

system in every field or discipline. In fact, 90% of the world’s data have been

generated over the last 2 years at rates that have no precedent in the history of

mankind [3, 6, 7]. Most of the time, these data contain valuable information that it

is difficult to translate into relevant knowledge [8, 9].

In recent years, a change in the scientific process has been taking place, where

huge amounts of data have enabled the construction of empirical or data-based mod-

els in tasks like financial forecasting, medical diagnosis, computer vision, network

traffic analysis, weather prediction, on-demand Internet streaming media, astron-

omy, detection of dark matter in space, among others, where an analytical solution

is difficult to obtain [3, 7, 10, 11]. The main assumption in these data-based mod-

els is that the behaviour of the system should, in principle, be recoverable from

input-output measurements [12]. This process is commonly referred to as knowledge

mining or learning from data.

Learning from data has derived in a variety of branches with a strong foundation

in mathematics, statistics and computer sciences. The two most popular branches

are Data Mining and Machine Learning. These two topics have considerable overlap

among them. The central task is to discover or learn insightful patterns from an

observational data set [3, 13, 14]. The difference lies in the amount of data they

handle. Data mining puts an emphasis on data sets that are huge [13, 15].

Although the use of data provides a different perspective to solve problems com-

pared with more conservative approaches where the underlying physics that governs

a system under study is used, learning from data is a non-trivial task. Despite all

the advances in data gathering, the gap between the generation of data and our

understanding of them increases as well [16], and several works have focused only on

looking for patterns in data without considering pre- and post-processing steps that

can improve considerably the data mining and learning tasks [14, 17]. Nowadays,

there is an ongoing effort to extract useful information from large data sets [3].

Among the several techniques available for data modelling, one of the most
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popular approaches is the use of Nonlinear AutoRegressive with eXogenous inputs

(NARX) models. These are nonlinear recursive difference equations that find a

mapping between lagged explanatory variables and a variable of interest. Such an

approach has been implemented mainly in MATLAB, although nowadays there are

several open-source alternatives (like the R programming language) that have gained

popularity due to the flexibility and ease of use to solve data modelling problems.

Data mining and machine learning have been applied successfully in business-

related problems. Such a success has been extended to other areas however, until

recent years, data mining and machine learning techniques started to be used to

analyse and understand environmental systems.

The term environmental system should be understood in a broad and inclu-

sive sense as it can be referred to any systems, such as geo-, hygro- and ocean-

environmental, or space weather, that could affect our environment [18]. Environ-

mental systems involve an interaction of biological, physical, chemical, geological,

ecologic, climatic, and social processes, among others [19]. The analysis of such sys-

tems is important because it can improve decision making in environmental man-

agement for the development, implementation and maintenance of environmental

protection policies, or control design for systems that interact with environmental

variables [20–22]. Nevertheless, the high complexity of these systems limits the

formulation of mathematical theories or deterministic models. Furthermore, envi-

ronmental systems are highly nonlinear, interact at different spatial and temporal

scales, and evolve over time so the stationarity assumption does not hold [14].

1.2 Motivation

Although several environmental data sets are available, there are scenarios where

data collection is expensive and difficult, e.g. tropical deforestation [23], wild-

fires [20], wastewater treatment plants [24], Atlantic Ocean’s major current circula-

tion [25], geomagnetic disturbances in near-Earth space [26], among many others.

Furthermore, traditional statistical analysis does not work in either limited, or vast
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and complex data sets [20]. Environmental data can come from various sources and

feature complex spatial patterns at different scales due to combination of several

spatial phenomena or various influencing factors of different origins [22]. In some

cases, the original observations are taken with significant measurements errors and

may contain significant uncertainty as well as a number of outliers or missing val-

ues. In addition, the spatial and temporal sampling may not capture the inherent

behaviour of an environmental system. Therefore, new techniques are required to

deal with the high complexity of data from environmental processes. Among the

challenges that need to be tackled, there is a need to improve automated pre- and

post-processing techniques, develop algorithms that can perform an online learning,

combine existing techniques that can handle the difficulties of environmental data,

find ways that can fuse data with existing knowledge, and develop effective mecha-

nisms that merge the strengths of human cognition with those of the data mining

and learning algorithms [14, 19, 27, 28].

The research in this thesis focuses mainly on environmental scenarios where lim-

ited data are available (as opposed to big data problems with mega- or gigabytes of

data). Traditional machine learning algorithms can handle such scenarios, although

most of them have difficulties to handle time-variant information [29], and are un-

able to provide a good understanding of the inner dynamics of a system [5], which

is usually of great interest in environmental problems. To overcome such issues,

in this work the NARX methodology is applied and further extended to provide

interpretability of nonlinear dependencies, uncertainty analysis, and to handle both

continuous and categorical data, which are common in environmental systems [22].

1.3 Overview

This thesis is organised as follows:

• Chapter 2 provides an in-depth review of the main concepts in machine learn-

ing and system identification that are used throughout this thesis. A special
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emphasis is put into the NARX model and the Orthogonal Forward Regres-

sion algorithm, along with a broad discussion of different techniques that have

been developed to identify systems. This chapter also provides an overview of

how system identification techniques have been applied to the modelling and

analysis of environmental systems.

• Chapter 3 describes the R programming language and its use for data analysis

and system identification. The newly developed NARX R package is also

discussed, together with improvements to the original Orthogonal Forward

Regression algorithm. Some examples are shown that highlight the usefulness

of this package to build NARX models.

• Chapter 4 deals with two improvements to the NARX methodology: provide

interpretability of nonlinear dependencies, and accommodate uncertainties in

the parameter estimates, as well as the identified model and the computed

predictions. For the first case, the distance correlation metric is implemented,

which is a new metric able to detect all types of nonlinear or non-monotone de-

pendencies between random vectors. For the second case, the bagging method

is used, which runs an algorithm several times on resampled data and the re-

sults obtained are combined to predict a numerical value via averaging (for re-

gression problems) or via voting (for classification problems). The new scheme

is referred as Bagging Forward Orthogonal Regression using distance Correla-

tion (BFOR-dCor) algorithm.

• Chapter 5 investigates the Atlantic Meridional Overturning Circulation. This

is an interesting real-case scenario where the NARX R package described in

Chapter 3 is used to identify a model that is able to hindcast and forecast

northward flow in the upper layer, and southward flow in the deep ocean of

the Atlantic. Furthermore, the most important regressor is analysed by means

of the BFOR-dCor algorithm described in Chapter 4.

• Chapter 6 proposes a novel approach that combines logistic regression with
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the NARX methodology. This enables the construction of NARX models

that can be used for binary classification problems. The Orthogonal Forward

Regression algorithm is adapted for this purpose, and the biserial correlation

coefficient is defined, which measures the strength of the association between

a continuous variable and a dichotomous variable.

• Chapter 7 investigates global magnetic disturbances in near-Earth space using

NARX models. The main objective is the understanding and analysis of the

dependent relationship of the Kp index on solar wind speed and dynamic

pressure variables. Two approaches are explored. The first one consists of a

recursive sliding window scheme in which a window of a given length is used to

train a model and to forecast future values based on previous predictions. The

second approach involves the identification of a specific model for a horizon of

interest. In addition, the logistic NARX approach, described in Chapter 6, is

tested in a binary version of the Kp index.

• Chapter 8 concludes the work done in this thesis, and provides suggestions for

future directions of research.

1.4 Contributions

This work aims to investigate data mining and machine learning approaches, and

develop new data-driven modelling methods and algorithms that can be used for

environmental system analysis.

The following are the main contributions of this thesis to the scientific commu-

nity:

1. Chapter 3: an R package for the construction of NARX models. Given the lack

of software with a standard library for building NARX models, this R package

is the first one developed for this purpose. It eases the task of building NARX

models while providing a set of features for effectively performing model selec-

tion, parameter estimation, model validation, model visualisation and model
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evaluation. The package implements the traditional Orthogonal Forward Re-

gression algorithm together with several improvements that include nonlinear

dependency metrics, and methods for selecting the appropriate number of

model terms. This package is an invaluable tool and its usefulness is shown

throughout this thesis.

2. Chapter 4: a novel bagging method based on distance correlation metric for

nonlinear model structure detection and parameter estimation. In general, the

commonly used dependency metrics such as correlation function and mutual

information may not work well in some cases. Furthermore, there are always

uncertainties in model parameter estimates. Thus, a new approach is pro-

posed to overcome this by using a distance correlation metric incorporated

with a bagging method. The combination of these two features enhances the

performance of existing forward selection approaches in that it provides the

interpretability of nonlinear dependency and an insightful uncertainty analy-

sis for model parameter estimates. The results of this chapter were published

in [30].

3. Chapter 5: forecast and hindcast of the Atlantic Meridional Overturning Cir-

culation (AMOC). The NARX methodology is applied for the first time to the

analysis of the AMOC. Significant regressors that contribute to the explana-

tion of this phenomenon are identified. These suggest that the difference in

density between the deep-water formation areas and the upstream Gulf Stream

source region seven months ago provide the best indication of variation in the

AMOC strength.

4. Chapter 6: a novel logistic NARX methodology that allows the use of NARX

models to analyse binary classification problems. In most cases, NARX models

are applied to regression problems where all variables involved are continuous,

and little attention has been paid to classification problems where the out-

put signal is a binary sequence. Therefore, this novel classification algorithm
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combines the NARX methodology with logistic regression and the proposed

method is referred to as logistic NARX model. Such a combination is advan-

tageous since the NARX methodology helps to deal with the multicollinearity

problem while the logistic regression produces a model that predicts categor-

ical outcomes. Furthermore, the NARX approach allows for the inclusion of

lagged terms and interactions between them in a straight forward manner re-

sulting in interpretable models where users can identify which input variables

play an important role individually and/or interactively in the classification

process, something that is not achievable using other classification techniques.

The results of this chapter were published in [29].

5. Chapter 7: information about the relative contributions of solar wind speed and

dynamic pressure to the changes in the Kp index. Although previous studies

have confirmed the role of solar wind speed and dynamic pressure as drivers of

the Kp index, a new analysis is performed that provides further information

of the relationship of the Kp index to solar wind using NARX models. The

analysis also highlights a bias issue that is the result of the uneven distribution

in the Kp index data, and the use of a regression model to predict a categorical

output variable. The results of this chapter were published in [31].

1.4.1 Refereed Journals

The present research has been published in several journal papers, which are listed
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metric”, Nonlinear Dynamics (2015), 82, 201-215.

• J. R. Ayala Solares, H.-L. Wei, R. J. Boynton, S. N. Walker, and S. A. Billings.

“Modeling and prediction of global magnetic disturbance in near-Earth space:

A case study for Kp index using NARX models”, Space Weather (2016), 14,
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• J. R. Ayala Solares, H.-L. Wei and S. A. Billings. “A novel logistic-NARX

model as a classifier for dynamic binary classification”, Neural Computing and

Applications (2017). Neural Computing and Applications (2017), 1-15.

• J. R. Ayala Solares, H.-L. Wei and G. Bigg. “The variability of the Atlantic

Meridional Circulation since 1980, as hindcast by a systems model”, Journal

of Geophysical Research Oceans (2017). Under review.

1.4.2 Peer-Reviewed Conference

The present research was presented at the following conference:
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Bagging Method for NARX Model Estimation.” In: The University of Sheffield

Engineering Symposium Conference Proceedings, Vol. 1, 2014.
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The present research was presented at the following seminar:

• J. R. Ayala Solares. “Introduction to R for Data Analysis and System Iden-
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Engineering Students Seminar, 2016.



Chapter 2

General Concepts

2.1 Introduction

The acquisition of data in a vast diversity of fields has increased in recent years.

This has allowed several research areas to tackle problems from a data-based mod-

elling approach. In particular, system identification has benefited from this idea

where traditionally a mathematical model was derived based on a comprehensive

physical insight of all the events that take part in a system. Such a comprehen-

sive approach may be intractable to obtain given the difficulty to fully describe the

intrinsic mechanics of a system.

This chapter provides an in-depth review of the data deluge phenomenon and

why it is possible to learn from data. It greatly focuses on system identification

putting special attention to the NARX model and the Orthogonal Forward Regres-

sion algorithm, along with a broad discussion of different techniques that have been

developed to perform model structure selection, parameter estimation and model

validation. Finally, an overview of how system identification techniques have been

applied to the modelling and analysis of environmental systems is given.

28
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2.2 Data Deluge

In recent years, the acquisition and storage of data across many disciplines have

become easier. In fact, data are being generated in every field of study at enormous

rates never seen before in the history of mankind. Data are the collection of quanti-

tative and/or qualitative values that belong to a certain population [32]. One of the

main concerns for scientists, researchers, businessmen, among others, is how to ex-

tract useful information or knowledge buried within the data. Several authors have

stated a series of steps that should be followed when dealing with this issue [3, 14]:

1. Problem formulation: it does not matter how much data are available if there is

not a clear question in mind that may be answered by analysing the data. This

step requires the understanding of the domain under study and the acquisition

of useful prior knowledge that contributes towards the goal of the end-user.

2. Data manipulation: collected data come in raw form, which are difficult to

analyse. This step transforms raw data into tidy data by a series of minor

actions that correspond to data cleaning, pre-processing, reduction and pro-

jection [33].

3. Knowledge discovery: depending on the problem and the goal, a variety of

different algorithms can be applied to mine knowledge from the data. This

step requires the selection of the algorithm and tuning of its parameters.

4. Post-processing: transformation of the results so that they are meaningful to

the end-user.

2.3 The Learning Problem and Feasibility of Learn-

ing

Machine Learning is an important problem that focuses on approximating observed

data and generalising from it to unobserved data [10]. In essence, data mining and
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machine learning work with problems where [10, 34]:

1. a pattern exists

2. we can not pin them down mathematically

3. we have data about them

Broadly speaking, data-based problems can be classified in different types. The

main learning paradigms are as follows:

Supervised Learning focuses on learning input-output mappings from data. It

can be divided into regression and classification problems [35].

Unsupervised Learning focuses on learning structure on data where the output

is unknown. The main techniques are clustering and projection [4].

Reinforcement Learning focuses on learning a sequence of actions that will max-

imise a reward [34].

In this thesis, the research is restricted to supervised learning problems. These are

described using the following mathematical components:

• Input x: a D-dimensional vector where D corresponds to the number of at-

tributes.

• Output y: a scalar quantity.

• Target function f : X → Y : unknown function that maps from the input

domain X to the output domain Y .

• Hypothesis g : X → Y : created formula that approximates the target

function.

• Data (x1, y1) , (x2, y2) , ..., (xN , yN): examples that will be used to learn the

hypothesis.
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Figure 2.1: Learning Diagram. The two components of the learning process that we
are interested in are the hypothesis set, which will contain the final hypothesis, and
the learning algorithm that identifies such a final hypothesis. Original source: [10].

Figure 2.1 shows the connections of the components of learning. The target func-

tion remains unknown during the whole learning process. The only information that

is available is through the training examples collected. These examples will go into

a learning algorithm, which will select the final hypothesis from a set of candidate

hypotheses. It is assumed that the input vectors x are generated independently and

identically distributed from a fixed probability distribution [36]. This is an impor-

tant feature that quantifies the relative importance of the input vector x and makes

learning feasible [34]. Also, the values of the output variable y are assumed to come

from a conditional probability distribution on the input vectors x to account for

the fact that, in real-life applications, there is noise in the output values. The two

components of the learning process that we are interested in are the hypothesis set,

which will contain the final hypothesis, and the learning algorithm that identifies

such a final hypothesis. The error measure is a quantity of the performance of the

learning algorithm or the final hypothesis. The error measure on the learning al-
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gorithm is known as the in-sample error while on the final hypothesis is known as

out-of-sample error. The goal of the learning process is to select a hypothesis from

the hypothesis set H with the best in-sample performance and hope it generalizes

well in out-of-sample. In general, the generalisation depends on the size and quality

of the training examples [10, 34].

2.4 System Identification

System identification is a challenging and interesting engineering problem that has

been extensively studied for decades. It is an experimental approach that aims

to identify and fit a mathematical model of a system based on experimental data

that record the system inputs and outputs behaviour [5, 37, 38]. It is assumed that

the mathematical model that is being searched is a well-behaved function that is

consistent with the data. Linear system identification has been extensively used in

past years, however, its applicability is limited since the linearity assumption is strict

and in real-life, most of the systems of interest are nonlinear [39]. Extensive research

has been developed in the nonlinear realm for system identification since the 1980s

[5]. Some of the most popular models for nonlinear system identification include:

piecewise linear models, Volterra series models, generalised additive models, neural

networks, wavelet models, and state-space models. The reader is referred to [5, 40]

for a broad discussion on these models. In particular, the Nonlinear AutoRegressive

with eXogenous inputs (NARX) methodology has proved to be a well-suited scheme

for nonlinear system identification problems [5, 12].

In general, system identification consists of three steps: Model Structure Detec-

tion, Parameter Estimation, and Model Validation [12, 37, 38, 41].

2.4.1 The NARX model

The NARX model is a nonlinear recursive difference equation with the following

general form:
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y (k) = f
(
y (k − 1) , . . . , y (k − ny) , u (k − 1) , . . . , u (k − nu)

)
+ e (k) (2.1)

where f (·) represents an unknown nonlinear mapping; y (k), u (k) and e (k) are the

output, input and prediction error sequences with k = 1, 2, . . . , N ; N is the number

of observations, and the maximum lags for the output and input sequences are ny

and nu, respectively [42]. Most approaches assume that the function f (·) can be

approximated by a linear combination of a predefined set of functions φi

(
ϕ (k)

)
,

therefore Eq. (2.1) can be expressed in a linear-in-the-parameters form

y (k) =
m∑

i=1

θiφi

(
ϕ (k)

)
+ e (k) (2.2)

where θi are the model parameters, φi

(
ϕ (k)

)
are the predefined functions that

depend on the regressor vector of past outputs and inputs ϕ (k) =
[
y (k − 1) ,

. . . , y (k − ny) , u (k − 1) , . . . , u (k − nu)
]T

, and m is the number of functions in the

set [12]. One of the most commonly used NARX models is the polynomial NARX

representation, where Eq. (2.2) can be explicitly written as

y (k) = θ0 +
∑n

i1=1 θi1xi1 (k) +
∑n

i1=1

∑n
i2=i1

θi1i2xi1 (k) xi2 (k) + · · ·

+
∑n

i1=1 · · ·
∑n

iℓ=iℓ−1
θi1i2...iℓxi1 (k) xi2 (k) . . . xiℓ (k) + e (k)

(2.3)

where

xi (k) =

⎧
⎪⎪⎨

⎪⎪⎩

y (k − i) 1 ≤ i ≤ ny

u (k − i+ ny) ny + 1 ≤ i ≤ n = ny + nu

(2.4)

and ℓ is the nonlinear degree of the model. A NARX model of order ℓ means that

the order of each term in the model is not higher than ℓ. The total number of

potential terms in a polynomial NARX model is given by
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M =

⎛

⎜⎝
n+ ℓ

ℓ

⎞

⎟⎠ = Cn+ℓ
ℓ =

(n + ℓ) !

n! ·ℓ! (2.5)

where n = ny + nu. Equation (2.2) can be rewritten in a vector form as

y = Φθ + e (2.6)

where

y =

[
y (1) y (2) . . . y (N)

]T

θ =

[
θ1 θ2 . . . θm

]T

e =

[
e (1) e (2) . . . e (N)

]T

Φ =

[
φ1 φ2 . . . φm

]
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

φ1

(
ϕ (1)

)
φ2

(
ϕ (1)

)
· · · φm

(
ϕ (1)

)

φ1

(
ϕ (2)

)
φ2

(
ϕ (2)

)
· · · φm

(
ϕ (2)

)

...
...

. . .
...

φ1

(
ϕ (N)

)
φ2

(
ϕ (N)

)
· · · φm

(
ϕ (N)

)

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

In general, the error vector e can be treated as an independent identically dis-

tributed zero mean noise sequence as long as the matrix Φ contains sufficient de-

scription of the data set [42].

NARX models can be used to describe a wide range of nonlinear systems. Some

of the advantages of these models are transparency, so they can be related back to

the underlying system, and parsimony, requiring just a few hundred data samples to

estimate a model, which can be important in many applications where it is unrealistic

to perform long experiments [5].
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2.4.2 Model Structure Detection and Parameter Estimation

Model structure detection is an important and challenging problem. It has been

extensively studied and there is a considerable amount of information in the litera-

ture [43]. Model structure detection consists of selecting the model order together

with the candidate model terms that contribute to the system output while keeping

an efficient system description [5, 44–46]. In general, most of the candidate model

terms are redundant or spurious; therefore their contribution to the system output is

negligible [47,48]. Furthermore, a model that includes a large number of terms tends

to generalise poorly on unseen data [44,49]. Among the advantages for performing a

careful model structure detection are the improvement of forecasting or classification

accuracy, reduction in time and storage cost, and better understanding of the stud-

ied process [48]. Because of this, different methods have been developed that search

and select the significant model terms that play a major role in the identification

process. Some of these methods include hypothesis testing of differences between

means via the t-test, stepwise regression, Korenberg’s orthogonal structure detec-

tion routine [41, 44], clustering [49, 50], the Least Absolute Shrinkage and Selection

Operator (LASSO) [38], elastic nets [51, 52], Least Angle Regression (LARS) [53],

Principal Component Regression (PCR) [54], genetic programming [55,56], Bayesian

approaches [57,58], Bayesian networks [28], and the Orthogonal Forward Regression

and Error Reduction Ratio approach [46]. Once the structure has been identified,

the model parameters can then be estimated and the significance of each model term

can be analysed [57].

Orthogonal Forward Regression algorithm

In general, model structure selection and parameter estimation are performed to-

gether. One of the most popular algorithms for this is the Orthogonal Forward

Regression (OFR) algorithm [5, 12, 42, 59].

The OFR algorithm was developed in the late 1980s by Billings, et.al. [5]. It is
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a greedy algorithm [53,60] that belongs to the class of recursive-partitioning proce-

dures [27]. The algorithm ranks a set of candidate terms based on their contribution

to the output data, and identifies and fits a deterministic parsimonious NARX model

that can be expressed in a generalised linear regression form. Algorithm 2.1 describes

the OFR algorithm [42,61, 62].

The original OFR algorithm uses the Error Reduction Ratio (ERR) index as

Algorithm 2.1 Orthogonal Forward Regression
Input: Dictionary D = {φ1,φ2, . . . ,φM}, output signal y, specified threshold η
Output: NARX model with significant terms selected from D and corresponding
parameters θ estimated

1: for all φi in D do
2: Define wi = φi/∥φi∥2

3: Compute ERR(i) (wi,y)
4: Find j = max

1≤i≤M

{
ERR(i) (wi,y)

}

5: Define q1 = wj

6: Define a11 = ∥φj∥2
7: Define g1 = qT

1 y

8: Define err [1] = ERR(j)

9: Define y
(1)
new = y − g1q1

10: Remove φj from D
11: Define s = 1
12: while ESR = 1−

∑s
k=1 err(k) ≥ η do

13: Define s = s+ 1
14: for all φi in D do
15: Orthonormalize φi with respect to [q1, . . . ,qs−1] to obtain wi

16: if wT
i wi < 10−10 then

17: Remove φi from D
18: Go to next iteration
19: Compute ERR(i)

(
wi,y

(s−1)
new

)

20: Find j = max
1≤i≤M−s+1

{
ERR(i) (wi,y)

}

21: Define qs = wj

22: Define ars = qT
r φj, ∀r = 1, 2, . . . , s− 1

23: Define ass =
∥∥φj −

∑s−1
r=1 arsqr

∥∥
2

24: Define gs = qT
s y

(s−1)
new

25: Define err [s] = ERR(j)

26: Define y
(s)
new = y

(s−1)
new − gsqs

27: Remove φj from D
28: Once the while loop stops and m model terms have been selected, then solve

Am×mθm×1 = gm×1

29: Return matrix of terms selected Φ =
[
φ1 φ2 . . . φm

]
and vector of coef-

ficients θ =
[
θ1 θ2 . . . θm

]T
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dependency metric [5]. The ERR of a term represents the percentage reduction

in the total mean square error that is obtained if such term is included in the final

model [63], and it is defined as the non-centralised squared correlation coefficient (or

non-centralised Pearson product-moment correlation coefficient) C (x,y) between

two associated vectors x and y [64]

C (x,y) =

(
xTy

)2

(xTx) (yTy)
(2.7)

A comprehensive explanation of the meaning of ERR may be found in [5,46,65].

Also notice that Algorithm 2.1 requires a threshold η in the Error-to-Signal Ratio

(ESR). This is defined as ESR = 1−
∑s

k=1 err(k), where
∑s

k=1 err(k) corresponds

to the sum of the ERRs of the model terms selected by the algorithm as it executes.

The threshold η is usually set to a small number (η ≤ 0.01) [5].

Mathematically, the OFR algorithm minimises the sum of squared errors defined

as

L = eTe = (y −Wg)T (y −Wg) = ∥y −Wg∥22 (2.8)

In subsequent discussions, if the OFR algorithm is used together with the ERR

metric, it will be referred as OFR-ERR.

Dependency metrics

The ERR index only detects linear dependencies; therefore new metrics have been

implemented recently to identify nonlinear dependencies [42, 63, 64]. One of these

new metrics is entropy, which is a measure of the average information that is con-

tained within the probability distribution function of a random variable, and it is

defined as

H (x) = −
∑

xϵX

p (x) ln p (x) (2.9)

In [63], the authors replaced the ERR for the Shannon’s Entropy Power Re-
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duction Ratio (EPRR) that is able to deal with both Gaussian and non-Gaussian

signals. Nevertheless, the main drawback of the analysis is the assumption that the

variables involved are mutually independent or uncorrelated with a jointly Gaussian

distribution.

Another metric extensively used is mutual information. Mutual information

I (x,y) provides a measure of the amount of information that two variables share

with each other [64]. It is defined as

I (x,y) =
∑

xϵX

∑

yϵY

p (x, y) ln

(
p (x, y)

p (x) p (y)

)
(2.10)

Mutual information has been extensively used because it captures both linear and

nonlinear correlations, and has no assumption on the distribution of the data [42,

48, 64, 66, 67]. Although most of the research is promising, the mutual information

is hard to interpret and its computation requires more computing power.

Recently, Reshef, et.al. [68] developed another metric, the Maximal Information

Coefficient (MIC), which extends the notion of Pearson’s correlation coefficient to

nonlinear associations between pairs of variables [69]. MIC is based on concepts

from Information Theory, an area founded by Claude Shannon [70]. This coefficient

gives rise to the Maximal Information-based Nonparametric Exploration (MINE)

statistics which focus on identification and characterisation of nonlinear associations

[68]. Nevertheless, this new metric has been part of recent scientific debate leading

to the conclusion that the MIC has serious power deficiencies according to [71, 72].

Regularisation, Ridge Regression and LASSO

In general, model structure detection and parameter estimation can be improved

via regularisation [52]. In fact, different regularisation techniques have been incor-

porated in the original OFR algorithm with the purpose of reducing the variance of

parameter estimates at the cost of introducing a parameter bias [45]. For example,

in [45] the authors introduced a new composite cost function that minimizes model

prediction error to improve the model approximation ability, while penalising the
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parameters covariance to ensure a good model adequacy. Such incorporation can

detect a parsimonious model in an automatic manner.

Other well-known regularisation techniques are the ridge regression and LASSO

[54]. The ridge regression uses the same minimisation strategy given by Eq. (2.8),

but adds a penalty to the magnitude of the parameter estimates via the ℓ2 norm,

i.e.

LRidge = ∥y −Wg∥22 + λ2 ∥g∥22 (2.11)

The LASSO is a form of regularisation that instead of using only the traditional

ℓ2 penalty, minimises Eq. (2.8) together with the ℓ1 penalty, i.e.

LLASSO = ∥y −Wg∥22 + λ1 ∥g∥1 (2.12)

The ℓ1 penalty is interesting since its inclusion in regression problems produces

parameter estimates that are exactly equal to zero, resulting in a parsimonious

model [38, 51]. In [38], the authors applied the LASSO for structure detection of

polynomial NARMAX models in the presence of additive output noise. In such a

work, the LASSO produced interesting results, however the resulting model was not

carefully validated. The authors applied a percent fit as an indicator of the model

goodness, but did not use a proper validation test. Some authors have concluded

that LASSO is not able to select a group of correlated terms [52], and it is not an

effective variable selection method when the number of model terms is bigger than

the number of observations [51].

Elastic Nets

As mentioned before, the advantage of LASSO is that it produces a parsimonious

model by setting some parameter estimates to zero. Unfortunately, the LASSO

cannot select a group of correlated terms and does not work properly when the

number of model terms outnumbers the number of observations [51]. Similarly, the
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advantage of the ℓ2 penalty is that it improves model generalisation, however it

cannot be used for model selection by itself [52].

Elastic nets were developed by Zou & Hastie [51] as a new regularisation and

variable selection method. They are a recently proposed concept that minimises the

traditional ℓ2 penalty together with the ℓ1 penalty [51, 52], i.e.

LEN = ∥y −Wg∥22 + λ2 ∥g∥22 + λ1 ∥g∥1 (2.13)

In [52], the authors applied a two-level model identification method. At the

lower level, the OFR algorithm is combined with the elastic nets to perform both

model selection and parameter estimation. At the upper level, particle swarm op-

timisation is applied to minimize the leave-one-out mean square error in order to

select the best regularisation parameters. A fully automated procedure is achieved.

Still, the process is computationally expensive because instead of defining a single

threshold for the ESR, two parameters λ1 and λ2 need to be estimated in order

for the algorithm to work. Additionally, every particle needs to perform the OFR

algorithm with elastic nets, and then all of them combine their results to update

the regularisation parameters at every iteration.

LARS model selection

A new model selection algorithm known as Least Angle Regression (LARS) was

proposed by Efron, et.al. [53]. The new algorithm is less greedy than the traditional

OFR method. Furthermore, the LARS algorithm is easily modifiable to obtain two

model-building algorithms: the LASSO and the Forward Stagewise Linear Regres-

sion.

The LARS algorithm assumes that the regressors are linearly independent. The

algorithm starts similarly to the OFR, it selects the regressor most correlated to

the output. Then, it takes the largest step possible in the direction of this regressor

until another regressor has as much correlation with the current residual. At this

point, instead of moving along this new regressor, LARS proceeds in a direction
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equiangular between the two regressors until a third regressor is correlated with the

residual. LARS then proceeds equiangularly between the three found regressors,

until a fourth variable enters, and so forth [53].

Principal Component Regression

The main idea behind Principal Component Regression (PCR) consists in prepro-

cessing the data by means of Principal Component Analysis (PCA) before perform-

ing regression [17]. PCA finds a low-dimensional representation of the data set that

contains as much variation as the original one. This new representation contains new

features, known as principal components (PCs), that are created using the original

regressors (a property known as feature extraction). Mathematically, the jth PC

can be written as:

PCj = aj1φ1 + aj2φ2 + . . .+ ajmφm (2.14)

The coefficients aj1, aj2, . . . , ajm are known as weights and can be used to deter-

mine which regressors are more important to each PC [17]. The reader is referred

to [54] for an in-depth discussion of PCA. One disadvantage of this technique is

that it is an unsupervised procedure, therefore, during the creation of the PCs, the

output variable is not taken into account. Alternatives to this issue are mentioned

in [17]. Furthermore, given that the PCs are a linear combination of the original

regressors, it is harder to provide a meaningful relationship between them and the

output variable.

Markov Blanket

The Markov Blanket is a concept proposed by Koller and Sahami in [66], where

they developed a Markov blanket filtering to perform a backward elimination model-

building procedure.

In [48], the authors developed a forward feature selection method based on ap-

proximate Markov blanket. The algorithm employs the mutual information as the
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selection criteria and uses the Markov blanket as a redundant criterion. The devel-

oped algorithm does not need to predefine the number of selected features. It can

identify relevant features while removing redundant ones from the set of candidate

terms. This makes it efficient for building compact models. Nevertheless, the pa-

rameters of the Markov blanket are difficult to define beforehand, like the size of a

Markov blanket for a specific problem. The algorithm may end up selecting some

attributes that are not relevant and since it is a forward selection algorithm, it is

not possible to go back and remove the irrelevant parameters.

Genetic Programming

Genetic programming is a type of evolutionary algorithm that allows the search of

both model structure and parameter estimates simultaneously [3]. It is a popular

optimisation approach where candidate solutions are evaluated, selected, crossed

over and mutated in order to provide a solution to a problem. It is considered a

grey modelling approach where a physical interpretable equation is obtained [55].

In [73], a MATLAB Toolbox was developed that implements a Genetic Program-

ming Orthogonal Least Squares algorithm for performing data-based identification

of static and dynamic models. The algorithm is fast and efficient in finding a model

structure for nonlinear processes. However, the algorithm is stochastic in nature,

which requires running the algorithm several times to properly assess the results.

Wavelet Networks

Wavelet Networks (WNs) are a new class of networks that make use of wavelet the-

ory to approximate a signal [74, 75]. In [76], a practical guide was developed for

the implementation of these kinds of networks. This guide covers several issues like

how to define the structure of a WN, training methods and initialisation algorithms,

variable significance and variable selection algorithms, model selection methods and

methods to construct confidence and prediction intervals. Also, in [77] and its exten-

sions [78,79], a new class of WNs are introduced for nonlinear system identification.
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The new WNs approximate the model structure for high-dimensional systems by

a superimposition of a set of functions with fewer variables based on the ANOVA

expansion. Each of these functions is decomposed in a truncated wavelet, which

produces a linear-in-the-parameters problem that can be solved using least-squares

type methods. These WNs are not a multiresolution decomposition since a scaling

function is not involved.

2.4.3 Model Validation

A fundamental part of system identification is model validation. It consists of testing

the identified model to check that the parameters estimated are unbiased and that

the final model is an adequate representation of the recorded data set [5, 60, 78].

In [80], Billings and Tao developed a set of statistical correlation tests that can

be used for nonlinear input-output model testing and validation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φξξ (τ) = δ (τ) ∀τ

φuξ (τ) = 0 ∀τ

φξ(ξu) (τ) = 0 τ ≥ 0

φ(u2)′ξ (τ) = 0 ∀τ

φ(u2)′ξ2 (τ) = 0 ∀τ

(2.15)

where ξ (k) = ξk is the prediction error sequence, u (k) = uk is the input sequence,

(u2)
′
k = u2

k−u2, (ξu)k = ξk+1uk+1, and the cross-correlation function φxy (τ) between

two signals x and y is defined as

φxy (τ) =

∑N−τ
k=1 [xk − x̄] [yk+τ − ȳ]√∑N

k=1 [xk − x̄]2
√∑N

k=1 [yk − ȳ]2
(2.16)

In Eq. (2.15), the first two tests are used in linear system identification. The re-

maining three tests involve cross-correlation tests between the input and residuals by

which all possible omitted nonlinear terms can be detected [60,79]. If the identified
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model represents the system adequately, then the residuals should not be predictable

from all linear and nonlinear combinations of past inputs and outputs [77].

Sometimes the input signal is unavailable, unmeasured, or unknown, especially

when working with time series modelling. For such cases, Billings and Tao [80]

developed a set of tests that are effective for time series model validation:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

φξ′ξ′ (τ) = δ (τ) ∀τ

φξ′(ξ2)′ (τ) = 0 ∀τ

φ(ξ2)′(ξ2)′ (τ) = δ (τ) ∀τ

(2.17)

where ξ′k = ξk − ξ and (ξ2)′k = ξ2k − ξ2.

If the tests are not satisfied, then it is suggested to reduce the threshold η and/or

include more complex model terms within the set of candidate terms. Then new

models should be trained until the validity tests are satisfied [77].

It is important to take into account that the correlation tests alone are not

adequate to detect discrepancies between the observed dynamical behaviour and the

model dynamics [2, 81]. To overcome this, other approaches have been developed.

The most popular one is to divide the data in two sets: a training set and a test

set. The first one is used for fitting the model. Once the model is trained, it is used

to obtain predictions on the test set. These predictions are compared with the true

values in order to assess the model’s performance. The size of the test set depends

on the total number of observations and how far ahead the predictions need to be

forecasted, but it is a common practice to use 20% of the total sample [82].

For the particular case of NARX models, there are two types of predicted outputs:

one-step ahead (OSA) output and model predicted output (MPO). The former is

given by

ŷ (k) = f
(
y (k − 1) , . . . , y (k − ny) , u (k − 1) , . . . , u (k − nu)

)
(2.18)
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where the most up-to-date values of past outputs and inputs are used to estimate

the following output. However, because the NARX model in Eq. (2.1) depends on

past output values, a more reliable way to check the validity of the model is through

the MPO, which uses past predicted outputs to estimate future ones,

ŷ (k) = f
(
ŷ (k − 1) , . . . , ŷ (k − ny) , u (k − 1) , . . . , u (k − nu)

)
(2.19)

The MPO can provide details about the stability and predictability range of the

model. In [83], the authors developed a lower bound error for the MPO of polynomial

NARMAX models, which can be used to detect when a model’s simulation is not

reliable and needs to be rejected.

In the literature, some authors have adapted the original OFR algorithm to

optimise directly the MPO in order to obtain a better long-term prediction [84].

However, these modified versions tend to be computationally expensive during the

feature selection step, and a much better alternative is to use the iterative OFR [85]

or ultra OFR [86] approaches.

Furthermore, in many real applications, multiple step-ahead predictions are of

interest. For an autonomous system (e.g. a time series process without external

input), the system output value at the current time instant k, i.e. y (k), may be

predicted using previous observations at time instants k−h, k−h−1, etc. Therefore,

the predicted value ŷ (k) is called the h-step ahead prediction. For an input-output

system, the h-step ahead prediction ŷ (k) is often estimated using previous output

measurements y (k − h), y (k − h− 1), ... , and previous input values u (k − 1),

u (k − 2), ... , etc. So, for an input-output system model, the h-step ahead prediction

is defined with respect to the system output; it is actually still one-step ahead

prediction with respect to the system input.
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2.5 Environmental Systems Analysis

Throughout the world, there are several environmental concerns that require moni-

toring and immediate attention, e.g. deforestation [23,87], wildfires [20], wastewater

treatment plants [24,88], Atlantic Ocean’s major current circulation [25], ocean acid-

ification [89], geomagnetic disturbances in near-Earth space [26], agriculture [90–92],

pollution [93, 94], climate change [95–97], among many others.

Recently, several works have focused on extraction of knowledge contained within

databases that come from the monitoring of dynamical environmental processes

[3, 14, 21, 28, 98–104]. In [19], Gibert, et.al. built an Intelligent Environmental

Decision Support System (IEDSS) called GESCONDA. This new software tool pro-

grammed in Java, focuses on intelligent data analysis and implicit knowledge man-

agement of environmental databases. GESCONDA has a multi-layer architecture of

4 levels (data filtering, recommendation and meta-knowledge management, knowl-

edge discovery, and knowledge management) that allows the interaction between the

user and the environmental system. This multi-layer architecture eases the knowl-

edge extraction process and permits the pre- and post-processing of the data, as well

as the validation of the models produced by GESCONDA. Particularly, the knowl-

edge discovery level handles a great variety of data mining and machine learning

techniques like clustering, decision trees, rule induction, support vector machines,

dynamical analysis and statistical modelling. This range of techniques allows the

analysis of both quantitative and qualitative variables. However, despite all the util-

ities that this software provides, it seems that its development was halted because

the project’s website does not allow the download of the software (checked on June

2014).

Mas, et.al. [23] implemented a simple model to predict the spatial distribution

of tropical deforestation using artificial neural networks. Although the main agents

that produce deforestation are known, it is difficult to determine their relative con-

tribution to this problem, and there is not a clear understanding of the large com-

plexity of interactions between human and environmental factors. Such complexity
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motivated the authors to implement a neural network approach, which has been

successfully tested in other environmental problems. The authors described the sev-

eral processing steps that the data had to go through before/after using the trained

neural network. The results obtained are interesting and the neural network was

able to obtain a correct classification percentage of 68.6%. Also, the authors clearly

mentioned the limitations of their work and are aware that their model is a black

box, which is not able to explain the factors that produce the deforestation process,

and long-term predictions are not reliable. They suggested that it may be impossible

to develop models of deforestation processes with high power of prediction because

of the high complexity involved. Still the analysis of these systems is important

because it helps to create policies that help to control the negative ecological and

social effects of deforestation.

In [20], the occurrence of wildfires was studied. In particular, the authors devel-

oped a data mining approach to predict burned area, which can be useful for fire

fighting resource planning. A special emphasis was put on the use of real-time and

non-costly meteorological data obtained from local sensors, compared with other

alternatives like satellites or infrared scanners that are not suitable for the task.

However, as suggested by the authors, their approach was not able to predict large

fires accurately, and further research is required to determine if direct weather con-

ditions outperform historical records.

One topic that has become important is the design, management and control

of wastewater treatment plants for water resource planning [24]. Because of the

high complexity of these plants, there are several factors that affect the real-time

control of the system. Furthermore, the recorded data from the plants can be very

noisy, imprecise and possess several missing values. A variety of techniques have

been tested to obtain a prediction model that can help to control efficiently these

systems. Among these techniques are fuzzy logic, genetic algorithms, artificial neural

networks, probabilistic reasoning, and others. In [24], the authors built a fuzzy

heterogeneous time-delay neural network to characterise a wastewater treatment
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plant located in Catalonia. The training of this network had a low cost compared

with recurrent neural networks, and the model obtained seems accurate enough

despite the fact that 78.7% of the data was missing.

One popular modelling technique are Bayesian networks. These are a probabilis-

tic graphical modelling approach that has acquired considerable relevance during

the last years [28, 105]. The structure of a Bayesian network possesses information

about the (ir)relevance of model terms between each other. Once the structure is

defined, conditional probabilities encode how strong the relationships are among the

model terms. These properties make Bayesian networks suitable for modelling com-

plex systems where uncertainty and missing values cannot be neglected. However,

a lot of data is required to build the structure of the network and to estimate the

corresponding probabilities. Also, as the size of the network increases, its compu-

tation may become intractable. Another limitation is that Bayesian networks were

designed to work with discrete variables, and only recently, new methodologies have

appeared that deal with continuous or hybrid variables without the need to discre-

tise them [106, 107]. In [28], the authors made a summary of the papers published

in the areas of the ISI Web of Knowledge related to Environmental Sciences (with

an emphasis in the usage of Bayesian networks) from January 1990 to December

2010. It is surprising that, from the 1375 documents retrieved, only 4.7% focused

on environmental issues. From these, 71.1% aimed to perform some inference from

the data, 52.6% worked with discrete variables, and 37.7% did not validate the final

Bayesian network. The authors concluded that Bayesian networks are still largely

unexploited for Environmental Sciences.

2.6 Summary

This chapter gives an overview of the main concepts that are used in this thesis. It

describes how data can be used to identify patterns that help to build models that

approximate the observed data and generalise from it to unobserved data. One im-

portant application of this is system identification, which can be considered a type



Chapter 2. General Concepts 49

of supervised learning. Here a mathematical model of a system is identified and

fitted based on experimental data that record the system inputs and outputs be-

haviour. The main steps in system identification involve model structure detection,

parameter estimation and model validation. One of the most popular techniques

for this task is the NARX methodology, which uses the OFR algorithm. Recently,

environmental systems have brought the attention of scientists and researchers given

the huge amount of data available. Such systems are highly nonlinear, interact at

different spatial and temporal scales, and evolve over time so their high complex-

ities limit the formulation of first-principles models. The next chapter introduces

the computational tools used to analyse environmental systems using the NARX

methodology.



Chapter 3

R for Data Analysis and System

Identification

3.1 Introduction

With the increasing use of data for system identification, new tools have been re-

quired to ease the data analysis task. This chapter provides a general overview of

the R programming language focusing on two aspects: data analysis and system

identification problems. For the first aspect, a comprehensive description of the R

packages that allow to handle data in an efficient and easy way is provided. For

the second one, given the lack of sophisticated software to build NARX models, the

first R package is developed for this purpose. It provides a set of features for effec-

tively performing model selection, parameter estimation, model validation, model

visualisation and model evaluation.

Note that this chapter is not an introduction of how to program with R. For

detailed discussions on R, interested readers are referred to the following resources:

• R documentation [108]

• Datacamp free introduction to R [109]

• Coursera Data Science Specialisation by Johns Hopkins University [110]

50
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• “R for Data Science” by Hadley Wickham [111]

3.2 The R Language

The R language was created by Ross Ihaka and Robert Gentleman in 1995 at the

University of Auckland in New Zealand [112]. It is a dialect of the S language, which

was developed at AT&T Bell Laboratories by Rick Becker, John Chambers and Allan

Wilks [113, 114]. The S language had its roots in statistical analysis functionality

and was only available through a commercial package under the product name S-

PLUS. This was one of its key limitations. When the R language was developed, it

was agreed to make it free software, which undoubtedly contributed to its popularity

in the following years. In 2000, R version 1.0.0 was released to the public [114].

3.2.1 Basic Features of R

Today R is one of the most popular programming languages for statistical comput-

ing. Some of its key features are [114]:

• R is under constant improvement, and several updates are released during the

year.

• R has an active and vibrant user community with several contributions shared

through social media or meetings all over the world.

• R is easily extensible through modular packages, most of them created by the

R user community.

• R has very sophisticated graphics capabilities which allows high-quality visu-

alisations of high-dimensional data.

• R provides an interactive computing environment with several tools for data

analysis, yet it also allows the user to become a software developer that creates

new tools for this purpose.

• R is completely free.
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3.2.2 Limitations of R

R is not a perfect programming language and it has several limitations. The main

ones are related to its origins [114]:

• R has little built-in support for dynamic or 3D graphics.

• R functionality is based on consumer demand and user contributions. If there

is not a package that performs what users want, they need to program it on

their own.

• Everything in R is an object and all objects must be stored in physical memory.

However, nowadays most of these limitations are becoming less restrictive. Several

alternatives have been developed that produce better graphics, and allow working

with large data sets without the need to store them in memory. Also, thanks to the

vast R user community, there are 11,413 packages available at the Comprehensive

R Archive Network (CRAN) as on September, 2017, which may allow the users to

find a package that already does a particular task.

3.3 R for Data Analysis

Today, 90% of the world’s data have been generated over the last 2 years at rates

that have no precedent in the history of mankind [3, 6]. Therefore, data analysis

has become a valuable and vital tool to deal with data sets that contain valuable

information but it is difficult to translate into relevant knowledge [8, 9]. Figure 3.1

displays the data analysis process, which consists of a series of steps that aim to

discover or learn insightful patterns from an observational data set [3, 13, 14]. The

steps are the following [111]:

1. Data importing: it consists in taking the data from its original source and

loading it into a proper environment for its further analysis. In R, the most

popular package for this step is readr.
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Figure 3.1: Overview of the data analysis process covering the importing, cleaning,
understanding and communication steps. Original source: [111].

2. Data cleaning: most of the time, data collected comes in raw form, which is

difficult to analyse. Therefore, further analysis can be extremely difficult, if

not impossible, if the data is not tidy, i.e. each row is an observation, and

each column is a variable. This step can take from 80% to 90% of the whole

analysis process, but several packages in R have been developed to reduce the

time taken in this step significantly. The most popular packages are dplyr,

tidyr and purrr. All of these are included in the tidyverse package in R [111].

3. Data understanding: this step is where most of the interesting analysis takes

place. It often involves a recursive approach of the following tasks:

• Transforming: some (or all) variables may require some transformation to

facilitate the visualisation and/or modelling tasks. This involves comput-

ing summary statistics of the data, imputing missing values, or creating

new variables based on the original ones. The tidyverse package is quite

useful for all of these issues.

• Visualisation: this is a vital task in the data analysis process. Visualisa-

tion can reveal something that is not expected within the data, or hint

that the data is not appropriate for the current analysis. A lot of re-

search has been done in data visualisation, and one of the most popular

R packages is ggplot2 [115]. This package is so popular that it has been

extended to other programming languages like Python.
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• Modelling: this task goes along with data visualisation. Modelling iden-

tifies a mathematical or computational tool that should generalise the

given data set. There are hundreds of models available and each of them

makes its own assumptions about the data in order to work. Depending

on the data, some of these assumptions may or may not work, and several

iterations may take place before a final model is chosen. Several packages

are available in R that cover many different types of models. Indepen-

dently of these, one of the most popular packages for data preparation

before modelling is caret.

4. Data communication: once the analysis is done, it is important to share the

results with other people. Many analysts agree that this is like storytelling

with data, where every step taken to understand the data set is described so

that someone else is able to reproduce the same results. R comes with several

tools for data communication, including rmarkdown and R notebooks.

3.4 R for System Identification

One of the difficulties faced during the development of this research, is the lack of

software with a standard library for NARX models. Therefore, one of the objectives

of this work is to develop the first package in the R language for building NARX

models. This package is still under development and may be released in the near

future.

3.4.1 The NARX R Package

The NARX R package was designed with the purpose of easing the task of building

NARX models while providing a set of features for effectively performing model

selection, parameter estimation, model validation, model visualisation and model

evaluation. The package offers the following features:

• Implementation of the traditional OFR-ERR algorithm (Algorithm 2.1)
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• Implementation of several improvements to the traditional OFR-ERR algo-

rithm

• Functions to perform OSA (Eq. (2.18)) and MPO (Eq. (2.19)) predictions

• A function to perform OSA validation tests as described in [80]

• Functions for static and interactive visualisation

• A function to assess the performance of the trained model. Defining ek as

the error between the kth prediction ŷk and the kth output value yk, i.e.

ek = ŷk − yk, then the three performance (error) metrics considered are:

– Mean Error ME = 1
N

∑N
k=1 ek

– Root Mean Squared Error RMSE =
√

1
N

∑N
k=1 e

2
k

– Mean Absolute Error MAE = 1
N

∑N
k=1 |ek|

3.4.2 Traditional Orthogonal Forward Regression Algorithm

Algorithm 2.1 was the first one implemented within the NARX R package. To

describe it, consider the following example taken from [42]:

y (k) =− 0.5y (k − 2) + 0.7y (k − 1) u (k − 1) + 0.6u2 (k − 2)

+ 0.2y3 (k − 1)− 0.7y (k − 2)u2 (k − 2) + e (k) (3.1)

where the input u (k) ∼ U (−1, 1), that is u (k) is uniformly distributed over [−1, 1],

and the error e (k) ∼ N (0, 0.022). Following [42], the maximum lags for the input

and output are chosen to be nu = ny = 4 and the nonlinear degree is ℓ = 3. The

stop criterion for the OFR-ERR algorithm is when the ESR is less than 0.05, i.e.

η = 5%. A total of 500 input-output data points are generated. The data is then

split into two parts: a training set of 400 points, and a testing set of the remaining



56 3.4. R for System Identification

100 points. The results for the OFR-ERR algorithm are shown in Table 3.1 and

Figure 3.2. It can be seen that all the model terms selected are correct except for

two that are missing.

Term
Parameter

ERR (%)
True Estimate

u2 (k − 2) 0.6 0.5708 42.34
y (k − 2) -0.5 -0.6680 41.58

y (k − 1)u (k − 1) 0.7 0.6636 11.95

Table 3.1: Identified NARX model for Eq. (3.1) using the OFR-ERR algorithm.
Three model terms were identified with their corresponding estimated parameter
values. The true parameter values are included for reference. The ERR for each
model term is shown in the last column.
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Figure 3.2: Model terms selected for Eq. (3.1) by the OFR-ERR algorithm with
their corresponding ERR shown in blue dots, and the updated sum of ERR (SERR)
represented in a red dashed line. The total SERR is 95.87%, which satisfies the ESR
threshold of 5% shown as a horizontal black dashed line.

The testing set is used for validation purposes. Figure 3.3 shows the results of

the validation tests as described by Eq. 2.15 in [80]. Here it is possible to see that

the φξ(ξu) (τ) test is not satisfied because the correlations have several values well

outside the 95% confidence bands, which means that certain nonlinearities are not

captured by the model.
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Figure 3.3: Validation tests with 95% confidence limits for the OSA output of the
NARX model identified for Eq. (3.1) using the OFR-ERR algorithm. The φξ(ξu) (τ)
test is not satisfied because the correlations have several values well outside the 95%
confidence bands, which means that certain nonlinearities are not captured by the
model.
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Furthermore, the performance of the model can be evaluated. Figure 3.4 displays

the OSA predicted output of the model for the testing set, and Table 3.2 shows the

corresponding performance metrics.
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Figure 3.4: OSA output of the NARX model identified for Eq. (3.1) using the
OFR-ERR algorithm, where the black solid line indicates the true measurements,
and the blue dashed line represents the OSA predicted output.

ME RMSE MAE
OSA 0.02136 0.1363 0.06143
MPO 0.008514 0.2041 0.1288

Table 3.2: Performance metrics for the OSA predicted output and MPO of the
NARX model identified for Eq. (3.1) using the OFR-ERR algorithm. Each of the
abbreviations stands for Mean Error (ME), Root Mean Square Error (RMSE), and
Mean Absolute Error (MAE), respectively. As expected, the MPO performance
metrics are slightly worse than the OSA ones.

However, as stated in section 2.4.3, a more reliable way to check the validity

of the model is through the MPO, which uses past predicted outputs to estimate

future ones, and can provide details about the stability and predictability range

of the model. Figure 3.5 and Table 3.2 show the MPO and performance metrics,

respectively. As expected, these performance metrics are slightly worse than the

OSA ones. Nevertheless, from Figure 3.5 it can be seen that the model output is

stable although it does not capture all the nonlinear dynamics of the system given

by Eq. (3.1).
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Figure 3.5: MPO of the NARX model identified for Eq. (3.1) using the OFR-ERR
algorithm, where the black solid line indicates the true measurements, and the red
dashed line represents the MPO.

3.4.3 Improved Orthogonal Forward Regression Algorithm

From the results above, it can be noticed that there are a couple of drawbacks with

the OFR-ERR algorithm. As it has been mentioned, the ERR index only detects

linear dependencies. This is a problem when there is an interest in detecting not

only linear but also nonlinear dependencies. Furthermore, the algorithm strongly

depends on the value of the threshold η. If it is too small, the identified model

will not capture the dynamics of the system completely. However, if it is too large,

the model will overfit and will not be able to generalise well on new observations.

Solutions to overcome these issues are discussed in this section.

Nonlinear Dependency Metrics

In recent years, several new metrics have been proposed that are able to identify

nonlinear dependencies [42, 63, 64]. The following have been implemented in the

NARX R package:

• Mutual Information (MI): it provides a measure of the amount of information

that two variables share with each other [64]. It captures both linear and

nonlinear correlations, and has no assumption on the distribution of the data
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[42, 48, 64, 66, 67]. Model terms with a high mutual information with respect

to the output signal are selected. The infotheo package implements it in the

R language. One disadvantage of this metric is that it is hard to interpret.

• Maximal Information Coefficient (MIC): it extends the notion of Pearson’s

correlation coefficient to nonlinear associations between pairs of variables [69,

70]. Model terms that maximise the MIC are selected. The minerva package

implements it in the R language. However, this new metric has been part

of recent scientific debate leading to the conclusion that the MIC has serious

power deficiencies according to [71, 72].

• Correlation Feature Selection with Symmetric Uncertainty: it finds the best

subset of predictors that have strong correlations with the outcome but weak

between-predictor correlations [17]. It is defined as G = mRy√
m+m(m−1)Rx

, where

m is the number of model terms, Ry is the correlation between the candidate

predictor and the outcome, and Rx is the average correlation between the

current predictor and the m − 1 predictors already included in the model

[17, 116]. Model terms that maximise the correlation feature selection metric

are preferred.

• Predicted Residual Sum of Squares (PRESS): it is defined as PRESSm =

1
N

∑N
k=1

[
y (k)− ŷ(−k)

m (k)
]2

where y (k) is the kth data output, and ŷ(−k)
m (k)

is the OSA prediction from a model of m model terms, fitted using a data set

consisting of N − 1 data points, which are obtained by leaving the kth data

point out [47]. Model terms that minimise the PRESS are chosen.

• Distance Correlation: please refer to Section 4.3 of Chapter 4 for an extensive

discussion of this metric.

Selecting the number of model terms

The selection of the appropriate number of model terms has been investigated before

in [47]. In this work, this process is improved in order to find a parsimonious model



Chapter 3. R for Data Analysis and System Identification 61

in an efficient way. Instead of choosing a threshold η, it is proposed that the number

of model terms is increased sequentially up to a certain upper limit mmax, and the

best model with m terms (m ≤ mmax) is selected among them. The selection can

be based on the following metrics:

• Penalty metrics: these metrics provide a relative quality of a model for a given

data set, penalising those models that are too complex. The most popular

metrics are the following [82, 117]:

– Akaike Information Criterion (AIC): it is defined as AIC = N log
(
SSE
N

)
+

2 (m+ 2), where N is the number of observations, SSE is the sum of

squared errors SSE =
∑N

i=1 e
2
i , and m is the number of model terms

selected. The model with the minimum value of the AIC is often the best

model for forecasting.

– Corrected Akaike Information Criterion (AICc): it is defined as AICc =

AIC + 2(m+2)(m+3)
N−m−3 . Similar to the AIC, the model with the minimum

AICc is chosen.

– Bayesian Information Criterion (BIC): it is defined as BIC = N log
(
SSE
N

)
+

(m+ 2) log (N). This metric penalises the number of model terms more

heavily than the AIC. The model with the minimum BIC is the best one.

• Performance metrics: these metrics evaluate the accuracy of a model on a

testing set. The two most popular choices are:

– Training / Testing splitting: as mentioned in section 2.4.3, this approach

consists in dividing the data in two sets: a training set and a test set.

The first one is used for model development. Once the model is trained,

it is used to obtain predictions on the test set. These predictions are

compared with the true values in order to assess the model performance

using an error metric, i.e. ME, RMSE, MAE, etc. The process is repeated

for each new model term that is added and the final model is chosen using
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the number of terms m that minimised the error metric. The size of the

test set depends on the total number of observations and how far ahead

the predictions need to be forecast, but it is a common practice to use

20% of the total sample [82].

– Cross-Validation (CV): this approach consists in randomly dividing the

data set into k groups, or folds, of approximately equal size. Each fold is

treated as a testing set, and the training is performed on the remaining

k − 1 folds. An error metric E is computed for each testing set and the

k-fold CV estimate is computed by taking the average of these values,

i.e. CV(k) =
1
k

∑k
i=1Ei [54]. This procedure is computationally expensive

as it needs to be repeated for each model of size m. At the end, the

number of terms m that produced the lowest CV(k) is chosen, and the

complete data is used to identify the corresponding model. In practice,

one typically performs k-fold CV using k = 5 or k = 10 [54]. It is also

common to repeat 3 or 5 times the whole CV process and average the

results from all repetitions to choose the best model [17].

Each of the two type of metrics have their own advantages and disadvantages. The

penalty metrics are fast to compute but they strongly rely on statistical assumptions

on the data. Furthermore, they provide a measure of the statistical validity of

the model, but not the accuracy performance on unobserved data. On the other

hand, the performance metrics provide a better estimate of the test error, and make

fewer assumptions about the true underlying model [54]. However, by splitting the

data, the sample size is reduced for both model training and testing. It is also

computationally expensive since the process may need to be repeated several times

to achieve good estimates of accuracy [117].

Consider again the system described by Eq. (3.1) to facilitate the comparison

with the improved version of the OFR-ERR algorithm. It should be expected that

such improvements would help us to identify the appropriate number of model terms

to use. This time, mutual information is considered as nonlinear dependency metric,
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together with the BIC metric to determine the appropriate number of terms. The

maximum number of terms to look at is mmax = 10. Figure 3.6 shows that using

more than 5 model terms does not improve the quality of the model.
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Figure 3.6: BIC plot obtained for Eq. (3.1) using the improved OFR-ERR algo-
rithm. Low BIC values are preferred. Using more than 5 model terms does not
improve the quality of the model.

Furthermore, the CV approach can be used instead of the BIC metric. As an

example, 5-fold CV is considered with 2 repetitions. Again, the maximum number

of terms to look at is mmax = 10. Figure 3.7 shows that the minimum CV error is

obtained when the number of model terms is 6. However, applying the one standard

error rule [54], i.e. select the simplest model for which the CV error is within one

standard error from the minimum CV error found, then only 5 model terms are

enough. Furthermore, it can be seen that using more than 5 model terms does not

produce any significant improvement on the performance of the model.

The identified 5-term model is shown in Table 3.3, where it can be seen that all

the model terms selected are correct.
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Figure 3.7: Plot obtained for 5-fold CV with 2 repetitions for Eq. (3.1) using
the improved OFR-ERR algorithm. TOP: Results for each of the 10 CV errors.
BOTTOM: Average of the 10 CV errors shown on top with the corresponding one
standard error bars. The vertical red dotted line indicates the number of model
terms that achieved the minimum average CV error, the vertical blue dotted line
indicates the number of model terms that satisfies the one standard error rule, and
the horizontal black dashed line is the threshold for the one standard error rule.

Term
Parameter

MI
True Estimate

y (k − 2) -0.5 -0.50465 0.3481
u2 (k − 2) 0.6 0.6037 0.5285

y (k − 1)u (k − 1) 0.7 0.6944 0.6012
y (k − 2)u2 (k − 2) -0.7 -0.6829 0.5074

y3 (k − 1) 0.2 0.1926 0.3068

Table 3.3: Identified NARX model for Eq. (3.1) using the improved OFR-ERR
algorithm. Five model terms were identified with their corresponding estimated
parameter values. The true parameter values are included for reference. The MI for
each model term is shown in the last column.
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The testing set is used for validation purposes and Figure 3.8 shows the results

of the validation tests as described by Eq. (2.15). Here it is possible to see that all

tests have been satisfied because the error autocorrelation has a single peak at lag

0, and all four cross-correlation tests have values within the acceptable margin of

the 95% confidence bands, which means that all nonlinearities have been captured

by the model.
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Figure 3.8: Validation tests with 95% confidence limits for the OSA predicted
output of the NARX model identified for Eq. (3.1) using the improved OFR-ERR
algorithm. All tests have been satisfied because the error autocorrelation has a single
peak at lag 0, and all four cross-correlation tests have values within the acceptable
margin of the 95% confidence bands, which means that all nonlinearities have been
captured by the model.

Figure 3.9 displays the OSA predicted output of the model for the testing set,
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and Table 3.4 shows the corresponding performance metrics. Comparing these with

the OSA results from the first trained model (Table 3.1), it is clear that the new

model has a better performance.
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Figure 3.9: OSA predicted output of the NARX model identified for Eq. (3.1)
using the improved OFR-ERR algorithm, where the black solid line indicates the
true measurements, and the blue dashed line represents the OSA predicted output.

ME RMSE MAE
OSA 0.000192 0.02164 0.01801
MPO -0.000199 0.04120 0.03266

Table 3.4: Performance metrics for the OSA predicted output and MPO of the
NARX model identified for Eq. (3.1) using the improved OFR-ERR algorithm.
Each of the abbreviations stands for Mean Error (ME), Root Mean Square Error
(RMSE), and Mean Absolute Error (MAE), respectively. As expected, the MPO
performance metrics are slightly worse than the OSA ones.

To finish the comparison, the MPO is also computed for the new model. Fig-

ure 3.10 and Table 3.4 show the MPO and performance metrics, respectively. As

expected, these results are much better than the ones obtained with the traditional

OFR-ERR algorithm.
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Figure 3.10: MPO of the NARX model identified for Eq. (3.1) using the improved
OFR-ERR algorithm, where the black solid line indicates the true measurements,
and the red dashed line represents the MPO.

The previous examples clearly show the effectiveness of the NARX R package in

providing to the user a set of guiding and informative tools to build NARX models.

3.5 Summary

This chapter briefly discusses the R language and its application to data analysis

and system identification. Given the great amount of data that is generated nowa-

days in every field of study, it is important to use the correct tools to handle them.

Data analysis is a process that aims to discover insightful patterns that are buried

within a data set. Such process requires a series of steps that include data importing,

data cleaning, data understanding and data communication. The R language pro-

vides several packages that can be used to perform the whole data analysis process.

Given the many advantages of R, it was decided to use it for system identification

problems. However, no package is available for this task. Therefore, as part of the

objectives of this research, an R package has been developed for building NARX

models. Several utilities have been implemented in this new package that help in

the detection of nonlinear dependencies within a data set, and the selection of the
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appropriate number of terms to be used, among other tools for visualisation and

forecasting. The package is still under development and may be released in the near

future.



Chapter 4

Bagging Forward Orthogonal

Regression Algorithm

4.1 Introduction

It has been mentioned that the NARX methodology ranks a set of candidate terms

based on their contribution to the output data and identifies parsimonious models

that generalise well on new data [5]. The commonly used criterion to measure

the dependency between candidate model terms and the desired output is linear

correlation however, it can only identify linear dependencies. Therefore, new metrics

have been implemented recently to identify nonlinear dependencies. Some of these

new metrics are entropy [63], mutual information [42,64,66,67], maximal information

coefficient [69], correlation feature selection with symmetric uncertainty [116], among

others. Refer to Section 3.4.3 for a description of some of these dependency metrics.

In particular, mutual information has been extensively used because it captures both

linear and nonlinear correlations, and has no assumption on the distribution of the

data [48]. Although most of the research is promising, the mutual information is

hard to interpret because its maximum value is not fixed and depends on the entropy

of the variables involved.

Another important issue is the need to extend the deterministic notion of the

69
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NARX model to accommodate uncertainties in the parameter estimates, as well

as the identified model and the computed predictions. Some authors have worked

towards the incorporation of the Bayesian approach within the NARX methodology.

An interesting example is the work by Baldacchino, et.al., [58] which developed a

computational Bayesian framework for NARMAX models using the Reversible Jump

Markov Chain Monte Carlo (RJMCMC) procedure, an iterative sampling technique

for performing inference in the context of model selection [118]. In [58], Bayesian

inference was a key element to estimate not only the parameters but also the model.

The results obtained are interesting, however the main drawback is that there are

many assumptions in the probability distributions of the parameters involved, and

the likelihood and prior distributions were selected carefully to be conjugate priors,

an assumption that may not always be accurate. Furthermore, there are several

implementation issues that make the reproducibility of the results difficult.

In this chapter, both the use of a novel metric to detect nonlinearities within

the data set, and the extension of the deterministic notion of the NARX model

are addressed. For the first case, the distance correlation metric is implemented,

which is a measure that belongs to a new class of functions of distances between

statistical observations and is able to detect all types of nonlinear or non-monotone

dependencies between random vectors with finite first moment, but not necessarily

with equal dimension [119, 120]. This is the first time that the distance correla-

tion is introduced and implemented into the OFR algorithm [121]. For the second

case, the bagging method is used. Bagging consists of running an algorithm several

times on different bootstrap realisations and the results obtained are combined to

predict a numerical value via averaging (for regression problems) or via voting (for

classification problems). The combination of these two implementations enhances

the performance of a NARX model and provides interpretability of nonlinear de-

pendencies together with an insightful uncertainty analysis. The new algorithm is

referred as the Bagging Forward Orthogonal Regression using distance Correlation

algorithm. For simplicity, the discussion is restricted to polynomial models that can
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be expressed in a linear-in-the-parameters form.

4.2 The Bootstrap and Bagging Methods

The bootstrap method was developed by Bradley Efron [122]. It is a computer-based

approach that computes measures of accuracy to statistical estimates. Bootstrap-

ping consists of randomly sampling R times, with replacement, from a given data

set where it is assumed that the observations are independent of each other. Each of

the resamples is called a bootstrap realisation and has the same length as the original

data set. The bootstrap realisations can be treated as unique data sets that pro-

duce their own results when used in a specific algorithm, method or technique. Such

results contain information that can be used to make inferences from the original

data set [123, 124].

The bootstrap method has been previously used for system identification of

NARX models. In [41, 44], bootstrapping was used for structure detection where a

backward elimination scheme was implemented to find the significant model terms.

Such methodology is computationally expensive, as the bootstrap method must be

applied every time a model term is eliminated. Furthermore, the methodology may

not work when the lag order of the system is large. In [62], the bootstrap was used

for parameter estimation of a fixed model. Although the parameter estimation was

improved, by fixing the model there is no guarantee that the bootstrapped data

came from the true model. The main drawback of these previous works is that the

model structure needs to be correct in order for bootstrap to work [62].

In this work, the bootstrap method is applied to time series problems based

on [123]. Considering that observations at a given time may depend on previously

measured observations, the data set is split into overlapping blocks of fixed length

B. The first and last observations appear in fewer blocks than the rest; therefore the

data set is wrapped around a circle to make all data points participate equally [124].

Then the blocks are sampled with replacement until a new data set is created with

the same length as the original one. This methodology is known as moving blocks
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Figure 4.1: Schematic of the moving blocks bootstrap for time series methodology.
The upper line corresponds to the original time series. This is split into overlapping
blocks of fixed length B, which are sampled with replacement until a new data set
is created with the same length as the original one. The lower line corresponds to a
bootstrap realisation generated by choosing a block length B = 3.

bootstrap for time series [123] and it is illustrated in Figure 4.1. By sampling the

blocks, the correlation present in observations less than B units apart is preserved.

This methodology is less “model dependent” than the bootstrapping of the residuals

approach [123]. It is important to notice that the choice of B is quite important. If it

is too small, the correlation within the observations may be lost. If it is too big, there

would be no distinction between the original data set and the bootstrap realisations.

Although B can be selected empirically by running several simulations and picking

the value that produces the best results, effective methods for choosing B are still

been investigated as the computation time can vary substantially depending on the

size of the data set and the number of lags to consider. In the remaining of this

chapter, it is assumed that B is known beforehand.

The bootstrap technique has been extended to a very popular approach nowa-

days. Assume that a total of R bootstrap realisations have been carried out and each

of them has been used in a specific algorithm to duplicate a result of its own. There-

fore, R outputs are generated and all of them can be used to predict a numerical

value via averaging (for regression problems) or via voting (for classification prob-

lems). There is no clear choice for the value of R. In [123], it is suggested that 25 or

200 bootstrap realisations produce decent results, although nowadays it is common

to use 1000 or more as a rule of thumb. This procedure is known as bagging (that
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stands for bootstrap aggregating) and was proposed by Leo Breiman [125].

4.3 Distance Correlation

The distance correlation was developed by Székely, et.al. [119]. It is a measure that

belongs to a new class of functions of distances between statistical observations [120].

Distance correlation, denoted as dCor (x,y), provides a new approach to measure

all types of nonlinear or non-monotone dependencies between two random vectors

with finite first moment, but not necessarily with equal dimension [119,120].

The distance correlation requires the computation of the distance covariance.

Considering an observed random sample (x,y) = {(xk, yk) : k = 1, . . . , N}, the

sample distance covariance is calculated as follows [119,120]:

1. Compute all the pairwise distances between sample observations of the x sam-

ple to get a distance matrix.

2. Similarly, compute the distance matrix for the y sample.

3. Centralize the entries of the distance matrices. For the x distance matrix, this

can be achieved by using the following formulas:

akl = ∥xk − xl∥2 āk· =
1
N

∑N
l=1 akl ā·l =

1
N

∑N
k=1 akl

ā·· =
1
N2

∑N
k,l=1 akl Akl = akl − āk· − ā·l + ā··

4. Repeat for the y distance matrix, using bkl = ∥yk − yl∥2 and Bkl = bkl − b̄k· −

b̄·l + b̄·· for k, l = 1, . . . , N .

5. Using the centered distance matrices Akl and Bkl, the sample distance covari-

ance VN (x,y) is the nonnegative number defined as the square root of

V2
N (x,y) =

1

N2

N∑

k,l=1

AklBkl (4.1)

From Eq. (4.1), the sample distance variance VN (X) can be defined as the square

root of
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V2
N (x) = V2

N (x,x) =
1

N2

N∑

k,l=1

A2
kl (4.2)

The sample distance correlation dCor (X,Y) is defined as the square root of

dCor2 (x,y) =

⎧
⎪⎪⎨

⎪⎪⎩

V2
n(x,y)√

V2
n(x)V

2
n(y)

V2
n (x)V2

n (y) > 0

0 V2
n (x)V2

n (y) = 0

(4.3)

The sample distance correlation has the following properties [119, 120]:

i) 0 ≤ dCor (x,y) ≤ 1

ii) If dCor (x,y) = 0, then the random vectors x and y are independent.

iii) If dCor (x,y) = 1, then the dimensions of the linear subspaces spanned by

x and y are almost surely equal. Therefore, there exists a vector a, a nonzero real

number b and an orthogonal matrix C such that y = a+ bCx. This means that the

random vectors x and y are statistically dependent.

The sample distance correlation is analogous to Pearson product-moment corre-

lation coefficient ρ. However, Pearson’s coefficient only characterises linear depen-

dency between two variables while distance correlation is a more general measure

that characterizes independence of random variables [120].

As a simple comparison, Figure 4.2 displays three distinct noisy data sets. These

have been created using a linear (y = x), sinusoidal (y = sin
(
x+ π

2

)
), and circular

(x2 + y2 = 1) relationship with additive white noise. Each of the figures shows the

respective values for the Pearson product-moment correlation coefficient, mutual

information and distance correlation. The Pearson coefficient is able to detect a

linear dependency in the first data set, but finds no such dependency in the other

cases, as expected. The mutual information provides a better insight in each of

the data sets, but its value is difficult to interpret because the maximum value

of the mutual information is not fixed and depends on the entropy of each of the

variables involved. Finally, the distance correlation is able to detect dependencies in

all cases. Also, the distance correlation is not as strict as the Pearson coefficient, and
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the fixed range between 0 and 1 for possible values of the distance correlation is an

important characteristic that plays a key role in the new algorithm when determining

significant terms. If the distance correlation is equal to 0, then it can be assumed

that the variables are independent. Similarly, if the distance correlation is equal to

1, then the variables involved are statistically dependent. It is important to mention

that one drawback of the distance correlation metric is its computation time, since

it can take three times longer to compute it compared with the Pearson coefficient
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Figure 4.2: Three distinct noisy data sets displaying a a) linear, b) sinusoidal,
and c) circular dependency. In each case the Pearson product-moment correlation
coefficient (ρ), mutual information (MI) and distance correlation (dCor) are com-
puted. The Pearson coefficient is able to detect a linear dependency in case a), but
finds no such dependency in the other cases. The mutual information provides a
better insight in all cases, but its value is difficult to interpret. Finally, the distance
correlation is able to detect dependencies in all cases.



76 4.4. The BFOR-dCor algorithm

or the mutual information. This metric has been implemented by its authors in the

energy package within the R programming language using efficient coding to reduce

the computation time issue.

4.4 The BFOR-dCor algorithm

The bagging method and distance correlation are combined with the OFR algorithm

to produce the Bagging Forward Orthogonal Regression using distance Correlation

(BFOR-dCor) algorithm. This is the first time that the distance correlation metric

is introduced and incorporated to the well-known Orthogonal Forward Regression

[121]. This algorithm is divided into two parts. In Algorithm 4.1, the OFR algorithm

using the distance correlation dependency metric is described. It is important to

mention that in contrast with the original algorithm developed by Billings, et.al. [5],

that requires a threshold in the ESR, the user needs to specify the maximum number

of terms mmax that the algorithm will look for, as proposed in Section 3.4.3. In this

algorithm, lines 1-4 search for the candidate term that has the most significant

influence on the system output based on the distance correlation metric. Once

found, lines 5-9 create an orthogonal projection of y with respect to q1 using the

modified Gram-Schmidt process. This orthogonalisation sequence is repeated in

lines 11-24 until the maximum number of models mmax specified by the user is

achieved. To avoid redundant candidate terms, lines 14-16 are introduced, which

check the squared norm-2 of a candidate term, and if it is less than 10−10, it is simply

removed. Following [47], the concept of Leave-One-Out Cross Validation (LOOCV)

is introduced in order to prevent under- and overfitting. Every time a new model

term is added, the LOOCV statistic is computed with its standard error (SE) using

the following equations:

LOOCV =
1

N

N∑

i=1

(
ei

1− hi

)2

(4.4)
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Algorithm 4.1 Orthogonal Forward Regression using distance Correlation
Input: Dictionary D = {φ1,φ2, . . . ,φM}, output signal y, maximum number of
terms mmax

Output: NARX model with significant terms selected from D and corresponding
parameters θ estimated

1: for all φi in D do
2: Define wi = φi/∥φi∥2

3: Compute dCor(i) (wi,y)
4: Find j = max

1≤i≤M

{
dCor(i) (wi,y)

}

5: Define q1 = wj

6: Define p1 = φj

7: Train a linear regression model using y and p1

8: Define g1 = qT
1 y

9: Define y
(1)
new = y − g1q1

10: Compute LOOCV with standard error and store them
11: Remove φj from D
12: for s = 2 to mmax do
13: for all φi in D do
14: Orthonormalize φi with respect to [q1, . . . ,qs−1] to obtain wi

15: if wT
i wi < 10−10 then

16: Remove φj from D
17: Go to next iteration
18: Compute dCor(i)

(
wi,y

(s−1)
new

)

19: Find j = max
1≤i≤M−s+1

{
dCor(i) (wi,y)

}

20: Define qs = wj

21: Define ps = φj

22: Train a linear regression model using y and p1, . . . ,ps

23: Define gs = qT
s y

(s−1)
new

24: Define y
(s)
new = y

(s−1)
new − gsqs

25: Compute LOOCV with standard error and store them
26: Remove φj from D
27: Using the stored LOOCVs, select the most parsimonious model with m ≤ mmax

terms that satisfies the one standard deviation rule
28: Solve Am×mθm×1 = gm×1

29: Return matrix of terms selected Φ =
[
φ1 φ2 . . . φm

]
and vector of coef-

ficients θ =
[
θ1 θ2 . . . θm

]T

SE =

√√√√ 1

N
V ar

iϵ{1,...,N}

[(
ei

1− hi

)2
]

(4.5)

where ei is the residual obtained from fitting the model to all N observations using

the selected candidate terms at each iteration s, and hi are the diagonal values of the

influence matrix for the fitted model [82]. Once the maximum number of terms mmax
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is achieved, the most parsimonious model with m ≤ mmax terms is selected in line

27 using the one standard deviation rule [54], i.e. select the simplest model for which

the LOOCV is within one standard error from the minimum LOOCV. Finally, the

parameters θ are computed in line 28, and the algorithm returns them together with

the significant terms selected. The parameter mmax can be selected heuristically,

by running Algorithm 4.1 a couple of times and inspecting the resulting LOOCV

curve. In case the best model contains exactly mmax model terms, this means that

the appropriate number of model terms may be beyond this value; therefore it could

be increased to find a better model.

The proposed BFOR-dCor algorithm is described in Algorithm 4.2. Here, Algo-

rithm 4.1 is repeated R times, each with a different bootstrap realisation taken from

the original input and output signals. Every time a bootstrap realisation is used,

the identified model is recorded in a table. After all the R bootstrap realisations are

taken, the table is summarised to identify the different models that are found, and

each of them is assigned a value that is equal to the number of times it is selected

within the R bootstrap realisations.

Algorithm 4.2 Bagging Forward Orthogonal Regression using Distance Correlation

Input: Number of bootstrap realisations R, block length B, dictionary D =
{φ1,φ2, . . . ,φM}, output signal y, maximum number of terms mmax

Output: Table with R models

1: for all i ϵ {1, . . . , R} do
2: Obtain a bootstrap realisation by applying the moving blocks bootstrap

method to D and y using a block length B
3: Apply Algorithm 4.1 to the bootstrap realisation
4: Record the identified model in a table
5: Summarise the table to identify the different models
6: Rank each model with respect to the number of votes
7: Return table with ranking

The BFOR-dCor algorithm is a new method that has been applied for the first

time to nonlinear model selection. The proposed algorithm outperforms the con-

ventional OFR algorithm in that the new method aims to find correct model terms

within noisy data by introducing a voting mechanism in the algorithm. The algo-
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rithm will be demonstrated in the following section.

4.5 Case studies

In this section, several examples are provided to illustrate the effectiveness of the

BFOR-dCor algorithm. First, a comparison of the new method with both the tra-

ditional OFR-ERR algorithm and the recent Forward Orthogonal Regression using

Mutual Information (FOR-MI) [64] algorithms is performed. Second, the BFOR-

dCor technique is applied to a testing model in [58] where the Reversible Jump

Markov Chain Monte Carlo (RJMCMC) algorithm is applied. Finally, the BFOR-

dCor algorithm is applied to the sunspot data provided by the World Data Center

for the Sunspot Index and Long-term Solar Observations at the Royal Observatory

of Belgium in Brussels [126]. The data consists of annual number of sunspots from

1700 to 2013.

4.5.1 Comparison of the BFOR-dCor with OFR-ERR and

FOR-MI

The following model is taken from [42]:

y (k) =− 0.5y (k − 2) + 0.7y (k − 1) u (k − 1) + 0.6u2 (k − 2)

+ 0.2y3 (k − 1)− 0.7y (k − 2)u2 (k − 2) + e (k) (4.6)

where the input u (k) ∼ U (−1, 1), that is u (k) is evenly distributed over [−1, 1],

and the error e (k) ∼ N (0, 0.022). Following [42], the maximum lags for the input

and output are chosen to be nu = ny = 4 and the nonlinear degree is ℓ = 3. The

stop criterion for the OFR-ERR and FOR-MI algorithms is when the ESR is less

than 0.05, i.e. η = 5%. A total of 500 input-output data points are generated and

the same random seed is used to ensure a fair comparison. The results for the OFR-
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ERR algorithm are shown in Table 4.1 and Figure 4.3. It can be seen that all the

model terms selected are correct except for the first one. Likewise, the results for

the FOR-MI algorithm are displayed in Table 4.2 and Figure 4.4. The four model

terms selected are correct, still the algorithm failed to select the term y3 (k − 1).

From Tables 4.1 and 4.2, both models failed to select all the true model terms in

Eq. (4.6). It is interesting to notice that, except by the spurious term found by the

OFR-ERR algorithm, the union set of the model terms found by the OFR-ERR and

FOR-MI algorithms is equivalent to the true model terms set. As explained in [42],

both the OFR-ERR and FOR-MI algorithms can be used at the same time to select

the model terms based on the t-tests, however this example shows that the selection

is still hard to perform as all the terms selected by both methods are statistically

significant.

Term
Parameter

ERR (%) t-test
True Estimate

y (k − 4)u2 (k − 2) 0 0.30537 48.64 8.96
u2 (k − 2) 0.6 0.49517 12.20 42.81
y (k − 2) -0.5 -0.64684 22.33 -43.03

y (k − 1)u (k − 1) 0.7 0.68973 9.46 29.90
y3 (k − 1) 0.2 0.18835 4.50 17.50

Table 4.1: Identified NARX model for Eq. (4.6) using the OFR-ERR algorithm.
Five model terms were identified with their corresponding estimated parameter val-
ues. The true parameter values are included for reference. The ERR for each model
term is shown together with the corresponding t-test value. Notice that the first
model term identified by the algorithm is spurious.

Term
Parameter

Mutual Information t-test
True Estimate

y (k − 2) -0.5 -0.487327 0.7948 -37.10
u2 (k − 2) 0.6 0.618496 0.9245 83.38

y (k − 1)u (k − 1) 0.7 0.616732 1.0218 38.93
y (k − 2)u2 (k − 2) -0.7 -0.639457 0.9498 -20.21

Table 4.2: Identified NARX model for Eq. (4.6) using the FOR-MI algorithm. Four
model terms were identified with their corresponding estimated parameter values.
The true parameter values are included for reference. The MI for each model term
is shown together with the corresponding t-test value. Notice that the algorithm
failed to select the term y3 (k − 1).
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Figure 4.3: Model terms selected for Eq. (4.6) by the OFR-ERR algorithm with
their corresponding ERR in blue dots, and the updated sum of ERR (SERR) rep-
resented in a red dashed line. The total SERR is 97.13%, which satisfies the ESR
threshold of 5% shown as a horizontal black dashed line.
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Figure 4.4: Model terms selected for Eq. (4.6) by the FOR-MI algorithm with the
updated sum of ERR (SERR) represented in a red dashed line. The total SERR is
96.08%, which satisfies the ESR threshold of 5% shown as a horizontal black dashed
line.

The BFOR-dCor algorithm is applied to Eq. (4.6) using a total of R = 1000

bootstrap realisations and a block length B = 5. The maximum number of terms

to look for is mmax = 10. On Table 4.3, the 3 top model structures obtained by the

BFOR-dCor algorithm are shown. These 3 model structures correspond to 96.5%
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of the bootstrap realisations. The most-voted model structure has a structure that

coincides with the true model in Eq. (4.6), something that is not obtained with the

OFR-ERR and FOR-MI algorithms.

Model 1 Model 2

Structure # of votes Structure # of votes
y (k − 2)

924

y (k − 4) u2 (k − 2)

30

u2 (k − 2) u2 (k − 2)
y (k − 1) u (k − 1) y (k − 2)
y (k − 2)u2 (k − 2) y (k − 1) u (k − 1)

y3 (k − 1) y (k − 2) u2 (k − 2)
y3 (k − 1)

Model 3 All Other Models

Structure # of votes # of votes
y (k − 2)

11 35

u2 (k − 2)
y (k − 1)u (k − 1)
y (k − 2) u2 (k − 2)

y3 (k − 1)
y (k − 3)u (k − 3)

Table 4.3: Three top model structures identified for Eq. (4.6) using the BFOR-
dCor algorithm. These model structures correspond to 96.5% of the bootstrap
realisations.

For the 924 realisations that have the most-voted model structure, Figure 4.5

shows the beanplots [127] for each of the parameter estimates, which clearly suggest

that each parameter bootstrap distribution is not Gaussian. Furthermore, Table 4.4

shows a statistical summary of the parameter estimates. It is interesting to notice

that all but one of the true values are within two standard deviations from the mean.

The exception is the y3 (k − 1) term. A frequency analysis may reveal an insightful

understanding of the contribution of this term.

The results presented here show that the BFOR-dCor algorithm is able to identify

924 realisations with the true model structure together with a bootstrap distribution

of the parameter estimates. Furthermore, having different equal-structure models is

beneficial for the forecasting task since all the models or a sample from them can be

used to compute an average prediction with the corresponding standard deviation.
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Figure 4.5: Beanplots for the parameter estimates of the model terms identified in
the most-voted model structure using the BFOR-dCor algorithm for identification
of Eq. (4.6). The vertical red dashed line represents the parameter’s true value
while the vertical black solid line represents the parameter’s mean estimated value.

Term
Parameter

True Mean Standard Deviation

y (k − 2) -0.5 -0.5063 0.0039
u2 (k − 2) 0.6 0.5996 0.0022

y (k − 1)u (k − 1) 0.7 0.7074 0.0044
y (k − 2)u2 (k − 2) -0.7 -0.6860 0.0117

y3 (k − 1) 0.2 0.2078 0.0037

Table 4.4: Statistical summary for the parameter estimates of the model terms
identified in the most-voted model structure using the BFOR-dCor algorithm for
identification of Eq. (4.6).
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4.5.2 Comparison of the BFOR-dCor with RJMCMC algo-

rithm

The following model is taken from [58]:

y (t) =− 0.5y (k − 2) + 0.7y (k − 1)u (k − 1)

+ 0.6u2 (k − 2)− 0.7y (k − 2) u2 (k − 2) + e (k) (4.7)

In [58], the authors developed a computational Bayesian identification framework

for NARMAX models that uses the RJMCMC algorithm to perform structure de-

tection and parameter estimation together with a characterisation of the probability

distribution over models. The algorithm is stochastic in nature, which encourages

a global search over the model term space while at the same time ensuring that the

identified model is parsimonious [58, 118]. In their work, the algorithm is executed

10 times on the same input-output data. From the 10 runs, the algorithm is able

to get the true model structure 7 times. The main drawbacks of this method are

that it is computationally expensive, and it needs to define different probability

distributions for the parameters involved. Most of these distributions are chosen

to be conjugate prior to ease the computations, but of course this does not mean

that such distributions are faithful to the real unknown distributions. Because of

the stochasticity of the RJMCMC algorithm, and some implementation issues, the

results in [58] are difficult to reproduce. The reader is referred to this paper for

further details.

The BFOR-dCor algorithm requires no assumptions about probability distribu-

tions and it can work extremely well once the basic parameters are defined. Here

again the maximum lags for the input and output are nu = ny = 4 and the nonlinear

degree is ℓ = 3, exactly the same values as in [58]. A total of 500 input-output data

points are generated. The BFOR-dCor algorithm is applied to Eq. (4.7) using a

total of R = 1000 bootstrap realisations, a block length B = 5, and the maximum
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number of terms is mmax = 10. On Table 4.5, the 3 top model structures obtained

by the BFOR-dCor algorithm are shown. These 3 model structures correspond to

88.1% of the bootstrap realisations. The most-voted model structure has a structure

that coincides with the true model in Eq. (4.7).

Model 1 Model 2

Structure # of votes Structure # of votes
y (k − 2)

839

y (k − 2)

26
u2 (k − 2) u2 (k − 2)

y (k − 1)u (k − 1) y (k − 1)u (k − 1)
y (k − 2) u2 (k − 2) y (k − 2)u2 (k − 2)

y2 (k − 2) y (k − 4)

Model 3 All Other Models

Structure # of votes # of votes
y (k − 2)

16 119
u2 (k − 2)

y (k − 1)u (k − 1)
y (k − 2)u2 (k − 2)
y (k − 3)u (k − 3)

Table 4.5: Three top model structures identified for Eq. (4.7) using the BFOR-
dCor algorithm. These model structures correspond to 88.1% of the bootstrap
realisations.

Figure 4.6 shows the beanplots for each of the parameter estimates, which suggest

that each parameter may be treated as a Gaussian random variable. Likewise, Table

4.6 shows a statistical summary of the parameter estimates. It is interesting to notice

that all the true values are within two standard deviations from the mean.

Term
Parameter

True Mean Standard Deviation

y (k − 2) -0.5 -0.5046 0.0041
u2 (k − 2) 0.6 0.6000 0.0023

y (k − 1)u (k − 1) 0.7 0.7067 0.0045
y (k − 2)u2 (k − 2) -0.7 -0.6839 0.0118

Table 4.6: Statistical summary for the parameter estimates of the model terms
identified in the most-voted model structure using the BFOR-dCor algorithm for
identification of Eq. (4.7).

These results show that the BFOR-dCor algorithm is efficient and works well

without the need of assumptions of probability distributions.



86 4.5. Case studies

−0.520 −0.505 −0.490

y(t − 2)

Parameter Estimates

0.590 0.600 0.610

u2 (t − 2)

Parameter Estimates

0.690 0.705 0.720

y(t − 1)u(t − 1)

Parameter Estimates

−0.74 −0.70 −0.66

y(t − 2)u2 (t − 2)

Parameter Estimates

Figure 4.6: Beanplots for the parameter estimates of the model terms identified in
the most-voted model structure using the BFOR-dCor algorithm for identification
of Eq. (4.7). The vertical red dashed line represents the parameter’s true value
while the vertical black solid line represents the parameter’s mean estimated value.

4.5.3 Forecasting the annual sunspot number

The sunspot time series provided by the World Data Center for the Sunspot Index

and Long-term Solar Observations at the Royal Observatory of Belgium in Brussels

[126] consists of 314 observations of the annual number of sunspots from 1700 to

2013. The data from 1700 to 1950 is used for structure detection and parameter

estimation while the data from 1951 to 2013 is used for model performance testing

and validation. It is assumed that the annual number of sunspots depends only on

previous annual observations, i.e. nu = 0. Furthermore, it is well-known that the

Sun’s north and south poles reverse around every 11 years which corresponds to a

period of great solar activity known as the solar max [128]. Therefore, ny = 12 is

chosen, and a Nonlinear AutoRegressive (NAR) model with nonlinear degree ℓ = 3

is employed to test the performance of the proposed BFOR-dCor algorithm.

The BFOR-dCor algorithm is applied using a total of R = 1000 bootstrap reali-

sations, a block length B = 15, and the maximum number of terms is mmax = 15.
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The 5 top model structures obtained by the BFOR-dCor algorithm are shown in

Table 4.7, which correspond to 7.2% of the bootstrap realisations.

Model 1 Model 2

Structure # of votes Structure # of votes
y (k − 1) y (k − 10)

30

y (k − 1) y (k − 10)

19

y (k − 2) y2 (k − 10) y (k − 2) y2 (k − 10)
constant constant
y (k − 1) y2 (k − 1) y (k − 10)
y (k − 2) y (k − 1)

y2 (k − 1) y (k − 10) y (k − 3)

Model 3 Model 4

Structure # of votes Structure # of votes
y (k − 1) y (k − 9)

12

y (k − 1) y (k − 9)

6

y (k − 2) y2 (k − 9) y (k − 2) y2 (k − 9)
y (k − 1) constant

y2 (k − 1) y (k − 9) y (k − 1)
y (k − 2) y2 (k − 1) y (k − 9)
constant y (k − 3)

Model 5 All Other Models

Structure # of votes # of votes
y (k − 1) y (k − 10)

5 823

y (k − 2) y2 (k − 10)
constant
y (k − 1)
y (k − 2)
y3 (k − 1)
y3 (k − 2)

Table 4.7: Five top model structures from a total of 875 different models identified
for the sunspot time series using the BFOR-dCor algorithm.

For the 30 realisations that have the most-voted model structure, Figure 4.7

shows the beanplots for each of the parameter estimates, which clearly suggest that

most of the bootstrap parameter distributions are not Gaussian. Furthermore, Table

4.8 shows a statistical summary of the parameter estimates. Figures 4.8 and 4.9

show the OSA output and MPO together with the two standard deviation region,

respectively. In both cases, from these two graphs it can be seen that a simple NAR

model has successfully captured the general trend of the sunspots behaviour. The

RMSE for the OSA output is 19.39716 while the RMSE for the MPO is 28.77858.
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Figure 4.7: Beanplots for the parameter estimates of the model terms identified
in the most-voted model structure using the BFOR-dCor algorithm for forecasting
the annual sunspot number. The black solid line represents the parameter mean
estimated value.

Term
Parameter

Mean Standard Deviation

y (k − 1) y (k − 10) 0.007665 1.3371e-03
y (k − 2) y2 (k − 10) 5.239e-06 1.0521e-05

constant 10.649 1.0723
y (k − 1) 1.1685 8.3556e-02
y (k − 2) -0.5890 4.8301e-02

y2 (k − 1) y (k − 10) -5.443e-05 6.1261e-06

Table 4.8: Statistical summary for the parameter estimates of the model terms
identified in the most-voted model structure using the BFOR-dCor algorithm for
forecasting the annual sunspot number.
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Figure 4.8: OSA predicted output for the sunspot time series using the most-voted
model structure identified by the BFOR-dCor algorithm. The black solid line with
circles indicates the true measurements. The empty blue circles represent the OSA
predicted output. The blue shadow represents the two standard deviation region.
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Figure 4.9: MPO for the sunspot time series using the most-voted model structure
identified by the BFOR-dCor algorithm. The black solid line with circles indicates
the true measurements. The green diamonds represent the MPO. The green shadow
represents the two standard deviation region.
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Figure 4.10 shows the statistical correlation tests given by Eq. (2.17) for the

OSA output of the most-voted NAR model identified by the BFOR-dCor algorithm.

It can be seen that the second and third tests, i.e. φξ′(ξ2)′ (τ) = 0 and φ(ξ2)′(ξ2)′ (τ) =

δ (τ) ∀ τ , are not ideally satisfied, suggesting that autoregressive models may not

be sufficient to fully characterise the entire dynamics of the process. Nevertheless,

the results obtained by the BFOR-dCor algorithm are still remarkable given the

complexity of the system.
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Figure 4.10: Statistical correlation tests given by Eq. (2.17), with 95% confidence
limits, for the OSA predicted output of the most-voted NAR model identified for the
sunspot time series using the BFOR-dCor algorithm. The second and third tests,
i.e. φξ′(ξ2)′ (τ) = 0 and φ(ξ2)′(ξ2)′ (τ) = δ (τ) ∀ τ , are not ideally satisfied because the
correlations have several values well outside the 95% confidence bands, which means
that certain nonlinearities are not captured by the model

4.6 Discussion

The BFOR-dCor algorithm provides an alternative to the deterministic notion of

the OFR algorithm. From the results obtained, it can be seen that training several



Chapter 4. Bagging Forward Orthogonal Regression Algorithm 91

models by resampling the data offers more information about the uncertainty in the

model structure together with the parameter estimates. The main advantage from

this alternative comes from the fact that prior distribtions are not required, which

can be difficult to define. Also, by checking the most common model structures, it

is possible to determine the most important model terms, which can be analysed

separately with other tools like frequency analysis [5] or empirical mode decompo-

sition [129]. However, the main disadvantage of this approach is that by resampling

the data set, there is no guarantee that a dominant model structure will be iden-

tified. Even if it is found, there is little variability in the trained models, which

increases the bias in the predictions. An alternative for this would be to consider

a similar approach like in the tree-based models, i.e. random forests, where the

inputs are chosen randomly and many poor-performance models are trained. This

reduces the bias while increasing the variability in the forecasts, however the latter

is overcomed when the average of the predictions is computed.

4.7 Summary

A new algorithm for model structure detection and parameter estimation has been

developed. This new algorithm combines two different concepts that enhance the

performance of the original OFR algorithm. First, the distance correlation metric is

used, which measures all types of nonlinear or non-monotone dependencies between

random vectors. Second, the bagging method is implemented, which produces dif-

ferent models for each resample from the original data set. Identified models, or

a subset of them, can be used together to generate improved predictions via aver-

aging (for regression problems) or via voting (for classification problems). A main

advantage of these concepts in the new BFOR-dCor algorithm is that it provides

the interpretability of nonlinear dependencies and an insightful uncertainty analysis.

The algorithm can be slow since the distance correlation is a complex computation

compared with other metrics; nevertheless it produces results that outperform its

counterparts and requires no assumptions of probability distributions like the RJM-
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CMC algorithm. All these have been demonstrated through numerical case studies.

The results of this chapter were published in [30].



Chapter 5

Modelling of the Atlantic Meridional

Overturning Circulation

5.1 Introduction

The Atlantic Meridional Overturning Circulation (AMOC) is an important compo-

nent of the Atlantic Ocean that is composed of a flow of warm water in the surface,

and a returning flow of cold water beneath it. The AMOC plays a key role in the

Earth’s climate system given that it transports heat from the Tropics and South-

ern Hemisphere toward the North Atlantic. This has an important influence in the

global climate system, particularly in the weather of Western Europe and North

America.

The study of the AMOC has been more easily accesible due to the deployment

of the RAPID array at 26ºN in the Atlantic Ocean in spring 2004. This has enable

the acquisition of measurements that can be used to understand its dynamics.

In this chapter the use of the NARX methodology is applied for the first time to

describe the dynamics of the AMOC anomaly. Different sets of variables are taken

into account, which involve the North Atlantic Oscillation (N) index and density

variables from the Gulf of Mexico, the Labrador Sea and the Norwegian Sea. The

task is challenging given that the sample size is small. Based on what is discussed

93



94 5.2. Data set description

in Chapter 3, two dependency metrics are used to find significant model terms,

together with penalty and performance metrics to identify the model structure.

The best model identified is used not only for forecasting but also for hindcasting

the AMOC back to January of 1980.

5.2 Data set description

The AMOC is an important component of the Atlantic Ocean’s circulation. The

AMOC is composed of a poleward flow of surface warm water that is above a deep

flow of colder water from the North Atlantic. It is believed that the AMOC influences

several meteorological phenomena including the weather of western Europe and the

sea-level on the eastern seaboard of the USA [25,130].

In spring 2004, the RAPID array was deployed at 26ºN in the Atlantic Ocean.

This array consists of moored instruments that estimate the meridional flow on a

daily basis through continuous measurements of temperature and salinity [131,132].

Figure 5.1 shows the AMOC time series, with the most recent acquisition ocurring in

September 2015. Such measurements have provided valuable information and there

is a great interest not only on predicting future behaviour, but also in investigating

past natural variability in the AMOC. Climate or ocean models [133], and ocean

reanalysis reconstruction [134–137] have been used for such purposes. Although

there is not a general agreement on the dynamics of the AMOC, several climate

model simulations suggest that the it will decline in strength during the 21st century

due to increasing greenhouse gases [132, 138].

The data set that is used consists of the variables shown in Table 5.1. These were

selected and gathered by Prof. Grant Bigg from the Department of Geography at

the University of Sheffield. The variable of interest consists of mean AMOC values

from the RAPID array that were measured monthly from April 2004 to September

2015. The input variables used for the model are composed of two major types, an

atmospheric one and three ocean density variables.

The AMOC strength has an upper ocean component directly related to the
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Figure 5.1: Monthly observed values of the AMOC over April 2004 - September
2015. The units are Sverdrups (Sv), equivalent to 106 m3/s.

Variable Symbol Description

Input

N Standardized North Atlantic Oscillation index
GM Density over the Gulf of Mexico [kg/m3]
LS Density over the Labrador Sea [kg/m3]
NS Density over the Norwegian Sea [kg/m3]

Output AMOC AMOC strength [Sv] (variable of interest)

Table 5.1: Data set variables for modelling the Atlantic Meridional Overturning
Circulation. The units of the AMOC are Sverdrups (Sv), equivalent to 106 m3/s.
These variables were selected and gathered by Prof. Grant Bigg from the Depart-
ment of Geography at the University of Sheffield
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Figure 5.2: Map showing the position of the RAPID line (in black) deployed at
26ºN in the Atlantic Ocean. The regions chose to calculate regional surface density
variables are highlighted in squares. This choice involves a mix of northern regions,
where winter convection and deep water formation occurs, and a southern region in
the Gulf of Mexico, from which the upper ocean waters feeding the main northward
flow of the Gulf Stream derive.

wind strength. To represent this at basin-scale, the North Atlantic Oscillation (N)

index is chosen because of its strong links to the relative strength and locations of

the central North Atlantic atmospheric pressure systems [139]. Monthly values of

the N index were taken from the Climate Prediction Center, which is part of the

National Oceanic and Atmospheric Administration’s National Weather Service in

the USA [140]. With respect to the ocean density variables, these are the surface

density averaged over the region in the Gulf of Mexico (GM) 23-30ºN, 82-90ºW, the

surface density averaged over the Labrador Sea (LS) region 51-65ºN, 42-65ºW, and

the surface density over the southern Norwegian Sea (NS) area 60-65ºN, 5ºE-12ºW

(Figure 5.2).

This choice of ocean density variables involves a mix of northern regions, where

winter convection and deep water formation occurs, and a southern region in the

Gulf of Mexico, from which the upper ocean waters feeding the main northward

flow of the Gulf Stream derive. Computation of the three density variables involved

downloading surface potential temperature and salinity data over the respective
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Figure 5.3: Monthly observed values of the N (standardized NAO index), density
variables GM (Gulf of Mexico), LS (Labrador Sea) and NS (Norwegian Sea) over
April 2004 - September 2015.

areas, and the use of the density formula given by [141] at zero pressure. Time

series of the input variables involved in the data set are shown in Figure 5.3.

5.3 Methodology

The NARX methodology is employed for the analysis of the AMOC data set. As

discussed in chapter 2, the OFR algorithm uses the ERR index to identify the most

significant predictors that explain the output variable’s variance. However, the ERR

is only able to detect linear dependencies. Another concern is related to the stop

criterion when building a model. Originally, when the sum of the ERR values of

the predictors selected is above a given threshold η, the model training process is

stopped. This of course requires a careful selection of the threshold. If it is too

small, the identified model cannot capture the dynamics of the system completely.

However, if the threshold is too large, it can lead to an overfitted model that does

not generalize well to new observations. Based on the improvements discussed to
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the OFR algorithm in Section 3.4.3, in this chapter two model selection approaches

are complementarily used to select the most appropriate number of model terms.

The first one makes use of penalty metrics, which provide a relative quality of the

model, penalising those models that are too complex. The second approach makes

use of performance metrics, where the data is separated into training and test sets.

Based on the data description given in Section 5.2, three sets of variables are

used to build three different NARX models of the AMOC. These are summarised

below:

• Case 1: given the similarity of the three density variables as shown in Figure

5.3, they are combined in a single variable by taking the mean value. This case

detects the relative contributions of the atmosphere and ocean mean states.

The variables to consider are:

– AMOC strength (output variable)

– NAO index (input variable)

– Mean of the density variables (input variable) defined as

U =
GM + LS +NS

3
(5.1)

• Case 2: given that the AMOC is a current between the water of the Gulf of

Mexico and the northern seas, the difference in the densities of these regions

is taken into account. This cases focuses on the relative contributions of the

atmosphere and the meridional density difference between surface and deep

water source waters. The variables to consider are:

– AMOC strength (output variable)

– NAO index (input variable)

– Difference of the density variables (input variable) defined as

V =
LS +NS

2
−GM (5.2)
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• Case 3: this cases combines the two previous cases to detect the relative contri-

butions of the atmosphere and the contrasting mean and meridional differences

in ocean density. The variables to consider are:

– AMOC strength (output variable)

– NAO index (input variable)

– Mean of the density variables U (input variable)

– Difference of the density variables V (input variable )

Note that the main objectives of this study are twofold: a) to investigate which

input variables are the most important, and how the change of AMOC depends on

the interactions of these important input variables; and b) to investigate the predic-

tive power of these important variables for forecasting the AMOC. We therefore do

Figure 5.4: Monthly observed values of U (mean of density variables given by
Eq. 5.1) and V (difference of density variables given by Eq. 5.2) over April 2004 -
September 2015. It is noteworthy that these variables, while retaining the annual
cycle, have opposite extremes, namely, the highest value of the mean density (U)
is during the winter, while the largest difference in density (V ) occurs during the
summer.
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not consider autoregressive model terms (i.e. lagged AMOC terms are not included

in the models).

The time series for the new variables U and V are shown in Figure 5.4. From the

time series, it is noteworthy that these variables, while retaining the annual cycle,

have opposite extremes, namely, the highest value of the mean density (U) is during

the winter, while the largest difference in density (V ) occurs during the summer.

The data set is divided in three parts. The first part contains data from April

2004 to March 2013, which is used for training several models using the ERR and

MI indices, together with penalty and performance metrics. The second part uses

data from April 2013 to March 2014 for model validation/comparison and model

evaluation. The last part contains data from April 2014 to September 2015, which

is used to test models’ predictive performance on data that are not used in the

model identification and selection phase. Furthermore, the fitting performance over

the training set and the prediction performance over the validation set are treated

equally. This allows the computation of an average evaluation metric that helps

to build a model that captures efficiently the system dynamics without under- or

overfitting the data.

It is important to mention that for each of the three variables, AMOC, U , and

V , the corresponding mean value is removed prior to the model building procedure.

The mean values of the three variables, estimated based on the training data (i.e.

data from April 2004 to March 2013), are 16.97 Sv for AMOC, 1026.98 kg/m3 for

U , and 3.4 kg/m3 for V , respectively. This is done partly because the magnitudes of

the density variables are much larger than the N index and the AMOC strength.

Removing the mean value ensures that the density variables do not dominate the

training and validation phases, and that the resulting models are more robust.

A nonlinear model term and variable selection procedure proposed in [46] is

applied, and numerical experimental results suggest that nu = 8 is an appropriate

choice. For convenience, polynomials of nonlinear degree ℓ = 2 are employed.
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5.4 Results

5.4.1 Model Training and Validation

For all three cases, the models with the best performance are those selected by means

of the ERR metric using cross-validation. These are shown in Tables 5.2-5.4. Note

that the variables reported in Tables 5.2-5.4 are mean-removed. So, for example,

the model for Case 3 should be read as:

y (k) = −2.5 [V (k − 7)− 3.41] + 1.207N (k)− 1.240N (k) [U (k − 6)− 1026.98]

Accordingly, the model predicted AMOC strength is:

AMOC (k) = y (k) + 16.97

Models for Cases 1 and 2 should be used in the same manner.

Each trained model is evaluated using the training and validation data sets up

to March 2014. The average performance metrics for the three models are shown in

Table 5.5. From these, it can be argued that the Case 2 model performs best overall.

This suggests that the difference in density between the deep-water formation areas

and the upstream Gulf Stream source region seven months ago provide the best indi-

cation of variation in the AMOC strength. Furthermore, an important observation

is that all three cases agree that the current NAO index plays a discernible role in

the AMOC strength.

The best model (i.e. the Case 2 model) is applied to the test data of April 2014

to September 2015, and its performance is shown in Table 5.6. Figure 5.5 shows

a comparison between the model simulation output and the actual measurements.

These show that the model captures the main dynamics of the AMOC process, al-

though it is worth noting that the reduced anual cycle component of the AMOC

in 2014/15 decreased the metric scores for the test period (Table 5.6) compared
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Model Term Parameter ERR (%)

U (k − 7) 2.221 17.95
N (k) 1.307 13.88

N (k)U (k − 6) -1.363 6.63
N (k − 8)U (k − 3) 1.096 4.42

Table 5.2: Identified NARX model for the AMOC strength using Case 1 scenario.
Four model terms were identified with their corresponding estimated parameter
values. The ERR for each model term is shown in the last column.

Model Term Parameter ERR (%)

V (k − 7) -2.449 20.60
N (k) 1.316 14.46

N (k)V (k − 6) 1.237 5.27
N (k − 8) V (k − 3) -1.065 5.10
N (k − 3) V (k − 3) 1.018 4.61

Table 5.3: Identified NARX model for the AMOC strength using Case 2 scenario.
Five model terms were identified with their corresponding estimated parameter val-
ues. The ERR for each model term is shown in the last column.

Model Term Parameter ERR (%)

V (k − 7) -2.500 20.60
N (k) 1.207 14.46

N (k)U (k − 6) -1.240 5.90

Table 5.4: Identified NARX model for the AMOC strength using Case 3 scenario.
Three model terms were identified with their corresponding estimated parameter
values. The ERR for each model term is shown in the last column.

Case ME RMSE MAE

1 -0.6376 Sv 2.3282 Sv 1.8603 Sv
2 -0.2123 Sv 2.0761 Sv 1.6908 Sv
3 -0.3479 Sv 2.2852 Sv 1.8940 Sv

Table 5.5: Average performance metrics on the training and validation data sets
for each of the three Model Cases. The Case 2 model performs best overall suggest-
ing that the difference in density between the deep-water formation areas and the
upstream Gulf Stream source region seven months ago provide the best indication
of variation in the AMOC strength.
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ME RMSE MAE

-0.3573 Sv 2.6477 Sv 2.2210 Sv

Table 5.6: Performance metrics on the test set using the best model found (model
from Case 2). The reduced anual cycle component of the AMOC in 2014/15 de-
creased the metric scores for the test period.
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Figure 5.5: Modelled and predicted AMOC anomaly obtained using the best model
found (model from Case 2). The blue line corresponds to the training and validation
set, while the red line corresponds to the testing set. The model captures the main
dynamics of the AMOC process, although it is worth noting that the reduced anual
cycle component of the AMOC in 2014/15 decreased the metric scores for the test
period compared to the training period.

to the training period. This phenomenon was observed at the RAPID Challenge

(www.rapid.ac.uk/challenge), where many of the predictions also experienced diffi-

culty in predicting this feature.

It is noteworthy that over the whole period of the RAPID data set, the correlation

between the model simulation output (from the Case 2 model) and the observations,

as shown in Figure 5.5, is 0.66, which is statistically significant well beyond the 1%

level.

5.4.2 Nonlinear versus linear models

It is interesting to notice that the two leading terms of all three Model Cases shown

in Tables 5.2-5.4 are linear. To test whether use of a nonlinear model has a statisti-
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Model Term Parameter ERR (%)

V (k − 7) -3.132 20.60
N (k) 1.268 14.46

U (k − 4) -5.322 5.23
U (k) -4.571 4.50

V (k − 3) -4.145 2.40
V (k − 1) -1.960 2.20
U (k − 7) -0.1045 1.71

Table 5.7: Identified NARX model of maximum degree 1 for the AMOC strength.
Seven model terms were identified with their corresponding estimated parameter
values. The ERR for each model term is shown in the last column.

ME RMSE MAE

0.5393 Sv 2.5678 Sv, 1.9481 Sv

Table 5.8: Average performance metrics on the training and validation data sets
for NARX model of maximum degree 1. These metrics are significantly larger than
the metrics for the Case 2 model suggesting that the purely linear model has an
inferior performance.

cally significant improvement over use of a purely linear model, a NARX model of

maximum degree 1 is developed for the training period. This is shown in Table 5.7.

Such a model is applied to predict the AMOC strength; the average performance

metrics of the linear model on the training and validation data sets are shown in

Table 5.8, all of which are significantly larger than the metrics for the Case 2 model

(in Table 5.5) and so clearly suggesting that the purely linear model is inferior to

the Case 2 model.

The above statement can be confirmed by means of the Ramsey Regression

Equation Specification Error Test (RESET) [142]. This test was designed to examine

the null hypothesis that a linear model is enough to explain the output signal,

whereas the alternative hypothesis suggests that the model has missed important

nonlinearities. Mathematically, this test fits the linear part of Eq. (2.3), i.e.

y (k) = θ0 +
n∑

i1=1

θi1xi1 (k) + e (k) (5.3)

and compares it with the model
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y (k) = θ0 +
n∑

i1=1

θi1xi1 (k) + γ1ŷ
2 (k) + . . .+ γd−1ŷ

d (k) + e (k) (5.4)

where the polynomial degree d ≥ 2, and the ŷ (k) corresponds to the fitted val-

ues of Eq. (5.3). Under the null hypothesis of a correct linear specification in

Eq. (5.4), then γ1 = . . . = γd−1 = 0, which can be tested by the F-test, i.e.

F (d− 1, N − (n + 1)− d+ 1), on the joint significance of the parameters γ1, . . . , γd−1.

The results from the RESET test are shown in Table 5.9. These suggest that

there is enough evidence to use a nonlinear model whose nonlinearity degree is

d = 2 (i.e. the polynomial power is 2), to represent the preprocessed data, while not

enough evidence is available to choose a model of power 3 (i.e. nonlinearity degree

d = 3) at the 5% significance level.

Polynomial Degree P-value

2 4.591e-05
3 0.9573

Table 5.9: P-values obtained from the Ramsey Regression Equation Specification
Error Test (RESET) to determine the appropriate degree of the model. These
suggest that there is enough evidence to use a nonlinear model whose nonlinearity
degree is d = 2 to represent the preprocessed data, while not enough evidence is
available to choose a model of power 3 at the 5% significance level.

5.4.3 Hindcasting

The Case 2 model is used to hindcast the AMOC strength back to January 1980.

The hindcast and predicted AMOC values are shown in Figure 5.6. It is clear that

the mean of the recovered AMOC from the model has changed little since 1980. The

mean before the establishment of the RAPID array is 16.8±1.9 Sv, while since April

2004 it has become 16.8±2.3 Sv, showing no statistical difference in either the mean

or variance. The tendency for an irregular annual cycle, with a winter minimum, a

spring maximum, and a typical range of 2-3 Sv, also extends throughout the data

set, although this has occasionally broken down in the past (e.g. around 1989) as

during the RAPID program (e.g. around 2009).
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Figure 5.6: Hindcast and predicted AMOC obtained using the Case 2 model. It is
clear that the mean of the recovered AMOC from the model has changed little since
1980.

From the results above, it can be seen that the NARX model from Case 2 matches

reasonably well the AMOC dynamics. This gives confidence on the hindcast back

to 1980.

5.5 Modelling of the AMOC with the BFOR-dCor

algorithm

The model from Case 2 (Table 5.3) suggests the possibility of some predictive ability

for the AMOC, because the dominant term contains a time lag of 7 months, through

the density difference driving the variability. To confirm this, the BFOR-dCor algo-

rithm is applied, which can provide insightful information about the most common

model term given the limited data set size.

The BFOR-dCor algorithm is applied using a total of R = 500 bootstrap realisa-

tions, a block length B = 10, and the maximum number of terms is mmax = 1. The

3 top model terms are shown in Table 5.10. The most voted model term is V (t− 7)

with 176 votes, which correspond to 35.2% of the bootstrap realisations. This con-

firms the results from the Case 2 model, where the density difference between the
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Model Term # votes

V (t− 7) 176
V (t− 8) 144

N (t)V (t− 6) 98

Table 5.10: Three top model terms identified for the AMOC anomaly using the
BFOR-dCor algorithm. The most voted model term is V (t− 7), confirming that
the density difference between the northern sinking waters and the Gulf of Mexico
source waters of the main overturning current with a dominant lag time of 7 months
have a significant contribution in the prediction of the AMOC.
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Figure 5.7: Modelled and predicted AMOC anomaly obtained using the average of
the 176 models identified by the BFOR-dCor algorithm. The blue line corresponds
to the training and validation set, while the red line corresponds to the testing set.
The blue and red shadows represent the two standard deviation region.

northern sinking waters and the Gulf of Mexico source waters of the main overturn-

ing current with a dominant lag time of 7 months have a significant contribution in

the prediction of the AMOC.

For comparison purposes, the 176 simpler models with the V (t− 7) term are used

to forecast the AMOC. This is shown in Figure 5.7. Much less of the variability of

the AMOC signal is captured when just using this term, but the correlation with the

RAPID series from 2004 to 2015 is still a statistically significant 0.44. While such

a simple model is clearly not of significant predictive usefulness in itself, it suggests

that the AMOC may be predictable at least 6 months in advance.
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5.6 Discussion

The identified models show that in many terms a dominant lag time tends to be

around 6-8 months, particularly in V , the density difference between the convection

regions and the Gulf Stream source. Previous studies agree with this timescale,

where it is suggested that the AMOC variation is linked to boundary waves generated

by density fluctuations in the Labrador Sea and then travelling south along the

American shelf [137, 143].

This analysis also shows that, while the leading terms of each model are linear,

the best model has distinct nonlinear components, involving a modulation of the

wind and density difference variables. This nonlinearity is important in providing the

best reproduction of the observed AMOC variation, and its inclusion is statistically

robust. This nonlinearity is consistent with the nonlinear nature of many density-

driven wave processes [141].

Nevertheless, details of the variation in the AMOC are not always well captured.

The extrema during the training and test period are often under- or overestimated,

although there are periods when these are captured well. In particular, it is notable

that the extended reduction in observed AMOC strength around the beginning of

2010 is well predicted by the model (Figure 5.5). This is related to an extreme

variation in the mean density difference V , between a peak maximum in 2009 and

a peak minimum in 2010, associated with the prolonged negative excursion of the

NAO index around this period (Figure 5.3), which led to the coldest winter in the

UK since 1979 [144].

Looking at the longer model reconstruction, back to 1980, an element of decadal-

scale change is visible (Figure 5.6). While there is essentially no trend over the whole

record (-0.02 Sv/yr), the 1980s tended to have a higher modelled AMOC (17.2±1.7

Sv) than the late 1990s (16.2±2.1 Sv over 1995-1999). Furthermore, it is also notable

that the hindcasted AMOC varies in a range approximately between 13 and 20 Sv.

Rapid and significant change in the strength of the AMOC within this range is a

characteristic of the longer term pattern, and recent changes since 2010 are not
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unprecedented.

5.7 Summary

In this chapter, the NARX modelling methodology is used to forecast and hindcast

the Atlantic Meridional Overturning Circulation. Three cases are considered, each

involving a different set of variables that include the relative contributions of the

atmosphere and the contrasting mean and/or meridional differences in ocean density.

Several models are trained using the ERR and MI indices, together with penalty and

performance metrics as discussed in Chapter 3. The best models in each case are

compared in order to select the most appropriate one for hindcasting based on three

evaluation metrics. For this purpose, the model that is built using the meridional

differences in ocean density is chosen and used to predict the AMOC back to 1980. In

general, the NARX model captures reasonably well the inner dynamics even though

the sample size is not large enough. Furthermore, it is found that the difference

in ocean density has a significant contribution with a dominant lag time around 7

months. This was confirmed by the BFOR-dCor algorithm. This case study serves

as an example of how the NARX R package can be used for modelling, as well as the

opportunity to show the predictive power of NARX models to predict the strength

of the AMOC in the subtropical North Atlantic.
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Logistic NARX model

6.1 Introduction

Many real-life systems involve a mixed combination of continuous and discrete vari-

ables. Binary responses are commonly studied in many situations, such as the pres-

ence or absence of a disease, granting a loan, or detecting the failure of a process,

system or product [54, 117]. However, the use of traditional regression techniques

to deal with systems with a dichotomous response variable may not be appropriate

given that they are sensitive to outliers and the distribution of the classes [54]. In

fact, the different versions of the NARX methodology have been designed under the

assumption that the variables involved are continuous.

In this chapter, a novel approach is proposed that combines logistic regression

with the NARX methodology focusing on systems with binary responses that depend

on continuous predictors. The main motivation comes from the fact that logistic

regression models are more suitable for binary classification problems given that

they provide probabilities of belonging or not to a particular class. One impor-

tant consideration when constructing a logistic regression model is multicollinearity,

i.e. checking for high inter-correlations among the predictor variables. In the ideal

scenario, the predictor variables will have a strong relationship to the dependent

variable but should not be strongly related to each other [145]. However, it is not

straightforward to select the predictor variables that satisfy this requirement. This

110
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problem is adequately solved using the NARX approach, since the model terms

selected are orthogonal (uncorrelated) to each other. Furthermore, the NARX ap-

proach allows for the inclusion of lagged terms and interactions between them in

a straight forward manner resulting in interpretable models, something that is not

achievable using other popular classification techniques like random forests [146],

support vector machines [36] and k-nearest neighbors [17].

6.2 Logistic NARX Modelling Approach

Classification problems appear in several disciplines like, among others, finance,

healthcare, and engineering, where the aim is to identify a model that is able to

classify observations or measurements into different categories or classes. Many

methods and algorithms are available which include logistic regression [54,117], ran-

dom forest [146], support vector machines [36] and k-nearest neighbors [17]. The

latter three are very popular but their major drawback is that they remain as black

boxes for which the interpretation of the models may not be straightforward. Al-

though it is possible to obtain an importance index for the predictors in the model,

this does not help in understanding the possible inner dynamics of a system. On the

other hand, logistic regression is an approach that produces a model to predict cate-

gorical outcomes. The predicted values are probabilities and are therefore restricted

to values between 0 and 1 [145]. Logistic regression uses the logistic function defined

as,

f (x) =
1

1 + exp (−x)
(6.1)

where x has an unlimited range, i.e. x ∈ R, and f (x) is restricted to range from

0 to 1 [117]. One issue with logistic regression models is that they require the

model terms and the interactions between them to be specified beforehand. This is

problematic since it is important to always check for high inter-correlations among

the predictor variables. In the ideal scenario, the predictor variables will be strongly
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related to the dependent variable but not strongly related to each other in order to

avoid the multicollinearity problem [145].

The new approach combines the logistic function with the NARX representation

in order to obtain a probability model

p (k) =
1

1 + exp
[
−
∑M

m=1 θmφm

(
ϕ (k)

)] (6.2)

The new algorithm is described in Algorithm 6.1 based on the original OFR

algorithm. For convenience, let us assume that the output sequence y (k) can be

either y (k) = 1 or y (k) = 0 for k = 1, 2, . . . , N , where y (k) = 1 denotes the

occurrence of the event of interest. Similar to chapter 4, instead of a threshold for

the total of ERR, the user needs to specify the maximum number of terms mmax that

the algorithm will look for [47]. Furthermore, traditionally the OFR algorithm relies

on the ERR index given by Eq. (2.7) to determine the significance of a model term

with respect to the output sequence. However, this metric is no longer useful given

that the output is a binary sequence and the information from the class denoted as

0 would be lost. To overcome this issue, the biserial correlation coefficient is used,

which measures the strength of the association between a continuous variable and a

dichotomous variable [145]. The biserial correlation coefficient is defined as

r (x,y) =
X1 −X0

σX

√
n1n0

N2
(6.3)

where X0 is the mean value on the continuous variable X for all the observations

that belong to class 0, X1 is the mean value of variable X for all the observations

that belong to class 1, σX is the standard deviation of variable X, n0 is the number

of observations that belong to class 0, n1 is the number of observations that belong

to class 1, and N is the total number of data points.

In Algorithm 6.1, lines from 1 to 4 aim to find the candidate model term that

makes the most significant contribution in explaining the variation of the system

output measured by the biserial correlation coefficient. Once found, lines 5-8 create
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Algorithm 6.1 Orthogonal Forward Regression for Logistic NARX models
Input: Dictionary of regressor vectors D = {φ1,φ2, . . . ,φM}, output signal y,
maximum number of terms mmax

Output: Logistic NARX model with significant terms selected from D and corre-
sponding parameters θ estimated

1: for all φi in D do
2: Define wi = φi/∥φi∥2

3: Compute r(i) (wi,y)
4: Find j = max

1≤i≤M

{
r(i) (wi,y)

}

5: Define q1 = wj

6: Define p1 = φj

7: Train a logistic regression model using y and p1

8: Compute the k-fold cross validation accuracy and store it
9: Remove φj from D

10: for s = 2 to mmax do
11: for all φi in D do
12: Orthonormalize φi with respect to [q1, . . . ,qs−1] to obtain wi

13: if wT
i wi < 10−10 then

14: Remove φj from D
15: Go to next iteration
16: Compute r(i) (wi,y)
17: Find j = max

1≤i≤M−s+1

{
r(i) (wi,y)

}

18: Define qs = wj

19: Define ps = φj

20: Train a logistic regression model using y and p1, . . . ,ps

21: Compute the k-fold cross validation accuracy and store it
22: Remove φj from D
23: Using the stored k-fold cross validation accuracies, select the most parsimonious

model with m ≤ mmax terms with the best accuracy performance
24: Return matrix of terms selected Φ =

[
φ1 φ2 . . . φm

]
and vector of coef-

ficients θ =
[
θ1 θ2 . . . θm

]T

a simple logistic model using the maximum likelihood estimation method, and assess

its performance using a k-fold CV accuracy. New candidate terms are orthogonalised

with respect to the model terms already chosen using the modified Gram-Schmidt

method, and evaluated using the biserial correlation coefficient. This process is

repeated in lines 10-22 until it reaches a pre-specified maximum number mmax of

model terms to be included in the final model, where m ≤ mmax. Lines 13-15 are

used to calculate the squared norm-2 of each candidate model term, based on which it

decides if a candidate term should be excluded to avoid any potential ill-conditional

issue. When a new model term is included, a logistic regression model is trained and
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the k-fold CV accuracy is computed in lines 20-21. When the iteration reaches the

specified number mmax, a parsimonious model consisting of a total of up to mmax

model terms is then selected in line 23 based on the best CV accuracy obtained.

Finally, the algorithm returns the parameters θ together with the selected model

terms. Given that the optimal number of model terms is not known in advance,

the parameter mmax can be selected heuristically, by running Algorithm 6.1 several

times, and checking the resulted CV accuracy curve. In case the best model contains

exactly mmax model terms, this means that the appropriate number of model terms

may be beyond this value; therefore it could be increased to find a better model.

The proposed algorithm combines the transparency and efficiency of the NARX

models with logistic regression to deal with classification problems. This combi-

nation is advantageous since the NARX methodology helps to deal with the mul-

ticollinearity problem because of the orthogonalisation process that takes places.

Furthermore, the NARX approach allows for the inclusion of lagged terms and in-

teractions between them in a straight forward manner resulting in interpretable

models, something that is not achievable using random forests, support vector ma-

chines and k-nearest neighbors.

The time complexity of the logistic NARX method is determined by three main

parts: the assessment of feature relevancy to the class label, the computation of the

logistic regression model, and the orthogonalisation operations. Feature relevancy

assessment has a linear time complexity of O (NM), where N is the number of

observations and M is the number of candidate features. The computation of the

regression model has a worst-case time complexity of O (M3 +NM) [147], while the

orthogonalisation procedure has a complexity of O (N (M − 1)) [148]. As a result,

the overall time complexity takes the order of O (M3 +NM).

6.3 Case studies

In this section, three simulation examples are provided to illustrate the effectiveness

of the new Logistic NARX methodology. In the first two cases, data is created from
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a lagged polynomial model, while in the third case a lagged non-polynomial model is

used. In both cases, the performance of the algorithm with traditional classification

techniques is compared. For simplicity, the analysis is restricted to polynomial

NARX models as described in Eq. (2.2), although the algorithm can be applied

to other NARX models using wavelets [78, 149] or radial basis functions [150, 151].

Furthermore, two real scenarios are presented where the methodology is applied

to the detection of cancerous cells in a breast cancer data set [152–154], and the

detection of human eye blinking using an electroencephalogram data set [154].

6.3.1 Example 1

Consider the following input-output system:

y [k] =

⎧
⎪⎪⎨

⎪⎪⎩

1 if u2 (k) + 2v2 (k)− 0.8u2 (k) v (k) + e (k) < 1

0 otherwise

(6.4)

where the inputs u [k] and v [k] are uniformly distributed between [−1, 1], i.e. u [k] ,v [k] ∼

U (−1, 1), and e [k] ∼ N (0, 0.32). A total of 1000 input-output data points are col-

lected. Plotting such points produces the figure shown in Figure 6.1.

Most classification techniques are able to perform static binary classification with

high accuracy. The new algorithm is applied to this data set. The data is separated

in a training set (700 points) and a testing set (300 points). Given that this is a

static problem, no lags are used, and the nonlinear degree is chosen as ℓ = 3, which

results in a search space with 10 model terms. Therefore, the maximum number of

terms is selected as mmax = 10, and 10 folds are used to compute the CV accuracy.

Fig. 6.2 shows the CV accuracy plot obtained after applying Algorithm 6.1 and

it suggests that no significant improvement in accuracy is obtained with models

that have more than 4 models terms. Therefore, a model with 4 terms is chosen

and these are shown in Table 6.1. Such results show that the algorithm is able to

identify correctly all model terms involved in the decision boundary for Eq. (6.4).

The parameters obtained are log odds ratios, therefore they do not necessarily need
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Figure 6.1: Data points obtained from the input-output system given in Eq. (6.4).
The variables u and v are uniformly distributed random variables. Points in blue
correspond to class y = 0 and points in red correspond to class y = 1. It is possible
to find a model that separates the two classes with high accuracy.

to resemble the ones in the decision boundary function.

For comparison purposes, a regression-like NARX model based on the approach

suggested in [47], a random forest with 500 trees, a support vector machine with

0.5

0.6

0.7

1 2 4 6 10
Number of model terms

Figure 6.2: Cross-validation accuracy plot obtained for Eq. (6.4) using Algorithm
6.1. No significant improvement in accuracy is obtained with models that have more
than 4 models terms.
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Model Term Parameter

v2 (k) -12.297
constant 6.459
u2 (k) -6.632

u2 (k) v (k) 4.470

Table 6.1: Identified logistic NARX model for Eq. (6.4) using Algorithm 6.1. Four
model terms were identified with their corresponding estimated parameter values.
The parameters obtained are log odds ratios, therefore they do not necessarily need
to resemble the ones in the decision boundary function. All model terms selected
correspond to the true model.

Method Classification accuracy

Logistic NARX 0.8829
Regression NARX 0.8763
Random Forest 0.8729

Support Vector Machine 0.8796
K-Nearest Neighbors 0.8428

Table 6.2: Accuracy performance between different methods for modelling of Eq.
(6.4). The logistic NARX model is compared against a regression-like NARX model
based on the approach suggested in [47], a random forest with 500 trees, a support
vector machine with a radial basis kernel, and a k-nearest neighbors model. The
logistic NARX model has a comparable performance with the rest of the techniques.

a radial basis kernel, and a k-nearest neighbors model are trained with the same

training set. All models are compared using the testing set and the classification

accuracy. The results are shown in Table 6.2. It can be seen that the new method

has a comparable performance with the rest of the techniques, making it a feasible

alternative for static binary classification problems.

6.3.2 Example 2

Let us consider a slightly different version of Eq. (6.4) as follows:

y [k] =

⎧
⎪⎪⎨

⎪⎪⎩

1 if u2 (k − 1) + 2v2 (k − 2)− 0.8u2 (k − 2) v (k − 1) + e (k) < 1

0 otherwise

(6.5)

Plotting again the data points results in the figure shown in Figure 6.3. As it
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can be observed, there is not a clear boundary between the two classes as in Figure

6.1. This is a problem as it can be wrongly suggested that the two classes cannot

be separated.
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Figure 6.3: Data points obtained from the input-output system given in Eq. (6.5).
The variables u and v are uniformly distributed random variables. Points in blue
correspond to class y = 0 and points in red correspond to class y = 1. Although
the points can be separated by means of Eq. (6.5), there is not a clear boundary
between the two classes.

The new algorithm is applied to this data set. The data is separated in a training

set (the first 700 points) and a testing set (the last 300 points). The maximum lags

for the inputs and output are chosen to be nu = ny = 4, and the nonlinear degree is

ℓ = 3, which results in a search space with 165 model terms. The maximum number

of terms is selected as mmax = 10, and 10 folds are used to compute the CV accuracy.

Figure 6.4 shows the CV accuracy plot obtained after applying Algorithm 6.1 and

it suggests that the most parsimonious model with the best accuracy has 4 models

terms. These are shown in Table 6.3. Such results show that the algorithm is able

to identify correctly all model terms involved in the decision boundary for Eq. (6.5).

The parameters obtained are log odds ratios, therefore they do not necessarily need

to resemble the ones in the decision boundary function.
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Figure 6.4: Cross-validation accuracy plot obtained for Eq. (6.5) using Algorithm
6.1. No significant improvement in accuracy is obtained with models that have more
than 4 models terms.

Model Term Parameter

v2 (k − 2) -12.508
constant 6.155
u2 (k − 1) -6.086

u2 (k − 2) v (k − 1) 4.582

Table 6.3: Identified logistic NARX model for Eq. (6.5) using Algorithm 6.1. Four
model terms were identified with their corresponding estimated parameter values.
The parameters obtained are log odds ratios, therefore they do not necessarily need
to resemble the ones in the decision boundary function. All model terms selected
correspond to the true model.

For comparison purposes, a regression-like NARX model based on the approach

suggested in [47], a random forest with 500 trees, a support vector machine with

a radial basis kernel, and a k-nearest neighbors model are trained with the same

training set. In general, traditional classification techniques do not consider lagged

variables unless these are explicitly included, therefore two cases are considered: the

first case assumes that no autoregressive terms are available, therefore only u (k) and

v (k) are used. In the second one, the same lagged input and output variables that

are considered for the logistic NARX model are used with the maximum lags chosen

to be nu = ny = 4 (the regression-like NARX model only considers the second case).

All models are compared using the testing set and the OSA accuracy. The results
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Method Classification accuracy

Logistic NARX 0.8581
Regression NARX 0.8581

Random Forest (without autoregressive inputs) 0.5034
Support Vector Machine (without autoregressive inputs) 0.5574

K-Nearest Neighbors (without autoregressive inputs) 0.5267
Random Forest (with autoregressive inputs) 0.8514

Support Vector Machine (with autoregressive inputs) 0.777
K-Nearest Neighbors (with autoregressive inputs) 0.6284

Table 6.4: Accuracy performance between different methods for modelling of Eq.
(6.5). The logistic NARX model is compared against a regression-like NARX model
based on the approach suggested in [47], a random forest with 500 trees, a support
vector machine with a radial basis kernel, and a k-nearest neighbors model. The
exclusion/inclusion of autoregressive inputs is also taken into account. The logistic
NARX model has a comparable performance with the rest of the techniques. The
NARX-type models have the best accuracy. This is expected given the NARX-like
structure that generates the data.

are shown in Table 6.4. It can be seen that the new method has the best accuracy

performance together with the regression-like NARX model. This is expected given

the NARX-like structure that generates the data. Nevertheless, the regression-like

NARX model produces real-valued outputs, which make them difficult to interpret

for classification. On the other hand, the logistic NARX model is preferred because

its outputs are restricted to range from 0 to 1, and they can be used as classifi-

cation probabilities. Furthermore, the random forest, support vector machine and

k-nearest neighbors models are not able to generate reliable results if lagged vari-

ables (i.e. values observed in some previous time instants) are not taken into account

when defining the feature vector, however their performance is increased when the

autoregressive input variables are included. Although it may be argued that the

method is just slightly better than the random forest with autoregressive inputs, it

must be taken into consideration that the logistic NARX model is transparent and

the role or contribution of individual regressors can be known.

6.3.3 Example 3

Consider the following input-output system:
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y [k] =

⎧
⎪⎪⎨

⎪⎪⎩

1 if − u (k − 1)
√

|v (k − 1)|+ 0.5u3 (k − 1) + sin (v (k − 2)) + e (k) < 0

0 otherwise

(6.6)

where the inputs u (k) and v (k) are uniformly distributed between [−1, 1], i.e. u (k) ,

v (k) ∼ U (−1, 1), the error sequence is given by e (k) = w (k) + 0.3w (k − 1) +

0.6w (k − 2) and w (k) is normally distributed with zero mean and variance of 0.01,

i.e. w (k) ∼ N (0, 0.12). A total of 1000 input-output data points are collected.

The new algorithm is applied to this data set. The data is separated in a training

set (the first 700 points) and a testing set (the last 300 points). The maximum lags

for the inputs and output are chosen to be nu = ny = 4, and the nonlinear degree

is ℓ = 3, which results in a search space with 165 model terms. The maximum

number of terms is selected as mmax = 10, and 10 folds are used to compute the CV

accuracy. Figure 6.5 shows the CV accuracy plot obtained after applying Algorithm

6.1 and it suggests that the most parsimonious model with the best accuracy has 8

models terms. These are shown in Table 6.5.
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Figure 6.5: Cross-validation accuracy plot obtained for Eq. (6.6) using Algorithm
6.1. No significant improvement in accuracy is obtained with models that have more
than 8 models terms.
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Model Term Parameter

v (k − 2) -12.755
constant 0.224

u (k − 1) v2 (k − 1) 8.488
v3 (k − 2) -15.323

u (k − 1) v2 (k − 2) 10.066
u (k − 1) 9.047
u3 (k − 1) -8.715

u (k − 1) u2 (k − 4) -3.285

Table 6.5: Identified logistic NARX model for Eq. (6.6) using Algorithm 6.1. Eight
model terms were identified with their corresponding estimated parameter values.
The parameters obtained are log odds ratios, therefore they do not necessarily need
to resemble the ones in the decision boundary function.

Similarly to the previous case study, a regression-like NARX model based on

the approach suggested in [47], a random forest with 500 trees, a support vector

machine with a radial basis kernel, and a k-nearest neighbors model are trained

with the same training set. Again, two cases are considered: the first case assumes

that no autoregressive terms are available, therefore only u (k) and v (k) are used. In

the second one, the same lagged input and output variables that are considered for

the logistic NARX model are used with the maximum lags chosen to be nu = ny = 4,

and the nonlinear degree is ℓ = 3, which results in a search space with 165 model

terms. All models are compared using the testing set and the OSA accuracy. The

results are shown in Table 6.6. It can be seen that the new method has the best

accuracy performance, with a very similar result to the regression-like NARX model

and the random forest with autoregressive inputs. Once more, the advantage over

the random forest models is the transparency and interpretability about the role or

contribution of individual regressors. Also, the advantage over the regression-like

NARX model is a more interpretable output that is easily related to a classification

probability.
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Method Classification accuracy

Logistic NARX 0.9392
Regression NARX 0.9358

Random Forest (without autoregressive inputs) 0.527
Support Vector Machine (without autoregressive inputs) 0.4932

K-Nearest Neighbors (without autoregressive inputs) 0.47
Random Forest (with autoregressive inputs) 0.9223

Support Vector Machine (with autoregressive inputs) 0.8986
K-Nearest Neighbors (with autoregressive inputs) 0.7973

Table 6.6: Accuracy performance between different methods for modelling of Eq.
(6.6). The logistic NARX model is compared against a regression-like NARX model
based on the approach suggested in [47], a random forest with 500 trees, a support
vector machine with a radial basis kernel, and a k-nearest neighbors model. The
exclusion/inclusion of autoregressive inputs is also taken into account. The logis-
tic NARX model has a slightly better performance than the regression-like NARX
model and the random forest with autoregressive inputs. However, the logistic
NARX model provides transparency and interpretability about the contribution of
individual regressors together with a classification probability for the predictions.

6.3.4 Breast Cancer Classification

Breast cancer is the most common cancer in women worldwide [153]. Among the

different prevention and control techniques, early detection is still the best method

in order to improve breast cancer outcome and survival [155]. For this case study, it

is employed the breast cancer data set from the University of Wisconsin Hospitals,

Madison from Dr. William H. Wolberg [154]. This data set contains 699 instances

with the following 10 attributes:

• ID number

• Clump thickness (integer value between 1 and 10)

• Uniformity of cell size (integer value between 1 and 10)

• Uniformity of cell shape (integer value between 1 and 10)

• Marginal adhesion (integer value between 1 and 10)

• Single epithelial cell size (integer value between 1 and 10)

• Bare nuclei (integer value between 1 and 10)
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• Bland chromatin (integer value between 1 and 10)

• Normal nucleoli (integer value between 1 and 10)

• Mitoses (integer value between 1 and 10)

• Class (2 for benign, 4 for malignant)

The bare nuclei attribute contains 16 missing values. Such instances are removed

from the analysis. Also, the ID number attribute does not provide any meaningful

information for the classification task, so it is removed from the data set. The class

attribute is recoded with ’0’ for a benign case and ’1’ for a malignant. The rest of

the attributes are divided by 10 in order to have feature values ranging from 0.1 to

1.

The data is separated in a training set (400 instances with 200 samples from

each class) and a testing set (283 instances). The frequency of the class for each

set is shown in Figure 6.6 where it can be noticed that each cancer type has the

same frequency in the training set, however, this is not the case in the testing set.
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Figure 6.6: Frequency of each cancer type for the training and testing sets. Each
cancer type has the same frequency in the training set to facilitate the identification
of the two classes. The imbalanced testing set can be used to check the performance
of the trained model.



Chapter 6. Logistic NARX model 125

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10
Number of model terms

C
ro

ss
-v

al
id

at
io

n 
Ac

cu
ra

cy

Figure 6.7: Cross-validation accuracy plot obtained for the Breast Cancer data
set using Algorithm 6.1. No significant improvement in accuracy is obtained with
models that have more than 3 models terms.

Nevertheless, this is not a significant issue as the training phase has access to a good

balance of the two classes that need to be identified, while the imbalanced testing

set can be used to check the performance of the trained model.

Given that this is a static problem, no lags are used, and the nonlinear degree is

chosen as ℓ = 2 based on [46]. This results in a search space with 55 model terms.

Therefore, the maximum number of terms to search is selected as mmax = 10, and

10 folds are used to compute the CV accuracy. Fig. 6.7 shows the CV accuracy

plot obtained after applying Algorithm 6.1 and it suggests that no significant im-

provement is obtained in accuracy with models that have more than 3 models terms.

Therefore, a model with 3 terms is chosen and these are shown in Table 6.7.

Model Term Parameter

Bare nuclei 6.430
constant -5.774

Uniformity of cell size 11.338

Table 6.7: Identified model terms for the Breast Cancer data set using Algorithm
6.1. Three model terms were identified with their corresponding estimated param-
eter values.

Once more, a regression-like NARX model based on the approach suggested

in [47], a random forest with 500 trees, a support vector machine with a radial
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basis kernel, and a k-nearest neighbors model are trained with the same training

set. All models are compared using the testing set and the classification accuracy.

The results are shown in Table 6.8. All the methods are able to obtain a good

classification accuracy. Although the logistic NARX does not have the best accuracy,

the difference with the best ones is negligible. This makes the logistic NARX model

a competitive alternative to other classification techniques.

Method Classification accuracy

Logistic NARX 0.9716
Regression NARX 0.9787
Random Forest 0.9787

Support Vector Machine 0.9681
K-Nearest Neighbors 0.9716

Table 6.8: Accuracy performance between different methods for modelling of the
Cancer Breast data set. The logistic NARX model is compared against a regression-
like NARX model based on the approach suggested in [47], a random forest with
500 trees, a support vector machine with a radial basis kernel, and a k-nearest
neighbors model. The results suggest that the logistic NARX model is a competitive
alternative to other classification techniques.

6.3.5 Electroencephalography Eye State Identification

Recently, electroencephalography (EEG) eye state classification has become a popu-

lar research topic with several applications in areas like stress features identification,

epileptic seizure detection, human eye blinking detection, among others [156]. For

this case study, the EEG Eye State data set found at the UCI Machine Learning

Repository is used [154]. This data set contains 14,980 EEG measurements from

14 different sensors taken with the Emotiv EEG neuroheadset during 117 seconds

(Figure 6.8). The eye state of the patient was detected with the aid of a camera

during the experiment. If the eye is closed, it is coded as a ’1’, otherwise it is coded

as ’0’.
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Figure 6.8: Emotiv EEG neuroheadset sensor position. A total of 14,980 EEG
measurements were taken from each sensor during 117 seconds. Original source:
[156].

For this analysis, the first 80% of the data set is used for training, while the rest

is used for testing. The frequency of the eye state for each data set is shown in

Figure 6.9. Similar to the breast cancer scenario, the two eye states have roughly

the same frequency in the training set, however, this is not the case in the testing

set. Once more, this is not a significant issue as the training phase can be performed

5541

0

4000

6000

Training Testing
Dataset

Fr
eq
ue
nc
y

Eye State

Open

Figure 6.9: Frequency of the eye state for the training and testing sets. Each
eye state has the roughly the same frequency in the training set to facilitate the
identification of the two classes. The imbalanced testing set can be used to check
the performance of the trained model.
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with enough information from both eye states, while the imbalanced testing set can

be used to check the performance of the trained model.

Furthermore, two preprocessing steps are performed in the training set. First of

all, several outliers are detected using data visualisation techniques (i.e. boxplots,

histograms and line plots) and summary statistics on the data of each of the 14

sensors (input variables). The outliers are replaced with the mean value of the

remaining measurements for each variable. The eye state time series, together with

the 14 cleaned variables, are shown in Figure 6.10. Second, an attempt to train

a model using the original data set is done. However, given the high variability

and dependency between the variables measured, the model does not perform well

enough. Because of this, a principal component analysis (PCA) is performed in

order to reduce the dimensionality of both the data and model space, and in this

0.00.20.40.6

4200
4300
4400
4500

4200
4300
4400
4500

4200
4250
4300
4350

4200
4250
4300
4350
4400

4000405041004150

4500
4700

4150
4200
4250

41004150420042504300

4050
4100
4150

4700

4700
4750

4150
4200
4250
4300

4300
4350
4400
4450

4150
4200
4250
4300
4350

Eye State

Index

Figure 6.10: Time series of all variables in the EEG Eye State data set found at
the UCI Machine Learning Repository [154].
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analysis the 5 most important principal components (PCs) are used to represent the

features of the original data. The PC time series are shown in Figure 6.11. Each PC

is treated to be a new input variable; lagged PC variables are then used to built a

logistic NARX model. For this analysis, the variables are transformed using scaling,

centering and Box-Cox transformations. Therefore, the PCs summarise the main

variability of the data set and simplify the identification process. The preprocessing

parameters obtained during the training phases are directly used on the testing set

in order to avoid the data snooping problem.

The logistic NARX modelling approach is applied to this data set. The output

variable is the eye state signal, and the input variables are the 5 PCs computed in

the preprocessing phase. For this scenario, no lagged variables of the output signal

are used in order to ensure that the model captures a pattern with the exogenous
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Figure 6.11: Time series of the 5 most important principal components of the EEG
Eye State data set.
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Figure 6.12: Cross-validation accuracy plot obtained for the EEG Eye State data
set using Algorithm 6.1. No significant improvement in accuracy is obtained with
models that have more than 9 models terms.

inputs only. The maximum lag for the inputs is chosen to be nu = 50, and the

nonlinear degree is ℓ = 1 based on the results of previous works in [46, 156]. The

search space is made up of 251 model terms. The maximum number of terms to

look for is chosen as mmax = 30, and 10 folds are used to compute the CV accuracy.

Fig. 6.12 shows the CV accuracy plot obtained after applying Algorithm 6.1 and

it suggests that the most parsimonious model with the best accuracy has 9 models

terms. These are shown in Table 6.9.

Model Term Parameter

PC2 (k − 43) 0.1545
constant 0.2123

PC3 (k − 50) 0.5776
PC1 (k − 43) -0.1384
PC2 (k − 1) -0.2593
PC2 (k − 38) 0.1766
PC2 (k − 50) 0.3606
PC3 (k − 1) -0.1214
PC2 (k − 32) 0.1536

Table 6.9: Identified model terms for the EEG Eye State data set using Algorithm
6.1. Nine model terms were identified with their corresponding estimated parameter
values.

In order to assess the performance of the resultant logistic NARX model, a
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Method Classification accuracy

Logistic NARX 0.7199
Regression NARX 0.6643

Random Forest (without autoregressive inputs) 0.5475
Support Vector Machine (without autoregressive inputs) 0.6029

K-Nearest Neighbors (without autoregressive inputs) 0.5041
Random Forest (with autoregressive inputs) 0.6365

Support Vector Machine (with autoregressive inputs) 0.6473
K-Nearest Neighbors (with autoregressive inputs) 0.5662

Table 6.10: Accuracy performance between different methods for modelling of the
EEG Eye State data set. The logistic NARX model is compared against a regression-
like NARX model based on the approach suggested in [47], a random forest with 500
trees, a support vector machine with a radial basis kernel, and a k-nearest neighbors
model. The exclusion/inclusion of autoregressive inputs is also taken into account.
The logistic NARX model has the best accuracy performance and identifies the most
significant lagged PCs that contribute to the classification of the eye state.

regression-like NARX model based on the approach suggested in [47], a random

forest with 500 trees, a support vector machine with a radial basis kernel, and a

k-nearest neighbors model are trained with the same training set. Similar to the

previous examples, two cases are considered. One where the current input values

are used, i.e. without lags, and another where the same lagged variables that are

used for the logistic NARX model are employed. All models are compared using

the testing set and the OSA accuracy. The results are shown in Table 6.10. In

this case, the new method has the best accuracy performance and identifies the

most significant lagged PCs that contribute to the classification of the eye state.

The models that are trained without autoregressive inputs have a poor classification

accuracy. This is improved when autoregressive information is included. However,

they do not achieve a classification accuracy like the one obtained by the logistic

NARX model.

6.4 Discussion

The proposed logistic NARX algorithm shows a new approach to deal with classifica-

tion problems. The new method has a similar performance with other classification
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techniques when dealing with static data, but it outperforms other methods when

there is a dynamic component, and lagged versions of input and output variables

are required. The algorithm is able to produce interpretable models where the con-

tribution of each model term can be analysed. In comparison with random forests,

support vector machines and k-nearest neighbors approaches, the new method can

generate better or comparative performance as illustrated in the case studies. Ad-

ditionally, when using random forests, it is possible to get the variable importance,

which may provide some insight about which variables are contributing the most to

explain the output. However, this only ranks the variables, and does not explain

how the variables are contributing to the modelling process. The logistic NARX

model overcomes this by providing variable importance and interpretability about

how the variables are interacting.

Nevertheless, there are some limitations to the proposed algorithm. First of all,

this work focuses on polynomial-like structures, therefore, severe nonlinearities may

not be modelled properly. To overcome this, other structures can be considered (e.g.

radial basis functions, wavelets), and this will be considered in a future extension

of this research. Another issue, is the selection of the maximum lags for the output

and input sequences (ny and nu). This is an open research problem where several

interesting approaches have been proposed to tackle it [46,50]. It would become more

difficult when the lags become large, as the model search space has a factorial growth

which makes it intractable. Also, the logistic NARX approach may be affected by

severe correlation between the inputs, which results in poor performance models.

Some alternatives to overcome this include the iterative OFR [85] and the ultra

OFR [86]. Finally, the performance of the logistic NARX model can be affected if

the data are not balanced (especially when the output data are imbalanced). The

scenario of imbalanced data is typical in many real applications where the minority

class is dominated or buried by the majority class. Several approaches are available

for dealing with imbalanced data problem, readers are referred to [17,157] for details.
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6.5 Summary

In this chapter a novel algorithm that combines logistic regression with the NARX

methodology is developed. This allows to tackle classification problems where the

output signal is a binary sequence and the regressors are continuous lagged variables.

The new approach can deal with the multicollinearity problem while producing

models that predicts binary outcomes. From the five case studies, the performance

of the proposed logistic NARX models is preferable to that of the other compared

methods when dealing with binary-label prediction, where it is sometimes highly

desirable to know which input variables play an important role individually and/or

interactively in the classification process. The results obtained are promising, and

future research may extend this method to multi-class problems. The results of this

chapter were published in [29].



Chapter 7

Modelling Global Magnetic

Disturbances in Near-Earth Space

7.1 Introduction

The operation of many modern technological systems is vulnerable to space weather

disturbances. Severe geomagnetic disturbances, such as magnetic storms, can have

serious adverse effects on power grids, navigation systems and affect satellite drag.

Forecasts of space weather hazards can assist reliable operation of these technological

systems. However, a physical model of the solar-terrestrial system that can be used

to forecast the evolution of the magnetosphere has not been developed yet, because

of the complexity of the dynamical processes involved.

The Kp index is one of the most widely used indices for quantifying geomagnetic

activity. It stands for planetarische Kennziffer, which means planetary index in

German. In [26], it was concluded that the Kp index is a good measure of the

strength of magnetospheric convection because of its dependence on the latitude of

the auroral current region. This index is computed by taking the weighted average

of K indices at 13 ground magnetic field observatories. The values of Kp range from

0 (very quiet) to 9 (very disturbed) in 28 discrete steps, resulting in values of 0, 0+,

1-, 1, 1+, 2-, 2, 2+, ..., 9 [158].

134
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The Kp index is known to be correlated with solar wind observations [159,160].

This has enabled the development of models that attempt to forecast Kp. The most

popular models are based on artificial neural networks, which are considered black-

box models [161, 162]. For instance, in [158], three neural networks were trained

with solar wind data and are now used to nowcast the Kp index, producing hourly

and 4-hourly forecasts of the Kp, updated every 15 minutes. In [163], an improved

neural network was trained using the Boyle index in order to generate 1-, 3- and 6-

hour ahead predictions. The Liu Kp model consists of a neural network trained with

autoregressive values of Kp and solar wind data, and is able to predict Kp values

up to 3.5 hours in advance [164]. A comparative study between neural networks

and support vector machines was done in [165]. These authors found that the best

model is a neural network trained with the same inputs as the Liu Kp model. A

probabilistic approach was taken in [166] where the Kp range is divided in 4 groups

and 1268 models were compared in terms of accuracy, reliability, discrimination

capability, and forecast skill.

In general, there are two approaches for the modelling of magnetic disturbances:

first-principles modelling and data-based modelling. The latter has been previously

used to model space weather phenomena. For example, the NARX approach was

used to model the evolution of energetic electrons fluxes at geostationary orbit [167],

to obtain the most influential coupling functions that affect the evolution of the mag-

netosphere [168], to predict the Dst index using multiresolution wavelet models [169],

and to build a multiscale radial basis function network to forecast the geomagnetic

activity of the Dst index [150], among others. Furthermore, NARX models can be

used to compute the generalised frequency response functions (GFRFs) in order to

perform frequency domain analysis [5]. This technique has been used previously to

study the spectral properties of the Dst index dynamics [170] and to identify types

of nonlinearities involved in the energy storage process in the magnetosphere [171].

In this chapter, the use of NARX models to forecast the Kp index is investigated.

In particular, there is interest in forecasts at four different horizons: 3, 6, 12 and
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24 hours ahead. To do so, two approaches are explored. The first one consists of a

recursive sliding window scheme in which a window period of 6 months is employed

to train a model and used to forecast future values based on previous predictions.

The second approach involves the identification of a specific model for each horizon

of interest using a fixed data set of 6 months. In addition, given that the output

variable is categorical, the use of the logistic NARX approach, described in Chapter

6, is explored.

7.2 Data set description

Every three hours throughout the day, 13 ground-based magnetic field observatories

located at geomagnetic latitudes between 48º and 63º around the world, record the

largest magnetic change that their instruments measure. This change is denoted

as the K index, which is given on a quasi-logarithmic scale from 0 (< 5 nT ) to 9

(> 500nT ) [162]. The average of these observations is known as the Kp index. This

determines how disturbed the Earth’s magnetosphere is on a scale that goes from 0

(very quiet) to 9 (very disturbed) in 28 discrete steps, resulting in values of 0, 0+,

1-, 1, 1+, 2-, 2, 2+, ..., 9 [158, 162]. In this analysis, these values are rescaled to

be represented by the numbers 0, 0.3, 0.7, 1, ..., 9. In general, large Kp values can

indicate a more active terrestrial magnetosphere due to a solar storm, or a sudden

rearrangement of the Earth’s magnetosphere due to the solar wind [26, 158].

The data sets that are used consist of the variables shown in Table 7.1, which

have been selected and gathered by researchers in the Department of Automatic

Control and Systems Engineering at the University of Sheffield. These variables

were measured during the year 2000. The inputs are taken from the low resolution

OMNI data set, which consist of hourly average near-Earth solar wind magnetic

field and plasma data from several spacecraft in geocentric or L1 (Lagrange point)

orbits. The data period used for this study employed four spacecrafts: IMP 8,

WIND, Geotail and ACE. The output is the Kp index which, as mentioned before,

is measured every three hours. In order to match the time resolutions between
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Variable Symbol Description

Input

V Solar wind speed [km/s]
Bs Southward interplanetary magnetic field [nT]
V Bs Southward interplanetary magnetic field [V Bs = V · Bs/1000]
p Solar wind pressure [nPa]√
p Square root of solar wind pressure

Output Kp Kp index (variable of interest)

Table 7.1: Data set variables for modelling global magnetic disturbances in near-
Earth space. The inclusion of the

√
p variable is to allow the algorithm to identify

fractional exponents of the solar wind pressure p.

the input and output signals, the observed Kp values are interpolated to 1-hour

resolution by simply repeating the last measured value during the next two hours.

Given that the variable of interest is the Kp index, its distribution for year 2000

is shown in Figure 7.1. This highlights that high values of Kp are rare, which makes

their prediction a challenging task.
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Figure 7.1: Histogram of the Kp index for year 2000. High Kp values of 5 to 9 are
relatively rare.
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7.3 Recursive approach

This approach uses a window of a fixed length to build a single model using the data

within the window frame as the training set. The remaining future data outside the

window is used as validation set to make predictions 3, 6, 12 and 24 hours ahead

based on the simulated values (MPOs) as shown in Eq. (2.19). Once this is done, the

window is moved forward by one time step, a new model is built and subsequently

used to forecast the next Kp values at 3, 6, 12 and 24 hours ahead. This way, the

training and validation sets are mutually exclusive.

Every time the window frame moves forward, a new NARX model is trained.

The training process uses the adaptive orthogonal search algorithm described in [47]

together with the PRESS metric. A nonlinear model term and variable selection

procedure proposed in [46] is applied, and numerical experimental results suggest

that ny = 4 and nu = 2 is an appropriate choice. Accordingly, the NARX model

structure is given by

K̂p (k) =f
(
Kp (k − 1) , . . . , Kp (k − 4) ,

V (k − 1) , V (k − 2) , Bs (k − 1) , Bs (k − 2) ,

V Bs (k − 1) , V Bs (k − 2) , p (k − 1) , p (k − 2) ,

√
p (k − 1),

√
p (k − 2)

)
(7.1)

where f (·) is chosen to be a polynomial of nonlinear degree ℓ = 2, Kp (k) is the

measured Kp index at time k, and K̂p (k) is the predicted Kp index at time k.

The window length is of 6 months, therefore the initial training and validation sets

correspond to the first and second half of year 2000, respectively. As the window

frame moves forward, the validation set size decreases. The reason to choose a

window length of 6 months is because for the NARX methodology typically just a

few hundred data samples are required to estimate a model, which can be important

in many applications where it is unrealistic to perform long experiments [5].
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The results for this approach are shown in Figure 7.2. Here it can be seen that

there is a bias for low and high magnetic disturbances. Furthermore, for high values

of Kp (Kp ≥ 8) the error bars become odd and difficult to interprete. This is due

to the fact that there are very few occurrences of high-value Kp indexes, so few

predictions are made in such cases and hence they tend to be underpredicted. Such

characteristics have been previously reported in [161,162], where it is argued that a

model will perform well for the most common training values, while predictions for

rare values will be poor.
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Figure 7.2: Comparison between the measured Kp index and predictions made for
(a) 3, (b) 6, (c) 12, and (d) 24 hours ahead using the sliding window approach. The
black line represents the ideal case when the prediction is equal to the measured Kp
index. The points and bars correspond to the means and one standard deviations
of the predictions made for each of the 28 Kp values.

To quantify the results, the root mean squared error (RMSE), correlation coef-

ficient (ρ) and prediction efficiency (PE) are computed. The latter is defined as

PE = 1− σ2
error

σ2
measured

(7.2)

where σ2
measured is the variance of the measured Kp values, and σ2

error is the variance
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of the error between the measured Kp values and the predicted ones. These metrics

are shown in Table 7.2.

Horizon RMSE ρ PE

3 0.7935 0.8590 0.7359
6 0.9014 0.8159 0.6598
12 0.9513 0.7991 0.6225
24 0.9624 0.7972 0.6149

Table 7.2: Performance metrics for each of the four horizons of interest obtained
with the sliding window approach.
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Figure 7.3: Error time series for the four horizons of interest obtained with the
sliding window approach.

The error time series for each of the four horizons of interest are shown in Figure

7.3. It can be seen that the error is notoriously high at the middle of July. Figure

7.4 shows a glimpse of this period where it can be seen that high activity of the

terrestrial magnetosphere was recorded between July 13th-17th, 2000. Such an

activity is not properly forecasted by this approach. In addition, Table 7.3 shows

a statistical summary of the error time series in Figure 7.3. In general, it can be

concluded that this approach tends to overpredict the Kp index given that both the
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median and the mean are negative. Furthermore, as the number of hours to predict

ahead increases, the forecasts are less accurate because the interquartile range (1st

quartile - 3rd quartile) increases.

Jul 08 Jul 10 Jul 12 Jul 14 Jul 16 Jul 18 Jul 20
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3
6
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24

Figure 7.4: Predictions of the Kp index for the four horizons of interest during the
middle of July 2000 using the sliding window approach. The black line corresponds
to the measured Kp values.

Statistic
Forecast

3 6 12 24

Minimum -3.1980 -2.7180 -2.5570 -2.4860
1st Quartile -0.5394 -0.6409 -0.7106 -0.7270

Median -0.0843 -0.1032 -0.1391 -0.1497
Mean -0.0303 -0.0491 -0.0711 -0.0830

3rd Quartile 0.4084 0.4440 0.4454 0.4447
Maximum 4.7170 5.7520 6.3050 6.3900

Table 7.3: Statistical summary for the error time series shown in Figure 7.3.

7.4 Direct approach

The second modelling technique investigated involves use of what is termed the

direct approach. Instead of training a model many times and using it recursively to
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calculate forecasts, the direct approach obtains a separate model for a horizon h of

interest. In such a case, Eq. (2.1) becomes

y (k) =f
(
y (k − h) , y (k − h− 1) , . . . , y (k − h− ny + 1) ,

u (k − 1) , u (k − 2) , . . . , u (k − nu)
)
+ e (k)

The main advantage of the direct approach is that it only requires the compu-

tation of h-step ahead predictions. This means that the output at the present time k,

y (k), is predicted using the past values y (k − h) , y (k − h− 1) , . . . ,y (k − h− ny + 1) ,

u (k − 1) ,u (k − 2) , . . . ,u (k − nu), where it is assumed that these are known [150].

As mentioned in section 2.4.3, the h-step ahead prediction is defined with respect

to the system output; it is actually still one-step ahead prediction with respect to

the system input.

In similarity to the sliding window approach, ny = 4 and nu = 2 are chosen, and

the training process uses the adaptive orthogonal search algorithm described in [47]

together with the PRESS metric. Accordingly, the NARX model structure is given

by

K̂p (k) =f
(
Kp (k − h) , . . . , Kp (k − h− 3) ,

V (k − 1) , V (k − 2) , Bs (k − 1) , Bs (k − 2) ,

V Bs (k − 1) , V Bs (k − 2) , p (k − 1) , p (k − 2) ,

√
p (k − 1),

√
p (k − 2)

)
(7.3)

where f (·) is chosen to be a polynomial of nonlinear degree ℓ = 2, Kp (k) is the

measured Kp index at time k, and K̂p (k) is the predicted Kp index at time k. In

this analysis, the first six months of year 2000 are used for training while the second

half of the year is used for validation.
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The models identified by the NARX methodology for each horizon are listed in

Tables 7.4-7.7.

Model Term Parameter

Kp (k − 3) 0.325543
V (k− 1)

√
p (k− 1) -0.000043

Bs (k− 1) 0.673034
Bs (k− 1)

√
p (k− 1) -0.164093

V (k − 1)2 -0.000003
V (k − 1) · Bs(k − 2) 0.000217
Bs(k − 1) · Bs(k − 2) -0.006701
Bs(k − 1) · p(k − 2) -0.005810

constant -2.179360√
p (k − 1) 0.753122

V (k − 1) 0.006105
V Bs(k − 1) -0.387292

V Bs(k − 1)
√
p (k − 1) 0.136271

Table 7.4: Identified NARX model for 3-hour ahead predictions of the Kp index.
Thirteen model terms were identified with their corresponding estimated parameter
values.

Model Term Parameter

V (k− 1)
√

p (k− 1) -0.000191
Bs (k− 1) 0.852464
Kp (k − 6) 0.158716

Bs (k− 1)
√

p (k− 1) -0.172607
V (k − 1) · Bs(k − 2) 0.000340

V (k − 1)2 -0.000003
Bs(k − 1) · Bs(k − 2) -0.058229
Bs(k − 1) · p(k − 2) -0.007989√
p (k − 1)

√
p (k − 2) 0.009495

p (k − 1) · p (k − 2) 0.000962
constant -2.749889
V (k − 1) 0.007744√
p (k − 1) 0.958020

V Bs (k − 1) -0.514336
V Bs(k − 1)

√
p (k − 1) 0.113874

V Bs(k − 1)2 0.011219
V Bs(k − 2)2 0.009277

Bs (k − 2) · V Bs (k − 1) 0.032255

Table 7.5: Identified NARX model for 6-hour ahead predictions of the Kp index.
Eighteen model terms were identified with their corresponding estimated parameter
values.
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Model Term Parameter

V (k− 1)
√

p (k− 1) 0.001618
Bs (k− 1) 0.748665

Bs (k− 1)
√

p (k− 1) -0.268901
Kp (k − 12) · V (k − 1) -0.000229

Bs(k − 2) 0.203764
Kp (k − 12) · p(k − 1) -0.017656
Bs(k − 1) · Bs(k − 2) -0.007676

constant -1.606480
V (k − 1) · p (k − 1) -0.000324
p (k − 1)

√
p (k − 1) -0.003098

V (k − 1) · Bs(k − 1) 0.000312
Kp(k − 12) 0.265301
V (k − 1) 0.003683
p (k − 1) 0.286045

Kp (k − 12) · V Bs(k − 2) -0.012219
V Bs(k − 1) -0.531734

V Bs(k − 1)
√

p (k − 1) 0.195865

Table 7.6: Identified NARX model for 12-hour ahead predictions of the Kp index.
Seventeen model terms were identified with their corresponding estimated parameter
values.

Model Term Parameter

V (k− 1)
√

p (k− 1) 0.000066
Bs (k− 1) 0.838922

Bs (k− 1)
√

p (k− 1) -0.213375
Kp (k − 24) · Bs(k − 2) 0.011558

V (k − 1)2 -0.000004
Bs (k − 2) 0.269300

Bs(k − 1) · Bs(k − 2) -0.066312
constant -3.080364√
p (k − 1) 1.023429

V (k − 1) 0.008776
Bs(k − 1)2 0.014446
V Bs(k − 1) -0.573961

V Bs(k − 1)
√

p (k − 1) 0.120880
Kp(k − 25)2 0.007968
Bs(k − 2)2 0.012127

V Bs(k − 1) · V Bs(k − 2) 0.034862
V Bs(k − 2) -0.121102

V (k − 2) · V Bs (k − 1) 0.000240

Table 7.7: Identified NARX model for 24-hour ahead predictions of the Kp index.
Eighteen model terms were identified with their corresponding estimated parameter
values.
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The results of this approach are shown in Figure 7.5. They display a similar

pattern to the sliding window approach, i.e. there is a bias for low and high mag-

netic disturbances, and the error bars for high values of Kp (Kp ≥ 8) become less

meaningful. Once again, these characteristics are due to the uncommon number of

cases of high values of the Kp index compared with the most common Kp values

related with quiet activity periods of the magnetosphere.
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Figure 7.5: Comparison between the measured Kp index and predictions made for
(a) 3, (b) 6, (c) 12, and (d) 24 hours ahead using the direct approach. The black line
represents the ideal case when the prediction is equal to the measured Kp index.
The points and bars correspond to the means and one standard deviations of the
predictions made for each of the 28 Kp values.

To quantify the results, the root mean squared error (RMSE), correlation coeffi-

cient (ρ) and prediction efficiency (PE) are computed. These metrics are shown in

Table 7.8.

The error for each of the four horizons of interest is respectively shown in Figure

7.6. Once again, there is a notoriously high error at the middle of July, corresponding

to a period of high geomagnetic activity, as mentioned above. A glimpse of this

period is shown in Figure 7.7. In addition, Table 7.9 shows a statistical summary of
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Horizon RMSE ρ PE

3 0.7593 0.8711 0.7585
6 0.8328 0.8424 0.7096
12 0.8623 0.8305 0.6895
24 0.8719 0.8265 0.6824

Table 7.8: Performance metrics for each of the four horizons of interest obtained
with the direct approach.

the error time series in Figure 7.6. In general, it can be concluded that on average,

this approach tends to slightly underpredict the Kp index given that the means

are positive. Furthermore, as the number of hours to predict ahead increases, the

forecasts are less accurate because the interquartile range (1st quartile - 3rd quartile)

increases, as expected.
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Figure 7.6: Error time series for the four horizons of interest obtained with the
direct approach.
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Figure 7.7: Predictions of the Kp index for the four horizons of interest during the
middle of July 2000 using the direct approach. The black line corresponds to the
measured Kp values.

Statistic
Forecast

3 6 12 24

Minimum -2.3890 -2.6040 -2.8780 -3.5550
1st Quartile -0.4436 -0.4842 -0.4910 -0.5073

Median -0.0138 -0.0096 0.0068 -0.0107
Mean 0.0373 0.0433 0.0575 0.0446

3rd Quartile 0.4625 0.4950 0.5210 0.5005
Maximum 4.6880 5.6140 5.9440 5.7260

Table 7.9: Statistical summary for the error time series shown in Figure 7.6.

7.5 Discussion

A quick view to Tables 7.3 and 7.9 shows that the direct approach provides better

forecasts than the sliding window approach because the means and medians are

closer to zero, and the interquartile ranges are smaller. To better visualise this

difference, a randomly selected 30-day interval on the second half of year 2000 is

taken. The features dynamics are shown in Figure 7.8.

The model forecasts using both approaches during this 30-day interval are shown

in Figures 7.9-7.12.
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Figure 7.8: Feature dynamics during a 30-day interval on the second half of year
2000. The variable sqrtp corresponds to

√
p (t).

To quantify the results, the root mean squared error (RMSE), correlation coeffi-

cient (ρ) and prediction efficiency (PE) are computed. These metrics are shown in

Table 7.10.

These results show that better forecast accuracy is obtained by the direct ap-

proach. This is an expected result given that the sliding window approach uses

model predicted outputs from a single model, and long-term forecasts tend to devi-

ate from true values as time goes on. On the other hand, the direct approach uses

a separate model for each horizon and relies on single calculations for h-step ahead

predictions. However, both approaches show that predictions for low and high dis-

turbances are slightly biased from the true values. This observation is coincident

with previous findings reported in [161] and [162], where a model will perform well

for the most common training values, while predictions for others will be poor. An-

other explanation is that this comes as a trade-off for using a regression model to

predict a categorical output variable.
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Figure 7.9: Comparison between the sliding window and direct approaches for 3-
hour ahead predictions of the Kp index during a 30-day interval between September
and October of year 2000. The black line corresponds to the measured Kp values.
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Figure 7.10: Comparison between the sliding window and direct approaches for 6-
hour ahead predictions of the Kp index during a 30-day interval between September
and October of year 2000. The black line corresponds to the measured Kp values.
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Figure 7.11: Comparison between the sliding window and direct approaches for 12-
hour ahead predictions of the Kp index during a 30-day interval between September
and October of year 2000. The black line corresponds to the measured Kp values.
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Figure 7.12: Comparison between the sliding window and direct approaches for 24-
hour ahead predictions of the Kp index during a 30-day interval between September
and October of year 2000. The black line corresponds to the measured Kp values.
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Horizon Approach RMSE ρ PE

3
Window 0.8308 0.8874 0.7828
Direct 0.7582 0.9156 0.8287

6
Window 0.9298 0.8628 0.7283
Direct 0.8053 0.9071 0.8105

12
Window 0.9546 0.8728 0.7138
Direct 0.8537 0.9054 0.7919

24
Window 0.9569 0.8804 0.7125
Direct 0.8588 0.8875 0.7831

Table 7.10: Performance metrics for each of the four horizons of interest using the
sliding window and direct approaches during a 30-day interval between September
and October of year 2000.

Comparing the results obtained with those presented in [158], the values of the

two model performance metrics (i.e. prediction performance and correlation coef-

ficient) calculated from the results are slightly lower. This may be explained from

several factors: i) all the data for all input and output variables used for model

estimation in this study are raw data sampled hourly where no pre-processing (e.g.

smoothing, interpretation, etc.) is performed; ii) the model input variables used

in this work are not exactly the same as those used in previous studies; iii) some

coefficients required by the models, for example the maximum lags of the input and

output variables, may need to be optimised further. Note that one of the objectives

of this analysis is to generate compact transparent models to show how Kp index

depends on solar wind parameters and geomagnetic field indices, and then use such

models to do further analysis including forecast. As shown in Tables 7.4-7.7, an

important contribution obtained from the direct approach is that there are three

significant model terms that are shared by all the models. These are shown in bold

in Tables 7.4-7.7. The values of the three terms, together with the Kp index, are

normalised, and the associated scatter plots are shown in Figure 7.13 (note that

the normalisation of the values is just to facilitate the visualisation and compari-

son of the scatter plots). The importance of the first selected common model term

V (k − 1)
√

p (k − 1) may be roughly explained by its relevance with Kp when mea-

suring the correlation coefficient (ρ = 0.6149). Model terms ranked later would

normally not be so important as the top ones, and their correlation with the Kp
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signal becomes very weak.
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Figure 7.13: Top three significant model terms shared by all models in the direct
approach. The correlation coefficients are (a) 0.6149, (b) 0.5571 and (c) 0.5437.
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The importance of the model terms selected in Tables 7.4-7.7 is not always

measured by the values or amplitude of these model terms. A model term with a

high (or low) value does not necessarily mean a high (or low) value in Kp index, as its

change is an outcome of combined and weighted interactions of many lagged input

variables. Experience shows that top model terms can reflect the major varying

trend of the output signals, while model terms ranked later can be useful in revealing

local and relatively minor changes. While the role of solar wind speed and dynamic

pressure as drivers of the Kp index has been confirmed by previous studies, this

analysis provides some further information with an explicit format of these input

variables, showing what kind of interactions of these drivers make a contribution

to the change of the Kp index. This is important for further understanding and

analysis of the dependent relationship of the Kp index on solar wind speed and

dynamic pressure, among other drivers.

7.6 Logistic NARX approach

It is interesting to mention that this case study served as a motivation for the

development of the Logistic NARX approach. However, this cannot be applied as

it is, given that it only works with binary classification problems. For the sake of

completion, the logistic NARX approach is applied to check its performance in this

case study. This requires the substitution of the 28 classes of the Kp index into

only 2. However, there is no reference that supports the partition of the data in

2 classes. In [166], it is mentioned that the Space Weather Prediction Center (in

the USA) classifies geomagnetic activity in four levels: quiet to unsettled (Kp < 4),

active (Kp = 4), minor storm (Kp = 5), and major to severe storm (Kp > 5).

On the other hand, the Space Environment Prediction Center (in China) adopted a

different classification scheme: quiet to unsettled (Kp < 4), active (Kp = 4), minor

to moderate (Kp = 5 or 6), and major to severe storm (Kp > 6). For this reason,

the 2 classes considered are: quiet to unsettled (Kp < 4) and active (Kp ≥ 4).

Once again, the first six months of year 2000 are used for training while the
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second half of the year is used for validation. Figure 7.14 shows the corresponding

histogram. It is noticed that there is an imbalance problem with the training set as

the ’quiet’ class has a presence of 86.81%. To overcome this, the Synthetic Minority

Over-sampling TEchnique (SMOTE) described in [157] is applied, which in summary

takes samples from the training set to create a new one with balanced classes.
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Figure 7.14: Frequency of the two classes of the Kp index for year 2000 on the
training and testing sets. There is an imbalance problem with the training set as
the ’quiet’ class has a presence of 86.81%. To overcome this, the Synthetic Minority
Over-sampling TEchnique (SMOTE) described in [157] is applied.

The logistic NARX modelling approach is applied to this new data set. The out-

put variable is the binary Kp index, and the input variables are the same indicated

in Table 7.1. Similar to the sliding window and direct approaches, the corresponding

lags are ny = 4 and nu = 2, and the nonlinear degree is ℓ = 2. The maximum num-

ber of terms to look for is chosen as mmax = 15, and 10 folds are used to compute

the CV accuracy. These parameters are used for the modelling of the four horizons

of interest: 3, 6, 12 and 24 hours ahead. Furthermore, as mentioned in section 2.4.3,

the h-step ahead prediction is defined with respect to the system output; it is ac-

tually still one-step ahead prediction with respect to the system input. The models
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for each of the four horizons of interest are shown in Tables 7.11-7.14.

In order to assess the performance of the resultant logistic NARX models, regression-

like NARX models based on the approach suggested in [47], random forests with

500 trees, support vector machines with a radial basis kernel, and k-nearest neigh-

bors models are trained. The results are shown in Table 7.15, where it is possible

to see that all models have a competitive performance. From these, the logistic

NARX models may be preferred given the advantages highlighted in Chapter 6.

Model Term Parameter

Kp (t− 3) 2.0533
constant -5.7990
Bs (k − 1) 0.6675

Kp(k − 3) · Bs(k − 1) -0.0826
V (k− 1)

√
p (k− 1) 0.0051

Table 7.11: Identified logistic NARX model for 3-hour ahead predictions of the
Kp index. Five model terms were identified with their corresponding estimated
parameter values.

Model Term Parameter

V (k− 1)
√

p (k− 1) 0.0061
constant -6.1322
Bs (k − 1) 0.6663

Table 7.12: Identified logistic NARX model for 6-hour ahead predictions of the
Kp index. Three model terms were identified with their corresponding estimated
parameter values.

Model Term Parameter

V (k− 1)
√

p (k− 1) 0.0059
constant -6.1678

V (k − 12) · Bs(k − 1) 0.0016

Table 7.13: Identified logistic NARX model for 12-hour ahead predictions of the
Kp index. Three model terms were identified with their corresponding estimated
parameter values.

Model Term Parameter

V (k− 1)
√

p (k− 1) 0.0055
constant -5.7115

V (k − 12) · Bs(k − 1) 0.0015

Table 7.14: Identified logistic NARX model for 24-hour ahead predictions of the
Kp index. Three model terms were identified with their corresponding estimated
parameter values.
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Horizon
3 6 12 24

Method

Logistic NARX 0.8749 0.8710 0.8774 0.8780
Regression NARX 0.8704 0.8706 0.8804 0.8721

Random Forest 0.8677 0.8715 0.8724 0.8700
Support Vector Machine 0.8677 0.8740 0.8720 0.8677

K-Nearest Neighbors 0.8015 0.7667 0.7541 0.7573

Table 7.15: Accuracy performance between different methods for modelling of
the binary Kp index. The logistic NARX model is compared against a regression-
like NARX model based on the approach suggested in [47], a random forest with
500 trees, a support vector machine with a radial basis kernel, and a k-nearest
neighbors model. The same autoregressive inputs are used in all cases. Although all
models have a competitive performance, the logistic NARX models may be preferred
given that they provide transparency and interpretability about the contribution of
individual regressors together with a classification probability for the predictions.

Furthermore, although it may be argued that the regression NARX models have a

similar performance to the logistic ones, the number of model terms used for the

regression-like models are 8 (3-hour ahead), 11 (6-hour ahead), 11 (12-hour ahead),

and 16 (24-hour ahead), clearly showing the advantage of the simpler logistic NARX

models. Also, it can be seen that the logistic NARX models select the model term

V (k − 1)
√
p (k − 1) again, indicating that this plays an important role in the dy-

namics of the Kp index.

7.7 Summary

In this chapter, the NARX modelling methodology is applied to the forecasting of

the Kp index. A set of models are obtained using two different implementation

approaches namely, recursive prediction approach based on sliding windows and a

direct approach, which can directly generate h-hour ahead predictions (h = 3, 6,

12 and 24 in the case studies). In general, good forecasts are obtained for both

short and long-term prediction using the estimated NARX models, but the direct

approach outperforms the recursive approach. Nevertheless, both approaches tend

to show that predictions for low and high disturbances are slightly biased from the

true values. As previously reported, such a bias is a result of the uneven distribution
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in the output signal, and the use of a regression model to predict a categorical output

variable may also play a role on this matter. An interesting property obtained from

the direct approach is a set of significant model terms that are shared by all the

models, regardless of the time horizon of interest. While the role of the solar wind

speed and dynamic pressure as drivers of the Kp index has been confirmed by

previous studies, the present analysis produced some further information showing

the relative contributions made by these drivers to the changes in the Kp index.

This is useful for further understanding the relationship of the Kp index to solar

wind. It was noticed that the values of prediction performance and correlation

coefficient relating to the trained models are slightly lower than those reported

by [158] and possible reasons are briefly discussed. Finally, the logistic NARX

modelling approach is applied to the binary version of the Kp index, showing that

it is a competitive alternative to other classification techniques. The results of this

chapter were published in [31].



Chapter 8

Conclusions

8.1 Summary and Conclusions

This thesis has focused on adapting and developing a new framework for the NARX

methodology. This has been applied in the analysis of several environmental case

studies.

For the first time, a package in the R programming language is developed as a tool

to help in the training of NARX models. This package implements the traditional

OFR algorithm together with some improvements to it that include nonlinear de-

pendency metrics and a systematic way of selecting the number of model terms. It

also includes a set of features for effectively performing model selection, parameter

estimation, model validation, model visualisation and model evaluation.

Furthermore, two new major components are added to the OFR algorithm. The

first one combines the distance correlation metric, which can provide interpretability

of nonlinear dependencies, and the bagging method, which can provide an uncertainty

analysis, to extend the deterministic notion of the OFR algorithm. This implemen-

tation provides several advantages including the ability to assess the main model

terms, the computation of a bootstrap distribution for the forecasts made by the

many models trained, and that there is no need to specify prior distributions, which

is usually a requirement when performing Bayesian analysis.

The second major component improves the NARX methodology in order to handle

158
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binary outputs. In this improvement, the logistic regression is combined with the

OFR algorithm, which allows to sequentially select continuous lagged regressors that

play an important role individually and/or interactively in the classification process.

The selection is done by means of the biserial correlation, a metric that is suitable

when working with binary variables. The results obtained show that the logistic

NARX model is a competitive alternative to other classification techniques.

All these improvements are applied in two case studies. The first one analyses

the Atlantic Meridional Overturning Circulation (AMOC), where several models are

trained to forecast the AMOC anomaly. Here it is proved that nonlinear models out-

performed linear ones, and that only second-order models are of interest, involving

a modulation of the wind and density difference variables. The best model trained

is then used to hindcast the AMOC signal back to 1980. Here, it is found that

the density difference between the northern sinking waters and the Gulf of Mexico

source waters of the main overturning current have a significant contribution with a

dominant lag time of 7 months. This was confirmed by the BFOR-dCor algorithm.

The second case scenario focuses on the modelling of global magnetic disturbances

in near-Earth space using the Kp index. Higher values are rare and their prediction

becomes challenging. For this task, two different implementation approaches are

taken: one based on a recursive approach where a single model is trained using data

within a sliding window and then used to make forecasts. The second approach

consists on training four different models, each focusing on a horizon h of interest

to make h-hour ahead predictions (where h = 3, 6, 12 and 24). It is found that the

direct approach outperforms the recursive approach, but the predictions for low and

high disturbances are slightly biased from the true values. Such a bias is attributed

to the uneven distribution in the Kp index, and the use of a regression model to

predict a categorical output variable. This motivates the use of the logistic NARX

approach by considering a binary version of the Kp index. The whole analysis gives

further understanding of the relationship of the Kp index to solar wind parameters.
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8.2 Future Work

This section presents current limitations with the research developed, and possible

solutions and suggestions:

• The choice of maximum lags for both input and output variables is important

given that these define the size of the search space, and the influence of the

past in future values. Nevertheless there is still no systematic approach to

make such choice. Two common methods are proposed in [46] and [50], but

further research is required.

• The BFOR-dCor algorithm offers an alternative by building an ensemble of

NARX models to reduce the variance in the predictions. However, given the

forward recursion of the OFR algorithm, certain model structures tend to

get repeated which may result in an increase in the bias. One way that was

investigated to overcome this involves a combination of Random Forests with

the NARX methodology to diversify the model selection during the training

process. However this did not produce the expected results compared with

other traditional algorithms. This is an interesting problem that deserves

further investigation.

• The logistic NARX methodology proposed in chapter 6 was developed for

binary classification problems. However, many classification problems involve

more than two classes, i.e. like the 28 levels of the Kp index (section 7.2). Such

scenarios cannot be addressed with the proposed algorithm 6.1. One way to

overcome this could be the use of the one-VS-one or one-VS-all approaches

[172]. Of course, this would require the training of several models which could

be problematic to handle. Another possibility could be the use of neural

networks with a softmax layer at the final stage [173,174]. This would produce

a single model that could handle several classes, with the inconvenience that

interpretability would be lost.

• One scenario that has been of great interest is the combination of the NARX
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methodology with Bayesian methods. Several studies have been conducted

including [2, 57, 58]. However, most of these require the explicit selection of

conjugate priors to facilitate the computation of the posterior distributions.

It would be of great interest to investigate possible alternatives that do not

require the conjugate priors.

• Nowadays there is great interest in the use of huge amounts of data, a.k.a. Big

Data. In particular, there is an area that has benefited from those huge data

volumes known as Deep Learning. This area mostly uses different architectures

of neural networks, which have produced a lot of promising results in different

fields. It would be interesting to extend the NARX methodology, and possibly

combine it with Deep Learning techniques, to handle big data problems.
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