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Abstract 

The number of applications of intelligent control systems has grown significantly over 

the last few decades, and today they are used in various challenging industrial 

application domains, where they provide particularly useful solutions. The term 

„intelligent controllers‟ describes a field where control approaches are represented by 

mechanisms similar to those used by the human brain. These characteristics include, for 

example, learning, modification, adaption, effective working with high levels of 

uncertainty and coping with large amounts of data.    

Intelligent control systems are particularly useful for complex systems such as 

biomedical and chemical plants, which are expected to work under optimal conditions. 

A good example of an intelligent controller is the so called Self-Organising Fuzzy Logic 

Control (SOFLC) proposed by Procyk and Mamdani in the late 1970s. The SOFLC 

scheme involves a control policy that allows its structure to be adapted based on the 

environment in which it operates.  

The SOFLC combines a conventional fuzzy logic controller with a supervisory layer 

which monitors and regulates the performance of the system. In this thesis, new 

architectures are proposed for single input single output (SISO) and multi-input multi-

output (MIMO) structures to improve on the original SISO SOFLC design in terms of 

performance and robustness, as well as extend the analysis and design issues relating to 

such algorithms to the MIMO case using hybrid approaches. The work proposed in this 

thesis includes: 1. A new development of type-1 and type-2 Self-Organising Fuzzy 

Logic Control with a Dynamic Supervisory Layer (SOFLC-DSL) for the SISO case: In 

this part of the thesis, the work is mainly focused on designing a sophisticated SOFLC 

algorithm by combining a type-1 fuzzy system with a new Particle Swarm Optimisation 

(PSO) algorithm, so as to make the SOFLC scheme more flexible and effective in terms 

of responding to changes in the process to be controlled or the environment surrounding 

it. A new on-line PSO algorithm is developed by using the idea of credit assignment and 

fitness estimation to allow the optimisation of the consequent parts of the performance 

index (PI) table on-line. The proposed scheme is tested on a non-linear and uncertain 
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Muscle Relaxation Model. Computer results demonstrate that the proposed algorithm 

achieve satisfactory performance, and is superior to the standard SOFLC scheme. In 

order to enhance the capabilities of the controller to deal with environments where the 

level of uncertainties and noise are high, both interval and zSlice type-2 fuzzy sets are 

deployed. Simulation results show that the performance of the SOFLC-DSL algorithm 

improves in terms of set-point tracking properties and the smoothness of the generated 

control signals. 2. A new extension of the SOFLC-DSL to the multivariable case: The 

proposed SOFLC-DSL algorithms are applied as the dominating controllers within 

multivariable control architectures. In order to deal with the effects of interactions 

between the input and output channels, both the relative array gain matrix as well as a 

linguistic switching mode compensator are considered. The proposed algorithms are 

tested on a     drug dynamic process, and the results show they have good control 

abilities in terms of maintaining the desired set-points with smooth control effort, as 

well as in handling the interaction between different control channels.  
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Chapter 1 – Introduction    

 

 

 

 

 

1.1 Overview  

Traditional control systems (e.g. PID controllers) require models of the processes to be 

controlled in order to define the relationship between the inputs and outputs of these 

systems. A major drawback of such control systems is that they often respond to the 

process being controlled either as linear or as behaving in a linear manner in certain 

operating regions. 

With the availability of models that accurately capture the dynamics of the process, 

conventional PID controllers generally produce satisfactory performance in different 

environments. However, real-world applications tend to be non-linear, noisy and 

mathematically ill-defined, and it can therefore be very challenging to design an optimal 

conventional controller. Even in cases where a relatively accurate model can be 

developed, external factors such as noise and sudden disturbances can influence the 

performance of these systems. Model-free methods, such as fuzzy logic controllers 

(FLC), offer a preferred alternative solution in such cases. FLCs convert a linguistic 

control strategy based on the knowledge of an engineer/operator into an automatic 

control mechanism. The fuzzy controllers can therefore produce satisfactory results even 
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when the models are not available. In addition, fuzzy controllers can be easily designed 

and are generally computationally cheap to implement.  

1.2 Type-1 and Type-2 Fuzzy Logic Controllers  

Type-1 fuzzy controllers have been successfully applied to a wide range of problems in 

various applications (Al-Dunainawi and Abbod, 2016; Baumann et al., 2000; Hu et al., 

2010). However, lack of knowledge, and the existence of noise and uncertainty affecting 

certain problems, makes the reliance on expert knowledge for constructing the fuzzy 

controller an unreliable approach for some applications (Passino and Yurkovich, 1997) 

Biomedical processes represent a good example of such applications. The regulation of 

the muscle relaxation system proves to be a challenging task due to the associated 

uncertainty and non-linearities associated with such systems. Moreover, as the 

complexity of the system increases, it becomes difficult for the operator to design 

efficient control rules that can effectively respond to this complexity while keeping 

computational costs at a minimum. Therefore, optimisation approaches are needed. 

Optimisation techniques can help model real-world applications that are very difficult 

for engineers/operators to understand and handle.  

Type-1 fuzzy logic systems are the most commonly known and used representations of 

fuzzy logic systems in the literature and industry today. They handle the uncertainty 

surrounding real-world problems by membership grades in the range [0, 1] (Mendel, 

2001). However, humans interpret words differently, and so it can be difficult to ensure 

that type-1 fuzzy sets provide satisfactory performance in certain complex applications. 

This limitation was overcome with the introduction of type-2 fuzzy sets (Zadeh, 1975).  

As the levels of uncertainty increase, type-1 fuzzy systems become unable to handle 

them fully. General type-2 fuzzy sets offer a better mechanism for reducing uncertainty, 

as their third dimension allows for the representation of uncertainty in the form of 

membership grades that are themselves fuzzy, rather than merely a crisp value as in 

type-1 fuzzy sets. The third dimension of type-2 fuzzy sets gives them an extra degree of 

freedom to handle higher levels of uncertainty.   
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Generally, the computational costs and complexity of the general type-2 fuzzy systems 

tend to be higher than those of type-1 (Mendel, 2001). However, recent developments 

and contributions in the field of type-2 fuzzy theory, which have made the construction 

of these systems simpler and easier to understand and implement, have motivated many 

researchers to study type-2 fuzzy theory and apply it to different problems in various 

areas (Mendel, 2000; Karnik and Mendel, 1998). Interval type-2 fuzzy sets are a special 

case of general type-2 fuzzy sets, and are today the most commonly used form of type-2 

fuzzy sets used in industry and discussed in the literature. This is due both to their 

simplicity and their significantly reduced computational cost in comparison to the 

general type-2 fuzzy sets (Mendel, 1998).  

Type-2 fuzzy systems have been applied to different domains, including intelligent 

control systems (Hagras, 2004; Hassani and Zarei, 2015; Wu and Tan, 2006), intelligent 

manufacturing (Castillo and Melin, 2007; Dereli et al., 2011; Zarandi, 2009) and pattern 

recognition (Sepulveda et al., 2007). 

Figure 1.1 shows a representation of type-1, interval type-2 and general type-2 fuzzy 

sets. As can be observed, the third dimension in the interval representation of the fuzzy 

set is fixed to normality throughout the entire fuzzy set. In contrast, the same third 

dimension in the general type-2 representation is fuzzy and can take any value between 

[0, 1]. It can also be seen how the membership values in the case of a type-1 fuzzy set 

are described merely by a crisp value between [0, 1].  

In general, type-2 fuzzy systems can be constructed using two main methods. The first 

approach assumes that an optimal type-1 fuzzy set has already been designed, which can 

then be extended to a type-2 fuzzy system (Mendel, 1998). This design is popular in the 

literature, and has produced good results when tackling various levels of problems. The 

second approach makes use of the experimental data to design type-2 fuzzy systems 

directly (Mendel, 1998; Wu and Mendel, 2007, Wu, 2013). In these two methods, the 

behaviours of the systems can be improved by using optimisation methods.  

The tuning of fuzzy controllers implies the optimisation of certain parameters in order to 

obtain the desired response with minimal error. Various gradient and non-gradient 
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optimisation approaches such as quasi-Newton's method, Rosenbrock method, and 

Simplex method can be used to tune the parameters of type-1 and type-2 fuzzy sets and 

systems, including those of a bio-inspired nature. 

 

 

 

 

 

 

 

 

Figure 1.1: An example of the three types of fuzzy sets (Mendel, 2001). 

1.3 Bio-inspired Optimisation Algorithms  

The use of bio-inspired approaches can help both type-1 and type-2 fuzzy systems solve 

very complex problems in a diverse range of applications (Mahfouf, 2002; Zhang et al., 

2012). These methods have been used in various applications to tune and find 

appropriate values and a suitable structure for fuzzy logic controllers. Genetic 

algorithms, particle swarm optimisation and ant colony optimisation are the three most 

common paradigms that are considered for the development of optimal fuzzy systems; 

(Juang et al., 2008; Martinez et al., 2010; Oh et al., 2011). Genetic algorithms have been 

heavily used with fuzzy logic controllers (Herrera et al., 1995; Lu and Mahfouf, 2006; 

Pelusi, 2011), whereas fewer contributions have been made using sophisticated versions 

of particle swarm optimisation to tune the parameters of type-1 and type-2 fuzzy sets 

and systems.    

Despite the success of type-1 and type-2 fuzzy controllers in various industrial 

applications, their design process, which is based on the use of the knowledge of the 

operator/engineer, can encounter certain challenges, especially when these controllers 
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are applied in practical applications. First, the structure of these controllers must be 

defined a priori. Second, it can be very difficult to design some of the parameters of the 

fuzzy controller, including determining suitable membership functions, defining a 

suitable rule- base size, and deriving effective fuzzy control rules, especially when the 

controllers are applied to Multi-Input Multi-Output (MIMO) systems (Layne and 

Passino, 1996; Mendel, 1998). 

In order to resolve these issues and work with less dependency on pre-defined design 

information provided from human operators, Procyk and Mamdani (1979) developed the 

so-called self-organising fuzzy logic controller (SOFLC). The SOFLC belongs to the 

category of supervisory expert controllers, and includes a self-organising mechanism 

that modifies the structure of a conventional fuzzy controller and automatically performs 

the whole design task based on the environment in which it operates.   

1.4 Supervisory Intelligent Control Systems  

As industrial applications grow larger and become more complex, their control systems 

become more and more difficult to utilise. Forming precise models for complex 

processes is demanding and time-consuming. Supervisory intelligent controllers can 

deal effectively with this increased complexity, and can minimise the reliance on the 

knowledge of humans in both controller design and process operation (Abbod and 

Linkens, 1992; Nie and Linkens, 1999).  

The supervisory mechanisms that intelligent controllers include rely on either the 

knowledge obtained during their operation or from previous experiences to improve 

their capabilities. They allow control systems to be more flexible in terms of modifying 

their structure to effectively cope with the processes and all the changes in the 

surrounding environment. They monitor the performance of the processes being 

controlled, and use the obtained information to take corrective actions to maintain 

behaviour to be as close to the desired set-points as possible (Mahfouf and Linkens, 

2002; Nie and Linkens, 1999).  
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1.5 Thesis Overview  

The contents of the thesis are divided into a total of seven chapters as follows: 

Chapter two provides an overview of all the methods, concepts and operations that are 

needed and used throughout the thesis. The chapter begins by introducing type-1 and 

type-2 fuzzy systems, carefully defining and explaining various terms that are associated 

with them. Thereafter, the chapter outlines the basics of the traditional fuzzy logic 

controller, and then discusses the original SOFLC introduced by Procyk and Mamdani 

in 1979. Furthermore, a variety of methods utilised in the literature for the design of 

SOFLC algorithms are introduced.   

Chapter three reports on a newly proposed SOFLC algorithm with a dynamic 

supervisory layer, referred to in this thesis as a SOFLC-DSL algorithm. First, the basic 

concepts of the standard PSO algorithm are introduced. Thereafter, an on-line PSO 

algorithm used to adapt the consequent part of the performance index table of the single 

variable SOFLC scheme is reviewed in detail. The proposed SOFLC-DSL algorithm is 

then applied to a non-linear, mathematically ill-understood and uncertain muscle 

relaxation process. The performance of the proposed scheme is then studied extensively 

to test its robustness to on-line changes in scaling factors and model variables as well as 

other environments when it is applied in the stochastic case or experiences a sudden 

disturbance. In all these experiments, the obtained results are compared to the results 

obtained from a type-1 SOFLC scheme.    

Chapter four is mainly concerned with the design of type-2 SOFLC-DSL algorithms 

using both the interval and zSlice type-2 fuzzy sets. It begins with a comparative review 

of type-1 and interval type-2 fuzzy controllers, and how PSO algorithms have been used 

to enhance the capabilities of the latter controller in the literature. The concept of the 

zSlice type-2 fuzzy system is also defined. Thereafter, the structures of the proposed 

type-2 SOFLC-DSL algorithms are introduced and their performances assessed in 

various environments, similar to those outlined in Chapter 3. All the obtained 

performance data are compared to those of type-1 SOFLC and type-1 SOFLC-DSL 

algorithms.  
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Chapter five describes the extension of the proposed SOFLC-DSL algorithm to the 

MIMO case. First, a solid introduction is provided to various methods that are used to 

control MIMO processes. This review also includes the way in which the interaction 

between the input and output loops of these systems can be handled. Thereafter, a 

decoupled control architecture for a MIMO system that uses the type-1 SOFLC-DSL 

algorithm, reported in Chapter 3 as dominating controllers, is defined. The interactions 

between the control loops are handled using a linguistic switching compensator and 

RGA compensator. The proposed decoupled controller is successfully applied to a     

drug dynamic process, and the simulation results are investigated and discussed.  

Chapter six reports on another decoupled design of multivariable architectures in which 

type-2 fuzzy sets are deployed to replace those of type-1, utilised in chapter five. Both 

the interval and zSlice fuzzy sets are considered in this chapter. The chapter begins with 

an overview of different applications reported in the literature in which type-2 fuzzy sets 

have been used with MIMO systems. Another short review is provided on how PSO-

based systems have been used to improve the performance of MIMO systems. 

Thereafter, the proposed decoupled controller, which is equipped with type-2 fuzzy sets, 

is detailed and applied to a multivariable drug process. The robustness of the 

architecture is extensively studied.  

Chapter seven summarises all the work conducted in the thesis and discusses some of 

the results achieved. Furthermore, future work is suggested based on the findings and 

observations from previous chapters.  

Relationships between all the chapters of this thesis is shown in Figure 1.1.  
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Figure 1.1: Relationships and dependencies between chapters.
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Chapter 2- Background    

 

 

 

 

2.1 Introduction 

This chapter explains the basic general concepts that are used throughout the chapters of 

this thesis. It covers the most relevant aspects and methods concerning both type-1 and 

type-2 fuzzy logic systems, fuzzy logic control, and the self-organising fuzzy logic 

controllers. It begins by outlining and reviewing the basic aspects and terminologies 

related to type-1 fuzzy set theory, such as type-1 fuzzy sets and type-2 fuzzy systems, 

which are extensively used in Chapters 3 and 5. It then explains some major aspects 

related to the theory of type-2 fuzzy sets and systems that are needed in Chapters 4 and 

6. The reasons which, generally, make type-2 produce better results in many 

applications are also discussed. Next, the basics of fuzzy logic control are outlined 

before providing a detailed description of the structure of the self-organising fuzzy logic 

controller that represents the key element of the thesis. In addition, the applications of 

this scheme in different areas are identified. The last section explains the different 
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approaches used for designing supervisory intelligent control systems and their 

application domains.   

2.2 Type-1 Fuzzy Sets and Systems 

Uncertainty affects different aspects of our lives and appears in a wide range of forms. 

For example, in decision-making, the concept of uncertainty normally refers to the state 

or situation when there exist vagueness, imprecision, or a lack of information. Fuzzy 

logic has emerged as an effective tool to measure uncertainty and to minimise its effect 

via the so called type-1 fuzzy sets.  

2.2.1 Type-1 fuzzy sets 

Fuzzy sets were first proposed by Zadeh (1965) as a way of handling uncertainty and 

vagueness. In a classical crisp set, elements can only be regarded as being part of the set 

or not and are only represented in the form of 0 (''false'') and 1 (''true''). For example, 

assume one has a collection of elements   that make up a universe of discourse X. A 

crisp set, say  , can be formed by combining various elements in the universe. In such a 

case, any element   can either be a member of the crisp set   or not and is defined as:  

 
 
    {

                    

                         
 

In contrast to crisp sets, fuzzy set theory permits the partial belonging to sets where 

elements can take values in the interval [0, 1]. For example, the characteristics of a 

fuzzy set   in a universe of discourse X is defined as follows:  

                                                                

Alternatively, fuzzy sets can be denoted in the discrete case as:  

                                            ∑      
 
                                                                      (2.1) 

or  

                                                                                                            (2.2) 
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On a continuous universe, the fuzzy set is defined as follows:  

                                            ∫            
                                                              (2.3) 

where    represents the     number of the universe of discourse,    represents the 

strength of membership of element    and   is the universe of discourse. In equations 

2.1 and 2.2, the summation and addition symbols do not represent algebraic summations 

but rather demonstrate the collection of each element, while in equation 2.3, the integral 

symbol is not an algebraic integration but rather a continuous function-theoretic 

aggregation operator.  

An example of a type-1 fuzzy set is illustrated in Figure 2.1 which is called „numbers 

close to 25‟. As shown, the membership values are given based on the location of the 

input on the universe of discourse. When    25, for example, the highest membership 

value is achieved  
 
 25  =1, while this value decreases as we get away from the centre. 

For example,  
 
 3   = .82,  

 
 4   = .17. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: A possible membership function to characterise „numbers close to 25‟ 

2.2.2 Operations on type-1 fuzzy sets 

Fuzzy set theory contains a wide range of operations that can be performed on fuzzy 

sets. These basic operations are a generalization of those used in the crisp set theory and 
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are defined in terms of the membership functions of fuzzy sets. The most widely used 

operations include: fuzzy unions, fuzzy intersections, and fuzzy complements. For 

example, for two fuzzy sets,   and   , which are described by the membership 

functions  
 
          

 
   , the union is a fuzzy set in the discourse U, defined by      

 , with a membership function denoted as:  

                                                                                      

The interaction of sets   and   is a fuzzy set     B, whose membership function is 

denoted as:   

                                                                =                

It is also defined with a product operator as:  

                                                                     =              

The complement of the fuzzy set    is defined as:  

                                                 1-       
 

2.2.3 Type-1 fuzzy logic systems 

Type-1 fuzzy logic system represents a non-linear mapping of an input data vector into a 

scalar output (Mendel, 2000). It is also known as the fuzzy rule-based system, fuzzy 

expert system, and the fuzzy model. The most widely used ones in literature are 

Mamdani Fuzzy Logic System (FLS) and Takagi-Sugeno-Kang (TKS) FLS. Both 

Mamdani and TSK FLSs share the same antecedent structure and are characterised by 

IF-THEN rules. Their difference lies in the structure of their consequent, which is in the 

form of a fuzzy set in the Mamdani system while the TSK system uses a function. As 

can be seen in Figure 2.2, the Mamdani FLS, which is the most widely used system in 

engineering applications, has four components: fuzzifier, rules, inference, and 

defuzzifier.  

  

https://en.wikipedia.org/wiki/Fuzzy_set_operations#Fuzzy_unions
https://en.wikipedia.org/wiki/Fuzzy_set_operations#Fuzzy_intersections
https://en.wikipedia.org/wiki/Fuzzy_set_operations#Fuzzy_complements
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2.2.3.1 Fuzzifier  

The fuzzifier is the component in the FLS that decides how the input signal will be 

mapped into a fuzzy signal for further processing. This is carried-out via membership 

functions. The singleton fuzzifier is often the one used in literature due to its simplicity 

and reduced computational cost. In this fuzzifier, the crisp inputs    (  ,   ,..,   ) are 

connected and converted into fuzzy sets by being evaluated based on the antecedent part 

of the rules, each input is assigned a membership grade whose values depend on the 

corresponding fuzzy set. Another common approach is the non-singleton fuzzifier, 

which is frequently used in cases where noise is present in the data. The non-singleton 

fuzzifier uses a fuzzy set known as the variability set that all inputs are mapped into. 

The membership grade for any    is the centre of the fuzzy set while the values of the 

neighbours get smaller as they move away from   . Figure 2.3 shows an example of the 

two fuzzifiers. 
     

 

Figure 2.2: Type-1 Fuzzy logic system. 

 

2.2.3.2 Rules  

Fuzzy rules are a key tool used to express pieces of knowledge in the form of 

conditional statements represented in the IF-THEN form and are defined in terms of two 

parts: the IF part, which is also known as the antecedent of the rule, and the THEN part, 
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widely known as the consequent part. For example, for a Mamdani type-1 system  with 

S inputs,      X ,…,      X  and one output     Y, famously known as multiple input 

signal output (MISO) system. It is assumed that it has N rules and the antecedents are 

connected by the operation ‘and’ (t- norm operator). The  th
 rule in this case is given by: 

                        : IF    is   
       …         is    

 ,THEN    is          … N                  (2.4) 

 

 

Figure 2.3: The fuzzification of a crisp input X using singleton (left) and non-singleton 

(right) fuzzification on a fuzzy set A. 

 

2.2.3.3 Inference engine   

The fuzzy inference engines use the principles of fuzzy logic to formulate mapping from 

a given input to an output. The Mamdani system uses fuzzy sets in both the antecedent 

and consequent parts. Equation 2.4 can be expressed as   
 × ....×   

 =     Then, it can be 

re-written as: 

                        :   
 × ....×   

                   … N.                                             (2.5) 

The fuzzy rule    is defined by the membership function  
       =                   , 

such that: 

                                
        =                                                                           (2.6) 
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Equation 2.6 can also be written as follows:  

                                                                                          

                                                                …      
           

                                                             
     …     (  )                                          (2.7) 

                                                            
  

  
              

It has been assumed here that a Mamdani system is used and the antecedents of the rules 

are connected by ‘and’ (t-norms) and T represents the t-norm. The S-dimensional input 

to the fuzzy rule   are defined by a fuzzy set    whose membership grade is 

represented by:  

                                  
            …     (  )      

                                   (2.8) 

Each fuzzy rule    determines a fuzzy set in  ,       o     

 

where  

 

                          
             [   

                ]                          (2.9) 

Equation 2.9 represents the relationship between the fuzzified inputs that activate the 

inference engine and the resultant fuzzy output set, as shown in Figure 2.2. This sup-

start composition forms a non-linear mapping between the input signal   and the scalar 

value produced from the output fuzzy set  
        

Substituting equation 2.7 and 2.8 into equation 2.9 results in  

                               *                        
    +   

                                           …  * *               (  )      (  )+                              (2.10) 

The output fuzzy set   is produced by all fuzzy rules and can be determined by 

combining    and its membership grades        for all         

                                         
             

        
                                         (2.11) 



 

16 
 

The fuzzy rules can be combined via different compositions such as sup-min or sup-

product compositions (Lee, 1990).  

 

2.2.3.4 Defuzzifier 

The defuzzifier is the last stage of the fuzzy logic system and it is responsible for 

producing crisp output values from the output fuzzy sets generated by the inference 

engine. There are different methods used in the literature. Since computational 

complexity can be an obstacle that prevents the usage of fuzzy systems in practical 

applications, this motivated different researchers to propose numerous methods for 

defuzzification, including, for example: centroid, centre of sets, mean of maxima height, 

modified height, and centre of sums. The centroid defuzzifier, as an example, uses the 

union (t-conorm) to combine the output type-1 fuzzy sets and then finds the centroid of 

this set. For a fuzzy set   with an associated membership function  
 
   . 

 

                                                 
                                                                               (2.12) 

    

Then, the centroid deffuzifier is defined as: 

                                                                         (2.13) 

  

In equation 2.13, the membership function of the set   that represents the output set is 

discretised into N points. A different output value       is obtained for every FLS 

input  .  

2.3 Type-2 Fuzzy Sets and Systems 

As already stated, the primary motivation behind the introduction of fuzzy sets was to 

allow uncertainty, imprecision, and partial truth to be expressed in a mathematical form. 

In addition, fuzzy set theory provides tools, e.g. type-1 fuzzy logic systems, which can 

handle vagueness and uncertainty relating to many real world problems. Type-1 fuzzy 

logic systems have been successfully applied in a wide range laboratory studies, as well 

                                  𝐵 𝑥  
∑  𝑖 𝐵 𝑦𝑖 
𝑁
𝑖  

∑  𝐵 𝑦𝑖 
𝑁
𝑖  
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as complex industrial applications. Despite this success, these systems are unable to 

completely model and minimise the effect of numerical or linguistic uncertainties in 

environments that are dynamic and unconstructed (Mendel, 2001). This difficulty lies in 

the way type-1 fuzzy sets are constructed, which, despite having a connotation of 

uncertainty, their membership grades are completely certain. They represent uncertainty 

via crisp values in the range [0, 1]. In cases when an entity such as measurement is 

uncertain, exact values become very hard to determine, and the usage of type-1 fuzzy 

sets in such situations would lead to better results than the traditional crisp sets. 

However, as the degree of uncertainty increases, type-1 fuzzy sets fail to perform well. 

This issue was addressed by Zadeh in 1975 and led to the discovery of a more 

sophisticated type of fuzzy sets, which included the general type-2 fuzzy set (Zadeh, 

1975). Type-2 fuzzy sets are better tools to reduce uncertainty in systems due to the 

third dimension, which enables them to represent uncertainty via membership grades, 

which are themselves fuzzy and not merely crisp values as in type-1 fuzzy sets.  

From the view point of control applications, high degrees of uncertainty can be in the 

form of noise in the measurements received from the output resulting from the sensors 

used in the control loop, loss of information or simple due to a change in the conditions 

surrounding the process.  

The most common sources of uncertainty in fuzzy logic systems in the literature are 

(Mendel, 2001): 

 Uncertainty that is associated with the way humans interpret „words‟ in fuzzy 

rules.  

 Uncertainty that can appear in the antecedent or consequent parts of the fuzzy 

rule.  

 Measurement uncertainty. 

 Parameter tuning data uncertainty. 

The first two are result of uncertainty about the way fuzzy sets are constructed, while the 

last two are associated with the measurement of the data used in the fuzzy logic system. 

Type-2 fuzzy systems have the ability to model and reduce the effect of all these types 

of uncertainty and normally give better results than the type-1 fuzzy system when such 

circumstances are faced. When the sources of such noise and uncertainty disappear, 
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type-2 fuzzy sets should reduce to type-1 fuzzy sets. In such cases, type-2 fuzzy sets 

perform in similar way as the type-1 fuzzy sets.  

2.3.1 General type-2 fuzzy sets 

If a type-1 fuzzy set is blurred to the right and to the left, as shown in Figure 2.4, then a 

type-2 fuzzy set is constructed. In this scenario, for an input x', different values are taken 

by the membership function u' and are weighted differently. Therefore, one can assign 

different grades to all the points. If the same is done to all x   X, then a third dimension 

is constructed and this forms the general type-2 fuzzy set.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Blurred type-1 membership function. 

 

 

The general concepts of type-2 fuzzy sets, as stated above, were first defined by Zadeh 

in a number of contributions (Zadeh, 1975). These papers outlined the basic operations 

of type-2 fuzzy sets. Yet, the implementation of type-2 in fuzzy logic systems remained 

unpopular in the following years due to a number of obstacles, which included:  

  

 Difficulty in characterising type-2 fuzzy sets.  

 Difficulty in performing operations on type-2 fuzzy sets. 
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 Difficulty in finding a way to inference with type-2 fuzzy sets.  

 Difficulty in finding a way to move from the output fuzzy set into a defuzzified 

value.   

Karnik and Mendel (1998) were the first researchers to overcome these obstacles and 

expand type-2 fuzzy set theory to a point that it can be implemented practically. Other 

researchers that have contributed to this field include Mizumoto and Tanaka (1976), 

Dubois and Prade (1980) and Mendel and John (2002).  

The type-2 fuzzy set is denoted by  ̃ and is characterised by membership functions that 

are themselves fuzzy, i.e. each point of this set is described by a fuzzy set in the range 

[0, 1]. A type-2 fuzzy set is denoted by (Mendel and John, 2002): 

                         ̃ = {(( ,  ),   ̃ ( ,  )) |         X         Jᵪ ⊆ [0, 1] }                      (2.14) 

where  
 ̃

( ,  ) is a membership function in which    
 ̃

 ( ,    ≤ 1, while Jᵪ ⊆ [0, 1] is 

called the primary membership of   and  
 ̃

 ( ,  ) represents a type-1 fuzzy set known 

as the secondary set. Hence, the membership grade of type-2 fuzzy set can take any 

value in the range [0, 1], which may define the primary membership. For each primary 

membership, there is also a secondary membership, which is also defined in the range 

[0, 1]. The uncertainty in type-2 fuzzy sets is represented by the union of all primary 

memberships and is known as the footprint of uncertainty (FOU) (Mendel, John, 2001). 

 

The type-2 fuzzy set,  ̃, can also be denoted as follows: 

                     ̃  ∫ ∫   ̃                  ᵪ  ⊆           ᵪ     
                                              (2.15) 

  

where ∬  represents union over all   and   ( Mendel, 2001)  

 

When the universe of discourse is discrete,  ̃  is described as follows:  

                    ̃  ∑ ∑   ̃                  ᵪ  ⊆           ᵪ                                             (2.16) 

Figure 2.5 shows an example of the general type-2 fuzzy set. As can be seen, the 

membership values for every input   is no longer represented by a single crisp value as 

experienced with type-1 fuzzy sets, rather, it is now defined by an independent 

membership function.   
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Figure 2.5: General type-2 fuzzy set „numbers close to 25‟. 

 

2.3.2 Interval Type-2 fuzzy sets  

Despite the obstacles the general type-2 fuzzy sets have overcome, extending type-1 

FLS to type-2 FLS remained impractical due to the high computational cost of type-2 

fuzzy logic systems. With the introduction of the so-called interval type-2 fuzzy sets, 

which are less complex and easier to compute, this obstacle was finally overcome 

(Mendel, 2001). The characteristic of an interval type-2 fuzzy set is defined as:  

                      ̃  ∫ ∫             ᵪ  ⊆       
    ᵪ     

                                               (2.17) 

As it can be seen from equation 2.17, all the secondary membership functions   ̃   ,    

are now equal to 1, which makes it a special case of the general type-2 fuzzy set. Figure 

2.6 shows an example of the interval type-2 fuzzy set.  

The footprint of uncertainty in the interval type-2 fuzzy sets is the same as that of the 

general type-2 fuzzy set and is defined by the union of all primary memberships and it 

represents the entire interval type-2 fuzzy set. The interval type-2 fuzzy set can be 
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defined in terms of a lower membership function  
 ̃
    and an upper membership 

function   ̃   . The middle solid Gaussian curve in Figure 2.6 is known as the principal 

membership function and is formed by the union of all primary membership mid-points. 

The type-2 fuzzy set reduces to its principle membership function when all levels of 

uncertainty of the membership function disappear.  

2.3.3 Type-2 fuzzy set operations  

In order to perform the set operations on type-2 fuzzy sets, the binary operations of 

maximum and minimum (or product) and the operation of negation needed to be 

extended from crisp values to type-1 fuzzy sets, as in type-2 fuzzy sets, uncertainty is 

represented by a function. The tool for carrying this extension is Zadeh‟s extension 

principle (Zadeh, 1975). Different tools were used to define the extension principle. For 

example, Zadeh used the minimum t-norm and maximum t-conorm while Mizumoto and 

Tanaka (1976) and Dubios and Prade (1980) used other t-norms and t-conorms. 

For two type-2 fuzzy sets  ̃ and  ̃ in universe X  

         ̃  ∫   ̃     
     

  ∫ *∫         
      

 +        
   ⊆                                

     
    (2.18)    

and  

       ̃  ∫   ̃     
     

  ∫ *∫         
      

 +        
   ⊆      1 

     
                                (2.19)                                                                                         

 

The type-2 fuzzy set operations can be performed as (Mizumoto and Tanaka, 1976; 

Karnik and Mendel, 2001b): 

 Union  

 The union of the secondary functions  ̃ and  ̃ is expressed as:  

       ̃  ̃    ∫ ∫                          ̃      ̃       J 
     

   J 
  

       (2.20) 

where   defines maximum and  defines minimum or product t-norm.  denotes the 

join operation. In order to perform the union operation between the secondary 

memberships of the two sets  
 ̃
    and  

 ̃
   , the operation     must be carried-out 

for every possible pairing of   and   such that    J 
   and    J 

  . 
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 Intersection  

While the interactions of  ̃ and  ̃ is given by:   

            ̃  ̃    ∫ ∫                       = 
 ̃
     

 ̃
   ,

   J 
     

   J 
  

       (2.21) 

where   denotes the minimum or product, while defines minimum or product t-norm, 

and  denotes the meet operation. To perform the intersection between the secondary 

memberships of the two sets  
 ̃
    and  

 ̃
   , the operation,     must be carried-out 

for every possible pairing of   and   such that    J 
   and    J 

   

2.3.4 Type-2 fuzzy logic systems 

The structure of type-2 fuzzy logic system is similar to that of type-1 fuzzy logic system. 

The major difference lies in the extra component known as the type-reducer. Figure 2.7 

shows the structure of the type-2 fuzzy logic system.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                    Figure 2.6: Interval type-2 fuzzy set „numbers close to 25‟. 
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The type reducer block reduces the output of the inference engine, which is a type-2 

fuzzy set into a type-1 fuzzy set, so it can be defuzzified and converted into a crisp 

output. The five components that type-2 FLS has are:  fuzzifier, rules, inference, type 

reducer and defuzzifier. 

Figure 2.7: Type-2 FLS 

2.3.4.1 Fuzzifier  

The crisp inputs in the fuzzifier of type-2 FLS,   =(   ,   ,..,   ) are gathered and 

converted into fuzzy sets by being evaluated based on the antecedent part of the rules. 

Each input is assigned to its type-2 fuzzy set, say A, with its degree of membership in 

each type-2 fuzzy set. When a general type-2 fuzzy logic system is used, the fuzzified 

input is a type-1 fuzzy set that represents the secondary membership grades for every 

input. However, the fuzzified input can only be an interval set when an interval type-2 

fuzzy logic system is used.  

 2.3.4.2 Rules 

Fuzzy rules are also represented by IF-THEN statements where the IF part is also known 

as the antecedent and the THEN part is known as the consequent. They are the same as 

those of the type-1 fuzzy logic system, but in the former, at least one type-2 fuzzy set is 

used. For example, for a Mamdani type-2 FLS with S inputs,         ,…,         and 
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one output     Y, they are also known as multiple-input signal-output (MISO) system. 

It is assumed that it has N rules and the antecedents are connected by the operation ‘and’ 

(t- norm operator). In this case, the  th
 rule is given by: 

                      : IF  1 is  ̃ 
   and .. and  p is   ̃ 

 ,THEN    is  ̃        … N.                   (2.22) 

2.3.4.3 Inference Engine 

The fuzzy inference engine uses fuzzy logic principles to convert input type-2 fuzzy sets 

into output type-2 fuzzy sets, based on the fuzzy IF-THEN rules stored in the rule-base. 

In Mamdani FLS, the rule in both the antecedent and the consequent part use type-2 

fuzzy sets.  If  ̃ 
 × ....×  ̃ 

 =  ̃ , then equation 2.22 can be written as: 

                   :  ̃ 
 × ....×  ̃ 

   ̃  =   ̃    ̃       … N.                                                 (2.23) 

The fuzzy rule    is described by the membership function 

 
       =                   , 

such that:  

                         =   ̃    ̃                                                                         (2.24) 

Equation 2.24 can also be written as follows:  

                            =  
 ̃
 
   ̃

          ̃      …    ̃       
 ̃
     

                                             [    

 

  ̃      ]   ̃                                        (2.25) 

In general, the type-2 fuzzy set   
  represents the S-dimensional input to the fuzzy rule 

  .  

The membership function of   
 is defined as follows:  

      
 
  

 ̃ 
      ̃     …    ̃         

 

  ̃                                   (2.26) 

The inputs defined by   ̃             are labels of the fuzzy sets.  

The fuzzy rule    is used by the inference engine to determine the output type-2 fuzzy 

set  ̃   ̃     
 , such that 
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              ̃       ̃     
      *  ̃            +           …                 (2.27) 

This equation represents the case when a type-2 fuzzy set activates one of the fuzzy 

rules stored in the rule-base in the inference engine to produce the output fuzzy set.  

If the fuzzy logic system uses an interval type-2 fuzzy set and a product t-norm to 

perform the intersection, the results from the input and antecedent operation, which are 

contained in the firm set     

 

 
 ̃ 
   

        , such as  

                       *             +  *     +                                                  (2.28) 

where  

                         
 ̃ 
 
   

   …     
 ̃ 
 
(  

 )                                                              (2.29) 

                         ̅
 ̃ 
    

   …     ̅
 ̃ 
 (  

 )                                                               (2.30) 

where * stands for production operation.  

2.3.4.4 Type reducer 

The type reducer converts the output type-2 fuzzy set produced by the inference engine 

into a type-1 fuzzy set by performing a centroid calculation ( Mendel, 2001), which is 

then converted into a crisp value using the defuzzifier.  

Type reduction in general type-2 fuzzy sets: Type reduction for the general type-2 

fuzzy set is computationally expensive, which forms the major disadvantage of type-2 

fuzzy logic systems. However, the process has a reduced mathematical cost when 

interval type-2 sets are used. The first known type-reduction method was proposed by 

(Mendel, 2001). In this method, the union of all the centroids of all the embedded type-2 

related to the general type-2 fuzzy set are computed. This method is unpopular in real 

applications due to the large number of embedded sets involved in type-2 fuzzy sets. 

Gafa and Coupland (2011) proposed a recursive algorithm to reduce the computations. 

However, the results still cannot be practically implemented in real applications. A more 

practical approach known as the geometric defuzzifier was introduced by Coupland and 

John (2007). In this algorithm, random samples of the embedded sets are used to 

approximate the exact values (Greenfield, 2005). Another approach that could be 

practically implemented and does not depend on the concept of embedded sets is the 
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vertical slice centroid type-reducer (VSCTR), which was initially introduced by (John, 

2000) and then developed by (Lucas, 2007). Other methods found in the literature 

include the usage truth numbers in triangular type-2 fuzzy sets (Starczewski, 2009b), as 

well as other methods that rely on z-slices (Wanger and Hagras, 2009).  

Type reduction in interval type-2 fuzzy sets: As stated above, the reduction process 

for interval type-2 fuzzy sets is simpler. A commonly used type reducer for interval 

type-2 fuzzy sets is the Karnik-Mendel (KM) iterative algorithm (Karnik and Mendel, 

2001a), which was then improved by the so-called Enhanced KM algorithm (Wu and 

Mendel, 2009). Another method, known as the collapsing method, is proposed by 

(Greenfield et al., 2009). Other methods proposed for practical usage are reported in 

different contributions in literature, which include uncertainty bounds (Wu and Mendel, 

2002), Nie-Tan (NT) method (Nie and Tan, 2008). 

 2.3.4.5 Deffuzifer   

The deffuzifer converts the type-reduced into a crisp value so it can be generated into 

the system. A common natural way is to determine the centroid of the type-reduced set. 

However, there are other methods available for use, which result in more accurate 

values (Mendel, 2001). 

2.4 Fuzzy control  

Control applications represent the field in which fuzzy logic has made great successes. 

Fuzzy control is involved in various consumer products that are used today. Indeed, 

Mamdani proposed the world‟s first fuzzy controller  Mamdani, 1974 . His primary 

motivation was to utilise the knowledge and experience of an operator to construct a 

controller that would emulate human control behaviour to a certain extent. The success 

of Mamdani‟s work opened the door to many other contributions in fuzzy logic control 

that increased over the years.  

Fuzzy controllers have various advantages over traditional control schemes. First, they 

do not require a mathematical model of the system to be controlled. Second, fuzzy 

controllers are non-linear and have the ability to control a wide range of inherently 
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complex, time-varying, and complex systems that involve time delays without the usage 

of complicated mathematics as they are constructed empirically. 

A simple fuzzy controller that is used to maintain the output of process around a given 

desired-point is shown in Figure 2.8.  

 

 
Figure 2.8: A simple fuzzy controller. 

 

The control strategy of fuzzy controllers is governed by linguistic statements expressed 

as:  

 

‘If error is positive big, THEN the controller output needs to be positive medium’ 

 

where the controller input is represented by the antecedent of the rule while the 

consequent represents the output of the controller. The labels such as big and medium 

are known as the linguistic values and are normally translated into numerical values. 

The input signals to the controller, expressed as Error (E) and change of error (EC) as 

well as the output of the controller (U) are scaled by scaling factors (GE) and (GC) and 

(GT) respectively, which are used to alter the response of these variables.     

Despite having been successfully applied to a variety of systems in different areas, the 

structure of fuzzy controllers, whether they use a type-1 FLS or type-2 FLS, need to be 

defined beforehand in most of these applications. Some of the usual issues that arise 

when designing a fuzzy controller include: choosing suitable membership functions, the 

determination of suitable rule-base size, and obtaining proper control rules. This issue 

was tackled by the introduction of the so called self-organising fuzzy logic controller 

(SOFLC). 
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2.5 Self-organising fuzzy logic controller  

The self-organising fuzzy logic controller (SOFLC), which represents the focus of this 

thesis, was first introduced by Procyk and Mamdani (1979). It involves an amendable 

control policy that changes according to the dynamics of the process under control as 

well as the environment in which it operates. The SOFLC uses past experience, which is 

a combination of the past control rules and the output they produced to evaluate the 

behaviour of the controller and continuously improve its performance. While operating, 

the SOFLC performs two tasks: 

 Issuing the appropriate control actions while observing the environment that it 

operates in.  

 Improving the control action of the controller through modifying the control 

rules of the lower-level fuzzy logic rule-base based on evaluation of the system‟s 

performance.  

The SOFLC has been applied to a wide range of systems. This, for example, includes 

controlling the water level of a tank. This was achieved by applying the SOFLC to a 

simulated process of two connected tanks (Yamazaki and Mamdani, 1982). Another 

popular application of the SOFLC is the Sugeno‟s fuzzy car  Sugeno and Nishida, 

1985), where the controller is used to enable the car to automatically learn how to park.  

The controller was also used to regulate the attitude of a flexible satellite model (Daley 

and Gill, 1986). Another researcher has used SOFLC to control an active suspension 

system ( Huang and Lin, 2003). Mahfouf and Abbod (1994) applied the SOFLC to 

human muscle relaxation in a non-linear muscle-relaxant anaesthesia model. The 

SOFLC was also used for a sedation control of intracranial pressure (ICP) pattern in an 

intensive care unit ( Shieh et al., 2006). 

In these applications, the SOFLC has shown its ability to control uncertain, non-linear, 

time variant, mathematically ill-defined systems, due to its capability to modify its 

structure to suit the environment in which it operates and also its ability to effectively 

control systems without the need for explicit mathematical models. 

 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Jiann-Shing%20Shieh.QT.&newsearch=true
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2.5.1 Description of the controller 

The SOFLC enables its structure to be modified by adding a performance feedback layer 

to the traditional fuzzy logic controller as shown in Figure 2.9. As can be seen from the 

figure, the controller includes two parts. Part „B‟ is a normal Mamdani type system 

while part „A‟ represents the self-organising mechanism that is responsible for 

evaluating the performance of part „B‟ and modifying its control rules. It consists of the 

Performance Index (PI) table, the rules modifier, the state buffer, and the process model.  

 

Figure 2.9: The structure of SOFLC. 

 

2.5.1.1 Performance index table 

A learning controller can only adapt its control structure to reach a predetermined 

quality if it manages to effectively evaluate its own performance. The SOFLC uses a PI 

table to carry- out this task. The PI table evaluates the performance of the system and 

determines the deviation from the desired trajectory. If required, it issues correction 

values to bring the output of the process to a desired level. The PI table is developed 

using the traditional linguistic statements. However, if the inputs of the controller are 

expressed as fuzzy singletons, then the PI table can also be represented by a „look up‟ 

table (Mamdani and Procyk, 1979), as shown in Table 2.1. 
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Usually, the SOFLC evaluates the system performance by measuring the system output 

error (E), and change of error ( E) and it generates the modification value, f, to the 

lower-level fuzzy logic rule-base at the instance (nT). 

                                                                                                                      (2.31) 

 

The PI table is formed based on the knowledge of an operator or an engineer and aims 

at: 

 Achieving fast recovery when the system experiences a disturbance.  

 Good damping when the output of the system reaches the desired set-point.  

 Confining the output of the system within a certain range around the desired set-

point. 

  

 

 

 

 

 

 

 

 

 

 

 

Table 2.1: A typical performance index table (Lu and Mahfouf, 2006). 

NB: negative big, NS: negative small, ZO: zero, 

PS: positive small, PB: positive big. 

 

2.5.1.2 Rule modifier  

So far, it has been shown how the output of the system under control can be used with 

the aid of the PI table to modify the control strategy of the controller. What is now 

required is showing how the correction values issued by the PI table are translated into 

reinforcements to control rules of the lower-level fuzzy logic rule-base. This procedure 

can be illustrated in the following pattern; it is assumed that for a process with a time lag 

of m samples, the inputs that were generated at ‘nT-mT’ are responsible for the present 

undesirable performance of this process. Therefore, the original procedure,  
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                                                                                  (2.32) 

should be modified to the following rule:  

                                                                             (2.33)     

where        is the correction value received from the PI table at     .  
 

2.5.1.3 State buffer 

As indicated above, in order for the controller to modify its structure, it needs to 

determine the rules responsible for any undesirable response. The state buffer is a 

recorder that registers the values of scaled error, called the change of error, as well as 

the output of the controller before scaling.   

2.5.1.4 Process model  

Controlling multiple input multiple output (MIMO) systems could be very challenging 

due to the interaction between inputs and outputs. Usually, each input has influences on 

all the outputs of the system. The SOFLC uses a model to measure the degree of 

coupling between the input and output of the process. For a MIMO process, the 

modification is carried-out in the following pattern:  

                                                                                                                        (2.34)   

where 
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       is the correction value issued by the PI table while         is the manipulated 

input variable to the process and   represents the incremental model of the system. 

Different studies and investigations for the choices of the process model can be found in 

different contributions such as (Mamdani and Procyk, 1979; Daley and Gill, 1986). 

When the SOFLC is used in the SISO case, a simple value of 1 is given to this model.  
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2.5.2 Controller parameters setting  

2.5.2.1 Scaling factors  

Generally speaking, fuzzy controllers are normally constructed by defining a set of 

parameters as discussed above. Issues may arise when choices for the controller 

structure are not chosen correctly or if the controllers are not properly tuned. Input and 

output scaling factors are common in fuzzy control systems and are used to tune and 

improve the performance of these systems. As can be seen in Figure 2.9, the SOFLC 

uses both input and output scaling factors to regulate its performance. Procyk and 

Mamdani (1979) discussed the impact of these scaling factors on SOFLC and how they 

can be used to alter the desired performance of the controller effectively. Daley and Gill 

(1986) proposed a different approach for determining suitable values for the scaling 

factors, where small values are initially given to these variables, which increase at 

different times until the desired response is achieved. This approach enhanced the 

capabilities of the controller and enabled it to control more complex and high-

dimensional systems more effectively in terms of acceptable steady-state accuracy and 

transient behaviour.   

An alternative approach was developed by Linkens and Abbod (1992) who proposed 

formulas based on a series of trials they conducted on various systems, such as an 

anaesthesia model and an air heating system. The new formulas resulted in suitable 

scaling factors which are sufficient for different applications. Chou and Lu (1994) 

proposed a new mechanism for the output scaling factors to be tuned on-line; this 

approach was employed in (Rojas et al., 1999). In this strategy, a learning rate that 

decreases with time exponentially is used; hence, the impact the scaling factors have on 

the system decreases with time. Simulation results showed how this rule enables the 

scaling factors to enhance the control action in initial iterations when the control rules 

are not well designed while their effect decreases when the response approaches the 

desired point, enabling the controller to run smoothly in this region. Mahfouf et al. 

(2000) added a supervisory layer to the SOFLC in the form of a knowledge-based 

protocol to govern the scaling factors selection task, this was carried-out based on the 

system behaviour in terms of different variables such as rise time and the overshoot.  
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2.5.2.2 Selection of inputs for the performance index table  

The performance evaluation task relies solely on the input signals generated to the 

performance index table; therefore, the selection of these variables play a major role in 

the how well the controller performs in terms of simplifying its structure and speeding 

up the response of the system. 

Generally, the inputs to the PI table at every sampling instant are taken as the error and 

change of error (Procyk, Mamdani, 1979; Sugeno, 1984; Mahfouf et al., 2000). 

However, Kim (2000) developed a new mechanism for the rule modification of fuzzy 

rules, which uses the so-called sliding mode character   and its derivate   ̇  as the input 

variables to the performance index table.  Simulation results demonstrated that the 

proposed algorithm has managed to effectively control different non-linear systems such 

as circular inverted pendulum systems and a two-link robot manipulator.   

2.5.3 Adding and deleting control rules 

In order for the SOFLC to improve its performance, it continuously modifies, adds, or 

deletes control rules depending on the behaviour of the system under control. New rules 

enable an effective enforcement of control actions while deleting some old rules makes 

the rule-base able to have enough room to reflect the dynamics of the system under 

control and also prevents conflicts between rules and rule explosion syndrome.   

2.5.3.1 Adding a rule to the lower-level fuzzy logic rule-base 

The control rules in the original SOFLC scheme are stored in a rule bank and the 

criterion for adding rules to the rule bank in the lower-level fuzzy logic rule-base can be 

stated as: A new rule can be added to a particular cell in the rule bank if this cell does 

not contain a rule already, otherwise the existing rule will be replaced by the new one 

(Procyk, Mamdani, 1979). However, there has been a significant amount of work 

reported in the literature dedicated to the development of new approaches for adding 

new rules to rules banks. Lee (1990) used the firing strength of control rules as a 

criterion to govern the rule additions. If at a particular instant, the strength of the rule is 

smaller than a predefined threshold, then a new rule needs to be added to the rule-base 
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as the current rules are not enough to enable the controller to perform well. Leng et al 

(2005) utilised the process error that is defined by the absolute difference between the 

actual output of the process and the reference output as a criteria for adding new rules. 

In this algorithm, fuzzy rules are added to the lower-level fuzzy logic rule-base or the 

width of some membership functions are modified if the process error is smaller than a 

predefined threshold.   

2.5.3.2 Deleting rules from the lower-level fuzzy logic rule-base 

The SOFLC algorithm avoids the explosion of the number of fuzzy rules by deleting any 

unimportant rules. In the original SOFLC algorithm, a simple approach is used to detect 

and delete the unimportant rules, which is based on the criterion that newly generated 

rules have the priority to survive. In the event of conflicting rules, the existing rule will 

be replaced by the new one.  

Another approach for managing rules is the fixed Maximum Number of Rules ( FMNR), 

which uses the difference between the actual output of the process and the desired 

output for rule selection when there are two rules for the same cell ( Park et al.,1995). In 

this approach, as new input-output data is gathered, the number of rules increases 

monotonically and converges to a finite number. This approach requires a model of the 

process and can therefore only be used for off-line applications of the SOFLC. The work 

of Park was developed by Dias and Dourado (1999) who proposed a new technique 

which combines both the FMNR and an adaptation mechanism for the parameters. 

Simulation results show the proposed algorithm performs well with different non-linear 

systems in both the SISO and MIMO cases.   

2.6 Supervisory intelligent Control Systems   

Supervisory layers provide integrated control and network management to fuzzy 

controllers. They enable controllers to rely less on priori design information and rather 

use the dynamics of the system under control to update and modify its structure till the 

desired response is achieved. This advantage allows controllers to control more 

satisfactory performance even when they are applied to very complex and highly 
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uncertain systems. Different approaches are available in the literature that studied and 

further developed the original SOFLC and also resulted in new schemes.    

2.6.1 Fuzzy controllers using performance index tables  

In order to improve the capabilities of the original SOFLC in terms of robustness, 

stability, and control abilities, different techniques have been used to further study and 

develop the PI table. Layne and Passino (1996) incorporated the idea of conventional 

adaptive control in the SOFLC to develop the so called fuzzy model reference learning 

controller (FMRLC). This scheme uses a reference model that defines how the designer 

would like the process to behave. The input signals of the performance index table are 

the error        and change of error  ̇     , which are defined in terms of the process 

output       and reference model output          as follows: 

                                                                                                                               (2.35) 

                                    ̇                                                                                  (2.36) 

 When applied to a two-degree of freedom robot manipulator and rocket system, the 

controller exhibited good system behaviour in terms of good steady-state and transient 

response. The FMRLC was studied and developed intensively in various contributions 

and was applied to different systems (Golea et al., 2002; Cermen, 2013; Li, 2011). 

 A new approach for designing a PI based SOFLC was developed by Polkinghorne et al 

(1994)  where, rather than using the standard performance index, the controller used 

enhancement matrices, one for each input variable,  which contain the control 

information of the process under control. The controller was applied on a small vessel 

with two inputs. The simulation showed the new proposed mechanism provided more 

precise modification of control rules than the traditional one.  

Another interesting technique in the literature uses a multi-stage SOFLC scheme where 

m-input/n-output SOFLC system is decomposed to many 2-input/1-ouput sets (Chou et 

al., 2010). This decomposition allowed the performance index tables to be constructed 

in simple 2-input/1-ouput spaces as those of the original SOFLC scheme. The proposed 

scheme was designed to control the anaesthesia and muscle relaxation of human bodies. 
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Simulation results demonstrated the algorithm provided a good performance with 

reduced steady-state error.  

 

2.6.2 Fuzzy controllers using performance measure functions  

An alternative approach to enforce the rule modification in the lower-level fuzzy logic 

rule-base can be carried-out using a learning algorithm as the one proposed by Yang 

(1992). In this algorithm, both the error and change of error of the process under control 

are used to construct a learning algorithm that replaces the performance index table as 

shown below: 

                         ̅                   ̇                                                                  (2.37) 

where      is the tracking error and   ̇     is the error change,   is the weighting 

distribution value and   is the learning rate. 

The learning rate governs the process by which the correction values are calculated. If 

large values are given to the learning rate, the algorithm may excessively adapt the 

control rules and this might result in oscillatory phenomena behaviour during the control 

process. In contrast, if small values are assigned to the learning rate, the learning law 

will respond slowly to the changes of the system and will fail to provide the 

modification needed.  

Since inappropriate selection of the design parameters, i.e., the weighting distribution 

and the learning rate, can lead to learning instabilities, several studies emerged that 

further studied and developed the algorithm. In one study, a stability analysis was 

performed and the learning law was modified, both the error and change of error shown 

in equation 2.37 were replaced by fuzzy values (Huang and Lee, 2000). The idea behind 

this is to avoid any unnecessary rule modification by forcing e and   ̇ to reach zero 

simultaneously. When the modified algorithm was tested on a robotic system, it showed 

good capabilities in terms stable learning and fast motion control. Li et al (2015) added 

a grey-predictor to the algorithm to enable it to estimate the output of the process, 

producing a controller capable of pre-correcting control rules to reasonable ones with 

better abilities to compensate for the dynamic coupling effects between its inputs and 
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outputs, making it applicable to work in the multivariable case. This work was further 

developed by Lian (2012) to include what he called the enhanced adaptive grey-

prediction algorithm to overcome the stability issues. The experiments on the 6-DOF 

robot proved the suitability of the proposed algorithm, which provided better control 

performance than the original.   

There were several other studies conducted to propose new techniques to develop the 

SOFLC schemes using a performance measurement function. Neural networks were 

expansively used as a self-organising strategy in SOFLC schemes. Lin and Lee (1991) 

developed a back-propagation network (BPN) based SOFLC that performs the rule 

modification task by combining both a supervised and an unsupervised learning 

techniques. When implemented, the proposed algorithm proved to have fast learning 

capabilities without requiring extensive information of the dynamics of the process.  Li 

and Tan (1994) proposed a three-layer back propagation neural network that optimizes 

the controller by searching for the optimum points of a vector that determines the shape 

of the membership functions in the lower-level fuzzy logic rule-base. The weights of the 

neural network are modified using the Widrow-Hoff learning rule. The algorithm was 

applied to a two-link manipulator. The simulation results and the experiments proved 

the effectiveness and the robustness of the new proposed algorithm.    

In recent decades, a new neural network based SOFLC was proposed where a radial 

basis function neural network (RBFN) was used to adjust the parameters of the 

controller in real-time (Lian, 2011). The proposed algorithm also alleviates the coupling 

between the inputs and outputs because the coupling weighting of the RNFN has 

regulation capabilities. Simulation on the 6-DOF robotic system showed that the new 

scheme provided a good performance even when no prior knowledge of the process was 

known.   

2.6.3 Fuzzy controllers using fitness function  

In this category of controllers, the control rule is not directly modified by the 

performance measurement. Rather, a fitness function that is subjected to the 

performance measurement is used to optimise the system.   
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Extensive studies have been conducted in the literature on how genetic algorithms (GA) 

can be used to tune and design the structure of the SOFLC. Generally, GAs have mainly 

been used to perform two tasks. First, they were used to optimise the membership 

functions and control rules of the controller and the second task involved using them as 

a mechanism to add and delete control rules and eliminate conflicts between these rules.  

Pal (2003) proposed a GA-based SOFLC scheme that uses GA to add and delete fuzzy 

rules. This algorithm included the number of rules in the fitness function to prevent rule 

explosion and to ensure the size of the rule-base remain within an acceptable limit.     

In a new scheme, a multi-objective GA has been used to tune the performance index 

table of the SOFLC (Mahfouf et al., 2000). Simulations on a non-linear muscle-relaxant 

anaesthesia model, lead to more effective set of parameters and demonstrated the 

robustness of the algorithm.  

Linkens and Nyongesa (1995) developed a SOFLC scheme that has the ability to tune its 

parameters in real-time using an on-line GA method. The GA algorithm performed this 

task without the need for a model and this was achieved with the aid of the idea of credit 

assignment and fitness estimation. Satisfactory performance was demonstrated when the 

new scheme was apply to a multivariable process. However, due to the poor mechanism 

used to evaluate the performance of the system, a small yet significant steady-state error 

was produced. This algorithm was furthered studied and developed by Lu and Mahfouf 

(2006) where a better mechanism in the form of a ternary representation was used for 

the evaluation of the process. This led to better results in terms of robustness and control 

capabilities when it was tested on SISO and MIMO anaesthesia models.  

2.7 Summary:  

This chapter provided a comprehensive overview of the concepts and methods used and 

discussed throughout the thesis. Five main areas were described. First, the chapter began 

by providing a solid background on the theory of type-1 fuzzy sets and fuzzy logic 

systems .This included defining various fuzzy set operations. Thereafter, as an extension 

to type-1 fuzzy systems, type-2 fuzzy logic systems were introduced. Both the general 

type-2 and interval type-2 fuzzy sets were introduced, with particular focus on the 

concepts and operations associated with the latter. The basics of the traditional fuzzy 
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logic control was then defined and explained. The fourth area covered in this chapter 

concerned the structure and design of the SOFLC Algorithm. This included describing 

the different element of the controller, its operation mechanism and how it differs from 

the conventional fuzzy controllers. The last part of the chapter outlined the various 

supervisory intelligent control systems, and the various mechanisms they use to modify 

the fuzzy control rules.  
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Chapter 3- Self-Organising Fuzzy 

Logic Control with a Dynamic   

Supervisory Layer  

 

 

 

3.1 Introduction 

The self-organising fuzzy logic controllers described in Chapter 2 represent the 

extended version of the fuzzy logic controller with an additional control policy that 

enables them to modify their structure based on the dynamics of the system under 

control and the environment in which they operate. The SOFLC usually uses two rule-

bases: the first is the lower-level fuzzy logic rule-base which is the same as the one 

included in the basic traditional fuzzy controllers and is used to issue fuzzy control 

actions, while the second is responsible for evaluating the performance of the controller 

and altering the control rules until the desirable response is achieved.     
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The SOFLC schemes have been studied and investigated extensively and generally lead 

to good performance across a wide range of complex systems. Despite this success, they 

can also have different disadvantages, such as high computational costs and high storage 

requirements, particularly when applied to MIMO systems. However, their main 

drawback lies in the difficulty in constructing the performance index table that 

remained, in most applications, unchanged since it was first introduced by Procky and 

Mamdani (1979). The design of the performance index requires a priori system 

information. As a result, when a standard performance index table is used with a wide 

range of systems that all have different dynamics, this will undoubtedly lead to sub-

optimal policies for the alteration of control rules, as well as high computation times as 

the dimension of the input/output space increases.  

An alternative SOFLC architecture with a dynamic supervisory layer, referred to as 

SOFLC-DSL, that uses an on-line particle swarm optimisation (PSO) mechanism to 

adapt the consequent part of the performance index table is proposed in this chapter 

(Kennedy and Eberhat, 1995). This task is accomplished using the idea of fitness 

estimation and credit assignment. The new scheme is tested on non-linear, 

mathematically ill-understood, and uncertain systems under different conditions and 

environments. 

3.2 Particle Swarm Optimisation  

3.2.1 Introduction  

Particle swarm optimization is a bio-inspired intelligence technique that was first 

introduced by Kennedy and Eberhat (1995). The algorithm is inspired by social 

behaviour patterns observed in birds flocking, bees or fish, or more specifically, the 

collective behaviours of simple individuals interacting with each other and the 

environment around them (Eberhart and Shi., 1998). PSO exploits a population called a 

„swarm‟, which includes a set of individuals, named „particles‟. 

Similar to other stochastic methods, the PSO is a population-based optimisation 

technique (Allaoua et al., 2009). When it is applied, the system is initialised with a 

swarm of random solutions and then begins to search for optimal (or near optimal) 
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solutions by updating generations. The fitness function to be optimised is used to 

evaluate all the particles, which all have fitness values as well as velocities that direct 

their flying within the search space (Wang et al., 2006). In a PSO system, as long as the 

computational limitations are not exceeded, all the individuals keep updating their 

positions by flying at a certain velocity in a multi-dimensional search space. 

The PSO compared with other methods, can result in better quality solutions within a 

more stable convergence and faster calculation time characteristics. Furthermore, it can 

be easily implemented in most programming languages. PSO has been successfully 

applied in literature for approaches that can be used in a wide variety of applications and 

has demonstrated its effectiveness in a diverse range of benchmark optimisation 

problems (Mahfouf et al., 2006; Zhang et al., 2012; Zhang and Mahfouf, 2011).  

3.2.2 Classical PSO algorithm 

In a PSO system, a swarm of particles flies around the problem space. Each particle 

keeps track of its coordinates in the search space through keeping the most successful 

particles it has so far achieved. This variable is known as the local best solution (pbest). 

Another important value to the algorithm that keeps track of is the so-called global best 

solution (gbest), which denotes the best solution obtained so far from any group. 

Depending on this information, each particle within the population recognises how well 

it is performing, and performs in tandem with other particles in the swarm.  

Since the PSO was first introduced, different versions of the associated algorithm have 

been proposed subsequently (Poli et al., 2007). The version used in this thesis is the one 

modified by Shi and Eberhart (1998). Each particle, i, is represented in the PSO 

algorithm by a position vector     as well as a velocity vector    , which are both 

updated as follows:  

                          (               )                             (3.1)    

                                                                                                                                  (3.2) 

where    and     represent the positions and the velocities of the particles respectively, 

      is the best position to the time t, while       is the global best position achieved 

so far;   is the inertia weight, which usually decreases linearly from 0.9 to 0.4;   and    
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are called the acceleration coefficients, and are normally set to 2.0; while    and    are 

random numbers in the range [0, 1]. Algorithm 3.1 includes the details of the original 

PSO mechanism. 

The trajectory analysis of a certain individual within the fitness landscape is illustrated 

in Figure 3.1. In a PSO system, particles share information with other neighbouring 

particles. The second and third components of the equation 3.1 are called cognition and 

social elements, respectively. From the updated equations 3.1 and 3.2, one would realise 

that PSO systems combine both the cognition component of each individual with the 

social component of individuals within a group. The social element suggests that on the 

one hand, particles ignore their own experience and adjust their behaviour based on the 

previous best individual known so far. While, on the other hand, the cognition element 

adjusts particles based on their own experience.  

Algorithm 3.1 PSO Algorithm 

  1: For each particle, generate the initial position and velocity randomly;  
  2: Assess the fitness of each particle; 
  3: repeat 

  4:      for each particle   do 

  5:             Update position and velocity of particle   according to equations (3.1) & 
(3.2); 
  6:           if f (  ) < f (      ) then 

  7:                     =  ; 
  8:               if f (  ) < f (     ) then 

  9:                            =  ; 
 10:              end if 
 11:         end if 
 12:     end for 
 13: until the stop criterion is satisfied 

 

3.2.3 On-line implementation of PSO 

Particle swarm optimisation algorithms have been widely used in a variety of 

applications including control engineering for controller design, system identification 

and fault diagnosis. However, the PSO algorithms have all been applied off-line in these 

applications. 

PSO has been classically proposed for use in off-line optimisation. In off-line 

applications, swarms which contain sets of particles that represent different solutions 
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evolve for a number of generations before they generate the best solution, which is then 

used to produce system output. For example, when a PSO algorithm is utilised to tune 

the parameters of a PID controller (Oi et al., 2008), the optimisation is carried-out off-

line using a mathematical model that represents the dynamics of the system to be 

controlled. All the particles at each iteration are evaluated via a fitness function to test 

how effective they are in terms of controlling the process; the optimal particle that 

produces the best results off-line is then used for the real system.   

 

 

 

             

 

 
Figure 3.1: Particle trajectory analysis in PSO system. 

 

Various issues normally arise if the PSO algorithm is used to tune the parameters of the 

PID controller on-line. These include: 

 In on-line optimisation, the system cannot use a model to evaluate the 

performance and assign fitness values to all the particles within the swarm, 

hence, these fitness values are provided based on noisy feedback signals.  

 In on-line implementation of the PSO algorithm, the system must provide an 

appropriate control action at every sample instant. Therefore, the algorithm can 

only evaluate one particle in each iteration.  

 For the PSO to converge and produce an optimal solution, it normally needs a 

few iterations; this is sometimes not possible in on-line applications due to the 

limited amount of computations that can be carried between sampling instants. 
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 3.3 Self-Organising Fuzzy Logic Control with a Dynamic   

Supervisory Layer  

The new proposed architecture uses a new PSO algorithm to modify the consequence 

parts of the performance index table of the SOFLC at every sampling instant. The 

structure of the proposed scheme is shown in Figure 3.2. 

3.3.1 The PSO process encoding 

A performance index table with 25 cells is used in the proposed algorithm. The tracking 

error and the change of error are taken as the inputs of the performance index table, 

while the output that the PI table generates is the rule modification value, Pi(nT), of the 

low-level basic fuzzy logic controller. Independent sets of five particles, are used to 

optimise each cell of the PI table. 5×25 individuals and velocities are randomly 

generated in the first generation. In addition, all individuals within all the sets are given 

the same fitness values. In order to fill all the cells of the performance index table, a 

randomly chosen individual is chosen.  

 

 

Figure 3.2: The structure behind the SOFLC-DSL algorithm. 

 

http://en.wikipedia.org/wiki/×
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An illustration of how the proposed algorithm modifies the fuzzy rules and generates 

fuzzy rules is shown in Figure 3.3. At the sampling instant „nT‟, the cell F24, which was 

responsible for providing the modification value           that was generated at 

„      ‟, is explored again. The five individuals included in cell will experience one 

iteration using equations 3.1 and 3.2 after being given various rankings based on the 

estimated fitness values, resulting in new positions and velocities being generated for 

each particle. If this cell is indexed again, the shaded particle „ .6‟ in set B, for example, 

which represents the optimal particle with the highest fitness value, will be chosen to 

generate the modification value. In the meantime, cell F41 is responsible for generating 

the modification value Pi(nT) to the lower-level fuzzy logic rule-base. The shaded 

particle „ .2‟ in set A is the optimal particle and will be chosen to provide the 

modification value.  

3.3.2 The on-line PSO algorithm operations  

As stated above, various obstacles are normally faced when the PSO is implemented on-

line, some of which are outlined in the previous sections. In order to overcome these 

constraints, a new version of the PSO is proposed in this thesis. In the new algorithm, 

only one particle from a set of individuals is measured by the algorithm while the 

remaining particles within the set are estimated with the assistance of the idea fitness 

estimation and credit assignment. The estimation of these particles is carried-out based 

on their relationship with the optimal particle. 

 

 

 

 

 

 

 

                    

 

 

               Figure 3.3: The self-organised information flow in the new proposed algorithm.   
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3.3.2.1 Performance assessment  

For the system to improve its performance under various conditions, it needs to modify 

its structure at each sampling instant; generally speaking, two methods can be used to 

carry-out this task. First, the global criterion, such as „Integral Absolute Error  IAE ‟, 

which evaluates the performance of the process to be controlled over a complete 

response trajectory. This method of assessment cannot be used when the PSO is 

implemented on-line as an accurate evaluation of the contribution of each particle at 

each sampling instant cannot be obtained. Therefore, this method is only sufficient for 

off-line performance evaluations.  

An alternative method of performance assessment is a local criterion, where, at the 

current sampling instant, the evaluation of the performance is only carried-out over 

limited neighbour states. The performance of the applied particle is only assessed by the 

evaluation index at that particular time, generally in the form of the binary „good‟ or 

„bad‟. A major disadvantage of local performance assessment is that conflicting 

decisions are likely to be assigned the same particle during different sampling instants.  

Linkens and Nyongesa (1995) used predictive error function to predict the future 

tracking points and provide binary good/bad performance evaluation so that corrective 

actions are taken in advance to avoid any undesirable deviations from the target. The 

binary assessment of this method does not provide information on how good or bad the 

performance is, information that is vital in order to provide effective rules modification. 

Although satisfactory results are normally achieved with this assessment method, the 

modified version of this technique proposed by Lu and Mahfouf (2005) was adopted in 

this thesis.  In this assessment technique, a straightforward ternary representation 

replaces the binary performance evaluation where all the scenarios that the responses of 

the output can take are classified into three categories, as shown in Figure 3.4. In 

scenario (A , the output response of the system is considered „satisfactory‟ at that 

particular sampling instant if the predicted tracking error is smaller than the current 

tracking error, regardless of the trend. In scenario (B) the output response is considered 

to be an „overshoot‟ if the trajectory passes across the desired target. In scenario  C), the 

output response is referred to as „moving away‟ if the response is moving away from the 

target point. The performance classification of this method is shown in Figure 3.5. 
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The predictive error function is generally defined by the simple formula as follows 

(Linkens and Nyongesa, 1995):                                      

                       ̂                 ̇                                                                      (3.3) 

where       and  ̇     are the error and the velocity of the process respectively at the 

sampling instant ‘nT’; k is the number of steps predicted ahead. 

However, it is worth noting that adding the error acceleration  ̈     to the formula in 

equation 3.3 results in a more accurate state estimation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Instant state performance categories. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Performance classifications. 
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3.3.2.2 Credit assignments    

The performance assessment illustrated in the previous section represents a 

measurement of the optimal individual Fi, which is provided by the feedback signals at 

each sampling instant. In order for the fitness values to be compared in this generation, 

the algorithm needs to be able to determine the rate of usefulness of the remaining ‘N-1’ 

individuals within the indexed     set that cannot be measured. This task is carried-out 

by the credit assignment using reward-penalty mechanism.  

Since different particles within any cell represent different modification values, the 

possible evaluation (satisfactory, moving away, or overshoot) of these individuals from 

the optimal particle Fi can be inferred. With such information, a reward or a penalty can 

be provided to each particle; the degree of reward/punishment of any particle depends 

on its distance from the optimal particle Fi. The process of the credit assignment task is 

outlined in Figure 3.6. From this mechanism one can notice that all the rewards and 

punishments generated in the process work towards forcing the error to converge to 

„zero‟. 

 

 

 

 

 

 

 

 

 

Figure 3.6: The credit assignment mechanism used to estimate the PSO individuals. 
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3.3.3 A Summary of the SOFLC-DSL Algorithm  

The operation cycle of the SOFLC DSL that is optimised by an on-line PSO algorithm 

via fitness estimation and credit assignment is summarised as follows:  

1. N sets of particles are initially generated to fill all the cells of the performance 

index table; each of which include M particles along with their corresponding 

velocities. In the initial generation, all the particles are given the same fitness 

value.  

2. In the first sampling instant, each cell of the performance index table is linked 

with a particle that is selected randomly from the M particles provided in each 

cell. When this cell is visited by the algorithm for the first time, this particle is 

used to provide the lower-level fuzzy logic rule-base with a modification 

value       . 

3. For a system with mT sampling time delay, at the sampling instants nT, two input 

signals E(nT-mT)/CE(nT-mT), and E(nT)/CE(nT) are forwarded to the SOFLC-

DSL and two tasks are then performed.  

a) The on-line PSO algorithm optimises the cell Fij that was activated at the 

sampling instant „     ‟. If n<2m, omit this stage and jump to stage b). 

The particle with the highest fitness value is marked as Fi. 

 The performance classifier shown in Figure 3.5 is used to assess the 

contribution of the optimal particle Fi. The remaining particles and 

velocities within that cell are then estimated using the credit 

assignment mechanism shown in Figure 3.6. 

 Equations 3.1 and 3.2 are then generated in order to produce new 

particles and velocities.  

 The optimal particle Fi is then linked to the corresponding cell Fij so 

that it can be generated to the lower-level fuzzy logic rule-base when 

this cell is visited again.   

b) The new modification value Pi(nT) is provided to the lower-level fuzzy logic 

rule-base based on the inputs signals E(nT)/CE(nT) using the equation 2.33 

4. The lower-level fuzzy logic controller is then used to calculate the control action 

U(nT) before it is applied to the process under control to produce new feedback 
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signals. The algorithm stops if the termination criterion is satisfied, otherwise it 

returns to step 3.  

3.4 Simulation on a Muscle Relaxant Model 

During an operation, to obtain a predefined degree of paralysis, patients are normally 

given a certain dose of muscle relaxant drugs. This task is generally carried-out by an 

experienced anaesthetist that often fails to maintain a steady level of relaxation required 

in the process. An alternative and a safer approach is to use a closed loop control system 

instead.  

The overall linear transfer function of muscle relaxant model can be defined as 

(Mahfouf and Linkens, 1998):  

                         
     

    
 

          
  

                     
                                              (3.4) 

With the following non-linearity:  

                              
  
    

  
                

                                                                     (3.5) 

Where K1=1; T1=34.4 min; T2=4.8 min; T3=3.08 min; T4=10.65 min;  XE is the drug 

concentration in the blood and       is the actual output, which is the muscle relaxation.  

 

The simulation study in this thesis uses a sampling interval of 1 minute and a step length 

of 0.1. All the initial conditions of the muscle relaxant model are set to zero. 

Furthermore, the lower-level fuzzy logic controller uses five fuzzy sets, denoted in an 

equally-partitioned  universe of discourse, for both input signals E and CE: negative big 

(NB), negative small (NS), zero (ZO), positive small (PS), and positive big (PB). In 

order to ensure the computational cost is kept at a lower level, the performance index 

table is also divided into 25 cells, each of which corresponds to a particular fuzzy rule. 

All cells of the the performance index table start empty and are then filled with 25 5 

PSO particles in the initial generation.  
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In this research, a target-point signal of 85%, 65%, and then 85% muscle relaxation is 

used. The cells of the performance index table were optimised on-line using the 

algorithm outlined in Section 3.3.3. 

The SOFLC-DSL and the standard SOFLC scheme that has a fixed performance index 

table were both tested and compared as shown in Figure 3.7 and Table 3.2. As stated in 

the previous sections, the SOFLC-DSL starts with an empty performance index table 

while Table 3.1 shows the fixed performance index table that standard SOFLC uses.   

The simulation results reveal that, when compared to the standard SOFLC, the proposed 

SOFLC-DSL provides better control capabilities in terms of making the system track the 

target-point more effectively with less undershoot. Furthermore, the self-organising 

mechanism of the SOFLC-DSL provides the superior system performance with a 

smaller number of fuzzy rules produced to the low-level fuzzy logic controller, which 

leads to reduced computations.  

The improved performance of the SOFLC-DSL is a result of a more accurate 

modification mechanism that is attributed to its ability to search a wider search space to 

achieve a more effective performance index table with a lesser degree of dependency on 

the knowledge and experience of the expert/operator ( an anaesthetist in this case). 

 

 

 

 

 

 

 

Table 3.1:  Performance Index table used by the standard SOFLC scheme (Lu and 

Mahfouf, 2006). 

Notes: E: tracking error, CE: change of the tracking error, NB: negative big, NS: 

negative small, ZO: zero, PS: positive small, PB: positive big.  
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                  System with SOFLC-DSL                          System with the standard SOFLC 

Figure 3.7:  Simulation result of the proposed scheme and the standard scheme. 

 

 

                                                 Criteria                  SOFLC-DSL                  Standard SOFLC 

                                     IAE                        345.84                              423.51                                                        

                                     ISE                         177.15                             199.62  

                                     Rule number           15                                     21 

    

Table 3.2: Summary of performance criteria of the SOFLC-DSL and the standard 

SOFLC. 

 

3.4.1 Sensitivity of the SOFLC-DSL to sudden disturbances 

To investigate the robustness performance of the system and how the SOFLC-DSL 

responds to on-line parameter changes without the need of re-tuning, sudden 

disturbances of 10% and 15% , in the form on an impulse that lasted for 5 minutes, were 

introduced in the system at 350 minutes. 

As shown in Figures 3.8 and 3.9, unlike the standard SOFLC that uses a fixed 

performance index table, the SOFLC-DSL managed to reduce the residual tracking error 

and bring the system output to effectively track the set-point. However, the standard 
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SOFLC failed to make the output re-track the set-point after the introduction of 

disturbance for nearly 350 minutes. Table 3.3 also shows how the SOFLC-DSL 

performs better under the Integral Absolute Error (IAE) and Integral Square Error (ISE) 

criteria and how it manages to control the process using a lower number of rules.   

 

                    System with SOFLC-DSL                          System with the standard SOLC 

Figure 3.8:  Simulation result of the proposed scheme and the standard scheme 

undertaking disturbance of 10%. 

 

 

                        System with SOFLC-DSL                     System with the standard SOLC 

Figure 3.9:  Simulation result of the proposed scheme and the standard scheme 

undertaking disturbance of 15%. 
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                                                                           Criteria                  SOFLC-DSL                  Standard SOFLC 

                          Figure 3.8              IAE                         345.84                            513.57                                                        

                                                          ISE                         207.18                            214.66    

                                                    Rule number                17                                      23 

                     Figure 3.9               IAE                         349.89                            518.81                                                        

                                                          ISE                          210.15                            219.69     

                                                   Rule number                  16                                      23 

 

Table 3.3: The performance of the SOFLC-DSL with disturbances of 10% and 15%. 

 

3.4.2 Controller sensitivity to scaling factors  

The sensitivity of the proposed algorithm to different scaling factors is tested in this 

section. In doing that, different groups of scaling factors for the error, change of error, 

and output are used and the results are compared to that of a standard SOFLC scheme. 

These groups were selected randomly in order to test the control abilities of the 

controller when it encounters random changes in the environment in which it operates.  

Group A: used to test the sensitivity of the SOFLC-DSL to changes in the scaling 

factors of error, GE. 

1) GE= 20.0; GC=220;GT=0.4 

2) GE= 30.0; GC=220;GT=0.4 

Group B: used to test the sensitivity of the SOFLC-DSL to changes in the scaling factors 

of change of error, GC. 

1) GE= 30.0; GC=250;GT=0.4 

2) GE= 30.0; GC=400;GT=0.4 

Group C: used to test the sensitivity of the SOFLC-DSL to changes in scaling factors of 

error, GT. 

1) GE= 20.0; GC=300;GT=0.25 

2) GE= 20.0; GC=300;GT=0.6 
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The simulation results of Figures 3.10 3.15 and Table 3.4 3.6 show that the standard 

SOFLC is very sensitive to the changes in scaling factors and this leads to large 

fluctuations in its performance. The SOFLC-DSL, however, provides better results, 

despites the changes in the scaling factors in terms of tracking speed and residual offset.  

 

 

 

 

 

 

 

 

 

                        System with SOFLC-DSL                     System with the standard SOFLC 

Figure 3.10:  Simulation result of the proposed scheme and the standard scheme with 

various error scaling factors. 

 

                        System with SOFLC-DSL                     System with the standard SOFLC 

Figure 3.11:  Simulation result of the proposed scheme and the standard scheme with 

various error scaling factors.  
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                        System with SOFLC-DSL                     System with the standard SOFLC 

Figure 3.12:  Simulation result of the proposed scheme and the standard scheme with 

various change of error scaling factors. 

 

 

 

                        System with SOFLC-DSL                     System with the standard SOFLC 

 

Figure 3.13:  Simulation result of the proposed scheme and the standard scheme with 

various change of error scaling factors. 
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                        System with SOFLC-DSL                     System with the standard SOFLC 

Figure 3.14:  Simulation result of the proposed scheme and the standard scheme with 

output scaling factors.   

 

 

 

                        System with SOFLC-DSL                     System with the standard SOFLC 

Figure 3.15:  Simulation result of the proposed scheme and the standard scheme with 

output scaling factors. 
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                                                                           Criteria                  SOFLC-DSL                  Standard SOFLC 

                          Figure   3.10       IAE                        396.89                             633.51                                                        

                                                       ISE                         201.15                             220.92    

                                                      Rule number            18                                     26 

                     Figure   3.11       IAE                         386.54                             423.51                                                   

                                                      ISE                          199.15                             222.82     

                                                      Rule number            18                                     25 

 

Table 3.4: The performance of the SOFLC-DSL with different error scaling factors. 

 

 

                                                                           Criteria                  SOFLC-DSL             Standard SOFLC 

                          Figure   3.12       IAE                        395.64                             670. 36                                                        

                                                       ISE                         279.15                             237. 94    

                                                      Rule number           18                                      26 

                     Figure   3.13       IAE                         389.01                             810.51                                                        

                                                      ISE                          288.73                            259.64    

                                                      Rule number            19                                     27 

 

Table 3.5: The performance of the SOFLC-DSL with different change of error scaling 

factors. 

 

 

                                                                           Criteria                  SOFLC-DSL               Standard SOFLC 

                          Figure   3.14      IAE                        385.92                             653.51                                                        

                                                      ISE                         278.16                            259.82    

                                                      Rule number           16                                      25 

                     Figure   3.15      IAE                         395.69                             423.51                                                        

                                                      ISE                         274.16                             199.62    

                                                      Rule number            17                                     26 

  

Table 3.6: The performance of the SOFLC-DSL with different output scaling factors. 
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3.4.3 System robustness to model parameter variations 

In biology in general, and biomedics in particular, the patient‟s parameters normally 

vary on a ratio of 4:1. Hence, to examine the effectiveness of the SOFLC-DSL to 

control a wider variety of muscle relaxation processes under changes in the model time 

constants and gain, the proposed algorithm was applied to various processes which 

consider such a variation ratio. The model parameters were selected based on the ration 

stated above.  The simulation results of these experiments are shown in Figures 3.16-

3.18 and Table 3.7. One can notice how the SOFLC-DSL leads to superior performances 

versus the standard SOFLC in terms of accurate tracking and efficient fuzzy rule-base 

elicitation even when new sets of model parameters are used.  

 

 

System with SOFLC-DSL                          System with the standard SOFLC 

 

 

 

 

 

 

Figure 3.16:  Simulation result of the proposed scheme and the standard scheme using a 
new set of system parameters: K1=1, T1=4.8 min, T2=34.36 min, T3=3.08 min, T4=10.65 

min.  
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                        System with SOFLC-DSL                     System with the standard SOFLC 

Figure 3.17:  Simulation result of the proposed scheme and the standard scheme using a 
new set of system parameters: K1=1, T1=5 min, T2=20 min, T3=2 min, T4=7 min. 

 

 

                        System with SOFLC-DSL                     System with the standard SOFLC 

Figure 3.18:  Simulation result of the proposed scheme and the standard scheme using a 
new set of system parameters: K1= 1, T1=6 min,  T2=22 min, T3=2.5 min, T4=6 min.  
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                                                                           Criteria                  SOFLC-DSL               Standard SOFLC 

                          Figure   3.16       IAE                         381.87                            764.56                                                        

                                                       ISE                          211.25                            278.94    

                                                       Rule number            17                                    25 

                      Figure   3.17      IAE                           402.32                           735.31                                                        

                                                       ISE                           181.16                           267.67    

                                                       Rule number            15                                    23 

                           Figure   3.18     IAE                            385.82                           785.88                                                        

                                                      ISE                             187.25                           299.62  

                                                      Rule number             15                                    21 

 

Table 3.7: Summary of performance criteria with different system dynamics. 

 

3.4.4 Robustness in the stochastic case  

Since the modification of the SOFLC-DSL structure is established based on the 

feedback signals received from the process at each sampling instant, when these 

feedback signals are corrupted with noise, the SOFLC-DSL fails to make the output 

signal track the desired set-point because the modification process of the fuzzy rules will 

be carried-out based on corrupted signals and will infer the wrong classification. To 

overcome this issue and improve the performance of the system under noisy conditions, 

the SOFLC-DSL algorithm included a third-order polynomial filter with a window of 20 

samples.  

Over a fixed window, this filter uses the principles of least-squares fitting of a 

polynomial function to the noisy signal. The estimated function takes the following 

form.   

                                    ∑     
 
                                                                          (3.6) 

where   is the k
th

 order polynomial function and the factors c1,c2,c3,..,cm can be 

determined by solving the equation below.  

                      
  

   
 ∑    

   ∑     
 
   (    )                                          (3.7) 

 

https://en.wikipedia.org/wiki/%C9%B8
https://en.wikipedia.org/wiki/%C9%B8
https://en.wikipedia.org/wiki/%C9%B8
https://en.wikipedia.org/wiki/%C9%B8
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where           ∑   
   ∑     

 
   (    )                             

The current smoothed date points are calculated using the previously calculated factors 

using a window of n samples of noisy data (z(k),k=t-n+1,t-n+2,..,t). Both the smoothed 

signal y(t) and its derivative y(t)-y(t-1) are employed by SOFLC-DSL.   

 

             System with SOFLC-DSL                  System with the standard SOFLC 

Figure 3.19:  Simulation result of the proposed scheme and the standard scheme when a 
noise of 5% is added to the system. 

 

The simulation results of Figure 3.19 reveal that the SOFLC-DSL outperforms the 

standard SOFLC in the noisy environment; this can also be proved by the IAE criterion 

in Table 3.8 and how the proposed scheme manages to control the process with a lower 

number of fuzzy rules. From these results one can conclude that the polynomial function 

has undoubtedly improved the control performance of the SOFLC in the noisy 

environment while the primary characteristics of the scheme, such as lesser degree of 

dependency on the operator/expert knowledge and low computations cost are 

maintained.  It can also be noticed that the control signal provided by the standard 

SOFLC scheme fluctuated significantly in the second stage of the experiment which can 

pose risk to the patient during surgical procedures. 

                                              Criteria                  SOFLC-DSL              Standard SOFLC 

                                    IAE                         412.52                              614.56                                                        

                                    ISE                          254.16                              344.64    

                                Rule number               19                                      26 

                    Table 3.8: Summary of performance criteria with noisy signals. 
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3.5 Summary  

In this chapter, a new SOFLC algorithm with a dynamic layer has been proposed; using 

fitness estimation and credit assignment, an on-line particle swarm optimisation (PSO) 

algorithm has been used to make all the cells of the performance index table of the 

SOFLC adaptable. With such mechanisms, the SOFLC scheme can update both the 

performance index table and the lower-level fuzzy logic controller at each sampling 

instant given certain performance criteria. The SOFLC-DSL was validated on non-linear 

and uncertain muscle relaxation process under different conditions.  

The simulation results show that good performances are achieved even when the 

algorithm begins with an empty performance index table. These results demonstrate that 

the SOFLC-DSL outperforms the standard SOFLC in terms of accuracy and 

interpretability. The proposed architecture included the following advantages:  

1. The dynamic self-organising mechanism enabled the SOFLC to provide the 

control action required by the process under control with a simple structure. 

Unlike the standard SOFLC, the proposed SOFLC-DSL algorithm starts with an 

empty performance index table and meets the control design requirements 

despite producing and relying on a significantly small number of fuzzy rules in 

the lower-level fuzzy logic controller. This leads to reduced computations and 

low memory storage requirement, a characteristics that is vital for successful 

implementation of the algorithm in real-time.  

2. The SOFLC-DSL performance is superior as compared to the standard SOFLC 

in terms of fast convergence, system dynamics variations and robustness against 

disturbances. The proposed scheme also performs better in the transient and 

stead-state phases.  

3. The third-order polynomial filter has improved the capabilities of the proposed 

algorithm in the stochastic case and assures flexibility of the new control 

architecture.  

4. The SOFLC-DSL is less sensitive to changes in the error, change of error, and 

output scaling factors, important characteristics that do not make the controller 

require regular re-tuning when variations in these parameters occur.   
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The SOFLC-DSL proved to have effective control characteristics while working in 

various changing environments and conditions. 

The following chapter will include improving generalization and enhancing the 

capabilities of the SOFLC-DSL to handle uncertainties and noises by replacing type-1 

sets with type-2 sets.  
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Chapter 4 - Type-2 Fuzzy Sets for 

the Self-Organising Fuzzy Logic 

Control with a Dynamic   

Supervisory Layer  

 

 

4.1 Introduction 

Based on observations from the previous chapter, the capabilities of the SOFLC-DSL 

are further enhanced in this chapter by employing type-2 fuzzy sets. This work is 

carried-out to improve the performance of the controller from different aspects, 

including:   

1. The application of the proposed controller within noise-contaminated 

environments. In this work, the SOFLC-DSL algorithm is expected to cope well 

with noise despite relying on limited a priori system information. 

2. Generalisation of the SOFLC-DSL algorithm to other processes without the need 

for re-tuning or re-structuring. 
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3. Further enhancement of the structure of the controller, to enable it, for example, 

to have a faster response in the transient stage and a smaller tracking error in the 

steady-state region.  

In this chapter, a brief overview of type-2 fuzzy controllers, as well as the concept of 

zSlices for effective defuzzification, is presented first. This overview is meant to provide 

a basic introduction to the different applications in which interval type-2 controllers are 

used, as well as to the general concept needed to understand zSlice general type-2 fuzzy 

sets and systems. Both an interval and a zSlice general type-2 SOFLC-DSL algorithms, 

as the basis for the control systems for a muscle relaxant model, are initially constructed, 

and their performances are then compared with type-1 SOFLC and SOFLC-DSL 

algorithms developed in Chapter 3. The different SOFLC schemes are tested in different 

environments to explore their robustness in the presence of parameter changes and 

noise. Their performances are measured using various approaches, such as structural 

simplicity, steady-state errors and control stabilities, as well as IAE and ISE criteria.  

The experimental simulations carried-out in this study assessed the performance of the 

SOFLC-DSL algorithms in their ability to regulate the anaesthetic delivery rates for 

maintaining the desired physiological levels of muscle relaxation during a three-stage 

surgical procedure.   

4.2 Intelligent Control of the Depth of Anaesthesia  

Anaesthesia is a sector of biomedical science that is concerned with the management of 

anaesthetic agents, whose goal is to monitor and control the state of unconsciousness of 

patients during surgical conditions. Generally speaking, anaesthesia involves muscle 

relaxation, unconsciousness and analgesia. An anaesthetist is normally responsible for 

regulating the first two, while the third is related to postoperative conditions (Stoelting 

et al., 2000). In recent decades, there have been an increasing number of studies on how 

intelligent systems can be used to monitor and control anaesthetic delivery (El-bardini 

and El-Nagar, 2011; Mahfouf et al., 2003; Stanski, 1994). 

The complexity of the human body in terms of being a multivariable and highly non-

linear system with high levels of uncertainty renders the regulation of such system a 

very challenging task. Some of these issues include:   
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 The physiology of the human body, which differs from one patient to another 

(inter- and intra-patient variability) based on age, gender and preoperative health 

conditions, meaning that the anaesthetic drugs need to be adjusted accordingly in 

terms of concentration and drug regimens.  

 Anaesthetic drugs can have different physiological effects on the body of the 

patient, hence different bodies require different anaesthetic drug concentrations.  

 During surgery, anaesthetists usually monitor complex and sensitive 

multivariable changes and non-linear interactions via variables such as heart rate, 

blood pressure (BP), etc.  

 The signals that are acquired and provided from the patient‟s body to regulate 

the anaesthesiology procedures can be very noisy.  

The above challenges represent high levels of complexity, non-linearity and uncertainty, 

making the design of effective automatic controllers difficult. However, fuzzy logic 

controllers have been successfully applied in automated drug infusion control, and the 

obtained results have shown that they are able to deliver satisfactory performance while 

effectively handling the imprecision and uncertainty faced in the real world (Abbod and 

Linkens, 1992; Doctor et al., 2005; Esmaeili et al., 2008). 

The standard SOFLC algorithm has also been applied to anaesthesia in more than one 

study. In all of these contributions, the SOFLC algorithm proved able to outperform 

traditional fuzzy controllers (Mahfouf and Linkens, 1998).  In recent years, there has 

been a growing number of studies on the extraction of fuzzy rules for anaesthesia 

control using different learning methods, such as genetic algorithms and particle swarm 

optimisation ( Leng, 2005; Lu and Mahfouf, 2006; Mahfouf et al., 2000). However, in 

most of these contributions the SOFLC schemes use type-1 fuzzy sets only.   

4.3 Particle Swarm Optimization of Interval Type-2 Fuzzy Systems 

There have been various contributions reported in the literature in which different 

versions of PSO algorithms are used to optimise interval type-2 fuzzy controllers. In 

http://qualifications.pearson.com/content/dam/pdf/BTEC-Nationals/Applied-Science/2010/Specification/Unit_11_Physiology_of_Human_Body_Systems.pdf
http://www.pamf.org/anesthesiology/procedures/general.html
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most of these contributions, the PSO based type-2 fuzzy controllers have led to relative 

success in different areas of application.  

In the work of Cao et al. (2008), for example, an adaptive interval-2 fuzzy logic 

controller was driven by a PSO algorithm to regulate a vehicle‟s non-linear active 

suspension system. The controller used interval type-2 membership functions to handle 

the uncertainty and non-linearity caused by irregular road inputs and other disturbances, 

as well as to deal with the uncertainty originating from the potential lack of knowledge 

or experience of the designer/operator. The proposed scheme was provided with an 

adaptive mechanism in which the active force was self-tuned between the upper and 

lower membership function of the interval type-2 fuzzy output. When the controller was 

tested on a quarter active suspension model, it outperformed other conventional 

controllers and provided effective control performance. In another work, by Martinez et 

al. (2010), a PSO-based mechanism was used to fabricate an optimal controller that 

minimised the steady-state error of linear processes. The PSO algorithm was used to 

tune the parameters of the type-2 interval membership functions of the controller to 

achieve the desired characteristics. When tested on different benchmark plants, and 

when compared with other controllers obtained by genetic algorithms, the simulation 

results demonstrated the visibility of the developed algorithm.   

In a separate research, Oh et al. (2011) proposed an interval type-2 fuzzy controller 

aided by a PSO algorithm to control a ball and beam system. Ball and beam systems are 

difficult to regulate and control due to their challenging characteristics, and so the 

proposed controller drove a servo motor in order to determine the position of the ball. A 

type-1 membership function with fixed membership grades makes it difficult for the 

rule-base to fully capture the dynamics of the system, and therefore type-1 controllers 

tend to be less effective in terms of controlling the system. However, the footprint of 

uncertainty of type-2 fuzzy sets can effectively improve the control characteristics. The 

simulation results showed that type-2 fuzzy controllers provided good control abilities 

and robustness.  

A different type-2 fuzzy controller, tuned by a PSO algorithm to control a 2 DOF planar 

robot, was proposed by Bingul and Karahan (2011). In this Mamdani-type controller, 

the PSO algorithm used three different cost functions to optimise the centres and widths 

of interval type-2 Gaussian membership functions that were used for the input and 
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output. The performance of the developed controller was compared to that of a PID 

controller, which was also tuned by a PSO algorithm. Different experiments were 

conducted with different model parameters and in different noise-contaminated 

environments, and the simulation results demonstrated that in the robot trajectory 

control, the proposed controller outperformed the PID controller and was more robust.  

In a different paper, Martinez et al. (2010) explained how a PSO system was used to 

tune an interval type-2 fuzzy controller to minimise the state error when the controller 

was applied to linear processes. In doing that, the parameters of the type-2 membership 

functions of the controller were tuned in order to achieve optimal regulatory 

performance and stability. When implemented in a Simulink environment, the controller 

showed good robustness in different environments.  

4.4 Comparisons of Type-1 and Type-2 Fuzzy Logic Systems 

Type-1 and interval type-2 fuzzy controllers have recently been better understood and 

explained; their utility has also been compared across a wide range of contributions in 

the literature, such as in the research conducted by Cazarez et al. (2007). The reason for 

this trend is clear, as discussed in previous chapters, which revealed that when there is a 

considerable amount of uncertainty associated with the process to be controlled, interval 

type-2 controllers are more likely to result in better control abilities than type-1 

controllers (Aliasghary et al., 2012).  

A comparative analysis of type-1 and interval type-2 fuzzy controllers in terms of their 

ability to learn the behaviours of mobile robotics was conducted by Linda and Manic 

(2010). A type-1 fuzzy controller was first designed and then fine-tuned with a learning 

algorithm to follow the wall-following movements performed by the designer. This 

scheme was then extended to a type-2 fuzzy controller by symmetrically blurring all the 

fuzzy sets used in the type-1 scheme. The controllers were tested in both noise-free and 

noise-contaminated environments. The experiments showed that the interval type-2 

controller had better controller abilities than the interval type-1 controller, in terms of 

working in uncertain and noise-contaminated environments. 

A different comparative study between type-1 and interval type-2 fuzzy controllers, 

using a more complex robotic football system, was conducted by Figueroa et al. (2005). 
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In this system, moveable robots were placed in a field where they could kick a ball. 

Different components were used in this complex system, including a high level control 

system, wireless communication and other software algorithms, to facilitate the 

movement of these robots. These components introduced a high level of uncertainty and 

noise, and represented a good platform to test the effectiveness of type-2 fuzzy systems. 

Simulation results demonstrated that, as expected, the interval type-2 controller provided 

better control abilities than that of type-1.   

Other comparative studies are reported in the literature in which type-2 fuzzy controllers 

performed better than type-1 fuzzy controllers despite both working under the same 

circumstances and experimental set-ups (Sepulveda et al., 2007). As outlined by Wu 

(2010), a potential reason for this superiority is the continuity inherent in the 

characteristics of interval type-2 fuzzy systems, which contrasts with type-1 systems, 

which have discontinuous properties, as shown in the control surfaces obtained from 

Wu‟s work. Wu concluded that the control surfaces of interval type-2 fuzzy controllers 

are continuous across all regions, whereas a clear discontinuity was apparent at certain 

points in type-1 control surfaces. In other words, this means that there are certain 

situations in which type-1 fuzzy controllers fail to map input to output due to their 

discontinuous control surface, and as a result become unable to calculate the required 

output signal needed for the process under control. In contrast, the continuous control 

surface of interval type-2 controllers allows them to relate all the inputs to the outputs, 

and gives them the ability to calculate the outputs required by the system in all regions 

and at all times.  

A different argument for the superiority of interval type-2 controllers is reported in the 

work by Cara et al. (2011), where a servo system was used as a basis for the 

comparative analysis. These researchers argue that the considerably greater number of 

parameters that the interval type-2 controllers use gives them more flexibility, which 

leads to better control abilities than the singleton type-1 and non-singleton type-1 fuzzy 

controllers, which were both used in the work of Cara, especially as the uncertainty 

levels increase. Other observations of the study revealed that when non-singleton 

fuzzification was employed, the flexibility of type-1 controllers was further extended, 

reaching a level closer to that of interval type-2 fuzzy controllers. These results were 

reached by applying the three controllers – singleton type-1, non-singleton type-1 and 
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interval type-2 – to a non-linear and mathematically ill-defined servo system. For each 

controller, three experimental set-ups with different levels of uncertainty were used. The 

simulation results showed that when the uncertainty level was low, the singleton type-1 

system produced the best results. However, as the level of uncertainty increased, the 

performance of both the non-singleton type-1 and interval type-2 fuzzy controllers 

improved, even though the latter still provided the best performance. The authors argued 

that this was due to the FOU enabling the variation and uncertainty to flow through the 

entire inference system. In contrast, the non-singleton type-1 controller used 

membership grades to handle these variations. One shortcoming of the contribution of 

this experiment was that it was only applied to a simple SISO servo system, making it 

hard to generalise from these findings to other types of systems.  

Mendez et al. (2007) used a large industrial system as a platform to compare type-1 and 

type-2 fuzzy controllers. Even though the interval type-2 fuzzy controller was 

demonstrated to be superior in different circumstances, the author questioned whether it 

was worth upgrading a system if a type-1 fuzzy controller provided acceptable 

performance, especially given the lower level fuzzy logic controller‟s lesser 

computational cost. Various attempts have been made to make the interval type-2 fuzzy 

controller less computationally expensive. Wu and Mendel (2002), for example, 

proposed a technique through which the type reduction stage could be eliminated; 

despite the need for such a method, however, theirs has remained unpopular in the 

literature, as other methods, such as the Karnik-Mendel (KM) iterative algorithm for 

type-reduction (outlined in Chapter 2), have been found to be less complex, and simpler 

to implement. In addition, the results that type-1 controllers produce are normally within 

an acceptable range. A different approach for reducing the computational complexity of 

interval type-2 fuzzy systems was introduced by Coupland and John (2005), which is 

based on making the join-and-meet operations faster. 

Despite the simplicity of interval type-2 fuzzy systems and their success in a wide range 

of applications, many researchers argue that general type-2 fuzzy sets, such as the zSlice 

type-2 fuzzy sets, provide better mechanisms to handle imprecision and uncertainty, as 

their third dimensional secondary membership function is modelled as a continuous 

fuzzy set whose support is in the range [0-1]. 
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4.5 Introduction to zSlice General Type-2 Fuzzy Sets  

Mamdani interval type-2 fuzzy logic control, as shown throughout the previous 

chapters, is based on interval type-2 fuzzy sets. As outlined in Chapter 2, interval type-2 

fuzzy sets are a simplification of what is now known as general type-2 fuzzy logic 

systems. A considerable amount of research has been conducted in order to find 

alternatives to interval type-2 fuzzy sets and propose new versions of general type-2 

fuzzy sets with improved capabilities, while keeping the computation costs within an 

acceptable range, allowing for their real-time application (e.g. Coupland and John, 2007; 

Liu, 2008; Wagner and Hagras, 2008). More recently, the concept of zSlices was 

introduced (Wagner and Hagras, 2010), which enabled the construction of general type-

2 fuzzy systems in the form of modified interval type-2 fuzzy sets, or „slices‟. This 

discovery enabled the real-time implementation of general type-2 fuzzy control with 

affordable computational complexity.  

 

Figure 4.1:  (a) Illustration of the side view of a general type-2 fuzzy set, (b) side view 

of zSlice based general type-2 fuzzy set (Wagner and Hagras, 2010). 

 

From a practical point of view, zSlice-based general type-2 fuzzy sets are provided with 

the advantage of working flexibly in three dimensions, unlike the interval type-2 fuzzy 

sets where the third dimension is always unified. For illustration purposes, Figure 4.1 

shows the side view of the transition from the standard general type-2 fuzzy set to a 

zSlice-based general type-2 fuzzy set with three zSlices. The zSlice-based general type-
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2 fuzzy sets are normally generated, in practice, as a collection of zSlices, which 

together construct the general type-2 fuzzy set.  

  

4.5.1 From interval type-2 fuzzy systems to zSlices  

zSlices represent the core of zSlice-based general type-2 fuzzy sets. As explained by 

Wagner and Hagras (2010), a zSlice can be constructed by slicing a general type-2 fuzzy 

set z at level zi . An interval set with height zi in the third dimension is produced by this 

slicing action. The formed zSlice  ̃ is equivalent to the interval type-2 fuzzy set with the 

expectation that, in the third dimension, its membership grades are not fixed to 1 but 

equal to zi, where  ≤ zi ≤1.         

Hence, a zSlice  ̃  is expressed as follows:  

                                   ̃   ∫ ∫        ,         
      

                                                        (4.1)                 

As shown in Figure 4.2(a), zSlicing creates an interval set with height zi and support   
  

within the range [      ] at each x value, as illustrated in Figure 4.2 b . Further,  ≤ i ≤1, 

where i defines the number of zSlices (excluding  ̃ ), and normally zi =i/I. Since   ̃  is 

special case with height z=0, it can be discounted (Mendel, Liu and Zhai, 2009). A 

general type-2 fuzzy set  ̃  can be defined as a collection of an infinite number of 

zSlices, as follows: 

                               ̃   ∫ ∫        , y                 
                                                         (4.2)            

Note that,       

                                 ̃   ∫ ∫       , y 
      

      
                                                           (4.3)                 

 ̃  is not considered to be part of the number of zSlices constructing the zSlice-based 

general type-2 fuzzy set, as its secondary membership grades are all zero and therefore 

do not contribute to any computations (Mendel, Liu and Zhai, 2009).   

A general type-2 fuzzy set   ̃can be defined as a collection of an infinite number of 

zSlices, as follows: 
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                                  ̃  ∫  ̃           
                                                                  (4.4) 

In the discrete case, (4.4) can be rewritten as follows:  

                                    ̃  ∑  ̃ 
 
                                                                                  (4.5) 

where the summation sign in the equation 4.5 does not define the arithmetic addition, 

but rather the operation of the union set-theoretic.  

Having outlined the main concepts of the zSlices and the zSlice-based general type-2 

fuzzy sets, one can proceed to define the construction of zSlice-based general type-2 

fuzzy logic control.  

 

Figure 4.2:  (a) Illustration of the front view of a general type-2 fuzzy set, (b) The third 

dimension at    of zSlice-based general type-2 fuzzy set (Wagner and Hagras, 2010). 

 

4.5.2 Mamdani zSlice-based general type-2 fuzzy logic control 

The structure of the zSlice-based general type-2 fuzzy logic system is similar to its 

interval type-2 counterpart, i.e. it consists of a fuzzifer, an inference engine, a fuzzy 

rule-base, a type-reducer and a defuzzifier. The only difference is that the fuzzy logic 

system of the former combines the type-reducer and defuzzifier in one component, and 

employs and also processes the zSlice-based general type-2 fuzzy sets.  
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The zSlice-based general type-2 fuzzy logic control can be defined directly as the 

weighted combination of the interval type-2 fuzzy logic control calculated at each 

zlevel, where the weighting is represented by the secondary membership at each zlevel. 

In other words, the implementation of the zSlice-based general type-2 fuzzy logic 

control can be achieved by constructing a series of interval type-2 fuzzy logic controls, 

where each of them is associated with a particular zlevel. This process is illustrated in 

Figures 4.3 and 4.4. 

The defuzzification process is straightforward in the zSlice-based general type-2 fuzzy 

logic system; it is carried-out based on the individual centroids produced by each 

„contained interval type-2 fuzzy logic control‟, as shown in Figure 4.4. For an output set 

 ̃ of an interval type-2 fuzzy control, the centroid   ̃ is an interval type-1 fuzzy set 

expressed by its right and left points, as shown below:   

                                   ̃                                                                                 (4.6) 

The centroid of the output set  ̃ for a given zlevel zi is defined as: 

                                  ̃                                                                                  (4.7) 

The union of the centroids of a „contained interval type-2 fuzzy logic control‟ can 

express the overall centroid C of the zSlice-based general type-2 fuzzy logic control, 

which can be written as follows:  

                                             ̃   
 
                                                                    (4.8) 

An example centroid of the zSlice-based general type-2 fuzzy logic control with three 

zlevels is shown in Figure 4.5.  

The produced deffuzifed value of the zSlice-based general type-2 fuzzy logic control 

can be calculated by either determining the centroid dezzifier for      or by computing 

the weighted average of each zi, as shown below (Mendel et al., 2014):  

                            
  [

   
          

 
]   [

   
          

 
]          

            
                                     (4.9) 
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It is worth noting from (4.9) that the values associated with  ̃ are excluded from the 

calculation as they have no impact on the final output of the zSlice-based general type-2 

fuzzy logic control. 

 

Figure 4.3: zSlice-based general type-2 fuzzy logic system. 

 

 

Figure 4.4: The process within the zSlice-based general type-2 fuzzy logic control 

(Mendel et al., 2014).  
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In the literature, zSlice-based type-2 fuzzy controllers have been used successfully in a 

wide range of applications. Wagner and Hagras (2009) developed a navigation control 

for a two-wheeled, mobile robot using the concept of a zSlice-based general type-2 

fuzzy controller. Simulation results showed that the proposed controller had effective 

control ability, and, when compared to type-1 and interval type-2 controllers, it provided 

very promising results. 

Bosco et al. (2012) proposed a zSlice-based type-2 fuzzy controller for the autonomous 

navigation of a Robotino Omni-directional mobile robot (ROMR). The robot moved in a 

crowded and unfamiliar environment, where it faced unpredictable obstacles and events. 

The controller equipped the robot with a motion planning system and local path 

modification. Experimental results showed how the navigation controller enabled the 

robot to reach its desired destination, avoiding both static and mobile obstacles in this 

difficult and previously unknown environment.  

In a different paper, a self-tuning, zSlice-based general type-2 fuzzy proportional-

integral controller (zT2-FPI) was proposed (Kumbasar and Hagras, 2015), where an on-

line mechanism was used to adjust the antecedent general type-2 fuzzy set‟s secondary 

membership functions. The controller investigated the impact that the secondary 

membership functions had on the closed-system control performance and the 

improvements they could make to the system. Several simulation studies, and a real-

time implementation of a non-linear PIONEER 3-DX mobile robot, demonstrated that 

the proposed mechanism could enhance the transient state and disturbance rejection 

capabilities of the system.   

4.6 Type-2 SOFLC-DSL algorithm  

The third dimension of type-2 fuzzy sets, as outlined in Chapter 2, enables them to 

effectively model high levels of uncertainty and noise. Type-2 fuzzy sets are therefore 

suitable for simulating uncertain processes, such as anaesthesia control systems. 

Furthermore, type-2 fuzzy systems can handle more complex non-linear input-output 

control relationships than type-1 fuzzy systems (Du and Ying, 2010), and they can 

therefore present a more suitable mechanism for non-linear biomedical control 

processes.   
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Figure 4.5: An example centroid of the zSlice-based general type-2 fuzzy logic control 

with three zlevels. 

Currently, most type-2 fuzzy systems applications are focused mainly on utilising 

interval type-2 fuzzy sets, due to their simplicity and reasonable low computational cost. 

However, both interval and zSlice general type-2 fuzzy sets are proposed in this chapter 

and then compared with type-1 SOFLC and SOFLC-DSL algorithms in terms of their 

capacity to manage anaesthesia delivery and keep physiological set points for muscle 

relaxation. The ability of the proposed controllers to handle both noise-contaminated 

environments and the body‟s unpredictability during a three-stage surgical procedure 

was investigated for this study.  

The structure of the proposed Type-2 SOFLC-DSL scheme is illustrated in Figure 4.6; 

the fuzzy control system in the scheme is the same as the one used in type-1 SOFLC-

DSL algorithms. However, the antecedents and consequents in this case are defined in 

terms of interval and zSlice general type-2 fuzzy sets intended to construct interval and 

zSlice type-2 SOFLC-DSL algorithms, respectively. Different type reduction methods 

have been proposed in the literature and used in industry. The enhanced interactive 

algorithm with stop condition (EIASC) (Wu and Nie, 2011) is used in this study for the 

interval type-2 SOFLC-DSL algorithm due to its efficiency and simplicity. The other 

components, shown in Figure 4.6, remain the same as those used in the type-1 SOFLC-

DSL scheme outlined in Chapter 3. 
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.                      Figure 4.6: The basic structure of interval type-2 SOFLC-DSL. 

 

4.7 Experiments and Results  

Simulations in this section were carried-out on the muscle relaxation system described 

in Chapter 3. The SOFLC algorithm was enhanced by the strategy described in section 

4.6. 

Figure 4.7 shows the simulation results of the muscle relaxation system and the 

corresponding control signals obtained when the four fuzzy schemes were applied. It 

can be seen how the interval type-2 SOFLC-DSL and the zSlice general type-2 SOFLC-

DSL schemes performed better in the three stages of the transient period, when the 

output was still away from the set-point and the control signal, and when the 

modifications of the fuzzy rules of the performance index tables were rapidly changing. 

Also, the type-1 SOFLC-DSL scheme, the interval type-2 SOFLC-DSL and the zSlice 

general type-2 SOFLC-DSL algorithms all tracked the desired set-point in 

approximately 65 mins, while it took the type-1 SOFLC algorithm until approximately 

160 mins to reach the desired point. It can also be seen that the type-1 SOFLC scheme 

made the output track with set-point with larger overshoots and undershoots than any of 

the other schemes.  
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Figure 4.7:  Simulation result of muscle relaxation using different controllers. 

 

                    Criteria                   T1SOFLC            T1SOFLC-DSL       T2SOFLC-DSL             ZT2SOFLC-DSL                 

                 IAE                          352.73                250.34                   234.62                          228.95                                                                                                                                   

                 ISE                           166.11                129.62                   121.41                          118.65                                                                                          

                 Rule number           18                         16                           14                                  14 

Table 4.1: Summary of performance criteria of different controllers. 

 

It is apparent that the dynamic performance index combined with type-2 fuzzy sets 

(interval and zSlice) gave the controller better capabilities in the three stages of the 

closed-loop response in terms of reaching the desired set-point, with faster rise-time and 

smoother control signals, as is also evidenced in Table 4.1. Indeed, these controllers 

produced the best results under IAE and ISE criteria and generated smaller number of 

fuzzy rules in the lower-level fuzzy logic controller. In the current circumstances, both 

the interval type-2 SOFLC-DSL and the zSlice general type-2 SOFLC-DSL algorithms 

performed similarly in the three stages of the surgical procedure in terms of speed of rise 
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time and degree of steady-state error. However, it is apparent that the latter performed 

better under the IAE and ISE criteria. 

4.7.1 System’s robustness to fuzzy scaling factors and model parameters 

The robustness of the type-2 SOFLC-DSL algorithms compared to that of the type-1 

schemes is shown in Figures 4.8 4.10 and Table 4.2. It can be seen that the type-2 

fuzzy sets (interval and zSlices) made the controllers less sensitive to a wide range of 

scaling factor variations, as far as tracking speed, levels of undershoot and residual 

offsets were concerned. Type-2 fuzzy sets also led to better performances under the IAE 

and ISE criteria, and resulted in a smaller number of fuzzy rules generated in the lower-

level fuzzy logic controller.  

It can also be clearly observed that the type-1 SOFLC scheme led to significant 

variations in performance and fluctuations in drug input, particularly shown in Figure 

4.10. As for the type-1 SOFLC-DSL algorithm, even though it performed better than the 

type-1 SOFLC scheme, it was still outperformed by the type-2 SOFLC-DSL algorithms, 

whose type-2 fuzzy sets and dynamic performance index gave them better ability to 

handle the change in scaling factors.  

Investigating the robustness performance of the type-2 SOFLC-DSL algorithms, when 

applied to different models, is of high importance in determining how well the schemes 

respond to variable system dynamics and ill-defined systems, without the need for 

continued re-tuning or re-structuring. Figures 4.11 4.13 show the results of the 

simulations of the four controllers when the parameters of the muscle relaxation model 

vary.  

It can be seen that type-2 SOFLC-DSL algorithms provided better performance in the 

transient and steady-state phases. These observations are strengthened by the results 

recorded in Table 4.3, which show that these two controllers performed better under 

IAE and ISE criteria and succeeded to control the process with a lower number of fuzzy 

rules. It is, however, not easy to draw comparisons between the interval and zSlice 

SOFLC-DSL algorithms, as their performances were very similar; and it can be seen 

that in the two cases the former outperformed the latter, as shown in Table 4.3, while the 

latter performed better than the former in one case. The type-1 SOFLC-DSL algorithm 
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gave a satisfactory performance even though the input signal fluctuated in some cases, 

while the standard type-1 SOFLC algorithm led to an oscillatory control mode and 

noticeable offset in certain places.  

           Figure 4.8:  Simulation results of muscle relaxation under 50% variations of GE. 
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 Figure 4.9: Simulation results of muscle relaxation under 85% variations of GC. 

 

Figure 4.10:  Simulation results of muscle relaxation under 50% variations of GT. 
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                           Criteria                  T1SOFLC            T1SOFLC-DSL       T2SOFLC-DSL             ZT2SOFLC-DSL                 

Figure   4.8         IAE                  352.92                 250.14                 223.49                         228.34          

                            ISE                   166.41                  129.32                 121.35                        118.35 

                            Rule number     20                         18                        16                                 15 

Figure   4.9         IAE                  499.52                 363.95                  308.45                        259.23                

                             ISE                   232.82                 172.32                  151.71                        117.77 

                             Rule number    15                         23                         18                                  17 

 Figure   4.10      IAE                  560.12                  352.62                  272.42                       280.60           

                             ISE                   273.90                  17195                   137.76                        133.2 

                             Rule number    21                         19                         18                                  18 

Table 4.2: Comparative performances of the SOFLC-DSL with various output scaling 

factors values. 
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Figure 4.11:  Simulation results of the proposed scheme and the standard scheme using a 

new set of system parameters: K1=1, T1=4.8 min, T2=34.36  min, T3=3.08 min, T4= 

10.65 min. 

Figure 4.12:  Simulation results of the proposed scheme and the standard scheme using a 

new set of system parameters: K1=1, T1=5 min, T2=20  min, T3=2 min, T4= 7 min. 
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Figure 4.13:  Simulation results of the proposed scheme and the standard scheme using a 

new set of system parameters: K1=1, T1=4.8  min, T2=34.36  min, T3=3.08 min, T4= 

10.64 min. 

 

                                   Criteria                   T1SOFLC        T1SOFLC-DSL       T2SOFLC-DSL        ZT2SOFLC-DSL                 

Figure   4.11       IAE                        498.25              300.62                  308.32                         246.21          

                             ISE                         226.84             142.96                  139.21                          117.21 

                             Rule number           22                     19                          17                                 15 

Figure   4.12       IAE                         5001.12            338.95                  287.74                        306.21                

                             ISE                          247.21              156.66                  142.54                        156.32 

                             Rule number           21                      18                          16                               18 

Figure   4.13      IAE                           468.62             270.71                  247.51                        259.91           

                             ISE                           201.23             135.52                  132.12                        259.21 

                             Rule number           22                       17                         15                                16 

Table 4.3: Summary of performance criteria with different system dynamics. 
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4.7.1 Robustness in the stochastic case 

Generally speaking, as discussed in previous chapters, one of the main advantages of 

type-2 fuzzy systems when compared to type-1 fuzzy systems is their ability to perform 

better in noise-contaminated environments. Unique simulations in which the four 

controllers were evaluated are presented in this section. In order to compare the 

performances of the different types of SOFLC, the steady-state error for muscle 

relaxation and the standard deviation of drug input, calculated over the duration of the 

entire simulation, were used. Furthermore, since the noise affecting the feedback signals 

has a direct impact on the results, each simulation experiment was repeated 15 times in 

order to take into account these effects within our analysis. The responses provided by 

the four controllers were ranked using the Wilcoxon signed rank test (Sidney Siegel, 

1956), which is a technique used to compare paired samples.   

In order to effectively evaluate the four controllers, different testing hypotheses were 

used, based on the assumption interval that type-2 SOFLC controllers tend to provide 

better capabilities in uncertain environments than type-1 controllers (e.g. type-1 SOFLC 

and type-1 SOFLC-DSL), and that the zSlice general type-2 SOFLC-DSL schemes 

would outperform all other three controllers.  

Despite obtaining different simulation data in the repeated experiments, due to the 

introduced noise, the muscle relaxation values converged to similar values among the 15 

experiments. Therefore, values that corresponded to 5%, 10% and 15% noise were 

introduced in the simulations experiments to produce the results used in our analysis.  

The simulation results under 5% noise are shown in Figure 4.14, while the 

corresponding steady-state errors and control stabilities are presented in Table 4.4. We 

can see how both interval and zSlice type-2 SOFLC-DSL algorithms were maintained at 

the desired point for the duration of the entire simulation – at all three stages. However, 

the output produced by the type-1 SOFLC-DSL algorithm was very close to the desired 

values in stage 1, but became oscillatory at the other two stages. The performance of the 

type-1 SOFLC scheme, it can be observed, was not as good as the other types, in terms 

of slow rising time and poorer tracking capabilities at the three stages. It can also be 

seen from Figure 4.14 and Tables 4.4 and 4.5 that the drug input of the schemes that use 

https://en.wikipedia.org/wiki/Sidney_Siegel
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type-1 fuzzy sets included more fluctuations than type-2 SOFLC-DSL schemes, which 

is undesirable during surgical procedures.  

Figures 4.15 and 4.16 show that as the level of noise increased, type-2 controllers 

demonstrated better control capabilities at the three stages; it can be clearly seen from 

these figures that type-1 SOFLC scheme still produced the poorest performance in terms 

of slow rise-time and larger tracking errors than the other three types of controllers.   

Figure 4.14:  Simulation results of muscle relaxation under 5% noise. 

 

It is also apparent that the type-2 SOFLC-DSL scheme (i.e. interval type-2 and zSlice 

type-2) provided fewer steady-state errors in the three stages and led to more stable 

control signals than the type-1 SOFLC-DSL algorithm, as shown in Table 4.4. One can 

easily conclude that type-2 controllers were better than type-1 controllers in this case. 

However, it is difficult to draw similar conclusions when comparing the zSlice general 

type-2 SOFLC-DSL with the interval Type-2 SOFLC-DSL. To better evaluate and 

compare these controllers in the 18 tests, the Wilcoxon signed-ranked test was applied, 

as can be seen in Tables 4.4 and 4.5.  

The four controllers were tested against the 6 hypotheses for the 18 test cases as follows:  
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 a): Type-1 SOFLC-DSL would outperform  type-1 SOFLC 

 b): Interval type-2 SOFLC-DSL would outperform  type-1 SOFLC 

 c): Interval type-2 SOFLC-DSL would outperform  type-1 SOFLC-DSL 

 d): zSlice general type-2 SOFLC-DSL would outperform  type-1 SOFLC 

 e): zSlice general type-2 SOFLC-DSL would outperform  type-1 SOFLC-DSL 

 f): zSlice general type-2 SOFLC-DSL would outperform  interval type-2 SOFLC-

DSL 

The steady-state errors and control activity obtained from the four controllers at the 

three stages while operating under 5%, 10% and 15% signals are recorded in Tables 

4.4 and 4.5. Based on the results, one can see that type-1 SOFLC schemes proved to 

be the least effective of all the controllers, and that type-2 SOFLCs (i.e. interval 

type-2 and zSlice type-2) outperformed those of type-1 (i.e. type-1 SOFLC and 

interval type-1 SOFLC-DSL). Therefore, these results support hypotheses A, B, C, 

D and E in all the 18 experiments. However, Tables 4.4 and 4.5 also reveal that only 

6 of the 18 tests support hypothesis F – that the zSlice general type-2 SOFLC-DSL 

would outperform the interval type-2 SOFLC-DSL – while the other 12 tests refute 

the hypothesis. It can be concluded that under the simulation conditions of this 

study, both the zSlice general type-2 SOFLC-DSL and the interval type-2 SOFLC-

DSL provided similar results, and that it is not a straightforward matter to highlight 

significant differences between the schemes.  
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Figure 4.15:  Simulation results of muscle relaxation under 10 % noise.  

 

 

Figure 4.16:  Simulation results of muscle relaxation under 15 % noise.  
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Noise Strength         Type                          Stage-1                          Stage-2                             Stage-3 

     

                T1SOFLC                  33.21(±) 25.24        32.85(±) 26.12         30.24(±) 28.19       

                                                     

                T1SOFLC-DSL         30.14(±) 29.35
a
       29.25(±) 28.35

a
        28.45(±) 27.74

a
       

5 %                   

                IT2SOFLC-DSL        27.01(±) 26.85
bc

     26.58 (±) 24.92
bc

      25.65(±) 23.55
bc

  
 

                ZT2SOFLC-DSL       27.89(±) 25.92
de

     26.02(±) 24.87
def

      25.21(±) 24.87
de

            
 

 

                T1SOFLC                   36.97(±) 33.19         37.85(±) 32.12        30.24(±) 28.19       

                                                  

                T1SOFLC-DSL         29.94(±) 28.19
a
        33.52(±) 30.84

a
       29.87(±) 26.92

a
       

10 %                  

                IT2SOFLC-DSL        27.32(±) 25.85
bc

      25.14(±) 20.92
bc

      24.24(±) 25.44
bc

  

 

                ZT2SOFLC-DSL       25.69(±) 23.32
def

     21.34(±) 19.19
de

      20.65(±) 19.82
de 

   

 

 

               T1SOFLC                  39.83(±) 35.65         42.15(±) 32.12         41.99(±) 38.13       

                                                   

               T1SOFLC-DSL         38.14(±) 35.45
a
        38.74(±) 35.64

a
        38.07(±) 32.42

a
       

15 %                  

               IT2SOFLC-DSL        28.31(±) 27.81
bc

      26.19(±) 22.44
bc

      29.15(±) 23.14
bc

  

  

               ZT2SOFLC-DSL       29.39(±) 23.85
de

      26.45(±) 45.39
de

      24.88(±) 22.85
de 

   
 
         

Table 4.4:  Means and standard deviations of steady-state errors of the four controllers 

with results of Wilcoxon signed-rank test. 
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Noise Strength  Type                         Stage-1                           Stage-2                             Stage-3 

     

              T1SOFLC               38.65(±) 36.24         36.45(±) 31.24        33.94(±) 28.19       

                                                  

              T1SOFLC-DSL      36.32(±) 20.21
a
       33.45(±) 28.35

a
       32.42(±) 32.68

a
       

5 %                  

              IT2SOFLC-DSL    30.15(±) 28.41
bc

      28.41 (±) 26.66
bc

     27.34(±) 24.87
bc

  
 

              ZT2SOFLC-DSL   29.54(±) 26.74
de

      26.02(±) 26.47
def

     24.94(±) 29.47
de

            
 

 

              T1SOFLC               45.95(±) 40.199      48.54(±) 48.82        39.45(±) 31.10       

                                                  

              T1SOFLC-DSL      41.67(±) 40.89
a
       44.98(±) 40.88

a
       39.18(±) 36.87

a
       

10 %                  

              IT2SOFLC-DSL     37.52(±) 35.67
bc

     35.45(±) 30.12
bc

      34.19(±) 30.56
bc

  
 

              ZT2SOFLC-DSL    35.04(±) 31.85
def

    32.78(±) 28.29
de

      30.84(±) 28.21
def 

   
 

 

               T1SOFLC              51.83(±) 35.65        53.87(±) 50.84        51.41(±) 49.93       

                                                    

               T1SOFLC-DSL     48.14(±) 45.45
a
       49.04(±) 46.79

a
        49.01(±) 44.92

a
       

15 %                  

               IT2SOFLC-DSL    45.84(±) 41.18
bc

     42.19(±) 40.29
bc

       47.27(±) 45.87
bc

  
 

               ZT2SOFLC-DSL   42.98(±) 39.89
def

    40.89(±) 38.99
de

       39.48(±) 36.95
de 

   
 
         

Table 4.5:  Means and standard deviations of control stabilities of the four controllers 

with results of Wilcoxon signed-rank test. 
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4.8. Summary  

In this chapter, the capabilities of the SOFLC-DSL algorithm proposed in Chapter 3 

were enhanced to deal with uncertainty and noise by substituting its type-1 fuzzy sets 

with interval and zSlice general type-2 fuzzy sets. These controllers were used to control 

anaesthesia during three-stage surgical procedures, and were applied in different 

environments to test their effectiveness in controlling variable system dynamics and 

scaling factors and measuring their robustness in the stochastic case. The performance 

of type-1 SOFLC, type-1 SOFLC-DSL, interval type-2 SOFLC-DSL, and zSlice type-2 

SOFLC-DSL was evaluated based on different tools, such as the number of produced 

fuzzy rules and IAE and ISE criteria, as well as steady-state errors and control activity. 

The simulations were repeated 15 times, and a Wilcoxon signed-rank test was used to 

compare the performances of the four controllers when they were implemented in noise-

contaminated environments.  

The results reveal that, in all simulations, the type-1 SOFLC produced the poorest 

performance of all the controllers. The type-1 SOFLC-DSL algorithm performed well in 

most simulations in terms of remaining steady at each of the three stages and having fast 

rise times, even though the drug input it provided in the noise-contaminated 

environments fluctuated significantly, which can be dangerous during surgical 

procedures. It was difficult to compare the interval and zSlice SOFLC-DSL with each 

other, as they both provided similar results in steady-state errors and control activity, 

although it can be easily seen from the data set out in most of the figures in this chapter 

that the latter normally reached the set-point faster than the former. The latter also 

provided the low-level fuzzy logic controller with the fewest fuzzy rules of all the 

controllers in most experiments, which is an important advantage.       

Furthermore, the results produced in the Wilcoxon signed-rank test contradicted the 

widely accepted notion in the literature that when the levels of uncertainty are high, 

zSlice general type-2 sets normally provide better control capabilities than interval type-

2 fuzzy sets. zSlice general type-2 sets usually lead to a more accurate representation in 

the third dimension of model uncertainty; this should allow for better responsive control 

with smoother control characteristics. However, the results in this chapter, particularly 

in the stochastic case, demonstrate that there were no significant differences in 
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simulations between the interval type-2 and zSlice general type-2 SOFLC-DSL 

algorithms. This could be for two main reasons. First, the levels of uncertainly 

experienced in these simulations may not have been high enough, not reaching the point 

where interval type-2 fuzzy sets fail to effectively model them. Second, the resolution of 

the zSlice general type-2 fuzzy sets represented by the number of slices being used may 

not have high enough. As outlined by Wagner and Hagras (2010), the ability of zSlice 

general type-2 fuzzy sets to effectively model high levels of uncertainty depends on the 

number of zSlices they are constructed from.  

Figure 4.17 shows a box plot of the four controllers when they were repeated 15 times in 

different environments and when the IAE values were recorded. The lower limit of the 

plot represents the best performance; the upper limit corresponds to the worst 

performance; and the mean performance is represented by the line in between. .  

 

 

Figure 4.17:  The box plot of the four controllers.  
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It can be observed that the interval and zSlice type-2 SOFLC-DSL algorithms led to 

similar performance, while they both outperformed the other two controllers; It can also 

be noted that the mean IAE values for the interval and zSlice type-2 SOFLC-DSL 

algorithms were lower than the best IAE of the type-1 SOFLC scheme.  

The following chapter will include extending the SOFLC-DSL algorithm to deal with 

multi-input multi-output systems. The SOFLC-DSL algorithm will represent the main 

architecture of a decoupled multivariable control structure, which will be designed and 

tested.  
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Chapter 5 – Self-Organising Fuzzy 

Logic Control of Multivariable 

Systems with a Dynamic 

Supervisory Layer 

 

 

 

5.1 Introduction 

The design of controllers in cases of multi-input multi-output (MIMO) processes has to be 

carried-out in such a way that interactions between the input and output loops are carefully 

considered. In General, scalar controllers do not normally give satisfactory performance 

when the interactions are strong, and therefore multivariable controllers must be used. 

Decoupled control of MIMO systems overcomes the challenge of interactions between the 

control loops. It provides a simplified mechanism for designing fuzzy logic schemes by 

separating the control task into two main parts: one related to designing independent SISO 

or MISO systems to control each loop within the multivariable system; the other involves 

the use of compensators to deal with the interactions between the input and output loops of 

the system.  

Interactions between the different loops in multivariable control can lead to the following 

effects: 
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 They can destabilise the closed loop system;  

 They can make the tuning of controllers a very challenging task  

Relative gain array (RGA) is a powerful tool for measuring the input-output interactions of 

MIMO processes, and has been adopted in various applications to determine the input-

output pairing for decentralised control of multivariable processes.  

In this chapter, a solid basis is first provided to explain the different techniques used for 

controlling multivariable systems and to show how the interaction effects between the 

input and output loops of these systems can be reduced. A multivariable fuzzy decoupling 

control architecture is then introduced. The SOFLC-DSL algorithm, proposed in Chapter 3, 

is incorporated within the decoupled control scheme for target-point tracking for each loop. 

Moreover, in order to handle the input-output interactions, a steady-state relative gain 

matrix is utilised. A switching mode compensator is then introduced and incorporated 

within the SOFLC-DSL algorithm. Furthermore, it is shown how such compensators can 

be used to improve the control capabilities of the controllers by monitoring the decoupling 

actions.  

The newly proposed algorithms were applied and tested on various MIMO drug processes 

and their sensitivity in relation to various scaling factors; structure design and noise was 

also investigated.   

5.2 An Overview of Multivariable Fuzzy Logic Control  

Traditional fuzzy controllers normally succeed in dealing with complex, non-linear and ill-

defined single-input single-output systems. These controllers can be extended and applied 

to multivariable systems if several single-input single-output loops are used.  However, 

such simplified methods are not always possible in practice due to cross-coupling effects, 

in which any given input can impact more than any given output. Input-output interactions 

make it difficult for designers/operators to interpret the control strategies and design 

suitable rule-bases for achieving the desired performance. Furthermore, by using different 

SISO loops, the fuzzy rules and computational costs grow dramatically, making it difficult 

for the controller to be implemented in real-world applications.   
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The main difference between SISO and MIMO systems control is based on the estimation 

and compensation of the process interactions between all inputs and outputs. It is clear that 

in order for the MIMO systems control to provide the desired performance, coupling needs 

to be considered.     

One possible architecture for dealing with this challenge, which is often reported in the 

literature, is focused on considering the whole system and finding the fuzzy relationships 

between the n inputs and m outputs. For such a rule-base, the     rule can be defined as: 

If    is   
  and    is   

      …           is   
 ,   

                                                               Then    is   
      …           is   

                             (5.1) 

As outlined in Chapter 2, when the standard SOFLC scheme is applied to a multivariable 

system, a model of the process under control is normally required. The model helps the 

SOFLC scheme relate the modifications introduced by the performance index to the 

changes of the output of the controllers (Daley and Gill, 1986; Mamdani and Procyk, 

1979).   

5.2.1 The process reference model 

A two-input, two-output system can be characterised by state-space equations, such as:   

                                                 ̇                                                                               (5.2) 

                                               ̇                                                                             (5.3) 

where    and    represent the inputs of the process, while    and    denote the outputs of 

the process.  

The changes in     ̇  and     ̇  can be deduced by partially differentiating equations 5.2 and 

5.3 with respect to    and   : 

 

                                               ̇  
  

   
    

  

   
                                                          (5.4) 

 

                                                ̇  
  

   
    

  

   
                                                         (5.5) 
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After a sampling instant of nT, the changes in the outputs of the process can be obtained 

via the following assumption:  

                                          ̇   
  

   
     

  

   
                                                    (5.6) 

 

                                          ̇   
  

   
     

  

   
                                                    (5.7) 

Equations 5.6 and 5.7 can be written in the form of a matrix as follows:  

                                                                                                                                      (5.8) 

where  

  

[
 
 
  

  

   
 
  

   

 
  

   
 
  

   ]
 
 
 

 

As described in Chapter 2, if the required output change is represented by the 

vector        , then the manipulated input vector applied to the process can be represented 

as:  

                                                                                                                                 (5.9)                                                   

Equation 5.9 implies that fuzzy rules in the MIMO system that contribute to the current 

undesired response must be corrected accordingly.  

In order to deal with the interactions between inputs and outputs effectively, the model 

must accurately represent the dynamics of the process. Alternatively, a static model can be 

used which defines the degree of interactions between the inputs and outputs in the form of 

constant parameters. However, this can be difficult to achieve, especially for large scale, 

complex systems with uncertain dynamics.  

There are other available methods for designing a more satisfactory model for control 

design in the literature. One possible method is to use an indirect logic control approach, 

which is based on constructing a fuzzy model that captures the dynamics of the process. 
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Fuzzy rules-based models implement non-linear mapping from an input space to an output 

space. Fuzzy Sugeno-type models enjoy an important position in the field of modelling, 

and are commonly applied in a wide a range of applications (Takagi and Sugeno, 1985; 

Sugeno and Kang, 1988; Sugeno and Tanaka, 1991). The output membership functions of 

Sugeno-type models can either be linear or constant, unlike fuzzy consequents that are 

commonly used in Mamdani models (Mamdani, 1976).  

Building a Sugeno-type model generally consists of two main parts. First, there needs to be 

a structural development of the model, which involves deducing how many fuzzy rules, 

and antecedent variables of these rules, will be needed and used. There are various 

available design approaches that provide the structure developments, including fuzzy trees 

(Mendonca et al., 2007), fuzzy grids (Hu et al., 2003) and fuzzy clustering (Sugeno and 

Yasukawa, 1993; Szabo et al., 2005; Yager and Filev, 1995). It is possible to regard the 

Sugeno-type model as a set of local linear models once the number of fuzzy rules and 

antecedent variables are deduced. The second phase required in the design of the Sugeno-

type model is variable estimation. In linear models, variables can be obtained by pseudo-

inversion or by applying the recursive least square approach (Chiu, 1994). Alternatively, 

these variables can be obtained using classical direct search-for-optimum methods, such as 

gradient descent and modified newton algorithms or population-based methods, including 

genetic algorithms, particle swarm optimisation and simulated annealing.  

Li and Priemer (2003) proposed a self-learning fuzzy logic system (SFS) algorithm tuned 

by a random optimisation method aided by a training strategy. The proposed mechanism 

observed the behaviour of the input and output values of the process and then used them to 

adapt all the parameters of a Sugeno-type model. Li et al. (2004) proposed the concept of 

pseudoerrors, which are the potential errors that can occur during the process of 

constructing a self-organising neuro-fuzzy system (SO-NFS). The proposed algorithm 

employed a Sugeno type fuzzy system and used a clustering algorithm to construct the 

antecedent part of the rule-base. The pseudoerror-based mechanism provided the controller 

with all the accurate estimates it needs about the dynamics of the process. When applied to 

a crane system, the simulation results showed that the SO-NFS can effectively control the 

crane system in x, y and z directions.  

In another research study, Sarimveis and Bafas (2003) developed a fuzzy model that 

captured the dynamics of the process to be controlled. The Sugeno-type model was then 
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used to predict future behaviours of the output of the process. The algorithm produced 

promising results when applied to a chemical reactor even when constraints were imposed 

on the control action.  

In a similar work, by Shieh et al. (2006), an adaptive genetic fuzzy clustering algorithm 

was used to construct a fuzzy model. Generic algorithms were employed to tune the fuzzy 

rules of the model. The model was used as a basis for controlling anaesthesia. Simulation 

results revealed the capacity of the model to capture the dynamics of the process. Edwin 

(2008) proposed a different Sugeno-type model, based on new, incremental learning 

algorithms. The new algorithms tuned the parameters of both the rule consequents and the 

incremental learning of the premise parameters found in the fuzzy sets. The training of the 

model was carried-out both in on-line and off-line modes. The algorithms were applied in 

three applications, one of which included on-line identification of high-dimensional 

models at engine test benches. In all three applications, the algorithms performed well.  

Different modelling methods, which combine both fuzzy logic and neural networks, have 

emerged over the last two decades, and have been applied by many researchers to various 

engineering applications. Neural networks are powerful learning tools which provide fuzzy 

inference systems with learning abilities from data and have offered a new, promising 

direction for the control of MIMO systems. Different types of neural networks are used as 

part of the fuzzy-neural systems, including Radial Basic Functions (RBF), Counter 

Propagation Networks (CPN) and Cerebellar Model Articulation Controllers (CMAC). Nie 

and Linkens (1993), for example, developed a fuzzified CMAC mechanism to act as a 

multivariable adaptive controller. The controller had as a feature self-organising 

association cells which enabled it to produce acceptable results when it was applied to a 

multivariable blood pressure control problem. Lin et al. (2008) introduced the hybrid 

fuzzy-CMAC-GA scheme that was used as a basis for an automatic landing system. The 

genetic algorithms were used to tune the control gains. The fuzzy-CMAC scheme 

improved the performance of systems in different aspects, such as local generalisation, 

rapid learning convergence and fuzzy interpretation capability.  

Lee et al. (1994) employed an RBF network as part of a fuzzy system to construct a self-

organising controller. Li et al. (2015) proposed what they called a self-organising cascade 

neural network (SCNN) with random weights. The network consisted of two fundamental 

phases, a simultaneous structure and a parameter learning mechanism. The SCNN 
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incorporated the weight optimisation into the architecture design. Simulation experiments 

demonstrated that the SCNN had fast learning abilities, and its generalisation performance 

was quite good even for non-linear systems.  

Different researchers with an interest in the subject of MIMO control systems have been 

attracted to the adaptive fuzzy logic control based on Lyapunov theory. Kim and Yun 

(2000) developed a sliding mode controller to build a direct fuzzy adaptive controller. The 

controller has showed good robustness even in noisy environments. Similar work was 

conducted by Chiou and Huang (2005), where an adaptive fuzzy sliding mode controller 

was developed. An on-line tuning algorithm based on Lyapunov stability theory was used 

to adjust the consequent parameters of the fuzzy controller. The chattering phenomenon 

which is inherent in the sliding mode control was eliminated by introducing a boundary 

layer function. Simulation results showed that the novel scheme had good control abilities, 

stability and robustness.  

In a similar work by Ho et al. (2003), an adaptive fuzzy sliding mode controller (AFSMC) 

was designed; the proposed algorithm used the robust proportional integral (PI) control law 

for developing SISO non-linear systems with external disturbances and uncertainty. The 

unknown system model was approximated using a fuzzy logic system, while the chattering 

action of the control signal was eliminated by the PI control law. The proposed system 

showed a good tracking performance when applied in simulation environments.  

Researchers have incorporated different decomposition techniques as part of the MIMO 

control system. Decoupled controllers are today considered a promising architecture for 

dealing with the issue of interaction (or coupling) between inputs and outputs of the 

process to be controlled.  

5.2.2 Fuzzy decoupled control of multivariable systems  

As established previously, interactions between input and output channels can destabilise 

closed-loop systems and make the tuning of controllers very challenging. One way to deal 

with this challenge is to decouple the highly interacting multivariable systems into sets of 

independent loops so that a controller can then be assigned for each loop. 

Figure 5.1 shows the general architecture of a decoupled control system. As can be seen, 

the MIMO process is divided into smaller SISO subsystems, each of which is controlled by 
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an independent controller (e.g.,   ). Also, in order to compensate for the residual 

interactions between the various input and output channels, different compensators 

(e.g.,    ) are used.  

 

Figure 5.1: A 2 × 2 MIMO system ( Linkens and Nie, 1995). 

 

Chou et al. (2010) proposed an interesting technique for decomposing a multi-stage 

SOFLC scheme into many 2-input/1-ouput loops. This decomposition allowed the 

performance index tables to be arranged into simple 2-input/1-ouput spaces similar to those 

of the original SOFLC scheme. When the new scheme was utilised to control the general 

anaesthesia and muscle relaxation of patients, the simulation results revealed that it 

performed well, with a reduced steady-state error.  

In many commonly used multivariable fuzzy control approaches in the literature, the 

interconnection between the input and output channels is omitted. These fuzzy control 

methods are generally used to reduce computational costs and ensure that the structure of 

the controllers remains as simple as possible. Lei and Langari (2000) proposed a 

hierarchical fuzzy algorithm to regulate and stabilise an inverted pendulum system. Based 

on human intuition, a supervisory fuzzy compensator was developed to compensate for 

interactions between the different channels.  
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With an accurate adjustment of control gains, the proposed controller produced better 

results than a traditional state feedback controller.  

In the work of Lian and Huang (2001), a mixed fuzzy controller was designed based on the 

physical analysis of the process to be controlled. The mixed controller used a number of 

regular fuzzy controllers that were designed to deal with the different degrees of freedom 

in the MIMO system. In order to handle the interactions between the input-output 

channels, a decoupling fuzzy controller was used.  

By using a combination of MISO fuzzy controllers, Tu et al. (2005) developed a multi-

layer fuzzy compensator. When used to regulate a two-link cart-pole system, the 

compensator provided satisfactory performance in terms of regulation and stability. Koutb 

et al. (2004) proposed a fuzzy scheme that integrated the input and output parameters in a 

fuzzy relation used to capture the degree of interaction between the channels of a 

multivariable process. The proposed controller outperformed conventional multi-loop 

schemes when it was applied to a non-linear boiler-turbine process. 

Based on a fuzzy dynamic model, Sun and Li (2000) introduced a MIMO fuzzy controller. 

Each degree of freedom of the process was controlled via a conventional fuzzy state 

feedback control law, while a global fuzzy inference scheme was used to compensate for 

the multivariable cross-coupling effect. In order to guarantee the system‟s stability, the 

concept of a connective subsystem was introduced. Mendonca et al. (2003) proposed a 

fuzzy predictive control for a MIMO system by introducing different constraints within a 

coordinated fuzzy decision-making architecture. The controller was tested on a container 

gantry crane and gave an acceptable control performance.  

In the reviewed MIMO fuzzy control approaches, the control rules produced depended 

either on the experience of the operator/designer or on the qualitative analysis of the 

MIMO processes under control. These fuzzy rules fail to fully capture the relationships 

between the inputs and outputs due to the presence of vagueness, impreciseness or lack of 

information, and hence lead to deterioration in the performance of the control system. 

Furthermore, such structures make it difficult to guarantee the stability of the close loop 

systems. Therefore, more desirable performance in terms of increased accuracy of the 

fuzzy rules, and improved overall behaviour can be achieved by using a model-based 

MIMO fuzzy scheme.   
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The concept of Relative Gain Array (RGA) was proposed by Bristol (1966) and further 

studied by different researchers with an interest in the subject of linear multivariable 

control (Grosdidier et al., 1985; Gangopadhyay and Meckl, 2001; Sun and Li, 2000; 

Persechini et al., 2004; Camacho and Rojas, 2000). The RGA is a steady-state 

compensator, and is today used as powerful tool to eliminate the input-output interactions 

of MIMO systems using array elements. Only the steady-state gains of the system are 

required to obtain the relative gain arrays, which are then used to measure the impact of a 

certain input on a particular output of the multivariable system.  

The basic idea behind the way in which a relative gain array is incorporated within 

multivariable control systems is based on pairing the manipulated parameters with the 

output of a MIMO system. The array then uses decoupling compensators to decompose the 

effect of the multivariable interactions. For each single-input/single-output loop within the 

MIMO system, an independent controller is applied.  

Nevertheless, steady-state compensators such as relative gain arrays ignore the system‟s 

dynamics and fail to produce direct information about the performance of closed loops 

systems. One way to improve the control performance is to use off-line, pre-defined 

methods utilising trial-and-error (Mollov et al., 2004). Linkens and Nyongesa (1996) 

designed a fuzzy logic scheme for a MIMO system. In this architecture, four independent 

fuzzy controllers were developed, two of which were the main controllers for the feedback 

systems while the other two were used to compensate for the interactions between the two 

inputs and the two outputs. These four controllers were tuned simultaneously using genetic 

algorithms. 

Using a reference signal, Lee (1997) trained a fuzzy controller in the form of the neuron 

network. In order to cope with a situation where the desired states were not within the 

desirable range, the linear generalisation method via scaling factors was introduced. No 

compensators were needed in this algorithm since the information about the interactions 

between the different channels were fully captured by the reference model. The simulation 

results when the scheme was tested on a non-linear servomechanism proved the 

effectiveness of such a decoupling approach.  

In order to relate the implied corrections, applied by the performance index table of a 

SOFLC algorithm, to the actual change of the output of the controller, Dobson and 

Roskilly (2002) introduced another fuzzy auto regression, moving an average, FARMA-
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based SOFLC algorithm to model the system off-line. This model uses inputs that 

represent the system state‟s history and the control signals, whereas the one step-head 

predicted system state was used as the output provided by the model. In order to identify 

the fuzzy relation matrix, which can be used to predict the output of the process, Abilov et 

al. (2002) used a pseudo-random binary sequence. Similar work was conducted by Mollov 

and Babuska (2004), which involved designing a Sugeno-type model that they introduced 

in order to measure the degree of interaction using the output sensitivity function and the 

relative gain array method.  

Nevertheless, these pre-designed interactive schemes can sometimes fail to deal with input-

output interactions accurately and efficiently when the multivariable processes to be 

controlled involve unpredictability or uncertainty. One way to resolve this issue is to 

include on-line adjusting layers.  

Bagheri and Moghaddam (2009) introduced a decoupled adaptive neuro-fuzzy (DANF) 

sliding mode control system that can be applied in applications where precise system 

models can be created. The algorithm is equipped with an on-line learning mechanism to 

tune the parameters of the fuzzy neuro-fuzzy controller. This mechanism is based on 

Lyapunov stability analysis to ensure that the controller is stable and provides the desired 

responses, even in the presence of uncertainty and disturbance. In a different work, by Liu 

et al. (2003), an intelligent hierarchical control scheme that integrated fuzzy self-tuning 

with adaptive control and auto-tuning techniques was designed as a basis for controlling a 

boiler turbine unit. A steady-state unilateral decoupler was incorporated to compensate for 

the strong interactions between the control loops. When the scheme was applied, the 

results showed that it was very robust, even though the structure of the boiler turbine unit 

was complex.  

MA (2007) utilised fuzzy neural networks to develop a new, P–Q decoupled control 

scheme for the unified power flow controller (UPFC). The controller was introduced to 

effectively control power systems and reduce the effects of interactions between the 

parameters of the real and reactive power flow control. Simulation results of the new 

control scheme showed its superiority over other conventional power flow controllers.   

In summary, and in the light of the review provided above, we can conclude that a major 

challenge facing MIMO control systems is to provide a suitable model of the process to be 

controlled without increasing the computational cost of the algorithm. This issue is 
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compounded when the fuzzy control rules of the controllers depend directly or indirectly 

on these models. 

In general, the SOFLC algorithms for multi-input multi-output systems have attracted little 

interest from researchers due to the dependence of these controllers on inverse models for 

mapping between the state variables of the systems and the control inputs.  

Recently, different optimisation tools and methods have been developed that can be 

incorporated within multivariable control systems to improve their performance, such as 

genetic algorithms, particle swarm optimisation and neural networks.  

Another interesting conclusion is that decoupled control of MIMO systems is still 

attractive in terms of its ability to reduce the dimensions of fuzzy rules. A wide variety of 

compensators is available in the industry and has been proposed in the literature to deal 

with the interactions between input and output channels, such as the relative gain array. 

However, in most of these contributions, the use of the interactions of loops for set-point 

tracking has not been considered. 

Adding an adaptation mechanism can help boost the control performance of a MIMO 

system. However, further work and analysis are still required to ensure that the adaption 

process is carried-out effectively and in a timely fashion, and that the process does not 

contribute to the growth of the computation burden. A good way to deal with this challenge 

is to consider on-line mechanisms that can adjust key parameters of the controller to ensure 

that the desired response is always achieved.  

5.3 Multivariable System Control Using SOFLC-DSL   

5.3.1 Decoupling structure and compensating scalars based on RGA  

In order to investigate the decupling structure and the compensating scalars based on the 

relative gain array, let    and    define the input and output pair for a MIMO process 

     such that the steady-state gain matrix G is denoted as follows:  
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                                    [

          
      
  

   …

  
 

   

]                                                                      (5.10) 

 

Bristol (1966) states that if    is used to control   , then there will be two extreme cases: 

 All other loops open:          . 

 All other loops closed and provide perfect control performance:          . 

Perfect control performance can only be achieved at steady-state. However, it is a good 

approximation at frequencies within the bandwidth of each loop. The gain for the two 

extreme cases  can be evaluated as follows:   

 

1) Other loops open:  

                                                         (
   

   
)
        

                                                                         (5.11) 

 

2) Other loops closed:  

                                               (
   

   
)
        

  ̅                                                                        (5.12) 

where,          , is the       element of  , while  ̅   is the inverse of the is the       

element of     

                                              ̅   
 

       
                                                                                  (5.13) 

 

In order to derive equation 5.13, it can be noted that:  

                                                 (
   

   
)
        

                                                       (5.14) 

And interchanging the roles of    and    ,   and  , and   and   to obtain:  

 

                                               (
   

   
)
        

        
  

                                         (5.15) 
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The ratio between the gains in equations 5.11 and 5.12, as argued by Bristol, represents a 

useful measure of the degree of interactions between the input and output channels of the 

multivariable system. The ij
th

 gain    can be defined as follows:  

                                                
   

 ̅  
        

                                                                     (5.16) 

The relative array gain is the corresponding matrix of relative gains. From the above 

equation, one can see that the RGA,             ,  where   defines the element-by-

element multiplication.  

For example, the relative gain array     for a 2   2 process is defined as follows: 
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]                                 (5.17) 

where 

                                                                                                                         (5.18) 
 

Based on the matrix above, it can be seen that the parameters    and    will only be paired 

if the corresponding gain       is close to 1. This, in other words, means that the gain 

between    and    is not affected by closing the other loops. Also, the instability caused by 

the interactions at low frequencies can be avoided by avoiding pairing with negative 

steady-state RGA elements (Skogestad and Postlethwaite, 2005).  

Figure 5.2 shows a multivariable architecture that uses a predefined RGA matrix for 

selecting the input and output pairs. It can also be seen that the SOFLC-DSL schemes are 

incorporated as dominating controllers to regulate each loop.   

The steady-state gains were used to compensate for the interactions between the different 

loops within the system. For the first loop, 1, the applied input   
  is formed by combining 

both the main control inputs     and the compensating inputs    . 

The actual process control inputs of the other loop are formed using the same reasoning.  

The relationship between the control inputs   , provided by the domination controllers, and 

the process control inputs   
 , can be represented as follows:  



 
 

111 
 

 

                         [
  
 

  
 ]  [

      
      

] *
  
  

+   *
  
  

+                                                           (5.19) 

 

 where   [
  

   

   

 
   

   
 

] and is called the compensation matrix.  

 

The basic operation of the compensator can be used to derive the compensating scalars 

   and    , while other two scalars     and     can be set to 1 without loss of generality.  

Assume that there is in channel 1 a change of     that results from the interaction effect 

from     of loop 2. Hence: 

                                                                                                                                   (5.20) 

Here,     represents the parameter of the steady-state matrix G in the form of equation 

5.10.  

The interaction effect caused by loop 2 on loop 1 can be reduced by the compensator that 

generates an alteration within the control input of loop 1    , which then results in an 

equivalent alteration in     . 

Therefore,  

                                                                                                                       (5.21) 

Or  

                                               ( 
   

   
)                                                                (5.22) 

 

                                                       
   

   
                                                                                (5.23) 

 

The compassing scalar      can be obtained using the same process.  

As explained by Nie and Linkens (1995), the variables of the compensators are calculated 

based on the steady-state gains. Therefore, these compensators remove the interactions 
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between the input and output channels, not completely but partly, particularly in the 

transient regions. The remaining number of the effects of this interaction are compensated 

for by the main controller for each loop. 

5.3.2 Switching mode linguistic compensator 

In most previous contributions that have studied the interactions between the different 

variables in multivariable systems, the main concern has mainly been on developing 

compensators that can deal with these interactions. Little consideration has been paid to 

how such interactions can impact the different loops.  

In the work of Lu and Mahfouf (2006), a compensator-switching strategy was proposed to 

improve the capabilities of the SOFLC scheme. This strategy is adopted in this thesis.  

The way to determine if the interactions can lead to improved error tracking capabilities 

using this strategy can be estimated as follows. 

 

 

 

 

 

 

 

 

 

 

          

Figure 5.2: Decoupled system using RGA compensators (Lu and Mahfouf, 2006). 

 

First, one can evaluate the output of the dominating controller using the following rule: 

IF  ̅               

        THEN    
                is needed for smaller tracking error 

         ELSE     
                is required for smaller tracking error                                (5.24) 
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where  ̅         is the predicted tracking error in loop  ,   steps ahead of the current 

sampling instant, which can be calculated by equations 5.25;      is the output of the 

dominating controller in loop  ; and   
   is the output of the ideal estimated controller that 

makes the output of the process tracks the set-point closer.  

                     ̅                                                                             (5.25) 

Second, the mechanism in which the switching strategy works is very simple and can be 

summarised as follows. 

If the dominating control signal     in the interacting channel   helps to reduce the 

difference between      and   
  , then the interaction is allowed . Otherwise, the interaction 

caused by loop   on loop   is counteracted by the compensating control force of    . 

When such a strategy is adopted, some of the efforts of the designed compensating 

controller are utilised to deal with the interactions‟ effects, while the remaining interactions 

are made available to the main controller for the purpose of reducing the errors in the 

process and enhancing the control capabilities of the scheme.  

This design strategy is different from that relating to traditional decoupled controllers, 

which are generally designed to deal only with the interactions of the different loops of the 

MIMO system without considering the use of the effects of these interactions to enhance 

the overall performance of the controller.    

It is worth noting that, regardless of the status of the current error-tracking values, the 

compensator remains switched on as long as the system is in steady-state. This is 

particularly useful when dealing with any case where both loops are in steady-states and, 

all of sudden, loop   experiences a change. In such instances, the interaction effect can be 

large enough that it forces the tracking signal of loop    away from the desired values, 

regardless of the polarity of the interaction.   

The described switching strategy of the compensator that is utilised to deal with the 

interactions caused by loop   on loop    is summarised in Figure 5.3.  
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Figure 5.3: The switching mode linguistic strategy (Lu and Mahfouf, 2006). 

 

Here,     and      are the outputs of the dominating controllers, and   
   is the expected 

control input provided according to the evaluation of the system performance set out in 

equation 5.25. It should also be noted that in this equation, the switching strategy is based 

on the assumption that when     and      have the same polarity, they both provide the same 

increase/decrease effect on loop  . 

If this is not satisfied, then the following rules are considered: 

IF   
                AND       , THEN the compensator is switched-on needs be 

replaced by:  

IF   
                AND        , THEN the compensator is switched-on.  

For the other rule, a similar alternation in the condition part should be generated.  

In short, the compensator provides the required control signals as follows:  

 The predicted tracking error  ̅        is initially calculated using equation 5.25  

 The switching mode can then be determined via the strategy in Figure 5.3 

 The current control signal          can be evaluated by applying equation 5.24  

 Finally, the output of the compensator can be calculated as follows:  
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5.4 Simulation on a Multivariable Dynamic Process  

In modern pharmacology there are two main categories. First, there is pharmacokinetics 

 PK , which deals with a given drug‟s concentration with respect to time and dose 

schedule. Second, there is pharmacodynamics (PD), which studies drug concentrations and 

the effect a drug can have on the body of a patient. There are many different variables 

within the body that need to be regulated during surgical procedures, such as blood 

pressure and cardiac output. This task is normally carried-out by the use of different drugs, 

including the vasoactive drug sodium nitroprusside (SNP) and the inotropic drug dopamine 

(DOP). The injection of these drugs affects different parameters within the body of the 

patient, such as Mean Arterial Pressure (MAP) and Cardiac Output (CO). 

The following model represents a drug dynamics process with two-inputs two-outputs (Nie 

and Linkens, 1995).  

*
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+

[
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                         (5.26) 
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Here,         ;          ;         ;         ;      ;      ;   

     ;         .    is the infusion rate of the inotropic drug dopamine;    is the infusion 

rate of the vasoactive drug sodium nitroprusside. 

One can notice from the model in 5.26 that there are strong interactions between the 

different loops and it also has large time delays.  

The steady-state gain matrix   in the linear case can simply be represented by      

                                     *
      
      

+         
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  (5.27) 
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The relative gain array matrix   is defined as:  

  *
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  (5.28) 
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The control loop for the process shown above, based on the elements of the relative gain 

array matrix, can be formed by pairing DOP/CO and SNP/MAP. This makes sense 

considering that SNP is used to reduce the Mean Arterial Pressure (MAP) while DOP is 

used to increase Cardiac Output (CO).  

The SOFLC-DSL based decoupled scheme shown in Figure 5.2 was applied via two 

primary control routes: DOP/CO and SNP/MAP. Equations 5.19 and 5.28 were used to 

calculate the compensating scalars.  

Similar to the work conducted in previous chapters, the lower-level fuzzy logic rule-base 

as well as the performance index table adopted in this chapter use five fuzzy sets, denoted 

in an equally-partitioned universal discourse, for both input signals, E and CE. A sampling 

interval of 30s and square target-point signals with three different modes for CO and MAP 

were also used in this simulation study.  

The produced outputs when the SOFLC-DSL algorithm with switching mode compensator 

was applied are shown in Figure 5.4. We can clearly see that the output singles accurately 

tracked the set-points at all three stages, while the control actions remained smooth 

throughout. This clearly indicates that the switching mode strategy enabled the system to 

effectively deal with the interaction and that it enhanced the tracking capabilities, 

particularly in the transient region.   

Figures 5.5 and 5.6 show the response of the system when the SOFLC-DSL algorithm with 

relative-gain, array-based scalar compensators, and a conventional SOFLC scheme with a 

fixed performance index table, were used respectively. The results reveal that the SOFLC-
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DSL which included the switching mode compensator outperformed the other two schemes 

for both CO and MAP in terms of making the system track the target-point with fewer 

fluctuations.  

One more interesting observation is that the SOFLC-DSL algorithm still provided better 

performance than the standard SOFLC scheme, even when the former was applied without 

the switching mode strategy. 

5.4.1 Robustness of the proposed algorithm to scaling factors 

In order to test the performance of the proposed scheme under varied scaling factors, the 

scaling factors for both the CO and MAP loops were varied for the SOFLC-DSL using a 

switching mode compensator, as shown in Figures 5.7  5.9. 

Table 5.1 data compare the latter scheme with two other schemes: the conventional 

SOFLC with switching mode compensator and the SOFLC-DPI with RGA-based scalar 

compensators. The results reveal that SOFLC-DSL with a switching mode compensator 

had a robust response to scaling factors variations and produced the best results when 

compared to the other two schemes. It is apparent that the ability of the algorithm to 

modify its structure on-line through the supervisory layer enhanced its effectiveness and 

capability to deal with the variation in scaling factors. It is also noted that the standard 

SOFLC scheme still produced the poorest performance even when it was aided by the 

switching mode compensator.   

5.4.2 The system’s robustness to model parameter variations 

The ability of the proposed algorithm to deal with the variations in the parameters of the 

model is vitally important because human bodies have different characteristics, and 

therefore the constants shown in model 5.26 differ from one person to another.  

All the model variables were varied with respect to the original model, as shown in 

equation 5.26. The proposed algorithm was tested to see how it would behave when 

applied in a real-world application with different patients, as shown in Figures 5.10   5.14. 

The results reveal the proposed decoupled scheme was robust in its response to varying 

system dynamics in both CO and MAP.  It is interesting to note that, even when the 

switching mode compensator was not used, the proposed scheme still provided acceptable 
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results that were better than the standard SOFLC scheme. This is once again due to the 

capacity of the proposed algorithm to modify its structure on-line, and also its ability to 

evaluate the performance of the current error tracking and the interaction‟s effect on that 

loop.  

5.4.3 Robustness in the stochastic case 

The 2
nd

-order polynomial fitting method studied in Chapter 3 was incorporated into the 

proposed decoupled system to enable the SOFLC-DSL to work within noise-contaminated 

environments. A good system performance is demonstrated in Figure 5.15 when the 

proposed scheme was applied under 5% output noise.  

 

5.3.4 Controller’s robustness to the compensator design  

As described in previous sections, the proposed compensators were developed based on the 

steady-state gains of the system. It is therefore very important for these controllers to be 

able to work effectively even when the estimate of steady-state gains is inaccurate. In order 

to carry-out this task, four different scenarios involving estimates were considered to test 

robustness.    

 Scenario 1:                
 ,                

  

 Scenario 2:                
 ,                

  

 Scenario 3:                 
 ,                

  

 Scenario 4:        ,         

where      
  represents the initial component element utilised to deal with the interactions   

from loop    to loop  ;       represents the value utilised in the simulation. These two 

values,        and        altered by a different amount in each case, which represents the 

deviation between the actual and estimated steady-state gains. The results of the simulation 

shown in Figures 5.16   5.19 demonstrate that the proposed decoupled system performed 

well in the first three cases, and still provided a satisfactory response in the last scenario. 
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This reveals that the proposed strategy copes effectively even when the estimation of 

steady-state gains is not accurate.  

 

 

Figure 5.4: System response using the SOFLC-DSL algorithm with switching mode 

compensator.  
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Figure 5.5: System response using the SOFLC-DSL algorithm with RGA based scalar 

compensators.  
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Figure 5.6: System response using the SOFLC algorithm with the switching mode 

compensator.  
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Figure 5.7: System response using the SOFLC-DSL algorithm with the switching mode 

compensator under 50% variations of GE for CO and MAP. 
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Figure 5.8: System response using the SOFLC-DSL algorithm with the switching mode 

compensator under 50% variations of GC for CO and MAP. 
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Figure 5.9: System response using the SOFLC-DSL algorithm with the switching mode 

compensator under 50% variations of GT for CO and MAP. 
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                         The highest variations of different scaling factors with respect to the prime values (%).  

                                             Case 1                            Case 2                                 Case 3 
 

                           GE/MAP                     180                                153                                     90 

                       GC/MAP                     210                                150                                     25  

                       GT/MAP                     50                                  20                                       3 

                       GE/CO                        185                                 87                                      26                 

                       GC/CO                        520                                310                                     17                 

                       GT/CO                        39                                  27                                        4 

 

Table 5.1: Variations of scaling factors. 

            Case 1: SOFLC-DSL algorithm with switching mode linguistic compensator. 

          Case 2: SOFLC-DSL algorithm with RGA based scalar compensators. 

          Case 3: SOFLC algorithm with switching mode linguistic compensator. 

 



 
 

126 
 

 

 

 

 

 

Figure 5.10: System response using the SOFLC-DSL algorithm with the switching mode 

compensator under 10% variations of system parameters. 
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Figure 5.11: System response using the SOFLC-DSL algorithm with RGA based scalar 

compensator under 10% variations of system parameters. 

 

 

 

 

 

 



 
 

128 
 

 

 

 

 

 

 

 

 

Figure 5.12: System response using the SOFLC algorithm with the switching mode 

compensator under 10% variations of system parameters. 
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Figure 5.13: System response using the SOFLC-DSL algorithm with the switching mode 

compensator under 15% variations of system parameters. 
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Figure 5.13: System response using the SOFLC-DSL algorithm with RGA based scalar 

compensator under 15% variations of system parameters. 
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Figure 5.14: System response using the SOFLC algorithm with the switching mode 

compensator under 15% variations of system parameters. 
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Figure 5.15:  System response using the SOFLC algorithm with the switching mode 

compensator under 5% noise. 
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 Figure 5.16:  Simulation result using               
 ,                
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Figure 5.17:  Simulation result using               
 ,                
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Figure 5.18:  Simulation result using                
 ,                
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Figure 5.19:  Simulation result using       ,          
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5.5 Summary  

The single variable SOFLC-DSL algorithm proposed in Chapter 3 was extended in this 

chapter to the multivariable case, where forms of adaptation and modification were 

introduced within the basic algorithm.  

The chapter started with a review of multivariable fuzzy logic control systems, with 

particular emphasis on decoupled systems and how the effects of the input-output 

interactions can be reduced. Also, a switching mode linguistic compensator based on 

steady-state gains was described. Finally, the decomposed systems that use the SOFLC-

DSL algorithm as a dominant controller to make the output track the set-point signals and 

the linguistic compensators deal with the interactions within the different channels were 

applied to a multivariable drug dynamics model.  

Similarly, several experiments were carried-out to test the effectiveness of the proposed 

controller in different environments, including its robustness to process parameter 

variability, varying system dynamics and noise-contaminated environments. The 

simulation results revealed that in all experiments, the SOFLC-DSL scheme with the 

switching mode compensators provided the best performance in terms of fast set-point 

tracking capabilities in the three regions of the surgical procedures in various conditions 

and circumstances, where it outperformed both the SOFLC-DSL algorithm with relative 

gain array-based scalar compensators, and the standard SOFLC scheme that uses a fixed 

performance index table.  

Another interesting observation is that the SOFLC-DSL scheme performed better  than the 

traditional SOFLC algorithm with a fixed index table, even when applied without the 

switching mode compensators. This is apparently due to the on-line adjustment mechanism 

that enables it to effectively change its structure, based on the process under control and 

the environment in which it operates.  

It was also observed that the SOFLC-DSL-based system tended to be less sensitive to 

compensating scalar estimation than any other types of controllers. This is very important, 

as it essentially means that the controller will depend less on the switching mode linguistic 

compensator to get rid of the input-output interactions. Furthermore, it was found that 
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when the switching mode linguistic compensator was used, the system had better 

resistance to inaccurate estimates of compensating scalars.   

The deployment of interval and zSlice type-2 fuzzy sets to the proposed decoupled 

architecture is considered in Chapter 6.   
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Chapter 6 – Type-2 Fuzzy Sets for 

Self-Organising Fuzzy Logic 

Control of Multivariable Systems 

with a Dynamic Supervisory Layer 

 

 

 

6.1 Introduction 

It was observed from the previous chapter that expressing control strategies by relating 

multi-control rules to multi-situations is not always a trivial task in multivariable control 

systems. This is mainly due to the reliance of the control performance of these decoupled 

systems on a priori information in the design of suitable compensators. In Chapter 5, the 

proposed decoupled controller included SOFLC-DSL algorithms and a linguistic switching 

strategy. This improved the performance of the multivariable system, enabling it to handle 

the interactions between the different loops and produce a good multivariable control 

performance in terms of maintaining the desired target points for the various controlled 

variables. However, the physiological characteristics of the human body can differ from 

one person to another depending on their health condition, age and gender, making it 

difficult to design a controller that can work effectively with different patients. This is 
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mainly due to the effect of the physiological differences on the concentration and duration 

of the drug required by each patient during surgery. 

Furthermore, type-1 fuzzy sets have less degree of freedom than those of type-2, as 

described in previous chapters, and are therefore less effective in terms of handling real 

world uncertainty and noise, and in producing accurate and stable control behaviours. In 

order to deal with this challenge, this chapter shows how both the interval and zSlice type-

2 fuzzy sets were tested to enhance the capabilities of the proposed decoupled control of 

the multivariable system.  

The chapter begins with an overview of different applications in which type-2 fuzzy sets 

are used within multivariable control systems. Another review is then provided on the 

various PSO-based multivariable systems that are reported in the literature, after which a 

decoupled architecture of a multivariable system that uses type-2 SOFLC-DSL algorithms 

as dominating controllers for regulating both the CO and MAP is introduced. The 

switching strategy is mainly used to handle the effects of the interactions. However, RGA 

compensators (see Chapter 4) were also applied in certain simulations.  

The performance of the proposed decoupled controller is evaluated by applying it in 

different environments to test its sensitivity to scaling factors, system dynamics, design 

structure and additive noise.  

6.2 Type-2 Fuzzy Sets for Multivariable Systems  

Type-2 fuzzy systems have been heavily used in recent years as part of multivariable 

systems. Most of these contributions have given promising results, showing that type-2 

fuzzy sets are superior to type-1 in fuzzy sets, especially when they are applied in 

environments similar to those of real-world applications, where signals are associated with 

high levels of uncertainty and noise.    

In the work of Lin (2010), an observer-based indirect adaptive fuzzy controller for non-

linear multivariable systems experiencing disturbances was designed. Type-2 fuzzy sets 

were deployed in order to deal with the training date corrupted by rule uncertainties or 

noise. An adaptive law, based on the Lyapunov synthesis method, and an output feedback 

control law were both used to tune the parameters of the adaptive fuzzy scheme. When 

applied in a simulation environment to control a mass-spring-damper system, the proposed 
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interval type-2 fuzzy logic system dealt with the noisy training data effectively. In contrast, 

the adaptive type-1 fuzzy controller required more control effort to handle the uncertainties 

within the data. Moreover, it was observed that type-2 fuzzy sets enabled the proposed 

adaptive control scheme to provide better tracking performance than those of type-1 fuzzy 

sets.  

In a similar work, by El-Bardini and El-Nagar (2011), a different direct adaptive interval 

type-2 fuzzy controller was developed. The proposed scheme was applied to a 

multivariable anaesthesia system to handle the uncertainty introduced by the varied 

physiological parameters within the bodies of patients, which differ from one person to 

another. Simulation results revealed that the proposed scheme provided good robustness 

when applied to different multivariable anaesthesia models (muscle relaxation and blood 

pressure). Furthermore, it was observed that the proposed direct adaptive interval type-2 

fuzzy controller outperformed the traditional type-1 fuzzy controller for both muscle 

relaxation and blood pressure in terms of fast and accurate set-point tracking and smoother 

control efforts. 

In a similar work, by Doctor et al. (2016), interval and general type-2 SOFLC schemes 

were developed for the automatic control of anaesthesia during surgical procedures. The 

biomedical system was modelled using a fuzzy basis function network (FBFN), while a 

relative gain array of the system was used to handle the effects of interactions. Two 

orthogonal fuzzy control engines were used to construct the developed fuzzy controller. 

The control parameters were updated on-line via a horizontal fuzzy control engine in order 

to tune the control parameters and compensate for all the variations within the unknown 

system. The horizontal fuzzy control engine for each system input-output pair was 

provided in the form of a hierarchical structure, whereas the perpendicular fuzzy control 

engine was introduced to deal with interactions between the input and output channels, and 

was designed based on the system relative gain array. The new scheme was tested on two 

simulation problems, where it produced acceptable results, despite the uncertainties of the 

unknown system and the time-varying variables. Simulation results also showed that the 

two proposed type-2 controllers were superior to those of type-1 in terms of producing 

better defined fuzzy rules for set-point tracking and fewer performance errors.  

By controlling the concentration of two drugs, Propofol and Remifentanil, Araujo et al. 

(2014) proposed in another recent work a new automatic method for regulating a 
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Bispectral index (BIS) in the anaesthesia control system. This method involves 

constructing a model describing both the pharmacokinetics and pharmacodynamics of the 

patient using real clinical information. Based on this model, an interval type-2 fuzzy PID 

controller was designed and used to regulate the BIS values. Genetics algorithms were 

used to optimise the proposed controller. The simulation results demonstrated that the 

proposed scheme provided the best performance when compared to a standard linear PID 

controller and a type-1 fuzzy PID controller.  

Cervantes and Castillo (2015) developed a control scheme in the form of a hierarchical 

architecture that combines multiple independent controllers designed to provide accurate 

and efficient control for complex processes. The hierarchical architecture consists of an 

individual fuzzy system and a superior controller responsible for adjusting the global 

performance. Type-2 fuzzy sets were used to implement this controller, which was applied 

to an airplane flight system. In order to increase the complexity of this system, 

disturbances were introduced and noise was increased using a joystick. Simulation results 

proved that the proposed algorithm effectively controlled the complex system and 

demonstrated its superiority over a traditional fuzzy controller.  

In order to control load-frequencies in non-linear power systems, Baydokhty et al. (2015) 

developed a hierarchical type-2 fuzzy controller. This controller was used to overcome the 

complex dynamics of the process as well as suppress external disturbances with a 

minimum number of generated fuzzy rules to keep the computational burden low. The 

parameters of the controller were optimised by the Cuckoo Optimisation Algorithm 

(COA), which further enhanced its capabilities. The proposed algorithm produced 

promising results when applied to a two-area power system. It outperformed other 

traditional controllers, and succeeded in effectively handling the existing uncertainties 

within the process, as well as improving the overall performance of the system.  

In another work, by Li et al. (2009), a type-2 fuzzy logic controller based on the Single-

Input-Rule-Modules (SIRMs) for controlling non-linear multivariable systems was 

proposed. In order to tune the parameters and enhance the performance of the proposed 

algorithm, genetic algorithms were used. The controller was applied to a translational 

oscillation with a rational proof-mass actuator (TORA). Results revealed the effectiveness 

of the new algorithm in different environments, including normal, disturbance existing and 

parameter varying circumstances. Furthermore, it was also observed from the simulations 
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that the difficulty of designing a fuzzy controller for the complex MIMO TORA system 

was widely alleviated by incorporating the SIRM, and that the SIMRs-based fuzzy 

controller was easier to design and understand.  

With the assistance of a hierarchical, fair, competition-based genetic algorithm (HFCGA), 

W.-D.Kim et al. ( 2010) developed a type-2 fuzzy cascade controller for the regulation of a 

ball and beam system. The cascade controller was formed by outer and inner controllers. 

The HFCGA, which represents a parallel genetic algorithm, was used to tune the 

parameters of the controller, and it was selected because of its ability to avoid premature 

convergence. In a comparative study with a traditional PD cascade controller optimised by 

a serial genetic algorithm, the proposed scheme produced promising results and 

outperformed the latter scheme in terms of its effectiveness.    

Martinez et al. (2009) proposed a type-2 fuzzy controller to regulate a mathematical model 

representing a unicycle mobile robot set to move around a certain desired path. GA was 

used to find the optimal values for the parameters of the fuzzy controller, and also to 

optimise the constants of the trajectory tracking. Stabilising control laws were also 

designed for the system using a backstopping approach. Both the kinematics and the 

dynamics of the autonomous mobile robot were taken into account when designing the 

controller. Computer simulations showed that the proposed scheme provided good tracking 

performance in relation to different navigation problems.  

Liu (2013) used three different types of multivariable SOFLC schemes – type-1, interval 

type-2 and zSlice general type-2 – as a basis for the regulation of anaesthesia. Rule-

extraction methods were used, based on the importance of fuzzy control rules in terms of 

how many times they were repeatedly generated by the controller. These extracted rules 

were then applied to drive the type-2 SOFLC (interval and zSlice) to control muscle 

relaxation. Computer simulations demonstrated that the adopted rule extraction method 

equipped with the deployment of interval type-2 and zSlice general type-2 sets enabled the 

proposed multivariable SOFLC scheme to produce better results than those of 

multivariable type-1 SOFLC schemes. 
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6.3 Particle Swarm Optimisation of Multivariable Fuzzy Systems  

Generally speaking, the output of fuzzy systems is highly non-linear, and this makes using 

traditional linear optimisation methods to tune such systems a challenging task. Particle 

swarm optimisation (PSO) has shown itself to be a very powerful optimisation method. It 

has the capacity to search for solutions within larger solution spaces than any other 

optimisation method. It therefore represents a better tool for optimising fuzzy logic 

controllers. The performance of multivariable fuzzy logic schemes depends on their fuzzy 

control rules and membership functions, and the compensators needed for reducing the 

effects of interactions. Hence, adjusting these parameters according to the process to be 

controlled is vitally important.  

There have been various contributions, reported in the literature, of PSO algorithms 

optimising multivariable fuzzy controllers. These works have shown that PSO algorithms 

have led to relative successes in a wide range of applications when used within fuzzy 

control architectures.  

Shayeghi et al. (2008) proposed a particle-swarm-optimisation-based, multi-stage fuzzy 

(PSOMSF) controller as a solution to the load frequency control (LFC) problem in power 

systems. In this scheme, the multi-stage fuzzy controller had two rule-bases, and the 

control law was tuned on-line. In order to achieve the desired level of robust performance 

with reasonably low control effort, the PSO algorithm was used to accurately generate and 

tune the membership functions. This structure combined the advantages of the PSO with 

the flexibility of a fuzzy controller to build a controller with a simple structure and robust 

performance. When tested on three-area restructured power systems, in three completely 

different environments, the PSOMSF algorithm produced satisfactory results, 

outperforming another generic algorithm-based, multi-stage fuzzy algorithm.  

In a different paper, by Hou et al. (2011), particle swarm optimisation was incorporated 

within a fuzzy-gain-scheduling, proportional-integral controller designed for a multi-area, 

interconnected, automatic-generation control (AGC) system. The PSO algorithm was used 

to optimise the parameters of the proposed fuzzy controller to achieve a global optimum. A 

new control law, based on area control error (ACE), was adopted, which took into account 

both the inadvertent interchange accumulation and time error. It was observed from the 

computer simulations that the PSO system enhanced the performance of the proposed 
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controller in terms of providing optimal solutions for all the parameters it optimised. In a 

comparative study with a conventional PI and a fuzzy logic controller, the proposed 

algorithm demonstrated its superiority in terms of making the output effectively track the 

set-point, shortening settling time and reducing overshoot.  

In order to tune the parameters of a fuzzy logic controller developed for a Delta robot 

trajectory control, Lu and Liu (2015) proposed a PSO algorithm with dynamic parameters. 

These dynamic parameters improved the performance of the PSO algorithm in a global 

search and enabled it to converge faster. The new PSO algorithm used the time-weighted-

squared-error (ITSE) as a fitness function to optimise the parameters of the controller. 

When applied as a basis for controlling a non-linear DELTA robot trajectory, simulation 

results showed that the proposed controller exhibited some robustness when compared 

with a PSO-based PID controller. It was also concluded that using the PSO algorithm to 

tune the controller was simpler and more efficient than using the traditional trial and error 

methods.  

By combining a dynamic-switching-based fuzzy controller and spectral method, Ren et al. 

(2013) developed control architecture for the control of non-linear, disturbed parameter 

systems (DPSs). Analytical models of the dynamic-switching-based fuzzy controller were 

used to design the scaling factor of the controller, and also to assess the stability of the 

control system. A PSO algorithm was used in this scheme to improve the control 

performance by effectively tuning the scaling parameters. Furthermore, the Lyapunov 

stability theory was used in combination with the analytical models to analyse the stability 

of the proposed control in different environments. The proposed scheme was applied to a 

non-linear rod catalytic reaction process. Simulation results demonstrated the effectiveness 

of the controller, and showed that its performance in different environments was better 

than that of a traditional multivariable fuzzy logic controller.  

Ali et al. (2015) proposed a new, multi-objective predictive controller architecture 

designed to control a non-linear multivariable process. This architecture was constructed 

using a new, constrained multi-objective PSO algorithm to optimise a Sugeno fuzzy 

modelling system, which was used to predict the performance of the non-linear process. By 

solving constrained multi-objective optimisation problems, a PSO algorithm was used to 

tune the controller to enable it to introduce suitable control inputs into the system. The 
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simulation results that were obtained when the new scheme was applied to the multi-inputs 

multi-outputs quadruple-tank process proved that it had a promising performance.  

In a different contribution, by Cheng (2010), a two-stage learning approach combining a 

PSO-based fuzzy controller with Q-learning fuzzy inference system (QFIS) algorithm was 

proposed. As the name implies, the PSO was used to tune the parameters of the fuzzy logic 

controller according to the process to be controlled. Whereas the QFIS algorithm was 

utilised as a local optimiser, the gradient descent approach was used in the QFIS algorithm 

to speed-up the convergence to a global minimum. The developed approach was applied to 

mobile robots in a pursuit/evasion game. The new controller showed a fast learning 

capability, and succeeded in using the environment in which it operated to generate control 

actions that produced desirable results.  

6.4 Multivariable Type-2 SOFLC-DSL Algorithm   

In this section, both the interval and zSlice type-2 fuzzy sets proposed to replace the type-1 

fuzzy sets which were used in the decoupled controller considered in the previous chapter 

are examined. This introduction of type-2 fuzzy sets is carried-out when the proposed 

decoupled architecture is used with both the switching mode compensators and RGA 

compensators.  

Figure 6.1 shows the general architecture of a decoupled control system using a predefined 

RGA matrix. The structure is identical to the one described in Chapter 5, with the 

expectation that the antecedents and consequents of the different SOFLC algorithms would 

use either interval or zSlice type-2 fuzzy sets. 

Due to its simplicity and efficiency, the enhanced interactive algorithm with the stop 

condition (EIASC) (Wu and Nie, 2001) is used in all the simulations in this chapter.  

6.5 Experiments and Results 

Similar to the previous chapter, a two-input two-output drug process was used to 

investigate the performance of the proposed decoupled control systems. For drug dynamics 

processes, the main control task is to generate an adequate amount of SNP and DOP so that 

both the cardiac output and mean arterial pressure are maintained at a steady level, with 
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less overshoot or downshoot from the set-point levels. The model of the drug dynamic 

process is represented here as follows:  
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  Here, the same configuration used in the previous chapter is adopted again, giving 
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Figure 6.1: Decoupled system using RGA compensators (Lu and Mahfouf, 2006). 

 

Four different SOFLC algorithms were applied as the dominant controllers for each control 

loop of the multivariable scheme, which are:  

 Interval Type-2 SOFLC-DSL algorithm with a switching mode compensator  

 zSlice Type-2 SOFLC-DSL algorithm with a switching mode compensator 

 Type-1 SOFLC-DSL algorithm with a switching mode compensator 

 Type-1 SOFLC algorithm with a switching mode compensator 
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The system responses under these four algorithms are shown in Figures 6.2  6.5. The 

simulation results prove that the first three controllers successfully maintained both the CO 

and MAP at the desired levels in the three stages of the surgical procedure, with short 

rising time and minimal overshoot. However, poor performance was observed when the 

type-1 SOFLC algorithm with a switching mode compensator was used, especially in the 

first and third regions of the surgical procedure. Furthermore, one can also note that the 

former three controllers produced similar results, even though it is apparent that those 

which included type-2 fuzzy sets (interval and zSlice) still produced slightly better results 

in certain regions in terms of having better tracking abilities. Also, as observed in Chapter 

4, it remains difficult to differentiate between the controllers that use interval and zSlice 

type-2 fuzzy sets, as they both produced similarly satisfactory responses.    

6.5.1 Robustness of the proposed scheme to varying scaling factors 

In this section, the simulation results excluded the type-1 SOFLC algorithm, as it was 

outperformed by the other three algorithms in all cases. The performance of the other three 

algorithms on the surgical simulation was assessed based on their ability to maintain the 

desired set points over the duration of the simulation, with less sensitivity to the 

configuration of scaling factors. Figures 6.6  6.8 provide a comparison of the system 

performance under 30% variations of GE, GC and GT for both CO and MAP. 

It can be concluded that the type-2 SOFLC-DSL algorithms were able to stabilise quickly, 

and were successful in making the controlled variables effectively reach the desired set-

points in the three regions of the surgical simulation. Moreover, it can be seen that both the 

interval and zSlice SOFLC-DSL algorithms outperformed the type-1 SOFLC-DSL 

algorithm, even though it is obvious that the latter controller managed to produce a 

satisfactory performance. Furthermore, one can observe that the latter scheme required 

more control effort in terms of producing more fluctuating drug inputs than those of the 

type-2 controllers.  

6.5.2 Robustness of the proposed scheme to varying system dynamics 

In this section, the robustness of the system is evaluated by varying the parameters 

(               ) by different percentages with respect to the original model described in 
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6.1. The corresponding responses of the decoupled multivariable controller are shown in 

Figures 6.9   6.13. 

Similar to the conclusions observed in the previous section, the SOFLC-DSL algorithms 

equipped with type-2 fuzzy sets produced better responses than the other schemes. They 

also succeeded in producing good multivariable control performance in keeping the desired 

target levels for both CO and MAP during the three stages of the surgical procedure. 

Furthermore, it is worth noting that superior performance was achieved, with more stable 

and smoother drug inputs.  

Figure 6.13 shows a comparison of an interval type-2 SOFLC with a switching mode 

linguistic compensator, and a zSlice type-2 SOFLC with a RGA-based scalar compensator. 

It can be seen that, even though these controllers were equipped with type-2 fuzzy sets, 

they still performed poorly in certain regions, especially in the case of the latter scheme. 

This is clearly due to the fixed performance index tables they both use, which made it hard 

for these controllers to effectively provide the desired corrective values for the lower-level 

fuzzy logic rule-base. 

6.5.3 Robustness of the proposed scheme to additive noise  

The signal strength of the mean arterial pressure (MAP) and the cardiac output (CO) can be 

very small when measured. This can be a result of the used high frequency surgical 

equipment. In order to test the robustness of the proposed algorithms and their ability to 

produce good performances and maintain the desired set-points over the entire simulation 

in the stochastic cases, three different scenarios with values of 5%, 9% and 13% white 

noise were considered.  

The simulation results are shown in Figures 5.14   5.16. One can clearly see how type-2 

SOFLC-DSL outperformed the type-1 SOFLC-DSL in terms set-point tracking and control 

action smoothness. It is obvious that the latter scheme failed, in certain regions, to make 

both the CO and MAP track the desired levels, and that it also fluctuated more than the 

former two algorithms. The type-2 fuzzy sets provided a better mechanism for the SOFLC-

DSL algorithms to measure the noise. Also, the dynamic supervisory layer enabled the 

algorithm to effectively modify the performance index table based on the dynamics of the 

system under control, and to relate the modifications introduced by the performance index 

to the changes of the output of the controllers.   
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It is still very difficult to use these simulations to compare the performances of the interval 

and zSlice type-2 SOFLC-DSL algorithms, as they both provided satisfactory results.  

6.5.4 Robustness to the compensator design  

As stated in the previous chapter, the switching mode linguistic strategy depends on the 

steady-state gains estimation. It is therefore vitally important to evaluate the effectiveness 

and robustness of such a strategy even with an inaccurate estimation of steady-state gains. 

In this case, another four different scenarios of estimation were considered.    

 

 Scenario 1:                
 
,                

  

 Scenario 2:                
 
,                

 
 

 Scenario 3:                 
 
,                

 
 

 Scenario 4:        ,         

The simulation results shown in Figures 5.17   5.20 reveal that the proposed decoupled 

controllers still provided acceptable performance in the four scenarios. This demonstrates 

that the strategy still coped effectively even when the steady-state gain estimation was 

inaccurate.  
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Figure 6.2: System response using the interval type-2 SOFLC-DSL algorithm with a 

switching mode compensator. 
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Figure 6.3: System response using the zSlice Type-2 SOFLC-DSL algorithm with a 

switching mode compensator. 
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 Figure 6.4: System response using type-1 SOFLC-DSL algorithm with a switching mode 

compensator. 
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Figure 6.5: System response using the Type-1 SOFLC algorithm with a switching mode 

compensator. 
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Figure 6.6: System response using various SOFLC algorithms under 30% variations of GE 

for CO and MAP. 

(A): zSlice type-2 SOFLC-DSL with switching mode linguistic compensator 

(B): Interval type-2 SOFLC-DSL with switching mode linguistic compensator 

(C): Type-1 SOFLC-DSL with switching mode linguistic compensator 
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Figure 6.7: System response using various SOFLC algorithms under 30% variations of GC 

for CO and MAP. 

      (A): zSlice type-2 SOFLC-DSL with switching mode linguistic compensator 

     (B): Interval type-2 SOFLC-DSL with switching mode linguistic compensator 

     (C): Type-1 SOFLC-DSL with switching mode linguistic compensator 
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Figure 6.8: System response using various SOFLC algorithms under 30% variations of GT 

for CO and MAP. 

      (A): zSlice type-2 SOFLC-DSL with switching mode linguistic compensator 

      (B): Interval type-2 SOFLC-DSL with switching mode linguistic compensator 

      (C): Type-1 SOFLC-DSL with switching mode linguistic compensator 
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Figure 6.9: System response using various SOFLC algorithms under 4% variations of 

system parameters. 

(A): zSlice type-2 SOFLC-DSL with switching mode linguistic compensator 

(B): Interval type-2 SOFLC-DSL with switching mode linguistic compensator 

(C): Type-1 SOFLC-DSL with switching mode linguistic compensator 
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Figure 6.10: System response using various SOFLC algorithms under 7% variations of 

system parameters.  

     (A): zSlice type-2 SOFLC-DSL with switching mode linguistic compensator 

     (B): Interval type-2 SOFLC-DSL with switching mode linguistic compensator 

     (C): Type-1 SOFLC-DSL with switching mode linguistic compensator 
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6.11: System response using various SOFLC algorithms under 12% variations of system 

parameters.  

         (A): zSlice type-2 SOFLC-DSL with switching mode linguistic compensator 

         (B): Interval type-2 SOFLC-DSL with switching mode linguistic compensator 

         (C): Type-1 SOFLC-DSL with switching mode linguistic compensator 
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Figure 6.12: System response using various SOFLC algorithms under 15% variations of 

system parameters. 

         (A): zSlice type-2 SOFLC-DSL with switching mode linguistic compensator 

         (B): Interval type-2 SOFLC-DSL with switching mode linguistic compensator 

         (C): Type-1 SOFLC-DSL with switching mode linguistic compensator 
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Figure 6.13: System response using two SOFLC algorithms under 15% variations of 

system parameters.  

         (A): Interval type-2 SOFLC with switching mode linguistic compensator 

         (B): zSlice type-2 SOFLC with RGA-based scalar compensator 
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6.14: System response using various SOFLC algorithms under 5% noise.   

         (A): zSlice type-2 SOFLC-DSL with switching mode linguistic compensator 

         (B): Interval type-2 SOFLC-DSL with switching mode linguistic compensator 

         (C): Type-1 SOFLC-DSL with switching mode linguistic compensator 
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6.16: System response using various SOFLC algorithms under 9% noise.   

         (A): zSlice type-2 SOFLC-DSL with switching mode linguistic compensator 

         (B): Interval type-2 SOFLC-DSL with switching mode linguistic compensator 

         (C): Type-1 SOFLC-DSL with switching mode linguistic compensator 
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6.16: System response using various SOFLC algorithms under 13% noise.   

         (A): zSlice type-2 SOFLC-DSL with switching mode linguistic compensator 

         (B): Interval type-2 SOFLC-DSL with switching mode linguistic compensator 

         (C): Type-1 SOFLC-DSL with switching mode linguistic compensator 
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Figure 6.17: System response using two SOFLC algorithms:                
 
,       

         
 
. 

         (A): zSlice type-2 SOFLC-DSL with switching mode linguistic compensator 

         (B): zSlice type-2 SOFLC-DSL with RGA-based scalar compensator 
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Figure 6.18: System response using two SOFLC algorithms with:                
 
, 

               
   

         (A): zSlice type-2 SOFLC-DSL with switching mode linguistic compensator 

         (B): zSlice type-2 SOFLC-DSL with RGA-based scalar compensator 
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Figure 6.19: System response using two SOFLC algorithms with:                 
 
, 

               
 
. 

         (A): zSlice type-2 SOFLC-DSL with switching mode linguistic compensator 

         (B): zSlice type-2 SOFLC-DSL with RGA-based scalar compensator 
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Figure 6.20: System response using two SOFLC algorithms with:        ,          

         (A): zSlice type-2 SOFLC-DSL with switching mode linguistic compensator 

         (B): zSlice type-2 SOFLC-DSL with RGA-based scalar compensator 
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6.6 Summary  

The performance of the proposed multivariable control systems that use different SOFLC-

DSL algorithms as dominating controllers for each control loop were further enhanced in 

this chapter. This was carried-out by replacing the type-1 fuzzy sets that these controllers 

use with interval and zSlice type-2 fuzzy sets.  

The chapter started with a review of different applications in which type-2 fuzzy sets were 

used to enhance the performance of multivariable fuzzy logic control systems. A further 

review was provided to show how the particle swarm optimisation algorithms were used to 

tune multivariable fuzzy control systems. Multivariable decoupled controllers that use both 

interval and zSlice type-2 SOFLC-DSL algorithms were then introduced and applied to the 

automatic control of a two-input two-output drug dynamic process. The switching mode 

linguistic strategy described in the previous chapter was also used to deal with the 

interactions between the different control channels. 

These controllers were tested in different simulation tasks, including scaling factor 

changes, model parameter variations, inaccurate design structures and noisy environments. 

These two decoupled controllers were compared with other schemes that use the standard 

SOFLC and type-1 SOFLC-DSL algorithms. 

Some of the conclusions that can be drawn from this particular study include: 

 The simulation results proved the merits of including type-2 SOFLC-DSL 

algorithms when controlling the drug process to maintain physiological target 

points for both CO and MAP, especially in noisy environments, in comparison to 

type-1 SOFLC schemes.  

 In contrast to their type-1 counterpart, both interval and zSlice SOFLC-DSL 

algorithms provided smoother control actions, especially in areas around the 

steady-state regions.  

 The simulation results obtained in this chapter support the suggestions made by 

Karnik et al. (1999), that interval type-2 fuzzy systems are generally more adaptive 

than type-1 fuzzy systems in terms of their ability to handle more complex input-

output relationships. The different simulations clearly show that the interval type-2 

SOFLC-DSL were able to adaptively control the outputs of the drug process by 

effectively regulating the delivery of the SNP and DOP. 
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 It was also observed that the zSlice type-2 SOFLC-DSL algorithms provided the 

best performance in various experiments. However, it was also obvious that, in 

other cases, the interval type-2 SOFLC-DSL algorithms demonstrated their 

superiority. A further investigation into the number of zSlices used to construct the 

zSlice general type-2 fuzzy sets might lead to better results.    

Figures 6.21 and 6.22 show a box plot that compares four controllers applied 15 times in 

different environments, and where the IAE was recorded for both CO and MAP. The best 

performance is denoted by the lower limit of the plot, while the upper limit corresponds to 

the worst performance, and the mean performance is represented by the line in between.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.21:  The box plot of the four controllers for CO. 

       System 1: Type-1 SOFLC with switching mode linguistic compensator 

       System 2: Type-1 SOFLC-DSL with switching mode linguistic compensator 

       System 3: Interval Type-2 SOFLC-DSL with switching mode linguistic compensator 

       System 4: zSlice Type-2 SOFLC-DSL with switching mode linguistic compensator 
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Figure 6.22:  The box plot of the four controllers for MAP. 

     System 1: Type-1 SOFLC with switching mode linguistic compensator 

     System 2: Type-1 SOFLC-DSL with switching mode linguistic compensator 

     System 3: Interval Type-2 SOFLC-DSL with switching mode linguistic compensator 

     System 4: zSlice Type-2 SOFLC-DSL with switching mode linguistic compensator 

 

It is also worth noting that the multivariable controllers that use both the interval and 

zSlice type-2 SOFLC-DSL algorithms to regulate the control loops outperformed the other 

two algorithms. However, it is also apparent that the former two algorithms produced very 

similar results, even though the zSlice SOFLC-DSL algorithm is still slightly superior in 

some simulations. Moreover, it can also be observed that the best IAE for a type-1 SOFLC 

is still greater than the mean IAE values of the interval and zSlice type-2 SOFLC-DSL 

algorithms.   
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Chapter 7 – Conclusions and Future 

Work 

 

 

 

 

 

 

 

7.1 Conclusions  

The work conducted and presented in this thesis is mainly concerned with the development 

of new Self-Organising Fuzzy Logic Control (SOFLC) algorithms that can effectively 

control non-linear, time-varying and mathematically ill-defined systems. The standard 

SOFLC scheme is a hierarchical algorithm which consists of a conventional fuzzy logic 

controller and self-organising mechanism that monitors the performance of the process 

under control, and corrects any deviation from the set-point issues by continuously 

modifying the control rules of the fuzzy controller. 

In the newly proposed SOFLC schemes proposed in this thesis, an on-line Particle Swarm 

Optimisation (PSO) algorithm, combined with the idea of credit assignment and fitness 

estimation, were used to optimise the consequent parts of the performance index (PI) table 

on-line. Interval and general type-2 fuzzy logic systems were used, as well as a type-1 

fuzzy logic system.  
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These SOFLC algorithms were applied to biomedical systems in the form of a muscle 

relaxant model in the single-variable case, and a     drug dynamic process in the 

multivariable case. The performance of these systems was measured in terms of the 

capacity of the proposed controllers to maintain the desired set-points over the duration of 

the simulation, and their sensitivity to scaling factors, sudden disturbances, structural 

design and noisy environments.  

It has been highlighted that, most applications which involve the use of SOFLC algorithms 

rely on a priori system information and use a fixed performance index table. This restricts 

the abilities of the controller to effectively monitor and issue the corrective actions 

required for each process. This issue was solved with the introduction of a dynamic 

supervisory layer that has the ability to modify its structure based on the feedback received 

from the process to be controlled. This enriched the capabilities of the SOFLC algorithm in 

various ways, including the following.  

 The proposed self-organising Fuzzy Logic Control with a dynamic supervisory 

layer (SOFLC-DSL) starts with an empty performance index table, unlike the 

standard SOFLC scheme. The on-line PSO algorithm has kept modifying the PI 

table at every sampling instance during the whole simulation. This has led to better 

set-point tracking properties, and also has made the lower-level fuzzy logic 

controller rely on fewer fuzzy rules. This is vitally important in terms of 

simplifying the complexity of the controllers and reducing the computational costs, 

a characteristic that is crucial for successful implementation of the controller in 

real-time.    

 The simulation results also have shown the superiority of the SOFLC-DSL 

algorithms in terms of producing a faster response with a reduced control effort, in 

comparison with the standard SOFLC scheme with a fixed performance index 

table. This is, once again, a result of the capacity of the on-line PSO algorithm to 

use the feedback signals obtained from the system to effectively tune the 

consequence parts of the PI table. Furthermore, the flexibility of the PI table in 

terms of not being restricted to a certain range of values helped the controller 

provide reasonable control effort, without, of course, compromising on the speed of 

the response.  
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 The proposed SOFLC-DSL algorithms have produced satisfactory performance 

even when non-optimally designed scaling factors were used for the error, change 

of error, and output of the controller. To further test the applicability of the 

proposed algorithm for working with a wide range of processes without the need 

for re-tuning, it was applied to different muscle relaxant models. In all the 

simulations, the controller succeeded in producing good performance with minimal 

errors in terms of desired trajectory and smooth control signals. Similarly, good 

results were obtained when a sudden disturbance was introduced.  All these 

simulations verified the merits of the supervisory layer, and demonstrated how it 

enabled the design structure of the controller to be more flexible and effective. 

As stated above, the SOFLC-DSL algorithm depends on the feedback signals obtained 

from the process used to generate the suitable correction values needed by the lower-level 

fuzzy logic controller. However, when these feedback signals are corrupted with noise, the 

SOFLC-DSL algorithm should fail to accurately evaluate the performance of the process, 

and therefore should also fail to produce sufficient control signals. In order to overcome 

this issue and allow the controller to work effectively in stochastic environments, a third-

order polynomial filter with a window of 20 samples was used. This approach enabled the 

SOFLC-DSL algorithm to use a function that best represents the tracking tendency with 

the most appropriate shape.  

Simulation results demonstrated the robustness of the controller in the stochastic case. 

However, it was also observed that as the level of the noise increased, the controller started 

to find it difficult to maintain the desired set-point with smooth control effort. In order to 

improve the control performance in such conditions and environment, the interval and 

zSlice type-2 fuzzy sets were introduced.  

Type-2 SOFLC-DSL algorithms were applied to the same model in controlling anaesthesia 

delivery so as to maintain physiological target level for muscle relaxation during a three-

stage surgical procedure. Similar to their type-1 counterpart, the proposed interval and 

type-2 SOFLC-DSL algorithms were tested in different environments and under different 

conditions. In addition, their performances were compared to type-1 SOFLC and type-1 

SOFLC-DSL schemes. In normal circumstances, computer simulations showed that type-1 

and type-2 SOFLC-DSL algorithms produced satisfactory results, and that they all 

outperformed the type-1 SOFLC scheme in terms maintaining the desired set-points, with 
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faster rising time and reduced overshoots and undershoots. However, as the levels of 

uncertainty increased in the form of varying the scaling factors and the parameters of the 

dynamic model as well as introducing noise, it was apparent that those controllers provided 

with type-2 fuzzy sets outperformed their type-1 counterparts (both SOFLC and SOFLC-

DSL algorithms). In the light of these, the following remarks should be noted:  

 Type-2 fuzzy sets enabled the SOFLC-DSL to effectively handle uncertainty and 

produce better tracking performance than those of type-1. This superior 

performance was achieved with a smooth control effort. Conversely, the control 

actions of the type-1 schemes produced fluctuating control singles in certain areas, 

especially when the levels of uncertainty were high. Fluctuating drug delivery can 

pose risk to patients. 

 It was noticed that type-1 and type-2 SOFLC-DSL generated few control rules to 

make the controlled variables reach the set points.  

 Type-1 SOFLC-DSL algorithms tended to perform reasonably well in various 

environments. However, as the levels of noise increased, the controller failed to 

maintain the controlled variable at the desired level. Moreover, the control actions 

provided by the controller fluctuated more in certain regions, particularly when the 

controlled variable shifted from one set-point stage to another. This was, obviously, 

due to the failure of type-1 fuzzy sets to fully capture the noise surrounding the 

process in this environment. Therefore, the system was unable to provide an 

accurate assessment of the status of the output.  

 The results in all the simulations of this chapter, especially in the stochastic case, 

showed that performances of interval type-2 and zSlice type-2 SOFLC-DSL 

algorithms were very similar, and that it was difficult to prove that zSlice type-2 

fuzzy systems, regarded as forms of a general type-2 system, produced better 

results than those of interval type-2 fuzzy systems. This could be for two main 

reasons. First, the levels of uncertainty surrounding the environment experienced in 

this thesis might not have been high enough, to the point where zSlice type-2 fuzzy 

sets could produce better results. Second, the number of zSlices representing the 

resolution of the zSlice type-2 fuzzy set might not have been high enough. Wanger 

and Hagras (2010) describe how the ability of zSlice type-2 fuzzy sets to handle 

high levels of uncertainty depends on the number of zSlices of which these fuzzy 
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sets are formed. Therefore, suitable considerations of the number of zSlices used 

could lead to significant improvements of the controller.   

After successful results were obtained in the single-variable case, the proposed type-1 and 

type-2 SOFLC-DSL algorithms were extended to the multivariable case. It has been 

highlighted that, decoupled control of multivariable systems has become an effective tool 

for handling the challenges that multivariable systems normally experience, such as rule 

explosion in relation to the increase in the dimensionality of the input space. The success 

of decoupled controllers in regulating multivariable systems depends on their ability to 

handle the interaction between the input-output control channels. Two main approaches 

were used to reduce the effects of the interaction in this thesis, the first of which was the 

relative gain arrays (RGA) compensator, which is heavily used in the literature. The 

second approach was the switching mode linguistic compensator, which not only handled 

the interaction but also used the feedback obtained from the system to improve 

performance and reduce the tracking errors.  

Simulation results show how the switching mode linguistic compensator, coupled with the 

dynamic supervisory layer, enabled the SOFLC algorithms to produce satisfactory results 

in various environments in terms of making the controlled variables reach the set-point 

values, shortening settling time and reducing overshoot. It was also obvious that the 

decoupled control system with the switching strategy outperformed the decouple control 

system with the RGA matrix.  

As noticed in previous chapters, as the levels of noise increased, type-1 SOFLC-DSL 

algorithms provided less satisfactory performance, with less smooth control actions than 

those of type-2 SOFLC-DSL algorithms, especially in noise-containment environments. 

However, type-1 SOFLC-DSL algorithms still managed to show good robustness under 

sub-optimum scaling factors, varying system dynamics, and inaccurate estimate of the 

relative steady-state gains. This was purely due to the on-line learning ability of these 

algorithms. The standard SOFLC scheme with a fixed performance index table, as in the 

single-variable case, provided the poorest performance among all controllers.  
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7.2 Future Work 

This thesis has presented new SOFLC algorithms using type-1 and type-2 fuzzy systems. 

Although several contributions were made and various questions were answered, there are 

still some areas in which the proposed controllers can be further investigated for potential 

in improvement in performance. Some of the recommendations for future work include: 

 Enhancing the capabilities of the SOFLC-DSL algorithms using other bio-inspired 

optimisation algorithms, such as ant colony optimisation, which is widely used to 

search for optimal or nearly optimal solutions and has been successfully applied in 

many research and application areas. Ant colony optimisation has been proved to 

produce better results and to have faster convergence properties than other 

algorithms. These features can be beneficial to the development of the dynamic 

supervisory layer and the improvement of the performance of the SOFLC-DSL 

algorithms. Future work should consider the replacement of the PSO algorithm 

with the ant colony optimisation algorithm. 

 In order to further explore the capabilities of zSlice type-2 fuzzy systems, real 

patient data need to be considered to construct the zSlices and investigate if this 

leads to any improvement in the control performance of the zSlice type-2 SOFLC-

DSL algorithms, to tackle higher levels of uncertainty. Moreover, in this thesis, 

only five zSlices were used to construct the fuzzy sets involved in all the 

simulations. Increasing the number of slices should allow the fuzzy sets to have 

better flexibility to measure uncertainty, and therefore outperform the interval type-

2 SOFLC-DSL algorithms.  

 All the type-1 and type-2 SOFLC-DSL algorithms proposed in this thesis were 

applied to biomedical systems. Future work should look at applying the controllers 

to other industrial applications. Furthermore, the computational cost of the 

developed dynamic supervisory layer is low, making the proposed algorithm 

sufficient for practical implementation. Therefore, applying these controllers to 

real-world, practical systems and in real-time should also be considered in the 

future.  

 The on-line learning mechanism of the proposed controllers proved to be effective 

in terms of modifying the rule-base of the lower level fuzzy logic controller on-line. 
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However, there are other available techniques that can be easily employed to 

further accelerate the learning speed when the controller has limited access to the 

information of the systems. Some of these approaches include meta-learning, which 

is a promising field in the area of machine learning. Meta-learning refers to the use 

of experience to increase the efficiency of the learning system and make the 

learning process more adjustable, based on the performance of the task under 

control or study. Meta-learning approaches that „learn how to learn‟ and guide the 

selection of learning models have been used in various domains, including 

computational intelligence, statistics and intelligent systems. Moreover, learning 

and improving the control performance of systems from data can sometimes require 

pre-processing steps, such as selecting appropriate information and choosing 

suitable methods for classification. Meta-learning approaches can help create 

optimal models by reusing past experiences from the analysis of other applications 

or problems, reducing the reliance of system on priori design knowledge and 

improving performance based on these experiences. Meta-learning represents a 

promising approaching for improving the on-line learning capabilities of the 

SOFLC-DSL algorithms.  

The above approaches and techniques can extend the study of the SOFLC-DSL algorithms 

and pave the way for future opportunities in this exciting area of research, with the ultimate 

goal of improving the control performance and the self-learning abilities of the proposed 

algorithms to make them suitable for more diverse applications.   
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