Model Hybridisation and
Visualisation Techniques for the
Investigation of Complex Disease

Processes

James Andrew Butler

PhD

University of York

Biology

September 2016



Abstract

Tertiary lymphoid tissues (TLT) develop ectopically in most autoimmune disor-
ders, their presence is strongly correlated with disease prognosis. The autoantibody
response driven by germinal centres within TLT is an important driver of autoim-
munity in Sjorgen’s syndrome, for which there currently lacks any adequate therapy
beyond palliative care. The cellular and molecular processes driving lymphoid neo-
genesis have remained elusive despite intense scrutiny utilising gene knock-out mice,
lineage specific reporter mice, gene expression analysis, immunohistochemistry and
flow cytometry. These approaches permit a thorough understanding of the forma-
tion of secondary lymphoid tissues. However, the mechanisms driving the formation
and function of tertiary lymphoid tissues have proven to be more controversial and
enigmatic, principally due to differences between experimental models and human
disease pathology. A set of hypotheses describing a potential theory of TLT for-
mation is developed from a combination of in vitro and in vivo data. This is then
described as a mathematical and computational model through which the veracity

of the hypotheses may be determined.

A framework is developed for the description of hybridised models combined
of many constituent sub-models utilising different mathematical approaches, and
implemented this in the development of a hybrid agent-based model incorporating
Markov models, differential equations, cellular automata and generative grammar
into a useful results model for understanding the effects of biologics on TLT for-
mation. The simulation also serves as case study for other disorders, utilising the
frameworks developed herein. Our simulation, in combination with a ‘Model-driven
Experimentation’ paradigm, has demonstrated the possibility of using such tools for

predictive purposes within the emerging field of quantitative systems pharmacology.

Utilising a hybrid agent-based complex systems model, we demonstrate that TLT
formation can be described in terms of lymphocyte-stromal crosstalk and the dif-
ferential response of B and T cells to chemokines CXCL13 and CCL19 respectively.
We evaluated the potential therapeutic effects of three biologics in silico: anti-TNF,
anti-LTS3, and, anti-VLA4. In vivo validation is provided regarding the predicted
efficacy of anti-VLAA4.
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Chapter 1

Introduction

Complex systems modelling and simulation have proven to be extremely valuable
techniques in biology (?), that can augment and extend experimental biology through
hypothesis testing and generation (?), providing insight that would not be possible
through in vivo and in vitro models alone. However, as datasets grow increasingly
large and greater computational resources become available, it is necessary to develop
means of maintaining tractability in simulations that capture phenomena at an ever-
finer granularity while ensuring that models can be effectively leveraged to achieve
maximum impact; this requires complex models and their results to be communicable
across disciplines and developed according to well-defined, principled frameworks.
This ensures that a model’s fitness-for-purpose can be demonstrated through exposi-
tion of the biological data used to construct the model, the assumptions and abstrac-
tions that have been made, and the mathematical and computational methods used
i theiwr implementation as simulations.

This chapter presents the current state-of-the-art in complex systems modelling in
biology and pathophysiology, particularly with respect to the provision of principled
frameworks for defining models, simulations and their results. Particular empha-
sis 18 placed on modelling lymphoid tissues and their role in immune disorders. The
modelling and simulation techniques developed and applied herein utilise a case study
of tertiary lymphoid tissue development during Sjogren’s syndrome. Novel simula-

tion visualisation and quantification methodologies are developed using an existing
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simulation of secondary lymphoid tissue formation in the mouse gut as an initial
case study, and these are subsequently applied to the development of simulation of
tertiary lymphoid tissue development. The literature is reviewed for hybrid models
which integrate more than one modelling methodology into a simulation, of disease
models that aim to develop and evaluate the efficacy of therapeutic interventions,
and of model visualisation techniques and their use in simulation analysis. The
motiwation underlying this work is defined, and the thesis aims are discussed.
Prior to discussing the role of mathematical and computational modelling in
understanding immune function and disease pathophysiology, it is necessary to in-
troduce the reader to a few key concepts in immunology. This section provides a
very brief overview of the mammalian immune system followed by a more detailed
review of the development and role of lymphoid tissues in providing a specialised
tissue environment for effective immune responses. This then permits a discussion
of the state-of-the-art in immune system modelling and the identification of open
questions and means of providing improved methodologies for describing complex

immune processes that occur over many time and length scales.

1.1 Introducing the Immune System

The mammalian immune system is comprised of two fundamental components: in-
nate and adaptive immunity. The cells that collectively constitute the immune sys-
tem are termed leukocytes, otherwise known as white blood cells. Innate immunity
has no memory of previous infection but responds rapidly with a large and com-
plex array of methods for destroying pathogenic microbes including bacteria and
viruses; additionally, innate immune cells such as macrophages or dendritic cells
present antigen (small fragments from foreign bodies) on their surface, thus permit-
ting adaptive immunity to respond through direct cellular activity and via humoral
responses, in which antibodies are produced specific to the invading pathogen. The
adaptive immune system generates memory cells following antigen challenge, thus

enabling a quicker and more effective response if the same pathogen is encountered
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again in the future, this provides the basis for protective vaccines (7).

T and B lymphocytes are the principal constituents of the adaptive immune
response. B cells differentiate from haematopoietic stem cells and mature initially
in the bone marrow followed by further development in the spleen (?), and produce
antibodies when antigen binds to their B-cell receptor (the humoral response), B cells
also secrete cytokines (signalling molecules) and can act as ‘professional’ antigen-
presenting cells. T cells also develop from haematopoietic stem cells in the bone
marrow, but mature in the thymus where auto-reactive T cells are eliminated in
a process known as ‘thymus education’ (?); there are many T cell subsets with
different functions (?), including i. T helper cells that assist in the maturation of
B cells into plasma (antibody secreting) cells and memory B cells, 4. cytotoxic T
cells that target virus infected cells, and 4. regulatory T cells (T,4s) that maintain
immunological tolerance, with the capacity to suppress T-cell mediated immune
responses as a pathogenic threat has been cleared, or to suppress autoreactive T
cells that escaped the thymus (?77?). Following their respective maturation processes,
B and T lymphocytes enter circulation and migrate to secondary lymphoid tissues
such as lymph nodes, that are strategically located to provide an efficient adaptive

immune response to local infections.

1.1.1 Lymphoid Tissues: Form and Function

Lymphoid tissues are indispensable for the organisation and function of the adap-
tive immune system. The mechanisms that drive the development of these tissues
have been under intense scrutiny for hundreds of years. This section provides an
account of the historical literature and the subsequent modern understanding the
development and function of secondary lymphoid tissues.

The first account of lymphoid tissue pathophysiology belongs to the Hippocratic
Corpus (?), entitled Peri adendn (About Glands). The year of composition is dis-
puted, but it is likely to have been penned circa the fourth century BCE. The

insight into lymph node anatomy and function held within this ancient treatise is
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astonishing, especially considering that the first microscope was not to be invented
for another 1900 years. In the hippocratic corpus, lymph nodes are described as
‘adenes, or glands, which become swollen and inflamed in the presence of disease,
resulting in illness and fever. In addition to prefiguring modern immunology, the
text described lymphatic vessels and the role of LNs in filtering lymph back into the
blood via the lymphatic vasculature (7). Little changed in the understanding of the
lymphatic system until 1622, when Pavian surgeon, Gasparo Aselli, discovered the
mesenteric lymphatic vasculature and began to document the lymphatic system in
significant detail (7). There was little progress in understanding of lymphoid tis-
sues following the work of Aselli until the late eighteenth century, with experiments
by William Hunter into the role of lymphatics in draining lymph from tissues (the
‘absorbent theory’) (?), and the development of histology in 1836 lead by Camillo
Golgi (?7), for which he shared the 1906 Nobel Prize in Physiology or Medicine.
The earliest attempt at describing the formation of lymph nodes was in 7, which
linked the origin of lymph nodes with lymph sacs, and by the early 20th century,
the stages of lymph node anlagen development were characterised in humans by ?,
who acknowledged their ‘protective role’ in adults, subsequent work in swine (7)
and rabbit (7) bolstered this understanding of the development of lymphoid tissues
and their importance in providing immunity:.

A modern understanding of the molecular and cellular mechanisms driving lym-
phoid tissue formation and maintenance has developed from the application of state
of the art imaging technologies, genetic tools and cell culture techniques — and
increasingly, the application of mathematical and computational models (?777).
Lymphoid tissues are divided into primary, secondary and tertiary lymphoid or-
gans. The bone marrow and thymus constitute the primary lymphoid tissues; these
are responsible for the selection and differentiation of immature T progenitor cells
into naive CD8+ and CD4+ T cells. CD4+ T cells bind antigen presented in MHC-
IT by Antigen-Presenting Cell (APC), and CD8+ T cells bind antigen presented in

MHC-I. The secondary lymphoid organs (SLO) provide a highly specialised micro-
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Figure 1.1: Specialised niches develop in the lymph node through lymphoid
chemokine-mediated orchestration. (a). Antigen arrives via the lymphatics car-
ried by DCs or in soluble form. (b) Subcapsular sinus macrophages take up antigen
from the lymphatics, attracting and priming CD4+ T helper cells. (c¢) Naive T cells
enter the LN through high endothelial venules within the T cell zone and are primed
by antigen-presenting DCs prior to migration toward the periphery. (d) Activated
naive T cells upregulate CXCR5 and migrate along a CXCL13 gradient into the
perifollicular regions adjacent to B cell follicles. (e) Naive B cells are recruited into
the follicle via CXCL13 through CXCR5 expression, and upon activation upregulate
CCRY7, chemotactically migrating to the edge of the follicle permitting interaction
with T follicular helper cells to undergo class switching. Germinal centres develop
within the B cell follicle resulting in the humoral immune response. Taken from ?.
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environment with subdivisions (‘niches’) specific for different lymphocyte types (7).
Niches provide environments for the differentiation and activation of immune ef-
fector cells; SLOs capture pathogens from peripheral tissues through a process of
dendritic cell (DC) recruitment. The SLO microanatomy then facilitates contact
with their cognate APC, resulting in activation of the adaptive immune response.
The process of lymphocyte migration into and within SLOs is orchestrated by lym-
phoid chemokines, principally CCL19/21 and CXCL13 expressed in the T cell zone
and B cell follicles respectively (?), chemokine gradients are sculpted by atypical
‘scavenging’ chemokine receptors such as CCRL1 (?) to provide optimal gradients
for migration along the sub-capsular sinus. This process of chemokine-mediated self-
organisation within the lymph node, and the overall resulting structure is shown in
Figure |1.1]

SLOs are mainly comprised of lymph nodes, Peyers patches (PP), the white
pulp of the spleen and the mucosal-associated lymphoid tissue (MALT). MALT
has important roles in the innate immune response through the secretion of type I
interferon and other innate immune mediators (?), which when combined with the
strategic placing of macrophages within tissues, results in a reduction of pathogen
load in the host. This is crucial in allowing time for the adaptive immune system
to successfully mount a response (7). In healthy specimens, evidence suggests that
peripheral tissues are patrolled by relatively low numbers of mature lymphocytes
(?), indicating that SLOs are necessary for an effective adaptive immune response by
facilitating the detection of microorganisms, acting both as a garrison for immune
cells and a sink for invading pathogens (?). Leukocytes including lymphocytes

and phagocytes migrate between tissues by recirculating through the lymphatic

circulatory system (Figure [1.2).
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Figure 1.2: Certain lymphocytes and phagocytes are capable of recirculation, moving
between lymphoid and non-lymphoid tissue. This is crucial in allowing lymphocytes
to perceive their cognate antigen, and allows effector cell populations to access the
tissues in which they are needed. Arrows in the figure indicate direction of blood
and lymph.

1.1.2 Tertiary Lymphoid Tissues: Lymphoid Neogenesis

Tertiary Lymphoid Tissues (TLT) are similar in organisation to lymph nodes, but
form during chronic inflammation, due to infection, autoimmune disease and some
cancers, and their presence is generally associated with a poorer prognosis (7). The
principal components that drive the formation of TLT a process termed lymphoid
neogenesis, are poorly understood — what the minimum requirements are for TLT
induction is an open question in immunology. There are a vast number of signalling
molecules and cell types implicated, and these are subtly different when tissues
develop in different pathologies (7). An introduction to TLT form and function
is provided here, as TLT formation is used as the basis for a case study in the

development of a novel hybrid multiscale model and simulation in Chapters [3|and [4
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While lymph nodes develop during embryogenesis in pre-determined anatomi-
cal positions, lymphoid aggregates with very similar morphology to lymph nodes,
containing organised lymphocytes niches have been observed to develop ectopically
during periods of chronic inflammation, due to persistent infection, neoplasticity in
cancer, or in autoimmune disease. Chronic inflammation involves complex patho-
physiology comprising of a large accumulation of peripheral blood mononuclear cells
(PBMCs) including macrophages, T cells, B cells and dendritic cells, which estab-
lish a self-perpetuating process of stimulation, recruitment and colonisation termed
lymphoid neogenesis. This phenomenon was first established by 7, in which it was
proposed that lymphoid organogenesis and chronic inflammation share a common
physiological basis, and that lymphotoxin induced chronic inflammation has the
characteristics of organised secondary lymphoid tissue and can respond to antigen.
The earliest reference in the literature to lymphoid neogenesis can be found in ?,
regarding the observation that bronchus-associated lymphoid tissue is not present
at birth, unlike lymph nodes and Peyer’s patches, nor is it present in every speci-
men. The role of stroma in the orchestration of lymphoid neogenesis was initially
suggested in ? with respect to non-Hodgkin’s lymphoma, wherein Follicular Den-
dritic Cells (FDC) were found in mucosa-associated lymphoid tissue (MALT) and
extranodal non-MALT.

When TLT forms during chronic infection, it permits local antigen presentation
at the site of infection and enables priming of naive lymphocytes (?), which may
assist in clearing the infection (7). However, it has also been noted that the presence
of TLT can be detrimental in effect, leading to chronic hepatic inflammation and
ultimately malignant neoplasia. In cancers, the presence of infiltrating lymphoid
tissue has been found in some cases to both promote tumour growth (??), and
also to contribute towards anti-tumour immunity (?), for example, in ductal breast
carcinomas (77).

During autoimmune disease, TLT formation often occurs within disease-associated

tissues, and its presence is generally associated with a poorer prognosis (7), although
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Figure 1.3: Schematic diagram of tertiary lymphoid tissue, illustrating separate B
and T cell zones and distinct stromal network phenotypes. B cells form follicular
niches supported by stroma of an FDC-like phenotype, surrounded by T cells sup-
ported by Fibroblastic Reticular Cells (FRC)-like phenotype stroma. Unlike in LNs,
where vasculature penetrates into the cortical interface, within TLT, blood vessels
surround the tissue externally. Another notable difference to LN organisation is
that T cells are present prior to tissue formation with B cells recruited later during
lymphoid neogenesis, however in LN organogenesis, T cells must undergo education
in the thymus and migrate to the LN anlage following B cell colonisation.

their precise involvement in disease pathology is not well understood. There is ev-
idence to suggest that in autoimmune disease, the presence of TLT correlates with
local levels of antibody production (?), and the promotion of cytotoxic T-cell re-
sponses (7). In rheumatoid arthritis, it has been noted that individuals with the
most highly developed TLT, with well-developed FDCs, germinal centres (GCs) and
clearly defined B/T-cell zones, are associated with greater disease activity and in-
creased severity of symptoms (7). Local antibody production correlation with TLT
presence has also been identified in several other autoimmune diseases, including
Sjorgen’s syndrome (SS) (??). A simplified schematic of TLT structure can be seen
in Figure[1.3] illustrating B and T cell segregation, supported by differential stromal
phenotypes that are analogous to those found in the lymph node (FDCs for B cells,
and FRCs for T cells).
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1.1.3 Sjorgen’s Syndrome

Sjorgen’s Syndrome (SS) is an autoimmune disorder with a prevalence of about
1% of the population, characterised principally by inflammation and subsequent
tissue damage in the exocrine glands, particularly the salivary gland and tear ducts.
However, as a systemic condition, it can affect the function of exocrine glands in the
vaginal tract, skin, trachea, nose and gastrointestinal tract (7). Due to the systemic
inflammatory nature of SS, clinical presentation can extend beyond the exocrine
glands resulting in fatigue and cachexia (weakness and wasting) (7).

Treatment of SS is limited to palliative measures, in particular the use of drops
(pilocarpine and cevimeline) to treat dryness in the eyes, mouth, and other glands
with “sicca” features (loss of fluid secretion) (?), and also surgical excision of tissue
(?). More recently, large molecule biologic therapies have been employed in a re-
search setting, however clinical efficacy has yet to be clearly demonstrated with any
biologic therapy (7). Anti-TNFq, a biologic intervention that binds TNFa (Tumour
Necrosis Factor alpha) in order to block its activity, was hypothesised to demon-
strate efficacy due to its known, central role in SS pathogenesis. Unfortunately,
there was no significant improvement in saliva production. There is early evidence
that rituximab (anti-CD20) is an effective treatment for SS including improvement
in both saliva production and overall measures of fatigue (??7). Widespread adoption
of rituximab is however restricted due to potentially dangerous side-effects including
immunosuppression through loss of B cells, and the high economic cost of the ther-
apy. This thesis identifies the likely reasons for this and evaluates other potential
biologic therapies that may be more tolerable, using a computational model describ-
ing the inflammatory processes driving SS induction during pathogenesis, described
in chapter [6]

It is well-established that TLT has an important role in SS pathology. The forma-
tion of TLT structures within exocrine glands through lymphocyte recruitment via
chemokines results in established lymphoid follicular structures with active GC re-

actions, resulting in lymphocyte and antibody-driven damage to the exocrine glands
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in which they are present (77?).

1.2 Motivation for Mathematics, Modelling and
Simulation in Immunology

There has traditionally been a great divide between the biological and physical sci-
ences — it was argued by ? that many immunologists regard mathematical science
and biology to be somehow fundamentally different, a position possibly engendered
by their artificial segregation in academia. The proceeding decade has lead to the
emergence of a vast expansion in the use of both ‘top-down’ (bioinformatics and
statistical modelling of large datasets) and ‘bottom-up’ (mechanistic models and
complex systems analysis) approaches to the mathematics and modelling of biolog-
ical systems (?), with systems biology emerging as an integral aspect of modern
biology. It should be noted that mathematics has long since had a significant role in
biology, in the application of statistical techniques to experimental results, in the de-
velopment of experimental methodologies, and more recently in the high-throughput
analysis of ‘omics’ data including gene expression analysis (?7), metabolomics (?)
and proteomics (7): this thesis is concerned with the application of mathematics
in describing immunological processes, particularly for the purpose of understand-
ing complex pathophysiology, and it is mathematical modelling toward describing
biological systems mechanistically with which this section is concerned.

This biology—mathematics divide continues to exist in spite of significant, early
contributions from mathematics to biology including the seminal work by ? on
the ‘Chemical Basis of Morphogenesis’ which continues to have relevance today,
despite being overlooked or even dismissed previously by experimentalists (7). Tur-
ing demonstrated, critically, that instability in a biochemical system could arise
from the complex interaction of many stabilising components, and therefore, that
complex spatially inhomogeneous ‘profile’ formation has to be considered within the

context of interacting processes; Turing noted that gastrulation — the process during
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early embryogenesis wherein a homogeneous blastula is driven by complex cellular
dynamics to begin to develop into an organism of differentiated, specialised cell
types, could be described in terms of a uniform spatial steady-state that becomes
unstable upon the introduction of a diffusive process, which, arising from symmetry
breaking, permits complex spatial profiles developing from initially homogeneous,
steady-state conditions; this occurring despite diffusion being understood to act as
a stabilising process in itself (leading to spatial homogeneity at its limit). This leads
to fundamental insights and principles that drive modern mathematical and systems
biology today: the notion that chaotic, non-linear behaviour of individual biolog-
ical processes can result in emergent properties that cannot be understood from
consideration of each individual component in isolation. Subsequent work failed to
acknowledge the fundamental insights afforded by such work; for instance, ? wrote
that Turing’s model ‘is quite unable to generate regulative systems’, while failing to
acknowledge the fundamental insights that Turing’s notion of diffusion-driven insta-
bility and supporting toy models afforded to modern understanding complexity in
biology, with Turing’s morphogens essentially predicting the existence of cytokines
and growth hormones (which he termed ‘morphogens’) that drive cellular differenti-
ation and tissue growth, many examples of systems that behave in a manner similar
to his morpogens are now known (?77?).

? noted that, despite the fascinating discoveries and insights provided by exper-
imental immunology, mere exposition of experimental results cannot quantitatively
answer crucial questions such as what determines the viral load or cellular turnover
rate in HIV infection, and shrewdly acknowledged that the common refrain of bio-
logical processes being too complicated to be suited for mathematical investigation,
becomes a more logical argument when reversed: that it is precisely their complex-
ity that invites the incorporation mathematical analysis. Indeed, the complexity
of the immune system necessitates a mathematics suited to investigating chaotic,
non-linear systems composed of many individual components; that is, immune func-

tion must be considered within the context of complex systems analysis. It is this
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non-linearity in immune function that requires mathematical analysis for true, quan-
titative understanding.

To address the application of complex systems analysis, mathematical modelling
and simulation to immunology, we will require precise definitions of a ‘complex
system’, ‘complex systems analysis’ and the notion of chaotic, non-linear processes
within biology, discussed in Section [I.2.1] The state of the art in the application of
mathematical modelling in addressing important immunological questions may then

be explored (Section (1.2.3)).

1.2.1 Complex Systems Analysis and Biological Processes

A ‘complex system’ can be defined as one driven principally by the behaviour of
many animate constituent components that individually may be simple but whose
collective interactions are too non-linear, chaotic, and possibly ill-defined, to admit
precise mathematical analysis (7). Complex systems are characterised by emer-
gent properties, that is, the interaction of many individual components results in
the collective emergence of a particular phenomenon, pattern or system behaviour
that cannot be intuitively understood from complete knowledge of each constituent
component nor derived from an analytical mathematical analysis. Complex sys-
tems analysis became a practical reality with the advent of two key advances in
the latter half of the nineteenth century: improved experimental methods provid-
ing accurate, quantitative data on the constituent components of complex systems
through reductionism, and the development of digital computing subsequently per-
mitting abstracted descriptions of these constituent components in silico enabling
computational simulations through which complex systems can be systematically
explored. The ever-increasing availability of computational resources has allowed
systems of greater complexity to be analysed and understood.

Biological systems are inherently complex; millions of years of evolution has re-
sulted in highly complex, robust chemical systems involving phenomena spanning

nanometres to metres, and nanoseconds to years. It is not surprising that the ma-
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jority of complex systems that have been studied are grounded in biology or are
otherwise anthropogenic — the collective behaviour of many millions of atoms or
molecules yield to mathematical analysis through application of statistical mechan-
ics due to their adherence to well-defined, inalienable ‘laws’ of physics. However,
the collective behaviour of nucleic acids and the large number of different proteins
that give rise to biological cells, and the many heterogeneous cell populations that
give rise to complex organisms including mammals, rely on ever increasing levels
of abstraction such that it is not practicable nor desirable to attempt to apply re-
ductionist principles ad infinitum to derive analytic solutions of their behaviour at
the most fundamental levels, an idea most eloquently described by ?. Such analyses
would be absurdly complicated and not amenable to developing a true understanding

of a complex system and the factors that affect its behaviour.

1.2.2 Non-linearity in immune function

It is often said that immune function, and many other biological processes beside,
are ‘highly non-linear’ (??77?), but what is precisely meant by non-linearity in im-
munology, and why is it important? The mathematical definition of a non-linear
process in one in which the output is not directly proportional to the input. The ex-
ample, well-known to immunologists, of T-cell responses to different concentrations
of interleukin-2 was given by ? (Figure . At low IL2 concentrations, there is
little or no proliferative response, however as IL-2 levels increase, T-cell proliferation
increases exponentially before plateauing and then decreasing. Such a dose-response
curve does not easily admit to mathematical definition, and the response by different
cell types to the myriad molecules that drive behaviour is different in each case.
What may not be immediately obvious is the complex, chaotic behaviour that
results from several interacting non-linear processes, including counter-intuitive ef-
fects. An example of this would be the role of IL10 in rheumatoid arthritis, it is
known to both promote accumulation of IgM-B cells within the synovium and pro-

motes rheumatoid factor (autoantibody) presence (7), but also acts in a regulatory
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Figure 1.4: An example of non-linearity in immunology: the response of IL-2-
dependent T-cells to increasing doses of IL-2. There is little or no proliferative
response at low doses, but as the IL-2 concentration is increased, T-cell proliferation
grows exponentially before plateauing (and in some cases, then decreasing). Taken
from ?

capacity as an inhibitor of synovial inflammation (?) — one soluble molecule respon-
sible for apparently contradictory roles. A corollary, but more generic example, is
the unpredictability of the effects of biologic blockade (e.g. fusion proteins and mon-
oclonal antibody therapies) on disease pathology. For instance, multiple sclerosis
onset is associated with anti-TNFa therapy (?) despite the pivotal role of TNFa in
driving neuronal death within multiple sclerosis (7). These counter-intuitive, often
contradictory, roles of biomolecules within immunology and biology are the result of
interacting non-linear systems driving chaotic behaviour that cannot be understood
through reductionist experimentation alone.

Through the rapid development of systems immunology, it has been established
that many of the ‘high-level’ properties of the immune system are a result of pos-
itive /negative feedback controls, amplification methods, cellular heterogeneity and
a reliance on stochastic events (7). These properties rely on many individual, in-
teracting entities and are therefore amenable to computational and mathematical
analyses, permitting a greater understanding of immune function, dysregulation and

identification of potential approaches for modulating the immune system as a ther-
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apeutic intervention strategy.

1.2.3 Modelling Immunology as a Complex Dynamical Sys-

tem

The development of models that capture the essential, emergent behaviour of specific
biological processes, with extraneous components excluded, enables understanding
of how the fundamental non-linear systems govern the process(es) of interest, and
can therefore lead to new insight or quantitative prediction (7). Often, such models
will exclude components known to be involved in the system under study in some
capacity — the inclusion of as much biological detail as possible may obscure the
key entities involved. ‘Top-down’ models that seek to include all available data
are essentially phenomenological descriptions of the biological system derived from
bioinformatics analysis of high-dimensional datasets. While such models may more
accurately fit experimental data and are useful for identifying the importance of
particular components within a system, such as genes (?) or enzymatic processes (?),
greater insights into minimum requirements, prerequisites and governing dynamics
arise from models constructed from the ‘bottom-up’ designed to address well-defined,
pre-specified research questions (7).

A rich body of literature has developed applying mathematical and computa-
tional modelling to address immunological questions, using both analytical and nu-
merical approaches encompassing techniques covering the gamut of mathematical
techniques. This section introduces generally a selection of analytical mathemat-
ical models and computer simulations which have been used to address various
immunological questions, prior to Section reviewing the literature surrounding
lymphoid tissue development.

One aspect of immunology that has been the subject of significant mathemat-
ical modelling is the quantification of thymic output (?), which is critical for the
understanding of healthy homeostasis and disease dysregulation in the peripheral

T-cell compartment, such as is the case in HIV infection. The thymus clearly has
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a key role in immunity as it provides functional T cells to the periphery in both
children and adults, and is necessary for immune function reconstitution during im-
munodeficiency conditions such those caused by HIV infection. This is an excellent
example of a crucial immunological problem for which experimentation alone was
insufficient, eventually yielding to a mathematical analysis. Quantifying mammalian
thymic output is difficult to determine experimentally as there is no known surface
protein of recent thymic emigrant T cells with sufficiently short half-life that would
permit calculation of emigration rate. 7 proposed that T-cell receptor excision cir-
cles (TRECs) could be used to quantify thymic output. TRECs are a by-product of
TCR rearrangement, made up of episomal DNA circles. During T-cell thymic de-
velopment, the TCR is rearranged through recombination of its variable and joining
regions on chromosome 14, and involves excision of the d locus that resides between
the V and J segment genes on the chromosome « chain. As this excised DNA con-
tains specific sequences common in 70% of a8 T cells, are exclusively in those T cells
of thymic origin (?), and do not divide (?), these TRECs are suitable candidates for
use as markers of recent thymic emigrant T cells.

Several studies attempted to quantify thymic output, particularly in the con-
text of HIV infection and the role of a reduced thymic output on disease outcomes,
and arrived at substantially different conclusions regarding the suitability of using
TREC as a phenotypic marker for measuring CD4+ lymphocyte depletion. TREC
frequency was identified as decreasing with age, lower in HIV-infected individuals,
but that it was significantly higher in those individuals treated with antiretroviral
drugs (?7). It was further determined in one study that TREC frequency could
be used as a predictor for HIV-1 disease progression, beyond viral load and CD4+
T-cell count (?). Following this early research, many more studies were conducted
attempting to quantify thymic output using TRECs (??7), including some early
work exploring mathematical models as a tool for the characterisation of factors
leading to TREC concentration changes (7). Such factors influencing interpretation

of TREC frequency include its variation in response to changes in cells both with
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and without TRECs, therefore biodynamical processes beyond thymic output into
the periphery (such as T-cell proliferation or death) could influence observed TREC
frequency changes. The reader is referred to the literature for each respective TREC
model for further details with regard to each individual model’s parameterisation
and validation. Given that it is well-known that T-cell proliferation increases in HIV
infection, this presents significant difficulty in the interpretation of how TREC fre-
quency relates to thymic output in these individuals (7). Mathematical modelling is
well-suited to potentially providing insights regarding such complexities. In seminal
work by ?, it was argued that mathematical modelling must be utilised to properly
analyse these data and determine what biological parameters needed measuring.
This study (?) utilised a very simple approach using linear ordinary differential
equations to quantify TREC-containing cells (C') and total T cell population size
(T'), defining the following equations:

ac

s =ao —dC (1.1)

and

C;—j; =0+ (p—dT (1.2)
let ¢ be thumic output, « be the fraction of thymic emigrants containing a TREC,
finally let p and d be the T cell proliferation and death rate. These linear ODEs
are sufficient to describe the experimental data obtained in previous studies, and
can obtain an equation describing TREC frequency, F(t)), utilising Equations
and , applying the quotient rule to express F(t) as a function of %:

dF o o

We see in Equation that TREC frequency dynamics are dependent upon not
only thymic output, but also on the proliferation rate. Therefore, the assumption

that TREC frequency could be used as a surrogate measure for thymic output
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was indeed incorrect (7). This insight led ? to analyse the dynamics of TREC
in HIV-infected individuals in the light of this discovery, and determined that the
reduction in TREC frequency in such individuals reported in previous studies (?7?7)
is potentially caused by immune ‘hyper-activation’ reflected by an increase in T-cell
proliferation and further concluded that measuring changes TREC frequency was
not sufficient to provide evidence of thymic impairment in an individual.

This simple mathematical model provided an enormous contribution by deter-
mining that TREC frequency could not be a direct measurement of thymic output,
and any analyses that assumed it was would lead to contradictory or incorrect re-
sults. Furthermore, Equation [1.3|establishes that TREC concentration, rather than
frequency, could indeed permit direct measurement of thymic output. These insights
may appear obvious in the light of the mathematical model, however intuition alone
was insufficient to arrive at these conclusions. This provides an excellent example
of using mathematical modelling to evaluate the veracity of a biological hypothe-
sis, even though the model described in Equations [L.1}{1.3| is a highly simplified
description of a complex, non-linear emergent biological phenomena. This model
led to various in wvivo experiments that permitted direct quantification of thymic
output, for instance in ? the daily number of CD8+ and CD4+ T cells exported
from the thymus in rhesus macaques was determined. The simple model described
above was later developed upon in 7, wherein a non-linear model of thymopoesis
was derived (Figure . Implementation of the thymic involution model described
for humans in Figure [1.5| permitted simulations to determine and quantify age-
dependent changes of recent thymic emigrants produced per day (Figure , which
could not be otherwise measured experimentally. Furthermore, the model was able
to explore whether thymic concentration is an accurate predictor of thymic function,
as suggested by the simpler model described in ?.

The model described in Figure[1.5| predicts that both thymic output and periph-
eral T cell division could equally affect TREC concentration for individuals at any

age, with a lesser contribution from T cell death — broadly in agreement with the
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Figure 1.5: A multi-compartment model describing thymopoiesis (?) including
five thymocyte subsets (TN, ITTP, DP, SP4 and SP8). Model includes thymo-
cyte growth (7;) limited by maximum thymocyte population size within the thymic
epithelial space (T.s(t)), thymocyte differentiation (f;), death (d;) and emigration
from thymus as recent thymic emigrants (e, e2). Taken from ?.

earlier model by 7, however noting that this model assumed that division of naive
T cells does not occur and neglected the possibility of intracellular TREC degrada-
tion. Therefore, ? proposed that T cell division and death should be examined in
an experimental system before relying upon TREC concentration as a direct cor-
relate of thymic output, and that their model can be used as an integrated system
paired with experimentation to determine thymic output through integration of ad-
ditionally measured T cell dynamics. The notion of combining a measure of both
TREC concentration and a methodology for estimating intrathymic precursor T-cell
proliferation rates through quantification of distinct TREC molecules in peripheral
blood cells was later developed in ?, providing a reliable measure of thymic function

in HIV-infected patients undergoing anti-retroviral therapy.

understanding of measuring thymic output, with important consequences for moni-
toring HIV-infected individuals, spans over a decade — from early experiments pre-

dicting that TREC frequency was a direct measure of not only thymic output, but
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Figure 1.6: Recent thymic emigrant dynamics for five thymocyte subsets over an
80-year lifespan. Panel A shows simulations of five thymocyte subsets, and Panel B
shows the number of emigrants output from the thymus per day. Results from the
model described in 7 as reproduced in 7.

HIV-infection disease progression, to simple mathematical modelling implicating the
role of T-cell proliferation (?) and later, complex non-linear modelling (?) further
refining this understanding to ultimately enable a reliable experimental framework
for measuring thymic output as a function of TRECs (7). This development of the
literature in this area provides a clear demonstration of the value of mathemati-
cal modelling in the interpretation of in wvivo datasets that cannot be intuitively
understood due to complex non-linearities and unappreciated subtleties within the

data.

1.2.4 Modelling Lymphoid Tissue Development In Silico

The molecular and cellular mechanisms driving the formation of secondary lym-
phoid tissues have been extensively studied using a combination of mouse knockout
studies, lineage specific reporter mice, microarray gene expression analysis, immuno-
histochemistry, imaging and flow cytometry. However, the molecular and cellular
processes which drive the formation and maintain the function of tertiary lymphoid
tissue (TLT) have proven to be more controversial and enigmatic, principally due
to differences between experimental animal models and human disease pathology.
Murine models of immune-mediated inflammatory diseases are acute and fail

to replicate the chronic human disease generally characterised by cycles of “flare”
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in disease activity and subsequent remission, limiting their translational capacity
to human disease. Infection and tumour models in mice either resolve too quickly
for any chronic pathology to be established, or necessitate euthanasia for welfare
purposes prior to the establishment of TLT pathology. This contrasts sharply with
ostensibly similar human pathology: humans may live the rest of their life with
chronic disease pathology, particularly in the context of treatment with biologics
(e.g. monoclonal antibody therapies) and small molecule drugs, and this permits
pathology the opportunity to evolve from localised to systemic inflammation, in-
cluding fibrotic tissue failure, and autoimmunity working in synchrony to prevent
disease resolution. Human three-dimensional tissue culture models (???7) contain-
ing both stroma and lymphocytes have become increasingly common and useful in
understanding molecular mechanisms driving TLT formation. However, it is not
currently possible to represent the full complexity of chronic human pathology in
vitro, and additional means of understanding these complex disease processes are
required.

In humans, tertiary lymphoid tissues (TLT) are found in inflammatory immune
responses associated with chronic pathologies related to hip joint replacements,
keloids, tissues in autoimmune disease (e.g. the salivary gland in Sjogren’s syn-
drome or articular joint synovial lining in rheumatoid arthritis) to solid tumours
and follicular lymphomas in the bone marrow (???7). Although the role of specific
cell types has been controversial, a paradigm has begun to emerge centred on a
multi-step process in which localised inflammation induces stromal cell activation
in a lymphocyte-independent process, thus leading to localised micro-environments
permissive for T and B cells entry.

Computational and mathematical modelling of lymphoid tissues may be broadly
broken down into a several key areas, each of which has the ability to address crucial
questions required to develop a comprehensive mechanistic understanding of tissue
form and function - these areas include models concerned with: cell motility and

the reticular network, B and T lymphocyte dynamics (proliferation, activation, de-
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velopment of effector functions), tissue organisation into anatomical niches, and the
role of lymphoid tissues within the context of infection or other disease processes.
This section aims to briefly consider significant and recent work addressing each
of these areas using a variety of mathematical and computational modelling tech-
niques paired with experimentation, model hybridisation is then considered within
the context of lymphoid tissue modelling and QSP (quantitative systems pharma-
cology): the incorporation of different modelling methodologies to capture, with
varying degrees of abstraction, multiple aspects of a complex system to address
difficult questions and drive understanding.

Two-photon imaging permitted a new approach to generate data on in vivo cell
motility, as it allows tracking of cell motion within living organs with minimum
disturbance from external factors, and as such, observed behaviour can be consid-
ered to be representative of genuine in vivo behaviour. Two-photon tracking of B
and T lymphocytes in mouse lymph nodes (?) appears to favour a lymphocyte
motility model in which a random walk dominates cell motion (?), despite the lym-
phocytes’ expression of chemokine receptors and the abundance of chemokine within
the lymph node micro-environment (?7). To address these conflicting data, ? de-
veloped a theoretical model of lymphocyte motility using the extended Potts model
in 2D, a technique well-suited to describing cells at the sub-cellular level including
cell morphology, surface molecule expression and additional internal structure util-
ising a lattice of volumetric elements with a defined spin state — this may generally
be described as a potential-based thermodynamic model in which cell motion (or
indeed any lattice changes) are determined by a Boltzmann law in which contribu-
tions to the energy term of the Boltzmann exponential define cellular dynamics and
interactions. A broader description of simulating cellular dynamics using extended
Potts models may be found in 7. Upon development of an extended Potts model
describing lymphocyte motility that broadly considered orientation persistence in
combination with a random walk description, and assumed motility induced cell

elongation, ? interpreted the two-photon data from ? within the framework of this
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theoretical model, and found that lymphocytes exist in a single velocity state with
a highly variable, stochastic, cellular diameter, and that their assumptions were
consistent with the experimental data.

More recently, this view of lymphocyte motility within lymphoid tissues was
extended (?), particularly with respect to B and T lymphocyte migration within
GCs, in light of additional two-photon imaging data (7). The model presented in ?
still quantitatively explains imaging data in terms of random walks with persistence
of motion, as in the earlier model described in 7, however it further predicts that
chemotaxis has an active role in maintaining GC dark and light zones and predicts
that chemokine sensitivity is quickly down-regulated through receptor internalisa-
tion. The resulting model combines a general random walk with persistence with
an important role for chemotaxis in maintaining zoning within the GC — compli-
cating the more simplistic understanding developed originally (?). The pairing of
mathematical modelling and two-photon imaging in ? identified some statistical
limitations for the interpretation of two photon cell motility measurements gener-
ally, thus indicating that the reality is likely more complex than first predicted.
This migration model integrates multiple mathematical techniques that have been
applied to modelling GC reactions, including temporal ODE systems that describe
lymphocyte recycling rates between GC zones (compartments), antigen uptake by
centrocytes, and T—B lymphocyte interaction kinetics (???) and computational
models addressing the spatiotemporal aspects of T—B lymphocyte kinetics, based
primarily on the cellular automaton model described by ? hybridised with the cell
motility extended Potts model described by 7.

This earlier work modelling GC reactions in lymphoid tissues (????7) eventu-
ally led to an integrated, functional theory and model of B-cell selection, division,
and exit within GCs, supported by T-B lymphocyte interactions (?) incorporat-
ing models describing two-photon motility data including both ‘random walk with
persistance’ models, chemotactic responses to chemokines, and chemokine desensi-

tisation through receptor internalisation and many other phenomena (?), with the
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Figure 1.7: Visualisation over 4 days of an instantiated GC in the model described
by ? following adjuvant challenge, wherein the model assumes cyclic re-entry is
the dominant pathway of positively selected B cells supported by affinity-dependent
activation by T follicular helper cells . Dividing B cells are coloured magenta and
non-dividing B cells are depicted in green. Adapted from ?

resulting B cell projection visualisation over 4 days demonstrating emergent organ-
isation properties arising from this model (Figure [1.7]). This model incorporated a
novel ‘stochastic event generator’ (?) which represents each cell within the model
explicitly in both space and time, with discrete implementations of the previously de-
veloped differential equations permitting heterogeneous responses within the model.
The fundamental cell states permitted in this model were differentiation, mutation,
division, and spatial position, with lymphocyte shuttling and maintenance of GC
zoning emerging from interactions of many non-linear interactions. The ‘stochastic
event generator’ in combination with the mathematical descriptions derived from
the extended cellular Potts model essentially results in a highly implementation-
specific instantiation of what may be considered broadly equivalent to an ‘agent-
based” model (although it is not described as such), relying on mathematical de-
scriptors of cell behaviour rather than state machine descriptions, yet representing
heterogeneous cellular dynamics explicitly in time and space. It is important to note
that this model of GC maintenance may be considered an early example of ‘large-
scale’ model hybridisation, although in this case much of the integration between

model types is implicit as there lacks a clear segregation of each ‘sub-model’ and the
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means by which they were integrated into a single coherent simulation. The notion
of ‘hybridised” models composed of discrete, integrated ‘sub-models’ is introduced
in Section [1.3.2] It was noted by ? that the ‘basic philosophy of the model is to
implement known mechanisms and to use the mathematical model for the analysis
of the whole interacting system. Thus, the read-outs of the system are not set by
hand but instead emerge’: a philosophy at the core of using agent-based simulation
to understand complex dynamical biosystems (7).

Secondary and tertiary lymphoid tissues are supported by a ‘scaffold’ of mes-
enchymal stromal cells which form a collagen-based reticular network that provides
for antigen-transport, an environment conducive for leukocyte adhesion enabling
lymphoid-stromal crosstalk, and a support structure to assist in cell migration within
the tissue. The stromal network is dynamic and undergoes remodelling in response
to infection, allowing lymph nodes to adaptively grow and shrink in size and number
of follicles, and is therefore crucial in the maintenance of immune homoeostasis ?.

Given the crucial importance of the stromal network in lymphoid tissue function,
it is not surprising that a number of mathematical and computational models have
been developed to address various open-questions regarding its precise role. A 3D
dual cellular automaton model was developed by ? which describes cell movements
and interactions along the FRC network (‘T-cell stroma’) within lymphatic tissues,
the authors define one automaton which creates and stores the location of FRCs and
their connecting edges — defining the network, and another that stores the location of
DCs and naive T cells, and allows them to move in 3D such that T-—DC interactions
can be measured (Figure . Stromal network density changes significantly during
LN development and remodelling, and the FDC network supporting B-cell follicles
is much denser than the surrounding FRC network (?). It was unknown to what
extent the change in network density modified the dynamics of cell—cell interactions
within the tissue, as naive T cells scan for antigen within a secondary lymphoid tis-
sue it is important that they can efficiently cover as much of the APC population as

possible, particularly as the cognate TCR clonotype for a specific antigen challenge
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Figure 1.8: Model and simulation of cell—cell interactions on the FRC network (7).
The model consists of two cellular automata, one defining FRCs and the connecting
edges that create the network structure, and one defining the location of DCs and
antigen-scanning naive T cells. These automata interact as the naive T cell moves
within the 3D network space. The bottom 3D plots show FRC networks generated
with different densities, enabling the rate of cell—cell interactions as a function of
network density to be quantified mathematically. Adapted from ? (Figure 1 A and
B).

may be extremely rare. Such questions are well-suited to mathematical analysis, as
network structures with varying densities may be constructed using a broad array of
algorithms; in addition, the inherent heterogeneity of stromal network densities in
vivo and their dynamic nature makes this a difficult question to address experimen-
tally (praeter silico - with techniques besides computational modelling). There has
however been some success in constructing FRC networks in vitro by seeding onto
a polyurethane macroporous scaffold (?), which could potentially offer a means for
independent validation of theoretical FRC network models by modifying the FRC
seed dosage to generate tissue-engineered scaffolds of different FRC densities.

The 3D cellular automaton model (Figure was able to demonstrate that
the presence of an FRC network increased the probability of two cells coming into

contact by 25%, or as much as 40% under the assumption that the FRC network
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contributes to the motile cell velocities. Surprisingly however, FRC network density
was found to have only a small effect on the probability that a motile cell (e.g.
a naive T cell) will come into contact with either a static or motile ‘target’ cell
(e.g. an APC). This probability is reflective of scanning efficiency, higher contact
probabilities would suggest an antigen-scanning T cell is more likely to successfully
activate and promote an effective immune response. However, it was found that
disruption to the FRC network (a loss of edges between nodes resulting in reduced
network connectivity) may have a detrimental effect at physiologically relevant FRC
network densities, specifically, those found in a naive murine spleen, but still found
this to be relatively minor. Since ? determined network density is unlikely to
have a biologically significant effect on cell—cell interactions, the authors observed
that the mean diameter between two filaments connecting FRCs is approximately
equal to the mean T cell diameter, and therefore hypothesised that the presence
of the network encourages efficient T-cell flow through the spatial environment by
essentially creating channels within the LN paracortex. This notion is consistent
with the earlier observation by ? that T cells tended to move in parallel planes
during multi-photon imaging of cell motility, used as justification for describing the

dynamics in a 2D plane.

1.2.5 Quantitative Systems Pharmacology in Simulation Mod-
elling

Quantitative Systems Pharmacology has emerged in recent years as an approach that
aims to inform 'bottom-up’ modelling and simulation with “Big Data”, producing
a synergistic relationship between traditional pharmacology and computational bi-
ology to investigate complex pathological processes and develop novel therapeutic
interventions. It was argued by ? that this synergy is one of compromise, that
models should seek to be as least complex as possible, with fewest parameters, with
respect to the data available. That is, models should be precisely as complex as is

necessary and not more so. It is this concept that drives the development of the TLT
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formation model outlined in Chapters [3| and [4] - the aim is to identify the minimum
requirements capable of describing the process, rather than attempt to include all
known molecular pathways, factors, and cell phenotypes involved.

The model-based drug discovery and development paradigm is gaining traction
in the pharmaceutical industry. There has been a near constant flow of new terms in-
troduced into the literature (?7) in an attempt to capture this phenomenon: ‘MBDD’
(?7), ‘model-facilitated /informed drug development’ (?), ‘Quantitative and Systems
Pharmacology’ (QSP) (?), and ‘pharmacometrics’; furthermore, large pharmaceu-
tical companies have begun to review, quantify, and report the successes derived
from the adoption of a model-based strategy, providing a thorough description of its
implementation and impact (??7). The US Food and Drug Administration (FDA)
recently utilised mechanistic model-based methodologies to design a post-marketing
clinical trial (?7), providing a clear indicator to practitioners within computational
biology and QSP of the increasing confidence in, and prevalence, of model-based
techniques in pharmacology, drug-development, and biomedical research generally.
Although improvements in our ability to demonstrate evidence of fitness-for-purpose
within computational models taking cues from safety-critical systems (?7), there is
space for vast improvement in our ability to describe, implement and experiment
with complex models of even more complex pathological processes. The increasing
availability of large human data sources permit a lesser reliance on translation from
in vivo to human models of disease, as the many issues associated with this have
been well-addressed in the literature, for detail review on this topic the reader is
referred to 777.

Forming a key component of the ‘learn and confirm’ drug discovery and devel-
opment paradigm, many of the methodologies utilised to support the deployment of
modelling and simulation-based strategies are recurrent across the pharmaceutical
industry (7). A non-exhaustive list of such methodologies include pharmacokinetics
and pharmacodynamics modelling (PK/PD), statistical design methods, and sig-

nalling network reconstruction methods, and increasingly - complex systems and
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agent-based approaches (7). Such techniques can be applied across many stages
of the drug development process, with the capacity to inform experimental design,
‘go or no-go’ decisions, preclinical development, and optimal portfolio prioritization.
Wider adoption of in silico modelling for novel therapeutic design requires the de-
velopment of techniques capable of assessing whether a putative target will yield
a desired disease outcome (7). Describing heterogeneous biological systems with
genomic, transcriptomic, metabolomic-scale events occurring over length and time
scales spanning orders of magnitude, within an individual model is an important
challenge in model-driven target evaluation and selection, and must ultimately re-
main a key end-goal within QSP as an emerging field. It is argued in 7 that QSP
should become a the ’central pillar of translational medicine’, incorporating multi-
scale spatiotemporal models with genomic medicine, developing new approaches
to understand drug mechanisms of action spanning different levels of detail, com-
plexity, and scale: becoming the key driver in advancement of drug discovery and
development through an integrative multidisciplinary approach. The data in Fig-
ure [1.9 taken from ? show over a ten year period common causes of attrition in
the drug discovery and development process. These data demonstrate a decline in
the effectiveness of PK in addressing toxicity and efficacy, and the authors argue
overall success of the “traditional” PK approach had decreased from 1991 to 2000.
Given the ever increasing complexity that modern QSP and multi-scale modelling
approaches are revealing, and the increasingly difficult task of identifying therapeu-
tics that are safe and efficacious, it is clear that hybrid complex systems modelling
approaches will be crucial in maintaining the historical success of medicine and
pharmacology in developing therapeutic interventions.

One of the key advantages of applying multi-scale, hybridised modelling ap-
proaches permits capture of a wide range of phenomena that occur at differing
time and length scales, including different cellular phenotypes and interactions, in-
flammatory molecules, chemotactic signals in the context of complex tissue micro-

environments in a format that permits in silico experimentation through the tem-
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Figure 1.9: Attrition causes in drug discovery are illustrated over a ten year period,
1991-2000. While great success has been found with PK approaches incorporating
modelling to address issues of drug bioavailability, attrition in efficacy and toxicity
are not being adequately addressed by traditional PK modelling approaches. This
figure was taken from ? whom adapted it from ?; the reader is referred to the latter
reference for a complete account of the data from which this figure was compiled.

poral inhibition of different signalling processes during key stages in TLT pathology
using various statistical and data driven approaches for the determination of effec-
tive means of modulating TLT pathology within immune-mediated inflammatory
disease. This permits identification of pathways that could be targeted to induce
resolution rather than formation. We have previously addressed methods of de-
termining the roles and modulating the presence of signalling pathways of thera-
peutic interest within the context of established, calibrated models of pathological
processes (7). Subsequently, this led to ? presenting a methodology grounded in
agent-based computational modelling using models that capture the heterogeneous
cellular processes which drive disease pathology and resolution, specifically in rela-
tion to simulations of inflammatory disease manifestation in order to determine the
likely, dose-dependent efficacy of potential intervention strategies in silico.

A large number of novel antibody therapies, biologics and small molecule in-
hibitors have been developed to target immune function for the treatment of immune-

mediated inflammatory diseases (??7). These therapies are unlikely to show maxi-
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mal efficacy against existing tissue pathology when used as mono-therapies, use of
selective therapeutic combinations derived from a detailed mechanistic understand-
ing of the disease pathology are rather more likely to show clinical efficacy. The
principal challenge is determination of the most effective and safe therapeutic com-
binations, performing a clinical trial for the thousands of possible combinations is
intractable, however integrated computational modelling and experimentation based
approaches provide a rational approach for providing the identification of candidate
therapeutic regimes with a body of evidence to support their use, allowing the most

effective candidates to be translated into clinical use.

1.2.5.1 Evaluating Efficacy of Therapeutic Interventions Incorporated

into n silico Models

Utilising agent-based and other complex systems modelling approaches, there has
been some success in the development of mechanisms to implement and evaluate pu-
tative therapeutics in silico. In one example, utilising ARTIMMUS (??) , an agent-
based simulation of murine experimental autoimmune encephalomyelitis (EAE), a
murine disease model used for the study of multiple sclerosis in humans . We ex-
plored the potential cell-level consequences of CD200 regulation of dendritic cells
(DC) (?f] Recent evidence suggests a potentially significant role for the mem-
brane glycoprotein CD200 in regulating T-cell priming outside the central nervous
system (CNS) (7). However, the downstream effects of CD200 down-regulation on
DC behaviour remain unclear. Two mechanisms were investigated in response to
CD200 signalling: a reduction in DC priming capacity of T cells, and, the promotion
of DC type II cytokine secretion. It was determined that CD200 down-regulation
of DC priming capacity promotes autoimmune-mediated disease processes. This
hypothetical mechanistic consequence of CD200 down-regulation does not support
recovery from autoimmunity individually, however, it was identified that resulting

DC cytokine profile switching substantially promotes type II deviation of the au-

My contribution to the work described in ? was the development of a novel model of two
modes of action CD200 and its principled incorporation into the extant ARTIMMUS simulation
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toimmune response, wherein CD8 Tregs are unable to directly apopotse Thl cells.
Thus, CD200-supported a type II deviation and, in the context of the ARTIMMUS
model of T cell signalling in EAE, strongly supports recovery from disease pathol-
ogy. These two potential mechanisms, while in isolation drive the system toward
increased pathological activity or disease resolution respectively, in combination they
support the view that CD200 regulation can promote recovery from autoimmunity
— a position supported by additional literature (?777).

This approach to identifying and exploring drug targets was extended when the
role of anti-CD3 biologic therapy was assessed in EAE, described in 7. Additionally,
knock-out experiments can be replicated in silico to further investigate the role of key
signalling pathways and disease mechanisms, for example key knock-out experiments
were reproduced using PPSim, an agent-based model describing murine Peyer’s
patch formation (7) and using ARTIMMUS (?7?7). Such methods of investigation
has become a mainstay for the exploration of disease pathology within the context
of agent-based models, however there lacks an integrated approach to identifying the
relative efficacy of multiple candidate therapies, although there have been important

developments in the capacity to assess temporal effects within ABMs (7).

1.3 Determining Appropriate Modelling Method-
ologies

The capacity of various modelling techniques to capture explicit notions of space
and cellular heterogeneity is illustrated in Figure Ordinary Differential Equa-
tions (ODEs) and Physiologically-Based Pharmacokinetic (PBPK) models cannot
spatially resolve systems, although multi-compartment models exist in which sev-
eral spatially connected regions are connected, they rely on the abstract notion of
well-mixed space within each compartment. Partial Differential Equations (PDEs),
and thus also systems of coupled ODEs, are capable of spatial resolution. To cap-

ture heterogeneous cellular phenotypes, however, is often intractable. State-based
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modelling approaches enable heterogeneous phenotypes among cell populations but
cannot in themselves capture spatial resolution (although they can model multiple,
spatially disconnected compartments). ABMs incorporate state-based systems in
spatial environments; as such, ABMs can capture both heterogeneous cell popula-
tions with an explicit notion of space and time. Heterogeneity within mathematical
and computational models can be created through the introduction of stochastic-
ity, or “randomness”, for example by defining events probabilistically rather than

through purely deterministic models.

SPATIALLY RESOLVED
NO YES
c PBPK
[11]
(uz; NO ODE PDE
(@]
1]
i
m
I
%
> |ves State-Based ABM
E Model HYBRID-ABM
(&)

Figure 1.10: TIllustrative table describing the capacity for various model forms to
describe spatial resolution and cellular heterogeneity. In determining appropriate
modelling methodology, it is important to consider spatiotemporal scales relevant
to the system and establish any requirement for heterogeneity across model entities.
Figure previously published in (7).

1.3.1 Describing Spatiotemporal Systems using Agent-Based

Models

An agent uses a pre-defined rule-set to assess its internal state in response to fac-

tors in the agents local environment or neighbourhood. Should an agent be in a
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situation where the requirement of a rule is met, whether due to a change in the
agents attributes or within a set location in the environment, the state of that agent
is changed. An agents rule set can range from simple Boolean statements operat-
ing over the agents attributes, to more sophisticated mechanisms that relate agent
inputs and outputs through differential equations (?) and metabolic models (7).
Agent rules also offer a means of introducing stochasticity through probabilistic
events utilising Monte Carlo methods, allowing for an approximation of behaviours
in systems whose complexity precludes deterministic modelling. The rules governing
an agent’s behaviour may be described using finite state machines (FSM) expressed

using the Unified Modelling Language (UML).

1.3.2 Multiscale Modelling and Model Hybridisation

Multiscale modelling permits one to describe different aspects of the domain on
time and length scales of different orders of magnitude. In 2013, Martin Karplus
was awarded the Nobel Prize in Chemistry for ‘the development of multiscale models
for complex chemical systems’ (7). This work in multiscale mathematical modelling
formed the basis for important theoretical developments in molecular physics (77),
chemistry (??) and biochemistry (?), leading to the development of increasingly
accurate models — capable of describing phenomena from both the quantum regime
and classical mechanics. This work led to the genesis of a large-scale collaboration
in interdisciplinary science applying the methods and concepts behind the work of
Karplus to fields as diverse as economics (?), sociology (?), and as computational re-
sources became more abundant, sophisticated complex systems models of biological
phenomena (?7).

A major contribution in multiscale modelling came from ? in the development
of a lysozyme, an important catalytic enzyme for the destruction of bacteria cel-
lular membranes, in which it cleaves a glycoside chain. A purely classical molecu-
lar mechanics model of this system was insufficient to describe the function of the

lysozyme enzyme, however a full description in quantum mechanical terms was com-
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putationally intractable in the 70’s. Therefore, Warshel et al. developed a modelling
methodology that permitted description of most of the molecule using classical me-
chanics, while critical parts of the system were treated quantum mechanically, this
‘QM /MM’ (Quantum Mechanics) /Molecular Mechanics) molecular dynamics simu-
lation constitutes the first form of hybridised modelling. A cartoon of this can be

seen in Figure|l.11

Figure 1.11: A cartoon of lysozyme cleaving a glycoside chain. The region shown
in the circle on the right is a magnified part of the lysozyme; the shaded region is
treated quantum mechanically, whilst the remainder of the system is treated using
classical mechanics. These two theoretical systems describe phenomena on different
scales, and therefore constitute an early multiscale model. The classical regime is
computationally more tractable, and is essentially the limit of quantum theory as
objects become sufficiently macroscopic. Figure taken from (?)

Model hybridisation has superficial similarities to multiscale modelling, insomuch
as developing multiscale models may require different techniques to capture systems
on different spatiotemporal scales ??7. However, this is not a prerequisite in the
development of a multiscale model. For example, the QM/MM lysozyme model
described by ? combined molecular mechanics and quantum mechanics, but both
of these theoretical frameworks are expressed using partial differential equations.
Conversely, hybrid models combine different modelling techniques, or modalities,
into one overarching model.

There has been important work as early as (?) ("Mycobacterium tuberculosis as

viewed through a computer’), and additionally in (?), (?), (?), (?) and (?); hybrid
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Figure 1.12: Structure of an Agent Based Model: Agents (shown as blue and orange
spheres) are individual entities capable of modulating their associated states and
attributes with respect to their local environment and pre-defined rules governing
agent behaviour. Agents are expressed explicitly in space (grey grid lines), and
captured at a specific time, which provides a context for their interactions. The ag-
gregate behaviours of the agents can then lead to the emergence of complex patterns
and behaviours. Taken from ?

modelling methodologies are principally concerned with describing differing levels

of abstraction at multiple time and length scales simultaneously.

1.4 Principled Approaches to Modelling and Sim-
ulation

A model is only useful if one has confidence in its results, and if the evidence-based
for confidence in the model and its results can be demonstrated and communicated
to others. Therefore, in using a simulation as a tool for understanding biological

systems, it is important that the relationship between the simulation and the sys-
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tem it is designed to describe is appreciated. Due to their nature, ABMs or highly
hybridised models cannot be expressed as succinctly as other modelling approaches
such as sets of differential equations, this leads to the need for appropriate doc-
umentation describing the model from the biological system it encapsulates, the
implementation and parameterisation decisions taken, and the supporting evidence-
base. Producing documentation that is both clear to an interdisciplinary team, yet
concise enough to be practicable is non-trivial. The challenge of communicating
agent-based models to non-specialists has been highlighted in the literature (?7).

To ameliorate this, visual notations can ensure that the design process is...

1. ...simple for both domain experts and model developers to interpret, with a

short learning curve.

2. ...explicit and formal such that it may be interpreted objectively, not subjec-

tively. Model parameterisation should be clearly justified.

3. ...accessible: model documentation should be made available, with supporting

documentation.

Utilising a principled model design and development framework, with commonly
agreed means of specifying models throughout the development process, ensures that
evidence for confidence can be provided. Unfortunately, there is not yet a single
agreed upon modelling framework, however several have been proposed in recent
years, some of which are discussed in Section When employing a principled
framework, the data used to inform the model must be appropriately justified for
the research context. Different transgenic models of disease can shed light on key
processes and interactions but may have altered dynamics which are not a true
representation of the underlying disease. A rigorous justification process can be used
to examine the suitability of data used to inform a model (?7), this is particularly
pertinent in cases where the modeller does not have an in-depth understanding of

the nuances associated with different disease models. Such a modelling development
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process also exposes the decisions made in its design and implementation to the

community for scientific scrutiny.

1.4.1 Model and Simulation Development Frameworks

When developing a model of a complex biological system, the relationship between
the simulation implementation and the biological model needs to be rigorously de-
fined, described and clearly communicated. This is necessary to enable robust justifi-
cation of the means of implementing specific aspects of the biology and abstractions
made during model development. Crucially, a domain model should be defined
solely in the terms of biology, be it embedded within diagrams or as prose, before
a specification for implementation as an executable model is developed, and should
be developed to answer a specific a prior: defined research question or questions.
Various frameworks have been established that aim to enforce a robust model
development methodology and emphasise the need to identify a specific research
question for which a model is designed to answer. ODD (Overview, Design concepts,
and Details) has been proposed as a three-block standardised protocol for describ-
ing mathematical and computational models (?). The three blocks are sub-divided
into seven stages: Purpose, State variables and scales (including parameterisation),
Process overview and scheduling, Design concepts, Initialization, Input, and Sub-
models. These stages are well-defined in terms of when and how each aspect of the
model should be defined, and their development provided an important first step to-
wards establishing a common framework for ABM development. However, although
ODD focuses strongly on rigour in describing the model, it does not address the
need for similar rigour in model implementation, verification, parameterisation and
parameter calibration, validation, evidencing fitness-for-purpose and in silico exper-
imentation. Parameter calibration in the context of complex-systems agent-based
models is the process by which parameter values are found that permit emergence
of expected behaviours of the system at the macro level. Recent developments are

exploring means of ‘automated calibration’ (7), applying multi-objective optimisa-
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tion specifying experimental data as objectives against which parameter values are
optimised for using linear programming or genetic algorithm approaches. This is
however a recent and experimental development, with the mainstay of agent-based
model calibration to date being dependent on ‘by hand’ perturbation of parameters
to calibrate the model to expected behaviours (?7).

A framework for the development of complex systems models, independent of
both domain or modelling techniques, termed the CoSMoS (Complex System Mod-
elling and Simulation) process (?) has since evolved. The CoSMoS process comprises
an iterative process of model refinement and implementation, in collaboration be-
tween domain expert and modeller. The process broadly decomposes an entire model
into four separate entities, termed ‘domain model, ‘platform model, ‘simulation plat-
form, and ‘results model. The domain model describes the aspects of the biological
system required to produce observed phenomena, explicitly in only biological terms
and without implementation considerations such as code or mathematical equations.
The domain model will contain some degree of abstraction from the biological sys-
tem under study, but these should be to permit a self-contained description of the
system and not to permit tractability in silico. The platform model describes how
the domain model is to be implemented as an executable simulation, with many
similarities to a software specification. The simulation platform itself represents the
executable simulation - a specific instantiation of the platform model. The under-
standing derived as a result of the interpretation of the collective results from in
silico experimentation using the simulation tool comprises the results model. Fig-
ure [1.13]shows a cartoon summary of the CoSMoS framework (rectangles) and tools
that support its use (ovals). Parameterisation within the CoSMoS process occurs
predominantly at the ‘domain’ and ‘platform’ stages of modelling. As an iterative
process, the way in which these models are parameterised may change as necessary
to ensure the developed simulation platform is fit-for-purpose in addressing the a
priori identified research questions.

The CoSMoS framework provides a rigorous approach to developing a model
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Figure 1.13: The CoSMoS framework is depicted with the tools currently used
to support its adoption within a model. The framework consists of the iterative
process of Domain-Platform-Simulation-Results modelling. The ovals show tools and
techniques used to support the utilisation of this framework during biological model
development: i) describing biological systems using the unified modelling language
(?), ii) describing the evidence base and providing an argumentation structure that
the model is fit for purpose using GSN (?) with Artoo (?), iii) statistical analysis
of simulation results using the SPARTAN package (?) in R.

with confidence in its results, and places strong emphasis on designing models to
address specific aims or research questions defined a priori. Thus, a model should not
attempt to be a general purpose description of a system, as research context is crucial
in determining what aspects of the system to abstract and by what means model
entities should be implemented. A model ought never be re-purposed beyond its
original scope or within a different research context, unless a principled methodology
for model extension is followed (?). For a comprehensive description of the CoSMoS

process, the reader is directed to 7. The model used as a case study in Chapter
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developed by ?, and the model developed in Chapters [3] and [ both utilise the

CoSMoS process in their development and analysis.

1.4.1.1 Model Identifiability and Parameter Estimation

Model identifiability is concerned with parameter estimation, and therefore model
calibration. A model is deemed as identifiable if it is possible to precisely infer the
true value of the model parameters, and for this to be the case there must be a
unique solution, and changes in parameter values must result in changes in observed
probability distributions. There is a wealth of literature concerning model identifi-
cation in dynamical systems across many domains. ? describe model identifiability
in the context of non-linear ODE models of viral dynamics, in which identifiability
analysis is discussed as an important and necessary process to determine unknown
parameters in ODE models based on experimental data, however the authors note
that such analysis techniques for non-linear ODE models are still under development.

In the context of systems biology, there is some literature concerning model
identifiability, for example, in gene regulatory networks (?), biochemical networks
(?) and signal transduction networks (7). In 7, the authors argued that parameter
estimation in complex systems biology models is a “major obstacle” to model de-
velopment, largely due to difficulties in measuring in vivo parameters and the large
uncertainties yielded by fitting to experimental data. 7 assessed 17 systems biology
models, and found that the obtained parameters were ‘sloppy’, or not well-defined,
and therefore the models were universally unidentifiable. However, an argument was
also made that obtaining precise parameter values is not required to draw meaningful
biological conclusions.

There is a dearth of literature on model identifiability in agent-based models,
but important early work has been undertaken to improve the process of parameter
estimation, for instance through the application of multi-objective optimisation (7),
and using genetic algorithm approaches (7). Such approaches require that in vivo

data are available for which precisely matched model outputs can be produced. This
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is especially challenging in the case of TLT formation, as enormous heterogeneity
is observed in the size, frequency, organisation of these tissues, and number and
density of lymphoid follicles that form within them. Such data are not available,
and the requirements for the formation of TLT are unknown. Therefore, for the
model of TLT formation developed in this thesis (Chapters [3] and [, it can be
stated a priori that the model will be unidentifiable. The model must therefore be
treated as a theoretical construct aimed at exploring whether the hypotheses devel-
oped in Chapter |3| are generally consistent with the observable in vivo organisation
that takes place over a 15-day period, in a generally qualitative sense. Thus, the
model outlines will be semi-quantitative, in that outputs produced are numerical
and lead to testable predictions in wvivo, but that model identification and precise

parameterisation will not be possible.

1.4.1.2 Validating Theoretical Models

A complex biological model may be entirely theoretical in nature, that is, driven by
a novel theoretical framework that is capable of describing the emergence of a com-
plex biological phenomena in a manner somewhat analogous to theoretical physics.
Validating such models, in addition to the use of argument-driven validation and
principled development frameworks, is also a case of identifying whether the theory,
model and resulting simulation produces a priori defined expected behaviours. For
the TLT model developed in Chapters [3]and 4] much validation comes from domain
expert observation of simulation results with respect to available experimental evi-
dence (as outlined above in Section . This is particularly the case when it is
not possible to define any metric for model “precision” due to lack of knowledge of
variability of the domain-under-study. For example, the variation in number, size
and distribution of B-cell follicles in TLT is currently unknown, as are cell pop-
ulation sizes, and so on, and thus validation relies somewhat on observation that
the theoretical system produces behaviour similar to that which is observed in vivo

from the perspective of “opinion leaders” and domain experts. Such validation can
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be enhanced by making novel predictions in silico about the domain-under-study
using the theoretical model and then performing in vivo experimentation to evalu-
ate if system responses in silico and in vivo are qualitatively or semi-quantitatively

similar.

1.4.1.3 Demonstrating Model Fitness-For-Purpose Through Argument-

Driven Validation

A computational model of biological phenomena may be considered as analogous to
a safety-critical system, given that at some point decisions regarding interventions,
clinical trials or future research direction could be based on results from the model.
It is important therefore to develop an argumentation structure that can present
a case that the simulation is valid and appropriate given the experimental scope.
Goal Structuring Notation (GSN) is a technique developed originally in the context
of arguing safety of aircraft by 7, and was later introduced to biological simulations
by ?. Figure illustrates a sample GSN argument, with each element describing

its purpose in the context of arguing fitness.

1.5 Thesis Aims

This thesis is concerned with the development of complex systems models of im-
mune pathophysiology; in particular, the development of techniques to improve
model granularity, visualisation and quantification methods to permit intuitive un-
derstanding of many highly complex multidimensional datasets. The development
of visualisation techniques consists of two strategies. Firstly, we look toward ex-
perimental biology to develop emulations of praeter silico (non-computational) ex-
perimental techniques and data interpretation; this is explored in Chapter [2 Sec-
ondly, unsupervised machine learning analysis techniques are used to explore model
response to therapeutic intervention through manifold learning with Kohonen net-

works, these are introduced in Chapter [5| and applied to therapeutic efficacy in
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Figure 1.14: An example GSN argumentation structure. All GSN drawing elements
have been included, with the contents of each explaining its purpose within the
argument-driven validation framework.

Chapter [0, permitting visualisation of the heterogeneity of simulation outputs with
different therapeutic intervention strategies. We aim to present a flexible method-
ology and scheme for integrating multiple modelling techniques into an overarching
hybrid multiscale model and executable simulation that reproduces the domain sys-
tem at the molecular, cellular and tissue level across spatiotemporal scales spanning
orders of magnitude. Furthermore, novel approaches to producing simulation out-
puts that are analogous to those used in experimental biology are described, helping
to create a well-defined link between the results model and the domain model, im-
proving validation and assisting in effective communication of model results.

The following list enumerates the principal aims of this thesis, and is succeeded by
further exposition regarding each item including where within this thesis evidence

and discussion may be found fulfilling the aim.

1. Derive a hypothesis-driven model of tertiary lymphoid tissue (TLT) formation
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during autoimmune disease for use as a case study in applying the result of

aims 2 and 3 below.

2. Development of a schema and novel paradigm for developing a highly inte-

grated hybrid multiscale model.

3. Development of improved methods for visualising simulation outputs that are

analogous to those utilised in experimental biology.

4. Determine the veracity of the model hypothesis describing the minimum re-

quirements for TLT formation.

5. Utilize the TLT formation model to evaluate the efficacy of therapeutic inter-

ventions for Sjogren’s syndrome in silico.

1.5.1 Thesis Structure

The aims described in Section[I.5]are addressed over seven chapters, as set out below:

Aim 1: Derive a hypothesis-driven model of tertiary lymphoid tissue
(TLT) formation during autoimmune disease for use as a case study in
applying the result of aims 2 and 3

Chapter 3 presents a TLT formation domain model, and Chapter 4 describes the
Platform Model /simulation implementation. The model is analysed and predictions

derived thereof in Chapters 5 and 6.

Aim 2: Development of a schema and novel paradigm for developing
highly integrated hybrid multiscale models

Chapter 4 describes the development of an approach to succinctly yet briefly sum-
marise complex hybrid models sharing inputs and ouputs. When attempting to
describe a mathematical model constructed from ‘sub-models’, with each represent-

ing a specific biological entity or process, it quickly becomes difficult to understand
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and mentally maintain the model network topology and we lack notation to suc-
cinctly describe the model structure and organisation. Therefore it is contended
that the most informative representation should be centred on information flow be-
tween sub-models. Each input/output across the various sub-models can be defined
using arrows between sub-models defined within boxes. An example of such a dia-

gram is presented in Figure [4.2]

Aim 3: Development of improved methods for visualising simulation out-
puts that are analogous to those utilised in experimental biology

Chapter [2|describes the development of a set of methods for emulating immunohisto-
chemistry, flow cytometry, and gene and protein expression analysis. These are ap-
plied in a case study using a simulation of murine Peyer’s patch development during
organogenesis. A demonstration is provided in Section that model predictions
requiring complex statistical analyses during ‘exploratory’ in silico experimentation
can be quickly identified using emulations of protein/gene expression analysis. It is
argued that the techniques described are an important additional approach in the
development of simulations with results models that are effectively communicable
across interdisciplinary teams, and can quickly identify aspects of the model worthy
of further interrogation using established statistical analysis techniques that require

significantly greater computational expense.

Aim 4: Determine the veracity of the model hypothesis describing the
minimum requirements for TLT formation
Chapter 5 deals with analysis of the simulation and hypothesis veracity verification

through comparison with n vivo descriptions of the TLT induction process.

Aim 5: Utilize the TLT formation model to evaluate the efficacy of ther-
apeutic interventions for Sjogren’s syndrome in stlico

Chapter 6 deals with the evaluation of intervention strategies, and the use of fea-
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ture mapping in Kohonen networks to provide surrogate measures of clinical efficacy.

1.6 Summary of Novel Contributions

This thesis presents new approaches to visualising simulation outputs and quanti-
fying model responses in biological sciences, based on the concept that emulating
experimental techniques will provide additional insight and improve interdisciplinary
collaboration by increasing the communicative capacity of models to those not from
a modelling background. These developments are described in Chapter [2 applied
using a case study extending a pre-existing agent-based simulation of Peyer’s patch
formation. In Chapter [3] a new theoretical model of TLT formation derived from
human n vitro and murine in vivo experimental data, and frames this within the
context of Sjorgen’s syndrome pathophysiology. A semi-formal ‘Domain Model’ is
described and parameterised following the CoSMoS process outlined in Section [I.4.1]
A formal mathematical and computational model is developed in Chapter [4] from
the ‘Domain Model’. This ‘Platform Model’ is formulated in a platform-agnostic
manner prior to implementation using Java as a software simulation tool that has
been termed ‘NeoSim’ (Lymphoid Neogenesis Simulator). The platform model is an
abstract description of my hypothesised minimum requirements in TLT formation,
intended to determine whether the dynamics of lymphocyte—stroma crosstalk and
chemokine induction as described in the model are sufficient to produce structures
that are qualitatively similar to those found in Sjorgen’s syndrome in humans and
murine models.

This thesis fundamentally demonstrates that relatively low-dimensional data
combined with hypotheses of how biological systems function, when implemented
as a model describing the fundamental processes in an abstract, theoretical manner
through hybridisation of multiple mathematical techniques, is capable of demon-
strating hypothesis veracity or consistency. Furthermore, through the generation of

high-dimensional data from simulation, such models lend themselves well to high-



CHAPTER 1. INTRODUCTION 70

throughput analysis and have significant predictive capacity.

NeoSim is designed as an abstract theoretical model intended to evaluate whether
TLT formation is consistent with the hypothesis formulated in Chapter [3] NeoSim
is found to recapitulate the 15-day TLT formation process, with randomly entering
lymphocytes stimulating stromal cells to differentially express chemokines resulting
in a self-organisation process leading to B-cell follicles supported by FDC-like ('B-
Cell’) stroma surrounded by T cells and FRC-like ("T-cell’) stroma. Analysis of the
model and simulation in Chapters [5[ and [5| investigated whether NeoSim responded
as clinical trial data suggest when biologic therapies are introduced as various time-
points and dosages. This investigation ultimately led to the discovery that anti-
VLAA4 (e.g. natalizumab), an adhesion molecule blockade, can prevent the formation
of B-cell follicles responsible for driving Sjorgen’s syndrome pathology. This was then
tested in vivo using an acute murine model, and near complete ablation of B-cell
follicular structures was found, suggesting that natalizumab, currently used in the
treatment of irritable bowel disease, may also be a viable treatment for Sjorgen’s
syndrome.

A more detailed summary of original contributions is presented in Chapter [7]

(Section , following presentation of the work itself in the proceeding chapters.



Chapter 2

Simulation Analysis utilising
Visualisation and Emulation of

Experimental Techniques

The use of modelling and simulation as a predictive tool for research in biology is
becoming increasingly popular. However, outputs from such simulations are often
abstract and presented in a very different manner to equivalent data from the biolog-
ical domain. The development of a flexible tool-chain for emulating various biological
laboratory techniques to produce biologically homomorphic outputs in computer sim-
ulations 1s presented and applied to simulations in case studies. These emulations
include immunohistochemistry, microscopy, flow cytometry, and quantifying gene
and protein expression levels. Pre-natal lymphoid organ development is utilised as a
case study of the application of this tool chain to simulations without affecting their
extant behaviour. A pre-existing simulation of Peyer’s patch (PP) formation in the
mouse qut is extended to produce various new outputs aimed at improving insight
into simulation behaviour, and at accelerating the rate of discovery.

This chapter demonstrates that application of the tool-chain can provide addi-
tional, biologically relevant data, that are inaccessible with pre-existing methodolo-

gies for analysis of simulation results. It is argued that experimental techniques

71
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borrowed from in vivo animal models and in vitro cell culture systems are an im-
portant additional approach to the analysis of simulations in computational biology,
and might furthermore inspire confidence in simulation results from the perspective

of experimental biologists, and improve cross-disciplinary model communication.

2.1 Introduction

A typical approach to experimentation with an existing computational biology simu-
lation is to perform various statistical analyses on abstract simulation outputs while
varying one or more parameter values. These multivariate analyses are then used in
an attempt to make determinations regarding the fitness-for-purpose of the model
and to make predictions about the biological system which it represents. These
predictions may lead to further in silico experimentation within the simulation, and
also predictions that could be tested in the wet laboratory. However, there does not
exist a principled approach to linking the results model of a simulation back to the
original biological domain model. Model predictions often arise from observations
of how the system responds to parameter perturbation in terms of resulting changes
to abstract data structures representative of biological entities; in vivo confirmation
of these predictions therefore require an ad hoc transformation, firstly, of what the
observed change in model output permits one to infer about the system under study,
and secondly, a prediction of what one would expect to be observable in either in
vitro or in vivo models of the same system presuming the original prediction is in-
deed correct. The differing abstractions and limitations that affect these extremely
different model systems present significant confounding factors with respect to what
may be construed as sufficient evidence that a prediction is generally accepted to be
true. In silico models which frame outputs within the context of generally accepted
constructs within the field permit directly testable predictions without pre-requisite
inference of what may be considered to construe a suitable test.

The rapidly increasing popularity of mechanistic in silico models of highly com-

plex biological phenomena, including tissue organogenesis and immune processes,
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is resulting in an ever-growing population of researchers with diverse backgrounds
collaborating on multidisciplinary projects toward common goals. Just as, now long
established, it is known that a model must be entirely transparent and demonstrated
to be fit-for-purpose using sufficiently rigorous argumentation tools and model devel-
opment frameworks (such as CoSmoS), we must also acknowledge that models need
to be sufficiently communicable; a model whose results cannot be readily understood
and assimilated by the scientific community at large (that is, beyond mathemati-
cians and computer scientists) is unlikely to have maximum impact, regardless of
its fitness-for-purpose or predictive power.

A variety of theoretical advancements and practical tools have been developed in
recent years that improve understanding of interdisciplinary communication aimed
at enabling domain experts to adequetely identify flaws in model implementation
such as unsuitable abstractions or, domain misunderstanding by non-expert model
developers. Key examples of such advancements being the development of the use
of ‘expected behaviours’ diagrams, first utilised in 7, as a means to broadly commu-
nicate a model overview, including associated aims and hypotheses, and the adap-
tation of the UML to permit the description of massively parallel biological systems
such as cellular signalling networks, through a technique that biologists and other
domain experts can quickly learn to understand (7). However, there has been little
to advance interdisciplinary communication and discussion of the results model, in
which inferences about the domain are often made using techniques that are not
easily communicable to domain experts and interested third parties. This may lead
to in silico models being overlooked in favour of other modelling approaches that
are accepted within the dogma of a particular scientific field.

We propose the creation of a stronger link between biological models and exe-
cutable simulations in general by developing simulations that produce outputs that
can map to the types of data produced and used by experimental biologists. Model
developers should aim to design outputs that are amenable to analysis method-

ologies that are commonly applied to data derived from praeter silico (besides in
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A. Standard Simulation B. Analysis Workflow
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A-Tests, LHC, eFAST, etc. IHC, Flow Cytometry, qPCR, etc.
Bioinformatic Analyses
CellProfiler, TissueGnostics,
ImageJ, Scripting, etc.

!

Analyses
A-Tests, LHC, eFAST, etc.

Figure 2.1: A typical approach to performing and analysing simulations within
computational biology. The red boxes represent an extended work-flow designed to
provide outputs that directly map to experimental data constructs, which enables
additional analysis of model dynamics and model predictions to be framed within a
praeter silico experimental context.

silico) models by experimentalists. It is to this end that software and protocols
for the production of such data structures that can be applied to pre-existing and
new simulations have been developed, and enable computational models to be bet-
ter interpreted within the context of the biology that they represent. Figure [2.1
presents a typical simulation analysis work-flow (black rectangles) and incorporates
the proposed additional steps (red rectangles) for creating models and simulations
that better integrate with experimental biology. The net result of these additional
processes is a wider range of model outputs that can be utilised during simulation
calibration and validation, to improve model communication, and to aid develop-
ment of directly testable predictions in terms of in vivo and in wvitro model-based

experimentation.
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2.1.1 Taking Cues from Experimental Biology During In

Silico Model Development

To develop a quantitative understanding of enormously complex biological processes,
such as those involved in immunity, immunologists and other life-scientists have de-
veloped and utilised a combination of technologies to quantify molecular and cellu-
lar mechanisms during immune responses. These include flow cytometry, immuno-
histochemistry, western blotting, qPCR (quantitative polymerase chain reactions),
ELISA (enzyme-linked immunosorbent assay) and in vitro functional assays; how-
ever these technologies are, in isolation, inherently limited in spatial, temporal or
cellular resolution and insufficient alone to understand the underlying physics and bi-
ology of immune responses. The development of myriads of biologically-compatible
chemical dyes and fluorescent proteins, in combination with advances in imaging
technologies, have provided the potential to image immune function at the single-
cell level in three-dimensions over time.

Multi-photon confocal imaging has provided a unique tool to quantify immune
responses providing accurate quantitative data on cell migration and interactions
that are key to the parameterisation of mathematical and computational models of
immune responses (7). Such models have been used to understand the biophysical
mechanisms of cell migration and interactions through analysis of data sets and re-
solved how three dimensional cellular topologies dictate immune cell signalling (77).
Bottom-up in silico models are ultimately dependent on the rich array of techniques
at the disposal of experimental biology, whether the model is data-driven, utilising
these data directly, or fundamentally theoretical and mechanistic, making indirect
use of insights afforded by experimental biology. While many of these techniques are
designed to quantify specific entities and from a computational modelling perspective
are principally useful in model design and parameterisation, others offer experimen-
talists a highly intuitive means of exploring highly multi-dimensional datasets and
visualising spatiotemporal organisation of complex tissue micro-environments, and

highly specialised software exists to aid interpretation of these data. By emulating
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experimental techniques, beyond the other benefits described herein, a modeller may
leverage these tools (such as flow cytometry and microscopy image analysis software
tools) to gain additional insights from their computational models.

For a given technique to be useful within the context of emulation, it must present
data in a manner that intuitively allows inference of how an aspect of the biological
system behaves or provide a high-dimensional dataset generally understood within
the field. For instance, it would make no sense to discuss western blot emulation — the
presence of proteins within a simulation result can be simply established through
direct interrogation of the internal data structure. However, emulating means of
quantifying gene or cell surface protein expression such that the relative expression
of multiple elements over time and space can be succinctly visualised could add
significant value to a simulation. Table describes three experimental approaches
that are potentially useful within simulations and typically produce data that are
replicable within many agent-based or hybrid in silico models, either through the
existence of direct correlates within model data structures, through the definition of
abstract quantities that permit equivalent visualisations to be developed or through
data transformation achieved by combining entities from multiple sub-models within
an overarching hybridised model (discussed in Section following development
of a hybridisation framework in Chapter {). In unidentifiable models, in which
multiple candidate models exist, these techniques provide an additional platform
for comparing model emergent phenomena across candidate models to data from
experimental biology.

The development of multi-colour flow cytometry and higher resolution thin sec-
tioning of immune tissues combined with an ever-expanding number of antibodies
and fluorochromes drove rapid progress in immunology, due to the capacity of these
technologies to quantify gene expression and classify live immune populations and
their effector function at the single cell level. Such technologies have been funda-
mental to the modern understanding of immune responses, and have led to new

models of the key events in antigen initiated immune responses (7). The ubiquitous
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Flow Cytometry

Cells are input via fluidic channels and individually struck by
Description coherent light, measured through photodetectors to determine the
intensity of their fluorescent antibody stained surface.

FCS Formatted Files / Multi- dimensional expression data for dot-

Output plot production.

Cellular
Analysis

Tllustrates Identification of cell populations, correlations in protein expression.

Immunohistochemistry & Microscopy

Sections of tissue are fluorescent-antibody stained, then imaged with

Description .
confocal microscopy.
s 3
g = Output Simulation visualisations that are comparable to tissue IHC
ﬁ 5 utpu micrographs, particularly with image post-processing.
Cell/Protein Co-localisation and tissue structure; amenable to high-
Illustrates

throughput image analysis.

Gene/Protein Expression Analysis

Description Deep-sequencing or gPCR type analyses of simulation state.

Output Spatial, temporal & combined spatiotemporal heat-maps

Dominance of specific genes in controlling particular processes,

Molecular Analysis

Illustrates . . .
changes in expression over time.

Figure 2.2: Table describing the experimental techniques to be emulated in this case
study, the outputs they produce and their illustrative and communicative potential.
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presence of flow cytometry, immunohistochemistry and confocal microscopy in mod-
ern immunology makes them well-suited for use as a basis for designing simulation

data structures that can be readily interpreted by domain experts.

2.2 Case Study: Simulating Peyer’s Patch For-
mation

A pre-existing simulation, designed as a predictive tool for exploring mechanisms
that drive pre-natal lymphoid organ development within the mouse gut, was selected
as a case study in applying the techniques described herein to extend the model’s
outputs and predictive ability without modifying simulation behaviour. This model
and simulation has aided the generation of testable biological hypotheses concern-
ing the complex cellular interactions leading to the generation of organs that trigger
adaptive immune responses: interactions which cannot currently be fully explored
using laboratory techniques. A brief overview of the model is provided here, however
the reader is directed to previously published work detailing the simulation design,
implementation and analysis (?7?). The tool captures the 72 hour period of tissue
development in pre-natal mice. Populations of haematopoietic cells, known as Lym-
phoid Tissue Initiator (LTin) and Lymphoid Tissue Inducer (LT1i) cells, migrate into
the developing gut, with data from laboratory observations suggesting these cells
follow a random motion. Both cell populations express receptors for the adhesion
molecule VCAM-1, expressed by stromal Lymphoid Tissue Organizer (LTo) cells
residing in the gut wall. VCAM-1 causes cells expressing the cognate receptor to
adhere to the VCAM-1 expressing cell, thereby restricting its movement. Contact
between a haematopoietic cell and LTo cell triggers the LTo cell to differentiate
(become more specialised), leading to increased adhesion molecule expression. In
addition, LTo cell differentiation increases chemokine secretion, creating a chemokine
gradient that promotes migration of the LTi cell population towards the differen-

tiated LTo cell. In the vicinity of LTo cells, movement of LTin and LTi cells will
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Figure 2.3: Shows output of one simulation run of PPSim illustrating a 10% section
of mouse gut showing LTi aggregations leading to PP formation in wild type mice
after 72 hours (top), and a lack of PP formation in CXCL13”/- and CCL197/-/21/-

mice (bottom).

be restricted by adhesion factors (VCAM-1 and others), forming aggregations of

haematopoietic cells around LTo cells at the end of the 72 hour period. These ag-

gregations later mature into lymphoid organs called Peyers patches (PPs), which

are capable of initiating immune responses against pathogenic bacteria encountered

in the gut. The visual output of the simulation at the end of the 72 hour period

from the extant simulation as described ? is shown in Figure [2.3

It has been previously shown that the emergent cell behaviour observed in lab-

oratory experimentation is statistically similar to that observed in the simulation,

and sensitivity analysis techniques were utilised to explore the simulated biological

pathways to reveal those which have a significant impact on simulation response

(??). The output from these statistical techniques provided evidence that our sim-

ulation is fit for the purpose of aiding biologists in their exploration of the system.

However, it is proposed that confidence in the simulation would be further increased

by providing experimental biologists with simulator outputs that are comparable to

primary laboratory data, which can be more intuitively interpreted. Furthermore,
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such outputs can provide additional insight into the simulation dynamics, enable
additional exploratory experimentation in silico and furnish mechanistic detail not

readily accessible with descriptive nor inferential statistical analyses.

2.2.1 Emulating Flow Cytometry

Flow cytometry is a technology with broad application in biology and medicine,
particularly used as a means of cell sorting, cell counting, and the detection of
biomarkers through fluorescent labelling. With a large number of measurable vari-
ables and production of highly multi-parametric datasets, flow cytometric analysis
is performed using specialised software such as FlowJo (TreeStar) and WEASEL
(Walter and Eliza Hall Institute of Medical Research).

The data generated by flow cytometers may be plotted as a histogram, in one
dimension, or as dot plots in two or three dimensions. A sequence of subset extrac-
tions (termed ‘gates’) may be applied to sequentially separate regions of dot plots
based on MFI (Mean Fluorescent Intensity), FSC (Forward Scatter — proportional
to cell volume), SSC (Side Scatter — indicative of morphological complexity), and a
range of other parameters. Such gated plots are useful for identifying cell popula-
tions and sub-populations based on biomarker expression, permitting quantification
of the phenotypic make-up of tissues. Datasets produced by modern flow cytometers
are written in the ISO Flow Cytometry Standard (?) file format using the .fcs file

extension.

2.2.1.1 Flow Cytometry Emulation Methodology

For each time-point a flow cytometry analysis is to be performed, expression levels
of each protein of interest are placed into a CSV column and multiplied by a scaling
factor to bring the values into an appropriate order of magnitude for Flow Cytom-
etry data (s = 105 in this case) prior to bring cast as integers. A value of ‘105’ was
selected for this dataset as it was the minimum number that re-scaled outputs to

the same order of magnitude observed in data-files taken from actual flow cytometry
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experiments, the value should be selected by interrogating typical count numbers
from similar ‘real’ flow cytometry experiments. This ultimately enables flow cytom-
etry software to interpret the values as fluorescent intensities, which are proportional
to expression level. Following this, the CSV data are transformed into fcs format
compliant files according to the ISO standard described in ?, which is universally
used by modern flow cytometers to store acquisition data. This is an important step
as it allows the data to be interrogated using flow cytometry software, specifically
designed for use with biological data and is familiar to immunologists.

In order to emulate flow cytometry, a simulation requires explicit values for
cell surface expression of proteins. Absolute values are not important, rather, it
is the relative differences in expression levels that enables the insight afforded by
this technique. In the Peyers patch simulation, expression is strictly binary, such
that each cell in the simulation is either expressing a protein or not. An increase in
protein expression is achieved by changing the parameters of abstract mathematical
functions that determine behaviour. For example, LTo chemokine expression levels
are abstracted as a sigmoidal cumulative probability density function, sampled at
each time step by every LTi cell responsive to chemokine. An increase in chemokine
expression level is represented as a reduction in the standard deviation (or tightness)
of a sigmoid curve, as detailed in 7. Expression of VCAM-1 by LTo cells is handled
in a similar manner, according to a truncated linear function, this is illustrated in
Figure 2.4 Therefore, it is necessary to modify the simulation to provide relative
quantitative expression levels without compromising extant simulation dynamics.
In these cases, a new agent property needs to be created that represents relative
expression of the factor concerned, but is not used by the simulation for decision
making purposes (i.e. state changes). This value is obtained by incrementing (or
decreasing) the property each time step in direct proportion to the change in the
mathematical function responsible for the protein. For instance, each time the
standard deviation of the function responsible for describing chemotactic response is

reduced, an integer is incremented by one. This results in an integer value associated
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The Peyer's patch simulator developed by Alden (2012) \;vas extended such that each
increment of Chemokine Expression or 'Probability of Prolonged Adhesion' on this feature
scaled axis incremented new integers chemokineExpressionValue and VCAMExpressionValue,

which is then re-scaled to be the correct order of magnitude for flow cytometry data.

\
\

Figure 2.4: Graphs show the sigmoidal and linear equation that represent chemokine
expression, and adhesion probability (via VCAM-1), respectively in the Peyer’s
patch simulator developed by ?. To capture a numerical value of adhesion molecule
expression, an integer is incremented for each stromal cell, every time this discrete
linear equation increments. The two charts in this figure were taken from ?.

with each LTi cell within the simulation that may be considered directly proportional
to CCL19 expression, allowing analyses that require relative cell surface or gene
expression values to be utilised.

The forward scatter (FSC) of light that occurs when lasers strike the cell in
the flow cytometer, which is proportional to the volume of the cell, was also emu-
lated. In the simulation, cells of a given phenotype have the average diameter of
those cells as measured experimentally. This was adapted in the simulation such
that the radius is sampled from a truncated Gaussian (normal) distribution about
the mean experimentally measured radius, with a standard deviation of 1m. This
enables identification of cell populations based on both their size and their expres-
sion of VCAM-1. In order to avoid modification of the validated extant simulation
behaviour, the original average diameter is still used for model decision making pro-
cesses, for example, cell-cell contact detection, and the randomly sampled cell radius

was recorded for transformation into the FCS file for flow cytometry-based analyses.
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# Events |

WANWAR

VCAM-1 >

Figure 2.5: (A) Emulated flow cytometry dot-plot of VCAM-1 Mean Florescent
Intensity (MFI, arbitrary units) vs Forward Scatter (FSC). This is then gated on
the VCAM-1 positive cells with high forward scatter, which are the large stromal
cells. From this subset, (B) shows a histogram of VCAM-1 MFI (log scale, arbi-
trary units) vs. the number of recorded events (cells). These plots were generated
using WEASEL flow cytometry data analysis and display software (Walter and Eliza
Hall Institute of Medical Research), intended for use with biological data from flow
cytometers.

2.2.1.2 Flow Cytometry Emulation Results

Figure shows a dot-plot of adhesion molecule VCAM-1 and forward scatter
(FSC) for all cells in the simulation at the end time-point of 72 hours. This is gated
on VCAM" cells to produce a histogram that illustrates the distribution of VCAM-1
expression fluorescent intensities.

Unlike flow cytometry performed experimentally, in which the sample is de-
stroyed during measurement, emulated flow cytometry data can be produced at any
desired frequency during a simulation run. Crucially, this permits time-series flow
cytometric analysis in which the same ‘sample’ can be observed over time. To illus-
trate this, the VCAM-1 histogram from Figure[2.5B is shown at 4-hour intervals from
the 12th to 72nd hour of the formation process in Figure 2.6, The time-dependent

development of the VCAM-1+ LTo population is clearly visible.
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2.2.2 Emulating Immunohistochemistry and Imaging Tech-
niques

Immunohistochemistry is the process of antigen detection within tissue sections
through the use of cognate antibodies. Immunoflourescence is often used, in which an
antibody is conjugated to a fluorophore that emits photons of a specific wavelength
when excited with an appropriate laser. Sections of antibody-tagged tissues are
placed in a microscope in order to visualise the spatial location of tagged proteins
and therefore the tissue organisation. Confocal microscopy is widely used, in which
the image is constructed only from light caused by fluorescence very close to the

focal plane.

2.2.2.1 THC Emulation Methodology

As seen in Figure[2.3] the spatial environment captured by PPSim is a 2-dimensional
(2D) rectangular grid that represents a 10% length of the mouse gut. This is toroidal
about the Y-axis, and is thus an abstract representation of an ‘un-folded’ section
of intestinal tissue. LTo cells in the simulation are stored in a 2D discrete space
grid. All haematopoetic cells in the simulation (LTi and LTin cells) are stored in a
2D continuous grid data structure provided by the MASON agent-based simulation
toolkit (Luke et al., 2005), a library for use with the Java programming language.
Continuous space is represented by storing each cell in a discretised grid and associ-
ating them with two double precision floating point numbers corresponding to their
‘true’ position within the grid. This is illustrated in Figure To produce images
analogous to those produced by IHC and confocal microscopy, each cell object is
extracted from this grid and then drawn to on a canvas object according to the

properties of that cell, as seen in typical immunohistological imaging.
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Discrete Space - LTo Cells
Cells stored as objects in a 2D array,
cell location stored as integer tuplet.

Continuous Space - LTi & LTin Cells
Cells stored as objects in a 2D array.
These are associated with a tuplet of
double precision floating point values: X
position & Y position.

Figure 2.7: Discrete and continuous data structures used to store cell locations in
PPSim. Continuous space is represented through the coupled association of a cell
with a discrete grid element and a set of Cartesian co-ordinates.

2.2.2.2 THC Emulation Results

Figure|2.8| presents new visualisation approaches derived from the existing simulation
of Peyers patch formation. In Figure 2.8A, LTi cells are drawn as green circles
((0,255,0) in the RGB colour space) on a black canvas, in a manner similar to
the appearance of GFP (green fluorescent protein)-stained cells when imaged with
confocal microscopy. Overlapping cells produce a region of green with a higher
alpha (transparency) value, to enable determination of the density of a region by
measuring the level of alpha in that region as compared with the base level assigned
to individual cells. LTo cells are illustrated in Figure , drawn red (255,0,0),
with an alpha value corresponding to VCAM-1 expression level. LTo cells without
sufficient VCAM-1 expression (beyond the threshold required for adhesion to be
possible within the model specification) have been coloured grey (128,128,128) for
the purposes of the figure so as to be rendered visible to the reader.

The two canvases undergo several stages of post-processing before combination
into Figure as an emulation of IHC and microscopy that illustrates the co-
localisation of LTi cells and VCAM-1 expression on LTo cells. The VCAM-1 canvas
undergoes Gaussian blur and posterisation, to provide an interpolated, continuous

approximation of VCAM-1 expression within Peyers patches. Furthermore, a canvas
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Figure 2.8: Simulation visualisation after 72 hours. (A) LTi cells coloured green to
simulate GFP in microscopy. (B) LTo cells in grey, and level of red proportional to
VCAM-1 expression level. (C) Complete emulated histology and microscopy image
showing two Peyers patches. LTi cells are stained green, L'To cells stained blue, with
additional VCAM-1 staining in red. Scale bar 175 microns.

with dark blue circles drawn at 25% opacity representing all LTo cells undergoes a
Gaussian blur and is placed beneath the red VCAM-1+ LTo cell canvas. The LTi cell
layer is duplicated, with the lower layer undergoing a Gaussian blur. Posterisation
is a process in which continuous tonal gradations are reduced to a smaller number of
tones. A Gaussian blur is a common image filtering technique that blurs an image
through application of a Gaussian function, for a full description of the method the
reader is referred to 7. This was found to produce a VCAM-1 LTo canvas that
while more diffuse, reduced extension of L'To cells at the periphery and allowed each
distinct cell to be clearly identifiable despite the application of blurring.

The in silico images can be written from the simulation at any pre-specified
resolution, with the minimum usable value linearly-dependent on the diameter of

the smallest visualised object. The images can be automatically analysed en masse
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Figure 2.9: CellProfiler output for one simulation run in which two Peyers Patches
are identified, and one aggregate of LTi cells is discarded due to occupying an in-
sufficient area. This analysis can be automated over many thousands of runs to
identify trends in patch size in terms of area, density and compactness as model
parameters are perturbed (however this figure illustrates only patch detection and
evaluation with a baseline sample run of PPSim).

to detect the presence of Peyers patches using CellProfiler (7), pipeline-based image
analysis software for automated quantification of cell phenotypes from imaging data.
This is illustrated in Figure for a single simulation run, but may be applied to
an arbitrarily large dataset. Prior to the development of this CellProfiler pipeline,
identification and quantification of patch formation has proven difficult within the
simulation, as it is achieved in the domain through manual analysis of histology

(that is, ‘by eye’) (7).

2.2.3 Producing Heat-maps Illustrating Gene or Protein Ex-

pression

Methods of presenting and analysing genomic or transcriptomic data acquired from
DNA microarrays, deep sequencing (e.g. RNA-seq) and related technologies are use-

ful for understanding spatiotemporal cellular dynamics in terms of gene expression
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and protein synthesis. Heat-maps that illustrate differential expression profiles over
time can provide important clues as to the order in which events take place during

biological processes (7).

2.2.3.1 Gene and Protein Emulation Methodology

Mean protein expression levels can be output from the simulation both over time and
across space. This permits the creation of heat maps that capture cell phenotypes
spatiotemporally, and can show the progression of protein expression over time and
space. Figure 2.10A shows a sample of 9 cells and their expression of VCAM-1
and chemokine CCL19 at three different time-points. The expression levels used to
generate these heat-maps were generated in an identical manner to the method used
for the flow cytometry emulation.

Depending on the level of abstraction within a simulation, expression levels may
represent cell-surface expression level and gene expression level specifically and in-
dependently, or abstract these into a single quantitative value. Within PPSim, the
values generated may be thought of as representing the relative cell-surface expres-
sion level of VCAM-1 and the relative gene expression or secretion rate of CCL19.
The heat-maps themselves were drawn manually using EazyDraw (Dekorra Optics
LLC), with the exception of the spatial heat-map which was generated in Java and
extracted prior to post-processing to produce the emulated micrograph images as

can was shown above in Figure 2.8 (B).

2.2.3.2 Gene and Protein Emulation Results

Figure[2.10]A shows a sample of 9 cells and their expression of VCAM-1 and chemokine
CCL19 at three different time-points. In Figure [2.10B, the spatially-distributed ex-
pression of VCAM-1 is shown at 72 hours for three isolated Peyers patches that
formed during one simulation execution. The change over time of the spatial dis-
tribution of VCAM-1 within the simulation can be visualised using a 3D spatial

heat-map in which each ‘slice’ of the z-axis illustrates the distribution of VCAM-1,
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A 0 to 24 hours § 24 to 48 hours § 48 to 72 hours §
VCAM-1
cCL19

Low Expression _ High Expression

Figure 2.10: Heat-maps generated from simulation data over both time and space, to
illustrate change in protein expression levels. (A) VCAM-1 and CCL19 expression
over time for a subset of individual LTo Cells and then the mean level over that
subset. (B) Spatially-resolved heat-map showing VCAM-1 distribution in three
Peyers Patches that formed during one simulation run.

Each grid space in (x,y) represents tmm2 700 grid spaces

Figure 2.11: 3D heatmap illustrating change of VCAM-1 concentration over time
(vertical axis), demonstrating the formation of regions of high VCAM-1 levels over
72h. Each of the 12 slices in ¢ represent a 6 hour time increment. This visualisation
clearly shows the non-linear increase in area of VCAM-1" regions over time, pro-
viding a unique means of visualising the spatiotemporal patch formation process in
one plot.

as shown in Figure 2.11] Fach slice in the z-axis represents a 7.2 hour increment

over the 72 hour PP formation process. The heat-maps in Figures [2.10] and [2.11

were generated by exporting the contents of the discrete stromal cell grid from the

Peyer’s patch simulator at desired time-points during a simulation, and coloured
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according to VCAM-1 expression calculated as described in section [2.2.1.1]

2.3 Discussion

It is proposed herein that a simulation may be considered effectively communicable
if the predictions derived from it can be understood not just by the modeller, but
by domain experts generally who may lack significant experience in computer sci-
ence or in silico modelling approaches, without requiring significant exposition of
the analysis methodology utilised. This widens possible participation by enabling
models to be easily understood across disciplines. For example, the prediction re-
garding the time-dependent roles of VCAM-1 and CCL19 can be illustrated using
either A-test plots or heat-maps of expression levels over time. Whilst the former
may be necessary to have confidence in the statistical significance of the effect, the
biological significance is readily demonstrated using the heat-map of Figure [2.10/A.
The techniques described in this chapter for grounding computational models within
experimental biology, while not intended to replace existing analysis methodology,
are proposed to be a valuable tool for communicating model outcomes to the wider
scientific community and as a guide for early prediction identification prior to ex-
ploratory statistical analyses.

It has been suggested variously throughout development of the field of computa-
tional biology, that a ‘reverse Turing test’ could present an ultimate validation test
for computer simulations of biological phenomena (77?), in which both biological
data and simulated data are presented to a biologist in order to observe whether
the simulated dataset can be readily identified, and how. This has largely not been
feasible to date because of the very different manner in which simulation results
are presented, and the difficulty presented in buffering these differences from bio-
logical domain experts. Now, with the availability of simulated histology and flow
cytometry data, computational biology and QSP is approaching the point at which
this is becoming feasible. For instance, prior to the development of the CellPro-

filer pipeline demonstrated in Figure [2.9] there was no reliable, automated means
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by which to identify, count and quantify Peyers patches over many simulation run
results, and simple dots were used for each cell in the simulation visualisation layer.
Furthermore, there are no other means except emulated flow cytometry to perform
an in-depth analysis of cell populations and their properties within a simulation
in a manner indistinguishable from in vivo animal models and in vitro cell culture
system analyses. The possibility of simulation and experimental model results be-
coming indistinguishable is an exciting prospect in terms of accelerating scientific

progress in biology and medicine.

2.3.1 Gene and Protein Expression Analysis Emulation

Figure demonstrates the potential for expression heat-maps to illustrate the
differential temporal roles of proteins or genes of interest; in this example, notable
VCAM-1 expression is seen much earlier than chemokine CCL19 expression, how-
ever, by day 3 expression of CCL19 is clearly dominant. The dominance of adhesion
molecules early in the formation process and chemotaxis later on was a prediction
generated through statistical analysis from the original simulation in ?, as shown
in Figure The original determination of this prediction required extensive ex-
ploratory analysis of sensitivity to model parameters and significant computational
expense. Individual simulation runs consistently show such phenomena in a visually
and immediately-apparent manner. This suggests there is significant value in gener-
ating heat-maps of time-series expression data to identify potential predictions and
guide the statistical analyses undertaken.

The temporally and spatially-resolved heat-maps presented in Figures[2.10jand 2.11]
have the potential to be combined in various novel ways to demonstrate the devel-
opment of biological structures through changing gene expression across time and
space. The 2D spatiotemporal heat-map in Figure presents an intuitive means
of visualising how factor expression within a tissue changes over time. This predicts
that VCAM-1 distribution in patches begins at a central point and spreads radially

outwards from that point over time.
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Figure 2.12: The observation that LTi cell velocity and displacement were not sensi-
tive to key parameters controlling chemotaxis during the first 24 hours of patch de-
velopment (A and B), but highly sensitive during the final 24 hours (C and D), with
the opposite effect found for adhesion molecules, led to the prediction that adhesion
molecules are responsible for driving early patch development, while chemokines are
dominant later on in the process. (A and C. The maximum chemokine expression
level per LTo; B and D. The minimum chemokine expression level required for LTi

chemotaxis)



CHAPTER 2. EMULATING EXPERIMENTAL TECHNIQUES 94

2.3.2 IHC Emulation

Emulating THC and microscopy permits automated analysis with software such as
CellProfiler, and also provides visual insight into emergent structures. Although
the rudimentary image transformations applied to the spatial information contained
within the simulation are presently easily distinguishable from genuine micrographs,
it is conceivable that further development would diminish observed differences. De-
spite this, the realism afforded by the present emulation methodology is sufficient
to apply image analysis techniques to simulation results. For comparison purposes,
Figure [2.13] shows the emulated micrograph alongside a similar micrograph on the
same scale obtained from a developing murine lymph node.

The application of the IHC /microscopy emulation in combination with the Cell-
Profiler pipeline illustrated in Figure to PPSim has created potential for a set
of in silico experiments that are not presently possible in the wet laboratory, not
were previously feasible with the original PPSim model. These are to explore how
patches change in response to parameter perturbation and gene-knockout. Previ-
ously, in silico experimentation within PPSim focused almost exclusively on velocity

and displacement of LTi cells as the principle outputs, however it is now possible to

—

50 microns 50 microns

Figure 2.13: A. Emulated immunohistology and microscopy of a Peyers Patch at
Embryonic Day 17.5, simulated in silico. LTi cells are green, the level of red is
directly proportional to VCAM-1 expression on LTo cells, while blue indicates the
presence of L'To cells not expressing significant levels of VCAM-1. B. Actual confocal
microscopy image of an antibody stained B Cell follicle within a developing murine
lymph node. The B Cells are fluorescing green (B220), the surrounding T cells are
fluorescing red (CD3). Scale bars are 50 microns
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measure a large range of parameters relating to both the structure of the patches
such as morphological features, cell density and area, and also the spatial organisa-
tion of expressed proteins. Previously, experiments relating to patch number were
intractable due to the large number of replicates per parameter sample required to
ameliorate aleatory uncertainty and the lack of a suitable means of identifying and
counting patches; clustering algorithms were used in an attempt to count patches
based purely on the locations of LTi cells, however they were found to be unreliable
with unacceptable detection errors that resulted in over-estimation of both PP area

and number.

2.3.3 Flow Cytometry Emulation

Experimental biologists experienced with flow cytometry could identify important
patterns, populations and other results that could go unnoticed in other approaches
to simulation analysis, or the significance of which may not be noted in analysis
performed by a model developer that is not a domain expert. Flow cytometry
software such as FlowJo (TreeStar) and WEASEL (Walter and Eliza Hall Institute of
Medical Research) enable gating of events based on the value of multiple parameters,
permitting identification of different phenotypes, and sub-populations within those
phenotypes, and an exploration of the properties of these populations. Although
for the sake of simplicity and demonstration purposes flow cytometry emulation was
performed utilising just two factors in this analysis, depending on the complexity of
the simulation, this approach can be extended in silico to an arbitrarily large number
of expressed proteins (as opposed to genuine flow cytometry, which is currently
limited to approximately 10 lasers in commercial devices). The multi-dimensional
nature of flow cytometry data coupled with software designed specifically for its
analysis in a biological context is what makes this approach particularly appealing.
Attempting to perform the same sort of analyses on cell populations and phenotypes
using the simulation alone, without flow cytometry emulation, would be extremely

non-trivial and time consuming.
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Figure 2.14: VCAM-1 mean fluorescent intensity histogram for all cells, taken at 24
(long dash), 48 (short dash), and 72 (solid line) hour time-points. The emergence
of a prominent peak is visible after 48 hours, and by the end time-point this has
diverged into several distinctly identifiable sub-populations, each corresponding to
VCAM-1 expression levels within a specific Peyers patch.

New insight into the model dynamics arose from the simple emulated flow cytom-
etry analysis shown in Figures to There is a clear emergence of two distinct
populations of LTo cells in Figure 2.5A. Interestingly, it can be seen in Figure
that there is a sudden divergence after 48 hours that created these populations, be-
fore which expression levels conformed to a Gaussian distribution. The emergence
of the Gaussian distribution over the VCAM-1+ population is encouraging, as this
is indicative of adherence to the central limit theorem and would be expected in
the domain. If the data were not normally distributed, it could be construed as
evidence that the implementation of adhesion molecule expression within the model
is an unsuitable abstraction. The divergence after 48 hours could either be a simu-
lation artefact, or it could be that each patch has a relatively uniform distribution
of VCAM-1 dependent on its unique properties, such as size and population size of
co-localised LTi cells. Therefore this simple flow cytometry analysis affords a novel
prediction regarding the dynamics of PP formation: multiple distinct populations
of LTo cells emerge with large differences in VCAM-1 relative expression. This pre-

diction is supported by the imaging emulation analysis in Section [2.2.2.2] and the
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spatiotemporal heat-map shown in Figure [2.10B.

Any predictions arising from an emulated flow cytometry analysis is a prediction
arising directly from the original simulation dynamics, insomuch that the techniques
described herein do not effect extant simulation behaviour. Such predictions were
merely unrecoverable with previously applied analytic techniques. Therefore, valida-
tion of the these techniques must be considered within the context of the simulation
to which they are applied, as what is a suitable approach for one simulation may be

wholly inappropriate when applied to another.

2.3.4 Simulation Visualisation and Emulation as Tools for

Validation and Enhanced Prediction

Through the application of high performance, high-throughput computing, emu-
lated experimental technique results from many simulations can be analysed and
combined to provide a realistic quantitative analysis of biological simulations to
provide data that can be more easily integrated into biological experiments, and
enable direct comparison between computational and n vivo animal models and in
vitro cell culture systems. This approach has the potential to somewhat simplify
simulation calibration, given the data output from the simulation maps to the same
data structures seen in biological data, the fitness function of the simulation effec-
tively becomes the primary biological data, allowing systematic exploration of the
parameter space to identify the points at which the simulation output is statistically
no different from domain experimental data. Combined with genetic algorithms or
other evolutionary computation approaches, the speed and accuracy by which simu-
lations may be automatically calibrated by computer could be improved significantly.

The development of simulation outputs that directly reflect data obtained from
the laboratory confers several advantages when used to augment current approaches
to simulation analysis. Sensitivity analysis and other descriptive statistical meth-
ods are extremely important in evaluating simulations, and have proven useful in

determining simulation robustness, aleatory uncertainty, and the roles of specific
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parameters with respect to particular outputs (??7?). However, they do not offer the
mechanistic insight into the spatial organisation of cells and the structures they form,
or the changing cell phenotypes and emergent populations that may be observed us-
ing time-series emulated flow cytometry analysis, emulated histology and spatially
resolved heat-maps. We therefore argue that current best-practice simulation anal-
ysis methodologies should be augmented with emulations of biological experimental
techniques. Sensitivity analysis may then be performed that determines the effect

magnitude of parameters on more biologically relevant outputs.

2.3.5 Feedback from the Life Sciences Community

Although a usability or human-computer interaction-type study has not been per-
formed for use of these techniques and methods, the work described herein has been
presented to those in the life-sciences at a number of international conferences, semi-
nars and meetings. Feedback obtained from these has been overwhelmingly positive,
particularly from those with no background in in silico modelling.

The author found that using these visualisation methods in the presentation
of models significantly improved audience response and interaction at conferences
with audiences consisting predominantly of experimental biologists. As such, the
work described in this chapter has served as an incredibly useful tool for improving
engagement with mathematical and computational models from the life sciences
community. Additional value is gained in not having to spend presentation time
providing exposition on model outputs that life scientists may be unfamiliar with,
by focusing on the use of emulated flow cytometry, microscopy and gene expression
images where possible. A final note in this area is that the caveat that in silico data
are being presented is extremely important to avoid confusion with in vitro and in

vivo models.



CHAPTER 2. EMULATING EXPERIMENTAL TECHNIQUES 99

2.4 Future Developments

The principles and methodologies described herein, although broadly applicable to
spatiotemporal in silico models, presently require unique manual implementation on
a simulation-by-simulation basis. The development of a software library that per-
mits automated generation of FCS files, emulated micrographs and spatial /temporal
heat-maps of gene and protein expression, would permit quicker implementation of
these techniques and therefore broader adoption of the approach. The method
should easily generalise to other agent-based models through manual adoption of
the techniques described herein, and to any system that encapsulates heterogeneity
at cellular or molecular levels. However, one of the key challenges in developing an
easily reusable software package would be not placing overly burdensome constraints
on the data structures used to store location or expression data, important to en-
sure the tool-kit is not platform-dependent (i.e. does not depend on the modelling
framework or programming language used) and to allow retroactive application to
existing simulations. Mandating that cell locations and other properties be stored
in highly specific data structures is likely to limit adoption, as such decisions often
rely on structures provided by the modelling tool-kit being used and are heavily
dependent on both the biological processes being modelled.

Extension of the DNA microarray/RNA-seq inspired heat-maps to include other
aspects of bioinformatics analysis associated with these technologies would be a
valuable addition to this work, and could be achieved through integration with
existing software libraries such as the Biopython project (?) or PyCogent module

(?) for the Python programming language.



Chapter 3

Developing a Domain Model of
Tertiary Lymphoid Tissue
Formation during Autoimmune

Disease

This chapter describes the development of a hybrid, multi-scale model and com-
puter simulation of tertiary lymphoid tissue (TLT) formation in autoimmune dis-
ease, using Sjogren’s syndrome as an archetypical model within which to explore
the formation process. Presently, there is no clear understanding of the fundamen-
tal, minimum requirements for the development of TLT. In vitro models have pro-
vided important clues regarding the role of tissue-resident stromal progenitor cells but
have proven inadequate for thoroughly evaluating hypotheses in TLT induction. Al-
though there are a plethora of in vivo murine models of Sjogren’s syndrome, many
of which include TLT formation, these acute induction models do not closely re-
flect the process during chronic inflammation, and it is difficult to isolate the key
cytokines, chemokines and cell types that fundamentally drive the process: while
many signalling molecules may perturb the dynamics of formation, which differs

across autormmune diseases, cancers and chronic infections, identifying the princi-

100



CHAPTER 3. TLT FORMATION DOMAIN MODEL 101

ple, non-redundant cellular and molecular mechanisms, and signalling feedback loops
that drive lymphoid tissue neogenesis is a crucial step in understanding their larger
role within autoimmunity. One of the largest challenges in understanding the for-
mation and role of TLT in disease is that the mouse models used in experimentation
are acute, and therefore not truly reflective of the chronic inflammatory environ-
ment within human disease. This chapter describes a hypothesis developed from
human in vitro cell culture and in vivo mouse model data that aims to describe
the minimum requirements for TLT formation to occur, and utilises state-of-the-
art computational modelling methodology to confirm the veracity of this hypothesis.
Mathematical and computational models are well-suited to investigating TLT for-
mation due to their innate capacity for abstraction: to disregard mechanisms not
thought to be pre-requisites for TLT formation, and to systematically explore the
dynamics of a handful of signalling mechanisms and cell types hypothesised to be
crucial to the development process.

Following a review of the relevant aspects of immunology and autoimmune pathol-
ogy, a TLT formation domain model is presented: a formalised description of our
hypothesis for TLT development, developed in collaboration with domain experts,
experimental datasets, and further informed by existing literature. We then de-
velop a platform-independent model; this describes how each aspect of the model
may be implemented as a computer simulation. The TLT formation model inte-
grates Markov chains, formal grammars, cellular automata, agent-based modelling,
ordinary and partial differential equations into an executable simulation that cap-
tures molecular, cellular and tissue level phenomena at time-scales from one second
to several minutes. Through identifying the most appropriate modelling technique
for each individual model entity, it is ensured that the process is captured as accu-
rately as possible, such that the model is fit-for-purpose and without necessitating the
additional abstractions warranted if one was to attempt to capture all model com-
ponents within the bounds of a single modelling technique. To achieve this, a novel

framework and supporting schemata are developed and utilised for defining hybridised
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models composed of many sub-models in terms of information flow between each of
the sub-models. I further develop this framework to permait the production of bio-
logically relevant outputs based on the methodologies described in Chapter 2 through

combination and manipulation of data structures contained within each sub-model.

3.1 Tertiary Lymphoid Tissue: Form and Func-
tion

Lymphoid tissues are complex immunological structures, evolved to orchestrate key
cell types and molecular interactions into functional immune responses. This is
achieved through the development of a niche, which supports the retention, acti-
vation, and proliferation of immune cells. An individual lymphoid organ usually
contains several microanatomical sub-compartments or niches - specialised areas for
cellular entry and function. Lymphoid tissues contain distinct, segregated T and B
cell zones with separate and supporting functions. The maintenance of a niche is
managed by stromal cells, which provide survival, activation and migratory factors.
Thus to fully understand lymphoid tissue function it is important to consolidate
current understanding of how stroma regulates immune cells, either through direct
interactions or via soluble signals. Experimental studies, typically in mice, have pro-
vided insights into the molecular and cellular mechanisms driving the development

and maintenance of lymphoid organs (777).

3.2 TLT Domain Model Development

The dynamics of tertiary lymphoid tissue formation are highly multi-factorial, non-
linear, inherently spatial, and involve phenomena occurring over time-scales from
seconds to weeks; these features do not lend well to the utilisation of simple math-
ematical models, thus complex systems analysis must be applied, in which tissue

formation is treated as an emergent phenomenon occurring due to the interaction of
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many lower-level entities (i.e. molecular and cellular interactions). An introduction
to the form and function of TLT was provided in Section [1.1.2} in this chapter, a
combination of experimental data, existing literature and clinical studies are brought
together to define a model of TLT formation that excludes many of the extraneous
components of the system and strives to capture the essential signalling molecules
and cell-types responsible for orchestrating the self-organisation process.

The hybrid-ABM paradigm, discussed in Section [4.2] lends itself well to knowl-
edge integration due to its intrinsically modular organisation, capacity to describe
phenomena occurring on distinct spatiotemporal scales simultaneously, and provides
a highly visual output, particularly considering the visualisation and model commu-
nication methods discussed in Chapter [2|and means of defining them, to be discussed
in Section [4.8] Such approaches afford a means of consolidating information at a
systems level, supported by a strong evidence-base from biological experimentation
demonstrated through the use of argument-driven validation (developed for the TLT
model and simulation in Section (7??) derived from principles of safety-critical
engineering (?). The resulting model and simulation provides an executable plat-
form for hypothesis testing. The development of a hybrid model system of TLT
formation can produce insights which otherwise may not have been reached a pri-
ort, and subsequently generate predictions which can be tested n vivo - leading to
further model refinement; we term this paradigm ‘model-driven experimentation’,
illustrated in Figure [3.1} There is in addition a clinical challenge in that there are
already many thousands of possible different combinations using existing therapeu-
tics (biologics and small molecule drugs) that would need to be trialled in order
to find optimal targeting strategies to resolve TLT pathology. Thus MDE-based
approaches as illustrated in Figure [3.1| provide a rational approach to identify novel
combination therapeutic regimes that have a best potential in clinical trials.

Clinical data from a large cohort of Sjogren’s syndrome patients have demon-
strated that the presence of TLT in salivary glands is an effective predictor of more

aggressive disease and development of B-cell lymphoma within the salivary gland
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Figure 3.1: Model-driven Experimentation Paradigm - Figure adapted from ?.

(7). The likely contributor to the worsened prognosis in the presence of TLT is the
development of germinal centres (?7) capable of selection and expansion of autore-
active B cells and plasma cell differentiation (7).

Taken together, these data suggest a potential means of therapeutic intervention
in Sjogren’s syndrome, by both preventing their formation and identifying means
of dispersing established TLT structures. In order to achieve this, it is essential
to understand what is necessary and sufficient for TLT formation and maintenance,
that is, to identify the minimum requirements. This section presents a domain model
of TLT formation in Sjogren’s syndrome, integrating in vitro cell culture and in vivo
mouse model datasets with observations from clinical studies.

To develop a useful domain model, at least one research question must be iden-
tified a priori, and a hypothesis derived that aims to answer the research questions,

such that implementation of the model is capable of ultimately determining the
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veracity or theoretical feasibility of the biological hypothesis. A ‘bottom-up’ sim-
ulation cannot definitively confirm that a hypothesis is true, but can demonstrate
whether expected emergent phenomena emerge when tested in silico, and in combi-
nation with a strong argumentation case supported by clinical, in vitro and in vivo
data, a strong argument can be made as to hypothesis veracity. The basic research

questions underpinning this model may be defined as:

e What are the fundamental minimum requirements that enables TLT forma-

tion?

e What possible intervention strategies may prevent or reverse the process of

TLT formation?

With our research questions in mind, the first step in developing a domain model
is to identify key observable phenomena that occur during this process, and crucially,
the time-points at which they occur. This allows the creation of an observable phe-
nomena time-line that we must seek to encapsulate within our model, such that these
phenomena emerge naturally from the underlying model entities (cells, molecules,
etc.) when the system is ultimately implemented and simulated. Hypotheses may
then be developed that explain each aspect of the formation process. The devel-
opment time-line for our model of TLT formation is derived primarily from an
adenovirus mouse model of Sjogren’s syndrome, described in 7, wherein TLT, with
very similar characteristics and function, can be induced in murine salivary glands,
developing over approximately a 15 day period before rapidly resolving. This is
in contrast with the human disease in which there is no known role for infection
as a trigger for TLT formation, and thus might develop due to the presence of
chronic inflammation; furthermore, there is no evidence in humans of the resolu-
tion phase following development. The structure of submandibular gland TLT is
shown in Figure [3.2] illustrating the co-localisation of B cells with their cognate
chemokine CXCL13, and T cells with CCL21. This permits inference that a dif-
ferential response to CXCL13 and CCL19/21 can be assumed for B and T cells.
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By focusing on minimum requirements, avoiding incorporation of many molecular
pathways known to be involved in TLT formation and Sjogren’s syndrome, transla-
tional issues between murine and human models of disease can be minimised; this is
particularly true due to the formation of the hypotheses as whether these system of
differential chemokine feedback loops and stromal cross talk is consistent with the
formation of self-organising TLT-like structures.

The formation of TLT pathology in autoimmune disease is associated with the
formation of germinal centres, thought to be the primary source of auto-antibodies,
(?727), these structures are composed of B cells and require T-cell signalling for
effective function. T and B cell organisation is dictated by lymphoid chemokines,
thus any model capable of addressing key questions in TLT formation and function
must simulate chemokine function. Mesenchymal stromal cells have an essential role
in the development of lymphoid tissues, as discussed in Section although the
cellular origin and mechanisms driving their formation is less clear, recently it has
been shown within the our laboratory (?) that mesenchymal progenitor cells can be
induced to take on the different stromal cell fates in vitro, illustrated in Figure ,
events that have been verified using in vivo models.

The presence of the chemokines CCL19, CCL21 and CXCL13 has been observed
in tertiary lymphoid tissues in many different animal models and in human pathol-
ogy (7). CCL19 and CCL21 have potent chemotactic effects on T cells and acti-
vated dendritic cells, in contrast CXCL13 is a potent B-cell chemoattractant. It has
previously been shown that localised inflammation is required to trigger tertiary
lymphoid organs, this may result from infection, autoimmunity, neoplastic haema-
tological cancers and solid tumours (7). The expression of hemostatic chemokines
and their role in secondary lymphoid tissue formation suggests a significant role for
chemokine production by ectopic lymphoid stroma in orchestrating spatiotempo-
ral organisation mediating both B and T cell tissue colonisation and segregation.
During secondary lymphoid tissue formation, local tissue-resident fibroblasts require

interactions with specialised lymphocytes that regulate stromal cell differentiation
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Figure 3.2: THC confocal micrographs confirm expression of lymphoid chemokines
CXCL13 (blue, I) and CCL21 (blue, M), also showing colocalisation of CXCL13 (B
cell chemokine) within the B cell (red, CD19) populated region (GJ), and of CCL21

(T cell chemokine) within the T cell (green, CD3) populated area of the aggregate.
Original magnification x200. Taken from 7.

and acquisition of effector function stimulation by lymphocytes in order to adopt and
maintain the lymphoid stromal phenotypes that produce the chemokines responsi-
ble for recruiting further lymphocytes and other mononuclear cells; this results in a
positive feedback loop - the self-perpetuating process of lymphocyte recruitment and
chemokine secretion by stroma. However, in contrast to secondary lymphoid tissue,
the trigger for TLT development is inflammation, thus the initial recruitment of
lymphocytes is likely triggered by the milieu of chemokines produced as part of the
inflammatory process. This process has not been explicitly included in the model in
an emergent sense, it is assumed lymphocytes enter the tissue compartment at the
timepoints observed in vivo.

To identify the events that drive homeostatic chemokine production human
adipose-derived stem cells (ADSC), adult pluripotent mesenchymal progenitor cells,
were cultured in the presence inflammatory cytokines (replicating infection and in-
flammation in vitro) and the presence of lymphocytes. Using a combination of

quantitative PCR and ELISA the expression of CCL19/21 and CXCL13, shown
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Figure 3.3: ADSCs co-cultured with inflammatory cytokines, cytokines and T cells,
cytokines and B cells, and finally cytokines, T and B cells: qPCR relative expression
of chemokines CCL19, CCL21 and CXCL13. Data published in 7, experimentation
performed by Bridget Glaysher.

in Figure [3.3] Expression of T cell lymphoid chemokines CCL19 and CCL21 was
shown to be dependent on T cell co-culture with ADSCs that were pre-treated with
cytokines (IL13/TNFa), in contrast the co-culture of B cells leading to the expres-
sion of CXCL13, consistent with their intrinsic expression of chemokine receptors
for these chemokines. Interestingly, the presence of B cells suppressed in wvitro the
expression of CCL19/21. The mechanisms for this are unknown, however this might
be related to the upregulation of CXCL13. In contrast to the T cell chemokines,
CXCL13 expression is dependent on the presence of T cells. This implicates a role
for T cell derived signalling in CXCL13 induction. To determine if these signals
resulted from receptor-ligand interaction or indirect cytokine production by lym-
phocytes, ADSCs and lymphocytes were separated using a transwell that prevents
physical interactions between the two cell types. No chemokines were induced in the
absence of direct cell-cell contact. These results have been further validated using
an in vivo model that demonstrates an absolute requirement for lymphocytes in
chemokine induction, and identified LT/ (lymphotoxin beta) as having an essential
role in chemokine induction.

In contrast to chemokines, upregulation of the key adhesion molecules VCAM

and ICAM does not require the presence of lymphocytes, rather just stimulation by
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Figure 3.4: Inflammatory cytokines TNF-a and IL-13 induce adhesion molecule
expression in ADSCs. (Previously Unpublished data from experiments by Bridget
Glaysher.)

cytokines alone. Using the ADSC culture system, the addition of TNF and IL13 was
sufficient to rapidly drive upregulation of ICAM and VCAM. Alone neither cytokine
is sufficient to induce adhesion molecule upregulation, indicating a key role for cross-
talk and synergy between the signalling pathways (Figure . This is further
supported by in vivo data showing a key role for 1.4 receptor signalling mediated by
IL13 in the upregulation of adhesion molecules and expressing an activated stromal
state including the upregulation of podoplanin. As observed in witro, these events
do not require the presence of lymphocytes, in Rag deficient mice, which lack both

B and T cells, upregulation of these molecules occurs normally.
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3.2.1 From Domain Data to developing a TLT Domain Model

Through considering a combination of the in wvitro and in vivo datasets, and im-
munofluorescent staining of salivary gland biopsies from human samples, I have
developed a basic model that describes the change in stromal cell ‘state during the
pathological disease process (Figures and . Based on the data described in
Section [3.2] T have developed a ‘four state’ model of stromal cell differentiation,
in which a localised stromal precursor cell, following activation by inflammatory
cytokines, is assumed to require a certain level of initially T cell, and later B cell
contact, to stimulate pathological stromal development. Between each stage of de-
velopment, further T and B cell stimulation that is not yet sufficient to cause a state
change is assumed to accentuate the phenotype by further up/down-regulation of
CCL19 and CXCL13 expression levels towards the limits defined by the data (Fig-
ure . The data from these co-culture experiments allow one to derive a simple
four state model of stromal cell differentiation in response to three key ‘triggers’: the
presence of soluble inflammatory cytokines causing resident stromal progenitor cells
to differentiate into lymphoid stroma precursor cells, direct T cell contact resulting
in the development of a fibroblastic reticular cell (FRC)-like phenotype, and direct
B cell contact finally causing development of an FDC-like phenotype. This is en-
capsulated in Figure|3.5] and forms the basis of constructing a computational model

that captures the dual chemokine feedback loop responsible for TLT formation.
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Figure 3.5: Simplified illustration of the 4-state stromal cell differentiation model.
Stromal progenitors develop into lymphoid stroma in the presence of inflammatory
cytokines 11-13 and TNF-«, adopt an FRC-like phenotype following T-cell stimula-
tion and ultimately an FDC-like phenotype upon B-cell stimulation. The T and B
cell factors responsible for causing the differentiation are unknown.

Taken together, the data in figures [3.3] and along with the observations
drawn from the in vivo model described by 7, has allowed identification of low-level
behaviours that drive emergent TLT formation, and to establish the time-scales over
which the different process occurs. The relative expression levels of CCL19, CCL21
and CXCL13 allow thresholds for relative expression of these factors to be defined
as biologically-derived parameter values. Furthermore, we can state a hypothesis
that would be extremely difficult to test using in vivo animal models or in wvitro
cell culture systems, but may be tested in silico through the innate capacity of
simulation to abstract factors not relevant to the research questions. Combining

these data and observations, our principal hypothesis is stated in Figure

3.2.1.1 Domain Model Limitations

Although this model provides capacity for analysis of the interactions between lym-

phocytes and localised mesenchymal cells to drive highly organised structures leading
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Hypothesis

TLT formation occurs as a ‘self-organising’ emergent structure in Sjogren’s
syndrome following priming of mesenchymal stroma due to the presence
inflammatory cytokines IL-13 and TNF« through two differential feedback
loops of chemokine induction, lymphocyte migration and further stimulation
by T and B cells, causing development of lymphoid stromal phenotypes from
tissue-resident progenitors.

Figure 3.6: Central hypothesis that our TLT model aims to demonstrate: stromal
cell chemokine induction due to chronic inflammation, resulting in lymphocyte re-
cruitment and subsequent self-organisation. This is derived from a combination of
in vitro cell culture data, in vivo mouse models and clinical datasets.

to the formation of germinal centres, it does not analyse the functional capacity of
TLT to drive GC formation, the formation of autoantibodies, or the role of TLT it-
self in disease pathology as there is no formal evidence that it is required for disease
formation and progression. However, developing a model of the induction and for-
mation process will address key biological questions concerning mechanisms driving
TLT organisation and formation, permitting analysis of therapeutic interventions
that may modify these outcomes. As FDC development is critical in the formation
of germinal centres and therefore autoantibody production (?), the change in ratios
of stromal cell phenotypes as the model parameters are perturbed may be used as

an appropriate surrogate for pathological outcomes, this is explored in Chapter [6]

3.2.2 Defining Expected Behaviours

Developing the domain model for TLT found in Sjogren’s syndrome through a re-
view of the relevant biological experiments and scientific literature, a cogent time-
line was constructed that encapsulates the individual cellular and molecular model
entities with the higher-level emergent phenomena of tissue development through
self-organisation. The key observable phenomena resulting in the emergence of TLT
formation are described in a cartoon based on multiple different experiments, shown
in Figure (7). This simplified multi-step process illustrates potential triggers

including viral infection, although this is unlikely to be the only process involved in
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TLT initiation. Localised inflammation drives the recruitment of leukocytes (Den-
dritic cells, T and B lymphocytes) to the inflammatory lesion, and stromal cells
begin to adopt lymphoid phenotypes (principally an FRC-like phenotype). Finally,
the structure forms, with clear separation within the niche for B and T cells, the B
cell zone forming a follicular structure containing follicular dendritic cells that per-
mit the generation of germinal centres capable of driving autoantibody responses.
Recently, there has been growing clinical interest in TLT as a therapeutic target,
with the development of biologic agents intended to both reduce or prevent their
formation (e.g. lymphotoxin fusion protein (an antagonist for Lymphotoxin recep-
tor ), Baminercept), and to induce TLT using lymphotoxin receptor agonists (i.e.

LIGHT) in cancer (7).

1 Infection begins 2 Cells congregate 3 Structure forms
Avirus has begun invading and killing cells inone part of :  Immune cells swarm into the site of the infection. A completed TLS contains activated T cells that can
the body. Their presence alerts dendritic cells and other They interact with local stromal cells that will help recognize the virus (inset). B cells that matured there
immune sentinels. organize the TLS. have begun releasing antibodies.
Tissue cells
@ S
® (4
/h
> [ ] Diseased cell
= @ Virus
.. Stromal cell .
8
g
o Dendritic cell 8
&
g
=
. .— Beell :
5

Blood vessel ﬁ ‘ Teel '

Figure 3.7: Figure describing the three stages of TLT formation: induction, coloni-
sation, segregation. Taken from ?.

The ‘Expected Behaviours’ diagram illustrated in Figure develops upon the
simple schema presented in Figure |3.7] This diagram aims to segregate but include
logical links between what cellular and molecular processes take place, what may
be directly observed through experimentation, and our hypotheses on how these
processes result in what is observed. The ‘expected Behaviours’ diagram of a bio-
logical domain model is a useful tool for summarising the relevant model entities and
the behaviour that is expected to manifest. The aggregate effects of these many,

massively parallel, individual interactions, lead to the emergence of system wide
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patterns and behaviours that are not explicitly encoded or intuitively understood
from the defined interactions alone.

The stroma has been hypothesised to have an essential role in TLT formation,
however how the interactions between lymphocytes and stroma lead to a highly
organised and function tissue are unclear, thus I have proposed that two feedback
loops, one via T cell signalling and chemokine-mediated recruitment, and the other
via B cell signalling, and chemokine-mediated recruitment, outlined in the expected
behaviours diagram (Figure [3.8). In this diagram, each coloured solid arrow in-
dicates that it is responsible for the stromal differentiation shown by the dashed
arrow of the same colour. Segregation occurs as B cells cause stromal progenitors to
adopt an FDC phenotype, secreting predominantly CXCL13, in an area surrounded
by FRC-like cells that predominantly secrete CCL19. Thus, the T cells migrate to
the neighbouring FRC network as the B cells cluster tightly in a follicular structure
supported by FDC-like cells. While this is a simple and intuitive idea, testing it ex-
perimentally has proven difficult thus far, and therefore a computational modelling
approach has been employed herein to attempt to demonstrate the veracity of this
hypothesis.

The simple model presented in this section and in Figures [3.§ and may
be somewhat confounded through the inclusion of receptor internalisation, which
modulates both lymphocytes’ ability to detect chemokine gradients, and the local
levels of chemokine surrounding each cell. It was found in ? that tissue pattern
stability in secondary lymphoid tissues is highly dependent upon transmembrane
chemokine receptors, following reports in ? that receptor recycling has a significant
effect on lymphocyte trafficking. It was however determined in silico (?) that
receptor internalisation cannot account for regulation of B cell lymphoid follicle
size despite experimental evidence of its involvement in secondary lymphoid tissue
organogenesis (?777). There is little experimental data in the literature regarding the
role of chemokine receptor internalisation in lymphoid neogenesis, however there is

evidence that it has important roles in the formation of de novo structures such as
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tertiary lymphoid organs (?), and has possible roles in ‘tuning’ immune responses
through chemokine gradient sculpting (77?).

The actual significance of receptor internalisation and chemokine sequestration
by lymphocytes in TLT formation and function is therefore largely unknown and
likely to be highly dependent upon properties difficult to quantify experimentally in-
cluding the relative difference between local chemokine concentrations, lymphocyte
population size and the rate at which they internalise chemokine-ligand complexes.
However the overall effect on development dynamics is likely to be generally similar
in nature to those observed in secondary lymphoid tissue organogenesis, particularly
in light of observations in 7. These effects may be explored with an in silico model
of TLT formation, therefore an ODE model describing the internalisation, recycling
and decay of receptor-ligand complexes on an individual lymphocyte level has been

developed and will be expanded upon in Chapter {4 (Section .
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3.2.3 Describing Cellular Behaviour

This section outlines a semi-formal description of lymphocyte and stromal cell be-
haviour within the domain, such that in Chapter {4 a computational and mathe-

matical model of their dynamics can be appropriately derived.

3.2.3.1 Capturing Cellular Dynamics

The key cell types identified in the domain model, illustrated in the expected be-
haviours diagram (Figure , are represented explicitly in the TLT formation
domain model. These cells are the haematopoetic T and B lymphocytes, and
mesenchymal stromal cells which undergo a differentiation process adopting vari-
ous distinct phenotypes. Finite state machines can be used to explicitly capture
each state that the cells may occupy, the conditions required for transition between
states, and any activity that occurs as a result of these transitions (?). The unified
modelling language (UML) is a widely-used international standard for describing
object-oriented systems in engineering, and has more recently found use in describ-
ing complex biological systems (???). The UML permits expression of finite state
machines through the representation of states in rectangular boxes, with arrows
delineating transitions that may occur, ‘guards’ expressed within square brackets
that describe the condition that must be true for the transition to occur, and notes
preceded by a backslash denote activities that occur as a result of the transition.
An entity may have orthogonal states, in which the object exists in multiple states
simultaneously. This notation has been applied to a description of T and B lym-
phocytes, and stromal cells. The process of describing cell entities using finite state
machines requires explicit identification of biological parameters, these are described
in Table 3.9 A key advantage of using the UML to describe finite state machines
is the inclusion of a specification for hierarchically-nested states: effectively sets of
states inside of states. If state ‘B’ and ‘C” are within state ‘A’ then B is said to
be a substate of A, and A is the superstate of B; collectively the set of current

states within A form a composite state. This is particularly useful for describing the
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Parameter Model Entity Value Description

T Cell Entry Time Lymphocytes Day 0 Time point during TLT formation that T cells colonise tissue

T Cell Entry Rate Lymphocytes - Unknown, assumed to be linear

B Cell Entry Time Lymphocytes Day 8 Time point during TLT formation that B cells colonise tissue

B Cell Entry Rate Lymphocytes - Unknown, assumed to be linear

T Cell Velocity Lymphocytes  10.7 um/s  Mean observed value, from Miller (2003)

B Cell Speed Lymphocytes 4.16 um/m  Mean observed value, from Shulman (2014)

CXCRS5 Surface Levels Lymphocytes 1.00E+06  (Approximately on the order of, measured in lab)

CCR7 Surface Levels Lymphocytes - Unknown

CXCRS5 Recycling Rate  Lymphocytes -- Unknown

CCR7 Recycling Rate  Lymphocytes - Unknown

S2 CCL19 Expression  Stroma 0 (RQ) CCL19 Expression by Localised Stromal Precursors (S2) (Fig 3.3)

S3 CCL19 Expression  Stroma 800 (RQ)  CCL19 Expression by Localised Stromal Precursors (S3/FRC) (Fig 3.3)
S3 CXCL13 Expression Stroma ~100,000 (RQ) CXCL13 Expression by Maturing Stromal Precursor (S3/FRC) (Fig 3.3)
S3 VLA4 Expression Stroma ~400,000 (RQ) VLA4 Expression by Maturing Stromal Precursor (S3/FRC) (Fig 3.3)
S4 CCL19 Expression  Stroma ~25(RQ)  CCL19 Expression by Localised Stromal Precursors (S4/FDC) (Fig 3.3)
S4 CXCL13 Expression Stroma ~200 (RQ) CXCL13 Expression by Maturing Stromal Precursor (S3/FDC) (Fig 3.3)
ICAM1 Expression Stroma 2200 (MFI)  ICAM1 Expression by stimulated stroma (Fig 3.4)

VCAM1 Expression Stroma 300 (MFl)  VCAM1 Expression by Maturing Stromal Precursor (S3/FDC) (Fig 3.4)
S2-S3 T cell Stim Regs  Stroma - Requirements for differentiation from S3-S3, Unknown

S3-S4 B cel Stim Regs  Stroma - Requirements for differentiation from S3-S4, Unknown

Gland Stroma Density Stroma - Characteristics of stroma in submandibular gland, Unknown

Figure 3.9: Table of identified Domain Model parameters.

complexity of stromal cell development succinctly, as the four phenotypes it may
adopt and the properties associated with each can be described as four composite
states, with the phenotype-specific states within these described as substates of the
phenotypic state.

Several abstractions and assumptions have been made in the construction of the
cell state machines, removing extraneous detail that is not necessary to describe
the dynamics that result in TLT formation. Additional assumptions are necessary
when entities identified within the domain model have unknown values associated
with them or are themselves unknown, this is particularly the case with this do-
main model as the aim is to determine in a highly theoretical manner whether two
differential feedback loops driven by the secretion of and response to chemokine is
sufficient to describe TLT formation generally, without regard to the myriad other
cells, cytokines and signalling molecules known to be present in TLT in different
pathologies. All such assumptions and abstractions must be clearly stated to pro-
duce a transparent domain model in the interest of aiding interpretation and avoiding

ambiguity within the model. While these assumptions are documented within the
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domain model description, they are also explicitly addressed and justified using goal-
structuring notation in Section [1.4.1.3| along with all platform model assumptions
and simulation implementation decisions. Together, these diagrams form a coherent

argument that the model is fit for purpose.

1. T and B Lymphocytes
For the purposes of describing TLT formation, T and B lymphocyte dynamics
are very similar; the principle difference being the chemokine to which they
respond to and the effect they have upon stromal cells. T and B lymphocytes
both undergo adhesion to stroma and chemotaxis in response to chemokine
gradients in essentially the same manner, although B cells respond only to
lymphoid chemokine CXCL13, and T cells also to CCL19. In the domain,
B lymphocytes can also respond to a lesser degree to CCL19, and T cells to
CXCL13 (?) although for the purposes of the model, this is assumed not to
be the case. The primary role of these additional chemokine responses are
to orchestrate the immune response within lymphoid tissue by enabling T-B
interactions; as the model is concerned with the establishment of tissue and
does not capture the humoral response, we feel it is justified to reduce the

system to the simple differential response described herein.

(a) T Lymphocytes
Depicted as a UML finite state machine in Figure [3.10] the T cell begins
in the initial ‘psuedostate’ depicted as a black circle, and immediately
assumes several orthogonal states: ‘S3 Stromal Stimulation Factor Ex-
pression’, ‘CCRT expression’, and ‘LFA-1 Expression’. The cell also must
make a choice between two states, either responsiveness to local CCL19
or a state of being in random motion — the former state is adopted if
and only if the T cell is expressing sufficient levels of cognate receptor
CCRT and the local chemokine concentration is high enough to stimulate
downstream signalling from CCR7 that results in the chemotactic pro-

cess, otherwise, the cell will adopt the random motion state. In addition,
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there is an activity notation stating that the cell is either already present
at Ty or enters at any point after. If the T cell adopts a chemotactic re-
sponse, then receptor-ligand (CCR7-CCL19) complexes are internalised,
the CCL19 is degraded and CCRY is either recycled back to the cell sur-
face or degraded, marked on the diagram by an activity notation below
the chemotaxis state box. Quantitative T-cell motility data available

from 7.

Once a motility state has been adopted and the associated activity (move-
ment, receptor internalisation) executed, there is a possibility that the
cell will adopt a state of adhesion, in which it is bound to a stromal cell
via receptor LFA-1 and cognate adhesion molecules on the stromal cell
(VCAM-1, ICAM-1). The conditions for this to occur are that the T
cell is in contact with a stromal cell, the stromal cell expresses adhesion
molecules, the T cell expresses adhesion molecule receptors (LFA-1), and
the bind between the cells is sufficient. In the domain, whether binding
occurs will be a highly complex function including the number of adhe-
sion molecule-receptor complexes that formed due to cell contact, and
shear forces on the cell due to surrounding cells, fluid flow dynamics, and
the cell’s motility. Modelling such complexity on the scale of thousands
of cells expressing millions of receptors is both intractable, and not desir-
able with respect to the model aims. Therefore, a probabilistic function
is assumed, described by the guard 'Bind between cells is sufficient’. This
probability is assumed to be directly proportional to the level of LFA-
1 expression on the T cell and the level of ICAM-1/VCAM-1 adhesion
molecule expression by the stromal cell. It should also be noted that
there are multiple cognate receptors to stromal cell adhesion molecules
beyond LFA-1, including for example, VLA-4. For the sake of simplicity,
these receptors are assumed to have the same function and are abstracted

into a single '"LFA-1" entity. If the conditions for adhesion are not met,
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then the system makes a new determination as to the motility state of the
lymphocyte and re-assesses whether the cell is in an adhesion state. If a
state of adhesion is adopted, then the cell undergoes prolonged contact

with the stromal cell with only localised movement around the cell.

The stromal cell response to T cell contact is captured separately within
the stromal cell UML finite state machine, and it is assumed that stromal
stimulation can only occur if the T cell adheres to the stromal cell such
that ’'glancing contact’ is insufficient to stimulate differentiation or phe-
notypic accentuation in the stromal cell. The state of adhesion ends when
the bind is no longer sufficient — this, again, is a complex function of bio-
physical forces and intracellular signalling processes within the domain,
and for the purposes of the domain model, it is assumed that there is a
probability that the cells will dissassociate at any given moment, which
leads the cell back to determination of cell motility, resulting in an iter-
ative loop of motility determination followed by adhesion determination.
It should be noted that these transitions are not necessarily a function of
time, the determination of motility and adhesion is described as occur-
ring sequentially since the cell cannot undergo chemotactic migration if it
is adhered, but these state determinations are not sequential in time; in
the domain, motility and adhesion are continuous orthogonal processes.
For the sake of simplicity, this is abstracted into the iterative sequen-
tial processes of state determination depicted iusing a UML finite-state

machine.

B Lymphocytes

Depicted as a UML finite-state machine in Figure the B cell shares
many similarities with the T cell. The principal difference is the ‘S2
Stromal Stimulation Factor Expression’ state replacing ‘S3 Stromal Stim-
ulation Factor’, CXCR5 and CXCL13 replace CCR7 and CCL19 respec-

tively, and cellular entry into the tissue occurs from the 5th day of the
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15 day development process only, an abstraction of their recruitment to
the ectopic tissue compartment through T cell-induced CXCL13 expres-
sion by FRC-like ’S3’ lymphocyes. An iterative process of motility state
determination and stromal adhesion occurs identical to that of the T cell

described above. Quantitative B-cell motility data are available from ?.

2. Stromal Cells
A stromal cell may exist in one of four phenotypes, as determined by the in-
formal ‘four-state stromal development model’ described in Figure The
FRC-like and FDC-like phenotypes will be referred to as 'FRCs’ and "FDCs’ for
the sake of convenience, but it should be noted that also the lymphoid stroma
phenotypes found in TLT are very similar to those of secondary lymphoid
organs, they develop in a distinct manner and should not be considered to
be equivalent in the strictest sense. These phenotypes are sequential develop-
ments from mesenchymal tissue-resident fibroblastic stromal progenitors and
phenotypic changes are induced in response to the inflammatory chemokine
millieu and stimulation from T and B lymphocytes, and are therefore cap-
tured within one state machine, despite the significant functional difference
between the phenotypes. In addition to the four phenotypes represented as
sub-states labelled S1-54, there are several orthogonal states common to all
stromal cells. These states are ‘Adhesion Molecule (ICAM-1/VCAM-1) ex-
pression, ‘TNFR-1 expression’, ‘IL13R Expression’, and finally, if the cell is
in the ‘S2’ state, adopts a state of S2 Stromal Stimulation Factor Receptor
Expression, and upon differentiation into the ‘S3’ state, adopts an ‘S3 Stromal

Stimulation Factor Receptor Expression’ state.

Stromal cells are assumed to be present throughout the ectopic tissue spatial
environment in a network-like structure.The model aims to capture the devel-
opment of distinct phenotypic niches within the network but is not concerned
with remodelling or development of the network structure itself beyond Ty,

thus the domain model makes the assumption of a static network despite it
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being known that network density and structure does remodel in response to

lymphocyte colonisation and subsequent lymphoid tissue development, as it is

assumed for the sake of the domain model that the TLT self-organisation and

development process can occur without stromal remodelling, which is likely

to be related to permitting efficient immune responses but is not necessary to

sustain the developmental process.

(a)

Stromal Progenitor Cell (SPC) — State ‘S1’

The stromal cell begins in the ‘S1’ state at Ty. In this state, no addi-
tional sub-states exist and the cell only exhibits behaviour manifested
through the orthogonal states segregated by swim-lanes (dashed lines) at
the bottom of the diagram. These cells differentiate into state ‘S2’; the
localised stromal precursor cell, in response to inflammatory cytokines
present due to local inflammation caused through autoimmunity. These
cytokines are assumed to be present at Ty as the model aims to capture
the 15 day development process following establishment of chronic inflam-
mation (Figure — the cytokines responsible for S1-S2 differentiation

are principally TNF-« and IL13).

Localised Stromal Precursor (LSP) — State ‘S2’

This composite state represents the localised stromal precursor pheno-
type. Immediately upon adoption of the ‘S2’ state, the cell adopts a
substate of ‘T cell chemokine expression’. This reflects that there are
multiple chemokines to which T cells respond, although for the purposes
of the model these are all subsumed into one abstract chemokine - ref-
erences in the domain model to CCL19 therefore relate to this abstract
notion, and the same is therefore true of CCR7 expression on T cells.
An orthogonal substate also exists, the ‘Adhesion Molecule Upregulation
Substate’. T-cell contact that does not result in differentiation and transi-
tion to the FRC phenotype (state ‘S3’) accentuates the LSP phenotype by

increasing adhesion molecule expression and inducing a T-cell chemokine
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upregulation state. It is assumed that there is a maximum expression
level for CCL19 achievable while the cell is in the ‘S2’ superstate, and a
maximum overall expression level for adhesion molecules: once these are
reached then T-cell contact that does not result in differentiation has no

further effect on the LSP cell.

The conditions for differentiation to state ‘S3’ are T-cell contact bound
via adhesion molecules (as determined by the T-cell UML finite state
machine, and the expression of S2 Stromal Cell Stimulation Factor). A
‘sufficient level’ of T-cell contact is necessary for S2-S3 differentiation,
however in the domain the specific factors expressed by T cells respon-
sible for LSP-FRC differentiation are largely unknown, therefore it must
be assumed that there is cumulative contact time from all T cells re-
quired for the adoption of the FRC phenotype. It is for this reason that
stimulation which does not lead to differentiation accentuates the present
phenotype — it results in a more gradual transition over time as the stroma
is stimulated as opposed to sudden stepwise changes in expression levels

of chemokines.

Fibroblastic Reticular Cell (FRC) — State ‘S3’

The FRC composite state, often referred to as ‘T-cell Stroma’ (?), pro-
vides the microanatomical niche for the T cell zone in secondary and
tertiary lymphoid tissues. Once the cell has transitioned into the ‘S3’
state, it immediately adopts a state of ‘B-cell chemokine Expression’ and
a state of ‘T-cell Chemokine Upregulation’, the latter increases the cell’s
maximum expression level of CCL19. Continued T-cell contact does not
result in differentiation, but results in continued increases of T-cell and
B-cell chemokine expression levels until a maximum threshold for the
FRC phenotype is reached. This is expressed in the state machine by
an arrow showing a transition from the state of "T-cell/B-cell Chemokine

Upregulation’ back onto itself, with an activity of increasing chemokine
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expression level demarked alongside the guard requiring T cell contact.
If a B cell is in contact with the FRC stromal cell then the cell will ei-
ther transition into state ‘S4’ (FDC) or result in an increase in B-cell
chemokine expression until the maximum threshold level is reached. It
is assumed that B-cell stimulation of an FRC-like cell is likely to prefer-
entially induce increased B-cell chemokine (CXCL13) in order to further
attract B cells in a positive feedback loop that increases the opportunity
for the stromal cell to differentiate into the FDC phenotype, state ‘S4’.
This differential response of stroma to T and B lymphocytes is hypothe-
sised to be sufficient to result in the development of B-cell follicles within
an FDC network surrounded by a T-cell zone supported by a stromal

network with an FDC phenotype.

Follicular Dendritic Cell (FDC) — State ‘S4’

The FDC composite state, often referred to as ‘B-cell Stroma’. Immedi-
ately upon adoption of this phenotype, expression of CXCL13 is increased
through lymphocyte stimulation and prolonged B-cell signalling will re-
sult in down-regulation of T-cell chemokines CCL19/21. The Markov
model finite state machine is sufficient to describe changes in factor ex-

pression based on Stromal phenotype.
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Figure 3.10: UML Finite State Machine Domain Model diagram describing the role
of T lymphocytes in TLT formation.
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Figure 3.11: UML Finite State Machine Domain Model diagram describing the role

of B lymphocytes in TLT formation.
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Figure 3.12: UML Finite State Machine Domain Model diagram describing the role
of stromal precursor cells in TLT formation, including differentiation into FRC-like
and FDC-like phenotypes.
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3.2.3.2 Describing Lymphocyte—Stroma Crosstalk

The domain model UML ‘Activity Diagram’ shown in Figure [3.14] in effect, in-
tegrates the state machines for each model entity, and describes the interactions
expected to occur and the sequence they are expected to occur in over time. Also
contained within the activity diagram are the overall effect of each interaction (for
instance, the up- or down- regulation of a particular molecule on a cell surface).
Considering the massively parallel nature of biological systems, many entities will
be undergoing interactions at each point of the diagram, and it is this nature that al-

lows emergence of high-level behaviours from low-level basic molecular interactions.

3.3 Summary

In this chapter a novel domain model of TLT formation has been formulated follow-
ing the CoSMoS process (?), and an overview of the biological domain was presented,
providing a rationale for the underlying biology within the model. The TLT forma-
tion model contains many layers of complexity, describing phenomena occurring over
several spatiotemporal scales. In order to develop a tractable simulation that can
capture the inherent complexity, it is necessary to hybridise a variety of modelling
techniques to capture the different biological processes responsible for determining

model outcomes. Therefore, in Chapter 4] a methodology is presented for the simul-

Expression | Meaning
X—-Y Differentiation of X into Y
&z Express Z
o0 A Upregulate A
uB Downregulate B
ca&D C and D are in contact
EXF E undergoes chemotaxis due to F
G = H G migrates to H
l«d I adheres to J due to adhesion molecules

Figure 3.13: Key describing the ASCII symbols used in the UML Activity Diagram
of Figure [3.14] as notation for common immunological interactions between entities
to simplify model communication.
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Figure 3.14: UML Activity Diagram describing interactions between stroma, B and
T lymphocytes that result in the self-organisation of TLT.
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taneous hybridisation of multiple mathematical and computational techniques into
a single executable simulation, this is subsequently used to develop a hybrid model
of TLT formation that utilises the most appropriate technique for each model entity.

The following chapter describes the development of a platform model and exe-
cutable simulation derived from the biological domain model described in this chap-
ter. In order to describe each model entity using the most appropriate degree of
granularity, it was necessary to develop a framework and notation to describe hybrid
models composed of many interconnected ‘sub-models’. Following development of
the platform model, the veracity of the hypothesis that TLT formation is driven by
a differential response of B and T lymphocytes to stroma may be confirmed, candi-
date intervention strategies can be subsequently evaluated, incorporating them into
the simulation to determine their potential therapeutic effect with various dosing
regimes.

The MDE paradigm discussed in Section [3.2[is applied in Chapter 6, in which
in vivo experiments are performed to test predictions of therapeutic efficacy derived
from the TLT formation model using machine learning techniques. Specifically, the
prediction that the addition of anti-VLA4 post TLT induction will result in improved
pathology resolution, that anti-TNF improves this effect if given sufficiently early,
but that anti-TNF is ineffective in established disease. The in silico experiments
concerning biologic therapy interventions are described in Chapter [f] Although
the adoption of MDE has only recently started to have an impact on immunology
research, it is starting to have a very significant impact on other areas of biology. We
propose that the increased accessibility of computational models, high-performance
computing resources, the increased familiarity and understanding of simulations as
tools to understand immune function and the capacity to apply in silico approaches
to identify potential therapeutic approaches and disease biomarkers will accelerate
the application of MDE as a methodology understand and target disease resolution.
The MDE paradigm as described in Figure [3.1] is broadly applicable to any disease

pathology providing cell culture or animal model experimental data are available in



CHAPTER 3. TLT FORMATION DOMAIN MODEL 132

addition to the development of complementary in silico models.



Chapter 4

Developing and Applying Hybrid
Modelling Techniques to
Construct a Simulation Platform

of TLT Formation

The key biological processes believed to drive TLT formation were described in the
previous chapter, in which a novel model of stromal cell differentiation in response to
lymphocyte-stroma crosstalk based on in vivo and in vitro experimentation was pre-
sented. In order to develop a functional simulation of TLT formation, the biological
model must be ‘de-constructed’ into its constituent entities: each represented at the
required granularity to answer any model research questions, also taking into con-
sideration the nature and granularity of experimental data that are available. When
dealing with many separate ‘sub-model’ entities grounded in various mathematical
methodologies, it was necessary to develop a means of describing the model in terms
of information flow between each sub-model in order to communicate the model co-
herently. A general framework for defining and specifying hybridised, multiscale
models of complex biological processes is developed.

Firstly, a generalised schema for defining hybrid models is introduced, and applied

133
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to the TLT formation platform model. Fach biological entity and its mathematical
implementation in terms of developing a software simulation is subsequently de-
scribed. The hybridisation framework developed is centred upon information flow be-
tween sub-models, and feedback loops are observed to emerge between the sub-models
themselves. The diagrammatic methods developed for describing integrated hybrid
models and simulations clearly and efficiently communicate the platform model archi-
tecture. Additionally, the safety-critical systems argumentation method Goal Struc-
turing Notation is applied as the experimental, domain, platform and implementation
level, ensuring that the model remains demonstrably fit-for-purpose. The visualisa-
tion methods developed in Chapter 2 were applied to the simulation to permit high-
throughput histological image analysis to operate on simulated data, utilised for in
silico experimentation regarding adhesion and TLT morphology in Chapter 5.

The following sections describe the development of the TLT Platform Model,
derived from the domain model detailed in Chapter[3. For a more concise description

of the model, please see Appendiz[A]

4.1 Determining Spatial Dimensionality

In the domain under study, TLT organs are 3D structures that have developed
ectopically in tissues in a state of chronic infection; in Sjogren’s syndrome, these
tissues are principally the salivary glands and tear ducts. The platform model is re-
quired to describe the minimum requirements to sustain lymphoid neogenesis within
the salivary gland. Each spatial dimension within a system adds an orthogonal axis
within which objects within that space may move, enormously increasing an object’s
degrees-of-freedom - this is often described as the ‘curse of dimensionality’. There-
fore the computational expense of simulations in three dimensions is significantly
higher than in two dimensions. This alone is not sufficient justification for using a
2D model system; it must be demonstrated that a 2D representation is adequate
with respect to the domain under study and the questions that are being asked

of the model. By abstraction of the complex cellular biophysics involved in cellu-
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2D Multi-Scale
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Figure 4.1: Each model entity has been assigned a putative implementation method.
This figure serves to introduce each aspect of the overarching model in terms of
multiple ‘sub-models’, and can also serves a introductory process as the Expected
Behaviours diagram does when first introducing a Domain Model description. The
figure illustrates how each model entity has its own notion of space that map to
each other to produce the resulting 2D/Quasi-3D simulation.)

lar movement, contact and collision within tissues, permitting lymphocyte agents
to occupy the same spatial locations simultaneously, one can achieve what might
be termed a ‘quasi-3D’ environment — a truly 3D environment would not permit
models of multiple volume-occupying objects to occupy the same spatial locations
as this would negate the Pauli exclusion principle (7). Due to the flexibility and
compressibility of cellular membranes, this is an appropriate abstraction given that
our principle concern is self-organisation through lymphocytic stimulation of stroma
and resulting differential chemokine expression of stromal cells.

The placing of lymphocytes in a continuous space two dimensional grid which
maps to the identically sized CDS (Cellular Data Structure) that stores the stro-
mal network structure and details of its composition in terms of individual cells,
generated through a cellular automaton implementation of a generative grammar
(detailed further in Section lymphocytes will be able to determine contact with
co-localised stromal cells and respond to resulting chemokine gradients. Therefore,

our platform model and its resulting simulator utilise a ‘quasi-3D’ dimensional space
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evolving over time, in which the spatial data structures of each sub-model all map
homomorphically to each other. This mapping is illustrated in Figure [4.1, which
shows a decomposition of the 2D TLT simulation visualisation at the top of the
figure into each individual sub-model containing a 2D spatial representation that
all map, or ‘overlay’, to the same spatial coordinates to permit interaction between

model entities from different sub-models.

4.2 Developing a Model Hybridisation Framework
and Schema

When attempting to describe a mathematical model constructed from multiple ‘sub-
models’, each representing a specific biological entity or process, it can quickly be
difficult to understand the model topology and there currently lacks notation to
succinctly describe the model structure and organisation. Therefore it is considered
that the most informative representation should be centred on information flow
between sub-models. Each input/output between the various sub-models can be
defined using arrows between sub-models defined within boxes. An example of such
a diagram is presented in Figure [4.2

This example hybrid model diagram includes a ‘meta-feedback loop’ between
sub-models 1 to 4 as information passes between the 4 sub-models. This semi-formal
diagrammatic approach to defining complex hybrid models can be easily extended or
modified, for example to take multiple compartments into consideration; in this case,
one may wish to either represent each compartment of a multi-compartment model
in a separate spatial area, with sub-models involved shown within the appropriate
area — alternatively, the sub-models could include the compartment(s) to which
they operate on and what information is transmitted to the compartments by the

sub-models.
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Model Hybridisation Schema:
Information Flow Between Component Sub-models
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Figure 4.2: Generalised schema for model hybridisation, a useful tool for visualis-
ing the relationship between each sub-model and the domain entity that they are
intended to represent. Arrows indicate the general direction of information flow
within the model. Sub-models may influence other sub-models based on param-
eters, or receive inputs from other sub-models. Sub-models may also reciprocally
influence each other, indicated using a double arrowed line.

4.3 Agent-Based Modelling of Lymphocytes

Lymphocytes need to move freely in a spatial environment such that they can chemo-
tactically migrate due to spatially resolved chemokine gradients, and interact with
stroma to stimulate phenotypic and ‘state’ changes to initiate and maintain the pos-
itive feedback loop of stromal cell differentiation, chemokine secretion, and emergent
lymphocyte self-organisation. The flexibility afforded by agent-based models in de-
scribing objects that can interact with their environment in innumerate ways, such
as determining and modulating local chemokine gradients in the presence of other
cells also doing the same, makes this approach well-suited to provide a ‘bedrock’ for

the overall model.
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Model Hybridisation Schema: Tertiary Lymphoid Tissue Formation in Sjégren's Syndrome
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Figure 4.3: Simplified hybridisation scheme demonstrating how each of the seven
sub-models that comprise the platform model share information to represent TLT
development as a whole. Underlined numbers indicate the number of time-steps
that occur within that sub-model with respect to other sub-models, relative to the
agent-based model, labelled ‘1/1’. For example, the PDE iterates 100 times while
the remainder of the system is held quasi-static, and as such is labelled ‘100/1’.
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4.3.1 Capturing Cellular Dynamics

This section details how the dynamics for B and T lymphocytes, whose role in stim-
ulating and regulating stromal cell phenotype was detailed in the domain model
(Section [3.2.1)), can be defined in a manner suitable for implementation in a sim-
ulation. This requires a combination of UML, to describe lymphocyte states and
conditions required for change in states, and mathematics, to describe how the
chemotactic response and adhesion molecules are implemented within the ABM. In-
ternalisation, recycling and decomposition of chemokine receptor-ligand complexes
by lymphocytes is captured by an ODE model described in Section [4.5]

Although B and T lymphocytes are distinct phenotypes, of which there are many
subsets, they do have much in common — particularly with respect to their role in
lymphocyte-stroma crosstalk. For the sake of simplicity, it is assumed that B cells
respond only to lymphoid chemokine CXCL13, through expression of CXCR5, and
not to CCL19, that is, that B cells do not express CCR7, although it is known
not to be the case, and B cells can chemotactically respond to CCL19 gradients
(7). The research question is concerned with the minimum requirements for TLT
formation; the hypothesis states that capturing the differential response of inflamed
stroma to T and B cells, and the resulting self-organisation of TLT is the result
of a differential response of T and B cells to CCL19 and CXCL13 respectively.
Therefore, the structure of the finite state machines that describe T and B cells are
very similar, as they are in the domain model. The difference between B and T cells
in the platform model solely lie in the chemokines they respond to, and the effect

that they have upon the stromal cells they stimulate.

4.3.1.1 UML Finite-state Machines describing Lymphocytes

T cells begin either in a tissue-resident state, or begin to enter the simulation at
a linear rate, while B cells do not enter the tissue until day 5 of the formation
process, each ABM time-step represents 10 minutes of time, and therefore they

begin to enter after the 720th simulation time-step at a linear rate. The process
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determining the number of lymphocytes entering the simulation space at each time
space is detailed in Section [4.3.1.2 T and B cells both then determine whether to
follow a random walk or to migrate chemotactically against their respective lymphoid
chemokine CCL19 or CXCL13. If the cell’s chemokine receptor expression is greater
than a minimum parameter value, the ‘minimumReceptorThreshold’ and the local
chemokine gradient in at least one of the six adjacent grid spaces is greater than the
parameter value ‘minimumChemokine Threshold’, then the cell enters a chemotactic
state and uses the mathematical process described in Section to determine
the direction of motion to follow, which involves making 10 ’sub-movements’ in
which an angle is chosen and the cell moves 1/10th of the total distance per time-
step. Alternatively, the cell will randomly select a direction to move, also making 10
smaller sub-movements within the ABM time-step. All other aspects of the model
are held to be quasi-static while these 10 sub-movements take place. The process
of making several smaller movements within one time-step produces a walk with a
closer approximation to continuous motion; as the number of sub-movements taken
approaches infinity, lymphocyte motion becomes continuous. This 'sub-movement’
process was used in 7 for LTi cell motion in a model of pre-natal lymphoid organ
development. For a full mathematical formulation of the chemotaxis model, please
see Section [ALH]

Once a T or B cell has determined whether it is chemotactic, it may be in
contact with stroma and enter a state of adhesion via stromal adhesion molecules.
To determine if this occurs, the continuous space grid in which T and B cells move
is discretised with an element width of 10 microns, matching the discrete stromal
network grid (CDS, described previously in Section . If the discrete location of
the lymphocyte is occupied by a stromal cell in the CDS, then they are taken to be in
contact. Further requirements are that the expression of stromal adhesion molecules,
as a value between 0 and 1, is greater than a random number also between 0 and 1.

This equates to the adhesion molecule expression level determined by a stromal cell’s
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Figure 4.4: UML Finite State Machine Platform Model diagram describing the role
of T lymphocytes in TLT formation.

Markov chain emissions being equivalent to a probability that any given lymphocyte
will successfully adhere to it. Finally, in order to prevent permanent adhesion to
stroma and a loss of motility, there is a maximum time that any one lymphocyte can
adhere to a stromal cell in one instance, this is reflected by the guard ‘timeAdhered
> minimumAdhesionTime’ in Figures and This is equal to the number
of 'sub-movements’ that a lymphocyte makes in each time-step, and is incremented

one per attempted sub-movement — the function defined as "perSubStep()’ indicates



CHAPTER 4. HYBRIDISED PLATFORM MODEL OF TLT FORMATION

H B Cell | TLT Platform Model | State Machine Diagram
\/

142

4 / enter TLT after ~ day 5 (time step 720)

=

- . . / next time ste
[ minimumChemokineExpression > P

bCellChemokineThreshold for at least  \/

one neighbouring grid space ] ?else?
| v ]
currentlyChemotactic = currentlyChemotactic =
True False
/ single chemotactic movement (10 sub movements) / single random movement

N4 composed of 10 sub-

movements per time-step

/ update CXCL13 chemokine receptor recycling ODE

/ becaGrid.bCellChemokineAtCurrentPosition -=
(expressionLevelThisChemokineReceptor*maxMolecules*internalisationScalar) |/
?else?

C
[ 3 This.BCell s.t. center within StromaICeII(X v
& currentAdhesionLevel > adhesionLevelThreshold

& random < probabilityOfAdhesion(StromalCell. AdhesionMoleculeExpressionLevel) ]
/

adhesionEffect = True

Localised movement around

bound stromal cell .
/ adhesionEffect == False, When:

L [ PerSubStep(random <

probabilityOfEscape(StromalCell. AdhesionMoleculeExpressionLevel)
&timeAdhered = minimumAdhesionTime)) ]

°

N ( canExpressS3F =

N

/ CXCR5EXxpressionLevel = 1

T canExpressCXCR5 = True
[ p(canStimulateSPC) ] L rue J

[ B cell is unbound to Stromal Network
& time step = 2161 (15 simulated days) ]

Figure 4.5: UML Finite State Machine Platform Model diagram describing the role

of B lymphocytes in TLT formation.

that the probabilistic guard is re-evaluated for each sub-movement made within an

ABM time-step, such that adhered lymphocytes will move at between 0-100% of

their usual velocity, in increments of 10%. This represents a departure from the

model of adhesion molecules used in 7, in which a state of adhesion resulted in a

lower velocity for each sub-movement, rather than evaluation of a binary decision

of full-velocity motion or no movement at each interval within the time-step.

A further departure, from both ? and the TLT domain model in Chapter

is the abstraction of adhesion molecule receptor expression in lymphocytes - this
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is replaced with the probability of adhesion being determined only by the stromal
cell. Independent probabilistic guards on both the stromal cells and lymphocytes
is redundant, and executing two probabilistic guards would serve no useful pur-
pose. Therefore, there is no differential expression of adhesion molecules across the
lymphocyte population; there is, however, over the stromal cell population. The ab-
straction of adhesion molecules from lymphocytes represents an implicit assumption
that all lymphocytes express adhesion molecule receptors (e.g. VLA-4, LFA-1), and
as the lymphocytes in the platform model are not specialised to perform any partic-
ular effector function, there is no mechanism through which a differential response
might be established — a normal distribution of expression could be included, but it
is not clear what benefit this added complexity would bring to the model in light of

the research questions.

4.3.1.2 Defining Lymphocyte Tissue Entry Rate

Lymphocyte tissue entry rate is defined as a linear rate of population increase de-
pending on the total lymphocyte population size and the number of lymphocytes to
be added to the simulation space during a specified interval. These assumptions are
in the absence of data to the contrary, however, it should be noted that the model
does not attempt to capture emergent recruitment to the ectopic region of interest,

that is, cell exit/entry rates are predefined and assumed to be linear fixed effects.

4.3.1.3 Determining Motility by Modelling the Chemotactic Response

This section describes the process that B and T lymphocytes undergo when in a
chemotactic state to determine their direction of motion, and provides a mathemati-
cal definition. Note that this section neglects the sequestration of chemokine and loss
of chemokine receptors through the internalisation and degradation of chemokine-
ligand complexes, as this process is managed by an ODE-based model detailed in

Section [4.5]

Lymphocytes measure the chemokine concentration in the six hexagonal grid
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elements neighbouring the one in which the lymphocyte exists when its continuous
space location is discretised such that the lymphocyte exists within an element that
maps directly to the hexagonal grids that contain chemokine concentrations and
the stromal network defined within the CDS. The chemokine grid is a 2D matrix of
double precision values that lie between 0 and 1, in which ‘1’ represents a saturated
104 M2 region of space, and ‘0’ indicates no chemokine is present. Weighted by a
scalar multiplication upon the hexagonal element with the highest concentration, the
probability of moving in the direction of each of the six neighbouring grid elements
is constructed by dividing the concentration of chemokine in each of the neighbours
by the total chemokine concentration in all six neighbouring grid elements. From
this, a cumulative probability density function is constructed which the lymphocyte
randomly samples to determine the neighbouring grid element in whose direction it
shall move. From the centre of the hexagonal grid element that the discrete-space
lymphocyte maps to, there is a range of § radians (60°) between the vertices of
the shared edge of the neighbouring hexagonal grid element selected by sampling
the cumulative distribution function and the element which the lymphocyte spatially
maps to. A random angle within this range is selected and the lymphocyte’s position
co-ordinates are updated on the respective ABM continuous space grid for B or T
lymphocytes, placing the lymphocyte at a distance of 1/10th of the intrinsic cell
velocity multiplied by the length of the time-step. This is reflective of the 10 ’sub-
movements’ a lymphocyte makes within one ABM time-step in an effort to increase
isotropy in cellular motion captured by the TLT formation model, therefore, this
process of gradient measuring and direction determination is repeated a maximum of
ten times. The number of sub-movements made is dependent upon whether the cell
adheres to a stromal cell following each sub-movement, in which case no movement
is made — adherence is determined by a probabilistic guard in which the probability
depends on the level of adhesion molecules expressed by the stromal cell that maps

to the same location of the discrete-location lymphocyte, this process is detailed in

Section 4.3.1.11
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This process can be mathematically formulated as follows. When a T or B cell is
in the state ‘currentlyChemotactic’ as described in Figures [4.4] and .5] the random
motion is biased towards the direction of the gradient of CCL19 (T Cell chemokine)
and CXCL13 (B cell chemokine), respectively. This is achieved by constructing a
probability distribution from the chemokine gradient, such that the probability a
cell will move in one of the six directions of the underlying hexagonal grid that

contains chemokine concentration data is defined in equation {4.1]

p(Cell moves up) = ¢, /C
p(Cell moves down) = Cgown/C'

p(Cell moves upper left) = cyppertett/C'
(4.1)

p(Cell moves upper right) = cupperright/C
p(Cell moves lower left) = ciowertets/C
p(Cell moves lower right) = ¢owerright/C

Where c,,, is the concentration of chemokine in the hexagon above the hexagonal
element the cell currently lies in, cqown 1S the concentration of the hexagonal element
below, and so on. As lymphocytes exist on their own continuous space grid overly-
ing the discrete hexagonal grid containing chemokine concentration data, once the
general direction based on the chemokine concentration has been defined, a specific
angle of motion needs to be determined. Each of the six directions contains a range
60 degrees (360/6), thus a random angle is selected between 0 and 60 degrees as

described in Figure 4.6
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Figure 4.6: Figure illustrating the selection of direction for continuous Lymphocytes
following determination of the discrete direction to move based on the hexagonal
grid that contains chemokine concentrations. The cell selects at random an angle
in the 60 degree range of possible directions once a particular hexagon has been
selected through probabilistic sampling according to equation

4.4 Numerical Modelling of Chemokine Secretion,
Diffusion and Decay

Stromal cells stored in the CDS map to a discrete hexagonally-packed square grid.
This enables them to produce chemokines which can diffuse in a more isotropic man-
ner as each element has 6 boundaries rather than 4, and also increases the number
of degrees of freedom for network growth, permitting stromal networks that are in-
tuitively a better representation than simple squares, retaining connectivity through
a grid edge at all times. The stromal network produces the lymphoid chemokines
CCL19 and CXCL13, to which T and B cells are chemotactically attracted, respec-
tively. The location of stromal cells within the CDS can be used as a set of point
sources for the secretion of chemokine, and therefore a natural starting point for the
implementation of a chemokine diffusion model is the ‘diffusion equation’, a par-
tial differential equation first described by ? that describes the collective motion of

many small particles in a material as a result of their random motion. The diffusion
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equation is discretised for implementation in a hexagonally-packed 2D square grid
and extended to incorporate diffusion from stromal cells and decay of chemokine
molecules over time. The hexagonally-packed grid permits chemokine diffusion to
overlay with the stromal network, and each stromal cell element to have an associ-
ated chemokine concentration, along with unoccupied space between the network.

We begin with the 2D heat equation as described by ?

0Payt) [ PPwys | PPy
S = D (gt 4 o (4.2)

Where ¢4+ is the concentration at location (x,y) and at time, ¢, and D is
the homogeneous diffusion co-efficient. Equation is then discretised using the
two-way finite differences method (described in ?7) as follows (let AL be the length

of the edge of each square in the discrete grid):

Do) — ooty _ 9 <¢<x,y,t>—§$—m,y,t>) o <¢<x,y,t>—z<yx,y—Ay,t>>
I ~ oz + ay
Patdewt) “Pawt)  Plawt) = Ple—Ary.) Pay+ayd) Pyt _ Pyt " Py-—nyb (4.3)
~ Ax Ax + Ay Ay
Ax Ay
o ¢(z+Am,y,t) + ¢(z—Am,y,t) + (b(z,y—l-Ay’t) + (b(z,y—Ay,t) - 4¢(m,y,t)
AL?

Equation may be more conveniently expressed in terms of the concentration

at (z,y) at the next discrete time-step in terms of the present time-step, as follows:

ADAL- 64, (1), | DAL Z
oi(t)

¢z,y(t + 1) = (Cbx,y (t) A2 A.Z‘2

(4.4)

Where ¢;(t) is the value of each of the 4 adjacent edges in the discrete grid at
location (z,y) from ¢, ,(t) (i.e. the Von Neumann neighbourhood of ¢, ,). Equa-
tion provides a suitable diffusion equation on a 2D square grid that allows one
to iterate over a discrete grid of chemokine values to model their diffusion, and a
starting point for our chemokine diffusion model. Some extension to this is neces-

sary to make it suitable for use in the TLT model, including modification to suit
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the hexagonally-packed geometry used by the stromal network model, and the in-
corporation of chemokine secretion by many point sources, and decay over time.
To extend Equation 3 to utilise a hexagonally-packed square grid is trivial, the
Von Neumann neighbourhood that is summed should be replaced with a neighbour
of the 6 adjacent grid elements in a hexagonally-packed grid, and the negation of
chemokine in the expression 4DAt needs to be replaced with 6 DAt to incorporate

the additional edges. This results in equation [4.5] below:

6DAL - (1) DAt
Ax? Aaﬂ ZQSZ

=1

Poy(t +1) = (Pay(t) — (4.5)

Finally this is extended by incorporating all chemokine point sources, and in-
tegrating the resulting discretised expression into the hybrid simulation. The final
form of the discretised chemokine diffusion equation is given in equation A spe-
cific point may be a chemokine source if it is co-located with a stromal cell stored
in the CDS. If a stromal cell exists in that location, its expression values can be
queried from the CDS to determine appropriate diffusion rates. In terms of the
software implementation and integration with the ABM, for each hexagonal grid,
one checks whether the location is equal to an object of type StromalCell, and if so,
extracts the expression value and calculates the resulting diffusion over the previous
time-step. In equation , ¢s,y(t+1) is the chemokine concentration at point (z,y)
at the following time-step from ¢, ,(t). At is the difference in time between ¢ and

t+ 1. D is the diffusion co-efficient, and X is the decay constant.

6DAL - ¢y, DA
bt + 1) = (((baylt) — DAL Geall)) | DALSR

=1

¢i(t)e ) + s (4.6)
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4.5 Ordinary Differential Equation Model of Chemokine
Receptors on Lymphocyte Agents

When chemokine binds to a cognate receptor, the complex may be internalised by
the cell in a process of recycling that aims to maintain expression of the receptor
during chemotaxis, enabling the cell to continue to effectively identify the chemokine
gradient. This process has previously been explored in a simple mathematical model
of dark zone-light zone cycling by chemotactic GC B cells (7). This ODE has been
adapted for use on an individual agent level, discretised such that each B cell updates
its receptor expression level at each time step, based on a function of recycling,
degradation and synthesis, as illustrated in Fig. [1.7]

Modelling the internalisation and recycling of chemokine receptors CXCR5 (on
B cells) and CCR7 (on T cells) allows lymphocytes to undergo desensitisation in
response to locally high chemokine concentrations, as the loss of ligand surface ex-
pression due to an increased rate of internalisation will reduce lymphocyte sensitivity
to chemokines and therefore reduce chemotactic capability. However, once lympho-
cytes migrate to an area with a lower local chemokine concentration, intracellular
receptors will be recycled to the cell surface at a greater rate than they are being
internalised, resulting in re-sensitisation and therefore increased chemotactic activ-
ity. We can write an ODE expressing the rate of change of receptor expression with
respect to time as follows:

dr

E:S—g/nr%—a, (4.7)

where 1) is the number of receptors that have been internalised and degraded,
o represents the quantity recycled - a given proportion of ¢ (determined via the
parameter ‘receptorInternalizationScalarT’ and ‘receptorInternalizationScalarB’ for
T and B cells respectively), and S represents the addition of chemokine receptor to

the intracellular pool due to synthesis. In equation 7 is a function of the local
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Figure 4.7: Figure illustrating the process of chemokine receptor-ligand internali-
sation. When a complex is internalised, it is either recycled or degraded. In the
platform model, each cell has an intracellular pool of chemokine receptors derived
from what has been synthesised or recycled, which is placed back onto the cell sur-
face at a given rate. Internalisation of chemokine also occurs at a given rate defined
as a parameter.

chemokine concentration, current receptor expression level, and a scaling variable;

it is defined as:

7= gnarlt), (4.8)
Q

where ¢ is the local chemokine level, () is the maximum possible chemokine level,

r(t) is the current number of chemokine receptors on the cell surface, n is a scal-

ing parameter to modulate the rate of internalisation by calibration, , and ¢ is a

random number in the range [0,1] sampled from a Gaussian distribution using the

Mersenne twister (?) psuedo-random number generator to incorporate heterogene-

ity. Combining and discretisation of equations [4.7] and [4.8] yields equation [£.9] to be

incorporated into the model for each lymphocyte agent:

r(t+1) = (T(t) ﬂb%“t)) +o+8. (4.9)

While equation describes the change in chemokine receptor expression levels
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on lymphocytes, there must be a corresponding reduction of chemokine availabil-
ity. The model must account for the internalisation of chemokine-ligand complexes
through provision of a means of removing chemokine from the environment to reflect
the quantity that has been absorbed and broken down by lymphocytes (7).

By operating on the same hexagonally-packed square grid that stores chemokine
concentration data, this process effectively couples the internalisation ODE with the
diffusion, secretion and decay PDE. This is achieved by determining the total number

of chemokine molecules that have been internalised, I, shown in Equation [4.10}

(4.10)

Following this, we remove the same quantity from the current chemokine level at
the location of the lymphocyte in the hexagonally-packed grid, as shown in Equa-
tion 4.11], below. Let ¢ be the change in chemokine level due to diffusion and stromal

cell secretion, defined by the PDE in Section [4.4}

qit+1,2,y) =q(t,z,y) +c—1 (4.11)

4.6 Integrating the Agent-Based Model with the

ODE and PDE Models

The discretised chemokine secretion and diffusion PDE model applied to a hexago-
nal grid is maps to that used by the stromal network in terms of spatial dimensions
and grid size — this ensures chemokine secretion can be easily incorporated into the
PDE by adding chemokine to a stromal cell’s cognate spatial location on the two
chemokine grids (B-cell and T-cell chemokines: CXCL13 and CCL19). The PDE
discretisation is a finite-difference approximation of the diffusion equation with ad-
ditional decay and secretion terms. This permits agents to interact with the grid
to determine concentrations, gradients and therefore motion vectors, and also with

the agent chemokine receptor ODE to consume chemokine. A similar discretisa-
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tion scheme is applied in use for the ODE system to describe cell surface protein

expression levels for the chemokine receptors on B and T lymphocytes.

4.7 Modelling the Stromal Network

This section introduces the sub-models used to define stromal cells and the stromal
network within the context of the ‘overarching” TLT formation model, providing
a rationale for each modelling technique used and describing how the components
interoperate to provide a functional stromal network model suitably amenable to
hybridisation with other components of the TLT model; subsequent sections for-
mally define each of the three sub-models in detail — those of generative grammars,
Markov models, and cellular automata.

Stroma has a fundamental role in the formation of TLT; it is responsible for
producing adhesion molecules and the lymphoid chemokines CXCL13 and CCL19.
Stromal cells form complex interconnections resulting in a network structure that
aids lymphocyte migration and organisation (?7). Crosstalk between lymphocytes
and stromal cells results in changing chemokine expression by stroma, as seen from
the data in Figure discussed in Chapter 3. Therefore, a method is needed to
appropriately describe a spatially resolved network of individual elements, represen-
tative of the stromal network structure in vivo. The following elements are therefore

needed to adequately model the stromal network:

e A stochastic algorithm that generates networks of individual elements with

parameters permitting control of network density and element size.

e A method of determining stromal cell phenotype in response to stimulation by

lymphocyte agents from the agent-based sub-model.

e A means of implementing the network generation algorithm and storing the
result within a data structure amenable to hybridisation with other model
types, bringing together spatial network structure and individual stromal cell

phenotype.
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Each of the elements described above are best-suited to different modelling ap-
proaches. Given the choice of a continuous space ABM for T and B lymphocytes,
a discretised per-agent ODE describing chemokine sequestration and receptor in-
ternalisation, and a discretised PDE that describes chemokine secretion, diffusion
and decay, the generated network should occupy space within a grid of the same
dimensions of the spatial environment defined for the ABM — a square grid repre-
senting 40pM? and utilise a data structure permit interaction with the ABM, ODE

and PDE sub-models.

4.7.1 Determining Appropriate Modelling Methodologies for

Individual Stromal Cell Network Components

This section describes the decision making processes that led to the adoption of each
technique used to model the stromal network and stromal cell development. The
existing literature is evaluated to determine the suitability of approaches previously
applied to similar problems and justifications are given for the techniques selected.

Following this, each of the three models is formally defined and discussed in detail.

Determining Appropriate Methodology for Stromal Network Structure

Generation

Previous approaches to modelling stromal networks have focused on generating
mathematical networks of edges connecting vertices using random sampling to de-
termine edge location (?7?7), these types of approach are inappropriate for the TLT
model as they do not occupy a volume in order to permit emergent lymphocyte
adherence and crosstalk (for example, in 7, lymphocytes are confined to the net-
work) and it is not clear whether such approaches would be valid abstractions when
applied in 2 dimensions. Other approaches to capturing the stromal network have
attempted to accurately capture tissue geometry from imaging data, ? used confo-
cal microscopy to construct 3D geometric models of lymph node morphology which

were then converted to meshed models which, while ideally suited to finite-element
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modelling, are not appropriate for defining individual stromal cells and hybridisa-
tion with other modelling methodologies used to develop the TLT formation model;
finally, there is no suitable means of adapting meshed geometric models for use in a
2D environment.

The possibility was raised in ? of algorithms that ‘grow’ stromal networks by
beginning with a single node that propagates outward, although it was noted that
such algorithms tend to produce several long edges and results in a non-random
tree-like structure (?) that is not representative of the stromal network, which
tends to maintain a small number (3) of edges (connections) (?) between each
vertex (representing the stromal cell ). Indeed, it is this branching property of such
algorithms that has permitted their use in modelling plant growth (?), using formal
grammars to define rewriting systems that recursively generate network structures.
Therefore, any generative algorithm would need to address the issue of long edges for
use in modelling stromal networks. Furthermore, the use of mathematical networks
to describe the stromal network, while suitable for investigations of lymphocyte-
stroma spatial dynamics in terms of understanding their effect on antigen scanning
and cell-cell contact rates (?), are less well-suited to modelling a stromal network
when the intention is to provide a substrate for lymphocyte self-organisation and
stromal cell phenotypic development, in which a volumetric stromal network model
is preferable (or, in the case of 2 spatial dimensions, an area-occupying stromal
network model). Whilst the geometric models produced by ? are volumetric, they
do not lend themselves well to the hybridisation framework necessary to describe
the other elements involved in TLT formation.

The issue of long edges arising from generative algorithms could be mitigated
by defining multiple starting locations for vertices and allowing networks to overlap
— a sufficiently dense network representative of the mesenchymal reticular tissue
in which TLT forms should mitigate the formation of long edges. In ?7, a cellular
automaton is used to describe lymphocyte motion along a generated FRC network

of edges and vertices. In the TLT model, a generative grammar was defined, in
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which the stromal network is randomly ‘grown’ through implementation in a cel-
lular automaton consisting of a discretised grid of dimensions equal to that of the
agent-based model. Instead of a non-volumetric network model consisting of edges
connecting vertices, our stromal network occupies the entire area of each grid ele-
ment within the cellular automaton in which the stromal cell is present; this permits
a spatial area to allow for lymphocyte adherence and stimulation, and is suitable
for defining point sources for chemokine secretion/diffusion using partial differential
equations. The background of formal grammars followed by a complete description
of the generative grammar created for stromal network structure definition within
the TLT model, is described below (Section [4.7.2)). Once the stromal network gen-
eration algorithm has been applied within a cellular automaton, the resulting data
structure can be used as an interface between the stromal cell network and other

components of the TLT model.

Determining Appropriate Methodology for Modelling Stromal Cell Dif-

ferentiation

A Markov model using Monte Carlo techniques is well suited to model the current
and possible future phenotype of stromal cells in response to lymphocyte stimula-
tion, and lends itself well to hybridisation with other techniques. A discrete Markov
chain is a system in which a random process governs transitions between a finite ( or
‘countably infinite’) number of states, usually evolving over time. A probability ex-
ists that when in its present state, the process will change to another state, and these
are defined for each possible state change. A process is ‘Markovian’ if its future state
does not depend on the past, but only the processes present state (i.e. a memoryless
process). A Monte Carlo process is a random sampling event to determine whether
or which state transition takes place. Ordinarily, the Markov chain model would be
simulated for n steps, as it evolves over time, and then the distribution of how much
time spent in each state analysed to determine the Markov chain’s ‘steady state’

— alternatively, Markov chains can be used to make predictions about the future
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state of the system after a given interval; however in this application, each stromal
cell is associated with one Markov chain that evolves as a function of contact with
lymphocytes within an ABM, and to analyse the result we assess the final state of
each Markov chain within each time-step (as a stromal cell may be stimulated by
lymphocytes many times in one time-step, and thus many Monte Carlo samples of
the Markov chain can occur).

The Monte Carlo process to determine transition is determined by contact with
lymphocytes, which means in terms of the platform model that a lymphocyte within
the ABM is in the same location in the simulation space as a stromal cell entity de-
fined in the CDS, and that the lymphocyte is adhered to the stromal cell; this is
in contrast to ‘traditional’ Markov chains — often called DTMC, a discrete-time
Markov chain, which usually operate over a time dimension. While Markov chains
operating over other dimensions do exist, the stromal cell Markov chain model is
unique in terms of the stochastic non-linearity of the step function, at any given
moment it is impossible to know when a lymphocyte will trigger a further Monte
Carlo process. Markov chains have been used in dimensions other than time pre-
viously, mainly in the form of the Monte Carlo Markov chain class of algorithms
that utilise Markovian properties to perform an array of tasks such as evaluating
complex integral equations (?) and computing large hierarchical models in Bayesian
statistics (7). There are few examples of models using the structure of a DTMC
without ‘time’ as the dimension over which it evolves. One example however, is in
the ‘PageRank’ algorithm used by the search engine developed by Google Inc. to
determine the relevance of web-pages, (7), although this essentially is just utilis-
ing the power method for finding the largest eigenvalue (7). Markov chain models
are suitable because they allow definition of a finite state of specific entities, and
transition through probabilities in a manner common in evaluating cell-cell interac-
tions in silico (??77), and Markov model ‘emissions’; or external changes induced by
the Markov chain model, are very well suited to defining specific phenotype with

regard to exactly how much CCL19, CXCL13 and adhesion molecule expression is
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occurring for each cell. Given that the biology of lymphocyte-stroma crosstalk is
largely unknown in terms of the molecular signals on B and T cells responsible for
the differential chemokine response, we can assume that in contact with a lympho-
cyte, a stromal cell has a defined, unknown, probability of differentiating. Since
up/down-regulation of FRCs and FDCs does occur in response to lymphocyte stim-
ulation beyond large phenotypic changes such as FRC to FDC differentiation, if a
Markov chain model remains in the same state, its phenotype may be accentuated
- for example, B cell stimulation of an FDC will result in a small upregulation of
CXCL13 and downregulation of CCL19 — within defined limits. The transition
probabilities, and the maximum/minimum expression limits of the stromal cell for
each phenotype, are abstract platform parameter values that represent and allow us
to model the unknown factors driving lymphoid stroma development. The Markov

chain is formally defined in Section [4.7.3]

Integrating the Stromal Network and Stromal Cell Models

The three sub-models (generative grammar, cellular automaton, and Markov chain)
that collectively describe the stromal network in the TLT model, are shown in Fig-
ure [£.§ illustrating how they can provide a suitable stromal network model when in
combination that can be used within the context of a multiscale hybrid model. The
generative grammar provides the instruction set that defines the stromal network
structure, this is implemented using a cellular automaton within which the network
is ‘grown’ prior to Tg (the point in the model or simulation at which time ‘begins’).
Once the network generation process within the cellular automaton is complete, the
network structure and individual cell information is stored within the matrix data
structure used by the cellular automaton — this is referred to as the cellular data
structure (CDS) . Each stromal cell within the CDS has a Monte Carlo Markov
chain associated with it, such that every time a lymphocyte is in contact with and
adhered to a stromal cell (as defined by the agent rules within the ABM) a Monte

Carlo process is triggered on the associated Markov chain, which determines whether
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the stromal cell changes ‘state’ (representative of stromal progenitor, localised stro-
mal precursor, FRC or FDC phenotypes), or otherwise modifies expression levels of
chemokines (known as Markov chain ‘emissions’, a concept borrowed from hidden
Markov models typically used to infer unknown states, but useful for defining stro-
mal phenotype beyond the simple ‘four-state model’ defined in the domain model).
There is some precedent in integrating Markov chain models with cellular automata,
‘probabilistic cellular automata’ is an extension of cellular automata, also known as
‘locally interacting Markov chains’, in which the state of a collection of entities is
updated according to a simple, uniform rule throughout the automaton space (77),
this uniform rule is essentially a discrete-time Markov chain operating over the cel-
lular automaton. In our case, there are many Markov chains operating within the
data structure remaining from the application of a cellular automaton to implement
the formal grammar that stochastically defines the spatial location of the Markov
chains within the CDS. Changes in the stromal cell phenotype are updated within
the CDS, which is used to determine chemokine sources for secretion and diffusion,
which subsequently leads to lymphocyte migration, self-organisation, and eventu-
ally, TLT formation. Once the network is generated and time has begun within
the simulation, the CDS effectively acts as an interface between the collection of
Markov chains each associated with a stromal cell entity, and all the TLT formation

sub-models which interact with them.
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Figure 4.8: Schematic illustrating how the three model components that constitute
the stromal network are connected, and how lymphocytes within the agent-based
network migrate toward and stimulate stromal cells. Note that the chemokine re-
ceptor recycling ODE described in Section also influences lymphocyte behaviour
and chemokine concentrations.

4.7.2 Stromal Network Generation using Generative Gram-

mar
Introducing Formal Grammars

A formal grammar falls within the framework of formal language theory, and can be
defined as a set of production rules for producing strings within a given language;
formal grammars were developed in the context of the linguistic theory of genera-
tive grammar — so called due to the intention that such grammars would be capable
of producing every possible ‘utterance’ within a language (?) that is considered
grammatically correct. The production rules describe how strings may be formed
from the defined alphabet of the language which the grammar describes. The formal
grammar itself describes the creation of strings through recursive replacing of ‘non-

terminal’ characters within a string according to a defined set of production rules,
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beginning with an initial ‘axiom’, and are therefore a form of string rewriting system.
The strings can have ‘meaning’ applied to them, enabling interpretation by software
parsers to utilise formal grammars within a wide variety of domains, extending far
beyond their linguistic origins, this is due in large part to the combination of formal
grammars and an information-theoretic approach within the ‘Shannon tradition’
of information and coding theory (7). Within the life sciences, perhaps the most
common application is their use in many modern RNA structure prediction algo-
rithms (?77?) through stochastic sequence generation that may then be evaluated
for correctness.

Through the assignment of operations to each letter in the grammar’s alphabet,
strings generated by a given grammar may be interpreted as an instruction set for
the production of geometric structures — this principle led to the development of
‘L-systems’ or Lindenmayer systems (?) used to describe the growth of trees and
other branching processes (7).

Grammars are generally classified according to the nature of their production
rules; fundamentally there are three classes of formal grammar: a context-sensitive
grammar has production rules that are dependent not only on the symbol undergo-
ing rewriting, but those adjacent to it — that is, the production rules are dependent
on the context of the string; conversely, a contexrt-free grammar has no such re-
strictions, however each production rule must replace only one character. Far more
flexibility is afforded by unrestricted grammars, in which production rules may op-
erate upon any set of non-terminal characters, although this comes at the cost of
increased difficulty of creating parsers capable of interpreting resulting strings, and
the non-trivial complexity of mathematical analysis of the grammar. Grammars may
be augmented with additional properties; for instance, grammars may be stochastic,
containing probabilistic production rules, or parametric in which case characters are
associated with defined parameter values (in which case, the tuple of the character
and its associated parameter are termed a module). A full description of the math-

ematical foundations of formal grammar theory is beyond the scope of this thesis,
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however the reader is directed to ? for a comprehensive overview and to ? for a

review of the historical literature following their development by 7.

Defining the Stromal Network Generative Grammar

The grammar used to develop stochastic network-like structures of stromal cells for
use in our hybrid multi-scale model of TLT formation is described in Figure 4.9}
This grammar is both stochastic, such that each generated sequence is different
even with identical parameters, initial axiom and rule application, and parametric,
allowing values to be assigned to the grammar, permitting modulation of stromal

cell size, network density and connectivity.
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Stochastic Parametric Unrestricted Grammar for Stromal Network
Generation on a 2D Hexagonally-Packed Square Grid
Axiom: ¢
Alphabet: CQDPFLR{}]]
Constants: cqflr

Parameters: B N n

Rules:
L {([(ed)™]q)P PN = (P{([(cd)*]q)" })
2. (cd)"C={([(cd)"]q)"}qC
3. c=>cdC
4. d=F|L|R

Further stipulations:

e These rules are in order of precedence, the first applicable rule must be applied.
e During parsing, the spatial grid must be treated as toroidal and later elements
placed should overwrite existing elements.

e The generative process must continue until:

i=len(s)

9 = Z 6({.-},si),

=1

where s, is the i element of the generated sentence, s.

Figure 4.9: Complete definition of the stochastic parametric unrestricted grammar
that defines every possible stromal network structure.

Lower-case letters in generated strings are non-terminal characters or sets thereof,
and may be re-written according to the production rules, while upper-case letters
represent terminal characters that are immutable and cannot be re-written. The
parameters m, B, and N form modules with alphabet characters cd, (/(cD)"]q),
and {([(cD)"]q)?} respectively. It is important to note that these modules utilise
an abuse of notation to indicate that a parameter operates on several characters in

a manner similar to algebraic notation with standard brackets — ‘(" and ‘)’ — indi-
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cating where expansion should occur, whilst square and curly brackets are reserved
as characters and form part of the defined language. For example, cd”, where n = 3
is equivalent to writing ‘cdcded’. Furthermore, the parameter-character modules are
nested, such that the module of parameter B contains parameter n, and parame-
ter N contains both parameters B and n within its associated module. Rule 4 is
stochastic, such that d = F'|| L || R should be read as ‘d is to be randomly replaced
with F, L, or R with equal probability’. These three outcomes correspond to growth
of the network Forward, Left, or Right, respectively. The four rules are stated in
an order of precedence, such that the first rule that applies to a given structure
must be applied, and this continues until termination because the pre-defined num-
ber of networks defined by parameter N have been created. The grid is treated
as toroidal to maintain stromal network connectivity and prevent multiple ‘short
branches being produced at the grid edges. For the purposes of chemokine diffusion
from stromal cells, however, the grid space is treated as non-toroidal as described
in Section The following list defines the meaning mapped to each of the letters

in the generative grammar alphabet defined in Figure [1.9;

e (' — Place stromal cell in grid location.

(Q — Select random element from the preceding set of n elements.

e D — Branch out in an undetermined direction.

R — Branching direction for current stromal cell is to the right.

F — Branching direction for current stromal cell is forward.
e [, — Branching direction for current stromal cell is to the left.

e P — Randomly select new (x,y) co-ordinates for the new sub-network.

{ — Begin new individual branch (equivalent to start of one ‘stromal cell’).

} — End current branch (equivalent to end of one ‘stromal cell’).

[ — Begin new network of B branches.
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e | — End current network of B branches.

Figure illustrates the ‘growth’ process represented by the grammar upon
implementation. The generative grammar is intended to operate over hexagonally
packed grid toroidal about the X and Y axes, initially the resulting ‘sentence’ should
be generated, and this should subsequently be parsed as the network structure is
created (in practice, however, the grammar can be algorithmically defined in a more
computationally efficient manner such that the network is directly generated using
a series of recursive loops). Rule 3 produces strings of the form ‘cd...cd’, this creates
a branch of individual grid elements that when combined may be classified as one
stromal cell. Rule 2 subsequently rewrites this by replacing each branch with a
new structure containing both the previous structure and a new branch. Rule 1
is responsible for creating numerous branching networks that overlap each other to
avoid the issue of unnatural long-edges typically produced by generative grammar-
type algorithms. The order of precedence is defined such that the ‘highest-level’
operation possible is performed first, with the lowest level being the addition of a
new grid element to a stromal cell and the highest level being the addition of a new
network of stromal cells to the grid environment. This process is further illustrated
in Figure which demonstrates an expansion from the initial axiom of a stromal
network structure (left), alongside one of the many possible structures this sentence
could produce depending upon the stochastic choice imparted by rule four of the
grammar (right).

The grammar described in Figure 4.9 was developed manually by tracing over
micrographs of stromal networks and attempting to define informal rules for occupy-
ing squares in a hexagonally-packed square grid, prior to formalisation of these rules
in the form of the grammar described herein. Figure provides a schematic illus-
tration of the process formally defined in Figure 1.9] and Figure subsequently
provides an example of the ‘sentence generation’ process and how the ‘sentence’ pro-
duce describes the spatial organisation of the abstract stromal network model. The

important characteristics that the resulting structures must have were that each
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Figure 4.10: Tllustrative demonstration of the network generation process imparted
by the grammar of Figure 4.9 when applied to a hexagonally-packed grid with pa-
rameters defined as B = 5, N = 2 and n = 4. Extremely simple parameter values
have been chosen in these examples for the purposes of communicating how the
grammar operates.

generated network must be unique through stochastic generation, yet consistent
with each other for a fixed set of parameter values (e.g. maintain a similar overall
density through the parameter values N and m) such that they are structurally
locally unique to prevent simulation artefacts resulting from aberrant nuances in
a specific network structure. Therefore, every single simulation run is conducted
using a unique, non-repeating network structure. It is difficult to formally define
the maximum number of possible structures this grammar is capable of producing,
however it may be considered infinite for all practical purposes providing that care
is used in selecting the random seed used for the pseudo-random number generator

for each simulation execution.
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Figure 4.11: Demonstrative implementation of the stromal network generative gram-
mar, resulting in a ‘sentence’ that provides instructions for spatially resolving the
network on a hexagonally-packed grid within a cellular automata.

4.7.3 Markov Model to Describe Stromal Phenotypes and

Differentiation

This section defines the Markov chain for a stromal cell, including its emissions (ex-
pression of adhesion molecules and lymphoid chemokines), and this is then developed
into a finite state machine using the UML in a manner amenable to hybridisation
with agent-based models, as the system evolves as a function of lymphocyte contact
— which itself is a complex non-linear stochastic function of time — and therefore
does not lend itself well to elementary analytical treatment. While emissions and
emission probabilities are a property of hidden Markov models, it is conducive to
adopt their use in the stromal cell Markov model to represent phenotype with greater
granularity than the ‘four-state stroma model” discussed in Chapter 3, permitting
precise expression levels of CXCL13, CCL19 and adhesion molecules. The justifi-
cation for using a Markov chain model to describe stromal cell phenotypes within
the stromal network was introduced in Section [4.7.1] The Markov chain describing

one stromal cell, using finite state machine notation (?) with square boxes to define
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emissions, is shown in Figure

Parameter values for the Markov chain are provided in Table[4.1] these represent
the probability of a given stromal cell phenotype differentiating into the next type
described by the chain, which itself is derived from the four stage differentiation
domain (biological) model described in . It is necessary to use a probabilistic
approach in which Monte Carlo sampling determines stromal cell differentiation
as the differentiation signals presented by B and T cells are presently not known.
Variation of these probabilities change the rate at which stromal cells develop, as
does variation in the number of B and T cells present in the simulation as defined
by the initial conditions. The presented parameter values were calibrated such that,
with a total of 8000 T cells and 8000 B cells, the differentiation of stromal cells into
FRC and FDC phenotypes allows the self-organisation process to emerge over the 15
day period observed in the acute TLT murine model described in Chapter 3| Given
the theoretical and unidentifiable nature of this model, it is not viable to present
ranges for these parameter values, especially considering the argument from ? that
parameter measurements must be impractically complete and precise to constrain
model behaviours in complex systems models.

It is useful to additionally define the stromal cell Markov chain and its emissions
as a UML finite state machine (?) in the manner used to define T and B lympho-
cyte behaviour within the agent-based model in Section [4.3] as this permits tight
integration of lymphocytes and stromal cells within a single simulation during the
software implementation phrase, otherwise referred to as the ‘Simulation Platform’

in CoSMoS parlance.
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Parameter Value Hybridised Monte Carlo Method Event
Name With Triggered By Time-Scale
p( d[LSP] ) Toe AT CA Stromal CA evaluating ODE 10 Minutes
p( d[FRC] ) 0.003 ABM + CA  T-Cell adhered to Stroma 2 Minutes
p( d[FDC]) 0.000001 ABM + CA  B-Cell adhered to Stroma 2 Minutes
1 - p(canDifferentiate) 0.2 N/A Initiated at T=0 Once

Table 4.1: Table defining the stromal differentiation Markov model probabilities
and the sub-model with which each is hybridised. Interactions with the ABM and
CA dictate when transitions will be evaluated using Monte Carlo methods for each

stromal cell within the simulation model. The numerical probabilities provided

were determined through calibration.
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Figure 4.13: UML Finite State Machine Platform Model diagram describing the role
of stromal precursor cells in TLT formation, including differentiation into FRC-like
and FDC-like phenotypes.
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4.8 Deriving Model Outputs Using the Hybrid

Modelling Schema

This section explores a minor extension to the hybrid modelling schema introduced
in Section [4.2] permitting defining model outputs clearly in terms of sub-models,
the data extracted from them, and their combination to produce outputs that may
be used to evaluate model responses. Model outputs or responses can be defined
in terms of the individual component models that comprise the resulting hybrid
agent-based simulation. Figure provides a generalised schema illustrating this
processes, in which high-dimensional model outputs are specified using visual nota-
tion that relates them to multiple specific model components.

Figure provides an example of how high dimensional data such as that
provided by flow cytometry can be derived from models parameterised with low-
dimensional data. Outputs approximating imaging techniques, such as immunohis-

tochemistry confocal microscopy, are defined in terms of the stromal Markov chain,

Schema for Generation of Model Outputs & Visualisations from Hybrid Models

I

: Model Data Outputs |
| P . - l
| Sub-Model 1 | : Derived Outputs/Visualisations e.g. | |
| Model Role ! Emulated IHC/Imaging [
| i Relevant data Emulated Flow Cytometry |
| + i required for Protein/Gene Expression Heatmaps |
| ' production of desired _ |
| ! model outputs |
| Sub-Model 2 | > i Outputs may be Spatial, Temporal or | |

Model Role I Spatiotemporal/Time-Series

| ] I
G T I
| + I
e |
i ' |

: i etc i niniainieteiedietellieteielinteielietei > |
B I

Figure 4.14: Generalised schema for defining the overarching multi-dimensional
model outputs and visualisations with respect to combined sub-models integrated
into an executable simulation, producing novel, useful simulation outputs, including
those analogous to techniques in experimental biology, as discussed in Chapter .
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Model Data Outputs
Agent-Based Model . Spatial & Temporal Heatmaps of
3| B & T Cell Locations CXCR5 & CCR7 expression
B & T Lymphocyte ] over Time +
Dynamics . .
Time-Series Flow Cytometry
+ . T Cells
N~
o
ODE a B Cells
.| CCR7 & CXCRs > ‘
Chemokine Receptor - Expression Levels =" -
Internalisation log(CXCRS5)

Figure 4.15: Scheme for combining the agent-based sub-model and receptor recycling
ODE to produce emulated flow cytometry and IHC/imaging outputs.

the ‘cellular data structure’ and the generative grammar that defines the generation
process for the stromal network structure, as presented in Figure [£.16] Understand-
ing the spatial distribution of chemokines over time is possible by combining the
chemokine diffusion and receptor internalisation models, as shown in Figure 4.17]

The model outputs defined here are based on the methodologies developed in
Chapter 2 using the Peyer’s patch development simulation, PPSim, as a case study.
Those in Figure form the basis for understanding model responses to therapeutic
intervention in Chapter 6, and those in Figurel4.17|are used to explore co-localisation
of chemokines and lymphocytes during calibration of model parameters to fit the
temporal development pattern outlined in the TLT domain model.

In addition to the possible outputs discussed above, high-throughput image anal-
ysis is applied to graphical simulation outputs (introduced in Section using
software designed for use with microscopy images. Additionally, high dimensional
data such as cell counts, particularly of the four stromal phenotypes within the
model, lend themselves well to a variety of high-dimensional image analysis method-

ologies. These are introduced in Chapter
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Model Data Outputs
Markov Model Stromal States & Stromal Network Imaging
Stromal Phonot > Markov Model Stromal Organisation (S1—S4)
omaTnenopes Emissions B Follicular Regions
+ (S4, FDC-Like)
T Cell Zone
i S3, FRC-like
Cellular Automata ~ Stromg Spatlal ( )
_ > Organisation & VCAM-1
Stromal Information Expression Levels Spatial Expression Heatmap
Formal Grammar Determines
Stromal Network Network Structure
Generation

Figure 4.16: Scheme for combining the Markov model of stromal cell differentiation
and the CA that stores the phenotype data for each individual stromal cell and the
spatial organisation of the network as defined by the stochastic formal grammar.
This permits outputs of images illustrating the spatial distribution of stromal cell
type and heat-maps of VCAM-1 adhesion molecule expression within the spatial
compartment.

Model Data Outputs
PDE Secretion, Diffusion
Chemokine Diffusion, > & Decay of
Secretion & Decay Chemokines
Spatial & Temporal
=+ Heatmaps of CXCL13
& CCL19

ODE Lymphp cy.te

~ Internalisation

Chemokine Receptor - Induced Flux in

Internalisation Chemokine Field

Figure 4.17: Scheme for combining the PDE responsible for describing the secretion,
diffusion and decay of chemokines with the chemokine receptor recycling ODE. This
permits production of spatial heat-maps of CCL19 and CXCL13 chemokine distri-
bution, and temporal heat-maps illustrating the change in total concentration over
time.
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4.8.1 Model Outputs

Both qualitative and quantitative outputs are of interest from this model. Given
the somewhat theoretical foundations for the model, based largely on hypotheses
derived from human @n vitro mesenchymal stem cell models of stroma and an in
vivo murine model of Sjorgen’s syndrome, it is not possible to define a quantitative
level of precision with respect to any other model of the disease. Therefore, the prin-
cipal output of interest is whether the model as constructed, implementing the TLT
formation theory as described in Chapter [3] results in the formation of structures in
a self-organising manner consistent with those found in vivo. This is fundamentally
a qualitative, or semi-quantitative, output because of the enormous heterogeneity
of TLT observed in the domain, and the lack of quantification of the extent of this
heterogeneity.

Using high-throughput image analysis, the variation in the morphology of TLT
within the model can be assessed as parameters are peturbed. This is explored for
modulating the level of adhesion molecule expression in Chapter [5} Further to this,
by incorporating potential and previously trialled therapeutic interventions into the
model and observing the relative change in the population of stromal phenotypes,
insight can be derived into the potential therapeutic benefits of the intervention.
The key output in this sense is the change in the population size of FDC-like (S4)
stromal cells. These cells are required to support lymphoid follicles and germinal
centre reactions known to correlate with disease activity in Sjorgen’s syndrome.
This may therefore be used as a surrogate for disease activity for the purposes of

evaluating therapeutics. This is explored further in Chapter [6]

4.9 Argument-driven Model Validation

This section explores the argumentation structure for the TLT model, this contains
4 key strategies identified for arguing the fitness-for-purpose of the model. GSN

provides a useful way to present the evidence used to construct the model and



CHAPTER 4. HYBRIDISED PLATFORM MODEL OF TLT FORMATION 175

simulation, including all assumptions that have been made and justifications thereof.
The strategies used to argue fitness-for-purpose of a model developed using the
CoSMoS process are best provided in this author’s opinion through decomposition
of the argumentation structure into the Domain, Domain Model, Platform Model
and Implementation — one must argue that the experimental data are appropriate
for the domain model (Strategy 1.1), that the domain model captures the relevant
biology (Strategy 2.1), that the platform model appropriately abstracts the domain
model and preserves emergent phenomena (Strategy 3.1), and that the simulation
is correctly implemented (Strategy 4.1).
Strategy 1.1: Experimental Data Sources

Strategy 1.1 (Figure aims to argue that the experimental data used in the
development of the domain model are appropriate and explore how these data were
integrated into a model. This currently <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>