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Abstract

The research work presented on this thesis provides an alternative tool for

characterising oil fields under fluid injection by analysing historical produc-

tion/injection rates. In particular polynomial and radial basis Non Linear

Autoregressive with Exogenous Input Model (NARX) models were devel-

oped; these models were capable of capturing the dynamics of an operating

field in the North Sea.

A Greedy Randomised Adaptive Search Procedure (GRASP) heuristic

optimisation method was applied for estimating a future injection strategy.

This approach is combined with a risk analysis methodology, a popular ap-

proach in financial mathematics. As a result, it is possible to estimate how

likely it is to reach a production goal.

According to the simulations, it is possible to increase oil production

by 10% in one year by implementing a smart injection strategy with low

statistical uncertainty. Resulting from this research project, a computational

tool was developed. It is now possible to estimate NARX models from any

field under fluid injection as well as finding the best future injection scenario.
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Chapter 1

Introduction

1.1 Background

During the last decades, the demand for energy has been continuously rising,

this has been driven by population growth and changes in our modern way

of living. According to studies published by BP’s statistical review of world

energy and the World Energy Council (WEC), fossil fuels are still the main

source of energy accounting for almost 90% of the global demand [1], [2].

The following graph shows the distribution of the main energy sources.
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Figure 1.1: Energy Sources

[1]

It is clear that oil and gas supplies are still the dominant sources. Ac-

counting for approximately 57% of the global demand. There is a trend for

the development of renewable sources but the requirement of oil and gas fuels

is also in growth and it is not likely to change in the near future [2]. It is ex-

pected that oil and gas will still be the main sources of energy for most of the

current century. The previous figures show the importance of the oil and gas

sector worldwide; in some countries, its importance is even more substantial.

The following diagram shows the estimated world energy consumption

forecast by energy source.
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Figure 1.2: World Energy Consumption Forecast

[3]

Oil production can be divided into three different stages. The first one

is known as primary recovery. On this stage oil and gas flow into the surface

naturally by the reservoir’s own initial pressure. Once production from the

primary recovery stage hits its peak, normally water, air, CO2 or nitrogen

are injected into the field in order to maintain an adequate pressure level

and allow oil to keep flowing into the surface. Once this happens the field is

known as a “mature” field, while the artificial pressure lift is known as sec-

ondary recovery. Inevitably after some time even with an artificial pressure

lift, production will decrease. In some fields heat or chemicals are injected

in order to change the oil properties, reducing its viscosity allowing it to

3



flow more easily. This strategy is known as tertiary recovery [4]. During

primary recovery about 10% of the total field reserves can be extracted,

for the secondary recovery up to an extra 30% while the tertiary recovery

adds up to an additional 30%. Normally the tertiary recovery is not exe-

cuted since it involves a considerable investment and high uncertainty [4] [5].

The discovery of new sources of hydrocarbons during the last decades has

not been able to replace the current reserves [6] [7]. According to Alvarado

and colleagues, most of the current oil production (at least 50%) comes from

mature reservoirs; due to the decline of major new field discoveries, the most

likely place to find more oil is the places where it has already been found [6].

Other authors estimate that the proportion of wells producing oil by a

natural flow can be as little as 1 in every 20, meaning that most of the global

production happens by means of an artificial lift procedure. [8]. Additional

recovery methods are known as Enhanced Oil Recovery (EOR). EOR tech-

niques happen during the secondary and tertiary stage of recovery. Injecting

a fluid into an operating field represents an extra cost, but it is estimated

that it is a profitable process when the price per oil barrel is above $20USD.

The oil industry is currently facing a new era where technology has be-

come an essential part of it; due to the development of computational tools

in the last few decades, the advances have been very successful by their in-

corporation [9].
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1.2 Motivation

Being able to predict how production will perform due to different injec-

tion strategies is very important, since the best or optimal decision can be

applied [10]. Normally, two different optimisation strategies are followed,

one for long term production known as reservoir management and one for

the daily operations known as reservoir optimisation [11]. Forecasts in the

reservoir optimisation strategy have to be more accurate than the ones in

reservoir management since immediate actions are required.

Forecasting a possible scenario is feasible by using mathematical models,

which can predict how the system will perform under different conditions.

These predictions must be accurate and fast to obtain, this is where the main

challenges of system identification and reservoir modelling as it is called in

the oil and gas industry come. Current reservoir simulation tools rely on

geological properties and experimental tests, the accuracy of these software

models depends on the quality of the input parameters as well as the experi-

ence of the user [12]. It is a time consuming and demanding process, which

not always provides accurate predictions.

On the last decade, several techniques have been developed for character-

ising reservoirs by using historical production data. The idea is that the flow

on every well is affected by the flow on other wells from the same field. There

are some limitations when characterising a reservoir by only using injection

and production data [13]. The reservoir must be under injection and the

rates must vary. If new wells are opened or transformed (from/to injection

from/to production) their mathematical description becomes challenging, a

5



relatively big amount of data must be available. the resulting model per-

formance and its quality is highly related to the performance of the model.

Even when these limitations exist, it results easier to have computer data

where tests can be performed than making real tests on an oil field, where

costs increase and failures with dangerous consequences are likely to happen.

For example, there is a technique for finding the relation between an in-

jection well and a producer one by injecting a colourful substance into the

reservoir, the amount of colour collected at a production well tells the trace-

ability between a pair of wells. This process does not only represent an extra

investment, but it might take a long period of time before obtaining a result,

years in some cases. It is even possibe that the analysed wells are not related

at all [14].

Belkis and colleagues, performed an experiment using tracer substances

in order to find the inter-well connectivity on an operational field. They

found it normally takes 4 years to get useful results. On the other hand,

tracer recovery rates are around 9%, this complicates the process of finding

the relationship between wells. Simulating the reservoir through a computer

model can predict this behaviour relatively fast since the dynamics of the

system are hidden within its previous input/output rates.

The objective of the research studies introduced on this thesis is to use

system identification techniques for analysing and forecasting injection and

production rates from an operational oil field. This will provide a tool,

which will allow predicting future scenarios and optimising the current in-

jection strategy.

6



The following image describes the faced scenario of a mature reservoir

under injection.

Figure 1.3: Simple Field Under Injection Diagram

From the previous figure, green lines represent drilled wells into the

ground. The arrows pointing down indicate the corresponding well is for

injection while arrows pointing up indicate the well is for production. From

the surface, it results complicated to know how wells are interconnected and

how much fluid must be injected.

Understating ground properties and well interconnectivity not only in-

creases production performance but also helps to avoid potential environ-

mental problems, which should be avoided at all times.

7



1.3 Contributions and Thesis Overview

The development of the research studies shown on this thesis led to significant

and satisfactory results. The main contributions and chapter description are

summarised as follows:

1.3.1 Main Contributions

The developed algorithms provide an alternative to traditional reservoir sim-

ulation methods. The presented methods give an insight into the reservoir’s

properties which is not possible by using existing data based approaches.

According to simulations, the developed tool can significantly improve oil

production performance.

• Polynomial NARX Models for EOR Simulation

The application of NARX models for EOR simulation was customised

and implemented. The models were capable of capturing the dynamics

of an operating field in the North Sea. These models explicitly show

which injection wells are the most significant and how long it takes for

their effects to be observed on production. This is a cross disciplinary

work, making use of system identification algorithms into petroleum

engineering.

• Pruned Multi-Scale Radial Basis Function (MSRBF) NARX

Models for EOR Simulation

In literature MSRBF NARX models have proven to be effective for

system identification. However, the systems on which they have been

tested have a low number of inputs. Dealing with a high number of

inputs has the risk of selecting model terms with low significance on

8



the output which would then lead to poor model performance. In order

to address this problem, a novel methodology on which several models

are estimated by randomly disabling inputs on the system was imple-

mented. A final prediction is estimated by combining the prediction

from simpler models using an ensemble. This approach has proven to

be very effective for EOR simulation where the number of inputs is

normally high.

• Customised Data Handling for EOR Analysis

Historical data coming from an operating field is unique in many as-

pects. Functioning wells are very likely to be closed for some time due

to maintenance or change their role from/to production/injection. This

nature results in a dataset with missing values and abrupt changes. An

oil field is not a system where the user has control on the past input

values. On this thesis, the use of customised methods that deal with

the mentioned challenges is demonstrated, this enables the possibility

of conducting further analysis. An effective methodology is introduced

for finding an appropriate number of iterations when running a Monte

Carlo simulation for risk analysis.

• Risk Analysis Integration with Production Optimisation

The concept of risk and the developed methodology in financial math-

ematics provide an estimation of the likeliness of a certain scenario to

happen. The generated NARX models enable the possibility to see

how diverse operation conditions will affect oil production. A novel

contribution was introduced by designing a future injection strategy

using an heuristic optimisation approach known as GRASP applied on

the NARX models. With this approach, the operating oil company can

9



either chose a production goal and evaluate its feasibility or choose a

feasibility probability and then design a production strategy which is

very likely to be met.

1.3.2 Chapter Description

• Chapter 2: On this chapter, a literature review from the traditional

oil production estimation techniques is presented. An EOR modelling

case study using multi-layer neural networks is shown as a reference

for further comparison.

• Chapter 3: This chapter begins by presenting the Non Linear Autore-

gressive Moving Average with Exogenous Input Model (NARMAX)

philosophy for system identification. The chapter shows how to im-

plement the NARMAX methodology for the estimation of polynomial

NARX models based on injection/production data from an operating

field. A description of how to pre-process data, validate and select the

best model is given. It is shown how to interpret the resulting model

equations and link them to the reservoir’s physical properties. The

problem of characterising EOR production can lead to a high num-

ber of variables which would require high computational power. The

chapter explains how to gradually increase the number of lags and

polynomial degree, this approach leads to feasible model estimation.

• Chapter 4: This chapter begins by presenting MSRBF models. It is

shown why applying the MSRBF NARMAX methodology and esti-

mating the models off the shelf would lead to poor results. The contri-

bution of this chapter is the implementation of a novel pruning method

that randomly disables inputs so that simpler model structures can be
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estimated. The resulting simple models are used together as an en-

semble to produce reliable forecasts. The novel methodology reduces

uncertainty on the predictions while enabling the use of a high number

of system inputs (as required on EOR).

• Chapter 5: This chapter explains the concept of risk and the method-

ology used for analysing it. The originality presented on this chapter

consists in the extension of quantitative and qualitative risk analysis

tools usually implemented in financial mathematics to the developed

NARX models from the previous chapters. The chapter explains how

the results should be interpreted and their impact when forecasting

future scenarios.

• Chapter 6: This chapter begins with a review of the main optimisa-

tion methods placing special attention on heuristic methodologies and

their advantages. The idea is to design a future injection strategy that

would maximise oil production. The contribution of the chapter is

applying a GRASP algorithm for estimating optimal future injection

values. The GRASP optimisation technique is widely used in operation

research but has never been used for the problem of designing future

injection values. The methodology is implemented on the developed

NARX models in conjunction with risk analysis tools from chapter 6.

This integration is very important, it allows the estimation of a real-

istic injection strategy which is very likely to increase oil production.

Without this integration, infeasible solutions would be estimated.

• Chapter 7: This chapter provides conclusions for the thesis as well as

a description of future work ideas.
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Chapter 2

State of the Art in Reservoir

Simulation

Simulation is the ability to obtain a system’s response by using a mathe-

matical description of it (mathematical model). Future input values and

conditions can be tested by using a model without the need to actually im-

plement a physical experiment where undesirable scenarios may occur. The

accuracy and performance of the simulations depend on the quality of the

mathematical model. Since models are only an approximation of the real

system, they will always differ from reality.

Almost since the beginning of the oil production era, being able to esti-

mate how much oil can be extracted from the ground has been an important

matter. Fast approximations were developed for this purpose: material bal-

ance equations, fractional flow curve methods, sweep efficiency estimations

[15],[16]. As reservoirs became more complex and higher precision was re-

quired, these approximations were not longer sufficient to satisfy the indus-
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try’s needs. To do so, complex methods based on physical equations were

developed. The physical principles that describe fluid flow within the reser-

voir are: conservation of mass, isothermal fluid phase behaviour and Darcy

approximation of fluid flow through porous media [17].

In order to implement these methods, computers are required since the

number of equations to be solved is simply too large to be manually executed.

Specific software that integrates these principles has been created by diverse

companies. The software packages are known as reservoir simulators, the list

of the most popular includes: BOAST,CMG, ECLIPSE, Tempest MORE,

ExcSim, Nexus, ResAssure, ReservoirGrail and Merlin [15].

There are some drawbacks about using reservoir simulation software, its

usage requires specific knowledge about the reservoir’s physical properties,

if these parameters are incorrect then the software’s estimates will also be

incorrect. The usage of the software packages is not straight forward and

their licence can be considerably expensive. Most ranging 1 million USD.

With the development of modern computers, it is now possible to anal-

yse data by using complex and iterative algorithms. This is a new approach

which has not fully been explored. These methods known as machine learn-

ing or artificial intelligence have demonstrated their capability for building

models that can replicate a system’s dynamics. Their application in the oil

industry is described as a "technology at an infancy stage" by experts in the

field [8].

In theory, most of modern machine learning algorithms could be applied
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for estimating future oil production by means of water/gas injection. But

the problem of characterising a reservoir is not only about fitting a function

which will track certain values. It is also important to physically understand

why the field is behaving in a certain way, this enables the possibility of

taking the best decisions that will lead to extracting our natural reserves in

the most efficient way.

This is the reason for which specific mathematical models have been

developed for history matching (this is how training models is called in

petroleum engineering), where the model parameters can be linked and in-

terpreted rather than a simple black box prediction model. The reviewed

methods presented on this chapter were developed and adapted specifically

for this purpose.

2.1 Traditional Methods

2.1.1 Analysis of Decline Curves

This method enables the possibility to estimate how oil production will

change over time, it is one of the most popular forecasting methods in the in-

dustry. It was developed in 1945 by J.J Alps, it is based on older techniques

from the beginning of the 20th century, including the work from Arnold and

Anderson (1908), Cutlen (1924), H.N Mash (1928) and Allen (1931) [18].

When the model was first introduced, it was used to assess the oil demand

the war required. At the time more wells had to be opened, the existing pro-

duction wells just could not keep up with the desired production targets any

more. The development of this model sets a historical moment when it was
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first realised that the trend of extracting oil at a high rate would eventu-

ally decay. Before this time, most of the new field discoveries had relatively

steady production values.

Arps found that future production values depended on the previous pro-

duction rates and it was therefore possible to estimate future values by ex-

trapolating the production trend. After analysing data logs from a large

number of wells, it was found that the best results were obtained by using

an exponential function [18] :

P = Atme−Bt (2.1)

Where A is the initial production value, m is the sampling time and B

is the decay rate. To find the equation’s parameters the data records have

to be written on a table, from which the decay rate can be computed as:

B =
∆P

∆t
(2.2)

There are few variants of the method where the decay rate can be re-

cursively re-estimated providing a better approximation. At the time the

method was created, the computation capabilities were limited, so a graphi-

cal implementation was developed as a complementary tool. By plotting the

decline curves in a log scale, the production curves can easily be extrapo-

lated by using a straight line. This approach makes the method very easy

to implement.
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Figure 2.1: Exponential Decline Curve Analysis Example

[18]

The previous figure shows how future production values can be extrap-

olated by using a straight approximation line. The selected points on the

curve are used for estimating the decay rate as presented on Equation 2.2.

The decay rate represents the slope on the extrapolation line. Modern vari-

ants of the decline curve analysis have been developed, for example bootstrap

methodology for estimating different decay curves and then forecasting fu-

ture production by using a final decay rate [19].

As a conclusion, it can be said that the analysis of decline curves pro-

vides a simple but effective approximation for future production values. No

extensive computations are required. However, the method cannot estimate
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what-if scenarios and only considers a decay in production which is not al-

ways the case, for example if the field is under fluid injection, oil production

can remain steady or even increase. Its application for complex scenarios is

therefore very limited.

2.1.2 Material Balance Equation

The material balance equation describes the simplest form of conservation of

mass in a reservoir. The model describes how fluids flow within the reservoir

due to rock properties. The model was first introduced by Schilthuis in 1936

and has had different adaptations since then. According to the U.S Bureau

of Mines, the equation marks the beginning of petroleum engineering as a

discipline [20].

The principle of material conservation is given by the following expres-

sion:

Remaining Fluids = Initial Volume of Fluids− Produced Fluids (2.3)

Reservoir analysis through the material balance equation assumes the

following behaviour of formation volume factors.
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Figure 2.2: Oil, Gas and Water Compressibility Ratios

[21]

These factors show how much oil, gas and water is compressed at a given

pressure, where:

B0 = Reservoir oil volume/Standard oil volume (2.4)

RSO = Solution gas-oil ratio, vol gas/vol oil (2.5)

Bg = Reservoir gas volume/Standard gas volume (2.6)

Bw = Reservoir volume of water/Standard water volume (2.7)

P = Bottom Hole Pressure (2.8)

The model provides an estimation of the reservoir as a whole, a de-

scription for individual wells is not possible. The material balance equation

considers the reservoir as a tank, where the fluid pressure and properties are

the same regardless of the location within the reservoir. For example, at any

production time, it is likely that pressure will drop but the reservoir volume

remains the same, the "gap" left by the extracted oil would be filled either

by gas expansion or any of the fluids flowing into the reservoir. The general

form of the material balance equation for reservoirs is given by:
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Withdrawal - Injection = Hydrocarbon Fluid Expansion + Water Influx

(2.9)

Before going into the details of the equation, the following terms must

be defined as:

N = V φ(
1− Swc
Boi

) (2.10)

Where N is the initial oil in place, V is the reservoir volume, φ is the

rock porosity, Swc is the water saturation and Boi is the original volume of

oil and dissolved gas. Np is the cumulative oil production.

Rp is the cumulative gas oil ratio, given by:

Rp =
CumulativeGasProduction(scf)

CumulativeOilProduction(stb)
(2.11)

The material balance equation considers the effect of oil expansion with

dissolved gas. The difference in volume due to a drop in pressure is given

by:

Bo −Boi (2.12)

Where Boi is the oil volume after a pressure drop, Bo is the original oil

volume. The oil mixture is in equilibrium with a gascap, as a result of the

reduction in pressure some of the gas dissolved in the oil will be liberated.

The volume of the liberated gas is given by:

Rsi −Rs (2.13)
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Where Rsi is the total amount of gas in the solution, while Rs is the

remaining dissolved gas in the solution after the pressure drop. As a conse-

quence of the extraction of fluids in the form of production the size of the

gascap increases, it is defined as follows:

mNBoi(
Bg
Bgi
− 1) (2.14)

Where Bgi and Bg are the initial and final gascap size, respectively. The

effect of pore volume reduction is given by the following expression:

(1 +m)NBoi(
cwSwc + cf

1− Swc
)∆p (2.15)

Where m is the initial gascap size, cw is the water compressibility, cf is

the pore compressibility, Swc is the water saturation and ∆p is the change in

pressure. Now that the terms from the general equation have been defined,

the final version of the equation is written as:

Np [Bo +Bg(Rp −Rs)]

= NBoi

[
(Bo −Boi) + (Rsi −Rs)Bg

Boi
+m(

Bg
Bgi
− 1) + (1 +m)(

cwSwc + cf
1− Swc

)∆p

]
+ (We −Wp)Bw

(2.16)

Where the final term represents the net water influx into the reservoir.

We is the cumulative water influx into the reservoir, Wp is the cumulative

water production and Bw is the net water formation volume factor.
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Figure 2.3: Fluid Expansion Diagram

[22]

The block on the left-hand side represents the initial reservoir state with

a finite gas cap, where the original fluid volume is given by the solid line. On

the right-hand side of the figure, the effect of reducing pressure is presented,

as it can be observed, as a consequence of the pressure drop, fluids within

the reservoir expand. The pressure drop is a direct consequence of extracting

hydrocarbons from the ground as production. In order to estimate future

production values, the material balance model has to be evaluated at the

time where the pressure drop will occur ∆t, this process can be completed

in a stepwise way.

The material balance equation can be thought as an extended version of

the compressibility definition. The following equation represents the change

of volume due to a pressure change.

dv = cV∆p (2.17)
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Where c is a constant value indicating the compressibility of a certain

fluid, V is the container’s volume while ∆p is the change of pressure [22].

The method requires the value of certain reservoir parameters which

brings uncertainties to the computed estimates. The required values are:

size of initial gascap, initial amount of oil in the reservoir, the influx of the

aquifer and the reservoir’s pressure which in reality is not homogeneous.

Even when it is possible to estimate these values, it is very hard to obtain an

accurate approximation, which would lead to a poor model performance. In

order to reduce the uncertainty on the estimates, it is required to measure

all the fluids going in and out every well accurately.

The material balance equation is a methodology that provides a rough

approximation of the future production values. In practice, it is very difficult

to measure fluid flows and pressure within the reservoir. The method how-

ever does provide a good description of how oil, gas and water from different

sources interact when the reservoir is under production.

2.2 Capacitive Resistive Model

The idea of the capacitance model begins as an alternative to conventional

methods for characterising an oil field; this model was developed at the Uni-

versity of Texas. This model considers the reservoir as an electrical circuit

composed of a resistor and a capacitor, where the injection rates simulate a

voltage generating a current (flow in the reservoir).
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The goal is to use well rates as input and output values to analyse the

connectivity between an injector and a producer well pair without resulting

into a computationally expensive method [23]. Interwell connectivity refers

to how a pair of wells are related, if the reservoir is homogeneous then the

interwell connectivity only depends on the location of each well, for this case

those wells that are close to each other will be highly interconnected; on the

other hand, if the reservoir has different permeability zones interwell con-

nectivity varies in a more complex manner [23].

If bottom-hole pressure records are available, the model provides a bet-

ter description for the field, this extended version of the Capacitive Resistive

Model (CRM). There is another variant of the CRM model called Capacitive

Resistive Model Producer-Producer (CRM-P) where the change in fluid flow

between producers is considered [24].

The CRM model has proven to be a useful tool for production, opti-

misation, and performance evaluation of a water flooding strategy at an

acceptable level of accuracy [25].

The model is tuned by using a linear regression from the continuity equa-

tion. The estimated parameters are a time constant, fraction of injection and

a productivity index [23]. The idea is to select those term values which min-

imise the error between the real measurement and the model’s output. The

model’s equation is:
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qj(tn) =

Ni∑
i=1

qji(t0)e
−
(

∆t
tji

)

+

Ni∑
i=1

n∑
k=1

[(
1− e

−
(

∆t
tji

))(
fijI

k
i − Jijτij

∆pkwf
∆tk

)
e
−
(

∆t
tji

)]

(2.18)

The CRM model equation has three parameters, a linear gain f , a time

constant t and a productivity index J . The term ∆pwf represents the change

in bottom-hole pressure between samples k and k− 1. If the pressure values

are not known, this term can be neglected assuming there is homogeneous

pressure along the reservoir. For every j production well, there are Ni in-

jection wells and n time series samples [23].

The model’s equation is composed of three elements. From left to right,

the first one is primary depletion, injection input signal and changes in pres-

sure in the producer well.

The model assumes certain conditions, and is not always optimal. For

example, the term related to natural decay in production assumes the decay

is exponential and this might not always be the case since reservoir dynam-

ics are far more complex than an exponential behaviour. The f connectivity

index constant shows the effect an injection well i has on a production well

j, the time constant t tells how long it takes for the injection to produce a

change in production. The model has been tested on different artificial sce-

narios produced by reservoir simulators. On these simplified experiments if

changes in pressure are discarded the model produced forecasts with a square
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correlation of 0.99, when pressure changes are included this index dropped

to 0.728 [13].

The CRMmodel requires injection/producer wells to remain active through

all the dataset. However, in reality this is impossible to have since wells are

always shut down for maintenance, converted or simply closed. A new vari-

ant of the CRM model was introduced by Kaviani where virtual wells are

used in order to compensate for this issue. The virtual injectors have to be

manually manipulated . As a result the continuity equation might not be

convex which leads to the problem of finding appropriate parameter values.

As a result, the model’s performance and complexity are compromised when

analysing a real scenario. Some examples con be found on [13], [25], [26].

In conclusion, it can be said that the Capacitive Resistive Model is a

good alternative to traditional reservoir modelling. It is based on an intuitive

equation which can be easily linked to the physical phenomena. However, its

application on a real dataset is not straightforward, it might not be flexible

enough to fit the complex dynamics of the reservoir and might not produce

accurate results. The estimation of the parameters is also a non-trivial task

since a non-linear optimisation method has to be used for every continuity

equation.

2.3 Statistical Reservoir Analysis

Ian Main and his colleagues developed the Statistical Reservoir Analysis

(SRA) at the University of Edinburgh. This method offers a similar analysis

to the one obtained by the CRM. It can compute inter well communications;
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detect flow channels, flow barriers in a field as well as provide a 3-month

reliable forecast [27].

According to Main the SRA methodology requires 3 years of historical

production/injection data for model estimation [28]. The required variables

are flow and pressure rates for every individual well. The model is estimated

in the following manner: First, square correlations between pairs of injec-

tors/producers are computed, if a pair has a low correlation it is discarded for

further analysis. The search for correlations for a single producer is stopped

when multivariate regression coefficient reaches a value of R = 0.9. It nor-

mally takes between 5 to 25 injection wells to reach a value of R = 0.9.

The Statistical Reservoir Model is given by the following equation:

Ŷt = RkXt−k (2.19)

Where Ŷt is a vector with the forecast rates for all producing wells N

while Rk is a matrix with the regression of the parameters. The parame-

ters are composed of the linear terms composed of the selected injection and

producing wells by the Bayesian correlation as well as the lagged terms from

the current well under analysis, the model can be viewed as a linear ARX

model [29].

The model terms are tuned by minimising the prediction error, which is

given by:

e =

T∑
t=2

N∑
i=1

(yi,t − ŷi,t)2 (2.20)
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N represents the number of producers and t is the sampling time. It is

important to note that the model can also include lagged variables on the

correlation matrix Rk, this matrix would be a three-dimensional matrix with

array elements: ri,j,k: i = 1,N ;j = 1, N +M ;k = 1,K [30].

The SRA model was tested on a real dataset from the Gullfanks field in

Norway. It was found that most of correlated wells lie within a 2km range.

The analysed data has flow rates for 106 wells for a period of 11 years, flow

rates values were recorded every month. The SRA model was tested as a

forecast tool using flow rates from the Gullfanks field. It was found that for

a 3-month production forecast the predictions lied within a 95% confidence

limit.

In conclusion, the SRA has proven to be an effective tool for analysing

production/injection data from an operating field. It explicitly indicates

which injection wells are the most significant towards a certain production

well. Its extension to real applications is backed by funding from industrial

partners for its development . In comparison with the CRM model, it can

easily handle incomplete records and shut down periods on certain wells,

where the correlation index is penalised. The drawback from the SRA model

is its limited long term forecast capability. A 3 month forecast is good for

planning a short term strategy, but most oil companies need at least one

year of reliable predictions in order to plan their future operations. Further

details about the model remain confidential due to an industrial patent.
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2.4 Linear Data-Driven Models

Linear models have become the traditional option for analysing and mod-

elling time series [31]. Since the development of the autoregressive model

a well-established methodology for fitting its parameters was introduced by

Box and Jenkins [32].

The simplest linear model that can represent an input-output relation is

a linear difference equation:

y(t)+a1y(t−1)+...+anay(t−na) = b1u(t−1)+...+bnbu(t−nb)+e(t) (2.21)

Where, e(t) represents white noise error. The adjustable parameters are:

θ = [a1, a2, ..., ana, b1, b2, ..., bnb]
T (2.22)

Equation 2.15 is known as the Autoregressive With Extra Inputs Model

(ARX). The autoregressive part is represented by the y(t−na) terms, while

u(t− nu) are the extra terms also known as exogenous.

If a new vector is introduced as:

φ = [−y(t− 1), ..., y(t− na), u(t− 1), ..., u(t− nb)]T (2.23)

The ARX model is given by:

ŷ(t|θ) = θTφ(t) + υ(t) = φT (t)θ + e(t) (2.24)

Where, e(t) is can be approximated to an offset value.
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The previous form is the most popular for practical applications since it

is intuitive. There are more complex structures but most of them can only be

used in certain cases. A good review of these structures can be found on [33].

In order to estimate the value of the model’s parameters given by vector θ,

the most popular methods are the least square estimator and the maximum

likelihood estimator, details of how these estimators are obtained can be

found at [33]. The Least Squares Estimator is defined as:

θ =

[
1

N

N∑
t=1

φ(t)φT (t)

]−1
1

N

N∑
t=1

φ(t)φT (t)y(t) (2.25)

N is the number of samples and φ is defined as in Equation 2.17. The

Maximum Likelihood Estimator is defined as:

θ(yN ) =
1∑N

i=1(
1
λi

)

N∑
i=1

y(i)

λi
(2.26)

N is the number of samples and λ is the standard deviation within the

data samples. In this case y is not the output but the corresponding regres-

sor variable from matrix φ.

In literature, there are some examples where ARX models have been fit-

ted for modelling oil production using water injection rates as inputs. For

example, Van Essen and colleagues, used an ARX model to track production

data. The data was artificially obtained by a reservoir simulator, as a result

a 12th order model was able to capture the system’s dynamics [34] .

Marte implemented an ARX model for fitting data from three different

reservoirs in the North Sea, as a conclusion of the studies, it was found that

30



a radial basis function could approximate the data better than the linear

model[11].

Kun-Han used a multivariate ARX model to characterise a reservoir [35].

As a conclusion of the studies it was determined that ARX models should

only be used to analyse the dynamics of the system by observing the max-

imum lags on the final equation rather than a forecasting tool. One of the

advantages of ARX models is that they can easily be retrained using a time

window, this is convenient in the case certain wells are shut down. The

model would then easily recapture the new dynamics on the system. On the

other hand, the model’s prediction horizon would not be very large since the

model would only be valid for a short period of time.

According to the literature review, linear models should only be used as

an extra tool for analysing the data and not for reservoir modelling. It is

well known that reservoir dynamics are non-linear, therefore a linear model

is not sufficient for replicating the dynamics.

2.5 Multi-Layer Neural Networks

Artificial neural networks as the names suggests, try to imitate how real

neurons on a brain communicate with each other. The methodology is in-

spired on a biological system, where the system is trained through previous

observations and it’s able to replicate the relationship on unobserved data.

Neural networks have gained researcher’s attention during the last decades

and have been successfully used on diverse applications. A few examples on
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the list include: pattern recognition, system identification and classification

problems. In the area of reservoir modelling several authors have used neural

networks as an alternative analysis tool. For example DeJonge used a neural

network approach to find discrepancies from the expected field behaviour

and trend [36]. Saputelli and colleagues developed a hierarchy model for

determining which were the most critical elements in a producing field using

a neural network model. This approach allows the personel to intervene on

the most important variables [37]. Esmaili used a neural network for un-

derstanding the process of hydraulic fracturing revealing the main elements

involved [38]. A good review of the applications of neural networks in the

field of reservoir engineering was made by Tahar [39], some of the applica-

tions include: prediction of petrophysical parameters in reservoirs, tight gas

reservoir development, prediction of natural and induced fracture zones and

monitoring of physical variables (porosity, permeability and pressure).

Different network architectures have been developed for specific appli-

cations. Independently of the problem, neural networks have shown their

advantages: they are easy to train, easy to implement, have great approx-

imation capabilities and offer great relationship between non-linear input-

output variables.

An artificial neural network creates input-output relations in the follow-

ing manner: First, input data coming from every neuron goes into a non-

linear function, such as a radial basis function. The output of this function

is then multiplied by a constant value known as weight. The result of this

operation is then added up with the multiplied outputs from all the other

neurons. This result is then the new input data for a neuron on the sub-
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sequent layer. The process is repeated through all the hidden layers until

a final output value is estimated. Selecting the connection weights between

neurons and layers is known as the training process [40].

A multi-layered neural network can be represented by the following dia-

gram.

Figure 2.4: Neural Network Structure

[41]

Multi-layer neural networks are probably the first approach one might try

for fitting non-linear input-output data. It is a well-known standard method

in the areas of machine learning and data mining and has demonstrated its

capability finding non-linear input-output relations [41].
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Figure 2.5: Multi-Layer Neural Network Structure

[41]

A feedback architecture is used on this study since the output signal is

transmitted back into the input layers. A Gaussian function was used as the

activation function on the neurons. The activation function is the element

on the network responsible for establishing non-linear relations between the

neurons.

There are many choices for the activation function, the most popular ones

are radial basis functions. Radial basis functions estimate a value depend-

ing on the distance between the function’s centre and the input value. The

most popular radial basis functions are: Gaussian functions, multi-quadratic

functions, inverse multi-quadratic functions, thin plate spline function, cubic

function and linear function.

Gaussian functions are one of the most commonly used functions, they
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have great generalisation capability and have been well studied. The idea

of using radial basis functions is to approximate the observed data by a

multi-dimensional surface. A Gaussian function is defined by the following

function:

f(x) = w(e
−

1

2σ
(x−c)2

) (2.27)

From equation 2.27, w is a constant scaling factor, σ is the standard de-

viation also know as scale which determines how wide the function is, or how

sensitive the function is with respect to the centre’s value c. When training

a radial basis function model, these three parameters have to be tuned in

order to obtain a good approximation to the dataset.

Training a multi-layer neural network is not a straight forward process.

The idea is to find the connection weights, standard deviation and centre

values which minimise the error between the network’s output and the mea-

sured data. Diverse training algorithms have been developed for this task,

the list includes Bayesian regularisation, Levenberg-Marquardt and gradient

descent algorithms, further details can be found on [42].

For the present study, the Levenberg-Marquardt (LM) algorithm was

used for determining the network’s parameters. The LM algorithm has

proven to be very effective for non-linear least-squares minimisation prob-

lems, the solution is found iteratively until a pre-defined threshold value is

reached [43] [42]. On the present analysis, the number of maximum itera-

tions (epoch) was set to 100. For most training cases, a solution was found

within 10 epochs.
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Constructing a neural network with an optimal number of elements has

been an important subject of study in the field of machine learning. Most

authors conclude that the network elements such as number of lags, training

iterations, number of neurons and hidden layers should be determined em-

pirically [44] [45].

Following a design suggestion from Maren [46]. A first guess of number

of hidden neurons was determined from the following expression:

H = 2N + 1 (2.28)

Where H is the number of hidden neurons and N is the number of in-

puts. To investigate the effect of hidden neurons, a set of models with

different hidden neurons were estimated. Only one hidden layer was used,

the use of more hidden layers is a subject of current study, it is known as

deep learning, it requires high computational power and is normally used for

very complex problems like speech recognition and autonomous vehicles [47].

On complex applications each one of the hidden layers can learn or recog-

nise a single feature. For example, if we want to identify red cars on different

photos, we would need to identify red objects first and then objects that look

like a car. These two features are so different that cannot be modelled by a

single function, as the complexity of the problem increases so does the need

for additional layers [48].
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2.5.1 Scott Field, a Case Study From the North Sea

The analysed dataset comes from Scott, a field in the North Sea. The field

started production operations by late 1993. According to the records, on its

best month, production peaked 830,000 monthly oil barrels until it declined

to 70,000 bbl. The dataset has 69 monthly records (5.75 years). The data

is published by the United Kingdom’s Department of Energy and Climate

Change. The location of the field is displayed on the following figure:

Figure 2.6: Scott Field Location

[49]

The first step was to understand the raw values. The dataset for oil

production are monthly records from November 1993 until December 1999,

there are 24 production wells. Water injection records are also given monthly

from April 1994 until December 1999, there are 20 injection wells.

Since it is assumed the field is a causal system on which the output (Oil
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production) purely depends on the previous inputs (Water injection), it re-

sults convenient to constrain the analysis from April 1994 until December

1999, eliminating the first 4 months of oil production. As a result, only 69

records from the original 74 were analysed. The records were stored in two

matrices, one with a dimension N × O for oil production rates an another

N ×W , N being the number of records, while O and W represent the num-

ber of oil production and water injection wells respectively.

Oil production and water injection rates are both given in m3. As a first

step to understand the magnitude and behaviour of the system the raw data

is plotted as follows.
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Figure 2.7: Raw Oil Production Data
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Figure 2.8: Raw Water Injection Data

Each of the lines represent the corresponding oil or water rates from a

particular production/injection well. From the previous plots, it results ev-

ident that oil production follows a decline trend for most of the operating

months as it would normally be expected from a mature field. On the other

hand, water injection seems to remain at a constant value. One assumption

would be that the constant injection rates are not sufficient to compensate

for the production decline, to compensate for this loss an increase in injec-

tion should have taken place.

On average the field produces 630,000 m3 of crude oil a month while

1.25Mm3 of water are injected into the ground. It can easily be seen that
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the total volume of injected water is almost twice of the produced oil. This

behaviour is appreciated by the following plots where total oil field produc-

tion and water injection from the whole field are shown.
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Figure 2.9: Total Oil Production
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Figure 2.10: Total Water Injection

After having a general understanding of the field, its past behaviour

and record values, the next step was to normalise all data values. This is an

important step since we want to extract the effect and relation input variables

have on the output. Even when the all the raw values are given on the same

measurement unit (m3), it might be possible that a well experiencing small

magnitude values has a greater effect on the output compared to other wells

with higher values. The normalisation was accomplished using the following

expression [50]:

x′ =
x−minx

maxx −minx
(2.29)

Where, x′ is the new scaled data point, x is the unscaled raw point while

minx and maxx are the minimum and maximum values from the original
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dataset. By using the previous expression all records were scaled from 0 to

1, regardless of their original magnitude.

The following step was to identify any possible outlier measurements on

the dataset which might lead to incorrect analysis. A simple but effective

procedure was used to identify possible outliers. All data points were plotted

against 96% confidence band limits considering there is a Gaussian distri-

bution within the data set, if a point lied outside the limits it would be

considered as an outlier suspect. If the point is an outlier, its value would be

changed to the average of the 2 neighbour points, this a suggested method

by Fortuna [50].
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Figure 2.11: Outlier Plot

There is no perfect method for detecting outliers, most selection crite-

ria solutions require interpretation from the user for appropriate selection.

However, there is a limit to how fast physical systems can respond to input
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changes, and that behaviour must be considered for outlier selection giving

us a clue of what could be an incorrect measurement. According to Holdaway

[8], outlier detection is always done manually within the oil industry due to

the great differences that may occur within different wells. As a result, the

process can be tedious and time consuming.

On Figure 2.11 it can be seen that point 26 is very likely to be an outlier

since none of its neighbour points are close and an abrupt change is shown.

On the other hand, point 36 which is also outside the limits is likely to be

a correct measurement since it follows the trend and magnitude experienced

by its neighbouring points.

The Scott field dataset contains a few missing values, as most real datasets.

In order to estimate a model, it is required to have a dataset without any

missing values. There are different methods for the estimation of missing

values; Graham provides a good review of the most popular [51].

Since there were not that many missing values on the dataset (at the most

5 on some well records), the approach used on this case study was to fit a

linear autoregressive model and estimate according to the previous records

what the most likely value for the missing data point would be. This method

is straightforward to implement and very effective. Local trends within the

records are not lost and the model parameters are fast and simple to obtain.

Every well’s dataset was treated as an individual time series, from which a

linear autoregressive model was determined using a window containing the 7

previous records (Before the missing point). The window size was determined

by using a property of the partial autocorrelation function, when the function
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crosses the horizontal axis, given by a zero value, it indicates the maximum

lag dependency on the time series [32]. The following plot shows the partial

autocorrelation function for injection well 5 as an example.
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Figure 2.12: Partial Autocorrelation Function

From the previous plot, it results clear that the partial autocorrelation

function cuts-off at a lag value of 7. There are different algorithms for esti-

mating the partial autocorrelation function, for the present case study Mat-

lab’s built in "parrcor" function was used. A full explanation can be found

on the work developed by Box and Jenkins [32].

On the presented experiments, the number of lags was gradually increased

from 1 to 12 (representing a year of production) for every set of hidden

neurons configuration. Based on these combinations, diverse models were

estimated. The models were evaluated using the MSE metric. Data was
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split as follows: 57 records for training and 12 for validation, considering

that oil companies plan their future operations one year in advance. The

performance of the best models can be appreciated on the following table.

For full results see Appendix A.

Delays Hidden Neurons MSE

12 21 1.25E-03

1 30 1.78E-03

5 40 2.20E-03

Table 2.1: Best Multi-Layer Models

According to Table 2.1 the best model is the model with 21 hidden neu-

rons and 12 delays. The model’s response can be appreciated on the following

plot.
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Figure 2.13: 12-Delays 21-Hidden Neurons NN Model Response
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The model’s structure is as follows:

Figure 2.14: 11-Delays 2-Layers NN Model Structure

From the previous results, we can see that training a multi-layer neural

network using a standard approach does not produce the best predictions.

The resulting model is a black box model, we can’t obtain further information

about physical properties of the system.

2.6 Conclusions

The current chapter provides a survey of the latest methods for modelling

an oil field under production. Traditional methods are very effective pro-

viding an explanation how oil, gas and water interact in the reservoir when

pressure changes appear as an effect of production. However, their accuracy

is limited. In the case of the analysis of decline curves, the method assumes

that production will always decay which might not always be the case. Oil

production can experience steady values and even increase if the field is sub-

ject to fluid injection. On the other hand, the material balance equation

can include the effects of injection, but can result in very complex equations

which are hard to solve and require accurate measurements of fluids within

the reservoir like water flow from an aquifer, these measurements are very
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hard to obtain. As a consequence, the model’s predictions are likely to be

inaccurate.

Data based models offer a more flexible approach. These methods learn

from the previous records with the objective of replicating the behaviour of

the system. Linear models are useful for revealing some of the field’s prop-

erties but have failed to provide reliable forecasts since reservoir dynamics

are non-linear.

The Capacitive Resistive model is capable of capturing non-linear reser-

voir dynamics, offers intuitive equations as an analogy to an electrical circuit

where physical properties of the field can be revealed. However, when work-

ing on a real dataset, solving the equations results a very complex process

where non-linear optimisation techniques have to be applied. When dealing

with missing values virtual wells have to be introduced, as a result analysing

the field using the CRM can be a challenging non-intuitive task.

The Statistical Reservoir Analysis model is capable of revealing inter-well

relations and capture non-linear dynamics of the field but can only provide

3 months of reliable forecasts which might not be sufficient.

Multi-layer neural network models are now a standard method when

modelling non-linear systems. According to the presented experiments, these

models can track oil production with a limited accuracy lacking understand-

ing the physical properties of system under analysis which is fundamental in

EOR modelling.
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As we can see there is a need for a new reservoir modelling method

that can handle all the challenges: flexibility, non-linearity, reveal physical

properties and provide reliable long term predictions.
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Chapter 3

New Practical Application of

the Non Linear Autoregressive

with Exogenous Input Model

in Petroleum Engineering

3.1 The Non Linear Autoregressive Moving Aver-

age with Exogenous Input Model (NARMAX)

System Identification Methodology

Data based models offer diverse advantages compared to traditional meth-

ods when identifying and modelling complex systems, where the required

equations based on physical properties are simply too many or too complex

to accurately be tuned to produce reliable estimates. The list of complex

systems includes history matching tasks, where reservoir dynamics are non-
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linear, unique for every field, time dependent and have multiple inputs.

The task of finding mathematical relations between input and output

measurements is known as System Identification in the field of automatic

control [52]. The following diagram shows a representation how the analysed

variables on the system are related.

Figure 3.1: MISO System Identification Diagram

As it can be observed on Figure 3.1, to understand the effect of water

injection on oil production from an operating field, it is necessary to build

a mathematical model for every production well. The mathematical model

explicitly indicates the relationship between injection rates to oil production.

Most of non-linear data based models such as: multi-layer neural net-

works, bayesian networks, fuzzy logic or probabilistic models result in black

box structures providing no explicit description of the physical system under

study. There is therefore the need for a model that which can adress this

issue [53].
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To deal with this issue, during the 1980’s Billings and colleagues devel-

oped a methodology for non-linear system identification. This methodology

is flexible since it is based on input-output data measurements and provides

transparent equation terms which can be directly linked to the physical pa-

rameters from the analysed system [54], [55], [56]. The philosophy is known

as NARMAX system identification which stands for "Non-linear Autoregres-

sive with eXogenous input Model".

The generic form of the NARMAX model is given by the following ex-

pression [55]:

y(k) = F [y(k−1), y(k−2)...y(k−ny), u(k−d−1)...u(k−d−nu)+e(k)] (3.1)

Where, F is a non-linear function, y(k) is the system’s output, u(k) is the

system’s input while e(k) is additive noise. Since the model is time depen-

dent lagged values must be considered, ny and nu are the maximum output

and input lags, respectively.

The NARMAX system identification methodology can be summarised on

the following steps:

1. Structure selection.

2. Parameter estimation.

3. Model validation.

4. Prediction.

5. Analysis.
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The first step consists in choosing a non-linear function F and determin-

ing the lags. Afterwards, the estimation of the corresponding terms must

take place.

Depending on the selected parameters, a different number of candidate

terms will be estimated, in most cases only a few of these terms will be

required to form a final model. To select the corresponding terms a power-

ful methodology has been incorporated into the NARMAX approach, this

methodology is known as Forward Orthogonal Least Squares Algorithm

(FROLS).

Once the model’s terms have been defined. The following step is to verify

if the model can properly replicate the system’s dynamics. This is achieved

through several validity tests. If the model passes the validation tests, it can

be used for predicting diverse scenarios as well as understanding the physical

properties within the system.

3.1.1 Polynomial NARX Models

From the possible non-linear forms F on Equation 3.1 could take, polynomial

structures have proven to be very effective for replicating non-linear data as

well as being capable to relate its terms to the physical components and

behaviour of the system under study, this gives direct model interpretation.

Some of the examples include: characterisation of robot behaviour, identifi-

cation for space weather and the magnetosphere, tracking iceberg movement

in Greenland, understanding of electroencephalography data, analysis of a
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Fly vision, modelling of synthetic bioparts, identification of metal-rubber

damping devices and forecasting tide levels [57], [58], [59], [60], [61], [62],

[63].

A polynomial representation of a NARMAX model is given by the fol-

lowing expression [55]:

y(k) = θ0 +

n∑
ii

fi1(xi1(k)) +

n∑
i1=1

n∑
i2=i1

fi1i2(xi1(k), xi2(k)) + ...

+

n∑
i1=1

...

n∑
il=il−1

fi1i2...il(xi1(k), xi2(k), ..., xil(k)) + e(k)

(3.2)

Where, l is the degree of the polynomial, θi1i2im are the linear model

parameters while n is the sum of lags given by:

n = ny + nu + ne (3.3)

When dealing with a multivariate case, the corresponding lag (ny,nu or

ne) is the sum of lags from the all the related variables.

Equation 3.2 can also be written in terms of the linear model parameters

as:

y(k) = θ0 +

n∑
ii

θi1i2(xi1(k)) +

n∑
i1=1

n∑
i2=i1

θi1i2(xi1(k), xi2(k)) + ...

+

n∑
i1=1

...

n∑
il=il−1

θi2...il(xi1(k), xi2(k)...xil(k)) + e(k)
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(3.4)

It is important to know that for a multivariate model, the degree of the

polynomial is given by the term with the maximum degree.

The number of terms from a polynomial model is given by:

M =
(n+ l)!

n!l!
(3.5)

Equation 3.5 shows how the number of candidate terms can be very large.

For example a third order, 3-input system with all input lags nu = 3 and

single output with ny = 2, would have M = (3∗3+2+3)!
11!∗3! = 364 candidate

terms. The NARMAX methodology always looks for parsimonious model

structures. As a result, only the terms that significantly contribute to the

system’s output will be kept at the final model [55].

3.2 The FROLS Algorithm for Term Selection

Estimating a model which can replicate the systems’ data without being

over-fitted or under-fitted is a subject which has been a subject of study in

the field of system identification for the last decades [33], [64], [65]. The

number of terms on a model is directly linked to how well the model can

fit training and unseen data. In most cases, the selection of a large number

of terms would lead to over fitting having poor generalisation performance.

On the other hand, selecting a small number of terms will result in poor

prediction on unseen data.

In literature, there are broad examples of data fitting by a model when

the model’s structure is already known. On these cases it is easy to iden-
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tify if the model has selected the correct input variables. The complexity of

this approach is a lot lower than most real system identification applications

where we have no control of the data we gather and need to understand

the properties of the system. In such situations, we can’t know in advance

what are the maximum lag values or the non-linearity degree of the system

understudy.

In order to deal with the problem of estimating models with an optimal

number of terms, the FROLS [66], [67] [68]. The algorithm selects the most

significant terms in their order of contribution towards the output variable.

Term selection is done at every iteration step. This approach is convenient

since it can be intuitively seen which terms are the most important and to

what degree, their contribution is estimated as a percentage of the output

variance. The FROLS algorithm can be summarised as follows [55]:

Step 1- Assume there is a number of candidate terms M stored on a dic-

tionary D = p1, p2, ..., pM , for m = 1, 2, ...M , compute the output variance

σ = yT y, calculate the contribution of all terms as [55]:

g(1)m =
yT qm
qTmqm

(3.6)

ERR(1)[m] = (g(1)m )2
(qTmqm)

σ
(3.7)

l1 = arg max
1≤m≤M

{ERR(1)[m]} (3.8)
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Let

a11 = 1 (3.9)

q1 = pl1 (3.10)

g1 = g
(1)
l1 (3.11)

err[1] = ERR(1)[l1] (3.12)

Where gm is the correlation coefficient between the output and each

candidate term m. The ERR coefficient represents how much of the output

variance can be explained by candidate term m. Variable l1 shows which of

the candidate termsm has a higher contribution towards the output variance.

At this stage, the most significant term has been selected and removed

from dictionary D containing all remaining candidate terms. The term’s

contribution has been stored at the err variable.

Step 2-(s≥2)

The same methodology from first step is repeated but the remaining vectors

(terms) have to be orthogonalised. Therefore, let m 6= l1, m 6= l2, ...,m

6= ls−1. For m = 1, 2, ...,M orthogonalise vectors using the Gram Schmitt

algorithm as:

q(s)m = pm −
s−1∑
r=1

pTmqr
qTr qr

qr, pjεD −Dm−1 (3.13)

g(s)m =
yT q

(s)
m

(q
(s)
m )T q

(s)
m

(3.14)

ERR(s)[m] = (g(s)m )2
(q

(s)
m )T q

(s)
m )

σ
(3.15)

ls = arg max
1≤m≤M

{ERR(s)[m]} (3.16)
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Let

qs = q
(s)
ls

(3.17)

gs = g
(s)
ls

(3.18)

ar,s =
qTr pls
qTr qr

r = 1, 2, ..., s− 1 (3.19)

ass = 1 (3.20)

err[1] = ERR(s)[ls] (3.21)

From equation 3.13, q(s)m represents the orthogonalised vector at selection

step s, pm is a candidate term from dictionary D, qr is the selected vector

from step s− 1.

Model terms are selected by using an orthogonal transformation. This

transformation comes in the form of P = WA, where W is a NxM matrix and

A is a MxM upper triangular matrix. From equation 3.14, g(s)m is an auxiliary

parameter vector, this vector is related to the model term parameters Θ as:

AΘ = g (3.22)

From equation 3.17, qs is the selected orthogonalised vector at step s.

From equation 3.18 gs is the auxiliary vector term at step s. From equation

3.19 ar,s is the corresponding element r,s from upper triangular matrix A.

The diagonal elements of matrix A are 1, therefore element ass is one as

shown on equation 3.20.

The term selection procedure is stopped when the sum of values within

variable err[s] has reached a threshold limit. As a rule of thumb, the thresh-

old value is normally set to 0.95, representing 95% of the output’s variance.
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The name of this limit is known as Sum of Error Reduction Ratios (SERR)

it is given by the following expression:

SERR =

M0∑
s=1

err[s] (3.23)

Where,M0 is the number of selected terms to form the final model struc-

ture. The selection of extra terms can also be manually adjusted for fine

model tuning. For example, the procedure could be stopped when the con-

tribution of a term to err[s] is less than a certain threshold regardless of the

SERR value.

In most cases the number of selected terms M0 is much smaller than the

number of candidate terms from dictionary D. After all the candidate terms

have been selected, the linear parameters have to be estimated. This can be

done by using the least squares formula:

θ = (XTX)−1XTY (3.24)

Where X is a N ×M0 matrix (N being the dataset length and M0 the

number selected terms). Y is a N × 1 column vector with the output data.

Once the corresponding parameters have been estimated, the final model is

given by:

y(k) =

M0∑
i=1

θiqi(k) + e(k) (3.25)

3.2.1 NARX Model Estimation

Motivated by the success and advantages of NARX models (see section 3.1.1

for examples of practical applications), on this thesis their application for
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EOR analysis and modelling is presented.

In literature, there are many examples of alternative modelling approaches

for data fitting coming from a reservoir simulator, some examples can be

found on [69], [70], [71] and [72]. The complexity of most of these examples

is low compared to a real operating field, it is on the later cases where the

models can play an important role rather than fitting data from a computer

simulation. Instead of using a reservoir simulator to generate the injection

and production data from a simple field, the NARMAX methodology was

tested on a real dataset.

After the data had been briefly analysed and pre-processed, the NAR-

MAX methodology could then be implemented. The polynomial models that

were estimated for this case study follow a Multiple-Input Single-Output

(MISO) structure. Every production well was considered as a single-output

while all the injection wells were considered as its inputs. This means that

in order to estimate a model for the whole field, multiple models would have

to be estimated (one for every production well).

Estimating a model which would consider all the outputs results incon-

venient for multiple reasons. The number of candidate terms would simply

be too large, for example using 12 delays for all variables and a third order

polynomial would lead to 24,393,776 candidate terms which is excessive for a

standard computer to handle. The attractive property of polynomial trans-

parent equations which can easily be linked to physical would not be that

obvious due to the high complexity on the final model equation. By using

a single output models, the detail and clarity the equations provide is a lot
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better for interpretation.

A NARMAX model is composed of three types of terms and their com-

bination: inputs, outputs and noise. For the present case study only a final

additive noise term was considered. Including noise terms increases the pre-

diction performance but it results hard to find a relation between the model

terms and the field’s physical parameters. The estimated models shown on

this chapter are therefore polynomial NARX models, discarding complex

noise terms from Equation 3.4.

The main objective of history matching is to create a model which can

replicate the dynamics of the field under analysis. This enables the possibility

to estimate how the field will perform depending on certain input values

without having to wait and physically implement these scenarios. When it

comes to predicting future scenarios there are two types of estimations, One

Step Ahead (OSA) and Model Predictive Output (MPO). The difference of

how these estimations are computed is shown using the following model:

ŷ(k) = y(k − 2) + y(k − 1) + u(k − 1) (3.26)

The sequence for OSA predictions should be computed as follows:
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ŷ(1) = NA

ŷ(2) = NA

ŷ(3) = y(1) + y(2) + u(2)

ŷ(4) = y(2) + y(3) + u(3)

ŷ(5) = y(3) + y(4) + u(4)

...

ŷ(k) = y(k − 2) + y(k − 1) + u(k)

(3.27)

The sequence for MPO prediction should be computed as follows:

ŷ(1) = NA

ŷ(2) = NA

ŷ(3) = y(1) + y(2) + u(2)

ŷ(4) = y(2) + ŷ(3) + u(3)

ŷ(5) = ŷ(3) + ŷ(4) + u(4)

...

ŷ(k) = ŷ(k − 2) + ŷ(k − 1) + u(k)

(3.28)

From the previous examples, it can be observed that the first value that

can be estimated is k + 1, k being the maximum lag on the model. It re-
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sults evident that for OSA predictions, the previous output measurement

accounts for most of the prediction value, it is therefore easy to get good

OSA predictions even with a poor bias model.

In the case of MPO predictions, the model is initialised using measure-

ments from the dataset, once the maximum model lag has been reached

by the estimations, all future predictions are based on previous model es-

timates. From the previous example, from the fifth prediction onwards, all

model estimates are based on previous model estimates. If the model is not

appropriate, the prediction error will accumulate as the prediction horizon

increases. It is therefore necessary to always assess the model’s performance

using MPO and not OSA predictions.

A set of different models was estimated using the NARMAX method-

ology presented on the previous sections. From the 69 data points on the

dataset, 57 were used for training the while the last 12 were used for valida-

tion. This partition comes from the fact that most oil companies plan their

operations and forecasts one year in advance, therefore it is convenient to

use the last 12 data points for validation. By doing so there is a partition of

approximately 80% for training and 20% for validation, which is normal in

many machine learning applications [53].

The models were estimated by increasing the number of maximum lags

as well as the degree of the polynomial. From the estimated set of models,

the MPO prediction performance was the main concern, based on the MPO

prediction error the best models were further analysed.
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NARX Model Validation

The performance tests that were used to evaluate the quality of the Mean

Square Error (MSE) and the percentage of fit. The mean square error index

is a good measure to evaluate the model’s performance, it indicates the

absolute difference between the model’s forecasts and the measured data.

MSE =
1

n

n∑
t=1

e2t (3.29)

Where n is the number of samples, and e is the difference between the

corresponding forecast and measured data point.

e(k) = y(k)− ŷ(k) (3.30)

A good model should produce a MSE as small as possible, indicating

that the model’s forecasts are close to the measured data.

The percentage of fit is a widely accepted index for evaluating the quality

of a model’s estimates, it is also known as Mean Absolute Percentage Error

(MAPE). It is an intuitive index and is not scale dependent. The closer to

100, the better the quality of the model’s forecasts, it is defined as [50].

%Fit = 100
1

n

n∑
i

(1− |yi − ŷi|
|yi|

) (3.31)

Where n represents the corresponding sample yn and prediction ŷn. This

metric measures the model’s error in terms of percentage. For example it is

a lot more intuitive to say "the model is accurate 89% of the time" than "the

model has an error of 14.563" if the interpreter is unfamiliar with the data.

The usage of MAPE is very popular in forecasting applications like: weather
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prediction, operations research, economy and applied statistics. A good

review of the usage of MAPE is given by Neiting [73]. The performance and

parameters of the estimated models are summarised on the following table.

Model
Polynomial

Degree
Lags

# Of

Inputs

Candidate

Terms

Selected

Terms
OSA Fit MPO Fit MSE OSA MSE MPO

1 2 2 20 946 15 0.8915 0.6326 0.0166 0.1897

2 2 4 20 3655 15 1.0613 1.0796 0.0037 0.0063

3 2 6 20 8128 15 0.9968 0.9866 0.0000 0.0002

4 2 8 20 14365 15 1.2493 1.8164 0.0533 0.5714

5 2 10 20 22366 15 4.9007 24.2095 4.0728 144.1905

6 2 12 20 32131 15 1.1072 1.6822 0.0022 0.0903

7 2 14 20 43660 15 1.1007 1.5868 0.0015 0.0525

8 2 16 20 56953 15 1.0993 1.5829 0.0015 0.0524

9 2 18 20 72010 15 1.1606 2.0357 0.0041 0.1706

10 2 20 20 88831 15 0.8994 0.5101 0.0016 0.0389

11 2 22 20 107416 15 0.9249 0.6150 0.0009 0.0249

12 2 24 20 127765 15 1.2483 2.5071 0.0089 0.3267

13 3 2 20 14190 15 0.4826 -1.3202 0.3763 7.5659

14 3 4 20 105995 15 0.8922 0.7100 0.0115 0.0835

15 3 6 20 349504 15 1.1058 1.3484 0.0096 0.1041

16 3 8 20 818805 15 1.0266 1.1604 0.0003 0.0123

17 3 10 20 1587986 15 1.0315 1.1369 0.0003 0.0050

18 3 12 20 2731135 9 1.0747 1.5985 0.0011 0.0695

19 3 14 20 Too Many Terms NA NA NA NA NA

Table 3.1: Polynomial NARX Models
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For the present case study, the term selection algorithm was stopped at

15 terms or 95% of the SERR value. It was found that for most cases af-

ter the 15th term, the contribution of the following ones was so little that

it would require more than 30 terms to reach 95% of the output variance,

this is an indication that the subsequent terms might be noise terms that do

not represent the dynamics of the system. Selecting a model with too many

terms was found to lead to unstable forecasts. As a result, most 15-term

models reached a SERR value close to 91%.

On Table 3.1 it can be observed how the number of lags and the max-

imum order of the polynomial function drastically increase the number of

candidate terms.

According to the results, the best candidate models are models 2 and 3,

since their performance indices for MPO predictions are the best. Based on

these model’s terms, there is an indication that it takes less than 6 months

for the injected water to push oil into the surface, therefore models with fur-

ther lags have poor performance. Some larger lag terms which are selected

by the FROLS algorithm have high correlation with the output but incor-

rectly represent the field’s dynamics. This is where physical interpretation

of the system plays an important role. If incorrectly performed, the selec-

tion of inappropriate parameters will follow. This analysis is consistent with

the field’s dimensions since Scott is a relatively small field, and it’s unlikely

that it would take more than 6 months for injection to affect production [74].

It was found that third order models were really good for fitting the

training data, but had bad generalisation results when performing on unseen
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data as it can be observed on the following plot.
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Figure 3.2: Third order Polynomial-Model 16 Performance

It results clear that after the 57th data point the forecast data quickly

diverges from the measurements. Third order models are very likely to be

over-fitted and should not be used for forecasting unseen scenarios on this

dataset.

To determine which model is the most appropriate for describing the

field’s dynamics as well as forecasting a future scenario a quantitative anal-

ysis based on the performance indices is not sufficient. The following plots

show how well models 2&3 can track the measured data.
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Figure 3.3: Model 2 Performance
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Figure 3.4: Model 3 Performance
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It results evident that model 3 can track the measurements very well for

both training and validation data. To fully validate model 3, the model’s

residuals were analysed. According to [50] a good model should produce

normally distributed residuals which must lie within 95% confidence limits.
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Figure 3.5: Model 3 Residuals Histogram
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Figure 3.6: Model 3 Residuals Confidence Limits

As it can be seen on the previous diagrams, model 3 produces appropri-

ate residuals and should be accepted for further analysis.
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The equation for model 3 is:

Theta Term ERR

0.9800 ’y(k-1)’ 0.8480

1.1431 ’u(k-4,2)*u(k-1,3)’ 0.0205

-0.6783 ’u(k-5,1)*y(k-1)’ 0.0155

-0.2423 ’u(k-1,3)*u(k-3,7)’ 0.0059

0.3021 ’u(k-5,3)*u(k-2,15)’ 0.0043

-0.4351 ’u(k-1,13)*u(k-4,14)’ 0.0038

-0.7768 ’u(k-1,18)*u(k-3,19)’ 0.0024

0.3449 ’u(k-5,1)*u(k-1,13)’ 0.0020

-0.2140 ’u(k-5,2)*u(k-1,3)’ 0.0015

0.0766 ’u(k-2,4)*u(k-5,16)’ 0.0012

-0.4358 ’u(k-1,3)*u(k-3,15)’ 0.0012

0.2024 ’u(k-2,2)*u(k-3,15)’ 0.0012

-0.3660 ’u(k-2,5)*y(k-5)’ 0.0013

0.3352 ’u(k-3,5)*y(k-5)’ 0.0009

-0.1447 ’u(k-3,2)*u(k-4,19)’ 0.0007

Table 3.2: Polynomial NARX Model 3

The model terms should be interpreted as:

θ ∗ z(k − delay, var) (3.32)

Where θ is a constant, and z is the corresponding output y or input

u (given by var), delay is the lagged sample the model has to use when

producing a forecast. For example, the second term is:
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1.1431 ∗ u(k − 4, 2) ∗ u(k − 1, 3) (3.33)

The term must be read as: 1.1431 times injection well 2 with a time delay

of 4 months multiplied by injection well 3 with a time delay of 1 month. The

resultant model estimate is the sum of all term values.

From the model’s structure it results clear which are the most significant

inputs (injection wells). The terms are given in their order of contribution

towards the output (oil production), the most important ones appear at the

top of Table 3.2. In the case of the analysed production well, the frequency

of appearance from the injection wells is given by the following table:

71



Injection Well Frequency

1 2

2 4

3 5

4 1

5 2

6 0

7 1

8 0

9 0

10 0

11 0

12 0

13 2

14 1

15 3

16 1

17 0

18 1

19 2

20 0

Table 3.3: Injection Well Frequency-Model 3

From the model’s structure it results evident that the most significant

injection wells are wells 2,3 and 15. It is on these wells where changes on the

injection rates would have a greater effect on production.
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From the frequency table it can be observed that only 12 from the 20

injection wells appear in the model’s equation. If the analysed production

well was the only one in the field it would be advised to close the operation

of those 8 injection wells which do not contribute towards production. In

order to determine which wells should close operations, an individual model

for every production well should be estimated. Based on the final model

equation terms, those injection wells which contribution is small or none

should be reviewed for future operations.

3.3 Conclusions

On the current chapter, it is shown how to extract meaningful information

from a dataset containing production/injection rates coming from an oper-

ating oil field by using the NARMAX methodology.

The importance of data pre-processing is demonstrated. Without an

adequate handling of outliers, missing values and data normalisation it is

likely that the estimated models would lead to incorrect analysis and re-

sults. NARMAX models can provide a powerful tool for analysing a dataset.

Specifically, polynomial NARX models offer flexible transparent equations

which can be directly linked to the field’s physical parameters. This enables

the possibility of having a broader understating of the field’s dynamics, which

is not straightforward on traditional black box models. However, the selected

parameters for estimated models must be chosen in accordance to the physi-

cal system. The resultant models must be validated using both quantitative

and qualitative analysis.
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The implementation of the FROLS algorithm provides very intuitive re-

sults since the model’s terms are selected in their order of contribution, this

has a direct relation to which injection wells are the ones with greater effect

towards oil production. Based on these results, production engineers can

take decisions which would lead to an efficient use of the resources, better

planning for water injection and greater recovery rates.
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Chapter 4

Novel Probabilistic NARX

Neural Network Model

Approach

In theory, a single layer neural network can approximate any continuous

function [75]. However, in literature many authors prefer using several lay-

ers leading to better data fitting approximation at the cost of more com-

plex structures. The structure selection process consists in determining an

appropriate number of hidden layers, hidden neurons, selecting an appropri-

ate activation function for the neuron perceptrons and chosing the correct

weights between neurons. Once an activation function has been selected,

the parameters within this function also have to be estimated, for example

a Gaussian function has 3 parameters, mean, standard deviation and centre.

As it has been mentioned, the selection of the the network structure and the

number of parameters to estimate are non-trivial tasks that require consid-

erable computational time. Some of the most popular training algorithms
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can be found at [76] and [41].

4.1 Single Layer Multi-Scale Radial Basis Function

Models

Obtaining a good reliable neural network model requires the estimation of a

large number of parameters, consumes considerable time and the resulting

model is a black box, where no direct interpretation of the physical param-

eters can be observed.

Motivated by the complexity of the problem, Billings and colleagues de-

veloped a simple single layer neural network model, this model structure is

linear in the parameters and can be trained using conventional non-linear

optimisation methods, or the well known FROLS algorithm [77] [78].

If a Gaussian function is used as the activation function, the case of a

single-input single-output model with multiple centres, the function can be

represented by the following expression [55]:

f(x) = w1(e
−

1

2σ
(x−c1)2

) + w2(e
−

1

2σ
(x−c2)2

) + ...+ wN (e
−

1

2σ
(x−cN )2

) (4.1)

For the multivariate case the previous expression can be extended as:

x1 =


x1(1)

x1(2)

...

x1(N)

 , x2 =


x2(1)

x2(2)

...

x2(N)

 , xN =


xn(1)

xn(2)

...

xn(N)

 , y =


y1(1)

y1(2)

...

y1(N)


(4.2)
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Arranging the terms on Equation 4.2, the model can be summarised as:

y(k) =

N∑
j=1

ϕ(x(k);σ, x(j)) + e(k) (4.3)

The number of candidate centres is given by j = N , the term e(k) rep-

resents the error between the data and the predictions generated by the

model. The weights can be estimated by solving a simultaneous system of

linear equations.
y1(1)

y1(2)

...

y1(N)

 =


ϕ11 ϕ12 ... ϕ1N

ϕ21 ϕ22 ... ϕ2N
...

... ...
...

ϕN1 ϕN2 ... ϕNN




w1

ww

...

wN

 +


e(1)

e(2)

...

e(N)


(4.4)

Several studies show radial basis functions with a single scale (standard

deviation) have limited performance for dynamical modelling, a detailed ex-

planation about this issue can be found on [79], [56], [80]. This limitation is

because not all input variables contribute to the same degree to the system’s

output.

If large-scale values are selected, global dynamics are captured. On the

other hand selecting small-scale values only captures local data behaviour.

In literature, this problem has been solved by adaptively adjusting scale val-

ues, but this approach leads to complicated practical implementation and

optimising the scales size is computationally expensive [81] [54].

The challenge has been solved by using different scales and then estimat-

ing a set of candidate terms. The most significant terms and corresponding
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scales can then be selected using the FROLS algorithm.

A multi-input, multi-scale single output Radial Basis function is de-

scribed by the following expression [55]:

f̂(x(k)) =
I∑
i=0

J∑
j=0

Nc∑
m=1

θi,j,mφi,j,m(x(k);σi,jm , cm) (4.5)

If a Gaussian function is selected as an activation function the previous

expression changes to:

φi,j,m(x(k);σi,jm , cm) = exp

− n∑
r=1

(
xr(k)− cm,r

σ
(i,j)
m,r

)2
 (4.6)

The 1/2 term on Equation 4.1 is now irrelevant since many scale values

will be evaluated, multiplying the standard deviation by a constant does not

change anything.

As it can be observed on Equation 4.6, the number of candidate terms

is dependent on the number of centres and the number of candidate scales

that will be evaluated for every centre’s value. Therefore, the selection of the

function’s centres is another critical parameter. When using a time series

approach, lagged variables must be considered, the previous equation can be

written as:

φ(x(k);σ, cj) = exp
[(y(k − 1)− cj1

σ

)2

+ ...+

(
y(k − ny)− cj,ny

σ

)2

+

(
u1(k − 1)− cj1

σ

)2

+ ...+

(
un(k − nnun)− cj1

σ

)2 ]
(4.7)
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The number of candidate scales and their size is something that must be

selected. For normalised data (from 0 to 1) a good starting scale value is
√

10

[82]. This value has proven to be large enough to capture global dynamics

while local dynamics can be captured by smaller scales.

The number of initial candidate terms is:

Ns = (I + 1)(J + 1)Nc (4.8)

Where I + 1 is the number of selected output scales, J + 1 is the number

of input scales, Nc is the number of selected centres.

The FROLS algorithm can be used to train the model [56]. The method-

ology provides a trade-off between simple single layer radial basis functions

and complex network structures where non-trivial algorithms have to be im-

plemented in order to estimate the model’s parameters.

The methodology can be summarised on the following steps:

1. Select the candidate kernel centres, either all points in the dataset or

a few by a cluster algorithm.

2. Heuristically assign the number of scales and their values.

3. Use selected centres to form a 2D grid.

4. Form a MSRBF where the inner parameters are defined by the 2D grid.

5. Convert the MSRBF network into a linear in the parameters form.

6. Select the most significant terms using the FROLS algorithm.
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The selection of the number of centres can drastically increase the number

of candidate terms. If the size of the dataset we are working with is not

excessive (Less than 10,000) we can then place the radial basis centres at

each of the points from our dataset.

4.2 Implementing MSRBF Models for EOR Mod-

elling

Multi-scale radial basis function NARX models have shown their capability

on diverse applications such as: liquid level through a DC motor, artificial

complex systems and heat exchanger system [83], [84]. However, the model’s

benefits have not been explored in the area of history matching. The chal-

lenge of our application is that the oil field under analysis has 20 injection

wells, so we have to consider at least 20 inputs, this means that we have to

select the centres for at least 21 functions (20 inputs + 1 output) compared

to the Single-Input Single-Output (SISO) systems where the model has been

used.

Since the analysed data set is not very large, all the data points were used

as candidate centres (57 points for training the model). Future production

values depend on the previous state of the reservoir. Therefore, a time series

approach must be applied. The model’s structure that was implemented is

the one shown on Equation 4.7.

As a rule of thumb following a suggestion of Chen, all data values were

normalised from 0 to 1, a maximum value of
√

10 was used for all the can-

didate scales, further smaller values were estimated as follows [82]:
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σy,u = 2−i,jσy0,u0 (4.9)

Where σy0 and σu0 are the maximum output and input scale values, re-

spectively. The number of candidate scales is given by i for the output scales

and j for the input ones. During the construction of candidate terms, a set of

different combinations between the input and output scale values are tested

as on Equation 4.8.

There is no rule for determining what are the appropriate scale values or

number of lags, these parameters have to be determined heuristically.

A set of different models was estimated to determine the best parameters.

The number of candidate scales was set to 5 ranging from
√

10 to
√

10∗2−4.

The number of lags was increased heuristically until no improvements on the

model’s predictions were observed. The following plot shows the how the

model’s performance changes according to the number of output lags.
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Figure 4.1: Output Lag Estimation

As it can be observed on the previous plot, the model’s performance

seems to change randomly and independently of the number of output lags.

However, according to the plot, the model containing 5 output lags outper-

formed all others.

After selecting ny = 5 as the reference staring point, the same procedure

to estimate an appropriate number of input lags was followed. The number

of input lags was gradually increased to 10, from which the optimal value

was observed.
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Figure 4.2: Input Lag Estimation

From Figure 4.2, the optimal input number of lags is 4 as it minimises

the mean square error. According to the performed tests, the best model

should be the one with ny = 5 and nu = 4. This model’s performance is

shown on the following plot.
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Figure 4.3: MSRBF Model ny=5 nu=4

As it can be observed on Figure 4.3, the model’s performance is quite

poor. One step ahead predictions do follow the measurements with an offset

while the model predictive output is far from the measured dataset. See

Appendix A for model’s structure.

After analysing the structure from the generated models an interesting

pattern was found. The FROLS algorithm selected those terms with large

input scale values, this happens because on a time series model the most

significant term is y(k − 1), as a consequence one step ahead predictions

can be very good if most of the model’s weight is placed on this term. On

the other hand, by doing so the model predictive output becomes unstable

leading to poor long term prediction results.
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Selecting input terms with large input scale values means the inputs don’t

affect the output, in our case it would mean that injection rates do not af-

fect oil production which is an incorrect analysis. This is unacceptable; the

model must be able to represent the system’s dynamics in the long term,

and account for the system’s inputs.

There are two options for increasing the input’s effect on the model’s

output, one is reducing input scale values and the other is by increasing the

number of lags on the input variables.

As it has previously been presented, determining an appropriate number

of lags is a non-trivial task for non-linear systems. For linear systems, cross

correlation or partial cross correlation functions can help to determine an

appropriate number of lags [33].

For the single-input single-output case, tuning the model is a straight-

forward process since it is relatively easy to test many scales with a set of

input-output lag combination. In the case of EOR the story is a bit more

complicated. The number of input variables can can be quite large (one for

every injection well), therefore the number of possible combinations is huge.

The number of possible combinations is given by the following equation:

N = [(σu1)(nu1)][(σu2)(nu2)]...[(σun)(nun)][(σy)(ny)] (4.10)

Where σ are the corresponding scales and n the number of lags. For

example, using 6 delays for all input variables and 2 delays for the output

and 5 candidate scales leads to the following number of combinations:
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N = (5 ∗ 6)20 ∗ (5 ∗ 2) = 3.4868(10)30 (4.11)

Testing all the possible combinations is almost impossible, there are sim-

ply too many for a computer to process. Before analysing the dataset we

can’t know what the most appropriate model structure is and it’ll be very

easy to end up with a poor model.

One of the main issues MSRBF models have to deal with is how to

manually adjust the dependency on certain input variables if we do not

know anything about the physical system properties. In many cases we may

actually want to understand how the variables are related to each other by

estimating a model, by using a MSRBF model this task becomes a very

computationally expensive task if the number of inputs is significantly large.

4.3 Novel Pruning Method for NARXMSRBFMod-

els

In literature, most of the applications where single layer MSRBF NARX

models are used deal with a low number inputs. It therefore results rela-

tively easy to estimate a decent number of candidate terms which will lead

to a good model. If the number of inputs is relatively low, the presented

methodology on section 4.2 can directly be implemented [54],[85], [78].

If the analysed system has multiple inputs, the methodology becomes

either computationally expensive or inefficient leading to poor models if not

enough parameters are selected. In such cases the methodology can not be
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used off the shelf.

Motivated by the simplicity of MSRBF NARX models, a new variant

was developed to produce appropriate forecasts when dealing with a high

number of inputs.

In machine learning literature, it has been proved that model combina-

tion in most cases improves the performance of predictions. The idea is

simple, combine the predictions of many models and the final prediction in

average will be better than the ones from a single model.

In theory, models with different architectures would compensate for the

errors of other models. In practice, this approach is too complex since tuning

the parameters of all the models is nearly impossible [86].

On a traditional multi-layer neural network structure, complex input-

output relations can be built by estimating a set of weights between the

layers. This process can be time consuming and computationally expensive.

If the dataset is not very large, it is very likely that the network will be

affected by noise, therefore over-fitting may happen.

Finding an appropriate parsimonious network structure can be a chal-

lenging process. If the network is too large, the estimation of unnecessary

parameters will happen, if the network is too small its ability to create es-

timates will be compromised. In literature, it has been found that small

networks are the ones with the best generalisation performance but tuning

the parameters can be a complex task. To deal with the mentioned issues
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when working with neural networks, researchers have developed diverse tech-

niques such as pruning the original structure, a good summary of the most

popular methods can be found on [87]. Regardless of the pruning algorithm,

the concept of combining of estimates from simple model structures in all

reported cases produced better generalisation estimates than a single model

containing all the inputs and hidden layers.

The idea of combining models comes from natural evolution. In nature,

reproduction involves taking half of the genes from each parent producing

a random mutation. This approach has proven to be the most effective for

evolution, where the weaknesses from one parent are compensated by the

strengths of the other. On the other hand, asexual reproduction replicates

a child from a parent coping all its properties, this process is faster than

combinational reproduction.

A direct analogy can be made, the more combinations the better and

more resistant to diseases the children would be. Therefore, the more mod-

els that are estimated, the better and less sensitive to noise the output would

be. In the case of asexual mutation, the analogy would be to over-fit a model,

which will only replicate the training data but can be estimated in little time.

In order to deal with the problem of mixing and estimating models with

different structures, Srivastava and colleagues presented a simple solution for

multiple layer neural networks. The methodology is known as "Dropout",

where some of the links and percetrons on the network are randomly deac-

tivated [86].
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Figure 4.4: Drop-out Diagram

[86]

By eliminating elements on the network, less parameters have to be es-

timated leading to less complex structures, less parameters to estimate re-

quiring less computational time when building single models.

The idea is to build many single drop out models and then use an ensem-

ble structure to forecast with all of them, combine the forecasts and produce

a final prediction.

For the case of MSRBF NARX models there is only one layer, therefore

only inputs can be deactivated from the structure. The dropout diagram for

these models can be appreciated on the following figure.
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Figure 4.5: MSRBF Dropout Diagram

For the analysed case study, there are at least 20 elements on the network,

representing every lagged input. The idea is to estimate different models by

randomly changing which inputs should be considered on the network struc-

ture.

Srivastava, suggests using a probabilistic method for selecting which in-

puts should be present when estimating a new model [86]. There is not an

"optimal" value for this probability, in literature it is suggested to use a

value between 0.5 and 1. But this value is based on specific experiments and

model structure.

Since this probabilistic approach has never been used for MSRBF NARX

models, the suggestion is vague. By using a value higher than 0.5 we would

expect to have most of the inputs active. This approach would help to reduce

the number of candidate terms, but it would still be very high.
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When estimating models for history matching, it is very likely that the

analysed field has more than 10 injection wells. So depending on the number

of inputs, the "activation" probability value can be adjusted. A problem of

using a low number of inputs is that the estimated models might not be

able to replicate the system’s dynamic and poor forecast estimates will be

produced. To deal with this problem, a value of 0.5 was used on the present

case study, by doing so the number of candidate terms to be estimated is

substantially reduced.

Instead of changing the scales as on Equation 4.7, a number of 3 random

scales values between 0 and
√

10 were used when generating candidate terms.

As it has previously been mentioned, estimating an appropriate number

of lags for non-linear systems is a non-straight forward process. By using

the results from the polynomial model, the maximum lag values set as the

ones from the best polynomial and MSRBF models.

The new proposed methodology can be summarised as follows:

1. Define maximum number of lags (By correlation analysis, heuristically

or by any other method).

2. Randomly select the number of scales and their values.

3. Use a probability function of 0.5 to activate approximately half of the

inputs (This value can be tuned depending on the dataset).

4. Use selected centres to form a 2D grid.
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5. Form a MSRBF where the inner parameters are defined by the 2D grid.

6. Convert the MSRBF network into a linear in the parameters form.

7. Select the most significant terms using the FROLS algorithm.

8. Compute model forecasts. If model passes the requirements, keep it, if

not, discard it.

9. Combine forecasts from all successful models.

10. Repeat steps 1-9 until no further improvement is observed,

The requirements from element 8 on the list can include: MSE, % of fit,

residuals distribution or another performance criteria.

The number of required models depends on the analysed dataset and

must be determined every time a new system is analysed. For the Scott

Field case study, the requirements were: a MSE value of 0.001 for the whole

dataset and a maximum gain of 10% for the validation data, both for the one

step ahead prediction and the model predictive output. These parameters

can be adjusted depending on the required accuracy.

The following plots show how the MSE error changes according to the

number of models on the ensemble structure.
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Figure 4.6: No of Models vs MSE OSA
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Figure 4.7: No of Models vs MSE MPO

93



As it can be observed on the previous plots, the mean square error re-

duces as the number of models on the ensemble increases. For the Scott Field

example, it appears that the MSE converges around 0.004 for one step ahead

predictions and 0.0025 for the model predictive output estimates. Accord-

ing to the results, after combining 12 models the MSE reaches a steady value.

After running several tests, it was found that by using the selected pa-

rameters, only 0.6% of all the generated models passed the requirements.

Since it is known how long it takes to create a new model it is therefore

possible to know how long it will take to create an appropriate ensemble.

For the present case study, it takes approximately 40 seconds to estimate a

model. So about 1.85 hours to find one that complies with the requirements.

Therefore, in order to come up with a decent prediction it may take one day

of computing resources.

The produced forecasts from each of the 12 models are displayed on the

following plots.
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Figure 4.8: Ensemble OSA Predictions
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Figure 4.9: Ensemble MPO Predictions
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As it can be observed on the figures 4.8 and 4.9, all model predictions

follow the trend of the measured data. But some models can track it better

depending on the operating point. The final ensemble prediction is shown

on the following plot.
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Figure 4.10: Ensemble Prediction Performance

From figure 4.10 it results evident that the prediction performance highly

improves by using the suggested dropout methodology compared to the re-

sults shown on Figure 4.4. Quantitatively, the prediction performance for

the validation data is summarised on the following table:

Model MSE OSA MSE MPO

Single 20 Input Model 5.38E-03 1.44E-01

12 Drop Out Model 9.17E-05 4.67E-04

Table 4.1: MSRBF Model Performance Comparison
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As it can be observed on the previous table, the estimates’ performance

increased by approximately 59 times for one step ahead predictions and 300

times for the iterative model predictive output. The performance could in-

crease even more if more models are built and considered on the ensemble.

However, there is a trade-off, the more models that incorporated the less

significant the improvement is, therefore a good approach would be plotting

the MSE or any other performance index compared to the number of models

on the built ensemble.

The following table shows the MPO prediction performance for the dif-

ferent type of models estimated on this thesis.

Polynomial NARX MSRBF NARX Multi-Layer NN

MSE MPO 2.32E-04 4.68E-04 1.25E-03

Table 4.2: Model Performance Comparission

The prediction performance obtained by the polynomial and pruned

MSRBF NARX models is higher than the one obtained by the standard

multi-layer neural network as it can be seen on the following table.

4.4 Conclusions

Single layer multi-scale radial basis functions have proven to be very effective

for finding a relation between input and output time series variables. The

main advantage of this approach is the use of a simple training algorithm

like the FROLS algorithm for selecting the most significant terms instead of

complex non-linear optimisation methods.
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The original multi-scale single-layer model by Chen and colleagues is

easy to implement when the number of inputs is not very large [67]. How-

ever, when dealing with a high number of inputs like EOR modelling, the

methodology requires the estimation of a huge number of candidate terms,

demanding large computational resources. At the end, the methodology

might end up with a poor performance model if the chosen parameters are

not appropriate.

By randomly deactivating inputs and training models with simpler struc-

tures, the number of estimated parameters for a single model drastically re-

duces. This results in accurate forecasts even when structure of the models

is not optimal.
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Chapter 5

Estimating Future Uncertainty

Uncertainty is a concept that has to do with the degree of being sure what

will happen in the future. History matching shares the same objective by

adjusting models which enable us to look into future production scenarios.

Based on those scenarios, take decisions that will increase oil production

performance [88].

The only certain thing about forecasting future states, is that uncertainty

will happen [89]. Uncertainty tells us how far we may be from the real

value. Uncertainty might be random (having no pattern), fuzzy (variable

level given by descriptions and not numeric values) or incomplete (coming

from incomplete records) [90].

5.1 Feature Selection Comparative Study

Feature selection has the objective of selecting a subset of variables, discard-

ing those variables that are not relevant to the problem understudy. For
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EOR modelling, determining which injection wells are the most significant

is a matter of great importance. Having active injection wells that do not

contribute towards oil production has a significant cost and negative impact.

A variant of feature selection known as variable ranking has the objec-

tive of rating input variables according to their significance in the problem

understudy. The results obtained by these methods are similar to the ones

obtained by the final polynomial NARX model equation by using the FROLS

algorithm.

Considering a set of n input variables xk,i(i = 1, .., n) and one output

variable yk, variable ranking uses a score function S(i) to sort the input

variables in a decreasing order according to their significance [91]. In liter-

ature, diverse methodologies for selecting the most significant variables are

available, however some use what is known as feature transformation. These

methods, are not recommended for problems where the meaning of the fea-

tures is important as in EOR modelling. Therefore, these methods were not

analysed.

The list of available methods without transforming the existing features

into new features includes: All possible subsets selection, stepwise regression,

bagged decision trees and regularisation [92].

All possible subsets selection works by generating models using all the

possible input combinations and then estimating a model for each combina-

tion. This brutal force method works well for problems where the number

of input variables is not very large. For the problem of EOR the number
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of input variables can be significantly large, for example if a 6-month de-

lay case wants to be analysed for 20 injection wells, the number of possible

combinations rises to:

N = 220∗6 = 1.1529 ∗ 1018 (5.1)

This number of combinations is too high for a computer to handle, mak-

ing the approach infeasible.

Decision trees work by estimating sets of models that include only a frac-

tion of the input variables, the variables are ranked according to their effect

when being present on each of the ensemble models. Stepwise regression

works by sequentially adding or removing input variables until an accept-

able model is estimated.

For the present case study, the selected method was sequential feature

selection. This approach has the advantage of being able to use any type of

model structure. This is very important since non-linear significance of input

variables can be assessed. On the other hand, correlation based methods can

only measure linear contribution of from the input variables, a good review

of the most popular methods is given by Kudo [93].

Sequential feature selection can be forward, where features are added un-

til no improvement is observed. Or backwards, where the methodology starts

with a model containing all features, and features are sequentially removed

until an acceptable set is found. For the present study, the forward strategy

was chosen, since for EOR modelling it is more intuitive to find injection
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wells from the most to the least significant.

The sequential feature algorithm can be summarised on the following

steps:

1. Start with an empty set Y0 = {0}

2. Select the next best feature x = argmax[J(Yk + x)]

3. Update Yk+1 = Yk+, k = k + 1

4. Go to step 2 until Ck ≤Metric

Where Ck is the value held by a criteria variable at iteration step k. Vari-

able Metric is a threshold value for determining when to stop the search of

features x.

For the presented analysis, the objective is to compare the results ob-

tained by the polynomial NARX model. From Tables 3.2 and 3.3, we can

see that only 12 of the 20 injection wells were selected by the FROLS algo-

rithm. For comparison purposes the sequential feature selection process was

stopped at 12 features. The following flow diagram shows the criteria for

selecting the most significant injection wells.
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Figure 5.1: Flow Chart For Sequential Feature Selection Algorithm

The models shown on the previous diagram were estimated using 13

hidden neurons, one hidden layer and 12 delays for each variable. These

parameters are the same that were used on section 2.5.1 to produce the best

performing multi-layer neural network model.

Due to the differences that might exist with the initial conditions when

training the multi-layer neural network using the Levenberg-Marquardt algo-

rithm, a set of 10 different neural networks was estimated for every sequential

feature addition. The mean of the 10 generated MSE values was used as the

criteria for selecting the most appropriate feature to add into the model. To

rank the contribution of the selected inputs, a statistical analysis was per-

formed.

The feature selection process was run 20 times. This process is necessary

for observing which features are selected first over a set of many experiments

discarding the errors that could appear from running a single test. The

number of runs was selected by observing changes on the order of selection

from the parameters. The following plot shows the change in ranking when
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selecting one of the features. As it can be observed the values converge after

12 experiments.
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Figure 5.2: Moving Average Ranking For Input 3

The required number of models to be estimated using the previous ap-

proach can be quite large depending on the number of original and desired

features to obtain. The following table shows the number of models to be

estimated for every test.
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Selected Features Remaining Features No of Estimated Models

1 20 200

2 19 190

3 18 180

4 17 170

5 16 160

6 15 150

7 14 140

8 13 130

9 12 120

10 11 110

11 10 100

12 9 90

Total 1740

Table 5.1: Number of Estimated Models

Since it was necessary to run the test 20 times, the total number of es-

timated models is 34800 (1740*20). This an inconvenience of the sequential

feature selection method, it is very computationally expensive requiring long

time to obtain the results.

The following table shows the computational time required to estimate

all the polynomial terms and select the 15 most significant terms as well

as the time required to run the analysis for sequential feature selection us-

ing 10 network estimations per feature and running the experiment 20 times.
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Polynomial Multi-Layer NN 12 Features

Model Estimation 0.87 Sec 29893 Sec

Terms Selection 7.61 Sec 13303.8 Sec

Total 8.48 Sec 43196.8 Sec

Table 5.2: Feature Selection Time Comparison

The results shown on Table 5.2 were obtained running the analysis on

Matlab 2015b using an Intel i5 1.3hz processor. The difference in processing

time is huge, it takes 5094 times more to rank input variables using the se-

quential feature selection algorithm.

The significance of the input variables is presented on the following table.

Ranking values are given in a descending order, 1 representing the most

significant variable.
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Input Rank NN Rank Poly Difference

1 11 4 7

2 7 1 6

3 2 2 0

4 1 7 6

5 12 11 1

6 18 0 0

7 15 9 6

8 9 0 9

9 16 0 0

10 14 0 0

11 19 0 0

12 6 0 6

13 4 5 1

14 5 10 5

15 17 3 14

16 13 7 6

17 3 0 3

18 10 12 2

19 8 6 2

20 20 0 0

Table 5.3: Input Variable Ranking

The rank of the polynomial input variables was estimated by considering

the number of times a term was selected by the FROLS algorithm as well as

its relative position on the model. The weights were given a corresponding
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factor of 14 depending on its position from Table 3.2. A value of 14 was

chosen since there are 14 positions an input variable can take (14 terms

including input variables). The weights can be computed as follows:

W (xi) = L1 + L2 + ..Lk (5.2)

Where Xi is the corresponding input variable i, and Lk represents the

number of times the input variable appears on the model equation. For

example the corresponding weight for input 1 is:

W (x1) = 14 + 8 = 22 (5.3)

Input 1 appears twice on the final polynomial model. First on the second

position (L1 = 14) and then on the eighth (L2 = 8).

According to the results shown on Table 5.3. The models agree on the

ranking of 6 from the 20 input variables. For most cases, there is a good

match between the two approaches, existing small differences on 11 vari-

ables. The biggest difference in ranking is on input variable 15. This differ-

ence might be due to how the sequential feature algorithm determines which

variable is the most significant according to the prediction error. After per-

forming a full analysis by observing the final equation for all oil production

well models, injection wells were ranked as follows:
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Injection Well Add Up Add Up Ranking

1 67 1

2 44 13

3 28 17

4 61 3

5 61 3

6 20 18

7 59 5

8 32 16

9 55 7

10 39 14

11 54 9

12 53 10

13 55 7

14 53 10

15 37 15

16 46 12

17 56 6

18 11 19

19 63 2

20 0 20

Table 5.4: Injection Well Ranking

From the previous table it is clear that the most significant injection

wells are wells 1,19,4 and 5. For full ranking results see Appendix B. The

Add up column shows the weighted sum from an injection well appearance
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as on Equation 5.3 for all production wells. The Add Up Ranking column

shows the ranking for every injection well on the field based on the Add Up

column, the ranking order goes from 1 to 20, 1 being the most significant.

The following plot shows how the prediction error changes according

to the number of features that are integrated into the multi-layer neural

network.
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Figure 5.3: MSE vs Added Feature

From Figure 5.3 the MSE does not always decrease as new features are

added into the model. If the order of variable selection changes, the sub-

sequent models will also differ from other possible combinations which will

result in a non-optimal solution. Since we don’t know what the true answer

for this problem is, we can only say that the presented methods should only

be used as a diagnostic tool when ranking injection wells. Input variable
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ranking is a problem understudy for industrial applications, no method has

been capable of providing a deterministic result [50], [94].

5.2 Introduction to Risk Analysis

The concept of risk is very popular in modern finance. Every time there is a

trading activity there is a certain level of risk [95]. Risk is defined as threat

of a loss of time that can’t be regained [96]. In other disciplines this concept

is not very widespread, but this does not mean it is not present.

On this chapter, it is shown how risk analysis tools developed in math-

ematical finance can be applied to our NARX models and the problem of

estimating future oil production by means of water injection. We are always

exposed to external factors that can take us to a different scenario from the

one we expected [97]. As long as we can’t be truly sure of what will happen

in the future, we will be exposed to a certain degree of risk. Forecasting a

future scenario is possible since time series models can relate dependencies

on the analysed variables from previous observations [98].

Uncertainty in predictions begins with the data we use for building our

models, if we have bad data, we will have a poor model leading to bad predic-

tions. There are several issues related to data collection that can happen on

a real case study, this includes: inaccurate measurements or incomplete sets

of observations. Both issues are susceptible to human error, faulty instru-

ments and incorrect sampling period [98]. The difficult part is knowing how

inaccurate or reliable the data is, we therefore need a mathematical descrip-

tion to measure this parameter. Using intervals provides a good description.
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For example, if variable x can hold values between the interval [x1;x2] we

can say that the uncertainty of x lies within this range. How likely it is for x

to be closer to x1 or x2 has to do with a membership function that describes

the probability of the distribution. This is known as a fuzzy variable [98].

x = x, νx(x)|x ∈ X (5.4)

Uncertainty on the previous equation is represented by the membership

function νx(x).

Now that the concepts of risk and uncertainty have been defined, we

can make use of the techniques developed in risk analysis. As a definition

risk analysis tools determine which factors can have a greater impact on the

project we are analysing [99]. In our case these tools provide information

about the input variables’ effect on the output. There are two main divisions

within risk analysis: qualitative and quantitative methods, which combined

form a risk assessment.

5.2.1 Qualitative Methods

Qualitative methods are based on intuition, previous experience or simply

a judgement for decision making. These methods are normally used when

numerical data is not available or the problem’s uncertainty is so low that

there is no need for a mathematical approach.

The analysis qualitative methods provide is very important. At its first

stage, qualitative methods identify what the risk sources could be. Risk

sources are then prioritised depending on the potential impact they might
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have [100].

Most of the qualitative tools have been developed in the area of project

management. But their benefits can be extended to other fields. In the

case of petroleum engineering, Zoveidavianpoor and Jalivani have identified

which are the main sources of risk and their effects when an oil field is under

production by means of fluid injection [101]. The main sources of possible

uncertainty they identified are: air, water and ground contamination, high

noise levels and excessive water requirements having a direct effect on the

availability of surface water for local communities.

For the case of the present study, the main concern is what factors might

affect the estimation of a reliable oil production model. A relevant analysis

should indicate what factors might lead to issues on the model performance

and estimation. A popular qualitative for tool for this task is the Fishbone

diagram. The Fishbone diagram also known as the cause and effect dia-

gram graphically shows what affects a certain variable [102]. The diagram

looks like a fish skeleton, where each of the bones represents a component

that might affect a certain variable, this variable is represented by the fish’s

head. The following diagram shows the elements that can affect the model’s

performance and estimation.
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Figure 5.4: Fishbone Diagram

If the estimated model is performing poorly, it is worth looking at the

Fishbone diagram to further investigate what might be the root cause of the

problem.

5.2.2 Quantitative Methods

Quantitative methods allow us to assign values of occurrence to different

scenarios. This makes quantitative methods attractive and reliable as long

as the appropriate conditions are considered. According to Comunidad de

Madrid [99] the most popular quantitative methods are: Analysis of likeli-

hood, analysis of consequences and computer simulations.

With the development of computational tools, the most popular method

in risk analysis are computer simulations using a Monte Carlo strategy. The

idea is to use a large number of solutions to evaluate the expectation value

of ε(f(ST ))[95]. According to the law of large numbers, if Yn is a sequence
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of random distributed variables, the sequence can be approximated to the

following expression:

lim
N→∞

1

N

N∑
j=1

Yj = ε(Y1) (5.5)

The previous expression shows that using a large number of samples will

make an equation converge at a final value. The degree of accuracy will

depend on the number of samples. The difficulty comes with selecting the

number of samples, the idea is to simulate the future with a sufficiently broad

of scenarios to be representative of a real situation.

5.3 Monte Carlo for NARX Models

For the present case study, we used both NARX models, polynomial and

single layer neural networks as our risk models, where we applied a Monte

Carlo strategy and observed what is the most likely thing to happen in the

future.

According to the central limit theorem, when using random samples a

function’s value can be approximated to the following expression[95]:

ε(X) +

√
V

n
N(0, 1) (5.6)

Where
√

V
n is the standard error due to different runs using n number of

samples. So in order to find the appropriate value of n, the standard error

should not be more than a pre-defined threshold value. It is assumed that

the interval from the generated values lies between 0 and 1. The problem

with this approach is that we don’t know in advance what the expected

value is for any of the analysed variables. Some approaches for determining
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the optimal number of samples have been developed, but most only give

a brief guideline and suggest that sampling depends mainly on the type of

phenomenon under study[103] .

Since most oil companies plan their future operations one year in ad-

vance, only 12 months ahead of oil production were estimated by using the

iterative model’s predictive output forecasts.

We designed a simple but effective heuristic methodology for finding an

adequate number of iterations. The number of iterations was incremented

using different intervals. For every suggested value, one-year forecasts were

estimated using the best models from chapters 3 and 4. Only the values

of the 12th forecast were analysed since it is on these forecasts were most

of the uncertainty happens. If any of the 3 analysed variables (minimum,

maximum and mean values) changed more than 10% on a different run, the

sampling size would then be increased again, if the variables’ value did not

change after 5 runs, then the sampling size for the Monte Carlo simula-

tion was determined. A tolerance level of 10% change was used since using

a tighter limit would drastically increase the number of required iterations

and the obtained benefit would be little. The results from our experiment

are summarised on the following tables.
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Polynomial Model

No of

Runs

Number of

Iterations
Min Mean Max Changes in %

1 1000 -1.3530 -0.0194 1.1945 Min Mean Max

2 1000 -1.7883 -0.0291 1.2057 32.1706 49.7460 0.9372

1 10000 -1.9673 -0.0184 1.4197 NA NA NA

2 10000 -1.7830 -0.0190 1.3121 9.3690 3.1879 7.5775

3 10000 -1.8255 -0.0189 1.6033 2.3865 0.0980 22.1928

1 25000 -2.2139 -0.0187 1.7148 NA NA NA

2 25000 -2.3963 -0.0237 1.5327 8.2375 26.6713 10.6227

1 50000 -2.3384 -0.0190 1.7751 NA NA NA

2 50000 -2.5274 -0.0177 2.0123 8.0830 6.9377 13.3621

3 50000 -2.0047 -0.0205 1.7440 20.6805 15.7315 13.3359

1 75000 -2.0138 -0.0203 1.7440 NA NA NA

2 75000 -2.2323 -0.0237 1.5692 10.8531 16.8312 10.0221

1 100000 -2.5561 -0.0214 1.7903 NA NA NA

2 100000 -2.4450 -0.0215 1.7880 4.3480 0.7825 0.1285

3 100000 -2.3108 -0.0208 1.8931 5.4882 3.4069 5.8778

4 100000 -2.3022 -0.0228 1.7662 0.3727 9.4679 6.6993

5 100000 -2.3497 -0.0212 1.7559 2.0656 6.6422 0.5861

Table 5.5: Monte Carlo Iterations for Polynomial Model
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MSRBF Model

No of

Runs

Number

of Iterations
Min Mean Max Changes in %

1 1000 0.0122 0.0237 0.1972 Min Mean Max

2 1000 -0.1419 0.0894 0.3559 1258.1136 277.5240 80.4730

1 10000 -0.1949 0.0296 0.3282 NA NA NA

2 10000 -0.2067 0.0903 0.4357 6.0570 204.6200 32.7521

1 25000 -0.2251 0.0499 0.4098 NA NA NA

2 25000 -0.2595 0.0902 0.4852 15.3015 80.7120 18.4063

1 50000 -0.2607 0.0566 0.4718 NA NA NA

2 50000 -0.2928 0.0903 0.4885 12.3090 59.5343 3.5431

1 75000 -0.3195 0.0680 0.5011 NA NA NA

2 75000 -0.3422 0.0902 0.5028 7.0886 32.7479 0.3534

1 100000 -0.3440 0.0735 0.5237 NA NA NA

2 100000 -0.3290 0.0904 0.5342 4.3548 22.9181 2.0077

1 150000 -0.3170 0.0679 0.5387 NA NA NA

2 150000 -0.3617 0.0903 0.5428 14.1001 33.1041 0.7602

1 200000 -0.3382 0.0736 0.5276 NA NA NA

2 200000 -0.3499 0.0904 0.5561 3.4523 22.8028 5.4177

1 250000 -0.3710 0.0969 0.5605 NA NA NA

2 250000 -0.3539 0.0904 0.5467 4.6218 6.7112 2.4560

3 250000 -0.3760 0.0903 0.5841 6.2588 0.0392 6.8366

4 250000 -0.3541 0.0903 0.5539 5.8082 0.0469 5.1642

5 250000 -0.3380 0.0904 0.5550 4.5476 0.0479 0.2081

Table 5.6: Monte Carlo Iterations for MSRBF Model
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As we can see from the previous tables there is no standard number of

iterations for the Monte Carlo simulation. We can also see that polynomial

and radial basis function models converge at different rates.

According to our results, the polynomial model requires less than half

of the number of iterations (100,000) compared to the radial basis function

model (250,000) to converge to a final value for 12 prediction steps ahead.
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Figure 5.5: Polynomial model predicted scenarios
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Figure 5.6: MSRBF model predicted scenarios

The previous plots show all the possible future scenarios from the Monte

Carlo simulation. Negative output values should be discarded, since it would

mean that oil production goes back in to the ground in some cases.

5.3.1 Risk Profile Analysis

As it can be seen on Figures 5.5 and 5.6, the predicted future scenarios from

the polynomial and MSRBF NARX models are not the same. So how do

we know which model is right and which is not? There is not a yes or no

answer since we can only guess what the most likely value will be based on

our models.

We have to keep in mind that mathematical models are only an ap-

proximation of the studied phenomena and can only partially capture the
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dynamics. According to the U.S Energy Information Administration, oil

reservoir models should only be considered as tool for finding alternative

futures, keeping in mind that future is uncertain and only a small sub-set of

the possible scenarios can be modelled under certain conditions [104].

The following plots show how the standard deviation changes with every

kth-step ahead the in the predictions, this is a measure of future uncertainty

as it exhibits how disperse the data is.
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Figure 5.7: Changes in Std Polynomial Model
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Figure 5.8: Changes in Std MSRBF Model

For the radial basis function model, the standard deviation value remains

about the same level for all the future prediction steps. This behaviour agrees

with the estimated predictions shown on Figure 5.6 where the values look

equally distributed. This is because the maximum values the model can gen-

erate are those that are close to the centre’s from the radial basis functions.

Therefore, any other values will be minimised and filtered out. On the other

hand, previous input values have a greater effect on the polynomial model

compared to MSRBF forecasts. This behaviour also agrees with Figure 5.5

where data looks more spread as the prediction horizon increases.

Risk analysis theory has developed a useful tool to quantify the uncer-

tainty of a future event. This concept is known as risk profile. A risk profile
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is the cumulative probability from −∞ to the value we want to evaluate. If

a variable’s value is highly uncertain, its Risk Profile will have a wide shape.

The variable’s uncertainty can be graphically analysed by only looking at

the risk profile plot.

There are different distribution functions that can be used for estimating

the risk profile, the most popular functions are: Triangular, uniform, discrete

and normal distribution [99].

Triangular distribution is very popular, it is very simple and provides a

good approximation for many real applications. Uniform distributions are

useful when the probability of any of the events is the same. In reality there

are few cases where this distribution can be used. Normal distributions are

the most used type of approximation for describing the likelihood of an event.

Most events on real applications follow a normal distribution and it’s been

therefore well studied, it is described by the following equation.

f(x) =
1

σ
√

2π
e−

1
2
(x−u
σ

)2 (5.7)

To determine what distribution was more appropriate for the generated

data, a histogram was created giving us a graphical view from the distribu-

tion.
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Figure 5.9: Histogram From Polynomial Model
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Figure 5.10: Histogram From MSRBF Model

For the polynomial model, it is evident that the predictions follow a

normal distribution. As the prediction horizon increases, the forecasts’ dis-

tribution takes a wider shape. For the first prediction plot, the distribution

is very narrow (the histogram has been zoomed in) indicating a high cer-

tainty on the corresponding production value.

For the radial basis function model, the distribution from the gener-

ated forecasts does not seem to change according to the prediction horizon.

According to Figure 5.10 we can see that the distribution is normal, but

skewered to the left, this is an indication that more data points lie to the

left side of the mean.
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After selecting a normal distribution for approximating the distribution

of the generated predictions, we could then proceed with estimating the risk

profiles for every k-th prediction step ahead. The results can be observed on

the following figures.
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Figure 5.11: Risk Profiles From Polynomial Model
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Figure 5.12: Risk Profiles From MSRBF Model

The previous risk profile plots are consistent with the previous analysis.

The plots’ shape corresponds to a normal distribution, our assumption for

using such approximation is then appropriate. For the polynomial model

case, the risk profile looks wider as the prediction horizon increases, while

for the radial basis function model, the risk profiles overlap each other since

the uncertainty remains constant independent of the prediction horizon.

Intuition tells us that uncertainty should indeed increase with the predic-

tion horizon, as every future scenario depends on the previous values leading

to an infinite number of possibilities. In this aspect the polynomial model

provides a more realistic view into what may happen in the future.

Based on the model’s output from the Monte Carlo simulation it is pos-
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sible to observe on how many cases the output lies within a certain range,

these ranges are known as bins. If the output lies more within certain bins

we can say it is more likely for the output to be driven into the range of

values specified by those bins. From the Risk profile plot, the horizontal

axis represents the normalised out value of the model’s output, in our case

the normalised oil production value. The vertical axis shows the cumulative

probability of the distribution obtained through the Monte Carlo Simulation,

in other words the probability of reaching certain production values.

Risk profile plots are very useful, besides graphically showing how un-

certain oil production will be in the future months. They provide a simple

tool for quantifying how likely it will be to reach the production goals for

the company in charge of the operating oil field.

The plot can be used in two different manners. For the first one, if we

want to know how likely it is to reach a certain production value at a specific

future month, we just have to look for the intersection between our desired

production value and the cumulative probability given by the plot without

the need of computing any calculations. For the second case, information can

be obtained in the opposite direction, if we want to know what production

value we can get at a certain probability confidence value, we just have to

look for the intersection between our desired probability value and obtain

the corresponding production level.
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5.4 Conclusions

Determining which are the most important injection wells in the field is a

complex task since the relation between injection rates and oil production

is non-linear. The polynomial model shows an intuitive scan of which could

be the most significant inputs from its equation. Determining the same in-

formation through a multi-layer neural network requires the use of a feature

selection algorithm which in most cases will be very computationally expen-

sive. It is hard to say which method is more accurate since for industrial

applications the true answer can’t be known in advance. The methods should

be used as complementary tools before making changes on the production

process.

When forecasting a future scenario, we always have to consider how likely

it is for a certain case to happen. Using Monte Carlo simulations gives us

a glimpse of what the future might look like, however we have to consider

a few aspects like how far into the future we want to predict, what is the

operating input range and the number of iterations we need in order to get

a decent guess.

Uncertainty has to do with the distribution of the model’s forecast data,

the more spread it is, the more uncertain a future scenario will be. Risk

profiles developed in mathematical finance are a very useful tool that lets us

estimate and visualise how likely it is for a certain scenario to happen at a

certain statistical confidence level. According to our analysis and simulations

the polynomial model provides a more realistic view into the future, consid-

ering that uncertainty on the estimated predictions increases with the pre-
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diction horizon, on the other hand the radial basis function model produces

estimates within the same range independently to the prediction horizon.
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Chapter 6

Production Optimisation

6.1 Problem Definition

Optimisation is defied as the action of making best of most effective use of

resources [105]. From this definition we can see that in almost every activ-

ity optimally using resources is the ideal goal to reach and must always be

implemented.

In the context of the oil and gas industry, the main challenges oil compa-

nies face is extracting as much hydrocarbons as possible, at the lowest cost,

for the longest period of time. In order to achieve this complex target multi-

ple resources and strategies are required (financial, human and technological

are some of the examples in the list) [106].

In the short term, petroleum engineers design a production strategy

which will meet every day targets and demand, while reservoir engineers

make sure resources are extracted in the most efficient way so that the reser-
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voir can produce for a long time while increasing recovery rates [107].

The success of meeting goals and achieving an appropriate production

performance depends on the decisions taken to drive future operating con-

ditions to a desirable point. Traditionally, the task has been completed by

performing volumetric analysis, material balance and decline curve analy-

sis methods [106]. These methods have proven to be effective but only at

limited scale, as reservoirs get more complex and the market is more compet-

itive these methods are no longer sufficient to satisfy the requirements the

industry demands. The key to success is then directly related to using the

most innovative methods which will lead to taking the best decisions that

will then drive operations to the best possible scenario.

Motivated by the current requirements, on this work the latest methods

in optimisation were reviewed and implemented.

6.2 Heuristic Optimisation Methods

The problem of optimisation is very important since it provides solutions to

issues we deal with in our everyday lives. Many optimisation methods have

therefore been developed. The list of available methods includes linear pro-

gramming, convex problems, multi-objective optimisation, multi disciplinary

optimisation, etc. A good review of the most used methodologies in engi-

neering can be found at[108].
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The standard optimisation problem can be summarised as follows:

Minimise : f(x)

gj(x) ≤ 0 j = 1,m

hk(x) = 0 k = 1, p

xiL ≤ xi ≤ xiU i = 1, n

(6.1)

From the previous equation, f(x) is the objective function, gj(x) is an

inequality constraint, hk(x) is an equality constrain function. The indepen-

dent variable x represents the search space where different values can be used

to reach optimality. The search space is limited by xiL and xiU.

Optimisation methods are used to solve the problem stated on Equation

7.1 where a combination of values satisfying the equalities and constrains

leading to the best feasible solution is considered as optimal.

The main issues optimisation methodologies have to deal with are: avoid-

ing local optima solutions, time to find solution, ability to handle constrains,

applicability in complex problems and solution accuracy.

Originally, optimisation procedures were analytical steps on which, math-

ematical expressions had to be manipulated to find a solution. As problems

increased in complexity and more restrictions on the independent variables

had to be considered, the application of such methods became non-trivial

and extremely complex. This led to the development of new methodologies.
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During the last decade thanks to the advances in computational tools,

heuristic optimisation algorithms have gained researchers attention from di-

verse areas leading to many successful applications. The most popular algo-

rithms can be found on "Handbook of Metaheuristics" [109].

Heuristics are solution methods that look for local improvement solutions

and higher level procedures that lead to finding an optimal solution. They

are a search procedure that continuously looks for a new solution which is

closer to reaching the objective function. These methods have become so

effective that they are probably the most used strategies for solving complex

problems. Heuristic methods depend on many parameters and the number

of solutions evolves as a trial and error process, thus optimality can not be

certified, but a very good approximation can be reached which in most cases

is enough to satisfy the needs of real application problems [109].

6.3 GRASP Optimisation Using NARX Models

Selecting the best algorithm has become a tricky process since there are

many options available, multiple algorithms claim to offer the best solution

for a particular problem. This is an issue that is well discussed by Manuel

López-Ibañez [110].

The performance of an algorithm can drastically change depending on

the tuned parameters, it is therefore really hard to compare the performance

of the different options, specially if long time was spent training a particular

algorithm. There are different criteria on which the algorithms can be eval-
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uated, but depending on the specific problem priorities might be different.

One of the most attractive algorithms is Greedy Randomised Adaptive

Search Procedure (GRASP). This algorithm was developed during the mid-

nineties by Feo and Resende [111], it has been mainly used in the area

of operations research solving issues in: logistics, manufacturing, partition,

transport, power systems, telecommunications and biology [112]. According

to our literature review, this algorithm has never been used in the area of

petroleum engineering solving the problem of maximising future oil recovery

by optimising water injection. Due to the success this methodology has had

in different areas we decided to combine our developed NARX models with

the GRASP optimisation algorithm and solve the problem of maximising

oil production on a field under water injection. A review of field injection

optimisation using commercial reservoir simulators can be found at [113].

GRASP is attractive compared to other optimisation algorithms since it

is simple to implement, it avoids local optimal solutions and its search pro-

cedure is intuitive. In some aspects, it may not be the best solution since it

can take longer to find a solution compared to other methods, but its proven

to give satisfactory results.

The algorithm is a multi-start, iterative metaheuristic procedure con-

sisting of two phases, a global search known as construction and a local

search. During the construction phase a solution is built, if the solution is

not feasible a new solution is proposed until a feasible one is found. Once

a feasible solution has been found the local search looks for a refined solu-

tion on the neighbourhood, the best solution is kept as the optimal one [111].

135



In a greedy algorithm solutions are proposed from scratch within the

predefined limits. The higher the number of proposed solutions, the more

likely a good solution can be found. The number of proposed solutions is

given by a greedy evaluation function. The greediness represents the incre-

mental increase of incorporating a new solution as feasible. In other words,

the greedier the algorithm the more precise the final solution would be.

Randomisation in the algorithm plays a very important role, since by

randomly sampling within the search space local optima points are avoided.

It allows different trajectories to be explored from the initial solutions. The

randomisation process requires from the greedy search, since the more ran-

dom the proposed solutions are, the better the final solution will be.

A neighbourhood solution is defined as a solution with similar or bet-

ter properties than the global solution found at the construction search.

In some occasions neighbourhoods might include infeasible solutions which

would then be discarded.

The local search has the objective of finding a refined solution. Solutions

are found following an iterative process by restricting the search space within

the neighbourhood. The effectiveness of the local search mainly depends on:

starting solution, neighbourhood size, cost function and search strategy [111].

Different versions of a GRASP algorithm have been developed in order to

handle these issues. The basic version of the GRASP algorithm is composed

of the following steps [111]:
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1)Setf∗ ←−∞;

2)For k = 1, ...,MaxIterations do

3)S ←− GreedyRandomisedAlgorithm

4)if S is not feasible then

5)S ←− RepairSolution(S)

6)end;

7)S ←− LocalSearch(S)

8)iff(S) ≤ f∗then

9)S∗ ←− S;

10)f∗ ←− (S)

11)end;

12)end;

13)returnS∗;

14)end

(6.2)

For the global search, the search space has to be limited within a range,

the range is given by Cmin and Cmax, where C represents the candidate

values of the independent variables to select from. Once feasible solutions

have been found, the neighbourhood search space is given by the following

expression:

α(cmax − cmin) (6.3)

From the previous expression α is a constant value that scales and limits

the search space, while "c" represents the range of values where the search
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procedure will look for better solutions.

It is important to note that the search algorithm will try to find an op-

timal solution for each of the independent variables. So the shown steps on

Equation 6.2 have to be applied to each independent variable.

Our NARX models are composed of 20 independent variables, which

represent the 20 injection wells in the field. The objective is to optimise the

injection rates for every future month in order to maximise oil production.

The algorithm has to be run according to the following expression:

1)for i = 1, ...,W (ProductionWells)

2)for k = 1, ..., N(MonthsAhead)

3)RUN GRASP

4)Collect best input set from u1, ..., uM

5)end

6)end

(6.4)

From the previous equation, on step 2 we assume that the objective

function is to maximise the model’s output (oil production). Variable N

represents the number of months ahead on which oil production needs to be

maximised, while M is the number of inputs on the model.

All the data that is fed into to the models is scaled data, we therefore

assume that the injection rates from every well have the possibility to fluc-
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tuate from a null value to their previous maximum. The search space is then

[0, 1] for every independent variable. In order to obtain the rates at their

usual scale, they have to be re-scaled using the following expression:

x = x′(maxx −minx) +minx (6.5)

From the previous expression x is the re-scaled value for the injection rate,

x′ is the normalised value given by the the search procedure while maxx and

minx are the maximum and minimum values of the original dataset respec-

tively.

To determine what is an appropriate number of iterations on the global

search, the approach presented on the previous chapter given by Tables 5.4

and 5.5 was used. It was therefore determined that the polynomial model

requires at least 100,000 while the radial basis function needs 250,000 itera-

tions to find an appropriate solution.

One of the advantages of using the GRASP algorithm is that we can

know in advance how long it will take to find a solution. If we know how

long it takes for one forecast to be estimated, and we know how many possible

solutions will be evaluated we simply have to multiply the number of possible

solutions by the required time to estimate a forecast as follows:

Search T ime = (1 Forecast T ime) ∗ (Number of Solutions) (6.6)

The number of iterations and the size of the local search space are pa-

rameters to select before running the algorithm. A suggestion from Silva and

colleagues [114] is to limit the local search space to 20% of a solution found
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at the construction stage, this means using a value of 0.2 for α from Equa-

tion 6.3. The number of proposed solutions for the local search we used was

1500, this number was found in the same manner as the number or iterations

for the global search. The main difference was that for the local search, the

change in oil production gain was the observed variable. The oil production

gain is given by the following equation:

Gain =
100

n

( n∑
k=1

yoptk −
n∑
k=1

yk
)

(6.7)

Oil production gain is given as a percentage quantity, n represents the

number of steps ahead on which the production has been maximised. The

gain is calculated with respect to the measured data. This was done for

comparative purposes, if the methodology is to be applied on a real scenario,

there would be no measured values to compare with. The procedure would

then be to select an approximate guess of what is the most likely scenario in

the future or an appropriate reference level and then estimate the change in

gain using Equation 6.7.

The following table summarises the results.

140



No of Local Iterations-Polynomial Model

Number of

Iterations
Max Gain Gain Change %

50 504 NA

50 612 21.4286

100 603 NA

100 763 26.5340

200 780 NA

200 650 16.6667

300 529 NA

300 697 31.7580

500 536 NA

500 634 18.2836

700 768 NA

700 612 20.3125

1000 866 NA

1000 1100 27.0208

1500 988 NA

1500 1016 2.8340

1500 998 1.7717

1500 1102 10.4208

1500 1083 1.7241

Table 6.1: Number of iterations for local search-Polynomial Model
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No of Local Iterations-MSRBF Model

Number of Iterations Max Gain Gain Change %

50 400 NA

50 398 0.5000

50 390 2.0101

50 416 6.6667

50 383 7.9327

Table 6.2: No of iterations for local search-MSRBF Model

The inputs that drive the output to the shown values can be found on

Appendix A.

After running the GRASP optimisation algorithm, oil production was

maximised by almost 10 times for the polynomial case and 4 times for the

radial basis function model.
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Figure 6.1: Optimised Oil Production-Polynomial Model
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Figure 6.2: Optimised Oil Production-MSRBF Model
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As we can see from the previous plots, the extracted oil during the last

year of production on the data set is far from the maximised values. The

maximised oil production curve is equivalent to selecting the upper limit of

the Monte Carlo simulations presented on the previous chapter.

The obtained results seem too good to be true, it seems really unlikely

that the production on a well can change so drastically by only changing

the injection rates into the field. Making use of the methodology developed

on the previous chapter, we can estimate how likely it is to reach a certain

production level.

Probability of Reaching Desired Production-Polynomial Model

Prediction

Number

Max Production

Value

Probability of Reaching

Maximum Production %

Probability of Increasing

Production by 30%

1 0.2374 0.00000 0.000

2 0.4805 1.35702 4.892

3 0.5521 0.06063 0.672

4 0.8751 0.10787 0.930

5 0.7892 0.00566 7.450

6 2.2564 0.00570 15.501

7 2.6568 0.00489 19.918

8 2.9922 0.00025 22.221

9 3.8148 0.00033 23.326

10 5.0123 0.00027 23.696

11 4.3888 0.00020 23.912

12 4.3271 0.00084 24.007

Table 6.3: Probability of Reaching Production Levels-Polynomial Model
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Probability of Reaching Desired Production-MSRBF Model

Prediction

Number

Max Production

Value

Probability of Reaching

Maximum Production %

Probability of Increasing

Production by 30%

1 0.275800044 0.0000E+00 0.0000

2 0.602853605 0.0000E+00 0.1808

3 0.641459471 0.0000E+00 0.1750

4 0.630595306 0.0000E+00 0.1765

5 0.641290012 0.0000E+00 0.1784

6 0.5775944 3.3307E-14 0.1782

7 0.557867907 4.1078E-13 0.1789

8 0.700181637 0.0000E+00 0.1830

9 0.607136344 0.0000E+00 0.1790

10 0.602248739 0.0000E+00 0.1814

11 0.545134993 1.6875E-12 0.1736

12 0.534500896 8.4932E-12 0.1853

Table 6.4: Probability of Reaching Production Levels-MSRBF Model

The probabilities given on the previous tables are given as percentages.

As we can see it is extremely unlikely to reach the maximum production val-

ues. It is therefore not recommended to try to obtain the maximum values

given by the optimisation algorithm, it involves high uncertainty, it requires

higher effort on the injectors and we might end up with little gain. A more

appropriate approach would be to try to reach a more conservative rate of

production. For example, in literature we have found cases were 30% in-

crease in production was achieved by only modifying the injection rates in

the field [115].
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The probability of reaching this increase is also given on Tables 6.3 &

6.4. As we can see from the results, according to the forecasts from the poly-

nomial model, increasing the well’s production by 30% is possible but really

hard to achieve within one year, we can see that the probability of reaching

the goal increases with the prediction horizon which intuitively sounds right.

In order to be more confident that the desired production goals will be met,

there are two options: one is to reduce the objective goals or increasing the

time on which the levels will be reached.

According to the radial basis function model the desired production lev-

els are almost impossible to reach within one year this is because the model

predicts that the most likely thing to happen is a decrease in production,

therefore all increments in production will have a very low probability value.

In fact, from the measured data it can be seen that after the 58th measure-

ment production does decrease.

The GRASP optimisation algorithm can be then used to reduce the er-

ror between a set point value and the reservoir’s oil production output. By

using this approach, the optimisation algorithm can be used as a non-linear

controller to achieve a certain production value. For example, if we want to

increase the production by 30%. We can estimate what the injection values

should be to reach this goal. In our case the last scaled production value is

0.1963 so our set point if 30% of the production needed be increased would

be 0.2551. To find the required injection rates, the same number of iterations

and α value from the maximisation case were used.

The following plots show how the GRASP algorithm was able to keep oil
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production at a steady value for both models.

0 10 20 30 40 50 60 70

Production Months

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
S

c
a

le
d
 O

il 
p
ro

d
u
c
ti
o
n

30% Production Increase Polynomial-Model

Measured Data
Increased Production

Figure 6.3: 30% Production Increase Polynomial Model
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Figure 6.4: 30% Production Increase MSRBF Model
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6.3.1 Financial Benefits

The principal attractiveness of our proposed methodology is that accessing

the historical records does not represent any extra costs. Operating com-

panies always keep records of the injection/production values in order to

assess the field’s performance. The analysis does not require anything but

a decent personal computer which cost is relatively low (less than £2000).

The required investment is therefore minimal compared to the benefits.

Going back to the example of Scott in the North Sea, at its 57th pro-

duction month, oil production had a value of 334,615m3 (2104665 bbl) see

Figure 3.5. On average, oil production in the field had a volume of 431,341m3

(2,713,053.27 bbl).

According to the Nastaq index, Brent crude oil was traded at around

$42USD for most of 2016 [116]. The value of the extracted crude oil can be

estimated as:

P = V ∗ C (6.8)

Where P is the total value, V is the sales volume while C is the price at

which the oil is being traded. Based on this equation and the current the

value of crude Brent oil, the value of the extracted oil production from Scott

during the last year was on average $113.9481 Million USD a month.

The following table shows the financial increase compared to the mea-

sured production values.
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Base Reference Increase in % Monthly Increase M-USD Year Increase M-USD

$113.9481M-USD 2 2.2790 27.3475

Barrel Price 4 4.5579 54.6951

$42 USD 6 6.8369 82.0426

8 9.1158 109.3901

10 11.3948 136.7377

12 13.6738 164.0852

14 15.9527 191.4327

16 18.2317 218.7803

18 20.5107 246.1278

20 22.7896 273.4753

22 25.0686 300.8229

24 27.3475 328.1704

26 29.6265 355.5179

28 31.9055 382.8655

30 34.1844 410.2130

Table 6.5: Financial Increase in Sales

As it can be appreciated on the the previous table, the estimated financial

rewards are huge considering that no further equipment or investment has

to be made to increase oil production. Even a conservative goal of increasing

production by 8% with current low oil prices could represent a gain in more

than $100 Million USD a year. Analysing data and taking smart decisions is

definitely a strategy that must be considered when increasing recovery rates

from a mature field under fluid injection.
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6.4 Forecasting Using Ensemble Modelling

Changing the injection rates on an operating oil field can have a great ef-

fect on the production performance. We therefore need to be sure that the

best injection strategy leading to a promising scenario is applied. If a wrong

strategy is chosen, the company’s profits can easily be affected as well as

leading to low recovery rates.

The decisions based on the generated models are of great importance.

But as it has been shown, models are only an approximation of reality and

sometimes seem to disagree between each other. The challenge is then to

know which model is predicting a truth scenario, based on that the best

decisions can be taken [104].

There is no way to know what the future will look like, we can only guess

what is the most likely scenario will be. On real applications forecasting

is never based on one single model. It’s been proved that the combination

of predictions coming from different models is on average better than the

predictions from any single model.

A good comparison would be the decision taken by an expert on a cer-

tain topic compared to the decision taken a a group of experts, the mistakes

made by some will be spotted and corrected by the other members on the

team.

When the used models are trained using different structures the ensemble

is hybrid. When different models were trained using the same algorithm
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but with different data the ensemble is non-hybrid [29]. In our case the

ensemble is hybrid since the polynomial and radial basis NARX models have

completely different structures. In our case, the ensemble predictions are

estimated as follows:

Figure 6.5: Ensemble Diagram

From the previous diagram it can be observed that each model estimates

their own forecasts and then the average of both is computed.

The following plots show the performance of the ensemble prediction

using the "best" models from chapters 3 and 4.
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Figure 6.6: Ensemble Forecast Polynomial & MSRBF Model
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Figure 6.7: Ensemble Residual Limits Polynomial & MSRBF Model
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Figure 6.8: Ensemble Prediction Distribution Polynomial & MSRBF Model

As it can be observed on the previous plots, the predictions generated

by the ensemble between the polynomial and the radial basis function per-

form very well. All the residuals lie within the 95% confidence limits and

follow a normal distribution. The performance indices are summarised on

the following table.

OSA Fit MPO Fit MSE OSA MSE MPO

0.9916 1.0336 0.0001 0.0010

Mean Residuals OSA Std Residuals OSA Mean Residuals MPO Std MPO

0.0010 0.0239 -0.0039 0.0720

Table 6.6: Ensemble Performance Indices

The generated ensemble predictions provide good quality forecasts. This

approach will compensate the mistakes individual models might produce.

In terms of keeping the output value at a fixed level, the same approach
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should be used where a set of inputs is found for keeping the estimated en-

semble output at a steady level. To compute these set of inputs, the GRASP

optimisation algorithm was also implemented as shown on the following di-

agram.

Figure 6.9: Ensemble Modelling Optimisation

The GRASP algorithm can be used in the same manner as it has been

shown before but instead of computing estimates through each individual

model, a black box model should be used in order to estimate a final forecast.

This black box model is the combination of the polynomial and radial basis

function NARX models. From the point of view of the optimisation process

nothing changes, a set of many random inputs is used and the system’s

output is observed, the inputs that drive the output to the desired level are

selected as the best inputs. On the other hand, the time to compute the

estimates will increase since we have to use at least the minimum number

of iterations that are required by each individual model. The transparency

and interpretation of the model’s equations is lost when we apply ensemble
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modelling since its very hard to intuitively find the relation between inputs

and outputs.

6.5 Conclusions

As it has been shown on the previous examples, the GRASP optimisation

algorithm can be used in conjunction with our developed NARX models.

The heuristic optimisation algorithm can be used as an estimator to keep

the system’s output at a certain desired level.

GRASP offers a very intuitive optimisation approach, it avoids local opti-

mal solutions, it is easy to implement and its running time can be estimated

in advance. In literature, there are many other optimisation methods, some

might claim to be better on different parameters, but for the problem of max-

imising oil production by means of water injection, any algorithm should not

be used to maximise the model’s output since it is statistically very unlikely

that those values will be reached. The optimisation algorithms should then

be used to increase the model’s output at a statistically reachable level, con-

sidering this, there is no need to use a complex optimisation method that

will only estimate an even higher output value since the field’s production

won’t be able to reach such level. In order to reduce uncertainty ensemble

forecasting provides an alternative for compensating the biased estimates

that individual models might produce.
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Chapter 7

Conclusions and Future Work

7.1 Summary

On the current document the development of mathematical tools for the

analysis of historical injection/production rates from an operating oil field is

presented. The research work is intended to give further understanding for

the process of oil production by means of fluid injection. This enables the

possibility of increasing recovery rates while optimising resources.

On the first two chapters a review of the traditional and recently devel-

oped data based methods for estimating future oil production is presented.

Overall, conventional methods provide a general explanation of how oil, gas

and water from different sources interact inside the reservoir and how pres-

sure changes affect production. They are good for giving a broad approx-

imation of what the future production values might be and have limited

capability when estimating complex what-if scenarios which are necessary

when designing an appropriate injection strategy. Due to the requirements
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of the modern oil and gas industry these methods are now only used as a

complementary tool.

With the increase of computational power from the last decade, re-

searchers have developed data based methods for analysing historical produc-

tion/injection records. These methods offer an alternative to the traditional

reservoir characterisation techniques, but no current method can deal with

all the challenges, resulting in either hard implementation for incomplete

records, limited long term forecasting capability or black box models which

are hard to be linked to the physical parameters on the field.

Since the introduction of the NARMAX methodology by Billings during

the late eighties [66], the technique has been successfully applied in differ-

ent fields of science and engineering but never for Enhanced Oil Recovery

modelling. EOR modelling is a complex problem, time delays must be con-

sidered while the number of inputs can be significantly large leading to a

great number of variables. Chapters 3 and 4 present how to estimate and

validate customised polynomial and multi-scale radial basis function NARX

models for EOR characterisation. The developed models offer transparent

equations which can be easily linked to the physical production parameters,

explicitly showing how long it takes for water injection to contribute towards

oil production and which are the most significant injection wells. The re-

sulting equations provide valuable information which can be interpreted by

non-experts in the field, based on this interpretation high-impact decisions

can be made.

Besides providing an interpretable description of the field under opera-
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tion, the main purpose of the generated models is to predict future produc-

tion behaviour, enabling the possibility to run diverse tests without actually

implementing them. As a result, there is a reduction in cost and time while

avoiding potential undesired scenarios. In order to estimate the likeliness of

a future state, a risk analysis methodology based on a Monte Carlo strat-

egy is presented on chapter 5. The presented methodology and concepts are

borrowed from financial mathematics and implemented using the generated

NARX models. This implementation provides a glimpse of the probability

distribution covering future production values.

The main objective of this thesis is to provide a tool for increasing recov-

ery factors on operating fields under fluid injection. To achieve such goal, it

is required to implement an optimisation methodology. Chapter 6 provides

a survey of the traditional optimisation algorithms comparing them to inno-

vative heuristic optimisation approaches, these methods are a lot easier to

implement for complex functions like EOR optimisation. The last chapter

shows how to implement a GRASP optimisation algorithm for the purpose of

designing an adequate future injection strategy which will maximise produc-

tion values. The list of available heuristic optimisation algorithms is quite

large, but GRASP offers an intuitive approach, avoids local optimal solu-

tions and is easy to implement. The presented study shows that regardless

of the selected optimisation algorithm, the results must be combined with a

risk analysis in order to design a realistic injection strategy. Failing to do

so would lead to unreachable production values and the whole optimisation

implementation would be useless.
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7.2 Conclusions

The data driven methods developed on this thesis have proven to be capable

for modelling active oil fields under fluid injection. The new alternative tool

offers understating of the field properties, good prediction performance and

a low cost analysis. On the other hand, the new modelling instrument for

optimising future injection has not been tested on a real field. This is a

necessary step for validating the method’s applicability.

The analysis tool developed on this thesis can be summarised on the

following steps.

1. Historical Data Pre-Processing.

2. NARMAX Methodology Implementation.

3. Model Structure Analysis.

4. Definition of Future Production Goal.

5. Risk Analysis for Production Goal.

6. Estimation of Future Injection Strategy.

The expected financial benefits of applying the developed methodology

are very significant. Every percentage increment in production results in

extra profits in the order of millions of dollars. Considering that no further

investments have to be made, injecting water at the appropriate rates on the

right wells makes the developed data analysis proposal extremely attractive.
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7.3 Future Work

The developed methodology for increasing oil production by injecting the

optimal amount of fluid into the reservoir is shown on this thesis. However,

the presented results and implementation only consider the output of a sin-

gle production well. In reality, it is required to analyse all production wells

within the field. This would require the estimation of either multiple MISO

models, one for every production well or a Multiple-Input Multiple-Output

(MIMO) model considering all production wells on a single model. Based

on these models the same methodology as the one presented on the previous

chapters can be extended resulting in the estimation of the best injection

strategy for the whole field.

The current studies only show how to increase oil production, but crude

oil is not the only fluid that is extracted from the ground on everyday op-

erations. The effect of excessive water or gas extraction towards future pro-

duction can be very significant. For example, a sudden increase in water

production may lead to the effect known as coning where water coming from

a close-by aquifer may eventually predominate production. This would re-

quire the closure of the producing well leading to a loss in oil production.

A rapid increase in gas production would result in an also rapid pressure

drop within the reservoir. This is an undesirable behaviour since a pressure

drop would lead to lower oil flow from the ground to the production wells.

To compensate for the pressure loss, higher injection rates would be needed,

meaning higher operational costs. It is therefore required to predict when

these undesirable situations may occur. One approach would be estimating
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models for water and gas production in the same manner as the oil production

models. Based on these extra models, the future injection strategy would

have to consider keeping water and gas production levels at a safe rate besides

maximising oil production.
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Appendix A

MSRBF Model Structure

The following table shows the structure of a multi-scale radial basis function

model using one output, 20 inputs, 5 output delays and 4 input delays. The

model should be interpreted as on Equation 4.8. For format convenience,

input centres and input standard deviation values have been transposed.

The table showing input centres should be 6x80 (6 Terms, 20 Inputs by 4

Delays per input), and the standard deviation table should be 6x20 (6 Terms,

20 Inputs).

Theta Centres Y

3.1014 0.4610 0.5186 0.7817 0.8607 0.9214

-2.7986 0.4610 0.5186 0.7817 0.8607 0.9214

0.2782 0.2179 0.2803 0.3026 0.2738 0.2721

2.0236 0.5960 0.7421 0.9224 0.8658 1.0000

-75.7711 0.5960 0.7421 0.9224 0.8658 1.0000

0.2186 0.2210 0.2516 0.2321 0.2352 0.2540

Table A.1: MSRBF Model Ny=5 Nu=4
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Centres U

0.73069 0.73069 0.62806 0.87696 0.87696 0.64705

0.63988 0.63988 0.70602 1.00000 1.00000 0.61978

0.61622 0.61622 0.78788 0.25883 0.25883 0.75351

0.00000 0.00000 0.62152 0.88519 0.88519 0.46365

0.84632 0.84632 0.42457 0.70000 0.70000 0.48186

0.82282 0.82282 0.46435 0.78303 0.78303 0.44906

0.79258 0.79258 0.49059 0.77153 0.77153 0.53811

0.00000 0.00000 0.40000 0.71432 0.71432 0.58120

0.73368 0.73368 0.25048 0.36854 0.36854 0.16158

0.67880 0.67880 0.28717 0.14736 0.14736 0.43521

0.78052 0.78052 0.26444 0.52471 0.52471 0.00000

0.84298 0.84298 0.26052 0.49811 0.49811 0.15867

0.00000 0.00000 0.04623 0.00000 0.00000 0.36466

0.00000 0.00000 0.25809 0.00000 0.00000 0.39022

0.00000 0.00000 0.39721 0.00000 0.00000 0.59861

0.00165 0.00165 0.35455 0.00000 0.00000 0.46507

0.00000 0.00000 0.76276 0.00000 0.00000 0.45284

0.00000 0.00000 0.68013 0.00000 0.00000 0.42241

0.00000 0.00000 0.56187 0.00000 0.00000 0.49519

0.00000 0.00000 0.50423 0.00000 0.00000 0.35915

0.00000 0.00000 0.82953 0.00000 0.00000 0.56042

0.00000 0.00000 0.83963 0.00000 0.00000 0.59083

0.00000 0.00000 0.76642 0.00000 0.00000 0.74500

Table A.2: MSRBF Model Ny=5 Nu=4
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Centres U

0.00000 0.00000 0.65934 0.00000 0.00000 0.52998

0.48536 0.48536 0.26187 0.58243 0.58243 0.53352

0.54315 0.54315 0.57091 0.64688 0.64688 0.00000

0.50672 0.50672 0.59372 0.58959 0.58959 0.59158

0.62605 0.62605 0.47743 0.63396 0.63396 0.58402

0.47635 0.47635 0.30662 0.67701 0.67701 0.79943

0.60969 0.60969 0.71027 0.74092 0.74092 0.00000

0.57454 0.57454 0.71420 0.59300 0.59300 0.73994

0.67057 0.67057 0.54319 0.65993 0.65993 0.77093

0.00000 0.00000 0.85330 0.31976 0.31976 0.69489

0.00000 0.00000 0.86691 0.00088 0.00088 0.00000

0.00000 0.00000 0.88048 0.09077 0.09077 0.60212

0.00000 0.00000 0.68712 0.00000 0.00000 0.28945

0.00000 0.00000 0.85035 0.00000 0.00000 0.83074

0.00000 0.00000 0.81477 0.00000 0.00000 0.00000

0.00000 0.00000 0.74279 0.00000 0.00000 0.88084

0.00000 0.00000 0.58220 0.00000 0.00000 0.94296

0.00000 0.00000 0.57622 0.00000 0.00000 0.65821

0.00000 0.00000 0.89939 0.00000 0.00000 0.00000

0.00000 0.00000 0.87664 0.00000 0.00000 0.60013

0.00000 0.00000 0.70606 0.00000 0.00000 0.49985

0.89728 0.89728 0.80670 0.51457 0.51457 0.76597

0.65332 0.65332 0.99907 0.55910 0.55910 0.74817

0.59370 0.59370 0.90012 0.67377 0.67377 0.77264

Table A.3: MSRBF Model Ny=5 Nu=4
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Centres U

0.74880 0.74880 0.61306 0.65841 0.65841 0.71230

0.21349 0.21349 0.01872 0.84547 0.84547 0.00000

0.38271 0.38271 0.32364 0.91267 0.91267 0.00000

0.30277 0.30277 0.47300 1.00000 1.00000 0.00000

0.00000 0.00000 0.32538 0.90117 0.90117 0.00000

0.46762 0.46762 0.81929 0.75603 0.75603 0.39281

0.66881 0.66881 0.74987 0.82437 0.82437 0.38383

0.62291 0.62291 0.76979 0.66684 0.66684 0.39978

0.73142 0.73142 0.54279 0.76916 0.76916 0.42397

0.41037 0.41037 0.55777 0.56649 0.56649 0.00000

0.63736 0.63736 0.74858 0.59582 0.59582 0.00000

0.59465 0.59465 0.69438 0.61847 0.61847 0.29826

0.00000 0.00000 0.44052 0.56584 0.56584 1.00000

0.53059 0.53059 0.76854 0.65760 0.65760 0.00682

0.83423 0.83423 0.83874 0.71420 0.71420 0.29144

0.73440 0.73440 0.89836 0.78959 0.78959 0.71685

0.85329 0.85329 0.64104 0.57718 0.57718 0.45122

0.00000 0.00000 0.71138 0.00000 0.00000 1.00000

0.00000 0.00000 0.79014 0.00000 0.00000 0.99147

0.00000 0.00000 0.70138 0.00000 0.00000 0.97211

0.00000 0.00000 0.41261 0.00000 0.00000 0.64038

Table A.4: MSRBF Model Ny=5 Nu=4
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Centres U

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.37793 0.00000 0.00000 0.23880

0.00000 0.00000 0.01510 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000 0.31936

0.00000 0.00000 0.00000 0.00000 0.00000 0.35712

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table A.5: MSRBF Model Ny=5 Nu=4

Std Y

1.58114

1.58114

0.39528

0.39528

0.19764

0.19764

Table A.6: MSRBF Model Ny=5 Nu=4
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Std U

3.16228 1.58114 0.79057 3.16228 0.79057 1.58114

3.16228 3.16228 0.79057 3.16228 0.79057 3.16228

3.16228 3.16228 0.79057 3.16228 0.79057 3.16228

3.16228 3.16228 0.79057 3.16228 0.79057 3.16228

3.16228 3.16228 0.79057 3.16228 0.79057 3.16228

3.16228 3.16228 0.79057 3.16228 0.79057 3.16228

3.16228 3.16228 1.58114 3.16228 0.79057 3.16228

3.16228 3.16228 3.16228 3.16228 0.79057 3.16228

3.16228 3.16228 3.16228 3.16228 0.79057 3.16228

3.16228 3.16228 3.16228 3.16228 0.79057 3.16228

3.16228 3.16228 3.16228 3.16228 0.79057 3.16228

3.16228 3.16228 3.16228 3.16228 0.79057 3.16228

3.16228 3.16228 3.16228 3.16228 1.58114 3.16228

3.16228 3.16228 3.16228 3.16228 3.16228 3.16228

3.16228 3.16228 3.16228 3.16228 3.16228 3.16228

3.16228 3.16228 3.16228 3.16228 3.16228 3.16228

3.16228 3.16228 3.16228 3.16228 3.16228 3.16228

3.16228 3.16228 3.16228 3.16228 3.16228 3.16228

3.16228 3.16228 3.16228 3.16228 3.16228 3.16228

3.16228 3.16228 3.16228 3.16228 3.16228 3.16228

Table A.7: MSRBF Model Ny=5 Nu=4
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A.1 Multi-Layer Neural Network Performance

Model Delays Hidden Neurons MSE Val MSE Training

1 1 30 1.32E-03 1.25E-02

2 2 30 5.44E-02 8.54E-06

3 3 30 2.22E-02 6.84E-04

4 4 30 7.20E-02 9.14E-04

5 5 30 2.66E-02 1.33E-04

6 6 30 3.07E-02 6.69E-24

7 7 30 2.02E-02 1.07E-04

8 8 30 1.96E-02 1.03E-02

9 9 30 7.27E-02 1.12E-18

10 10 30 1.89E-02 5.71E-03

11 11 30 4.35E-03 3.69E-20

12 12 30 5.16E-03 1.45E-04

Table A.8: 30-Hidden Neurons Model
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Model Delays Hidden Neurons MSE Val MSE Training

1 1 21 1.13E-02 1.35E-04

2 2 21 6.39E-02 3.31E-21

3 3 21 1.16E-04 1.40E-02

4 4 21 2.16E-02 7.10E-05

5 5 21 6.56E-02 2.16E-06

6 6 21 4.24E-02 3.46E-14

7 7 21 2.24E-01 7.59E-03

8 8 21 2.56E-02 1.72E-04

9 9 21 2.11E-02 4.79E-05

10 10 21 1.59E-01 2.55E-02

11 11 21 3.73E-02 2.80E-01

12 12 21 1.78E-05 1.44E-02

Table A.9: 21-Hidden Neurons Model
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Model Delays Hidden Neurons MSE Val MSE Training

1 1 40 1.94E-02 1.88E-02

2 2 40 1.02E-01 1.67E-05

3 3 40 7.27E-02 5.30E-04

4 4 40 3.92E-02 6.41E-21

5 5 40 2.20E-05 1.26E-01

6 6 40 1.74E-02 7.27E-02

7 7 40 5.13E-02 5.86E-12

8 8 40 8.16E-02 1.21E-09

9 9 40 5.98E-02 4.42E-08

10 10 40 1.20E-01 3.67E-12

11 11 40 3.62E-01 9.55E-02

12 12 40 6.48E-02 1.92E-03

Table A.10: 40-Hidden Neurons Model
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Appendix B

Production Well Models

The following tables show the equation models for all production wells and

the net ranking of the injection wells as explained on section 5.1. There are

no models for wells 11, 14,15,17,21 since their corresponding records are too

poor to build a model.

Production well 1 Injection Well Net Ranking

’y(k-1)’ 1 3

’u(k-1,3)*y(k-5)’ 2 0

’u(k-3,3)*y(k-4)’ 3 1

’u(k-3,4)*u(k-1,13)’ 4 5

’u(k-3,15)*u(k-4,15)’ 5 0

’u(k-3,1)*u(k-4,16)’ 6 0

’u(k-3,12)*y(k-3)’ 7 0

’u(k-3,16)*y(k-1)’ 8 10

’u(k-2,11)*u(k-3,15)’ 9 8

’u(k-3,9)*y(k-3)’ 10 9

’u(k-2,1)*y(k-5)’ 11 7

’u(k-5,3)*u(k-3,10)’ 12 6

’y(k-2)’ 13 4

’u(k-3,1)*u(k-5,8)’ 14 0

’u(k-4,13)*u(k-5,13)’ 15 2

16 5

17 0

18 0

19 0

20 0

Table B.1: Production Well 1
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Production well 2 Injection Well Net Ranking

’y(k-1)’ 1 2

’u(k-1,1)*y(k-2)’ 2 5

’y(k-2)*y(k-1)’ 3 4

’u(k-2,1)*u(k-1,16)’ 4 0

’u(k-3,13)*y(k-6)’ 5 10

’u(k-1,1)*y(k-1)’ 6 0

’u(k-3,13)*u(k-5,19)’ 7 0

’u(k-5,2)*u(k-2,3)’ 8 0

’u(k-4,16)*u(k-4,16)’ 9 8

’u(k-3,10)*u(k-3,13)’ 10 7

’u(k-5,3)*u(k-2,11)’ 11 8

’u(k-5,3)*u(k-1,9)’ 12 0

’u(k-1,5)*u(k-1,13)’ 13 1

’u(k-4,2)*u(k-5,14)’ 14 11

’u(k-1,3)*u(k-2,9)’ 15 0

16 2

17 0

18 0

19 6

20 0

Table B.2: Production Well 2

Production well 3 Injection Well Net Ranking

’y(k-1)’ 1 7

’u(k-1,3)*y(k-6)’ 2 1

’u(k-1,12)’ 3 0

’u(k-2,1)*y(k-1)’ 4 9

’u(k-2,13)*u(k-3,19)’ 5 0

’u(k-3,2)*u(k-3,2)’ 6 0

’u(k-1,13)*u(k-3,19)’ 7 10

’u(k-3,2)*y(k-1)’ 8 0

’u(k-2,15)*u(k-5,17)’ 9 0

’u(k-2,15)*y(k-2)’ 10 2

’u(k-1,4)*u(k-4,17)’ 11 0

’u(k-2,7)*u(k-1,13)’ 12 5

’u(k-1,7)*u(k-1,14)’ 13 2

’u(k-4,4)*u(k-4,4)’ 14 10

’u(k-4,4)*y(k-1)’ 15 5

16 0

17 7

18 0

19 2

20 0

Table B.3: Production Well 3
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Production well 4 Injection Well Net Ranking

y(k-1)’ 1 5

’u(k-3,1)*u(k-1,4)’ 2 0

’u(k-5,9)*y(k-4)’ 3 0

’u(k-5,15)*y(k-3)’ 4 1

’u(k-2,4)*u(k-5,19)’ 5 0

’u(k-2,15)*u(k-4,17)’ 6 0

’u(k-3,7)*u(k-1,11)’ 7 4

’u(k-2,11)*y(k-6)’ 8 9

’u(k-2,11)*u(k-2,15)’ 9 6

’u(k-2,4)*u(k-5,7)’ 10 0

11 3

12 0

13 0

14 0

15 2

16 0

17 8

18 0

19 7

20 0

Table B.4: Production Well 4

Production well 5 Injection Well Net Ranking

’y(k-1)’ 1 0

’u(k-1,4)*u(k-5,4)’ 2 0

’u(k-5,4)*u(k-2,12)’ 3 0

’u(k-2,7)*u(k-3,11)’ 4 1

’u(k-4,7)*u(k-4,19)’ 5 0

’u(k-1,4)*u(k-4,6)’ 6 0

’u(k-4,4)*u(k-1,14)’ 7 2

8 0

9 0

10 0

11 4

12 3

13 0

14 6

15 0

16 0

17 0

18 0

19 5

20 0

Table B.5: Production Well 5
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Production well 6 Injection Well Net Ranking

’y(k-1)’ 1 10

’u(k-1,3)*u(k-1,3)’ 2 11

’y(k-6)*y(k-4)’ 3 1

’u(k-5,15)*y(k-2)’ 4 0

’u(k-1,3)*u(k-1,12)’ 5 3

’u(k-1,15)*u(k-2,16)’ 6 0

’u(k-3,9)*u(k-5,17)’ 7 0

’u(k-5,3)*u(k-3,5)’ 8 0

’u(k-1,3)*u(k-4,14)’ 9 5

’u(k-1,5)*u(k-1,15)’ 10 0

’u(k-5,13)*y(k-4)’ 11 0

’u(k-4,13)*y(k-1)’ 12 4

’u(k-2,5)*u(k-5,13)’ 13 7

’u(k-3,1)*u(k-4,3)’ 14 9

’u(k-2,2)*u(k-1,9)’ 15 2

16 5

17 7

18 0

19 0

20 0

Table B.6: Production Well 6

Production well 7 Injection Well Net Ranking

’y(k-1)’ 1 11

’u(k-4,3)*u(k-1,11)’ 2 2

’u(k-3,10)*u(k-5,11)’ 3 4

’u(k-3,2)*u(k-3,16)’ 4 11

’u(k-3,12)*u(k-2,13)’ 5 7

’u(k-3,11)*u(k-3,19)’ 6 0

’u(k-1,9)*u(k-3,16)’ 7 0

’u(k-3,5)*u(k-2,13)’ 8 13

’u(k-4,2)*u(k-2,13)’ 9 9

’u(k-3,1)*u(k-5,3)’ 10 7

’u(k-1,4)*u(k-3,5)’ 11 1

’u(k-2,2)*u(k-3,8)’ 12 5

’u(k-1,3)*u(k-3,9)’ 13 2

’u(k-4,2)*u(k-1,15)’ 14 0

’u(k-2,2)*u(k-2,4)’ 15 14

16 5

17 0

18 0

19 10

20 0

Table B.7: Production Well 7
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Production well 8 Injection Well Net Ranking

’y(k-1)’ 1 8

’u(k-1,3)*y(k-2)’ 2 2

’u(k-4,2)*u(k-1,3)’ 3 1

’u(k-1,18)*y(k-6)’ 4 3

’u(k-4,11)*y(k-3)’ 5 0

’u(k-4,15)*y(k-2)’ 6 0

’u(k-4,1)*y(k-1)’ 7 9

’u(k-1,2)*u(k-1,13)’ 8 0

’u(k-1,3)*u(k-2,13)’ 9 0

’u(k-1,2)*y(k-6)’ 10 0

’u(k-1,11)*u(k-3,11)’ 11 5

’u(k-1,3)*u(k-1,3)’ 12 0

’u(k-1,4)*u(k-3,11)’ 13 4

’u(k-1,7)*y(k-1)’ 14 0

’u(k-2,17)*y(k-4)’ 15 7

16 0

17 10

18 6

19 0

20 0

Table B.8: Production Well 8

Production well 9 Injection Well Net Ranking

’y(k-1)’ 1 4

’u(k-4,2)*u(k-1,3)’ 2 1

’u(k-5,1)*y(k-1)’ 3 2

’u(k-1,3)*u(k-3,7)’ 4 7

’u(k-5,3)*u(k-2,15)’ 5 11

’u(k-1,13)*u(k-4,14)’ 6 0

’u(k-1,18)*u(k-3,19)’ 7 9

’u(k-5,1)*u(k-1,13)’ 8 0

’u(k-5,2)*u(k-1,3)’ 9 0

’u(k-2,4)*u(k-5,16)’ 10 0

’u(k-1,3)*u(k-3,15)’ 11 0

’u(k-2,2)*u(k-3,15)’ 12 0

’u(k-2,5)*y(k-6)’ 13 0

’u(k-3,5)*y(k-6)’ 14 0

’u(k-3,2)*u(k-4,15)’ 15 5

16 10

17 7

18 0

19 6

20 0

Table B.9: Production Well 9

176



Production well 10 Injection Well Net Ranking

’y(k-1)’ 1 0

’u(k-1,3)*u(k-1,3)’ 2 2

’u(k-5,2)*y(k-1)’ 3 1

’u(k-1,3)*u(k-1,7)’ 4 5

’y(k-2)*y(k-1)’ 5 7

’u(k-4,13)*y(k-4)’ 6 0

’u(k-2,4)*y(k-1)’ 7 3

’u(k-3,5)*u(k-1,12)’ 8 0

’u(k-3,2)*u(k-5,9)’ 9 5

10 0

11 0

12 7

13 4

14 0

15 0

16 0

17 0

18 0

19 0

20 0

Table B.10: Production Well 10

Production well 12 Injection Well Net Ranking

’y(k-1)’ 1 0

’u(k-3,3)*u(k-1,6)’ 2 0

’u(k-5,11)*u(k-5,16)’ 3 3

’u(k-5,6)*u(k-2,9)’ 4 0

’u(k-3,11)*u(k-4,14)’ 5 0

6 1

7 0

8 0

9 5

10 0

11 2

12 0

13 0

14 6

15 0

16 4

17 0

18 0

19 0

20 0

Table B.11: Production Well 12
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Production well 13 Injection Well Net Ranking

’u(k-2,16)*y(k-1)’ 1 0

’u(k-2,18)*u(k-2,19)’ 2 0

’u(k-3,13)*u(k-4,17)’ 3 0

’u(k-4,11)*u(k-4,13)’ 4 0

’u(k-1,11)*y(k-5)’ 5 0

6 0

7 0

8 0

9 0

10 0

11 7

12 6

13 1

14 0

15 0

16 2

17 5

18 3

19 3

20 0

Table B.12: Production Well 13

Production well 16 Injection Well Net Ranking

’y(k-1)’ 1 3

’u(k-4,3)*u(k-5,3)’ 2 0

’u(k-4,12)*y(k-2)’ 3 0

’u(k-3,7)*u(k-5,7)’ 4 1

’u(k-4,5)*y(k-5)’ 5 4

’u(k-5,4)*u(k-5,4)’ 6 0

’u(k-5,4)*y(k-5)’ 7 2

’u(k-1,16)*y(k-2)’ 8 0

’u(k-5,11)*u(k-3,13)’ 9 0

’u(k-4,7)*u(k-1,17)’ 10 10

’u(k-1,4)*u(k-1,10)’ 11 7

’u(k-3,5)*y(k-4)’ 12 5

13 7

14 0

15 0

16 6

17 9

18 0

19 0

20 0

Table B.13: Production Well 16
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Production well 18 Injection Well Net Ranking

’y(k-1)’ 1 5

’u(k-5,2)*u(k-3,16)’ 2 3

’u(k-5,4)*u(k-2,6)’ 3 3

’u(k-5,1)*u(k-3,6)’ 4 8

’u(k-3,6)*u(k-4,12)’ 5 0

’u(k-5,2)*u(k-3,3)’ 6 1

’u(k-5,3)*u(k-2,13)’ 7 6

’u(k-3,1)*u(k-4,7)’ 8 0

’u(k-5,7)*u(k-3,12)’ 9 0

’u(k-3,12)*y(k-3)’ 10 0

’u(k-1,3)*u(k-5,19)’ 11 0

12 2

13 9

14 0

15 0

16 7

17 0

18 0

19 10

20 0

Table B.14: Production Well 18

Production well 19 Injection Well Net Ranking

’y(k-1)’ 1 3

’u(k-5,1)*u(k-5,3)’ 2 0

’u(k-1,3)*u(k-1,13)’ 3 1

’u(k-3,5)*u(k-5,13)’ 4 0

5 4

6 0

7 0

8 0

9 0

10 0

11 0

12 0

13 2

14 0

15 0

16 0

17 0

18 0

19 0

20 0

Table B.15: Production Well 19
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Production well 20 Injection Well Net Ranking

’u(k-2,7)*y(k-1)’ 1 0

’u(k-3,5)*u(k-5,13)’ 2 8

’u(k-3,6)*u(k-5,13)’ 3 5

’u(k-2,3)*u(k-4,5)’ 4 7

’u(k-1,10)*u(k-5,13)’ 5 3

’u(k-2,10)*u(k-5,13)’ 6 2

’u(k-1,6)*u(k-5,13)’ 7 6

’u(k-3,2)*u(k-3,4)’ 8 0

’u(k-1,6)*u(k-3,13)’ 9 9

’u(k-3,16)*y(k-5)’ 10 4

’u(k-3,13)*y(k-6)’ 11 0

’u(k-1,3)*u(k-4,4)’ 12 0

’u(k-5,9)*u(k-4,13)’ 13 1

’u(k-4,6)*u(k-3,13)’ 14 0

15 0

16 0

17 0

18 0

19 0

20 0

Table B.16: Production Well 20

Production well 22 Injection Well Net Ranking

’y(k-1)’ 1 0

’u(k-5,5)*u(k-3,14)’ 2 6

’u(k-5,6)*u(k-2,13)’ 3 0

’u(k-5,4)*u(k-2,13)’ 4 1

’u(k-1,2)*y(k-1)’ 5 3

’u(k-1,4)*u(k-1,4)’ 6 5

’u(k-3,13)*u(k-2,19)’ 7 8

’u(k-1,4)*u(k-1,7)’ 8 0

9 0

10 0

11 0

12 0

13 2

14 3

15 0

16 0

17 0

18 0

19 7

20 0

Table B.17: Production Well 22
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Production well 23 Injection Well Net Ranking

’u(k-4,2)*u(k-3,17)’ 1 0

’u(k-4,4)*u(k-5,13)’ 2 3

’u(k-2,4)*u(k-3,15)’ 3 2

’u(k-5,4)*u(k-5,13)’ 4 1

’u(k-1,3)*y(k-5)’ 5 9

’u(k-2,4)*u(k-4,5)’ 6 11

’u(k-2,4)*u(k-1,12)’ 7 0

’u(k-2,11)*u(k-1,19)’ 8 0

’u(k-4,4)*u(k-5,6)’ 9 0

’u(k-3,11)*u(k-4,19)’ 10 0

11 5

12 10

13 5

14 8

15 0

16 0

17 3

18 0

19 5

20 0

Table B.18: Production Well 23

Production well 24 Injection Well Net Ranking

’y(k-1)’ 1 6

’u(k-2,13)*y(k-1)’ 2 0

’u(k-3,4)*u(k-5,4)’ 3 0

’u(k-1,18)*u(k-2,19)’ 4 1

’u(k-3,11)*y(k-1)’ 5 0

’u(k-1,18)*u(k-5,19)’ 6 0

’u(k-4,18)*u(k-2,19)’ 7 0

’u(k-2,1)*u(k-4,4)’ 8 0

9 0

10 0

11 5

12 0

13 4

14 0

15 0

16 0

17 0

18 2

19 2

20 0

Table B.19: Production Well 24
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Appendix C

Future Injection Values

The following tables show the estimated injection values for increasing future

oil production in one year period. Injection rates are given row-wise for the

corresponding well (20 injection wells, 12 future months).
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Injection Well

Month
1 2 3 4 5 6 7 8 9 10 11 12

1 0.5969 0.0851 0.9738 0.2321 0.2138 0.1572 0.9156 0.6291 0.4617 0.4350 0.1334 0.7132

2 0.7580 0.5572 0.4000 0.2258 0.2079 0.9890 0.8538 0.4432 0.4851 0.8473 0.4211 0.9911

3 0.8316 0.9454 0.8741 0.8793 0.5354 0.8444 0.0373 0.7835 0.9773 0.9944 0.2405 0.9455

4 0.9834 0.1043 0.3703 0.6628 0.6054 0.8305 0.1172 0.6406 0.0424 0.2625 0.7296 0.8499

5 0.7239 0.1200 0.5960 0.2916 0.6852 0.0657 0.0962 0.4944 0.3737 0.9439 0.4626 0.7902

7 0.3767 0.9962 0.9236 0.2074 0.6092 0.0899 0.9490 0.5139 0.9221 0.8352 0.6833 0.8005

13 0.9803 0.8479 0.0878 0.6373 0.0500 0.1132 0.2386 0.0445 0.6087 0.1316 0.5712 0.0272

14 0.3482 0.7599 0.3721 0.8402 0.3189 0.0154 0.1502 0.6323 0.6826 0.1787 0.0796 0.5540

15 0.3315 0.1890 0.9975 0.6968 0.0373 0.6285 0.6111 0.6672 0.0441 0.4440 0.2299 0.7653

16 0.7865 0.5377 0.2070 0.7243 0.8493 0.6327 0.9198 0.8412 0.4344 0.9702 0.5983 0.2107

18 0.0211 0.0164 0.0077 0.0863 0.0074 0.0441 0.0678 0.0703 0.1856 0.0198 0.0094 0.0208

19 0.1169 0.8629 0.1123 0.3556 0.2394 0.4977 0.1673 0.4776 0.8038 0.1781 0.4724 0.5304

Table C.1: Injection Rates for Max Oil Production-Polynomial Model
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Injection Well

Month
1 2 3 4 5 6 7 8 9 10 11 12

1 0.0817 0.7069 0.5170 0.0351 0.0388 0.0771 0.8148 0.1468 0.6980 0.9790 0.3909 0.0218

2 0.7591 0.4332 0.8886 0.6558 0.2019 0.3273 0.7802 0.4946 0.6814 0.9484 0.4660 0.7616

3 0.9738 0.7877 0.7633 0.3531 0.5189 0.3401 0.4805 0.2125 0.8662 0.4711 0.7902 0.8318

4 0.8948 0.5170 0.6996 0.6021 0.0235 0.7880 0.8456 0.2636 0.4294 0.1766 0.9173 0.4385

5 0.6448 0.9016 0.4665 0.1973 0.7069 0.2049 0.4818 0.5907 0.4211 0.7728 0.9160 0.4288

7 0.3010 0.6535 0.9222 0.3708 0.8280 0.1206 0.8820 0.6263 0.6985 0.1643 0.1475 0.3211

13 0.7122 0.6093 0.7538 0.5731 0.2269 0.3373 0.9907 0.3073 0.0949 0.6978 0.3263 0.5158

14 0.6270 0.8034 0.6376 0.6364 0.2388 0.8591 0.8126 0.0526 0.3564 0.0775 0.0516 0.1134

15 0.2074 0.0090 0.8399 0.4387 0.3353 0.9158 0.8158 0.2892 0.5982 0.8090 0.7804 0.1059

16 0.8006 0.9438 0.0227 0.0123 0.9578 0.0255 0.0567 0.1122 0.7191 0.9790 0.5334 0.6793

17 0.6401 0.1652 0.6648 0.4839 0.6685 0.9849 0.4106 0.2921 0.7402 0.4061 0.5381 0.6055

18 0.1523 0.0261 0.1022 0.3360 0.0599 0.4475 0.1307 0.0722 0.0089 0.1565 0.3546 0.5095

19 0.7610 0.3032 0.5949 0.4852 0.8050 0.6251 0.9308 0.6490 0.2681 0.9411 0.9448 0.0650

Table C.2: Injection Rates for 30% Increase in Oil Production-Polynomial

Model
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Injection Well

Month
1 2 3 4 5 6 7 8 9 10 11 12

1 0.0764 0.0041 0.0116 0.9982 0.9548 0.9203 0.9724 0.9644 0.0447 0.0191 0.9862 0.9908

2 0.2595 0.1846 0.4961 0.4443 0.6165 0.4148 0.2457 0.7592 0.5150 0.4602 0.5548 0.4546

3 0.7068 0.3548 0.7629 0.4819 0.1881 0.5514 0.4509 0.7856 0.9084 0.8451 0.6744 0.2654

4 0.0879 0.3839 0.1679 0.1969 0.0183 0.1277 0.0901 0.1014 0.1002 0.0729 0.2508 0.1325

5 0.2476 0.0800 0.1095 0.4624 0.4186 0.1453 0.2909 0.2586 0.3355 0.0952 0.2463 0.0033

6 0.9357 0.2121 0.6544 0.1052 0.7745 0.3509 0.1294 0.0519 0.1340 0.0808 0.3707 0.1845

7 0.4337 0.6634 0.5130 0.4413 0.7031 0.3044 0.6229 0.7241 0.6553 0.5544 0.5283 0.5375

8 0.6311 0.3235 0.4438 0.3197 0.9615 0.5987 0.7408 0.3890 0.5184 0.4331 0.5721 0.1121

9 0.2153 0.5780 0.1964 0.0872 0.2349 0.1945 0.1859 0.2598 0.2210 0.0283 0.0278 0.1664

10 0.4152 0.0210 0.2686 0.0383 0.0898 0.1297 0.2440 0.3820 0.2741 0.2329 0.1090 0.0218

11 0.3272 0.2354 0.4441 0.3657 0.6776 0.1394 0.2395 0.0332 0.0837 0.4798 0.0720 0.2553

12 0.7310 0.4433 0.6484 0.8042 0.7664 0.6806 0.6964 0.9190 0.5265 0.8577 0.4222 0.5118

13 0.0225 0.2529 0.3013 0.1440 0.1390 0.3341 0.4950 0.6774 0.7998 0.4419 0.4982 0.5625

14 0.4808 0.5426 0.6688 0.7004 0.6213 0.4372 0.5431 0.6345 0.5526 0.8662 0.5063 0.2806

15 0.5742 0.1524 0.3190 0.3832 0.6712 0.7042 0.3842 0.0876 0.4434 0.3620 0.2893 0.5766

16 0.3303 0.9906 0.8420 0.6157 0.7506 0.5162 0.7101 0.7580 0.5781 0.6311 0.6892 0.8187

17 0.2339 0.8869 0.2123 0.1551 0.1894 0.0080 0.5373 0.3515 0.3505 0.3949 0.4126 0.1682

18 0.2089 0.3109 0.1614 0.0535 0.6386 0.0758 0.1245 0.0047 0.0241 0.2937 0.3559 0.0277

19 0.3169 0.1646 0.0507 0.4327 0.2928 0.1890 0.1945 0.4187 0.1706 0.2372 0.1138 0.2386

20 0.2229 0.2502 0.1111 0.0323 0.1507 0.3859 0.3315 0.1416 0.2335 0.0461 0.3339 0.4396

Table C.3: Injection Rates for Max Oil Production-MSRBF Model
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Injection Well

Month
1 2 3 4 5 6 7 8 9 10 11 12

1 0.4157 0.0213 0.9423 0.9374 0.0618 0.9312 0.9892 0.8911 0.9290 0.9558 0.9349 0.9528

2 0.2184 0.4238 0.0616 0.6427 0.1887 0.3780 0.5486 0.3458 0.3029 0.9261 0.9392 0.4308

3 0.5988 0.7263 0.5150 0.3747 0.5080 0.8484 0.4481 0.7794 0.4213 0.4794 0.1018 0.0093

4 0.0940 0.4170 0.2852 0.2050 0.1503 0.5965 0.2607 0.0230 0.1022 0.4252 0.1991 0.1361

5 0.1153 0.1014 0.1793 0.9970 0.5598 0.2933 0.0417 0.1513 0.1220 0.3274 0.3051 0.0289

6 0.5244 0.1951 0.6696 0.1440 0.2915 0.5222 0.8025 0.5822 0.5469 0.0791 0.4536 0.6180

7 0.8058 0.9238 0.5869 0.5893 0.8058 0.4850 0.7282 0.3201 0.4727 0.4945 0.5845 0.7007

8 0.6914 0.1888 0.6328 0.2961 0.1082 0.4848 0.2239 0.6501 0.3755 0.7367 0.7060 0.9281

9 0.7178 0.1075 0.1765 0.3113 0.6290 0.2836 0.1170 0.2493 0.1191 0.6409 0.4156 0.6392

10 0.5355 0.3790 0.5169 0.1008 0.0189 0.2894 0.4708 0.8824 0.6432 0.6260 0.3257 0.4095

11 0.2454 0.2487 0.5259 0.1237 0.0107 0.4153 0.1793 0.1020 0.1262 0.2986 0.4020 0.1877

12 0.3444 0.0596 0.8745 0.7461 0.6397 0.3686 0.9667 0.4521 0.7596 0.7148 0.3821 0.6850

13 0.1350 0.2837 0.1642 0.1472 0.0032 0.4896 0.4206 0.4716 0.3182 0.7684 0.4712 0.6200

14 0.7143 0.8448 0.9123 0.5472 0.3778 0.5084 0.2798 0.8249 0.7583 0.6477 0.9111 0.4805

15 0.0538 0.2863 0.6558 0.2768 0.4089 0.7722 0.3841 0.7733 0.7762 0.1818 0.0853 0.6827

16 0.6662 0.5654 0.4356 0.7919 0.8314 0.8736 0.2936 0.9868 0.5535 0.8635 0.7455 0.8797

17 0.3297 0.8006 0.5621 0.3809 0.3990 0.3307 0.4053 0.4012 0.6297 0.5895 0.2116 0.2065

18 0.2623 0.2082 0.3568 0.5956 0.4018 0.2931 0.6209 0.1046 0.2003 0.2348 0.2250 0.2881

19 0.0077 0.2812 0.2020 0.2019 0.2263 0.1083 0.2650 0.0304 0.6953 0.2027 0.4254 0.1039

20 0.2085 0.0765 0.2253 0.3043 0.2891 0.5816 0.2630 0.1143 0.2803 0.0100 0.3658 0.0462

Table C.4: Injection Rates for 30% Increase Oil Production-MSRBF Model
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