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Abstract 
 
During normal vertebrate development, the ventricular zone (VZ) of the spinal cord reduces in size 

during the late prenatal period. In this process, termed dorsal obliteration, dorsal VZ progenitors move 

away from the VZ. Remaining ventral progenitors give rise to the ependymal zone of the adult central 

canal. At present, little is understood of the mechanisms that drive dorsal obliteration. Here I analyse 

dorsal obliteration in the prenatal mouse. I show that it occurs over a tight time-window, between E14-

E17. Over this period, the dorsal midline is characterised by dorsal Nestin+ radial glial (dNRG) cells that 

display strong apical/endfeet expression of the apical polarity proteins CRB2 and ZO-1. Concomitantly, 

adjacent sub-dorsal VZ cells downregulate CRB2, ZO-1 and aPKC, and their nuclei become located away 

from the lumen. Ectopic transplantation of dNRG into the lumen of embryonic chick neural tube causes 

a disruption of progenitor patterning and the appearance of ectopic progenitor cells outside the neural 

tube, suggesting that dNRG cells secrete a diffusible factor that can disrupt neuroepithelial integrity. 

Previous bioinformatics studies had suggested the existence of an isoform of CRB2 that lacks the 

transmembrane and intercellular domain, and so may function as a secreted variant. Using a nested PCR 

approach, I find evidence that a isoform of CRB2 that lacks the transmembrane domain is specifically 

expressed in dNRG cells. Further, a protein encoded by this splice variant (secreted CRB2) can be 

secreted, and, when presented ectopically to chick neural tube, can disrupt neuroepithelial integrity. I 

therefore propose a model for dorsal obliteration in which secreted CRB2 can outcompete or interfere 

with a normal homodimerisation of transmembrane CRB2, leading to the destabilisation of the CRB2 

complex and apical polarity, and the consequent delamination of subdorsal VZ cells. As a first step in 

testing this model, I develop an in vivo mouse slice culture assay in which to monitor cell behaviour 

during dorsal obliteration in real time. These studies provide evidence that the cell bodies of sub-dorsal 

cells immediately adjacent to elongating roof plate cells/dorsal Radial Glia migrate dorsally, using either 

the dorsal Radial Glia as a scaffold, or, potentially, re-orienting their own processes along the scaffold, 

and migrating along these. Finally, sub-dorsal cells appear to detach from the VZ in a process that may 

resemble apical abscission. Together, these studies suggest that a disruption of apical polarity proteins, 

driven through dorsal midline-secreted CRB2, is instrumental in dorsal obliteration. I discuss this model 

within the context of embryonic neurulation and discuss the implications for potential of the adult 

spinal cord.  
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1.1 Neurulation 

The term ‘neurulation’ usually refers to the process by which the neural plate through 

bending, closing and formation of the roof plate (RP), forms the neural tube. However, 

a recent review has argued that such ‘early’ neurulation is followed by a second period 

of development, during which the lumen of the neural tube gives rise to the central 

canal, and has suggested that this should be referred to as ‘late’ neurulation (Korzh, 

2014b; Mao et al., 2015). This thesis is primarily concerned with processes that occur 

in, and may drive, late neurulation. 

 

1.2 Early neurulation 

In birds and mammals the process of early neurulation is divided into primary and 

secondary neurulation. Primary neurulation is characterised by the mechanism by 

which the neural plate - a thickened epithelium that forms over the midline of the 

embryo and that expresses characteristic proteins, including SOXB1 proteins - forms 

neural folds that bend, fold and merge to form a neural tube (Figure 1.1; (Rex et al., 

1997; Uchikawa et al., 2011; Gilbert et al. 2000; Kishi et al (2000). Secondary 

neurulation occurs in the very caudal neural tube of birds and mammals, and is the 

method of neural tube formation in teleosts such as zebrafish. Secondary neurulation 

starts with a migration of neural plate cells to the midline, causing a thickening. The 

thickening then transforms into the neural stem that hollows into the neural tube. 

 

  



Neural Plate
Neural Plate BorderEctoderm

Notochord

Roof Plate

Neural Crest Cells

Epidermis

A

B

C

Figure 1.1 - Formation of the neural tube. (A) The neural plate develops as a thick-
ened epithelium overlying the notochord. Its lateral edges are bounded by neural 
plate border cells.  (B) The neural plate bends  upwards into neural folds that then 
fuse together to create a tube. (C) The neural tube separates from the overlying 
ectoderm. Cells from the neural plate border form both the roof plate at the neural 
tube midline and migratory neural crest cells. 

Neural Folds
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1.3 Neural patterning and neurogenesis 

The early neural tube is a bilaterally-symmetrical pseudostratified epithelium in which 

the basal surfaces of SOXB1-positive neural progenitor cells form the lateral edges of 

the neural tube and the apical surfaces are oriented towards an internal primitive 

lumen, or neurocoel. Neural progenitors proliferate and their nuclei undergo a 

stereotypic interkinetic nuclear movement in which mitosis occurs apically and S phase 

basally (Kosodo et al., 2011; Spear and Erickson, 2012). This results in a substantial 

expansion in the number of neural progenitors and the initial phase of neural tube 

development is marked by a considerable increase in tissue size. As neural plate and 

neural tube formation proceed, diffusible signals emanate from posterior and anterior 

signalling centres, to pattern the neural tube along its anterior-posterior axis. The 

spinal cord thus develops from posterior parts of the neural tube. 

 

The early posterior neural tube is further characterised by the floor plate, which forms 

at the ventral midline, and the roof plate, which forms at the dorsal midline (see 

section 1.3). These wedge-shaped glial-like cells act as signalling centres that establish 

dorso-ventral pattern in the neural tube. Sonic Hedgehog (SHH) deriving from the floor 

plate, and bone morphogenetic proteins (BMPs) and Wnts deriving from the roof 

plate, act antagonistically to establish a gradient of Gli transcription factors. In turn, 

these establish distinct dorsal-ventral identities in stem and progenitor cells (Jacob and 

Briscoe, 2003; Le Dreau and Marti, 2012). Dorsal domains are characterised by 

homeodomain transcription factors including PAX6, PAX7, while ventral domains are 

characterised by the homeodomain transcription factors NKX2.2 and NKX6.1 (Figure 

1.2). Stem/progenitor cells throughout the ventricular zone (VZ) continue to express 

the SOXB1 protein, SOX2.  The signature of transcription factor expression results in 
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stem/progenitor cells that vary, both in potential and proliferation. Thus, dorsal 

progenitors will give rise to dorsal commissural interneurons, while ventral progenitors 

will give rise to motor neurons and ventral interneurons (Figure 1.2) (Briscoe et al., 

2000; Jessell, 2000). 

 

Concomitant with the formation of the wedge-shaped floor plate and roof plate, 

SOXB1-positive SOX9-positive neuroepithelial stem/progenitor cells begin to transform 

into radial glial cells, characterised by a cell body located at the ventricular zone and a 

long process that extends to the outer, pial surface (Kriegstein and Alvarez-Buylla, 

2009). Radial glial-like cells can either self-renew, or differentiate, via progenitors, to 

neuronal fates. A process termed apical abscission enables differentiating cells 

(neurons) to become physically removed from the ventricular zone and migrate 

laterally along radial glial-like processes, to the mantle zone, where they undergo 

terminal differentiation, including axon extension (Das and Storey, 2014). In the 

forming spinal cord of the mouse, the initial phase of neurogenesis occurs between 

embryonic day E12-E18, peaking at E14 in mouse, and in chick, between E2.5-E5.5, and 

is followed by a period of gliogenesis (King and Munger, 1990; Rowitch, 2004). 

Astrocytes then oligodendrocytes are specified, peak formation of both occurring 

postnatally in rodents (Barry and McDermott, 2005; Sauvageot and Stiles, 2002). 
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1.4 Development of the roof plate 

Roof plate cells are induced during gastrulation and initially occupy a territory termed 

the neural plate border, a broad territory located at the lateral edges of the neural 

plate (Fig. 1.1a). During neurulation, the neural plate border territory elevates as the 

neural plate closes to form the neural tube (Fig 1.1b and c). As a consequence, nascent 

roof plate cells come to reside within the dorsal aspect of the neural tube. 

 

Studies over the last two decades have provided much insight into the genetic control 

of roof plate development (Simoes-Costa and Bronner, 2013). These studies show that 

the neural plate border contains a multi-progenitor cell population that is capable of 

giving rise to roof plate cells as well as neural crest cells, ectodermal placodes, 

epidermal cells and sensory neurons of the central nervous system (Groves and 

LaBonne, 2014; Simoes-Costa and Bronner, 2015). Formation of the neural plate 

border is closely linked to neural induction, and appears to rely on the same signals. 

Foetal Growth Factors (FGFs) work in concert with BMP and WNT inhibitors to activate 

the expression of neural genes such as the SOXB1 genes (Streit et al., 2000). WNT and 

BMP signals originate in lateral regions of the embryo, while inhibitors of these 

pathways are secreted from medial regions. A balance between these signals 

generates a mediolateral gradient of WNT and BMP activity, and the neural plate 

border cells originate within a territory exposed to intermediate levels of WNT and 

BMP activity (Groves and LaBonne, 2014). 

 

The output of ‘intermediate’ WNT and BMP signaling activity activates a particular 

signature of transcription factors that defines neural plate border cells. These genes, 

which are termed neural plate border specifiers, include Tfap2, Msx1, Zic1, Gbx2, 
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PAX3/7, Dlx5/6, Gata2/3, Foxi1/2 and Hairy2 (Khudyakov and Bronner-Fraser, 2009; 

Meulemans and Bronner-Fraser, 2004; Nichane et al., 2008) and at least a subset 

appear to be directly activated by WNT and BMP signalling pathways (Garnett et al., 

2012). Importantly, expression of transcription factors is not uniform: this is thought to 

have important implications at subsequent stages, when the neural plate border 

becomes segregated into roof plate, premigratory neural crest and preplacodal 

domains (Hong and Saint-Jeannet, 2007). 

 

The emergence of the roof plate from the neural plate border is marked by the 

expression of ‘roof plate’ specifier genes, including members of the Lmx, Msx and Zic 

families (Khudyakov and Bronner-Fraser, 2009; Meulemans and Bronner-Fraser, 2004). 

Their expression is thought to establish a novel state that begins to set apart emerging 

roof plate cells. The LIM homeodomain transcription factor, Lmx1a, for example, is 

expressed in roof plate progenitors and differentiated roof plate cells in the developing 

spinal cord of both the chick and the mouse, where it is necessary and sufficient for 

caudal roof plate development (Chizhikov and Millen, 2004a) inducing expression of 

several roof plate components, including MAFB, GDF7, BMP4 and WNT1. Fate mapping 

studies show that early roof plate cells are multipotent, and that single roof plate cells 

can either be retained as roof plate cells or can give rise to neural crest cells (Bronner-

Fraser and Fraser, 1988, 1991; Bronner-Fraser et al., 1991; Chizhikov and Millen, 

2004b; Le Douarin et al., 2004) a population of cells that undergo an epithelial to 

mesenchymal cell transition, and migrate away from the neural tube, ultimately 

differentiating to a wide array of fates, including the peripheral nervous system. 

Currently, it remains unclear how neural crest cells might segregate from roof plate 

cells. By contrast, much is known of the mechanism of neural crest specification: 
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Neural crest cells, it is clear, are specified under a suite of genes, termed neural crest 

specifiers that have a range of integrated functions. They activate an epithelial to 

mesenchymal transition (EMT) effector programme, which together will allow (a) 

neural crest cells to delaminate, (b) support their acquisition of mesenchymal 

properties and (c) migratory abilities, and (d) maintain the neural crest in an 

undifferentiated state (Bronner-Fraser and Fraser, 1988, 1991; Bronner-Fraser et al., 

1991). In recent years, many studies on neural crest EMT have focused on the adhesive 

changes that enable cells to delaminate. These studies indicate that a major driver of 

EMT is the direct repression of neural crest specifier genes on epithelial cadherins 

(Sauka-Spengler and Bronner-Fraser, 2008). In particular, downregulation of type 1 

cadherins results in the dissolution of adherens junctions, allowing the segregation of 

single cells from the epithelium (Pla et al., 2001). 

 

Whatever the mechanism that dictates whether a cell will form a neural crest or a roof 

plate cell, the process of roof plate specification culminates in the expression of bona 

fide roof plate markers such as BMP4, BMP7, WNT1 and WNT3 (Garcia-Castro et al., 

2002; Liem et al., 1997) that characterise a line of wedge-shaped glial-like cells that are 

found at the dorsal midline of the developing CNS (Chizhikov and Millen, 2004b). Along 

the anterior-posterior axis, the roof plate varies in width and character, and is 

particularly wide in the hindbrain, where distinct sub-divisions of the roof plate can be 

recognised through characteristic gene expression profiles (Broom et al., 2012; Wilson 

et al., 2007). 
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1.5. Elongation of the roof plate and formation of the dorsal glial septum 

Studies in a wide range of species show that roof plate cells undergo a profound 

transformation after their initial formation. Light and electron microscopic 

observations in rat, mouse and cat revealed that in all species, a dramatic change in 

shape occurs over a 3-4 day period of prenatal life. Over this period (the 

‘transformation window’), roof plate cells are transformed from wedge-shaped cells, 

with large extracellular spaces between them, to a thin, dense septum of cells with 

reduced extracellular spaces between them (Altman and Bayer, 1984; Bohme, 1988; 

Sevc et al., 2009; Snow et al., 1990; Sturrock, 1981) (Figure 1.3). These studies 

suggested that the elongated roof plate cells contribute to the future dorsal glial 

septum, or dorsal funiculus, an adult structure that extends from the dorsal-most 

central canal to the dorsal pial surface.  

 

 

  

 

Figure 1.3 Development of the roof plate  
((Snow et al., 1990) Fig 2, B and C) E13 and E15 rat roof plate showing a change 
from wedge-shaped to elongated roof plate cells.  

 



12 
 

Immunohistochemical analyses reveal that elongated roof plate cells express a number 

of markers that are traditionally associated with radial glial-like cells. These include the 

Glutamate transporter GLAST, Glial fibrillary acidic protein GFAP and the type VI 

intermediate filament marker nestin (Kondrychyn et al., 2013; Sevc et al., 2009; Snow 

et al., 1990) Differentiated NeuN+ neurons are clearly absent from the region occupied 

by elongated roof plate cells (Sevc et al., 2009). In zebrafish Notch (mib) mutants, 

anterior roof plate cells are absent, and in later embryonic life, there is no sign of 

anterior GFAP+ elongated roof plate cells, supporting the idea that stretched roof plate 

cells go on to form a stretched GFAP+ population that shares certain features with 

radial glial cells (Kondrychyn et al., 2013)  Recently, elegant studies in zebrafish have 

used a GFP transgenic line to analyse roof plate elongation in real time in vivo 

(Kondrychyn et al., 2013). These studies confirm that wedge-shaped roof plate cells 

undergo a marked elongation. In fish, the transformation window occurs over the 48-

66 hours post fertilisation. Elongated roof plate cells form long ventrally-directed 

extensions, the end-feet of which form the dorsal surface of the central canal (Figure 

1.4). Dorsally, these cells extend to the pial surface (Figure 1.4). 

 

1.6 Central canal formation  

At the same time that roof plate cells elongate, the primitive lumen or neurocoel of 

the neural tube is transformed into the central canal of the spinal cord, a process that 

has been termed ‘dorsal obliteration (Bohme, 1988) or late neurulation (Korzh, 2014a), 

and is characterised by a reduction in size of the lumen. The reduction is markedly 

greater dorsally, and as a result, the postnatal/adult central canal lies relatively 

ventrally within the adult spinal cord (Figure 1.5). 
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The majority of studies have suggested that the elongation of roof plate cells is 

intimately linked to the transformation of the primitive lumen into the central canal, 

and have proposed mechanisms that might link these two processes. Sevc performed 

BrdU analyses in rats, and showed that proliferating progenitor cells are intimately 

associated with elongated Nestin+ GLAST+ roof plate cells (Figure 1.6). On the basis of 

this observation, the authors proposed that a rearrangement and migration of radial 

glial cells drives the transformation of the primitive lumen into the central canal, and 

suggested that Nestin+ GLAST+ elongated roof plate cells act as scaffold to support the 

migration of radial glial cells that move dorsally from the VZ (Sevc et al., 2009). 

 

 

 
Figure 1.4 Zebrafish elongated roof plate cells 
(Kondrychyn et al., 2013) Figure 2 and Figure 8) (J) Roof plate from a 24h post-
fertilisation embryo, (S) roof plate from a 72h post-fertilisation embryo. Long 
processes extend from the roof plate cells at 72h.   
RP – roof plate, FP – floor plate, CC – central canal.  

 
Konrychyn describes roof plate extention in fish neural tube as a product of 
‘push pull’ forces caused by constriction of the apical surface (red) and 
crowding by differenitated cells (blue). 
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Figure 1.6 Proliferation around the E18 Rat dorsal midline.  
(Sevc et al., 2009) Figure 1.I BrdU labelling of proliferating cells reveals labelled 
cells along the midline close to Nestin+ GLAST+ roof plate cells. 

 
 

 

 

 

 

  

 
Figure 1.5 Postnatal spinal cord. Lumen length denoted by white arrow. 
Website: © 2015 Allen Institute for Brain Science. Allen Spinal Cord Atlas 
[Internet]. Available from: http://mousespinal.brain-map.org 
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The PAR3/PAR6/aPKC protein complex plays a key role in the establishment and 

maintenance of apicobasal cell polarity (see below), and studies in fish showed that 

central canal development is disturbed in a PARD6gamma mutant embryo. Analyses of 

the cells lining the neurocoel revealed that lack of PARD6gammab function leads to 

defects in mitotic spindle orientation during neurulation (Munson et al., 2008). More 

recently, (Kondrychyn et al., 2013) demonstrated that in this mutant, the roof plate 

cells fail to stretch. This again illustrates the link between roof plate cell elongation and 

formation of the central canal. Additionally, these studies indicate a role for cell 

polarity proteins in these events. Indeed, binding sites for other apico-basal polarity 

proteins, including those for aPKC-binding, CDC42-binding, PALS1-and CRB binding are 

essential for the function of PARD6 in neurocoel morphogenesis (Munson et al., 2008). 

Furthermore, immunohistochemical studies in zebrafish show that as the lumen 

obliterates, the expression of apical polarity proteins in VZ cells that line the lumen 

changes appropriately. Thus, beta-catenin and ZO-1, which are detected in a long slit-

like domain that marks the apical surface of VZ cells lining the primitive lumen become 

expressed in a small, round domain, shifted ventrally, that marks the apical surface of 

cells lining the central canal (Kondrychyn et al., 2013). 

 

The cytoskeletal actin microfilament protein, F-actin, undergoes a similar change in 

pattern, correlating with the rearrangement of the primitive lumen into central canal 

and stretching of the RP cells, and F-actin constriction has been suggested as a major 

driving force behind dorsal collapse (Sevc et al., 2009). To date, no study has tested 

this directly, however, changes to the cytoskeleton have been shown to be important 

in the processes of roof plate elongation. In zebrafish, ZIC6 morphant roof plate cells 

fail to stretch (Kondrychyn et al., 2013). ZIC6 has multiple roles, including regulation of 
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the cytoskeleton, and indeed, the cytoskeletal inhibitor of Rho-associated protein 

kinases (ROCK1 and ROCK2) mimics the effect of the ZIC6 morphant. This 

demonstrates that in zebrafish, the extension of the roof place cytoskeleton depends 

on the activity of ZIC6 and Rho-associated kinase (Rock). At present it is not clear 

whether ZIC proteins play a similar role in other vertebrates: ZIC6 is specific to teleost 

fishes and homologues of this gene have not been identified in other vertebrates 

(Keller and Chitnis, 2007). Intriguingly, these studies suggest that the processes of roof 

plate elongation and dorsal obliteration are not completely interdependent: in ZIC6 

morphants, or embryos treated with ROCK inhibitors, the lumen collapses normally 

(Figure 1.7). The idea that roof plate elongation and dorsal obliteration are integrated, 

but not wholly interdependent was first raised by Bohme (1988), and highlights the 

fact that as yet, we understand little about the mechanisms behind these two 

processes. 

  

 
Figure 1.7 Zebrafish roof plate disruption. 
 (Kondrychyn et al., 2013) Figure 8. Zebrafish elongated roof plate cells fail to 
extend in the Zic6 –mutant or in embryos treated with a ROCK kinase inhibitor, 
although the lumen still reduces in size.  
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1.7. Molecular drivers of early neurulation and neurogenesis 

As outlined above, as dorsal obliteration proceeds, there is a change in expression of 

apical polarity proteins, and of F-actin. Both these components are known to play a 

critical role in driving early neurulation. 

 

The ventricular zone of the early neural tube has an unusual arrangement of actin 

microfilaments, including F-actin, that are critical for normal neurulation (Karfunkel, 

1974; Morriss-Kay and Tuckett, 1985; Sadler et al., 1982; Smedley and Stanisstreet, 

1986). The classically-accepted idea is that the apical constriction of neuroepithelial 

cells of the neural plate is driven by contraction of an network of filamentous actin (F-

actin) at the apical surface, a process that includes the vimentin-positive intermediate 

filaments-based cytoskeleton (Li et al., 2009). Several studies have approached this as 

the main driving force behind primary neurulation (Hildebrand and Soriano, 1999; 

Nagele et al., 1987; Sawyer et al., 2010). More recently, however, studies into the 

actin-severing protein, Cofilin, suggest that F-actin may play a more complex role, 

including distinct interactions with both apical and basal domains of neuroepithelial 

cells (Grego-Bessa et al., 2015). 

 

Apicobasal polarity is a cellular characteristic essential for tissue and organ 

morphogenesis, differentiation and homeostasis (Roignot et al., 2013; Royer and Lu, 

2011; St Johnston and Sanson, 2011; Yamashita et al., 2010) and recent studies show 

that the apicobasal polarity pathway is essential for primary neurulation (Kondrychyn 

et al., 2013). These studies show that bone morphogenetic proteins (BMPs), that 

derive from the surface ectoderm and roof plate, can regulate apicobasal polarity 

pathway components in the neural plate, including the apical components, Shroom, 
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CRB and PAR complexes (see below) and sub-apical adherens junctions (AJ) complexes, 

in a cell cycle dependent manner (Eom et al., 2013). These genes are required for 

apical constriction (Haigo et al., 2003; Hildebrand and Soriano, 1999; Lee et al., 2007; 

Nishimura et al., 2012; Nishimura and Takeichi, 2008) modulating apical junctions in 

the neural plate and resulting in cell and tissue shape changes that help bend, shape 

and close the neural tube. 

 

Apical constriction is a cell shape change that requires the co-ordination of many 

distinct cell biological processes (Martin and Goldstein, 2014). These processes include 

the positioning of the centrosome, the contraction of actin-myosin networks, and the 

attachment these actin networks to cell-cell junctions, allowing co-ordinated 

movement within a tissue. 

 

Although contractility and adhesion vary between cell types, there is a core of 

cytoskeletal and adhesion proteins that modulate forces intra- and intercellularly, and 

in turn drive co-ordinated processes such as apical constriction in the neural tube 

(Mason and Martin, 2011; Sawyer et al., 2010). As in other tissues, apical constriction 

during vertebrate neural tube formation is associated with the positioning of the 

centrosome (Baker and Schroeder, 1967; Buckley and Clarke, 2014; Burnside, 1971) 

and with changes in cell-cell adhesion molecules, such as those found at adherens 

junctions (Barriga and Mayor, 2015; Miyamoto et al., 2015). 

 

As outlined in section 1.2, above, early neurulation is followed by a neurogenic period, 

in which neuroepithelial cells begin to generate neural progenitor cells. These migrate 

laterally, most likely along medio-laterally oriented neuroepithelial cell/radial glial cell 
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scaffolds, to the outer mantle zone where they terminally differentiate (Poluch and 

Juliano, 2007). 

 

Increasing numbers of studies point to the importance of apical-basal polarity and AJ 

proteins as well as F-actin, in regulating the switch from symmetrically proliferative 

division of neuroepithelial cells to asymmetric neurogenic division of neural progenitor 

cells, and in promoting the events that result in lateral migration of neural progenitor 

cells (Kosodo et al., 2004; Miyamoto et al., 2015). An apical abscission event driven by 

changes in the actin-myosin results in the loss of apical cell membrane, and apical 

polarity, and mediates neuron detachment from the ventricle (Das and Storey, 2014). 

 

In summary, apico-basal cell polarity is critical to both early neurulation and to 

neurogenesis, and studies are beginning to understand the mechanistic basis for apico-

basal polarity proteins in regulating complex cellular behaviours, including changes in 

cell shape, in delamination and in migration. The finding that apico-basal polarity 

proteins, and F-actin undergo changes in expression as dorsal obliteration proceeds 

have led to the recent suggestion that similar mechanisms operate to govern early 

neurulation and dorsal obliteration. In turn, this has led to the suggestion that dorsal 

obliteration should be termed late neurulation (Korzh, 2014a) and that the completion 

of this second period of central canal formation that should define the end of 

neurulation proper. As outlined above, however, as yet we have little mechanistic 

understanding of dorsal obliteration, and additional studies are needed to determine 

whether similar components and principles may drive early neurulation and dorsal 

obliteration. 
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1.8. Apical-Basal polarity proteins 

Cell polarity is a fundamental regulator of many cellular processes. It plays roles in 

processes as diverse as differentiation, migration and molecular transport (Assemat et 

al., 2008; Bulgakova and Knust, 2009; Gosens et al., 2008; Humbert et al., 2006; Kaplan 

et al., 2009). For example, epithelial cells that line the cavities and surface of the body 

rely on the compartmentalization of the apical and basolateral membranes to perform 

an enormous variety of specialized functions. Polarity complexes are also critical in 

setting up and maintaining the belt-like zona adherens (ZA) or adherens junction (AJ) 

that separates these two compartments and is functionally important in maintaining 

the integrity of the epithelial sheet (Assemat et al., 2008; Kaplan et al., 2009; Shin et 

al., 2006; Wang and Margolis, 2007). Together, therefore, apical and basal polarity 

complexes define functionally distinct plasma membrane and associated cytoplasm. 

 

Polarity proteins fall into three complexes, each evolutionarily conserved from flies to 

humans (Table 1.1). Each complex has a defined localization within the cell. The apical 

domain hosts the CRB complex, consisting of CRB, Stardust and Discs Lost, and the PAR 

complex (Bazooka/PAR6/PKC) that localize to the subapical region, while the Scribble 

complex (Scribble/Discs Large/Lethal Giant Larvae) localizes to the basolateral domain 

(Assemat et al., 2008). A schematic of polarity protein interactions is provided in Figure 

1.8.  

 

Although these proteins are often discussed as if they are found in discrete complexes, 

the reality is that these complexes form a complicated and interconnected network.  

Many core members of these complexes are notable for their variety of binding/linker 

domains (especially PDZ, ERLI and L27 domains, as detailed in Fig 1.9) This allows a 
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great deal of flexibility in binding partners, both within and between the three polarity 

complexes leading to an expansive functional diversity (described extensively in 

Assemat et al. (2008)). 

 

Each complex has several core members; however, depending on tissue and 

developmental context, a wide variety of transient members may be bound. 

Additionally, these complexes are ancient and although evolutionarily conserved, they 

have undergone a degree of orthology. Apical-basal polarity in higher animals has a 

much greater degree of complexity than can be described in this brief introduction. 

  



Figure 1.8 The Crumbs (blue), Par (yellow) and Scribble 
complexes (purple) work in concert to define the 
apical-basal polarity of the cell. The apical Crumbs and 
Par complexes mutually antagonise the basal Scribble 
complex. Iden and Collard (2008) 

Polarity complex proteins



Figure 1.9 The Crumbs, Par and SCRIB complexes contain a multitude of 
domain types that facilitate a wide range of interactions within and 
between the complexes, as well as to, for example, the cytoskeleton. 
Assemat et al (2008). 

Domain diversity in polarity complex proteins



Figure 1.10 The mammalian Crumbs family has three members. Crumbs1 
(CRB1) and Crumbs2 (CRB2) have a very similar domain structure, including a 
very long extracellular domain. Crumbs3 (CRB3) is much smaller, and consists 
of only the cytoplasmic domain common to all three proteins and a signal 
peptide. van den Hurk (2005)

Crumbs family members
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Table 1.1 Summary of Apical-basal polarity proteins across Drosophila, C. elegans and 
mammals. 

Polarity complex Drosophila C. elegans Mammals 

CRB complex 
CRB/PALS/PATJ 

CRB 
Stardust 
dPATJ 
dLIN7 
 

Crb1, Eat-20 
TAG-117 
- 
MPZ-1 
 

CRB (1-3) 
MPP1-7/PALS 
INADL/PATJ/MUPP1 
MPDZ/MALS 
 

PAR Complex 
PAR3/PAR6/aPKC 

Bazooka 
DmPAR6 
DmaPKC 

PAR3 
PAR-6 
PKC-3 

PARd3/PARd3B 
PARD6(A,B,G) 
Atypical (a)PRKC/PKC 
 

Scribble complex 
SCRIB/DLG/LGL 

Scrib 
DLG 

DLGl 

LET-413 
DLG1 
TOM1 

SCRIB 
DLG (1-5) 
LLGL (1-2) 
 

 

 

1.9 The CRB complex 

The CRB complex was the first of the polarity complexes to be discovered in 

Drosophila, and is evolutionarily conserved from invertebrates to mammals (Assemat 

et al., 2008; Omori and Malicki, 2006). Currently, extensive research is focused on the 

role of CRB genes in retinal degeneration (notably retinitis pigmentosa, (den Hollander 

et al., 1999; Richard et al., 2006), but it is becoming an increasing important candidate 

for research into other diseases of epithelia, including tumourigenesis and cystic 

kidney diseases (Laprise, 2011; Torkko et al., 2008). 

 

The CRB complex varies in composition depending, for example, on developmental 

and tissue context. However several ‘core members’ that are always present can be 

identified: CRB proteins, Protein associated with Lin7-1 (PALS1, or Stardust in 

Drosophila), Lin7 and PALS1 associated tight junction protein (PATJ) (Bulgakova and 

Knust, 2009). CRB itself is pivotal to the functioning of the entire CRB complex. Loss of 
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this protein leads to degradation or delocalization of the other members (Bachmann et 

al., 2001; Berger et al., 2007; Horne-Badovinac and Bilder, 2008). The Drosophila Crb- 

mutant can be rescued by expression of the region containing a functional PDZ- and 

FERM- binding domain, demonstrating the importance of this cytoplasmic region to 

the function of the CRB complex (Wodarz et al., 1993). Indeed, most studies have 

indicated that the cytoplasmic domain mediates the function of CRB. The exception to 

this is a study in zebrafish that suggests that the extracellular domain of Crb2 

homodimerises and stabilizes the entire CRB complex  

(Zou et al., 2012). 

 

CRB 

Originally identified in Drosophila, where it is expressed during gastrulation and then in 

ectodermally-derived epithelia post-gastrulation (Tepass et al., 1990). CRB is a type-1 

transmembrane protein containing a large extracellular domain, a transmembrane 

domain and a small (37 amino acid) intracellular C-terminal domain. The intracellular 

C-terminal domain is highly conserved between orthologues. It contains highly 

conserved binding motifs, including the PSD-95/Discs-large/ZO-1 (PDZ)-binding motif 

ERLI, and the 4.1/ezrin/radixin/moesin (FERM)-binding domain that are crucial for 

binding to other CRB complex members (Bulgakova and Knust, 2009; Klebes and Knust, 

2000; Wodarz et al., 1993). 

 

Three orthologues of CRB exist in mammals (CRB1-3) and five in zebrafish (Crb1, 

Crb2a/b, Crb3a/b) (Omori and Malicki, 2006). As yet, the expression patterns of CRB 

proteins have not been fully described in any higher model organism (Bulgakova and 

Knust, 2009). CRB1 and CRB2 have highly similar extracellular domains: 3 Laminin A/G 
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domains and 19 and 14 EGF-like domains, respectively (den Hollander et al., 1999; 

Katoh and Katoh, 2004). CRB3 has a markedly different extracellular domain to the 

other CRB proteins. However, CRB3 is considered a member of the CRB complex 

because the transmembrane and cytoplasmic domain is highly conserved between all 

three mammalian CRB proteins (Gosens et al., 2008; Medina et al., 2002; Richard et al., 

2006) A schematic is provided in Figure 1.10. 

 

Much of what is known about CRB in developing epithelia has come from studies in 

Drosophila and cell lines. CRB and other CRB complex members have been repeatedly 

identified as required for setting up adherens junctions and the correct localisatin of E 

cadherin and Beta-catenin (Grawe et al., 1996; Klebes and Knust, 2000; Tepass, 1996). 

 

CRB1 has been extensively characterised in the retina, as mutations in the complex 

lead to retinal dystrophies including retinitis pigmentosa and Leber congenital 

amaurosis (den Hollander et al., 1999). In mouse, mutations in CRB2 phenocopy the 

retinitis pigmentosa disruption as caused by CRB1 in human. Additionally, in fish, 

Knockdown of Crb2b leads to abnormal photoreceptor cells and defects in Crb2a 

affects neuronal patterning in the retina (Malicki and Driever, 1999; Omori and 

Malicki, 2006). 

 

CRB2 is mainly expressed in retina, brain and kidney. Studies into CRB2 have been slow 

owing to the embryonic lethality of the knockout in mice (Xiao et al., 2011). However, 

the role of mutated CRB2 in retinal degeneration has been well established in mouse 

(as discussed above) and fish studies have shown knockdown of Crb2b result in 

abnormal cilia in the pronephric duct (Malicki and Driever, 1999; Omori and Malicki, 
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2006). In light of this, recent papers have begun to explore CRB2 as of real importance 

in diseases of the kidney in fish (Ebarasi et al., 2015) and human (Slavotinek et al., 

2015). This is mirrored in clinical investigations into CRB3, where it was noted that 

downregulation is associated with renal cell carcinomas (Mao et al, 2015). Work in the 

monkey brain, has implicated CRB2 in the inhibition of the Alzheimer disease 

associated amyloid precursor protein (Mitsuishi et al., 2010). 

 

CRB3 is widely expressed in epithelia and skeletal muscles (Lemmers et al., 2004; 

Makarova et al., 2003; Roh et al., 2003). Like CRB1 and CRB2, this protein is expressed 

sub-apically, but in addition a isoform localises to, and is needed for the maintenance 

of, primary cilia in mouse and in MDCK cells (Fan et al., 2007; Fan et al., 2004). 

Additionally, knockdown of Crb3in fish results in smaller auditory kinocilia in the inner 

ear (Omori and Malicki, 2006). 

 

Although polarity is accepted as a factor in the progression of cancers, the role of the 

CRB complex is as yet unclear (Dow and Humbert, 2007; Khursheed and Bashyam, 

2014; Wodarz and Nathke, 2007). Both over- and under-expression of CRB can lead to 

epithelial defects. Excessive levels of CRB in fly wing imaginal disks leads to 

overproliferation (Lu and Bilder, 2005). CRB3 repression has been reported in both 

breast cancer and tumourigenic baby mouse kidney cell lines, reported to be to the 

linked to misregulation of tight junctions (Aigner et al., 2007; Karp et al., 2008; Li et al., 

2015). 
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Studies into CRB2 during development of vertebrates have been slow owing to the 

embryonic lethality of the knockout in mice, which die at E12 due to disruption in 

epiblast cell polarity, disrupted EMT and endoderm and mesoderm formation (Xiao et 

al., 2011). However, studies have implicated CRB2 as essential for neural 

differentiation murine embryonic stem cells and mouse brain (Boroviak and Rashbass, 

2011). Unpublished studies from our collaborators (M. Muturza: PhD thesis; Rashbass 

lab) reveal expression of Crb2 mRNA and protein in the apical part of VZ cells in the 

chick hindbrain (stage 10-17) and mouse dorsal telencephalon (E12.5-E17.5). These 

studies also described an atypical localisation of CRB2 in a sub-ventricular region in the 

dorsal telencephalon (see Chapter 4). CRB2 has also been detected in E11.5 mouse 

neural tissue (Lee et al., 2011). CRB3 has been shown to be important for lumen 

formation in Madin-Darby canine kidney cells, however it is not clear whether this 

mechanism it utilised in vivo (Schluter et al., 2009). 

 

PALS1/Stardust 

Stardust (Sdt) is a multiple PDZ domain MAGUK (membrane-associated guanylate 

kinase) protein. It is also known as PALS1 (protein associated with LIN7 1, or MPP5 

(Membrane Protein, Palmitoylated 5 / MAGUK P55 Subfamily Member 5). In many 

cells, loss of stardust leads to a similar phenotype to loss of CRB, and in many cases 

these proteins appear to mutually stabilize.  It has been suggested that SDT acts as a 

linker or scaffold with which to localize other proteins to the CRB complex. However, 

this cannot be the entire story, as CRB and stardust do not colocalise in every 

developmental stage and cell type (notably in Drosophila photoreceptor cells) (Berger 

et al., 2007). 
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PATJ 

Also described as disks lost (DLT), PATJ (PALS1-associated TJ protein) is a PDZ-protein. 

Loss of PATJ prevents proper maintenance of CRB and Stardust within developing 

photoreceptor cells. Additionally, the PDZ domain of PATJ binds to PAR-6, thus 

connecting the two apical polarity complexes (Tepass, 2012). 

 

LIN7 

Also known as Mals1, this PDZ protein has been found associated with MPP7 (a 

homologue of MPP5/Std) and DLG, and localizing to epithelial adherens junctions in 

the MDCK cell line (Bohl et al., 2007). Knockout analysis suggests that this CRB complex 

component is less critical for viability than the others and as such, it is not always cited 

as a core member of the CRB complex (Bachmann et al., 2001; Straight et al., 2006). 

 

1.10 The PAR complex 

Like the CRB complex, the PAR complex is conserved from invertebrates to 

vertebrates, although higher organisms often have several orthologues. The 

constituent members are PAR3/Bazooka, PAR6 and aPKC. This complex has been 

shown to localize to tight junctions of epithelial cells, play a key role in the migration of 

astrocytes, and interact with the WNT pathway (Gao et al., 2002a; Gao et al., 2002b; 

Sun et al., 2001). At least in mammals, the interaction of all three components is 

critical to the establishment of apical basal polarity (Goehring, 2014; Helfrich et al., 

2007). 
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Atypical protein kinase C, aPKC 

Atypical protein kinase C (aPKC) has an N terminal regulatory domain, and a C terminal 

catalytic domain. This protein was originally identified as a binding partner of PAR3, an 

interaction that is critical for the asymmetric cell division during early embryogenesis 

in C. elegans (Tabuse et al., 1998). aPKC interacts with the CRB complex by binding 

both PATJ and CRB. Several areas of research suggest that aPKC is important in the 

developing nervous system. In stem cells and neural progenitors, aPKC has been 

implicated in the regulation of primary cilia (He et al., 2014). aPKC has a role in 

separating neural stem cells and progenitor cells though subcellular localization in 

chicken embryos (Ghosh et al., 2008), and though the regulation of Numb distribution 

in Drosophila larvae brains (Haenfler et al., 2012) and  though asymmetric inheritance 

of both aPKC and PAR3 in fish (Alexandre et al., 2010). 

 

Bazooka/PAR3 

PAR3 has been shown to set up tight junctions in epithelial cells. It contains three PDZ 

domains, a CRIB domain, and a conserved N terminus (Kohjima et al., 2002). 

 

PAR6 

PAR6 contains a conserved PDZ domain and a CRIB domain (Noda et al 2001). The 

correct apical localization of this protein is dependent upon the aPKC/PAR3 

interaction. PAR6 interacts PATJ, CRB and Std of the CRB complex. PAR6/aPKC 

associates with the SCRIB complex protein DLG1 in some migrating cells, regulates Rho 

proteins in some migration contexts, and also interacts with RAC (Etienne-Manneville 

et al., 2005; Gomes et al., 2005; Wang et al., 2003). PAR-6 can also interact with the 

actin cytoskeleton though association with CDC42 (Genova et al., 2000). 
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The PAR complex, has several known interactions with the CRB complex (Nam and 

Choi, 2003). Most notably PAR-6 interacts with PATJ, CRB and Std, and atypical protein 

kinase C (aPKC) binds both PATJ and CRB. PAR-6 can also enlist additional proteins into 

the complex: notably, it can link the CRB complex to the actin cytoskeleton though the 

recruitment of CDC42 (Peterson et al., 2004). Additionally, The PDZ domain of PAR6 

can bind to Lethal (2) giant larvae (Lgl, part of the basolateral complex) in vitro 

(Yamanaka et al., 2003). This may be part of the interaction by which Lgl negatively 

regulates the CRB complex. 

 

The protein kinase aPKC colocalises with the CRB complex in embryonic epithelial cells 

and very early PRCs, and may serve as a link between the CRB complex and Bazooka 

(PAR-3 in vertebrates), thus to the phosphoinositide signaling pathway (Hong et al., 

2003; Nam and Choi, 2003; Sotillos et al., 2004; Wodarz et al., 2000). This interaction 

involves Bazooka being phosphorylated by aPKC, restricting it to adherens junctions 

and thus maintaining cell-cell adhesion (Morais-de-Sa et al., 2010). These examples 

serve to illustrate the complexity and flexibility of the CRB and PAR complexes. 

 

1.11 The Basal SCRIB complex 

The SCRIB complex maintains the basolateral domain, and consists of SCRIB, Lethal 

giant larvae and disks large. This complex is important for the maintenance of 

junctions and cell-cell contact. It interacts antagonistically with the apical PAR and CRB 

complexes to establish polarity and defined domains, though mechanisms including 

mutual antagonism. The SCRIB complex is not as well defined as the apical polarity 

complex, and the interactions between members has yet to be elucidated fully 

(Assemat et al., 2008). 
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1.12 Alternative splicing in polarity proteins. 

The inter-network of interactions of polarity complex proteins, and their ability to bind 

to a wide variety of proteins through their complement of protein binding domains 

allows them to mediate complex and varied functions. However, a further level of 

complexity is added by the variety of splice variants undergone by many of these 

proteins. For example, both human CRB1 and CRB2 have been reported to encode 

variants that truncate the protein, so that only a putatively secreted form is translated 

(Katoh and Katoh, 2004; Watanabe et al., 2004). Stardust is known to have at least two 

isoforms (Bulgakova et al., 2010) and PAR3 is known to have several (Gao et al., 

2002b). Alternative transcripts may be the regulators of stage or tissue specific 

interactions. The alternative splicing of PDZ containing proteins is well described 

(Sierralta and Mendoza, 2004) and plays a role in the expansive functional diversity 

and networking of the polarity proteins. Additional regulation is effected by the 

precise localization of the mRNAs within the cell, which can be initiated by alternately 

spliced regulatory regions of the mRNA (Bachmann et al., 2001; Tepass et al., 1990). 

 

1.13 Cadherins and Adherens Junctions  

Establishment of cell polarity in an epithelium relies upon cell-cell adhesion. Adherens 

junctions (AJs) are cell-cell junctions in epithelial and endothelial tissues, comprised of 

cadherin and catenin protein complexes. The intracellular catenin component links to 

the actin cytoskeleton, and the transmembrane cadherin proteins bind these proteins 

and extend an extracellular domain that homodimerises with the extracellular domains 

of cadherins on neighbouring cells Adherens junctions are a mechanism by which the 

actin cytoskeleton is linked between individual cells of a tissue, and so play a critical 

role in the integrity and stability of that tissue and forms the basis of gross tissue 
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dynamics, thus it is a critical component for morphogenesis of the developing embryo 

(Halbleib and Nelson 2006, Gul et al 2017).  

 

Cadherins form a large family of proteins that are crucial for the calcium dependent 

adhesions (from which they derive their name) between animal cells (Hatta and 

Takeichi, 1986, Nollet et al., 2000, Takeichi et al., 1981). Different cadherins give rise to 

adherens junctions with different adhesive properties, and so a ‘cadherin switch’ in a 

subset of cells is a mechanism that often underpins tissue segregation or the initiation 

of a migration (Niessen and Gumbiner 2002, Takeichi 1995, Maître, L.J., and 

Heisenberg, C.P. 2013).  

 

E-cadherin is the major cadherin in nonneural epithelia, and N-cadherin organizes 

similar AJs in neural epithelia. A switch from one type of cadherin to another is an 

essential change during many developmental processes. For example, as the neural 

plate develops into the neural tube, E cadherin is replaced by N cadherin in adherens 

junctions (Gartner et al, 2015; Redies and Takeichi 1996).  

 

The epithelial to mesenchymal transition (EMT) is another important process in 

development in which cells depolarise and leave the epithelial sheet and become 

migratory. Cadherin downregulation and the subsequent loss of junction integrity is a 

critical first step in allowing cells to leave the epithelia. For example, neural crest cells 

that emigrate from the neural folds/roof plate undergo downregulation of N-cadherin 

in order to leave the neural tube (Taneyhill and Schiffmacher 2017). N cadherin is also 

downregulated in newborn neurons and intermediate progenitors after asymmetric 
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neurogenic division before these cells migrate away from the ventricular zone (Redies 

2000). 

 

1.14 Aims 

As outlined above, we have as yet little mechanistic understanding of dorsal 

obliteration, and additional studies are needed to determine whether similar 

components and principles may drive early neurulation and dorsal obliteration. Here I 

set out to develop a better mechanistic understanding of dorsal obliteration, and 

whether it could be considered a continuum with early neurulation. 

 

In Chapter 3 I aim to analyse and characterise the developing prenatal mouse spinal 

cord as it undergoes dorsal obliteration and assess whether it is a continuum with 

early neurulation. I will determine the time window of obliteration and analyse the 

characteristics of the ventricular zone cells that line the lumen using nuclear and apical 

markers. I will define populations of cells that may be involved in dorsal obliteration, 

and elucidate possible mechanisms for obliteration.   

 

In Chapter 4 I will test whether populations of cells around the ventricular zone are 

able to induce embryonic cell movement or rearrangement and I will test whether this 

ability persists in these cells in the adult animal.  

 

In Chapter 5 I aim to identify a component of the mechanism that may allow 

ventricular zone cells to encourage dorsal obliteration. I will try to demonstrate 

presence of the molecule in vivo and experimental function.  
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There are currently few options for imaging dynamic cell movements in embryonic 

mouse. In Chapter 6 I will optimise a dissection and slice culture procedure for the 

imaging of cells within the embryonic mouse spinal cord, and explore slice culture as a 

model for cell movement within the mouse spinal cord during dorsal obliteration. 

 

In Chapter 7 I will attempt to strengthen the hypothesis derived from data generated 

from fixed samples in Chapters 3-5 by attempting to perform time-lapse microscopy to 

image dynamic cell behaviour in living tissue. These data should assess whether the 

inferred patterns identified are actually representative of cell migration and 

delamination dynamics. I will use the method developed in Chapter 6 to collect cell 

movement data from the time window identified in Chapter 3. 
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Chapter 2 
 
 

Materials and methods 
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2.1 Collection of animal tissue 

 

Mice 

Adult mice used in this study were C57/Black 6-8 weeks of age (post pubescent young 

adults). Sacrificed mice were anaesthetised with inhaled isoflurane (Isoflo, Abbot) 

before cervical dislocation. Mouse embryos (E13-E17) used were from the same 

colony, the dam sacrificed as before, and the embryos immersed in ice-cold Leibovitzʼs 

15 (L-15) (Gibco) before decapitation. 

 

Timelapse experiments were performed in collaboration with the Professor Storey Lab 

(University of Dundee) using CD-1 mice, killed by overdose of CO2 before cervical 

dislocation. 

 

Chicken embryos 

Chicken embryos used in this study were Brown Bovan Gold Hen's eggs (Henry Stewart 

Farms, UK). Fertilised eggs were held at 18°C until needed and then incubated at 37°C 

until the appropriate stage. Chicken embryos were killed either by dissection and 

immersion in ice-cold L-15 medium or by decapitation if E7+. 

 

2.2 Gross mouse and chicken dissections 

 

Tissues from the adult mouse 

The decapitated mouse was pinned down and doused in 70% ethanol to improve 

sterility and to prevent hairs from contaminating tissue. If embryos were to be 

dissected from the mother then an inverse Y-shaped cut was made along the 
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abdomen, the uterus removed intact and placed into ice-cold L-15 for the embryos to 

be dissected in vitro. 

 

The spinal cord was exposed by first cutting the skin from the back of the mouse, 

exposing the length of the spine. Then, watchmaker scissors were used to emancipate 

the spinal column from the ribs and muscles, before gently cutting the vertebrae in a 

ventro-lateral position on both sides, thus releasing the ventral portion of the 

vertebral column. The spinal cord was pulled out gently and placed in ice-cold L-15. 

Nerve roots and meninges were removed carefully with sharp forceps. Lower lumbar 

regions as defined by spinal cord tissue thickening.  

 

Tissues from the embryonic mouse 

The uterus was placed into ice-cold L-15, and the embryos were dissected from their 

placenta, yolk sacs and amnion as quickly as possible to ensure rapid cooling. Mice 

developed beyond E12 were decapitated immediately and quickly eviscerated. The 

embryos were then Theiler staged before evisceration and transfer to clean L-15. 

Sections were analysed from the lower lumbar/upper sacral regions as defined by limb 

positioning and tissue morphology (Figure 2.1).  

 

Tissue from the embryonic chicken 

Hamburger Hamilton stage 1-13 chicken embryos were dissected from the egg by 

cutting outside the Area Opaca, before being lifted with an egg spoon into L-15 or ice-

cold 4% paraformaldehyde (PFA) (Sigma). 

 

  



A B

Figure 2.1 Embryonic mouse dissection schematic 
(A) depicts the embryonic mouse. The coloured line depicts the levels of the spinal cord, sepatated into major divisions: cervical, 
thoracic, lumbar and sacral. (B) shows the level at which the mouse is dissected for study, directly above and below the limbs, corre-
lating to the thoracic spinal cord. (C) shows an idealised transverse section the lower lumbar/sacral level. 
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Hamburger Hamilton stage 14 to embryonic day 4.5 chicken embryos were dissected 

from the egg by cutting widely around the embryo, before being lifted with an egg 

spoon into L-15 or ice-cold 4% PFA. 

 

Embryonic day 5+ chicken embryos were decapitated in ovo before being lifted into L-

15, or washed in ice cold Phosphate Buffered Saline (PBS) (Sigma) before immersion in 

ice-cold 4% PFA. Larger embryos were eviscerated before fixation to ensure rapid 

cooling and effective fixation throughout the tissue. 

 

2.3. Histological analysis 

 

Fixation of tissue 

Tissues were fixed in ice-cold 4% PFA in 0.2M Phosphate Buffer (Sigma) and kept at 4°C 

for 2 to 24 hours. Tissue was then washed several times in ice-cold PBS. 

 

Sectioning tissue 

Sectioned tissue was used for Immunohistochemical (IHC) analysis. Fixed tissue was 

incubated overnight in 30% (w/v) sucrose (Sigma) solution in 0.2M Phosphate Buffer 

overnight at 4°C. Tissue was then embedded in Optimal Cutting Temperature 

compound (OCT) (VWR) and frozen on dry ice. The embedded sections were then 

cryosectioned to 10-30µm on a Bright cryostat and collected on Superfrost slides (SLS). 

The sections were then air-dried for 2 hours. 
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Immunohistochemistry on Cryosections 

Standard IHC protocol was followed for the detection of protein on cryosectioned 

tissue. For mouse tissue, sections were pre-incubated in a blocking and permeabilising 

solution comprised of PBS with 1% Heat inactivated goat serum (HINGS) (GIBCO) and 

0.5% Triton-X (Sigma) for 10 minutes. For certain mouse nuclear antigens the slides 

were held at 90°C in Sodium Citrate Buffer (10mM Sodium Citrate (Sigma), 0.05% 

Tween 20 (Sigma), pH 6.0). Both chick and mouse tissue were then pre-incubated for 

an hour in a blocking solution comprised of PBS with 1% HINGS and 0.1% Triton-X. 

 

The sections were then incubated with primary antibody diluted in blocking solution 

overnight at 4°C. The sections were rinsed well with ice-cold PBS. The next day the 

sections were incubated with secondary antibody for one hour at room temperature 

and then rinsed well with PBS. Slides were mounted with VECTASHIELD Mounting 

Medium with DAPI (4’, 6-diamidino-2-phenylindole) (Vectorlabs) protected with glass 

coverslips (22x64mm No1, SLS) and sealed with clear nail varnish. Control sections 

were incubated only with secondary antibody to rule out non-specific labelling. 

 

Whole mount Immunohistochemistry of sliced tissue 

The sliced tissues were fixed in 4% ice cold PFA for 2 hours. Slices were then incubated 

in blocking solution for an hour at room temperature. Slices were then incubated with 

primary antibody diluted in blocking solution for 40 hours at 4°C, followed by three 

one hour washes in ice-cold PBS (Table 2.1). The slices were then incubated with 

secondary antibody diluted in blocking solution, with or without DAPI for the same 

length of time as the primary antibody, followed by three 1-hour washes in ice-cold 

PBS. If the slices were to be mounted onto coverslips, VECTASHEILD (with or without 
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DAPI, depending on whether it was added with the secondary) may be used (Table 

2.2). 
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Table 2.1 Primary Antibodies. Table of antibodies used. Key: Rbt = Rabbit; Mse = 
Mouse; Chk = Chick; hmn = Human; Rt = Rat; Dky = Donkey; Gt = Goat; IgG = 
Immunoglobin G; P =  Polyclonal; M = Monoclonal. * Phalloidin is a synthetic peptide 
that binds actin, rather than a true antibody.  
 

Antibody Animal Type Conc. Source 

SOX1 Rbt α Mse IgG P 1:300 Cell signalling 

SOX2 Rbt α Chk IgG P 1:300 Abcam 

SOX2 Rbt α hmn IgG P 1:1000 Millipore 

SOX3 Rbt α Mse IgG P 1:1000 Gift from T. Edlund 

PAX6 Mse α Mse IgG M 1:50 DSHB 

NKX6.1 Mse α Mse IgG M 1:50 DSHB 

Nestin (6142) Mse α Mse IgG M 1:300 Abcam 

Transitin (eap3) Mse α Chk IgG M 1:50 DSHB 

Laminin (l-9393) Rbt α hmn IgG  1:200 Sigma-Aldrich 

Dystroglycan 

(Mandag2) 

Mse α hmn IgG M 1:30 Gift from S. Winder’s Lab 

CRB2 (sk11) Rbt α Mse IgG P 1:300 Gift From P. Rashbass Lab 

aPKC Rbt α Rat IgG P 1:300 Santa-Cruz 

ZO-1 Mse α hmn IgG P 1:300 Zymed 

3B9 Mse α Mse IgG M 1:50 DSHB 

Cleaved Caspase 3 Mse α hmn IgG P 1:500 Cell Signalling 

Ki67 Mse α hmn IgG P 1.500 Abcam 

M2 Rt α Mse IgG M 1.50 DSHB 

Phalloidin 594 Peptide* - 1:500 Thermofisher 
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Table 2.2 Secondary Antibodies. Table of antibodies used. Key: Rbt = Rabbit; Mse = 
Mouse; Chk = Chick; hmn = Human; Rt = Rat; Dky = Donkey; Gt = Goat; IgG = 
Immunoglobin G. 
 

Antibody  Fluorophore Conc. Supplier 

Gt α Mse Alexa 594 1:500 Thermofisher 

Gt α Mse Alexa 488 1:500 Thermofisher 

Gt α Rbt Alexa 594 1:500 Thermofishergmail. 

Gt α Rbt Alexa 488 1:500 Thermofisher 

Dky α Mse Alexa 647 1:500 Thermofisher 

Dky α Rbt Alexa 647 1:500 Thermofisher 

DAPI (4',6-Diamidino-2-Phenylindole) 1:1000 Thermofisher 

 

 

2.4 Chicken embryo in vivo manipulations 

Protein-soaked bead transplantation into HH10-11 chicken embryo 

Fertilised chicken eggs were incubated in an upright position at 37°C until HH10-12. 

The top of the egg was covered in sticky tape and a window gently cut, ensuring that 

the embryo and yolk remained undamaged. The inner shell membrane was removed 

to expose the embryo, and 20% Blue food dye (Dr. Oetker) in L-15 was injected 

underneath using a 30-gauge needle (Becton Dickinson) inserted at a shallow angle. 

The embryo was then staged using the Hamburger-Hamilton embryo staging chart. 

The clear vitelline membrane was then removed over the caudal neural tube into 

which the bead was to be transplanted. Affi-gel beads (Bio-Rad) were soaked in 

protein or PBS control for 24 hours before transplantation. Beads were carefully 

placed into the most rostral part of the open neural tube. The egg was then sealed 

with Parafilm (Bemis) or sticky tape before incubation at 37°C for 24 hours. Embryos 
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were then dissected out and fixed in ice-cold 4% PFA in 0.2M Phosphate Buffer and 

kept at 4°C for 2 hours. Tissue was then washed several times in ice-cold PBS to reduce 

the high background noise residual PFA can elicit in IHC. 

 

Mouse tissue transplantation into HH10-11 chicken embryo 

The protocol for bead transplantation (above) was followed with the exception that in 

place of Affi-gel beads, mouse tissue was placed into the neural tube. 

 

Freshly dissected embryonic or adult spinal cord was sliced into 400μm sections on a 

tissue chopper (McIlwain) and the slices placed into ice-cold L-15. Tissue to be 

transplanted was punched out with a pulled glass needle (1mm x 0.78, Harvard 

Apparatus) and mouth pipette (Sigma), before being carefully placed into the most 

rostral part of the open neural tube. 

 

RFP Electroporation variation of transplantation into HH10-11 protocol 

The protocol for transplantation (above) was followed with the addition of an extra 

step. 

 

After the inner shell membrane was removed, the embryo was electroporated with 

RFP plasmid (0.3µl/ml, RFP pCAGGS) mixed with a small volume of Fast Green FCF 

(Sigma) to make the solution visible. The plasmid mixture was drawn up into a pulled 

glass needle (1mm x 0.78) using a mouth pipette. The clear vitelline membrane was 

pierced caudal to the embryo at a low angle, and the glass needle slid into the neural 

tube. The plasmid mixture was then blown gently into the neural tube, after which the 

needle was retracted. The embryo was then subject to a current (40v, 1ms, 6 pulses) 
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using a BTX/Harvard Apparatus ECM 830 Square Wave Electroporator and BTX In ovo 

Genetrode™, bent L-shaped, 3 mm electrodes. Plasmid information found in (Table 

2.3). 

 

 

Table 2.3 Plasmid Table. Description of plasmids used and their origin. 

 

 

 

Protein-soaked bead transplantation into E4+ chicken embryo 

Fertilised chicken eggs were incubated on their sides at 37°C until the appropriate 

stage. The top of the egg was covered in sticky tape and a window gently cut, ensuring 

that the embryo and yolk remained undamaged. The inner shell membrane and the 

clear vitelline membrane were then removed over the area into which the bead was to 

be transplanted. Affi-gel beads were soaked in protein or PBS control for 24 hours 

before transplantation. A small incision was made carefully into the epidermal layer 

and beads were carefully placed securely under the layer. The egg was then sealed 

with Parafilm or sticky tape before incubation at 37°C for 24 hours. Embryos were then 

dissected out and fixed in ice-cold 4% PFA in 0.2M Phosphate Buffer and kept at 4°C 

for 12 to 24 hours. Tissue was then washed several times in ice-cold PBS. 

 

Plasmid Plasmid Name/ Backbone Description Origin 

RFP pCAGGs Cytoplasmic RFP Gift from Prof. Stewart Wilson 

GFP-GPI GFP-GPI-pCAGGs Membrane GFP Gift from Prof. Kate Storey  

RFP-H2B pCIG-Insc-H2B-RFP Histone RFP Gift from Prof. Kate Storey 
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2.5 Ex vivo experiments 

 

Mouse spinal cord slice culture for imaging on an inverted microscope 

Dissection 

Freshly dissected embryonic or adult spinal cord (dissections described in section 2.2) 

was mounted in low melting point agarose (Sigma) dissolved in Hank's Balanced Salt 

Solution (HBSS) (Gibco) in plastic moulds.  The solidified agarose was then superglued 

onto chucks and sectioned at 300μm on a vibrating blade microtome (Leica VT1200 S). 

Sections were collected into ice-cold L-15. 

 

Mounting slices in collagen  

The sections could then be mounted onto imaging dishes (Fluorodish Cell Culture Dish, 

35mm, 23 mm well, Poly-D-Lysine Coated, World Precision Instruments). Spots of rat-

tail collagen (made in-house) were made on the imaging dish by pipetting collagen to 

the required diameter, and removing it with the same pipette. The thin layers of 

collagen left on the surface were left for 5 minutes to become tacky, ensuring that the 

spots do not dry out. The spinal cord slices were placed in collagen to coat the tissue, 

and carefully lifted out with forceps (using the collagen surface tension rather than 

contact between the forceps and the tissue) and placed onto the collagen spots. After 

ensuring that the tissue was flat against the bottom of the dish, these beds were left to 

set. An additional 15μl of collagen was then carefully added to the top, before 

incubation at 37°C and 5% CO2 in a humidified chamber (Sanyo). When set, 3μl of 37°C 

medium was added. 

 

 



49 
 

Mouse spinal cord slice culture electroporation 

Embryonic mouse spinal cords were electroporated after evisceration, but before 

sectioning. The embryo was placed flat, dorsal facing upwards in ice-cold L-15. Plasmid 

mixed with Fast Green FCF was injected into the spinal cord lumen, caudally to the site 

of interest using a pulled glass needle (1mm x 0.78) until the green–coloured plasmid 

mixture was visible along the site of interest. The tissue was then subject to a current 

(100v, 1ms, 10 pulses) using a BTX/Harvard Apparatus ECM 830 Square Wave 

Electroporator and BTX In ovo Genetrode™, bent L-shaped, 3 mm electrodes. The 

embryo could then be mounted in agarose for Vibratoming (Please see Fig6.1 for 

diagram). 
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2.6 Media 

Explant medium 
Optimem (Gibco)  Base medium 
L-glutamine (Sigma)  1% 
Pen-strep 100x (Gibco) 1% 
Fetal Calf Serum (Sigma) 2.5%* 
 
SRN2 
Developed in the Placzek Lab 
DMEM-12 (Gibco)  Base medium 
L-glutamine (Sigma)  1% 
N2 100x (Gibco)  1% 
B27-I 50x (Gibco)  2% 
Heparin (Sigma)  0.05% 
  
Brachmann medium 20ml 
Brachmann, I, et al (2007) Devlopmental Dynamics 236:3514–3523 
DMEM (Gibco)   50% 
HBSS Ca2+Mg2+ free (Sigma) 25% 
Fetal Calf Serum (Sigma) 25%* 
Glucose (Sigma)  0.5% 
L-glutamine (Sigma)  0.5% 
HEPES    10mM 
Pen-strep 100x (Gibco) 1% 
 
Dundee Media 
Developed in Professor Storey’s Lab, University of Dundee 
Neurobasal (Gibco)   Base medium 
Glutamax 100x (Gibco)  1% 
B27 (Gibco)   2% 
Fetal Calf Serum (Sigma) 10%* 
Gentamycin (Gibco)  50µg/ml 
 

*Fetal calf serum is batch tested, and the concentration used depends on the result of 

the test for each application. 

 
Dundee media variations 

For optimisation experiments, alternate media was made with B27 replaced with B27 

without insulin (Gibco). Serum-free media was also made, and the difference made up 

with Neurobasal (Gibco). 
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2.7 Imaging,  image processing and statistics  

 

Microscopy 

Fluorescent images were taken on a Zeiss Apotome 2 microscope with Axiovision 

software (Zeiss) or for high magnification images, on a Nikon Ti system running Nikon 

Elements AR software or a Deltavision RT system running SoftWorx. Timelapse images 

were taken on a Deltavision RT system. 

 

Image processing 

Images were processed using Image-J (FIJI) and made into composites using Adobe 

Illustrator. Diagrams were made using Adobe illustrator. 

 

Statistics 

Intensity data from images were extracted using Image-J (FIJI) and analysed using Excel 

(Microsoft). 

 

2.8 Molecular biology 

 

Plasmid growth and purification 

Plasmids were introduced into Subcloning Efficiency DH5-α competent E. coli 

(Invitrogen) plated onto LB Agar (Sigma) with the appropriate antibiotic overnight. 

Transformed colonies were grown in LB broth (Sigma) with the appropriate antibiotic. 

Plasmids were purified using a Qiagen Plasmid Purification kit. 
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RNA extraction 

Tissue was dissected into RNAlater (Ambion) and RNA extracted using Trizol 

(Invitrogen) and Purelink RNA mini kit (Ambion). RNA was extracted into Hyclone 

HyPure water (GE Healthcare). 

 

cDNA synthesis 

RNA was synthesized using SuperScript III First-Strand Synthesis System (Invitrogen) 

using 50ng/μl random hexamer primers supplied with the kit, and extracted into 

Hyclone HyPure water (GE Healthcare). 

 

RT-PCR reaction 

The Crb2s RT-PCR reaction was performed on cDNA synthesized as described in the 

sections above. Crb2 mRNA was amplified using conditions described in Table 2.4 at 

20μM concentration. Primers described in Table 2.5 were designed to amplify full 

length mature Crbs2 and mature secreted Crb2. A second round of PCR was then 

performed, designed to amplify secreted Crb2 specifically. A GAPDH loading control 

was run. The reactions were run on an agarose gel with the addition of ethidium 

bromide (Bio-Rad) and bands of the appropriate size were excised using QiAquick Gel 

Extraction Kit (Qiagen) and sequenced in-house. 

 

DNA electrophoresis 

Agarose gels were made using 1% ultra-pure Agarose (Invitrogen) in 1X TAE (50mM 

TrisHCl (Sigma), pH 8.0; 1mM EDTA (VWR International), 20mM acetic acid (Fisher 

Scientific), dissolved by heating in a microwave. 1µl Ethidium Bromide was added 

before the gel was poured. Loading buffer (Sigma) and deionised water was added to 
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each sample. Gel was run in 1X TAE at 80V. Bio-Rad DNA Mini Sub Cell GT 

electrophoresis kit was used for electrophoresis. The bands were visualised using a UV 

trans-illuminator. A 1kb or 100bp DNA ladder (New England Biolabs) was run alongside 

the sample. 

 

 

 

Table 2.4 PCR Conditions Table. First and Second (nested) round PCR conditions used 
in Ch5 listed stepwise. 
 

First Reaction (Transmembrane Crb2) Nested PCR (Truncated Crb2) 

94oC for 5m 94oC for 5m 
  

94oC for 30s 
48oC for 30s      

                  72oC for 1m 30s     

94oC for 30s 
48.8oC for 30s 

                  72oC for 1m 30s     

  
72oC for 10m 72oC for 10m 

10oC hold 10oC hold 

 

 

 

Table 2.5 Crb2 PCR primer table. Primers used in PCR described in Ch5. 

Primer Sequence  Exon Tm 

Crb2 F TGTATGTGGGTGGGAGGTTC [F] Exon8 59.0 
Crb2 R TAACGGGAAGTCGCCAAGT [R] Exon10 59.0 
Nested F CTACAACTCAACAGCATCC [F] Exon8  59.2 
Nested R GCTTCGGTTGGTAGACTGCC [R] Exon9a 58.3 
GAPDH  AACGGGAAGCCCATCACC [F] - 59.7 
GAPDH CAGCCTTGGCAGCACCAG [R] - 58.0 

 

 

 x 35  x 35 
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Chapter 3 
 
 

Morphology and marker expression of 
the ventricular zone during dorsal 

obliteration of the neural 
tube/developing spinal cord in the 

mouse 
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3.1 Introduction 

The character of the neural tube varies along the rostral-caudal axis, and the progress 

of development magnifies these differences dramatically. The most rostral neural tube 

develops into the highly complex structures of the brain, whereas the caudal neural 

tube forms the simpler spinal cord. This difference is reflected in the stem cell niches 

present in either structure: the brain harbours the complex and highly active sub-

ventricular and sub-granular zones in the adult, whereas the ependymal zone (EZ) of 

the adult spinal cord central canal is barely proliferative (for excellent reviews: Hugnot 

and Franzen (2011); Ihrie and Alvarez-Buylla (2011); Seri et al. (2004)). As outlined in 

the Introduction, to date only a few studies have begun to analyse the process of 

dorsal obliteration and the transition of the embryonic ventricular zone (VZ) to the 

later EZ of the central canal. None of these studies have systematically analysed the 

profile of cells around the lumen, nor defined the precise time over which dorsal 

obliteration occurs. In this chapter I describe my studies in the prenatal mouse, in 

which I aim to: 

1. Determine the time window of dorsal obliteration. 

2. Analyse the characteristics of cells that line the lumen over the period of dorsal 

obliteration. 

 
3.2 Mouse dorsal obliteration occurs in a window between E14 and E16 

The early neural tube has a large lumen abutted by the apical side of a single layer of 

ventricular zone (VZ) cells. These cells proliferate and differentiate to give rise to the 

various spinal cord cell types present in the adult. The adult spinal cord has a much 

smaller lumen, and a correspondingly reduced number of ependymal zone (EZ) cells. 

However, the embryonic process by which the lumen reduces in size has not been 
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described in detail in mouse. I analysed thoracic sections from the embryonic mouse 

as detailed in Fig 2.1. 

 

Initially I analysed DAPI-labelled transverse sections to compare the gross 

morphological changes of the lumen of the mouse neural tube from E13 onwards 

(Figure 3.1). At E13, early neurulation has completed and the roof plate has formed. 

The neural tube lumen extends almost the whole dorso-ventral length of the neural 

tube: the roof plate and floor plate are only a few cells deep. At E14 the roof and floor 

plates appear marginally thicker – particularly the roof plate. By E15 the lumen of the 

VZ has obliterated from the dorsal end; leaving it a third of the size that it was E13. 

Dorsal to the obliterated lumen, cell nuclei appear orientated and elongated in a 

dorsal-ventral manner and extend into the midline of a nuclei-free area (shown in high 

powered view, Fig 3.1 A-E’). The lumen further reduces in size dorsally by E16. DAPI-

labelled cell nuclei are still detected at a midline position that extends from the dorsal 

lumen to the outer pia (arrows, Figure 3.1 C’-E’), through the nucleus-free area (the 

dorsal or posterior funiculus), although nuclei are not as obviously orientated and 

elongated dorsal-ventrally as at E15.  There is little lumen size difference between E16 

and E17. Together these analyses show that there is a rapid ‘window’ of lumen 

obliteration between E14 and E16 (Schematic: Fig 3.17). Importantly, the lumen 

obliterates mainly from the dorsal apex, confirming that the term ‘dorsal obliteration’ 

is an appropriate term (and used hereafter). Additionally, these studies show that at 

the most acute stage of dorsal obliteration (E15), dorso-ventrally elongated nuclei are 

detected at the dorsal midline and that as the lumen decreases, the cell free territory 

surrounding these nuclei extends ventrally. 
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Figure 3.1 Thoracic transverse sections. DAPI-labelled spinal cords from E13 to E17. Dotted lines mark the dorsal and ventral ends 
of the lumen. Brackets show the extent of the dorsal funiculus. This area is mainly nuclei-free, except for a stream of cells at the mid-
line (arrows point to dorsal or ventral cells of this midline). Scale bar: (A-E)100μm (A’-E’) 25μm.  
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3.3 Marker analysis of lumen-surrounding cells during dorsal obliteration 

The pattern of expression of transcription factors, signalling and polarity proteins on 

cells that line the VZ has been well described at early stages, before dorsal obliteration 

(see Introduction). These studies show the existence of discrete radial glial populations 

(Malatesta et al., 2008), and show that stem/progenitor cells that line the VZ can be 

divided into discrete populations along the dorso-ventral axis, characterised by 

transcription factor expression (Aigner et al., 2007; Jacob and Briscoe, 2003; Jessell, 

2000; Rowitch and Kriegstein, 2010). The profile of cells around the lumen at later 

stages, i.e. during and post- dorsal-obliteration, has been less well characterised 

(although see Fu et al. (2003)). Therefore, I characterised markers to elucidate the 

identity of lumen-surrounding cells over the period of dorsal obliteration. I reasoned 

that this analysis might also reveal clues as to the processes that may contribute to 

dorsal obliteration. Note that in the studies below I focus, in particular, on changes to 

cells in the dorsal part of the VZ and dorsal lumen, commenting on changes to the 

ventral aspect only briefly in the Discussion. 

 

3.3.1 Filament proteins 

Gross morphological changes such as seen in dorsal obliteration are likely to be 

reflected in the cytoskeletal structure within the developing tissue. To this end, I 

analysed expression of F-actin (Figure 3.2) and the intermediate filament protein, 

Nestin (Figure 3.3).  

 

F-Actin: Phalloidin labels F-actin microfilaments. At E14, prior to dorsal obliteration, F-

actin is expressed in a uniform manner at the apical zone of cells throughout the VZ 
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(Figure 3.2 A). Additionally expression of F-actin is detected throughout the spinal 

cord.  

 

Marked changes are observed by E15. At this stage, expression of F-actin in medial VZ 

cells is similar to that at E14, but cells at the dorsal and ventral aspect of the lumen 

show clear puncta of strong expression (white arrow). Additionally, while expression in 

most regions of the spinal cord is far weaker than at E14 (Fig 3.2 B), rope-like strands 

of expression are detected at the dorsal midline, extending from the dorsal aspect of 

the lumen to the pial surface (yellow arrows, Fig 3.2 B, C). At E17, these puncta appear 

to be more evenly spaced throughout cells that line the lumen (Fig 3.2 C-C’). Together 

these results show that F-actin undergoes a dramatic change in expression at E15, 

becoming strongly expressed in distinct puncta at the dorsal apex of the lumen. 

 

Nestin: Nestin is a type VI filament protein. At E13 and E14, Nestin is expressed 

throughout the developing spinal cord on cells with radial glial morphology that extend 

to the lateral pial surfaces of the spinal cord (Fig 3.3, A, A’ and B, B’). From E15, a 

pronounced change occurs. Expression of Nestin is markedly reduced in these cells, 

and few Nestin+ processes are now detected that extend laterally. Instead, two new 

Nestin+ populations become apparent, in cohorts of cells and cell processes that 

project from the ventral aspect of the lumen to the ventral pial surface and from the 

most dorsal aspect of the lumen to the dorsal pial surface (Figure 3.3, arrows). As the 

lumen obliterates over E15-E17, the dorsal processes extend, and these contacts are 

maintained (Fig C-E and C’ to E’). The Nestin+ processes of the dorsal population are 

restricted to the midline, i.e. occupy the same position as the DAPI+ cell nuclei 

previously noted in Figure 3.1. 
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Figure 3.2 Thoracic transverse sections. F-actin is expressed strongly around 
the ventricular zone at E14-E17, and also in a dorsal cable (yellow arrow) that 
begins to be expressed from E15 onwards (A-C). The magni�ed images (B’-C’’) 
reveal that after E15, there is a gap between the DAPI-labelled nuclei of the 
dorsal ventricular zone cells (dotted lines) and the phalloidin labelled apical 
surface. At E15 (B’, arrow) there are breaks in the F-actin sub-dorsally, that have 
disappeared by E17 (C’). Scale bars: 10x, 100μm; 63x, 25μm. 
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Figure 3.3 Thoracic transverse sections. Widespread nestin expression decreases as the spinal cord develops. However, a speci�c 
cohort of nestin-expressing cells arises after E14 as dorsal obliteration proceeds (arrows). These cells have their cell bodies at the 
lumen (dorsal and ventral limits as interpreted from DAPI labelling marked with dotted lines) and extend long processes to the 
dorsal pial surface.  Scale bar 100μm.
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Together these analyses reveal that the dorsal VZ and the dorsal midline have distinct 

and high expression of cytoskeletal markers. The dorsal expression of the Nestin 

filament is especially interesting because it arises just before/at the window of dorsal 

obliteration and the lengthening Nestin+ processes correlate with the shrinkage of the 

lumen and with the presence of DAPI+ cell nuclei. Figures 3.11 and 3.12 show a higher 

power view comparing Nestin with other markers. 

 

3.3.2 Transcription Factors 

Many studies have described the distinct domains of transcription factor expression 

along the dorsal ventral axis of the neural tube (Aigner et al., 2007; Jacob and Briscoe, 

2003; Jessell, 2000; Rowitch and Kriegstein, 2010). Both published studies (Fu et al., 

2003) and unpublished work in this lab (Chinnaiya, 2011) have demonstrated that 

adult spinal cord ependymal cells maintain expression of neural stem/progenitor 

transcription factors, but that these are in a more ventralised pattern than in the 

embryo. However, no studies have fully characterised the transition of markers from 

the embryonic to the adult state, nor the mechanism by which they become 

ventralised. Therefore I characterised the changes in several transcription factor 

families between E13 and E17. 

 

SOXB1 Transcription factor family 

The SOXB1 transcription factors are widely accepted markers of vertebrate neural 

stem and progenitor cells (Bylund et al., 2003; Pevny and Placzek, 2005). The SOXB1 

proteins comprises three evolutionarily conserved proteins (SOX1, SOX2 and SOX3) 

and has been demonstrated to be present in the early neural plate and neural tube; 

initially on neuroepithelial cells and then on VZ cells (Graham et al., 2003; Pevny et al., 
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1998; Wang et al., 2006). Therefore I first analysed the changes in the expression 

patterns of these proteins over the period of dorsal obliteration (Figure 3.4). 

SOX1: At E14 SOX1 is expressed in dorsal and medial VZ cells, but is weak/absent in 

ventral VZ cells, including the floor plate (Fig3.4 A-C). This pattern of expression 

persists at E15 and E16. Throughout E14-E16, scattered SOX1-positive cells are found 

outwith the VZ. In parts, these appear to be clustered – for instance at E16, a densely 

grouped lateral population is detected. Notable for consideration in my work; 

throughout E14-E16, SOX1-positive nuclei can be detected at the dorsal midline, i.e. 

dorsal to the obliterating lumen (high power views shown in right hand panels Fig 3.4 

B’, C’). 

 

SOX2: Through the stages analysed, E14-E16, SOX2 expression is evenly distributed 

throughout VZ cells, although expression is weaker in the most dorsal cells (Fig 3.4 D-

F). At E15 an additional population of SOX2-positive cells is found radially out from the 

lateral walls. A dense population of SOX2-positive cells is also found dorsal to the 

obliterated lumen. Notably, these are similarly oriented and dorso-ventrally elongated 

to the population of DAPI+ nuclei previously noted in this region (Figure 3.4, E’ arrow; 

high powered view). Indeed, >90% elongated nuclei appear to express SOX2, 

supporting that they comprise the majority of this population. By E16, fewer SOX2-

positive cells are found outwith the VZ. However, a dense cluster of SOX2 cells remains 

dorsal to the obliterated lumen (Figure 3.4, F’ arrows; high powered view). A 

schematic (Fig 3.17) illustrates SOX2 nuclei positions at E14-E17. 
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Figure 3.4 Thoracic transverse sections. The SoxB1 family: 
Sox1(A-C) Sox2 (D-F) and Sox3 (G-I). Magni�ed images B’-F’. 
Lumens marked with dotted lines. Arrows/brackets point to 
populations of SoxB1 cells outside the lumen (See text). 
Scale bars: (A-I) 100μm; (B’-F’) 25μm.  
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SOX3: At E14, SOX3 expression is detected throughout the VZ, although it is weaker in 

most dorsal/ventral cells. At E14 and E15 there is no/weak SOX3 expression in the 

most ventral cells (Fig3.4 G-I)). At these stages, there are a few peripheral SOX3-

positive cells lateral to the VZ. As with SOX1 and SOX2, SOX3-positive nuclei can be 

detected dorsal to the VZ, in or close to the dorsal midline, throughout the period of 

dorsal obliteration. Second, over the period of dorsal obliteration, weak dorsal 

expression of SOXB1 declines, leaving only stronger expressing nuclei, such as are 

detected only ventrally at earlier stages. 

 

Close association between SOX-positive nuclei and dorsal Nestin+ cells 

Both dorsal Nestin+ cells, and oriented SOX2 nuclei are first clearly detected at E15 – 

i.e. at the time that dorsal obliteration is initiating and proceeding most rapidly. To 

determine whether SOXB1-positive progenitors are closely associated with dorsal 

Nestin+ cells through the period of dorsal obliteration, I performed double 

immunohistochemical analysis of Nestin and SOX2 (Figure 3.5). At E15, SOX2 

expressing cells are closely associated with the processes of the dorsal Nestin+ cells. 

Fig 3.11 and 3.12 shows a higher power view comparing SOX2, Nestin and apical 

proteins at E15/6. By E16, SOX2 expressing cells associate with the dorsal Nestin+ cells 

in two main groups. There is a patch of SOX2 expressing cells immediately dorsal to the 

VZ, a gap, and then a smaller, more tightly grouped population of SOX2-positive cells 

dorsal to that, intercalated with Nestin+ processes. At E17, the SOX2-positive 

population at the dorsal midline remains clearly intercalated with Nestin+ processes 

(high power views Figure 3.4 H’ and I’). 
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Figure 3.5 Thoracic transverse sections. Sox2 (A-C) 
and Nestin (D-F) and the merged image (G-I). Magni-
�ed images of (H) and (I) are (H’) and (I’). Arrowheads 
indicate Sox2 cells dorsal to the lumen (see text). 
Scale bars: 100μm; magni�ed, 25μm.  
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Dorso-ventral patterned transcription factors 

The morphological and SOXB1 data support the view that the VZ obliterates unevenly, 

reducing in particular from the dorsal aspect (Fu et al., 2003). As the character of the 

VZ cells varies along the dorso-ventral axis (Jacob and Briscoe, 2003; Jessell, 2000; 

Rowitch and Kriegstein, 2010) losing progenitors unevenly from the dorsal aspect 

would change drastically change the nature of the population persisting through 

development and into the adult. A previous study has tracked progenitor gene 

expression, and concluded that adult EZ cells are the descendants of ventral VZ cells 

originating from the pMN and/or p2 progenitor domains as they retain NKX6.1 

(p3/pMN/p2) but not NKX2.2 (p3) expression; all other embryonic VZ domains appear 

to become fully depleted (Fu et al., 2003; Yu et al., 2013). To confirm these studies, I 

analysed two other transcription factors that are expressed in more restricted domains 

than the SOXB1 family, PAX6 and NKX6.1 (Figure 3.6). 

 

PAX6: The homeobox transcription factor PAX6 has been characterised extensively at 

younger stages (Huettl et al., 2015; Osumi et al., 2008; Schwarz et al., 1999; Zhang et 

al., 2010) and classically is expressed in progenitor cells that occupy the dorsal and 

central part of the early neural tube, before becoming largely restricted to progenitor 

cells at the VZ in central regions (Pituello et al., 1999; Pituello et al., 1995). In keeping 

with this, my studies show that at both E13 and E14 PAX6 is expressed most strongly in 

cells in the middle third of the VZ (E13: Figure 3.6, B). By E16, however, strong 

expression of PAX6 is detected in the dorsal half of the VZ, where it persists at E17 

(E16: Figure 3.6, B’). 
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Figure 3.6 Thoracic trans-
verse sections. NKX6.1 is 
expressed in the ventral 
-medial ventricular zone (A, 
A’). PAX6 is expressed in the 
dorsal-medial ventricular 
zone (B, B’). As develop-
ment progesses, these 
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ventricular zone. 
Scale bar: 100μm.
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NKX6.1: The homeobox transcription factor NKX6.1 has likewise been well 

characterised at early neural tube stages (McMahon, 2000; Sander et al., 2000). 

Previous studies have shown that it is expressed in cells that lie just ventral to PAX6-

positive progenitors, and indeed, PAX6 and NKX6.1 have been shown to exert cross-

repressive interactions on each other’s expression (Briscoe et al., 2000; Dichmann and 

Harland, 2011). In keeping with these studies, I detect strong NKX6.1 expression in the 

ventral third of the VZ at E13 and E14 (E13: Figure 3.6, A). Serial adjacent sections 

show that the dorsal boundary of NKX6.1 abuts the ventral boundary of PAX6 

expression. NKX6.1 is detected most strongly in the dorsal half of this population, and 

is much weaker ventrally, and not detected in floor plate cells. In contrast, from E15, 

the dorsal boundary of NKX6.1 becomes relatively closer and closer to the dorsal 

lumen, so that by E16/E17, expression occupies the ventral two-thirds of the VZ (E13: 

Figure 3.6, A’). 

 

Together, the PAX6 and NKX6.1 data suggest that cells in the VZ become increasingly 

ventralised as development progresses over the dorsal obliteration window. Although 

there are other interpretations (see Discussion), one possibility to account for this is 

that dorsal-most VZ progenitors, that weakly express SOXB1 proteins and weakly 

express PAX6, are selectively lost in the process of dorsal obliteration.  

 

3.3.3 Junction proteins 

The previous data suggest that progenitors may be lost unevenly from the dorsal 

aspect of the VZ. Should cells be moving away from the VZ (see later chapters that 

support this idea) this may be reflected in the junction complexes that maintain the 
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neuroepithelial integrity. To test this idea, I examined expression of ZO-1, a member of 

the zona occludens protein family that link tight junctions and cytoskeleton together. 

 

ZO-1: At E14 ZO-1 is localized at the apical surface of cells throughout the VZ. It is 

expressed in a reasonably uniform manner albeit expressed slightly more 

densely/strongly in cells at the most dorsal and ventral aspects, ZO-1 labelling 

illustrates that at this time, the lumen is present as a narrow slit throughout its dorso-

ventral extent (Fig 3.7A, A’). By E15, there is a marked change in expression of ZO-1. 

Strong ZO-1 expression is found in cells at the most dorsal and ventral aspect of the 

lumen. Notably, these cells appear to be very distinct to other VZ cells, as ZO-1 

labelling is not associated with a DAPI-labelled VZ-located nucleus (Fig 3.7 B,B’).  

 

Immediately below the strong ZO-1 expression, DAPI-labelled cell nuclei are detected 

in the upper dorsal VZ that show intriguing characteristics. First, no expression of ZO-1 

is detected on these cells (arrows). Second, their nuclei appear to show a loose 

arrangement, and indeed, the adjacent lumen is notably wider (Fig 3.7, B’ bracket) 

than is the case more ventrally, where DAPI-labelled nuclei continue to be arranged 

tightly around a slit-like lumen, and cells continue to express ZO-1. This characteristic 

pattern persists at E16, although the gap, marked by ZO-1 negative cells, is smaller 

than at E15 (Fig 3.7, C, C’ and bracket).  

 

Together, this shows 2 conclusions. First, dorsal-most cells of the lumen are distinct in 

character to lateral VZ cells: they do not have a nucleus that clearly lines the lumen 

and show strong apical expression of ZO-1. Second, VZ cells that are immediately 

adjacent to these show a specific loss of ZO-1, suggesting that they lose tight junction 
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proteins. This, together with the observation that the adjacent lumen widens suggest 

that such dorsally-located VZ cells undergo profound changes to their integrity at the 

time of dorsal obliteration.  
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3.3.4 Polarity proteins 

The neuroepithelia of the developing spinal cord has clear polarity, apical at the lumen 

side and basal at the other. As outlined in the Introduction, apical polarity proteins 

have been implicated in the maintenance of epithelial integrity and in stabilising 

junctions, and their downregulation is a key step in allowing progenitor cells to 

differentiate, migrate or remodel cytoskeletal proteins (Gomez-Lopez et al., 2014; 

Ramahi and Solecki, 2014; Singh and Solecki, 2015; Vorhagen and Niessen, 2014; Wang 

and Chia, 2005). There are two main apical polarity complexes: the PAR complex, and 

the CRB complex. Given the intriguing changes in ZO-1 expression, I therefore asked 

whether I could detect significant changes in expression in polarity proteins over the 

stages of dorsal obliteration.  

 

aPKC: Atypical protein kinase C (aPKC) is a core member of the PAR polarity complex 

(Chen and Zhang 2013). Similar to ZO-1, at E13 and E14 aPKC expression appears even 

around the apical side of the VZ, although expression may be slightly stronger at the 

dorsal aspect (Figure 3.8A, A’). By E15, a subtle change in the pattern is detected. In 

particular, the loosely-arranged ZO-1-negative cells appear to downregulate aPKC 

(Figure 3.8, B, B’ arrow). Fig 3.11 and 3.12 shows a higher power view comparing aPKC 

with other markers at E15/16. As noted with the ZO-1 analyses, these cells show a 

loose arrangement around a wider lumen. The pattern of aPKC therefore adds to the 

idea that dorsal progenitor cells at the VZ undergo specific changes to their integrity at 

a time that correlates with the rapidity of lumen size change difference during the 

obliteration window. The lumen at E16/E17 is less wide and has a less obvious gap in 

expression than E15 (Figure 3.8 C, C’; D, D’)  
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CRB2: CRB is the eponymous transmembrane core protein of the CRB complex 

(Bulgakova and Knust, 2009). Expression profiling (Figure 3.9) shows that at E13, CRB2 

is present around the apical side of VZ cells (Fig3.9 A and A’). Expression appears to be 

strongest in cells at the most dorsal aspect of the lumen and weaker at the most 

ventral region. By E15, the strong expression in dorsal-most cells is atypical: first, very 

strong expression persists at the apical part of the cell (i.e. in a similar pattern to ZO-1, 

Fig3.9 B and B’ arrow), second, CRB2 appears to be detected in cytoplasmic regions of 

dorsal-most cells. Sub-dorsal VZ cells (i.e. potentially the ZO-1 negative population) 

show a very different profile of CRB2 expression over the window of obliteration. In 

these cells, CRB2 is not detected. However, apical expression can still be detected in 

more ventral VZ cells. Similar expression persists at E16-E17 although, similar to ZO-1, 

the extent of CRB2-negative cells at the VZ decreases (Fig3.9 C-D’’)  

 

CRB2 association with Nestin 

My results show that CRB2 is expressed in an atypical manner in cells that persist at 

the dorsal-most VZ throughout dorsal obliteration. Previously I have shown that cells 

in this region express Nestin. This prompted me to perform double 

immunohistochemical analyses, to more rigorously compare expression of Nestin and 

CRB2 (Figure 3.10). At E13, CRB2 and Nestin are evenly distributed around the neural 

tube lumen and matter respectively (Fig 3.10 A-A’’). At E15, when the lumen has 

obliterated and the long dorsal Nestin process is highly immunoreactive, there appears 

to be an overlapping area of very strong dorsal CRB2 and Nestin expression (Fig 3.10, 

B- B’’, arrows). Fig 3.11 and 3.12 shows a higher power view comparing CRB2, Nestin 

and other markers at E15/6. Slight overlap between the two markers is also present at 

E16 . At E17, there is no overlap between the two markers (Fig 3.9 C-D’’).  
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Figure 3.8 Thoracic transverses sections. E13 to E17, arrows indicating gaps in the labelling. (A’ to D’) 
are higher magni�cation of (A-D) Dotted arrows marking dorsal and ventral boundaries of DAPI 
labelled nuclei of the lumen. 
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Figure 3.9 Thoracic transverse 
sections. CRB2 E14 to E17, 
arrows indicating gaps in the 
labelling. Dotted arrows mark 
dorsal and ventral boundaries 
of DAPI labelled nuclei of the 
lumen. Scale bar: (A-D)100μm, 
(A’-D’) 50μm.
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Markers analysed clearly define several distinct cell populations in the dorsal neural 

tube during dorsal obliteration 

A high power image of the E15/16 VZ clearly elucidates the relationship between the 

markers discussed above (Fig 3.11). A schematic of these images (Figure 3.12) includes 

nuclei traced directly from (Fig 3.11, A) so that nuclear orientation is depicted 

accurately. Four distinct types of cells can be described. 1) Lateral VZ nuclei are 

regular, closely apposed to each other and have a cuboidal shape and uniform aPKC 

and CRB2 expression. 2) By contrast, dorsal VZ nuclei are more rounded, more loosely 

arranged, and are clearly removed from the lumen. The endfeet of the dorsal Nestin-

expressing Radial Glial-like cells (dNRG) are clearly visible in Fig 3.11 B (yellow arrow). 

These cells have extremely strong CRB2 and diffuse aPKC expression that is not 

confined to the apical surface, but instead appears to be either cytoplasmic or perhaps 

along the membranes of dorsally-reaching processes. 3) Nuclei along the dorsal 

midline, associated with the dNRG processes but removed from the VZ, are elongated 

along the dorso-ventral axis, and strongly express SOX2 (also described in Fig 3.4). Sub-

dorsal VZ cells also have cuboidal nuclei as opposed to lateral VZ cells, and are loosely 

organised. They occupy the territory between lateral cells that express apical markers 

uniformly, and dorsal cells that have extremely high expression of these markers. In 

this region, the lumen is very wide and apical markers are both weakly and diffusely 

expressed. 
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Figure 3.10  Thoracic 
transverse sections. E13-
E17 CRB2 and Nestin com-
posite images (A-D). 
(A’-D’’). Magni�ed image 
of (A-D)  below (b). Yellow 
arrows: overlapping 
dorsal expression of CRB2 
and Nestin. White arrows: 
sub-dorsal gaps in CRB2 
expression (see text). 
Dotted arrows mark 
dorsal and ventral 
boundaries of DAPI- 
labelled nuclei of the 
lumen. Scale bar: 100μm 
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Figure 3.11 Thoracic transverse sections. (A) DAPI and (B) 
SOX2/Nestin staining are imaged via di�erent channels from one 
triple-labelled section and therefore overlay exactly. aPKC/Nestin 
labelled sections (C) and CRB2/Nestin labelled section (D) are di�er-
ent sections from the same embryo. White arrowheads in (A-C) 
represent the dorsal/ventralmost nuclei of the lumen. Yellow arrow 
indicates dNRG endfeet. Scale bars: 20um. 



Figure 3.12: Schematic of SOX2/Nestin/CRB2 as imaged in Fig 3.11

Only nuclei are depicted, as cell bodies cannot be resolved. Nuclei 
have been traced, and therefore are an accurate representation of 
nuclear orientation. 

Nuclei are depicted as either SOX2 negative (white), weakly (pink) or 
strongly expressing (red) SOX2. 

Strong Nestin expression stretches dorsally from the apical surface 
and along the dorsal midline. The endfeet of the nestin-positive 
processes terminate at the apical surface (yellow arrow).

CRB2 expression is uniform around the ventral/lateral nuclei. Expres-
sion is more di�use at the apical surface of two sub-dorsal cells 
(between the white and yellow arrows). The most dorsal cells have 
extremely strong, but di�use, CRB2 labelling that is not restricted to 
the apical surface.

Most ventricular zone cell nuclei abut the lumen. Dorsally, there is a 
gap between the apical surface (yellow arrow) and the dorsal 
ventricular zone nuclei (purple arrow), likely �lled with the processes 
of the Nestin-expressing cells. This dorsal region that is free of nuclei 
also exhibits strong CRB2 expression on cell processes and/or within 
the cytoplasm.

SOX2 expressing cells (strong)

Nestin expressing cells

CRB2 expression: 

SOX2-expressing cells (weak)

Non-SOX2 expressing cells

Uniform apical expression  
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3.4 Statistical analysis of CRB2, aPKC, and ZO-1 labelling 

To determine whether the patterns of apical proteins described in this chapter visually 

from experimental sections were a real effect we attempted to perform a statistical 

analysis of these data. These imaging data were taken were taken from several 

different experiments, using a variety of staining and imaging protocols that were not 

standardised between images. However the data were collected, each image still 

retains information on the apical markers with regard both their intensity and position 

across the lumen. Therefore, we attempted to see whether any useful data could be 

extracted from those images despite the fact that a direct comparison of these raw 

data would be inappropriate. 

 

Previously in this Chapter we describe ‘dorsal’ and ‘sub-dorsal’ regions. The dorsal 

region is defined by the presence of strong nestin expression, and the sub-dorsal 

region is described as being directly ventral to that region; defined by a looser 

arrangement of nuclei and associated with a lower intensity of apical protein 

expression. However, these criteria are unhelpful for these tests as not all images 

contain nestin labelling, and apical intensity can clearly not be used to define the test 

area for these images.  

 

We used FIJI to draw regions of interest (ROI) to define five adjacent regions around 

the lumen named; Cytoplasmic Dorsal, Dorsal, sub-dorsal region 1 (SD1), sub-dorsal 

region 2 (SD2), and Medial. Two ‘subdorsal’ regions were described as 1) the extent of 

the subdorsal region in which of apical intensity appeared lower varied in size and 2) in 

images without Nestin expression labelling we did not know the extent of the Nestin+ 

domain. The position and size of ROI with respect to the lumen in each image was 
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directly defined by the position of the “Dorsal” ROI. All ROI were placed sequentially 

along the lumen, with all regions being progressively more dorsal of the Dorsal ROI yet 

adjacent to the preceding ROI in the order SD1, SD2 and Medial, with the exception of 

Cytoplasmic dorsal which was immediately ventral of the Dorsal ROI. All ROI within 

each image were of the same area as the Dorsal ROI except for the Medial ROI which 

was exactly twice this area in order to capture a more representative average of the 

main length of the lumen. Due to variation in the size of lumen in different embryos at 

different stages of development, box size was determined in each image to 

appropriately represent the most dorsal region of the lumen as determined by a 

Nestin-labelled channel, then replicating box size for the other areas and a box twice 

the area for medial. This guide was then applied to all other images, using the dorsal-

most apical labelling of the lumen surface to position the ‘dorsal’ region, then placing 

all boxes sequentially around it as described above. In the event that there was a clear 

disruption to the lumen (e.g. a tear), boxes were not placed adjacent to each other, 

but were moved to cover the next whole region of lumen. Where two apical surfaces 

were laterally too far apart to fit into one box the box was split into two equal halves 

to cover each lumen surface (both left and right) and these data across the two boxes 

averaged. The average pixel intensity for the relevant apical marker across the area of 

each ROI was measured.  

 

The raw average intensity values across each ROI is not directly comparable between 

images, so a normalisation approach was adopted so that the relative differences of 

average pixel intensity between ROI within images could be compared against each 

other on a similar scale. The normalisation method adopted was a division of each 

average pixel intensity of ROI from an image by the total pixel intensity (brightness) 
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gathered from all ROI in that image which is calculated as the sum of the average pixel 

intensity of each ROI multiplied by its area for all ROI from that image. This 

normalisation helps to take account for the differences between images by only 

comparing intensity data within its own image to scale, thus keeping the information 

on the general relationship of intensity between the regions at the cost of the absolute 

intensity data. The normalised data from all sections examined are displayed 

individually in Figures 3.13, 3.14 and 3.15 and data for each apical marker are compiled 

together with respect to embryonic day of development in Figure 3.16. In general, 

there seems to be a clear trend that Dorsal is the brightest region, cytoplasmic Dorsal 

as the dimmest region and that the relative brightness of the remaining three regions 

(SD1, SD2 and Medial) are generally more similar. 

 

It is important to note that not all images examined are independent of each other. 

Indeed, several images are different sections from the same embryo (Figures 3.13, 

3.14 and 3.15). A statistical analysis based on the whole dataset would not be 

appropriate since the test could be easily skewed by a disproportionate contribution of 

sections from the same embryo that is not reflective of biological replication. To 

address this problem, one section from each embryo was used for statistical tests 

(highlighted by a red asterisk in Figures 3.13, 3.14 and 3.15). The sections used for 

statistical testing from each embryo were those from the mid-thoracic region of the 

embryo. In the event that there were multiple sections from the mid-thoracic region, a 

section was selected at random. This procedure roughly halved the size of the dataset 

and took the total number of samples from aPKC from n=29 to n=15, Crb2 from n=26 

to n=13 and Zo-1 from n=27 to n=14. All the biological replicate data for each marker 

are compiled into box and whisker diagrams that provide a general description of the 
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data that are similar to the equivalent charts built from the whole dataset (Figures 

3.16). This observation implies that the whole datasets are not disproportionately 

skewed by any overrepresentation of multiple sections from any one embryo. 

 

Given the fact that the data is not directly comparable with regard the collection 

methods and absolute values, it was determined that statistical tests based upon 

ranked average pixel intensity (from brightest to darkest within each image) were the 

most appropriate. Since the patterns described earlier in this chapter were not 

concerned with the signal intensity from the cytoplasmic dorsal region, this region was 

not included in the analyses. two claims were made based on the the patterns 

described earlier in this chapter; firstly, that the dorsal region was usually the brightest 

part of the lumen and, secondly that the sub-dorsal region tended to be darker than 

the rest of the lumen. The first question of whether the Dorsal region tends to be 

brighter than the rest of the lumen can be assessed using the ranked data by asking 

whether the Dorsal region is the brightest region for each marker at a disproportionate 

frequency and tested using an exact binomial goodness of fit test. Each ROI was ranked 

according to its average pixel intensity against the other ROI in its image from Rank1 

(brightest) to Rank4 (dimmest). This was done for each biological replicate for reach 

apical marker. The frequency by which each region occupied these four ranks across all 

time points for each marker was recorded (Table 3.1). 

  

  



Embryo 1 Embryo 2 Embryo 3 Embryo 4 Embryo 5

E13

E14

E15

E16

Figure 3.13 - Normalised intensity for aPKC data
plotted for each section. Plots within a box are from
one embryo, multiple grouped bar graphs are sections
from that embryo, i.e. for E13 Embryo1 three sections
were analysed. The inset in E15 Embryo1 is a blow up
of the bar charts in order to see variation more easily.
Red asterisks denote section used to represent
embryo as a biological replicate.
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Bar graph legend
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Figure 3.14 – Normalised
intensity for CRB2 data
plotted for each section.
Plots within a box are
from one embryo,
multiple grouped bar
graphs are sections from
that embryo, i.e. for E15
Embryo1, three sections
were analysed. The inset
in E15 Embryo3 is a blow
up of the bar charts in
order to see variation
more easily. denote
section used to represent
embryo as a biological
replicate.
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* *
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Bar graph legend
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Figure 3.15 – Normalised
intensity for ZO-1 data
plotted for each section.
Plots within a box are
from one embryo,
multiple grouped bar
graphs are sections from
that embryo, i.e. for E16
Embryo2 six sections
were analysed. The inset
in E14 Embryo2 is a blow
up of the bar charts in
order to see variation
more easily. denote
section used to represent
embryo as a biological
replicate.
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Bar graph legend



Figure 3.16 Normalised intensity data (arbitrary units) from Cytoplasmic Dorsal, Dorsal, Sub-Dorsal1, Sub-Dorsal2
and Medial regions from all measured sections are displayed. When n≥5, a box and whisker charts is used. When
n≤5, the data are represented in a bar chart, with each bar colour representing a different section. The data are
divided according to embryonic day of development from E13-E17, with the two final columns displaying the data
from all timepoints. The “All” column represents all sections from the dataset, regardless of timepoint whereas
the “Biological replicates” column uses one section from each embryo as indicated in Figures 3.13, 3.14 and 3.15.
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Table 3.1 Each ROI was ranked according to its average pixel intensity as compared to the 

other ROI in its image, from Rank1 (brightest) to Rank4 (dimmest) and the rank frequencies 

across all biological replicates for each apical marker tallied. 

 

 

 

 

 aPKC  Crb2  Zo-1 

SD1 SD2 M SD1 SD2 M SD1 SD2 M 

Rank1 3 4 8 6 3 4 9 3 2 

Rank2 8 3 4 3 6 4 2 5 7 

Rank3 4 8 3 4 4 5 3 6 5 
Table 3.2 Rank frequency data used to determine whether SD1 or SD2 is usually dimmer 

than the medial ROI. Three regions SD1, SD2 and Medial were ranked according to their 

brightness from Rank1 (brightest) to Rank3 (dimmest) and the rank frequencies across all 

biological replicates for each apical marker tallied. 

 

 

 

 

 Zo1 E16 Embryo2 

Dorsal SD1 SD2 Medial 

Rank 1 6 0 0 0 

Rank 2 0 1 0 5 

Rank 3 0 2 4 0 

Rank 4 0 3 2 1 

Table 3.3 Test of inter-embryonic variation. Four regions, Dorsal, SD1, SD2 and Medial were 

ranked according to their brightness from Rank1 (brightest) to Rank4 (dimmest) and the 

rank frequencies across six serial sections from one embryo tallied. 

 

 

 
 

aPKC 

 

Crb2 

 

Zo-1 

Dorsal SD1 SD2 M Dorsal SD1 SD2 M Dorsal SD1 SD2 M 

Rank 1 9 0 1 5 12 0 0 1 11 0 2 1 

Rank 2 5 3 4 3 1 6 3 3 2 10 1 1 

Rank 3 1 8 2 4 0 3 6 4 1 1 5 7 

Rank 4 0 4 8 3 0 4 4 5 0 3 6 5 



90 
 

If there were no presumed association of the apical marker to any particular region, it 

would be expected that the brightest region would be distributed at random among 

categories in accordance to experimental noise. Therefore, the null hypothesis 

suggests that dorsal is brightest region in one quarter of all images. For each apical 

marker, the dorsal region was brightest significantly frequently (exact binomial test of 

goodness of fit, two tailed; aPKC, 9 of 15 samples, p=0.00419; Crb2, 12 of 13 samples 

p=5.96x10-7; Zo-1, 11 of 14 samples p=4.0x10-5). 

 

In a similar fashion, we wanted to test whether SD1 or SD2 were generally darker than 

the rest of the lumen as represented by the medial ROI. For this test, the dorsal data is 

not relevant and so were not included. Thus, the three regions SD1, SD2 and Medial 

were ranked according to their brightness from Rank1 (brightest) to Rank3 (dimmest) 

(Table 3.2). In this scenario, there are only six possible orders in rank for these regions, 

and under the null hypothesis, each scenario has an equal probability. The question we 

are asking is whether Medial is the dimmest region less frequently than expected, 

since by implication if it is not the dimmest, either SD1 or SD2 must be. Under the null 

hypothesis that there is no association between lumen position and apical marker 

intensity, it is expected that the ranks be distributed randomly across these categories 

in accordance with experimental noise and, it is therefore expected that Medial is the 

dimmest region in one third of all images 

 

For each apical marker, there was no significant deviation from the expected 

frequency that Medial was ranked the dimmest marker. For the marker aPKC, Medial 

was dimmest in three of fifteen samples, which was less frequent than the expected 

frequency (expected=5) but this was not significant (exact binomial test of goodness of 
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fit, two tailed, p=0.41). For Crb2 Medial was ranked dimmest more frequently than 

expected (expected=4.33) but this was not significant (exact binomial test of goodness 

of fit, two tailed, p=0.77). For ZO-1 Medial was dimmest almost exactly as frequently 

as expected to the nearest whole number (expected=4.67) and this is self-evidently 

not significant. 

 

In almost all cases where multiple sections from a single embryo were available, the 

number of sections was low with the maximum number of 3 per embryo in all cases 

except one. For the marker ZO-1 on embryonic day 16, one embryo has data analysed 

from six different sections. This is the only example where there is enough data to 

examine whether these same patterns examined above are seen within serial sections 

of the same embryo. As above, the average pixel intensity was ranked for the Dorsal, 

SD1, SD2 and Medial regions from rank1 (brightest) to rank4 (dimmest) (Table 3.3). 

The null hypothesis that Dorsal should be brightest in one quarter of all images applies 

also in this example. In this embryo, Dorsal was ranked brightest in all six sections 

which is a significantly higher frequency than the expected 1.5 (exact binomial test of 

goodness of fit, two tailed, p=2.44x10-4). Since all six sections had dorsal as the 

brightest region, the respective rankings of the rest of the regions would remain 

unchanged if the Dorsal region removed as previously so these data have not been 

compiled again as before, however it is possible to test whether the Medial region was 

dimmest as compared to SD1 or SD2 only using their rankings in Table 3.3. Again, the 

null hypothesis that Medial should be dimmest in one third of all samples also applies 

here. In this embryo, Medial was the dimmest region in one out of six sections, which 

is a lower frequency than the expected 2 times, but this was not significant (exact 

binomial test of goodness of fit, two tailed, p=0.671).  
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Statistical Conclusion and Discussion  

Despite the fact that these experiments were not designed to be directly comparable 

with each other and are unfit for parametric testing, we have been able to apply 

methods that extract useful information from these images that enabled the ability to 

interrogate whether the patterns described visually in this chapter could be supported 

in a quantitative manner. The approach of average pixel intensity normalised by the 

total brightness across sections provides a numerical basis for comparison of trends of 

apical marker expression in different regions (figures 3.13-3.15) These data show that 

across the all markers and timepoints analysed, Dorsal was the brightest of any of the 

areas analysed. Expression of aPKC follows that trend at all embryonic days analysed. 

SD1 also appears to be less bright than Dorsal, SD2 or Medial at almost every 

timepoint, except E14, at which point both SD2 and Medial are less bright than this 

point, although SD2 is the least bright. For CRB2, Dorsal is consistently brightest. 

However, in general, brightness decreases more ventrally. However, At E16 SD1 

appears to be least bright. ZO-1 is consistently brightest in the dorsal region. Like Crb2, 

the trend seems to be to become less bright ventrally. However, at E16 both SD1 and 

SD2 are less bright than either Dorsal or Median. Cytoplasmic dorsal is generally the 

least bright of all the samples. Although these normalised data provide a method by 

which to identify general patterns by comparing all the sections on a similar scale, it is 

liable that any analysis performed on these data would be misleading since it cannot 

account for systematic differences in data collection, such as differences in microscope 

detection efficiencies. 

 

The other method applied exploited the fact that the average pixel intensity allowed 

for a ranking of brightness of each region within its section. These ranks could then be 
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tallied and allowed for a statistical interrogation of the frequency data by means of a 

binomial exact goodness of fit test; one of the few statistical tests that could be used 

to interrogate a small dataset such as this. That said, these data demonstrate that the 

Dorsal region of the lumen is usually the brightest region of those tested, regardless of 

time point for the three markers tested. Additionally, in the one case where data were 

available (these tests require a minimum of four sections), it could also be 

demonstrated that serial sections from the same embryo showed that the dorsal 

region was the brightest region regardless of section. It could not be demonstrated, 

however, that the sub-dorsal regions tended to be dimmer than the rest of the lumen 

for any apical marker examined. This frequency-based test on the ranked brightness of 

the regions is successfully able to provide some information with regard the fact that 

the Dorsal region is the brightest region disproportionately often and we have also 

found a way to address the question of whether the Sub-dorsal regions tend to be the 

dimmest regions. 

 

One of the major limitations of these data is the low sample size, which limits the kind 

of tests that can be performed and also reduces any test’s ability to reveal an 

underlying trend. The binomial exact goodness of fit test is an ideal candidate 

statistical test for these small datasets, however the questions it can answer are 

extremely limited and more powerful statistical tests (such as parametric tests), could 

be implemented on data from a more appropriately designed experiment that could 

better interrogate any trend. A more powerful setup for examining the patterns of 

apical marker expression intensity with respect to position along the lumen could be 

performed using a larger sample size for each timepoint, with a larger number of 

biological replicates as well as more sections from directly comparable positions along 
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the embryo’s anterior-posterior axis. Sample size aside, a much more powerful test for 

any difference in signal intensity of an apical marker between these regions would 

involve a method by which the absolute intensities measured from each region could 

be directly compared between images. To achieve this, an experiment should be set up 

that uses the same staining and imaging protocols for each section. The images should 

be taken on the same microscope at the same magnification and at the exposure/gain 

settings.  

 

Another confounding factor is that the apical surface can be either directly apposed or 

separated. Indeed, the apical surfaces of the medial region tended to be directly 

apposed, thus containing signal intensity from two apical surfaces whereas the Dorsal 

ROI, for example, tended to only include apical marker signal intensity from one apical 

surface. The major reason for this association is due to the “keyhole” like shape of the 

lumen. It could be reasoned then that the medial region signal intensity is generally 

overrepresented since there are up to twice as many apical proteins that could exist on 

these two apposed sheets of the lumen. On the other hand, densely packed protein 

from two apical surfaces may give a less bright pixel value than the sum of two 

separated surfaces, because of light scattering effects, saturated pixels or actual 

dimmer labelling because of poorer antibody penetration. This would also need to be 

controlled for in an ideal experimental set up. 
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3.5 Discussion 

 

3.5.1 The obliteration window marks a important change in the nature of the 

developing spinal cord 

Morphological analysis of the developing mouse spinal cord between E13 and E17 has 

identified a window of obliteration between E14 and E16, during which the lumen 

undergoes a rapid decrease in size from the most dorsal aspect, resulting in a small, 

ventrally located lumen (Figure 3.1, Schematic: Fig 3.17). After this stage, little further 

size change occurs; the lumen remains a similar size into adulthood (see Chapter 4).  

 

My analysis of the transcription factors PAX6 and NKX6.1, together with SOXB1 

proteins, shows that as the VZ obliterates, the expression pattern of these markers 

become more dorsal. There are two potential explanations for this effect. First, it is 

possible that stem/progenitor cells are being lost from the VZ unevenly from the 

dorsal side. This idea is strongly suggested by the presence of SOX1+SOX2+ cells dorsal 

to the obliterated lumen. Another possibility is that VZ stem/progenitor cells are re-

patterning as dorsal obliteration progresses, potentially in response to changing 

SHH/BMP gradients (Wilson and Maden, 2005). These possibilities could be 

distinguished, either through real time analyses of cell behaviour, or through lineage 

tracing analyses. Chapter 7 will show my studies of cell behaviour. Importantly, 

regardless of the mechanism, my results show that during the obliteration window, 

the nature and therefore potential of stem/progenitor cells that occupy the VZ/EZ of 

the spinal cord are fundamentally changing as obliteration occurs.  

  



Lumen morphology and SOX2-expressing cells at E14 - E17
E14 E15 E16 E17

Figure 3.17 Schematic of dorsal obliteration, showing both the reduction in lumen size as described in 
Figure 3.1 and position of SOX2-expressing nuclei (red) both within, and dorsal to, the ventricular zone as 
described in Figure 3.4.
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3.5.2 Structural changes during obliteration 

Massive structural changes such as seen in dorsal obliteration is reflected in the 

cytoskeletal structure of the contributing cells. My analyses of the F-actin marker 

phalloidin showed an intriguing pattern at the stages analysed. Between E15 and E17, 

that is, during and after the obliteration window, strong immunoreactivity is present 

along the midline both dorsal and ventral to the VZ.  

 

F actin is known to have roles in a variety of cellular processes, including those 

involved in migration such as adhesion, shape change and cell protrusions. F-actin 

conformation varies depending on the context, and thus the unusually strong 

Phalloidin labelling at the dorsal midline may indicate cell behaviours unique to this 

dorsal region (Stricker, 2010). 

 

The intermediate filament protein Nestin displays an interesting expression pattern. 

Prior to the onset of dorsal obliteration, Nestin is detected in radial glial cells that 

extend laterally from VZ to the pial surface. This labelling declines dramatically at 

E14.5, at the onset of dorsal obliteration, and concomitantly a new subset of Nestin+ 

cells arises at the dorsal-most VZ. As dorsal obliteration proceeds, the dorsal Nestin+ 

cells continue to contact both the lumen and the dorsal-most surface of the spinal 

cord, and extend ever-lengthening processes as the lumen obliterates.  

 

My data show that the length of the dorsal Nestin+ cells’ processes and the lumen size 

are negatively correlated. I then examined SOX2, a marker present early in VZ cells and 

then additionally in cells dorsal to the VZ. SOX2 positive cells outside the lumen are 

closely associated with the Nestin+ process. Long processes are a hallmark of radial 
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glia like cells.  In the developing cortex, newborn neurons use radial glia as scaffolds to 

migrate (Nadarajah et al., 2003). This raises the intriguing possibility that the SOX2 

cells that have left the lumen use the processes of the Nestin+ cells to migrate.  

 

3.5.3 Nestin+ cells are closely-associated with strong CRB2 expression 

Prior to dorsal obliteration, the polarity protein CRB2 is evenly distributed in the 

apical-most regions of VZ cells, and so appears evenly distributed around the lumen at 

E13-E14. However, over the period of rapid dorsal obliteration (E15-E16) cells in the 

most dorsal aspect of the VZ show stronger expression of CRB2, apically and, 

potentially, cytoplasmically, although the latter has not been demonstrated 

statistically. These cells also express high levels of apical ZO-1. There is a strong 

statistical association of these markers with the dorsal region, with the dorsal region 

being the brightest part of the lumen significantly more frequently than expected. 

Given that such polarity and junction complexes are crucial to the maintenance of the 

neuroepithelium, these analyses suggest that VZ cells at the most dorsal aspect of the 

developing spinal cord during the collapse window are locked tightly in the epithelium. 

These cells are closely-associated with the Nestin+ dorsal-most cells that appear at the 

same time: high power views show that the Nestin+ cells either co-express high levels 

of CRB2 or that Nestin+ cells immediately abut cells that express high levels of CRB2. 

Together, these analyses suggest that the dorsal obliteration window is characterised 

by the appearance of Nestin+ radial glial cells that show tight epithelial characteristics. 

In future I refer to these cells as dorsal Nestin+ radial glia (dNRG). 
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Note that since I cannot rule out the possibility that there is more than one cell type in 

the region occupied by Nestin+ processes, hereafter I refer to this region as the dorsal 

Nestin+ region. 

 

3.5.4 Polarity proteins and junction complexes may be downregulated in sub- dorsal 

VZ cells during dorsal obliteration 

Visual analysis of my data appears to show that dorsal obliteration is accompanied by 

marked changes in polarity and junction proteins, and in morphology in sub-dorsal VZ 

cells that immediately neighbour dNRG. Sub-dorsal VZ cells appear to downregulate 

apical CRB2, aPKC (a member of the PAR complex) and ZO-1 (a zona occludens protein 

that links tight junctions and the cytoskeleton together). Downregulation is transient, 

and at the end of dorsal obliteration (E17), CRB2, ZO-1 and aPKC are again detected 

evenly around the now-smaller VZ. The small sample size available at E17 meant that 

statistical analyses could not be performed to meaningfully assess this pattern and so 

this interpretation is not statistically supported. Therefore, this thesis will consider the 

possibility that the sub-dorsal region is downregulating apical proteins in the sub-

dorsal area. 

 

The transient downregulation of CRB2, ZO-1 and aPKC suggests that sub-dorsal VZ cells 

lose their epithelial integrity over the period of dorsal obliteration, and this possibility 

is supported through morphological analyses. Prior to dorsal obliteration, VZ cells that 

line the lateral walls of the lumen have DAPI nuclei abutted against their apical walls. 

However from the onset of rapid dorsal obliteration at E15, the nuclei of sub-dorsal 

cells are clearly removed from the apical surface. This supports the idea that sub-
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dorsal VZ cells that are immediately adjacent to dNRG are more loosely held in the 

tissue than other ventricular zone cells. 

 

In summary these analyses reveal that there may be changes in polarity and junction 

proteins concomitant with the obliteration window (E14-E16). Polarity and junction 

proteins show high expression in VZ cells at the most dorsal aspect of the lumen, but 

are specifically downregulated in sub-dorsal VZ cells. These changes are accompanied 

by changes in the location of nuclei of sub-dorsal VZ cells. Overall, these studies 

suggest that sub-dorsal cells may have reduced epithelial integrity or over the window 

of dorsal obliteration.  

 

3.5.5 A model for dorsal obliteration 

These analyses show that the VZ of the developing spinal cord changes dramatically 

after E14. The timepoint between E14 and E15 marks the onset of dorsal obliteration, 

which decreases the size of the VZ, decreases the number of VZ cells and changes the 

relative position of the VZ so that it becomes ventrally located. Over this period, dNRG 

with lengthening dorsal projections, and strong apical expression of CRB2 and ZO-1 

become apparent. At the same time, VZ cells in the sub-dorsal aspect also undergo a 

change, downregulating CRB2, ZO-1 and aPKC, and undergoing changes that result in 

their nuclei becoming located far from the lumen. Lateral VZ cells, and cells associated 

with the lengthening Nestin+ processes express SOX2.  

  

Taken together, these data suggest a mechanism for collapse (Figure 3.18). The dNRG, 

or cells immediately adjacent to them, express a factor, or factors, that results in the 

downregulation of polarity and junction proteins in immediately adjacent sub-dorsal 
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SOX2 VZ cells. As a consequence, these lose epithelial integrity and become excluded 

from the VZ. These cells then use the Nestin+ long radial glial-like processes to migrate 

dorsally. 

 

In the following results chapters, I aim to test this model. In particular, I first aim to ask 

whether dNRG (or immediately adjacent cells) have the potential to alter the neural 

epithelial integrity. 

  



Figure 3.18 The dorsal obliteration model. 

Sub-dorsal cells

Dorsally migrating cells

Detaching cell

Cell downregulating 
apical proteins 

SOX2 expressing cells

Nestin radial glia

Apical marker expression 
     (aPKC, ZO-1, CRB2) 

Lateral ventricular zone cells

Regular apical expression  
Di�use/weak expression
Strong non-apical expression

Secreted factor

The dorsal NRGs (green) secrete a factor (pink) 
that can disrupt apical proteins. Sub-dorsal 
cells experience disruption/downregulation of 
polarity and junction proteins (blue). However, 
the dNRGs are protected from disruption by 
expression of high levels of apical proteins. The 
sub-dorsal cells may then detach and migrate 
using the dNRGs (green) as a conduit. 
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Chapter 4 
 
 

Dorsal Nestin+ radial glia: a role in 
mediating loss of neuroepithelial 
integrity and the formation of the 

mature central canal  
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4.1 Introduction 

In chapter 3, I described a population of Nestin+ cells that arise in the most dorsal 

aspect of the neural tube between E13 and E14. These have radial glial-like 

morphology and contact both the pial surface with dorsal processes and the dorsal 

central canal with apical end feet, and thus we have termed them dorsal Nestin radial 

glia (dNRG). The dNRG extend their processes so that as the lumen obliterates, contact 

is always maintained at these two points. As I demonstrated in Figure 3.5, SOX2 

positive cells are closely associated with the dNRG processes during dorsal 

obliteration. I described a model in which the lumen obliterates to form the central 

canal. The model suggests that dorsal Nestin+ cells promote a loss of polarity and tight 

junctions in neighbouring SOX2 positive sub-dorsal VZ cells, causing them to 

delaminate from the VZ so that they are ultimately able to migrate along the dNRG 

processes. A prediction of this model is that dorsal Nestin+ cells can cause a disruption 

of neuroepithelial integrity. 

 

Given that previous studies have shown that Nestin+ radial glial cells exist in a similar 

position in the adult spinal cord (David and Ousman, 2002; Petit et al., 2011) a 

question that arises is whether adult Nestin+ cells maintain similar characteristic 

properties to the Nestin+ cells that I have described in the prenatal animal. 

 

In this chapter I test whether dorsal nestin+ radial glia of embryonic and adult mice 

have the potential to cause disruption or migration of embryonic neural progenitor 

cells.  
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4.2 Prenatal dorsal Nestin+ cells have the power to drive progenitor cell 

delamination in an experimental model system 

To investigate whether prenatal dNRG have the power to effect a delamination of 

neuroepithelial progenitors, I chose the embryonic chicken as a system to manipulate, 

as it is well-established and characterised, tractable and robust (Darnell and 

Schoenwolf, 2000; Davey and Tickle, 2007). My aim was to transplant prenatal Nestin+ 

cells into the lumen of the early chick neural tube and ask whether premature 

exposure of neuroepithelial cells to dNRG would lead to a loss of neuroepithelial 

integrity, assessed through a disruption to the position of neuroepithelial progenitor 

cells and a general disruption in neural tube integrity. At stage (Hamburger-Hamilton) 

HH10 (equivalent to an E9.5-10 mouse embryo) the embryonic chick neural tube has 

not fully closed at the caudal end, thus material can be placed into the U-shape cavity, 

exposing the apical side of VZ cells to ectopic material without damage to the 

surrounding tissues (Figure 4.1). At this stage the chicken embryo has not yet begun 

late neurulation, therefore the cell population expressing the dorsal intermediate 

filament transitin; believed to be equivalent to Nestin (Cole and Lee, 1997; Napier et 

al., 1999; Whalley et al., 2009) has not yet developed (Appendix; Fig A.F1).  

 

To test whether dorsal Nestin+ cells of the prenatal mouse can disrupt neuroepithelial 

progenitor cells of the embryonic chick neural tube, I dissected out a small area 

containing dNRG (see Chapter 2.5). My model predicts that only dNRG will have the 

power to disrupt neuroepithelial progenitors, and I therefore dissected lateral VZ cells 

as a control. Control lateral VZ explants, or Nestin+ cell explants were transplanted 

carefully in the open neural tube of the HH10 chicken embryo (Figure 4.1) and 

embryos were incubated at 37oC for 24 hours, until HH19-20 (equivalent to E11.5-12.5 
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mouse). In the first set of experiments, transverse sections were quadruply labelled 

with: M2 (an anti-mouse antigen) to detect the transplanted tissue; DAPI, to detect cell 

nuclei; dystroglycan, to label the basement membrane; and SOX2, to label progenitor 

cells. In a second set of experiments, transverse sections were quadruply labelled with 

M2, laminin (used in this instance as a marker of the basement membrane), DAPI and 

either NKX6.1 or PAX6. As discussed previously, NKX6.1 and PAX6 mark progenitor 

cells that form in distinct zones along the dorso-ventral axis (Jessell, 2000) and would 

therefore provide additional evidence for pattern disruption.  

 

In the first set of experiments, control embryos, transplanted with cells lining the 

lateral VZ, showed an unbroken dystroglycan-labeled basement membrane. Further, 

strongly-labelled SOX2-positive neural progenitors were all confined to the neural tube 

(Figure 4.2A-A’’, Table 4.1).  

 

By contrast, embryos transplanted with dNRG showed disrupted basement 

membranes, as evidenced through breaks in dystroglycan expression, and cells that 

strongly express SOX2 were detected in an apparently ectopic position outside the 

neural tube (Figure 4.2B-Bi’’, arrows). Furthermore, the neural tube itself appeared 

unusual: cell position appeared generally disrupted. 
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Table 4.1 E15 mouse transplants into HH10 Chick. 

Tissue Transplanted Disruption No  
Disruption 

Dorsal (6) 6 0 

Lateral/Ventral (3) 0 3 

 
 
 
These experiments show that dNRG-transplanted embryos have a striking and 

significant association with the disruption of both progenitor organisation and 

appropriate positioning and basement membrane integrity (Fisher’s exact test, 

P=0.0119). These results support the idea that dNRG can disrupt neuroepithelial cell 

integrity. 

 
  



Figure 4.1 Schematic of mouse central canal tissue into HH10-12 chicken embryo.
Mouse tissue is dissected out with a �ne pulled needle (A) and carefully placed in the open neural tube of a HH10-
12 embryo, as rostal as possible (mouse tissue represented in green, B). The chicken embryos are then incubated 
for 24 hours (C). (D) respresents a cross section of chicken neural tube at level of black line in (C).
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Figure 4.2 E15 mouse transplant into HH10 
chicken embryo. The control (A) has a 
regular, unbroken basement membrane, 
and the neural progenitors (labelled with 
Sox2) are regularly shaped and positioned. 
The dorsal tranplanted chicken embryo (B) 
has breaks in the basement membrane 
(white arrow) that Sox2-expressing cells 
are breaching (arrow; magnified in 
(Bi-Bi’’)). 
Scale bars: 50μm.
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4.3 Adult dorsal Nestin+ cells have the power to drive progenitor cell delamination 

Previous studies have shown that Nestin+ cells are present in the adult spinal cord, 

occupying a similar position to those that I describe at the end of the dorsal 

obliteration window (David and Ousman, 2002; Petit et al., 2011). Additional 

preliminary studies in our lab performed by Dr. Kavitha Chinnaiya indicated that adult 

Nestin+ dorsal cells may be able to induce migration of neural progenitor cells. 

Embryonic-like ability of adult tissue to disrupt the developing epithelia could raise the 

intriguing possibility that dorsal Nestin-expressing cells (a stem/progenitor marker) 

develop during dorsal obliteration and are maintained in the adult and may have the 

ability to induce delamination upon, for example, injury. To confirm these studies, I 

first established that I could detect similar cells. 

 

Transverse sections of adult mouse spinal cord were triple labelled to detect DAPI, 

Nestin and SOX2. SOX2-expressing cells were confined to the central canal, and 

Nestin+ radial glial like cells, similar to those I described in the prenatal embryo, were 

clearly detected (Figure 4.3). As in the embryo, these cells maintain contacts at the 

dorsal pial surface and have end feet at the dorsal central canal. The relative size and 

position of the central canal and of the dorsal Nestin+ population in the adult (Fig. 4.3 

C-D’’) are similar to those at the end of the dorsal obliteration window at E17 (A-B’’). 

 

I then asked whether adult Nestin+ cells retain the ability to disrupt neuroepithelial 

progenitors, using the same assay described in Section 4.2 (and Chapter 2.4). As with 

the prenatal animal, I compared the effect of dorsal Nestin+ cells to that of sub-

dissected lateral central canal cells. These experiments were performed in 

collaboration with Dr Kavitha Chinnaiya. 
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Chicken embryos transplanted with control tissue (adult lateral central canal) showed 

no disruption to neural tube integrity, with an unbroken dystroglycan-labeled 

basement membrane and regularly spaced neural progenitors (Fig. 4.4A-C). By 

contrast, chick embryos transplanted with adult dorsal neural tube tissues showed 

clear disruption of neural tube integrity (Figure 4.4D-G). Co-labelling with dystroglycan 

and SOX2 reveals breaks in the basement membrane that appear to be breached by 

SOX2-expressing cells (Figure 4.4F white arrowhead). Cell position irregularities are 

common, and frequently found next to breaks in dystroglycan, indicative of a disrupted 

basement membrane (Figure 4.4F, arrowhead outline,). SOX2 expressing cells are 

likewise detected outside the neural tube, often closely associated with basement 

membrane breaks (Figure 4.4F, arrowheads). These are not seen in the control 

transplanted embryo (Fig 4.4, C). Analysis of serial adjacent sections with NKX6.1, 

PAX6, or SOX2/dystroglycan, reveals similar abnormalities to those detected with 

prenatal Nestin+ cells). Progenitor cells, expressing NKX6.1, PAX6 or SOX2 are detected 

ectopically outside the neural tube, often closely associated with basement membrane 

breaks (not shown). Within the neural tube, the normally tight patterns of NKX6.1 and 

PAX6 are disrupted (arrowhead, Figure D, E), neural epithelial cells appear to show 

aberrant cell orientations (arrowhead, Figure 4.4 G, arrowhead). The disruption 

mediated by the dorsal Nestin+ graft is not limited to immediately-adjacent cells, 

suggesting the operation of a diffusible factor. Furthermore, the disruption is not 

limited to neuroepithelial cells: in several instances, the basement membrane of the 

notochord was disrupted, and outpocketings of notochord, or even ectopic ‘mini-

notochords’ were observed (Figure 4.4 H). NKX6.1 cells were seen extruding from the 

floorplate in a bulge (Fig 4.4, J).  
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The disruption to the tissue-transplanted chicken embryos varies. I classified the 

disruption into ‘Strong’ ‘Medium’ and ‘Weak’, although these ratings are somewhat 

subjective. ‘Strong’ phenotypes have clear ectopic neural tube cells outside the neural 

tube. ‘Medium’ has internal neural tube disruption, and evidence of cells that appear 

to be in the process of leaving the neural tube and basement membrane disruption. 

‘Weak’ characterises embryos that have only small basement membrane or minimal 

cell organisation disruptions, which cannot formally be excluded as sectioning 

artefacts. These results are shown quantitatively in Table 4.1. 

 

 

Table 4.2 Adult mouse transplants into HH10 Chick. 

Tissue Transplanted Strong 
Phenotype 

Medium 
Phenotype 

Weak/ No 
Phenotype 

Dorsal (9) 2 5 2 

Lateral/Ventral (4) 0 0 4 

 
 
 
 
These experiments suggest two conclusions. First, that adult dorsal Nestin+ cells show 

the same ability as prenatal dNRG to disrupt epithelial integrity, including 

neuroepithelial integrity. Second, disruptions to epithelial integrity are detected at a 

distance, suggesting that the effect of the Nestin+ cells is mediated by a diffusible 

factor. These association of dorsal transplanted tissue with a disruptive phenotype are 

significant (Fisher’s exact test, p=0.0210). 
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Figure 4.3 E17 (A-B) and Adult (C-D) 
mouse expressing SOX2 and Nestin. 
In both cases, SOX2 is restricted to 
the central canal. The dorsal nestin 
end feet contact the dorsal central 
canal and extend long processes to 
the pial surface. Scale bars: 50μm 
(10x) 100μm (4x). 
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Adult mouse spinal cord transplant into HH10 chicken embryo
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Figure 4.4 Adult mouse transplant into HH10 chicken embryo (A-C), (I) and 
(K) are sections from control lateral transplanted embryos. (D-H) and (J) are 
sections from mouse dorsal tissue transplanted embryos. Figures (C) and (F) 
typify the differences between control (C) and dorsal (F) transplanted tissue. 
The control has a regular, unbroken basement membrane, and the neural 
progenitors (labelled with SOX2) are uniformly shaped and positioned. The 
dorsal transplanted chick has breaks in the basement membrane (white 
arrowhead) that SOX2+ cells are breaching. SOX2+ cells were also seen 
forming concave structures at the edge of one embryo (G). Cell position 
irregularities within the neural tube are common, here shown next to a 
dystroglycan break (arrowhead outline). A band of NKX6.1 is ectopically 
expressed in dorsal transplanted (D) but not in control (A) embryos. PAX6 
cells are expressed more ventrally in the transplanted embryos (arrow 
outline) than in the controls. Ectopic bulges/cells between the notocord and 
the floor plate are also seen in transplanted embryos (F). NKX6.1+ bulges (J) 
and dystroglycan-bounded (H) bulges are seen in the dorsal transplanted 
embryos, but not in controls (I, K). Scale bars: 50μm.  
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4.4 Progenitor-delaminating ability correlates with Nestin+ CRB2+ cells 

As I was performing these experiments, Dr Kavitha Chinnaiya performed additional 

grafts, the aim of which was to further assess the specificity of the effect. She wished 

to determine (a) whether similar populations of Nestin+ CRB-positive cells existed 

elsewhere in the CNS, and if so, whether these shared the ability to disrupt 

neuroepithelial integrity, and (b) whether, conversely, Nestin-negative regions were 

unable to disrupt neuroepithelial integrity. I briefly summarise these studies, as they 

are pertinent to later studies, outlined in Chapter 5. 

 

A systematic analysis of the CNS, from embryonic to adult stages, revealed that 

Nestin+ cells with radial glial-like morphology and atypical CRB2 expression were 

detected in the E17.5 dorsal telencephalon. Transplantation of these cells into the 

HH10 chick embryonic neural tube revealed that they are extremely effective in 

mediating disruption of epithelial integrity. SOX2, PAX6 and NKX6.1 positive cells are 

detected in ectopic positions outside the neural tube. Patterning within the neural 

tube is highly disrupted. Labelling with an anti-SHH antibody reveals that disruptions 

are detected, additionally, in both floor plate and notochord: thus, ectopic, or ‘mini’ 

floor plate and notochord structures are frequently detected. 

 

Tissues that do not express Nestin or atypical CRB2, including E17.5 ventral 

telencephalon, fail to disrupt the integrity of the neuroepithelium in this assay. 

Therefore, these studies suggest that radial glial like cells that occupy a dorsal position 

in the spinal cord and telencephalon express Nestin and atypical CRB2, and that these 

cells specifically secrete a diffusible factor that disrupts epithelial integrity, including 

neuroepithelial integrity. 
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4.5. Discussion 

4.5.1. Dorsal Nestin radial glia disrupt epithelial tissues 

In this chapter, I set out to ask, first, whether prenatal dNRG show an ability to disrupt 

neuroepithelial integrity, and second, whether adult dorsal Nestin+ cells maintain this 

function. My analyses show that both embryonic and adult dorsal transplants clearly 

have an ability to cause neural progenitor disruption when transplanted into chicken 

neural tube. A range of phenotypes is detected, but consistently basement membrane 

disruption is seen and progenitor cells are disorganised. Within the neural tube, 

progenitor domains are disrupted and cells are mis-oriented. Progenitor cells that 

appear to breach the disrupted neuroepithelium are detected, and are even found 

outside of the apparent confines of the neural tube. Interestingly, disruption is not 

limited to the neural tube, nor to tissue immediately adjacent to the transplant (as 

assayed when cryosectioned, 24 hours after transplantation). Bulges are detected in 

notochord, and ‘mini-notochords’ are detected. This raises the possibility that the 

disruption is caused by a factor that can act over a long distance, such as a secreted 

protein. My experiments cannot rule out the possibility that the ectopic cells arise due 

to a switch in fate. However, two pieces of evidence suggest this is unlikely. First, 

ectopic ‘mini-notochords’ are associated with smaller endogenous notochords, 

suggesting that the mini-structures arise from the endogenous structure. Second, 

neural progenitors that are detected outside the neural tube are invariably associated 

with breaks in adjacent basement membrane. The most prosaic interpretation of these 

results is that dNRG secrete a long-range diffusible factor that disrupts epithelial 

junctions, allowing cells to move away from their neighbours. I suggest that cells of 

similar character (neural progenitors, for instance, or notochord) re-form small 

structures with homologous cells, resulting in for example mini-notochords. This would 
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suggest that cell adhesion molecules that mediate ‘like-like’ interactions are not 

entirely downregulated. This, together with the fact that ectopic cells do not appear to 

change their morphology suggests that the effect I observe is distinct from a standard 

epithelial to mesenchymal cell transition (Clay and Halloran, 2010; Kerosuo and 

Bronner-Fraser, 2012).  

 

Overall, then, in this experimental model, my results provide support for the idea that 

dNRG are able to disrupt neuroepithelial integrity. 

 

4.5.2 Adult dorsal Nestin+ cells 

Although I have not formally proved that the dorsal Nestin+ cells detected in the adult 

are the same population as those dNRG I described in the prenatal animal, two lines of 

evidence from my studies suggest that they are. First, the overall position and dorso-

ventral length, both of the central canal and of the Nestin+ radial glial cells, are similar 

at E17 and in the adult (Figure 4.3). Second, adult Nestin+ cells retain the ability to 

disrupt neuroepithelial cells. Therefore, I tentatively suggest that the completion of 

dorsal obliteration marks the onset of the ‘adult’ central canal, and that the Nestin+ 

cells that form in dorsal obliteration persist in the dorsal midline, where they are 

maintained into adulthood.  

 

If this model is correct, a number of questions arise. First, can a diffusible factor be 

identified, that derives specifically from dNRG, and mediates a similar effect, and does 

it operate to mediate dorsal obliteration?  
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Chapter 5 
 
 

A novel truncated isoform of CRB2 is 
detected in dorsal Nestin+ radial glia 
and can mimic their ability to disrupt 

epithelial integrity 
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5.1 Introduction 

My observations show that in mouse, dorsal obliteration occurs over a tight time-

window, between E13 and E17, and is associated with a disruption in junction and 

apical polarity proteins in sub-dorsal Ventricular Zone (VZ) cells (Chapter 3). Sub-dorsal 

VZ cells lie immediately adjacent to dorsal Nestin+ radial glia (dNRG) (Chapter 3) and 

my experimental evidence suggests that these are capable of disrupting 

neuroepithelial progenitors, causing them to ‘delaminate’ from the neuroepithelium 

(Chapter 4). The dNRG can exert this effect at a distance. Based on these results, I 

hypothesised that dNRG may be the source of a secreted signal that is capable of 

disrupting apical polarity proteins in local VZ cells, allowing sub-dorsal VZ cells to 

delaminate (Figure 5.1). I described in Chapter 3 that expression of CRB2 appears 

atypical in dNRG, and appears punctate. Furthermore, in Chapter 4, I showed a 

correlation in Nestin+/atypical CRB2+ cells and epithelial-disrupting ability. These 

observations, together with previous data that suggests the existence of a secreted 

form of CRB2 in humans (described below), and evidence that CRB can play a role in 

epithelial-to-mesenchymal cell transitions (described below) led me to ask whether 

secreted CRB2 might mediate the action of the dNRG. In this chapter I describe the 

detection and characterisation of a novel truncated isoform of Crb2 that may encode a 

secreted protein, and an experimentally made secreted CRB2 whose profile and action 

fit this model. 

 

5.2 Database evidence for secreted isoforms of CRB2 in mouse 

The vast majority of studies into the role of CRB proteins, including CRB2, focusses on 

the full-length transmembrane protein. As outlined in the Introduction, however, 

bioinformatic studies of cDNA derived from human brain and a human NTERA-2 



120 
 

embryonic carcinoma cell line neuronal precursor cell line have shown that human 

Crb2 can be spliced into both full length and truncated isoforms (Katoh and Katoh, 

2004). Truncated transcripts generate a protein that does not contain the 

transmembrane or intracellular domains and, therefore, is potentially secreted. In 

support of this idea, transfection of a GFP-tagged version of Xerl (the Xenopus 

homologue of CRB2) into Xenopus embryos shows that after lysing the embryos, Xerl 

protein can be found in the soluble fraction (Kuriyama and Kinoshita, 2001; Kuriyama 

et al., 2003) while immunohistochemical analyses in embryos suggest a diffuse pattern 

in vivo, suggestive of a secreted protein. Finally, an unpublished bioinformatics study 

in the Rashbass lab suggests that a similar secreted splice variant may exist in the 

mouse (Murtaza, 2012). The Rashbass lab made a secreted CRB2 construct and added 

His and V5 tags. When stably cloned into a mammalian expression vector, and 

transfected into HEK 293 cells, the resulting protein is secreted. (Murtaza, 2012). None 

of these studies, however, have proved whether CRB2 exists as a secreted protein in 

vivo, or whether a secreted variant exists in mouse.  

 

Large online databases are a rich source of expression data that becomes extremely 

useful when paired with biological context. To begin to address whether I could find 

evidence for a secreted variant of mouse CRB2, I first interrogated the ENSEMBL 

mouse genome assembly (images downloaded June 2015). Ensembl annotates three 

CRB2 transcripts on the forward strand of chromosome 2: Crb2-001, Crb2-002 and 

Crb2-003 (Fig 5.1). Of these, Crb2-001 is a full-length, 6.4kb transcript, covering 13 

exons that encode transmembrane Crb2 (Figures 5.1, 5.2 and Table 5.1). By contrast, 

Crb2-002 and Crb2-003 are partial/processed transcripts (Figures 5.1, 5.2 and Table 

5.1) for which there is no in vivo expression or functional data. Crb2-003 covers a part 

https://en.wikipedia.org/wiki/Embryonal_carcinoma
https://en.wikipedia.org/wiki/Cell_line
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of intron 11-12, exon 12 and part of exon 13 (Figure 5.1, Figure 5.2). Crb2-002 is an 

assembled sequence (Tables 5.2, 5.3, Figures 5.3, 5.4 and 5.5) that has been inferred 

from a cDNA sequencing project in mouse brain that revealed two Expressed Sequence 

Tags (ESTs), both of which contained intron 9-10 spliced into the sequence. These ESTs 

are of different lengths, overlap, and extend from exon 8-10 or 9-10 (detailed in 

Figures 5.3, 5.4 and 5.5). The assembled sequence therefore predicts a transcript that 

covers a part of exon 8, exon 9, an intronic sequence and a part of exon 10 and is 

predicted to be 1.1kb (Fig. 5.2).  
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Figure 5.1 Relative positions of Crb2-001 (full length transcript) and Crb2-002 and Crb2-003 (partial transcripts)  
The mouse Crb2 gene is encoded on the forward strand of chromosome 2: 37,776,249-37,799,103. Ensembl annotates three transcripts. Crb2-
001 is protein coding for the transmembrane ‘Crb2’ protein, the expression and function of which is well characterised in the literature. Crb2-
002 and Crb2-003 are processed transcripts for which there is no in vivo expression or function data.  
Image downloaded from Ensembl October 2015
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Figure 5.2 High power view of Crb2-001 (full length transcript) and Crb2-002 and Crb2-003 (partial transcripts) 
The mouse Crb2 gene is encoded on the forward strand of chromosome 2: 37,776,249-37,799,103. Ensembl annotates three transcripts. Crb2-
001 is protein coding for the transmembrane ‘crb2’ protein, the expression and function of which is well characterised in the literature. Crb2-
002 and Crb2-003 are processed transcripts for which there is no in vivo expression or function data. 
 
Crb2-001 is shown from exon 7 to exon 13 (the final exon). Crb2-002 contains exons 8-10, and additionally a part of intron9-10 spliced in. Crb2-
003 covers exon 12 and 13. 
Image downloaded from Ensembl October 2015
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Table 5.1 Isoform of the mouse Crb2 gene as annotated by Ensembl. 

Mouse Crb2: Ensembl transcripts 
Chromosome 2: 37,776,249-37,799,103 

Name Transcript Type Exons bp AA Source 

Crb2-001  
 

Full length  13 6372 1282 Ensembl: 
ENSMUST00000050372 

Crb2-001 Partial 4 1132 (107) Ensemble: 
ENSMUST00000137693 

Crb2-003 Partial 2 502 - Ensembl: 
ENSMUST00000137693 
 

The full-length transcript covers 13 exons. Crb2-002 covers exons 8 (partial), exon 9, 
intron9-10, and exon 10 (partial). Exon Crb2-003 covers part of intron 11-12, exon 12 
and part of exon 13.  Ensembl, accessed April 2015 
 
 
 
 
 
Table 5.2 Crb2-002 inferred from two ESTs. 

Mouse Crb2-002 – EST evidence 

Accession number Length Exons Source 

CB246995.1 
GI: 28368639 

778 bp 
 

8 (partial), 
9, intron9-10, 
10 (partial) 

C57BL/6 Embryo E12.5dpc 
whole brain 

CD355110.1 
BQ771048 

GI:21979524 
 

652 bp 
 

9 (partial), 
intron9-10, 
10 (partial) 

C57BL/6 Embryo E12.5dpc 
whole brain 

Source ESTs for the inferred transcript Crb-002. Ensembl, accessed April 2015 
 
 
 
 
 

 
Figure 5.3  Schematic showing relative positions of ESTs making up inferred transcript 
Crb2-002. Blue outlined boxes (top) refer to Crb2-002 (full sequence shown– Figure 
5.4). Purple boxes refer to EST evidence (see also Table 5.2; Figure 5.3). 
Ensembl, accessed April 2015  
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Figure 5.4 ESTs that define Crb2-002 
 
The sequence of transcript Crb2-002 is derived from evidence from two ESTs. 
Bases 1-778 are covered by bases 1-778 of GenBank gi:28368639. Bases 481-1132 are 
covered by bases 1-652 of GenBank gi:21979524 
Retrieved from Ensembl July 2015 
 
GenBank Acc:     CB246995 
GenBank gi:      28368639 
778bp 
Exons: exon8 (partial), 9, intron9-10, exon10 (partial) 
http://www.ncbi.nlm.nih.gov/nucest/gi|28368639 
 
GTCATTTTTCCTCCGCACCCGCGAACCTGCCGGCCTGTTGCTCCAGTTTGCCAATGAT 

TCAGTTGCGAGCCTGACTGTGTTCCTGAGTGAGGGCCAGATCCGGGCTGAGGGGCTGGGT 

CACCCTGCTGTGGTCCTCCCTGGGCGCTGGGATGATGGACTCCCCCACTTGGTGATGCTC 

AGCTTTGGGCCTGACCAGCTGCAGGACCTGGGCCAGCGGCTGTATGTGGGTGGGAGGTTC 

TACCCTGATGACACCCAGCTCTGGGGTGGGCCCTTCCGAGGCTGTCTCCAGGACCTACAA 

CTCAACAGCATCCACCTCCCCTTCTTCTCTTCCCCGATGGAGAACTCAAGTTGGCCCAGT 

GAACTGGAAGCTGGCCAGTCCTCCAACCTCACCCAGGGTTGTGTCTCTGAGGACACGTGC 

AATCCCAATCCCTGTTTCAATGGTGGCACGTGCCACGTCACCTGGAATGACTTCTACTGC 

ACCTGCTCCGAGAACTTCACGGGGCCCACCTGTGCCCAGCAGCGATGGTGCCCCAGGCAG 

CCATGCCTGCCTCCTGCCACCTGTGAGGAGGTTCCAGATGGCTTTGTGTTTTAGGGACTA 

TGGATATGGGCCCCTACACCCCATTTGTTGGGTGCTAGGGATGGAACCCANAGCCTCCTA 

CAAGCTAGGCAGTCTACCAACCGAAGCTACTCTGCCAGCCTTACAGAAGGTGTGGCCGAG 

GCCACGTTCCGCGAGGGCCCTCCTGCTGTGTTCACAGGCCACAACGTGTCCTCATCGCTC 

 
GenBank Acc:     BQ771048 
GenBank gi:      21979524 
652bp 
Exons: exon9 (partial), intron9-10, exon10 (partial) 
http://www.ncbi.nlm.nih.gov/nucest/GI:21979524 
 
CTGCTCCGAGAACTTCACGGGGCCCACCTGTGCCCAGCAGCGATGGTGCCCCAGGCAG 

CCATGCCTGCCTCCTGCCACCNTGTGAGGAGGTTCCAGATGGCTTTGTGTTTTAGGGACTA 

TGGATATGGGCCCCTACACCCCATTTGTTGGGTGCTAGGGATGGAACCCAAAGCCTCCTA 

CAAGCTAGGCAGTCTACCAACCGAAGCTACTCTGCCAGCCTTACAGAAGGTGTGGCCGAG 

GCCACGTTCCGCGAGGGCCCTCCTGCTGTGTTCACAGGCCACAACGTGTCCTCATCGCTC 

AGCGGGCTCACCCTGGCCTTCCGCACGCGCGACTCCGAGGCTGGGCTACTGCGCGCCGTC 

TCCGCCGCAGGTGCCCACTCCAATATCTGGTTGGCGGTGCGCAACGGCTCGCTGGCAGGA 

GATGTGGCGGGTTCGGTGCTGCCCGCGCCCGGGCCGCGCGTGGCCGACGGCGCCTGGCAT 

CGCGTGCGCCTAGCCCGGGAGTTCCCACAGGCCGCTGCCTCGCGCTGGCTGCTGTGGCTG 

GACGGCGCGGCGACACCCGTGGCCTTGCACGGCTTGGGCGGCGACCTGNGCTTTCTGCAG 

GGTCCGGGTGCAGTGCCTCTGCTACTGGCTGAGAATTCACGGGCTGCCTGGGC 

 

Alternating exons are marked black and blue. Unlike the sequence of the 
transmembrane version of Crb2, these ESTs both contain intron9-10 (underlined). The 
5’ end of the transcript has not been collected, so it is impossible to tell the start site of 
this transcript from this dataset. Nucleotides common to both sequences are in bold.  
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Figure 5.5: Ensemble - inferred Sequence of Transcript Crb2-002 
 
0001 NNGTCATTTTTCCTCCGCACCCGCGAACCTGCCGGCCTGTTGCTCCAGTTTGCCAATGAT 

0059 TCAGTTGCGAGCCTGACTGTGTTCCTGAGTGAGGGCCAGATCCGGGCTGAGGGGCTGGGT 
0119 CACCCTGCTGTGGTCCTCCCTGGGCGCTGGGATGATGGACTCCCCCACTTGGTGATGCTC 
0179 AGCTTTGGGCCTGACCAGCTGCAGGACCTGGGCCAGCGGCTGTATGTGGGTGGGAGGTTC 
0239 TACCCTGATGACACCCAGCTCTGGGGTGGGCCCTTCCGAGGCTGTCTCCAGGACCTACAA 

0299 CTCAACAGCATCCACCTCCCCTTCTTCTCTTCCCCGATGGAGAACTCAAGTTGGCCCAGT 

0359 GAACTGGAAGCTGGCCAGTCCTCCAACCTCACCCAGGGTTGTGTCTCTGAGGACACGTGC 

0419 AATCCCAATCCCTGTTTCAATGGTGGCACGTGCCACGTCACCTGGAATGACTTCTACTGC 

0479 ACCTGCTCCGAGAACTTCACGGGGCCCACCTGTGCCCAGCAGCGATGGTGCCCCAGGCAG 

0539 CCATGCCTGCCTCCTGCCACCTGTGAGGAGGTTCCAGATGGCTTTGTGTTTTAGGGACTA 

0599 TGGATATGGGCCCCTACACCCCATTTGTTGGGTGCTAGGGATGGAACCCAAAGCCTCCTA 

0659 CAAGCTAGGCAGTCTACCAACCGAAGCTACTCTGCCAGCCTTACAGAAGGTGTGGCCGAG 

0719 GCCACGTTCCGCGAGGGCCCTCCTGCTGTGTTCACAGGCCACAACGTGTCCTCATCGCTC 

0779 AGCGGGCTCACCCTGGCCTTCCGCACGCGCGACTCCGAGGCTGGGCTACTGCGCGCCGTC 

0839 TCCGCCGCAGGTGCCCACTCCAATATCTGGTTGGCGGTGCGCAACGGCTCGCTGGCAGGA 

0899 GATGTGGCGGGTTCGGTGCTGCCCGCGCCCGGGCCGCGCGTGGCCGACGGCGCCTGGCAT 

0959 CGCGTGCGCCTAGCCCGGGAGTTCCCACAGGCCGCTGCCTCGCGCTGGCTGCTGTGGCTG 

1019 GACGGCGCGGCGACACCCGTGGCCTTGCACGGCTTGGGCGGCGACCTGGGCTTTCTGCAG 

1079 GGTCCGGGTGCAGTGCCTCTGCTACTGGCTGAGAACTTCACGGGCTGCCTGGGC 

 
Crb2-002 is an assembled sequence (figure 5.3) that has been inferred from a cDNA 
sequencing project in mouse brain that revealed two ESTs, both of which contained 
intron9-10 spliced into the sequence. These ESTs are of different lengths, overlap and 
extend from exon 8-10, or 9-10 (detailed in figure 5.3).  
Retrieved from Ensembl July 2015 
 
 
 
 
 
Table 5.3 Notes on alignment. There are some discrepancies between the EST 
sequences that make up Crb2-002, summarised here. Number given as a nucleotide 
identifier ‘N123’, refers to number within that sequence. Bold CATGN refer to 
nucleotide sequence. Where an unidentified nucleotide ‘N’ has occurred in one EST, 
sequence of Crb2-002 has referred to either the other EST sequence, or to the full 
mRNA/genomic sequence marked (*).   

GI:28368639  GI:21979524 Crb2-002 

Between N559/560 N80 N Between N559/N560 

N649 N N170 A N649 A 

- N588 N N1067 G* 

-  N634/N635 N1114 C* 
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As described in section 5.1 (above) bioinformatic analyses of human Crb2 suggests that 

a secreted variant may be produced from an isoform that includes exons 1-10 and 

additionally intron 10-11, raising the possibility that the addition of part of intron 9-10 

in the mouse Crb2-002 transcript could encode the C-terminal of a homologous 

secreted variant of CRB2. Henceforth intron 9-10 is referred to as exon 9a when it is 

included in a processed transcript.  

 

Sequence analysis of Crb2-002 suggests that the addition of intron 9-10 as an exon 

(exon 9a) would introduce a premature STOP codon and produce a polypeptide that 

does not possess the transmembrane domain (Figure 5.6). Together this bioinformatic 

data suggests that in mouse, CRB2 may exist as a secreted protein, as well as a 

transmembrane protein.  

 

 

 

 
Figure 5.6 CRB isoforms schematic. Schematic of the full-length transmembrane CRB2 
Crb2-001 and the truncated version (Crb2-002). As only a partial transcript of Crb2-002 
(exons 8-10) has been detected by sequencing studies, it is unknown how much of 
exons 1-7 would be included in the protein.  
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5.3 A potentially secreted splice variant of CRB2 can be detected in embryonic mouse 

Currently, there is no antibody against secreted CRB2, so I took a Polymerase Chain 

Reaction (PCR) approach to the detection of this isoform.  

 

Exon 9a is 121bp long, and contains repetitive and palindromic sequences, suggesting 

that it might be difficult to design primers. Indeed, I made three attempts to design 

primers against exon 9a (not shown) and used these in an attempt to clone truncated 

Crb2 from a range of tissues, including the dorsal spinal cord and the eye (positive 

control) (van der Hurk et al, 2005). None of these experiments resulted in successful 

detection of a secreted Crb2 isoform in any tissue sampled. I therefore adopted a 

nested PCR approach, working in collaboration with J. P. Ashton.  

 

In order to detect a processed transcript that contained exon 9a, we first designed 

primers against exon 8 and exon 10 (Table 5.4, Crb2F and Crb2R; Figure 5.7), which 

should, in theory, anneal with transcripts of both full-length Crbs2 and truncated 

Crbs2, to amplify the region contained between exon 8 and exon 10. Internal nested 

primers against exon 8 and exon 9a were designed (Table 5.4, Nested F and Nested R; 

Figure 5.7) that, in theory, specifically anneal to secreted Crb2, and a second round of 

PCR was run on the whole reaction from the first round of PCR. A house-keeping gene, 

Glyceraldehyde 3-phosphate Dehydrogenase (GAPDH), was also run as a loading 

control. 
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Table 5.4 Crb2 PCR primers 

Primer Sequence  Exon Tm 

Crb2 F TGTATGTGGGTGGGAGGTTC [F] Exon 8 59.0 
Crb2 R TAACGGGAAGTCGCCAAGT [R] Exon 10 59.0 
Nested F CTACAACTCAACAGCATCC [F] Exon 8  59.2 
Nested R GCTTCGGTTGGTAGACTGCC [R] Exon 9a 58.3 
GAPDH  AACGGGAAGCCCATCACC [F] - 59.7 
GAPDH CAGCCTTGGCAGCACCAG [R] - 58.0 

 
 
  
 

 

Figure 5.7 Location of primers. Full gene and ‘zoomed in’ view provided. Crb2F and 
Crb2R (first round PCR primers) shown in blue. Nested primers (second round PCR) 
shown in red.  
 
 
 

mRNA was prepared from adult eye (a tissue known to express Crb2 (van den Hurk et 

al., 2005), transcribed into cDNA and was then subject to PCR. Bands of ~820 bases 

and ~940 bases were detected indicative of the sequence without (full-length, 

transmembrane) and with exon 9a (truncated) respectively. Bands were excised and 

submitted for sequencing (Table 5.5; Figure 5.9). A second round of PCR was 

performed on the whole PCR reaction using nested primers, including a primer 

specifically against exon 9a. This revealed a band of ~400bp (Figure 5.10) that, when 

excised and sequenced, proved to encode the truncated Crb2. This provides proof of 

principle that the nested primers can detect the putatively secreted variant. In 

addition, these experiments suggest that a secreted variant of CRB2 may be made in 

the adult eye.  
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Table 5.5 First Round PCR sequencing data  
Sequence aligns with exon8-exon10 of Crb2 (Figure 5.8); alternating exons in 
blue/black 

First round PCR – From Eye cDNA 
NNNNNNNNNNNNNNNNNNNGGNNANTNNNTTGGCCCNGTG  
AACTGGAAGCTGGCCAGTCCTCCAACCTCACCCAGGGTTG  
TGTCTCTGAGGACACGTGCAAT CCCAATCCCTGTTTCAAT  
GGTGGCACGTGCCACGTCACCTGGAATGACTTCTACTGCA  
CCTGCTCCGAGAACTTCACGGGGCCCACCTGTGCCCAGCA  
GCGATGGTGCCCCAGGCAGCCATGCCTGCCTCCTGCCACC  
TGTGAGGAGGTTCCAGATGGCTTTGTGTNTNAGTTTGTGT  
CCTGNNTGCTGGGTACGGAAGATGGTTAGAGATCCCTTAN  
GGTTTATGGGATGNTGGGTGGTGGACCANGAATGCCAACA  
NCCCCAATATGGTGGGTTACTGCATTCTGAGAAACACTCT  
TANGGAAGGTGAGCATATGCTGGGGTTTCTAAGGCNACTT  
CAAGGGAGCCACAGGANAGGAAGGAGTGTGAGGCATGTGT  
GANGTTTTAAAGTTCCTATGGACAGCTGANACACANGGTT  
ACTAANNNTGCTGCNNNNNNANNATTTGANNCCCACCNNN  
TNNCTCANNNNCCANGGGNNNNNANGNTGNTCNGGCTAGN  
CNNGNNNTCNNNNTNNNNCNNANGGNGATNNNGNNNNNAN  
NNNGTGANNNNCCTGNNTCNNNNNNNNNNNNTNNNGNANN  
ATGNNNNNNNNNCCNNNNNNNNNNTNNNNNNNNNGNTNNN  
NATGGNNNNNNNNNNNNNNNTNCNNNCNNNNN 

 
 
 
 

 
Figure 5.8 BLAST results of sequencing data from eye first round PCR (Table 5.5) 
confirms that the band is full length/transmembrane Crb2 
Queried with http://blast.ncbi.nlm.nih.gov/Blast.cgi 
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I then used the same nested PCR approach on spinal cord dissected from E14.5  (i.e. 

the onset of dorsal obliteration). I hypothesised that the truncted isoform will be 

present in the region harbouring Nestin+ elongated RP cells, but not in lateral VZ cells. 

Therefore, I dissected these regions (Figure 5.9) and performed a PCR as for the eye on 

each sample. Bands of 820 base pairs, indicative of the transmembrane protein were 

obtained from both dorsal and lateral tissues. Bands representing transmembrane 

Crb2 were not always visible, however sequencing confirmed the existence of the 

expected sequence.  

 

 

 

Figure 5.9 Schematic of spinal cord dissections. The dorsal and lateral dissections for 
PCR are highlighted in red and green, respectively.  
 

 

In the first round of PCR, a band of 940 bases and in the second round of PCR a band of 

400 bases (indicative of the truncated slice variant) was detected in dorsal tissue, but 

not in lateral tissue (Figure 5.11). Sequence analysis of the band confirmed that this 

was the truncated variant of Crb2 (Table 5.6). A schematic of the PCR process is 

provided in figure 5.10. 

  



1             2             3          4        5       6        7              8            9      9a        10           11      12     13 

Crb2 Gene

Full length
 

Secreted 
Crb2-0021        2            3       4      5      6          7               8         9    9a       10         11    12    13 

1        2            3       4      5      6          7               8         9          10         11    12    13 

8          9        10 8          9   9a      10
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(Red Primers) No band 400bp 
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Overview of Crb2 mRNA/cDNA targeted by PCR

 Location of First and Second round (nested) primers used in PCR

 Overview of PCR protocol

Figure 5.10 The PCR approach to detecting secreted Crb2
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Figure 5.11 Results from First and second round (nested) PCR  
Transmembrane Crb2 is present in all samples tested. The Crb2 band (820bp) is not 
always seen on the gel, but can always be detected by sequencing. The 940bp band 
that corresponds to truncated Crb2 is often too faint to see in the first round of PCR 
(not shown). However, robust 400bp bands at are seen after the second round/nested 
PCR. When sequenced, they contain exon 9a. Gadph controls are present and strong in 
both rounds of PCR for all samples.  
 

 

 

Table 5.6 Second round (nested) PCR sequencing data 
Sequence aligns with exon8-exon9a of Crb2-002 (Figure 5.12); alternating exons are 
blue/black. Exon9a is underlined. 

Second round PCR – From E14 Mouse dorsal dissection  

NNNNNNNCNNNNGGNNANTCNNTTGNNCCNGTGAACTGGA  
AGCTGGCCAGTCCTCCAACCTCACCCAGGGTTGTGTCTCT  
GAGGACACGTGCAATCCCAATCCCTGTTTCAATGGTGGCA  
CGTGCCACGTCACCTGGAATGACTTCTACTGCACCTGCTC  
CGAGAACTTCACGGGGCCCACCTGTGCCCAGCAGCGATGG  
TGCCCCAGGCAGCCATGCCTGCCTCCTGCCACCTGTGAGG  
AGGTTCCAGATGGCTTTGTGTTTTANGGACTATGGATATG  
GGCCCCTACACCCCATTTGTTGGGTGCTAGGGATGGAACC  
CAAAGCCTCCTACAAGCTAGGCAGTCTACCNACCGAAGN 
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Figure 5.12 BLAST results of sequencing data from dorsal neural tube dissection, 
second round nested PCR. BLAST search confirms that sequence from the 400bp band 
contains exon9a and is the same sequence as Crb2-002.  The BLAST search retrieves 
Crb2-002 as well as both ESTs (ESTs detailed in Table 5.2). Alignment between the PCR 
product sequence and EST CB246995.1 shown above.  
 

 

5.4 A truncated splice variant of Crb2 is detected in tissues with the ability to disrupt 

epithelial integrity 

I next hypothesised that I would be able to detect the putative secreted, truncated 

form of Crb2 in tissues that, in Chapter 4, I had identified as being able to disrupt 

neuroepithelial integrity. To this end, I subdissected dorsal, or lateral VZ tissue from 

E11 spinal cord and E17 telencephalon, extracted mRNA from each, and subjected 

each to the nested PCR approach. These studies revealed that after round 2, a band 

indicative of truncated Crb2 was detected only in E17 dorsal telencephalon, and spinal 

cord roof plate (Figure 5.11). Sequence analysis confirmed that these bands were 

mRNA that could encode truncated Crb2 (not shown). 
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Together these experiments provide evidence that a truncated, putatively secreted 

isoform of Crb2 does exist in mouse in vivo as it does in human, (Katoh and Katoh, 

2004), albeit that the exact splice event is not identical to that in human, and we have 

no evidence that it is translated.  

 

5.5 Secreted CRB2 can mimic the action of dNRG, and disrupt epithelial cells in the 

embryonic chick 

I therefore next set out to ask whether secreted CRB2 can mimic the action of dNRG, 

and disrupt epithelial cells in the embryonic chick assay described in Chapter 4. 

Previously, the Rashbass lab had constructed a HEK 293 cell line that produced a V5- 

and His-tagged truncated CRB2 (encoded from Exons 1-9a) that was secreted by the 

cell line into the medium (M. Murtaza thesis). The protein could be detected (via the 

His and V5 tags) in the media of transfected cells. Both Western blot analysis and liquid 

chromatography-electrospray ionization (LC-ESI) mass spectrometry were used to 

confirm that the secreted protein was a CRB2-related protein of the correct size. I 

soaked affigel beads in purified protein obtained from these cells, or control PBS (see 

Materials and Methods), and then transplanted secreted CRB2-soaked beads, or 

control beads into the HH10-12 embryonic chicken neural tube. The aim was to test 

the effect this secreted protein has upon chicken progenitors, asking if it mimics the 

effect of the Nestin+ elongated RP cells. After transplantation, embryos were 

incubated a further 24hrs, then analysed with the same markers used in Chapter 4. In 

addition, expression of ZO-1 was analysed, to address whether secreted CRB2 would 

cause a disruption of tight junctions.  
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Analysis of serial adjacent sections with NKX2.1/laminin, PAX6/laminin, 

SOX2/dystroglycan, or ZO-1 reveals that secreted CRB2 beads cause similar 

abnormalities to those detected with Nestin+ elongated RP cells (Figure 5.13). 

Progenitor cells, expressing SOX2 or NKX6.1 or are detected ectopically outside the 

neural tube (Fig 5.13 E and G), often closely associated with basement membrane 

disruption (arrowheads Figure 5.13 E). Within the neural tube, the normally tight 

pattern of NKX6.1 is disrupted (not shown). CRB2 and ZO-1 appear to show breaks in 

the apical expression (Fig 5.13, F and H, arrowhead). Additionally, there appear to be 

ectopic floor plate and notochord in some transplanted embryos (Fig 5.13 I and K). 

 

By contrast, embryos transplanted with control PBS-soaked beads appeared normal, 

with an unbroken dystroglycan-labeled or laminin-labelled basement membrane, and 

normally-patterned SOX2-positive and NKX6.1-positive or neural progenitors confined 

to the neural tube (Figure 5.13 A-D, I-J).  

 

As disruption to the tissue-transplanted chicken embryos varies in severity. I classified 

the disruption into ‘Strong’ ‘Medium’ and ‘Weak’, although these ratings are 

somewhat subjective. ‘Strong’ phenotypes have clear ectopic neural tube cells outside 

the neural tube. ‘Medium’ has internal neural tube disruption, and evidence of cells 

that appear to be in the process of leaving the neural tube and basement membrane 

disruption. ‘Weak’ characterises embryos that have only small basement membrane or 

minimal cell organisation disruptions, which cannot formally be excluded as sectioning 

artefacts. These results are shown quantitatively in Table 5.7 and it is demonstrable 

that the secreted CRB2-soaked bead has a significant association with a strong or 

medium disruptive phenotype as opposed to the control (Fisher’s exact test, p=0.042). 
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Together these results support the idea that secreted CRB2 can disrupt neuroepithelial 

cell integrity, and suggests that it mediates this function in Nestin+ cells. 

 

 

 
Table 5.7 CRB2s-soaked bead transplants into the HH10-12 embryonic chicken 

Tissue 
Transplanted 

Strong Phenotype Medium 
Phenotype 

Weak/No 
Phenotype 

Secreted CRB2 
soaked beads (25) 
 

10 5 10 

PBS soaked beads 
(4) 
 

0 0 4 
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Figure 5.13 Thoracic transverse sections. The PBS-soaked bead control (A) has a regular, unbroken basement membrane (Dystroglycan, red), and the 
neural progenitors (labelled with SOX2; nuclear, red) are regularly shaped and positioned. The Secreted CRB2-soaked bead transplanted chicken embryo 
(E) has bulges of cells either side both within the confines of the basement membrane (arrowhead) and ectopically outside the neural tube (arrow). 
SOX2+ progenitors within the neural tube appear disorganised in the CRB2-transplanted embryo (E) The disruption shown in (E) is mirrored by breaks in 
the apical CRB2 labelling (F’ arrowhead) and ectopic NKX6.1 cells (G arrowheads) and breaks in apical ZO-1 labelling (H, arrowhead). (E-H) are serial 
sections. Occasionally ectopic floorplate-like (I, arrow) or ectopic notochord-like (K, arrow) structures are observed. Scale bars: 50μm, except in (I) and 
(J), which are 25μm.
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5.6 Neuroepithelial cells migrate out of the neural tube after exposure to secreted 

CRB2 

As described above, secreted CRB2-soaked beads frequently led to the appearance of 

ectopic PAX6 and NKX6.1-expressing cells, some of which appeared to be located 

immediately adjacent to, but outside, the neural tube (Figure 5.13, arrowheads). To 

provide direct proof that such progenitors had originated within the neural tube 

(rather than being non-neural progenitor cells provoked, by secreted CRB2, to undergo 

a change in fate), I coupled bead-transplantation experiments with electoporation 

studies. As described in the Material and Methods, RFP was electroporated into the 

neural tube of an HH10-12 chicken embryo, followed immediately by transplantation 

of secreted CRB2-soaked (or control) beads. The RFP construct used is not neural 

specific, but at the low concentrations of plasmid used, and with targeted 

electroporation, it is unlikely that RFP+ cells outside the neural tube were 

unintentionally electroporated. This would allow me to determine whether 

progenitors found outside the neural tube had migrated out of the neural tube, rather 

than undergone a fate change.  Some ectopic cells appear to express SOX2 more 

weakly than those in the in situ, it may be that cells are down-regulating SOX2 as they 

leave the neural tube. 

 

The PBS-soaked bead control (Figure 5.14, A-C) has a regular, unbroken basement 

membrane, and the neural progenitors (labelled with SOX2) are regularly shaped and 

positioned within the neural tube. Although there are RFP-expressing cells outside the 

neural tube, these are not SOX2-expressing cells. The secreted CRB2-soaked bead 

transplanted chicken embryo has RFP+ SOX2 expressing colabelled cells outside the 
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neural tube boundary (Figure 5.14 D-I, arrows) accompanied by basement membrane 

breaks.  

 

In conclusion, secreted CRB2 can provoke a disruption to the integrity of the 

neuroepithelium that is sufficient to allow neural progenitors to escape from the 

confines of the neural tube. 
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Figure 5.14 Thoracic transverse sections. The PBS-soaked bead control (A-C) has a regular, unbroken basement membrane, and the neural 
progenitors (labelled with SOX2) are regularly shaped and positioned. Although there are RFP+ cells outside the neural tube, these are not 
SOX2-expressing cells. The Secreted CRB2-soaked bead transplanted chicken embryo (B) has RFP+ SOX2 expressing colabelled cells outside 
the neural tube boundary (arrows). Images (G-H) is the same CRB2 trasnplanted embryo, shown magnified and without DAPI for clarity. 
Scale bar: 50μm.
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5.7 Discussion 

In this chapter I asked (1) whether I can find evidence for a isoform of CRB2 that lacks 

the transmembrane domain in vivo, and so may function as a secreted variant; (2) 

whether a secreted protein encoded by this splice variant and overexpressed in a cell 

line is biologically active; and (3) whether secreted CRB2 can disrupt neuroepithelial 

integrity in a similar manner to transplantation of the dorsal Nestin-positive region.  

 

5.7.1 Evidence for secreted CRB2 in vivo 

Bioinfomatic analyses suggest that Crb2 is alternatively spliced, and that one of the 

isoforms includes a truncated transcript, Crb2-002. Recent annotations (Ensembl, June 

2015) agree with our interpretation that a STOP codon is introduced by the addition of 

intron 9-10. My immunohistochemical analysis revealed that CRB2 has an atypical 

distribution in the dorsal most VZ, leading to the question: does the presence of 

secreted CRB2 explain the atypical expression pattern of Crb2 in the dorsal VZ?  

 

My PCR results suggest that it might, and show that truncated Crb2 transcript exists in 

vivo in the mouse. While large-scale exome sequencing projects are powerful, they 

may pick up transcriptional noise due to aberrant or non-processed transcripts. 

However, my repeatable PCR results, and the specific regionalisation of those 

transcripts to dorsal spinal cord and dorsal telencephalon suggest that an isoform of 

CRB2 that lacks the transmembrane domain, and is therefore likely to be a secreted 

protein if translated, is transcribed as an mRNA. The addition of Crb2 exon 9a in the 

mouse would lead to a frameshift, allowing the translation of a premature stop codon. 

If translated this isoform would cause truncated protein, consisting of only the 

extracellular part of CRB2 – a putatively secreted protein. In support of this idea, 
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transfection of an artificially created isoform into HEK 293 cells results in the 

appearance of a novel band of between 110 and 180kD in the medium (Muturza, 

2011). Furthermore, my studies show that such conditioned medium contains secreted 

CRB2 that can disrupt neuroepithelial integrity.  

 

5.7.2 Secreted CRB2 mediates the activity of dNRG 

A number of lines of evidence suggest that in vivo, secreted CRB2-expressing cells are 

either dNRG or are closely associated with them. First, my PCR data suggests that 

there is strict regionalisation of the truncated transcript, and therefore probably the 

secreted protein. Second, the profile of Crb2 in the Allan Brain Atlas mRNA data (probe 

against Exon13 of the transmembrane isoform, thus detecting only the full-length 

mRNA) confirms unusually high expression of Crb2 in a region close to Nestin 

processes in the early postnatal (4 day) mouse, a pattern that is not seen in the 56-

day-old adult. No embryonic data was available (Fig. 5.15). Third, the 

immunohistochemical studies that I described in Chapter 3 showed close, or even co-

localisation of Nestin expression and atypical Crb2 expression, particularly strong in, or 

around, the endfeet of the dorsal Nestin+ cells.  

 

Together with the observation that transplanting beads soaked in secreted CRB2 

results in a similar phenotype to that of transplanted mouse dorsal Nestin cells, my 

results suggest that secreted secreted CRB2 mediates an ability of dorsal Nestin cells to 

disrupt neuroepithelial integrity. 

  



Allan Developing Brain Atlas: Crb2 mRNA

 A

Figure 5.15 Allan Brain Atlas: Crb2 in situ analysis of a 4 day old mouse spinal cord. Strong labelling 
around the central canal is seen. Dorsal to the central canal, there is a line of punctate expression 
(bracket). magnified view in (B).  C’’

A B

Allan Developing Brain Atlas: http://mousespinal.brain-map.org/imageseries/show.html?id=100021981
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If this is the case, why can I detect the isoform of truncated CRB2 in roofplate cells at 

E11/E12, a time when roof plate cells do not have the ability to disrupt neuroepithelial 

integrity? A possible explanation is that translation of the isoform into a functionally 

active protein is delayed until the start of dorsal obliteration. In support of this, 

atypical CRB2 expression is not detected before E15.  

 

The disruptions that I detected after transplanting secreted CRB2 are greater than 

those detected after transplantation of Nestin positive cells. Why might this be? A 

likely possibility is that secreted CRB2-loaded beads release much more protein into 

the embryo than is physiologically relevant. In support of this idea, analysis of RNA 

sequencing data (available from Ensembl: not shown) suggests that, although this 

transcript can be processed from neural tissue, there is not a strong RNAseq signature, 

suggesting that secreted CRB2 is present in the dorsal neural tube at very low levels.  

This agrees with my experience, in that roofplate samples from around 40 embryos are 

needed to detect truncated Crb2 mRNA in my hands.  

 

5.7.3 A model for the action of secreted CRB2 in disrupting epithelial integrity 

The intracellular domain of transmembrane CRB2 acts as a scaffold for the CRB 

complex, and thus is a crucial for its familiar function as a polarity protein (Rashbass 

and Skaer, 2000).  Studies in zebrafish suggest that the extracellular domain of CRB2 

homodimerises, and that homodimerisation stabilises the entire CRB2 complex (Zou et 

al., 2012). This leads to the interesting possibility that secreted CRB2 may be able to 

compete or interfere with the homodimerisation of transmembrane CRB2. This would 

lead to the destabilisation of the CRB complexes, and thus of apical polarity. As loss of 

polarity is a major step in allowing cell delamination from an epithelium, this would 
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provide a mechanism for secreted CRB2 to mediate the effects we observe in vivo 

(Figure 5.16). 

 

In conclusion, in this chapter I have presented evidence for the possible presence of 

secreted CRB2 during the dorsal obliteration window, shown that secreted CRB2 can 

mediate epithelial delamination and suggested a possible mechanism by which it 

might regulate cell polarity. However, I have not presented evidence that secreted 

CRB2 operates in this manner to mediate dorsal obliteration. In Chapters 6 and 7, I 

present studies that will, in future, allow me to address this question.   

  



CRB2-CRB2 interactions

A Transmembrane CRB2 
    homodimerisation  

B Secreted CRB2-
    Transmembrane CRB2
    dimerisation  

Figure 5.16 CRB2-CRB2 interaction (A) has been shown to stablise polarity in epithelia though homophilic binding of the long 
extracellular domain;  Zou (2011). Secreted CRB2 has the same sequence as the extracellular domain of Transmembrane CRB2 
and thus they may dimerise (B). Secreted CRB2-Transmembrane CRB2 dimerisation may destabilise the epithelia by preventing
the stabilsing homidimerisation of transmembrane CRB2.

CRB2 Complex
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Destabilisation of the CRB2 
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Chapter 6 
 
 

Slice culture optimisation 
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6.1 Introduction 

I reasoned that in order to be able to address whether secreted CRB2 is indeed playing 

a role in disrupting the integrity of sub-dorsal Ventricular Zone (VZ) cells, I would need 

to develop a robust model in which I could dynamically visualise the cellular processes 

that occur in dorsal obliteration. Dorsal obliteration occurs along the dorsal-ventral 

axis, through the centre of the tissue, and in vivo and ex utero cultures are not suitable 

for imaging this process. I considered whether to develop a model using an alternative 

species, but ruled out these possibilities: the chicken embryo undergoes dorsal 

obliteration over E7-E12 (Appendix 1), a time when the embryo is large and tissue is 

too dense to image through. The zebrafish is transparent and transgenic lines that 

express markers suitable for imaging spinal cord development are available. However, 

zebrafish undergo a process that is broadly similar to secondary neurulation and are 

therefore not necessarily a suitable model in which to examine dorsal obliteration of 

the type examined in this thesis (Schmidt et al., 2013). I therefore set out to develop a 

mouse slice culture system in which to dynamically follow dorsal obliteration. 

 

Organotypic slice cultures are rapidly gaining popularity as a technically easier, more 

accessible and more ethical alternative to working in vivo, and have been utilised for 

multiple studies in rodents and other organisms. Advances in microscopy and the 

availability of electroporatable plasmids that express both cell type-specific and 

general reporters have allowed slice culture to become a way of live imaging 

previously inaccessible tissues. The main challenge of working with slice cultures is 

controlling the environment so that the tissue behaves in a reproducible way relevant 

to normal processes occurring in the animal. For instance, in situ tissue receives 

molecular and mechanical signals from surrounding tissues, and the effect when these 
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are removed is unknown. This is especially true for developing tissues undergoing 

stretching morphogenesis, and in the case of the neural tube, clearly developing along 

the rostro-caudal and dorso-ventral axes. Additionally, composition of media has a 

profound effect upon the behaviour of slices in culture, and it has become clear that 

the media needs to be optimised specifically for aspects assayed, tissue type and age. 

An additional challenge comes through sectioning, which clearly causes trauma to the 

tissue: indeed, neural slice culture has been used as an assay for injury response. 

Collectively, this means that published papers report optimised protocols for a 

particular type and age of tissue, and each procedure is optimised for a particular read 

out, for example, electrophysiology of neurons. 

 

Live imaging of developing tissue comes with additional challenges. Not only does a 

tissue and age-specific culturing regime need to be developed to keep the tissue 

healthy over an extended period of time, but it must be cultured in a way that is 

amenable to imaging, and imaged in such a way that minimises phototoxity (Dailey et 

al., 2011). These limitations notwithstanding, slice culture has proved a useful and 

informative tool to study neural cell behaviour in detail. 

 

Relatively few papers have described slice cultures and imaging in the developing 

nervous system, and the majority of these are focussed on the brain. However, more 

recently, embryonic spinal cord ex vivo cultures have been established in chick (Das 

and Storey, 2014; Tubby et al., 2013), in mouse (Brachmann and Tucker, 2011) and in 

rats (Pakan and McDermott, 2014). For timelapse experiments, Brachmann and Das 

used widefield microscopy to image developing neurons, and McDermott used two-

photon microscopy. 
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This chapter describes the slice culture protocols that I developed to allow me to 

perform subsequent in vivo imaging during the obliteration window (E14-E16) of 

embryonic mice (described in Chapter 7). Several of the optimisation steps were 

worked out in collaboration with Dr. Raman Das (University of Dundee). 

 

6.2 Optimising slices and handling 

The first hurdle in slice culture is that embryonic mouse slices are accustomed to the 

mother’s stable internal body temperature and the constant supply of nutrients and 

oxygen. In order to slow tissue degradation, the tissue was held on ice whenever 

possible during the procedure, kept in cold medium when working under the 

microscope, and the room temperature steps kept as short as possible. Ideally, tissue 

should go from uterus to incubator in under an hour, certainly not more than 90 

minutes. 

 

6.3 Gross dissection 

The uterus was dissected out into L-15 on ice and the embryos dissected out from 

membranes quickly, before decapitation and evisceration. The embryos were then 

transferred to new L-15 on ice. Embryos were taken individually into a fresh dish of L-

15 and the back flattened by snipping any tissue under tension with watchmaker 

scissors (figure 6.1). Subsequent to dissection, each step required optimisation, as 

detailed below. 

  



A B C

Figure 6.1 Schematic of E14/E15 mouse electroporation. 
(A) depicts the embryonic mouse. The arrow shows the point and angle at which it is decapitated. After evisceration, the mouse is 
laid out in a open book conformation (B). The area that sections are to be taken from is depicted by the bracket. A glass pipette is 
used to inject plasmid into the spinal cord, caudal to the area of interest (B; green). The line in (B) represents the cross-section shown 
in (C). Electrodes are placed above (positive) and underneath (negative) the embryo, and a current run through the spinal cord at an 
angle to speci�cally targets the plasmid towards dNRG (position of electrodes shown in cross section (C)). 
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6.4 Plasmid injection and electroporation 

In initial studies I followed the standard protocol in our lab; cutting embryos into 

400μm slices, then dropping DNA into the lumen and placing electrodes either side of 

whole slices to electroporate. However, the precision of electroporation proved 

difficult to control, and the cut surface was often also electroporated which obscured 

examination of otherwise well-electroporated target cells. 

 

In collaboration with Dr. Raman Das, I therefore developed an alternative protocol, 

electroporating the entire intact spinal cord. This method proved to be much more 

efficient and precise.  To maintain consistency with my previous analyses, I targeted 

the lumbar spinal cord, injecting DNA using a pulled glass needle into the most caudal 

point of the sacral region, where the lumen is easily accessible (Fig6.1B). Fast 

green/plasmid mix was mouth pipetted into the lumen until the green was seen rostral 

to the region of interest.  Electrodes were placed so that the negative electrode was 

under/ventral to the embryo and the positive electrode was over the top/dorsal. 

(Fig6.1C). The electrodes were angled so that current flowed precisely through the 

location to be targeted. After the neural tube was electroporated, excess tissue was 

trimmed to allow ease of mounting. Tissue immediately surrounding the neural tube 

tissue was kept in situ, as it may be providing signals important to maintain tissue 

health and integrity. 

 

6.5 Sectioning 

I first attempted to section tissue on a tissue chopper, reasoning that tissue choppers 

have the advantage of throughput (tissue processed under a minute). However, even 

at the gentlest setting, the morphology of the delicate embryonic tissue became 
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damaged, and it proved difficult to control the regularity of slice size as the tissue 

moves around slightly as it is being processed. 

 

Vibratome sectioning proved to be a much slower, but much gentler method. Multiple 

tissues were mounted in a mould, encapsulated in agarose and set at room 

temperature (around 5 minutes). Blocks were superglued onto chucks. The brand of 

superglue proved to be important, as some types did not set strongly or quickly. 

Loctite proved to be an optimal brand. 

 

The vibratome tank was filled with ice-cold PBS, or L-15. Ice packs were placed either 

side of the tank to keep it as cold as possible. Sections were collected from the tank 

using an egg spoon/number 5 forceps and placed in L-15 on ice. Tissue was sectioned 

at low speed and largest amplitude, using a fresh razor blade each experiment. 300µm 

proved to be the optimal thickness for sections: thinner sections were fragile to handle 

and tended not to survive well in culture. Thicker sections had too much out of focus 

light and a higher chance of cells moving out of focus when imaging,.  

 

6.6 Slice mounting 

For high-resolution imaging prior to culture, slices were embedded in a 3-dimensional 

substrate and then mounted on a microscopy grade dish, as close to the glass bottom 

as possible. Dishes were Poly-D-Lysine Coated Fluorodish Cell Culture Dishes, 35mm, 

(Das and Storey, 2014). I compared two different mounting substrates; rat tail-derived 

collagen and Matrigel . The former is an established method for mounting tissues and 

explants. It is easy to use and inexpensive, however, it is not chemically defined and 

therefore may have batch-specfic effects.. The latter is a fibroblast-derived 
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extracellular matrix compound that has been increasing in popularity as a versatile and 

manipulatable substrate.  

 

Matrigel-mounted slices appeared to survive slightly better than collagen mounted 

slices. However, the slices were much more difficult to mount accurately as Matrigel 

sets extremely quickly, more so when not kept on ice. This made accurate orientation 

under the microscope (both dorso-ventral, and position relative to the bottom of the 

dish) very difficult. Working with Matrigel was slow, frustrating and ultimately led to 

relatively few slices mounted. However, it should be noted that the speed of substrate 

setting, the slightly better health of the tissue and the growing popularity of Matrigel 

in published papers makes this substrate a candidate for further optimisation in future 

applications. 

 

When mounting in collagen (in collaboration with Dr. Raman.Das), I initially followed 

the procedure described in Das and Storey (2014), optimised for chick spinal cord 

slices. Slices were transferred onto a 20-30ul bed of collagen, using a Pasteur pipette, 

and the slice then orientated and pushed flat against the dish bottom with forceps. 

However, this protocol was not optimal for the more delicate mouse slices that tended 

to split at the roof plate especially at E13-E14. Further, successfully transferred slices 

were difficult to push flat onto the bottom of the dish without damaging the tissue. 

Additionally, there was a high number of unimagable slices due to tissue not being 

close enough to the bottom of the dish, either because the slices were not flush with 

the bottom, or because they had begun to float as the collagen set. A high number (60-

70%) of collagen beds detached as I carried the plate from the incubator to the 

imaging facility. 
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I therefore optimised the collagen mounting. Collagen was made immediately prior to 

mounting. 15-20µl beds were pipetted into the dish, then drawn back up with the 

same pipette leaving only a very thin layer of collagen on the imaging dish, the 

‘collagen disc’. The collagen in the pipette was then deposited onto another dish, the 

‘coating dish’. Slices to be mounted (usually 5 or 6) were carefully separated from the 

agarose (still immersed in L-15), lifted out using Number 5 forceps, and immersed into 

the collagen on the coating dish. Lifting the tissue in this manner could damage the 

tissue both directly by the forceps themselves but also when passing the sample 

through the meniscus of the surrounding media. However, damage could be limited by 

allowing the tissue to rest naturally on one of the forceps’ prongs (rather than picking 

it up by ‘tweezing’ it) or by picking it up in a drop of L-15 suspended between the arms 

of the forceps (much harder to achieve). Transferring the tissue by pipette (silicone-

coated, collagen-coated, glass or standard pipette) led to high losses, as the tissue is 

sticky and often tears at the midline. 

 

In the time taken to transfer slices into the coating dish, the collagen discs became 

sticky. It was important not to leave the time between these steps too long (i.e. each 

imaging dish was prepared individually, rather than in batches) as if the collagen disc 

dried out completely the collagen bed placed on top was more likely to detach. Slices 

were then lifted out from the collagen of the coating plate, and placed into the 

collagen discs of the imaging plate. To do this, slices were nudged towards the top of 

the collagen and then lifted out, using surface tension to transfer a blob of collagen 

without the slice coming into contact with the forceps. It was generally best to keep 

the coating dish under the microscope, and the imaging dish to the side of the 

microscope where side-light made the collagen discs obvious. I found that transferring 
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the slices in this manner led to higher successful rates of transfer, as opposed to 

swapping the dishes under the microscope, or moving between two microscopes. 

 

In all cases, prior to transfer, imaging dishes were labelled before use, and a large black 

mark made at the back of the dish walls. Labelling was carried out while the dish was 

still mostly in the wrapper, to decrease the chance of fingerprints or dirt on the 

imaging surface. The imaging dishes were immediately placed into a larger dish lined 

with microscope tissue, and were only taken out to image. This ensured that no small 

scratches or dirt on the glass of the imaging dishes impaired the imaging quality. When 

all slices were transferred, the imaging dish was orientated so that the black mark was 

at the top of the dish. Each slice was then orientated so that the ventricles of each slice 

were parallel, and the dorsal edges of the slices were pointing towards the top of the 

dish. This ensured that the plate could be easily orientated for imaging, and that each 

slice within the dish was at the correct orientation. 

 

The collagen-embedded slices were left to set. This was carried out at room 

temperature so as not to disturb the orientation of the slices when transferring them 

to the incubator. Another layer, approximately 10μl, was placed on top of each bed. 

The slices were then left to set at 37oC. When set, 3ml of 37oC media was added. The 

slices were kept in a 37oC 5% CO2 humidified incubator. As far as practical, the slices 

were protected from sharp knocks and shocks (e.g. closing the incubator door 

carefully), as mouse tissue is sensitive to this sort of trauma. Slices were left for 12+ 

hours to recover and for the fluorescent proteins to be expressed. 
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This protocol is quick and effective. In my hands, compared to the protocol used by 

Das et al, I found that I had considerably fewer losses due to slices being damaged 

when transferred by pipette or when pushed down to the bottom of the collagen bed, 

~100% success of slices correctly placed in order to be imaged, and ~100% of collagen 

beds remaining attached to the plate when carried. 

 

6.7 Imaging 

Imaging was carried out on a Deltavision Core microscope system, using a 20x oil or 

dry lens. Images were captured using a Xenon light source and a CoolSnap HQ2 cooled 

CCD camera (photometrics). Thirty to forty optical sections (exposure time, 10-50 

milliseconds for each channel, 512x512 pixels, 2x2 binning) spaced 1.5μm apart were 

imaged for each slice at 10-minute intervals over 24 hours. Images were deconvolved 

and maximum intensity projections of Z-stacks were made using SoftWorx imaging 

software (Applied Precision). A bright-field reference image was acquired at each time 

point and this was used to determine the position of the apical surface. Slices were 

kept in a WeatherStation environmental chamber at 37oC with 5% CO2, with a 

dampened tissue placed in the chamber to keep the dish humidified.  

 

6.8 Media optimisation 

Selecting appropriate media is a critical task in slice culture. It feeds the tissue, keeps it 

healthy, and provides extrinsic signals that can e.g. tip the balance of differentiation 

and proliferation. As described in section 6.2, many studies have been carried out on 

slice culture, and each has optimised media in order to carried out those specific 

studies. I used these protocols as a basis therefore, and carried out optimisation in 

order to obtain the best data from my slices. 
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The first question that needs to be addressed is the readout by which the media is 

going to be judged. In this case, I looked for media that would maintain an intact 

ventricular zone, as analysed by SOX2, Crb2 and ZO-1, would not cause an expansion 

of the dorsal Nestin population and would not promote unusual proliferation or 

apoptosis. As previously discussed, slice culture can be used as an injury model, 

characterised by an expansion of Nestin positive cells, the depletion of the ventricular 

zone of SOX2 progenitors and the increase of SOX2 cells intercalated with the Nestin-

positive processes. I aimed use the media that would best maintain the tissue in a 

normal rather than injury state. 

 

6.8.1 Media composition and purpose 

Components of media 

Much of the information on this section was taken from the extensive Cell Culture 

Media: A Review (http://dx.doi.org/10.13070/mm.en.3.175) last modified: 2015-08-02; 

original version: 2013-03-05. Accessed August 2015, additional information was taken 

from manufacturer datasheets. 

 

Basal media 

Basal media can be either artificial (composition specified) or natural (biological fluids, 

exact composition not known, batch variability). While natural media can be very 

useful, reproducibility is an issue. Therefore, artificial media is preferred in many 

situations. Defined artificial media is prepared with nutrients, vitamins, salts, serum 

proteins, carbohydrates etc, and composition varies depending on intended 

application. 
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Buffering systems 

Culture pH can have a huge impact on the viability of cells and tissue. Buffering can be 

achieved by ‘natural buffering’ in which the CO3/HCO3 of the medium is balanced by 

CO2 gas in the air, usually by maintaining cultures in a 5-10% CO2 incubator. This 

system can become alkaline quickly (within minutes) in air, thus it is important to 

include an indicator, such as phenol red and work quickly, Alternately, HEPES can be 

used, which maintains strict buffering between pH 7.2-7.4, does not require CO2 

buffering but can be toxic at high concentrations for some types of cells. Additionally, 

HEPES has been shown to greatly increase cytotoxicity of media exposed to 

fluorescent light (Zegler et al., 1985).  Phenol Red is often present in commercial 

media, where it functions both as a pH buffer and an indicator, allowing cultures to be 

visually monitored and infections etc to be easily identified. However, phenol red can 

mimic the effects of hormones such as oestrogen and interfere with other elements of 

metabolism.  

 

Serum 

Serum is derived from the blood of foetal calves, collected from the fluid remaining 

after the blood coagulates. As such, it is a complex mix of factors. Although extremely 

useful in keeping cells healthy in culture, it has the caveat that different batches will 

have different compositions and concentrations thereof, all of which are unknown. 

Serum also has buffering ability. 
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Antibiotics 

Antibiotics inhibit the growth of bacteria and fungus, however, they can also interfere 

with the normal function of certain cell types. 

Other elements 

Serum free media are usually made with the addition of inorganic salts, carbohydrates, 

proteins/peptides, fatty acids/lipids, vitamins, trace elements and amino acids, which 

would otherwise be supplied by serum. 

 

6.8.2 Media tested in this optimisation 

Four types of media were tested: ‘Brachmann’ as described in Brachmann and Tucker 

(2011) ‘Dundee’ as described in Das and Storey (2014); SRN2, a medium developed in 

our lab to support neural-derived cells, and explant media, a standard media we use 

for culturing explants (Dale et al., 1997; Dale et al., 1999; Vesque et al., 2000) 

 

The components of media tested in this optimisation are as follows: 

Brachmann media: DMEM, HBSS Ca2+Mg2+ free, Fetal Calf Serum, Glucose, L-

glutamine, HEPES, Pen-strep  

Dundee media: Neurobasal, Glutamax, B27, Fetal Calf Serum, Gentamycln  

Explant medium: Optimem, L-glutamine, Pen-strep, Fetal Calf Serum 

SRN2: DMEM-12, L-glutamine, N2, B27-I, Heparin 
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Table 6.1 Purpose of media components  

Component Purpose 

Basal medium  

DMEM Dulbecco’s modified Eagle's medium is a nutrient rich medium. 

Originally developed to support cells in culture, thus geared 

towards the promotion of rapid cell division of somatic cells. 

Contains no proteins or growth promoting agents, therefore 

usually used with serum. Uses a sodium bicarbonate buffer 

system, therefore needs incubated with CO2. Widely used in both 

murine and chicken cell/tissue culture.  

DMEM F12 Dulbecco's Modified Eagle Medium (DMEM): Nutrient Mixture F12 

(Ham's) (1:1). Ham’s F-12 was formulated as a nutrient rich media. 

Serum free versions include HEPES buffer. 

Neurobasal Developed to meet the different nutrient needs of embryonic 

neurons in culture. Developed by noting that neurons in 

DMEM:F12 had higher viability than DMEM, and thus optimising 

the concentrations of the F12 components for neural 

maintenance (removing for example, excitatory amino acids 

glutamate and aspartate). Generally used with B27. 

(Brewer et al., 1993) 

OptiMEM Serum free growth factor/insulin-containing medium. Contains 

HEPES and Sodium Bicarbonate buffering. Contains various 

additives that allow a reduced volume of serum to be used. 
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HBSS Hanks Balanced Salt Solution. No buffering. Also contains D-

Glucose.  

Serum 

FBS Fetal Bovine Serum (Also, FCS: Fetal Calf Serum). Cheap additive 

containing a complex range of nutrients and growth factors. Good 

for maintaining healthy tissue generally – but has the caveat that 

there can be massive variation between batches and the 

composition of the serum is generally unknown.  

Energy and nitrogen 

D-glucose Glucose is very soluble and chemically stable in normal 

physiological solutions and media. Approximately 5.5mM D-

glucose approximates normal blood sugar levels in vivo. Usually 

present in Basal Media. 

L-glutamine L-glutamine is a particularly notable additive to media, as it 

supplies nitrogen for NAD, NADPH and nucleotides, and can be 

metabolised for energy. However this essential amino acid is 

unstable, and is converted to ammonia when degraded, which can 

be toxic. 

Glutamax Glutamax is a more stable alternative to L-glutamine, and may be 

preferred for long term cultures.  

Other components 

Heparin Heparan sulfate is a polysaccharide component of the 

extracellular matrix. It can modify tissue responses to other 

factors, e.g. it stabilises FGF binding to receptors and can 
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influence neurite outgrowth (Kinnunen et al., 1996; Ornitz et al., 

1992) 

B27 Supplement developed for growth/maintenance of neurons. With 

or without insulin. Insulin-containing versions may promote over-

differentiation in neural slice culture (Placzek lab, unpublished)  

N2 Serum substitute, developed for growth/maintenance of neural 

cells  

Antibiotics Penicillin-Streptomycin or Gentamycin was used. Gentamycin is 

stronger and broader spectrum.  



165 
 

6.9 Results 

Slices were cultured for 24 hours in appropriate media and then cryosectioned at 20-

30µm, before analysis with various antibodies (Fig 6.2). 

 

Table 6.2 Antibodies used in analysis of slice culture. 

Antibody Purpose 

Nestin Labels dorsal Nestin cells 
SOX2 Marker of the ventricular zone 
CRB2 Apical polarity marker 
ZO-1 Apical junction complex marker 
Cleaved Caspase Apoptosis marker 
KI67 Proliferation marker 

 

The criteria that the media was tested on included the maintence of the ventricular 

zone, apical surface and with a normal distribution of Nestin. 

 

Control freshly fixed spinal cord slices labelled with SOX2, NESTIN and CRB2 were 

provided for comparison with cultured slices (Fig6.2, A-C). Of the four media tested, 

only Brachmann and Dundee had a normal looking ventricular zone, although SOX2-

expressing cells were more dispersed dorsally than in an intact embryo (Fig 6.2, Ai-Di, 

Aii and Dii). Explant media lost the SOX2-postive cells around the ventricular zone 

entirely (Fig6.2, Aiii), those SOX2-expressing cells were localised entirely around the 

dorsal neural tube. Nestin also displayed an unexpected and unusual upregulation 

around the ventricular zone (Fig 6.2, Bii). SRN2 Media showed an increased dorsal 

upregulation of nestin and dorsal localisation of SOX2-expressing cells (Fig6.2, Aiv-Biv), 

a pattern that is seen in unhealthy tissue (tissue in any media shows this distribution if 

not processed quickly enough).  
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Of all the media tested, only Brachmann media showed good Crb2 apical expression 

(Fig6.2, Ci). Other media showed strong dorsal expression of Crb2, and SRN2 displayed 

an unusual dorsal nuclear pattern of this marker (Fig6.2, Cii-Civ). 

 

Cleaved Caspase 3 is an apoptotic marker. SRN2 displayed large amounts of apoptosis, 

and explant media the least (Fig6.2, Div and Diii). Dundee and Brachmann media 

displayed similar levels of apoptosis, but dying cells were more concentrated around 

the ventricular zone in Brachmann media (Fig6.2, Dii and Di). 

 

6.10 Conclusion 

While mice are the experimental animal of choice in many fields of biology and as such 

have been extensively genetically and systemically characterised, few techniques for in 

vivo live imaging are available, and those that are have extensive technical and often 

ethical issues. Imaging the developing nervous system is a prime example of this issue: 

although some live imaging of adult mouse brain and spinal cord have been carried 

out, the techniques used often involve invasive and complicated surgery (Hillman, 

2007; Lichtman and Fraser, 2001). Similar issues arise in imaging the development of in 

utero mouse embryos. While progress has been made imaging non-invasively, these 

techniques are suitable for resolution at the morphological/structural level, but are 

not yet suitable for live cell tracking (Larina et al., 2012; Norris et al., 2013). 
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Alternative methods of live imaging include ex vivo/ex utero systems, in which an 

entire organ or embryo is cultured and imaged. Although this bypasses the ethical 

implications of chronically wounded animals, the technical difficulties of imaging 

structures beyond the surface of the organ remain. Whole embryos have been 

cultured successfully in rolling systems, although after E11 the embryo becomes too 

large to remain viable in culture (Garcia et al., 2011; Kalaskar and Lauderdale, 2014; 

Piliszek et al., 2011). 

 

A third alternative is to use another species more amenable to live imaging. Chicken 

embryos have been a mainstay of developmental science for decades, and techniques 

have been developed to allow beautiful in ovo imaging (Kulesa et al., 2010) The 

translucent embryos of the zebrafish, and the expansion and ease of genetic 

manipulation allowing the development of reporter lines in this species has led to a 

wealth of high resolution imaging of developmental processes (Renaud et al., 2011). 

 

It was noted that even with the most optimal culturing conditions, the health of the 

cultured tissue depended on the speed at which the embryo was processed and 

transferred into the incubator. 

 

Either Dundee or Brachmann media is the most suitable for culturing. Arguably 

Brachmann media has a more normal distribution of apical markers and possibly dorsal 

SOX2-positive cells, however, there is a greater proportion of dying cells in the 

ventricular zone. Dundee media has acceptable levels of apoptosis, mainly in the 

alar/basal plates, outside the ventricular zone. 
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However, it must be addressed that these slices were cultured without imaging. 

Phototoxicity is a real issue for the types of timelapse imaging that this chapter is 

optimising for, used in Chapter 8. The addition of HEPES in Brachmann media may 

increase cytotoxicity upon exposure to fluorescent light. All data taken together, 

Dundee media was chosen for the timelapse imaging. 
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Chapter 7 
 
 

Live imaging supports my model of 
dorsal obliteration 
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7.1 Introduction 

As outlined in Chapter 6, I developed a slice culture system for analysing spinal cord 

over the obliteration window. In this chapter I will describe studies in which I 

performed real time imaging of cells and nuclei in such slice cultures. The experiments 

described in this chapter were performed in collaboration with Dr. Raman Das and 

Prof. Kate Storey, using an adaptation of a protocol (Das and Storey, 2014) first 

described for analysis of cell behaviour in early chick neural tube. Briefly, I co-

electroporated H2B-RFP (to label cell nuclei) and GPI-GFP (to label cell membranes) 

into mouse spinal cord slices taken from either E13, E14 or E15 embryos, targeting 

small groups of cells in and adjacent to the dorsal Ventricular Zone (VZ). I opted for a 

semi-random electroporation of cells in and around the dorso-lateral lumen. The aim 

was to test the hypotheses that (a) elongated roof plate cells are present at the dorsal-

most midline and (b) sub-dorsal cells immediately adjacent to these detach. Thus I 

aimed to capture examples of elongated roof plate/dNRG and detaching VZ cells. In 

addition, I expected to image a variety of other cells in their vicinity. Electroporated 

slices were incubated for up to 24 hours to allow recovery and expression of the 

transiently transfected plasmids, and slices were imaged for 24-48 hours. 

 

Ages of embryos at start of imaging are given in the format ‘E13+24h’. This is to 

indicate that the embryo was sacrificed at E13.5, was electroporated and left to 

recover for 24h, and then imaged. In theory, this would approximate to a starting point 

for imaging of an E14 embryo. 

 

My live imaging studies reveal that cells in and around the dorsal VZ show several 

distinct morphologies and behaviours, these include potential examples of elongate 
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roof plate cells/cells with dNRG-morphology at the dorsal midline and sub-dorsal cells 

whose cell body appears to detach. 

 

7.2 Elongate dorsal cells/dNRG 

I captured examples of elongated cells at the dorsal midline. These cells have a 

distinctively dorsal to ventral orientation, and appear to be static – i.e. their cell body 

does not move over the course of the culture period/imaging. Below I describe two 

cells imaged in two slice cultures taken from different embryos. 

 

The first is a midline-situated cell imaged for 1140 minutes in a (E14+24h) slice culture, 

in which the dorsal midline is relatively short (Fig 7.1, Movie 7.1 Elongate Dorsal Cells 1 

Movie). The morphology of the cell changes subtly over the imaging period from 

wedge-shaped to cuboidal and then to wedge shaped/radial glial shape. Throughout 

this period the nucleus stays in the dorsal-most region of the cell i.e. close to the pial 

surface. This cell resembles the elongated roof plate cells in mouse/dorsal radial glia 

described in zebrafish (Kondrychn et al, 2009). Although it is difficult to determine the 

precise location of the lumen, the position and shape of this cell support the idea that 

it is a roof plate cell that transits between wedge-, elongated and radial-glial shapes 

(note in the text below I refer to this cell as an elongated roof plate cell). This cell 

remains stably in position, in contrast to immediately adjacent cells (described below). 

 

In support of the idea that roof plate cells transit to dNRG, imaging of a second slice 

culture in which the midline is much longer (E14+24h, Fig 7.2, Movie 7.2 Elongate 

Dorsal Cells 2 Movie) reveals a cell at the dorsal midline that displays dNRG 

morphology (referred to hereafter as a dNRG cell). The cell has a rounded nucleus and 
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both dorsal and ventral processes. This cell remains stably in position, in contrast to 

adjacent cells that are more dynamic, both cytoplasmically and in the shape/position 

of their nuclei (described below). 

 

It is notable that neither of these cells has a cell body directly abutting the lumen.  This 

agrees with my findings from static images in Chapter 3, showing that the nucleus of 

dNRG cells is distant from the apical surface. 

 

7.3 Dynamic sub-dorsal cells 

In the first (E14+24h) slice culture described above, cells on either side of the 

elongated roof plate cell display wedge-shaped appearances at the start of the imaging 

period, and project diagonally to the pial surface with mirror symmetry to each other. 

Both cells are slightly out of focus in the (E14+24h) slice culture described in Fig 7.1, 

and I therefore refocused on each side. This reveals that wedge-shaped cells 

immediately adjacent to elongated midline roof plate cells are dynamic and display 

behaviour suggestive of their extrusion. 

 

Left of the midline, two thinly-wedged/elongated cells are labelled that appear to have 

an apical contact at/close to the VZ and a basal contact at the pial surface. Over the 

course of the imaging period, both cell bodies appear to move dorsally, away from the 

lumen, and both cells then break their ventral process (Fig7.3, Movie 7.3: Sub Dorsal 

Cell 2). As the cell bodies detach from the VZ, the nuclei appear to move rapidly 

towards the pial surface. 

  



Figure 7.1 Brightfield image of neural tube shown in (A), the lumen is outlined in a dashed yellow line. 
The inset box in (A) shows position of (B-F) within the neural tube. (B-F) are timepoints taken over a 
1140 minute period. Images are a single Z plane at the following times (times in minutes from the begin-
ning of imaging): B, 1830 mins; C, 2350 mins; D 2600 mins; E, 2660 mins; F, 2890 mins.  (Movie: Elongate 
Dorsal cells 1).

Elongate dorsal cells 1

A

B C ED F

A



B C D E F

Elongate dorsal cells 2

Figure 7.2 Brightfield image of neural tube shown in (A). Outline of neural tube is shown in a yellow unbroken line, and the lumen is outlined in a dashed yellow line. The white box in 
(A) shows position of (B-F) within the neural tube. (B-F) are timepoints taken over 700 minutes demonstrating that the cell shown with arrows does not move substantially over this 
time period. Images are a single Z plane at the following times (times in minutes from the beginning of imaging): B, 250 mins; C, 320 mins; D 420 mins; E, 500 mins; F, 700 mins. The cell 
body (yellow arrowhead) and the dorsal/ventral processes of the cell (white arrowhead) can be followed. (B’-F’) are the same images as (B-F) cropped and with the elongate cell 
outlined.  It should be noted that the ventral process of this cell is not always clearly defined due to out of focus light. The white arrow therefore depicts the most ventral part of the 
process clearly attibuted to that cell, and the process is likely to continue further ventrally than can be resolved. Images are a single Z plane. (Movie - Elongate dorsal cells 2).  
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In a slightly different field of focus (again, imaging to the left of the midline), three cells 

appear to detach (Fig 7.4 and Movie 7.4: Subdorsal Cells 3 Movie). The first cell to 

detach appears to have a ventral process angled towards the lumen and another 

dorsally. The ventral process is lost before the cell rounds up. The second cell to 

detach also appears to have a dorsal process that the cell loses. The final cell to detach 

clearly moves its nucleus dorsally before it detaches the dorsal process and rounds up. 

 

Right of the midline are two cells that lie close to the elongate dorsal midline roof 

plate cell (Fig 7.5 and Movie 7.5: Subdorsal Cell 1 Movie). One cell is directly behind 

the elongated roof plate cell, so is difficult to resolve in any detail, however, it clearly 

rounds up. The second clearly has a cell body far from its ventral attachment.. 

 

Of eight cells (six sub dorsal) convincingly moving dorsally, five are seen to detach. 

Both these cells appear to undergo an event possibly similar to apical abscission (Das 

and Storey, 2014). Since this was a slice culture from an (E14+24h) embryo, I conclude 

that I have captured cell extrusion at the very onset of the dorsal obliteration process. 

 

7.4 Active dorsal migration of cell nuclei on dNRG 

In the second (E14+24h) slice culture, I find evidence for an active dorsal migration of 

cell nuclei in close proximity to dNRG cells. Intermingled with the GFP+ processes in 

the midline of the embryo described in ‘Fig 7.2, Movie 7.2 Elongated Dorsal Cells 2’ are 

elongated nuclei that clearly move dorsally, relative to the static dNRG. As the nuclei 

move dorsally, they round up (Fig 7.6, Movie 7.6, Elongate Nuclei). Frequently, the 

nuclei move laterally once they are close to the pial surface. These observations 

confirm and extend the static images I showed in Fig 3.4, in which I detect SOXB1-
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positive cell bodies that are intermingled with dNRG and are elongated and orientated 

dorso-ventrally. These live imaging studies support the idea that a dorsal movement of 

cell bodies nuclei drives dorsal obliteration. 

 

7.5 Do sub-dorsal cells extend a process that fasciculates on early dNRG pioneers? 

In the example described above, I was unable to resolve the shape of the cells whose 

nuclei moved dorsally, since they were intimately intermingled with dNRG cells.  

However, in a slice culture from a 3rd embryo, (E13+24h), in which the midline is 

relatively long, I obtained preliminary evidence that suggests that sub-dorsal cells may 

extend a dorsal process that projects closely along the dNRG scaffold, and that the cell 

body migrates along this as it detaches from the lumen. This evidence is shown in 

Fig7.7 and Movie 7.7 (E13+24h; Movie: Midline interacting cell Moving; 1100 minutes). 

In this example there appear to be two closely associated cells to the left of the 

midline. Both cells extend highly dynamic dorsal and ventral processes that project 

parallel to the midline. The cell bodies of both cells move dorsally along their own 

processes, coming to rest at/near the pial surface (Fig 7.7, white arrowheads). Both 

cells died at the same time (Fig7.7, G; not shown in movie). The ventral process of at 

least one of these cells is angled towards the lumen (blue arrowheads). Unfortunately 

the resolution is insufficient to determine whether this process does end at the lumen, 

or to which cell it belongs. 

 

Nonetheless, this preliminary evidence raises the possibility that later-emerging sub-

dorsal cells may extend processes towards the midline/pial surface, potentially along 

the dNRG scaffold and that they use their own processes as a dorsal conduit (Figure 

7.8: schematic).   



Figure 7.3 Brightfield image of neural tube shown in (A), the lumen is outlined in a dashed yellow line. Yellow arrowhead 
denotes right hand cell behind the wedge-shaped cell that detaches in (F). White arrowhead shows left hand cell that begins 
to detatch in (D) however, this cell appears to retain a thin ventral process until the end of imaging. (B’-F’) are the same 
images as (A-F) but with the two cells outlined. Images are a single Z plane. (Movie: Two Sub Dorsal Cells 2). Times in min-
utes from the beginning of imaging): B, 260 mins; C, 300 mins; D 360 mins; E, 421 mins; F, 560 mins
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Figure 7.4 Brightfield image of neural tube shown in (A), the lumen is outlined in a dashed yellow line. Two detaching cells are visible. (B’-H’) are the 
same images as (B-H), with two cells outlined. The left hand cell outlined in white rounds up in (G) and may detach the process by (H). The right hand 
cell outlined in yellow rounds up at (D’). Images are a single Z plane. Times from start of imaging (minutes): B, 1110; C, 1380; D, 1540; E, 2030; F, 2250; 
G, 2500; H, 2650. Sub Dorsal Cells 3 Movie; 1530 minutes.  
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Figure 7.5 Brightfield image of neural tube shown in (A), the lumen is outlined in a dashed yellow line. B-F 
shows cells that balls up then appears to lose a ventral process in F. (B’-F’) are the same images as (B-F) 
with the cell outlined in yellow. Where the cell membrane is ambiguous the line is not drawn. Images are 
taken from a single Z plane. Time since the start of imaging (minutes): B, 1450; C, 1620; D, 1680; E, 1740; F, 
1850. Scale bar 10um. (Movie: Sub Dorsal Cells 1, taken over 400 minutes). 
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Figure 7.6 Brightfield image of 
neural tube shown in (A). Outline of 
neural tube is shown in a yellow 
unbroken line, and the lumen is out-
lined in a dashed yellow line. The 
white box shows position of (B-D) 
within the neural tube. (B-F) show 
GFP-membrane and RFP-nuclear 
labelled cells. (B’-D’) shows RFP-
nuclear labelled only. Arrowheads 
follow select cells that begin with 
elongated nuclei and round up. 
Imaged over 1000 minutes Images 
taken from a single Z plane (Elongate 
Nuclei movie). Timepoints (minutes 
since the start of imaging (B) 304; (C) 
314, (D) 335
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Figure 7.7 Brightfield image of neural tube shown in (A). Outline of neural tube is shown in a white unbroken line, the lumen is marked with a 
dotted line, and the approximate position of the midline is marked  in text. The yellow outline in (A) shows two closely connected cells. (B’-G‘) 
are the same images as (B-G) except that the left hand cell is outlined in blue, and the right hand cell is outlined in yellow. Where the cell outline 
is ambigious the line has not been drawn. Yellow and blue arrows mark the cell bodies. White arrows mark ventral processes that may belong to 
either of these cells. Images taken from a single Z plane. Time since start of imaging (minutes): B , 1550; C, 1840; D, 1920; E, 2020; F, 2250; G, 
2490. Movie taken over 1110 minutes. (Movie: Midline interacting cell 1).
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Figure 7.8 Models of migration Sub-dorsal cells

Nuclei

Dorsal radial glia (dRG)

Lateral ventricular zone cells

Sub-dorsal cells may migrate by either (A) 
extending processes dorsally and moving their 
cell body along these extensions. They may 
retain ventral contact with the lumen. Alterna-
tively, (B) Cells may detach and migrate along 
the dorsal processes of neighbouring cells, e.g. 
dRG cell to migrate dorsally.  

Detached cell 
migrating dorsally 

      Possible mechanisms by which 
     sub-dorsal cells migrate dorsally

Dorsally migrating cell
using own processes,

 attached dorsally and to lumen

Cell extending
dorsal and ventral

process

 A: Cells moving dorsally using 
      their own processes 

Lumen

Ex sub-dorsal cells (migrating)

 B: Cells migrating along dRG
                        processes
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7.6 Other cell processes interact dynamically with the dorsal midline 

In addition to these cell behaviours, my live imaging revealed other cells that interact 

dynamically with the dorsal midline. In a 4th (E14+24h) slice culture, a cell whose cell 

body is situated in the VZ below the dorsal midline reaches out a process that appears 

to contact the dorsal midline, and then retracts this process (Fig 7.9, Movie 7.9: 

Midline interacting cell 1; 5510 minutes (note on the opposite side of the lumen, a 

more dorsally located cell appears to detach). A second behaviour seen in cells close to 

the midline is described in: Fig 7.10 (Movie 7.10: Midline interacting cells 2). These 

cells (probably nascent neurons) migrate dorsally towards the pial surface, or laterally 

towards the midline. The dorsally reaching cell retracts slightly. The midline-

approaching cell sharply angles dorsally at a certain point. (Embryo E14+24hours; 

Movie shot over 1010 minutes). Taken together, it appears clear that cells are 

attracted to the dorsal midline/pial surface close to the dorsal midline, and explore 

them by extending processes towards it. This could indicate the presence of a 

chemoattractant. The sharp turn of the cell in Fig. 7.10 could suggest either the 

physical barrier posed by the roof plate, or a chemorepellant factor. 

 

7.7 Medio-lateral radial glia 

Finally, in a slice culture imaged at (E15+24h), I obtained evidence that medio-lateral 

radial glial persist beyond E15. In Chapter 3 I described that Nestin expression declines 

in medio-lateral radial glia from around E13 (Figure 3.3). My live imaging studies reveal 

that medio-lateral radial glia nonetheless persist beyond this stage (Fig. 7.11 and 

Movie 7.11). Thus, at E15+24h I detect medio-lateral radial glial cells that are 

distributed evenly along the VZ. They appear to have cell bodies (arrow outlines) 

located at or near the VZ and lateral processes reaching to the pial surface. They are 
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similar to E16 rat spinal cord radial glia as described by McDermott et al (2006). Like 

the rat cells described in this paper, this cell population has cytoplasmic thickening 

along the processes (yellow arrowhead). Interkinetic nuclear migration is not detected 

in these cells, possibly either because proliferation has slowed in radial glia at this 

embryonic stage, or because these cells represent or are becoming a post mitotic glial 

population. However, the cells are dynamic: one cell clearly extends then retracts 

processes halfway along its apical-basal process (white arrowhead). There is a wide 

band of tissue at the dorsal midline (visible both in the brightfield image and the RFP 

image) that is likely to be composed of dNRG, but these are not electroporated. (Figure 

7.11; Glial Processes Movie). 

 

  



Figure 7.9 Brightfield image of neural tube 
shown in (A), the lumen is outlined in a 
dashed yellow line. (B-G) are timepoints 
taken over 2510 minutes. Yellow arrows 
denote the end of the dorsal process. Time 
from start of imaging (minutes): B, 1240; C, 
1740; D, 1910; E, 2430; F, 2790; G, 3120. 
(Movie: Midline interacting cell 1). Images 
takeb from a single Z plane. 

Midline interacting cell 1

B

C

E

D

F

B

E G

A

m
idline



midline

Midline-interacting cells 2

A

Figure 7.10 Brightfield image of neural tube shown in (A). Outline of neural tube is shown in a yellow unbroken line, the approximate position of the 
midline is marked  in text. (B-K) shows a cell (marked with blue arrowheads) that extends towards the midline, then angles sharply dorsally. The red 
arrowhead in (B) shows the most ventral identifiable part of this cell. Another cell extends and then retracts a process dorsally (yellow arrowheads 
indicate tip of process). This cell also demonstrates some dynamic, bright cytoplasmic thickening. Images and movie are 9 Z-slices (18μm) as the 
processes are not all at the same focus. Time since the beginning of imaging (minutes): B, 1780; C, 1940; D, 1950; E, 1960; F, 1969; G, 1972; H, 1977; 
I, 1979; J, 1983; K, 1985. (Movie: Midline interacting cell 2, 870 minutes).
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A
Figure 7.11 Brightfield image of neural tube shown in (A). Outline of neural tube is shown in a yellow unbroken line, and the lumen is outlined 
in a dashed yellow line. Some cytoplasmic thickenings are denoted by yellow arrowheads. White arrow outlines indicate some of the basally 
located cell bodies. White arrowhead indicates glial process that has two additional shorter processes that extend then retract. As the cell bodies 
and processes are not all in the same plane, (B) and the movie are a Z projection of 31 Z sections (62μm) Imaged over 1400 minutes (Movie: Glial 
Processes).
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7.8 Discussion 

Live imaging is a technique that is growing in popularity as the tools developed have 

become more sophisticated. The previous chapters of this thesis have asked specific 

questions of dead and static tissue. From this, I developed a model for dorsal 

obliteration as detailed in Figure 3.18 that predicts that subdorsal VZ cells migrate 

dorsally, using the dNRG cell processes as a conduit. Here, I tested this prediction by 

asking whether I could capture cells moving dorsally away from the VZ in living tissue. 

In line with my dorsal obliteration model, I find evidence that cells break away from 

the subdorsal VZ and migrate away. In addition, these studies suggest additional 

details of the model (discussed below). However, before doing so, I will comment 

more generally on the slice cultures. 

 

Any ex vivo system, including slice culture, has to be viewed with a degree of caution: 

the data needs to be interpreted carefully; with the acceptance that culture itself will 

cause a response within the tissue. However, my slice culture conditions closely 

recapitulated those developed by Das and Storey, and shown to closely mimic spinal 

tissue in vivo (Das and Storey, 2014). Moreover, in my slices, I detected cells that I 

would expect in a healthy spinal cord, including medio-lateral radial glia (Fig 7.11) and 

dorsal commissural neurons (not shown). This gives me confidence that the spinal cord 

slices are healthy and that the new cell behaviours that I describe are representative of 

those found in the developing embryo. 

 

In large part our studies on spinal cord development are informed through static 

analyses of transcription factor expression that suggest a rather static picture. My 
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studies suggest that the developing spinal cord is a highly dynamic tissue, composed of 

moving, tactile and responsive cells. 

 

My studies provide evidence that elongated cells situated at the dorsal midline are 

non-mobile, compared to their neighbours. In Figure 7.1, I describe a wedge-shaped/ 

elongated cell at the dorsal midline in an (E14+24h) slice culture. The dorsal funiculus, 

and hence this cell, are shorter than expected for E14+24 hours, however, I believe this 

is due to the precise rostro-caudal position of the slice. Comparison of this slice with 

another of the same age that has a longer midline (Fig 7.2) reveals that in the more 

developed slice, the midline is occupied by a cell with long dorsal and ventral 

processes. These cells share the same property of being relatively immobile when 

compared to neighbouring cells and of having nuclei far removed from their ventral 

extreme. I suggest that the first cell represents a roof plate cell, classically described as 

‘wedge shaped’, and the second, a more mature dNRG cell. 

 

Cells closely associated with these dorsal midline cells are sub-dorsal cells. In the less 

mature slice, I capture extrusive behaviours. Thus I detect that the wedge-shaped 

midline roof plate cell sits next to several cells that appear to break away by detaching 

from a ventral process then rounding up and moving dorsally (Figs 7.3, 7.4, 7.5). In the 

more mature slice I did not capture active extrusion. However, cells around the dNRG 

midline cell were highly active: their nuclei are seen to both change from an elongated 

to a rounded shape (reminiscent of SOXB1 data in Fig3.4) and to move dorsally. 
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My model states that cells break away from the VZ subdorsally and use the dNRG to 

migrate. The cell behaviour observed adjacent to the wedge-shaped and the elongate 

glial-like dorsal cells fits with this model. 

 

In addition, I captured other cell behaviours that may add a more complex detail to the 

model. In a slice culture from an older embryo (E15+24h), I observe that cells with a 

dorso-ventral process extend parallel to the dNRG and that their cell bodies use their 

own process as a conduit. This raises the possibility that detaching cells re-polarise 

from medio-lateral to dorso-ventral, and extend a dorso-ventral process along a dNRG 

scaffold. In development, early neurons called ‘pioneers’ lay down an axonal scaffold  

‘followers’ fasciculate on the pioneers. Future studies are required to test whether a 

similar process operates in dorsal obliteration, and whether the dNRG provide an 

attractant that supports a re-orientation of the detaching VZ cell. (Hidalgo and Brand, 

1997). 

 

As discussed above, I observed that cells appear to detach their process before 

rounding up/migrating dorsally. In some instances, the detaching process appears to 

be under some tension (for example, see the cell marked with the yellow arrowheads 

in Fig 7.4 (Sub Dorsal Cell 3). This suggests that the cells are actively migrating away, 

and perhaps have to overcome a force/threshold in order to detach. It is impossible to 

confirm from this data, but interesting to speculate that the mechanism may be similar 

to apical abscission described by Das and Storey (2014) in which loss of proteins 

binding nascent neurons to the VZ are suddenly lost, allowing the cells to migrate 

away. Local disruption of apical polarity (and thus epithelial integrity) by secreted CRB2 



192 
 

may be a contributory mechanism to allowing an already mechanically stressed cell to 

be released from the lumen. 

 

In addition, I captured other unexpected cell behaviours. These include several cells 

extending processes, bent towards the midline then retracting. The directionality of 

the processes suggests that there may be a chemoattractant towards which the cell 

processes migrate, and a more localised repellent that causes retraction. Future 

studies are required to test these ideas. 
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Chapter 8 
 
 

Discussion 
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8.1 Summary of Results 

In this thesis I set out to understand the mechanistic basis for formation of the central 

canal in the mouse. Previous studies have suggested that central canal formation 

occurs through dorsal obliteration, a process that is intimately linked to lengthening 

roof plate cells (Altman and Bayer, 1984; Bohme, 1988; Kondrychyn et al., 2013; Sevc 

et al., 2009; Snow et al., 1990; Sturrock, 1981). However at present little is known 

about the mechanism that drives dorsal obliteration or that links roof plate cells with 

this process. My studies reveal a potential contributory mechanism. In Chapter 3, I 

show that during dorsal obliteration, ventricular zone (VZ) cells that lie immediately 

adjacent to Nestin-positive dRG cells may be undergoing a change in apico-basal 

polarity proteins, downregulating CRB2, ZO-1 and aPKC. Analysis of static images 

suggests that these cells are poorly integrated into the VZ, suggesting that they may be 

detaching from the lumen. In Chapter 4, I provide evidence of that cells are capable of 

disrupting neuroepithelial cell integrity during early neurulation. In Chapter 5, I show 

that dorsal nestin-expressing radial glia or closely associated cells synthesise a mRNA 

that can encode for a truncated isoform of the apical polarity protein, CRB2, and that 

an experimentally synthesised secreted protein product of that truncated mRNA can 

likewise disrupt neuroepithelial cell integrity during early neurulation. This is the first 

in vivo demonstration of a CRB2 isoform that is potentially secreted. Although we do 

not have an antibody that specifically detects the secreted CRB2 isoform, 

immunohistochemical analysis using an antibody that detects the transmembrane 

CRB2 isoform shows that cells show unusual expression of CRB2 over the period of 

dorsal obliteration, with strong apical labelling and diffuse non-apical labelling 

(Chapter 3). Previous studies have suggested that Crb2 can play a role in epithelial to 

mesenchymal cell transition (Karp et al., 2008; Varelas et al., 2010) and additional 



195 
 

studies in zebrafish suggest that CRB2 can bind homophilically (Zou et al., 2012). 

Together with my observations, these findings raise the possibility that secreted CRB2 

plays a role in dorsal obliteration. I hypothesise that secreted CRB2 is secreted locally 

from dorsal Nestin+ Radial Glia (dNRG), that it binds homophilically to transmembrane 

Crb2 on immediately adjacent cells, and downregulates or disrupts apico-basal 

polarity, hence allowing VZ stem/progenitor cells to delaminate from the VZ 

epithelium. To begin to be able to test this model, I set out to develop live imaging of 

mouse spinal cord slices. I describe how I developed a slice culture system, in which VZ 

cell integrity is maintained (Chapter 6) and describe its use in beginning to analyse 

dorsal obliteration in vivo (Chapter 7). My studies in Chapter 7 appear to support the 

relationship between wedge-shaped and elongated roof plate cells. They reveal that 

dorsal RG cells extend a process ventrally towards the lumen, supporting static reports 

in mouse and live imaging in fish. They confirm static studies in rat, suggesting that 

dorsal RG cells act as a barrier, preventing cells/cell processes/axons from crossing. 

They provide evidence that subdorsal VZ cells can detach from the VZ, and move 

dorsally. Finally, they suggest a model in which early-detaching dorsal VZ cells migrate 

along dorsal RG processes but in which later-detaching VZ cells re-polarise, extend a 

process along the dorsal RG and move their cell body dorsally along this process. The 

components of this model are summarised in Figure 8.1. 

Below, I first describe ongoing/future studies that will allow me to further test my 

hypothesis. I then discuss the broad questions that arise from these studies. In 

particular, I discuss my experiments within the context of neurulation. I then suggest 

why I think that if translated into a protein, secreted CRB2 may be only part of a 

complex array of signals that effect dorsal obliteration. Finally, I discuss the 
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implications of dorsal obliteration for studies in the adult spinal cord, both in healthy 

tissue and injured tissue. 

 

8.2 On-going/future studies 

Statistical analysis of markers 

In chapter 3 we attempted a statistical demonstration of the labelling pattern that we 

had described around the lumen: for apical proteins dorsal was very strong, a sub 

dorsal population was weak and the lateral ventricular zone was more even, and the 

intensity lay somewhere in-between. Our Statistical analysis does not support this 

interpretation, but the sample size analysed was too small, and the data collected in a 

way that did not allow good statistical analyses. One of the major limitations of these 

data is the low sample size, which limits the kind of tests that can be performed and 

also limits any test’s ability to reveal an underlying trend. However, more powerful 

statistical tests (such as parametric tests) could be implemented on data from a more 

appropriately designed experiment that could better interrogate any trend. A more 

powerful setup for examining the patterns of apical marker expression intensity with 

respect to position along the lumen could be performed using a larger sample size for 

each timepoint, with a larger number of biological replicates as well as more sections 

from directly comparable positions along the embryo’s anterior-posterior axis. Sample 

size aside, a much more powerful test for any difference in signal intensity of an apical 

marker between these regions would involve a method by which the absolute 

intensities measured from each region could be directly compared between images. To 

achieve this, an experiment should be set up that uses the same staining and imaging 

protocols for each section. The images should be taken on the same microscope at the 

same magnification and at the exposure/gain settings.   
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           Models of sub-dorsal cell detachment and migration
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Figure 8.1 (A) Depicts the whole ventricular zone, and the inset red box shows the areas described in 
(B) and (C). Mechanism of detachment and migration may be as follows: Secreted CRB2 is released 
from the dNRG. This causes disruption/downregulation of polarity and junction proteins at the apical 
surface of sub-dorsal cells. The dNRG cells are protected from secreted CRB2 by very high levels of 
apical proteins. The sub-dorsal cells may then detach and migrate using the dNRGs as a conduit (B) or 
they may extend processes dorsally and then move their cell bodies dorsally (C). Those cells may 
maintain attachment to the lumen with ventrally extending processes (Ci) or detach from the 
ventricular zone altogether (Cii). Process-posessing cells may upregulate Nestin (Cii).
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Determination of the function and mechanism of truncated Crb2/secreted CRB2 

One major issue with these data is that we have not been able to show that a secreted 

CRB2 exists in vivo. From the mRNA, a truncated Crb2 construct has been made that 

produces a secreted CRB2 in a cell line in vitro, and this protein has an effect under 

experimental conditions. Secondly, the truncated Crb2 mRNA has been detected in the 

dorsal Nestin-expressing region of the neural tube, but not in lateral ventricular zone 

cells, consistent with disruption data from the transplantation experiments. Therefore 

it seems possible that secreted CRB2 exists in vivo and has a biological effect. 

 

The truncated Crb2 transcipt is formed from the splicing in of a premature stop codon. 

Premature truncation of a transcript can trigger the Nonsense Mediated mRNA Decay 

(NMD) pathway, a surveillance mechanism that ensures that mRNAs containing 

premature stop codons, introduced by mutation, errant transcription or unproductive 

pre-mRNA splicing, are degraded before translation occurs. Although widely cited as a 

mechanism for ‘quality control’ of aberrant mRNAs, the role of NMD as a 

posttranscriptional regulator is well established. It has been estimated that 5-30% of 

genes produce transcripts that are predicted to be targets of nonsense mediated 

decay (Lykke-Andersen and Jensen, 2015). However, although it is agreed that NMD 

events conserved and present in bacteria to higher organisms, its mechanisms vary 

broadly and are not well understood in any model (reviewed extensively in Brogna, et 

al. 2016; Karousis et al, 2016). 

  

Many genes appear to be regulated at the pre-translation level by alternative splicing 

in which transcription switches between the production of translated and NMD-

destroyed isoforms. (Lykke-Andersen and Jensen, 2015; Hamid and Makeyev 2014; 
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McGlincy and Smith, 2008). Alternatively Spliced Nonsense Mediated mRNA decay (AS-

NMD) may be of particular relevance to neural development, as transcriptomic 

profiling has identified many tissue-specific splicing events, the largest proportion of 

which originates from neural tissues. For example, AS-NMD mediates regulation of 

mouse synaptic protein PSD-95, a widely used postsynaptic marker for glutamatergic 

synapses  in rodent and human (Castle et al., 2008, Pan et al., 2008 and Wang et al., 

2008). 

  

The mechanism of NMD has not been reliably solved, and prediction of transcripts 

subject to NMD is unreliable: not all premature stop codons trigger NMD (Hurt et al 

2013). Recent work in Drosophila has highlighted the complexity of gene regulation – 

noting that four classic pseudogenes containing a premature stop codon were, in fact, 

transcriptionally active in neurons, thus earning them the title ‘pseudo-pseudogenes’ 

(Prieto-Godino et al, 2016). 

  

For this study, although we have detected the truncated Crb2 transcript, we have not 

detected the protein and so we have no formal evidence that the transcript is 

translated. As the truncated transcript contains a premature stop codon, it may well 

be subject to AS-NMD. However, as presence of a stop codon is not unambiguously the 

trigger of NMD, it is worth considering that the truncated Crb2 escapes degradation 

and is translated into a secreted protein in vivo.  

  

The presence of the truncated Crb2 transcript raises the interesting point that it may 

be negatively regulating the levels of full-length CRB2 protein at the transcriptional 

level, i.e. a switch to transcribing the truncated Crb2 transcript that is then destroyed 
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means that there are less full length Crb2 transcripts to be translated. This would 

reduce the levels of CRB2 – either in the highly CRB2-expressing dorsal nestin cells, or 

perhaps as a mechanism to reduce CRB2 in the sub-dorsal cells. 

 

Whatever mechanism is present, steps should be taken to elucidate whether a 

functional molecule, whether a secreted protein or negatively regulating mRNA, is 

present. The protein could perhaps by detected by synthesis of a secreted isoform-

specific antibody, although previous attempts have been unsuccessful.  

 

However, due to the transplantation disruption data of both tissue and experimentally 

synthesised protein, and indeed the ability to synthesise a biologically active protein in 

vitro it is the favoured hypothesis of this writer that truncated Crb2 is translated into a 

secreted protein.   

 

Other markers 

These studies have not addressed that the widespread downregulation of polarity 

markers and junctional proteins without any balancing mechanism is likely to lead to 

tissue disintegration and epithelial instability. The possible model described in this 

thesis does not suggest that the neuroepithelium loses epithelial integrity completely. 

However, loss of polarity and junction proteins may be permissive to the migration of 

cells away from the lumen. We have not investigated that mechanism in any detail in 

this thesis. It is possible that the downregulation or degradation of polarity proteins in 

membranes left behind when cells undergo an apical absission mechanism, such as in 

newborn neurons (Das and Storey, 2015) leads to lower intensity of labelling of these 

proteins in the sub-dorsal ventricular zone. These studies have not investigated any 
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biomechanical mechanisms. It was noted in the live imaging data that some cells 

appeared to detach their apical process from the ventricle and retract it rapidly (data 

not shown). It would be interesting to see if cells under mechanical stress were more 

sensitive to downregulation of polarity/junctional protein downregulation, which 

could perhaps act as a permissive mechanism for allowing cells to leave the ventricular 

zone. Furthermore, there are many important protein complexes that we have not 

investigated, such adherens junctions, that should be studied in order to come to a 

conclusive picture of dorsal obliteration. 

 

Functional studies  

 

My functional studies to date have used chick neural tube to test whether dNRG 

cells/secreted CRB2 protein will induce progenitor cells to delaminate. In both cases, 

delamination is detected, and was accompanied by downregulation of apical (ZO-1, 

CRB2, aPKC) proteins, internal disorganisation within the neural tube, and 

SOX2/PAX6/NKX6.1-expressing progenitors outside the neural tube. Although this 

assay has been informative, it relies on the analysis of static images. If time allowed, I 

would have liked to develop further assays, such as described below: 

 
Development of a cell-based assay 

A cell-based assay will allow finer analysis of the action of secreted CRB2 ex vivo. I 

predict that secreted CRB2 can bind to transmembrane CRB2, disrupt polarity and thus 

the epithelial integrity. Rat retinal pigment epithelium cells and Madin-Darby canine 

kidney cells both express CRB2 and form an epithelial monolayer in culture. I predict 

that adding secreted CRB2 to a culture of these cells would disrupt the epithelial sheet. 
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I would then be able test the prediction that secreted CRB2 is able to disrupt CRB2-

expressing epithelia, and live image the disruption in real time. Secondly, as the 

secreted CRB2 has a V5 and a His tag, it should be possible to analyse where secreted 

CRB2 binds to these cells, and test the prediction that it binds to the extracellular 

domain of transmembrane CRB2. 

 

Further tests of slice cultures: Can secreted CRB2 promote premature dorsal 

obliteration in an ex vivo slice culture assay? 

My model predicts that secreted CRB2 allows cells to detach from the ventricular zone. 

Addition of secreted CRB to slice culture may allow me to see more/premature dorsal 

movement of cells in comparison to untreated cultures. Addition of secreted CRB2 

may have two possible outcomes: 1) an increased number of cells leaving the 

ventricular zone, from along the dorsal-ventral axis in a random manner or 2) an 

increase in the number of cells leaving/premature migration from the dorsal 

ventricular zone. This experiment will provide some information about how rate-

limiting secreted CRB2 is. It is possible that all cells in the ventricular zone are primed 

to leave/can be induced to leave by the presence of secreted CRB2 or the resulting 

disruption to apical polarity. This would certainly mirror some of the effects seen when 

transplanting dorsal radial glial cells into E10-12 chicken embryos. However, the mouse 

spinal cord post E13 has developed to withstand the presence of secreted CRB2 (for 

example high levels of polarity proteins at the endfeet of the dNRG) therefore, cells 

may leave the VZ prematurely, but in a regulated way. It is likely that cells leaving the 

ventricular zone is regulated by a large number of factors, such as mechanical tension, 

chemoattraction and cell-surface interactions, and a number of these may need to be 

in place before a cell can leave the VZ. 
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Blocking the action of secreted CRB2 

Blocking the action of secreted CRB2 could be very informative. As no antibody exists 

against secreted CRB2, other strategies would have to be used. One way of knocking 

secreted CRB2 down is to electroporate a gene-skipping oligo. This short length of 

nucleotides would be designed to sit across the splice site of exon 9a, thus preventing 

the transcription of the truncated/secreted isoform. This could then be electroporated 

into slice culture. The ideal experiment would be to electroporate the construct into in 

utero mouse spinal cords, but this would be technically difficult. 

 

8.3 Is dorsal obliteration a late part of neurulation? 

Recently it has been argued that dorsal obliteration should be considered part of late 

neurulation. My studies suggest that cellular processes that are apparent in dorsal 

obliteration are very common to cellular processes that occur in early neurulation. My 

studies therefore support this idea.  

 

Roof plate and dNRG cells 

The appearance of roof plate cells and their wedging is thought to be vital to the 

bending of neural plate and its progression to neural tube i.e. therefore key to early 

neurulation (Ornitz et al., 1992; Snow et al., 1990). Studies in rat (Snow et al., 1990) 

and fish (Kondrychyn et al., 2013) suggest that, subsequent to their appearance of 

wedged-shaped cells, roof plate cells elongate, and then transit further to a radial glial-

like cell. My work confirms and extends these studies. Double labelling with GFP-GPI 

membrane and a RFP-H2B nuclear reporter shows elongated roof plate cells at E13.5, 

and radial glial like cells at E14 whose cell bodies and nuclei do not directly abut the 
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lumen. At E13.5, the nucleus is in the more basal part of the cell; at E14.5, the cell 

body sits midway between lumen and pia, and sends processes to each. This mirrors 

my immunohistochemical analysis of Nestin/CRB2 that reveals a gap between the 

dorsal apical surface and dorsal nuclei (yellow arrowhead Fig 3.10). 

 

How similar might dNRG be to radial glial cells that extend laterally? At earlier stages 

of neurulation, Nestin+ radial glial extend from lumen to pial surface throughout the 

developing neural tube (Figure 3.3). They play a critical role in neurogenesis first, 

acting as a stem like cells that can support neurogenesis, and second, their processes 

providing a scaffold for early-born neurons to migrate laterally.  However, expression 

of Nestin diminishes from E14, after which neurogenesis also declines. My in vivo 

imaging studies show that radial glia persist at this stage (Fig 7 11). From E14, and 

concomitant with the loss of Nestin from radial glia, I see Nestin expression on dRG 

cells, and my model predicts that progenitors will move along them. This raises 

possibility that Nestin itself is important in some way for conducting 

progenitors/neurons. It is interesting to note that as the dRGcells develop long 

processes, the long rostral to caudal afferent axons in the dorsal funiculus begin to 

develop. 

 

Wider action of secreted CRB2? 

My model suggests that sub-dorsal VZ cells may delaminate, then move dorsally along 

radial glia. My model suggests that this delamination may be mediated by secreted 

CRB2. But might secreted CRB2 be playing a similar role at earlier times in neurulation? 

secreted Crb2 mRNA can be detected in E11.5, well before the onset of dorsal 

obliteration. It is possible that secreted CRB2 is present as a translated protein at or 
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before this stage. We hypothesise that roof-plate cells are the source of secreted 

CRB2, cells that come from the same population of cells that give rise to the 

multipotent neural crest cell lineage. Could a population of secreted CRB2 – expressing 

cells be involved in the delamination of neural crest cells? Conversely, could roof plate 

cells be protected from the effects of secreted CRB2 and so selectively maintained in 

the dorsal spinal cord? 

 

One hypothesis to explain the segregation of neural tube and neural crest cells 

suggests that, in fact, all cells in the early roof plate acquire the potential to 

delaminate and migrate, but this potential is mobilized only in the subset of these cells 

that will become neural crest cells (Gammill and Bronner-Fraser, 2002). The remaining 

dorsal midline cells never access their delamination or migratory potential and are 

retained as roof plate cells. The nature of this activation of the delamination or 

migratory potential remains completely unknown at present, but it has been 

postulated to occur at the post-transcriptional level and/or to be linked to changes in 

cytoskeletal and cell-adhesion complexes. 

 

Finally, it is interesting to speculate whether secreted CRB2 playing a role in cell 

delamination more widely, both in health and disease. It is widely accepted that 

disrupted polarity and the interlinked mechanisms of e.g. epithelial to mesenchymal 

transition are critical to the progression of many cancers. It would be interesting to 

investigate whether secreted CRB2 plays a role in regulating cancers. CRB2 has not 

been well characterised in cancers, but the closely related family member CRB3 has 

been implicated in diseases: loss has been implicated in tumorigenicity in epithelial cell 

lines (Aigner et al., 2007; Karp et al., 2008; Li et al., 2015). Defects in CRB1/CRB2 can 
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cause retinopathies (den Hollander et al., 1999; van den Hurk et al., 2005). Both of 

these homologues have large, and very similar, extracellular domains. Some of the 

mutations in Crb1 in human retinal diseases are in the large extracellular domain, 

suggesting that this domain does have a role in maintaining epithelial integrity. 

Additionally, the extracellular domain of CRB2A in zebrafish has been reported to 

homophilically bind and stabilise the CRB complex (Zou et al., 2012). It is easy to 

imagine a misregulation of secreted versions of CRB1 or CRB2 that could allow cells to 

aberrantly leave the epithelia. 

 

Conserved mechanism? 

My studies show that the truncated Crb2 transcript does exist in mouse, as it does in 

human, but that the exact splice event is not identical. The human equivalent of 

truncated Crb2 is created by a splicing event that includes intron 10a after exon 10 

(Katoh and Katoh, 2004): note this sequence was interpreted from cDNA derived from 

NTERA2 neuronal precursor cells, treated with RA for 5 weeks to induce neural 

differentiation and then with a mitotic inhibitor). Therefore, the splicing site itself is 

likely to be of less significance than the resulting truncating mutation that leads to an 

extracellular domain-only protein. The function of this truncated protein, and 

importantly, the functional sites of this protein are unknown. Presumably, any 

truncating mutation could occur anywhere between the functional sites of the 

truncated protein and the C-terminus of the large extracellular domain. 

 

These studies have not provided bioinfomatic evidence that a similar splicing event 

occurs in chicken. However, the lack of an obvious homologous slicing event in chicken 

does not disprove the existence of a similar secreted protein: bioinfomatic studies 
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depend on the depth and completeness of sequencing projects, and to date, chicken 

mRNA/ESTs have been less intensively sequenced than mouse. Two incidences of exon 

9a-containing ESTs were described in the mouse, both originating from the same 

sequencing study. It is possible that sequencing studies have not picked up the chicken 

equivalent of this presumably rare transcript. There is considerable homology between 

the first half of the chicken and mouse exon structure that then becomes more 

divergent towards the C-terminus of the protein. This suggests that it is perhaps the N 

terminus that is functionally important, and the region of the mammalian truncating 

splicing event is less so. Additionally, a truncated version of chicken CRB2 may be 

spliced by some alternative mechanism to the mammalian genes. Therefore, despite 

the lack of bioinformatic evidence for a truncated chicken CRB2, it is reasonable not to 

dismiss the possibility of its existence. 

 

8.4 Additional factors are likely to contribute to dorsal obliteration 

Studies into neural crest cell formation are beginning to define the complex biological 

steps that a cell follows – including delamination, epithelial-to-mesenchymal transtion 

and then migration. My model suggests that dorsal obliteration will require complex 

steps and signals. Here I have focused on a potential role for secreted CRB2, 

potentially in delamination. But other signals could be important, for instance for a 

putative re-polarisation of detaching VZ cells or in their migration. 

 

GENSAT is a useful resource that catalogues neural expression of a large number of 

different molecules in mouse though both in situ hybridisation and GFP-tagged 

transgenic techniques. Mining through the database reveals many factors that are 
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expressed in interesting patterns during the obliteration window. I have listed the 

most relevant in the Appendix (Appendix A.T1). 

 

Interesting hits include members of the BMP family, a family of signalling ligands that 

have been shown to play varied role in cell proliferation, migration and axon guidance 

(Bragdon et al., 2011). GDF10/BMP3b, for instance, is expressed strongly in the dorsal 

midline and the dorsal funiculus. This protein has been implicated in excessive 

proliferation during cancer development (Dai et al., 2005), and overexpression 

attenuates cell proliferation, transformation, migration/invasion, and EMT (Cheng et 

al., 2015). GFF10/BMP3b has also been linked to regulation of glial behaviour by sonic 

hedgehog in the cerebellum (Mecklenburg et al., 2014). Likewise, a second member of 

the BMP family, BMP1, has previously been shown to be expressed in the premigratory 

neural crest and transiently in migrating cephalic neural crest cells (Marti, 2000). It 

seems highly likely that either, or both, may play a part in the dorsal obliteration 

phenotype. 

 

ZIC2 is a C2H2-type zinc finger transcription factor that is present in the dorsal midline 

and dorsal horn at E15. It is required for early neurulation (Nagai et al., 2000), neural 

crest formation and hindbrain patterning during neurulation (Elms et al., 2003), and 

eye development (Bhansali et al., 2014). Given its role in early neurulation, it might 

play a role in later aspects of neurulation, including dorsal obliteration. Conditional 

studies would be required to test this. 

 

CX3CL1 is a large cytokine protein that is detected at E15 in the dorsal midline and 

dorsal horn. It has been linked to normal eye development, and is misregulated during 
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retinal degeneration in a mouse model of retinitis pigmentosa (Zieger et al., 2014). 

CX3CL1 is constitutively expressed in several regions of the CNS, released both by 

neuronal and astrocytic cells, and is reported to mediate neuron-microglial 

interactions, stimulating microglial cell migration but reducing basal neuronal 

movement (Lauro et al., 2006). 

 

8.5 Dorsal obliteration and formation of adult central canal 

My studies into late neurulation shed light into the formation of the central canal and 

development of the dorsal glial septum. A number of studies have examined the 

characteristics of cells that line the adult central canal. The lateral walls are largely 

made up of lumen-contacting cuboidal ependymocytes and tanycytes. Lineage-tracing 

studies with retroviral constructs show that these derive from stem/progenitor cells 

that line to embryonic VZ (Fu et al., 2003; Spassky et al., 2005). Adult 

ependymocytes/tanycytes express markers that are detected in embryonic stem and 

progenitors, including SHH, NKX6.1 and PAX6, but in a pattern that appears relatively 

ventralised, i.e. supporting a model in which dorsal-most VZ progenitors are lost during 

dorsal obliteration, so that only ventral VZ cells persist around the lumen into 

adulthood (Fu et al., 2003; Yu et al., 2013). The ventral floor of the central canal is 

lined by radial glial cells (Petit et al., 2011). And, pertinent to my work, the dorsal-most 

part of the central canal is occupied by the end-feet of cells termed dorsal 

ependymoglia (Fiorelli et al., 2013; McDermott et al., 2005; Sabourin et al., 2009). The 

body of these cells is situated close to the lumen of the central canal, and they extend 

a long process to the pial surface. Studies have termed this region the dorsal glial 

septum (Bohme, 1988). The dorsal population of Nestin+ ependymoglia that persist in 

adulthood are thus similar in morphology, position and character to the dNRG that I 
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describe at the end of late neurulation, and it seems likely that they are the same cells, 

or are linearly-related to them. 

 
8.6 Regeneration in the adult central canal 

In future my work may inform studies into the regenerative potential of the adult 

spinal cord. Unlike lower vertebrates such as eels and lizards, mammals have a very 

poor ability to repair spinal cord damage (Stenudd et al., 2015). Injury generally leads 

to production of only glial and oligodendrocyte lineages, and the formation of a glial 

scar. Thus, much current work is centred on a better understanding of potential stem 

cells that may persist in the adult spinal cord. 

 

In recent decades, much evidence has accumulated to show that neural stem cells 

exist in the central nervous system into adulthood, and are capable of giving rise to 

new cells, including neurons and astrocytes. In the brain, neural stem cells have been 

described in the sub ventricular zone (SVZ) of the lateral ventricles, the sub granular 

zone (SGZ) of the dentate gyrus and the hypothalamus (Alvarez-Buylla et al., 2002; 

Broom et al., 2012; Doetsch et al., 1999; Jin et al., 2001). In vivo lineage-tracing 

studies, and ex vivo neurospherogenic assays, provide evidence for multipotent self-

renewing neural stem cells that can give rise to new neurons (Deleyrolle and Reynolds, 

2009) By contrast, the adult spinal cord appears to have little/no ability to generate 

new neurons, and currently there is much debate about whether an adult stem cell 

exists around the central canal of the adult spinal cord, where it resides and how 

plastic it might be (Hugnot, 2011; Hugnot and Franzen, 2011; Peretto and Bonfanti, 

2015; Zou et al., 2012). 
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Three lines of evidence suggest that ependymocytes that line the lateral walls of the 

central canal are unlikely to be an active neural stem cell. They undergo some 

proliferation in the early postnatal animal, but not it the adult. Similarly, in mice, SOX4 

is expressed in proliferating ependymocytes in young animals but not adults, 

supporting the idea that a character change in maturing ependymocytes diminishes 

their potential (Sabourin et al., 2009). Further, in contrast to the SVZ and the SGZ, the 

adult central canal has a scant sub-ependymal layer. Instead, GFAP+SOX2 astrocytes, 

Olig2+ oligodendrocyte progenitors, and NeuN neurons are closely apposed to 

ependymocytes. Together, these studies suggest that in the normal healthy animal, 

ependymocytes in the adult spinal cord are not actively proliferative, gliogenic or 

neurogenic. Potentially, this relates to dorsal obliteration. My model suggests that 

dorsal VZ stem/progenitors detach from the sub-dorsal VZ. In the embryo, such 

progenitors are likely to be more plastic than ventral progenitors (which are confined 

through the action of SHH). Thus, it is possible that ependymocyes that remain around 

the central canal have restricted potential. Future studies are needed to test this, and 

to understand the fate of the detached VZ cells. 

 

Other studies nonetheless suggest that stem/progenitor cells persist, and can be 

activated through a number of events, including injury and exercise. Evidence for this 

largely derives from analysis of the neurospherogenic potential of adult spinal cord 

cells ex vivo, and from lineage-tracing studies in vivo. Analysis of different regions of 

the adult mouse central canal shows that the dorsal region (harbouring Nestin+ RG, 

and potentially detached VZ cells) has a much higher proportion of neurosphere 

forming cells than the ventral/lateral central canal (harbouring ependymocyes) or the 

parenchyma, in keeping with rat studies that suggest a higher proliferative potential of 
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dorsal ependymocytes in the early postnatal animal (Sabourin et al., 2009). This raises 

the intriguing possibility that either the dNRG cells may be a stem-like population, or 

that detached SOX2+ progenitors persist as a stem-like population. 

 

Previous studies in the lab support these ideas, showing that in an adult mouse ‘injury-

slice model’, the dNRG cell population expands and is associated with increased 

numbers of intermingled SOX2+ progenitors (Chinnaiya, 2011). The ability of the adult 

Nestin+ cells to induce neural migration upon transplantation into a host chicken 

embryo (chapter 4) may indicate a mechanism that mediates the release of neural cells 

upon injury. The transplanted tissue is injured by the process of dissection, and there is 

likely to be signals that the nestin cells or the host tissue can recognise. This may prime 

the host tissue to be sensitive to secreted CRB2, or perhaps more likely, induces the 

dNRG to secrete secreted CRB2 that then permits neural cells to migrate. Future 

studies are needed to investigate this further.  

 

It is interesting to speculate on the extent to which the processes that occur in dorsal 

obliteration and the development of the dNRG might be re-awakened in adults, and 

the extent to which they can affect repair and homeostasis of the adult spinal cord. 
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A.F1 Chick expression of Sox2/Transitin between E8 and E11 mirrors that of mouse Sox2/Nestin between E13 and E16. As in 
mouse, dorsal radial glia stretch from the roof to the lumen plate as obliteration occurs. Sox2 cells are found dorsal to the 
obliterated lumen, closely associated with transitin RG processes. 



Figure A.F2 Brightfield image of neural tube shown in (A), the lumen is outlined in a dashed yellow line, and the midline marked in text. A cell moves 
its cell body dorsally (white arrowhead)  drawing its process behind it (white arrowhead). (Dorsally moving cell Movie, 2550 minutes). 
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Figure A.F3 Brightfield image of neural tube shown in (A), the lumen is outlined in a dashed yellow line, and the midline marked in text. A cell 
deteaches from the lumen, draws a process in behind it (yellow arrowhead), then begins to extend two processes (Blue arrowhead). The white 
arrowhead indicates the approximate location of the cell body. (Laterally Detaching Cell Movie). 
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Appendix Table 1: GENSAT database interrogation  
Markers noted below have interesting expression around the midline or ventricular zone/ependymal zone 
 
DML dorsal midline, VML ventral midline, DH dorsal horn, DCC dorsal central canal (bold denotes strong expression); ISH – in situ 
Hybridisation, GFP – transgenically labelled tissue.  

Marker Type E15 P7  

Abdh3 abhydrolase domain containing 3 ISH Weak/Absent DF DCC 

Abdh5 abhydrolase domain containing 5 
 

ISH 
GFP 

DCC LCC DML DCC LCC DCC LCC 

Anxa2 annexin A2 ISH/ 
GFP 

DML VML DF 
 

DML VML DF 
(ISH only) 

CC DF DH (GFP only) 

Btg1 B cell translocation gene 1, anti-
proliferative 

ISH Weak/Absent DCC CC 

Bend5 BEN domain containing 5 ISH Weak/ Absent DML DCC 

Card6 Caspase recruitment domain family, 
member 6 

ISH 
GFP 

DML VML 
(ISH) 

CC VML 
(GFP) 

Weak/Absent 
 

Cd63 CD63 Antigen ISH Weak/ 
Absent 

DML VML 
LCC 

CC VML 
 

Cx3cl1 chemokine (C-X3-C motif) ligand 1 ISH DML VML DH DML VML DCC  

Dcdc2a doublecortin domain containing 2a ISH CC DML VML CC DML VML CC 

Plxnb2 Plexin B2 ISH 
GFP 

CC VML 
(DML?) 

DML VML CC CC 

Zic2 zinc finger protein of the cerebellum 2 GFP DML DH DML VML DML DH VH 
Pus10 pseudouridylate synthase 10 ISH / DML VF DF  VCC VML VCC VML 



 

GFP 
Gdf10 (BMP3b) growth differentiation factor 
10 

ISH/ 
GFP 

DML / DF DH (ISH only) DML 

Pla2g7 phospholipase A2, group VII ISH  
GFP 

DM VH DML 
LAT WINGS 

DML Weak/Absent 

Sertm1 serine rich and transmembrane 
domain containing 1 

ISH DM DF DCC LCC DCC 

Tppp3 tubulin polymerization-promoting 
protein family member 3 

ISH/ 
GFP 

VML CC CC VML DML CC VML DML 

BMP1 Bone Morphogenic Protein1 ISH/ 
GFP 

DML VML DML VML VML 

Crip2 cysteine rich protein 2 ISH DML DH VML CC CML VML 
DF 

CC DML VML 

Gja1 (connexin43) gap junction protein alpha 
1 

GFP 
ISH 

Weak/Absent DML DCC 
VML 

DCC  

Grin2c glutamate receptor, ionotropic, 
NMDA2C (epsilon 3) 

ISH 
GFP 

DML DML Weak/Absent 

Thbs2 thrombospondin 2 ISH DML DCC DML DCC DML DCC 
Syt13 synaptotagmin XIII ISH 

GFP 
DF VF DF VF CC 

Slitrk4  SLIT and NTRK-like family, member 4 ISH Weak/ Absent DML DF Weak/ Absent 
Sertm1 serine rich and transmembrane 

domain containing 1 
ISH DF Weak/ Absent DCC 

Sox4 SRY (sex determining region Y)-box 4 iSH Weak/ Absent Weak/ Absent CC Scattered 
Sox9  SRY (sex determining region Y)-box 9 ISH 

GFP 
CC (GFP) Weak/ Absent 

(ISH) 
CC (ISH) 

Pgrmc1 progesterone receptor membrane 
component 1 

ISH CC Weak/Absent Weak/Absent 

Phox2b paired-like homeobox 2b ISH DML (weak) DML  



 

 

Mgll monoglyceride lipase ISH 
GFP 

DML DCC DML  DCC DML, Dorsal to CC/Vent to DF 

Rps7 ribosomal protein S7 ISH DML  Weak/ Absent Weak/ Absent 
Mdk Midkine ISH 

GFP 
DML DCC DML DCC DML 

Id3  inhibitor of DNA binding 3 ISH 
GFP 

DML VML 
DCC VCC 

Weak absent 
ISH 

CC 

Acvr1c (Alk-7) Activin A receptor, type IC ISH DF LF VF Dorsal to 
CC/Vent to 
DF 

CC? 


