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Abstract 3

Abstract

This thesis examines how Software Defined Network (SDN) and Network Virtualization (NV)

technologies can make 5G and beyond mobile networks more flexible, scalable and programmable

to support the performance demands of the emerging heterogeneous applications. In this di-

rection, concepts like mobile network slicing, multi-tenancy, and multi-connectivity have been

investigated and their performance is analyzed. The SDN paradigm is used to enable flexible

resource allocation to the end users, improve network resource utilization and avoid or rapidly

solve the network congestion problems. The proposed network architectures are 3rd Genera-

tion Partnership Project (3GPP) standards compliant and integrate Open Network Foundation

(ONF) SDN specifications to ensure seamless interoperability between different standards and

backward/forward compatibility. Novel mechanisms and algorithms to efficiently manage the

resources of evolving 5G Time-Division Duplex (TDD) networks in a flexible manner are intro-

duced. These mechanisms enable formation of virtual cells on-demand which allows diverse

resource utilization from multiple eNBs to the users. Within the scope of this thesis, SDN-based

frameworks to enhance the QoE of end user applications considering Time Division-Long Term

Evolution (TD-LTE) small cells have also been developed and network resource sharing sce-

narios with Frequency-Division Duplex (FDD)/TDD coexistence has been studied.

In addition, this thesis also proposes and investigates a novel service-oriented network slic-

ing concept for evolving 5G TDD networks which involve traffic prediction mechanisms and

includes user mobility. An analytical model is also introduced that formulates the network

slice resource allocation as a weighted optimization problem. The evaluations of the proposed

solutions are performed using 3GPP standard compliant simulation settings. The proposed

solutions have been compared with the state-of-the art schemes and the performance gains

offered by the proposed solutions have been demonstrated. Performance is evaluated consid-

ering metrics such as throughput, delay, network resource utilization etc. The Mean Opinion

Score (MOS) metric is used for evaluating the Quality of Experience (QoE) for end-user appli-

cations.

With the help of SDN-based network management algorithms investigated in this work,

it is shown how 5G+ networks can be managed efficiently, while at the same time provide

enhanced flexibility and programmability to improve the performance of diverse applications

and services delivered over the network to the end users.
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Chapter 1

Introduction

1.1 Overview

The rapid proliferation of new types of devices such as smartphones, tablets, wearable

electronics combined with the widespread evolution of high speed 5G mobile net-

works, have led to an evolution of diverse mobile services, generating huge amounts

of data traffic [1]. Some emerging 5G applications need faster, higher-capacity net-

works that can deliver video and other content-rich services while some applications

have heterogeneous requirements which may create conflicts while co-existing with

other type of applications. Mobile applications that involve social media and cloud

services have changed the way humans communicate and acquire information from

the Internet, being also more interactive due to "always on" features, with asymmetric

uplink/downlink demands [2]. Applications such as Machine Type Communication

(MTC) and IoT have varying traffic demands in both UL and DL directions. MTC

applications need to upload or exchange high data volumes raising certain Quality

of Service (QoS) or Quality of Experience (QoE) demand issues at different times.

The MTC applications have varying downlink traffic demands but more diverse up-

link traffic patterns. Hence, such emerging mobile applications and services require

an increased degree of network resource elasticity to effectively guarantee different

QoS/QoE demands. Internet of Things (IoT) applications are fostering and seeding the

need for massive connectivity of devices that require ultra-reliable, ultra-low-latency

(URLLC) connectivity over Internet Protocol (IP) (for e.g. in industrial control sys-

tems (from sensor to actuator, very low latency is needed for some applications), real

time control of vehicles, road traffic, accident prevention (location, vector, context,

low Round Trip Time (RTT)) etc. [3]). A number of applications have been identi-

fied where in the existing mobile network infrastructure may struggle to deliver the

expected performance demands of the emerging 5G applications. For example, such
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applications include V2X (vehicle-to-vehicle) communications, industrial automation

and utility applications, consumer and business applications, augmented reality appli-

cations, smart city services such as smart homes and mobile broadband everywhere

etc. Given the use cases and service requirements that 5G networks are expected to

support, it is imperative that the network operators should upgrade their network.

This however may lead to increase in CAPEX and OPEX for the network operators.

Thus, mobile network operators need to efficiently manage the network resources and

create new revenue areas such as providing services to different tenants that includes

vertical markets and Mobile Virtual Network Operators (MVNOs). The new features

offered by 5G networks should also cultivate new innovations and support various

business models with the ability to rapidly test and deploy new services. These ob-

jectives are considered while designing solutions for 5G networks and are reflected in

the overall evolution of networks towards 5G. 5G TDD has the potential to support

the emerging heterogeneous services and their corresponding diverse Service Level

Agreements (SLAs) with diverse UL/DL requirements. It employs among others, state

of the art enabling technologies such as Software Defined Networking (SDN) and Net-

work Virtualization that also support multi-tenant operations, i.e. multi-tenancy [4].

On-demand resource provisioning is essential to support multi-tenancy therefore re-

source flexibility is necessary and essential. Network programmability and SDN are

being increasingly considered as potential solutions in this direction. SDN with the

help of standard interfaces allows application and service providers including vertical

markets and MVNOs to communicate their service requirements to the infrastructure

provider. The infrastructure provider can then program the network resources to meet

the Quality of Service (QoS) constraints following the SLAs established with the ser-

vice providers and vertical market players [5] [6]. Network programmability refers to

the ability to dynamically configure the operational network parameters and network

resource slicing policies for a particular tenant.

Furthermore, it is essential for mobile networks to simultaneously support multi-

ple generations of mobile services (i.e., 3G and 4G) along with a range of user ser-

vices such as VoIP, streaming media, and messaging which results in widely varying

traffic properties. This support should be done in a cost-effective manner at a time

when rapidly increasing capacity demands far exceed the growth in revenues. It is



Chapter 1. Introduction 17

also required that the budgets should address these new demands. To deliver ser-

vices seamlessly across different technologies is another challenge that the network

operators face today. They need to enforce increasingly complex, granular policies

to ensure the right access for the right service and control handovers between access

types. Fast rollout of new mobile services and rapid adoption of new technologies is

needed in a business environment that is dynamic and competitive. Existing mobile

network operators not only face competition from each other but also from the Over

The Top service providers (OTT) and established internet giants. The challenges and

competition faced by the mobile network operators today is causing decrease in voice

revenues. As a result the mobile operators are seeking new business opportunities

and developing innovative business models for different markets. The operators are

also interested to generate revenues from a variety of new data services, such as lo-

cation, e-commerce, and analytics. Supporting such services requires highly scalable

and agile network capabilities despite the large capital outlays. Therefore, to achieve

this, it is necessary to lower the cost of hardware wherever possible, utilize maximum

hardware assets while reducing operational costs by embracing new techniques and

technologies such as SDN, cloud computing and automation.

In cellular networks, the RAN (Radio Access Network) provides wide area connec-

tivity to the mobile devices. One of the primary problems in existing networks is how

to manage limited network resources to best serve the users. The latest 3GPP LTE-A

release [7] [8], defines a heterogeneous environment consisting of E-UTRAN NodeBs

(eNodeBs) and small cells (i.e pico eNBs, Relay Nodes (RNs) and Home eNodeBs

(HeNodeBs). In such a dense and heterogeneous environment with limited network

resources the task to efficiently allocate and manage radio resources, implement han-

dovers, manage interference, balance load between cells, etc. becomes even more

challenging. Interference is a critical issue, if left unmanaged it could significantly

degrade the network capacity. There are two main reasons that have been identified

for interference especially in dense network deployment scenarios. First, due to the

limited spectrum availability, cells may have a high frequency re-use factor and sec-

ond is the broadcast nature of the wireless networks. Also, in such networks traffic

load fluctuates more rapidly due to high user mobility. Consequently radio resource

allocation, handovers and cell association have to be managed at each base station in
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coordination with their neighbors to maximize the network capacity by carrying out

tasks such as interference management, resource optimization, load balancing, etc.

A conventional radio access network consists of a group of base stations, each base

station usually making independent control plane decisions at the radio layer with

some loose distributed coordination via mechanisms such as SON (self-organizing net-

works), Inter-cell Interference Coordination (ICIC), etc. However, in a dense network

deployment scenario, coordinated control plane decisions have to be made across sev-

eral neighboring base stations simultaneously. These control plane decisions should be

made with as low latency as possible. Due to the large number of base stations these

distributed algorithms often do not scale well especially in terms of latency. This leads

to performance degradation and significant capacity reduction due to the inability to

efficiently manage load and interference. Furthermore, the distributed coordination

algorithms tend to be more complex and computationally intensive as often they re-

quire iterative and periodic adjustments of RRM decisions that are difficult to scale.

3GPP’s existing LTE/LTE-A architecture with distributed control plane is subopti-

mal for efficiently utilizing network resources while providing high speed and robust

services to the end user. Existing networks are static, difficult to scale and inflexible in

nature, therefore unable to fully address the high bandwidth required to keep up with

the rising user demands. Conventional wireless networks are difficult to manage. Cur-

rently the networks rely on OSS (Operation Support Subsystems) and management

systems that require significant expertise and platform resources to operate the net-

work. These systems are manually intensive and hence prone to misconfiguration

errors and lengthy delays in provisioning and troubleshooting.

The networks today are becoming increasingly costly due to inefficient and inflex-

ible use of network bandwidth and ever-increasing complexity, burdening the CAPEX

and especially the OPEX for the network operators and the service providers. Due to

the inflexible network architecture, existing networks require weeks or even months

to introduce new services because of the manually intensive processes for service acti-

vation, delivery, and assurance. Multi-tenancy and traffic isolation are limited to such

network architectures as WLANs and tunnels, with limited policy management mech-

anisms. Considering these issues, it is necessary that we fundamentally re-think the

network design and architecture of the existing mobile networks to be able to cope
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with rapidly increasing traffic and operators’ requirements.

1.2 Purpose

Emerging 5G and beyond networks are envisioned to support higher data volumes

and a plethora of heterogeneous services/applications with diverse and often conflict-

ing requirements. To accommodate such service requirements, a cost efficient and

flexible network architecture considering different service types is desired. Existing

mobile networks have a monolithic composite network architecture that may not of-

fer the desired flexibility and scalability necessary to support the emerging 5G ser-

vices/applications. Thus we need a holistic approach to transform the way networks

are managed based on real time traffic behavior utilizing the strength of Software

Defined Networking (SDN) and network virtualization (NV) technologies.

The work in this thesis aims to design service-oriented, modular end-to-end net-

work architectures that simplify network management and provide flexibility to en-

able new services that the 5G networks and beyond are expected to deliver. To achieve

this, SDN framework offers a logically centralized control model, unprecedented pro-

grammability, and a flow-based paradigm that is suited for highly scalable and flexible

telecommunication networks-including access, backhaul to core. The basic idea be-

hind the SDN paradigm is to provide a separation between data and control plane to

have more control and flexibility over the network which can help in improving the

overall performance of the network. The purpose of the work in this thesis is to make

the evolving 5G mobile networks more flexible and scalable by proposing a number

of ideas, algorithms and techniques that improves the network resource management.

The proposed techniques and ideas in this thesis, helps in realizing concepts such as

multi-connectivity, network slicing, multi-tenancy and network resource sharing etc.

while at the same time enhance the overall network performance in terms of Key Per-

formance Indicators (KPIs) such as delay, throughput, QoE, capacity etc. The primary

aim is to support the performance demands of the evolving heterogeneous applica-

tions that the 5G networks are expected to deliver. The work in this thesis explores

various aspects of SDN and network virtualization (NV) as enabling technologies in 5G

and beyond telecommunication networks for different duplexing techonlogies such as
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Time Division Duplex (TDD) and frequency division duplex (FDD). SDN with the help

of network virtualization (NV) technology has the potential to provide forward look-

ing solutions for efficient and cost effective radio resource management and network

optimization including load and interference management for different scenarios such

as heterogeneous dense network deployments to enhance the overall network perfor-

mance while reducing the operational costs.

Whilst the main focus of this thesis is to investigate SDN based flexible network

resource management mechanisms to support 5G applications/services and enhance

the overall network performance, the concepts developed in this thesis will also help

in harvesting underlying business opportunities and provide the following benefits:

• Foster rapid innovation

• Shorter time to market

• Easy testing and faster deployment of new concepts and services

• Reduced OPEX

• Support multi-tenancy which involves on-demand resource provision where, re-

source flexibility is an essential parameter.

Thus, it is envisioned that SDN enabled 5G and beyond communication systems

will provide significant flexibility with autonomous re-configurable capabilities to sat-

isfy the varying needs of the end users while delivering high performance.
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1.3 Thesis Outline

The rest of the thesis is outlined as follows:

Chapter 2 provides the overview of the state of the art and background information

related to the work done in this thesis. A literature review on mobile network virtu-

alization is presented first that summarizes the latest work and research being done

in this field. Following this, comprehnsive information on 5G enabling technologies

such as SDN and NFV is provided. Finally the concepts related to Time Division Duplex

(TDD) and Dynamic TDD are explained that form the basis of this thesis, including

state of the art research work relevant to the work done in the thesis.

Chapter 3 introduces the concept of virtual cells in Time-Division Long Term Evo-

lution (TD-LTE) systems, which enables users residing in overlapping cells’ coverage

regions to utilize resources from multiple base stations. The benefits of virtual cells

are realized through efficient resource utilization, via adapting the network resource

availability with the traffic demand taking also into account the impact of cross-slot in-

terference. Besides the increased resource flexibility, virtual cells also resolve pseudo

congestion, and introduce a customized, user specific, resource utilization. Such a fea-

ture enables mobile users to utilize sub-frames from different base stations creating an

on demand virtual frame that is comprise of subframes derived from the frame con-

figurations of multiple base stations. In addition, this chapter also introduces mecha-

nisms and algorithms for efficiently managing the resources of 5G evolving TDD net-

works in a flexible manner enabling (i) dynamic frame alternation at each evolved

Node B (eNB), (ii) algorithm to form virtual cells with selective neighbor cells allow-

ing diverse resource utilization from multiple eNBs for users residing within certain

overlapping cell regions and (iii) analytical logic to allocate resources to multi-eNB

connected users, that are served by virtual frame configuration.

Chapter 4 proposes an SDN-based framework for enhanced Quality of Experi-

ence (QoE) in the presence of Time Division-Long Term Evolution (TD-LTE) pico-cell

hotspots. The SDN based framework will enable users to utilize radio-resources from

multiple base stations with the aim to enhance the QoE of the applications. It will also

help in preventing situations where QoE degradation of individual applications and

service interruptions may occur.
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This is performed by utilizing the concept of virtual cells (presented in Chapter

3) and by dynamically customizing the TD-LTE frames at the picocell stations. The

aim of the proposed SDN based framework is to prevent or resolve the pseudo con-

gestion problem incase it occurs and enable elastic and efficient radio-resource man-

agement to match the individual application traffic demands at the end users, in this

way supporting the overall purpose of this thesis. In addition, in this chaper a novel

SDN-based framework that enables efficient and elastic spectrum utilization among

multiple operators in 3GPP LTE-A HetNet scenario is presented. Assuming a multi-

operator environment of Frequency Division Duplex (FDD) macrocells complemented

by multi-tenant Time Division Duplex (TDD) pico cells, an SDN-based architecture is

presented that allows efficient resource sharing among the TDD and FDD systems in a

dynamic way. A TDD frame re-configuration mechanism is also employed, to optimize

the ratio of uplink and downlink slots in the TDD frame of picocells. Performance

evaluation analysis of the proposed concepts and algorithms have also been discussed

within this chapter in detail.

Chapter 5 introduces the concept of network slicing in 5G TDD networks. First, a

static service-oriented network resource slicing scheme is introduced for a Time Divi-

sion Duplex (TDD)network that, for a pre-defined time duration, forms service specific

network slices based on traffic prediction. Following this, a more advanced, flexi-

ble and adaptive 5G TDD slicing concept with dynamic UL/DL frame reconfiguration

based on traffic prediction is proposed. To program the network and configure the net-

work slices as per the application/service demands an SDN based architecture is dis-

cussed. An analytical model is introduced that formulates the network slice resource

allocation as a weighted optimization problem and helps periodically in monitoring

and allocating appropriate capacity to the slices. A Novel metric for UL/DL configura-

tion selection for each application specific slice is also proposed which involves traffic

prediction and spatial throughput of a particular region within the RAN. The proposed

metric determines the probability that a user visits a particular location at a certain

known point in time. This metric is then used to adapt UL/DL TDD frames, instead

of the conventional UL/DL buffer status and past average throughput. SLAW mobil-

ity model is employed to model the mobility of the users and model traffic variations

within the network. The performance evaluation of the proposed solutions are also
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analyzed in this chapter.

In chapter 7 future work is discussed. In particular, this chapter discusses some

of the ideas for taking forward the research work presented in this thesis. Finally,

the conclusion and the novel contributions of the work done in the framework of this

thesis are summarized in chapter 6.
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Chapter 2

Literature-Review

2.1 Mobile Network Virtualization

Since the beginning, mobile communication networks have been designed, built and

operated as vertically integrated systems, this means that the operator owns the net-

work infrastructure and spectrum, applications are well defined for example, voice

or sms and devices are built with closed architectures. This type of architecture ex-

hibits very tight coupling between all network elements. As a result existing cellular

networks suffer from expensive and rigid equipment, complex control plane protocols

and vendor specific configuration interfaces. One of the most indubitable challenges

for the existing cellular infrastructure is to address the rapid and variable growth in

mobile data traffic due to the massive increase in the number of mobile devices, data

service usage and dynamic traffic patterns. Therefore designing, developing and stan-

dardizing new network architectures to support the rising demand in mobile data ser-

vices without increasing the CAPEX is not just a need but a necessity. Software Defined

Network (SDN) with virtualization as an enabling technology offers a potential solu-

tion to address the issues being faced by the existing mobile networks. OpenFlow is

considered as one of the enabling communication protocols for SDN that allows access

to the forward plane of the network elements over a network [9]. The Open Network-

ing Foundation (ONF) has defined an SDN architecture model that is discussed in [10]

with compelling business cases for mobile and wireless networks. Here, two use cases

have been discussed that illustrate the value proposition: wireless network control for

inter-cell interference and mobile traffic management.

Over the past few years, network virtualization and SDN have received significant

attention especially in the mobile network virtualization domain. Virtualization in the

field of computer science is a well-known technique and has been studied and used for

several years. For example, virtual memory, virtualizing computer hardware, virtual-
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ized operating system etc. In next generation broadband wireless networks and future

Internet, one possibility is to have multiple co-existing mobile operators, in which each

is designed and customized to fit one type of network with specific requirements. Net-

work Virtualization will play a vital role in diversifying next generation high speed

communication infrastructure into for example; separate virtual networks that are

isolated from each other and can run different services within. For designing SDN

enabled flexible, re-configurable and high performance next generation networks, a

critical review and analysis of the existing wireless network architectures with state of

the art research and developments in this area is essential. Hence the details regard-

ing the state of the art research and developments in this area will be discussed in the

subsequent sections of this chapter.

The basic idea is to virtualize the physical elements in a mobile network to ensure

maximum flexibility in order to efficiently manage the network resources and adapt

to the changing traffic behavior. It creates a system in which the user and control

plane are decoupled by an abstraction layer from the services that run on top of it

and allows network elements to be controlled, operated and optimized by other enti-

ties in the higher layers. This approach supports backward compatibility and has the

potential to dynamically deploy innovative services in a very short time. One of the

key motivations behind mobile network virtualization is to enable dynamic and on

demand network sharing for both core and access networks. Network virtualization

provides operators with more independent control over their share of the common

physical network which further improves sharing by making it more efficient and by

providing greater flexibility.

Network consolidation and network slicing are the two different aspects of net-

work virtualization that have [11]. Network consolidation aims to consolidate sepa-

rate physical networks into one physical infrastructure as shown in figure 2-1. While

network slicing refers to partitioning the network resource into several isolated net-

works with the help of virtualization technology as shown in figure 2-2. Each of these

separate networks then could be configured and optimized to deliver specific services

and it can be possible to have a multitude of service specific networks.
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Figure 2-1: Network Consolidation (Reproduced from [11])

Figure 2-2: Network Consolidation (Reproduced from [11])

The concept of network virtualization in mobile networks can be applied in several

layers of the network for example in the access, backhaul and core network. However,

in this chapter we will mainly focus on the Radio Access Network (RAN) virtualiza-

tion for LTE-A. SDN with network virtualization enables efficient management and

sharing of network resources, providing the possibility to implement a wide range

of new and innovative business models within a short time. A number of virtualiza-

tion solutions for RAN have been proposed to support efficient sharing of network

resources. Efficient spectrum sharing can be potentially enabled via virtualization in

LTE. The term eNodeB virtualization refers to the case where multiple virtual network

functions (VNF) responsible for performing different tasks within the network, share

physical resources of the same physical eNodeB. These VNFs can be responsible for

carrying out tasks such as spectrum access, mobility, multi-connectivity, cell discovery

etc.

A preliminary approach towards eNodeB virtualization included the proposal of

the scheduling of the physical Resource Blocks (PRBs) between the different virtual

eNodeBs [12]. This means the splitting of the frequency spectrum between the differ-

ent eNodeBs of the different operators. A controlling entity called a hypervisor was
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proposed in order to make use of prior knowledge (e.g. user channel conditions, vir-

tual operator contract, load etc.) to schedule the PRBs [13]. The frequency spectrum

among the different operators has to be scheduled. This is the most challenging part

because of the additional degree of freedom that has been added due to the fact that

the scheduling could be based upon different criteria (such as bandwidth, data rates,

power, interference, predefined contract, channel conditions, traffic load or a combi-

nation of them). According to these requirements, a framework is proposed where the

hypervisor has to convert these criteria into a number of PRBs to be scheduled for each

operator, but also need to make sure that the allocated PRBs will be fair and satisfy

operators’ requirements. Fig. 2-3 presents the proposed virtualized eNodeB protocol

stack [12]

Figure 2-3: Virtualized eNodeB Protocol Stack (Reproduced from [12])

The virtualization of physical hardware in the eNode B that is responsible for trans-

mission and reception of data from an LTE user can be performed by adding a hyper-

visor layer on top of the physical resources similar to any other node virtualization.

This layer is then responsible for allocating and scheduling resources such as air inter-

face or LTE spectrum between different virtual base station instances running on top

of it. OFDMA is used as air interface in the downlink in LTE, which implies that the

spectrum is divided into a number of sub-bands. Air interface resources are actually

the physical resource blocks (PRBs) which are the smallest unit an LTE MAC scheduler

can assign to the user. Different policies and scheduling schemes can be applied by

the hypervisor to share the resources amongst virtual eNBs. The information such as

channel conditions, QoS, priorities, traffic load, contract of each virtual operator etc.

is collected by the hypervisor from each virtual eNode B and is used to schedule re-

sources. This type of technique requires some mechanisms or guidelines to be defined,
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to guarantee fair and on-demand allocation of resources to the operators. The time

frame that the hypervisor operates in order to guarantee the predefined requirements

is crucial. For this purpose, two different types of scheduler algorithms for spectrum

allocation are proposed, namely static and a dynamic. The first algorithm divides the

spectrum between different virtual operators in the beginning and each operator will

get a fixed share of spectrum that does not change over time. The second algorithm

allocates certain amounts of resources that are fixed and doesn’t change so that the

operators can serve some users without interruption and a certain amount of resources

are flexible and shared amongst different operators in real time and allocated to the

operators based on their instantaneous traffic requirements. This work could be con-

sidered as an initial contribution in the wireless network virtualization field but may

not be efficient for application in LTE-A systems as it handles PRBs in a static way.

Two use cases are considered here each with different versions of the hypervisors

as explained in [12]. One use is the multiplexing use case, which exploits multiplexing

gain achieved through eNB virtualization and spectrum sharing amongst different vir-

tual network operators. Potential for achieving multiplexing gain via spectrum sharing

arises from the fact that different operators experience their peak traffic load at differ-

ent times. Two different versions of hypervisors could be employed in the multiplexing

use case. First, the static Hypervisor, where, equal numbers of PRBs are allocated by

the hypervisor just once in the beginning to each virtual operator and the allocated

PRBs remains fixed regardless of whether all the PRBs are utilized by the virtual oper-

ator or not. Second, the dynamic Hypervisor, where, PRBs are dynamically allocated

to different virtual operators at equal time intervals according to the load that each

operator experienced over the last time instance.

The other use case is the multi-user diversity use case. This use case arises from the

fact that channels are usually frequency selective i.e. each user experience different

channel conditions on different PRBs. Multi-user diversity case employs a channel

aware scheduler which tries to take advantage of the user channel conditions and

assigns the PRBs accordingly. As virtual operators share the spectrum, this means that

the scheduler has a larger pool of PRBs to exploit the multi-user diversity. This use case

provides an opportunity to achieve gains by employing dynamic spectrum allocation

based on user channel conditions, even when no multiplexing is allowed and each
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operator has a fixed amount of spectrum.

A RAN virtualization solution based on spectrum sharing is presented in [14]. An

entity called The Network Virtualization Substrate (NVS) can be natively implemented

in base stations. It is a feature for managing and sharing the radio spectrum and

eNodeB processing resources. NEC’s eNodeB product line includes the NVS feature

which manages sharing of the radio spectrum and eNodeB processing resources. In

the backhaul, multiple VLANs are operated and traffic shaping is performed in the

eNodeB (for uplink) and the gateway (for downlink). The OAM server allows each

operator’s virtual network to be separately configured and managed. NVS perfor-

mance is evaluated in an LTE network by means of simulation, showing that it can

meet the needs of future virtualized mobile carrier networks in terms of isolation, uti-

lization, and customization [14]. In addition to this, the authors propose a scheduler

in order to efficiently assign the spectrum resources. This is basically a slice scheduler

which works in collaboration with the MAC scheduler. The slice scheduler monitors

the amount of resources that the MAC scheduler assigns to each slice and dynamically

adjusts the bearer priorities in the MAC scheduler to maintain the required resource

allocation for each operator. In this way, all operators have access to the whole system

bandwidth. This work presents an efficient scheme for managing and scheduling the

network resources.

A dynamic way of slicing the network resources to improve the overall network

efficiency is presented in [15]. Cell slicing is one proposed dynamic framework to

achieve active RAN sharing. The goal of this technique is to remotely control the

scheduling decisions ensuring that each operator receives its share of the wireless re-

sources. It does not require any modification in the BS schedulers but it controls the

BS scheduling decisions from a remote gateway. Slicing can be done with either a base

station-level solution or a gateway-level solution. Compared to BS-level solutions, re-

motely slicing wireless resources makes the solution easily deployable, enables easier

network-wide resource reservations for the slices and enables multi-vendor BS opera-

tions. The BSs may or may not support virtualization. Moreover, the work focuses on

remote slicing of uplink resources, since wireless resource reservation requests from

the clients for enabling uplink transmissions terminate at the BS and are not visible to

the gateways. Fig. 2-4 presents the proposed framework by [15].
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Figure 2-4: Cell Slice Proposed Framework (Reproduced from [15])

2.2 5G Enabling Technologies

SDN and NFV

SDN and Network Function Virtualization (NFV) are some of the key enabling tech-

nologies for 5G systems that leverage flexibility and on-demand network programma-

bility. Virtualization facilitates SDN and NFV operations however, virtualization have

a slightly distinct meaning in SDN and NFV communities [16]. Network virtualization

in an SDN paradigm involves abstraction of particular underlying network resources

and their selective allocation to a particular client, application or services. While in the

NFV context, virtualization refers to a software entity in a container, which is typically

understood to be a Virtual Machine (VM) over a hypervisor on a Commercial Of-The-

Shelf (COTS) server or dedicated hardware, i.e. a switch or base station. The term

hypervisor refers to a hardware virtualization technique that allows logical functions

or otherwise software instances to share a single hardware platform while appearing

as individual elements with their own hardware resources such as processor, memory

and hard disk.

Currently, mobile networks are rigid in nature formed by monolithic network func-

tions that enable firm services, which are difficult to be adjusted and customized. The

application of virtualization in the evolving 5G networks aims to transform the way

networks are managed and operated, enabling rapid deployments and testing of inno-

vative services. Specific network entities or elements may also be virtualized and im-
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plemented onto industry standard high volume servers, switches and storage, which

could be dynamically placed in different network cloud locations, Network Point of

Presence (N-PoP), Network Nodes and in the end user premises. The SDN architec-

ture as defined in [6] [17]consists of three different sets of functional layers illustrated

in Fig. 2-5. The SDN application layer allows SDN applications such as analytics,

optimization algorithms, management mechanisms and network control etc. or 3rd

parties to communicate service and resource requirements to the SDN controller via

the Application-Controller Plane Interface (A-CPI). The control layer contains the SDN

controller, a logical entity with a global network view, which allows SDN applications

and 3rd parties to control and program the network via the Data-Controller Plane In-

terface (D-CPI) based-on an abstracted network resource view that hides insight infor-

mation. The SDN controller separates the control from the data plane, i.e. decoupling

the control from traffic forwarding and processing and collect network statistics. The

infrastructure layer involves the network devices that control the forwarding and data

processing, i.e. the data plane.

Figure 2-5: Overview of the SDN Architecture [17])

SDN enables software based flexible control and on-demand programming of the

mobile network infrastructure which includes business relationships, geographic span

and everything from service creation and delivery to operation and maintenance. SDN

also provides standard interfaces that enable application and service providers includ-

ing vertical markets and Mobile Virtual Network Operators (MVNOs) to communicate

their service requirements to the infrastructure provider. This in turn can program the
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network resources to meet the Quality of Service (QoS) constraints [5] [17].

According to [6] and [17], SDN is based on the following three principles:

• Separation of the control and data planes including decoupling of control from

traffic forwarding and processing

• Logically centralized control and governance of the network considering a global

view and over all implications on the network of the applied policies or config-

uration

• Open interfaces between control and data plane entities

• Programmability of network services and the network by external entities via

standard interfaces.

The use of SDN allows resource flexibility supporting customized services and log-

ical network instances on the top of a common network infrastructure, meeting the

service constraints of application providers, vertical segments and virtual operators. In

the context of mobile networks, SDN can assure a unify control across heterogeneous

radio infrastructures and dense RAN deployments [5], while providing a join control

of mobile and transport network layers [5]. It is anticipated that the adoption of the

NFV paradigm for both access and core networks have the potential to enhance further

the service flexibility by scaling appropriately Virtual Network Functions (VNFs) for

supporting efficiently the 5G services [18]. For an SDN controller, VNFs appear as an-

other type of resource [16], which forms a network graph that the SDN controller can

chain together forming a particular service [19]. Hence, SDN and NFV are comple-

mentary technologies that can be used together forming tailored services considering

evolving traffic conditions, mobility patterns and target QoS demands.

To manage and optimize the RAN in a flexible way, as previously discussed in this

chapter, SDN and NFV seems promising as an enabling technology. SDN can be used to

dynamically program the network in real time to match the traffic demand and support

multiple heterogeneous applications/services with often conflicting requirements in

a cost efficient way. The SDN paradigm may also be used for monitoring network

resource utilization and allowing applications or services to request resources based

on certain service level agreements (SLAs). The SDN concept aims to create an open,
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programmable network architecture that separates network control and data plane.

Within the SDN paradigm, the network elements can be virtualized and software based

network functions referred to as network function virtualization (NFV) technology

are created that allows carriers to easily deploy them on demand and easily manage

the network. This provides additional flexibility and allows carriers to program the

network to support the requirements of various applications and services. SDN, with

the help of virtualization, masks the lower layers of the protocol stack. This reduces

complexity and allows efficient configuration of upper layers. It is faster to test and

deploy new services and business models with the help of SDN technology.

The evolution of the 5G mobile network architecture aims to integrate different

technologies to enable a myriad of diverse use cases. Some of the use cases may have

requirements that may cause conflict with the functional requirements of other use

cases. This necessitates the need to provide the required functionality at the right

place and time within the network. It is anticipated that the adoption of the NFV

paradigm for both access and core networks has the potential to provide the flexibility

required to support the 5G use cases. NFV enables the mobile network functions to

be decomposed into smaller functional blocks that may be instantiated flexibly on-

demand without the need for installation of new physical network equipment. NFV

refers to a network architecture concept where in virtualization technologies are ap-

plied to virtualize entire classes of network node functions into building blocks that

may connect, or chain together, to create communication services and support a num-

ber of use cases.

NFV offers several benefits which include [20]: Reduction in costs of the equipment

and reduced power consumption as physical equipment is consolidated with the help

of virtualization technology and the specific tasks associated with particular equipment

is realized via software implementation over the virtualized platform. This Shortens

the time to market, minimizing the conventional network operator cycle of innova-

tion. Capital investments in hardware-based functionalities that also contribute in

capital expenses (CAPEX) are not required in case of the software based development.

Network Functions Virtualization enables network operators a significant reduction

in time of the maturation cycle of a particular technology. It also helps in rapid test

and deployment of new network services and business applications. NFV helps in sup-
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porting and facilitating multi-tenancy, which allows use of a common infrastructure

platform for different applications, users and tenants. This allows network operators

to share resources across different services and across multiple customers including

vertical markets. It allows rapid service or application deployment and testing which

includes scaling up and down certain services as and when required. The targeted

delivery of services to a particular area or group of users can also be achieved with the

help of SDN and NFV. It enables the development and deployment of a wide variety of

innovative business models and ecosystems and opens up market for vertical players

such as M2M, IoT services, smart city, V2X etc. and Mobile Virtual Network Operators

(MVNOs). It also encourages rapid development of new services and revenue streams

at a lower risk.

NFV enhances SDN service agility and improves its ability to rapidly create, scale or

relocate virtual resources. As per [16], Virtualized Network Functions (VNF) appear as

resources to an SDN controller that involves, functions in a network graph with known

connectivity points and known and a controllable transfer function. Both SDN and

NFV technologies can be deployed independently however; both technologies can be

combined and used together to achieve greater benefits. SDN and NFV support multi-

tenancy that enables network operators to provide tailored services to several users or

different applications, MVNOs are referred to as tenants. It also allows co-existence

of multiple services over the same physical infrastructure with secure isolation among

administrative domains. The flexibility offered by SDN and NFV technologies allows

optimization of network configuration and/or topology in near real time based on the

actual traffic conditions/user mobility patterns, for individual services to match their

desired performance demands. SDN and NFV help in reducing overall network energy

consumption by adopting advanced power management techniques to help leverage

efficient workload management and location optimization. Consequently, the benefits

offered by SDN and NFV improves the overall operational efficiency of the system and

facilitates inter-operability and backward compatibility among multiple technologies.

The use of SDN/NFV can also enable network slicing, defining logical self-contained

networks that can accommodate different business requirements, on the top of a com-

mon physical network infrastructure [21]. The SDN controller can play the role of me-

diator facilitating admission control and network slice allocation offering programma-
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bility to third parties [22]. Network slicing can assure isolation between different

services and tenants, allowing an efficient co-existence of heterogeneous applications

with often conflicting requirements. Currently, 3GPP is performing a study named

NexGen [23] within the Architecture Group SA 2, considering various slice operations

in the data and control plane for the next generation of mobile networks.

Network Slicing

The concept of network slicing refers to the deployment of multiple dedicated logical

mobile networks with varying levels of mutual isolation over the same physical in-

frastructure. A network slice may comprise of one or multiple mobile virtual network

functions (that may also be grouped together) and specific Radio Access Technologies

(RATs) (or specific RAT settings) necessary to operate an end-to-end logical mobile

network in an independent way. The network functions and the corresponding set-

tings are grouped in a way that the control and data plane functionality associated

with a specific slice may be adapted to support various services, users and business

cases. Thus, as a result, network slicing technology is an enabler of multi-tenancy and

service tailored mobile networks.

An Innovative 3GPP EPS mobile network architecture and the need to develop

a flexible architecture that integrates different technologies and enables diverse use

cases is discussed in [24]. Furthermore, the authors introduce and explain various con-

cepts related pre-defined grouping of network functions in a flexible way, software-

defined mobile network control, orchestration and management. The relevance of

different standards defining organizations has been outlined and their roadmap is

discussed. A comprehensive overview of the 5G RAN design guidelines, key design

considerations, and functional innovations as identified and developed by key play-

ers in the field is discussed in [25]. The key functional design considerations for the

5G RAN, highlighting the difference to legacy systems such as LTE-A and the implica-

tions of the overall RAN design is also explained. The article also explains the logical

architecture, mapping between logical and physical network architecture and meth-

ods to support network slicing. In addition, the authors propose functional paradigm

changes to concepts such as a beam-centric design, lower-layer service prioritization,

traffic steering in 5G, and a novel RRC state model etc. A radio resource slicing frame-
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work called Hap-SliceR for Haptic communications is proposed in [26]. The authors

use a resource learning approach in a virtualized environment to derive a network-

wide radio resource strategy. To improve efficiency, a Post-Decision State Learning

(PDSL)-based approach is used. System level simulations have been performed to

evaluate the performance of the proposed algorithm with the State-of-the Art (SoA)

solutions. A network slicing concept applied to a multi-cell RAN shared among multi-

ple tenants is analyzed in [27]. Network slicing in RAN is challenging due to varying

radio channel characteristics. In case of a multi-cell, multi-tenant environment, RAN

slicing can be challenging and requires isolation among tenants. The article discuss

two perspectives of isolation i.e. traffic isolation and the radio-electrical isolation.

The authors have addressed the RAN slicing problem from a comprehensive perspec-

tive incorporating these two concepts and have presented four possible RAN slicing

approaches that differ in the RRM functions used as a support for splitting the radio

resources among slices. The presented alternatives have been compared along differ-

ent dimensions (for example in terms of offered traffic in one tenant vs SINR status of

the other tenant), both qualitatively and quantitatively. [28] presents an overview of

the 3GPP standard evolution which includes network sharing principles, mechanisms

and architectures to future on-demand multi-tenant systems. The article reviews the

latest standardization efforts and discusses the open challenges for enabling network

slicing considering the allocation of virtualized network functions based on ETSI NFV,

the introduction of shared network functions, and flexible service chaining. In addi-

tion, the authors introduce the concept of 5G Network Slice Broker in 5G systems,

which allows mobile virtual network operators, over-the-top providers, and industry

vertical market players to request and lease resources from infrastructure providers

dynamically via signaling means. A survey on Resource Slicing in Virtual Wireless

Networks is presented in [29]. The authors define and discuss, in detail, the problems

and challenges associated with the network slicing in wireless networks. A review of

the latest work in this area is presented that analyzes the relation of SDN and NFV with

network slicing. The authors highlight the network slicing problems in relation with

the wireless networks such as virtualization of wireless resources, resource isolation

and allocation. Following this, the authors review existing proposals for predominant

wireless technologies. Challenges and improvement required for realizing network
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slicing are also discussed.

Thus, from the state-of-the-art, it is clearly reflected that technologies such as SDN,

network virtualization (NFV), network slicing, multi-connectivity etc., would be key

enablers in developing flexible and programmable 5G networks. Such adaptive fu-

ture networks are required to support high performance, efficient and independent

business-driven logical networks on a common physical infrastructure.

2.3 TD-LTE Overview

3GPP LTE has been designed to accommodate both paired spectrum via Frequency Di-

vision Duplexing and unpaired spectrum via Time Division Duplexing (TDD). As per

the current 3GPP standards, TDD utilizes the same subframe structure and configura-

tion protocols as the FDD. Compared to FDD, the main difference lies in the fact that

TDD supports unpaired spectrum, where, transmissions in uplink (UL) and downlink

(DL) are separated in time domain. The fact that unpaired spectrum is easier to acquire

makes the TD-LTE deployment even more feasible. As per [30], the ITU is considering

a spectrum allocation for IMT-Advanced in the 698-803MHz, 2300-2400MHz, 2500-

2600MHz and 3400-3600MHz bands, where a large chunk of unpaired spectrum is

expected to be allocated for TDD.

Each TDD frame is 10ms long and consists of DL, UL and special (S) sub-frames

with 1ms duration each as illustrated in Fig. 2-6. The S sub-frame is used for switching

from DL to UL transmission direction and contains a conventional DL part named the

Downlink Pilot Time Slot (DwPTS), a Guard Period (GP) of a blank gap that assists

the User Equipment (UE) to switch from the DL to UL and an Uplink Pilot Time Slot

(UpPTS) part which carries the synchronization information, that facilitates the UE in

establishing UL connectivity. The S- sub-frame is included at least once within each

10ms frame or in certain UL/DL configuration cases this is included twice, i.e. once

every 5 ms.
3GPP has defined 7 different TDD frame configurations as shown in table 2.1 [7],

with the UL/DL portion of each frame configured accordingly, reflecting estimated

traffic demands. Such a TDD feature allows resource configuration flexibility that

helps in supporting various asymmetric applications such as sensor measurements and

IoT, social applications with high UL demands, etc., besides the conventional video
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Figure 2-6: Overview of the TDD Frame Structure

streaming and Voice over IP (VoIP).

Table 2.1: TD-LTE Uplink-downlink Frame Configurations

UL/DL Sub-frame Number

Configuration 0 1 2 3 4 5 6 7 8 9

0 DL S UL UL UL DL S UL UL UL

1 DL S UL UL DL DL S UL UL DL

2 DL S UL DL DL DL S UL DL DL

3 DL S UL UL UL DL DL DL DL DL

4 DL S UL UL DL DL DL DL DL DL

5 DL S UL DL DL DL DL DL DL DL

6 DL S UL UL UL DL S UL UL DL

TD-LTE offers the capability to handle asymmetric UL/DL traffic in a dynamic man-

ner, which is also referred to as dynamic TDD. It allows eNBs to select an UL/DL frame

configuration out of the seven frame configurations defined by 3GPP as specified in

[7], which supports best their corresponding UL/DL traffic load at that time. This

way, each eNB may have a different UL/DL frame configuration according to their

UL/DL traffic demands at a particular time. Having different UL/DL frame config-

urations across the RAN may give rise to different forms of interference therefore,

interference management is a key functionality for efficient operation of a dynamic

TDD system. Beside its inherent flexibility, the first generation of TD-LTE networks

supported a static synchronous configuration where, a set of base stations serving a

greater geographical area follow a TDD configuration with a common UL/DL ratio

that suits the overall average long term traffic demands. Such synchronous operation

simplifies interference control assuring no cross-slot interference among UEs served

by neighboring base stations or direct base station interference as illustrated in Fig.

2-7.
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Static TD-LTE operates in this way mainly to avoid base station-to-base station in-

terference or cross-slot interference that prohibits the usage of transmissions in oppo-

site direction within different cells in conventional macro cell deployment scenarios.

Hence in this case there are only two type of interference, namely user equipment

(UE) to eNB and eNB to UE. The UE-eNB interference occurs as a result of the UL

transmission of UEs served by the neighbor eNBs on the UL transmission of UEs of

the serving eNB. The eNB-UE interference affects the DL transmission of the serving

eNB due to the DL transmission of the neighbor eNBs. The primary reason for syn-

chronous operation of the TD-LTE system is to avoid base station-to-base station in-

terference. Since interference could severely degrade the overall system performance,

[31] specifies strict synchronization requirements for TD-LTE between base stations

with overlapping coverage areas.

2.4 Dynamic Time Division Duplex Networks

To alleviate the rigid attributes of the static TD-LTE deployments, 3GPP initiated a

study in [32], to investigate dynamic TDD focusing on small cells considering scenarios

of isolated small cells, various small cell deployments with limited interference or by

using almost blank frames. Such a study lead to the specification of the TDD enhanced

Interference Management and Traffic Adaptation (eIMTA) [7], based-on power con-

trol. Other efforts for achieving dynamic TDD also took place around the same time,

with the Cell Specific Dynamic Reconfiguration [33] being one of the most significant.

Cell Specific Dynamic Reconfiguration in TD-LTE, allows customized UL/DL frame

selection to satisfy the traffic demands in UL and DL respectively. In other words,

each base station or evolved Node B (eNB) in the 3GPP terminology, can dynami-

cally change the UL/DL configuration at specific timescales, in order to match best the

instantaneous traffic demands. Thus, in this case, the interference scenario becomes

more complex as in addition to UE-eNB and eNB-UE there is also UE-UE and eNB-eNB

interference. Each eNB is allowed to dynamically change its UL/DL configuration at

specific timescales, in order to best match its instantaneous traffic demands. There-

fore, the proportion of numbers of UL/DL timeslots varies across the entire RAN. As a

result, regions of cross UL/DL transmission may occur among neighbor cells leading
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to an interference called cross-slot interference or base station-to-base station (eNB-

eNB) interference. The UE-UE interference is due to the UL transmission of neighbor

cell UEs over the DL transmission of the serving eNB. eNB-eNB interference is caused

by the DL transmission of the neighbor eNB when the UEs in the serving eNB are in

their UL transmission cycle as shown in 2-7. In Fig. 2-7, the DL transmission in eNB A

causes interference on the UL transmission of eNB B and the UL transmission in eNB B

causes interference on the DL transmission of eNB A, where the cross slot interference

scenario is depicted by red arrows.

Figure 2-7: Cross-slot Interference

Among the UE-UE and eNB-eNB interference the eNB-eNB interference is consid-

ered more serious as the DL transmission power of eNB is much higher than the UL

transmission power of the UEs. Therefore in case of the cell specific dynamic UL/DL

reconfiguration scenario the additional UE-UE and eNB-eNB interference may lead to

performance degradation and hence limit the flexibility offered by the of cell specific

dynamic UL/DL reconfiguration. The issue of interference caused by neighboring cells

can be handled via deployment and cell clustering means or by the use of almost blank

frames and power control. Almost blank sub-frames allows the base station downlink

power to be completely blanked or muted in specific sub-frames where cross slot in-

terference is likely to occur, but this may impact the spectral efficiency.

As interference could severely degrade system performance, therefore to minimize

the loss in system performance [31] specifies strict synchronization requirements for

TD-LTE, between eNBs that may have overlapping coverage areas. The length of the
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guard period defined within special subframe [34] in TD-LTE can be dynamically ad-

justed to ensure that any base station within close proximity does not interfere with

the uplink reception in the serving cell. This affects the UL/DL frame reconfiguration

process and the uplink-downlink frame reconfiguration is selected based on long term

traffic demands across the entire TD-LTE network and does not change frequently. To

further address the issues related to interference, advanced interference control and

management schemes have been proposed and interference management in dynamic

TDD systems is being studied to further improve the overall performance and enhance

the flexibility. For example, to manage interference in a dynamic TD-LTE system a hy-

brid approach is presented in [35], which combines the static and dynamic resource al-

location area. The dynamic allocation area is negotiated among the neighbor eNBs by

selecting and indicating UL/DL sub-frames, while the cross slot interference is avoided

by introducing power control techniques. Other techniques include cell clustering and

the use of almost blank sub-frames [33]. A cell cluster may consist of one or more cells

and the isolation is guaranteed based on certain parameters to avoid the interference

between multiple cell clusters. The transmission directions within the cells associated

to different cell clusters maybe different. Cell clustering provides an additional benefit

to control UE-UE interference as UEs connected to serving cells belonging to different

clusters are likely to be isolated from each other. The use of an almost blank subframe

(ABS) is an extreme method in which the base station downlink power is completely

blanked or muted in specific subframes where cross slot interference is highly likely

to occur. Such a method is useful in co-channel heterogeneous network deployment

scenarios, e.g. where macrocell and small cells are deployed on the same carrier fre-

quency. In this scenario, several subframes are muted in the macro cells with the

aim of mitigating the interference on the small cells caused by the macrocells. Thus,

the performance of the small cells can be improved but this may impact the spectral

efficiency.

Alternatively, traffic offloading from macro to the small cells can also provide over-

all gain in the system performance. Asymmetric UL/DL subframe allocation is also

investigated in [31] which exploits the backhaul resources in an efficient way with

the aim of reshaping the interference on the channels. In [36] and [37], the authors

considered the buffer status to flexibly switch between different TD-LTE frame config-
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urations, introducing extra UL/DL resource diversity for the eNB’s inner cell regions.

The UL/DL sub frames can be reconfigured by updating the broadcast system infor-

mation. This process depends on the general system information update procedures,

in which a paging indication is used to notify users about an upcoming configuration

change. As explained in [33], the system information update procedure has some

drawbacks when the UL/DL frames are modified to support the instantaneous traffic

conditions. These limitations include:

• According to the standards, the modification time to successfully notify all the

users about the upcoming changes is restricted. As a consequence, the reconfig-

uration timescale is restricted and cannot be done more frequently than every

640 ms [38].

• An ambiguity period is present, from the system information modification bound-

ary until the time when a particular UE has successfully received and decoded

the new system information. The ambiguity period causes UL/DL frame recon-

figuration knowledge to become unsynchronized between the network node and

the UE. Consequently, this leads to a discontinuity of the Hybrid Automatic Re-

peat reQuest (HARQ) processes and hence a degradation in throughput.

To perform the UL/DL frame reconfiguration more frequently and flexibly, alter-

native methods need to be explored. For example, UE-specific higher layer signaling

can be used instead of a system information update to indicate a new UL/DL frame

configuration which can be initiated by the scheduler. This involves sending a down-

link control message, i.e. a radio resource configuration (RRC) message or medium

access control (MAC) element to the target UE which then updates it UL/DL config-

uration. RRC and MAC messages can be transmitted more frequently depending on

the system requirements, potentially as frequently as every few tens of milliseconds.

Therefore, this approach opens up the possibility of having different configurations for

different users. It also allows for faster UL/DL reconfiguration timescales which helps

in improving adaptation to the instantaneous traffic demands. The HARQ disconti-

nuity may still operate in the same way as with the system broadcast reconfiguration

mechanism. However, since the RRC and MAC messages are acknowledged, the ambi-

guity period is shorter compared to the system broadcast reconfiguration mechanism.
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The ambiguity period in this case is mainly caused by the feedback delay to transmit

the acknowledgement. Some additional methods and ideas to perform UL/DL frame

reconfiguration have been presented in [33].

The HARQ timeline is also affected when the UL/DL reconfiguration is proposed

for 5G TDD networks. HARQ is an effective physical layer mechanism that is used

to improve the reliability of the transmission in the wireless environment that varies

with time. It involves explicit feedback indication, when the data transmitted has

been successfully received. Usually, multiple HARQ processes are active in parallel to

the successfully transmitted data in each TTI. One HARQ process includes transmis-

sion of data in one TTI and its corresponding acknowledgement signaling. In TD-LTE,

asynchronous HARQ is used for downlink data transmission over physical downlink

shared channel (PDSCH) and synchronous HARQ for uplink data transmission on the

physical uplink shared channel (PUSCH). With different UL/DL configurations in 5G

TD-LTE, the number of HARQ processes and the HARQ timeline also varies. Hence, as

the UL/DL frames are reconfigured, the HARQ timeline is also changed. Some of the

active HARQ processes may be disrupted at the boundary where the HARQ timeline

changes and cause data rate degradation due to reduced transmission opportunities

for HARQ feedback or scheduling grant. In existing TD-LTE systems, the cell specific

dynamic UL/DL reconfiguration occurs at a slower rate or longer timescales, hence

the impact of the HARQ timeline change on performance of the system is negligible.

With faster reconfiguration timescales of the UL/DL subframes and enhanced flexibil-

ity in 5G TDD, the impact of the HARQ timeline change may become significant. It

is therefore imperative to ensure that the faster UL/DL reconfiguration timescales do

not affect every HARQ process. This is necessary to maintain the performance benefits

offered by the dynamic UL/DL reconfiguration mechanism. To achieve this, a totally

new HARQ timeline may be designed, however it is not feasible to design a totally new

HARQ timeline as it requires significant effort in terms of implementation, specifica-

tion and standardization. Therefore [33] suggests exploring the possibility of using

one of the existing HARQ timelines irrespective of the UL/DL frame configuration.

They conclude that since the UL/DL configuration # 0 or # 5 is the most uplink or

downlink favored configuration, its corresponding PUSCH or PDSCH HARQ timeline

is suitable as the unique PUSCH or PDSCH HARQ timeline for TD-LTE cell specific
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dynamic frame reconfiguration systems with faster reconfiguration timescales.

Recent advancements on TD-LTE investigate mechanisms that aim to optimize the

UL/DL ratio selection for each eNB, considering a variety of different constraints. An

asymmetric assignment of UL and DL is investigated in [36], which aims to reshape

interference channels exploiting efficiently the available backhaul resources. In [39]

a cooperative decentralized mechanism is introduced that provides a local optimal

solution considering instantaneous data rate conditions and traffic demands, which

are exchanged via reliable low-rate signaling among neighboring cells. An alternative

approach that aims to minimize the information exchange among neighboring cells by

enabling eNBs to perform autonomously an UL/DL ratio optimization based-on a game

theoretic method is introduced in [40], considering UL/DL delays in relation with

traffic load, interference and flow-level dynamics. Optimizing further the selection of

the TDD frame considering the evolving Quality of Service (QoS) demands in terms

of bit rate guarantees and packet delay is elaborated in [41]. The potential gains

in throughput and reduced packet delays once each TDD slot is freely assigned as

UL or DL instead of using one of the 7 pre-determined TDD frames is explored in

[42], assuming the use of Interference Rejection Combining (IRC) capable receivers to

handle cross-slot interference. A link-proportional dynamic channel assignment (LP-

DCA) scheme is proposed in [43]. It uses directional antennas to alleviate the impact of

cross-slot interference in a TDD/code division multiple access (CDMA) system. In this

scheme, the users within a sector are grouped according to their received link quality

and the LP-DCA assigns the time slots with higher potential cross-slot interference, to

the group of users with better link quality, or vice versa. The LP-DCA scheme aims to

reduce the cross-slot interference and improve the system capacity. In [44] the authors

study the performance of Internet access using the TCP protocol in different downlink-

heavy asymmetries. Simulations are performed to show that the performance depends

on many factors such as the transferred file size, the control channel errors and the

downlink/uplink traffic mix. The authors explain that the potentially higher downlink

capacity of the TDD may not be fully used when the file size is small. This is due

to longer uplink access delays as well as shortage of uplink resources in the chosen

configurations. However, as the file size increases, this effect disappears and TDD

provides higher bit rates in the downlink than FDD. But in this case, the realized



Chapter 2. Literature-Review 45

increase in bit rate is not as high as the calculated increase in available downlink

resources.

Such proposals consider individual eNBs focusing on the means of providing a

dynamic UL/DL ratio in an autonomous way considering a various optimization pa-

rameters. However, unlike these cell centric approaches, the concepts and techniques

developed within the framework of this thesis stretch beyond a single cell, i.e. local

optimization, exploiting efficiently the resource diversity within overlapping cell areas

as elaborated in [45]. This enables UEs to utilize sub-frames from multiple eNBs, i.e.

forming virtual cells that offer customized TDD frames, which match best their UL/DL

traffic demands. Performing radio resource management that combines dynamic TDD

re-configuration with virtual cells in a distributed manner is suboptimal. Hence, cen-

tralized intelligence is recommended for efficient interference mitigation considering

traffic dynamics. The detailed analysis of the Virtual Cell concept is provided in chap-

ter 3.

A similar approach referred to as V-Cell, offers a combination of heterogeneous

radio resources, i.e. macro-cells, picos and femtos, as a resource pool to UEs, which

perceive such an access as a logical single macro-cell [46]. The network resource man-

agement is performed by an SDN controller, which maintains a logical global view of

the underlying network in order to efficiently schedule resources across the entire pool

of physical radio elements. An equivalent SDN-based Radio Access Network (RAN)

management architecture that relies on abstracting the RAN resources and using them

as a single virtual wireless access is also analyzed in [47], which also provides more de-

tails about the SDN controller including the main associated functions and the control

plane mechanisms. Such components enable RAN programmability as considered in

[5], which analyzes the SDN impact of separating the control and data planes in sim-

plifying the management of heterogeneous networks, considering mobility and QoS-

aware network operation. In fact, the SDN architecture offers an API called N-API to

allow communication between application providers and the infrastructure providers

to facilitate on-demand QoS provision. In this thesis, a similar SDN paradigm is em-

ployed offering RAN programmability, which is realized by enabling a unified control

for provisioning a dynamic TDD frame configuration at selected eNBs with the poten-

tial of forming virtual cells based-on the user resource demand. Whilst our focus is on
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network programmability based-on network measurements and resource utilization,

the proposed SDN architecture may potentially offer a customized UL/DL ratio upon

a request via the N-API, allowing applications to program the network and provision

resources for particular services within certain times. Such a feature may advance

the network customization offering flexibility, scalability and ease deployment of new

services and enhance performance of TD-LTE systems.

The virtual cell concept is also employed in [48], which adopts the SDN paradigm

to enhance the user QoE considering the application performance characteristics in

a pico-cell environment. In particular, the QoE assessment function at the eNB con-

tacts the SDN controller when it identifies users that suffer a QoE degradation, which

can benefit from utilizing resources from multiple eNBs forming virtual cells. Exist-

ing telecommunication networks have intrinsic Quality of Service (QoS) provisioning

and measurement mechanisms to evaluate the network performance. However, as

the telecommunication networks are evolving with the aim and inevitable need to

support emerging future mobile applications/services, it has been identified that the

system-centric view of QoS provisioning is no longer sufficient [49]. Thus, the QoS

provisioning and measurement mechanisms needs to be replaced or complemented

with more user-centric approaches. In this direction, QoE seems a potential solution

that complements the QoS mechanisms. It helps in assessing the acceptability of an

application or service, as perceived by the end-users, delivered via the network to the

end-users. This way, the QoE can help in assessment of the performance of both the

network as well as the application or service provided to the end-users. Further details

related to this idea are discussed in chapter 4.

QoE can be monitored by using subjective or objective techniques. As discussed

in [50], quality of service (QoS) is the connection between network performance and

application requirements, while QoE is the connection between application perfor-

mance and the user. One of the most common methods for subjective determination

of the QoE consists of computing the Mean Opinion Score (MOS) in line with the In-

ternational Telecommunication Union (ITUT) Rec. P.800. Nonetheless, measuring the

MOS of speech quality is rather complicated, given that MOS is averaged over a large

number of user opinions. MOS can be measured using objective techniques as well,

such as the E-Model and the Perception Evaluation of Speech Quality (PESQ) model
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[50]. The PESQ model estimates MOS by comparing a reference signal with the re-

ceived (degraded) real signal. On the other hand, the E-Model can be readily used to

estimate MOS in real-time. The work done in this thesis, adopts the E-Model to assess

the QoE of individual users in real-time and adapt the UL/DL frame ratio depending

on the current user requirements. Aiming to meet the individual QoS requirements of

the end users (i.e. in terms of throughput and packet delay), the authors in [41] have

proposed a dynamic cell specific UL/DL frame reconfiguration mechanism.

In [51] the authors propose a downlink scheduling method to improve the QoE for

VoIP traffic in LTE networks. To achieve this, they consider that the scheduling deci-

sion is made based on feedback provided by the users. The authors in [52] present a

QoE-based framework for network planning and propose an analytical method based

on queueing theory to dimension access networks such as LTE. Different from [51]

and [52], we propose an SDN-based network management architecture and solution

based on the formation of virtual cells and the flexible adaptation of the UL/DL ra-

tio at the TD-LTE picocell. Besides, as shown in the numerical results, the proposed

framework improves the QoE of users suffering from service quality degradation with-

out affecting the performance of others. In [53], the authors propose an architecture

that uses a central QoE server that collects performance indicators from different net-

work elements and takes actions to improve the QoE of particular users. Decentralized

data offloading mechanisms are proposed in [54], to improve end-to-end delay and

enhance the MOS required for service continuity.

In [55] the authors propose a radio resource management (RRM) strategy, which

dynamically reallocates resources assigned to users with adverse channel conditions

towards other users aiming to improve their MOS. To accomplish this they consider

two expulsion criteria: (i) the direct expulsion of unsatisfied users that underutilize

radio resources and (ii) the expulsion of best-effort users that can tolerate service

delays. In HetNets nowadays, the dense yet unplanned deployment of small cells

results in unbalanced utilization of the physical resources among the cellular infras-

tructure. Even though a specific subset of cellular stations can be overloaded, other

nearby cellular stations may underutilize their dedicated resources, due to the irreg-

ular spatiotemporal variations of the user traffic or the selected service provider. In

such situations, Radio Access Network (RAN) and spectrum sharing can considerably
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improve the area spectral efficiency of the current cellular networks. For example,

multiple mobile network operators can share their infrastructure so as to reduce the

amount of active network equipment, e.g. base stations, or reduce the capital invest-

ments for setting up the LTE-A RAN infrastructure. In two recent studies, 3GPP has

overviewed the service and business requirements for realizing the so-called network

sharing paradigm [56] and highlighted the required architectural enhancements [57].

Current literature includes a notable amount of frameworks, architectures, and

mechanisms that allow for effective sharing of radio-resources or physical network

components that can reside in either the access or the core network. The solution in

[58] aims at providing on-demand infrastructure and spectrum sharing among differ-

ent operators in 3GPP LTE networks. The authors propose mechanisms for virtualizing

the evolved Node B (eNB) hardware by creating logically independent base stations,

a.k.a. virtual eNBs (VeNBs). Among others, the proposed mechanisms are shown to

balance the traffic load among the eNBs involved in the sharing process. The authors

in [59] propose a multi-tenant solution that enables resource isolation and coexistence

of independent policies among different eNB instances. To achieve this, they propose

a two-layer resource-scheduler composed of a global and a local resource scheduler

that permits implementation of different scheduling policies to different eNBs. A sim-

ilar approach is discussed in [12], which modifies the scheduler of a shared eNB to

isolate the traffic between multiple operators, while achieving a multiplexing gain.

The key component in [12] is an entity called the Hypervisor, which virtualizes the

eNB into a number of slices allocating the Physical Resource Blocks (PRBs) among

multiple virtual operators according to existing agreements. Although the results in

[58]-[60] are promising, further work is required to adapt the presented solutions in

a HetNet environment, where different functional capabilities are supported by the

cellular base stations.

An SDN-based framework is proposed in [61], to enable efficient on-demand shar-

ing of base stations that belong to different operators. The key idea is to allow the

cellular users to attach to the nearest base station. The OpenRAN architecture is in-

troduced in [62], to leverage the convergence benefits of HetNets and achieve, at the

same time, customization via network programmability. Network virtualization (NV)

is realized at different levels including the application, spectrum, and network level,
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achieving a higher granularity of the combined pool of network resources. The use

of the SDN paradigm as a tool to simplify cellular network management is analyzed

in [63], where a hierarchical architecture of a local and a global SDN controller is

proposed. The local controller manages the processes inside a single network, while

the global controller handles the events throughout the HetNet and coordinates the

RANs through the backhaul.

The problem of re-configuring the TDD frames of pico eNBs has also been con-

sidered in [33] [64] [36]. It is envisioned that both FDD and TDD technologies will

co-exist in the future mobile networks. Considering this, the design and implementa-

tion challenges of FDD and TDD systems and the comparison of their pros and cons

are discussed in [65]. It presents a number of advantages and flexibilities that a TDD

system can offer compared to the FDD system in 4G systems. The authors identify

some major challenges in deploying the TDD in cellular networks including also the

cross-slot interference. A quantitative analysis is also provided that discusses the im-

pact of cross-slot interference on co-channel and adjacent channel interfering cells.

Finally, the authors conclude that the application of sectored antennas and time slot

grouping are very effective to alleviate cross-slot interference. An SDN framework

for elastic resource sharing among a Frequency division Duplex (FDD) macro cell net-

work and TDD pico cell network that aims to enhance flexibility and network resource

management efficiency is described in [66]. This paper also adopts an SDN network

management paradigm, but instead it concentrates on network programming aspects,

i.e. forcing a TDD ratio re-configuration for providing TDD virtual-cells, enhancing the

user service performance and the network resource utilization. This work has been

further discussed in more detail in chapter 4.4 .
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Chapter 3

TD-LTE Virtual Cells: An SDN Architec-

ture for User-centric Multi-eNB Elastic

Resource Management

3.1 Introduction

Time Division Duplex (TDD) is one of the two variants of 3rd Generation Partner-

ship Project (3GPP) LTE. TDD utilizes the same radio access scheme as the Frequency

Division Duplex (FDD), and uses the same sub-frame format as well as the same con-

figuration protocols [7]. The main difference compared with FDD, is the support of

unpaired frequency bands, where downlink and uplink are separated in the time do-

main. In TDD each frame is composed from downlink (DL), uplink (UL) and special

(S) sub-frames, which are used to switch from DL to UL and they are included at least

once within each frame. The UL/DL portion of each frame may be dynamically con-

figured to adapt to the instantaneous traffic conditions according to the specification

provided in [7], which defines 7 different UL/DL configurations as shown in table 2.1.

Such resource flexibility and diversity is particularly useful for emerging applications

such as video streaming, V2X or Machine Type Communication (MTC), etc. that are

highly asymmetrical.

Despite such UL/DL resource flexibility, the initial deployment of TD-LTE involves

a synchronous frame configuration across certain network regions with all the cells

offering an identical UL/DL ratio in order to avoid cross-slot interference [33]. Such

network arrangements effectively limit the advantage of UL/DL resource flexibility

since it imposes restrictions among neighboring cells and therefore prevents opera-

tors from fully exploiting the benefits offered by the TD-LTE. Such limitations are as-

sociated mainly with (i) interference when neighboring cells adopt a different UL/DL
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configuration, restricting the degree of resource flexibility and (ii) admission control

when particular overloaded slots may introduce pseudo congestion which arises in the

case when adequate resources exist but in the opposite transmission direction [67].

In response, the 3GPP focused on a set of enhancements to address interference and

accommodate traffic adaptation [32]. These effort introduce cell specific mechanisms

in the sense that UL/DL configuration change takes place in each cell individually in a

distributed manner with the goal to optimize uplink and downlink network resources

to best serve the local traffic demands, assuming that user equipment (UE) is associ-

ated with a single cell at a given time.

Thus, the proposed concepts in this chapter, aims to address the limitations and

resolve the issues that are emphasized in the state-of-the art literature analysis, by

introducing the novel concept of virtual cells to enhance the resource allocation effi-

ciency. Such a virtual cell concept is aligned with the flexible TDD frame configuration

study carried-out by 3GPP Radio Access Network (RAN) Working Group (WG) 1 [32],

providing also a set of enhancements for regions where neighbor cells overlap. Virtual

cells are formed within overlapping regions enabling residing UE to use sub-frames

from different base stations or evolved NodeBs (eNBs) in 3GPP terminology. Expect-

ing a TD-LTE deployment with neighboring cells employing a different TDD frame

configuration as in [32], virtual cells can offer a unique type of frame that consists

of different sub-frames that belong to the cells that form such an overlapping region.

In this way a new notion of a cell is realized, which is virtual since there is no physi-

cal infrastructure. TD-LTE deployments with virtual cells may allocate resources with

a higher degree of flexibility enabling mobile operators to offer more diverse UL/DL

configurations, which can match more effectively the customer needs close to certain

geographical areas. The adoption of virtual cells could prove particularly useful for

densely deployed networks with diverse traffic demands per geographic area, while

its efficiency relies on mechanisms that reflect evolving traffic conditions. Operations,

Administration and Management (OAM) mechanisms need to monitor the current

network traffic and forecast future demands, considering also history data. The OAM

should also perform frame reconfiguration for specific eNBs, assisting the virtual cell

formations.
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3.2 Virtual-Cell Concept

Virtual cells offer a novel way of resource management, which allows UEs to utilize

sub-frames from multiple eNBs matching better their traffic demands. UEs are no

longer restricted to use the frame of a single eNB, but can utilize specific sub-frames

from more than one eNBs. The concept of virtual cell allow users to utilize subframes

from multiple eNBs, enabling the formation of a customized virtual frame by deriving

specific subframes from different eNBs that can reflect best the users’ UL and DL trans-

mission demands [45]. The flexibility offered by this feature allows the resolution of

pseudo congestion, while enhancing user performance. Pseudo congestion refers to

the phenomenon wherein adequate resources exist in a TD-LTE eNB, but in the op-

posite transmission direction than the user demand. Such a technique could also be

beneficial for the users that are outside the virtual cell region as it could free up ad-

ditional resources for them to achieve their desired QoS. In addition, this technique

not only exploits the spatial domain of conventional load balancing but also the time

domain, to dynamically configure the cell setup.

Although virtual cells can be configured under a homogeneous environment, with

all cells following the same UL/DL ratio, higher resource flexibility is envisioned when

neighboring cells adopt a different UL/DL configuration. In this case conventional

power control methods, similar to [35], can be employed to resolve cross-slot inter-

ference. Hence, power control coordination among neighboring eNBs ensures that

sub-frames with the opposite transmission direction are not provided at the same time

within the virtual cell region. The use of advanced power control mechanisms and in-

terference mitigation techniques could further improve the efficiency and performance

of the virtual cell scheme in TD-LTE systems. For associating UEs to virtual cells, the

UL and DL resources should be considered separately, allowing UEs to utilize UL and

DL sub-frames from different eNBs. The adjacent cooperating eNBs in the virtual cell

concept appear as one logical cell with each eNB offering a different UL/DL configura-

tion. This provides the capability to support multiple and diverse applications within

smaller geographical regions. It is worth noting that the UEs cannot utilize UL and

DL sub-frames within the virtual cell region at the same time because of device and

hardware restrictions.
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A simple example of the virtual cell concept is illustrated in Fig. 3-1 where, a UE

residing within the virtual cell region is utilizing UL resources from eNB A and DL

resources from eNB B to match its traffic demand. Specifically, the UE is utilizing UL

resources from eNB A and DL ones from eNB B, creating in this way a new virtual

frame as which is capable to resolve pseudo congestion [67] that would otherwise be

caused if the UE would solely utilize the resources from either eNB A or eNB B.

Figure 3-1: A simple example of the virtual cell concept

Specifically, a UE with a high UL and relatively low DL resource demand cannot

be served by any of the depicted eNBs solely without experiencing and causing con-

gestion. By assigning the UE to both eNBs and utilizing resources from both, pseudo

congestion can be avoided. For instance a UE associated with eNB A to take advantage

of the UL resources may switch to the DL of eNB B in order to fulfill its DL demand, in-

stead of remaining on the UL of eNB A. Such operation creates a customized or virtual

frame for these particular UEs, which is composed of the shaded UL slots from eNB

A and the shaded DL slots from eNB B as shown in Fig. 3-1. Fig. 3-1, shows one of

the examples of various traffic scenarios that may occur in the real world. The virtual

cell concept and adaptive UL/DL frame reconfigurations can be most effective under

low and medium traffic load settings especially when the traffic demands in UL and

DL directions are highly asymmetry. While under high traffic load conditions the gain

in performance could be relatively lower.

The process of utilizing sub-frames from different eNBs requires enhanced mecha-
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nisms to synchronize UEs and align their transmit/receive modes accordingly. There-

fore synchronization is required between the eNBs involved in the virtual cell for-

mation to ensure that the data towards and from the UE appears as a single stream

hence the virtual cell requires additional signaling mechanisms for control purposes.

In general, the process of transmission and reception via multiple eNBs should be syn-

chronized in order to ensure that the data towards and from the UE appears as a single

stream. This may be achieved by:

• All eNBs receiving replicated data, which is handled accordingly for transmitting

in selected sub-frames,

• A single eNB receiving all data and using the X2 to transfer it towards other eNBs

involved in the transmitting process,

• Splitting data sessions in the PDN/S-GW (Packet Data Network/Serving Gate-

way) before it arrives to the appropriate eNBs

It should be noted that session transmission and reception via multiple eNBs should be

transparent to the user. Once virtual cells are configured, mechanisms to perform man-

agement and maintenance are essential to reflect evolving traffic demands. The aim is

to assess the current UL/DL configuration in combination with virtual cell formation

to decide whether potential alternations may enhance the system’s performance. A

key feature is to consider the UL and DL load separately. The reconfiguration process

is envisioned to be hybrid, executed partly on eNBs and on a centralized controller.

The process of managing the formation of virtual cells should be handled by the cor-

responding eNBs in order to reflect short term traffic alterations, while the controller

performs the UL/DL frame reconfiguration for eNB based-on long term traffic statis-

tics. In particular, eNBs that cannot ensure adequate resources for residing UEs should

notify the controller to check for alternative UL/DL configurations, considering UL/DL

traffic statistics from the network-wide eNBs and cell planning data. The core of the

reconfiguration function consists of an optimization algorithm that aims to match the

input constraints to a specific UL/DL configuration.
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3.3 SDN-based Network Management Architecture

The SDN-based system aims to perform network resource management and TD-LTE

programming considering adjustments on selected TDD frames including formation

and deactivation of virtual cells. The objective is to abstract the control plane from

individual eNBs and logically centralize it, resulting in a collective resource manage-

ment and control of eNBs’ resources, as described in [47] . To accommodate such a

vision, the OAM accompanied by the Data-Controller Plane Interfaces (D-CPI), can fa-

cilitate periodic or on demand RAN state updates in order to help the SDN controller

to form a global network view [68] . In particular, the OAM can provide the SDN

controller with RAN topology information, UL and DL load and Key Performance In-

dicators (KPIs), e.g. handover failures, latency, throughput, etc. as specified in [69] .

The D-CPI, may additionally provide the SDN controller with certain information re-

lated to specific rules including monitoring, such as interference levels and the TD-LTE

frame configurations per eNB [10] .

Figure 3-2: SDN-based network architecture

With a global visibility across the RAN, the SDN controller can enhance the re-

source allocation, enabling virtual cells by adjusting the power and sub-carrier allo-
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cation profile of each eNB in a dynamic manner. The SDN controller can assess the

impact of a TDD frame re- configuration in the overall performance of the entire net-

work and selectively enforce certain TDD frame changes at specific RAN locations,

which otherwise will not be performed through the use of the local adaptive TD-LTE

[33] . In addition, the scalability is improved since TD-LTE re-configuration algorithms

that may require a significant amount of data can be executed at the SDN controller

rather than at eNBs, which have limited computational capacity, avoiding also exten-

sive distributed signaling among multiple eNBs and backhaul elements, while assuring

stability. When the SDN controller is notified or it identifies the need for a change in

the TD-LTE arrangement, it tries to determine if a TD-LTE frame re-configuration on

particular eNBs and/or the use of virtual cells, can enhance the resource utilization.

To accomplish this, the SDN controller makes use of the global network state provided

by the RAN info-base and executes the provided algorithm and network orchestration

policy. It should be noted that the algorithmic logic and orchestration policy can po-

tentially be programmed via the N-API or Application-CPI (A-CPI), where operators

have this degree of freedom and flexibility. Once, the SDN controller determines the

new TD-LTE resource allocation solution it communicates the essential changes on

the TD-LTE configuration back to the corresponding eNBs via the C-DPIs. Effectively,

this may alter the transmission power associated with particular TDD sub-frames to

provide interference mitigation among neighboring eNBs and facilitate the creation

of virtual cells. The SDN controller may also allow application providers to program

the RAN via A-CPI, enabling QoS provision for particular services, however, this is

left for further study and only considered here for the architecture completeness. An

overview of the SDN architecture that elaborates the main elements of the elastic TD-

LTE mechanism including their interaction is provided in Fig. 3-2.

Since network traffic interference conditions may fluctuate significantly even for

short time periods, especially within the relatively small virtual cell regions, due to user

mobility, additional distributed mechanisms should be considered. Such mechanisms

may relax the workload on the SDN controller, allowing longer time scale tolerance on

the TD-LTE configuration decisions provided to the RAN. Hence, local radio resource

adjustments should complement the ones provided by the SDN controller as long as

no neighbor eNBs are affected.



Chapter 3. TD-LTE Virtual Cells: SDN Based Elastic Resource Management 57

3.4 SINR Analysis and Effective Capacity Allocation for

TD-LTE Virtual Cells

TD-LTE systems are particularly sensitive to interference, especially when neighbor

eNBs follow a different UL/DL ratio, e.g. in the case of cell specific adaptive recon-

figuration and virtual cells, due to cross-slot interference. Cross-slot interference is

caused by eNBs that directly interfere or among UEs in close proximity, which com-

municate in the opposite transmission direction [35]. Due to physical limitations of

the radio frequency frontend at eNBs and UEs, there is the need to avoid such cross-slot

interference. In our proposal we achieve this via the use of power control and ensure

that the interference introduced cause negligible degradation in the user performance

by computing the SINR considering the aforementioned interference phenomena.

The SINR is computed for each user associated with a particular eNB over the RBs

assigned to it for transmitting the data. The expression for SINR for the UL and DL

directions is given by:

γ=
Pr x

I + N0
(3.1)

where, Pr x is the received power in UL or DL direction respectively, I is the interference

power and N0 is the noise power. In the UL direction, UEs that transmit data towards

their serving cell over the RBs assigned by the MAC scheduler, may possibly employ the

same subset of RBs that are utilized in the neighbor cell at the same time. Therefore,

the interference experienced by the received signal at the serving cell over the RBs

should be considered while computing the SINR expression in the UL direction. In the

DL, all transmissions on the same subset of RBs coming from other eNBs are considered

while computing SINR expression. The Pr x in UL or DL is given by:

Pr x = Pt .τ.(
d0

d
)φ.ψ (3.2)

where, Pt is the transmit power in UL or DL, τ is a unitless constant, which depends

on the antenna characteristics and average channel attenuation, d is the distance be-

tween the transmitter and receiver and d0 is a reference distance for the antenna far

field [35] [70]. The pathloss exponent is given by φ and ψ is a Gauss-distributed
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random variable representing the shadowing effects in propagation with mean zero

and variance σ2
ψ

. The interference power is given by:

I =
∑

l 6=o
Pt,l .τl .(

d0,l

dl
)φl .ψ (3.3)

While deriving the SINR expression for the cell specific adaptive reconfiguration

and virtual cell considering the UL and DL directions, the cross-slot interference, that

may arise, should also be taken into account. The SINR expression for both cases in

the UL direction for a user i connected to a cell l with respect to a set of neighboring

cells Jl can be expressed as:

γi,l(U L) =
PU L

∑Jl

k IDL(l, k) +
∑Jl

k,k 6=l IU L(l, k) + N0

(3.4)

where, IDL(l, k) is the interference power of the DL signal in the neighbor cell k ∈ Jl

observed at the serving cell l, IU L(l, k) is the interference power of the UL signal in

the neighbor cell k ∈ Jl observed at the serving cell l and N0 is the noise power. The

equivalent SINR expression in the DL direction is:

γi,l(DL) =
PDL

∑Jl

k,k 6=l IDL(l, k) +
∑Jl

k IU L(l, k) + N0

(3.5)

where, IDL(l, k) is the interference power of the DL signal from the neighbor cell k ∈ Jl

measured at the UE i in the cell l and IU L(l, k) is the interference power of the UL

signal from an active UE operating in the neighbor cell k ∈ Jl at the UE operating in the

serving cell l. The likelihood of forming virtual cells depends on traffic load conditions

in the UL and DL directions and on the resource availability from neighboring cells,

i.e. similarly to the likelihood of providing load balancing. A virtual cell is merely a

more advanced means of performing load balancing in a TD-LTE network, since a user

can utilize partial resources from a neighbor cell in a particular transmission direction.

For enabling an efficient virtual cell formation, there is a need for a mechanism

to ensure that the resource gain for a particular cell is does not result in starving the

users in another cell, i.e., there is no negative impact of virtual cell configuration on

the users of neighbor eNB from where the resources are taken. To ensure this capacity

gain and loss calculations are performed considering the effective bandwidth model

presented in [71]. Regarding the size of a virtual cell, there is no specific size in
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terms of a geographical area. Virtual cells are user-centric, with the number of users

served via a virtual cell varying depending on the traffic load and the users’ SINR at

particular locations and times, influencing in this way the physical size. For calculating

the throughput on the serving link as well as the potential virtual neighbor cell. The

capacity of the link S [b/s/Hz] in UL and DL is:

Si,k =min
�

Beff · log2

�

1+
γi,k

γeff

�

, Seff

�

, (3.6)

where Beff is the bandwidth efficiency, γ is the link-level SINR, and γeff the SINR ef-

ficiency, for a system with maximum spectral efficiency Seff. For borrowing resources

from neighbor eNBs and creating virtual cells, we consider a capacity gain and loss

metric, similar to the one considered in [72]. Let Rk be the total available resource

blocks at a neighbor eNB k, β be the percentage of available resources that can be

borrowed, and γi,k be the SINR experienced by the user i with eNB k. The capacity

gain by borrowing resources and creating a virtual cell, Cg [b/s] in UL/DL is given by:

Cg = Rk · β log2

�

1+ γi,k

�

(3.7)

and the capacity loss Cl [b/s] for the mean user m of eNB k, having SINR γm,k (UL/DL),

due to the user i borrowing the resources is given by:

Cl = Rk · β log2

�

1+ γm,k

�

(3.8)

The virtual cell is created with eNB k for user i, if Cg > δCl. This condition ensures

that the resource borrowing is done only when there are some capacity gains for the

congested cell of UE i, and is limited by the factor δ ∈ [0, 1]. The mean user SINR,

γm,k for eNB k having Nk UEs, is given by:

γm,k =

∑Nk

u=1 γu,k

Nk
(3.9)

The virtual cell creation decision is taken per UE, depending on its link quality with

its serving cell having congestion, as well as the strongest neighbor cell. For a user i,

with eNB o as its own cell, i.e. the cell that experience congestion, having Ri,o resource

allocated to it and eNB k as the virtual cell with Ri,k resources borrowed from the cell,
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the total link level capacity of the user, Ci [b/s] in UL/DL is given by:

Ci =
∑

c=i,k

Ri,c · Si,c (3.10)

If the capacity gain and loss condition is satisfied only then the required resources β

are borrowed to resolve the congestion, otherwise the users are served via the standard

cell specific adaptive reconfiguration process. It should be noted that our virtual cell

proposal assumes the use of two base stations since the proposed virtual cell concept

can be built on the top of dual connectivity as documented in [7], which introduces

the bearer split concept involving two base stations.

3.5 Elastic Resource Management Algorithms for TD-

LTE

The resource management algorithm aims to perform an elastic capacity allocation in

the UL or DL direction regulating the formation of virtual cells in order to enhance the

users’ performance and resolve potential pseudo-congestion problems. The algorithm

also intends to maximize the throughput of low SINR users without causing negative

effects on the QoS of other users, residing within the region of the serving cell or the

surrounding neighboring cells.

The algorithm is executed at the SDN controller taking the global view of the net-

work and the set of congested cells, i.e. cells that experience congestion for a time

duration t > Tc, where Tc is the time period beyond which a cell with continuously

limited resources is declared as congested. The notion of congestion for the best effort

traffic, where there is no strict service quality requirement, is accounted for by con-

sidering the minimum achieved throughput. The minimum throughput thresholds in

the UL and DL directions are used to detect congestion and trigger the algorithm in

order to assess and resolve the situation. The throughput thresholds on the UL and

DL are selected considering the service delay, which should be upto 300 ms according

to [73] for the best effort traffic.

Our algorithm considers the effective capacity, i.e. capacity gain and capacity loss

constraints, which are dependent on users’ location, so it takes into account the user
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position and potentially it can take into account user movements. Considering user

mobility we clarify that virtual cells do not indtend to serve users with high mobility

but rather stationary and low mobility such as pedestrian users. The algorithm initially

examines the set of congested cells with the objective of forming virtual cells, select-

ing the optimal neighboring cell, which can offer the desired amount of resources.

During this process the algorithm may also enforce a TD-LTE frame re-configuration

to resolve potential pseudo-congestion, if that allows adequate resources for forming

virtual cells.

Table 3.1: List of variables used in the pseudo-algorithms

Notation Description

l ∈ L Cell belonging to a set of total network cells L

o ∈ O Cell belonging to a set of congested cells O ∈ L

l[t p] UL or DL average active user throughput in cell a l ∈ L

tp(i) UL or DL active user i throughput

t pth UL or DL throughput threshold

Tc Time duration beyond which a cell with continuously

limited resource is declared as congested

k ∈ Jo Cell belonging to a set of neighboring cells Jo of a congested cell o

x(Jo) Cell belonging to Jo with maximum Rk in UL or DL direction

Rk Total available resources in a cell k

Rreq Amount of resources needed to resolve congestion in o

βl Available UL or DL resources of cell l that can potentially

be used to form a virtual cell

F[l] Current TD-LTE frame of cell l ∈ L

SF Set of sub-frames that belong to a TD-LTE frame F[l]

Fn[l] New TD-LTE frame for cell l ∈ L

i ∈ Uo User belonging to a sorted set of active users Uo in an

incremental γi,o order, residing in a congested cell o

vCellU E Set of UEs assigned to the virtual cell region

rx(Jo)
(i) Resources allocated to user i once associated with a virtual cell

borrowed from the selected neighbor cell x(Jo)



Chapter 3. TD-LTE Virtual Cells: SDN Based Elastic Resource Management 62

Table 3.1 continued..

Notation Description

γi,o SINR experienced by an active user i residing in a congested cell o

γi,k SINR experienced by an active user i from a neighbor cell k

γm,k SINR experienced by the mean active user of a neighbor cell k

Cg Capacity gain

Cl Capacity loss

Once the cells that comprise the virtual cell region are selected, the algorithm ex-

amines which users should be associated with such a virtual cell region considering

the capacity gain and capacity loss. The variables used throughout the proposed al-

gorithm are summarized in table 3.1.
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Algorithm 1 Forming Virtual Cells: Neighbor Cell Selection

1: O ⇐ set of cells l ∈ L with l[t p] ≤ t pth for time duration t ≥ Tc;

2: foreach o ∈ O

3: Jo ⇐ neighbor cells l ∈ L;

4: x(Jo) ⇐ neighbor cell k ∈ Jo with max(Rk) in UL or DL congestion direction;

5: ifβx(Jo)
≥ Rreq

6: call Algorithm 2;

7: else

8: x(Jo) ⇐ neighbor cell k ∈ Jo with max(
∑

U L/DL Rk);

9: //check and enforce TD-LTE frame re-configuration on x(Jo)

10: F[x(Jo)]⇐ current x(Jo) TD-LTE frame configuration;

11: while x(Jo)[tp] > t pth

12: Fn[x(Jo)]⇐ F[x(Jo)] with min(SF ) re-configured in congestion direction;
13: if x(Jo)[tp] ≤ t pth

14: break;

15: else

16: F[x(Jo)]⇐ Fn[x(Jo)];

17: continue;

18: end

19: end

20: call Algorithm 2;

21: end

22: end

The pseudo-code of the algorithm that concentrates on the cell selection to form

virtual cells is illustrated in algorithm 1. In line 1, the algorithm collects the set of

congested cells O. For each congested cell o ∈ O it identifies its neighbor list Jo,

from which it selects the neighbor cell referred to as x(Jo) with the maximum resource

availability Rk towards the congestion direction, which may either be on the UL or

DL as shown in lines 3 and 4 respectively. Here, the goal is to identify a neighboring

cell that can accommodate adequate resources in the desired transmission direction

allowing the creation of a virtual cell, which fulfils both UL and DL demands. In this

way, the algorithm tries to resolve congestion, while making the best use of the current

network formation performing no changes to the TD-LTE network configuration.
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If the selected cell x(Jo) is able to offer adequate potential resources, βx(Jo)
, it can be

used to form a virtual cell satisfying the resource request Rreq as shown in line 5. As

a next step, the algorithm selects the users to associate within the virtual cell region,

allocating resources based on their location and interference levels, as elaborated in

algorithm 2. Otherwise, the algorithm examines the entire per cell resources irrespec-

tive of the transmission direction
∑

U L/DL Rk, with the goal to identify a neighbor cell

with the maximum total resource availability and stores its TD-LTE frame as F[x(Jo)]

according to lines 8 and 10 respectively. It should be noted that such a neighbor cell

even in cases where it cannot fully accommodate the resource request Rreq, can still

provide the best solution toward resolving congestion, enhancing the average user

performance depending on the location and interference conditions.

For such neighbor cell x(Jo), the algorithm in lines 11 to 19 tries to investigate

whether enforcing a potential TD-LTE frame re-configuration may enhance the re-

source allocation towards the virtual cell, i.e. βx(Jo)
, without compromising the aver-

age user performance, ensuring x(Jo)[tp] > t pth. In particular, in line 12 a TD-LTE

frame re-configuration is performed, with the new TD-LTE frame Fn[x(Jo)] selected

considering the current one, i.e. F[x(Jo)], with the minimum number of sub-frames SF

re-configured towards the congestion direction. For example if the current configura-

tion F[x(Jo)] employs a DL/UL ratio of 8:1, i.e. configuration 5 in table 2.1, and there

is a need to enhance the potential of UL resources towards the virtual cell region, then

re-configuring the minimum number of sub-frames towards the UL direction would

result in a new TD-LTE frame Fn[x(Jo)] with an UL/DL ratio 7:2, i.e. configuration 4 in

table 2.1, while in the following iteration if the intention is to enhance UL resources

even further would result in a Fn[x(Jo)] with an UL/DL ratio of 6:3, i.e. configuration

3 in table 2.1.

A new frame is adopted by the system becoming the current one, continuing such

an iterative process provided that the throughput change associated with the average

user is still beyond the performance target threshold, i.e. x(Jo)[tp] > t pth, otherwise

it ceases, breaking the iterative process, as shown in lines 13 to 18. As stated before,

once a neighbor cell is selected, potentially with a re-configured TD-LTE frame, a

virtual cell is formed and then algorithm 2 allocates resources towards specific users

from the overloaded cell based on their location (i.e. the users residing within the
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virtual cell region) and interference conditions. The resource allocation is performed

based on the user’s SINR levels and throughput based on equations (7) and (8).

Algorithm 2 Allocating Users to the Virtual Cell Region

1: vCellU E ⇐ ;;
2: Uo ⇐ sorted set of active users in an incremental γi,o order;
3: foreach i ∈ Uo starting from i with min(γi,o)
4: if t p(i) < t pth
5: Cg ⇐ Rk · βx(Jo)

log2(1+ γi,k);
6: Cl ⇐ Rk · βx(Jo)

log2(1+ γm,k);
7: if Cg > Cl

8: //allocate user i in the virtual cell region
9: vCellU E ⇐ vCellU E ∪ i;

10: βx(Jo)
⇐ βx(Jo)

- rx(Jo)
(i);

11: elseif Cg ≤ Cl

12: //do not interrupt user i
13: continue with next the user from Uo;
14: end
15: end
16: if βx(Jo)

≤ 0

17: break foreach loop;
18: end
19: end

In particular, algorithm 2 initiates a set vCellU E to keep a record of the users as-

signed to the virtual cell region and creates a set of active users residing in a congested

cell Uo, which is sorted in an incremental order according to the SINR experienced,

γi,o, as shown in lines 1 and 2 respectively. For each active user starting from the one

with the minimum γi,o, line 3, the algorithm checks if the user throughput t p(i) is

below or equal with the pre-determined threshold t pth in line 4. The rational for as-

sessing users with the minimum γi,o first is to try to improve the performance of users

that are more in need since their SINR level is the lowest. For a user with throughput

lower than the performance target, i.e. t p(i) < t pth, the algorithm examines whether

it is beneficial to allocate such a user to the virtual cell region, in lines 4 to 14. To

accomplish this, initially the algorithm in lines 5 and 6 calculates the capacity gain Cg

and capacity loss Cl , as elaborated in section 3.4.

In case the capacity gain is greater than the capacity loss, the user is allocated in the

virtual cell region. The algorithm adds that user to the vCellU E set and subtracts the

allocated resources rx(Jo)
(i) from the potential resources βx(Jo)

that can be used within

the virtual cell region. Otherwise, the user remains constant, i.e. uninterrupted, and
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the algorithm continues with the next user until all users i ∈ Uo are considered or

the βx(Jo)
resources are exhausted. The algorithm returns the set of users vCellU E that

should be allocated in specified virtual cell regions, the neighbor cells involved and any

enforced TD-LTE frame re-configuration associated with a particular neighbor cell. It

is also worth noting that the users allocated resource from the virtual cell region could

potentially free up resources for other users residing outside the virtual cell region and

help towards resolve congestion in the problematic cell, thereby improving the overall

network performance.

3.6 Simulation Results and Analysis

3.6.1 Simulation Results and Analysis (Phase-1)

In order to initially test the idea of virtual cell concept, we considered a simulation

topology with two macro eNBs having an overlapping region as depicted in Fig. 3-1.

UEs are uniformly distributed in the service area and can access the system in a se-

quential manner following the Poisson traffic model, with an arrival rate λ, adopting

the evaluation methodology defined in [74]. Users accessing the system transmit or

receive a file of size 0.5 MB, assuming that traffic is generated randomly and inde-

pendently in the uplink and downlink directions. The system load is controlled by

varying the user arrival rate λD and λU that represent the average number of users

accessing the system for transmitting or receiving a file in UL and DL direction re-

spectively. We allocate users with an increased DL demand on one eNB and users

with an increased UL demand on the other, while edge users, within the overlapping

region are assumed to have equal UL/DL requirements. In this way we create a sce-

nario with high per region traffic diversity in the UL and DL transmission direction.

The results of the state-of-the art static TDD configuration and Cell Specific Dynamic

UL/DL Frame Re-configuration (CSDR) have been reproduced in a slightly different

deployment scenario, however, it follows the similar pattern as in [33], [64]. For

UL/DL frame re-configuration at a specific re-configuration timescales, a methodol-

ogy similar to [64] is adopted. The simulation parameters summarized in table 3.2

are based-on the 3GPP TD-LTE system specification [74]. Users not allowed to access

the system due to resource limitations, are queued and attempt to gain access at a
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later time. Separate simulations were performed for the uplink and downlink. For

calculating the throughput, we considered the effective bandwidth model considered

in [71].

Table 3.2: System Simulation Parameters

Parameter Value

eNB ISD 500m

System Bandwidth 10 MHz

Duplexing Scheme TDD

eNB Max Tx Power 46 dBm

eNB Antenna Gain 15 dBi

UE Total Tx Power 23 dBm

UE Antennal Gain 0 dBi

Path loss Model 128+37.6 log10(R), R in Km

UE-UE path loss If R ≤ 50m, PL=98.45+20log10(R), R in km

If R >50m, PL= 55.78+40log10(R), R in Km

Spectral Efficiency, Seff 4.0

Number of RBs, NRB 50

PRB size, RBs 180 kHz

Bandwidth efficiency, Beff 0.65

SINR efficiency, SINReff 0.95

File size (FS) 0.5 MB

t pth (0.5/1) Mbps

The capacity of the link S [bps/Hz] is:

S =min
�

Beff · log2

�

1+
SINR

SINReff

�

, Seff

�

(3.11)

where, Beff is the bandwidth efficiency and SINReff is the Signal to Interference

plus Noise Ratio (SINR) for a system with maximum spectral efficiency Seff. The pa-

rameters used for estimating the throughput are also shown in the table 3.2, based

on the values used in [75], with same values assumed for downlink and uplink. The

TD-LTE frame configuration scenarios adopted in the evaluation consider two fixed
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TDD frame schemes, i.e. Config-0 and Config-5 based on table 2.1, employed by both

eNBs for the uplink and downlink simulations. These schemes were compared against

the adaptive and virtual cell ones. The adaptive scheme distinguishes inner and outer

cell users based on the estimated path loss, allocating UL/DL sub-frames in a flexi-

ble manner with inner cell users having access to all the available sub-frames, while

fixed subframes are allocated for the outer cell users according to [33]. The adaptive

scheme adopts Config-0 for one eNB and Config- 5 for the other in both uplink and

downlink simulations. The virtual cell adopts the same configuration arrangement as

the adaptive one for the inner cell users but serves the overlapping cell users with

virtual frames composed from sub-frames of the respective inner cell configuration

according to the UL or DL traffic demand.
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Figure 3-3: CDF for DL direction

TD-LTE Config-0 and Config-5 provide an indication of the maximum performance

for the UL and DL respectively, demonstrating for each transmission direction the rel-

ative performance deviation of the adaptive and virtual cell schemes. The evaluation

study compares the Cumulative Distribution Functions (CDFs) and the blocking proba-

bility of the described TD-LTE schemes considering the UL and DL directions separately

as already mentioned. The blocking probability is defined as the statistical probability

of a connection, which cannot be established due to insufficient system resources. In
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that case a blocked user re-tries to access the system after a random uniform inter-

val with mean λ, hence the blocking probability represents the portion of users that

experience high delays in accessing the system.
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Figure 3-4: CDF for UL direction

The CDFs of the throughput for the Downlink (DL) and Uplink (UL) scenarios

are depicted in Fig. 3-3 and Fig. 3-4 respectively, considering the arrival rate of

λD=λU=10 for the DL and UL transmission direction respectively. It is clear that

the schemes that provide a flexible UL/DL configuration among neighboring cells,

i.e. the adaptive and virtual cell, result in higher overall throughput outperforming

the fixed Config-0 and Config-5, which only offer a high throughput for the UL or DL

respectively, limiting the other transmission direction. In particular, the virtual cell

scheme may potentially provide a summarized UL and DL improvement in through-

put up to 28% and 57% compared to Config-0 and Config-5 respectively. Compared

with the adaptive scheme, the virtual cell increases the user’s throughput up to 14%,

performing close to Config-5 in the DL direction and close to Config-0 in the UL one.

The reason for such an improvement is the fact that the virtual cell scheme allocates

sub-frames in UL or DL direction in a dynamic manner, to the users present in the

overlapping regions within the neighboring cells’. This is done based-on real time

traffic demands. This provides enhanced flexibility increasing the performance of the
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system, because it addresses the user demands residing in the virtual cell region, re-

solving in this way the problem of pseudo-congestion. Since TD-LTE configurations

that can serve a maximum UL demand may cause performance degradation for users

with high DL requirements and vice-versa, having the ability of creating a number

of smaller regions, which can offer more diverse UL/DL resources, can improve the

TD-LTE system performance.
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Figure 3-5: Blocking probability vs Offered load for DL

The blocking probability as a function of the offered load is illustrated in Fig. 3-5

and Fig. 3-6 for the downlink and uplink scenario respectively. For the DL direction,

i.e. Fig.1-5, the blocking probability of the adaptive, virtual cell and Config-5 is similar

for lower values of offered load. In contrast, Config- 0 introduces a very high blocking

probability, since high DL demand users are starving for resources. As the offered load

increases, it is observed from Fig. 3-5, a relatively small improvement for the virtual

cell against the adaptive, both being relatively close to Config-5 especially until the

offered load reach 1.5 Mbps. Considering the UL direction in Fig. 3-5, it is obvious

that Config-5 introduces an increased blocking probability from early low offered load

values, because of the limited amount of UL resources. The adaptive scheme follows,

resulting in much less blocking compared to Config-5. However, even for low offered
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load, i.e. less than 0.25 Mbps, the adaptive scheme introduces a 0.1 blocking probabil-

ity, which is a significant value. As the offered load increases the blocking probability

of the adaptive scheme further increases, while the blocking probability experienced

with the virtual cell and Config-5 remain zero accommodating more than four times

higher offered load. Even when the offered load is high, the blocking probability of the

virtual cell is close to the Config-0 one, illustrating that the virtual cell is able to serve

more traffic than the adaptive scheme, performing close to the maximum indicator.
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Figure 3-6: Blocking probability vs Offered load for UL

Simulation results show that the virtual cell scheme is able to serve 15% more

traffic than the adaptive one considering both the DL and UL direction. Virtual cells

also improve the dynamic resource allocation by combining resources from different

overlapping cells enabling users to achieve higher throughput. Such a percentage may

vary depending on the traffic conditions and TD-LTE configuration employed. Virtual

cells may enhance the signal quality at the cell edge, by helping to manage the in-

terference in the service region. The evaluation results demonstrate that virtual cells

may further improve the performance of TD-LTE systems and resolve the problem of

pseudo congestion by providing virtual customized frames for UEs on finer geograph-

ical locations, and improved mapping of their UL/DL transmission demands. Hence,
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virtual cells have the potential to offer an improved overall system performance by

utilizing available resources from multiple eNBs according to the users’ demand.

3.6.2 Simulation Results and Analysis (Phase-2)

After the initial evaluation of the virtual cell concept, it was further developed and

extensive event based system level simulations were performed in Matlab to evalu-

ate the performance of the proposed SDN based elastic resource management solu-

tions/algorithms that introduce virtual cells in TD-LTE networks. For the evaluation

of proposed solutions and algorithms, we considered a standard 19-site and 3-sector

hexagonal network layout, altogether forming 57 cells and adopted the evaluation

methodology defined in [74].The motivation behind our experimentation is to com-

pare our virtual cell proposal with the existing standards study performed in [32] and

the basic TDD static UL/DL configuration. For this reason we adopted 3GPP TR 36.828

experimentation scenario and parameters, which are commonly used for driving stan-

dards contributions in 3GPP RAN Working Groups.

UEs are randomly distributed in the service area and can access the system follow-

ing a Poisson traffic model, with a mean arrival rate λ. Each UE accessing the system

is capable of transmitting a file of size 0.5MB in both UL and/or DL transmission direc-

tion at different Transmission Time Intervals (TTIs), assuming that the traffic portion

per transmission direction is generated randomly. The system load is controlled by

varying the user arrival rate that represents the average number of users accessing the

system for transmitting and/or receiving a file. The traffic load of a cell is measured

based on the number of active users at a given time and the number of resources used

out of the total available resources. The detailed simulation parameters summarized

in table 3.2 are based-on the 3GPP LTE system specification [74].

We considered a scenario where at any given time, any random cell in the network

may experience very high traffic in UL or DL leading to pseudo-congestion, while the

other regions in the network carry relatively medium/low traffic. Considering this

traffic scenario, we compared the following TD-LTE frame configuration schemes in-

cluding:

• Static configuration 1, where all eNBs employ the same UL/DL configuration,

with a subframe ratio of 60% DL and 40% UL.
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• Cell specific adaptive reconfiguration, where the UL/DL subframe ratio is dy-

namically selected from the set of seven potential TD-LTE frame configurations.

The selection of a suitable UL/DL configuration for individual cells is based on

estimations of the uplink and downlink traffic demands as detailed in [33].

• Virtual cell, that utilizes resources from more than a single cell. Virtual cells

are created by the SDN controller, which may optionally enforce an UL/DL re-

configuration to a particular cell in order to secure adequate resources for the

virtual cell region. Under the virtual cell scheme eNBs can still perform locally

a cell specific adaptive reconfiguration.
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Figure 3-7: Downlink Throughput Distribution

The gain in the throughput performance can be observed in Fig. 3-7 for DL and Fig.

3-8 for the UL, which shows the cumulative distribution function (CDF) of throughput

comparing the three aforementioned configuration schemes. From both figures it is

obvious that the Virtual Cell Configuration achieves significant gains in throughput

compared to Cell Specific Adaptive Reconfiguration and Static Config.1. This gain is

achieved considering both users with low SINR conditions that may reside at the cell

edge and users with relatively higher SINR levels, that may reside in the inner cell and

surrounding regions. The throughput of high SINR inner cell users in the DL and UL

are presented distinctly in Fig. 3-9 and Fig. 3-10 respectively.
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Figure 3-8: figure
Uplink Throughput Distribution
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Figure 3-9: figure
Throughput Distribution High SINR Inner Cell Users DL
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Figure 3-10: Throughput Distribution High SINR Inner Cell Users UL

0 0.5 1 1.5 2 2.5 3

x 10
6

0

0.2

0.4

0.6

0.8

1

Throughput Low SINR DL (bits/s)

C
D

F

 

 

Virtual Cell Configuration

Static Config.1

Cell Specific Adaptive Reconfiguration

Figure 3-11: Throughput Distribution Low SINR Edge Users DL

From Fig. 3-9 and Fig. 3-10, it can be observed that high SINR inner cell users do

not exhibit loss in throughput for the virtual cells. This clearly indicates that virtual

cells have no negative impact on the system performance.

Fig. 3-11 and Fig. 3-12 show solely the low SINR edge users’ throughput for DL

and UL directions. It can be clearly observed that the virtual cell configuration offers

significant gains for the low SINR edge users compare to the Cell Specific Adaptive Re-

configuration and Static Config. 1. The gains offered by the Virtual Cell Configuration

are summarized in Fig. 3-13 and Fig. 3-14, which shows the comparison between the

throughput of low SINR edge users, the mean user throughput and the throughput of

high SINR inner cell users of the three schemes in DL and UL directions respectively.
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Throughput Distribution Low SINR Edge Users UL
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Figure 3-13: Downlink Mean and Low SINR Users’ Throughput Normalized to the Virtual Cell
Configuration

The throughput of Cell Specific Adaptive Reconfiguration and Static Config. 1

is normalized to the Virtual Cell Configuration which helps in visualizing the gains

offered by the Virtual Cell Configuration in comparison with the Cell Specific Adaptive

Configuration and Static Config. 1.

Clearly, both schemes that provide a flexible UL/DL configuration, i.e. the Cell Spe-

cific Adaptive Reconfiguration and Virtual Cell Configuration, result in higher overall

throughput, thereby outperforming Static Config. 1, improving the performance of

low SINR users. In particular, we can observe from Fig. 3-13 and Fig. 3-14 that the
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Figure 3-14: Uplink Mean and Low SINR Users’ Throughput Normalized to the Virtual Cell
Configuration

Virtual Cell Configuration provides around 25% improvement in the low SINR user

throughput in DL and around 20% in the UL compared to the Cell Specific Adaptive

Reconfiguration, while 35% and 30% compared to Static Config. 1, in the DL and UL

respectively. For the mean user throughput, the Virtual Cell Configuration shows an

improvement of 10% in the DL and around 6% in the UL compared to the Cell Specific

Adaptive Reconfiguration, while around 16% and 12% compared to the Static Con-

fig. 1 in DL and UL respectively. The high SINR inner cell users do not experience

any negative impact on their performance but instead experience a small gain of 5%

and 3% compared to the Cell Specific Adaptive Reconfiguration and a gain of around

7% and 6% compared to the Static Config.1 in the DL and UL directions respectively.

The reason behind this is due to the fact that some of the low SINR edge users that

are served by the virtual cell configuration free up certain resources that were previ-

ously allocated by the serving eNB. These freed up resources can be allocated to the

remaining users.
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Fig. 3-15 and Fig. 3-16 illustrate the delay CDFs of the aforementioned three

schemes for the DL and UL respectively.
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Figure 3-15: Downlink Delay CDF

It can be observed that the Virtual Cell Configuration achieves significant gains in

transmission delay compared to the Cell Specific Adaptive Reconfiguration and Static

Config. 1 both for low SINR users, which may reside at the cell edge and other users

who experience relatively higher SINR levels, that may reside in the inner cell and

surrounding regions.
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Figure 3-16: Uplink Delay CDF

The delay of high SINR inner cell users in DL and UL are distinctly presented in

Fig. 3-17 and Fig. 3-18.
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Figure 3-17: Downlink High SINR Inner Cell Users’ Delay CDF

From the figures, it can be observed that high SINR inner cell users do not experi-

ence an increased delay in case of the virtual cell configuration. This confirms that the

virtual cell configuration has no negative impact on the overall system performance.
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Figure 3-18: Uplink High SINR Inner Cell Users’ Delay CDF

Fig. 3-19 and Fig. 3-20 show the low SINR edge users’ delay for DL and UL di-

rections. It can be clearly observed that the virtual cell configuration offers significant

improvements in terms of delay for the low SINR edge users. The delay of low SINR

edge users in the case of virtual cell configuration is lower compared to the Cell Specific

Adaptive Reconfiguration and Static Config. 1 illustrating performance improvement

offered by the virtual cell configuration.
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Figure 3-20: Uplink Low SINR Inner Cell Users’ Delay CDF
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Figure 3-19: Downlink Low SINR Inner Cell Users’ Delay CDF

The gain in the transmission delay can also be visualized in From Fig. 3-21 and Fig.

3-22 for the DL and UL direction respectively. As expected, the results are aligned with

the throughput gains, as throughput and delay are closely related metrics. To assess

the gain in delay offered by the Virtual Cell Configuration, the delay measures of Cell

Specific Adaptive Reconfiguration and Static Config. 1 are normalized to the delay of

the Virtual Cell Configuration. From Fig. 3-21 and Fig. 3-22 it can be observed that

low SINR users in the Virtual Cell Configuration introduce around 25% and 20% less

delay than the low SINR users in cell Specific Adaptive Reconfiguration, while 35%

and 30% compared to the Static Config. 1 in DL and UL respectively. It is also noted

that there is no increase in delay of high SINR inner cell users. In fact slight reduction

in delay of about 5% and 3% compared to the Cell Specific Adaptive Reconfiguration

while around 7% and around 6% compared to the Static Config. 1 are observed in DL

and UL directions. Also, the mean transmission delay for Virtual Cell Configuration

is reduced slightly by 10% and 6% in the DL and UL direction compared to the Cell

Specific Adaptive Reconfiguration and around 16% and 12% compared to the Static

Config. 1.
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Figure 3-21: Downlink Mean and Low SINR Users’ Delay Normalized to the Virtual Cell Con-
figuration

In summary, it is evident from the performance analysis that the Virtual Cell Config-

uration outperforms the state of the art mechanisms mainly because it can dynamically

allocate sub-frames within neighboring cells’ overlapping regions for the UL or DL di-

rections according to the real time traffic demands. This provides enhanced flexibility

by allowing the system to program the network resources on-demand considering a

global network view addressing user demands in particular cell areas and resolving

pseudo congestion. It is also worth noting, that the users residing in the virtual cell

region and served via multiple eNBs potentially free up resources for other users in

the cell, which may experience enhanced SINR improving the overall network perfor-

mance. With the help of SDN based resource management and the use of virtual cells,

operators can maintain a tight control over the network with the ability to flexibly

allocate resources on-demand, not only to the end users but also to the OTT applica-

tions considering the user subscription plans and SLAs. In particular, mobile operators

may dynamically program the network to address the traffic needs while considering

UL and DL traffic separately, resolving situations that could lead to congestion. In

addition, mobile operators can handle efficiently the service elasticity requirements

of cloud providers enhancing the quality of experience taking full advantage of the

network resource availability.
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Figure 3-22: Uplink Mean and Low SINR Users’ Delay Normalized to the Virtual Cell Config-
uration

3.7 Summary and Conclusion

This chapter has introduced the concept of virtual cell that enables UEs to utilize re-

sources from multiple eNBs taking full advantage of the TDD resource flexibility and

providing a means for efficient resource management. Among the several benefits of

virtual cells, the most significant concentrate on resolving or avoiding the pseudo con-

gestion and on the provision of a virtual, customized frames from multiple eNBs for

UEs residing in the virtual cell region. Virtual cells offer a distributed approach that

exploits both spatial and time domain for enhanced load balancing and efficient re-

source sharing in real time to address varying traffic needs in UL and DL directions. In

addition to this, an SDN-based network management architecture and control mech-

anisms to provide resource elasticity in a TD-LTE system have also been introduced.

Such a resource management flexibility introduced by this proposal can enhance the

UL/DL diversity in a RAN deployment increasing performance gains, while providing

a key enabler for the network operators to support a broad range of OTT applications

and cloud services with a wide variety of UL/DL traffic demands. The proposed mech-

anisms can address flexibly UL and DL traffic requirements in an autonomous manner

addressing effectively pseudo-congestion by forming virtual cells enabling users to

utilize resources from multiple eNBs allowing customized frames that resolve pseudo-

congestion. An algorithm to manage the network resource providing flexibility and
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enhanced user performance has been introduced at the SDN controller to assess con-

gestion situations and provide resolution via virtual cell provision and by enforcing

TD-LTE frame re-configuration at selected eNBs. The results obtained via system level

simulations (presented in Phase-1 section 3.6.1 and Phase-2 section 3.6.2) show sig-

nificant improvements in the average user performance including both edge users that

reside within the virtual cell region and inner cell users, without compromising the

overall system performance. Further research is envisioned to extend the proposed

SDN based mechanisms considering split bearers and towards dynamic adjustments

in the mobile backhaul provisioning resources for lower layer transport mechanisms.



Chapter 4. SDN-based Elastic Resource Management and QoE Enhancements 85

Chapter 4

SDN-based Elastic Resource Management

and QoE Enhancements in 5G Networks

4.1 Introduction

In this chapter, an innovative SDN framework that aims at enhancing the QoE per-

ceived by the users running OTT applications is proposed. A scenario is considered

where the LTE network is composed of TD-LTE picocells that can better handle sym-

metric traffic and effectively match instantaneous traffic demands by adapting the

UL/DL frame ratio [33]. In this direction, we consider the presence of an SDN Con-

troller with a global view of the TD-LTE picocell status and the QoE requirements of

the end users. Based on the available knowledge, the SDN Controller centrally orches-

trates the instantiation of virtual cells and adapts the UL/DL frame ratio in neighboring

picocells when needed. This is different from the state-of-the art where, for example,

in [41] the authors have proposed a dynamic cell specific UL/DL frame reconfigura-

tion mechanism to meet the individual QoS requirements at the end users (i.e. in

terms of throughput and packet delay). In contrast to this, the framework proposed

in this chapter, enables customized TD-LTE frame ratio to satisfy the QoE demands

at the end users. Besides, in this work we utilize the SDN paradigm [17] to achieve

efficient synchronization of the TD-LTE pico cells in order to enable an SDN-enhanced

formation of virtual cells. In this manner, we allow interaction between the OTT appli-

cation providers and network operators. A downlink scheduling method for improving

the QoE for VoIP traffic in LTE networks is proposed in [51] where scheduling is per-

formed based on users’ feedback. a QoE-based framework for network planning and

propose an analytical method based on queuing theory to dimension access networks

such as LTE is presented in [52]. Different from [51] and [52],in this chapter, A novel

SDN-based network management architecture and solution based on the formation of
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virtual cells and the flexible adaptation of the UL/DL ratio at the TD-LTE pico cell is

presented. The numerical analysis shows, that the proposed framework improves the

QoE of users suffering from service quality degradation without affecting the perfor-

mances of other regions of the RAN. In [53], the authors propose an architecture in

which a central QoE server collects the performance indicator from different network

elements which is then used to improve the QoE of the users. In [54], Decentralized

data offloading techniques are proposed which aims to improve end-to-end delay and

provide the required MOS for service continuity. Different from [53] and [54], in this

chapter, the proposed concept adopts a hybrid approach where, even though the users’

QoE is estimated locally at the pico-eNBs, a centralized SDN-based resource manage-

ment is used to enhance the QoE of specific users by forming virtual cells. In [55] a

radio resource management (RRM) strategy is proposed, which dynamically reallo-

cates resources assigned to users with adverse channel conditions towards other users

aiming to improve their MOS. Different from this work, in this chapter, the proposed

novel concept provides additional resources to users with MOS below a certain level

depending on the type of application. To achieve this, we allow cell-edge users to uti-

lize resources from multiple pico eNBs with the help of the virtual cell concept. Such

a strategy provides sufficient resources to users with bad channel conditions while

enhancing individual MOS of the corresponding user applications.Thus, the proposed

framework in this chapter, extends the state of the art by dynamically programming the

UL/DL ratio of TD-LTE pico eNBs, while introducing virtual cells considering the re-

quirements of the OTT applications to satisfy QoE of end users. Furthermore, the pro-

posed framework aims at resolving the so-called pseudo congestion problem, where a

picocell has a surplus of resources in the opposite direction as compared to the desired

one. Besides, the proposed framework aims at creating virtual cells in regions with

overlapping network coverage in order to enable cell-edge users to utilize resources

from multiple pico-cells. We envisage that the SDN-enhanced employment of UL/DL

frame reconfiguration in conjunction with the instantiation of virtual cells can enhance

service quality and improve resource utilization [45].

Additionally, in section 4.3, this chapter also propose a novel SDN-based architec-

ture that enables dynamic resource sharing among the different operators and employ

a dynamic re-configuration mechanism that enables the TDD pico eNBs to adapt their
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UL/DL ratio in order to release or embody a set of radio resources to/from the FDD

macro eNBs operators. System level simulation results demonstrate that the combi-

nation of these solutions in the scenario of resource transfer from a TDD pico eNB

operator to a FDD macro eNB operator achieves notable performance gains in terms

of communication delay in the application layer. This is different from the state-of-

the art, where, for example in [61], an SDN-based framework is proposed to enable

efficient on-demand sharing of base stations that belong to different operators. The

OpenRAN architecture, to leverage the convergence benefits of HetNets and achieve,

at the same time, customization via network programmability is introduced in [62].

In [63], The SDN paradigm as a tool to simplify cellular network management is dis-

cussed. Here, network resources are pooled and Network virtualization (NV) is re-

alized at different levels (e.g. application, spectrum, network level) to have more

granular control over the network. Here, a hierarchical architecture with a local and

a global SDN controller is also considered. The local controller manages the activi-

ties inside the network, while the global controller handles the events throughout the

HetNet and coordinates the RANs through the backhaul. Different from [61]-[63], in

this chapter, we focus on the resource sharing problem in a multi-operator integrated

FDD macrocell and TDD picocell LTE-A system, employing network programmability

through re-configuration of the TDD frames at the pico eNBs. The problem of re-

configuring the TDD frames of pico eNBs has also been considered in [33] [64] [36].

However, different from these approaches, in this chapter, we additionally consider

the amount of resources shared in the FDD system and the requirements of the users

associated with the TDD picocells. Focusing on TDD systems, the idea of flexible spec-

trum sharing is investigated in [45]. The authors in [76] consider a mix of TDD and

FDD, where the TDD occupies the guard band spectrum between the FDD UL and

DL. In contrast to [45] [76], in this chapter, we consider elastic resource sharing in

a multi-tenant multi-operator LTE-A HetNet environment. The detailed discussion on

state-of-the art related to the novel ideas presented in this chapter can be found in the

literature review chapter 2.

This chapter is organized as follows: Section 4.2 introduces the proposed SDN

framework for QoE-aware flexible network management. It also includes a brief in-

troduction of the virtual cell concept (that has also been discussed in detail in chapter
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3) and QoE Aware Flexible Network Management. Section 4.2.4 includes system-

level simulation results on the performance of the proposed framework. Section 4.4

presents the concept of elastic resource sharing in LTE-A FDD/TDD HetNets. It de-

scribes the proposed SDN-based architecture for elastic resource sharing among mul-

tiple operators and analyzes the resource sharing logic in combination with the TDD

UL/DL frame re-configuration mechanism. Section 4.4.3 discuss the performance

evaluation results and analyzes the gains obtained by employing the proposed SDN-

based elastic resource sharing solution. Finally, section 4.5 concludes the chapter.

4.2 SDN Framework for QoE Enhancement

This section describes the main features of the proposed SDN-based framework for

enhanced QoE in the presence of TD-LTE picocells. In section 4.2.1, the virtual cell

concept is briefly introduced. This is followed by the discussion on how the virtual

cell concept can be applied to enhance the QoE of end user applications in a TD-LTE

picocell deployment scenario. In section 4.2.2, an SDN-based reference architecture

for flexible network management that is accompanied with the logic signaling flow

for enhanced QoE management on a per user and per application type basis has been

presented. Accordingly, in the same section, an algorithm for assessing the QoE of

the users locally at the pico eNBs and triggering the instantiation of the virtual cell

function (which is a logical entity residing in the SDN Controller) is discussed. The

details of the QoE-Assessment algorithm are described in section 4.2.3.

4.2.1 Virtual Cell Concept

The concept of virtual cell has been introduced and explained in detail in chapter

3. Virtual cells provide efficient and flexible resource management for TD-LTE net-

works. An overview of the virtual cell concept is shown in Fig. 4-1. The SDN based

solution proposed in this chapter uses the virtual cell concept to avoid or counter

any congestion related problems and aims to enhance the QoE of the end users.
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Figure 4-1: Virtual Frame Configuration

In certain traffic conditions, cell-specific adaptive reconfiguration is unable to meet

UL-DL traffic requirements. In such situations, the proposed framework applies the

virtual cell concept to further enhance the QoE of certain user flows that suffer from

QoE degradation due to varying traffic conditions. This is done by providing additional

resources via virtual cell formation with the neighboring eNBs.

4.2.2 QoE Aware Flexible Network Management

Fig. 4-2 illustrates the proposed SDN-based flexible network management architec-

ture for enhanced QoE. In this scenario, the virtual cells are created on demand for

specific user applications between adjacent pico eNBs. Each pico eNB has a logical

function for QoE assessment that works in cooperation with the TD-LTE cell specific

adaptive re-configuration function. Virtual cells are created by the SDN-based virtual

cell function as shown in Fig. 4-2. According to this architecture, OTT providers spec-

ify their service requirements and configuration needs to the SDN controller via the

Application Controller Plane Interfaces (A-CPIs). This provides a degree of freedom
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and flexibility to network operators to program their network in real-time in order to

satisfy the users’ QoE requirements in an efficient fashion. The SDN controller attains

a global network view by interacting with the 3GPP OAM network management plane

[77]. The 3GPP OAM subsystem assists the SDN Controller to acquire on-demand

(or periodically) information on the current state of the RAN. The RAN state includes

information regarding the UL/DL traffic load measurements, the interference condi-

tions and performance measurement KPIs e.g. throughput, delay, handover failures

etc. This information can be then be forwarded to the SDN controller and used by the

virtual cell function to suggest reconfiguration actions to the pico-eNBs in order to re-

solve issues related to QoE degradation and pseudo congestion. Such reconfiguration

instructions are communicated from the SDN-controller to the pico-eNBs via the Data-

Controller Plane Interface (D-CPI). The D-CPI also monitors QoE related KPIs e.g MOS

scores of different applications, in order to feed the SDN controller with performance

information related with virtual cells directly.

Figure 4-2: SDN Network Management Architecture

Fig. 4-3 shows the logical signaling flow required to support the proposed two-

phase QoE-enhancement approach. As a first step, each user sends a measurement

report to the serving pico eNB periodically.
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Figure 4-3: Signaling Flow Mechanism Logic

This thesis contains information regarding the end-to-end delay and the Packet

Loss Rate (PLR) of each application flow running at the users’ device. The PLR and

the end-to-end delay measurements are subsequently used as inputs for the QoE-

Assessment algorithm that runs at the pico eNB. If the performance of a particular

application drops below a predefined limit, the QoE-Assessment algorithm triggers

the SDN controller to create a virtual cell and indicate appropriate actions to resolve

the problem of QoE degradation for specific applications or users. The triggering con-

ditions are described in more detail in section 4.2.3. Once the SDN Controller receives

such a request from the pico eNB, it initiates the virtual cell configuration function. In

more detail, it collects information about the status of neighboring cells (e.g. traffic

load, SINR, users’ location) and identifies suitable neighbor cells for creating virtual

cells in proximity with the tagged pico eNB. Accordingly, the SDN Controller reports

back to the serving pico eNB the respective set of neighbor cell identities (IDs) to

create a virtual cell. In addition it helps in identifying the list of users to be served

via the virtual cell configuration, allocating the desired resources without causing any

negative impact on the performance of other users in the neighbor cell.
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4.2.3 QoE Assessment Algorithm

The parameters and variables used in the proposed QoE-Assessment algorithm are

listed in table 4.1. A pseudo-code version of the proposed QoE-Assessment algorithm

is presented in algorithm 3. The QoE-Assessment algorithm runs in all the pico eNBs

in a distributed fashion. In the following, we consider a scenario where the users may

host different applications on a single device. Each pico eNB calculates the MOS of

each application flow running at the served users (step 4). The MOS is calculated

according to the E-Model by taking into account the average delay and PLR of each

flow over a specific time interval.
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Table 4.1: List of Parameters and Variables

Notation Description

C Set of cells

c, (c ∈ C) Index for a cell

u, (u ∈ U) Total number of users in a cell

f , ( f ∈ F) Set of application flows of a user u

MOSThr( f ) Application specific MOS Threshold

for the flow f

MOSdist( f ) Distance of MOS( f ) from

the MOSThresh( f )

G1mos, G1mos ∈ F Set of flows with

MOSdist( f ) ∈ [0,1.5]

G2mos, G2mos ∈ F Set of flows with

MOSdist( f ) ∈ [1.5, 2.5]

γu,c SINR of user u with cell c

γThresh SINR Threshold

UlowSINR, UlowSINR ∈ U Set of users with γ< γThresh

PG0 Probability of a flow f

to be in group G0mos

PG1 Probability of a flow f

to be in group G1mos

PG2 Probability of a flow f

to be in group G2mos

PG0out Outage Probability for group G0mos

PG1out Outage Probability for group G1mos

PG2out Outage Probability for group G2mos

In the next step, the proposed algorithm calculates the MOS distance (MOSdist) be-

tween the MOS of a specific application flow and the application specific MOS thresh-

old (MOSThr) that we consider to be fixed and known. For a flow f, the MOSdist

is defined as the difference between the MOS of flow f and the application specific

MOSThr . Note that a different MOS threshold can be used for each application (VoIP,
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Video, Best effort etc.) running at the end devices. For example, the MOS threshold

for VoIP flows can be 3.5, whereas the respective one for video applications can be up

to 4.0.

Algorithm 3 :QoE Assessment Function
1: for ∀ c ∈ C do
2: for u=1:U do
3: for f=1:F do
4: Calculate MOS( f ) according to the E-Model
5: MOSdist( f )=CalcDistFunc(MOS( f ),MOSThr( f ))
6: if MOSdist( f ) ≤ 0 then
7: Add f to G0mos
8: end if
9: if 0<MOSdist( f ) <1.5 then

10: Add f to G1mos
11: Update PG1
12: end if
13: if 1.5 < MOSdist( f ) < 2.5 then
14: Add f to G2mos
15: Update PG2
16: end if
17: end for
18: if γu,c < γThresh then
19: Add u to UlowSINR
20: end if
21: end for
22: if PG0 = PG0out f or t=4T then
23: if PG1 = PG1out & PG2 6= PG2out f or t=4T then
24: Invoke SDNVirtualCellFunc(G1,UlowSINR)
25: end if
26: if PG2 = PG2out & PG1 6= PG1out f or t=4T then
27: Invoke SDNVirtualCellFunc(G2,UlowSINR)
28: end if
29: if PG1 = PG1out & PG2 = PG2out f or t=4T then
30: Invoke SDNVirtualCellFunc(G1,G2,UlowSINR)
31: end if
32: end if
33: end for

Once the MOSdist distance has been calculated for each flow, the flows are grouped

in three different groups named G0mos, G1mos and G2mos according to their MOS dis-

tance. Following this, the probabilities PG0,PG1 and PG2, that is, the probability of flow

f to be in group G0mos, G1mos and G3mos are updated. More specifically, the variable PG0

is defined as the probability of an application flow of a specific user to be in group 0

with MOSdist ≤ 0, PG1 is defined as the probability of an application flow of a specific

user to be in group G1 with MOSdist between 0 and 1.5 and PG2 is the probability of

an application flow of a specific user to be in group G2 with MOSdist between 1.5 and

2.5. An outage is considered when the probability of VoIP flows of users having MOS
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≤ MOSVoI PT hresh becomes equal to or greater than the MOS probability threshold of

their respective groups. More specifically, the outage in the groups G0, G1 and G2

occurs when:

PG0out = P[PG0 < PG0thresh] (4.1)

In group 1, outage occurs when:

PG1out = P[PG1 ≥ PG1thresh] (4.2)

Finally in group 2, the outage occurs when:

PG2out = P[PG2 ≥ PG2thresh] (4.3)

Without loss of generality, in the sequel for PG0thresh we use an arbitrary value of

90% i.e. outage is considered if more than 10% of VoIP flows have a MOSdist higher

than 0. Note, that in this thesis we considered only VoIP application flows with an

application (VoIP) specific MOS threshold of 3.5. This is because it has been observed

that for VoIP applications, the minimum MOS for an acceptable QoE is 3.5. In addition

to this, we identify and sort the users with low SINR, i.e. users with SINR lower than

a specific SINR threshold and add them to the UlowSINR group. To invoke the SDN

virtual cell function located in the SDN controller, we compare PG1 and PG2 with their

outage probabilities PG1out and PG2out . An arbitrary value of 70% of PG0out as PG1thresh

and 30% of PG0out as PG2thresh may be used to obtain PG1out and PG2out using equations

2.2 and 2.3 respectively.

The SDN Virtual Cell function is invoked only at specific events and only for the

specific application flows associated with groups PG1 and PG2 respectively, when they

reach their outage probability as shown in algorithm 3. The necessary inputs, for the

users in UlowSINR group and the flows in the G1 and G2 group are passed to the SDN

virtual cell function. The SDN virtual cell function suggests an appropriate action such

as enabling virtual cell configuration, to improve the QoE of the low MOS users based

on a global network view. For creating the virtual cells, the SDN virtual cell function

considers various parameters like users’ location that is estimated using SINR, the

traffic load of the serving pico eNB and the neighbor pico eNBs, considering UL and

DL traffic separately similar to [45].
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4.2.4 Simulation Results and Analysis

In this section we present system-level simulations using LTE-Sim [78] to analyze the

gains achieved by the proposed framework. We considered a cluster of seven outdoor

TD-LTE pico cell hotspots uniformly distributed in a small region. A variable number

of users are uniformly distributed within each cell (see table 4.2).

Table 4.2: Simulation Parameters-I

pico eNBs 7

pico eNB bandwidth 5 MHz

TX power 30 dBm

Path Loss Model L = 140.7 + 36.7 log10(R),

R in km

Fading Model Jakes model

Scheduler Downlink EXP Rule

Application Traffic Model G.729 VoIP

In the simulation, we have evaluated and compared the performance of the pro-

posed framework, with two competing schemes: the Static Configuration (SC) scheme

and the Cell Specific Adaptive Reconfiguration (AC) proposed in [33]. The SC scheme

considers static configuration of the TDD frame for all cells: the TDD configuration

1. This configuration matches mobile broadband deployment use cases with adequate

resources to serve traffic in both UL and DL directions. The AC scheme considers

a dynamic frame re-configuration of the TDD frame with an UL/DL reconfiguration

timescale of 10 ms given the seven UL/DL configurations available for TD-LTE. The

details of the AC scheme are included in [33]. The proposed framework adopts the

same configuration with the AC scenario but additionally serves users by employing

virtual frame configuration (VC) according to the real time UL and DL user traffic de-

mands. The remaining simulation parameters are in accordance with [78] and are

listed in table 4.2.

Fig. 4-4 shows the MOS outage probability that we denote by PG0out and we de-

fine as the probability of having VoIP flows with MOS lower than 3.5. In Fig. 4-4

we observe that the proposed framework outperforms both the SC and AC schemes,

especially for medium/high load traffic. In low traffic conditions, the improvement in
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MOS outage probability is relatively low. Nonetheless, in high traffic conditions, the

proposed framework is shown to reduce the MOS outage probability by up to 15%

(in absolute values) compared to the SC scenario and up to 10% (in absolute values)

compared to AC scenario.

Figure 4-4: MOS Outage Probability

This performance can be explained as follows. In low traffic load conditions, the

scheduler at the pico eNB is capable of satisfying the target MOS of VoIP flows and

thus, the VC configuration is not utilized extensively. However, when traffic increases,

the percentage of VoIP flows with a MOS less than the specific target threshold in-

creases. In such conditions, the proposed framework is employed leading to substan-

tial performance gains. In fact, since each pico eNB has limited resources, an increased

traffic load increases the PLR, delay and reduces throughput, leading to QoS and QoE

degradation. In such occasions, the outage probability threshold in algorithm 3 is

reached and the proposed framework enables users in overlapping regions to dynam-

ically share radio-resources from multiple cells. It is worth noting that the use of the

proposed framework improves the QoE of both cell-edge users and users close to the

center of the cell. This is because the users served by the virtual cell configuration

would release resources that have been previously allocated to them by the scheduler.

Accordingly, the scheduler can re-allocate those resources to users in other regions of

the cell.

Fig. 4-5 shows the average end-to-end packet delay as a function of the user den-

sity (i.e. in terms of number of users per cell). The proposed framework is shown

to reduce the end-to-end delay by up to 28% compared to the SC scheme and up to
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20% compared to the AC scenario. The reduction of the delay under the proposed

framework mainly follows from the reduced processing time at the packet scheduler.

In fact, when the proposed framework is activated, the scheduler at the serving pico

eNB is enabled to provide additional resources as a consequence of enabling virtual

cell configuration. This results in a decrease in the queueing delay which finally re-

duces the overall end-to-end packet delay. In more general setups with other types of

real-time traffic, the reduction of the end-to-end delay is expected to further reduce

the playback time and the jitter observed in multimedia content, e.g. video services.

Besides, in VoIP applications, reducing the end-to-end delay offer more opportunities

for flexible radio-resource management at the serving eNBs and scheduling gaps for

enhanced Discontinuous Reception (DRX) at the end terminals.

Figure 4-5: Average End-to-End Delay

Fig.4-6 illustrates the CDF of the PLR for the specific scenario with 40 users per cell.

Considering that the target PLR for VoIP applications is 1%, the proposed framework

is shown to attain an improvement of 15% compared to the SC scenario and 10%

compared to the AC scenario (in absolute values).
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Figure 4-6: Packet Loss Rate CDF

This implies that under the proposed framework, 15% more users have PLR below

the target PLR of 1% compared to the SC scenario, whereas, compared to AC, 10%

more users are able to have a PLR below the target PLR of 1%. The PLR is one of the

key parameters for QoE evaluation and the gains in PLR can provide improvement in

the overall QoE for the end users.

4.3 SDN Framework for Elastic Resource Sharing in In-

tegrated FDD/TDD LTE-A HetNets

One of the key challenges faced by the mobile network operators today is to support

the growing demand for mobile data traffic in a cost effective manner [1]. In this

direction, the installation of small-sized base stations into the macrocellular network

layout, a.k.a. small cells, has recently drawn significant attention. The integrated

cellular network infrastructure of macrocells and small cells is widely termed as Het-

erogeneous Networks (HetNets). Small cells can boost the area spectral efficiency

in the licensed spectrum and bring the cellular network closer to the end user in a

cost-effective manner. The support of small cells is integral part of the Long Term

Evolution-Advanced (LTE-A) system, which also enables the end users to deploy small

cells in an unplanned fashion [79]. Among others, small cells feature edge-based intel-

ligence that enables them to adapt their uplink (UL) and downlink (DL) transmissions

in order to avoid cross-tier interference with the macrocell network and support the

Quality of Service (QoS) requirements of the associated users. Under this viewpoint,
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Time Division Duplex (TDD) is considered as a key enabler for achieving flexible and

on-the fly adaptation of the UL and DL resources in the small cells. In parallel, the mo-

bile network operators have typically access to a fixed set of network resources, a.k.a.

dedicated resources, which can be portions of the licensed spectrum or a set of physi-

cal network components, e.g. base stations. Aiming to avoid the under utilization of

the physical resources and enable efficient resource sharing among multiple network

operators, recently, there has been a surge of interest for leveraging the benefits of

SDN in mobile cellular networks [80]. Among others, SDN can reduce network provi-

sioning, enhance network flexibility, and open the road ahead for innovative, dynamic,

and cost-effective solutions based on the concept of network re-programmability. Be-

sides, such flexibility creates new business opportunities for the mobile operators and

enables on-the-fly network-tuning with respect to the applications or services accessed

by the users.

In this section, we mainly focus on the LTE-A HetNet where a common infrastruc-

ture provider owns a set of macrocell evolved Node Bs (eNBs), called macro eNBs,

and a set of picocell eNBs, called pico eNBs. All the macro eNBs are assumed to use

Frequency Division Duplex (FDD), whereas all pico eNBs are assumed to use Time Di-

vision Duplex (TDD). The infrastructure provider leases its infrastructure to multiple

macrocell operators and multiple picocell operators. Under this model, we address

the problem of elastic resource sharing between the FDD macro eNB operators and

the TDD pico eNB operators in a dynamic fashion. To achieve this, we propose an in-

novative SDN-based architecture that enables such dynamic resource sharing among

the different operators and employ a dynamic re-configuration mechanism that en-

ables the TDD pico eNBs to adapt their UL/DL ratio in order to release or embody a

set of radio resources to/from the FDD macro eNBs operators. System level simulation

results demonstrate that the combination of these solutions in the scenario of resource

transfer from a TDD pico eNB operator to a FDD macro eNB operator achieves notable

performance gains in terms of communication delay in the application layer.
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4.4 FDD/TDD Elastic Resource Sharing Concept

TDD and FDD operation is an integral part of the baseline functionality of the LTE-

A system. Nevertheless, FDD is widely identified more suitable for applications that

generate symmetric traffic, e.g. voice-centric services, while TDD is more suitable

for serving bursty/asymmetric data traffic, e.g. social media services and machine-

to-machine (M2M) communications. In this section, we consider a heterogeneous

network with overlaid FDD macro eNBs and underlying TDD pico eNBs that may be-

long to different network operators. All cellular stations are managed by a common

infrastructure provider that leases the infrastructure to the FDD/TDD operators based

on Service Level Agreements (SLAs). The infrastructure provider also allocates the

frequency bands to the FDD and TDD systems. The use of frequency bands for FDD

and TDD transmission modes depend on the geographic region and the SLAs between

the infrastructure provider and the network operators. In the scenario considered in

this case, the FDD (or TDD) system of a tagged macro (or pico) operator requires more

radio-resources to efficiently support the ongoing services of the associated users. To

address this requirement, we focus on the scenario where the TDD pico system is ca-

pable of leasing a part of its allocated resources to the FDD macro system in a highly

efficient yet scalable manner. Accordingly, the FDD macro users can employ carrier

aggregation to co-utilize the (potentially distant) set of radio resources of the TDD

pico system. This transfer of radio resources, a.k.a. elastic resource sharing, can also

take place in the opposite direction, i.e. from the FDD to the TDD system. The FDD

and TDD systems can co-exist and complement each other serving different types of

traffic provided that interference mitigation is assured [33].
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To achieve elastic resource sharing among the two systems, we consider the pres-

ence of a centralized SDN Controller, which acts as a resource brokering entity with

global resource knowledge. In addition, aiming to efficiently handle the transfer of

resources in the case of the TDD system, we also consider that the TDD pico eNBs can

re-configure the UL/DL frame ratio in the emitted TDD frames. The aforementioned

process is performed in relation to the current resource share and the demands of the

cellular users, while it allows for efficient re-adaptation of the TDD resources at the

pico eNBs in a timely manner.

4.4.1 SDN-based Network Resource Management for FDD/TDD Het-

Nets

Fig. 4.4.1 depicts the proposed SDN-based network management architecture. With-

out the loss of generality we focus on the scenario where radio-resources are leased

from the TDD system to the FDD one, and consider a LTE-A HetNet of one macro eNB

operator, coined as Operator A, and one pico eNB operator, coined as Operator Z. The

macro eNBs of Operator A use FDD, the pico eNBs of Operator Z use TDD, while all

types of eNBs are assumed capable of communicating with the central SDN controller

(NV-aware eNBs). The discussion below can be readily extended to the scenario of

multiple FDD macro eNB operators and multiple TDD pico eNB operators.
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Figure 4-7: SDN-based network resource management architecture

The FDD and TDD network operators have to establish SLAs prior to the employ-

ment of elastic resource sharing. Apart from the dynamic sharing of radio-resources,

the FDD and TDD network operators may also share the common base station infras-

tructure so as to enable their users to access the closest base station in proximity [61].

The latter functionality is termed as multi-tenant operation. Aiming to cover both

these functionalities we extend the base station virtualization model in [61] by addi-

tionally enabling on-demand network reconfiguration capabilities for resource sharing

of the underutilized spectrum resources between the FDD and TDD systems.

As shown in Fig. 4.4.1, the intelligence for resource management resides at the

SDN Controller, which also provides application programming interfaces (APIs) for

over-the-top (OTT) or business applications. Each transmission mode, i.e. FDD or

TDD, is managed by a different control application that is capable of acquiring the

knowledge of the network state by means of periodic information exchange with the

FDD eNBs and TDD pico eNBs. The multi-tenant TDD pico-eNB architecture consists

of a Hypervisor that is capable of virtualizing the physical resources to enable multiple
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operators to share the available bandwidth while remaining isolated from each other.

To this end, two agents at the pico eNB are remotely assisted by two distinct manager

applications at the SDN Controller: the Multi-Tenant Manager (MTM) and the Radio

Resource Manager (RRM).

Figure 4-8: Logic Signaling Flow Mechanism

More specifically the MTM is the place where the multitenancy policy resides and

where the handover (HO) decision towards the TDD pico eNBs is taken. It is the entity

that instructs an agent into the Hypervisor at the pico eNBs, referred to as the Multi-

Tenant Agent (MTA), providing it with real-time information to enable efficient sharing

of the multitenant pico eNBs into a prescribed number of slices. Note that a slice is

represented by the list of users belonging to a tenant operator and the amount of re-

sources that the multitenant pico eNB shares. Another agent, referred to as Resource

Transfer Agent (RTA), is responsible for implementing the radio resource transfer pro-

cedure. To achieve this, a MAC scheduler agent cooperating with the RTA and MTA

provides the tenant operators an abstraction of the MAC layer. The MAC scheduler

allocates to each operator a number of the available PRBs in a transparent way, i.e.

transparent handling of all the operations related to the real-time configuration of

each slice. The upper layers of the protocol stack are emulated in a pool of software
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applications, referred to as (Virtual eNB) VeNBs. In other words, VeNBs are virtualized

instances of an eNB, where each VeNB is managed by a different tenant operator and

is logically connected with the core network of the tenant operator.

The logic signaling flow for both the multi-tenancy procedure and the network re-

configuration for elastic resource sharing is illustrated in Fig. 4-8. The multi-tenancy

policy that enables HO of the users to multi-tenant pico eNBs, takes into account pe-

riodic physical measurements that give the MTM a global view of the network state.

Once the HO decision is made, the MTM selects the more suitable target multi-tenant

pico eNB and sends a slice re-configuration request. It also initiates the HO procedure

to the MTA.

The communication between the SDN Controller and each NV aware base station

is based on a combination of the OpenFlow protocol [80] and an appropriate high

layer protocol, i.e. based on UDP, as in [61]. The MTM uses OpenFlow to instruct the

MTA agents, sending them appropriate rules to dynamically configure each slice and

enable the delivery of the packets from the users to the appropriate VeNB. Moreover,

a high layer protocol is used to permit the exchange of messages between the entities

involved in the network re-configuration procedure (RRM and RTA agents of the TDD

pico eNBs). The RRM forecasts the resource availability and enables the transfer of

resources between the TDD and FDD systems. To this end, the RRM is periodically

informed about the network state, (i.e. the bandwidth utilization of each system) by

the RTA agents of both FDD and TDD NV-aware base stations. In such a way it can

acquire a global knowledge of the network state and distribute the available resources

in an efficient way.

The RTA agent of each NV-aware base station is responsible for collecting the band-

width requests delivered by the tenant operators and to distribute the available band-

width among them. Such requests are sent to the FDD manager, if such request is

performed by an FDD eNB, and forwarded them to the RRM module of the hosting

system, e.g. the TDD manager. In this scenario, the TDD manager performs admis-

sion control and TDD frame re-configuration by the policy described in section 4.4.1.

If the TDD manager is capable of supporting the requests for radio-resources from

the FDD tenant operator, it transfers underutilized resources from the TDD pico eNB

operator to the FDD macro eNB one. This operation is performed as follows: the
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TDD manager instructs the MTA agents of the involved TDD pico eNBs how to adjust

the bandwidth availability so as to make part of its resources to the FDD macro eNB

operator, while the FDD manager of the respective macro eNB operator allocates the

acquired resources among the overloaded FDD eNBs.

4.4.2 Dynamic Resource Sharing Among FDD/TDD HetNets

When transferring or sharing resources among different operators there is a need for

a mechanism to ensure that the resource gain of a certain operator does not result

in starving the users of the other. To regulate such resource transfer we adopted an

approach, similar to the Distributed Fair Capacity Based Channel Allocation model

elaborated in [72]. Without loss of generality, we focus on the scenario of transfer-

ring resources from the TDD operator to the FDD one. Such a process is based on

the average capacity gain considering the additional resources provided to the FDD

macrocells against the capacity lost on the TDD pico eNBs from where the resources

are taken. The actual capacity gain and the capacity loss are estimated using the mod-

ified Shannon formula included in [71]. In particular, the capacity gain is calculated

considering the mean SINR of all users in the FDD macrocell, where additional re-

sources are transferred, while the capacity loss is estimated on TDD pico eNBs, from

where resources are borrowed, taking into account only the experience of the users

with the worst SINR, i.e. the users having SINR < 0.

Let CF DD,n be the capacity gain for the FDD macrocell when it borrows a specified

set of resources from the TDD pico eNBs. The average capacity increase GF DD for the

FDD macrocell users is given by:

GF DD =
1

NF DD

NF DD
∑

n=1

CF DD,n (4.4)

where, NF DD are the total number of users in FDD macrocell. If the capacity loss

in the TDD pico eNBs is less than the average increase in capacity gain for the FDD

macrocell users, then the requested resources can be transferred, while assuring the

desired user QoS for the TDD pico eNBs. In other words, the resources are transferred

only if GF DD > LF DD, where LF DD is the capacity loss experienced by the worst SINR

users in the TDD pico eNB region. It should be noted that the capacity gain and the
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capacity loss calculation for transferring resources in the opposite direction, i.e. from

FDD to TDD, follows a similar process.

We envision that the resource transferring condition described above assists the

SDN controller to take the decision regarding resource sharing among different oper-

ators provided that the amount of desired resources, i.e. PRBs, is communicated or

estimated by the SDN Controller. Communicating the desired resources could easily

be accomplished via the north bound API from where application providers can ask

the SDN Controller regarding particular QoS, e.g. capacity. Alternatively, the FDD

macrocell can signal the SDN controller requesting additional resources as soon as

it starts experiencing congestion, which can be provided by exploiting the maximum

amount of resources that can borrowed from the overlapping TDD pico eNBs. Since

the SDN Controller has knowledge of the network state, i.e. load associated with

macrocells and pico eNBs and the respective interference levels, it can estimate the

maximum amount of resources it can transfer from the TDD pico eNBs that can satisfy

the capacity gain and capacity loss resource transfer condition.

The SDN controller may also have knowledge of the specific TDD UL and DL re-

source utilization and hence can further optimize the UL/DL ratio associated with

particular TDD pico eNBs with the objective to increase the amount of resources that

can be transferred towards the FDD macrocell. The rationale here is to determine

an appropriate UL/DL frame with respect to the residing user UL/DL demands, which

can free more resources to be transferred towards the FDD macrocell. The mechanism

for determining the corresponding UL/DL frame can be based on the same heuristics

as the ones used in [76]. It should be noted that the amount of resources that can

be shared among the FDD and TDD operators may vary depending on particular QoS

demands and traffic conditions.

4.4.3 Simulation Results and Analysis

In this section, some system level simulations results are presented, which helps verify

and assess the performance gains attained from the proposed SDN-based framework

for elastic resource sharing in LTE-A HetNets. We consider a LTE-A HetNet composed

by of FDD macro eNBs and TDD pico eNBs of a different operator. Two different oper-

ators are assumed to operate the macro and the pico eNB infrastructure, respectively.
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The TDD pico eNB operator is willing to share part of its resources. We focus our

analysis to the scenario where the to the FDD macro eNB operator, depending on the

resource availability in both systems. The elastic resource sharing is performed based

on SLAs that defines the maximum bandwidth that can be transferred from the TDD

pico eNB operator to the FDD macro eNB operator and vice-versa.

In more detail, we consider a LTE-A HetNet with seven FDD macro cells and seven

pico eNBs that are uniformly dropped within the FDD macro area with a minimum

separation distance of 120m. The users of both the FDD macro and TDD pico eNB

systems are uniformly distributed within the cellular coverage, whereas two different

types of traffic are assumed between them. The FDD macro users are considered to

have a H.264 encoded video streaming traffic at 440 kbps, while the TDD pico users

host Poisson-distributed FTP traffic that is modeled in line with the methodology in

[74]. The macro eNBs are assumed to utilize the EXP scheduler, which gives priority to

real time DL packets which are buffered for more than a target delay threshold of 0.1

sec [78]. On the other hand, the traffic at the pico eNBs is randomly and independently

generated in the UL and DL directions. Since we are not interested in the impact of

user mobility in the TDD pico eNB system, we consider uncorrelated slow fading. The

path-loss model for both systems are adapted based the 3GPP case 1 model defined

in [74]. The remainder parameters of our simulation model are summarized in table

4.3.
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Table 4.3: System Simulation Parameters-II

Radio Configuration Parameters

Parameter Value

Macro eNB Inter Site Distance 500 m

Pico eNB Minimum Separation Distance 120 m

Shadowing Standard Deviation-Macro Cell 8 dB

Shadowing Standard Deviation-Pico Cell 10 dB

Spectram Allocation-Macro Cell 10 MHz UL/DL

Spectram Allocation-Pico Cell 10 MHz UL/DL

Max Tx Power-Macro Cell 46 dBm

Max Tx Power-Pico Cell 30 dBm

Duplexing Scheme TDD

Antenna Gain-Macro/Pico Cell 15/5 dBi

eNB Antenna Gain 15 dBi

UE Total Tx Power 23 dBm

UE Antennal Gain 0 dBi

UE-Macro eNB Path loss Model 128+37.6 log10(R), R in Km

UE-Macro eNB Path Loss 140.7+36.7 log10(R), R in Km

Macro eNB Fading Jakes Model

Macro eNB Scheduler (DL) EXP Rule-target delay=0.1 s

Number of PRBs, NRB 50

PRB size, RBs 180 kHz

Traffic Model-Macro Cell H.264 Video Streaming

Traffic Model-Pico Cell FTP (File Size = 0.5 MB)

Since the TDD re-configuration scheme is used for optimizing the UL/DL ratio in

the TDD pico eNB system only, in Fig. 4-9 we plot the cumulative distribution func-

tion (CDF) of delay for the H.264 video traffic in the DL of the FDD macro eNB system

under two different schemes. The first scheme, coined as the FDD baseline scheme,

corresponds to the performance of the macro eNB system without using the proposed
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SND-based framework. On the other hand, the FDD with SDN scheme corresponds to

the performance of the FDD macro eNB system under the proposed SDN-based frame-

work. As expected, above the target delay threshold of 0.1 seconds, the performance

of both schemes the baseline and the SDN-based approach is the same. However, a

notable delay gain is observed for the SDN-based scheme below this threshold, i.e. the

CDF delay of the SDN-based scheme is higher than that of the baseline scheme. In-

terestingly, the employment of SDN-based elastic resource sharing reduces the H.264

traffic delay in the DL direction by up to 21% compared to the baseline scenario where

no SDN based sharing is applied. This improvement follows from the utilization of ad-

ditional resources provided by the TDD pico eNB system.

Figure 4-9: CDF-Application layer delay in the FDD macro eNB system

Although the reduction of the application layer delay in the FDD macro eNB system

is prominent in Fig. 4-9, the negative impact of utilizing less radio-resource in the TDD

pico eNB system, i.e. the ones that have been shared with the FDD macro eNB system,

should also be investigated.

In Fig. 4-10, we plot the CDF of the application layer delay in the TDD pico eNB

system under three different schemes: a) no sharing of resources with the FDD sys-

tem and no reconfiguration of the TDD frames (blue line), b) SDN-based elastic re-

source sharing with the FDD system and no reconfiguration of the TDD frames (green

line), and c) SDN based elastic resource sharing with the FDD system and reconfig-

uration of the TDD frames (red line). In the first two schemes, the reference UL/DL

configuration-1 (60% downlink and 40% uplink) has been considered for the TDD
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frames at the pico eNBs [33]. In the third scheme, we consider an UL/DL reconfigu-

ration timescale of 10ms and the seven UL/DL configurations available for TDD-LTE

[33].

Figure 4-10: CDF-Application layer delay in the TDD macro eNB system

As shown in Fig. 4-10, the sharing of resources with the FDD macro eNB network

degrades the performance of the TDD pico eNB system, if a static UL/DL configura-

tion is applied, i.e. compare the blue and the green lines. On the contrary, if the

elastic resource sharing between the two systems is combined with the dynamic re-

configuration of the TDD frames on a per pico eNBs basis (red line), the employment

of the proposed SDN-based framework is shown to attain notable performance gains

for the TDD pico eNB system as well. This performance improvement mainly follows

from the efficient adaptation of the UL/DL ratio with respect to the ongoing user ser-

vices and the resource availability in the TDD pico eNB network.

4.5 Summary and Conclusion

This chapter presented two main concepts: First, a novel SDN-based framework that

enables QoE-aware network management for OTT mobile services. Building on-top of

existing approaches for dynamic UL/DL frame reconfiguration, this chapter introduces



Chapter 4. SDN-based Elastic Resource Management and QoE Enhancements 112

QoE-centric SDN-based framework that increases user satisfaction in TD-LTE networks

with picocells. Within this framework, the virtual cell concept that is discussed in

detail in chapter 3, has been applied to improve the performance of the overall system

and the QoE of the end users. Among other benefits, the proposed framework has

been shown to enable elastic radio resource management and significantly reduce

the probability of a user being in MOS outage, enhancing thus the user perceived

QoE. Considerable reductions in end-to-end packet delay and packet loss rate have

also been observed, as compared to other competing schemes, when the virtual frame

configuration is activated.

The second concept presented and discussed in this chapter includes: A novel

SDN-based framework for elastic resource sharing in LTE-A HetNets with multiple

network operators. Here, the framework considered focuses on a scenario with a FDD

macro eNB operator and a TDD pico eNB operators with multiple eNBs and proposed

a novel SDN-based framework that enables efficient on-the-fly elastic sharing of the

radio resources between the FDD macro eNB and the TDD pico eNB systems. The

proposed framework consists of a novel SDN-based architecture and a dynamic TDD

frame reconfiguration for pico eNBs. The SDN-based architecture enables multi-tenant

operation for the common physical network infrastructure as well as elastic resource

sharing between the TDD and FDD systems in a dynamic way. The proposed TDD

frame re-configuration algorithm within the SDN-based framework dynamically ad-

justs the UL/DL ratio of the pico eNB frames, so as to utilize the minimum possible

radio-resources while preserving the bandwidth requirements of the pico eNB users.

System-level simulation results have shown that the combination of the SDN-based

architecture and the TDD frame re-configuration algorithm can significantly reduce

the application layer delay in the DL of both the FDD macro eNB and the TDD pico

eNB systems.
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Chapter 5

5G-TDD Network Slicing Solutions

5.1 Introduction

To support multi-tenancy, on-demand resource provision and resource flexibility is es-

sential. In this direction, an increasing body of work considers network programma-

bility and SDN control as an effective solution. SDN enables application and service

providers considering vertical markets and MVNOs to communicate their service re-

quirements to the infrastructure provider, which in turn can program the network

resources to meet the Quality of Service (QoS) constraints [5] [17]. Network pro-

grammability typically involves the configuration of operational parameters and net-

work resource slicing towards particular tenants.

Network resource slicing ensures isolation and customization of resources allo-

cated for each tenant, allowing dedicated use that can accommodate specific appli-

cation requirements. This feature enhances resource utilization, provides means to

control network congestion and enables diverse services to be supported even with

conflicting QoS requirements in each isolated slice [81]. However, at the same time,

slicing reserves the network resources for an explicit use and allocating them to a par-

ticular tenant for a fixed time duration might lead to notable losses in multiplexing

gain [82]. A survey on Resource Slicing in Virtual Wireless Networks is presented

in [29]. While, A network slicing concept applied to a multi-cell RAN shared among

multiple tenants is presented in [27]. Further discussion in detail on state-of-the art re-

lated to the novel ideas presented in this chapter can be found in the literature review

chapter 2. In contrast to the state-of-the art, this chapter introduce the network slicing

concepts in the emerging 5G TDD networks and evaluate the performance of the pro-

posed concepts with the state of the art schemes. In particular, different mechanisms

for allocating network resources considering adaptation of UL/DL ratio and network

slicing are discussed and their performances are analyzed. An analytical model for-
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mulating the network slice resource allocation as a weighted optimization problem is

also presented. To optimize the capacity allocated to each application specific slice

and adapting the corresponding UL/DL ratio, a newly introduced resource allocation

metric is considered in the analytical model. Additionally, this chapter also elaborates

the SDN architecture that allocates and adjusts network slice resources including the

corresponding TDD frame re-configuration.

The rest of this chapter is organized as follows. Section 5.2 introduces the service

oriented network slicing concept and the proposed network resource virtualization

framework, including the SDN-based architecture, resource slicing process and TDD

UL/DL ratio re-configuration. Section 5.2.4 and 5.3.4 describes the simulation envi-

ronment and analyzes the performance evaluation results. Section 5.3 first discusses

the TDD network slicing concept. Following this, the traffic forecast based adaptive

5G TDD network slicing with help of SDN architecture and the UL/DL resource re-

configuration schemes is introduced. The analytical model for creating application-

oriented slices together with UL/DL frame-reconfiguration is elaborated in section

5.3.3. Finally, section 5.4 concludes this chapter.

5.2 Service Oriented Network Resource Virtualization

Framework

This section presents the proposed framework for service oriented network virtualiza-

tion. Initially, it introduces the network architecture and the associated building blocks

and later the proposed mechanisms and solutions which are used for the performance

evaluation.

5.2.1 SDN-based Network Architecture

The SDN-based network architecture adopted in the proposed framework facilitates

network resource allocation for MVNOs and vertical market players, and provides on-

demand network resource slicing addressing the requirements of diverse services. Fig.

5-1 illustrates the main building blocks and the corresponding interfaces considering

backward compatibility with the 3GPP LTE system.
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Figure 5-1: SDN-based network virtualization architecture

The main component of the proposed network architecture is the SDN controller,

which receives service requests, specifying the desired SLA and time duration, from

MVNOs and third parties via the Application-Controller Plane Interface (A-CPI). The

SDN controller processes such incoming requests and establishes a corresponding net-

work resource slice if the desired SLA is fulfilled providing also a QoE assessment con-

trol service through the Data-Controller Plane Interface (D-CPI). The SDN controller

interacts with the legacy 3GPP Operations Administration and Maintenance (OAM)

system via the Eastbound Application Program Interface (API), being able to retrieve

network management information. Such information is obtained from the RAN via

the legacy Northbound Interface (Itf-N) and includes the UL/DL load and the interfer-

ence map of the entire network as well as the status of a number of Key Performance

Indicators (KPIs), e.g. handover failures, throughput, etc. [69]. The collected net-

work information feeds the RAN Information Base (RIB) facilitating a global network

view to the SDN controller, which supports the following functions:

• Inter-slice policy enforcement: ensures that each slice receives the correspond-

ing network orchestration policy, traffic prioritization and UL/DL frame re-configuration.

• QoE assessment function: collects application specific QoS information from
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base stations through D-CPI and provides the corresponding QoE computation

and assessment.

• Traffic forecasting module: uses the RIB global network load view to forecast

application specific traffic demands at regular short-term time intervals.

Once the SDN controller receives an incoming service request via the A-CPI, it con-

sults the traffic forecasting module to ensure that the inquired resources are available

for the time duration of the request. It then converts the requested SLA to slice re-

lated policy, using the inter-slice policy enforcement module and at the same time also

provides the TDD UL/DL ratio and the frame re-configuration timescales. The SDN

controller uses the D-CPI to configure the network slice accordingly. It also installs

a QoS parameter acquisition function at each base station that collects performance

information such delay, loss, throughput, etc., to feed the QoE assessment function,

which makes the application performance visible to the SDN controller.

Each base station supports network virtualization by adopting a hypervisor, which

ensures isolation among different service slices or tenants. To effectively reflect the

evolving short term traffic patterns, base stations maintain a cell-specific dynamic

UL/DL re-configuration function. An instance of such a function operates on each

slice separately based-on the corresponding traffic variations, providing in this way a

means to adjust the UL/DL ratio for each slice independently, meeting more accurately

the evolving traffic demands. By providing dynamic UL/DL frame re-configuration ex-

plicitly for individual service-specific slices within each cell, we can reduce the losses

in multiplexing gain and maximize the network resource utilization.

5.2.2 Service-oriented Cell-specific Dynamic Re-configuration

As mentioned previously, the state-of-the art CSDR [33] was proposed to improve the

resource utilization in TDD networks allowing base stations to adopt different UL/DL

ratios. This scheme is considered as the baseline for evaluating the proposed frame-

work. Typically, CSDR is adopted in a network arrangement without considering net-

work virtualization, taking into account the evolution of the aggregate traffic load,

with the objective to enhance the resource utilization of the system. In CSDR, dy-

namic TDD frame re-configuration is performed at a timescale of 10 ms to match the



Chapter 5. 5G-TDD Network Slicing Solutions 117

instantaneous UL/DL traffic demands. Different timescales such as 100ms and 640ms

may also be selected depending on the UL/DL traffic variations and traffic asymmetry.

The selection of appropriate frame configuration is performed according to the

estimation of the required UL/DL sub-frames and as per the following equation [64]

N DL
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N DL
U E
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bDL
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DL
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N U L
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bU L
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Where bDL
i (t) and bU L

i (t) is the buffer size for user i at time t, while RDL
i and

RU L
i is the past average data rate for the user i at time t in DL and UL directions

respectively. Note that 10 is the total number of subframes in a TD-LTE frame. The

frame configuration that matches closest calculated UL/DL ratio, is employed. The

resources are then allocated to each application flow in UL/DL direction according

to the policy adopted by the scheduler. In our scenarios we use the EXP scheduler

[78], which prioritizes real time flows by using weights that are calculated as per the

following equation.
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where x =
1

NRT
·

NRT
∑

i=1

αi DHOLi
(5.4)

Where, wRT
i, j is the weight of flow i for the resource block j. We assume that only

one application runs on each user’s device, such that the application flow i corresponds

to the individual user i. αi is a factor that takes into account the packet loss rate

probability of flow i. DHOLi
is the head of line delay for flow i, ri, j is the instantaneous

data rate of flow i for resource block j and Ri is the past average data rate of flow i

respectively. The weight for non-real time traffic, wNRT
i, j is given by:

wNRT
i, j = αi ·

ri, j

Ri
(5.5)

It is worth noting that in CSDR, even though the scheduler may prioritize certain
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application flows as per equations 3-5, the application flows are scheduled following

a common UL/DL TD-LTE frame configuration, selected out of the 7 different TD-LTE

configurations defined in [32]. The adopted TD-LTE frame configuration, including

subsequent re-configurations, consider all application flows in UL/DL as an aggregate

traffic load. Hence, it may not match accurately the UL/DL requirements of individual

applications.

To resolve this issue, we propose an application-oriented CSDR, where the sched-

uler is modified to consider the corresponding load of a specified single application

only, instead of the aggregate traffic load when selecting the UL/DL configuration. In

such a scheme, a selected application is assigned the highest priority in the resource

allocation process. The scheduler prioritizes the tagged application flows by adjusting

the EXP scheduler weights as follows:

wi, j = ϕi ·wRT
i, j (5.6)

Where ϕ is the adjusting factor, ϕ ∈ [0,1]. A higher ϕ indicates a higher priority

for the respective application flow type. The performance of the application-oriented

CSDR are evaluated in section IV and compared with the proposed framework.

5.2.3 Service-oriented Slice-explicit Dynamic TDD

The proposed service-oriented slice explicit dynamic TDD solution permits a service/application

independent configuration of the UL/DL ratio. In other words, each network slice may

adopt a different UL/DL ratio and separate CSDR, in order to accommodate best the

QoS requirements of the corresponding service. A simple example, illustrated in 5-

2, provides an overview of the proposed concept highlighting the difference to the

baseline CSDR scheme. In the baseline CSDR, where network slicing is not applied

(referred to as state of the art in 5-2), two neighboring base stations can adopt a dif-

ferent UL/DL ratio, but with each base station employing the same CSDR across the

range of the 3 sub-carrier groups (SCG). In the proposed solution, each sub-carrier

represents a different network slice allocated to a certain tenant, which can support a

different CSDR.
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Figure 5-2: A simple example comparing the baseline CSDR scheme with the proposed service-
oriented slice explicit CSDR (SE-CSDR)

The proposed Slice Explicit CSDR (SE-CSDR) solution, avoids increasing the cross-

slot interference among users served by different network slices, i.e. inter-slice users,

by allocating the same sub-carriers for each slice across the entire RAN. Hence, inter-

slice interference is avoided due to the utilization of distinct frequencies, ensuring

isolation. To establish a network slice after receiving a service request with a specified

SLA and time duration, the SDN controller relies on the traffic forecasting module

that provides information for performing admission control. The traffic forecasting

adopted in this work is based on the Holt-Winter’s exponential smoothing mechanism

[83] [84] and performs a service/application specific traffic forecasting.

Once a network slice is created, customization is provided by allowing the corre-

sponding SLA requirements to be converted into an inter-slice policy. Isolation among

different network slices allows the operation of an independent scheduler and CSDR,

improving the resource utilization efficiency, while reducing the loss of multiplexing

gains, as resource scheduling is performed considering the instant UL/DL traffic load

per slice. In addition, isolation ensures that traffic variations within a particular net-

work slice cannot impact negatively the performance of other applications allocated
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into different network slices.

5.2.4 Simulation Results and Analysis (Phase-1)

In this section we present system-level simulations to assess the performance of the

proposed framework using LTE-Sim as the simulation tool [78]. We considered a

scenario with seven TD-LTE macro eNBs with three sectors each, thereby altogether

forming 21 macro cells. In each macro eNB users are uniformly distributed and users’

mobility is considered following the SLAW mobility model described in [85] The de-

tailed list of simulation parameters are given in 5.1 [78] [74].

Table 5.1: Simulation Parameters-I

eNBs 7

eNB inter site distance 500 m

eNB bandwidth 10 MHz

TX power 30 dBm

Path Loss Model L = 140.7 + 36.7 log10(R),

R in km

Fading Model Jakes model

Users 40 Users/eNB

Application Traffic Model G.729 VoIP, H.264 Video,

BE Web browsing

Traffic Prediction Model Holt-Winter’s exponential smoothing

In the simulations, we have considered the joint support of three different traffic

models. In particular, we have considered that 30% of the users employ Voice over IP

(VoIP), 30% of the users stream video and 40% of the users generate best effort (BE)

traffic. The VoIP traffic is modeled by an ON/OFF Markov model, while Video traffic is

modeled using H.264 foreman traces encoded at 440 kbps [78]. The BE traffic follows

the 3GPP web-browsing traffic model as per TR 25.848, with Pareto distributed packet

size. In the simulation scenario we assume that the three aforementioned application

services are offered by three different OTT providers. The proposed SE-CSDR solution

is compared against the baseline CSDR, and two variations of the application-oriented
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CSDR solution, named the VoIP-oriented CSDR and the Video-oriented CSDR, which

prioritize VoIP and video applications respectively.

To measure the impact on QoE for the users on a per application/service basis, we

measured the Mean Opinion Scores (MOS). MOS is used to evaluate QoE of specific

applications. Models to map QoS parameters to MOS scores are created based on sub-

jective and objective experiments. Specific applications are evaluated in different ways

using subjective methods under controlled QoS values, which are then mathematically

mapped to MOS scores of the respective application. Further details on methodologies

to create QoE evaluation models for specific applications and the performance analy-

sis of QoE models of different applciations are discussed in [86] [87]. For measuring

the VoIP MOS, an ITU-T objective model known as the E-model is used [88], while for

the video application flows, a simplified video MOS model is employed [89]. Video

MOS is measured as the Mean-Squared-Error (MSE) averaged over all frames of the

video sequence as a function of distortion. It has two components namely the source

distortion DS and loss distortion DL [89][90].

MSE = DS + DL = η · Rξ + Γ · PEP (5.7)

Where η,ξ and Γ are model parameters that have different values for different types

of video sources. PEP is the packet error probability. A user data rate sensitivity factor

,γ ∈ [0,1], can be introduced to emulate dissimilar users’ sensitivity to the data rate

as follows:

MSE = DS + DL = γ ·η · Rξ + Γ · PEP (5.8)

The Peak Signal-to-Noise Ratio (PSNR) is a function of MSE and a widely used objec-

tive quality indicator for video. PSNR can be expressed as:

PSNR(dB) = 10 · log10
2552

MSE
(5.9)

The PSNR and MOS relation can be mapped as:

MOS =















1 0< PSNR< 20

1+ 3.5
20 · (PSNR− 20) 20< PSNR< 40

4.5 PSNR> 40

(5.10)



Chapter 5. 5G-TDD Network Slicing Solutions 122

For the VoIP application, a minimum target MOS of 3.5 is considered, which is

sufficient to provide an acceptable QoE to the end users. For video applications ac-

ceptable MOS is between 3 to 3.5, while a MOS above 3.5 is considered as excellent

[90].

Figure 5-3: VoIP MOS CDF

Fig. 5.2.4 shows the MOS cumulative distribution function (CDF) for the VoIP

traffic. From Fig. 5.2.4, it can be observed that the proposed SE-CSDR solution out-

performs the baseline CSDR showing 26% gains considering the VoIP target MOS.

Even compared with the VoIP-oriented CSDR solution, the gain of the proposed SE-

CSDR is 8%, while the Video-oriented CSDR shows only 5% improvement compared

to the baseline CSDR. The performance gains of the SE-CSDR are higher than the VoIP-

oriented CSDR, despite the fact that this scheme prioritizes VoIP flows and adapts the

UL/DL frame configuration to match VoIP traffic. The reason behind this is based on

the fact that with a VoIP-oriented CSDR, all applications use a common scheduler and

share the same CSDR. Hence the entire available spectrum has to be shared among all

the users, unlike the proposed SE-CSDR that employs network slicing, which ensures

resource isolation and allows the use of a different CSDR per slice.

The Video-oriented CSDR works similar to the VoIP-oriented CSDR, but this time

video traffic flows are prioritized instead of VoIP, while the CSDR process is based-on

video real time demands. Consequently, Video-oriented CSDR favors the performance

of the video flows, keeping the MOS performance of the VoIP flows close to the baseline
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CSDR. The Video MOS CDF is shown in Fig. 5-4. The proposed SE-CSDR outperforms

the other solutions, with the Video-oriented CSDR performing closer to the proposed

SE-CSDR, but with a difference of approximately 10% in performance gains.

Figure 5-4: Video MOS CDF

As previously mentioned, the SE-CSDR assures isolation enhancing in this way

the performance of specific applications/services with incompatible, conflicting and

diverse QoS requirements. However, it comes at the cost of loss in multiplexing gain,

which affects low priority traffic, i.e. the BE traffic in our scenario.

Figure 5-5: UL/DL Application Throughput cCDF BE Traffic (kbps)

The loss in performance considering the application throughput can be observed in
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5-5, which shows the complementary CDF (cCDF) of BE throughput traffic in both UL

and DL directions. Overall, the proposed SE-CSDR scheme provides significantly less

throughput loss compared to the equivalent VoIP-oriented CSDR and Video-oriented

CSDR. In particular, compared to the baseline CSDR, the proposed SE-CSDR results

in 9% and 8% less throughput in the DL and UL direction, whereas the VoIP-oriented

CSDR results in 21% and 12% less throughput considering a target limit of 1Mbps

in DL and 0.5 Mbps in UL. The reason behind this result is the fact that SE-CSDR is

capable of providing better resource scheduling to the flows of different slices, allow-

ing also slice specific CSDR operation. In contrast, for application-oriented CSDR the

adoption of a common scheduler and CSDR operation, results in bigger throughput

losses for the application with lower service prioritization.

Fig. 5-6 shows the DL Throughput CDF for the Video traffic. From Fig. 5-6, it

can be observed that the proposed SE-CSDR solution outperforms the baseline CSDR

showing 35% gains considering the target throughput of 400 kbps. That is, 35% fewer

users are below the target throughput. Even compared with the VoIP-oriented CSDR

solution, the gain of the proposed SE-CSDR is 25%, while compared to the Video-

oriented CSDR, SE-CSDR shows 12% improvement. The performance gains of the SE-

CSDR are higher than the Video and VoIP-oriented CSDR, despite the fact that these

schemes prioritises VoIP or Video flows and adapts the UL/DL frame configuration to

match the respective Video or VoIP traffic.

Figure 5-6: Video Application Throughput DL (kbps)
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Fig. 5-7 shows the UL Throughput CDF for the Video traffic. From Fig. 5-7, it

can be observed that the proposed SE-CSDR solution outperforms the baseline CSDR

showing 27% gains considering the target throughput of 400 kbps. Even compared

with the VoIP-oriented CSDR solution, the gain of the proposed SE-CSDR is 20%, while

compared to the Video-oriented CSDR, SE-CSDR shows 10% improvement. The per-

formance gains of the SE-CSDR are higher than the Video and VoIP-oriented CSDR,

despite the fact that this scheme prioritizes VoIP or Video flows and adapts the UL/DL

frame configuration to match the respective Video or VoIP traffic

Figure 5-7: Video Application Throughput UL (kbps)

Figure 5-8: Average RB Utilization

Fig. 5-8 shows the average system resource block (RB) utilization. The proposed
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SE-CSDR shows 14% improvement in resource utilization compared to the baseline

CSDR and 8-10% compared to the Video oriented-CSDR and VoIP oriented-CSDR re-

spectively. VoIP-oriented CSDR and Video-oriented CSDR provide higher average re-

source utilization compared to the baseline CSDR, but lower than the proposed SE-

CSDR. For VoIP-oriented CSDR and Video-oriented CSDR, as the flows are prioritized,

they get the required resources to satisfy the particular application demands at the

cost of high losses on the low-priority BE traffic. Also, the use of common scheduling

policies and a common CSDR operation do not favor the low-priority traffic. In gen-

eral, SE-CSDR allows for a finer granularity when allocating UL/DL resources, which

can be better tailored to specific application UL/DL patterns. This results in higher

resource utilization efficiency.

5.3 Service-Tailored Adaptive TDD Network Slicing for

Emerging 5G Networks

Section 5.2 introduced the concept of network slicing in the 5G TDD networks which

is a type of static network slicing where the isolation is achieved via utilization of

distinct frequencies as explained in 5.2.3. This section introduces the adaptive TDD

network slicing concept in emerging 5G networks and elaborates the SDN architec-

ture that allocates and adjusts network slice resources and the corresponding TDD

frame re-configuration. Different from the static network slicing concept discussed in

5.2.3, in this section an advanced, SDN based adaptive slicing concept is developed

using traffic forecast techniques to creat slices on-demand and reconfigure the UL/DL

sub-frames to match the traffic requirements of the respective slices. In addition, this

section elaborates four different mechanisms for allocating network resources consid-

ering UL/DL ratio adaptation and network slicing.

5.3.1 5G TDD Network Slicing Concept

Network slicing enables a logical isolated network experience over a common physical

network infrastructure which is customized to support the performance requirements

of a particular service. It allows multiple services with diverse and often conflicting
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service requirements to efficiently utilize network resources concurrently, enabling

application based programmability and context aware optimization. In TDD networks,

slicing can enable a service-oriented resource allocation allowing:

(i) Each slice to adopt a distinct TDD frame configuration that corresponds to a

different UL/DL ratio, which can be adjusted independently reflecting slice specific

traffic variations.

(ii) A slice independent re-configuration timescale, i.e. the time window that an

eNB can dynamically adjust a TDD frame, which depends on the traffic type and load

variation patterns.

(iii) A flexible selection of spectrum resources that can satisfy the QoS of a partic-

ular service, considering resource blocks from the entire available spectrum band; a

process, which can reflect dynamic radio conditions.

Figure 5-9: An example comparing the baseline dynamic TDD scheme with the proposed
service-oriented network slicing TDD

A simple example that provides an overview of the proposes scheme with respect to
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the state of the art is illustrated in Fig. 5-9. In particular, the baseline scheme (named

as state of the art in Fig. 5-9) aligned with the CSDR approach, allows neighboring

base stations to adopt a TDD frame with a different UL/DL ratio across the entire

spectrum band, i.e. the 3 Sub-Carriers Groups (SCG) in Fig. 5-9, without employing

the concept of network slicing. The proposed TDD network slicing solutions allows

the support of multi-tenancy enabling the following two distinct flavors:

• Service Explicit-CSDR (SE-CSDR) where each sub-carrier out of the 3 Sub-Carriers

Groups (SCG) in Fig. 5-9, represents a separate network slice allocated to a cer-

tain tenant supporting a different TDD frame configuration, which can be ad-

justed independently. SE-CSDR simplifies the coordination for cross-slot inter-

ference among inter-slice users by allocating to each slice the same sub-carriers

across the entire RAN in a static manner allowing conventional interference con-

trol per slice. However, SE-CSDR limits the number of resource blocks scheduled

per slice restricting potentially the offered QoS. Detailed analysis on SE-CSDR

is presented in section 5.2.3.

• Dynamic Service Explicit-CSDR (DSE-CSDR) also provides separate network

slices that adopt a different TDD frame configuration, which is adjusted based

on slice specific traffic condition independently. Unlike SE-CSDR, this solution

enhances the flexibility in allocating resources across different slices. The flex-

ibility is enhanced by enabling the network slices corresponding to different

applications to have a variable slice size/capacity which can then be periodi-

cally or on-demand adapted in a dynamic manner as the application traffic load

changes across different eNBs in the RAN. Following this, the scheduling over

the resources corresponding to individual application specific slices can be per-

formed in an abstract manner across all the eNBs in the entire RAN, i.e. all the

Sub-Carriers Groups (SCG) as shown in Fig. 5-9. Interference is monitored and

controlled by using conventional techniques such as power control and coordi-

nated with the help of SDN controller. Resource isolation is a crucial charac-

teristic of network slicing. In this case, the isolation is maintained via the RRM

policies and SLAs between the tenant and the network operator. This thesis

introduces three variations of DSE-CSDR namely Joint DSE-CSDR-10ms, Joint

DSE-CSDR-640ms and Distributed DSE-CSDR, which are discussed in detail in
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section 5.3.3.

Once a network slice is allocated, customization is facilitated by matching the cor-

responding SLA requirements to the UL/DL frame ratio selecting an appropriate TDD

frame configuration, and allocating the resource blocks that cause less interference

considering the potential selection range. In DSE-CSDR and its variants, the RAN wide

network slices are created, monitored and adapted, periodically (as explained in sec-

tion 5.3.3), for example in every 640ms or 10ms, based on adaptive service-oriented

network slicing algorithms considering network information such as interference con-

ditions, UL/DL traffic variations and user mobility etc. The UL/DL ratio across the

entire application specific RAN slice is also customized as per the instantaneous appli-

cation traffic demand. Isolation among different network slices allows the operation

of an independent scheduler improving resource utilization efficiency, while avoid-

ing situations where traffic load variations of a particular slice impact negatively the

performance of other services that operate on different slices.

5.3.2 SDN-based Network Slicing Architecture

The proposed TDD network slicing solution is facilitated via the means of SDN that

allows service providers, vertical segments and Mobile Virtual Network Operators

(MVNOs) to acquire and negotiate the provision of network slices on-demand. The

SDN architecture proposed in this thesis assumes a virtualized RAN setup by the means

of introducing a hypervisor in each eNB to ensure isolation among service slices and

tenants.

SDN allows adjustment of size/capacity of the slices and associated TDD frame

configuration reflecting evolving load conditions, while providing policies towards

eNBs for scheduling resource blocks with respect to the QoS of particular services.

An overview of the SDN-based architecture for TDD network slicing is illustrated in

Fig. 5-10.
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Figure 5-10: SDN-based network architecture for TDD network slicing

The SDN controller can be co-located at the 3GPP network management system

in order to take advantage of the conventional network monitoring information and

the existing interfaces. In particular, the 3GPP network management system can be

retrieved via the Type 2 or northbound interface (Itf-N), such as interference, UL/DL

load and Key Performance Indicators (KPIs), which can be stored in a RAN Information

Base (RIB) creating a global network view. Such global information can then assist

the SDN controller to forecast the capacity availability, providing admission control

and slice allocation for incoming requests according to the specified SLA.

Slice requests arrive from MVNOs via the Type 5 interface, which connects the

management systems of two mobile network providers directly, or through the SDN

Application-Controller Plane Interface (A-CPI), which facilitates connectivity for ap-

plication providers and vertical segments. Slice requests need to specify the SLA in

terms of the amount of resources, e.g. resource blocks, the type of service, the size of

the file if the service concerns a best-effort download, the desired starting time and

the time duration. Hence, Type 5 interface and the SDN A-CPI need to support a new

type of signalling that negotiates such parameter extensions, while the Itf-N interface

should also be extended with new configuration signalling to carry out the allocation

and adjustment of network slices. Besides the configuration of the slice size/capacity

and timing information with respect to allocated TDD slices, Itf-N should also support
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(i) the re-configuration of the cell-specific dynamic UL/DL function, responsible for

the TDD frame allocation and (ii) QoS parameter acquisition collects performance pa-

rameters such delay, loss, throughput, etc. and feedback the QoE assessment function

at the SDN controller making the application performance visible to the SDN con-

troller. In addition, Itf-N should accommodate conventional SDN operations allowing

SDN APPs to program the network, e.g. scheduling, virtual function algorithms, etc.,

but this is beyond the scope of this thesis.

The SDN controller acts as a mediator mapping SLA requests into physical re-

sources, considering also the UL/DL service ratio and consistently monitoring the traf-

fic demands to continuously adjust the allocated network slice resources. In particular,

the SDN controller performs:

• Traffic forecasting considering UL/DL traffic demands at regular time intervals

based-on the global network monitoring information collected at the RIB.

• Admission control for network slice requests considering the desired SLA and the

resource availability based-on traffic forecasting. The goal is to assure adequate

resources for particular service-oriented network slices within the specified time

duration.

• The inter-slice policy maps the SLA of an incoming request to a slice specific

policy introducing traffic prioritization, the TDD UL/DL ratio and frame recon-

figuration time scales, ensuring no service conflicts or SLA violation. It also helps

in maintaining isolation among slices in accordance with the RRM polices.

• QoE assessment to periodically optimize the slice resource allocation and the

selection of UL/DL frame re-configuration considering the inter-slice policy and

traffic forecasting.

5.3.3 Adaptive Network Slicing and TDD Frame Re-configuration

Mechanisms

In this section, three new mechanisms are introduced namely Joint Dynamic Slice-

Explicit (DSE) CSDR-10ms (Joint DSE-CSDR-10ms), Joint Dynamic Slice-Explicit (DSE)

CSDR-640ms (Joint DSE-CSDR-640ms) and Distributed Dynamic Slice-Explicit (DSE)
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CSDR (Distributed DSE-CSDR). The proposed mechanisms are compared with the

state-of-the art CSDR and SE-CSDR schemes explained in sections 5.2.2 and 5.2.3 re-

spectively. The results of the state-of-the art CSDR have been reproduced in a slightly

different deployment scenario, however, it follows the similar pattern as in [33].

Therefore in this section, four different TDD frame re-configuration mechanisms

are discussed that are used for studying the network resource allocation strategies

considering UL/DL ratio adaptation and network slicing.

• Cell Specific Dynamic Reconfiguration (CSDR)- CSDR was proposed in [33]with

the aim to improve resource utilization. It is discussed in more detail in section

5.2.2.

• Service-oriented Slice-explicit Dynamic TDD (SE-CSDR)- In this scheme, the

concept of network slicing is applied in evolving 5G TDD networks. The net-

work slices are created based on periodic Holt-winters exponential smoothing

measurements for individual application types which includes Video, VoIP and

Best effort (FTP) respectively [84]. SE-CSDR is explained in detail in section

5.2.3.

• Joint Dynamic Slice-Explicit (DSE) CSDR or Joint DSE-CSDR- In this scheme,

slice size or capacity is dynamically scaled at regular time intervals, using traffic

forecasting mechanisms such as Holt-winter’s exponential smoothing. This is

performed together with UL/DL frame reconfiguration within each slice inde-

pendently considering UL/DL traffic demands in each slice. As the application

traffic load and number of users may vary across different eNBs, the slice size

of a particular application can be different within each eNB. The slice dimen-

sion and its corresponding frame reconfiguration is periodically monitored and

can be adapted as the traffic conditions change. Thus, to the OTT application

provider or the tenants the resource allocation to the application specific slices

and frame reconfiguration within individual slices across the RAN is an abstract

process. The overall slice size/capacity or dimension assigned to a particular

tenant should satisfy the SLAs between the network operator and the tenant.

However, at each eNB across the RAN the slice size/capacity or dimension may

vary depending on traffic load and periodically monitored and adapted as the
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traffic conditions change. A simple example is illustrated in Fig. 5-11, provid-

ing an overview of the proposed concept. The slice dimension module takes the

application/service load, eNB, and application type as an input and defines an

optimized adaptive slice for an individual application. The slice size of each ap-

plication and the users’ UL/DL application load are then used to independently

and dynamically re-configure the frames within each slice. The slice is moni-

tored and application KPIs such as UL/DL buffer statistics are collected. After

a period of time, the slice dimension module re-adapts the slice to match the

performance demand of the application and avoid any over or under provision-

ing of resources. This process is repeated until an efficient slice dimension is

achieved. It is worth noting that dynamic provisioning of slices on per applica-

tion or service basis as well as scaling slice size/capacity on demand may require

adaptation of other slice dimensions within the network therefore management

of virtual resources among slices and execution of policies/decisions to solve

conflicting requirements among slices for sharing and allocation of (virtual) re-

sources is an important and complex task. The analytical logic for slice capacity

dimensioning and UL/DL frame reconfiguration within each slice is discussed

in detail in section 5.3.3. The isolation can be maintained via the RRM policies

and SLAs between the tenant and the network operator with the help of SDN

controller. However, in reality, how RAN supports resource isolation is imple-

mentation dependent. Dynamic slice size/capacity adaptation, monitoring the

slice at regular intervals and Adaptive UL/DL frame reconfiguration within each

slice acts as protection mechanisms against any potential breach in SLAs. Such

mechanisms helps in avoiding breach in SLAs with another slice, especially in the

case when a shortage of shared resources in one slice occurs. i.e. negative im-

pacts that may occur due to the shortage of shared resources in one slice on the

SLAs of another slice. There are two variants of Joint DSE-CSDR. First the Joint

DSE-CSDR-10ms where the network traffic demands, slice and UL/DL frame

configurations are monitored at 10ms timescales and changes in the network

are only performed if any severe QoE or QoS degradation is observed. Second,

Joint DSE-CSDR-640ms which is similar the Joint DSE-CSDR-10ms, with the

only difference that the network is monitored every 640 ms instead of 10ms.
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Figure 5-11: Joint DSE-CSDR
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• Distributed Dynamic Slice-Explicit (DSE) CSDR or Distributed DSE-CSDR- In this

scheme, slice capacity or slice size is dynamically scaled at regular time intervals

using traffic forecast mechanisms such as Holt-winter’s exponential smoothing

in the same way as explained in Joint DSE-CSDR scheme. However, UL/DL

frame reconfiguration is performed in a distributed and independent manner

for each application slice within each eNB, considering UL/DL traffic demand of

the corresponding slice. Therefore, the DSE-CSDR can have two different pe-

riodicities or monitoring timescales, one for individual application slice dimen-

sioning and the other for frame reconfiguration within each slice across different

eNBs within the RAN. The slice capacity adaption is managed in a similar way

as in Joint DSE-CSDR and is discussed in section 5.3.3. In contrast to the Joint

DSE-CSDR, in Distributed DSE-CSDR, the slice adaptation and the UL/DL frame

reconfiguration can be performed as separate processes at a different timescale.

The frame reconfiguration is performed independently at each eNB and for each

slice. Each slice may also have a different UL/DL frame configuration that suits

best its respective traffic demand. This helps in avoiding over provisioning of

resources by periodically adapting the slice size considering its corresponding

application load within each eNB in the deployment scenario. Fig. 5-12 shows

the concept and overview of the proposed Application-Oriented Adaptive Slice

Dimension Adaptation and Distributed UL/DL frame reconfiguration scheme.
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Figure 5-12: Distributed DSE-CSDR

Analytical Model Description

We introduce a method to dynamically adjust the application-oriented slice capacity or

slice size, on-demand according to the varying traffic conditions in UL/DL directions

respectively. The slicer needs to decide the slice bandwidth dimensions considering up-

link and downlink traffic demands. This results in a weighted maximization problem

with the objective of maximizing the allocated slice bandwidth to each corresponding

load. The rationale behind is to prevent over-(or under-) provisioning of resources

aiming at delivering the desired performance for the respective application or service.
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Let us consider the following optimization problem:

Problem Slicer:

maximize
|S|
∑

s=1
ws log X s

subject to
|S|
∑

s=1
ws ≤ 1,

ws ∈ {0; 1};

where the output weight ws describes the normalized slice size/capacity tailored

to service s. In addition, X s is the aggregate traffic load related to service s and can be

expressed as the follows

X s =
2
∑

d=1

X d
s =

2
∑

d=1

|Ud |
∑

i=1

bd
i (5.11)

where bd
i is the amount of data to be served for user i in downlink (d = 1) or uplink

(d = 2) transmissions and Ud is the set of users asking for traffic in a particular

direction d. The number of required DL and UL subframe for an individual slice S(i, j)

belonging to application i and eNB j may be determined according to the following

equation (5.12):

NDL =

∑|UDL|
i=1 uDL

i
bDL

i (t)
RDL

i

∑U |UL|

i=1 uUL
i

bUL
i (t)
RUL

i
+
∑N |DL|

i=1 uDL
i

bDL
i (t)
RDL

i

(5.12)

where uDL
i and uUL

i are the UE application-based weights for DL and UL, expressed as

a value between 0 and 1. Such weights help in determining the application type, e.g.,

Best effort, FTP, VoIP or Video, and the total traffic generated within the slice by an

application. bDL
i (t) and bUL

i (t) are the buffer sizes for application i at time t, while

RDL
i and RUL

i is the past average data rate for the application i at time t in DL and

UL directions respectively. The frame configuration matching closest to the calculated

DL:UL subframe ratio is selected. Once the dimension of the network slice has been

adjusted, a dynamic TDD configuration is done independently per slice with the help

of equation (5.12), where bd
i , Rd

i and N d are replaced with bd
i,s, Rd

i,s and N d
s to account

for a specific slice s. A slice may also have independent schedulers and UL/DL recon-

figuration time scales depending on the degree of traffic asymmetry within the slice

resulting in improved resource utilization efficiency and reduced loss of multiplex-

ing gains. Specifically, customization of the network slice can be done by mapping
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corresponding SLA requirements onto the inter-slice policy.

Due to the complexity while solving Problem Slicer with big instances, we might

run the instance of such a problem within a shorter time window. However, this incurs

in much more traffic overhead, as the slicer needs to gather all user traffic requests

(bi) with a higher frequency. Therefore, forecasting schemes might be applied to boil

down the complexity while predicting user traffic requests (b
′d
i ).

Joint Optimization Process

While the previous approach is practical and lightweight, it provides suboptimal solu-

tions which might be not sufficient for the overall system spectral efficiency enhance-

ment. Therefore, we blend together the slice adjustment process and the TDD UL/DL

pattern configuration in order to introduce robustness and accuracy in our scheme.The

equation (5.1) and equation (5.2) (and even more accurate, equation (5.12)) provides

an easy-to-use technique to identify the number of timeslots dedicated for transmitting

requested traffic based on the amount of data still to be served as well as the average

serving rate related to any specific user. The obtained ratio will guide the system to

properly select a predefined TDD pattern. In our proposal, we select the appropriate

ratio between number of admitted uplink slots and downlink slots by means of an

advanced version of Problem Slicer as follows:

Problem TDD Slicer Optimizer:

maximize
|S|
∑

s

2
∑

d=1
wd

s log

�

∑|Ud
s |

i=1 b
′d
i

µd
s

�

subject to
|S|
∑

s=1

2
∑

d=1
wd

s ≤ 1,

wd
s ∈ {0;1};

where wd
s identifies the bandwidth portion assigned to slice s for downlink (d = 1)

or uplink (d = 2) traffic. The slice size or capacity assigned for application s is cal-

culated as ws =
∑

d wd
s . The number of timeslots N d,s assigned to the d transmissions

within a slice s are obtained as N d,s = wd
s

∑

d wd
s
. This directly provides the ratio used for

properly selecting the TDD pattern configuration within a slice s. Last, µd
s provides

the average spatial serving rate within slice s for all the traffic sent through direction
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d. In particular, we can express such a value as follows:

µd
s =

∫

A

η(x , y) Ld
s (x , y)d(x , y) (5.13)

where η(x , y) is the punctual throughput value obtained by a reference user placed

into position (x , y) experiencing a specific SINR given the scenario’s topology, whereas

Ld
s (x , y) is the probability of encountering a user attached to slice s performing traffic

through direction d in position (x , y). The latter value strictly depends on the mobility

model we are assuming, although in realistic scenario could be empirically obtained

after a long observation period. Please note that we first assume the same network

slicing operations along the whole network. This is the reason why we consider the

overall system area A in equation (5.13).

Cell Diversity and User Mobility

When network slicing operations are considered along the whole network, general

user statistics may be collected to drive the system towards sub-optimal operational

points. However, in other cases we may need to apply the network slicing concept per

slice independently. User mobility information help in modelling the probability of

finding a user within a given location. Different mobility models may lead to different

system behaviours as the average spatial user throughput might change based on user

movements. Let us start considering a set of users uniformly distributed between

different services (or slices s) over the spatial domain. This may be expressed by

Ld
s (x , y) = 1

A,∀(x , y) ∈ A as a single user may be attached to multiple slices as well

as could transmit and receive in both directions resulting in independent statistical

distributions. We can rewrite Eq. equation (5.13) as follows:

µd
s =

∫

A

η(x , y)d(x , y) =
|M|
∑

m=1

∫

Am

η̄m d(x , y)

=
|M|
∑

m=1
η̄mAm =

|M|
∑

m=1
η̄mπ(l2

m − l2
m−1)

(5.14)

where we assume a uniform channel condition distribution 1 which incurs in dif-
1Our assumption relies on a wrap-around scenario wherein base stations are uniformly distributed

at the same inter-site distance. The user channel condition regularly degrades moving towards the edge
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ferent modulation and coding schemes (MCSs). Each MCS determines the spectral

efficiency each user may experience within a certain geographical area Am (annulus)

around the base station. Such an area is determined between two distances lm and

lm−1 whereas we consider the first annulus as a regular circle with a specific ray l1 and

l0 = 0.

For advanced analysis, we stress our solution within a realistic scenario by taking

into account a well-known mobility model, namely SLAW model [85].

5.3.4 Simulation Results and Analysis (Phase-2)

This section presents the simulation set-up and performance evaluation of the pro-

posed framework using Matlab as the system-level simulation tool. A standard 3GPP

scenario with seven TD-LTE macro eNBs was considered, with each eNB having 3 sec-

tors forming 21 macro cells in total. Users are distributed uniformly across the entire

area, with the users’ mobility modeled following the Self-Similar Least Action Walk

(SLAW) [85]. A detailed simulation parameter list, based-on 3GPP specification [74],

is summarized in table 5.2.

Table 5.2: Simulation Parameters-II

Number of eNBs 7

System Bandwidth 10 MHz

Duplexing Scheme TDD

eNB inter site distance 500m

eNB Max Tx Power 46 dBM

eNB Antenna Gain 15 dBi

UE Total Tx Power 23 dBM

UE Antenna Gain 0 dBi

Path loss Model 128+37.6 log10(R), R in Km

Application Traffic Model G.729 VoIP, H.264 Video, FTP Best Effort

Traffic Prediction Model Holt-Winter’s Exponential Smoothing

Mobility Model SLAW

The performance evaluation results of the two proposed variations of the DSE-

of the cell.
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CSDR namely the Joint DSE-CSDR and the Distributed DSE-CSDR were compared with

respect to the SE-CSDR [91] and CSDR [33] [32], which comprise the current state of

the art. Three different traffic models were considered in the simulations, similar to

the description in section 5.2.4, each representing a different service provider includ-

ing: (i) Voice over IP (VoIP), (ii) video [78] and (iii) File Transfer Protocol (FTP) best

effort traffic following the model in [74]. In the simulations, it is assumed that 30%

of the users are engaged in VoIP calls, 30% stream video and 40% download files via

an FTP best effort service, while for network slicing proposals, each service provider

is associated with a separate slice. The video performance is evaluated considering

the throughput and video MOS. Fig. 5-13 and Fig. 5-14 illustrate the video through-

put CDF in the DL and UL direction respectively. In the DL direction, in Fig. 5-13,

the performance of Joint DSE-CSDR-10ms shows a 36% improvement compared to

SE-CSDR and approximately 45% improvement compared to CSDR while Distributed

DSE-CSDR shows mean overall improvement of around 33% and 38% with respect to

SE-CSDR and baseline CSDR respectively.The Joint DCE-CSDR-640ms performs the

worst with 12% gains compared to SE-CSDR and 17% gains compared to CSDR in

the DL. Video throughput performance in the UL can be observed in Fig. 5-14. The

Joint DSE-CSDR-10ms performs the best with an overall mean improvement in per-

formance of 30% compared to the SE-CSDR and 38% improvement over CSDR. The

Distributed DSE-CSDR on the other hand shows mean overall improvement of 28%

compared to SE-CSDR while upto 34% improvement over CSDR scheme where no

slicing is employed. Joint DCE-CSDR-640ms shows in least performance gains in the

UL direction as well with 10% improvement over SE-CSDR and 15% improvement

over CSDR.
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Figure 5-13: Video Application Throughput CDF DL (kbps)

Thus the performance evaluation results for the Video throughput in UL and DL

show that the proposed Joint DSE-CSDR-10ms scheme outperforms the other schemes

followed by the Distributed DSE-CSDR TDD that performs the second best. The reason

for the better performance of Joint DSE-CSDR-10ms is that it monitors the slice every

10ms and assess the amount of resources allocated to the slice. Any variations in

the traffic that may affect the QoE of the services that a particular slice is serving is

addressed by adjusting the allocation of resources to the slice i.e. the size of the slice

together with the UL/DL frame reconfiguration. It is worth noting that any changes

are done only when it is foreseen that the services will suffer performance degradation

due to traffic variations or if the resources are over provisioned to a particular slice.

No changes are made within the slice if the slice has been allocated sufficient resources

to maintain the desired QoE for a specific service.
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Figure 5-14: Video Application Throughput CDF UL (kbps)

The isolation and flexible resource allocation offered by the slicing mechanism,

helps in minimizing the delay of video applications thereby ensuring that the end

users’ experience the desired quality. The concept of slicing enhances the perfor-

mance of specific applications/services in addition to that the optimization of slice

size/capacity regularly, ensures that the resources are neither over provisioned nor

under provisioned while maintaining the desired performance of the target applica-

tion or service. Dynamic frame reconfiguration ensures that resources in the UL/DL

transmission direction are allocated in an efficient and flexible way.

The Joint DSE-CSDR-10ms and Distributed DSE-CSDR perform better than the

Joint DSE-CSDR-640ms, SE-CSDR and CSDR, this is because in Joint DSE-CSDR-10ms

and Distributed DSE-CSDR schemes, as the load varies among different traffic types

and across different eNBs, the slice size/capacity is periodically adjusted according

to the traffic variations as explained in section 5.3.3. These schemes also use traf-

fic prediction to periodically reconfigure UL/DL frame ratios and customize the slice

size which enables them to have a better assessment of the future traffic demand.

Distributed DSE-CSDR offers the flexibility that allows each slice within an eNB to

adaptively select an UL/DL frame configuration that best match their traffic demand

considering UL and DL traffic separately. This further enables efficient use of the sys-

tem resources. The isolation offered by slicing also allows different UL/DL reconfig-

uration timescales that is suitable for a particular slice and depends on the degree of
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traffic asymmetry. This implies that how often UL/DL sub-frames needs to be adapted

within a slice may also be customized on-demand based on the traffic pattern within

the slice. It is also worth noting that in high interference scenarios adaptive Joint DSE-

CSDR-10ms and Joint DSE-CSDR-640ms schemes may be more suitable as it jointly

optimizes slice capacity at regular intervals and selects most suitable UL/DL frame

configuration for each application slice independently within every eNB. The selected

configuration for a specific application is applied to all the slices of that particular ap-

plication across all the eNBs. In Joint DSE-CSDR-10ms and Joint DSE-CSDR-640ms

schemes, different application slices may have different frame configuration but in

this case, the frame configuration for a particular application slice remains the same

across all the eNBs. This can help limit the cross slot interference that may occur due

to transmission in the opposite directions.
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Figure 5-15: DL Application Throughput cCDF BE Traffic (bits/s)

The loss in the throughput performance of FTP best effort traffic can be observed

in Fig. 5-15 and Fig. 5-16 which illustrates the FTP Throughput complementary CDF

(cCDF) in the DL and UL direction respectively. Overall, the proposed Joint DSE-

CSDR-10ms, Distributed DSE-CSDR and Joint DSE-CSDR-640ms schemes provide sig-

nificantly low throughput loss compared to SE-CSDR, performing close to the Baseline

CSDR. Here, the Baseline CSDR is considered as the target scheme as in this case there

is no slicing and hence it offers the best performance for the best effort traffic with least

probability of having performance degradation due to losses in multiplexing gain.
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Figure 5-16: UL Application Throughput cCDF BE Traffic (bits/s)

In particular, it can be seen in Fig. 5-15, that the Joint DSE-CSDR-10ms performs

the best with approximately 12% less throughput than CSDR which is the target

Scheme for measuring loss in multiplexing gain. Following the Joint DSE-CSDR-10ms,

the Distributed DSE-CSDR provides an overall 15% less throughput than the CSDR

while Joint DSE-CSDR-640ms have 25% less throughput compared to the CSDR.

SE-CSDR performs worst with 35% less throughput than the target Baseline CSDR

scheme.

In the UL direction, in Fig.5-16, the Joint DSE-CSDR-10ms scheme performs close

to the CSDR scheme which is the performance target scheme, with an overall 10%

less throughput. Following the Joint DSE-CSDR-10ms, the Distributed DSE-CSDR pro-

vides overall 12% less throughput than the CSDR while the Joint DSE-CSDR-640ms

have 20% less Throughput than the Baseline CSDR scheme. SE-CSDR on the other

hand has the highest loss in throughput performance due to loss in multiplexing gain

providing 30% less throughput than the Baseline CSDR scheme therefore the loss in

the throughput performance for the best effort traffic in SE-CSDR is higher compared

to Joint DSE-CSDR-10ms, Distributed DSE-CSDR and Joint DSE-CSDR-640ms have

respectively.

As previously mentioned, the slicing provides isolation to specific applications/services

which often have incompatible, conflicting and diverse QoS requirements. Although,

slicing helps in enhancing application/service specific performance, it comes at the
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cost of loss in multiplexing gain due to reduced resource diversity affecting the low

priority best effort traffic. Thus, the throughput performance presented in Fig. 5-15

and Fig. 5-16 shows the impact of slicing on the BE traffic, which in this case is the

FTP traffic. Here, the aim is to be able to match the CSDR scheme which is considered

as the target performance scheme in the BE case. The CSDR scheme has no slicing

and provides maximum throughput as well as delay performance for the BE traffic.

The slicing schemes (or the aforementioned schemes that employ slicing) that per-

form closest to the Baseline CSDR performance is considered to be the best as it shows

that even though it accommodates and maximizes the performance of certain appli-

cations within the slice, it is able to minimize the loss in performance of the BE traf-

fic due to loss in multiplexing gain that arises due to reduced resource diversity as

a consequence of network slicing. In this case Joint DSE-CSDR-10ms performs the

best followed by Distributed DSE-CSDR and Joint DSE-CSDR-640ms. The SE-CSDR

scheme improves the performance of the applications within the slice compared to the

CSDR, however, the loss in performance of BE traffic due to loss in multiplexing gain

is highest in case of the SE-CSDR.
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Figure 5-17: DL Application Delay CDF BE Traffic (s)

The delay performance comparison of the proposed schemes with the target CSDR

for the FTP traffic in DL and UL directions is captured in Fig.5-17 and Fig. 5-18. A

target delay of 300ms is considered for the FTP best effort traffic, which is in accor-

dance with [73], [40]. From Fig. 5-17 and Fig. 5-18, it can be observed that in the
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DL direction, in Fig. 5-17, the Joint DSE-CSDR-10ms scheme performs better than the

other three schemes having 7% less users below the target delay of 300ms [73], while

the Distributed DSE-CSDR have 10% less users below the target delay compared to

the Baseline CSDR, which offers the best delay performance. Joint DSE-CSDR-640ms

have 20% less users below the BE target delay compared to the Baseline CSDR. While

in the case of the SE-CSDR, 35% less users are below the BE target delay compared

to the Baseline CSDR. This shows that the negative impact of network slicing on the

BE traffic is maximum in the SE-CSDR. Here, the delay performance of the Baseline

CSDR which has no slicing involved is selected as the reference scheme as it has the

potential to provide maximum performance gain and the scheme performing closest

to the Baseline CSDR is considered to be the best.
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Figure 5-18: UL Application Delay CDF BE Traffic (s)

In the UL direction, in Fig. 5-18, the Joint DSE-CSDR-10ms scheme outperforms

the other schemes having 10% less users below the target BE delay followed by Dis-

tributed DSE-CSDR with 15% fewer users below the BE target delay. Joint DSE-CSDR-

640ms has 25% less users below the BE target delay compared to the Baseline CSDR

which is slightly better than the SE-CSDR. SE-CSDR in this case shows delay perfor-

mance loss of 36% compared to the Baseline CSDR which exhibits the maximum loss.
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Figure 5-19: Video MOS CDF

The video MOS CDF is shown in Fig. 5-19. It can be observed from Fig. 5-19

that the Joint DSE-CSDR-10ms outperforms the other solutions, with Distributed DSE-

CSDR performs better than the DSE-CSDR-640ms but exhibits slightly higher video

MOS performance losses than the DSE-CSDR-10ms. For video applications an accept-

able MOS is between 3 to 3.5, while a MOS above 3.5 is considered as excellent [90].

For the VoIP applications, a minimum target MOS of 3.5 is considered, which is suffi-

cient to provide an acceptable QoE to the end users [90].
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Figure 5-20: VoIP MOS CDF

Fig. 5-20 shows the MOS CDF for the VoIP traffic. From Fig. 5-20, it can be

observed that the proposed Joint DSE-CSDR-10ms solution outperforms the SE-CSDR
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and CSDR showing 30% gain compared to the SE-CSDR and 40% gain compared

to the CSDR, considering the VoIP target MOS. Distributed DSE-CSDR offers 20%

while Joint DSE-CSDR-640ms offers 12% gain compared to SE-CSDR while 22% gain

compared to the baseline CSDR respectively. Therefore the Joint DSE-CSDR-10ms

offers the maximum gain in the MOS performance for both Video and VoIP applications

followed by Distributed DSE-CSDR and Joint DSE-CSDR-640ms. The reason behind

these gains are that the Joint DSE-CSDR-10ms scheme is able to adapt more often to

match the traffic demands in UL and DL directions respectively and the more frequent

traffic prediction mechanism helps it to obtain a more accurate view of the traffic

situation thereby allowing it to efficiently program the network to provide the desired

QoE for the respective applications.

The delay performance comparison of the proposed schemes with the target CSDR

and SE-CSDR for the Video traffic in DL direction is captured in Fig. 5-21. A target

delay of 100ms is considered for the video traffic, which is in accordance with [73].

From Fig. 5-21 it can be observed that in the DL direction, the Joint DSE-CSDR-10ms

scheme performs better than the other four schemes having 90% users below the

target delay of 100ms, while Distributed DSE-CSDR has 85% users below the target

delay. Joint DSE-CSDR-640ms have 72% users below the Video target delay. While in

the case of SE-CSDR, 62% users are below the video target delay. The CSDR performs

poorly with only 55% users below the target video delay. The delay performance of

the video traffic in the UL direction follows similar trend as of the DL direction.
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Figure 5-21: Video Delay CDF DL (s)
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The delay performance comparison of the proposed schemes with the target CSDR

and SE-CSDR for the VoIP traffic in DL is captured in Fig. 5-22. A target delay of 100ms

is considered for the VoIP traffic, which is in accordance with [73]. From Fig. 5-22, it

can be observed that in the DL direction, the Joint DSE-CSDR-10ms scheme performs

better than the other three schemes having approximately 86% to users below the

target delay of 100ms, while the Distributed DSE-CSDR have 82% users below the

target delay. Joint DSE-CSDR-640ms have 65% users below the Video target delay.

While in the case of the SE-CSDR, 60% users are below the video target delay Ṫhe

CSDR performs poorly with only 52% users below the target VoIP delay. In the UL

direction, the delay performance of the video traffic exhibit similar trend as of the DL

direction.
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Figure 5-22: VoIP Delay CDF DL (s)

The aggregate throughput in the UL and DL comparing all the 5 schemes is shown

in Fig.5-23. In the DL, Joint DSE-CSDR-10ms shows an overall 36% gain compared to

the SE-CSDR while 48% compared to the CSDR respectively. Distributed DSE-CSDR

demonstrates 24% improvement in performance compared to SE-CSDR and 36% com-

pared to Baseline CSDR respectively. In case of Joint DSE-CSDR-640ms, around 8%

improvement is observed compared to SE-CSDR while 17% improvement in perfor-

mance compared to the CSDR which is the target solution. In the UL direction, the

Joint DSE-CSDR-10ms exhibit an overall improvement in performance of 27% com-

pared to the SE-CSDR and 38% compared to the CSDR while the Distributed DSE-

CSDR scheme shows an improvement in performance of 18% compared to SE-CSDR
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and 27% compared to Baseline CSDR respectively. The improvement in UL, in the

case of Joint DSE-CSDR-640ms was observed to be 6% compared to the SE-CSDR and

12% compared to the CSDR. In general, the proposed Joint DSE-CSDR-10ms provide

finer granularity and allows custom dimensioning of slice size/capacity in line with the

traffic variations in UL/DL directions respectively. The ability to adapt UL/DL frames

within a slice and periodic slice size/capacity dimensioning with the help of traffic

prediction algorithms to match the application specific UL/DL traffic requirements.

It also provides the flexibility to program the network in ways that leverage efficient

resource usage, enhance the overall system performance and satisfy the application

related QoE demands.

Figure 5-23: Aggregate Throughput (kbps)

5.4 Summary and Conclusion

This chapter has presented a novel framework to enhance the benefits offered by

application-oriented network resource slicing in evolving TDD networks towards 5G.

The proposed framework aims at improving the performance of high priority traffic

and at the same time minimize the loss in multiplexing gain that is offered by existing

rigid and consolidated network architecture. First, an innovative Slice-Explicit CSDR

(SE-CSDR) concept is introduced. Among the several benefits offered by the proposed
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SE-CSDR scheme, the most significant is the flexibility improvement by allowing the

creation of dynamic customized network slices for a specified duration of time consid-

ering individual application requirements. Application-driven network slices enable

independent scheduling and CSDR operation that better matches instantaneous traffic

demands in both UL and DL. The isolation offered by slicing helps in reducing con-

gestion and eliminates the negative effects of traffic variation between slices. Further-

more, an advanced 5G TDD adaptive network slicing concept is also introduced that

further enhances the benefits offered by the SE-CSDR concept. Three variants of adap-

tive service-oriented adaptive network slicing namely Joint DSE-CSDR-10ms, Joint

DSE-CSDR-640ms and Distributed DSE-CSDR are introduced and evaluated against

the state-of-the-art CSDR and SE-SCDR solutions. The SDN based network manage-

ment architecture proposed in this thesis allows 3rd party applications or services to

interact with the network and create on-demand service-oriented network slices for

specific time durations. The proposed solutions periodically adapt service-oriented

network slices considering parameters such as UL/DL traffic demands, application

type, user mobility, traffic forecast algorithms etc. The slices are monitored at specified

timescales that is different for every scheme. An advanced mechanism to re-configure

UL/DL ratio within each slice is also introduced that may be employed jointly with

adaptive slice configuration or independently in a distributed way. The system level

simulations have shown that the adoption of the proposed SE-CSDR, with independent

TDD frame reconfiguration per slice, can significantly improve the system resource

utilization as well as the QoE/QoS of high priority traffic. However, the resource

utilization efficiency, flexibility and overall network performance can be further en-

hanced with an adaptive approach with the help of SDN control and traffic forecast

algorithms. The three variants of the proposed solution also provide options to select

the most appropriate solution depending on the deployment scenario.
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Chapter 6

Summary and Conclusion

6.1 Summary and Conslusion

This thesis has investigated and introduced novel concepts related to service-oriented

flexible 5G networks. Various aspects related to 5G enabling technologies such as

network virtualization, SDN based network management, multi-connectivity and net-

work slicing etc. have been discussed in detail. First, an innovative multi-connectivity

concept called the virtual cell concept for TDD networks has been introduced. Then,

a SDN based QoE enhancement mechanism for multiple applications that employ the

virtual cell concept is proposed. Ideas related to Multi-tenant resource sharing in

FDD/TDD HetNets and network slicing for evolving 5G TDD have been presented

to perform efficient resource management and enhance overall system performance.

This work has attracted a lot of interest and contributed to a number of research

works on multiple topics collaboratively with National and Kapodistrian University

of Athens (Greece), Radio Systems Research, Nokia Networks (Finland), Eurecom,

Sophia Antipolis (France), within NEC Europe labs (Germany) as well as University

of York (U.K.). There were also fruitful discussions and collaboration with various

CROSSFIRE project partners. This work has also directly contributed to the European

Commission ITN FP7 Marie Curie project called CROSSFIRE (MITN 317126) and par-

tially to the H2020-ICT-2014-2 project 5G NORMA. A brief summary and conclusions

for the thesis are given below:

The first chapter provides a brief introduction to the thesis and the purpose of

this work. Chapter 2 presents a comprehensive literature review on the research re-

lated to this work. This focuses mainly on mobile network virtualization, overview of

TD-LTE and 5G enabling technologies such as SDN , Network Slicing etc. Chapter 3

introduces the concept of virtual cells in Time-Division Long Term Evolution (TD-LTE)

systems, which enables users residing in overlapping cell coverage regions to utilize
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resources from multiple base stations. The benefits of virtual cells are realized by the

efficient resource utilization, by adapting the network resource availability with the

traffic demand additionally taking into account the impact of cross-slot interference.

The virtual cell concept also helps in avoiding and resolving congestion issues. The

virtual cell concept is further developed with the Software Defined Network (SDN)

paradigm, which monitors network resource utilization and allows applications or

services to request resources. The resources requested by the applications or services

can be allocated on-demand by adjusting the Time Division Duplex (TDD) frames in

different regions of the geographical area being considered. This is accomplished by

creating virtual cells in the overlapping regions that can customize services for the

residing users. An extensive simulation study has been carried out to elaborate the

benefits of this approach and the performance enhancements in comparison with the

state-of-the art and conventional TD-LTE configurations are presented.

Chapter 4 discusses SDN based Elastic Resource Management and QoE Enhance-

ments in 5G Networks. First, an SDN-based framework for enhanced Quality of Ex-

perience (QoE) in the presence of TD-LTE pico cell hotspots is proposed. The pro-

posed framework enables elastic radio resource management and allows users to uti-

lize radio-resources from multiple base stations and enhance their QoE, by using the

virtual cell concept. TD-LTE UL/DL subframes are customized as per the UL/DL traffic

demands at the pico cell base stations. Following this, a novel SDN-based framework

that enables efficient and elastic spectrum utilization among multiple operators (i.e.

in a multi-tenant scenario) in a 3GPP LTE-A HetNet scenario is investigated. It was

observed that the sharing of resources with the FDD macro eNB network may degrade

the performance of the TDD pico eNB system, however, the application of the proposed

SDN-based framework with the dynamic re-configuration of the UL/DL TDD frames

at each pico eNBs at a specific timescale, is shown to minimize the losses and improve

the performance of the overall TDD pico eNB system.

A framework to enhance the benefits offered by the application-oriented network

resource slicing in evolving TDD networks towards 5G is proposed in chapter 5. The

proposed framework improves the performance of the applications and services and

at the same time reduces the loss in multiplexing gain that the conventional mobile

network with no network slicing employed offers. In this chapter, multiple adaptive
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and static slicing mechanisms are discussed and simulations are carried out to evaluate

the performance enhancements as compared to the state-of-the-art schemes. Out of

the several benefits offered by the proposed mechanism, some of the most significant

include improved flexibility achieved via on-demand creation of dynamic customized

network slices for a specified duration of time considering individual application re-

quirements. The isolation property of the network slicing concept helps in countering

congestion problems and ensures desired performance for the respective service that

the slice serves. Application-driven network slices enable independent scheduling and

customized UL/DL frame re-configuration operations in each slice that better match

instantaneous traffic demands in both UL/DL directions and improves resource utiliza-

tion efficiency. In this thesis, novel mechanisms to adaptively form service-oriented

slices and configure UL/DL TDD subframes within each slice, in either, a combined

way or distributed manner are developed and analyzed. It was observed that the pro-

posed solutions improve the overall system performance and enhance the QoE of the

applications and services.

Some new ideas and directions to further evolve the work presented in this thesis

are discussed in chapter 7. Finally, chapter 6 highlights novel contributions of this

work and concludes this thesis.

6.2 Summary of Novel Contributions

This thesis focuses on various aspects of network virtualization and SDN-based flexi-

ble network management including concepts such as multi-connectivity and network

slicing that are essential for supporting the demands of the future applications and

services. The performance of the proposed solutions and concepts in this thesis have

been evaluated in comparison to the state-of-the art work done in this area. Most of

the work has been published in a number of peer-reviewed journals and conferences.

This thesis work was carried out as a part of European Marie Curie Innovative Train-

ing Network (ITN) project called CROSSFIRE. Also, some of the work done in this

thesis, partially contributed in European H2020 project-5G NORMA. The thesis work

was carried out at NEC Europe Labs located in Heidelberg, Germany.
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6.2.1 TD-LTE Virtual Cells: An SDN Architecture for User-centric

Multi-eNB Elastic Resource Management

In chapter 3, the concept of virtual cell is proposed which enables users residing in

overlapping cells’ coverage regions to utilize resources from multiple base stations. To

date the state of the art has focused on configuring specific UL/DL ratio that matches

the best long term traffic demands. In this case, the neighboring cells typically follow

the same UL/DL configuration in order to avoid cross-slot interference, i.e. inter-

ference among neighboring eNBs or among UEs residing within a close proximity as

described in [35]. Such synchronization introduces limitations in resource allocation

when neighbor cells have different traffic demands. Methods that aim to enhance

resource flexibility for TD-LTE systems concentrate on relaxing such synchronization

[92], and on introducing dynamic resource management via channel allocation and

scheduling [93]. The idea of Cell Specific UL/DL frame reconfiguration is discussed

in [33] wherein, the benefits of adaptive UL/DL reconfiguration are verified via simu-

lations.

Different from the state of the art, in this thesis, the concept of virtual cells has

been developed. The benefits offered by the virtual cells are realized by the efficient

resource utilization via adapting the network resource availability with the traffic de-

mand taking also into account the impact of cross-slot interference. Besides the in-

creased resource flexibility, virtual cells also resolve pseudo congestion, and introduce

a customized, user specific, resource utilization. Such a feature enables mobile users

to utilize sub-frames from different base stations creating an on demand virtual frame.

The notion of allowing users to utilize resources from multiple eNBs is also sup-

ported by the 3GPP Coordinated Multi-Point (CoMP) [94] to enhance the cell edge

throughput via joint processing or coordinated scheduling and beamforming methods.

By contrast to the Virtual Cell Concept proposed in this thesis, CoMP requires coher-

ent transmission and detection at physically separated eNBs, which jointly process the

transmit/receive signal in order to gain from array and diversity gains. CoMP relies

on the fundamental requirement to align the UL and DL resources of multiple cells

without providing any means to counteract pseudo congestion as the applied UL/DL

sub-frame pattern is assumed to be fixed for all cells, i.e. a UE utilizes resources from
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different eNBs but in the same transmission direction. The virtual cell proposal con-

centrates on customizing the TDD frame according to the user traffic demand, which

is beyond the use of conventional CoMP advancing the current efforts towards more

efficient resource allocation. The detailed explanation and performance evaluation

analysis of the virtual cell concept have been published in IEEE Vehicular Technology

Conference (VTC) [45] and Elsevier Computer Communications Journal [95].

Furthermore, this thesis introduces the mechanisms and network management ar-

chitecture that can facilitate a broader adoption of virtual cells in TDD 5G networks.

It encounters also a closer coordination with cell specific adaptive UL/DL frame re-

configuration, i.e. enforcing a selected frame re-configuration on particular cells that

may enable an improved virtual cell formation, without compromising the perfor-

mance of other existing users. Considering the network management architecture, this

thesis adopts the SDN paradigm to facilitate a fine-grained network resource control

based-on a global network view, which also enables application and service providers

to acquire QoS and resources via the Application-Controller Plane Interfaces (A-CPI)

[68] . Although this later feature is not explicitly explored into this work, the pro-

posed mechanisms can accommodate on-demand resource allocation, which reflects

the generic case for OTT resource acquisition via the use of the A-CPI. Based-on this

information, and on knowledge of incoming requests from application and service

providers, the SDN controller: (i) feeds an algorithm, which identifies the TD-LTE

frame configuration for particular eNBs inside the radio access network and (ii) en-

forces such a new TD-LTE frame configuration at the selected eNBs allowing in this

way a more efficient resource management with the option of enabling virtual cells at

desired locations. In particular, the contributions of this thesis are:

• A framework for adopting the SDN paradigm for virtual cells considering a

macro cellular deployment scenario, where SDN is used to enforce a re-configuration

of the UL/DL TDD ratio at particular eNBs, in order to secure resources for vir-

tual cells. Such resources can serve the required traffic demands as closely as

possible resolving pseudo congestion, without increasing the interference for all

other users beyond a certain limit, i.e. making sure that the overall impact of

virtual cells is positive.

• The introduction of an SDN network management architecture that supports
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the monitoring and dynamic control of virtual cells based-on observed traffic

demands.

• The analytical logic for allocating resources on virtual cells considering the amount

of resource blocks that enhance UEs’ resource allocation and network utilization

without compromising the performance of other existing users.

• The algorithm for forming virtual cells and enforcing TD-LTE frame re-configuration

on selected cells in order to overcome pseudo-congestion.

• The simulation study that provided a comparative evaluation of the proposed

virtual cell solution with the cell specific adaptive re-configuration and with the

simple static configuration.

6.2.2 SDN-based Elastic Resource Management and QoE Enhance-

ments in 5G Networks

An SDN framework is proposed in chapter 4, which aims at enhancing the QoE per-

ceived by the users running OTT applications with the help of a multi-connectivity

virtual cell concept discussed in chapter 3.

So far the state-of-the art has focused on various techniques with and without

SDN for improving QoS and QoE for the end users. The state-of-the art in this domain

mainly aims to meet the individual QoS requirements at the end users side (i.e. in

terms of throughput and packet delay). For example, the authors in [41] have pro-

posed a QoS aware dynamic uplink-downlink reconfiguration algorithm in TD-LTE

HetNet, however, they mainly focus on the QoS aspects and did not consider SDN

based network management or multi-connectivity concepts to improve the QoE of the

end user applications. In contrast to the state-of-the art, this thesis focus on the sce-

nario where the LTE network is composed by TD-LTE picocells that can better handle

asymmetric traffic and effectively match instantaneous traffic demands by adapting

the UL/DL frame ratio. Further extending the state-of-the art, the framework proposed

in this thesis enables customized TD-LTE frame ratio in line with the QoE demands

at the end users. Besides, in this work we utilize the SDN paradigm [17] to achieve

efficient synchronization of the TD-LTE picocells in order to enable an SDN-enhanced
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formation of virtual cells. In this manner, the novel method to enable interaction be-

tween the OTT application providers and network operators is introduced. Moreover,

an SDN controller is considered which obtains the global view of the TD-LTE picocell

and the QoE of the users with the help of 3GPP OAM system. The SDN controller

then can use the available information to create instances of virtual cells and adapt

the UL/DL frames of then serving and the neighboring picocells on-demand. Thus in

this way, the proposed framework helps in resolving and avoiding congestion prob-

lems including pseudo-congestion. Besides, the proposed framework enable cell-edge

users utilize resources from multiple picocells via virtual cells. Hence with the help of

SDN based network resource management, UL/DL frame adaptation and application

of virtual cells can improve service quality and network resource utilization. The anal-

ysis and discussion related to this proposed concept has been published in the IEEE

Conference on Quality of Multimedia Experience (QoMEX) [48].

6.2.3 An SDN Framework for Elastic Resource Sharing in Inte-

grated FDD/TDD LTE-A HetNets

In chapter 4.3, an LTE-A HetNet scenario is considered where a common infrastructure

provider owns a set of macro cell eNBs, termed as macro eNBs, and a set of picocell

eNBs, termed as pico eNBs. All the macro eNBs are assumed to use FDD, whereas

all pico eNBs are assumed to use TDD. Existing literature reviews focus on enabling

on-demand sharing of base stations that belongs to multiple operators in an efficient

manner. In this direction, an SDN-based framework is proposed in [61] where the

main idea is to allow the cellular users to attach to the nearest base station. The Op-

eRAN concept proposed in [62] aims to enhance the convergence benefits of HetNets

and leverage network customization. To achieve higher granularity, network virtual-

ization concept is applied at the application, spectrum and network level. In, [63],

SDN concepts to manage cellular network are analyzed.

The idea proposed within this thesis considers a scenario where the infrastructure

provider leases its infrastructure to multiple macrocell operators and multiple picocell

operators. Under this model, we address the problem of elastic resource sharing be-

tween the FDD macro eNB operators and the TDD pico eNB operators in a dynamic

manner. The proposed concept provides flexibility by introducing an innovative SDN-
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based architecture that enables dynamic resource sharing among the different oper-

ators and employs a dynamic re-configuration mechanism that allows the TDD pico

eNBs to adapt their UL/DL ratio in order to release or embody a set of radio resources

to/from the FDD macro eNBs operators.

Different from the state-of-the art ([61]- [63]), this thesis focus on the resource

sharing problem in a multi-operator integrated FDD macrocell and TDD picocell LTE-

A system, employing network programmability through re-configuration of the TDD

frames at the pico eNBs. In addition, the work in this thesis considers the amount of

resources shared in the FDD system and the requirements of the users associated with

the TDD picocells. In [76], a joint TDD and FDD scenario is considered where in the

TDD operate in the guard band spectrum between the FDD UL and DL. In contrast

to this, the work in this thesis investigates elastic resource sharing in a multi-tenant,

multi-operator FDD/TDD LTE-A HetNet environment. System level simulation results

demonstrate that the combination of these solutions in a resource sharing scenario

between a TDD pico eNB operator to a FDD macro eNB operator achieves notable

performance gains in terms of communication delay in the application layer. This

work has been published in the IEEE CloudNet [66].

6.2.4 Service-Oriented Resource Virtualization for Evolving TDD

Networks Towards 5G

In chapter 5, this thesis proposes a slicing concept for evolving 5G TDD networks, con-

sidering a network deployment with heterogeneous and asymmetric traffic conditions.

In this case TDD is adopted for macro base stations. Effectively, distinct network slices

are provided to each tenant that employs a different type of service. In particular, a

framework is proposed for network virtualization, wherein a novel service-oriented

network resource slicing scheme is adopted. Different aspects of network slicing and

network programmability in 5G networks considering also the impact on services and

applications have been discussed in [96] [47]. While an SDN based network slicing

architecture that aims to accommodate heterogeneous RAN requirements is presented

in [5]. The main idea behind the proposed architecture in [5] is to satisfy QoE needs

of different services and support resource sharing in a multi-tenant environment.

In contrast to the above mentioned state-of-the art, the proposed concept intro-
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duces a new notion of network slicing in TDD networks that has never been discussed

before and aims to enhance the flexibility and performance of application aware net-

work slices, while limiting the loss of multiplexing gains. The proposed SDN based

network slicing and resource management concept in this thesis has been filed as a

patent [97]. The performance evaluation and detailed analysis related to this work

has been published in IEEE Wireless Communications and Networking Conference

(WCNC) conference [91].

The proposed slicing concept aims at enhancing system network performance, ap-

plications’ QoE and network resource utilization efficiency by introducing additional

flexibility in resource allocation to different tenants. To achieve this, the proposed

scheme deploys a Cell Specific Dynamic UL/DL Re-configuration (CSDR) per slice in

line with the real time traffic demands. Such dynamic TDD operation per slice is

shown to reduce the loss of multiplexing gain caused by the isolation property of the

resource slicing. Thus, the proposed mechanism advances the current state of the

art towards more flexible application oriented network management considering the

heterogeneous requirements of diverse applications in 5G.

The contributions include:

• A service specific network slicing concept in TDD networks that permits efficient

resource provision and allows each slice to support a different UL/DL ratio in

order to effectively follow the service-oriented traffic dynamics.

• An SDN-based architecture that provides network slicing considering different

tenants and the mechanism for performing UL/DL re-configuration per slice.

• The performance evaluation of the proposed scheme using a QoE-based method-

ology considering a set of different variations of the CSDR scheme that takes into

account either the aggregate traffic load or the load of a particular application.

6.2.5 Service-tailored Network Slicing for emerging 5G-TDD Net-

works

The proposed static 5G TDD network slicing in this thesis, in chapter 5, is further

developed towards an on-demand, adaptive 5G TDD network slicing approach. The
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proposed adaptive on-demand 5G TDD network slicing concept allows adaptation of

the amount of allocated resources to the each slice, including the corresponding UL/DL

frame ratio of each slice, based on a traffic forecast, user mobility and real time UL/DL

traffic demand of the respective slice applications/services. This approach leads to

overall improvement in resource utilization efficiency. The proposed solution provides

a flexible allocation of resource blocks considering the entire spectrum rather than

the a-priori static spectrum reservation, adopting the notion of Network Virtualization

Substrate (NVS) [98] that defines a two-step scheduling process, one controlled by

the slice tenant, while the other is controlled by the virtualization layer that allocates

network slices.

The contributions include:

• Service-oriented network slicing operations for 5G TDD networks that allocates

and adjusts network resources dynamically considering UL/DL forecasted traffic

demands and user mobility for each service type, instead of a fixed slice size

with a reactive UL/DL adjustment based-on aggregate or service-specific traffic

conditions.

• A flexible spectrum allocation mechanism per slice. This involves flexible allo-

cation of resource blocks to particular slices and periodically adapting the slice

capacity as the traffic load varies within the available spectrum band. Hence,

allowing in this way, variable application-oriented slice dimensions across dif-

ferent eNBs in the RAN, rather than the a-priori static spectrum reservation,

wherein the allocation of resource blocks considers only a particular sub-set of

the spectrum band.

• A novel metric for selecting a suitable TDD frame configuration of each slice

based-on the predicted traffic load in the UL and DL direction respectively and

spatial throughput across a specified RAN region, which reflects the probability

that a user visits a particular location at a certain known point in time. Such a

metric is used to adjust the TDD frame configuration, instead of the conventional

UL/DL buffer status and past average throughput.

• An analytical model, formulating the network slice resource allocation as a weighted

optimization problem considering the newly introduced resource allocation met-
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ric in order to optimize the capacity offered for each slice and the corresponding

UL/DL ratio

• Two TDD slice (re-)configuration mechanisms that regularly adjust the resources

allocated per slice considering the desired UL/DL service ratio that avoids over-

provisioning of network resources without compromising the desired SLAs.

(i) Joint slice resource allocation and TDD frame configuration (Joint DSE-CSDR-

640ms and Joint DSE-CSDR-10ms), wherein the slice size is optimized jointly,

i.e. in a single step, with the desired UL/DL service ratio. The DSE-CSDR-640ms

and Joint DSE-CSDR-10ms configures the same UL/DL ratio across the entire

RAN slice, updating each slice independently at regular intervals for example

640ms or 10ms.

(ii) Slice allocation with distributed UL/DL ratio adjustment (Distributed DSE-

CSDR), where the slice size is allocated in a centralized manner, lasting relatively

long time durations, while the UL/DL ratio is adjusted independently at each

eNB in a distributed manner.

• Simulation study that compares the proposed algorithms with the state of the

art considering

(i) Fixed slicing for the duration of the service with distributed cell-specific

UL/DL ratio adjustments (SE-CSDR) and (ii) Cell specific dynamic UL/DL re-

configuration with no slicing (CSDR).

In this way, with the help of proposed SDN architecture and the adaptive 5G TDD

network slicing concept in this thesis, resource flexibility is improved. Thus, in this

thesis, a novel idea of real time adaptive service-oriented network slicing in 5G TDD

RAN is introduced.

6.2.6 Evolving LTE/LTE-A/5G System Level Simulator

A novel 3GPP compliant system level simulator is developed in this work that accu-

rately evaluates the effects and performance gains of the proposed concepts and net-

work architectures. The simulator integrates the network slicing concepts introduced

within the framework of this thesis. It also evaluates various algorithms and concepts
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proposed in this work. The 3GPP RAN with different scheduling techniques such as

round robin, EXP rule, video and VoIP oriented scheduling have been modelled. A

modular approach is adopted to maximize the flexibility of the simulator and provide

compatibility with future developments. A number of modules are developed to model

different aspects of the system. These modules include a location module, propagation

module, RRM module and traffic module with different types of traffic models such as

video, VoIP, FTP and best effort. Traffic models are implemented following the stan-

dard state of the art and 3GPP defined methodologies. The mobility module uses the

self-similar least action walk (SLAW) model to emulate user mobility. In some cases,

fading is modeled using Jakes model. Functionalities such as traffic prediction are

performed following the Holt-Winter’s Exponential Smoothing Concept. Application

MOS calculation is done employing the MOS models of the respective applications.

Detailed description of the simulation, analysis and evaluation methodology for every

proposed solution within this thesis is provided in each chapter separately.
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Chapter 7

Future Work

7.1 Virtual Cell Concept for Evolving TDD networks-5G

and Beyond

The virtual cell concept may be explored in the context of TDD Full Duplex Commu-

nication (FDC). More specifically, it will be interesting to investigate how the virtual

cell concept can be employed and how much performance enhancement it can provide

when the FDC enabled eNBs or UEs are available. FDC has the potential to increase

the spectral efficiency to upto 2 times the current limit [99] in UL and DL directions

respectively. The FDC has the potential to double the capacity of the Half Duplex sys-

tem at the link level. However, the improvement in capacity is restricted due to the

increase in overall aggregate interference in each communication link. FDC systems

introduce an additional form of interference called self-interference which needs to

be taken into account when considering an FDC enabled system. This interference

problem gets even more serious when a dynamic TDD operation is employed where

in, the UL/DL frames are adapted at a specific timescale to match the real time traffic

demands in UL and DL directions respectively. Within such a dynamic TDD system,

in addition to the UE-UE, BS-BS and self-interference (in case of FDC), there is also

a possibility for cross-slot interference to occur, in addition to the UE-UE, BS-BS and

self-interference (in the case of FDC). Hence such an arrangement makes the scenario

even more complex. Therefore it would interesting to explore how much capacity

improvement can be achieved in such a dynamic environment considering also multi-

connectivity concepts such as the virtual cell concept introduced and investigated in

this thesis.
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7.2 Considering Different Frequency Ranges and mmWave

Technology

Further research is envisioned to analyze more complex scenarios considering differ-

ent frequency ranges for example, below 6GHz and above 6GHz or mmWave. In case

of higher frequency bands, mechanisms to efficiently manage high bandwidth under

inteference limitations considering different application or service requirements may

be investigated. On-demand multi-connectivity across different or same frequency

bands would also be interesting to explore. More advanced and complex mecha-

nisms may be investigated to perform UL/DL reconfiguration (with or without network

slicing) under alternating traffic conditions considering Enhanced Mobile Broadband

(eMBB), as well as Low Latency and High Reliability to enable some Ultra-Reliable and

Low Latency Communications (URLCC) use cases. How the concepts and mechanisms

introduced in this thesis, will work in a 5G New Radio (NR) scenario would also be

interesting to explore.

7.3 Multi-Access Edge Computing (MEC) or Cloud RAN

(C-RAN) Scenarios

Further research is also recommended in studying the use of virtual cells in a MEC or

cloud RAN scenario similar to [100]where, a centralized entity or controller controls a

set of radio access points. Such a scenario helps in reducing infrastructure costs espe-

cially in the case of dense deployments. The centralized approach allows optimization

of certain operations, that may be computation intensive, related to control and data

plane of the associated cells. MEC is designed to offer high performance comput-

ing capabilities and IT service environment at the edge of the mobile network (MEC

doc). It provides cloud computing platform to application developers and content

providers. MEC provides an environment that is essential to support ultra-low latency

and high bandwidth and provide real time access to the RAN information that can be

exploited by applications and services to meet their performance targets. The oper-

ators can open their MEC platform at the RAN to authorized third parties and allow



Chapter 7. Future Work 167

them to flexibly and rapidly deploy innovative applications and services to serve the

end users, enterprises and vertical markets. The SDN based mechanisms proposed

in this thesis may also be extended considering split bearers and towards dynamic

adjustments in the mobile backhaul provisioning resources for lower layer transport

mechanisms. Novel SDN-based frameworks that enable QoE-aware network manage-

ment for OTT mobile services have also been proposed in this thesis therefore it will

be interesting to have the option of dynamically placing certain core network and RAN

functions at selected locations inside the network or at the network edge according to

the QoS/QoE requirements of individual applications. Flexible Joint RAN and Back-

haul management mechanisms considering different backhaul technologies may be

developed. Such mechanisms may also help in exploiting path diversity gains in the

backhaul. Fig. 7-1 illustrates some of the main functional blocks of the ideas discussed

in this section, where B-Type indicates the type of backhaul technology used.

Figure 7-1: Flexible C-RAN Scenarios

7.4 Network Slicing for 5G and Beyond Networks

The concept of network slicing refers to the notion of deploying multiple dedicated

logical mobile networks on top of same physical infrastructure with varying levels

of mutual isolation. A network slice maybe composed of mobile network functions
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(groups) and a specific set of radio access technologies (RATs) or specific RAT config-

urations required to operate an end-to-end independent logical network [24]. The set

of network functions and configurations may be grouped in a way that slice specific

data and control plane functionality is customized as per the requirements of various

use cases, users or clients and business models. Network slicing acts as an enabler for

multi-tenancy and allows service-oriented mobile network operations. The work in

this thesis introduces new concepts involving network slicing and service-tailored net-

work management for 5G networks and beyond. The work can be further extended to

explore network slicing concept considering heterogeneous applications in different

deployment scenarios. The configuration of network slices considering 5G new radio

(NR) and multiple RATs may also be explored. The 5G NR is still under development

in 3GPP. With different RATs and new 5G technologies, efficient and dynamic manage-

ment of network resources considering 5G heterogeneous applications requirements

could be a challenge. In this direction it would be interesting to investigate macha-

nisms to adaptively and efficiently manage the network in real-time with the aim to

support demands of the 5G and beyond applications and services.
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Abbreviations and Acronyms

Table 7.1: List of Abbreviations and Acronyms

Notation Description

3GPP Third Generation Partnership Project

A− C PI Application-Controller Plane Interface

AMR Adaptive Multi-Rate

AoA Angle of Arrival

API Application Program Interface

AS Access Stratum

AW GN Additive White Gaussian Noise

BER Bit Error Rate

BGP Border Gateway Protocol

BS Base Station

CA Carrier Aggregation

CBR Constant Bit Rate

C DF Cumulative Distribution Function

CQI Channel Quality Indicator

CSDR Cell-Specific Dynamic Re-configuration



Abbreviations and Acronyms 170

Table 7.1 continued..

Notation Description

D2D Device-to-Device

DC I Downlink Control Information

D− C PI Data-Controller Plane Interface

DL Downlink

DPI Deep Packet Inspection

eNB evolved NodeB

EPC Evolved Packet Core

E − U TRA Evolved Universal Terrestrial Radio Access

DL Downlink

F DD Frequency Division Duplex

F FR Fractional Frequency Reuse

FRF Frequency Reuse Factor

F T P File Transfer Protocol

GBR Guaranteed Bit Rate

GW Gateway

GW CN Gateway Core Network

HAS HTTP Adaptive Streaming

HeNB Home evolved NodeB

HetNets Heterogeneous Networks

IC IC Inter-Cell Interference Coordination

I MS IP Multimedia Subsystem

ISP Internet Service Provider
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Table 7.1 continued..

Notation Description

I T U International Telecommunication Union

KPI Key Performance Indicator

LT E Long Term Evolution

LT E − A Long Term Evolution-Advanced

MAC Medium Access Control

MCS Modulation and Coding Scheme

M I MO Multiple Input Multiple Output

M M E Mobility Management Entity

MNO Mobile Network Operator

MOCN Multi-Operator Core Network

MO− N M Master Operator-Network Manager

MOS Mean Opinion Score

MO− SR− DM Master Operator-Shared RAN-Domain Manager

M P LS Multi-Protocol Label Switching

MV NO Mobile Virtual Network Operator

N FV Network Functions Virtualization

NGN Next Generation Network

NVS Network Virtualization Substrate

OAM Operations Administration and Maintenance

OF DM Orthogonal Frequency Division

OF DMA Orthogonal Frequency Division Access

OT T Over-The-Top
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Table 7.1 continued..

Notation Description

PCRF Policy and Charging Rules Function

PEP Packet Error Probability

PF Proportional Fair

PSNR Peak Signal-to-Noise Ratio

QoE Quality of Experience

QoS Quality of Service

RAC Radio Admission Control

RAN Radio Access Network

RB Resource Block

RIB RAN Information Base

RRC Radio Resource Control

RRM Radio Resource Management

RSRP Reference Signal Received Power

RT T Round Trip Time

SC Small Cell

SDN Software-Defined Networking

SINR Signal to Interference plus Noise Ratio

SLA Service Level Agreement

SO− N M Sharing Operator-Network Manager

T BS Transport Block Size

T DD Time Division Duplex

T T I Transmission Time Interval
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Table 7.1 continued..

Notation Description

U DP User Datagram Protocol

U E User Equipment

U L Uplink

V PN Virtual Private Network
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