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Abstract 

The research in this thesis deals primarily with the solution of the differential equation based 

models that are encountered in the study of engineering dynamics, and concentrates exclusively 

on enhancing processes of approximate analytical solution. This enhancement centres initially 

on the premise that asymptotic methods offer a powerful and adaptable group of formalisms 

that can be used, with care, to solve a very wide range of nonlinear dynamics problems, 

represented either as sets of nonlinear ordinary differential equations or as sets of nonlinear 

partial differential equations and boundary conditions. A further premise is that asymptotic 

methods can be structured in such a way that the user can apply them algorithmically, and an 

excellent example of this, which is used in this thesis, is the perturbation method of multiple 

scales. The final premise is that the algorithmic structure of the solution method lends itself to 

symbolic computation, and that this then offers the user an extremely powerful base-line tool 

for investigation, on the assumption that the tool is tested and reasonably validated.      

It has been shown in this thesis that the perturbation method of multiple scales can be fully 

automated and that it is then capable of analysing very large-scale systems with many degrees 

of freedom. The usual expectation would be that the symbolic computations required to solve 

the problem would then give way to a numerical phase during which suitable data is substituted 

into the equations and then some form of high impact visualisation tool would be implemented 

for data output. However, numerical methods are highly dependent on the boundary conditions 

and the data used and they cannot necessarily generate a truly generalised solution to the 

problem in hand. They act like a ‘black box’ and as such can sometimes be seen to fail to present 

clearly the general physics of the systems being examined. 

The alternative approach in applied dynamics is to use numerical integration directly to solve 

either the reduced-order, yet physically representative nonlinear model of the system, or even 

a fuller higher dimensional differential equation model. But it is still the case that numerical 
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output does not necessarily give a general picture, nor does it offer a full understanding of the 

relative significance of terms within the governing equations 

In order to enhance the generality offered by approximate analytical modelling a new 

generation of solver has been proposed in the form of a wider computational study which has 

been termed Symbolic Computational Dynamics. The application process of Symbolic 

Computational Dynamics, as it is considered in this thesis, comprises two strands of symbolic 

computation. The first strand leads to the analytical solution to the differential equation model 

using a method such as multiple scales, noting that the code for this is termed the core solver. 

The second strand interrogates that solution continually, as it evolves in a structured manner, 

so that the underlying mathematical-physical links are established between terms, quantities, 

and operators. This process starts from the initial statement of the governing equations and 

continues right through to the final solution, and the strand of computation that does this is 

termed the term-tracker.   

Therefore, the requirement of the solver part is to generate a general solution which gives an 

insight into the physics of the system, and the highly nonlinear interactions that frequently 

occur. Currently, practical application of these methods tends to be limited to models 

comprising a few degrees of freedom (or generalised coordinates), as they are mostly applied 

manually. This restriction is lifted when using a computer to do the analytical calculations and 

one can envisage moving from a few degrees of freedom to hundreds or even thousands. 

Therefore the core solver comprises a symbolic approximate analytical method, based here on 

the perturbation method of multiple scales, and running as a process that is computationally 

transparent, rather like that which emerges when using a pen and a paper. The term-tracker 

generates all the extra information during the solution procedure. The fully symbolic solution 

procedure provides detailed information about each step of the analysis, while the term-tracker 

can highlight the connection between the assumptions and decisions that underpin the physical 

model, the resulting equations of motions, the solution procedure and then the final result in 

specific equation form.  

In this study, the concept of a Symbolic Computational Dynamics solver has been advanced in 

several ways; firstly, an implementable version of early proposals for the Source and Evolution 

Encoding Method (SEEM) for comprehensive term-tracking is introduced, and a computerised 

basis for this is established. A generalised algorithm has been developed to apply the SEEM 

potentially to any symbolic solution procedure, so it is not at all limited to use with the 
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perturbation method of multiple scales. The SEEM makes it possible for the analyst to track each 

individual physical parameter and all physical-mathematical assumptions and simplifications 

through an approximate analytical solution process. 

Secondly, the Blueprint visualisation method has been proposed, as a first attempt at 

visualisation of the results of a Symbolic Computational Dynamic solver. This method can 

interactively illustrate the connections between equations and the generated SEEM encodings 

information in a 3D graphical structure. This visualisation provides the analyst with new 

information that was previously hidden within the structure of the adopted solution procedure.  

Finally, a combination of the number of quantities in each term and their encoding information 

is used to define a new normalised parameter, called the Strength Factor (SF). The SF value is 

implemented into the Blueprint visualisation method. The SF value can assist the user to 

estimate the strength of each term in an equation. Under a series of pre-defined conditions 

some terms can be considered generically negligible and then removed from the analysis; this 

being a somewhat new result in the application of asymptotic procedures such as multiple scales 

to problems of nonlinear dynamics. As a further development the possibility of manufacturing 

a solid three-dimensional printed structure for each solution method has been suggested. 

Moreover, the outputs of the new developments of Symbolic Computational Dynamic solver are 

discussed for two well known, and somewhat challenging, nonlinear dynamics case studies; 

those of the parametrically excited pendulum and the autoparametrically coupled beam 

problem, respectively. 
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Chapter 1  Introduction 

Symbolic Computational Dynamics solvers are capable of applying analytical solution methods 

to reduced order problems expressed in differential equation form. A general solution for the 

problem of interest, to some degree of accuracy, can generally be determined using the 

mathematics underpinning these methods. The intention behind developing the subject area of 

Symbolic Computational Dynamics is to provide a new way of gaining insight into the physics of 

wide-ranging dynamical systems and to uncover the deepest possible information about the 

highly nonlinear interactions that frequently occur.   

The research topic of Symbolic Computational Dynamics was initiated around twenty years ago 

and the research reported in this thesis is a major part of an ongoing development of software 

techniques necessary to create usable Symbolic Computational Dynamics solvers. This work 

builds on ideas originally proposed by Cartmell, Khanin, and Forehand [1-13], and which have 

been substantially improved through novel implementations in software by the author of this 

thesis. Many new ideas have been contributed through the research reported in this thesis and 

as a result the topic is now about to enter a new phase of development. 

1.1 Motivation  

The story of this research is in some ways similar to the introduction of the Little Prince Book, 

by Antoine de Saint-Exupéry [14]. In this story, a six-year-old boy was looking at a book called 

“true story from nature”, and he saw a picture of a boa swallowing an animal. The boy 

considered the picture and made his own drawing, as shown in Figure 1-1. The boy then showed 

his drawing to some adults and wondered if they were going to be scared by it. Interestingly, 

they looked at the drawing and wondered why should anyone be frightened by a hat. Then the 

boy begins to show extra information about his drawing, by making a new one, see Figure 1-2.  
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Figure 1-1 The six-year-old boy ’s  f irst  drawing [14].  

Without having certain key information about a topic it is possible to be entirely misguided 

about it. In this example, without the second drawing, it is almost impossible to say that the real 

object is an elephant in a boa’s stomach, and most people would be happy to think of it as a hat, 

without striving to know what else it could be.  

 

Figure 1-2 The second drawing [14].  

Taking the discussion further, into an engineering context, in particular such as the study of 

nonlinear dynamics, it is possible to look at Figure 1-3 and ask: “is this just a differential 

equation?”, or to wonder what lies within that equation, and whether an understanding of that 

inner part of the definition might present a larger, and possibly far less obvious context.  This 

research endeavours to offer a fresh perspective for asymptotic symbolic solutions in the field 

of nonlinear dynamics.  

 

Figure 1-3 Is this just a dif ferential equation?  (For the answer check Figure 7-1) .  

1.2 Background 

There is no absolute linear system in the universe, and as Jon Juel Thomsen said: "A linear system 

represents a mathematical abstraction a useful and productive invention of the human mind" 

[15]. In some cases, it is possible to assume that the system is constrained to operating within a 

limited range, and so the response can be calculated using a linear theory. The theories 
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developed for studying linear systems are quite advanced and have numerous robust 

application methodologies, as long as the numerical limitations and constraints are well known 

in advance. However, a great deal has been uncovered and understood about nonlinear 

dynamics, particularly in the last 40 years, the general concept of nonlinearity still contains 

extensive areas yet to be discovered.  

In the world of mechanical systems and structural dynamics it is possible to categorise 

nonlinearity sources into four main groups: geometrical nonlinearities, material nonlinearities, 

nonlinear body forces, and physical configuration nonlinearities. Regardless of the source, 

nonlinearities are always mathematically shown in a unique form in the governing equations of 

motion. Due to the inherent complexity of nonlinear systems, both the physical model and 

mathematical solution procedure representing these systems always include some form of 

simplifications or assumptions.  

The ultimate goal of this research is to offer a new perspective to analyse nonlinearity within 

engineering problems. The creation of a new set of computational tools aims to establish a 

connection between the physics of the actual system, the mathematical solution procedure, and 

the final response. In other words trying to define a mathematical-physical meaning for each 

term involved in the mathematics of the adopted solution procedure. Furthermore, the ability 

to track the effects of each, and every assumptions or simplification in the analysis is seen to be 

an essential constituent part of this process, in order to ensure no loss of information.  

1.3 Aims and objectives 

The aim of this research is to advance the functionality of the computational tools that are so 

vital to the development of the full implementation of Symbolic Computational Dynamics, and 

in so doing to create a fresh perspective for symbolically analysing the sorts of nonlinear 

differential equations encountered in mechanical engineering dynamics. Ultimately, if properly 

developed, such a tool should be able to create a complete information link between the 

physical concept of an engineering problem, the procedure used to solve it, and the final 

response. To achieve this target the followings objectives may be defined: 

• To develop and demonstrate the concept of the Source and Evolution Encoding Method 

as a basis for implementing the historical tracking features central to the concept of 

symbolic computational dynamics. 

• Then to create a practical computational basis for implementing the Source and 

Evolution Encoding Method into Symbolic Computational Dynamics. 
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• After this, to develop and then introduce a precursor method for interactive 

visualisation of the mathematical features inherent to Symbolic Computational 

Dynamics. 

• Finally, to propose a symbolic term evaluation method that can be used to distinguish 

between different levels of importance of terms within a differential equation model, 

and then to use that as a basis for identifying negligible terms in the equations. 

1.4 Thesis outline 

This thesis consists of seven chapters. After the introduction, the second chapter provides a 

concise summary of the previous research in the topic of symbolic calculations. Chapter three is 

the heart of this thesis and discusses the methodology of the Source and Evolution Encoding 

Method. This is followed by the fourth chapter, which includes the algorithms that have been 

developed to implement the Source and Evolution Encoding Method within a demonstrator 

Symbolic Computational Dynamics solver.  Chapter five includes the process of developing and 

implementing the first visualisation method for the demonstrator Symbolic Computational 

Dynamics solver. Then, leading on from this, chapter six proposes the very first symbolic term 

evaluation concept, based on the Source and Evolution Encoding Method. Finally, chapter seven 

provides conclusions and suggestions for future work for this research.  

  



 

 
 

Chapter 2  Literature Review 

Traditionally some of the more difficult engineering dynamics problems have been solved 

manually with a pen and paper, using complex modelling strategies, a mixture of physically and 

mathematically based assumptions, and highly bespoke mathematics. This has inevitably 

required a combination of a highly expert and knowledgeable analyst, possessing a solid 

background in engineering, physics and mathematics, and the identification of a meaningful yet 

tractable solution procedure. Deriving an accurate solution for even a single degree of freedom 

nonlinear problem can be very challenging indeed, and this difficulty can then be dramatically 

upscaled when complicated, coupled nonlinear systems are taken into account. 

Numerical analysis methods (for ordinary differential equations) of engineering dynamics can 

be based on numerical integration techniques and in a more generalisable sense on finite 

element analysis, and a very large number of commercial codes are now available for both 

approaches. Generally, it is the case for commercial numerical solvers that the complete 

solution process is automated; from the initial stages in which the equations of motion are 

constructed in numerical form, through the solution generation process, with built-in 

sophisticated convergence and error self-analysis techniques provided, to the final post-

processing stages required for graphical output and visualisation, possibly in the form of 

animations running against a time scale.  

There is no doubt that validated and benchmarked commercialised platforms based on 

numerical analysis are of immense utility and practical importance, however it can also be 

argued that as such computational systems become more automated and less transparent, the 

analyst potentially loses certain forms of control so that the processes of physics-based 

derivation and physics-influenced solution modification and specialisation are not as apparent 

as they necessarily have to be when approximate analytical modelling and solution is attempted, 

usually manually, by an expert engineer or engineering mathematician.  

As a consequence of this insight, a new approach to modelling and solution based on specialised 

computation known generically as Symbolic Computational Dynamics, has been introduced. Key 
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features of this approach are highlighted, discussed, and developed in detail within this thesis. 

This chapter aims to provide a brief review of the context, the history where relevant, and the 

previous research that has been carried out in the development of symbolic solvers for certain 

types of nonlinear dynamics problems. 

2.1 Numerical methods  

This section only considers the finite element methods that can be based on processes of 

numerical integration, on the premise that some forms of computable differential equations of 

motion can be derived and structured appropriately within the solver, or in the formal process 

of finite element analysis. The latter is particularly powerful as the computational structures 

necessary for the formulation of finite element algorithms lend themselves naturally and 

efficiently to many elegant forms of scaling up. This leads to finite element analysis, which is 

now routinely capable of intricate and potentially accurate calculations of dynamic responses in 

the largest and most complicated structures. However, despite this, there is the over-riding fact 

that generic and numerically independent informatic linkages between the physics of the 

problem and the emergent solution still remain elusive and are very difficult to define within 

any finite element formulation, no matter how sophisticated it may be.   

In the finite element methods, the structure of interest is generally discretised into several small 

elements, and these elements are then connected at key points known as nodes, according to 

precise rules which accord appropriately with the underlying physics of the problem. These 

processes result in a series of algebraic equations, which can be expressed numerically within 

the procedure used and then an approximate solution for the unknowns can be determined at 

each node [16].   

Finite elements are used in various application areas of engineering such as statics, dynamics, 

thermo-fluids, electrodynamics, and more recently across multi-physics domains.  For example, 

NASTRAN (NASA STRucture Analysis) [17] is a finite element based programme, which was 

developed in 1964, originally for the design of space vehicles. The commercial version of this 

software can now be used for analysis across many different industries, for which definable 

physics can be exploited for modelling and solution. Another powerful and popular numerical 

package is MSC ADAMS [18], noting that this is capable of analysing complicated nonlinear 

dynamics problems.  The Vortex package, based on a Lagrangian formulation [19], transforms 

static CAD models to interactive systems in a 3D environment and is capable of modelling real-

time dynamic reactions, deformations, collisions, and rigid body dynamics [20-22].   
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There are several advantages offered by finite element analysis, not least that they are capable 

of producing approximate solutions for problems that are very complicated and where analytical 

solutions cannot be found, or where methods for doing such analysis cannot readily be defined. 

Also, it is possible to model highly complex geometries and loadings within finite element 

analysis [23-27]. 

Despite many powerful features inherent to finite element analysis, there are certain sources of 

error that must be always considered. Regardless of the modelling quality, the output of 

commercial finite element packages is invariably portrayed in a colourful eye-catching form and 

this can sometimes obscure fundamental inaccuracies in the solution.   

For example, considering the investigation that had been carried out by Yu [28]. As Figure 2-1 

shows, a pressure pulse was applied to a straight beam, the beam was hinged at both ends. The 

response of this system was defined as a lateral displacement of the beam at the middle point, 

against time. To determine the response, ten validated finite element codes have been used by 

ten expert users. As Figure 2-2 shows, it is not possible to identify which one of these codes is 

showing a valid result [29, 30].  

 

Figure 2-1 A hinged beam loaded by a pressure pulse .  

 

Figure 2-2 The results of ten different f inite element codes applied to a beam, loaded with a 

pressure pulse [29].  
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Computational errors can be inherent to finite element formulations. For instance, the 

computational domain is always a simplified form of the real geometry. As Figure 2-3-a shows, 

an actual structure is not equivalent to its discretised model [31]. 

The other source of error is the fact that finite element methods are based on piecewise 

polynomial interpolation. In a typical finite element analysis, the structure of interest is 

discretised into small elements to evaluate a field quantity; the field quantity is the quantity of 

interest in the analysis, for example: it can be displacement, stress, and so on. The field quantity 

for each element is then determined by interpolation of the field values at nodes of that 

element. Afterwards, the elements are connected together and the overall field quantity is 

determined by piecewise polynomial interpolation. Therefore, the number of polynomial 

expression is equal to the number of elements.  As interpolation is an approximation of a 

continuous function, therefore, it can lead to inaccuracy in the result of a finite element analysis, 

see Figure 2-3-b. 

Furthermore, the result of numerical integrations within the finite element formulation is an 

approximation [32].  Gauss quadrature integration approximates an integral into a weighted 

summation of a finite number of terms, the formulation shown in Figure 2-3-c.  

Finally, there is the ubiquitous problem of specifying a necessary and sufficient number of digits 

for numerical representation in the computer code itself, see Figure 2-3-d. 

 

Figure 2-3 Some examples of inherent Finite element codes errors [31].  
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2.2 Approximate analytical methods  

In these methods the nonlinear solution is derived by perturbing the response of the 

corresponding linear system [33]. The approximate analytical methods are generally valid for 

weakly nonlinear systems, whereby the nonlinear terms are considerably smaller than the linear 

ones. In other words, the motion must be finite with a moderate amplitude to have an 

acceptable accuracy [15]. However, it can be noted that the multiple scales method has been 

applied to strongly nonlinear systems in several studies such as Lakrad and Belhaq [34].  

There are several approaches which can be used to apply mathematical perturbation to a 

system, such as: The Straight Forward Expansion, the method of Lindstedt–Poincaré, Harmonic 

Balance, and the method of Multiple Scales. The choice of the perturbation method is mostly a 

matter of personal preference, in general none of these methods has a significant superiority 

over others [15]. Therefore, in this research for the convenience of the author, the method of 

multiple scales is practiced. Note that it is possible to reach the same conclusion by applying the 

other methods.  

The method of multiple scales is originally developed by Nayfeh [35]; where, the dependent 

variables in the equation of motion are represented by using two or more independent variables 

(or scales). The underlining feature of this method is to take time (equation (2.1) ) as a series of 

independent time scales. The expansion is assumed to be uniformly convergent. The variables 

or coordinates must be expressed by a uniformly valid expression to create a set of perturbation 

equations [35-37]. 

A fast time scale (𝑇0) is used for describing dynamics for which the operating frequencies are 

near the linear natural frequencies of the system, fast time scale is equal to the real time ( 𝑡 ). 

However, the slower time scales are employed to define slow variations of amplitude and phase. 

The final solution is built-up gradually by formulating the results of each perturbation. The first 

and second time derivaties are determined based on the perturbation expansion and shown in 

equations (2.3) and (2.4), respectively. The number of independent time scales is limited by the 

order at which the expression is truncated. In these equations 𝜀 is a small perturbation 

parameter and 𝑇𝑗 shows the slower time scales. 

𝑇𝑗 = 𝜀
𝑗𝑡 

(2.1)  

𝑥(𝑡, 𝜀) = ∑ 𝜀𝑗𝑥𝑗( 𝑇0, 𝑇1, … , 𝑇𝑚) + 𝑂(𝜀𝑇𝑚)

𝑚−1

𝑗=0

 
(2.2)  
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𝑗 = 0,1,2,… 

𝜀 ≪ 1 

𝐷𝑗 =
𝜕

𝜕𝑇𝑗
 

𝑑

𝑑𝑡
= 𝐷0 + 𝜀 𝐷1 + O(𝜀

2) + ⋯ 

(2.3)  

𝑑2

𝑑𝑡2
= 𝐷0

2 + 2𝜀 𝐷0𝐷1 + O(𝜀
2) + ⋯ (2.4)  

To investigate the functionality of this method, the solution procedure for a problem of the 

parametrically excited beam is investigated in part B of the appendix. Furthermore, an 

experimental investigation for this problem has been conducted in this research. The results of 

the experimental and theoretical solution are compared.   

2.3 Symbolic computational calculations  

Symbolic computational calculations can considerably increase insight into the dynamics of a 

system [3]. The ideal case is to develop a powerful symbolic solver that has the ability to apply 

analytical methods into complex dynamical problems [3, 38]. The hierarchical structure and 

conceptual simplicity of the perturbation methods, especially the multiple scales method, have 

made them more conventional to be implemented to a computerised algorithm. The 

development of the symbolic computational codes has started with formulations that were only 

capable of deriving equations of motion, later the topic of symbolic solvers was introduced.  

2.3.1 Symbolic generation of equation of motion 

Multibody codes are mainly based on two formulations: The Eulerian and the Lagrangian. In the 

Eulerian codes, the analysis starts with the Newton and Euler equations, while, Lagrangian codes 

are based on Lagrange’s and Hamilton equations [39].  

In 1983, the SYMBOD was developed as a computerised symbolic programme. This code was 

capable of deriving equations of motion automatically [40]. In 1985, NEWEUL [41, 42] was 

programmed to generate equations of motion symbolically, based on the Newton-Euler 

principle. Lieh and Haque [43] developed a closed-form equation formulation, based on the 

principal of virtual work. It was stated that the algorithm had the ability to generate 

automatically both the linear and nonlinear equations of motion symbolically. The output of this 

algorithm was in the form of a FORTRAN code [44] and it was possible to display equations like 
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a handwritten document.  More efforts on generating formulations based on the both Lagrange 

[45-47] and Newtonian [48, 49] have been made. As a result there are a few fully symbolic codes 

that can be used to generate and solve formulations for the dynamics of flexible bodies [50-54]. 

Forehand, Khanin [9] have developed the MultiFlex.m function in Mathematica code. This 

Lagrangian formulation can derive equations of motion for a multibody system symbolically. The 

initial code was based on the Fisette, Johnson [52] method, this package was capable of 

modelling both rigid and flexible bodies.  

2.3.2 Symbolic generation of the solution procedure 

In 1987, Rand and Armbruster [55] developed the MACSYMA, which was capable of applying 

some of the perturbation methods to oscillating systems. The perturbation equations were 

generated symbolically, however, the solution for these equations were only available for 

limited cases. Furthermore, MACSYMA was not designed to evaluate solutions for the 

modulation equations (secular equations). The user intervention in the analysis process was 

compulsory in some cases [56].  

Large numbers of the symbolic solvers have been developed within the Maple interface [57]. 

For example; Sanchez [58] symbolically applied the method of multiple scales to a single degree 

of freedom problem. Later, Corless, Jeffrey [59] studied the application of a perturbation 

method for two fluid mechanics related problems. Furthermore, Vakhidov and Vasiliev [60] 

developed a code based on the Hamiltonian formulation. Yu [61-63] developed a symbolic solver 

based on the multiple scales, this code used the number of real and complex eigenvalues for the 

linearized system, and the order of normal forms as inputs. Wang, Steyn-Ross [64] developed a 

semi-automated symbolic solver based on the multiple scales method. Other examples can be 

found that were involved in developing a symbolic code, based on a perturbation method, such 

as Franciosi and Tomasiello [65], Pismen et al. [66, 67].   

Khanin and Cartmell [12] introduced an advanced symbolic computational solver, based on two 

perturbation methods. In this study, both the straight forward expansion and multiple scales 

method were applied to the equation of motion of a pendulum. This solver was programmed 

within the Mathematica code interface. Later, Khanin, Cartmell [2] developed a generalised 

symbolic solver, based on the multiple scales method. This solver was implemented into a 

Mathematica function, named “MultipleScales.m”. The generality and wider range of 

applications are the standing points of this solver, comparing to the other existing symbolic 

codes. Furthermore, this code is able to perform the perturbation analysis in both forms of 
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automated and semi-automated. In order to increase the application of this code, a parallelised 

version [1, 11, 13] was introduced.  

The Khanin, Cartmell [2] symbolic solver has been used in several studies, for instance; the 

nonlinear cutting model for a primary chatter was evaluated using this package [68]. All possible 

resonance conditions were determined using this powerful function. Moreover, the results of 

this study were compared with other numerical methods (neural network), the package 

performance was described as quick and sophisticated.  

A thorough review on the multiple scales methods and special cases has been done by Cartmell, 

Ziegler [5]. In this paper, special case studies and different versions of the multiple scales were 

discussed. Furthermore, it was suggested to introduce a semi-analytical solver to the 

MultipleScales code, in order to find solutions for problems that the closed-form solutions are 

hard to find.  

2.4 Term-tracking methods 

The essentiality for evaluation of the term-tracking method was originally demonstrated by 

Cartmell and Forehand [38]. In this study the principal effects of assumptions and simplifications 

made during a solution procedure for reduced order models were investigated. The information 

loss within an approximate analytical method is shown to be noticeable, and it is evident that it 

can be attributed to the solution evolution process by the analysis of inherent issues.  In this 

paper, the assumptions and simplifications have been made within ten sample problems in 

engineering dynamics were investigated. The results of this study are summarised in Table 2-1. 

For example, the assumption that there is a mass-less element in the system is used in three 

cases out of ten (30%).   
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Table 2-1 The percentage of  applying nine types of  assumptions in ten case studies  [38].  

Assumption types Percentage of using the assumption in ten case studies 

Mass-less element 30% 

Maclaurin expansion 30% 

Modal space 40% 

Single degree of freedom 40% 

Classical linear viscous damping 90% 

Harmonic excitation 90% 

Necessary discretisation 10% 

Frequency normalised 20% 

Nondimensionalised 100% 

It is universally acceptable to nondimensionalise, however, frequency normalisation is not 

always acceptable. Generally, damping and excitation are considered linearly viscous and 

harmonic, but this is not necessarily always going to be a physically accurate assumption. For 

simplification, some elements are frequently considered to be massless, and this is generally 

applied to beam and mass problems where each property is visually separable, but this is 

actually a gross assumption that can often affect the accuracy of the solution.   

As well as assumptions and simplification, the structure of the derived response is important. 

For example, the symbolic form of the equation of motion, part of the solution procedure and 

the amplitude (𝑎) and phase (𝜑) response for the problem of a parametrically excited pendulum 

are given in Figure 2-4. It is possible to notice the highlighted symbols within the equation of 

motion has appeared in another form within the response. As well as this explicit connection, 

Cartmell and Forehand [69]  showed the theoretical possibility of the existence of implicit 

physical-mathematical links within a dynamical modelling procedure and approximate analytical 

solution.  

 As a result, the term-tracking methods for the purpose of identifying, and somehow extracting, 

these connections have been developed. Currently two types of term-tracking method have 

been developed; the Source Encoding Method (SEM) and the Source and Evolution Encoding 

Method (SEEM). It should be noted that the SEEM method is fully introduced in Chapter 3 of this 

thesis. 
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Figure 2-4 Expl icit physical-mathematical l inks exist ing within a dynamical modell ing procedure 

and approximate analyt ical solution  

2.4.1 Source Encoding Method  

The Source Encoding Method (SEM) has a straightforward logic which can identify and track the 

position of each term during the analysis, without providing any extra information about the 

quantities within the term [7].  The word term here defines a group of symbolic quantities which, 

when taken as a group, have physical meaning, such as inertia, stiffness, damping, or excitation. 

As the solution analysis proceeds the physical definition of the terms that arise tends in some 

cases to recede, but the concept of a mathematically grouped set of symbolised quantities tends 

to continue to hold true. On that basis, the SEM method uses a (𝑛, 𝑠𝑐) format to encode each 

term. 𝑛 indicates the equation number, 𝑠 corresponds to the position of the term within the 

equation right-hand side (RHS) and is shown by 𝑅, while the left-hand side (LHS) is symbolised 

by 𝐿, finally 𝑐 demonstrates the position of the term within the corresponding side of the 

equation. For example, (10, 𝐿4) means the fourth term on the left-hand side of equation 10. 

Also, in this approach, the position (above or below the equation) means that the encoding is 

shown to have a specific meaning. The encoding would be displayed above a term for 

referencing/identification and below for presenting the history of the term. The SEM is 

conveniently demonstrated in [7] through an application to the equation of motion of a 

parametrically excited pendulum. The first few steps of this analysis with the SEM encoding 

information are shown in Figure 2-5.  



  15  
 

 

𝜃̈⏞
(1,𝐿1)

+ 2𝜀𝛽𝜃̇⏞  
(1,𝐿2)

+ 𝜃⏞
(1,𝐿3)

− 𝜀𝑞𝜔2𝜃cos (ω𝑇0)
⏞          

(1,𝐿4)

+ 𝜀𝛾𝜃3⏞
(1,𝐿5)

= 0 
(1) 

𝜃 (𝜏, 𝜀) = 𝜃0⏞
(2,𝑅1)

+ 𝜀𝜃1⏞
(2,𝑅2)

+ 𝑂(𝜀2) 
 (2) 

𝑑

𝑑𝑡
=  𝐷0⏞

(3,𝑅1)

+ 𝜀𝐷1⏞
(3,𝑅2)

+ 𝑂(𝜀2) 
(3) 

𝑑2

𝑑𝑡2
= 𝐷0

2⏞
(4,𝑅1)

+ 2𝜀𝐷0𝐷1⏞    
(4,𝑅1)

+𝑂(𝜀2) 
(4) 

𝐷0
2𝜃0⏟  

(1,𝐿1)(2,𝑅1)(4,𝑅1)

⏞        
(5,𝐿1)

+ 𝜀𝐷0
2𝜃1⏟  

(1,𝐿1)(2,𝑅1)(4,𝑅1)

⏞        
(5,𝐿2)

+ 2𝜀𝐷0𝐷1𝜃0⏟      
(1,𝐿1)(2,𝑅1)(4,𝑅2)

⏞        
(5,𝐿3)

+ 2𝜀𝛽𝐷0𝜃0⏟      
(1,𝐿2)(2,𝑅1)(3,𝑅1)

⏞        
(5,𝐿4)

+ 𝜃0⏟
(1,𝐿3)(2,𝑅1)

⏞      
(5,𝐿5)

+ 𝜀𝜃1⏟
(1,𝐿3)(2,𝑅2)

⏞      
(5,𝐿6)

− 𝜀𝑞𝜔2𝜃0cos (ω𝑇0)⏟          
(1,𝐿4)(2,𝑅1)

⏞          
(5,𝐿6)

+ 𝜀𝛾𝜃0
3

⏟
(1,𝐿5)(2,𝑅2)

⏞      
(5,𝐿7)

= 0 

(5) 

Figure 2-5 The Source Encoding Method applied to the first six equation in the analy sis  of a 

parametrically excited pendulum [69].  

2.4.2 Computerisation of the Source Encoding Method  

Due to the transparent nature of the SEM, this method can be readily automated within a 

computer code. Forehand and Cartmell [7] used five main functions to apply the SEM encoding 

to a modified version of the multiple scales solver written by Khanin, Cartmell [2].  

In summary, this method defines a multiplier (an encoding vector) at the beginning of the 

analysis for each term. As the equation number and the position of each term changes, the 

encoding vector is updated. The encoding information is saved within the solution procedure 

structure, and it is possible for it to be displayed using the Tooltip function.  The Tooltip is a built-

in function in the Mathematica code interface; it displays encoding information as the mouse 

pointer moves over the term. Figure 2-6 provides an example of the encoded function whereby 

the mouse pointer is placed over the highlighted term and the encoding indicates that it is the 

third term on the left-hand side of that equation. It is also possible to present the encoding 

results in the form of a tree-like structure in Mathematica [7]. 

 

Figure 2-6 An example that shows how encodings information can be displayed using the Toolt ip 

function.  
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Figure 2-7 An example of showing history of a term using a tree structure in the  Source 

Encoding Method [7].  

As the analysis progresses, the information gathered within the encoding vectors becomes more 

detailed, and can quickly become confusing for the user, and at the same time this increase in 

information complexity places more demands on computation processing time. To overcome 

this issue a new function defined as, unencodeEquation is introduced to erase the encoding 

history after several stages. Therefore, it is possible for the user to unencode and encode 

equations after each step, thus preserving memory and enhancing computational efficiency.  

Figure 2-8-a shows a long encoding vector that is displayed for the analysis of the parametrically 

excited pendulum. It is possible to use this information to identify the source of the highlighted 

term in the equation of motion (fifth term on the left-hand side). In Figure 2-8-b, the user then 

decides to unencode and encode the same equation, so the specific encoding is changed to the 

seventh term on the left-hand side of equation 7. 

 

Figure 2-8 The application of unencodeEquation  function to unencode and encode equations .  

The other challenge to emerge within the computerisation of the SEM was found to be in saving 

the encoding information during the mathematical procedure. This is caused due to the fact that 

the encoding vectors are stored in the inherent structure of the equations, and so when the 

differential equations are subsequently solved the encodings are integrated within the terms, 

and this leads to a complex structure when visualised, as explained in Figure 2-9-a. To overcome 
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this obstacle a function is defined to remove all the unique encoding vectors that are repeated 

or placed in inappropriate positions (such as the denominators or indices of a power function), 

as shown in Figure 2-9-b.  

 

Figure 2-9 (a) The encoding vectors are mixed with the term during analysis,  (b)  Unique 

encoding vectors are removed (note this a part ial  presentations of an equation).  

Therefore, it is essential to develop a new term-tracking method which is able do track each 

quantity as well as the terms through the solution procedure.  

2.5 Summary 

In this chapter, after a short discussion of the numerical methods, the existing gap for 

developing a transparent symbolic analytical solver is highlighted. Afterwards, the general 

concept of the perturbation method of multiple scales is discussed. This is followed by a 

comparison between the theoretical response and experimental investigation of a 

parametrically excited beam. The detail of the solution procedure and conducted experiment 

are provided in the appendix. 

The history of the symbolic computational solvers was briefly discussed, starting from the 

automatic generation of the equation of motion to fully automated symbolic solution 

procedure. Finally, the history and reasoning for the concept of the term-tracking methods are 

discussed.  

 

 

 

 

 

 





 

 
 

Chapter 3  Symbolic Computational 

Dynamics Solvers 

3.1 Introduction  

A majority of currently available computational tools for modelling engineering systems are 

restricted in terms of user interaction where the core processor is hidden away from the analyst. 

The ethos behind the Symbolic Computational Dynamics (SCD) solver is to deliberately design a 

high degree of flexibility and control for the analyst to exploit and to apply. The usual processes 

of modelling nonlinear systems introduce a considerable number of ad hoc simplifications and 

assumptions, and these have to be introduced by the user on the premise of physical and 

mathematical acceptability and consistency. It is therefore reasonable to assume that by taking 

control away from the user unknown opportunities for missing information or the accumulation 

of unexpected errors in the calculations and final response of the system could emerge.  

Figure 3-1 shows a general overview of the principle behind the SCD solver; showing how it 

connects the mechanical system, the solution procedure and the final response in a unique 

structure. SCD solvers are potentially capable of processing distinct types of mechanical 

systems, the requirement for the input to the system can vary and depends on the selected core 

solver. In this study, perturbation methods are of interest. Therefore, the application of these 

solvers is currently limited to weakly nonlinear systems.   

At present the general input to an SCD solver is the equation(s) of motion. The structure of such 

a solver is based on a term-tracker that operates in parallel with the core solver. The term-

tracker depends on its logic, adds extra information into the structure of the equations that 

emerge from the solution process. This extra information is saved in a special format which 

guarantees no interaction with the actual solution procedure itself. The complete solution 

procedure plus the term-tracking information (or, encodings) is presented during and after the 

analysis. 
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Figure 3-1 Overview of a generic Symbolic Computational Dynamic solver .  

As Figure 3-1 shows a generic SCD solver currently consists of a core solver and a term-tracker, 

whereas the rest of the process must be done manually. It is expected that automated 

generation of the physical model and the equation(s) of motion will be included in SCDs in the 

future, Figure 3-2. Considering the solver is currently based on the general multiple scales 

method, dimension reduction must be done in the process of physical modelling. 

 

Figure 3-2 Overview of possible Symbol ic Computational Dynamic solver  in the future.  

3.2 Core solver 

The flexibility of an SCD solver is assured by the potential ability of the user to change the core 

solver. The core solver can be based on any approximate analytical method; in this study, the 

multiple scales method is selected. The solver functions like a white box, providing as much 

Dimension 
 reduction 
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information as possible. A general overview of the first few equations of the analysis of the 

dynamics of a parametrically excited pendulum is shown in Figure 3-3. The solution procedure 

which develops within an SCD solver is completely symbolic and looks essentially like a 

corresponding hand-written document. 

 

Figure 3-3 Appearance of the solution procedure in a Symbolic Computational Dynamics solver .  

A modified version of the symbolic multiple scales solver as first introduced by Forehand and 

Cartmell [7] has been used in this research.  The solver is semi-automated, and this provides the 

developer and user with the freedom to select the necessary steps of the analysis. Depending 

on the personal preference of the user, and also the specific nature of the mathematical 

problem itself, the number of  output equations formally within a standard perturbation analysis 

can differ from problem to problem. It can be very detailed, thereby defining a single equation 

for each minor step of the analysis, or concise; skipping some unnecessary steps in the output 

(noting that they will still be generated internally and processed accordingly). This means that 

the information created by the term-tracker (the encodings) is unique to the solution procedure, 

and the encodings must always be presented with the details of the solution procedure. For 

example, when considering Figure 3-3, it is possible to avoid stating equation (5) and instead 

substitute the result directly in equation (6).  
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3.3 The Source Evolution and Encoding Method 

It has been shown that the term-tracker has to run in parallel with the core solver in order to 

create the extra information that is sought. This information assists in identifying the important 

stages of analysis for each quantity. In this research the Source Evolution and Encoding Method 

(SEEM) [69] term-tracker is developed and discussed in detail. The purpose of the SEEM is to 

highlight the contribution of each specific symbolic quantity to the analysis by extracting 

relevant information. The information that is gathered for each quantity in the analysis is called 

its encoding.  

The encodings are defined when the quantity is firstly introduced to the analysis and they evolve 

during the solution procedure. Therefore, the details of the encodings for each quantity are 

adjustable and mainly depend on the encoding level. The encodings are displayed inside a 

bracket and each encoding element is separated with a comma, and the syntactical structure of 

this is called the encoding vector. Currently, the SEEM is categorised into the four encoding levels 

and the encoding logic is summarised in Table 3-1.  

Table 3-1 The Source Evolution and Encoding method  logic summary.  

The first level of encoding is applied when a quantity appears for the first time in the analysis 

and no encoding vector is allocated to it. The encoding vector is defined at this step and it always 

contains of two digits (𝑛1, 𝑛2) ; 𝑛1 is the equation number, at which the quantity is introduced 

for the first time, and 𝑛2 is the order of the small parameter (𝜀). Despite other encoding levels, 

all the quantities in the analysis should have been assigned the first level of encoding at some 

point of the analysis. Quantities have to pass the first level in order to be considered for the 

other levels of encoding. The first level of encoding works as an identifier which helps to quickly 

classify both the origin and significance of the quantity. 

Encoding level Description Display 

First level Origin of the equation and the small parameter order (𝜀) (𝑛1, 𝑛2) 

Second level Equation number in which the quantity becomes explicit (𝑛1, 𝑛2, 𝑛3) 

Third level Equation number in which the explicit form is modified (𝑛1, 𝑛2, 𝑛3) 

 

Compound 

Simplification of exponential functions for the first time (∗, 𝑛𝑙𝑎𝑡𝑒𝑠𝑡) 

Simplification of exponential functions for the second time (#, 𝑛𝑙𝑎𝑡𝑒𝑠𝑡) 

Simplification of exponential functions for the third time ($, 𝑛𝑙𝑎𝑡𝑒𝑠𝑡) 

Simplification of exponential functions for the fourth time (£, 𝑛𝑙𝑎𝑡𝑒𝑠𝑡) 

Simplification of exponential functions for the fifth time (∗∗, 𝑛𝑙𝑎𝑡𝑒𝑠𝑡) 
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The second level of encoding is only considered for the quantities that have been introduced 

before (those that have already passed through the first level of encoding) and which have 

reappeared in an explicit-form equation for the first time. The explicit equation number (𝑛3) is 

added into the encoding vectors for all the quantities, (𝑛1, 𝑛2, 𝒏𝟑). The explicit equations that 

emerge within the early stages of the approximate analytical solution method play a major role 

in the final solution. For example considering the symbolic solution for the zeroth-order 

perturbation equation, it is essential for the user to be able to identify the history of each 

quantity as it directly connects to the physical system.  

In order to collect more information about the quantities that are participating in an explicit-

form equation, a third level of encoding can be defined. The third level of encoding is added, 

where a quantity with a second level of encoding is modified from its original form. It is 

necessary to follow a quantity with a second level of encoding, and track the changes in the 

solution procedure. The way to do this is to add a fourth encoding element to the encoding 

vector (𝑛1, 𝑛2, 𝑛3, 𝒏𝟒), indicating exactly where the particular quantity is significantly modified. 

The main policy of SEEM is to avoid any possible numerical or algebraic cancellations as a way 

of preventing information loss. Having said this it is understood that keeping all the quantities 

unmodified in their original form can make equations appear to be unnecessarily complicated. 

Therefore, the compound level of encoding is defined, and in practice the use of this has mainly 

focused on handling the exponential functions that routinely arise in the algebra of the multiple 

scales method, and where 𝑒 is the base of the natural logarithm and 𝑖 the imaginary number 

within the exponent. 

Expression (3.1) is an arbitrary demonstration for the application of the compound level 

encoding. The syntax * is used to show that this simplification is done for the first time. It is 

assumed that two exponential quantities, with different mathematical-physical origins, are 

subsumed together in an arbitrary equation, with number 𝑧. Considering the right-hand side 

(RHS) of this expression, one can easily see that this term is created by subsuming two 

exponential terms created from two arbitrary equations 𝑥 and 𝑦 of the preceding analysis. If the 

exponential term is subsequently subsumed within other exponential terms for a second, third, 

fourth and fifth time then the #, $, £, and ∗∗ syntactical symbols are used, respectively, to 

denote that this further compounding has happened. 
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e⏟
(x,0,21)

(𝑖⏞
(x,0,21)

𝑇0) ∗ e⏟
(y,1,11)

(𝑖𝜔⏞

(y,1,11) 

𝑇0) → e⏟
(∗,z)

𝑖⏞
(∗,z)

( 1⏟
(x,0,21)

+ 𝜔⏟
(y,0,11)

)𝑇0

 

(3.1) 

3.3.1 Special considerations 

It is important to note that from a consistent operational and logistical point of view encoding 

information should be applied to all the quantities in a perturbation analysis, but with the 

exception of time and the dependent variables (before introducing the perturbation expansion).  

The reason for this is that the dependent variables are necessarily restructured within the 

required form of the perturbation equations, and so each correction term has to be addressed 

to its perturbational source rather than to the main dependent variable(s) in the equation of 

motion. The encoding of time doesn’t have a particular meaning in context because its definition 

remains unchanged from equation to equation, despite the use of time scales within the 

analysis. The effects of time-scaling are accommodated automatically within the structured 

mathematics of the perturbation method itself.  

A vehicle for discussion of the SEEM methodology in practice is provided next in the form of  the 

detailed analysis of vibration of a parametrically excited pendulum, close to principal parametric 

resonance. This is a single degree of freedom problem, therefore with one generalised 

coordinate in the Lagrangian sense, and characterised by the presence of a time variant stiffness 

term, in conjunction with the usual physically based terms representing inertia, damping, and 

stiffness. 

3.4 Parametric excitation of a pendulum 

A simplified physical model of an engineering system, a parametrically excited pendulum is 

shown in Figure 3-4. To define the equation of motion of this system, each component of the 

system is defined by a unique symbol:  
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𝑚 Pendulum mass 

𝑙 Length of the mass-less rod 

𝜃 Instantaneous angle of rotation 

−𝑐𝑙2 𝜃̇ Viscous damping moment 

𝑢 Position of hinged support 

Ω External excitation frequency 

𝑔 Acceleration due to gravity 

 

Figure 3-4 Configuration and symbols used to describe the problem of a parametrically excited 

pendulum [15].  

3.4.1 Physical modelling  

The kinetic and potential energy of the system is given in equations (3.2) and (3.3), respectively. 

𝑇 =
1

2
𝑚(𝑢̇2 + 2𝑙𝜃̇𝑠𝑖𝑛(𝜃) + 𝑙2𝜃2) 

(3.2)  

 

𝑉 = −𝑚𝑔(𝑙 𝑐𝑜𝑠(𝜃) − 𝑢) (3.3)  

The equation of motion (3.4) is then derived using Lagrange's equation for a single-DOF non-

conservative system [39].  

𝜃̈ +
𝑐

𝑚
𝜃̇ +

1

𝑙
(𝑔 + 𝑢̈) 𝑠𝑖𝑛(𝜃) = 𝑂 (3.4)  

The linear natural frequency (𝜔0) of the system is equal to √𝑔/𝑙, damping ratio (𝛽) is defined 

as 𝑐/(2𝑚𝜔0), and the external excitation (𝑢) is expressed as 𝑞𝑙 𝑐𝑜𝑠(𝛺𝑡) . The standard form of 

the equation of motion is given below:  

𝜃̈ + 2𝛽𝜔0𝜃̇ + (𝜔0
2 − 𝑞𝛺2𝑐𝑜s(𝛺𝑡))𝑠𝑖𝑛(𝜃) = 0 (3.5)  

 

The pendulum is excited parametrically, as the external excitation appeared as a parameter in 

the system (stiffness). The equation of motion is nonlinear because of the 𝑠𝑖𝑛(𝜃) term. To solve 

this equation, it is assumed that the rotation of the system is finite and limited, so a Taylor 
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expansion up to the second term (3.6) can represent 𝑠𝑖𝑛(𝜃) term in this equation. Then the 

nondimensionalised form of the real time (𝑡) and the excitation frequency (𝛺) are given (3.7). 

Substituting equations (3.6) and into equation (3.5), results equation (3.8). 

𝑠𝑖𝑛(𝜃) ≅ 𝜃 −
1

6
𝜃3 (3.6)  

𝑡 = 𝜔0𝜏 , 𝜔 = 𝛺 𝜔0⁄  
(3.7)  

𝜃̈ + 2𝛽𝜃̇ + (1 − 𝑞𝜔2𝐶𝑜𝑠(𝜔𝜏))(𝜃 −
1

6
𝜃3) = 0 (3.8)  

In perturbation methods, the relative importance of each term must be considered 

mathematically. There is no established method for the term ordering, and the analyst must 

apply it based on his/her experience [70]. The linear inertia term (𝜃̈), which is fundamental to 

the motion of system is strong, as well as the stiffness term. Finally, the damping term (2𝛽), the 

external excitation amplitude term (𝑞) and the nonlinear term (1/6 𝜃3) are considered to be 

weak and 𝜀 as a small parameter is multiplied to these terms. 𝜀 is a multiplier that used to 

highlight the significance of each term in an equation and it does not have any physical meaning 

[15]. After applying the mentioned assumptions to the equation of motion, terms with the order 

of 𝜀2 and higher are removed. The final form of the equation of motion is shown in equation 

(3.9) , 𝛾  is the coefficient of the nonlinear stiffness. 

𝜃̈ + 2𝜀𝛽𝜃̇ + (1 − 𝜀𝑞𝜔2𝐶𝑜𝑠(𝜔𝜏))𝜃 − 𝜀𝛾𝜃3 = 0 (3.9)  

By applying such assumptions systematically up to the point at which an ordered differential 

equation of motion, or set of equations of motion, is/are defined means that up to this stage of 

analysis, a considerable number of assumptions has been made and the term-tracking method 

could assist the user to track each assumption through the solution procedure.  These 

assumptions are considered as modelling related assumptions and they are distinguished from 

the solution process related assumptions.  

3.4.2 Solution procedure  

At this stage of the analysis the method of multiple scales can start to be applied to the equation 

of motion (3.9). For consistency, the equation number tag has to be changed from the thesis 

format (i.e. (3.9)) to (1) to reflect the logical structure of the SEEM as would be applied to such 

a problem. The first level of the SEEM encoding is applied to the equation of motion (1), the 



3.4 Parametric excitation of a pendulum  27 

 

equation number and the order of each term are both shown in a bracket below each term. It 

can be seen that no encoding vector is defined for 𝑇0 and 𝜃, for the reasons discussed above.  

Then it is assumed that the approximate solution containing the zeroth and first order 

perturbation solutions can satisfactorily predict the response of the pendulum accurately. A 

perturbation expansion, which is conventionally assumed to be uniformly valid, is introduced 

and encoded in equation (2). The fast and slow independent time scales are defined as 𝑇0 = 𝜏  

and 𝑇1 = 𝜀 𝜏, respectively.  

𝜃̈ + 2𝜀𝛽⏟ 𝜃̇
(1,1)

+ ( 1⏟
(1,0)

− 𝜀𝑞𝜔2⏟  
(1,1)

cos ( ω⏟
(1,0)

𝑇0))𝜃 + 𝜀𝛾⏟
(1,1)

𝜃3 = 0 
(1) 

 

𝜃 (𝜏, 𝜀) = 𝜃0⏟
(2,0)

+ 𝜀𝜃1⏟
(2,1)

+ 𝑂(𝜀2) (2) 

 

Then the first and second derivatives up to first-order perturbation are given and encoded in (3) 

and (4), respectively (noting that the D-Operator notation is used to define the partial 

derivatives: 𝐷𝑖 = 𝜕 𝜕𝑇𝑖⁄ ).  

𝑑

𝑑𝑡
=  𝐷0⏟

(3,0)

+ 𝜀𝐷1⏟
(3,1)

+ 𝑂(𝜀2) 
(3) 

𝑑2

𝑑𝑡2
= 𝐷0

2⏟
(4,0)

+ 2𝜀𝐷0𝐷1⏟    
(4,1)

+ 𝑂(ε2) 
(4) 

 

Equation (5) defines the cubic form of the generalised coordinate 𝜃 based on the perturbation 

expansion up to the first order of 𝜀. Since the cubic form now appears in explicit-form the 

equation number is added as the third digit of the encoding. The encoding vector for this term 

is shown as (2,0,5). This information can help the user to identify the source of each quantity, 

and the stage that the quantity is explicitly defined as: 

𝜃3 = 𝜃0
3⏟

(2,0,5)

+ 𝑂(𝜀). 
(5) 

The next step is to substitute equations (2), (3), (4), and (5) into equation (1), and then  the 

higher order terms can be removed, resulting in: 
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𝐷0
2⏟

(4,0)

𝜃0⏟
(2,0)

+ 𝜀⏟
(2,1)

𝐷0
2⏟

(4,0)

𝜃1⏟
(2,1)

+ 2𝜀𝐷0𝐷1⏟    
(4,1)

𝜃0⏟
(2,0)

+2𝜀𝛽⏟
(1,1)

𝐷0⏟
(3,0)

𝜃0⏟
(2,0)

+ 𝜃0⏟
(2,0)

+ 𝜀⏟
(2,1)

𝜃1⏟
(2,1)

− 𝜀𝑞𝜔2⏟  
(1,1)

𝜃0⏟
(2,0)

cos ( ω⏟
(1,0)

𝑇0) + 𝜀𝛾⏟
(1,1)

𝜃0
3⏟

(2,0)

= 0 
(6) 

The SEEM created a considerable amount of information in this early stage. For example, it is 

possible to distinguish between 𝜀⏟
(1,1)

, that is introduced in the modelling stage and 𝜀⏟
(2,1)

 which is 

introduced in the solution procedure, both 𝜀s are small but not necessarily equal. 

Perturbation equations 

The zeroth-order perturbation equation (7) is obtained by taking the terms of order 𝜀0 out from 

equation (6) and then setting them to zero. The same action is taken for all terms to 𝜀1 in order 

to structure the first-order perturbation equation (8). From this conventional step, the two 

necessary perturbation equations can be constructed. When taking the right-hand side (RHS) of 

equation (8), it can be seen that this is the first time in the analysis that the SEEM encoding 

method prevents the cancellation of divisor terms; this is because the origins of terms are 

different and so in the SEEM context they are definitionally different. Also, there is no sign of 

equation number (8) within the encoding vectors, as no particular modification has yet been 

carried out at that point. 

D0
2⏟

(4,0)

𝜃0⏟
(2,0)

+ 𝜃0⏟
(2,0)

= 0 
(7) 

𝐷0
2⏟

(4,0)

𝜃1⏟
(2,1)

+ 𝜃1⏟
(2,1)

= −

𝜀⏟
(4,1)

𝜀⏟
(2,1)

2𝐷0𝐷1⏟  
(4,1)

𝜃0⏟
(2,0)

−

𝜀⏟
(1,1)

𝜀⏟
(2,1)

2𝛽⏟
(1,1)

𝐷0⏟
(3,0)

θ0⏟
(2,0)

+

𝜀⏟
(1,1)

𝜀⏟
(2,1)

𝛾⏟
(1,1)

𝜃0
3⏟

(2,0,5)

+

𝜀⏟
(1,1)

𝜀⏟
(2,1)

𝑞𝜔2⏟
(1,1)

𝜃0⏟
(2,0)

cos ( ω⏟
(1,0)

𝑇0) 

(8) 

The general harmonic solution for the zeroth-order perturbation equation is routinely obtained 

and is shown in equation (9) in exponential form, in keeping with the usually accepted notational 

formalities of the method. In this equation 𝐴 is an as-yet arbitrary and complex function of the 

slow time scale 𝑇1, and 𝐴̅ represents its complex conjugate. The third encoding digit is added to 

the encoding vectors of all the quantities on the RHS, as 𝜃0 is defined explicitly in this equation. 

The origin of complex amplitude 𝐴 origin is referred back to equation (2) because it physically 

relates to the 𝜃0⏟
(2,0)

 in equation (7).  
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𝜃0⏟
(2,0)

 = 𝐴⏟
(2,0,9)

𝑒⏟
(9,0)

𝑖⏟
(9,0)

𝑇0

+ 𝐴̅⏟
(2,0,9)

𝑒⏟
(9,0)

−𝑖⏟
(9,0)

𝑇0

 
(9) 

Then the solution of the zeroth-order perturbation equation is substituted into the cubic form 

of 𝜃0, resulting: 

𝜃0
3 = 𝐴3⏟

(2,0,9,10)

𝑒⏟
(9,0)

𝑖⏟
(9,0)

3⏟
(1,0,10)

𝑇0

+ 𝐴̅3⏟
(2,0,9,10)

𝑒⏟
(9,0)

−𝑖⏟
(9,0)

3
(1,0,10)

𝑇0

+ 3⏟
(10,0)

𝐴2⏟
(2,0,9,10)

𝐴̅⏟
(2,0,9,10)

𝑒⏟
(9,0)

𝑖⏟
(9,0)

𝑇0

+ 3⏟
(10,0)

𝐴⏟
(2,0,9,10)

𝐴̅2⏟
(2,0,9,10)

𝑒⏟
(9,0)

−𝑖⏟
(9,0)

𝑇0

 

(10)  

Equation (10) is an example of how the logic behind the SEEM starts to become complicated. If 

one looks closely it can be seen that there are two types of number 3, with the same numerical 

value but dissimilar encoding sources. The first one is the number 3 within the index of the 

exponential function, and the encoding refers it back to equation (1). The second one is the 

number 3 in the 3𝐴2𝐴̅𝑒𝑖𝑇0 and  3𝐴𝐴̅2𝑒−𝑖𝑇0 terms, which are defined because of the algebraic 

procedure in this equation structure, (𝑥 + 𝑦)3 = 𝑥3 + 3𝑥2𝑦 + 3𝑥𝑦2 + 𝑦3. Applying the SEEM 

to this equation has clearly addressed the origin of each quantity to its physical source.  

The third level of the SEEM is used for the first time in this analysis. The encodings of 𝐴 and 𝐴̅ 

are defined as (2,0,9,10), which clearly shows that the origin of this zeroth-order term is 

equation (2), that it has appeared in an explicit equation structure in equation (9) and finally 

that its structure has been modified in equation (10).  

Then the exponential form of the harmonic function within the external excitation term in 

equation (1) is given as: 

cos(ω𝑇0) =
1

2⏟
(1,0,11)

( 𝑒⏟
(1,0,11)

𝑖⏟
(1,0,11)

ω⏟
(1,0,11)

𝑇0

+ 𝑒⏟
(1,0,11)

−𝑖⏟
(1,0,11)

ω⏟
(1,0,11)

𝑇0

) 
(11)  

The solution of the zeroth-order perturbation equation (9) and the cubic form of  𝜃0  (5)  are 

substituted into the first order perturbation equation (8), and the result is shown in equation 

(12).  
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𝐷0
2⏟

(4,0)

𝜃1⏟
(2,1)

+ 𝜃1⏟
(2,1)

= − 2⏟
(4,1)

𝜀⏟
(4,1)

𝜀⏟
(2,1)

𝐷1⏟
(4,1)

𝐴⏟
(2,0,9)

 𝑖⏟
(9,0)

𝑒⏟
(9,0)

𝑖⏟
(9,0)

𝑇0

− 2⏟
(4,1)

𝜀⏟
(4,1)

𝜀⏟
(2,1)

𝐷1⏟
(4,1)

𝐴̅⏟
(2,0,9)

−𝑖⏟
(9,0)

𝑒⏟
(9,0)

−𝑖⏟
(9,0)

𝑇0

− 2⏟
(1,1)

𝜀⏟
(1,1)

𝜀⏟
(2,1)

𝛽⏟
(1,1)

𝐴⏟
(2,0,9)

 𝑖⏟
(9,0)

𝑒⏟
(9,0)

𝑖⏟
(9,0)

𝑇0

− 2⏟
(1,1)

𝜀⏟
(1,1)

𝜀⏟
(2,1)

𝛽⏟
(1,1)

𝐴̅⏟
(2,0,9)

−𝑖⏟
(9,0)

𝑒⏟
(9,0)

−𝑖⏟
(9,0)

𝑇0

−

𝜀⏟
(1,1)

𝜀⏟
(2,1)

𝛾⏟
(1,1)

𝐴3⏟
(2,0,9,10)

𝑒⏟
(9,0)

𝑖⏟
(9,0)

3⏟
(1,0,10)

𝑇0

−

𝜀⏟
(1,1)

𝜀⏟
(2,1)

𝛾⏟
(1,1)

𝐴̅3⏟
(2,0,9,10)

𝑒⏟
(9,0)

−𝑖⏟
(9,0)

3
(1,0,10)

𝑇0

−

𝜀⏟
(1,1)

𝜀⏟
(2,1)

𝛾⏟
(1,1)

3⏟
(10,0)

𝐴2⏟
(2,0,9,10)

𝐴̅⏟
(2,0,9,10)

𝑒⏟
(9,0)

𝑖⏟
(9,0)

𝑇0

−

ε⏟
(1,1)

𝜀⏟
(2,1)

𝛾⏟
(1,1)

3⏟
(10,0)

𝐴⏟
(2,0,9,10)

𝐴̅2⏟
(2,0,9,10)

𝑒⏟
(9,0)

−𝑖⏟
(9,0)

𝑇0

+ 

𝜀⏟
(1,1)

𝜀⏟
(2,1)

𝑞𝜔2⏟
(1,1)

  
1

2⏟
(1,0,11)

𝐴⏟
(2,0,9)

𝑒⏟
(∗,12)

𝑖⏟
(∗,12)

( ω
(1,0,11)

+ 1⏟
(9,0)

)𝑇0

+

𝜀⏟
(1,1)

𝜀⏟
(2,1)

𝑞𝜔2⏟
(1,1)

  
1

2⏟
(1,0,11)

𝐴⏟
(2,0,9)

𝑒⏟
(∗,12)

−𝑖⏟
(∗,12)

( ω
(1,0,11)

+ −1⏟
(9,0)

)𝑇0

+ 

𝜀⏟
(1,1)

𝜀⏟
(2,1)

𝑞𝜔2⏟
(1,1)

  
1

2⏟
(1,0,11)

𝐴̅⏟
(2,0,9)

𝑒⏟
(∗,12)

−𝑖⏟
(∗,12)

( ω
(1,0,11)

+ 1⏟
(9,0)

)𝑇0

+

𝜀⏟
(1,1)

𝜀⏟
(2,1)

𝑞𝜔2⏟
(1,1)

  
1

2⏟
(1,0,11)

𝐴̅⏟
(2,0,9)

𝑒⏟
(∗,12)

𝑖⏟
(∗,12)

( ω
(1,0,11)

+ −1⏟
(9,0)

)𝑇0

 

(12)  
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The information added by implementation of the SEEM has created a large amount of new 

structure to each term. From this process, it is now possible to track each quantity to its origin 

and precisely identify stages at which the quantities have been modified.  

The cancellation of small parameter ‘epsilon divisor terms’ in this equation is avoided because 

of the differences emergent within the encoding information. In a standard multiple scales 

analysis, there is no difference between the small parameter 𝜀⏟
(1,1)

which is introduced in the 

equation of the motion and the small parameter 𝜀⏟
(2,1)

 introduced within the perturbation 

expansion, as so as the results they would usually be cancelled out. The small parameter 

‘epsilon’ is originally defined as arbitrarily small, but it doesn’t necessarily mean that it is always 

equal to a unique small numerical value. Therefore, 

𝜀⏟
(1,1)

𝜀⏟
(2,1)

 in this equation is not definitionally 

equal to 1. However, there can be exceptions to this, and one case in point is where it is clear 

that the numerical value of the 𝜀⏟
(2,1)

which is introduced within the perturbation expansion is 

equal to the 𝜀⏟
(4,1)

because they both are introduced into the analysis based on the perturbation 

expansion, but in different equations. However, cancellation is still avoided so as to retain as 

much information as possible. 

The SEEM signifies the distinctions between the values of 2⏟
(1,1)

 , 2⏟
(4,1)

, and 2⏟
(1,0,11)

which are, 

respectively, related directly to the damping term, the second derivative definition after 

introducing the perturbation expansion, and the exponential form of the external excitation 

term. 

Moreover, the application of the compound level of the SEEM is used in this equation for the 

first time. For example, 𝑒⏟
(∗,12)

𝑖⏟
(∗,12)

( ω
(1,0,11)

+ 1⏟
(9,0)

)𝑇0

 means 𝑒⏟
(9,0)

𝑖⏟
(9,0)

𝑇0

is subsumed into 

𝑒⏟
(1,0,11)

𝑖⏟
(1,0,11)

ω⏟
(1,0,11)

𝑇0

 at equation (12) for the first time (therefore showing up as an operation 

defined by *). At a result, applying the compound level of the SEEM helps to simplify the 

structure of the equation, without losing any fundamental encoding information. 
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Solvability conditions 

The perturbation expansion in the multiple scales method must be uniformly valid, therefore, 

𝜃0 must always be bigger than 𝜃1. Terms that cause 𝜃1 to grow too large too quickly, and 

therefore which could threaten this uniformity, are called secular terms. Terms containing the 

natural frequency of the homogenous system are resonant and so when they appear in the 

exponents of the complex frequencies their sum must be zero in order to ensure that a valid 

perturbation expansion is maintained. In this case, the natural frequency of the homogeneous 

system is equal to one, therefore, terms containing 𝑒⏟
(9,0)

𝑖⏟
(9,0)

𝑇0

 are removed and set to zero. We 

note that at each level of perturbation the method requires that secular terms are routinely 

processed off-line in order to obtain information about amplitude and phase at that level of 

perturbation.   

There are some terms in equation (12) that can be resonant depending on the value of ω, which 

is used here to represent the external excitation frequency. If ω is set to the numerical value of 

2,  

𝜀⏟
(1,1)

𝜀⏟
(2,1)

𝑞𝜔2⏟
(1,1)

  
1

2⏟
(1,0,11)

𝐴̅⏟
(2,0,9)

𝑒⏟
(∗,12)

𝑖⏟
(∗,12)

( ω
(1,0,11)

+ −1⏟
(9,0)

)𝑇0

 and its complex conjugate are then considered 

to be secular.  

As a results the principal parametric resonance condition is shown in equation (13). The near-

resonance condition is accommodated when a system is excited near to a resonance condition 

such as this. To formulate the near-resonance condition of (14), the detuning parameter (which 

offers a small latitude around the resonant point) is add to equation (13) as shown.  

ω = 2⏟
(13,0)

 
(13)  

ω = 2⏟
(13,0)

+ 𝜀⏟ 
(14,1)

𝜎⏟
(14,1)

 
(14)  

Near-resonance case 

For determining the near-resonance solution, equation (14) must be substituted into first order 

perturbation equation (12). In a standard multiple scale analysis, all the ‘epsilons’ are equal and 

therefore, whenever it is required, the ‘epsilons’ can be replaced with the definition of the 

perturbation parameter, equation (15).  However, according to the SEEM concept, the ‘epsilons’ 

in an analysis are not necessarily equal and they must not cancel out. These two statements lead 

to an interesting observation, which is summarised below:  
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By considering 𝑒⏟
(∗,12)

𝑖⏟
(∗,12)

( ω
(1,0,11)

+ −1⏟
(9,0)

)𝑇0

 and then applying  the near-resonance condition clearly 

leads to 𝑒⏟
(∗,12)

𝑖⏟
(∗,12)

( 2⏟
(13,0)

+ 𝜀⏟ 
(14,1)

𝜎⏟
(14,1)

+ −1⏟
(9,0)

)𝑇0

. In order to guarantee a valid solution, 𝜀⏟ 
(14,1)

must be 

equal to 𝑇1 𝑇0⁄ , resulting in 𝑒⏟
(∗,12)

𝑖⏟
(∗,12)

( 2⏟
(13,0)

𝑇0+ 𝜎⏟
(14,1)

𝑇1+ −1⏟
(9,0)

𝑇0)

. This provides evidence to show that 

the small parameter in the detuning parameter ( 𝜀⏟ 
(14,1)

) must be equal to the perturbation 

expansion ( 𝜀⏟
(2,1)

), so it can remove the explicit presence of 𝑇0 in the index of the exponential 

function.  

This leads to a noteworthy observation that even in the standard multiple scales method the 

‘epsilons’ should not really be considered to be identical, and it is shown that by using the SEEM 

carefully in this way distinctions between ‘epsilons’ can be made, and then all ‘epsilons’ should 

be retained when it is useful to do so, but not at other times. 

𝜀⏟
(2,1)

= 𝑇1 𝑇0⁄  
(15)  

The first order perturbation equation for the near-resonant case is provided in equation (16). As 

the analysis progresses the encoding information in each term becomes more diverse. In the 

initial stages of the analysis most of the terms had almost the same origin and order.  In a 

standard multiple scales method, without applying the SEEM, it is virtually impossible for the 

user to identify the source of each quantity, for example those quantities within 𝐴𝑒(3𝑇0+𝜎𝑇1) 

which appears in equation (16).  Applying the SEEM method has restructured that term to 

𝐴⏟
(2,0,9)

𝑒⏟
(#,16)

𝑖⏟
(#,16)

( 2⏟
(13,0)

𝑇0+ 𝜎⏟
(14,1)

𝑇1+ 1⏟
(9,0)

𝑇0)

.  𝐴 is the complex amplitude of the zeroth-order 

perturbation part of the response and it is shown in this form in equation (9). The # within the 

encodings of 𝑒 and 𝑖, are showing that the index is simplified for the second time.  The 

summation of 2⏟
(13,0)

𝑇0 + 1⏟
(9,0)

𝑇0  in the index shows how the external excitation relates to the 

homogeneous natural frequency. Without the SEEM method this summation was simply equal 

to 3, a nondimensionalised frequency in the form of a numerical number without any particular 

physical definition. 
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𝐷0
2⏟

(4,0)

𝜃1⏟
(2,1)

+ 𝜃1⏟
(2,1)

= − 2⏟
(4,1)

𝜀⏟
(4,1)

𝜀⏟
(2,1)

𝐷1⏟
(4,1)

𝐴⏟
(2,0,9)

 𝑖⏟
(9,0)

𝑒⏟
(9,0)

𝑖⏟
(9,0)

𝑇0

− 2⏟
(4,1)

𝜀⏟
(4,1)

𝜀⏟
(2,1)

𝐷1⏟
(4,1)

𝐴̅⏟
(2,0,9)

−𝑖⏟
(9,0)

𝑒⏟
(9,0)

−𝑖⏟
(9,0)

𝑇0

− 2⏟
(1,1)

𝜀⏟
(1,1)

𝜀⏟
(2,1)

𝛽⏟
(1,1)

𝐴⏟
(2,0,9)

 𝑖⏟
(9,0)

𝑒⏟
(9,0)

𝑖⏟
(9,0)

𝑇0

− 2⏟
(1,1)

𝜀⏟
(1,1)

𝜀⏟
(2,1)

𝛽⏟
(1,1)

𝐴̅⏟
(2,0,9)

−𝑖⏟
(9,0)

𝑒⏟
(9,0)

−𝑖⏟
(9,0)

𝑇0

−

𝜀⏟
(1,1)

𝜀⏟
(2,1)

𝛾⏟
(1,1)

𝐴3⏟
(2,0,9,10)

𝑒⏟
(9,0)

𝑖⏟
(9,0)

3⏟
(1,0,10)

𝑇0

−

𝜀⏟
(1,1)

𝜀⏟
(2,1)

𝛾⏟
(1,1)

𝐴̅3⏟
(2,0,9,10)

𝑒⏟
(9,0)

−𝑖⏟
(9,0)

3
(1,0,10)

𝑇0

−

𝜀⏟
(1,1)

𝜀⏟
(2,1)

𝛾⏟
(1,1)

3⏟
(10,0)

𝐴2⏟
(2,0,9,10)

𝐴̅⏟
(2,0,9,10)

𝑒⏟
(9,0)

𝑖⏟
(9,0)

𝑇0

−

𝜀⏟
(1,1)

𝜀⏟
(2,1)

𝛾⏟
(1,1)

3⏟
(10,0)

𝐴⏟
(2,0,9,10)

𝐴̅2⏟
(2,0,9,10)

𝑒⏟
(9,0)

−𝑖⏟
(9,0)

𝑇0

+ 

𝜀⏟
(1,1)

𝜀⏟
(2,1)

𝑞𝜔2⏟
(1,1)

  
1

2⏟
(1,0,11)

𝐴⏟
(2,0,9)

𝑒⏟
(#,16)

𝑖⏟
(#,16)

( 2⏟
(13,0)

𝑇0+ 𝜎⏟
(14,1)

𝑇1+ 1⏟
(9,0)

𝑇0)

+

𝜀⏟
(1,1)

𝜀⏟
(2,1)

𝑞𝜔2⏟
(1,1)

  
1

2⏟
(1,0,11)

𝐴⏟
(2,0,9)

𝑒⏟
(#,16)

−𝑖⏟
(#,16)

( 2⏟
(13,0)

𝑇0+ 𝜎⏟
(14,1)

𝑇1+ −1⏟ 𝑇0
(9,0)

)

+ 

𝜀⏟
(1,1)

𝜀⏟
(2,1)

𝑞𝜔2⏟
(1,1)

  
1

2⏟
(1,0,11)

𝐴̅⏟
(2,0,9)

𝑒⏟
(#,16)

−𝑖⏟
(#,16)

( 2⏟
(13,0)

𝑇0+ 𝜎⏟
(14,1)

𝑇1+ 1⏟
(9,0)

𝑇0)

+

𝜀⏟
(1,1)

𝜀⏟
(2,1)

𝑞𝜔2⏟
(1,1)

  
1

2⏟
(1,0,11)

𝐴̅⏟
(2,0,9)

𝑒⏟
(#,16)

𝑖⏟
(#,16)

( 2⏟
(13,0)

𝑇0+ 𝜎⏟
(14,1)

𝑇1+ −1⏟
(9,0)

𝑇0)

 

(16)  

 

The next step is to select the secular terms from equation (16) and define the solvability 

conditions. This is done by taking out the terms containing  𝑒𝑖𝑇0 out and setting them to zero, 

leading to the solvability condition, as given in equation (17). Having secular terms in the 

equation makes the first order perturbation grow to quickly and make the perturbation 

expansion invalid as 𝜃1 ≫ 𝜃0. 
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− 2⏟
(4,1)

𝜀⏟
(4,1)

𝜀⏟
(2,1)

𝐷1⏟
(4,1)

𝐴⏟
(2,0,9)

 𝑖⏟
(9,0)

− 2⏟
(1,1)

𝜀⏟
(1,1)

𝜀⏟
(2,1)

𝛽⏟
(1,1)

𝐴⏟
(2,0,9)

 𝑖⏟
(9,0)

−

𝜀⏟
(1,1)

𝜀⏟
(2,1)

𝛾⏟
(1,1)

3⏟
(10,0)

𝐴2⏟
(2,0,9,10)

𝐴̅⏟
(2,0,9,10)

+

𝜀⏟
(1,1)

𝜀⏟
(2,1)

𝑞𝜔2⏟
(1,1)

  
1

2⏟
(1,0,11)

𝐴̅⏟
(2,0,9)

𝑒⏟
($,16)

𝑖⏟
($,16)

( 2⏟
(13,0)

𝑇0+ 𝜎⏟
(14,1)

𝑇1+ −2⏟
(9,0)

𝑇0)

= 0 

(17)  

The SEEM has made it simple for the user to detect the changes from the last stage quickly. The 

$ character in the encoding index of the last term shows that this term has been simplified for 

the third time, by dividing the whole term by 𝑒𝑖𝑇0. Also, there are three different number 2s in 

this equation; 2⏟
(1,0,11)

relates to the external excitation frequency, 2⏟
(13,0)

is the nondimensionalised 

principal parametric resonance frequency, and  2⏟
(9,0)

relates to the nondimensionalised system 

natural frequency. 

In this initial proposal for the SEEM most cancellations and simplifications must be avoided. In 

order to follow this requirement dividing the LHS of equation (17) by  𝑒𝑖𝑇0 obviously results in a 

very complex equation form (3.10). However, in cases where the encodings are exactly the same 

in divisor terms it is then advantageous to perform the cancellation and simplify the expression, 

as nothing is necessarily lost.  
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− 2⏟
(4,1)

𝜀⏟
(4,1)

𝜀⏟
(2,1)

𝐷1⏟
(4,1)

𝐴⏟
(2,0,9)

 𝑖⏟
(9,0)

𝑒⏟
(9,0)

𝑖⏟
(9,0)

𝑇0

𝑒⏟
(17,0)

𝑖⏟
(17,0)

𝑇0

− 2⏟
(1,1)

𝜀⏟
(1,1)

𝜀⏟
(2,1)

𝛽⏟
(1,1)

𝐴⏟
(2,0,9)

 𝑖⏟
(9,0)

𝑒⏟
(9,0)

𝑖⏟
(9,0)

𝑇0
𝑒⏟
(9,0)

𝑖⏟
(9,0)

𝑇0

𝑒⏟
(17,0)

𝑖⏟
(17,0)

𝑇0

−

𝜀⏟
(1,1)

𝜀⏟
(2,1)

𝛾⏟
(1,1)

3⏟
(10,0)

𝐴2⏟
(2,0,9,10)

𝐴̅⏟
(2,0,9,10)

𝑒⏟
(9,0)

𝑖⏟
(9,0)

𝑇0
𝑒⏟
(9,0)

𝑖⏟
(9,0)

𝑇0

𝑒⏟
(17,0)

𝑖⏟
(17,0)

𝑇0

+

𝜀⏟
(1,1)

𝜀⏟
(2,1)

𝑞𝜔2⏟
(1,1)

  
1

2⏟
(1,0,11)

𝐴̅⏟
(2,0,9)

𝑒⏟
($,16)

𝑖⏟
($,16)

( 2⏟
(13,0)

𝑇0+ 𝜎⏟
(14,1)

𝑇1+ −1⏟
(9,0)

𝑇0 −1⏟
(17,0)

𝑇0)

= 0 

(3.10)  

Removing the secular terms and their complex conjugates, yields equation (18): 

𝐷0
2⏟

(4,0)

𝜃1⏟
(2,1)

+ 𝜃1⏟
(2,1)

= −

𝜀⏟
(1,1)

𝜀⏟
(2,1)

𝛾⏟
(1,1)

𝐴3⏟
(2,0,9,10)

𝑒⏟
(9,0)

𝑖⏟
(9,0)

3⏟
(1,0,10)

𝑇0

−

𝜀⏟
(1,1)

𝜀⏟
(2,1)

𝛾⏟
(1,1)

𝐴̅3⏟
(2,0,9,10)

𝑒⏟
(9,0)

−𝑖⏟
(9,0)

3
(1,0,10)

𝑇0

+ 

𝜀⏟
(1,1)

𝜀⏟
(2,1)

𝑞𝜔2⏟
(1,1)

  
1

2⏟
(1,0,11)

𝐴⏟
(2,0,9)

𝑒⏟
(#,16)

𝑖⏟
(#,16)

( 2⏟
(13,0)

𝑇0+ 𝜎⏟
(14,1)

𝑇1+ 1⏟
(9,0)

𝑇0)

+ 

𝜀⏟
(1,1)

𝜀⏟
(2,1)

𝑞𝜔2⏟
(1,1)

  
1

2⏟
(1,0,11)

𝐴̅⏟
(2,0,9)

𝑒⏟
(#,16)

−𝑖⏟
(#,16)

( 2⏟
(13,0)

𝑇0+ 𝜎⏟
(14,1)

𝑇1+ 1⏟
(9,0)

𝑇0)

 

(18)  

The particular solution for this first order perturbation equation is given in equation (19). As 𝜃1 

is expressed explicitly in this equation, the third encoding element is added into the encoding 

vector for each quantity. 
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𝜃1⏟
(2,1)

= −

𝜀⏟
(1,1,19)

𝜀⏟
(2,1,19)

1

8⏟
(19,0)

𝛾⏟
(1,1,19)

𝐴3⏟
(2,0,9,10)

𝑒⏟
(9,0,10,19)

𝑖⏟
(9,0,10,19)

3⏟
(1,0,10,19)

𝑇0

−

𝜀⏟
(1,1,19)

𝜀⏟
(2,1,19)

1

8⏟
(19,0)

𝛾⏟
(1,1,19)

𝐴̅3⏟
(2,0,9,10)

𝑒⏟
(9,0,10,19)

−𝑖⏟
(9,0,10,19)

3⏟
(1,0,10,19)

𝑇0

+ 

𝜀⏟
(1,1,19)

𝜀⏟
(2,1,19)

𝑞𝜔2⏟
(1,1,19)

  
1

2⏟
(1,0,11,19)

1

8⏟
(19,0)

𝐴⏟
(2,0,9)

𝑒⏟
($,16)

𝑖⏟
($,16)

( 2⏟
(13,0,19)

𝑇0+ 𝜎⏟
(14,1,19)

𝑇1+ 1⏟
(9,0,19)

𝑇0)

+ 

𝜀⏟
(1,1,19)

𝜀⏟
(2,1,19)

𝑞𝜔2⏟
(1,1,19)

  
1

2⏟
(1,0,11,19)

1

8⏟
(19,0)

𝐴̅⏟
(2,0,9,19)

𝑒⏟
($,16)

−𝑖⏟
($,16)

( 2⏟
(13,0,19)

𝑇0+ 𝜎⏟
(14,1,19)

𝑇1+ 1⏟
(9,0,19)

𝑇0)

 

(19)  

𝐴[𝑇1] is expressed in the polar form in equation (20), 𝑎[𝑇1] and 𝜑[𝑇1] are the amplitude and the 

phase, respectively. As all the quantities are introduced in this equation, and the first level of 

the SEEM is applied. By that means the equation number and the order of the small parameter 

‘epsilon’ is added into the encoding vector. 

𝐴[𝑇1] =
1

2⏟
(20,0)

𝑎[𝑇1]⏟  
(20,0)

eⅈ𝜑[𝑇1]⏟  
(20,0)

 (20)  

Then equation (20) is substituted into the solvability condition (17) and multiplied by 𝑒−𝑖𝜑[𝑇1]⏟    
(20,0)

, 

resulting in: 

− 𝑖⏟
(9,0)

2⏟
(4,1)

2⏟
(20,0)

𝜀⏟
(4,1)

𝜀⏟
(2,1)

𝐷1⏟
(4,1)

𝑎[𝑇1]⏟  
(20,0)

 − 𝑖⏟
(9,0)

2⏟
(1,1)

2⏟
(20,0)

𝜀⏟
(1,1)

𝜀⏟
(2,1)

𝛽⏟
(1,1)

𝑎[𝑇1]⏟  
(20,0)

 −

3⏟
(10,0)

23⏟
(20,0)

𝜀⏟
(1,1)

𝜀⏟
(2,1)

𝛾⏟
(1,1)

𝑎[𝑇1]
3⏟  

(20,0)

+

𝜀⏟
(1,1)

𝜀⏟
(2,1)

1

2⏟
(1,0,11)

1

2⏟
(20,0)

𝑞𝜔2⏟
(1,1)

 𝑎[𝑇1]⏟  
(20,0)

 𝑒⏟
(£,21)

𝑖⏟
(£,21)

( 2⏟
(13,0)

𝑇0+ 𝜎⏟
(14,1)

𝑇1+ −2⏟
(9,0)

𝑇0− 2⏟
(21,0)

𝜑[𝑇1⏟
(20,0)

])

− 𝑖⏟
(9,0)

× 𝑖⏟
(21,0)

2⏟
(4,1)

2⏟
(20,0)

𝜀⏟
(4,1)

𝜀⏟
(2,1)

𝑎[𝑇1]⏟  
(20,0)

𝐷1⏟
(4,1)

𝜑[𝑇1]⏟  
(20,0)

 = 0 

(21)  
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By considering the large amount of encoding information that is generated in the exponential 

term 𝑒⏟
(£,21)

𝑖⏟
(£,21)

( 2⏟
(13,0)

𝑇0+ 𝜎⏟
(14,1)

𝑇1+ −2⏟
(9,0)

𝑇0− 2⏟
(21,0)

𝜑[𝑇1⏟
(20,0)

])

 , it can now been seen that this term is created 

from equations (9), (13), (14), (20), and (21). Also, the £ symbol within the encodings of the 

exponential term shows that this term has been simplified for the fourth time. 

Modulation equations 

To obtain the modulation equations, the imaginary and real parts of equation (21) are separated 

out and set to zero, resulting in equations (22) and (23). There is no evidence of equations (22) 

and (23) within the encodings, as no particular modification has been made at this stage. 

2⏟
(4,1)

2⏟
(20,0)

𝜀⏟
(4,1)

𝜀⏟
(2,1)

𝐷1⏟
(4,1)

𝑎[𝑇1]⏟  
(20,0)

+

2⏟
(1,1)

2⏟
(20,0)

𝜀⏟
(1,1)

𝜀⏟
(2,1)

𝛽⏟
(1,1)

𝑎[𝑇1]⏟  
(20,0)

 

+

𝜀⏟
(1,1)

𝜀⏟
(2,1)

1

2⏟
(1,0,11)

1

2⏟
(20,0)

𝑞𝜔2⏟
(1,1)

 𝑎[𝑇1]⏟  
(20,0)

 𝑠𝑖𝑛( 2⏟
(13,0)

𝑇0 + 𝜎⏟
(14,1)

𝑇1 + −2⏟
(9,0)

𝑇0

− 2⏟
(21,0)

𝜑[𝑇1⏟
(20,0)

])  = 0 

(22)  

−

3⏟
(10,0)

23⏟
(20,0)

𝜀⏟
(1,1)

𝜀⏟
(2,1)

𝛾⏟
(1,1)

𝛼[𝑇1]
3⏟  

(20,0)

+

𝜀⏟
(1,1)

𝜀⏟
(2,1)

1

2⏟
(1,0,11)

1

2⏟
(20,0)

𝑞𝜔2⏟
(1,1)

 𝑎[𝑇1]⏟  
(20,0)

 𝑐𝑜𝑠( 2⏟
(13,0)

𝑇0 + 𝜎⏟
(14,1)

𝑇1

+ −2⏟
(9,0)

𝑇0 − 2⏟
(21,0)

𝜑[𝑇1⏟
(20,0)

]) − 𝑖⏟
(9,0)

× 𝑖⏟
(21,0)

2⏟
(4,1)

2⏟
(20,0)

𝜀⏟
(4,1)

𝜀⏟
(2,1)

𝑎[𝑇1]⏟  
(20,0)

𝐷1⏟
(4,1)

𝜑[𝑇1]⏟  
(20,0)

 

= 0 

(23)  

So that it is possible to identify the stationary response of the system it is essential to be able to 

find conditions for which the amplitudes and the phases are constant with time. The notation 

of singular points is related to autonomous systems, therefore, 𝜓 as a new variable is introduced 

to eliminate 𝑇1. The encodings clearly address each quantity to its source. The third digit of 

encoding is added at this point to the encoding vector of quantities with just a second level of 

encoding. 
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𝜑[𝑇1⏟]
(20,0,24)

=

2⏟
(13,0,24)

2⏟
(21,0,24)

𝑇0 +

𝜎⏟
(14,1,24)

2⏟
(21,0,24)

𝑇1 +

−2⏟
(9,0,24)

2⏟
(21,0,24)

𝑇0 −

𝜓⏟
(24,0)

2⏟
(21,0,24)

 (24)  

The autonomous pair of modulation equations is obtained by substituting equation (24) into 

equations (22) and (23), resulting in: 

2⏟
(4,1)

2⏟
(20,0)

𝜀⏟
(4,1)

𝜀⏟
(2,1)

𝐷1⏟
(4,1)

𝑎[𝑇1]⏟  
(20,0)

+

2⏟
(1,1)

2⏟
(20,0)

𝜀⏟
(1,1)

𝜀⏟
(2,1)

𝛽⏟
(1,1)

𝑎[𝑇1]⏟  
(20,0)

 

+

𝜀⏟
(1,1)

𝜀⏟
(2,1)

1

2⏟
(1,0,11)

1

2⏟
(20,0)

𝑞𝜔2⏟
(1,1)

 𝑎[𝑇1]⏟  
(20,0)

 𝑠𝑖𝑛( 𝜓⏟
(24,0)

)  = 0 

(25)  

−

3⏟
(10,0)

23⏟
(20,0)

𝜀⏟
(1,1)

𝜀⏟
(2,1)

𝛾⏟
(1,1)

𝑎[𝑇1]
3⏟  

(20,0)

+

𝜀⏟
(1,1)

𝜀⏟
(2,1)

1

2⏟
(1,0,11)

1

2⏟
(20,0)

𝑞𝜔2⏟
(1,1)

 𝑎[𝑇1]⏟  
(20,0)

 𝑐𝑜𝑠( 𝜓⏟
(24,0)

)

− 𝑖⏟
(9,0)

× 𝑖⏟
(21,0)

2⏟
(4,1)

2⏟
(20,0)

𝜀⏟
(4,1)

𝜀⏟
(2,1)

𝑎[𝑇1]⏟  
(20,0)

(−

𝐷1⏟
(4,1)

ψ⏟
(24,0)

2⏟
(21,0,24)

+

𝜎⏟
(14,1)

2⏟
(21,0,24)

)  = 0 

(26)  

Furthermore, the multiplication in − 𝑖⏟
(9,0)

× 𝑖⏟
(21,0)

is avoided as the encodings information are not 

similar.  

The singular points can be calculated by stipulating the conditions that 𝐷1𝜓[𝑇1] = 𝐷1𝛼[𝑇1] =

0, physically meaning that 𝜓 and 𝛼 are not dependent on 𝑇1, and therefore virtually static. 

Applying these conditions to the modulation equations and dividing the LHS of the equation by 

𝛼[𝑇1], yields: 

2⏟
(1,1)

2⏟
(20,0)

𝜀⏟
(1,1)

𝜀⏟
(2,1)

𝛽⏟
(1,1)

 +

𝜀⏟
(1,1)

𝜀⏟
(2,1)

1

2⏟
(1,0,11)

1

2⏟
(20,0)

𝑞𝜔2⏟
(1,1)

  𝑠𝑖𝑛( 𝜓⏟
(24,0)

)  = 0 
(27)  

−

3⏟
(10,0)

23⏟
(20,0)

𝜀⏟
(1,1)

𝜀⏟
(2,1)

𝛾⏟
(1,1)

𝑎[𝑇1]
2⏟  

(20,0)

+

𝜀⏟
(1,1)

𝜀⏟
(2,1)

1

2⏟
(1,0,11)

1

2⏟
(20,0)

𝑞𝜔2⏟
(1,1)

  𝑐𝑜𝑠( 𝜓⏟
(24,0)

)

− 𝑖⏟
(9,0)

× 𝑖⏟
(21,0)

2⏟
(4,1)

2⏟
(20,0)

𝜀⏟
(4,1)

𝜀⏟
(2,1)

𝜎⏟
(14,1)

2⏟
(21,0)

= 0 

(28)  
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By considering equations (28) and (29) it is possible to note that most of the quantities would 

have been cancelled or multiplied out in a standard multiple scales analysis. Also, there is no 

evidence of equations (28) and (29) appearing here as no new quantity has been added at this 

point.  

There are two equations and two unknowns in using equations (28) and (29). Therefore, it is 

possible to calculate the explicit value of the amplitude (𝑎[𝑇1]) and autonomous form of phase 

(𝜓[𝑇1]). The first possibility is 𝑎[𝑇1] = 0, which means the pendulum is at rest. The second 

possibility is determined by solving equations (27) and (28), resulting in: 

𝑎2

=

𝜎⏟
(14,1,29)

22⏟
(21,0,29)

2⏟
(4,1,29)

𝜀⏟
(4,1,29)

3⏟
(10,0,29)

2⏟
(21,0,29)

𝛾⏟
(1,1,29)

𝜀⏟
(1,1,29)

+

22⏟
(21,0,29)

√
−22⏟
(1,1,29)

22⏟
(1,0,11)

𝛽2⏟
(1,1,29)

𝛾⏟2

(1,1,29)

𝜀⏟2

(2,1,29)

𝜀⏟2

(1,1,29)

+ 𝜔4⏟
(1,1,29)

𝑞2⏟
(1,1,29)

𝛾⏟2

(1,1,29)

𝜀⏟2

(1,1,29)

𝜀⏟2

(1,1,29)

3⏟
(10,0,29)

2⏟
(1,0,11)

𝛾⏟2

(1,1,29)

𝜀2⏟
(1,1,29)

 

 

 

(29) 

  

𝜓⏟
(24,0)

= 

Arctan[ 

−

2⏟
(1,1)

2⏟
(20,0)

𝜀⏟
(1,1)

𝜀⏟
(2,1)

𝛽⏟
(1,1)

 

3⏟
(10,0,30)

23⏟    
(20,0,30)

𝜀⏟
(1,1,30)

𝜀⏟
(2,1,30)

𝛾⏟
(1,1,30)

𝑎[𝑇1]
2⏟  

(20,0,30)

+ 𝑖⏟
(9,0,30)

× 𝑖⏟
(21,0,30)

2⏟
(4,1,30)

2⏟  
(20,0,30)

𝜀⏟
(4,1,30)

𝜀⏟
(2,1,30)

𝜎⏟
(14,1,30)

2⏟
(21,0,30)

] 

(30) 

 

The encoding information generated by SEEM is critical in these equations because it shows how 

the amplitude and phase of the response is connected to the physical source.  

The next step in the analysis is to construct the near-resonance solution. The zeroth-order 

perturbation solution based on 𝑎[𝑇1] and 𝜑[𝑇1] are given as follow:  



3.4 Parametric excitation of a pendulum  41 

 

𝜃0 =
1

2⏟
(20,0,31)

𝑎[𝑇1]⏟  
(20,0,31)

𝑒⏟
(∗,31)

𝑖⏟
(∗,31)

( 1
(9,0,31)

𝑇0+ 𝜑[𝑇1]
(20,0,31)

)

+
1

2⏟
(20,0,31)

𝑎[𝑇1]⏟  
(20,0,31)

𝑒⏟
(∗,31)

−𝑖⏟
(∗,31)

( 1
(9,0,31)

𝑇0+ 𝜑[𝑇1]
(20,0,31)

)

 

(31)  

This equation is structured from equations (9) and (20), and the third encoding digit is added at 

this stage. The compound level is used in this equation as well. The trigonometrical form of 

equation (31) is defined as: 

𝜃0 = 𝑎[𝑇1]⏟  
(20,0,31)

𝑐𝑜𝑠( 1
(9,0,31)

𝑇0 + 𝜑[𝑇1]
(20,0,31)

) 
(32)  

It is possible to notice that the encodings of the terms are not affected by this action. Then 

equation (24) is substituted into (32), resulting in: 

𝜃0 = 𝑎[𝑇1]⏟  
(20,0,31)

𝑐𝑜𝑠( 1
(9,0,31)

𝑇0 +

2⏟
(13,0)

2⏟
(21,0)

𝑇0 +

𝜎⏟
(14,1)

2⏟
(21,0)

𝑇1 +

−2⏟
(9,0)

2⏟
(21,0)

𝑇0 −

𝜓⏟
(24,0)

2⏟
(21,0)

) 
(33)  

The interactions between the first natural frequency of the system, the principal parametric 

resonance and the solvability condition can be seen here. The detuning parameter is defined as 

based on equation (14): 

𝜎⏟
(14,1)

=

ω⏟
(14,0,34)

𝜀⏟ 
(14,1,34)

−

2⏟
(13,0,34)

𝜀⏟ 
(14,1,34)

 
(34)  

Then the definitions of fast time, 𝑇0 = 𝜏, and slow time, 𝑇1 = 𝜀⏟
(2,1)

𝜏, and equation (34) are all 

substituted into equation (33). As mentioned before 𝜀⏟ 
(14,1)

must be equal to 𝜀⏟ 
(2,1)

. The zeroth-

order perturbation solution now emerges in the following form: 

𝜃0 = 𝑎[𝑇1]⏟  
(20,0,31)

cos [ 1
(9,0,31)

−

2⏟
(13,0,34)

2⏟
(21,0)

] 𝜏 +
1

2⏟
(21,0)

[( 2⏟
(13,0)

− 2⏟
(9,0)

+ ω⏟
(14,0,34)

)𝜏 + 𝜓⏟
(24,0)

] 
(35)  

It is possible to discuss the SEEM information in the argument of the trigonometric function as 

follows: 
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• The first natural frequency of the system ( 1
(9,0,31)

) is eliminated by the principal 

parametric response and the solvability condition −

2⏟
(13,0,34)

2⏟
(21,0)

. 

• In the second term the nondimensional frequencies 2⏟
(13,0)

− 2⏟
(9,0)

are mutually eliminated 

and only the 2⏟
(21,0)

generated by the solvability condition remains. 

• Without this SEEM-generated information the effect of the principal parametric 

resonance on this equation is not apparent, although it is shown here to exist. 

The solution of the first order perturbation is given based on 𝑎[𝑇1] and 𝜑[𝑇1]: 

𝜃1⏟
(2,1)

= −

𝜀⏟
(1,1,19)

𝜀⏟
(2,1,19)

1

23⏟
(20,0)

1

8⏟
(19,0)

𝛾⏟
(1,1,19)

𝑎[𝑇1]
3

⏟  
(20,0)

𝑒⏟
(∗,36)

3𝑖⏟
(∗,36)

( 1⏟
(1,0,10,19)

𝑇0+ 𝜑[𝑇1]⏟  
(20,0,36)

)

−

𝜀⏟
(1,1,19)

𝜀⏟
(2,1,19)

1

23⏟
(20,0)

1

8⏟
(19,0)

𝛾⏟
(1,1,19)

𝑎[𝑇1]
3

⏟  
(20,0)

𝑒⏟
(∗,36)

−3𝑖⏟
(∗,36)

( 1⏟
(1,0,10,19)

𝑇0)

+ 

𝜀⏟
(1,1,19)

𝜀⏟
(2,1,19)

𝑞𝜔2⏟
(1,1,19)

  
1

2⏟
(1,0,11,19)

1

8⏟
(19,0)

1

2⏟
(20,0)

𝑒⏟
(£,36)

𝑖⏟
(£,36)

( 2⏟
(13,0,19)

𝑇0+ 𝜎⏟
(14,1,19)

𝑇1+ 1⏟
(9,0,19)

𝑇0 + 𝜑[𝑇1]⏟  
(20,0,36)

)

+ 

𝜀⏟
(1,1,19)

𝜀⏟
(2,1,19)

𝑞𝜔2⏟
(1,1,19)

  
1

2⏟
(1,0,11,19)

1

8⏟
(19,0)

1

2⏟
(20,0)

𝑒⏟
(£,36)

−𝑖⏟
(£,36)

( 2⏟
(13,0,19)

𝑇0+ 𝜎⏟
(14,1,19)

𝑇1+ 1⏟
(9,0,19)

𝑇0 + 𝜑[𝑇1]⏟  
(20,0,36)

)

 

(36)  

 

The encoding information generated in this equation is essential for identifying the sources of 

the various elements, however they make the equation appear very complex indeed.  

Equation (37) is the trigonometrical form of the first order perturbation solution. Then the 

definitions for the fast time, 𝑇0 = 𝜏, and the slow time, 𝑇1 = 𝜀⏟
(2,1)

𝜏, and equation (34) are all 

substituted into equation (37), to lead to equation (38). 

 



3.4 Parametric excitation of a pendulum  43 

 

𝜃1⏟
(2,1)

= −

𝜀⏟
(1,1,19)

𝜀⏟
(2,1,19)

1

23⏟
(20,0)

1

8⏟
(19,0)

𝛾⏟
(1,1,19)

𝑎[𝑇1]
3⏟  

(20,0)

cos ( 3⏟
(1,0,10,19)

𝑇0 + 3 𝜑[𝑇1]⏟  
(20,0,36)

)

+  

𝜀⏟
(1,1,19)

𝜀⏟
(2,1,19)

𝑞𝜔2⏟
(1,1,19)

  
1

2⏟
(1,0,11,19)

1

8⏟
(19,0)

1

2⏟
(20,0)

cos ( 2⏟
(13,0,19)

𝑇0 + 𝜎⏟
(14,1,19)

𝑇1

+ 1⏟
(9,0,19)

𝑇0 + 𝜑[𝑇1]⏟  
(20,0,36)

) 

(37)  

𝜃1⏟
(2,1)

= −

𝜀⏟
(1,1,19)

𝜀⏟
(2,1,19)

1

23⏟
(20,0)

1

8⏟
(19,0)

𝛾⏟
(1,1,19)

𝑎[𝑇1]
3⏟  

(20,0)

cos ( 3⏟
(1,0,10,19)

𝜏

+

3⏟
(20,0,36)

2⏟
(21,0)

[( 2⏟
(13,0)

−2⏟
(9,0)

− 2⏟
(13,0,34)

ω⏟
(14,0,34)

)𝜏 − 𝜓⏟
(24,0)

])

+ 

𝜀⏟
(1,1,19)

𝜀⏟
(2,1,19)

𝑞𝜔2⏟
(1,1,19)

  
1

2⏟
(1,0,11,19)

1

8⏟
(19,0)

1

2⏟
(20,0)

cos [( 2⏟
(13,0,19)

+ 1⏟
(9,0,19)

+

2⏟
(13,0)

2⏟
(21,0)

−

2⏟
(9,0)

2⏟
(21,0)

 −

2⏟
(13,0,34)

2⏟
(21,0)

− 2⏟
(13,0,34)

)𝜏 + ( ω⏟
(14,0,34)

+

ω⏟
(14,0,34)

2⏟
(21,0)

)𝜏 + −

𝜓⏟
(24,0)

2⏟
(21,0)

] 

(38)  

 

Again, the interactions between the natural frequency, the principal parametric resonance and 

the solvability conditions are clearly visible in this equation. 

At the last stage of the analysis, the solutions of the both zeroth and first order perturbation 

equations are substituted into the perturbation expansion equation, resulting in equation (39). 

Considering the encodings information, 𝜀⏟
(2,1,19)

 in the denominator of the second term can be 

cancelled with 𝜀⏟
(2,1)

 , given that the first two encoding digits are the same.  
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𝜃 (𝜏, 𝜀) = 𝑎[𝑇1]⏟  
(20,0,31)

𝑐𝑜𝑠([ 1
(9,0,31)

−

2⏟
(13,0,34)

2⏟
(21,0)

] 𝜏 +
1

2⏟
(21,0)

[( 2⏟
(13,0)

− 2⏟
(9,0)

+ ω⏟
(14,0,34)

)𝜏 + 𝜓⏟
(24,0)

])

−

𝜀⏟
(2,1)

𝜀⏟
(1,1,19)

𝜀⏟
(2,1,19)

1

23⏟
(20,0)

1

8⏟
(19,0)

𝛾⏟
(1,1,19)

𝑎[𝑇1]
3⏟  

(20,0)

cos ( 3⏟
(1,0,10,19)

𝜏

+

3⏟
(20,0,36)

2⏟
(21,0)

[( 2⏟
(13,0)

−2⏟
(9,0)

− 2⏟
(13,0,34)

ω⏟
(14,0,34)

)𝜏 − 𝜓⏟
(24,0)

])

+ 

𝜀⏟
(2,1)

𝜀⏟
(1,1,19)

𝜀⏟
(2,1,19)

𝑞𝜔2⏟
(1,1,19)

  
1

2⏟
(1,0,11,19)

1

8⏟
(19,0)

1

2⏟
(20,0)

cos [( 2⏟
(13,0,19)

+ 1⏟
(9,0,19)

+

2⏟
(13,0)

2⏟
(21,0)

−

2⏟
(9,0)

2⏟
(21,0)

 −

2⏟
(13,0,34)

2⏟
(21,0)

− 2⏟
(13,0,34)

)𝜏 + ( ω⏟
(14,0,34)

+

ω⏟
(14,0,34)

2⏟
(21,0)

)𝜏 + −

𝜓⏟
(24,0)

2⏟
(21,0)

]

+ 𝑂(𝜀2) 

(39)  

 

It is possible to highlight the percentage of contribution of different equations in the solution 

procedure, in symbolically structuring the final response. This can be done by tracking the first 

digit of the SEEM for each encoding vector in the final response and compare it to the overall 

number of encoding vectors for the equation. Overall 45 encoding vectors for equation (39) are 

defined, and the percentage of contribution for each equation compared to the overall is given 

in Table 3-2. In this table, the first column describes the equation detail, the second column is 

the number of encoding vectors that are sourced to the relevant equation, and the last column 

shows the percentage of contribution of that specific equation number in the final response. For 

example considering the first row of the table, there are 6 quantities out of 45 that are 

addressed to equation (1), according to the first digit of the SEEM encoding. The contribution of 

equation of motion (1) in structuring the final response is roughly 13% (
6

45
× 100). 
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Table 3-2 The percentage of  contribution of each equation for the f inal solution  

Equations details 
Total number of 

quantities 

Percentage of 

contribution 

Equation of Motion (1) 6 13 

Perturbation expansion (2) 4 9 

Solution of the zeroth-order perturbation 

equation (9) 
5 11 

Principle parametric resonance (13) 8 18 

Near resonance condition (14) 4 9 

Solution for the first order perturbation 

equation (19) 
2 4 

Polar from of the complex amplitude A (20) 5 11 

Solvability condition (21) 8 18 

Autonomous form of phase (24) 3 7 

3.5 Summary  

In this chapter, the general concept of SCD solvers is introduced. SCD solvers currently consist 

of two main parts; a core solver and a term-tracker. In this study, symbolic computational code 

for the multiple scales method [7], with many modifications, is used to create the core solver. 

The SEEM is defined and introduced practically as a new term-tracking method and a summary 

of the underlying encoding strategy of the SEEM is provided in Table 3-1.  

The SEEM produces encoding information when a quantity is introduced to the analysis for the 

first time and also tracks how the information evolves during the solution procedure.  

For demonstrating and highlighting the distinctions of the SEEM, it is applied in full to the 

dynamic problem of a parametrically excited pendulum. The equation of motion for this 

problem is derived and the assumptions that are made in both the physical modelling and the 

solution procedure are highlighted. The results of this analysis are listed as follows: 

• The SEEM has created valuable information in each stage of the analysis, and the 

information can be used to identify the sources of each term and make a connection 

back to the physical conceptualisation of the problem. 

• There is a trade-off between flexibility and user interaction in the construction and 

operation of SCD solvers of this nature. 
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• The meaning of the encoding information is directly dependent on the solution 

procedure, and the way it is introduced mathematically. Therefore, all SEEM 

information must always be presented in close association with the chosen solution 

procedure.  

• In the early stages of the analysis the encoding information for all the quantities within 

an equation is reasonably similar in form and content. However, as the problem 

develops the SEEM-generated encoding information becomes much more complex. 

• The cancellation of parameters within the solution procedure that would naturally 

follow an efficient and elegant algebraic process is deliberately avoided within a SEEM 

approach; unless both the quantity and the two first encodings digits are identical. 

• The small parameter ‘epsilons’ that are introduced at different stages of the analysis do 

not necessarily have the same numerical value.  The exception to this is 𝜀⏟
(3,1)

 , 𝜀⏟
(4,1)

, and 

𝜀⏟
(2,1)

 which have different encoding information, but the same numerical value. This is 

because they are all sourced back to the perturbation expansion.  

• To ensure a uniformly valid perturbation expansion, the 𝜀⏟
(14,1)

in the detuning parameter 

must be numerically equal to 𝜀⏟
(2,1)

 . 

• Applying the SEEM to many of the numbers that emerge within the perturbation 

analysis helps to relate the physical concept to the mathematical equations. One 

example of this is highlighted in equation (16), where the principal parametric 

resonance and the first natural frequency of the system are seen to influence each 

other.   

 



 

 
 

Chapter 4  Computerisation of the 

Source Evolution and 

Encoding Method 

The general concept underpinning the Source Evolution and Encoding method (SEEM) is 

thoroughly discussed in the previous chapter. This chapter discusses the process of developing 

effective algorithms which can be used to computerise the SEEM concept. These algorithms are 

compatible with the structure of the associated Symbolic Computational Dynamics (SCD) solver. 

Flexibility and user control are two main guiding principles in the development of the SCD 

solvers; therefore in this study, great effort has been expended in satisfying these requirements. 

4.1 The core solver 

The perturbation method of multiple scales has been the preferred choice of solution used in 

this research, mainly because of its adaptability, transparency, and logical algorithmic structure.  

The core solver of the SCD in this study is based on a modified version of the multiple scales 

code as developed by Forehand and Cartmell [7]. In this research the powerful symbolic 

programming interface provided by the Mathematica language is used in depth but it should 

also be noted that it would potentially be perfectly possible to programme the algorithms in 

another symbolic computational language, as may be required. 

4.2 The general procedure for encoding application 

The policy of the SEEM is to collect information about the fundamental quantities in each 

equation therefore the encoding algorithm must be capable of decomposing each equation into 

expressions, terms, sub-terms, down to the fundamental individual quantities inside each sub-

term. A schematic view of this process, as applied to the equation of motion of a parametrically 

excited pendulum, is shown in Figure 4-1. In this figure the encoding algorithm must be able to 

identify the different function types, to decompose the sub-terms accurately. For example, the 
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trigonometrical function cos (ω𝑇0) is decomposed to ω; whilst the power function of ω2 is 

decomposed down to ω and 2. 

 

Figure 4-1 A graphical representation of the decomposition process  of an equation into the 

fundamental quantit ies.  

After the decomposition process has been completed the encoding information (constituting 

the encoding vectors) must be added into the equation structure. Considering Figure 4-2, the 

encoding information for each quantity is added in the form of a multiplier, 𝑋𝑛. As the encoding 

information for each fundamental quantity is unique, the index 𝑛 is used to define a single piece 

of encoding information which is represented for each quantity. Afterwards both the quantity 

and its encoding information are combined as an encoded sub-term. Then, the encoded sub-

terms are joined together to create encoded terms. Encoded terms are merged to give 

structured encoded expressions, and finally the encoded expressions are combined to create 

the encoded equation.  

 

Figure 4-2 A graphical representation of the combination process; encoded quantit ies into the 

encoded equation.  
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When taking the SEEM methodology into consideration the encoding information must be 

defined and updated at each step of the solution procedure. Therefore all the equations in the 

SCD solver must go through both the decomposition and combination process at least once. As 

the results of this these processes can then be combined to re-form as a new concept, which for 

convenience is called ‘the SEEM encoding cycle’. Figure 4-3 graphically represents ‘the SEEM 

encoding cycle’ in ten steps, these steps being summarised as follows: 

Step-1: The input equation, from the core solver, is decomposed into two expressions; the left-

hand side (LHS) and right-hand side (RHS). 

Step-2: The expressions are decomposed into terms. 

Step-3: The terms are disintegrated down to sub-terms. 

Step-4: The sub-terms are then decomposed into the original quantities. 

Step-5: The encoding vector for each quantity is defined or updated, and it is multiplied by the 

fundamental quantity. 

Step-6: The encoded quantities are combined to structure the encoded sub-terms. 

Step-7: The encoded sub-terms are multiplied together to form the encoded full terms. 

Step-8: The encoded terms are added together to form encoded expressions. 

Step-9: The encoded expressions are combined together appropriately to form an encoded 

equation. 

Step-10: The encoded equation is sent to the solution procedure, which might be re-encoded 

later, dependent on what is needed functionally. 
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Figure 4-3 A graphical  representation of ‘the SEEM encoding cycle’ .  

4.2.1 Computerisation of the encoding vector 

There are several principal challenges in computerisation of the SEEM, namely storing the 

encoding information in the equation structure in such a way that it does not have any influence 

on the mathematical solution procedures. Also, depending on the SEEM level, the encoding 

vectors should have the provision for variable length (§3.3). Furthermore the encoding function 

must be sophisticated enough to distinguish between different function types (§4.2). Despite 

the fact that encoding an unencoded equation can be achieved quite readily, updating the 

encoding information for previously encoded quantities can be a rather more demanding 

process.  

In order to be able to identify the SEEM-related information from the actual mathematical 

structure of the equation, a special format is required. In the Mathematica language everything 

is an expression of one form or another, and different type of expressions can be identified by 

their Head; for example, the Head of the number 2 in the Mathematica language is given by 

Integer. As well as the built-in Mathematica Heads (expression types) it possible to define a new 

class of Head to store and identify the SEEM information. As the results a new class of Head 

named ‘𝑒𝑛𝑣𝑒𝑐’ has been defined; where ‘𝑒𝑛𝑣𝑒𝑐’ is an abbreviation for encoding vector. 

Consequently the Computerised Encoding Vector (CEV) in the format of 

𝑒𝑛𝑣𝑒𝑐[𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟, 𝑛1, 𝑛2, 𝑛3, 𝑛4] is created; 𝑛1, 𝑛2, 𝑛3, 𝑛4 are the SEEM encoding 
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elements (Table 3-1), and 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 is defined in the next paragraph. To eliminate any 

possible interaction between the CEVs with the solution procedure, all elements inside the CEVs 

must be in either the string or number format.  

The identity factor is a string form of the input quantity and this element is introduced to assist 

the algorithm in identifying the correct CEV for a selected quantity. For example when 

considering an arbitrary encoded statement such as (4.1) the encoding information is converted 

to a CEV format in statement (4.2). During the mathematical procedure, the presentation of this 

statement can be altered into statement (4.3). In this situation it is impossible for the encoding 

algorithm to classify the correct encoding information for a selected quantity. As there is no 

indication of the input quantity inside the corresponding CEV, so the algorithm cannot identify 

the correct encoding information for a given input quantity. As the results, in statement (4.4) 

the identity factor is added as the first element in the CEV. This makes it possible for the 

algorithm to select the correct CEV for each quantity. Note that for the unavailable encoding 

digits “𝑛𝑎𝑛” is used, this is an abbreviation for ‘not a number’. The identity factor is added as 

the first element of the CEV, to keep the CEV flexible. Therefore, the CEV can be extended from 

the other side to store more information if this is required. 

2⏞

(5,0,10)

𝜀⏞
(1,1)

𝛽⏞

(1,1)

𝑙⏞

(1,1)

 (4.1)  

  

2𝑒𝑛𝑣𝑒𝑐[5,0,10, "𝑛𝑎𝑛"] × 𝜀𝑒𝑛𝑣𝑒𝑐[1,1, "𝑛𝑎𝑛", "𝑛𝑎𝑛"]
× 𝛽𝑒𝑛𝑣𝑒𝑐[1,1, "𝑛𝑎𝑛", "𝑛𝑎𝑛"] × 𝑙𝑒𝑛𝑣𝑒𝑐[1,1, "𝑛𝑎𝑛", "𝑛𝑎𝑛"] (4.2)  

 

2𝜀𝛽𝑙 × 𝑒𝑛𝑣𝑒𝑐[5,0,10, "𝑛𝑎𝑛"]𝑒𝑛𝑣𝑒𝑐[1,1, "𝑛𝑎𝑛", "𝑛𝑎𝑛"]𝑒𝑛𝑣𝑒𝑐[1,1, "𝑛𝑎𝑛", "𝑛𝑎𝑛"]
× 𝑒𝑛𝑣𝑒𝑐[1,1, "𝑛𝑎𝑛", "𝑛𝑎𝑛"] (4.3)  

  

2𝜀𝛽𝑙𝑒𝑛𝑣𝑒𝑐["ε", 1,1, "𝑛𝑎𝑛", "𝑛𝑎𝑛"]𝑒𝑛𝑣𝑒𝑐["l", 1,1, "𝑛𝑎𝑛", "𝑛𝑎𝑛"] 

𝑒𝑛𝑣𝑒𝑐["2", 5,0,10, "𝑛𝑎𝑛"]𝑒𝑛𝑣𝑒𝑐["𝛽", 1,1, "𝑛𝑎𝑛", "𝑛𝑎𝑛"] 
(4.4)  

4.3 The encoding algorithms 

Two main functions are developed as a basis for computerising the SEEM term-tracking method. 

These are defined by SEEMencoder and SEEMcore. The SEEMencoder is a user-end function 

which formats both the input and the output of the SEEMcore function. Moreover, the 

SEEMcore applies the SEEM cycle to the input equation and manages the CEVs.  
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4.3.1 The SEEMencoder function 

Considering  Algorithm 4-1, the inputs of this function are defined as;  𝑗, 𝑠, and 𝑘, where, 𝑗 is the 

input equation number, 𝑠 is the relevant side of the equation; so the LHS of the input equation 

is represented by 1, and RHS of the input equation is identified by 2. Finally, 𝑘 is the actual 

source of the equation, and 𝑘 and 𝑗 are unique for most cases. To demonstrate how these input 

values are defined, equation (10) in the analysis of the parametric excitation of a pendulum 

(§3.4) is considered. The user can decide to introduce a new equation for the polar form of the 

harmonic excitation introduced in equation (1). In this case the actual equation number that 

needs to be encoded is 10 (𝑗 = 10), while the true source of this equation is equation (1), (𝑘 =

1). 

cos(ω𝑇0) =
1

2⏟
(1,0,11)

( 𝑒⏟
(1,0,11)

𝑖⏟
(1,0,11)

ω⏟
(1,0,11)

𝑇0

+ 𝑒⏟
(1,0,11)

−𝑖⏟
(1,0,11)

ω⏟
(1,0,11)

𝑇0

) 
(10)  

 

The 𝑆𝐸𝐸𝑀𝑒𝑛𝑐𝑜𝑑𝑒𝑟 function disables the differentiation operators and passes both the LHS 

(Lines 2 to 15) and the RHS (lines 15 to 30) of the equation to the SEEMcore function. Then it 

takes the encoded expression as the output of the SEEMcore and activates the differentiation 

operators. Finally the encoded equation is structured and then sent back to the core solver.   
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Algorithm 4-1 The 𝑆𝐸𝐸𝑀𝑒𝑛𝑐𝑜𝑑𝑒𝑟 function algorithm. 

1:  Function SEEMencoder[j,s,k] 
2:  if j == LHS, 
3:  if LHS == Function, 
4:      if Function == expression, 
5:          Deactivate the function, out < -  SEEMcore[expression,i,j,k] 
6:      else 
7:          SEEMcore[term,j,s,k] 
8:      end 
9:  else 
10:     if LHS == expression, 
11:         out <- SEEMcore[expression,j,s,k] 
12:     else 
13:         out < -  SEEMcore[term,j,s,k] 
14:     end 
15: end 
16: else 
17:    if j == RHS, 
18:        if LHS == Function, 
19:            Deactivate the function, out <- SEEMcore[expression,j,s,k] 
20:        else 
21:            out < -  SEEMcore[expression,j,s,k] 
22:        end 
23:    else 
24:         if LHS == expression, 
25:             out < -  SEEMcore[expression,j,s,k] 
26:         else 
27:             out < -  SEEMcore[term,j,s,k] 
28:         end 
29:    end 
30: end 
31: Restore the differentiation operators in the output 
32: endFunction     

4.3.2 The SEEMcore function 

The SEEMcore is the main algorithm for defining or updating encoding information. This function 

has a complex structure; therefore it is explained in 14 separate algorithms. In the actual code 

these algorithms are all included in the main body of the SEEMcore function. As Algorithm 4-2 

shows, the inputs of this function are: an expression (LHS or RHS of the input equation), 𝑗, 𝑠, 𝑘., 

where 𝑗 is the input equation, 𝑠 is the relevant side of the equation, and 𝑘 is the actual source 

of the equation.  

This function extracts information from the input expression in several stages. At the first stage 

all relevant information from the input expression is extracted. The CEVs for each side of the 

equation are then stored separately (lines 2 and 3).  In the next step the value for the fourth 

digit of the CEV, 𝑛3 is defined (lines 4 to 10). When considering the SEEM second encoding level 

the equation number of an explicit form equation is added to all the CEVs in that equation. 

Consequently line 4 is used to check if the equation is defined in an explicit form or not; this 

means whether a single quantity appears on the LHS and there are no differentiation operators 

on either side of the equation. Although this condition is not necessarily mean that 𝑛3 must be 

updated. Considering line 5, if the input equation number is equal to the source equation 
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number (𝑗 = 𝑘), adding a third digit of encoding would be meaningless; as the encoding vectors 

would be of this form (40, 0, 40). If in an explicit equation the source and the input equation 

number are dissimilar (𝑗 ≠ 𝑘), then 𝑛3 is set to the input equation number (𝑗), otherwise, it is 

set to an empty cell, shown by “𝑛𝑎𝑛”.  

The CEVs are stored in the equation structure as multipliers; therefore having a numerical zero 

on either side of the equation can lead to information loss. Therefore the zero from the relevant 

side of the equation is temporarily removed (line 13). Afterwards all the CEVs from both sides 

of the equation are extracted and stored (line 14).  

Following on from this, the input expression is decomposed into its fundamental terms, and the 

CEVs for each term are extracted and stored in the 𝑖𝑛𝑑𝑒𝑥𝑡𝑟𝑚 directory. Then the actual 

symbolic form of the term, without the encodings, is saved in the 𝑡𝑟𝑚 directory. Table 4-1 shows 

the indextrm and trm directories, for an arbitrary term. After separating the terms and CEVs, the 

𝑛2 digit of the SEEM, this being the order of the small parameter ‘epsilon’, is determined. All the 

information that is generated in this stage is able to be reset for each term, and so nothing will 

actually be stored in the SEEMcore function. 

Table 4-1 An example of the indextrm  and trm  for an arbitrary term.  

In the next step each term is decomposed down to its fundamental sub-terms. Extracting the 

fundamental quantities from each sub-term is not a straightforward task. Each sub-term must 

be categorised in one of the 14 defined algorithms, note all these algorithms are placed inside 

the main SEEMcore function. After applying or updating the CEV for each fundamental quantity 

all the CEVs are multiplied by the corresponding 𝑡𝑟𝑚, and all the 𝑡𝑟𝑚 ∗ 𝐶𝐸𝑉 are added together 

to constitute the output (this being the encoded expression). 

 

  

Input term 
2𝜀𝛽𝑙𝑒𝑛𝑣𝑒𝑐["ε", 1,1, "𝑛𝑎𝑛", "𝑛𝑎𝑛"]𝑒𝑛𝑣𝑒𝑐["l", 1,1, "𝑛𝑎𝑛", "𝑛𝑎𝑛"] 

𝑒𝑛𝑣𝑒𝑐["2", 5,0,10, "𝑛𝑎𝑛"]𝑒𝑛𝑣𝑒𝑐["𝛽", 1,1, "𝑛𝑎𝑛", "𝑛𝑎𝑛"] 

indextrm 
[["ε", 1,1, "𝑛𝑎𝑛", "𝑛𝑎𝑛"], ["l", 1,1, "𝑛𝑎𝑛", "𝑛𝑎𝑛"], 

[2, 5,0,10,nan], [β, 1,1,nan,nan]] 

trm 2𝜀𝛽𝑙 
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Algorithm 4-2 The SEEMcore algor ithm.  

1:  Function SEEMcore[expression,j,s,k] 
2:  lhs <- remove encodings of LHS eqn(j); 
3:  rhs <- remove encodings of RHS eqn(j); 
4:  if eqn(j) == explicit, 
5:      if j == k, 
6:           fourthDig <- "nan" 
7:      else  
8:      fourthDig <- j 
9:      end 
10: else 
11:     fourthDig <- "nan" 
12: end 
13: Remove number zero from the RHS; 
14: indextotal <- Extract all the encodings from both side of eqn(j); 
15: for each term in the input expression 
16:     indextrm <- exraxt encodings for the term 
17:    trm <- remove encodings from the original terms 
18:    thirdDig <- epsilon oder 
19:    for each sub-term, 
20:        if subterm == Power function,  
21:             Check PowerFunction; 
22:         else 
23:             if subterm == Complex function, 
24:                Check ComplexFunction; 
25:            else 
26:                if  subterm == none zero integer, 
27:                    check InetegerFunction; 
28:                else 
29:                    if subterm == Rational function, 
30:                        check RationalFunction; 
31:                    else 
32:                        if subterm == differentiation function,  
33:                            check DiffFunction; 
34:                        else 
35:                            if subterm == Trigonometric function,  
36:                                check TrigFunction; 
37:                            else 
38:                                if  subterm == Complex amplitude,  
39:                                    check ComAmpFunction; 
40:                                else 
41:                                    if subterm == normalised coordinates  
42:                                        check NormCoFunction;  
43:                                    else 
44:                                       check GeneralFunction;  
45:                                    end 
46:                                end 
47:                            end 
48:                         end 
49:                     end 
50:                 end 
51:             end 
52:         end 
53:     end 
54: end 
55: endFunction  

Power functions  

Sub-terms in the form of power functions are decomposed into the base and index parts, and 

then each part is encoded independently. In this algorithm power functions are categorised into 

the following groups: 

• Exponential functions; the index is in a summation form,  Algorithm 4-3. 

• Where the base contains differentiation operators, Algorithm 4-4. 
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• The base is in either a summation or multiplication form, and the index is an integer, 

Algorithm 4-5. 

• The index is a negative integer, Appendix: algorithm 1. 

• Exponential; the index is in multiplication from, Appendix: algorithm 2. 

• The base is either a summation or a multiplication, Appendix: algorithm 3. 

• The base is a derivative of the dependent variable, Appendix: algorithm 4. 

Exponential function where the index is structured in the form of a summation  

a) Where the sub-term has been encoded before and is not modified in the solver. 

This is a very important category because the compound level of the SEEM is applied at this 

stage. Initially considering Algorithm 4-4, here at first both the imaginary and real parts of the 

index are separated and stored (lines: 2 and 3). Line 4 checks if the sub-term has been encoded 

before and this is done by checking the exponential identity factor in the indextrm. The 

exponential identity factor is only defined for this term category; where the complete 

exponential sub-term is stored in a string-form in the term structure, 

𝑒𝑛𝑣𝑒𝑐["𝒆𝒊(𝑎+𝑏)", ”𝑛𝑎𝑛”, ”𝑛𝑎𝑛”, ”𝑛𝑎𝑛”] (line 21). If the exponential identity factor exists in the 

𝑖𝑛𝑑𝑒𝑥𝑡𝑟𝑚 this means that the sub-term has been encoded before and its structure remains 

unchanged. The relevant CEVs are selected from the indextrm, and after updating the third digit 

of encoding this is stored in the term structure (line 5). However if the exponential identity factor 

is not available in the 𝑖𝑛𝑑𝑒𝑥𝑡𝑟𝑚 (line 6) this means either that the sub-term has recently been 

created or that the sub-term has been modified and so the CEVs must be updated.  

b) The sub-term is recently created. 

The compound level of the SEEM term-tracking method is applied between lines 8 to 20 of 

Algorithm 4-3. The algorithm uses two criteria to decide whether the exponential sub-term has 

been encoded before, or not. The first condition is defined such that there must be no 

exponential identity factor in the 𝑖𝑛𝑑𝑒𝑥𝑡𝑟𝑚. The second condition is given by the requirement 

that there must be no CEV with a string form quantity as its second digit in the indextrm, line 8. 

The reason for having the second condition is that in the SEEM term-tracking method the first 

element of the encoding vector uses a syntax that is stored in string form in a CEV. As Table 4-2 

shows, the first element in the encoding vector is the same the second digit of the CEV due to 
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the presence of the identity factor as the first digit. Therefore, If the second condition is true, a 

new CEV for 𝑒 and 𝑖 is introduced which is in the form of 𝑒𝑛𝑣𝑒𝑐[𝑒𝑖, ” ∗ ”, 𝑗, ”𝑛𝑎𝑛”, ”𝑛𝑎𝑛”], line 

10. Otherwise, the encoding information must be updated, line 11. Unlike for other encoding 

levels in the compound level the input equation source is 𝑗, not 𝑘. The reason for this is that the 

compound level only shows the stages of the analysis where the exponential quantities are 

subsumed, not the actual source of each quantity. The actual sources can be identified from the 

CEVs in the index. 

Table 4-2 The Source and Evolution Encoding vector format is  compared to the computerised 

encoding. vector.  

c) Special conditions. 

If the compound level has been defined before and the structure of the sub-term is altered then 

the exponential identity factor is not the same as the sub-term. In this situation the CEV must 

be updated and the algorithm must identify the CEVs that are related to the latest step of the 

compound level. To do this the algorithm has been provided with the list of syntaxes that have 

been used in the compound level in the order of their appearance; * is the first, then #, etc. The 

algorithm searches for a CEV with a string form as the second digit and matches the second digit 

with any of the available syntaxes in the list. In the case where none of the syntaxes in the list 

match the string from the object, line 15, the first level of compound encoding is introduced. 

Both lines 10 and 15 define the compound level for the first time, however there is a key 

difference between them. Taking the conditions in part (b) into consideration, the first condition 

is that there is no exponential identity factor, while the second condition is that there must be 

no CEV with a string form quantity as the second digit. In some rare occasions it may be possible 

for a CEV to have a string form quantity as the second digit and which is not related to the 

compound level. As the result if a sub-term fails the conditions in part (b), the second condition 

is again checked in part (c).  

d) The compound level is updated. 

If a sub-term fails all the conditions in both parts (b) and (c), then the compound level must be 

updated. The algorithm finds the matching syntax in the list, then takes the next syntax as the 

second digit of the CEV. For example, if the string form syntax is #, then the algorithm finds the 

Encoding vector 𝑒𝑛𝑣𝑒𝑐[𝑛1, 𝑛2, 𝑛3, 𝑛4] 

Computerised encoding vector(CEV) 𝑒𝑛𝑣𝑒𝑐[𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟, 𝑛1, 𝑛2, 𝑛3, 𝑛4] 
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position of # in the list ( [*, # ,$ ,£ ,**]), and takes the next syntax, which is $. The compound 

encoding level is either defined or updated by this section, and finally the exponential identity 

factor for this sub-term is added, line 21. 

e) Encoding the argument in the index. 

In considering a sub-term of the form of 𝑒𝑖(𝑎+𝑏) so far only the CEVs for 𝑒 and 𝑖 are encoded. 

Consequently the argument of the index (𝑎 + 𝑏) must then be encoded and this is not a 

straightforward task. In order to illustrate the difficulty of automatically updating the encoding 

information a general overview is provided below: 

Considering that every equation created within the solver is also passed to the term-tracker 

function then the encoded equation is extracted from the term-tracker and passed to the core 

solver. From that point onwards the encoded equation possibly goes through further complex 

mathematical procedures that only affect the actual quantities, not the identity factors within 

the CEVs. Therefore the information provided in the identity factor is always one step behind 

the actual quantity itself. The encoding algorithm must know what has happened in the solver 

in order to identify the previous state of the quantity in the indextrm. A series of significant and 

carefully chosen conditions are defined so that the SEEMcore function can successfully identify 

the state of an input quantity, as follows: 

• A new quantity that has not been yet encoded. 

• A quantity that has been encoded and it is repeating, with no changes within its identity 

factor. 

• A quantity that has been encoded before and has also been modified during the solution 

procedure, so the identity factor does not exactly match the input quantity 

It is easily possible for the algorithm to assign a new CEV for a modified quantity that has been 

encoded before, as the identity factors for both conditions do not exist in the indextrm.  

Quantities can change form within different mathematical procedures, such as in cases where: 

• Differential equations are solved; i.e. finding solutions of the perturbation equations 

• Changing an equation structure from trigonometrical form to polar form, and vice versa 

• Defining a new definition for a single quantity and substituting it in to the equation; i.e. 

the polar form of the complex amplitude 𝐴  
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This issue is graphically explained in Figure 4-4, where every equation defined in the solution 

procedure is passed to the term-tracker, and after being encoded it is passed to the solver. Here, 

a mathematical procedure has been applied to the encoded equation resulting in a new 

equation. Then the new equation is passed to the term-tracker. The term-tracker has no idea 

what has happened to the equation because it works independently of the solution procedure. 

It only has knowledge of the previously defined CEVs with a mixture of old and newly defined 

quantities to encode. The only information that the term-tracker gets is a list of the CEVs which 

are all one step behind the mathematical operations of the solver. The term-tracker uses this 

information and evaluates the mathematical procedure and hence updates the quantities 

accordingly. 

 

Figure 4-4 The encoded information is  always one step behind the solution procedure .  

Depending on the function types the algorithm makes a series of estimates to find the previous 

state of the input quantity in the indextrm. Almost the same procedure is used for each function 

type but the criteria that the identity factor selects are different.  

Considering line 25, if the argument of the exponential function is in a summation form (𝑎 + 𝑏), 

each fundamental quantity (𝑎 and 𝑏) in the index must be encoded separately. For this category, 

the algorithm assumes that last state of 𝑎 and 𝑏 was 𝑒𝑖𝑎and 𝑒𝑖𝑏, respectively. Therefore, in line 

26 this form is recreated, and it is saved in NewVar directory; [𝑎 , 𝑏] →[𝑒𝑖𝑎, 𝑒𝑖𝑏]. 

Afterwards the algorithm must find the identity factor in the 𝑖𝑛𝑑𝑒𝑥𝑡𝑟𝑚 directory for each 

quantity. In order to do this a series of conditions are created, starting from the highly possible 

ones to those that are less likely; these conditions are listed in Table 4-3. If none of these options 
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is available in the 𝑖𝑛𝑑𝑒𝑥𝑡𝑟𝑚, then this quantity is considered to be an unencoded quantity and 

the first level of encoding is applied, line 30. Otherwise the CEV is updated and the outdated 

version of the identity factor is replaced with the string form of the quantity. 

Table 4-3 Criteria that are checked for f inding the posit ion of the argument of an exponential 

function.  

The statements such as “define a new encoding vector” or “update the encoding vector” appear 

several times in the SEEMcore function. For the first statement it means that a new CEV must 

be defined; 𝑒𝑛𝑣𝑒𝑐[𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟, 𝑘, 𝑜𝑟𝑑𝑒𝑟, 𝑛3, , ”𝑛𝑎𝑛”]. The 𝑛3, is either equal to “𝑛𝑎𝑛” or 𝑗, 

as has already been explained. It should be noted that the CEV format is different to that of the 

CEVs that are defined in the compound level, part (b).  

The general procedure needed to update a predefined CEV is summarised in three steps: 

By considering the process of updating the CEV (𝑒𝑛𝑣𝑒𝑐["𝑒𝑧 ", 𝑛1 , 𝑛2, 𝑛3, 𝑛4]) for the input 

quantity of 𝑒𝑧 as an example: (it can be noted that the updated encoding digit is shown in a bold 

font). 

• If the CEV forth element ( 𝑛3) is equal to “nan”, then the CEV fourth digit of the SEEM 

must be updated; 𝑒𝑛𝑣𝑒𝑐["𝑒𝑧", 𝑛1 , 𝑛2, 𝒏𝟑, 𝑛4].  

• Otherwise, the algorithm, checks if the fifth element ( 𝑛4) of the CEV is equal to “nan”, 

and the identity factor is not the same as the input quantity. In this situation 𝑛4 must be 

updated; 𝑒𝑛𝑣𝑒𝑐["𝑒𝑧", 𝑛1 , 𝑛2, 𝑛3, 𝒏𝟒].  

• Finally, if none of the above conditions are true, the CEV remains unaltered; 

𝑒𝑛𝑣𝑒𝑐["𝑒𝑧 ", 𝑛1 , 𝑛2, 𝑛3, 𝑛4].  

Condition 

number 
Identity factor actual → quantity 

1 𝑒𝑎 → 𝑒𝑎 

2 𝑎𝑖 → 𝑒𝑎𝑖 

3 𝑎 → 𝑒𝑎𝑖 

4 −𝑎 → 𝑒𝑎𝑖 

5 𝑒−𝑎𝑖 → 𝑒𝑎𝑖 

6 𝑒−𝑎 → 𝑒𝑎𝑖 
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Finally, all the defined pieces of information in parts (a) to (e) are multiplied by the actual input 

sub-term and then stored in the equation structure. Going back to the example, 𝑒𝑖(𝑎+𝑏) is 

encoded as: 𝑒𝑛𝑣𝑒𝑐[𝑒𝑖, ” ∗ ”, 𝑗, ”𝑛𝑎𝑛”, ”𝑛𝑎𝑛”] × 𝑒𝑛𝑣𝑒𝑐["𝑒𝑖(𝑎+𝑏)”, ”𝑛𝑎𝑛”, ”𝑛𝑎𝑛”, ”𝑛𝑎𝑛”, ”𝑛𝑎𝑛”] ×

 𝑒𝑛𝑣𝑒𝑐[ea, 16, 0”𝑛𝑎𝑛”, ”𝑛𝑎𝑛”] ×  𝑒𝑛𝑣𝑒𝑐[eb, 16, 0, ”𝑛𝑎𝑛”, ”𝑛𝑎𝑛”]. 

Algorithm 4-3 Encoding algorithm for the exponential sub -terms that contain a su mmation form 

in the index.  

PowerFunction1(Line 20 SEEMcore) 
1: if base == E and index == expression 
2:    im <- imaginary part; 
3:    arg <- index; 
4:    if subterm part of indextrm, 
5:        update encoding vector; 
6:    else 
7:        remove exposnetial identity from indextrm; 
8:        if (subterm ?????? ???????? ???? indextrm) and indextrm ?????? ???????? ???? {_, String, 
_, _, _} 
9:            the subterm has not encoded before 
10:           eEncode <- envec["subterm",*,i,"nan","nan"] 
11:        else 
12:            list <- {*,#,$,£,**}; 
13:            char <- any possible compound level signs; 
14:            if char == {}, 
15:                eEncode <- envec[e^i,*, i, "nan", "nan"]; 
16:            else 
17:               com <- next character after char in the list; 
18:               eEncode <- envec[e^i,com, i, "nan", "nan"]; 
19:            end 
20:        end; 
21:        eEncode <- eEncode*envec[subterm,"nan", "nan", "nan","nan"]; 
22:    end 
23:    Remove {_, _String, _, _, _} from the indextrm; 
24:    for each term in the index: 
25:        if term == expression 
26:            NewVar <- e^(each quantity in the expression); 
27:            for each NewVar 
28:                pos <- find the position Newvar 
29:                if pos <- {}, 
30:                   Define a new encoding vector 
31:                else 
32:                   update the previously defined encoding vector  
33:                end 
34:            end 
35:        else 
36:            pos <- find the position Newvar 
37:                if pos <- {}, 
38:                   Define a new encoding vector 
39:                else 
40:                   update the previously defined encoding vector  
41:                end 
42:        end 
43:    end 
44: end  

Power function with a differentiation operator in the base 

As mentioned in §4.3.1, the differentiation operator functions are deactivated during the 

encoding process. The deactivation is done by replacing the Heads of built-in derivative 

functions of D (this being the partial derivative) and Derivative with dif and diff, respectively. 

After the encoding procedure is competed, these functions are updated again. 
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Algorithm 4-4 shows the encoding procedure for power function sub-terms, where a 

differentiation operator has appeared in the base; for example, 𝑑𝑖𝑓𝑓2𝑍. 

The argument of the differentiation function is extracted (𝑍), line 2. Lines 2 to 8 encode the 

argument of the function. Then, the actual differentiation operator is encoded in lines 9 to 14. 

Finally the encoding vectors for both the argument and the differentiation operator are 

multiplied by the original input sub-term, and placed into the equation structure.  

Algorithm 4-4 Power function with differentiat ions operator in the base  

PowerFunction2( Line 20 SEEMcore) 
1: if there is any differentiation in the base 
2:    var < -  argumnet of the differentiation 
3:    pos < -  find postion of var in the indextrm 
4:    if pos == {} 
5:        out1 < -  define a new encoding vector; 
6:    else 
7:        out1 < -  update the encoding vector; 
8:    end 
9:    pos < -   find position of the differentiation operator in the indextrm; 
10:      if pos ==  {} 
11:      out2 < -  define a new encoding vector; 
12:    else 
13:      out2 < -  update the encoding vector; 
14:      end 
15:    out1*out2 
16: end  

Power function where the base is either a summation or multiplication and the index is an 

integer 

This form of sub-term can be shown by generic examples such as (𝑎 + 𝑏)4 or (𝑎 ∗ 𝑏)4. As the 

SEEMcore function only deals with the CEVs, then it multiplies the CEVs by the original sub-term, 

this function is not sensitive to the type of operation be it summation or multiplication. As Table 

4-4  shows there is no difference between the CEVs for both sub-terms.  

Table 4-4 An example showing that the SEEMcore  function is independent of the input function 

operator.  

 sub-term CEVs Output 

(1) (𝑎 + 𝑏)4 

𝑒𝑛𝑣𝑒𝑐["𝑎", 3,0,34, ”𝑛𝑎𝑛”]

× 𝑒𝑛𝑣𝑒𝑐["𝑏”, 1,1, ”𝑛𝑎𝑛”, ”𝑛𝑎𝑛”]

×  𝑒𝑛𝑣𝑒𝑐["4", 2, 0, 33,45] 

(𝒂 + 𝒃)𝟒 × 𝑒𝑛𝑣𝑒𝑐["𝑎", 3,0,34, ”𝑛𝑎𝑛”]

× 𝑒𝑛𝑣𝑒𝑐["𝑏”, 1,1, ”𝑛𝑎𝑛”, ”𝑛𝑎𝑛”]

×  𝑒𝑛𝑣𝑒𝑐["4", 2, 0, 33,45] 
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(2) (𝑎 ∗ 𝑏)4 

𝑒𝑛𝑣𝑒𝑐["𝑎", 3,0,34, ”𝑛𝑎𝑛”]

× 𝑒𝑛𝑣𝑒𝑐["𝑏”, 1,1, ”𝑛𝑎𝑛”, ”𝑛𝑎𝑛”]

×  𝑒𝑛𝑣𝑒𝑐["4", 2, 0, 33,45] 

(𝒂 ∗ 𝒃)𝟒 × 𝑒𝑛𝑣𝑒𝑐["𝑎", 3,0,34, ”𝑛𝑎𝑛”]

× 𝑒𝑛𝑣𝑒𝑐["𝑏”, 1,1, ”𝑛𝑎𝑛”, ”𝑛𝑎𝑛”]

×  𝑒𝑛𝑣𝑒𝑐["4", 2, 0, 33,45] 

 

As the results the base of the input sub-term is decomposed into the fundamental quantities 

[𝑎, 𝑏]. Then, each fundamental quantity is encoded and the final version of the expression is 

created and the criteria for identifying the identity factor are given in Table 4-5. 

Table 4-5 Criteria that are checked for f inding the posit ion of a  quantity in the base of a power 

function.  

Number Identity factor → actual quantity 

1 𝑎 → 𝑎 

2 −𝑎 → 𝑎 

3 𝑎𝑛𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 𝑡ℎ𝑎𝑡 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑠 𝑎 → 𝑎 

 

Algorithm 4-5 Power function where the base is either a summation or multipl icat ion and the 

index is  an integer.  

PowerFunction3(Line 20 SEEMcore) 
1: if index == Integer and (base == expression or summation) 
2:    out2 < - 1; 
3:    out < - original form of the sub-term; 
4:    item < - break the subterm into the fundamental quantities; 
5:    for each item 
6:        if item == imaginary unit number 
7:            const < - I; 
8:        else 
9:            if item == string form 
10:                convert it to expression; 
11:            else 
12:                 do nothing 
13:            end 
14:        end 
15:        pos < - position of the item in the indextrm 
16:        if pos == {}, 
17:           out1 < - define a new encoding vector; 
18:        else 
19:           out1 < - update encoding vector;  
20:        end 
21:        out2 < - out2*out1; 
22:    end 
23:    out2 
24: end  

4.3.3 Non power function forms 

This part of the SEEMcore algorithm deals with functions that are not in a power form. The 

process of encoding the terms is almost the same as has been explained in the previous section. 

This section is divided up into the following different functional forms: 

• Complex function (Appendix: algorithm 5) 
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• Integers (Appendix: algorithm 6) 

• Rational (Appendix: algorithm 7) 

• Differentiation functions (Appendix: algorithm 8 and Appendix: algorithm 9) 

• Trigonometric functions (Algorithm 4-6). 

• Complex amplitude functions (Appendix: algorithm 10) 

• Other functions (Appendix: algorithm 11) 

Trigonometric functions 

The process for encoding a trigonometric function is discussed in this section. Considering 

Algorithm 4-6, at first the argument of the trigonometric function is extracted and stored, line 

2. Then the order of the small parameter ‘epsilon’ is determined, as the order of the argument 

is not necessary equal to the order of the corresponding term. Considering equation (1) in 

§3.4.2; the order of this term −𝜀𝑞𝜔2⏟  
(1,1)

cos ( ω⏟
(1,0)

𝑇0) is one, however the order of the 

trigonometrical argument is zero (given that the frequency of excitation in most practical 

problems will not be definitively small). Afterwards the algorithm checks to see if the argument 

is a single quantity or not. For a single quantity the encoding process is done as described 

previously. The only difference is that the order of the argument is used as the first level of the 

SEEM, lines 4 to 10. For an argument that is structured in other forms (a summation or 

multiplication), then the argument is decomposed into the fundamental quantities through 

several stages.  
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Algorithm 4-6 The trigonometric encoding pol icy .  

TrigFunction(Line 32 SEEMcore) 
1: if subterm == Trig  
2:    arg < - argument of the trig function without time 
3:    argorder < - find the order of the argument 
4:    if arg =1= summation or expression 
5:        pos < - position arg 
6:        if pos === {}  
7:        out < - define a new encoding vector 
8:    else 
9:        out < - update the encoding vector 
10:        end  
11:    else 
12:        for each arg 
13:            var < - remove time elements 
14:            if var == expression or power function 
15:                if var == powerfunction 
16:                    NewVar < - list base and index 
17:                else 
18:                    NewVar < - list var  
19:                end 
20:                for each NewVar 
21:                    if NewVar == String 
22:                        convert the string from into expression;  
23:                        pos < - find the position of NewVar in indextrm; 
24:                    else 
25:                        if NewVar == Power 
26:                            pos < - find the position in indextrm; 
27:                        else 
28:                            pos < - find the position of in indextrm; 
29:                        end 
30:                    end 
31:                    if pos == {} 
32:                      out1 < - define a new encoding vector; 
33:                   else 
34:                      out1 < - update the encoding vector; 
35:                    end 
36:                    out < - out*out1; 
37:                end 
38:            end 
39:            if var == complex 
40:                check complexfunction 
41:            else 
42:                if var == ineteger 
43: 

44:                    check integerfunction 
45:                else 
46:                   check RationalFunction 
47:                end 
48:            end 
49:            out= out*out1 
50:        end 
51:    end 
52:    out 
53: end  

4.3.4 Summary of the encoding function 

The SEEM term-tracking method is computerised by defining two main functions; the 

SEEMencoder and the SEEMcore. As Figure 4-5 shows, the SEEMencoder is a user-end function, 

and it deactivates the differentiation functions for the input equation and prepares the 

expressions to be the input of the SEEMcore function. Then the SEEMcore function decomposes 

the expressions into the fundamental quantities, after which the CEVs for all the quantities are 
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defined or updated and stored in the term structures as multipliers. The encoded expression is 

then passed to the SEEMencoder function, and after activating the differentiation operators the 

encoded equation is sent to the solver. 

 

Figure 4-5 Graphical representation of the relat ionship betw een the SEEMencoder  and the 

SEEMcore  functions.  

This function is computationally efficient because the information that is created during the 

encoding process is thereafter erased, after the input equation has been passed to the solver. 

In other words, all the necessary information is stored inside the input equation structure, and 

there is no requirement for a separate database.  

This is an important analogy, as it creates flexibility for further developments, meaning that it is 

possible to define different post-processing functions to extract encoding information and then 

present them in a desired format. In this study several post-processing functions are developed 

for the purposes of displaying, visualising, and term evaluation. 

4.4 Displaying the encoding information 

The SEEMencoder function applies the SEEM term-tracking method to the equations during the 

solution procedure. The encoded equations are like a row of data, and they must be processed 

in order to have a meaningful format for the user. An example of the output of an encoded 

equation is provided in Figure 4-6. The analytical solution procedure of a nonlinear problem is 

complex in its own right, so adding in the encoding information, either above or below the 

quantities, only serves to escalate this complexity. As a result, a practical method must be used 
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to display the encoding information in the SCD solver and this section reviews possible methods 

of display. 

 

Figure 4-6 The output of  the SEEMencoder  function format, for the equation of motion of in -

plane response of the problem of the autoparametrical ly  excited beam system. 

4.4.1 The Tooltip function 

The Tooltip function is commonly used in different programming languages. It displays extra 

information attached to an element, usually activated when a user hovers the mouse pointer 

around that element. In the Mathematica language this function is readily defined and logically 

named as Tooltip [71]. This function in general has two inputs: the main element and the label.  

An application of this function is demonstrated in Figure 4-7. In this example the arbitrary 

encoding vectors are assigned to quantities inside an expression: Tooltip[quantity, “encoding 

vector"]. The output is displayed like a normal mathematical expression until the user decides 

to have more information about a particular quantity. If the user hovers the mouse pointer 

around the highlighted areas in the Figure the arbitrary encoding information will be displayed 

below the quantities and then the information disappears as the mouse pointer moves away.  
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Figure 4-7 A graphical demonstration of the application of the Toolt ip  function for an arbitrary 

encoded expression;  the highlighted area shows the mouse pointer position.  

The main advantage of this method is, it does not make the appearance of the solution 

procedure more complex. Forehand and Cartmell [7] applied the Tooltip function to an SCD 

solver to display the SEM term-tracking information. The dependency on the specific 

computerised environment can be considered as the main downside of this method. The 

information stored in this function only can be displayed using the mouse pointer, when printed 

only the main element is printed without the label.  

4.4.2 Labeled function 

For documentation purposes it is essential to have the encoding information in a printout 

version. One possible option is using the built-in Labeled function of the Mathematica interface. 

The input form of this function is the same as the Tooltip; comprising an element and a label. 

Unlike the Tooltip all the encoding information is represented underneath each quantity. 

Considering Figure 4-8, the label is displayed readily in the output but this does make the output 

visually more complex.  

 

Figure 4-8 A graphical demonstration of the application of the Labeled  function for an arbitrarily  

encoded expression.  

4.4.3 Display format options 

The advantages of both the Tooltip, and Labeled functions are required on various occasions.  

As the results it is essential for the user to have the flexibility of using either of these methods 

in a given situation; perhaps using the Tooltip function when working in a computerised 

environment and the Labeled function for documentation purposes.  From the programming 

point of view it is fairly easy to computerise this idea, as the inputs of these two functions are 
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the same, and only the Heads are different. Basically the main displaying post-processing 

function can process the quantities and encodings in the required format: 

𝑛ℎ𝑒𝑎𝑑[quantⅈty, encodⅈng], where nhead is a neutral head. As Table 4-6 shows by selecting a 

relevant option it is possible to replace nhead with either of these built-in functions. 

Table 4-6 Display format option structures.  

Display type number Operation Output 

1 nhead → Tooltip Tooltip[quantity, encoding] 

2 nhead → Labeled Labeled[quantity, encoding] 

4.4.4 DisplaySEEM function  

The DisplaySEEM is a user-end function and has been developed to process the encoding 

information embedded in equation structures. This function has two inputs: the equation 

number that needs to be displayed and the display type number. As Algorithm 4-7 shows the 

differentiation operators are disabled and each side of the input equation is passed to the 

CoreDisplayer function. Afterwards the differentiation operators are activated for the outputs 

of CoreDisplayer function, on each side of the equation.  

Algorithm 4-7 The DisplaySEEM  function.  

DisplaySeem[i,d] 
1: if LHS eqn(i) == function 
2:     deactivate the functions and send the LHS to display function 
3:         else 
4:         send the LHS to display function 
5:     end 
6: end 
7: if RHS eqn(i) == function 
8:     deactivate the functions and send the RHS to display function 
9:         else 
10:        send the LHS to display function 
11:    end 
12:  set the encoded the LHS equal to the RHS    

4.4.5 CoreDisplayer 

The main processing for displaying the SEEM term-tracking method is carried out in this 

function, Algorithm 4-8. The input of this function is an expression which is processed by the 

DisplaySEEM function. The general process of the CoreDisplyer function can be compared to the 

SEEMcore, as the expression structure is decomposed into fundamental quantities and the 

encoding information is extracted, layer by layer. The main difference is that the identity factor 

for each quantity always matches the input quantity, because there is no mathematical 
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procedure between the output of the 𝑆𝐸𝐸𝑀𝑒𝑛𝑐𝑜𝑑𝑒𝑟 function and input of the DisplaySEEM 

function.  

The displayer function must extract the relevant pieces of encoding information and assign them 

to the actual quantities, without affecting the format of the equation itself. Unlike the encoding 

procedure in which the CEVs were independent of the input function operator, as discussed in 

Table 4-4 the operators in the display function are quite important.  

To summarise, after the sub-term is decomposed into the fundamental quantities the position 

of each quantity in the 𝑖𝑛𝑑𝑒𝑥𝑡𝑟𝑚 is located. If no identity factor is found it means that there is 

no CEV for that quantity, and the algorithm defines an empty encoding vector. Otherwise the 

algorithm converts the CEV into the output format. For example, considering the steps that the 

algorithm takes to process the encodings for 𝑎 in the input sub-term of 3𝑎𝑥: 

1) The function takes the CEV from the 𝑖𝑛𝑑𝑒𝑥𝑡𝑟𝑚; → [𝑎, 1,0,32, ”𝑛𝑎𝑛”]. 

2) Then it removes the empty cells → [𝑎, 1,0,32]. 

3) After this it removes the identity factor → [1,0,32]. 

4) It then changes the formatting → (1,0,32). 

5) From there it converts the output into the string format→ "(1,0,32)". 

6) The displaying option 𝑛ℎ𝑒𝑎𝑑[𝑎, "(1,0,32)"] is created. 

7) Finally it replaces the input quantity in the sub-term with the displaying output 3ax →

3𝑛ℎ𝑒𝑎𝑑[𝑎, "(1,0,32)"]𝑥. 

The same process as listed in steps 1 to 7 above is taken for all the quantities in that term, and 

at the last stage the 𝑛ℎ𝑒𝑎𝑑 is replaced with the selected display type; the Tooltip or the Lableled 

functions. It can be noted that the sub-terms are decomposed in exactly the same order as the 

SEEMcore function 
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Algorithm 4-8 The algorithm for 𝐶𝑜𝑟𝑒𝐷𝑖𝑠𝑝𝑙𝑦𝑒𝑟 function 

display[expr] 
1: for each term 
2:    indextrm < -  extract encoding information from the term structure 
3:    trm < -  removing the encoding information from the term 
4:    for each subterm 
5:        if subterm == power function 
6:            Check powerdisplay 
7:            else 
8:                if subterm == Rational 
9:                check Rationaldisplay 
10:                else 
11:                    if subterm == differentiation 
12:                        check diffdisplay 
13:                    else 
14:                       check diff2display 
15:                       if subterm == complex 
16:                           check complexdisplay 
17:                       else 
18:                           if subterm == trig 
19:                               check tringdisplay 
20:                           else 
21:                               if subterm == integer 
22:                               check integerdisplay 
23:                               else 
24:                               check other functions 
25:                               end 
26:                           end 
27:                       end 
28:                    end 
29:                end 
30:            end 
31:        end 
32:    end 
33: end  

4.5 Symbolic Computational Dynamics solver 

The SCD works like a digital interactive notebook in the Mathematica interface. This layout 

provides an essential level of flexibility for the user so that s/he can apply any assumption or 

simplification, where it is required. It is possible for the user to define a separate equation for 

introducing new mathematical concepts and even to add notes. A sample of a SCD notebook is 

shown in Figure 4-9, this notebook is divided into six main sections. It is possible to open each 

section by clicking on the highlighted area. A brief explanation for each part of this SCD notebook 

is provided in this section.  
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Figure 4-9 A graphical representation of the Symbolic Computational Dynamic notebook.  

4.5.1 Section 1: Defining functions  

All the encoding and post-processing functions, which are explained in §4.3 and §4.4, are 

defined in the first section of the SCD, see Figure 4-10. This provides flexibility for the user to 

check the function structure and to modify the conditions, if this is required. As shown before 

the detail of the functions can be shown if the user clicks on the triangle sign on the right-hand 

side of the menu.  

 

Figure 4-10 The encoding and post-processing functions def ined at the beginning of a given 

Symbolic  Computational Dynamic notebook .  

4.5.2 Section 2: Defining the equation of motion 

In section 2 of a given SCD notebook (Figure 4-9), the procedure that has been carried out to 

derive the equation(s) of motion for the system is explained and the assumptions are listed. This 

part of the SCD is not currently automated and so the user can add in these pieces of information 

for documentation purposes. In future it may be  possible to build in the MultiFlex.m [9] function 

in order to automate the symbolic derivation of the equations of motion.  
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4.5.3 Section 3: The non-resonant condition 

The actual solution procedure starts in section 3 of the given SCD notebook. The analysis starts 

by introducing the symbolic form of equation of motion is defined by the user. The input 

equations are defined by using a head of eqn[i], where 𝑖 is the equation number. As  Figure 4-11 

indicates, the user defined equation 1 by using the desired symbols. It is possible to compare 

this equation to equation (1) in chapter 3.  

 

Figure 4-11 A screen-shot from a defined input equation in a Symbolic Computational  Dynamics 

solver.  

The user defines different symbols for the small parameter ‘epsilon’ within the different terms. 

For example, the small parameter that scales the external excitation amplitude is symbolised by 

𝜀𝑒𝑥, while the small parameter that scales the damping term is symbolised by 𝜀𝑑𝑚𝑝. In equation 

(1) in chapter 3, all these parameters are shown by 𝜀⏟
(1,1)

, which makes it difficult for the user to 

distinguish between these parameter in later parts of the analysis. These 𝜀s in the standard 

multiple scales are considered to be numerically equal, however in reality they invariably have 

different physical sources.  

Figure 4-12 is a screen-shot of the SCD solver where the user, after introducing the symbolic 

form of the equation of motion, has decided to add some text to help with documentation 

purposes. Afterwards the equation is sent to the SEEMencoder function: noting that the inputs 

are [1,1,1]: the input equation number is 1, the user wants to encode the LHS of the equation, 

and the actual equation source is the same as the input (1). As discussed previously, the output 

of this function requires post-processing, so it is supressed by using “;”. Finally the user decides 

to display the equation, so the DisplaySEEM function is used. The first input is the equation 

number (1), and the second input is the displaying type, for which in this case the Tooltip method 

was selected (1). In this figure, the mouse pointer is hovering around 𝜔, so (1,0) is shown. 
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Figure 4-12 A screen-shot from the SCD solver; how equations are defined,  encoded and 

displayed.  

Every small step or assumption is shown and explained directly in the SCD, so the user is fully 

informed and can interact where it is required. In Figure 4-13 an example is shown whereby a 

computational procedure must be performed in the SCD solver. Instead of hiding this procedure 

from the user the complete code is written within the documentation. The original solver of 

Forehand and Cartmell [7] showed the template for the non-resonant response and the only 

missing parts were the solutions for the modulation equations. These parts are included in this 

study. 

 

Figure 4-13 An example showing the transparent structure of the SCD solver .  
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4.6 Summary 

In this chapter the process of computerisation of the SEEM term-tracking method has been 

explained in some detail. The Mathematica programming language is used throughout due to 

its extremely powerful capabilities for symbolic computation. It would obviously be possible to 

programme the developed algorithms in any other language, but it should be borne in mind that 

the main criteria for the algorithms created here have been generality and flexibility. Examples 

of these requirements can be identified in the logistics of all the functions in this chapter. For 

example, the computerised encoding vector (CEV) is designed to have a flexible length so it has 

the potential for future extension. Two separate functions for the encoding purposes are 

developed. Firstly the SEEMencoder is presented, where this is a user-end function that 

transforms the input equation to the required format for the SEEMencoder function. The 

SEEMencoder applies ‘the SEEM cycle’ to each expression of the input equation. The pieces of 

encoding information are saved within a format of strings and numbers so that they do not have 

any interaction with the actual solution procedure. One form of post-processing the encoded 

equations was introduced as the DisplaySEEM function. This function has the flexibility for 

adjusting the display function type; this being either the Tooltip or labeled function. It is 

therefore possible to summarise the findings of this chapter in the following points: 

• The method of multiple scales has been used for generating the approximate analytical 

solution due to its flexibility and adaptability. 

• The whole SCD solver has been programmed in the Mathematica interface. 

• The process of the SEEM encoding cycle has been explained in some detail, Figure 4-3. 

• The Computerised Encoding Vector (CEV) has been introduced, Table 4-2.  

• The inherent obstacles that have been encountered in the automation of the SEEM 

encoding have been summarised, Figure 4-4. 

• A summary of the computerisation of the SEEM term-tracking method has been given, 

Figure 4-5. 

• An overview of the SCD solver has been provided. 

• Overall, 28 algorithms have been developed in this study. 





 

 
 

 

Chapter 5  Visualisation Methods  

5.1 Introduction 

A novel proposal for a computationally implementable term-tracking methodology in the form 

of the Source and Evolution Encoding Method (SEEM) was fully introduced in chapter 3 of this 

thesis. The computerisation and implementation of this method into a Symbolic Computational 

Dynamics (SCD) solver was discussed in detail in chapter 4. Post-processing functions are 

henceforward required to extract the SEEM term-tracking information from the encoded 

equations, and to present this in a meaningful, high-impact format for the user. In chapter 4, 

DisplaySEEM was introduced as a computational process for displaying the encoding 

information either in the form of a Tooltip or as Labeled functions. It has already been 

established that a nonlinear solution procedure is computationally complicated in its own right 

so displaying extra information in and around the equations adds a considerable and challenging 

layer of additional computation to the process. Therefore, a robust visualisation method which 

enables the user to interact with the SEEM information is required. Figure 5-1 shows a graphical 

summary of the development of the SCD method in this thesis. It is possible to notice the 

classical hand-written solution procedure in chapter 3 was developed to a computerised format 

in chapter 4. This chapter reviews the process of developing the very first generation 

visualisation method for a practically implementable SCD solver.  
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Figure 5-1 A graphical review of the development of Symbolic Computational Dynamics in 

chapter 3 and 4.  

5.2 Successful visualisation criteria  

The core solver and the term-tracker can be considered as two independent procedures that 

are exchanging information. The SCD solver is intended to generate the symbolic form of the 

solution procedure and the term-tracker is intended to display the encoding in a practically 

useful format, in a form that is potentially highly customisable and most informative. The 

novelty of the work described within this chapter is the efficient computation required to 

achieve the foregoing aims and the new graphical results that have emerged from. It is possible 

to combine the solution procedure and the term-tracking results in a user-definable single graph 

form. The essential properties of a successful visualisation method are as follows: 

• It should have the ability to show all the SEEM term-tracking information in an analysis. 

• It can highlight the position of each quantity inside the relevant equation; it is possible 

for an equation to have the same quantity appearing in different terms. It is important 

for the user to distinguish the specific source of the quantity, not just the equation 

number. 

• A clear identification of the path for each quantity that is taken from its source to the 

final response. This could help the user to follow the path for each assumption or 

physical concept in a given analysis. 

• Enough information should be provided about various stages of the analytical analysis. 
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Considering the above conditions, two different visualisation methods are suggested: the 

ColourMap and the Blueprint methods.  

5.3 The ColourMap visualisation method 

The ColourMap is the first generation visualisation method that was proposed for use with SCD 

solvers, Figure 5-2. The information assembled in an SCD analysis is visualised in the form of a 

table, where all the quantities in the analysis are listed in the first row of the table, and the 

equation numbers are given in the first column. The encoding information is colour coded; in 

this figure the zeroth-order quantities are shown in blue, the first order quantities in pink, and 

the second level of the SEEM in green. 

 

Figure 5-2 Init ial overview of the ColourMap visual isat ion method .  

Then in this study some modifications have been applied to the method to increase its 

functionality. This comprises the use of different shapes presenting all the SEEM encoding levels, 

for example the zeroth-order terms are shown with an oval shape, while the first order 

quantities are shown using a rectangular shape. Furthermore, distinct colours are used to 

represent the different encoding levels; the first level is shown in purple, second level in blue, 

etc. To distinguish between various stages of an analytical analysis, the quantities in each 

equation are given in a single row. This method is computerised and implemented into the SCD 

solvers by means of the ColourMap function. The colours and shapes allocated to the SEEM 

information can be altered for the convenience of the user. Considering Figure 5-3, the 

quantities in equation (1) are shown in the first row, the quantities for the second equation are 

shifted to the second row and so on.  
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Figure 5-3 A graphical representation of the ColourMap  visualisat ion method.  

There are several possible advantages to using the ColourMap visualisation method such as the 

possibility for quick recognition of various stages of the analysis where a single quantity appears 

and disappears. Also the SEEM term-tracking levels can be highlighted by adjusting the shapes 

and colours of each cell in the ColourMap. Finally, the user can identify the exact source of each 

quantity with relative ease. 

Despite these advantages this method still fails to highlight the position of each quantity in an 

equation. Also information relating to a repeating quantity in an equation is not available. 

Furthermore this method, as conjectured, fails to show the path that a quantity has taken from 

the beginning to the end of an analysis. Finally, the table size is likely to grow exceptionally large 

for a complex problem. Therefore this method has been rejected and no further developments 

of it are considered in this research.  

5.4 The Blueprint visualisation method 

By considering the necessary criteria that have been identified for a robust visualisation, a new 

and somewhat more comprehensive and inclusive visualisation method can be proposed. In this 

further attempt the principal aim is to show all the sources and connections between the 

quantities in the solution procedure, like a map. In other words a blueprint for the solution 

procedure is developed. The initial idea of the Blueprint visualisation method is shown in Figure 

5-4. In this visualisation format each equation is shown in a line, and each term in the equation 

is allocated a block in the equation line. The interactions of the quantities are highlighted with 

lines between different blocks. It is possible to change the lines colours and patterns to show 

different encoding information. 
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Figure 5-4 A grapical representation of the init ial  idea for the Blueprint  v isualisat ion method.  

This method has several advantages, such as the possibility for highlighting the path for each 

quantity from its source to the ultimate point of the analysis. This is essential in case the user 

wants to follow a given assumption through the solution procedure. Also it is possible to use a 

unique colour shade for each system element (such as damping for example) so the user can 

visualise how the damping terms (or other system elements) are distributed within the solution 

procedure. Damping characteristic of systems has a considerable effect on the response of the 

system, as energy dissipates through damping. Generally stronger excitation results a higher 

response amplitude and wider resonant region. However, small excitation in resonant condition 

can cause high amplitude response even with significant damping (5%). This is also noticed in 

parametric excitation where small excitation can cause large response in presence of damping. 

Furthermore, it shows the position of each quantity in the equations so that the user can 

distinguish between similar quantities in different terms. More importantly, the steps of the 

solution procedure are identifiable in an analysis. The SEEM information can be highlighted by 

assigning a unique colour or pattern to the connecting links.  

The main disadvantage of this method is that the number of links increases with the complexity 

of the analysis. This can be prevented by defining controlling functions for the visualisation 

interface, such as temporarily hiding information that is not required, zooming in on that which 

is of particular interest, or also showing only a particular quantity or element. It can be noted 

that element here means mechanical system elements (mass/inertia, damping, etc.) and 

quantity means any symbol used in the equation structures. 
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5.5 Computerisation of the visualisation method  

The visualisation method is implemented within the SCD solver by defining ColourCode and 

BluePrint functions. This section summarises the development process relating to the BluePrint 

function. 

5.5.1 Automated panel 

The first challenge in the computerisation of the Blueprint was to find a way to assign colours 

and patterns for different levels of the SEEM encodings. In the early attempts a panel as shown 

in Figure 5-5 was developed so that the user could select different options before running the 

code. These options are described as the function notebook, the input core solver notebook, 

and setting the specifications for each level of the SEEM term-tracking method.  For example, 

the user can select the predefined functions notebook and press run functions. Then the 

solution procedure notebook, where the problem is defined, must be run. 

After a few minutes of running the solver the visualisation panel would be populated and made 

visible to the user. There were found to be several issues with this form of visualisation; firstly 

the solution procedure and functions were hidden from the user. The second issue was that 

when changing the visualisation settings the user would necessarily have to re-run the program. 

These two issues are against to the main philosophy of the SCD solver - flexibility and control. 

As the results, this form of visualisation is not considered for the main function.  

 

Figure 5-5 User pannel for sett ing up the visualisation method .  
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5.5.2 Two-dimensional panel 

The first version of the Blueprint was in two-dimensional (2D) form. A control panel was defined 

on the left-hand side (LHS) of the visualisation interface, Figure 5-6. The user could set the 

equation number with the first selection bar, and the solution procedure would run based on 

the settings input to the system by means of this panel. Any changes in the setting, the equation 

number, encoding colours, or a wish to change fonts, would all require the re-run of the solver 

process. 

 

Figure 5-6 Control panel of the visual isation interface .  

Figure 5-7 is an example of the output of the panel noting that there is a specific line for each 

equation and the detail for the equation is stated besides the equation number. The pink 

coloured links representing zeroth-order are defined to be denser than the blue links which 

depict the first order. The colour intensity of the links is adjustable so that the user can hide the 

links in order just to have the symbolic form of the solution procedure.  
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Figure 5-7 The output of  the two-dimensional Blueprint  visual isation method.  

5.5.3 Special considerations 

As the analysis progresses the number of links increases and it quickly becomes essential to have 

an alternative approach to display the SEEM information. It was therefore decided to add the 

encodings in the form of either the Tooltip or Labeled displaying function on each link. 

Implementing this facility allowed the user to be able to hover the mouse pointer around a 

particular link to visualise the quantity and its associated encoding vectors. This seems to be 

readily achievable using Mathematica built-in functions; however, as Figure 5-8 shows, there is 

a bug in a specific application of this function. One can define this problem by considering that 

𝑎 and 𝑏 represent two terms in two separate equations, and two different quantities from term 

𝑎 are linked to the term 𝑏. As visible in the graph, the colour assigned to the link 𝑎 →  𝑏 is red 

and the tag is 𝐴, while for the other link the colour is blue and the tag is 𝐵. Due to the 

Mathematica bug these different links are shown as being the same. 

 

Figure 5-8 Mathematica  bug in v isualising different l ink tags .  
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To fix this issue a middle point between each links is created as shown in Figure 5-9. Therefore, 

in the visualisation function for each defined link, a connection point must be defined 

automatically, and its coordinates must be adjusted to the source and destination links. 

 

Figure 5-9 Solving the Mathematica  bug in tagging l inks . 

5.5.4 The three-dimensional Blueprint visualisation method 

The next phase in the development of the visualisation was to create a three-dimensional (3D) 

version of the Blueprint method. This version enables the user to have a productive interaction 

with both the SEEM encoding and the analytical results and comparing to that of the 2D version 

the control panel functionality is significantly more advanced. As Figure 5-10 shows the user can 

select the desired equation number and extract the development pattern for that specific 

equation. The results of the analysis are stored in a database in order to enhance computational 

efficiency, and there is no need for the solution procedure to be re-run for every small 

modification made at the control panel. Finally, it is possible for the user to extract the 

generated graph by pressing the ‘save graph as .pdf’ button. 
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Figure 5-10 The three-dimensional Blueprint  v isualisat ion panel .  

Figure 5-11 is an example of the output of the visualisation graph, for the problem of the 

parametrically excitation of a pendulum. This figure is provided just for showing the overall 

interface of the solver and a detailed presentation is provided in this chapter. The underlining 

theory of this case study was introduced in Chapter 3, and part of the SCD generated solution 

procedure is given in §5.5. The full symbolic form of the solution procedure is provided on the 

right-hand side of the panel, where the SEEM term-tracking information can be shown using the 

Tooltip function.  
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Figure 5-11 An example of the output for the three-dimensional  visual isation.  

As an adjunct to the symbolic nature of the solver it is also possible to substitute numerical data 

into the symbolic forms of the solution equation in order to derive the specific numerical 

response for some given input data. An example of this is the interactive plotting of the 

amplitude of the response of the parametrically excited pendulum against the detuning 

parameter (Figure 5-12), whereby the user can adjust the physical input data by changing the 

settings of the bars in the panel controllers.  

 

Figure 5-12 A graphical example of the interactive plots for the SCD solvers .  

After solving the problem of a parametrically excited pendulum, the numerical response against 

time is plotted in Figure 5-13.  This panel enable the user to replace the desired experimental 

data for each symbol and obtain the response plot in return.  
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Figure 5-13 The numerical response of the case study is plotted based on the symbolic  general 

solution.  

As well as the 2D response plot, an animation of the problem is also included in the visualisation 

notebook (Figure 5-14). In this format by changing the system characteristics, both the response 

and animation would be updated (Figure 5-14-d). For example considering Figure 5-14-a and 

Figure 5-14-b, where the support displacement as fraction of the pendulum length (𝑞𝑒𝑥) is 

decreased from 0.61 to 0.3 respectively. In another example, the length of the pendulum is 

doubled from Figure 5-14-b to Figure 5-14-c. 

 

Figure 5-14 An interactive animation of the response based on the symbolic solution .  
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5.6 A case study   

The application of the visualisation panel is discussed by investigating the dynamic problem of 

a parametrically excited pendulum. The same case study as in chapter 3 is used to enable the 

reader to compare the different features of the SCD solver.  

The equation of motion (1) is introduced by the user and encoded (Figure 5-15). The labelled 

type of displaying is used so that the encoding information can be visible in the report format. 

The user can decide to add indices to each quantity; for example the quantities in the nonlinear 

term have 𝑛𝑠 in the index, 𝑒𝑥 is for external excitation, and 𝑑𝑝 is used for the damping term. 

These indices help the user to distinguish the different sources of the small parameters in each 

term. The dependent variable, 𝜃, does not have any encoding vector because the perturbation 

expansion series has not yet been introduced, §3.3.1.  

 

Figure 5-15 The automatical ly generated Source and Evolution Encoding Method information for 

equation (1) of the parametrical ly excited pendulum problem. 

The perturbation expansion up to the first order perturbation equation is introduced, equation 

(2). Figure 5-16 shows the encoding information for this equation and it can be seen that the 

perturbation parameter (𝜀𝑝) is introduced for the first time in this problem. The index 𝑝 is used 

as an abbreviation for perturbation expansion. Any reference to this equation in the later 

analysis highlights the choice of the solution procedure expansion, and is not defined through 

physical modelling. 

 

Figure 5-16 The automatical ly generated Source and Evolution Encoding Method information for 

equation (2)  of the parametrically excited pendulum problem . 

The first time derivative function is created based on the perturbation expansion, and is stated 

in D-operator notation.  
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Figure 5-17 The automatical ly generated Source and Evolution Encoding Method information for 

equation (1) of the parametrical ly excited pendulum problem . 

It is convenient to assume that the epsilon shown in equation (4) is numerically equal to the 

epsilon in the perturbation equation. However, to highlight the source of the epsilons, this 

instance of the small parameter is shown by a unique symbol; 𝜀𝑑𝑟.  

 

Figure 5-18 The automatical ly generated Source and Evolution Encoding Method information for 

equation (1) of the parametrical ly excited pendulum problem . 

Then the explicit form of 𝜃3 is derived, and the third digit of the SEEM encoding is added 

accordingly, as shown in Figure 5-19.  

 

Figure 5-19 The automatical ly generated Source and Evolution Encoding Method information for 

equation (5) of the parametrical ly excited pendulum problem . 

The first four equations that are shown in Figure 5-20 are generally considered to be 

fundamental equations; therefore, there are no connection links visible in the graph.  

 

Figure 5-20 The Blueprint  v isualisat ion for the fundamental equations in the analysis of the 

parametrically excited pendulum problem . 

Equation 5 is the first stage in this analysis, where a new equation based on the fundamental 

equations is created. Consequently, from this point onwards the sources and links are 

highlighted using the Blueprint method. For consistency, a unique colour for each level of the 

SEEM is used, considering the first SEEM encoding level; zeroth-order and first order quantities 
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are shown in pink and blue, respectively. The second level in green, the third in purple, and the 

compound level in yellow. To emphasis the strength of the zeroth-order terms, the zeroth-order 

links are shown as denser than those for the first order terms. Note that it is possible in the 

implementation to change these definitions at any point of the analysis. Considering Figure 5-21, 

the pink link shows that the zeroth-order 𝜃0 coming from the perturbation expansion has been 

cubed in this equation. 

 

Figure 5-21 The visualisat ion graph up to as far as equation (5) for the analysis of the 

parametrically excited pendulum problem . 

It has already been explained that the format of the information generated using the SEEM 

term-tracking method is sensitive to the solution method. Therefore the visualisation graph 

generated with the Blueprint method is specific to the user choice of solution. Some prefer a 

very detailed analysis, where a single equation is defined for each minor step of the analysis, 

while others will prefer a concise approach where only the main steps are provided. Obviously 

the SEEM information generated for a detailed analysis has a higher resolution comparing to 

that for a concise version.   For example, it is possible to skip equation (5) and substitute 

equation (2) into equation (1) in a single step, which is mathematically correct but results in very 

different encoding information, and therefore a different visualisation pattern. The benefit of 

defining a separate equation for the explicit form of  𝜃3, is that the user can distinguish the exact 

step at which the nonlinear restoring force is defined. The general inference from this is that the 

encoding strategy should tend to favour maximised detail at the outset as this can always then 

be suppressed if it is not wanted. 

Equations (2), (3), (4) and (5) are substituted into equation (1), and the result is expanded, with 

terms of higher than first order being discarded, according to the decision already made about 

the accuracy that is needed from the perturbation expansion. Figure 5-22 shows the overall 

sources and links for equation (6). The symbolic forms of the terms in this equation are showed 

on the equation line, with no particular order. The source of each quantity is shown upstream 

of the equation line. It is possible for the user to hover the mouse pointer around any link to 
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display that quantity and its encoding information, using the Tooltip function. The choice of the 

colour and thickness of the links can clearly highlight the powerful zeroth-order quantities from 

the first order ones. Moreover it is possible to identify the path for the 𝜃0, noting that a pink link 

connects this quantity from the perturbation equation into equation (5), highlighted in orange. 

Afterwards, the colour of the link changes to green from equation (5) to (6), highlighted in 

yellow. This highlights the change of the first SEEM encoding level, to second; as the explicit 

form of the 𝜃0
3 was determined in equation (5), Figure 5-19. 

 

Figure 5-22 The overall Blueprint  visual isation graph for equation (6).  The first level of the 

encodings for 𝜃0
3is highlighted in orange,  and the second level in yellow . 

The Blueprint visualisation method can show an overall view for each equation in the solution 

procedure, as well as detailed information for each term. As Figure 5-23 shows the user can 

zoom in on each term to investigate the structure of each term; by pressing ctrl and hovering 

the mouse pointer in upward or downward directions. In this Figure the SEEM encoding 

information are shown with the Labeled function. Figure 5-23-a shows the nonlinear stiffness 

term, which it is introduced based on a modelling assumption. The explicit form of 𝜃0
3 is 

substituted from equation (5), the link is shown in green. The order of 𝜃0
3 is zero, so the link 

thickness is larger than the first order links. Furthermore, 𝜀𝑛𝑠 is intoduced in the equation of 

motion to scale the nonlinear restoring force. Figure 5-23-b is the external excitation term, the 

term 𝜀𝑒𝑥 is introduced through the assumption that the support displacement is much smaller 

than the rod length (𝑞𝑒𝑥).  This is based on a physical interpretation at the modelling phase. The 

external excitation frequency, 𝜔, and 𝜃0 are both zeroth-order quantities. Moreover, Figure 
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5-23-c presents the first order perturbational correction term, 𝜀𝑝 is introduced based on the 

perturbation expansion. All the quantities in this term are first order and therefore links are in 

blue. The damping term is shown in Figure 5-23-d, 𝜀𝑑𝑝 is introduced by physical modelling to 

scale the damping term. Also, 𝜃0 is sourced from the perturbation equation and the first time 

drivative is linked to equation (3). Furthermore, Figure 5-23-e is a perturbational correction term 

and considering the first digit of the encoding, there is no quantity sourced from the equation 

of motion. This term structure is highly depending on the choice of the solution method. Finally, 

Figure 5-23-f is the powerfull inertia term, all quanties are zeroth-order. 

  

  

  

(a) (b) 

(c) (d) 

(e) (f) 

Figure 5-23 continues the next page  
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Figure 5-23 Detailed discussion for selected terms in equation (6) ,  where; (a) is  nonlinear 

sti ffness term, (b) is the external excitat ion term, (c) is a perturbational correction term, (d)  

damping term, (e) is a  perturbational correction term , and (f)  is the inertia term.  

Figure 5-24 presents the zeroth-order perturbation equation, which is obtained by setting the 

coefficient of  𝜀0 in equation (6) to zero. As this is a single degree of freedom problem, with just 

one generalised coordinate, then θ0 is in fact the main part of the motion that the chosen 

generalised coordinate undertakes. Physically this equation represents the swinging motion of 

the pendulum in this case study. The D-operator notation is used to represent the time 

derivative with respect to the time scales 𝑇𝑖. Physically the second order time derivative relates 

directly to the inertia of the problem, which in turn is based purely on the kinetic energy within 

the pendulum. 

 

Figure 5-24 Encoding information for equation (7) .  

The first order perturbation equation is derived by taking the coefficient of 𝜀1 terms out from 

equation (6) out and set to zero, resulting equation (8). Both the SEEM encoding information 

and the overall Blueprint visualisation are given in Figure 5-25. 
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Figure 5-25 Overal l v isualisation graph for equation  (8) .  

Figure 5-26 shows the detailed investigation of the selected terms in equation (8). Figure 5-26-

a is the inertia term, in this term the differentiation operator source is equation (4), whilst the 

source of  𝜃1 is the perturbation equation. Furthermore, Figure 5-26-b shows the first order 

perturbation term, θ1. In the standard multiple scale analysis the small epsilon parameters such 

as εp and εex (in Figure 5-26-c) would cancel each other out. However, the epsilons are reserved 

here in order to plot their history,  εex is introduced to scale the external excitation, and εp is 

the perturbation small parameter.  

Figure 5-26-d shows the damping term in a conventional multiple scales analysis. The nonlinear 

restoring force is shown in Figure 5-26-e, εp is the perturbation parameter and the εns is 

introduced in the equation of motion. Finally, in Figure 5-26-f both 𝜀𝑠 are sourced from the 

perturbation equation, and it might be possible to cancel these two epsilons without losing any 

vital information. The zeroth-order perturbation term is the only strong quantity in this term, 

shown in pink. 

  

(a) (b) 
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Figure 5-26 The detai led encoding information for selected terms in equation (8) ; where, (a)  is 

the inert ia term, (b)  is the f irst order perturbation term, (c) is the external excitation term, (d) 

is the damping term, (e) is the nonlinear st iffness term, and (f)  is  a perturbational correction 

term. 

It is possible to hide other equations and only visualise the solution of the zeroth-order 

perturbation equation is shown in Figure 5-27. This figure shows that all the links are zeroth-

order (pink) and there are no other links related to other SEEM encoding levels. The arbitrary 

(c) (d) 

(e) (f) 

Figure 5-26 continued on next page. 
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complex amplitude 𝐴[𝑇1] and its conjugate are referenced to the zeroth-order perturbation 

term in the perturbation expansion, equation (2). 

 

 

Figure 5-27 Encoding information for the solution of the zeroth-order perturbation equation.  

Then the solution of the zeroth-order perturbation solution is substituted into the cubic form of 

𝜃0, resulting in Figure 5-28. Various levels of the SEEM term-tracking method are visible in this 

Figure. The purple links show the third level of the SEEM and confirm that an explicit-form 

quantity has been modified in this step.  
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Figure 5-28 Overal l v isualisation graph for equation (10). 

Figure 5-29 shows the thorough detail of the encodings for equation (10). Figure 5-29-a shows 

the explicit nonlinear restoring term; where the encoding link is given in green. The user can 

quickly identify the history of this term, such as the source of 𝜃0 is from equation (2) which is 

the perturbation expansion, and its order of epsilon is zero. It becomes explicit in equation (5) 

where the perturbation expansion has been used to get the cubic form of 𝜃0 into first order 

epsilon form.  

Furthermore, the solution of the zeroth-order perturbation has been involved in the term shown 

in Figure 5-29-b. There is no first order quantity in this term and the visualisation links and SEEM 

encoding vector can clearly show the history of each quantity. In summary 𝐴̅ is referenced to 

the perturbation expansion which is shown in explicit format in equation (9). Furthermore, 𝜃0 is 

introduced in the form of the amplitude 𝐴 in equation (9) for the first time. Also  𝑒𝑖 is introduced 

in the solution of the zeroth-order perturbation equation. Furthermore, 3 relates to equation 

(1), from which it can be deduced that the nondimensional excitation frequency and then 

multiplied by 3 in equation (10).  As the complex amplitude is powered to 3 in this term, modified 

from the original form, a fourth digit of encoding is added to signify that fact. 

Figure 5-29-c shows the interactions of the amplitude 𝐴 and its conjugate, and as the results of 

this the third level of the SEEM method is applied to these quantities.  
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Figure 5-29 A selected detai led discussion of the SEEM information for equation (10) ; where, (a) 

is the nonlinear restoring force, (b) and (c)  are the def inition of the restoring force based on the 

zeroth-order perturbation solution.  

The exponential form of the cosine function (defined as Cos here) is shown in Figure 5-30. This 

step is added for the convenience of the user and is not necessarily a fundamental step of the 

multiple scales analysis (eqn (11)). Considering the Blueprint visualisation graph in this figure, 

the function has correctly linked this term to the external excitation term in the equation of 

motion.  

(a) (b) 

(c) 
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Figure 5-30 Encoding information for equation  (11).  

5.7 Summary 

In this chapter the need for a robust visualisation method for the SCD solvers is discussed. The 

main criteria for possible visualisation methods are introduced, and two approaches have been 

suggested; the ColourMap and the Blueprint. The ColourMap method is fully introduced and 

computerised. However, due to its lack of practicality at anything but the smallest scale 

modelling, any future development of this method has been terminated.  

The Blueprint method concept is fully introduced, and the obstacles in computerising this 

method have been investigated. This idea has been developed in three stages; an automated 

panel, a 2D visualisation panel, and the 3D visualisation panel. The final version of the 3D 

Blueprint visualisation panel is applied to the problem of a parametrically excited pendulum, 

and the results for the first 11 equations of this analysis are provided in this chapter. The main 

conclusions from this case study are listed as follows: 

• Generally visualisation links makes the interpretation of the complex mathematical 

solution procedure easier for the user.  
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• The visualisation relates the complex mathematical notations of the solution to the 

practical physical reasoning very early on in the modelling and solution phases.  

• Colour coding and modifying the width of the links clarifies the significance of the 

relevant quantity to the analysis quickly. 

• For more information, the user can zoom in on each node and check the encoding 

information in the finest grained level of detail. 

It can be noted that this method has a huge potential for the future developments.  It is possible 

to introduce the controlling functions which enable the user to visualise information layer by 

layer. These functions can assist the user to validate the solution procedure just by investigating 

the generated visualisation results, a thorough discussion on the future plan for the blueprint 

method is provided in §7.2 of this thesis.





 

 
 

Chapter 6  An Evaluation Method for 

Symbolic Terms 

6.1 Introduction  

The development of the first version of the Blueprint visualisation method for Symbolic 

Computational Dynamics (SCD) solvers was discussed in the previous chapter. The Blueprint 

visualisation method enables the user to obtain an overview of the complete analysis as well as 

generating a detailed investigation of the history of each term. The detailed investigation is 

achieved by zooming in on each term in the equation, and then analysing the encoding links to 

create a solid connection between the physics of the system and the mathematical solution 

procedure. Interesting observations can be made in these types of analysis, starting off by 

considering Figure 6-1 one can see the variability of the distribution of the SEEM links in terms 

of colours and thicknesses. The first term has two zeroth-order and four first order quantities, 

and the second term has one zeroth-order and five first order quantities (the zeroth-order term 

are shown in pink and the first order term are shown in blue). The key question here is: “is  a 

term with a larger number of zeroth-order quantities, regarded as having a higher significance 

when compared to the other terms in the same equation?”. 



104  6.1 Introduction 

 

 
 

 

Figure 6-1 A graphical example of two terms with dif ferent Blueprint  encoding structures.  

In order to be able to derive a mathematically and physically correct solution for the final 

response when using an adaptable perturbation method such as multiple scales, there is a 

necessity for the user to be able to apply both formal and informal interventions to the method, 

to ensure the uniformity of the perturbation expansion and also to eliminate any spurious 

dynamic effects that may otherwise arise. In the formal case one considers key issues such as 

secularity, autonomy, and slow modulations of the amplitude and phase. However other 

interventions, which are somewhat informal, such as the identification of terms that are 

principally relevant (or not) to a resonance condition of interest, usually require some degree of 

user experience, and there are not necessarily general guidelines for doing this. Therefore, there 

could be merit in developing a term evaluation concept which is based on the symbolic 

formulations, and which applies ideas of the SEEM hierarchy to aid such processes. Ideally this 

could be a reference method for the user to compare the significance of terms in a single 

equation, and even explore how they may contribute to the solution based on a chosen 

resonance condition. Developing the SF theory can ultimately increase the popularity of the 

perturbation method as they can assist the analyst to specify possible negligible terms. 

Figure 6-2 summarises the development stages of the SCD solver up to this chapter of the thesis 

and may be interpreted as follows. Chapter 3 introduces the concept of the SEEM term-tracking 

method, then chapter 4 summarises the algorithms developed for implementation of the SEEM 

into the SCD solver. The first version of the visualisation method for the SCD solver is introduced 

in chapter 5, and this current chapter introduces a possible term evaluation method for the SCD 

solvers. 
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Figure 6-2 The development procedure of the Symbolic Computational Dynamics solver in this 

thesis.  

6.2 The Strength factor 

A new metric based on the SEEM information is proposed in order to highlight the significance 

of each term in an equation. This metric is in the form of a calculated number and this is 

henceforth called the ‘Strength Factor’ (SF). The SF is based on both the order and the SEEM 

hierarchy of the constituent quantities in each term. The first level of the SEEM represents the 

order of quantity. The SEEM hierarchy, Table 3-1, for each quantity is categorised into two 

classes: simple or complex. The quantities with the first SEEM encoding level are classified as 

simple, and the second and higher SEEM encoding levels are placed in the complex classification.  

A quantity that classified as complex has possibly more involvement in a particular analysis, 

compared with a quantity with the simple classification. For example, the contribution of a 

quantity that has been part of the equation structure of the explicit definition of the amplitude 

response contribution more than a quantity that has the first level of the SEEM. 

In order to quantify this concept a points system based on order and SEEM hierarchy has been 

defined. Table 6-1 is a guideline for both the order-associated points and the SEEM hierarchy 

that are used in this research. Based on experience, it is assumed the effectiveness of a zeroth-

order term is twice that of the first order, and quantities with complex SEEM hierarchy have 

twice the points value compared to quantities with the simple classification. It can be noted that 

these conditions can be adjusted according to user preference. 
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Table 6-1 A points system in calculat ion of the Strength Factor .  

 

 

 

 

Equation (6.1) shows the proposed SF formulation for each quantity in a term; noting that for 

each quantity the order point is multiplied by the SEEM hierarchy point, and then normalised. 

The maximum value that a 𝑆𝐹𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 can have is eight and this defines a zeroth-order term 

with a complex classification. The SF formulation for a term is given in (6.2), the 𝑆𝐹𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 

values in a term are added and divided by the number of quantities in a term.  

𝑆𝐹𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 =
𝑂𝑟𝑑𝑒𝑟 𝑝𝑜𝑖𝑛𝑡 ∗  𝑆𝐸𝐸𝑀 ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦 𝑝𝑜𝑖𝑛𝑡

8
 (6.1)  

𝑆𝐹 =
∑𝑆𝐹𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦
∑𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑖𝑒𝑠

 (6.2)  

Table 6-2 shows the process of calculating the SF value for 𝐴⏟
(2,0,9)

𝑒⏟
(9,0)

𝑖⏞
(9,0)

𝜏,  this term is taken frim 

equation (9) in chapter 3. For each quantity in this term both the order and SEEM hierarchy 

points are defined, then the 𝑆𝐹𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 is determined. Finally, all three 𝑆𝐹𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 values are 

added together and divided by three for normalisation. It should be noted from this point 

forward all the reference to SF is regarded to SF value calculated for terms.  

Table 6-2 Calculat ing the Strength Factor value for a term. 

Quantity Order point SEEM hierarchy 𝑺𝑭𝑸𝒖𝒂𝒏𝒕𝒊𝒕𝒚 𝑺𝑭 

𝐴⏟
(2,0,9)

 Zeroth → 2 Complex → 4 (2 × 4) 8⁄  

2

3
 

𝑒⏟
(9,0)

 Zeroth → 2 Simple → 2 (2 × 2) 8⁄  

𝑖⏞
(9,0)

 
Zeroth → 2 Simple → 2 (2 × 2) 8⁄  

 

6.3 Implementation of the Significance Factor 

It is essential to implement the SF number within the Blueprint visualisation method. The SF 

value is shown graphically as a sphere around each term node in the visualisation pallet, and the 

Order point 
Zeroth-order First order 

2 1 

SEEM hierarchy point 
Simple Complex 

2 4 
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diameter of the sphere is equal to the SF value of the term. As Figure 6-3 illustrates this allows 

the user to grasp quickly the significance of each term by merely inspecting the visualisation 

graph. 

 

Figure 6-3 A graphical example of implementation of the  Strength Factor number in the  

Blueprint  v isualisat ion graph.  

6.4 An autoparametric case study  

An autoparametric system is now used as a basis for further testing of the SCD solver.  Figure 

6-4 shows the well-known problem of a pair of beams coupled in such a manner that the forced 

response of the horizontal primary beam acts as a parametric excitation of the vertical 

secondary beam [68].  A single frequency external excitation is applied to the primary beam (AB) 

at the first natural frequency of free undamped vibration, resulting in a first bending mode 

response. The secondary beam (BC) is considered to have a high flexural stiffness ratio; 

therefore, the bending deformation of BC in the ABC plane is negligible, and so the response of 

the secondary beam is out of the plane of the diagram. This depends on the system being 

configured in such a way that the response of the fundamental primary mode is around twice 

the frequency of the fundamental secondary mode, in which case the condition for 

autoparametric resonance is satisfied.   
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Figure 6-4 Coupled beam system based on Cartmell  [70].  AB is the primary beam, and BC is the 

secondary beam. W(t) represents the external excitation .  

6.4.1 Physical modelling 

The autoparametric system shown in this sort of systems can be modelled as follows [68]: 

𝑋[𝜏]̈ + 2𝜉1𝜔1𝑋̇[𝜏] + 𝜔1
2𝑋[𝜏] − 𝜀𝜇(𝑌̇[𝜏]2 + 𝑌̈[𝜏]𝑌[𝜏]) − 𝜀𝛾𝑋̇2[𝜏] = 𝑄0𝑐𝑜𝑠[𝛺𝜏] (6.3)  

𝑌̈[𝜏] + 2𝜉2𝜔2𝑌̇[𝜏] + 𝜔2
2𝑌[𝜏] − ε 𝑌[𝜏]𝑋̈[𝜏] = 0 (6.4)  

In these equations 𝑋 and 𝑌 represent the physical in-plane and out-of-plane modal responses 

of the primary and secondary beams respectively. The first linear natural frequency for the 

primary and secondary systems are shown by 𝜔1 and 𝜔2. The coupling between primary and 

secondary beam is modelled by 𝜀𝜇(𝑌̇[𝜏]2 + 𝑌̈[𝜏]𝑌[𝜏]) in equation (6.3). Considering equation 

(6.4), 𝑋̈ is the parametric coefficient for the coordinate 𝑌. The damping coefficients for both 

systems, up to the first order, are presented with 𝜉1 and 𝜉2 symbols. The damping coefficients 

for the primary and secondary system can be shown as ε𝜁1 and ε𝜁2. Furthermore, the external 

excitation amplitude is shown by 𝑄0 which is equal to 𝜀𝑞. Unlike the problem of the 

parametrically excited pendulum in chapter 3 and 5, where it was equal to nondimensional time 

based on the natural frequency (𝜏 = 𝜔0𝑡), in this case study it is equal to the real time (𝜏 = 𝑡). 

The complete process of derivation of the equations of motion for this system can be found in 

[72]. 

6.4.2 Solution procedure  

A part of the solution procedure for the problem of the autoparametrically excited coupled 

beam system based on the developed SCD solver is given in this section. For this case study a 

W(t) 
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unique label of ‘eqn’ is used for addressing the equation numbers. The in-plane equation of 

motion for a coupled beam, based on the Roberts and Cartmell [72] formulation, is given in eqn 

(1) In this equation the external excitation amplitude is shown by 𝑞, 𝜀𝑒𝑥 is a small parameter 

introduced for scaling the external excitation, 𝜔1 is the first natural frequency of free undamped 

vibration, 𝛾 is the coefficient of centripetal acceleration, 𝜀𝑛𝑠𝑓 is a small parameter that scales 

this particular nonlinear stiffness term, 𝜇 is the effective mass ratio, 𝜀𝑐𝑝𝑙𝑓  is a small parameter 

added to scale the quadratic coupling terms, and 𝜀𝑑𝑚𝑝𝑓 is a small parameter introduced to scale 

the damping term for the primary system. Finally, 𝜁1 is the damping coefficient for the primary 

system. 

𝑋̈[𝜏] + 2𝑑𝑚𝑝𝑓𝜀𝑑𝑚𝑝𝑓𝜁1𝜔1𝑋̇[𝜏] + 𝜔1
2𝑋[𝜏]

− 𝜀𝑐𝑝𝑙𝑓𝜇(𝑌̇[𝜏]
2 + 𝑌̈[𝜏] ∗ 𝑌[𝜏]) − 𝑋̇[𝜏] ∗ 𝑋̇[𝜏]𝛾𝜀𝑛𝑠𝑓

= 𝜀𝑒𝑥𝑞𝑐𝑜𝑠[𝛺𝜏] 

eqn (1)  

 

The overall visualisation graph for this equation is shown in Figure 6-5. In this case study this 

equation is regarded as a fundamental equation and is introduced as an input to the SCD solver 

by the user; therefore, no links are visible in this figure. The SF value for each term is graphically 

shown using a sphere placed at each term node, with the diameter equal to the SF number. As 

the perturbation expansion has not yet been introduced 𝑋̈[𝜏] is not encoded, and no SF 

representation is generated for this term.  It can be noted that the 𝜀 and 𝜖 in this chapter are 

the same. 

 

Figure 6-5 The visual isation graph for the primary beam’s equation of  motion.  

The automatically generated SEEM term-tracking information for this equation is shown in 

Figure 6-6 and it should be noted that the terms of the differential equation have been 

rearranged from left to right in order to suit the SCD process. The external excitation term, 𝜀ex 

is introduced to scale the excitation amplitude (𝑞). The external excitation frequency (𝛺) is 
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clearly independent of 𝜀ex and considered a zeroth-order quantity. Also, the coefficient of 

centripetal acceleration (𝛾) is scaled by the small parameter 𝜀nsf through the process of 

modelling. The first time derivative of 𝑋 is not encoded because the perturbation expansion has 

not been yet introduced to the analysis. Furthermore,  𝜀𝑐𝑝𝑙𝑓𝜇𝑌̇[𝜏]
2 is a quadratic coupling term 

for which it is assumed that the effective mass ratio (𝜇) is scaled by 𝜀cplf. Finally, 

2𝑑𝑚𝑝𝑓𝜀𝑑𝑚𝑝𝑓𝜁1𝜔1𝑋̇[𝜏] is the damping term for the primary beam, and it is assumed that the 

damping ratio (𝜁1) is small enough to be scaled by introducing 𝜀𝑑𝑚𝑝𝑓. 

 

Figure 6-6 A screenshot of the automatical ly generated encodings for eqn (1).  

The equation of motion for the secondary beam is taken from Roberts and Cartmell [72] and 

shown in eqn (2). where, 𝑌 represents the out-of-plane motion of the secondary beam, 𝜔2 is 

natural frequency of free undamped vibration for the secondary beam, 𝜀𝑑𝑚𝑝𝑠 scales the 

damping term, 𝜁2 is the damping coefficient for the secondary system, finally 𝜀𝑐𝑝𝑙𝑠 scales the 

coupling term.  
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𝜔2
2𝑌[𝜏] + 2𝑑𝑚𝑝𝑠𝜀𝑑𝑚𝑝𝑠𝜁2𝜔2𝑌̇[𝜏] − 𝜀𝑐𝑝𝑙𝑠𝑌[𝜏]𝑋̈[𝜏] + 𝑌̈[𝜏] = 0 eqn (2)  

Figure 6-7 shows the automatically generated SEEM information, where; 𝜔2
2𝑌[𝜏] is the linear 

stiffness term for the secondary beam, and  2𝑑𝑚𝑝𝑠𝜀𝑑𝑚𝑝𝑠𝜁2𝜔2𝑌̇[𝜏] is the damping term which is 

considered to be weak due to the introduction of 𝜀dmps. The coupling term, 𝜀𝑐𝑝𝑙𝑠𝑌[𝜏]𝑋̈[𝜏], is 

scaled by introducing 𝜀𝑐𝑝𝑙𝑠.  

It could easily be argued that the small coupling parameters (𝜀𝑐𝑝𝑙𝑓) in eqn (1) and this equation 

(𝜀𝑐𝑝𝑙𝑠) are numerically the same but in order to track the parameter paths in the solution 

procedure different symbols are selected. Finally 𝑌̈[𝜏] appears in the linear inertia term and 

represents the principal kinetic part of the out-of-plane motion of the secondary beam. No 

sphere is defined for this node, as the perturbation expansion has not yet been introduced. 

 

 

Figure 6-7 Overal l visual isat ion graph for  eqn (2).  
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The multiple scales perturbation expansion is applied to the dependent variables 𝑋 and Y, up to 

the first order correction. The result is given in eqn (3), where; the small perturbation parameter 

is shown by 𝜀𝑝, fast time scale is shown by 𝑇0 and slow time scale by 𝑇1. 

𝑋 = 𝑋0[𝑇0, 𝑇1] + 𝜀𝑝𝑋1[𝑇0, 𝑇1] eqn (3)  

Considering Figure 6-8, the sphere representing the zeroth-order term is considerably larger 

than the first order. This is a fundamental term therefore no visualisation link is shown here. In 

this figure 𝑋 is the dependent variable and has not yet been encoded. Furthermore, the zeroth-

order perturbation term, 𝜀𝑝𝑋1,  is introduced for the first time. The first level of the SEEM can 

be identified in this Figure.  As expected the sphere for the zeroth-order term is much larger 

than that for the first order perturbational correction term. 

 

 

Figure 6-8 Overal l visual isat ion graph for eqn (3).  

The solution procedure progresses by applying the multiple scales perturbation expansion (up 

to the first order correction) to the dependent variable 𝑌, resulting in eqn (4). As both epsilons 

in eqn (3) and eqn (4) are sourced from the multiple scales perturbation expansion the same 

numerical value and symbol have been used for them both in this analysis.  

𝑌 = 𝑌0[𝑇0, 𝑇1] + 𝜀𝑝𝑌1[𝑇0, 𝑇1] eqn (4)  

Figure 6-9 shows the visualisation graph describing eqn (4). In this Figure 𝑌0 is the zeroth-order 

perturbation term for the transverse displacement of the secondary beam and the 𝜀𝑝𝑌1 is the 

first order correction for the transverse displacement of the secondary beam. The spherical 
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shape representing the SF number for 𝑌0 being considerably larger than 𝜀𝑝𝑌1. This is a 

fundamental equation therefore no visualisation link is introduced. 

 

 

Figure 6-9 Overal l visual isat ion graph for eqn (4).  

After these initial declarations, the first time derivative is introduced using the multiple scales 

perturbation expansion resulting in eqn (5) where the D-operator notation is used to define the 

partial derivatives: 𝐷𝑖 = 𝜕 𝜕𝑇𝑖⁄ .  

𝑑𝑡[1] = 𝐷0 + 𝐷1𝜀𝑝 eqn (5)  

The visualisation graph for this equation is shown in Figure 6-10. Considering the SEEM term-

tracking information, dt[1] is the total first time derivative and this is decomposed into a power 

series sum of partial derivatives by means of the perturbation expansion. 𝐷0 is the time 

derivative with respect to the time scale 𝑇0 and the perturbation order of this term is zero and 

it is encoded to the first level of the SEEM. D1εp is the perturbational correction term which is 

to first perturbation order here, noting that the whole perturbation scheme for the problem is 

truncated after all first order perturbation correction terms. This term is also expressed to a first 

level of SEEM encoding. Clearly the SF value for 𝐷0 is much larger than 𝐷1𝜀𝑝 which indicates that 

the point scaling for the SF value appears to be numerically reasonable.   
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Figure 6-10 Overal l v isualisation graph of eqn (5).  

The second time derivative is determined using the multiple scales perturbation expansion, eqn 

(6), again based on the algebra of the D-operator notation. A unique symbol for the small 

perturbation parameter, 𝜀dr , is introduced by choice of the user. The numerical value of 𝜀dr is 

clearly equal to 𝜀p, as both are part of the same perturbation expansion, but once again different 

sub-scripting is employed in order for clarity. This series is also truncated after the first order 

perturbation correction, as shown in eqn (6). 

𝑑𝑡[2] = 𝐷0
2 + 𝜀𝑑𝑟2𝑑𝑟𝐷0𝐷1 eqn (6)  

The visualisation and encoding information for this equation are shown in Figure 6-11; where, 

𝑑𝑡[2] is the total second time derivative and 𝐷0
2 is the second time derivative with respect to 

time scale 𝑇0, which is clearly to zeroth-order perturbation. One can see that 𝜀𝑑𝑟2𝑑𝑟𝐷0𝐷1 is the 

next and final term in this series. In this term all the quantities are to first perturbation order 

and at the first level of SEEM encoding. The SF value for the zeroth-order (𝐷0
2) term is much 

higher than that for the first order term (𝜀𝑑𝑟2𝑑𝑟𝐷0𝐷1), again as one would expect.  

 

 

Figure 6-11 Overal l v isualisation graph of eqn (6).  

Figure 6-12 Shows the fundamental equation in the analysis of the autoparametrical excitation 

of a coupled beam system. Obviously no visualisation link yet has been introduced. 
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Figure 6-12 Fundamental equations for the problem of autoparametrial ly  excitation of a coupled 

beam system.  

The multiple scales perturbation expansion and the series forms for the first and second time 

derivatives are substituted into the equation of motion of the primary beam, resulting in:  

𝐷0
2𝑋0 + 𝐷02𝑑𝑚𝑝𝑓𝑋0𝜀𝑑𝑚𝑝𝑓𝜁1𝜔1 +𝜔1

2𝑋0 + 𝐷0𝐷12𝑑𝑟𝑋0𝜀𝑑𝑟 − 𝑞𝐶𝑜𝑠[𝑇0𝛺]𝜀𝑒𝑥

− 𝐷0
2𝛾𝑋0

2𝜀𝑛𝑠𝑓 + 𝐷0
2𝑋1𝜀𝑝 + 𝜀𝑝𝜔1

2𝑋1 − 𝐷0
2𝜇𝑌0𝜀𝑐𝑝𝑙𝑓𝑌0 = 0 

eqn (7)  

 

Figure 6-13 shows the general visualisation graph for this equation. In this Figure the dense pink 

links are used to show the strong terms (to zeroth perturbation order), whilst the slim blue links 

are representing the weaker terms (to first perturbation order). Furthermore it is possible to 

identify the exact source of each quantity from the upstream terms. 

 

Figure 6-13 Overal l v isualisation graph for eqn (7).  
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A detailed analysis of both the SEEM term-tracking and the Blueprint visualisation methods for 

each term is shown in Figure 6-14. The external excitation term is shown in Figure 6-14-a where 

the amplitude of excitation 𝑞 is scaled by introducing a small parameter 𝜀𝑒𝑥 and the order of the 

excitation is shown by one. The frequency of the external excitation (𝛺) is to zeroth perturbation 

order and its visualisation link is shown in pink and is denser than the other links.  

Figure 6-14-b represents the linear stiffness term and the natural frequency is directly linked to 

the equation of motion, whilst 𝑋0 is linked to the perturbation equation. All the links for this 

term are in pink and the encoding information is shown by the labeled function on the links.   

Figure 6-14-c shows the stiffness term which is introduced purely through the choice of the 

perturbation expansion. The first linear natural frequency is the only zeroth-order quantity in 

this term and is linked to the equation of motion for the primary beam.  

Figure 6-14-d shows the damping term which is scaled by introducing 𝜀𝑑𝑚𝑝𝑓. The time derivative 

operator is linked to eqn (5) and shown in pink. Also Figure 6-14-e depicts the coefficient of 

centripetal acceleration term defined by 𝛾, and this is scaled by the use of 𝜀𝑛𝑠𝑓. There are three 

zeroth perturbation order and two first perturbation order quantities in this term.  

Furthermore Figure 6-14-f presents the coupling term. The effective mass ratio 𝜇 considered to 

be small by introducing 𝜀𝑐𝑝𝑙𝑓. Figure 6-14-g is the inertia term and in the perturbation scheme 

this is influenced by the introduction of the perturbation series form for second order 

differentiation with respect to time. It is possible to notice that all the quantities, except 𝑋0, are 

linked to equation (6). In Figure 6-14-h the inertia term can be seen and this defines the principal 

part of the kinetic effects, which in turn represent the main part of the motion of the primary 

beam. This term is purely to zeroth perturbation order and all the links are shown in pink. 

Finally, Figure 6-14-i is the second and final term emanating from the perturbation scheme and 

directly affecting the inertial quantity for the secondary beam. This term is a function of the 

multiple scales method, and two out of three quantities in this term are linked to eqn (3).   
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(b) (a) 

(c) (d) 

(e) (f) 

Figure 6-14 continued on next page. 
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Figure 6-14 A detailed investigation of the encoding for eqn (7); (a) is the external  excitation 

term, (b)  is the l inear stiffness, (c) is a stiffness term, (d) is the damping term, (e) and f are 

coupling terms, (g) is a perturbational correction term, and finally (h) and (i)  are the inert ia 

terms.  

The same procedure as above was carried out to derive the new form of the equation of motion 

for the secondary beam, up to the first perturbation order correction. The perturbation 

equations (4), (5) and (6) are substituted into equation (2), resulting in: 

𝐷0
2𝑌0 + 𝐷0𝐷12𝑑𝑟𝑌0𝜀𝑑𝑟 +𝐷0

2𝑌1𝜀𝑝 + 𝐷02𝑑𝑚𝑝𝑠𝑌0𝜀𝑑𝑚𝑝𝑠𝜁2𝜔2 − 𝐷0
2𝑋0𝜀𝑐𝑝𝑙𝑠𝑌0

+𝜔2
2𝑌0 + 𝜀𝑝𝜔2

2𝑌1 = 0 

eqn (8)  

 

Figure 6-15 shows the sources and links for each term in eqn (8). The inertia and linear stiffness 

terms have larger SF spheres as compared with the other terms.  It is possible to follow each link 

to the source terms located in the upstream direction of the equation line. 

(g) 

(i) 

(h) 
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Figure 6-15 Overal l v isualisation graph for eqn (8).  

A detailed investigation of some selected terms from this equation is provided in Figure 6-16. 

Figure 6-16-a is the stiffness term for the secondary beam, and obviously plays an important 

role in the response of the system. Figure 6-16-b is the part of the stiffness term for the 

secondary beam relating to the first order correction in the perturbation series. There are two 

first order quantities and one zeroth-order quantity in this term.  

Figure 6-16-c shows the damping term structured from equations 2, 4, and 5. Figure 6-16-d is a 

perturbational correction term generated by the series used in the multiple scales method. It 

has only one strong zeroth-order quantity, and the rest of the terms are linked in different ways 

to the multiple scales process. 

Figure 6-16-e is a coupling term. It is assumed that the coupling term is small through 

introducing 𝜀cpls at this point. This term has three zeroth perturbation order quantities in its 

structure.  
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Figure 6-16 A detailed investigation of the encoding information for eqn (8); where, (a) is a 

sti ffness term, (b) is a perturbational  correction term, (c) is the damping term, (d)  is a 

perturbational correction  term, and (e) is the coupling term. 

 

(a) (b) 

(c) (d) 

(e) 
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The zeroth-order terms from eqn (7) are selected to form the zeroth-order perturbation 

equation, as follows: 

𝐷0
2𝑌0 +𝜔2

2𝑌0[𝑇0, 𝑇1] = 0 eqn (9)  

Figure 6-17 shows all the sources and links contributing in the zeroth-order perturbation 

equation structure for the primary system. The Blueprint visualisation method successfully 

shows all the links in dense pink format and the SF values for all terms are approximately the 

same. Considering the SEEM information the inertia term is linked to eqn (3) and (6), and the 

stiffness term has a direct link back to the equation of motion.  

 

 

Figure 6-17 A detailed investigation of the encoding information for eqn (9).  

The zeroth perturbation order terms from eqn (8) are selected and set to zero, to form the 

zeroth-order perturbation equation, as follows:  

𝐷0
2𝑌0 +𝜔2

2𝑌0[𝑇0, 𝑇1] = 0 eqn (10)  

Figure 6-18 shows all the sources and links that constitute the zeroth-order perturbation 

equation for the secondary beam. All the links are displayed with dense pink lines and the SF 
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values for all terms are roughly the same. Again the user can quickly get the importance of this 

equation by considering this Figure. 

 

 

Figure 6-18 A detailed investigation of the encoding information for eqn (10).  

The first order perturbation equation for the primary beam is shown in eqn (11). This equation 

is created by taking the terms containing 𝜀1 out from eqn (7) and setting them to zero.  

𝐷0
2𝑋1 +𝜔1

2𝑋1[𝑇0, 𝑇1]

=
𝐷0

2𝜇𝑌0
2𝜀𝑐𝑝𝑙𝑓

𝜀𝑝
−
𝐷0𝐷12𝑑𝑟𝑋0𝜀𝑑𝑟

𝜀𝑝
+
𝑞𝐶𝑜𝑠[𝑇0𝛺]𝜀𝑒𝑥

𝜀𝑝

+
𝐷0

2𝛾𝑋0
2𝜀𝑛𝑠𝑓

𝜀𝑝
−
𝐷02𝑑𝑚𝑝𝑓𝑋0𝜀𝑑𝑚𝑝𝑓𝜁1𝜔1

𝜀𝑝
+
𝐷0
2𝜇𝑌0𝜀𝑐𝑝𝑙𝑓𝑌0

𝜀𝑝
 

eqn (11)  

 

The overall visualisation graph for eqn (11) is given in Figure 6-19 and it is possible to notice 

that terms with more than one zeroth perturbation order quantity have a noticeably larger SF 

representation. The contribution from the primary equation of motion and the fundamental 

equations used within the method of multiple scales can be noticed in the upstream of the 

equation line.  Furthermore, it is possible to interpret that highlighted terms in eqn (7) are 

merely re-arranged and then appeared in equation (11). 
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Figure 6-19 Overal l v isualisation graph for eqn (11).  

A detailed investigation for the encoding information and visualisation for selected terms in eqn 

(11) are given in Figure 6-20. The linear stiffness term is given in part (a) of this Figure, the natural 

frequency, which is linked to the equation of motion, has zeroth perturbation order and is shown 

in pink. The first order perturbation term for the primary beam is shown in blue. Furthermore 

the inertia term is shown in part (b) of this Figure. 

The external excitation term is shown in Figure 6-20-c and the epsilons in this term are not 

cancelled. The external excitation frequency is to zeroth perturbation order and is shown in pink. 

This signifies the strong effect of the external excitation frequency in this equation. 

The damping term is given in Figure 6-20-d and is structured from equations 1, 3, and 5. The 

small epsilon (𝜀𝑑𝑚𝑝𝑓) which was defined by the user in the modelling stage can be cancelled by 

the small epsilon parameter (𝜀𝑝) that relates to the perturbation expansion. Moreover a 

coupling term is shown in Figure 6-20-e and this term is structured from equations 1, 3, 4 and 6. 

The number of the zeroth perturbation order and first perturbation order quantities is equal in 

this term. 

Finally a perturbational correction term is shown in Figure 6-20-e. As mentioned before 𝜀𝑝 and 

𝜀𝑑𝑟 have the same numerical value so this term. This term’s structure depends strongly on the 

choice of the solution method. 
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(a) (b) 

(d) 

(e) (f) 

(c) 
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Figure 6-20 A detailed investigation of eqn (11); (a) is a  l inear st iffness, (b) is  the inertia,  (c)  is 

the external excitation, (d)  is a  damping term, (e)  is a coupling term, and finally  (f)  is a 

perturbational correction term.  

Eqn (12) is the first order perturbation equation for the secondary beam. This equation is 

obtained by taking terms with the coefficient of 𝜀1 from eqn (8), resulting in: 

𝐷0
2𝑌1 +𝜔2

2𝑌1[𝑇0, 𝑇1]

= −
𝐷0𝐷12𝑑𝑟𝑌0𝜀𝑑𝑟

𝜀𝑝
−
𝐷02𝑑𝑚𝑝𝑠𝑌0𝜀𝑑𝑚𝑝𝑠𝜁2𝜔2

𝜀𝑝
+
𝐷0
2𝑋0𝜀𝑐𝑝𝑙𝑠𝑌0
𝜀𝑝

 

eqn (12)  

 

Figure 6-21 is a general overview of the sources and links for eqn (12). Equation (8) is highlighted 

in this graph, is a transitional area because no new terms are introduced at this stage. 

 

Figure 6-21 Overal l v isualisation graph for eqn (12).  

Figure 6-22 shows a detailed process behind the visualising links for selected terms in this 

equation. The stiffness term is given in Figure 6-22-a, and the first linear natural frequency is 

linked to the equation of motion for the secondary beam. Also the inertia term is shown Figure 

6-22-b where the time derivative is shown in pink and linked to eqn (6). The first order 

perturbation term for the secondary beam is shown in blue and linked to the perturbation 

expansion. Both terms in this equation are sourced to the perturbation expansion.  Figure 6-22-
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c shows the damping term for the secondary beam. This term is structured from equations 2, 4, 

and 5. Most of the links in this Figure are to first perturbation order and are shown by blue and 

the user can quickly see that the damping term is not strong. Finally, the perturbational 

correction term for this equation is given in Figure 6-22-d. This term is sourced to equations 4 

and 6, and changing the solution method will obviously highly affect this term. 

  

  

  

  

Figure 6-22 A detailed investigation of the encoding information for eqn (12); where, (a) is the 

stiffness term, (b) is the inertia,  (c) is the damping term, and (d)  is the perturbational  correction 

term.  

The solution procedure continues in Appendix-C of the thesis. 

(a) (b) 

(c) (d) 
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6.5 Post-processing the Strength Factor information 

Considering the main logic of the SF value, which is identifying the less effective term in each 

equation, a scatter plot based on the terms and their SF values is created. As Figure 6-23 shows, 

this graph is added into the SCD solver. The user can change the equation number by adjusting 

the bar on the top of the graph, and the SF values for each term, in the selected equation, are 

given on the y-axis of the plot as functions of the term on the x-axis. Moreover, the exact SF 

value for each term is labelled near its node. This is just a presentation of the SF values and does 

not confer an automated decision process due to the algorithm.  

 

Figure 6-23 A typical  Strength Factor graph for the eqn (2) of the autoparametrical ly excited 

coupled beam system.  

6.5.1 The Strength Factor guideline  

The main goal of this procedure is to develop an algorithm that can automatically identify 

the less important term in any equation based on both the terms SF number and the solution 

procedure concept. The fundamental aim has been to create a series of conditions whereby 

a quantity cannot be justifiably removed from an equation. This initially has done by 

manually checking the SF graph for each equation and then developing a guideline proposal. 

The SF guideline is summarised below:  
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1. No terms from the perturbation expansion and the differentiations equations must be 

removed. This is because the higher order terms are already truncated based on the 

mathematical model. 

2. The user must define a threshold from which the SF number below that threshold can 

be considered to represent an insignificant term. The higher range of SF values indicate 

terms that are more important, because they have higher points in either, or both, the 

order and the SEEM hierarchy. As the SF value for each term is a number between 0 and 

1, a threshold of 0.5 is regarded as a conservative decision point for removing the 

associated term. It is possible for the user to change this sensitivity, if this is required.  

3. The algorithm must not remove the inertia term, or any external excitation terms, or 

indeed any fundamental dynamical term from any of the perturbation equations.  

4. As explained in §3.3.1, there are some quantities that the SEEM encoding information 

is not defined intentionally. If there is no encoding information, the SF cannot be 

calculated for that quantity and makes the SF for that term equal to zero. As the results 

terms with zero SF value should stay in the analysis.  

6.5.2 The Strength Factor analysis for autoparametric system 

The SF graph for all equations in the coupled beam case study is plotted and the SF guideline is 

used to select negligible terms in each equation. The original response is calculated, by the SCD 

solver, without removing any terms. While, the response after removing a selected term based 

on the SF guideline is called modified response. 

For each case to compare the original and modified responses, a set of numerical values are 

substituted in to these symbolic responses and the results are plotted in a single graph. The 

numerical values are initially adopted from experimental data provided in Cartmell [70], which 

is given in Table 6-3.  

Table 6-3 Experimnetal data  for the coupled beam system parameters  [70].  

Parameter Numerical value 

𝜇 0.3 

𝜀 0.5 

𝜔1(Hz) 50 

𝜔2 (Hz) 25 

𝜉1 0.01 

𝜉2 0.001 
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It is important to show that the qualitative forms of the generated responses are not dependent 

on the specific numerical values of the data used to calculate them. Therefore, the original and 

the modified responses are plotted in a dynamic interface where the user can adjust the 

numerical values for the system. 

 

 

As Figure 6-24 shows, the original and modified responses, based on the numerical data 

provided in Table 6-3. These response plots show all the classical characteristics of an 

autoparametrically resonant system [70]. Both original and modified responses based on this 

numerical data set are the same.  

 

Figure 6-24 The original and modified amplitude responses for the primary (a) and secondary 

(b) beams (based on the numerical values given in Table 6-3.  

It was then decided to change the numerical data values to ensure that plots shown in Figure 

6-24  are indeed qualitatively independent from them, see Figure 6-25. It is possible to notice 

that the original and modified graphs are qualitatively identical in both plots, which strongly 

implies (but does not prove) that they are qualitatively independent of the numerical values 

used to calculate them. 
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Figure 6-25 The original  and modified  amplitude responses for the primary and secondary beams 

(based on varied numerical input data values) .  

The SF plot for eqn (1) is provided in Figure 6-26.  No term is selected under the first rule of the 

SF guideline, as this not either a perturbation expansion or the definition of time derivatives. 

Considering the second rule the chosen threshold is 0.5, therefore 𝜔1
2𝑋[𝜏] should stay in the 

equation. The third rule stops the user for removing fundamental terms such as; damping 

2𝑑𝑚𝑝𝑓𝜀𝑑𝑚𝑝𝑓𝜁1𝜔1𝑋̇[𝜏], external excitation 𝜀𝑒𝑥𝑞𝑐𝑜𝑠[𝛺𝜏], and principal coupling terms 

𝜀𝑐𝑝𝑙𝑓𝜇(𝑌̇[𝜏]
2 + 𝑌̈[𝜏] ∗ 𝑌[𝜏]). Finally, the fourth rule of the SF guideline indicates retaining the 

inertia term, 𝑋̈[𝜏] which it is not yet encoded. Consequently, the guideline suggests removing 

the  𝑋̇[𝜏] ∗ 𝑋̇[𝜏]𝛾𝜀𝑛𝑠𝑓 term. These results are also categorised in  Table 6-4. 
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Figure 6-26 The Strength Factor  graph of  eqn (1).  

Table 6-4 The Strength Factor guideline applied to eqn (1). 

The Sf guideline rule 

number 
Terms 

1 - 

2 𝜔1
2𝑋[𝜏] 

3 

2𝑑𝑚𝑝𝑓𝜀𝑑𝑚𝑝𝑓𝜁1𝜔1𝑋̇[𝜏] 

𝜀𝑐𝑝𝑙𝑓𝜇(𝑌̇[𝜏]
2 + 𝑌̈[𝜏] ∗ 𝑌[𝜏]) 

𝜀𝑒𝑥𝑞𝑐𝑜𝑠[𝛺𝜏] 

4 𝑋̈[𝜏] 

 

Considering the SF selection, the modified response by removing 𝑋̇[𝜏] ∗ 𝑋̇[𝜏]𝛾𝜀nsf from eqn (1) 

is then calculated. Then original and modified responses based on the numerical values are 

plotted, resulting in Figure 6-27 . Both the original and modified responses remain the same, 

and it is possible to remove this term permanently from this analysis.  

It should be noticed that this term is also considered negligible in Cartmell [70], through 

observations mainly based on repeated numerical explorations in different problems, typified 

by differential equations incorporating autoparametric resonances . 
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Figure 6-27 The original  and modified  responses after removing  𝑋̇[𝜏] ∗ 𝑋̇[𝜏]𝛾𝜀𝑛𝑠𝑓.  

The same procedure as eqn (1) is repeated for eqn (7) in the study of the autoparametric 

excitation of coupled beam systems. The SF graph for this equation is provided in Figure 6-28. 

As this equation is not categorised as the definition of either perturbation expansion or the 

differentiation equations, rule number one of the SF guideline is not valid. Based on the second 

rule of the SF guideline, terms with the SF higher than 0.5 should remain in the equation 

structure, which means,  𝜔1
2𝑋0[𝑇0, 𝑇1] and 𝐷0

2  𝑋0[𝑇0, 𝑇1]. The third rule of the SF guideline 

dictates the fundamental terms; such as, damping 𝐷02𝑑𝑚𝑝𝑓𝑋0𝜀𝑑𝑚𝑝𝑓𝜁1𝜔1, external excitation 

𝑞𝐶𝑜𝑠[𝑇0𝛺]𝜀𝑒𝑥, and the coupling term 𝐷0𝑌0
2𝜇𝜀𝑐𝑝𝑙𝑓 must stay in the equation structure. Finally, 

number zero based on the fourth rule is retained in this equation. These results are also 

summarised in Table 6-5. 
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Figure 6-28 The Strength Factor  plot of eqn (7) .  

Table 6-5 The Sterength Factor guidel ine applied to eqn (7).  

The Sf guideline rule number Terms 

1 - 

2 
D0
2𝑋0 

𝜔1
2𝑋0 

3 

D02dmpf𝑋0𝜀dmpf𝜁1𝜔1 

−𝑞Cos[𝑇0𝛺]𝜀ex 

D0𝑌0
2𝜇𝜀cplf 

4 0 

  

As the results,  2𝑑𝑟𝜀𝑑𝑟𝐷0𝐷1𝑋0, and 𝑋̇[𝜏] ∗ 𝑋̇[𝜏]𝛾𝜀nsf, D0
2𝑋1𝜀𝑝, and 𝜀𝑝𝜔1

2𝑋1  are considered less 

effective terms in this equation. As discussed in Figure 6-29 removing 𝑋̇[𝜏] ∗ 𝑋̇[𝜏]𝛾𝜀nsf has no 

particular effect on the response of the system.  

The modified repose of the system by removing 2𝑑𝑟𝜀𝑑𝑟𝐷0𝐷1𝑋0, term is investigated. Figure 6-30 

shows the original and modified responses, it is possible to notice removing 2𝑑𝑟𝜀𝑑𝑟𝐷0𝐷1𝑋0 

significantly altered the secondary beam response of the system. Consequently, this term 

should not be removed from this equation.  
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Figure 6-30 The original  and modified  responses after removing  2drεdrD0D1X0.  

Then the modified responses for D0
2𝑋1𝜀𝑝, and 𝜀𝑝𝜔1

2𝑋1individully are calculated. As Figure 6-31 

and Figure 6-32 show, removing either of these terms do not affect the response of this system. 

As the results D0
2𝑋1𝜀𝑝, and 𝜀𝑝𝜔1

2𝑋1can be neglected, while 2𝑑𝑟𝜀𝑑𝑟𝐷0𝐷1𝑋0 should be retained 

in this equation. 
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Figure 6-31 The original  and modified  responses after removing D0
2𝑋1𝜀𝑝.  

 

Figure 6-32 The original  and modified  responses after removing  𝜀𝑝𝜔1
2𝑋1  
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The analysis continues by plotting the SF graph for eqn (8) and this is shown in Figure 6-30. The 

maximum SF value number is almost equal to the threshold, therefore the 𝜔2
2𝑌0 and D0

2𝑌0 terms 

must be retained. Furthermore, 𝐷0
2𝑋0𝜀𝑐𝑝𝑙𝑠𝑌0  and 𝐷02𝑑𝑚𝑝𝑠𝑌0𝜀𝑑𝑚𝑝𝑠𝜁2𝜔2 are classified as 

fundamental terms and they should stay in the equation. Consequently, the SF guideline 

suggests removing 𝐷0
2𝑌1𝜀𝑝, 𝜀𝑝𝜔2

2𝑌1, and 𝐷0𝐷12𝑑𝑟𝑌0𝜀𝑑𝑟. 

 

Figure 6-33 The Strength Factor conf iguration for eqn (8).  

The modified response after removing 𝐷0
2𝑌1𝜀𝑝 and 𝜀𝑝𝜔2

2𝑌1 are shown in Figure 6-34 and Figure 

6-35. As it is shown removing these terms had no particular effect on the response of therefore 

they can be neglected. Although as it is shown in Figure 6-36, removing 2𝑑𝑟𝐷0𝐷1𝑌0𝜀𝑑𝑟 

considerably affects the response for the secondary beam, and it should not be neglected. 
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Figure 6-34 The original  and modified  responses after removing  𝜀𝑝𝜔2
2𝑌1.  

 

Figure 6-35 The original  and modified  responses after removing  𝐷0
2𝑌1𝜀𝑝.  
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Figure 6-36 The original  and modified  responses after removing 2𝑑𝑟𝐷0𝐷1𝑌0𝜀𝑑𝑟.  

The SF graph for eqn (11) is given in Figure 6-37. The SF value for all the terms are less than the 

selected threshold, therefore terms with the terms with the maximum SF number are retained. 

𝐷0
2𝑋1 and 𝜔1

2𝑋1[𝑇0, 𝑇1], 𝑋̇[𝜏] ∗ 𝑋̇[𝜏]𝛾𝜀𝑛𝑠𝑓, 
𝜇𝐷0

2𝑌0𝜀𝑐𝑝𝑙𝑓𝑌0[𝑇0,𝑇1]

𝜀𝑝
 . It can be noted that the 

fundamental terms are also selected and retained in the equation structure; notably, 
𝐷0
2𝜇𝑌0

2𝜀𝑐𝑝𝑙𝑓

𝜀𝑝
 

, 
𝑞𝑐𝑜𝑠[𝑇0𝛺]𝜀𝑒𝑥

𝜀𝑝
, and  

2𝑑𝑚𝑝𝑓𝐷0𝑋0𝜀𝑑𝑚𝑝𝑓𝜁1𝜔1

𝜀𝑝
. Consequently  

2𝑑𝑟𝐷0𝐷1𝑋0𝜀𝑑𝑟

𝜀𝑝
 is suggested as a negligible 

term. 
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Figure 6-37 The Strength Factor  graph for eqn (11) .  

The modified response after removing 
2𝑑𝑟𝐷0𝐷1𝑋0𝜀𝑑𝑟

𝜀𝑝
  from eqn (11) is calculated and compared 

to the original response, the results are shown in Figure 6-38. Removing this term has a 

significant effect on the response of the secondary beam, as the result this term should not be 

removed from this equation structure.   
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Figure 6-38 The original  and modified  responses after removing  
2𝑑𝑟𝐷0𝐷1𝑋0𝜀𝑑𝑟

𝜀𝑝
.  

The SF graph for eqn (12) is shown in Figure 6-39. The SF values for 𝐷0
2𝑌1, 𝜔2

2𝑌1[𝑇0, 𝑇1], and 

𝐷0
2𝑋0𝜀𝑐𝑝𝑙𝑠𝑌0[𝑇0,𝑇1]

𝜀𝑝
 are higher than the rest of the terms and should be retained. Damping term 

𝐷02𝑑𝑚𝑝𝑠𝑌0𝜀𝑑𝑚𝑝𝑠𝜁2𝜔2

𝜀𝑝
 is categorised in the fundamental terms and also kept within the equation 

structure. Consequently, the modified response of the system without 
2𝑑𝑟𝐷0𝐷1𝑌0𝜀𝑑𝑟

𝜀𝑝
  is 

considered.  
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Figure 6-39 The Strength Factor  conf iguration for eqn (12).  

Figure 6-40 is a comparison between the the original response and the modified response, after 

removing 
2𝑑𝑟𝐷0𝐷1𝑌0𝜀𝑑𝑟

𝜀𝑝
.  Removing this term has a huge effect on the response of the secondary 

beam, and this term should stay within the equation structure.  
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Figure 6-40 The original  and modified  responses after removing  
2𝑑𝑟𝐷0𝐷1𝑌0𝜀𝑑𝑟

𝜀𝑝
.  

Figure 6-41 shows the SF number graph for eqn (20). The SF values for 
𝑒ⅈ𝑇0𝛺−ⅈ𝑇0𝜔1𝑞𝜀𝑒𝑥

2𝑒𝑥𝜀𝑝
 and 

2𝐵2𝑒−ⅈ𝑇0𝜔1+2ⅈ𝑇0𝜔2𝜇𝜀𝑐𝑝𝑙𝑓𝜔2
2

𝜀𝑝
 are higher than the threshold, and these terms are retained in eqn (20). 

As eqn (20) is not a perturbation equation, fundamental terms can be considered negligible (the 

third rule in the SF guideline). Consequently, the SF guideline suggests removing 
𝑖𝐷1𝐴2𝑑𝑟𝜀𝑑𝑟𝜔1

𝜀𝑝
 

and 
𝑖𝐴2𝑑𝑚𝑝𝑓𝜀𝑑𝑚𝑝𝑓𝜁1𝜔1

2

𝜀𝑝
 terms from this equation. 

 

Figure 6-41 The Strength Factor conf iguration of eqn (20). 

Figure 6-42 shows the modified response, after removing 
𝑖𝐴2𝑑𝑚𝑝𝑓𝜀𝑑𝑚𝑝𝑓𝜁1𝜔1

2

𝜀𝑝
 from eqn (20), 

comparing to the original response.  Both responses are identical and it is possible to remove 

𝑖𝐴2𝑑𝑚𝑝𝑓𝜀𝑑𝑚𝑝𝑓𝜁1𝜔1
2

𝜀𝑝
 from this equation.   
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The modified response after removing 
𝑖𝐷1𝐴2𝑑𝑟𝜀𝑑𝑟𝜔1

𝜀𝑝
  is compared to the original response. As 

Figure 6-43 indicates, removing this term significantly affects the secondary beam response. As 

the results this term should stay in eqn (20) structure. 

 

 

Figure 6-42 The original  and modified  responses after removing  
𝑖𝐴2𝑑𝑚𝑝𝑓𝜀𝑑𝑚𝑝𝑓𝜁1𝜔1

2

𝜀𝑝
.  
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Figure 6-43 The original  and modified  responses after removing   
𝑖𝐷1𝐴2𝑑𝑟𝜀𝑑𝑟𝜔1

𝜀𝑝
.  

Figure 6-44 shows the SF graph for eqn (22). The SF value of 
𝐴𝐵
_
𝑒ⅈ𝑇0(𝜔1−2𝜔2)𝜀𝑐𝑝𝑙𝑠𝜔1

2 

𝜀𝑝
 is higher than 

the threshold, and therefore 
𝑖𝐵2𝑑𝑚𝑝𝑠𝜀𝑑𝑚𝑝𝑠𝜁2𝜔2

2

𝜀𝑝
 and 

𝑖𝐷1𝐵2𝑑𝑟𝜀𝑑𝑟𝜔2

𝜀𝑝
 are selected as negligible terms 

in this equation.  
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Figure 6-44 The Strength Factor  conf iguration for eqn (22).  

Figure 6-45 shows the modified response after removing 
𝑖𝐵2𝑑𝑚𝑝𝑠𝜀𝑑𝑚𝑝𝑠𝜁2𝜔2

2

𝜀𝑝
 from eqn (22) 

compared to the original response. Both responses are identical and it is possible to remove this 

term from eqn (22) structure.  

The modified response after removing  
𝑖𝐷1𝐵2𝑑𝑟𝜀𝑑𝑟𝜔2

𝜀𝑝
 is compared to the original response. The 

result is shown in Figure 6-46, removing this term affects the secondary beam response 

significantly. Consequently, this term should retain in eqn (22) structure.  
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Figure 6-45 The original  and modified  responses after removing  
𝑖𝐵2𝑑𝑚𝑝𝑠𝜀𝑑𝑚𝑝𝑠𝜁2𝜔2

2

𝜀𝑝
.  

 

Figure 6-46 The original  and modified  responses after removing   
ⅈD1B2drεdrω2

εp
.  
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Figure 6-47 shows the SF graph for eqn (24). The SF values for both 𝜔1
2𝑋1 , −

𝐴
_
2𝑒−2ⅈ𝑇0𝜔1𝛾𝜀𝑛𝑠𝑓𝜔1

2

𝜀𝑝
 , 

and −
𝐴2𝑒2ⅈ𝑇0𝜔1𝛾𝜀𝑛𝑠𝑓𝜔1

2

𝜀𝑝
 are higher than the threshold and must retain in this equation. Also 

𝐷0
2𝑋1 is a fundamental term and should stay in the equation structure. Consequently, as Figure 

6-48 shows 
2𝐴𝐴

_
𝛾𝜀𝑛𝑠𝑓𝜔1

2

𝜀𝑝
  can be considered negligible. 

 

Figure 6-47 The Strength Factor conf iguration for eqn (24).  
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Figure 6-48 The original  and modified  responses after removing  
2𝐴𝐴

_

𝛾𝜀𝑛𝑠𝑓𝜔1
2

𝜀𝑝
  .  

Table 6-6 summarises the results of the SF selections. Considering the current SF guideline, 15 

terms were removed from 8 selected equations. The SF choice was valid for about 60% of these 

selections, and the response of the system after removing these terms remained unchanged. 

Adding a new policy to the guideline could decrease the invalid selections from 40% to 0, noting 

that all the invalid selected terms were seen to contain 𝜀𝑑𝑟.  

Table 6-6 Summarising the Strength Factor term selection for a case study.  

 Initial SF guideline Revised SF guideline 

Equation 
number 

Number of 
Selected terms 

Number of 
valid selections 

Number 
of invalid 
selections 

Number of 
Selected terms 

Number of 
valid selections 

Number 
of invalid 
selections 

1 1 1 1 1 1 0 

7 4 4 3 3 3 0 

8 3 3 2 2 2 0 

11 1 1 0 1 1 0 

12 1 1 0 0 0 0 

20 2 2 1 1 1 0 

22 2 2 1 1 1 0 

24 1 1 1 3 3 0 
 - 60% 40% - 100% 0% 
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It is important to notice that these results are just for one case study and so the proposal for 

using the SF number to identify negligible terms requires further investigations before it can be 

considered as a generalisable rule-base.  

6.6 A three-dimensional structural analogy for the solution procedure 

The relationships between the solution method and the SEEM term-tracking method for various 

information aspects were investigated in this research. It is also potentially interesting to take 

this concept to another level and examine the relationship between the terms in an analysis 

regardless of the equation structure and the solution method hierarchy.  

In the original version of the Blueprint visualisation graph, the solution hierarchy is illustrated by 

defining a special set of coordinates (x,y,z), for each equation within the visualisation pallet. For 

example, when considering Figure 6-49 the first nine equations for the problem of auto-

parametric excitation of a coupled beam system can be seen. The solution procedure hierarchy, 

the equation structures, and term positions are clearly identifiable in this graph.  

 

Figure 6-49 The original Blueprint v isualisat ion graph for the f irst nine equations in the problem 

of the auto-parametrical ly resonant coupled beam system.  

In order to investigate the relationship between the terms in these nine equations the condition 

that was set to restrict the position of each term on the equation line has been removed and 

HighDimensionalEmbedding algorithm [71] for positioning the nodes and links were used. List 

of built-in Mathematica functions are shown in Figure 6-50. 
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Figure 6-50 The 3D graph posit ioning algorithms in Mathematica   

The result of removing the defined positioning and plotting based on the 

HighDimensionalEmbedding algorithm is illustrated in Figure 6-51. Interestingly in this sort of 

visualisation the key terms are quickly identifiable because a larger number of links is sourced 

to them. Furthermore, the SEEM encodings and the SF values can be clearly shown in this 

format.  

 

Figure 6-51 The modif ied Blueprint v isual isat ion graph for the first  nine equations in the 

autoparametrically resonant coupled beam system.  
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It is theoretically possible to evaluate this form of plot for the complete solution procedure for 

any conceivable problem. Figure 6-52 shows the complete solution structure of the 

parametrically excited pendulum problem, which was discussed in chapters 3 and 4. Figure 6-53  

shows the complete solution structure for the problem of the autoparametrically resonant 

coupled beam system, which is partially investigated in this chapter. 

 

Figure 6-52 An alternative presentation of the Blueprint visual isation method for the solution of  

the parametrically  excited pendulum problem.  
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Figure 6-53 An alternative presentation of the Blueprint visual isation method for 

autoparametrically resonant coupled beam system.  

This an alternative representation for analytical solution procedures and starts to suggest the 

possibility of manufacturing a solid 3D printed structure for each solution, as shown in Figure 

6-54 and Figure 6-55. This offers a completely new perspective for experiencing the analytical 

solution procedures that have been studied, in the sense of generating an actual physical 

structure for a complex mathematical solution procedure. 
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Figure 6-54 A conjectured 3D printed sample of  a solution procedure for a  paramet rical ly 

excited pendulum problem.  

 

Figure 6-55 Different angle views of a conjectured 3D printed sample of a  solution procedure for 

a parametrical ly excited pendulum problem.  

An interesting observation can be made from investigation of the top and bottom views of the 

solution visualisations for both case studies.  
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The top view of the structure generated for the autoparametrically resonant coupled beam 

system is shown in Figure 6-56. This Figure shows a reasonably symmetrical structure containing 

two cylindrical shapes that are connected around an axis of symmetry (highlighted in red). For 

convenience these cylindrical shapes are denoted by A and B. 

The SEEM encoding information for each link can be visualised using the Tooltip function. Can 

be seen that most of the terms in A relate to the primary beam, whilst the majority of the terms 

in B are connected with the secondary beam. The coupling terms mostly appear near the axis of 

symmetry.   

 

 

Figure 6-56 Plan view of the Blueprint  visual isation for the autoparametrically resonant coupled 

beam system, showing the physical sub -systems of the problem in the form of cylindrical regions 

A and B.  

A 

B 
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Considering the systematic nature of the perturbation method of multiple scales and the fact 

that almost the same computational process is repeated for each coordinate, in terms of 

defining the perturbation equations, defining the secular terms, the solvability conditions, and 

then deriving the modulation equations one can see where a regular repeated graphical 

structure could emerge from and that it could offer a basis for the computational sub-space 

associated with each generalised coordinate. Obviously in such cases the coupling terms would 

define the symmetrical intersection points of the overall solution structure.  

The same observation for the parametrically excited pendulum can be observed. A cylindrical 

form can be identified in both the top and bottom views of Figure 6-55. There is only one 

generalised coordinate in this problem, therefore only one cylindrical shape can be identified. 

6.7 Summary 

Considerable developments for the SCD solvers have been accomplished in this chapter. These 

developments are summarised as follows: 

• The Strength Factor (SF) concept has been introduced and implemented into the 

Blueprint visualisation method.  

• A guideline for selecting potentially negligible terms in each equation is provided.  

• To highlight the effectiveness of the developed Symbolic Computational Dynamic (SCD) 

solver, part of the problem of the autoparametrically excited coupled beam system was 

investigated.  

• The automated SEEM encoding information, and the visualisation links for most of the 

terms have been investigated in detail. 

• The concept of the SF guideline was applied to the autoparametrically coupled beam 

system problem.  

• A 3D structure for the solution procedure based on the Blueprint method was 

introduced. 

• In the 3D structure of each case study a cylindrical like shape per each generalised 

coordinate was observed. 

 





 

 
 

Chapter 7  Conclusions and Future 

Work 

In this research a new link between the defining mathematical equations and the physics of 

problems in engineering dynamics has been created, principally by developing the concept and 

functionality of novel Symbolic Computational Dynamics (SCD) solvers. The Source and 

Evolution Encoding Method (SEEM) term-tracker has been discussed and computerised by 

means of advanced code written in the MathematicaTM programming language. The Blueprint 

visualisation method for the SCD solver has been developed in some considerable detail and 

computerised, again by means of code written in MathematicaTM. A metric for term evaluation 

in the form of the Strength Factor (SF) has been introduced. An adjunct to this is an alternative 

visualisation construct in the form of a three-dimensional printed solid structure which has also 

been introduced in this thesis. After discussing the conclusions and proposing some future work 

for this research area, this thesis ends with a closing note.  

7.1 The Source and Evolution Encoding Method 

The SEEM encoding method has been developed and discussed in some detail in this thesis. This 

term-tracking method extracts, saves, and pre-processes a considerable amount of information 

during the solution procedure. Several functions for applying and post-processing this 

information have also been developed, for visualisation. The application of this method has 

been demonstrated by applying the SEEM to the problem of the parametrically excited 

pendulum.  The SEEM has been shown to identify valuable information at each stage of this 

analysis, and two uses for this information are identification of the sources of each term and in 

making a connection back to the physical conceptualisation of the problem.  



158  7.2 The Blueprint visualisation method 

 

 
 

7.2 The Blueprint visualisation method 

The Blueprint visualisation method has been introduced and implemented into the SCD solver. 

This method is able to illustrate the process of development of the encoding information during 

the solution procedure. A flexible visualisation panel has been programmed, enabling the user 

to interact with the generated results. Then the application of this method has been 

demonstrated by discussing the generated graphs for the problem of the parametrically excited 

pendulum.  

This idea has been implemented into the SCD solver and the generated graphs for partial 

analysis of the problem of a parametrically excited pendulum case study have been discussed.  

In future it is suggested that adding features such as highlighting the path taken for a selected 

quantity in the solution procedure structure, and changing the texture of the links for colour-

blind users are suggested as potentially important avenues for future development work. 

7.3 A symbolic term evaluation method 

The Strength Factor (SF) is a new metric based on the SEEM term-tracking information, and the 

solution procedure has been extended to use this to highlight the significance of each term in 

the equations. This feature has been implemented within the Blueprint visualisation method. A 

guideline for identifying less effective terms in each equation has subsequently been 

established. Part of the solution procedure for the problem of the autoparametrically resonant 

beam system, which has been found using the SCD solver developed in this research has been 

discussed. The SF guideline has been applied to all equations in this particular case study, 

resulting in a prediction that about 60% of the selected terms could be considered to be 

negligible. It has been shown in some follow-on numerical calculations that removing these 

terms does not significantly alter the quantitative or qualitative aspects of the response of this 

particular system. This finding is not yet sufficiently confirmed as a generic result from this 

research but it appears to be very promising. 

This idea requires further development, in the form of a stringent sensitivity analysis for a 

defined points system, leading on to an updating of the SF guideline rules by investigating more 

case studies. 

7.4 Alternative visualisation for the solution procedure 

A proposal for a 3D printed version of the Blueprint visualisation method has also been 

introduced in this thesis. This has been developed by cancelling the predefined fixed coordinates 
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for each equation and the terms within the Blueprint visualisation graph and shows the 

relationships between the terms, and this is regardless of the solution procedure hierarchy. An 

interesting observation emerges from the case studies investigated whereby cylindrical 

structures can be identified in the visualisation, and furthermore that these structures appear 

to relate to the generalised coordinates of the input problem. These cylindrical sub-structures 

are only visible from looking perpendicularly onto the plan views of the visualisation, either from 

the top or the bottom. 

In future it will be interesting to investigate different case studies for higher dimensional 

problems comprising more than two degrees of freedom (therefore defined physically by more 

than two generalised coordinates, and hence more than two coupled nonlinear differential 

equations of motion) in order to understand fully, and hence validate, this observation. Also 

structures emanating from different solution methods for the same suite of problems could 

usefully be compared to the same ends.  

The application of this method can be extended to recent virtual reality technology, where it 

provides the user with a new form of interaction with the analytical solution procedure.  As well 

as the professional users, this visualisation method can be used in the education sector. 

 

7.5 Closing note 

As has been discussed in the motivation chapter of this thesis, a new perspective for looking at 

the information generated by approximate analytical solution procedures in engineering 

dynamics has been developed. Before a differential equation such as that shown in Figure 1-3, 

could have been considered to be just a differential equation. Development of the SCD approach 

has shown a considerable amount of implicit information hidden in such equation structures, 

and this information may be definable and applied to useful ends by the user. As Figure 7-1 

illustrates, different forms of information can be extracted using the SCD solver technology 

developed in the research reported in this thesis.   
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Figure 7-1 This is not just  a differential equation.  

.  
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Appendices 

Appendix:  algorithm 1 Power function encoding where the index is  a negative integer .  

PowerFunction4(Line 20 SEEMcore) 
1: if index == Integer and index = 1 
2:    pos <- position base in the indextrm; 
3:    if pos == {} 
4:        out1 <- define a new encoing vector; 
5:    else 
6:        out1 <- update the encoding vector; 
7:    end 
8:     pos2 <- position base in the indextrm; 
9:    if pos2 == {} 
10:        out2 <- define a new encoing vector; 
11:    else 
12:        out2 <- update the encoding vector; 
13:    end 
14:    out1*out2 
15: end  

Appendix:  algorithm 2 Power function encoding where the base is in an exponential form and 

the index is in mult iplication from . 

PowerFunction5(Line 20 SEEMcore) 
1:  if base == e and index == expression 
2:     out < - 1 
3:     Remove the time scales from the index; 
4:     arg < - e ^ each item in the index; 
5:     for each arg 
6:         if there is a complex term in the arg 
7:             im < - index 
8:             if coefficient of the im == 1 or -1 
9:                 out1 < - 1 
10:            else 
11:               pos < - find position im in the indextrm 
12:               if pos == {} 
13:                   out1 < - define a new encoding  
14:               else 
15:                   out1 < - update the encodings 
16:               end 
17:            end 
18:        end 
19:        pos <- find the position of the base (e) 
20:        if pos == {} 
21:            ou2 < - define a new encoding 
22:        else 
23:            ou2 < - update the encodings 
24:        end 
25:        out < - out*out1*out2       
26:    end 
27:    out 
28: end  
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Appendix:  algorithm 3 Power function encoding where base is  either a summation or 

multipl icat ion.  

PowerFunction6(Line 20 SEEMcore) 
1:  if base == expression or summation 
2:      arg < - extraxt the term 
3:      for each arg 
4:         pos < - find the position of the arg in the indextrm 
5:          if pos == {} 
6:             out1 < - define a new encoding vector 
7:          else 
8:             out1 < - update the encoding vector 
9:          end 
10:         out < - out1*out 
11:     end 
12: end 
 

 

Appendix:  algorithm 4 Power function encoding where base is  a derivative of the dependent 

variable.  

PowerFunction7(Line 20 SEEMcore) 
1:  if base == Derivative of the dependent variables 
2:      do noting 
3:  else 
4:     pos < - find the position of the base 
5:     if pos == {}, 
6:        out1 < -  define a new encoding vector 
7:     else 
8:        out1 < -  update the encoding vector 
9:     end 
10:     pos < -  find the position of the index 
11:     if pos == {}, 
12:        out2 < -  define a new encoding vector 
13:     else 
14:        out2 < - update the encoding vector 
15:     end 
16:     out1*out2 
17: end 
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Appendix:  algorithm 5 Complex encoding 

ComplexFunction (Line 23 SEEMcore) 
1: if subtrm == Complex 
2:     im <- imaginary part of the subterm; 
3:     if im == 1 or -1  
4:         out1 < - 1 
5:     else 
6:         pos <- position im in the indextrm 
7:         if pos == {}, 
8:             out1 < - define a new encoding vector 
9:         else 
10:            out1 < - update the encoding vector 
11:         end 
12:         pos < - find position the imaginary unit 
13:         if pos == {}, 
14:            out2 < - define a new encoding vector 
15:        else 
16:            out2 < - update the encoding vector 
17:        end 
18:        update indextrm; 
19:        out1*out2 
20:    end 
21: end  

Appendix:  algorithm 6 Integer encoding 

NoneZeroIntegerFunction(Line 26 SEEMcore) 
1: if subterm == Integer not equal to 0 
2:    pos < -  position subterm 
3:    if pos == {} 
4:        out < -  define a new encoding vector 
5:    else 
6:        out < -  update the encoding vector 
7:     end 
8: end 
 

 

Appendix:  algorithm 7 Rational  encoding 

RationalFunction(Line 26 SEEMcore) 
1: if subterm == rational 
2:     nom < - nominator 
3:     den < - denominaor; 
4:     pos1 < - find position nom in indextrm; 
5:     if pos1 == {} 
6:         out1 < - define a new encoding vector 
7:     else 
8:         out1 < - update the encoding vector 
9:     end 
10:    pos2 < - find position den in indextrm; 
11:    if pos == {} 
12:       out2 < - define a new encoding vector 
13:    else 
14:       out2 < - update the encoding vector 
15:    end     
16:    out1*out2 
17: end  
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Appendix:  algorithm 8 Derivation encoding 

DifferentiationFunction(Line 32 SEEMcore) 
1: if subterm == Derivation of one of the dependent variables 
2:    arg <- dependent variable after 
3:    pos <- position arg 
4:    if pos === {} 
5:        out1 <- define a new encoding vector 
6:    else 
7:        out1 <- update the encoding vector 
8:    end 
9:    pos <- position derivation operator 
10:    if pos === {} 
11:        out2 <- define a new encoding vector 
12:    else 
13:        out2 <- update the encoding vector 
14:    end 
15:    out1*out2 
16: end 
 

       

Appendix:  algorithm 9 Part ial derivative encoding 

DifferentiationFunction(Line 32 SEEMcore) 
1: if subterm == Derivation  
2:    arg < - dependent variable after 
3:    pos < - position arg 
4:    if pos == {} or arg == pure function 
5:        out1 < - define a new encoding vector 
6:    else 
7:        out1 < - update the encoding vector 
8:    end 
9:    pos <- position derivation operator 
10:    if pos == {} 
11:        out2 < - define a new encoding vector 
12:    else 
13:        out2 < - update the encoding vector 
14:    end 
15:    out1*out2 
16: end  

Appendix:  algorithm 10 Complex amplitude encoding  

ComplexAmp(Line 32 SEEMcore) 
1: if sunterm == complex amplitude or its condugate 
2:    pos <- find the position of the subterm 
3:    if pos === {} 
4:        out1 <- define a new encoding vector 
5:    else 
6:        out1 <- update the encoding vector 
7:    end 
8:    out1 
9: end 
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Appendix: algorithm 11 Other functions encodings 

ComlexAmp(Line 32 SEEMcore) 
1: if sunterm == dependent variable or its derivatives 
2:    out1 < - 1 
3: else 
4:    pos < - find the position of the subterm 
5:    if pos == {} 
6:        out1 < - define a new encoding vector 
7:    else 
8:        out1 < - update the encoding vector 
9:    end 
10:    out1 
11: end 
     
 

 

Display function algorithms 

Appendix:  algorithm 12 Exponential quantities that are having a summation of symbol as the 

index 

DisplayPowerFunction( line display ) 
1: if subterm == power function 
2:    convert any string from to expression; 
3:    if vase == e and index == summation 
4:        ay < - change the index form to a+bI; 
5:        im < - take the imaginary part of ay out; 
6:        arg < - remove time related symbols from index; 
7:        argOrig < - save the original from of the index; 
8:        pos < - find position of any compound level term; 
9:        strng < - drop the identity factor from the encoding vector; 
10:        remove the used encoding vector from the intextrm; 
11:        for each element in the index 
12:            if element == summation or multiplication 
13:                NewVar < - decompose the element; 
14:                for each NewVar 
15:                    pos < - position NewVar in the indextrm; 
16:                    if pos == {} 
17:                        strngarg < - "";  
18:                    else 
19:                        strngarg < - shape the encoding vector 
20:                    end 
21:                    Replace the element in the argOrig with the tootip 
22:                end 
23:            else 
24:                for each element 
25:                    pos < - position element in the indextrm; 
26:                    if pos == {} 
27:                        strngarg < - "";  
28:                    else 
29:                        strngarg < - shape the encoding vector 
30:                    end 
31:                    Replace the element in the argOrig with the tootip 
32:                end 
33:            end 
34:        end 
35:        out <- (ToolTip[E, strng])^{ToolTip[im, strng]*argOrig*ToolTip[I, 

36: strng]} 
37:    end 
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Appendix:  algorithm 13 Power function with differentiations operator in the base  

DisplayDerivationPerturbation  
1: if base == derivation of any perturbations, 
2:    var < - original from of the base 
3:    arg < - input of the derivation; 
4:    posarg < - find position arg in indextrm; 
5:    pos < - position arg in the indextrm;  
6:     if pos == {} 
7:         strngarg < - ""; 
8:     else 
9:         strngarg < - shape the encoding vector 
10:     end 
11:     input < - convert the appearance of arg to the user end format; 
12:     pos < - position derivation function in the indextrm; 
13:     if pos == {} 
14:        strng < - "";  
15:     else 
16:        strng < - shape the encoding vector 
17:     end 
18:      diff < - convert the appearance of derivation operator to the user  
19: end format; 
20:     pos < - find the position of the index; 
21:     if pos == {} 
22:        strngpwr < - "";  
23:     else 
24:        strngpwr < - shape the encoding vector 
25:     end 
26:     out < - ToolTip[diff, strng]* (ToolTip[input, strngarg]^ToolTip[index, 
27: strngpwr])             
28: end 
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Appendix:  algorithm 14 Power function where the base is either a summation or multipl icat ion 

and the index is an integer  

Powerfunction2  
1: if base == expression or submission and index == integer 
2:    if index == -1 
3:        out <- simply from of the base; 
4:        item <- elements of base in a list format; 
5:        for each item 
6:            if item == I 
7:                vec <- position compound from encodings; 
8:                strng <- convert the encoding vector; 
9:                out <- out replace I with ToolTip[I, strng]; 
10:            else 
11:                if item == Sting 
12:                    varr <- expression form of the string; 
13:                    vec <- find the position of varr in indextrm; 
14:                    strng <- convert the encoding vector; 
15:                    out <- out replace varr with ToolTip[varr, strng]; 
16:                else 
17:                    vec <- find the position of element in indextrm; 
18:                    strng <- convert the encoding vector; 
19:                    out <- out replace varr with ToolTip[element, strng]; 
20:                end 
21:            end 
22:        end 
23:        1/ out 
24:    else 
25:         out <- simply from of the base; 
26:         item <- elemnets of base in a list format; 
27:         for each item 
28:            if item == i 
29:                vec <- position compound from encodings; 
30:                strng <- convert the encoding vector; 
31:                out <- out replace I with ToolTip[I, strng]; 
32:            else 
33:                if item == Sting 
34:                    varr <- expression form of the string; 
35:                    vec <- find the position of varr in indextrm; 
36:                    strng <- convert the encoding vector; 
37:                    out <- out replace varr with ToolTip[varr, strng]; 
38:                else 
39:                    vec <- find the position of element in indextrm; 
40:                    strng < - convert the encoding vector; 
41:                    out < - out replace varr with ToolTip[elemnet, strng]; 
42:                end 
43:            end 
44:         end 
45:        out 
46:    end 
47: end 
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Appendix:  algorithm 15 Power function where the index is a negative integer  

Powerfunction3  
1: if base == expression or summation 
2:    pos < - find the position of power index; 
3:    if pos == {} 
4:        strng <- ""; 
5:    else 
6:        strng <- develop encoding vector from indextrm; 
7:    end 
8:     pwr <- Tooltip[ power, strng];     
9:     arg <- list from of the base; 
10:    head <- function type of the base; 
11:    for each arg 
12:        pos <- find the position of arg index; 
13:        strng <- develop encoding vector from indextrm; 
14:        replace each arg with Tooltip[arg,strng]; 
15:    end 
16:    apply the head to the encoded arg; 
17:    arg^pwr 
18: end  
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Appendix:  algorithm 16 Any other power function format  

Powerfunction4 (line XXXX )         
1: if subterm == any other power function 
2:    out1 <- base^list form of power (removing the time elements); 
3:    out2 <- original form of the subterm; 
4:    if base == summation, 
5:        for each element in the base 
6:             pos <- find the position of power index; 
7:             if pos == {} 
8:                 strng <- ""; 
9:             else 
10:                 strng <- develop encoding vector from indextrm; 
11:             end 
12:             out2 <- replace element with Tooltip[element,string]; 
13:        end 
14:    else 
15:        if base == exponential and there is a complex element in the index 
16:            im <- imaginary parts of the index in a list form 
17:            outim <- 1; 
18:            if multipfication of the list == 1 or -1 
19:                pos <- find E form encoding vector in the indextrm; 
20:                if pos == {} 
21:                    strng <- ""; 
22:                else 
23:                    strng <- develop encoding vector from indextrm; 
24:                end 
25:                out <- Tooltip[E, strng]^{ Tooltip[I, strng]} 
26:            else 
27:                for each element in im 
28:                    pos <- imaginary parts of the element in a list form; 
29:                    if pos == {} 
30:                        strngim <- ""; 
31                    else 
32                       strngim <- develop encoding vector from indextrm;  
33                    end 
34                    outim <- outim* Tooltip[element, strngim]; 
35                end 
36                pos <- find position exponential function in the indextrm; 
37                if pos == {} 
38                    strng <- ""; 
39                else 
40                    strng <- develop encoding vector from indextrm; 
41                end 
42                out <- Tooltip[E, strng]^{outim* Tooltip[I, strng]}  
43            end 
44        else 
45            if base == string  
46                out <- 1; 
47                var <- expression from the base; 
48                if var == Integer or Rational or Complex; 
49                    update out2 with the expression from; 
50                    for each var 
51                        pos <- find position var function in the indextrm; 
52                        if pos == {} 
53                            strng <- ""; 
54                        else 
55                            strng <- develop encoding vector from indextrm; 
56                            remove pos from indextrm  
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57:                        end 
58:                        out <- out * out*Tooltip[var*, strng] 
59:                    end 
60:                end 
61:            end 
62:        else 
63:            if index == -1 
64:                input <- change the base to the enduser format; 
65:                pos <- find position base in the indextrm; 
66:                if pos == {} 
67:                    strng <- ""; 
68:                else 
69:                    strng <- develop encoding vector from indextrm; 
70:                end 
71:                out <- Tooltip[input, strng]^-1 
72:            else 
73:                input <- change the base to the end user format; 
74:                pos <- find position base in the indextrm; 
75:                if pos == {} 
76:                    strng <- ""; 
77:                else 
78:                    strng <- develop encoding vector from indextrm; 
79:                end 
80:                pospr <- find position base in the indextrm; 
81:                if pospr == {} 
82:                    strngpr <- ""; 
83:                else 
84:                    strngpr <- develop encoding vector from indextrm; 
85:                end 
86:                out <- Tooltip[input, strng]^Tooltip[power, strngpr] 
87:            end 
88:        end 
89:    end 
90: end 
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B. Multiple Scales Applied to a Parametrically Excited Beam 

The equation of motion for a cantilever model with an end-mass is taken from Cartmell [70] and 

it is presented in equation (B.1). In this equation, 𝑋 represents the non-dimensionalized 

coordinate which indicates lateral displacement of the end-mass, 𝜔 specifies the natural 

frequency, 𝜁 defines the damping coefficient, and finally 𝛺 signifies the external excitation 

frequency. 

𝑋̈ + 2𝜀𝜁𝜔𝑋̇ + 𝜔2𝑋 − 𝜀 𝑐𝑜𝑠(𝛺 𝑡)𝑋 = 0 (B.1) 

To apply the multiple scales method to the equation of motion of the beam, 𝑋 is perturbed up 

to the first order 𝜀, truncating the series after that. Equation (B.2) is used to obtain the first and 

second derivatives of 𝑋. The expansion and derivatives are substituted into the original equation 

(B.1). The zeroth and the first order perturbations are presented by equations (B.3) and (B.4), 

respectively. 

 𝑋 = 𝑋0 + 𝜀𝑋1 (B.2) 

 𝐷0
2𝑋0 +𝜔

2𝑋0 = 0 (B.3) 

 𝐷0
2𝑋1 +𝜔

2𝑋1 = −2𝐷0𝐷1𝑋0 − 2𝜁𝜔𝐷0𝑋0 + 𝑋0𝑐𝑜𝑠(𝛺 𝑇0) (B.4) 

The solution for the homogeneous zeroth-order perturbation equation (B.3) is obtained by 

inspection and is shown in equation (B.5), noting that the bars donate complex conjugates. 

𝐴[𝑇1] is an arbitrary function of slow time scale 𝑇1, which facilitates the diminishing of secular 

terms in the solution of the first order perturbation equation.   

𝑋0 = (𝐴[𝑇1]𝑒
𝑖𝜔𝑇0 + 𝐴̅[𝑇1]𝑒

−𝑖𝜔𝑇0) (B.5) 

The solution of the zeroth-order perturbation equation is then substituted into the first order 

perturbation equation and the exponential form of the excitation function (𝑐𝑜𝑠(𝛺 𝑇0) =

1

2
[𝑒𝑖𝛺𝑇0 + 𝑒−𝑖𝛺𝑇0]) is used (B.6), noting that 𝐶𝐶 is used as an abbreviation for Complex 

Conjugates. 

𝐷0
2𝑋1 +𝜔

2𝑋1 = 𝑒
𝑖𝜔𝑇0 [

𝐴[𝑇1]

2
𝑒𝑖𝛺𝑇0 +

𝐴̅[𝑇1]

2
𝑒𝑖𝑇0(𝛺−2𝜔) − 𝑖2𝜔𝐷1𝐴[𝑇1]

− 𝑖2𝜁𝜔2𝐴[𝑇1]] + 𝐶𝐶 

(B.6) 
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The uniformity of the expansion must be valid during the solution procedure, therefore secular 

terms should vanish from the first order perturbation equation. The secular terms are mostly 

generated by resonant excitation terms and, if retained, would cause a disproportionate 

increase in the magnitude of the solution of the first order perturbation equation (𝑋1) when 

compared to that of the zeroth-order (𝑋0). Resonant terms are oscillating at the natural 

frequency of the homogeneous system. To avoid secular terms in the general solution, resonant 

exponent terms (in this equation containing  𝑒𝑖𝜔𝑇0) are taken out and set to zero (B.7). 

𝐴[𝑇1]

2
𝑒𝑖𝛺𝑇0 +

𝐴̅[𝑇1]

2
𝑒𝑖𝑇0(𝛺−2𝜔) − 𝑖2𝜔𝐷1𝐴[𝑇1] − 𝑖2𝜁𝜔

2𝐴[𝑇1] = 0 (B.7) 

Considering equation (B.7), the last two terms are clearly resonant terms and must vanish from 

the particular solution. However, the first two terms might be considered to be resonant but 

this is depending on the value of the external excitation frequency (𝛺). If the external excitation 

frequency is set to 2𝜔, then the first term ( 
𝐴[𝑇1]

2
𝑒𝑖2𝜔𝑇0) will not generate a secular term (non-

resonant). Finally the secular terms are identified and set to zero (B.8). 

𝐴̅[𝑇1]

2
𝑒𝑖𝑇0(𝛺−2𝜔) − 𝑖2𝜔𝐷1𝐴[𝑇1] − 𝑖2𝜁𝜔

2𝐴[𝑇1] = 0 
(B.8) 

The frequency which makes the second term of equation (B.7) secular, defines an important 

condition known as principal parametric resonance (B.9). To investigate the near resonant 

situation, a small latitude is allowed around the resonant point (B.10) and 𝜌 and 𝜀𝜌 are known 

as the detuning and detuning parameter, respectively. 

𝛺 = 2 𝜔 (B.9) 

𝛺 = 2𝜔 + 𝜀𝜌 (B.10) 

The secular terms for the case when the excitation frequency is near to satisfying the case of 

principal parametric resonance is provided in equation (B.11). 

𝐴̅[𝑇1]

2
𝑒𝑖𝑇0(𝜀𝜌) − 𝑖2𝜔𝐷1𝐴[𝑇1] − 𝑖2𝜁𝜔

2𝐴[𝑇1] = 0 
(B.11) 

Equation (B.12) shows 𝐴[𝑇1] and 𝐴̅[𝑇1] based on the steady state amplitude 𝑎[𝑇1] and 

phase 𝛼[𝑇1], which are parts of the solution to zeroth-order 𝜀 (𝑋0 = 𝑎 𝑐𝑜𝑠(𝜔𝑇0 + 𝛼)). It is 

possible to replace  𝐴[𝑇1] , 𝐴̅[𝑇1] and 𝐷1𝐴[𝑇1], in equation (B.14), resulting in equation (B.14). 
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𝐴[𝑇1] =
𝑎 𝑒ⅈ𝛼

2
 and 𝐴̅[𝑇1] =

𝑎 𝑒−ⅈ𝛼

2
 (B.12) 

𝐷1𝐴[𝑇1] =
1

2
𝑎′ 𝑒𝑖𝛼 + 𝑖

1

2
𝑎𝛼′ 𝑒−𝑖𝛼 

(B.13) 

𝑎

4
𝑒𝑖(𝜀𝜌𝑇0−2 𝛼) − 𝑖𝑎′𝜔 − 𝑎𝛼′𝜔 − 𝑖𝜁𝜔2𝑎 = 0 (B.14) 

Subsequently, the real and imaginary parts of equation (B.14) are separated and shown in 

equation (B.15) and (B.16), noting that 𝜀𝜌𝑇0 = 𝜌𝑇1. 

𝑅𝑒:             𝑐𝑜𝑠(𝜌𝑇1 − 2 𝛼) + 𝑎𝛼
′𝜔 = 0 (B.15) 

𝐼𝑚:             𝑠𝑖𝑛(𝜌𝑇1 − 2 𝛼) − 𝑖𝑎
′𝜔 − 𝑖𝜁𝜔2𝑎 = 0 (B.16) 

To investigate the amplitude 𝑎, two approaches could be considered [70]. The first one is to 

solve the system of equations (B.15) and (B.16) by numerical integration, whilst the other is to 

use equations (B.15) and (B.16) to derive an analytical expression for the detuning parameter 

(𝜀𝜌), which is accomplished in this report. As shown in equations (B.15) and (B.16), all 

parameters are functions of slow time (𝑇1) rather than the fast time scale (𝑇0). Therefore, it is 

acceptable to assume that the amplitude 𝑎 is almost static at the slow time scale (B.17). An 

autonomous system (𝜓) is then defined to avoid the explicit presence of any time scales (B.18). 

𝑎′ ≃ 0 (B.17) 

𝜓 = 𝜌𝑇1 − 2 𝛼 (B.18) 

Then the solvability equations (B.19) and (B.20) are derived by substituting (B.17) and (B.18) into 

(B.15) and (B.16). 

𝑐𝑜𝑠(𝜓) + 𝑎𝛼′𝜔 = 0 (B.19) 

𝑠𝑖𝑛(𝜓) − 𝑖𝜁𝜔2𝑎 = 0 (B.20) 

The next step is to determine the value for the slow varying phase angle (𝛼′). If it is considered 

to be zero, the contribution of equation (B.15) will be lost. Therefore, a helpful analytical 

substitution based on an assumption of constant phase in the continuous system is considered 

(B.21), and the slowly varying phase angle is re-expressed in terms of the detuning, which itself 

generally has a small magnitude. 
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𝜓′ = 0 ;  𝜌 − 2 𝛼′ = 0 ; 𝛼′ =
𝜌

2
 (B.21) 

It is possible to substitute equation (B.21) into the solvability equations and derive the equation 

based on the detuning (𝜌), equations (B.22) to (B.24) 

𝑎2

16
𝑐𝑜𝑠2(𝜓) +

𝑎2

4
𝜌2𝜔2 = 0 

(B.22) 

𝑎2

16
𝑠𝑖𝑛2(𝜓) − 𝑎2𝜁2𝜔4 = 0 

(B.23) 

1 − 16 𝜁2𝜔4 + 4𝜌2𝜔2 = 0 (B.24) 

Both the un-damped system (𝜁 = 0) and the damped system (𝜁 ≠ 0) are investigated. In the un-

damped case, the second term of equation (B.24) vanishes and the detuning value can be 

determined (B.25). Then the detuning is replaced by the nearly resonant excitation frequency 

(B.10), with the resulting equation (B.27). 

 

𝜌 = ±
1

2𝜔
 

(B.25) 

𝛺 = 2𝜔 ±
𝜀

2𝜔
 (B.26) 

The same approach as above is taken for the damped case. The detuning and the detuning 

parameter are shown in equations (B.27) and (B.28), respectively. Furthermore, the value of 𝜀 

for this case is shown in equation (B.29), 𝐵1√
𝑚0

𝐼0
  is a function of material properties and 

geometry [70].  

𝜌 = ±√
1

4𝜔2
− 4𝜁2𝜔2 

(B.27) 

𝛺 = 2𝜔 ±√
𝜀2

4𝜔2
− 4𝜁2𝜔2 

(B.28) 

𝜀 = 𝑊0Ω
2𝐵1√

𝑚0
𝐼0

 
(B.29) 
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Experimental investigation 

A spring steel beam with an end-mass was designed and built in order to compare the 

theoretical model with the experimental case [73-76]. Principal parametric resonance of the 

beam was experimentally confirmed as well as points on the stability chart which express the 

overall transition curve. Then the experimental data are compared to the theoretical solution 

(B.28). 

A rectangular spring steel beam, with a cross-sectional area of 7.00×10-3 m2 and thickness of 

1.22×10-3 m was manufactured. In order to have the ability to tune the system, two stainless 

steel rectangular masses with a total mass of 9.1×10-2 kg were attached to one end of the beam. 

The other end was fixed on to the base of a vertically oriented electromagnetic shaker (Figure 

B. 1) 

 

Figure B. 1 Spring steel beam and the end mass geometry conf igurations (mm) .  

Initially the region of principal parametric resonance of the test beam was determined. As 

shown in equation (B.9) this frequency is equal to twice the natural frequency of the system. 

The natural frequency was determined by performing a free vibration test which gave a value 

of 6.012 Hz. Therefore, the principal parametric resonance was found to occur at approximately 

12.024 Hz.  
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The second part of the experiment was to determine points defining the transition curve. The 

shaker excitation frequency was set to the value of the principal parametric resonance, with the 

minimum excitation amplitude. Then a slight perturbation was applied to the tip of the beam 

which led to a very large displacement in the perpendicular direction to the excitation axis. The 

excitation acceleration and frequency of the excitation were measured by an accelerometer that 

was placed at the base of the beam supported on the shaker. This process was continued for 

frequencies around principal parametric resonance. By that means, after setting the excitation 

frequency, the amplitude of excitation was increased gradually until the nonplanar motion was 

observed and recorded.  

To facilitate the experiment procedure and data acquisition possess, a LabVIEW programme was 

written. This programme can take the principal parametric resonance value as an input and 

increase the excitation amplitude gradually for a predefined time period, until the user senses 

the nonplanar motion of the beam and stops the experiment manually in the programme. Then 

the accelerometer output, for the last detected time step, and with the value of excitation 

frequency is extracted. This programme could be developed in the future by adding a feedback 

loop, and the horizontal displacement of the beam could be measured by another sensor to 

detect the nonplanar motion and stop the programme automatically. 

To decrease the experimental error, principally the human error, the experiment was repeated 

five times. In the post processing step, the frequency of excitation and the corresponding 

amplitude for each point were determined and plotted against each other.  

The experimental stability curve is shown in Figure B.2 by discrete the triangular points. It can 

be noted that the experimental data could not cover all the theoretical range. This could be 

addressed by increasing the capacity of the electrodynamic shaker. The shaker is not capable of 

generating the required excitation amplitude for excitation frequencies of less than 9 Hz and 

more than 20 Hz. 

The theoretical results were evaluated by using equations B.28 and B.29 and plotted against the 

experimental data. Considering Figure B. 2, the theoretical and experimental results were 

almost in the same range at the threshold area (this is magnified in the top right-hand side). 

Although as the excitation frequency moves from the principal parametric resonant point, more 

of a difference between the theoretical and experimental results could be observed. These 

might be due to the nonlinear stiffness, or some stability effects.  
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Figure B. 2 Comparison of the experimental and theoretical  results for the stabi lity region .  
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C. The blueprint method applied to the problem of autoparametrically excited beam system 

The zeroth-order perturbation equation solution is given in eqn (13). This is a part of the overall 

solution for the primary beam, and 𝐴 is an arbitrary complex amplitude which is a function of 

the slow time scale. 

𝑋0 = 𝐴𝑒
𝑖𝑇0𝜔1 + 𝑒−𝑖𝑇0𝜔1𝐴

_

 eqn (13)  

Figure 6-23 shows the general visualisation graph for this equation and it is possible to track the 

natural frequency (𝜔1) to the stiffness term (𝜔2𝑋[𝑡]) in the equation of motion of the primary 

beam. Interestingly, this can quickly show the linear solution for the system as all the first 

perturbation order links are hidden in this graph. 

In this case study, it was decided to connect the source of the arbitrary complex amplitude 𝐴 to 

the zeroth-order solution equation number, not to the perturbation expansion. Conceptually, 

from the mathematical reasoning inherent to the method, this amplitude can be related to the 

𝑋0 in the perturbation expansion, eqn (3). However, as this symbol does not appear directly in 

that equation this might cause confusion in the later stages. This is another example of the 

flexibility that is available and also necessary in the application of SCD solvers. 
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Figure 6-23 Overal l v isualisation graph of eqn (13).  

The zeroth-order perturbation solution for the secondary beam is given in eqn (14); where, 𝐵 is 

the arbitrary complex amplitude and is a function of slow time scale 𝑇1. 

𝑌0[𝑇0, 𝑇1] = 𝐵e
ⅈ𝑇0𝜔2 + e−ⅈ𝑇0𝜔2𝐵

_

 
eqn (14)  

The details of the Blueprint visualisation method and the SEEM encodings are shown in Figure 

6 24 and it is possible to track the natural frequency to the stiffness term in the equation of 

motion for the primary beam. All the links are zeroth perturbation order and are shown in pink, 

and the SF numerical values are roughly the same. 
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The source of the arbitrary complex amplitudes it was set to eqn (14). It is also correct to connect 

these amplitudes into the perturbation expansion for the secondary beam in eqn (4) as well.  

 

 

Figure 6-24 A detailed investigation of the encoding information of eqn (14).  

The polar form of the external excitation is given in eqn (15). In order to identify the source of 

number 2, it was decided to add the 𝑒𝑥 subscript to this number. 2𝑒𝑥 is introduced because of 

the trigonometrical identity that appears here and numerically has the same value as any 

general number 2. 

𝑐𝑜𝑠[𝑇0𝛺] =
𝑒−𝑖𝑇0𝛺

2𝑒𝑥
+
𝑒𝑖𝑇0𝛺

2𝑒𝑥
 eqn (15)  
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Figure 6-25 describes the details of the encoding information for this equation. As expected all 

the quantities in this equation are linked to the external excitation term in the equation of 

motion for the primary beam. This is a strong term that is directly related to the physical act of 

excitation and all the links are shown in pink. Furthermore this equation is expressed in explicit 

form so the third digit of the SEEM is added here. The SF representatives for both terms are 

equal as they have the same source and contribution in this analysis. The large distance 

highlighted with an arrow in this plot shows that this equation is independent from the other 

mathematical procedure that were carried out before this step. In other words this equation 

can be defined in any stage of the analysis, and not necessarily after determining the solutions 

for the perturbation equations.  
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Figure 6-25  A detai led investigation of the encoding information of eqn (15).  

The multiple scales analysis continues by substituting the polar form of the external excitation 

and the solutions of the zeroth-order perturbation equations for both the primary and 

secondary beams, into the first order perturbation equation for the primary beam (11), resulting 

in:  

𝐷0
2𝑋1 + 𝜔1

2𝑋1 =
𝑒−𝑖𝑇0𝛺𝑞𝜀ex
2ex𝜀𝑝

+
𝑒𝑖𝑇0𝛺𝑞𝜀ex
2ex𝜀𝑝

−
𝑖D1𝐴𝑒

𝑖𝑇0𝜔12dr𝜀dr𝜔1
𝜀𝑝

+
2AA

_

𝛾𝜀nsf𝜔1
2

𝜀𝑝

−
A
_
2𝑒−2𝑖𝑇0𝜔1𝛾𝜀nsf𝜔1

2

𝜀𝑝
−
A2𝑒2𝑖𝑇0𝜔1𝛾𝜀nsf𝜔1

2

𝜀𝑝

+
𝑖A
_

𝑒−𝑖𝑇0𝜔12dmpf𝜀dmpf𝜁1𝜔1
2

𝜀𝑝
−
𝑖A𝑒𝑖𝑇0𝜔12dmpf𝜀dmpf𝜁1𝜔1

2

𝜀𝑝

−
2B
_
2𝑒−2𝑖𝑇0𝜔2𝜇𝜀cplf𝜔2

2

𝜀𝑝
−
2B2𝑒2𝑖𝑇0𝜔2𝜇𝜀cplf𝜔2

2

𝜀𝑝

+
𝑖D1𝐴

_

𝑒−𝑖𝑇0𝜔12dr𝜀dr𝜔1
𝜀𝑝

 

eqn (16)  
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The general overview of the visualisation links for eqn (16) is given in Figure 6-26. The 

fundamental quantities are visible at the upstream of this figure. 

 

Figure 6-26 Overal l v isualisation graph for eqn (16).  

More details about the SEEM information and the Blueprint visualisation method are given in 

Figure 6-27. The stiffness term is given in part (a) of this Figure, and has two constitutive 

quantities. The inertia term is shown in Figure 6-27-b, this term structured from equations 3 and 

6. Part of the external excitation is shown in Figure 6-27-c, and the links showing the number 

2𝑒𝑥 are shown in green, whilst the links for 2𝑑𝑟, and 2𝑑𝑚𝑝𝑓 are in pink. Considering the equation 

numbers of the sources for this term is mostly formed by means of the physical modelling, and 

𝜀𝑝 is the only quantity that is introduced by the perturbation method.  

Figure 6-27-d shows a perturbational correction term which is structured from two green, three 

pink and four blue visualisation links. The natural frequency of the primary system is the only 

quantity that has an explicit physical definition, the rest are related to the mathematical process. 
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Considering the nonlinear stiffness term in Figure 6-27-e, there are two green, three red, and 

four blue links in this Figure. The quantities are sourced to equations 1, 3 and 13. The encodings 

clearly show the source of each quantity and there are two green, three pink and four blue links 

in this graph. 

  

  

 

 

 

(a) (b) 

(c) 

(d) 
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Figure 6-27 A detailed investigation of the encoding information for eqn (16) ; where, (a) is 

sti ffness, (b) is inertia,  (c) is external excitation, (d)  is a perturbational correction term, (e) is 

nonlinear sti ffness, (f)  is a damping term and (g) is a coupling term.  

Implementing the polar form of the external excitation, and the solutions of the zeroth-order 

perturbation equations for the both primary and secondary beams, into the first order 

perturbation equation for the secondary beam, results in: 

𝐷0
2𝑌1 +𝜔2

2𝑌1 = −
𝐴
_

𝐵
_

𝑒−𝑖𝑇0𝜔1−𝑖𝑇0𝜔2𝜀𝑐𝑝𝑙𝑠𝜔1
2

𝜀𝑝
−
𝐴𝐵
_

𝑒𝑖𝑇0𝜔1−𝑖𝑇0𝜔2𝜀𝑐𝑝𝑙𝑠𝜔1
2

𝜀𝑝

−
𝐵𝐴
_

𝑒−𝑖𝑇0𝜔1+𝑖𝑇0𝜔2𝜀𝑐𝑝𝑙𝑠𝜔1
2

𝜀𝑝
−
𝐴𝐵𝑒𝑖𝑇0𝜔1+𝑖𝑇0𝜔2𝜀𝑐𝑝𝑙𝑠𝜔1

2

𝜀𝑝

−
𝑖𝐷1𝑒

𝑖𝑇0𝜔2𝐵2𝑑𝑟𝜀𝑑𝑟𝜔2
𝜀𝑝

+
𝑖𝑒−𝑖𝑇0𝜔2𝐷1𝐵

_

2𝑑𝑟𝜀𝑑𝑟𝜔2
𝜀𝑝

+
𝑖𝐵
_

𝑒−𝑖𝑇0𝜔22𝑑𝑚𝑝𝑠𝜀𝑑𝑚𝑝𝑠𝜁2𝜔2
2

𝜀𝑝
−
𝑖𝐵𝑒𝑖𝑇0𝜔22𝑑𝑚𝑝𝑠𝜀𝑑𝑚𝑝𝑠𝜁2𝜔2

2

𝜀𝑝
 

eqn (17)  

 

(e) 
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The general overview of the visulaisation links for eqn (17) is given in Figure 6-28. The 

fundamnetal quanities are visible at the upstream of this figure. 

 

 

Figure 6-28 Overal l v isualisation graph for eqn (17).  

Details of the SEEM information and visualisation links are shown in Figure 6-29. The stiffness 

and inertia terms for the secondary beam are given in Figure 6-29-a and b. The coupling term is 

shown in Figure 6-29-c, noting that this is a powerful term as it contains five dense visualisation 

links. It is possible to identify the influence of both the primary and secondary beams in this 

term. The contribution of both sub-systems’ natural frequencies 𝜔1 and 𝜔2 can be identified in 

a single term.  The compound level of the SEEM can also be identified in this term.  

Furthermore a perturbational correction term is shown in Figure 6-29-d and this term is 

introduced because of the choice of the solution procedure. The system parameters can be 

identified by the SEEM links colours; the zeroth perturbation order solution links are in pink, the 

multiple scales related quantities are in blue, and the natural frequencies are in green. 
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Figure 6-29 A detailed investigation of the encoding information for eqn (17); where, (a) is 

sti ffness, (b) is inertia,(c)  is  a coupling term, and (d) is  a  perturbational correction term.  

The first resonance condition is introduced in eqn (18). In this equation 𝜎1 is the detuning 

parameter. As it is discussed in Chapter 3, in order to guarantee a valid solution procedure the 

small parameter within the detuning must be numerically and symbolically the same as the 

(c) 

(d) 

(b) (a) 
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perturbation parameter. The overall visualisation graph for this equation is provided in Figure 

6-30. 

𝛺 − 𝜔1 = 𝜀𝑝𝜎1 
eqn (18)  

 

Figure 6-30 Overal l v isualisation graph for eqn (18).  

Detailed information about the SEEM information and the Blueprint visualisation links for all the 

terms is provided in Figure 6-31. Both the external excitation frequency (a) and the linear natural 

frequency (b) for the primary beam have a green visualisation link. As expected the small 

detuning term has a blue (first perturbation order) visualisation link. 

 

 

 

(a) 
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 Figure 6-31 A detai led investigation of the encoding information for eqn (18); where, (a)  is the 

external excitation frequency, (b) is the natural frequency for the primary beam, (c) is the 

detuning parameter.  

The second resonance condition is given in eqn (19) where 𝜎2 is the detuning parameter for this 

equation. The PPR index for number 2 is introduced by the user so as to track this number in the 

other stages of the analysis. 

𝜔1 − 2𝜔2 = −2PPR 𝜀𝑝𝜎2 
eqn (19)  

Figure 6-32 shows the overall Blueprint visualisation graph of the second resonance condition. 

In this figure the sources of two natural frequencies are linked to the equations of motion and 

highlighted in light blue. Afterwards the colour of the links changes to green as they appeared 

as a part of the solution of the zeroth-order perturbation equation, this region is highlighted in 

orange. There are two transitional areas in this Figure, which are shown by arrows, for which no 

particular modification has been introduced to these quantities. The SF representative of the 𝜔1 

is larger than −2𝜔2. −2 is introduced during the solution procedure and does not have an 

explicit physical meaning. Finally, the detuning parameter has the smallest SF sphere. 
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Figure 6-32 Overal l v isualisation graph for eqn (19),  where, the equations of motion are 

highlighted in blue, the solutions of the zeroth -order perturbation equations are highlighted in 

orange, and the transitional  area is shown with arrows.  

The details of the SEEM encoding information and the visualisation for each term are given in 

Figure 6-33. The natural frequency of the primary beam is shown in part (a) of this Figure and 

the highlighted stages of the analysis in Figure 6-32 are also visible within the encoding vector. 

The terms related to the natural frequency of the secondary beam and the detuning parameter 

are provided in parts (b) and (c), respectively. 

 
 

 

   

Figure 6-33 A detailed investigation of the encoding information for eqn (18); where, (a) is the 

natural frequency for the primary beam, (b)  is the natural frequency for the secondary beam, (c) 

is the detuning parameter.  

The secular terms from eqn (16) are identified and selected and then set to zero. The modulation 

equation for the primary beam is given by the following: 

 

𝑒𝑖𝑇0𝛺−𝑖𝑇0𝜔1𝑞𝜀𝑒𝑥
2𝑒𝑥𝜀𝑝

−
𝑖𝐷1𝐴2𝑑𝑟𝜀𝑑𝑟𝜔1

𝜀𝑝
−
𝑖𝐴2𝑑𝑚𝑝𝑓𝜀𝑑𝑚𝑝𝑓𝜁1𝜔1

2

𝜀𝑝

−
2𝐵2𝑒−𝑖𝑇0𝜔1+2𝑖𝑇0𝜔2𝜇𝜀𝑐𝑝𝑙𝑓𝜔2

2

𝜀𝑝
= 0 

eqn (20)  

 

(a) (b) (c) 
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The overall Blueprint visulisation for this equation graph is provided below: 

 

Figure 6-34 Overal l v isualisation graph for eqn (20).  

The details of the SEEM encoding information and the visualisation links for selected terms are 

given in Figure 6-34. An interaction between the external excitation and the natural frequency 

of the primary beam is shown in Figure 6-34 -a, noting that there are two green and three blue 

links in this term.   

There is no visualisation link provided for 𝜔1, as the method conventionally requires that the 

terms in the modulation equations are multiplied by structures such as 𝑒−𝜔1𝑇0 in order to get 

them into more manageable forms for later analysis. This 𝜔1 does not have the same source as 

that from the equation of motion, however the numerical value of these two instances of this 

quantity must obviously be the same. 

 Figure 6-35-b represents the damping related term. Both the automatically generated SEEM 

information and the visualisation links provide detailed information about the source and the 

history of each quantity. There is no influence from the secondary system in this term. 

(b) 
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Figure 6-35 A detailed investigation of the encoding information for eqn (20),  where, (a) is the 

excitation related term, and (b) is a damping related term  

The secular terms from eqn (16) are identified and selected and then set to zero and the 

modulation equation for the primary beam is subsequently given as follows: 

 

𝑒−𝑖𝑇0𝛺+𝑖𝑇0𝜔1𝑞𝜀𝑒𝑥
2𝑒𝑥𝜀𝑝

+
𝑖𝐴
_

2𝑑𝑚𝑝𝑓𝜀𝑑𝑚𝑝𝑓𝜁1𝜔1
2

𝜀𝑝
−
2𝐵
_
2𝑒𝑖𝑇0𝜔1−2𝑖𝑇0𝜔2𝜇𝜀𝑐𝑝𝑙𝑓𝜔2

2

𝜀𝑝

+
𝑖𝐷1𝐴

_

2𝑑𝑟𝜀𝑑𝑟𝜔1
𝜀𝑝

= 0 

eqn (21)  

 

An overview of the second modulation equation is shown in Figure 6-36. The fundamental terms 

are highlighted in blue. Mathematical interactions between the fundamental equations and the 

solutions method can be identified in between. 

(a) 
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Figure 6-36 Overal l v isualisation graph for eqn (21).  

Figure 6-37 shows the detailed investigation for some of the selected terms in this equation. 

Figure 6-37-a is a perturbational correction term that appears due to the multiple scales method 

expansion. There is no influence from the secondary beam in this equation. The damping related 

term is shown in Figure 6-37-b and the structure of this term is mainly based on the fundamental 

equations (1) and (3). There is no influence from the secondary beam in this equation. 

In addition, the coupling term is shown in Figure 6-37-c. The number of dense links is larger than 

for the slim first perturbation order links. In this term there are links to both the primary and 

the secondary beams equations of motion. No connecting link for 𝜔2 is defined, as both sides 

of this equation was multiplied by by 𝑒−𝜔2𝑇0. For this instance 𝜔2 does not have the same 

encoding source as that in the equation of motion. 

Finally, Figure 6-37-d shows the interaction between the external excitation frequency and the 

first natural frequency of the primary beam. The links are either in dense green or weak blue. 
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(b) 

(c) 

(d) 

(a) 
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Figure 6-37 A detailed investigation of the encoding information for eqn (21),  where, (a) is a  

perturbational correction term, (b) is a damping related term, (c) is a coupling term, and (d) is 

an external excitation related term  

The secular terms from eqn (17) are identified and selected and then set to zero. The modulation 

equation for the secondary beam is given as follows: 

𝐴𝐵
_

𝑒𝑖𝑇0(𝜔1−2𝜔2)𝜀𝑐𝑝𝑙𝑠𝜔1
2

𝜀𝑝
−
𝑖𝐷1𝐵2𝑑𝑟𝜀𝑑𝑟𝜔2

𝜀𝑝
−
𝑖𝐵2𝑑𝑚𝑝𝑠𝜀𝑑𝑚𝑝𝑠𝜁2𝜔2

2

𝜀𝑝

= 0 

eqn (22)  

 

An overview of the visualisation graph for the second modulation equation is given in Figure 6-

38. The fundamental terms are located at the upstream of this Figure and are highlighted in 

blue. The solutions of the zeroth-order perturbation equations, for both beams, are highlighted 

in green. A transitional area, where there is no significant mathematical procedure, is 

highlighted in orange and shown with an arrow.  
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Figure 6-38 Overal l v isualisation graph for eqn (22),  where; fundamental  quantities are 

highlighted in blue, the solution of the zeroth -order perturbation equation is  in green, and the 

transition area is highlighted in orange.  

A detailed investigation of the encoding information for eqn (22) is shown in Figure 6-39. The 

coupling term is shown in Figure 6-39-a and the yellow visualisation link related to the 

compound level of the SEEM. As both sides of the equation are multiplied by 𝑒−𝜔2𝑖𝑇0, the first 

digit of the SEEM encoding of −2 in the index of the exponential function is addressed to eqn 

(22). 

The damping term for the secondary beam is given in Figure 6-39-b. This term is structured from 

equations 2, 4, and 14. Finally Figure 6-39-c shows a perturbational correction term which is 

mainly sourced to equation (6). This term is completely related to the multiple scales method 

so its structure would potentially alter through modifying the solution procedure. 
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Figure 6-39 A detailed investigation of the encoding information for eqn (22); where, (a) is a 

coupling term, (b) is a  damping term, and (c) is a perturbational correction term  

The secular terms from eqn (17) are identified, selected and then set to zero. The modulation 

equation for the primary beam is given as follows: 

−
𝐵𝐴
_

𝑒−𝑖𝑇0(𝜔1−2𝜔2)𝜀𝑐𝑝𝑙𝑠𝜔1
2

𝜀𝑝
+
𝑖𝐷1𝐵

_

2𝑑𝑟𝜀𝑑𝑟𝜔2
𝜀𝑝

+
𝑖𝐵
_

2𝑑𝑚𝑝𝑠𝜀𝑑𝑚𝑝𝑠𝜁2𝜔2
2

𝜀𝑝
= 0 

eqn (23)  

 

(a) 

(c) (b) 
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The general visualisation plot for eqn (23) is shown in Figure 6-40. The fundamental terms are 

highlighted in blue, the solution for the zeroth-order perturbation equations are highlighted in 

green, and the transitional stage is shown by an arrow. The SF representative of the coupling 

term is larger than the other terms, whilst the damping term has the smallest SF value.  

 

Figure 6-40 Overal l v isualisation graph for eqn (23),  where; fundamental  quantities are 

highlighted in blue, the solution of the zeroth-order perturbation equation is  in green, and the 

transition area is shown with an arrow.  

A detailed analysis for each term is given in Figure 6-41. The perturbational correction term is 

shown in Figure 6-41-a and there are three zeroth perturbation order quantities in this term. 

These quantities are linked to the dependent variable for the out-of-plane response and the first 

linear natural frequency of the seconary beam. Changing the solution method type would affect 

the structure of this term, and hence the appearance of equation (23). Finally the damping term, 

with three zeroth perturbation order quantities is shown in Figure 6-41-b. 
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Figure 6-41 A detailed investigation of the encoding information for eqn (23); where, (a) is a 

perturbational correction term, and (b) is a  damping term  

Equation (24) is the first order perturbation equation, for the primary beam, after removing the 

secular terms.  

𝐷0
2𝑋1 +𝜔1

2𝑋1 =
2𝐴𝐴

_

𝛾𝜀𝑛𝑠𝑓𝜔1
2

𝜀𝑝
−
𝐴
_
2𝑒−2𝑖𝑇0𝜔1𝛾𝜀𝑛𝑠𝑓𝜔1

2

𝜀𝑝
−
𝐴2𝑒2𝑖𝑇0𝜔1𝛾𝜀𝑛𝑠𝑓𝜔1

2

𝜀𝑝
 

eqn (24)  

 

The overall visualisation graph for this equation is provided below: 

 

 

 

(a) (b) 
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Figure 6-42 Overal l v isualisation graph for eqn (24).  

The details of the SEEM visualisation method are given in Figure 6-43. The stiffness and inertia 

terms are shown in parts (a) and (b), respectively. Furthermore the nonlinear stiffness related 

terms are given in parts (c), (d), and (e) of this Figure. There is no contribution from the primary 

beam in these terms.  

  

(a) (b) 
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Figure 6-43 A detailed investigation of the encoding information for eqn (24); where, (a) is 

l inear sti ffness term, (b) is the inert ia term, and the nonlinear stiffness related terms are given 

in parts (c),  (d),  and (e).  

Eqn (25) is the first order perturbation equation for the secondary beam after removal of the 

secular terms. 

 

(e) 

(c) (d) 
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𝐷0
2𝑌1 +𝜔2

2𝑌1 = −
𝐴
_

𝐵
_

𝑒−𝑖𝑇0𝜔1−𝑖𝑇0𝜔2𝜀𝑐𝑝𝑙𝑠𝜔1
2

𝜀𝑝
−
𝐴𝐵𝑒𝑖𝑇0𝜔1+𝑖𝑇0𝜔2𝜀𝑐𝑝𝑙𝑠𝜔1

2

𝜀𝑝
 eqn (25)  

Figure 6-44 shows the overall representation of the sources and links structuring eqn (25). There 

is a large amount of links on the upstream part of the Figure, which are representing the 

essential mathematical procedures affecting the structure of this equation. The fundamental 

quantities are highlighted in blue, the solution of the zeroth-order perturbation equations are 

highlighted in green, and the transitional area is shown by an arrow. 

 

Figure 6-44 Overal l v isualisation graph for eqn (25),  where; fundamental  quantities are 

highlighted in blue, the solution of the zeroth-order perturbation equation is  in green, and the 

transition area is shown with an arrow.  

As the details of the SEEM encodings for these terms have already been discussed in Figure 6-

27, no further detailed analysis is given for this equation. The multiple scales analysis continues 

by solving eqn (25), resulting in: 
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𝑋1[𝑇0, 𝑇1] =

1
3
𝐴2𝑒2𝑖𝑇0𝜔1𝛾𝜀𝑛𝑠𝑓

𝜀𝑝
+

1
3
𝑒−2𝑖𝑇0𝜔1𝛾𝐴

_
2𝜀𝑛𝑠𝑓

𝜀𝑝
 

eqn (26)  

 

The overall visualisation plot for eqn (26) is shown in Figure 6-45. The fundamental terms are 

highlighted in blue. The stiffness and the first order perturbation terms are clearly visible in the 

upstream part of this Figure. The solution of the zeroth-order perturbation equation is 

highlighted in green. There is long transitional area that is highlighted by an arrow. In this area 

no mathematical operation related to this equation emerges. As expected, the SF 

representations for both the terms are approximately the same. 

 

Figure 6-45 Overal l v isualisation graph for eqn (26),  where; fundamental  quantities are 

highlighted in blue, the solutions of the zeroth -order perturbation equation are in green, and 

the transition area is shown with an arrow.  

A detailed investigation of a selected term from this equation is shown in Figure 6-46. There are 

five zeroth perturbation order links; four links related to the first level of the SEEM encoding and 

one link is in the category of the third level of the SEEM. The three first perturbation order links, 

shown in blue, are related to the stiffness in the equation of motion for the primary beam. It is 
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possible to notice that the third level of the SEEM is considered for all the quantities in this 

equation. 

 

 

Figure 6-46 Details of the SEEM encodings information for a term in eqn (26).  

The same approach for the secondary beam has been carried out, and the solution of the first 

order perturbation equation is given as follows: 

𝑌1[𝑇0, 𝑇1] =
𝐴𝐵𝑒𝑖𝑇0(𝜔1+𝜔2)𝜀𝑐𝑝𝑙𝑠𝜔1

𝜀𝑝(𝜔1 + 2𝜔2)
+
𝑒−𝑖𝑇0(𝜔1+𝜔2)𝐴

_

𝐵
_

𝜀𝑐𝑝𝑙𝑠𝜔1
𝜀𝑝(𝜔1 + 2𝜔2)

 
eqn (27)  

 

The overall visualisation graph for this equation is shown in Figure 6-47. The explicit 

involvements from the primary beam can be identified in this graph. The fundamental terms are 

highlighted in blue. The coupling term and the first order perturbation terms are clearly visible 

in the upstream part of this Figure. The solutions of the zeroth-order perturbation equation for 

both the primary and secondary beams are also visible in this graph, and are highlighted in 

green. There is long transitional area for which no mathematical operations related to this 

equation are undertaken, and which is highlighted once again by an arrow. As expected again, 

the SF representation for both the terms are approximately the same. 
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Figure 6-47 Overal l v isualisation graph for eqn (27),  where; fundamental  quantities are 

highlighted in blue, the solutions of the zeroth -order perturbation equation are in green, and 

the transition area is shown with an arrow.  

A detailed investigation of a selected term from this equation is shown in Figure 6-48. There are 

six zeroth perturbation order links; five links related to the first level of the SEEM encoding and 

one link is in the category of the third level of the SEEM. Also a yellow link, representing the 

compound level of the SEEM clearly emerges in this graph. It can be seen that the secondary 

beam response has a huge effect on the primary system, as is obvious from the structure of the 

governing equations of motion. 
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Figure 6-48 Detail of  the SEEM encodings information for a term in eqn (27) .  

The polar form of the complex amplitude of 𝐴 is given in eqn (28); where, 𝛼 is the phase angle 

and 𝑎 is the amplitude of response of the primary beam. The subscript 𝐴 for the numeral 2 is 

used by choice of the user. It must be noted that 2𝐴 obviously has the same numerical value as 

the general number 2.  Additionally, the polar form of the complex amplitude of 𝐵 is given in 

eqn (29); where, 𝛽 is the phase angle and 𝑏 is the amplitude of the response for the secondary 

beam. As in the above, 𝐵 is used as the subscript for number 2 for identification purposes, and 

here too the numerical value must be identical to that of the general number 2. 

𝐴 =
𝑒𝑖𝛼[𝑇1]𝑎[𝑇1]

2𝐴
 eqn (28)  

 

𝐵 =
𝑒𝑖𝛽[𝑇1]𝑏[𝑇1]

2𝐵
 eqn (29)  

 

The encoding information for these equations is given in Figure 6-49 where the first level of the 

SEEM is applied. 

 



  213 

 

  

  

Figure 6-49 The f irst level  of the encoding method is defined for eqn (28) and (29).  

The perturbation expansion parameter can be explicitly defined by relating the time scales, as 

given by eqn (30). 

𝜀𝑝 =
𝑇1
𝑇0

 
eqn (30)  

 

The resonance conditions, eqn (18) and (19), and the complex amplitudes, eqn (28) and (29), 

are substituted into the modulation equation for the primary beam (20), resulting in: 

𝑞𝑐𝑜𝑠[𝑇1𝜎1 − 𝛼[𝑇1]]𝜀𝑒𝑥
2𝑒𝑥𝜀𝑝

+
𝑖𝑞𝑠𝑖𝑛[𝑇1𝜎1 − 𝛼[𝑇1]]𝜀𝑒𝑥

2𝑒𝑥𝜀𝑝
−
𝑖𝑎[𝑇1]2𝑑𝑚𝑝𝑓𝜀𝑑𝑚𝑝𝑓𝜁1𝜔1

2

2𝐴𝜀𝑝

−
2𝜇𝑏[𝑇1]

2𝑐𝑜𝑠[2𝑇1𝜎2 − 𝛼[𝑇1] + 2𝛽[𝑇1]]𝜀𝑐𝑝𝑙𝑓𝜔2
2

2𝐵
2𝜀𝑝

−
2𝑖𝜇𝑏[𝑇1]

2𝑠𝑖𝑛[2𝑇1𝜎2 − 𝛼[𝑇1] + 2𝛽[𝑇1]]𝜀𝑐𝑝𝑙𝑓𝜔2
2

2𝐵
2𝜀𝑝

−
𝑖2𝑑𝑟𝜀𝑑𝑟𝜔1𝑎

′[𝑇1]

2𝐴𝜀𝑝

+
𝑎[𝑇1]2𝑑𝑟𝜀𝑑𝑟𝜔1𝛼

′[𝑇1]

2𝐴𝜀𝑝
= 0 

eqn (31)  

 

The overall visualisation graph for this equation is shown in Figure 6-50. The fundamental 

quantities are given in the upstream part of the equation, and highlighted in blue. Most of the 

terms in the equation of motion for the primary beam are involved in this equation. 

(a) (b) 
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Figure 6-50 The overall v isualisat ion links for eqn (31).  

The details of the SEEM information for some selected terms are shown in Figure 6-51. The 

trigonometrical form of the external excitation term is shown in Figure 6-51-a. The interaction 

between the phase angle, 𝛼, and the detuning parameter can be noticed in this graph. A 

perturbational correction term, which is highly dependent on the choice of the solution method, 

is given in Figure 6-51-b.  

 

(a) 
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Figure 6-51 The encoding descriptions for eqn (31),  where, (a) is the external excitation and (b) 

is a  perturbational  correction term.  

The imaginary part of the modulation equation (31) is taken out and set to zero, resulting in: 

𝑞𝑠𝑖𝑛[𝑇1𝜎1 − 𝛼[𝑇1]]𝜀𝑒𝑥
2𝑒𝑥𝜀𝑝

−
𝑎[𝑇1]2𝑑𝑚𝑝𝑓𝜀𝑑𝑚𝑝𝑓𝜁1𝜔1

2

2𝐴𝜀𝑝

+
−2𝜇𝑏[𝑇1]

2𝑠𝑖𝑛[2𝑇1𝜎2 − 𝛼[𝑇1] + 2𝛽[𝑇1]]𝜀𝑐𝑝𝑙𝑓𝜔2
2

2𝐵
2𝜀𝑝

−
2𝑑𝑟𝜀𝑑𝑟𝜔1𝑎

′[𝑇1]

2𝐴𝜀𝑝
= 0 

eqn (32)  

 

The details of the SEEM information for selected terms are given in Figure 6-52. The 

trigonometrical form of the external excitation is given in part (a) of this graph, and the damping 

term is given in part (b). 

  

(b) 

(b) (a) 
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Figure 6-52 Details of the SEEM encodings information for a term in eqn (32),  where; (a) is the 

external excitation term, and (b) is the damping term.  

The real part of the modulation equation (31) is also taken out and set to zero, resulting in: 

𝑞𝑐𝑜𝑠[𝑇1𝜎1 − 𝛼[𝑇1]]𝜀𝑒𝑥
2𝑒𝑥𝜀𝑝

+
−2𝜇𝑏2𝑐𝑜𝑠[2𝑇1𝜎2 − 𝛼 + 2𝛽[𝑇1]]𝜀𝑐𝑝𝑙𝑓𝜔2

2

2𝐵
2𝜀𝑝

+
𝑎[𝑇1]2𝑑𝑟𝜀𝑑𝑟𝜔1𝛼

′[𝑇1]

2𝐴𝜀𝑝
= 0 

eqn 

(33)  

 

The overall visulisation graph is provided below: 

 

Figure 6-53 The overall v isualisat ion links for eqn ( 33).  

Details of the SEEM encoding for a selected term are provided in Figure 6-54. This term is a 

perturbational correction term and mainly related to equation (6). 
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Figure 6-54 Details of the SEEM encodings for a selected term in eqn (33).  

This analysis can be continued by determining the solutions for the solvability conditions, these 

being the solutions of the amplitudes and phases for both the primary and secondary beams. 

This selected part of the analysis shows the capability of the developed features in the SCD 

solver for extracting the implicit information embedded within the equation structure. 

 


