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Abstract

Traditional machine learning focuses on the situation where a fixed number of features
are available for each data-point. For medical applications each individual patient will
typically have a different set of clinical tests associated with them. This results in a
varying number of observed per patient features. An important indicator of interest
in medical domains is survival information. Survival data presents its own particular
challenges such as censoring. The aim of this thesis is to explore how machine learning
ideas can be transferred to the domain of clinical data analysis. We consider two
primary challenges; firstly how survival models can be made more flexible through
non-linearisation and secondly methods for missing data imputation in order to handle
the varying number of observed per patient features. We use the framework of Gaussian
process modelling to facilitate conflation of our approaches; allowing the dual challenges
of survival data and missing data to be addressed. The results show promise, although
challenges remain. In particular when a large proportion of data is missing, greater
uncertainty in inferences results. Principled handling of this uncertainty requires
propagation through any Gaussian process model used for subsequent regression.
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fT (t|θ) Failure density function, probability of failure at any time

hT (t|θ) Hazard function, conditional rate of failing at a certain time, conditional
on surviving up until that instance

η Latent hazard function

B Number of time segments

hR(θ,x) Relative hazard function

R Set of individuals at risk of failure

T Random variable failure time

ST (t|θ) Probability of surviving beyond a certain time
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η Time of termination of clinical trial

δ Small change in time

s Time segment

s True (uncensored) failure time

t Instantiation of failure time

t Vector of failure times

K Uncensored set of individuals

X Input data or covariates

Y Observed or latent output data

AFT Accelerated failure time

ARD Automatic relevance determination

BGPLVM Bayesian Gaussian process latent variable model

CCD Central composite design

CPH Cox Proportional Hazards

DPPCA Dual probablistic principle component analysis

DTC Deterministic training conditional

ELBO Evidence lower bound

EP Expectation Propagation

FITC Fully independent training conditional

GLM Generalised additive model

GLM Generalised linear model

GP Gaussian process

GPLVM Gaussian process latent variable model
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HR Hazard ratio

i.i.d Independent and identically distributed

KL Kullback-Leibler

KM Kaplan Meier

LU Lower Upper

MAE Mean absolute error

MAP Maximum a posteriori

MAE Missing at random

MBI Model based imputation

MCAR Missing completely at random

MC Monte Carlo

MCMC Markov Chain Monte Carlo

MICE Multiple imputation by chained equations

MI Multiple imputation

MNAR Missing not at random

NLPD Negative log predictive density

PCA Principle component analysis

PMM Predictive mean matching

PPCA Probablistic principle component analysis

RBF Radial basis function

SI Single imputation
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Symbol And Matrix Notation

Lowercase symbols, x, will refer to scalar values. Bold lowercase symbols, x, will
denote used for vectors of scalar values. Bold uppercase symbols will denote matrices
with multiple dimensions. The notation xi,:,x:,j, xi,j will refer to the ith row, the jth
column, and i, jth element respectively of a matrix X, and similarly so for any other
matrix used in this work.



1

Introduction

Proper handling of uncertainty is a cornerstone of modern data analysis. Survival
analysis is the study of time-to-event data, or classically failure time data. Within
medical statistics the consequences of making incorrect predictions may cause
unnecessary stress or even harm. Survival analysis is also applied within the area
of engineering, particularly when assessing the reliability of equipment under stress.
Having an accurate measure of the uncertainty associated with predictions of how
long an individual or equipment, may survive is critical for a number of reasons. For
example, interventions based on predictions may be expensive or dangerous and should
not be undertaken if one is largely unsure about the true outcome. Typically in
survival analysis regression, the prediction of failure time is believed to be an unknown
function of some observed, or partially observed, covariates. Analysis of such data
is often complicated by censoring of the time at which a failure occurs; this may
be as a result of a patient leaving a clinical trial, or the clinical trial being forced
to terminate before the failure is observed. The Bayesian probabilistic framework
of Gaussian processes provides a principled way in which to handle the uncertainty
associated with unknown functions. A distribution over possible functions is inferred by
combining prior knowledge about the function, with the information provided by a set
of observations. In its standard form, Gaussian processes make a normality assumption
that means they cannot be trivially applied to survival analysis regression. Luckily in
recent years a huge array of approximate inference methods have provided a number
of ways in which this problem may be sidestepped.

Gaussian processes have been popular over the last few decades within the area
of geostatistics where the model is known as kriging. In recent years the framework
has become a popular choice for a range of other machine learning problems. Machine
learning models are typically models that can learn some characteristic of interest
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without relying on a fixed set of rules, instead learning directly from provided
data, though its definition is loose. As a result of an increased interest in machine
learning models, their application to survival analysis regression has naturally been
considered. Some of the most popular machine learning methods that have been
used for survival analysis regression include neural networks (Rumelhart et al., 1985),
decision trees, random forests (Breiman, 2001), and kernel methods such as kernel
ridge regression (Saunders et al., 1998) and support vector regression (Vapnik, 1998).

1.1 Machine Learning Approaches To Survival
Analysis

It will prove useful to consider the advantages and disadvantages of the Gaussian process
framework that is the focus of this thesis, relative to the existing machine learning
methods that have previously been used for survival analysis regression. Beyond of
the context of this thesis, machine learning models have also been used for variable
selection for survival analysis (Fan et al., 2005). This problem considers picking a
few of the model relevant clinical variables relating to a particular outcome, when a
large number of variables are present, e.g. genes. The models proposed at the end
of this thesis may also be a useful approach for tackling these problems, though this
hypothesis has not been tested.

1.1.1 Neural Networks

Neural network methods, and similarly deep neural network methods have seen a
resurgence in popularity in the last decade. This has primarily been as a result of
increased compute power, increased dataset sizes, as well as a number of algorithmic
innovations that have eased issues with initialisation and optimisation (Goodfellow
et al., 2016; Kingma and Ba, 2014). One of the advantages of neural network methods
is that they allow arbitrarily complicated functions to be represented, and consequently
they can be used to fit non-linear functions that may arise in survival analysis, as
will be discussed in Chapter 2. This flexibility however often proves to be a mixed
blessing. As a result, the models can be susceptible to overfitting if care is not taken,
though regularisation techniques are now being used to address this (Srivastava et al.,
2014). The large number of variables (weights of the network) that need to adjusted
also means that there is likely to be an array of local minima, and saddle points that
need to be circumvented if the optimal model is to be found (Dauphin et al., 2014).
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Robust optimisation of these models has been, and continues to be, one of the major
obstacles to applying neural network models. Neural networks however have been
successfully used for survival analysis in the literature (Biganzoli et al., 1998; Ripley
and Ripley, 2001). Unfortunately, traditional neural networks typically do not naturally
consider the uncertainty in the variables being learnt (weights) and as a result do
not provide a faithful representation of the uncertainty in their predictions. Bayesian
neural networks (Neal, 1996), where prior uncertainty is specified for the weights values,
go some way to alleviating both the optimisation issues and predictive uncertainty, and
these models have been considered in the context of survival analysis regression (Bakker
et al., 2000). Though the uncertainty can then be considered, inference of this posterior
uncertainty still must be undertaken. Traditionally a popular approach has been
Markov Chain Monte Carlo (MCMC) which can often have difficulties when datasets
become large, as has become common in recent years. Exciting new innovations in
variational inference (Ranganath et al., 2014) are also being applied to Bayesian neural
networks to rectify this shortcoming, though its applications to survival analysis are
still in its early stages, with one notable exception (Ranganath et al., 2016).

The major concern when using neural network models, particularly deep neural
networks, for survival analysis is that in general they are very difficult to interpret.
Though the method of learning is well understood, the resulting model is typically
treated as a black-box, and the underlying rules that have been learnt are not clear.
This can pose a serious issue when these models are to be used in a clinical setting,
including survival analysis. Interpreting how a model comes to a specific conclusion is
often important both as a safety measure, and also as the effect of individual variables
is often of interest in itself. In contrast, with Gaussian process models it is typically
relatively simple to visualise the corresponding effect of each input variable on the
output prediction, and it is also possible to introduce prior knowledge about the form
of the function through the specification of the kernel (Section 3.1.1).

1.1.2 Decision Trees And Random Forests

Decision trees in contrast to neural networks are simple to interpret, as ultimately they
learn a series of simple rules in a tree-like graph that lead to a prediction. These rules
are easily accessible due to the specification of the model. One limitation of decision
trees is that predictions are typically made based on rules with a hard binary decisions,
and so in practice regression problems tend to show degraded performance where we
would normally expect the underlying function to be smooth (Hastie et al., 2009). One
of decision trees other major shortcomings is that they are known to often generate
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overly complex models, and hence don’t tend to generalise well from training data.
This shortcoming also manifests itself by not being very robust — a small change in the
training data can result in a major change in the resulting model (Hastie et al., 2009).
For survival analysis regression, where serious interventions may occur as a result of
the predictions of the model, this lack of robustness is clearly a undesirable feature; a
property that Gaussian processes do not typically share. Random forests attempt to
alleviate this robustness issue by learning many different decision trees, and averaging
their results, though this does come at the expense of some interpretability. Despite
these limitations, decision trees, random forests and their Bayesian counterparts have
been used for survival analysis with relative success (Ishwaran et al., 2008; Sefrioui
et al., 2017).

1.1.3 Kernel Ridge Regression

Generalised linear regression has been the dominant method of choice for survival
analysis regression, though it does require a number of modelling assumptions that are
often not true in practice, as is discussed in Chapter 2. One of the most prominent
shortcomings is its widely used linear assumptions about the effect of the covariates.
Ridge regression (Hoerl and Kennard, 1970) assigns a prior over the weights used for
the linear assumption and finds a maximum a posteriori (MAP) solution (Murphy,
2012). Kernel ridge regression (Saunders et al., 1998) attempts to rectify the linear
assumption through the use of kernel functions to project the input into a different
feature space, this allows non-linear functions to be learnt. This relaxation of the linear
function is one major benefit of these models when they are used for survival analysis
regression (Cawley et al., 2006b). Kernel ridge regression, similarly to linear regression,
only consider the mean of the predicted function; often it is crucial to also consider the
variance around this prediction when making use of predictions. From the weight-space
view, a Gaussian process can be seen as the Bayesian counterpart to kernel ridge
regression, where not only a MAP solution is sought for the weights, but also the
posterior uncertainty (Rasmussen and Williams, 2006). By additionally considering the
uncertainty around the weights, predictive uncertainty capabilities are also naturally
provided, though some extensions to kernel ridge regression attempt to also rectify
this shortcoming (Cawley et al., 2006a). As previously stated, faithfully representing
uncertainty in the predictions in some cases may be important, particularly when
expensive actions may be taken in response to the prediction. The sparseness of the
solutions given by some kernel ridge regression methods can however result in a lower
computational burden when compared with standard Gaussian process regression.
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1.1.4 Support Vector Regression

The class of support vector regression (SVR) models (Vapnik, 1998) provide additional
kernel methods that can be used for non-linear functions within a survival analysis
regression setting (Khan and Zubek, 2008; Shivaswamy et al., 2007; Van Belle et al.,
2011). The models, similarly to kernel ridge regression and Gaussian processes, utilise
kernels to allow non-linear functions to be represented. In contrast to kernel ridge
regression and Gaussian processes, SVR models modify the underlying model in a way
that is unnatural from a probabilistic standpoint. This modification is made in order to
use quadratic program solvers that can reduce the computational workload required for
inference; computational savings over Gaussian process models have also been shown to
occur in some survival analysis settings (Shivaswamy et al., 2007). During prediction
in particular, these methods can be much faster than Gaussian process methods. SVR
models additionally do not provide a realistic probabilistic output, though heuristic
approaches are often used to produce a probabilistic output, these heuristics cannot be
well justified from a Bayesian standpoint (Murphy, 2012), similarly to the heuristic
approaches used in vanilla neural network methods. Throughout this work we wish
to maintain a strong focus on the uncertainty associated with the survival analysis
predictions, we will not consider support vector methods in more detail.

1.2 Outline Of This Thesis

This thesis attempts to unify the classical survival analysis branch of statistics
with the modern modelling advances in the Gaussian process area of machine
learning. The previous section attempts to justify the focus on this particular machine
learning framework. Chapter 2 introduces the basic concepts of survival analysis,
showing that many of the most popular methods share a restrictive generalised linear
modelling assumption with respect to the covariates used for prediction of survival.
Chapter 3 provides a review of standard uses of Gaussian processes, including existing
approximations for handling non-normally distributed data, and scalable Gaussian
process inference. Chapter 4 briefly discusses existing models that attempt to unify
these two areas, and then provides the first main contribution, based on Saul et al.
(2016); a more flexible non-linear Gaussian process based survival analysis model that is
able to scale, known as the chained survival analysis model. The same inference method
will be shown to be flexible enough to account for a range of different models. Chapter 5
will consider the importance of missing data imputation, with which clinical data is
often plagued. The second major contribution will be presented, a latent variable
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model for imputation that is able to handle both Gaussian and non-Gaussian output
types, such as binary observations. Finally Chapter 6 will discuss the importance of
propagating uncertainty associated with the inputs for survival analysis; and provide a
method by which this propagation may be performed. The uncertainty associated with
the input may arise from the process of imputation provided in the preceding chapter.
It will also propose a number of alternative models that could build on the research
presented throughout.



2

Survival Analysis

This chapter will introduce the basic principles of survival analysis and assumptions that
are frequently made in some of the most popular models in the literature. Commonly
used components that form the basis of the field are first derived. A particular focus
will be on functions that will be utilised in later chapters, and as such will be convenient
to introduce early, namely; failure time, failure density function, cumulative failure;
survival function, hazard function and censoring.

The generalised linear model (GLM) interpretation of some of the most popular
models in survival analysis regression will be provided. This will make the limitations
of these methods transparent, and serve as a springboard for the novel contributions of
Chapter 4, in which a number of these limitations are relaxed.

2.1 Failure Time

A failure time, or time-to-event, is a point event that occurs at least once for each
individual (subject of analysis). An individual may be a patient, where the failure
is death or recurrence of a disease. The individual could alternatively be a machine
component that is undergoing testing by inspectors for example, where the event is
the onset of some mechanical failure. Throughout this body of work survival analysis
is primarily discussed in the context of medical data, and so individuals will usually be
assumed to be humans unless otherwise stated. The failure time will be discussed in
terms of the death of the individual, though it should be noted that the techniques
outlined and developed are applicable to a range of applications, including equipment
failure and customer retention analysis (Barlow and Proschan, 1975; Rosset et al., 2003).
Measurements of failure time are taken with respect to a time origin, for example this
may be birth, or it may be entrance into the study, amongst other possibilities. It
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is the point at which time, t ∈ R≥0, is 0 for the individual, and the failure time will
necessarily be after this time. There are differing opinions on the most appropriate
time origin. It is common to use the start time of the trial, though it has been shown
that in certain cases such as when the time of first incidence (for example onset of
disease) is difficult to define, the age of the patient or calender time can lead to more
accurate inferences (Sperrin and Buchan, 2012).

Survival analysis approaches the problem of making inferences about failure times.
Failure times in this work are assumed to necessarily occur just once, though the time
at which it occurs may be known or partially known.

Failure times, if known, should be precisely defined for each individual (Cox, David
and Oakes, 1984). Often explanatory variables (otherwise known as covariates) will
also be available that differ between individuals, and the task will be then either to
infer the implications of such variables, or make predictions using them.

2.1.1 Censored Data

Often in analysis of failure time data, although it is known the failure will occur, it is
not known the exact time at which the failure will happen, or has happened. Data
in which only partial knowledge of the failure time is available are known as censored
data. Censored data make the task of modelling the process that created the data
significantly more difficult, but it is important to include these data, they cannot be
simply discarded, otherwise a bias can be introduced to any inferences made. For
example, at the end of a clinical trial (end of follow-up), if the failure hasn’t occurred
for a subject, the exact time at which the failure happens in the future (beyond the
follow-up period) will not be known. Clearly knowledge that the failure hasn’t occurred
within the follow-up period for this particular individual indicates that some attribute
of this the individual is potentially assisting their prolonged survival. It is the task of
survival analysis techniques to take this partial knowledge about censored failure times
into consideration, as well as the known failure times.

Partial knowledge of the failure time can manifest itself in several ways:

1. Left censoring — Knowing the failure occurred before a certain time, but not
precisely when; this is not frequently seen in clinical data. One example where
it is observed is when checkups are only done at discrete times, and the event
occurs between the beginning of the trial and the first checkup.
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(a) Left censoring
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(b) Right censoring

?

?

(c) Interval censoring

Fig. 2.1 Three types of censoring, left, right and interval. Stars represent an observed
failure time. Intervals containing a question mark represent a period in which the failure
is known to have occurred, but the exact time is unknown (censoring has occurred).
In the case of right censoring, the event is known to occur beyond the question mark
time. Colours represent different patients.

2. Right censoring — Knowing the failure occurred after a certain time, but not
precisely when; this is very common in clinical data, either at the end of follow-up
period, or a patient dropping out of the trial.

3. Interval censoring — Knowing the failure occurred within a period of time, but
not precise knowledge of the time; this is also very common in clinical data as
often it is known the failure occurred between two visits.

Usually the data provided will contain a set of failure times for each of n individuals,
t ∈ Rn×1

≥0 , and a set of associated failure indicator variables, ν ∈ Zn×1
{0,1}, indicating

whether the failure occurred at this time, or whether it was a censoring time, for each
individual. For example, in right censoring the failure indicator, νi, would indicate
whether the failure occurred after ti or whether the failure occurred at ti for individual
i. Throughout this body of work the value of νi will be 1 if the failure occurred at
time, ti, or 0 if ti was a censoring time.

2.1.2 Failure Density Function

The failure density function,

fT (t|θ) = lim
δt→0

Pr(t < T ≤ t+ δt)
δt

,

is the probability density function of the random variable, failure time, T . Where θ
are parameters required for the chosen density function.
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The failure density function provides the probability that the failure time will occur
at time t, given no further information.

The exact form of the failure density function is often unknown and so is a target
of inference. Many traditional survival analysis approaches specify a parameterised
distribution for the failure density function and infer the parameter values that allow
the distribution to match the data, these are known as parametric models (Collett,
2015). It is most commonly a continuous distribution, that only assigns probability
density to the positive domain. The distribution chosen has implications on the
flexibility of the model, and an incorrect choice can give rise to poor inference abilities.
Common choices are the exponential, gamma, Weibull, log-normal, log-logistic and
proportional-hazard family distributions, see Cox, David and Oakes (1984) and Collett
(2015) for details on the implications of choosing specific distributions.

The cumulative failure function,

FT (t|θ) = Pr(T ≤ t) =
∫ t

−∞
f(k|θ)dk,

is the cumulative probability of the failure time occurring up to and including failure
time, t, from the time origin. Since the probability of a failure is always zero or
positive, the cumulative failure function is a monotonic function, various survival
analysis techniques choose to model this function because of this attribute, such as
modelling it as a gamma process (Ibrahim et al., 2005).

2.1.3 Survival Function

It will be often desirable to find the probability that a random failure, T , occurs after a
given time, t, this known as the survival function which is denoted ST (t|θ) = P (T > t).
The survival function from the existing definitions can be derived in the following way,

ST (t|θ) = 1 − FT (t|θ) (2.1a)

= 1 −
∫ t

−∞
f(k|θ)dk (2.1b)

=
∫ ∞

t
f(k|θ)dk

= Pr(T > t).

The implications of obtaining a good approximation of the survival function should be
obvious; given an accurate survival function it would then be possible to query the
probability that a patient will survive beyond any given time.
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It will also be convenient for future derivations to format the survival function in
terms of the failure density function,

dST (t|θ)
dt

= S ′
T (t|θ) = −fT (t|θ). (2.2)

2.1.4 Hazard Function

Though the failure density function and the corresponding survival function may be
useful, in some cases it may be more interesting to discover the underlying instantaneous
failure rate (Wan. Tang, 2012), this is known as the hazard function. The cumulative
survival and cumulative failure function are monotonic; this is not a requirement of
the hazard function. Inference of the hazard function can in some cases be simpler.
The hazard function describes the instantaneous rate of failure (not probability as the
hazard may be greater than one), conditioned on the subject having survived up until
time t. The rate is analogical to the probability that the failure will happen in the
infinitesimally small time after t, [t, t+ δt). So hT (t|θ)δt is the approximate probability
of failure occurring (Ibrahim et al., 2005) in [t, t+ δt), given survival up to time t. The
hazard function can be viewed as a ratio of the failure density function and survival
function, the derivation is as follows,

hT (t|θ) = lim
δt→0

Pr(t < T ≤ t+ δt|T > t)
δt

(2.3a)

= lim
δt→0

Pr(t < T ≤ t+ δt, T > t)
Pr(T > t)δt

= lim
δt→0

Pr(t < T ≤ t+ δt)
Pr(T > t)δt Pr((A,B), A) = Pr(A,B)

= lim
δt→0

Pr(t < T ≤ t+ δt)
ST (t|θ)δt

= fT (t|θ)
ST (t|θ) . (2.3b)

Clearly the hazard function is always positive, since it is a ratio of two positive
functions. The hazard function can also be rewritten, using (2.1a), (2.2) and (2.3b), in
the following ways,

hT (t|θ) = −S ′
T (t|θ)

ST (t|θ)

= − d

dt
logST (t|θ),
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The cumulative hazard function, denoted ΛT (t|θ), is the integral of all of the hazard
up until time t,

ΛT (t|θ) =
∫ t

0
hT (k|θ)dk (2.4)

=
[ ∫

hT (k|θ)dk
]t

0

=
[

− logST (k|θ)
]t

0

= − logST (t|θ) − log 1
= − logST (t|θ), (2.5)

The survival function can then be written in terms of the cumulative hazard
function,

ST (t|θ) = exp(−ΛT (t|θ)), (2.6)

as can the failure density function,

fT (t|θ) = hT (t|θ)ST (t|θ) (2.7)
= hT (t|θ) exp(−ΛT (t|θ))

= hT (t|θ) exp
(

−
∫ t

0
hT (k|θ)dk

)
. (2.8)

The survival function, and hazard function can both be written in terms of the
failure density function, Equation (2.1b) and Equation (2.3b) respectively. This means
that as the shape of the failure density function is varied, or the distribution is changed,
the survival function and hazard function also vary accordingly.

Figure 2.2 shows the effect different choices of failure density function has on the
hazard and survival for a range of commonly used failure density functions. The cause of
the failures may require different failure density functions, and correspondingly hazard
functions. For example in the case of survival following surgery, it may be expected
that the hazard of failure will start at its highest point, and then steadily reduce as
the successful outcome of the surgery becomes more evident, a Weibull failure density
function is capable of encoding this assumption with a certain choice of parameters,
Figure 2.2b. Contrastingly, following onset of a disease such as cancer the hazard
may start low, and rise, before falling, a property of the hazard that is more easily
accommodated by a log-logistic distribution, Figure 2.2d. Different parameters of the
chosen distribution can also result in different shapes of the distribution, for example
with a different set of parameters, the log-logistic distribution can also accommodate
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(a) Exponential (b) Weibull

(c) Log-Normal (d) Log-Logistic

Fig. 2.2 Visual indication of the relationship between the failure density function (pdf),
survival function, and hazard function for a variety of different common distributions.
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a monotonic decreasing hazard rate. This property will prove useful in Chapter 4
where we consider modelling multiple parameters of the failure time distribution with
functions of observed covariates.

The main interests of survival analysis lie in inferring the distribution of
survival times, analysing the influence of explanatory variables (covariates) on these
distributions (Wan. Tang, 2012), and predicting lifetimes for other individuals based
on these influences.

Cox, David and Oakes (1984) states a number of reasons consideration of the hazard
function may be preferable to consideration of the failure density function including:

i It can be physically enlightening to consider the immediate ‘risk’ the individual
has of observing the failure at the current time.

ii Comparisons between groups of individuals can sometimes be easier when
considering hazards (see Section 2.4).

iii Convenient introduction of censoring times.

However, models can of course also be parameterised in terms of the failure density
function, examples of both cases will be shown in the following sections.

2.1.5 Likelihood

The likelihood of a failure occurring can be constructed using the following argument.
Consider n individuals that either die or are censored at times, t ∈ Rn×1

≥0 , with failure
indicators ν ∈ Zn×1

{0,1} respectively. Assume that these times are independent and
identically distributed (i.i.d) and drawn from a failure density function, fT (t|θ), given
the correct parameters for the density function that in many cases depend on covariate
information of the individual. Their lifetimes are governed by a survival function
ST (t|θ), that is associated with a failure density function, fT (t|θ), and hazard function
hT (t|θ) through the relationship in Equation (2.7). If the individual, i, fails at time ti
(not a censored observation) their contribution to the likelihood is,

Li = fT (ti|θ) = ST (ti|θ)hT (ti|θ),

since it is known they survived up until ti, the definition of ST (ti|θ), but then observed
failure at the following instant, the definition of hT (ti|θ). If it is known the individual
was alive up until time ti, and must have survived beyond that time but there is no
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further information as to the exact time failure would be observed (the observation is
right censored), their likelihood contribution is,

Li = ST (ti|θ).

The full likelihood can then be written as either as a function of survival function
and failure density function, or as a function of the survival function and hazard
function,

L =
K:ν=1∏
i=1

fT (ti|θ)
M :ν=0∏
j=1

ST (tj|θ) (2.9)

=
N∏
i=1

fT (ti|θ)νiST (ti|θ)1−νi (2.10)

=
N∏
i=1

(ST (ti|θ)hT (ti|θ))νiST (ti|θ)1−νi

=
N∏
i=1

hT (ti|θ)νiST (ti|θ)νiST (ti|θ)−νiST (ti|θ)

=
N∏
i=1

hT (ti|θ)νiST (ti|θ), (2.11)

where K is the set of all individuals where the event was observed (uncensored), and
M is the set of all individuals where the event was not observed (censored).

The corresponding log likelihood, that will often be subsequently optimised, is as
follows,

logL =
N∑
i

νi log hT (ti|θ) − ΛT (ti|θ), (2.12)

where ΛT (ti|θ) indicates the cumulative hazard up until time ti.

2.2 Kaplan Meier

Kaplan Meier (KM) is an estimator for a survival function that is used extensively in
survival analysis, it is usually presented as a graphical plot of the survival observed
by different groups in a clinical trial. One report (Pocock et al., 2007) indicated that
over 40% of clinical trial analysis examined produce a Kaplan Meier estimate of their
survival function. Its most attractive features are its simplicity, and its non-parametric
nature requiring no parameters to be fit.
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Fig. 2.3 Typical Kaplan-Meier plot with approximately proportional hazards

The probability of survival at any time using the KM estimator is calculated as
follows,

Ŝ(t) =
∏
ti<t

ri − di
ri

,

where Ŝ(t) is the approximate survival function. ri is the number of individuals still
at risk at the beginning of time ti. di is the number of individuals that fail at time ti.
To compare the survival function between subgroups within a cohort, an approximate
survival function is made for each subgroup, as illustrated in Figure 2.3. From visual
inspection of the KM plot, it is clear that the subgroup receiving treatment has an
increased expected median survival time.

Although KM estimators and plots are useful as an initial assessment of the data and
the outcome of a clinical trial at a population or subgroup level, they have limitations.
One such limitation is that individuals must be classified into discrete subgroups for
comparison. Alongside the patient’s failure times and clinical trial group, additional
possibly continuous covariates for the patients may be available, that are believed to
affect the individual’s survival. Although it is possible to compare group survival using
KM plots; to analyse multivariate data and continuous covariates, and subsequently
make predictions for new individuals, more sophisticated survival analysis regression
techniques are often required. There are a range of multivariate regression techniques
that can produce an estimate of the effect each covariate may have on the failure time.

The two most popular approaches are the Cox proportional hazard model (Cox,
David, 1972), Section 2.4, and the accelerated failure time class of models (Miller,
1976), Section 2.5. To unify these approaches alongside novel methods provided in
the subsequent chapters, it will prove useful to recap on the definition of the class of
generalised linear models.
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2.3 Generalised Linear Modelling

Practical inference problems can often be posed as regression tasks. A popular approach
to modelling when provided with a regression problem is to use a class of models
known as generalised linear models (GLM) (McCullagh and Nelder, 1989; Nelder and
Wedderburn, 1972).

Consider the case where a number of input-output pairings are provided by some
system, {(xi,yi), i = 1, . . . , n}, where xi ∈ Rq×1 is regarded as an input in a q

dimensional input space, and yi ∈ Rp×1 is the corresponding observed output in a p
dimensional output space. The full input matrix will be denoted X ∈ Rn×q, and the
full output matrix composing of p outputs will be denoted Y ∈ Rn×p. In the survival
analysis setting, inputs X may refer to the results of a series of q measurements being
associated with n patients, known as covariates. Outputs, Y, are observations that
are deemed to be a response to some function of the covariates; for survival analysis
failure time, t, is usually assumed to be a response, and so one of the p dimensions of
Y will typically be survival times.

A classical linear regression model is written in the following way:

yi,j = gj(xi,:) + ϵi,j (2.13)

where gj(xi,:) = w⊤
:,jxi,: and so assumes a linear association between the response

variable yi, and the explanatory variables, xi,:. w:,j is a vector Rq×1 that weights each
explanatory variable, or covariate, accordingly for the output j. ϵi,j is known as the
noise model, this component introduces an additional assumption that the observation
we receive, yi,j, is actually a random corruption of the linear component, gj(xi,:). In
standard linear regression ϵi,j is typically assumed to come from a Gaussian corruption,
centred around the linear response, ϵi,j ∼ N (0, β−1).

Generalised linear models provide a framework that generalises the classical linear
regression model in a number of ways. In practical problems the response variable yi,j
often has some restrictions. An example that is very close to the heart of this thesis is
the restriction that the observed time of failure must be non-negative, ti ∈ R≥0. Another
example would be that counts are typically discrete and non-negative, yi,j ∈ Z≥0. By
assuming a Gaussian noise model, this restriction cannot be fulfilled.

In generalised linear modelling parlance, in Equation (2.13) the observation yi,j is a
normally distributed response variable, where the mean parameter of the distribution,
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µi,j, is linked to the explanatory variables, xi,:, through a link function, λ,

λ(µi,j) = gj(xi,:).

For the classical linear regression, Equation 2.13 the link function is the identity, λ(a) =
a, and so in combination with the Gaussian noise model, p(yi,j|xi,:) = N (yi,j|µi,j, β−1).

Under the GLM paradigm, the distribution is not restricted to be Gaussian, and may
be any exponential family distribution (McCullagh and Nelder, 1989). Additionally the
link function can be any invertible function. The inverse of the link function, λ−1(a),
is known as the inverse link, or transformation function,

µi,j = λ−1(gj(xi,:))

A common link function that will be used widely throughout this work is the log
link function, λ(a) = log a, corresponding to an exponential transformation function,
λ−1(a) = exp(a). By using the log link function, the parameter of the distribution is
restricted to be a positive function of the explanatory variables, as the transformation
function maintains λ−1(gj(xi,:)) ∈ R>0.

The GLM paradigm maintains the restriction of the classical linear model that
gj(xi,:) = w⊤

:,jxi,:. The generalised additive model (Hastie and Tibshirani, 1990) (GAM)
relaxes the linear assumption of gj(xi,:), by replacing it by a sum of smooth functions
of the covariates xi, giving

gj(xi,:) = w0 + υ1(x1) + υ2(x2) + · · · ,

where the smoothing functions υ1, υ2, . . ., are left unspecified and learnt from the
data. GAMs have also been applied to a class of survival analysis methods known
as proportional hazards models (Lin and Ying, 1995). In Chapter 4 we will further
extend this non-linear approach to survival analysis by using Bayesian non-parametric
priors over functions.

2.4 Cox Proportional Hazards Model

The Cox proportional hazards model (CPH) or Cox regression is a multivariate regression
technique for uncovering the effect of covariates on survival times. Perhaps the most
widely used method in multivariate survival analysis, the model has been extremely
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popular with statisticians analysing the outcomes of clinical trials since its introduction
in 1972 (Cox, David, 1972).

The model makes a proportional hazards assumption. This states that the proportion
of two hazard functions for two individuals (see Section 2.1.4) is constant with respect
to time, t. The overall hazard rate, hT (t|θ,xi,:), for an individual i, now depends
the individuals covariates xi,: and is assumed to separate into a baseline hazard rate,
h0T (t|θ), and a relative hazard rate, hR(θ,xi,:). The baseline hazard rate depends only
on the time, t, as well as a set of parameters, θ. The relative hazard rate depends only
on the covariates for the individual, xi,: and some set of parameters, θ. In the simplest
case the relative hazard is completely independent of time t, though the model has
been extended for the case to handle time dependent covariates (Fisher and Lin, 1999).

The CPH model makes an assumption that all subjects share an underlying baseline
hazard, that is then multiplicatively affected by the subject specific relative hazard.
The overall hazard function for an individual i then factorise as

hT (t|θ,xi,:) = h0T (t|θ)hR(θ,xi,:).

The baseline hazard function is defined in the following way, h0T (t|θ) ≜ hT (t|θ,x =
0); it describes the behaviour of the hazard function in the absence of any covariates,
or of a ‘baseline’ individual, with all covariates equal to zero.

An important restriction in the context of this thesis is that the CPH model makes a
log-linear assumption for the relative hazard, hR(θ,xi,:) = exp(w⊤xi,:). The log-linear
assumption constrains the relative hazard to be a positive quantity. This is a necessity
as the overall hazard must be non-negative. In the context of GLMs a log-link function
is used, such that log hR(θ,xi,:) = w⊤xi,:. θ includes a vector of weights, w, as in
GLMs; in this case each weight corresponds to the effect of a particular covariate
measurement, encoding whether the covariates assist or hinder survival.

The model is often referred to as semi-parametric as it makes parametric assumptions
about the effects of the covariates on the hazard function, but not about the shape of
the baseline hazard itself (Royston and Lambert, 2011).

Since no form of the baseline hazard is assumed, failure time predictions cannot
be made without first estimating the baseline hazard (Breslow, 1972). In practical
implementations if it is needed, it is usually estimated in a separate step (Kalbfleisch
and Prentice, 2002). These estimates give some indication of what the hazard function
and survival function may look like, however it is not typically a smooth estimate.

Since the baseline hazard function is not modelled, the goal of the CPH model is
not to make predictions of survival time for new individuals. The goal is instead to
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Fig. 2.4 Larger hazard ratios (HR) do not show a percentage increase in time before
the failure is expected. In the above figure, although the HR of 3 is much larger for
Figure 2.4a than a HR of 1.5 in Figure 2.4b, clearly the benefits to overall survival time
are much less significant in the former than the latter. The reason for such a difference
is the presence of a different underlying survival distribution governing survival times.
Figure 2.4b is governed by a survival distribution where the failures observed have a
much larger variance. Figure inspired by Spruance et al. (2004).

estimate the hazard ratio (HR). The HR describes how the instantaneous risk varies
proportionally between people with different covariates, assuming a shared baseline
hazard. It does not aim to describe the survival function itself. The HR can be used
to describe the overall effect that different covariates are likely to be having on the
survival time, for example whether a certain treatment is effective, relative to another.

The CPH model could be criticised as it can be difficult to explain the findings in an
intuitive way. For example, a hazard ratio value of exp(0.2) = 1.22 does not mean that
a person will live 22% longer if they have a covariate value of 1 rather than 01. It only
indicates that the instantaneous risk of the failure occurring in the next time-point is
22% higher. The HR does not provide a means to make absolute predictions of failure
times, only the relative rate at which the failure is expected to be observed; as the
absolute time also depends on the form of the baseline hazard, which is not specified
or learnt. Figure 2.4 attempts to illustrate this distinction. This subtle difference can
prove difficult to explain to clinicians and there are reports (Spruance et al., 2004)
indicating that hazard ratios are often misinterpreted. These misinterpretations can
give the impression that the gains are larger (or smaller) than what the model is really
indicating.

1Hazard ratio for CPH model is given by ew = e0.2 = 1.22 when exp(w) > 0
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An appealing feature of the CPH model, is that no specification of the form of the
baseline hazard is required to infer the hazard ratios. This property can be seen by
the definition of the hazard ratio,

HR = �����h0T (t|θ) exp(w⊤xi)
�����h0T (t|θ) exp(w⊤xj)

= exp(w⊤xi)
exp(w⊤xj)

.

Inference for the parameters w is done by maximising what is known as the partial
likelihood2.

From the perspective of a GLM, the CPH model can be seen as a log-odds model,
of the overall hazard and the baseline hazard,

hT (t|θ,xi,:) = h0T (t|θ)hR(θ,xi,:)
= h0T (t|θ) exp(w⊤xi,:)

log
(
hT (t|θ,xi,:)
h0T (t|θ)

)
= w⊤xi,:.

In this case the standard model does not introduce a random error term, though this
can be introduced to account for confounding variables that are not observed.

2.4.1 Proportional Hazards Likelihood

It is possible to derive the corresponding failure density function for a proportional
hazards model on which the CPH model is based (McCullagh and Nelder, 1989), using
Equation (2.8),

fT (t|θ,xi,:) = hT (t|θ,xi,:) exp
(

−
∫ t

0
hT (k|θ,xi,:)dk

)
= h0T (t|θ)hR(θ,xi,:) exp

(
−
∫ t

0
h0T (k|θ)hR(θ,xi,:)dk

)
= h0T (t|θ) exp (log hR(θ,xi,:) − hR(θ,xi,:)Λ0T (t|θ))

where Λ0T (t|θ) is the cumulative of the baseline hazard, analogically to the cumulative
hazard.

2Jiezhi (2009) provides an intuitive derivation of the partial likelihood; a more in depth treatment
is provided by Cox, David (1975).
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Similarly the likelihood for the failure times, t, occurring as they did whilst taking
into account of censoring, ν; can be derived using Equation (2.12),

L =
n∑
i=1

(νi log hT (t|θ,xi,:)) − ΛT (ti|θ,xi,:))

=
n∑
i=1

(νi log h0T (t|θ)hR(θ,xi,:)) − hR(θ,xi,:)Λ0T (ti|θ)

This likelihood function will be used as a basis for a more powerful extensions (Joensuu
et al., 2013, 2012; Martino et al., 2010) that relax the log-linear assumption, as reviewed
in Section 4.1.1.

2.4.2 Limitations

The CPH model does not come without its limitations. The CPH model relies on a
proportionality assumption; that over time the ratio between two individuals hazard
functions remain constant. This assumption in many cases may be too strong and
may not hold depending on the data being analysed. Fortunately, there are many
methods that can check whether the proportionality assumption is likely to hold,
including log-cumulative hazard plots, Schoenfeld-residuals, crossing in Kaplan-Meier
plots, amongst others (Collett, 2015; Klein and Moeschberger, 2003).

The second limitation is that the CPH model makes a log-linear assumption about
the relative hazard, hR(θ,x) = exp(w⊤x). This assumption in many cases may be
invalid, as the linear effect of a covariate, w1, might vary in a non-linear way in
response to the quantity of a covariate, x1. This limitation is widely known and has
been observed to be invalid in many real data cases, including non-linearity of the
effect of body mass index on mortality in the context of air pollutants (Krewski et al.,
2003). Addressing this limitation within the probabilistic modelling framework is one
of the focuses of this work.

2.5 Accelerated Failure Time Models

The proportional hazard assumption, Section 2.4, assumes that the effect of the
covariates is to reduce or increase the overall proportion of subjects who observe the
failures through time (Patel et al., 2006). Moreover, it assumes that this hazard is
proportional over time.
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An alternative method that does not necessarily assume the proportionality of
hazards, is the class of accelerated failure time models (AFT) (Miller, 1976). These
methods assume that the effect of the covariates is to accelerate or retard the survival
time directly (Kleinbaum and Klein, 2006). Regression AFT models act directly on
the lifetime (Smith, 2002) using some function of the covariates. This results in the
“acceleration of time” within the survival function, not through multiplicative changes
to a hazard function as in the proportional hazard model.

The model no longer necessarily assumes that the hazards between individuals
are proportional. The results are arguably more interpretable, providing inference
of the expected prolongation or reduction of the median failure time; an ability the
hazard ratio does not immediately provide. It is often used when the proportionality
of hazards does not hold (Collett, 2015).

There are a number of ways in which an AFT model can be written. We will
provide two ways that provide helpful intuitions. The first will show transparently
the property that AFT models share, that expected survival times are accelerated
or contracted based on covariate values. The second interpretation will relate the
model to the generalised linear modelling framework outlined in Section 2.3. This will
prove useful when relating the standard AFT models described here, with the novel
extensions presented in Chapter 4.

Assume a function of the covariates, that must be positive and so is written in
terms of a positive transformation function, Section 2.3, λ−1(g(xi,:)).

The first interpretation is in terms of the survival function, Section 2.1.3. AFT
models act directly on the failure time, t, as follows,

ST (t|θ,xi,:) = S0T (λ−1(g(xi,:))t|θ), (2.14)

given a baseline survival function (for an individual with all covariates equal to zero),
S0T (t|θ) = exp(−

∫ t
0 h0T (k|θ)dk). It should be clear that a model defined in this way

acts to accelerate the lifetime of the individual (if λ−1(g(xi,:)) > 1) resulting in earlier
expected failure time, or retard the lifetime of the individual (if 0 < λ−1(g(xi,:)) < 1)
resulting in a later expected failure time than the baseline survival.

A more general form can be given for the class of AFT models (Kleinbaum and
Klein, 2006). The random failure time, Ti for an individual is given by,

Ti = λ−1(g(xi,:))T0 (2.15)
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where the baseline failure density distribution for T0 follows some specified parametric
form as in Section 2.1.2; such as a Weibull, log-logistic, log-normal, etc. This shows
that the baseline failure time distribution is either squashed or stretched according to
function λ−1(g(xi,:)), similarly to Equation (2.14). Stretching or squashing the failure
time distribution suggests the failure occurrence is likely to happen later or earlier
respectively.

By modelling the logarithm of random failure time, log Ti,

log Ti = log λ−1(g(xi,:)) + log T0

= g(xi,:) + ϵ (2.16)

where we have assumed the transformation function λ−1 was an exponent. Assigning ϵ
a logistic distribution makes T0 a log-logistic distribution in Equation (2.15). Similarly
assigning a Gaussian distribution for ϵ, means T0 follows a log-normal distribution. A
log-Weibull distribution (also known as the Gumbel distribution) for ϵ, gives a Weibull
distribution for T0. Within the GLM paradigm, AFT models are just log-linear models,
as a linear restriction is assumed for g(xi,:) = w⊤x.

2.6 Conclusion

In this chapter the core components of survival analysis have been reviewed for the
benefit of the unfamiliar reader. By framing both the CPH model and AFT models
in terms of generalised linear models, the linear assumption about the effect of the
covariates, xi,: on the failure time distribution or hazard function is made clear. In
practice the linearity assumption g(xi,:) = w⊤xi,: is restrictive. In many cases some
prior information is available about the form of this function, but the exact form is
unknown. Bayesian inference provides a framework in which this prior information
can be incorporated, and uncertainty about the resulting inferred function can be
maintained. In the following chapter the core components of Gaussian process priors
are reviewed, that will provide a means by which a non-parametric function can be
inferred from the data.
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Gaussian Process Models

This chapter will cover the core principles of the Gaussian process (GP) class of
models, that will be used extensively in the following chapters in combination with
the survival analysis techniques covered in the preceding chapter. Gaussian processes
provide a means to encode prior assumptions about a latent (unknown) function of
interest, typically a regression model between input covariates and an observable output.
Gaussian processes are non-parametric in nature, in the sense that they are not part
of the class of parametric methods. Parametric methods principally rely on a fixed
number of parameters, and inference is performed to uncover estimates for these fixed
parameters; at this point the data used for inference can be discarded with no change
to the underlying model. The number of parameters used within non-parametric
methods grows with the number of data considered. Each datum forms part of the
underlying model; data therefore cannot be discarded after inference without affecting
the model, as the underlying parameters are intrinsically linked to the data. In the
case of Gaussian processes, the growing number of parameters are typically concealed
and do not need to be found through optimisation; instead parameters on which many
of the underlying parameters rely are found. Perhaps the most powerful property of
Gaussian processes is their ability to model non-linear functions, g(xi,:), and to do so
whilst maintaining a measure of plausibility, unlike generalised linear models.

3.1 Gaussian Process Regression

Gaussian process regression again assumes a regression model of the following form,

yi,j = gj(xi,:) + ϵi,j,
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where in the simplest case ϵi,j ∼ N (0, β−1), and gj denotes the function mapping
the input to the jth output. However, unlike the classical linear regression model
(Section 2.3), gj(xi,:) ≜ fi,j, is assumed to come from an unobserved random latent
function, realised at the location xi,:. This latent function is presumed to be an instance
of a Gaussian process. To begin with we shall consider the case where the number of
output dimensions, p = 1, and so Y ∈ Rn×1 ≜ y. The case where multiple outputs are
observed will be considered in Section 5.4.

Gaussian processes can be defined as a collection of random variables, where any
finite number of which have a joint Gaussian distribution (Rasmussen and Williams,
2006). Intuitively they can also be seen to define a distribution over an infinite set of
functions, where some functions are more probable than other functions; by sampling
from this distribution possible functions can be generated.

Assumptions about how probable each of the infinite possible functions are, before
seeing any data, is encoded in the Gaussian process prior, p(f |X). f ∈ Rn×1 denotes
the random function values at locations X ∈ Rn×q, where n is the number of input
locations, and q is the number of dimensions of the input space. Since the random
function values, f , at any point are in fact a distribution of function values, a Gaussian
process prior over the values is given as p(f |X) = N (f |µ(X), k(X,X)), which is
characterized by a kernel function, k(X,X), and a mean function, µ(X). It is common
to assume the mean function is zero, µ(X) = 0.

The kernel function computes the covariance matrix of the random variables for
any finite set of inputs, X. It also restricts covariance matrices that are generated
to be positive semi-definite (Rasmussen and Williams, 2006) for any input of its
required domain. For brevity k(X,X) is sometimes denoted Kff , since it denotes the
covariance matrix between the n random function values f , located at training inputs
X. Similarly Kf∗f ≜ k(X∗,X), denotes the covariance matrix between predictive
outputs f ∗, located at X∗, and the function f at training inputs X. This notation is
generalised for similar matrices, and will be used extensively throughout the remainder
of this work. The kernel function typically depends on a number of hyper-parameters,
θK , that are not always implicitly shown for notational simplicity.

The covariance matrix encodes how correlated the random function values, f , are.
The covariance matrix is generated by the kernel function based on how ‘similar’ the
inputs X are, in some feature space. The feature space in which this similarity is
computed varies between different choices of kernel functions (see Rasmussen and
Williams (2006) for details of this interpretation). When inputs, X, are similar to one
another in the feature space the corresponding output random variables, f , are more
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Fig. 3.1 3.1a, 3.1b, 3.1c, 3.1d show the covariance matrix and joint samples for f1,f2,
where x1 and x2 are similar and dissimilar in the feature space, producing highly
correlated and weakly correlated function values, left and right respectively. 3.1e, 3.1f
show draws from a GP prior and GP posterior respectively, with a RBF. Vertical lines
show the locations of x1, x2 and x3.
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highly correlated. Figure 3.1 illustrates the relationship between the kernel functions
generated covariance matrix, and realisations of the random variables f1 and f2. If
x1 and x2 are ‘similar’ in the feature space, the covariance is large (Figure 3.1a), and
so the outputs f1 and f2 become highly correlated (Figure 3.1b). If x1 and x2 are
‘dissimilar’ from one another, the covariance is low (Figure 3.1c), and so the outputs f1

and f2 are weakly correlated (Figure 3.1d). More details of the implications of choosing
a specific kernel functions are discussed in Section 3.1.1.

Depending on the latent function f , evaluated at X, the observed data, y, may
be probable or improbable under the model. This can be evaluated by computing the
likelihood, p(y|f). The likelihood is usually chosen to follow a standard probability
distribution. The posterior probability of function values, p(f |y,X), can be inferred
using Bayes rule, by combining the likelihood with the Gaussian process prior and
dividing by the marginal likelihood, p(y|X).

If ϵi ∼ N (0, β−1) and the data is assumed to be i.i.d, the likelihood of the observed
data, y, is can be written as follows,

p(y|f) = N
(
y|f , β−1I

)
(3.1)

=
n∏
i=1

N
(
yi|fi, β−1

)
. (3.2)

Gaussian processes are frequently used in Bayesian statistics as a prior distribution
over functions that may fit some data. Bayes rule allows us to combine our prior beliefs
about the types of function that are expected with the likelihood of the data occurring.
Our belief about the function having seen the data can then be updated,

p(f |X,y) = p(f |X)p(y|f)
p(y|X) (3.3)

= p(f |X)∏n
i=1 p(yi|fi)

p(y|X) (3.4)

= N (f |0, k(X,X))∏n
i=1 p(yi|fi)

p(y|X) (3.5)

∝ N (f |0, k(X,X))
n∏
i=1

N
(
yi|fi, β−1

)
, (3.6)

where a i.i.d Gaussian likelihood assumption is specified as in Equation (3.2). By
choosing such a Gaussian likelihood, it is assumed that each observation, yi, is a
Gaussian corruption of the underlying latent function value, fi.
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For many Bayesian inference problems the marginal likelihood of the observations,
p(y|X) =

∫
p(y|f)p(f |X)df , is a tricky quantity to compute, and may require

computationally expensive sampling methods. However, if the likelihood is assumed to
be Gaussian as in Equation (3.2), and the prior, p(f |X), is a Gaussian process, then
integration is analytical and results in another Gaussian distribution,

p(y|X) = N
(
y|0, k(X,X) + β−1I

)
(3.7)

Note that the marginal covariance is simply the sum of the Gaussian prior covariance
and the Gaussian likelihood covariance (see Appendix A.1, and Rasmussen and Williams
(2006) for further useful properties of the Gaussian distribution).

The ability to make predictions for new test points is also desirable. The posterior
predictions for new test locations, denoted X∗, can similarly be computed in closed
form,

p(f ∗|X,y,X∗) = N (f ∗|µ∗,K∗) (3.8)
µ∗ = k(X∗,X)[k(X,X) + β−1I]−1y

K∗ = k(X∗,X∗) − k(X∗,X)[k(X,X) + β−1I]−1
k(X,X∗)

The posterior at the training points, p(f |X,y), is as in Equation (3.8), but with X∗

replaced with X.
If the likelihood is non-Gaussian, there is no such analytical solution. Handling this

case will prove essential when Gaussian processes are being used for survival analysis
in Chapter 4. When no analytical solution is available, approximations to the posterior
must be made to make progress. A brief review of a number of methods for making
posterior approximations, that will be built upon in subsequent chapters, is given in
Section 3.2.

By combining the likelihood with the Gaussian process prior certain functions from
the prior are deemed less or more likely depending on how well they fit the data and
how probable they were under the prior. Figure 3.1f illustrates this by considering
samples of the prior and the posterior of a Gaussian process. It is clear that functions
from the prior that do not pass nearby the observations are deemed improbable, and
unlikely to be drawn from the posterior. Figure 3.1e along with the earlier example
given in Figure 3.1 illustrate how points (f1 and f2) are more highly correlated than
points more distant (f1 and f3), in this case the ‘similarity’ is related to distance, by
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(a) Small lengthscale (b) Medium
lengthscale

(c) Long lengthscale (d) RBF + White
kernel

Fig. 3.2 Draws from zero mean GPs with RBF kernel function with varying lengthscales,
and addition of white noise kernel

assuming a kernel based on euclidean distance (in this case RBF as described in the
next section).

3.1.1 Kernel Functions

A Gaussian process explicitly depends on the kernel function to compute the covariance
between all the random variables of the latent function. The type of kernel chosen
has an impact on the types of functions that are drawn from both the prior and the
posterior.

Kernel functions are typically conditional on some hyper-parameters, θK , that
further narrow down properties of the latent function. A maximum a posteriori (MAP)
solution is typically found for these parameters, though it should be noted that this
is an approximation that is only accurate when the posterior is strongly peaked. In
Section 6.2 we consider a situation where this isn’t true, the effect it can have, and
consider some existing approaches to handling this issue.

An example of a very popular choice of kernel within the literature is the radial
basis function kernel (RBF), also known as the exponentiated quadratic kernel, or
Gaussian kernel. The RBF kernel requires two hyper-parameters, θK = {ℓ, σ2

rbf}, and
is given by the following equation:

k(xi,:,xj,:) = σ2
rbf exp

(
− 1

2ℓ2

q∑
k=1

(xi,k − xj,k)2
)
.

A useful way of visualising the assumptions made by using a Gaussian process prior
with a particular kernel, is to sample from the prior, f ∼ N (0,Kff ), and plot it
with respect to the input, x. Figure 3.2 shows the effect that varying the lengthscale
hyper-parameter, ℓ, has on samples from a Gaussian process priors with RBF kernels.
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When the lengthscale is very large, draws of the Gaussian process prior are essentially
linear within the input range. When the lengthscale is very small, each input, xi,: is
essentially independent of every other point xj,:, and appear like white noise. The
RBF kernel however is infinitely differentiable (Rasmussen and Williams, 2006), and
so functions drawn from a Gaussian process using the RBF kernel produce infinitely
differentiable functions. If one was to zoom into the function using ℓ = 0.05, the
function maintains its smoothness.

Allowing the lengthscale to vary depending on the input dimension,

k(xi,:,xj,:) = σ2
rbf exp

(
−1

2

q∑
k=1

1
ℓ2
k

(xi,k − xj,k)2
)
,

gives the RBF automatic relevance determination (ARD) kernel (MacKay, 1996). In
this case, when the kernel hyper-parameters are optimised, the model is able to learn
that for some inputs k ∈ [1, · · · , q], the lengthscale can be very long compared to
the scale of the data x:,k. It’s often stated that this essentially suggests that input is
irrelevant, since the covariance is essentially constant with respect to changes in either
input, xi,k or xj,k. In certain cases however it actually suggests that it is linear with
respect to this input (Piironen and Vehtari, 2015), and is not necessarily irrelevant.
If the lengthscale is smaller however, this indicates that covariance varies drastically
depending on what the input values are, and these inputs are deemed relevant. Allowing
the lengthscales to vary depending on the input dimension adds additional flexibility
to the model.

The white noise kernel that assumes zero correlation between input locations can
be written with the Kronecker delta function δ, a function that produces 1 when its
two inputs are equal, and 0 otherwise,

k(xi,:,xj,:) = σ2
whiteδ(i, j).

Another commonly used kernel function is the linear kernel function, that also does
not depend on the in Euclidean distance between inputs xi,: − xj,:, is defined by the
inner product,

k(xi,:,xj,:) = σ2
linx⊤

i,:xj,:.

Gaussian process regression with a linear kernel transpires to be equivalent to Bayesian
linear regression (Rasmussen and Williams, 2006).

Figure 3.3 shows draws from the prior of a range of different kernels encoding
different assumptions about smoothness, linearity, differentiability, bias’ and even
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Fig. 3.3 Draws from zero mean GPs with a range of different kernel functions showing
different assumptions about similarity between X locations. Equations for each kernel

can be found in Appendix B or Section 3.1.1

periodicity. Kernel functions themselves can be combined in a multitude of ways, such
as summation, multiplication and transformation of the input x.

The summation of two kernels, results in the summation of the corresponding
latent functions. This convenient property, amongst others, allows for complex prior
distributions over functions to be defined trivially. For example, the RBF kernel
assumes the true function is infinitely differentiable. In real data it is rarely likely
that the function of interest is infinitely differentiable, and we may wish to encode this
understanding within our prior over functions. It is common to relax this assumption
by the addition of the white noise kernel, k = kRBF + kwhite. As can be seen in
Figure 3.2d, the use of this summation kernel produces functions that are not smooth,
but contain a smooth non-linear trend. This can be used as a tool to avoid problems
of overfitting when the infinite differentiability assumption is likely to be violated in
practice (Damianou, 2015).

The reader is directed towards Duvenaud (2014) for an intuitive visualisation and
explanation of the implications of other methods of combining kernels.
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Fig. 3.4 Gaussian process classification, Φ(f(xi,:)) can be used as the probability of
the input xi,: relating to a positive observation yi = 1.

3.2 Approximations

Gaussian process regression has so far been considered in the context of a Gaussian
likelihood, Equation (3.2). Since the Gaussian distribution is conjugate to itself, it is
possible to obtain a closed form expression for the posterior p(f |y,X), Equation (3.8),
and marginal distribution, Equation (3.7). Assuming a Gaussian likelihood is
however restrictive. The GLM framework reviewed in Section 2.3 can be used to
relax this restriction for linear models, g(xi,:) = w⊤xi,:. For example, a squashing
function (probit), Φ(g(xi,:)), can be specified as the inverse link function, ensuring
πi = Φ(g(xi,:)) ∈ [0, 1]. πi in turn can be treated as a probability for the Bernoulli
likelihood, p(yi|πi) = πyi

i (1 − πi)1−yi , for binary observations yi ∈ Z{0,1}.
An analogical case for Gaussian process classification, is illustrated in Figure 3.4,

where the probit link function is used to squash the non-linear function, πi =
Φ(g(xi,:)) = Φ(f). The introduction of a non-Gaussian likelihood leads to
a posterior p(f |y,X) that is no longer analytically tractable, and it must be
approximated. A number of methods for approximation have been proposed, including
the Laplace approximation (Barber and Williams, 1997; Rue et al., 2009), variational
approximations (Gibbs and MacKay, 2000; Jaakkola and Jordan, 1996; Nguyen and
Bonilla, 2014; Opper and Archambeau, 2009; Seeger, 2000), Expectation Propagation
(EP) (Hernández-Lobato and Hernández-Lobato, 2016; Minka, 2001; Seeger and
Nickisch, 2011), Markov Chain Monte Carlo (MCMC) sampling (Neal, 1997), amongst
others (Hensman et al., 2014).

Each of the above methods of approximation, with the exception of MCMC,
approximate the non-Gaussian posterior, p(f |y) with a distribution, typically a
Gaussian distribution, denoted q(f). However, each approximation method differs
in how the density of the true non-Gaussian posterior is captured by the Gaussian
approximation. Figure 3.5 illustrates the true posterior of two latent points, f1
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Fig. 3.5 Example showing how the combination of a Gaussian prior and Bernoulli
likelihood gives rise to a non-Gaussian posterior distribution

and f2, when a single observation, y = 1 is made, alongside a Gaussian prior and
Bernoulli likelihood. The true posterior distribution is clearly non-Gaussian. Figure 3.6
illustrates the approximations that would be made by each Laplace, EP, and variational
approximations.

A comparison of several approximate inference schemes for Gaussian process
regression, with a Bernoulli likelihood specifically, was undertaken by Kuss and
Rasmussen (2005) and Nickisch and Rasmussen (2008). In general EP is known to
perform particularly well in this setting, but no single method consistently outperforms
all others on the whole array of possible likelihood functions, each of the popular
approximation methods are known to have a trade off between accuracy, simplicity
and computational complexity.

This work will primarily focus on the Laplace approximation and variational
approximation, and will consider a multitude of likelihood functions, including those
that can be used for survival analysis. These methods will now be briefly reviewed. We
choose not to focus on EP for a number of reasons. The method lacks guarantees of
convergence, robust implementations can be difficult, and the Laplace approximation
is known to perform well for survival likelihoods, matching the performance of EP in
most cases 1. MCMC has several advantages over both the Laplace approximation
and the variational approximation, including exactness. However, it can be difficult to
apply in many Gaussian process applications, in part because the many latent variables,
f , that need to be sampled can be very highly correlated (Titsias et al., 2008) which
can be problematic for MCMC methods. To apply MCMC, uncorrelated samples must
be taken, which may require many samples to be taken and so may incur a large
computational overhead. Though both MCMC and EP have their difficulties, that is
not to say that advances are not being made in these areas and it would be interesting

1Personal communication with Aki Vehtari (June 2016)
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Fig. 3.6 Posterior approximations with differing methods of approximation, considering
only two latent variables f1 and f2
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to apply the ideas in this work considering both MCMC and EP; this is left to future
work.

3.2.1 Laplace Approximation

The Laplace approximation, in the context of the Gaussian process framework, obtains
a Gaussian approximation to the posterior, p(f |y). The method by which it forms this
approximation is particularly simple, though care must be taken to maintain numerical
stability (Rasmussen and Williams, 2006). The method begins by finding the mode of
the true distribution, p(f |y). The curvature around the modal point is found and a
Gaussian posterior approximation is made with a matching mode and curvature at
this point. The results of this section will be used in the proceeding chapters in the
context of survival analysis, and missing data imputation.

The posterior distribution can be written as a function,

p(f |y) = 1
Z
h(f),

where Z = p(y) is a normaliser that is constant in f and typically is difficult
to compute. h(f) = p(y|f)p(f) is the unnormalised posterior distribution. The
Gaussian distribution has the property that its logarithm is a quadratic function of the
variables (Bishop, 2006). Additionally a second order Taylor expansion of a function
gives an approximation to the function up to a quadratic term, localised at a chosen
point. Taking the logarithm of the posterior, p(f |y), and taking a second order Taylor
expansion gives:

log p(f |y) = log 1
Z

+ log h(f)

≈ log 1
Z

+ log h(a) + d log h(a)
da

(f − a) + 1
2(f − a)⊤d

2 log h(a)
da2 (f − a).

(3.9)

where a is the location at which the Taylor expansion is made. The Laplace
approximation makes an approximation around the mode, denoted f̂ , so

d log h(a)
da

∣∣∣∣∣
a=f̂

= 0,

giving,

log p(f |y) ≈ log 1
Z

+ log h(f̂) + 1
2(f − f̂)⊤d2 log h(f̂)

df̂ 2
(f − f̂),
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taking exponents leaves

p(f |y) ≈ 1
Z
h(f̂)︸ ︷︷ ︸

constant in f

exp
−1

2(f − f̂)⊤
−d2 log h(f̂)

df̂ 2

 (f − f̂)
 .

This is a exponentiated quadratic function of f and so can seen as an Gaussian
distribution with an unknown normaliser, a mean given by f̂ , and a precision matrix
given by the negative Hessian,

A = −d2 log h(f̂)
df̂ 2

.

Renormalising to find 1
Z

leaves the Gaussian approximation to the posterior,

p(f |y) ≈ q(f) = N
(
f |f̂ ,A−1

)
.

This approximation can be applied to Gaussian process regression with a non-
Gaussian likelihood (Rasmussen and Williams, 2006). The key equations for applying
the Laplace approximation in this context, assuming a Gaussian process prior for
p(f) = N (f |0,Kff ), are as follows,

log p(f |y) = log 1
p(y) + log p(y|f) + log p(f)

∝ log p(y|f) + log p(f)

= log p(y|f) − 1
2f

⊤K−1
fff − 1

2 log |Kff | − n

2 log 2π,

d log p(f |y)
df

= d log p(y|f)
df

− K−1
fff ,

d2 log p(f |y)
df 2 = d2 log p(y|f)

df 2 − K−1
ff = −W − K−1

ff , (3.10)

where W = −d2 log p(y|f)
df2 as in Rasmussen and Williams (2006). Likelihoods that

factorise, result in a diagonal matrix for W , which is common to many likelihoods.
Equation (3.10) gives the Hessian, and so A = W + K−1

ff in Equation (3.2.1). However
to evaluate the curvature, the modal point must first be found.

The modal point,
d log p(f |y)

df
= 0,
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results in a self consistent equation for f̂ ,

f̂ = Kff

d log p(y|f̂)
df̂

 ,
that due to non-linearities in d log p(y|f̂)

df̂
, cannot be solved directly and must be solved

iteratively, usually using Newton’s method, see Rasmussen and Williams (2006) for
details and implementation.

Using Equation (3.2.1) an approximation of the log marginal can be found easily,
using the same Taylor expansion made in Equation (3.9),

log p(y) = log
∫
p(y|f)p(f)df

≈ log
∫
h(f̂) exp(−1

2(f − f̂)⊤
A(f − f̂))df

= log h(f̂) + log
∫

exp(−1
2(f − f̂)⊤

A(f − f̂))df

= log p(y|f̂) − 1
2 f̂

⊤K−1
ff f̂ − 1

2 log |Kff | |A|

= log p(y|f̂) − 1
2 f̂

⊤K−1
ff f̂ − 1

2 log
∣∣∣I +W 1

2 KffW
1
2
∣∣∣ (3.11)

where we have used the equality
∫

N
(
f |f̂ ,A−1

)
df = 1, for the unnormalised

Gaussian in the second line. The final line uses the matrix determinant lemma
(Appendix A.2.2) in reverse, and assumes that W can be factorised into W 1

2W
1
2 ,

which is computationally inexpensive if W is diagonal, otherwise a LU decomposition
may be used.

∣∣∣I +W 1
2 KffW

1
2

∣∣∣ will typically be more stable than
∣∣∣K−1

ff

∣∣∣ |Kff +W |
as pointed out by Rasmussen and Williams (2006).

The method by which a Laplace approximation is obtained is illustrated in Figure 3.7.
Figure 3.6c depicts the Laplace approximation to the posterior generated with a
Bernoulli likelihood, and a Gaussian prior over two variables f1 and f2. It shows that
when the location and curvature at the modal point of a distribution is not descriptive
of the distribution as a whole, the approximation can perform poorly. However, it
has shown to be comparable to both EP and MCMC for a number of likelihood
distributions (Riihimäki and Vehtari, 2014; Vanhatalo et al., 2010). We have found
that it is effective for likelihoods that are used for survival analysis in this thesis.
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Fig. 3.7 Illustration of the Laplace approximation

3.2.2 Variational Approximation

There are a number of methods that have used variational inference in the context
of Gaussian process inference for non-Gaussian likelihoods. This section will provide
a recap of the method proposed by Opper and Archambeau (2009). Chapter 4 will
build upon this method alongside the work of Lazaro-Gredilla and Titsias (2011)
and Hensman et al. (2015b).

Readers unfamiliar with variational inference in general will find it useful to recap
its key components, see Blei et al. (2016) for an excellent modern review.

Variational inference in general attempts to find a approximate distribution, q(f |θV ),
that closely matches a posterior distribution, p(f |y). The approximate distribution is
conditioned on a set of variational parameters, θV , that only affect the quality of the
approximation, not the distribution being approximated. It must belong to a family
of tractable densities, where as in general the true posterior will not. The measure of
closeness is the Kullback-Leibler (KL) divergence (Kullback, 1959; Kullback and Leibler,
1951). For continuous distributions, the KL divergence between two distributions, q(x)
and p(x) is written

KL (q(x) ∥ p(x)) =
∫
q(x) ln q(x)

p(x)dx

The KL-divergence is an asymmetric measure, such that KL (q(x) ∥ p(x)) ̸=
KL (p(x) ∥ q(x)). The KL-divergence is also always non-negative, KL (q(x) ∥ p(x)) ≥ 0.
To make an approximation to the posterior for Gaussian process regression we can
minimise a KL divergence between the approximate posterior, q(f |θV ), and true
posterior p(f |y). Variational inference uses the divergence KL (q(f |θV ) ∥ p(f |y)).
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EP (Minka, 2001) uses the reverse KL divergence at a local level to each random
variable f . Taking the expectation under the approximating distribution, q(f |θV ), as
in, KL (q(f |θV ) ∥ p(f |y)), has the effect of encouraging the approximate distribution
to have low density where the true distribution has low density. The reversed KL
divergence, KL (p(f |y) ∥ q(f |θV )), whereby the expectation is taken under the true
distribution, p(f |y), has the effect of encouraging the approximation distribution to
have a high density where the true distribution has a high density (Lawrence, 2000).
Typically there will be a trade off between trying to capture density where there high
density, and assigning density low where the true density is low. This effect is clearly
visible comparing the approximations given by variational inference (Figure 3.6d) and
EP (Figure 3.6b).

Opper and Archambeau (2009) introduced an approach to applying variational
inference to Gaussian process regression. The basis of this variational approach has been
expanded on in recent years (Hensman et al., 2015b; Khan et al., 2012; Lazaro-Gredilla
and Titsias, 2011; Nguyen and Bonilla, 2014) and is used for the novel inference method
put forward in Saul et al. (2016) that is covered in detail in Chapter 4. The method
minimizes KL (q(f |θV ) ∥ p(f |y)), in order to approximate the posterior distribution
p(f |y) = p(y,f)

p(y) = p(y|f)p(f)
p(y) , by exploiting the following equality,

KL (q(f |θV ) ∥ p(f |y)) =
∫
q(f |θV ) log q(f |θV )

p(f |y) df

= log p(y) +
∫
q(f |θV ) log q(f |θV )

p(y,f) df

log p(y) = −
∫
q(f |θV ) log q(f |θV )

p(y,f) df + KL (q(f |θV ) ∥ p(f |y))

=
∫
q(f |θV ) log p(y|f)df − KL (q(f |θV ) ∥ p(f))

+ KL (q(f |θV ) ∥ p(f |y)) (3.12)

In practice, since the true posterior, p(f |y), will not usually belong to a family of
tractable distributions whilst the approximating distribution, q(f |θV ), must, the KL
divergence, KL (q(f |θV ) ∥ p(f |y)), will not be computable. Using the fact that a
KL-divergence is non-negative an inequality is obtained,

log p(y) ≥
∫
q(f |θV ) log p(y|f)df − KL (q(f |θV ) ∥ p(f)) . (3.13)
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More generally this can be written as,

log p(y) ≥
∫
q(f |θV )[log p(f ,y) − log q(f |θV )]df .

In variational inference this inequality is known as the evidence lower bound (ELBO),
and is widely used (Hoffman et al., 2013; Nguyen and Bonilla, 2014; Ranganath et al.,
2014) as it provides a lower bound on the true log evidence log p(y). Maximising
the ELBO is equivalent to minimising KL (q(f |θV ) ∥ p(f |y)) (Bishop, 2006; Jordan
et al., 1999; Ranganath et al., 2014), which makes the approximate posterior as similar
as possible to the true posterior. The first term inside the expectation can be seen
to encourage parameters of the variational distribution that give high density to
configurations of the latent variables that also explain the observations, y. The second
term encourages parameters that give rise to entropic variational distributions; such
that the distribution spreads it mass across many configurations (Ranganath et al.,
2014).

Suitable variational parameters, θV , can be found by maximising Equation (3.13).
Opper and Archambeau (2009) assume the approximating distribution, q(f |θV ), is a
Gaussian distribution q(f |θV ) = N (f |µV ,ΣV ), where the variational parameters are
θV = {µV ,ΣV }; for a factorising likelihood this gives the bound to be maximised as
follows,

L(q) = 1
2Tr(KffΣV ) + 1

2µV
⊤K−1

ffµV − 1
2 ln |ΣV | + lnZ − n

2 ln 2πe

−
n∑
i=1

∫
q(f |θV ) log p(yi|fi)df .

Furthermore note that each
∫
q(f |θV ) log p(yi|fi)df only depends on the corresponding

mean µV i and covariance element ΣV i,i of the full covariance matrix, ΣV . Using the
equality ΣV

−1 = −2∇ΣV
Eq(f |θV )

[
log p(y|f)

]
allows the authors to express the optimal

covariance as,
ΣV = (K−1

ff + ΩV )−1

where ΩV is a diagonal matrix with variational parameters ωV ∈ Rn×1, along its
diagonal, and so only 2n variational parameters are required. Without this trick,
the naïve representation would require in total n(n+ 3)/2 variational parameters to
be learnt. By applying this trick only 2n variational parameters are required. The
variational parameters are optimised using a gradient decent method. By significantly
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reducing the number of parameters that must be optimised, local minima can be
avoided resulting in a better approximations to the posterior.

3.3 Sparse Gaussian Process

Gaussian processes have proven to be popular methods in a myriad of application areas.
This is a testament to their flexible modelling assumptions through the covariance
function (Section 3.1.1), and their ability to quantify uncertainty in areas of the
input space that are sparsely populated by data. In their standard form as presented
in Section 3.1 however there is a significant computational complexity and memory
overhead associated with them when applied to anything but modest dataset sizes. As
data in many areas has become increasingly plentiful, this poses a practical problem.
This complexity arises from the need to compute the inverse of the covariance matrix
Kff , which is a n × n matrix. The storage of the covariance matrix requires O(n2)
memory locations. The inversion itself requires a computational complexity of O(n3).
The practical limit of this method is n ≈ 10000; after which such computations become
excessively burdensome even on high performance machines.

A number of methods for reducing the computation and storage requirements have
been put forward in the literature. The Bayesian committee machine (Tresp, 2000)
and variants around the same idea (Cao and Fleet, 2014; Deisenroth and Ng, 2015),
attempt to address the computational problem by training a number of “expert” models
on subsets of the data, and then combine inferences in a consistent manner. By far
the most popular approach to tackling the computational bottleneck however, come
under the umbrella of sparse approximations (Quiñonero Candela and Rasmussen,
2005; Seeger et al., 2003; Snelson and Ghahramani, 2006a; Titsias, 2009). Sparse
approximations seek to approximate the full covariance matrix, Kff , with a low rank
form. The methods approach this problem by introducing an auxiliary set of m
input variables, U ∈ Rm×p, known as inducing points; that live in the same space
as F ∈ Rn×p. Inducing points are hypothetical evaluations of the latent function
g(Z), where Z ∈ Rm×q are known as inducing inputs. Inducing inputs are typically
either chosen as a subset of the training data X, (Quiñonero Candela and Rasmussen,
2005) or optimised (Hensman et al., 2013; Titsias, 2009). For simplicity, we will again
consider the case where p = 1, that is there is only one output dimension.

Since the inducing variables, u are additional realisations of the latent function
p(f |X), but at locations Z, their prior is p(u|Z) = N (u|0,Kuu); analogically to
Kff = k(X,X), the notation Kuu = k(Z,Z) is used. The joint distribution is



3.3 Sparse Gaussian Process 50

Gaussian distribution,

p(f ,u|X,Z) = N

f
u

 |

0
0

 ,
Kff Kfu

Kuf Kuu

 ,
where Kfu = k(X,Z) and Kuf = k(Z,X) = K⊤

fu. Similar notation is used for
predictive points, u∗ and of course f ∗. Using the Gaussian identities, Appendix A.1,
the conditional distribution p(f |u,X) can be written

p(f |u,X) = N (f |KfuK−1
uuu,Kff − Qff︸ ︷︷ ︸

K̃

) (3.14)

Qff = KfuK−1
uuKuf . (3.15)

Incorporating the likelihood p(y|f) results in the joint model,

p(y,f ,u|X,Z) = p(y|f)p(f |u,X)p(u|Z)
p(u|Z) = N (u|0,Kuu)

p(f |u,X) = N
(
f |KfuK−1

uuu, K̃
)
.

Due to the properties of the Gaussian distribution, u can be marginalized resulting in
no change from the existing Gaussian process regression models (Section 3.1) prior,

p(f |X) =
∫
p(f |u,X)p(u|Z)du

= N
(
f |KfuK−1

uu0,Kff − KfuK−1
uuKuf + KfuK−1

uuKuf
)

= N (f |0,Kff ) ,

where the conditioning can be dropped on Z. Notice that the in its current form, the
addition of the inducing variables u does not alleviate the O(n3) computational burden.
To make progress sparse methods make an approximation, q(f |u,X), to the conditional
posterior, Equation (3.14). This is done by replacing K̃ with an alternative covariance
matrix, that induces similar covariances between random variables, f , but that do not
require an inversion of a O(n3) matrix. Typically the computational complexity of
sparse approximation methods are O(nm2), and the storage requirements are O(nm).
Computational and memory savings arise when m is chosen such that m < n.

A variety of suggestions have been made for how K̃ should be approximated; the
most prominent to date have been deterministic training conditional (DTC) (Csató and
Opper, 2002; Seeger et al., 2003), fully independent training conditional (FITC) (Snelson
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and Ghahramani, 2005), and the variational sparse GP approach of Titsias (2009). A
unifying view of the former two methods, alongside less popular alternatives was made
by Quiñonero Candela and Rasmussen (2005). A review by Damianou (2015) attempts
to integrate the more recent variational approach within this unified view.

Following is a recap of the essential components of the variational approach, that
will be required to follow the novel aspects of this work.

3.3.1 Variational Sparse Gaussian Processes

The variational sparse Gaussian process approach (Titsias, 2009) like all variational
inference methods, attempts to minimize a KL divergence. The KL divergence to
be minimised in this case is KL (q(f |θV ) ∥ p(f ,u|y)), where a specific factorisation
q(f |θV ) = p(f |u)q(u|θV ) is used for the approximating distribution, rather than the
true posterior p(f |y,u)p(u|y). This suggests that information about the observations,
y, in the true posterior p(f ,u|y) must be compressed into the distribution that contains
flexibility, q(u|θV ). If q(u|θV ) is sufficient for representing the information that would
otherwise be encoded in p(f ,u|y), the approximation will perform well; if this does
not hold, for example if the true function is complex and requires all the information
held at all n training data, it will perform poorly.

Following the standard variational inference framework, the following bound is
found

KL (q(f |θV ) ∥ p(f ,u|y)) =
∫
p(f |u)q(u|θV ) log p(f ,u|y)

p(f |y)q(u|θV )dudf

=
∫
p(f |u)q(u|θV ) log ����p(f |u)q(u|θV )p(y)

p(y|f)����p(f |u)p(u)

= −
∫
p(f |u)q(u|θV ) log p(y|f)dfdu + log p(y)

+ KL (q(u|θV ) ∥ p(u))

log p(y) =
∫
q(u|θV )

[∫
p(f |u) log p(y|f)df

]
du

− KL (q(u|θV ) ∥ p(u)) + KL (p(f |u)q(u|θV ) ∥ p(f ,u|y))

≥
∫
q(u|θV )

[∫
p(f |u) log p(y|f)df

]
du

− KL (q(u|θV ) ∥ p(u)) ≜ L(qu).

where L(qu) denotes a lower bound on the true log marginal likelihood, i.e. the ELBO.
The expensive to compute KL (p(f |u)q(u|θV ) ∥ p(f ,u|y)) is dropped to form this lower
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bound as it is strictly positive. Again log p(y) is constant with respect to all variational
parameters of the model, and so by maximising L(qu) with respect to variational
parameters θV , the divergence KL (p(f |u)q(u|θV ) ∥ p(f ,u|y)) is minimised; this brings
the variational approximation to the posterior, closer to the true posterior.

If the likelihood p(y|f) factorises, the inner integral term becomes factorised across
the data,

log p(y) ≥
∫
q(u|θV )

[
n∑
i=1

∫
p(fi|u) log p(yi|fi)dfi

]
du − KL (q(u|θV ) ∥ p(u)) (3.16)

From this bound the variational distribution q(u|θV ) may be handled in one of two
ways. The original approach to inference in the sparse variational Gaussian process
model (Titsias, 2009), then differentiates this bound, with respect to q(u|θV ) to find
its optimal form. The optimal distribution for q(u|θV ) turns out to be a Gaussian
distribution,

q(u|θV ) = N
(
u|Kuu(Kuu + βKufKfu)−1Kfuβy,Kuu(Kuu + βKufKfu)−1Kuu

)
.

(3.17)

Unfortunately by finding the optimal distribution for q(u|θV ), and performing the
integral analytically, the variational lower bound becomes coupled between data,

log p(y|X) ≥ log N
(
y|0, β−1I + KfuK−1

uuKuf
)

− β

2 tr (Kff − KfuKuf ) .

This bound must be subsequently optimised with respect to the kernel hyper-parameters
θK , and likelihood variance, β−1. Since the bound now requires all the data to be
considered at once, each evaluation of the lower bound, or its derivatives, is O(nm2).
Although this is already significantly less costly than the original O(n3) complexity of
Gaussian process regression, it still contains the term n that may be problematic on
really large datasets. For a more thorough derivation of the above result, we refer the
reader to the excellent review of Damianou (2015).

Hensman et al. (2013) noticed that, prior to “collapsing” the optimal distribution
for q(u|θV ) by finding its optimal form, Equation (3.17), and replacing it back into
the lower bound, Equation (3.16), the bound factorises across data, and then so does
its derivatives. In this case mini-batches of data may be used to obtain approximate
gradients for the kernel hyper-parameters, likelihood parameters, and variational
parameters of q(u|θV ); this methodology is known as stochastic variational inference
(SVI) (Hoffman et al., 2013). Alternatively the full lower bound can be evaluated by
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computing the a series of lower bound contributions, each on a mini-batch of which
the union contains the whole data, and then summing the resulting contributions. The
Gaussian process SVI model tries to learn variational parameters θV directly, that
capture the information within the variational posterior, q(u|θV ), rather than using
the optimal form that requires O(nm2) computation to compute the lower bound and
its derivatives.

With this approach, by selecting a mini-batch size of nb, the resulting computational
complexity becomes O(nbm2) for each step of the optimisation. A larger batch size
will require more computation time, however more accurate estimates of the gradients
will be obtained and so less optimisation steps should be needed. This approach is
built upon in the following chapter, in which we consider the case where the likelihood
p(y|f) is not Gaussian, and further may depend on more than a single latent function,
f ; this will provide additional flexibility beyond existing survival models.

Prediction

The approximate predictive distribution for the sparse Gaussian process (Quinonero-
Candela et al., 2007), is obtained by using the approximate posterior q(u|θV ),

p(f ∗|y) =
∫
p(f ∗|f)p(f |u,y)p(u|Z,y)dfdu

≈
∫
p(f ∗|f)p(f |u)q(u|θV )dfdu

=
∫

N
(
f ∗|Kf∗uK−1

uuu,Kf∗f∗ − Kf∗uK−1
uuKuf∗

)
q(u|θV )du (3.18)

= N
(
f ∗|Kf∗uK−1

uuµV ,Kf∗f∗ − Kf∗u(K−1
uu − K−1

uuΣV K−1
uu)Kuf∗

)
(3.19)

where µV and ΣV are the mean and covariance of the approximate posterior q(u|θV ).
This result will be used again in the following chapter.

By using the optimal form of q(u|θV ), as in Equation (3.17), the predictive
distribution of Equation (3.19) can be evaluated in closed form,

p(f ∗|y) = N (f ∗|µ∗,Σ∗)
µ∗ = Kf∗u(Kuu + βKufKfu)−1Kfuβy

Σ∗ = Kf∗f∗ − Kf∗u(K−1
uu − (Kuu + βKufKfu)−1)Kuf∗



3.4 Conclusion 54

3.4 Conclusion

This chapter has reviewed the key components of the Gaussian process framework.
Their non-parametric nature, and use as flexible priors over non-linear functions, are
the main source of their applicability. They provide the ability to express a wide range
of complex prior beliefs about unknown functions through the kernel function. They
also trivially provide uncertainty about these latent functions, even when observed data
is taken into account. Unfortunately in their standard form, they are both unable to
handle non-Gaussian data, required for survival analysis, and scale poorly with respect
to the number of training data they are exposed to. Approximations can however be
made to partially overcome both of these difficulties as we have seen in this chapter.
We will now consider how these models can be harnessed to overcome the limitations
of survival analysis as set out in the preceding chapter.



4

Gaussian Process Survival Analysis

Several of the most popular approaches to survival analysis, Chapter 2, can be
formulated from the perspective of generalised linear models, Section 2.3. An important
restriction however is that these models typically model some parameter of the likelihood
as a linear function of the covariates, or some transformation of covariates, x, and
infer the maximum likelihood solution for the latent function. In some cases this linear
restriction is not correct for the particular data being studied. In the preceding chapter
we saw that a popular approach within the machine learning community when posed
with a problem that requires inference of an unknown function, is to first encode any
prior information available within a Gaussian process prior. This prior can then be used
to infer the corresponding posterior distribution, given the observed data y. Gaussian
process regression allows linear restrictions to be relaxed, and consequently provides a
more powerful platform of inference than the standard generalised linear modelling
framework. In this chapter we consider some existing work that has attempted to
unify the areas of survival analysis with Gaussian processes inference. The first novel
contribution is then given, an inference platform called chained Gaussian processes.
The framework is more flexible in terms of the generative models for survival analysis it
can handle, relaxing some of the restrictions of existing approaches to survival analysis
with Gaussian processes. The provided inference method is also scalable, allowing
large datasets to be handled. As with many inference methods in the machine learning
literature, the framework is also applicable to a range of other applications. To make
this clear a range of experiments are carried out on differing application areas alongside
survival analysis. This shows the flexibility of this framework, beyond the scope of the
survival analysis context for which it was developed.
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4.1 Existing Gaussian Process Survival Models

There is some existing literature on applying the Gaussian process methodology to
survival analysis (Barrett and Coolen, 2013; Joensuu et al., 2013, 2012; Li et al.,
2016) though it is relatively limited. Very recently there has been an increase in
attention within machine learning area on survival models, including deep learning
approaches (Katzman et al., 2016; Ranganath et al., 2016), and a new Gaussian process
method based on sampling and rejecting possible failure times (Fernandez et al., 2016).
Its underlying model is strongly related to Joensuu et al. (2012) covered in Section 4.1.1.
The new model uses a Gaussian process to model the effect of the covariates, though
does not require a grid like approximation to the likelihood, and a parametric baseline
function is used.

Although survival analysis has not been widely explored within the machine learning
field. With a single event occurrence survival analysis can be seen as a special case of
censored data, where the observation is also constrained to be positive. A number of
authors have investigated the application of the Gaussian process framework in the
context of censored data (Ertin, 2007; Groot and Lucas, 2012; Osborne, 2010; Osborne
et al., 2010) that shares similar challenges to those used in survival analysis; namely
the existence of a non-Gaussian likelihood, requiring approximations to the posterior
of the latent function.

The collective survival of a group of individuals that can be pooled into
subgroups, are related to work in the Poisson process and Log-Gaussian Cox process
literature (Møller et al., 1998). The hazard function is analogical to the intensity
function of Poisson processes; though in the case of the hazard function it is conditioned
on the failure having not yet occurred. One of the later application areas of the chained
Gaussian process, will be consider the case where the intensity function of a Log-
Gaussian Cox process arises from multiple functions being combined. An example
is provided in Section 4.4.4 whereby the homicide rate, i.e. the intensity of failures,
within the city of Chicago is modelled as a sum of two positive intensity functions. In
this case count data of homicides within discretised postcode areas are used to pool
individual failures based on their location at the time of failure. This decomposition of
intensities is a generative model that cannot be trivially handled by existing inference
methods.

We will first introduce two existing likelihoods that have been used for survival
analysis within the Gaussian process literature, discuss their limitations, and then in
the subsequent sections we will propose a novel method that relaxes some of these
limitations.



4.1 Existing Gaussian Process Survival Models 57

4.1.1 Piecewise Constant

In Section 2.4 the Cox proportional hazards (CPH) model was reviewed, and it was
made clear that assuming a log linear relationship for the relative hazard hR(θ,xi,:), is
restrictive from a modelling perspective and it would be beneficial if it could be relaxed.
The separation of the relative hazard function from the baseline hazard function,
however has proven a popular approach. Royston and Lambert (2011) discusses
approaches to extending beyond the log linear assumption of the relative hazard used
in the CPH model, hR(θ,xi,:) = exp(w⊤xi), by fitting spline models for the non-linear
function, hR(θ,xi,:) = exp(g(xi,:,θ)). However from a Bayesian perspective, spline
models do not intrinsically handle the uncertainty associated with this function and
confidence intervals must subsequently be computed using bootstrap methods.

Gaussian processes provide prior probability distributions over functions. The
object of interest is then usually the Gaussian process posterior distribution of the
latent function, given the data; such distributions intrinsically handle the uncertainty
associated with these functions. It is natural then to question whether a Gaussian
process prior could be placed over the latent baseline hazard and latent relative hazard
function, of the CPH model.

The likelihood computation of a survival model posed in terms of the hazard
function, hT (t|θ,x), Equation (2.11), requires the computation of the survival function,
Section 2.1.3. The survival function in turn requires an integration over negative
hazard function, Equation (2.6), with respect to time. Unfortunately it is not possible
to integrate a non-linear function of a Gaussian process, e.g. exp(g(xi,:)), analytically
across an input range. If a Gaussian process prior is put over the baseline hazard
rate, that is a function of time, this then creates an intractability in computing the
likelihood.

Martino et al. (2010) proposed a Bayesian model where this problem is partially
circumvented, by assuming a piecewise log-constant baseline (Breslow, 1972). The
model assumes that within finite partitions of the time axis (interval), 0 = s0 < s1 <

s2 < · · · < sB, with sB > ti for all i = 1, · · · , n observed individuals failure times ti,
the baseline hazard is constant within each time interval si,

h0T (t|θ) = τb, for t ∈ [sb−1,sb] for b = 1, · · · , B

Now within each interval, sb, the hazard is constant, and so for ti ∈ (sb−1, sb),

hT (t|θ,xi,:) = h0T (t|θ)hR(θ,x) = τb exp(g(xi,:)) = exp(log τb + g(xi,:)) = exp(ηib)
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where ηib ≜ log τb + g(xi,:). With a constant hazard in each interval the integral in
the log-likelihood becomes a summation over segments. For an individual i, where
ti ∈ (sb−1, sb), using Equation (2.12), the log likelihood contribution is given by

logL = νi log hT (t|θ,xi,:) −
∫ ti

0
hT (k|θ,xi,:)dk

= νi(log τb + g(xi,:)) − (ti − sb)τb exp(g(xi,:)) −
b−1∑
j=0

(sj−1 − sj)τj exp(g(xi,:))

= νiηib − (ti − sb) exp(ηib) −
b−1∑
j=0

(sj−1 − sj) exp(ηij),

where similarly ηij ≜ log τj + g(xi,:).
This likelihood has formed a basis of several publications for applying the Gaussian

processes framework to survival analysis problems. Martino et al. (2010) themselves
assume the log of the baseline hazard follows a first order random walk (Rue and Held,
2005), equivalent to a Gaussian process with Brownian motion covariance function, and
assign priors over the parameters of the linear function g(xi,:). Joensuu et al. (2012)
began by extending this idea by assigning a Gaussian process prior to the relative
hazard function g(xi,:). Joensuu et al. (2013) then further extended this approach such
that the log of the baseline hazard and the relative hazard is a joint Gaussian process,
with interactions between covariates and time.

By using a Gaussian process prior over the log relative hazard function, g(xi,:),
implicit interactions between all covariates are taken into account. In a spline
model (Royston and Lambert, 2011) these interactions would have to be explicitly
represented. Additionally uncertainty in the functions is captured in the posterior
distribution. These models have been successful in predicting probability of recurrence
of gastrointestinal stromal tumours after surgery (Joensuu et al., 2012), and the
predicted hazards have subsequently been used to optimise timings of CT scans during
the follow up period of cancer patients (Joensuu et al., 2013). Since the likelihood
used is non-Gaussian, approximations to the true posterior must be made, as covered
in Section 3.2. Existing approaches have used the Laplace approximation, and as
such scale poorly in the number of observations, n. The method of inference used
in the existing literature then limits their applicability to larger datasets, that are
likely to arise in the coming years. Although experiments have not been carried out,
by augmenting the data it is possible to reframe this likelihood as a special case of a
Poisson regression model, and so the novel approximation given in Section 4.2 could
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be applied providing a scalable alternative inference method for this survival likelihood
choice.

4.1.2 Log-logistic Likelihood

In Chapter 2 we saw that a popular model for survival analysis is the accelerated
failure time class of models, Section 2.5, and can be considered within the class of
generalised linear models. Specifying an appropriate noise model for AFT models is
essential. A popular choice is the log-logistic distribution (Collett, 2015). This will
be the likelihood that will serve as a basis for the survival analysis work carried out
throughout the remainder of this work; though it should be noted all the proposed
methods are equally applicable to other popular likelihoods such as the Weibull. In
practice we find the log-logistic to be a flexible choice for a number of reasons explained
below.

The log-logistic distribution has two parameters; a scale parameter, α, controlling
the median of the distribution; and a shape parameter, β controlling the shape of
the distribution. In existing AFT models, only the scale parameter is modelled
as a function of the input. The scale parameter however must be restricted to
be positive, and hence an exponential transformation function is usually chosen,
αi = exp(g(xi,:)) = exp(w⊤xi,:). The corresponding likelihood function taking into
account censored observations is given by,

p(y|α, β,ν) =
K:ν=1∏
i=1

(
αi

β

) (
yi

αi

)β−1

(
1 + yi

αi

β
)2

︸ ︷︷ ︸
failure time observed

M :ν=0∏
j=1

1
1 +

(
yj

αj

)β
︸ ︷︷ ︸
censored individuals

=
n∏
i=1

(
βyβ−1

i

αi

)νi (
1 +

(
yi
αi

)β)−(νi+1)

(4.1)

The log-logistic distribution has two convenient properties; probability density
is only assigned to non-negative failure times, and the cumulative density function,
required for computing the survival function, can be written in closed form.

By replacing the traditionally used (Collett, 2015) log linear function for the scale
parameter with a latent function modelled as a log Gaussian process over the median
failure, time can be affected in a flexible non-linear way by covariate values (Gelman
et al., 2013); where as the standard GLM interpretation allows only a log linear effect.
Similarly to the piecewise likelihood (Section 4.1.1) applied to Gaussian processes,
approximations must also be used for the log-logistic likelihood Gaussian process
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(a) Log-logistic, α = 1.0, β = 0.5 (b) Log-logistic, α = 1.0, β = 4.5

Fig. 4.1 Log-logistic distribution shape changing between exponential shaped hazard
function, to unimodal shaped hazard function in response to changes in the shape
parameter β

model to make progress. Existing approaches for the log-logistic AFT model have
used the Laplace approximation, Section 3.2.1. Barrett and Coolen (2013) used a
similar approach to this, where instead of assuming a log-logistic likelihood they
used a likelihood that gives a AFT model very similar to a log-normal, with a slight
modification of the log link function; they also used a Laplace approximation for
inference of the intractable Gaussian process posterior.

There are two major restrictions of this model. Firstly the Laplace approximation
does not scale well with the number of data, O(n3) if no low-rank matrix approximations
are used. Secondly only the scale parameter is assumed to be input-dependent.

The log-logistic distribution has the property that when β > 1 the failure
density distribution is unimodal, when 0 < β ≤ 1 it is exponential, illustrated in
Figure 4.1. Existing approaches have assumed this shape parameter to be the same
for all individuals in the cohort. This equivalently means the hazard function of an
individual can either decrease over time, or rise to a maximum and then decrease over
time (Kleinbaum and Klein, 2006). However it does not allow the overall shape of the
hazard function to change in response to the individuals covariate values.

In the remainder of this chapter, we propose an inference method that will overcome
both of these limitations allowing a flexible survival analysis model to be used, known
as the chained survival analysis model. Elements of this method have previously
been published in Saul et al. (2016). The model allows all parameters of survival
likelihood, namely the log-logistic likelihood, to able to respond to changes in the
input, x. This includes both the scale parameter, α, and the shape parameter, β.
During the derivation, it will become clear this method is not purely applicable to
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Fig. 4.2 Posterior distribution for Poisson distribution, where the exponential
transformation function ensures positivity

survival analysis, and that it can indeed be used in conjunction with any likelihood
that requires multiple parameters to be input-dependent functions.

4.2 Chained Gaussian Processes

Many examples of the flexibility of Gaussian process models as priors over non-linear
functions have been shown, including in a survival analysis setting. However it has
been made clear in this chapter that the assumption that observations are a Gaussian
corruption of a single function is too restrictive in the context of survival analysis; it
is necessary to allow non-Gaussian likelihoods to be used. The inability to specify
multiple latent functions has also been shown to be restrictive from a generative
modelling perspective; the shape of the failure time distribution, and corresponding
hazard function, in the context of the log-logistic likelihood depends on two parameters
that may change dependent on the individual. The dependence on multiple parameters
is a property shared by other likelihoods used for survival analysis and beyond. Many
appropriate likelihoods for survival analysis also require parameter restrictions, such
as positivity. In a generalised linear model, Section 2.3, a link function is used to
connect a parameter of interest in the likelihood, such as its mean or rate parameter,
with the function modelling it. Typically the function that the link function acts on
is restricted to be linear, but as in the preceding section, it can be modelled with a
Gaussian process. It is also typically assumed in GLMs that only one parameter of the
likelihood is input-dependent.
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Writing models in terms of the link function, λ, captures the linear nature of the
underlying model, but it is somewhat against the probabilistic approach to modeling
where we consider the generative model of our data. While there’s nothing wrong with
this relationship mathematically, when we consider the generative model we never
apply the link function directly, we consider the transformation function. For example,
consider two input-dependent latent functions, f = f(x) and g = g(x). The log link
can be used to connect the rate in a Poisson distribution with a GP, logλ = f +g. For
the log link, the transformation function is the exponential, λ = exp(f + g). Writing
the model in this form emphasizes the importance that the transformation function has
on the generative model (see e.g. work on warped GPs (Snelson et al., 2004)). For the
Poisson example, the exponential transformation function acts to ensure the mean of
the Poisson distribution is positive; alternatively a sigmoid transformation function may
be used, the positivity constraint is the important aspect. An example whereby f + g
is modelled with a Gaussian process is illustrated in Figure 4.2. The log link implies
a multiplicative combination of f and g, as follows λ = exp(f + g) = exp(f) exp(g).
The Poisson distribution is used to model count data, for example the number of
deaths within a given area. By using the product of two functions, this suggests that
the intensity of deaths is a product of two separate positive functions. In some cases
we may wish to consider an additive model, λ = exp(f) + exp(g); for example if the
intensity of deaths is the sum of two separate positive functions. Since this function is
non-invertible there is no corresponding link function applied to λ that renders the
two underlying processes additive. Such a model no longer falls within the class of
generalised linear models. An example of how the model that follows can handle this
generative modelling assumption in the context of Poisson regression for decomposable
homicide intensity rates is given in Section 4.4.4.

Similarly, by modelling both the scale and the shape parameters of the log-
logistic AFT likelihood as input-dependent, whilst maintaining positivity, there is
no corresponding link function that allows a GLM interpretation, as in Equation 2.16.
In this case it too cannot be considered inside the class of generalised linear models.

More generally we are interested in performing inference where there are multiple
input-dependent functions modelling likelihood parameters, and the likelihood function
is non-Gaussian. In doing so, the model should be capable of extending to other
likelihoods also commonly used in survival analysis; not just the log-logistic distribution
that will be to focus of the experiments.

The flexibility provided by the model that is to follow will additionally allow fewer
assumptions to be made during modelling. The focus will be primarily on likelihoods,



4.2 Chained Gaussian Processes 63

p(y|f , g), that contain two input-dependent latent parameters, f and g respectively,
such as the log-logistic likelihood; though the model is general enough to handle
more. Parameters of interest could be a latent mean, the latent median, or the shape
parameter of the distribution, amongst others.

Almost all likelihoods require multiple parameters to be learnt. Traditionally in
the Gaussian process literature, the model expects one such parameter to change with
respect to the input space. For the other parameters MAP solutions are typically used,
or alternatively these parameters are integrated out approximately (Rue et al., 2009).
In this work we accept that other parameters may change as a function of the input
space, and look at inferring posterior Gaussian process functions for these parameters
as well. We will assign a Gaussian process prior for the two latent functions of interest,
f ∼ N (µf ,Kff ), and g ∼ N (µg,Kgg) respectively.

In the inference method that follows, issues arising from this extension beyond
standard Gaussian process regression will be addressed by developing a novel variational
approximation. This will provide a framework for non-linear combination of multiple
latent processes; allowing the modelling restrictions of a single input-dependent
likelihood parameter, and Gaussian likelihood to be overcome. Because these models
cannot be written in the form a single link function we call this approach chained
Gaussian processes, as it is an extension beyond the use of a single link function. The
flexibility of the model will be applied to the survival analysis context, producing a
chained survival analysis model. For non-Gaussian likelihoods including the log-logistic,
restrictions on the latent function values may differ, and a non-linear transformation
of the latent functions, f ∈ Rn×p, g ∈ Rn×p are often required. The inference method
will overcome the difficulties introduced by the non-normality of the likelihood and the
nonexistence of a single link function for both latent functions in a scalable way with
sparse variational methods, Section 3.3. It will also provide the capability of using
stochastic gradients during inference. Scalability is desirable as parameters may only
become well determined as the number of observations grow large.

To render the model tractable the inference procedure extends recent advances in
large scale variational inference approaches to Gaussian processes (Hensman et al.,
2013). The inference approach builds on work by Hensman et al. (2015b) for handling
non-Gaussian likelihoods, that in turn builds on the variational inference method
proposed by Opper and Archambeau (2009) reviewed in Section 3.2.2.

We will begin by deriving the appropriate variational bound and then carry out
experiments for the chained survival analysis model, Section 4.3.1. The novel framework
will then also be applied to a variety of other Gaussian likelihoods, showing that the
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method is flexible enough to handle both likelihoods the contain multiple input-
dependent parameters and, as in the Poisson example above, one parameter that is to
be modelled by some function of multiple input-dependent functions.

4.2.1 Variational Bound

Sparse approximations of Gaussian processes, Section 3.3, serve as a basis for the
non-Gaussian likelihood model that follows. For non-Gaussian likelihoods, even with
a single latent process, the marginal likelihood, p(y), is not tractable; but it can be
lower bounded variationally using a factorised posterior. Section 3.2 discussed one such
variational approach. From here on we assume that the latent functions, f = f(x) and
g = g(x) are a priori independent, and as in Section 3.3 are conditioned on a set of
function specific inducing points, uf , ug. The prior independence assumption may be
invalid, particularly if there should be a strong correlation between the parameters,
though it is frequently the case that we do not know what type of prior dependence
should be given, and so it is typically a reasonable assumption. The above assumptions
give the following factorisation,

p(f , g|uf ,ug) = p(f |uf )p(g|ug). (4.2)

The derivation of the variational lower bound then follows a similar form as (Hensman
et al., 2015b) with the extension to multiple latent functions. We begin by writing
down our log marginal likelihood,

log p(y) = log
∫
p(y|f , g)p(f , g|uf ,ug)p(uf )p(ug)df dg duf dug

then introduce a factorised variational approximation to the posterior of the form,

p(f , g,ug,uf |y) ≈ p(f |uf )p(g|ug)q(uf )q(ug), (4.3)

where we have made the additional assumption that the latent functions also factorise
in the variational posterior. This factorisation assumption may not always be strictly
valid, but it is required in order to allow the inference to be tractable. If there
should only be very weak correlation between the parameters the model should not be
badly affected by this approximation. If the parameters however should be strongly
correlated, the modelling assumptions would be poor and this could result in spurious
inferences and convergence difficulties, so care must be taken. It may be the case
that a re-parameterisation of the model can allow it to be written in terms of more
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independent parameters, allowing the factorisation assumption to be valid. In practice
we find that inference can still be effective even when there would naturally be some
correlation between parameters being modelled.

Using Jensen’s inequality and the factorisation of the latent functions,
Equation (4.2), a variational lower bound can then be obtained for the log marginal
likelihood,

log p(y) = log
∫
p(y|f , g)p(f |uf )p(g|ug)p(uf )p(ug)df dg duf dug

≥
∫
q(f)q(g) log p(y|f , g)df dg − KL (q(uf ) ∥ p(uf )) − KL (q(ug) ∥ p(ug)) ,

(4.4)

where q(f) =
∫
p(f |uf)q(uf)duf and q(g) =

∫
p(g|ug)q(ug)dug. Assuming Gaussian

process priors on the latent functions we recover the conditionals,

p(f |uf ) = N
(
f |Kfuf

K−1
uf uf

uf ,Kff − Qff
)

p(g|ug) = N
(
g|KgugK−1

ugug
ug,Kgg − Qgg

)
,

where

Qff = Kfuf
K−1

uf uf
Kuff

Qgg = KgugK−1
ugug

Kugg.

Note that kernel functions for f and g, can differ though their inducing input locations,
Z, are shared.

We take q(uf) and q(ug) to be Gaussian distributions with variational
parameters, q(uf ) = N (uf |µfu,Sf ) and q(ug) = N (ug|µgu,Sg). Using the properties
of multivariate Gaussian distributions this results in tractable integrals for q(f) and
q(g),

q(f) = N
(
f |Kfuf

K−1
uf uf

µfu,Kff + Q̂ff

)
(4.5)

q(g) = N
(
g|KgugK−1

ugug
µgu,Kgg + Q̂gg

)
, (4.6)

where

Q̂ff = Kfuf
K−1

uf uf
(Sf − Kuf uf

)K−1
uf uf

Kuff

Q̂gg = KgugK−1
ugug

(Sg − Kugug)K−1
ugug

Kugg.
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Fig. 4.3 Graphical model describing the chained GP model. In the posterior note f
and g are integrated out.

The variational parameters, µfu,µgu,Sf ,Sg must be learnt through optimisation.
The KL terms in Equation (4.4) and their derivatives can be computed in closed form

and are inexpensive as they are divergences between Gaussian distributions with m×m

covariance matrices. However, an intractable integral,
∫
q(f)q(g) log p(y|f , g)df dg,

still remains. Since we consider only likelihoods that completely factorise across data
points, such as the log-logistic,

p(y|f , g) =
∏n

i=1 p(yi|fi, gi),

the problematic integral in Equation (4.4) also factorises across data points, allowing
us to use stochastic variational inference (Hensman et al., 2013; Hoffman et al., 2013),

∫
q(f)q(g) log p(y|f , g)df dg =

∫
q(f)q(g) log

n∏
i=1

p(yi|fi, gi)df dg

=
∑n

i=1

∫
q(fi)q(gi) log p(yi|fi, gi)dfi dgi. (4.7)

Note how this has reduced the computational burden from performing b = 2 infinite
dimensional integrals, to a series of n, b dimensional Gaussian integrals over the log-
likelihood of the data. In this case we are considering only two latent functions, f
and g respectively, and so b = 2 however this can be trivially extended to more latent
functions if necessary; though doing so requires increasingly high dimensional integrals.
The final form of the variational lower bound then becomes,

log p(y) ≥
∑n

i=1

∫
q(fi)q(gi) log p(yi|fi, gi)dfi dgi

− KL (q(uf ) ∥ p(uf )) − KL (q(ug) ∥ p(ug)) . (4.8)

Figure 4.3 shows a graphical model of the model prior to integration of f and g.
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The bound decomposes into a sum over data, as such the n input points can be
visited in mini-batches, and the gradients and log-likelihood of each mini-batch can
be subsequently summed. This operation of computing and summing can be also be
parallelised (Dai et al., 2014; Gal et al., 2014). A single mini-batch can instead be
visited obtaining a stochastic gradient for use in a stochastic optimisation (Hensman
et al., 2013; Hoffman et al., 2013). This provides the ability to scale to huge datasets.

If the integral in Equation (4.7) and its gradients can be computed in an unbiased
way, any factorising likelihood can be used. This is a key to its flexibility and its
applicability to complex non-Gaussian likelihoods such as the log-logistic likelihood.
In this case both the shape, β, and scale, α, parameters can now be modelled by
input-dependent functions,

yi ∼ LogLogistic(αi = ef(xi,:), βi = eg(xi,:)),

where f(x) = GP (µf , kf (x,x′)) and g(x) = GP (µg, kg(x,x′)).
This can be seen as a chained Gaussian process since there is no single link function

that allows the specification of this model under the modelling assumptions of a
generalised linear model.

Using the variational bound above, all that is required is to perform a series of n
two dimensional integrals, for both the log-likelihood and its gradients. Though these
integrals are not analytic they can be approximated well with quadrature or Monte
Carlo methods whilst maintaining a computationally feasible inference method when
considering modest batch sizes.

A major strength of this method is that performing this integral is the only
requirement to implement a model with a different likelihood, similarly to Hensman
et al. (2015b); Nguyen and Bonilla (2014). Furthermore, since a stochastic optimiser is
used, the gradients do not need to be exact. Our implementation can use off the shelf
stochastic optimiser, such as Adagrad (Duchi et al., 2011) or RMSProp (Tieleman and
Hinton, 2012). For many other likelihoods some portion of these integrals is analytically
tractable; this will reduce the variance introduced by numerical integration required to
evaluate the intractable integrals in Equation (4.7).

4.2.2 Quadrature and Monte Carlo

Computing Equation (4.7) requires a series of low-dimensional integrals. Recently,
there has been progress in using stochastic methods to obtain unbiased estimates for
such problems using centred representations (Kingma and Welling, 2014; Rezende et al.,
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2014). In this section, we investigate the effectiveness of Gauss-Hermite quadrature as
a contrasting approach for two-dimensional integrals.

Gauss-Hermite quadrature approximates Gaussian integrals in one dimension using
a pre-defined grid. For expectations of polynomial functions, the method is exact
when the grid size meets the degree of the polynomial; for non-polynomial functions
as we will encounter in general, we must accept a small amount of bias. To integrate
higher dimensional functions, we must nest the quadrature, doing an integral across
one dimension for each quadrature point in the other dimensions. Our experiments
provide encouraging results in this case, suggesting the amount of bias is negligible.
Figure 4.4 illustrates this, examining the accuracy of nested quadrature as compared to
Monte Carlo (MC) estimates using the centered parameterisation (Kingma and Welling,
2014). Inspired by an examination of quadrature for expectation propagation (Jylänki
et al., 2011), we examine the effectiveness for a several positions of the integral of a
Student-t, a distribution that is problematic as it contains heavy tails.

Gauss-Hermite quadrature is appropriate for the integral in Equation (4.7) as the
Gaussian posteriors q(fi)q(gi) are convolved with a function log p(yi|gi, fi). Monte
Carlo integration is exact in the limit of infinite samples, however in practice a subset
of samples must be used. Gauss-Hermite requires phb evaluations per point in the
mini-batch, where h is the number of Gauss-Hermite points used, p is the number
of output dimensions, and b is the number of latent functions. Since Monte Carlo is
unbiased, using a stochastic optimiser with the stochastic estimates of the integral and
its gradients will work effectively (Kingma and Welling, 2014; Nguyen and Bonilla,
2014), though we find the bias introduced by the quadrature approach to be negligible.
For higher number of latent functions it may be more efficient to make use of low
variance Monte Carlo estimates for the integrals. Gradients for the model can be
computed in a similar way with the Gaussian identities used by Opper and Archambeau
(2009), further details on gradients can be found in Appendix C.1.

4.2.3 Posterior and Predictive Distributions

From the results of the variational approximation, Section 3.2, and the posterior
distribution assumptions made in Equation (4.3), when the variational lower bound
has been maximised with respect to the variational parameters, p(uf |y) ≈ q(uf ) and
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(c) Student-t shoulder
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(d) Student-t tail

Fig. 4.4 Two dimensional Gauss-Hermite quadrature vs Monte Carlo. Each plot
shows the log absolute error in estimating the two dimension integral required by
our heteroscedastic Student-t model (see section 4.4.2), a likelihood with heavy tails
and so particularly problematic for quadrature. In each case, the bias introduced by
quadrature (circles) is small: a long way into the tail of the variance from the MC
approximation. In fact, for small numbers of quadrature points, we often do better
than the expected value using many more MC samples. Box-plots shows the absolute
error on 1000 separate reruns of MC, whereas quadrature is deterministic. The error
was evaluated at various points in the tail of the distribution as shown in a).
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p(ug|y) ≈ q(ug). The posterior for p(f ∗|y∗) under this approximation is

p(f ∗|y) =
∫
p(f ∗|f)p(f |uf ,y)p(uf |y)df duf

≈
∫
p(f ∗|uf )q(uf )duf = q(f ∗),

and similarly so for p(g∗|y), where q(f ∗) and q(g∗) become similar to Equation (4.5),

q(f ∗) = N
(
f ∗|Kf∗uf

K−1
uf uf

µf ,Kf∗f∗ + Kf∗uf
K−1

uf uf
(Sf − Kff )K−1

uf uf
Kuff∗

)
q(g∗) = N

(
g∗|Kg∗ugK−1

uf uf
µf ,Kg∗g∗ + Kg∗ugK−1

uf uf
(Sf − Kff )K−1

uf uf
Kugg∗

)
Finally, treating each prediction point independently, the predictive distribution

for each data pair {(x∗
i , y

∗
i )}n

∗
i=1 follows as

p(y∗
i |yi,xi) =

∫
p(y∗

i |f ∗
i , g

∗
i )q(f ∗

i )q(g∗
i )df ∗

i dg
∗
i .

This integral is analytically intractable in the general case, but again can be computed
using a series of two dimensional quadrature or simple Monte Carlo sampling.

4.3 Chained Survival Analysis

A central goal of the development of the chained Gaussian process framework is to
provide additional flexibility to the hazard function (Section 2.1.4) beyond existing
models (Sections 4.1.2 and 4.1.1). The log-logistic distribution (Section 4.1.2) as
discussed can be used as a likelihood for survival analysis models.

The log-logistic AFT based model given in Section 4.1.2, is however restrictive, as
the shape of failure time distribution, β, is assumed to be the same for all individuals
in the cohort. As noted in Section 4.1.2 when β > 1 the failure density distribution is
unimodal, when 0 < β ≤ 1 it is exponential. By varying the shape parameter of the
log-logistic distribution, the failure time distribution may vary between both a skewed
unimodal and exponential shaped distributions. The corresponding hazard functions,
that are a function of the failure time distribution, Equation (2.3b), will also then
vary between a unimodal shaped hazard function, and an exponential shaped hazard
function.

With the development of a chained survival model, the assumption that all patients
share the same shape of failure time distribution can be relaxed by allowing the shape
parameter, β of the log-logistic distribution to vary in response to the individuals
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covariates, as well as the scale parameter, α,

yi ∼ LL(αi = ef(xi,:), βi = eg(xi,:)),

where f(x) = GP (µf , kf (x,x′)) and g(x) = GP (µg, kg(x,x′)). Censoring can be
taken into account similarly to Equation (4.1), resulting in a likelihood function of the
form,

p(y|α,β,ν) =
K:ν=1∏
i=1

(
αi

βi

) (
yi

αi

)βi−1

(
1 + yi

αi

βi
)2

︸ ︷︷ ︸
failure time observed

M :ν=0∏
j=1

1
1 +

(
yj

αj

)βj

︸ ︷︷ ︸
censored individuals

(4.9)

where both α and β are now able to vary in response to the covariates. As in the
chained Gaussian process methodology, we assume these parameters are independent,
assign each a Gaussian process prior, and infer a posterior distribution of functions
that represent how the parameters change in response to the input. Again there is no
associated link-function in this case, and so the chained survival model fits inside the
class of chained Gaussian process models.

4.3.1 Chained Survival Analysis Experiments

To evaluate the effectiveness of our chained survival analysis model, we applied the
model to both a real dataset and synthetic dataset. The performance measure used is
the negative log predictive density (NLPD) on held out data and 5-fold cross-validation
is used. Since there are multiple latent functions that contain uncertainty, the NLPD
is computed by sampling functions for both parameters repeatably; computing the
NLPD for each sample, and averaging the NLPD over the samples. The non-linear
optimisation of (hyper-) parameters is subject to local minima, as such multiple runs
were performed on each fold with a range of parameter initialisations. The solution that
obtained the highest log-likelihood on the training data of each fold was retained for
subsequent prediction. The automatic relevance determination RBF kernel, Section 3.2,
is used allowing one lengthscale per input dimension, in addition to a bias kernel1.
Experiments are made with 100 inducing inputs, Z, and their locations were optimised
with respect to the lower bound of the log marginal likelihood following Titsias (2009).

The leukemia dataset (Henderson et al., 2002) contains censored failure times
for 1043 leukemia patients and is known to have non-linear responses for certain
covariates (Gelman et al., 2013).

1Code is publicly available at: https://github.com/SheffieldML/ChainedGP

https://github.com/SheffieldML/ChainedGP
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Data NLPD
G LSurv VSurv CHSurv

leuk 4.03 ± .08 1.57 ± .01 1.57 ± .01 1.56 ± .01
SimSurv 5.45 ± .06 2.52 ± .02 2.52 ± .02 2.16 ± .02

Table 4.1 Results NLPD over 5 cross-validation folds with 10 replicates each, where
± represents the standard error of the mean. Models shown in comparison are
sparse Gaussian (G), survival Laplace approximation (LSurv), survival variational
approximation (VSurv), chained survival analysis model (CHSurv).

To generate the synthetic survival dataset, SimSurv, we first define latent functions
that we wish to infer. These are a complex functions of a two dimensional set of
covariates, X ∈ Rn×2,

α = exp
(

2 exp(−30(x:,0 − 1
4)2) + sin(πx2

:,1) − 2
)

β = exp (sin(2πx:,0) + cos(2πx:,1)) .

n = 1000 synthetic individuals are created, with covariates sampled uniformly from
xi,0 ∼ Uniform(0, 1) and xi,1 ∼ Uniform(0, 1). True failure times, si, for each of the n
individuals are then sampled from a log-logistic distribution as in Equation (4.9) using
the corresponding parameter values for the individuals covariates as in Equations (4.4.1).
Random dropout of the trial is simulated by censoring 20% of the failure times at a
time uniformly drawn, ti ∈ [0, si], and the observed time is subsequently truncated
to this time, yi = ti; a failure indicator νi = 0 is also associated with the individual
to indicate that the failure time was right censored. Otherwise the true time is used,
yi = si, and νi = 1.

Figure 4.5 illustrates the flexibility of the chained survival model on one of the
synthetic datasets generated. It is clearly able to capture the non-linearity of the shape
and scale parameters over the two dimensional covariate information; which in turn
leads to variation of the failure time distributions, and corresponding hazard functions,
in response to the input covariates.

Table 4.1 shows the models performance on both a real and synthetic dataset. The
model is compared to a standard sparse Gaussian process with no knowledge of the non-
normality of the likelihood, a Gaussian process that uses a log-logistic likelihood with a
Laplace approximation, as in Section 4.1.2, and a variational approximation matching
that of Hensman et al. (2015b). Both the Laplace approximation and variational
approximation are only able to find MAP estimates for the shape parameter; the
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Fig. 4.5 Resulting model on synthetic survival dataset. Shows variation of median
survival time and shape of log-logistic distribution, in response to differing covariate
information. Background colour shows the chained-survivals predictions, coloured
dots show ground truth. Lower figures show associated failure time distributions and
hazards for two different synthetic patients. Depending on the input, the predicted
shape of the hazard function can be either unimodal or exponential.



4.4 Further Experimental Results 74

chained survival analysis model is able to allow the shape parameter to vary smoothly
in response to the input.

On the leukemia dataset we find little advantage from using the chained survival
model, but also note the model is robust on this example such that performance isn’t
degraded in this case, which is a very much desired property. This suggests that the
additional flexibility does not impede the model. The lack of improvement indicates
that, in this dataset, it is more than likely all individuals share the general shape
of hazard function, and small changes attributed to different covariates cannot be
inferred. It may also require additional data to infer these non-linearities, unlike existing
Gaussian process based approaches, the chained survival model is capable of handling
very large datasets, since the approach is highly scalable through the use of stochastic
variational inference; though this is not demonstrated on this particular dataset due to
its size. In the case of the synthetic dataset example however, a significant increase
in performance is seen. Though only marginal improvements are found in this study
by allowing β to be non-constant, there are a number of situations where we expect
the shape of the distribution to change in response to the input. For example, if a
study contained a cohort in which different patients were at different stages of infection,
characterised by a covariate. If a patient had already started showing symptoms, it
may be that their failure time distribution is exponential shaped, and they are at
highest risk at the beginning of the study. If the oncome of symptoms have not yet
started, the patient is may be currently at low risk, but this risk will rise at some point
in the future, requiring a unimodal distribution.

It should be noted that since the number of training data used in these experiments
is relatively small, it is not necessarily to use a sparse approximation; an approach
more similar to the work of Opper and Archambeau (2009) could be instead modified
do handle non-Gaussian likelihoods and multiple latent functions in a similar manner
to this work. We hope in future work to demonstrate the applicability of the scalable
model on larger survival datasets, though as shown in the following section, the model
is able to scale computationally.

4.4 Further Experimental Results

Although the focus of the chained Gaussian process model is relax limitations of
existing survival analysis methods, namely by allowing both the shape and scale of the
failure density time distribution and hazard time to vary non-linearly in response to
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observed covariates; the model is also applicable to a wider range of likelihoods than
those commonly used survival analysis.

We now provide some results of applying the inference procedure to a number of
models with other likelihoods that contain multiple latent parameters. Some of these
models also relate directly to modelling of failure data, such as Poisson distributed
failure counts within a given area, others can be related to a variety of tasks within
clinical data analysis. We also consider the Gaussian likelihood which makes clear
the relationship between the chained Gaussian process models and existing work in
heteroscedastic Gaussian process regression.

The experimental setup is similar to that of the chained survival analysis
experiments, evaluating the performance of the model on both real and synthetic
datasets, measured by NLPD on held out data table 4.2.

4.4.1 Heteroscedastic Gaussian

One alternative application of this framework is to the heteroscedastic Gaussian
process model. Assume a Gaussian process prior for f ∼ N (µf ,Kff ). If the likelihood
distribution is a i.i.d Gaussian, p(y|f , g) = ∏n

i=1 N (yi|fi, gi), then we have two special
cases. When gi is independent of X, e.g. gi = β−1 we have a Gaussian process with the
conjugate homogeneous Gaussian likelihood, Section 3.1. When gi changes as a function
of X, e.g. gi = eg(x) we obtain a model for a heteroscedastic Gaussian process (Goldberg
et al., 1997). It is common (Kersting et al., 2007; Lazaro-Gredilla and Titsias, 2011) to
assume a log Gaussian process prior for the noise variance parameter, g ∼ N (µg,Kgg)
to maintain positivity.

In the case that the likelihood is Gaussian, the integral in Equation 4.7 becomes
analytic (Lazaro-Gredilla and Titsias, 2011),∫

q(fi)q(gi) log p(yi|fi, gi)dfi dgi

=
∫

N
(
fi|mf i, vf i

)
N
(
gi|mgi, vgi

)
log N (yi|fi, egi)

= log N
(
yi|mf i, e

mgi−
vgi

2
)

−
vgi
4 −

vf ie
−mgi+

vgi
2

2

where we define

mf = Kfuf
K−1

uf uf
µf V f = Kff + Q̂ff

mg = KgugK−1
ugug

µg V g = Kgg + Q̂gg.
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Data NLPD
G CHG Lt Vt CHt

Elevators1000 0.23 ± 0.03 0.1 ± 0.01 NA NA NA
Elevators10000 0.07 ± 0.01 0.01 ± 0.01 NA NA NA
MotorCorrupt 2.04 ± 0.06 1.79 ± 0.05 1.73 ± 0.05 2.52 ± 0.09 1.7 ± 0.05

Boston 0.27 ± 0.02 0.09 ± 0.01 0.23 ± 0.02 0.19 ± 0.02 0.09 ± 0.02
Table 4.2 Results NLPD over 5 cross-validation folds with 10 replicates each. Models
shown in comparison are sparse Gaussian (G), chained heteroscedastic Gaussian (CHG),
Student-t Laplace approximation (Lt), Student-t variational approximation (Vt), and
chained heteroscedastic Student-t (CHt).100 inducing points are used throughout.

vf i denotes the ith diagonal element of the matrix V f . It may be possible in this
Gaussian likelihood case to find the optimal q(f) such that the bound collapses to
that of Lazaro-Gredilla and Titsias (2011), however this would not allow for stochastic
optimisation. The chained Gaussian process model provides a sparse extension, where
a Gaussian distribution is assumed for the posterior over of f , where as previously
q(f) had been collapsed out and could take any form. This sparse extension provides
the ability to scale to much larger datasets whilst maintaining a similar variational
lower bound.

We first use the chained GP approximation to show how the addition of input-
dependent noise to a Gaussian process regression model affects performance, compared
with a sparse Gaussian process model (Titsias, 2009). Performance is shown to
improve as more data is provided as would be expected, making it clear that both
models can scale with data, though the new model is more flexible when handling the
distributions tails. A sparse Gaussian process with Gaussian likelihood is chosen in
these experiments as a baseline, as a non-sparse Gaussian process cannot scale to the
size of all the experiments.

The Elevator1000 uses a subset of 1000 randomly selected data-points from
the Elevator dataset. In this data the heteroscedastic model (Chained GP) offers
considerable improvement in terms of NLPD over the sparse GP (Table 4.2).

The second experiment with the Gaussian likelihood, Elevator10000, examines
scaling of the model. Here a subset of 10000 data points of the Elevator dataset are
used, and performance maintains an improvement as expected. Previous models for
heteroscedastic Gaussian process models cannot scale, the chained GP model can
encode the heteroscedastic setting and additionally scale to large datasets.

Following an example set by Cawley et al. (2004) that considers heteroscedastic
kernel ridge regression, from which other publications have followed (Le et al., 2005),
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(a) Chained GP fit to data
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(b) Chained GP posterior over mean

0.0 0.5 1.0 1.5 2.0 2.5 3.0

x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

σ

Predicted std
95% credible
True std
Inducing point

0.0 0.5 1.0 1.5 2.0 2.5 3.0

x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

σ

Predicted std
95% credible
True std
Inducing point

(c) Chained GP posterior over standard deviation

Fig. 4.6 a) The chained Gaussian process fit to a heteroscedastic dataset, the mean of
the posterior for the conditional mean is shown alongside the 95% credible interval
coming from the mean of the posterior for the conditional variance, both of these
posteriors also have uncertainty associated with them however. b) The posterior mean
with 95% credible intervals from the posterior. c) The posterior standard deviation,
with 95% credible intervals from the posterior.
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(a) Fit to data
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(b) Posterior mean
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(c) Posterior standard
deviation

Fig. 4.7 Under a similar setting to Figure 4.6 the chained Gaussian process credible
intervals collapse around the true values as the model becomes more certain in the
presence of more data, particularly about the conditional standard deviation function

(a) Fit to data
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(b) Posterior mean
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(c) Posterior standard
deviation

Fig. 4.8 Increasing the number of inducing points to 150 from 10 in the same context
as Figure 4.7 reduces the predicted variance around the conditional variance, but it
does not completely collapse around the true function
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we also consider the accuracy of the chained GPs posterior approximation to the
mean and variance functions. Cawley et al. (2004) provided a method that is able to
obtain an estimate of the variance function with very little bias, an attractive property.
The chained Gaussian process model was fit to two datasets, one consisting of 400
data points, the other 25000 data points. The univariate synthetic datasets contain
heteroscedastic variance, identical to that used by Cawley et al. (2004). Inputs x are
drawn from a uniform distribution in the interval (0, π), and outputs y are drawn from
a Gaussian distribution, the mean and variance of with are smooth functions of the
input, x,

x ∼ U(0, π),

y ∼ N
(

sin
[5x

2

]
sin

[3x
2

]
,

1
100 + 1

4

{
1 − sin

[5x
2

]}2)

Figures 4.6 and 4.7 show the posterior distribution over functions learnt for the mean
and standard deviation, compared with the true mean and standard deviation. For the
smaller dataset of 400 points, two chained Gaussian process fits were made, one with
400 inducing points, z, fixed to the locations of x; the other with 10 inducing points
initialised uniformly across (0, π); their locations were then subsequently optimised
with respect to the lower bound along with the (hyper-) parameters of the model. For
the larger dataset of 25000 data points, a model with 10 optimised inducing points
was fit, as 25000 inducing points would be computationally infeasible.

Unlike the kernel ridge regression approach, that used a leave-one-out cross-
validation to find a point estimate the conditional variance, the chained Gaussian
process learns a posterior distribution over possible variance functions. The mean of
the posterior over the conditional standard deviation (

√
eg) is unfortunately is not

exact for the chained Gaussian process model as illustrated in Figure 4.6c. However,
the true conditional standard deviation function is easily contained within the 95%
credibility intervals of the posterior prediction and the mean is not drastically away
from the true function. Since the conditional variance function is so simple, the chained
Gaussian process using only 10 inducing points almost exactly matches the model that
uses all 400. Figure 4.7 shows the model fit to a much larger dataset of 25000 data
points. In this case the posterior approximation to the variance function is significantly
more certain, and collapses to an almost exact estimate of the true function. In this
case we see that in the region of x = 2 there is relatively poor performance and only
two inducing points located in this region. Figure 4.8 shows that by increasing the
number of inducing points to 150 from 10, the model still contains relatively large
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Fig. 4.9 Corrupted motorcycle dataset, fitted with a Gaussian process model with a
Gaussian likelihood, a Gaussian process with input-dependent noise (heteroscedastic)
with a Gaussian likelihood, and a Gaussian process with Student-t likelihood, with
an input-dependent shape parameter. The mean is shown in solid and the variance is
shown as dotted

predicted variance around the conditional variance in this region. This shows that
when the model has few inducing points, Figure 4.7, it correctly focuses its attention on
the region where predictive accuracy can be increased; where the conditional variance
is low, x = 0.5. Unlike Le et al. (2005) our method is non-convex, and parameters may
be optimised to local minima, however a measure of uncertainty around the functions
is maintained.

4.4.2 Robust Heteroscedastic Regression

We now investigate an extension of the Student-t likelihood that endows it with an
input-dependent scale parameter. This is straightforward in the chained GP paradigm.

The corrupt motorcycle dataset is an artificial modification to the benchmark
motorcycle dataset (Silverman, 1985) and shows the models capabilities more clearly.
The original motorcycle dataset has had 25 of its data randomly corrupted with
Gaussian noise of N (0, 3), simulating spurious accelerometer readings. We hope that
our method will be robust and ignore such outlying values whilst capturing the trend
in the underlying system. An input-dependent mean, µ, is set alongside an input-
dependent scale that must be positive, σ. A constant degrees of freedom parameter ν,
is initialised to 4.0 and then is optimised to its MAP solution.

yi ∼ St(µ = f(xi,:), σ2 = eg(xi,:), ν) (4.10)

where f(x) = GP (µf , kf (x,x′)) and g(x) = GP (µg, kg(x,x′)). This provides
a heteroscedastic extension to the Student-t likelihood. We compare the model
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Fig. 4.10 a) NLPD on corrupt motorcycle dataset. b) NLPD of Boston housing
dataset. In NLPD lower is better, models shown in comparison are sparse Gaussian
(G), Student-t Laplace approximation (Lt), Student-t variational approximation (Vt),
chained heteroscedastic Gaussian (CHG), and chained heteroscedastic Student-t (CHt).
Boxplots show the variation over 5 folds.

with a Gaussian process with homogeneous Student-t likelihood, approximated
variationally (Hensman et al., 2015b) and with the Laplace approximation. Figure 4.9
shows the improved quality of the error bars with the chained heteroscedastic Student-t
model. Learning a model with heavy tails allows outliers to be ignored, and so its
input-dependent variance can be collapsed around the underlying function governing
the variance, which in this case is known to be well modelled with a log Gaussian
process (Goldberg et al., 1998; Lazaro-Gredilla and Titsias, 2011). It is also interesting
to note the heteroscedastic Gaussian process models performance; although not able to
completely ignore outliers the model has learnt a very short lengthscale and performs
relatively well. This renders the prior over the scale parameter independent across
the data, meaning that the resulting likelihood is more akin to a scale-mixture of
Gaussian distributions (which endows appropriate robustness characteristics). The
main difference is that the scale-mixture is based on a log-Gaussian prior, as opposed
to the Student-t which is based on an inverse Gamma.

Figure 4.10 shows the NLPD on the corrupt motorcycle dataset and Boston housing
dataset. The Boston housing dataset shows the median house prices throughout the
Boston area, quantified by 506 data points, with 13 explanatory input variables (Kuß,
2006). We find that the chained heteroscedastic Gaussian process model already
outperforms the Student-t model on this dataset, and the additional ability to use
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Fig. 4.11 Twitter sentiment from the UK general election modelled using a
heteroscedastic beta distribution. The timing of the exit poll is marked and is followed
by a night of tweets as election counts come in. Other night time periods have a
reduced volume of tweets and a corresponding increase in sentiment variance. Ticks
on the x-axis indicate midnight. The lower figure shows sample functions from the
posterior of the mean and variance, in blue and green respectively.

heavier tails in the chained Student-t is not used. This ability to regress back to an
already powerful model is a useful property of the chained Student-t model.

4.4.3 Twitter Sentiment Analysis in the UK Election

This section considers a model that further displays the adaptability of the model, on
a novel dataset and with a novel heteroscedastic model. Here the sentiment during
the run up to the UK 2015 general election is considered, focussing on tweets tagged
as supporters of the Labour party. A sentiment analysis tagging system2 was used to
evaluate the positiveness of 105,396 tweets containing hashtags relating to recent the
major political parties, in the run up to the election date. In this case, unlike several
of the other datasets used within this Chapter, a sparse approximation is necessary as
the dataset is too large for a more vanilla Gaussian process method.

The interest here is in modeling the distribution of positive sentiment as a function
of time. The sentiment value is constrained to be between zero and one, and it is not
necessarily the case that the distribution of tweets sentiment through time is unimodal.
A natural likelihood to use in this case is the beta likelihood for beta regression. This

2Available from https://www.twinword.com/

https://www.twinword.com/
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allows bathtub shaped distributions to be accommodated, indicating tweets are either
extremely positive or extremely negative, as well as unimodal distributions. The
distribution of the tweets sentiment can be heterogenous throughout time by using
Gaussian process models for each parameter of the beta distribution.

The Beta distribution traditionally is parameterised in the form, yi ∼ B(α, β)
where α, β ∈ R+ and observations yi ∈ (0, 1), xi ∈ Rq. An alternative parameterisation
can be written in terms of the mean and dispersion of the distribution (Ferrari and
Cribari-Neto, 2004),

p(yi|µi, ϕi) = Γ(ϕi)
Γ(µiϕi)Γ((1 − µi)ϕi)

yµiϕi−1
i (1 − yi)(1−µi)ϕi−1

where 0 < µi < 1 and ϕi > 0. Since µi must be between zero and one, a natural
transformation function is the logistic function. Since ϕi must be positive, it is
additionally assigned a log GP prior,

yi ∼ B(µi = ef(xi,:)

1 + ef(xi,:)
, ϕi = eg(xi,:)), (4.11)

where f(x) = GP (µf , kf (x,x′)) and g(x) = GP (µg, kg(x,x′)). This allows both the
mean and variance, and hence shape of the beta distribution, change throughout time.

The justification for this re-parameterisation is that the mean and precision are
likely to be more independent from one another than the α, β parameters, and
the approximation proposed here assumes independence between the parameters.
Experiments showed that although the resulting inferences were very similar, the mean
and dispersion parameterisation exhibited faster convergence, likely due to the weaker
true interactions between the parameters.

The upper section of Figure 4.11 shows the data and the probability of each
sentiment value throughout time predicted by the model. The lower part shows
samples of functions from the corresponding mean and variance posterior distributions
induced by the above parameterisation. The 2015 general election was particularly
interesting: polls throughout the election showed it to be a close race between the two
major parties, Conservative and Labour. But at the end of polling an exit poll was
released that predicted an outright win for the Conservatives. This exit poll proved
accurate and is associated with a corresponding dip in the sentiment of the tweets.
Other interesting aspects of the analysis include the reduction in number of tweets
during the night and the corresponding increase in the variance of our estimates. For
additional plots see Appendix C.3.
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A similar model could be used over space as well as time; where the outputs
are between 0 and 1. In an epidemiology setting this could be the proportion of a
population with some characteristic of interest. For example studies may have been
conducted throughout the country, and throughout time where the proportion of people
in a sample with a given disease has been measured. In some cases a practitioner may
wish to model the incidence rate based on the counts; in this case a Poisson model is
appropriate as counts are integers and may be larger than one.

4.4.4 Decomposition of Poisson Processes

As discussed previously, the intensity of a Poisson process, λ(x), can be trivially
modelled as the product of two positive latent functions, ef(xi,:) and eg(xi,:). This
corresponds to a generalised linear model (Section 2.3),

log(λ) = f(xi,:) + g(xi,:)
y ∼ Poisson(λ = ef(xi,:)+g(xi,:) = ef(xi,:)eg(xi,:)),

using a log link function.
Instead imagine forming a new process by combining two different underlying

Poisson processes through addition, in this case both the intensities must be positive
functions. The superposition property of Poissons means that the resulting process is
also Poisson with intensity given by the sum of the underlying intensities.

To model this via a Gaussian process we have to assume that the intensity of the
resulting Poisson, λ(x) is a sum of two positive functions, ef(xi,:) and eg(xi,:) respectively,

y ∼ Poisson(λ = ef(xi,:) + eg(xi,:)), (4.12)

where f(x) = GP (µf , kf (x,x′)) and g(x) = GP (µg, kg(x,x′)). There is no link
function representation for this model, and so it takes the form of a chained-GP, unlike
the product case above.

When the intensity function of a Poisson process is modelled by the log of a Gaussian
process, the model is known as a Log-Gaussian Poisson process (Møller et al., 1998).
Unfortunately inference for such a model is difficult as it requires an integral of the
intensity function over a domain in which the counts are evaluated. If a log Gaussian
process is used for the intensity function, such an integral is not analytically tractable.
For low dimensional problems, this integral can be approximated on a grid, assuming
that the Gaussian process is piecewise constant within the region (Hensman et al.,
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Fig. 4.12 Even with 350 data we can start to see the differentiation of the addition of a
long lengthscale positive process and a short lengthscale positive process. Red crosses
denote observations, dotted lines are the true latent functions generating the data
using Eq (4.12), the solid line and associated error bars are the approximate posterior
predictions, q(f ∗), q(g∗), of the latent processes.

2015a). This grid integration is very similar to the assumptions made for the piecewise
constant proportional hazards survival likelihood discussed covered in Section 4.1.1.
Indeed the hazard function can be seen as an intensity function, that additionally
depends on the failure having not occurred in the past. This is the approach we will
take, considering only two dimensional inputs regions. Progress has been made recently
on a grid-free approach with variational approximation by Lloyd et al. (2015), using a
squared transformation.

By discretising time and counting the number of failures within each time slice Efron
(2002) considered a Poisson regression model for survival times; in this case only a linear
predictor was used however. As the time slice window tends to 0, incidence counts will
become either 0 or 1; in which case a Bernoulli likelihood can be used (Hanley and
Miettinen, 2009). Focusing purely on the generative model of the data, the lack of a
link function for Equation 4.12 does not present an issue. Figure 4.12 shows a simple
demonstration of this idea on a simulated data set.

Using an additive model rather than a multiplicative model for the intensity function
of counting process has been discussed previously in the context of linear models for
survival analysis, with promising results Lin and Ying (1995).
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Fig. 4.13 Homicide rate maps for Chicago. The short length scale spatial process,
λ1(x) (above-left) is multiplied in the model by a temporal process, µ1(t) (below-left)
which fluctuates with passing seasons. Contours of spatial process are plotted as
deaths per month per zip code area. Error bars on temporal processes are at 5th and
95th percentile. The longer length scale spatial process, λ2(x) (above-right) has been
modeled with little to no fluctuation temporally µ2(t) (below-right).

To illustrate the model on real data, for failure intensities composed of multiple
intensity functions, we considered homicide data in Chicago. Taking data from
http://homicides.redeyechicago.com/ (see also Linderman and Adams (2014)) we
aggregated data into three months periods by zip code. We considered an additive
Poisson process with a particular structure for the covariance functions. We constructed
a rate of the form:

Λ(x, t) = λ1(x)µ1(t) + λ2(x)µ2(t)

where λ1(x) = ef1(x), λ2(x) = eg1(x), µ1(t) = ef2(t) and µ2(t) = eg2(t) where f1(x), g1(x)
are spatial GPs and f2(t) and f2(t) are temporal GPs.

http://homicides.redeyechicago.com/
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The overall rate decomposes into two separable rate functions, λ1(x)µ1(t) and
λ2(x)µ2(t), but the overall rate function is not separable, as it is composed of a sum of
two (positive) separable (Álvarez et al., 2012) rate functions. This structure allows us
to decompose the homicide map into separate spatial maps that each evolve at different
time rates. We selected one spatial map with a lengthscale of 0.04 and one spatial map
with a lengthscale of 0.09. The time scales and variances of the temporal rate functions
were optimised by maximum likelihood. The results are shown in Figure 4.13. The long
lengthscale process hardly fluctuates across time, whereas the short lengthscale process,
which represents more localised homicide activity, fluctuates across the seasons. This
decomposition is possible and interpretable due to the structured underlying nature of
the GPs inside the chained model.

4.4.5 Related Work

Standard Gaussian process regression assumes the mean function of a Gaussian
likelihood can be modelled as a Gaussian process, and the noise variance β−1 is
constant throughout the input range. In Section 4.4.1 we discussed one extension of
this model, known as the heteroscedastic GP regression model (Goldberg et al., 1998),
where the noise variance is dependent on the input. Since the noise variance must
be positive, most approaches assign it a log GP prior, yi ∼ N

(
f(xi,:), eg(xi,:)

)
, where

g(x) = GP (µg, kg(x,x′)). Unfortunately this results in an analytically intractable
posterior distribution for p(f , g|y) and so requires an approximation. Lazaro-Gredilla
and Titsias (2011) propose a variational approximation in this case, though there are
a number of other methods that perform inference in this type of model in a variety
of other ways (Cawley et al., 2004; Kersting et al., 2007; Le et al., 2005; Snelson
and Ghahramani, 2006b). The chained Gaussian process framework uses a similar
variational approximation to Lazaro-Gredilla and Titsias (2011), however uses work
from the sparse Gaussian process literature to scale this model. The chained Gaussian
process model is most attractive in the situation where n >> m, as the number of
variational parameters that must be learnt become more justifiable, optimisation of
these parameters can be challenging when m is large.

Another generalisation of the standard GP regression with Gaussian likelihood
assumption is to vary the scale of the process as a function of the inputs. Adams
and Stegle (2008) suggest a log GP prior for the scale of the process giving rise to
non-parametric non-stationarity in the model. Turner and Sahani (2011) took a related
approach to develop probabilistic amplitude demodulation, here the amplitude (or
scale) of the process was given by a Gaussian process with a link function given by
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σ = log(exp(f) − 1). Finally Tolvanen et al. (2014) assign both the noise variance and
the scale a log GP prior.

All of these variations on Gaussian process regression combine processes in a non-
linear way with a Gaussian likelihood, but the chained Gaussian process framework
focuses on systems that have non-Gaussian observation noise. This provides additional
flexibility when specifying survival analysis models, as in Section 4.3.1, and relaxes
assumptions made by existing models in the literature, Section 4.1. It also provides
the capability to model a decomposed additive failure rate function for count data,
this may be of interest within a epidemiology setting. Previous work in this domain of
non-Gaussian likelihoods with multiple input-dependent parameters, include the use of
the Laplace approximation (Vanhatalo et al., 2013), however this method scales poorly,
O((bn)3) and so isn’t applicable to datasets of more modest sizes.

In other work (Nguyen and Bonilla, 2014) mixtures of Gaussian latent functions
have also been applied for posterior distributions induced by non-Gaussian likelihoods,
we expect such mixture distributions would also be applicable to our case. More
recently this approach was extended (Dezfouli and Bonilla, 2015) to provide scalability
utilising sparse methods similar to this work.

4.5 Conclusion

This chapter has discussed how the Gaussian processes framework can be used for
survival analysis regression. Our novel contribution, the chained survival analysis
model, gives the ability to relax two common assumptions made by the standard
approaches. It allows the linearity assumption about the effect of the function of
covariates made by many common survival models reviewed in Chapter 2 to be relaxed.
It also provides the ability to allow multiple parameters of the survival likelihood to be
input-dependent, allowing the shape of the hazard function to change in response to
the individual; an assumption that is made to our knowledge by all accelerated failure
time models. It achieves both of these goals whilst providing a scalable and flexible
inference method that can be used for a number of other generative models that share
similar assumptions, as shown by further experimental results. However, to carry out
a survival analysis regression with this model, the covariates, X, must be known, as
is the case for most regressions. Chapters 5 and 6 consider what can be done when
not all of the same input variables of all individuals have been measured. This is a
common problem in clinical data and needs to be handled if correct inferences are to
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be made, one common is approach is missing data imputation followed by a subsequent
regression.



5

Missing Data Imputation with
Gaussian Processes

“The answer to any prediction problem is a probability distribution.”
– Peter McCullogh via Peter Diggle

Clinical data is both complex in its nature, and often plagued by missingness of
measurements. In practice the missing data must be handled in some principled way
if subsequent inferences are to be made. There are number of popular ways in which
missing data can be handled, many of which rely on the idea of imputation of the
missing values. Imputed values will usually have some degree of uncertainty associated
with them. Several popular methods for imputation, including principle component
analysis (PCA), result in imputations that are normally distributed around a most
probable value. Unfortunately clinical data often comes from a variety of sources, and
so this normality assumption can be incorrect. The focus of this chapter will be on
extending existing work on missing data imputation with PCA, to provide a more
flexible model for the measurements, and to account for non-Gaussian distributed
observations.

This chapter begins with an overview of mechanisms of missing data, to identify
the applicability of the proposed model. Common existing approaches to handling
of missing covariate data are then discussed. Our second major contribution will
be then provided, a novel Bayesian missing data imputation method based on the
Bayesian Gaussian process latent variable model (BGPLVM), known as the Laplace
approximation Bayesian Gaussian process latent variable model (LABGPLVM). This
method combines the variational approach to inference within the BGPLVM, with a
Laplace approximation to handle non-Gaussian likelihood functions.
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This extension will endow an already powerful latent variable model approach
to imputation with the ability to handle non-Gaussian observations. To understand
the complexities of the novel method, it will be necessary to review some of the
models upon which it builds. During the derivation of the LABGPLVM, a number of
previously unnoticed enlightening observations will come to light about the existing
vanilla BGPLVM. Though the use of the vanilla BGPLVM as an imputation method
has been considered previously, the model has not previously been published and there
have been no studies of its effectiveness as an imputation method; as such this chapter
also contains the first experimental results for this model.

5.1 Mechanisms of Missingness

The mechanisms by which data is missing has an impact on the methods that can
be used to impute it. In this section a number of missingness mechanisms that are
widely used are formalised and notation used for missing data throughout the chapter
is defined.

Consider a matrix, M, as a missing-data indicator matrix for a measurement matrix,
Y, such that Mij = 1 for all Yij that are missing, and Mij = 0 otherwise. Let YO

denote the observed elements of Y, and YM the missing elements. Note that we now
use Y as the covariates that need to be imputed, in contrast to previous chapters where
covariates were denoted X. Regression models will be specified later to impute these
partially missing observations and so this notation is appropriate as the predictor of a
regression model.

Following Little and Rubin (1986), this chapter treats the missing-data indicators
as random variables. The simplest mechanism of missingness is missing completely at
random (MCAR). In this case the probability of being missing is completely independent
of any measurements, as such the missingness is conditionally independent of Y,

p(M|Y,θm) = p(M|θm),

where θm denotes unknown parameters associated with the missingness mechanism.
MCAR simply means that whether the value of Y is missing or not, does not depend
on the measurement data, Y, itself.

For MCAR data, it is typically valid to make subsequent inferences using the
instances of data that have been fully observed, that is rows of Y that do not contain
missing values, by simply ignoring any instances that contain missing data. When this
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is done, a model of the missingness mechanism itself is not required. This is called
complete case analysis. However, if missingness is very common, dropping rows of Y
that contain any missing values may leave little or no data to subsequently use in a
regression model.

Another common and less restrictive mechanism is missing at random (MAR).
In this case the probability that a measurement is missing, depends on observed
measurements, YO, but not on the missing measurements, YM,

p(M|Y,θm) = p(M|YO,θm). (5.1)

An example of the MAR mechanism can be given as follows; consider a measurement of a
patient that has been observed during a hospital visit; such as an positive indicator that
the patient has been diagnosed with lung cancer. It is probable that the outcomes of
unrelated tests, such as an eye-test, are missing as there are more urgent measurements
to obtain from the patient. Conversely, it may be more probable that other tests related
to the current diagnosis of lung cancer have been conducted than for a patient that
has not received this diagnosis. In this case the probability that the data is missing,
is dependant on other non-missing factors, YO, but not necessarily dependent on the
missing values themself YM.

In the case of MAR data, knowledge of missing data values themselves, YM, is not
required. A final mechanism is known as missing not at random, (MNAR or sometimes
NMAR), and is the relaxation of MAR; whereby the missingness, is dependent not
only on the observed values, but also the missing values, YO, that is

p(M|Y,θm) = p(M|YM,θm) or p(M|Y,θm) = p(M|YM,YO,θm).

In contrast to MCAR and MAR, MNAR requires an explicit model of M, p(M|θm), to
be provided or inferred to make inferences using the data, without introducing biases.
In this research focuses on performing inferences within the context of MCAR and
MAR data, one exception to this being censoring.

Censoring as discussed in Section 2.1.1 is an example of MNAR data, where the
mechanism of missingness may depend on the underlying failure time, but where the
mechanism is often understood (Little and Rubin, 1986). Consider for a moment
censoring occurring solely at the end of a clinical trial, known as lost to follow-up. As
in Chapter 2 let ti denote the observed time of failure or censoring of a patient i, and
νi denote the failure indicator, 1 if the failure happened, or 0 if censoring occurred. Let
si denote the true (unobserved in the case νi = 0) failure time. If the νi is dependent
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on si which is missing, the data can be considered MNAR. In the case that censoring
occurs, ν = 0, at the termination time, η, of a clinical trial that is shared amongst all
patients,

νi =

0, if si > η

1, if si ≤ η.

The missing data mechanism for the failure indicator, ν, is then dependent on the
value of the true but possibly missing failure data, s, and this information clearly needs
to be taken into account when performing inferences. This is made clear by the fact
that if a true failure time, si, is indeed missing, it is indicative that the patient has
some attributes that encourage survival beyond the end of the trial, and so the failure
indicator, νi is likely to be 0. Failure to include the failure times of individuals that
were censored will bias the subsequent inference.

5.1.1 Ignorability

By treating the missingness indicators as random variables we must now consider what
impact missingness mechanisms have on any Bayesian inference procedure that rely on
the missing data.

Typically it is desirable to be able to calculate the marginal probability of the
observed data, YO, given a model governed by parameters, θ, or the posterior
probability of the parameters given the data. This may be for model comparison
reasons, or for the purpose of optimisation and prediction. In the most general case our
missingness mechanism can be given by p(M|YM,YO,θm). The marginal probability
of the observed data, YO, and the missingness mechanism, p(M|YO,YM,θm), can be
obtained by integrating out the missing data,

p(YO,M|θm,θ) =
∫
p(YO,YM|θ)p(M|YO,YM,θm)dYM.

The posterior distribution of the parameters p(θ,θm|YO,M) can then be given by
combining a prior p(θ,θm) and the full likelihood (Little and Rubin, 1986) as follows,

p(θ,θm|YO,M) ∝ p(YO,M|θ,θm)p(θ,θm).

In the case the missingness mechanism is MAR (Equation 5.1) the missingness is
independent of the missing data. If we additionally assume that apriori the parameters
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defining the missingness mechanism, θm, and the parameters of the model of the data
itself, θ, are independent,

p(θ,θm|YO,M) ∝
∫
p(YO,YM|θ)p(M|YO,YM,θm)p(θ,θm)dYM

= p(M|YO,θm)p(θm) ×
∫
p(YO,YM|θ)p(θ)dYM (5.2)

=
[
p(M|YO,θm)p(θm)

] [
p(YO|θ)p(θ)

]
. (5.3)

Since in the posterior, θ and θm, are independent, inference about the model
parameters θ can be made purely based on p(YO|θ)p(θ), ignoring the missing data
mechanism, p(M|YO), entirely. Note that here we have made two assumptions, firstly
that the data is MAR, and secondly that the parameters of the mechanism and the
data are independent apriori. If either of these assumptions are invalid, the resulting
inference is likely to be incorrect.

5.2 Imputation Methods

The most common way of handling missing data for subsequent inference is to impute
their probable value, had it been observed. Unfortunately many of the simplest
techniques are known to introduce biases. Although if the amount of missing data is
relatively small compared to the size of the dataset, these biases may be small, but
are clearly not desirable. Graham (2009) suggests that if missingness is less than 5%
percent and completely random, complete case analysis on non-missing instances is
acceptable. The most common imputation methods are single imputation methods
(SI), and model based imputation methods.

SI includes simple methods such as using the mean of the non-missing values of a
covariate (the mean of one column of YO). Another SI method is hot-deck (Andridge
and Little, 2010), where observed values from similar instances are used, where a pool
of similar instances may be collected with a k-nearest neighbour approach. A critical
issue with SI methods is that they do not account for any of the uncertainty associated
with the predictions made (Azur et al., 2011).

Model based imputation (MBI) methods specify a model for what the missing values
should be. In this case it is natural to take into account the uncertainty of the imputed
values in some way. A common approach to introducing this uncertainty is multiple
imputation (MI) methods, that impute a number of possible imputed datasets. The
widely adopted multivariate imputation by chained equations method (MICE) (Buuren
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and Groothuis-Oudshoorn, 1999), is a popular choice of MI method. MICE imputes
a number of datasets, by introducing a series of simple regression models between
covariates, in the form of a chain of equations. The resulting model does not necessarily
result in a consistent model of the joint distribution of the missing data and non-missing
data.

Subspace methods form another strain of imputation methods for missing data,
the most popular of which being missing data imputation with PCA (Ilin and Raiko,
2010), and its probabilistic counterpart PPCA. The reader is directed to Graham
(2009) for a more thorough review of existing imputation methods. The focus of the
remainder of the chapter will be on extending existing Gaussian subspace model based
approaches for missing data imputation, such that they can be applied to a broader
range of problems. Principally this will be when it is known that the observations
should not be normally distributed upon imputation, as will often be the case with
clinical data.

In order to understand the complexities and assumptions of the more flexible novel
model proposed in Section 5.6, as well as the limitations of existing popular subspace
methods that are overcome, it will prove useful to begin from the more simplistic
PPCA model that assumes both a linear latent mapping, and Gaussian observation
noise assumption.

5.3 Probabilistic Principle Component Analysis

Probabilistic principle component analysis (Tipping and Bishop, 1999) (PPCA) is a
simple latent variable model that is the probabilistic counterpart to PCA (Jolliffe,
1986). PCA attempts to find a lower dimensional representation of the data by finding
the basis on which the variance of the data is maximised. It finds a linear mapping
from some unknown latent space X = [x1,:,x2,:, · · · ,xn,:]⊤ where X ∈ Rn×q to the
observed data space Y = [y1,:,y2,:, · · · ,yn,:]⊤ where Y ∈ Rn×p. PPCA assumes that
the observed data Y is then corrupted by Gaussian noise;

yi,: = g(xi,:) + ϵi,

The mapping function is assumed to be linear, g(xi,:) = Wxi,:. W ∈ Rp×q is a matrix
of mapping weights between the latent points, X, and the data space Y. Note that
unlike in previous chapters where p was assumed to be 1, multiple outputs are now
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taken into account. ϵi is assumed to be i.i.d Gaussian noise,

p(ϵi|β−1) = N
(
ϵi|0, β−1I

)
.

Likelihood parameters will be collated as a vector, θL, for notational convenience later
in this chapter; in the current state θL = {β−1}.

The likelihood can then be written as,

p(Y|X,W,θL) =
n∏
i=1

N
(
yi,:|Wxi,:, β−1I

)
. (5.4)

Note that this is an identical setup to that of classical linear regression (Section 2.3),
however in PPCA as well as the mapping weights, W, not being provided, nor are
the inputs X. In PPCA, the latent locations of the training points X are treated as
nuisance parameters as they are unknown. The linear mapping function itself is treated
as the item of interest, and is to be inferred. The Bayesian approach to handling
nuisance parameters is to assign the parameters a prior distribution, combine them
with the likelihood, in this case Equation (5.4), and finally marginalise them out.

The prior distribution assigned for the nuisance parameters X is an i.i.d unit
Gaussian that is independent across data, n,

p(X) =
n∏
i=1

N (xi,:|0, I) . (5.5)

To marginalise X, first combine the prior with the likelihood p(Y|X,W, β−1) and then
integrate over our latent points X,

p(Y|W,θL) =
n∏
i=1

∫
N
(
yi,:|Wxi,:, β−1I

)
N (xi,:|0, I) dxi,:. (5.6)

An uncommon but useful attribute of the Gaussian distribution as used in Chapter 3
is that this integral is in fact analytically tractable (Appendix A.1),

p(Y|W,θL) =
n∏
i=1

N (yi,:|0,C) , (5.7)

where C = WW⊤ + β−1I. This is then the marginal likelihood of the data with the
latent points, X marginalised.

To find the maximum likelihood weights for the mapping, Ŵ, the marginal likelihood,
Equation (5.7), is maximised with respect to the mapping weights, W. Tipping and
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Bishop (1999) show that finding the weights, Ŵ, that maximise the likelihood is
equivalent to a eigenvalue problem, allowing especially efficient computation.

5.3.1 Dual Probabilistic Principle Component Analysis

An alternative, and in fact, equivalent approach to the above derivation of PPCA
would be to instead marginalise the mapping weights, W, this approach is known
as dual PPCA (DPPCA) (Lawrence, 2004). This can be seen intuitively as instead
treating the weights as a nuisance parameter; in this case the latent locations of the
input X, become the item of interest that is to be inferred.

The likelihood, Equation (5.4), is kept the same but a prior is assigned to the latent
points, X, rather than the weights, W,

p(W) =
n∏
i=1

N (wi,:|0, I) .

W can then be marginalise similarly to Equation (5.6),

p(Y|X,θL) =
n∏
i=1

∫
N
(
yi,:|Wxi,:, β−1I

)
N (wi,:|0, I) dwi,:

=
n∏
i=1

N (yi,:|0,C) ,

where C = XX⊤ +β−1I. This model is equivalent to PPCA, however optimal locations
of the latent points, X, must now be found, instead of the optimal weights, W. In this
case the optimal locations can again be found by an eigenvalue problem (Tipping and
Bishop, 1999).

5.4 Gaussian Process Latent Variable Model

The Gaussian process latent variable model (GPLVM) (Lawrence, 2004) is an
extension of the dual PPCA model. Lawrence (2004) recognised that since the
only place in the model that X is used, is inside an inner product, it is then
possible to apply the kernel trick (Schölkopf, 2000). C can then be seen as an
evaluation of the linear kernel (Section 3.1.1) plus some additional independent noise,
C = XX⊤ + β−1I = k(X,X) + β−1I. This kernel function can then be replaced
with any Mercer kernel (Schölkopf and Smola, 2002). By substituting in a different
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non-linear kernel function for k, this alleviates the linear restriction of the mapping
y:,j = gj(xi,:).

By rewriting the marginal likelihood,

p(Y|X,θL,θK) =
n∏
i=1

N (yi,:|0,C)

=
n∏
i=1

1
(2π)

p
2

1
|C| 1

2
exp(−1

2y⊤
i,:C−1yi,:)

= 1
(2π)

np
2

1
|C| 1

2
exp(−1

2Y⊤C−1Y)

=
p∏
j=1

1
(2π)

n
2

1
|C| 1

2
exp(−1

2y⊤
:,jC−1y:,j), (5.8)

it is clear that the marginal likelihood is equivalent to the marginal likelihood of a
product of p independent Gaussian processes as in Equation (3.7),

p(Y|X,θL,θK) =
p∏
j=1

N (y:,j|0,C)

=
p∏
j=1

N
(
y:,j|0, k(X,X) + β−1I

)

=
p∏
j=1

∫
p(y:,j|f:,j,θL)p(f:,j|X,θK)df:,j (5.9)

Note that there are dependencies between the output dimensions; these dependencies
are encoded within the kernel function, that all depend on the same set of inputs,
X, but given the latent function f:,j the outputs dimensions are independent. The
marginal likelihood is now also conditioned on the kernel hyper-parameters, θK and as
well as the likelihood parameters θL.

By using non-linear kernels in Equation (5.8), the GPLVM is obtained. The
marginal likelihood is simply a product of p independent Gaussian process models,
Section 3.1. In Section 3.1 the focus was purely on the case where the number of
output dimensions, p = 1. From Equation 5.8 it is clear that for this model, when p > 1
the marginal likelihood factorises across output dimensions p. As such each output
function, f:,j is modelled by an independent Gaussian process from a shared input, X.
The observed data y:,j is then a Gaussian corruption of these latent functions. The
ability to use a non-linear mapping allows for substantially more complex dependencies
between the output dimensions of the data than PPCA.
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Unfortunately as a result of introducing a non-linear kernel, it is no longer possible
to compute the ‘optimal’ maximum likelihood positions of the latent variables, X,
through a simple eigenvalue problem. To find these optimal positions the marginal
likelihood, Equation (5.8), must be maximised with respect to X through optimisation,
alongside the kernel parameters θK and likelihood parameters, θL. This optimisation
is non-convex and so can converge to sub-optimal local maxima. Additionally the
marginal likelihood in Equation (5.8) is still conditioned on the latent locations, X,
and so only a maximum likelihood estimate of X is found, or a MAP solution if a prior
is added for p(X). In its current form it is not clear how to handle missing data.

5.4.1 Gaussian Process Latent Variable Model with Missing
Data

In order to adapt the model to handle missing data we can use the properties outlined
Section 5.1. The ignorability equality in Equation (5.2) showed that if the missingness
mechanism for M is MAR or MCAR, it is valid to obtain the posterior distribution
over latent parameters, θ, whilst not being concerned with the generative model that
generated the missing values. Critically the evaluation of Equation (5.2) requires the
ability to compute the following integral,∫

p(YO,YM|θ)p(θ)dYM,

which is not possible for every type of model. In Equation (5.8) the marginal likelihood
for the GPLVM was shown to factorise with respect to the dimensions. In the
context of missing data in, Y, it is possible to exploit this property by using the
marginalisation properties of the Gaussian distribution (Appendix A.1.1). Consider
a Gaussian distribution over a vector of random variables, y ∼ N (µ,C), then the
marginal of the ith random variable is simply yi ∼ N (µi,Ci,i). This can be applied to
the above integral, with the GPLVM marginal likelihood,

p(YO|X,θL,θK) =
∫ p∏

j=1
N
(
y:,j|0, k(X,X) + β−1I

)
dyM

:,j

=
p∏
j=1

N
(
yOj

:,j |0, k(XOj ,XOj ) + β−1I
)

where the notation yOj

:,j represents only the nj non-missing observations for data column
y:,j . XOj denotes the corresponding nj inputs for these observations, note this contains
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all columns of X however. This marginalisation property has previously been exploited
in the context of probabilistic matrix factorisation (Lawrence and Urtasun, 2009). Since
the GPLVM is a generalisation of PPCA, a similar method can be used for imputation
with PPCA. This property will also be used in a similar way for the novel model
proposed in Section 5.6 to allow it to perform missing data imputation. Predictions
for the GPLVM with a fixed certain input, X, can be made using the standard GP
prediction, Equation (3.8). Hernández-Lobato et al. (2014) have also proposed a related
probabilistic matrix factorisation method that can also handle MNAR data, where the
output variables, Y, were ordinal.

5.5 Bayesian Gaussian Process Latent Variable
Model

The Bayesian Gaussian process latent variable model (BGPLVM) (Titsias and Lawrence,
2010) attempts to rectify some of the shortcomings of the GPLVM; namely that since
the latent inputs, X, are optimised with respect to p(Y|X,θL,θK), only maximum
likelihood for these parameters can be sought. It is also possible to seek a MAP solution;
by simply maximising p(Y|X)p(X) with respect to X. However, this only encourages
X to stay around 0, if a zero mean Gaussian prior is used, as in Equation (5.5). By
not marginalizing out the latent variables, X, and only optimizing X with respect to
p(Y,X) the model is sensitive to overfitting (Damianou, 2015).

A fully Bayesian approach requires the computation of the true marginal likelihood,
where X has been integrated out completely,

p(Y|θL,θK) =
∫ ∫

p(Y|X,W,θL,θK)p(X)p(F )dF dX

=
∫
p(Y|X,θL,θK)p(X)dX (5.10)

The integral in the first line was carried out in Section 5.4; p(Y|X,θL,θK) is given by
the likelihood for the GPLVM, Equation (5.9).

Unfortunately X appears within the kernel function k(X,X), that is subsequently
inverted in the evaluation of the GPLVM likelihood. Performing such an integration is
analytically intractable.

The BGPLVM (Titsias and Lawrence, 2010) tackles this problem by forming
variational lower bound on this marginal likelihood. The approach sidesteps the problem
of the integration over the inverse operation, by introducing a set of inducing points,
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U ∈ Rm×p at corresponding inducing inputs, Z ∈ Rm×q, as covered in Section 3.3.1.
A variational lower bound on the marginal likelihood p(Y|θL,θK) can then be found
in a similar way to that of the sparse Gaussian process, Section 3.3; by finding the
optimal form for q(u|θV ) and plugging it into the bound, known as collapsing. The
variational approximation also gives rise to an approximate posterior distribution
q(X|θV ) ≈ p(X|Y) that depends on variational parameters θV . A Gaussian mean-field
approximation is used for this such that it is fully factorised as follows,

q(X|θV ) =
n∏
i=1

N
(
xi,:|µV i,:,ΣV i,i

)

Once optimised with respect to the lower bound on the marginal likelihood, this encodes
the models belief in the location of the associated input data X, given the observed
data Y, which is not simply a point estimate.

The derivation of the form of variational lower bound is involved and so only
important details for the novel contributions are outlined; exhaustive details of the
derivation can be found in Appendix D and in the following resources Damianou (2015);
Damianou et al. (2016); Gal and van der Wilk (2014); Titsias and Lawrence (2010),
though with slightly different nomenclature.

The resulting variational bound can be written in the form originally given by Titsias
and Lawrence (2010),

L(qX) =
p∑
j=1

log
 β

n
2 |Kuu|

1
2

(2π)n
2 |βψ2 + Kuu|

1
2
e− 1

2 y⊤
:,jDy:,j

− βψ0

2 + β

2 tr
(
K−1

uuψ2
)

− KL (q(X|θV ) ∥ p(X)) , (5.11)

where

D ≜ βI − β2ψ1(βψ2 + Kuu)−1ψ1
⊤ (5.12)

ψ0 ≜ Eq(X|θV )

[
tr (k(X,X))

]
∈ R1×1 (5.13)

ψ1 ≜ Eq(X|θV )

[
k(X,Z)

]
∈ Rn×m (5.14)

ψ2 ≜ Eq(X|θV )

[ n∑
i=1

k(Z,Xi,:)k(Xi,:,Z)
]

∈ Rm×m, (5.15)

Note that ψ0,ψ1 and ψ2 require the convolution of functions of kernels with the mean-
field Gaussian distribution q(X|θV ). Such convolutions are only analytically tractable
for a subset of kernel functions, including the RBF kernel, ARD RBF kernel and the
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linear kernel. These quantities, and their closed form derivatives will also be used in
the new non-Gaussian LABGPLVM, see Damianou (2015) for details on their form
and numerical considerations. When confronted with a similar bound, Gal et al. (2015)
choose to instead sample from q(X|θV ), in which case any kernel function may be used.

As before, note that the bound on the marginal likelihood factorises across
dimensions, p, and so the bound is a sum over the marginal log likelihood contribution
for each dimension, log p(y:,j|Z). Also note that the variational bound L(qX) implicitly
depends on the likelihood parameters, θL and kernel hyper-parameters θK , as will all
future marginal likelihoods and bounds beyond this point. These parameters must also
be optimised alongside the variational parameters.

Although β−1 is defined as a scalar in the original model, and is shared amongst
all outputs, p, this assumes that each output shares the same likelihood noise. This
assumption is not necessary, although it reduces the computational complexity of
the model, since D must only be computed once to compute the marginal likelihood
contribution of all p outputs. This assumption can however be restrictive, as it assumes
the same likelihood variance for each output, this would prove problematic when we
consider the non-Gaussian likelihood extension of this model in Section 5.6.

5.5.1 Bayesian Gaussian Process Latent Variable Model with
Missing Data

The BGPLVM bound, Equation (5.11) factorises across output dimensions, p. The
bound however can also be rewritten in terms that sum over n (Dai et al., 2014; Gal
et al., 2015). This means that the terms associated with missing data-points, can
easily be marginalised. The reason why this is true will become more obvious upon the
reformulation of the bound in Section 5.6.1. Intuitively, if the variational bound was
derived considering a single output dimension, j, and the corresponding non-missing
elements of y:,j of Y, a single element of the sum below would arise. Since the outputs
are independent Gaussian processes, the bound becomes the sum of the bounds for
each output dimension; considering only the relevant non-missing elements.

The bound can then be rewritten considering only the non-missing observations,
YO,

L(qX) =
p∑
j=1

log

 β
nj
2 |Kuu|

1
2

(2π)
nj
2

∣∣∣βψ2
Oj + Kuu

∣∣∣ 1
2
e− 1

2 y
Oj
:,j

⊤
DOj y:,j

− βψ0
Oj

2 + β

2 tr
(
K−1

uuψ2
Oj

)
− KL (q(X|θV ) ∥ p(X)) , (5.16)
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where the corresponding expectations depend only on the nj, inputs XOj , that relate
to the observations yOj

:,j ,

DOj ≜ βI − β2ψ1
Oj (βψ2

Oj + Kuu)−1ψ1
Oj

⊤ (5.17)

ψ0
Oj ≜ Eq(X|θV )

[
tr
(
k(XOj ,XOj )

)]
∈ R1×1 (5.18)

ψ1
Oj ≜ Eq(X|θV )

[
k(XOj ,Z)

]
∈ Rnj×m (5.19)

ψ2
Oj ≜ Eq(X|θV )

[ nj∑
i=1

k(Z,XOj

i,: )k(XOj

i,: ,Z)
]

∈ Rm×m. (5.20)

From Equation (5.16), it is clear that if the missingness pattern is different for each
output dimension, j, the bound requires the matrix DOj to be computed j times.
This means that in the missing data scenario the optimisation of the bound will be
approximately p times slower, which includes both an O(njm2) operation, and a O(m3)
operation, as DOj must be computed for each output dimension. This however means
that no further computational complexity arises from assuming a different likelihood
variance for each output dimension, β−1

j . Since each output dimension, j, of the bound
is independent, the computation of each outputs contribution could be computed in
parallel. The development of this model was done in collaboration with Max Zwiessele
and is based on unpublished work by Nicolo Fusi. In Section 5.6.5 we carry out the
first systematic experiments evaluating the model’s capabilities for imputation.

PPCA, GPVLM and BGPLVM models have been shown to be extremely effective
at finding a lower dimensional representation of the data (Damianou et al., 2016; Ilin
and Raiko, 2010; Lawrence, 2004), however unlike MICE, they all assume that all that
the observations, YO, are a Gaussian corruption of the underlying latent function,
FO. Throughout the previous chapters it has become clear that such an assumption
is unrealistic, particularly when dealing with a range of inputs as diverse as those
collected in clinical trials, including survival times.

5.6 Bayesian GPLVM for Non-Gaussian
Likelihoods

This provokes the question whether it is possible to relax this normality assumption
during imputation, whilst maintaining the advantages of the BGPLVM. We now
consider a novel model that relaxes the assumption of a Gaussian likelihood in
the BGPLVM. This will provide a basis for a number of applications; including
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Fig. 5.1 Graphical models of the Gaussian process latent variable models introduced in
this chapter

dimensionality reduction, and imputation, and in the subsequent chapter, regression;
all with uncertain inputs and non-Gaussian likelihoods. A similar model was put
forward by Andrade (2015), using expectation propagation; without considering its
missing data counterpart and so not realising its advantages in the area of imputation.
Although expectation propagation is effective for classification (Kuss and Rasmussen,
2005; Nickisch and Rasmussen, 2008), it often has convergence difficulties, and is a
computationally expensive method of inference. Each likelihood implemented also
requires a relatively complex derivation of corresponding site terms. We would like to
have the additional flexibility of easily choosing from a range likelihoods, where different
likelihoods can be used for each output dimension. This allows for the array of data-
types we may encounter in clinical data to be easily incorporated. We propose using
the Laplace approximation, Section 3.2.1, to the variational bound of the BGPLVM to
remedy this short coming of the BGPLVM. This new model is known as the Laplace
approximation Bayesian Gaussian process latent variable model (LABGPLVM). Unlike
previous works, we will focus on the task of missing data imputation, with the aim of
applying it to real clinical data in the future work.

The approach to inference in this model requires an additional assumption to made
in order to aid computation. The observations, that will now be denoted S, are assumed
to be a non-Gaussian corruption of a now latent function Y. For the remainder of
this chapter Y will become an underlying latent function though still a Gaussian
corruption of F unless otherwise specified, and S will be the non-normally distributed
observed variables. To be clear, p(Y|Z,θL,θK) will be the same as in preceding
sections, however Y is now assumed to be latent, not observed. The observations are
then a non-Gaussian corruption of the latent Y, p(S|Y). Graphical models showing
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the GPLVM, BGPLVM and our LABGPLVM model can be found in Figure 5.1. By
making this additional assumption, the latent function Y is now equivalent to the
latent function F as standard Gaussian process regression, however now a usually
small amount of additional independent Gaussian noise, β−1 is added to each output
dimension. This additional assumption will aid inference of the marginal likelihood
of the LABGPLVM model, whilst not overly impairing the model with unrealistic
assumptions. As in the BGPLVM, this noise variance can either be shared between all
output dimensions j or each output may contain its own, β−1

j .
The main focus of the model is to provide the ability to model non-Gaussian

likelihoods. The model essentially uses the BGPLVM as a Gaussian prior, and now
allows a non-Gaussian likelihood to be used for the observations S. To compute the
marginal likelihood of the model, first we must obtain a Gaussian form for the marginal
likelihood of the BGPLVM, p(Y|Z,θL,θK), and then we must perform a subsequent
integration over the non-Gaussian likelihood, p(S|Y). In practice as we have seen in
Section 5.5 that exact computation of p(Y|Z,θL,θK) for the BGPLVM is not tractable,
and we must use the variational bound as a surrogate.

The additional integral required to calculate the approximate bound on the marginal
likelihood will take the form,

L(qX)lap = log
∫
p(S|Y) exp(L(qX))dY (5.21)

In Section 3.2.1 the Laplace approximation was introduced for Gaussian process
regression with non-Gaussian likelihoods. To recap, the marginal likelihood is the
integral of a Gaussian prior, p(f) and a non-Gaussian likelihood p(y|f). For
the LABGPLVM, a reformulation of the variational lower bound of the BGPLVM
is required such that it can be treated as a Gaussian prior with respect to Y,
p(Y|Z,θL,θK) ≈ exp(L(qX)). In doing so we will be able to compute an approximation
to the integral in Equation (5.21) with a non-Gaussian likelihood p(S|Y) to account
for the non-normality of the observed data S.

We will begin by manipulating the original form of the BGPLVM bound,
Equation (5.11), to a form more easily applicable to the Laplace approximation. By
reformulating the bound, a novel interpretation of how the BGPLVM bound directly
relates to the sparse Gaussian processes, Section 3.3 is found. These additional insights
about the model as a result of this reformulation are discussed in Section 5.6.1. The
Laplace approximation will then be applied to the reformulated bound, providing
inference capabilities for both the LABGPLVM, and its missing data counterpart. The
first set of experiments comparing the missing data BGPLVM, missing data PCA, and
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MICE models in the context of imputation are then carried out. A comparison with
the novel LABGPLVM method is then provided, showing the strengths and weaknesses
of each approach to imputation.

5.6.1 Reformulating Bayesian Gaussian Process Latent
Variable Model Bound

In its current representation the bound of the BGPLVM, Equation (5.11), appears
to have an exponential quadratic form, that in turn implies normality with precision
matrix D, however the structure of the completed Gaussian distribution in y:,j is not
immediately clear. It will be convenient to find the associated Gaussian with respect
to y:,j , to allow the Laplace approximation to be applied with little modification. This
can be done by completing the square with respect to y:,j, that will then leave some
extra terms that are independent of the precise values of y:,j. A full derivation of the
below result can be found in the Appendix D.2.3.

Firstly, consider the inverse of the apparent precision matrix, K̂ ≜D−1, which is
the covariance matrix of p(y) = N

(
y|0, K̂

)
. By applying the matrix inversion lemma

(Appendix A.2.1) in reverse to D−1, we can obtain the corresponding covariance matrix
K̂,

(βI − βψ1(βψ2 + Kuu)−1ψ1
⊤)−1 = ( βI︸︷︷︸

A

+ (−βI)⊤ψ1︸ ︷︷ ︸
U

(βψ2 + Kuu)−1︸ ︷︷ ︸
B

ψ1
⊤(βI)︸ ︷︷ ︸
V

)−1

= β−1I +ψ1(Kuu + β(ψ2 −ψ1
⊤ψ1)−1ψ1

⊤ ≜ K̂.

(5.22)

Using this form of the covariance matrix, and completing the square of the original
bound, Equation (5.11), gives

L(qX) =
p∑
j=1

(
log N

(
y:,j|0, K̂

)
− 1

2 log
∣∣∣β−1I

∣∣∣− 1
2 log

∣∣∣K−1
uu

∣∣∣− 1
2 log |βψ2 + Kuu|

−β

2ψ0 + β

2 tr
(
K−1

uuψ2
)

+ 1
2 log

∣∣∣K̂∣∣∣)− KL (q(X|θV ) ∥ p(X))

where additional determinant terms have been introduced to complete the square.
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The determinants can be further simplified using the matrix determinant lemma
(Appendix A.2.2),

− 1
2 log

∣∣∣β−1I
∣∣∣− 1

2 log
∣∣∣K−1

uu

∣∣∣− 1
2 log |βψ2 + Kuu|

+ 1
2 log

∣∣∣∣∣∣∣β−1I︸ ︷︷ ︸
A

+ ψ1︸︷︷︸
U

(Kuu + β(ψ2 −ψ1
⊤ψ1)−1︸ ︷︷ ︸

W

ψ1
⊤︸ ︷︷ ︸

V ⊤

∣∣∣∣∣∣∣
= −1

2 log
∣∣∣Kuu + β(ψ2 −ψ1

⊤ψ1)
∣∣∣− 1

2 log
∣∣∣K−1

uu

∣∣∣ ,
giving the following form of the variational bound, where the square has been completed
with respect to y:,j,

L(qX) =
p∑
j=1

(
log N

(
y:,j|0, K̂

)
− 1

2 log
∣∣∣Kuu + β(ψ2 −ψ1

⊤ψ1)
∣∣∣− 1

2 log
∣∣∣K−1

uu

∣∣∣
−βψ0

2 + β

2 tr
(
K−1

uuψ2
))

− KL (q(X|θV ) ∥ p(X)) . (5.23)

Importantly this form of the bound makes it clear that the variational lower bound is a
series of Gaussian processes, one for each output, as in Equation (5.9); however in this
model there are a number of terms that regularize various aspects of the model, and
there is a specific structure of covariance. It also makes it clear that the variational
bound as a whole is a Gaussian distribution with respect to Y, as the product of
Gaussian distributions is a Gaussian itself, this will allow us to apply the Laplace
approximation with relative ease.

5.6.2 Bayesian Gaussian Process Latent Variable Model
Insights

There are additional insights to be had from studying this reformulation of the lower
bound that are not made clear by the form provided in the original form of the bound
Equation (5.11).

The reformulation makes transparent the models relationship to the variational
sparse Gaussian process, Section 3.3. In the variational sparse Gaussian process
lower bound, the form the marginal covariance is K = β−1I + KfuK−1

uuKuf . In the
reformulated BGPLVM bound, Equation (5.23), the covariance is then given by
K̂ = β−1I +ψ1(Kuu + β(ψ2 −ψ1

⊤ψ1))−1ψ1
⊤.
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From the form of ψ1, Equation (5.14), it is clear that it is the analog to Kfu,
where the uncertainty of the input X is integrated out. However in the BGPLVM
bound, the K−1

uu, covariance term of the sparse Gaussian process is replaced with
(Kuu + β(ψ2 −ψ1

⊤ψ1))−1.
From the definitions of ψ2 and ψ1, Equations (5.14) and (5.15) respectively,

ψ2 −ψ1
⊤ψ1 = Eq(X|θV )

[
KufKfu

]
− Eq(X|θV )

[
Kfu

]
Eq(X|θV )

[
Kuf

]
. (5.24)

This quantity is the covariance of Kfu and Kuf , and so this term is zero when q(X|θV )
is a delta function. Informally the delta function can be viewed as the limit of a
Gaussian distribution where the variance shrinks to zero.

In Equation (5.24) if the model is completely certain about the location of the
input X, the variance of q(X|θV ) will shrink. Eq(X|θV )

[
Kfu

]
then in turn reverts back

to Kfu, and similarly so for Kuf . Eq(X|θV )

[
KufKfu

]
will also become to KufKfu.

Finally, K̂ then becomes β−1I + KfuK−1
uuKuf ; which is identical to the standard

sparse GP model. The extra determinant terms would also cancel. This makes it clear
that the BGPLVM is simply a series of variational sparse Gaussian processes, where
uncertainty of the input location, X ∼ q(X|θV ) is taken into account.

5.6.3 Laplace Approximation

From the generative modelling perspective, the LABGPLVM approximation to the
variational lower bound of the marginal likelihood can now be written as follows, using
the reformulated BGPLVM variational bound as a surrogate for p(Y|θL,θK ,Z),

p(S|Z,θL,θK) =
∫
p(S|Y,θL)p(Y|θK ,θL,Z)dY

≥
∫
p(S|Y,θL) exp(L(qX))dY (5.25)

≜ exp(L(qX)lap). (5.26)

In the last line an approximation is made to define exp(L(qX)lap) as the integral in
Equation (5.25) is intractable. This intractability arises as, even though exp(L(qX)) is
now Gaussian in Y, the likelihood, p(S|Y,θL,θK) is now assumed to be non-Gaussian.
The approximation we will use, is the Laplace approximation, although a range of
other approximation methods may be used, this will be discussed in the conclusion.
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The full approximate bound follows from the reformulated BGPLVM bound,
Equation (5.23) and the required integral (5.25),

L(qX)lap = log
∫
p(S|Y,θL) exp(L(qX))dY

= log
∫
p(S|Y,θL) exp

[ p∑
j=1

(
log N

(
y:,j|0, K̂j

)
− 1

2 log
∣∣∣Kuu + β(ψ2 −ψ1

⊤ψ1)
∣∣∣

− 1
2 log

∣∣∣K−1
uu

∣∣∣ −βψ0

2 + β

2 tr
(
K−1

uuψ2
))

− KL (q(X|θV ) ∥ p(X))
]
dY

=
p∑
j=1

(
−1

2 log
∣∣∣Kuu + β(ψ2 −ψ1

⊤ψ1)
∣∣∣− 1

2 log
∣∣∣K−1

uu

∣∣∣ −βψ0

2 + β

2 tr
(
K−1

uuψ2
))

− KL (q(X|θV ) ∥ p(X)) + log
∫
p(S|Y,θL)

p∏
j=1

N
(
y:,j|0, K̂j

)
dY

︸ ︷︷ ︸
Laplace approximation

. (5.27)

In many cases, the likelihood is assumed to factorise across output dimensions,
p(S|Y,θL) = ∏p

j=1 p(s:,j|y:,j), resulting in a series of p integrals,

log
∫
p(S|Y,θL)

p∏
j=1

N
(
y:,j|0, K̂j

)
dY =

p∑
j=1

log
∫
p(s:,j|y:,j)N

(
y:,j|0, K̂j

)
dy:,j.

The approximate bound L(qX)lap then becomes completely factorised across dimensions,
with the exception of the KL (q(X|θV ) ∥ p(X)) term.

Real data is frequently collected from a variety of sources, and relating to some
underlying latent system. For example in a health scenario, it may be that a
patients underlying general health explains the data that is collected. The data
collected may take the form of: survey answers where the data is ordinal; white
blood cell counts that provide count data; the presence of genes producing binary
data; and a multitude of other experiments that may give continuous data. From
a generative modelling perspective, each of the above sources requires a different
likelihood. Equation (5.27) shows that the bound factorises across output dimensions
if the likelihood also factorises across output dimensions. It is then possible to assume
a separate likelihood for each output dimension of S. As previously mentioned, the
MICE (Buuren and Groothuis-Oudshoorn, 1999) imputation method also provides this
capability of assuming alternative noise models for each dimension; however the PCA,
GPLVM, BGPLVM methods do not, they must assume Gaussian corruptions.

By using a separate likelihood for each output dimension, the integral in
Equation (5.27) will differ for each of the p output dimensions. Using the results
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outlined in Section 3.2.1, and specifically the marginal likelihood following a Laplace
approximation, Equation (3.11), a Laplace approximation can be made for each log
marginal likelihood term,

log
p∏
j=1

∫
p(s:,j|y:,j)N

(
y:,j|0, K̂j

)
dy:,j (5.28)

=
p∑
j=1

log p(s:,j|ŷ:,j) − 1
2 ŷ⊤

:,jK̂−1
j ŷ:,j − 1

2 log
∣∣∣∣I +W

1
2
j K̂jW

1
2
j

∣∣∣∣ , (5.29)

where Wj = −d2 log p(s:,j |ŷ:,j)
dŷ2

:,j
denotes the Hessian for the likelihood of the jth dimension,

p(s:,j|y:,j), with the jth column of s:,j. ŷ:,j denotes the mode of the posterior and is
found through Newton’s method, for the jth dimension. If the likelihood is separate
for each output dimension; p Laplace approximations must be made to evaluate the
approximate lower bound, L(qX)lap, increasing the computational burden similarly to
the missing data scenario for the BGPLVM in Section 5.5.1; where the missingness
pattern is different for each output. However it also allows each output dimension of
Equation (5.27), to have a different noise variance, β−1

j for each dimension j, at no
extra computational cost. Allowing β−1

j to vary amongst output dimensions can have
some benefits, particularly when the likelihoods differ for each output.

The final form of the bound with a factorising likelihood is then,

L(qX)lap =
p∑
j=1

(
−1

2 log
∣∣∣Kuu + βj(ψ2 −ψ1

⊤ψ1)
∣∣∣− 1

2 log
∣∣∣K−1

uu

∣∣∣− βjψ0

2 + βj
2 tr

(
K−1

uuψ2
)

+ log p(s:,j|ŷ:,j) − 1
2 ŷ⊤

:,jK̂−1
j ŷ:,j − 1

2 log
∣∣∣I +W 1

2 jK̂jW
1
2 j

∣∣∣)
− KL (q(X|θV ) ∥ p(X)) . (5.30)

To optimise the approximate variational lower bound, derivatives of L(qX)lap must
be taken with respect to the likelihood parameters, θL, βj, and the matrices ψ0, ψ1,
ψ2. The chain rule can then be used to compute the derivatives with respect to the
variational parameters of q(X|θV ), and the kernel parameters, θK . Details key to
obtaining these non-trivial derivatives can be found in the Appendix E.1.1.
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5.6.4 Missing Data Bayesian Gaussian Process Latent
Variable Model for Non-Gaussian Likelihoods

Missing data for the LABGPLVM model can be handled in an analogical way to
the missing data BGPLVM model put forward in Section 5.5.1. The approximate
variational bound of the LABGPLVM, Equation (5.27), can be generalised similarly to
the BGPLVM missing data model, Equation (5.16) (although it is now the observed S
that has missing values, not the now latent Y). This provides an approximate variational
lower bound on the marginal likelihood for the observed data log p(SO|θL) ≳ L(qXO)lap,

L(qXO)lap =
p∑
j=1

(
−1

2 log
∣∣∣∣Kuu + βj(ψ2

Oj −ψ1
Oj

⊤
ψ1

Oj )
∣∣∣∣− 1

2 log
∣∣∣K−1

uu

∣∣∣− βjψ0
Oj

2

+βj2 tr
(
K−1

uuψ2
Oj

))
− KL (q(X|θV ) ∥ p(X))

+ log
∫
p(SO|YO)

p∏
j=1

N
(
yOj

:,j |0, K̂Oj

)
dYO

︸ ︷︷ ︸
Laplace approximation

. (5.31)

Analogically to Equation (5.29), if the likelihood factorises,

log
∫
p(SO|YO)

p∏
j=1

N
(
yOj

:,j |0, K̂Oj

)
dYO

=
p∑
j=1

log p(sOj

:,j |ŷOj

:,j ) − 1
2(ŷOj

:,j )
⊤

(K̂Oj )−1ŷOj

:,j

− 1
2 log

∣∣∣I + (WOj ) 1
2 K̂Oj (WOj ) 1

2
∣∣∣ , (5.32)

where in this case the Hessian, where WOj = −d2 log p(s
Oj
:,j |ŷ

Oj
:,j )

d(ŷ
Oj
:,j )

2 , is only computed the

data with observations sOj

:,j , for output j. K̂Oj refers to nj rows and columns of K̂ that
correspond to the observed values of sOj

:,j

The approximate lower bound given in the this section and the bound for BGPLVM
with missing data, Section 5.5.1, can be minimised with respect to the variational
parameters of q(X|θV ), namely the mean and variance as well as the kernel hyper-
parameters and likelihood parameters. q(X|θV ) then provides a lower dimensional
representation of the partially missing observation data, Y or S, as typically the
dimensionality of the input X will be smaller than the number of output measurements.
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For imputation, predictions must be made for the missing values, YM or SM, using
the variational posterior learnt for the uncertain inputs, q(X|θV ).

From the insights given in Section 5.6.2 it is clear that to make predictions for
imputations, predictions must be first made for p(F |X,θL,θK) and p(Y|X,θL,θK)
for the BGPLVM model, and LABGPLVM model respectively, in a similar fashion to
a sparse Gaussian process. However in this case the input X is itself uncertain, and
its approximate posterior, q(X|θV ), has been learnt whilst taking into account the
non-missing observations in Y and S. Note that this differs from the complete case
analysis discussed in Section 5.1, whereby only complete rows of Y and S would be
considered to use for imputation. The predictions made for F or Y can then be used
to sample from the appropriate likelihood for each output dimension. This sample
provides an example imputed dataset, Ym, for the missing data BGPLVM model where
the sample is taken from a Gaussian; or in the case of the LABGPLVM, Sm, from the
likelihood associated with that output.

The experiments that follow will use these sampled imputed datasets to evaluate
the quality of the imputation, against known missing values, treated as test-data. They
will also indicate where the BGPLVM and LABGPLVM missing data models are most
appropriate for imputation in practice, in comparison with existing popular imputation
techniques. We defer the discussion of how these predictive functions p(F |X,θL,θK)
and p(Y|X,θL,θK) with uncertain inputs q(X|θV ) are obtained to Chapter 6.

5.6.5 Experiments

In this section we describe a series of simulation studies that have been carried out
to uncover limitations and applicability. The LABGPLVM builds upon the missing
data BGPLVM model (Section 5.5.1) however a study of the BGPLVMs applicability
and advantages in the context of imputation has not previously been carried out. The
LABGPLVM additionally contains the original BGPLVM as special case. i.e. when
the likelihood is a Gaussian distribution with extremely small variance, acting as a
Kronecker delta function, p(s:,j|y:,j) = N

(
s:,j|y:,j, β

−1
l I

)
at limβ−1

l
→0. This causes the

approximate bound of the LABGPLVM to collapse to the bound of the BGPLVM,
where Y is replaced with S.

Simulation studies are carried out where the input data are sampled from a
low dimensional space, X ∼ N (X|0, I) ∈ Rn×q, and are then projected through
a series of p non-linear Gaussian process functions, into a higher dimensional space,
f:,j ∼ N (0, k(X,X)), where each output f:,j shares the same input, X. In these
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Fig. 5.2 Lengthscales chosen such that the expected number of upcrossings of f:,j
within span of the probable input x is known.

simulations a Gaussian process with a RBF kernel is used with ARD, Section 3.1.1,
producing non-linear functions f:,j for each output dimension j.

We consider the effect of moving from a short-lengthscale, producing very non-linear
functions, to a larger lengthscale, essentially producing linear functions. The expected
number of upcrossings of a unit area can be calculated for the RBF kernel (Rasmussen
and Williams, 2006). The lengthscale, ℓ is varied between 1

π
, 2
π

and 5
π
. These lengthscales

correspond to 0.03, 1, and 2 expected number of up-crossings through zero of the
Gaussian process function f:,j, given that the input range of most probable values for
X ∼ N (0, I), is around 4 standard deviations, as indicated by examples in Figure 5.2.
This allows us to explore the effect on the performance of the models when the function
is very non-linear, towards linear.

When the Gaussian process projection is linear, and the likelihood is Gaussian, the
models assumptions are closely matched by those of PCA, Section 5.3. It makes sense in
this case to compare against PCA, to see at which point the advantage of the non-linear
BGPLVM model becomes negligible, or considering the additional complexities of
optimising such a model, detrimental. Additionally, comparisons are made with the
popular MICE imputation technique. MICE allows for a number of regression models
between the observations columns to be specified, forming a series of chained equations
that produce imputed sample datasets. Popular choices for regression models within
MICE for continuous variables include predictive mean matching (PMM) and Bayesian
linear regression (normed). Mean filling is additionally used as a baseline models for
imputation. See Buuren and Groothuis-Oudshoorn (2011) for details of these methods
and code used for imputation.

We additionally consider the effect of increasing or decreasing the signal-to-noise
ratio, by holding the kernel variance fixed at 1, and changing the likelihood variance
between 0.01 and 0.1. The performance is measured by the MAE of the imputed
values, from the true values, that were discarded during model training. NLPD cannot
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be used as a comparison as MICE does not produce a predictive density, only a set
of imputed datasets. The percentage of missing observations is increased between
10%, 20%, and 30%. 5-folds were used to provide an estimate of the variance of each
technique. A medium number of output dimensions were used, p = 40, and the true
input dimension used was q = 2, and number of data n = 200. For the BGPLVM
and LABGPLVM methods, m = 60 inducing points were used throughout. The
variational mean parameters of the variational distribution, q(X|θV ), were initialised
using PCA, and the variational variances are sampled uniformly between 0.0 and 0.1,
exclusive. The inducing inputs, Z ∈ Rm×q, are chosen as a subset of the PCA initialised
variational means. Lengthscales are constrained to be positive, as are the likelihood and
variance parameters. The RBF kernel hyper-parameters are assigned Gamma priors,
p(ℓ), p(σ2

rbf) ∼ G(2, 2), and their posterior distribution was approximately integrated
over using central composite design (CCD) (Rue et al., 2009) rather than using the MAP
solution for predictions. As shown in the next chapter the posterior distribution of the
hyper-parameters can become much less well determined when the inputs are uncertain,
and consequently predictions need to take account of this additional uncertainty.

In the first set of experiments the observations, S, were produced by corrupting
the latent function Gaussian noise, s:,j ∼ N (f:,j, β

−1I), that must be subsequently
learnt by PCA and the BGPLVM. For this type of data, the BGPLVM and the new
LABGPLVM can be made to be equivalent; by using Gaussian likelihood for the
latter model and fixing likelihood variance to a small value. In these experiments the
likelihood variance β−1 was shared between all output dimensions, p, for the BGPLVM.

Figure 5.3 and Table 5.1 show the results for this simulation study. The BGPLVM
model, outperforms MICE relatively consistently in this setting. Figure 5.3 shows that
an increase in performance is most pronounced when the lengthscale is 2

π
, corresponding

to a relatively non-linear function. As predicted the performance of PCA closely matches
that of the BGPLVM when the lengthscale is very long, 5

π
, and sometimes even slightly

outperforms the BGPLVM. When there is a large amount of missing data, 30%, and
the function is very non-linear, 1

π
, the BGPLVM does not provide any increase in

performance. This is likely due to the model being incapable of inferring the short
lengthscale of the process, and so the log-likelihood is higher when it is modelled as
a linear function, with a larger likelihood variance, producing an equivalent model
to that of PCA. Increasing the SNR to 0.1 makes the effect more pronounced, as
would be expected in this situation. Additional figures for 15% data can be found in
Appendix E.5.
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Fig. 5.3 Simulation study results for BGPLVM imputation model, with normally
distributed observations. ℓ = 1

π
indicates a very non-linear function, ℓ = 2

π
indicates

a relatively non-linear function, and ℓ = 5
π

indicates an almost linear function.
Missingness levels are varied between 5% and 30%.
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In the next set of simulation studies we aim to quantify the enhancement in
performance when the observed data is non-Gaussian. In this case, instead of just
corrupting f:,j with Gaussian noise, for 50% of the outputs, the samples y:,j are
subsequently squashed through a probit function and sampled from a Bernoulli
likelihood, π:,j = Φ(y:,j). The other 50% of outputs are simulated equivalently to the
first set of experiments.

The LABGPLVM is assigned Bernoulli likelihoods for each of the output dimensions
that contain binary observations, and Gaussian likelihoods for the dimensions that
correspond to continuous observations. This illustrates two advantages of the
LABGPLVM, it can not only handle a non-Gaussian likelihood, but a different likelihood
may be used for each output dimension. The variances, β−1

j of the latent function y:,j for
the Bernoulli outputs are allowed to vary independently, and a single separate likelihood
variance for the Gaussian outputs is shared. Allowing the Bernoulli outputs to have a
different variance provides the model with the capability of changing the slope of the
probit transformation function. The standard BGPLVM model is trained as before,
however an additonal MICE regression method is added that uses a Bernoulli noise
model with a linear regressor, for each output corresponding to binary observations.

The results are shown in Figure 5.4 and Table 5.2, where Binary BGPLVM denotes
the LABGPLVM with corresponding binary outputs. Similarly to in the first set of
simulations, the results show that the increase in performance for the BGPLVM and
the LABGPLVM are most pronounced when function is relatively non-linear, ℓ = 2

π
.

However the LABGPLVM performs poorly when 1
π
. When the SNR is increased to

0.1, the results become increasingly varied and all models perform similarly poorly,
see Appendix E.5 for the associated box-plots; though again the LABGPLVM model
remains competitive when the function is not extremely non-linear, ℓ = 1

π
. When the

lengthscale is short, or the noise ratio is high, then there is less correlation between
different data-points. It seems that when the Gaussian process prior is expressing less
dependence between the data-points, implying prior independence, such as when the
noise variance is high, or the lengthscale very small, the approximation doesn’t perform
well. It is evident from the error bars and outliers associated with the predictions
in this setting that the LABGPLVM has problems identifying the correct parameter
settings. When the parameters are found correctly the model is competitive, otherwise
it performs poorly. Note however that in this setting the model with the highest
performance is the mean method; this simply takes the mean column as the prediction
for every missing output. This indicates that this setting is particularly challenging for
all models.
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This challenge arises when the noise is high, i.e. SNR is 0.1, or the lengthscale is
short; the sampled Bernoulli observations then become indistinguishable from noise
so that the form of the producing function f:,j becomes extremely difficult to learn.
Bernoulli observations themselves are weakly informative, and so in the presence of
so much noise, the observations appear almost completely random and the generative
function is learnt to be completely flat with large variance.

These simulations provide an indication that the LABGPLVM provides some gains
over the BGPLVM model when the observations are binary, and the signal to noise
ratio is relatively low. The model however still has limitations; it does not perform
when the function is very non-linear, or similarly when the function is very noisy.
However, it is able to outperform MICE when the assumption that a lower dimensional
representation of the data exists is accurate. This performance increase is maintained
even when 30% of the data is missing.
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Fig. 5.4 Simulation study results for binary data imputation. ℓ = 1
π

indicates a very
non-linear function, ℓ = 2

π
indicates a relatively non-linear function, and ℓ = 5

π
indicates

an almost linear function. Missingness levels are varied between 5% and 30%.
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5.6.6 Related Work

A number of related models for handling non-Gaussian data within Gaussian process
latent variable models have been put forward in the literature, though to our knowledge,
no existing models have been applied to missing data imputation.

Andrade (2015) approached the problem of non-normality by using the expectation
propagation, in a similar manner to the method proposed here. Unfortunately
expectation propagation is known to be a relatively expensive approximate algorithm,
and does not always converge on a solution. If missing data exists in each output
dimension, or a separate likelihood is assumed for each output, the approximation must
be made for each dimension separately; which would be impractically expensive with
EP. Gal et al. (2015) proposed an inference method for the BGPLVM for categorical
data. This method does not collapse q(u|θV ), and uses Monte Carlo sampling to
approximately compute problematic integrals. This allows them to obtain approximate
gradients with respect to the marginal likelihood. We believe this approach to inference
would be appropriate for the missing data case with small modifications, and could
additionally be used for a variety of other likelihoods. Buettner et al. (2014) consider
inference within the GPLVM, with censored observations. They do not consider the
further Bayesian generalisation and so are not able to obtain a rich representation of
the latent space, encoding the posterior uncertainty of the latent variables, p(X|Y),
and so during imputation, this uncertainty cannot be propagated to the missing
values imputed. Barrett and Coolen (2015) proposed a similar approach, where a
GPLVM is used to jointly learn a lower dimensional representation of survival data,
and covariate data. The hope is that this lower dimensional representation may contain
some structure of interest, or be suitable to regress from itself. We will consider similar
architectures to this in the following chapter.

5.7 Conclusions and Future Work

This chapter proposed a non-Gaussian BGPLVM model for missing data, the
LABGPLVM, a new imputation method that allows Bayesian Gaussian process based
dimensionality reduction to be performed, with non-Gaussian likelihoods. The model
allows separate likelihoods on each of its output dimensions; allowing a joint latent space
to be learnt for data that shares an underlying representation in a lower dimensional
space, but has different output data-types. The model’s capabilities are demonstrated
on a dataset containing both binary outputs and Gaussian outputs, and its performance
was found to be competitive with commonly used imputation methods on a simulated
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dataset. The same method could be used when a wider variety of data types exist, as
is common in clinical studies. When a Gaussian likelihood is used, the model reverts
back to the BGPLVM, a model that has previously been shown to be an effective tool
for dimensionality reduction.

A Laplace approximation was used to compute an approximation to a problematic
integral over the non-Gaussian likelihood distribution. Although the Laplace
approximation is known to be effective for some likelihoods, the model could be
modified to use a different approximation method. Another natural choice to handle
the problematic integration, given the success of the chained Gaussian process model
in Chapter 4, would be an additional variational approximation. However, one of the
shortcomings of BGPLVM and the LABGPLVM extension, is that optimisation of
the variational bound, with respect to the variational hyper-parameters and likelihood
parameters can be problematic. This is amplified by the difficult initialisation of these
models. We speculate that it may be that the addition of a wider variety of non-
Gaussian likelihoods would cause the variational parameters of the model to become
even more difficult to optimise following an additional variational approximation.

In this chapter we have used the model to perform imputation for missing data,
however imputation is usually the first step in an analysis that contains missing data.
The subsequent step is often to regress using the imputed values, and the uncertainty
associated with it. A common approach is to apply a series of regression models to
each imputed dataset. Chapter 6 will show that the same LABGPLVM can be used for
this regression phase, where the input is now uncertain, as a result of imputation. This
requires only a single model to be fit, that takes into account the distribution over the
uncertainty naturally. We will also discuss alternative architectures that could be used
in future work to provide additional modelling flexibility for clinical data analysis.



6

Combining the Paradigms, Future
Work, and Conclusions

In this chapter we consider how the dimensionality reduction techniques used for
of imputation of clinical data, Chapter 5, can be combined with survival analysis
regression, the subject of Chapter 4. Chapter 4 discussed existing approaches survival
analysis, and provided a novel regression model for the case where yi,j is a time-to-event
outcome. It specifically focussed on how existing survival analysis regression techniques
can be endowed with additional modelling flexibility by allowing the latent function of
the covariates, g(xi,:), to be modelled with a Gaussian process. This requires the use
of a non-Gaussian likelihood within a Gaussian process regression model.

Chapter 5 considered the importance of obtaining the uncertainty associated with
imputations of missing values. However, it did not discuss in detail how this uncertainty
can be subsequently used in a clinical analysis.

In practice, imputation is usually the first step in an analysis. In multiple imputation
(MI), having imputed a number of possible datasets, the task is usually to regress using
these imputed values to assess the impact of the covariates on some another variable of
interest, or make predictions. It is important that the uncertainty associated with the
imputed values is propagated through the regression model; otherwise the predictions
made will be unrealistically optimistic. Unfortunately not all popular methods of
imputation calculate the uncertainty associated with the imputed values (hot-deck,
median, etc.); and so this uncertainty cannot be propagated; MI methods are a key
exception.

The MI approach to handling the imputation uncertainty is with three steps. The
first step is to impute multiple datasets. A separate regression model is then fit to each
imputed dataset to analyse each dataset individually. These regression analysis are
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then pooled, typically using Rubin’s rule (Rubin, 2004), when appropriate. A popular
MI method is MICE, and has widespread use throughout statistics as already discussed
in Chapter 5.

From a Bayesian point of view, the uncertainty associated with a particular value
to be imputed, is a probability distribution. Ideally there is no need to impute multiple
datasets and create a series of regressions, by sampling from this distribution, if the
regression model can deal with the uncertainty directly. Regression models typically
assume that the input values, X, are certain. They must additionally be able to cope
with a variety of different outcome types by allowing different likelihood functions,
depending on the variable of interest. An example output variable of particular interest
in this work, is a failure time outcome.

The chained survival analysis model, Section 4.3.1, introduced a flexible model
for modelling this type of data. Unfortunately this model does not consider the case
where xi,j is uncertain; it is instead assumed that the input is known and fixed; and
so in its present state is not an appropriate regression model for this problem. In
Chapter 5 the BGPLVM model was shown as an example of a sparse Gaussian process,
where the input is uncertain. In the context of dimensionality reduction and missing
data imputation, the input X must be learnt. Its relationship to sparse Gaussian
processes was made particularly clear by the reformulation of the bound uncovered
in Section 5.6.1. The BGPLVM can approximately propagate the input uncertainty
through a sparse GP regression model, y∗

i,j = g(x∗
i,j) + ϵi,j, where x∗

i,j ∼ N
(
µ∗, β−1∗),

for some predicted mean µ∗ and predicted variance, β−1∗. Unfortunately this model
makes the assumption that the noise model, ϵi,j, is Gaussian and so again is not an
appropriate regression model for non-Gaussian outputs.

The LABGPLVM, a non-Gaussian likelihood extension of the BGPLVM based on
the Laplace approximation of the variational bound, Section 5.6, provided a means
for handling both a non-Gaussian likelihood and uncertain inputs. The model’s
capabilities have so far been considered in the context of dimensionality reduction; in
this chapter we begin by discussing how predictions are made with this model. We
will observe how the uncertainty in inputs affects the uncertainty of the posterior
predictions. Propagation of input uncertainty is required to accurately reflect the
true uncertainty in the predictions. This will be followed by a discussion of possible
extensions and architectures that would allow further modelling flexibility, beyond that
already considered in this thesis. Finally we will reflect on this work and summarise
its key findings and contributions.
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Fig. 6.1 The predictive distribution of a Gaussian process is not a Gaussian distribution
if the mapping function is non-linear, and the input is Gaussian distribution

6.1 Input Uncertainty in Gaussian Processes

As discussed in Section 5.5, input uncertainty in Gaussian processes is problematic due
to the integration of complex non-linear operator (matrix inverse) with respect to its
inputs. The BGPLVM provides a manner in which a Gaussian approximation to the
posterior of the inputs can be obtained, p(X|Y) ≈ q(X|θV ), by optimising a variational
lower bound, Equation (5.23), even in the presence of missing output observations,
Equation (5.16). Prediction with such a model however is non-trivial. By propagating a
distribution through a non-linear Gaussian process, the resulting predictive distribution
is no longer Gaussian; when a non-linear kernel function is used. The non-normality of
the true predictive distribution is illustrated in Figure 6.1. When samples are taken
from the Gaussian input, and propagated through the Gaussian process posterior, the
resulting predictive distribution can be seen to be very non-Gaussian.

Uncertain input prediction has been studied by Girard et al. (2003), Candela et al.
(2003) and Kuß (2006). Many subsequent publications have used these approaches for
prediction when faced with uncertain inputs with a Gaussian process model (Damianou,
2015; Damianou et al., 2016; Deisenroth, 2010; Hensman and Lawrence, 2014). The
approach proposed by Girard et al. (2003) makes a Gaussian approximation to the
resulting non-Gaussian distribution, by recovering and matching its first two moments.
It turns out that these moments can be calculated analytically (see Deisenroth (2010)
for a thorough derivation).

The two problems that we aim to tackle for the remainder of this work are; predicting
missing observations for the LABGPLVM imputation model in Section 5.6, and the
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implications of making predictions where the input uncertainty is provided, to propagate
the imputed uncertainty. Uncertainty in the inputs for survival analysis could arise
from either the preceding imputation, or known measurement error on the inputs
during collection. For the former problem, the focus will be on the case where missing
observations from an otherwise complete matrix, Y, are required to be filled. This does
not require predictions for new partially filled rows, Y∗. We will consider the issues
that exist for both the BGPLVM model, Section 5.5.1, and LABGPLVM, Section 5.6.4.
Damianou and Lawrence (2015) additionally provides a method by which predictions
can be made for new partially filled rows of Y∗, that requires additional optimisation
of an additional variational bound for the BGPLVM, to find the associated input
uncertainty q(X∗|θV ); a similar method can be used for the non-Gaussian likelihood
case.

For predicting missing elements, YM, the bound that has been optimised for the
missing data imputation, Section 5.5.1 and Section 5.6.4, provides an approximation
to the input uncertainty, once observed elements have been taken into account
p(X|YO) ≈ q(X|θV ). Prediction then requires a sparse GP prediction at test points
X∗, with uncertainty in the input location, q(X∗|θV ). Since q(X|θV ) is factorised
across datum, prediction is being made for missing elements in YM, and X∗ ∈ X,
then q(X∗|θV ), are simply marginals of q(X|θV ). The second problem, predicting
with known measurement input uncertainty, also requires sparse GP prediction where
uncertainty in the input location is integrated out. For notational convenience we will
also call the distribution over the known input uncertainty, q(X∗|θV ), but note that in
this case no variational parameters must be learnt, they are explicitly provided. The
prediction problem for this task remains the same as that of the BGPLVM, however
for the LABGPLVM an additional corruption is assumed on the latent function.

Prediction for uncertain inputs requires the following integral for a sparse Gaussian
process model, where inputs are uncertain,

p(F ∗|Y) =
∫
p(F ∗|U,Y,X∗)p(U|Y)p(X∗|Y)dUdX∗. (6.1)

The variational bounds for sparse Gaussian processes, Section 3.3, and BGPLVM,
Section 5.5, that have been optimised assume the following approximation,

p(F ∗|U,Y,X∗)p(U|Y) ≈
p∏
j=1

p(f ∗
:,j|u:,j,X∗)q(u:,j|θV )

p(X∗|Y) ≈ q(X∗|θV ).
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The integral then becomes,

p(F ∗|Y) ≈
∫ ∫ p∏

j=1
p(f ∗

:,j|u:,j,X∗)q(u:,j|θV )du:,j

 q(X∗|θV )dX∗. (6.2)

Given an appropriate q(u:,j|θV ), the inner integral may be evaluated in closed form
similarly to Equation (3.18),

p(F ∗|Y) ≈
∫ p∏

j=1
q(f ∗

:,j|θV )q(X∗|θV )dX∗

q(f ∗
:,j|θV ) = N

(
f ∗

:,j|Kf∗uK−1
uuµV ,Kf∗f∗ − Kf∗uK−1

uuKuf∗ + Kf∗uK−1
uuΣV K−1

uuKuf∗

)
.

(6.3)

Note that q(f ∗
:,j|θV ) still depends on X∗ through Kf∗u, Kf∗f∗ and Kuf∗ . Depending

on the model, the variational mean parameter µV and variational covariance parameter
ΣV of the variational distribution q(u:,j|θV ) differ in the following ways.

For a sparse-Gaussian processes, Section 3.3, trained with certain inputs, q(u:,j|θV )
is as in Equation (3.17), gives the optimal variational distributions parameters,

µV ≜ βKuu(Kuu + βKufKfu)−1Kufy:,j

ΣV ≜ Kuu(Kuu + βKufKfu)−1Kuu,

where µV and ΣV are the means and covariances of q(u|θV ).
For the BGPLVM model, Section 5.5, where there is uncertainty on the inputs,

q(X|θV ), using Equations (5.14), (5.15), (see Equations (D.17) (D.18)) the mean and
covariance become,

µV ≜ βKuu(Kuu + βψ2)−1ψ1
Ty:,j (6.4)

ΣV ≜ Kuu(Kuu + βψ2)−1Kuu. (6.5)

To propagate uncertainty in the case that we have a non-Gaussian output, as in
the new LABGPLVM, we must derive the corresponding posterior distribution for our
novel model, Section 5.6. The LABGPLVM also contains inducing inputs, Z, directly
corresponding to U as in the BGPLVM. Finding the approximate form of p(u:,j|s:,j)
for this new model is more involved, and so the reader is referred to a verbose derivation
in Appendix E.3. The resulting mean, µV as in Equation (E.13), and covariance, ΣV
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as in Equation (E.14), of the approximate posterior q(u|θV ) are found to be,

µV = KuuH
−1ψ1

⊤βjŷ:,j (6.6)

ΣV = Kuu

[
H−1 +H−1ψ1

⊤βj(K̂−1 +Wj)
−1
βjψ1H

−1
]

Kuu (6.7)

H ≜ (Kuu + βjψ2) (6.8)

where to recap ŷ:,j denotes the mode of the posterior, optimised through Newton’s
method, and W is the negative Hessian of the likelihood at this point.

Note that there is a posterior distribution for each output dimension j, in the
standard BGPLVM these posterior distributions are the same when β−1 is shared
amongst outputs. When missing data is considered, only the data that was observed for
each output is used. Consequently the posterior distributions remain the same, however
ψ1, ψ2, ψ0, y:,j , ŷ:,j , K̂, and Wj are replaced by ψ1

Oj , ψ2
Oj , ψ0

Oj , yOj

:,j , ŷOj

:,j , K̂Oj and
WOj respectively. In this case predictions are made for each output independently,
from a shared q(X|θV ).

Unfortunately the outer integral of Equation (6.2) attempts to propagate a Gaussian
distribution q(X|θV ) through a Gaussian process. This results in a non-Gaussian
distribution as discussed above, and is not analytically tractable. Damianou (2015)
shows that using the work of Girard et al. (2003) for the BGPLVM the marginal
moments for the each prediction location, when uncertain inputs integrated out, are
given as follows,

Eq(X∗|θV )

[
f ∗
]

= µV
⊤ψ1

∗

Covq(X∗|θV )[f ∗] = µV
⊤(ψ2

∗ −ψ1
∗⊤ψ1

∗)µV + ψ0
∗I − tr

(
(K−1

uu − K−1
uuΣV K−1

uu)ψ2
∗
)

I,

where

ψ0
∗ = Eq(X∗|θV )

[
tr (Kf∗f∗) ∈ R1×1

]
ψ1

∗ = Eq(X∗|θV )

[
Kf∗u

]
∈ R1×m

ψ2
∗ = Eq(X∗|θV )

[
Kuf∗Kf∗u

]
∈ Rm×m.

These definitions for ψ0, ψ1 and ψ2 are similar to the
original Equations (5.13), (5.14), (5.15), but for test points, X∗. In this case, µV
comes from the mean of the posterior covariance, Equation (6.4) and ΣV comes from
covariance of the posterior, Equation (6.5).
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For the LABGPLVM, the posterior of p(y∗|S) is simply a Gaussian corruption of
p(f ∗|S). Once the appropriate ΣV and µV have been found the moments are then as
follows,

Eq(X∗|θV )

[
y∗
]

= µV
⊤ψ1

∗ (6.9)

Covq(X∗|θV )[y∗] = µV
⊤(ψ2

∗ −ψ1
∗⊤ψ1

∗)µV + ψ0
∗I − tr

(
(K−1

uu − K−1
uuΣV K−1

uu)ψ2
∗
)

I

+ β−1I, (6.10)

where ΣV is defined in Equation (6.7), and µV is defined in Equation (6.6) for
the LABGPLVM. A in-depth derivation of the above two results can be found
in Appendix E.4 for the interested reader.

For the LABGPLVM, the Gaussian approximation to the posterior of the sparse
Gaussian processes, p(y∗

:,j|S), can then be used to sample predicted values for the test
observations, S∗. These sampled values are used to compute multiple imputations of
possible datasets in the experiments of Section 5.6.5.

In both the BGPLVM and the LABGPLVM for missing data, the posterior
distribution of the inputs q(X|θV ) is assumed to be factorised Gaussian, and the
sparse Gaussian process predictive distribution of the latent function, F ∗, and Y∗

respectively can be approximated by a Gaussian using moment matching as shown
above. Since predictions can be made with a Gaussian input, the predictive distributions
could be used as an input to a subsequent regression model. We show the effect of
propagating input uncertainty through a regression model that has non-Gaussian
outputs in the following section.

It should be noted, that when non-Gaussian outputs are imputed the sampled
imputations then become non-Gaussian, and so q(X|θV ) in the subsequent regression
model would be non-Gaussian. In the following section we only consider normally
distributed input uncertainty, and so leave this extension to future work.

6.2 Uncertain Input with Survival Models

As a demonstration of uncertainty propagation, we now use the LABGPLVM,
Section 5.6, to perform non-linear Gaussian process survival analysis, with the log-
logistic likelihood as in, Section 4.1.2; with censored failure time data, as well as
uncertainty on the input. Problems such as these can arise in a medical setting, when
there is measurement error on the input, or as shown in Chapter 5, as a result of
imputing missing values.
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Fig. 6.2 Synthetic survival data

A synthetic dataset is used to illustrate how uncertainty on the input measurement,
is propagated through to the regressions made on the predicted median failure time.
Figure 6.2 shows the dataset that was used for training. It consists of 500 data,
where a non-linear function of the covariates for the median failure time is used,
yi = exp(sin(5xi)), shown in pink. The observed individual failure times si = ti

are sampled from a log-logistic distribution, Section 4.1.2, with shape parameter,
β = 1.5, and the scale parameter described by the median failure time function above,
yi. Random censoring is applied to 10% of the data, and all data ti > 500 are also
censored, simulating loss to follow up.

Three models were trained where each model is provided with a varying percentage
of uncertainty in their inputs, x. By introducing uncertainty in the input, it is hoped
that the uncertainty is propagated through the model, and the posterior estimate of
the median failure time function will be affected accordingly. Note that in this case,
the true uncertainty of the input is 0, and so we expect the model with no uncertainty
to have the highest accuracy.

Figure 6.3 shows the resulting inferences made when the model is provided with
three different assumptions about its input x. In Figure 6.3a, the model is provided
with the true training data, such that all the uncertainty around all the values of x are
essentially zero. The uncertainty associated with a random subset of 5 training input
data-points is shown below the x-axis, and the resulting predictions for these inputs
are shown to the left of the y-axis. As discussed in Section 5.6.1, by reducing the
uncertainty of q(X|θV ) to zero, the BGPLVM bound, that its non-Gaussian likelihood
counterpart — the LABGPLVM — uses as a prior, falls back to a sparse Gaussian
process model. In this case the model acts as a sparse Gaussian process AFT model
similar to those discussed in Section 4.1.2, though unlike the chained survival analysis



6.2 Uncertain Input with Survival Models 131

0.0 0.2 0.4 0.6 0.8 1.0
Covariate

0

50

100

150

200

P
re

di
ct

ed
m

ed
ia

n
su

rv
iv

al
tim

e,
α

=
ex

p
(y

)

True median function
gp confidence
Inducing point

Posterior predictions no uncertain inputs

(a) When all the training inputs are certain, posterior is narrow
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(b) When 20% of inputs have uncertainty, the uncertainty is propagated
to the posterior
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(c) When all of inputs have uncertainty, the uncertainty in the posterior
is increased

Fig. 6.3 Uncertain input regression with survival likelihood. By increasing the amount of
uncertainty in the inputs provided for training, this figure shows how this uncertainty
is propagated through to the posterior beliefs in the function. The true median
failure time function, used for data generation, is marked in orange. CCD is used
to approximately integrate over the uncertainty of the hyper-parameters, shown in
Figure 6.4. The distributions below each figure show a random set of example training
inputs, and the distributions on the left show the predictive distribution for these inputs
once propagated through the posterior distribution, and subsequently approximated as
in Section 6.1
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model, the shape is assumed to be fixed. The model fits the underlying function well
as the true uncertainty is zero, the mean of the posterior passes directly through the
true function, and the uncertainty is accurately reflected.

In Figure 6.3b the model is provided with 80% of its inputs known, however 20%
are provided as a distribution over their true values, N (x|xtrue, 0.002). As shown
in Section 6.1, by predicting with an uncertain input, the resulting predictions may
be non-Gaussian; however it is possible to find the moments of this non-Gaussian
distribution, as is done in Figure 6.3a, note that they appear skewed as the logarithm
of the median failure time is modelled with a Gaussian process, and so the predictions
are shown in true space. It is clear that by increasing the uncertainty in the input,
the lengthscale parameter becomes less well determined. This indicates that since the
model is aware that the inputs may come from one of several input locations, it is
probable that the outputs are also in practice spread across this input range, and so
flatter functions are more plausible.

Finally Figure 6.3c shows a model in which all its training inputs are provided as
uncertain. This further increases the belief that the function is of a longer lengthscale.

In practice to adjust the input uncertainty, the mean of q(X|θV ), as in
Equation (5.27) is set to the true value of x, and the variance for the inputs that are
uncertain during training, are set accordingly.

In Figure 6.3 the posterior uncertainty associated with the RBF kernel lengthscale
and variance is approximately integrated over using central composite design
(CCD) (Rue et al., 2009). In Gaussian processes CCD has been shown to be an
effective replacement for MCMC sampling, while being significantly less computationally
expensive (Vanhatalo et al., 2010, 2013). When uncertainty in the input is introduced,
the mode of the posterior for these hyper-parameters becomes increasingly less peaked;
and so a MAP approximation becomes less valid. In practice integration over the
uncertainty of these hyper-parameters is an important step in faithfully representing
the resulting uncertainty in predictions. Figure 6.4 shows the approximate posterior
distribution of the two RBF kernel hyper-parameters that are integrated over, for each
of the varying amount of training input uncertainty as in Figure 6.3. A Gamma prior,
is used for each of the hyper-parameters, encouraging both parameters to stay relatively
small, p(ℓ), p(σ2

rbf) ∼ G(2, 2). By increasing the amount of uncertainty in the input,
it becomes more probable that long lengthscale functions for the median failure time
produced the data, since the inputs have the potential to be more spread across the
input range; as was evident from the predictions that also used CCD. The difference is
particularly apparent by comparing the posterior distribution of the hyper-parameters
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(a) When all the training inputs are certain, the distribution of the kernel
hyper-parameters is relatively tight.
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(b) When 20% of the inputs have some uncertainty, the posterior
distribution widens.

0.5 1.0 1.5 2.0
RBF variance

0.3

0.4

0.5

0.6

0.7

R
B

F
le

ng
th

sc
al

e

0.090

0.102

0.114

0.126

0.138

0.150

0.162

0.174

C
C

D
w

eight

CCD with all inputs uncertain

(c) When all the inputs have uncertainty, the posterior distribution is
wider still, shifting mass to longer lengthscale solutions.

Fig. 6.4 Estimated posterior distribution of the hyper-parameters RBF kernel for
increasing number of uncertain inputs of the survival model, using CCD as an
approximation
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Fig. 6.5 Graphical models for combining imputation and survival regression

found when no input uncertainty is provided, Figure 6.4a, to the posterior found when
all inputs are uncertain, Figure 6.4c.

6.3 Future Work

This thesis has considered the imputation of missing covariate data with latent variable
models, and flexible Gaussian process based survival analysis regression methods, both
with certain and uncertain inputs. The obvious next step in this direction of work
would be to combine these two paradigms of imputation and regression. We will now
consider how the novel works covered in this thesis could be used, and propose a variety
of architectures that may form a basis of future research in this direction.

Graphical models of proposed architectures are given in Figures 6.5 and 6.6. Let Sc

denote covariates, and Ss denote survival times. Empty nodes denote latent variables
and filled nodes denote observed variables as usual. Striped nodes indicate partially
missing observations, and dotted nodes indicate uncertain inputs. With this notation
GPLVM, BGPLVM and LABGPLVM missing data models are shown in, Figure 6.5a,
where a suitable likelihood is used for each output s:,j of Sc. We ignore variational
parameters and unobserved latent functions for notational simplicity in the graphical
models; this allows the bigger picture to be seen without considering the inference
algorithms required.

Uncertain input survival analysis regression as in the previous section is shown
in Figure 6.5b. In future work it would be convenient to find a way to allow the
input uncertainty, q(X|θV ), to be non-Gaussian during training and prediction. One
possible method would be to consider quadrature in order to integrate over the input
uncertainty, as q(X|θV ) usually is assumed to be a factorised mean field approximation.



6.3 Future Work 135

Sc

X

Ss

X

(a) Learnt posterior of latent
variables used to predict of survival

Ss Sc

X

(b) Joint learn imputation and
regression model

Fig. 6.6 Graphical models of architectures for imputation in future work

As alluded to, the next logical step for this line of work is to combine the latent
variable imputation methods with survival analysis. This would require first imputing
missing values with uncertainty, and then propagating the uncertainty through to the
regression of survival, Figure 6.5c. If the BGPLVM model for missing data model was
used for imputation, Section 5.5.1, then the LABGPLVM can be used for the regression
model, as shown in the previous section, and so all the elements of this model are
available.

Latent variable models aim to capture the underlying lower dimensional structure
of the covariates, whilst removing the noise introduced by the likelihood. It may be
that regression from the latent variables themselves to the survival times would be
more effective, Figure 6.6a.

Alternatively, the survival times themselves may be able to explain some of the
variation in the underlying latent space. In this case learning a joint model of the
latent space would be appropriate, Figure 6.6b. Barrett and Coolen (2015) have
provided preliminary results using the GPLVM model that suggest that this might
be a promising direction of research. However by using the GPLVM rather than the
BGPLVM they are not able to accurately capture the uncertainty associated with their
optimised inputs. The new missing data LABGPLVM imputation model proposed in
Section 5.6, could handle this joint model in the presence of missing covariate data,
by using a log-logistic likelihood on one of its output dimensions to model the failure
time data; similar to the Bernoulli observations used in the experiments, Section 5.6.5.
In practice however survival data provides relatively weak information, particularly
when a large amount of censoring occurs, and so we hypothesise this approach would
provide only small gains in the presence of extreme censoring.

In addition to the above possible future directions, we hope to expand on the work
carried out in Chapter 4 in a number of ways, particularly in regards to applications.
Firstly we hope to demonstrate the applicability of the scalable chained survival analysis
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model on large scale datasets as these become available to the public domain. Secondly
we hope to apply the beta chained Gaussian process model to a range of epidemiological
tasks as previously proposed.

6.4 Conclusion

Throughout this body of research we have considered how the flexible non-parametric
class of Gaussian process models can be used for issues relating to clinical data, primarily
survival analysis regression, and clinical data imputation. Limitations with popular
approaches have been relaxed, though the additional flexibility can also present its
own problems; relatively complex inference methods often have to be used to provide
approximations. These inference methods can be challenging to work with, requiring
complex initialisation and optimisation, however the additional flexibility and in some
cases scalability provided can be essential for accurately portraying uncertainty.

A number of contributions have been provided throughout this body of research,
as well as providing a review of the key ideas that make clear how survival analysis
regression methods can be combined with Gaussian process methods, focussing on the
assumptions traditionally made by generalised linear models.

6.4.1 Summary of Contributions

• In Chapter 4 we proposed a new a flexible and scalable method for survival
analysis regression, called the chained survival analysis model. It also showed
that the same method can be used for an array of other modelling assumptions.

• In Chapter 5 we carried out the first set of experiments for a BGPLVM model for
missing data in the context of imputation, showing promising results compared
with a number of other imputation methods.

• Chapter 5 also contributed a second novel model, a non-Gaussian likelihood
extension to the BGPLVM called the LABGPLVM, that allows a multitude of
non-normally distributed observations to be handled.

• In this chapter, we discussed how the LABGPLVM can be applied to the context
of uncertain input regression, with non-Gaussian likelihoods, including those used
in survival analysis.
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• This chapter also provided a number of future directions that would go some way
to integrating the proposed clinical data imputation methods and novel uncertain
input survival analysis regression method.



Appendix A

Useful identities

To follow the derivations of the key aspects of this thesis a number of identities will
prove useful. The most significant and commonly used identities are a set of core
Gaussian identities and matrix identities; these are reproduced here to aid the reader
in following the derivations of this text. Many of the key identities can be found in
many textbooks, see Bishop (2006) and Rasmussen and Williams (2006) for a more
complete set.

A.1 Properties of Gaussian Distribution

A.1.1 Marginalization

The marginalization property of a joint Gaussian distribution allows for trivial
marginalization of one of the variables. Given a joint Gaussian distribution N (x|µ,Σ),

x =
xa

xb

 ,µ =
µa
µb

 , Σ =
Σaa Σab

Σba Σbb


Then the marginal distributions are simply,

p(xa) = N (xa|µa,Σaa) , p(xb) = N (xb|µb,Σbb)

Intuitively this indicates that if there are millions of variables that are jointly normally
distributed, but the interest is in just one of those variables, then there is no need to
integrate computationally across all the variables of no interest, in order to get the
marginal distribution of the variable of interest. Most other distributions do not have
this property, especially beyond bivariate distributions.
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Additionally if one random variable, y, is conditioned on another, x, and the mean
of the conditional distribution is a linear function of x, marginalising with a Gaussian
is simply,

p(x) = N (x|µ,Σ) (A.1)
p(y|x) = N

(
y|Ax + b,L−1

)
(A.2)

Then:
p(y) = N

(
y|Aµ+ b,L−1 + AΣA⊤

)
(A.3)

(A.4)

A.1.2 Conditioning

For Gaussian distributions the conditional distributions are also analytical,

p(x) = N (x|µ,Σ) (A.5)
p(xa|xb) = N

(
x|µa|b,Λ−1

aa

)
(A.6)

µa|b = µa − Λ−1
aa Λab(xb − µ). (A.7)

For a conditonal distribution, and a prior, using the above definitions reversing the
conditional is then,

p(x) = N (x|µ,Σ) (A.8)
p(y|x) = N

(
y|Ax + b,L−1

)
(A.9)

Then
p(x|y) = N

(
x|G{A⊤L(y − b) + Σ−1µ},G

)
(A.10)

G = (Σ−1 + A⊤LA)−1
. (A.11)

A.2 Matrix Identities

Large parts of this research require strong familiarity with linear algebra. Two identities
that are used on multiple occasions are the matrix inversion lemma, and the matrix
determinant lemma.
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A.2.1 Matrix Inversion Lemma

The Woodbury matrix identity, or matrix inversion lemma is a linear algebra identity
as follows:

(A+ UCV )−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1 (A.12)

It is often useful if inverting the matrix A is either computationally less expensive,
or more numerically stable, than inverting the matrix (A + UCV )−1. Conversely
it is sometimes used in reverse, especially when inverting A or (C−1 + V A−1U) is
numerically unstable, and if A is a positive diagonal matrix.

A.2.2 Matrix Determinant Lemma

Analogically to the matrix inversion lemma, the matrix determinant lemma provides a
similar identity for matrix determinants

∣∣∣A+ UWV T
∣∣∣ =

∣∣∣W−1 + V TA−1U
∣∣∣ |W | |A| (A.13)

A.3 Expectation and Covariance

For a Gaussian the following equalities will prove useful,

cov[f ,f⊤] = E
[
(f − E

[
f
]
)(f⊤ − E

[
f⊤
]
)
]

= E
[
ff⊤ − fE

[
f⊤
]

− E
[
f
]
f⊤ + E

[
f
]
E
[
f⊤
]]

= E
[
ff⊤

]
− E

[
f
]
E
[
f⊤
]
��������
−E

[
f
]
E
[
f⊤
]
��������
+E

[
f
]
E
[
f⊤
]

E
[
ff⊤

]
= cov[f ,f⊤] + E

[
f
]
E
[
f⊤
]

Ep(f |µ,Σ)

[
ff⊤

]
= cov[f ,f⊤] + Ep(f |µ,Σ)

[
f
]
Ep(f |µ,Σ)

[
f⊤
]

Ep(f |µ,Σ)

[
ff⊤

]
= Σ + µµ⊤ (A.14)



Appendix B

Kernels

In Section 3.1.1 a number of common kernel functions were discussed, and samples
were provided for a number of others. This section outlines the form of each of these
additional kernels.

B.0.1 Polynomial

The polynomial uses polynomial basis functions of a certain order, o.

K(x,x′) = σ2(αx⊤x′ + b)o (B.1)

where α is the scale, σ2 is the variance, and b is the bias.

B.0.2 Matern 32 and Matern 52

The Matern family of kernels are very common in practical applications, as it is possible
to vary the number of times they are differentiable by different choices in a parameter.
The most common choices are 3

2 ,

K(x,x′) = σ2(1 +
√

3r) exp(−
√

3r) (B.2)

and 5
2 ,

K(x,x′) = σ2(1 +
√

5r + 5
3r

2) exp(−
√

5r) (B.3)

where σ2 is the variance, ℓ is the lengthscale, and r =
√∑q

i=1
(xi−x′

i)2

ℓ2i



142

B.0.3 Brownian

The Brownian kernel simulates the path of a random walk and is not differentiable. It
is given by,

K(x,x′) = σ2min(x,x′) (B.4)

where σ2 is the variance.

B.0.4 Bias

The bias kernel is a very simple kernel that puts a prior over where the latent mean
function is (usually assumed to be zero),

K(x,x′) = σ2 (B.5)

where the variance is σ2



Appendix C

Chained Gaussian Process
Supplementary Material

In this chapter some additonal details for some aspects of the chained Gaussian process
model introduced in Chapter 4 are provided, including the method by which gradients
can be computed and additional results. These are primarily reproductions of the
supplementary material for the original paper, Saul et al. (2016). These will be referred
to throughout Chapter 4.

C.1 Gradients and Optimisation

Gradients can be computed similarly to (Hensman et al., 2015b) using the equalities,

∂

∂µ
EN (x|µ,σ2)

[
f(x)

]
= EN (x|µ,σ2)

[
∂

∂x
f(x)

]
(C.1)

∂

∂σ2EN (x|µ,σ2)

[
f(x)

]
= 1

2EN (x|µ,σ2)

[
∂

∂x2f(x)
]

(C.2)

and the chain rule.
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Since our posterior assumes factorisation between q(f) and q(g) the gradients can
be computed independently using (C.1) and (C.2),

∂

∂µf
EN(xi|mf ,vf)

[
log p(y|f , g)

]
∂

∂µg
EN (xi|mg ,vg)

[
log p(y|f , g)

]
∂

∂vf
EN(xi|mf ,vf)

[
log p(y|f , g)

]
∂

∂vg
EN (xi|mg ,vg)

[
log p(y|f , g)

]
,

The expectations can then be done using quadrature, or Monte Carlo sampling. As
before,

mf = KfuK−1
uf uf

µf

vf = Kff + KfuK−1
uf uf

(Sf − Kuf uf
)K−1

uf uf
Kuf

mg = KgugK−1
ugug

µg

vg = Kgg + KgugK−1
ugug

(Sg − Kugug)K−1
ugug

Kugg.

The chain rule can then be used to compute the gradient with respect to the kernel hyper
parameters, ∂

∂mf
EN(xi|mf ,vf)

[
log p(y|f , g)

]
∂mf

∂Kfu

∂Kfu
∂θK

, where θK is a hyper parameter
of the kernel kf . Similar chain rules can be written for the other derivatives.

The model contains variational parameters corresponding to q(uf ) = N (uf |µf ,Sf )
and q(ug) = N (ug|µg,Sg) and the latent input locations, Z. As such the parameters
do not scale with n. Naively the number of parameters is O(b(m2 +m)+m) however we
can reduce this to O(b(m2

2 + m
2 +m)) by parametrizing the Cholesky of the covariance

matrices, Sf = LfL
⊤
f and Sg = LgL

⊤
g . This has the added benefit of enforcing that Sf

and Sg are symmetrical and positive definite. Unfortunately if there is a large number
of inducing inputs, this can be difficult to optimise.

In order to aid future users, we provide some advice on our tactic of optimising
these models. We initialize the model with random or informed lengthscales within
the right region, µf and µg are assigned small random values, Sg and Sf are given an
identity form. In practice during optimisation we find it helpful to initially fix all the
kernel hyperparameters and Z at their initial locations, optimise for a small number of
steps, then allow the optimisation to run freely. This allows the latent means µf and
µg to move to sensible locations before the model is allowed to completely change the
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Data MAE
G CHG Lt CHt

Elevators1000 0.252 0.272 - -
Elevators10000 0.219 0.224 - -
CorruptMotor 0.947 0.841 0.835 0.834

Boston 0.048 0.050 0.050 0.050
Table C.1 Results showing the MAE and NLPD over 5 cross validation folds, Models
shown in comparison are sparse Gaussian (G), chained heteroscedastic Gaussian (CHG),
Student-t Laplace approximation (Lt) and chained heteroscedastic Student-t (CHt).

form of the function through the modification of the kernel hyperparameters. True
convergence can be difficult to achieve due to the potentially large number of strongly
dependent parameters and the non-convex optimisation problem, and in practice we
find it helpful to monitor convergence. There is a particuarly strong dependence
between the inducing inputs Z and the variational parameters; we recommend fixing Z
when they are no longer drastically moving. Despite challenges, it is important to note
however that the number of parameters to be optimised is fixed with respect to n, and
stochastic methods can be used to allow consideration of a very large n.

C.2 Additional MAE Results

Alongside negative log predictive density (NLPD) we also measure MAE. In practice
we find less significant changes in the MAE as the NLPD, particularly for the testing
of robust methods. This indicates that the most significant increase in performance
we gain is the ability to explain the tails, where the outliers live; Gaussian processes
are particularly useful for taking into consideration the uncertainty associated with
predictions. Small differences between MAE are likely to be attributed to the mean
function being pulled towards these outliers. However, when testing robustness we
hope that the mean is not pulled towards the outlying data. As such we reason that
NLPD is a better measure to test robustness.

C.3 Further Twitter Experiment Details

The model used to model the twitter data has some interesting properties, such as the
ability to model a transition from a unimodal distribution to a bimodal distribution.
The following plot shows how the distribution changes throughout time for the Labour
dataset.
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The latent functions α and β that can be obtained from the model in Section 4.4.3
can be plotted themselves. If both latent functions went below 1.0 then the distribution
at that time would turn into a bathtub shape. If both are larger than one but one is
larger than the other, we have a skewed distribution. If one is below zero and the over
above, it appears exponential or negative exponential.
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Bayesian Gaussian Process Latent
Variable Model Details

In order to maintain clarity in the main text we choose not to derive the BGPLVM
for missing data model and LABGPLVM model from scratch. However various
equations from the derivation are required for the main text; and need to be referenced
accordingly. Here a full derivation from a generative modelling perspective is produced
for a particularly interested reader. It is hoped that the step by step derivation of a
relatively complex model is useful for those interested in building upon the research in
Chapter 5. Also see Damianou (2015) and Gal and van der Wilk (2014) for excellent
similarly detailed derivations.

D.1 BGPLVM Generative Model and Overview of
Derivation

First an overview of the model and the lower bounds required are given.
The generative model for the BGPLVM is as follows,

p(Y,F ,U,X, |Z) = p(Y|F )p(F |U,X)p(U|Z)p(X), (D.1)
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where

p(Y|F ) =
p∏
j=1

N
(
y:,j|f:,j, β

−1I
)

p(F |U,X) =
p∏
j=1

N
(
f:,j|KfuK−1

uuu:,j,Kff − KfuK−1
uuKuf

)
p(u:,j|Z) = N (u:,j|0,Kuu)

p(X) = N (X|0, I) .

Since the p(Y|F and p(f:,j|u:,j,X) factorise across output dimensions, and these
two functions are the only two functions that live in the data space, the marginal
likelihood also factorises,

log p(y|Z) = log
p∏
j=1

p(yj|Z)

=
p∑
j=1

log p(yj|Z),

In what follows the variational bound derived will be expressed in terms of a single
dimension p(y:,j|Z) that will subsequently be summed together, each will be denoted
with a subscript j, for example is p(y:,j|Z). A number of variational lower bounds will
be derived, when a distribution refers to a lower bound on the true distribution, it will
be denoted by a p̂; for example p̂j(y:,j|Z) is a variational lower bound on p(y:,j|Z). For
the missing data case, you can consider y:,j as only the non-missing values of y:,j, i.e.
yOj

:,j in the main text. Analogically ψ1, ψ2, ψ0, y:,j , ŷ:,j , K̂, and Wj would be replaced
by ψ1

Oj , ψ2
Oj , ψ0

Oj , yOj

:,j , ŷOj

:,j , K̂Oj and WOj .
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The following is a small sketch of how we derive the final bound followed by a more
in-depth treatment.

logp(y:,j|Z) = log
∫ ∫ ∫

p(y:,j|f:,j)p(f:,j|u:,j,X)p(u:,j|Z)p(X) df:,j du:,j dX (D.2)

= log
∫ ∫

exp
[
log

(∫
p(y:,j|f:,j)p(f:,j|u:,j,X) df:,j

)]
p(u:,j|Z)p(X) du:,j dX

(D.3)

≥ log
∫ ∫

exp


∫
p(f:,j|u:,j,X) log p(y:,j|f:,j) df:,j︸ ︷︷ ︸

p̂j(y:,j |u:,j ,X)

 p(u:,j|Z)p(X) du:,j dX (D.4)

= log
∫ ∫

exp(log(p̂j(y:,j|u:,j,X)))p(u:,j|Z)p(X) dX du:,j (D.5)

= log
∫ ∫

exp(log(p̂j(y:,j|u:,j,X)))q(X|θV )
q(X|θV )p(X)p(u:,j|Z) du:,j dX (D.6)

≥
∫ [∫

log exp(log(p̂j(y:,j|u:,j,X)))q(X|θV ) dX
]
p(u:,j|Z) du:,j (D.7)

− KL (q(X|θV ) ∥ p(X)) (D.8)

=
∫ [∫

q(X|θV ) log(p̂j(y:,j|u:,j,X)) dX
]
p(u:,j|Z) du:,j − KL (q(X|θV ) ∥ p(X))

(D.9)

=
[∫

q(X|θV ) log(p̂j(y:,j|X)) dX
]

− KL (q(X|θV ) ∥ p(X)) (D.10)

D.2 Integrating Out p(f:,j|u:,j,X)
In Equation:(D.4) Jensen’s inequality is used, such that

logEp(f:,j |u:,j ,X)

[
p(y:,j|u:,j,f:,j,X)

]
≥ Ep(f:,j |u:,j ,X)

[
log p(y:,j|u:,j,f:,j,X)

]
.

The left hand side is intractable, however the right hand side is tractable when
p(y:,j|u:,j,f:,j,X) is a Gaussian likelihood.
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In more detail,

log p(y:,j|X,u:,j) = log
∫
p(y:,j|f:,j)p(f:,j|u:,j,X) df:,j

= logEp(f:,j |u:,j ,X)

[
p(y:,j|f:,j)

]
≥ Ep(f:,j |u:,j ,X)

[
log p(y:,j|f:,j)

]
= Ep(f:,j |u:,j ,X)

[
−n

2 log 2π − 1
2 log |β−1I| + β

2 (y:,j − f:,j)⊤(y:,j − f:,j)
]

= Ep(f:,j |u:,j ,X)

[
−n

2 log 2π − 1
2 log |β−1I| + β

2 tr
(
(y:,j − f:,j)⊤(y:,j − f:,j)

)]
= −n

2 log 2π − 1
2 log |β−1I|

+ β

2 tr
(

y⊤
:,jy:,j − 2y⊤

:,jEp(f:,j |u:,j ,X)

[
f:,j

]
+ Ep(f:,j |u:,j ,X)

[
f:,jf

⊤
:,j

])
,

(D.11)

where in the final line the trace is used for tr
(
f:,jf

⊤
:,j

)
= tr

(
f⊤

:,jf:,j
)
.

Since the first moment is the expected value of the distribution, Ep(f:,j |u:,j ,X)

[
f:,j

]
is the mean of the distribution of p(f:,j|u:,j,X), in this case KfuK−1

uuu:,j. Using the
equality in Equation (A.14), cov[f:,j,f

⊤
:,j ] is the covariance of p(f:,j|u:,j,X), in this case

Kff − KfuK−1
uuKuf giving

E
[
f:,jf

⊤
:,j

]
= Kff − KfuK−1

uuKuf + KfuK−1
uuu:,ju⊤

:,jK−1
uuKuf (D.12)

By substituting the above into Equation (D.11), and completing the square with respect
to y:,j, we obtain a log of a Gaussian distribution with some additional terms,

log p(y:,j|X,u:,j) = +KL (p(f |u,X) ∥ p(f |y,u,X)) − n

2 log 2π − 1
2 log |β−1I|

− β

2 tr
(
y⊤

:,jy:,j − 2y⊤
:,jKfuK−1

uuu:,j

+Kff − KfuK−1
uuKuf + KfuK−1

uuu:,ju⊤
:,jK−1

uuKuf
)

≥ −n

2 log 2π − 1
2 log |β−1I|

− β

2 tr
(
y⊤

:,jy:,j − 2y⊤
:,jKfuK−1

uuu:,j

+Kff − KfuK−1
uuKuf + KfuK−1

uuu:,ju⊤
:,jK−1

uuKuf
)
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Complete square, µ = KfuK−1
uuu:,j,Σ = β−1I

= log N
(
y:,j|KfuK−1

uuu:,j, β
−1I

)
− β

2 tr
(
Kff − KfuK−1

uuKuf
)

= log p̂j(y:,j|X,u:,j)

The term β
2 tr (Kff − KfuK−1

uuKuf ) is from now on referred to as the trace term.
This term guards the bound from overfitting (Damianou, 2015; Titsias, 2009). It
corresponds to the squared error of predicting the training values of f:,j using the
inducing variables u:,j. Remembering that the number of inducing variables m, is
chosen to be smaller than the number of latent function variables n, as in Section 3.3;
if the number of inducing variables are insufficient for encoding the information
that would otherwise be held in f:,j, then this term will be large, and the lower
bound will become loose. Note, that by assuming a low-rank Nystrom approximation,
p(f:,j|u:,j,X) = N (f:,j|KfuK−1

uuu:,j,Kff − KfuK−1
uuKuf ), as is also used in the sparse

GP regression case, Section 3.3, the form of log p̂j(y|u,X), does not contain the inverse
of a kernel function, k(X,X)−1 that operates on the inputs X. This correspondingly
reduces the computational complexity from O(n3) to O(nm2). In the following section
it will also become apparent that this allows use to use variational inference to obtain
an approximation to the bound, as expectations can now be taken with respect to X
without requiring the intractable expectation of an inverse.

D.2.1 Integration Over p(X)
The next step to reaching the final bound on log p(y:,j|Z) is to integrate out p(X). As in
Equation (D.5) the bound log p̂j(y:,j|X,u:,j), will be substituted for log p(y:,j|X,u:,j),
thus the next step is,

log p(y:,j|Z,u) = log
∫
p(y:,j|X,u:,j)p(X) dX

≥ log
∫

exp(log p̂j(y:,j|X,u:,j))p(X) dX

= log p̂j(y:,j|Z,u).

Here the expectation is with respect to a kernel Kfu that is in an exponent. As
alluded to above, this integration can be done using the variational trick, of introducing
q(X|θV ). By introducing the sparse variational inference approach, Section 3.3, we
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have ensured that the expectation does not need to be taken over the inverse of a
kernel K(X,X)−1, which is intractable, as discussed in Section 5.5.

The next step is to compute log p̂j(y:,j|u:,j) = logEq(X|θV )

[
p̂j(y:,j |u:,j ,X)p(X)

q(X|θV )

]
, which

may be done by introducing a variational distribution q(X|θV ), as follows,

log p(y:,j|u:,j) = logEq(X|θV )

[
p(y:,j|u:,j,X)p(X)

q(X|θV )

]

= Eq(X|θV )

[
log p̂j(y:,j|u:,j,X) p(X)

q(X|θV )

]
+ KL (q(X|θV ) ∥ p(X|y))

≥ Eq(X|θV )

[
log p̂j(y:,j|u:,j,X) p(X)

q(X|θV )

]

= Eq(X|θV )

[
log p̂j(y:,j|u:,j,X)

]
+ Eq(X|θV )

[
log p(X)

q(X|θV )

]
= Eq(X|θV )

[
log p̂j(y:,j|u:,j,X)

]
︸ ︷︷ ︸

≜log p̂j(y:,j |u:,j)

−KL (q(X|θV ) ∥ p(X))

= log p̂j(y:,j|u:,j) − KL (q(X|θV ) ∥ p(X)) .

Note that now an expectation of the log of the previous bound can be taken, with
respect to the variational distribution q(X|θV ), Eq(X|θV )

[
log p̂j(y:,j|u:,j,X)

]
, since

p̂j(y:,j|u:,j,X) is Gaussian, this is now analytically tractable,

Eq(X|θV )

[
log p̂j(y:,j|u:,j,X)

]
= Eq(X|θV )

[
−n

2 log 2π − 1
2 log |β−1Ij| − 1

2
(
y⊤

:,jβIjy:,j − 2y⊤
:,jβIjKfuK−1

uuu:,j (D.13)

+u⊤
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uuKufβIjKfuK−1
uuu:,j

)]
− Eq(X|θV )

[
β

2 tr
(
Kff − K−1

uuKufKfu
)]

= −n

2 log 2π − 1
2 log |β−1Ij|

− 1
2

(
y⊤

:,jβIjy:,j − 2y⊤
:,jβIjEq(X|θV )

[
Kfu

]
K−1

uuu:,j + u⊤
:,jK−1

uuβEq(X|θV )

[
KufKfu

]
K−1

uuu:,j

)
− β

2 tr
(
Eq(X|θV )

[
Kff

]
− K−1

uuβEq(X|θV )

[
KufKfu

])
= −n

2 log 2π − 1
2 log |β−1Ij| − 1

2
(
y⊤

:,jβIjy:,j − 2y⊤
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uuu:,j + u⊤
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uuβψ2K−1
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)
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2 tr (ψ0) + β
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(
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uuψ2
)

(D.14)
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as in Section 5.5 the following are defined for notational convenience,

ψ0 ≜ Eq(X|θV )

[
tr (Kff )

]
ψ1 ≜ Eq(X|θV )

[
Kfu

]
ψ2 ≜ Eq(X|θV )

[
KufKfu

]

D.2.2 Integrating Out p(u)
So far the bound obtained is still dependent on the inducing variables, u. The final
step will be to integrate over their prior uncertainty, p(u). For prediction we also
require access to p(u|y), or in practice an approximation to this posterior.

log p(y:,j|Z) = log
∫

log p(y:,j|u:,j)p(u:,j|Z) du:,j

≥ log
∫

log p̂j(y:,j|u:,j)p(u:,j|Z) du:,j − KL (q(X|θV ) ∥ p(X))

= log p̂j(y:,j|Z) − KL (q(X|θV ) ∥ p(X))
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This integral does not require a further variational lower bound, which would further
loosen the bound, and may instead be done analytically as follows.

log
∫ (

exp log p̂j(y:,j|u:,j)
)
p(u:,j|Z) du:,j

= log
∫ (

exp
[
−n

2 log 2π − 1
2 log |β−1Ij| − 1

2tr
(
y⊤

:,jβIjy:,j − 2y⊤
:,jβIjψ1K−1

uuu:,j

+u⊤
:,jK−1

uuβψ2K−1
uuu:,j

)
− β

2 tr (ψ0) + β

2 tr
(
K−1

uuψ2
)])

p(u:,j|Z) du:,j

= log
exp

[
−n

2 log 2π − 1
2 log |β−1Ij| − β

2 tr (ψ0) + β

2 tr
(
K−1

uuψ2
)

− 1
2tr

(
y⊤

:,jβIjy:,j
)·

[∫
exp

(
−2y⊤

:,jβIjψ1K−1
uuu:,j + u⊤

:,jK−1
uuβψ2K−1

uuu:,j)
)
p(u:,j|Z) du:,j

]
= −n

2 log 2π − 1
2 log |β−1Ij| − β

2 tr (ψ0) + β

2 tr
(
K−1

uuψ2
)

− 1
2tr

(
y⊤

:,jβIjy:,j
)

+ log
∫

exp
(

−1
2tr

(
−2y⊤βIjψ1K−1

uuu:,j + u⊤
:,jK−1

uuβψ2K−1
uuu:,j

)
− m

2 log 2π − 1
2 log |Kuu| − 1

2tr
(
u⊤

:,jK−1
uuu:,j

))
du:,j (substitute p(u:,j|Z))

= −n

2 log 2π − 1
2 log |β−1Ij| − β

2 tr (ψ0) + β

2 tr
(
K−1

uuψ2
)

− 1
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(
y⊤

:,jβIjy:,j
)

+ log
∫
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(1

2tr
(
−2y⊤

:,jβIjψ1K−1
uuu:,j + u⊤

:,j(K−1
uuβψ2K−1

uu + K−1
uu)u:,j

)
− m

2 log 2π − 1
2 log |Kuu|

)
du:,j (Complete for u:,j)

To complete the square for u, we must introduce extra terms such that we have the
following form, with some additional constant terms in u.

log N (u|m,R) = −n

2 log 2π − 1
2 log |R| − 1

2tr
(
m⊤R−1m + 2u⊤R−1m − u⊤R−1u

)
.

(D.15)
In this case the Gaussian N (u|m:,j,R) plus other terms may be found as follows,

1
2tr

−2y⊤
:,jβIjψ1K−1

uuu:,j + u⊤
:,j (K−1

uuβψ2K−1
uu + K−1

uu)︸ ︷︷ ︸
R−1

u:,j

− m

2 log 2π − 1
2 log |Kuu|
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And so by matching linear terms in u:,j , u⊤
:,jR−1m:,j = u⊤

:,jK−1
uuψ1

⊤βy:,j , and quadratic
terms

1
2tr

−2 y⊤
:,jβIjψ1K−1

uu︸ ︷︷ ︸
m⊤

:,jR−1

u:,j + u⊤
:,j (K−1

uuβψ2K−1
uu + K−1

uu)︸ ︷︷ ︸
R−1

u:,j

− m

2 log 2π − 1
2 log |Kuu|

= log N
(
u:,j|m:,j,R−1

)
+ 1

2tr
(
m⊤

:,jR−1m:,j
)

+ 1
2 log |R| − 1

2 log |K−1
uu|︸ ︷︷ ︸

G

So in this case, and so the mean and covariance are,

q(u|θV ) = N (u:,j|m:,j,R) (D.16)
m:,j = RK−1

uuψ1
⊤βy:,j (D.17)

R = (K−1
uuβψ2K−1

uu + K−1
uu)−1

. (D.18)

Note that these match the optimal distribution for q(u|θV ) given in the sparse GP
Section 3.3, i.e. p(u:,j|y:,j) ≈ N (u:,j|m:,j,R) ≜ q(u|θV ), however in that case ψ1

and ψ2 are substituted for Kfu and KufKfu respectively, as they have not had their
expectation taken with respect to q(X|θV ). This result arises as we have calculated an
approximation to p(y:,j|u:,j)p(u:,j) = p(u:,j|y:,j), using the approximate p̂j(y:,j|u:,j).

The additional terms, G, arise from terms that we were missing to complete the
square, −1

2tr
(
m⊤

:,jR−1m:,j
)

and −1
2 log |R|, and terms that were left over, −1

2 log |K−1
uu|.

By plugging the result back into our marginalisation of u:,j and using the fact that
a probability distribution integrates to 1,

∫
N (u:,j|m:,j,R) du:,j = 1,

∫
exp(log N (u|m,R) +G) du

=
∫

N (u|m,R) exp(G) du

= exp(G)
∫

N (u|m,R) du

= exp(G), (D.19)
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Where G are terms independent of the distribution for u; the integral becomes,

log
∫ (

exp log p̂j(y:,j|u:,j)
)
p(u:,j|Z) du:,j

= −n

2 log 2π − 1
2 log |β−1Ij| − β

2 tr (ψ0) + β

2 tr
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uuψ2
)

− 1
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(
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)
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(

log N
(
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)
+ 1
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(
m⊤

:,jR−1m:,j
)

+ 1
2 log |R| − 1

2 log |K−1
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)
du:,j
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2 log 2π − 1
2 log |β−1Ij| − β

2 tr (ψ0) + β

2 tr
(
K−1

uuψ2
)

− 1
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(
y⊤

:,jβIjy:,j
)

+ 1
2tr

(
m⊤

:,jR−1m:,j
)

+ 1
2 log |R| − 1

2 log |K−1
uu|

where the final line uses Equation (D.19).
The bound on the marginal likelihood then becomes,

log p(y:,j|Z) ≥ −KL (q(X|θV ) ∥ p(X)) + log
∫

(exp log p̂j(y:,j|u:,j)) p(u:,j|Z) du:,j

= −KL (q(X|θV ) ∥ p(X)) − n

2 log 2π − 1
2 log |β−1Ij| − β

2 tr
(
ψ0 − K−1

uuψ2
)

− 1
2tr

(
y⊤

:,jβIjy:,j
)

+ 1
2tr

(
m⊤

:,jR−1m:,j
)

+ 1
2 log |R| − 1

2 log |K−1
uu|

= log p̂j(y:,j|Z) − KL (q(X|θV ) ∥ p(X))
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By substituting R and m:,j,

log p(y:,j|Z) = −n

2 log 2π − 1
2 log |β−1I| − β

2 tr (ψ0) + β

2 tr
(
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uuψ2
)

− 1
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)
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)
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2 log |K−1
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2 log 2π − 1
2 log |β−1I| − β

2 tr (ψ0) + β
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(
K−1

uuψ2
)

− 1
2tr

(
y⊤

:,j(β−1I − βψ1K−1
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uuβψ2K−1
uu + K−1
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uuψ1

⊤β)y:,j
)

+ 1
2 log |(K−1
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2 log |K−1

uu| (D.20)

= −n

2 log 2π − 1
2 log |β−1I| − β

2 tr (ψ0) + β
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uuψ2
)

− 1
2tr

(
y⊤

:,j(β−1I − βψ1(βψ2 + Kuu)−1ψ1
⊤β)y:,j

)
+ 1

2 log |K−1
uu(βψ2 + Kuu)−1K−1

uu| − 1
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2 log 2π − 1
2 log |β−1I| − β

2 tr (ψ0) + β
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(
K−1

uuψ2
)

− 1
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y⊤

:,j(β−1I − βψ1(βψ2 + Kuu)−1ψ1
⊤β)y:,j

)
− 1

2 log |(βψ2 + Kuu)| + 1
2 log |K−1

uu|
((((((((((((((

+1
2 log |K−1

uu| − 1
2 log |K−1

uu|

where the third line uses the equality,

K−1
uu(K−1

uuβψ2 + K−1
uu)−1K−1

uu = Kuu(βψ2 + Kuu)1Kuu (D.21)

Finally this can be rewritten, including the sum over dimensions

log p(Y|Z) ≥
p∑
j=1

− log (2π)
n
2 + log |β−1I|−

1
2 − 1

2 log |(βψ2 + Kuu)| + log |K−1
uu|

1
2

(D.22)

− 1
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2 e− 1
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2π n
2 |(βψ2 + Kuu)| 1
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uuψ2
)

(D.23)
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D = β−1I − βψ1(βψ2 + Kuu)−1ψ1
⊤β, which exactly matches the form given in the

original publication (Titsias, 2009); this is the result given in the BGPLVM Section 5.5.

D.2.3 Completing In y

The form given in the original publication, as shown in equation (D.23) does not
make it clear that the bound is Gaussian in y:,j, though it does have a beneficial
computational complexity of O(nm2). As is shown in Section 5.6, it is not only
insightful, Section 5.6.2, see the form of the bound in the form of a Gaussian with
regularising terms, it also allows for the applicability of the Laplace approximation
with no modification. Section 5.6 shows that this can be used to extend the BGPLVM
model to non-Gaussian likelihoods, a model called the LABGPLVM, as well as its
missing data counterpart, Section 5.6.4.

In the following section, a more verbose derivation of the equations given in the
Section 5.6.2 is provided, providing additional insights to the BGPLVM model and
paving the way for a subsequent Laplace approximation.

The first step is to complete the square with respect to y, starting from the form
of the bound given in Equation (D.20), and substitute in R in order to simplify.
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required to complete the square
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As in Section 5.5.1 this form be simplified using the matrix inversion lemma
(Section A.2.1,

K̂ = (βIj − β⊤ψ1(βψ2 + Kuu)−1ψ1
⊤β)−1

= (βIj︸︷︷︸
A

+ −βI⊤
j ψ1︸ ︷︷ ︸
U

(βψ2 + Kuu)−1︸ ︷︷ ︸
B

ψ1
⊤βIj︸ ︷︷ ︸
V

)−1

= β−1Ij
− (β−1Ij)(−βIjψ1)((βψ2 + Kuu) + (ψ1

⊤βIj)(β−1Ij)(−βIjψ1))
−1(ψ1

⊤βIj)(β−1Ij)

= β−1Ij +ψ1((βψ2 + Kuu) − (ψ1
⊤βψ1))

−1
ψ1

⊤

= β−1Ij +ψ1(Kuu + β(ψ2 −ψ1
⊤ψ1))

−1
ψ1

⊤

This is very similar to the sparse GP bound, where Kuu has been replaced by
Kuu + β(ψ2 − ψ1

⊤ψ1). See Section 5.5.1 for more details on this interesting
interpretation.

The determinants may be collated using the matrix determinant lemma,
Section A.2.2,

1
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where the final line arises as a result of many cancellations.
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The final bound, completed with respect to y:,j is then given by:

log p(y:,j|Z) =

≥ log N
(
y:,j|0, K̂

)
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2 log |(Kuu + β(ψ2 −ψ1
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2 log |Kuu|

− β
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2 tr (ψ0) + β

2 tr
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uuψ2
)

− KL (q(X|θV ) ∥ p(X))

So far the bound with respect to a single dimension has been considered, we can take
the product of each dimension to provide the final simplified bound for the BGPLVM,

log p(y|Z) = log
p∏
j=1

p(yj|Z)

=
p∑
j=1

log p(yj|Z)

≥

 p∑
j=1

log p̂(yj|Z) − β

2 tr (ψ0) + β

2 tr
(
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uuψ2
)− KL (q(X|θV ) ∥ p(X))

(D.24)

Note that β may vary for each output dimension, though in the original model it was
assumed to be shared to aid computation.



Appendix E

LABGPLVM

The novel non-Gaussian likelihood BGPLVM model, the LABGPLVM proposed in
Chapter 5, Section 5.6, builds upon the derivation in Section D. Various aspects of
the derivation is used in the main text, however a more verbose derivation is again
provided below for the interested reader.

E.1 Integration over latent function p(s|y)
This section builds upon the derivation of the BGPLVM given in Section D, giving a
more verbose derivation of the novel model proposed in Section 5.6.

The model treats the observations S as a corruption of Y. This means that the
bound given by Equation (D.24) can be used as a prior for the likelihood p(S|Y).
This leaves one final integral to undertake, the integral of this prior, p̂(Y|Z) with the
likelihood, p(S|y). Since each output may have a different likelihood, we consider a
single output dimension and perform j integrals,

p(s:,j|Z) =
∫
p(s:,j|y:,j)p̂j(y:,j|Z) dy:,j (E.1)

if this likelihood p(s:,j|y:,j) is non-Gaussian, this integral will be intractable if and so
an approximation is needed. In this work a Laplace approximation is proposed, though
as discussed in Section 5.6 and Section 3.2 there are a there are a number of alternative
approximation methods that could be used. Each output dimension j may also have
its own β−1

j , we will suppress this notation to maintain consistency with the BGPLVM
bound.

We make an approximation for each dimension, and so where all y:,j are observed
nothing changes, otherwise only the observed values are retained, ψ0

Oj , ψ1
Oj , ψ2

Oj
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etc, as in the main text of Section 5.5.1. This notation will be suppressed throughout
for clarity but one should be aware that for each output ψ1 etc may vary.
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∫
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︸ ︷︷ ︸

Laplace approximation
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if the likelihood factorises over output dimensions we have
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Using the results of the Laplace approximation given in Section 3.2.1 the approximation
can be made as follows,

log p(s|Z)

=
p∑
j=1

[
log |(Kuu + β(ψ2 −ψ1

⊤ψ1))
−1| + log |Kuu| − β

2 tr (ψ0) + β

2 tr
(
K−1

uuψ2
)]

− KL (q(X|θV ) ∥ p(X)) +
p∑
j=1

(
− log |I + K̂Wj| − 1

2 ŷ⊤
:,jK̂−1ŷ:,j + log p(s:,j|ŷ:,j)

)

where, K̂ = β−1Ij +ψ1(Kuu + β(ψ2 −ψ1
⊤ψ1))

−1
ψ1

⊤.
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For notational convenience, define A = Kuu + β(ψ2 −ψ1
⊤ψ1),

log p(s|Z) =
p∑
p=1

[
− log |A| − log |K−1

uu| − β

2 tr (ψ0) + β

2 tr
(
K−1

uuψ2
)

− log |I + K̂Wj|

− 1
2 ŷ⊤

:,jK̂−1ŷ:,j + log p(s:,j|ŷ:,j)
]

− KL (q(X|θV ) ∥ p(X))

where, K̂ = β−1Ij +ψ1A
−1ψ1

⊤.
Note that since the Laplace approximation term is the only term that concerns s:,j ,

using the Laplace approximation also provides the posterior with respect to s:,j,

p(y:,j|s:,j) = N
(

y:,j|ŷ:,j, (K̂−1 +Wj)
−1
)

(E.2)

This results will prove useful when we consider the posterior p(u:,j|s:,j), in Section E.3,
with which we can make predictions. First we consider the models derivatives required
for optimisation.

E.1.1 Laplace BGPLVM Derivatives

The model contains a number of parameters θK ,θL, β−1 that must be optimised.
It is not possible to obtain a fixed point equation such that the gradient of the
model is zero, and as such some method of gradient descent must be used. In order
to implement with the derivatives with respect to θK ,θL, β−1 are required. The
gradients for the kernel hyper-parameters, θK , can be found by using the chain rule
dL

dKuu
dKuu
dθK

+ dL
dψ0

dψ0
dθK

+ dL
dψ1

dψ1
dθK

+ dL
dψ2

dψ2
dθK

, the second term in each chain is specific to the
kernel and we will assume for now that it is computable and focus on the first terms
dL

dKuu
, dL
dψ0

, dL
dψ1

, dL
dψ2

, dL
dβ

, where L = log p(s|Z,θL,θK). For calculating the derivatives
for the variational parameters, dL

dψ0
, dL
dψ1

, dL
dψ2

, the terms dψ0
dθV

, dψ1
dθV

, and dψ2
dθV

need to be
computed for the respective kernel, examples for the ARD RBF kernel can be found in
Gal and van der Wilk (2014).

In what follows are the key components of the partial derivatives required for
applying the chain rule, in order to aid readers who wish to reimplement the model for
their own uses.
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To ease the derivations we will use the fact that we have a sum of may terms, and
do each terms derivatives individually, as such we will number the terms

log p(s|Z) =
p∑
j=1

(
−1

2 ŷ⊤
:,jK̂−1ŷ:,j︸ ︷︷ ︸
t1

+ log p(s:,j|ŷ:,j)︸ ︷︷ ︸
t2

− log |I + K̂Wj|︸ ︷︷ ︸
t3

− log |A|︸ ︷︷ ︸
t4

− log |K−1
uu|︸ ︷︷ ︸

t5

−β

2 Tr(ψ0 − K−1
uuψ2)︸ ︷︷ ︸

t6

)
−KL (q(X|θV ) ∥ p(X))︸ ︷︷ ︸

t7

Most of the gradients are straightforward, however the Laplace approximation
introduces a complication in that when we change θK , the mode ŷ also changes, these
are known as implicit gradients, see Rasmussen and Williams (2006) to see how they
are handled in the basic Laplace approximation with a Gaussian process prior. In
general the gradients can be handled by splitting the gradients into two components,
dt
dθK

+∑n
i=1

dt
dŷip

dŷip

dθK
, we refer to the former term as the explicit gradient, and the latter

term the implicit gradient.
For convenience we will denote θK = {Kuu, ψ0,ψ1,ψ2, β}, this will help us derive

derivatives that are simple to chain. Again note that in the case of missing data, these
derivatives must be computed for each dimension.

The notation used throughout is in terms of infinitesimals. We abuse notation in
the following way, by writing dA

dKuu
we are talking about how the function A changes

as we make an infinitely small change in Kuu, whilst holding the other parameters of
the function fixed. As such it describes a infinitesimal describing the change of the
function in response to the change of another function.

dA

dKuu
= dKuu

dA

dψ0
= 0

dA

dψ1
= −dβψ1

⊤ψ1

ψ1
= −(β(dψ1

⊤)ψ1 + βψ1
⊤(dψ1))

dA

dψ2
= β(dψ2)

dA

dβ
= (dβ)(ψ2 −ψ1

⊤ψ1)
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and it follows that

dK̂
dKuu

= d(β−1Ij +ψ1A
−1ψ1

⊤)
dKuu

= −ψ1A
−1 dA

dKuu
A−1ψ1

⊤ = −ψ1A
−1(dKuu)A−1ψ1

⊤

dK̂
dψ1

= dψ1A
−1

dψ1
ψ1

⊤ +ψ1A
−1(dψ1)⊤ = (dψ1)A−1ψ1

⊤ +ψ1
dA−1

dψ1
ψ1

⊤ +ψ1A
−1(dψ1)⊤

= (dψ1)A−1ψ1
⊤ −ψ1A

−1 dA

dψ1
A−1ψ1

⊤ +ψ1A
−1(dψ1)⊤

= (dψ1)A−1ψ1
⊤ +ψ1A

−1
(
β(dψ1

⊤)ψ1 + βψ1
⊤(dψ1)

)
A−1ψ1

⊤ +ψ1A
−1(dψ1)⊤

= (dψ1)A−1ψ1
⊤ +ψ1A

−1β(dψ1
⊤)ψ1A

−1ψ1
⊤ +ψ1A

−1βψ1
⊤(dψ1)A−1ψ1

⊤

+ψ1A
−1(dψ1)⊤

= (dψ1)A−1ψ1
⊤ +

(
ψ1A

−1ψ1
⊤(dψ1)βA−1ψ1

⊤
)⊤

+ψ1A
−1βψ1

⊤(dψ1)A−1ψ1
⊤

+
(

(dψ1)A−1ψ1
⊤
)⊤

= (dψ1)A−1ψ1
⊤︸ ︷︷ ︸

G

+
(
ψ1A

−1ψ1
⊤(dψ1)βA−1ψ1

⊤
)⊤

︸ ︷︷ ︸
E⊤

+ψ1A
−1βψ1

⊤(dψ1)A−1ψ1
⊤︸ ︷︷ ︸

E

+
(

(dψ1)A−1ψ1
⊤
)⊤

︸ ︷︷ ︸
G⊤

= (G+G⊤) + (E + E⊤)
dK̂
dψ2

= −ψ1A
−1 dA

dψ2
A−1ψ1

⊤ = −ψ1A
−1β(dψ2)A−1ψ1

⊤

dK̂
dψ0

= 0

dK̂
dβ

= −β−1(dβ)β−1 +ψ1
dA−1

dβ
ψ1

⊤

= −β−1(dβ)β−1 −ψ1A
−1(dβ)(ψ2 −ψ1

⊤ψ1)A−1ψ1
⊤

= −(β−2 +ψ1A
−1(ψ2 −ψ1

⊤ψ1)A−1ψ1
⊤)(dβ)

It is convenient to obtain the derivatives by manipulating the infinitesimals the
following form of dt

dθ
= tr (X(dθ)). For further details see on this method of obtaining

derivatives, see Minka (2000). The derivatives for t6, t7 are equivalent to the BGPLVM,
see Damianou (2015).
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t1 derivatives

dt1
dθK

=
d(−1

2 ŷ⊤K̂−1ŷ)
dθK

= 1
2 ŷ⊤K̂−1(dK̂)K̂−1ŷ = 1

2Tr
(

K̂−1ŷŷ⊤K̂−1(dK̂)
)

dt1
dψ1

= 1
2Tr

(
K̂−1ŷŷ⊤K̂−1(dK̂)

)
= 1

2Tr
(

K̂−1ŷŷ⊤K̂−1(G+G⊤ + E + E⊤)
)

= 1
2Tr

(
K̂−1ŷŷ⊤K̂−1G

)
+ 1

2Tr
(

K̂−1ŷŷ⊤K̂−1G⊤
)

+ 1
2Tr

(
K̂−1ŷŷ⊤K̂−1E

)
+ 1

2Tr
(

K̂−1ŷŷ⊤K̂−1E⊤
)

= 1
2Tr

(
K̂−1ŷŷ⊤K̂−1G

)
+ 1

2Tr
(

K̂−1ŷŷ⊤K̂−1G
)

+ 1
2Tr

(
K̂−1ŷŷ⊤K̂−1E

)
+ 1

2Tr
(

K̂−1ŷŷ⊤K̂−1E
)

= Tr
(

K̂−1ŷŷ⊤K̂−1G
)

+ Tr
(

K̂−1ŷŷ⊤K̂−1E
)

= Tr
(

K̂−1ŷŷ⊤K̂−1(dψ1)A−1ψ1
⊤
)

+ Tr
(

K̂−1ŷŷ⊤K̂−1ψ1A
−1βψ1

⊤(dψ1)A−1ψ1
⊤
)

= Tr
(
A−1ψ1

⊤K̂−1ŷŷ⊤K̂−1(dψ1)
)

+ Tr
(
A−1ψ1

⊤K̂−1ŷŷ⊤K̂−1ψ1A
−1βψ1

⊤(dψ1)
)

= Tr
(
A−1ψ1

⊤K̂−1ŷŷ⊤K̂−1(I +ψ1A
−1βψ1

⊤)(dψ1)
)

dt1
dψ2

= 1
2Tr

(
K̂−1ŷŷ⊤K̂−1(dK̂)

)
= 1

2Tr
(

K̂−1ŷŷ⊤K̂−1(−ψ1A
−1β(dψ2)A−1ψ1

⊤)
)

= −1
2Tr

(
A−1ψ1

⊤K̂−1ŷŷ⊤K̂−1ψ1A
−1β(dψ2)

)

dt1
dβ

= 1
2Tr

(
K̂−1ŷŷ⊤K̂−1(dK̂)

)
= −1

2Tr
(

K̂−1ŷŷ⊤K̂−1(β−2 +ψ1A
−1(ψ2 −ψ1

⊤ψ1)A−1ψ1
⊤)(dβ)

)
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t2 derivatives

dt2
dθK

= d log p(s:,j|ŷ:,j)
dθK

= 0

t3 derivatives

dt3
dθK explicit

= d(− log |I + K̂W |)
dθK

= −Tr
(

(I + K̂W )−1(dK̂)W
)

= −Tr
(

(W−1 + K̂)−1(dK̂)
)

Implicit Derivatives

The implicit derivatives arise from the fact that as the kernel parameters change,
the mode also changes, this can be seen as a chain of the dt

dŷ and (dŷ). Things are
complicated further by the fact that (dŷ) could be invalid as ŷ is a vector and dθK

could be a matrix. Derivatives of vectors by matrices is mathematically invalid. Instead
we must obtain the derivative for each element of the vector separately. As such we
write the implicit derivatives as

dt

dθK
=

n∑
i=1

dt

dŷi
(dŷi)

The term dt3
dŷi

is straightforward to compute, since dt3
dŷ is not illegal to compute in

full, and since dt3
dŷ = [ dt3

dŷ1
, dt3
dŷ1
, · · · , dt3

dŷn
]⊤



E.1 Laplace Approximation For Integration Over Non-Gaussian Likelihood 168

dt3
dŷi

= −d log |I + K̂W |
dŷi

= −Tr
(

(I + K̂W )−1K̂
dW

dŷi

)
= −Tr

(
(K̂−1 +W )−1dW

dŷi

)

= −Tr
(

(K̂−1 +W )−1(−d3 log p(s|ŷ)
dŷ3

i

)
)

The latter term, (dŷ) is more difficult since θK could be a matrix, making the
operation invalid mathematically.

We can write (dŷ) using a vector ei ≜ [0, 0, . . . 1, 0, 0]⊤ where the position of the 1
is at i. As such we can write the infinitesimal

dŷi = d(e⊤
i dŷ)

= e⊤
i (dŷ)

Since ŷ = K̂d log p(s:,j |ŷ:,j)
dŷ:,j

, for ψ2, following a similar derivation as Rasmussen and
Williams (2006),

dŷi = e⊤
i (dK̂)d log p(s:,j|ŷ:,j)

dŷ:,j
+ e⊤

i K̂
(
d
d log p(s:,j|ŷ:,j)

dŷ:,j

)

dŷi = e⊤
i (I + K̂W )−1(dK̂)d log p(s:,j|ŷ:,j)

dŷ:,j

For ψ2

dŷi
dψ2

= e⊤
i (I + K̂W )−1(dK̂)d log p(s:,j|ŷ:,j)

dŷ:,j

= −e⊤
i (I + K̂W )−1ψ1A

−1β(dψ2)A−1ψ1
⊤d log p(s:,j|ŷ:,j)

dŷ:,j

= Tr
(

−A−1ψ1
⊤d log p(s:,j|ŷ:,j)

dŷ:,j
e⊤
i (I + K̂W )−1ψ1A

−1β(dψ2)
)



E.1 Laplace Approximation For Integration Over Non-Gaussian Likelihood 169

Then use the chain rule

dt3
dψ2

=
n∑
i=1

dt3
dŷi

dŷi
dψ2

=
n∑
i=1

Tr
(
dt3
dŷi

)
Tr
(

−A−1ψ1
⊤d log p(s:,j|ŷ:,j)

dŷ:,j
e⊤
i (I + K̂W )−1ψ1A

−1β(dψ2)
)

= −
n∑
i=1

Tr
(
dt3
dŷi
A−1ψ1

⊤d log p(s:,j|ŷ:,j)
dŷ:,j

e⊤
i (I + K̂W )−1ψ1A

−1β(dψ2)
)

= −
n∑
i=1

Tr
(
A−1ψ1

⊤d log p(s:,j|ŷ:,j)
dŷ:,j

[
e⊤
i

dt3
dŷi

]
(I + K̂W )−1ψ1A

−1β(dψ2)
)

(Since it is a scalar value)

= −Tr
(
A−1ψ1

⊤d log p(s:,j|ŷ:,j)
dŷ:,j

[ n∑
i=1

e⊤
i

dt3
dŷi

]
(I + K̂W )−1ψ1A

−1β(dψ2)
)

(Other terms independent of i)

= −Tr
(
A−1ψ1

⊤d log p(s:,j|ŷ:,j)
dŷ:,j

[
dt3
dŷ

]⊤
(I + K̂W )−1ψ1A

−1β(dψ2)
)

The final line arises from e⊤
i picking out each element through the loop and adding it,

providing dt3
dŷ in full.

Now repeat this same method for the other terms:
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For ψ1

dŷi
dψ1

= e⊤
i (I + K̂W )−1(dK̂)d log p(s:,j|ŷ:,j)

dŷ:,j

dŷi
dψ1

= e⊤
i (I + K̂W )−1(G+G⊤ + E + E⊤)d log p(s:,j|ŷ:,j)

dŷ:,j

= Tr
(

e⊤
i (I + K̂W )−1

[
(dψ1)A−1ψ1

⊤
]
d log p(s:,j|ŷ:,j)

dŷ:,j

)

+ Tr
(

e⊤
i (I + K̂W )−1

[
(dψ1)A−1ψ1

⊤
]⊤d log p(s:,j|ŷ:,j)

dŷ:,j

)

+ Tr
(

e⊤
i (I + K̂W )−1

[
ψ1A

−1βψ1
⊤(dψ1)A−1ψ1

⊤
]
d log p(s:,j|ŷ:,j)

dŷ:,j

)

+ Tr
(

e⊤
i (I + K̂W )−1

[
ψ1A

−1ψ1
⊤(dψ1)βA−1ψ1

⊤
]⊤d log p(s:,j|ŷ:,j)

dŷ:,j

)
(Now transpose everything in terms with ψ1

⊤)

= Tr
(
A−1ψ1

⊤d log p(s:,j|ŷ:,j)
dŷ:,j

e⊤
i (I + K̂W )−1(dψ1)

)

+ Tr
(
d log p(s:,j|ŷ:,j)

dŷ:,j

⊤[
(dψ1)A−1ψ1

⊤
]
(I + K̂W )−1⊤ei

)

+ Tr
(
A−1ψ1

⊤d log p(s:,j|ŷ:,j)
dŷ:,j

e⊤
i (I + K̂W )−1ψ1A

−1βψ1
⊤(dψ1)

)

+ Tr
(
d log p(s:,j|ŷ:,j)

dŷ:,j

⊤[
ψ1A

−1ψ1
⊤(dψ1)βA−1ψ1

⊤
]
(I + K̂W )−1⊤ei

)
(Now rotate for dψ1)

= Tr
(
A−1ψ1

⊤d log p(s:,j|ŷ:,j)
dŷ:,j

e⊤
i (I + K̂W )−1(dψ1)

)
(Â)

+ Tr
(
A−1ψ1

⊤(I + K̂W )−1⊤ei
d log p(s:,j|ŷ:,j)

dŷ:,j

⊤

(dψ1)
)

(B̂⊤)

+ Tr
(
A−1ψ1

⊤d log p(s:,j|ŷ:,j)
dŷ:,j

e⊤
i (I + K̂W )−1ψ1A

−1βψ1
⊤(dψ1)

)
(Ĉ)

+ Tr
(
βA−1ψ1

⊤(I + K̂W )−1⊤ei
d log p(s:,j|ŷ:,j)

dŷ:,j

⊤

ψ1A
−1ψ1

⊤(dψ1)
)

(D̂⊤)
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Apply the chain rule,

dt3
dψ1

=
n∑
i=1

dt3
dŷi

dŷi
dψ1

=
n∑
i=1

Tr
(
dt3
dŷi

A
)

+
n∑
i=1

Tr
(
dt3
dŷi

B
)

+
n∑
i=1

Tr
(
dt3
dŷi

C
)

+
n∑
i=1

Tr
(
dt3
dŷi

D
)

= Tr
(
A−1ψ1

⊤d log p(s:,j|ŷ:,j)
dŷ:,j

[ n∑
i=1

e⊤
i

dt3
dŷi

]
(I + K̂W )−1(dψ1)

)

+ Tr
(
A−1ψ1

⊤(I + K̂W )−1⊤
[ n∑
i=1

dt3
dŷi

⊤
ei
]
d log p(s:,j|ŷ:,j)

dŷ:,j

⊤

(dψ1)
)

+ Tr
(
A−1ψ1

⊤d log p(s:,j|ŷ:,j)
dŷ:,j

[ n∑
i=1

e⊤
i

dt3
dŷi

]
(I + K̂W )−1ψ1A

−1βψ1
⊤(dψ1)

)

+ Tr
(
βA−1ψ1

⊤(I + K̂W )−1⊤
[ n∑
i=1

dt3
dŷi

⊤
ei
]
d log p(s:,j|ŷ:,j)

dŷ:,j

⊤

ψ1A
−1ψ1

⊤(dψ1)
)

(Note the use of trace of the scalar t3
dŷi

and ∑n
i=1 e⊤

i
dt
dŷi

= dt
dŷ

⊤)

= Tr
(
A−1ψ1

⊤d log p(s:,j|ŷ:,j)
dŷ:,j

[
dt3
dŷ

]⊤
(I + K̂W )−1(dψ1)

)

+ Tr
(
A−1ψ1

⊤(I + K̂W )−1⊤
[ n∑
i=1

ei
dt3
dŷi

]⊤d log p(s:,j|ŷ:,j)
dŷ:,j

⊤

(dψ1)
)

+ Tr
(
A−1ψ1

⊤d log p(s:,j|ŷ:,j)
dŷ:,j

[
dt3
dŷ

]⊤
(I + K̂W )−1ψ1A

−1βψ1
⊤(dψ1)

)

+ Tr
(
βA−1ψ1

⊤(I + K̂W )−1⊤
[ n∑
i=1

e⊤
i

dt3
dŷi

]⊤d log p(s:,j|ŷ:,j)
dŷ:,j

⊤

ψ1A
−1ψ1

⊤(dψ1)
)

(use the A⊤B = (B⊤A)⊤)

= Tr
(
A−1ψ1

⊤d log p(s:,j|ŷ:,j)
dŷ:,j

[
dt3
dŷ

]⊤
(I + K̂W )−1(dψ1)

)

+ Tr
(
A−1ψ1

⊤(I + K̂W )−1⊤
[
dt3
dŷ

]
d log p(s:,j|ŷ:,j)

dŷ:,j

⊤

(dψ1)
)

+ Tr
(
A−1ψ1

⊤d log p(s:,j|ŷ:,j)
dŷ:,j

[
dt3
dŷ

]⊤
(I + K̂W )−1ψ1A

−1βψ1
⊤(dψ1)

)

+ Tr
(
βA−1ψ1

⊤(I + K̂W )−1⊤
[
dt3
dŷ

]
d log p(s:,j|ŷ:,j)

dŷ:,j

⊤

ψ1A
−1ψ1

⊤(dψ1)
)

(F ≜ d log p(s:,j |ŷ:,j)
dŷ:,j

[
dt3
dŷ

]⊤
(I + K̂W )−1)

= Tr
(
A−1ψ1

⊤(F + F⊤)(dψ1)
)

+ Tr
(
A−1ψ1

⊤(F + F⊤)ψ1A
−1βψ1

⊤(dψ1)
)
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For Kuu

dŷi
dKuu

= e⊤
i (I + K̂W )−1(dK̂)d log p(s:,j|ŷ:,j)

dŷ:,j

= e⊤
i (I + K̂W )−1(−ψ1A

−1(dKuu)A−1ψ1
⊤)d log p(s:,j|ŷ:,j)

dŷ:,j

= −A−1ψ1
⊤d log p(s:,j|ŷ:,j)

dŷ:,j
e⊤
i (I + K̂W )−1ψ1A

−1(dKuu)

Apply the chain rule

dt3
dKuu

=
n∑
i=1

dt3
dŷi

dŷi
dKuu

= Tr
(

−A−1ψ1
⊤d log p(s:,j|ŷ:,j)

dŷ:,j

[ n∑
i=1

e⊤
i

dt3
dŷi

]
(I + K̂W )−1ψ1A

−1(dKuu)
)

= Tr
(

−A−1ψ1
⊤d log p(s:,j|ŷ:,j)

dŷ:,j

[
dt3
dŷ

]⊤
(I + K̂W )−1ψ1A

−1(dKuu)
)

For β

dŷi
dβ

= e⊤
i (I + K̂W )−1dK̂

dβ

d log p(s:,j|ŷ:,j)
dŷ:,j

= −e⊤
i (I + K̂W )−1(β−2 +ψ1A

−1(ψ2 −ψ1
⊤ψ1)A−1ψ1

⊤)(dβ)d log p(s:,j|ŷ:,j)
dŷ:,j

= −d log p(s:,j|ŷ:,j)
dŷ:,j

e⊤
i (I + K̂W )−1(β−2 +ψ1A

−1(ψ2 −ψ1
⊤ψ1)A−1ψ1

⊤)(dβ)

Apply the chain rule

dt3
dβ

=
n∑
i=1

dt3
dŷi

dŷi
dβ

= Tr
(

− d log p(s:,j|ŷ:,j)
dŷ:,j

[ n∑
i=1

e⊤
i

dt3
dŷi

]
(I + K̂W )−1(β−2 +ψ1A

−1(ψ2 −ψ1
⊤ψ1)A−1ψ1

⊤)(dβ)
)

= Tr
(

− d log p(s:,j|ŷ:,j)
dŷ:,j

[
dt3
dŷ

]⊤
(I + K̂W )−1(β−2 +ψ1A

−1(ψ2 −ψ1
⊤ψ1)A−1ψ1

⊤)(dβ)
)

dt3
dψ0

= 0
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t4 derivatives

dt4
dθK explicit

=
d(−p

2 log |A|)
dθK

= −p

2Tr
(
A−1 dA

dθK

)

t5 derivatives

dt5
dθK explicit

=
d(−p

2 log |K−1
uu|)

dθK
=
d(p2 log |Kuu|)

dθK
= p

2Tr
(

K−1
uu
dKuu

dθK

)

E.2 Computational Burden

The marginal likelihood and derivatives (Section E.1.1) require the following terms,
(K̂−1 +W )−1, (K̂ +W−1)−1. As in Rasmussen and Williams (2006) these can be
formulated in terms a matrix

B = I +W 1
2 K̂W

1
2 (E.3)

in the following ways

(K̂ +W−1)−1 = W
1
2W− 1

2 (K̂ +W−1)−1W− 1
2W

1
2

= W
1
2 (I +W 1

2 K̂W
1
2 )−1W

1
2

= W
1
2B−1W

1
2

and

(K̂−1 +W )−1 = (K̂−1 +W 1
2 IW

1
2 )−1

= K̂ − K̂W
1
2 (I +W 1

2 K̂W
1
2 )−1W

1
2 K̂

= K̂ − K̂W
1
2B−1W

1
2 K̂

However although stable to invert due to the addition of a positive diagonal I,
in its naive form, B−1 requires an O(n3) inversion, as B ∈ Rn×n, which is wasteful.
However the particular form of K̂ allows us to reduce this computational burden. From
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Equation (5.22),

K̂−1 = β−1I +ψ1(Kuu + β(ψ2 −ψ1
⊤ψ1)︸ ︷︷ ︸

A

)−1ψ1
⊤

= β−1I +ψ1A
−1ψ1

⊤

We can then rewrite the key equation for B−1 using the Matrix Inversion Lemma
(Section A.2.1)

B−1 = (I +W 1
2 K̂W

1
2 )−1

= (I +W 1
2 (β−1I +ψ1Aψ1)−1ψ1)−1

= (I +W 1
2β−1IW

1
2︸ ︷︷ ︸

Q

+W 1
2ψ1A

−1ψ1
⊤W

1
2 )−1

= ( Q︸︷︷︸
A

+W 1
2ψ1︸ ︷︷ ︸
U

A−1︸ ︷︷ ︸
C

ψ1
⊤W

1
2︸ ︷︷ ︸

V

)−1

= A−1 − A−1U(C−1 + V A−1U)−1V A−1

= Q−1 −Q−1W
1
2ψ1(A+ψ1

⊤W
1
2Q−1W

1
2ψ1)−1ψ1

⊤W
1
2Q−1.

If W 1
2 is diagonal, which is the case for factorising likelihoods, such as the log-logistic,

the computational burden is linear to invert Q. Depending on the number of data n,
the inversion of A+ψ1

⊤W
1
2Q−1W

1
2ψ1 ∈ Rm×m, or the multiplication of Q−1W

1
2ψ1

will be the dominating factors, neither are O(n3).

E.3 Posterior and Effective Likelihood

The Laplace approximation, Section 3.2.1, used for the non-Gaussian likelihood
BGPLVM introduced in Section 5.6; the Gaussian posterior for y:,j was found to
be,

N
(

y:,j|ŷ:,j, (K̂−1 +W )−1
)
. (E.4)

The prior used was p(y:,j) = N
(
y:,j|0, K̂

)
, where K̂ is as in Equation (5.22).

Since the approximate posterior p(y:,j|s:,j) is Gaussian, and the prior p(y:,j) is
Gaussian, it suggests that there some be some effective likelihood, that is Gaussian with
respect to some effective data, s̃, with effective covariance Σ̃, such that the posterior
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matches Equation (E.4),

p(y:,j|s:,j) = p(s:,j|y:,j)p(y:,j)
p(s:,j)

(E.5)

N
(

y:,j|ŷ:,j, (K̂−1 +W )−1
)

∝ p(s:,j|y:,j)N
(
y:,j|0, K̂

)
(E.6)

N
(

y:,j|ŷ:,j, (K̂−1 +W )−1
)

∝ N
(
s̃:,j|y:,j, Σ̃

)
N
(
y:,j|0, K̂

)
(E.7)

To find the associated effective data, and covariance of this effective likelihood, begin
by rearranging the above equation and ignoring constant terms in y,

N
(
s̃:,j|y:,j, Σ̃

)
∝

N
(

y:,j|ŷ:,j, (K̂−1 +W )−1
)

N
(
y:,j|0, K̂

)
exp((s̃:,j − y:,j)⊤Σ̃−1(s̃:,j − y:,j)) ∝ exp((y:,j − ŷ:,j)⊤(K̂−1 +W )(y:,j − ŷ:,j))

× exp(−y⊤
:,jK̂−1y:,j)

exp((s̃:,j − y:,j)⊤Σ̃−1(s̃:,j − y:,j)) ∝ exp(y⊤
:,jWy:,j + 2y⊤

:,j(K̂−1 +W )ŷ:,j)

The effective covariance and data can then be found by considering the linear and
quadratic terms required to make the right hand side match the form of the Gaussian
on the left,

Σ̃ = W−1 (E.8)
y⊤

:,jΣ̃−1s̃:,j = y⊤
:,j(K̂−1 +W )ŷ:,j

s:,j = Σ̃(K̂−1 +W )ŷ:,j

= W−1(K̂−1 +W )ŷ:,j (E.9)
= W−1K̂−1ŷ:,j +W−1W ŷ:,j

= W−1K̂−1K̂
d log p(s:,j|ŷ:,j)

dŷ:,j
+ ŷ:,j

= W−1d log p(s:,j|ŷ:,j)
dŷ:,j

+ ŷ:,j (E.10)

Note that each of these quantities have been computed during the Laplace
approximation. We will use Equation (E.9) in practice. However it is interesting to
note that this same effective likelihood, written as in Equation (E.10), was previously
used by Vehtari et al. (2014) in order to compute an approximation leave-one-out error
for the Laplace approximation.
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The effective Gaussian likelihood, that gives the same posterior as the Laplace
approximation using the non-Gaussian likelihood, is then,

N
(
s̃:,j|y:,j,W

−1
)

(E.11)

This could be also used for evaluating the approximate LOO error of the model.
For sparse GP prediction, it is useful to have the low-rank posterior, p(u:,j|s:,j),

p(u:,j|s:,j) =
∫
p(u:,j|y:,j)p(y:,j|s:,j)dy:,j

From the derivation of the BGPLVM, we found that the optimal form for q(u:,j|θV )
was,

q(u:,j|θV ) = N (u:,j|m:,j,R)
m:,j = RK−1

uuψ1
⊤βy:,j

R = (K−1
uuβψ2K−1

uu + K−1
uu)−1

This is the optimal approximation for the prior used for the LABGPLVM, p(y:,j),
which is a BGPLVM bound on the marginal likelihood. Note however that for the
LABGPLVM, y:,j , is latent, and so we wish to marginalise out the possible functions it
may take.

We have also found through the Laplace approximation that the posterior p(y:,j|s:,j)
is,

p(y:,j|s:,j) = N
(
y:,j|ŷ:,j, (K̂−1 +W )−1

)
The low rank approximate posterior for the LABGPLVM model can be found

simply by marginalising our y:,j using the Gaussian identities for marginalisation,
Section A.1.1,

q(u:,j|θV ) = N
(
u:,j|RK−1

uuψ1
⊤βjŷ:,j,R + RK−1

uuψ1
⊤βj(K̂−1 +Wj)−1βjψ1K−1

uuR
)
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This can be further expanded to,

q(u:,j|θV ) = N (u:,j|µV ,ΣV ) (E.12)
µV = KuuH

−1ψ1
⊤βjŷ:,j (E.13)

ΣV = Kuu

[
H−1 +H−1ψ1

⊤βj(K̂−1 +Wj)
−1
βjψ1H

−1
]

Kuu (E.14)

H ≜ (Kuu + βjψ2) (E.15)

Again, as a result of the form or (K̂−1 +Wj)−1, this only requires O(nm2) to compute;
and so subsequent posterior predictions share this computational complexity.

This distribution can be subsequently used for prediction, at new test points, X∗.

E.4 Uncertain Input Prediction

As discussed in Section 6.1 when the input is uncertain for a Gaussian process, the
posterior prediction no longer has a Gaussian form. A commonly used approach is to
approximate the distribution with a Gaussian distribution. Following Deisenroth (2010)
derivation, we can compute the moments of the non-Gaussian predictive distribution,
when the inputs are uncertain, through the law of iterated expectations.

p(f ∗|y) =
∫
p(f ∗|y,X∗)p(X∗)dx∗

≈ N (f ∗|m(µ,S), v(µ,S))

where p(f ∗|y,X∗) is the predictive distribution of a Gaussian process (be that a sparse
Gaussian process, or a normal Gaussian process), with known inputs. p(X∗) is the
uncertainty about X∗ and µ and S are the mean and variance of the uncertain input.
For the BGPLVM, p(X∗) will typically be the posterior distribution, for the uncertainty
over our test points, q(X∗|θV ). In what follows we will derive the distribution assuming
we have uncertain inputs, q(X∗|θV ), and so µ = µ∗

V , and S = Σ∗
V , as would be

the case when making predictions for the BGPLVM typically. We will focus on a
single univariate prediction, x∗, treating each input seperately. Then q(x∗|µ∗

V ,Σ∗
V ) is a

marginal of q(X∗|θV ). q(X∗|θV ) is usually a made with a mean field approximation, Σ∗
V

will be diagonal, and so considering the univariate case is appropriate. The multivariate
version may also be derived simiarly, see Candela et al. (2003); Deisenroth (2010);
Girard et al. (2003) for details. The mean and variance of the approximate predictive
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distribution are as follows,

m(µ∗
V ,Σ∗

V ) = Eq(x∗|µ∗
V ,Σ

∗
V )

[
Ep(f∗|y)

[
f ∗|x∗

]]
= Eq(x∗|µ∗

V ,Σ
∗
V )

[
µ(x∗)

]
(E.16)

v(µ∗
V ,Σ∗

V ) = Eq(x∗|µ∗
V ,Σ

∗
V )

[
varp(f∗|y)[f ∗|x∗]

]
+ varq(x∗|µ∗

V ,Σ
∗
V )[Ep(f∗|Y)

[
f ∗|x∗

]
]

= Eq(x∗|µ∗
V ,Σ

∗
V )

[
σ2(x∗)

]
+ varq(x∗|µ∗

V ,Σ
∗
V )[µ(x∗)]

= Eq(x∗|µ∗
V ,Σ

∗
V )

[
σ2(x∗)

]
+ Eq(x∗|µ∗

V ,Σ
∗
V )

[
µ(x∗)2

]
− Eq(x∗|µ∗

V ,Σ
∗
V )

[
µ(x∗)

]2

(E.17)

where µ(x∗) and σ2(x∗) are the mean and variance of the posterior predictive
distribution p(f ∗|y) respectively,

For clarity we will use the notation Kf∗f∗ = k(x∗,x∗), Kff∗ = k(X,x∗),
Kf∗f = k(x∗,X), Kuu = k(Z,Z), Kuf = k(Z,X), Kfu = k(X,Z), Kf∗u = k(x∗,Z),
Kuf∗ = k(Z,x∗), and as well as equations for ψ0, ψ1, ψ2, Equations (5.13), (5.14), (5.15)
respectively. The class of Gaussian process models covered in this thesis have a range of
posterior predictive distributions, each of which share a similar pattern to one another.

For a standard Gaussian process the posterior predictive distribution is a Gaussian
with a mean and variance as follows:

µ(x∗) = Kf∗f (Kff + β−1I)−1y︸ ︷︷ ︸
D

σ2(x∗) = Kf∗f∗ − Kf∗f (Kff + β−1I)−1︸ ︷︷ ︸
E

Kff∗

For a sparse Gaussian processes, as in Equation (3.18), the form is as follows:

µ(x∗) = Kf∗u K−1
uuµV︸ ︷︷ ︸
D

σ2(x∗) = Kf∗f∗ − Kf∗u (K−1
uu − K−1

uuΣV K−1
uu)︸ ︷︷ ︸

E

Kuf∗
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For a standard sparse Gaussian process with certain training inputs (Section 3.3),
X, this results in:

µ(x∗) = Kf∗u β(Kuu + βKufKfu)−1KufY︸ ︷︷ ︸
D

σ2(x∗) = Kf∗f∗ − Kf∗u (K−1
uu − (Kuu + βKufKfu)−1)︸ ︷︷ ︸

E

Kuf∗

For the BGPLVM (with uncertain training inputs):

µ(x∗) = Kf∗u β(βψ2 + Kuu)−1ψ1
⊤y︸ ︷︷ ︸

D

σ2(x∗) = Kf∗f∗ − Kf∗u (K−1
uu − (βψ2 + Kuu)−1)︸ ︷︷ ︸

E

Kuf∗

For the non-Gaussian likelihood BGPLVM (with uncertain training inputs), using
Equations (E.14) and (E.13):

µ(x∗) = Kf∗uH
−1ψ1

⊤βjŷ:,j︸ ︷︷ ︸
D

σ2(x∗) = Kf∗f∗ − Kf∗u (K−1
uu − (H−1 +H−1ψ1

⊤βj(K̂−1 +Wj)
−1
βjψ1H

−1))︸ ︷︷ ︸
E

Kuf∗

H ≜ (Kuu + βjψ2)

Note that in the case of the standard Gaussian process the predictive mean and
variance have the form,

µ(x∗) = Kf∗fD

σ2(x∗) = Kf∗f∗ − Kf∗fEKff∗ ,

and the sparse Gaussian process based methods take the form,

µ(x∗) = Kf∗uD (E.18)
σ2(x∗) = Kf∗f∗ − Kf∗uEKuf∗ . (E.19)

We can use Equation (E.18) and Equations (E.16), (E.17), in order to compute the
moments of the predictive mean and variance when the input x∗ contains uncertainty
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itself. In this case the uncertainty in the input must be integrated out as follows,

m(µ∗
V ,Σ∗

V ) =
∫
µ(x∗)q(x∗|µ∗

V ,Σ∗
V )dx

= D⊤
∫

K(X,x∗)q(x∗|µ∗
V ,Σ∗

V )︸ ︷︷ ︸
ψ1

∗

= D⊤ψ1
∗ (E.20)

v(µ∗
V ,Σ∗

V ) =
∫

K(x∗,x∗)︸ ︷︷ ︸
(1×1)

−K(x∗,X)EK(X,x∗)q(x∗|µ∗
V ,Σ∗

V )dx∗

+
∫

K(x∗,X)︸ ︷︷ ︸
1×n

DD⊤ K(X,x∗)︸ ︷︷ ︸
n×1

q(x∗|µ∗
V ,Σ∗

V )dx∗ −Dψ1
∗ψ1

∗⊤D⊤

=
∫
ψ0

∗ − tr

E
[∫

K(X,x∗)K(x∗,X)q(x∗|µ∗
V ,Σ∗

V )dx∗
]

︸ ︷︷ ︸
ψ2

∗


+
∫
D⊤ [K(X,x∗)K(x∗,X)q(x∗|µ∗

V ,Σ∗
V )dx∗]︸ ︷︷ ︸

ψ2
∗

D

−Dψ1
∗ψ1

∗⊤D⊤

= ψ0
∗ − tr (Eψ2

∗) +D⊤(ψ2
∗ −ψ1

∗ψ1
∗⊤)D (E.21)

where ψ0
∗ =

∫
K(x∗,x∗)q(x∗|µ∗

V ,Σ∗
V )dx∗ ∈ R1×1, ψ1

∗ =
∫

K(X,x∗)q(x∗|µ∗
V ,Σ∗

V ) ∈
Rn×1, and ψ2

∗ =
∫

K(X,x∗)K(x∗,X)q(x∗|µ∗
V ,Σ∗

V ) ∈ R1×1.
For the sparse GP moments, X is replaced with Z as in Equation (E.19), including

inside ψ1
∗,ψ2

∗.

E.5 Additional Results

The experimental results in Section 5.6.5 are discussed, however for brevity we did not
include all the relavent graphs that summarise the results of Table 5.1 and Table 5.2. We
provide these informative results in this section. See the main text for the experimental
setup used.
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Fig. E.1 Simulation study with Gaussian outputs, SNR = 0.01 15% missing data
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Fig. E.2 Simulation study with Gaussian outputs, SNR = 0.1
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Fig. E.3 Simulation study with mixed binary and Gaussian outputs, SNR = 0.1
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