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Chapter I 

Introduction 

 

Image classification has always been an attractive research direction in computer vision, since 

it is closely related to many interesting applications such as identifying an image on the web. 

The image content could be a certain type of human action, a kind of object, or a scene. The 

computer understands the query images in the desired way and classifies them into different 

categories automatically. Following the development of this field, we have introduced a novel 

image classification scheme that takes the advantages of visual saliency. 

 

1.1. Nearest-Neighbour Classifiers 

Every year quite a few approaches are invented for image classification. Generally, these 

classifiers are either parametric or non-parametric. Common parametric methods include the 

support vector machine (SVM), decision trees, boosting, and neural networks. They learn the 

model parameters from annotated training data. Non-parametric methods process information 

without the procedure of learning. Therefore, normally they are simpler than the learning-based 

classifiers with slightly degraded performance. But the value of non-parametric approaches has 

always been underrated. 

Nearest-Neighbours is among the non-parametric classifiers. Typically, the classification 

procedure consists of four steps: feature detection, feature extraction or image representation, 

image distance calculation, and classification based on the distance (similarity). Boiman et al. 
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[1] apply image-to-class (I2C) distances instead of image-to-image (I2I) distances since they 

claim image descriptor quantisation and I2I distance computation can affect the performance 

of Nearest-Neighbour based classifiers. Hence the Naive-Bayes Nearest-Neighbour (NBNN) 

was proposed. They show that the NBNN method can estimate the optimal classification based 

on the naive Bayes hypothesis. Annotated images are only employed as references and no prior 

learning or training is required, which is similar to the original Nearest-Neighbour classifiers. 

The I2C distances specify the similarities between an input image and the classes formed by 

the images with a same label. Although very simple in concept, NBNN ranks among the leading 

methods in term of its performance. 

Following [1], Tuytelaars et al. [2] have improved the original NBNN by incorporating 

a kernel that concatenates the I2C distances from all the classes. The kernel, which is a vector, 

can be employed to train a SVM classifier. Because the kernels preserve more discriminative 

feature-level information, when used with SVM they produce better results than the original 

NBNN does. Besides Tuytelaars et al. [2], Bechmo et al. [3] and Wang et al. [4] have their 

own works towards the optimal NBNN. Bechmo et al. [3] commence their investigation from 

the hypothesis of NBNN. NBNN simplifies the class estimation problem by assuming that the 

probability of each class-dependent feature can be approximated by the Parzen kernel, which 

is mostly a Gaussian distribution and class-independent. Bechmo et al. [3] set the parameters 

such as the bandwidth and the normalisation factor of the kernel different for the features in 

different classes. The parameters are learned using hinge-loss optimisation from the training 

data. Wang et al. [4] combine a learned Mahalanobis metric with the I2C distance. The class-

specific metric defines a large margin, which is optimised by the gradient descent method, to 

separate the corresponding I2C distance of the expected class from the participation of other 

classes discriminatively. Although [2-4] inherit the merits from NBNN, they are essentially 



 

3 
 

learning-based parametric classifiers. Because prior training is necessary, their frameworks are 

also more complex. 

Inspired by [5, 6], McCann and Lowe [7] have proposed another non-parametric Nearest-

Neighbour based classification method, named local NBNN. Without calculating I2C distance 

to every class, local NBNN finds the most relevant classes inside the whole image set for the 

features and computes the I2C distance in the local neighbourhood. This algorithm narrows the 

searching space and as a consequence the classification procedure is speeded up. McCann and 

Lowe claim that local NBNN outperforms NBNN and NBNN kernel with a fine-tuned area of 

searching, given the fact that only the categories inside a local neighbourhood make the most 

significant and reliable contribution to the posterior probability under the Bayes assumption. 

Limiting feature comparison to local neighbourhoods for a query descriptor ignores the distant 

categories which are less meaningful. 

 

1.2. Motivations and Contributions 

Though NBNN and local NBNN have displayed their potentials in image classification, 

they have their weaknesses. For example, NBNN and local NBNN use all the local features 

identically. But apparently, some of these features carry more valuable information. In some 

cases, irrelevant features can disrupt the I2C distance and errors are brought in. For instance, 

the background features such as patches representing grass or sky from a cricket-playing image 

and the horse-riding images can be similar. As a result, the I2C are not sufficiently separated 

enough to make them distinguishable from each other, especially when the reference images 

in the same category have a large intra-class variability. On the other hand, the background is 

not useless. After all, images from one category usually share similar context. For example, 
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croquet is always played on grass. This common character can make croquet-playing images 

identical. 

Based on the above-mentioned reasons, we start to investigate the feasibility of treating 

different regions of an image in I2C computation separately. Naturally, humans often focus on 

somewhere that attracts them most in an image. They spend more time observing that part than 

anywhere else. The things in a scene that are capable of drawing the attention of people are 

defined as the salient part. Hence, we choose the visually salient areas as the foreground while 

the remaining regions are considered to be the background with contextual content. 

Saliency arises from the contrasts between the object and its neighbourhood. Inspired by 

the various saliency detection methods, we manage to divide the images into foreground and 

background. With the identified regions of object and context, we have built unique efficient 

context-aware (or saliency-aware) Nearest-Neighbour classifiers that calculate I2C distances 

for different isolated regions respectively. Our contributions can be concluded as: firstly, we 

use a saliency detector to recognise the features from the object and the context; secondly, we 

calculate I2C distances for the object and the context instead of treating all the features as a 

whole; thirdly, we have developed a voting scheme for the outcomes indicated by the multiple 

I2C distances, which is able to correct the misleading results and thus brings an enhancement 

in accuracy; finally, we accelerate the classifier by setting anchor points, which are generated 

through clustering within a class, to replace the massive features involved in the I2C distance 

computation in original NBNN and local NBNN. With the benefit from the above solutions, 

our approach costs significantly less time but is superior to the original NBNN and local NBNN 

in image classification. 

 

1.3. Image Datasets 
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There are many public datasets in the computer vision field. In order to demonstrate the 

applicability, we test our method on three datasets that contain images with different attributes. 

In this section, we will describe some basic information of these datasets, such as scales, image 

resolutions, and colour depth. 

 

Fig. 1.1: Pami-09 datasets 

 

1.3.1. Pami-09 

The datasets (Fig. 1.1) include six sports classes and are originally published by Gupta 

et al. [8] in their research of human-object interactions. The six categories are cricket-bowling, 

cricket-batting, croquet, tennis-forehand, tennis-serve, and volleyball-smash, with 50 images 
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each. As indicated by Gupta et al. [8], the classification task can be very challenging because 

the actions have limited inter-class variations. The similar poses and the scenes in the images 

can bring significant confusion. The images are in 24-bit colour depth PNG format. Resolutions 

vary from 250×150 to 2560×1920. 

 

Fig. 1.2: Caltech-5 datasets 

 

1.3.2. Caltech-5 

Here we use the initial edition of the Caltech Vision Lab object categorisation datasets 

(Fig. 1.2), which were built and expanded to Caltech-101 by Fei-Fei et al. [9, 10]. We combine 

the car rears 2001 with the car rears 1999 as they are considered to be the same object. Thus, 

the datasets contain 5 categories: car rears, motorcycles, airplanes, faces, and tree leaves. The 

number of images belonging to each category varies from 186 to 1074. All images are in 24-
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bit colour JPG format. The sizes of leaf and face images are 896×592. The car rear images have 

two sizes: 360×240 and 896×592. The airplane and motorbike images vary from 200×113 to 

1000×699. 

 

1.3.3. 15-Scene 

15 natural scenes, including places such as bedroom, living room, kitchen, office, store, 

industry and so on (Fig. 1.3) [11-13]. Each scene category has at least 200 images and there 

are 4485 images in total. The images are in 8-bit greyscale JPG format. The resolutions of the 

pictures taken from MIT are 256×256 while other sets vary from 240×200 to 509×220. 

 

Fig. 1.3: 15-Scene datasets 

 

1.4. Thesis Outline 

We first introduce the motivations, the datasets, and the related background knowledge 

of image classifications in general in this chapter. In the following chapter, we will illustrate 

the algorithms of NBNN and local NBNN, which pave the way to our framework. In Chapter 
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III, we have discussed the mainstream saliency models proposed in different periods in terms 

of their principles. Moreover, we have described how we select the model and make it 

applicable to our method. In Chapter IV, the details of our framework are explained. We have 

also presented some discoveries that have enhanced our method to another level. In Chapter V, 

we show the performance of our method against NBNN and local NBNN. In the final chapter, 

we give our conclusions and possible future research directions. 
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Chapter II 

Nearest Neighbour Classification Based on Naive 

Bayes Assumption 

 

2.1. Naive Bayes Nearest Neighbour 

Boiman et al. [1] have introduced the NBNN classifier, based on the claim that feature 

quantisation can degrade the performance. Many learning based classifiers use dimensionality 

reduction or codebooks [14, 15] to generate compact image representation. This avoids huge 

computational load and possible overfitting but also sacrifices the most discriminative features. 

Usually, simple features such as edges and corners that can be largely found in the datasets are 

preserved better while infrequent features can have big errors under the designed quantisation 

framework. 

According to [1], I2I is efficient due to intra-class variability under some cases. However, 

features from an image can find their counterpart more easily when the features from a category 

are put together. As a result, they compute I2C. Only a few labelled images are required and 

no prior learning is needed. Despite being conceptually simple, NBNN can compete with the 

state-of-the-art classifiers. 

Assume 𝑑1, … , 𝑑𝑛 are the extracted local image descriptors (features) from a test image, 

NBNN finds a class 𝐶 that minimises 

 ∑ ‖𝑑𝑖 − 𝑁𝑁𝐶(𝑑𝑖)‖
2𝑛

𝑖=1  (2.1) 



 

10 
 

where 𝑁𝑁𝐶(𝑑𝑖) denotes the Nearest Neighbour descriptor that has a minimum distance 

to 𝑑𝑖 in class 𝐶. Given a query image 𝑄, using the maximum a posteriori (MAP) model which 

minimises the error, the estimation can be decided by 

 𝐶̂ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑃(𝐶|𝑄) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑃(𝑄|𝐶) (2.2) 

𝐶̂ is the estimated label. When the prior 𝑃(𝐶) is uniform, based on Bayes theory, this has 

become a maximum-likelihood (ML) problem. In a naive Bayes case, each local descriptor 𝑑𝑖 

is independent, 𝑃(𝑄|𝐶) can be formulated as the product of 𝑃(𝑑𝑖|𝐶): 

 𝑃(𝑄|𝐶) = ∏ 𝑃(𝑑𝑖|𝐶)
𝑛
𝑖=1  (2.3) 

Introducing the log probability, it is modified to: 

 𝐶̂ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐 log∏ 𝑃(𝑑𝑖|𝐶)
𝑛
𝑖=1 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐 ∑ log𝑃(𝑑𝑖|𝐶)

𝑛
𝑖=1  (2.4) 

𝑃(𝑑𝑖|𝐶) can be expressed by the Parzen kernel, which is typically a Gaussian function, 

and for NBNN only the nearest neighbour is considered: 

 𝑃̂(𝑑𝑖|𝐶) =
1

𝐿
∑ 𝐾(𝑑𝑖 − 𝑑𝑗

𝑐)𝐿
𝑗=1 = 𝐾(𝑑𝑖 − 𝑁𝑁𝐶(𝑑𝑖)) = exp⁡(−

‖𝑑𝑖−𝑁𝑁𝐶(𝑑𝑖)‖
2

2𝜎2
) (2.5) 

𝐾 represents the kernel function and 𝐿 is the number of descriptors in a class. Thus, the 

ultimate estimation can be written as: 

 𝐶̂ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐 ∑ log 𝑒
−
‖𝑑𝑖−𝑁𝑁𝐶(𝑑𝑖)‖

2

2𝜎2𝑛
𝑖=1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑐(∑ ‖𝑑𝑖 − 𝑁𝑁𝐶(𝑑𝑖)‖

2𝑛
𝑖=1 ) (2.6) 

Above all, the NBNN image classifier can be summarised in Algorithm 1. 

Algorithm 1 NBNN 

 

 Require: descriptors of reference images with class label 𝑐 

 Input: local image descriptors 𝑑1, … , 𝑑𝑛 of a test image 𝐼 
  

for all descriptors 𝑑𝑖 ∈ 𝐼 do 
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  for all classes 𝐶 do 

   find the nearest neighbour of 𝑑𝑖 in 𝐶: 𝑁𝑁𝐶(𝑑𝑖) 
   do ∑ ‖𝑑𝑖 − 𝑁𝑁𝐶(𝑑𝑖)‖

2𝑛
𝑖=1  

  end for 

 end for 

  

Output: 𝐶̂ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑐 ∑ ‖𝑑𝑖 − 𝑁𝑁𝐶(𝑑𝑖)‖
2𝑛

𝑖=1  

 

2.2. Local Naive Bayes Nearest Neighbour 

McCann and Lowe [7] have developed NBNN by restricting the feature searching space 

to a much smaller local neighbourhood that determines the posterior probability estimation. 

The neighbourhood only consists of a part of all categories. Their theory has been justified by 

proving the deduction of log-odds update. 

Let 𝐶 stand for some classes and 𝐶̅ for all others. 𝑄 is a query image. Assuming all the 

local features are independent from each other, based on Bayes rule the odds (𝑂) of class 𝐶 can 

be expressed as 

 𝑂𝐶 =
𝑃(𝐶|𝑄)

𝑃(𝐶̅|𝑄)
=

𝑃(𝑄|𝐶)𝑃(𝐶)

𝑃(𝑄|𝐶̅)𝑃(𝐶̅)
= ∏

𝑃(𝑑𝑖|𝐶)𝑃(𝐶)

𝑃(𝑑𝑖|𝐶̅)𝑃(𝐶̅)

𝑛
𝑖=1  (2.7) 

Taking the log probability equation (2.7) becomes 

 log⁡(𝑂𝐶) = ∑ log
𝑃(𝑑𝑖|𝐶)

𝑃(𝑑𝑖|𝐶̅)
+ log

𝑃(𝐶)

𝑃(𝐶̅)

𝑁
𝑖=1  (2.8) 

By applying Bayes rule again, equation (2.8) can be written as 

 log⁡(𝑂𝐶) = ∑ log
𝑃(𝐶|𝑑𝑖)𝑃(𝐶̅)

𝑃(𝐶̅|𝑑𝑖)𝑃(𝐶)
+ log

𝑃(𝐶)

𝑃(𝐶̅)

𝑁
𝑖=1  (2.9) 

The prior odds are 
𝑃(𝐶)

𝑃(𝐶̅)
, the update is determined by the posterior odds 

𝑃(𝐶|𝑑𝑖)

𝑃(𝐶̅|𝑑𝑖̅̅ ̅)
. When the 

posterior odds are greater than the prior odds, the increment is positive. If the posterior odds 

are smaller, the increment is negative. Based on the assumption that the class priors are equal, 

the classification procedure can be simplified as 
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 𝐶̂ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐(∑ log
𝑃(𝐶|𝑑𝑖)𝑃(𝐶̅)

𝑃(𝐶̅|𝑑𝑖)𝑃(𝐶)
)𝑁

𝑖=1  (2.10) 

The above formulation clarifies the role the increment is playing. It proves that only the 

remarkable update affects. The steps of local NBNN is given below. 

Algorithm 2 Local NBNN 

 

 Require: descriptors of reference images with class label 𝑐 

 Input: local descriptors 𝑑1, … , 𝑑𝑛 of a test image 𝐼, number of nearest neighbours 𝑘 

  

for all descriptors 𝑑𝑖 ∈ 𝐼 do 

  Find 𝑝1, … , 𝑝𝑘+1 nearest neighbours of 𝑑𝑖: 𝑁𝑁𝐶(𝑑𝑖) 
  for all the 𝑘 classes 𝐶 having one of 𝑝1, … , 𝑝𝑘 do 

   ∑ ‖𝑑𝑖 − 𝑁𝑁𝐶(𝑑𝑖)‖
2𝑛

𝑖=1  

  end for 

 end for 

  

Output: 𝐶̂ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑐 ∑ ‖𝑑𝑖 −𝑁𝑁𝐶(𝑑𝑖)‖
2𝑛

𝑖=1  

 

Besides 𝑘 nearest neighbours, one more search continues for the background, which can 

be considered as an upper bound. These distances will not affect label estimation. Hence the 

classification results are independent of this additional searching. 

 

2.3. Summary 

In this chapter, we have reviewed two simple but effective unsupervised (non-parametric) 

nearest neighbour classifier called NBNN and local NBNN. The images are represented locally 

using Bag-of-Words (BoW) model, without the procedure of putting them into codebooks. In 

other words, the model is loaded with a collection of local features. The sequences or the spatial 

relationships between those features will not be considered. In the next chapter, we will discuss 

the feasibility of dividing the bag into “smaller bags” using saliency detectors. 
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Chapter III 

Saliency Detection 

 

3.1. Classification of Saliency Detectors 

Visual Saliency has been actively explored during the last 30 years. According to Borji 

and Itti [16], the available detection approaches can be divided into two modes: the bottom-up 

and the top-down models. Bottom-up models directly make use of the information encoded in 

scene characteristics. As addressed by Borji and Itti [16], the bottom-up methods are usually 

faster and more straightforward than the top-down methods, while top-down models are driven 

by the cognitive information, including targets and expectations. Therefore, their performances 

rely heavily on prior knowledge (even require training). However, in our framework, we want 

the approach to be non-parametric, which requires us to concentrate on the effectiveness of the 

bottom-up detectors only. 

 

3.2. Bottom-up Saliency Detectors 

Itti et al. [17] have proposed one of the earliest visual attention models. They filter the 

input image to nine spatial scales using the dyadic Gaussian pyramids [18] and apply a series 

of “centre-surround” analyses to three feature channels, the orientation, the intensity, and the 

colour channel, separately. Though this method has established a standard for the follow-ups, 

its performance relies heavily on the types of its feature maps. 
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Harel et al. [19] have proposed another early invention, the Graph-Based Visual Saliency 

(GBVS) model. Similar to [17], this method extracts maps from several feature channels at 

different image scales. Based on the feature vectors at different locations, the method uses a 

Markov approach to form an activation map, whose nodes are fully connected with a graph. As 

demonstrated in [19], GBVS provides more accurate predictions on human fixations than the 

previous methods as it is biologically plausible. Moreover, it is able to be reformed to a multi-

resolution counterpart and thus more promising outcome can be potentially achieved. 

Sometimes the computation of visual saliency can be rather simple. Hou and Zhang [20] 

have developed a model based on Spectral Residual (SRS). The method has no reliance on 

prior knowledge such as features and category labels, owing to the fact that a number of natural 

images share a similar part in frequency domain (spectrum) statistically. From the point of view 

of information theory, in the frequency domain, the common part, which is redundant, can be 

subtracted. The remaining part, which carries the discriminative information of each individual 

image, can be employed to draw the saliency map followed by a Gaussian filtering process for 

the purpose of visualisation. This method requires limited computational resource so it runs 

very efficiently. 

In recent years, this field has been consistently developed. Tavakoli et al. [21] have 

proposed another centre-surround method named Fast & Efficient Saliency (FES), which uses 

sparse sampling and kernel density estimation to obtain the saliency map under the Bayesian 

rule. Hou et al. [22] introduce a sparse foreground detector by defining a simple but powerful 

image descriptor called Image Signature (IS). Murray et al. [23] base their method on colour 

appearance and centre-surround windows, whose sizes are determined by a Gaussian Mixture 

Model with training data. This Saliency by Induction Mechanisms (SIM) method decomposes 

the images into multiple scales and integrates the scaled images by wavelet and inverse wavelet 

transforms respectively. 
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Vikram et al. [24] have proposed another centre-surround model (RCSS). This model 

computes saliency in terms of intensity differences of the pixels in a number of sub-windows, 

whose sizes and positions are decided by a discrete uniform probability distribution function 

in three channels at the original scale of the Gaussian filtered image, followed with a saliency 

map fusion. A usage of window-sliding technique can be also found in the Conditional Random 

Filed model (CRF) [25]. 

Different from the above-mentioned models, the techniques Saliency Detection by Self-

Resemblance (SDSR) [26] and Region Covariance-based Visual Saliency (CovSal) [27] use 

non-linear features, instead of the ordinary linear features such as a Gabor filter. They claim 

non-linear features and their integration can preserve local structures better. 

Riche et al. [28] have proposed another bottom-up detector, which observes a mechanism 

defined as rarity (RARE-2012) in various channels with multiple images scales. This method 

is developed from their previous designs in 2007 (RARE-2007) [29] and 2011 (RARE-2011) 

[30]. RARE-2007 only considers colour information. The orientation is ignored. RARE-2011 

uses Gabor filter. RARE-2012 improves RARE-2011 by introducing parallel and serial features 

extraction. 

 

3.3. Bottom-up Methods with Top-down Prior 

Apart from the above-mentioned pure bottom-up methods, there are many detectors that 

combine the bottom-up concept with top-down prior. For instance, Bruce and Tsotsos [31] have 

introduced a visual attention detector based on information maximisation (AIM). Their method 

estimates the saliency probability distribution through observing the correspondences between 

a number of small local image patches and a set of basis coefficients representing the patches 

from the natural images database, determined by independent component analysis (ICA) [32]. 
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Thus, it requires a large sampling from available natural scenes, which results in a reliance on 

the database. 

Zhang et al. [33] have proposed another saliency model using natural statistics (SUN), 

which is similar to [31]. On the other hand, besides the local image information, the top-down 

knowledge, which is an object location prior independent from the features, is incorporated in 

their approach based on a Bayesian framework. The difference of Gaussian (DoG) and ICA-

derived descriptors have been employed. They claim SUN can outperform or at least compete 

with the most influential techniques at that time and its features can be developed to a higher 

level to further release the potential of SUN. 

Other models that incorporate top-down knowledge include [34-35]. Torralba et al. [34] 

have proposed a contextual guidance model that makes use of both local and global features. 

The local features identify the spatial locations while the global features, which could be used 

for the scene recognition, indicate the expected positions holistically. The two pathways work 

independently in parallel. Besides the low-level features that have been applied in the existing 

models [17, 34-37], Judd et al. [38] proposed a more advanced technique based on machine 

learning using mid-level gist features [14], high-level face [39] and human detectors [40], and 

a centre prior, based on the assumptions about what kinds of objects and how they appear in 

natural images, respectively. Since SVMs are involved, this detector needs a number of training 

data. Another example that combines different levels of features and the visually psychological 

rules has been presented in [41]. 

 

3.4. Saliency Detector Selection 

We have briefly described a number of mainstream saliency detectors proposed in the 

recent years. Essentially, we are looking for an unsupervised image classification framework. 
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Saliency detectors incorporating any learned priors or top-down assumptions, such as [16, 19, 

20-21, 30], will be excluded since their performance can be dependent on the training dataset. 

Generally, existing bottom-up models are simpler, and they can offer enough discrimination in 

finding salient regions. 

We have compared seven saliency detectors, including SRS [20], FES [21], IS with LAB 

and RGB [22] channels, RCSS [24], CRF [25], SDSR [26], and RARE-2012 [28]. The saliency 

maps of an image from Pami-09 [8] produced by different detectors are shown in Fig. 3.1. We 

decide to choose SDSR [26] as our detector because it brings decent local image structures due 

to its non-linear feature combination property, instead of focusing on a few points or going into 

details. Though the detectors have multiple parameters to define, we assume the default settings 

are proper as claimed by most authors. Furthermore, SDSR is robust to data uncertainty [26]. 

We want our method to be applicable to various types of image datasets. 

 

Fig. 3.1: Saliency maps generated via different models: by setting a threshold we can separate the foreground and 

background easily using SDSR, without breaking the original structures. 
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There are many criteria for comparing these saliency detectors such as Kullback-Leibler 

(KL) divergence, normalised scanpath saliency (NSS), string editing distance, area under curve 

(AUC), linear correlation coefficient (CC), and visually subjective scores [16]. However, these 

measurements only evaluate saliency detectors in one aspect, such as probability distribution, 

signal detection metric, or statistical relationship. 

 

3.5. Self-resemblance Saliency Detection 

As mentioned above, this model shows great performance in preserving local structures. 

For instance, it indicates the salient region without breaking the object into isolated pieces or 

greater pixels. In other words, if the foreground and the background cannot be separated from 

each other effectively, the I2C distances between the object features or the contextual features 

will not have significant variations, since these features are still in a mixture of foreground and 

background. 

Different from correlation methods, SDSR finds dissimilarities between a pixel and its 

neighbourhood, based on the non-linear local regression kernels. The kernels that encode the 

dissimilarity are estimated in a non-parametric way. 

Similar to other models, for each pixel 𝒙𝑖 in an image, if it is salient is formulated by 

 𝑡𝑖 = {
1⁡⁡⁡if⁡𝒙𝑖⁡is⁡salient
0⁡⁡⁡otherwise

 (3.1) 

where  𝑡𝑖 denotes the saliency of 𝒙𝑖 = (𝑥𝑖, 𝑦𝑖), 𝑖 = 1, … ,𝑀, 𝑀 is the number of pixels. 

According to Seo and Milanfar [26], the saliency of SDSR at pixel 𝒙𝑖 = (𝑥𝑖 , 𝑦𝑖) is a posterior 

probability: 

 𝑠𝑖 = 𝑃(𝑦𝑖 = 1|𝑭𝑖) (3.2) 
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where 𝑭𝑖 = [𝒇𝑖
1, … , 𝒇𝑖

𝐿] is the feature matrix that includes a number of feature vectors at 

pixel 𝒙𝑖, 𝐿 is the number of vectors inside a specified window. Generally, employing multiple 

features performs better than using a single vector. Let 𝑭 = [𝑭1, … , 𝑭𝑁] denote the collection 

of the centre feature matrices surrounding 𝒙𝑖, 𝑁 is the number of pixels in a neighbourhood. 

Based on Bayes rule, equation (3.2) can be expressed as 

 𝑠𝑖 = 𝑃(𝑡𝑖 = 1|𝑭) =
𝑝(𝑭|𝑡𝑖=1)𝑃(𝑡𝑖=1)

𝑝(𝑭)
 (3.3) 

𝑃(𝑡𝑖 = 1) is assumed to be equal for all the pixels and 𝑝(𝑭) is uniform, finding 𝑠𝑖 is to 

estimate the conditional probability density 𝑝(𝑭|𝑡𝑖 = 1). 

 

3.5.1. Local Regression Kernel 

In order to better capture the local data structure, local steering kernels (LSKs) [42] are 

used as image features. The kernel is modelled as 

 𝐾(𝒙𝑙 − 𝒙𝑖) =
√det⁡(𝑪𝑙)

ℎ2
exp⁡(

(𝒙𝑙−𝒙𝑖)
𝑇𝑪𝑙(𝒙𝑙−𝒙𝑖)

−2ℎ2
) (3.4) 

where 𝑙 = 1,… , 𝑃 shows the size of the kernel sampling region, ℎ is a global smoothing 

parameter. For 2D LSKs, the covariance matrix 𝑪𝑙 can be derived using the matrix 𝑱𝑙: 

 𝑱𝑙 = [
𝑧𝑥(𝒙1)

⋮
𝑧𝑦(𝒙1)

⋮
𝑧𝑥(𝒙𝑃) 𝑧𝑦(𝒙𝑃)

] (3.5) 

where 𝑧𝑥  and 𝑧𝑦  are the first derivatives along 𝑥 and 𝑦 axes. Let (𝑞1, 𝑞2) and (𝒗1, 𝒗2) 

stand for the singular values and singular vectors given by the singular value decomposition 

(SVD) [42] of  

 𝑱𝑙 = 𝑼𝑙𝑺𝑙𝑽𝑙
𝑇 = 𝑼𝑙𝑑𝑖𝑎𝑔[𝑞1, 𝑞2]𝑙[𝒗1, 𝒗2]𝑙

𝑇
 (3.6) 
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Then a robust estimate of 𝑪𝑙 can be written as 

 𝑪𝑙 = 𝛾∑ 𝑎𝑖
2𝒗𝒊𝒗𝒊

𝑻2
𝑖=1  (3.7) 

with 

 𝑎1 =
𝑞1+𝜆

′

𝑞2+𝜆′
, 𝑎2 =

𝑞2+𝜆
′

𝑞1+𝜆′
, 𝛾 = (

𝑞1𝑞2+𝜆
′′

𝑃
)𝛼 (3.8)  

𝜆′=1 and 𝜆′′=10-7 are the parameters set to depress noise and prevent the denominators 

from being 0, and 𝛼 is set to 0.008 to control 𝛾. 

 

3.5.2. Self-resemblance Saliency 

Before constructing the feature matrix 𝑭𝒊, linear regression kernels are normalised as 

 𝑊𝑖 =
𝐾(𝒙𝑙−𝒙𝑖)

∑ 𝐾(𝒙𝑙−𝒙𝑖)
𝐿
𝑙=1

 (3.9) 

𝑖 = 1,… ,𝑀 are the pixel numbers. As mentioned above, 𝐿 is feature window size, which 

also stands for the number of selected features. For example, if 𝐿 is 3×3, at the pixel 𝒙𝑖, 𝑭𝑖 =

[𝒇𝑖
1, … , 𝒇𝑖

9]. If the larger neighbourhood has 7×7 pixels centred at 𝒙𝑖, 𝑭 = [𝑭1, … , 𝑭49]. 

Using the constructed feature matrices, Seo and Milanfar [26] estimate the saliency in a 

surrounding neighbourhood as: 

 𝑠𝑖 = 𝑝̂(𝑭|𝑡𝑖 = 1) =
𝐺𝑖(𝑭̅𝑖−𝑭̅𝑖)

∑ 𝐺𝑖(𝑭̅𝑖−𝑭̅𝑗)
𝑁
𝑗=1

 (3.10) 

with 

 𝑭̅𝑖 = [
𝒇𝑖
1

‖𝑭𝑖‖𝐹
, … ,

𝒇𝑖
𝐿

‖𝑭𝑖‖𝐹
] (3.11) 



 

21 
 

𝑗 = 1,… ,𝑁, ‖∙‖𝐹 is the Frobenius norm, 𝐺𝑖(∙) is the kernel function. By introducing the 

concept of [43], 

 𝐺𝑖(𝑭̅𝑖 − 𝑭̅𝑗) = exp(
−‖𝑭̅𝑖−𝑭̅𝑗‖𝐹

2

2𝜎2
) = exp⁡(

−1+𝜌(𝑭𝑖,𝑭𝑗)

𝜎2
) (3.12) 

𝜌(𝑭𝑖, 𝑭𝑗) is the matrix cosine similarity [44-46] and can be defined as Frobenius inner 

product, 𝜎 controls the fall-off weight: 

 𝜌(𝑭𝑖, 𝑭𝑗) = 𝑡𝑟𝑎𝑐𝑒(
𝑭𝑖

𝑇𝑭𝑗

||𝑭𝑖||𝐹||𝑭𝑗||𝐹
) (3.13) 

 When dealing with colour images, the detector decomposes the image into 3 channels 

𝑐1, 𝑐2, 𝑐3 (CIE L/a/b or RGB), 𝔽𝑖 = [𝑭𝑖
𝑐1 , 𝑭𝑖

𝑐2 , 𝑭𝑖
𝑐3]. As a result, the saliency map becomes  

 𝑠𝑖 = 𝑝̂(𝔽|𝑡𝑖 = 1) =
1

∑ exp⁡(
−1+𝜌(𝔽𝑖,𝔽𝑗)

𝜎2
)𝑁

𝑗=1

 (3.14) 

 

3.5.3. From Saliency Map to Context Map 

The above saliency detection approach can be concluded as Algorithm 3. 

Algorithm 3 Self-resemblance Saliency Detection 

  

 Input: image 𝐼, size of LSK 𝑃, number of LSKs in the feature matrix for each sampling 

point 𝐿, size of the neighbourhood to compute self-resemblance 𝑁, fall-off weight 𝜎, and 

smoothing parameter ℎ 

  

Step 1: Extract Features 

Compute normalised LSK 𝑊𝑖 and vectorise it to 𝒇𝑖 
 

Step 2: Compute Self-Resemblance Saliency 

for 𝑖 = 1,… ,𝑀 do 

  if 𝐼 is a grey-scale image then 

   identify feature matrices 𝑭𝑖 , 𝑭𝑗 

𝑠𝑖 =
1

∑ exp⁡(
−1 + 𝜌(𝑭𝑖, 𝑭𝑗)

𝜎2 )𝑁
𝑗=1

 

  else identify feature matrices 
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𝑠𝑖 =
1

∑ exp⁡(
−1 + 𝜌(𝔽𝑖, 𝔽𝑗)

𝜎2 )𝑁
𝑗=1

 

  end if 

 end for 

  

Output: saliency maps 𝑠𝑖, 𝑖 = 1,… ,𝑀 

 

The saliency at 𝒙𝑖 can be treated as a weight of the local feature for image classification. 

However, context information is not futile. Therefore, we separate foreground and background 

to make use of them to a better extent. Similar to [20, 22, 23, 25-28, 35], we simply threshold 

saliency maps to derive object maps: 

 𝑜𝑖 = {
1⁡⁡⁡𝑠𝑖 ≥ 𝑡ℎ𝑟
0⁡⁡⁡𝑠𝑖 < 𝑡ℎ𝑟

 (3.15) 

𝑜𝑖  is the object map value at 𝒙𝑖. Conversely, the contextual part or the background can 

be highlighted as 

 𝑏𝑖 = {
1⁡⁡⁡𝑠𝑖 < 𝑡ℎ𝑟
0⁡⁡⁡𝑠𝑖 ≥ 𝑡ℎ𝑟

 (3.16) 

The threshold can be set as a fixed value, however, in some cases, the object map scale 

can be either too large or too small, depending on the map intensities. As a result, the object 

and the context cannot be separately effectively, which can lead to a degradation of the image 

classifier. 

 

3.6. Summary 

In this chapter, we have briefly reviewed the mainstream bottom-up saliency detection 

methods, and illustrated the reasons choosing SDSR in our framework. In the following chapter, 

we will present the detail of our classifier, including the role the saliency detector plays. 
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Chapter IV 

Context-aware I2C Distances 

 

Although the original NBNN and local NBNN have achieved impressive accuracies, selecting 

salient features can further improve their performance. For example, the local features from 

backgrounds of a horse-riding and a cricket-playing image be identical. As a result, the I2C 

distances are not discriminative. Thus, we group the local features into object and context. By 

calculating I2C distances for different groups and category label voting, we have successfully 

enhanced the performance of nearest neighbour based classifiers. 

 

4.1. An Overview 

Using the related and extended works illustrated in the above sections, a unique image 

classification method that incorporates naive Bayes nearest neighbour classifiers with saliency 

detection has been proposed. An overview of the framework is presented as Fig. 4.1. 

Given a few query images and the reference images with class labels, in the beginning 

we generate their saliency maps by detecting self-resemblance. Afterwards, we threshold the 

saliency maps to obtain the desired object and context maps, followed by a multiplication with 

the original images. When the foreground and the background have been specified, we then 

extract local features from each part and compute their I2C distances.  

The images are represented using BoW model. There are nine I2C distance pairs in total 

between the foreground, background and original image, as shown in Fig. 4.1. It is worth noting  
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that a few pairs deteriorate the last decision. For instance, it is pointless to search object features 

in a background bag. As a result, the foreground/background and background/foreground have 

been removed from voting. 

We hope only that the I2C distances which are powerful enough to distinguish relevant 

classes contribute. For the sake of simplifying the system further, we sort the distances based 

on a test using a small number of images, which are selected from the database on a random 

basis. When each I2C gives a different label, we trust the one that shows best performance in 

validation. In all, our framework consists of six critical steps: 

• Draw saliency maps for both reference and query images 

• Identify the object from the original image with produced saliency maps, and the 

remaining sections are the background 

• Represent images using BoW model, by extracting local features from the object 

and the background (context) 

• Compute the I2C distances between segmented regions and the original images 

• Rank the I2C distances and choose validated I2C distances to classify query images 

by NBNN and local NBNN 

• Implement majority voting for the final category label. 

Though the framework seems to be complex and time-consuming, we speed up the whole 

process without degrading its performance. During the following sections, we will describe the 

technical details that have made our approach a success. 

 

4.2. Image Scales for Saliency Detection 

Though most saliency detectors including [26] can draw full-resolution saliency maps, it 

is still necessary to resize the images to an appropriate scale, not only for the computational 



 

26 
 

efficiency, but also for the object segmentation. When the input image has a relatively large 

scale, the saliency detector focuses on edges and corners, while if the image scale is too small, 

the detector has limited power for identifying different regions (see Fig. 4.2). The resizing only 

happens for feature detection and the saliency maps are up-sampled to the original resolution 

for the generation of object and context maps. 

 

Fig. 4.2: The impact of image scale: saliency maps when input image is rescaled to different sizes. 

 

4.3. Feature Extraction 

A single Scale-Invariant Feature Transform (SIFT) [47] is employed. Similar to [48], we 

extract SIFT descriptors in 16×16 patches. The patches are densely sampled from the original 

images on a grid. The patch location is defined as its centre point position 𝒙𝑖. To categorise the 

features into foreground or background, we multiply them with a weight factor, which is either 

1 or 0, assigned by the value of corresponding object map 𝑜𝑖 or context map 𝑏𝑖. 
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4.4. Feature Clustering for I2C Distances 

Despite competitive performance, the computation of I2C distances can be quite time-

consuming. The time complexity of NBNN is 𝑂(𝑐𝑁𝐷𝑁𝐶log⁡(𝑁𝐷𝑁𝑇)) [1]. For local NBNN, the 

complexity becomes 𝑂(𝑐𝑁𝐷log⁡(𝑁𝐶𝑁𝐷𝑁𝑇)) [7]. 𝑁𝑇 is the number of reference images inside 

each category, 𝑁𝐶 is the number of categories, 𝑁𝐷 is the mean number of features per image, 

and 𝑐 denotes the times of comparisons of I2C distances. Normally, 𝑁𝐷 can be hundreds or 

thousands. As a result, the total quantity of features from the reference categories can easily 

increase to millions. In our framework, local NBNN and NBNN will be repeated for object, 

context, and original image. With the purpose of reducing such heavy computational load, we 

commence to investigate the feasibility of representing each class in a more compact but still 

discriminative way for NBNN and local NBNN. 

 

Fig. 4.3: The relationship between the number of anchor points and the classifier performance: the accuracy goes 

up quickly at the beginning, then slackens its pace and stays around the peak when the quantity of anchor points 

remains increasing. 

 

In order to keep this classifier unsupervised, we naturally come up with data clustering. 

Although clustering can be regarded as feature quantisation method and has the potential in 
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reducing the power of current classifiers [1], however, it has never been applied to NBNN and 

local NBNN. With the curiosity in discovering how the clustering may affect the performance 

of NBNN and local NBNN, we use cluster centroids retaining the properties of a category as 

anchor points. We only cluster reference data. The query features stay unquantized. The anchor 

points in the I2C distance calculations will replace the large number of image features. The 

number of anchor points 𝑁𝐴 for each class has to be carefully chosen. Insufficient anchor points 

may affect the precision of I2C distances. On the other hand, if too many anchor points are put 

into use, the optimisation becomes intractable. 

Based on the above reasons, we complete our verification on dataset Pami-09 [8]. For 

each class, the first 20 images are used as reference and the next 20 are used for test. We do k-

means clustering [49] for all the features inside each class and the number of anchor points 𝑁𝐴 

is set to 100 initially, and goes up to 900 with a step of 200. For local NBNN, we choose to 

search four nearest neighbourhoods. As can be seen from Fig. 4.3, the accuracies of NBNN 

and local NBNN grow quickly when 𝑁𝐴 is increasing from 100 to 500. Then their performances 

stay around 66% despite the continuous increment of the number of anchor points. The trend 

has proved that there is no need to employ a large number of centroids inside each category. 

What is more, NBNN and local NBNN can only reach 62.5% and 67.5% without clustering, it 

is demonstrated that by introducing anchor points the performance of the I2C distances will 

not be degraded significantly. For local NBNN, its accuracy drops a little, while NBNN even 

shows better results, with a slight increase of 2%-3%. 

 

4.5. Validation and Label Voting 

A group of images were randomly chosen for the ranking of different I2C distances. For 

each dataset, this process has only to be done for local NBNN and NBNN respectively once. 
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If too many data are involved, the computational time can increase significantly. When the best 

I2C distances (set to 3) have been confirmed, this step does not need to be repeated. Assume 

that we have three responses at hand, if more than two of them give the same class label, then 

the final decision follows. If three labels appear, the one that receives the highest score in the 

validation stage wins. This label voting corrects the mistakes when the features from different 

regions of the images possess similar characteristics in the computation of I2C distances. 

 

4.6. The Algorithm 

Based upon the above illustrations, we can now summarise the proposed context-aware 

nearest neighbour image classification method as Algorithm 4. 

Algorithm 4 Context-aware Image Classification 

 

 Require: reference images 𝑰𝑅 with labels 𝒄𝑅 and validation images 𝑰𝑉 with labels 𝒄𝑉 

 Input: query image 𝑰𝑄, number of nearest searching neighbours 𝑘 for local NBNN 

  

for all classes 𝑐 ∈ 𝒄𝑅 do 

  for all images 𝑰𝑅 ∈ 𝑐 do 

   extract local features 𝒅 

   draw saliency map 𝑠 

   draw object map 𝑜 and context map 𝑏 

   classify 𝒅 → 𝒅𝑜 , 𝒅𝑏 , 𝒅𝐼 

  end for 

  clustering 𝒅𝑜 , 𝒅𝑏 , 𝒅𝑖 → 𝑎𝑛𝑐ℎ𝑜𝑟⁡𝑝𝑜𝑖𝑛𝑡𝑠⁡𝒂𝑜 , 𝒂𝑏 , 𝒂𝑖 
end for 

for all classes 𝑐 ∈ 𝒄𝑉 do 

  for all images 𝑰𝑉 ∈ 𝑐 do 

   extract local features 𝒅′ 
   draw saliency map 𝑠 

   draw object map 𝑜 and context map 𝑏 

   classify 𝒅′ → 𝒅𝑜′, 𝒅𝑏′, 𝒅𝑖′ 
   𝑐̂1=nbnn or local nbnn [𝒅𝑜′, 𝒂𝑜] 

𝑐̂2=nbnn or local nbnn [𝒅𝑜′, 𝒂𝑖] 
𝑐̂3=nbnn or local nbnn [𝒅𝑏′, 𝒂𝑏] 

𝑐̂4=nbnn or local nbnn [𝒅𝑏′, 𝒂𝑖] 
𝑐̂5=nbnn or local nbnn [𝒅𝑖′, 𝒂𝑜] 

𝑐̂6=nbnn or local nbnn [𝒅𝑖′, 𝒂𝑏] 

𝑐̂7=nbnn or local nbnn [𝒅𝑖′, 𝒂𝑖] 
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for j=1:7 

    𝑠𝑐𝑜𝑟𝑒𝑗+= 𝑐̂𝑗&&𝑐 

   end    

  end for   

end for 

sort(𝑠𝑐𝑜𝑟𝑒𝑗)→{𝑙, 𝑚, 𝑛} 

for all images 𝑰𝑄 do 

  extract local features 𝒅′ 
  draw saliency map 𝑠 

  draw object map 𝑜 and context map 𝑏 

  classify 𝒅′ → 𝒅𝑜′, 𝒅𝑏′, 𝒅𝑖′ 
  compute 𝑐̂𝑙 , 𝑐̂𝑚, 𝑐̂𝑛 

  𝑐̂ = mode(𝑐̂𝑙, 𝑐̂𝑚, 𝑐̂𝑛) 
 end for   
 

Output: estimated label 𝑐̂ 

 

𝒅𝑖 and 𝒅𝑖′ stand for the collections of features from the original images. 

 

4.7. Summary 

In this chapter, we have presented our classification scheme with detailed reasoning and 

some techniques that have successfully improved the system efficiency. Under the concept of 

I2C distance, SDSR categorises the words, which are essentially local image features, in the 

bag into different groups including foreground and background. The foreground carries object 

information while the background is the context. After that, we calculate I2C distances between 

those groups separately. Given the class labels estimated from different I2C distances, we vote 

to receive a final decision. In the next chapter, we will show the experimental results to prove 

the superiority of our classifier over the original NBNN and local NBNN. 
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Chapter V 

Experimental Results 

 

We have evaluated our method on 3 datasets, which have been presented in Chapter I. Not only 

the image classification accuracy but also the runtime will be examined. For each database, we 

repeat our method four times. Each time the reference images and the test images are randomly 

selected, which means each repetition gives a different partition of data. For each repetition, 

all methods (NBNN, local NBNN, NBNN and local NBNN based on saliency detection) use 

same reference and test images. Hence, they compete with equal opportunities. SIFT descriptor 

is used throughout the experiment. The PC is equipped with an i5-3470 (3.2 GHz) CPU and 

8GB RAM, with 64-bit Windows 7 OS installed. Time consumption considers the procedure 

of classification only. The runtimes of pre-processing and feature extraction are not counted. 

According to [5], to fully release the potential of local NBNN, the quantity of the nearest 

neighbours in searching must be carefully tuned. The details of the influence of tuning can be 

found in [5]. However, this is not what we want to address so there is no guarantee that local 

NBNN outperforms NBNN each time. In our experiment, k, the number of nearest neighbours, 

is simply set to ⌊
1

2
𝑁𝑐⌋, where 𝑁𝑐 is the number of categories belonging to each dataset. 

 

5.1. Pami-09 

The datasets are introduced by Gupta et al. [8]. Six sports actions include tennis-forehand, 

tennis-serve, volleyball smash, cricket-defensive shot, cricket-bowling and croquet-shot. All 
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the actions images are downloaded from internet except the class croquet-shot. These datasets 

are originally used for the evaluation of image interpretation due to the possession of significant 

confusion.  

Since each class has 50 images, we use 20 of them for reference, 10 for validation, and 

20 for test. The results of all the observations are shown in Table 4.1 and Table 4.2. The average 

confusion matrices of NBNN and local NBNN with or without context awareness are given in 

Table 4.3 to Table 4.6. 

Observation 

(Sample) 

NBNN + saliency NBNN Local NBNN + saliency Local NBNN 

Accuracy Runtime (s) Accuracy  Runtime (s) Accuracy  Runtime (s) Accuracy  Runtime (s) 

# 1 0.692 14.8 0.642 64.9 0.717 18.4 0.70 45.8 

# 2 0.667 10.2 0.658 49.1 0.708 14.0 0.642 40.5 

# 3 0.792 10.4 0.725 43.6 0.80 14.1 0.70 40.4 

# 4 0.642 11.1 0.608 50.1 0.675 14.5 0.650 43.9 

Average 0.698 11.6 0.658 51.9 0.725 15.3 0.673 42.7 

Table 4.1: Results on Pami-09 (1). 

 

 
Table 4.2: Results on Pami-09 (2). 
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Table 4.3: Confusion matrix of NBNN on Pami-09. 

 

 
Table 4.4: Confusion matrix of context-aware NBNN on Pami-09. 
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Table 4.5: Confusion matrix of local NBNN on Pami-09. 

 

 
Table 4.6: Confusion matrix of context-aware local NBNN on Pami-09. 
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As can be seen from Table 4.1, based on saliency detection, the performances of NBNN 

and local NBNN have increased 3% and 5.2% respectively. Meanwhile, the time consumptions 

of NBNN and local NBNN have decreased by 77.6% and 64.2%. Furthermore, based on the 

information from the confusion matrices, the effectiveness on some unimpressive categories 

such as tennis-serve and cricket-batting has been greatly improved (at least 10%). 

  

5.2. Caltech-5 

The datasets used in our experiment are the initial versions that consist of five classes of 

objects: motorcycles, aeroplanes, human faces, cars and tree leaves [9, 10]. Each category has 

at least 186 images. Therefore, we take 50 images per class as reference, 20 for validation, and 

50 for test.  

The results are presented in Table 4.7 and Table 4.8. The average confusion matrices of 

NBNN and local NBNN on Caltech-5 are given in Table 4.9 to Table 4.12. 

Observation 

(Sample) 

NBNN + saliency NBNN Local NBNN + saliency Local NBNN 

Accuracy Runtime (s) Accuracy  Runtime (s) Accuracy  Runtime (s) Accuracy  Runtime (s) 

# 1 0.964 21.8 0.956 217.2 0.972 28.1 0.972 173.6 

# 2 0.952 26.2 0.968 222.3 0.964 31.8 0.960 171.9 

# 3 0.984 20.7 0.972 217.6 0.980 27.1 0.976 174.5 

# 4 0.956 17.5 0.952 195.1 0.964 25.6 0.964 153.8 

Average 0.964 21.6 0.962 213.1 0.970 28.2 0.968 168.5 

Table 4.7: Results on Caltech-5 (1). 

 

Context-aware NBNN and local NBNN outperform original NBNN and local NBNN in 

average, with a minor lead of 0.2%. In other words, one wrongly labelled image by the original 

NBNN or local NBNN has been corrected out of every 500 images. Since the original NBNN 

and local NBNN have already achieved decent performance on this object category database, 
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the improvement is insignificant. However, context-aware classifiers only use 10.1% to 16.7% 

processing time of their counterparts. 

 

 
Table 4.8: Results on Caltech-5 (2). 

 

 
Table 4.9: Confusion matrix of NBNN on Caltech-5. 
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Table 4.10: Confusion matrix of context-aware NBNN on Caltech-5. 

 

 
Table 4.11: Confusion matrix of local NBNN on Caltech-5. 

 



 

38 
 

 
Table 4.12: Confusion matrix of context-aware local NBNN on Caltech-5. 

 

5.3. 15-Scene 

Thirteen of the fifteen classes are provided by [11, 12]. Lazebnik et al. [13] collect two 

other of them. The datasets contain 4485 images in total, with 200 to 400 per class. The images 

are from personal photographs and Google and they are all natural scenes with no artificialities.  

Observation 

(Sample) 

NBNN + saliency NBNN Local NBNN + saliency Local NBNN 

Accuracy Runtime (s) Accuracy  Runtime (s) Accuracy  Runtime (s) Accuracy  Runtime (s) 

# 1 0.666 368.5 0.563 7099.6 0.653 425.4 0.531 6768.8 

# 2 0.674 354.4 0.549 7127.2 0.649 425.5 0.543 6805.4 

# 3 0.675 378.7 0.565 7280.0 0.623 420.4 0.527 6796.8 

# 4 0.643 365.1 0.582 7111.4 0.628 431.6 0.564 6620.0 

Average 0.665 366.7 0.565 7136.5 0.638 425.7 0.541 6747.8 

Table 4.13: Results on 15-Scene (1). 

 

We use 80 items per category as reference images, 40 for validation, and 80 for test. The 

performance of our framework compared to the original methods has been given in Table 4.13 

and Table 4.14. The average confusion matrices of NBNN and local NBNN are listed in Table 

4.15 to Table 4.18. 
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Table 4.14: Results on 15-Scene (2). 

 

 
Table 4.15: Confusion matrix of NBNN on 15-Scene. 
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Table 4.16: Confusion matrix of context-aware NBNN on 15-Scene. 

 

 
Table 4.17: Confusion matrix of local NBNN on 15-Scene. 
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Table 4.18: Confusion matrix of context-aware local NBNN on 15-Scene. 

 

Context-aware approaches show better performance in terms of all samples. On average, 

saliency based NBNN has an advantage of 10% over the original NBNN, while saliency based 

local NBNN is 9.7% ahead of local NBNN. At the same time, context-aware approaches save 

94.9% to 93.7% running time, and are more efficient. More specifically, as can be seen from 

Table 4.15 to Table 4.18, context-aware approaches have enhanced the performance on a few 

classes that may bring confusion to the original NBNN and local NBNN (especially between 

MIT-inside-city and the bottom classes, such as industrial, kitchen, living room, and store). 

 

5.4. Discussion & Summary 

In this chapter, we have presented the performance of our novel approach on three public 

databases: Pami-09, Caltech-5, and 15-Scene. Overall, context-aware NBNN and local NBNN 
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have shown good results. Not only the effectiveness of classification but also the time cost has 

been improved. Specifically, context-aware classifiers lead the original ones on all samples, 

except one of Caltech-5 the context-aware NBNN lost (context-aware local NBNN still wins). 

Meanwhile, the time consumption has been reduced significantly in all cases. By grouping and 

calculating I2C distances between features from object and context separately, we limit feature 

searching in a more likely neighbourhood. This prevents the mistake of matching a foreground 

feature to a similar background feature in another category. Furthermore, there is a chance that 

different objects or human actions can have similar backgrounds when we compute the total 

distances of all the features. I2C may not be distant enough. If both object and context match, 

this gives us the confidence in assigning the two images a same label. If not, the voting scheme 

plays its role.  

Generally, this method brings huge difference in classifying images from a database that 

has more complex context, such as 15-Scene. On other simple database that the original NBNN 

and local NBNN have already proved their efficiency, the enhancement is modest. Also, we 

cannot guarantee that the context-aware local NBNN uses less time than the context-aware 

NBNN when the original local NBNN uses less time than NBNN, even with a proper number 

of nearest searching neighbours selected [7]. This is due to the replacement of features using 

clustering. Further detailed reasons need to be investigated. 

In the final chapter, we will conclude our works and propose possible future research 

directions to make this framework more powerful and more widely applicable. 
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Chapter VI 

Conclusions & Future Work 

 

We have proposed a unique NBNN classifier based on image contextual awareness. Based on 

the BoW model, the original NBNN and local NBNN put all reference features into a bag for 

each category. Then they compute the distances from the features of a test image to those bags, 

which are called I2C distances. In our framework, we further separate those reference features 

within one bag into smaller packs containing object and context respectively, based on saliency 

detection. The tuning and the role that the saliency detection plays have been comprehensively 

discussed. We have also demonstrated that by clustering the data inside each reference class 

the classification procedure can be accelerated. Using the produced anchor points carrying the 

discrimination of a class, the computation of the I2C distances of every single image feature 

has been bypassed. Therefore, the time consumption of NBNN and local NBNN have been 

reduced remarkably. More importantly, owing to the separation of salient regions and image 

context generated by the saliency maps, we have enhanced the performance of both NBNN and 

local NBNN. The class label estimation given by the voting of different regions of an image is 

more robust. This improvement has been verified on three databases: Pami-09, Caltech-5, and 

15-Scene. Generally, the improvement is more significant when the datasets contain complex 

contextual information, such as on 15-Scene. 

Possible future research directions include improving context-aware naive Bayes nearest 

neighbour classifiers by using multiple features, instead of a single SIFT, or finding a linear or 
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non-linear combination of the salient and context image features, which is capable of raising 

the discrimination of I2C distances. 
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